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Kurzfassung

Mikroskopische Simulationsmodelle werden in vielen Anwendungen zur Vorhersage von
Fußgängerströmen mit hoher Granularität verwendet. Sie haben sich als ein wertvolles
Instrument bewährt, das die Entwicklung und Evaluierung von Architekturplänen un-
terstützt, Verkehrsnachfragen und -kapazitäten abschätzt, die Sicherheit, Effizienz und
Komfort in stark frequentierten Bereichen erhöht und Szenarien für Notevakuierungen
analysiert. Wenngleich in der wissenschaftlichen Literatur eine Vielzahl von mikrosko-
pischen Modellen verfügbar ist, ermöglichen aktuell implementierte Simulatoren in der
Regel keinen einfachen und schnellen Wechsel zwischen einzelnen Modellen noch geben
diese Einsicht in Details zu ihrer Funktionalität und Implementierung preis. Darüber
hinaus mangelt es noch an zuverlässigen menschlichen Bewegungsdaten, welche jedoch
eine Voraussetzung für die Entwicklung von realitätsnahen Modellen sowie für die Mo-
dellkalibrierung und -validierung darstellen. Diese Defizite hemmen die Evaluierung der
Fähigkeiten verschiedener Modelle. Dadurch werden quantitative Vergleiche zwischen
verschiedenen Ansätzen derzeit nur selten durchgeführt.

Diese Doktorarbeit entwickelt erstmals ein einheitliches Framework zur struktu-
rierten Untersuchung der Stärken und Schwächen von verschiedenen mikroskopischen
Fußgängersimulationsmodellen auf Basis eines empirischen Referenzdatensatzes und der
Implementierung dieser Modelle in einem Simulations-Framework.

Die empirische Grundlage dieser Arbeit stellt ein hochgenauer Referenzdatensatz
mit 2674 Personentrajektorien dar, welcher unter realen Bedingungen in einem bidirek-
tionalen Korridor mit einem neuartigen Ansatz zur Datenerfassung unter Verwendung
des Low-Cost-Sensors Microsoft Kinect gemessen wurde. Dieser innovative Algorithmus
zur Erkennung und Verfolgung von Personen basiert auf agglomerativem Clustering
von anonymisierten Tiefendaten, welche von einem erhöhten Blickwinkel mit mehreren
Kinects erfasst werden. Die Pedestrian Detection Rate beträgt bis zu 94% bei einer
Multiple Object Tracking Precision von 4 cm.

Das präsentierte Simulations-Framework besteht aus einer skalierbaren und flexiblen
Systemarchitektur, welche die einfache Integration unterschiedlicher Simulationsmodelle
und damit die konsistente und effiziente Kalibrierung und Validierung von Modellen
ermöglicht. Drei Ansätze des Social Force Modells, ein Cellular Automaton Modell,
das Optimal Reciprocal Collision Avoidance Modell und zwei Varianten des Optimal
Steps Modell wurden in das Simulations-Framework implementiert. Als ersten Schritt
in Richtung Verifizierung und Validierung der Modelle, wurden ausgewählte Testfälle
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der RiMEA-Richtlinie simuliert, welche die Definition eines Mindeststandards für Eva-
kuierungsanalysen anstrebt. Das Potential des Simulations-Frameworks für einfaches
und schnelles Umschalten und Kombinieren von Modellen wird anhand von zwei rea-
len Fallstudien gezeigt: zwei Versionen des Social Force Ansatzes sowie das Optimal
Reciprocal Collision Avoidance Modell werden innerhalb des Frameworks für die Simula-
tion des Fahrgastwechsels in einem Zug angewendet. Zusätzlich wird die Fähigkeit des
Simulations-Frameworks demonstriert, Modellansätze mit unterschiedlicher Granularität
für hohe Passagierströme in einer U-Bahnstation zu kombinieren.

In der Evaluierung werden die Prognosen der sieben im Simulations-Framework im-
plementierten Modelle mit den empirischen Referenzdatensatz aus dem Kinect-basierten
Tracking sowie untereinander verglichen. Um eine einheitliche Grundlage für den Vergleich
herzustellen, wurden die untersuchten Modelle zuerst auf einem Teil des Referenzdaten-
satzes kalibriert. Zwei Methoden zur Kalibrierung von Social Force basierten Modellen
auf Basis von individuellen Trajektorien werden präsentiert – Modellschätzung durch das
nichtlineare Least-Square-Verfahren und der Vergleich von realen und simulierten Trajek-
torien. Darüber hinaus wurde eine strukturierte Evaluierungsumgebung entwickelt, die
auf Kriterien zur Bewertung der Fähigkeiten von Fußgängersimulationsmodellen hinsicht-
lich der Darstellung von wichtigen mikroskopischen und makroskopischen Eigenschaften
des menschlichen Bewegungsverhaltens basiert. Im Simulations-Framework wurde ein
simulationsbasiertes Kalibrierungsverfahren angewendet, um die Parameterwerte für die
verschiedenen Modellansätze anhand der definierten Evaluierungskriterien zu schätzen.
Es hat sich gezeigt, dass durch die Kalibrierung die Anpassung an die beobachteten
Daten in allen Modellen verbessert werden konnte. Der durch die Kalibrierung erzielbare
Anpassungsgrad einzelner Modelle variiert jedoch. Die Modelle zeigen auch unterschiedli-
che Übertragbarkeit auf weitere Datensätze über jene die für die Kalibrierung verwendet
wurden.

Die präsentierte Evaluierungsmethode kann leicht auf weitere Fußgängermodellie-
rungsansätze angewendet werden, indem diese als separate, zusätzliche Module in das
Simulations-Framework integriert werden. Für zukünftige Studien wird dies die Untersu-
chung der einzelnen Modelleigenschaften und den Vergleich neuartiger Modellierungsan-
sätze mit bestehenden Modellen unterstützen.



Abstract

Microscopic simulation models are used in many applications for predicting pedestrian
flows with high granularity. They have proven to be a valuable tool to support the design
and evaluation of architectural plans, to estimate necessary capacities, to increase safety,
efficiency and comfort in crowded areas, and to analyze scenarios for emergency evacua-
tions. Although in the scientific literature a multitude of microscopic models is available,
currently implemented simulators typically do not allow for easy and quick switching
between models nor do they give insight in their functionality and implementation details.
Moreover, there is still a lack of reliable human movement data, which however is a
prerequisite for developing models that are able to represent realistic pedestrian behavior
as well as for performing model calibration and validation. These shortcomings inhibit to
evaluate the capabilities of different models. As a consequence, quantitative comparisons
between various approaches are still rare.

This doctoral thesis develops for the first time a unified framework for the structured
investigation on strengths and weaknesses of different microscopic pedestrian movement
simulation models based on an empirical benchmark data set and on implemented models
within a simulation framework.

The empirical baseline of this work is a highly accurate benchmark data set of 2674
human trajectories measured under real life conditions in a bidirectional corridor with a
novel data collection approach using the low-cost sensor Microsoft Kinect. Our innovative
human detection and tracking algorithm is based on agglomerative clustering of privacy-
preserving depth data captured from an elevated view with multiple Kinects providing
a Pedestrian Detection Rate of up to 94% and a Multiple Object Tracking Precision
of 4 cm.

The proposed simulation framework is built on a scalable and flexible system archi-
tecture to easily integrate different simulation models. Hence it allows for consistent and
efficient model calibration and validation. Three approaches of the Social Force model, a
Cellular Automaton model, the Optimal Reciprocal Collision Avoidance model and two
variants of the Optimal Steps Model were implemented in the simulation framework. As a
first step towards model verification and validation, we have simulated selected test cases
from the RiMEA-Guideline, which aspires to define a minimum standard for evacuation
analysis. The potential of the simulation framework for easy and quick switching and
combining models is demonstrated using two real world case studies: first, two versions
of the Social Force approach and the Optimal Reciprocal Collision Avoidance model
are applied within our framework for passenger flow simulation during boarding and
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alighting of a train. Second, the ability of the proposed simulation framework to combine
modeling approaches with varying granularity is demonstrated for high volume passenger
flows in a subway station.

In the evaluation, the predictions of seven models implemented within the simulation
framework are compared to the empirical benchmark data from the Kinect-based tracking
and among each other. In order to establish a solid baseline for model comparison, every
model is calibrated first on a subset of the benchmark data. Two methodologies for
calibrating Social Force based models on the individual trajectory level are presented, i.e.
model estimation by nonlinear least square methods and comparison of real and simulated
trajectories. Furthermore, we introduce a structured evaluation environment based on
measures to assess individual model capabilities of representing important microscopic and
macroscopic characteristics of human movement behavior. A simulation-based calibration
procedure is applied in our simulation framework to estimate the parameter values for the
different modeling approaches with the defined set of evaluation measures. It was found
that the calibration has improved the fit to the observed data set in all models. However,
the grade to which individual models can be influenced by the calibration varies. The
evaluation also revealed that the investigated models have diverse capabilities concerning
transferability to an independent data set.

Our presented evaluation technique can easily be applied to a wider range of pedestrian
modeling approaches by including them as separate, additional modules in the simulation
framework. For future studies this will enhance the understanding of individual model
characteristics and the comparison of novel modeling approaches to existing ones.
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CHAPTER 1
Introduction

With 66% of the world’s population projected to live in urban areas by 2050, crowd
management and modeling is becoming an urgent issue of global concern (United Nations
(2014)). A better understanding of pedestrian movement can lead to an improved use of
public spaces, to the appropriate dimensioning of urban infrastructure such as airports,
stations and commercial centers.

Over the last years, crowd simulations have proven to be a valuable tool to predict
pedestrian flows for the evaluation of architectural designs and operational plans in a
variety of highly frequented urban places. The applications for which simulation tools
can be useful cover the entire spectrum, from a detailed analysis of human interaction of
a few individuals in a single room (Rudloff et al. (2011a)) to evacuating a concert with
tens of thousands of spectators (Hamacher et al. (2011)). Furthermore, the conditions
(e.g. the physical complexity of the environment or the number of individuals) in various
application fields can differ greatly. Hence, there is a wide range of questions for which
simulations should be able to provide answers.

In the scientific literature, simulation models are categorized according to their granu-
larity of modeling the interaction between the pedestrians into microscopic, macroscopic
or mesoscopic (see e.g. the classification for general traffic models in Cascetta (2009)).

Microscopic models define detailed behavior of individual humans and represent col-
lective phenomena such as emergent behavior. The most common microscopic approaches
noted in the scientific literature are Cellular Automatons (Burstedde et al. (2001)) with
grid-based motion decisions, discrete choice models (Antonini et al. (2006); Guo et al.
(2010)) where pedestrians optimize their utility while moving, and Social Force models
(Helbing and Molnár (1995)) which use a continuous representation of space.

Macroscopic models are often based on the analogy with fluid or gas dynamics and
describe human movement dynamics as spatial distributions of densities using partial
differential equations (Helbing (1992); Hoogendoorn and Bovy (2000); Henderson (1971)).
Situated between the microscopic and the macroscopic methodology are mesoscopic
models such as queuing models (Løvås (1994)).
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On a different dimension Hoogendoorn and Bovy (2004) explained pedestrian behavior
by providing a hierarchy of decisions. Accordingly, we differentiate between three levels
of decision making in this work:

1. Strategic Level: on this level a person decides on general activity and trip purposes.

2. Tactical Level: on this level route-choice and intermediate goals are selected.

3. Operational Level: actual movement at each time instant towards the next goal –
including collision avoidance based on interactions with other pedestrians and the
environment.

Choices at higher levels serve as input for modeling pedestrian behavior at lower levels
(e.g. goal setting steers the subsequent move) and, vice versa, choices at lower levels may
influence higher levels (e.g. selecting a certain route instead of another might change the
activity order). In the research of this thesis, this general modeling paradigm is pursued.

In order to develop a model that is able to represent realistic movement behavior one
has to perform model calibration and validation of the results. Validation to examine the
characteristics of a specific microscopic model is still sparse (e.g. Campanella et al. (2014),
Zhang et al. (2014)). One reason for this is the lack of reliable human movement data,
such as spatio-temporal motion trajectories. To take full advantage of the rich information
included in human motion trajectories for the calibration and validation of microscopic
models it is essential to measure all people in a given scene. The need for comprehensive
and highly accurate human movement data from different movement settings is well
documented in the scientific literature (Boltes and Seyfried (2013)). However, publicly
available benchmarking data sets based on real-world observation are severely limited in
terms of accuracy and number of observations. This motivates the need for improved
automatic approaches to collect human movement data which have to fulfill the quality
requirements for calibrating and validating microscopic models.

Although a multitude of different models is described in the literature, currently
available simulation programs typically allow modeling pedestrian movement using only
a single pre-specified simulation model. This is also reflected in the body of research,
where often a specific simulator, movement data and set of evaluation criteria are applied.
Quantitative comparisons between different models are still rare since currently available
simulators do not allow for easily switching the model nor do they give insight in
their functionality and implementation details (Wagoum et al. (2014)). This inhibits
to evaluate the capabilities of different models. For objectively comparing different
implementations of microscopic pedestrian simulation models, their performance has to
be assessed quantitatively based on evaluation measures with respect to accuracy (e.g.
reproducibility of pedestrian densities) and computational feasibility. As of now, several
evaluation measures have been described and used in the literature. However, there is no
consensus within the scientific community on which measures provide plausible results
with respect to an objective evaluation. Consequently, a quality standard for validation
of crowd simulation models is still missing (see also Rogsch et al. (2014)).
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1.1 Aim of the Work
The goal of this doctoral thesis is to develop a framework that constitutes an optimal
basis for structured investigation on strengths and weaknesses of microscopic pedestrian
movement simulation models. The contributions of this thesis can be summarized as
follows:

1. Generation of a benchmark data set by empirically collecting pedestrian movement
data under real life conditions using an innovative people tracking approach with
affordable sensor technologies.

2. Design and implementation of a novel simulation framework with a highly flexible
system architecture to easily switch simulation models and allowing for consistent
and efficient model calibration and validation.

3. Structured evaluation of microscopic pedestrian simulation models based on the
empirical benchmark data set and the implemented models within the simulation
framework.

1.2 Methodological Approach
Our methodological approach combines empirical benchmark data, calibration and
validation strategies, and evaluation measures into a unified framework for evaluating
microscopic pedestrian movement simulation models.

First, we present a methodology for collecting benchmark data on pedestrian movement
and interaction behavior. Within this thesis, novel approaches for obtaining highly
accurate people trajectories were developed using low cost sensors such as the Microsoft
Kinect. We apply the human detection and tracking algorithms in highly frequented
real-world scenarios. The resulting benchmarking data sets include a comprehensive
set of individual trajectories representing evasive behavior with varying numbers and
positions of human obstacles.

Furthermore, we design a simulation framework which provides a scalable and flexible
system architecture for an easy integration of different simulation models. For flexibility,
a modular architecture including three functional layers is used: the scenario layer
allows to define the specifications for each simulation run, e.g. infrastructure layout,
composition of the simulated crowd, etc. The application layer provides the possibility
to configure simulation related parameters and to start a simulation run. In addition,
it implements different strategies for estimating model parameters and evaluating a
model’s performance. The simulation layer includes a simulation core as central control
component that communicates with several modules performing the actual simulation
run. These individual modules contain all necessary functions for performing pedestrian
simulations and can be switched or combined easily. The modular architecture of the
simulation framework provides several important advantages since certain behavioral
aspects can be separated from one another (e.g. route-choice on the tactical level or
collision avoidance on the operational level) and thus form a logical encapsulation.
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As part of the structured evaluation, we compare the predictions of specific pedestrian
simulation models to observations of human movement and among each other. In total
seven microscopic pedestrian simulation models were implemented as functional modules
within the framework: the Social Force (SF) approaches from Helbing and Molnár
(1995), Helbing and Johansson (2009) and Rudloff et al. (2011b), the Cellular Automaton
(CA) model from Kirchner and Schadschneider (2002), the Optimal Reciprocal Collision
Avoidance (ORCA) model from van den Berg et al. (2011) and two variations of the
Optimal Steps Model (OSM) from Seitz and Köster (2012) and Seitz and Köster (2014),
respectively. In order to establish a baseline for comparison, these models need to be
calibrated with the pedestrian movement scenarios in our benchmark data set. Therefore,
we present two strategies for calibrating and validating models that are based on the
Social Force approach, i.e. model estimation by nonlinear least square methods and
determination of model parameter values using simulation-based optimization, using
individual human trajectories. We go further by introducing a structured environment
including a set of methodologies for the investigation of strengths and weaknesses of
various microscopic pedestrian movement simulation models. This involves the definition
of additional evaluation measures based on microscopic and macroscopic characteristics
(e.g. comparisons between simulated and observed trajectories, density, walking times,
etc.) and a generalized procedure for model parameter estimation. A main criteria for
assessing a model’s performance is the goodness-of-fit that indicates how well a model
represents a certain evaluation measure from the benchmark data set.

1.3 Structure of the Work
This dissertation is structured as follows: Chapter 2 outlines and demonstrates the
approach with multiple Microsoft Kinect sensors for obtaining highly accurate tracking
data from an elevated view for pedestrian modeling. Chapter 3 describes state-of-the-
art modeling approaches for pedestrian simulation used in this work and provides new
insights into the processes of model verification and evaluation based on standardized
test cases. Chapter 4 introduces a novel pedestrian simulation framework which allows
to easily switch or combine various simulation models based on a highly flexible system
architecture. We will describe the overall concept, architectural software design and
implementation and demonstrate the potential of the simulation framework on two real
world case studies. Chapter 5 presents general calibration and validation strategies for
pedestrian models by means of Social Force based modeling approaches. Chapter 6 brings
together the benchmark data, the pedestrian models, the calibration and validation
strategies, and the evaluation measures within the simulation framework. The evaluation
will compare the modeling approaches to the empirical benchmarking data and examine
their particular differences related to model behavior. Chapter 7 concludes the main
results and gives an outlook for further research.
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CHAPTER 2
Obtaining Benchmarking Data on

Pedestrian Movement

An essential step in model development is the calibration with relevant datasets and
the validation on different realistic scenarios. Model parameter estimation can be very
complex due to large numbers of parameters or the limited availability of real-world
datasets (see Rudloff et al. (2011b)). Some papers show that the calibrated models
reproduce self organizing behavior such as lane formation (e.g. Helbing and Molnár
(1997), Moussaïd et al. (2010)) and provide quantitative calibration results (Johansson
et al. (2007)). However, research in microscopic pedestrian simulation mostly concentrates
on model development, while calibration and validation processes are often neglected.
One way to calibrate microscopic pedestrian simulation models is to use aggregated data
such as density-flow relationships (according to so-called Fundamental Diagrams) as
described in Davidich and Köster (2012). Developing and calibrating models for detailed
human interaction behavior (e.g. collision avoidance) requires highly accurate data on
pedestrian movements, i.e. spatio-temporal motion trajectories as well as the analysis of
all people in a given scene.

In the pedestrian simulation community, such data is traditionally collected by
manually annotating the positions of people in individual frames of recorded video data
of highly frequented areas (Antonini et al. (2006), Berrou et al. (2007)). Sometimes
additional attributes such as age or gender are assigned to people during the annotation
process. Manual annotation, however, is tedious and time-consuming, in particular for
dense scenes with many pedestrians. This limits the amount of data that can be analyzed.
Semi-automated video annotation approaches can facilitate the generation of motion
data by providing automatically computed position predictions which support manual
annotation (Plaue et al. (2011), Johansson and Helbing (2010)). Semi-automated video
annotation can provide significant speedup compared to purely manual annotation, but
is still time-consuming. In some experimental setups for pedestrian simulation modeling,
participants of the experiments are equipped with distinctive wear such as colored hats
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for better identification. Naturally, such distinctive wear makes automated extraction of
trajectories a relatively easy task. The free software PeTrack presented in Boltes et al.
(2010) has been applied on video recordings of a bottleneck experiment. The automatic
tracking approaches of Hoogendoorn et al. (2003) and Hoogendoorn and Daamen (2005)
collected trajectory data in a narrow bottleneck and a four-directional crossing flow
experiment. Controlled experiments allow the setting of environmental conditions that
are hard to observe in real world circumstances as in Daamen and Hoogendoorn (2012),
where emergency settings were reenacted including acoustic and visual signals. However,
such setups only allow for a limited sample size and include a significant bias in the data
since participants are usually aware of being observed.

Large scale and real-world data on human motion can be obtained from video only
when applying tools for automatic vision-based people detection and tracking. Vision
based tracking has seen considerable progress in recent years, with current systems able
to track people through long and challenging sequences (Pellegrini et al. (2009)). There
exist many approaches for multi-camera people tracking assuming overlapping fields of
view, e.g. Fleuret et al. (2008), Eshel and Moses (2010), Sternig et al. (2011). Approaches
dealing with camera networks with non-overlapping fields of view include Javed et al.
(2007), Loy et al. (2009) and Pflugfelder and Bischof (2010). The advanced computer
vision methods are mostly not concerned with highly accurate tracking (in the sense
of giving a position estimate within centimeters of the actual position), but are more
concerned with working under difficult conditions (occlusions, clutter, lighting, ...), which
limits their reliability and makes them less appropriate for measurement tasks. The
computer vision community provides publicly available benchmark sequence datasets
with manually or semi-automatically annotated data for testing common surveillance
tasks, such as pedestrian detection, tracking and behavior analysis, e.g. PETS (PETS
(2009)) and VIRAT (Oh et al. (2011)). Many of these sequences were captured with
people acting behavior according to a script, often also due to legal and privacy issues.
The 3DPeS dataset of Baltieri et al. (2011) provides a benchmark dataset primarily for
people re-identification, where subjects were notified of the presence of cameras, but
not coached or instructed in any way. Benchmark datasets where subjects were not
notified of the presence of cameras are provided in the BIWI walking dataset of ETH
Zurich (Pellegrini et al. (2009)) and the ’crowds-by-example’ dataset of University of
Cyprus Computer Graphics Lab (2011). These datasets were generated by manual or
semi-automated annotation for the sake of ground truth, and were used, for example,
to demonstrate novel people tracking algorithms improved with Social Force Models
(Pellegrini et al. (2009)) or algorithms for automatically inferring groups with Social
Force Models (Sochman and Hogg (2011)). Notably, these algorithms are published by
renowned computer vision labs and critically rely on accurate trajectory data of every
person in the scene, and are still evaluated only on the manually or semi-automatically
annotated ground truth trajectory data.

Mutual occlusions of people are one of the major challenges for automatic multiple
people tracking from oblique camera views, and they can be minimized or avoided when
capturing the scenes from a top-down view. The Edinburgh Informatics Forum Pedestrian
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Database (Bob Fisher (2010)) provides a comprehensive set of trajectories computed in
video from a fixed overhead camera 23 meters from the floor. This elevated height covers
a large area, and the authors in (Bob Fisher (2010)) note that there are usually only a
few individuals in each video frame (1 person in 46 % of the frames, four or less persons
in 93 % of the frames), and that scenes with many people (events) cause difficulties in the
tracker. The dataset has been used to demonstrate surveillance algorithms, in particular
to detect unusual behavior, for example in Calderara et al. (2011).

In this work we propose an approach for calibrating microscopic pedestrian simulation
models with highly accurate and comprehensive trajectory data on individual pedestrian
movement using Microsoft Kinects mounted in top-down positions. The Kinect is an
inexpensive motion sensing input device which was originally developed for the Xbox 360
video game console and delivers RGB camera images and a 3D depth map (Microsoft
Corp. (2012a)). It was originally designed to accurately detect three dimensional positions
of body joints (Shotton et al. (2011)) and to estimate human pose (Girshick et al. (2011)).
Figure 2.1 illustrates the skeletal tracking which is the key component of the video game
user interface. With its built-in functionality, the Kinect can detect up to six people (two
of them using the skeletal tracking) provided that all persons face the sensor in frontal
view with their upper bodies visible. Since its market introduction in 2010, the Kinect has
also been used in a broad variety of other research fields: Noonan et al. (2011) showed the
use of the Kinect for tracking body motions in clinical scanning procedures. Animation
of the hand avatar in a virtual reality setting by combining the Kinect with wearable
haptic devices was developed in Frati and Prattichizzo (2011). The Kinect was used
in Izadi et al. (2011) to create detailed three dimensional reconstructions of an indoor
scene. Weiss et al. (2011) presented a method for human shape reconstruction using
three dimensional and RGB data provided by the Kinect. Choi et al. (2013) demonstrate
their method for multiple people tracking from a moving camera using Kinect datasets.

(a) (b)
Figure 2.1: Microsoft Kinect provides the depth data stream (a), with the detected person
in red and different gray levels encoding the depth information, and skeletal tracking (b).
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(a) (b)
Figure 2.2: MIT’s Infinite Corridor with (a) the observed area (green) and (b) the Kinect
setting on the ceiling.

To the best of our knowledge, the Microsoft Kinect has not yet been used to obtain
data for modeling pedestrian motion behavior. The built-in skeletal tracking cannot be
directly used for accurately measuring pedestrian movement.

In this work we provide a contribution for pedestrian researchers by presenting an
alternative approach using multiple Microsoft Kinects for obtaining highly accurate
tracking data from an elevated view for pedestrian modeling (Seer et al. (2014a))1. The
approach processes only information from the 3D depth sensor, thus avoiding any legal
and privacy issues arising when observing people in real-world scenarios with imaging in
the visual spectrum. We demonstrate the high accuracy of the trajectories in a real world
setup and show how such an automatically obtained set of more than 2600 trajectories is
used to calibrate and compare microscopic pedestrian simulation models. The overall
added value with respect to previous approaches is the feasibility to automatically obtain
large and accurate sets of human movement data at low cost paving the way for many
pedestrian researchers to better calibrate and validate their simulation models.

