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Abstract

We generalize a phase transition between three-dimensional hot flat space and a cer-
tain type of flat space cosmology to four dimensions. To do so, an analogue of this
cosmology is constructed in four dimensions and novel flat space boundary conditions
are established, that differ from the usual boundary conditions of asymptotically flat
space in four dimensions. Also we construct the Lie algebra of asymptotic Killing vec-
tors that preserve these boundary conditions. A generalization of the phase transition
can then be found straightforwardly. We will find that there are some differences in
possible interpretations as compared to the three-dimensional version, which will also
be discussed.
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1. Introduction

Modern theoretical physics has been dominated by two ground-breaking revolutions
that stood at the beginning of the 20th century. On the one hand, the emergence of
quantum mechanics as a theory to replace classical mechanics in the small-scale regime
radically changed the way we understand the dynamics of the fundamental ingredients
of our universe, paving the way for modern particle physics as described in terms of the
standard model. Einstein’s development of general relativity, on the other hand, gave
a new, geometrical understanding of the gravitational force, replacing Newton’s theory
of gravity in describing large-scale dynamics. It is natural, as it lies in the innermost
spirit of theoretical physics, to seek a unification of these two concepts in terms of
a mathematical theory that includes both, general relativity as well as the standard
model of particle physics – hence a theory likewise describing the large- and small-scale
regime. Despite many attempts, there is, however, to this day still no full understanding
of such a theory of quantum gravity.

One possible – and probably the most promising – theory to unify gravity with the
fundamental forces described by the standard model, is string theory. Very generally
speaking, string theory aims to describe our universe by proposing one-dimensional
objects (strings) living in a ten-dimensional spacetime as the fundamental ingredients
of nature, where different observable particles correspond to different oscillation modes
of these strings (see e.g. [1]). The additional dimensions, which need to be introduced
in order for string theory to be consistent, are typically assumed to be compactified on
very small scales, leaving only four dimensions of spacetime observable on the (relatively)
large scales we live in. String theory is able to address many of the open questions there
are in theoretical physics. In particular, coming back to the above problem, gravity (as
a massless spin-2 particle, the graviton) emerges naturally in the framework of string
theory. However, though providing answers to a variety of questions, it is not yet
a fully understood theory. What makes progress very hard is in particular also the
lack of experimental input, due to the fact that corrections from string theory only
appear at very high energies, which, at the moment, are above the energies accessible in
experiment.

1.1. AdS/CFT and the holographic principle

Despite the lack of having a fully formulated, consistent theory of quantum gravity,
there has still been some progress in better understanding the nature of possible such
theories. An important step in that respect was marked by the discovery of the Anti-de
Sitter/Conformal field theory (AdS/CFT) correspondence [2], in its first version con-
jectured as a duality (i.e. an equivalence of two different mathematical formulations)
between a type IIB string theory (in the supergravity limit) on AdS5 × S5 and four-
dimensional N = 4 U(N) super-Yang-Mills theory (in the limit of large N and large
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’t Hooft coupling). Many generalizations of this duality followed, hinting at an un-
derlying, more fundamental principle. This suggested principle, called the holographic
principle [3, 4], states that in a quantum theory of gravity all physics within a region
can equivalently be described in terms of a theory on the respective boundary with a
sufficiently low number of degrees of freedom per unit area (see e.g. [5]) – i.e. a grav-
itational theory can always alternatively be described by a theory without gravity in
one dimension less. There is yet more that points at the existence of the holographic
principle than the AdS/CFT correspondence and its analogues. A prominent example
of such is given by the Bekenstein bound, which is an upper bound for the entropy in a
certain volume V and given by

S ≤ Area(∂V )/4G = SBH. (1.1)

A black hole of volume V has precisely this maximal entropy SBH. However, since entropy
is a measure of information, the Bekenstein bound can be interpreted as maximum
amount of information that can be put into a region of volume V . If this maximum
amount of information is proportional to the area of the boundary, one could suspect a
possibility to describe this content of information (abstractly speaking) via a field theory
on the boundary – which precisely matches the statement of the holographic principle.
This and many similar arguments, have resulted in a widespread belief among physicists
in the correctness of the holographic principle.

1.2. Flat space holography

As briefly mentioned above, there have been many generalizations of the AdS/CFT
correspondence. These AdS/CFT-type dualities, as indicated by nomenclature, typically
deal with gravitational theories in AdS spacetimes, i.e. spacetimes of constant negative
curvature. Though interesting by supporting a general improvement of understanding
in the regime of quantum gravity, these types of dualities can not directly be applied
to the universe we live in, which, on the contrary, is one of positive curvature described
by an extremely small, but non-vanishing cosmological constant. Thus very naturally
the question arises, how general AdS/CFT-type dualities can be. This question has in
the last years lead to work on possible types of non-AdS holography in different kinds
of set-ups.

In particular there is also interest in the possibility of flat space holography. As men-
tioned above, the cosmological constant in our universe is extraordinary small, making
flat space a very good approximation of the spacetime we live in. After success in ex-
tracting features of the S-matrix from AdS/CFT correlators, see e.g. [6–9], progress
on that subject was specifically made through the development of the BMS/CFT resp.
BMS/GCA correspondences [10–12], resulting in a variety of subsequent work (see e.g
[13–16] for very recent work, as well as references therein for an overview).

The present work will in particular be concerned with one specific aspect within the
development of flat space holographic theories. It was found in [17] that a certain type
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of a three-dimensional flat space cosmology, developed in [18, 19], can emerge from hot
flat space (i.e. Minkowski space with a finite temperature) through a phase transition
of the spacetime as a whole. What makes this particularly interesting, is that this flat
space cosmology describes an expanding universe, i.e. the phase transition is one from
a static solution with little interesting properties (simple, hot Minkowski space) to the
time-dependent solution of an expanding universe.

Given the existence of such a phase transition in three spacetime dimensions, the question
arises whether or not it is possible to generalize this result to four dimensions. The
present work is an attempt to do so. It will be organized as follows. Section 2 gives a
brief introduction to the basic concepts needed, which includes in particular the notion
of orbifolds (as the flat space cosmology under consideration has orbifold structure)
and some background concerning boundary conditions in gravitational theories. Section
3 reviews concrete work on boundary conditions in three-dimensional asymptotically
flat space as well as the construction of the flat space cosmology as an orbifold of four-
dimensional Minkowski space; section 4 then shows along the lines of [17] how to establish
the phase transition. In section 5 we will generalize this to four dimensions. Section 6
summarizes the obtained results and also gives gives a brief outlook on possible further
research. Details of longer calculations are given in the appendices.

2. Preliminaries

2.1. Orbifolds

The concept of manifolds – topological spaces that locally look like Euclidean/Lorentzian
space – has long been a constantly used concept in various areas of physics. In general
relativity and cosmology, in particular, one uses the notion of a Lorentzian manifold for
the description of spacetime. However, sometimes one wishes to allow for specifically
chosen extensions to usual assumptions for the considered spacetime that go beyond
those available in the framework of manifolds, necessitating a more general concept. An
often used generalization of the notion of a manifold is that of a so-called orbifold [20],
which is defined as the quotient M/G of a manifold M with respect to orbits of a discrete
group G [21]. Orbifolds, specifically, allow for the existence of particular singularities: If
G has any fixed points – i.e. points where the action of G reduces to the identity – the
resulting quotient M/G will have singular points. A prototype of such a construction
would be the quotient of R2 with respect to rotations of angle 2π/N with some integer
N , the resulting space being a cone with a singular point at its tip (the origin) which is
left invariant by rotations.

