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Abstract

The possibility of quantified cut-introduction, which this thesis is dedicated to, offers the possi-
blity of compressing a proof in sequent calculus, to improve readability and provide interesting
new insights into proof theory. The problem of introducing quantified cuts into a cut-free proof
in sequent calculus is a quite complex procedure, which can be accomplished in various ways.
The method described in this thesis realised this by applying several consecutive steps. First
essential parts of the proof are extracted, namely the Herbrand sequent, from which a term
language is generated. This term language represents all needed instantiations of quantified for-
mulas and will be tried to be compressed by a minimal grammar. The problem of finding a
minimal grammar for this language is achieved by reducing it to the MinCostSAT problem and
thus generate it via the resulting interpretation. This grammar forms the base for the further con-
struction of an extended Herbrand sequent, which again illustrates an intermediate step to build
a proof with cuts. On the basis of [3] an algorithm was constructed performing this minimal
grammar computation, which was tested via a large series of experiments. Although previously
developed methods, capable of cut-introduction, were not outperformed by this new method,
the methods were extended by the possibility of introducing not just one single-quantified cut,
but multiple single-quantified cuts at once. Possible new insights may be gained by this imple-
mented method, where simultaneously a small step towards cut-introduction for cuts with more
complex cut-formulas was made.
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Kurzfassung

Diese Arbeit beschäftigt sich mit einer Methode zur Einführung von Schnitten in Beweise des
Sequential-Kalküls und bietet damit Möglichkeit zur Kompression der Beweise, dadurch ei-
ne eventuelle Verbesserung der Lesbarkeit und impliziert möglicherweise neue Einblicke in
die Beweistheorie Das Problem der Schnitteinführung in schnittfreie Beweise des Sequential-
Kalküls ist recht komplex, kann bereits durch verschiedene Methoden durchgeführt werden.
Die, in dieser Arbeit beschriebene, Methode realisiert die Kompression mittels einiger aufein-
anderfolgenden Schritte. Zuerst werden essentielle Teile des Beweises extrahiert, welche auch
als Herbrand Sequent bezeichnet werden, und in eine Termsprache umgewandelt. Diese Sprache
repräsentiert alle notwendigen Instanzen der quantifizierten Formeln. Es wird weiters versucht
jene durch eine minimale Grammatik zu komprimieren. Das Problem eine minimale Gramma-
tik für eine gegebene Sprache zu finden wird auf das MinCostSAT Problem reduziert und aus
einer eventuell resultierenden Interpretation generiert. Diese Grammatik stellt das Fundament
für die weitere Konstruktion eines erweiterten Herbrand Sequents dar, welches ein notwendiger
Zwischenschritt ist um schlussendlich einen Beweis mit eingeführten Schnitten zu generieren.
Auf Basis von [3] wurde ein Algorithmus zur Beweiskomprimierung konstruiert, welcher durch
eine umfangreiche Serie an Experimenten getestet wurde. Obwohl die Effizienz bereits exis-
tierender Methoden zur Schnitteinführung in Beweise des Sequentialkalküls nicht übertroffen
wurden, bietet diese neue Methode eine Erweiterung zu der bestehenden Funktionalität, durch
die Möglichkeit mehr als einen einfach quantifizierten Schnitt auf einmal einzuführen. Während
ein kleiner Schritt in der Richtung der Schnitteinführung gemacht werden konnte, welche in Zu-
kunft darauf abzielen wird Schnitte mit immer komplexeren Schnittformeln einzuführen, könnte
diese neue Methode ebenso neue Einblicke in die Beweistheorie geben.
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CHAPTER 1
Introduction

1.1 Motivation and aim of the work

In Mathematics, as well as in Computer Science and many other scientific disciplines, it is
of prior importance to provide proofs for one’s theorems. In times of advanced technological
progress, we are living nowadays, one can make good use of automated provers to get reasonable
proofs for theorems. These proofs can, depending on the complexity of the theorems, reach a
quite enormous size and are therefore hard to understand. It is a common didactic practice to
introduce lemmas on the way to prove a particular complex theorem. This technique can also be
used in a particular calculus, namely Gentzen’s sequent calculus for classical first order logic
(FOL) [4]. By introducing lemmas, or cuts as they are called in sequent calculus, one can gain
knowledge of how a proof works and what exactly is needed to prove a theorem. Additionally the
proof potentially becomes compressed, s.t. the readability and thus the possible understanding
of the proof is improved.

The task of introducing cuts into sequent calculus proofs is not new territory. There are
various works related to this topic such as [22] which describes a method based on resolution
to introduce atomic cuts, i.e. cuts with an atomic interpolant or lemma. A cut-formula (i.e. the
interpolant which represents the lemma in sequent calculus) can furthermore appear quantified,
whereas the underlying cut is then called a quantified cut. This kind of cuts have to be treated
in a different way, whereas different layers of complexity arise for the introduction of quantified
cuts when considering quantifications of higher complexity of a formula. Those layers appear
when considering not just purely universal or existential cut-formulas, but also formulas with
alternating quantifiers. A proper subclass of quantified cuts are for instance Σ1 and Π1 cuts,
which are called universal cuts and are characterized by their cut-formulas, which do not contain
quantifier alternations. In [9] a method is described which is able to introduce universal cuts with
blocks of quantifiers, which got extended by the capability of handling formulas in first-order
equational logic through paramodulation in [8].

To accomplish the introduction of this universal cuts into a sequent calculus proof, many
different intermediate steps have to be made. First considering a proof in sequent calculus with-
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out introduced lemmas as a whole is not a suitable starting point, due to its possible enormous
size and variance. Therefore we make use of a method to extract certain important notions
out of a proof, i.e. substitutions generating a Herbrand sequent, which is a propositional valid
representation of the proof, and proceed by handling only those. The substitutions are further
interpreted as a set of terms to finally reduce the problem of introducing universal cuts to the
problem of finding a compressed representation of this term set. This compressed representa-
tion can be computed in several ways, whereas one method capable of eventually introducing a
single universal cut with a block of quantifiers into a sequent calculus proof in predicate logic
with equality at once was described in [8]. A more promising one (described in [3]) was im-
plemented in the course of this thesis, which is able to introduce several universal cuts with one
quantifier at once, by reducing the problem of compressing a set of terms to a SAT problem.
Unfortunately this method is at the moment only capable of handling a small subset of Σ1 and
Π1 cuts, i.e. those with single-quantified cut-formulas. The advantage of this new procedure is
a possible improvement in efficiency and runtime. This thesis focuses on the implementation
and testing of the latter algorithm for introducing several universal cuts (with single-quantified
cut-formulas) into a given proof in sequent calculus by using knowledge from formal language
theory.

The Theory and Logic Group at the Technical University of Vienna developed a proof sys-
tem, called GAPT [20], which is capable of a variety of functionalities. Besides the possibility
of formulating sentences and proofs in FOL and Higher Order Logic, the functionality of the
system comprises methods of cut-elimination [19] [2] and previously mentioned methods for
introducing a single universal cut into a proof in sequent calculus. It is even possible to access
proofs found in the TPTP [18], a library of proofs created for automated theorem proving. To
understand the underlying proof-theoretic setting the cut-introduction method in [9] had to be
considered. The former compression method in GAPT , described in [8] had to be considered as
well as the new compression method [3], which was implemented in the course of this thesis.

Since the other cut-introduction method was already implemented, exhaustive testing and
benchmarking was performed to compare the new method with the old one. For this purpose
various example proofs were generated from scratch or taken from the TPTP library as a test
basis for the method.

1.2 Structure of the work

We will first fix notations and describe certain definitions in Chapter 2, which are necessary
for the further chapters. In Chapter 3 we will discuss the current state of the art consisting of
existing literature, which will be of high importance, since the thesis will rest upon this work.
An overview of current techniques of cut-introduction, as well as already implemented solutions
will be provided. We will get to the main part of the thesis in chapter 4, were the implementation
will be discussed. Starting from a set of terms we will show how we construct a compressed
representation according to [3] in detail. Subsequently the algorithm for compressing a set of
terms will be embedded into the existing environment of cut-introduction in GAPT . Problems
encountered during the implementation and their solutions will also be a part of the explanation.
Chapter 5 will provide a critical reflection and a comparison between related methods and the
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accomplished work of this thesis. Open issues will also find their place in this chapter of the
thesis. Finally a summary will be given in Chapter 6, which will also address starting points for
future work in this area.
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CHAPTER 2
Preliminaries

Consider the following definitions, which will help us forming a base for the methods of cut-
introduction to be discussed. We will operate mainly in the language of First Order Logic unless
indicated otherwise. Let us recall the signature of FOL, namely

• function symbols f ∈ Fn, where n ≥ 0

• free and bound variables Vf (notation u, v) and Vb (notation x, y), respectively

• logical connectives ∧,∨,→,¬

• quantifiers ∀, ∃

• auxiliary symbols (·)·,

• atoms P,Q, . . .

2.1 Terms and formulas

We start by defining terms in FOL in Definition 1.

Definition 1 (term, semi-term)
We define the set of semi-terms inductively:

• bound and free variables are semi-terms

• constants are semi-terms

• if t1, . . . , tn are semi-terms and f is an n-place function symbol then f(t1, . . . , tn) is a
semi-term.

Semi-terms which do not contain bound variables are called terms
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As we will need a way to determine certain positions of subterms within a term we define
them in Definition 2.

Definition 2 (positions of terms)
Let t be a term, then ε is the position of t. Assume p to be the position of a term f(t1, . . . , tn) in
t, then, for every i ∈ {1, . . . , n}, p.i is the position of ti in t.
e.g. If t = f(f(a, b), f(c, d)), then ε.2.1(= 2.1) is the position of c in t.
We write t|p to denote a subterm in t at position p.

For an example of terms at positions within a term consider Example 1.

Example 1 (Example for term positions)
Let t = f(x, g(a, b)) be a term, then
t|ε = f(x, g(a, b)) is the term at position ε in t,
t|1 = x is the term at position 1,
t|2 = g(a, b) is the term at position 2,
t|2.1 = a is the term at position 2.1 and
t|2.2 = b is the term at position 2.2.

Consider Definition 3 of a formula, which introduces logical connectives, atoms and quanti-
fiers into the signature of FOL.

Definition 3 (formula, semi-formula)
• >,⊥ are formulas

• If t1, . . . , tn are terms and P is an n-place predicate symbol, then P (t1, . . . , tn) is an
(atomic) formula

• If A is a formula then ¬A is a formula.

• If A,B are formulas then (A→ B), (A ∧B), (A ∨B) are formulas.

• If A{x← α} for x ∈ Vb and α ∈ Vf is a formula then ∀xA and ∃xA are formulas.
Semi-formulas are defined in the same way, except for the definition of atomic formulas

where semi-terms are admitted.

For the idea of replacing all occurrences of a particular variable by terms we describe sub-
stitutions in Definition 4.

Definition 4 (substitution)
A substitution σ is a mapping from Vf ∪ Vb to the set of terms s.t. σ(v) 6= v for only finitely
many v ∈ Vf ∪ Vb. Substitutions are written in postfix, i.e. we write Aσ instead of σ(A), where
A is an expression (i.e. either a formula or a term). We denote a substitution as A[x\t], for an
expression A, a variable x and a term t, s.t. x is substituted by t in A. If σ is a substitution with
σ(xi) = ti for xi 6= ti(1 ≤ i ≤ n) and σ(v) = v for v 6= {x1, . . . , xn} then we denote σ by
[x1\t1], . . . , [xn\tn]. We will use the notation A[x\T ] to describe a set obtained by substituting
x in A with all terms t ∈ T , i.e. {A[x\t]|t ∈ T}.
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Since we will need the following concept of a subformula, we describe it in Definition 5.

Definition 5 (subformula)
Let F be a formula. Then the function subformula(F ) generates the set of all subformulas of
F as follows.

• if F = A, whereas A is an atom, then subformula(F ) = {A}

• if F = ¬A, then subformula(F ) = {¬A} ∪ subformula(A)

• if F = A⊗B, where ⊗ ∈ {∧,∨,→}, then
subformula(F ) = {A⊗B} ∪ subformula(A) ∪ subformula(B)

• if F = ∀xA, then
subformula(F ) = {∀xA} ∪

⋃
t∈T

subformula(A[x\t]),

where T is the set of terms

• if F = ∃xA, then
subformula(F ) = {∃xA} ∪

⋃
t∈T

subformula(A[x\t]),

where T is the set of terms

We denote the set of all variables occurring in a formula F by V (F ).

2.2 Grammars and languages

In order to define the concept of a term language, we have to clarify the notion of a signature in
Definition 6, which provides a way to restrict the appearance of a term language.

Definition 6 (Signature Σ)
Let F be a set of function symbols, V be the set of variable symbols (F ∩ V = {}) and A =
{(·)·, } be the set of auxiliary symbols, then

Σ = F ∪ V ∪A

represents the corresponding signature.
We say that a term t satisfies a signature Σ, if it is build of function symbols f ∈ F , variables
v ∈ V and auxiliary symbols A.
We write Σ ` t if a term t satisfies a signature Σ.

Consider Definition 7 of a term language, which comprise a set of terms satisfied by a given
signature.

Definition 7 (Language)
Let Σ be a signature and T be a potentially infinite set of terms satsifying Σ, then the term set

L = {t | t ∈ T,Σ ` t}

7



is called a language.
For a language comprising a finite set of terms {t1, . . . , tn}, i.e. a finite language we write

L = {t1, . . . , tn}

We may ommit the definition of a signature if it can be inferred out of the context.

A language can conceivably be represented by a term grammar. Before we can define a
term grammar we have to consider first particular parts of its components, i.e. the definition of
non-terminals, terminal terms and non-terminal terms in Definition 8, and the production or rule
in Definition 9.

Definition 8 (Non-/Terminal terms)
Let Σ = F ∪V ∪A be a signature and N be a set of symbols, where forall n ∈ N holds n /∈ F ,
n /∈ V and n /∈ A. Then N denotes the set of non-terminals.
Let t be a term s.t. Σ ` t, i.e. without comprising an occurrence of a non-terminal n ∈ N , then
t is called a terminal term.
Let s be a term s.t. Σ 0 s but Σ∪N ` s, i.e. s comprises at least one non-terminal n ∈ N , then
s is called a non-terminal term.

Definition 9 (Production/Rule)
Let s be a non-terminal term and t be either a non-terminal term or a terminal term, then a rule
is an expression of the form

s→ t

and represents a transition where a term s within an arbitrary term u is replaced by a term t .

Consider Definition 10 which clarifies the application of a rule.

Definition 10 (Application of a production rule)
Let s→ t be a rule and u be a non-terminal term comprising at least one occurrence of s.

u
s→t⇒ u′

denotes the application of said rule to a non-terminal term u, which leads to a term u′, s.t. one
occurrence of s in u is replaced by t. Note: s can occur several times as a subterm in a term u,
e.g.

u = f(g(b), g(g(s)), c, h(s))

Then an application of above production would either lead to the non-terminal term u′

u′ = f(g(b), g(g(t)), c, h(s))

or to the non-terminal term u′′

u′′ = f(g(b), g(g(s)), c, h(t))

We denote a particular application of a rule onto a term a derivation step and define it in
Definition 11.

8



Definition 11 (Derivation step�)
Let R be a set of rules and t an arbitrary term, then

t �r t′, where r ∈ R

denotes the application of the rule r ∈ R on t resulting in a new term t′, i.e.

t
r⇒ t′

A subsequent application of rules is called a derivation, which consists of a sequent of
derivation steps and is described in Definition 12.

Definition 12 (Derivation�∗)
Let R be a set of rules, then the sequence t, . . . , t′ is called a derivation and can be written as

t �r1 · · · �rm t′, for ri ∈ R

It represents a progression of multiple applications of rules ri ∈ R on a term t and produces a
term t′. Instead of enumerating all derivation steps of the derivation, we can simply write

t �∗ t′

Finally we can describe a term grammar in Definition 13, which is able to represent a lan-
guage L in a possibly more condensed way.

