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Kurzfassung

Die Arbeit befasst sich mit berechenbaren Transformationen von Strukturklassen. Wir
geben einen Überblick über die vorhandenen berechenbaren Transformationen und deren
Relationen. Der Fokus liegt hier auf effektiver Bi-Interpretierbarkeit. Wir zeigen, dass die
Klassen der Graphen und partiellen Ordnungen bi-interpretierbar sind und befassen uns
mit einem neuen Resultat über die Äquivalenz der effektiven Bi-Interpretierbarkeit von
Klassen und berechenbaren Funktoren. Weiters untersuchen wir zwei kürzlich erforschte
berechenbarkeitstheoretische Eigenschaften von Strukturen, Theorie spektra und Σn-
spectra im Kontext der effektiven Bi-Interpretierbarkeit. Wir zeigen, dass jedes mögliche
Σ1- und Σ2-Spektrum in den Klassen der partiellen Ordnungen und Graphen existiert.
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Abstract

The work reviews different notions of computable transformations on elementary classes of
structures. We review the most prominent computable transformations, effective reducibil-
ity, computable embeddings, Turing computable embeddings, effective bi-interpretability
and computable functors, discussing the different ideas behind them and their relations.
Recent results on the equivalence of effective bi-interpretability and computable functors
are discussed in detail and we prove that graphs and partial orders are effectively bi-
interpretable and therefore share many computability theoretic properties such as degree
spectra and computable dimension. At last the two recently examined notions of theory
spectra and Σn-spectra and their relation in context of computable transformations are
examined. We show that any existing Σ1- and Σ2-spectrum can be found in the classes
of graphs and partial orders.
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CHAPTER 1
Introduction

1.1 Motivation
Computable model theory is the study of computability theoretic properties of mathe-
matical structures. It extends computability theory, which deals with sets to structures
made of a universe, functions and relations. When a computability theoretic property
of structures is found one often wants to know whether there is a structure possessing
that property in a well studied mathematical class such as graphs, partial orders or
lattices. The common way to prove that such a structure exists in a class is to prove it
directly for the class, which is not very productive as the constructions and ideas used
in these proofs often can not be used for other classes. Another way is to use what we
call computable, or effective transformations. These transformations take a structure in
some class and produce a structure in the target class preserving many computability
theoretic properties depending on the strength of the transformation. This method is
reusable, when a new computability theoretic property is studied one only has to show
that the transformations preserve the property to prove that there is a structure in the
target class possessing the property.

Hirschfeldt, Khoussainov, Shore and Slinko [Hir+02] gave effective transformations
from arbitrary structures to graphs, and from graphs to partial orderings, lattices,
rings, integral domains, commutative semigroups and 2-step nilpotent groups showing
that for many computability theoretic properties such as degree spectra, computable
dimension and computable categoricity this classes are complete, i.e. if any structure
possessing such a property is found there is a structure in those classes also having this
property. Since then research interest in effective transformations has risen and many
different notions were studied. Recently Montalbán [Mon14] tried to formally capture
the interpretations given by Hirschfeldt, Khoussainov, Shore and Slinko using the notion
of effective bi-interpretability. He showed that several computability theoretic properties
are preserved by effective bi-interpretations. However for many computability theoretic
properties, such as for instance theory spectra and Σn-spectra, the question whether
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they are preserved or not is still open. In a recent paper Harrison-Trainor, Melnikov,
Miller and Montalbán [Har+15] showed that the notions of effective bi-interpretability
and computable functors is equivalent. This is an interesting result as it establishes a
connection between the syntactic notion of effective bi-interpretability and the semantic
notion of computable functors.

1.2 Problem statement
The interpretations of structures in structures of another language or class are a well
known concept in model theory and have been heavily used in computable model theory
to show that structures in different classes possess certain properties. Many authors
suggested their own interpretations adding computability theoretic constraints on the
relations used in the interpretations to show that their property of interest can also
be found in well known mathematical classes. For many of these interpretations it is
unclear how “strong” they are, i.e. do they also preserve other properties than those they
were intended for? Recently the idea of these interpretations has been formalized in the
notion of effective interpretations. It was shown that effective interpretations preserve
many computability theoretic properties of structures, however it is still unclear for many
interpretations whether they are effective.

For some computability theoretic properties, like theory- and Σn-spectra it is also
not known whether they are preserved by effective interpretations in general. While an
interpretation was used to show that for any structure there is a graph with the same
theory spectrum a similar result for Σn-spectra has not been obtained yet.

1.2.1 Goals

The project had the following goals.

• Review whether existing interpretations are effective interpretations.

• Give an overview of the different notions of computable transformations and their
relation.

• Check whether the notions of Σ1- and Σ2-spectra are preserved by effective inter-
pretations.

1.3 Methodical approach
The project can be divided in three parts.

1. Literature research. At first an extensive literature research on the different com-
putable transformations and interpretations available was done. This includes the
study of already given proofs and working out of proofs only sketched or without
further reference. In the thesis, proofs which are not easily accessible are usually
stated.
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2. Results about effective interpretations. After the literature research the proofs of
existing interpretations to be effective interpretations were done.

3. Results about Σ1- and Σ2-spectra. This was the last part of the project since it
required deep understanding of the matter obtained in the first two parts.

1.4 Structure of the work
First, in Chapter 2, we give the necessary computability theoretic background. In
Chapter 3 we recall the model theoretic definitions of structures and introduce the
most important computability theoretic properties of structures. In Chapter 4 different
notions of effective transformations are discussed. We take a detailed look on effective
bi-interpretability and show for the properties discussed in Chapter 3 that these are
preserved by effective bi-interpretability. We furthermore show that graphs and partial
orders are effectively bi-interpretable based on the interpretations given in [Hir+02]. The
recent results about the equality of computable functors and effective bi-interpretability
are discussed too. Chapter 5 looks at an alternative definition of spectra allowing
different equivalence relations, we prove that spectra under Σ1- equivalence are preserved
by effective bi-interpretability and show that the effective interpretation of arbitrary
structures in graphs preserves spectra under Σ2-equivalence. We furthermore review a
result that theory spectra are preserved by an effective interpretation slightly different
than ours. In Chapter 6 we conclude the work and show potential possibilities for future
research and open questions.
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CHAPTER 2
Computability theoretic

background

To analyse computability theoretic properties of structures some advanced computability
theoretic notions are needed. We assume that the reader is familiar with basic computabil-
ity theoretic notions including computable, computably enumerable sets and Turing
machines with oracles. We will stick to the notation used in [Coo03] and also refer to
this book as a source for basic notions.

Before we start with different notions of relative computability we would like to recall
a basic, but very useful operation, the computable join ⊕ defined as

A⊕B = {2x | x ∈ A} ∪ {2x+ 1 | x ∈ B} .

It is easy to see that given two computable sets, the computable join of these retains
computability, as we can easily extract information from it using the computable function

⊕−1(x) =
{

x
2 if x is even
x−1

2 if x is odd

2.1 The Turing universe and the arithmetical hierarchy
Definition 2.1. A set A is computable relative to a set B, or B-computable, if there is
a functional ΦB

i computing A using B as oracle and we write A ≤T B to denote that A
is Turing reducible to B.

We say that a structure A is B-c.e. if there is a functional ΦB
i enumerating A. Using

this notation we can define an equivalence relation A ≡T B iff A ≤T B and B ≤T A, we
say that A is Turing equivalent to B. The Turing degree of a structure A is then

deg(A) = {X ⊆ ω | X ≡T A} .
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If we talk about degrees without taking reference on the structures in it, we use bold
letters, like d to denote degrees. The structure formed by Turing degrees is often referred
to as the Turing universe D. It is easy to see that the set of computable functions form a
degree, denoted as 0. The degree 0 is the least degree in the Turing universe as for any
X ∈ 0 X ≤T Y where Y is a structure of arbitrary degree.

Until now we have only talked about the degree of sets, but how about the degree
of functions? We can define the degree of a function f using its graph Graphf =
{(x, y) | f(x) = y} as

deg(f) = deg(Graphf ).

An important concept is the jump of a set.

Definition 2.2. The jump A′ of A is

A′ =
{

(x, y) | x ∈WA
y

}
,

where WA
y denotes the halting set of ΦA

y .

If we want to denote the nth jump of a set we write A(n). Jumps have interesting
properties.

Theorem 2.1. Let A,B ⊆ ω, then
(1) A′ is A-c.e.
(2) A ≤T A′
(3) A′ 6≤T A
(4) B ≡T A iff B′ ≡T A′

For a proof see [Coo03, p.150]. It follows directly from Theorem 2.1 that 0′, the jump
of the degree of computable sets, is the degree of c.e. sets. Any set in 0′ is definable by
an existentially quantified computable relation, i.e. for any set S ∈ 0′ x ∈ S ⇔ ∃yR(x, y),
where R is computable.

Example 2.1. Recall the halting set Wi = {x | ϕi(x) ↓}. The halting set is c.e. and
therefore deg(Wi) = 0′. We have that

x ∈Wi ⇔ ∃sϕi,s(x) ↓,

where ϕi,s is the computation of ϕi after s steps.

Indeed this holds not only for 0′, but in general leading to the following definition of
the arithmetical hierarchy.
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Definition 2.3. Σ0
0,Π0

0,∆0
0 = 0. And for n ≥ 0:

(1) Σ0
n+1 = all relations of the form ∃yR(x, y) with R ∈ Π0

n,
(2) Π0

n+1 = all relations of the form ∀yR(x, y) with R ∈ Σ0
n,

(3) ∆0
n+1 = Σ0

n+1 ∩Π0
n+1.

R is arithmetical if R ∈
⋃
n≥0(Σ0

n ∪Π0
n).

It is possible to relativize this definition and the following theorems to arbitrary sets,
we then write Σ0,A

n ,Π0,A
n ,∆0,A

n , denoting that the relation R is A-computable. The 0 in
the superscript means that we allow quantification over variables, if the context is clear
we often leave it and write ΣA

n ,ΠA
n and ∆A

n .
We say that A is Σn-complete if A ∈ Σn and X ≤T A for X ∈ Σn. ∆n and

Πn-complete are similarly defined. This notation has some useful properties.

Theorem 2.2 (Post’s Theorem). Let A ⊆ ω, then:
(1) 0(n+1) is Σn+1-complete.
(2) A ∈ Σn+1 ⇔ A is c.e. in 0n.
(3) A ∈ ∆n+1 ⇔ A ≤T 0n.

A detailed proof of Theorem 2.2 can be found in [Coo03, p.157].

2.2 Enumeration reducibility

Apart from Turing reducibility there are also other possibilities to model relative com-
putability. One notion we will need later on is enumeration reducibility. Informally we
say that A is enumeration reducible to B, A ≤e B when we can computably enumerate
the members of A by enumerating the members of B without any restriction on the order
in which B is enumerated. The formal definition is as follows.

Definition 2.4. An enumeration operator Ψ is a c.e. set - where for any set B ⊆ ω

n ∈ ΨB ⇔ ∃ a finite D ⊆ B such that (n,D) ∈ Ψ

So ΨB = {n | (n,D) ∈ Ψ for some finite D ⊆ B}.
A is then enumeration reducible to B, A ≤e B, if A = ΨB for some Ψ.