Applications of the concept of orbifolds – in view of the specifics of the present work
– have e.g. been found in the construction of orbifold spaces from spaces which are
solutions of Einstein’s equations, a particular, well-known example being the BTZ black
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hole [22, 23]. Some more details concerning such orbifold spaces will be given where
needed at later points in this work.

2.2. Boundary conditions in gravitational theories

In field theories, the physical content of a theory can be separated into two pieces of
information: the field equations and the corresponding boundary conditions. In gravi-
tational theories, where one is interested in the dynamics of the metric itself, boundary
conditions play a very special role. This is due to the fact, that what is natural in other
field theories, namely fixing boundary conditions simply by demanding the respective
field to asymptotically vanish, is not applicable in gravity. On the contrary, it would
be highly unnatural to have an asymptotically vanishing, hence singular, metric. Thus
when imposing boundary conditions one typically assumes that the metric asymptotes to
a certain solution of Einstein’s equations. In particular, for the case of flat space consid-
ered in this work, one requires g to asymptotically take the simple form of the Minkowski
metric. Intuitively this would mean fixing boundary conditions by demanding

g
r→∞−→ gM + subleading. (2.1)

It turns out, however, that for flat space it is even possible to allow for leading order
fluctuations (with respect to the background Minkowski metric) in some terms of g [10].
This is a rather unusual feature of asymptotically flat spacetimes and has to be handled
with care.

2.2.1. Asymptotic symmetries and boundary charges

Given a certain set of boundary conditions, there is in general some freedom left in the
sense that one can transform the metric

g → ḡ = g + δg (2.2)

with ḡ still satisfying the boundary conditions. The group of all such transformations,
that leave the proposed asymptotic form of the metric invariant, is called the asymptotic
symmetry group.

This is of particular interest in the context of the holographic principle (which was briefly
discussed in section 1), given that the asymptotic symmetries on the boundary of the
gravitational theory are precisely the symmetries that govern the dual field theory. It
is thus of interest, when studying specific boundary conditions, to construct the corre-
sponding asymptotic symmetry algebra and boundary charges, and, if possible, relate
these to a certain type of field theory. For boundary conditions in three-dimensional
asymptotically flat space, this was studied in [10], giving rise to the BMS/CFT corre-
spondence. A generalization to four dimensions followed in [11].

9



2.2.2. Variational principle

It is important from a physical perspective, when having a specific action Γ and an
associated set of boundary conditions, to make sure that these give rise to a well defined
variational principle, meaning that on-shell variations of the action (under transforma-
tions allowed by these boundary conditions) should vanish. This ensures that obtained
solutions are actually stable and provide a good semiclassical approximation to the path
integral [24]. If the variation δΓ does not vanish, additional boundary terms have to be
introduced in order to fix this problem. A typical example of such a boundary term is
the Gibbons-Hawking-York term [25, 26], as introduced for pure Einstein gravity. How-
ever, different assumptions concerning the asymptotic behavior of the metric can lead
to different forms of δΓ and therefore possibly need different compensation terms. For
the flat space boundary conditions used in this work – in three as well as in four di-
mensions – this additional compensatory boundary term is exactly one half of the usual
Gibbons-Hawking-York term, see [24] and Appendix A for details.

3. Boundary conditions and flat space cosmology in
three dimensions

In three-dimensional asymptotically flat space, boundary conditions as well as asymp-
totic symmetries at null infinity have been studied and the asymptotic symmetry algebra
was found to be the three-dimensional BMS [27, 28] algebra [29] with central extensions
[10]. Section 3.1 introduces these boundary conditions and summarizes how the BMS
algebra and associated charges are obtained. Furthermore in section 3.2 we will review
the construction of the flat space cosmology [18, 19] and see that it belongs to the class
of solutions described precisely by these boundary conditions.

3.1. Boundary conditions in three dimensions

Working in outgoing Eddington-Finkelstein coordinates (u, r, ϕ) one imposes boundary
conditions [10, 30]

guu = −1 + huu +O(1/r) gur = −1 + hur/r +O(1/r2)

guϕ = O(1) grr = O(1/r2) (3.1)

grϕ = hrϕ + h̃rϕ/r +O(1/r2) gϕϕ = r2 + rhϕϕ +O(1).

The Minkowski metric
ds2 = − du2 − 2 dr du+ r2 dϕ2 (3.2)

is obtained if all functions h and subleading terms are set to zero.
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The equations of motion, together with the requirement of a well defined variational
principle fix

hrϕ = h1(ϕ) (3.3)

hϕϕ = h2(ϕ) + uh3(ϕ). (3.4)

To determine the asymptotic symmetry algebra, one needs to find gauge transformations
that leave the form of (3.1) invariant, i.e. one needs to find the most general asymptotic
Killing vector ξ, satisfying

Lξgab = O(δgab). (3.5)

This is given by (see Appendix B.1 for details)

ξ = [ξM(ϕ) + uξ′L(ϕ) +O(1/r)]∂u + [−rξ′L(ϕ) +O(1)]∂r (3.6)

+ [ξL(ϕ)− u

r
ξ′′L(ϕ) +

1

r
f1(ϕ) +O(1/r2)]∂ϕ. (3.7)

The part of this which contributes to the asymptotic charges can be separated into two
independent Killing vectors,

ξL = ξL(ϕ)∂ϕ + ξ′L(ϕ)(u∂u − r∂r)− ξ′′L(ϕ)
u

r
∂ϕ + . . . (3.8)

ξM = ξM(ϕ)∂u + . . . (3.9)

where the dots refer to sub-leading terms.

Fourier-expanding ξL(ϕ) and ξM(ϕ) as

ξL(ϕ) =
∑
n

einϕLn (3.10)

ξM(ϕ) =
∑
n

einϕMn (3.11)

one finds the asymptotic symmetry group to be generated by

Ln = ieinϕ
(
inu∂u − inr∂r +

(
1 + n2u

r

)
∂ϕ

)
+ . . . , (3.12)

Mn = ieinϕ∂u + . . . . (3.13)

Ln and Mn asymptotically satisfy the three-dimensional BMS algebra without central
terms,

[Lm, Ln] = (m− n)Ln+m (3.14)

[Lm,Mn] = (m− n)Mn+m (3.15)

[Mm,Mn] = 0. (3.16)
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Corresponding boundary charges can be calculated with methods developed in [31–33],
e.g. by using [34]. This results in

QLn =
1

16πG

∫
dϕeinϕ

(
−(n2 + h3)h1 + in (huu − h2 − hur − h′1) + ∂uh̃rϕ

)
(3.17)

QMn =
1

16πG

∫
dϕeinϕ (h3 + huu) . (3.18)

One can show, see e.g. [10, 30], that these charges are conserved on-shell that their
algebra includes a central extension.

3.2. Three-dimensional shifted-boost orbifold

Orbifolds of spaces which are solutions of Einstein’s equations can lead to physically
interesting cosmologies. Up to certain singularities, they keep their local properties
(in particular their property of solving Einstein’s equations), however have a different,
possibly richer, global structure. A prominent example of such an orbifold in three
dimensions is the BTZ black hole, which is an orbifold of three-dimensional AdS. It
was in particular the discovery of the BTZ black hole that has motivated following
research on orbifolds as possible cosmological scenarios, including generalizations to
higher dimensions, see e.g. [35–39], or also to non-AdS orbifolds, see e.g. [18, 19].