Definition 13 (Term grammarG)
A term grammar G is defined by a 4-tuple (S,N, τ, P ), where

• S denotes the set of terminal symbols, i.e. variable and function symbols, which typically
is a set S ⊆ (Vf ∪F l) where l ≥ 0. We explicitly denote the arity of a function symbol by
f/k if f ∈ F k in case it cannot be inferred from the context

• N is the set of non-terminal symbols as defined in 8 s.t. for every n ∈ N holds n /∈
(Vf ∪ Vb ∪ F l).

• P be a finite set of rules

• τ represents the axiom or starting symbol, which is a non-terminal (τ ∈ N ) and occurs
on the left-hand side of the first rule applied in every possible derivation of G

A term grammar G produces a term t, denoted by�∗, iff there exists a derivation producing this
term, i.e.

G �∗ t

iff

∃r1, . . . ,∃rm s.t. τ �r1 · · · �rm t where r1, . . . , rm ∈ P
The language L produced by G consists of all terms possibly derivable in G, i.e.

L(G) = {t | G �∗ t}

Since this thesis focuses on term grammars only, we will from now on call it simply a gram-
mar, although there are many types of grammars. Before we proceed by defining a particular
grammar, needed for this thesis, consider following possible properties of a grammar.

9



context-free

A context-free grammar defines restrictions regarding the left-hand sides of the production rules
and thus implies somehow a monotone term growth when considering grammars with out the
empty word ε as defined in Definition 14.

Definition 14 (context-free grammar)
Let t be a term and G = (S,N, τ, P ) be a context-free grammar, iff for all production rules

α→ t

holds that the left-hand side consists only of a non-terminal α ∈ N .

Such a grammar is also called a Type 2 grammar according to the Chomsky Hierarchy. Since
it is context-free and we consider in this thesis only grammars without ε-rules, which would
allow us to remove a non-terminal within a term, this property ensures that an already introduced
terminal cannot be removed from a generated term, which leads to a monotone term-growth.

acyclic

Definition 15 describes the acyclicity property of a grammar by an existing ordering in the
productions of a grammar.

Definition 15 (acyclicity)
Let G = (S,N, τ, P ) be a context-free grammar, then G is called acyclic if there exists a strict
total ordering� on N s.t. for all rules α→ A in P holds

If β ∈ V (A) then α� β

totally rigid

Consider Definition 16 for a totally rigid grammar, which somehow represents the behavior of
term substitutions of all occurrences of a certain variable in a term.

Definition 16 (total rigidity)
Let G = (S,N, τ, P ) be a grammar, then G is called totally rigid if the application of a rule
A→ B enforces all occurrences ofA to be substituted withB. In other words let t be a term and
t|p1 = t|p2 = · · · = t|pn be subterms of t equal to A. Then all subterms at positions p1, . . . , pn,
representing the left-hand side of the rule to be applied, are replaced by the right-hand side B,
s.t. t|p1 = t|p2 = · · · = t|pn = B.

After describing acyclicity, context-freeness and total rigidity w.r.t. to a grammar we proceed
by Definition 17 of a trat grammar comprising all those properties.

Definition 17 (trat-grammar)
Let G be a trat-grammar, iff it is context-free, acyclic and totally rigid.
Note: trat-grammar is an abbreviation for totally rigid acyclic tree-grammar.
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These properties may seem artificial yet, but will become clearer when considered in a proof-
theoretic context later on. Lastly we define a trat-n grammar in Definition 18, which merely adds
a restriction regarding the non-terminals to the definition of a trat grammar.

Definition 18 (trat-n grammar)
A trat-n grammar is a trat grammar containing exactly n + 1 non-terminals. W.l.o.g. we will
denote the non-terminals in a trat-n grammar asN = {α0, α1, . . . , αn} s.t. αi � αj for i < j,
where α0 is the start symbol or axiom of the grammar.

A grammar defined in Definition 18 can be rewritten in a more condensed way, i.e. as a
decomposition which is defined through the ◦α operator (Definition 19).

Definition 19 (◦α-operator)
Let S1, S2 be sets of terms, then

S1 ◦α S2
represents the set

{t[α\s] | t ∈ S1, s ∈ S2}
whereas all occurrences of α in t get substituted by s at once.

Let G = (S,N, α0, P ) be a trat-n-grammar, which can be represented (due to its linear
shape given by its properties) as a decomposition. Furthermore let

P = { α0 ⇒ t0,1| . . . |t0,m0

α1 ⇒ t1,1| . . . |t1,m1

...

αn ⇒ tn,1| . . . |tn,mn

}

be the set of rules, then we can rewrite G as a decomposition by interpreting the right-hand
sides as a set of terms. Each set will then be concatenated with its successor set by the ◦αi

operator, which stands for the cartesian product of substituting all αi occurrences, in a totally
rigid manner, in every term of the left set by every term of the right set. This transformation
results in following grammar decomposition

{t0,1, . . . , t0,m0} ◦α1 {t1,1, . . . , t1,m1} ◦α2 · · · ◦αn {tn,1, . . . , tn,mn}

Note: Since α0 is our starting symbol it will not explicitly appear in this representation.

Example 2 (Example of a decomposition)
Let L = {f(0), f(s(0)), f(s2(0)), . . . , f(s7(0))} be the given language and
G = ({0/0, f/1, s/1}, {α0, α1, α2}, α0, P ) a trat-3 grammar generating it, where

P = { α0 ⇒ f(α1)|f(s(α1))

α1 ⇒ α2|s2(α2)

α2 ⇒ 0|s4(0)

}
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is its corresponding set of rules, then

{f(α1), f(s(α1))} ◦α1 {α2, s
2(α2)} ◦α2 {0, s4(0)}

is its decomposition representation. Note that in case we want to generate L(G) we iteratively
proceed by applying ◦αi (1 ≤ i ≤ 2) of the decomposition to retrieve first

{f(α2), f(s(α2)), f(s2(α2)), f(s3(α2))} ◦α2 {0, s4(0)}

and thus

L(G) = {f(0), f(s(0)), f(s2(0)), f(s3(0)), f(s4(0)), f(s5(0)), f(s6(0)), f(s7(0))}

Note that grammar decompositions can be categorized w.r.t. to their starting term set, as
simple or even trivial grammars and are defined in Definitions 20 and 21, respectively.

Definition 20 (Simple grammar)
A grammar decomposition G = U ◦α1 S1 ◦α2 · · · ◦αn Sn is called simple iff |U | = 1, i.e. U
consists of one term only.

Definition 21 (Trivial grammar)
A grammar decomposition G = U ◦α1 S1 ◦α2 · · · ◦αn Sn is called trivial iff U = {α1}.

2.3 Sequent calculus LK

We proceed by defining Gentzen’s sequent calculus LK [4]. A proof in LK is a tree, where the
root is represented as a sequent, as defined in Definition 22, which is to be proven and is called
the end-sequent of the proof.

Definition 22 (Definition of a sequent)
Let Γ,∆ are finite multi-sets of formulas then

S : Γ ` ∆

is a sequent, where Γ is called the antecedent and ∆ the succedent of S.

Consider 3 of a sequent in LK.

Example 3 (Example of a sequent)
Let N be an atom, s a unary function symbol and 0 a constant, then

∀x(N(x) ⊃ N(s(x))), N(0) ` N(s(s(0)))

is an example of a sequent.

12



Semantically a sequent
S : A1, . . . , An ` B1, . . . , Bm

as described in Definition 22, can be interpreted as

(A1 ∧ · · · ∧An)→ (B1 ∨ · · · ∨Bm)

Located in an LK proof’s leafs are axioms which are further processed and merged by rules,
s.t. all branches end up in the root. Before we proceed by defining the rules of LK let us focus
on LK’s axioms which make up the leafs of every proof in sequent calculus as described in
Definition 23.

Definition 23 (Axiom)
An axiom is a sequent of the form

A ` A

where A is an atom.

All rules in LK consist of a conclusion (bottom half) and one to two premises (upper half)
depending on the arity of the rule. Furthermore they can be divided into two groups: the logical
rules and the structural rules. Both types can again be separated into two groups. Those which
apply on the antecedent(s) and those who apply on the succedent(s) of the affected sequent(s).
For the logical rules of LK see Figure 2.1 and Figure 2.2 and for the structural rules consider
Figure 2.3 and Figure 2.4.

Γ ` A,∆
¬ : l

Γ,¬A ` ∆

Γ, A,B ` ∆
∧ : l

Γ, A ∧B ` ∆

Γ, A ` ∆ Γ′, B ` ∆′
∨ : l

Γ,Γ′, A ∨B ` ∆,∆′

Γ ` A,∆ Γ′, B ` ∆′
⊃ : l

Γ,Γ′, A ⊃ B ` ∆,∆′

A[x\t],Γ ` ∆
∀ : l

Γ, ∀xA ` ∆

Γ, A[x\α] ` ∆
∃ : l

Γ, ∃xA ` ∆

Figure 2.1: LK logical rules left

Γ, A ` ∆ ¬ : r
Γ ` ¬A,∆

Γ ` ∆, A Γ′ ` ∆′, B ∧ : r
Γ,Γ′ ` ∆,∆′, A ∧B

Γ ` A,B,∆ ∨ : r
Γ ` A ∨B,∆

A,Γ ` B,∆ ⊃ : r
Γ ` A ⊃ B,∆

Γ ` A[x\α],∆
∀ : r

Γ ` ∀xA,∆

Γ ` A[x\t],∆
∃ : r

Γ ` ∃xA,∆

Figure 2.2: LK logical rules right

13



Γ, A,A ` ∆
c : l

Γ, A ` ∆

Γ ` ∆
w : l

Γ, A ` ∆

Figure 2.3: LK structural rules left

Γ ` ∆, A,A
c : r

Γ ` ∆, A

Γ ` ∆ w : r
Γ ` B,∆

Figure 2.4: LK structural rules right

Please note that in this definition of LK we consider a sequent to be a tuple of multi sets,
therefore we do not need an exchange rule, in contrast to the original definition of sequent
calculus in [4]. There are two logical rules, ∀ : r and ∃ : l, which are subjected to restrictions,
namely the Eigenvariable condition. This restriction prohibits the substituting variable α to
occur in the sequent of the conclusion of the rule. The quantifiers introduced in those two rules,
are called strong quantifiers. Analogously the quantifiers introduced via ∀ : l and ∃ : r are called
weak quantifiers and do not require the Eigenvariable condition. Instead those weak quantifiers
underlie another, weaker restriction, namely that the variable can only be instantiated by a semi-
term t, i.e. t must not contain a variable bound in the quantified formula A. Let us take a look
on Example 4 and observe, that f(z) does not contain variable y and thus does not violate the
mentioned restriction.

Example 4 (Example application of ∀ : l)
Let P be an atom, f be a unary function symbol and z a free variable, then

...
π

∃yP (f(z), y) ` ∃yP (f(z), y)
∀ : l∀x∃yP (x, y) ` ∃yP (f(z), y)

represents an example for an application of the ∀ : l rule. Note that we may abbreviate multiple
subsequent applications of contraction and quantifier-rules by ∀ : l∗,∀ : r∗, ∃ : l∗,∃ : r∗ if
needed.

For a clearer understanding of proofs in sequent calculus consider Example 5 illustrating a
proof closing with two axioms.

Example 5 (Example of a proof)
Let A,B be atoms, then

A ` A w:r
A ` B,A

B ` B w:r
B ` B,A

∨ : l
A ∨B ` B,A ∨ : r
A ∨B ` B ∨A

is a proof closing with two axioms A ` A and B ` B.
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The last rule, namely the cut rule is not required for completeness of LK. Gentzen showed
that each proof with cuts can be transformed into a proof without cuts [4], which is known as
the famous Gentzen Hauptsatz. The opposite, namely introducing cuts into a cut-free proof is
subject of this thesis.

Γ ` ∆, A A,Γ′ ` ∆′
cut

Γ,Γ′ ` ∆,∆′

Figure 2.5: cut rule

In Figure 2.5 one can see an abstract application of a cut, which is a binary rule, i.e. contain-
ing two sequents in the premise and one sequent in the conclusion. By applying the cut rule, the
cut-formula A is removed from the succedent of the first sequent and the antecedent of the sec-
ond sequent in the premise. The sequent in the conclusion is then constructed through the union
of the antecedents and succedents of the premises, respectively. Cuts performed on quantified
cut-formulas are called quantified cuts. Consider Theorem 1 of the subformula property, which
holds for every rule in LK except for the cut-rule.

Theorem 1 (Sub formula property)
All formulas occurring in a cut-free derivation are sub-formulas of the end sequent.

For a proof of Theorem 1 consider [4]
In simple words this property claims that no formula within a cut-free derivation in LK gets

lost. The cut-rule violates this property, since the cut-formula A is eliminated when performing
the cut. Thus applying the cut-rule backwards requires to know a suitable cut-formula A, which
is a hard task to find out. In order to guess a cut-formula A for a particular cut, we would have
to decide whether A is a cut-formula. Since first-order logic is undecidable, we cannot decide
for a formula A if it is a cut-formula of a particular cut.

2.4 The MinCostSAT and partial weighted MaxSAT Problem

In the course of this thesis we will need to make use of two particular problems, namely the
MinCostSAT Problem and the partial weighted MaxSAT Problem. Before we can deal with those
problems we start by describing their common basis, namely in the SAT Problem in Definition
24.

Definition 24 (SAT)
The SAT Problem consists of deciding whteter a given Boolean formula F is satisfiable, which
we assume to be given in conjunctive normal form. A solution for an instance of the SAT
Problem is an interpretation I s.t. I � F .

Given a satisfiable formula, in general there need not to be a unique solution, i.e. a valid
interpretation (or model) for an instance of the SAT Problem. Unfortunately its definition does
not provide a proper way to decide whether a model is better than another one, e.g. via an
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objective function. Since we will need to rate any valid interpretation w.r.t. a Boolean formula
F , we overcome this issue by extending the SAT Problem by assigning costs to all appearing
variables in a formula F and thus obtain Definition 25 of the MinCostSAT Problem.

Definition 25 (MinCostSAT problem)
An instance of the MinCostSAT Problem consists of a Boolean formula F and costs for all
variables xi ∈ V (F ). The variables are associated with individual costs ci ∈ N, where 1 ≤ i ≤
n, whereas ci represents the costs of variable xi.
A solution of such an instance is an interpretation I satisfying F s.t.

∑
I(xi)=true

ci is minimal, i.e.

argmin
I
{

∑
xi∈V (F ) s.t.
I(xi)=true

ci | I � F}

Note that the corresponding decision problem, namely if there exists an interpretation satis-
fying F of costs

c =
∑

xi∈V (F ) s.t.
I(xi)=true

ci

within a particular cost bound n ∈ N, i.e. c ≤ n, is NP-complete [3] [14].
To introduce a distinctive feature for models of an instance of the SAT Problem, it can be

extended in another way. Besides the Boolean formula F , another set of propositional formulas
gi (1 ≤ i ≤ n) with individual costs ci assigned can be given. The aim of the problem is
to maximize the sum of all costs ci, where their corresponding gi are fulfilled by the model,
i.e. I � gi. This extension is called the partial weighted MaxSAT Problem and is described in
Definition 26.

