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Abstract

Navigating unmanned autonomous vehicles (UAVs) and tracking objectegngrerequisites
for an effective and safe operation of UAVs in real-world scenarids.be able to perform
complicated tasks autonomously, UAVs are often organized in networketsteBue to the
decentralized structure of the network, the potentially high mobility of the UAvid, the high
accuracy and robustness required for a fully autonomous operativigation and tracking in
suchmobile agent networkare difficult tasks. In large agent networks, centralized algorithms
for solving these tasks are impractical since they are typically not scalatll@@ robust to
agent failure. Therefore, to leverage the full potential of agent misydhere is a need for
efficient distributed (decentralized) algorithms for navigation and trackihgs thesis presents
the following contributions to the art of distributed navigation and tracking.

A powerful technique for cooperative navigation in agent network®igarametric belief
propagation (NBP) message passing. NBP-based cooperative tmvigehighly accurate and
fully distributed, but it suffers from a high computational complexity and iicemt communi-
cation requirements. In this thesis, we proposinaension-augmente@formulation of belief
propagation (BP) message passing. This reformulation allows the applicdtam arbitrary
technique for sequential Bayesian estimation (e.g., extended Kalman filteg gigint filter,
cubature Kalman filter, or belief condensation filter) to BP message pa¥8ingse dimension-
augmented BP to derive a new improved NBP algorithm. This algorithm diffens the con-
ventional NBP algorithm in that it employs an efficient scheme for partickethanessage mul-
tiplication whose complexity scales only linearly (rather than quadratically) wittnthmber of
particles. In addition, we use dimension-augmented BP to develagighea point BRSPBP)
message passing scheme for cooperative navigation. SPBP is a newrnglegity approxi-
mation of BP that extends the sigma point filter (aka unscented Kalman filterofmecative
estimation problems. SPBP is characterized by very low communication requinsace
only a mean vector and a covariance matrix are communicated between naighdgents.
Our simulation results show that for cooperative navigation, SPBP caerfoim conventional
NBP while requiring significantly less computation and communication.

As a second contribution, we extend BP-based cooperative navigatioa tase that some
agents in the network are noncooperative in that they do not communiahpeegorm compu-
tations. For this problem afooperative simultaneous navigation and track{(@pSNAT), we
develop a particle-based BP message passing algorithm. This algorithm &s esttof the au-
thor's knowledge, the first method for CoSNAT in a fully dynamic setting. s faature of the

Vii



viii ABSTRACT

proposed CoSNAT algorithm is a bidirectional probabilistic information temisétween the
navigation and tracking stages, which allows uncertainties in one stage toelpeinéo account
by the other stage and thereby improves the performance of both stdgealgdrithm is fully

distributed, i.e., communication is only performed between neighboring agents iretivork

and no complicated communication protocol is required. Simulation results deatersgnif-

icant improvements in navigation and tracking performance compared tcagegaoperative
navigation and distributed tracking.

Finally, we present a distributed information-seeking control scheme ithatta move the
agents in such a way that their measurements are maximally informative abqatrémaeters
(states) to be estimated. For information-seeking control, we define a gtabistic) objective
function as the negative joint posterior entropy of all states in the netwdheanext time step
conditioned on all measurements at the next time step. This objective functoptinsized
jointly by all agents via a gradient ascent. This optimization reduces to theatizalof local
gradients at each agent, which is performed by using Monte Carlo integrdtle local gra-
dients are based on patrticle representations of marginal posterior distmibthat are provided
by the estimation stage and a distributed calculation of the joint (networkwidéhblkel func-
tion. Simulation results demonstrate intelligent behavior of the agents and exestanation
performance for cooperative navigation and for CoSNAT. In a craipe navigation scenario
with only one anchor present, mobile agents can localize themselves aftent éirsle with an
accuracy that is higher than the accuracy of the performed distanceraessts.
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Chapter 1

| ntroduction

Navigationandtrackingrefer to the determination of position and possibly direction and motion
parameters of an object such as a craft or vehicle. While in navigatiatalitpes the naviga-
tor’s position relative to known landmarks or patterns is determined, trac&fags to inferring
the position of an external and moving object or phenomenon over time estatthe position
of the sensing device or a global frame of reference [Bar-Shaloi, &082]. Navigating un-
manned autonomous vehicles (UAVS) and tracking objects are key pisiteq for an effective
and safe operation of UAVs in real-world scenarios. Promising applicatienarios include
autonomous driving, aerial sensor networks, and space and wstéemobotics. To be able to
perform challenging tasks autonomously, unmanned vehicles are off@anized in networked
teams and even swarms [Zachery et al., 2011, Stilwell and Bishop, .2008]is supported by
the fact that hardware and software for unmanned vehicles are begorakpensive and easily
available in the open-source community [Ross, 2014]. Due to the deceatiratizicture of the
network, the potentially high mobility of the UAVs, and the high accuracy abdstmess re-
quired for a fully autonomous operation, navigation and tracking in sumile agent networks
are difficult tasks offering many open research problems.

1.1 Technologiesfor Navigation and Tracking

For navigation, global navigation satellite systems (GNSS) such as the glogitibning sys-
tem (GPS) [Kaplan and Hegarty, 2005, Dardari et al., 2012] enablddtermination of the
position of persons or vehicles using mobile receivers. The obtainedizitian accuracy
and robustness are acceptable for many applications, but can be ooisguidoy multipath
components or by the absence of visible satellites [Kaplan and Hegarty, P@ddari et al.,
2012]. In addition, GPS is not available indoors [Mazuelas et al., 2008sdvier, 2014].
For more accurate and robust navigation information, measurements tidlimeeasurement
units (IMUs) or of odometers can be integrated and fused with the GNS@&nafimn [Groves,
2008]. Promising approaches to indoor navigation include ranging barsedceived signal
strength (RSS) [Mazuelas et al., 2009] or ultra wideband (UWB) [Daedal., 2012, Wymeer-
sch et al., 2009] measurements. While typically multipath components and neoHanght
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2 CHAPTER 1. INTRODUCTION

(NLOS) measurements may compromise accuracy and robustness in Us&8{baalization,
a possible solution is provided by the emerging field of multipath-assisted imdnagation
and tracking (MINT) [Meissner, 2014]. MINT incorporates floorplaformation and makes
use of the additional localization information provided by NLOS measuremadtsaltipath
components to achieve higher navigation accuracy and robustness.

In tracking, by using a remote sensing device such as radar [Skolni}¥3],28onar
[Waite, 2001], or a camera system [Taj and Cavallaro, 2011], the pesitbmoving objects
over time are determined. Typically, the position of the sensing device iscgigrk@own if the
device has a fixed position or is irrelevant if the external object or pinenon is tracked rela-
tive to the position of the sensing device itself [Bar-Shalom et al., 2002jcKling of multiple
moving objects is often complicated by data association uncertainty [Bar+Stetlal., 2009]
and by the fact that the number of objects to be tracked is not known [K&087]. Data
association uncertainty occurs when the origin of the obtained measuremantertain, that
is, the measurements are not necessarily related to the object or phemoofiémerest, and
gets even more challenging when multiple targets are present and the mearsute-target
association is unknown. Recently, large-scale wireless sensor nsteanloying seismic or
acoustic sensors have been developed for tracking objects in theraneinb [Li et al., 2002].
A key challenge in tracking using wireless sensor networks is the dissermdtaata in the
network [Hlinka et al., 2013].

1.2 Motivation and Problem Formulation

The individual agents in an agent network are generally equipped widosg wireless com-
munication interfaces, a processing unit, and actuators, all together fparigber-physical
system [Kim and Kumar, 2012] with a tight coupling between sensing, computommuni-
cation, and control. Since the resources of a single agent are limited, categlimsks can
be performed only if multiple agents form a network and cooperate with etehn. dn large
agent networks, centralized algorithms are impractical since they areltypioaiscalable and
are not robust to agent failure. Therefore, to leverage the full fiatari agent networks, there
is a need for efficient distributed (decentralized) algorithms that do hobrea fusion center.
Due to the distributed nature of these algorithms, every agent contributeglobal task by
communicating only with neighboring agents in the network.