We will here consider orbifolds of flat, three-dimensional Minkowski-space, following the
lines of [18, 19]. These are constructed by identifying points P along the orbits of a
discrete subgroup of the Poincaré group,

P ∼ eκP (3.19)

where
κ = 2πi(αaPa + βabJab) (3.20)

and Pa, Jab are the Poincaré generators

Pa =
1

i
∂a and Jab =

1

i
(Xa∂b −Xb∂a) . (3.21)

We will in particular be interested in so-called shifted-boost orbifolds, generated by a
Killing vector

κ = 2πi(RPY −∆JTX) = 2π [R∂Y + ∆(T∂X +X∂T )] , (3.22)

describing a boost with rapidity tanh(2π∆) in X-direction and a shift of length 2πR in
Y -direction1. The fact that κ contains not only a boost but also a non-vanishing shift
is crucial, because it prohibits the existence of any fixed points of κ. If this was not the

1For a full classification of possible orbifolds of M3 see [19].
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Figure 1: Different regions of the shifted-boost orbifold in the XT -plane

case (i.e. if R was equal to zero) one would encounter severe problems when κ → 0 at
the origin; in fact the resulting space would not even be Hausdorff.

Having thus fixed R 6= 0, in order for the quotient space to constitute a physically
meaningful spacetime it is furthermore necessary to exclude regions in which κ would
lead to identifications along timelike directions. Such identifications would produce
closed timelike curves and thus causal loops. One must therefore excise regions where
κ2 < 0 from the original Minkowski-space. The boundary of these regions is given by

X2 − T 2 =
1

E2
, (3.23)

where E2 ≡ ∆2/R2.

The remaining space – the space within the two branches of the hyperbola (3.23) –
can furthermore be divided into two regions, depending on their causal properties. The
regions to be distinguished (see also Figure 1) are

region I: X2 − T 2 <
1

E2
and |T | > |X| (3.24)

region II: X2 − T 2 <
1

E2
and |T | < |X| . (3.25)

In region I, all closed curves resulting from identifications along κ lie completely in
region I and are spacelike. In region II the situation is slightly more complicated. If κ
points into the formerly excised region, closed timelike curves can form, however they
will never close within region II but will end at the boundary (3.23). All closed curves
lying completely in region II are again spacelike. The null surface |T | = |X| separating
regions I and II acts as a Killing horizon, shielding the singularity at X2 − T 2 = 1

E2 .
None of the closed timelike curves starting in region II can ever cross this horizon into
region I, thus region I is entirely free of singularities.
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To actually perform the identifications (3.19), it would be convenient to find coordi-
nates (τ, x, y) for regions I and II, in which the Killing vector κ is simply given by a
translation,

κ = 2πR∂y. (3.26)

These can be found by performing transformations

region I: T = τ cosh [E(x+ y)] , X = τ sinh [E(x+ y)] , Y = y, (3.27)

region II: T = τ sinh [E(x+ y)] , X = τ cosh [E(x+ y)] , Y = y, (3.28)

leading to line elements of the form

region I: ds2 = − dτ 2 +
(Eτ)2

Λ(τ)
dx2 + Λ(τ)

[
dy +

(Eτ)2

Λ(τ)
dx

]2

, (3.29)

with Λ(τ) = 1 + (Eτ)2

and

region II: ds2 = dτ 2 − (Eτ)2

Λ(τ)
dx2 + Λ(τ)

[
dy − (Eτ)2

Λ(τ)
dx

]2

, (3.30)

with Λ(τ) = 1− (Eτ)2.

Identifying along orbits of the Killing vector (3.26) then reduces to the identification
ϕ ∼ ϕ+ 2πR.

The conformal diagram corresponding to the constructed orbifold is, in a slightly sim-
plified form, depicted in figure 2: At r = 0 one finds the timelike singularity, shielded
by the horizon at r = r0 which separates the inner region II from region I. The two
different parts of region I can be seen as describing a collapsing respectively expanding
universe.

3.3. Shifted-boost orbifold as limit of the BTZ black hole

The BTZ black hole was already mentioned as the probably most prominent example
of a physically interesting spacetime with orbifold structure. In the following it will be
shown that the shifted-boost orbifold constructed in the previous section can in fact be
obtained as flat space limit of the BTZ black hole [18]. We will therefore first briefly
recover the BTZ solution [23].

The BTZ black hole can be constructed as an orbifold of three-dimensional Anti-de
Sitter space (AdS3). AdS3 is defined by the hypersurface

−V 2 − U2 +X2 + Y 2 = −`2 (3.31)

in four-dimensional flat space with two timelike directions,

ds2 = − dU2 − dV 2 + dX2 + dY 2. (3.32)
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Figure 2: (Simplified) Penrose diagram of the shifted-boost orbifold

It is a space of constant negative curvature ∼ −1/`2 with ` called the AdS radius2.

AdS3 is, by construction, invariant under SO(2, 2) transformations, generated by Killing
vectors

Jab =
1

i
(Xa∂b −Xb∂a) (3.33)

where Xa = (X0, X1, X2, X3) = (V, U,X, Y ). We will in the following be concerned in
particular with identifications

P ∼ eκP (3.34)

along orbits of the discrete subgroup of SO(2, 2) generated by the Killing vector

κ = 2πi
(
−r+

`
J12 +

r−
`
J03

)
= 2πi

(r+

`
(X∂U + U∂X)− r−

`
(Y ∂V + V ∂Y )

)
. (3.35)

This Killing vector satisfies κ2 > 0 whenever

r2
+

`2
(U2 −X2) +

r2
−

`2
(V 2 − Y 2) =

r2
+

`2
(U2 −X2) +

r2
−

`2
(X2 − U2 + `2) > 0, (3.36)

2What is usually meant by AdS, however, is actually its universal cover. This is important also from
a physical perspective, since AdS without being unwarped to its universal covering would have a
timelike periodicity.

15



i.e. (assuming r+ > r−),

U2 −X2 > − r−`
2

r2
+ − r2

−
(3.37)

or equivalently

−V 2 + Y 2 > − r+`
2

r2
+ − r2

−
. (3.38)

All regions where κ2 < 0 have to be cut out before identifying along κ such that no
closed timelike curves can be produced. The remaining part of AdS3 can be divided into
three regions,

region I: U2 −X2 > `2 (3.39)

region II: 0 < U2 −X2 < `2 (3.40)

region III: − r−`
2

r2
+ − r2

−
< U2 −X2 < 0. (3.41)

In each of these regions one can introduce new coordinates (t, r, ϕ) via

region I: U = `

√
r2 − r2

−

r2
+ − r2

−
cosh f(t, ϕ), X = `

√
r2 − r2

−

r2
+ − r2

−
sinh f(t, ϕ)

Y = `

√
r2 − r2

+

r2
+ − r2

−
cosh f̃(t, ϕ), V = `

√
r2 − r2

+

r2
+ − r2

−
sinh f̃(t, ϕ) (3.42)

region II: U = `

√
r2 − r2

−

r2
+ − r2

−
cosh f(t, ϕ), X = `

√
r2 − r2

−

r2
+ − r2

−
sinh f(t, ϕ)

Y = −`

√
r2

+ − r2

r2
+ − r2

−
sinh f̃(t, ϕ), V = −`

√
r2

+ − r2

r2
+ − r2

−
cosh f̃(t, ϕ) (3.43)

region III: U = `

√
r2
− − r2

r2
+ − r2

−
sinh f(t, ϕ), X = `

√
r2
− − r2

r2
+ − r2

−
cosh f(t, ϕ)