Since Ψ is c.e. there is a functional enumerating it and hence we can computably
approximate it. We write Ψs to denote the set Ψs after s steps of enumeration. Observe
that Ψs is now computable. Proposition 2.3 follows.

Proposition 2.3. If A ≤e B, then A is B-c.e.

Every set A Turing reducible to B is also enumeration reducible to B, as can be seen
in Proposition 2.4.

Proposition 2.4. If A ≤T B, then A ≤e B.
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Proof. Assume A ≤T B, then there is an i such that ΦB
i = χA. Recall from the definition

of oracle Turing machines that ΦB
i uses only finite information of B to decide wether

x ∈ A. Hence if ΦB
i (x) = 1, then there is a finite subset D of B, such that ΦD

i (x) = 1.
Hence we can construct Ψ by

(n,D) ∈ Ψ⇔ ∃sΦD
i,s(n) = 1.

It follows that Ψ is Σ1 and therefore c.e. and hence we can reduce A to B by enumeration
reducibility using enumeration operator Ψ.

However enumeration reducibility is weaker than Turing reducibility, as can be seen
in Proposition 2.5.

Proposition 2.5. There is a A,B such that A ≤e B but A 6≤T B.

Proof. Recall the definition of K0 = {x | x ∈Wx}. We give a counter example by showing
that χK0 ≤e SK0⊕K0

but χK0 6≤T SK0⊕K0
where χK0 is the characteristic function of K0

and SK0⊕K0
is defined as

SK0⊕K0
(x) =

{
1 if 2x ∈ K0 ⊕K0 or 2x+ 1 ∈ K0 ⊕K0
undefined otherwise .

Observe that SK0⊕K0
is equivalent to the constant function returning 1 and is therefore

computable. Assume that χK0 ≤T SK0⊕K0
, then χK0 is computable, since it is Turing

reducible to a computable set. It follows that χK0 6≤T SK0⊕K0
.

However we can construct an enumeration operator Ψ

Ψ = {(n, 1), {(2n, 1)} | n ∈ ω} ∪ {(n, 0), {(2n+ 1, 1)} | n ∈ ω} .

Clearly Ψ is c.e., GraphχK0
= Ψ

GraphS
K0⊕K0 and therefore χK0 ≤e SK0⊕K0

.

2.3 Computable infinitary formulas

Informally, a computable infinitary formula is an infinite disjunction or conjunction over
c.e. sets of formulas. We only consider infinitary formulas in conjunctive or disjunctive
normal form with finitely many free variables. Computable infinitary formulas are
categorized like their finite counterparts by Σc

α,Πc
α,∆c

α for computable ordinal α ≥ 0.
We will only need computable infinitary formulas up to Σc

1. We give a slightly informal
definition of computable infinitary formula.
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Definition 2.5. The computable Σc
0 and Πc

0 formulas are the finitary open formulas,
and for computable f and α > 0:
(1) a Σc

α formula ϕ(x) is of the form∨
i∈ω
∃uψf(i)(u, x′ ⊆ x)

where ψi is computable Πβ for some β < α.
(2) a Πc

α formula ϕ(x) is of the form∧
i∈ω
∀uψf(i)(u, x′ ⊆ x)

where ψi is computable Σβ for some β < α.
(3) ∆c

α = Σc
α ∩Πc

α.

The definition is fine for the first level of the hierarchy Σc
1,Πc

1,∆c
1, since computable

infinitary formulas on the first level are made of computable finitary formulas and these
formulas have computable codes, computed by f(i) in the definition. However formulas
on higher levels are infinite disjunctions or conjunctions of computable infinitary formulas,
which do not have codes and hence this definition is inprecise for those formulas unless we
assign codes to them. Since we only need computable infinitary formulas up to the first
level and the formal definition is rather involved we will not give it here, the interested
reader can find it in [AK00, Chapter 7].

The most important property of computable infinitary formulas is that their com-
plexity matches the complexity of their interpretation, if the formula is interpreted in a
computable structure. A formal statement can be seen in Theorem 2.6.

Theorem 2.6. For computable structure A, if ϕ(x) is a Σc
α formula, then ϕA is Σ0

α,
and if ϕ(x) is a Πc

α formula, then ϕA is Π0
α where ϕA is the interpretation of ϕ in A.

The complete proof of this theorem can be found in [AK00, Theorem 7.5]. It goes by
induction on α. More on structures and interpretations in Chapter 3.
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CHAPTER 3
Computability of structures and

structure classes

3.1 Model theoretic background
Before we go into detail about effective transformations we introduce the necessary model
theoretic definitions and look at some of the computability theoretic properties which
will be discussed later with respect to transformations. We mostly use notations as given
in [Mar02].

Definition 3.1. A language L is given by
(i) a set of function symbols F together with their arity af for each f ∈ F ,
(ii) a set of relation symbols R together with their arity aR for each R ∈ R.

To avoid confusion we use capital letters or strings starting with capital letters to
denote relation symbols and small letters or strings starting with small letters to denote
functions. In many standard textbooks an additional set is used to denote constants,
however we use function symbols with arity 0 to denote constants. Two examples of
languages are
(i) the language of rings Lr = {+, ·, 0, 1} where +, · are binary functions and 0, 1 are

constant symbols,
(ii) the language of graphs Lg = {E} where E is a binary relation symbol.

Definition 3.2. A structure S is given by
(i) a non-empty set S called universe or domain of S,
(ii) a set of functions,
(iii) a set of relations.

We usually write structures as S = (S,RS1 , · · · , RSn , fS1 , · · · , fSm) where function
symbols start with lower case letters and relation symbols with upper case letters. We
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write the name of the structure in the superscript, as in RS , to make clear that we talk
about the interpretation of the symbol. In this work we only deal with structures having
domain S ⊆ ω.

If we can interpret any symbol of a language L in a structure S, then we call S a
L-structure. For example the structure N = (Z,+, ·, 0, 1), where +, · are interpreted as
addition and multiplication respectively and 0, 1 as the numbers 0 and 1, is a Lr-structure.
However the structure N ′ = (Z,+, 0, 1) with the same interpretation for +, 0, 1 as N is
not.

Recall the definition of a sentence1. A theory T is then a set of sentences. We say
that a structure S is a model of a theory T ,

S |= T iff S |= ϕ, ∀ϕ ∈ T .

We can now define elementary classes of structures.

Definition 3.3. An elementary class K is given as

K = {S | S |= T }

for some fixed theory T .

There are different ways to construct theories and their classes. One way is to look
at the full theory Th(S) of a structure S. The class defined by this theory is then the set
of exactly those structures elementary equivalent to S. Another typical way to define
theories is to look at properties of structures and defining them as sentences of the theory.
Using this approach we get classes of structures possessing the same properties. Below
we give examples of classes we will need later on.

Example 3.1. Graphs
The following sentences describe the class of non trivial irreflexive graphs.

∃x, y E(x, y)
∀x ¬E(x, x).

To get the class of symmetric graphs one needs to add the sentence

∀x, y E(x, y)→ E(y, x).

Example 3.2. Partial Orders
To capture partial orderings, sentences describing reflexivity, antisymmetry and transitiv-
ity are needed.

∀x x ≤ x
∀x, y x ≤ y ∧ y ≤ x→ x = y
∀x, y, z x ≤ y ∧ y ≤ z → x ≤ z

1a sentence is a closed logic formula
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For many properties it is not necessary to look at a particular structure and sufficient
to look at its isomorphism type.

Definition 3.4. The isomorphism type Iso(A) of structure A is

Iso(A) =
{
Ã : Ã ∼= A and Ã ⊆ ω

}
.

Another important definition is that of definable sets, i.e. sets definable by a formula.
The formal definition is as follows.

Definition 3.5. Let M = (M, . . . ) be an L-structure. We say that X ⊆ Mn is
definable if and only if there is an L-formula ϕ(v1, . . . , vn, w1, . . . , wm) and b ∈Mm such
that X =

{
a ∈Mn | M |= ϕ(a, b)

}
. We say that ϕ(v, b) defines X. X is A-definable, or

definable in A if there is a formula ψ(v, w1, . . . , wl) and b ∈ Al such that ψ(v, b) defines X.

Consider the following example.

Example 3.3. Let N = (ω,+, ·), the set of natural numbers together with additon and
multiplication. The set X = {x ∈ ω | x is even} is definable by the formula

ϕ(x) = ∃y x = 2 · y

since x is even if and only if N |= ϕ(x). Since ϕ does not have any other open variable
then x, X is ∅-definable.

3.2 Computability theoretic properties of structures
We only consider computable languages, i.e. they are countable and we can computably
list all their symbols and arities. We also assume that they are relational, i.e. they do not
have function symbols. This can be done without loss of generality since we can transform
any L-structure S = (S, fS1 , . . . , fSn , RS1 , . . . , RSm) into a relational LR-structure, where
LR is a relational language, S ′ = (S,RS′1 , . . . , R

S′
n+m) by setting

RS
′

1 , . . . , R
S′
m = RS1 , . . . , R

S
m and RS′m+1, . . . , R

S′
m+n = GraphfS1

, . . . , GraphfS′n

and since deg(f) = deg(Graphf ), S ′ has exactly the same computability theoretic
properties as S. We only consider structures with computable domain subset of the
natural numbers.

The atomic diagram of S, denoted as D(S), is the set of quantifier free sentences of
S expanded by a constant symbol for each s ∈ S. A slightly more formal but equivalent
definition using computable joins is often very useful.

D(S) = A⊕
⊕

1,...,m
RSm

Using this notation it is possible to identify a structure with its atomic diagram. This is
often used to make notation easier, e.g. given a functional f : D(A)→ D(B) transforming
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the atomic diagram of structures A in class K into the atomic diagram of structures B
in class K ′ we often abuse notation and write f(A) = B instead of f(D(A)) = D(B) to
improve readability.

The n-quantifier diagram of S is the set of sentences up to n-quantifier alternations
of S expanded by a constant symbol for each s ∈ S, and the elementary diagram of S is
the full first order theory of S expanded by a constant symbol for each s ∈ S. We can
now define what it means for a structure to be (relatively) computable.

Definition 3.6. A structure S is d-computable if S is computable and D(S) is d-
computable. If the n-quantifier diagram is computable then S is n-decidable, while if the
full elementary diagram of S is computable then S is decidable.

It is easy to see that the atomic diagram of a structure is d-computable if and only if
all relations and functions are d-computable. Computable but undecidable structures do
exist and occur naturally, a famous example is given in example 3.4.

Example 3.4. Let N = (ω; +, ·,′ , 0, 1,=) be the standard model, or intended interpreta-
tion as it is often called in literature, of Peano arithmetic. Here +, · and = are interpreted
as usual and ′ is the successor function, i.e. for a variable x, x′ = x+ 1. N is computable
since ω,+, ·,′ and = are all computable but it is not decidable as was shown by Gödel in
his proof of the incompleteness theorem.

If S is isomorphic to a d-computable structure S̃, then S̃ is a d-computable presenta-
tion of S. If there exists a d-computable presentation of a structure S then we say that
S is d-computably presentable.

