
Sampled and Prefiltered
Anti-Aliasing on Parallel Hardware

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

MSc. Thomas Auzinger
Matrikelnummer 0102176

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assoc. Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

Diese Dissertation haben begutachtet:

Assoc. Prof. Ing.
Jiří Bittner, PhD.

Assoc. Prof. Dipl.-Ing. Dipl.-Ing.
Dr.techn. Michael Wimmer

Wien, 20. März 2015
Thomas Auzinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Sampled and Prefiltered
Anti-Aliasing on Parallel Hardware

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

MSc. Thomas Auzinger
Registration Number 0102176

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Assoc. Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer

The dissertation has been reviewed by:

Assoc. Prof. Ing.
Jiří Bittner, PhD.

Assoc. Prof. Dipl.-Ing. Dipl.-Ing.
Dr.techn. Michael Wimmer

Vienna, 20th March, 2015
Thomas Auzinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

MSc. Thomas Auzinger
Neubau 1/2/6, 2440 Gramatneusiedl, Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. März 2015
Thomas Auzinger

vii

Abstract

A fundamental task in computer graphics is the generation of two-dimensional
images. Prominent examples are the conversion of text or three-dimensional scenes

to formats that can be presented on a raster display. Such a conversion process—often
referred to as rasterization or sampling—underlies inherent limitations due to the nature
of the output format. This causes not only a loss of information in the rasterization
result, which manifests as reduced image sharpness, but also causes corruption of the
retained information in form of aliasing artifacts. Commonly observed examples in the
final image are staircase artifacts along object silhouettes or Moiré-like patterns.

The main focus of this thesis is on the effective removal of such artifacts—a process that
is generally referred to as anti-aliasing. This is achieved by removing the offending input
information in a filtering step during rasterization. In this thesis, we present different
approaches that either minimize computational effort or emphasize output quality.

We follow the former objective in the context of an applied scenario from medical
visualization. There, we support the investigation of the interiors of blood vessels in
complex arrangements by allowing for unrestricted view orientation. Occlusions of
overlapping blood vessels are minimized by automatically generating cut-aways with
the help of an occlusion cost function. Furthermore, we allow for suitable extensions
of the vessel cuts into the surrounding tissue. Utilizing a level of detail approach,
these cuts are gradually smoothed with increasing distance from their respective vessels.
Since interactive response is a strong requirement for a medical application, we employ
fast sample-based anti-aliasing methods in the form of visibility sampling, shading
supersampling, and post-process filtering.

We then take a step back and develop the theoretical foundations for anti-aliasing methods
that follow the second objective of providing the highest degree of output quality. As
the main contribution in this context, we present exact anti-aliasing in the form of
prefiltering. By computing closed-form solutions of the filter convolution integrals in the
continuous domain, we circumvent any issues that are caused by numerical integration
and provide mathematically correct results. Together with a parallel hidden-surface
elimination, which removes all occluded object parts when rasterizing three-dimensional
scenes, we present a ground-truth solution for this setting with exact anti-aliasing. We
allow for complex illumination models and perspective-correct shading by combining

xi

visibility prefiltering with shading sampling and generate a ground-truth solution for
multisampling anti-aliasing.

All our aforementioned methods exhibit highly parallel workloads. Throughout the thesis,
we present their mapping to massively parallel hardware architectures in the form of
graphics processing units. Since our approaches do not map to conventional graphics
pipelines, we implement our approach using general-purpose computing concepts. This
results in decreased runtime of our methods and makes all of them interactive.

Kurzfassung

Die Erzeugung zweidimensionaler Bilder zählt zu den grundlegenden Aufgaben der
Computergrafik. Bedeutende Beispiele sind die Umwandlung von Text oder dreidi-

mensionalen Szenen in ein Format, das sich zur Ausgabe auf einem Rasterdisplay eignet.
Eine solche Konvertierung—oft Rasterisierung oder Sampling genannt—unterliegt inhä-
renten Limitierungen, die sich in der Natur des Ausgabeformates begründen. Dies bewirkt
nicht nur einen Informationsverlust im Rasterisierungsresultat, der sich einer Reduktion
der Bildschärfe äußert, sondern verursacht auch eine Verfälschung der verbleibendend
Information in Form von Aliasingartefakten. Gängige Beispiele sind Treppenmuster an
Objektsilhouetten oder Moiré-artige Muster.

Das Hauptaugenmerk der hier vorliegenden Dissertation ist die effiziente Behebung eben-
dieser Artefakte—ein Vorgang, der üblicherweise als Anti-Aliasing bezeichnet wird. Dies
wird durch ein Entfernen der unzulässigen Eingangsinformation während der Rasterisie-
rung mithilfe einer Filterung erreicht. Wir präsentieren in dieser Dissertation verschiedene
Ansätze, die ihr Hauptaugenmerk entweder auf eine Minimierung des Rechenaufwandes
oder auf maximale Ausgabequalität legen.

Wir folgen der ersten Zielsetzung in einer Anwendung aus der medizinischen Visualisierung,
in der wir die Inspektion von Blutsgefäßinnenräumen von komplexe Gefäßanordnungen
unterstützen, indem wir eine beliebige Betrachtungsrichtung ermöglichen. Verdeckungen
von überlappenden Gefäßen werden durch das automatisierte Einfügen von Ausschnitten
minimiert, wofür eine Verdeckungskostenfunktion eingesetzt wird. Darüber hinaus wird ei-
ne Erweiterung der Blutgefäßschnitte in das umliegende Gewebe ermöglicht. Mittels einem
detailgradbasierendem Verfahren werden die Schnitte mit steigender Distanz von ihrem
zugehörigen Gefäß graduell geglättet. Eine interaktive Reaktionszeit unserer Implementa-
tion wird durch eine Kombination von Sichtbarkeitssampling, Schattierungssupersampling
und nachträglicher Filterung ermöglicht.

Im Weiteren nehmen wir einen anderen Ansatz und entwickeln die theoretischen Grund-
lagen für Anti-Aliasing Methoden, die der zweiten Zielsetzung eines Höchstgrades an
Ausgabequalität folgen. Als Hauptbeitrag in diesem Zusammenhang präsentieren wir
exaktes Anti-Aliasing in der Form von Präfilterung. Durch das Berechnen geschlosse-
ner Lösungen der auftretenden Filterungsfaltungen im Kontinuierlichen, umgehen wir
sämtliche Problematiken, die sich durch numerische Integrationsansätze ergeben, und
bieten mathematisch korrekte Resultate. Zusammen mit einer parallelen Elimination

xv

versteckter Oberflächen, die alle verdeckten Objektteile bei der Rasterisierung dreidi-
mensionaler Szenen entfernt, präsentieren wir eine Referenzlösung für dieses Szenario
mittels exaktem Anti-Aliasing. Weiters ermöglichen wir die Verwendung von komplexen
Beleuchtungsmodellen und perspektivisch korrekter Schattierung indem Sichtbarkeitsprä-
filterung mit Schattierungsampling kombiniert wird; woraus eine Referenzlösung für
Multisampling-Anti-Aliasing abgeleitet werden kann.

Sämtliche obengenannten Methoden weisen hochparallele Berechnungslasten auf. Daraus
folgend, präsentieren wir im Zuge der gesamten Dissertation deren Abbildung auf massiv-
parallele Hardwarearchitekturen in der Form von Grafikprozessoren. Da unsere Ansätze
nicht auf herkömmlichen Grafikpipelines umzusetzen sind, implementierten wir sie mithilfe
von generellen Berechnungskonzepten. Dies schlägt sich in reduzierten Laufzeiten nieder
und ermöglicht die Interaktivität all unserer Methoden.

Acknowledgements

First of all, I would like to thank my supervisors Prof. Michael Wimmer and Stefan
Jeschke. If it were not for them and their willingness to employ a physicist for

research in computer graphics, I would not have been able to pursue this degree. I am
grateful for their supervision and guidance especially in my first months of orientation
and their continued help.

I want to thank my close collaborator Gabriel Mistelbauer for inspiring discussions and
for unconditional commitment especially at submission deadlines. Without support of my
collaborators Reinhold Preiner, Przemyslaw Musialski, and Michael Guthe, this thesis
would not have been possible. My thanks also go to my collaborators during my former
and continued research: Johanna Schmidt, Paul Guerrero, María del Carmen Calatrava
Moreno, Ralf Habel, Alexey Karimov, Károly Zsolnai, Ralf Habel, Stefan Bruckner, and
Eduard Gröller. Working with you is and was a pleasure.

I owe the staff of our institute, especially Andreas Weiner and Stephan Bösch-Plepelits,
for excellent technical assistance, and Anita Mayerhofer-Sebera, Sow Wai (Tammy)
Ringhofer, and Andrea Fübi for their invaluable help throughout the years. I am also
thankful to the head of our institute, Werner Purgathofer, for creating such an enjoyable
work environment. I acknowledge Gernot Ziegler from NVidia Austria provided great
GPU-related insights.

I want to thank my parents, Hermine and Walter Auzinger, for their support throughout
my years of study. Very special thanks to my girlfriend María del Carmen Calatrava
Moreno, who lovingly and patiently carried me through the years of my thesis and
provided invaluable emotional as well as professional support. Te amo, Mamen.

I was funded during my doctoral studies by the FWF projects Modern Functional
Analysis in Computer Graphics (FWF P23700-N23) and Detailed Surfaces for Interactive
Rendering (FWF P20768-N13).

xix

Contents

Abstract xi

Kurzfassung xv

Contents xxi

1 Introduction 3
1.1 Motivation . 4
1.2 Contributions . 6
1.3 Organization . 8
1.4 Publications . 9

2 Related Work and Foundations 13
2.1 Sampling and Filtering . 13

2.1.1 One-dimensional Sampling and Filtering 14
2.1.2 Multi-dimensional Sampling and Filtering 18
2.1.3 Convolution Computation . 20
2.1.4 Dimensions in Rasterization . 22
2.1.5 Related Work in Rasterization 23

Prefiltering . 23
Supersampling . 25
Semi-Analytic Methods . 25
Reconstruction . 25

2.2 Massively Parallel Hardware Architectures 26
2.2.1 History and Related Work . 26
2.2.2 Graphics Hardware Architectures 27

3 Curved Surface Reformation 33
3.1 Motivation . 33
3.2 Related Work in Visualization . 34
3.3 Curved Surface Reformation . 37

3.3.1 Theory . 39
Surface Generation . 39
Main Challenges . 40

xxi

Cost Function . 40
Centerline Simplification . 41

3.3.2 Discrete Geometry . 44
Surface Generation . 44
Centerline Simplification . 45

3.3.3 Rendering . 46
LOD Estimation . 46
Depth Computation . 46
Depth Filtering . 46
Surface Rendering . 48
Silhouette Rendering . 48
Context Rendering . 49

3.3.4 Implementation . 49
3.4 Results . 52
3.5 Evaluation . 56
3.6 Discussion . 57

4 Prefiltering on Polytopes 59
4.1 Analytic Integration . 59

4.1.1 Setting . 60
4.1.2 Integration in Two Dimensions 62
4.1.3 Integration in Three Dimensions 63

4.2 Implementation . 64
4.3 Results . 65
4.4 Discussion . 69

5 Exact Parallel Visibility 73
5.1 Analytic Visibility . 73

5.1.1 Overview . 75
5.1.2 Edge Intersections . 75
5.1.3 Visible Line Segments . 77

Hidden-Line Elimination . 78
Hidden-Surface Elimination . 81

5.2 Implementation . 82
5.2.1 Hardware . 83
5.2.2 Design Considerations . 83
5.2.3 Analytic Visibility Pipeline . 83
5.2.4 Analytic Integration . 85

5.3 Results . 86
5.3.1 Bin Size . 87
5.3.2 Timings . 89
5.3.3 Comparison with Supersampling 89

5.4 Discussion . 89

6 Non-Sampled Anti-Aliasing 93
6.1 Motivation . 94
6.2 Non-Sampled Anti-Aliasing . 94

6.2.1 Primitive Gathering . 96
6.2.2 Analytic Weight Computation 98
6.2.3 Final Blending . 98

6.3 Results and Applications . 99
6.3.1 Evaluation . 103
6.3.2 Ground-Truth Generation . 103
6.3.3 Performance . 103

6.4 Discussion . 104

7 Conclusion 107
7.1 Summary . 107
7.2 Discussion . 109
7.3 Future Work . 109

A Questionnaire of Curved Surface Reformation 113
A.1 General Assessment . 114
A.2 Perception . 116

B Ideal Radial Filter Derivation 121

C Filter Convolution in Rn 125
C.1 Explicit Solutions in 2D and 3D . 126

C.1.1 2D Integrals . 127
C.1.2 3D Integrals . 127

D Polynomial Filter Approximations 131

List of Figures 135

List of Tables 137

List of Algorithms 139

Acronyms 141

Bibliography 147

Curriculum Vitae 162

CHAPTER 1
Introduction

The generation of images can be regarded as the foundation on which computer
graphics is built upon. From physically based light-transport simulation for photo-

realistic imagery, over their fast approximations to enable real-time performance, up to
the depiction of abstract data with visualizations, an image is nearly always the final
output. To match this output with display hardware—which, since decades, uses a
regular arrangement of light-emitting picture elements (i.e., pixels) to generate the visual
impression—a raster format has to be chosen. Many common image formats (e.g., Joint
Photographics Experts Group (JPEG), Portable Network Graphics (PNG), and Graphics
Interchange Format (GIF)) and almost all video format are, therefore, regular grids of
color values.

There are, however, fundamental mismatches between most of the input data to an
image-generation process—also called rendering process—and its output. First, the
input is often given in non-raster formats such as vector formats. An examples for such
format is text, which is commonly represented by non-linear curves that describe the
outlines of letters and symbols. Another example is the scene geometry for light-transport
simulations, which is represented by the objects’ surfaces using meshes of polygons or
non-linear patches. Even if given in raster format, such as texture maps, the regular
grids of input and output hardly ever coincide. Thus, a format conversion has to be
performed in a process that is commonly referred to as rasterization in the computer
graphics community and as sampling in other fields.

This leads to an inevitable loss of information, since the richness of the vector information
cannot be represented by the discrete samples, which are located at the grid points of the
raster output. As described in seminal works in the theory of signal processing, there are
fundamental limitations associated with sampling processes, which can manifest in severe
data distortion. Subsumed under the term aliasing, a class of these deficiencies arise from
an inherent limit on the image sharpness that a given regular grid can still represent. To
reduce aliasing artifacts to a minimum, image details beyond this sharpness limit have to

3

1. Introduction

be removed in a process that is commonly called anti-aliasing. The first focus of this
thesis is concerned with the task of how anti-aliasing can be performed such that the
output quality of the rasterization process in maximized. As we will show, this requires
a special class of filters and symbolic mathematical computations for their application.

The second mismatch between input and output data in image-generation tasks is
associated with their respective dimensions. This is evident from the fact that three-
dimensional scene input has to be projected onto a two-dimensional output image. Even
the conversion of two-dimensional vector graphics to two-dimensional raster images
exhibits this complication, since vector graphics are usually organized in layers, where
the content of a given layer is occluded by the content of other layers above it. The
technique on how to resolve the visibility of those shapes or scene elements is intimately
linked with the chosen anti-aliasing approach. If the consequence of aliasing is ignored
or if a dense intermediate raster grid is used to increase the output quality, the scene
visibility can be determined locally for each sample location in the raster grid. Highest-
quality anti-aliasing, in contrast, requires an exact vector-format representation of the
scene visibility as a basis for the subsequent rasterization process. For applications with
different requirements in terms of execution time and output quality, we investigate both
approaches in a second focus of this thesis.

All aforementioned computation tasks—as well as image generation in general—are
inherently parallel, in the sense that the color of each pixel of the raster output is
generated in a similar fashion and largely independently from each other. Apart from
algorithmic considerations, in the sense that acceleration data structures and cached
results can be efficiently shared among different samples, this large amount of parallelism
enables the efficient use of parallel hardware architectures. In fact, it was the widespread
use of rasterization in computer games and other visually demanding real-time applications
that spawned a whole industry of parallel co-processors. Nowadays, they can be found
in nearly all consumer computing devices in the form of graphics chips. We map our
algorithms to such parallel computing models, which allows us to investigate their
performance characteristics with actual implementations. This constitutes the third focus
of this work.

1.1 Motivation
This thesis is motivated by challenges both in applied and fundamental computer graphics,
which we review in this section. Consult Table 1.1 for an accompanying overview.

For a medically relevant use case concerned with the radiological examinations of blood-
vessel interiors, we employ sampling-based anti-aliasing methods to minimize computa-
tional complexity and to guarantee interactive performance. In this work, we resolve
the complex visibility of mutually occluding vessels and provide a smooth cut into the
surrounding tissues. This enables an efficient examination of potential pathologies by
domain experts, since we show as many blood vessels as possible for each view direction,
while still leaving sufficient cues to judge the depth ordering of the vessels. Technically,

4

1.1. Motivation

Technique Anti-Aliasing Strategy
Visibility Shading

Curved Surface Reformation
(Chapter 3) Sampled Supersampled

Prefiltering on Polytopes
(Chapter 4) Prefiltered

Exact Parallel Visibility
(Chapter 5) Prefiltered Prefiltered

Non-Sampled Anti-Aliasing
(Chapter 6) Prefiltered Sampled

Table 1.1: Overview of the various anti-aliasing strategies that were used throughout
the work presented in this thesis. In the applied setting of medical visualization, where
interactive feedback is paramount, sample-based methodologies were employed due to
their lower computation cost. Our fundamental research into ground-truth anti-aliasing
leads to the use of prefiltering first for shading and then for visibility and shading. For
various shading models, prefiltering is not possible due to mathematical reasons and
sampling is provided as an replacement.

this is achieved by extruding surfaces away from the vessels’ centerlines and by modulating
their depth values to minimize the occlusions of vessels further in the back. Furthermore,
we provide a Level of Detail (LOD)-based smoothing of the extruded surfaces to counter-
act their possible distortions in the surrounding tissues. In this approach, we employ
sampling to resolve the visibility and supersampling to filter the imaging data both in-
and outside of the blood vessels. While sampling-based visibility methods generally suffer
from poor anti-aliasing quality—especially at object silhouettes—this does not occur in
this setting, as silhouttes are overdrawn for application-specific reasons. Thus, we chose
the conceptually simpler approach that, at the same time, requires less computational
effort and enables the vital interactive response of our visualization framework.

The remainder of the thesis is concerned with the opposite scenario of obtaining the
highest possible anti-aliasing quality. By developing a general theory for mathematically
exact filtering, we are able provide a ground-truth solution for anti-aliased rasterization.
This approach enables the comparison of various approximation to anti-aliasing—of which
there exists a rich body of work—against an objective reference. Furthermore, it allows
the comparison of different filter functions on scenes with high anti-aliasing requirements.
With sampling-based approximations, the effects of different filters is often hidden by the
overwhelming aliasing noise. From a technical point of view, this result is achieved by a
combination of symbolic integration—to evaluate the convolution integrals of the shading
function with the filter kernel—and computational geometry—to exactly remove those
parts of the scene that are occluded by objects in front of them. For shading functions

5

1. Introduction

that do not permit symbolic integration, we additionally present a scheme on how to
combine exact visibility filtering with sampled shading.

The implementation of the aforementioned works on general-purpose graphics hardware
has several motives. Since all our algorithms are highly parallelizable, it is possible to
efficiently utilize the computational resources of such hardware architectures. This leads
to an improved performance in terms of runtime and energy efficiency. Adhering to the
parallel computing model of graphics processor enforces parallelization strategies that are
also valid for different massively parallel architectures, such as many-core coprocessors.
Thus, our strategies for data reuse, reducing the branching of code paths, and the efficient
use of parallel primitives are also valid for a wide range of different applications.

1.2 Contributions

The following contributions are made in this thesis:

• A parallel algorithm to resolve the exact visibility of surfaces that are extruded
outwards from central 3D curves and orthogonal to an arbitrary view direction.
Conceptually similar to the rasterization-based construction of Generalized Voronoi
Diagrams (GVDs) (Hoff et al. 1999), we use a non-standard depth function to
minimize mutual occlusion. Employed in medical visualization, this approach
allows, for the first time, the depiction of multiple overlapping blood vessels from
arbitrary view directions with automatically generated cut-aways.

This contribution was published as

T. Auzinger, G. Mistelbauer, I. Baclija, R. Schernthaner, A. Kochl, M.
Wimmer, M. E. Groller, and S. Bruckner (2013). „Vessel Visualization
using Curved Surface Reformation“. In: IEEE Transactions on Visual-
ization and Computer Graphics 19.12, pp. 2858–2867. issn: 1077-2626.
doi: 10.1109/tvcg.2013.215

in a joint first authorship with Gabriel Mistelbauer, where I contributed the
mathematical theory, while Gabriel Mistelbauer created the implementation and
conducted the evaluation, where he was aided by the physicians. The last three
authors provided editorial support. An exposition can be found in Chapter 3.

• A parallel method to resolve the exact visibility of triangular meshes. We present a
novel edge-triangle intersection routine to perform hidden-line elimination. Hidden-
surface elimination is then achieved with our new boundary completion algorithm.
The polygonal visible regions of each triangle are reported as a set of line segments
that constitute the region’s boundary. This vector-format data can be directly used
to define domains of integrations.

The publication

6

http://dx.doi.org/10.1109/tvcg.2013.215

1.2. Contributions

T. Auzinger, M. Wimmer, and S. Jeschke (2013). „Analytic Visibility on
the GPU“. in: Computer Graphics Forum 32.2pt4, pp. 409–418. issn:
0167-7055. doi: 10.1111/cgf.12061

documents this contribution. Apart from editorial support by Michael Wimmer
and Stefan Jeschke, and result scenes by Stefan Jeschke, I created this work. An
in-depth description is presented in Chapter 5.

• An analytic method for prefiltered sampling of linear functions defined on polytopes.
A wide range of radially symmetric filters is supported by closely approximating
them with a polynomial of arbitrary order. Apart from a closed-form formulation
in n dimensions, we specifically allow for high-quality rasterization of 2D polygons
and 3D polyhedra to regular and non-regular grids. Together with the visibility
routine above, fully prefiltered 3D to 2D rasterization is supported.
We published this contribution as

T. Auzinger, M. Guthe, and S. Jeschke (2012). „Analytic Anti-Aliasing
of Linear Functions on Polytopes“. In: Computer Graphics Forum
31.2pt1, pp. 335–344. issn: 0167-7055. doi: 10.1111/j.1467-
8659.2012.03012.x

where Michael Guthe contributed the major part of the filtering theory while Stefan
Jeschke provided the DirectX implementation and wrote parts of the articles. The
CUDA implementation, the closed-form solutions, the evaluation, and the main
part of the article were done by me. It builds the basis of Chapter 4.

• A technique to conventionally sample the values of an arbitrary function on poly-
topes while still providing analytic prefiltering of the polytope’s characteristic
function. In the context of rasterization, this allows for near-perfect edge anti-
aliasing in combination with conventional shaders.
Published as

T. Auzinger, P. Musialski, R. Preiner, and M. Wimmer (2013). „Non-
Sampled Anti-Aliasing“. In: Vision, Modeling & Visualization. Ed. by
M. Bronstein, J. Favre, and K. Hormann. VMV ’13. The Eurographics
Association, pp. 169–176. doi: 10.2312/PE.VMV.VMV13.169-176

I was assisted in writing the article by Reinhold Preiner and Przemyslaw Musialski.
Michael Wimmer provided discussions and editorial support. The remainder was
created by myself. Chapter 6 presents this contribution.

• A mapping of all aforementioned techniques to a massively parallel hardware
architecture. We provide parallelization strategies for efficient execution on a large
number of Single Instruction Multiple Data (SIMD) processing units, typical for
Graphics Processing Units (GPUs) and many-core coprocessors. Furthermore, we
present implementations on graphics hardware using a general-purpose computing

7

http://dx.doi.org/10.1111/cgf.12061
http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x
http://dx.doi.org/10.2312/PE.VMV.VMV13.169-176

1. Introduction

Application Programming Interface (API) together with performance evaluations
on recent graphics cards.
Chapters 3-6 cover different aspects of this mapping, with the most in-depth
discussion presented in Chapter 5.

1.3 Organization
The thesis is organized into the following chapters:

Chapter 2 introduces fundamental concepts and provides the context of this thesis by
embedding it into related works.

Chapter 3 presents a reformation framework for radiological inspections of blood-vessel
interiors. By resolving the complex visibility of multiple local surfaces around the
vessel centerlines and by creating automatic cutaways, mutual vessel occlusions are
reduced to a minimum and most of the vasculature is shown at once. The use of
sampling for visibility resolution is presented together with supersampled shading
and post-processing anti-aliasing. Based on an evaluation by several domain experts,
the usefulness of our approach is demonstrated.

Chapter 4 initiates the part on prefiltered anti-aliasing. Closed-form solutions to
convolution integrals of polytopes with radial filter kernels are presented in arbitrary
dimensions. This is achieved by appropriate subdivisions of the integration domain,
which is the intersection of the polytope with the hyperspherical filter support. An
implementation of 2D and 3D rasterization on graphics hardware is presented and
its performance characteristics evaluated.

Chapter 5 augments the shading prefiltering of the previous chapter with exact visibility
resolution in the case of 3D to 2D rasterization. By extending previous results from
computational geometry, an algorithm for hidden-surface elimination is presented,
which is tailored to massively parallel SIMD architectures, such as GPUs. Apart
from a detailed description of the various stages of the method—edge intersection,
hidden-line elimination, and boundary completion—an implementation on graphics
hardware is introduced and benchmarked.

Chapter 6 builds on the previous chapters and merges visibility prefiltering with sampled
shading. The result is a novel rasterization pipeline that combines ground-truth
edge anti-aliasing with arbitrary shading functions and effects. It shows how to
replace conventional depth buffering with exact hidden-surface elimination while
still leaving vertex and fragment shader largely unaltered. An implementation
on GPUs using DirectX and Compute Unified Device Architecture (CUDA) is
presented and evaluated.

Chapter 7 summarizes the thesis with a discussion section and outlines possible future
extensions and applications of the presented methods.

8

1.4. Publications

1.4 Publications
This thesis is based on the following accepted peer-reviewed publications:

Auzinger, T., G. Mistelbauer, I. Baclija, R. Schernthaner, A. Kochl, M.
Wimmer, M. E. Groller, and S. Bruckner (2013). „Vessel Visualization using
Curved Surface Reformation“. In: IEEE Transactions on Visualization and Computer
Graphics 19.12, pp. 2858–2867. issn: 1077-2626. doi: 10.1109/tvcg.2013.215.

Auzinger, T., P. Musialski, R. Preiner, and M. Wimmer (2013). „Non-Sampled
Anti-Aliasing“. In: Vision, Modeling & Visualization. Ed. by M. Bronstein, J.
Favre, and K. Hormann. VMV ’13. The Eurographics Association, pp. 169–176.
doi: 10.2312/PE.VMV.VMV13.169-176.

Auzinger, T., M. Wimmer, and S. Jeschke (2013). „Analytic Visibility on the
GPU“. In: Computer Graphics Forum 32.2pt4, pp. 409–418. issn: 0167-7055. doi:
10.1111/cgf.12061.

Auzinger, T., M. Guthe, and S. Jeschke (2012). „Analytic Anti-Aliasing of Linear
Functions on Polytopes“. In: Computer Graphics Forum 31.2pt1, pp. 335–344. issn:
0167-7055. doi: 10.1111/j.1467-8659.2012.03012.x.

During the time period of this thesis, the following unrelated peer-reviewed articles were
published:

Ilcik, M., P. Musialski, T. Auzinger, and M. Wimmer (2015). „Layer-Based
Procedural Design of Facades“. In: Computer Graphics Forum 34.

Jimenez, J., K. Zsolnai, A. Jarabo, C. Freude, T. Auzinger, X.-C. Wu, J. von der
Pahlen, M. Wimmer, and D. Gutierrez (2015). „Separable Subsurface Scattering“.
In: Computer Graphics Forum. issn: 0167-7055. doi: 10.1111/cgf.12529.

Guerrero, P., T. Auzinger, M. Wimmer, and S. Jeschke (2014). „Partial Shape
Matching Using Transformation Parameter Similarity“. In: Computer Graphics Forum.
issn: 0167-7055. doi: 10.1111/cgf.12509.

Schmidt, J., R. Preiner, T. Auzinger, M. Wimmer, M. E. Gröller, and S.
Bruckner (2014). „YMCA - Your Mesh Comparison Application“. In: IEEE
Conference on Visual Analytics Science and Technology. IEEE VAST ’14. IEEE.

Furthermore, the following additional publications were produced in the period of this
thesis:

Auzinger, T. and M. Wimmer (2013). „Sampled and Analytic Rasterization“. In:
Vision, Modeling & Visualization Posters. Ed. by M. Bronstein, J. Favre, and
K. Hormann. VMV ’13. The Eurographics Association, pp. 223–224. doi: 10.
2312/PE.VMV.VMV13.223-224.

9

http://dx.doi.org/10.1109/tvcg.2013.215
http://dx.doi.org/10.2312/PE.VMV.VMV13.169-176
http://dx.doi.org/10.1111/cgf.12061
http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x
http://dx.doi.org/10.1111/cgf.12529
http://dx.doi.org/10.1111/cgf.12509
http://dx.doi.org/10.2312/PE.VMV.VMV13.223-224
http://dx.doi.org/10.2312/PE.VMV.VMV13.223-224

1. Introduction

Calatrava Moreno, M. d. C. and T. Auzinger (2013). „General-Purpose Graphics
Processing Units in Service-Oriented Architectures“. In: 2013 IEEE 6th International
Conference on Service-Oriented Computing and Applications. SOCA ’13. IEEE,
pp. 260–267. isbn: 978-1-4799-2701-2. doi: 10.1109/soca.2013.15.

Auzinger, T., R. Habel, A. Musilek, D. Hainz, and M. Wimmer (2012). „Geiger-
Cam: Measuring Radioactivity with Webcams“. In: ACM SIGGRAPH 2012 Posters.
SIGGRAPH ’12. ACM Press, 40:1–40:1. isbn: 978-1-4503-1682-8. doi: 10.1145/
2342896.2342949.

10

http://dx.doi.org/10.1109/soca.2013.15
http://dx.doi.org/10.1145/2342896.2342949
http://dx.doi.org/10.1145/2342896.2342949

CHAPTER 2
Related Work and Foundations

In this chapter, we provide the conceptual and mathematical foundation of sampling,
filtering, and anti-aliasing in Section 2.1. In Section 2.2, an overview of parallel

computing architectures with a focus on graphics hardware is presented. Furthermore,
we provide the context to this thesis with the related work sections on anti-aliasing
of shading and visibility signals (see Section 2.1.5) and on the use of general-purpose
computation on Graphics Processing Units (GPUs) in the field of computer graphics (see
Section 2.2.1).

2.1 Sampling and Filtering

Most output modalities in visual computing expect a discrete data format. Displays show
content as a regular grid of color pixels while 3D printers recreate sliced or voxelized
representations of the actual model. The format of input data, in contrast, is often
(piecewise) continuous. Most 2D and 3D models are represented as piecewise linear
or non-linear patches, such as polygonal or polyhedral meshes, splines, or explicit and
implicit parametrizations. Scalar and vector functions to describe volumetric and surface
effects, such as illumination models, are often given as analytic expression. And even
if input is given in a discrete format, it will rarely align perfectly with the output
discretization.

Being a fundamental operation in many applications—far beyond computer graphics—,
the conversion process from a continuous to a discrete representation is subsumed under
the term sampling and has its theoretical foundations in the field signal processing. For
already discrete data, resampling is possible by creating an intermediate continuous
representation. In the following, the fundamentals of one- and multidimensional sampling
and filtering are provided.

13

2. Related Work and Foundations

Figure 2.1: Application of the Dirac comb to obtain a regular sampling of a continuous
function (left). The function is only evaluated at the location of the delta distributions
(right).

2.1.1 One-dimensional Sampling and Filtering

Formally, sampling of a (piecewise) continuous 1D function f(t) at a discrete location t0
produces the sample f(t0). Using the Dirac delta distribution δ(t), heuristically given by

δ(t) =
{
∞, x = 0
0, x 6= 0

and
∫ ∞
−∞

δ(t) dt = 1,

the sampling process can be written in integral form as

f(t0) =
∫ ∞
−∞

f(t)δ(t− t0) dt, (2.1)

where the point sample f(t0) and the impulse sample f(t)δ(t−t0) can be used interchange-
ably. In the following, we will use the impulse sample notation as it is more suitable to
the further mathematical exposition. Equation 2.1 has the form of a convolution and we
will use the following shorthand:

(f ? δ)(t0) =
∫ ∞
−∞

f(t) δ(t0 − t)︸ ︷︷ ︸
=δ(t−t0)

dt. (2.2)

Note that the definition and correct usage of distributions such as δ requires a considerable
mathematical framework and we refer to the original works of Sobolev (1936) and Schwartz
(1951–1957) as well as to a modern textbook (Strichartz 2003) for an overview.

A common use case in computer graphics is the sampling at regular intervals where the
spacing T between adjacent samples is constant. As illustrated in Figure 2.1, the sampled
signal fT is thus given as

fT (t) =
∞∑

k=−∞
f(t) δ(t− kT)

14

2.1. Sampling and Filtering

Figure 2.2: The aliasing effect in frequency space. The spectrum of a continuous signal is
shown on the left. The spectrum of a regular sampling of this signal is shown on the right.
It consists of translated copies—the aliases—of the signal’s original spectrum (dashed),
which overlap (gray area) if the sample spacing is too small. This causes a distortion of
the samples signal’s low frequencies by aliases at higher frequencies.

and we denote the sampling function as

XT (t) =
∞∑

k=−∞
δ(t− kT). (2.3)

In the literature, X has a multitude of names, e.g., impulse train, Shah function, bed
of nails, replicating symbol, or Dirac comb and in this work we refer to it as comb. A
fundamental principal of sampling becomes evident when transforming our setting into
frequency space. By applying the Fourier transform and its inverse defined as

f̂(ξ) =
∫ ∞
∞

f(t) e−2πitξ dt

qf(t) =
∫ ∞
∞

f(ξ) e2πiξt dξ

and using the identity X̂T = 1
TX− 1

T
, we obtain the frequency representation of regular

sampling as

f̂T (ξ) = f̂XT (ξ) = 1
T

(
f̂ ? X̂− 1

T

)
(ξ)

= 1
T

∞∑
k=−∞

f̂

(
ξ + k

T

)
, (2.4)

where we used the convolution theorem stating that f̂ ? g(ξ) = f̂(ξ) ĝ(ξ). This compu-
tation shows that regular sampling in frequency space amounts to the infinite sum of
translated copies, called aliases, of the spectrum f̂ of our input function f .