We combined three Kinect sensors and collected a large dataset on pedestrian move-
ment inside the Massachusetts Institute of Technology (MIT)’s Infinite Corridor, the
longest hallway that serves as the most direct indoor route between the east and west
ends of the campus and is highly frequented by students and visitors. Figure 2.2a shows
the area identified for the data collection in this work, and Figure 2.2b shows the Kinect
sensors mounted at the ceiling. In our setting, a single Kinect sensor is capable of covering
an area of roughly 2 m×2 m. Since we have suspended three Kinect sensors from the
ceiling, human movement behavior in an overall scanning area of around 12 m2 could
be measured. In order to observe various pedestrian behaviors we performed different
walking experiments in this environment.

1The work in this chapter was published by S. Seer, N. Brändle and C. Ratti, "Kinects and Human
Kinetics: A New Approach for Studying Pedestrian Behavior", In: Transportation Research Part C:
Emerging Technologies, DOI: 10.1016/j.trc.2014.08.012, pp. 212-228, 2014.

8



2.1 Kinect-based Human Detection and Tracking

The Kinect provides a sequence of standard RGB color frames and a 3-dimensional
depth image for each frame. The depth image of a scene indicates the distance of each
picture element of that particular scene from the Kinect. Depth images and RGB color
images are both accessible with the Kinect for Windows SDK by Microsoft Corp. (2012b).
Figure 2.3 illustrates a snapshot of the depth image, the RGB image and a combination
of depth and RGB from three Kinects mounted at a height of 4.5 meters and a top view
position in the MIT’s Infinite Corridor. With this setup a section of 6 meters of the
corridor can be captured. Note that the glass case introduces a significant amount of
artifacts due to specular reflections. In order to meet privacy concerns – most of the
observed persons are not aware of any data collection experiment – our approach does
not process RGB information from the visible spectrum.

In order to compute pedestrian trajectories from depth image sequences of multiple
Kinects, we 1) map depth information from individual Kinect sequences into a common
world coordinate system, 2) group depth information from a single Kinect in the world
coordinate system into individual pedestrians and 3) track the pedestrians to obtain
trajectories throughout the sensing areas of multiple Kinect sensors. These three steps
are described in the following subsections.

2.1.1 Obtaining World Coordinates

A Kinect sensor Sk from a set of K devices generates a time series of 640× 480 depth
pixel images. Each depth image encodes a set of valid three-dimensional points xci =
[xci yci zci ]T , with i ≤ 640 × 480, in the local Kinect 3D camera coordinate system,
computed with the value of the focal length f provided by Microsoft Corp. (2012b). The
physical constraints of the Kinect 3D-measurement setup limit the range of zci within
which reliable depth data can be computed to a maximum distance of 4 meters. Objects
which are located more than 4 meters away from the sensor can not be captured.

A human trajectory T is denoted as a sequence of N four-dimensional vectors

T = {[ti xwi ywi zwi ]T }i=1...N, (2.1)

where the vectors are composed of a timestamp ti and a 3D position xwi = [xwi ywi zwi ]T
in a common world coordinate system: For a trajectory to represent people walking
throughout the sensing areas of multiple Kinect sensors, the points of the local 3D
coordinate systems of the mounted Kinect sensors must first be mapped to the world
coordinate system.

The actual point mapping between the coordinate system of sensor Sk and the world
coordinate system is represented by a rigid transformation, composed of a translation
vector tk between the two origins of the coordinate systems and a 3× 3 rotation matrix
Rk such that

xwi = Rkxci + tk. (2.2)
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Sensor S1

Sensor S2

Sensor S3

Figure 2.3: Kinect sensor field of view; raw depth data stream (left), RGB stream (middle)
and both data streams in an overlay (right).

Note that we do not model nonlinear lens distortion. As elaborated in Konolige
and Mihelich (2012), the Kinect lenses are already very good compared to, for example,
typical webcams, with a reprojection error (deviation of the camera from the ideal pinhole
model) of 0.34 pixel for the IR camera. Konolige and Mihelich (2012) show that modeling
lens correction could reduce the reprojection error by factor of 3. Lens correction is useful
for RGB images with subpixel accuracy applications. Kinect IR depth images, however,
are already smoothed over a neighborhood of pixels by the correlation window, hence
correcting a third of a pixel would not significantly change the depth result.

The three parameter values for translation tk of sensor Sk and its three rotation
angles in Rk are determined by a set of M point matches < xwi ,xci >, i ∈ M and
subsequently minimizing the error

E =
M∑
i=1
‖xwi −Rkxci − tk‖2 (2.3)

by solving an overdetermined equation system as described in Forsyth and Ponce (2002).
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We determine the M point matches < xwi ,xci > in world coordinates xwi manually
from the depth images. Since only depth information and no visual information is available
for the sensed area, sensor calibration must be based on pre-determined calibration objects
with well-defined depth discontinuities. Our sensor calibration setup is composed of
a rectangular piece of cardboard placed on a tripod with a height of 1587 mm from
the ground. We marked multiple reference points on the ground assuring that they are
equally distributed within the field of view. One by one, the tripod with the mounted
cardboard on top was placed perpendicular to a single reference point and the depth data
was recorded for a couple of seconds. The reference points in world coordinates xwi are
determined as the center of gravity of the extracted cardboard corners in the depth images.
The raw depth data including the reference points and the results of the calibration for
all sensors are shown in Figure 2.4. Table 2.1 shows that the Root-Mean-Square Error
(RMSE) between the reference points in the world coordinates and the reference points
in camera coordinates transformed with (2.2) lies within the range of a few centimeters.

Sensor S1 Sensor S2 Sensor S3

RMSE 64 mm 67 mm 19 mm

Table 2.1: Accuracy of calibration computed on reference points.

2.1.2 Detection Algorithm

Let D denote the set of points xwi obtained by applying the rigid transform (2.2) to the
3D camera coordinates from the Kinect depth images. The objective of human detection
is to extract from D connected sets of points belonging to a person and to represent
the person with a point xpi , that is the center of the head. Human tracking associates
detections of individuals over time. Human detection is composed of the following steps:

1. Data Reduction by Background Subtraction. Identifying a set of points
which do not change or only change slowly over time – the background – supports
the segmentation of walking persons from other objects and reduces the number of
depth points to be processed. This can be achieved by classic background subtraction
techniques from the domain of video analysis, e.g. the adaptive background modeling
with Gaussian Mixture Models described in Stauffer and Grimson (2000). In our
particular case of the Infinite Corridor, the background model is handcrafted, since
the locations of background objects such as walls are well-known in advance.

2. Data Reduction by Cutoff. The cutoff step first removes all 3D points which
remain after background subtraction with height zwi larger than a tall person’s
height, e.g. 2.1 meters for adults, and all 3D points with height zwi smaller
than a typical upper body region, e.g. 1.5 meters. The second cutoff value
determines the minimal height of detectable persons, and is necessary to exclude
noisy measurements of objects near the floor. Applying the cutoff values to zwi
results in a subset D′.
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Sensor S1

Sensor S2

Sensor S3

Figure 2.4: Left column - Raw data from sensor including reference points (red circles);
Right column - sensor calibration results with measured reference (blue) and estimated
(green) points.
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3. Hierarchical Clustering on the Reduced Set. In order to group the points
D′ into natural clusters corresponding to individual persons, we first build a cluster
tree by agglomerative clustering with the complete-linkage algorithm (Duda et al.
(2001)). For computational reasons we randomly select a subset D′′ of R points
from D′ for clustering, where typically R = 500. The complete-linkage algorithm
uses the following distance d(D′′i ,D′′j ) to measure the dissimilarity between subsets
of D′′:

d(D′′i ,D′′j ) = max
x∈D′′i
x′∈D′′j

∥∥x− x′
∥∥ , (2.4)

with ‖·‖ as the Euclidean distance. Using metric (2.4) avoids elongated clusters and
is advantageous when the true clusters are compact and roughly equal in size (Duda
et al. (2001)). All leaves at or below a node with a height less than a threshold are
grouped into a cluster, where the threshold is based on a typical human shoulder
width, e.g. 0.6 meters.

4. Grouping of D′ and Cleanup. All available observation points of D′ are assigned
to a cluster, given that they are sufficiently close to the cluster center. Otherwise
they are removed. Small clusters which originate from noise or people on the border
of the field of view are removed.

5. Identifying a Cluster Representative. For every cluster D′′i , the point xpi
representing the pedestrian location of a trajectory (2.1) is selected as the point
with the 95th percentile of the height zwi in D′′i , defined as the person’s height.

This process provides robust people detections of all individuals in a single depth
image.

2.1.3 Tracking over Multiple Sensor Views

In order to establish correspondences between consecutive detections and obtain trajec-
tories T as defined in (2.1), we perform global tracking of the people detections xwi in
the world coordinate system by a simple nearest neighbor matching based on position
predictions linearly extrapolating individuals’ positions of the previous n detections.
We search for the nearest detection in the neighborhood within a spatial and temporal
threshold.

While other applications use more complex approaches for object tracking (see Berclaz
et al. (2011) for an overview), we take advantage of the high rate of 30 frames per second
provided by the Kinect. We experimentally determined n = 5, taking into account a
sufficient number of observations for obtaining a reliable estimate of the predictions.
Figure 2.5 illustrates the tracking results of a short sequence as red lines, superimposed
to raw depth data of a Kinect sensor from a single frame.

The algorithm effectively tracks pedestrian heads, and the question might arise
whether the head of a pedestrian is the most stable object to track. Increased variability
of vertical head translation and pitch rotation of the head with respect to pitch trunk
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Figure 2.5: Kinect depth raw data in 3D from a single frame (walls are light gray and
detected objects are dark gray) with automatically obtained trajectories (red circles
denote the starting point of a trajectory and red lines the individual paths until the
current frame).

rotation was observed only for fast speeds (> 1.4 m/s) during experimental setups in
Hirasaki et al. (1999). Additional variation might occur due to yaw rotation of the
head for persons looking around while walking or standing in the observed area. Hence,
shoulders as viewed from above might be a bit more stable when compared to head
variations, in particular for fast speeds. Despite this, we prefer detection of head center
points in the 3D data from the Kinect as the more straightforward and less error-prone
approach, supported by the evaluation results of Section 2.2.

Having the Kinect sensors in a slightly overlapping setting avoids unobserved regions
without any information on the location of pedestrians, and consequently enables more
robust tracking. Figure 2.6 illustrates the results of our automatic tracking approach in a
scene with three persons (current position denoted by dashed circles) based on detections
from three slightly overlapping views. When using overlapping sensors a single person
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Figure 2.6: Automatic tracking of three persons (current position denoted by dashed
circles) based on detections from three slightly overlapping views (crossings in red, green
and blue) with the resulting smoothed trajectories (black curve with circles, within the
magnified box).

potentially creates more than one detection in world coordinate space. This leads to
artifacts within the resulting trajectories in form of small fluctuations (see magnification
in Figure 2.6). We therefore resample each individual trajectory T as defined in (2.1)
comprising N detections to a trajectory T ′ with M vectors defined as

T ′ = {[t′i x′wi y
′
wi ]

T }i=1...M , (2.5)

where t′i = t1, t1 + ∆t′, t1 + 2∆t′, . . . tN with a sample rate ∆t′ = 0.1 seconds. Note that
since the approaches for pedestrian modeling and calibration used in this work make use
of trajectories in 2-dimensional space only, we can omit z′wi in (2.5). The corresponding
x′wi and y

′
wi at the regular time intervals t′i are obtained by cubic spline approximation

according to De Boor (2001) using a smoothing parameter p = 0.98, which smoothes
out the mentioned fluctuations and other small local variations along the trajectory (see
black curve within the magnified box in Figure 2.6).
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2.2 Tracking Evaluation

Real data for pedestrian simulation calibration is often confined to trajectories which
have been manually extracted from video data sets. The reason is that the required
accuracy of the trajectories is very high, and often only manually extracted trajectories
can fulfill such accuracy requirements. It is thus necessary to compare the output of
the Kinect pedestrian tracking described above with the "gold standard“ of manually
generated trajectories in order to have an idea how suitable automatic collection of really
large data sets are.

A human observer annotated the locations of all individuals in single frames using
the raw depth sensor data from a single Kinect sensor. While the Kinect’s depth data
does not allow for identifying persons, the body shape of individuals is still recognizable.
Our evaluation data is composed of two trajectory sets: the first data set comprises
15578 frames (≈ 590 seconds) with pedestrian flows of low to medium density, i.e. up to
0.5 persons/m2, and a total number of 128 persons. The second sequence includes 251
frames (≈ 12 seconds) with a total number of 21 persons and comparably higher densities
of up to 1 person/m2. Note that the stated densities are averaged over the covered area.
Thus, the data do contain local densities well above 1 person/m2, for instance in case
that several pedestrians stand or walk closer together although a larger area is available.
Figure 2.7 illustrates a single frame from the second dataset.

Figure 2.7: Kinect depth raw data in 3D (gray) with manually annotated head positions
of individuals (red circles).
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Figure 2.8: Tracking performance evaluation including 21 persons with up to 1 person/m2

based on (a) ground truth (green) and automatic trajectories (magenta) and (b) the
temporal aspects of the Multiple Object Tracking Precision (MOTP) with average
(dashed line) and standard deviation (dotted line).

In the first step of the evaluation, every automatically computed trajectory T is
assigned to a ground truth trajectory T G by minimizing a trajectory distance metric.
Quantifying the pairwise trajectory dissimilarity in a distance metric is not trivial due to
the usually different number of points. Here we used the discrete Fréchet distance (Eiter
and Mannila (1994)). Following an informal interpretation, the Fréchet distance between
two trajectories is the minimum length of a leash that allows a dog and its owner to
walk along their respective trajectories, from one end to the other, without backtracking.
Taking into account the location and ordering of points along the trajectories, the Fréchet
distance is well-suited for the comparison of trajectories and is less sensitive to outlier
points than alternatives for arbitrary point sets such as the Hausdorff distance.

As a result of the trajectory assignment we derive a set of P matching trajectory
pairs for a time stamp t. Any remaining automatically computed trajectories which could
not be matched are considered as false positives. Similarly, any remaining ground truth
trajectories which could not be matched are considered as misses. Figure 2.8a shows
the results based on trajectories from the second sequence. Our dataset produced zero
false positives and one miss. It was seen in the data that this missed person was smaller
than the defined cutoff value of 1.5 meters. In order to quantify the position error for all
correctly tracked objects over all frames, we use the Multiple Object Tracking Precision
(MOTP) as described in Bernardin and Stiefelhagen (2008), which is defined as

QMOTP =
∑
i,t

∥∥∥xi,t − xG
i,t

∥∥∥∑
t ct

, (2.6)

where ct is the number of matches found at time t. For each match i, the Euclidean
distance between the automatically computed trajectory point xi,t and the ground truth
trajectory point xG

i,t at time t is computed.
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Figure 2.9: Tracking evaluation results, showing the distribution of the Euclidean distance
between the corresponding automatic trajectory point xi,t and the ground truth trajectory
point xG

i,t for (a) Sequence 1 and (b) Sequence 2.

The evaluation results for our detection and tracking approach are shown in Table 2.2
and reveal that the localization errors in terms of MOTP are only within a few centimeters
for both sequences. Figure 2.8b illustrates the evolvement of MOTP over short time
intervals based on the second sequence: for each time interval ∆t = 0.5 seconds, the
tracking precision QMOTP∆t is computed equivalenty to (2.6). This analysis reveals that
tracking accuracy is stable independent of the number of people. Figure 2.9 illustrates the
distribution of the Euclidean distances

∥∥∥xi,t − xG
i,t

∥∥∥ according to (2.6) for all matches i
between corresponding automatic and ground truth trajectory points for both sequences.
Compared to other scientific work such as Heath and Guibas (2008), where MOTP was
in the range between 16 and 19 cm our approach shows significantly higher accuracy.

The Pedestrian Detection Rate (PDR) measures the rate at which tracked pedestrians
are matched to the ground truth. The value of PDR varies between 0 and 1. While 0
means poor pedestrian detection, 1 means that all ground truth pedestrians are matched.
The metric is given by

QPDR = TP
TP + FN , (2.7)

where the number of matched ground truth pedestrians is denoted by true positives
TP. False negatives FN state the number of missing detections. Table 2.2 provides the
evaluation results for our detection and tracking approach. Based on the PDR, our
approach performs well on both sequences, with detection rates above 94%.

For Sequence 1 the PDR’s for 115 out of 127 tracked persons are higher than 90%
whereas the remaining 12 persons are lying in the range between 26.5 to 88.6%. For
Sequence 2 the PDR’s for 19 out of 21 persons are above 90% with the remaining 2
persons being in the range between 36.2 and 46.3%.
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QPDR[%] QMOTP[mm]
Sequence 1 96.20 (12.39) 41.3 (30.2)

Sequence 2 93.86 (17.64) 34.0 (21.0)

Table 2.2: Tracking evaluation results, showing Pedestrian Detection Rate (PDR) and
Multiple Object Tracking Precision (MOTP), and its standard deviation in brackets.

2.3 Walking Experiments

The people trajectories automatically obtained by the Kinect people detection and
tracking described above have a positioning error of only a few centimeters with respect
to manual annotation (see Table 2.2). Thus, a set of mounted and calibrated Kinects
can quickly and easily produce large datasets of accurate empirical observations. Such
movement datasets covering a variety of walking behavior are exactly what microscopic
pedestrian models must rely on in order to be realistic.

We performed a variety of walking experiments at the MIT’s Infinite Corridor described
in the beginning of Chapter 2 while capturing depth image sequences of the three Kinect
sensors. Applying the people tracking algorithm on the collected Kinect raw depth
data produced a comprehensive amount of robust trajectories providing the necessary
information for calibrating different types of microscopic pedestrian simulation models.
The walking experiments were performed under real world conditions, meaning that the
individuals traversing MIT’s Infinite Corridor had no information about being observed.

In the first walking experiment, a person standing in the center of the observed
area served as an obstacle for passing people. The 685 trajectories of this setting were
recorded during a period of approximately 28 minutes (see Figure 2.10a). The second
walking experiment includes “normal” walking behavior without any external influence
for a time span of around one hour. The 1989 trajectories computed with our Kinect
approach are illustrated in Figure 2.10b. The red and blue trajectories in Figure 2.10a
and b represent the two walking lanes in opposite directions which people form most
of the time. From thorough investigation of both datasets we can confirm that various
conditions are covered, including (but not exclusively) walking at different densities,
walking-stopping-walking, abrupt changes of direction and random movement.

Figures 2.11a and b show the walking speed histograms computed from the trajectories
of the two calibration data sets (the velocity of the person acting as an obstacle in
experiment 1 is filtered out). Fitted parameters of a Gaussian function to the data set
result in a mean speed of 1.33 m/s and a standard deviation of 0.26 m/s. Experiment 2
shows similar results for the walking speed distribution with a mean speed of 1.30 m/s
and a standard deviation of 0.33 m/s. Our results are well in line with findings in the
scientific literature. For instance, the literature review in Daamen and Hoogendoorn
(2006) revealed that the walking speed of an individual appears to follow a normal
distribution with an estimated mean of 1.34 m/s and a standard deviation of 0.37 m/s.
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(a) (b)
Figure 2.10: Trajectories of the benchmarking data set automatically retrieved from (a)
experiment 1 and (b) experiment 2 (walking directions are encoded in red and blue).

2.4 Summary
In this chapter we have presented an algorithm for automatically collecting people
trajectories using the Microsoft Kinect. The performed evaluation showed that our
algorithm is capable of tracking individuals with high precision, that is a Pedestrian
Detection Rate of up to 94% and a Multiple Object Tracking Precision of 4 cm. By
applying our tracking approach in two walking experiments under real world conditions,
we have obtained a benchmarking data set consisting of 2674 trajectories. In the rest
of the dissertation this benchmarking dataset is used for calibration and validation
of different microscopic pedestrian simulation approaches which will be described in
Chapter 3.
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Figure 2.11: Walking speed distribution from (a) experiment 1 and (b) experiment 2.
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CHAPTER 3
Modeling Approaches for

Pedestrian Simulation

The objective of this thesis is to evaluate pedestrian simulation models with respect
to the observed pedestrian movement from our benchmarking data set presented in
Chapter 2 in order to reveal the individual capabilities and differences between the
modeling approaches. This chapter describes the selected models which are part of
the research in this thesis, that is Social Force models, a Cellular Automaton model, a
velocity-based model and discrete-choice models. For each model, we explain the basic
concept and the parameters which need to be considered in the model calibration.

Furthermore, the implementations of a selected subset of these models will be examined
using test cases from the RiMEA-Guideline Rogsch et al. (2014). The results of this
analysis provide an initial verification and validation of the models based on their
parameter sets as reported in the respective literature.

3.1 Description of Pedestrian Modeling Approaches

For performing pedestrian simulations, various academic tools, e.g. NOMAD (Hoogen-
doorn (2003)), Hermes (Holl et al. (2014)), MATSim (Dobler and Lämmel (2014)), and
commercial software, e.g. SimWalk (Savannah Simulations), PedGo (TraffGo), VisWalk
(PTV), MassMotion (Oasys Software), Cast (ARC), Legion (Legion International Lim-
ited), AnyLogic (AnyLogic), Myriad II (Crowd Dynamics), exist.

On the operational level, many of them are based or are closely related to the Social
Force approach which was first described in Helbing and Molnár (1995). Inspired by
the principles of the Social Force model different variations have been proposed in the
scientific literature such as in Lakoba et al. (2005), Parisi et al. (2009), Seyfried et al.
(2006). Based on the research in the field of traffic flow simulations, Burstedde et al.
(2001) developed an advanced Cellular Automaton approach which is also applicable for
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simulating pedestrian movement. Within the last decade, this discrete-space model gained
significant popularity since it requires less computational effort to perform simulations
including a high number (i.e. more than 10000) of pedestrians in parallel due to its
simple structure. To overcome some of the limitations of the Cellular Automaton model
(e.g. all cells are identical, movement on a rectangular grid structure), the Optimal Steps
Model from Seitz and Köster (2012) models stepwise movement as a local discretization
on a circle around virtual pedestrians. The traditional approaches, such as the Social
Force approach presented in Helbing and Molnár (1995) or the Cellular Automaton model
from Burstedde et al. (2001) rely only on the current position of pedestrians in the scene
for deriving the next step. Recently, more advanced models evolved which attempt to
imitate more natural behavior by also including (short-term) predictions of individual
movement. These models are termed velocity based models as they are based on the
estimation of the velocity vector of each individual. One example of this class of models
is the Optimal Reciprocal Collision Avoidance model from van den Berg et al. (2011).
For a more comprehensive review on state-of-the-art crowd motion simulation models
the reader is referred to Duives et al. (2013).

In this work, we focus our investigations on a selected set of operational pedestrian
simulation models. The choice of models is based on including approaches which are
widespread (i.e. Social Force and Cellular Automaton model) or have recently emerged
and revealed promising results (i.e. Optimal Reciprocal Collision Avoidance and Optimal
Steps model). The details of the selected models are described in the following.

3.1.1 Social Force Model

Given that the movement of a person depends on velocity and hence on acceleration, the
principle of the Social Force model aims at representing individual walking behavior as a
sum of different accelerations as

fα(t) = v0
αeα − vα

τ
+
∑
β 6=α

fαβ(t) +
∑
i

fαi(t). (3.1)

The acceleration fα at time t of an individual α towards a certain goal is defined by the
desired direction of movement eα with a desired speed v0

α. Here, the current velocity vα
is adapted to the desired speed v0

α within a certain relaxation time τ . The movement
of a pedestrian α is influenced by other pedestrians β which is modeled as a repulsive
acceleration fαβ. A similar repulsive behavior for static obstacles i (e.g. walls) is
represented by the acceleration fαi. For notational simplicity, we omit the dependence on
time t for the rest of the thesis.

From the set of different formulations of the Social Force model available in the
scientific literature, we compare three variations of the Social Force model based on the
general formulation (3.1).
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SFA: The first model from Helbing and Molnár (1995) is based on a circular specifi-
cation of the repulsive force given as

fAαβ = ape
−(rα+rβ−‖dαβ‖)

bp
dαβ
‖dαβ‖

, (3.2)

where rα and rβ denote the radii of pedestrians α and β, and dαβ is the distance vector
pointing from pedestrian α to β. The interaction of pedestrian α is parameterized by the
strength ap and the range bp, where their values are determined in the model calibration
process. The model parameters which need to be calibrated are listed in Table 3.1.

SFB: The second model uses the elliptical specification of the repulsive force as
described in Helbing and Johansson (2009) determined by

fBαβ = ape
−
wαβ
bp

dαβ
‖dαβ‖

, (3.3)

where the semi-minor axis wαβ of the elliptic formulation is given by

wαβ = 1
2

√
(‖dαβ‖+ ‖dαβ − (vβ − vα) ∆t‖)2 − ‖(vβ − vα)∆t‖2. (3.4)

Here, the velocity vectors vα and vβ of pedestrians α and β are included, allowing to take
into account the step size of pedestrians. That is, the step size of pedestrian α is denoted
by vα∆t. The model parameters which need to be calibrated are listed in Table 3.2.