Definition 3.7. The degree of a structure S is

deg(S) = deg(D(S)).

While this definition of degrees of structures is quite natural and obvious there are also
other interesting computability theoretic properties of structures not properly captured
by it. Indeed a structure S might have isomorphic presentations which are of different
degree. Therefore the degree of a structure does not tell us sufficiently enough about
the information content of structures. To get a better idea about the computability of
structures we therefore need further notions.

3.2.1 Degree spectra

A natural way to analyze the information content of a structure is to look at its iso-
morphism type, i.e. those structures isomorphic to it. One property to study here are
the degrees of the structures in an isomorphism type. This is captured by the degree
spectrum of a structure.

Definition 3.8. The degree spectrum of a structure A is

DgSp(A) = {deg(D(B)) | B ∼= A} .
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An interesting property to look at when analyzing the computability of structures is
the minimal degree in a degree spectrum.

Definition 3.9. If the degree spectrum of a structure A has a least element, then this
element is called the degree of isomorphism type of A.

Indeed not every isomorphism type has a degree. Richter showed in [Ric81] that
structures without computable presentation which satisfy the effective extendability
condition do not have a degree of isomorphism type. A structure A satisfies the effective
extendability condition if for every finite structureM isomorphic to a substructure of
A, and every embedding f ofM into A, there is an algorithm that determines whether
a given finite structure F extending M can be embedded into A by an embedding
extending f [FHM14]. Results about structures satisfying the effective extendability
condition were obtained in [Ric81] and more recently in [Khi04], namely that every
structure in the classes of linear orders, trees, partially ordered sets, and abelian p-groups
satisfies the effective extendability condition. It follows that any structure of this classes
which does not have a computable presentation has no degree of its isomorphism type.
That there are structures without computable presentation follows for example directly
from a theorem shown independently by Slaman and Wehner.

Theorem 3.1 ([Sla98], [Weh98]). There is a structure A that has presentations of every
degree except 0.

A fundamental result about degree spectra is due to Knight.

Theorem 3.2 ([Kni86]). The degree spectrum of any structure is either a singleton or
upwards closed.

Indeed it was shown in [Kni86] that the degree spectrum of any nontrivial structure
is closed upwards. An upwards closed degree spectrum is illustrated in figure 3.1.

deg(A)

DgSp(A)

Figure 3.1: The upwards closed degree spectrum of some structure A
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3.2.2 Computable dimension

Another property which gives information about the information content of structures
is the computable dimension of a structure. Given a computable presentable structure
we look at the degree of the isomorphisms generating its computable presentations. We
define the computable dimension of a structure.

Definition 3.10. Given a degree d, the d-computable dimension of a computably pre-
sentable structure S is the number of computable presentations of S up to d-computable
isomorphism. If S has d-computable dimension 1 then it is d-computably categorical.

If we look at the 0-computable dimension of a structure, we usually omit the 0
and analogously if a structure is 0-computably categorical we say that it is computably
categorical. In other words a structure S is computably categorical iff for any two
computable presentations S̃, Ŝ there is a computable function f inducing the isomorphism
between S̃, Ŝ. An interesting category of structures are structures with computable
dimension 1 or ω. Indeed all structures of many natural classes have either computable
dimension 1 or ω. As an example it was shown by Nurtazin that all decidable structures
have computable dimension 1 or ω and later Goncharov expanded this result to 1-decidable
structures. This result has also been proven for the following algebraic classes by various
authors.

Theorem 3.3 ( [Gon81], [Gon82], [Gon97], [GD80], [MN79], [Rem81], [Nur74]). All
structures in each of the following classes have computable dimension 1 or ω: algebraically
closed fields, real closed fields, Abelian groups, linear orderings, Boolean algebras, and
∆0

2-categorical structures.

A natural question is wether there exist structures with finite computable dimension
greater than 1. This was answered positively in an early paper by Goncharov.

Theorem 3.4 ([Gon80]). For each n > 0 there is a computable structure with computable
dimension n.

An intuitive follow up question is wether there exist structures with finite computable
dimension greater than 1 in any well-known class of structures. Indeed several classes
which possess this property have been found. The proofs were done by coding families of
computably enumerable sets with a finite number of computable enumerations into the
structures.

Theorem 3.5 ([GMR89], [Gon80], [Kud96]). For each n > 0 there are structures with
computable dimension n in each of the following classes: graphs, lattices, partial orderings,
2-step nilpotent groups, and integral domains.

3.2.3 R.i.c.e and r.i. computable relations

Another option to measure the complexity of a structure is to look at the relations which
are computable in the structure. In other words, given a structure A and a relation R

16



we ask wether we can compute R with A as oracle. This question is reflected in the
following definitions.

Definition 3.11. We say that a relation R is relatively intrinsically computable, r.i.
computable, in A if for any presentation Ã of A we can compute R in D(Ã).
A relation R is uniformly relatively intrinsically computable in A if there is a functional
Φ such that for any presentation Ã

ΦD(Ã) = χR.

Definition 3.12. We say that a relation R is relatively intrinsically computably enu-
merable, r.i.c.e., in A if for any presentation Ã of A we can enumerate R in D(Ã).
A relation R is uniformly relatively intrinsically computably enumerable in A if there is
a functional Φ such that for any presentation Ã

ΦD(Ã) = SR

where SR is the semi characteristic function of R.

We furthermore say that a relation R is co-r.i.c.e. in A if its complement is r.i.c.e. in A.
The following important theorem, which establishes a connection between interpretation
and syntactic definition is due to Ash, Knight, Manasse and Slaman.

Theorem 3.6 ( [Ash+89]). The following statements are equivalent
(1) R is (uniformly) r.i.c.e. in A.
(2) R is Σc

1-definable (without parameters) in the language of A.

The same holds for co-r.i.c.e. relations, i.e. a relation R is co-r.i.c.e. if and only if
its complement is Σc

1-definable, and relatively intrinsically computable relations, i.e. a
relation R is relatively intrinsically computable if and only if itself and its complement
are Σc

1-definable, leading to Corollary 3.7.

Corollary 3.7. The following statements are equivalent
(1) R is (uniformly) r.i. computable in A.
(2) R is ∆c

1-definable (without parameters) in the language of A.

Uniformly relatively intrinsically computably relations and uniformly r.i.c.e. relations
are strongly connected as can be seen in Theorem 3.8.

Theorem 3.8. For any structure A =
{
A,RA0 , . . . , R

A
n

}
, there is a structure B ={

B,RB0 , . . . , R
B
n

}
and equivalence relation ∼ such that A ∼= B/ ∼ 2. Furthermore RAi is

uniformly r.i.c.e. iff RBi is uniformly r.i. computable.
2where B/ ∼ is the collapse of B under ∼, i.e. B/ ∼=

{
B/ ∼, RB0 / ∼, . . . , RBn/ ∼

}
.
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Proof. Assume RAi to be uniformly r.i.c.e. in A, then RAi is Σc
1-definable in A, i.e.

x ∈ RAi ⇔
∨
i∈ω
∃sϕf(i)(x, s).

Define B as the set of tuples of the form (x, s, i) and let (overlinex, s, i) ∼ (y, t, j) iff
x = y. We can define RBi as

(x, s, i) ∈ RBi ⇔ ϕf(i)(x, s).

RBi is obviously ∆c
1-definable without parameters in B and therefore uniformly r.i. com-

putable. Furthermore it is easy to see that

x ∈ RAi ⇔ x ∈ RBi / ∼ .

18



CHAPTER 4
Effective transformations

If a computability theoretic property about structures, like the properties reviewed in
Chapter 3, is found, one often wants to know whether this property can also be found
in natural classes of structures such as fields, lattices or graphs. One way to approach
this question is to prove the property for any of the classes one is interested in, which is
tedious and not reusable. A better way would be to define transformations of structures
and show that these transformations preserve the properties.

A transformation of structures is generally a functional f taking a structure A as
input and outputting a structure B. Depending on the strength or effectiveness of the
transformation f different computability theoretic properties are preserved. Having
transformations of structures we say that a class K is transformable to a class K ′ if
every structure A ∈ K is transformable to a structure B ∈ K ′. A class K is uniformly
transformable to a class K ′ if we can fix a functional f transforming any structure A ∈ K
to some structure B ∈ K ′. We say that K is X-reducible to K ′ where X stands for the
type of transformation we used. A class K ′ is X-complete, or on top for X -reducibility if
any class K X-reduces to K ′.

The idea of these transformations was first captured by the notion of Borel reducibility
by Friedman and Stanley [FS89].

Definition 4.1. A class of structures K is Borel reducible to a class K ′, and we write
K ≤B K ′, if there is a Borel function f : 2ω → 2ω that maps presentations of structures in
K to structures inK ′ and preserves isomorphism. That is, for allA ∈ K, f(D(A)) = D(B)
for some B ∈ K ′, and if Ã ∈ K with f(D(Ã)) = B̃ for some B̃ ∈ K ′, then

A ∼= Ã ⇔ B ∼= B̃.

Observe that Borel reducibility is not effective, since we do not have any requirements
on the computability of f or the reduced structures. In recent years different ideas of
effectivizing this notion have been investigated. Often a more general version of Borel
reducibility and its effectivizations is studied, allowing arbitrary equivalence relations
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E instead of only isomorphisms. We will only consider the restricted version of the
reducibilities considering only isomorphism. We will focus on two very strong notions of
effective transformations in the sense that they preserve many computability theoretic
properties, effective bi-interpretability and computable functors, and will also review other
effectivizations investigated recently.

4.1 Effective bi-interpretability
Before we look at the effective version of interpretability we define the usual model
theoretic notion of interpretability similar to the definition in [Mar02, Definition 1.3.9].

Definition 4.2. We say that an L0-structure A is interpretable in an L-structure B if
there is a definable X ⊆ Bn, a definable equivalence relation ∼ on X, and for each symbol
of L0 we can find definable ∼-invariant sets on X (where "definable" means definable in
L) such that X/ ∼ with the induced structure is isomorphic to B.

We can now define the effectivization of interpretability similar to the one given
in [Mon14, Definition 5.1].

Definition 4.3. We say that a structure A = (A,PA0 , PA1 , · · · ) is effectively interpretable
in B if there exists a uniformly r.i.c.e. set (in B) DomBA and a uniformly r.i. computable
sequence of relations (∼, R0, R1, · · · ) such that
(i) DomBA ⊆ B<ω,
(ii) ∼ is an equivalence relation on DomBA,
(iii) Ri ⊆ (B<ω)aRi is closed under ∼ within DomBA,
and there exists a function fBA : DomBA → A, the effective interpretation of A in B, which
induces an isomorphism:

(DomBA/ ∼, R0/ ∼, R1/ ∼, · · · ) ∼= (A,PA0 , PA1 , · · · )

Recall the connection between uniformly r.i.c.e sets and Σc
1-definability as shown in

Theorem 3.6. Any uniformly r.i.c.e. set is Σc
1-definable without parameters. The same

holds for ∆c
1-definability and uniformly r.i. sets as established in Corollary 3.7. This

equivalence is heavily used in proofs of effective interpretability of a structure in another
structure. In the definition given in [Har+15] all relations, including DomBA, were required
to be ∆c

1-definable without parameters. However it follows from Theorem 3.8 that this
definitions are equivalent. Both definitions have their uses, it is easier to show that a
particular interpretation is effective using Definition 4.3, however for most general proofs
the definition given in [Har+15] is easier to handle. We will use the latter definition in
our proof of Theorem 4.1. We can now look at the notion of effective bi-interpretability.