If the support of the transformed signal f̂ has a width exceeding 1
2T , the aliases overlap

as shown in Figure 2.2. This causes a distortion of the lower frequencies by the higher
frequencies of the aliases, i.e., the frequency content of the original signal above 1

2T is

15

2. Related Work and Foundations

introduced as low-frequency patters in the sampled data. This process is commonly
referred to as aliasing and one focus of this thesis is concerned with methodologies to
combat it, i.e., to perform anti-aliasing.

The Nyquist-Shannon sampling theorem (Nyquist 2002; Shannon 1998) is a direct
consequence from this fact and states that if a function contains no frequencies higher
than 1

2T , it is completely determined by a regular sampling with period T . Such functions
are referred to as band-limited and they can be perfectly reconstructed from the sampling
by a convolution with the sinc function (Whittaker 1915), i.e,

f(t) =
(
fT ? sinc

(·
T

))
(t).

Note that the sampling theorem is a sufficient condition but not a necessary one if further
restriction apply to the original function. The field of compressed sensing (Candes et al.
2006) provides methods for sampling with a lower rate at the cost of a more complex
reconstruction. While these approaches have their applications in image generation (P.
Sen and Darabi 2010), we do not elaborate on them in the scope of this thesis.

In many application—computer graphics among them—the input signal cannot be as-
sumed to be band-limited. Text, for example, where letters are defined by their continuous
outline, the signal exhibits a discontinuity when crossing the boundary. Formally, this
can be illustrated by transforming the discontinuous rectangle function Πw(t) of width w,
given by

Πw(t) = Π1

(
t

w

)
=

0, |t| > w

2
1

2w , |t| =
w
2

1
w , |t| < w

2 ,

(2.5)

into frequency space to obtain

Π̂w(ξ) = w sinc(wξ) = sin(wπξ)
πξ

.

Since sinc(t) has unbounded support (i.e., @R > 0, ∀|t| > R : sinc(t) = 0), arbitrarily
large frequencies contribute to the spectrum of Π(t)w.

As a consequence, it is not possible to sample general signals without experiencing aliasing.
By sacrificing the high frequency content of the input signal, it is however possible to
perform anti-aliasing. This is achieved by removing frequencies above the permissible
band-limit from the input signal with the help of a low-pass filter in frequency space.
The ideal low-pass filter is the rectangle function—also called box-filter—of width 1

T as
shown in Figure 2.3. By multiplication of the Fourier transformed input signal with the
box-filter, all frequencies above the limit of 1

2T are removed and aliasing is eliminated.
Applying the inverse Fourier transform gives the action of the filtering process on the
actual signal as

~

f̂ Π 1
T

= f ?
1
T

sinc
(·
T

)
. (2.6)

16

2.1. Sampling and Filtering

Figure 2.3: Effects of low pass filtering. (Left) If a signal exceeds the band limit imposed
by the sampling period, overlaps with aliases occur and the spectrum of the sampled
signal (solid) does not coincide with the spectrum of the signal (dashed). (Right) A low
pass filter (dotted) removes the offending frequencies (gray) and eliminates aliasing.

As stated by the convolution theorem, the product of the transformed signal with a
low-pass filter in frequency space translates to a convolution filtering of the actual signal
with the inversely transformed filter. Thus, mathematically perfect anti-aliasing of a
regularly sampled signal can be achieved by a convolution with a sinc filter of appropriate
scale. Further details on this observation can be found in the textbook of Bracewell
(2000).

From a computational viewpoint, however, this result has several significant shortcomings
due to the nature of the sinc function. As already mentioned, its support is unbounded.
This makes it computationally impossible to actually evaluate the convolution in Equa-
tion 2.6 as the domain of the integration is infinitely large. As a further complication, the
integration over the function is only finite, if the positive and negative lobes are allowed
to cancel each other out. The integral over only the positive (resp. negative) parts
diverges to positive (resp. negative) infinity. It is possible to create signals that exhibit an
arbitrarily large positive and negative response by this filter at certain sampling locations,
which is highly unsuitable for many applications in computer graphics (e.g., displaying
colors of bounded range).

A multitude of approximations to the sinc filter were proposed that try to find a trade-
off between computationally convenience and anti-aliasing performance. The simplest
approaches approximate the main lobe of the sinc function with a similar function of
finite support. Often-used examples are the aforementioned box filter as well as tent
and Gaussian filters. A different approach in signal processing is to design windowing
functions with finite support and apply them to the sinc filter. A famous example is the
Lanczos window (Duchon 1979) defined as

wLanczos = sinc
(
x

a

)
where a determines the width of the window. The actual filter is then given as a
multiplication of the sinc filter with this window, i.e., 1

T sinc
(
t
T

)
sinc

(
t
aT

)
. Popular

choices are a = 2, 3 which include—apart from the main lobe—the first negative lobes

17

2. Related Work and Foundations

Anisotropy

Aniso-
tropy

Ringing

Blur

Satis-
factory

Figure 2.4: Perceptional properties of the Mitchell and Netravali filter family. Only a
subset of parameter pairs B and C yielded satisfactory filter functions, as determined by
a user study. Extremal cases on the diagonal suffer from exceeding anisotropy, i.e., differ-
ences in how orthogonal directions in the image are filtered. On the counterdiagonal, blur
manifests in oversmoothing of the image while ringing introduces unwanted oscillations
near edges or regions with large gradient. Taken from (Mitchell and Netravali 1988).

or the first negative and positive lobes. Note that for increasing parameter a both
the computational complexity as well as the anti-aliasing quality increases. A third
category are perceptional motivated filters, such as the filter family designed by Mitchell
and Netravali (1988). For a two-parameter family of cubic splines, they determined
which parameter pairs yield the perceptionally best filter performance as illustrated in
Figure 2.4.

All these approximation suffer from a range of artifacts with overblurring and ringing
being the most perceivable. In general, purely positive filters, such as the Gaussian or
box filters, tend to suppress frequencies below the band limit too much and introduce
excessive blurring of the signal. Filters with negative lobes, such as the Lanczos filters,
tend to overemphasize gradients and cause oscillation artifacts near edges. While a rich
theory on these trade-offs exists in the field of signal processing, filter choice in computer
graphic is usually subject to personal preferences (Blinn 1989).

2.1.2 Multi-dimensional Sampling and Filtering

So far, we discussed the filtering of one-dimensional signals. However, most applications
in computer graphics exhibit a higher dimensionality, such as common rasterization
or convolution-based image filtering (2D), voxelization and motion-blur (3D), defocus
blur (4D) and bilateral filtering (5D). Some filtering operations are even formulated
in dozens of dimensions with Non-Local-Means filtering (Buades et al. 2005) being
a prominent example. Potentially, a multi-dimensional signal can be sampled with

18

2.1. Sampling and Filtering

Figure 2.5: Ideal low pass filters in 2D. For a separable filter model, the ideal low pass
filter in the spatial domain is the tensor product of two sinc functions (left). The ideal
radial low pass filter is given in terms of Gamma and Bessel functions (right).

different methodologies in each dimension, which can be frequently observed when
conceptual differences exist between the dimensions (e.g., time and space). In this thesis,
we are predominately concerned with n-dimensional spatial sampling and we treat all
dimensions identically. Furthermore, we will use regular Cartesian grids as sampling
patterns throughout this thesis but we note that most concepts of these works can be
applied to arbitrary sample locations.

When extending the formalism of 1D filtering to multiple dimensions, two generalizations
are obvious choices: tensor products and radial extensions. The former takes a 1D filter
function g(t) and builds a separable n-dimensional filter function g�(t) by

g�(t) = g�(t1, t2, . . . , tn) = g(t1) g(t2) · · · g(tn)

whereas the latter generates a radial n-dimensional filter function g�(t) by

g�(t) = g�(t1, t2, . . . , tn) = g�(‖t‖) = g

(√
t21 + t22 + · · ·+ t2n

)
.

We get the ideal low pass filter in this setting by using the box filter Πw(ξ) (2.5) as 1D filter
function in frequency space. For both generalization to n dimension, the corresponding
convolution filter in the spatial domain can be obtained by the inverse n-dimensional
Fourier transform. In the separable case, the convolution filter is given as the tensor
product of one-dimensional sinc filters, i.e.,

~Π�, 1
T

(t) = Tn sinc
(
t1
T

)
sinc

(
t2
T

)
· · · sinc

(
tn
T

)
while the radial extensions produces

~Π�, 1
T

(t) = Jn
2

(
π‖t‖
T

)
(2T‖t‖)−

n
2 (2.7)

with Γ(t) denoting the Gamma function and Jν(t) the Bessel function of the first kind.
We present a derivation in Appendix B. Further details can be found in the work of
James (1995) and both filters are illustrated in Figure 2.5.

19

2. Related Work and Foundations

Figure 2.6: Comparison of radial and separable 2D filters. A circular pattern (left) with a
frequency slightly above the Nyquist limit of the output raster grids. A separable Lanczos-
windowed sinc filter (center) exhibits strong anisotropy along the diagonal directions.
With the equivalent radially symmetric filter (right) these artifacts are greatly reduced.

On a regular Cartesian grid the tensor product of sinc filters is the mathematically ideal n-
dimensional filter as its support is the full Brillouin zone of the reciprocal lattice (Petersen
and Middleton 1962). The computational complexity of evaluating such a filter is also
considerably lower, since an n-dimensional convolution can be decomposed in n one-
dimensional convolutions due to the separability of the filter. It shows strong anisotropy,
however, since the sample density is higher along the diagonals, and less blurring happens
along these directions. From a perceptional standpoint, this is highly undesirable as one
would expect a filtered radially symmetric signal to show the same characteristics in all
directions (see Figure 2.6). The user studies of Mitchell and Netravali (1988) support
this assumption, since only filters with low anisotropy were deemed satisfactory (see
Figure 2.4). Thus, we will predominately employ radial filters in this thesis.

2.1.3 Convolution Computation

The approach on how to evaluate a filter convolution is a key differentiator of many
works on anti-aliasing in computer graphics. For a sample at location t0 and a filter
function g(t) we obtain its sampled value by the filter convolution

f(t0) =
∫
Rn
f(t) g(t0 − t) dt. (2.8)

For most computational purposes, this convolution has to be evaluated numerically and
as illustrated in Figure 2.7, four main categories can be identified:

Sampling The simplest method is to ignore the filter contribution and to directly sample
the signal value at t0. As already mentioned before, this approach suffers from
the aliasing artifacts that we tried to combat with the filtering process. Common
rasterization and ray tracing are based on this principle, where each pixel of the
output image is assigned the color obtained at its center.

20

2.1. Sampling and Filtering

Input signal

Prefilter Prefiltered signal Output (prefiltering)

Supersampling

Output (direct sampling)

Output (supersampling)

AliasingAliasing

Direct sampling

Supersampling

Pr
efi

lte
ri

ng

Figure 2.7: The main categories of filter convolution computations. By directly sampling
an input signal, severe aliasing artifacts can be observed, if the signal frequencies exceed
the band limit as imposed by the sample spacing. Supersampling utilizes a dense
intermediate sampling and applies resampling to reduce the sampling resolution to the
desired value. Although to a lesser extent, this approach still suffers from aliasing
due to the band limit of the intermediate sampling. A perfect result can be achieved
by continuously convolving the input signal with a suitable prefilter. This completely
eliminates frequencies beyond the band limit and subsequent sampling is free of aliasing
artifacts. A fourth category in the form of reconstruction post-processing takes the output
of either sampling- or supersampling-based methods and applies heuristic transformations
to recover parts of the signals that are lost due to aliasing.

21

2. Related Work and Foundations

Supersampling A better approach is to approximate the filter convolution by a weighted
averaging of multiple samples inside the filter footprint, a process generally called
supersampling or postfiltering. Many well-known anti-aliasing methods in rasteriza-
tion are based on this principle, such as Supersample Anti-Aliasing (SSAA). While
conceptually simple and fast to evaluate, supersampling still suffers from aliasing;
however, the threshold beyond which aliasing occurs is shifted to higher frequencies
when compared to naive sampling.

Prefiltering The mathematically exact approach is to compute the closed-form solution
of (2.8) and to sample the filtered signal at the desired locations. This approach
removes all aliasing to the extent that the chosen filter function is capable of. As a
downside, the evaluation of the potentially lengthy closed-form solutions—assuming
that they can be obtained in the first place—is generally computationally expensive.

Reconstruction Not to be confused with the same concept in general signal processing,
where reconstruction denotes the recovery of a continuous signal from its discrete
sampling, reconstruction filters in rendering enhance the discrete output of a
(super)sampling process by applying heuristic operations. This approach works well
in spatial anti-aliasing, since staircase artifacts at object silhouettes can be reduced
by edge detection and selective resampling. While this approach is far from a general
anti-aliasing algorithm, it is computationally less demanding than supersampling
or prefiltering, which makes it a popular choice for real-time applications.

2.1.4 Dimensions in Rasterization

So far, the sampling of arbitrary signals was discussed. Common signals in rasterization
exhibit far less degrees of freedom and specialized techniques can take further assumptions
on the signal into account to provide a better quality at less computational effort. A
first overview of typical signals in rasterization can be obtained by examining the
dimensionality of the signal. The most important dimensions are the two spatial image
dimensions, the depth dimension of three-dimensional scenes, a temporal dimension, and
two lens dimensions to simulate a simplified model of an optical system of the camera.
Each dimension has a graphical effect associated with it, which are the image formation
itself, the scene visibility, motion blur, and Depth of Field (DOF).

In this thesis, we take the spatial and depth dimension into account, for which we
provide both sample-based and prefiltering approaches (see Table 1.1). Motion and
defocus blur—which are caused by the temporal and lens dimensions—either do not
apply to the application setting or would not allow exact prefiltering due to the non-
linearities in the associated integrands. For completeness, we also want to state that
this thesis in concerned with rasterization techniques and we do not cover ray- or
path-based rendering methodologies (Křivánek et al. 2014) that are primarily used for
light-transport simulations to provide global illumination. Thus, we leave aside the
additional dimensionalities that arise with secondary or higher light bounces.

22

2.1. Sampling and Filtering

2.1.5 Related Work in Rasterization

The general problem of aliasing was introduced to computer graphics by the work of Crow
(1977), who gave an enumeration of possible artifacts caused by visibility and shading
undersampling. Visibility undersampling can cause staircase artifacts along silhouettes
or the disappearance of small objects, whereas shading undersampling can result in
low-frequency patterns on distant textures or missing highlights. Similar considerations
for general image processing can be found in the works of Schreiber and Troxel (1985). In
the following, we provide a historical overview and current related work for the different
approaches to perform anti-aliasing. A recent survey was also given by Jiang et al. (2014).

Prefiltering

Shading. A considerable amount of work has been published on 2D analytic anti-
aliasing. Early methods by Catmull started of with box filtering (Catmull 1978) and
were extended to spherically symmetric filters using look-up tables (Catmull 1984). The
latter work builds on a filtering method by Feibush et al. (1980) which uses domain
decomposition to evaluate the integrals. Pioneering works treat constant color polygons
(Catmull 1978; Kajiya and Ullner 1981) and smoothly shaded polygons are mentioned
as a possible extension by Catmull (1984). It should be noted that Kajiya and Ullner
(1981) also treats the more general problem of finding an optimal filter for the given
raster display. Grant (1985) used a 4D formulation of this problem to model spatial
and temporal anti-aliasing of polygons that are transformed via translation and scaling.
Before the work described in this thesis, the de-facto state of the art still was an analytic
2D filtering method by Duff (1989). It supports general filter models with polynomial
approximations and supports linear functions defined on the polytopes. Unfortunately,
the separable 2D formulation is not easily generalizable to three dimensions as the integral
complexity grows beyond a manageable level. Later, McCool (1995) proposed simplicial
decompositions of shapes for a faster filtering compared to Duff at that time, but an
extension to three dimensions is not straightforward as well. Furthermore, Guenter
and Tumblin (1996) used quadrature prefiltering to further speed up the process, with
analytic aliasing in one direction and sampling in the other. More recently, Lin et al.
(2005) proposed an analytic evaluation approach for radially symmetric filters that is in
spirit similar to this work, but they do not support linear functions nor negative filter
lobes, which are needed for most practical applications (Mitchell and Netravali 1988).

Concerning three dimensional rasterization, i.e., voxelization, a distinction has to be made
between surface voxelizations (Jones 1996; Kaufman 1987) and solid object voxelizations
(Wang and Kaufman 1993). In addition, binary voxelization techniques (Hasselgren et al.
2005; Huang et al. 1998; Pantaleoni 2011a; Zhang et al. 2007) only apply a binary value
to each voxel, effectively ignoring filtering issues. Several solid voxelization papers apply
filtering, either based on integral lookup tables (Wang and Kaufman 1993) and/or on the
closest distance of each voxel center to the shape boundary (Sramek and Kaufman 1998;
1999) and applying so-called oriented box filtering. Note that all these methods do not
compute the exact volumetric filter integral. A recent submission that builds upon the

23

2. Related Work and Foundations

techniques developed in this thesis presents applications of prefiltered 3D voxelization in
computational physics (Powell and Abel 2014).

Simultaneously to the work presented in this thesis, Manson and Schaefer (2011; 2013)
published results that tackle aspects of the prefiltered rasterization problem. In their
first work, they use a Haar wavelet-based representation to rasterize 2D and 3D shapes.
In the 2D case, they rasterize shapes with boundaries defined by splines and in the 3D
case, polygonal meshes. While allowing for hierachical rasterization in a Level of Detail
(LOD) fashion, their approach is restricted to box filtering and binary shading functions.
Their second work omits the hierarchical nature of wavelets and presents a patchwise
approximation of arbitrary filters to permit the rasterization of linear color gradients of
curved shapes utilizing a scanline methodology.

Visibility. Analytic visibility methods were developed early in the history of computer
graphics, with the first hidden-line and hidden-surface-elimination algorithms by Appel
(1967) and Roberts (1963). Sutherland et al. (1974) presented an excellent survey of
related methods and their close relationship to sorting (Sutherland et al. 1973).

Plenty of early algorithms exist for the elimination of hidden lines (Galimberti 1969;
Hornung 1982) or general curves (Elber and Cohen 1990). They build the basis for
line-based renderings, with the first halo rendering presented by Appel et al. (1979), and
recent developments covered in the course by Rusinkiewicz et al. (2008).

Extensions to analytic hidden-surface elimination were conducted by Weiler and Atherton
(1977), who clip polygonal regions against each other until trivial depth sorting is
obtained, by Franklin Franklin 1980, who used tiling and blocking faces to establish run-
time guarantees, and by Catmull (1978; 1984), who sketched a combination of analytic
visibility and integration for Central Processing Units (CPUs). An early parallelization
is described by Chang and Jain (1981). McKenna (1987) was the first to rigorously
show a worst-case optimal sequential algorithm with O(n2) complexity in the number
of polygons. Improvements were made by Mulmuley (1989) and Sharir and Overmars
(1992), who aimed for output-sensitive algorithms, whose run-time complexity depends
on the actual number of intersections between the polygons. One of the first parallel
algorithms was the terrain visibility method by Reif and S. Sen (1988), later improved
by N. Gupta and S. Sen (1998). The general setting was treated by Randolph Franklin
and Kankanhalli (1990) but with worst-case asymptotics independent of processor count.

Once hardware limitations disappeared, the focus of the community moved to approximate,
sampling-based visibility as documented in the following sections. Nowadays, ray- and
path-tracing methodologies predominantly rely on object space visibility, e.g., space
partitioning hierarchies, while rasterization mainly uses the z-buffer methodology; an
overview was given in the course by Durand (2000).

The computational geometry community showed continued interest in analytic visibility,
and in recent years Dévai (2011) gave an easier-to-implement optimal sequential algorithm
and an optimal parallel algorithm that runs in Θ(logn) using n2/logn processors in the

24

2.1. Sampling and Filtering

Concurrent Read Exclusive Write (CREW) Parallel Random-Access Machine (PRAM)
model. However, such optimal algorithms use intricate data structures and are highly
non-trivial to implement on actual GPU hardware. Nevertheless, our exact visibility
method as presented in Chapter 5 draws several inspirations from this work.

Supersampling

With the success of commodity graphics hardware, the research shifted to approximate
sampling-based solutions. Integrated into the graphics pipeline, different strategies were
developed to balance quality and performance requirement. Multisample Anti-Aliasing
(MSAA) (Akeley 1993) performs supersampling of the projected scene visibility. Shading
is only executed once per pixel and per (partially) visible primitive and a final blending
incorporates the supersampled visibility information. An optimization was introduced
with Coverage Sampling Anti-Aliasing (CSAA) (Young 2006). McGuire et al. (2010)
proposed the use of massive sampling for motion and defocus blur effects. A technique to
supersample both visibility and shading independently of each other was introduced with
decoupled sampling (Ragan-Kelley et al. 2011) which is aimed at complex effects such
as DOF and motion blur. While initially proposed for future hardware architectures,
decoupled sampling was mapped to current GPU designs by Liktor and Dachsbacher
(2012) and Clarberg and Munkberg (2014). Further hardware designs for multi-rate and
adaptive shading were presented by He et al. (2014) and Clarberg et al. (2014). A recent
work on vector graphics rasterization employed efficient sample sharing to enable high
quality filtering (Ganacim et al. 2014).

Semi-Analytic Methods

Since the rasterization problem is multidimensional, it is possible to employ different
filtering methodologies for different dimensions. Gribel et al. (2010) sampled the spatial
dimensions but performs visibility prefiltering along the time axis to enable high quality
motion blur for flat shaded triangles. This was extended to line samples in the spatial
domain while approximating prefiltering with numeric integration (Gribel et al. 2011).
Line samples were further used for Depth of Field (DOF) effects by Tzeng et al. (2012).
General frameworks for multidimensional non-point sampling were recently presented by
Sun et al. (2013) and Ebeida et al. (2014).

Reconstruction

Many of the aforementioned approaches do not harmonize with the nowadays popular
deferred shading techniques (Deering et al. 1988), and, in recent years, screen-space
post-processing approaches have been explored intensively. For spatial anti-aliasing,
edge-aware smoothing of the output image is performed and the work of Reshetov
(2009) on Morphological Anti-Aliasing (MLAA) ignited new interest in this field. Recent
implementations on graphics hardware were presented by Chajdas et al. (2011), Jimenez
et al. (2012), and Lottes (2009). McGuire et al. (2012) provided an extension for

25

2. Related Work and Foundations

motion blur. For an overview of this rapidly evolving field we refer to a course on
postprocessing anti-aliasing (Jimenez et al. 2011) and the yearly courses on real-time
rendering (Tatarchuk et al. 2014).

2.2 Massively Parallel Hardware Architectures
Rendering in general—and rasterization in particular—is an inherently parallel problem.
For each sample location of the raster output, essentially the same task has to be executed.
Furthermore, these tasks are largely independent from each other. This observation lead
to the development of special-purpose parallel hardware with the aim of accelerating
rendering tasks.

2.2.1 History and Related Work

While the first graphics hardware relied on vector displays (Sutherland 1964) and wire
frame drawings, the technological advances in microelectronics lead to fast frame buffers
(S. Gupta et al. 1981) and depth-buffered solid rasterization (Akeley 1993). Single
Instruction Multiple Data (SIMD) architectures, where the same instruction is executed
on different data elements in parallel, were early found to be a good match for computer
graphics tasks (Levinthal et al. 1987; Levinthal and Porter 1984).

The growing popularity of computer gaming and the subsequent demand for accelerated
3D rendering in the late 90s led to the rise of a whole industry sector dedicated to
consumer graphics hardware. The leading graphics hardware manufacturer, NVidia and
Advanced Micro Devices (AMD), have their roots in this time. Standardized Application
Programming Interfaces (APIs), such as the Open Graphics Library (OpenGL) and
Microsoft’s DirectX, provided a uniform interface for software developers to the underlying
hardware and gradually more and more parts of the rasterization pipeline were moved to
the hardware. With the rise of programmable vertex and fragment shaders (Lindholm
et al. 2001; Mark et al. 2003), where arbitrary instruction can be issued to certain stages
of the rasterization pipeline, it became possible to use graphics for general purposes
beyond graphics. First attempts consisted of a mapping of general computing problems
to graphics primitives, either for specialized setting such as linear algebra (Krüger and
Westermann 2003), or as a new programming language (Buck et al. 2004).

With the release of dedicated GPU programming language the research activity into
General-Purpose Computing on Graphics Processing Units (GPGPU) increased dramati-
cally. Important initial works are the library for scan-based computing primitives for
graphics hardware by Sengupta et al. (2007), a method for GPU-based sorting by Satish
et al. (2009), and performance optimizations for dense linear algebra by Volkov and
Demmel (2008). Since then, GPUs are used for a wide range of applications and we refer
to our survey for an overview (Calatrava Moreno and Auzinger 2013).

Eventually, GPGPU also found its uses in graphics. Both rasterization- (Laine and
Karras 2011) and ray-based (Parker et al. 2013) rendering systems were implemented

26

2.2. Massively Parallel Hardware Architectures

as well as construction algorithms for acceleration structures (Karras and Aila 2013),
voxelizations (Pantaleoni 2011b), and volume rendering (Balsa Rodríguez et al. 2014).
We contribute to this line of work by providing GPGPU-based implementations for
anti-aliased rasterization and rendering of surface arrangements.

To motivate the design choices for our parallel algorithms in this thesis, we give a short
introduction to the hardware architecture of modern GPUs. Note that we forgo an
elaboration on a simultaneous hardware development in the form of many-core CPU
architectures—represented by the Xeon Phi product series of the Intel Corporation—,
which have also been examined for their suitability in ray-tracing (Wald et al. 2014) and
acceleration structure generation (Wald 2012). Note that many parallelization strategies
apply to both platforms, such as SIMD-conscious memory accesses and branching as well
as cache blocking (Satish et al. 2012). In this sense, many of our design decisions would
apply to general many-core architectures as well.

2.2.2 Graphics Hardware Architectures1

The fundamental design principle that differentiates GPUs from CPUs is how the limited
amount of chip estate is distributed among the various functional units. CPUs employ
sophisticated control units to perform branch prediction and out-of-order executions to
provide maximum performance for a small number of threads. Furthermore, large caches
enable data reuse and reduce bandwidth to system memory. GPUs, in contrast, rely
on large arithmetics units to provide compute resources to a huge amount of threads.
Large caches are replaced by high memory bandwidths to the global memory of the
device. These choices determine the matching use cases for each architecture: while
CPUs provide superior performance for a low number of highly divergent code paths,
parallel workloads with either high compute or memory transfer requirements best fit
GPUs.

On the coarsest level, GPUs can be classified as a Single Program Multiple Data (SPMD)
architecture according to an extended version of Flynn’s taxonomy (Darema et al. 1988;
Flynn 1972) (see Figure 2.8). Each Processing Element (PE) executes the same program
but has its own data and position in the instruction stream. Note that recent hardware
also supports the concurrent launch of sufficiently independent programs. A GPU
employs several hundred simultaneously active PEs. In each cycle, several schedulers
issue instructions to a small subset of these. This allows an efficient utilization of the
available computation units, since PEs that execute high-latency operations (e.g., memory
accesses) can idle until these operations are completed. In the meantime, PEs that are
ready to execute an instruction take their place. Commonly called latency hiding, this
concepts allows the efficient use of computing resources without relying on sophisticated
control units. However, the workload has to be sufficiently parallelizable to occupy most
of the PEs.

1based on Calatrava Moreno and Auzinger 2013, Section II.

27

2.
R

elated
W

ork
and

Foundations

Global device memory (1-10 GB | 400-1000 cycles | 100-300 GB/s)

L2 cache (~1 MB | 100-300 cycles | ?)

L1
cache

Shared
mem.

Instruction
scheduler

MultiprocessorInstructions

L1
cache

Shared
mem.

Instruction
scheduler

Multiprocessor

L1
cache

Shared
mem.

Instruction
scheduler

Multiprocessor

CPU / Main memoryThread (1-3×105 per GPU) SIMD unit (32-64 threads) Thread group On-chip memory (~100 kB | 20-40 cycles | ~1 TB/s)

Figure 2.8: Hardware architecture of a modern Graphics Processing Unit. The program instructions (left) are executed in
parallel by the many SIMD units of the device. The threads of each SIMD unit are implicitly synchronized since the instructions
are issued sequentially to all participating threads of the same unit. The SIMD units are assembled into programmer-specified
thread groups, which are assigned part of the on-chip memory of each multiprocessor. Used as a scratchpad, this memory
allows the efficient sharing of local data or programmer-guided temporal data reuse. Each multiprocessor uses the remaining
on-chip memory as L1 cache and interfaces with the global device memory via an L2 cache. An estimate of the specification of
each memory type is given as (size | latency | bandwidth) for recent GPU models. Note that this figure provides a high-level
overview and does not cover all details of the hardware architecture. Taken from (Calatrava Moreno and Auzinger 2013).

28

2.2. Massively Parallel Hardware Architectures

To maximize the number of actual computations that are performed in each clock cycle,
instructions are executed in a Single Instruction Multiple Data (SIMD) fashion. Instead
of letting each PE compute only a single computation for each instruction, it operates
on multiple data elements simultaneously. This reduces the number of required control
logic units on the chip estate and provides about an order of magnitude higher compute
performance than comparable CPUs. As a downside, however, this architecture requires
all lanes of a SIMD unit to perform the same operation. If part of a SIMD unit does not
participate in a given instruction, it has to idle. Often referred to as SIMD divergence, this
property can cause significant performance degradation if the conditionals cause different
parts of the same SIMD unit to follow different code paths. As only one instruction can
be executed for the whole unit at once, all code paths have to serialized and inactive
parts idle.

Furthermore, GPUs sacrifice large on-chip caches for a large bandwidth to device memory,
which is about an order of magnitude larger, when compared to CPUs. A small on-chip
L1 cache is used both as user-controlled scratchpad to enable data reuse and as L1
cache to distribute the data from read operations to the elements of the SIMD units.
A device-wide L2 cache handles both read and write memory transfers. Since memory
transfers are issued per SIMD unit, each memory transaction transfers a whole cache
line, which contains one data element for each unit element. Thus, it is paramount to
ensure coalesced memory transfers, where a read or write instruction of a Processing
Element (PE) loads or stores a continuous segment of data.

Given these observations, our parallelization strategies took the following guidelines into
consideration:

Device occupancy The workload has to exhibit sufficient parallelism to saturate the
thousands of simultaneously active threads on the GPU. Through appropriate load
balancing, each compute unit should receive comparable amounts of work to ensure
saturation throughout the duration of the whole computation.

Code divergence A two-level parallelization has to ensure that intra-SIMD branching
is minimized, while the workload is balanced among the SIMD units themselves.

Memory layout Data elements that are processed in parallel in the same instruction
should receive input and store output as continuous segments in memory. This can
require intermediate sorting and compacting operations to map the output of one
processing stage to the required input layout of a subsequent stage.

Data reuse To reduce the required amount of memory transfers of bandwidth-bound
processing stages, we make use of the on-chip scratchpad to reuse intermediate
results.

Resource management The number of registers and the amount of the scratchpad
memory that each SIMD unit utilizes is determined at program compilation. Since
both resources are limited, excessive use of one or both should be avoided as it

29

2. Related Work and Foundations

could result in a low number of SIMD units that can be run concurrently. This
would lead to a device underutilization and reduced memory latency hiding.

Especially in the section on exact visibility in Chapter 5, an application of these strategies
is given.

30

CHAPTER 3
Curved Surface Reformation

In this chapter, we present a sample-based method to resolve the visibility of multiple
cut surfaces through three-dimensional volume data. By automatically creating

adaptive cutaways, the occlusion of relevant parts of each surface is minimized. As an
application, a medical visualization framework for blood-vessel inspection is presented.

3.1 Motivation
Vessel diseases, such as arteriosclerosis or pulmonary embolisms, are becoming an increas-
ing concern in our aging society. Thus, the analysis of blood vessels for their diagnosis
and treatment are important research fields of radiology. Angiographic interventions
such as stenting, balloon dilatation, or bypass surgery, need to be planned with care and
precision, due to their major impact on the patient’s health state. To optimally decide
on the therapeutic procedure, special diagnostic methods are required. They assess the
health state of vessels and answer clinically relevant questions, e.g., if blood is partially
or entirely hindered from flowing through a vessel by calcifications or soft plaque.

The gold standard for angiographic imaging is Digital Subtraction Angiography (DSA), a
non-tomographic procedure. However, with the capabilities of modern medical scanners,
less invasive, tomographic methods, like Computed Tomography Angiography (CTA)
or Magnetic Resonance Angiography (MRA), are becoming increasingly popular. Both
methods require the injection of a contrast agent into the patient’s vasculature before
the actual scan, in order to enhance the contrast in the resulting data set.

Confronted with a tomographic data set, special visualization techniques are required to
assess possible vessel pathologies. Among these methods are Curved Planar Reformation
(CPR) and Centerline Reformation (CR), which create a curved cut through a vessel
along its central axis (interlink) to visualize its interior (lumen). Through cut surface
rotation around the centerline of the vessel, they enable the identification of relevant

33

3. Curved Surface Reformation

blood flow obstructions or pathologies at the vessel walls. Curved Planar Reformation
(CPR) has been initially designed for the visual analysis of peripheral arterial occlusive
diseases, where the vessels are predominately oriented along the human lower extremities.
Visualizing spatially arbitrarily oriented vessels leads to artifacts with this method in a
majority of cases. Centerline Reformation (CR) addresses this limitation by employing
wave-front propagation for the lumen visualization. However, both methods operate in
2D image space, thus suffering from a premature discretization of the vessel geometry,
like decreased precision of centerline location and loss of visibility information.

With Curved Surface Reformation (CSR) we propose a method designed to rectify these
shortcomings (see Table 3.1). The main contributions of our work are:

• A method to generate the cut surface along a vessel centerline fully in 3D, thus
avoiding limitations of previous 2D methods.

• The correct handling of occlusions of different parts of the vasculature by employing
a cost function on the cut surfaces.

• An automatic generation of cutaways on the cut surfaces to reveal as much of the
vessel tree as possible.

• A Level of Detail (LOD) approach to smoothly extend the cut surface into the
surrounding tissue.

• The ability to freely rotate, translate and zoom into the vasculature at interactive
frame rates.

• An outline of the corresponding rendering pipeline and its implementation as well
as feedback by domain experts.

The remainder of the chapter is structured as follows. In Section 3.2, related work from
medical visualization is presented. Section 3.3 describes our proposed method in detail
from both theoretical and practical points of view. In Section 3.4 results are demonstrated
and discussed. An evaluation is given in Section 3.5 and the chapter is concluded with a
discussion in Section 3.6.

3.2 Related Work in Visualization
The method proposed in this work extends several aspects of CPR and CR, which are
shortly described in this section with other related work. An in-depth survey can also be
found in the doctoral thesis of Mistelbauer (2013).