SFC : The third model is an implementation of Rudloff et al. (2011b) in which the
repulsive force is split into one force directed in the opposite of the walking direction, i.e.
the deceleration force, and another one perpendicular to it, i.e. the evasive force. Here,
the repulsive force is given as

fCαβ = nα ade
−bdθ

2
αβ

vrel
−cd‖dαβ‖︸ ︷︷ ︸

deceleration force

+pα aee
−be|θαβ|

vrel
−ce‖dαβ‖︸ ︷︷ ︸

evasive force

, (3.5)

where nα is the direction of movement of pedestrian α and pα its perpendicular vector
directing away from pedestrian β. Furthermore, θαβ is the angle between nα and dαβ
and vrel denotes the relative velocity between pedestrians α and β.

Note that the repulsive force from static obstacles fαi is modeled by using the same
functional form as given by the repulsive force from pedestrians. Here, the point of
an obstacle i closest to pedestrian α replaces the position β and vi is set to zero.
Furthermore, we take into account that pedestrians have a higher response to other
pedestrians in front of them by including an anisotropic behavior, as described in Helbing
and Johansson (2009), into the first two formulations. In the model, this anisotropic
behavior is represented by an angular-dependent prefactor defined by

w(ϕαβ) =
(
λα + (1− λα) 1 + cos(ϕαβ)

2

)
, (3.6)

where λα ∈ [0, 1] regulates the strength of interactions from behind. The model parameters
which need to be calibrated are listed in Table 3.3.
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Parameter Description Range

τ Relaxation time. [0, 1]
ap Strength of the interaction force between pedestrian α and other

pedestrians.
[0,∞[

bp Range of the interaction force between pedestrian α and other
pedestrians.

[0,∞[

ao Strength of the interaction force between pedestrian α and obsta-
cles.

[0,∞[

bo Range of the interaction force between pedestrian α and obstacles. [0,∞[

Table 3.1: List of parameters which are used for calibrating the SFA model.

Parameter Description Range

τ Relaxation time. [0, 1]
ap Strength of the interaction force between pedestrian α and other

pedestrians.
[0,∞[

bp Range of the interaction force between pedestrian α and other
pedestrians.

[0,∞[

ao Strength of the interaction force between pedestrian α and obsta-
cles.

[0,∞[

bo Range of the interaction force between pedestrian α and obstacles. [0,∞[
λαp Anisotropic interaction behavior between pedestrian α and other

pedestrians.
[0,∞[

λαo Anisotropic interaction behavior between pedestrian α and obsta-
cles.

[0,∞[

Table 3.2: List of parameters which are used for calibrating the SFB model.

Parameter Description Range

τ Relaxation time. [0, 1]
ad Strength of the deceleration force between pedestrian α and other

pedestrians and obstacles.
[0,∞[

bd Angular dependence of the deceleration force between pedestrian
α and other pedestrians and obstacles.

[0,∞[

cd Range of the deceleration force between pedestrian α and other
pedestrians and obstacles.

[0,∞[

ae Strength of the evasive force between pedestrian α and other
pedestrians and obstacles.

[0,∞[

be Angular dependence of the evasive force between pedestrian α and
other pedestrians and obstacles.

[0,∞[

ce Range evasive behavior between pedestrian α and other pedestrians
and obstacles.

[0,∞[

Table 3.3: List of parameters which are used for calibrating the SFC model.
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3.1.2 Cellular Automaton Model

In Burstedde et al. (2001) a two-dimensional Cellular Automaton (CA) model is presented
for simulating pedestrian movement. Each cell has a size of 40 x 40 cm2 and can either be
empty or occupied by exactly one pedestrian. As illustrated in Figure 3.1, the probabilities
for moving a pedestrian are encoded in a 3x3 matrix Mi,j where the central element
describes the probability for the pedestrian not to move at all, while the remaining 8
correspond to a move to the neighboring cells. If a cell is occupied, the probability is
set to zero. The update is performed in parallel for all pedestrians and conflicts are
resolved according to the following rules: If no other pedestrian targets the desired cell,
the move is executed. If more than one pedestrian share the same target cell, one is
chosen according to the relative probabilities based on which each pedestrian has chosen
the target. The first ranked pedestrian moves while its rivals for the same target keep
their position.

M–1,–1 M–1,0 M–1,1 

M0,–1 M0,0 M0,1 

M1,–1 M1,0 M1,1 

Figure 3.1: Possibilities for a pedestrian to move to the neighboring cells and probabilities
for moving encoded in a 3x3 matrix.

To take into account interactions between pedestrians and the geometry of their
surrounding environment, a static floor field Si,j is used which does not evolve over time.
This allows to specify regions of space which are not accessible by pedestrians due to
obstructions such as walls. The static floor field also describes the shortest distance
to the target position of an individual. It is calculated such that the field values are
increasing the closer they are to the target.

Long-range interactions between pedestrians are modeled using a dynamic floor field
Di,j which modifies the transition probabilities to neighboring cells. The model is based
on an idea similar to chemotaxis whereas pedestrians follow a virtual rather than a
chemical trace. This allows, for instance, to model the behavior of following other
pedestrians. The dynamic floor field can be modified by the motion of the pedestrians
and is subject to diffusion and decay in order to broaden and dilute the trace. The model
uses parameters to control the intensity of diffusion and the decay individually.

For the research in this thesis, we use the version of the Cellular Automaton model
as described in Kirchner and Schadschneider (2002). Note that they use a matrix for the
transition probabilities with Von Neumann neighborhood, thus limiting the freedom of
movement to the four orthogonally surrounding cells of an individual.
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In order to model the movement and interactions of pedestrians, the following update
rules are applied to all pedestrians at the same time:

1. The dynamic floor field D decays with probability δ ∈ [0, 1] and diffuses with
probability γ ∈ [0, 1] to one of its neighboring cells.

2. For each pedestrian, the transition probabilities pi,j for a move to an unoccupied
neighbor cell (i, j) are determined by

pij = N exp(kDDij) exp(kSSij)(1− nij)ξij , (3.7)

where the two parameters kD ∈ [0,∞[ and kS ∈ [0,∞[ are used as weights for the
values of the fields D and S. The occupation number nij and obstacle number
ξij are set to 0 if cell (i, j) is blocked by other pedestrians or walls, respectively,
and are otherwise 1. Furthermore, the normalization factor N is set such that∑
i,j pij = 1.

3. Each pedestrian selects a target cell based on the transition probabilities pij
determined in the previous step.

4. Conflicts are resolved based on the relative probabilities of the individuals that
have chosen the same target cell.

5. Whenever an individual moves from cell (i, j) to one of its neighboring cells, the
starting cell is increased by one, i.e. Di,j → Di,j + 1.

The model parameters for the Cellular Automaton which need to be calibrated are listed
in Table 3.4.

Parameter Description Range

kD Weight of the dynamic floor field D. [0,∞[
kS Weight of the static floor field S. [0,∞[
γ Diffusion probability of the dynamic floor field D. [0, 1]
δ Decay probability of the dynamic floor field D. [0, 1]

Table 3.4: List of parameters which are used for calibrating the Cellular Automaton
model.
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3.1.3 Optimal Reciprocal Collision Avoidance Model

The approach of the Optimal Reciprocal Collision Avoidance (ORCA) model as described
in van den Berg et al. (2011) implies that each individual takes into account the observed
velocity of other individuals in order to avoid collisions. Individuals are reciprocally
collision-avoiding (they "share the responsibility") and it is guaranteed that two particular
individuals are collision-free for at least a fixed amount of time into the future. Note that
the following description of the ORCA model is closely based on the paper of van den
Berg et al. (2011).

Each pedestrian α has a current position pα, a current velocity vα and a radius rα.
It is assumed that these parameters can be observed by other pedestrians. Additionally,
each pedestrian possess a preferred velocity vpref

α and a maximum speed vmax
α , which are

both not observable by other pedestrians. Pedestrians cannot communicate with each
other, however, they assume that all pedestrians use the same strategy for selecting a
new velocity. The velocity obstacle V Oτα|β is the set of all relative velocities of pedestrian
α with respect to pedestrian β that will result in a collision between α and β at some
moment before time τ , as illustrated in Figure 3.2. If pedestrians α and β keep moving
at their current velocity, a collision will occur before time τ in case of vα − vβ ∈ V Oτα|β ,
or equivalently vβ − vα ∈ V Oτβ|α. In turn, if vα − vβ /∈ V Oτα|β, pedestrian α and β are
guaranteed to be collision-free for at least τ time.

𝑉𝑉𝛼|𝛽
𝜏  

r𝛼 + r𝛽  

(𝐩𝛽 − 𝐩𝛼)/𝜏  

𝑣𝑦 

𝑣𝑥 

𝐩𝛽 − 𝐩𝛼  

(r𝛼+r𝛽)/𝜏 

Figure 3.2: Geometric interpretation of the velocity obstacle V Oτα|β (gray) as a truncated
cone with its apex at the origin (in velocity space) and its legs tangent to the disc of
radius rα + rβ centered at pβ − pα. The cone is truncated by an arc of a disc of radius
(rα + rβ)/τ centered at (pβ − pα)/τ . The velocity obstacle shown here is for τ = 2 (see
van den Berg et al. (2011)).
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For each other individual, the model derives a half-plane (in velocity-space) of velocities
that are allowed to be selected in order to guarantee collision avoidance (see Figure 3.3).
From the pairs of sets of velocities Vα for α and Vβ for β one has to select the pair that
maximizes the amount of permitted velocities close to optimization velocities vopt

α for α
and vopt

β for β. These sets are denoted ORCAτα|β for α and ORCAτβ|α for β and represent
each a half-plane which contains velocities that are reciprocally collision-avoiding and
maximal. Assuming that adopting velocities vopt

α and vopt
β will lead to a collision of α and

β, i.e. vopt
α − vopt

β ∈ V Oτα|β, vector u denotes the shortest distance between vopt
α − vopt

β

and the boundary of the velocity obstacle, and n is the outward normal of the boundary.
Since both individuals share the responsibility of avoiding collisions, each individual has
to adapt its velocity by (at least) 1

2u. Thus, the set ORCAτα|β of permitted velocities
for α is the half-plane pointing in the direction of n starting at the point vopt

α + 1
2u. As

shown in Figure 3.3, the set ORCAτβ|α for β is defined symmetrically.

𝑉𝑉𝛼|𝛽
𝜏  

v𝛼
opt − v𝜷

opt 

𝐮  
n  

v𝛼
opt 

v𝛽
opt 

𝑣𝑦 

𝑣𝑥 

Figure 3.3: The set ORCAτα|β of permitted velocities for α for optimal reciprocal collision
avoidance with β is a half-plane delimited by the line perpendicular to u through the
point vopt

α + 1
2u, where u is the vector from vopt

α − vopt
β to the closest point on the

boundary of V Oτα|β (see van den Berg et al. (2011)).

Each individual selects its optimal velocity from the intersection of all permitted
half-planes, which can be computed efficiently using linear programming. Under certain
conditions with high densities, the resulting linear program may be infeasible, in which
case the ORCA model selects the safest possible velocity using a three-dimensional linear
program. For avoiding collisions with static obstacles the same approach is used as for
the pedestrians. Since obstacles do not move, however, the person takes full responsibility
of avoiding collisions with them.
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In this work we use the RVO2 C++ library1 as the implementation of the ORCA
algorithm. In order to setting up a simulation run, the RVO2 C++ library allows to
define a set of parameters. For calibrating the ORCA model in this study, we only use a
subset of the available model parameters which are illustrated in Table 3.5.

Parameter Description Range

τp The minimal amount of time for which the agent’s velocities that
are computed by the simulation are safe with respect to other
agents. The larger this number, the sooner this agent will respond
to the presence of other agents, but the less freedom the agent has
in choosing its velocities. Must be positive.

[0,∞[

τo The minimal amount of time for which the agent’s velocities that
are computed by the simulation are safe with respect to obstacles.
The larger this number, the sooner this agent will respond to
the presence of obstacles, but the less freedom the agent has in
choosing its velocities. Must be positive.

[0,∞[

Table 3.5: List of parameters which are used for calibrating the ORCA model (see
http://gamma.cs.unc.edu/RVO2/).

1RVO2 Library C++ v2.0.1 (released October 26, 2010), see http://gamma.cs.unc.edu/RVO2/
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3.1.4 Optimal Steps Model

The Optimal Steps Model (OSM) was first described in Seitz and Köster (2012) and
has been further developed in Seitz and Köster (2014). In this model, the movement of
pedestrians is modeled stepwise in arbitrary directions using attractive and repulsive
potentials. Hence, a spatial discretization within the simulation is used and reflects the
idea of a natural stepwise movement to which individuals decide where to make the next
step. While in Cellular Automaton pedestrians are represented by cells and limited to
movement from cell to cell, the OSM models pedestrians by their position and extension
in space. For each individual the next position is determined by the distance one can
cover with one step. Hence, in Seitz and Köster (2012) the next position is the point
with highest potential selected from a set of possible points which are distributed on a
circle with the radius of the individual’s step length around the current position. The
potential for each point is derived by aggregating potential functions of attraction and
repulsion from other pedestrians and static obstacles. Note that Antonini et al. (2006)
presented a similar approach using a region of interest situated in front of a pedestrian
embedded in a discrete choice framework.

An extension of the original OSM formulation was presented in Seitz and Köster
(2014) where functions represent utilities on multiple circles within the possible step
range and the next position is determined through maximization. In this work, both
OSM approaches, Seitz and Köster (2012) and Seitz and Köster (2014), are used for
the investigations. Note that in Seitz and Köster (2012) the term potential is used and
higher values are more repulsive than lower values. For consistency reasons, this work
uses the formulation of utility functions in both OSM approaches which are the negative
potentials. In the following the approach from Seitz and Köster (2012) is denoted by
OSMA, and from Seitz and Köster (2014) by OSMB respectively.

In both OSM approaches, the movement of a pedestrian towards a certain destination
is represented by a potential field on a two-dimensional grid. This field encodes the
shortest travel time from the destination to any cell in the grid given by the solution
to the Eikonal equation. The Fast Marching algorithm by Sethian (1999) is an efficient
numerical method to solve the Eikonal equation. To obtain a potential value for an
arbitrary point x in the plane bilinear interpolation is used. The negated arrival time is
used as the utility function ut(x) for the attraction to the target.

In order to avoid collisions with other pedestrians or static obstacles, repulsive
functions based on the Euclidean distance are used. The utility function of pedestrian β
affecting another pedestrian at position x is given by

up,β(x) =


−µp if dβ(x)− 2r 6 0
−hpfp(x) if 0 < dβ(x)− 2r < wp,
0 else

(3.8)

with dβ(x) being the Euclidean distance from x to the center of pedestrian β and r
denoting the radius of a pedestrian’s torso. In order to avoid that the torso of a pedestrian
at position x overlaps with the torso of pedestrian β, i.e. dβ(x) 6 2r, the utility is set to
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a low level encoded by parameter µp. In the range from physical contact between two
pedestrian torsos until wp, utilities are modeled by fp(x). According to Seitz and Köster
(2012) and Seitz and Köster (2014), we use r = 0.2 and µp = 1000. Model parameters wp
(width) and hp (height) control the reach and intensity of the function, respectively.

Following the scheme for repulsion from other pedestrians, the repulsive utility induced
by obstacle i, is defined by

uo,i(x) =


−µo if di(x)− r 6 0
−hofo(x) if 0 < di(x)− r < wo,
0 else

(3.9)

where di(x) is the distance to the closest point of the obstacle from position x. Note
that this function uses the shortest distance to the obstacle’s border di(x) minus the
pedestrian’s radius r. In case a pedestrian at position x overlaps with an obstacle, we
use the utility µo = 1000 as described in Seitz and Köster (2014). If multiple obstacles
influence the same point x, only the one with the lowest utility at this point is considered2.

Although, OSMA and OSMB both include the utility functions as described in (3.8)
and (3.9), they differ in the formulations for fp(x) and fo(x).

OSMA: The utility for repulsion of pedestrian β affecting another pedestrian at
position x within the vicinity of dβ(x)− 2r < wp is given by

fAp (x) = exp
(
−apdβ(x)bp

)
. (3.10)

As described in Seitz and Köster (2012), we use ap = 1, bp = 0.2, wp = 1, and hp = 0.4 as
default parameter values in this work. The utility function fAo (x) for obstacles is modeled
using the same functional form as in (3.10) with default parameter values ao = 3, bo = 2,
wo = 6, and ho = 0.2.

OSMB: The model uses a compact support utility function as defined by

fBp (x) = exp
(

1
((dβ(x)− 2r)/wp)2 − 1

)
. (3.11)

According to Seitz and Köster (2014), we use wp = 0.33 and hp = 1.05 as default
parameter values in this work. Again, we use the formulation in (3.11) to model the
utility function fBo (x) for obstacles, with default parameter values wo = 0.65 and ho = 2.

All utility functions are then superposed to the overall utility function given by

u(x) = ut(x) + up,β(x) + uo,i(x). (3.12)

Pedestrians select a subset of reachable points for the next step to choose the one
with the highest utility. The next step in the simulation represents the step of a real
pedestrian.

2Note that in contrast to OSMA used in this work, Seitz and Köster (2012) included the utility as a
sum of all obstacles and set the utility to −10000 to avoid overlapping with obstacles.
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(a) (b)

Figure 3.4: Examples for step circle discretization (a) from OSMA with single circle (Seitz
and Köster (2012)) and (b) from OSMB with multiple circles (Seitz and Köster (2014)).

The step length rs is determined as a function of the individual desired speed v0
α

defined by
rs(v0

α) = β0 + β1v
0
α, (3.13)

with β0 = 0.462 and β1 = 0.235.

OSMA: a circle is placed around the current position of pedestrian α and the point
with the highest utility on it is selected by solving a one-dimensional optimization problem.
The radius rs of the circle is determined by the pedestrian’s step length. Hence, each
point on the circle denotes a location that can be reached with the next movement
step. As shown in Figure 3.4a, the optimization problem can be solved efficiently on an
equidistant grid.

OSMB: also smaller steps than the maximum step length are taken into consideration
by solving a two-dimensional optimization problem. This is further simplified by using a
two-dimensional equidistant grid over the area of the step circle as numerical optimization
scheme. As illustrated in Figure 3.4b, the grid is placed on p concentric circles around
the current position of pedestrian α. Furthermore, the pedestrian’s direction of motion
is constraint by the speed. Thus, only points which fall into the relative angle to the last
direction given by the formula

angle = π − speed (3.14)

are included. At zero speed a maximum angle of π relative to the last direction is allowed,
i.e. pedestrians can move in an arbitrary direction after stopping.

To avoid systematic errors in both OSM approaches, the grid is rotated with a
uniformly distributed random offset λ ∼ U(0, 1). For each position l = 1, . . . , qk on the
step circle k in time step t can be defined by an angle

ϕk,l = 2π
qk

(l + λ) , (3.15)

with number of grid points qk given by

qk = dqp × k/pe . (3.16)
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Here, k = 1 denotes the innermost and k = p the outermost circle respectively. Note that
in OSMB the same spacing between circles as between the number of grid points qp on
the outermost circle can be derived by p = dqp/(2π)e.

The next position within the step circle with radius rs from the point with the highest
utility u(xt+1) is given by

xt+1 = xt + rs ×
k

p
× (cos(ϕk,l), sin(ϕk,l)) . (3.17)

The model parameters which need to be calibrated for the OSMA and OSMB are
listed in Tables 3.6 and 3.7, respectively.

Parameter Description Range

wp Range of the utility function for the interaction between pedestrians. [0,∞[
hp Intensity of the utility function for the interaction between pedestrians. [0,∞[
ap Intensity of the exponential decay in the utility function for the

interaction between pedestrians.
[0,∞[

bp Range of the exponential decay in the utility function for the interac-
tion between pedestrians.

[0,∞[

wo Range of the utility function for the interaction with obstacles. [0,∞[
ho Intensity of the utility function for the interaction with obstacles. [0,∞[
ao Intensity of the exponential decay in the utility function for the

interaction with obstacles.
[0,∞[

bo Range of the exponential decay in the utility function for the interac-
tion with obstacles.

[0,∞[

Table 3.6: List of parameters which are used for calibrating the OSMA model.

Parameter Description Range

wp Range of the utility function for the interaction between pedestrians. [0,∞[
hp Intensity of the utility function for the interaction between pedestrians. [0,∞[
wo Range of the utility function for the interaction with obstacles. [0,∞[
ho Intensity of the utility function for the interaction with obstacles. [0,∞[

Table 3.7: List of parameters which are used for calibrating the OSMB model.
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3.2 Model Verification and Validation using RiMEA Test
Cases

In order to objectively compare different implementations of microscopic pedestrian
simulation models, their performance has to be assessed qualitatively with respect
to emerging spatial-temporal patterns (e.g. lane formation) and quantitatively based
on evaluation measures with respect to accuracy (e.g. reproducibility of pedestrian
densities). As of now, several evaluation measures for assessing different implementations
of microscopic pedestrian simulation models have been described and used in the literature.
One recent attempt to define a minimum standard for evacuation analysis is stated by
the development of the RiMEA-Guideline Rogsch et al. (2014) which includes fourteen
test cases for evaluating implementations of pedestrian simulation models.

The RiMEA-Guideline (in German: RiMEA-Richtlinie, Richtlinie für Mikroskopis-
che Evakuierungs Analysen - Guideline for Microscopic Evacuation Analyses; RiMEA-
Guideline) is a guideline for German-speaking authorities to evaluate the quality of
evacuation analyses for complex buildings. Based on the RiMEA-Guideline expert re-
ports are written to ensure that the fundamental questions of an evacuation analysis
are answered. The RiMEA-Guideline has been used in several scientific contributions
for the demonstration and evaluation of pedestrian simulation models: in Kretz (2009)
a dynamic distance potential field method for route choice on the operational level of
pedestrian dynamics has been described and was applied in a simulation of a RiMEA
test case. In Davidich and Köster (2012) a cellular automaton based on a hexagonal grid
was calibrated and the simulation results were evaluated according to a test provided by
RiMEA. Furthermore, the results of different commercial simulation tools (e.g. Viswalk,
PedGo, ASERI) with respect to the RiMEA test cases are published on the RiMEA
Website Brunner et al. (2009).

In addition the United States’ National Institute of Standards and Technology (NIST)
recommended a set of seventeen verification tests in order to verify building fire evacuation
models Ronchi et al. (2013). In Isenhour and Löhner (2014) the tests recommended
by NIST were simulated using the PEDFLOW tool, which lead to the identification of
several shortcomings and modifications for further improvements of the tool.

The remainder of this section presents the validation and comparison of the microscopic
pedestrian simulation models described in Section 3.1 based on selected test cases from
the RiMEA-Guideline. We chose the following modeling approaches for this investigation:
the Social Force model (SFB) Helbing and Johansson (2009), the Optimal Reciprocal
Collision Avoidance (ORCA) model van den Berg et al. (2011) and the Optimal Steps
Model (OSMA) Seitz and Köster (2012). The results will reveal the performance of each
model individually with respect to the specific tests from the RiMEA-Guideline. Hence,
we see this examination also as a first step into model verification (i.e. assessing a model’s
output for acceptability) and validation (i.e. assessing a model’s ability to reproduce the
real system). It also will give valuable insights into the major differences between the
evaluated pedestrian simulation models which are important for model developers as well
as for practitioners.
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3.2.1 Description of RiMEA Test Cases

The RiMEA-Guideline Brunner et al. (2009) includes a description of different test cases
for evaluating implementations of pedestrian simulation models to reproduce a set of
requirements for an evacuation analysis. As of now, 14 test cases are defined in total. In
this work we use the following three test cases for the model investigations:

• Test Case 4: Specific flow through an opening

• Test Case 6: Moving around a corner

• Test Case 12: Effects originating from bottlenecks

The comparison in this thesis has put the focus on the core functionality of the
investigated operational models only. Hence, we apply test cases which do not include
tactical behavior and aspects of dynamic routing (e.g. selection of exits). In the following
subsections, the three test cases used in this study are described in detail.

Test Case 4

Based on a periodic boundary system, with a width of 4 m, the specific flow (in persons/ms)
should be measured for different densities (in persons/m2) inside the system. The results
of this test case are supposed to reveal the relation between specific flow and density in a
so-called Fundamental Diagram Weidmann (1993) as shown in Figure 3.5.

Since periodic boundaries are hard to implement in a simulator, we use an approxi-
mation for this test case by modeling a corridor 60 m in length and 10 m in width as
illustrated in Figure 3.6. Over the available area, we equally distributed pedestrians
and varied their total number in different simulation runs in order to generate average
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Figure 3.5: Fundamental Diagram representing specific flow (y-axis) and density (x-axis)
based on Weidmann (1993).
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densities of 1, 2, 3, 4 and 5 persons/m2. Each pedestrian should move towards the same
end of the corridor. The averages of density and velocity are measured in an interval of
1s inside an area of 4 x 4 m (see blue rectangle in Figure 3.6) located at the center of the
corridor. Size and location of the measurement areas have been chosen in order that no
boundary effects from walls are measured.

60 

28 

10
 

4 
3 

4 

Figure 3.6: Test Case 4 - Pedestrians are equally distributed across the available area
and move towards the right end (red line) of the corridor (red arrows denote walking
direction). All measures are in m.