Definition 4.4. Two structures A and B are effectively bi-interpretable if there are
effective interpretations of one in the other such that the compositions

fAB ◦ f̃BA : Dom(DomBA)
B → B and fBA ◦ f̃AB : Dom(DomAB )

A → A
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are uniformly r.i. computable in B and A respectively. (Here f̃BA : (DomBA)<ω → A<ω is
the obvious extension of fBA : DomBA → A mapping Dom(DomBA)

B to DomAB .).

By substituting from the definitions one sees that for two structures A,B to be
bi-interpretable, A has to be interpretable in A<ω<ω and B has to be interpretable in
B<ω<ω with the embeddings being r.i. computable in A and B resepectively.

When two structures are effectively bi-interpretable then they possess the same
computability theoretic properties, in Theorem 4.1 the properties preserved by effective
bi-interpretations can be seen.

Theorem 4.1 ([Mon14]). Let A and B be effectively bi-interpretable. Then
(1) A and B have the same degree spectrum.
(2) A is computably categorical if and only if B is.
(3) A and B have the same computable dimension.
(4) A is rigid if and only if B is.
(5) A and B have the same Scott rank.
(6) For every a ∈ A<ω, there is a b ∈ B<ω such that (A, a) and (B, b) have the same

computable dimension, and vice-versa.
(7) For every R ⊆ A<ω, there is a Q ⊆ B<ω which has the same degree spectrum, and

vice-versa.
(8) A has the c.e. extendibility condition if and only if B does.
(9) The index sets of A and B are Turing equivalent, assuming A and B are infinite

structures.
(10) The jumps of A and B are effectively bi-interpretable.

Before we prove some of the properties we make the following crucial observation.

Proposition 4.2. Let A and B be effectively bi-interpretable, then deg(A) = deg(B).

Proof. Recall that A is coded as a subset of B<ω and B is coded as a subset of A<ω.
Since A<ω, B<ω consist of finite sets of elements of A,B respectively, we can compute
A<ω,B<ω given A,B. It follows that deg(A) = deg(A<ω) and deg(B) = deg(B<ω). Since
the sequences of relations and all functions are uniformly r.i. computable in A<ω and
B<ω respectively, we get that deg(A) = deg(B<ω) = deg(B).

Observe that in the above proof we use the definition that DomBA is uniformly r.i.
computable instead of uniformly r.i.c.e., we can do this as both definitions are equivalent.
We can now prove the properties (1)− (3), exactly those properties we have introduced
in Chapter 3. For proofs of the other properties see [Mon14].

Proof of (1). In this and all subsequent proofs let A be coded in B<ω, hence A = DomBA
and let B̃ ∈ Iso(B) be coded in A<ω, i.e. B̃ = Dom(DomAB )

A . Recall that by Proposition 4.2
deg(A) = deg(B). Now let B̂ ∼= B by the function h and then obviously also B̂ ∼= B̃.
Hence we can code B̂ into Â<ω and Â ∼= A by the function

fBA ◦ f̃AB ◦ h ◦ f Â−1
B̂
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Furthermore deg(B̂) = deg(Â<ω) = deg(Â). It follows that DgSp(A) = DgSp(B).

Proof of (2). (⇒) Let A1,A2 be computable presentations of A coded into B<ω1 , B<ω2
and B1,B2 ∈ Iso(B) are presentations of B. By the argument about degrees of codings
from above we have that B1,B2 are computable. Let A1,A2 be computably isomorphic
by the function h. Then B1,B2 are isomorphic by the composition

fA2
B2
◦ f̃B2
A2
◦ fB2
A2
◦ h ◦ (fA1

B1
◦ f̃B1
A1

)−1.

Proof of (3). As a corollary from the proof of (2) we have that two computable pre-
sentations of A are computably isomorphic iff their corresponding structures in B are
computably isomorphic. Hence if A has k non computably isomorphic presentations, so
has B and vice versa. It follows that A and B have the same computable dimension.

It is also possible to define a transformation between classes of structures based
on effective bi-interpretability. Observe that an interpretation is given by a list of ∆c

1-
definable sequence of relations. And since we can write any ∆c

1-definable relation as the
∆c

1 formula defining the relation, we can view the interpretation as a list of ∆c
1 formulas.

With this we can define reducibility between classes.

Definition 4.5. A class K is reducible to K ′ via effective bi-interpretability if there are
∆c

1 formulas such that for every A ∈ K, there is a B ∈ K ′ such that A and B are effectively
bi-interpretable using those formulas. A classK is complete for effective bi-interpretability,
or ei-complete, if for every computable language L, the class of L-structures is reducible
to K via effective bi-interpretability.

4.1.1 Complete classes

More than a decade before the definition of effective bi-interpretability Hirschfeldt,
Khoussainov, Shore and Slinko [Hir+02] defined a slightly weaker notion of completeness,
as in Definition 4.6.

Definition 4.6. A theory T is complete with respect to degree spectra of nontrivial
structures, effective dimensions, expansion by constants, and degree spectra of relations if
for every nontrivial countable structure B there is a nontrivial A |= T with the following
properties.
(1) DgSp(A) = DgSp(B).
(2) If B is computably presentable then the following hold

a) For any degree d, A has the same d-computable dimension as B.
b) If x ∈ B then there exists an a ∈ A such that (A, a) has the same computable

dimension as (B, x).

22



c) If S ⊆ B then there exists a U ⊆ A such that DgSpA(U) = DgSpB(S) and if
S is intrinsically c.e. then so is U .

We will refer to classes being complete with respect to degree spectra of nontrivial
structures, effective dimensions, expansion by constants, and degree spectra of relations
as HKSS-complete classes. By giving interpretations between structures they showed
that the following theories are HKSS-complete.

Theorem 4.3 ([Hir+02]). Let T be any of the following theories: symmetric, irreflexive
graphs, partial orderings, lattices, rings (with zero-divisors), integral domains of arbitrary
characteristic, commutative semigroups and 2-step nilpotent groups. Then T is complete
with respect to degree spectra of nontrivial structures, effective dimensions, expansion by
constants, and degree spectra of relations.

The authors gave an interpretation of arbitrary structures in asymmetric graphs. To
prove the results for symmetric irreflexive graphs, partial orderings and lattices interpre-
tations of asymmetric graphs in these theories were given. To show that rings, integral
domains, commutative semigroups and 2-step nilpotent groups are HKSS-complete a
finite number of constant symbols needs to be added to their domain.

We will review the interpretations of arbitrary classes in graphs and graphs in partial
orders. Instead of giving the original proofs that these interpretations are sufficiently
strong to preserve HKSS-completeness, we will show that they are effective interpretations.
To do this we first show that any arbitrary structure is effectively interpretable in
asymmetric graphs, then we give an interpretation of asymmetric graphs in symmetric
irreflexive graphs and at last we show that the class of symmetric irreflexive graphs is
effectively interpretable in partial orders, thus we not only proof that the interpretations
are effective we also obtain that graphs and partial orders are effectively bi-interpretable
and complete for effective bi-interpretability.

In the original proofs the relations given were only required to be r.i. computable
and not uniformly r.i. computable. Because of this the effective interpretation of
asymmetric graphs in symmetric irreflexive graphs had to be modified. One can show
that all interpretations given by Hirschfeldt, Khoussainov, Shore and Slinko are effective
interpretations. Hence we obtain Theorem 4.4.

Theorem 4.4. Symmetric, irreflexive graphs, partial orderings, lattices, rings (with
zero-divisors), integral domains of arbitrary characteristic, commutative semigroups and
2-step nilpotent groups are complete for effective bi-interpretability.

Recently Miller, Park, Poonen, Schoutens and Schlapentokh showed that fields are
complete for effective bi-interpretability, expanding the list in Theorem 4.4.

Theorem 4.5 ([Mil+15]). Fields are complete for effective bi-interpretability.
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4.1.2 Completeness of graphs and partial orders

We will show that graphs and partial orders are complete for effective bi-interpretability
by giving three interpretations. An interpretation of arbitrary structures into countable
graphs, showing that countable graphs are complete, an interpretation of countable graphs
into symmetric irreflexive graphs which shows that countable graphs and symmetric
irreflexive graphs are effectively bi-interpretable and hence symmetric irreflexive graphs
are also complete and finally an interpretation of symmetric irreflexive graphs in partial
orders, showing that this class is also complete.

Effective interpretation of arbitrary classes in graphs

We give an effective interpretation of arbitrary classes in countable graphs, that is
asymmetric graphs with potential self loops. Given structure A = (A,P0, P1, . . . , Pn)
where Pi has arity ai we construct the corresponding countable graph G = (G,E) by the
following rules.

1. A vertex α ∈ G with E(α, α),

2. for every i ∈ A a vertex αi ∈ G and E(α, αi),

3. for every relation Pi and each tuple (u1, . . . , uai) ∈ Aai such that A |= P (u1, . . . , uai)
vertices β1, . . . , βai , edges E(βj , βj+1) for 1 ≤ j < ai, an edge E(αi, βj) if uj = i
and a cycle of length 2i+ 2 starting at β1,

4. and for every relation Pi and each tuple (u1, . . . , uai) ∈ Aai such that A 6|=
P (u1, . . . , uai) vertices β1, . . . , βai , edges E(βj , βj+1) for 1 ≤ j < ai, an edge
E(αi, βj) if uj = i and a cycle of length 2i+ 3 starting at β1.

In Figure 4.1 one can see the graph corresponding to a structure consisting of two relations
P0 = 1, . . . and P1 = {(1, 3), (2, 3)}.

Proposition 4.6. There is an effective interpretation of A in G.

Proof. Let DomGA = {αi | i ∈ A}. It is easy to see that DomGA is Σc
1-definable without

parameters and hence also uniformly r.i.c.e. since

x ∈ DomGA ⇔ ∃y E(y, y) ∧ E(y, x).

Define ∼ as equality, which is trivially uniformly r.i. computable, and also all the relations
we are about to define are ∼-invariant since any set is equality invariant. For each Pi
with arity ai we define Ri as

(x1, . . . , xai) ∈ Ri ⇔ DomGA(x1) ∧ · · · ∧ DomGA(xai)
∧∃y1, . . . , yai(E(x1, y1) ∧ · · · ∧ E(xai , yai)
∧E(y1, y2) ∧ · · · ∧ E(yai−1, yai)
∧∃z1, . . . , z2i+1 (E(y1, z1) ∧ E(z1, z2) ∧ · · · ∧ E(z2i+1, y1))}
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α

α2α1 α3

P0(1)

P1(1, 3)

¬P1(1, 2)

P1(2, 3)

Figure 4.1: The partial graph G of structure A with two relations P0, P1 and A |=
P0(1),¬P1(1, 2), P1(1, 3), P1(2, 3)

Since DomGA is Σc
1-definable without parameters and ai is finite, Ri is Σc

1-definable. To
show that it is uniformly r.i. computable we define the set Qi such that (x1, . . . , xai) ∈
Qi ⇔ (x1, . . . , xai) 6∈ Pi. It is definable by the following formula.