Definition 26 (partial weighted MaxSAT Problem)
Let F be a propositional logic formula and {g1, . . . , gn} be a set of Boolean formulas, where to
each formula gi individual costs ci are assigned for 1 ≤ i ≤ n, i.e. G = {(g1, c1), . . . , (gn, cn)}.
Then an instance of the partial weighted MaxSAT Problem consists of F and G. A solution of
the problem is an interpretation I , which entails F while maximizing the sum of all ci, where for
the corresponding gi holds I � gi, i.e.

argmax
I
{
∑

(gi,ci)∈G
I � gi

ci | I � F}

We will see later that the MinCostSAT Problem can be reduced to the partial weighted
MaxSAT Problem, for which a variety of solvers exist.
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CHAPTER 3
State of the art

In order to understand which steps are necessary to introduce cuts into a cut-free proof in LK,
we will describe the procedure in an intuitive manner. Starting from a cut-free proof, the first
idea was to consider the proof as a whole, which did not work out very well. The variations in
structure and size of a proof induce a level of complexity, which complicates efficient processing
in general. Therefore a better way for describing a proof and its particular peculiarities was
needed. Before we go deeper into the procedure of extracting appropriate information from a
proof, let us consider the example proof π with cuts in Figure 3.1 the proof π∗ without cuts in
Figure 3.2, respectively.
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Both π an π∗ prove the same theorem, namely P (0), (∀x)(P (x) ⊃ P (s(x))) ` P (s8(0)),
but the proofs differ in size and shape. Observe that in order to prove the mentioned theo-
rem we have to instantiate the quantified formula (∀x)(P (x) ⊃ P (s(x))) eight times to derive
P (s8(0)) in the cut-free proof π∗. On the other side, consider π which has a single cut and
differs in the amount of instantiations of the quantified formula. It merely skips the instantia-
tions of P (s4(0)), P (s5(0)), P (s6(0)) and P (s(7(0)) and has only six applications of the ∀ : l
rule. Instead it contains two additional rule applications, where one represents the instantiation
P (s8(0)) generated from P (s4(0)) and the other rule application performs the cut. Consider the
cut-formula of π, namely

(∀x)(P (s4(x)) ∨ ¬P (x))

This formula allows us to take a shortcut while deriving the succedent by resting on an interme-
diate step, namely a lemma. Since we already derived from our quantified formula (∀x)(P (x) ⊃
P (s(x))) the above cut-formula, we do not necessarily have to derive again the last four steps
to complete our proof, but can avoid this by performing a cut. Although the previous exam-
ple proofs do not unveil the method’s full potential of compression, it is capable of reducing a
proof’s size and improving its readability by bringing out lemmas.

We know by now that there is a difference between the instantiations of such quantified
formulas within a cut-free and a proof with cuts. For defining those instantiations needed for
building a proof in general, we present the definition of a Herbrand sequent.

3.1 Herbrand sequent extraction

From every proof in LK we can extract a Herbrand sequent, which is quantifier-free and in-
stead of the end-sequent contains exactly those instantiations of quantified formulas necessary
to build the proof. To extract a Herbrand sequent from a proof consider the method described
in [1]. The method rests upon the extension of LK by so called array-rules. Quantifier rules
(i.e. ∀l,∀r, ∃r, ∃l) will be removed from a given proof and replaced by array-formulas contain-
ing their instances. After this transformation, the end-sequent is transformed into an ordinary
sequent containing no array-formulas, which is already the Herbrand sequent of the proof, i.e.
H(π).

Before we are able to define the term of a Herbrand sequent, we have to raise the subject of a
proper hierarchy of formulas or sequents. Consider Definition 27 which describes a classification
of first-order formulas into partitions regarding their quantifier complexity.

Definition 27 (Σn,Πm formula)
Let φ be a first-order formula, which is logically equivalent to a quantifier-free first-order for-
mula.
Then φ is classified as Σ0 and Π0.
For every n > 0 we define Σn and Πn:
If φ is logically equivalent to a formula of the form ∃x1∃x2 . . . ∃xkψ, where ψ is Πn, then φ is
assigned the classification Σn+1.
If φ is logically equivalent to a formula of the form ∀x1∀x2 . . . ∀xkψ, where ψ is Σn, then φ is
assigned the classification Πn+1.
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Note that there exist formulas which can be classified by two classes simultaneously, due to their
logical equivalence w.r.t. possible quantifier permutations.

In Definition 28 we describe a hierarchy of quantifier complexity regarding sequents and
merely describe the class of Σ1-sequents, which consist of formulas of two particular complexity
classes, namely Σ1 and Π1.

Definition 28 (Σ1-sequent)
Let φ1, . . . , φm be Π1-formulas and ψ1, . . . , ψn Σ1-formulas, then

φ1, . . . , φm ` ψ1, . . . , ψn

is called a Σ1-sequent.
E.g. for formulas φ′ in Π0 and ψ′ in Σ0, we likewise obtain a Σ1-sequent

∀x1 . . . ∀xkφ′ ` ∃y1 . . . ∃ylψ′

for k, l ≥ 0.
Note:

• Σ1-sequents contain weak quantifiers only

• Each first-order sequent can be transformed into a Σ1-sequent through skolemization and
prenexing

We proceed by defining the concept of a Herbrand sequent in Definition 29, which com-
prises in a way the structure of a proof, by enumerating all instantiations of quantified formulas
necessary to derive the end-sequent.

Definition 29 (Herbrand sequent)
Let

∀x11, . . . ,∀x1l1F1, . . . ,∀xp1, . . . ,∀x
p
lp
Fp ` ∃xp+1

1 , . . . ,∃xp+1
lp+1

Fp+1, . . . ,∃xq1, . . . ,∃x
q
lq
Fq

with li ≥ 0 and Fi quantifier free be a valid Σ1-sequent. Furthermore we write x for a vector
(x1, . . . , xn) of variables, t for a vector (t1, . . . , tn) of terms and [x\t] for the substitution
[x1\t1] . . . [xn\tn]. A valid sequent of the form

{Fi[xi\ti,j ]|1 ≤ i ≤ p, 1 ≤ j ≤ ni} ` {Fi[xi\ti,j ]|p < i ≤ q, 1 ≤ j ≤ ni}

is then called a Herbrand sequent, where ti,j = (ti,1, . . . , ti,ni) are the vectors of instances of
Fi. Note that by Herbrand’s Theorem [7] every valid sequent containing only weak quantifiers
possesses a Herbrand sequent.

To extract a Herbrand sequent from a given proof π, we have to consider all instantiations of
quantified formulas, by simply reading off the instantiated terms from all quantifier-rules applied
in π. Lastly collecting all formulas obtained by substituting corresponding bound variables in
respective quantified formulas results in a propositional valid sequent and thus in the Herbrand
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sequent of π. A Herbrand sequent extracted from a proof π will from now on be denoted by
H(π). When generating the Herbrand sequent of a proof with cuts, we retrieve (in contrast to
the Herbrand sequent of a cut-free proof) a specifically looking sequent, namely the extended
Herbrand sequent. In [9] the definition of an extended Herbrand sequent is described and can
be applied to Σ1-sequents. To make the following definitions and construction methods more
transparent, we proceed as in [9] and merely discuss sequents of the form ∀xF →, although it
is possible to generalize the mentioned methods to work with Σ1-sequents. Consider Definition
30 of an extended Herbrand sequent of the form ∀xF →.

Definition 30 (extended Herbrand sequent)
Let u1, . . . , um be terms, letA1, . . . , An be quantifier-free formulas, let α1, . . . , αn be variables,
and let si,j for 1 ≤ i ≤ n, 1 ≤ j ≤ ki be terms s.t.

1. V (Ai) ⊆ {αi, . . . , αn} for all i, and

2. V (si,j) ⊆ {αi+1, . . . , αn} for all i, j.

then

H = F [x\u1], . . . , F [x\um],

A1 ⊃ (
k1∧
j=1

A1[α1\s1,j ]),

...

An ⊃ (
kn∧
j=1

An[αn\sn,j ])→

is called an extended Herbrand sequent of ∀xF → if H is a tautology. We call formulas within
an extended Herbrand sequent of the form

Ai ⊃ (

ki∧
j=1

Ai[αi\si,j ])

cut-implications
Note:

• Given a proof with cuts, we can extract the extended Herbrand sequent

• From a given extended Herbrand sequent, we can construct the underlying proof with cuts

Observe the instantiated terms are represented by the sets

U = {u1, . . . , um}

and
S1 = {s1,1, . . . , s1,k1}, . . . , Sn = {sn,1, . . . , sn,kn}
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An extended Herbrand sequent encodes the cuts in a proof, since all instantiations of the
universal formulas are represented for every cut. As already mentioned this essential information
comprised by an extended Herbrand sequent is sufficient to build a proof with cuts. Alternatively
from a given proof with cuts, we can extract an extended Herbrand sequent which contains all
necessary information for building again a proof with cuts. Assume we successfully extracted a
Herbrand sequent from our proof π containing one cut in Figure 3.1 and consider it in Example
6.

Example 6 (Example of an extended Herbrand sequent)
Let π be the proof in Figure 3.1, then the extended Herbrand sequent of π is constructed by con-
sidering the ground formulas of the end-sequent and all ∀ : l applications and their respective
quantifier instantiations. We abbreviate the formula P (s4(x))∨¬P (x) by F (x), where ∀xF (x)
is our used cutformula.
Then H(π) =

P (0), (P (α0) ⊃ P (s(α0))), (P (s(α0)) ⊃ P (s2(α0))),

(P (s2(α0)) ⊃ P (s3(α0))), (P (s3(α0)) ⊃ P (s4(α0))),

F (α0) ⊃ (F (0) ∧ F (s4(0)))

` P (s8(0))

is its extended Herbrand sequent.

Example 6 above shows an extended Herbrand sequent, which differs from an ordinary Herbrand
sequent by its instantiations of the quantified formula. A sequent of the above form represents a
proof with nΠ1-cuts, whose cut-formulas are ∀α1A1, . . . ,∀αnAn. The αi are the eigenvariables
of the universal quantifiers in these cut-formulas, the si,j the terms of the instances of the cut-
formulas on the right-hand side of the cut and the ui the terms of the instances of our end-formula
∀xF .

3.2 Building a proof from an extended Herbrand sequent

In order to build a proof with cuts, we have to generate an extended Herbrand Sequent. This
sequent can be build from an underlying Herbrand Sequent (previously extracted from a cut-free
proof) through reducing the problem to that of finding a minimal grammar for a specific language
encoding the sequent. Since this represents the main component of this thesis, we will focus
on it later on (in Section 3.3 et sequentes) and assume for now that we successfully extracted
a Herbrand sequent from a cut-free proof π∗ and transformed it into an extended Herbrand
sequent. As an extended Herbrand sequent is merely a representation of a proof with cuts, we
may build a proof from it and its corresponding cut-free proof π∗, which is possible due to the
description in [9] and is achieved in an iterative manner. Let us abbreviate a cut-implication as
previously shown in Definition 30, i.e.

Ai ⊃
ki∧
j=1

Ai[αi\si,j ]
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simply as CIi and let U = {u1, . . . , um}. As previously mentioned in Definition 30 consider
following conditions fulfilled by the sets S1, . . . , Sn and formulas A1, . . . , An:

1. V (Ai) ⊆ {αi, . . . , αn} for all i, and

2. V (Si) ⊆ {αi+1, . . . , αn} for all i.

Again we will describe the procedure by means of a sequent of the form ∀xF →, because we
already know that we can handle sequents of higher complexity analogously. The sequent in
Definition 30 is then rewritten in a condensed way as

F [x\U ],CI1, . . . ,CIn →

We will see that the sequent

H = F [x\U ], A1 ⊃
k1∧
j=1

A1[α1\s1,j ], . . . , An ⊃
kn∧
j=1

An[αn\sn,j ]→

has a proof of the following form:

....
F [x\U ]→ A1, . . . , An

....∧k1
j=1A1[α1\s1,j ], F [x\U1]→ A2, . . . , An

F [x\U ],CI1 → A2, . . . , An
⊃l

....
F [x\U ],CI1, . . . ,CIn−1 → An

....∧kn
j=1An[αn\sn,j ], F [x\Un]→

F [x\U ],CI1, . . . ,CIn →
⊃l

Note that F [x\Ui], where Ui = {u ∈ U | V (u) ⊆ {αi+1, . . . , αn}}, denotes the left-hand
side of the current cut-implication and is built from the quantified formula F and substitutions
depending only on terms with non-terminals αj of indexes j > i. Starting from this base we can
simply introduce cuts and corresponding quantifiers by replacing a segment of the form

F [x\U ],CI1, . . . ,CIi−1 → Ai, . . . , An
∧ki
j=1Ai[αi\si,j ], F [x\Ui]→ Ai+1, . . . , An

F [x\U ],CI1, . . . ,CIi → Ai+1, . . . , An
⊃l

by

F [x\Ui−1], ∀xF → Ai, . . . , An

F [x\Ui],∀xF → Ai, . . . , An
∀∗l

F [x\Ui],∀xF → ∀xAi[αi\x], Ai+1, . . . , An
∀r

Ai[αi\Si], F [x\Ui]→ Ai+1, . . . , An

∀xAi[αi\x], F [x\Ui]→ Ai+1, . . . , An
∀∗l

F [x\Ui], ∀xF → Ai+1, . . . , An
cut

Finally the proof is finished at its root

F [x\Un],∀xF →
∀xF → ∀∗l .
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Of course, intermediate derivation steps are necessary to derive sequents s.t. we are able to
form up segments of the above form, which can be replaced then by cut-rule applications and
corresponding additional rules. Let us focus on the last part, namely the construction of the Ai.

Li for CI1, . . . ,CIi−1, F [x\U ]→ Ai, . . . , An, and

Ri for
ki∧
j=1

Ai[αi\si,j ], F [x\Ui]→ Ai+1, . . . , An.

Observe that Li and Ri denote the left and right hand side of the implications and depend only
on those Aj with j ≥ i, where 1 ≤ i ≤ n. Furthermore we clearly see that with increasing i, the
complexity of Ri decreases. Thus we derive Ln+1, which is the extended Herbrand sequent H
and thus the base case of above sketch for building a proof.

3.3 Abstraction of an extended Herbrand sequent

We just described in Definition 30 an extended Herbrand sequent with particular instantiations
via term sets U, S1, . . . , Sn of a quantified formula F and the individual cut-formulas, respec-
tively. Since we want to reduce the task of finding an extended Herbrand sequent to another
problem, namely finding exactly instantiated term sets U, S1, . . . , Sn, we need a more general
definition to describe merely the structure of it. This leads to Definition 31 of a schematic ex-
tended Herbrand sequent, which allows us to consider the structure of an extended Herbrand
sequent separately from its contained instantiations. This is achieved by defining it according
to a grammar decomposition G(H), i.e. a trat-n grammar defining the Herbrand sequent of a
proof.

Definition 31 (schematic extended Herbrand sequent )
Let G(H) be a grammar decomposition generating th term set T of a Herbrand sequent of
the sequent ∀xF →. G(H) can be represented as U ◦α1 S1 ◦α2 · · · ◦αn Sn s.t. the language
L(G) = T generated from G(H) contains all instantiated terms. Recall that

U = {u1, . . . , um}

and

Si = {si,1, . . . , si,ki}

Let u1, . . . , um be terms, X1, . . . , Xn be monadic second-order variables, α1, . . . , αn be vari-
ables and si,j , where 1 ≤ i ≤ n and 1 ≤ j ≤ ki be terms.
Again assume following restriction holds, which we already know from previous definitions

V (Si) ⊆ {αi+1, . . . , αn} for all i

25



Then the sequent

H = F [x\u1], . . . , F [x\um],

X1(α1) ⊃
k1∧
j=1

X1(s1,j),

...,

Xn(αn) ⊃
kn∧
j=1

Xn(sn,j)

is called a schematic extended Herbrand sequent of ∀xF →

Note that ∧
t∈L(G)

F [x\t]→ (3.1)

represents a Herbrand sequent with all instantiations for a quantified formula F , which can be
used to successfully build a proof without cuts. All those instantiations, or terms, t ∈ L(G) are
contained in a particular language and can be abbreviated by an underlying grammar decompo-
sition

G = (U ◦α1 (S1 ◦α2 · · · ◦αn Sn))

Let us take a closer look on Definition 31 and observe the second-order variables X1, . . . , Xn.
Those variables are just placeholders and will be replaced via a substitution σ, which introduces
instead of those variables, Lambda-expressions describing the cut-formulas. I.e. the second-
order variables represent the not yet known cut-formulas, which will be instantiated by terms
contained in the grammar decomposition accordingly. As written in the definition we consider
the amount of those second-order variables to be n, i.e. we assume to introduce n cuts. Note that
the first part of the schematic extended Herbrand sequent, i.e. F [x\u1], . . . , F [x\um], is nothing
less than the necessary part which has to be considered for the first cut introduced into the
proof. Furthermore observe that Definition 31 of a schematic extended Herbrand sequent is an
abstraction of an extended Herbrand sequent and roughly describes the structure of the sequent
and its size. This sequent also allows us to consider essential parts of an extended Herbrand
sequent, besides its size, namely its instantiations of used quantified formulas U, S1, . . . , Sn.

