
DIPLOMARBEIT

Prefabrication Topologies

ausgeführt zum Zwecke der
Erlangung des akademischen Grades

eines Diplom-Ingenieurs / einer Diplom-Ingenieurin
unter der Leitung von

Manfred Berthold
Prof Arch DI Dr

E253
Institut für Architektur und Entwerfen

eingereicht an der Technischen Universität Wien
Fakultät für Architektur und Raumplanung

von

Matthias Danzmayr
BSc

0625312

Wien, am 31. Mai 2015

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

Diese Arbeit beschäftigt sich mit den Möglichkeiten
zur Automatisierung des Architekturschaffens. Nach
Betrachtung von Vorbildern aus der Geschichte,
aus anderen Bereichen menschlichen Schaffens und
Produzierens, sowie der Analyse derzeitiger Vorfer-
tigungsverfahren wird der Schluss gezogen, dass ein
großes theoretisches Potential zur Optimierung der
angewandten Prozesse vorliegt.

Im weiteren wird ein prototypischer Modellprozess
entwickelt mit dem Ziel ein architektonisches Artefakt
zu produzieren. Zur Verwendung für die automatis-
ierte Produktion von Architektur wird zunächst eine
dreiachsige CNC Fräse gebaut. Die Möglichkeiten
dieser Maschine stellen gleichzeitig die Grenzen für die
weitere Entwicklung des Modellprozesses dar. Dies-
er wird nun vorangetrieben durch die Erstellung von
physischen Prototypen. Auf der Basis von Erkennt-
nissen die aus dem Bau Selbiger gezogen werden, wird
schließlich ein Algorithmus erstellt. Mit dessen Hilfe
wird zum Abschluss dieser Erkundung ein architek-
tonisches Artefakt zur Veranschaulichung des entwick-
elten Architekturschaffensprozesses gebaut.

Abstract

This thesis engages opportunities for the automisation
of architectural creation. After an investigation into
historic archetypes and scrutiny of other areas of hu-
man efffort and creation as well as an analysis of cur-
rent prefabrication processes the conclusion is drawn
that there looms a great theoretical potential for the
optimization of the currently applied processes.

In the following a prototypical model process is devel-
oped aiming at the production of an architectural arte-
fact. Initially a three axis CNC router is built as a tool
for the automated fabrication of architecture within
this work. This machine’s abilities’ limitations represent
the constraints imposed on the following development
of the model process which is now advanced. The
creation of physical prototypes is used to close in on
the realization of potentials for improvement of the
current processes. Finally, on the basis of this newly
gained knowledge an algorithm is created. This algo-
rithm is used for the creation of an architectural arte-
fact which serves as a demonstration of the developed
process for architectural creation and marks the end of
this endeavor.

P r e f a b r i
c a t i o n T o
p o l o g i e s

“This is the real news of our century. It is highly feasible to take care of all of
humanity at a higher standard of living than anybody has ever experienced or
dreamt of. To do so without having anybody profit at the expense of another so that
everybody can enjoy the whole earth. And it can all be done by 1985.”

Richard Buckminster-Fuller, The World Game, 1971

5

Tabel of Contents

1 Introduction 7

2 Theory 13

Visionaries 14

Le Corbusier 14

Richard Buckminster Fuller 17

Current Trends 20

Aeroplane Manufacturing 20

Car Manufacturing 20

Prefabricated Housing 21

Proposal 23

Main Idea 23

Constraints 24

Interfaces and a fresh perspective of modules 25

Steps 30

3 Building the Tool 31

Components 32

Structural Frame 32

Motors and Motion System 32

Spindle 34

Sensors 35

Controllers and Drivers 37

Stability 38

Points in Space 39

Maintainability 41

4 Experiments 47

First Artefacts 48

Prototyping 51

Prototype I 51

Application of the Joint-Redutction paradigm 53

Arbitrary Corner Prototype 56

5 The Algorithm 59

Process 63

Elements 65

Shards 65

Connector Sections 65

Connector Plates 65

Complications 71

Convex and concave edges 71

Multi dependencies 73

CNC Output 77

Contours 77

Clearance drillings 77

Bore holes 77

ID codes 77

6

6 Exemplary Extrapolations 81

Apertures 84

Load Bearing System 84

7 The Artefact 87

Key Facts 90

Production Processes 91

8 Supplemental 103

The Code 104

Geometry Classes 104

Contour Classes 117

Miscellaneous Functions 149

CNC-Rep 153

Global Variables 160

Main 163

1 Introduction

8

In April of 2012 The Economist printed a special report
on what has become to be called The Third Industrial
Revlution. After the Neolithic Revolution that began to
take place approximately 10 000 BC this first of the
industrial revolutions which happened around 1800 is
deemed the most significant change in human histo-
ry. It was heralded by the first broad use of industrial
machines to accomplish tasks that had previously been
extraordinarily labour intensive. It was followed by the
Second Industrial Revolution or Technological Revolution that
lasted for a period of approximately half a century up
until the beginning of World War I. It collimated in the
uprise of mass manufacture and the invention and ap-
plication of the assembly line with its most famous and
inspiring initial product the Ford Model T. These two
revolutions evened the way for today’s consumption
based societal system and a change in social structure
that resulted in the forming of a middle class. Wealth
was generated at a rate never seen before and society
became increasingly urban, a development whose far
reaching beneficial effects we are only beginning to un-
derstand today.

The most recently proclaimed third revolution of in-
dustry is a digital one. Again the way humans create

Figure 1: Cover of The Economist, Issue April 21st - 27th 2012.

Opposite page:

Figure 2: The process of 3D printing from screen to printer to

physical object. Pictured here is the Formlabs 1 3D printer.

9

artefacts is fundamentally changing. The advent of 3D
printing inspires great hopes for social reform and un-
imaginable technological leaps. While so forth the mass
production paradigm dictated centralisation as the only
economically viable means for the creation of goods,
it is believed that the latest technologies will allow dis-
tributed production. As so much of human structur-
ing of the world is dependent on the strategies used
to cater to people’s consumption be it for reasons of
life support or leisure, the high hopes lying in a change
of the nature of the networks of production become
conceivable. Some economists’ optimism goes so far as
to expect a change in how people work together so sig-
nificant that it will drastically alter the capitalist nature
of our current economic system.

3D printing is the most conveyable of the myriad of
technologies potentially allowing this change in artefact
creation. It is used representative of all the manufatur-
ing strategies that allow for economic non mass pro-
duction. There are several processes all including some
form of cumputer numerically controlled production
machines that can achieve this. The underlying princi-
ple is always the use of a machine that can produce any
product that fits into its margins of ability with more
or less the same effort and with no or only marginal
involvement of human labour. Either through subtrac-
tive or additive processes an artefact is created from a
material universal to a certain number of applications
by the machine. Parts produced by several machines
could also be automatically combined by robots within
such a process.

The foundation on which this revolution rises are the
digital technoligies that have been ever more rapidly de-
veloping during the last decades and that have already
recreated so many networks of human activity such as
the media, commerce and communication. They have
given rise to new forms of cooperation. Wikipedia,
OpenStreetMap, Linux, Apache, Drupal and other col-
laborative software developments didn’t only challenge
but oftentimes dwarfed much of their proprietory and
corporate competition. Education from the most re-
nowned institution is given away for free online and
crowdsourced platforms such as reddit and twitter
revolutionize the way we access news. If CNC technol-

10

ogies build a bridge across the gap from the digital and
virtual to the physical world all these developments can
cross over it as well, one could wish.

Computing is becoming increasingly pervasive in our
physical world already. The number of artefacts that
can connect to each other to exchange information
is exploding and the notion of an Internet of Things is
gaining momentum rapidly. The data these intelligence
enabled objects collect and relay back to us can teach
us much about ourselves and the systems we have put
in place to serve us. In Singapore sensor networks and
even social media feeds are used to look for weaknesses
in the design of the city’s transportation system, a proj-
ect by MIT Senseable City Lab conducted in Seattle
tracked garbage to learn about gross inefficiencies in
the recycling system and analysis of telephone records

quantified how much our social behaviour is influenced
by political boarders. If individual people can learn to
improve themselves through confrontation with the
quantification of their behaviour, a trend sometimes
called self hacking, it has to be assumed that societies
are capable of the same.

Manufacturing has not stopped developing after the
introduction of the first assembly line. Modern auto-
mobile factories are higly automated through the use
of robots of all sorts. Everything moves by itself and
only few people are present. The large spaces where
all this happens are kept clean meticulously and stor-
age on site is kept to the bare minimum. Preassembled
components are brought in just in time when they are
needed. Parts and subassemblies are slightly different

11

for each car that is to be built but can be easily identi-
fied with barcodes and RFID Tags.

We are putting bricks on top of each other. We will be
putting bricks on top of each other forever. In light of
the current situation, however, these bricks will soon
be connected to the internet to tell us about how much
load they convey and if they operate under acceptable
parameters. They might differ from today’s bricks in
size and function and they will be produced by digitally
controlled machines fed with data generated by algo-
rithms that analyze our designs to determine the unique
properties that each of these bricks has to exhibit for it
to work. This thesis is seeking a new understanding of
the notion of a brick and the process to create this new
most basic module of building.

Opposite page, from left to right:

Figure 3: Visualization of the project Trash|Track of the MIT

Senseable City Lab. Dots on the map represent different kinds of

trash processing plants and landfills. Lines depict movements of

trash items after they have been discarded in Seattle.

Figure 4: One of many visualizations that where made for the

MIT Senseable CIty Lab’s LIVE! Singapore project. Here the

dataset of the percipitation information and the dataset of taxi

trips are combined to show how they relate to each other.

This page:

Figure 5: Tesla Model S factory floor, Fremont, California.

2 Theory

14

1Visionaries

1 Le Corbusier

“We must create the mass-production spirit.
The spirit of constructing mass-production houses.
The spirit of living in mass-production houses.
The spirit of conceiving mass-production houses.”

Le Corbusier, Towards a New Architecture, trans. Frederick Etchells, 1923

Le Corbusier wrote his book Towards a New Architec-
ture to build a strong case for the adoption of rational
processes in construction whatever they might yield.
In it he observes many opportunities to adapt man-
ufacturing processes of other fields to architecture.
Ultimatley humans should arrive at a house-machine
whose purpose is to efficiently provide an environment
controlled habitat for us. He points out our way of
thinking as the biggest obstacle in our way to get there
because his idea and the onset of mass production for
so many seem tantamount to “the abandonment of true
art, of good workmanship and of dignity”.

For Le Corbusier’s notion of the perfect ‘House Ma-
chine’ to work he insists on the necessity of standards.
The standard is established through a process of ratio-
nal evaluation and practical testing on sure bases. Then

15

the standard can encourage fierce competition between
producers of parts, modules or whole houses. Through
this, every minute detail of the design will be under
intensive scrutiny ultimately leading to perfection of
the product. The standard gives order and direction to
human effort, he states.

The ‘House Machine’, which is based on these rules, is
a result of logic. This is why “dead concepts of hous-
es” have to be removed from our minds before eval-
uating it, as the result of the proposed process might
look alien on first glance. Le Corbusier compares it
to the invention of the first plane. It was not built to
resemble a flying animal, but was merely the solution
to “the problem of sustaining solid bodies in the air”.
Analogous to that, the desired dwelling shall not be a
copy of a house, but the tool to enable human life.

Together with the engineer Max Du Bois, Le Corbusier
developed the ‘Maison Dom-ino’ as a mass produce-
able building out of reinforced concrete. The name
‘Dom-ino’ is a combination of the Latin word ‘domus’
(house) and ‘dominos’--to reference the pieces of the
game, which the parts of the building resemble. The
construction of the house aimed at allowing the great-

Opposite Page:

Figure 6: La Maison Domino 1914-1915

Right:

Figure 7: Le Corbusier’s Unite D’Habitation in Marseille

16

est degree of freedom for the layout of the floor plan.
Structural walls as well as beams were unnecessary in
its design. With la Maison Dom-ino Le Corbusier made a
proto-architectural statement about building econom-
ics and how we create architecture that built the stilistic
foundation for his later work and forestalled his later
formulation of the architect’s Five Points in his seminal
work Towards A New Architecture : 1 pilotis; 2 roof gar-
den; 3 free facade; 4 free plan; 5 horizontal windows.

Figure 8: Rendering of the Unite D’Habitation depicting Le

Corbusier’s wine rack concept for the stacking of individual

habitation units.

Opposite page, from left to right:

Figure 9: Buckminster Fuller’s Fly’s Eye Dome in a rendering.

Figure 10: Illustration of the Fly’s Eye Dome’s deployment at the

agency of a helicopter.

Figure 11: Fly’s Eye Dome Prototype with a 50 foot diameter.

17

The Unité D’Habitation in Marseilles is the translation
of the same thought process to the housing block.
Le Corbusier designed a simple three-dimensional
structural grid and filled it with living units and other
functions of capsuled design following the notion of a
wine rack being laden with bottles. While these mod-
ules were not fabricated individually the idea to do so is
latent in the building.

2 Richard Buckminster Fuller

At the age of 32 in 1927 and after realizing his failure
in the business world Buckminster Fuller decided to
utilise his efforts to work towards the improvement
of the situation of all humanity. Through the creation

of artefacts and knowledge on the sole basis of facts
he was determined to increase the planets life support
capabilities. He thought of our world, planet Earth, as
a limited pool of resources. that was drifting through
space. This way he came to coin the term ‘Spaceship
Earth”. The available assets our spaceship is carrying
ought to be used only in the most efficient of ways to
forge artefacts for our use. Hence his tight association
with the notion of doing more with less.

Buckminster Fuller conceived of many artefacts for
inhabitation during his long search for efficiency in
human effort. The Fly’s Eye Dome (as seen in Figure 9,
Figure 10 and Figure 11) is designed for mass produc-
tion and light weight which is synonym with sparse use

18

of resources. The circular openings are meant to serve
as doors, windows or mounting space for appliances
such as solar cells. Its light weight permits that it is de-
livered by air. The fully equipped unit with a diameter
of 26 feet compares to a car in price and weight. Buck-
minster Fuller even went so far as to invent artefacts
and processes to elliminate the need for plumbing in
his abodes. A steam gun was meant to serve as a device
for personal hygiene and excrement was to be deprived
of water and then collected for energy production in a
caloric facility.

The Wichita House (Figure 13) was developed on the
basis of Fuller’s initial living machine called the Dy-
maxion house. It was planned to go into production
by the airplane manufacturer Beech in Wichita, Kan-
sas.However, in 1947 it was decided that people were
not ready for buying into a concept so futuristic. The
house was meant to be sold at a price that would reflect
the current value of $75 000. Just as the Dymaxion
House the Witchita House was envisioned by Fuller
in a broader context of systemization of production
and the lifestyle of the inhabitants and hence concep-
tualized sustainability long before the homonymous
movement.

Figure 12, top: A design for an automated cotton mill in Raleigh,

North Carolina, USA by Buckminster Fuller.

Figure 13, bottom: View of the Wichita House, 1948.

19

Richard Buckminster Fuller invented many more con-
cepts of buildings and factories like the automated
cotton mill for Raleig, California (Figure 12). Many of
these structures had a geodesic dome as their hull. Full-
er was convinced that humanity should use shapes that
are inherently efficient structures. One of his most am-
bitious proposals even was to cover a part of Manhat-
tan with a glass dome, arguing that the cost for such an
undertaking would be dwarfed by the following savings
through increases of efficiency in city management and
environmental control.

20

2Current Trends

1 Aeroplane Manufacturing

Airplanes are manufactured on giant assembly lines
in huge buildings. The ability to move very large and
heavy objects allows for the assembly process to be
broken down into more manageable chunks. After
the completion of these huge modules they are trans-
ported thousands of kilometers to the point of their
final assembly. The sections are completely equipped
and have to be able to stand on their own to allow for
their transportation. Sections for the Airbus A380 are
transported by land and sea from all over Europe to
Toulouse, France. Sections of smaller planes are even
transported by air. Airbus runs a fleet of A300-600ST
Beluga airlifters exclusively for that purpose.

What makes this practice economically sound is that
the reduction of parts joined at any one point decreas-
es complexity to a more manageable level and allows
a clearer look at the subassemblies’ performances and

optimization opportunities. Modules are manufactured
by contractors that are choosen by their ability to re-
liably deliver a certain quality at the best price. The
Boeing 777 is produced by more than 40 contractors
spread over more than twelve countries.

2 Car Manufacturing

Although cars are considerably smaller artefacts than
planes the gains in efficiency and quality of modular-
ized manufacturing are just as high. There are different
types of suppliers. Such that only produce very basic
elements like fasteners but also several categories of
subassembly producers. Some of them operate their
facilities around the world from where the final assem-
bly will be completed, but it has become a trend to have
others that supply very high level subassemblies right
on the premisses of the car manufacturer. Cars are be-
coming more complex and so the processes utilized to
construct them have to become smarter as well. From

21

design to polishing the paint every part of the equation
that results in the finished product benefits from a high
degree of modularisation as it drastically reduces the
individual complexity of each subassembly. It is axi-
omatically easier to manage the assembly of a hundred
parts ten times than of a thousand parts once. The
capsuled complexity within a part does not factor into
that consideration.

The appearance of the assembly lines behind the pro-
cesses have changed according to the new paradigm of
joining as well. As many tasks as possible are delegated
to robot arms and large parts are moved around au-
tonomously by computerized trolleys that can sense
their environment and avoid obstacles. The floors are
spotless and all operations requiring humans have been
engineered ergonomically so they can be performed
with ease.

3 Prefabricated Housing

The current status of the prefabrication industry al-
ready includes a myriad of digital technologies. Man-

ufacturing principles from other industries are being
introduced and prefabrication assembly lines are con-
tinually evolving. In most cases flat elements are outfit-
ted with almost all necessary features before they are
transported to the site of construction. There are also
a number of usually isolated examples such as IKEA’s

Opposite page:

Figure 14: Modules of the Airbus A380 in France.

Bottom, left to right:

Figure 15: Assembly line for the Boeing 747-8I in Everett,

Washington.

Figure 16: Tesla Factory Auto Bot Fremont, California.

Figure 17: Tesla Factory Fremont, California.

Right:

Figure 18: Hierarchy of subassemblies reducing number of

joints.