(x1, . . . , xai) ∈ Qi ⇔ DomGA(x1) ∧ · · · ∧ DomGA(xai)
∧∃y1, . . . , yai(E(x1, y1) ∧ · · · ∧ E(xai , yai)
∧E(y1, y2) ∧ · · · ∧ E(yai−1, yai)
∧∃z1, . . . , z2i+2 (E(y1, z1) ∧ E(z1, z2) ∧ · · · ∧ E(z2i+2, y1))

By the same argument as for Ri, Qi is Σc
1-definable without parameters. Furthermore

observe thatQi is the co-relation ofRi onDomGA and henceRi is uniformly r.i. computable.
We define fGA(i) = αi, it follows by construction of DomGA that fGA : DomGA

1−1−−→
onto

A and
that Ri(x1, . . . , xai)⇔ Pi(fGA(x1), . . . , fGA(xai)). Hence fGA is an effective interpretation
of A in G.
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Bi-interpretability of graphs and symmetric irreflexive graphs

Given an arbitrary asymmetric graph D = (D,E) we construct a symmetric irreflexive
graph GD = (G,F ) satisfying the following conditions.

1. G = {a, ã, b, α1, α2, α3} ∪ {vi, xi, x̃i | i ∈ D},

2. F (a, ã), F (ã, a) and F (b, x̃i), F (x̃i, b),

3. F (ã, α1), F (ã, α2), F (ã, α3), F (α1, α2), F (α2, α3), F (α1, α3) and their symmetries,

4. F (a, vi), F (xi, vi), F (x̃i, vi) and F (vi, a), F (vi, xi), F (vi, x̃i) for each i ∈ D,

5. if (i, j) ∈ E, then (xi, x̃j), (x̃j , xi) ∈ F .

An example can be seen in Figure 4.2. The straight lines code the edge relation and the
dashed lines code the edges needed to make the sequence of relations we are about to
construct ∆c

1-definable without parameters.

1 2

3

a

v2v1 v3

x1 x2 x3

x̃1 x̃2 x̃3

b

α1

ã

α3

α2

D

GD

Figure 4.2: Coding of an asymmetric graph D in a symmetric, irreflexive graph GD

We modified the original interpretation given in [Hir+02] by adding the complete
subgraph on the four vertices ã, α1, α2, α3 and connecting it to b and a. The original
interpretation only had a vertex ã which was not connected to b. Because we need
uniformity we had to add the complete subgraph as otherwise DomGDD would only be
r.i.c.e but not uniform. We first prove that the complete subgraph on ã, α1, α2, α3 is the
only complete subgraph consisting of 4 or more vertices.
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Lemma 4.7. The subgraph ã, α1, α2, α3 of GD is the only complete subgraph on 4 vertices
in GD.

Proof. First observe that in every complete graph on 4 vertices there is a cycle of
length 4. By construction of the interpretation the only cycles of length 4 not involving
ã, α1, α2, α3 are of the form xi − x̃j − b− x̃k − xi for any i, j, k ∈ G, but by construction
¬F (x̃j , x̃k),¬F (x̃k, x̃j) and hence cycles of these form can not build a complete subgraph
on 4 vertices. As there is no other possibility to construct a cycle of length 4 the lemma
follows.

Theorem 4.8. There is an effective interpretation of D in GD.

Proof. Let DomGDD = {vi | i ∈ D}. We can define DomGDD by the following formula

x ∈ DomGDD ⇔ ∃ya, yã, yα1 , yα2 , yα3 F (x, ya) ∧ F (ya, yã) ∧ x 6= yã

∧ ¬F (ya, yα1) ∧ ¬F (ya, yα2) ∧ ¬F (ya, yα3) ∧ F (yã, yα1)
∧ F (yã, yα2) ∧ F (yã, yα3) ∧ F (yα1 , yα2) ∧ F (yα2 , yα3) ∧ F (yα1 , yα3).

The first part of the formula identifies the vertex a by stating that a is the only vertex which
is connected to exactly one vertex in the complete subgraph, this is true by construction.
The second part of the formula verifies that yã, yα1 , yα2 , yα3 build a complete subgraph.
It is easy to see now that the formula defines DomGDD . As it is also Σc

1, Dom
GD
D is

Σc
1-definable without parameters and therefore uniformly r.i.c.e. We let ∼ again be

equality which is trivially uniformly r.i. computable and define R(x, y) as

(x, y) ∈ R⇔ DomGDD (x) ∧DomGDD (y) ∧ ∃u, v(F (x, u) ∧ F (y, v) ∧ F (u, v) ∧ F (v, b)).

It is easy to see from the construction of the interpretation that the formula defines R.
To show that it is Σc

1 it remains to show that x = b is Σc
1-definable. Indeed we can define

x = b as

x = b⇔ ∃yã, yα1 , yα2 , yα3F (x, yα1) ∧ F (x, yα2) ∧ ¬F (x, yalpha3) ∧ ¬F (x, yã)
∧ F (yã, yα1) ∧ F (yã, yα2) ∧ F (yã, yα3) ∧ F (yα1 , yα2) ∧ F (yα2 , yα3)
∧ F (yα1 , yα3).

As in the above formula the first part makes sure that x is connected to exactly 2 vertices
in the complete subgraph and the second part verifies that yã, yα1 , yα2 , yα3 induce a
complete subgraph. As this is the only complete subgraph and b is the only vertex
connected to it by 2 vertices the formula defines x = b. It is now easy to see that R is
Σc

1-definable without parameters. To see that it is uniformly r.i. computable we define
the relation Q such that (x, y) ∈ Q⇔ (x, y) 6∈ E. Q is definable in GD by

(x, y) ∈ Q⇔ DomGDD (x)∧DomGDD (y)∧∃u, v(F (x, u)∧F (y, v)∧¬F (u, v)∧F (v, b)).

The formula is clearly Σc
1-definable since x = b is Σc

1-definable. By construction of the
interpretation we have that (i, j) 6∈ E ⇔ (xi, x̃j) 6∈ F which is reflected by the formula
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and therefore it indeed defines Q. Observe that Q is the co-relation of R on DomGDD ,
hence R is uniformly r.i. computable. It is also ∼-invariant since any set is invariant
under equality.

Let fGDD (vi) = i, then fGDD : DomGDD
1−1−−→
onto

D. We get that E(x, y)⇔ R(fGDD (x), fGDD (x))

from the arguments above and hence fGDD is an effective interpretation of D in GD.

Using Theorem 4.6 and Theorem 4.8 we get that the classes of asymmetric graphs
and irreflexive graphs are effectively bi-interpretable.

Corollary 4.9. Asymmetric graphs and irreflexive symmetric graphs are effectively
bi-interpretable.

As another corollary, since any structure is reducible to asymmetric countable graphs,
we get Corollary 4.10.

Corollary 4.10. The class of irreflexive symmetric graphs is complete for effective
bi-interpretability.

Bi-interpretability of symmetric irreflexive graphs and partial orders

Let G be a structure in the language of symmetric, irreflexive, countable graphs. We
define the partial ordering PG = (PG ,≺) as in [Hir+02].

1. PG = {a, b} ∪ {ci | i ∈ G} ∪ {di,j | i < j ∧ i, j ∈ G}

2. The relation ≺ is the smallest transitive relation on P satisfying the following
conditions.

(a) a ≺ ci ≺ b for all i ∈ G,

(b) if i, j ∈ G, i < j and E(i, j) then di,j ≺ ci, cj ,

(c) if i, j ∈ G, i < j, and ¬E(i, j), then ci, cj ≺ di,j .

Theorem 4.11. There is an effective interpretation of G in PG.

Proof. Let DomPGG = {x ∈ PG | a ≺ x ≺ b}, then by definition DomPGG = {ci | i ∈ G}
Furthermore let

R(x, y) =
{

(x, y) | x 6= y ∧ DomPGG (x) ∧ DomPGG (y) ∧ ∃z(z 6= a ∧ z ≺ x ∧ z ≺ y)
}
.

Define ∼ as equality and observe that DomPGG / ∼= DomPGG and R/ ∼= R. We first show
that this is an interpretation. Consider fPGG (ci) = i for ci ∈ Pg. It follows immediately
that fPGG : DomPGG

1−1−−→
onto

G. To show that fPGG is an interpretation it remains to show
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that R(x, y)⇔ E(f(x), f(y)). To do this we look at the definition of R

R(x, y) ={
(x, y) | x 6= y ∧ DomPGG (x) ∧ DomPGG (y) ∧ ∃z(z 6= a ∧ z ≺ x ∧ z ≺ y)

}
⇔
{

(x, y) | fPGG (x) 6= f
PG
G (y) ∧G(fPGG (x)) ∧G(fPGG (y))

∧∃z(z 6= a ∧ z ≺ x ∧ z ≺ y)
}

by applying modus ponens on 2.(a) and ∃z(z 6= a ∧ z ≺ x ∧ z ≺ y) we get

⇔
{

(x, y) | fPGG (x) 6= f
PG
G (y) ∧G(fPGG (x)) ∧G(fPGG (y))

∧∃z(z 6= a ∧ z ≺ x ∧ z ≺ y ∧ z 6= b)
}

Figure 4.3 shows a partial Hasse diagram of some value ci such that E(i, j),¬E(i, k) in
G. Observe that by construction ci ≺ cj for any i, j and since z 6= b and z 6= a, z = dxy

cicj ck

a

b

dij

djk

Figure 4.3: The partial Hasse diagram of some PG with E(i, j),¬E(i, k)

or z = dyx depending on whether x < y. Hence we get

⇔
{

(x, y) | fPGG (x) 6= f
PG
G (y) ∧G(fPGG (x)) ∧G(fPGG (y))

∧(dxy ≺ x ∧ dxy ≺ y ∨ dyx ≺ x ∧ dyx ≺ y)
}

and by substituting from 2.(a)

⇔
{

(x, y) | fPGG (x) 6= f
PG
G (y) ∧G(fPGG (x)) ∧G(fPGG (y))

∧(E(fPGG (x), fPGG (y)) ∨ E(fPGG (y), fPGG (x)))
}

Recall the axioms of symmetric, irreflexive graphs from Example 3.1. By symmetry we
get that

⇔
{

(x, y) | fPGG (x) 6= f
PG
G (y) ∧G(fPGG (x)) ∧G(fPGG (y)) ∧ E(fPGG (x), fPGG (y))

}
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and by irreflexivity

E(x, y)→ x 6= y ∧G(x) ∧G(y)

and hence

R(x, y)⇔
{

(x, y) | E(fPGG (x), fPGG (y))
}
⇔ E(fPGG (x), fPGG (y)).

The result that f is an interpretation follows. It remains to show that DomPGG is uniformly
r.i.c.e. and that ∼ and R are uniformly r.i. computable. ∼ is obviously ∆c

1-definable
without parameters and hence uniformly r.i. computable. By definiton the elements ci
are the only elements that have an upper and a lower element in the order (see Figure 4.3).
Hence

x ∈ DomPGG ⇔ ∃u x ≺ u ∧ ∃v v ≺ u.