Let us reconsider this previously mentioned substitution σ, which helps us to separate the
instantiations from the schematic extended Herbrand sequent. Such a substitution σ is can be a
solution of a schematic extended Herbrand sequent and is described in Definition 33.

Definition 32 (canonical substitution σ )
A canonical substitution of a schematic extended Herbrand sequent H of ∀xF → is the substi-
tution

σ = [Xi\λαi.Ci]ni=1

where

C1 =

m∧
j=1

F [x\uj ]
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is the first cut-formula and

Ci+1 =

ki∧
j=1

Ci[αi\si,j ]

denotes the ith + 1 cut-formula, where 1 ≤ i ≤ n

Definition 33 (canonical solution σ)
Let H be a schematic extended Herbrand sequent of ∀xF → and σ = [Xi\λαi.Ci]ni=1 be
its canonical substitution as described in 32. The substitution σ is then called a solution iff
V (Ci) ⊆ {αi, . . . , αn} and Hσ is a tautology.

Note that such a sequent H always has a solution σ (Definition 33) w.r.t. to a proof, which
forms an extended Herbrand sequent. For a proof consider [9] where also a method, based on
resolution, is described which allows to improve such a canonical substitution, but will be omit-
ted in this thesis. As of now we can combine Definition 31 of a schematic extended Herbrand
sequent, term sets U, S1, . . . , Sn and Definition 33 to retrieve an extended Herbrand sequent,
where the previously introduced second-order variables X1, . . . , Xn successfully got replaced
by Lambda-expressions of our canonical substitution. Starting from a schematic extended Her-
brand sequent

H = F [x\u1], . . . , F [x\um],

X1(α1) ⊃ (
k1∧
j=1

X1(s1,j)),

...,

Xn(αn) ⊃ (
kn∧
j=1

Xn(sn,j))

where the bound variable x in F is already substituted by the individual terms of the first term
set U . We proceed by applying the canonical substitution on the schematic extended Herbrand
sequent by individually applying it on each subformula, i.e.

H = F [x\u1], . . . , F [x\um],

(X1(α1) ⊃ (
k1∧
j=1

X1(s1,j)))[X1\λα1.C1],

...

(Xn(αn) ⊃ (
kn∧
j=1

Xn(sn,j)))[Xn\λαn.Cn]

After substituting all necessary parts in Hσ we retrieve our extended Herbrand sequent as de-
scribed in Definition 30 of a particular proof, where all necessary instantiations U, S1, . . . , Sn
are considered.
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But what exactly are those laboriously looking term sets U, S1, . . . , Sn and how can we
retrieve them from a cut-free proof? Let us recall the definitions of a language, grammar and the
notation of a decomposition, respectively.

Reconsider Formula 3.1 of all instantiations to form up a proof for a sequent ∀xF →, where
L is the language or term set comprising exactly all instantiations of F of a cut-free proof. We
will later on see that there is a method to efficiently compressing the representation of L through
a grammar decomposition and assume it to produce following grammar

G = U ◦α1 S1 ◦α2 · · · ◦αn Sn

s.t. L = L(G). This would imply that we could generate out of an arbitrary term setL a grammar
decomposition G, compute previously the mentioned canonical substitution and thus transform
the Herbrand sequent of a cut-free proof π∗ via a schematic extended Herbrand sequent into an
extended Herbrand sequent. Furthermore this would lead to the possibility of again building a
proof π from this extended Herbrand sequent with n cuts. This very procedure of generating
a grammar decomposition out of a language, forming up exactly this language is not really
efficient, although it is not even necessary. It suffices to build a grammar generating a language
L(G), which merely contains the original term set L, i.e.

L ⊆ L(G)

We will later on see that there exist in fact methods for generating a grammar decomposition
of this kind, which are able to even go beyond the simple production by simultaneously trying
to minimize its amount of rules. This leads to a compressed representation of the generated
language and consequently to a possible smaller representation as a proof in LK.

3.4 Grammar decomposition

Before we will deal with the process of constructing such a grammar decomposition let us get
an overview of the previously described and the remaining steps in Figure 3.3. The method de-
scribed in [9] compresses a cut-free proof π∗ to a proof π containing several cuts within a few
steps. We already discussed building a proof with cuts from an extended Herbrand sequent in
Section 3.2, as illustrated in step 5 of Figure 3.3 and proceeded by generalizing an extended Her-
brand sequent to separate the instantiating terms from the sequent in Section 3.3 as one can see
in step 4 in Figure 3.3. In the latter case we saw that we can find a canonical substitution, which
can be applied onto a schematic extended Herbrand sequent, to retrieve an extended Herbrand
sequent. This substitution, however needs term sets U, S1, . . . , Sn for the introduction of n cuts,
which remain to be computed. To generate such term sets, we will start from a given cut-free
proof π∗ and describe needed steps, illustrated in Figure 3.3 steps 1-3, to compute a grammar
decomposition, which contains exactly those needed term sets U, S1, . . . , Sn. We already men-
tioned in Section 3.1 the possibility to extract particular details necessary to proof a sequent
∀xF → from a proof, namely its Herbrand sequent. This extraction method, as shown in Figure
3.3 step 1, returns for an arbitrary cut-free proof π∗ its Herbrand sequent and thus enables us to
continue generating a language of instantiated terms, which we will later on try to compress by
a grammar decomposition.
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proof π with cuts cut-elimination−→ cut-free proof π∗

l 5 l 1

extended Herbrand-sequent Herbrand-sequent H(π∗)
l 4 l 2

grammar G(π)
3
←− language L(G(π))

Figure 3.3: Sketch of cut introduction method [9]

Extracting the term set

Since we have extracted the Herbrand sequent F [x\L] → out of a cut-free proof π∗ by simply
reading off all instantiations L of F , we can go on by interpreting L as a language which we will
further try to decompose (see Figure 3.3 step 2). Since a Σ1-sequent possibly contains several
quantified formulas, it is necessary to distinguish which term in T originates in which quantified
formula and thus we will have to mark them accordingly. This is done by possibly introducing
artificial function symbols f1, . . . , fm encapsulating the particular terms in T , where all terms
starting with fi arise from the ith quantified formula in the sequent.

Computing a minimal grammar

The goal of the next step, namely the efficient computation of a grammar decomposition generat-
ing at least all term instantiations L (see Figure 3.3 step 3) with a minimal number of production
rules, is a quite complex task and can be achieved in different ways. One method is described
in [9] and was already implemented in GAPT . Since a cut-free proof in LK is shaped like a tree
and expects various other properties to hold, e.g. the subformula property in Theorem 1, the
underlying grammar of a term set L of a proof has to fulfill again certain properties. Recall Def-
inition 18 of a trat-n grammar, which is an abbreviation for totally rigid acyclic tree grammar
with n non-terminals and reconsider previous Definitions 14, 15 and 16 from a proof-theoretic
point of view. Those laboriously looking properties are necessary to ensure a certain behavior
of our soon-to-be computed grammar to fit our proof-theoretic needs. The properties induced
by Definition 18 of a trat-n grammar are crucial to represent the grammar as a decomposition
and thus act as a compressed representation for our needed instantiations of quantified formulas
contained in the proof. This means that considering particular terms to be generated through
out the grammar via rules αi → t1| . . . |tki , have to grow in a monotone manner. Note that all
non-terminals αi in an underlying grammar decomposition, will be later on introduced variables
fulfilling the Eigenvariable condition within our proof with cuts. Therefore we have to demand
acyclicity as described in Definition 15, which is necessary since a proof represents a finite struc-

1Herbrand sequent extraction [10]
2extract language/termset from Herbrand sequent [9]
3compute a decomposition/grammar from termset [3]
4generating canonical solution and thus an extended Herbrand sequent from a grammar [9]
5rebuild proof with computed extended Herbrand sequent [9]
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ture and thus contains only finitely many term instantiations. Finally let us reconsider Definition
16, which comprises the characteristics of a substitution. Total rigidity of a grammar ensures
that if applying a rule αi → sj to a term t, all occurrences of αi in t are going to be substituted.
This behavior can be found analogously for substituting a variable within a term, e.g.

f(g(α1), α1)[α1\c] = f(g(c), c)

As we have all necessary preliminaries defined to proceed by computing a grammar decompo-
sition w.r.t. a given language L, we will start with the first method, which had already been im-
plemented and had the ability to introduce a single cut having a multiple quantified cut-formula.

Grammar decomposition via ∆-Table

The method described in [8] rests upon two essential structures: the ∆-vector and the ∆-table.
Let us start with the definition of the ∆-vector in Definition 34.
Note that in this method termsets are interpreted as termsequences to guide the search for a
grammar and prune the search space.

Definition 34 (∆-vector )
Let t1, . . . , tn ∈ L be a termsequence, then

∆(t1, . . . , tn) =


(f(u1, . . . , um), (s1, . . . , sn)) if all ti = f(ti1, . . . , t

i
m) and

∆(t1j , . . . , t
n
j ) = (uj , (s1, . . . , sn))

∀ j ∈ {1, . . . ,m}
(α, (t1, . . . , tn)) otherwise

is its computed ∆-vector, where α is a non-terminal.

The ∆-vector of a termsequence is computed by shifting all common leading function sym-
bols to the left. If there exists a position, where this operation is not possible anymore, a new
non-terminal α gets introduced, which acts as a placeholder for the remaining rests of the terms.
Consider Example 7, which illustrates an application of a ∆-vector to a particular termsequence.

Example 7 (Example application of ∆-vector)
Let L = (f(g(a), a), f(g(b), b), f(g(c), c))
Then ∆(L) = (f(g(α), α), (a, b, c)) represents a simple grammar {f(g(α), α)} ◦α {a, b, c}

The ∆-vector application performed on a particular termsequence will already result in a
simple grammar decomposition U ◦α S. As defined in Definition 21 a trivial grammar, where
U = {α}, can also be a result of the ∆-vector. This happens if there exists no common leading
function symbol for the terms ti ∈ L within the termsequence. Since the goal of this method
is to get more complex grammar decompositions, i.e. |U | ≥ 1, a second structure is needed,
namely the ∆-table.

Definition 35 (∆-table)
Let L be a termsequence. The ∆-table stores for a generating subset of terms S ⊆ L a list of
possible decompositions.
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For every subsequence L′ ⊆ L the resulting grammar decomposition ∆(L′) = (U, S) is stored
in the ∆-table, s.t. (U,L′) ∈ ∆table(S). The ∆-table comprises all possible decompositions
indexed by their generating term subsets S.

The ∆-table will be build iteratively by iterating through all subsequences of the underlying
sequence L. Note that the search space (induced by the exponential number of subsequences of
L) is in general vast and can be pruned by means of Theorem 2.

Theorem 2
Let T be a set of terms. If ∆(T ) = (α, T ) (trivial grammar), then ∆(T ) = (α, T ′) for every
T ′ ⊃ T .

Proof
Follows from Definition 34 of ∆-vector.

The theorem induces, that if we iteratively build up the subsequences (by stepwise adding
a term of t ∈ L to L′ and call ∆-vector) we can skip further computations of a subsequence
(i.e. forall L′′ ⊃ L′) if we already obtain a trivial decomposition to form up the sequence. In
short, if the terms already contained in L′ are not sharing any leading function symbols, they
will never, even less, when adding further terms from the underlying sequence L. Therefore
we can skip further steps for this subsequence and continue by considering other subsequences
build up recursively.

Starting from a given termsequence L, subsets L′ ⊆ L will be considered and individually
decomposed, s.t. ∆(L′) = (U, S). Since for all possible subsequences of L a decomposition
will be generated, we achieve a map s.t.

∆table(S) = {(U1, L
′
1), . . . , (Un, L

′
n)} (3.2)

where ∆(L′i) = (Ui, S) for all 1 ≤ i ≤ n. In other words, we will receive a table which
lists for all possible term subsets S ⊆ L, their generating parts L′i regarding their Ui. Since we
want to find a minimal grammar w.r.t. the number of rules, we are interested in finding an S in
the generated ∆-table s.t. regarding Equation 3.2 following holds

n⋃
i=1

L′i ⊇ L

I.e. for a particular S we can take all its grammar decompositions and are able to generate at
least the termset L. Usually there is not a uniquely defined S fulfilling this property and we
choose the one which is minimal regarding their components (or when speaking in the context
of a grammar; its number of rules), i.e.

argmin
S

{
|
n⋃
i=1

Ui|+ |S|
∣∣∣∣ (Ui, L

′
i) ∈ S and

n⋃
i=1

L′i ⊇ L
}
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Note that those minimal grammars have not to be unique. In fact they are, for our proof-
theoretic purpose, not even equally good as we will see in Chapter 5. In this method of com-
puting a minimal grammar decomposition all minimal grammars are transformed into proofs.
Finally we take the proof with the least number of applied rules.

This method merely introduces one cut into a proof, due to finding a single decomposition of
a term set L. To eventually achieve an introduction of several cuts one could call this procedure
iteratively, i.e. after a decomposing L ⊆ (Ui ◦αi S) again execute the algorithm to further
decompose the term set S. This will eventually lead to a decomposition

L ⊆ (U1 ◦α1 (U2 ◦α2 · · · ◦αn−1 (Un ◦αn S
′) . . . ))

and thus to an introduction of n cuts, as previously described. Note that (Un ◦αn S
′) = Sn and

for all 1 ≤ i ≤ n holds (Ui ◦ Si) = Si−1, whereas S0 = L′.

Grammar Decomposition via MinCostSAT formulation

In contrast to the previously described method of constructing a minimal grammar in Section
3.4, there exists another one described in [3] which does not generate all possible grammars and
merely selects a minimal one. Instead it uses the definition of a normal form for keys, which
paraphrase a set of terms within a term set. The method requires the generation of a sufficient
set of keys in normal form. This set is subsequently used to reduce the search for a minimal
grammar to the MinCostSAT Problem.

Preliminary definitions First let us focus on Definitions 36 and 37 of keys of a grammar and
a language.

Definition 36 (key of grammar )
A term k is called a key of a grammar G iff it occurs on the right-hand side of a production rule
p ∈ PG.

Definition 37 (Key of language )
A term k containing non-terminals α1, . . . , αn is a key of a language L if there is a set R (of
n-tuples) such that

k ◦α1,...,αn R = L

A key can be used to generate a particular term w.r.t. a term vector as described in Definition
38.

Definition 38 (Term generation)
Let L be a language and k be a key of L containing non-terminals α1, . . . , αn and s1, . . . , sn be
terms, s.t. for a particular term t ∈ L holds

t = kσL,k,t
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where σL,k,t = [α1\s1] . . . [αn\sn]. σL,k,t can be rewritten as σt if L and k can be inferred from
the context. We can denote this substitution by

k ◦α1,...,αn

s1...
sn

 = t

and say that t is produced by k.