Test Case 6

In this test case 20 pedestrians should move around a 90◦ corner without "crossing" walls.
The layout of the corner in this test case is illustrated in Figure 3.7. Furthermore, the
walking time for each pedestrian is measured between LStart and LEnd.
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Figure 3.7: Test Case 6 - Pedestrians are placed in the crosshatched area and walk around
the corner (red arrows denote walking direction) without crossing walls and corner. All
measures are in m.
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Test Case 12

In this test case 150 pedestrians should be placed in the crosshatched area of the first
room (see Figure 3.8) and should move immediately towards the exit in the second room
using the connecting corridor. The results should reveal if congestion appears at the exit.
Since the pedestrian flow is limited by the bottleneck in the first room, it is expected
that congestion only appears at this location and not at the exit in the second room.
Therefore, the density is measured for each room in two different areas (see Figure 3.8):
Area A (blue) covers a 1 x 1 m region directly in front of each bottleneck and Area B
(orange) covers a region of 5 m2 in the vicinity.
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Figure 3.8: Test Case 12 - The bottleneck in Room 1 should lead to clogging while
Room 2 is expected to be uncongested. All measures are in m.

3.2.2 Validation Results

We simulated the three test cases using the modeling approaches SFB , ORCA and OSMA.
For all three models, we defined the desired speed v0

α according to Weidmann (1993) from
a normal distribution with mean value µ = 1.34 m/s and standard deviation σ = 0.26.
The parameters of the SFB model were set according to Rudloff et al. (2011b). For the
ORCA model the default parameters from the RVO2 C++ library3 were used. The
parameters of the OSMA were set according to the specifications of Seitz and Köster
(2012). Note that the parameter sets of the three models were left unchanged during all
simulation runs.

In test cases 6 and 12 the final goal is not visible from every point in the starting
zone. Therefore an intermediate goal is placed manually to guarantee the validity of
all trajectories. The changeover to the final goal takes place when a pedestrian has
approached the intermediate goal within the range of one meter.

3RVO2 Library C++ v2.0.1 (released October 26, 2010), see http://gamma.cs.unc.edu/RVO2/
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Results for Test Case 4

We performed five simulation runs for each average density ranging from 1 to 5 persons/m2.
All of the tested models were able to simulate pedestrian movement in the defined corridor
setting as demanded in the description of the test case in Section 2.1. The resulting
estimated Fundamental Diagrams are shown in Figure 3.9.

We find that all three models have the typical flow over density relationship. However,
all of them produce significant higher maximum flow rates than in the reference Funda-
mental Diagram from Weidmann (1993). In case of the ORCA model the maximum is
almost four times of the reference Fundamental Diagram and shifted to a higher density.
As displayed in Figure 3.9 the match with the Fundamental Diagram from Weidmann
(1993) is very poor. By investigating the simulated trajectories, we found that the ORCA
model moves the simulated pedestrians almost as a whole block which seems to facilitate
that individuals can maintain higher velocities even in scenarios with increased density.
The OSMA produces a good match at low and high densities while exceeding the flow in
between. Note that we did not apply the model adaption from Seitz and Köster (2012) to
restrict pedestrians from movement if their current speed is higher than the theoretical
speed from Weidmann (1993) for the current local density. Although Seitz and Köster
(2012) showed that this mechanism results in a good approximation, it also requires
using the Fundamental Diagram as an input to the model. It has to be examined if
a parameter set can be found that provides a better fit of the Fundamental Diagram
without including this mechanism in the model. In this test, the SFB shows the closest
match with the reference Fundamental Diagram from Weidmann (1993).
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Figure 3.9: Estimated Fundamental Diagrams with (a) flow and (b) speed over density
as result from the three tested models using a measurement area of 4 x 4 m from Test
Case 4. The black line corresponds to the Fundamental Diagram in Weidmann (1993).
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Results for Test Case 6

In this test case, we have performed 10 simulation runs for each model. Our results
confirm that all tested models are able to replicate movement around a corner without
stepping through the walls. A qualitative evaluation of the simulation for walking around
a corner is illustrated in Figure 3.10. It has to be noted that we defined a sub-goal, which
is located one meter away from the inner corner on a line connecting the vertices of the
inner and outer corner. Thus, pedestrians do not steer directly to the vertex of the inner
corner. Figure 3.11 shows the estimated probability density function of the walking times
from all simulation runs.

The resulting average and extreme values of the walking times from the 10 simulation
runs are shown in Table 3.8. These results show that the three tested models simulate
significantly different walking times in this test case. The average walking times are more
than 1.3 times as large for the ORCA model than for the OSMA approach. Pedestrians
simulated with the OSMA can move smoothly around the corner which results in the
fastest average walking times. The SFB model simulated this test case also without any
exceedingly strong pedestrian interaction, thus, on average taking only 3.2 seconds longer
for all pedestrians to reach their destination than with the OSMA approach. In contrast,
the ORCA model creates congestions in the area of the corner (see Figure 3.10b) which
significantly slowed down the pedestrian flow.

(a) (b) (c)

Figure 3.10: Simulation results from (a) SFB model, (b) ORCA model and (c) OSMA at
time t = 10s for Test Case 6.
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Figure 3.11: Estimated probability density function of walking times from Test Case 6.

Results for Test Case 12

We have performed 10 simulation runs for each model in this test case. Again, we have
defined a sub-goal at the center of the entrance to the bottleneck in Room 1. The
qualitative results shown in Figure 3.12 reveal the differences in the pedestrian behavior
in conjunction with bottlenecks: the Social Force model SFB creates congestions in front
of the bottleneck in Room 1 which forms a half circle. At the beginning there is almost
no congestion in front of the bottleneck in Room 2, but over time the density increases
too. In contrast, pedestrians are much dispersed in front of the bottleneck in Room 1 in
the OSMA. The model generates two walking lanes inside the corridor most of the time.
As a consequence, the throughput is significantly higher than in the two other models.
The ORCA model creates strong turbulences in the movement of pedestrians in front of
the bottleneck in Room 1. This hinders pedestrians from walking into the corridor and
creates unrealistic high waiting times in front of the bottleneck in Room 1.

These qualitative observations are also confirmed by the estimated probability density
function of the walking times shown in Figure 3.13. It can be seen that the walking times
for the OSMA are smaller and that the distribution for the SFB and the ORCA model is
significantly broader.

Figure 3.14 illustrates the densities which were measured for the three tested models
in the two areas of both rooms. As expected, all models reveal higher densities in Room 1
for Area A. For Area B in Room 1, the SFB and the ORCA model both reach densities
of over 4 persons/m2 while the OSMA stays below this value. In Room 2, only the SFB
model shows higher densities in Area A which is directly in front of the bottleneck. In
the surrounding area, that is Area B, the SFB approach produces higher densities for
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(a)

(b)

(c)

Figure 3.12: Simulation results from (a) SFB model, (b) ORCA model and (c) OSMA at
time t = 15s for Test Case 12.
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Figure 3.13: Estimated probability density function of walking times from Test Case 12.

a short time while the other two models always stay below 2 persons/m2. In contrast,
the ORCA model and the OSMA approach do not create any significant congestions
in neither of the two areas within Room 2. It can be seen that this is a result of the
inflow restrictions into the bottleneck of Room 1. Hence, the original hypothesis of Test
Case 12, namely, that congestion only appears at the exit of the first room and not at
the exit of the second room is satisfied by the ORCA model and the OSMA.

The resulting average and extreme values of the walking times from the 10 simulation
runs are shown in Table 3.8. For the OSMA and the Social Force model, the average
walking times are relatively close whereas the values for the ORCA model are twice as
large as for the other two tested models.

Average Maximum Walking Times (min,max) [s]
Test Case 6 Test Case 12

SFB 22.6 (20.0,27.6) 129.7 (109.3,161.9)
ORCA 25.3 (22.5,28.4) 202.9 (160.8,241.2)
OSMA 19.4 (16.2,21.8) 95.0 (85.5,100.2)

Table 3.8: Maximum walking times based on 10 simulation runs for Test Case 6 and Test
Case 12.
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Figure 3.14: Densities measured for the three tested models from Test Case 12.

3.2.3 Discussion of Results

Based on the comparison of the three modeling approaches in Section 3.2 it is hard to
infer systematic behavior for each individual model. For instance, the ORCA model
revealed the highest flow rates in the Fundamental Digram in Test Case 4. However, in
Test Case 6 and 12, it had the longest average walking times among the tested models.
A possible explanation for this behavior is the strong turbulences in the pedestrian flow
in front of bottlenecks which occurred in the implementation of the ORCA model (see
also Berseth et al. (2014)). Furthermore, wall effects in Test Case 12 keep the pedestrians
in the SFB model mainly in single lanes walking along the corridor whereas in the OSMA

and in the ORCA model pedestrians often walk in double lanes (see Figure 3.12).
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From our results of the test cases we cannot disprove any of the three tested models.
In fact, the encoded criteria to successfully fulfill the applied test cases are not strict
(with the exceptions that pedestrians must reach their goal and must not walk through
walls) and lack of quantifiable measures, such as minimum and maximum boundaries for
average walking times in Test Case 6 and 12.

Beside the Fundamental Diagram from Weidmann (1993), empirical data from exper-
imental or real-world observations are currently not included in the RiMEA test cases.
Since the effects described in the test cases are therefore rather based on assumptions or
human observations, there is a strong need for empirical underpinning of these effects.
This goes along with an extension of quantitative evaluation metrics for pedestrian
movement characteristics beyond, for instance, the Fundamental Diagram.

3.3 Summary
In this chapter we have described the microscopic modeling approaches which will be
used in the remainder of this dissertation. These approaches allow simulating pedestrian
movement behavior on the operational level based on different modeling principles:
accelerations through social forces, transition probabilities for moving between cells,
optimal velocities by reciprocal collision avoidance and natural stepwise movement.

In a first attempt to verify and validate microscopic modeling approaches, we have
simulated three test cases of the RiMEA-Guideline. Although, the results from these test
cases did not allow to throughly investigate pedestrian simulation models, they provide
the capability to reveal possible implementation faults and basic behavior patterns of
individual approaches.

In Chapter 4 we will introduce a flexible simulation framework that facilitates to
switch pedestrian models in a simple way and thus constitutes an optimal basis for a
structured evaluation of different approaches.
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CHAPTER 4
Pedestrian Simulation Framework

In the case of a detailed human interaction analysis one might be interested in when and
how individuals avoid collisions or evade from obstacles. A practical application for this
is, for instance, how interior train layouts affect the boarding and alighting processes of
passengers (e.g. Kogler et al. (2014)). On the other hand, for the evacuation of a whole
transit station (e.g. Shi et al. (2012)) the time until all passengers have left a certain
area is of vital importance while the detailed interaction of the people might not be the
main focus (although of interest in other applications). Moreover, a given application can
comprise different spatial areas with varying requirements for human interaction analysis.
Only in certain areas high level of detail in terms of interaction between people might be
of interest (such as areas of intersecting streams of pedestrians) and not in others (such
as corridors with predominantly unidirectional movement).

Currently available simulation application programs typically allow modeling pedes-
trian movement with one pre-specified simulation model and a single level of detail only
(on each of the three levels of decision making, i.e. strategic, tactical and operational, ac-
cording to Hoogendoorn and Bovy (2004)). However, the simulation of a complex system,
such as a public transportation network, with a single model requires a trade-off between
the conflicting goals of including sufficient detail to obtain the relevant information and
computational tractability.

The above examples show that in order to provide satisfying answers to different
questions, one would need to include the complete range of human behavior into a single
simulation model. To the best of our knowledge, a single model that covers all these
aspects does not exist to date. Hence, the development of different modeling approaches
where each of them is tailored to provide a particular set of answers is well-justified. This
provides a motivation for the multitude of different models available in the literature.
Also, simply combining existing programs to simulate a public transportation network is
not feasible due to the involved complexity (with respect to data exchange), inefficiency
(with respect to computational performance) and high costs (several, expensive simulation
programs are needed).
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Recently, the scientific community has drawn more attention to the combination of
models with different granularity in a single simulation which has been termed hybrid
modeling. For instance, Chooramun et al. (2012) present a novel approach to represent
physical space of an environment using three spatial representations within a single
integrated software tool, that is a coarse network, a fine network and a continuous
representation of the environment. They show that using a mixture of the three spatial
representations delivers results of similar accuracy to that produced by the "all continuous"
approach while improving the computational efficiency. In Lämmel et al. (2014) a
microscopic and a macroscopic pedestrian simulation model are coupled in a way such
that essential dynamic properties like flow, density and speed are conserved across model
boundaries.

A major goal of this work is to support the trend of hybrid modeling by introducing
a simulation framework which allows to combine several different simulation models and
to compute them simultaneously based on a highly scalable system architecture1. This
flexibility is achieved by a modular system architecture and a loose coupling of the models.
Single simulation models can be switched easily and modelers can select the right model
for each spatial area and hence balance the computation load. The simulation framework
allows to use and thus combine different models for each level of decision making along
the definition of Hoogendoorn and Bovy (2004).

Since the simulation framework supports the switchover of various simulation models,
it also facilitates the process of model calibration and validation. By implementing
and applying different models within the same framework, a systematic analysis of the
strengths and weaknesses of the various approaches can be carried out which will be
presented in Chapter 6.

In this chapter, we explain the overall concept, architectural software design and
implementation of the flexible simulation framework. Furthermore, the features of
switching and combining different models in the framework are demonstrated in two real
world case studies: The first case study deals with the problem of designers of urban
transit vehicles who need to assess and compare their design choices by predicting the
passenger flows in typical situations, i.e. boarding and alighting. We show how three
different microscopic models which represent the movement on the operational level
can be used to simulate passenger boarding and alighting behavior and evaluate their
individual strengths and weaknesses based on several criteria such as the impact on
boarding and alighting times. In the second case study, we simulate a subway station
next to the main soccer stadium in Vienna where large crowds occur after major events
such as sporting competitions or pop concerts. Here, pedestrian simulations can be
used to quantify the capacity of key elements (e.g. doors or staircases) and evaluate
the infrastructure design and processes of crowd management in combination with large
numbers of passengers. We elaborate the differences between applying a microscopic
or a macroscopic model on the same scenario based on the simulation results and the
computational performance.

1The work in this chapter is based on contributions by S. Seer, T. Matyus, M. Stubenschrott, C.
Kogler and D. Bauer which is gratefully acknowledged.
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Figure 4.1: System architecture of the simulation framework.

4.1 Concept of the Simulation Framework

The design of the simulation framework relies on a scalable and flexible system architecture
in which different functional modules can be easily integrated. Figure 4.1 provides an
overview of the system architecture of the simulation framework which can be structured
into three layers:

• Scenario Layer: Running a simulation requires the upfront specification of in-
formation by the user such as infrastructure layout, composition of the simulated
crowd and representation of traffic demand specified as Origin-Destination (OD)
matrices. On this layer, these different specifications are aggregated into the
Scenario Definition.
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• Application Layer: This layer represents the link between the scenario definition
and the simulation layer. It provides the possibility to configure simulation related
parameters, for instance, the simulation duration, the models to be used and the
output to be written. It also allows a user to start a simulation run either using
a Graphical User Interface (GUI) or the command line. In addition, a strategy
for Calibration & Validation is defined which automatically initiates the necessary
simulation runs and performs specific procedures for estimating model parameters
or evaluating a model’s performance. The methodologies for model calibration and
evaluation as well as the results from applying them will be presented in Chapter 6.

• Simulation Layer: This layer performs the actual simulation run and includes
various functional modules. For flexibility reasons we use a modular architecture
including a simulation core as central control component that communicates with
several modules: pedestrian movement simulation models are implemented as
Strategic, Tactical and Operational Modules along the categorization of Hoogendoorn
and Bovy (2004), Generator Modules process the simulation input and Visualization
& Analysis Modules provide the simulation output in various formats.

4.1.1 Scenario Layer

The scenario definition is the main input for each simulation run and consists of the
following three fundamental properties:

1. The infrastructure describes the layout which can be drawn from scratch with a
specifically designed scenario definition tool from Imber (2011) or semi-automatically
imported from Computer-Aided Design (CAD) drawings. The infrastructure
contains one or more sections to model interactions in free walking space (e.g. on
different floors of a building) where for each section different modules can be used.
Inside these sections obstacles (e.g. walls) can be specified as geometric data, such
as polylines, polygons and rectangles. One specific type of section is a facility which
is used to model doors, stairs, escalators or elevators. These facilities can also be
used to connect two sections (e.g. the staircase between two consecutive floors).

2. A pedestrian can possess several characteristics such as body size, desired velocity,
movement restrictions (e.g. to simulate wheelchair users), which might be chosen
randomly from a certain distribution.

3. One or more OD-matrices can be used to define the pedestrian flows between each
defined entry and exit and hence to assign pedestrians to the infrastructure. For
more complex scenarios also the creation time and maximum number of pedestrians
in the simulation can be defined.

The output of the scenario definition is stored in an Extensible Markup Language
(XML) file, using a format which is a human-readable description of the scenario.
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4.1.2 Application Layer

The application layer combines the scenario definition from the input layer with additional
user defined configurations for a simulation run (e.g. size of the time steps, maximum
duration of a simulation, selection of simulation models) and provides this information
to the simulation layer. For loading of scenario definitions and defining configurations,
the simulation framework includes a Graphical User Interface (GUI), as illustrated in
Figure 4.1. Furthermore, modules can be assigned either to specific sections or to all
sections of a certain scenario. For instance, it is possible to assign different operational
models to different sections. Modules have optionally user-definable parameters which
can also be changed using the GUI. The configuration includes scenario-specific settings
such as the maximum simulation time or the format of the simulation output (e.g.
visualization, storing in files). As setting up a complex scenario can involve to include
multiple modules and maybe requires to change certain parameters, one can also save
the current configuration to disk and load it afterwards. The configuration process can
also be automated via the Command Line to facilitate batch processing of many different
scenarios.

Once all modules and parameters have been setup for the scenario, the user can
run the simulation. For the purpose of model calibration, a Calibration Strategy can be
defined which includes all necessary configurations and performs multiple simulation runs
without any need for user interaction.

4.1.3 Simulation Layer

The simulation layer of the simulation framework is based on a modular architecture
which provides several important advantages for the simulation of crowd flows. Since
human behavior can be described on three levels (i.e. strategic, tactical and operational),
each level can be represented as an individual module within the simulation framework.
Thus, certain behavioral aspects such as route-choice can be separated from others and
thus form a logical encapsulation. The main advantage, however, is the high degree of
flexibility in terms of switching and combining different behavioral models. For instance,
given a well-defined interface exists, one can easily change the operational model from a
Social Force model to a Cellular Automaton while using the identical routing model on
the tactical level.

An advantage of this loose coupling is that the modeler can define to which extent a
functionality is split into separate modules. It is possible to perform a complete simulation
run with a single module or with multiple different (smaller) modules. Several factors such
as communication overhead, requirements for specific projects and personal preference
influence the decision on how to encode functions in different modules. The simulation
framework includes the Simulation Core which provides default implementations for each
of the three described levels (i.e. strategic, tactical and operational). The simulation core
also acts as a centralized interface, thus connecting dynamically to other loaded modules
which can provide certain complementary or additional functionalities (see Figure 4.1).
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All Modules are separate processes which can be run independently and connect
themselves to the simulation core. This has multiple advantages over loading modules as
shared libraries:

• Today’s computers are multi-processor machines that can be better utilized by
multiple processes without the explicit need to use multi-threading which has its
own set of synchronization problems (see Gramoli (2015)).

• Modules can even be run on different machines for enhanced performance given
that the network speed is not the bottleneck.

• The development of modules is simplified as they are completely encapsulated
and can be started dynamically and linked to the running simulation framework
on-the-fly.

In order to compute pedestrian simulations with a broad variety of models on different
behavioral levels an efficient and simple communication between modules is of vital
importance. In our approach, modules do not communicate directly with each other, they
rather use the simulation core as a centralized message broker interface to exchange data
as messages (see Figure 4.2). Modules can register to receive certain messages and can
also send out own messages. This enables a loose coupling of modules where individual
modules may not even have to physically executed on the same machine.

The open source messaging server ActiveMQ (The Apache Software Foundation
(2014)) was chosen for efficient and reliable communication between the simulation core
and the connected modules. This technique does not put any restrictions on the type
and content of messages. ActiveMQ (like any other messaging middleware) has certain
performance implications for sending messages. In our tests, the upper limit of messages
which could be delivered was roughly 1500 per second, whereas the size of the individual
message had only little impact on the throughput. Therefore, we defined our messages
such that most modules only need to send a single message per simulation time step.

The following five messages can be classified as life-cycle messages which are initialized
by the simulation core and represent the main simulation loop in the framework:

• SET_PARAMETERS is used to define specific model or simulation parameters.
This is the very first message that is sent before the start of a simulation run
to initialize the simulation with the required parameter values. In addition, this
message can be sent during runtime in order to handle dynamic behavior such as
opening and closing doors.

• INIT is followed immediately after the SET_PARAMETERS message. This
message enables each module to setup the internal data structures and serves as a
notification that the simulation is about to begin.

• NEXT_STEP is sent in each time step of the simulation. The simulation core
can send this message either with a constant or adaptive (with respect to the
computational demand) interval.
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• SHUTDOWN is sent when the simulation is stopped. After receiving this message, a
module should write pending buffers to disk or can trigger post-simulation analysis.

• KILL is the last message which every module receives. It notifies modules that they
should immediately terminate upon receiving the message. Otherwise, a module
would be forcefully terminated by the simulation core after a certain timeout.

All life-cycle messages are synchronized, that is each module has to explicitly acknowledge
that it has finished its calculations within a simulation time step. Only after all modules
have sent their confirmation, the following NEXT_STEP message is sent out.

In addition to the life-cycle messages, modules can define individual messages in order
to facilitate their functionalities. Currently, the following messages are defined for the
purpose of pedestrian simulations:

• ADD_AGENTS is used to add one or more pedestrians to the simulation. Each
pedestrian can have different properties such as specific radius and desired speed.

• UPDATE_AGENTS can alter all properties of any pedestrian. The most commonly
changed property is the current position.

• REMOVE_AGENTS removes one or more pedestrians from the simulation.

• PERFORM_TASK is processed by tactical modules to determine the path to the
next destination as part of a task. Once a pedestrian has fulfilled the task, the
tactical module sends a PERFORM_TASK_RESULT message.

• GOTO_POSITION is processed by operational modules to move pedestrians to the
next intermediate destination of a path. Once a pedestrian has reached his (interme-
diate) destination, the operational module sends a GOTO_POSITION_RESULT
message.

• UPDATE_INFRASTRUCTURE can be used to update the infrastructure dynami-
cally which allows, for instance, to create new obstacles during the runtime of the
simulation.

An important design goal of the simulation framework was the support of different
programming languages. Development of human behavioral models goes through different
stages from quick prototyping to deployment. In each of these stages the usage of a specific
programming language is justified. For instance C++ is a good choice for 3D visualization
modules since they often require specialized toolkit support for programming graphics
cards. MATLAB is powerful for the rapid implementation of algorithms and plotting of
functions and data, thus in particular useful when developing new mathematical models.
Java, on the other hand, has large support in the scientific community and also provides
good performance and extensive enterprise tools, like refactoring, which is essential in
writing complex modules with many different classes and developers. The open source
messaging server ActiveMQ (The Apache Software Foundation (2014)) supports many
different languages and is very actively maintained and therefore well tested.
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In order to support the development of new modules, the simulation core provides a
Communication API which implements the communication of the modules via ActiveMQ
in individual libraries for each supported programming language (see Figure 4.2). Hence,
all modules use functionality of the communication middleware and do not need to
implement the connection to ActiveMQ message broker by themselves. This avoids
redundancy in software code development and keeps the functional design of the modules
simple. As illustrated in Figure 4.2, this Communication API supports implementations
of modules in C++, Java and MATLAB. Note that it can be extended to any of the
supported ActiveMQ client languages (see The Apache Software Foundation (2014)).

In addition, the simulation core shares a collection of implemented functions, such as
geometric functions, as part of the Common Libraries for reuse by multiple modules.

Modules 

Simulation Core 

Simulation 
Server 

Simulation Client 
(Java) 

Simulation Client 
(C++) 

Simulation Client 
(Matlab) 

module.jar module.exe module.m 

Common 
Libraries 

Message Broker 

Figure 4.2: Simulation layer implementing cross-language communication with client
modules.
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4.2 Framework Modules

For a simulation run, modules on all three different behavioral levels - that is Strategic,
Tactical and Operational Modules - are used as illustrated in Figure 4.3. Furthermore,
Generator Modules process the simulation input which, for instance, defines the agents
used in the simulation. The simulation output is provided in various formats by Visual-
ization & Analysis Modules. Figure 4.3 shows the structured flow of information with the
interdependencies of module classes in the simulation framework. In the remainder of
this section we will describe the functionality of the required modules for the simulation.
Furthermore, we explain the specific model extensions which are required for the simula-
tion of the two case studies in Section 4.3.

Generator 
Modules 

Operational 
Modules 

Tactical 
Modules 

Visualization 
& Analysis 
Modules 

Simulation 
Input 

Simulation 
Output 

GOTO_POSITION 

ADD_AGENTS 

Strategic 
Modules 

PERFORM_TASK 

UPDATE_AGENTS 

Figure 4.3: Structured flow of information within a single simulation step following the
concept of three levels of decision making by Hoogendoorn and Bovy (2004).
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4.2.1 Generator Modules

Instead of predefining and generating instances of all pedestrians at startup, Generator
Modules create individual pedestrians with specific attributes (e.g. desired walking speed
and destination) based on Origin-Destination (OD) matrices during simulation runtime.
Consequently, all other modules are provided with this information and need to react
accordingly when new pedestrians are generated. Typically, the OD-matrices are stored
as part of the scenario description.