Curved Planar Reformation (CPR). Planar cuts through a data set are intended
to provide more insight into otherwise obscured internal structures. Kanitsar et al.
(2002) describe Curved Planar Reformation (CPR) as a curved cut through a data
set along the centerline of a single vessel. They present three different types of CPR

34

3.2. Related Work in Visualization

CPR CR CSR
Lumen Rendering Pixel-Based Pixel-Based Ray Casting
Vessel Orientation Restricted1 Unrestricted Unrestricted
View Direction Restricted2 Restricted2 Unrestricted
Visibility None Fair3 Good
Interactive Yes Fair Yes
1vessels should run along one major direction
2rotation around one axis
3trade-off between visibility of lumen and surrounding tissue

Table 3.1: Aspects and improvements of CSR with respect to CPR and CR. Our method
retains all positive properties of the most relevant state-of-the-art techniques and extends
several aspects significantly.

(projected, stretched, and straightened) with different geometric properties. The projected
CPR is neither isometric nor conformal, whereas the stretched CPR is conformal. The
straightened CPR is isometric and perspective occlusions due to rotations cannot occur,
but the spatial perception of the vasculature as a whole is reduced. Multipath Curved
Planar Reformation (mpCPR), proposed by Kanitsar et al. (2006) and evaluated by Roos
et al. (2007), extends CPR to multiple vessels and was initially designed to investigate
peripheral arterial occlusive diseases. Spiral CPR, also described by Kanitsar et al.
(2006), shows the interior of a vessel by flattening it along a spiral. This approach
preserves isometry, but lacks spatial context. Kanitsar et al. (2003) propose untangled
CPR to avoid occlusions when projecting the vessel tree by using spatial deformations.
Mistelbauer et al. (2012) propose Centerline Reformation (CR) as a technique to visualize
the lumen of arbitrarily oriented vessels. However, there is a trade-off between the
visibility of the vessels and the displayed size of the surrounding tissue. In contrast to
CPR and CR, our approach computes the lumen entirely in 3D without projecting the
vessel centerlines into 2D image space and remedies the trade-off of CR. Mistelbauer et al.
(2013) combine CPRs of several view directions into a single static image by aggregating
certain features circularly along vessels. The vessels are shown straightened and rotation
operations are unnecessary. Lampe et al. (2009) introduce a more general curve-centric
reformation that allows transforming the space around a curve. Their method produces
visualizations similar to planar reformations used for virtual endoscopy. Williams et al.
(2008) present a technique for colon visualization based on a combination of CPR and
Direct Volume Rendering (DVR). Jianu et al. (2012) explore the brain connectivity by
projecting 3D fiber tracts into 2D and subsequently cluster them, with each cluster
having one centroid and many non-centroid tracts. They account for visibility by depth
sorting the centroid tracts according to the depth of the center of the corresponding
3D segments. Lee and Rasch (2006) introduce a tangential curved planar reformation
by sweeping the Frenet frame along the projected centerline of a vessel. This creates

35

3. Curved Surface Reformation

artifact-free visualizations of the vessel lumen, but not of the surrounding tissue. Saroul
et al. (2003) propose a technique for flattening free-form surfaces of anatomical medical
structures that minimizes distortion along a user-specified curve or direction (Saroul et al.
2006). The surface is spanned between boundary curves, defined by users interactively
placing markers within the 3D volume. CSR creates a view-dependent cut surface of the
vasculature without any user interaction.

Context Visualizations. Straka et al. (2004) propose the VesselGlyph to establish
focus-and-context rendering for CPR and mpCPR. It provides the possibility to place
vessels within a context visualization like Maximum Intensity Projection (MIP) or DVR.
Viola et al. (2006) discuss a method for retaining context while refocusing on different
structures of interest in a volume data set. This is also supported by our technique.
DeCarlo et al. (2003) present suggestive contours as the non-photorealistic rendering of
lines in order to provide visual cues of a shape. Sander et al. (2000) describe silhouette
clipping as an approach to produce faster qualitatively equal silhouettes for a coarser
mesh than with the high-resolution one.

Cutaways. Diepstraten et al. (2003) present a set of rules for rendering interactive
cutaways of polygonal data. Burns and Finkelstein (2008) describe view-dependent
cutaways for polygonal scenes. They distinguish between two different cutaway approaches:
cutout and breakaway. Whereas in the former one half spaces are intersected, the latter
is realized by a single hole in the outer object. They state that a jittered cutting edge
leads to a higher abstraction level. Li et al. (2007) present a system for creating cutaways
of complex objects in real-time. They apply visual styles from conventional illustrations
such as various cutting types (box, tube, or window cuts), visual cues (edge shadows and
shading) and inset cuts that cut deeper layers of an object with a smaller extent. Sigg et al.
(2012) propose a degree-of-interest function for interactive specification of important
features instead of manually placing them. In an iterative user-centric optimization
process, cutaway primitives (cuboids, spheres, or cylinders) are optimally placed in
order to allow a clear view of the desired object in the context of polygonal meshes and
volumetric data. They use simulated annealing for optimally placing these primitives
and apply their technique to polygonal meshes as well as volumetric data. McInerney
and Crawford (2010) present a paint roller as an interaction metaphor for specifying the
shape of the cutaway manually, while retaining ribbons of the occluding object. Burns
et al. (2007) use an importance function for generating volumetric contextual cutaways
for medical visualization. They obtain a smooth transition between the occluder and
the important object. Lidal et al. (2012) give design guidelines with the aim to enhance
shape and depth of the focused object in relation to its context. McGuffin et al. (2003)
use volume deformations and a set of interactive widgets to offer users the possibility to
virtually browse through different layers of medical volume data. CSR will automatically
create cutaways (see Figure 3.6d) to reveal occluded vessels by means of a cost function.

36

3.3. Curved Surface Reformation

Volume Clipping. Konrad-Verse et al. (2004) describe a virtual resection tool for
organs employing user-placed meshes. After the user initially paints a stroke on the
desired organ, a virtual cutting plane is computed via a principal component analysis.
Additionally, the plane can be deformed in order to include or exclude objects from
the cutting. Birkeland et al. (2012) describe an illustrative clipping surface by means
of physical properties of elastic membranes. It can serve as an illustrative slice with
local DVR confined to its vicinity. User adjustment is enabled by introducing additional
force fields. To avoid cutting near objects, the surface adapts to salient features of
the underlying data. Weiskopf et al. (2003) describe interactive clipping of convex and
concave objects from a volume, while accounting for proper volume shading. They
account for proper volume shading together with clipping by shading the cutting surface
accordingly. Wang and Kaufman (1995) propose a method for volumetric sculpting. They
apply various operations on the volume at voxel level. Zhang et al. (2007) present a
real-time clipping strategy for visualizing data inside a volume. They compare several
classifications for volume rendering with ray casting. For further information considering
physically based deformable models, we refer to the survey by Nealen et al. (2006). In
our approach, the volumetric data is cut by a curved surface.

Curve Simplification. In our technique, we simplify centerline curves to generate a
coarse representation of the vessel tree to infer the large-scale behavior of the cut surfaces.
As an old problem from computational geometry, it was already investigated by Imai and
Iri (1986; 1988) for polygonal curves in the late 80s. The most commonly used algorithm
was developed by Ramer (1972) and Douglas and Peucker (1973). Recent developments
consider an improved distance metric (Gudmundsson et al. 2007) or utilize Bézier curves
(Chuon et al. 2011) for simplification.

3.3 Curved Surface Reformation

In the field of radiology, the diagnostic visualization of vascular structures plays a vital
part in the investigation of certain vessel pathologies. Among occlusive diseases, stenoses
are of particular interest. They can be caused by calcifications or soft plaque on vessel
walls. The manual analysis of the raw medical imaging data of vessels is very time
consuming, and the use of medical visualization can improve the efficiency dramatically.
Visualization methods usually require additional information on the imaging data, such
as the locations of the vessel centerlines. These are modeled by radiological assistants
in their daily clinical routine, in which they are assisted by semi-automatic detection
methods such as the technique of Kanitsar et al. (2001). In the context of our visualization
technique, centerline data is treated as input that was generated in a preprocessing step.
Specialized visualization algorithms are then used for inspection of regions of interest
and detection of pathologies.

General purpose methods can produce misleading visualizations. An example, when
using MIP, is that vessels, which have concentric calcifications on their walls, incorrectly

37

3. Curved Surface Reformation

appear as completely occluded. To remedy this, planar reformations create a cut through
the tissues or, as it is the case for vessel reformation, a cut along the vessels to visualize
their interior. These approaches provide a good overview of the vessel lumen and enable
the specialist to deliver a qualified judgment on the severity of pathologies.

Different vessel reformation methods make various assumptions on the vessel geometry.
Curved Planar Reformation (CPR) and its extension for multiple vessels, Multipath
Curved Planar Reformation (mpCPR) (Kanitsar et al. 2006), have been designed for
the inspection of peripheral arterial occlusive diseases, where vessels strongly follow one
principal direction. For display, the vessel is aligned with the up-axis u, and the view
direction is taken orthogonal to it. The cut surface is then spanned by the centerline
and the direction that is orthogonal to both u and the view direction. This entails two
major restrictions: the view direction can only rotate around the up-axis, and the cut
surface degenerates if the vessel direction becomes orthogonal to u. The latter case leads
to excessive vessel thinning as shown in Figure 3.7a. A possible workaround to alleviate
this effect is the stretching or straightening of the vessels. However, this interferes with
the spatial perception of the displayed vessels, which is usually not desired by domain
experts. Furthermore, the initial projection of the centerline to 2D discards the visibility
information, and overlapping vessels cannot be kept apart.

Centerline Reformation (CR) (Mistelbauer et al. 2012) removes some of these drawbacks
by using wave-front propagation on the projected vessel data. Although this enables the
depiction of the lumen of arbitrarily oriented vessels, it still operates in 2D image space.
This leads to a significant loss of visibility information due to the necessary projection.
The cut surface is created by spreading the vessel locations into their surroundings. The
visibility then has to be reconstructed by walking along the projected vessel tree. This
leads not only to performance issues, but also requires the use of thresholds. They
effectively determine the method’s ability to either display the surrounding tissue or to
correctly resolve the visibility. Figure 3.7b and Figure 3.8b provide an illustration of this
trade-off.

To address these issues, we propose Curved Surface Reformation (CSR) to perform the
lumen rendering entirely in 3D space. This new method allows the determination of
the correct visibility of the various cut surfaces along the vessel tree. It also enables
the extension of these surfaces into the surrounding tissue in a well-defined manner.
Furthermore, we offer the possibility to use common interactions such as zooming, panning,
or rotating around arbitrary axes in 3D for the first time in the field of vessel reformations.
Since our method employs ray casting, it is trivially parallelizable by assigning each ray
to a thread. This maps well to parallel hardware architectures and our Compute Unified
Device Architecture (CUDA) implementation that runs at interactive frame rates on
modern Graphics Processing Units (GPUs).

In Section 3.3.1 the theory of our method is developed in a continuous setting. Its
application on discrete input data is outlined in Section 3.3.2. Sections 3.3.3 and 3.3.4
discuss the resulting rendering pipeline (see Figure 3.3) and its implementation.

38

3.3. Curved Surface Reformation

3.3.1 Theory

To render the lumen of a vessel, we employ ray casting of a surface given by a cut through
the vessel along its centerline. As we treat arbitrarily oriented vessels and do not require
a fixed camera position, the cut surface is generated dynamically, with its geometry
depending on both the view direction and the orientation of the corresponding vessel.

In this section, we assume as input to our method a set of differentiable 3D curves,
referred to as vessel segments, which constitute the centerlines of the relevant part of
the vasculature for the visualization task. While our method does not require connected
segments and is able to handle arbitrary topologies of the segment graph, the typical use
case is a connected set of vessel segments with possible branchings at their endpoints.
We will refer to this as the vessel tree. Information on the radius of the vessel along the
centerline is optional and can be used in the visibility computations (see Section 3.3.1).
As the geometrical concepts can be presented much clearer in a continuous setting, we
take this route and describe the subsequent adaptations to the discrete input data in
Section 3.3.2.

Surface Generation

Given the centerline curve c(t) : [t0, t1]→ R3 of a vessel segment and a view direction v,
the local (cut) surface M is given by

M(s, t) = c(t) + s v × c′(t) with t ∈ [t0, t1] and s ∈ R. (3.1)

This definition is motivated by the requirements of having the local surface containing
the centerline and being as perpendicular to the view direction as possible. CPR and
mpCPR, in comparison, use a fixed frame in the form of c(t) + s v × u, where u denotes
the up-axis, and the view vector is constrained by v · u = 0.

To show a vessel cross section at the endpoints, we add two half-planes that are perpen-
dicular to the view direction, i.e., for the start c(t0) and endpoint c(t1), the half-planes
are given by

c(t0) + s v × c′(t0) + t v × (v × c′(t0)) and c(t1) + s v × c′(t1)− t v × (v × c′(t1))

for s ∈ R and t ∈ R+. In the special case of an alignment of the centerline and the
view direction (v × c′(t) = 0), a half-plane with a boundary perpendicular to the last
non-aligned centerline direction has to be added. If the centerline is parallel to the view
direction at one of its endpoints, we add a plane perpendicular to the view direction in
this point. This ensures that a projection of the resulting local surface covers the whole
view plane at least once and that the vessel cross section is visible in case of a collinearity
with the view direction.

In a sufficiently small neighborhood of the centerline, this construction provides the
correct cut surface for the corresponding vessel segment. For a finite extent of the vessel,
however, this naive approach exhibits various deficiencies. Our proposed method on

39

3. Curved Surface Reformation

how to rectify these issues to enable a full 3D reformation is presented in the following
sections.

Main Challenges

The local surface M , as given in Equation 3.1, depends on both the view direction v and
the local geometry of the centerline, which is specified by its tangent vector c′(t). While
this is appropriate for a small neighborhood of the centerline, this definition shows two
types of undesired behavior when moving away from it. As the vessel lumen near the
centerline is the main point of interest, it should be visible whenever it is not directly
occluded either by the same centerline or different vessel segments. This behavior is not
exhibited by M , as only the front-most parts of the whole vessel tree are visible. The
second problem is that small local details or noise are amplified at the outer regions of
the surface, which leads to self-occlusions and depth discontinuities when viewed along
the view direction v (see Figure 3.2). A solution to the first problem is presented in
Section 3.3.1 and to the second one in Section 3.3.1.

Cost Function

To enable the inspection of as many vessels as possible in the same view, it is beneficial
to reveal the local surface of all those vessel segments that are not located behind other
vascular structures in the current view. Hence, we create cutaways on the local surfaces
of vessel segments closer to the viewer based on two simple principles:

1. The closer a point on a centerline is located to the viewer, the more relevant is the
associated part of the local surface.

2. The closer a point on a local surface is located to its centerline, the more relevant
it is.

With the use of spatial cost functions for all vessel segments, it is possible to mimic this
behavior. For each centerline ci of the vessel tree, we define a cost function

Ci(x) = C‖(x) + λCi,⊥(x), (3.2)

where λ denotes the weighting between the component parallel to the view vector v, i.e.,
C‖(x) = x·v

‖v‖ , and the one normal to it. The latter is given as the distance distv,⊥(x, ci)
between x and the image of curve ci when both are projected onto a plane P normal
to v. The intuitive explanation of this procedure is that the parallel cost component
penalizes the depth of surfaces while the normal component penalizes the distance from
the respective centerline.

By evaluating the cost function on all local surfaces and projecting these values onto a
plane P normal to v, we obtain several cost values per point on P . Actually, each local
surface contributes one or more cost values to each point on P , as they cover the full
extent of P due to the nature of their construction. See Figure 3.1c for a local surface

40

3.3. Curved Surface Reformation

that contributes six cost values for each point on P in the center region of the trefoil
knot. Another illustration can be found in Figure 3.5d. At each point we now select
the smallest cost value and mark the corresponding surface location as visible. As a
result, for each point on the view plane, the visible local surface is selected and the
global visibility is resolved (see Figure 3.1). Ambiguities that arise from several identical
cost values at the same point of P can be neglected almost always, as these are part of
one-dimensional boundaries where the visibility changes between different centerlines. In
very rare cases it is possible that whole local surface regions contribute the same cost
values and that artifacts similar to z-fighting arise. As this behavior only occurs for
specific view directions (we conjecture that these form a one-dimensional subset of the
two-dimensional space of all view directions), we feel safe to ignore them as we did not
encounter them in any of our experiments.

The parameter λ in the cost function encodes the preference for broader or thinner
surrounding surfaces around vessels. A large λ heavily penalizes the projected distance,
and thus the cutaways of occluded vessels reach close to the visible centerline. The
contrary case of a small λ leads to a more liberal occlusion of vessels behind the current
centerline.

A minor modification can be applied to the cost function to guarantee the preservation of
the full extent of vessels, such that cutaways do not cut into the vessel lumen of a visible
centerline. This can occur in the case of two centerlines with a small depth difference, as
the cost function indicates a preference for selecting the occluded vessel very near to the
centerline of the occluding vessel. To avoid this situation, the normal component of the
cost function has to be modified to assign no distance cost to regions around the centerline
within a certain vessel radius. This can be considered as placing a strip with possibly
varying vessel radius around each centerline, in which the normal cost component of the
associated cost function is zero. As a consequence, a vessel behind another centerline
will always have a higher cost as both the depth and distance component contribute to
its occlusion. Note that for very dense vascular structures, a large number of cutaways
is generated, and the local surface of most visible vessels will not exceed the extent of
the vessel itself. In this case, our method would resemble dense line rendering and due
to conceptual similarities, only slight modifications would ensure convergence to the
illustrative method of Everts et al. (2009).

Our procedure resolves the visibility of the local surfaces of the vessel tree and thus
remedies the first problem with the initial definition of the local surfaces. In the following
section, the second challenge as described in Section 3.3.1 is tackled.

Centerline Simplification

Although the local surface M , as defined in Equation 3.1, is geometrically appropriate in
a neighborhood of its respective centerline, globally it exhibits an undesired behavior
(see Figure 3.2). This is caused by the use of centerline derivations in the definition of M ,
as small geometrical details along the vessel get amplified with increasing distance from

41

3. Curved Surface Reformation

b a

c

Figure 3.1: Illustration of the visibility resolution using a cost function. (a) shows a
synthetic vessel input in the form of a trefoil knot. We use a cost function as given by
Equation 3.2 defined on the generated local surface to determine its visible points, which
are characterized by the lowest cost value along the view direction. The cost function for
a frontal view of (a) is visualized in (c) by encoding the cost value as the depth of the
local surface. Note that each vertical view ray intersects the local surface several times,
and only the topmost intersection points constitute the visible surface. The final result
in form of a depth image is given in (b), where the grayscale encodes the depth of the
local surface.

42

3.3. Curved Surface Reformation

(a) (b)

(c) (d)

Figure 3.2: Illustration of the instability of the local surface with respect to small
perturbations of the centerline (red). (a) exhibits severe distortions by a small scale
detail of the centerline leading to multiple self occlusions of the local surface. These can
be drastically reduced by progressive smoothing of the centerline as shown in (b) and (c).
Our proposed LOD method uses coarser and smoother representations of the centerline
for increasingly distant parts of the surface. This eliminates the undesired self-occlusions
but preserves the detailed vessel geometry close to the centerline (d).

the centerline. Generally, this leads to a multitude of undesired self-occlusions of the
local surface when viewed along the view direction v.

In order to combat this behavior, we propose a LOD approach based on centerline
simplification. While small centerline details have to be accounted for, in order to
enable a faithful representation of the vessel geometry close to it, only the large-scale
characteristics of the centerline should govern the surface behavior in the surrounding
volume. It would be possible to develop a theory of a continuous simplification of the
centerline, yielding infinitely many LODs. However, we employ just a finite number of
discrete levels to perform the simplification, which is justified by the discrete nature of
the actual input data and the fact that the continuous formulation would not aid further
understanding.

43

3. Curved Surface Reformation

For a fixed number (N +1) of LODs, each centerline is simplified to obtain N increasingly
smoothed versions of it, where the initial curve is preserved in level 0. We specify the
actual simplification method for discrete input data in Section 3.3.2.

The visibility between the local surfaces of the smoothed versions of a centerline is again
resolved with the help of the cost function by evaluating it on the local surfaces of relevant
LODs. Depending on the projected distance d between the centerline of a vessel segment
and a point on the view plane, we determine the two most relevant LODs k0 and k1 by
using a selection function f(d) to obtain

k0 = min(N, bf(d)c) and k1 = min(N, bf(d) + 1c).

To concentrate the initial LODs around the centerlines we use a sublinear selection
function; in our implementation of the form f(d) ∝

√
dN .

As described in Section 3.3.1, we project the cost values of the two surfaces onto the
view plane and, for each LOD separately, we chose the surface locations i0 and i1 with
minimal cost for each point on the view plane. The final cut surface location i is then
given as a linear blend of the two LODs, i.e.,

i = (k1 − f(d))i0 + (f(d)− k0)i1.

This gives a smooth progression between the LODs and a gradual simplification of the
local surface as a function of distance d. Note that beyond the last LOD, no blending
is performed, since k0 = k1 = N . A depiction of the result of this method is given in
Figure 3.5e.

This concludes the theory section for our proposed method. Before describing the actual
rendering pipeline, we outline the necessary adaptation of the aforementioned methods
to handle discrete input.

3.3.2 Discrete Geometry

The theory in Section 3.3.1 was developed in a continuous setting, which does not reflect
actual computation hardware. This section covers the required discretization steps
necessary for numerical processing.

Surface Generation

Assuming that a vessel centerline is given as a piecewise linear curve, the corresponding
local surface consists of planar pieces, namely line stripes, connecting triangles and
half-planes at the endpoints. In this section, we give a short description on how to
generate such a local surface.

For a line segment of the vessel tree given by the points l0 and l1, a line stripe is generated
by extruding the line segment in direction v× (l1− l0) (see Figure 3.5a). As this direction
is orthogonal to the view direction v, the stripe is located between the depths d0 = v · l0
and d1 = v · l1 along the view direction.

44

3.3. Curved Surface Reformation

If two consecutive line segments L0 and L1, given by the three points l0, l1 and l2, are
not collinear when projected onto the view plane, a gap would arise in the projected
local surface in case only line stripes were used. To avoid this, we use a triangle that
originates in the connection point l1. The triangle edges extend along the boundaries B0
and B1 of the line stripes given by

B0 = {l1 + s v × (l1 − l0)} and B1 = {l1 + s v × (l2 − l1)} .

This ensures that the triangle fills the gap between B0 and B1. As such a gap only arises
on one side (when projected onto the view plane), we choose either s ∈ R+ or s ∈ R−.

At the start and end point l0 (resp. ln) of a vessel segment, we add half-planes H0 (resp.
Hn) to complete the local surface. These are defined as

H0 = {l0 + s v × (l1 − l0) + t v × (v × (l1 − l0))}

and

Hn = {ln + s v × (ln − ln−1)− t v × (v × (ln − ln−1))}

with s ∈ R and t ∈ R+.

If a line segment L is collinear with the view direction, we add an additional half-plane
using the definition of Hn above, but substituting the points ln−1 and ln by the endpoints
of the last non-collinear line segment before L along the centerline. If the first or last
line segment of a centerline is collinear, we create an additional plane normal to v that
contains the corresponding endpoint.

These constructions ensure that the piecewise planar surface of each centerline covers
the whole view plane when projected onto it as illustrated in Figure 3.5b. As we employ
ray casting to evaluate the cost function on this surface, we can use simple geometrical
intersection tests between the rays and the unbounded polygons. The cost function of
Section 3.3.1 can be directly used for this purpose.

Centerline Simplification

The LODs of the vessel tree are computed in a preprocessing step. We employ progressive
filtering with spline functions to generate coarser representations of the individual
vessel segments. The centerline of a given LOD is approximated by a cubic B-spline
and resampled to generate the next LOD. The performance of this simple approach
is sufficient, and the quality gains by employing more sophisticated methods such as
the curve simplification algorithm by Chuon et al. (2011) are negligible. Due to the
absence of fine details in higher LODs, it is possible to faithfully represent the vessel
segments with less line segments. In our implementation, we pursue an aggressive pruning
as we drop half of the points for each successive LOD. For a sufficiently dense initial
sampling of centerlines as in our input, we did not observe any artifacts resulting from
this optimization, which drastically improves runtime.

45

3. Curved Surface Reformation

As described in Section 3.3.1, our LOD approach uses the selection function f(d) depending
on the projected distance d of the ray from the centerline. This value can be easily
determined by computing the distance between the ray and the line segments of the
initial centerline, i.e., the unsmoothed LOD 0.

3.3.3 Rendering

This section presents the rendering pipeline of CSR as outlined in Figure 3.3. It takes a
vessel tree, consisting of line segments, and a volume representation of the surrounding
tissue as input and outputs an image of the cut surfaces along the vessel centerlines. As
we employ ray casting at several stages of the pipeline, various buffers in the size of the
final output image are used to store intermediate values. A sequence of such intermediate
results is given in Figure 3.5. In the exceedingly rare case of z-fighting artifacts (see
Section 3.3.1), we prevent their aggravation with temporal flickering by maintaining a
strict rendering order of the input data. As a preprocessing step, the LODs of the vessel
tree are computed as described in Section 3.3.2.

LOD Estimation

This stage generates a distance buffer that stores the projected distance of each image
location to the nearest centerline of the vessel tree. This data is used as the argument d
for the LOD selection function f(d) as described in Section 3.3.1.

Depth Computation

Using the distance information of the previous stage, we determine the two relevant LODs
using the method of Section 3.3.1. By using ray casting, we collect the cost values for all
intersection points with local surfaces along the ray. This is done separately for each pair
of LODs, and we retain the intersection points with the minimal cost for each pixel. The
final intersection point is a weighted blend between the respective LOD intersections to
ensure smooth progressions from one LOD to the next. This stage outputs the depth of
the final intersection point to a depth buffer.

Depth Filtering

To remove aliasing artifacts that arise from the undersampling of a high-frequency depth
signal caused by fine geometric details of the vasculature, the depth image is convolved
with a smoothing filter. This is necessary when sampling cut surfaces, which extend
from centerlines that are nearly collinear with the view direction, since their planar parts
shrink to sub-pixel sizes. We use a Gaussian filter kernel with standard deviation σ for
this task and set its full width at half maximum (FWHM) in frequency space to half the
Nyquist frequency of the output image, i.e., σ = 2

√
2 ln 2/π pixel. The discrete version is

cut off at 3σ, which gives a kernel size of 7× 7. The output makes up the depth values
of the desired cut surface (see Figure 3.5c).

46

3.3. Curved Surface Reformation

Method: centerline simplification
Output: LODs

Method: ray casting
Output: distance to centerline
Custom: uses cost function

Method: ray casting
Output: best depth
Custom: uses cost function

Method: image processing
Output: smoothed depth

Method: ray casting
Output: cut surface

Method: image processing
Output: enhanced edges

Method: ray casting
Output: e.g., MIP, MIDA, DVR

Method: image processing
Output: vessel reformation

Input

LOD Estimation

Depth Computation

Depth Filtering

Surface Rendering

Silhouette Rendering

Context Rendering

Image Composition

Figure 3.3: Rendering pipeline of Curved Surface Reformation (CSR). The first entry of
every stage denotes the used method and the second item gives the output. The custom
entry indicates the stages where the cost function is used.

47

3. Curved Surface Reformation

b a

Figure 3.4: Silhouette rendering. (a) shows the color coded influence zones of the three
vessel segments. Small depth discontinuities at the zones’ borders and large discontinuities
anywhere are presented as yellow silhouettes in (b) as an overlay of the cut surface.

If the filter size is significantly increased, the depth discontinuities between the visible cut
surface regions of different parts of the vessel tree are smoothed. In the final rendering,
this leads to steep ‘slopes’ between the regions. We do not utilize this fact in our method
and leave it just as an observation.

Surface Rendering

A simple lookup into the volumetric intensity data set, which surrounds the vessel
centerlines, is performed with the depth values of the cut surface. We use trilinear
interpolation—a supersampling methodology—for this task and obtain the intensity
values of the visible vasculature’s lumen and of the surrounding tissue. Afterwards, we
apply a user-specified windowing function to map these values to grayscale colors and
opacities.

Silhouette Rendering

After determining the depth of the cut surface and the subsequent filtering step, depth
discontinuities still remain. These are, however, intentional, and constitute the switch
from the surrounding of one part of the vessel tree to another one. Since these important
spatial cues might not be easily perceivable, we improve the three-dimensional visual
perception of the cut surfaces by highlighting these discontinuities. This is achieved by
modulating a user-specified silhouette color (yellow in our case) with the response of a
customized filter function.

Large depth discontinuities are revealed by applying a Sobel edge-detection filter. However,
small discontinuities between spatially close vessel segments from different parts of the
vasculature are not captured. To identify these, every point of the projected cut surface

48

3.3. Curved Surface Reformation

is marked with a unique identifier of the corresponding vessel segment (see Figure 3.4a).
Small depth discontinuities can only occur along the borders of these influence zones of
the vessel segments while branching locations remain unaffected, since they are continuous
in depth.

Thus, we amplify the response of the Sobel filter at these borders. We observed that a
simple multiplication by a constant factor already yields adequate results and improves
the depth perception of vessel occlusions near branching locations. A final smoothing of
the combined filter response provides anti-aliasing of the discontinuity lines and gives
our final color modulation (see Figure 3.4b). This allows for a better perception of depth
discontinuities.

Context Rendering

Due to the fact that the cut surface displays only parts of the volume, the perception of
the overview can suffer. To remedy this, we optionally add a final context visualization
step to the CSR workflow. Straka et al. (2004) propose a focus+context approach by
embedding the vessel lumen (focus) into a volume rendering (context). We render a
context behind the regions of cut surfaces at locations where they lie outside the volume.
When rotating, the context visualization becomes apparent, and the domain expert
can clearly perceive the spatial location of the region of interest within the data set.
Figure 3.5f shows such a context visualization, using Maximum Intensity Difference
Accumulation (MIDA) as proposed by Bruckner and Gröller (2009). Any other volume
rendering technique could serve as context visualization as well.

The context is displayed, whenever a ray hits the volume and the cut surface lies outside
the volume at its pixel location or when the windowing function makes the cut surface
fully transparent. In the first case, the rays traverse the whole volume, whereas in the
second case, the rays start at the depth of the cut surface (see Figures 3.6b-d, 3.5f, 3.7d).
The advantage of this context visualization is that it provides additional spatial cues
when rotating while still depicting the occlusion-free cut surface. This is especially useful
in case of unconstrained rotations, because one might quickly lose the orientation when
only viewing the cut surface.

3.3.4 Implementation

Our technique was implemented as part of the AngioVis framework, which is in clinical
use at the Vienna General Hospital and the Kaiser-Franz-Josef Hospital. Our extension
is not yet in clinical use. The LODs of the vessel tree centerlines are generated on the
Central Processing Unit (CPU) as a preprocessing step at startup and regenerated after
changes to the vessel tree. The remaining stages of Section 3.3.3 are implemented in
CUDA and use Open Graphics Library (OpenGL) just for computing the entry and
exit positions of the rays. This allows the whole pipeline to make use of the parallel
computing capabilities of current GPUs which leads to an interactive performance of our
implementation.

49

3.
C

urved
Surface

R
eform

ation

a

b

c d

e

f

Figure 3.5: Illustration of our rendering pipeline. (a) depicts an input vessel tree consisting of 800 line segments. A detailed
view of a single line segment illustrates the variables of Section 3.3.2 with the view direction orthogonal to the plane in which
this figure is embedded. The geometry of the local surface of the unsmoothed centerlines is shown in (b) where the planar
parts are colored according to their type – dark brown for line stripes, light brown for triangles and blue for the half-planes at
the endpoints. The final depth buffer after the depth computation and filtering stages is depicted in (c) and the corresponding
cost function is illustrated in (d). (e) gives an overview of the LODs which are alternately colored in red and green. It also
shows the part of the final output (f) that is covered by the cut surface whereas the other parts are generated by the context
rendering stage.

50

3.3.
C
urved

Surface
R
eform

ation

b a c d

Figure 3.6: Bifurcation of the human abdominal aorta. (a) shows a 3D direct volume rendering of the data set together with
the surface of the vessel tree (red wireframe). The remaining three images present our approach for visualizing the vessels’
interior by generating a view-dependent cut surface through the vasculature. Our method features a smooth cut through
surrounding tissue (b), correct vessel lumen portrayal even at grazing angles (c) and the automatic placement of cutaways to
allow inspections of large parts of the vasculature in a single view (d). The visibility of the vessel tree is correctly resolved for
every view direction.

51

3. Curved Surface Reformation

Figure 3.6 Figure 3.7 Figure 3.8
Data Size 5122 × 256 5122 × 1305 5122 × 575

LOD Estimation 97.8 ms 272.6 ms 133.0 ms
Depth Computation 13.5 ms 105.6 ms 39.0 ms
Depth Filtering 1.7 ms 1.7 ms 1.7 ms
Surface Rendering 0.9 ms 1.0 ms 1.1 ms
Silhouette Rendering 7.6 ms 7.7 ms 7.7 ms
Context Rendering 96.9 ms 270.7 ms 131.8 ms

Frame Time 218.4 ms 659.3 ms 314.3 ms

Table 3.2: Performance timings in milliseconds per frame of CSR for the data sets
presented in the results. The most time consuming operations are the LOD estimation, as
every line segment has to be evaluated during this stage, and the context rendering. The
depth computation is less expensive and all other operations have negligible temporal
cost.

We analyzed the computing times of all individual stages of the CSR rendering pipeline.
The outcome is summarized in Table 3.2 with the timings given in milliseconds. The
measurements have been taken on an Intel Core i7 with 3.07 GHz with 12 GB system
memory and a GeForce 680GTX with 4 GB video memory. The LOD estimation is the
most costly step, as each ray is checked with every line segment of the most detailed
LOD of the vessel tree in order to compute an accurate distance. The performance of
this step could be increased by gradually computing the distance from the coarsest to the
finest LOD and updating only relevant distances in each step. The depth computation is
less expensive, since only two coarse LODs are tested for most of the rays. The following
operations consume nearly constant, insignificant amounts of time. Context rendering
takes a considerable amount of time due to the ray marching of MIDA. Nevertheless,
even our unoptimized implementation of CSR is capable of interactively rendering the
cut surface together with the context visualization. Ray casting could also be substituted
by rasterization of the local surface primitives similar to the method of Hoff et al. (1999).
However, the performance benefits of such an approach are not guaranteed, since the cost
function methodology does not allow the utilization of the hierarchical depth-buffering
capabilities of graphics hardware.

3.4 Results

In this section, several results that were obtained with our method are presented. The
weighting λ = 10 in the cost function (see Equation 3.2) is used for all subsequent results.
First, we present a small data set to illustrate the capabilities of our technique. With the
second and third data set, we compare against existing methods, such as mpCPR and
CR, in order to highlight our improvements.

52

3.4. Results

a b c d

Figure 3.7: A CTA data set of the vasculature of the human lower extremities with a
cross-over bypass. (a) shows an mpCPR of the vasculature with an incorrectly narrowed
lumen of the bypass (see zoom-in). (b) displays a CR which accounts for the correct
lumen of the bypass, but shows artifacts resulting from the trade-off between vessel
visibility and the displayed size of the surrounding tissue (see zoom-ins). The vessel radius
is offset by 150 pixels and the arc-length threshold equals to 300 pixels. (c) presents
CSR showing the correct lumen of the bypass and accounting for proper overall vessel
visibility. (d) demonstrates a top-right view of the vasculature using CSR together with
MIDA as context visualization.