Key tasks in decentralized, mobile agent networks are navigation of ratoeagents
[Shen et al., 2012, Wymeersch et al., 2009] and tracking of externatc@operative) objects
or phenomena generally referred totagyets[Liu et al., 2007, Hlinka et al., 2013]. Recent
research on navigation and tracking algorithms in mobile agent networlkdSind Ras-
mussen, 2009, Dario et al., 2005, Corke et al., 2010, Bullo et al., 200@f Kl., 2010, Hlinka
et al., 2013, Zhao and Nehorai, 2007, Nayak and Stojmén@@10, Aghajan and Cavallaro,
2009] has been motivated by location-aware applications including cadi@inof unmanned
aerial [Shima and Rasmussen, 2009] and underwater [Dario et al] &€libles, environmen-



1.3. STATE OF THE ART 3

tal and agricultural monitoring [Corke et al., 2010], robotics [Bullo et 8009, health-care
monitoring [Ko et al., 2010], target tracking [Hlinka et al., 2013], pollutiauice localiza-
tion [Zhao and Nehorai, 2007], chemical plume tracking [Nayak and Stawmien2010], and
surveillance [Aghajan and Cavallaro, 2009].

In cooperative navigation, each cooperative agent (CA) measuestities related to the
position of neighboring CAs relative to its own position (e.g., involving distarareangles).
By cooperating with other CAs and, in particular, by exchanging posigétated information,
each CA is able to estimate its own position. In distributed tracking, the CA measnote are
related to the states of targets to be tracked. At each CA, estimates of thestatge are co-
operatively calculated from all CA measurements in a distributed way. Whilge lariety of
distributed tracking algorithms are available (see [Hlinka et al., 2013] diadereces therein),
existing practical implementations of cooperative navigation algorithms for mabéet net-
works are limited to specific measurement models [Sathyan and Hedley, Z0ad]jtionally,
cooperative navigation and distributed tracking are formulated as twoatepatimatiorntasks,
where estimation involves the quantification, fusion, and dissemination ofiation. How-
ever, these two tasks are strongly related since, ideally, a CA needswoitsngosition to be
able to contribute to the tracking process. In addition, a se@rtrol (moving CAs to differ-
ent positions or adapting sensor characteristics) can be expected tm leamte informative
measurements and, consequently, an improved estimation performano¢hforaligation and
tracking. Since the estimation tasks involve the measurements of all CAs, thiecemizoller
moving and adapting the individual CAs needs to be derived from a gtiijattive function
and implemented in a distributed way to be effective.

In this thesis, we address these issues and provide the following contrib(gies Section
1.4 for a more detailed outline):

e A new class of distributed estimation algorithms for cooperative navigatiornvedajged.

e These cooperative navigation algorithms are extended to include distritbatdthg of
noncooperative targets.

e A distributed, globally optimum controller that moves CAs in a way that is faverfdy
the joint navigation-and-tracking task is formulated.

1.3 Stateof the Art

As a relevant background and for further reference, we will summdhie state-of-the-art in
distributed estimation and information-seeking control for navigation ankitrguin networks.

1.3.1 Distributed Tracking Based on Sequential Estimation and Fusion Tech-
niques

In distributed tracking, the CAs obtain local measurements with respect tmaktdbjects (tar-
gets) with time-varying positions, and estimate the states of these objects usirggrabasure-
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ments that are available in the network while communicating only with neighborirsy €ér
this task, typically, sequential Bayesian estimation is combined with a globahfosthod that
requires only local communication, such as consensus [Olfati-Sabler 20@7] or gossip [Di-
makis et al., 2010].

One practical method for sequential Bayesian estimation is the particle filted¢Get al.,
1993, Ristic et al., 2004, Arulampalam et al., 2002], which uses particleptesent the prob-
ability density functions (PDFs) involved in the Bayesian recursion. Digetbparticle filters
(see [Hlinka et al., 2013] and references therein) are attractive Siegare suited to arbitrary
nonlinear and non-Gaussian systems. Examples include [Farahmand2étld]. and [Hlinka
et al., 2014]. In [Farahmand et al., 2011], consensus algorithms acetoscalculate global
weights—reflecting the measurements of all CAs—at each CA. In [Hlinkla, @04 4], theike-
lihood consensuscheme is proposed for a distributed approximate computation of the global
(all-CAs) likelihood function, which is used at each CA for calculating glabsights.

An alternative to the particle filter is the sigma point filter, also known as utesddétalman
filter, which is a sequential Bayesian estimator for nonlinear systems thartanps the ex-
tended Kalman filter [Anderson and Moore, 2005, Kay, 1993, HayKio12while being typi-
cally less complex than the particle filter [Julier and Uhlmann, 1997, Wan anderakerwe,
2001]. Distributed implementations of the sigma point filter include [Mohammadi asif] A
2011, Li and Jia, 2012].

1.3.2 Cooperative Navigation Using M essage Passing Algorithms

In cooperative navigation, mobile CAs cooperate by performing measutsmaative to other
CAs and by exchanging position-related information, such that each Chlésta estimate
its own local state (including the position) with improved accuracy. Here, ithersionality
of the total (all-CAs) state grows with the network size. In addition, the faztion of the
joint posterior PDF is more complicated than in sequential estimation problems enedotie
often described by a graphical model [Jordan, 1999, WainwrightJandan, 2008, Loeliger,
2004]. For these general—typically loopy—factor structures, an iteratiessage passing
scheme can be used to (approximately) perform the marginalizations kdair&ayesian
inference [Kschischang et al., 2001]. Under mild assumptions, the fgctémh [Loeliger,
2004] describing the factorization of the joint posterior PDF matches theonetiwpology,
and hence a fully distributed implementation of the iterative message passergeschn easily
be obtained [Wymeersch et al., 2009]. In addition, the complexity of iterategsage passing
schemes scales only linearly with the network size [Wymeersch et al., 2009].

The most widely used message passing scheme for navigation and trapkingatons
is belief propagation (BP). BP yields the true marginal posterior PDF if tb@faraph is a
tree. Sequential Bayesian estimation—used, e.g., in distributed tracking-pecialscase of
BP where the joint posterior PDF has a simple “sequential” factor structuresponding to
a tree-structured factor graph. Gaussian BP [Weiss and Freemdt],&@Dnonparametric BP
(NBP) [Ihler et al., 2005] are computationally feasible variants of BP tkignel the Kalman
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filter [Anderson and Moore, 2005, Kay, 1993, Haykin, 2001] andghsicle filter [Gordon
et al., 1993, Ristic et al., 2004, Arulampalam et al., 2002], respectivelgnerngl factor struc-
tures. Gaussian BP assumes a linear, Gaussian system and usesnQaessi&ge represen-
tations, whereas NBP is suited to nonlinear, non-Gaussian systems due $e $ particle
representations. Since in cooperative navigation the measurement mbttelsGAs are typ-
ically nonlinear, NBP is preferred over Gaussian BP. In particular, iBRhe localization of
static CAs is proposed in [lhler et al., 2005]. In [Wymeersch et al., 208%istributed BP
message passing algorithm for cooperative navigation (cooperataezktton of mobile CAs)
calledsum-product algorithm over a wireless netwd&PAWN) is proposed. Furthermore, a
nonparametric implementation of SPAWN and a low-complexity SPAWN scheme agiacp-
metric message representation and censoring is considered for dn@peaxigation in [Lien
et al.,, 2012]. In [Savic and Zazo, 2012], a variant of NBP that us€aassian approxima-
tion for the beliefs to reduce inter-CA communication is proposed. Finallycdts et al.,
2011] introduces a SPAWN-based cooperative navigation algorithnfutbed information from
satellites and terrestrial wireless systems and employs a three-dimensimamakpéc message
representation for reduced computation and communication.