4.2.2 Strategic Modules

The main function of Strategic Modules is to model the strategic plan of an individual such
as the choice of desired activities. In most simple applications, this strategic behavior is
modeled exogenously, i.e. defined before-hand by the user in form of a pre-trip decision.
However, in certain applications it makes sense to use an endogenous modeling approach
where strategic behavior is influenced by information generated on the operational or
tactical level. This might be crucial, for instance, when the choice to accomplish a
specific activity depends on the available time which in turn is influenced by the degree
of congestion by other individuals. As for the demonstrations in the case studies in
Section 4.3 the strategic decisions are a rather straightforward predefined set of possible
activities for all individuals.

4.2.3 Tactical Modules

In complex environments, pedestrians can often choose among alternative routes to
reach their destination. The route-choice behavior can be crucial for the spatial and
temporal distribution of pedestrian and is therefore represented by Tactical Modules
in the simulation framework. The decision on the walking path including intermediate
destination(s) is typically based on the individual’s estimation of the path length with
respect to distance or duration. This estimation depends on the location of static
and dynamic obstacles as well as on macroscopic features of the environment such as
pedestrian densities or flow rates. For instance, when a staircase and an escalator are
located next to each other, pedestrians usually prefer to use the escalator. However,
based on various factors such as distance, congestion level and personal preferences, some
individuals might switch to the staircase (see Zeiler et al. (2011)).

In order to model the route-choice behavior for the case studies in Section 4.3, we
implemented the algorithm presented in Stubenschrott et al. (2014) as a tactical module.
This routing approach is based on a graph representation of the spatial layout of the
environment. In the simulation framework, the infrastructure is represented by sections
to model interactions in free walking space. Sections are connected by facilities, such as
doors and stairs. We assign two nodes – one at the entrance and one at the exit – to each
facility. Each pair of nodes that has a walkable path in between is connected with an edge.
This results in a high level graph G = (V,E), with V denoting the M nodes, and Eij
the edges of the graph connecting nodes Vi and Vj where (i 6= j, 0 ≤ i < M, 0 ≤ j < M).
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The generation of the high level graph can be achieved automatically, for instance by
building a visibility graph as described in Kneidl et al. (2012).

Within a section, all walkable paths between nodes are found by building up a
regular grid and applying the Theta* algorithm as described in Daniel et al. (2010).
This extension of the A* algorithm (Hart et al. (1968)) is a path planning method that
propagates information along grid edges without constraining the paths to the edges.
Thus, it finds shorter and more realistic looking paths than A* without loosing its
computational time efficiency.

Our case study in Section 4.3.2 uses an incomplete graph, which has been created
manually, as in real life only a certain subset of edges are utilized by pedestrians. The
tactical route choice model calculates pedestrians’ decisions on routes dynamically in a
two stage process: At the start of the simulation, an initial route from start node V0 to
destination node VN is derived for each pedestrian using the shortest path algorithm from
Dijkstra (1959). During the simulation, the model continuously updates the routes for
each pedestrian based on their observations within the environment as the local densities
evolve over time.

4.2.4 Operational Modules

The main purpose of an operational model is to perform the locomotion of a pedestrian
towards a certain destination while avoiding collisions with dynamic and static obstacles,
such as other pedestrians and walls, respectively. For the simulation with our framework,
this behavior is encoded in modules that we classify as Operational Modules.

We differentiate between two types of operational models with respect to our definition
of the infrastructure: the first type are models for simulating interactions in free walking
space within sections. Therefore, all modeling approaches described in Section 3.1 have
been implemented in the simulation framework as individual modules. The second type
is represented by models which are embedded in facilities such as doors, stairs, escalators
and elevators. These models are concerned with the transition of pedestrians between
sections and thus provide highly specialized functionalities depending on the particular
type of facility.

Operational Modules for Sections

For the case studies in Section 4.3, we use a subset of the modeling approaches described
in Section 3.1, i.e. the Social Force models SFA and SFB, and the ORCA model. In order
to model human movement behavior for the case studies in this chapter more realistically,
we have 1) extended the Social Force approaches and 2) implemented a macroscopic
model for comparisons with the microscopic models.

Modeling dense waiting crowds, e.g. in front of bottlenecks, staircases or on train
platforms, with the Social Force approach typically results in movement behavior where
pedestrians "vibrate" back and forth as soon as they are nearby their destination. We
extended the Social Force approaches such that pedestrians can switch from an active
mode, where they actively strive toward a destination, to a passive mode, where the
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attractive force (cf. (3.1)) is set to zero and they are passively exposed to the repulsive
forces. In other words, pedestrians are allowed to be "pushed" by other pedestrians while
they are waiting. Note that the velocity of a pedestrian in passive mode is set to zero after
each step in order to keep the pedestrian close to the current position. The computation
of all pedestrians and obstacles within a particular section has a complexity of O(n2). To
increase the computational performance of the Social Force implementations, a pedestrian
only takes into account other pedestrians and obstacles which are within a certain radius
(e.g. 3 m). Therefore, we generate a regular grid of 1 x 1 m in which the positions of all
pedestrians and obstacles are stored. The information in this grid is updated in each
time step.

Furthermore, we also need to model the operational behavior in a section with a
macroscopic modeling approach for the second case study in this chapter (see Section 4.3).
By definition, macroscopic models are not concerned with the modeling of detailed
human interaction (see e.g. Predtetschenski and Milinski (1971) and Fruin (1971)).
The movement of pedestrians in macroscopic models is depending on aggregated values,
such as flow, density and speed. For this purpose, we model the walkable space as a
three-dimensional non-planar directed multi-graph that can contain multiple edges to
incorporate different walking directions. Since each edge has an assigned area (represented
by a polygon) the edge’s density is determined by the number of pedestrians currently
walking on the edge. Based on Weidmann (1993)’s Fundamental Diagram, the current
pedestrian velocity is determined as a function of the density and the corresponding
travel time for the considered edge is calculated. At the transition between two edges, it
has to be ensured that a) the total capacity of the edge will not be exceeded by inserting
an additional person and b) that the local density in the transition area does not exceed
the given maximum value. The total capacity of an individual section or facility is
determined by its spatial dimension of the walkable area. Note that facilities can include
further technical restrictions (e.g. maximum capacity of an elevator) which impacts the
available capacity. The transition area is defined by a one meter wide zone along the
whole length of the contact line (i.e. the common line of the two polygons) between two
edges. This simple concept of a transition area with maximum density is used at the
transition from macroscopic to microscopic model region and vice versa. Furthermore, a
pedestrian is handed over to the next model, only if the density in the transition area
is below a certain maximum value. In the case of transition from a macroscopic to a
microscopic model the exact entry position is calculated by extending the trajectory
linearly neglecting whether this position is already occupied by another individual. It
is left for future research to implement more sophisticated methods which identify free
spots, e.g. as described in Lämmel et al. (2014).

Operational Modules for Facilities

Facilities in the simulation framework are representations of physical objects like stairs,
escalators or elevators where each yield a different behavior of pedestrians. Based on its
type, a facility provides a highly specialized behavioral model. In this work, all facilities
are represented by macroscopic models. Hence, the transitions between a facility and the
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surrounding walkable area of a section are modeled accordingly. The following list gives
an overview of currently supported facilities:

• Doors limit the maximum specific pedestrian flow rate to 1.3 pedestrians per meter
and second (see Gwynne et al. (2009)). Note that modeling a door by using a
facility is purely a choice of the modeler and can alternatively be modeled by a
wall opening using obstacles within a section.

• Elevators enable pedestrians to move between different floors (i.e. sections within a
defined scenario) and have a certain maximum capacity. User-definable parameters
for an elevator allow to control the door dwell time and speed.

• Entrance Controls limit the pedestrian flow to a user-defined maximum value and
can hence be used for turnstiles or meanders which have a certain throughput (e.g.
50.96 pedestrians/minute for a single lane meander according to Seer et al. (2008)).

• Escalators model pedestrian movement according to a fixed predefined speed,
whereas the inflow rate of the facility is the same as for Doors.

• Stairs model pedestrian movement according to the Fundamental Diagram defined
by Burghardt et al. (2013) using the inflow rate as defined for Doors.

• Transit facilities model buses or trains arriving at public transport stations according
to a given timetable. When a vehicle enters a transit station, pedestrians inside the
vehicle are given way to alight first, only then pedestrians waiting on the platform
can board the vehicle until the maximum capacity is reached. The actual boarding
and alighting rates are again influenced by the vehicle door widths using the same
flow rate as for Door facilities.

4.2.5 Visualization & Analysis Modules

In order to make the simulation results easily accessible for various users, different Visual-
ization & Analysis modules can be included into the framework. Figure 4.4 illustrates our
implementation of a 2-dimensional visualization module. This 2D-visualization displays
the environment and the location of all individuals within the simulation. Furthermore, it
can also be used to analyze crowd behavior based on visualizations of macroscopic indica-
tors such as density plots. As an extension, we implemented a user-friendly 3-dimensional
visualization2 of the simulation results as shown in Figure 4.5. By selecting a specific
visualization from multiple options, professional transport planers can easily and fast
analyze effects on crowd flows while the results can also be interpreted by higher level
management and policy makers.

2The 3D visualization was developed as part of a research cooperation with Fraunhofer Austria -
Visual Computing.

59



The simulation framework also includes modules which enable to store resulting
simulation data in a structured format (e.g. Comma-Separated Values (CSV)). For
instance, the simulation output from microscopic models is typically in the form of
individual trajectories for each pedestrian including a unique identifier, time step and
position as well as the transitions between a section and a facility (and vice versa).
Furthermore, the simulation output can include macroscopic information such as density
estimations, flow rates or the entering time of a certain facility. Writing raw trajectories
in each time step for large amounts of pedestrians can easily result in outputs of several
gigabytes, therefore the flexibility to use custom output writer modules for specific
applications is important.

Figure 4.4: 2D Visualization showing the pedestrian density estimation (top) and indi-
vidual pedestrian positions (bottom) as a result of the simulation.
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Figure 4.5: 3D Visualization of the pedestrian simulation in the Viennese subway station
"Schwedenplatz".

4.3 Case Studies

In this section we demonstrate the flexibility of the framework in terms of switching
and coupling different simulation models based on two real world case studies. First we
simulate the processes of boarding and alighting of a light vehicle train with three different
operational models. The second case study focuses on the simulation of a complex subway
station where we discuss the differences in the simulation results when applying two
operational models with varying granularity in each simulation run. Information for
several key indicators such as computational performance related to number of agents,
travel times and flow rates are used for elaborating the differences between simulation
approaches.

All simulation runs were performed using a PC with a 2.6 GHz Intel R© Xeon R© CPU
E5-2630 v2, 64 GB DDR3 RAM @ 1600 MHz, and a NVIDIA Quadro K2000 video
card running Windows 7 64bit. Furthermore, in all scenarios for both case studies the
free walking speed of a person is defined according to Weidmann (1993) by a normal
distribution with mean value µ = 1.34 m/s and a standard deviation σ = 0.26.
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4.3.1 Boarding and Alighting at Light Vehicle Trains

The design of urban transit vehicles is a key component which determines the overall
capacity of a line in public transportation. Hence, optimizing the process of boarding
and alighting as well as passenger flows inside a vehicle is of vital importance. Vehicle
designers need to assess and compare their design choices by predicting passenger flows
in typical situations. Since field tests involving real or mock-up vehicles are expensive in
terms of costs and time, microscopic simulation of passenger flows have proven to be a
valuable tool.

In this case study we demonstrate the ability of our simulation framework to investigate
passenger flows in designs of urban transit vehicles (see also Kogler et al. (2014)). Together
with Bombardier Transportation Light Rail Vehicles (LRV), we applied our simulation
methods on a vehicle layout using three different operational models along the description
in Section 3.1: the implementations of the Social Force approach SFB and SFC as well
as the ORCA model. The simulation results of each microscopic model will be compared
with pedestrian flow measurements from real world observations. Furthermore, we will
evaluate the models by comparing their simulation results against each other.

For this study, we use the vehicle layout as illustrated in Figure 4.6 which has a total
length of 42 m and includes 7 equally sized double sliding doors. The area which is
reserved for mobility restricted passengers can be used by any passenger. Note that we
do not model mobility restricted passengers in this case study. Since we focus on the
interactions between passengers and the vehicle design, the platform is modeled as a
wide, open and empty area without any waiting passengers or obstacle during alighting
simulations. Further, the vehicle is empty before the begin of the boarding process.

In our simulation, passenger movement for boarding and alighting processes is modeled
on the operational, tactical and strategic level using the presented simulation framework.
We extended the routing model on the tactical level described in Section 4.2.3 in order
to represent the task of passengers boarding and alighting vehicles. Complexity arises
from modeling the occupation of available seats and standing places realistically. During
boarding, a passenger approaching the vehicle will first head towards the nearest door.
After entering the vehicle, the passenger has to decide between sitting and standing
by searching the vicinity for free seats. The vicinity is vehicle dependent and in our
case roughly 5 to 7 m depending on the exact door. If the passenger finds more than
one vacant seat, the passenger’s final destination is given by the location of the nearest
available seat.

Figure 4.6: Layout of the light rail vehicle used in the first case study. ( c© Bombardier
Transportation)
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If there is no free seat available, the location of the final standing spot is defined
depending on:

(a) Distance to the door: the same vicinity as previously defined is used, but a passenger
prefers standing spots further away from the door in order to provide room for
passengers behind to enter the vehicle.

(b) Density distribution within the vehicle: passengers prefer regions which are less
occupied than others.

(c) Distance to walls, seats and obstacles: passengers prefer spacious regions to stand
instead of narrow passages between seats.

The alighting is somehow simpler, since passengers only move from their seating or
standing spot to the nearest door and then onto the platform. For obstacles inside a
vehicle such as walls which hinder passengers to move to their final destination on a
direct way, we use the routing module described in Section 4.2.3 based on the Theta*
algorithm.

On the operational level in order to reach their assigned (intermediate) destination,
passengers interact with each other as well as with walls, boundaries and obstacles. The
movements and interactions of passengers on the operational level are represented using
the extensions from the SF approach SFB and SFC as well as the ORCA model. The
calibration of the first Social Force implementation SFB was performed according to
Kogler et al. (2014) and of the second Social Force implementation SFC according to
Rudloff et al. (2011b).

Simulation Scenarios

For the simulation, six different scenarios have been defined which vary in passenger load,
distribution of passengers on the platform and the process of boarding or alighting (see
Table 4.1). We defined two passenger loads according to Bugaricic et al. (1992) and two
passenger distributions on the platform:

• Low Load: occupation of all available seats plus standing area filled with 2 persons/m2.

• High Load: occupation of all available seats plus standing area with 6.67 persons/m2.

• Uniform distribution: all passengers are uniformly distributed on the platform.

• Non-uniform distribution: two groups of passengers are placed at the front and rear
third of the vehicle leaving the area outside the middle door empty (see Figure 4.6).

The simulation yields trajectories for each individual passenger. Note that all results
shown here represent averages of ten simulation runs for statistical analysis. We show the
results of our analysis with respect to boarding and alighting times as well as flow rates
per percentile. In the following analysis we used the time when 95% of all passengers have
boarded or alighted the vehicle by passing the doorsteps, to have stable and comparable
values of all operational models investigated.
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Passenger Distribution
Uniform Non-uniform

Boarding Low Load High Load Low Load High Load
Alighting Low Load High Load - -

Table 4.1: Defined simulation scenarios for boarding and alighting processes.

Model Verification

In order to validate the simulation results of the models used within this case study, we
compare them with crowd flow measurements from observations during multiple experi-
ments (Rudloff et al. (2011a)), scientific literature (Harris and Anderson (2007)), where
boarding and alighting processes of 30 subway lines worldwide have been investigated,
and from real world video data at a public transport station in Vienna. The results
in Harris and Anderson (2007) show specific passenger flow rates in a range of 0.18 to
1.77 passengers/m/s for alighting processes, and from 0.37 to 1.58 passengers/m/s for
boarding processes. The upper end flow rates occurred in situations where trains have
been completely emptied onto a vacant platform and vice versa.

The measured average passenger flow rates, amongst other factors, strongly depend
on passenger densities (Rastogi et al. (2013)). Densities during the beginning and end
of the boarding, respectively alighting processes are significantly lower than in between.
Thus, we considered only the period between 25% and 75% of all passengers have entered,
respectively left the vehicle, leaving us with stable flow rates and sufficient densities.

The normalized flow rates in Figure 4.7 demonstrate how well the applied operational
models can reproduce the reference data RefE from experiments by Rudloff et al. (2011a)
and RefR from real world observations. Figure 4.7 also shows that a simple linear model
with constant flow rates does not sufficiently explain the investigated boarding and
alighting processes. For low and high load during alighting the normalized flow rates of
all tested approaches are well in line with the reference data.

This is also confirmed by the RMSE as shown in Table 4.2. Except for the low load
in SFC , the deviations between simulation and experimental data, as well as between
simulation and real world data are smaller than the deviation between experimental and
real world data. As for the boarding scenarios the picture is somehow different: using the
low load the RMSE for all tested approaches compared to RefE and RefR are smaller
than the deviation between RefE and RefR. However, in the high load scenario only SFB
demonstrates that the difference between simulation and observations is within the range
of the deviation between experimental and real world data.
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Figure 4.7: Comparison of normalized flow rates between experimental data RefE , real
world data RefR and simulation data from SFB, SFC and ORCA during boarding with
(a) low load, (b) high load and alighting with (c) low load, (d) high load in the 25% -
75% interval.

Simulation Results

The simulation results for the boarding process are illustrated in Figure 4.8 where the
cumulative number of passengers inside the train over time can be seen. Furthermore,
the time until 95% of all passengers have entered the train including the variation from
10 simulation runs is shown. While for the low load scenarios (see Figure 4.8a and
Figure 4.8c) the time difference until 95% of all passengers are inside the train is within
a couple of seconds, there are more significant effects at the high load scenarios (see
Figure 4.8b and Figure 4.8d). The ORCA model is not able to move all passengers into
the train when simulating the high load scenario. One reason for this is that in areas
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SFB SFC ORCA RefE
RefR RefE RefR RefE RefR RefE RefR

Boarding
Low Load 0.0209 0.0372 0.0211 0.0381 0.0376 0.0457 0.0510
High Load 0.0315 0.0394 0.0510 0.0571 0.0835 0.0843 0.0510

Alighting
Low Load 0.0369 0.0380 0.0575 0.0561 0.0350 0.0454 0.0523
High Load 0.0388 0.0376 0.0419 0.0429 0.0367 0.0440 0.0523

Table 4.2: Root-Mean-Square Error (RMSE) for comparing the normalized flow rates
between experimental data RefE , real world data RefR and simulation data from SFB,
SFC and ORCA. Bold values indicate larger deviation between simulation and experi-
mental/real world data than between experimental and real world data.

behind the doors the ORCA model generates high congestions which as a consequence
prohibit other passengers from entering the train.

Figure 4.9 shows the simulation results of the alighting scenarios where the differences
are less significant than for the boarding process. Here, mainly the variation in the flow
rates as discussed in Section 4.3.1 are reflected again. This results in a bandwidth of a
couple of seconds for the time until 95% of all passengers have alighted the train.

In order to investigate temporal aspects of the boarding and alighting processes,
the total flows have been split up into 10% intervals (i.e. percentile flows). From the
illustration in Figure 4.10 it can be seen that for boarding the results of the SFC model
have the highest percentile flows compared to the other two models. An explanation
for this is that the repulsive forces were calibrated according to Rudloff et al. (2011b)
where only scenarios with lower densities than in this case study have been considered.
The percentile flow rates of the ORCA model during boarding are relatively high at the
beginning with a stronger drop in the second half over time. This effect is even more
significant for the high load scenarios (Figure 4.10b and Figure 4.10d) where again high
congestions at the door areas due to mutual blocking are causing this behavior.

Figure 4.10e shows that the SFB model has the highest flow rates for alighting with
low load and uniform passenger distribution. However, for alighting with high load the
ORCA model has the highest flow rate at the beginning while after 40% the flow rates of
all models are relatively close (see Figure 4.10f).

This case study demonstrated the importance of the calibration process itself as
well as the choice of the operational model for the simulation. While the flow rates for
boarding and alighting are similar for all three investigated models, there were significant
differences in terms of overall passenger exchange times. The ORCA model showed severe
problems to complete the boarding process in scenarios with high passenger load. A
reason for this is that the ORCA model cannot compress passenger sizes, which leads to
the question if the ORCA model is suitable for such investigations. The framework was
shown to be able of discovering weaknesses of the investigated models that would hardly
be visible from a mere comparison of some parameters of prediction performance.
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(a) (b)

(c) (d)
Figure 4.8: Boarding times for 95% of all passengers with (a) low load, uniform distribu-
tion, (b) high load, uniform distribution, (c) low load, non-uniform distribution, (c) high
load, non-uniform distribution.

(a) (b)
Figure 4.9: Alighting times for 95% of all passengers with (a) low and (b) high load.
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Figure 4.10: Flow rates per percentile during boarding with (a) low load, uniform
distribution, (b) high load, uniform distribution, (c) low load, non-uniform distribution, (d)
high load, non-uniform distribution and alighting with (e) low load, uniform distribution,
(f) high load, uniform distribution.
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4.3.2 Passenger Flows in a Complex Subway Station

For the second case study, we used the presented simulation framework to simulate
the subway station "Stadion" on the subway line U2 which is located adjacent to the
Ernst-Happel Stadium in Vienna (see Figure 4.11). The Ernst-Happel Stadium is the
largest football stadium in Austria and can hold up to 50000 visitors with additional
19000 on the pitch for concerts. As illustrated in Figure 4.12, the subway station consists
of a lower level that features special event entrances leading to four corridors to enter the
station and an upper level which has two platforms with three tracks. After events in the
Ernst-Happel Stadium up to 25000 passengers use the specially designed entrance system
that also involves an automatic passenger flow control system (see Seer et al. (2008) for
details). The automatic passenger flow control system was not used for our case study in
this work as it would have impact the generated data.

The main goal of using a simulation within this scenario is to investigate passenger
flows on the platform with respect to transport efficiency and safety of the passengers.
Key indicators are for instance the total time to transport all passengers, the distribution
of passengers to the different corridors, travel times of passengers when moving inside
the environment and the number of passengers being on the platform at the same time.

To investigate detailed passenger interactions, we use a microscopic model for simu-
lating the passenger movement on the upper level. In advance it is not obvious which
granularity for modeling the lower level is necessary in order to accurately examine the
described indicators on the upper level. Since the basic scenario already involves 25000
passengers and we have to simulate multiple scenarios with varying demand, computa-
tional performance is crucial. Thus, it seems reasonable to use a macroscopic model on
the lower level which can calculate simulation results faster but with lower granularity.

We use our simulation framework to compare the output of the described scenarios
which are derived when applying a microscopic or a macroscopic model on the lower level.
In both cases the microscopic modeling approach is used on the upper level. For the
microscopic model we use the SFB approach in our simulation framework as described

(a) (b)
Figure 4.11: Viennese subway station "Stadion" (a) with the Ernst-Happel Stadium in
the back and (b) crowd in front of the entrances after an event. ( c© Wiener Linien)
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in Chapter 3. The calibration of the implemented SFB model was performed according
to Rudloff et al. (2014). In the case of applying the macroscopic model on the lower
level, we use the implementation of the macroscopic model as shown in Section 4.2.4. On
the tactical level we use the dynamic routing model described in Section 4.2.3. For the
macroscopic model, however, the dynamic routing is restricted since pedestrians can only
decide at each node point of the graph for a certain route. In addition to the Operational
module, we use a Generator Module, a Tactical Module, and a Visualization & Analysis
Module in order to derive the simulation results for this case study.

Simulation Scenarios

In this case study we simulate a scenario when after events in the Ernst-Happel Stadium
nearby, one platform is active for transporting passengers towards the city center with
alternating trains on the tracks at both sides of this platform (see Figure 4.12a). The
other platform is used by passengers heading outbound where only one track is frequented
by trains. Furthermore, arriving passengers alighting the trains are not included within
the simulation.

The concept of the passenger flow control system builds up on a special architectural
design of the station which comprises four corridors as illustrated in Figure 4.12b. Each
of them provides access to the platforms on the upper level via a staircase. The entrance
to each corridor are two sliding doors, with an adjustable width. Note that in this work
we keep all sliding doors at a constant width of 1.80 m during all simulations, thus not
using the automatic passenger flow control feature of the station. Between the sliding
doors and the open space outside the station are in total 15 meanders with each of them
having a width of one walking lane (i.e. 60 cm). To restrict the maximum pedestrian
inflow only eight meanders are open (two meanders per assigned corridor).

The environment of this scenario consists of two sections, i.e. the lower and upper
level, whereas all pedestrians have their starting location (where they are created by the
generator module) along a virtual line in the lower right of the ground floor (see blue
line in Figure 4.12b). The simulation is performed with 12500 and 25000 pedestrians
which are generated within one hour. Generation is not uniform during this time but
has the highest rates between minute 10 and 50 to accommodate when the main bulk
of people is arriving from the nearby stadium. 80% of passengers are heading towards
the city center and the remaining 20% traveling out of town. Pedestrians move to the
platform according to their individually assigned destination where they eventually board
a train and will then be removed from the simulation (see Figure 4.12a). The trains to
the city center arrive with an interval of 150 s and for the outbound direction with 180 s.
Each train arrives empty and provides a capacity of 800 persons. While moving onto
the platform pedestrians have to pass certain facilities (for a detailed description see
Section 4.2.4), which in this scenario are meanders, doors, staircases and trains.