It follows that DomPGG is Σc
1-definable without parameters and therefore uniformly r.i.c.e.

Let R∃ = ∃z(z 6= a ∧ z ≺ x ∧ z ≺ y). Looking at R one immediately sees that everything
but R∃ is trivially Σc

1-definable without parameters. Observe that

z 6= a⇔ ∃u DomPGG (u) ∧ z 6≺ u.

We then get

R∃ ⇔ ∃z (∃u(DomPGG (u) ∧ z 6≺ u) ∧ z ≺ x ∧ z ≺ y).

Since DomPGG is Σc
1-definable without parameters and no quantifier alternation is added

we get that R∃ is Σc
1 definable without paramters and hence R is Σc

1-definable without
parameters.

To show that R is ∆c
1-definable without parameters we define the relation Q as

(x, y) ∈ Q⇔ DomPGG (x) ∧ DomPGG y ∧ (x 6= y ∧ ∃z(z 6= b ∧ x ≺ z ∧ y ≺ z) ∨ x = y)

With an analogous argument as for (x, y) ∈ R one can see that (x, y) ∈ Q ⇔ (x, y) 6∈
E(x, y). The inequivalence z 6= b is definable by the Σc

1-formula ∃uDomPGG (u) ∧ u 6≺ z.
It follows that Q is Σc

1-definable without parameters and therefore R is ∆c
1-definable

without parameters and hence uniformly r.i. computable. It is also ∼-invariant since any
set is invariant under equality.

We conclude that fPGG is an effective interpretation of G in PG .

By combining Corollary 4.10 and Theorem 4.11 we get the following two corollaries.

Corollary 4.12. The classes of symmetric irreflexive graphs and partial orders are
effectively bi-interpretable.

Corollary 4.13. The class of partial orders is complete for effective bi-interpretability.
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4.2 Computable functors

If we look at the degree spectrum (see Definition 3.8) of a structure, a natural way to
define a reducibility between two structures A and B is to say that A is reducible to B
if DgSp(A) ⊆ DgSp(B), or in other words if every presentation of A can be computed
by a presentation of B. This reducibility is known as Muchnik-reducibility [Muc63]
and we say A is Muchnik-reducible to B. We can also consider the uniform version
of this reducibility, Medvedev-reducibility [Med55] where we say that a struture A is
Medvedev-reducible to a structure B if there is a Turing functional Φ such that ΦB̃ → Ã,
where Ã, B̃ are presentations of A and B respectively. It is easy to see that the notions
of Medvedev-reducibility and effective interpretability are strongly connected, yielding
Lemma 4.14.

Lemma 4.14. If A is effectively interpretable in B, then A is also Medvedev reducible
to B.

Proof. From Proposition 4.2 we get that for any A such that A is effectively interpretable
in B, deg(A) = deg(B). Let Ã ∈ Iso(A) and let h induce the isomorphism. Furthermore
let B̃ be the structure in which A is coded. Then B̃ ∼= B by the isomorphism f B̃Ã ◦ f

B−1
A .

It follows that Iso(A) ⊆ Iso(B) and that together with the equivalence of degrees gives
DgSp(A) ⊆ DgSp(B) and hence A is Medvedev reducible to B.

However it was shown in [Kal09] by giving counterexamples that the reverse of the
implication does not hold, hence Lemma 4.15.

Lemma 4.15. If A is Medvedev reducible to B, then A is not necessarily effectively
interpretable in B.

If we want to achieve equivalence we need to strengthen the notion of Medvedev
reducibility. To do this recall the notion of the isomorphism class of a structure A, Iso(A)
from Definition 3.4. We can view Iso(A) as a category, having the presentations of A as
its objects and the isomorphisms between them as its morphisms. Now we can define the
notion of a computable functor, similar to the definition in [Har+15].

Definition 4.7. A functor from A to B is a functor from Iso(A) to Iso(B), that is, a
map F that assigns to each presentation Ã in Iso(A) a structure F (Ã) in Iso(B), and
assigns to each morphism f : Ã → Â in Iso(A) a morphism F (f) : F (Ã) → F (Â) in
Iso(B) so that the two properties hold below:
(1) F (idÃ) = idF (Ã) for every Ã ∈ Iso(A), and
(2) F (f ◦ g) = F (f) ◦ F (g) for all morphisms f, g in Iso(A).

A functor F : Iso(A)→ Iso(B) is computable if there exist two computable operators Φ
and Φ∗ such that
(1) for every Ã ∈ Iso(A), ΦD(Ã) is the atomic diagram of F (Ã) ∈ Iso(B),
(2) for every morphism f : Ã → Â in Iso(A), ΦD(Ã)⊕f⊕D(Â)

∗ = F (f).
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We often identify a computable functor with its pair (Φ,Φ∗) of Turing operators witnessing
its computability.

In the definition id stands for the identity isomorphism. Although this definition might
seem very complex at first, observe that Φ without Φ∗ gives Medvedev reducibility from
A to B. This definition is now equivalent to effective interpretability, see Theorem 4.16.

Theorem 4.16. Let A and B be countable structures. Then A is effectively interpretable
in B if and only if there exists a computable functor from B to A.

The proof that there exists a computable functor from B to A if there is an effective
interpretation of A in B is rather straightforward. It is easy to see, and also well known in
model theory, that given an interpretation of one structure in another one can construct
a functor. Indeed we have used compositions of isomorphisms between structures and
their interpretations and showed that those are computable in the proofs of Theorem 4.1,
this already suggests that an effective interpretation gives rise to a computable functor.

The other direction, there exists an effective interpretation of A in B if there is a
computable functor from B to A, is however not so easy to see, since creating an effective
interpretation out of a computable functor is not straightforward. For a complete proof
of Theorem 4.16 see [Har+15, Section 2].

Harrisson-Trainor, Melnikov, Miller and Montalbán not only showed that the existence
of a computable functor given an effective interpretation and vice versa but also a
correspondence between those. They showed that given a computable functor F the
computable functor IF induced by the corresponding interpretation and F are effectively
isomorphic as defined in Definition 4.8. This is reflected in Proposition 4.17, the proof
can be seen in [Har+15, Section 3].

Definition 4.8. A functor F : Iso(B)→ Iso(A) is effectively isomorphic to a functor
G : Iso(B) → Iso(A) if there is a computable Turing functional Λ such that for every
B̃ ∈ Iso(B), ΛB̃ is an isomorphism from F (B̃) to G(B̃), and the following diagram
commutes for every B̃, B̂ ∈ Iso(B) and every morphism h : B̃ → B̂:

F (B̃) G(B̃)

F (B̂) G(B̂)

ΛB̃

ΛB̂
F (h) G(h)

Proposition 4.17. Let F : Iso(B)→ Iso(A) be a computable functor, then F and IF
are effectively isomorphic.

To create an equivalence between effective bi-transformability and computable functors
we need one last concept, that of pseudo-inverse functors. Let F and G be functors such
that F ◦G and G ◦ F are effectively isomorphic to the identity functor. Let ΛA be the
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Turing functional witnessing the effective isomorphism between G ◦ F and the identity
functor, i.e. for any Ã ∈ Iso(A), ΛÃA : Ã → G(F (Ã)). Similarly we can define ΛB, then
there is a map ΛF (Ã)

B : F (Ã)→ F (G(F (Ã))). If these two maps, and also the similarly
defined maps for Iso(B) agree for every Ã ∈ Iso(A) and B̃ ∈ Iso(B) respectively, then
we say that F and G are pseudo-inverses.

We can now define what it means for structures to be computably bi-transformable
and state Theorem 4.18 witnessing the equivalence with effective bi-interpretability, for a
proof see [Har+15, Section 4].

Definition 4.9. Two structures A and B with domain ω are computably bi-transformable
if there exist computable functors F : Iso(A)→ Iso(B) and G : Iso(B)→ Iso(A) which
are pseudo-inverses.

Theorem 4.18. Let A and B be countable structures. Then A and B are effectively
bi-interpretable iff A and B are computably bi-transformable.

As for effective bi-interpretability we can define computable bi-transformations on
classes of structures.

Definition 4.10. A class K is uniformly transformally reducible in a class K ′ if there
exists a subclass K ′′ ⊆ K ′ and computable functors F : K → K ′′ and G : K ′′ → K
and F,G are pseudo-inverses. We say that a class is complete for computable functors if
for every computable language L, the class of L-structures is uniformly transformally
reduces to it.

Theorem 4.19, witnessing the equivalence of effective bi-interpretability and com-
putable bi-transformations, follows directly from Theorem 4.18

Theorem 4.19. A class K is reducible via effective bi-interpretability to a class K ′ iff
it is uniformly transformably reducible to K ′.

As a corollary we obtain that the classes complete for effective bi-interpretability are
also complete for computable functors. This equivalence is quite helpful as it establishes an
equivalence between the syntactic approach of effective interpretability and the semantic
approach of computable functors. It is also of practical interest. For instance Theorem 4.5,
the completeness of fields for effective bi-interpretability, has been proven by showing
that fields are complete for computable functors.

4.3 Other effectivizations

4.3.1 Effective reducibility

Since it is possible to identify structures with their atomic diagram and the atomic
diagram can be coded as a set using computable joins we can view a structure S as
the set coding its atomic diagram D(S). Obviously the set D(S) is computable iff S
is a computable structure. From basic computability theory it follows that D(S) is
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computable iff its characteristic function is computable, i.e. is ϕi with some index i. We
can now define the index set of a class and effective reducibility between two classes.

Definition 4.11. The index set I(K) of a class K is the set of indices of computable
structures in K.

Definition 4.12. A class K is effectively reducible to a class K ′ if there is computable
1 − 1 function f : I(K) → I(K ′) and if A, Ã ∈ K are computable and isomorphic, i.e.
A ∼= Ã, then f(A) ∼= f(Ã). We say that K ≤e K ′ iff K is effectively reducible to K ′.

It was shown in [Fok+12] that linear orderings, fields, trees, p-groups and torsion-free
abelian groups are ≤e-complete. Fokina and Friedman [FF09] originally considered both
computable reducibility and hyperarithmetical reducibility, where f is required to be
hyperarithmetical instead of computable. However Montalbán [Mon14, Theorem 1.6]
showed that these two reducibilities coincide for complete classes. This result implies
that the isomorphism problem, defined as

E(K) = {(i, j) | i, j are indices of isomorphic computable structures in K}

for this classes must be Σ1
1-complete. Hence classes without Σ1

1-complete index isomor-
phism set, such as Q-vector spaces, equivalence structures and torsion-free abelian groups
can not be ≤e-complete since their isomorphism problem is known to be hyperarithmeti-
cal. No examples of classes without hyperarithmetic isomorphism problem which are not
≤e-complete are known, although it has been shown independently by Becker [Bec13]
and Knight and Montalbán [unpublished] that such classes exist under the assumption
that Vaughts conjecture fails.