As an alternative to BP, a message passing algorithm based on the meapdrekiraation
is presented in [Pedersen et al., 2011] for cooperative localizaticatif €As. Finally, a low-
complexity and highly approximate method for cooperative navigation that aoieemploy a
message passing scheme is presented in [Sathyan and Hedley, 20&3hefiod is based on
sequential Bayesian estimation and a linearized measurement equation.

1.3.3 Simultaneous L ocalization and Tracking (SLAT)

The framework osimultaneous localization and trackif§LAT), introduced in [Taylor et al.,
2006], constitutes a first step toward combining CA localization—howewginra cooperative
manner—and target tracking. In SLAT, static CAs simultaneously track attargd localize
themselves in a not necessarily distributed (decentralized) manner. Duritime, SLAT al-
gorithms use measurements of the distances between each CA and theTaytmet ét al.,
2006], but not measurements of the distances between CAs. The Slollepr is some-
what similar to the well-studied problem sfmultaneous localization and mappit§LAM)
in robotics [Durrant-Whyte and Bailey, 2006]. In SLAT, in contrast toperative navigation,
CAs are static and measurements of the distances between CAs are orfigrusgidlization.

A centralized particle-based SLAT method using BP is proposed in [Saslit\gmeersch,
2013]. Distributed SLAT methods include a technique using sequentiakiayestimation and
communication via a junction tree [Funiak et al., 2006], iterative maximum likelimoethods
[Kantas et al., 2012], and a method based on variational filtering [Teailg €012].
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1.3.4 Information-Seeking Control

The use of information measures for the control of the movement of a sifgler @ network
of CAs was introduced in [Burgard et al., 1997] and [Grocholsky 20@spectively. Here, the
CAs’ control objective is to maximize the joint information about a global stateishearried
by the measurements of all CAs about a global state. Suitable measuresrofatibn include
negative posterior entropy [Cover and Thomas, 2006], mutual informg@iover and Thomas,
2006], and scalar-valued functions of the Fisher information matrix [K893]. In particular,
the determinant, trace, and spectral norm of the Fisher information matrizoasédered in
[Morbidi and Mariottini, 2013], where the control objective is to maximize thi@rimation
related to the positions of the CAs and of a target. The maximization of negaisterjor
entropy is considered in [Ryan et al., 2007, Hoffmann and Tomlin, 20didy&ger et al., 2011,
Julian et al., 2012, Atanasov et al., 2015]. In [Schwager et al., 2@1ddntral controller steers
CAs with known positions along the gradient of negative posterior entvafly the goal of
optimally sensing and estimating a static global state. A distributed solution forl gitaiia
estimation is proposed in [Ryan et al., 2007, Hoffmann and Tomlin, 201@jdoas a pairwise
neighboring-CAs approximation of mutual information and in [Julian et al. 22@tanasov
et al., 2015] by using a consensus algorithm.

1.4 Contribution and Outline

In this thesis, we propose computationally feasible distributed Bayesian estiraationforma-
tion-seeking control algorithms for navigation and tracking in networksCHapters 2 and 3,
estimation methods are presented while Chapter 4 focuses on informationgseentrol. An
outline of the thesis and a summary of our main contributions are provided inltbeihg.

e The remainder of this chapter describes the system model that is usedhbuobuhis
thesis.

e In Chapter 2, we first review BP message passing for cooperative navigation anahits n
parametric implementation (i.e., NBP). This conventional implementation sufiens fr
high computation and communication costs Therefore, for the case of twasiional
(2D) position information and distance measurements between CAs, wesprapgoew
hybrid nonparametric/parametric BP scheme. In this scheme, communicati@omad
putation costs are significantly reduced through the use of parametrasegpations of
inter-CA messages (as introduced in [Lien et al., 2012], although the pemanaee de-
termined differently) and a simpler procedure to perform a particle-bassdage multi-
plication operation. Contrary to [Caceres et al., 2011], the introduceshpric message
representation is 2D and distinguishes between unimodal, bimodal and multibesdal
liefs.

Furthermore, we propose dcimension-augmenteceformulation of BP. This reformu-
lation allows the systematic and straightforward application of an arbitranyesdiql
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Bayesian estimator (or Bayesian filter) to BP-based cooperative navig&tkamples of
Bayesian filters that can be used for BP in this sense include the exteradiednKfil-

ter [Anderson and Moore, 2005, Kay, 1993, Haykin, 2001], the sigmat filter [Julier

and Uhlmann, 1997, Wan and van der Merwe, 2001], the cubature KdilleapArasarat-
nam and Haykin, 2009], and the belief condensation filter [Mazuelds €04 3]).

We then use the proposed reformulation of BP to develop a new nonpai@a(patticle-
based) implementation of BP with reduced complexity. This implementation will be used
as a basis for the particle-bassabperative simultaneous navigation and track{@gpS-

NAT) algorithm in Chapter 3. The main advantage of the proposed NBPithlgois that

its complexity scales only linearly—rather than quadratically as in conventidBRI[1h-

ler et al., 2005, Lien et al., 2012]—with the number of particles.

Finally, the presented dimension-augmented BP scheme is used to devekigntize
point BP(SPBP) message passing algorithm for cooperative navigation. SPBieg a
low-complexity approximation of BP that extends the sigma point filter—also kresv
unscented Kalman filter—to general factor structures. We demonstratthéhperfor-
mance of SPBP can be similar to or even better than that of conventional N&Faa
lower computation and communication cost. Indeed, SPBP is well suited totchd iz
cooperative navigation because only a mean vector and a covariance naat to be
communicated between neighboring sensors. Besides the cooperaiyatioa appli-
cation considered here, we expect that the dimension-augmented riftomof BP as
well as the new implementations based on sigma points and particles will alsofbk use
for other inference problems in agent networks. Simulation results deratnsignif-
icant advantages of SPBP and of the new particle-based BP schemeocaventional
NBP regarding performance, complexity, and communication cost.

The content of this chapter has been previously presented in [Megér 2014a, Meyer
et al., 2014b].

e In Chapter 3, we introduce the framework of COSNAT. This framework provides, for
the first time, a consistent combination of cooperative navigation and distiticack-
ing in decentralized mobile agent networks. In CoSNAT, single or multiple tsuaye
tracked by the mobile CAs while the CAs simultaneously localize themselves, wsmng p
wise measurements between CAs and targets as well as between CASCOBUAT is
different from SLAT in that it allows for CA mobility and uses pairwise measuents
between the CAs also during runtime. We assume that the number of targetsnis kn
and the targets can be identified by the CAs. Even with this assumption, thindhct
the CAs are mobile and their states (including their positions) are unknowes#us
multi-target tracking problem to be much more challenging than in the setting wieere
CAs are static with known states. This is because the posterior distributioins sfates
of the individual targets and CAs are coupled through pairwise measaotgnasd thus
all CA and target states should be estimgtgdtly. This joint estimation is performed
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quite naturally by the proposed framework and algorithm due to the formulafitme
entire estimation problem using a factor graph and the use of BP messagepadich
transfers probabilistic information between all parts of the joint estimation proble

First, distributed target tracking is briefly reviewed. Then, the BP megssging scheme
for cooperative navigation reviewed at the beginning of Chapter 2 is @steto nonco-
operative targets, and a particle-based implementation of the resulting GoBbgsage
passing scheme is developed. This algorithm is, to the best of the authoridedge,
the first method for CoOSNAT in a fully dynamic setting. A key feature of theppsed
CoSNAT algorithm is a “turbo-like” [Wymeersch, 2007] bidirectional pabbistic infor-
mation transfer between the navigation and tracking stages, which allowgaintes in
one stage to be taken into account by the other stage and thereby impreyssrfibr-
mance of both stages. A fundamental difficulty that has to be surmountedfactibat,
due to the noncooperative nature of the targets, certain messaged teediulate the
target beliefs are not available at the CAs. The proposed algorithmssttligeproblem
by using a consensus scheme over the particle weights [Farahmand @1 4].fd a dis-
tributed calculation of these lacking messages. The resulting cohereninedioib of BP
and consensus may also be useful in other distributed inference probkahsng non-
cooperative CAs. Simulation results demonstrate significant improvementsigatian
and tracking performance compared to separate cooperative navigatiodistributed
tracking.