53

3. Curved Surface Reformation

b a c

Figure 3.8: Cervical vessels of a human head CTA data set. (a) shows an mpCPR of the
vasculature, which does not account for correct visibility (see zoom-in). (b) displays the
lumina of the vessels using CR with a small vessel radius offset (50 pixels) and arc-length
threshold (150 pixels) exhibiting a visibility artifact caused by the trade-off. The zoom-in
shows an artifact coming from the large arc-length threshold, but when reducing it,
visibility would further suffer. (c) presents CSR generating a smooth cut surface through
the vasculature and surrounding tissue while preserving the visibility (see zoom-in).

Figure 3.6 presents a CTA data set of a human abdominal aorta at its first bifurcation
displayed for several view directions. A DVR visualization is shown in Figure 3.6a
together with the vessel tree rendered as wireframe model in red. Figures 3.6b-d give
results of our method together with MIDA as context visualization. Visibility is correctly
resolved in Figure 3.6b, as the left vessel branch is partially hidden due to its larger
distance from the viewer. The cut surface is smooth even far from the vessel due to our
LOD approach and exhibits intended jumps in depth when changing from the influence
zone of one branch to another one. Figure 3.6c shows a view from bottom right, which
depicts the vessel lumen and surrounding tissue. The reason for the smoothness is again
the continuous transition between different LODs of the vessel tree. A view from the
bottom is presented in Figure 3.6d. Here, a cutaway is generated to show the lumen of
the aorta, which is located farther away from the viewer than its two branches.

Figure 3.7 shows a CTA data set of the vasculature of the human lower extremities
with a cross-over bypass below the bifurcation of the abdominal aorta. We compare
mpCPR (3.7a) with CR (3.7b) and CSR (3.7c). Although mpCPR provides a continuous

54

3.4.
R
esults

25
50
75
100

8%
21%21%

50%

Best Method for
Vessel Lumen

0% 0%

100%

0%

92%

8%

Best Method
for Surround-

ing Tissue

17%
7%

47%
30%

75%

25%

Best Method
for Visibility

21%29%29%21%

Best Method for
Depth Perception

79%

21% 21%

79%

CSR Silhouette
Evaluation

0

% �mpCPR �CR �CSR �No Preference �Useful �Not Useful

Figure 3.9: Evaluation of CSR in comparison to mpCPR and CR according to five criteria. The vertical axis shows the
percentage (%) of the participants, where 100% equals to 12 domain experts. The preference of the participants was evaluated
in the first three criteria, while in the last two, the number of correct answers has been counted. While no technique has
clear advantages for inspecting the vessel lumen in a standard medical case, our technique compares favorably concerning the
depiction of surrounding tissue and vessel visibility. The depth perception was roughly equal for all techniques and silhouettes
provided no additional benefits.

55

3. Curved Surface Reformation

cut surface through the vasculature and its surrounding tissue, it cannot visualize the
lumen of the bypass adequately. The lumen is incorrectly narrowed, since the bypass
runs horizontally, a situation that cannot be properly handled by mpCPR. This issue is
addressed by CR, but a trade-off between the display of the surrounding tissue and the
vessel visibility has to be made. This leads to artifacts, as pointed out in the zoom-ins,
coming from the fact that the information of the left vessel overwrites information of
the right one. CSR avoids these issues by creating the lumina entirely in 3D. Also the
visibility of the denser vasculature in the lower legs is correctly preserved. Figure 3.7d
shows a rotated view of the lumina of the vasculature using CSR. In order to enhance
spatial perception, the cut surface is embedded into a context visualization.

A CTA data set of the human cervical vessels, including the carotid arteries, is shown in
Figure 3.8. With mpCPR (3.8a), visibility is not preserved and the lumen of horizontally
running vessels is not rendered correctly (see zoom-in). The surrounding tissue is, however,
shown. With CR (3.8b), a trade-off between the display of the surrounding tissue and
the visibility of the vessels has to be done. This is the reason why one vessel is cut off, as
the vessel lies behind surrounding tissue (see zoom-in). Correcting the visibility would
further limit the size of visible surrounding tissue. CSR (3.8c) preserves the visibility as
well as provides a smooth cut through the surrounding tissue.

3.5 Evaluation

We consulted 12 radiologists from three different hospitals for an evaluation of CSR in
comparison to mpCPR and CR with a questionnaire (see Appendix A). For a general
assessment, the data set of Figure 3.6 was used, while the visibility was investigated on
cervical vessels (see Figure 3.8). The questionnaire consisted of 21 questions from five
criteria (see horizontal axis of Figure 3.9). Additionally, the usefulness of displaying the
surrounding tissue, the visibility and the silhouettes were investigated, while the other
two criteria are considered useful per se. The number of votes for the usefulness of the
corresponding criterion is depicted as green bar, while the red bar shows votes doubting
its usefulness.

There is no clear preference for a reformation technique for inspecting the vessel lumen
in a standard medical case. mpCPR is rated lowest, but most participants see no clear
difference as indicated by the large gray bar. This question should test if our method is
equivalent to currently used clinical methods for standard cases.

All participants preferred CSR for investigating the surrounding tissue, and the domain
experts regard this criterion as very useful (green bar). One radiologist specifically
mentioned that the surroundings are beneficial for detecting other pathologies. This
supports the LOD approach for smoothly extending the cut surfaces into the surrounding
tissue.

For assessing the visibility of overlapping vessels, we use a cervical vessel data set (see
Figure 3.8). The majority of participants rated CSR highest. The other categories in

56

3.6. Discussion

order of popularity were no preference, mpCPR, and CR. Additionally, most domain
experts considered a correct visibility as very useful (green bar). In fact, a smooth cut
through the surrounding tissue while preserving the visibility of overlapping vessels was
one of the motivations for our technique.

Regarding the depth perception of different vessels, CR and CSR are rated on the same
level, mpCPR is rated worse. Silhouettes were not regarded as useful by most participants.
We assume, however, that they could prove helpful after an accommodation period or for
a complex vasculature, as specifically mentioned by one domain expert. A larger user
study would be required to evaluate this effect as well as our context rendering.

Concerning the spatial orientation, domain experts pointed out that they use their
anatomical knowledge to orient themselves and navigate within the 3D data sets and
images. One radiologist specifically mentioned that visualizing the lumen of arbitrarily
oriented vessels and having the possibility of unrestricted rotations, has great potential.
In fact, this is part of the rationale for developing this method.

The feedback from domain experts indicates that CSR compares favorably to mpCPR
and CR. Moreover, it enhances the visualization of surrounding tissue and the visibility
of multiple overlapping vessels.

3.6 Discussion
In this chapter, we proposed with CSR a novel reformation technique that generates a
cut surface through the lumen of vessels entirely in 3D. It does not require adjustment
of any parameters by the user, while preserving correct visibility of vessels and their
surrounding tissue. Moreover, arbitrary rotations are supported, giving the user complete
freedom of inspecting the vessel lumina from every desired view direction. By relying on
sample-based methodologies to resolve the visibility and to filter the density values of
the imaging data, it offers interactive visual analysis of vessel pathologies.

We see several avenues for future work based on our method. As it allows the inspection
of a complex vasculature in 3D, a given CSR view could be linked with a detailed view of a
single vessel that contains aggregated information, such as based on curvicircular feature
aggregation (Mistelbauer et al. 2013). The application to different curve-like anatomical
structures such as nerves might be interesting. While we only evaluate our method’s
merits for vessel reformation, it is a general approach to generate view-dependent 2D
surfaces along 1D curves that produces high-quality cuts through the surrounding 3D
volume. The visualization of cut surfaces along curve-like features in scalar (Correa et al.
2011) and vector data (Jankun-Kelly et al. 2006; Kenwright and Haimes 1998) in various
scientific and technical domains are possible application scenarios.

57

CHAPTER 4
Prefiltering on Polytopes

This chapter starts the exposition on prefiltered anti-aliasing. We present closed-form
solutions for convolution filtering of linear functions defined on polytopes in n

dimensions. Through the use of radially symmetric filter kernels, we ensure an isotropic
response of the filter. Explicit formulas are provided for two and three dimensions and
subsequently implemented in a rasterization (resp. voxelization) framework on graphics
hardware. Furthermore, an evaluation in terms of anti-aliasing quality and runtime
is presented. Note that this method requires input of the same dimensionality as the
output, as we do not account for possible occlusions during a projection operation. We
will remedy this limitation in Chapter 5, where we present an exact visibility algorithm.

4.1 Analytic Integration
The mathematical formulation of convolution prefiltering is as follows: Given a data
function I defined on Rn and a filter function F , we can obtain the filtered value v(x) at
sample location x by evaluating the convolution

v(x) =
∫
Rn
I(y)F(x− y) dy. (4.1)

Examples for I are colors on 2D shapes or the density values inside objects.

In general it is not possible to derive a closed form solution for (4.1). With suitable
conditions on the data term, its support, and the filter function, such a symbolic
evaluation is achievable as shown by Duff (1989). His work covers analytic anti-aliasing
in two dimensions utilizing separable polynomial filters and polynomial data functions
defined on polygons. While these integrals can be solved analytically, the resulting
formulas become unmanageable for higher dimensions. Our approach of using radially
symmetric filter functions allows each filter order to be integrated separately and produces
a single expression; hence, for m filter orders we have m summands irrespective of the

59

4. Prefiltering on Polytopes

Figure 4.1: The intersection of a polytope with the filter support’s sphere can generate
complicated shapes, that have to be subdivided in order to obtain well behaved domains
of integration.

dimension. A similar procedure for a separable filter would require the evaluation of
all possible monomials, i.e. xm1

1 xm2
2 · · ·xmnn , and would yield mn summands for m filter

orders and dimension n. Obviously, this becomes intractable for higher dimensions and
one could try to obtain a single expression for all filter orders at once. We assume in
this work that data functions are defined on polytopes—a situation that constitutes
the most common use case for computer graphics applications—and consequently, the
integration domains of the filter convolution is a polytope bounded by hyperplanes. For
the integration along coordinate xi, the boundary would be defined by an expression of
the form a0 +

∑i−1
j=1 ai,jxj . The result would thus depend on 1

2
(
n2 + n+ 1

)
variables ai,j

for the integration boundaries alone. Together with the integration of all filter orders in
each dimension and a polynomial data function this amounts to formulas of unmanageable
sizes for three or more dimensions.

4.1.1 Setting

With spherically symmetric filters, our problem statement is formally as follows: Let P
be a orientable non-self-intersecting polytope in Rn, Ia,c(x) = a · x+ c a linear function
and FR(x) =

∑N
i=0 ci‖x‖iχ‖x‖≤R a filter function with a cutoff radius R. For dimensions

n = 2, 3 we will give a closed form solution for the convolution term

v(x) =
∫
P
Ia,c(y)FR(x− y) dy (4.2)

=
∫
P∩SR

Ia,c(y)F∞(x− y) dy (4.3)

at the sample location x. SR denotes the filter function’s support - a sphere with
radius R. We present the case of two and three dimensions in detail below. The
accompanying closed-form expressions and a generalization to higher dimensions is
presented in Appendix C.

60

4.1. Analytic Integration

(a) (b)

R

j0

j1

x

y

(c)

R

j0

j1

r0

x

y

(d)

Figure 4.2: Polygon-circle intersection in two dimensions. Intersecting a polygon with
the circular filter support gives three qualitatively different domains for subsequent
integration (a). These domains can be immediately used for integration in the two-
dimensional case. In three dimensions, these planar regions have to be extruded to the
origin to yield the desired integration domains. The exploded view of such an extrusion of
the right highlighted region of (a) is shown in (b). The marked variables for the sector (c)
(resp. segment (d)) coincide with the 2D integration result in (C.1) (resp. in (C.2)).

The main difficulty in analytically computing this integral lies in its potentially com-
plicated domain of integration, i.e. P ∩ SR. Especially in three or more dimensions
the intersection of the filter’s spherical support with a general polytope can produce a
complicated shape on which the integrand has to be evaluated, as shown in Figure 4.1.
Therefore, an important component of our solution is the partition of the intersection
domain into a set of simple regions. Each of these regions falls into one of a small number

61

4. Prefiltering on Polytopes

of geometric categories for which the integral (4.3) can be evaluated. We furthermore
use the fact that by substitution the convolution can be rewritten as

v(x) =
∫
P
Ia,c(y)FR(x− y) dy =

∫
P̂
Iâ,ĉ(y)FR(y) dy (4.4)

with R being a rotation matrix, â = R−1a and ĉ = c+a ·x. We denote by P̂ = R(P−x)
the shifted and rotated version of the polytope P. This allows us to assume the filter to
be centered at the origin and enables us to align a chosen face of the shape P with a
given (hyper)plane by rotation around the origin. In comparison to the separable case,
this gives us two main advantages. The filter is a function of just one coordinate, i.e.,
the radial direction, and the integration domains can be rotated to be ‘as axis aligned as
possible’ thus yielding simple integration boundaries.

It should be noted that equation (4.4) also holds under anisotropic scaling of the space.
Together with the invariance under rotation, we cover elliptic filters as well. Our
framework additionally accommodates piecewise polynomial filter functions by evaluating
the convolution for different filter radii, i.e., the convolution with two polynoms a(x)
and b(x) which are defined on [0, ra] and [ra, rb] can be treated by the sum of the
convolutions with a(x) − b(x) on [0, ra] and b(x) on [0, rb]. Hence, for n piecewise
polynomials the algorithm has to be executed n times.

4.1.2 Integration in Two Dimensions

We first outline the integration in two dimensions as the three-dimensional case builds
upon it. Without loss of generality we assume the polygon boundary to be oriented coun-
terclockwise and we determine the integral contributions of all polygon edges separately
(see figure 4.2a). This leads to the correct result since the polytope was assumed to be
self-intersection-free. Each edge—together with the filter center at the origin—spans
a triangle, and thus it is possible to evaluate the integral simply by summing up the
individual triangle contributions. Preserving the boundary orientation in the intersection
procedure below leads to the correct signs in the final summation, similar to the work of
Guenter and Tumblin (1996).

In this setting the intersection of the filter support SR with such a triangle results in a
simple line-circle intersection of the triangle edge that stems from the original polygon,
and a centered circle with the cutoff radius R of SR. Depending on the edge geometry this
leads to a varying set of segments and sectors. We denote with a segment a triangle that
has one vertex at the origin and is fully contained in SR (see Figure 4.2d). In contrast,
a sector is a circular region of SR (see Figure 4.2c). As can be seen in Figure 4.2a,
boundary parts outside SR result in sectors while the parts inside result in segments.
Note that the same holds if the origin is not contained in the polygon as all contributions
cancel correctly.

The contribution of a sector can be evaluated analytically as given in (C.1). Prior to
integration we rotate a segment such that it lies in the positive half plane x ≥ 0 and such

62

4.1. Analytic Integration

(a) (b)

(c) (d)

Figure 4.3: Integration domains in three dimensions. The three-dimensional domains
of integration are obtained by extruding the two-dimensional intersection domains to
the origin. The extrusion of a sector (see Figure 4.2c) gives the wedge of a cone (a)
while a segment (see Figure 4.2d) yields the tetrahedron (b). The green appendage (see
Figure 4.2a) has to be projected onto the filter support’s sphere and gives a pyramid
with a curved base (c). A special case of it is given in (d). Note that the color scheme is
the same as in Figure 4.2 and that domains (a) and (c) always occur in pairs.

that the polygon boundary is parallel to the y-axis. This is shown in Figure 4.2d and
the closed form solution is given in (C.2). Of course, the data function always has to be
rotated together with the segment.

4.1.3 Integration in Three Dimensions

The three-dimensional case is a natural extension of the situation in two dimensions.
Here, we assume a polyhedron with outward facing normals and all polygon faces oriented
accordingly. Together with the filter center at the origin, each face spans a pyramid.
As before, the integration over the whole polyhedron is the sum of the contributions
of all individual pyramids. Each pyramid is again rotated around the origin such that
it lies in the positive half space z ≥ 0 and its base lies in the z = d plane where d
denotes the pyramid height. As stated in Equation (4.4), this does not alter the value

63

4. Prefiltering on Polytopes

of the integration, as long as the data term is rotated correspondingly. Similarly, the
orientation of the polyhedron faces are preserved up to the actual integration and the
final summation.

Depending on the pyramid height d and the filter cutoff radius R, we have to consider two
cases. If d ≤ R, the pyramid’s base polygon intersects the filter support SR, otherwise
it does not. We treat the former case first as the latter one can be treated as a special
subcase of it. The intersection of the pyramid’s base polygon with SR is done as in the
two-dimensional case, with the difference that we use the cutoff radius rd at height d
which amounts to

√
R2 − d2. Apart from sectors and segments, a third kind of integration

domain appears. In three dimensions, the area between the line segment that lies outside
the circle and the resulting sector has to be treated as well and we refer to it as appendage
(see the green areas in Figure 4.2a).

Since the base polygon lies at z = d, we have to incorporate the third dimension into our
integration domain. A sector becomes the wedge of a cone, as shown in Figure 4.3a, and
its value is given in Equation (C.3). Both the segment and the appendage are rotated
around the z-axis such that their boundary edge opposite the vertex in (0, 0, d) is parallel
to the y-axis. The segment together with the origin spans a tetrahedron as can be seen
in Figure 4.3b and its integration is given in Equation (C.5). The appendage produces a
rather different shape (see Figure 4.3c). Projecting the area of the appendage onto the
boundary sphere of SR towards the origin results in an area that is confined from above
by the circle with center (0, 0, d) and radius rd and from the sides by the great circles
of the sphere with constant angle ϕ. The lower boundary is given by the projection of
the relevant part of the polygon’s edge onto the sphere. The final three-dimensional
shape given by the appendage is the ‘pyramid’ with apex in the origin and a curved base
section given by this projection. It integrates to the expression in Equation (C.4).

We are left with the aforementioned case where d > R and the pyramid base does
not intersect SR. Here we have no sectors nor segments but only an appendage (see
Figure 4.3d). In this case we project it onto the filter support sphere SR in the same way
as done before and, by setting θC = 0, we get the same result (see Equation (C.4)) as in
the intersecting case.

4.2 Implementation
It is obvious that the evaluation of the convolution integral (4.3) can be done in parallel
for each sampling location and each polytope, whereas the final summation can be done
independently for each sampling location. This maps the problem very well to highly
parallel hardware such as Graphics Processing Units (GPUs). We implemented the two-
dimensional case with DirectX 10 and the three-dimensional case with Compute Unified
Device Architecture (CUDA). The algorithm can be naturally divided into three stages:
a setup stage, the intersection routine and a final integration. Due to the finite extent of
the filter it is clear that if a sampling point x is placed outside the Minkowski sum of
the current polytope and the filter support—as shown in Figure 4.4—the convolution

64

4.3. Results

integral evaluates to zero. This fact localizes computations and is used in the setup stage
to generate bounding regions for each input polytope to mask irrelevant output locations.

While the mathematical framework developed in section 4.1 works for general polygonal
and polyhedral input, we implemented the most common case of input triangles and
tetrahedra. In this case a linear interpolation of vertex values coincides with the linear
data function.

The DirectX implementation for the two-dimensional case performs the setup stage in
the geometry shader. Here, each incoming triangle is ‘thickened’ so that all pixels in the
relevant region get rasterized (see Figure 4.4). The intersection and integration stages
are then computed in the pixel shader. All operations are performed in a single render
pass, making the technique easy to implement in existing rendering systems.

In the CUDA implementation for the three-dimensional case, the setup stage takes each
incoming tetrahedron and displaces all four faces of it outwards by the filter support
diameter. Similarly, the axis aligned bounding box of the tetrahedron is enlarged by
the same amount. The intersection of these two figures tightly encloses the relevant
region and is used as a mask in the following stages. The intersection stage takes as
input a tetrahedron, a sampling location, and the spherical filter support. It generates
the integration domain regions (sector, segments and appendages) as output. Every
translation and rotation that is applied to the shape has to be applied similarly to the
linear function defined on that shape, as stated in Equation (4.4). The generated domains
are then processed in a separate integration stage which calculates the contributions to
the final sum at each sampling location. Note that since the intersection of a tetrahedron
and the filter support can result in a highly varying number (9-45) of integration domains,
significant code path divergence can occur in the intersection stage. This could have
significant performance impact, as threads with a large number of domain count could
force threads with lower counts to idle. Consequently, we buffered the domain data and
decoupled the intersection and integration stages in our CUDA implemention. Thus,
each Single Instruction Multiple Data (SIMD) unit in the integration stage is assigned
integration domains of the same type but from potentially different sample locations.
For each integration domain type, a separate kernel is launched. We observed that the
amount of computations needed for each stage effectively hides the memory latency of
the GPU.

4.3 Results
We found that our analytic anti-aliasing method compares favorably against sampling-
based approaches. Figure 4.5 shows a zone plane pattern consisting of 14400 colored
triangles that form 80 rings with 4 degrees angular resolution. Anti-aliasing is performed
with a Gauss filter with a radius of 2.3 pixels at a resolution of 400x400 pixels. The
left image was computed using our prefiltering method. It took 7.4 ms to compute on a
GeForce GTX 580 graphics card using a single DirectX shader pass. The right image was
computed in 7.9 ms employing optimized jittered supersampling to obtain 576 samples.

65

4. Prefiltering on Polytopes

Figure 4.4: Taking a triangle (left) and a radial filter support (center) as input, their
Minkowski sum is given as the union of all filter locations that intersect the triangle
(right).

Figure 4.5: Prefiltering and supersampling comparison. In an equal time comparison,
our prefiltering method (left) outperforms jittered supersampling (right) on a scene with
high anti-aliasing requirements.

A Halton sequence efficiently places samples and each sample contributes to all pixels
in its filter range by using the common GPU rasterizer. While this causes correlations
between the pixel samples, a completely stochastic sampling approach using General-
Purpose Computing on Graphics Processing Units (GPGPU) would induce additional
bandwidth and computations and might undo the benefits from sample decorrelation.
For this scene with very high anti-aliasing requirements, there still remain aliasing
artifacts when using supersampling. We want to note that for typical scenes in real-time
applications, anti-aliasing requirements are considerably lower and the slow convergence
rate of supersampling-based methods is less problematic.

An overview of executing times is given in Table 4.1. For the case of anti-aliasing
voxelization in three dimensions, we state the runtime for different input complexities
and grid resolutions. The intersection stage constitutes the bottle-neck, mainly due to

66

4.3. Results

(a) 643 (b) 1283

(c) 2563 (d) 2563

Figure 4.6: Direct volume renderings of a colored sea urchin with different complexities
at various spatial resolutions (given as captions) using a Gaussian filter with 2.3 voxels
filter radius. The tetrahedron count for (d) is 12652 and 2470 for (a)-(c). The base of
the spikes is colored black while the tip vertex is in cyan. The color value is linearly
interpolated inside the spike tetrahedra. Note that for decreasing spatial resolution (a)-(c)
or higher frequencies in the source data (d) the output shows no aliasing effect.

67

4.
P

refiltering
on

P
olytopes

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Direct volume renderings of an extruded zone plate pattern. The input data consists of nearly two million
tetrahedra and was analytically filtered with an area filter (a)-(d) and a Gaussian filter (e)-(h) to a Cartesian grid with
dimensions 1283. Each filter was evaluated with support radii 1, 2, 2.5 and 3 (left to right). For too narrow radii both
filters show severe aliasing (a)&(e). While the most glaring artifacts disappear with increasing radii, the area filter still
exhibits defects at low frequencies which are not present when using the Gaussian filter. The rendering technique uses linear
interpolation of the source data and a linear transfer function.

68

4.4. Discussion

Grid resolution

643 1283 2563

Tetrahedra ∩
∫ ∑

∩
∫ ∑

∩
∫ ∑

19.0k 2.0 0.5 2.5 11.7 2.0 13.8 78.6 12.0 90.5
190.0k 4.2 1.1 5.2 18.9 4.1 22.9 111.7 19.0 130.6
1.9M 12.1 3.1 15.3 38.1 9.8 47.8 179.9 37.0 216.8

Table 4.1: Runtime in seconds to sample a cube—composed of a varying number of
tetrahedra—to Cartesian grids of increasing resolutions. The timings for the intersection
stage (∩), the integration stage (

∫
), and their sum (

∑
) is given. A Gaussian filter

function with five even polynomial orders and a radius of 2 grid cell lengths was used.

the inevitable code path divergence caused by different geometrical configurations. Since
the number of intersections is not known in beforehand, a initial load balancing stage
cannot be used to improve this situation. However, complex tetrahedral models can be
exactly filtered and rasterized into Cartesian grids within few seconds up to few minutes.

Figure 4.7 shows a 3D rasterization of an extruded zone plate using area and Gaussian
anti-aliasing. It is clearly visible that the more complex Gaussian filter is able to remove
aliasing at a smaller filter radius while also preserving larger features much better.
This emphasizes the need for sophisticated filters that were not possible with previous
approaches.

Finally, Figure 4.6 shows a sea urchin sampled at different spatial resolutions. The direct
volume rendering shows how our analytic filtering smoothly filters the solid volume at
different spatial resolutions.

4.4 Discussion

This paper we presented an analytic formulation for prefiltered sampling of polytopes
with a linear function defined on them. This includes the practically relevant cases
of triangles and tetrahedra with linearly interpolated vertex values. Together with a
spherically symmetric polynomial filter, this allows the closed-form evaluation of the
convolution integrals. We presented an implementation on graphics hardware and an
evaluation in terms of runtime and anti-aliasing quality.

As extensions to this work. the linear volumetric approach might be used to render time-
varying data, like for example the helicopter blades in the work of Dachille and Kaufman
(2000). Elliptical filtering is made possible straightforwardly by scaling the polyhedra in
the opposite direction to render effects like motion blur and support non-square pixels.

One general observation is that the filter convolution is evaluated only once for each pair
of input primitive and sampling location. In certain configurations, this approach utilizes

69

4. Prefiltering on Polytopes

less memory bandwidth than sampling-based approaches that provide similar quality.
Although the arithmetic workload is much higher due to the closed-form solutions, it can
be observed that the actual computing resources of most hardware designs are increasing
considerable faster than memory bandwidth. In this sense, the relevance of prefiltering is
growing as long as this development continues.

This approach converts n-dimensional input signal into raster representations of the same
dimension, e.g., 2D rasterization or 3D voxelization. If a dimensionality reduction occurs—
as, for example, for the highly relevant case of 3D-to-2D rasterization—possible occlusions
have to be accounted for. We provide a technique to achieve this in a computationally
efficient manner in the next chapter.

70

CHAPTER 5
Exact Parallel Visibility

In the previous Chapter 4, we introduced an analytic prefiltering method for anti-
aliasing. In particular, rasterization of polygons to two-dimensional raster images and

the voxelization of polyhedra to three-dimensional grids was presented. The arguably
most common use case, which is 3D-to-2D rasterization, was not covered, however, as the
projection operation of a three-dimensional scene onto a two-dimensional image plane is
missing from this technique. In this chapter, the missing piece will be provided in the
form of an exact hidden-surface algorithm. By removing all occluded parts from the
input scene, a two-dimensional vector-format representation of the scene from a given
viewpoint is generated, which can be directly used as input for the filtering procedure of
Chapter 4. Together, these two methods provide a fully prefiltered equivalent to common
rasterization, and thus a ground-truth solution to visibility and shading anti-aliasing.

5.1 Analytic Visibility
The task of resolving the exact visibility of polygonal scenes has a long history in computer
graphics dating back to the advent of vector displays (Sutherland 1964). Many works
throughout the years presented sequential algorithms to solve this problem and later
parallelization assumed a small number of parallel processors. In this work, we explicitly
target massively parallel hardware architectures and present novel methods to exploit
their computational capabilities for the task of hidden-surface elimination.

The adaptation of a visibility algorithm to massive Single Instruction Multiple Data
(SIMD) architectures has many objectives. Ideally, it should allow the workload to be split
into a predictable and large number of small and independent subtasks. Furthermore, it
should accommodate simple data structures that can be accessed in coalesced parallel
fashion. Additionally, the actual computations should rely on basic data types such as
integral or floating point values. These restrictions rule out methods that internally use
arbitrary polygons (Weiler and Atherton 1977) or generate complex graphs (Dévai 2011),

73

5.
E

xact
Parallel

V
isibility

(a) View plane projection (b) 2D view (c) Edge intersections (d) Hidden-line
elimination

(e) Boundary
completion

Figure 5.1: Overview of our analytic visibility method. The scene triangles are projected onto the view plane (a) as
required by the edge intersection phase (see Section 5.1.2), which operates mostly in 2D (b). It determines for each edge
the intersections with all other triangles (c). The intersection data is used in the second phase to determine the visible line
segments (see Section 5.1.3). A hidden-line elimination algorithm gives the visible segments of each edge (d) and a final
boundary completion (e) completes all visible line segments. The final set of line segments constitutes all boundaries of the
visible regions of the scene triangles.

74

5.1. Analytic Visibility

as well as arbitrary precision arithmetics. Furthermore, acceleration data structures
are needed to avoid the O(n2) complexity of intersecting all triangles with each other.
Visibility algorithms generally contain a sorting routine (Sutherland et al. 1973), which
has to be mapped to efficient methods on the Graphics Processing Unit (GPU).

5.1.1 Overview

Our visibility algorithm takes the normalized device coordinates of all 3D triangles as
input, and outputs a list of all two-dimensional line segments, which constitute the
borders of all visible polygonal regions of the scene when projected onto the view plane.
It is assumed that the triangles are consistently oriented (to allow backface culling) and
non-intersecting. Note that cyclic overlap of triangles is permitted. The result gives
a complete description of the boundaries of all visible regions and matches the input
requirements of analytic anti-aliasing approaches (Auzinger et al. 2012; Manson and
Schaefer 2011).

Our method performs the visibility computation independently for each edge, which yields
an embarrassingly parallel workload. Building on a method of Dévai (2011), we present
a new edge-triangle intersection method that allows replacing the theoretical ‘black hole’
treatment of Dévai with a novel, implementation-friendly boundary completion stage.
Both algorithms and the additional hidden-line-elimination stage are presented in the
next sections.

5.1.2 Edge Intersections

To determine the visible parts of the scene edges, we first project them onto the view
plane and compute the intersection in this space. Since projected triangles are convex
sets, we can assume that their intersection with a projected edge e are connected subsets
of e, i.e., the occlusion of a projected edge e by a projected triangle is a line segment
contained in e. Since line segments can be stored by their respective endpoints, we have
a fixed data size for the result of each edge-triangle-intersection. This enables efficient
parallel read and write operations as offsets into a global buffer can be computed easily.

A formal description of our intersection algorithm is given in Algorithm 1 and an
accompanying example in Figure 5.2. The core routines Intersect and IsBehind
merit further discussion. The intersection routine Intersect reduces to a geometrical
computation in 2D, as both its input parameters, edge e and triangle t, are projected
onto the view plane. Note that we actually compute the intersection between the infinite
line that contains e and the triangles. As such, it is possible that line segments that
are not fully contained in e are reported. AreOverlapping is a conservative test to
discard triangles that do not intersect e. Apart from point degeneracies, we utilize the
fact that each intersections is represented by a line segment; Intersect outputs the
segment’s end points in 3D, where the depth coordinate is chosen such that the point
lies on the plane of t. It should be noted that we discard single-point intersections in this
phase, as zero-length line segments do not contribute to the final image. Additionally,

75

5. Exact Parallel Visibility

Algorithm 1 Edge intersection phase
Input: The set T of all projected scene triangles and the set E of all their edges.
Output: A set O with the intersection data, where O(e) gives the intersection data for

edge e. Each entry of O(e) is the 3-tuple (p, flag, type) consisting of an intersection
point p, a flag that indicates if p is starting or ending a line segment, and a type
describing the relative depth relation between e and p (i.e., one of occluding, occluded,
or self).

1: procedure EdgeIntersections(E, T)
2: O ← {}
3: for all edge e ∈ E do in parallel
4: O(e)← {}
5: for all triangle t ∈ T, e /∈ t do in parallel
6: if AreOverlapping(e, t) then
7: (p0, p1)← Intersect(e, t)
8: if IsBehind(e, p0, p1) then
9: AppendTo(O(e), (p0, starting, occluded))

10: AppendTo(O(e), (p1, ending, occluded))
11: else
12: AppendTo(O(e), (p0, starting, occluding))
13: AppendTo(O(e), (p1, ending, occluding))
14: end if
15: end if
16: end for
17: (p0, p1)← EndPoints(e)
18: AppendTo(O(e), (p0, starting, self))
19: AppendTo(O(e), (p1, ending, self))
20: end for
21: return O
22: end procedure

each endpoint is marked as either starting or ending the occlusion. Since we will map
the inner loop to a single SIMD unit, the AppendTo functionality can be efficiently
implemented with intra-SIMD prefix sum operations to compute the offsets into the
output buffer. Furthermore, such write operation will be coalesced.

For hidden-line elimination, it is sufficient to only consider the occlusions of an edge e
(Appel 1967). Our goal, however, is full hidden-surface removal and—for reasons explained
below—we also have to take those triangles into account that are occluded by e. The
IsBehind routine of Algorithm 1 compares the relative depth of edge e and a line segment
given by p0 and p1. Since we assume non-intersecting triangles as input, their depth
ordering is well-defined and we store this information in type by denoting a line segment
either as occluded or as occluding.

76

5.1. Analytic Visibility

z

e

type • s • • ◦ • ◦ ◦ s ◦
start/end s s s e s e s e e e

Figure 5.2: Example result of the EdgeIntersections procedure (see Algorithm 1).
The output of a single iteration of the inner loop is shown for edge e (magenta). The plane
that contains e and extends into z direction intersects two triangles in front of e (blue)
and two triangles behind e (yellow). All four triangles overlap e, i.e., AreOverlapping
evaluates to true. Thus, the intersection points are the endpoints of the associated
line segments. Each point is associated with a type, denoting if e is occluded by its
triangle (•), if it is an endpoint of e (s), or if its triangle is occluded by e (◦). Additionally,
a flag stores if the intersection points starts (s) or ends (e) an occlusion.

Great care has to be taken to ensure the robustness of such geometrical calculations on
the employed hardware. Fixed precision or floating point arithmetics lead to round-off
errors and can cause erroneous results in binary geometric decisions, such as the question
if a given point lies on a given line. Exact geometric computation is the most commonly
used technique to solve this problem. But since it relies on a combinatorial analysis of
the geometric calculation at hand and on the use of arbitrary precision numbers, it is
not suited for practical implementation on graphics hardware. We chose an ε-prefiltering
approach by Frankel et al. (2004). In our implementation, this allows robust decisions
even when using single precision 32-bit floating-point arithmetics. Only the degenerate
case of parallel triangle edges requires the use of a double precision 64-bit floating point
format. This enables us to reliably determine the correct intersections for geometrically
complex models (see Figure 5.5).