22

Boklok prefabrication houses where three dimensional
modules are agregated but they are the exception.

Both instances utilize revolutionary processes bor-
rowed from industries whose products have evolved
substantially even during the shaping of these pro-
cesses. However, they apply them to the creation of
a product that they do not allow to evolve for diverse
reasons and which exhibits no sign of the underlying
revolution. This gives rise to the assumption that there
must be a huge untapped potential for increases in pre-
fabrication’s efficiency.

From left to right:

Figure 19: Production facility of FingerHaus GmbH in Franken-

ber, Germany

Figure 20: ELK Fertighaus Gmbh factory, Schrems, Austria.

Figure 21: ELK Fertighaus Gmbh construction site.

Figure 22: Example for a house by ELK Fertighaus Gmbh

23

3Proposal

1 Main Idea

The main focus of this thesis is to experimentally ex-
plore the opportunities of full automation and mass
customization in architecture, utilizing currently avail-
able CNC-technologies. Architectural creation consists
of a form finding process and all the processes that lead
to the existence of the envisioned architectural artifact.
While the first is a process of human creativity the
latter are predictable processes based on physical laws
and regulations. It is the opinion of the author that at
the maximum degree of architectural automation only
the form finding process is achieved by a human while
all other processes will be taken over by algorithms and
CNC controlled tools.

One can argue that the quality of architectural experi-
ence relies strongly on the detailing of the architectures
finish. Today an architect designs details through ex-
amples leaving certain ones to best practice solutions.
In the process outlined above she defines rules along
which all details are automatically solved. This gives the
architect much greater power to imprint a building with
her idea of material and detail in every corner. While
it seems like the process of automation removes the
designer further from the resulting architecture it ac-
tually yields the opportunity to get much closer to the

Figure 23: Freitag Flagship Store 2006

24

processes of creating it and that without the need for
an elaborate drawing staff.

As code becomes the new language to define archi-
tecture existing open-source paradigms for software
can be utilised to improve it. The new process could
be thought of like conceiving of a shape and then us-
ing preexisting shared sets of code to skin it. As this
would also imply the materials used in construction,
local solutions could be implemented simply by build-
ing on code that has been successfully applied in the
area previously and that harnesses regionally available
resources and human skills.

2 Constraints

A number of guidelines have to be set in place to give
the process meaning. As there are infinite possibilities
to solve the problem that is the conversion of a shape
to all the parts necesary to construct it, constraints have
to be imposed. They ensure a meaningful outcome of
the experiments of this thesis.

The goal is the modelling of a possibly complete cycle
from design to finished construction. This consists of
the modelling of a shape, the CNC fabrication of all
the parts necessary to build the shape, the creation of
an algorithm that converts the shape to all the parts
necessary to build it and lastly the assembly of the
prototype. One additional step that also has to be men-
tioned is the building of a suitable and capable enough
CNC-machine.

This page:

Figure 24: Children’s Activity Center by Phooey Architects 2007

Opposite page, top to bottom:

Figure 25: Habitat 67, completed 1967 in Monteal, Canada by

Israel born architect Moshe Safdie as part of the 1967 EXPO.

The project was the subject of the architect’s Master’s Thesis at

McGill University.

Figure 26: Nagakin Capsule Tower, completed 1972 in Shim-

bashi, Tokyo, Japan by architect Kisho Kurokawa during the

Japanese Metabolism

25

To keep complexity to the necessary minimum the
main constraint is the limitation of the complexity of
parts used to build the shape. The algorithm will only
create two dimensional parts. While there are numer-
ous CNC machines capable of producing highly com-
plex 3D geometries such as a myriad of different 3D
printers and 5+ axes CNC mills this limitation allows
the use of one of the simplest machines. A three axis
mill is able to produce all the necessary parts under
these preconditions.

All connections between parts have to be of a non-per-
manent nature like screw joints or key and slot type
connections. While this offers more convenience in
construction it also gives the resulting artefact a high
degree of adaptibility and modularity. The latter will
be described in more detail in the following section on
interfaces and modules.

3 Interfaces and a fresh perspective of modules

Modular architecture has always had the spectre of
monotony floating above it—in some cases it managed
to be exciting none the less, but that is not the point
this text wants to make. In most cases modules have
been interpreted as boxes that fit together much like
standard LEGO® bricks to form complete buildings.

This paradigm can be observed in shipping container
architecture where intermodal freight containers are
recycled as building blocks. Sometimes they are posi-
tioned for temporary uses such as offices at construc-
tion sites, but in many cases they have been refitted for

26

permanent constructions of varying purposes (Figure
23 and Figure 2).

Alltogether Architects have looked at modularisation
very much as a strict extrapolation of architecture’s
original module, the brick. Hence architectural modules
are very stable in their shape and size. Mass production
processes are exploited to create the same or roughly
the same thing over and over again cheaply, efficient-
ly and to a high quality standard. Then the products
of this process are transported to a site where they
are finally stacked to a building. While this process is
certainly rational it only occasionally creates interesting
aesthetics that profit from it. Two such examples can

be found in Montreal, Canada (Figure 4.3) and Tokyo,
Japan (Figure 26).

This thesis wants to propose a different understanding
of the term module that builds on concepts derived
from space engineering and software development.

First another term used in software development has
to be introduced—interface. An interface sets the
rules for communication between different parts of a
programm. It basically defines what the communicat-
ing parties are to expect of each other. That includes
information they have to provide as well as what they
have to be ready to receive. This way the interface can
be seen as a preset contract that entities can commit

27

c c
A AuB’

c
S A

B

B

B’

B’

28

to, to allow themselves to pursue a certain goal. The
concept also allows a high degree of adaptability of
the program as a whole as it permits anyone unfamil-
iar with the software’s details to replace parts only by
knowing about the interfaces they use. This also means
that new parts can have completely different behaviour
than their predecessors as long as they oblige to the
rules of interfaces that are used to communicate with
them by older parts of the software.

Secondly space architecture. The International Space
Station ISS is a modular space station. This means that
it is composed of modules docked to eachother. The
modules can be replaced or extended by others which
allows easier changes of mission. The modules vary
in size, shape, objective and also place of design and
manufacturing. Despite these complications they all fit
together forming one airthight connected structure in
outer space. And while that alone is a big achievment
they also manage to form networks for the distribu-
tion of power and all other necessary utilities as well as
transfer physical loads. The reason for this is that while
shape and size of the modules have been left to their
designers who mold them to their objectives there are
strict rules for the modalities of connecting to other
parts of the station—in software development terms,
all modules use the same interface.

While this physical representation of an interface still
seems banal it already shows that it enables modules
to differ in every other aspect. The interface is defined
physically as well as in terms of properties that describe
what it allows to interchange between modules. In the

case of the ISS that includes air, electricity, data, people,
objects up to a certain size, etc. Its physical definition is
fixed. All interfaces have the same physical appearance.

This thesis proposes an additional level of abstraction
which will be the parameterization of the interface’s
physical properties. If a building is the combination of
its non-permanently connected parts that all are inter-
facing each other, each continuous subset B of this set
S of parts is interfacing the subset A=S-B along a dis-
tinguished interface c. In this sense set is synonymous
to module. hence the above is a floating definition of
module. Further it can be said that module B can be
replaced by an infinite number of other modules B' as
long as they are compatible to the interface c.

Page 26:

Figure 27: The International Space Station in orbit around the

earth.

Figure 28: The ISS’s Cupola is an observation window for ISS

personal. It showcases the modularity of the ISS. The Cupola is

attached to the same kind of interface used to connect all of the

ISS’s modules.

Page 27:

Figure 29:A universal definition of the module.

Opposite Page:

Figure 30: The steps of interfacing two volumes by the principle

of universal modularization.

29

2 6

1 5

3 7

4 8

30

4Steps

1 Creation of a CNC tool that has the capacity to produce a
prototype of the system that is to be developed.

A three axis CNC router was chosen as the most eco-
nomically viable option concerning acquisition and op-
eration for the given purpose. It is mostly constrained
to two dimensional operations and in consequence
helps to keep the project within realistic bounds.

2 Experimental approach to a building strategy universal
enough to be capable of creating any given geometry.

Prototypes were created to close in on a feasible solu-
tion to the stated problem.

3 Programming of an algorithm to automate the creation of
necessary building parts for the assembly of said geometries.

4 Creation of a representative complete prototype to further
illustrate the concept.

5 Exemplary extrapolations to show possible next steps in the
developing of the underlying idea of automation in architecture.

31

3 Building the Tool

32

1Components

1 Structural Frame

The main structure of the CNC router consists of spe-
cial extruded aluminum profiles that are joined mostly
by screws. Special nuts are used that slide into grooves
on the sides of the extrusions to give hold to the nu-
merous screws and bolts that hold the frame together.
Perforated plates and angle brackets give it additional
rigidity.

There is a rectangular base frame that serves as the
main source of bracing, substructure for mounting the
wasteboard and railing for the gantry that carries the
spindle. It is made up of four high profiles that form
the rectangle and several additional extrusions that

serve as bracings. This makes it the biggest connected
part and the only part of the router that does not move.

As mentioned before, on top of the main frame sits the
Y-Axis gantry. It can slide back and forth along the two
main base profiles pointing in X-direction that it grips
from the sides with wheels fitting into these profiles’
top and bottom grooves.

2 Motors and Motion System

The router is set in motion by a total of four high pow-
ered stepper-motors. They are classified as NEMA 23
and produce a torque of 4.5 Nm. NEMA stands for
National Electric Manufacturers Association which is
an organizational entity dedicated to the creation of

33

technical standards for the electroindustry.1 The stan-
dardization document concerning the motors used for
the router is called ‘ICS 16-2001’.2 The number in the
designation indicates the size of the motors casing. 3

The gantry that moves along the X-axis is propelled by
two inversely synchronously operating stepper motors
mounted to either side of it. The motors turn pulleys
to drag the gantry along timing belts that run along

1 National Electrical Manufacturers Association, “About the

National Electrical Manufacturers Association,” http://www.

nema.org/About/pages/default.aspx (accessed May 15 2015)

2 National Electrical Manufacturers Association, “All Standards

(One Page),” https://www.nema.org/Standards/Pages/All-Stan-

dards-One-Page.aspx (accessed May 15 2015)

3 National Electrical Manufacturers Association, “NEMA Stan-

dards Publication ICS 16,” Rosslyn 2001

the base’s profiles in X-direction. The belts are held at
constant tension by tensioning springs at each of their
ends to avoid any backlash in the gantry’s movement.

The gantry carries another guided sled that moves
along the machine’s Y-axis which is the gantry’s pro-
file’s direction. Very simliarly to how the gantry grips
the base frame’s rails at each of its sides, the Y-axis sled
locks into the gantry’s extrusion from top and bottom

Figure 31, opposite:

Thr router’s main frame.

Figure 32, top, left:

One leg of the gantry sliding

along atop the main frame.

The belt is fixed at either side

fo the frame

Figure 33, top, middle:

Y-axis and Z-axis motion

system

Figure 34, top, right:

Motor in custom-made

housing with 8-pin connector

and active cooling.

34

with the same type of ball bearing wheels. A third mo-
tor is mounted to the sled and moves it along a timing
belt much like the two previous ones create movement
along the X-axis.

Movement along the machine’s third and final axis is
created differently. Instead of a belt-driven system a
threaded rod is used to drive the spindle up and down.
The rod is mounted vertically on the sled and is con-
nected to the fourth and final stepper motor at its top
with a special coupling. By rotating it the motor drives
it up and down in a block with a threaded hole that is
mounted to the sled at a fixed position.

All four motors rotate their shaft by 1.8 degrees with
each step which gives them a resolution of 200 steps
per rotation. Through a process called microstepping
this number can be drastically increased giving the mo-
tors up to the 200 fold of their original resolution. This
allows control of the machine movement at a scale of
one hundreth of a milimeter and lower.

3 Spindle

There are many different spindles for many different
purposes ranging from high powered water cooled
spindles for metal working to lower grade spindles with
a few hundred watts of power and the size of a hand-
held tool like a Dremel® Multitool. However there are
several other factors next to power that are significant
for the selection of a spindle.

First of all it is most important that a spindle can be set
to appropriate RPMs. They are one of the factors at
play resulting in the chip-load value that is determinant
for the quality of a cut or milling process. The wrong
setting can result in frayed or uneven cuts. It also greatly
influences the amount of heat generated by the milling
cutter and in consequence its wear and possibly addi-
tional effects on the workpiece. In the worst case too
much heat generated by the cutter can result in fires.

More complex spindles’ RPM can be controlled by a
microcontroller in accordance to factors like the cur-
rent feed-rate—i.e. the speed at which the tool moves
relative to the workpiece. This feature can be the en-
abling factor to achieve a higher degree of automation
in manufacturing parts with a CNC Router as it allows
the operator to post several different tool operations
that require different RPM settings to the machine at
once without the need for pauses to reconfigure the
spindle.

Higher quality spindles also boast the ability to stabi-
lize their RPM independent of the loads they have to
overcome. While lower quality models’ RPM might
decrease and increase significantly due to differences in
feed-rate, cut-depth or material irregularities during the
same operation those that can vary the power output
according to fluctuating resistance ensure a homoge-
nous milling quality.

35

4 Sensors

Allthough stepper motors are used to propel the rout-
er’s axes which allows for discret actuations without at-
taching sensors to them, it is necessary nonetheless to
get signals about certain states of the machine. Some
of the sensors are necessary for convenience in opera-
tion and better automation and others deliver readings
critical for safety during the mill’s operation.

The actuators of the router’s axes exert a substantial
amount of torque, very probably sufficient to destroy
the machine by moving an axis further than it is sup-
posed to move. The effects would be catastrophic to
the device as well as potentially harmful to its operator
and surroundings considering that powered parts like
the running spindle could get loose and be sent flying
through the air. In consequence the most important
sensors to start with are those that give feedback about
an axis having reached its maximum position. They are
named limit switches and should be placed at all points
where a motor could move an axis beyond the bounds
of the router. The effect of one of these switches
being triggered is usually tantamount to pressing the
machine’s emergency stop button.

Figure 35:

A KRESS FME 1050-1 spindle mounted to the router ready

for operation. Its power chord is routed through the same cable

carrying tracks as the wires going to sensors, stepper-motors and

other devices on the structure. Proper cable management is of

paramount importance for smooth operation of the router.

36

Another set of sensors that is necessary for smooth
operation is allowing the mill to find its zero position
on every axis. For this purpose very high precision sen-
sors should be used to enable the correct repositioning
of the tool after any reboot or mishap during opera-
tion. There is usually at least one indicator for every
axis that can simultaniously serve as a limit switch. On
a gantry router that has two motors moving one of its
axes there have to be two sensors dedicated to that par-
ticular axis as these motors are capable of independent
movement and hence could cause the axis to move into
a state not perpendicular to the other axes.

The last sensor that will be discussed here is the touch
plate. Its purpose is to determine the cutters z-position
in reference to the workpiece before starting an oper-

ation. In its simplest implementation it consists of a
grounded plate of conductive metal and a metal clamp

Figure 36, top, left:

A limit and homing switch

on the router’s X-axis. It is a

simple switch with a pro-

longed lever.

Figure 37, top, middle:

The sliding carriage moving

along the Y-axis moving close

to its homing switch.

Figure 38, top, right:

A deployable switch used sim-

ilarly to a touch-plate sensor

for determining the correct

Z-offset for the workpiece

underneath it. The cutter is

lowered to trigger the switch.

Figure 39, opposite, left:

Stepper motor drivers.

Figure 40, opposite, middle:

Drivers and power supply on

custom milled electronics tray

Figure 41, opposite, right:

CNC-controller circuit-board

37

connected to one of a controller’s input pins. The
clamp is hooked up to the tool in the spindle which is
then lowered until it touches the plate which was pre-
viously placed beneath it on top of the workpiece. It
can be detected when physical contact is established by
the controller which at that point stops the downward
movement and uses the current z-position offset by the
touch plate’s thickness as the new zero relative to the
workpiece.

5 Controllers and Drivers

It takes several circuit boards to control all the rout-
er’s motors and read the inputs of all sensors that give
feedback about the machine’s state of operation. They
serve as translators between the attached controlling
computer and the actuators, motors and active compo-
nents of the router as well as sensors and switchboards
that can give additional control of the machine.

The main device used is the circuit board that is directly
connected to the computer via serial or USB connec-
tion. It receives commands from the software package
used by the computer to execute toolpaths. This circuit
board that is usually called CNC controller also re-
ceives signals from sensors and switches which it relays
to the computer. The controller is also translating the
computers commands to move the mill’s actuators into
signals for the drivers of each of the machine’s stepper
motors which it is connected to with three signal wires
each.

The drivers that run on DC power are catered to by
one or more power supplies. They interpret the con-
trollers signals and transform them into movements of
their respective stepper. There are as many drivers as
there are stepper motors, each driver can only control
a single motor.

38

2Stability

One of the most important factors influencing the
ultimate precision of a CNC router is the stability of
the construction. Any play of the spindle will translate
directly into imprecisions of the workpiece. If the ma-
chine is at a stand still it should not or only barely be
possible to manually move the tip of the tool in any
direction. The more of a jiggle one can induce on it,
the greater the inaccuracies that have to be expected.

Stability does not only affect precision but also the
speed of operation of the router. The more rigid the
construction the faster the tool can be moved through
the material without sacrificing precision. That is be-
cause the higher the velocity of the tip of the cutter is,
the greater the forces in opposition to its movement
get. As the tool rotates at a certain rate the size of the
chips of material that are removed with each rotation

increases with the tools speed relative to the workpiece.
This is what is called the chip-load. With higher chip-
loads the force necessary to cut the chips gets larger
synchronously and acts as a deflecting power against
the tool. If the chip-load is too high these forces can
exceed the constructions threshold and result in count-
less phenomena apart from mere inaccuracies including
violent vibrations and unanticipated tool movements.

It is very hard to judge at what point the threshold of
a system in terms of feed-rate and chip-load is reached
as first signs which usually include slight inaccuracies
are subtle and can have a multitude of causes such as
the grain of the material or a dulling tool. It takes a
period of experimentation to find the optimal values
of operation for each material and tool.

Figure 42: Slight vibration can

rapidly increase and make the

tool move around uncontrol-

lably leading to potentially

hazardous situations as cutters

can break and be sent flying

across the workshop. The

consequences can be seen on

this photo showing a failed

milling of a part from meadi-

um density fibre board.