For the results on the computational performance in Section 4.3.2 we use a basic
scenario with 25000 pedestrians and deviating scenarios with increasing and decreasing
number of pedestrians. Note that we keep the ratio of passenger flows moving towards
the city center and outbound unchanged.
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Figure 4.12: CAD drawing of the subway station "Stadion" showing (a) the two platforms
and three tracks (driving direction of trains shown in purple) on the upper level and
(b) the entrances with four corridors (corridor numbers shown in green) on the lower
level. The two levels are connected via staircases (four at each platform). Pedestrians
are generated in the simulation at the blue line and orange arrows denote the possible
walking paths.

Simulation Results

The simulation includes passenger movement from outside of the subway station onto
the platforms where passengers either board a train towards the city center or in the
outbound direction. In the following analysis we only discuss the simulation results
of passengers moving on the platform where trains depart towards the city center (see
Figure 4.12a).

One of the indicators for evaluating the differences between using a microscopic or
macroscopic simulation model in the given case study is the total time to transport all
passengers. Hence, such travel times can be investigated per corridor and as their total
sum. For the scenario with 12500 passengers, the distribution of travel times per corridor
is illustrated in the left column of Figure 4.13. The results do not indicate any significant
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difference between the two operational models. A similar behavior is evident in the total
sum of all corridors shown in Figure 4.15. For the scenario with 25000 passengers the
distribution of travel times per corridor is considerably different when comparing the
microscopic and macroscopic simulation. As illustrated in the left column of Figure 4.14
the microscopic model has a higher concentration in the range between 250 and 500 s.
For corridor 4 the distribution is broader which might be due to some passengers can
bypass from the side and hence overtake already waiting persons in front of a meander.
When applying the macroscopic model the travel times are more equally distributed
with no passengers taking over 1200 s to reach their destination. This effect occurs
for all corridors and can also be seen in the total sum of all corridors in Figure 4.15.
Furthermore, two modes can be found in the distribution which become more dominant
for the corridors closer to the starting position of the persons, i.e. corridor 3 and 4. The
left mode appears to originate from periods with smaller rates of passenger flow to the
station (e.g. the first minutes after starting the simulation) while the right one seems
to be a result of passenger movement during saturation (i.e. times when passengers are
waiting in front of all meanders). For corridors 1 and 2 the left mode in the walking
time distribution is less apparent which could be explained by passengers selecting these
corridors at a later time when flow rates from pedestrian generation are increased.

Another aspect is the cumulative number of pedestrians per corridor and as their total
sum. The right columns of Figure 4.13 and Figure 4.14 show the results for the scenario
with 12500 and 25000 passengers, respectively. The cumulative number of pedestrians
varies for each corridor and between the two operational models. Due to the longer
walking path to corridor 1, the increase in passenger numbers for this corridor starts
significantly later. While passenger demand within the macroscopic model is higher for
corridor 1 and 2 compared to the microscopic model, this is the other way around for
corridor 4. This could be explained by the different routing methods applied to the
microscopic and macroscopic model. However, as shown in Figure 4.15 the cumulative
number of passengers as a sum over all corridors for both scenarios does not reveal
any significant differences between the simulation results of the microscopic and the
macroscopic model.

The evaluation for the number of passengers being on the platform at the same
time can be derived from the results shown in Figure 4.16. In both simulation runs
the peak characteristics are primarily set by the train interval. Although the amplitude
of the peaks differs between the two approaches no further significant effects such as
overcrowding on the platform can be observed.
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Figure 4.13: Estimated probability distribution function of travel times (left) and the
cumulative number of passengers (right) per corridor with 12500 passengers.
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Figure 4.14: Estimated probability distribution function of travel times (left) and the
cumulative number of passengers (right) per corridor with 25000 passengers.
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Figure 4.15: Estimated probability distribution function of travel times (left) and the
cumulative number of passengers (right) per corridor with 12500 passengers (top row)
and 25000 passengers (bottom row).
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Figure 4.16: Number of simulated passengers being simultaneously on the platform with
(a) 12500 passengers and (b) 25000 passengers.
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The results for the computational performance, in particular the scalability for a
growing amount of pedestrians in the simulation, can be seen in Figure 4.17. As expected,
the total execution time grows with the number of pedestrians. Figure 4.17a and c
show the total simulation time, which is relatively similar for both applied simulation
approaches. This confirms the findings discussed before (see Figure 4.15) also for different
numbers of passengers within the simulation. The execution time of the microscopic
model has a much stronger increase over the number of passengers (see Figure 4.17a)
compared to the execution time of the macroscopic model (see Figure 4.17c). Furthermore,
the total execution time when applying the macroscopic model is always lower than the
simulation time within the simulated range of pedestrian amount. This shows that in this
setting the simulation can be calculated faster than real time. The microscopic model
reveals a more rapid increase of the total execution time and after 20000 passengers the
simulation performs slower than in real time. Figure 4.17b and c provide more details on
the individual execution time for each used model.

12.5   15 17.5   20 22.5   25 27.5   30 32.5   35
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Simulated Pedestrians

T
im

e
 [

s
]

 

 

Total Simulation Time

Total Execution Time

Micro Module Execution Time

x 10
3

(a)

12.5   15 17.5   20 22.5   25 27.5   30 32.5   35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Number of Simulated Pedestrians

T
im

e 
[s

]

 

 
Simulation Core
Micro Module (Lower Level)
Micro Module (Upper Level)
Tactical Module (Lower + Upper Level)

x 103

(b)

12.5   15 17.5   20 22.5   25 27.5   30 32.5   35
0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Simulated Pedestrians

T
im

e
 [

s
]

 

 

Total Simulation Time

Total Execution Time

Macro Module Execution Time

x 10
3

(c)

12.5   15 17.5   20 22.5   25 27.5   30 32.5   35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Number of Simulated Pedestrians

T
im

e 
[s

]

 

 
Simulation Core
Macro Module (Lower Level)
Micro Module (Upper Level)
Tactical Module (Lower + Upper Level)

x 103

(d)

Figure 4.17: Computational performance for including the microscopic model (a) in total
and (b) per module and the macroscopic model (c) in total and (d) per module.
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4.4 Summary
In this chapter we have presented our framework for pedestrian simulations. Our goal was
to design a framework that can integrate various simulation models on the three levels
of decision making, i.e. strategic, tactical and operational, and provides the possibility
of easily switching or combining different models. The flexibility of the framework was
demonstrated in two real world case studies.

In the first case study, passenger flows were simulated during boarding and alighting
of a light vehicle train using three different operational models, i.e. the Social Force
approaches SFB and SFC , and the ORCA model. Simulating the same scenario with
different models revealed that the derived overall passenger exchange times varied
significantly between the models.

In the second case study, two operational models with varying granularity, that is
microscopic (using the SFB model) and macroscopic (using a graph-based approach),
were used for simulating passenger flows in a complex subway station. The results showed
that the computational time can be reduced to one third when using the macroscopic
instead of the microscopic model. At the same time, examining certain parameters such
as the cumulative number of persons transported away or the maximal number of persons
on the platform provided almost identical results with the macroscopic model. However,
for other parameters, such as route-choice, the choice of the model for simulation has
significant impact on the results.

All model approaches described in Chapter 3 are implemented and integrated into
the simulation framework. Our simulation framework is the optimal basis for structured
investigations on strengths and weaknesses of various microscopic pedestrian movement
simulation models, which will be pursued in the remainder of this thesis. In Chapter 5 we
will present different calibration and validation strategies for Social Force based modeling
approaches. We will then extend these procedures by defining a generalized calibration
and validation strategy in Chapter 6 in order to evaluate all modeling approaches that
are part of this study.
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CHAPTER 5
Calibration Procedures for

Social-Force Models

In order to develop a model that is able to represent realistic movement behavior one
has to perform model calibration and a validation of the results. Therefore, observations
of real pedestrians are needed which can be obtained from (controlled) experiments
(Daamen and Hoogendoorn (2012)) or from real-world measurements. Quantitative data
from human movement observations can comprise, for instance, travel times, flow rates,
speed-density fundamental relation or even trajectories of individual pedestrians. The
process of collecting individual trajectories to calibrate microscopic models is cumbersome
since robust (including all individuals being in a scene at the same time), accurate (within
a few centimeters) and comprehensive (minimum of several 100 individuals) trajectories
from various scenarios (e.g. different pedestrian densities) are needed. To meet these
high standards, we use trajectories which were collected from our approach based on the
Microsoft Kinect as described in Section 2.3.

Several calibration procedures for microscopic pedestrian simulation models based
on individual trajectory data were suggested in the literature, where in particular two
distinct approaches are predominant: the first is model estimation by nonlinear least
square methods (e.g. Hoogendoorn et al. (2007) or Ko et al. (2013)). However, as shown
in Rudloff et al. (2011b) this method has several drawbacks due to the large measurement
errors from data collection using pure video data. For instance, using the acceleration
instead of the spatial position introduces significant noise due to the second derivative.
Furthermore, this might lead to error-in-variables problems and parameter estimates
possibly result in a bias towards zero. The second approach involves the comparison of
real and simulated trajectories (e.g. Moussaïd et al. (2009), Rudloff et al. (2011b)) and
hence is time consuming as a complete simulation run is needed during each optimization
step. Both calibration approaches have been applied in this work and their individual
methodologies and results for the SFA, SFB and SFC model are presented in the following
subsections.
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5.1 Model Parameter Estimation with Non-linear
Regression

Since the quality of the trajectories from the tracking approach developed in this work is
significantly higher compared with those automatically extracted from video footage (see
Section 2.2), it needs to be determined if the added data quality makes a nonlinear least
square estimation feasible. Many of the available force-based models are calibrated on
observed human movement data (e.g. Campanella et al. (2014)). However, validation for
investigating the model characteristics, e.g. variance in parameter values, is still sparse.
It needs to be determined if the estimated parameters can explain the diverse behavior of
pedestrians or if parameters need to be more flexible and differ for different pedestrians.
This would suggest that a Social Force model with a single parameter set might not be
able to explain pedestrian behavior in different situations for example with respect to
different densities.

We present a methodology for validating Social Force based models by investigating
the reproducibility of human movement behavior on the individual trajectory level for
different settings with real-world movement data (Seer et al. (2014b))1. Our approach
estimates model parameter values and their distribution with non-linear regression on
observed trajectory data, where the resulting variances of the parameter values represent
the model’s validity. This approach is demonstrated on a comprehensive (235 pedestrians)
and highly accurate (within a few centimeters) set of human movement trajectories
obtained from real-world pedestrian traffic with bidirectional flow as shown in Section 2.3.
We validate the Social Force model SFA, SFB and SFC which are described in Chapter 3.
For reducing the complexity of calibration, the repulsive force from static obstacles fαi is
modeled by using the functional form as given by SFB for all models in this section.

5.1.1 Measures for Human Movement

For model calibration and validation, we use a set of N resampled trajectories

T =
{

[tα xα yα]T
}
α∈N

(5.1)

as defined in (2.5). As described in Chapter 2, the trajectory of a pedestrian α is composed
of a vector of timestamps tα and 2D positions xα = [xα yα]T . The data points of the
resampled trajectory are at a regular time interval ∆t = 0.1 seconds. The corresponding
xα and yα at regular time intervals tα are results from the cubic spline approximation
(see De Boor (2001)) with a smoothing parameter p = 0.98.

Figure 5.1a illustrates the automatically obtained trajectories from a walking ex-
periment with a single centralized obstacle in the scene. This walking experiment was
performed under real world conditions, meaning that the individuals traversing MIT’s
Infinite Corridor had no information about being observed. The red and blue trajectories

1The work in this section was published by S. Seer, C. Rudloff, T. Matyus and N. Brändle, "Validating
Social Force Based Models with Comprehensive Real World Motion Data", In: Transportation Research
Procedia, Volume 2, pp. 724-732, ISSN 2352-1465, 2014.
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in Figure 5.1a represent the two walking lanes in opposite directions which people form
most of the time. Figure 5.1b shows the trajectory density map using a kernel density
estimation with a normal kernel function and a bandwidth of 0.1 m. This reveals the
main paths located on both sides of the corridor which pedestrians use to evade from the
centralized obstacle.

From the trajectories one can directly extract the acceleration f̃α(t) for each individual
α at each time instance t from the collected trajectories according to

f̃α(t) :=
[
f̃xα(t), f̃yα(t)

]
=
[

(xα(t + 1) − xα(t)) − (xα(t) − xα(t − 1))
∆t2 ,

(yα(t + 1) − yα(t)) − (yα(t) − yα(t − 1))
∆t2

]
.
(5.2)

Figure 5.1c shows the time averaged accelerations inside the scanning area. As
expected the accelerations are higher the nearer pedestrians pass the central obstacle.
Besides, in the lower right and in the upper left part of the figure, the areas where people
start to deviate can be identified. We derive the position and the desired goal for a
pedestrian α from the first point at time tinα and the last point at toutα of the associated
observed trajectory Tα. The desired velocity v0

α of pedestrian α is defined as the 95th
percentile of the observed velocities. The magnitude of the current velocity vector vα is
set equal to v0

α, and it directs towards the pedestrian’s desired goal. Furthermore, we set
for each simulated pedestrian τ = 0.5.

(a) (b) (c)

Figure 5.1: Observed (a) trajectories with walking directions encoded in red and blue,
(b) density map and (c) acceleration map based on real-world observations in a corridor
with a single centralized obstacle.

81



0

10

20

30

40

50

A B Aw Bw

P
ar

am
et

er
 V

al
ue

(a)

0

2

4

6

8

10

12

14

16

A B Aw Bw

P
ar

am
et

er
 V

al
ue

(b)

0

5

10

15

20

25

An Bn Cn Ap Bp Cp Aw Bw

P
ar

am
et

er
 V

al
ue

(c)

Figure 5.2: Boxplots with estimated parameter values from personalized calibration for
(a) SFA, (b) SFB and (c) SFC .

Since only a section of the corridor was observed, it has to be guaranteed that all
individuals influencing each others’ movements (i.e. persons closer than 2 m in front or 1 m
behind) are present in the scene. We selected a subset of trajectories T S corresponding
to a set of pedestrians M , where M is a subset of N , that fulfills two constraints: 1) they
are long enough, i.e. start below y = 1 m and end above y = 4 m and vice versa without
stops, and 2) all other individuals who are present or appear during the time span of
the relevant trajectory have to be present for the whole time span or until they leave
the scene. For the subsequent calibration, we only use segments of trajectories in T S ,
which in upward direction are between y = 1 m and y = 4 m and between y = 5 m and
y = 2 m for the downward direction (see Figure 5.1). Hence, we denote the start and
end time of the segments by tstartα and tendα .

5.1.2 Model Estimation and Validation Results

As a first step, we examine the validity of estimating the parameters of the investigated
Social Force models using non-linear least square estimation. In the estimation procedure
we use the objective function

fobj(θ) =
∑
α∈M

tendα∑
t=tstartα

((
f̃xα(t)− fxα(t, θ)

)2
+
(
f̃yα(t)− fyα(t, θ)

)2
)
, (5.3)

where fα(t, θ) = [fxα(t, θ), fyα(t, θ)] is the acceleration at time t given a parameter set θ.
The optimization uses the gradient based method fmincon in MATLAB. This method
also allows to extract the Hessian matrix Hf of fobj at the estimated optimal parameter
set θ̂, which in turn gives an estimate of the covariance matrix of the parameters as
Cov(θ̂) = H−1

f . Using fobj(θ) the three Social Force models are calibrated in two ways:
by estimating the parameters for all pedestrians at once (general calibration) and by
estimating them for the first 33 pedestrians (personalized calibration) in order to examine
if the models transfer well to single pedestrians. The results of the parameter estimation
for all three models can be seen in Table 5.1.

The results show that the objective function is best for SFC and that SFA with the
original circular formulation outperforms SFB with the elliptical form. Despite the large
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number of data points (7799 from 235 trajectories) the parameters estimated in the
general calibration are not all significant, which suggests either that the information
contained in the data is not sufficient or that there is a strong variation in behavior
between different pedestrians. It can be seen from Table 5.1 that the parameters of
the personalized calibration are higher on average than the parameters of the general
calibration and their standard deviations are rather large. Figure 5.2 shows that all
these parameters lie in a relatively small band and that there are only a few outliers.
This, together with the plots in Figure 5.3, suggest that some pedestrians react much
stronger than others to obstacles. Furthermore, the accelerations from the parameter set
estimated by the general calibration do not suffice to model this strong reaction.

In order to test if the results from the non-linear least square estimation in a model
reproduce good reaction to other pedestrians, it is important to investigate the collision
avoidance behavior of the model. As an example, we show in Figure 5.4 the accelerations
in x and y directions resulting from the three models with parameters from general
calibration. In this setting a pedestrian is walking with a velocity of [0, 1] towards a
goal upwards in y-direction while another pedestrian stands at position [1.1, 3]. The
accelerations resulting from the model are calculated for all positions in a 2D regular
grid with grid size 0.1 m. One can see that all models show collision avoidance behavior.
Due to model restrictions SFA and SFB do not show much acceleration to the side when
a pedestrian is walking towards an obstacle straight ahead, but rather just decelerates
the pedestrian. In comparison SFC does show avoidance behavior in that case. Overall,
the models show a promising behavior, however, a calibration should be performed on
denser scenarios to ensure that the collision avoidance works in those cases as well.

Table 5.1: Estimated parameter values for the three models with standard deviations
of the parameters in brackets. Parameters significantly different from zero are in bold
letters.

Model

Value of fobj
General
Calibration

Avg. value of fobj
and (std)
Personalized
Calibration Parameter

Parameter Value
and (std)
General
Calibration

Avg. Parameter Value
and (std)
Personalized
Calibration

SFA 2189.4 7.0374 (5.1200) ap 0.1634 (0.0104) 0.4500 (0.4050)
bp 4.1554 (0.6535) 13.4651 (18.3852)
ao 1.9534 (1.2244) 8.8260 (15.4703)
bo 0.1090 (0.0231) 0.2882 (07676)

SFB 2244.4 7.9460 (5.7311) ap 0.1845 (0.0205) 0.4213 (0.3941)
bp 5.9334 (1.6812) 5.7032 (0.7336)
ao 1.9534 (0.6035) 1.5540 (2.1782)
bo 0.1366 (0.0248) 0.7415 (2.7448)

SFC 1925.2 6.1492, (3.8987) ad 0.2615 (0.0551) 1.0310(1.9060)
bd 0.4026 (0.1238) 2.0385 (5.2833)
cd 2.1614 (0.3728) 2.3522 (0.9944)
ae 1.5375 (0.3084) 1.8980 (0.8775)
be 0.4938 (0.1041) 0.9656 (0.9226)
ce 0.5710 (0.1409) 0.9190 (0.8823)
ao 0.3280 (0.1481) 0.7450 (1.5747)
bo 0.1871 (0.0563) 1.8044 (4.1646)
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Figure 5.3: Accelerations calculated with SFA (left), SFB (middle) and SFC (right) in
x-direction (a, b and c) and y-direction (d, e and f) for parameters from personalized
(black lines) and general calibration (bold red line).

It was noted in Rudloff et al. (2014) that Social Force models have relatively large
parameter areas where they behave very similarly with respect to closeness of trajectories.
However, the validation results in Figure 5.3 show that the different parameter sets from
personalized calibration (see Figure 5.2) produce significant variations in the behavior
of accelerations in x and y-directions. In particular there are some outliers in the
acceleration behavior which result from the fact that for some pedestrians the parameters
from personalized calibration are much larger than for the general calibration using the
points from all trajectories.
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Figure 5.4: Accelerations in x-direction (a, b and c) and y-direction (d, e and f) calculated
using SFA (left), SFB (middle) and SFC (right) with parameters from general calibration.
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5.2 Simulation-based Model Parameter Estimation

The process of model calibration involves the identification of parameter values which
reproduce observed pedestrian behavior in the simulation results. We estimated values
for the different parameters in the three model approaches SFA, SFB and SFC based on
our empirical data set from the walking experiments (Seer et al. (2014a))2.

Number of trajectories
Experiment 1 Experiment 2

Calibration Set 516 1346
Validation Set 169 643
Total 685 1989

Table 5.2: Partitioning of the trajectory data set for model calibration and validation.

5.2.1 Calibration Procedure

In this section we use a technique for calibrating microscopic simulation models which is
based on a simulation approach inspired by Johansson et al. (2007), where each pedes-
trian is simulated separately while keeping the remaining pedestrians on their observed
trajectory. Each simulation run is performed according to the following procedure: the
position and the desired goal for a simulated pedestrian α are extracted from the start
point at time tinα and the end point at toutα of the associated observed trajectory Tα.
The desired velocity v0

α of pedestrian α is defined as the 90th percentile of the observed
velocities. The magnitude of the current velocity vector vα is set equal to v0

α, and it
directs towards the pedestrian’s desired goal. Pedestrian α is simulated for Mα = |Tα|
timesteps during time t, with tinα ≤ t ≤ toutα , where both bounds are again derived from
the observed trajectory. Note that we set for each simulated pedestrian r = 0.2 and
τ = 0.5. It is left for future research to extract the actual radius of a pedestrian from the
measured Kinect data.

After having simulated a set of N pedestrians from the calibration data set with the
above procedure, the similarity measure s for testing the fit of our simulated trajectories
is computed as

s = 1
N

N∑
α=1

(
d(α)

toutα − tinα
+ g(α)

)
. (5.4)

2The work in this section was published by S. Seer, N. Brändle and C. Ratti, "Kinects and Human
Kinetics: A New Approach for Studying Pedestrian Behavior", In: Transportation Research Part C:
Emerging Technologies, DOI: 10.1016/j.trc.2014.08.012, pp. 212-228, 2014.
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For a pedestrian α, the mean Euclidean distance

d(α) = d(Tα, T S
α ) = 1

Mα

Mα∑
i=1

∥∥∥xαi − xS
αi

∥∥∥ (5.5)

provides the dissimilarity between positions xαi = [tαi , xαi , yαi ]T of the observed trajectory
Tα and positions xS

αi = [tSαi , x
S
αi , y

S
αi ]

T of the simulated trajectory T S
α . Furthermore, the

length of trajectories is defined by |Tα| =
∣∣∣T S
α

∣∣∣ = Mα. Since none of the used models
explicitly restricts overlapping between pedestrians, an overlap penalty is added with

g(α) = 1
N − 1

∑
β 6=α

max
t

(
0, 1
‖dαβ(t)‖ −

1
rα + rβ

)
. (5.6)

Model parameter values are estimated by applying an optimization algorithm to
find the best possible fit by minimizing the objective function (5.4). We use a genetic
algorithm which does not suffer from a starting value problem to find the neighborhood
of the global minimum of (5.4). The estimated parameter values obtained by the genetic
algorithm are then used as initial values for the Nelder-Mead algorithm (see Lagarias et al.
(1998)) to refine the result. This hybrid approach allows finding the global minimum
while being numerically efficient.

5.2.2 Validation Results

We validated the SFA, SFB and SFC model in two different ways: first, by estimating the
dissimilarity between observed and simulated trajectories, and second, by comparing the
walking time distribution from the simulation with observations using a statistical test.

Validation Based On Trajectory Similarity

The results for the parameter fit of the individual models are provided in Table 5.3 as
scal for the calibration data set and sval for the validation data set. The best possible
value for (5.4) is s = 0. For both experiments, the best fit of the objective function with
the compared modeling approaches could be achieved using the repulsive formulation
from SFC defined in (3.5).

Experiment 1 Experiment 2
SFA SFB SFC SFA SFB SFC

scal 0.1256 0.1105 0.0843 0.1721 0.1717 0.1630
sval 0.0963 0.0823 0.0671 0.0967 0.0912 0.0883

Table 5.3: Fit of the parameter values for three different Social Force formulations based
on calibration and validation data set.

87



By applying the three Social Force models on only a small subset of our validation
data set, their basic ability of representing pedestrian behavior can be evaluated in a
qualitative manner. Figure 5.5 shows the results of a simulation run with 19 pedestrians
in the setting of experiment 1: the simulation results of the circular force formulation from
SFA in Figure 5.5a indicate that simulated pedestrians evade relatively late with a strong
deceleration caused by the static person in the center. In order to avoid running into the
obstacle, some pedestrians even move slightly backward from the obstacle. This collision
avoidance behavior differs significantly from the observed trajectories. As illustrated
in Figure 5.5b, the walking behavior from the simulations with SFB is less abrupt as a
result of the included velocity dependence. However, pedestrian deceleration is again
unrealistically strong when individuals directly approach the static obstacle. From a
qualitative point of view, simulation results obtained by using SFC exhibit the best
results in our comparison (see Figure 5.5c). Separating the forces into a deceleration and
an evasive component results in individual trajectories which match very well with the
observations.
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Figure 5.5: Validation results of different Social Force models showing observed (green)
and simulated trajectories (red) using (a) SFA, (b) SFB and (c) SFC as repulsive force.
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Validation Based On Walking Time Distribution

For capacity estimations in infrastructures the walking times of pedestrians are of partic-
ular importance. Accordingly, pedestrian simulation models need to be able to reproduce
realistic walking times even if they are not specifically calibrated for this purpose. Since
the models in this work were calibrated using the similarity of trajectories as the objective
function, we also want to evaluate their ability to correctly predict the walking time
distribution based on our validation data set. Figure 5.6 shows the cumulative distribution
functions FMof walking times tw derived from measured trajectories, and the cumulative
distribution functions FA, FB, FC of the simulated trajectories provided by SFA, SFB,
SFC respectively. The results for experiment 1 (see Figure 5.6a) demonstrate that the
cumulative walking time distribution FA for the circular formulation and FB for the
elliptical formulation for the repulsive force in the Social Force model significantly deviate
from the measured walking time distribution FM . The formulation SFC provides a good
replication of the measured walking time distribution FM . In order to support this
finding, we used a two-sample Kolmogorov-Smirnov test (see Massey (1951)) to compare
each walking time distribution from the simulations with the measured distribution FM .
For a significance level of 0.05, we can reject the null hypothesis that FA and FM as well
as FB and FM are from the same continuous distribution. However, the null hypothesis
cannot be rejected when comparing FC and FM .
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Figure 5.6: Measured and simulated walking time distributions from (a) experiment 1
and (b) experiment 2.
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5.3 Summary
In this chapter we have investigated two different calibration procedures for microscopic
pedestrian simulation models based on individual trajectory data, that is model estimation
by nonlinear least square methods and by comparison of real and simulated trajectories.
Both methods were applied to the Social Force approaches SFA, SFB and SFC . Since the
Social Force model describes the acceleration of an individual pedestrian, one can directly
estimate the model parameters on the accelerations extracted from observed trajectory
data. However, this calibration technique is not generalizable for other microscopic
modeling approaches, such as the Cellular Automaton model.