5.1.3 Visible Line Segments

Having obtained the intersections for each scene edge, we employ two procedures to
determine all visible line segments necessary for the final integration stage. We present
this as two separate methods. The first is a hidden-line-elimination algorithm (see
Figure 5.1d) while the second method completes the boundaries of the visible regions of
each triangle and thus provides full hidden-surface elimination (see Figure 5.1e).

77

5. Exact Parallel Visibility

Algorithm 2 Determine the visible parts of all scene edges
Input: The set E of all projected edges of all scene triangles. The sorted output O of

EdgeIntersections (see algorithm 1).
Output: The visible line segments of all edges as reported by ReportSegment.

1: procedure HiddenLineElimination(E)
2: for all e ∈ E do in parallel
3: I ← O(e)
4: for n← 1 to |I| do in parallel
5: (∼,∼, type)← I(n)
6: if type = occluding then RemoveIndex(I, n) end if
7: end for
8: Barrier
9: for n← 1 to |I| do in parallel

10: (∼, f lag, type)← I(n)
11: if flag = starting then V (n)← 1 else V (n)← −1 end if
12: if type = self then V (n)← −V (n) end if
13: end for
14: Barrier
15: S ← ParallelInclusiveScan(V)
16: Barrier
17: for n← 1 to |I| do in parallel
18: v ← V (n), s← S(n)
19: if (v = 1 and s > 0) or (v = −1 and s > −1) then
20: RemoveIndex(I, n)
21: end if
22: end for
23: Barrier
24: for n← 1 to n ≤ |I| step n← n+ 2 do in parallel
25: (p0,∼,∼)← I(n)
26: (p1,∼,∼)← I(n+ 1)
27: ReportSegment(p0, p1)
28: end for
29: end for
30: end procedure

Hidden-Line Elimination

Hidden-line elimination is a standard technique in line rendering and was first introduced
by Appel (1967). Our method adapts a recent result of Dévai (2011) on the optimal
runtime of parallel hidden-surface-elimination algorithms for our method. We use a
scan-based approach which walks along the line of a given edge e and determines for
each intersection point if it is an endpoint of a visible segment of e. This requires an

78

5.1. Analytic Visibility

z

e

type • s • • ◦ • ◦ ◦ s ◦
start/end s s s e s e s e e e

initial 1 -1 1 -1 7 -1 7 7 1 7

scanned 1 0 1 0 7 -1 7 7 0 7

output 7 7 7 7 7 3 7 7 3 7

Figure 5.3: Example result of the HiddenLineElimination procedure (see Algorithm 2).
The output and intermediate variables of a single iteration of the inner loop is shown
for edge e. Note that the same scene as for Figure 5.2 is used. With the information
obtained from the edge intersection phase (first two rows), an intermediate buffer V
is initialized (initial) and—with the result S of prefix sum operation (scanned)—the
intersection points marked with 3 are reported as endpoints of visible parts of e (output).
Entries removed by RemoveIndex are marked with 7.

ordering of the intersections along e, which is achieved by an intermediate sorting step.

A formal description of hidden-line elimination assuming a sorted input is given by
Algorithm 2 with an accompanying illustration given by Figure 5.3. For each edge in
parallel, we first remove all intersections that originate from triangles that are occluded
by e (see Lines 4-7). Depending on the type of each intersection point, we assign a value
(0 or ±1) to a list V (see Lines 9-13). Intuitively, V can be understood as the change in
the number of occluders at each intersection, i.e., +1 if an occluder starts and −1 if one
ends. The following ParallelInclusiveScan utilizes prefix sum computations to create
a list S that holds a measure on how many triangles occlude e at a given intersection.
We remove all occluded edge segments (see Line 20) and report the remaining ones as
endpoints of visible edge segments. The criterion for removal (see Line 19) reflects the
fact that for a given intersection index n, a visible edge segment starts when the last
occluder ends (i.e., V (n) = −1 and S(n) = −1). The end of such a segment is given by
the start of new occluder (i.e., V (n) = 1 and S(n) = 0). Note that the initial values at
the endpoints of the edge e itself act as infinite occluders before and after e. For general
architectures, memory barriers are necessary to prevent read after write data hazards. In
our case, the implicit synchronization of the SIMD units already solves this issue without
further effort and the Barrier instructions can be committed.

79

5. Exact Parallel Visibility

Algorithm 3 Determine the missing boundaries of the visible regions
Input: The set E of all projected edges of all scene triangles. The sorted output O of

EdgeIntersections (see algorithm 1).
Output: The missing line segments of all edges as reported by ReportSegment.

1: procedure BoundaryCompletion(E)
2: for all e ∈ E do in parallel
3: I ← Data(e)
4: for n← 1 to |I| do in parallel
5: V is(n)← IntersectionIsVisible(I, n)
6: end for
7: Barrier
8: for n← 1 to |I| do
9: (∼, f lag, type)← I(n)

10: if (type 6= occluding or flag 6= starting) then continue end if
11: ID ← GetTriangleID(T, e, n)
12: (nstart, nend)← GetIndices(I, ID)
13: for k ← 1 to |I| do in parallel
14: if k = nstart or k = nend then continue end if
15: (∼,∼, typek)← I(k)
16: if typek = occluding then
17: IDk ← GetID(T, e, k)
18: F (k)← IsInFront(IDk, ID)
19: end if
20: end for
21: Barrier
22: for k ← 1 to |I| do in parallel
23: (∼, f lagk, typek)← I(k)
24: V (k)← Init(k, nstart, nend, f lagk, typek, V is(k), F (k))
25: end for
26: Barrier
27: S ← ParallelInclusiveScan(V,+1)
28: Barrier
29: In ← I(n)
30: for k ← 1 to |I| do in parallel
31: v ← V (k), s← S(k)
32: if (v = 1 and s > 0) or (v = −1 and s > −1) then
33: RemoveIndex(In, k)
34: end if
35: end for
36: Barrier

80

5.1. Analytic Visibility

37: for k ← 1 to k ≤ |I| step k ← k + 2 do in parallel
38: (p0,∼,∼)← In(k)
39: (p1,∼,∼)← In(k + 1)
40: ReportSegment(p0, p1)
41: end for
42: end for
43: end for
44: end procedure

45: procedure Init(n, nstart, nend, f lag, type, visible, inFront)
46: if n = nstart then return −1 end if
47: if n = nend then return 1 end if
48: if type = occluding and inFront = true then
49: if flag = ending then return −1 else return 1 end if
50: end if
51: if visible = true then
52: if (type = self and flag = starting) or (type = occluded and flag =

ending) then
53: return −1
54: end if
55: if (type = self and flag = ending) or (type = occluded and flag =

starting) then
56: return 1
57: end if
58: end if
59: return 0
60: end procedure

Hidden-Surface Elimination

To complete the boundary of each visible region, we propose an extension to the parallel
hidden-line elimination of the previous section. In conjunction, they provide full hidden-
surface elimination. Intuitively, we want to determine which triangles lie ‘on the other
side’ of the visible edge segments. An example is illustrated in Figure 5.1, in which
Figure 5.1e shows the missing line segments that complete the visible edge segments (see
Figure 5.1d) to yield the complete boundaries of all visible regions (see Figure 5.1b). This
is a harder problem than hidden-line elimination, as we are interested in the triangles
that are right behind a given edge e (as opposed to just knowing that e lies behind one or
more triangles). Formally described by Algorithm 3, we execute hidden-line elimination
for every line segment o that is occluded by e (see Lines 8-42). The initialization of V is
changed in such a way that the visible parts of e act as anti-occlusions, i.e., all segments o
are occluded unless they lie behind a visible part of e (see Figure 5.4).

81

5. Exact Parallel Visibility

z

e

type • s • • ◦ • ◦ ◦ s ◦
start/end s s s e s e s e e e

visible F F F F T T
infront T T
initial 0 0 0 0 -1 -1 1 1 1 -1
scanned 1 1 1 1 0 -1 0 1 2 1
output 7 7 7 7 7 3 3 7 7 7

Figure 5.4: Example result of the BoundaryCompletion procedure (see Algorithm 3)
for the scene in figure 5.2. The output and intermediate variables of a single iteration
of the inner loop is shown for edge e with an iteration step n such that the occluded
line segment o is given by the intersection points with indices nstart and nend. Note
that the same scene as for Figure 5.2 is used. With the information obtained from the
edge intersection phase (first two rows), an intermediate visibility buffer V is stores the
visibility of all intersection points of e (visible) whereas F denotes which occluded line
segments are in front of o (infront). As in the HiddenLineElimination procedure (see
Algorithm 2), an intermediate buffer is initialized (initial)—this time with an explicit
procedure Init—and a 1-initialized prefix sum computed (scanned). Finally, the line
segments of o just behind e are reported (output) and marked with 3. Entries removed
by RemoveIndex are marked with 7.

In the initialization phase we also have to resolve the relative depth layering of the
occluded line segments. Our algorithm achieves this by pairwise comparison of the
occluded line segments. This is a standard geometric computation and is denoted by the
procedure IsInFront in Line 18. As already mentioned, we report line segments that
are directly behind edge e. This requires the knowledge of all visible line segments of e,
which is exactly the result of HiddenLineElimination. We abbreviate it with the call
of IntersectionIsVisible in Line 5.

5.2 Implementation

Our analytic visibility method targets massively parallel SIMD architectures with current
GPUs as a prime example. We make use of their large amount of moderately sized SIMD
units by implementing a software rendering pipeline using the Compute Unified Device

82

5.2. Implementation

Architecture (CUDA) Application Programming Interface (API). We give a short review
of this environment and continue with a detailed explanation of our design choices.

5.2.1 Hardware

In the following, we use NVidia’s nomenclature and refer to the SIMD units as warps
and assume their size to be 32 threads. They are grouped into thread blocks which
enables the use of a processor’s fast on-chip memory as shared memory by all the block’s
threads. The much larger and considerably slower global memory allows data transfer
and synchronization across thread blocks, where the latter is enabled by atomic memory
accesses. The amount of registers and shared memory is limited and the excessive use of
one resource can decrease the amount of warps that can run in parallel, leading to device
underutilization. While our design can also be implemented on other parallel hardware,
such as multi-core Central Processing Units (CPUs), our algorithm benefits from the
huge amount of threads that are kept active by a GPU, thus hiding memory latency.

5.2.2 Design Considerations

Our algorithm shows a distinct two-level parallelism in all its core procedures (see
Algorithms 1-3). The outer loop iterates over all edges in parallel. Since the number
of intersections per edge varies greatly, we cannot employ a SIMD model at this level
without incurring severe code path divergence. Therefore, we assign edges to separate
SIMD units and parallelize the inner loops across the threads of the respective units.

In the edge intersection phase (see Section 5.1.2) we assign each edge to a warp and
fetch one triangle per thread until the pool of relevant triangles is depleted. Both the
assignment of edges to warps and the computations of the offset into the output array are
done with atomic memory functions on global counters. In our tests the large number of
active warps efficiently hide the memory latency associated with the triangle fetches.

The sorting of intersections along the edges is executed for all edges in parallel by using
a key-value radix sort. The key of each intersection holds a reference to its edge and a
parameter that increases along the edge. Since the number of intersections per edge is
known, the sorted intersection can be efficiently retrieved by the subsequent stages by
offsetting.

The hidden-line elimination and boundary completion are executed similar to the edge
intersection. The edges are assigned to warps and the inner loops parallelized across their
threads.

5.2.3 Analytic Visibility Pipeline

In this section, we provide an overview of the actual pipeline we implemented and essential
details on the adaptation to the CUDA framework as well as vital optimizations. Our
algorithm to intersect edges with triangles has an outer loop over all edges and an inner
loop over all triangles. A quadratic complexity in the number of triangles will become

83

5. Exact Parallel Visibility

prohibitively costly for large scenes and thus we assign the scene triangles to subdivisions
of the view plane—in our case quadratic bins. This preserves spatial coherence in the
memory accesses and enables load balancing by prioritizing bins with a high number of
assigned triangles. We generate a list of overlapped bins per triangle and use radix sort
(Merrill and Grimshaw 2011) to obtain a list of triangles per bin (similar to the work on
voxelization by Pantaleoni (2011a)). Our use of fixed bins can be improved by employing
an adaptive scene subdivision to enhance the load balancing.

Furthermore, we accelerate the procedure AreOverlapping (see Algorithm 1 Line 6) by
assigning an axis-aligned bounding box to each projected scene triangle. By quantizing
the box coordinates we compress the full description into 32 bits. A fast rejection of
non-overlapping triangles can be executed with just a few compare operations.

Since each thread handles the intersection of an overlapping triangle with the edge that
is assigned to its warp, we obtain either two or zero intersections per thread. The final
storage address in global memory is the sum of two offsets. A global offset which is
acquired on a per-warp basis via global memory atomics and a per-thread offset which
is obtained by computing an intra-warp prefix sum of the threads’ intersection counts.
Sorting the intersections along each edge is achieved by a key-value sort which arranges
all intersections according to edge index and position along their respective edge. The
edge index (a 32 bit integer) and the position along the edge (a 32 bit float) of each
intersection is combined into a 64 bit radix sortable key. We use the radix sort method
of the thrust library (Hoberock and Bell 2010) in our implementation.

Algorithm 4 Chunked parallel scan.
Input: A list I of arithmetic values.
Output: DoSomething(S, n) receives the n-th chunk of the scanned values S of I.

1: procedure ChunkedScan(I)
2: CS ← 32 . chunk size (here warp size)
3: c← 0 . carry (in shared memory)
4: for n← 1 to d|I|/CSe do
5: l← min(CS, |I| − (n− 1)CS) . last index
6: for k ← 1 to l do in parallel
7: V (k)← I((n− 1)CS + k)
8: end for
9: S ← ParallelIntraWarpScan(V, l)

10: for k ← 1 to l do in parallel
11: S(k)← S(k) + c
12: end for
13: c← S(e)
14: DoSomething(S, n)
15: end for
16: end procedure

84

5.2. Implementation

Algorithm 5 Analytic filter convolution.
Input: L is the set of all visible line segments (with a reference to their respective

triangle). Lτ denotes the subset of L which is relevant for tile τ of the output image.
F is the supplied convolution filter.

Output: WriteTile writes a tile of the output image.

1: procedure Integration(L)
2: for all tile τ do in parallel
3: for all batch b in Lτ do
4: for all pixel p ∈ τ do in parallel
5: for all segment l ∈ b do
6: τ(p)← Integrate(l, p, F)
7: end for
8: end for
9: end for

10: WriteTile(τ)
11: end for
12: end procedure

The core parts of both algorithm 2 and 3 are the initialization, execution and evaluation
of ParallelInclusiveScan. For a given edge e with n intersections, the number of
values which have to be scanned can be up to n. A first approach would be to store these
values in fast shared on-chip memory and execute the scan over the whole array. Shared
memory is a very limited resource (∼ 48kB per SM) and thus only a limited amount
of values can be stored before the number of warps per SM, which can be launched in
parallel, is significantly reduced. Storing the intermediate values in the much larger
global memory is prohibitively expensive in terms of memory access times. Our solution
is to conduct the inclusive scan in parallel for warp-sized chunks and execute the chunks
sequentially as shown by Algorithm 4 This allows the full utilization of the GPU’s SIMD
parallelism with a small shared memory footprint.

The procedure ReportSegment uses the same scan method to obtain the correct offset
in order to write the line segments into the output buffer. As before, the line segments
are output in a non-deterministic fashion and we again employ a radix sort to assign
the segments to their respective edges. This list of line segments constitutes the output
of our analytic visibility method and provides the necessary information to employ an
analytic anti-aliasing method.

5.2.4 Analytic Integration

We implemented the prefiltered sampling of Chapter 4 to render the final output image
using CUDA. It should be noted that the input to this stage is an unordered list of line
segments per tile. An explicit reconstruction of the visible regions is not needed, since

85

5. Exact Parallel Visibility

Scene
(triangles)

Resolution Visibility (R/B) Int (B)
1282 642 322 82 162

Bunny
(70k)

5122 7 155 141 56 236
10242 122 95 96 51 155
20482 83 73 81 71 174

Planets
(37k)

5122 7 121 111 59 229
10242 94 74 77 31 141
20482 64 56 63 40 100

Table 5.1: Optimal bin size for our implementation. Vis (R/B) gives the timings of
our analytical visibility method for a bin size B, such that B × Resolution equals the
header value. The timings of the integration stage are given by Int (B), with the header
value denoting the bin size. Note that the visibility computation benefits from a certain
ration of bin size and resolution, while the integration prefers the smallest bin size.

the integration is evaluated over their boundary segments. As shown in algorithm 5,
we again employ a two-level parallelization. The output image is subdivided into tiles
that are assigned to the warps of the GPU. Each warp alternately executes two distinct
stages; in the first stage, each thread loads an input line segment, whereas in the second
stage, each thread computes the contribution of all loaded segments to a single pixel
of the tile. This reduces the shared memory needs as all input segments reside in the
threads’ registers, and beginning with the Kepler architecture of NVidida GPUs, register
data can be shared by the threads of a warp without shared memory transfers. Once
the contributions of all input line segments to the pixels of a tile are computed, the tile
is written to the output texture in global memory. Only the assignment of tiles to the
warps has to be synchronized, since access to a tile is exclusive for a single warp. As
before, we use global memory atomics for this purpose.

5.3 Results

We evaluated the performance of our analytic visibility implementation on a GeForce
GTX 680 GPU with 4GB RAM and a Core i7 CPU clocked at 2.67 Ghz with 12GB
systen memory. The operating system was Windows 7 with CUDA framework 4.2. Four
scenes with different characteristics were used (see Figure 5.5). Zoneplates exhibits
very fine scale geometry and serves as a test for the numerical robustness of our method.
As can be seen in Figure 5.5b, even geometric intersections of subpixel scale of the two
superposed zone plates are correctly resolved. Spikes serves as stress test for a large
edge intersection count, due to its high depth complexity. As standard scenes we use a
stylized system of Planets and the Stanford Bunny. All scenes were rendered with a
Gaussian filter kernel with a radius of 2.3 pixel (see Chapter D).

86

5.3. Results

(a) Planets (b) ZonePlates

(c) Spikes (d) Bunny

Figure 5.5: Our test scenes with low (b) & (d) to high (c) depth complexity and low (d)
to high (b) & (c) geometrical detail. The images were generated with our method using
a Gaussian filter kernel with a radius of 2.3 pixel (see Chapter D) and a resolution of
10242. The ZonePlates scene (b) consists of two superposed zone plates while Spikes
is a regular grid of square pyramids. All scenes are robustly handled by our method and
run at interactive framerates on modern graphics hardware.

5.3.1 Bin Size

As a first step, we investigated the algorithm’s behavior with different bin sizes (see
Section 5.2.3). The integration stage benefits from localized line segments and executes

87

5.
E

xact
Parallel

V
isibilityTriangle

count Setup Reso-
lution

Filled
Bins

Edge
intersections

Hidden-line
elimination

Boundary
completion

Inte-
gration

Over-
head Total

7k 0.04
(3k)

5122 918 (16k) 6.3 (0.5M) 0.4 (75k) 1.0 (25k) 7.4 6.4 25
10242 3.4k (29k) 9.9 (0.6M) 0.8 (0.1M) 1.6 (33k) 9.1 7.8 34
20482 13k (68k) 21 (1.2M) 1.6 (0.3M) 2.7 (55k) 16 8.8 56

26k 0.16
(13k)

5122 910 (44k) 31 (1.5M) 1.1 (0.2M) 3.5 (87k) 23 9.4 75
10242 3.4k (63k) 26 (1.9M) 1.6 (0.3M) 4.2 (0.1M) 21 10 71
20482 13k (116k) 37 (2.7M) 2.8 (0.5M) 6.0 (0.1M) 33 13 100

70k 0.42
(30k)

5122 906 (102k) 116 (3.9M) 2.6 (0.5M) 10 (0.3M) 56 16 212
10242 3.3k (134k) 77 (4.5M) 3.4 (0.7M) 11 (0.3M) 51 18 172
20482 12k (212k) 79 (5.9M) 5.3 (1.0M) 14 (0.4M) 72 22 208

Table 5.2: Rendering statistics from prefiltered rasterization of the Bunny model at different LODs with our method.
Timings are given in milliseconds and the size of the output of each stage is given in parentheses. See the text for details.

88

5.4. Discussion

fastest for the smallest bin size (in our case 82 pixel). However, the visibility stage shows
the best performance at certain bin sizes relative to the image size, i.e., for a certain
ratio between resolution and bin size (see Table 5.1). Smaller bin sizes quadratically
increase the number of bins that a given triangle is assigned to. This could cause multiple
computation of the same intersection between an edge and a triangle in different bins,
thus incurring a performance penalty. For too large bins, the number of triangles per bin
increases and causes a quadratic increase in the number of intersection computations. The
preferred ratio of the visibility phase for a given resolution is consistent across scenes and
can be taken as a performance guideline. Due to the significant increase in computation
time of the whole pipeline for bin sizes greater than 82, caused by the integration stage,
we use bin size 82 for the following time measurements.

5.3.2 Timings

Table 5.2 gives a detailed overview of the statistics and timings of our method when
rendering different LODs of the Bunny test scene. The first and fourth column show the
triangle count of the model and the number of bins that had at least one triangle assigned
to. All other columns give the execution time of the respective kernels in milliseconds. The
values in brackets is the number of output elements of the column’s computation. They
are, from left to right, frontfacing triangles, bin-triangle-assignments, edge intersections,
visible edge segments, and the line segments to complete the boundaries of the visible
regions. The overhead column gives the total runtime of all intermediate radix sorts,
scans, and initializations. Column Total gives the total time of all GPU operations.
The rendering of all LoDs at the given resolutions runs at interactive framerates and it
can be seen that most of the runtime of the visibility stage is spent computing the edge
intersections.

ZonePlates and Spikes illustrate the robustness of our geometric computations, and
in table 5.3 we give an overview of their render timings. As expected, we see that
the runtime of the visibility stage depends mainly on the number of generated edge
intersections, while the integration procedure depends on the size of its line segment
input.

5.3.3 Comparison with Supersampling

An informal comparison with traditional sampling-based rasterization is given in Figure 5.6
using multipass hardware rasterization with DirectX. Although a substantial amount of
samples is needed for scenes with high anti-aliasing requirements, traditional sampling
still has a runtime advantage over our method.

5.4 Discussion

We have presented an analytic visibility method to perform exact hidden-surface removal
on massively parallel hardware architectures. We showed that with an adequate geometric

89

5. Exact Parallel Visibility

Scene Size Intersection Segments Visibility Integration
Planets 37k 3.7M 576k 94 31
Spikes 5.0k 25M 973k 448 43
ZPlate 14k 4.7M 1.6M 165 104
Bunny 70k 4.5M 941k 122 51

Table 5.3: Rasterization statistics of our test scenes (see Figure 5.5) with our method
using a bin size of 82 and a resolution of 10242. Size gives the number of scene triangles,
intersections the number of edge intersections, and segments the number of visible
line segments. The timings of the complete visibility stage and the analytic integration
are given in milliseconds. See the text for details.

computation scheme and adaptation to the two-level parallelism of SIMD architectures, it
is possible to robustly perform prefiltered anti-aliased rendering of 3D scenes at interactive
frame rates on GPUs. A possible future extension of our pipeline can be the use of
dynamic load balancing with adaptive scene subdivisions in contrast to our static tiling.
Recent developments of GPU architectures (e.g., Dynamic Parallelism of NVidia) support
such approaches.

While sampling-based rasterization proves hard to beat in terms of speed, we see our
work as a first step to bring back analytic methods to rendering. The applications of our
method are plenty and largely unexplored. Just employing the hidden-line-elimination
stage allows analytic line rendering. The output of our visibility stage gives a full
description of the scene visibility from a viewpoint and can be used to generate an
analytic visibility map, analytic shadow maps or direct rendering to vector graphics.
Furthermore, the method does not depend on the final image resolution and will have
advantages for large-scale images. In the integration phase, the polynomial filter function
can be altered on the fly, which allows the use of different filters in the same output
image. This can be applicable for motion blur or depth-of-field effects. A change in the
visibility algorithm could allow analytic depth peeling and support analytic anti-aliased
transparency effects.

90

5.4. Discussion

Our method (3.1 fps)

42 samples (∼900 fps)

162 samples (∼100 fps)

1282 samples (1.7 fps)

PSNR ∞

PSNR 25.78

PSNR 42.80

PSNR 62.26

Figure 5.6: Comparison of our method with massive supersampling at a resolution
of 10242. The left column shows a detailed view of a ZonePlates rendering with
our method (top) and with a supersampling approach with three different sampling
densities. The sample count is per-pixel and the timings are for the full render cycle.
The right column gives the corresponding difference images and the peak signal-to-noise
ratio (PSNR) when compared with our rendering. The supersampling method uses
stratified sampling and sample sharing by collecting the samples over multiple rendering
passes. Note that for highly detailed models, 162 samples are not sufficient to faithfully
approximate the Gaussian filter kernel that is evaluated analytically with our method. A
break-even in terms of fps with our method is reached for approximately 1002 samples
and the reference solution with 1282 samples gives near-identical results.

91

CHAPTER 6
Non-Sampled Anti-Aliasing

In the previous Chapters 4 and 5, prefiltered sampling was introduced for different
scenarios. The two-dimensional rasterization (resp. three-dimensional voxelization)

technique of Chapter 4 was augmented with analytic visibility in Chapter 5 to allow
fully prefiltered 3D-to-2D rasterization. A major drawback of exact prefiltering is the
requirement of closed-form solutions for the convolution integrals of the filtering process.
For perspective-correct shading or general non-linear illumination models, an analytic
expression of the solution is rarely obtainable. In this chapter, we will demonstrate how
sampled shading can be combined with prefiltered visibility to provide the best of both
worlds—near-perfect edge anti-aliasing and general shading.

Figure 6.1: Multisampling methods supersample the visibility function of the scene
primitives and determine the contribution to the output pixel by the ratio of primitive
hits (left). Our optimal edge anti-aliasing method computes this contribution with an
exact integral of a filter kernel with the visible area of the primitive (right).

93

6. Non-Sampled Anti-Aliasing

6.1 Motivation
There are two main sources of aliasing artifacts in rasterization: (1) undersampling of the
interaction of light with surface materials and (2) undersampling of the visibility of the
object geometry. This is a consequence of the fact that the scene data is discretized by
the rasterizer before shading or visibility computations are executed. Artifacts caused by
(1) are, for example, low-frequency patterns in distant textures or missing highlights. (2)
arises under various circumstances, e.g., along edges at silhouettes or creases of objects,
very small objects that disappear between the samples, or complicated detail where
features are lost (Crow 1977). This is commonly referred to as edge aliasing and is an
active research area in computer graphics since decades.

To combat these defects, different anti-aliasing methods can be applied separately to both
channels. In rasterization, Supersample Anti-Aliasing (SSAA) usually refers to identical
supersampling of both, while Multisample Anti-Aliasing (MSAA) supersamples only the
visibility. We will follow the latter example and employ high-quality anti-aliasing on
the visibility signal and rely on common sampling for the shading channel. Instead of
supersampling, we build on the analytic visibility methodology that we developed in
Chapter 5 and present with Non-Sampled Anti-Aliasing (NSAA) a technique for prefiltered
edge anti-aliasing (see Figure 6.1). This is generally possible, since the visibility signal is
a piecewise constant function, where the discontinuities are piecewise linear curves. Thus,
a closed form solution of such a signal’s convolution with an approximated radial filter
always exists. In contrast to shading prefiltering as presented in Chapter 4, we do not
pose any restrictions on the shading signal.

6.2 Non-Sampled Anti-Aliasing
Our aim is to produce a perfectly edge anti-aliased raster image by analytically solving
the convolution

wP =
∫
χP (x)W (s− x) dx (6.1)

of the visible projected area of a primitive P (given by its characteristic function χP)
with a prefilter W at a given sample location s (usually a pixel center). The weight wP is
then used to blend the shading samples at s. In multisampling terminology, this equates
to taking an infinite amount of visibility samples xi around s, and using their weighted
sum

∑
iW (xi − s) for the final blending. Common multisampling techniques restrict

their sample positions to a rectangular pixel region, whereas our method applies a radially
symmetric prefilter of arbitrary extent, thereby allowing for unbiased sampling of the
image signal.

Our proposed analytic pipeline consists of three main stages, depicted in Figure 6.2:

Primitive gathering: first, the relevant primitives that have to be considered for the
prefiltering at each sample location are listed. These are all primitives that intersect
the support of the filter kernel when placed at the individual pixel centers.

94

6.2. Non-Sampled Anti-Aliasing

10 2 1 0
21 2 1 1
21 2 2 1
10 1 1 0

...

GB B G G G B ...

...00 1 3 4 4 5Parallel Scan

Histogram Rasterization

Primitive Gathering
O�set Bu�er

Fragment
Histogram

Primitive ID Bu�er

w ci i i

Weight Bu�er

Final Blending

Polygon
Input

...

Analytic Pre�ltering

Exact Visibility
wG wB

cG cB

Figure 6.2: Overview of our NSAA pipeline and its three main stages: primitive gathering
(green, Section 6.2.1), weight computation (red, Section 6.2.2), and final blending (blue,
Section 6.2.3). Intermediate buffers are shown in gray.

95

6. Non-Sampled Anti-Aliasing

Weight computation: given the list of relevant primitives per sample, their contribu-
tion to the final sample color is computed by analytically evaluating the convolution
given by equation 6.1. These weights are used in the subsequent blending stage.

Blending: the primitives are rasterized and the fragments are blended with weights of
the previous stage.

Our framework was developed with current graphics architecture in mind and efficiently
utilizes the rasterization pipeline as well as the General-Purpose Computing on Graphics
Processing Units (GPGPU) capabilities of modern Graphics Processing Units (GPUs).
Conceptually, our framework can accommodate arbitrary 2D primitives and every regular
spacing of sample locations. In our implementation, however, we assume triangles as
input and pixel centers as our sample locations. The individual stages of our pipeline, as
shown in Figure 6.2, are described in detail in the following sections.

6.2.1 Primitive Gathering

Convolution can be imagined as placing a prefilter at each sample location and evaluating
the corresponding integral with each primitive (see Equation 6.1). Mathematically,
such a filter function should have infinite support to provide the best possible low pass
performance and it would rapidly vanish with increasing distance from its center. As
numerical precision is limited and minor changes in a filter are not visually perceivable,
it is safe to place a cutoff at a certain distance from the center. This way, the influence
region of the filter kernel around each sample location is limited and only close primitives
are relevant. This considerably reduces the workload for large scenes or large output
images as otherwise the number of possible pairings would grow with the product of
primitive and sample count.

Given a set of input primitives, the first task of our algorithm is to list all the primitives
that intersect the filter kernel of a given sample. As the number of intersecting primitives
per sample can vary strongly depending on the scene, it is beneficial to store the per
sample primitive lists in a linear, tightly packed buffer (see Figure 6.2). This primitive
ID buffer is computed in two steps:

List Offset Computation: First, the required list sizes for each sample are computed.
This is easily achieved by an initial scene rasterization pass, that accumulates a
histogram of intersecting primitives using additive blending. In a following GPGPU
pass, a parallel scan (Hoberock and Bell 2010) over the linearized histogram buffer
is performed to obtain a list offset buffer, which contains the index of each samples’
first list element in the primitive ID buffer.

Filling the Primitive ID Lists: In a second scene rasterization pass, the list offsets
are used to scatter the primitive ID of each primitive to the corresponding positions
in the primitive ID buffer. As the histogram count above, this can be performed
conflict-free for concurrently writing threads by employing atomic counters. For

96

6.2. Non-Sampled Anti-Aliasing

PprojPcons
h

W

(a)

h
r

Vproj
Vcons

(b) (c)

Figure 6.3: (a) For a given projected primitive Pproj we need to rasterize the conservative
area Pcons in order to address all placements of the prefilter kernel where it intersects Pproj .
(b) A triangle is conservatively enlarged by scaling it around its incenter according to its
incircle radius r and the kernel radius h. (c) During rasterization, all dark red locations
outside the minimum conservative box are discarded to reduce the number primitive IDs
whose convolution evaluates to zero as they lie outside of Pcons. Note that the light red
region still reports superfluous IDs but they are negligible when compared to the triangle
area.

this task, we use an additional count buffer of the same length as the offset buffer.
The buffer index of each primitive ID is then given as the sum of the offset and the
count. The resulting primitive ID buffer is then transfered to the next stage for
analytic visibility and weight computation.

Note that both rasterization passes are performed without shading or depth buffering.
All primitive IDs are collected and visibility is computed at the next stage.

Conservative Rasterization. Due to the finite extent of our radial prefilters, primi-
tives can be relevant for a given sample location without overlapping it, but intersecting
only the prefilter support. We therefore compute a conservative coverage of all relevant
sample locations when rasterizing a primitive during the histogram, primitive gathering,
and the final blending stage. Similar to Hasselgren et al. (2005), this is achieved by an
image-space thickening of the primitives according to the kernel radius (see Figure 6.3a):
in each rasterization pass, we make use of the geometry shader stage to first obtain the
projection Pproj of an input triangle P , and then compute the required vertex offsets
that produce a conservative triangle Pcons. Offsetting an image space vertex Vproj to its
new conservative position Vcons basically equates to scaling its corresponding triangle
around the center of its incircle by a factor of r+hr , where r is the radius of the incircle,
and h denotes the support radius of the filter kernel (see Figure 6.3b). The resulting
enlarged primitive Pcons is then rasterized, and all its conservative fragments are processed
accordingly. To reduce the number of unnecessarily evaluated fragments, which can

97

6. Non-Sampled Anti-Aliasing

become significant for acute triangles, we discard any fragments outside a conservative
triangle clipping box in the pixel shader (see Figure 6.3c).

6.2.2 Analytic Weight Computation

In this stage we compute the exact contribution of all primitives to the given sample
locations. As shown in Figure 6.2, it consists of two main steps. The analytic visibility
step performs hidden-surface elimination and outputs the visible parts of all primitives
for the given view direction. This constitutes the exact visibility signal on which we apply
prefiltering. Note that in traditional depth-buffering the visibility signal is (super)sampled
directly, whereas we rely on a closed-form solution of the filter convolution integral to
avoid any undersampling issues. Assuming triangular primitives, the visible regions are
polygons and the convolution can be decomposed into a sum of integrals over the linear
boundary segments of each polygon. For both the visibility and the prefiltering step we
employ previous works and a summary of both is provided in the next paragraphs.

The hidden-surface elimination is performed with the help of the analytic visibility
method of Chapter 5. The output of this step is a set of line segments which constitute
the boundaries of all visible regions of all scene primitives. Note that this step does not
depend on the output of the primitive gathering section of our pipeline and can run
concurrently with it or on another device.