Y = −`

√
r2

+ − r2

r2
+ − r2

−
sinh f̃(t, ϕ), V = −`

√
r2

+ − r2

r2
+ − r2

−
cosh f̃(t, ϕ) (3.44)

with functions f , f̃ defined as

f(t, ϕ) =
1

`

(
−r−t

`
+ r+ϕ

)
, f̃(t, ϕ) =

1

`

(
r+t

`
− r−ϕ

)
. (3.45)

In these coordinates κ simplifies to

κ = 2π∂ϕ (3.46)
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and the metric becomes

ds2
BTZ = −

(
r2 − r2

−
) (
r2 − r2

+

)
r2`2

dt2+
`2r2

(r2 − r2
−) (r2 − r2

+)
dr2+r2(dϕ− r−r+

`r2
dt)2, (3.47)

where (after identification) ϕ ∼ ϕ + 2π. This is the BTZ solution. It describes a
spacetime with a singularity at r = 0 (as this describes the boundary to a region including
closed timelike curves and with possible non-Hausdorff properties), which has an inner
and outer horizon at r = r− resp. r = r+. The definitions of regions I to III translate
to the new coordinates as

region I: r > r+ (outer region) (3.48)

region II: r− < r < r+ (intermediate region) (3.49)

region III: 0 < r < r− (inner region). (3.50)

In regions I and II no singularities occur, since κ is always spacelike and only connects
points within these two regions. Region III of the BTZ black hole is analogous to what
was called region II in the case of the flat space cosmology: Closed timelike curves can
in principle start there, however will never close within region III, but lead into the
singularity r = 0.

We want to show that for r− < r < r+ (3.47) indeed takes the form of (3.29) in the flat
space limit, i.e. in the limit of large AdS radius `. To be able to take this limit, one at
the same time needs to rescale the outer horizon, r̂+ = `r+. Then sending ` → ∞ one
obtains

ds2
BTZ → r̂2

+ dt2 − r2

r̂2
+ (r2 − r2

−)
dr2 − 2r̂+ dt dϕr− + r2 dϕ2. (3.51)

Rewriting

r̂+t = x, r−ϕ = y + x,

(
r

r−

)2

= 1 + (Eτ)2 (3.52)

with E = r̂+/r− this is exactly the flat space cosmology solution3 (3.29),

ds2 = − dτ 2 +
(Eτ)2

Λ(τ)
dx2 + Λ(τ)

[
dy +

(Eτ)2

Λ(τ)
dx

]2

. (3.53)

4. Cosmic phase transition in three dimensions

It was shown [17] that in three dimensions there exists a cosmological phase transition
between hot flat space (i.e. simple, three-dimensional Minkowski space with finite tem-
perature and angular momentum) and a flat space cosmological spacetime, described
by a shifted-boost orbifold as introduced in the previous section. This section briefly

3By choosing (r/r−)
2

= 1 − (Eτ)2 one can analogously relate region III of the BTZ black hole to
region II of the shifted-boost orbifold.
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recovers this result. Although generalizations are possible, we will here focus on Einstein
gravity only.

In particular, the action is taken to be the Einstein-Hilbert action plus one half of the
usual Gibbons-Hawking-York term. The additional factor of 1/2 is introduced in order
to secure a well defined variational principle for the boundary conditions we use, see [24]
and appendix A for details. With these conventions, the (Euclidean) action is of the
form

Γ = − 1

16πG

∫
d3x
√
gR− 1

16πG
lim
r→∞

∫
d2x
√
γK. (4.1)

What is still to be specified is under what conditions two solutions to the equations of
motion arising from (4.12) are considered to be in the same ensemble, i.e. under what
conditions they form two different realizations of the same physical input. Obviously
one wants the two solutions

• to have the same temperature T and angular velocity Ω, and

• not to have any conical singularities.

Furthermore, the two solutions should match asymptotically. However, in the case of
asymptotically flat space it is not possible to demand the two metrics to be asymptoti-
cally the same, since there are leading order fluctuations in some terms. Thus, the best
one can do is to require that

• both solutions obey flat space boundary conditions as given in section 3.1.

All of these conditions are satisfied for the two spacetimes under consideration. To
determine which solution is thermodynamically favored, one needs to calculate the free
energy for these two solutions. This is done in the following.

4.1. Hot flat space (HFS)

Hot flat space can be obtained from three-dimensional Minkowski space,

ds2 = − dt2 + dr2 + r2 dϕ2 (4.2)

by introducing a finite, non-zero temperature T = β−1. To do so, one takes the Euclidean
version of M3,

ds2
E = dτ 2

E + dr2 + r2 dϕ2 (4.3)

and defines a periodicity in Euclidean time τE = −it, through

τE ∼ τE + β. (4.4)

18



Additionally, it is possible to also introduce an angular momentum βΩ (with Ω denoting
angular velocity) by demanding that when moving around a thermal circle in τE there
is an additional twist in ϕ such that

(τE, ϕ) ∼ (τE, ϕ+ 2π) ∼ (τE + β, ϕ+ βΩ). (4.5)

As mentioned above, we work in Einstein gravity with an Euclidean action given by
(4.1). On-shell, the first term in (4.1) vanishes, such that only the boundary term is left.
In the case of HFS for a r = const. surface one has

√
γ = r, K =

1

r
, (4.6)

hence the on-shell action is given by

ΓHFS = − 1

16πG
lim
r→∞

∫ β

0

dτ

∫ 2π

0

dϕ = − β

8G
. (4.7)

The corresponding free energy can be determined via the partition function

Z(T,Ω) =

∫
Dge−Γ[g] (4.8)

as
F (T,Ω) = −T lnZ(T,Ω). (4.9)

For purposes herein it is sufficient to approximate the path integral by only evaluating
the exponential for the classical solution gc. The free energy is then simply given by

F (T,Ω) = TΓ[gc(T,Ω)], (4.10)

which for HFS yields

FHFS = − 1

8π
. (4.11)

4.2. Flat space cosmology (FSC)

We will now repeat the same analysis for the expanding region I of the shifted-boost
orbifold. In particular we will work with the metric in the form suggested by the limit
of the BTZ black hole (3.51),

ds2 = r̂2
+ dt2 − r2

r̂2
+ (r2 − r2

0)
dr2 − 2r̂+ dt dϕr0 + r2 dϕ2 (4.12)

with ϕ ∼ ϕ+ 2π. The radius r0 corresponds to the inner BTZ horizon formerly denoted
by r−; the different notation is motivated by the fact that in the flat space limit r+ (r̂+)
and r− no longer correspond to equivalent transformations in the orbifold construction.
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To look at the thermodynamical properties of FSC, it is best to change to the Euclidean
version of (4.12). This can be obtained by choosing

t = iτE, r̂+ = −ir+ (4.13)

such that the metric becomes

ds2
E = r2

+

(
1− r2

0

r2

)
dτ 2

E +
dr2

r2
+

(
1− r20

r2

) + r2(dϕ− r+r0

r2
dτE)2. (4.14)

To determine temperature and angular momentum, consider the form of the metric near
the horizon, r2 = r2

0 + ερ2,

ds2
E =

ε

r2
+

(
dρ2 + ρ2 r

4
+

r2
0

dτ 2
E

)
+ r2

0

(
dϕ− r+

r0

dτE

)2

+O(ε2). (4.15)