Figure 43, opposite page:

View along the router’s gantry

providing a glimpse at the

Y-axis’s timing belt and pulley

as well as the vertical threaded

rod that is used to position

the spindle along the Z-axis..

It is connected to the stepper

motor in the wooden housing

at the top with the metal

coupling visible just below it.

39

3Points in Space

For the process of CNC milling to work the machine
has to have precise control over its cutter’s location. It
can easily establish a relative position by cummulatively
adding up its movements during operation, but his al-
ready implies that it needs an absolute position to start
with that can be used as a reference. If that is a given
as well the machine can smoothly maneuver to all the
points in space of the toolpath it shall follow.

Whenever the machine comes to an unplanned halt
or something goes wrong that forcefully changes the
cutter’s position the machine can no longer know its
acutal position. It can only follow willful movements.
If the cutter hits an obstacle too hard to cut through or
plunges into the material too deeply it can happen that
the forces on the belts of the motion system become
too great. That can make the belts slip over the pul-
ley’s teeth. The machine has no means of sensing this
irregularity and assumes that everything is moving as
intended. It does not correct the toolpath according to
the faulty execution and tries to continue as if nothing
happened. At this point the only way to regain preci-
sion is to stop the machine and home it.

The process of homing is best accomplished by the
use of highly precise sensor-switches. The control soft-
ware runs a homing protocol that lets it detect each
axis’s home or zero position at a time by slowly moving
it in a predetermined direction until it hits the hom-
ing switch. It is very important for these switches to

40

be mounted firmly on the router’s frame to get reliable
readings from them. Depending on the application of
the machine it has to be possible to home it to within
a certain fraction of a milimeter in space which should
never be larger than one tenth of a millimeter.

To enable the machine’s software to follow its deliber-
ate movements it needs several data about its motors.
The usually used stepper motors are controlled by
commanding them to rotate in a given direction by a
certain number of steps. Stepper motors usually rotate
by 1.8 degrees per step. This native resolution is then
artificially increased by a factor of up to 200 or more
through a process called microstepping. If the software
is aware of the parameters involved in this process and
the motor’s original resolution it can determine by how
much it rotates the motors shaft with every step. To
calculate the axial movement resulting from this ro-

tation two more parameters are necessary. Firstly the
number of teeth of the pulley attached to the motor
and secondly the used belt’s pitch. If the motor is at-
tached to a threaded rod as a means of axial movement
rather than a pulley and timing belt system the neces-
sary dimension to determine the axis’s movement is of
course the rod’s thread-pitch.

The described system works very precisely as steps are
hardly lost along the way from the software to the ac-
tual motor. Also a stepper motor can not be rotated by
agency of any mechanical forces on its shaft as long as
power is on, allowing it to stay perfectly in place while
the machine is operating. However, as soon as the mo-
tion system is powered off it becomes possible to manip-
ulate the actuators’ positions. This effects that a router
has to be homed again every time it is powered on.

41

4Maintainability

It was a great challenge to get this router which was
built from a kit that is available online to a point of
smooth operation. Several measures had to be taken
to make the mill function in a stable manner and auto-
mated the processes involved to a degree that was satis-
factory for the demands of the intended purpose. The
difficulty lay in the extensive periods of experimenta-
tion that were necessary to identify the problems at the
basis of unbeneficial vibrations, inaccurate movements
and imperfect cut surfaces.

To allow for interuptions in the execution of toolpaths
it was necessary to install homing sensors of higher
quality than the ones that came with the kit. The meth-
od of attaching them to the structure of the router also
had to be improved as they have to sit firmly in place

even if the gantry bumps into them. Before this is ac-
complished any situation that forces the execution of
a toolpath to stop might very well result in the loss of
all milling that happened on the workpiece previously
as most times it is not possible to manually rehome
the machine with sufficient accuracy. After elaborate
research a source for apropriate sensors was found.
The replacement switches came with a metal base that
could be fixed onto the frame’s extruded profiles with a
special piece of hardware resembling a nut that can be
slid into the profile’s grooves.

First experiments with the machine also led to initially
unexplainable vibrations that could get intense enough
to send the tool of course moving around violently
leading to catastrophic damage rendering workpieces

Figure 44, opposite:

Wiring node on the gantry

next to the X-axis motor.

Figure 45, left:

The gantry carrying the

spindle’s slide was initially

suspected to be one of the

main weakpoints in the con-

struction permitting disruptive

vibrations that caused several

experiments to fail.

Figure 46, next page, left:

Cable tracks on the gantry

supplying Y and Z-Axes

Figure 47, next page, right:

Major mistakes were made

in the design of this sled

carrying the milling motor and

its Z-axis motion system. The

incorrigible instability can only

be dealt with by lowering the

routers feedrate.

42

43

useless and causing the timing belts to slip on their pul-
leys. (see Figure 42, page 38) It took many failures
until the chain of causation could be traced all the way
to its last link. The earliest suspicions saw the fault for
this erratic behaviour of the machine in such unrecov-
erable circumstances as an insufficiency of strength on
the side of the motors, a general lack of rigidity of the
construction and a misfit in the dimensioning of the
timing belts. To the author’s great relieve, but only after
many frustrating failures a pattern in the occurence of
described misbehaviour could be identified leading to
the discovery of the first actual error. The likelihood
of erratic behaviour was rising with the depth of the
groove in which the cutting bit was operating. Two ex-
planations fit this explanation; firstly chip build-up in
the groove deflecting the cutter and secondly the cutter
touching the wall of the groove causing it to bounce
from side to side with accumulating vigor within the
groove. Using a multipass strategy for cutting thick
material greatly reduced the occurences of the prob-
lem. This approach has the cutter go along the contour
two or more times for each step into the material with
different offsets from the actual contour leading to a
wider cutting groove—wide enough to avoid bouncing
of the tool. Nevertheless the problem persisted if only
with drastically decreased frequency. Many more failed
experiments were necessary to find the second source
of vibration. The spoilboard itself was not rigidly
enough fixed to the substructure and in consequence
stimulated vibrations when certain operations were
performed. After the installation of additional alumi-
num bracing beneath the wasteboard the problem was
almost entirely solved. The tightening of the timing

belts ultimately helped to make the issue disappear for
good.

Another great nuasance with interuptions and also
starting of new operation cycles was the accurate ze-
roing of the tool along the Z-axis to the top of the
material. A widely used technique to solve this prob-
lem is the following: a sheet of thin paper is put on
the surface of the material to be cut. While the cutter
is gradually lowered one constantly moves the paper
underneath it. Ultimately the tip of the tool touches
the paper preventing further movement. The operator
stops the process of lowering and sets the thereby de-
termined Z-position to zero. While this method works
well for most applications it is slow and tedious as well
as not as precise as it could and in many cases should
be. A touchplate or zeroing switch as described in the
previous section Components allows to increase precision
and to automate the process to the push of a button.
(see Figure 37, page 36)

Most other issues with quality and general operation
that the author experienced with the machine were
solveable only by changing faulty milling strategies.
The combination of spindle-RPM and feedrate have
to be figured out for every material. A factor playing
into this is blacklash of axes and especially instability
of the Z-axis which can only be countered by drastic
reduction in feedrate. The machine at hand is of a con-
struction with severe shortcomings of Z-axis stability
resulting in a play of at least a milimeter at the tip of
the tool. While its motors and spindle would be capable
of very high feedrates the milling strategies have to be

44

adapted to this mistake in design which is impossible to
correct without reconstructing the whole gantry.

Additionaly several improvements were made that
allowed for more convenient maintainance and oper-
ation. Custom housings were created for all motors.
They feature a fan for active cooling of the stepper
motor during operation. They also boast a socket
connection for the signal wires and fan power which
are combined into a single cable per motor for a more

orderly electrical system. The original design of the
router did not feature any type of wire management so
it was necessary to add cable-tracks and all necessary
substructures to keep signal wires and power cords out
of harms way. Lastly an electrical boxed was conceived
including a connector panel that allowed for quick
reconnection of all components to the controlling
ciruit boards and a tray to serve as a base for order-
ly mounting all electrical components involved in the
driving of the router. (see Figure 40, page 36)

Figure 48, top, left:

The electrical box’s connector

panel is the interface to all

eceltrical components of the

router and connection to the

power network.

Figure 49, top, right:

The back of the connector

panel. 54 wires soldered to the

sockets connect them to the

respective controllers, motor

drivers and sensor inputs.

45

4 Experiments

48

1First Artefacts

These are the first steps I took using the router. In
contrast to using a laser cutter the operation of a CNC
router has a long list of parameters that changes with
the specific application. For every particular result
a strategy has to be developed by which to approach
the problem of removing he unwanted material which
becomes especially complex if the desired artifact has
three dimensional features that have to be milled. The
experiments depicted here both demanded three di-
mensional milling and led to the conclusion that it was
necessary to stick to 2d operations in the development
of the algorithm to make the manufacturing of proto-
types possible in a reasonable time frame.

from left to right, column-wise

Figure 50, top:

The first milling experiment after completion of

the router was the execution of a three dimen-

sional toolpath on a log to check the routers

functionality.

Figure 51, bottom:

The result of the first experiment.

Figure 52, top:

The first of several finishing passes for a chain

link. This experiment aimed at the milling of

a more complex three dimensional artefact. A

parametric chain was designed in Grasshopper.

Figure 53, bottom:

A finished chain link.

Figure 54, top:

The result of a roughing pass for the links of the

parametric chain.

Figure 55, bottom:

All finished chain links connected to each other.

49

50

51

2Prototyping

1 Prototype I

This first actual prototype in the development of a
universal system for physically creating geometries is
a simple cube. It is elevated by pillars paying respect to
the first of Le Corbusier’s Five Points of architecture.
The connections between the parts that were cut from
poplar plywood are accomplished through the use of
screws and nuts. The latter were held in receptacles
milled into the wood at all necessary places. The result-
ing enclosure consisted of eight milled parts and ten
nuts and screws respectively.

The mode of fastening was successful. However, it
needed some adaptation to be a viable option for use
with arbitrary angles between parts as the implementa-
tion at hand was only capable of connecting boards at
right angles. While the paradigm of pillars for relaying
mechanical loads into the ground continued to seem
the most rational option for the envisioned way of

Opposite Page:

Figure 56: Renderings assembled and in an explosion view.

This page, from top to bottom:

Figure 57: The completed cube made from poplar plywood.

Figure 58: View of the bottom of the object showing the screws

used for connection.

52

53

building it was decided to abandon its implementation
for further iterations of the prototyping as this yielded
no direct insights.

2 Application of the Joint-Redutction paradigm

For the second prototype a principal of complexity
management in manufacturing described in a previous
chapter was applied. The realisation was made that it is
unfavorable to carry out the most complicated joints
on the construction site which are the points where el-
ements meet at an angle producing complicated details.
In current prefabrication elements are walls and ceil-
ings. For the second protoype this was changed. Sub-
assemblies that would arrive at the site of construction
would already encompas the most difficult parts of the
construction leaving joints in unproblematic areas to be
done on site. This paradigm of corner-subassemblies
was further pursued in the following developments.

This iteration also boasts an experiment with a screw-
less clip connection and a degree of three dimensional
milling to create even surfaces by sinking the connect-
ing clips half way into the material of the other parts.
While this approach seemed interesting at the scale and
complexity of the prototype at hand it seemed restric-
tive to scaleability. Additionally the use of three dimen-

Opposite Page:

Figure 59: Juxtaposition of renderings of an iteration on the

basic cube assembled and in an explosion view.

This page:

Figure 60: Prototype using an iterated system for connections.

Next Page, from left to right, column-wise:

Figure 61: Detail of the used connection, interior view.

Figure 62: Detail of the used connection, exterior view.

Figure 63: View of one of eight subassemblies.

Figure 64: View of one of eight subassemblies.

54

55

56

sional milling increased fabrication time significantly
while also reducing the degree of possible automation,
because it demanded an additional tool change. Hence
both features were abandoned.

3 Arbitrary Corner Prototype

One more step had to be made to build a foundation
for the creation of a capable algorithm. This was ac-
complished with this prototype that implemented a
strategy to create corner-subassemblies spanning arbi-
trary corners with any number of adjacent edges and

faces. It used a variation of the screw and nut connec-
tions first utilized in Prototype I.

The resulting corner-subassembly consisted of three
types of parts. Shards were the pieces of the faces.
Connector Sections were used to connect them firm-
ly at the correct angles on their inside and finally
Connector Plates would connect to these sections
reaching between subassemblies to interconnect them.
On this scheme of segmentation the algorithm was
built.

Previous Page, clockwise from top:

Figure 65: Edge connection detail of Arbitrary Corner Prototype

Figure 66: Detail view.

Figure 67: The connection between the individual elements

achieved satisfactory precision.

This Page:

Figure 68: Inside view of Arbitrary Corner Prototype

Figure 69: The Arbitrary Corner Prototype is the subassembly of

all shards meeting at a corner and all parts involved.

57

5 The Algorithm

60

61

62

α

meshFace

edgeLenght

Mesh

meshVertex

63

1Process

The python algorithm that was programmed to
perform the automation from mesh to parts and as-
semblies is written in python and utilizes rhinoscript
and the rhino geometry engine for most geometrical
operations. These are parts of the geometry software
package Rhinoceros 3D.

The algorithm is designed in such a way that the sole
necessary input is a closed mesh. This mesh is analyzed
and to calculate all the parts necessary for its construc-
tion. To allow this to work the mesh has to be free of
any degenerate faces or holes. It is also beneficial if its
faces are of even size and balanced ratio to allow for
enough space for the substructure that holds the faces
together. If all these requirements are satisfied the al-
gorithm will be able to produce several outputs which
are a wireframe or optional polysurface preview of
the resulting parts and contours of all the parts on the
same plane. The latter feature several details necessary

for the correct creation of toolpaths like additional
opsitions for drill holes and the seperation of complex
parts into simpler elements for higher precision results
with lower grade CNC routers.

The algorithm starts by disecting the mesh to obtain
all necessary values. The positions of vertices and their
topology are used to determine all initial parameters
such as angles between faces, the lengths of edges and
a long list of values that can be derived from them. All
these variables are stored in objects that then commu-
nicate with each other to calculate further data that are
dependent on more complex interrelations.

By the time all calculations are completed the algo-
rithm has produced a data-reflection of the mesh and
the parts that will be created. The next steps it takes
transform this data back into geometry and display it
with the help of Rhinoceros 3D.

Previous page:

Figure 70: String diagram to manage the complexity of interde-

pendencies of parameters necessary for the different elements

created by the algorithm.

Opposite page:

Figure 71: This picture shows a bare mesh transitioning to the

product of the algorithm viewed as a wireframe. All of the

mesh’s parameters necessary for its conversion to the building

parts are labeled

64

shardEdgeLength

cu
tE
dg
eL
en
gt
h

β

connectorSectionTenonMortiseLength

shardScrewHoleconnectorSectionTenonMortiseDistance

shardEgdeShardScrewHoleDistance

shardScrewHoleDiameterconnectorSectionTenonMortiseWidth

65

2Elements

In the following the three different types of building
blocks will be introduced. The opposing and the two
following pages show illustrations of examples for
each of these part families indicating and naming the
most important parameters that go into their creation.

1 Shards

Shards are parts of the original mesh faces and build
the geometries shell which makes them the room
creating elements. They tipically span two edges of a
face between their common vertex and their respective
midpoints and extend to the center of the face making
them quadrilaterals. Their edges are colinear with con-
vex edges of the mesh and offsets of mesh edges that
are concave to avoid intersecting each other. They are
interconnected with their neighboring shards by two
Connector Sections each. A screw hole and a mortise build
the interface for each of these connecting elements.

2 Connector Sections

These parts are the most complex of the three ele-
ments. They build the interface between Shards and
Connector Plates. To accomplish this they boast three
receptacles for nuts and additional connecting features
to ensure a higher degree of stability. At the same time
they are also the smallest of the three base elements.

3 Connector Plates

The job of Connector Plates is the interconnection of
corner subassemblies which typically consist of three
or more Shards and twice that number of Connector Sec-
tions. They are connected to the Connector Sections with
a key and slot system and additionally fastened with a
screw. There is one Connector Plate for each of a meshes
Edges.

shardEdgeLength

cu
tE
dg
eL
en
gt
h

β

connectorSectionTenonMortiseLength

shardScrewHoleconnectorSectionTenonMortiseDistance

shardEgdeShardScrewHoleDistance

shardScrewHoleDiameterconnectorSectionTenonMortiseWidth

Opposite page:

Figure 72: Shard element details

Next spread, from left to right:

Figure 73: Connector Section element details

Figure 74: Connector Plate element details

66

connectorSectionTenonLength

connectorSectionShoulderWidth

connectorSectionTenonWidth

connectorSectionShoulderHeight

α

sh
ar
dS

cr
ew

S
lo
tL
en

gt
h

co
nn

ec
to
rP

la
te
S
cr
ew

S
lo
tL
en

gt
h

co
nn

ec
to
rP

la
te
S
lo
tD
ep

th

co
nn

ec
to
rP

la
te
N
ut
S
lo
tL
en

gt
h

connectorPlateScrewSlotLength

connectorPlateSlotLength

connectorPlateNutSlotLength

shardNutSlotWidth

edgeShardNutSlotDistance

shardNutSlotsDistance

nutSlotsDistance

shardScrewSlotWidth

sh
ar
dN

ut
S
lo
tL
en

gt
h

connectorSectionTennonShardScrewSlotDistance

co
nn

ec
to
rP

la
te
K
ey

W
id
th

co
nn

ec
to
rP

la
te
En

dC
ap

Le
ng

th

connectorPlateKeyLength

connectorPlateKeyEdgeScrewHoleClearance

connectorPlateWidth

connectorPlateBaseLength

connectorPlateScrewHoleDiameter

67

connectorSectionTenonLength

connectorSectionShoulderWidth

connectorSectionTenonWidth

connectorSectionShoulderHeight

α

sh
ar
dS

cr
ew

S
lo
tL
en

gt
h

co
nn

ec
to
rP

la
te
S
cr
ew

S
lo
tL
en

gt
h

co
nn

ec
to
rP

la
te
S
lo
tD
ep

th

co
nn

ec
to
rP

la
te
N
ut
S
lo
tL
en

gt
h

connectorPlateScrewSlotLength

connectorPlateSlotLength

connectorPlateNutSlotLength

shardNutSlotWidth

edgeShardNutSlotDistance

shardNutSlotsDistance

nutSlotsDistance

shardScrewSlotWidth

sh
ar
dN

ut
S
lo
tL
en

gt
h

connectorSectionTennonShardScrewSlotDistance

co
nn

ec
to
rP

la
te
K
ey

W
id
th

co
nn

ec
to
rP

la
te
En

dC
ap

Le
ng

th

connectorPlateKeyLength

connectorPlateKeyEdgeScrewHoleClearance

connectorPlateWidth

connectorPlateBaseLength

connectorPlateScrewHoleDiameter

68

69

70

71

3Complications

1 Convex and concave edges

Faces of the mesh that enclose an angle beyond 180
degrees constitute two additional challenges in the pro-
cess of automating the creation of a physical structure
resembling their geometry. The first complication lies
in the correct determination of their inner angle. To
accomplish this it is not enough to simply calculate the
angle between their respective normal vectors because
this will always yield an angle below 180 degrees. It is
necessary to evaluate the normals’ relation to a third
vector that connects the faces’ centers.