4.3.2 Computable embeddings

Computable embeddings are another approach to effectivize the notion of Borel embed-
dings, first investigated in [Cal+04]. As the above notions it induces a partial order on
the classes of structures. To define the notion of computable embeddings we first need
the notion of computable transformations.

Definition 4.13 ([Cal+04]). Let K and K ′ be classes of structures, and let Ψ be a c.e.
set of pairs (α,ϕ) where α is a subset of the atomic diagram of a finite structure for the
language of K, and ϕ is an atomic sentence, or the negation of one in the language of K ′.
We say that Ψ is a computable transformation from K to K ′ if for all A ∈ K, Ψ(D(A))
has the form D(B), for some B ∈ K ′. We may write Ψ(A) = B (identifying the structures
with their atomic diagram).

Observe that this notion is essentialy enumeration reducibility (see 2.4) on classes of
structures. Hence the output structure of Ψ(A) depends only on A and not on the order
in which A is processed by Ψ. An important property of computable transformations is
that they preserve substructure.
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Proposition 4.20 (Preservation of substructure). Let A′ ⊆ A and B = Ψ(A), B′ =
Ψ(A′), then B′ ⊆ B.

Proof. Let ϕ ∈ D(B′), hence by Definition 4.13 there is a subset α ⊆ D(A′) such that
(α,ϕ) ∈ Ψ and since B′ ⊆ B and A′ ⊆ A, ϕ ∈ D(B) and α ⊆ D(A).

To get an effective version of Borel embeddings, isomorphism between structures needs
to be preserved by the transformations. If this is added to the definition of computable
transformations, computable embeddings are obtained.

Definition 4.14. A computable embedding of a class K in K ′ is a computable trans-
formation Ψ from K to K ′ preserving isomorphism, i.e. for all A, Ã ∈ K, A ∼= Ã′ iff
Ψ(A) ∼= Ψ(Ã′). If K is computably embeddable in K ′ we write K ≤c K ′.

Several results on the structure induced by ≤c have been obtained. It has been shown
that the class of infinite graphs is ≤c-complete and that the classes of finite primite fields
FPF , finite linear orderings FLO and Q-vector spaces FV S are strictly increasing under
≤c, i.e. FPF <c FLO <c FV S. This results have all been obtained in [Cal+04]. A
general result on the structure of ≤c, that there inifinitely many antichains, and hence
≤c is not a linear order, has also been obtained in the same paper. It was later shown by
Knight [unpublished] that ≤c is not a lattice, hence there are pairs of classes which neither
have meet nor join. A strong tool to prove results about computable embeddings is
Proposition 4.20 together with the substructure property. A class K has the substructure
property if no A ∈ K is isomorphic to a substructure of Ã ∈ K unless A ∼= Ã. So, for
instance to show that K1 does not embed into K2 and it is known that K2 has the
substructure property it is sufficient to show that K1 does not.

4.3.3 Turing computable embeddings

The notion of Turing computable embeddings was first defined in [Cal04] but not further
investigated until [KMB07]. The difference to computable embeddings is that it uses
Turing reducibility instead of enumeration reducibility. The formal definition is as follows.

Definition 4.15. A Turing computable embedding of K into K ′ is an operator Φ = ϕi
such that
(1) for each A ∈ K there exists B ∈ K such that ϕD(A)

e = χD(B),
(2) and Φ preserves isomorphism, i.e. for A, Ã, A ∼= Ã implies Φ(A) ∼= Φ(Ã).

We write K ≤tc K ′ iff there is a Turing computable embedding from K to K ′.

Interestingly in contrast to enumeration and Turing reducibility on sets as shown
in Chapter 2 here the converse holds, namely that ≤c implies ≤tc, see [KMB07] and
≤tc does not imply ≤c, see [Kal09]. The fact that ≤tc does not imply ≤c was shown
constructively by giving counterexamples. This also becomes apparent when we consider
that Turing computable embeddings do not preserve the substructure property, since
it might still be that structure A has the substructure property and B does not but
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A is Turing computably embeddable in B. The two reducibilities agree however on all
interesting mathematical classes, in particular on the classes investigated in [Cal04] about
which we talked about briefly in Section 4.3.2.

To prove non embeddability results for computable embeddings the substructure
property is an important and powerfull tool, but since this property is not preserved by
Turing computable embeddings we need something else to show these kind of results. A
theorem which makes it possible to show many non embeddability results is the pull back
theorem proposed by Knight.

Theorem 4.21 ([KMB07]). If K ≤tc K ′ via Φ, then for any computable infinitary
sentence ϕ in the language of K ′, we can find a computable infinitary sentence ϕ∗

such that for all A ∈ K, Φ(A) |= ϕ iff A |= ϕ∗. Moreover, if ϕ is computable Σα, or
computable Πα , for α ≥ 1, then so is ϕ∗.

Although it has not been shown, it is commonly believed that if two structures are
effectively bi-interpretable, then they are Turing computably bi-embeddable. This is
suggested by the fact that given two effectively bi-interpretable structures A and B and
a computable infinitary sentence ϕ such that A |= ϕ we can replace each relation in ϕ
in the language of A by the corresponding relation in the coding in B which are all ∆c

1
computable. Hence the complexity of the formula does not increase and Theorem 4.21
does hold also for effective bi-interpretability and computable functors.
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CHAPTER 5
Degree spectra of theories and

effective bi-interpretability

In Definition 3.8 we defined the degree spectrum of a structure as the set of Turing
degrees of its presentations. But this is not the only notion of degree spectra which is
studied. In [AM15] Andrews and Miller defined the degree spectrum of a theory T as the
set of Turing degrees of all countable models of T . The authors gave several examples of
degree spectra of theories including a non-degenerate union of two cones. This example
entails that not every degree spectrum of a theory is a spectrum of a structure since it is
known that no non-degenerate union of two cones is a degree spectrum of a structure.
They also proved that the collection of non-hyperarithmetical degrees is not the spectrum
of a theory and since there are structures with its degree spectrum consisting of all
non-hyperarithmetical degrees [Kni86, Theorem 4.1] therefore also the converse, that not
every spectrum of a structure is a spectrum of a theory, holds. This is also suggested by
the fact that the isomorphism class and elementary class of an infinite structure do not
coincide.

Fokina, Semukhin and Turetsky [FST15] suggested the following generalization of the
definition of degree spectra.

Definition 5.1. The degree spectrum of a structure A under the equivalence relation E
is

DgSp(A, E) = {d | there exists a d-computable structure B, such that AEB} .

Under this definition the degree spectrum of a structure A under isomorphism as
defined in Definition 3.8 is DgSp(A,∼=) and the degree spectrum of the equivalence class
of a structure, the degree spectrum of the theory of A is Dgsp(A,≡), the degree spectrum
of A under elementary equivalence.

Andrews and Miller [AM15][Proposition 2.2.] showed the following proposition about
spectras of theories, we reformulated it with respect to Definition 5.1.

37



Proposition 5.1. Given arbitrary structure A with DgSp(A,≡), there is a structure
GA in the theory of graphs such that DgSp(GA,≡) = DgSp(A,≡).

They showed the proposition by giving a translation of arbitrary structures into
graphs. It can be shown that this translation is an effective interpretation using the same
methods we used in our proof of Proposition 4.6.

5.1 Σn-spectra

Instead of considering the full theory one can also consider only its Σn fragment, that
is sentences of the form ∃x1∀x2 . . . Qxn ϕ where ϕ is an atomic open formula and Q is
either ∀ or ∃ depending on whether n is even or odd. We define the equivalence relation
≡Σn where A ≡Σn B iff the Σn fragments of their theories coincide. The Σn-spectrum of
a structure A is then DgSp(A,≡Σn).

Fokina, Semukhin and Turetsky [FST15] studied Σn-spectra and made the following
crucial observation.

Theorem 5.2. There is a structure A with DgSp(A,≡) 6= DgSp(A,≡Σk
) for any k ∈ ω.

They showed this by constructing a spectrum which is not a Σk-spectrum for any
k ∈ ω and any structure but the theory spectrum of a tree. The authors also looked
at Σ1- and Σ2-spectra and showed that no Σ1-spectrum can be a non-degenerate union
of two cones but that there is a structure with a Σ2-spectrum equal to the union of
two non-degenerate cones. They used the following proposition about Σ1-equivalent
structures.

Proposition 5.3. Two structures A and B are Σ1-equivalent iff they have the same
finite substructures (in finite sublanguages).

Using this proposition we can prove the following theorem.

Theorem 5.4. For any structure A there is a structure GA in the class of graphs such
that DgSp(A,≡Σ1) = DgSp(GA,≡Σ1).

Proof. We prove this theorem by showing that the effective interpretation of arbitrary
structures in graphs given in Section 4.1.2 preserves Σ1-spectra. Let A be interpreted in
GA. To show that the effective interpretation preserves Σ1-spectra one has to show that
for all structures B ≡Σ1 A, there is a graph G such that G ≡Σ1 GA and deg(B) = deg(G),
and vice versa.

First observe that any relation Ri in GA is ∆0-definable, since both it and its
complement in DomGAA are Σ1-definable. Also the interpretation of the domain, DomGAA ,
which we showed to be Σ1-definable in the proof of Proposition 4.6, is ∆0-definable since
its coset can be defined by

x 6∈ DomGAA ⇔ E(x, x) ∨ ∃y E(y, y) ∧ ¬E(y, x).
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It follows that every finite substructure A0 of A is interpreted in a finite substructure
GA0 of GA.
(⇐) Let A be interpreted in GA. We show that if GA ≡Σ1 G, then G interprets a structure
B such that A ≡Σ1 B. The fact that deg(B) = deg(G) follows from Proposition 4.2.
Assume GA ≡Σ1 G. Notice that the defining formulas of DomGAA and all Ri we used in the
interpretation of A in GA also define relations in G. Pulling back this relations through
the effective interpretation of arbitrary structures in graphs we get a structure B which is
interpretable in G. Now let A be a model of the Σ1-sentence ϕ, then we can translate ϕ
into a sentence ϕ′ in the language of graphs by replacing any relation symbol Pi by the
defining formula of the corresponding relation Ri in the interpretation. Then GA |= ϕ′

and furthermore ϕ′ will still be a Σ1-sentence since all relations of the interpretaion are
∆0-definable. Since GA ≡Σ1 G, G is also a model of ϕ′ and since G effectively interprets B,
B is a model of ϕ. Since by the same argument for any Σ1-sentence ψ such that B |= ψ,
also A |= ψ, it follows that A ≡Σ1 B.
(⇒) Let B be interpreted in GB, we show that if A ≡Σ1 B, then GA ≡Σ1 GB. The
fact that deg(B) = deg(GB) follows from Proposition 4.2. Assume that A ≡Σ1 B, but
GA 6≡Σ1 GB. Then by Proposition 5.3 wlog there is a finite substructure G′A in GA such
that G′A 6∼= G′B for any finite G′B ⊆ GB. It might be the case that G′A does not interpret a
finite substructure of A, but then we can extend it to a finite substructure GA0 ⊆ GA
that interprets a finite substructure A0 ⊆ A, for an example see Figure 5.1.