In order to avoid a conical singularity, the first term in (4.15) requires

τE ∼ τE +
2πr0

r2
+

. (4.16)

From the second term in (4.15) one furthermore gets an additional twist in ϕ, such that
in total

(τE, ϕ) ∼ (τE, ϕ+ 2π) ∼ (τE +
2πr0

r2
+

, ϕ+
2π

r+

). (4.17)

Temperature and angular velocity of FSC are thus given by

T =
r2

+

2πr0

and Ω =
r0

r+

. (4.18)

This agrees with the results obtained (in the Lorentzian version) by looking at the surface
gravity of the horizon at r = r0 defined by the normalized Killing vector

χ = ∂t +
r̂+

r0

∂ϕ = ∂t + Ω∂ϕ (4.19)

which is given by √
−1

2
(∇aχb)(∇bχa) =

r̂2
+

r0

= 2πT. (4.20)

Having determined temperature and angular momentum, one again needs to evaluate
the on-shell action, (4.1). For FSC, one finds asymptotically

√
γ = r+

√
r2 − r2

0 = r+r +O

(
1

r

)
, K =

(r2 + r2
0)r+

r3
=
r+

r
+O

(
1

r3

)
(4.21)

such that

ΓFSC = − 1

16πG
lim
r→∞

∫ β

0

dτ

∫ 2π

0

dϕ(r2
+) = −

βr2
+

8G
= −πr0

4G
. (4.22)
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The corresponding free energy,

F (T,Ω) = TΓ[gc(T,Ω)], (4.23)

is given by

FFSC = −
r2

+

8G
. (4.24)

4.3. Phase transition

Having established expressions for the free energy in both cases, HFS as well as FSC,
as

FHFS = − 1

8G
, FFSC = −

r2
+

8G
, (4.25)

there are two cases to be distinguished. One finds that

• for r+ < 1, i.e. for T < 1
2πr0

the free energy of HFS is smaller than that of FSC,
FHFS < FFSC, such that HFS is thermodynamically favored, whereas

• for r+ > 1, i.e. for T > 1
2πr0

one finds that FSC is thermodynamically favored,
FHFS > FFSC.

At the critical value r+ = 1, which corresponds to a critical temperature

Tc =
1

2πr0

, (4.26)

the two solutions coexist, and a phase transition between hot flat space and an expanding
universe described by FSC takes place. This means, by heating up Minkowski space,
when reaching temperature Tc the spacetime will go over to an expanding universe
described by the FSC solution. Tc still depends on r0, i.e. the critical temperature
increases with increasing angular velocity Ω = r+/r0.

5. Generalization to four dimensions

When trying to generalize the phase transition between three-dimensional hot flat space
and the flat space cosmology, as reviewed in detail in the previous chapters, to four-
dimensional spacetimes, there are two main questions to be answered. The first of these
is whether or not solutions analogous to that of the three-dimensional shifted-boost
orbifold also exist in four dimensions, and, if so, what class of boundary conditions they
belong to. If successful in constructing such a solution, one can then ask the second
question of whether or not a similar kind of phase transition can be established. Whereas
the latter of these can be answered rather straightforwardly once knowing what kind of
spacetime one is interested in, there are more subtleties to the first of these questions.
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Since the three-dimensional shifted-boost orbifold could be obtained as a flat space limit
of the BTZ black hole, an obvious way to approach the problem of finding a four-
dimensional analogue is by looking at generalizations of the BTZ black hole in four
dimensions. Such generalizations exist and have been studied in depth (see e.g. [35–
39]). However, despite the existence of a non-rotating (J = 0), four-dimensional BTZ
black hole, it is not possible to construct a rotating BTZ black hole in four dimensions
[36]. This is, because in AdS4, due to the specifics of this spacetime, it is not possible to
construct a horizon shielding the singularity produced by cutting out not allowed regions
(with respect to the corresponding Killing vectors).

Despite these difficulties in AdS spacetimes, we will see in the following that it is indeed
possible in flat space to generalize the three-dimensional shifted-boost orbifold to four
dimensions. However, the four-dimensional generalization lacks some of the features
that were found in three dimensions. In particular, in four dimensions one finds that the
horizon is no longer compact, but infinitely extended in one direction. Also, the topology
at null infinity of the resulting spacetime will not be that of a sphere but rather that
of a cylinder. This makes the usual boundary conditions for four-dimensional flat space
[11] not applicable, since they assume the spatial part of the boundary metric to be that
of a sphere (or, more precisely, something conformally equivalent to a sphere). Section
5.1 aims to establish boundary conditions respecting the specifics needed for the four-
dimensional shifted-boost orbifold. We will then, in section 5.2 construct this orbifold,
showing that it has indeed properties as just claimed.

5.1. Boundary conditions in four dimensions

Boundary conditions, as well as the asymptotic symmetry algebra for four-dimensional
flat space have been studied even earlier than their three-dimensional analogues, giving
rise to the original formulation of the BMS algebra [27, 28]. This was generalized and
studied in the context of holography in [11], leading to the four-dimensional version
of the BMS/CFT correspondence. However, as already mentioned above, boundary
conditions for four-dimensional flat space, typically have built-in the assumption of a
spherical topology at null infinity. We would here like to establish boundary conditions
analogous to those in three dimensions, and with a cylindrical symmetry at null infinity.
As a natural ansatz we will therefore use a metric which is of the same form as (3.1) but
with an additional z-direction (such that coordinates are given by retarded time u and
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cylindrical coordinates r, ϕ, z),

guu = −1 + huu +O(1/r) gur = −1 +
hur
r

+O(1/r2)

guϕ = huϕ +O(1/r) guz =
huz
r

+O(1/r2)

grr =
hrr
r2

+O(1/r3) grϕ = hrϕ +
h̃rϕ
r

+O(1/r2) (5.1)

grz =
hrz
r

+O(1/r2) gϕϕ = r2 + rhϕϕ +O(1)

gϕz = hϕz +O(1/r) gzz = 1 +
hzz
r

+O(1/r2)

with a priori free functions h. The Minkowski metric

ds2 = − du2 − 2 dr du+ r2 dϕ2 + dz2 (5.2)

is obtained if all these functions and subleading terms are set to zero.

Imposing the equations of motion determines

hrϕ = zh̃1(ϕ) + h1(u, ϕ), (5.3)

hϕϕ = zh̃2(u, ϕ) + h2(u, ϕ), (5.4)

huu = zh̃3(u, ϕ) + h3(u, ϕ). (5.5)

Furthermore, in order for the boundary charges to be finite and integrable, one needs

∂uhrϕ = ∂zhrz = 0 (5.6)

(for finiteness), as well as
∂zhrϕ = ∂zhϕϕ = ∂zhuu = 0 (5.7)

and
∂zhzz = −2∂uhrz (5.8)

(for integrability), such that in the end

hrϕ = h1(ϕ), hϕϕ = h2(u, ϕ), (5.9)

huu = h3(u, ϕ), hrz = h4(u, ϕ), (5.10)

and there is a fixed relation between hrz and hzz,

hzz = −2z∂uh4(u, ϕ) + h5(u, ϕ). (5.11)

To construct the asymptotic symmetry algebra for boundary conditions (5.1) – (5.11),
one needs to solve for the most general asymptotic Killing vector ξ such that

Lξgab = O(δgab). (5.12)
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This results in (see Appendix B.2)

ξ = [ξM(ϕ) + uξ′L(ϕ) +O(1/r)]∂u + [−rξ′L +O(1)]∂r (5.13)

+ [ξL(ϕ)− u

r
ξ′′L(ϕ) +

1

r
f1(ϕ) +O(1/r2)]∂ϕ + [ξJ(ϕ) +O(1/r)]∂z, (5.14)

which describes the symmetries that also appear for the three-dimensional geometry (ξL
and ξM) plus an additional tower of symmetries under z-translations (ξJ).