After this is burden is overcome the elements building
the shell of the geometry have to be altered to avoid
reciprocal intersection along the edge. This is achieved
by offsetting the respective edges of the shell elements,
which in this case are the Shards towards the inside of
the concerned face by a value that can be trigonomet-

Previous page:

Figure 75: Collage of notes taken during the conception of the

algorithm

Left:

Figure 76: A sliced torus after the execution of the algorithm

revealing the inner structure of the final artefact. Details on the

right depict the difference between the solutions to concave (top)

and convex (bottom) edges at a level of the final elements.

72

73

rically determined as a function of the angle and the
elements’ thickness.

2 Multi dependencies

Mostly spacings between features of elements like
slots can be dependant on more than one minimum
clearance. It then depends on an additional indirectly
connected value which one of the aforementioned
parameters takes effect. One of these cases is also

connected to concave and cenvex edges. Their status
determines the position of the screw slots and tenons
of the Connector Sections. While a convex edge will result
in the slots moving together too far a concave edge will
have them move apart from each other. The value with
the most dependencies of all is certainly the Connector
Sections overall height which at the same time is of great
importance to guarantee the part’s structural perfor-
mance.

Figure 77: Transparent shards give a view of the underlying

structure. Clearances of screwholes and mortises as well as

positions of tenons and screwslots and positions of shard edges

have to be calculated differently depending on the concave or

convex nature of the respective edge.

Next spread:

Figure 78: The progression from mesh (left) to 3d preview (right)

74

75

77

4CNC Output

1 Contours

Contours are the outer boundaries of parts but also
inner recesses. These have to be distinguishable easily
as they have to be cut in a specific order starting with
inner cuts. Additionally complex contour’s like the
ones of Connector Sections are split up into sub-contours
to improve the precision of the milling process wile
allowing for greater feedrates. This feature of the al-
gorithm while complicated to achieve was especially
crucial as there are thousands of parts for every slight-
ly more complex geometry and in consequence the
necessity for slight decreases in cutting speed result in
tremendous increases of the overall fabrication time.

2 Clearance drillings

Clearance drillings as indicated by green dots in the
illustration are necessary because a round cutter as is
used in CNC milling can not achieve to cut sharp inner
corners. Hence bore holes are drilled at each of the
corners which have to be fully cleared.

3 Bore holes

Bore holes for screws are cut with a different type of
toolpath which makes it necessary that they too are
rendered seperately.

4 ID codes

As a set of parts can easily exceed a thousand elements
it becomes imperative to implement a system that al-
lows their quick identification. For this purpose a code
based on roman numerals was developed and opti-
mised for the application with a CNC mill. The letters
were changed into patterns of drill holes and a straight
line signals the end of a code also indicating the direc-
tion of reading.

Opposite page:

Figure 79: The algorithm’s output for processing by a CNC

toolpath generation software. The different entities are color

coded for convenient processing.

Above:

Figure 80: The key to the code used to ID the parts with encoded

roman numerals.

Next spread:

Figure 81: Algorithm outputs for different types of geometries

with analysis of their characteristic effects on several key values

as follows: number of necessary parts; accumulated length of

contours that have to be cut along; their enclosed volumes; a

juxtaposition of the area of the initial geometries’ surfaces, the

cummulative surface of all parts and the combined gross area of

the necessary boards of plywood.

M D C L X V I

78

79

0

0

0

5

0 0

2

4

10

20

30

40

500

500

cu
t l

en
gt

h
[m

]
pa

rt
 c

ou
nt

connectorSections

connectorPlates

shards

bo
dy

 v
ol

um
e

[m
3]

ar
ea

 [m
2]

ra
tio /

1000

surface area of geometry
cummulative area of parts
necessary area of boards for milling

80

81

6 Exemplary Extrapolations

82

83

84

1 Apertures

The fully parametric definition of the building with an
algorithm offers a convenient way to create openings
in the hull as a function of further parameters such as
the path of the sun and climate to state the obvious,
but also more complex circumstances as functions of
adjacent spaces. The previous pages show a number
algorithmic studies performed on different types of
geometries along such parameters as exposure to sun-
light. The object oriented structure of the algorithm
allows for convenient adaptation to such concepts.

Next to parametric aesthetics another interesting op-
portunity lies ahead if one considers reapplying the
same restrictions to apertures that have been imposed
on the creation of the structure. Those include the
elimination of permanent connections and for the cur-
rent prototypical and conceptual phase do not allow
any other machines than cnc routers for production
of all used parts. The result would have to be a very
different reinterpretation of what we imagine to be a
window, door or gate.

2 Load Bearing System

OMA’s CCTV Building in Beijing, China exhibits a
spectacular exoskeleton that on first inspection might
seem like a purely formal gesture. Contrary to that it
is the result of a complex parametric process regulat-
ing the structures mesh size according to structural
demands. Arup, the engineering contractor for the
building states that the finer the grid is in any area of

the buildings surface the higher the loads that occure
at that point. This essentially renders the buildings
hull a gigantic data visualization at full scale.Especially
because of its parametric nature this concept appears
as an interesting archetype. It achieves different per-
formances by varying the density of deployment of
identical elements.

Translating it to this works algorithm and its paradigms
results in beautifully organic results. The structure pro-
duced by the code is already naturally stronger wherev-
er the faces of the underlying mesh are smaller as this
increases the ratio of sturctural elements in the given
are. Using structural analysis algorithms meshes could
be prepared to exhibit characteristics that when trans-
lated into buildings become efficient structures.

Previous spread, from left to right:
Figure 82: Surface to aperture ratio studies with different parame-
ters of aperture size and spacing.

Figure 83: Studies of different shapes of openings; several stud-
ies looking at the consideration of the sun’s path to maximize
and minimize exposure.

Opposite page: clockwise from top:
Figure 84: OMA’s CCTV Building, Beijing.

Figure 85: The exoskeleton changes in density to accomodate
different loads.

Figure 86: The building’s outer structure allows it to withstand
earthquakes.

Next page:
Figure 87: An experiment to apply the CCTV building’s structur-
al concept to the mesh concept of this work’s algorithm.

85

86

87

7 The Artefact

88

89

90

1Key Facts

Surface area of Artefact: approx. 11m2
Volume of Artefact: approx.

Custom parts: 2875
 shards: 700
 connector sections: 1400
 connector plates: 350
Screws and nuts: 4200 each

Plywood used (600mm by 490mm sheets): 21m2 (72)
Holes drilled by CNC Router: 37 871
Total length cut by router: 565m
Total length cut by lasercutter: 314m
Total length etched by lasercutter: 37m

Previous spread, from left to right:
Figure 88: Milling and adjacent simultaneous sorting.

Figure 89: Close-up of a shard being cut.

Next Spread:
Figure 90: Final Assembly

Following Spreads:

Finished Artefact and Details

Figure 91

Figure 92

Figure 93

Figure 94

Figure 95

Figure 96

Figure 97

Figure 98

91

2Production Processes

The following processes were necessary to manufac-
ture the ertefact.

1. The geometry had to be created virtually.

2. All parts are calculated by the algorithm.

3. The wooden parts are CNC milled.

4. Certain parts are laser cut from acrylic because
of their more detailed complex shape. This was
outsourced after the insufficiency of the cnc milled
parts was discovered.

5. Several sorting operations have to be performed on
all part categories. Most of the parts are grouped to
later be combined for the creation of the lowest
orders of subassemblies. Sorting operations took a

very significant amount of manpower to complete
and hence are the biggest weak point in the process.

6. Connector Sections have to be processed to hold
three nuts each which is accomplished with the help
of adhesive tape that holds the nuts in place until
they are used in subassemblies and final assembly.
Only then the adhesive tape is removed from all
Connector Sections.

7. Corner Subassemblies are formed from adjacent
Shards and associated Connectorsections.

8. Subassemblies are interconnected to larger junks
or added to the final whole structure depending on
convenieance

92

93

94

95

96

97

98

99

100

101

102

103

Supplemental

104

3The Code

1 Geometry Classes

import rhinoscriptsyntax as rs
import Rhino
import math
import copy
from Contour import ConnectorSection, ConnectorPlate, Shard
from miscFunctions import *

class Mesh(object):

 def __init__(self, mesh):
 self.mesh = mesh
 self.faceNormals = rs.MeshFaceNormals(self.mesh)
 self.faceVertices = rs.MeshFaceVertices(self.mesh)
 self.vertices = rs.MeshVertices(self.mesh)
 self.faces = []
 self.edges = []
 self.corners = []
 self.shards = []
 self.createFaces()
 self.createEdges()
 self.createCorners()
 self.createShards()

 def createShards(self):
 self.shards = [[Shard(mesh = self, cornerID = vertexID, face = face) for
vertexID in face.getPointIDs()] for face in self.faces]

 def printStats(self):

105

 for edge in self.edges: edge.printStats()
 for face in self.faces: face.printStats()

 #getNormal is used to get the face-normal of a face specified via its index in the
mesh’s face-list

 #Preconditions:
 #faceID... the index of the face in mesh.faces whose normal is needed
 #Postconditions:
 #RETURN is the normal of the specified mesh-face as Rhino.Geometry.Vector3d
 def getNormal(self, faceID):
 return self.faceNormals[faceID]

 #Postconditions:
 #RETURNs self.faces
 def getFaces(self):
 return self.faces

 #Postconditions:
 #RETURNs self.edges
 def getEdges(self):
 return self.edges

 def getCorners(self):
 return self.corners

 #creates Face-objects for all faces of mesh

 def createFaces(self):
 #print self.faceVertices
 for face, normal, center in zip(self.faceVertices, self.faceNormals,
rs.MeshFaceCenters(self.mesh)): self.faces.append(Face(face, normal, center, self))

 return

106

 #creates Edge-objects for all faces of mesh

 def createEdges(self):
 edgeVertices = []

 #obtain edge-vertices from all faces and sort each edge’s vertices
 for faceObject in self.faces:
 face = faceObject.getPointIDs()
 zipped = zip(face, face[1:] + face[:1])
 faceEdges = [edge if edge[0]<edge[1] else (edge[1], edge[0]) for edge in
zipped]

 edgeVertices.extend(faceEdges)
 #print ‘edgeVertices all’
 #print edgeVertices
 #filter duplicates
 edgeVertices = list(set(edgeVertices))

 #create Edge-objects and append to self.edges
 for edge, idx in zip(edgeVertices,range(len(edgeVertices))): self.edges.
append(Edge(edge, self, idx))

 return

 #create a Corner-Object for every Vertex

 def createCorners(self):
 self.corners = []
 for cornerID in range(len(self.vertices)):
 self.corners.append(Corner(cornerID, self))

 #return actual Point3d for Vertex-ID
 def getPoint(self, ID):
 return self.vertices[ID]

107

class Edge(object):

 def __init__(self, pointIDs, parentMesh, idx):
 self.pointIDs = pointIDs
 self.edgeID = idx
 self.faces = []
 self.connectorSections = []
 self.connectorPlate = None
 self.mesh = parentMesh
 self.midpoint = self.calcMidpoint()
 self.findFaces()
 self.angle = self.calcAngle()
 self.shardEdgeOffset = self.calcShardEdgeOffset()
 self.shardScrewPosition = self.calcShardScrewPosition()
 self.connectorSectionTenonPosition = self.calcConnectionSectionTenonPosition()
 self.spawnConnectorSections()
 self.spawnConnectorPlate()
 #print ‘EDGE....................................’
 #print ‘Angle:’
 #print self.angle
 #print ‘shardEgeOffset:’
 #print self.shardEdgeOffset
 #print ‘shardScrewPosition:’
 #print self.shardScrewPosition
 #print ‘connectorSectionTenonPosition:’
 #print self.connectorSectionTenonPosition

 def getEdgeId(self):
 return self.edgeID

 #returns the Edges Vector
 def getEdgeVector(self):

108

 return rs.VectorCreate(self.mesh.getPoint(self.pointIDs[1]), self.mesh.
getPoint(self.pointIDs[0]))

 #Postconditions:
 #RETURNs the connectionSectionTennonPosition along the edge via distance to the
shardScrewPostion

 def getConnectorSectionTenonPosition(self):
 return self.connectorSectionTenonPosition

 #Postconditions:
 #RETURNs the shardScrewPosition along the edge via distance to the shardEdge
 def getShardScrewPosition(self):
 return self.shardScrewPosition

 def spawnConnectorPlate(self):
 #get positions for plates from connectorSections sorted in list
 cPPos = [conSec.getConnectorPlatePosition() for conSec in self.
connectorSections]

 cPPosSortedOrigins = rs.SortPoints([plane.Origin for plane in cPPos])
 cPPosSorted = []
 for point in cPPosSortedOrigins:
 cPPosSorted.append(next(plane for plane in cPPos if plane.Origin == point))
 #use them as parameter for ConnectorPlate-Creation
 self.connectorPlate = ConnectorPlate(cPPos = cPPosSorted, mesh = self.mesh,
edge = self)

 def findFaces(self):
 allFaces = self.mesh.getFaces()

 self.faces = [face for face in allFaces if face.hasEdge(self)]

 def spawnConnectorSections(self):
 #print ‘ids:’

109

 #print ‘’
 cSSpacing = [1,1,2,1,1]
 edgePoints = [self.mesh.getPoint(ID) for ID in self.pointIDs]
 #spawnPoint = midpoint(edgePoints[0], edgePoints[1])
 edgeVector = rs.VectorCreate(edgePoints[1], edgePoints[0])
 edgeLength = rs.VectorLength(edgeVector)
 edgeUVector = rs.VectorUnitize(edgeVector)
 parts = sum(cSSpacing)
 lengthPart = edgeLength/parts
 spawnPoints = [rs.PointAdd(edgePoints[0], rs.VectorScale(edgeUVector, lengthPart
* sum(cSSpacing[0:x]))) for x in range(1,len(cSSpacing))]

 faceNormals = [face.getNormal() for face in self.faces]
 spawnYAxis = rs.VectorReverse(midpoint(faceNormals[0], faceNormals[1]))
 spawnZAxis = rs.VectorCreate(edgePoints[0], edgePoints[1])
 positions = [rs.PlaneFromNormal(spawnPoint, spawnZAxis, rs.VectorCrossProduct(s
pawnZAxis,spawnYAxis)) for spawnPoint in spawnPoints]

 self.connectorSections.extend(ConnectorSection(mesh = self.mesh, finalBasis =
position ,edge = self) for position in positions)

 def printStats(self):
 print ‘###EDGE’
 print ‘Angle:’
 print self.angle
 print ‘Adjacent Faces:’
 print [face.getPointIDs() for face in self.faces]

 #Postconditions:
 #RETURN Edge’s pointIDs
 def getPointIDs(self):
 return self.pointIDs

110

 #calcAngle calculates the Angle between the two faces of the parentMesh meeting in
the Edge

 #Postconditions:
 #RETURN is the angle in degrees
 def calcAngle(self):
 if len(self.faces) == 2:
 normal1 = self.faces[0].getNormal()
 normal2 = self.faces[1].getNormal()
 faceCenter1 = self.faces[0].getCenter()
 faceCenter2 = self.faces[1].getCenter()
 connection = rs.VectorCreate(faceCenter2, faceCenter1)
 dotN1C = rs.VectorDotProduct(normal1, connection)

 if dotN1C > 0:
 angle = rs.VectorAngle(normal1, normal2) +180
 elif dotN1C < 0:
 angle = 180-rs.VectorAngle(normal1, normal2)
 elif dotN1C == 0:
 angle = 180
 return angle
 else: return 0

 def calcShardEdgeOffset(self):
 if self.angle <= 180 : return 0
 else: return materialThickness/math.tan(math.radians((360-self.angle) / 2)
)

 #Postconditions:
 #RETURNs the shardScrewPostion along the edge via distance to the shardEdge
 def calcShardScrewPosition(self):

 screwHoleDiameter = screwDiameter[shardScrewDimension] + shardScrewHoleClearance

111

 options = []

 ##option1
 ##connectorSectionTip to shardScrewSlot(Position)
 ###segment1
 segment1 = (shardNutSlotSpacing/2)/math.sin(math.radians(self.angle/2))
 ###segment2
 segment2 = (shardScrewSlotLength + shardNutSlotWidth) / math.tan(math.radians(
self.angle/2))

 ###segment3
 segment3 = shardNutSlotLength/2
 ###sum up to get shardEdgeShardScrewSlotDistance
 options.append(segment1 + segment2 + segment3)

 #option1 = math.tan(radians(self.angle/2)) * ((shardScrewSlotLength +
shardNutSlotWidth) + (((shardNutSlotSpacing / 2) + ((shardNutSlotWidth / 2) *
(math.cos(radians(90 - self.angle / 2))))) / (math.sin(radians(90 - self.angle
/ 2)))))

 ##option2
 ##shardEdge to shardScrewHole(Position)
 options.append(self.shardEdgeOffset + shardEgdeshardScrewHoleClearance + 0.5 *
screwHoleDiameter)

 return max(options)