The content of this chapter has been previously presented in [Megér 2012, Meyer
etal., 2013b, Meyer et al., 2014b].

In Chapter 4, we extend the CoSNAT estimation framework developed in Chapter 3 to
include cooperative information-seeking control. The goal of the mepaontroller is to
move the agents in such a way that their measurements are maximally informatixte ab
the states to be estimated. The resulting estimation-and-control frameworkethdd

are suited to nonlinear and non-Gaussian measurement and motion moddls\aare
distributed in that they require only communication with neighboring CAs. Intiadg

they can cope with a changing network topology.

For distributed control, we define a global (holistic) objective function asnigative
joint posterior entropy of all states in the network at the next time step conelition all
measurements in the network at the next time step. This objective function isgkien
mized jointly by all CAs via a gradient ascent, which reduces to the evaluatimca
gradients at each CA. These local evaluations are performed by usinteMarlo inte-
gration based on the particle representations of marginal posterior Patsdiprovided
by the estimation stage and a distributed calculation of the joint (networkwide) ticelih
function.

Our method advances beyond [Ryan et al., 2007, Hoffmann and Tomlif, 3@¢hwager
et al., 2011, Julian et al., 2012, Atanasov et al., 2015] in the followingexsp (i) it
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constitutes a more general information-maximizing control framework basdéPofor
estimation problems involving multiple time-varying states; (ii) it includes estimation of
the local (controlled) states of the CAs in addition to the target states, thbkrgniés use
in a wider range of applications including cooperative localization and @3SIN partic-
ular, the methods proposed in [Ryan et al., 2007, Hoffmann and Tomli®, Zxhwager
et al., 2011, Julian et al., 2012, Atanasov et al., 2015] do not use Biptdallow for
multiple time-varying states, and do not include estimation of local (controllethssta
Compared to the information-seeking controllers proposed in [Ryan etCdl7, ZHoff-
mann and Tomlin, 2010, Julian et al., 2012, Atanasov et al., 2015], whetieniaation
of the negative posterior entropy reduces to maximization of the mutual infromize-
tween measurements and states, the proposed controller includes an abtitimnthat
arises because the posterior entropy involves also the local (contrstited} of the CAs.
Our simulation results demonstrate intelligent behavior of the CAs and excetiémta-
tion performance for cooperative navigation and CoSNAT. In a catjer navigation
scenario with only one anchor present, mobile CAs can localize themseteesa ahort
time with an accuracy that is higher than the accuracy of the performedchsta@asure-
ments.

The content of this chapter has been previously presented in [Megér 2014c, Meyer
etal., 2015].

¢ In Chapter 5, we summarize our contributions and suggest possible directions foe futur
research.

1.5 System Model

We consider a decentralized network of mobile agéntsA4, as illustrated in Fig. 1.1. The set
of all agents,A C N, consists of the set of CAs§ C A, and the set of target§;, = A\ S.
(We will use the indiceg € A, [ € S, andm €T to denote a generic agent, a CA, and a target,
respectively.) The numbers of CAs and targets are assumed knovgetdare noncooperative
in that they do not communicate, do not perform computations, and do tialg@erform any
measurements.

151 Agent Statesand Agent Dynamics

The stateof agentk € A at timen € {0, 1,...}, denotedx;, ,,, consists of the current position
and, possibly, other parameters such as velocity, acceleration, hemxthgngular velocity [Li
and Jilkov, 2003]. The states evolve according to

_ Jo(Xkn—1, Uk 0, Ain), KES _
Xk = . g . n=12..., (1.2)
" {gk(xk,nth,n)a k € 7-7
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@ cooperative agent (CA)

target
<= = Ccommunication link

—— Mmeasurement

Cl’,n

Figure 1.1: Agent network with CAs and targets. Also shown are the./sgts, M¢ . and

l,n?
MZn for a specific CAl, the setCy,, for a specific CAl’, and the se§,,, ,, for a specific target
m.

wheregy(-) is a possibly nonlinear functiomy ,, is process (driving) noise, which has a PDF
f(ak,») and is independent af;, ,,_; and also independent acrossand k, anduy,,, € Uj,

is a deterministic control vector that controls thh CA. Sinceuy, ,, is deterministic [Doucet
et al., 2001], it is either completely unknown (before it is determined) dep#y known (after
being determined). Note that also targets may have control variables. vElQves these are
hidden from the CAs, we will subsume any control for targein the process noise,, ,. For
the derivation of the controller in Chapter 4, we assume that @8, g;(x;,,—1, W 5,15 1S
bijective with respect tex; ,,—; and differentiable with respect g, ,,. The statistical relation
betweenx;, ,, andxy, ,,—; as defined by (1.1) and by the POjfq; ,,) can also be described by
the state-transition PDFf (x; .| x;,n—1; Ww,n) for 1 € S and f (xym,n | Xm,n—1) for me T.

1.5.2 Network Topology

The communication and measurement topologies of the network are deduyisetsC; ,, and
M, ,, as follows:

e CAl € Sis able to communicate with CKif I’ € C;,, C S\ {l}. Communication is
always symmetric, i.el/ € C;,, implies! € Cy,,, and the communication graph of the
network formed by the CAs is assumed to be a connected graph.

e CAl € S acquires a measurememnt;., relative to agent (CA or targef) € A if k ¢

e We also defineMy = M;, NS andM] = M,;, N T, ie., the subsets oM,
containing only CAs and only targets, respectively.
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e In addition, we introduces,, ,, 2{leSme MZH}, i.e., the set of CAs that acquire
measurements relative to target Note thatm € M/, if and only if [ € S,,, ,..

e We assume thaan C Cip, i.e., if CAl acquires a measurement relative to CAit
is able to communicate with CA. The set<; ,,, M, M , M/, andS,, , may be
time-dependent.

An example of communication and measurement topologies is given in Fig. 1.1.

1.5.3 Sensor Measurements

We consider “pairwise” measurements;..,, that depend on the states,,, [ € S andxy ,,
k € M, ,, according to

Yikn = di(Xin, Xk, Vikmn) » leS, keMyy,, n=12,.... (1.2)

Here,d}(-) is a possibly nonlinear function, and ;.,, is measurement noise, which has a PDF
f(vikn) and is independent aof; ,, andx;, , and also independent acrossk, andn. An
example is the scalar “noisy distance” measurement

Ytk = X0 — Xkl + Vikn leS, keMy,, n=12,..., (1.3)

wherex,, ,, represents the position of agen(this is part of the statey, ,,). Note that measure-
mentsy; i, exist between a CA € S and another CA: ¢ /\/lfn, and betweena CAc S
and a targek € an. The statistical dependenceyf;., onx; , andxy , as defined by (1.2)
and by the PDFf (v, 1.,) is described by théocal likelihood functionf (y; i.n |Xi,n, Xk.n). We
assume that targets can be identified by the CAs, i.e., target-to-measuressigntreents are
known. This requires a certain degree of coordination: for exampleS8 Rieasurements are
employed, the targets have to use different frequency bands oreditféme slots, which have
to be known to the CAs; if localization using UWB radios is employed, the identifiékseo

UWB radios mounted on the targets have to be known to the CAs.