All contributions other than the ones coming from ξL, ξM and ξJ turn out to be pure
gauge, i.e. they do not appear in the asymptotic charges. We will thus be concerned
only with the three asymptotic Killing vectors given by

ξL = ξL(ϕ)∂ϕ + ξ′L(ϕ)(u∂u − r∂r)− ξ′′L(ϕ)
u

r
∂ϕ + . . . (5.15)

ξM = ξM(ϕ)∂u + . . . (5.16)

ξJ = ξJ(ϕ)∂z + . . . . (5.17)

The first two of these are completely equivalent to what was obtained in the three-
dimensional case, however there is now an additional asymptotic symmetry along ξJ .
The dots, again, represent sub-leading terms.

The free functions ξL(ϕ), ξM(ϕ) and ξJ(ϕ) can be Fourier-expanded as

ξL(ϕ) =
∑
n

einϕLn (5.18)

ξM(ϕ) =
∑
n

einϕMn (5.19)

ξJ(ϕ) =
∑
n

einϕJn (5.20)

leading to asymptotic symmetry generators

Ln = ieinϕ
(
inu∂u − inr∂r +

(
1 + n2u

r

)
∂ϕ

)
+ . . . , (5.21)

Mn = ieinϕ∂u + . . . (5.22)

Jn = ieinϕ∂z + . . . . (5.23)

They satisfy an extended version of the BMS3 algebra (on the level of generators without
central extension),

[Lm, Ln] = (m− n)Ln+m (5.24)

[Lm,Mn] = (m− n)Mn+m (5.25)

[Mm,Mn] = 0 (5.26)

[Lm, Jn] = −nJn+m (5.27)

[Mm, Jn] = 0 (5.28)

[Jm, Jn] = 0. (5.29)
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The associated charges are given by

QLn =
1

16πG

∫
dϕeinϕ

(
2huϕ − h1(∂uh2 + n2) + h4(∂zhuϕ − ∂uhϕz) + ∂uh̃rϕ

− in(h2(1− u)− uh3 + 2h5 − hur − h4(∂uh4 + ∂zhur)− 4z∂uh4 − u∂uh5

+ 2uz∂2
uh4 + u∂zhuz)

)
(5.30)

QMn =
1

16πG

∫
dϕeinϕ

(
h3 + ∂uh2 + ∂uh5 − 2z∂2

uh4 − ∂zhuz
)

(5.31)

QJn =
1

16πG

∫
dϕeinϕ∂uh4. (5.32)

These will in general not be conserved. However, as four-dimensional gravity admits
gravitational waves arriving at null infinity, this lack of conservation can indeed find a
physical interpretation.

5.2. Shifted-boost orbifold in four dimensions

Despite the lack of being able to generalize the rotating BTZ black hole to four dimen-
sions, we will in the following show that for its flat space analogue, the shifted-boost
orbifold, such a generalization is indeed possible. However, as already briefly mentioned
at the beginning of this section, the spacetime obtained from such a construction has
some peculiarities that limit an analogous physical interpretation, one of them being
non-compactness of the resulting horizon. We will talk about this in more detail at the
end of this section.

To construct the shifted-boost orbifold, we will, in analogy to the procedure of section
3.2, consider identifications in four-dimensional Minkowski space

ds2 = − dT 2 + dX2 + dY 2 + dZ2 (5.33)

along Killing vectors of the form

κ = 2π [R∂Y + ∆(T∂X +X∂T )] . (5.34)

Since the additional fourth coordinate Z does not enter into the Killing vector at all,
the procedures of excising not allowed regions and analyzing causal properties of the
remaining spacetime differ from the three-dimensional case solely by the existence of
another, completely uninvolved direction. It is worth mentioning that this is different
from what one would obtain in four-dimensional AdS, where there exists a connection
between coordinates (V, U,X, Y, Z) through the AdS condition−V 2−U2+X2+Y 2+Z2 =
−`2.

Knowing this, we can directly transfer the results of section 3.2 from three dimensions
to four dimensions: Cutting out regions where κ2 < 0, one obtains a spacetime which
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ends at a singularity at X2 − T 2 = 1/E2, where E is again defined via E2 = ∆2/R2.
The singularity is shielded by a horizon at |T | = |X|, which divides the spacetime into
two regions,

region I: X2 − T 2 <
1

E2
and |T | > |X| (5.35)

region II: X2 − T 2 <
1

E2
and |T | < |X| . (5.36)

with causal properties just as described for the three-dimensional case.

In coordinates (τ, x, y, z) defined via

region I : T = τ cosh [E(x+ y)] , X = τ sinh [E(x+ y)] , Y = y, Z = z, (5.37)

and

region II: T = τ sinh [E(x+ y)] , X = τ cosh [E(x+ y)] , Y = y, Z = z, (5.38)

the Killing vector reduces to
κ = 2πR∂y, (5.39)

leading, in the respective regions, to line elements of the form

region I: ds2 = − dτ 2 +
(Eτ)2

Λ(τ)
dx2 + Λ(τ)

[
dy +

(Eτ)2

Λ(τ)
dx

]2

+ dz2, (5.40)

with Λ(τ) = 1 + (Eτ)2

and

region II: ds2 = dτ 2 − (Eτ)2

Λ(τ)
dx2 + Λ(τ)

[
dy − (Eτ)2

Λ(τ)
dx

]2

+ dz2, (5.41)

with Λ(τ) = 1− (Eτ)2,

with ϕ ∼ ϕ+ 2πR after identification.

The two patches of region I again describe a collapsing, respectively expanding universe,
however with collapse and expansion only in r- but not in z-direction, like a cylinder
shrinking or blowing up only in radial direction. Also the horizon at r = 0 is non-
compact, due to non-compactness of the z-direction. As the metric (5.40) respectively
(5.41) is invariant under z-translations, we can deal with this in two (equivalent) ways,
either by considering only densities of physical quantities through dividing by the volume
of this non-compact direction, or by compactifying the z-direction, z ∼ z+ l. We choose
to do the latter. However, as just stated, there is no genuine difference in the two
approaches.

Although we have succeeded in constructing an orbifold that has similar properties to
the three-dimensional shifted-boost orbifold (with respect to the causal structure of the
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different regions), one needs to be careful with a physical interpretation of this spacetime.
In particular, the expanding region, which, in three dimensions, had the nice cosmological
interpretation of a spatial disk expanding in time, was replaced by something like an
expanding cylinder (or torus, when compacitfying the z-direction) instead of something
blowing-up like a sphere.

Despite this lack of interpretation as an expanding universe, we will still look at a possible
phase transition between such a spacetime and four-dimensional hot Minkowski space.
We will, however, only use the terminology flat space cosmology in quotation marks, to
indicate this issue. Due to the similarities of the metric the analysis of the two spacetimes
is almost identical to the three-dimensinoal case and is given in the following.