Consider Example 8 for a possible term generation based on a language and a key.

Example 8 (Example term generation)
Let L = {f(g(a), b), f(g(c), c)} and k = f(g(α1), α2), then

f(g(α1), α2) ◦α1,α2

{(
a
c

)
,

(
b
c

)}
= L

induces the existence of the set R =

{(
a
c

)
,

(
b
c

)}
To efficiently compute those decompositions of a particular language we will have to define

also a normal form for keys, which will be given in association with equations. The validity of
an equation within a term set and w.r.t. a key is given in Definition 39.

Definition 39 (An equation relative to a key)
Let k be a key of a language L containing non-terminals α1, . . . , αn. Let q0, q1 ∈ L be terms
containing at most non-terminals α1, . . . , αn.
Then L fulfills an equation q0 ∼= q1 relative to k, iff for all t ∈ L holds that q0σt ∼= q1σt, where
σt is the corresponding substitution producing t as mentioned in 38.
Furthermore a term t falsifies an equation relative to k if q0σt � q1σt for some t.
Again, if k is clear from the context, we merely write that L satisfies/falsifies an equation.

Let us consider Definition 39 of an equation in practice in Example 9.

Example 9 (Example of an equation)
Let L = {f(g(c), g(c)), f(g(d), g(d))} and k = f(α1, g(α2)).
We obtain the following substitutions
σf(g(c),g(c)) = [α1\g(c)][α2\c]
σf(g(d),g(d)) = [α1\g(d)][α2\d]
Thus L fulfills the equation α1

∼= g(α2).

Definition 40 (normal form of a key)
Let k be a key of a term set L containing non-terminals α1, . . . , αl, where l ∈ N. Then k is in
normal form to L and α1, . . . , αl iff
for all satisfied equations q ∼= αi of L, where 1 ≤ i ≤ l and q is a either a subterm of k or a
closed term, q equals αi. We say that k is in normal form to L exactly if k is in normal form
relative to L and to all non-terminals occurring in k.
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Definition 40 above induces that every non-terminal αi within a key does not coincide with
another’s non-terminal αj underlying termstructure, where i 6= j. Furthermore a non-terminal
αi does not comprise a single subterm q, but a set of subterms. Note that the normal form of a
key k relative to a term set L does not require terms within L to have different leading function
symbols. For example consider the language L = {f(g(a), a), f(g(b), b)} and following term
f(α1, α2), which is already a key although all terms comprised by α1 have coinciding function
head symbols, i.e.

f(α1, α2) ◦α1,α2

{(
g(a)
a

)
,

(
g(b)
b

)}
= L

Furthermore consider the languageL = {f(g(c), g(c)), f(g(d), g(d))} and the key f(α1, g(α2))
from Example 9, which is not a key in normal form, since it fulfills the equation α1

∼= g(α2).
This fact becomes clearer when considering its decomposed representation

f(α1, g(α2)) ◦α1,α2

{(
g(c)
c

)
,

(
g(d)
d

)}
= L

In contrast to above key, consider the term f(α1, α1) which fulfills no equation and thus is a key
in normal form

f(α1, α1) ◦α1

{(
g(c)

)
,
(
g(d)

)}
= L

Computing a sufficient set of keys Let us focus on the computation of a set of keys for a
language L which is proven to suffice for constructing a grammar G of minimal size [3]. We
denote SL,n as a sufficient set of keys in Definition 41, which compresses a language L by a
trat-n grammar (see Definition 18).

Definition 41 (sufficient set of keys SL,n)
Let L be a term set and n ∈ N.
A set SL,n is called a sufficient set of keys of n non-terminals for L iff following holds:
Let m ∈ N be the size of a minimal trat-n grammar G s.t. L ⊆ L(G).
Then there is a trat-n grammar G′ with L ⊆ L(G′) of size m containing only keys in SL,n.

The computation of such a sufficient set of keys for a term set L and an integer n is defined
in [3]. The method is based upon Algorithm 1, which takes a term set L and an integer n as input
and returns the mentioned sufficient set of keys. Note that following algorithms are written in a
descriptive way in [3] and their implementation will result in an adapted version, which will be
discussed later on in Chapter 4.

The algorithm for a sufficient set of keys (see Algorithm 1) computes all keys in normal
form for each subset L′ ⊆ st(L) of subterms of L, where the size of each subset is bounded by
n + 1. This bound is crucial for the runtime of the algorithm. Since n denotes the number of
non-terminals, i.e. the number of cuts to be introduced it suffices to generate just keys in normal
form compressing a set of subterms of L of size n + 1. The proof for this statement among
others can be found in [3].

The function NORMFORM computes a set of keys in normal form for a set of subterms L′

and an integer n, which defines L′. To fully understand Algorithm 3 of NORMFORM, we have to
define some important notions.
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Algorithm 1 Generate a sufficient set of keys for a language
function SUFFKEYS(L: language, n: number of non-terminals)

SL,n = {} . initialize output set
for each L′ ⊆ st(L), where 1 ≤ |L′| ≤ n+ 1 do

SL,n = SL,n ∪ NORMFORM(L′, n) . see Algorithm 3 of normal form
end for
return SL,n

end function

Algorithm 2 Compute a key in normal form
function GDV(L′: set of terms)

k = ∆(L′)
for all pairs αi, αj , where i < j, of k do

if αi ∼= αj is satisfied then
k = k[αj\αi] . purge redundant αj

end if
end for

end function

First let us consider Algorithm 2 of the generalized delta vector, which describes the gen-
eration of a key regarding a particular term set. It uses the ∆-vector (see Definition 34), which
merely performs a left shift until no matching function head symbols can be found. Afterwards
we have to purge redundant non-terminals, i.e. αj which describes the same subterm set as
another αi, where i < j. Another important structure is the characteristic Partition of a term.

Definition 42 (characteristic Partition P)
Let k be a term and P the set of its positions p s.t. k|p contains a variable.
Then the characteristic Partition P of k is induced by following equivalence relation

p0 ∼ p1 ⇔ k|p0 = k|p1 where p0, p1 ∈ P

Consider Definition 42 of a characteristic Partition, which describes a list of positions within
the term, which refer to equal subterms. Let us consider following Example 10 to get a better
view on the definition of a characteristic Partition.

Example 10 (Example for a characteristic Partition)
Consider the term k = f(g(α1), g(α1), α2)
Then charPartition(k) = {{ε}, {1, 2}, {1.1, 2.1}, {3}}
{ε} represents the root
{1, 2} is induced by g(α1) = g(α1)
{1.1, 2.1} is induced α1 = α1

{3} is induced by the single occurrence of α2
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Algorithm 3 Compute the set of all keys in normal form
function NORMFORM(L′: set of terms of, n: number of non-terminals)

N = {} . initialize output set
kinit =GDV(L′) . compute a key via gdv
k = kinit[α\β] . substitute all non-terminals
P =CHARPARTITION(k)
for all ordered lists (P1, . . . , Pm), where Pi ∈ P ∪ {∅}, 1 ≤ m ≤ n do

knew = k
for 1 ≤ i ≤ n do

for all positions p ∈ Pi do
if p is a position of knew then

knew|p = αi . Replace term at p with non-terminal
end if

end for
end for
if there exists no βi in knew (i ∈ N) then

N = N ∪ {knew}
end if

end for
return N

end function

As we have summarized all necessary parts for computing all keys in normal form we pro-
ceed by defining Algorithm 3. It begins with initializing the output set N and continues by
substituting all occurring non-terminals αi by syntactically different non-terminals βi. This is
important for the next step, where we successively try to generate keys by replacing just those
positions defined by the key’s characteristic Partition. So for all ordered lists of size 1 ≤ m ≤ n
of P we try to substitute again the occurring terms at positions p ∈ Pi by non-terminals αi. If
and only if all previously introduced non-terminals βi could be removed the term is called a key
in normal form and will be added to the output set. This leads to a set of keys in normal form
w.r.t. the input set L′ of subsets of st(L), i.e.

u ∈ NORMFORM(L)⇒ u is in normal form rel. to L

GDV(L′) returns a key relative to L′, where afterwards all βi occurrences are replaced by corre-
sponding αi occurrences, which results in a key k. The characteristic partition of k is nothing
less than all positions of subterms of k satisfying an equation, i.e. P = {P1, . . . , Pl} is a set
of position sets of equal subterms of k. As we are looking at all permutations of P of size at
most m, i.e. (Pi1 , . . . , Pio), where 1 ≤ o ≤ m, we generate a sequence of positions which we
try to replace by corresponding non-terminals αi. When we take a position set into account,
we will replace the subterms at all positions (if possible) with a single αi. Since the only sub-
terms q0, q1 ∈ st(k) which satisfy an equation are found in the same position set k|p0 = q0 and
k|p1 = q1, we will not be able to satisfy them unless they denote the same subterms, i.e. q0 = q1.
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Thus the resulting keys produced by NORMFORM(L′) have to be in normal form relative to L′.
The proof can be found in [3].

In Example 11 we illustrate the behavior of Algorithm 3 for a particular set of subterms of a
language L.

Example 11 (Example computation of keys in normal form)
Let n = 2,
L = {f(a, a), f(b, b), f(g(a), g(a)), f(g(b), g(b)), f(g(a), g(b)), f(g(b), g(a))} a language and
L′ = {f(g(a), g(a)), f(g(b), g(b)), f(g(a), g(b))} a subset of L,
i.e. L′ ⊆ L. Then normform(L′, n) is computed as follows.
kinit = f(g(α1), g(α2)) and thus k = f(g(β1), g(β2))
Next the characteristic partition of k is generated

P = {{ε}, {2.1}, {1}, {2}, {1.1}}

Then we generate a set P of all ordered lists of elements in P of at most size n = 2

P = { (ε), (2.1), (1), (2), (1.1), (2, 1.1), (1.1, 2), (1, 2), (2, 1), (1, 1.1), (1.1, 1),

(2.1, 1), (1, 2.1), (2.1, 2), (2, 2.1), (2.1, 1.1), (1.1, 2.1), (ε, 2.1), (2.1, ε),

(ε, 1), (1, ε), (ε, 2), (2, ε), (ε, 1.1), (1.1, ε) }

For the iteration over above set of permuted lists we will give three particular examples of lists,
where further lists can be handled analogously.

• Consider the case P1 = (ε), where we perform the substitution on the whole key, s.t.
knew = αi. Since neither β1 nor β2 are contained in knew any longer, we can add the
term to the resultset N .

• Let us observe the case for (1.1, 2) (i.e. P1 = 1.1 and P2 = 2)), where two substitutions
are performed on mentioned positions s.t. knew = f(g(α1), α2). As no βj occurs in knew
anymore, we can add it to the resultset N .

• Finally consider following case of (2, 2.1) (i.e. P1 = 2 and P2 = 2.1)), where at first the
substitution k|2 = α1 is performed, s.t. k = f(g(β1), α1). Secondly we try to substitute
k|2.1, but since this position does not exist any longer, we skip this substitution. On the
final check we observe that not all variable occurrences βj have been substituted, i.e.
k = f(g(β1), α1). Thus the key is not added to the output set.

By applying above exemplary behavior to P, we successfully generated all normal forms of
f(g(β1), g(β2)), namely

N = [ α1, f(g(α2), α1), f(g(α1), α2), f(α1, α2), f(α2, α1), f(α2, g(α1)),

f(α1, g(α2)), f(g(α2), g(α1)), f(g(α1), g(α2)), α1, α2, α1, α2, α1, α2, α1, α2 ]

Note: The set contains f(g(β1), g(β2)) itself, namely f(g(α1), g(α2)), thus this key is already
in normal form. which results in a set

N ′ = { α1, f(g(α2), α1), f(g(α1), α2), f(α1, α2), f(α2, α1), f(α2, g(α1)),

f(α1, g(α2)), f(g(α2), g(α1)), f(g(α1), g(α2)), α2 }
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Note: N ′ is not necessarily a complete enumeration of keys for L, since we generated it merely
for a particular subset L′ ⊆ L. To retrieve an exhaustive set we have to refer to Algorithm 1,
which generates the union of all normal forms of subsets L′ ⊆ L of size at most n+ 1.

As we can see in Algorithm 1, we are able to generate a sufficient set of keys of a particular
term set L and proceed by generating a MinCostSAT formulation based on this very set. This
formulation can be taken as a basis for a Linear Programming or partial weighted MaxSAT
formulation and thus can be used to solve it via external tools such as an arbitrary MaxSAT
solver or a Simplex solver.

Reduction to MinCostSAT

Definition 43 (i-rest)
Let G = (S,N, α0, P ) be a trat-n grammar and

δ = α0, t1, t2, . . . , tm, q

be a derivation of a term q ∈ L, where V (ti) ⊆ {αi+1, . . . , αn}.
Let p be a position in ti−1 (for i ≥ 1) s.t. ti−1|p = αi.
Then ti|p is called an i-rest of the rigid derivation δ.

Consider Definition 43 of an i-rest, which describes the concept of substituting subterms by
a variable within a derivation of a term.

For a better understanding consider Example 12 of an i-rest.

Example 12 (Example of an i-rest)
Let G = (S,N, α0, P ) be a trat-2-grammar and

δ = α0, f(α1, α1), f(g(α2), g(α2)), f(g(a), g(a))

be a derivation of the term f(g(a), g(a)).
Then g(α2) is a 1-rest and a is a 2-rest of δ.

We proceed by defining the essential structure of the MinCostSAT formulation by defining
the two types of propositional variables occurring in the formulation in Definition 44.

Definition 44 (propositional Variables for MinCostSAT)
Let L be a language, n ∈ N be the given number of non-terminals (which is intentionally bound
by n ≤ |L|) and SL,n the sufficient set of keys of L. Then we consider for our MinCostSAT
formulation following two types of propositional variables.

1. xi,k, which represents the potential production rule αi → k, where k ∈ SL,n and 0 ≤ i ≤
n

2. xt,i,q, which states that t ∈ st(L) is a potential i-rest of a derivation of q ∈ L and
1 ≤ i ≤ n
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For a MinCostSAT reduction we have to formalize essential parts of a grammar, i.e. how a
decomposition is correctly built or which production rules imply the existence of other produc-
tion rules. The following formulas will be necessary to ensure this. We start with Definition 45
of RL,S(q), which merely forbids grammars, where we have to derive more than one i-rest, i.e.
non-rigid grammars.

Definition 45 (RL,S(q) )
Let L be a term set and S the corresponding sufficient set of keys, containing at most the non-
terminals α1, . . . , αn (n > 0). Assume that q ∈ L, then we have

RL,S(q)⇔
∧

t0,t1∈st({q}),t0 6=t1,1≤i≤n

¬xt0,i,q ∨ ¬xt1,i,q

Consider Example 13, where the formulation of RL,S(q) for a particular term is described.

Example 13 (Example ofRL,S(q))
Let q = f(s2(0)) be a term in a term set L, S be its sufficient set of keys and n = 1.
Then the subterms of q are

st({q}) = {0, s(0), s2(0), f(s2(0))}

We generate the formula RL,S(q) according to Definition 45

RL,S(f(s2(0))) =

(¬x0,α1,f(s2(0)) ∨ ¬xs(0),α1,f(s2(0))) ∧(¬x0,α1,f(s2(0)) ∨ ¬xs2(0),α1,f(s2(0))) ∧
(¬x0,α1,f(s2(0)) ∨ ¬xf(s2(0)),α1,f(s2(0))) ∧(¬xs(0),α1,f(s2(0)) ∨ ¬xs2(0),α1,f(s2(0))) ∧

(¬xs(0),α1,f(s2(0)) ∨ ¬xf(s2(0)),α1,f(s2(0))) ∧(¬xs2(0),α1,f(s2(0)) ∨ ¬xf(s2(0)),α1,f(s2(0)))

Note: We merely have to consider unordered pairs of subterms.