154 Assumptions

We will make the following commonly used assumptions, which are reasonablenypnacti-
cal scenarios [Wymeersch et al., 2009]. Hereafter, we denote by
= |

Wy = [Woalies,  Xn = [Xenlpe s Yo = [Yiknles, keM (1.4)

the sets of all control vectors, states, and measurements, respectitielg a. Furthermore,
we define

T

) yl:né [YIV'WYZ]T'
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(A1) All agent states are independenpriori at timen=0, i.e.,

fxo) = ] f(*k0)-

ke A

(A2) All agent states evolve according to a memoryless walk, i.e.,
f(xlzn; ul:n) = f(XO) H f(xn”Xn’—l; un’)-
n/=1

This is a consequence of our assumption that the process igises (1.1) are indepen-
dent across time.

(A3) The state transitions at the various ageénts A are independent, i.e.,

f(xn‘xn—l; un) = H f(xm,n Xm,n—l) H f(xl,n|xl,nfl§ ul,n)-
meT leS
This is a consequence of our assumption that the process igises (1.1) are indepen-
dent between the ageritsc A.

(A4) The current measurements are conditionally independent, given the current statgs
of all other states and of all past and future measurements, i.e.,

f(yn’XO:OO) Yin-1, yn—i-l:oo) = f(Yn|Xn)

(A5) The current states,, are conditionally independent, given the previous states, of all
past measurements, i.e.,

f(xn‘xn—la Yin—1; un) = f(xnyxn—l; un)-

(A6) The measurement noises ., and vy ., in (1.2) are conditionally independent un-
less(l,k,n) = (I',k',n"), and each measurement;.,, depends only on the states,,
andx;, ,. Together with (A4), this leads to the following factorization of the “total” (or
“global”) likelihood function:

f(y1:n‘xlzn) = H H H f(Yl,k;n"Xl,n’yxk,n’)-

n'=11e8 keM; ,,

In addition, we make the following assumptions. EachlGAS knows the functional forms
of its own state-transition PDF and initial state PDF as well as of the state-tranB@iBs and
initial state PDFs of all targets, i.6f(xj, »|xx n—1) and f(xx) for k € {I} U T. Furthermore,
all prior position and motion information is available in one global refereramadrthat is known
to all CAs, all CAs can transmit in parallel, and the internal clocks of all Cissgnchronous
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(see [Wu et al., 2011, Etzlinger et al., 2014, Meyer et al., 2013a, Etzleigal., 2013] for
distributed clock synchronization algorithms).
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Chapter 2

Cooper ative Navigation

BP message passing [Jordan, 1999, Wainwright and Jordan, 2088yed-established tech-
nique for cooperative localization and navigation [lhler et al., 2005, V&rsth et al., 2009,
Lien et al., 2012], and it is also the basis for the algorithms developed in thiis tHgherefore,
this chapter starts with a review of this BP scheme and of its nonparametric impégioei(i.e.,
NBP). Next, for the case of 2D position information and distance measutsinetween CAs,
a new hybrid nonparametric/parametric BP scheme is proposed. In thimscb@mmunication
and computation costs are significantly reduced through the use of parareptesentations
of inter-CA messages. Then, the dimension-augmented reformulation effi) allows the
development of a new class of efficient algorithms for cooperative ativig is proposed. This
reformulation is used to derive two specific BP-based estimation algorithms. fifEh is a
new reduced-complexity nonparametric implementation of BP. The secoBd®, 8Rtends the
sigma point filter to loopy BP and is characterized by very low computation amezinication
costs. The proposed dimension-augmented reformulation of BP as wek assiiting new
algorithms based on particles and sigma points can be easily extended to meral ggstem
models; in particular, they are not limited to “pairwise” measurements. Theglswesuited to
other decentralized cooperative inference problems besides ctope@sigation.

In this chapter and in the subsequent Chapter 3, we do not allow thel GAS to be
controlled. Therefore, we suppress the control variallgs in the notation, i.e., we write
Xin = 9(Xin—1,q,), | € S for the state evolution model anf(x; ,|x;,,—1) for the state
transition PDF (cf. (1.1)).

2.1 Review: Cooperative Navigation Using Belief Propagation

In this section, the BP scheme for cooperative navigation [Wymeersdh 20@9, Lien et al.,
2012] and a possible particle-based implementation [Ihler et al., 2005, Ltiah, €012] is
reviewed. In Bayesian cooperative navigation, eachiGAS estimates its own current state

15
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x;,, at timen, from the past and present pairwise measurements of all CAs,

02 [3iutaor]
Yin = [Yilan lles,lge/\/lfl Lo E{Ln}

In particular, the minimum mean-square error (MMSE) estimator and the maxirquostariori
(MAP) estimator ofx; ,, are given by [Kay, 1993]

R & / Xt f (K1Y T) %10 (2.1)
5(?{',’?'3 £ arg max f(xl7n|yf:n). (2.2)
Xi,n

2.1.1 Cooperative Navigation M essage Passing Scheme

By using Bayes' rule and assumptions (A1)—(A6), mentioned in Sectiorntiejoint posterior
PDF of the set of all CA states;fn £ (X1 7] e is obtained up to an irrelevant
constant factor as

leS,n'e{1,...

FESlyin) oc [T Fxuo) [] F&umwxiw—1) [T v ®im,xvmw). (2.3)
1

les n/= reMS

I,n!

CAs with an informative prior PDF

n

Fxi) = [ F60) TT [F0tar1) ] (2.4)

n/=1

for all n are referred to as anchors.

Calculating the marginal posterior PDFéx; ,,|y$,,) involved in the MMSE or MAP esti-
mator expressions (2.1) of (2.2) by direct marginalizatiorf o€, |y<,,) is infeasible because
it involves integration in spaces whose dimension grows with time and netwak®zeduce
dimensionality a BP scheme can be used to take advantage of the temponahtaldrsdepen-
dence structure expressed by the factorization in (2.3). Explicit integraéio be avoided by
employing a particle-based implementation or using sigma points.

More specifically, approximate marginal posterior PDFs (“belief§X) ,,) ~ f(xl,n|yf:n),

[ € S can be obtained by executing a distributed iterative BP message passnuesthymeer-
sch et al., 2009]. This is based on the factor graph [Loeliger, 2004¢gsponding to the fac-
torization of f(x5,,|ys,,) in (2.3), which is shown in Fig. 2.1. Because this factor graph is
loopy, BP schemes can only provide an approximate marginalization. Howeveoopera-
tive navigation, the beliefs obtained with BP are known to be quite accuramm@etsch et al.,
2009].

At each timen, P message passing iterations are performed. The iterated belief bEGA
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Figure 2.1: Cooperative navigation factor graph showing the states &f ICA 1,2 at
time instantsn — 1 andn; time indices are omitted for simplicity. The short notatiin=
f(xl,n"xl,n’—l)' fl,l’ = f(YZ,l’m’|xl,n’7 Xl’,n’)' bl(p) 2 p) (xl,n’)- n' € {17 s 7n} is used. Each
dotted box corresponds to a GAc S; calculations within the box are performed locally at
that CA. Edges between dotted boxes imply communication between CAs. Ordagessand
beliefs involved in the computation ) (x; ,,) are shown.

at timen and message passing iteratjoa {1, ..., P} is calculated as
b(p) (le) X qﬁ—)n (Xl,n> H (Zsl(?Ll(Xl,n) . (25)
remy,

Here, the “prediction message”,, (x; ) is calculated from the state-transition PP, [x; ,—1)
and the final belief at time —1, b") (x;,,_1), as

P (Xin) = /f(xl,n|xl,n—1)b(P)(Xl,n—l)dxl,n—la (2.6)
and the “measurement messag@l@)l(xl,n) are calculated as

Xin, Xl’,n) b(p_l) (Xl’,n) dxl’,n . (27)

¢§?Ll(xl,n) = /f(YZ,l’;n

These messages and beliefs are depicted in Fig. 2.1. Note that the itecatvees(2.5)—(2.7)
is initialized by setting*)(x; ,,) = ¢—n(x;,) foralll € S.