A more suitable technique for calibrating and validating a broader range of different
models is to estimate parameter values based on comparing the simulation results to
various evaluation measures which can be measured from pedestrian movement in real
world. As a first step in this respect, we have estimated the dissimilarity between observed
and simulated trajectories in this chapter. Furthermore, we have used the comparison
between the observed and simulated walking time distribution for model validation.

In Chapter 6 we go further by defining additional evaluation measures and use them
for structured model calibration and investigating the individual strength and weaknesses
of the modeling approaches described in Chapter 3 in greater detail.
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CHAPTER 6
Structured Evaluation of

Pedestrian Modeling Approaches

The choice of modeling method can be difficult for the application at hand. One reason for
this is that there is a lack of an objective evaluation and comparison of different pedestrian
modeling approaches. Hence, we introduce a structured environment including a set of
methodologies for the investigation of strengths and weaknesses of various microscopic
pedestrian movement simulation models. The empirical baseline for this study is the
benchmark data set on pedestrian movement measured under real life conditions which
was presented in Chapter 2. We implemented a set of microscopic models, which were
described in Chapter 3, within our simulation framework. As presented in Chapter 4,
this simulation framework supports switching various simulation models and hence allows
for consistent and efficient model calibration and validation.

In this chapter, we define a set of evaluation measures which enable assessing the
capabilities of microscopic models for representing important aspects of human movement
behavior. Furthermore, we describe and apply a generalized calibration procedure in our
simulation framework to estimate the parameter values for the different types of modeling
approaches from Chapter 3. After that, a comprehensive evaluation of all microscopic
pedestrian simulation models for various scenarios is performed.

6.1 Evaluation Measures for Model Comparison

In microscopic modeling, validation is concerned with the comparison between data
obtained from the simulation and empirical data. In order to assess the capabilities
of different models to represent important aspects of human movement behavior (e.g.
collision avoidance), evaluation measures based on quantities from real world observations
can be used. In recent years, the scientific community has developed various measures
(Daamen and Hoogendoorn (2003), Davidich and Köster (2013)).
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Depending on the application at hand, modelers aim at various objectives which
imply different evaluation measures for validation. These objectives can be aimed at
revealing the validity of the model with respect to detailed movement and interaction
behavior (e.g. on the individual trajectory level), similar "statistical signatures" (e.g.
distribution of outcomes) or emerging patterns at the macroscopic level (e.g. aggregated
measurements) as observed in the real world.

6.1.1 Microscopic Characteristics

On the microscopic level, a model can be evaluated by comparing the individual trajectory
similarity between observed and simulated human movement. Measuring similarity
between trajectories is of high relevance as it can be used by many data analysis tasks
Wang et al. (2013). In the field of pedestrian simulation, comparison on the individuals’
trajectory level are typically performed to evaluate detailed model behavior such as
collision avoidance (see Moussaïd et al. (2011), Johansson et al. (2007)).

Since trajectories are essentially high dimensional data attached with both spatial
and temporal attributes, the distance between trajectories needs to be carefully defined in
order to reflect the true underlying similarity. Hence, a multitude of similarity measures
for trajectories have been proposed in the literature. Wang et al. (2013) provide an
overview on different trajectory similarity measures. One of the measures for trajectory
similarity is the Euclidean distance. It calculates the length of a line that connects two
sampling points of two trajectories that are compared. The advantage of applying the
Euclidean distance is that it is easy to implement and parameter-free.

For a pedestrian α, the mean Euclidean distance of a measured trajectory Tα and its
corresponding simulated trajectory T S

α is given by

d(α) = d(Tα, T S
α ) = 1

Mα

Mα∑
i=1

∥∥∥xαi − xS
αi

∥∥∥ , (6.1)

where the length of trajectories is defined by |Tα| =
∣∣∣T S
α

∣∣∣ = Mα. As defined in (5.1), the
trajectory of a pedestrian α is composed of a vector of timestamps tα and 2D positions
xα = [xα yα]T . A measure for the dissimilarity between a set of N trajectories obtained
from measurements and from simulation, respectively, can then be defined as

sTS = 1
N

N∑
α=1

d(α). (6.2)

A pedestrian α is simulated until
∥∥∥xαi − xS

αi

∥∥∥ < 0.5m, which incorporates a spatial
tolerance of pedestrians to reach their individual destination. The individual destination
is again derived from the observed trajectory. Note that here we do not use the overlap
penalty from Section 5.2.1, since we will now simulate all pedestrians at the same time
thus allowing a higher degree of freedom to avoid overlapping as an endogenous function
of the model. Hence, it is assumed that all pedestrians being present at the same time
have a mutual responsibility to avoid collisions.
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(a) (b)
Figure 6.1: Measured trajectories from (a) experiment 1 and (b) experiment 2 with
non-overlapping data sets for model calibration and validation.

The evaluations in this work are based on the data sets originating from the automatic
tracking approach using the Microsoft Kinect as presented in Chapter 2. We have
performed two walking experiments which allowed us to collect sets of trajectories for
model calibration and validation. Figure 6.1 illustrates the non-overlapping trajectory
data sets obtained from these two experiments (see also Section 5.2). Note that in
experiment 1, the person acting as an obstacle in the center of the corridor is explicitly
modeled as a static agent in the simulation and is thus not included in the trajectory
data sets.

6.1.2 Macroscopic Characteristics

Another level to validate pedestrian simulation models is to evaluate their ability to
correctly predict realistic statistics of observable criteria such as density (e.g. levels-
of-service) and individual walking times. A realistic representation of walking time is
important for estimating the capacity of an infrastructure and predicting the egress times
of pedestrians in evacuation scenarios. The walking time can be affected by individual
preferences such as the desired velocity. This is taken into account by estimating the
desired velocity from the measured trajectories for each person. In addition, different
traffic conditions (e.g. varying pedestrian flow rate, mean and standard deviation of
speed, and pedestrian density) can also influence the walking time which should then be
reflected by the internal mechanisms for collision avoidance of the particular operational
pedestrian simulation model. A single average value for the walking times is not sufficient
since the shape of the distribution changes with traffic states. Furthermore, walking time
distributions can be wide and skewed by many "outliers". Hence, a realistic representation
of the distribution of walking times is important.
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Figure 6.2: Corridor from walking experiments with virtual tripwires (green) for measuring
walking times and observation area (marine) for measuring the density.

For the evaluation in this work, we calculate the walking time of a person α by
measuring the time it takes for this person to walk a distance of 4 m along the corridor.
The distance is defined by two "virtual" tripwires which are placed at certain positions in
the corridor (see Figure 6.2). As a result, each walking time for the observed pedestrians
is a sample drawn from an empirical distribution.

To compare a distribution from the simulation with the measured distribution, one
can apply a two-sample Kolmogorov-Smirnov test (see Massey (1951)) as also described in
Section 5.2.2. Since the Kolmogorov-Smirnov statistic quantifies the supremum (greatest)
distance, it does not reveal the details for rejecting the null hypothesis that the samples
are drawn from the same distribution. Hence, its usage as an evaluation measure in the
context of model calibration and validation is rather limited.

Another non-parametric way to estimate the probability density function based on
samples of walking times t1, t2, t3 . . . tN is the Kernel Density Estimation (KDE) which
is defined by

f̂h(t) = 1
Nh

N∑
α=1

K

(
t− tα
h

)
, (6.3)

with a kernel function K(·) and a bandwidth h > 0. On each of the data points tα a
normal distributed kernel function is placed and the weighted sum of all kernels provides
the density estimate. The bandwidth defines the smoothness of the estimated probability
density function. We use a bandwidth of 0.09, which was experimentally determined
based on our dataset.
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Figure 6.3: Measured walking time distributions represented as (a) probability density
function and (b) cumulative distribution function from experiment 1 and experiment 2.

The estimated walking time distributions for our data set from the Infinite Corridor
are illustrated in Figure 6.3. Note that in the illustration the estimated distribution is
cut off for each data set at the maximal value of the empirical walking time.

A not well-calibrated model might produces results during simulation which devi-
ate severely from the real world observations. For instance, heavy congestions in the
simulation can increase the walking times or even prohibit individuals from returning a
walking time at all within the simulation duration. In order to cope with individuals in
the simulation which have unrealistically high or even no walking times (i.e. pedestrians
get stuck), we include a censoring mechanism into our density estimation. According to
Rodríguez (2007), censoring is concerned with the fact that for some individuals the event
of interest, i.e. the crossing of the second virtual tripwire, has occurred and therefore we
know the exact walking time, whereas for others it has not occurred, and all we know
is that the walking time exceeds the observation time. The maximum observation time
or censoring threshold T is defined as the largest observation in a walking time sample
from our real-world measurements (see Figure 6.3). Each data point ti > T is treated as
censored data and therefore set to T . We estimate the probability density function f̂S(t)
with (6.3) using both uncensored and censored data points.

In order to obtain a measure for the dissimilarity between an observed and a simulated
walking time distribution, we compute the sum of absolute deviations which is given by

sWT =
T∑
t=0

∣∣∣f̂(t)− f̂S(t)
∣∣∣ , (6.4)

with walking time t = 0, 0.01, . . . T .
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Another important aspect for describing the dynamics of pedestrian movement is
the definition of flow, density, and speed. Edie (1965) provided their description for the
analysis of two-dimensional traffic flows. Based on this definitions for traffic flows, three-
dimensional formulations have been developed to apply these formulations to pedestrian
movement data. Density and flow are defined as the flux of pedestrian trajectories
through a plane specified for the considered volume in the three-dimensional space-time
diagram.

The relationship between density, flow, and speed can be encoded in the so-called
Fundamental Diagram. Many factors can influence the shape of the Fundamental Diagram,
such as cultural differences Chattaraj et al. (2009), environmental settings, the trip
purpose, the heterogeneity of the pedestrians and the measurement method Seyfried et al.
(2010), Steffen and Seyfried (2010). Hence, the literature shows significant differences
regarding the specifications of the Fundamental Diagram. As argued by Seyfried et al.
(2010) it is crucial that for comparing Fundamental Diagrams one has to assure that they
are based on the same measurement approach. This also applies for the calibration and
validation of simulation models based on the Fundamental Diagram where model results
are evaluated against empirical data.

In order to determine the Fundamental Diagram, different definitions of the density in
an area can be used. Steffen and Seyfried (2010) present several concepts for measuring
density on the basis of pedestrian trajectories. The definition of the density which is
used in most experimental studies is given by

D = N

|A|
, (6.5)

where N is the number of pedestrians in the area A of size |A|. As stated by Steffen and
Seyfried (2010), this definition has several drawbacks, for instance it suffers from large
data scatter. To overcome this problem, Steffen and Seyfried (2010) propose to assign
personal space to every pedestrian using a Voronoi diagram which provides cells Aα for
each person α (see Figure 6.4). In this work we use the formulation from Steffen and
Seyfried (2010) for the density in the measurement area given by

Dv = N∑N
α=1 |Aα|

. (6.6)

Here, the Voronoi cells are calculated for all persons present in the scene, but only the
sizes of the Voronoi cells for the persons inside area A are used to derive the density Dv.

Following Steffen and Seyfried (2010), the velocity from a person α can be derived
from its trajectory for a time interval ∆t with

v∆t,α(t) = xα(t+ ∆t/2)− xα(t−∆t/2)
∆t . (6.7)

The average velocity for a number of persons N in an observation area A at time t is
then given by

v̄(t) = 1
N

∑
xα(t)∈A

∥∥v∆t,α(t)
∥∥ . (6.8)
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Figure 6.4: Voronoi cells for measuring pedestrian density Dv in an measurement area A
(green dashed line) according to (6.6).

The flow Q can be measured by counting the number of persons passing across a line
within a time interval or, as used in this work, computed from the average velocity and
the density with

Q(t) = v̄(t)Dv(t). (6.9)

Based on the observed and simulated trajectories, the values for density and flow are
computed in area A (see Figure 6.2) for each time step as follows: first, the density is
derived using Voronoi cells as defined by (6.6). Then the velocity from each person in the
observation area A is calculated according to (6.7) with time interval ∆t = 1s and the
averaged velocity is computed with (6.8). We can estimate the function of the respective
Fundamental Diagram by fitting a locally weighted linear regression Hastie et al. (2001).
Locally weighted regression solves a separate weighted least squares problem at each
target point with a bandwidth h. A straight line is fitted locally and the estimation is
then evaluated at M points xi between x0 = 0 and xM = max(D) which are equally
spaced with ∆x = 0.05. We have experimentally determined the bandwidth h = 0.1.
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Figure 6.5: Fundamental Diagram derived from the calibration and validation sets from
experiment 1 and experiment 2. For comparison the black curve shows the Fundamental
Diagram according to Weidmann (1993).

The resulting Fundamental Diagrams for our calibration and validation data set
from both experiments are illustrated in Figure 6.5. For the sake of comparison, the
Fundamental Diagram from Weidmann (1993) is visualized. It can be seen that within
the density range of our data sets a good match with the data from Weidmann (1993) is
achieved.

In order to determine the dissimilarity between observation and simulation based on
the Fundamental Diagram, we derive the Sum of Squared Error (SSE) which is defined
by

sFD =
n∑
i=1

(
f̂(xi)− f̂S(xi)

)2
, (6.10)

where f̂(xi) and f̂S(xi) are the functions of the Fundamental Diagram at point xi from
the observation and the simulation, respectively.
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6.2 Generalized Calibration Procedure
As described in Chapter 5 different strategies for calibrating microscopic pedestrian
simulations can be applied. For some approaches, such as the Social Force model, it is
possible to estimate values for the model parameters directly from the observed data
using non-linear regression (see Section 5.1). However, for many modeling approaches
their parameters cannot be linked to a meaningful and observable physical representation,
such as the accelerations in the Social Force approaches.

Thus, we apply a simulation-based approach for model parameter estimation inspired
by Johansson et al. (2007) which allows to determine parameter values for all investigated
models in this work. Rudloff et al. (2014) found that it does not pay to simulate all
pedestrians separately while keeping remaining pedestrians on their original trajectories
during the calibration process. Due to the large number of simulation runs in each step
(one for each pedestrian) the overall calibration time will be significantly higher than
using a simulation of all pedestrians at once. Additionally, the fit for the individual
simulation was worse compared to the simulation of all pedestrians at once in the study
of Rudloff et al. (2014).

We address this issue in our work and simulate in the calibration procedure all
pedestrians at the same time. This also makes the calibration of multiple simulation
models computationally more feasible. Model parameter values are estimated by applying
an optimization algorithm to find the best possible fit by minimizing the objective
function from the selected evaluation measure, i.e. Trajectory Similarity, Walking Time
Distribution and Fundamental Diagram (see Section 6.1). We use the Nelder-Mead
algorithm (see Lagarias et al. (1998)) to estimate the parameter values whereas the
starting values for the optimization are set according to the description of the individual
model in the scientific literature.

The procedure for each simulation run in the calibration with the optimization
algorithm is as follows:

1. Estimating Input Parameters from the Observed Trajectories. The posi-
tion and the desired goal for a simulated pedestrian α are extracted from the start
point at time tinα and the end point at toutα of the associated observed trajectory
Tα. The desired velocity v0

α of pedestrian α is defined as the 90th percentile of the
observed velocities. The magnitude of the current velocity vector vα is set equal to
v0
α, and it directs towards the pedestrian’s desired goal.

2. Simulating all Pedestrians at the same Time. Pedestrian α is simulated for
Mα = |Tα| timesteps until reaching its individual desired goal which was derived
from the observed trajectory. Note that we set for each simulated pedestrian
r = 0.2.

3. Computing the Fit based on the selected Objective Function. After having
simulated a set of N pedestrians from the calibration data set with the above
procedure, the similarity measure s for testing the fit of our simulated trajectories
is computed.
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6.3 Evaluation and Comparison Results
The model evaluations are based on the benchmarking data set of two scenarios from our
walking experiments in the MIT’s Infinite Corridor (see Section 2.3). In summary, we
use the following two separated data sets for model calibration and validation from the
following scenarios:

• Experiment 1: Trajectory data with a single obstacle in the center of the corridor.

• Experiment 2: Trajectory data with no obstacle.

Furthermore, as described in Section 6.1, we use our evaluation measures: the
Trajectory Similarity (TS) as the fit based on the Euclidean distance, the Walking Time
(WT) as the fit between distributions, and the fit of the Fundamental Diagram (FD).

As a basic evaluation, we simulated both experiments using the default parameter
values for each model. The default parameter values of the Social Force approaches SFA
and SFB are based on Rudloff et al. (2014), with slight adaption to match better with the
scenario in this study. In Rudloff et al. (2011b) the SFC model was calibrated with data
from observations. For comparability with the other Social Force approaches in our study,
we have set τ = 0.9 to be within the defined range. The description of the CA model
in Kirchner and Schadschneider (2002) includes an analysis of the parameter sensitivity.
However, they do not provide a parameter set of default values for their model. Hence,
we defined the default parameter values from visual inspections of the results. For the
ORCA model, we used the values from the RVO2 C++ library1 as default parameter
values. However, we set the maximum speed to 1.6 m/s in order to match better with
our observations from the experiments. In Seitz and Köster (2012) the OSMA model was
calibrated from careful visual validation to reproduce natural behavior and validated
against a Fundamental Diagram. We used the results of their estimations as default
parameter values in our study. For the OSMB model, Seitz and Köster (2014) calibrated
the parameters for the interaction between pedestrians to match a Fundamental Diagram
and the parameters for obstacles were directly extracted from observations. Following
the calibration approach from Seitz and Köster (2014), we adapted the parameters for
the interaction with obstacles to match better with our scenario.

Figure 6.6 shows the evaluation results with default parameter values for each model
based on the data sets from experiment 1 and 2. We found that the variation in the
Fundamental Diagram between the different models is higher for experiment 1 (see FDs
from Row 1 and fits from Row 4 in Figure 6.6). Furthermore, the CA and the SFC
model seem to have problems representing the observed walking time distributions from
experiment 1 with their default parameter sets. The calibration data set from experiment 1
includes a static person in the corridor center and it appears that these models have
stronger reactions to other pedestrians or walls which might cause congestions. The
different interaction behavior is also evident in the visualization of the trajectory from a
single person in Figure 6.6.

1RVO2 Library C++ v2.0.1 (released October 26, 2010), see http://gamma.cs.unc.edu/RVO2/
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Figure 6.6: Validation results for (left) experiment 1 and (right) experiment 2 with
default parameter values. Row 1: Fundamental Diagram. Row 2: Probability density
functions of the walking times. Row 3: Trajectory of a single person. Row 4: Fits using
the three evaluation measures.

101



We calibrated each of the seven microscopic models from Chapter 3 using the calibra-
tion data set from experiment 1 and 2 with the three defined evaluation measures, i.e.
Trajectory Similarity (TS), Walking Time (WT) and Fundamental Diagram (FD). The
resulting fit of our calibration is shown in Table 6.1. With the exception of the fit for
Fundamental Diagram and Walking Time in experiment 1, the SFC model performs best
after calibration. This might not be surprising, considering that it has the largest number
of parameters and hence might be easier to adjust according to the calibration data.

SFA SFB SFC CA ORCA OSMA OSMB

Experiment 1 - FD 0.0436 0.0096 0.0099 0.0403 0.0119 0.1765 0.0586
Experiment 1 - WT 0.0417 0.0796 0.0592 0.2584 0.2441 0.2209 0.2095
Experiment 1 - TS 0.2296 0.2279 0.1938 0.2974 0.2447 0.3004 0.2893
Experiment 2 - FD 0.0723 0.1146 0.0399 0.0304 0.4035 0.1822 0.2701
Experiment 2 - WT 0.1641 0.1438 0.1142 0.3463 0.3018 0.2599 0.2531
Experiment 2 - TS 0.2006 0.1927 0.1856 0.2915 0.1974 0.2736 0.2617

Table 6.1: Fit resulting from our model calibration.

Tables 6.2 to 6.8 show the estimated parameter values resulting from model calibration
with different evaluation measures. We also list the default parameter values which were
used as starting values in the optimization algorithm for the parameter estimation.

We find that in the SFA and SFB model the parameter values for the relaxation time
τ are highest when using trajectory similarity as the evaluation measure (see Tables 6.2
and 6.3). In the SFA model, the parameters controlling the repulsive strength ap and
repulsive range bp are significantly lower than in the calibration with the other two
measures. This effect can also be seen in the SFB model for the repulsive range bp in
experiment 1. Furthermore, we can observe this behavior also for the parameters with
respect to the obstacle interactions, i.e. ao and bo. This indicates that when calibrating
on individual trajectories, those two models try to match the trajectories and tend to
disregard the interactions. However, in the SFB model the repulsive strength ap is
increased which could somehow mitigate this behavior. When applying the Fundamental
Diagram or the walking time as the evaluation measure, the parameter values of the SFA
and SFB model are in a similar range for both experiments.

τ ap bp ao bo

Default 0.500 1.500 0.500 1.000 0.500
Experiment 1 - FD 0.512 1.240 0.389 0.775 0.417
Experiment 1 - WT 0.300 1.374 0.539 1.104 0.584
Experiment 1 - TS 0.918 0.886 0.098 0.257 0.156
Experiment 2 - FD 0.881 1.797 0.513 0.982 0.518
Experiment 2 - WT 0.892 1.793 0.544 0.917 0.462
Experiment 2 - TS 0.994 1.030 0.166 0.221 0.097

Table 6.2: Parameter values for the SFA resulting from our model calibration.
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τ ap bp ao bo λp λo

Default 0.500 1.500 0.500 1.000 0.500 0.400 0.700
Experiment 1 - FD 0.433 1.240 0.426 0.808 0.400 0.066 0.304
Experiment 1 - WT 0.406 1.259 0.400 0.820 0.413 0.140 0.573
Experiment 1 - TS 0.889 1.461 0.251 0.426 0.149 0.008 0.502
Experiment 2 - FD 0.883 1.665 0.446 0.873 0.481 0.767 0.743
Experiment 2 - WT 0.981 1.676 0.398 0.756 0.411 0.159 0.278
Experiment 2 - TS 0.997 1.526 0.261 0.446 0.115 0.000 0.000

Table 6.3: Parameter values for the SFB resulting from our model calibration.

In contrast, the SFC model does not reveal this pattern in the results (see Table 6.4).
Only the parameter value for the strength of the evasion force ae is slightly lower after
calibration with the trajectory similarity compared to the other two evaluation measures.

τ ad bd cd ae be ce

Default 0.900 0.152 0.196 0.149 1.352 0.258 1.030
Experiment 1 - FD 0.515 0.103 0.197 0.189 1.126 0.286 1.185
Experiment 1 - WT 0.478 0.092 0.231 0.237 1.107 0.331 1.375
Experiment 1 - TS 0.537 0.097 0.152 0.185 0.832 0.220 1.300
Experiment 2 - FD 0.723 0.106 0.159 0.173 0.884 0.237 1.205
Experiment 2 - WT 0.917 0.119 0.204 0.201 0.899 0.341 1.285
Experiment 2 - TS 0.867 0.107 0.166 0.211 0.865 0.358 1.354

Table 6.4: Parameter values for the SFC resulting from our model calibration.

The CA model has also significantly higher values for all parameters when calibrating
with trajectory similarity (see Table 6.5). The weights of the static floor field kS and
the dynamic floor field kD are both larger than in the calibration with the other two
measures. Further, the values for the diffusion γ and decay δ parameters are set both to
1, i.e. the maximum value in the allowed range. An explanation is that the CA model is
based on a discrete spatial grid and matching the trajectories from our dataset is best
achieved when keeping the pedestrians moving on a straight line along the corridor.

γ δ kS kD

Default 0.300 0.300 10.000 3.000
Experiment 1 - FD 0.886 0.545 12.287 3.304
Experiment 1 - WT 0.935 0.325 20.234 5.200
Experiment 1 - TS 1.000 1.000 118.132 15.622
Experiment 2 - FD 0.771 0.770 12.211 2.993
Experiment 2 - WT 0.965 0.957 22.336 5.041
Experiment 2 - TS 1.000 1.000 641.120 16.975

Table 6.5: Parameter values for the CA resulting from our model calibration.

103



The calibration results for the ORCA model in Table 6.6 show that the estimated
parameters are the same for both experiments when using the trajectory similarity as
the evaluation measure. The values of the time horizon with respect to obstacles τo is
noticeably smaller, indicating that obstacles have less influence on the pedestrians. The
calibration with trajectory similarity as the evaluation measure resulted in the same
parameter values for experiment 1 and 2. In this case the amount of time τo for which a
person will respond to the presence of obstacles is very small, thus, giving persons more
freedom to choose their velocities.