5.3. Phase transition in four dimensions

5.3.1. Hot flat space (HFS)

The analysis of HFS in four dimensions is done in full analogy to the three-dimensional
case. The metric takes the form

ds2 = − dt2 + dr2 + r2 dϕ2 + dz2 (5.42)

and a finite temperature and angular momentum can be introduced via periodicity
conditions in Euclidean time,

τE ∼ τE + β (5.43)

and a simultaneous twist in the angle

(τE, ϕ) ∼ (τE, ϕ+ 2π) ∼ (τE + β, ϕ+ βΩ). (5.44)

Also in four dimensions, consistency of the boundary conditions with a variational prin-
ciple determines the action to be (see Appendix A)

Γ = − 1

16πG

∫
d4x
√
gR− 1

16πG
lim
r→∞

∫
d3x
√
γK, (5.45)

with the first term vanishing on-shell. Just as in three dimensions, on a r = const.
surface

√
γ and K are given by

√
γ = r, K =

1

r
(5.46)

such that (since the first term in the action vanishes on-shell)

ΓHFS = − 1

16πG
lim
r→∞

∫ β

0

dτ

∫ 2π

0

dϕ

∫ l

0

dz = − βl

8G
. (5.47)

and

FHFS = − l

8π
. (5.48)

The three-dimensional result, F
(3)
HFS = −1/8π could be recovered as a free energy density

(with respect to the z-direction), F
(3)
HFS = F

(4)
HFS/l.
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5.3.2. “Flat space cosmology” (“FSC”)

The metric (5.40) can, in analogy to the three-dimensional case, be rewritten via

r̂+t = x, r0ϕ = y + x,

(
r

r0

)2

= 1 + (Eτ)2, z = z (5.49)

with E = r̂+/r0 as

ds2 = r̂2
+ dt2 − r2

r̂2
+ (r2 − r2

0)
dr2 − 2r̂+ dt dϕr0 + r2 dϕ2 + dz2, (5.50)

or, in Euclidean coordinates t = iτE, r̂+ = −ir+, as

ds2
E = r2

+

(
1− r2

0

r2

)
dτ 2

E +
dr2

r2
+

(
1− r20

r2

) + r2(dϕ− r+r0

r2
dτE)2 + dz2. (5.51)

From the near-horizon approximation, r2 = r2
0 + ερ2,

ds2
E =

ε

r2
+

(
dρ2 + ρ2 r

4
+

r2
0

dτ 2
E

)
+ r2

0

(
dϕ− r+

r0

dτE

)2

+ dz2 +O(ε2) (5.52)

we find the same expressions for temperature and angular momentum as were found in
three dimensions,

T =
r2

+

2πr0

and Ω =
r0

r+

. (5.53)

Also, since there is no contribution coming from the z-directions,
√
γ as well as the

extrinsic curvature K at r →∞ match their three-dimensional analogues,

√
γ = r+

√
r2 − r2

0 = r+r +O

(
1

r

)
, K =

(r2 + r2
0)r+

r3
=
r+

r
+O

(
1

r3

)
. (5.54)

This results in

Γ“FSC” = − 1

16πG
lim
r→∞

∫ β

0

dτ

∫ 2π

0

dϕ

∫ l

0

dzr2
+ = −

βr2
+l

8G
= −πr0l

4G
, (5.55)

such that the free energy is given by

F“FSC” = −
r2

+l

8π
. (5.56)

Again, the three dimensional result is recovered as a free energy density, F
(3)
FSC = F

(4)
“FSC”/l.
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5.3.3. Phase transition

As the expressions for the free energies are, up to a constant factor l, equivalent to those
in three dimensions (i.e. we solely exchanged free energies by free energy densities) we
are able to find a phase transition analogous to the phase transition in three dimensions.
Namely,

• for r+ < 1, i.e. for T < 1/2πr0 HFS is thermodynamically favored, FHFS < F“FSC”,
and

• for r+ > 1, i.e. for T > 1/2πr0 one finds FHFS > F“FSC” such that “FSC” is favored.

At the critical value r+ = 1, which corresponds to a critical temperature

Tc =
1

2πr0

, (5.57)

HFS will tunnel into the “FSC” solution.

6. Conclusions

This work attempted to generalize the results of [17], namely the existence of a phase
transition between hot flat space and a certain type of flat space cosmology, to four
dimensions. We have succeeded, in the sense that, despite this not being possible for
the rotating BTZ black hole, we could construct an analogue of the three-dimensional
shifted-boost orbifold in four dimensions with a well defined horizon. This could, how-
ever, only be achieved at the price of giving up compactness of the horizon. Also the
resulting solution does not fit into the class of boundary conditions given in [11], due to
a different topology at null infinity. We thus had to impose boundary conditions more
suitable for this solution. These boundary conditions, as well as associated asymptotic
symmetries were studied in section 5.1.

Having established appropriate boundary conditions, the free energies of four-dimen-
sional hot Minkowski space, as well as of the four-dimensional shifted-boost orbifold
were computed. Due to the strong resemblance between the three- and four-dimensional
metrics, the free energies showed the same behavior as in the three-dimensional case;
in fact we could recover the exact expressions of the three-dimensional free energies as
energy densities along the z-direction. Comparing the free energies of the two different
solutions (hot flat space and the four dimensional shifted-boost orbifold) thus results in
finding a phase transition analogous to that in three dimensions.

There are, however, certain subtleties about this four-dimensional generalization that
need to be handled with care. In particular, as already mentioned at some points, it
is not clear in how far the spacetime described by the four-dimensional shifted-boost
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orbifold can be seen as a cosmological spacetime, as expansion only takes place in the
direction of a cylindrical radius.

It would be of interest to study the properties of this orbifold (or also of possibly different
flat space orbifolds in four dimensions) in more depth. Furthermore and more generally,
in view of the phase transition it would be interesting to further investigate other possible
generalizations of the three-dimensional flat space cosmology. In particular in [19] the
authors construct a spacetime analogous to the flat spat space cosmology (with an
expanding region that blows up like a sphere) from string compactification. Although
this spacetime cannot be described as an orbifold of flat space, it would be interesting
to further investigate its properties (in particular its asymptotic properties) and check
whether or not it represents an alternative (regarding the generalization of the three-
dimensional flat space cosmology) to the shifted-boost orbifold considered in this work.

Finally, the constructed boundary conditions in four dimensions deserve further inves-
tigation. In particular it would be interesting to study the resulting charge algebra and
possible central extensions.

A. Variational principle

In order to have a well defined variational principle, one wants the variation of the action
to vanish on-shell. In the case of Einstein gravity, the action will be the Einstein-Hilbert
action plus an additional Gibbons-Hawking-York (GHY) term with yet undetermined
parameter α,

Γ(α) = − 1

16πG

∫
M

ddx
√
gR− α

8πG

∫
∂M

dd−1x
√
γK (A.1)

where γ is the (d− 1)-dimensional metric at the boundary and K as usual the extrinsic
curvature

Working with the Euclidean version of the metric and separating gab = γab + nanb, the
variation of (A.1) can be determined in full generality for arbitrary dimension as

δΓ(α) =
1

16πG

∫
M

ddx
√
gGabδgab

+
1

16πG

∫
∂M

dd−1x
√
γ
[
Kab + (2α− 1)nanbK − αgabK

]
δgab

− 1

16πG

∫
∂M

dd−1x
√
γ(α− 1)

[
γabnc∇c −

1

2
nc∇c(n

anb)

]
δgab

+
1

16πG

∫
∂2M

dd−2x
√
γ′(2α− 1)nan′

b
δgab (A.2)

where the last term includes possible corner terms and primed quantities are living on
such corners (i.e. on ∂2M).
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It was shown for the case of three dimensions (with boundary conditions as discussed
in 3.1) that a well defined variational principle is obtained when choosing α = 1/2, in
contrast to the usual choice of α = 1 [24].