Two remarks are in order for a better understanding of the messagegasisedule (2.5)—
(2.7) which is also known as SPAWN [Wymeersch et al., 2009]. First, tbeifagraph has
also loops between different times.,n—1, n, n+1,.... Thus, in contrast to sequential state
estimation in a tracking problem, where the factor graph is tree-like (to bédared in Section
3.1 and Fig. 3.1)p®) (x1,,) could be improved by sending messages backward and forward in
time. However, in practice, for low complexity, communication , memory requirésraswell
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as a reduced latency, messages are sent only forward in time and itenaBgage passing is
done at each time individually. As a consequence, the message (“exinfwimation”) from
the variablex; ,,_; to the factorf(x; ,|x;,_1) equals the belieb") (x;,,_1), andé_,(x;)

in (2.6) (for n fixed) remains unchanged during all message passing iterations. $esond
no information from the factoyf (y; y.n|Xin, X17,,) is used in the calculation df?=) (x;,,)
according to (2.5) and (2-7)’,(”_1)(Xz/,n) in (2.7) is the extrinsic information with respect to
F(Y1.0m X0, X1n). As explained in more detail in [Wymeersch et al., 2009] and [Lien et al.,
2012], this message passing schedule significantly reduce the computetiondexity of the
standard BP message passing scheme. In addition, also the amount of doatiolitetween
CAs is reduced since (as discussed presently) beliefs in SPAWN carobdclast, whereas
the exchange of extrinsic information in standard BP requires point-td-poinmunication
between CAs.

Contrary to classical sequential Bayesian filtering [Doucet et al., 2001¢h only exploits
the temporal independence structure of the inference problem, BP ragsssging (2.5)—(2.7)
also exploits the spatial independency structure. As a consequenawetladl computational
complexity scales linearly both in the number of time steps and in the number of GAs.
addition, with BP message passing, the belﬁ;éifé(xl,n) at each CA € S can be calculated in a
fully distributedmanner using only local communication with neighbors. Each Gadcasts
its own current belieb*) (x; ,) (calculated according to (2.5)) to all CAsfor whichl € M; |
and uses the beliefs received from the neighboring @&&(x,,) for I’ € M7, , and the local
pairwise measuremenyg .., I’ € an to calculate the corresponding measurement messages
for the next message passing iteratidxﬁp,ill)(xl,n) for I’ € /\/lfn according to (2.7). The
messageﬁﬁ(,”:ll)(xl,n) and¢_,,,(x;,) (see (2.6)) are then used by QAo calculate the new
b(P“)(xl,n) according to (2.5), etc. Note that, since eachIGAS is only interested in its own
positionx;, ,,, the corresponding beligfr) (x;,,) only needs to be stored (temporarily) at CA
[. We note that, as loopy BP in general [Wymeersch et al., 2012], the B#rec(R.5)—(2.7)
exhibits accurate estimates but suffers from overconfident beliefs.

The remaining step is to avoid the high complexity of evaluating the integrals in (2d6) a
(2.7) by a particle-based or using sigma point implementation.

2.1.2 NBP for Cooperative Navigation

We first review NBP [lhler et al., 2005] for cooperative navigation fLet al., 2012]. NBP
uses a particle representation (PR) of beliefs and messages. In aato@pravigation sce-
nario, it provides fast convergence and high accuracy [Wymeettszlh 2009]. NBP consist of
three basics operations—message filtering, message multiplication, and estimnatimm are
reviewed in what follows.
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M essage Filtering

PR-based calculation of (2.6) and (2.7) amounts to the generic problebtadiimg a PR of
H(x') = /C(X/, x)b(x)dx

from a PR{(x(j),w(j))};.]:1 of b(x). Here,c(x',x) is (proportional to) a conditional PDF

f(x'|x). Ifwe are able to obtain a PR, x'(), (1)) };.]:1 of ¢(x/, x) b(x), then{ (x'), w()) };]:1

constitutes a PR af(x’) [Ristic et al., 2004]. Typicallyx’ = r(x, q) with a known function
r(-,-) and a random vectay. Particles{ (x\9), x'0), w( '))}J corresponding te(x’, x) b(x)

can then be obtained by first drawing partlc{e{x ,q J>)} from f(x,q) and then calcu-

latingx'¥) = r(x), q\), j € {1,...,J}.

M essage M ultiplication

A PR {(xl(fg,w(j))}jzl of bP)(x;,,) o ¢—>n(Xl,n)Hzfernéf)z(/Zil(Xl,n) in (2.5) can be ob-

In
tained using importance sampling [Ristic et al., 2004]. We first draw part{oté%}‘]:1 from
the proposal distributio(x;,,) = ¢—n(x;,). Corresponding Welght$wl } are then
obtained by calculating

i o bv) (x§{3)7
a(x)
i.e.,
= [ o.(x (2.8)
l’eM‘f
and normalizing, i.e.,
I )
wy) = W with W, = Z W) (2.9)

Since only a PR of;bl,_ﬂ(xl ) is available, we substitute a kernel estm%ayﬁéf . xl ) for
¢1/—>l(xl7n) in (2.8), and thus obtain

= 11 o (x) ) (2.11)

remg,

"We note that a kernel estimate of a message) is calculated from a PR (x), w") }7_ of ¢(x) as

J
d(x) = > wPK(x-—x), (2.10)

j=1

with some kernel functiork (x).
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This message multiplication operation is the most complex part of NBP; its complexitgyss
quadratically in the number of particlgs

Estimation

Finally, from the PR{ (XZ(Q, wl(iz)}j:l of b (x;,,), an approximation of the estimasg/"'
in (2.1) is obtained as

J
SMSE ™ x) (2.12)
j=1

Alternatively, an approximation of the MAP estimatdf” in (2.2) can be derived from the PR
as described in [Driessen and Boers, 2008].

2.2 Parametric M essage Representations

A significant limitation of the nonparametric implementation of (2.5)—(2.7) destribehe
previous section are the high computation and communication costs. Communieajime-
ments are high, because the exchange of probability distributions (bdietfiseen different
CAs is done by transmitting directly thé particles that represent these probability distribu-
tions. The main bottleneck in terms of computational complexity is the message multiplicatio
procedure in Section 2.1.2, which scales quadratically in the number oflpatfi@and makes
the nonparametric implementation as described in the previous section inféasiblge.J.

In this section, we propose an alternative implementation of the cooperatigation mes-
sage passing scheme (2.5)—(2.7) for the special case of a 2D settimgeasdrements of the
distance are performed among CAs. More specifically, in this section &@r @Al € S the

“position-part’x;, ,, of the statex; ,, is 2D and the general measurement model (1.2) is replaced

by
Yiiim = ||)~(l,n_5(l’,n|| + Vi,l'n l, € an (213)

The proposed alternative implementation achieves significant savings indratnunications

and computation through the use of parametric measurement message®asedrin [Lien

et al., 2012], although the parameters are determined differently) andeeffmient proce-

dure to perform the costly message multiplication operation. In the followingjeseribe the
alternative and efficient message multiplication procedure, that is perdoatntmen, CA [

and message passing iteratipmsing parametric measurement messages. It is assumed that
the drawing of particles frorm_,, (%, ,) in (3.11) using particles representilg’ (%, ,_1) has
already be performed using message filtering (see Section 2.1.2).