In Definition 46 DL,S(t, l, q) we consider all possible rules xl,kj , i.e. αl → kj , treating keys
kj of t. Those keys may not contain non-terminals αi, where i ≤ l, but need not contain all
non-terminals αj for j > l. Thus we have to fix a notation, s.t. we can iterate through all non-
terminals occurring in kj , i.e. αi1 , . . . , αim . The formulaDL,S(t, l, q) itself is listing all possible
rules applicable in a derivation, for deriving q from t, where 1 ≤ l ≤ n. It ensures that in case a
rule is chosen, its induced i-rests have to be fulfilled accordingly, leading to a formulation of a
dependency graph. This dependencies merely ensure that every derivation of the wanted trat-n
grammar is terminating in a terminal term t ∈ L′, where L′ ⊆ L.

Definition 46 (DL,S(t, l, q) )
Let L be a language and S the corresponding sufficient set of keys containing at most the non-
terminals α1, . . . , αn (n > 0). Assume t ∈ st(L), 0 ≤ l ≤ n and q ∈ L. Furthermore assume
that k1, . . . , ks ∈ S, containing at most non-terminals αi where i > l, are keys of t. Assume
1 ≤ j ≤ s. Let αi1kj denote the non-terminal with the smallest index in kj , αi2kj the one with
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the second smallest index in kj and so on. Let αimkj be the non-terminal with the largest index
occurring in kj . Then following decomposition

kj ◦αi1
kj
,α

i2
kj
,...αim

kj


ri1kj
ri2kj

...
rimkj


where ri1kj , r

i2
kj
, . . . , rimkj are the corresponding rests of the non-terminals in kj , is represented as

the following formula

DL,S(t, l, q)⇔
∨

1≤j≤s
xl,kj ∧ xri1kj ,i1,q

∧ · · · ∧ xrimkj ,im,q
(3.3)

CL,S(q) subsumes previously defined formulations, which we will consider step by step to
get a closer look on its behavior.

Definition 47 (CL,S(q) )
Let L be a term set and S the corresponding sufficient set of keys in normal form containing at
most non-terminals α1, . . . , αn (for some n > 0). Furthermore let q ∈ L. Then

CL,S(q)⇔
( ∧
t∈st({q}),1≤i≤n

xt,i,q → DL,S(t, i, q)
)
∧DL,S(q, 0, q) ∧RL,S(q)

The first formula in the topmost conjunction, i.e.
( ∧
t∈st({q}),1≤i≤n

xt,i,q → DL,S(t, i, q)
)
,

states that every chosen i-rest of a term t deriving a term q ∈ L appearing on the left hand-side
of aDL,S implication, requires the underlying formulaDL,S(t, i, q) to hold. This means that the
remaining i-rest has to be further processed by choosing additional rules induced byDL,S(t, i, q)
to eventually end up in a terminal term. The second part, namely DL,S(q, 0, q), ensures that the
term q ∈ L has to be derived, whereas all non-terminals αi (i ≥ 0) are admitted. Finally in the
third partRL,S(q) we ensure two different rests to be mutually exclusive within the grammar for
a term q ∈ L, otherwise we would allow ambiguous grammars.

Definition 48 (CL,S)
The formula CL,S is defined by the conjunction of formulas CL,S(q), for all q ∈ L.

CL,S ⇔
∧
q∈L

CL,S(q)

The intended meaning of CL,S is that for every term q ∈ L a derivation has to be generated
according to the previously defined formulas, which induce a dependency structure representing
a guideline for the grammar. The size of the formula CL,S is polynomially bounded by the input
L, S (see [3]). For a MinCostSAT instance it remains to assign costs cj to every propositional
variable xj . We simply assign all variables of the form xi,k a cost cj = 1 and every other variable
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xt,i,q a cost cj = 0. This induces that the i-rest variables are only responsible for the correctness
of a resulting decomposition and will be not affecting the overall costs. In contrast the costs of
variables xi,k play an important role in the MinCostSAT formulation, due to the fact that their
amount is minimized by definition, s.t. we obtain a minimal grammar, w.r.t. the amount of rules.

We will later on see in Section 4.2 how exactly this instance of MinCostSAT is transformed
to an instance of partial weighted MaxSAT in order to solve it.

As we may not retrieve directly a grammar G, but an interpretation of CL,S , we have to
transform this into a grammar. This is achieved in a straight forward manner, namely by ignoring
all propositional variables xt,i,q and simply creating rules αi → k for every variable xi,k, where
E(xi,k) = true. This leads to a grammar G with a rule set

PG = { α0 → k(0,0)| . . . |k(0,m0)

... →
...

αn → k(n,0)| . . . |k(n,mn)

}

Since α0 is the axiom or starting non-terminal, we can transform this grammar into a, for our
purposes, more intuitive notation of a decomposition.

{k(0,0), . . . , k(0,m0)} ◦α1 · · · ◦αn {k(n,0), . . . , k(n,mn)}

Finally we can use this grammarG to generate a canonical substitution, which is then applied
to an according schematic extended Herbrand sequent to obtain an extended Herbrand sequent.
Thus we can us the latter to build a proof with several introduced cuts as previously described.
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CHAPTER 4
Implementation

Before we start to discuss the implementation of the method in [3], we again need to fix certain
notations and define some auxiliary functions and data structures which we are going to use
throughout the implementation.

4.1 Preliminaries

First let us define a unification operator $ in Definition 49, which abbreviates the procedure of
merging to sets or adding elements to a set.

Definition 49 (Unification operator for sets $)
Let S1, S2 be arbitrary sets, then we write

S1 $ S2

as an abbreviation of
S1 = S1 ∪ S2

i.e. adding all elements x ∈ S2 to the set S1.

Another term needed for our implementation is that of a rest fragment, which is given in
Definition 50. Since we are going to replace subterms by a variable at particular positions within
a term, and those eventually contain other variables we have to define the terms in between as
rest fragments.

Definition 50 (Rest fragment)
Let t be a term, p an arbitrary position in t and t|p = t′ the corresponding subterm in t. If a
replacement of t′ by αi is performed s.t. t|p = αi, then t′ is called a rest fragment of t w.r.t. αi,
possibly containing variables β1, . . . , βm.
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Example 14 (Example of a rest fragment)
Let k = f(g(β1), β2) be a key and

r =
{(a

b

)
,

(
c
d

)}
its rests abbreviating a term set

L = {f(g(a), b), f(g(c), d)}

For all terms t ∈ L consider following replacement t|1 = α1, where g(β1) represents its rest
fragment.

Consider the following list of data structures in Figure 4.1, which were used in the imple-
mentation. Note that the algorithm was developed within a class and mentioned data structures
are members of such, thus we can assume them to be available at any time.

1. termMap =̂ Map storing for each (sub-)term its individual index

2. termIndex =̂ a progressively incremented index for newly introduced terms

3. keyList =̂ List representing a sufficient set of keys

4. keyIndexMap =̂ Map storing for each key its index in keyList

5. keyMap =̂ Map storing for each term a list of indexes of keys, which produce the particular
term

6. decompMap =̂ Map storing for each key a set of its produced terms

7. propRules =̂ Map storing for each variable xi,k of the MinCostSAT formulation a tuple of
the form (i, k)

8. propRests =̂ Map storing for each variable xt,i,q of the MinCostSAT formulation a tuple
of the form (t, i, q)

Figure 4.1: members of the TreeGrammarDecomposition class

Let us take a look on above data structures in detail, which are crucial to keep track of
processed terms and keys. The MinCostSAT formulation described in Chapter 3 assumes the
different propositional variables to be generated w.r.t. terms, keys and non-terminals. Since it
is not a wise move to use the very terms, keys and non-terminals in the subscripts to identify a
propositional variable, we will store them into corresponding data structures and assign each of
them a unique index, which are used instead. Note that all data structures are assumed empty
and all numeric variables are assumed to be 0. Let us start with termMap (Item 1) which
maps a term onto its unique index. To handle this data structure appropriately consider the
function addToTermMap in Algorithm 4, maintaining termMap by possibly adding a new
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term to it if it is not already contained. In case the new term t is already available in termMap, it
merely returns the corresponding index, otherwise a fresh index is created (through incrementing
termIndex; see Item 2), gets assigned to t in termMap and is returned.

Algorithm 4 adding a term t to the termMap

1: function ADDTOTERMMAP(t: term)
2: if t /∈ D(termMap) then
3: . where D(·) is the domain
4: termMap(t) = termIndex . see Item 2
5: termIndex = termindex+ 1
6: end if
7: return termMap(t)
8: end function

Next let us deal with keyList (Item 3) representing the prospective sufficient set of keys,
where each key gets implicitly assigned an index based on its position in the list. For retrieving
the index of a particular key within the keyList we refer to keyIndexMap, which maps each
key onto its corresponding index in keyList. In Item 5 we declare the keyMap, which stores
for a term t ∈ L a list of indexes of keys k ∈ keyList producing it. Since we will need to
access the data in the opposite direction, i.e. retrieving for a given key its produced terms we
define decompMap in Figure 4.1 Item 6. Items 7 and 8 will contain all propositional variables
which were generated by the algorithm mentioned in Definition 44, whereas rule variables and
rest variables will be stored separately. Furthermore we will need additional auxiliary functions
defined on arbitrary sets. First consider Algorithm 5 which is able to generate from a given set
S and an integer n ≥ 1 all subsets of S of size n. In short the function will be called recursively
with a decreasing set S′, which differs from S by one element x and both cases x will be added
to all generated subsets of the power set or not. The counter i merely keeps track of the amount
of already taken elements to avoid violating the upper bound n.
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Algorithm 5 generate all subsets of S of size n
1: function GENSETS(S: set, i: counter, n: size upper bound)
2: switch S do
3: case empty
4: return {}
5: case i+ 1 < n
6: let x ∈ S be an arbitrary element
7: S′ = S\{x}
8: T =GENSETS(S′, i+ 1, n)
9: T ′ = {} . init set T ′

10: for T in T do
11: T ′ $ {{x} ∪ T} . add x to all sets T ∈ T
12: return GENSETS(S′, i, n) ∪ T ′

13: case i+ 1 ≥ n
14: let x ∈ S be an arbitrary element
15: S′ = S\{x}
16: return GENSETS(S′, i+ 1, n) ∪ {{x}}
17: end function

The function GENSETS is used solely in Algorithm 6 generating for a set S and an upper
bound n all subsets of S of at most size n. This is achieved due to iterative calls of genSets for
1 ≤ i ≤ n.

Algorithm 6 generate all subsets of S of size ≤ n
1: function BOUNDEDPOWER(S: set, n: size upper bound)
2: P = {} . init bounded power set
3: for i in 1, . . . , n do
4: P $ GENSETS(S, 0, i)
5: return P
6: end function

Another important function for processing sets is diagCross defined in Algorithm 7, which
generates for a given set S all its subsets of size 2 and returns them as a set of tuples. This may
seem artificial, but will be of use for our implementation. We achieve this, by combining every
element x with all other elements left in S′ = S\{x} and proceed by recursively call diagCross
for the rest S′.
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Algorithm 7 generate all subsets of S of size 2 as tuples
1: function DIAGCROSS(S: set)
2: if S = {} then
3: return {}
4: else
5: let x ∈ S be an arbitrary element
6: S′ = S\{x}
7: R = {}
8: for y in S′ do
9: R $ (x, y)

10: return R ∪ DIAGCROSS(S′)
11: end if
12: end function

Another function used within the algorithm checks for a given term t if r is a rest w.r.t. k.
We refer to Definition 38 describing a substitution of variables αi1 , . . . , αim with corresponding
terms ri1 , . . . , rim , s.t. we obtain

k[αi1\ri1 ] . . . [αim\rim ]

The function isRest merely applies the above mentioned substitution where all variables
αi1 , . . . , αim (ordered by their individual index) in k are substituted by their corresponding rests,
which are abbreviated as r. Finally we check if t = k[αi1\ri1 ] . . . [αim\rim ] and return true if
they are equal, i.e.

k ◦αi1
,...,αim

ri1...
rim

 = t

or false otherwise.

Algorithm 8 check if r is a rest of t w.r.t. k
1: function ISREST(t: term, k: key, r: rest)
2: let αi1 , . . . , αim be non-terminals of k sorted by index
3: let ri1 , . . . , rim = r be the potential corresponding rests
4: return t =̂ k[αi1\ri1 ] . . . [αim\rim ]
5: end function

Consider Algorithm 9, which calculates for a given term t its characteristic partition as de-
scribed in Definition 42. We start from a set of all positions in t and an empty characteristic
partition. Next we iterate through P and collect for each position pi, all positions pj ∈ P , s.t.
their denoted terms are syntactically identical, i.e. t|pi = t|pj . Afterwards we remove them from
P and add a new partition containing the collected positions to the characteristic partition. Fi-
nally we return the characteristic partition P which encapsulates all position partitions denoting
syntactically identical terms.
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Algorithm 9 calculate characteristic Partition P for a term t

1: function CALCCHARPARTITION(t: term)
2: P = {} . init characteristic partition
3: let P be the set of all positions in t
4: for pi in P do
5: S = {pj | t|pi = t|pj , pj ∈ P} ∪ {pi} . add all corr. positions to partition
6: P = P\S . remove positions S from P
7: P $ {S} . add partition to characteristic partition
8: return P
9: end function

4.2 The TreeGrammarDecomposition algorithm

As we have defined all necessary parts for describing the TreeGrammarDecomposition method
[17] we proceed by successively describing all its intermediate steps for generating a minimal
trat-n-grammar G out of a language L and an integer n.