In the following prefiltering step, we exploit the geometric simplicity of the polygonal
visible regions when evaluating integrals over them. Previous works on analytic filter
convolution, such as the method of Manson and Schaefer (2013) and our method of
Chapter 4, decompose the convolution over each visible region (see Equation 6.1) into a
sum of integrals over its boundary. Furthermore, they support linear shading functions
and, thus, include our case of the constant characteristic function χP . Each summand of
the convolution decomposition can be expressed in closed form and evaluated with the
numerical precision of the hardware.

In contrast to these works, we do not employ full analytic shading as advanced shading
effects cannot be solved in closed form. We use the two methods of Chapter 4 and 5 just
for visibility prefiltering. This can be seen as a substitution for the depth-buffering in the
traditional 3D graphics pipeline. Hidden-surface elimination is performed once per frame
and yields the aforementioned set of boundary line segments that is used as input to the
prefiltering step together with the primitive ID buffer. As each buffer entry id is associated
with a sample location s, we store the result of the filter convolution

∫
χid(x)W (s−x) dx

at the corresponding entry of the weight buffer. This can be executed in parallel for
all entries of the primitive ID buffer and allows efficient utilization of massively parallel
hardware architectures. The filled weight buffer constitute the output of this step.

6.2.3 Final Blending

For each sample location s and all its corresponding primitives Pi, the previous stage
outputs an analytically computed weight wi that encodes the primitive’s relative con-

98

6.3. Results and Applications

tribution to the final color of the sample (see Figure 6.2). We are left to compute a
shading value ci for each primitive. In traditional rasterization, shading is performed
directly at the sample location (usually the pixel center or the centroid of contributing
subsamples). Due to the positive extent of our prefilter, it cannot be guaranteed that
the projected primitive overlaps the sample location. In this case we project the sample
location onto the primitive, i.e., we take the point on the primitive with minimal distance
to the sample location as our shading location.

By issuing another rasterization pass, we can now compute the shading value ci at this
point, for example via texturing or non-linear illumination and interpolation models. As
each sample location gets contributions from various primitives, we employ conventional
blend operations to aggregate the final sample color. Using a normalized prefilter kernel
ensures that

∑
iwi ≤ 1 for all weights wi associated with a sample location. 1−

∑
iwi

gives the weight of the background and is non-zero if the support of the local prefilter
is not completely covered by the projected scene primitives. Thus, the final color of
a sample is given by

∑
iwici + (1 −

∑
iwi)cB where cB denotes the background color.

Note that no depth buffering is used in this final rasterization step and that the scene
visibility was already resolved by the weight computation stage which assigns zero weight
to occluded primitives.

In this work we use a single shading value per primitive and sampling location. Super-
sampling of the shading channel is a promising future extension of our framework for
which the optimal sample positioning poses the biggest challenge. Current multisampling
approaches place the shading sample inside the projected area of the primitive whereas
the correct solution would require a placement inside the visible projected area. Other-
wise it is possible to obtain shading values from hidden parts of the scene. For general
triangular scenes, the visible regions of a single input primitive can already consist of
several non-convex polygons and an efficient sampling of these regions would deliver the
optimal anti-aliasing quality for rasterization. This would require fundamental changes
to our pipeline, however, since the shading sample locations do not coincide any longer
with the rasterization grid of common graphics hardware.

6.3 Results and Applications

We developed a prototype implementation of our method using the graphics Application
Programming Interface (API) DirectX 11 and the GPGPU framework Compute Unified
Device Architecture (CUDA). The rasterization steps in both the primitive gathering and
final blending stage of our pipeline use traditional rasterization with deactivated depth
buffering. The parallel scan and the weight computation stage rely on the flexibility and
parallel performance of general-purpose graphics hardware. In the following sections we
provide an evaluation of the anti-aliasing performance of our implementation.

99

6.
N

on-Sam
pled

A
nti-A

liasing

(a) MSAA 1 (b) MSAA 4 (c) CSAA 32Q (d) SMAA (e) NSAA (our method)

Figure 6.4: Comparison of common anti-aliasing techniques with our method NSAA using a Gaussian prefilter. The second
row depicts a cutout of the top row zoneplate test pattern that was rasterized using the stated method. Note that the
performance of anti-aliasing methods is tied to the associated sampling characteristics. If the sampling is changed after
applying anti-aliasing, artifacts in the form of excessive blurring or aliasing are introduced. We refer the reader to the
electronic version of this paper to inspect the top row pattern close to their native resolution of 10242. The cutouts are added
as a convenience for readers of the printed version.

100

6.3.
R
esults

and
A
pplications

MSAA 1 MSAA 4 CSAA 32Q SMAA NSAA (our method)

Figure 6.5: Comparison of common anti-aliasing techniques with our method NSAA using a Gaussian prefilter. The second
row depicts a cutout of the top row log grid test pattern that was rasterized using the stated method. See Figure 6.4 for a
further explanation of the two rows.

101

6.
N

on-Sam
pled

A
nti-A

liasing

CSAA 32Q NSAA area filter NSAA tent filter NSAA Gauss filter

Figure 6.6: Comparison of different prefilters. Since our method provides an exact evaluation of the filter convolution with
the visibility signal, our results can be used to directly compare prefilters on general scenes. A comparison with CSAA 32Q
is given to show that aliasing artifacts of common multisampling techniques would dominate the effects of different filter
functions. We show the results for three radially symmetric filters each with a radius of two pixel: a constant area filter, a
cone shaped tent filter and a Gaussian. See Figure 6.4 for a further explanation of the two rows.

102

6.3. Results and Applications

6.3.1 Evaluation

We use well established test patterns to asses the quality of our method. The first
pattern is a zoneplate, which features concentric rings with decreasing width to introduce
increasing frequencies at the outer rings. The result of our method using a Gaussian
filter with a radius of two pixels is illustrated in Figure 6.4 top right. The color pattern is
applied with texture mapping. As one can easily see, the result is free of undersampling
artifacts due to the exact prefiltering even at the demanding outer rim. Furthermore,
the use of radial filters avoids the introduction of anisotropy artifacts along the image
diagonal.

As a second test case we employ a binary log grid to investigate the anti-aliasing quality
of straight lines. Using the same prefilter as above, we notice no perceivable artifacts in
the result shown in Figure 6.5 top right.

A simple test scene in Figure 6.7 shows the correct occlusion handling and a non-linear
shading model that has no closed-form solution. By restricting our analytic prefiltering to
the visibility signal, sample-based shading models such as texture mapping are supported
by our framework.

6.3.2 Ground-Truth Generation

One possible application of our method is the objective comparison of approximative
anti-aliasing methods. In the first and second row of Figures 6.4 and 6.5 we compare
our output with widely used multi-sampling methods. MSAA1 to MSAA4 are sampling
pattern that are specified by both the Open Graphics Library (OpenGL) and DirectX
standards, while CSAA 32Q is the highest quality version of a NVidia specific variant.
We also compare with Enhanced Subpixel Morphological Anti-Aliasing (SMAA), the
post-processing method of Jimenez et al. (2012), which operates on the output image of
a rendering system. As can be seen, all methods show various kinds of undersampling
artifacts in the outer regions of the zoneplate or along the straight lines. As our method
provides an analytically obtained reference, it can be considered as ground truth and any
divergence from it can be quantified with a suitable error metric.

6.3.3 Performance

In this section we provide an overview of the performance characteristics of our method.
For the presented test patterns in Figures 6.4-6.6, which consist of up to 20k triangles,
we obtain near-interactive frame rates on a GeForce 680 with 4GB device memory. As
expected, the weight computation stage is the bottleneck of our pipeline. More than
90% of the computation time is spent on the exact visibility and the analytic prefiltering,
whereas less than 5% of the time is consumed by the rasterization-based sections of the
pipeline. Due to the necessity of storing IDs and weights for all primitive fragments, the
memory requirement are in the 100MB range for the aforementioned test scenes. A future
extension of our framework that we are planning to develop is a tile-based rendering

103

6. Non-Sampled Anti-Aliasing

approach. For complex scenes, both the increased amount of geometry and textures
would limit the available memory for our method. Using an adaptive screen-space tiling,
depending on the available memory, would expand the capabilities of our framework to
rasterize nearly arbitrary scenes. Even when processing only parts of a scene, we expect
an adequate saturation of the processing elements of the graphics hardware.

6.4 Discussion
We presented an analytic prefiltering framework to perform exact edge anti-aliasing with
polynomial filter functions. An implementation on graphics hardware was described and
its evaluation given. Furthermore, we showed the capability of our system to serve as a
ground truth for the evaluation of sample-based anti-aliasing methods.

The main limitations of our work stem from the employed analytic visibility method,
which does not support intersecting primitives and requires consistently orientated input.
This is also the most promising avenue for future work, as the analytic visibility method
could be generalized to accommodate not only intersecting triangles but also transparency
effects. The framework can also be extended to allow for separable filters in order to give
a complete framework for the evaluation of prefilter performances.

104

6.4. Discussion

Figure 6.7: A sequence of torus models rasterized with our technique using a Gaussian
prefilter of a radius of two pixels. Note that we correctly handle self occlusions of the
torus geometry without using any depth buffering methodology. The silhouette exhibits
high-quality anti-aliasing and we support general shading models such as texture mapping
and Phong shading.

105

CHAPTER 7
Conclusion

In this chapter, the thesis is concluded and after discussing the main contributions,
possible avenues of future research are outlined.

7.1 Summary
This thesis presented different approaches to the effective sampling and filtering of
visibility and shading modalities. The foundations of these tasks—commonly referred to
as anti-aliasing—were given in Chapter 2 from a signal-processing point of view. There,
we also showed that such tasks are integral components of each image-generation process.
The main filtering approaches—supersampling and prefiltering—were explained, and
their requirements as well as their quality/speed trade-offs discussed. Furthermore, this
chapter provided the context of this thesis by surveying related work in this field.

In Chapter 3, we presented a sampling-based visibility-resolution method for view-aligned
surfaces. By employing a customized depth function, similar to Generalized Voronoi
Diagrams (GVDs), we automatically created cut-aways to reveal relevant patches of
otherwise occluded surfaces. We utilized this approach to support blood-vessel inspection
tasks, where the surfaces are generated by extrusions away from the centerlines of the
vessels. To guarantee well-behaved surfaces away from the centerlines, we presented a
Level of Detail (LOD)-based approach that gradually smooths the surface with increasing
distance from the centerline. This enables the efficient inspection of surrounding tissues.
In this approach, we chose sampling-based filtering methodologies due to the application
requirements. Interactivity is vital for medical inspection tasks, while at the same time,
our silhouette enhancements do not require any visibility anti-aliasing. This allowed us
to omit filtering methodologies and we resolved visibility in a computationally efficient
manner by direct ray casting. Furthermore, medical imaging data has limited sharpness
and simple supersampling-based shading filtering is sufficient. Remaining aliasing artifacts
are then combated with image filtering as a post-process. The interactive performance

107

7. Conclusion

and the general usefulness of our approach was documented with measurements and an
evaluation by domain experts.

In the following chapters, we investigated anti-aliasing methodologies that provide
maximal quality. By performing convolution filtering in the continuous domain—also
referred to as prefiltering—we effectively removed aliasing artifacts and provided exact
solutions only limited by the numerical precision of the underlying hardware.

A framework to perform prefiltering of linear functions on polytopes in n dimensions was
presented in Chapter 4. By closely approximating radial filter functions, we computed
closed-form solutions of the convolution integrals that arise during filtering. This was
achieved by integration-domain composition, which decomposes the otherwise complex
integrations into a sum of integrals on well-behaved domains. We provided the exact
mathematical expression in the case of two and three dimensions and presented two-
dimensional rasterization and three-dimensional voxelization as applications. While
computationally more expensive than sampling-based approaches, we provide ground-
truth solutions of shading anti-aliasing.

In Chapter 5, we extended the previous prefiltering method with exact hidden-surface
elimination. For this, all occluded parts of a three-dimensional scene consisting of
triangular meshes were removed. By determining the line segments that represent the
boundaries of visible regions of each triangle, we generated a vector representation of the
scene visibility. These segments served as input to the aforementioned exact shading anti-
aliasing method. Together, these methods perform full visibility and shading prefiltering
and generate ground-truth data for 3D-to-2D rasterization. The core part of this method
is a sequence of three highly parallel algorithms that robustly solve the geometrical
computations.

A common limitation to prefiltering is the requirement for closed-form solutions of the
filter-convolution integrals. For general shading functions, such solutions cannot be
achieved, and as a remedy we provided in Chapter 6 a method to combine visibility
prefiltering with sampled shading. This approach provides exact edge anti-aliasing while
still enabling the use of non-linear interpolation or complex illumination models. This was
achieved by replacing the depth-buffer visibility resolution stage of a common graphics
pipeline with our aforementioned hidden-surface elimination. With this approach, we
provided a ground-truth solution to edge anti-aliasing, which can be used as an objective
reference for the multitude of anti-aliasing approximations that exist in the literature.
Furthermore, we allow the effective comparison of different filter functions.

Like many computational problems in graphics, all our aforementioned methods exhibit
a high degree of parallelism, and we make use of this fact by mapping them to mas-
sively parallel hardware architectures in the form of Graphics Processing Units (GPUs).
While traditional graphics pipelines utilize some form of graphics interface to access the
capabilities of the underlying hardware, our approaches do not fit this model. Conse-
quently, we utilized General-Purpose Computing on Graphics Processing Units (GPGPU)
methodologies, which allows computation of general problems on graphics hardware. An

108

7.2. Discussion

introduction into this hardware design and the necessary considerations to unlock its full
potential were given in Chapter 2, as well as an overview of related works. In Chapter 5,
we provided an in-depth analysis of the parallelization potentials and the mapping to
graphics hardware.

7.2 Discussion

Since we treated the anti-aliasing problem from different aspects in this thesis, we feel
confident in giving a general comparison of sample-based and prefiltering methodologies.
In applied settings, we do not believe that supersampling and its variants will be replaced
any time soon. The considerably higher computational complexity of prefiltering only pays
off in demanding scenes with a significant amount of high-frequency content. Furthermore,
as prefiltering requires the existence of closed-form solutions of the convolution integrals,
polynomial integrands are almost always necessary. While we employed global polynomial
approximations of the filter kernels, Manson and Schaefer (2013) decomposed the kernels
into bicubic patches. Additionally, their work utilizes polynomial curves as shape
boundaries, which is mainly relevant for two-dimensional rasterization. Together with
our works, this already covers most of the integrands that have closed-form solutions
and in this sense, we consider the problem of prefiltered anti-aliasing largely solved. We
see its most promising area of application in adaptive anti-aliasing, where only the most
demanding parts of a scene are anti-aliased with prefiltering, while the remainder is
treated with common sampling-based approaches.

7.3 Future Work

There are several possible avenues to extend the works presented in this thesis.

While we believe that radially symmetric filters are perceptually superior, our prefiltering
methodologies can be extended to separable filters, which generally do not exhibit radial
symmetry. This would encompass most filter functions that are used in convolution
settings and would allow the ground-truth generation for most anti-aliasing settings.

A further extension in this spirit is the combination of visibility prefiltering with super-
sampled shading. Such a method would provide the highest possible rasterization quality
while still permitting the use of arbitrary interpolation and illumination models.

While prefiltering approaches are inherently computationally more demanding than
sample-based variants, it could be beneficial to just employ them on a sparse subset of
the scene. The work of Barringer and Akenine-Möller (2013) shows potential in this
regard.

For anti-aliasing quality of arbitrarily high quality, our pipeline could also be implemented
with arbitrary-precision arithmetics and exact geometric computations. Such an effort
has most likely only theoretical relevance.

109

7. Conclusion

Our exact hidden-surface-elimination method has several extension possibilities. By
performing a more elaborate analysis of the edge intersections among triangles, the depth
ordering of several triangle layers can be established analytically, allowing for exact
transparency effects. An extension to ground-truth shadow mapping would require the
incorporation of the shadow edges into the analysis. The intermediate result can also be
reported as vector graphics; however, a reconstruction of the visible regions from their
unordered boundary segments has to be performed.

110

APPENDIX A
Questionnaire of Curved Surface

Reformation

In this questionnaire, several aspects of the proposed visualization technique Curved
Surface Reformation (CSR) will be investigated and evaluated. The method will be

compared to existing and well established visualization approaches such as Curved Planar
Reformation (CPR), Multipath Curved Planar Reformation (mpCPR) and Centerline
Reformation (CR). Throughout this questionnaire please give a single or no answer for
each question in the 2 field, i.e., no question allows multiple answers. If you want to
correct an answer, please indicate this explicitly and tick your new answer. For several
questions it would be highly beneficial for us if you could elaborate on the reasons for your
answer; these questions are marked with the following text: (please justify your decision in
the comments). By doing so you allow us to benefit from your expert opinion, enhance
this evaluation and provide us essential information for future improvements of relevant
software tools. In case of any other comments, please feel free to write them into the
provided comment field as well. All comments are very appreciated and will help us to
strengthen this evaluation.

113

A. Questionnaire of Curved Surface Reformation

A.1 General Assessment

In this section, general aspects of the three methods (CPR, CR and CSR) should be
anonymously evaluated. Several images are shown on the next page, without knowing
which particular technique has been used.

Vessel Lumen — images (a)-(c)
The vessel lumen is defined as the cut through the vessel along its centerline which
covers the full width of the vessel. As this is the most important region to assess
pathologies, e.g., calcifications, the visualization technique has to depict it as precise
as possible.

1 Which image depicts the vessels best? a2 b2 c2
2 Which image shows the flow channels qualitatively better? a2 b2 c2

none2

Surrounding Parts — images (a)-(c)
The surrounding parts of a vessel are the tissues and organs around the vessel
lumen. They show additional information that might be useful for spotting pathologies
not necessarily related to the vessels themselves. Some CPRs show artifacts in these
regions. Open questions such as if the surrounding parts are desired or if they should
smoothly extend to the borders of the image are investigated here.

3 Which image shows the organs around the vessels with the lowest
number of artifacts?

a2 b2 c2

4 Is the visualization of the organs around the vessels desired?
(please justify your decision in the comments)

YES2 NO2

5 Is the visualization of the organs around the vessels helpful?
(please justify your decision in the comments)

YES2 NO2

Visibility — images (d)-(f)
Finally, the correct visibility of the cuts through multiple vessels within one image
will be assessed on the example of cervical vessels. Visibility refers to the depiction of
correct obstructions of multiple vessels, i.e., which vessel is in front of another one.

6 Which image has the best visibility of all vessel lumen? d2 e2 f2
7 Which image preserves the relative location of the vessels to each

other best?
d2 e2 f2

8 Is the three dimensional visibility of several vessels in one image
desired? (please justify your decision in the comments)

YES2 NO2

9 Which vessel is closer to the viewer in image (d)? 12 22
10 Which vessel is closer to the viewer in image (e)? 12 22
11 Which vessel is closer to the viewer in image (f)? 12 22

Comments:

114

A.1. General Assessment

(a) (b)

(c)

1 2

(d)

1

2

(e)

1 2

(f)

115

A. Questionnaire of Curved Surface Reformation

A.2 Perception
In this section we investigate perceptual issues of various vessel visualization methods.
Several images on the next page show the abdominal aorta with its first branches. Your
task is to decide, which vessel branch is closer to the viewer (i.e., in front of the other
vessel branch).

Questions — images (a)-(f)
12 Which vessel is closer to the viewer in image (a)? 12 22
13 Which vessel is closer to the viewer in image (b)? 12 22
14 Which vessel is closer to the viewer in image (c)? 12 22
15 Which vessel is closer to the viewer in image (d)? 12 22
16 Which vessel is closer to the viewer in image (e)? 12 22
17 Which vessel is closer to the viewer in image (f)? 12 22

Silhouettes — images (g) and (h)
The yellow silhouettes in the images (g) and (h) mark the boundaries between regions
with different distances from the viewer.

18 Which vessel is closer to the viewer in image (g)? 12 22
19 Which vessel is closer to the viewer in image (h)? 12 22
20 Are silhouettes helpful for perceiving the vessel orientation in 3D

space?
(please justify your decision in the comments)

YES2 NO2

21 Are silhouettes helpful for perceiving the boundaries of regions
with different distances from the viewer?
(please justify your decision in the comments)

YES2 NO2

Comments:

116

A.2. Perception

1 2
(a)

1 2
(b)

1 2
(c)

1 2
(d)

1 2
(e)

1 2
(f)

117

A. Questionnaire of Curved Surface Reformation

1 2

(g)

1 2

(h)

118

APPENDIX B
Ideal Radial Filter Derivation

In this chapter, we derive the representation of an ideal radial filter in the spatial
domain. While this derivation is found in various textbooks, the concrete form of

Equation 2.7 is not easy to obtain from the literature, since different definitions of the
Bessel function and different parametrization of the Fourier transform are used. In the
following, we show the relation

~Π�, 1
T

(t) = Jn
2

(
π‖t‖
T

)
(2T‖t‖)−

n
2 . (2.7 revisited)

In frequency space, the ideal radial filter is given as

Π�, 1
T

(ξ) = Π 1
T

(‖ξ‖)

and we have to compute its n-dimensional inverse Fourier transform, i.e.,∫
Π 1
T

(‖ξ‖) e2πiξ·t dξ =
∫

Π 1
T

(‖ξ‖) e2πi‖ξ‖‖t‖ cos θ dξ

where θ denotes the angle between ξ and t. Due to the radial symmetry of the filter
function—which is preserved by the Fourier transform—, we can choose t to coincide with
the first coordinate axis φ1 and compute the integral in hyperspherical coordinates with
ξ = (r, φ1, . . . , φn−2) and t = (t, 0, . . . , 0). Recall that the (n − 1)-dimensional surface
area of an n-dimensional hypersphere is given by ωn−1 = 2π

n
2

Γ(n2) . We have that

∫
Π 1
T

(‖ξ‖) e2πi‖ξ‖‖t‖ cos θ dξ =

=
∫ 1

2T

0

∫ π

0
· · ·
∫ π

0

∫ 2π

0
e2πirt cosφ1 rn−1 sinn−2 φ1 sinn−3 φ2 · · · sinφn−2

dφn−2 · · · dφ1 dr

121

B. Ideal Radial Filter Derivation

=
∫ 1

2T

0

∫ π

0
e2πirt cosφ1 rn−1 sinn−2 φ1

∫ π

0
· · ·
∫ π

0

∫ 2π

0
sinn−3 φ2 · · · sinφn−2

dφn−2 · · · dφ1 dr

=
∫ 1

2T

0
ωn−2

∫ π

0
e2πirt cosφ1 sinn−2 φ1 dφ1 r

n−1 dr =

=
∫ 1

2T

0

(2π)
n
2

(2πrt)
n−2

2
Jn−2

2
(2πrt) rn−1 dr =

∫ 1
2T

0

2πrnt
(rt)

n
2
Jn−2

2
(2πrt) dr =

=
Jn

2
(πtT)

(2tT)
n
2
.

The result is given in terms of the Bessel function of the first kind Jν(x) defined as

Jν(x) = xν

(2π)ν+1 ω2ν

∫ π

0
e−ix cosφ sin2ν φdφ,

which can be represented by elementary functions for odd multiples of 1
2 , i.e.,

J 1
2
(x) =

√
2
πx

sin x, J 3
2
(x) =

√
2
πx3 (sin x− x cosx) ,

122

APPENDIX C
Filter Convolution in Rn

In this chapter, a general strategy to compute the closed-form solutions of n-dimensional
convolution integrals is given. As filters, radially symmetric monomials of the form rm

are assumed, which enable the approximation of arbitrary radial filter kernels with any
polynomial scheme. The input signal is given by a linear function I that is defined inside
an n-dimensional polytope P. As stated in Equation 4.3, the integral has to evaluated
on the intersection of an n-polytope and an n-hypersphere. Since the intersection is,
generally, a complex shape, we split it into a potentially large collection of well-behaved
subdomains, for which we can evaluate the integral analytically.

The general procedure consists of a recursive subdivision of the polytope along its
hyperplanar facets and subsequent rotations to achieve a simple representation of the
associated vertices. Starting with P, we consider each of its (n− 1)-dimensional facets
separately. For each facet, an n-pyramid is constructed with the facet as base and the
origin as apex. These pyramids are then rotated such that the normal vectors of their
bases coincide with the n-th coordinate axis. Thus, all base vertices of each pyramid
carry the same value cn as n-th component, i.e., their form is (·, . . . , ·, cn). For each
pyramid we store the rotation Rn and the base coordinate cn for later use.

In the next step, we consider the bases of each of the aforementioned pyramids separately.
The (n−1)-dimensional base of each pyramid—which is an (n−1)-dimensional polytope—
is again split into its (n − 2)-dimensional facets. In contrast to before, we now place
the apex of the new pyramids at (0, . . . , 0, cn), where cn is the n-th component of the
vertices of the current pyramid base. We again use the facets as (n − 2)-dimensional
bases to build (n− 1)-pyramids together with the apex. Each of these new pyramids is
now rotated to align the normal of their bases with the second-to-last coordinate axis,
i.e., that the form of the base vertices is (·, . . . , ·, cn−1, cn). Again, the rotation Rn−1 and
base coordinate cn−1 for each pyramid is stored.

125

C. Filter Convolution in Rn

Since each recursion step decreases the dimensionality of the associated polytopes by one,
we arrive after (n− 1) applications of our split and rotation strategy at a collection of
triangles, i.e., 2-pyramids. Omitting degenerate input geometries, each of these triangles
has a unique sequence of (n− 1) rotations Ri and (n− 1) base coordinates ci associated
with it. In other words, the vertices of each triangle are given as (0, 0, c3, . . . , cn),
(x0, c2, c3, . . . , cn), and (x1, c2, c3, . . . , cn), where the sequence (c2, . . . , cn) is unique for
each triangle.

The convolution integral on the intersection of the original polytope P and the filter
support can be computed as a sum of convolutions on the n-pyramids that are spanned by
the triangles and the origin. This follows from the fact that this set of pyramids constitutes
a partitioning of P. The rotation sequence of each triangle is used to rotate the linear
input function I to conform the current orientation of the triangle (see Equation 4.4). The
sequence of cis determines the radius of the hypersphere in the hyperplane in which the
triangle is situated. Depending on the location of the vertices relative to the hypersphere,
n qualitatively different integration domain arise. In hyperspherical coordinates, the
associated integrations can be evaluated in closed form for each filter order and we present
the case of two and three dimensions below.

C.1 Explicit Solutions in 2D and 3D
The following integration results in two and three dimensions are given for a fixed
filter order n. It should be noted that although the results contain non-elementary
functions such as the Gauss hypergeometric function 2F1 and the Appell hypergeometric
function F1, the terms for a fixed order n can be expressed with elementary functions.
We use the abbreviation f(x)|x1

x0
for f(x1)− f(x0). The formulas were obtained with the

help of a symbolic mathematical software and manually corrected, checked and optimized.
The variable names used in the formulas are consistent with Figures 4.2 and 4.3.

126

C
.1.

Explicit
Solutions

in
2D

and
3D

C.1.1 2D Integrals

Assuming that 0 < r0 < R, n ∈ N and interpolation coefficients γ, λ, µ ∈ R we get with polar coordinates x = r cosϕ, y = r sinϕ

∫ R

0
r

∫ ϕ1

ϕ0
(γ + λx+ µy)rn dϕ dr = Rn+2

(
γ

n+ 2 (ϕ1 − ϕ0) + R

n+ 3 (λ (sinϕ1 − sinϕ0)− µ (cosϕ1 − cosϕ0))
)
, (C.1)

and with the further assumption that −π
2 < ϕ0, ϕ1 <

π
2 we obtain

∫ ϕ1

ϕ0

∫ r0
cosϕ

0
r(γ + λx+ µy)rn dr dϕ = rn+2

0

((
γ

n+ 2 + r0λ

n+ 3

)
2F1

(1
2 ,
n+ 3

2 ; 3
2; sin2 ϕ

)
sinϕ+ r0µ

(n+ 2)(n+ 3) secn+2 ϕ

)∣∣∣∣ϕ1

ϕ0

.

(C.2)

C.1.2 3D Integrals

Assuming that 0 < d < R, n ∈ N, 0 < θ < π
2 and γ, λ, µ, τ ∈ R with spherical coordinates x = r cosϕ sin θ, y = r sinϕ sin θ, z =

r cos θ we get

∫ ϕ1

ϕ0

∫ arccos(dR)
0

sin θ
∫ d

cos θ

0
r2(γ + λx+ µy + τz)rn dr dθ dϕ = d

n+ 4

((n+ 4)γ + (n+ 3)dτ
(n+ 2)(n+ 3)

(
Rn+2 − dn+2

)
(ϕ1 − ϕ0)

+ 8dn+3

√
1− 2d

d+R

(
F1

(1
2;n+ 2,−n; 3

2 ; 1− 2d
R+ d

,
2d

R+ d
− 1

)
− 3F1

(1
2;n+ 3,−n; 3

2 ; 1− 2d
R+ d

,
2d

R+ d
− 1

)
(C.3)

+2F1

(1
2;n+ 4,−n; 3

2 ; 1− 2d
R+ d

,
2d

R+ d
− 1

))
(λ (sinϕ1 − sinϕ0)− µ (cosϕ1 − cosϕ0))

)

127

C
.

F
ilter

C
onvolution

in
R
n

whereas with the additional conditions −π
2 < ϕ0, ϕ1 <

π
2 , 0 < r0 < R and 0 ≥ θC = arccos

(
d
R

)
< π

2 we obtain

∫ ϕ1

ϕ0

∫ arctan
(

r0
d cosϕ

)
θC

sin θ
∫ R

0
r2(γ + λx+ µy + τz)rn dr dθ dϕ = Rn+3

4

− 4γ
n+ 3 arctan

 √
2d sinϕ√

2r2
0 + d2 + d2 cos 2ϕ

+ 2R(r0τ − dλ)

(n+ 4)
√
r2

0 + d2
arctan

 r0 tanϕ√
r2

0 + d2

+ 2R
n+ 4 arctan

(
r0 secϕ

d

)
(λ sinϕ− µ cosϕ) + 4γ cos θC

n+ 3 ϕ (C.4)

+ R

n+ 4 (τ (cos 2θC − 1)ϕ+ 2 (θC − cos θC sin θC) (µ cosϕ− λ sinϕ))
)∣∣∣∣ϕ1

ϕ0

.

The evaluation of the integrand on a tetrahedral integration domain proves much harder than the previous cases. This can
be attributed to the fact that while the integration domain can be very easily expressed in Cartesian coordinates, the filter
monomial rn is easily described in spherical coordinates. Thus we have not found a result formula that permits the filter
order n to be expressed as a variable. Nevertheless it is possible to evaluate the integral for each filter order separately. We
show the results for the first few even orders as the odd orders produce lengthy expressions.

∫ ϕ1

ϕ0

∫ arctan
(

r0
d cosϕ

)
0

sin θ
∫ d

cos θ

0
r2(γ + λx+ µy + τz)rn dr dθ dϕ =

dr2
0

24
(
(4γ + 2r0λ+ 3dτ) tanϕ+ r0 sec2 φµ

)∣∣∣∣∣
ϕ1

ϕ0

n = 0

dr2
0

360
((

12
(
3d2 + r2

0

)
γ +r0

(
20d2 + 8r2

0

)
λ+ 10d

(
3d2 + r2

0

)
τ
)

tanϕ

+r0 sec2 ϕ
(
10d2µ+ r0 (6γ + 4r0λ+ 5dτ) tanϕ

)
+ 3r3

0 sec4 ϕµ
)∣∣∣ϕ1

ϕ0

n = 2

dr2
0

5040
((

8
(
45d4 + 30d2r2

0 + 8r4
0

)
γ + 6r0

(
35d4 + 28d2r2

0 + 8r4
0

)
λ+ 7d

(
45d4 + 30d2r2

0 + 8r4
0

)
τ
)

tanϕ

+r0 sec2 ϕ
(
105d4µ+ r0

(
8
(
15d2 + 4r2

0

)
γ + r0

(
84d2 + 24r2

0

)
λ+ 7d

(
15d2 + 4r2

0

)
τ
)

tanϕ
)

+3r3
0 sec4 ϕ

(
21d2µ+ r0 (8γ6r0λ+ 7dτ) tanϕ

)
+ 15r5

0 sec6 ϕµ
)∣∣∣ϕ1

ϕ0

n = 4

(C.5)

128

APPENDIX D
Polynomial Filter Approximations

The coefficients for polynomial fits of various common anti-aliasing filters together
with the approximation error are given in Table D.2 and D.3. All filters were

normalized to the interval [0, 1]. The numbers beside the filter names refer to the original
filter width, i.e., the Gaussian (σ = 2−1/2) is cut off at 2.3 and the Lanczos filter is of
radius 2. Note that for 3D filters we use only coefficients for even polynomials while the
2D filters can also use odd and thus have a lower degree. The coefficients are computed
using a least squares fit with the pre-integrated polynomials shown in table D.1. The
pre-integration ensures that the response of our multi-dimensional filters F3D and F2D
on one-dimensional signals are identical to the response of the original one-dimensional
filter F on the same signal, i.e.,∫ ∫

F3D(x, y, z) dy dz =
∫
F2D(x, y) dy = F(x).

monomial (2D / 3D) 2D pre-integration 3D pre-integration

1 2
√

1− x2
(
1− x2)π

x / x2 √
1− x2 + x2 log

(
1+
√

1−x2

x

) (
1− x4) π

2

x2 / x4 2
3
√

1− x2
(
1 + 2x2) (

1− x6) π
3

x3 / x6 1
4

(√
1− x2

(
2 + 3x2)+ 3x4 log

(
1+
√

1−x2

x

)) (
1− x8) π

4

x4 / x8 2
5
√

1− x2
(
3 + 4x2 + 8x4) (

1− x10) π
5

Table D.1: Pre-integrated polynomials for the range [0, 1].

131

D
.

P
olynom

ial
F

ilter
A

pproxim
ations

filter (radius) c0 c1 c2 c3 c4 εmax

Gaussian (2.3) 1.30321 0.119155 -9.69022 14.2894 -6.02528 0.00579162
Lanczos (2) 1.68971 0.71905 -19.8035 31.601 -14.2415 0.00892035

Mitchell-Netravali 2.03111 -2.16092 -15.102 31.24 -16.13328 0.0347118
B -1.16265 2.328 8.46852 -21.7564 12.2412 0.0332397
C -0.521127 3.9474 -4.20988 -4.72515 5.66 0.0445042

Blackman-Harris 1.36055 0.33004 -11.613 17.2908 -7.386368 0.00457847

Table D.2: Coefficients for polynomials fits of various 2D filters. All filters are normalized to the range [0, 1].

filter (radius) c0 c2 c4 c6 c8 εmax

Gaussian (2.3) 1.65951 -8.09529 16.6202 -16.1818 6.05909 0.00504176
Lanczos (2) 2.58949 -14.7969 30.5864 -27.9904 9.64687 0.00298654

Mitchell-Netravali 3.25801 -24.7342 65.8731 -73.6141 29.366 0.0131654
B -2.16456 19.7691 -56.6125 65.4189 -26.5495 0.013814
C -1.1118 16.1821 -56.1939 71.2608 -30.3158 0.0201162

Blackman-Harris 1.79798 -8.86188 17.5986 -16.2609 5.75158 0.00211148

Table D.3: Coefficients for polynomials fits of various 3D filters. All filters are normalized to the range [0, 1].