We will here repeat this analysis for the four-dimensional case.

For a Euclidean background metric in coordinates (t, r, ϕ, z) of the form

ds2 = htt(t, ϕ) dt2 + hrr(t, ϕ) dr2 + r2 dϕ2 + dz2 (A.3)

and variations

δgtt = δhtt(t, ϕ) +O(1/r) δgrr = δhrr(t, ϕ) +O(1/r)

δgϕϕ = O(r) δgzz = O(1/r)

δgtr = O(1/r) δgtϕ = O(1) (A.4)

δgtz = O(1/r) δgrϕ = O(1)

δgrz = O(1/r) δgϕz = O(1/r)

one obtains

na = δra
√
hrr (A.5)

√
γ = r

√
1

hrr
(A.6)

K =
1

r
√
hrr

(A.7)

and the the various terms in the variation (A.2) behave as

Kabδgab = O(1/r2) (A.8)

nanbKδgab =
δhrr

rh
3/2
rr

+O(1/r2) (A.9)

gabKδgab =
hrrδhtt + httδhrr

rh
3/2
rr htt

+O(1/r2) (A.10)

γabnc∇cδgab = −∂zhrrhttδhrz + ∂thrrδhtr

rh
3/2
rr htt

+O(1/r2) (A.11)

nc∇c(n
anb)δgab = −∂zhrrhttδhrz + ∂thrrδhtr

2rh
3/2
rr htt

+O(1/r2). (A.12)

Plugging this into equation (A.2), one thus finds the on-shell variation of the action in
the r →∞ limit to be given by

δΓ(α) =
1

16πG

∫
∂M

d3x

√
1

hrr

[
(2α− 1)

δhrr

h
3/2
rr

− αhrrδhtt + httδhrr

h
3/2
rr htt

]
+

1

16πG

∫
∂M

d3x

√
1

hrr
(α− 1)

3

4

∂zhrrhttδhrz + ∂thrrδhtr

h
3/2
rr htt

+
1

16πG

∫
∂2M

d2x
√
γ′(2α− 1)nan′

b
δgab +O(1/r). (A.13)
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The terms coming from equations (A.10), (A.11) and (A.12) can be eliminated by de-
manding

δ(hrrhtt) = δhrrhtt + hrrδhtt = 0 (A.14)

and
∂thrr = ∂zhrr = 0. (A.15)

Then (A.13) reduces to

δΓ(α) =
(2α− 1)

16πG

[∫
∂M

d3x

√
1

hrr

δhrr

h
3/2
rr

+

∫
∂2M

d2x
√
γ′nan′

b
δgab

]
+O(1/r). (A.16)

This vanishes (as required for a well defined variational principle) for α = 1/2, just as
in the three-dimensional case. The action then takes the form

Γ = − 1

16πG

∫
M

d4x
√
gR− 1

16πG

∫
∂M

d3x
√
γK. (A.17)

B. Flat space asymptotic Killing vectors

B.1. Asymptotic Killing vectors in three dimensions

In order to find the asymptotic Killing vectors corresponding to boundary conditions

guu = −1 + huu(ϕ) +O(1/r) gur = −1 +
hur
r

+O(1/r2)

guϕ = huϕ +O(1/r) grr =
hrr
r2

+O(1/r3) (B.1)

grϕ = h1(ϕ) +O(1/r) gϕϕ = r2 + (h2(ϕ) + uh3(ϕ)) r +O(1)

one needs to solve for the most general ξ such that

Lξg = O(δg). (B.2)

Using a general ansatz,

ξ = ξu(u, r, ϕ)∂u + ξr(u, r, ϕ)∂r + ξϕ(u, r, ϕ)∂ϕ, (B.3)

in order for the ru-, rr- and rϕ-components of the variation Lξg to be of the allowed
order,

−∂rξu − ∂uξu − ∂rξr = O(1/r) (B.4)

−2∂rξu = O(1/r2) (B.5)

−∂ϕξu + r2∂rξϕ = O(1) (B.6)
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one must fix the r-dependencies in ξ as4

ξu(u, r, ϕ) = ξ̃u(u, ϕ) +O(1/r) (B.7)

ξr(u, r, ϕ) = −r∂uξ̃u(u, ϕ) +O(1) (B.8)

ξϕ(u, r, ϕ) = ξ̃ϕ(u, ϕ) +O(1/r). (B.9)

The other components of Lξg, together with the boundary conditions (B.1) furthermore
determine

ξu(u, r, ϕ) = ξM(ϕ) + uξ′L(ϕ) +O(1/r) (B.10)

ξr(u, r, ϕ) = −rξ′L(ϕ) +O(1) (B.11)

ξϕ(u, r, ϕ) = ξL(ϕ)− u

r
ξ′′L(ϕ) +

1

r
f1(ϕ) +O(1/r2). (B.12)

B.2. Asymptotic Killing vectors in four dimensions

We want to solve
Lξg = O(δg) (B.13)

for a metric

guu = −1 + h3(u, ϕ) +O(1/r) gur = −1 +
hur
r

+O(1/r2)

guϕ = huϕ +O(1/r) guz =
huz
r

+O(1/r2)

grr =
hrr
r2

+O(1/r3) grϕ = h1(u, ϕ) +O(1/r) (B.14)

grz =
h4(ϕ)

r
+O(1/r2) gϕϕ = r2 + rh2(u, ϕ) +O(1)

gϕz = hϕz +O(1/r) gzz = 1 +
hzz
r

+O(1/r2).

Using the most general ansatz

ξ = ξu(u, r, ϕ, z)∂u + ξr(u, r, ϕ, z)∂r + ξϕ(u, r, ϕ, z)∂ϕ + ξz(u, r, ϕ, z)∂z, (B.15)

we start by looking at variations Lξḡ of a background Minkowski metric ḡ. The ri
components (i = u, r, ϕ, z) of this,

−∂rξu − ∂uξu − ∂rξr = O(1/r) (B.16)

−2∂rξu = O(1/r2) (B.17)

−∂ϕξu + r2∂rξϕ = O(1) (B.18)

−∂zξu + ∂rξz = O(1/r), (B.19)

4Possible logarithmic terms have been ignored; these could in principle be included but drop out later
anyhow.
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fix the r-dependencies as

ξu(u, r, ϕ, z) = ξ̃u(u, ϕ, z) +O(1/r) (B.20)

ξr(u, r, ϕ, z) = −r∂uξ̃u(u, ϕ, z) +O(1) (B.21)

ξϕ(u, r, ϕ, z) = ξ̃ϕ(u, ϕ, z) +O(1/r) (B.22)

ξz(u, r, ϕ, z) = r∂z ξ̃u(u, ϕ, z) +O(1). (B.23)

Solving also the other constraints furthermore reduces the remaining functions to

ξu(u, r, ϕ, z) = ξM(ϕ) + uξ′L(ϕ) +O(1/r) (B.24)

ξr(u, r, ϕ, z) = −rξ′L(ϕ) +O(1) (B.25)

ξϕ(u, r, ϕ, z) = ξL(ϕ)− u

r
ξ′′L(ϕ) +

1

r
f1(ϕ) +O(1/r2) (B.26)

ξz(u, r, ϕ, z) = ξJ(ϕ) +O(1/r). (B.27)

Plugging this ξ into Lξg, one sees that also for the full metric ξ satisfies condition
(B.13).
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