2.2.1 Extracting the Belief Parameters

Considen® 1) (% ,), i.e., the belief of the 2D positior;: ,, of CA I’ € S at timen and mes-
sage passing iteratign— 1. This 2D function is either (i) unimodal if the CA is well localized;
(ii) bimodal with two modes if the CA is localized with ambiguity; or (iii) multimodal (e.g.,
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annularly shaped) if the CA is poorly localized [Wymeersch et al., 200®fedluce communi-
cations, the number of parameters to be transmitted, we approximate thd)iﬁeﬂéﬁq/ by
a GaussiaW([w n, Cr ) if itis unimodal and by a mixture of two Gausszs(ul, (,1) )
and/\/( By n, ,) ») with equal weights if it is bimodal. The respective means and covariances
are then transmltted to the navigation partners.

We propose the foIIowing procedure for extracting the belief parametetf\d’. First,
CA !’ derives partlcles{xl, } , representing®~")(x; ,,), which are obtained from the parti-
cles representingf?—1)( (X1/.m) S|mply by discarding the irrelevant entries in each particle vector
(recall thatx ,, is a subvector ok; ,,). Next, CAl’ uses a clustering algorithm such as K-
means [Gan et al., 2007] to partition the set of partic{léﬁ)n};.]:1 into two disjoint subsets

{xl/ wtiea and{xl, iy jey @nd it calculates the Fisher linear discriminant [Gan et al., 2007]
(denotedD) for that partition. Also, a meap, ,, and a covariance matr&; ,, are computed
for each particle subset, i.e.,

- _ 1 (/) DT ~() ~@T
By = 7] Xy l’,n |j[ ZXZ/ Xl’ _NZ/ My
" jed; "ieds

fori € {1,2}. If D is above a threshold@ and||u(1) - W H > 40,, the clustering result is
accepted and, thus, the bimodal Gaussian mixture model is adopfémﬁl(xl/m). Otherwise,
the clustering is rejected and a single megan, and covariance matrii)l, are determined
from the total particle se:{il(,]ﬁl}jzl. Then, if(él/,n)L1 +(Crn )y5 < 1007, the unimodal
Gaussian modeV (s ,,, Cy ,,) is adopted, otherwislép—l)(fcl/,n) is considered multimodal.

2.2.2 Calculating the Parametric M easurement M essages

After all belief parameters have been transmitted, as discussed abokieCAd € S at time
n knows (approximate representations of) the beliéfs®) (%, ,,) of its localization partners
I'e M7,

Based on its knowledge of the beligf¢—") (x; ,,) for I € j\/lfn, CA [ next calculates
a particle representation of its own beli&f) (x1,,) by implementing (2.5)—(2.7) as will be
described in Section 2.2.3. Because this calculation requires closedeiqrmassions of the
measurement messageﬁil (X1n), I' € M7, we use the parametric message representations
introduced in [Lien et al., 2012]. More specifically, if CAis localized, i.e.p*~Y(x;,,) is
unimodal, we set

~ ~ 2

/7.0y — [IX — /

i (%) o exp<— e e ool ) (2.14)
TV Iin

The shape of this message is an annulus about the midpgiptwith nominal radiusy; ;.,,;
the radial width about the nominal radius is determined-py,,. If CA [’ is localized with
ambiguity, i.e.,b®~1) (% ,) is bimodal, we seml(ﬁl(fq,n) equal to the sum of two annuli

that are located about the midpoir;lél’zb and;ll(?’?l and have equal nominal radiys ;.,, and
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possibly different width parameter#l)m andrl(,%l)m. Finally, if CA I’ is poorly localized, i.e.,
b'P~)(xy ) is multimodal, CAI ignores localization partnét € M7, by setting the corre-
sponding messagel(,”lﬂ(il,n) to a constant value.

It remains to determine the width parameter(s) for the first two cases. liegtinsider the
unimodal representation (2.14). If QAis an anchor CA, we havér—1) (X m) =0(Xpr =17 ),
and the parametric message (2.14) with width parametey, = o2 is the exact result of the

expression in exactly equal to (2.7). Otherwise, let

AR | (2.15)

X

pLvn (X n) 2

be the distance of the estimatexqf,, the position of CAl at message passing iteratipn- 1,
denotedfcl(f:l), fromxy ,,. A good approximation of (2.7) is then obtained by choosing,,
as

10 4m = 0y Cr by + 0 | (2.16)

whereh; ., = A/j‘l/,n[)l’l/;n(Xl/,n) is the gradient of; ;.,,(Xy ,,) evaluated ag ,, [Sathyan
and Hedley, 2013]. This result fey ;.,, is obtained via a linear approximation of the “reduced”
measurement equati(yal/m = p1n(Xr n) + v, aroundpy ,, [Sathyan and Hedley, 2013].
More specificallyyy ;.,, is the variance of

pl,l’;n(ﬂl’,n) + th’;n(il’,n - ﬁl’,n) + VLl m- (217)

Note that now the radial width of the annularly shaped mesmjﬁél(il,n) in (2.14) char-
acterized byry; ,, is influenced by both the uncertainty in tHéh CA position, expressed by
th,Z/;nél’,nhl,l’;nv and the measurement variance

For the bimodal representation, we choose the two width parameters asg)) (21

" = B0, CO B, + 07 (2.18)
fori e {1,2}, wherehl(il),n is the gradient of; /., (X1 ,,) evaluated aﬂl(,i) An example of
a bimodal Gaussian beliéf~!) (%, ,,) and corresponding bi-annular messa@j@ (X)) is

shown in Fig. 2.2.

2.2.3 Updating the Beliefs

With all messageml(,’il(il,n), I € My, determined, an approximation of the functional form
of [Trems, ml(,pll(fq,n) is available at CA € S. Thus, CAl is able to calculate a particle
representation of its updated belié®) (x;,,) according to (2.5).

This calculation is done by means of importance sampling [Doucet et al., ,208ihg
the prediction message_,,(x;,,) as proposal density: particle{yl(fg}jzl are drawn from
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A
TN

Figure 2.2: Example of a bimodal Gaussian beﬂ@rl)(ilvn) (left) and the corresponding

bi-annular messagal(ﬁzk(fckm) (right).

m—n (X ,), and associated weights unnormalized weights are obtained as

o) = [ mP(x (2.19)

reM,

This procedure is followed by a normalization and a resampling step [Detedt, 2001] to
obtain equally weighted particles for the belb&f) (x; ).

2.2.4 Computation and Communication Requirements

The transmission of means and covariances among neighboring navigatioerp, requires
the transmission o + 3 = 5 real numbers in the unimodal case andi6freal numbers in

the bimodal case. W(p—l)(fq/m) is multimodal, no belief parameters are transmitted, because
a poorly localized CA cannot provide useful information to its navigationneas. Therefore,

the communication cost is reduced by about an order of magnitude, since éonkientional
nonparametric algorithms typically hundreds particles have to be transmitteddttal., 2005,
Lien et al., 2012]. Furthermore, it can easily be shown, that the calculatiparameters as
described in Sections 2.2.1 and 2.2.2 and as well as the evaluation of pé&amessages in
(2.19) scales only linearly with the number of particlesather than quadratically as in the case
of the conventional nonparametric algorithm [lhler et al., 2005, Lien e2@l2].

2.3 Dimension-Augmented Refor mulation of BP M essage Passing

In this section, we introduce the dimension-augmented reformulation of BRageegsissing.
The key idea is to reformulate the BP operations in higher-dimensionalspalcieh allows the
application of many well studied filter for sequential Bayesian estimation (etegnd@ed Kalman
filter [Kay, 1993], sigma point filter [Julier and Uhlmann, 1997, Wan andder Merwe, 2001],
cubature Kalman filter [Arasaratnam and Haykin, 2009], the particle figerdlon et al., 1993,
Ristic et al., 2004, Doucet et al., 2001] and the Gaussian belief cortien§iier [Mazuelas
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et al., 2013]) to BP-based cooperative navigation. In the following Sexfib and 2.4, we will
use the proposed dimension-augmented formulation to develop a low-complkityative to
NBP and SPBP which is a extension of the sigma point filter to more generakibydsopy—
graphical models.