132

List of Figures

2.1 Dirac comb sampling . 14
2.2 Aliases overlap in frequency space . 15
2.3 Low pass filtering in frequency space . 17
2.4 Filter properties trade-off . 18
2.5 Ideal separable and radial filter in two dimensions 19
2.6 Comparison of radial and separable filters 20
2.7 Filter convolution evaluation categories . 21
2.8 GPU hardware architecture . 28

3.1 Cost function illustration . 42
3.2 Local surface instability . 43
3.3 Rendering pipeline of CSR . 47
3.4 Silhouette rendering . 48
3.5 Visual illustration of the CSR pipeline . 50
3.6 Result on abdominal aorta bifurcation . 51
3.7 Result on cross-over bypass . 53
3.8 Result on cervical vessels . 54
3.9 CSR domain expert evaluation . 55

4.1 Polyhedron-sphere intersection . 60
4.2 Polygon-circle intersection and integration domains in two dimensions . . . 61
4.3 Integration domains in three dimensions . 63
4.4 Minkowski sum of two-dimensional shapes 66
4.5 Comparison of prefiltering and supersampling on a zone plate in two dimensions 66
4.6 Results on sea urchin model . 67
4.7 Results on extruded zone plate patterns . 68

5.1 Analytic visibility overview . 74
5.2 Edge intersection example . 77
5.3 Hidden-line-elimination example . 79
5.4 Boundary completion example . 82
5.5 Results on various scenes . 87
5.6 Comparison of prefiltering and supersampling with various sample counts . 91

135

6.1 Illustration of supersampling and prefiltering 93
6.2 NSAA pipeline . 95
6.3 Conservative rasterization . 97
6.4 Results on a zone plate pattern . 100
6.5 Results on a log grid pattern . 101
6.6 Filter comparison . 102
6.7 Results on a torus model . 105

136

List of Tables

1.1 Conceptual comparison of anti-aliasing strategies 5

3.1 Conceptual comparison of reformation techniques 35
3.2 CSR timings . 52

4.1 Analytic anti-aliasing timings . 69

5.1 Bin size overview . 86
5.2 Detailed analytic visibility timings . 88
5.3 Analytic visibility timings for various scenes 90

D.1 Filter pre-integrations . 131
D.2 Two-dimensional filter coefficients . 132
D.3 Three-dimensional filter coefficients . 132

137

List of Algorithms

1 Edge intersection . 76
2 Hidden-line elimination . 78
3 Boundary completion . 80
4 Chunked parallel scan. 84
5 Analytic filter convolution . 85

139

Acronyms

AMD Advanced Micro Devices. 26

API Application Programming Interface. 8, 26, 83, 99

CPR Curved Planar Reformation (Kanitsar et al. 2002). 33–36, 38, 39, 113, 114

CPU Central Processing Unit. 24, 27, 29, 49, 83, 86

CR Centerline Reformation (Mistelbauer et al. 2012). 33–35, 38, 52–57, 113, 114

CREW Concurrent Read Exclusive Write. 25

CSAA Coverage Sampling Anti-Aliasing (Young 2006). 25, 102, 103

CSR Curved Surface Reformation. 34–36, 38, 46, 47, 49, 52–57, 113, 114

CTA Computed Tomography Angiography. 33, 53, 54, 56

CUDA Compute Unified Device Architecture (Nickolls et al. 2008). 8, 38, 49, 64, 65,
82, 83, 85, 86, 99

DOF Depth of Field. 22, 25

DSA Digital Subtraction Angiography. 33

DVR Direct Volume Rendering. 35–37, 54

FWHM full width at half maximum. 46

GIF Graphics Interchange Format. 3

GPGPU General-Purpose Computing on Graphics Processing Units. 26, 27, 66, 96, 99,
108

GPU Graphics Processing Unit. 7, 8, 13, 25–29, 38, 49, 64–66, 75, 82, 83, 85, 86, 89, 90,
96, 108

143

GVD Generalized Voronoi Diagram. 6, 107

JPEG Joint Photographics Experts Group. 3

LOD Level of Detail. 5, 24, 34, 43–46, 49, 50, 52, 54, 56, 88, 89, 107

MIDA Maximum Intensity Difference Accumulation (Bruckner and Gröller 2009). 49,
52–54

MIP Maximum Intensity Projection. 36, 37

MLAA Morphological Anti-Aliasing (Reshetov 2009). 25

mpCPR Multipath Curved Planar Reformation. 35, 36, 38, 39, 52–57, 113

MRA Magnetic Resonance Angiography. 33

MSAA Multisample Anti-Aliasing. 25, 94, 103

NSAA Non-Sampled Anti-Aliasing. 94, 95, 100, 101

OpenGL Open Graphics Library. 26, 49, 103

PE Processing Element. 27, 29

PNG Portable Network Graphics. 3

PRAM Parallel Random-Access Machine. 25

SIMD Single Instruction Multiple Data. 7, 8, 26–30, 65, 73, 76, 79, 82, 83, 85, 90

SMAA Enhanced Subpixel Morphological Anti-Aliasing (Jimenez et al. 2012). 103

SPMD Single Program Multiple Data. 27

SSAA Supersample Anti-Aliasing. 22, 94

144

Bibliography

Akeley, K. (1993). „Reality Engine graphics“. In: Proceedings of the 20th annual conference
on Computer graphics and interactive techniques. SIGGRAPH ’93. Anaheim, CA: ACM,
pp. 109–116. isbn: 0-89791-601-8. doi: 10.1145/166117.166131 (cit. on pp. 25–26).

Appel, A. (1967). „The notion of quantitative invisibility and the machine rendering of solids“.
In: Proceedings of the 1967 22nd National Conference. ACM ’67, pp. 387–393. doi: 10.
1145/800196.806007 (cit. on pp. 24, 76, 78).

Appel, A., F. J. Rohlf, and A. J. Stein (1979). „The haloed line effect for hidden line
elimination“. In: Proceedings of the 6th annual conference on Computer graphics and interactive
techniques. SIGGRAPH ’79, pp. 151–157. doi: 10.1145/800249.807437 (cit. on p. 24).

Auzinger, T., M. Guthe, and S. Jeschke (2012). „Analytic Anti-Aliasing of Linear Functions
on Polytopes“. In: Computer Graphics Forum 31.2pt1, pp. 335–344. issn: 0167-7055. doi:
10.1111/j.1467-8659.2012.03012.x (cit. on pp. 7, 75).

Auzinger, T., G. Mistelbauer, I. Baclija, R. Schernthaner, A. Kochl, M. Wimmer,
M. E. Groller, and S. Bruckner (2013). „Vessel Visualization using Curved Surface
Reformation“. In: IEEE Transactions on Visualization and Computer Graphics 19.12, pp. 2858–
2867. issn: 1077-2626. doi: 10.1109/tvcg.2013.215 (cit. on p. 6).

Auzinger, T., P. Musialski, R. Preiner, and M. Wimmer (2013). „Non-Sampled Anti-
Aliasing“. In: Vision, Modeling & Visualization. Ed. by M. Bronstein, J. Favre, and
K. Hormann. VMV ’13. The Eurographics Association, pp. 169–176. doi: 10.2312/PE.
VMV.VMV13.169-176 (cit. on p. 7).

Auzinger, T., M. Wimmer, and S. Jeschke (2013). „Analytic Visibility on the GPU“. In:
Computer Graphics Forum 32.2pt4, pp. 409–418. issn: 0167-7055. doi: 10.1111/cgf.12061
(cit. on p. 7).

Balsa Rodríguez, M., E. Gobbetti, J. Iglesias Guitián, M. Makhinya, F. Marton,
R. Pajarola, and S. Suter (2014). „State-of-the-Art in Compressed GPU-Based Direct
Volume Rendering“. In: Computer Graphics Forum 33.6, pp. 77–100. issn: 1467-8659. doi:
10.1111/cgf.12280 (cit. on p. 27).

Barringer, R. and T. Akenine-Möller (2013). „A4: Asynchronous Adaptive Anti-aliasing
Using Shared Memory“. In: ACM Trans. Graph. 32.4, 100:1–100:10. issn: 0730-0301. doi:
10.1145/2461912.2462015 (cit. on p. 109).

Birkeland, Å., S. Bruckner, A. Brambilla, and I. Viola (2012). „Illustrative Membrane
Clipping“. In: Computer Graphics Forum 31.3, pp. 905–914. doi: 10.1111/j.1467-
8659.2012.03083.x (cit. on p. 37).

147

http://dx.doi.org/10.1145/166117.166131
http://dx.doi.org/10.1145/800196.806007
http://dx.doi.org/10.1145/800196.806007
http://dx.doi.org/10.1145/800249.807437
http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x
http://dx.doi.org/10.1109/tvcg.2013.215
http://dx.doi.org/10.2312/PE.VMV.VMV13.169-176
http://dx.doi.org/10.2312/PE.VMV.VMV13.169-176
http://dx.doi.org/10.1111/cgf.12061
http://dx.doi.org/10.1111/cgf.12280
http://dx.doi.org/10.1145/2461912.2462015
http://dx.doi.org/10.1111/j.1467-8659.2012.03083.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03083.x

Blinn, J. F. (1989). „Jim Blinn’s corner - Return of the Jaggy (high frequency filtering)“. In:
IEEE Comput. Grap. Appl. 9.2, pp. 82–89. issn: 0272-1716. doi: 10.1109/38.19054
(cit. on p. 18).

Bracewell, R. N. (2000). The Fourier Transform and Its Applications. 3rd ed. Electrical
engineering series. McGraw Hill. isbn: 9780073039381. doi: 10.1036/0073039381 (cit. on
p. 17).

Bruckner, S. and M. E. Gröller (2009). „Instant Volume Visualization using Maximum
Intensity Difference Accumulation“. In: Proceedings of the 11th Eurographics / IEEE - VGTC
conference on Visualization. EuroVis ’09. Eurographics Association, pp. 775–782. doi:
10.1111/j.1467-8659.2009.01474.x (cit. on pp. 49, 144).

Buades, A., B. Coll, and J.-M. Morel (2005). „A Non-Local Algorithm for Image Denoising“.
In: Computer Vision and Pattern Recognition. Vol. 2. CVPR ’05. Institute of Electrical &
Electronics Engineers (IEEE), pp. 60–65. isbn: http://id.crossref.org/isbn/0-7695-2372-2.
doi: 10.1109/cvpr.2005.38 (cit. on p. 18).

Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan
(2004). „Brook for GPUs: Stream Computing on Graphics Hardware“. In: ACM SIGGRAPH
2004 Papers. SIGGRAPH ’04. Los Angeles, California: ACM, pp. 777–786. doi: 10.1145/
1186562.1015800 (cit. on p. 26).

Burns, M. and A. Finkelstein (2008). „Adaptive cutaways for comprehensible rendering of
polygonal scenes“. In: ACM Trans. Graph. 27.5, 154:1–154:7. doi: 10.1145/1409060.
1409107 (cit. on p. 36).

Burns, M., M. Haidacher, W. Wein, I. Viola, and M. E. Gröller (2007). „Feature
Emphasis and Contextual Cutaways for Multimodal Medical Visualization“. In: Proceedings
of Eurographics / IEEE VGTC Symposium on Visualization. Ed. by K. Museth, T. Moeller,
and A. Ynnerman. EuroVis ’07. Eurographics Association, pp. 275–282. isbn: 978-3-905673-
45-6. doi: 10.2312/VisSym/EuroVis07/275-282 (cit. on p. 36).

Calatrava Moreno, M. d. C. and T. Auzinger (2013). „General-Purpose Graphics Processing
Units in Service-Oriented Architectures“. In: 2013 IEEE 6th International Conference on
Service-Oriented Computing and Applications. SOCA ’13. IEEE, pp. 260–267. isbn:
978-1-4799-2701-2. doi: 10.1109/soca.2013.15 (cit. on pp. 26–28).

Candes, E. J., J. Romberg, and T. Tao (2006). „Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information“. In: IEEE Trans. Inform.
Theory 52.2, pp. 489–509. issn: 0018-9448. doi: 10.1109/tit.2005.862083 (cit. on
p. 16).

Catmull, E. (1978). „A hidden-surface algorithm with anti-aliasing“. In: Proceedings of the 5th
annual conference on Computer graphics and interactive techniques. SIGGRAPH ’78. New
York, NY, USA: ACM, pp. 6–11. doi: 10.1145/800248.807360 (cit. on pp. 23–24).

— (1984). „An analytic visible surface algorithm for independent pixel processing“. In: Proceedings
of the 11th annual conference on Computer graphics and interactive techniques. SIGGRAPH
’84. New York, NY, USA: ACM, pp. 109–115. isbn: 0-89791-138-5. doi: 10.1145/800031.
808586 (cit. on pp. 23–24).

Chajdas, M. G., M. McGuire, and D. Luebke (2011). „Subpixel reconstruction antialiasing
for deferred shading“. In: Proceedings of the 2011 Symposium on Interactive 3D Graphics
and Games. I3D ’11. San Francisco, California: ACM, pp. 15–22. isbn: 978-1-4503-0565-5.
doi: 10.1145/1944745.1944748 (cit. on p. 25).

148

http://dx.doi.org/10.1109/38.19054
http://dx.doi.org/10.1036/0073039381
http://dx.doi.org/10.1111/j.1467-8659.2009.01474.x
http://dx.doi.org/10.1109/cvpr.2005.38
http://dx.doi.org/10.1145/1186562.1015800
http://dx.doi.org/10.1145/1186562.1015800
http://dx.doi.org/10.1145/1409060.1409107
http://dx.doi.org/10.1145/1409060.1409107
http://dx.doi.org/10.2312/VisSym/EuroVis07/275-282
http://dx.doi.org/10.1109/soca.2013.15
http://dx.doi.org/10.1109/tit.2005.862083
http://dx.doi.org/10.1145/800248.807360
http://dx.doi.org/10.1145/800031.808586
http://dx.doi.org/10.1145/800031.808586
http://dx.doi.org/10.1145/1944745.1944748

Chang, P. and R. Jain (1981). „A multi-processor system for hidden-surface-removal“. In:
SIGGRAPH Computer Graphics 15.4, pp. 405–436. doi: 10.1145/988428.988434 (cit. on
p. 24).

Chuon, C., S. Guha, P. Janecek, and N. D. C. Song (2011). „Simplipoly: Curvature-Based
Polygonal Curve Simplification“. In: International Journal of Computational Geometry &
Applications 21.4, pp. 417–429. doi: 10.1142/S0218195911003743 (cit. on pp. 37, 45).

Clarberg, P. and J. Munkberg (2014). „Deep shading buffers on commodity GPUs“. In:
ACM Transactions on Graphics 33.6, pp. 1–12. issn: 0730-0301. doi: 10.1145/2661229.
2661245 (cit. on p. 25).

Clarberg, P., R. Toth, J. Hasselgren, J. Nilsson, and T. Akenine-Möller (2014).
„AMFS: Adaptive Multi-Frequency Shading for Future Graphics Processors“. In: ACM
Transactions on Graphics 33.4, pp. 1–12. issn: 0730-0301. doi: 10.1145/2601097.2601214
(cit. on p. 25).

Correa, C., P. Lindstrom, and P.-T. Bremer (2011). „Topological Spines: A Structure-
preserving Visual Representation of Scalar Fields“. In: IEEE Transactions on Visualization
and Computer Graphics 17.12, pp. 1842–1851. doi: 10.1109/TVCG.2011.244 (cit. on
p. 57).

Crow, F. C. (1977). „The aliasing problem in computer-generated shaded images“. In: Commun.
ACM 20 (11), pp. 799–805. issn: 0001-0782. doi: 10.1145/359863.359869 (cit. on
pp. 23, 94).

Dachille, F. and A. E. Kaufman (2000). „Incremental Triangle Voxelization“. In: Proceedings
of the Graphics Interface 2000 Conference. Ed. by S. Fels and P. Poulin. GI ’00. Canadian
Human-Computer Communications Society, pp. 205–212. isbn: 0-9695338-9-6 (cit. on p. 69).

Darema, F., D. George, V. Norton, and G. Pfister (1988). „A single-program-multiple-data
computational model for EPEX/FORTRAN“. In: Parallel Computing 7.1, pp. 11–24. issn:
0167-8191. doi: 10.1016/0167-8191(88)90094-4 (cit. on p. 27).

DeCarlo, D., A. Finkelstein, S. Rusinkiewicz, and A. Santella (2003). „Suggestive
contours for conveying shape“. In: ACM Transactions on Graphics 22.3, pp. 848–855. doi:
10.1145/1201775.882354 (cit. on p. 36).

Deering, M., S. Winner, B. Schediwy, C. Duffy, and N. Hunt (1988). „The triangle
processor and normal vector shader: a VLSI system for high performance graphics“. In:
Proceedings of the 15th annual conference on Computer graphics and interactive techniques.
SIGGRAPH ’88. New York, NY, USA: ACM, pp. 21–30. isbn: 0-89791-275-6. doi:
10.1145/54852.378468 (cit. on p. 25).

Dévai, F. (2011). „An optimal hidden-surface algorithm and its parallelization“. In: Proceedings
of the 2011 International Conference on Computational Science and its Applications. ICCSA
’11. Springer, pp. 17–29. doi: 10.1007/978-3-642-21931-3_2 (cit. on pp. 24, 73, 75,
78).

Diepstraten, J., D. Weiskopf, and T. Ertl (2003). „Interactive Cutaway Illustrations“. In:
Computer Graphics Forum 22.3, pp. 523–532. doi: 10.1111/1467-8659.t01-3-00700
(cit. on p. 36).

Douglas, D. H. and T. K. Peucker (1973). „Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature“. In: Cartographica 10.2,
pp. 112–122. doi: 10.3138/FM57-6770-U75U-7727 (cit. on p. 37).

149

http://dx.doi.org/10.1145/988428.988434
http://dx.doi.org/10.1142/S0218195911003743
http://dx.doi.org/10.1145/2661229.2661245
http://dx.doi.org/10.1145/2661229.2661245
http://dx.doi.org/10.1145/2601097.2601214
http://dx.doi.org/10.1109/TVCG.2011.244
http://dx.doi.org/10.1145/359863.359869
http://dx.doi.org/10.1016/0167-8191(88)90094-4
http://dx.doi.org/10.1145/1201775.882354
http://dx.doi.org/10.1145/54852.378468
http://dx.doi.org/10.1007/978-3-642-21931-3_2
http://dx.doi.org/10.1111/1467-8659.t01-3-00700
http://dx.doi.org/10.3138/FM57-6770-U75U-7727

Duchon, C. E. (1979). „Lanczos Filtering in One and Two Dimensions“. In: Journal of Applied
Meteorology 18 (8), pp. 1016–1022 (cit. on p. 17).

Duff, T. (1989). „Polygon scan conversion by exact convolution“. In: Raster Imaging and Digital
Typography. Ed. by J. André and R. D. Hersch. Vol. 1. Cambridge University Press,
pp. 154–168 (cit. on pp. 23, 59).

Durand, F. (2000). „A Multidisciplinary Survey of Visibility“. In: ACM SIGGRAPH Courses.
SIGGRAPH ’00. ACM (cit. on p. 24).

Ebeida, M. S., A. Patney, S. A. Mitchell, K. R. Dalbey, A. A. Davidson, and J. D.
Owens (2014). „k-d Darts: Sampling by k-dimensional flat searches“. In: ACM Transactions
on Graphics 33.1, pp. 1–16. issn: 0730-0301. doi: 10.1145/2522528 (cit. on p. 25).

Elber, G. and E. Cohen (1990). „Hidden curve removal for free form surfaces“. In: Proceedings
of the 17th annual conference on Computer graphics and interactive techniques. SIGGRAPH
’90. Association for Computing Machinery (ACM), pp. 95–104. isbn: 0201509334. doi:
10.1145/97879.97890 (cit. on p. 24).

Everts, M. H., H. Bekker, J. B. Roerdink, and T. Isenberg (2009). „Depth-Dependent
Halos: Illustrative Rendering of Dense Line Data“. In: IEEE Transactions on Visualization and
Computer Graphics 15.6, pp. 1299–1306. issn: 1077-2626. doi: 10.1109/TVCG.2009.138
(cit. on p. 41).

Feibush, E. A., M. Levoy, and R. L. Cook (1980). „Synthetic texturing using digital filters“.
In: Proceedings of the 7th annual conference on Computer graphics and interactive techniques.
SIGGRAPH ’80. Seattle, Washington, United States: ACM, pp. 294–301. isbn: 0-89791-021-4.
doi: 10.1145/800250.807507 (cit. on p. 23).

Flynn, M. J. (1972). „Some Computer Organizations and Their Effectiveness“. In: IEEE Trans.
Comput. 21.9, pp. 948–960. issn: 0018-9340. doi: 10.1109/TC.1972.5009071 (cit. on
p. 27).

Frankel, A., D. Nussbaum, and J.-R. Sack (2004). „Floating-Point Filter for the Line
Intersection Algorithm“. In: Geographic Information Science. Ed. by M. J. Egenhofer, C.
Freksa, and H. J. Miller. Vol. 3234. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 94–105. isbn: 978-3-540-30231-5. doi: 10.1007/978-3-540-30231-5_7
(cit. on p. 77).

Franklin, W. R. (1980). „A linear time exact hidden surface algorithm“. In: Proceedings of
the 7th annual conference on Computer graphics and interactive techniques. SIGGRAPH ’80,
pp. 117–123. doi: 10.1145/800250.807480 (cit. on p. 24).

Galimberti, R. (1969). „An algorithm for hidden line elimination“. In: Communications of the
ACM 12.4, pp. 206–211. doi: 10.1145/362912.362921 (cit. on p. 24).

Ganacim, F., R. S. Lima, L. H. de Figueiredo, and D. Nehab (2014). „Massively-parallel
vector graphics“. In: ACM Transactions on Graphics 33.6, pp. 1–14. issn: 0730-0301. doi:
10.1145/2661229.2661274 (cit. on p. 25).

Grant, C. W. (1985). „Integrated analytic spatial and temporal anti-aliasing for polyhedra in
4-space“. In: Proceedings of the 12th annual conference on Computer graphics and interactive
techniques. SIGGRAPH ’85. New York, NY, USA: ACM, pp. 79–84. isbn: 0-89791-166-0.
doi: 10.1145/325334.325184 (cit. on p. 23).

Gribel, C. J., R. Barringer, and T. Akenine-Möller (2011). „High-quality Spatio-temporal
Rendering Using Semi-analytical Visibility“. In: ACM Trans. Graph. 30.4, 54:1–54:12. issn:
0730-0301. doi: 10.1145/2010324.1964949 (cit. on p. 25).

150

http://dx.doi.org/10.1145/2522528
http://dx.doi.org/10.1145/97879.97890
http://dx.doi.org/10.1109/TVCG.2009.138
http://dx.doi.org/10.1145/800250.807507
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1007/978-3-540-30231-5_7
http://dx.doi.org/10.1145/800250.807480
http://dx.doi.org/10.1145/362912.362921
http://dx.doi.org/10.1145/2661229.2661274
http://dx.doi.org/10.1145/325334.325184
http://dx.doi.org/10.1145/2010324.1964949

Gribel, C. J., M. Doggett, and T. Akenine-Möller (2010). „Analytical Motion Blur
Rasterization with Compression“. In: Proceedings of the Conference on High Performance
Graphics. Ed. by M. Doggett, S. Laine, and W. Hunt. HPG ’10. Eurographics Association,
pp. 163–172. isbn: 978-3-905674-26-2. doi: 10.2312/EGGH/HPG10/163-172 (cit. on
p. 25).

Gudmundsson, J., G. Narasimhan, and M. Smid (2007). „Distance-preserving approximations
of polygonal paths“. In: Computational Geometry 36.3, pp. 183–196. doi: 10.1016/j.
comgeo.2006.05.002 (cit. on p. 37).

Guenter, B. and J. Tumblin (1996). „Quadrature prefiltering for high quality antialiasing“. In:
ACM Trans. Graph. 15 (4), pp. 332–353. issn: 0730-0301. doi: 10.1145/234535.234540
(cit. on pp. 23, 62).

Gupta, N. and S. Sen (1998). „An improved output-size sensitive parallel algorithm for hidden-
surface removal for terrains“. In: Proceedings of the First Merged International Parallel
Processing Symposium and Symposium on Parallel and Distributed Processing. IPPS/SPDP
’98, pp. 215–219. doi: 10.1109/IPPS.1998.669913 (cit. on p. 24).

Gupta, S., R. F. Sproull, and I. E. Sutherland (1981). „A VLSI Architecture for Updating
Raster-scan Displays“. In: Proceedings of the 8th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’81. Dallas, Texas, USA: ACM, pp. 71–78. isbn:
0-89791-045-1. doi: 10.1145/800224.806791 (cit. on p. 26).

Hasselgren, J., T. Akenine-Möller, and L. Ohlsson (2005). „Conservative Rasterization“.
In: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation (Gpu Gems). Ed. by M. Pharr and R. Fernando. 1st ed. Vol. 2.
GPU Gems. Addison-Wesley Professional. Chap. 42, pp. 677–690. isbn: 0321335597 (cit. on
pp. 23, 97).

He, Y., Y. Gu, and K. Fatahalian (2014). „Extending the graphics pipeline with adaptive,
multi-rate shading“. In: ACM Transactions on Graphics 33.4, pp. 1–12. issn: 0730-0301. doi:
10.1145/2601097.2601105 (cit. on p. 25).

Hoberock, J. and N. Bell (2010). Thrust: A Parallel Template Library. Version 1.8.0 (cit. on
pp. 84, 96).

Hoff III, K. E., J. Keyser, M. Lin, D. Manocha, and T. Culver (1999). „Fast computation
of generalized Voronoi diagrams using graphics hardware“. In: Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’99. ACM
Press/Addison-Wesley Publishing Co., pp. 277–286. doi: 10.1145/311535.311567
(cit. on pp. 6, 52).

Hornung, C. (1982). „An approach to a calculation-minimized hidden line algorithm“. In:
Computers & Graphics 6.3, pp. 121–126. doi: 10.1016/0097-8493(82)90005-X (cit. on
p. 24).

Huang, J., R. Yagel, V. Filippov, and Y. Kurzion (1998). „An accurate method for voxelizing
polygon meshes“. In: Proceedings of the 1998 IEEE symposium on Volume visualization.
VVS ’98. Research Triangle Park, North Carolina, United States: ACM, pp. 119–126. isbn:
1-58113-105-4. doi: 10.1145/288126.288181 (cit. on p. 23).

Imai, H. and M. Iri (1986). „Computational-geometric methods for polygonal approximations
of a curve“. In: Computer Vision, Graphics, and Image Processing 36.1, pp. 31–41. doi:
10.1016/S0734-189X(86)80027-5 (cit. on p. 37).

151

http://dx.doi.org/10.2312/EGGH/HPG10/163-172
http://dx.doi.org/10.1016/j.comgeo.2006.05.002
http://dx.doi.org/10.1016/j.comgeo.2006.05.002
http://dx.doi.org/10.1145/234535.234540
http://dx.doi.org/10.1109/IPPS.1998.669913
http://dx.doi.org/10.1145/800224.806791
http://dx.doi.org/10.1145/2601097.2601105
http://dx.doi.org/10.1145/311535.311567
http://dx.doi.org/10.1016/0097-8493(82)90005-X
http://dx.doi.org/10.1145/288126.288181
http://dx.doi.org/10.1016/S0734-189X(86)80027-5

Imai, H. and M. Iri (1988). „Computational Morphology“. In: North-Holland. Chap. Polygonal
Approximations of a Curve – Formulations and Algorithms, pp. 87–95 (cit. on p. 37).

James, J. (1995). A student’s guide to Fourier transforms: with applications in physics and
engineering. New York: Cambridge University Press. isbn: 9780521468299 (cit. on p. 19).

Jankun-Kelly, M., M. Jiang, D. Thompson, and R. Machiraju (2006). „Vortex Visualization
for Practical Engineering Applications“. In: IEEE Transactions on Visualization and Computer
Graphics 12.5, pp. 957–964. doi: 10.1109/TVCG.2006.201 (cit. on p. 57).

Jiang, X.-d., B. Sheng, W.-y. Lin, W. Lu, and L.-z. Ma (2014). „Image anti-aliasing
techniques for Internet visual media processing: a review“. In: Journal of Zhejiang University
SCIENCE C 15.9, pp. 717–728. issn: 1869-1951. doi: 10.1631/jzus.C1400100 (cit. on
p. 23).

Jianu, R., C. Demiralp, and D. H. Laidlaw (2012). „Exploring Brain Connectivity with
Two-Dimensional Neural Maps“. In: IEEE Transactions on Visualization and Computer
Graphics 18.6, pp. 978–987. issn: 1077-2626. doi: 10.1109/TVCG.2011.82 (cit. on p. 35).

Jimenez, J., J. I. Echevarria, T. Sousa, and D. Gutierrez (2012). „SMAA: Enhanced
Subpixel Morphological Antialiasing“. In: Computer Graphics Forum 31.2pt1, pp. 355–364.
issn: 0167-7055. doi: 10.1111/j.1467-8659.2012.03014.x (cit. on pp. 25, 103, 144).

Jimenez, J., D. Gutierrez, J. Yang, A. Reshetov, P. Demoreuille, T. Berghoff, C.
Perthuis, H. Yu, M. McGuire, T. Lottes, H. Malan, E. Persson, D. Andreev, and
T. Sousa (2011). „Filtering approaches for real-time anti-aliasing“. In: ACM SIGGRAPH
2011 Courses. SIGGRAPH ’11. Vancouver, British Columbia, Canada: ACM, 6:1–6:329.
isbn: 978-1-4503-0967-7. doi: 10.1145/2037636.2037642 (cit. on p. 26).

Jones, M. W. (1996). „The production of volume data from triangular meshes using voxelisation“.
In: Computer Graphics Forum 15.5, pp. 311–318. doi: 10.1111/1467-8659.1550311
(cit. on p. 23).

Kajiya, J. and M. Ullner (1981). „Filtering high quality text for display on raster scan
devices“. In: ACM Trans. Graph. SIGGRAPH ’81. ACM, pp. 7–15. isbn: 0-89791-045-1.
doi: 10.1145/965161.806784 (cit. on p. 23).

Kanitsar, A., D. Fleischmann, R. Wegenkittl, P. Felkel, and M. E. Gröller (2002).
„CPR - Curved Planar Reformation“. In: Proceedings of IEEE Visualization. VIS ’02. IEEE,
pp. 37–44. doi: 10.1109/VISUAL.2002.1183754 (cit. on pp. 34, 143).

Kanitsar, A., D. Fleischmann, R. Wegenkittl, and M. E. Gröller (2006). „Diagnostic
Relevant Visualization of Vascular Structures“. In: Scientific Visualization: The Visual
Extraction of Knowledge from Data. Ed. by G.-P. Bonneau, T. Ertl, and G. Nielson.
Mathematics and Visualization. Springer Berlin Heidelberg, pp. 207–228. isbn: 978-3-540-
30790-7. doi: 10.1007/3-540-30790-7_13 (cit. on pp. 35, 38).

Kanitsar, A., D. Fleischmann, R. Wegenkittl, D. Sandner, P. Felkel, and M. E.
Gröller (2001). „Computed tomography angiography: a case study of peripheral vessel
investigation“. In: Proceedings of IEEE Visualization. VIS ’01. IEEE, pp. 477–593. doi:
10.1109/VISUAL.2001.964555 (cit. on p. 37).

Kanitsar, A., R. Wegenkittl, D. Fleischmann, and E. Gröller (2003). „Advanced Curved
Planar Reformation: Flattening of Vascular Structures“. In: Proceedings of IEEE Visualization.
VIS ’03. IEEE, pp. 43–50. doi: 10.1109/VISUAL.2003.1250353 (cit. on p. 35).

152

http://dx.doi.org/10.1109/TVCG.2006.201
http://dx.doi.org/10.1631/jzus.C1400100
http://dx.doi.org/10.1109/TVCG.2011.82
http://dx.doi.org/10.1111/j.1467-8659.2012.03014.x
http://dx.doi.org/10.1145/2037636.2037642
http://dx.doi.org/10.1111/1467-8659.1550311
http://dx.doi.org/10.1145/965161.806784
http://dx.doi.org/10.1109/VISUAL.2002.1183754
http://dx.doi.org/10.1007/3-540-30790-7_13
http://dx.doi.org/10.1109/VISUAL.2001.964555
http://dx.doi.org/10.1109/VISUAL.2003.1250353

Karras, T. and T. Aila (2013). „Fast Parallel Construction of High-quality Bounding Volume
Hierarchies“. In: Proceedings of the 5th High-Performance Graphics Conference. HPG ’13.
Anaheim, California: ACM, pp. 89–99. isbn: 978-1-4503-2135-8. doi: 10.1145/2492045.
2492055 (cit. on p. 27).

Kaufman, A. E. (1987). „Efficient algorithms for 3D scan-conversion of parametric curves,
surfaces, and volumes“. In: Proceedings of the 14th annual conference on Computer graphics
and interactive techniques. SIGGRAPH ’87. New York, NY, USA: ACM, pp. 171–179. isbn:
0-89791-227-6. doi: 10.1145/37401.37423 (cit. on p. 23).

Kenwright, D. N. and R. Haimes (1998). „Automatic Vortex Core Detection“. In: IEEE
Computer Graphics and Applications 18.4, pp. 70–74. doi: 10.1109/38.689668 (cit. on
p. 57).

Konrad-Verse, O., B. Preim, and A. Littmann (2004). „Virtual Resection with a Deformable
Cutting Plane“. In: Proceedings of Simulation und Visualisierung 2004, pp. 203–214 (cit. on
p. 37).

Křivánek, J., A. Keller, I. Georgiev, A. S. Kaplanyan, M. Fajardo, M. Meyer,
J.-D. Nahmias, O. Karlík, and J. Cañada (2014). „Recent advances in light transport
simulation“. In: ACM SIGGRAPH 2014 Courses. SIGGRAPH ’14. ACM, Article No. 17.
isbn: 9781450329620. doi: 10.1145/2614028.2615438 (cit. on p. 22).

Krüger, J. and R. Westermann (2003). „Linear Algebra Operators for GPU Implementation
of Numerical Algorithms“. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03. San Diego,
California: ACM, pp. 908–916. isbn: 1-58113-709-5. doi: 10.1145/1201775.882363
(cit. on p. 26).

Laine, S. and T. Karras (2011). „High-performance Software Rasterization on GPUs“. In:
Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics. HPG ’11.
Vancouver, British Columbia, Canada: ACM, pp. 79–88. isbn: 978-1-4503-0896-0. doi:
10.1145/2018323.2018337 (cit. on p. 26).