 #Postconditions:
 #RETURNs the connectionSectionTennonPosition along the edge via distance to the
shardScrewPostion

 def calcConnectionSectionTenonPosition(self):
 options = []
 ##option1

112

 options.append(shardScrewHoleConnectorSectionMortiseClearance +
shardScrewHoleDiameter/2 + connectorSectionMortiseLength/2)

 ##option2
 options.append(shardScrewSlotConnectorSectionTenonClearance +
shardScrewSlotWidth/2 + connectorSectionTenonLength/2)

 return max(options)

 #Postconditions:
 #RETURN is the Edge’s angle
 def getAngle(self):
 return self.angle

 #check if PointID is part of Edge and Return the respective Truth-Value
 def hasPointID(self, pointID):
 if pointID in self.pointIDs: return True
 else: return False

 #check if face is part of Edge and Return the respective Truth-Value
 def hasFace(self, face):
 if face in self.faces: return True
 else: return False

 #calculates and returns Edge midpoint
 def calcMidpoint(self):
 return midpoint(self.mesh.getPoint(self.pointIDs[0]),self.mesh.getPoint(self.
pointIDs[1]))

 #return midpoint
 def getMidpoint(self):
 return self.midpoint

 def getShardEdgeOffset(self):

113

 return self.shardEdgeOffset

 #return associated ConnectorSection-Objects
 def getConnectorSections(self):
 return self.connectorSections

class Corner(object):

 def __init__(self, vertexID, mesh):
 self.vertexID = vertexID
 self.mesh = mesh
 self.edges = []
 self.shards = []
 self.faces = []
 self.findFaces()
 self.findEdges()

 #check if shard is
 def hasShard(self, shard):
 if self.vertexID == shard.getCornerID():
 self.shards.append(shard)
 return True
 else: return False

 def findFaces(self):
 self.faces = []
 self.faces.extend(face for face in self.mesh.getFaces() if face.
hasPointID(self.vertexID))

 def findEdges(self):
 self.edges = []
 self.edges.extend(edge for edge in self.mesh.getEdges() if edge.
hasPointID(self.vertexID))

114

 def getCornerID(self):
 return self.vertexID

 def getCornerPoint(self):
 return self.mesh.getPoint(self.vertexID)

class Face(object):

 #instantiation of Face-object
 #Preconditions:
 #facePointIDs... ordered list of point-indices of the face’s points
 #parentMesh... Mesh-object that Face is a part of
 def __init__(self, facePointIDs, normal, center, parentMesh):
 self.facePointIDs = facePointIDs
 self.cleanFacePointIDs()
 self.normal = normal
 self.center = center
 self.mesh = parentMesh
 self.edges = []

 def cleanFacePointIDs(self):
 if self.facePointIDs[-1] == self.facePointIDs[-2]:
 self.facePointIDs = self.facePointIDs[0:-1]

 def printStats(self):
 print ‘###FACE’
 print ‘Points:’
 print self.facePointIDs
 print ‘Edges:’
 print [edge.getPointIDs() for edge in self.edges]
 print ‘Normal:’
 print self.normal

115

 print ‘Center:’
 print self.center

 #check if Edge is part of Face
 #Preconditions:
 #edge... object of Type Edge
 #Postconditions:
 #if Edge is part of Face:
 #Face appends Edge to its self.edges and
 #RETURN True
 #if Edge is NOT part of Face:
 #RETURN False
 def hasEdge(self, edge):
 edgePointIDs = edge.getPointIDs()
 if all(self.hasPointID(x) for x in edgePointIDs):
 if not edge in self.edges: self.edges.append(edge)
 return True
 else: return False

 #Postconditions:
 #RETURN is a Point3d of the face’s center
 def getCenter(self):
 return self.center

 #Postconditions:
 #RETURN is a Vector3d of the face’s normal
 def getNormal(self):
 return self.normal

 #check if PointID is part of Face and Return the respective Truth-Value
 def hasPointID(self, pointID):
 if pointID in self.facePointIDs: return True
 else: return False

116

 #Postconditions:
 #RETURN is a list of the face’s vertex-indices
 def getPointIDs(self):
 return self.facePointIDs

117

2 Contour Classes

import rhinoscriptsyntax as rs
import Rhino
import math
import copy
from globalVariables import *
from miscFunctions import *
#from GeometryClasses import *
from abc import ABCMeta, abstractmethod
from io import *
from CncRep import *

class Contour(object):
 """Class for closed Contour-Objects
 """
 __metaclass__ = ABCMeta
 defBasis_default = rs.WorldXYPlane() #default plane of geometry creation
 registry = [] #registry for contours that have to be
registered

 materialThickness = materialThickness

 def __init__(self, mesh, finalBasis, defBasis = defBasis_default):
 """Creates instance of Contour

 Parameters:
 *mesh:
 parent mesh of Contour-Object
 type: GeometryClasses.Mesh Object
 *defPlane:
 basis of the Contour's geometry creation
 type: Rhino.Geometry.Plane

118

 """

 self.mesh = mesh #Contour's parent mesh
 self.defBasis = defBasis #basis of the Contour's geometry
creation

 self.pointlist = [] #ordered list of points and Feature-
Objects

 self.registered = self.isRegistered() #boolean value in this field determines
if Object is going to be registered in Contour-Class-registry

 self.__register()
 self.finalBasis = finalBasis
 self.floaters = False
 self.extrusionDirection = False
 self.create()

 def __register(self):
 """Add Object to Contour-Class-Registry depending if self.registered

 Preconditions:
 self has to have field self.registered

 """
 if self.registered: Contour.registry.append(self)

 def addSubCncRep(self, subCncRep):
 self.cncRep.addSub(subCncRep)

 @staticmethod
 def isRegistered():
 return True

 def isCncSlave(self):

119

 return False

 def previewRegistry(self):
 for obj in self.registry: obj.drawPreview()

 def drawPreview(self, in3d = False): #, solid = False):
 """Draw Contour at actual position in mesh
 Parameters:
 *solid (not yet implemented): will determine if contour is extruded to a
solid

 type: boolean
 """
 return self.drawOnBasis(self.finalBasis, extruded = in3d)

 def cncContour(self):
 """
 Return:
 cnc-ready contour defined relative to WorldXY or supershape
 type: Rhino.GUID of Curve/Exploded Polyline/Group
 """

 self.drawOnBasis(rs.WorldXYPlane())

 return

 def passCncContour(self):
 return self.pointsOnBasis(self.cncBasis(), cnc = True)

 def cncBasis(self):
 try: superBasis = self.supershape.cncBasis()
 except:
 cncBasis = rs.WorldXYPlane()

120

 else:
 if self.getInsBasis() == self.getFinalBasis():
 cncBasis = self.changeBasisBasis(self.getInsBasis(), self.supershape.
getFinalBasis(), superBasis)

 else:
 cncBasis = self.changeBasisBasis(self.getInsBasis(), self.supershape.
getDefBasis(), superBasis)

 return cncBasis

 def extrudeContour(self, curveID, drawBasis):
 extrusionPath = rs.AddLine(drawBasis.Origin, rs.PointAdd(drawBasis.Origin,
self.extrusionDirection))

 extrusion = rs.ExtrudeCurve(curveID, extrusionPath)
 rs.DeleteObject(extrusionPath)
 rs.DeleteObject(curveID)
 return extrusion

 def drawOnBasis(self, basis, extruded = False):
 """Draw Contour on basis
 Parameters:
 *basis:
 basis for construction of geometry
 type: Rhino.Geometry.Plane
 """
 tempPoints = self.pointsOnBasis(basis)
 #draw Polyline at actual position in space
 geoID = rs.AddPolyline(tempPoints)
 if extruded:
 self.extrusionDirection = rs.VectorScale(basis.ZAxis, materialThickness)
 extrusion = self.extrudeContour(geoID, basis)
 rs.CapPlanarHoles(extrusion)

 if not self.floaters == False:

121

 geoList = []
 geoList.append(geoID)
 for floater in self.floaters: geoList.append(floater.drawFloating(basis))
 if extruded:
 extrusionsToSubtract = []
 for floater in geoList[1:]: extrusionsToSubtract.append(self.
extrudeContour(floater, basis))

 for extr in extrusionsToSubtract: rs.CapPlanarHoles(extr)
 geoID = rs.BooleanDifference([extrusion], extrusionsToSubtract, True)
 else:
 groupID = rs.AddGroup()
 rs.AddObjectsToGroup(geoList, groupID)
 return groupID

 return geoID

 def pointsOnBasis(self, basis, cnc = False):
 transMat = rs.XformChangeBasis(basis, self.defBasis)
 tempList = []
 for obj in self.pointlist:
 #try: addition = obj.pointsOnBasis(self.changeBasisBasis(obj.getInsBasis(),
self.defBasis, basis))

 #except: tempList.append(rs.PointTransform(obj, transMat))
 #else: tempList.extend(addition)
 if isinstance(obj, Feature):
 if cnc:
 if obj.isCncSlave(): addition = obj.passCncContour()
 else: continue
 else: addition = obj.pointsOnBasis(self.changeBasisBasis(obj.
getInsBasis(), self.defBasis, basis))

 tempList.extend(addition)
 else:
 tempList.append(rs.PointTransform(obj, transMat))

122

 return tempList

 def addFloat(self, obj):
 if not self.floaters:
 self.floaters = []
 self.floaters.append(obj)

 @abstractmethod
 def create(self):
 return

 def getFinalBasis(self):
 """Returns Objects finalBasis
 """
 return self.finalBasis

 def getDefBasis(self):
 return self.defBasis

 def getPointlist(self):
 return self.pointlist

 def planeAtParameter(self, parameter):
 #determine Point at parameter
 #determine direction at Parameter -> x-axis
 temp = self.contourPoint(parameter)
 origin = temp[0]
 #rs.AddPoint(origin)
 xAxis = temp[1]
 #determine y-axis
 yAxis = rs.VectorRotate(xAxis, 90, rs.WorldXYPlane().ZAxis)
 #create Plane

123

 plane = rs.PlaneFromFrame(origin, xAxis, yAxis)
 #return Plane
 return plane
 #calculate point and vector at parameter

 @staticmethod
 def changeBasisBasis(basis, basisBasisOld, basisBasisNew):
 transMat = rs.XformChangeBasis(basisBasisNew, basisBasisOld)
 return rs.PlaneTransform(basis, transMat)

 def contourPoint(self, parameter):
 """
 pointDistances = []

 lastPt = False
 for pt in self.pointlist:
 if lastPt:
 pointDistances.append(rs.VectorLength(rs.VectorCreate(pt, lastPt)))
 lastPt = pt
 """
 paramLength = self.lengthAtParam(parameter)

 ptsAroParam = self.pointsAroundParameter(parameter)

 unitVector = rs.VectorUnitize(rs.VectorCreate(ptsAroParam[1], ptsAroParam[0]))
 point = rs.VectorAdd(ptsAroParam[0], rs.VectorScale(unitVector, (paramLength -
ptsAroParam[3])))

 return (point, unitVector)

 def insertFeature(self, feature):
 #find out first index of insertion
 insIdx = self.pointsAroundParameter(feature.getInsParam())[2]+1

124

 #insert points into pointlist
 self.pointlist.insert(insIdx, feature)

 def pointsAroundParameter(self, param):
 #returns array of [point before parameter, point after, point before index in
self.pointlist)

 paramLength = self.lengthAtParam(param)
 cList = self.getCleanList()
 pointDistances = [rs.Distance(x,y) for x,y in zip(cList, cList[1:] +
[cList[0]])]

 lengthAddUp = 0
 ptCount = 0
 while lengthAddUp + pointDistances[ptCount] <= paramLength:
 lengthAddUp += pointDistances[ptCount]
 if ptCount + 1 < len(pointDistances):
 ptCount +=1
 else: break

 pointBefore = cList[ptCount]
 if ptCount == len(cList)-1:
 pointAfter = cList[0]
 else:
 pointAfter = cList[ptCount + 1]

 return [pointBefore, pointAfter, ptCount, lengthAddUp]

 def getCleanList(self):
 """returns a clean pointlist where features are replaced with the origins of
their bases

 """
 cList=[]
 for obj in self.pointlist:
 try: cList.append(obj.getInsBasis().Origin)

125

 except: cList.append(obj)
 return cList

 def unspooled(self):
 #length of contour unspooled

 cList = self.getCleanList ()
 pL = rs.AddPolyline(cList)
 pLL = rs.CurveLength(pL)
 rs.DeleteObject(pL)
 return pLL

 #returns parameter for length

 def paramAtLength(self, length):
 unspoo = self.unspooled()
 return length/unspoo

 #returns length for parameter

 def lengthAtParam(self, param):
 return (self.unspooled()*param)

class Feature(Contour):
 __metaclass__ = ABCMeta

 def __init__(self, mesh, insParameter, supershape, finalBasis = False, defBasis =
Contour.defBasis_default, insBasis = False):

 self.supershape = supershape
 self.cncRep = CncRep(self)
 self.insParameter = insParameter
 if insBasis == False : self.insBasis = self.calcInsBasis(self.supershape, self.
insParameter)

126

 else: self.insBasis = insBasis
 super(Feature, self).__init__(mesh = mesh, finalBasis = self.
calcFinalBasis(finalBasis), defBasis = defBasis)

 self.insertInSupershape()
 self.cncRep.configure()

 @staticmethod
 def isRegistered():
 return False

 def getSupershape(self):
 return self.supershape

 def calcInsBasis(self, supershape, insParameter):
 return supershape.planeAtParameter(insParameter)

 def calcFinalBasis(self, finalBasis):
 """Calculates final Basis-Plane of geometry
 Return:
 Final Basis-Plane
 type: Rhino.Geometry.Plane
 """
 try:
 if not finalBasis == False: return finalBasis
 else: raise Exception ("Final not defined")
 except:
 sdBasis = self.supershape.getDefBasis()
 iBasis = self.insBasis
 sBasis = self.supershape.getFinalBasis()
 finalBasis = self.changeBasisBasis(iBasis, sdBasis, sBasis)
 return finalBasis

127

 def insertInSupershape(self):
 self.supershape.insertFeature(self)

 def getInsParam(self):
 return self.insParameter

 def getInsBasis(self):
 return self.insBasis

class RectConnectedFeature(Feature):
 __metaclass__ = ABCMeta
 def __init__(self, mesh, insParameter, supershape, width, length, finalBasis =
False, defBasis = Contour.defBasis_default):

 #width and length are such that the length is the side parallel to the features
main axis

 try: self.width = width + self.widthClearance
 except: self.width = width
 try: self.length = length + self.lengthClearance
 except: self.length = length
 super(RectConnectedFeature, self).__init__(mesh = mesh, insParameter =
insParameter, supershape = supershape, finalBasis = finalBasis, defBasis = defBasis)

 #self, mesh, insParameter, supershape, finalBasis = False, defBasis = Contour.
defBasis_default

 def create(self):
 self.pointlist = []
 self.pointlist.append(createPoint(self.width*-0.5, 0, 0))
 self.pointlist.append(createPoint(self.width*-0.5, -1 * self.length, 0))
 self.pointlist.append(createPoint(self.width*0.5, -1 * self.length, 0))
 self.pointlist.append(createPoint(self.width*0.5, 0, 0))

class FloatingFeature(Feature):
 __metaclass__ = ABCMeta

128

 def __init__(self, mesh, supershape, insBasis, finalBasis , defBasis = Contour.
defBasis_default):

 super(FloatingFeature, self).__init__(mesh, insParameter = False, supershape =
supershape, finalBasis = finalBasis, defBasis = defBasis, insBasis = insBasis)

 def insertInSupershape(self):
 self.supershape.addFloat(self)

 @abstractmethod
 def drawFloating(self, customBasisBasis = False):
 return

class ConnectorSection(Contour):

 def __init__(self, mesh, finalBasis, edge):
 """
 Preconditions:
 finalBasis... the intended position of ConnectorSection
 edge... the ConnectorSection's parent-Edge
 Postconditions:
 ConnectorSection-Object is created
 """
 self.cncRep = CncRep(self)
 self.edge = edge
 self.gamma = self.edge.getAngle()
 self.shardEdgeShardScrewSlotClearance = shardEdgeShardScrewSlotClearance
 self.shardNutSlotSpacing = shardNutSlotSpacing
 self.shoulderHeight = connectorSectionShoulderHeight
 self.shoulderWidth = connectorSectionShoulderWidth
 self.height = self.calculateHeight()
 super(ConnectorSection, self).__init__(mesh = mesh, finalBasis = finalBasis)

129

 self.insertTenons()
 self.insertCPInterf()
 self.insertSScrewInterf()
 self.cncRep.configure()

 def configureCncRep(self):
 self.cncRep.addOutCut(self.passCncContour())
 self.createConnectorSectionLabel()

 def extrudeContour(self, curveID, drawBasis):
 transVec = rs.VectorScale(self.extrusionDirection,-0.5)
 movedBasis = rs.PointAdd(drawBasis.Origin, transVec)
 extrusionPath = rs.AddLine(movedBasis, rs.PointAdd(movedBasis, self.
extrusionDirection))

 rs.MoveObject(curveID, transVec)
 extrusion = rs.ExtrudeCurve(curveID, extrusionPath)
 rs.DeleteObject(extrusionPath)
 rs.DeleteObject(curveID)
 return extrusion

 def createConnectorSectionLabel(self):

 labelSize = 3
 #basis
 #origin:
 cL = self.originallist
 origin = rs.PointAdd(cL[3], (-2,2,0))
 #x axis
 xAxis = rs.VectorCreate(cL[2], cL[3])
 #y axis
 yAxis = rs.VectorCreate(cL[4], cL[3])
 basis = rs.PlaneFromFrame(origin, xAxis, yAxis)
 label = self.edge.getEdgeId()

130

 self.cncRep.addLabel(basis, label, labelSize)

 def getPosition(self):
 return self.finalBasis

 def insertCPInterf(self):
 """create and insert the parts interface with a ConnectorPlate
 :postcondition: ConnectorSection has an interface to its ConnectorPlate
 """
 #create CPKSlot
 cPKSlot = KeySlot(mesh = self.mesh, insParameter = 0.5, supershape = self, width
= connectorPlateKeyLength)

 #create ScrewSlot
 sSlot = ScrewSlot(mesh = self.mesh, insParameter = 0.5, supershape = cPKSlot,
screwDimension = connectorPlateScrewDimension, length = connectorPlateScrewSlotLength)