It is easy to see that since G′A is not isomorphic to any finite substructure of GB,
the same holds for GA0 . Hence if we pull back GA0 to the finite substructure A0 it is
interpreting, A0 can not be isomorphic to any finite substructure B0 ⊆ B since otherwise
the interpretation of B0 as a graph, GB0 would be isomorphic to GA0 . This contradicts
our assumption that A ≡Σ1 B. It follows that the interpretation of arbitrary structures
in graphs preserves Σ1-spectra and hence the theorem holds.

For Σ2-spectra one can make the following observation.

Proposition 5.5. A ≡Σ2 B iff for every finite substructure A0 ⊆ A (in finite sublan-
guages) and for all n ∈ ω there is a finite B0 ⊆ B such that the finite extensions of size n
for A0 and B0 coincide.

Proof. For any structure S, let ϕD(S)(x) be the conjunction of atomic open formulas of
S. Since we deal with finite languages, if S is finite, then ϕD(S)(x) is a finite formula.
(⇒) Assume A ≡Σ2 B. Observe that for any finite A0, A |= ∃xϕD(A0)(x). Consider
extensions A1,A2, . . . of size k of A0. Let |y| = k, then

A |= ∃x ∀y ϕD(A0)(x) ∧ (ϕD(A1)(x, y) ∨ ϕD(A2)(x, y) ∨ . . . ) ∧ ∃z1 ϕD(A1)(x, z1)
∧ ∃z2 ϕD(A2)(x, z2) ∧ . . .

Using this notation the disjunction (ϕD(A1)(x, y)∨ϕD(A2)(x, y)∨ . . . ) and the conjunction
∃z1ϕD(A1)(x, z1) ∧ ∃z2ϕD(A2)(x, z2) ∧ . . . appear to be possibly infinite. This is not the
case however since in a finite language using finitely many variables one can only write
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α

α2α1 α3

P0(1)

P1(1, 3)

¬P1(1, 2)

P1(2, 3)

Figure 5.1: A finite substructure of GA, marked red, and its extension to the interpretation
of a substructure of A, marked blue.

finitely many non-elementary equivalent formulas. We therefore may assume wlog that
the formulas are finite. Then since A ≡Σ2 B also

B |= ∃x ∀y ϕD(B0)(x) ∧ (ϕD(B1)(x, y) ∨ ϕD(B2)(x, y) ∨ . . . ) ∧ ∃z1 ϕD(B1)(x, z1)
∧ ∃z2 ϕD(B2)(x, z2) ∧ . . .

It follows from the subformula ∃x ϕD(B0)(x) that there exists a substructure B0 ∼= A0
and from the rest of the formula that for any finite extension Ai of A0 of size k there is
a finite extension Bi of B0 of size k such that Ai is isomorphic to Bi and moreover, every
finite extension Bj of B0 is isomorphic to an extension Ah of A0.
(⇐) Assume the contradiction, i.e. for every finite substructure A0 ⊆ A and for all n ∈ ω
there is a finite B0 ⊆ B such that the finite extensions of size n for A0 and B0 coincide
and A 6≡Σ2 B. Then there exists an atomic open formula ϕ such that wlog

A |= ∃x ∀y ϕ(x, y) and B 6|= ∃x ∀y ϕ(x, y).

Since A |= ∃x ∀y ϕ(x, y) there are elements a ∈ A such that A |= ∀y ϕ(a, y). Let the
substructure induced by a be A0 and take an arbitrary extension Ai of A0 of size |y|.
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Then, since A is a model of the formula, Ai |= ∃x ∀y ϕ(x, y) and since for A0 there is a
finite B0 ⊆ B such that their finite extensions coincide, we can construct an extension Bi
of B0 such that Bi ∼= Ai. This implies that Bi |= ∃x ∀y ϕ(x, y). Observe that the number
of non isomorphic extensions of A0 and B0 of size |y| coincides. Hence if there is any
finite extension Bj of B0 not covered by our construction it is isomorphic to an extension
Bi covered by our construction and therefore Bj |= ∃x ∀y ϕ(x, y). It follows that all
extensions of size |y| of B0 model the formula. If B is not a model of ∃x ∀y ϕ(x, y),
then B is a model of ∀x ∃y ¬ϕ(x, y) and therefore it must be the case that for all finite
substructures of size |x|, there is an extension of size |y| such that the extension is a
model of ¬ϕ(x, y). Hence this must also hold for B0. However this can not be the case
since all extensions of B0 of size |y| are a model of ϕ(x, y). Therefore B |= ∃x ∀y ϕ(x, y),
a contradiction to our assumption.

Using this proposition we can show a result similar to Theorem 5.4 for Σ1-spectra for
Σ2-spectra.

Theorem 5.6. For any structure A there is a structure GA in the class of graphs such
that DgSp(A,≡Σ2) = DgSp(GA,≡Σ2).

Proof. To show that the theorem holds we again show that the interpretation of arbitrary
structures in graphs given in Section 4.1.2 preserves Σ2-sepctra.

Let A be interpreted in GA. To show that the interpretation preserves Σ2-spectra
one has to show that for all structures B ≡Σ2 A there is a graph G such that G ≡Σ2 GA
and deg(G) = deg(B), and vice versa.
(⇐) Let A be interpreted in GA. We show that if GA ≡Σ2 G, then G interprets a structure
B such that A ≡Σ2 B. The fact that deg(B) = deg(GB) follows from Proposition 4.2.
Assume that GA ≡Σ2 G. Notice that the defining formulas of DomGAA and all Ri we
used in the interpretation of A in GA also define relations in G. Pulling back these
relations through the effective interpretation of arbitrary structures in graphs we get
a structure B which is interpretable in G. Now let A be a model of the Σ2-sentence
ϕ, then we can translate ϕ into a sentence ϕ′ in the language of graphs by replacing
any relation symbol Pi by the defining formula of the corresponding relation Ri in the
interpretation. Then GA |= ϕ′ and furthermore ϕ′ will still be a Σ2-sentence since all
relations of the interpretaion are ∆0-definable. Since GA ≡Σ2 G, G is also a model of ϕ′
and since G effectively interprets B, B is a model of ϕ. Since by the same argument for
any Σ2-sentence ψ such that B |= ψ, also A |= ψ, it follows that A ≡Σ2 B.
(⇒) Let B be interpreted in GB, we show that if A ≡Σ2 B, then GA ≡Σ2 GB. It then
follows from Proposition 4.2 that deg(A) = deg(GA).

Assume the contrary, i.e. that A ≡Σ2 B but GA 6≡Σ2 GB. It follows wlog from
Proposition 5.5 that there is a finite extension GA1 of a finite substructure GA0 ⊆ GA
which is not isomorphic to any finite extension GB1 of a finite substructure GB0 ⊆ GB. If
GA0 does not interpret a substructure A0 of A we can extend it to a finite substructure
G′A0

that interprets a substructure A0 ⊆ A as we did in our proof of Theorem 5.4, see
Figure 5.1 for an example. Likewise, if any extension GA1 of GA0 does not interpret a
substructure of A we can extend it in the same manner to G′A1

.
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If GA1 ⊆ G′A0
, then there is no finite substructure GB0 ⊆ GB such that GB0

∼= G′A0
.

We can pull back G′A0
to the finite substructure A0 it is interpreting and then for any

finite substructure B0 ⊆ B B0 6∼= A0 since otherwise GB0 , the interpretation of B0 in B, is
isomorphic to G′A0

, a contradiction.
If GA1 6⊆ G′A0

, then there may be a finite substructure GB0 ⊆ GB such that GB0
∼= G′A0

(if there is none we can proceed as in the above case). If there is such a finite substructure
GB0 we can pull back G′A1

, G′A0
, GB0 to their respective preimages A1, A0, B0. Then A1

is not isomorphic to any B1 extending B0 since otherwise GB1 , the interpretation of B1 in
GB, which would be a finite extension of GB0 would be isomorphic to G′A1

, a contradiction.
We conclude that the interpretation of arbitrary structures in graphs preserves

Σ2-spectra and therefore the theorem holds.

For both Σ1- and Σ2-spectra it is unclear whether effective bi-interpretability in
general preserves them. The proof methods we used in the proofs of Theorem 5.6 and
Theorem 5.4 can not be used to show the general result since effective interpretations
allow computably infinitary formulas. Using the same methods as in the above proofs
one can however show that also the rest of the interpretations given in Section 4.1.2
preserve Σ1- and Σ2-spectra, thus we obtain Corollary 5.7.

Corollary 5.7. For any structure A there is a structure P in the class of partial orders
such that DgSp(A,≡Σ1) = DgSp(P,≡Σ1) and DgSp(A,≡Σ2) = DgSp(P,≡Σ2).
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CHAPTER 6
Conclusion

In Chapter 4 we reviewed different kinds of transformations between classes of structures.
These transformations use different approaches, on the one hand there are the notions of
effective bi-interpretability and effective interpretability which are syntactic notions using
the basic idea of interpretability well known in model theory and applying restrictions on
the allowed interpretations to achieve the preservation of desired computability theoretic
properties.

These originated in the practical need for tools to prove properties for well known
classes, as in [Hir00] or [AM15] and only years after these interpretations first came up
it was tried to capture them formally with the definition of effective bi-interpretability.
It was shown that such interpretations are very strong in the sense that they preserve
many computability theoretic properties but for some properties such as Σn-spectra
and theory spectra it is unkown whether these are preserved in general or only by some
interpretations. If it is true that these properties are not preserved in general, this would
justify the need for even stronger notions.

On the other hand there are the notions of computable functors, effective reducibility,
Turing computable- and computable embeddings. These notions use a more semantical
approach and were defined with a different idea in mind. While effective interpreta-
tions and effective bi-interpretability are more practically motivated, the above notions
originated either with the idea to effectivize already well known notions (such as Borel
reducibility for effective reducibility) or to use well known computability theoretic re-
ducibilities like Turing reducibility and enumeration reducibility on structures. Research
on these transformations focused on the structure induced by them and while there are
some results on properties they preserve, those were mostly motivated by the need of
tools to show non-embeddability of classes.

The result presented in [Har+15], that computable functors and effective bi-interpret-
ability are equivalent, is therefore quite important and also surprising as it establishes an
equivalence between the syntactic notion of effective bi-interpretability, where we use
the elements of the structure to create an equivalence between classes, and the notion of
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computable functors, which has a more meta view on structures, looking primarily on
their isomorphism classes.

6.1 Future work
There is still a lot of research potential on computable transformations. Not much is known
on the relation between computable functors and the other “semantic” transformations.
While it is believed that the existence of a computable functor of a class K to K ′ implies
that K is Turing computably embeddable in K ′ this has not been shown yet.

Another possible research topic are the computability theoretic properties preserved
by the different computable transformations. Proving that effective bi-interpretability
preserves a property saves a lot of work since it is then not needed to prove a property for
all classes seperately. As more and more computability theoretic properties of structures
are studied, this proof strategy may become more important. It is for instance still
unclear whether effective bi-interpretability preserves theory spectra and Σn-spectra for
arbitrary n.

The structure induced by effective interpretability is also not well known. While there
is a range of complete classes known, and it has been shown for some classes that graphs
do not embed in them and hence they are not complete, we do not know of any result on
the relation between them.
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