Lampe, O. D., C. Correa, K.-L. Ma, and H. Hauser (2009). „Curve-Centric Volume
Reformation for Comparative Visualization“. In: IEEE Transactions on Visualization and
Computer Graphics 15.6, pp. 1235–1242. doi: 10.1109/TVCG.2009.136 (cit. on p. 35).

Lee, N. and M. Rasch (2006). „Tangential curved planar reformation for topological and
orientation invariant visualization of vascular trees“. In: Engineering in Medicine and Biology
Society, 28th Annual International Conference of the IEEE on. EMBS ’06. IEEE, pp. 1073–
1076. doi: 10.1109/IEMBS.2006.259518 (cit. on p. 35).

Levinthal, A., P. Hanrahan, M. Paquette, and J. Lawson (1987). „Parallel Computers
for Graphics Applications“. In: Proceedings of the Second International Conference on
Architectual Support for Programming Languages and Operating Systems. ASPLOS II. Palo
Alto, California, USA: IEEE Computer Society Press, pp. 193–198. isbn: 0-8186-0805-6. doi:
10.1145/36206.36202 (cit. on p. 26).

Levinthal, A. and T. Porter (1984). „Chap - a SIMD Graphics Processor“. In: Proceedings of
the 11th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’84. New York, NY, USA: ACM, pp. 77–82. isbn: 0-89791-138-5. doi: 10.1145/800031.
808581 (cit. on p. 26).

Li, W., L. Ritter, M. Agrawala, B. Curless, and D. Salesin (2007). „Interactive cutaway
illustrations of complex 3D models“. In: ACM Trans. Graph. 26.3, 31:1–31:11. doi: 10.
1145/1276377.1276416 (cit. on p. 36).

153

http://dx.doi.org/10.1145/2492045.2492055
http://dx.doi.org/10.1145/2492045.2492055
http://dx.doi.org/10.1145/37401.37423
http://dx.doi.org/10.1109/38.689668
http://dx.doi.org/10.1145/2614028.2615438
http://dx.doi.org/10.1145/1201775.882363
http://dx.doi.org/10.1145/2018323.2018337
http://dx.doi.org/10.1109/TVCG.2009.136
http://dx.doi.org/10.1109/IEMBS.2006.259518
http://dx.doi.org/10.1145/36206.36202
http://dx.doi.org/10.1145/800031.808581
http://dx.doi.org/10.1145/800031.808581
http://dx.doi.org/10.1145/1276377.1276416
http://dx.doi.org/10.1145/1276377.1276416

Lidal, E. M., H. Hauser, and I. Viola (2012). „Design principles for cutaway visualization of
geological models“. In: Proceedings of the 28th Spring Conference on Computer Graphics.
SCCG ’12. ACM, pp. 47–54. doi: 10.1145/2448531.2448537 (cit. on p. 36).

Liktor, G. and C. Dachsbacher (2012). „Decoupled deferred shading for hardware rasteri-
zation“. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games. I3D ’12. ACM, pp. 143–150. isbn: 9781450311946. doi: 10.1145/2159616.
2159640 (cit. on p. 25).

Lin, Z., H.-T. Chen, H.-Y. Shum, and J. Wang (2005). „Prefiltering Two-Dimensional Polygons
without Clipping“. In: Journal of Graphics, GPU, and Game Tools 10.1, pp. 17–26. issn:
2151-2272. doi: 10.1080/2151237x.2005.10129189 (cit. on p. 23).

Lindholm, E., M. J. Kilgard, and H. Moreton (2001). „A User-programmable Vertex
Engine“. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’01. New York, NY, USA: ACM, pp. 149–158. isbn: 1-58113-374-X.
doi: 10.1145/383259.383274 (cit. on p. 26).

Lottes, T. (2009). FXAA-Whitepaper. Tech. rep. NVIDIA Corporation (cit. on p. 25).
Manson, J. and S. Schaefer (2011). „Wavelet Rasterization“. In: Computer Graphics Forum

30.2, pp. 395–404. issn: 0167-7055. doi: 10.1111/j.1467-8659.2011.01887.x (cit. on
pp. 24, 75).

— (2013). „Analytic Rasterization of Curves with Polynomial Filters“. In: Computer Graphics
Forum 32.2pt4, pp. 499–507. issn: 0167-7055. doi: 10.1111/cgf.12070 (cit. on pp. 24,
98, 109).

Mark, W. R., R. S. Glanville, K. Akeley, and M. J. Kilgard (2003). „Cg: A System
for Programming Graphics Hardware in a C-like Language“. In: ACM SIGGRAPH 2003
Papers. SIGGRAPH ’03. San Diego, California: ACM, pp. 896–907. isbn: 1-58113-709-5.
doi: 10.1145/1201775.882362 (cit. on p. 26).

McCool, M. D. (1995). „Analytic antialiasing with prism splines“. In: ACM Trans. Graph.
SIGGRAPH ’95. ACM, pp. 429–436. isbn: 0-89791-701-4. doi: 10.1145/218380.218499
(cit. on p. 23).

McGuffin, M. J., L. Tancau, and R. Balakrishnan (2003). „Using Deformations for Browsing
Volumetric Data“. In: Proceedings of IEEE Visualization. VIS ’03. IEEE, pp. 401–408. doi:
10.1109/VISUAL.2003.1250400 (cit. on p. 36).

McGuire, M., E. Enderton, P. Shirley, and D. Luebke (2010). „Real-time Stochastic
Rasterization on Conventional GPU Architectures“. In: Proceedings of the Conference on High
Performance Graphics. Ed. by M. Doggett, S. Laine, and W. Hunt. HPG ’10. Eurographics
Association, pp. 173–182. isbn: 978-3-905674-26-2. doi: 10.2312/EGGH/HPG10/173-182
(cit. on p. 25).

McGuire, M., P. Hennessy, M. Bukowski, and B. Osman (2012). „A reconstruction
filter for plausible motion blur“. In: Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. I3D ’12. ACM, pp. 135–142. isbn: 9781450311946. doi:
10.1145/2159616.2159639 (cit. on p. 25).

154

http://dx.doi.org/10.1145/2448531.2448537
http://dx.doi.org/10.1145/2159616.2159640
http://dx.doi.org/10.1145/2159616.2159640
http://dx.doi.org/10.1080/2151237x.2005.10129189
http://dx.doi.org/10.1145/383259.383274
http://dx.doi.org/10.1111/j.1467-8659.2011.01887.x
http://dx.doi.org/10.1111/cgf.12070
http://dx.doi.org/10.1145/1201775.882362
http://dx.doi.org/10.1145/218380.218499
http://dx.doi.org/10.1109/VISUAL.2003.1250400
http://dx.doi.org/10.2312/EGGH/HPG10/173-182
http://dx.doi.org/10.1145/2159616.2159639

McInerney, T. and P. Crawford (2010). „RibbonView: interactive context-preserving cutaways
of anatomical surface meshes“. In: Proceedings of the 6th International Symposium on Advances
in Visual Computing. Ed. by G. Bebis, R. Boyle, B. Parvin, D. Koracin, R. Chung,
R. Hammound, M. Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao, and
L. Avila. Vol. 2. ISVC ’10, pp. 533–544. isbn: 78-3-642-17274-8. doi: 10.1007/978-3-
642-17274-8_52 (cit. on p. 36).

McKenna, M. (1987). „Worst-case optimal hidden-surface removal“. In: ACM Trans. Graph.
6.1, pp. 19–28. doi: 10.1145/27625.27627 (cit. on p. 24).

Merrill, D. and A. Grimshaw (2011). „High Performance and Scalable Radix Sorting: A case
study of implementing dynamic parallelism for GPU computing“. In: Parallel Processing
Letters 21.02, pp. 245–272. doi: 10.1142/S0129626411000187 (cit. on p. 84).

Mistelbauer, G. (2013). „Smart Interactive Vessel Visualization in Radiology“. PhD thesis.
Vienna University of Technology (cit. on p. 34).

Mistelbauer, G., A. Morar, A. Varchola, R. Schernthaner, I. Baclija, A. Köchl,
A. Kanitsar, S. Bruckner, and M. E. Gröller (2013). „Vessel Visualization using
Curvicircular Feature Aggregation“. In: Computer Graphics Forum 32.3, pp. 231–240. doi:
10.1111/cgf.12110 (cit. on pp. 35, 57).

Mistelbauer, G., A. Varchola, H. Bouzari, J. Starinsky, A. Köchl, R. Schernthaner,
D. Fleischmann, M. E. Gröller, and M. Srámek (2012). „Centerline reformations of
complex vascular structures“. In: Pacific Visualization Symposium, 2012 IEEE. PacificVis
’12. IEEE, pp. 233–240. doi: 10.1109/PacificVis.2012.6183596 (cit. on pp. 35, 38,
143).

Mitchell, D. P. and A. N. Netravali (1988). „Reconstruction filters in computer-graphics“. In:
Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’88. ACM, pp. 221–228. isbn: 0-89791-275-6. doi: 10.1145/54852.378514
(cit. on pp. 18, 20, 23).

Mulmuley, K. (1989). „An efficient algorithm for hidden surface removal“. In: Proceedings of
the 16th annual conference on Computer graphics and interactive techniques. SIGGRAPH
’89. ACM, pp. 379–388. doi: 10.1145/74333.74372 (cit. on p. 24).

Nealen, A., M. Müller, R. Keiser, E. Boxerman, and M. Carlson (2006). „Physically
Based Deformable Models in Computer Graphics“. In: Computer Graphics Forum 25.4,
pp. 809–836. doi: 10.1111/j.1467-8659.2006.01000.x (cit. on p. 37).

Nickolls, J., I. Buck, M. Garland, and K. Skadron (2008). „Scalable parallel programming
with CUDA“. In: Queue 6.2, p. 40. issn: 1542-7730. doi: 10.1145/1365490.1365500
(cit. on p. 143).

Nyquist, H. (2002). „Certain topics in telegraph transmission theory“. In: Proceedings of the
IEEE 90.2, pp. 280–305. issn: 0018-9219. doi: 10.1109/5.989875 (cit. on p. 16).

Pantaleoni, J. (2011a). „VoxelPipe: A Programmable Pipeline for 3D Voxelization“. In:
Proceedings of the 2011 ACM SIGGRAPH Symposium on High Performance Graphics. HPG
’11. ACM, pp. 99–106. isbn: 9781450308960. doi: 10.1145/2018323.2018339 (cit. on
pp. 23, 84).

— (2011b). „VoxelPipe: A Programmable Pipeline for 3D Voxelization“. In: Proceedings of the
ACM SIGGRAPH Symposium on High Performance Graphics. HPG ’11. Vancouver, British
Columbia, Canada: ACM, pp. 99–106. isbn: 978-1-4503-0896-0. doi: 10.1145/2018323.
2018339 (cit. on p. 27).

155

http://dx.doi.org/10.1007/978-3-642-17274-8_52
http://dx.doi.org/10.1007/978-3-642-17274-8_52
http://dx.doi.org/10.1145/27625.27627
http://dx.doi.org/10.1142/S0129626411000187
http://dx.doi.org/10.1111/cgf.12110
http://dx.doi.org/10.1109/PacificVis.2012.6183596
http://dx.doi.org/10.1145/54852.378514
http://dx.doi.org/10.1145/74333.74372
http://dx.doi.org/10.1111/j.1467-8659.2006.01000.x
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1109/5.989875
http://dx.doi.org/10.1145/2018323.2018339
http://dx.doi.org/10.1145/2018323.2018339
http://dx.doi.org/10.1145/2018323.2018339

Parker, S. G., H. Friedrich, D. Luebke, K. Morley, J. Bigler, J. Hoberock, D.
McAllister, A. Robison, A. Dietrich, G. Humphreys, M. McGuire, and M. Stich
(2013). „GPU Ray Tracing“. In: Commun. ACM 56.5, pp. 93–101. issn: 0001-0782. doi:
10.1145/2447976.2447997 (cit. on p. 26).

Petersen, D. P. and D. Middleton (1962). „Sampling and reconstruction of wave-number-
limited functions in N-dimensional euclidean spaces“. In: Information and Control 5.4,
pp. 279–323. issn: 0019-9958. doi: 10.1016/s0019-9958(62)90633-2 (cit. on p. 20).

Powell, D. and T. Abel (2014). „An exact general remeshing scheme applied to conservative
voxelization“. In: ArXiv e-prints. arXiv: 1412.4941 (cit. on p. 24).

Ragan-Kelley, J., J. Lehtinen, J. Chen, M. Doggett, and F. Durand (2011). „Decoupled
sampling for graphics pipelines“. In: ACM Trans. Graph. 30.3, 17:1–17:17. issn: 0730-0301.
doi: 10.1145/1966394.1966396 (cit. on p. 25).

Ramer, U. (1972). „An iterative procedure for the polygonal approximation of plane curves“.
In: Computer Graphics and Image Processing 1.3, pp. 244–256. doi: 10.1016/S0146-
664X(72)80017-0 (cit. on p. 37).

Randolph Franklin, W. and M. S. Kankanhalli (1990). „Parallel object-space hidden
surface removal“. In: Proceedings of the 17th annual conference on Computer graphics and
interactive techniques. SIGGRAPH ’90. ACM, pp. 87–94. doi: 10.1145/97879.97889
(cit. on p. 24).

Reif, J. H. and S. Sen (1988). „An efficient output-sensitive hidden surface removal algorithm
and its parallelization“. In: Proceedings of the fourth Annual Symposium on Computational
Geometry. SCG ’88, pp. 193–200. doi: 10.1145/73393.73413 (cit. on p. 24).

Reshetov, A. (2009). „Morphological antialiasing“. In: Proceedings of the Conference on
High Performance Graphics. HPG ’09. New Orleans, Louisiana: ACM, pp. 109–116. isbn:
978-1-60558-603-8. doi: 10.1145/1572769.1572787 (cit. on pp. 25, 144).

Roberts, L. G. (1963). „Machine Perception of Three-Dimensional Solids“. PhD thesis.
Massachusetts Institute of Technology (cit. on p. 24).

Roos, J. E., D. Fleischmann, A. Köchl, T. Rakshe, M. Straka, A. Napoli, A. Kanitsar,
M. Sramek, and E. Gröller (2007). „Multi-path Curved Planar Reformation (mpCPR) of
the Peripheral Arterial Tree in CT Angiography (CTA)“. In: Radiology 244.1, pp. 281–290.
doi: 10.1148/radiol.2441060976 (cit. on p. 35).

Rusinkiewicz, S., F. Cole, D. DeCarlo, and A. Finkelstein (2008). „Line drawings from
3D models“. In: ACM SIGGRAPH 2008 classes. SIGGRAPH ’08. ACM, 39:1–39:356. doi:
10.1145/1401132.1401188 (cit. on p. 24).

Sander, P. V., X. Gu, S. J. Gortler, H. Hoppe, and J. Snyder (2000). „Silhouette
clipping“. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’00. ACM Press, pp. 327–334. doi: 10.1145/344779.344935
(cit. on p. 36).

Saroul, L., O. Figueiredo, and R.-D. Hersch (2006). „Distance Preserving Flattening of
Surface Sections“. In: IEEE Transactions on Visualization and Computer Graphics 12.1,
pp. 26–35. doi: 10.1109/TVCG.2006.7 (cit. on p. 36).

Saroul, L., S. Gerlach, and R. D. Hersch (2003). „Exploring Curved Anatomic Structures
with Surface Sections“. In: Proceedings of IEEE Visualization. VIS ’03. IEEE, pp. 27–34.
doi: 10.1109/VISUAL.2003.1250351 (cit. on p. 36).

156

http://dx.doi.org/10.1145/2447976.2447997
http://dx.doi.org/10.1016/s0019-9958(62)90633-2
http://arxiv.org/abs/1412.4941
http://dx.doi.org/10.1145/1966394.1966396
http://dx.doi.org/10.1016/S0146-664X(72)80017-0
http://dx.doi.org/10.1016/S0146-664X(72)80017-0
http://dx.doi.org/10.1145/97879.97889
http://dx.doi.org/10.1145/73393.73413
http://dx.doi.org/10.1145/1572769.1572787
http://dx.doi.org/10.1148/radiol.2441060976
http://dx.doi.org/10.1145/1401132.1401188
http://dx.doi.org/10.1145/344779.344935
http://dx.doi.org/10.1109/TVCG.2006.7
http://dx.doi.org/10.1109/VISUAL.2003.1250351

Satish, N., M. Harris, and M. Garland (2009). „Designing Efficient Sorting Algorithms
for Manycore GPUs“. In: Proceedings of the 2009 IEEE International Symposium on Par-
allel&Distributed Processing. IPDPS ’09. Washington, DC, USA: IEEE Computer Society,
pp. 1–10. isbn: 978-1-4244-3751-1. doi: 10.1109/IPDPS.2009.5161005 (cit. on p. 26).

Satish, N., C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar,
and P. Dubey (2012). „Can Traditional Programming Bridge the Ninja Performance Gap
for Parallel Computing Applications?“ In: Proceedings of the 39th Annual International
Symposium on Computer Architecture. ISCA ’12. Portland, Oregon: IEEE Computer Society,
pp. 440–451. isbn: 978-1-4503-1642-2. doi: 10.1145/2366231.2337210 (cit. on p. 27).

Schreiber, W. F. and D. E. Troxel (1985). „Transformation Between Continuous and
Discrete Representations of Images: A Perceptual Approach“. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 7.2 (2), pp. 178–186. doi: 10.1109/TPAMI.
1985.4767642 (cit. on p. 23).

Schwartz, L. (1951–1957). Théorie des distributions. Vol. 1–2. Paris: Hermann (cit. on p. 14).
Sen, P. and S. Darabi (2010). „Compressive estimation for signal integration in rendering“. In:

Computer Graphics Forum 29.4, pp. 1355–1363. issn: 1467-8659. doi: 10.1111/j.1467-
8659.2010.01731.x (cit. on p. 16).

Sengupta, S., M. Harris, Y. Zhang, and J. D. Owens (2007). „Scan Primitives for GPU
Computing“. In: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware. Ed. by M. Segal and T. Aila. GH ’07. San Diego, California:
Eurographics Association, pp. 97–106. isbn: 978-1-59593-625-7. doi: 10.2312/EGGH/
EGGH07/097-106 (cit. on p. 26).

Shannon, C. E. (1998). „Communication In The Presence Of Noise“. In: Proceedings of the
IEEE 86.2, pp. 447–457. issn: 1558-2256. doi: 10.1109/jproc.1998.659497 (cit. on
p. 16).

Sharir, M. and M. H. Overmars (1992). „A simple output-sensitive algorithm for hidden
surface removal“. In: ACM Trans. Graph. 11.1, pp. 1–11. doi: 10.1145/102377.112141
(cit. on p. 24).

Sigg, S., R. Fuchs, R. Carnecky, and R. Peikert (2012). „Intelligent cutaway illustrations“.
In: Pacific Visualization Symposium (PacificVis), 2012 IEEE. IEEE, pp. 185–192. doi:
10.1109/PacificVis.2012.6183590 (cit. on p. 36).

Sobolev, S. L. (1936). „Méthode nouvelle à résoudre le problème de Cauchy pour les équations
linéaires hyperboliques normales.“ In: Matematiceskij sbornik 43.1, pp. 39–72 (cit. on p. 14).

Sramek, M. and A. E. Kaufman (1998). „Object voxelization by filtering“. In: IEEE Symposium
on Volume Visualization. doi: 10.1109/svv.1998.729592 (cit. on p. 23).

— (1999). „Alias-Free Voxelization of Geometric Objects“. In: IEEE Transactions on Visual-
ization and Computer Graphics 5 (3), pp. 251–267. issn: 1077-2626. doi: 10.1109/2945.
795216 (cit. on p. 23).

Straka, M., A. Köchl, M. Cervenansky, M. Sramek, D. Fleischmann, A. L. Cruz, and
E. Gröller (2004). „The VesselGlyph: Focus & Context Visualization in CT-Angiography“.
In: Proceedings of IEEE Visualization. VIS ’04. IEEE, pp. 385–392. doi: 10.1109/VISUAL.
2004.104 (cit. on pp. 36, 49).

Strichartz, R. S. (2003). A Guide to Distribution Theory and Fourier Transforms. World
Scientific Publishing Company. doi: 10.1142/5314 (cit. on p. 14).

157

http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1145/2366231.2337210
http://dx.doi.org/10.1109/TPAMI.1985.4767642
http://dx.doi.org/10.1109/TPAMI.1985.4767642
http://dx.doi.org/10.1111/j.1467-8659.2010.01731.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01731.x
http://dx.doi.org/10.2312/EGGH/EGGH07/097-106
http://dx.doi.org/10.2312/EGGH/EGGH07/097-106
http://dx.doi.org/10.1109/jproc.1998.659497
http://dx.doi.org/10.1145/102377.112141
http://dx.doi.org/10.1109/PacificVis.2012.6183590
http://dx.doi.org/10.1109/svv.1998.729592
http://dx.doi.org/10.1109/2945.795216
http://dx.doi.org/10.1109/2945.795216
http://dx.doi.org/10.1109/VISUAL.2004.104
http://dx.doi.org/10.1109/VISUAL.2004.104
http://dx.doi.org/10.1142/5314

Sun, X., K. Zhou, J. Guo, G. Xie, J. Pan, W. Wang, and B. Guo (2013). „Line segment
sampling with blue-noise properties“. In: ACM Transactions on Graphics 32.4, Article No.
127. issn: 0730-0301. doi: 10.1145/2461912.2462023 (cit. on p. 25).

Sutherland, I. E. (1964). „Sketchpad: A Man-Machine Graphical Communication System“. In:
Proceedings of the SHARE Design Automation Workshop. DAC ’64. New York, NY, USA:
ACM, pp. 6.329–6.346. doi: 10.1145/800265.810742 (cit. on pp. 26, 73).

Sutherland, I. E., R. F. Sproull, and R. A. Schumacker (1973). „Sorting and the hidden-
surface problem“. In: Proceedings of the June 4-8, 1973, National Computer Conference and
Exposition. AFIPS ’73, pp. 685–693. doi: 10.1145/1499586.1499749 (cit. on pp. 24,
75).

— (1974). „A Characterization of Ten Hidden-Surface Algorithms“. In: ACM Computing Surveys
6.1, pp. 1–55. doi: 10.1145/356625.356626 (cit. on p. 24).

Tatarchuk, N., B. Karis, M. Drobot, N. Schulz, J. Charles, and T. Mader (2014).
„Advances in Real-time Rendering in Games“. In: ACM SIGGRAPH 2014 Courses. SIG-
GRAPH ’14. Vancouver, Canada: ACM, 10:1–10:1. isbn: 978-1-4503-2962-0. doi: 10.1145/
2614028.2615455 (cit. on p. 26).

Tzeng, S., A. Patney, A. Davidson, M. S. Ebeida, S. A. Mitchell, and J. D. Owens
(2012). „High-Quality Parallel Depth-of-Field Using Line Samples“. In: Eurographics/ ACM
SIGGRAPH Symposium on High Performance Graphics. Ed. by C. Dachsbacher, J.
Munkberg, and J. Pantaleoni. HPG ’12. Eurographics Association, pp. 23–31. isbn:
978-3-905674-41-5. doi: 10.2312/EGGH/HPG12/023-031 (cit. on p. 25).

Viola, I., M. Feixas, M. Sbert, and M. E. Gröller (2006). „Importance-Driven Focus of
Attention“. In: IEEE Transactions on Visualization and Computer Graphics 12.5, pp. 933–940.
doi: 10.1109/TVCG.2006.152 (cit. on p. 36).

Volkov, V. and J. W. Demmel (2008). „Benchmarking GPUs to Tune Dense Linear Algebra“.
In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. SC ’08. Austin, Texas:
IEEE Press, 31:1–31:11. isbn: 978-1-4244-2835-9. doi: 10.1109/SC.2008.5214359
(cit. on p. 26).

Wald, I. (2012). „Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC)
Architecture“. In: IEEE Transactions on Visualization and Computer Graphics 18.1, pp. 47–
57. issn: 1077-2626. doi: 10.1109/TVCG.2010.251 (cit. on p. 27).

Wald, I., S. Woop, C. Benthin, G. S. Johnson, and M. Ernst (2014). „Embree: A Kernel
Framework for Efficient CPU Ray Tracing“. In: ACM Trans. Graph. 33.4, 143:1–143:8. issn:
0730-0301. doi: 10.1145/2601097.2601199 (cit. on p. 27).

Wang, S. W. and A. E. Kaufman (1993). „Volume sampled voxelization of geometric primitives“.
In: Proceedings of the 4th conference on Visualization. VIS ’93. San Jose, California: IEEE
Computer Society, pp. 78–84. isbn: 0-8186-3940-7. doi: 10.1109/VISUAL.1993.398854
(cit. on p. 23).

— (1995). „Volume sculpting“. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics.
I3D ’95. ACM, pp. 151–156. isbn: 0-89791-736-7. doi: 10.1145/199404.199430 (cit. on
p. 37).

Weiler, K. and P. Atherton (1977). „Hidden surface removal using polygon area sorting“. In:
Proceedings of the 4th annual conference on Computer graphics and interactive techniques.
SIGGRAPH ’77, pp. 214–222. doi: 10.1145/563858.563896 (cit. on pp. 24, 73).

158

http://dx.doi.org/10.1145/2461912.2462023
http://dx.doi.org/10.1145/800265.810742
http://dx.doi.org/10.1145/1499586.1499749
http://dx.doi.org/10.1145/356625.356626
http://dx.doi.org/10.1145/2614028.2615455
http://dx.doi.org/10.1145/2614028.2615455
http://dx.doi.org/10.2312/EGGH/HPG12/023-031
http://dx.doi.org/10.1109/TVCG.2006.152
http://dx.doi.org/10.1109/SC.2008.5214359
http://dx.doi.org/10.1109/TVCG.2010.251
http://dx.doi.org/10.1145/2601097.2601199
http://dx.doi.org/10.1109/VISUAL.1993.398854
http://dx.doi.org/10.1145/199404.199430
http://dx.doi.org/10.1145/563858.563896

Weiskopf, D., K. Engel, and T. Ertl (2003). „Interactive clipping techniques for texture-based
volume visualization and volume shading“. In: IEEE Transactions on Visualization and
Computer Graphics 9.3, pp. 298–312. issn: 1077-2626. doi: 10.1109/TVCG.2003.1207438
(cit. on p. 37).

Whittaker, E. T. (1915). „On the Functions which are represented by the Expansions of the
Interpolation-Theory“. In: Proceedings of the Royal Society of Edinburgh 35, pp. 181–194.
issn: 0370-1646. doi: 10.1017/s0370164600017806 (cit. on p. 16).

Williams, D., S. Grimm, E. Coto, A. Roudsari, and H. Hatzakis (2008). „Volumetric
Curved Planar Reformation for Virtual Endoscopy“. In: IEEE Transactions on Visualization
and Computer Graphics 14.1, pp. 109–119. doi: 10.1109/TVCG.2007.1068 (cit. on p. 35).

Young, P. (2006). Coverage Sampled Antialiasing. Tech. rep. NVIDIA Corporation (cit. on
pp. 25, 143).

Zhang, L., W. Chen, D. S. Ebert, and Q. Peng (2007). „Conservative voxelization“. In: The
Visual Computer 23.9, pp. 783–792. issn: 1432-2315. doi: 10.1007/s00371-007-0149-0
(cit. on pp. 23, 37).

159

http://dx.doi.org/10.1109/TVCG.2003.1207438
http://dx.doi.org/10.1017/s0370164600017806
http://dx.doi.org/10.1109/TVCG.2007.1068
http://dx.doi.org/10.1007/s00371-007-0149-0

Curriculum Vitae

162

ThomasAuzinger
Doctoral Researcher

mission
Thomas Auzinger is research assistant and doctoral student at the Institute of Computer Graph-
ics and Algorithms of the Vienna University of Technology. Under the supervision of Assoc. Prof.
Michael Wimmer, he investigates fundamental and applied research questions in rendering, visu-
alization, modeling, and fabrication.

education
2015 (exp) Doctor of Technical Sciences Vienna University of Technology

Sampled and Prefiltered Anti-Aliasing on Parallel Hardware
2015 (exp) Diploma Supplement on Innovation Informatics Innovation Center

Multi-semester course on innovation and entrepreneurship
2010 Master of Science (Mathematical Physics) University of Vienna

Rotating Bose-Einstein Condensates in Partially Anisotropic Traps
2009 Bachelor of Science University of Vienna

Bose-Einstein Condensates and Vortices

appointments
2009–2015 Vienna University of Technology Vienna, Austria

Doctoral Researcher
Focus on rendering, GPGPU, and medical visualization

2001–2009 Austrian Institute of Technology – Health Physics Group Seibersdorf, Austria
Software Developer and Technical Assistant
Data acquisition, hardware control, simulation, data evaluation,…

projects
2012–2016 Modern Functional Analysis in Computer Graphics Austrian Science Fund (FWF)

Research Assistant
2008–2012 Detailed Surfaces for Interactive Rendering Austrian Science Fund (FWF)

Research Assistant

teaching
2014 Invited Lecturer Universidad de las Ciencias Informáticas, Cuba

Course on General-Purpose Programming on Graphic Units
2010–Now Lecturer Vienna University of Technology

Master’s course on Rendering (with Károly Zsolnai)
2010–Now Student Supervision Vienna University of Technology

Supervision of Bachelor and Master theses and lab exercises

contact
Favoritenstrasse 9-11

1040, Wien
Austria

+43 1 58801-18683
+43 1 58801-18698

auzinger@cg.tuwien.ac.at
thomasauzinger.html
li://thomasauzinger

languages
native German

professional English
fluent Spanish

interests
computer graphics

fabrication
parallel computing

nationality
Austria

activities
2014–Now Volunteer and Sole Responsible Faculty of Informatics, Vienna University of Technology

Design, development and maintenance of LATEX template for all faculty theses
2014–Now Invited Speaker Universidad de Jaén (ESP), Czech Technical University (CZE)

Talks on personal research
2013 Presenter (Best Poster Award) PUMPS Summer School, Barcelona, Spain

Course participant and poster presenter
2010-2011 Main Organizer Vienna, Austria

Russian-Austrian Bilateral Scientific Seminar on Visual Computing
2010–Now Reviewer Eurographics, CGF, CGI, TVCJ,…

Journals and conferences in the field of Visual Computing
2010–Now Member ACM, Eurographics, IEEE

Professional membership

publications

journals
Layer-based Procedural Modeling of Facades

Martin Ilčík, Przemyslaw Musialski, Thomas Auzinger, Michael Wimmer
Computer Graphics Forum (2015). 2015

Separable Subsurface Scattering
Jorge Jimenez, Károly Zsolnai, Adrian Jarabo, Christian Freude, Thomas Auzinger, Xian-Chun Wu, Javier
Pahlen, Michael Wimmer, Diego Gutierrez
Computer Graphics Forum (2015). 2015

Guided Volume Editing based on Histogram Dissimilarity
Alexey Karimov, Gabriel Mistelbauer, Thomas Auzinger, Stefan Bruckner
Computer Graphics Forum (2015). 2015

Partial Shape Matching Using Transformation Parameter Similarity
Paul Guerrero, Thomas Auzinger, Michael Wimmer, Stefan Jeschke
Computer Graphics Forum (2014). 2014

Analytic Visibility on the GPU
Thomas Auzinger, Michael Wimmer, Stefan Jeschke
Computer Graphics Forum 32.2pt4 (May 2013) pp. 409–418. 2013

Vessel Visualization using Curved Surface Reformation
Thomas Auzinger*, Gabriel Mistelbauer*, Ivan Baclija, Rudiger Schernthaner, Arnold Kochl, Michael Wim-
mer, M. Eduard Groller, Stefan Bruckner
IEEE Transactions on Visualization and Computer Graphics 19.12 (2013) pp. 2858–2867. 2013

Analytic Anti-Aliasing of Linear Functions on Polytopes
Thomas Auzinger, Michael Guthe, Stefan Jeschke
Computer Graphics Forum 31.2pt1 (May 2012) pp. 335–344. 2012

conferences
YMCA - Your Mesh Comparison Application

Johanna Schmidt, Reinhold Preiner, Thomas Auzinger, Michael Wimmer, Meister Eduard Gröller, Stefan
Bruckner
IEEE Visual Analytics Science and Technology, 2014, Paris, France

General-Purpose Graphics Processing Units in Service-Oriented Architectures
María Carmen Calatrava Moreno, Thomas Auzinger
Proceedings of the 6th IEEE International Conference on Service Oriented Computing and Applications,
2013, Kauai

Non-Sampled Anti-Aliasing
Thomas Auzinger, Przemyslaw Musialski, Reinhold Preiner, Michael Wimmer
Proceedings of the 18th International Workshop on Vision, Modeling and Visualization, 2013, Lugano,
Switzerland

GeigerCam: Measuring Radioactivity with Webcams
Thomas Auzinger, Ralf Habel, Andreas Musilek, Dieter Hainz, Michael Wimmer
ACM SIGGRAPH 2012 Posters, 2012, Los Angeles, California

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Contributions
	Organization
	Publications

	Related Work and Foundations
	Sampling and Filtering
	One-dimensional Sampling and Filtering
	Multi-dimensional Sampling and Filtering
	Convolution Computation
	Dimensions in Rasterization
	Related Work in Rasterization
	Prefiltering
	Supersampling
	Semi-Analytic Methods
	Reconstruction

	Massively Parallel Hardware Architectures
	History and Related Work
	Graphics Hardware Architectures

	Curved Surface Reformation
	Motivation
	Related Work in Visualization
	Curved Surface Reformation
	Theory
	Surface Generation
	Main Challenges
	Cost Function
	Centerline Simplification

	Discrete Geometry
	Surface Generation
	Centerline Simplification

	Rendering
	LOD Estimation
	Depth Computation
	Depth Filtering
	Surface Rendering
	Silhouette Rendering
	Context Rendering

	Implementation

	Results
	Evaluation
	Discussion

	Prefiltering on Polytopes
	Analytic Integration
	Setting
	Integration in Two Dimensions
	Integration in Three Dimensions

	Implementation
	Results
	Discussion

	Exact Parallel Visibility
	Analytic Visibility
	Overview
	Edge Intersections
	Visible Line Segments
	Hidden-Line Elimination
	Hidden-Surface Elimination

	Implementation
	Hardware
	Design Considerations
	Analytic Visibility Pipeline
	Analytic Integration

	Results
	Bin Size
	Timings
	Comparison with Supersampling

	Discussion

	Non-Sampled Anti-Aliasing
	Motivation
	Non-Sampled Anti-Aliasing
	Primitive Gathering
	Analytic Weight Computation
	Final Blending

	Results and Applications
	Evaluation
	Ground-Truth Generation
	Performance

	Discussion

	Conclusion
	Summary
	Discussion
	Future Work

	Questionnaire of Curved Surface Reformation
	General Assessment
	Perception

	Ideal Radial Filter Derivation
	Filter Convolution in Rn
	Explicit Solutions in 2D and 3D
	2D Integrals
	3D Integrals

	Polynomial Filter Approximations
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography
	Curriculum Vitae