 #create NutSlot self, mesh, insParameter, supershape, nutDimension
 NutSlot(mesh = self.mesh, insParameter = 0.5, supershape = sSlot, nutDimension
= connectorPlateNutDimension)

 def insertSScrewInterf(self):
 sSDis = self.edge.getShardScrewPosition() + self.edge.getShardEdgeOffset()

 #create ScrewSlot1
 sSParam1 = self.paramAtLength(sSDis)
 sSlot1 = ScrewSlot(mesh = self.mesh, insParameter = sSParam1, supershape = self,
screwDimension = shardScrewDimension, length = shardScrewSlotLength)

 #create NutSlot1
 NutSlot(mesh = self.mesh, insParameter = 0.5, supershape = sSlot1, nutDimension
= shardNutDimension)

 #create ScrewSlot2
 sSParam2 = self.paramAtLength(self.unspooled() - sSDis)

131

 sSlot2 = ScrewSlot(mesh = self.mesh, insParameter = sSParam2, supershape = self,
screwDimension = shardScrewDimension, length = shardScrewSlotLength)

 #create NutSlot1
 NutSlot(mesh = self.mesh, insParameter = 0.5, supershape = sSlot2, nutDimension
= shardNutDimension)

 def insertTenons(self):
 length1 = self.edge.getConnectorSectionTenonPosition() + self.edge.
getShardScrewPosition() + self.edge.getShardEdgeOffset()

 param1 = self.paramAtLength(length1)
 Tenon(mesh = self.mesh, insParameter = param1, supershape = self, width =
connectorSectionTenonLength, length = connectorSectionTenonHeight)

 length2 = self.unspooled() - length1
 param2 = self.paramAtLength(length2)
 Tenon(mesh = self.mesh, insParameter = param2, supershape = self, width =
connectorSectionTenonLength, length = connectorSectionTenonHeight)

 def getConnectorPlatePosition(self):
 #calc and return the relative Position of respective connectorPlate
 unitY = rs.VectorUnitize(self.finalBasis.YAxis)
 transVec = rs.VectorScale(unitY, -1 * self.height)
 cPPos = copy.copy(self.finalBasis)
 cPPos.Translate(transVec)
 #rotate PosPlane around xAxis -90deg
 cPPos = rs.RotatePlane(cPPos, -90, cPPos.XAxis)
 return cPPos

 def calculateHeight(self):
 if self.gamma <= 180: segment1 = (math.cos(math.radians(self.gamma/2)) * (self.
edge.getShardScrewPosition() + shardNutSlotLength/2)) + math.cos(math.radians(90 -
self.gamma/2)) * (shardNutSlotWidth + shardScrewSlotLength)

 else:

132

 segment1 = (math.sin(math.radians(90 - (self.gamma - 180) / 2)) * (
shardScrewSlotLength + shardNutSlotWidth)) - ((math.sin(math.radians((self.
gamma-180) / 2))) * (self.edge.getShardScrewPosition() - shardNutSlotLength/2))

 segment2 = shardNutSlotConnectorPlateNutSlotSpacing
 segment3 = connectorPlateNutSlotWidth + connectorPlateScrewSlotLength +
connectorPlateSlotHeight

 return segment1+segment2+segment3

 def create(self):

 point1Distance = self.edge.getShardEdgeOffset() + self.edge.
getShardScrewPosition() + self.edge.getConnectorSectionTenonPosition() +
connectorSectionTenonLength/2 + connectorSectionShoulderWidth

 point0 = createPoint(0,0,0)
 point1 = rs.Polar(point0, -90+self.gamma/2, point1Distance)
 point2 = rs.Polar(point1, -90+self.gamma/2-90, self.shoulderHeight)
 point3 = rs.Polar(point2, -90, self.height+(point2.Y))
 point4 = rs.PointAdd(point3, (-2*point3.X,0,0))
 point5 = rs.PointAdd(point2, (-2*point2.X,0,0))
 point6 = rs.PointAdd(point1, (-2*point1.X,0,0))

 self.originallist = [point0, point1, point2, point3, point4, point5, point6,
point0]

 self.pointlist = [point0, point1, point2, point3, point4, point5, point6,
point0]

class Shard(Contour):

 def __init__(self, mesh, cornerID, face):
 self.cncRep = CncRep(self)
 self.edgeLabelInfo = []
 tempFinalBasis = rs.PlaneFromNormal(face.getCenter(), face.getNormal())
 self.cornerID = cornerID

133

 self.face = face
 self.edges = []
 self.corner = False
 self.mesh = mesh
 self.findEdges()
 self.findCorner()
 super(Shard, self).__init__(mesh = mesh, finalBasis = tempFinalBasis, defBasis
= tempFinalBasis)

 self.cncRep.configure()

 def configureCncRep(self):
 self.cncRep.addOutCut(self.passCncContour())
 self.createShardEdgeLabel()

 def createShardEdgeLabel(self):
 labelSize = 3
 for edge,edgeUNormal in self.edgeLabelInfo:
 #create basis
 origin = midpoint(edge.getMidpoint(), self.corner.getCornerPoint())
 normal = rs.VectorUnitize(self.face.getNormal())
 xAxis = edgeUNormal
 edgeDistance = edge.getShardEdgeOffset() + 25 + labelSize
 basis = rs.PlaneFromNormal(rs.VectorAdd(origin,rs.VectorScale(xAxis,
edgeDistance)), normal, xAxis)

 basis = rs.RotatePlane(basis, -90, normal)

 #find out if edge point ids are ordered in same direction as xAxis and
correct if necessary

 edgePointIDs = edge.getPointIDs()
 if rs.VectorAngle(basis.XAxis, edge.getEdgeVector()) > 90:
 edgePointIDs = (edgePointIDs[1],edgePointIDs[0])

 #changeBasis to cnc position

134

 basis = self.changeBasisBasis(basis, self.getFinalBasis(), self.cncBasis())
 self.cncRep.addShardLabel(basis, edgePointIDs, labelSize)

 #identify and store edges along shard
 def findEdges(self):
 for edge in self.mesh.getEdges():
 if all([edge.hasPointID(self.cornerID), edge.hasFace(self.face)]): #possible
performance enhancement by first making list of edges with cornerID

 self.edges.append(edge)

 #find the Corner the shard is at
 def findCorner(self):
 for corner in self.mesh.getCorners():
 if corner.hasShard(self):
 self.corner = corner
 return

 def createDetails(self):

 cornerPt = self.mesh.getPoint(self.corner.getCornerID())

 for edge in self.edges:
 #edgeVector
 eVec = edge.getEdgeVector()
 ePt = edge.getMidpoint()
 halfEdge = rs.Distance(cornerPt, ePt)
 #edgeNormal in Face-Plane
 pointOnFace = self.face.getCenter()
 normalPlane = rs.PlaneFromNormal(pointOnFace, eVec)
 pointOnEdge = rs.PlaneClosestPoint(normalPlane, ePt)
 normalVec = rs.VectorCreate(pointOnFace, pointOnEdge)
 normalVecU = rs.VectorUnitize(normalVec)
 self.edgeLabelInfo.append((edge,normalVecU))

135

 #centerPlane for later detail-positions
 #connectorSection-Positions
 conSecPos = [conSec.getPosition().Origin for conSec in edge.
getConnectorSections() if rs.Distance(conSec.getPosition().Origin, cornerPt) < halfEdge]

 #shardScrewHole-Positions
 sSHDist = edge.getShardEdgeOffset() + edge.getShardScrewPosition()
 normalVecSSH = rs.VectorScale(normalVecU, sSHDist)
 sSHPos = [rs.PlaneFromFrame(rs.PointAdd(pos, normalVecSSH), eVec,
normalVec) for pos in conSecPos]

 #createScrewHoles for all sSHPos
 for pos in sSHPos: ScrewHole(mesh = self.mesh, supershape = self,
screwDimension = shardScrewDimension, insBasis = pos, finalBasis = pos)

 #conn.Sec.Mortise-Positions
 cSMDist = sSHDist + edge.getConnectorSectionTenonPosition()
 normalVecSSH = rs.VectorScale(normalVecU, cSMDist)
 cSMPos = [rs.PlaneFromFrame(rs.PointAdd(pos, normalVecSSH), eVec,
normalVec) for pos in conSecPos]

 #create conn.Sec.Mortises for all cSMPos
 for pos in cSMPos: Mortise(mesh = self.mesh, supershape = self, tenonLength
= connectorSectionTenonLength, insBasis = pos, finalBasis = pos)

 def create(self):
 """creates Points for contour
 :Postcondition: the corner-point has to be at index 0 of pointlist
 """
 #cornerPoint
 cornerPoint = self.mesh.getPoint(self.cornerID)
 #edge1 midpoint
 e1Mid = self.edges[0].getMidpoint()
 #face-Center
 faceCenter = self.face.getCenter()
 #edge2 midpoint
 e2Mid = self.edges[1].getMidpoint()

136

 self.pointlist = [cornerPoint, e1Mid, faceCenter, e2Mid]
 self.createDetails()
 self.edgeOffsets()

 def edgeOffsets(self):
 for edge in self.edges: self.offsetEdge(edge)
 self.pointlist.append(self.pointlist[0])
 return

 def offsetEdge(self, edge):
 """Offsets the shard-edge parallel to the passed Edge-Object
 :Postcondition: self.pointlist is changed
 """
 #check if edge has to be offset
 if not edge.getShardEdgeOffset() == 0 :
 #Vector along Edge
 eMid = edge.getMidpoint()
 cPoint = self.mesh.getPoint(self.cornerID)
 eVec = rs.VectorCreate(cPoint, eMid)
 #Vector to FCenter
 fCenter = self.face.getCenter()
 fVec = rs.VectorCreate(fCenter, eMid)
 #Vector other Edge
 oEdge = self.edges[0]
 if oEdge == edge: oEdge = self.edges[1]
 oMid = oEdge.getMidpoint()
 oVec = rs.VectorCreate(oMid, cPoint)
 #Offset Distance
 offDist = edge.getShardEdgeOffset()
 #Angle1 for Calc
 angle1 = rs.VectorAngle(eVec, fVec)
 if angle1 > 90: angle1 = 180 - angle1
 #translation distance 1 (for ePoint)

137

 transDist1 = offDist / math.sin(math.radians(angle1))
 #TransVector1 (for ePoint)
 transVec1 = rs.VectorScale(rs.VectorUnitize(fVec), transDist1)
 #Angle2 for Calc
 angle2 = rs.VectorAngle(eVec, oVec)
 if angle2 > 90: angle2 = 180 - angle2
 #translation distance 2 (for ePoint)
 transDist2 = offDist / math.sin(math.radians(angle2))
 #TransVector2 (for cPoint)
 transVec2 = rs.VectorScale(rs.VectorUnitize(oVec), transDist2)
 #translate Points:
 if eMid in self.pointlist:
 idx1 = self.pointlist.index(eMid)
 self.pointlist[idx1] = eMid.Add(eMid, transVec1)
 idx2 = 0
 self.pointlist[idx2] = self.pointlist[idx2].Add(self.pointlist[idx2],
transVec2)

 return

 #get the shards cornerID

 def getCornerID(self):
 return self.cornerID

class ConnectorPlate(Contour):

 def __init__(self, cPPos, mesh, edge):
 self.edge = edge
 self.cncRep = CncRep(self)
 self.cPPos = cPPos
 self.correctCPPosDirection()

138

 self.width = connectorPlateWidth
 self.connectorPlateEndCapLength = connectorPlateEndCapLength
 self.connectorPlateKeyWidth = connectorPlateKeyWidth
 self.connectorPlateKeyLength = connectorPlateKeyLength
 self.baseLength = rs.Distance(self.cPPos[0].Origin, self.cPPos[-1].Origin)
 super(ConnectorPlate, self).__init__(mesh = mesh, finalBasis = self.cPPos[0])
 for pos in cPPos:
 ScrewHole(mesh = self.mesh, supershape = self, screwDimension =
connectorPlateScrewDimension, insBasis = copy.copy(pos), finalBasis = copy.copy(pos))

 self.forgeThyKeys()
 self.cncRep.configure()

 def configureCncRep(self):
 self.cncRep.addOutCut(self.passCncContour())
 self.createConnectorPlateLabel()

 def createConnectorPlateLabel(self):

 labelSize = 3
 #basis
 #origin:
 vec1 = rs.VectorCreate(self.cPPos[2].Origin, self.cPPos[1].Origin)
 #y axis
 xAxis = self.cPPos[1].YAxis
 yAxis = -1 * self.cPPos[1].XAxis
 origin = rs.PointAdd(rs.PointAdd(self.cPPos[1].Origin, rs.VectorScale(vec1,
0.5)), rs.VectorScale(rs.VectorUnitize(yAxis), labelSize/-2))

 basisF = rs.PlaneFromFrame(origin, xAxis, yAxis)
 basis = self.changeBasisBasis(basisF, self.finalBasis, self.cncBasis())
 label = self.edge.getEdgeId()
 self.cncRep.addLabel(basis, label, labelSize, center = True)

139

 def correctCPPosDirection(self):
 vector1 = rs.VectorCreate(self.cPPos[-1].Origin,self.cPPos[0].Origin)
 vector2 = self.cPPos[0].YAxis #change
 if rs.VectorAngle(vector1, vector2) < 1: self.cPPos = self.cPPos[::-1]

 def forgeThyKeys(self):
 #make generic key pointlist1
 gKPL1 = [
 createPoint(self.width / 2, self.
connectorPlateKeyWidth / 2, 0),

 createPoint(self.connectorPlateKeyLength / 2 , self.
connectorPlateKeyWidth / 2, 0),

 createPoint(self.connectorPlateKeyLength / 2, self.
connectorPlateKeyWidth / -2, 0),

 createPoint(self.width / 2, self.
connectorPlateKeyWidth / -2, 0)

]
 gKDP1 = [
 createPoint(
 self.connectorPlateKeyLength / 2 + math.cos(math.radians(
45)) * drillDiameter/2,

 self.connectorPlateKeyWidth / 2 - math.cos(math.radians(
45)) * drillDiameter/2,

 0
),
 createPoint(
 self.connectorPlateKeyLength / 2 + math.cos(math.radians(
45)) * drillDiameter/2,

 self.connectorPlateKeyWidth / -2 + math.cos(math.radians(
45)) * drillDiameter/2,

 0

140

)
]
 #make generic key pointlist2
 gKPL2 = [
 createPoint(self.width / -2, self.
connectorPlateKeyWidth / -2, 0),

 createPoint(self.connectorPlateKeyLength / -2, self.
connectorPlateKeyWidth / -2, 0),

 createPoint(self.connectorPlateKeyLength / -2 , self.
connectorPlateKeyWidth / 2, 0),

 createPoint(self.width / -2, self.
connectorPlateKeyWidth / 2, 0)

]
 gKDP2 = [
 createPoint(self.connectorPlateKeyLength / -2 - math.cos(math.
radians(45)) * drillDiameter/2, self.connectorPlateKeyWidth / -2 + math.cos(math.
radians(45)) * drillDiameter/2, 0),

 createPoint(self.connectorPlateKeyLength / -2 - math.cos(math.
radians(45)) * drillDiameter/2, self.connectorPlateKeyWidth / 2 - math.cos(math.
radians(45)) * drillDiameter/2, 0)

]

 for pos, index in zip(self.cPPos, range(len(self.cPPos))):
 transVecY = -1 * rs.Distance(pos.Origin, self.cPPos[0].Origin)
 #print "###"
 #print index
 #print transVecY
 transVec = createPoint(0,transVecY+0.5,0)

 #make pointlist1 for key
 kPL1 = translatePoints(gKPL1, transVec)
 kDP1 = translatePoints(gKDP1, transVec)
 #calc insertIdx

141

 insertIdx1 = 1 + index * 4
 #insert pointlist1
 insertList(self.pointlist, kPL1, insertIdx1)

 #make pointlist2 for key
 kPL2 = translatePoints(gKPL2, transVec)
 kDP2 = translatePoints(gKDP2, transVec)
 #calc insertIdx
 insertIdx2 = -1 - index * 4
 #insert pointlist2
 insertList(self.pointlist, kPL2, insertIdx2)
 self.cncRep.addDrillPt(kDP1+kDP2,True)

 self.pointlist.append(self.pointlist[0])

 def create(self):
 self.pointlist = []
 self.pointlist.append(createPoint(1 * self.width /
2, 1 * self.connectorPlateKeyWidth / 2 + self.connectorPlateEndCapLength,
0))

 self.pointlist.append(createPoint(1 * self.width / 2, -1 * (self.
baseLength + self.connectorPlateKeyWidth / 2 + self.connectorPlateEndCapLength),
0))

 self.pointlist.append(createPoint(-1 * (self.width / 2), -1 * (self.
baseLength + self.connectorPlateKeyWidth / 2 + self.connectorPlateEndCapLength),
0))

 self.pointlist.append(createPoint(-1 * (self.width /
2), 1 * self.connectorPlateKeyWidth / 2 + self.connectorPlateEndCapLength,
0))

class Tenon(Feature):

142

 def __init__(self, mesh, insParameter, supershape, width, length, finalBasis =
False, defBasis = Contour.defBasis_default):

 #width and length are such that the length is the side parallel to the features
main axis

 self.width = width
 self.length = length
 super(Tenon, self).__init__(mesh = mesh, insParameter = insParameter, supershape
= supershape, finalBasis = finalBasis, defBasis = defBasis)

 #self, mesh, insParameter, supershape, finalBasis = False, defBasis = Contour.
defBasis_defaults

 def configureCncRep(self):
 cncTransMat = rs.XformChangeBasis(self.cncBasis(), self.defBasis)
 self.cncRep.addDrillPt(rs.PointTransform(createPoint(-1 * (self.width * 0.5
+ math.cos(math.radians(45)) * drillDiameter/2), math.cos(math.radians(45)) *
drillDiameter/2, 0), cncTransMat))

 self.cncRep.addDrillPt(rs.PointTransform(createPoint(1 * (self.width * 0.5
+ math.cos(math.radians(45)) * drillDiameter/2), math.cos(math.radians(45)) *
drillDiameter/2, 0), cncTransMat))

 def isCncSlave(self):
 return True

 def create(self):
 self.pointlist = []
 self.pointlist.append(createPoint(self.width*-0.5, 0, 0))
 self.pointlist.append(createPoint(self.width*-0.5, 1 * self.length, 0))
 self.pointlist.append(createPoint(self.width*0.5, 1 * self.length, 0))
 self.pointlist.append(createPoint(self.width*0.5, 0, 0))

class KeySlot(RectConnectedFeature):