τp τo

Default 10.000 5.000
Experiment 1 - FD 10.991 5.296
Experiment 1 - WT 8.086 3.613
Experiment 1 - TS 9.394 0.477
Experiment 2 - FD 14.550 5.256
Experiment 2 - WT 12.214 6.107
Experiment 2 - TS 9.394 0.477

Table 6.6: Parameter values for the ORCA resulting from our model calibration.

For the OSMA (see Table 6.7) and the OSMB (see Table 6.8) we can observe that
the resulting parameter values are significantly decreased when calibrating with trajec-
tory similarity as the evaluation measure. Again, this might be an indicator that the
trajectory match is put in favor of the interactions with other pedestrians and obsta-
cles. For the calibration of the OSMB with walking time distribution based on the data
set of experiment 1, the best fit was found with the default parameter values of the model.

hp ap bp wp ho ao bo wo

Default 0.400 1.000 0.200 1.000 0.200 3.000 2.000 6.000
Experiment 1 - FD 0.431 0.957 0.203 1.033 0.233 3.063 1.827 6.140
Experiment 1 - WT 0.435 1.017 0.199 0.966 0.190 2.705 1.712 5.774
Experiment 1 - TS 0.412 0.693 0.109 0.474 0.070 0.981 0.715 3.543
Experiment 2 - FD 0.462 1.094 0.229 1.079 0.200 2.843 1.793 6.341
Experiment 2 - WT 0.465 1.105 0.210 1.000 0.190 2.715 1.721 6.308
Experiment 2 - TS 0.394 0.817 0.140 0.649 0.116 1.657 1.122 5.422

Table 6.7: Parameter values for the OSMA resulting from our model calibration.
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wp hp wo ho

Default 0.330 1.050 0.400 1.500
Experiment 1 - FD 0.590 0.786 0.956 2.267
Experiment 1 - WT 0.330 1.050 0.400 1.500
Experiment 1 - TS 0.266 0.560 0.195 0.848
Experiment 2 - FD 0.400 1.263 0.441 1.494
Experiment 2 - WT 0.444 1.360 0.559 1.748
Experiment 2 - TS 0.238 0.538 0.123 0.711

Table 6.8: Parameter values for the OSMB resulting from our model calibration.

As for a more detailed analysis of the capabilities of the different models, Figure 6.7
illustrates the calibration results with parameter estimations based on the calibration data
set from experiment 1. Generally, we found that all models were able to improve their fit
to the observed data set after calibration. Using trajectory similarity as the evaluation
measure provides rich information for estimating the parameter values. Hence, the other
two evaluation measures, i.e. Fundamental Diagram and walking time distribution, have
also a reasonably good fit. However, when calibrating with aggregated information from
the Fundamental Diagram, still a good model fit can be achieved. Even only using the
information from the walking time distribution seems to be sufficient to get a good fit for
most of the examined models.

Figure 6.8 shows the results of the calibration with the data set from experiment 2.
The main findings are similar to those from the calibration based on experiment 1.
However, the variation in the results for the evaluation with the Fundamental Diagram
is higher. Furthermore, the fits for the calibration with the FD are slightly worse for
experiment 2. Similarly, the fits when calibrating on the walking time distributions
are worse for most cases. This suggest the following: although, the trajectories can be
fitted well with the data from experiment 2, it is clear that it includes less pedestrian
interaction compared to experiment 1. Hence, it appears that the available information
about the pedestrian behavior is not sufficient to fully calibrate the models.

The results for the model fits based on the evaluation with the calibration data
sets are shown in Tables A.1 to A.7 in Appendix A. We can see the fit for each model
after calibration with the respective evaluation measure as bold values in the tables.
Furthermore, the sub-matrix with nine values in the upper left and lower right indicate
the fit for different evaluation measures using the data set from the same experiment
for calibration and validation. The cross-validation, i.e. calibration with data from
experiment 1 and validation with data from experiment 2, is shown in the sub-matrix
in the upper right of the table. Similarly, the cross-validation where calibration was
performed with data from experiment 2 and validation with data from experiment 1
can be found in the sub-matrix in the lower left of the table. For instance, in Table A.1
some fits in the lower left sub-matrix are significantly worse (i.e. for calibration with
WT and FD) compared to the remaining fits in this table. An explanation for this
observation is that the absence of a static person in the data set from experiment 2
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used for calibration leads to parameter values for the SFA model which, when applied
to the setting in experiment 1, cannot fully explain the required interaction behavior.
The SFC model performs better on the more complex data set from experiment 1 when
calibrated on less complex data set from experiment 2 in comparison with the SFB model.
In turn, when calibrating on the data set from experiment 1, the fits on the data set
from experiment 2 are comparable. It appears that the ORCA model and the CA model
perform similarly for all data sets which suggests that the calibration has only slight
influence on the resulting pedestrian behavior. Hence, there might be not enough or
relevant parameters that can be calibrated.

We then performed a cross-validation in which we used the parameter sets from
a calibration run with a specific evaluation measure (e.g. trajectory similarity) and
validated the model against an independent data set representing another evaluation
measure (e.g. Fundamental Diagram). The results of this cross-validation are provided
in Tables A.8 to A.14 in Appendix A. It can be observed that the main findings from
the validation data set are comparable to the previous results from using the calibration
data set. For the validation data set, however, the fit of the CA model has noticeably
decreased in the comparisons with the Fundamental Diagram in experiment 2. Since
the examination of model transferability gives varying results, future work should focus
on extending these tests with additional empirical data sets from scenes with different
pedestrian interactions, such as denser pedestrian traffic or changing numbers of static
obstacles.

6.4 Summary
In this chapter we have evaluated seven different microscopic modeling approaches, that
is the Social Force (SF) models SFA, SFB and SFC , the Cellular Automaton (CA) model,
the Optimal Reciprocal Collision Avoidance (ORCA) model, and the Optimal Steps
Model (OSM) approaches OSMA and OSMB (for details on the models see Chapter 3).
By first calibrating all models on the same data set, we have created a baseline that
allows objectively assessing and comparing these models. Therefore, we used certain
evaluation measures, i.e. Trajectory Similarity, Walking Time and Fundamental Diagram,
within the objective functions in a simulation-based calibration procedure which compares
the simulation results to various characteristics that can be measured from pedestrian
movement in real world.

Our investigations are based on the calibration data set and a separate validation
data set from our benchmarking data set. These include trajectory data with a single
obstacle in the center of the corridor (i.e. experiment 1) and with no obstacle (i.e.
experiment 2). The results indicate that our calibration has improved the fit to the
observed data set in all models. However, the grade to which individual models can be
influenced by the calibration varies. The models also reveal different capabilities with
respect to transferability to another data set than the one used for calibration.
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Figure 6.7: Calibration results for experiment 1 with (left) Fundamental Diagram (FD),
(middle) Walking Time (WT) and (right) Trajectory Similarity (TS) as evaluation
measures. Row 1: Fundamental Diagrams. Row 2: Probability density functions of
the walking times. Row 3: Trajectory of a single person. Row 4: Fits using the three
evaluation measures.
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Figure 6.8: Calibration results for experiment 2 with (left) Fundamental Diagram (FD),
(middle) Walking Time (WT) and (right) Trajectory Similarity (TS) as evaluation
measures. Row 1: Fundamental Diagrams. Row 2: Probability density functions of
the walking times. Row 3: Trajectory of a single person. Row 4: Fits using the three
evaluation measures.
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CHAPTER 7
Conclusion and Future Research

The research in this thesis has focused on the development of a unified framework
for evaluating microscopic pedestrian simulation models. First we have introduced
algorithms to use the Microsoft Kinect – basically a camera that also records 3-dimensional
information in the form of a depth image – for automatic data collection of pedestrian
movement from an elevated view. Further, we developed a flexible simulation framework
which allows to easily switch and combine pedestrian simulation models based on a highly
scalable system architecture. This allowed us to build an optimal basis for structured
learning on strengths and weaknesses of various pedestrian movement simulation models.
Finally, we investigated seven microscopic pedestrian simulation models by calibrating
them with our real-world benchmarking data set and validating them with different
evaluation measures. In the remainder of this chapter, we conclude this thesis by
discussing the presented contributions and providing an outlook of possible research
directions.

7.1 Discussion

We have shown that the use of the Kinect allows the automated capture of human
motion trajectories with high accuracy and without privacy issues. We applied our
tracking algorithm to collect an extensive data set in the MIT’s Infinite Corridor for
calibrating and comparing microscopic pedestrian simulation models. Our approach
groups depth information from a single Kinect in the world coordinate system into
individual pedestrians based on hierarchical clustering. These detections are tracked over
time throughout the sensing areas of multiple Kinects to obtain individual trajectories in
larger space. Evaluating the detection performance with two manually annotated ground
truth data sets shows a Pedestrian Detection Rate of 94% and 96%, respectively. The
position error for all correctly tracked objects is quantified as Multiple Object Tracking
Precision and reveals relatively small values of around 4 cm. By applying our tracking
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approach in two walking experiments performed under real world conditions in the MIT’s
Infinite Corridor, we gathered a total of 2674 trajectories which were subsequently used
for our model calibration and validation.

The modular system architecture of the presented simulation framework allows to
easily switch and combine different behavioral models. The modules can be kept simple
and focused on a well-defined set of functionalities which we have structured according
to the different levels of decision making, that is strategic, tactical and operational (see
Hoogendoorn and Bovy (2004)). The loose coupling is achieved by using the messaging
server ActiveMQ (The Apache Software Foundation (2014)) for efficient and reliable
communication between the simulation core and the connected modules. Hence, all
modules are separate processes which can be run independently and even be implemented
in different programming languages. The simulation framework facilitates the comparison
of different models for the same scenario disclosing the respective strengths and weaknesses.
Moreover, it allows combining different models for exploiting the best possible model for
any particular scenario. These functionalities have been demonstrated in two real world
case studies making two different points: the first case study documented the comparison
of different operational models for the same scenario of passenger flows during boarding
and alighting a train. The investigated scenario hereby was no academic example but
arising in a real world application of designing public transport vehicles. The same
scenario has been simulated using different models to examine the best suited model
for the application. The case study clearly showed that the framework is capable of
discovering weaknesses of models that would not be visible from a mere comparison of
some parameters of prediction performance. The second case study examined a stylized
fact in the crowd simulation community which is the claim that macroscopic simulations
are superior to microscopic ones in terms of computation times but less accurate due to
reduced detail. In the application, two levels of a subway station have been simulated.
While a microscopic model simulated passenger movement on the upper level of the
station, for the entry level alternately a micro- and a macroscopic model have been used.
The results show that it depends on the parameter investigated whether the claim holds
true or not. If one is only interested in the cumulative number of persons transported
or the maximal number of persons on the platform investigated, both models provide
almost identical results with the macroscopic model consuming approximately only one
tenth of computation time in the most crowded setting. If, however, also route-choice
is of interest, both models perform significantly different and hence the choice of the
model for simulation has a big impact on the results achieved. Thus, this case study
demonstrated that the framework can be used to investigate the relative merits between
two models in depth – not only with respect to accuracy but also with respect to the
accuracy versus computation time trade-off.

We compared implementations of the Social Force model (SFB) Helbing and Johansson
(2009), the Optimal Reciprocal Collision Avoidance (ORCA) model van den Berg et al.
(2011) and the Optimal Steps Model (OSMA) Seitz and Köster (2012) based on selected
test cases from the RiMEA-Guideline. This comparison showed differing results for
the three modeling approaches in all three test cases but did not provide identifiability
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of systematic behavior for each individual model. We found that these test cases
lack of quantifiable measures based on empirical data from experimental or real-world
observations. Moreover, an evaluation using only the test cases from the RiMEA-
Guideline, did not allow for thoroughly investigating the capabilities of different modeling
approaches. Hence, we compared three variations of the Social Force model by calibrating
them with our trajectory data using two different strategies: first, we estimated the
model parameter values and their distribution based on non-linear least square parameter
estimation. Due to the high quality of the trajectory data originated from this work, the
problem of errors in variables in the calibration was reduced. This lead to parameter values
for the investigated models which reveal good collision avoidance behavior, despite the
relatively simple scenario with low pedestrian densities. Secondly, we used a simulation-
based calibration approach where each pedestrian was simulated separately while keeping
the remaining pedestrians on their observed trajectory. The validation results revealed
that collision avoidance behavior in the Social Force model can be improved by including
the relative velocity between individuals. Furthermore, dividing the repulsive force into
a deceleration and an evasion part delivered the best quantitative and qualitative results
out of the investigated models. However, dividing the repulsive force leads to a larger
number of parameters, which makes the calibration process itself more complex and
computationally expensive.

We went further in the investigation of the individual strengths and weaknesses of
the modeling approaches by defining additional evaluation measures and used them
for model calibration and validation. These evaluation measures include microscopic
characteristics, i.e. trajectory similarity, and macroscopic characteristics, i.e. walking
time and Fundamental Diagram, which were extracted from our benchmarking data set.
In order to set a common baseline for all models, we first calibrated them with pedestrian
trajectories from two experiments, that is pedestrian movement in the MIT’s Infinite
Corridor with a single obstacle in the center of the corridor and with no obstacle. A
simulation-based calibration procedure was applied which estimates the model parameter
values by optimizing the fit of an objective function represented by the individual
evaluation measure. This fit indicates how well a model can represent an observable
characteristic of pedestrian movement described by a certain evaluation measure and
hence was also used for quantifying the performance of each model. We found that
after calibration the fit to the observed data set has improved in all models. However,
the grade to which individual models can be influenced by the calibration varies. The
investigated models also revealed diverse capabilities concerning transferability to an
independent data set. Since the models in this study were calibrated and validated for
rather low density situations measured in the corridor with bidirectional flow, it has to
be examined whether these modeling approaches are capable of simulating high density
crowd movement.
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7.2 Outlook
Our tracking approach is capable of delivering trajectories with an accuracy which we
consider sufficient for calibrating microscopic pedestrian simulation models. In the future
our approach could be extended to estimate the orientation of body parts, i.e. head and
shoulder pose. This would allow to gain more data on how humans perceive and interact
with their environment which is particularly useful for evaluating visual information
systems, such as guidance systems or lights. For future work we will increase our data set
by obtaining trajectories under additional settings. Hence, other movement phenomena
(e.g. crossing, uni-directional movements, turning of corners, etc.) can be observed which
will allow for validating microscopic pedestrian simulation models on the operational
level completely. This will also allow us to further investigate the transferability of
different models to different scenarios. We also intend to automate the sensor calibration
process. For example, the accuracy of an approach performing registration on robust 3D
point sets such as described in Mavrinac et al. (2010) could be compared to the manual
setup. Furthermore, including Kalman filters for pedestrian tracking might be useful for
real-time applications performing more complex object detection algorithms which would
not allow processing at the full Kinect framerate. Going forward we believe that the
adoption of the Kinect could be extremely useful for the development and calibration
of pedestrian models – but also as a tool to better understand human crowd behavior
and hence provide invaluable input to the design of all those spaces that need to respond
to it.

The simulation framework provides a solid basis for obtaining more information
on the relative merits of the multitude of models suggested in the literature to date.
But it offers much more potential which needs to be developed further in the future:
the framework also allows the combination of different models in different sections of
the infrastructure. Currently there is not much research available on how to model
the transitions of pedestrians from one section of the infrastructure to another. As
pedestrians currently are modeled section by section, pedestrians in adjacent sections do
not influence each other which causes problems. Preliminary ideas to solve this problems
are contained in Lämmel et al. (2014) but more work is needed.

The presented evaluation of different models with the proposed simulation framework
produced valuable insights into the investigated models. Our technique can easily be
applied to a wide range of different pedestrian modeling approaches by including them
as separate, additional modules in our simulation framework. Hence, we encourage that
assessing the performance characteristics should be applied to a variety of models with
our structured way for model calibration and validation. For future studies this will
support the understanding of individual model characteristics and the comparison of
novel modeling approaches to existing ones. Furthermore, this could eventually lead to
a scientifically accepted standardized procedure based on benchmarking datasets and
evaluation measures which allow an objective assessments and comparisons of microscopic
pedestrian simulation models.
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APPENDIX A
Detailed Calibration And

Validation Results

This appendix presents the detailed results of the model fit resulting from the comparison
with the calibration data set and the validation data set (see Figure 6.1) based on the
work from Chapter 6.

A.1 Model Fit based on the Calibration Data Set
Tables A.1 to A.7 provide details on the fit after model calibration with the data sets
from experiment 1 and 2. The presented values for the fit were calculated with the
calibration data set from the respective experiments. Bold values in the tables denote
the fit derived from model calibration for the individual evaluation measure.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0436 0.0893 0.2685 0.3123 0.2529 0.2345
Experiment 1 - WT 0.0665 0.0417 0.2710 0.3425 0.2713 0.2522
Experiment 1 - TS 0.0586 0.1369 0.2296 0.3801 0.2332 0.2070

Experiment 2 - FD 9.4189 0.8623 1.3171 0.0723 0.1672 0.2677
Experiment 2 - WT 9.4352 0.8470 1.3562 0.1150 0.1641 0.2706
Experiment 2 - TS 0.0869 0.1040 0.2305 0.3077 0.2188 0.2006

Table A.1: Fit for the SFA model based on the calibration data set.
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Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0096 0.0546 0.2493 0.0915 0.2156 0.2254
Experiment 1 - WT 0.0172 0.0796 0.2588 0.3527 0.2311 0.2322
Experiment 1 - TS 0.0278 0.0659 0.2279 0.2490 0.1883 0.1971

Experiment 2 - FD 0.4831 0.2357 0.3202 0.1146 0.1820 0.2263
Experiment 2 - WT 0.9182 0.2655 0.3005 0.5192 0.1438 0.2102
Experiment 2 - TS 0.0880 0.0664 0.2300 0.1264 0.1684 0.1927

Table A.2: Fit for the SFB model based on the calibration data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0099 0.0274 0.1944 0.0645 0.1874 0.2048
Experiment 1 - WT 0.0490 0.0592 0.1984 0.1414 0.2133 0.2136
Experiment 1 - TS 0.0202 0.0256 0.1938 0.0809 0.1889 0.2038

Experiment 2 - FD 0.0862 0.1364 0.2094 0.0399 0.1430 0.1904
Experiment 2 - WT 0.2329 0.2606 0.2483 0.0919 0.1142 0.1858
Experiment 2 - TS 0.1125 0.1804 0.2194 0.0361 0.1265 0.1856

Table A.3: Fit for the SFC model based on the calibration data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0403 0.4726 0.5155 0.1549 0.5301 0.5118
Experiment 1 - WT 0.1066 0.2584 0.3305 0.0447 0.3350 0.3392
Experiment 1 - TS 0.0310 0.3999 0.2974 0.2824 0.4056 0.2931

Experiment 2 - FD 0.0241 0.4531 0.4966 0.0304 0.5410 0.5133
Experiment 2 - WT 0.0364 0.3146 0.3184 0.1877 0.3463 0.3142
Experiment 2 - TS 0.0696 0.4167 0.3042 0.2824 0.4103 0.2915

Table A.4: Fit for the CA model based on the calibration data set.
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Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0119 0.2715 0.2700 0.4234 0.3050 0.2043
Experiment 1 - WT 0.0203 0.2441 0.2563 0.4289 0.3097 0.2017
Experiment 1 - TS 0.0664 0.2581 0.2447 0.7721 0.3116 0.1974

Experiment 2 - FD 0.0273 0.2705 0.2670 0.4035 0.3055 0.2036
Experiment 2 - WT 0.0179 0.2843 0.2774 0.4280 0.3018 0.2047
Experiment 2 - TS 0.0664 0.2581 0.2447 0.7721 0.3116 0.1974

Table A.5: Fit for the ORCA model based on the calibration data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.1765 0.2313 0.3163 0.5229 0.2517 0.2789
Experiment 1 - WT 0.2515 0.2209 0.3109 0.3335 0.2610 0.2774
Experiment 1 - TS 0.1894 0.2124 0.3004 0.2996 0.2690 0.2719

Experiment 2 - FD 0.2504 0.2268 0.3123 0.1822 0.2606 0.2790
Experiment 2 - WT 0.2478 0.2198 0.3136 0.2185 0.2599 0.2789
Experiment 2 - TS 0.1832 0.2340 0.2987 0.3814 0.2664 0.2736

Table A.6: Fit for the OSMA model based on the calibration data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0586 0.1588 0.4773 0.2120 0.2250 0.4034
Experiment 1 - WT 0.0583 0.2095 0.3168 0.2816 0.2770 0.2779
Experiment 1 - TS 0.2725 0.2610 0.2893 0.7657 0.2923 0.2639

Experiment 2 - FD 3.7688 0.1963 0.3533 0.2701 0.2640 0.2860
Experiment 2 - WT 0.3064 0.1852 0.3738 0.1760 0.2531 0.3188
Experiment 2 - TS 0.4728 0.2549 0.2904 0.2327 0.2969 0.2617

Table A.7: Fit for the OSMB model based on the calibration data set.
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A.2 Model Fit based on the Validation Data Set
Tables A.8 to A.14 provide details on the fit after model calibration with the data sets
from experiment 1 and 2. The presented values for the fit were calculated with the
validation data set from the respective experiments.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.2212 0.1552 0.2523 0.4001 0.1161 0.1581
Experiment 1 - WT 0.1205 0.0647 0.2423 0.4239 0.1252 0.1678
Experiment 1 - TS 0.0107 0.1470 0.2049 0.3694 0.1070 0.1356

Experiment 2 - FD 8.0801 0.5630 0.8249 0.3585 0.0932 0.1946
Experiment 2 - WT 4.9734 0.5915 1.1904 0.1559 0.0915 0.1957
Experiment 2 - TS 0.0093 0.0836 0.2060 0.3497 0.1021 0.1336

Table A.8: Fit for the SFA model based on the validation data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.1066 0.0549 0.2239 0.1792 0.1081 0.1454
Experiment 1 - WT 0.0215 0.0864 0.2304 0.2132 0.1110 0.1494
Experiment 1 - TS 0.0189 0.0641 0.1993 0.2258 0.0920 0.1316

Experiment 2 - FD 0.7218 0.3212 0.3098 0.2242 0.0969 0.1576
Experiment 2 - WT 0.7803 0.2453 0.2645 0.0492 0.0782 0.1456
Experiment 2 - TS 0.0329 0.0484 0.1959 0.1784 0.0864 0.1297

Table A.9: Fit for the SFB model based on the validation data set.
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Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0169 0.0516 0.1820 0.2314 0.1054 0.1439
Experiment 1 - WT 0.0031 0.0401 0.1785 0.2810 0.1094 0.1469
Experiment 1 - TS 0.0082 0.0190 0.1833 0.2532 0.1065 0.1429

Experiment 2 - FD 0.1333 0.1819 0.2035 0.1835 0.0960 0.1337
Experiment 2 - WT 0.3238 0.2915 0.2457 0.1433 0.0864 0.1312
Experiment 2 - TS 0.1856 0.2176 0.2147 0.1984 0.0875 0.1344

Table A.10: Fit for the SFC model based on the validation data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.3290 0.4937 0.4986 1.0692 0.2611 0.3439
Experiment 1 - WT 0.1520 0.2972 0.3384 2.3157 0.2326 0.2678
Experiment 1 - TS 0.0440 0.2421 0.2833 2.3877 0.2612 0.2550

Experiment 2 - FD 0.1577 0.4836 0.4998 0.8873 0.2532 0.3394
Experiment 2 - WT 0.0401 0.2791 0.3193 2.2620 0.2514 0.2607
Experiment 2 - TS 0.1651 0.2407 0.2917 2.3884 0.2619 0.2547

Table A.11: Fit for the CA model based on the validation data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0656 0.2550 0.2022 0.5421 0.1305 0.1290
Experiment 1 - WT 0.0650 0.2585 0.2003 0.5397 0.1275 0.1295
Experiment 1 - TS 0.0262 0.2479 0.2065 0.5318 0.1263 0.1303

Experiment 2 - FD 0.0665 0.2550 0.2016 0.5314 0.1318 0.1288
Experiment 2 - WT 0.0656 0.2533 0.2023 0.5413 0.1335 0.1291
Experiment 2 - TS 0.0262 0.2479 0.2065 0.5318 0.1263 0.1303

Table A.12: Fit for the ORCA model based on the validation data set.
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Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.1117 0.2632 0.2832 0.3573 0.1264 0.2092
Experiment 1 - WT 0.1085 0.2454 0.2819 0.6507 0.1271 0.2028
Experiment 1 - TS 0.0831 0.2318 0.2678 0.6145 0.1312 0.1954

Experiment 2 - FD 0.1637 0.2687 0.2791 0.8190 0.1275 0.2012
Experiment 2 - WT 0.0941 0.2266 0.2804 0.5196 0.1265 0.2006
Experiment 2 - TS 0.1308 0.2580 0.2715 0.6160 0.1252 0.1958

Table A.13: Fit for the OSMA model based on the validation data set.

Experiment 1 Experiment 2
Calibration

Validation
FD WT TS FD WT TS

Experiment 1 - FD 0.0163 0.1405 0.4560 1.7416 0.1113 0.3102
Experiment 1 - WT 0.0384 0.2726 0.2742 0.6046 0.1291 0.1960
Experiment 1 - TS 0.0783 0.2815 0.2629 0.8075 0.1381 0.1823

Experiment 2 - FD 2.9083 0.1738 0.4018 0.8443 0.1326 0.2058
Experiment 2 - WT 2.5978 0.1769 0.4018 0.9157 0.1230 0.2275
Experiment 2 - TS 0.1207 0.2975 0.2581 0.7182 0.1391 0.1824

Table A.14: Fit for the OSMB model based on the validation data set.
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