Calculating a sufficient set of keys

Before we proceed by defining the computation of a sufficient set of keys, we have to define a
method (Algorithm 10) which computes for a given term set L′ and an integer n ≥ 1 all keys in
normal form. After initializing a set collecting the soon-to-be generated keys in Line 2, we call
in Line 3 the generalized delta vector for L′, which had already been implemented in GAPT and
was described in Algorithm 2 (see [8]). The mentioned method returns a key k containing non-
terminals α0, . . . , αm and all rests r = r0, . . . , rm, where m < n. Since the implementation of
gdv in GAPT returns a key containing non-terminals starting with and index i = 0, we have to
increment each index to retrieve a valid grammar where α0 is its startsymbol. Simultaneously
we will rename all variables s.t. we replace every occurring variable αi in k by a syntactical
different variable βi+1 in Line 4. Line 5 contains a call of Algorithm 9 where the characteristic
partition P for k is computed. Algorithm 6 was also defined in the preliminaries of this chapter
and is called in Line 6, where we obtain for our previously calculated characteristic partition
P all of its permutations of size at most n. This bound n is crucial for the runtime and space
bounds of the algorithm, namely operating in a polynomial order, rather than in an exponential
one. Before we will see, why this boundary can be defined, let us take a look on the loop in Line
7, which merely iterates through all permutations of size at most n. In the next Lines 8 - 17 we
try to replace successively for each position set Pi ∈ P ′ all positions pj ∈ Pi with a variable αi
and thus to eliminate all previously introduced variables βl comprised in terms replaced by αi.
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Algorithm 10 Compute normal form of a term set
1: function NORMFORM(L′: term set, n: Integer)
2: init keys . final list of keys
3: (k, r) = gdv(L′) . compute key via generalized delta vector
4: rename all αi to βi+1 in k
5: P =CALCCHARPARTITION(k)
6: P ′ =BOUNDEDPOWER(P ,n) . permute all subsets of size ≤ n of P
7: for P ′i in P ′ . for each permutation do
8: k′ = k
9: init empty map rmap . Map for storing rest fragments generated by substituting

10: for Pi in P ′i . for each position set of P ′i do
11: r = k|p0 , where p0 ∈ Pi . backup an arbitrary rest
12: for pj in Pi . for each position in Pi do
13: if pj exists in k′ then
14: set k′pj = αj
15: end if
16: if all replacements on positions pj ∈ Pi were successfully executed then
17: rmap(i) = r
18: end if
19: if not a single βl occurs in k′ then
20: add k′ to keys

21: finalrests =

{ rmap(i1)[βi1\ri1 ],
. . . ,

rmap(im)[βim\rim ]

} . substitute rest fragments

22: decompMap(k′) $ finalrests
23: end if
24: return keys
25: end function

Example 15 (Example application of NORMFORM)
Let L = {f(a, g(b)), f(b, g(a)), f(a, g(c))} be our (sub-)language from which we want to com-
pute all keys in normal form, where n = 2.
We initialize keys with an empty set in Line 2 and proceed by calling GDV (Line 3) for our lan-
guage L.
In further consequence we obtain a key

k = f(α0, g(α1))

and its corresponding rests

r =

{(
a
b

)
,

(
b
a

)
,

(
a
c

)}
Since all t ∈ L share a common leading function symbol on position ε, namely f , as well as on
position 2, namely g, those function symbols remain in the generated key k.
Observe that

k ◦α0,α1 r = L
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In Line 4 we rename the non-terminals as described and obtain

k = f(β1, g(β2))

Afterwards we generate the characteristic partition of k in Line 5

P = {{ε}, {2.1}, {1}, {2}}

from which we generate all permuted subsets of size at most n = 2 denoted by sequences

P ′ = { ({ε}), ({2.1}), ({1}), ({2}), ({1}, {2}),
({2}, {1}), ({2.1}, {1}), ({1}, {2.1}), ({2.1},
{2}), ({2}, {2.1}), ({ε}, {2.1}), ({2.1}, {ε}),
({ε}, {1}), ({1}, {ε}), ({ε}, {2}), ({2}, {ε})}

In Line 7 we iterate over all previously generated permutations P ′i of P ′. We illustrate the
following iterations on P ′2 = ({1}) and P ′4 = ({1}, {2})

For P ′2 we first copy k and operate for this iteration merely on k′.
To keep track of our rest fragments we initialize rmap as an empty map.
We proceed by iterating over all position sets within P ′2, i.e. {1}.
The rest fragments of all positions in {1} are denoted by r = k′|1 = β1.
Since the first position 1 exists in k′ we replace the term at this position by α1 as described in
line 14.
As this is the only position in the set we continue by checking if all replacements on positions
in P ′2 were successfully executed, which in fact was the case. The intermediate computed key is
denoted by k′ = f(α1, g(β2)) Therefore we store the calculated restfragment r = β1 in rmap.
Next we have to evaluate if there occurs a βl in k′, which unfortunately is the case, as one can
observe at k|2.1 = β2. Therefore this iteration did not result in a key in normal form and we drop
all previously computed restfragments consequently by reinitializing rmap in the next iteration.

Consider following case of P ′4 = ({1}, {2}) which eventually will result in a key in normal
form. Again this iteration operates on a copy of k, namely k′ and on a freshly initialized map
rmap.
Iterating over all position sets of P ′4, i.e. {1}, {2} results in following computation steps.
The first iteration will happen analogously to previously described one, as our first position set
equals {1}. Therefore we obtain rmap(1) = r = k′|1 = β1 and k′ = f(α1, g(β2)).
In the next iteration, applied on {2}, we generate the corresponding restfragment r = g(β2).
Since the position 2 exists in the intermediate key k′, i.e. k′|2 = g(β2) we proceed by replacing
it with α2 and consequently store the restfragment in rmap

rmap(2) = r = g(β2)

Since all position sets were processed we proceed in Line 19 by checking if there still exists at
least a βl in k′ = f(α1, α2). Obviously this is not the case which implies that we found a new
key in normal form w.r.t. L and n = 2.

50



Therefore we store k′ in our list of keys in normal form keys and calculate the finalrests by
means of our previously backed up restfragments in rmap, i.e.

finalrests =

{(
β1[β1\a]
g(β2)[β2\b]

)
,

(
β1[β1\b]

g(β2)[β2\a]

)
,

(
β1[β1\a]
g(β2)[β2\c]

)}

which results in

finalrests =

{(
a
g(b)

)
,

(
b

g(a)

)
,

(
a
g(c)

)}

Finally we store the finalrests associated with our key in normal form k′ in decompMap as
shown in Line 22. In the end of the computation of NORMFORM we obtain the set of keys

keys = {α1, f(α1, α2), f(α2, α1), f(α2, g(α1)), f(α1, g(α2)), α2}

and their corresponding finalrests stored in decompMap.

Recall Definition 50 of a rest fragment and an illustration of it in Example 14. We have
to consider possible rest fragments in between αi and βl, while applying the mentioned re-
placements. After all βl became conceivably successfully replaced by variables αi, we perform
substitutions for all βl contained in the rest fragments by their individual rests (see Lines 19 to
22). The rests, denoted by their corresponding variables αi, are added to a list associated to
k′ in decompMap. Note that the maximal amount of variables βl is bounded by m ≤ n, as
previously mentioned, and thus the case of obtaining a new key k′ by successfully replacing all
βl, leads to an introduction of at most n variables αi. This fact allows us to restrict the size of a
permutation of position sets to at most n, since for each permutation at most n variables αi get
introduced, which represents the previously mentioned crucial complexity bound. Finally the
set of all keys in normal form is returned in Line 24.

Next we are going to generate the sufficient set of keys from a given language L. We start
by generating all subterms of L and proceed by again calling boundedPower, but this time for
the set of all subterms of L and a bound of n+1. Again this bound is crucial to avoid generating
the whole power set of subterms of L, but only sets of size at most n. For each of those sets
normform will be called in Line 5, whose complexity is also bound as previously described
by our omnipresent bound n. As we have successfully calculated the set of keys in normal form
of L′ and stored its real rests in decompMap, we now have to add the returned keys to our data
structures, where all keys get associated with all terms t ∈ L′ and vice versa. This step is needed
to store which key originated from which terms and which terms can be produced by which
keys. Finally the sufficient set of keys can be found in keyList.
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Algorithm 11 Compute a sufficient set of keys
1: function SUFFKEYS

2: st = subterms(L) . compute all subterms of a term set
3: poweredSubsets =BOUNDEDPOWER(st,n+ 1) . gen. subsets of st of size ≤ n+ 1
4: for L′ in poweredSubsets do
5: keys =NORMFORM(L′) . gen. keys for L′ in normal form
6: add all keys to keyIndexMap and keyList
7: let keyIndexes be the corresponding indexes of keys
8: for t in L′ do
9: add keyIndexes to keyMap(t)

10: end function

Generating a MinCostSAT formulation

As we already initialized all necessary data structures, i.e. our sufficient set of keys for a lan-
guage L, we are able to obtain the corresponding MinCostSAT formulation as described in
Section 3.4. The definition of the MinCostSAT formulation can be found in Paragraph 43 and is
subdivided into analogous parts. Let us start with Algorithm 12 which generates for a subterm
t of a term q and a non-terminal index l the formula DL,S(t, l, q). First we possibly add q to
the termMap via addToTermMap and retrieve its index, before we proceed by declaring our
resulting formula D. The formula itself represents a disjunction of formulas, thus we initialize
said with ⊥, as this has no effect whatsoever on the logical expression of our formulation. In
Line 4 we iterate over all keys producing the particular subterm t of q. Note that we are going
to encode every key, term, etc. by its index in their corresponding data structures. Therefore ik
represents the index of the key k in keyList. Next we initialize the propositional variable xl,ik
representing the rule αl → k and assign it in the propRules map to a tuple carrying all rele-
vant indexes. This may seem redundant, because the indexes could also be retracted out of the
propositional variable. Indeed the trade-off between explicitly storing additional tuples in the
memory containing the indexes, and necessary object operations to retrieve said indexes from a
propositional variable forced us to store the information separately. We collect all variables/non-
terminals contained in k, after retrieving k from keyList via its index ik. Since we are at this
point invariably interested in the particular indexes of the variables contained in k, we extract
them in Line 9. As in the theoretical part already described we may proceed to handle the
current key, if all variables contained in k have indexes i s.t. i > l. This condition ensures
that our grammar is going to be acyclic and corresponds to Definition 30. If this rule is able
to take place in our solution, regarding above condition, we check every possible rest (stored
in decompMap(k)) if it is actually a valid rest of k w.r.t. t. Consider Algorithm 8 of isRest
deciding whether a particular key k, when performing according substitutions w.r.t. a rest vec-
tor r result in a particular term t. If so, we instantiate for each rest ri a propositional variable
xiri ,l,iq (where iri , iq are the indexes of ri and q respectively) and conjugate them. This forms
up a consequence, which claims that if the rule αl → k is chosen to be in the solution, then all
of its rests, if there are any, have to be further decomposed by rules αj → k′, where j > l. The
disjunction of all of those conjunctions is returned as formula D(t, l, q), which represents a list
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of individual dependencies for all rules.

Algorithm 12 Compute D(t, l, q) formula
1: function D(t: subterm, l: non-terminal index, q: term)
2: iq = addToTermMap(q) . get index of q
3: D = ⊥ . init formula D
4: for ik in keyMap(t) do
5: init atom xl,ik
6: propRules(xl,ik) = (l, ik) . backup tuple
7: k = keyList(ik) . get key with index ik
8: let A = {αi1 , . . . , αim} be all non-terminals of k sorted by index
9: let I = {i1, . . . , im} be the indexes of αi ∈ A

10: if for all i ∈ I holds that i > l then
11: Dk = xl,ik . init subformula Dk

12: for r in decompMap(k) do
13: if ISREST(t, k, r) then
14: for ri in r do
15: iri = addToTermMap(ri) . get index of ri
16: init atom xiri ,l,iq . let l be the index of a non-terminal replacing ri
17: propRests(xiri ,l,iq) = (iri , l, iq) . backup triple
18: Dk = Dk ∧ xiri ,l,iq
19: end if
20: D = D ∨Dk

21: end if
22: return D
23: end function

We already know that, we have to make sure that our resulting grammar will be totally
rigid. Consider Algorithm 13 which generates for a particular term q the formula R(q) ensuring
this condition. Recall Algorithm 7 which, for a given set S, provides a set of pairwise differ-
ent elements x, y ∈ S, without an ordering. Through this function we generate from the set
subtermindexes, a set of all pairs of indexes of subterms of q. For each of those pairs we will
initialize propositional Variables xi1,i,iq and xi2,i,iq respectively, add them to our propRests
map and conjugate the formula (¬xi1,i,iq ∨ ¬xi2,i,iq) with already computed R, where initially
R = >. This formula allows us to represent the fact that all rests of term q have to be mutually
exclusive, i.e. there can always exist at most one rest for a non-terminal within a derivation at a
time. Finally the formula R(q) is returned.

53



Algorithm 13 Compute R(q) formula
1: function R(iq: term index of q, subtermIndexes: set of subterm indexes of q)
2: pairs =DIAGCROSS(subtermIndexes) . pairs i1 6= i2 ∈ subtermIndexes
3: R = > . init formula R
4: for (i1, i2) in pairs do
5: for i in 1, . . . , n do
6: init atom xi1,i,iq
7: init atom xi2,i,iq
8: propRests(xi1,i,iq) = (i1, i, iq) . backup triple
9: propRests(xi2,i,iq) = (i2, i, iq) . backup triple

10: R = R ∧ (¬xi1,i,iq ∨ ¬xi2,i,iq)

11: return R
12: end function

As we have already implemented a way to generate D(t, l, q) and R(q), provided corre-
sponding parameters are provided, we continue by defining a way to computeC(q) in Algorithm
14 as described in Definition 47. The function, given a term q, will first compute all subterms of
q and add it to the termMap to retrieve its corresponding index. As we will need all indexes of
subterms of q for the corresponding call ofR(q), we initialize subtermIndexes as an empty set
for collecting them. Since C(q) represents a conjunction, where its individual components are
generated w.r.t. a subterm t and an integer i, it gets initialized with >. We proceed by iterating
over all subterms t of q, while again adding them to the termMap, and retrieve their indexes,
which are added to our set of subtermIndexes. For i ∈ {1, . . . , n} we generate propositional
variables xit,i,iq , where again it and iq are t’s and q’s indexes respectively, and add them to our
map propRests. In a moment we will generate the formula D(t, i, q), but this does not cover
the case of a trivial rule, i.e. a rule αi → k where k contains no αj whatsoever. Those rules are
necessary for our grammar to terminate, s.t. a point is reached were we cannot apply another
rule, i.e. after a derivation δ = t1 → · · · → tm where tm contains no further αj . To accomplish
this we have to add another possible transition from a non-terminal αi to the whole rest, which
is currently processed. Consider Lines 12 to 14 where a rule with a trivial key t gets instanti-
ated and stored in the corresponding map. After calling D(t, i, q) we build a disjunction of said
with the trivial rule. Finally C is extended iteratively. After partly formulating C by generating
according subformulas for every t ∈ st({q}) and 1 ≤ i ≤ n, we generate R(q) via Algorithm
13 and D(q, 0, q) via Algorithm 12 respectively. Again we have to consider a special case of a
trivial production rule, namely α0 → q, which is not covered by above introduced trivial rules.
Therefore we need a propositional variable x0,itriv , where itriv is the key index of q. Note that in
this case q is interpreted as a key, not a term, since we can only provide rules αi → k, where k
is a key. Thus we have to take its index as a key for the construction of a propositional variable.
Remark: D(t, i, q) or D(q, 0, q) may be empty, i.e. there could be no key with according rests
to further decompose t or q respectively, without violating one of previously defined conditions
for a trat-n grammar. This would lead to D consisting only of a single atom, namely the propo-
sitional variable representing the trivial rule. The formula C is extended accordingly by above
mentioned subformulas in Line 21 and returned afterwards.
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Algorithm 14 Compute C(q) for a term q ∈ L
1: function C(q: term)
2: st = subterms(q) . compute subterms of q
3: iq = addToTermMap(q) . store term in termMap
4: init set subtermIndexes = {}
5: init formula C = > . formula which is going to be returned
6: for t in st do
7: it = addToTermMap(t) . get index of subterm
8: subtermIndexes $ it . backup index of subterm
9: for i in 1, . . . , n do

10: init atom xit,i,iq . init atom xt,αi,q

11: propRests(xit,i,iq) = (it, i, iq) . backup triple
12: itriv = addKey(t) . store t as trivial key
13: init atom xi,itriv . init atom xαi,t

14: propRules(xi,itriv) = (i, itriv) . backup tuple
15: Dt,i,q =D(t, i, q) . generate DL,S(t, i, q)
16: C = C ∧ (xit,i,iq → (Dt,i,q ∨ xi,itriv))

17: Riq ,st =R(iq, subtermIndexes) . generate RL,S(q)
18: Dq,0,q =D(q, 0, q) . generate DL,S(q, 0, q)
19: itriv = addKey(q) . store q as trivial key
20: init atom x0,itriv . init atom xα0,q

21: C = C ∧ (Dq,0,q ∨ xi,itriv) ∧Riq ,st
22: return C
23: end function

Finally we have to call the method described above for generating C(q) for all q ∈ L. The
final MinCostSAT formulation is then the conjunct of all C(q) for q ∈ L.