143

 widthClearance = 0.1
 lengthClearance = 0.1
 lengthCncOverlap = 1
 materialThickness = materialThickness

 def __init__(self, mesh, insParameter, supershape, width):
 super(KeySlot, self).__init__(mesh = mesh, insParameter = insParameter,
supershape = supershape, width = width + self.widthClearance, length = self.
materialThickness + self.lengthClearance)

 def configureCncRep(self):
 cncTransMat = rs.XformChangeBasis(self.cncBasis(), self.defBasis)
 cncCut = self.cncContour()
 self.cncRep.addInCut(cncCut)
 self.cncRep.addDrillPt(
 rs.PointTransform(
 createPoint(
 -0.5 * self.width + math.
cos(math.radians(45)) * drillDiameter/2,

 -1 * self.length + math.
cos(math.radians(45)) * drillDiameter/2,

 0
) ,
 cncTransMat
)
)
 self.cncRep.addDrillPt(
 rs.PointTransform(
 createPoint(
 self.width*0.5 - math.
cos(math.radians(45)) * drillDiameter/2,

 -1 * self.length + math.
cos(math.radians(45)) * drillDiameter/2,

144

 0
) ,
 cncTransMat
)
)

 def cncContour(self):
 cncTransMat = rs.XformChangeBasis(self.cncBasis(), self.defBasis)
 cncContour = []
 #one-sided cnc length overlap
 cncContour.append(createPoint(self.width*-0.5, self.lengthCncOverlap, 0))
 cncContour.append(createPoint(self.width*-0.5, -1 * self.length, 0))
 cncContour.append(createPoint(self.width*0.5, -1 * self.length, 0))
 cncContour.append(createPoint(self.width*0.5, self.lengthCncOverlap, 0))
 cncContour.append(cncContour[0])
 return rs.PointArrayTransform(cncContour, cncTransMat)

class ScrewSlot(RectConnectedFeature):
 widthClearance = 0.1
 lengthCncOverlap = 1

 def __init__(self, mesh, insParameter, supershape, screwDimension, length):
 self.screwDimension = screwDimension
 width = self.widthClearance + screwDiameter[self.screwDimension]
 super(ScrewSlot, self).__init__(mesh = mesh, insParameter = insParameter,
supershape = supershape, width = width, length = length)

 def configureCncRep(self):
 cncCut = self.cncContour()
 self.cncRep.addInCut(cncCut)

 def cncContour(self):
 cncTransMat = rs.XformChangeBasis(self.cncBasis(), self.defBasis)

145

 cncContour = []
 #one-sided cnc length overlap
 cncContour.append(createPoint(self.width*-0.5, self.lengthCncOverlap, 0))
 cncContour.append(createPoint(self.width*-0.5, -1 * self.length - self.
lengthCncOverlap, 0))

 cncContour.append(createPoint(self.width*0.5, -1 * self.length - self.
lengthCncOverlap, 0))

 cncContour.append(createPoint(self.width*0.5, self.lengthCncOverlap, 0))
 cncContour.append(cncContour[0])
 return rs.PointArrayTransform(cncContour, cncTransMat)

class NutSlot(RectConnectedFeature):
 widthClearance = 0
 lengthClearance = 0

 def __init__(self, mesh, insParameter, supershape, nutDimension):
 self.nutDimension = nutDimension
 width = self.widthClearance + nutWidth[self.nutDimension]
 length = self.lengthClearance + nutThickness[self.nutDimension]
 super(NutSlot, self).__init__(mesh = mesh, insParameter = insParameter,
supershape = supershape, width = width, length = length)

 def configureCncRep(self):
 cncCut = self.cncContour()
 self.cncRep.addInCut(cncCut)

 def cncContour(self):
 cncTransMat = rs.XformChangeBasis(self.cncBasis(), self.defBasis)
 return rs.PointArrayTransform(self.pointlist+[self.pointlist[0]], cncTransMat)

class ScrewHole(FloatingFeature):
 screwClearance = shardScrewHoleClearance

146

 def __init__(self, mesh, supershape, screwDimension, insBasis, finalBasis):
 self.diameter = self.screwClearance + screwDiameter[screwDimension]
 super(ScrewHole, self).__init__(mesh = mesh, supershape = supershape, insBasis
= finalBasis, finalBasis = finalBasis, defBasis = 'irrelevant')

 def create(self):
 return

 def configureCncRep(self):
 self.cncRep.addBoreCircle(self.cncBasis(), self.diameter/2)

 def drawFloating(self, customBasisBasis = False):

 if not customBasisBasis:
 geoID = rs.AddCircle(self.finalBasis, self.diameter/2)
 else:
 if self.finalBasis == self.insBasis:
 newPlane = self.changeBasisBasis(self.insBasis, self.supershape.
getFinalBasis(), customBasisBasis)

 geoID = rs.AddCircle(newPlane, self.diameter/2)
 else:
 newPlane = self.changeBasisBasis(self.insBasis, self.supershape.
getDefBasis(), customBasisBasis)

 geoID = rs.AddCircle(newPlane, self.diameter/2)
 return geoID

class Mortise(FloatingFeature):
 widthClearance = 0.1
 lengthClearance = 0.1

 def __init__(self, mesh, supershape, tenonLength, insBasis, finalBasis = False,
defBasis = Contour.defBasis_default):

147

 self.length = tenonLength + self.lengthClearance
 self.width = materialThickness + self.widthClearance
 super(Mortise, self).__init__(mesh = mesh, supershape = supershape, insBasis =
insBasis, finalBasis = finalBasis, defBasis = defBasis)

 def drawFloating(self, customBasisBasis = False):

 if not customBasisBasis: geoID = self.drawOnBasis(self.finalBasis)
 else:
 if self.finalBasis == self.insBasis:
 geoID = self.drawOnBasis(self.changeBasisBasis(self.insBasis, self.
supershape.getFinalBasis(), customBasisBasis))

 else:
 geoID = self.drawOnBasis(self.changeBasisBasis(self.insBasis, self.
supershape.getDefBasis(), customBasisBasis))

 return geoID

 def create(self):
 self.pointlist = []
 self.pointlist.append(createPoint(self.width*0.5, self.length * 0.5, 0))
 self.pointlist.append(createPoint(self.width*0.5, self.length * -0.5, 0))
 self.pointlist.append(createPoint(self.width*-0.5, self.length * -0.5, 0))
 self.pointlist.append(createPoint(self.width*-0.5, self.length * 0.5, 0))
 self.pointlist.append(self.pointlist[0])

 def configureCncRep(self):
 cncCut = self.cncContour()
 self.cncRep.addInCut(cncCut)
 cncTransMat = rs.XformChangeBasis(self.cncBasis(), self.defBasis)
 self.cncRep.addDrillPt(rs.PointTransform(createPoint(

148

 self.width * 0.5 - math.
cos(math.radians(45)),

 self.length * 0.5 - math.
cos(math.radians(45)),

 0
) , cncTransMat))
 self.cncRep.addDrillPt(rs.PointTransform(createPoint(
 self.width * 0.5 - math.
cos(math.radians(45)),

 self.length * -0.5 + math.
cos(math.radians(45)),

 0
) , cncTransMat))
 self.cncRep.addDrillPt(rs.PointTransform(createPoint(
 self.width * -0.5 + math.
cos(math.radians(45)),

 self.length * -0.5 + math.
cos(math.radians(45)),

 0
) , cncTransMat))
 self.cncRep.addDrillPt(rs.PointTransform(createPoint(
 self.width * -0.5 + math.
cos(math.radians(45)),

 self.length * 0.5 - math.
cos(math.radians(45)),

 0
) , cncTransMat))

 def cncContour(self):
 cncTransMat = rs.XformChangeBasis(self.cncBasis(), self.defBasis)
 return rs.PointArrayTransform(self.pointlist, cncTransMat)

149

3 Miscellaneous Functions

import Rhino
import math
import copy
from globalVariables import *
from Contour import *

#Insert a list into another list element by element, optionally at an index
def insertList(targetList, sourceList, index):
 i = index
 for x in sourceList:
 targetList.insert(i, x)
 if not i<0: i += 1
 return targetList

#create a Rhino.Geometry.Point3d from 3 Coordiantes
def createPoint(x,y,z):
 point = Rhino.Geometry.Point3d(x,y,z)
 return point

def translatePoints(points, vector):
 points = [point.Add(point, vector) for point in points]
 return points

#Map any geometry from a Source-Reference-Plane to a Target-Reference-Plane
#Postconditions:
 #RETURN is mapped geometry
def mapToPlane(sourcePlane, targetPlane, objects):

 if sourcePlane == targetPlane:
 return objects

150

 #drawPlane(targetPlane)

 sourceOrigin = sourcePlane.Origin
 targetOrigin = targetPlane.Origin
 translationVector = targetOrigin - sourceOrigin
 #move

 ########
 #drawPlane(sourcePlane, red)
 #rs.ObjectColor(rs.CopyObjects(objects), red)
 ########

 movedObjects = rs.MoveObjects(objects, translationVector)
 movedSourcePlane = sourcePlane
 movedSourcePlane.Translate(translationVector)

 ########
 #drawPlane(movedSourcePlane, blue)
 #rs.ObjectColor(rs.CopyObjects(movedObjects), blue)
 ########

 #rotate1
 xAxisS = movedSourcePlane.XAxis

 xAxisT = targetPlane.XAxis

 anglePlane1 = rs.PlaneFromNormal(targetOrigin, rs.VectorCrossProduct(xAxisS,
xAxisT))

 #angle1 = 2*rs.Angle(xAxisT, xAxisS, anglePlane1)[0]
 angle1 = rs.VectorAngle(xAxisT, xAxisS)

151

 #rotationAxis1 = rs.VectorCrossProduct(xAxisS, xAxisT)
 rotationAxis1 = rs.VectorCrossProduct(xAxisS, xAxisT)

 rotated1Objects = rs.RotateObjects(movedObjects, movedSourcePlane.Origin, angle1,
rotationAxis1, False)

 rotated1SourcePlane = movedSourcePlane
 rotated1SourcePlane.Rotate(math.radians(angle1), rotationAxis1, movedSourcePlane.
Origin)

 ########
 #rs.ObjectColor(rs.CopyObjects(rotated1Objects), green)
 #drawPlane(rotated1SourcePlane, green)
 ########

 #rotate2
 anglePlane2 = rs.PlaneFromNormal(targetOrigin, targetPlane.XAxis)
 #angle2 = 2*rs.Angle(targetPlane.YAxis, rotated1SourcePlane.YAxis, anglePlane2)[0]
 angle2 = rs.VectorAngle(targetPlane.YAxis, rotated1SourcePlane.YAxis)

 #rotationAxis2 = targetPlane.XAxis
 rotationAxis2 = rs.VectorCrossProduct(rotated1SourcePlane.YAxis, targetPlane.YAxis)

 rotated2Objects = rs.RotateObjects(rotated1Objects, rotated1SourcePlane.Origin,
180+angle2, rotationAxis2, False)

 rotated2SourcePlane = rotated1SourcePlane
 rotated2SourcePlane.Rotate(math.radians(angle2), rotationAxis2, rotated1SourcePlane.
Origin)

 ########
 #drawPlane(rotated2SourcePlane,pink)
 ########

152

 return rotated2Objects

#Draw x, y, z axes of a plane for representation
def drawPlane(plane, color = (0,0,0)):
 geo = []
 #print plane
 geo.append(rs.AddPoint(plane.Origin))
 geo.append(rs.AddLine(plane.Origin, plane.Origin+plane.XAxis))
 geo.append(rs.AddLine(plane.Origin, plane.Origin+plane.YAxis*2))
 geo.append(rs.AddLine(plane.Origin, plane.Origin+plane.ZAxis*3))
 for obj in geo: rs.ObjectColor(obj, color)
 rs.AddObjectsToGroup(geo, rs.AddGroup())

#RETURNs midpoint of two points
def midpoint(point1, point2):
 point = rs.PointAdd(point1, point2)
 return rs.PointDivide(point, 2)

def mult(matrix1,matrix2):
 # Matrix multiplication
 if len(matrix1[0]) != len(matrix2):
 # Check matrix dimensions
 print ‘Matrices must be m*n and n*p to multiply!’
 return
 else:
 # Multiply if correct dimensions
 new_matrix = zero(len(matrix1),len(matrix2[0]))
 for i in range(len(matrix1)):
 for j in range(len(matrix2[0])):
 for k in range(len(matrix2)):
 new_matrix[i][j] += matrix1[i][k]*matrix2[k][j]

 return new_matrix

153

4 CNC-Rep

import rhinoscriptsyntax as rs
import Rhino
import math
import copy
from globalVariables import *
from miscFunctions import *
#from GeometryClasses import *

class CncRep(object):
 #the geometry in a CncRep has to be such that its basis is worldXY or to its
supershape based on worldXY (at standardPosition)

 instances = []

 inCutColor = red
 outCutColor = blue
 drillPtCOlor = green
 boreCircleColor = yellw
 labelColor = pink

 def __init__(self, contourObject):
 CncRep.instances.append(self)
 self.cObj = contourObject
 self.outCuts = [] #list of ordered lists of points
 self.inCuts = [] #list of ordered lists of points
 self.boreCircles = [] #list of tuples such that (center, radius)
 self.drillPts = [] #list of points for 2mm drilling
 self.labels = []
 self.slaveRep = False
 self.circle = False

154

 def draw(self):
 if self.slaveRep: return
 idList = []
 for ptLst in self.outCuts:
 idList.append(rs.AddPolyline(ptLst))
 rs.ObjectColor(idList[-1], CncRep.outCutColor)
 for ptLst in self.inCuts:
 idList.append(rs.AddPolyline(ptLst))
 rs.ObjectColor(idList[-1], CncRep.inCutColor)
 for circleDef in self.boreCircles:
 idList.append(rs.AddCircle(circleDef[0].Origin, circleDef[1]))
 rs.ObjectColor(idList[-1], CncRep.boreCircleColor)
 for pt in self.drillPts:
 idList.append(rs.AddPoint(pt))
 rs.ObjectColor(idList[-1], CncRep.drillPtCOlor)
 “””original label version
 for ptLst in self.labels:
 idList.append(rs.AddPolyline(ptLst))
 rs.ObjectColor(idList[-1], CncRep.labelColor)
 “””
 for ptLst in self.labels:
 for point in ptLst[:-2]:
 idList.append(rs.AddPoint(point))
 rs.ObjectColor(idList[-1], CncRep.labelColor)
 print ‘ptLst..’
 print ptLst
 idList.append(rs.AddPolyline(ptLst[-2:]))
 rs.ObjectColor(idList[-1], CncRep.labelColor)

 rs.AddObjectsToGroup(idList, rs.AddGroup())

 def addSub(self,subCncRep):

155

 if self.slaveRep:
 self.cObj.getSupershape().addSubCncRep(subCncRep)
 else:
 self.addDrillPt(subCncRep.getDrillPts(), True)
 self.addOutCut(subCncRep.getOutCuts(), True)
 self.addInCut(subCncRep.getInCuts(), True)
 for x in subCncRep.getBoreCircles() :
 self.addBoreCircle(x[0],x[1])
 #except : print self.getBoreCircles()

 def configure(self, now = False):
 self.cObj.configureCncRep()
 try:
 supershape = self.cObj.getSupershape()
 except: self.slaveRep = False
 else:
 supershape.addSubCncRep(self)
 self.slaveRep = True

 def addDrillPt(self, pt, listInput = False):
 if listInput: self.drillPts.extend(pt)
 else: self.drillPts.append(pt)

 def getDrillPts(self):
 return self.drillPts

 def addOutCut(self, ptList, listInput = False):
 if listInput: self.outCuts.extend(ptList)
 else: self.outCuts.append(ptList)

 def getOutCuts(self):
 return self.outCuts

156

 def addInCut(self, ptList, listInput = False):
 if listInput: self.inCuts.extend(ptList)
 else: self.inCuts.append(ptList)

 def getInCuts(self):
 return self.inCuts

 def addBoreCircle(self, pt, radius, listInput = False):
 if listInput: self.boreCircles.extend(zip(pt, radius))
 self.boreCircles.append([pt, radius])
 self.circle = True

 def getBoreCircles(self):
 return self.boreCircles

 def addLabel(self, basis, label, labelSize, center = False):
 romans = self.__convertArabToRomanPolyline(label, labelSize)
 if center:
 #move Basis
 offset = romans[1]/2
 vector = rs.VectorScale(rs.VectorUnitize(basis.XAxis) , -1 * offset)
 transMat = rs.XformTranslation(vector)
 basis = rs.PlaneTransform(basis, transMat)
 transMat = rs.XformChangeBasis(basis, rs.WorldXYPlane())
 newLabels = []
 for poly in romans[0]:
 if poly == []: continue
 newLabels.append(rs.PointArrayTransform(poly , transMat))

 self.labels.extend(newLabels)

 def addShardLabel(self, basis, edgePointIDs, labelSize):
 spacing = 10

157

 #create edgePointRomans:
 romans = []

 for pId in edgePointIDs:
 romans.append(self.__convertArabToRomanPolyline(pId, labelSize))

 newLabels = []
 basis1 = rs.PlaneFromFrame(rs.PointAdd(basis.Origin, rs.VectorScale(basis.XAxis,
-1*(spacing/2 + romans[0][1]))), basis.XAxis, basis.YAxis)

 transMat1 = rs.XformChangeBasis(basis1, rs.WorldXYPlane())
 for poly in romans[0][0]:
 newLabels.append(rs.PointArrayTransform(poly, transMat1))

 basis2 = rs.PlaneFromFrame(rs.PointAdd(basis.Origin, rs.VectorScale(basis.
XAxis,spacing/2)), basis.XAxis, basis.YAxis)

 transMat2 = rs.XformChangeBasis(basis2, rs.WorldXYPlane())
 for poly in romans[1][0]:
 newLabels.append(rs.PointArrayTransform(poly, transMat2))

 self.labels.extend(newLabels)

 def __convertArabToRomanPolyline (self, label, height):

 roman = “”
 steps = [(1000,’M’), (900, ‘CM’), (500, ‘D’), (400, ‘CD’), (100, ‘C’), (90,
‘XC’), (50, ‘L’), (40, ‘XL’), (10, ‘X’), (9, ‘IX’),(5, ‘V’),(4,’IV’),(1, ‘I’)]

 tempId = label

 if label == 0:
 roman += ‘+’
 else:

158

 for step in steps:
 while tempId >= step[0]:
 roman += step[1]
 tempId -= step[0]

 x = height
 #points = [(0,x,0), (x/2,x,0), (x,x,0), (0,x/2,0), (x/2,x/2,0), (x,x/2,0),
(0,0,0), (x/2,0,0), (x,0,0)]

 #letters = { ‘M’ : (6,0,4,2,8), ‘D’ : (0,1,5,7,6,0), ‘C’:(2,1,3,7,8),
‘L’:(0,6,8), ‘X’: [(0,8),(2,6)], ‘V’: (0,7,2) , ’I’:(1,7), ‘+’:(1,5,7,3,1) }

 points2 = [(0,0,0),(0,2,0),(0,4,0)]
 letters2 = { ‘M’ : [0,1,2], ‘D’ : [0,2], ‘C’:[1,2], ‘L’:[0,1], ‘X’: [2], ‘V’:
[1] ,’I’:[0], ‘+’:[] }

 polylist = []
 “””
 for letter, lIdx in zip(roman,range(len(roman))):
 if letter == ‘X’:
 polylist.extend ([[rs.PointAdd(points[idx], (lIdx*x*1.6189,0,0))
for idx in part] for part in letters[letter]])

 continue
 polylist.append([rs.PointAdd(points[idx], (lIdx*x*1.6189,0,0)) for idx
in letters[letter]])

 “””

 if not roman == ‘+’:
 for letter, lIdx in zip(roman,range(len(roman))):
 if lIdx == 0: polylist.append([])
 polylist[-1].extend([rs.PointAdd(points2[idx], (lIdx*2,0,0)) for
idx in letters2[letter]]) #code

 polylist[-1].extend([rs.PointAdd(points2[2], (lIdx*2+1,0,0)),(rs.
PointAdd(points2[0], (lIdx*2+1,0,0)))]) #seperator line

159

 else:
 polylist.append([rs.PointAdd(points2[2], (0*2+1,0,0)),(rs.PointAdd(
points2[0], (0*2+1,0,0)))]) #seperator line

 #return [polylist, len(roman)*x*1.618]

 if not roman == ‘+’: length = len(roman)*2+1
 else: length = 1

 return [polylist, length]

 def __obtainRawPointlist(self):
 return self.cObj.getPointlist()

160

5 Global Variables

#Input Constants
#explicitly defined constants are input-parameters; others are derived from these inputs
and should not be changed; units are usually ‘mm’, ‘degrees’ or DIN-Sizes for hardware

materialThickness = 5
##hardware-dictionaries
nutWidth = { ‘M3’:5.4 }
nutThickness = { ‘M3’:2.3 }
screwDiameter = { ‘M3’:3 }
##connectorSection
###connectorSectionTenon
connectorSectionTenonLength = 5
connectorSectionTenonHeightAddition = 0.5
connectorSectionTenonHeight = materialThickness + connectorSectionTenonHeightAddition
#input-derived

connectorSectionTenonThickness = materialThickness #input-derived
###connectorSectionMortise
connectorSectionMortiseLengthClearance = 0.1
connectorSectionMortiseWidthClearance = 0.1
connectorSectionMortiseLength = connectorSectionTenonLength + connectorSectionMortiseLe
ngthClearance #input-derived

connectorSectionMortiseWidth = materialThickness + connectorSectionMortiseWidthClearan
ce

###connectorSectionShoulder
connectorSectionShoulderWidth = 5
connectorSectionShoulderHeight = 5
##shard
###shardScrew
shardScrewDimension = ‘M3’
####shardScrewHole
shardScrewHoleClearance = 0.1
shardScrewHoleDiameter = screwDiameter[shardScrewDimension] + shardScrewHoleClearance

161

####shardScrewSlot
shardScrewSlotLength = 3
shardScrewSlotWidthClearance = 0
shardScrewSlotWidth = screwDiameter[shardScrewDimension] + shardScrewSlotWidthClearance
#input-derived

##shardNut
shardNutDimension = shardScrewDimension #input-derived
####shardNutSlot
shardNutSlotSpacing = 5
shardNutSlotLengthClearance = 0.1
shardNutSlotWidthClearance = 0.1
shardNutSlotLength = nutWidth[shardNutDimension] + shardNutSlotLengthClearance #input-
derived

shardNutSlotWidth = nutThickness[shardNutDimension] + shardNutSlotWidthClearance #input-
derived

##connectorPlate
connectorPlateWidth = materialThickness *4
connectorPlateEndCapLength = materialThickness
###connectorPlateSlot
connectorPlateSlotLengthClearance = 0.1
connectorPlateSlotHeightClearance = 0.1
connectorPlateSlotHeight = materialThickness + connectorPlateSlotHeightClearance
###connectorPlateScrew
connectorPlateScrewDimension = ‘M3’
####connectorPlateScrewHole
connectorPlateScrewHoleClearance = 0.1
connectorPlateScrewHoleDiameter = screwDiameter[connectorPlateScrewDimension] + connect
orPlateScrewHoleClearance

####connectorPlateScrewSlot
connectorPlateScrewSlotLength = 3
connectorPlateScrewSlotWidthClearance = 0.1
connectorPlateScrewSlotWidth = connectorPlateScrewSlotWidthClearance + screwDiameter[co
nnectorPlateScrewDimension]

162

###connectorPlateKey
connectorPlateKeyLength = connectorPlateScrewHoleDiameter + materialThickness * 2
connectorPlateKeyWidthClearance = 0.1
connectorPlateKeyWidth = materialThickness
###connectorPlateNut
connectorPlateNutDimension = connectorPlateScrewDimension #input-derived
####connectorPlateNutSlot
connectorPlateNutSlotWidthClearance = 0.1
connectorPlateNutSlotLengthClearance = 0.1
connectorPlateNutSlotLength = nutWidth[connectorPlateNutDimension] + connectorPlateNutS
lotLengthClearance #input-derived

connectorPlateNutSlotWidth = nutThickness[connectorPlateNutDimension] + connectorPlateN
utSlotWidthClearance #input-derived

#misc Clearances, Spacings, Distances
shardScrewHoleConnectorSectionMortiseClearance = 5 #this is a MINIMUM-value
shardScrewSlotConnectorSectionTenonClearance = 5 #this is a MINIMUM-value
shardEgdeshardScrewHoleClearance = 5 #this is a MINIMUM-value
shardEdgeShardScrewSlotClearance = 5 #this is a MINIMUM-value
shardNutSlotConnectorPlateNutSlotSpacing = 5

#drill
drillDiameter = 2

#colors
red = (220,20,60)
green = (127,255,0)
blue = (65,105,225)
pink = (255,20,147)
yellw = (255,255,102)

163

6 Main

#import pydevd
#pydevd.settrace(port=5678)
#pydevd.stoptrace()
import rhinoscriptsyntax as rs
#import Rhino
#import math
#import copy
#from globalVariables import *
#from miscFunctions import *
from GeometryClasses import Mesh
from Contour import *
from CncRep import *

mesh = rs.GetObject('Select Mesh',32)

rs.EnableRedraw(False)

myMesh = Mesh(mesh)

for obj in Contour.registry:
 if True:
 obj.drawPreview(in3d=False)

for cRep in CncRep.instances:
 cRep.draw()

rs.EnableRedraw(True)

165

Image Credits

Figure 1: The Economist, Cover of the Issue April 21st-27th 2012, http://www.

economist.com/printedition/covers/2012-04-21/ap-e-eu-la-me-na-uk (viewed

May 28, 2015)

Figure 2: Formlabs, http://www.wired.com/images_blogs/design/2012/09/

Using-the-Form-1.jpg (viewed May 28, 2015)

Figure 3: MIT Senseable City Lab, “Trash | Track”

Figure 4: MIT Senseable City Lab, “Live! Singapore, raining taxis”

Figure 5: Tesla Motors, http://www.manufacturing.net/sites/manufacturing.

net/files/tesla-assembly-line.jpg (viewed May 28, 2015)

Figure 6: Le Corbusier, Maison Dom-ino, http://rubens.anu.edu.au/raid2/

no_dgb/pics/4/large/002132922905_96.jpg (viewed November 17, 2014)

Figure 7: Unité D’Habitation, Home Delivery (2008, New York, The Museum of

Modern Art)

Figure 8: Rendering Unit´D’Habitation, Home Delivery (2008, New York, The

Museum of Modern Art)

Figure 9: Richard Buckminster Fuller, Fly’s Eye Dome, Critical Path (1981, New

York, St. Martins Press)

Figure 10: Richard Buckminster Fuller, Fly’s Eye Dome, Critical Path (1981, New

York, St. Martins Press)

Figure 11: Richard Buckminster Fuller, Fly’s Eye Dome, Critical Path (1981, New

York, St. Martins Press)

Figure 12: Richard Buckminster Fuller, Raleigh Cotton Mill, Critical Path (1981,

New York, St. Martins Press)

Figure 13: Richard Buckminster Fuller, Wichita House, Critical Path (1981, New

York, St. Martins Press)

Figure 14: Pierre J., “Airbus A380 Final Assembly Line” Uploaded on September

20, 2010 via Flickr, distributed under CC BY-NC-SA 2.0.

Figure 15: Jeff McNeill, “Boeing 747-8 Test Planes in Assembly” July 15, 2009

via Flickr, distributed under CC BY-SA 2.0

Figure 16: Steve Jurvetson, “Tesla Autobots” October 5, 2011 via Flickr,

distributed under CC BY 2.0

Figure 17: Steve Jurvetson, “Dance of the robots” October 5, 2011 via Flickr,

distributed under CC BY 2.0

Figure 18: Stephen Kieran and James Timberlake, Refabricating Architecture

(2004, New York, McGraw-Hll Companies Inc.)

Figure 19: http://i0.wp.com/www.ceec.com.ua/wp-content/uploads/2014/12/

vqbnqb.jpg (viewed May 28, 2015)

Figure 20: http://i0.wp.com/www.ceec.com.ua/wp-content/uploads/2014/10/

produktion_fh.jpg (viewed May 28, 2015)

Figure 21:

Figure 22: http://www.elk.at/eh-169-sd-35-0 (viewed May 28, 2015)

Figure 23: http://www.freitag.ch/media/stores/zurich (viewed May 12, 2015)

Figure 24: http://www.phooey.com.au/projects/96/children-s-activity-centre

(viewed May 12, 2015)

Figure 25: http://en.wikipedia.org/wiki/Habitat_67 (viewed May 12, 2015)

Figure 26: https://outsiderintokyo.files.wordpress.com/2013/03/

shiodome-03-nagakin-capsule-tower-kurokawa.jpg (viewed May 12, 2015)

Figure 27: http://upload.wikimedia.org/wikipedia/commons/0/04/Interna-

tional_Space_Station_after_undocking_of_STS-132.jpg (viewed May 18, 2015)

Figure 28: http://upload.wikimedia.org/wikipedia/commons/c/cb/STS-

135_EVA_Cupola_and_Tranquility.jpg (viewed May 18, 2015)

Figure 29: Matthias Danzmayr 2015

Figure 30: Matthias Danzmayr 2015

Figure 31: Matthias Danzmayr 2015

166

Figure 32: Matthias Danzmayr 2015

Figure 33: Matthias Danzmayr 2015

Figure 34: Matthias Danzmayr 2015

Figure 35: Matthias Danzmayr 2015

Figure 36: Matthias Danzmayr 2015

Figure 37: Matthias Danzmayr 2015

Figure 38: Matthias Danzmayr 2015

Figure 39: Matthias Danzmayr 2015

Figure 40: Matthias Danzmayr 2015

Figure 41: Matthias Danzmayr 2015

Figure 42: Matthias Danzmayr 2015

Figure 43: Matthias Danzmayr 2015

Figure 44: Matthias Danzmayr 2015

Figure 45: Matthias Danzmayr 2015

Figure 46: Matthias Danzmayr 2015

Figure 47: Matthias Danzmayr 2015

Figure 48: Matthias Danzmayr 2015

Figure 49: Matthias Danzmayr 2015

Figure 50: Matthias Danzmayr 2015

Figure 51: Matthias Danzmayr 2015

Figure 52: Matthias Danzmayr 2015

Figure 53: Matthias Danzmayr 2015

Figure 54: Matthias Danzmayr 2015

Figure 55: Matthias Danzmayr 2015

Figure 56: Matthias Danzmayr 2015

Figure 57: Matthias Danzmayr 2015

Figure 58: Matthias Danzmayr 2015

Figure 59: Matthias Danzmayr 2015

Figure 60: Matthias Danzmayr 2015

Figure 61: Matthias Danzmayr 2015

Figure 62: Matthias Danzmayr 2015

Figure 63: Matthias Danzmayr 2015

Figure 64: Matthias Danzmayr 2015

Figure 65: Matthias Danzmayr 2015

Figure 66: Matthias Danzmayr 2015

Figure 67: Matthias Danzmayr 2015

Figure 68: Matthias Danzmayr 2015

Figure 69: Matthias Danzmayr 2015

Figure 70: Matthias Danzmayr 2015

Figure 71: Matthias Danzmayr 2015

Figure 72: Matthias Danzmayr 2015

Figure 73: Matthias Danzmayr 2015

Figure 74: Matthias Danzmayr 2015

Figure 75: Matthias Danzmayr 2015

Figure 76: Matthias Danzmayr 2015

Figure 77: Matthias Danzmayr 2015

Figure 78: Matthias Danzmayr 2015

Figure 79: Matthias Danzmayr 2015

Figure 80: Matthias Danzmayr 2015

Figure 81: Matthias Danzmayr 2015

Figure 82: Matthias Danzmayr 2015

Figure 83: Matthias Danzmayr 2015

Figure 84: Office for Metropolitan Architecture, 2012, http://www.oma.eu/

projects/2002/cctv-%E2%80%93-headquarters/ (viewed May 25, 2015)

Figure 85: Office for Metropolitan Architecture, 2012, http://www.oma.eu/

projects/2002/cctv-%E2%80%93-headquarters/ (viewed May 25, 2015)

Figure 86: Office for Metropolitan Architecture, 2012, http://www.oma.eu/

projects/2002/cctv-%E2%80%93-headquarters/ (viewed May 25, 2015)

Figure 87: Matthias Danzmayr 2015

Figure 88: Matthias Danzmayr 2015

Figure 89: Matthias Danzmayr 2015

Figure 90: Matthias Danzmayr 2015

Figure 91: Matthias Danzmayr 2015

Figure 92: Matthias Danzmayr 2015

Figure 93: Matthias Danzmayr 2015

Figure 94: Matthias Danzmayr 2015

167

Figure 95: Matthias Danzmayr 2015

Figure 96: Matthias Danzmayr 2015

Figure 97: Matthias Danzmayr 2015

Figure 98: Matthias Danzmayr 2015

169

Bibliography

Le Corbusier, “Mass-Produced Buildings”, trans. Charlotte

Benton, Tim Benton, et al. Architecture and Design, 1890-1939:

An International Anthology of Original Articles (1975 NewYo-

rk, NY: Whitney Library of Design)

Le Corbusier, Towards a New Architecture, trans. Frederick

Etchells, (1923, Reprint, Mineova, NY: Dover Publications 1985)

Wikipedia contributors, “Habitat 67,” Wikipedia, The Free En-

cyclopedia, http://en.wikipedia.org/wiki/Habitat_67 (accessed

May 12, 2015)

Wikipedia contributors, “Nakagin Capsule Tower,” Wikipedia,

The Free Encyclopedia, http://en.wikipedia.org/wiki/Nak-

agin_Capsule_Tower (accessed May 12, 2015)

Wikipedia contributors, “International Space Station,” Wikipedia,

The Free Encyclopedia, http://en.wikipedia.org/wiki/Interna-

tional_Space_Station (accessed May 13, 2015)

Wikipedia contributors, “Second Industrial Revolution,” http://

en.wikipedia.org/wiki/Second_Industrial_Revolution (accessed

May 28, 2015)

Wikipedia contributors, “Neolithic Revolution,” Wikipedia,

The Free Encyclopedia, http://en.wikipedia.org/wiki/Neolith-

ic_Revolution (accessed May 28, 2015)

Wikipedia contributors, “Industrial Revolution,” http://en.wiki-

pedia.org/wiki/Industrial_Revolution (accessed May 28, 2015)

Wikipedia contributors, “Tesla Factory, “http://en.wikipedia.

org/wiki/Tesla_Factory (accessed May 28, 2015)

“A third industrial revolution,” The Economist, April 21st 27th

2012

www.airbus.com (accessed May 28, 2015)

Barry Bergdoll and Peter Christensen, Home Delivery (2008,

New York, The Museum of Modern Art)

Richard Buckminster Fuller, Critical Path (1981, New York, St.

Martins Press)

Stephen Kieran and James Timberlake, Refabricating Architec-

ture (2004, New York, McGraw-Hll Companies Inc.)

Dietmar Offenhuber and Carlo Ratti (Ed.), Die Stadt entschlüs-

seln (2013, Birkhäuser Verlag GmbH, Basel)

Helmut Pottmann, Andreas Asperl, Michael Hofer and Axel

Kilian, Architectural Geometry (2007, Bentley Institute Press,

Exton)

170

National Electrical Manufacturers Association, “About the

National Electrical Manufacturers Association,” http://www.

nema.org/About/pages/default.aspx (accessed May 15 2015)

National Electrical Manufacturers Association, “All Standards

(One Page),” https://www.nema.org/Standards/Pages/All-Stan-

dards-One-Page.aspx (accessed May 15 2015)

National Electrical Manufacturers Association, “NEMA Stan-

dards Publication ICS 16,” Rosslyn 2001

Arup, “China Television Headquarters,” http://www.arup.com/

Home/Projects/China_Central_Television_Headquarters.aspx

(accessed May 25, 2015)