Algorithm 15 Compute MinCostSAT formula
1: function MCS(L: term set/language)
2: F = > . init F
3: for q in L do
4: F = F∧C(q) . iteratively build MinCostSAT formula F
5: return F
6: end function

Transformation to partial weighted MaxSAT

Next we have to transform the MinCostSAT formulation in 4.2 into an instance of the partial
weighted MaxSAT problem described in Definition 26 to a reasonable MaxSAT solver. Such a
solver requires the instance to be in a certain format, i.e. a formula F which has to hold in every
interpretation and a set of formulasGwhich can be violated, but are penalized with an individual
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value for every one of them violated in a particular interpretation. Since we want to achieve our
grammar to have a minimal number of rules, we generate G as described in Algorithm 16. We
initialize G as an empty set of tuples, where each will contain a formula and its weight (or
penalty). Iteratively for all rules αi → k the simple formula ¬xi,ik is created by means of its
corresponding propositional variable and gets assigned weight 1. This leads to the fact that the
more variables xi,ik are true in an interpretation, the higher the costs of the interpretation will
be, forcing the partial weighted MaxSAT Solver to minimize the number of rules needed while
not violating any constraints in F .

Algorithm 16 generate soft constraints G for the partial weighted MaxSAT instance
1: function SOFTCONSTRAINTS

2: G = {} . init G as an empty set of tuples of formulas and weights
3: for (xi,ik , (i, ik)) in propRules do
4: G $ {(¬xi,ik , 1)}
5: return G
6: end function

Obtaining the grammar

As a partial weighted MaxSAT solver will return merely an interpretation fulfilling F with a
minimal violation of G, it remains to transform the resulting interpretation to a set of rules to
retrieve the grammar. Algorithm 17 returns, given an interpretation I , a set of rules αi → k,
where I(xi,ik) = true.

Algorithm 17 retrieve a set of rules from an interpretation
1: function GETRULES(I: interpretation)
2: R = {} . init the set of rules R
3: for (xi,ik , (i, ik)) in propRules do
4: if I(xi,ik) then
5: k = keyList(ik)
6: R $ {αi → k}
7: end if
8: return R
9: end function

By means of above generated set of rules, we can build a grammar as described in Algorithm
18.

The Algorithm

We already calculated all our needed keys and successfully transformed them, by means of our
data structures, into a MinCostSAT formulation and by adding additional soft constraints to an
instance of the partial weighted MaxSAT problem. In Algorithm 19, which comprises the calls
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Algorithm 18 build a grammar from a set of rules
1: function GETGRAMMAR(R: set of rules)
2: let smap be an empty map from integer to term set
3: for αi → k in R do
4: if smap(i) exists then
5: smap(i) $ {k}
6: else
7: smap(i) = {k}
8: end if
9: let U = smap(0)

10: for all i let Si = smap(i)
11: return U ◦α1 S1 ◦α2 · · · ◦αn Sn
12: end function

of recently described computations, we can now see the big picture of our implementation. In
Line 2 we generate our sufficient set of keys and proceed in Line 3 by formulating our MinCost-
SAT instance and compute in Line 4 the additional clauses necessary for our partial weighted
MaxSAT instance. This instance will be given to a desired complete MaxSAT Solver in Line
6, which eventually returns an interpretation. If there is an interpretation, it is processed as
described in Section 43 and Algorithms 17 18 in Lines 8 9 and finally the expected minimal
grammar will be returned. Otherwise an empty one will be returned, which means that there is
no grammar abbreviating L, i.e. F is unsatisfiable.

Algorithm 19 Compute a minimal grammar for a proof
1: function TREEGRAMMARDECOMPOSITION(L: term set, n: integer)
2: SUFFKEYS . calculate sufficient set of keys
3: F =MCS(L) . generate hard constraints
4: G =SOFTCONSTRAINTS . generate soft constraints
5: solver = MaxSATSolver() . instantiate desired MaxSAT solver
6: I = solver.SOLVE(F ,G) . solve instance
7: if ∃xi,ikI(xi,ik) then
8: rules =GETRULES(interpretation) . get grammar rules
9: grammar =GETGRAMMAR(rules) . get grammar

10: return grammar
11: else
12: return empty grammar . F is UNSAT
13: end if
14: end function

57



Additional Interfaces and Features

Since there are many partial weighted MaxSAT solvers available and nearly all of them support
the standardized DIMACS format wcnf [5], which is an abbreviation for weighted conjunctive
normal form, a transformation method was developed to output our instance in this format.
Since the GAPT system had neither been capable of handling wcnf instances nor supported a
MaxSAT solver, an interface was implemented to provide those functionalities [16]. This was
achieved by providing a transformation method for an instance to a file in wcnf format, as well
as a possibility to call a MaxSAT solver within GAPT on a shell and obtain either unsatisfiability
or an interpretation from it. As not all MaxSAT solvers perform equally well on every problem,
the support for following (Figure 4.2) was implemented in GAPT .

• QMaxSAT [12] [13]

• ToySAT, ToySolver [15]

• MiniMaxSAT [11] [6]

Figure 4.2: Implemented support for MaxSAT solvers

During the implementation of all described algorithms, as well as the interfaces for supported
MaxSAT solvers the focus was set on keeping the code flexible. The interface for the solvers
mentioned above was developed in a modular way, s.t. it is possible to extend those easily.
Furthermore the transformation of a sufficient set of keys to a MinCostSAT formula and thus to
a partial weighted MaxSAT instance was as well implemented s.t. another transformation, e.g.
to an ILP (integer linear programming) instance, could be integrated with a minimum amount
of effort.
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CHAPTER 5
Critical reflection

5.1 Comparison with related work

In the last chapters we covered the theoretical background as well as the practical implemen-
tation of an algorithm capable of reducing the problem of finding a minimal trat-grammar for
a language to the MinCostSAT problem. Although the theoretical part focused on a proof’s
end-sequent of the form

∀xF →

the method described in [9] is capable of processing arbitrary Σ1-sequents, which are of the
following form

∀x1F1 . . . ∀xkFk → ∃y1G1 . . . ∃ylGl (5.1)

as seen in Section 3.1 Definition 28.
Unfortunately the TreeGrammarDecomposition algorithm is only capable of producing par-

ticular grammars, namely those which translate to cuts having single quantified cut-formulas.
To be precise it does not support at the moment cut-formulas containing blocks of quantifiers,
e.g.

∀x1,∀x2, . . . ,∀xnF (5.2)

Results

We compared the algorithm in [8] of computing a minimal grammar in Section 3.4 with the
recently developed method in [3] described in Section 3.4 and the first one developed for this
purpose, which was merely capable of introducing one cut via a single quantified formula. The
former is capable of producing grammars, which support cut-formulas with blocks of quantifiers.
It is even possible to handle underlying proofs in Equational Logic. In contrast the second one is
capable of producing grammars translating into several cuts, but merely with single-quantified
cut-formulas. The opportunity to introduce several quantified cuts into a sequent calculus proof
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hopefully leads to new insights. Although the results of this thesis are very expressive, further
experiments will be performed to provide more information about this topic.

The following figures will provide a comparison of the methods of cut-introduction con-
fronted with different types of proofs (VeriT, TPTP, proof sequences), which they were executed
on. The rows denote the different methods starting with the old method for introducing a sin-
gle quantified cut, proceeding by the evolved method for introducing a multiple quantified cut
and finally providing information for the method described in this thesis for introducing var-
ious single-quantified cuts. The last two rows are devoted to the mentioned method were in
the first one we tried to introduce one single-quantified cut, whereas in the last one up to two
single-quantified cuts were tried to be introduced, which was not even possible with the other
methods described. The columns represent the different proofs which were the foundation for
the experiments, starting with proof sequences which in fact are simply structured proofs like
the one shown in 3.2, which were generated in various sizes. Those sequences were generated in
incrementing sizes and tested with the various methods until a predefined timeout was reached.
All sequences of larger sizes were then considered to be not compressible within this timeout
and thus skipped. The second column represents a sample of various proofs found in the TPTP
library, where their compression is considered to have a higher impact than the compression of
the former ones. The third and last column denote the results gathered from a sample of VeriT
proofs which are in contrast to the last two samples very large.

Figure 5.1 provides an overview of the executed experiments regarding their return status.
Please consider the provided key for the possible range of statuses returned by the different
methods. The most essential statuses necessary for describing the effect of the method of this
thesis are the following.

• ok states the percentage of proofs, which were successfully compressed by the method

• parsing_timeout was returned if the system was not even possible to parse the provided
proof within the timeout

• delta_table_computation_timeout is a status return when the ∆-table method was not ca-
pable of providing the ∆-table within the timeout

• grammar_finding_timeout was returned if the timeout was reached while calculating the
minimal grammar of an already extracted language

• cut_intro_uncompressible were proofs which were not compressible by introducing the
given number of cuts

• prcons_timeout states that the construction of the already compressed proof was not fin-
ished due to a timeout

• sol_timeout denotes the status returned when a timeout happened while calculating the
canonical solution of the proof

As we can see in Figure 5.1 the newly introduced method is not as fast as the other two
methods considering proof sequences. In fact the amount of timeouts in proof construction,
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which for all methods is essentially the same, as well as the amount of successfully finished
proofs slightly differs between the single-cut and the many-cuts method. This differences persist
and even increase considering the Prover9 (TPTP) proofs, which are substantially harder to
compress than the provided proof sequences. For VeriT instances we cannot even compute a
minimal grammar in about 95% of the cases, which is not surprising when taking the size of
those proofs into account. The general timeout for the latter proofs was even significantly raised
to adapt to the mentioned circumstance.

In Figure 5.2 we compare the runtime for the different phases of the methods for all provided
proofs. The following measured times are the most expressive ones for comparing the methods

• time_grammar denotes the runtime necessary for calculating a minimal grammar of an
already extracted language/termset

• time_minsol represents the runtime of minimizing the found canonical solution of the
proof

• time_proof is the relative runtime for constructing the proof via an extended Herbrand
sequent

As we can see in the first column, the minimal grammars of the proof sequences were signif-
icantly faster calculated by the many-cuts method than by the other ones. Since the proof con-
struction time is essentially the same for all methods, we can assume that for proof sequences
the new method performs better, although those instances are not of practical significance. The
differences in runtime go into reverse when considering more practical instances as TPTP and
VeriT proofs. In contrast to the one-cut methods, where the runtime for computing a minimal
grammar is relatively small, the many-cuts method takes significantly longer to return a grammar
when compared to constructing the proof. Since the latter method is capable of introducing more
than one cut at once, it is probably less efficient for introducing exactly one cut than the one-cut
method, which is especially designed for this case. Be aware of the fact that the intermediary
canonical solution is not improved by the many-cuts method yet. Therefore the results for time
consumption should not be considered to be conclusive.
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Figure 5.1: Return statuses of the experiments
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Figure 5.2: Time consumption for finished instances

In conclusion, although the many-cuts method does not significantly improve the efficiency
of the previous methods, the possibilities of proof compression were extended by the possi-
bility of introducing more than one single-quantified cut. This may lead to new insights into
lemma construction in general, as well as for already known proofs, where new lemmas could

63



be discovered.

5.2 Complications and open issues

Performance issues

As expected the work on this thesis was not completely frictionless. During the first tests it
turned out that the algorithm was performing worse than the last w.r.t. its runtime. After a slight
profiling the reason for this lack of efficiency was found somewhere in between the solving of
the partial weighted MaxSAT instance. In order to call a desired MaxSAT solver, it is necessary
to transform the formulas F,G as described in Section 43 to the DIMACS wcnf format. This
format represents an encoding of propositional formulas F,G in conjunctive normal form, i.e. a
formula as shown in Definition 51.

Definition 51 (Conjunctive Normal Form)
Let Ci be formulas in propositional logic only containing disjunctions of literals, then

n∧
i=1

Ci

is a formula in conjunctive normal form. Note: Ci is called a clause of the CNF.

Since our MinCostSAT formulation is not given in CNF, we had to transform it to this normal
form. In GAPT this was accomplished by a naive transformation, namely by transforming all
logical connectives by the means of the Double Negative Law, DeMorgan’s Law, the Distributive
Law and the replacement of the material implication.

Those equivalences suffice to transform an arbitrary formula in propositional logic into con-
junctive normal form. Unfortunately this is not the most efficient way to achieve a CNF, since
the formula will grow exponentially, which should be of no relevant consequences for small
formulas, but appears to be a problem for our MinCostSAT formulation. We solved this prob-
blem by implementing the transformation according to Grigori Tseitin [21], which is of linear
complexity.

Ambiguous grammars

Another issue arose while testing the algorithm, when dealing with ambiguous grammars. Con-
sider the proof π∗ in Figure 3.2, which proves the end-sequent

P (0),∀xP (x) ⊃ P (s(x))→ P (s8(0))

The term set in Example 16 of the Herbrand sequent of this proof can be compressed with more
than one grammar, whereas all of them have the same number of production rules.

Example 16 (Term set ofH(π∗))

L = {0, s(0), . . . , s7(0)}
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Consider Examples 17 and 18 of grammar decompositions of L and note that they differ in
the way the eigenvariables, i.e. the non-terminals, are introduced, although they have an equal
number of rules.

Example 17 (Grammar decomposition for term set ofH(π∗))

{α1, s
3(α1), s

5(α1)} ◦α1 {(0), (s(0)), (s2(0))}

Example 18 (Another grammar decomposition for term set ofH(π∗))

{α1, s
4(α1)} ◦α1 {(0), (s(0)), (s2(0)), (s3(0))}

The grammar decomposition in Example 17 induces an extended Herbrand sequent, which can
be transformed into a proof with one cut smaller than π∗. Whereas the decomposition in Ex-
ample 18 can be transformed analogously and forms up a larger proof, with more applied rules.
This issue is already known and was evaded in the first method by computing all minimal gram-
mars and generating for each of them a proof, where merely this with the least number of rules
was selected. Since the known MaxSAT solvers are not capable of finding all minimal grammars
for a particular term set, this issue remains unsolved for the TreeGrammarDecomposition algo-
rithm. Although the issue could be resolved in a naive way like follows. We can iteratively call
a desired MaxSAT solver with the MinCostSAT formula, in combination with the introduced
soft constraints while we forbid all previously discovered interpretations to be found. This will
be done until a decomposition is found, which has a higher number of rules, than each of the
previously found grammars. We then proceed as mentioned above by building all proofs accord-
ing to the extended Herbrand sequents of the individual computed grammars and take the one
with the minimal number of applied rules. For now the support for various MaxSAT solvers is
assumed to fit the needs, as each of them possibly returns other interpretations in such cases.
Although it is not guaranteed that we can possibly generate all different minimal grammars with
the different solvers, the range of them allows us to potentially compute more than one.
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CHAPTER 6
Summary and future work

We covered in this thesis the introduction of universal cuts in LK proofs, by giving an overview
of the topic in Chapter 1 and providing necessary preliminary definitions in Chapter 2. In Chap-
ter 3 we first described how extended Herbrand sequents can be obtained from proofs with cuts.

Subsequently the concept of a schematic extended Herbrand sequent was introduced, which
seperates the needed instantiations of a proof from the number and the form of involved cuts.
The necessary instantiations were then interpreted as a grammar decomposition, which produces
a particular term set representing exactly those instantiations needed for the Herbrand-sequent
of the cut-free proof.

Inverting this method of proof compression induced the problem of finding a minimal gram-
mar decomposition for a language, which can be solved in two different ways. The first method,
which was already implemented in GAPT , accomplished that by generating all minimal gram-
mars and taking the one which represents a proof with a minimal number of rules [8]. The latter
described in [3] achieved the same goal by taking advantage of prior knowledge of SAT solv-
ing. It reduces the problem of finding a minimal grammar for a language to the solution of a
MinCostSAT formula, which is possible by introducing a specific bound on the number of used
non-terminals.

In Chapter 4 the implementation of the second method in the GAPT system was described.
Particular problems, a comparison with similar approaches as well as complications were cov-
ered in Chapter 5, where we faced a problem with ambiguous grammars of same size. The
described method for avoiding this issue could be implemented in the future by possibly encod-
ing it into the MinCostSAT formulation. Also the support for cut-formulas of higher complexity
offers an incentive to dedicate the attention to the topic and remains a matter of future research.
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