Let us first introduce the “composite vectoss”, = [x;,,];c Mg, andy; , = [yiinlye MS,
Now, using (2.7) in (2.5), one readily obtains

b (x1,) = / b (%)) %] (2.20)
where

b(p) (il,n) X f(yl,n’il,n)f(p_l)(il,n>7 (2.21)

FPV(x10) o don(xin) ] 0% (xun), (2.22)

l/e/\/lfn
F@unlzin) = ] FOuemlxinxim), (2.23)
l’Ean
6on(xXin) = / F K17 1) 5P (1) Ay (2.24)

andd)_(;’;i é HllerndXZ/7n.
Note thatf(»~1)(x,,,) can be interpreted as a “iterated prior PDF” gf(§; ,|%;.,) is the
likelihood function corresponding to the composite observation model

}_’l,n = Dl,n(il,nv ‘_/'l,n)

_ — A — A
whereD; (X1, Vin) = [(dl(xl,naxl’,navl,l’,n)LIEan andv;, = [viy ] veMms,

2.3.1 Sequential Filtering for Cooper ative Navigation

The main advantage of the dimension-augmented reformulation is that wellkiiltsvs for
sequential Bayesian estimation such as the extended Kalman filter [Kay], 1B83sigma
point filter [Julier and Uhlmann, 1997, Wan and van der Merwe, 200&]ctibature Kalman
filter [Arasaratnam and Haykin, 2009], the particle filter [Gordon et @93l Ristic et al.,
2004, Doucet et al., 2001] and the Gaussian belief condensation filseadlias et al., 2013]),
can be directly applied to the BP scheme (2.5)—(2.7) for cooperativeatarig The only con-
strain is that the used filter is based on an approximate representation ddlitfefdr which
“marginalizing out” variables is a trivial operation. This is the case for egarticle-based or a
Gaussian representation. After choosing a suitable filter, the evaluat{@r26)—(2.24) (which
is equivalent to the evaluation of (2.5)—(2.7)) at CA S is performed as follows:
Prediction Calculating the approximate representation of the prediction megsage; ,,)

according to (2.24) is performed equivalently as in the prediction step ahibsen filter. After
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receiving an approximate representatiorb®f!) (x;,,) from neighboring CA3’ € M, an
approximate representation ﬁ‘ﬁ”‘”(il,n) in (2.22) is then available at CA

High-Dimensional Measurement Updatesing Equation (2.21), high-dimensional mea-
surement update is performed equivalently as in the measurement upgeatd te chosen
filter; this involves the likelihood functiorf(y; »|%; ) defined in (2.23). The result of this high
dimensional measurement update operations is an approximate represeasftéim “stacked”
beliefb®) (%, ,,).

Marginalization For the approximate representation of the “stacked” béﬁétil,n), mar-
ginalization in (2.20) is performed to obtain an approximate representatioa bétiefs*) (x; ,,).
If the chosen filter uses a Gaussian, a mixture of Gaussian, or partickbe fiepresentation of
beliefs, the marginalization in (2.20) is trivial and “for free” in the senseitltan be performed
without any cost in terms of computational complexity. (In the case of a paréiplesentation
{x{71}1_, of the beliefs”) (x;,,), x;’) can be obtained by discarding fragy, all vectorsx /)

with I’ #£1, i.e., by discardingxffi]l,er 1f bP)(x,,) is represented by a Gaussian with mean

ué’(’;] ) and covariance matri@é’(”)),q ) the mean and covariance relatec}, can be extracted

from ué’(’z_{l ) andCl(f(’))_(l . by discarding all entries related #g,,, with I’ # 1.)
In Sections 2.4 and 2.5 we will develop new algorithms for cooperative aaeigby com-
bining the bootstrap particle filter [Gordon et al., 1993] and the sigma point filtdier and

Uhlmann, 1997, Wan and van der Merwe, 2001] with this sequential scheme

2.3.2 Curseof Dimensionality, Censoring, and Algorithm Tuning

As described in the last section, in the dimension-augmented reformulatiol® ohdssage
passing, at CA € S the measurement updated step is performed for the augmentest;state
which has a dimensionality that depends on the number of neighbfirs This means the
dimensionality of the message multiplication operation in the proposed reformuilaiemger
than that of the conventional formulation described in Section 2.1.1; funtbrer it depends
on the network topology and is thus time-dependent. At first sight this migptdi@ematic
for two reasons: First, since the complexity of measurement updated Igtaemends on the
dimensionality of the problem, the complexity of the resulting algorithms might belptiob
[Doucet et al., 2001, Daum and Huang, 2003]. Second, algorithempeters which depend on
the dimensionally of the state (like the the number of partidiés a particle-based algorithm)
are difficult to tune.

These concerns can be addressed by the fact that in localizatiomiesemdy a small num-
ber of neighbors is needed to obtain a high localization accuracy; arased over a certain
number leads to very little or even no improvement in localization accuracydbé$Vymeer-
sch, 2012, Savic and Zazo, 2012]. For this reason, in dense netveatksoring schemes [Das
and Wymeersch, 2012, Savic and Zazo, 2012], are typically employeeeip the number of
neighbors used for calculating the belief small. Therefore, a maximum nuwhberghbors can
be fixed to a certain value by a censoring scheme, and the algorithm based dimension-
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augmented reformulation of BP can then be tuned to that value. (Selectiateggtfor cen-
soring can be found in [Das and Wymeersch, 2012, Savic and Za@)].2Gurprisingly, as
numerically demonstrated in Section 2.6 in terms of average run time, in moderatsly det-
works, the new algorithms based on the dimension augmented reformulatioigrafieantly

less complex then the existing nonparametric algorithm for cooperativeatemrigeviewed in
Section 2.1.2.

24 A New Particle-Based | mplementation of BP

We now use the proposed reformulation of BP to derive a new low-complesitparametric
(particle-based) implementation of BP with a reduced complexity that will alsoebkakis for
the particle-based CoSNAT algorithm presented in the next Chapter 3ma@imedifference to
the conventional NBP algorithm [Ihler et al., 2005, Lien et al., 2012] is themiploys an effi-
cient scheme for particle-based message multiplication which avoids kemstylestimate and
whose complexity scales only linearly (rather than quadratically) with the nuoflgarticles.
We note that an alternative message multiplication scheme that also avoids t&erse! den-
sity estimates and whose complexity is linear in the number of particles was prbipd8riers
et al., 2005]. The method in [Briers et al., 2005] constructs an approximatartance function
in order to calculate weighted patrticles for beliefs and messages. Owaaihgs different since
the importance function is formed simply by “stacking” incoming beliefs, and étmutation of
particles and weights for incoming messages is avoided.

24.1 Statement of Low-Complexity NBP

The low-complexity alternative to nonparametric BP using the dimension-augthesformu-
lation can be obtained as described in what follows: First, we rewrite (220)

b (x,, / b'P) (%) AR (2.25)

where
0P (%1,,) o f(F1nl%1n) FP (Xp0)-

J

Based on (2.25), we obtain a Rtx! n,wﬁ?)}ﬂ | of b®) (x;,,) from a PR (x{7), w}”)) Yimt

l,n
of b(® )(xl,n), which is obtained via importance sampling using

FP V(&) 2 Gon(xin) [ 0%V (x0)
rems,
as proposal distribution. There is no need to explicitly draw parti{:ﬁég };.]:1 from f(—1) (X1.n)
because such particles are already available: more specifically, thdyecabtained simply
by stacking the particle§x§72 };,7:1 representing the prediction message,,(x;,) (which
were calculated by means of message filtering as described in Section 2d.®)eaparti-
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| representing the beliefs?~ Y (x;,), I € Mg, (which were received from

neighboring CAs). Using these particl{eisl({z }}]:1’ we then obtain weight@l(];z by calculating
nonnormalized weights

dles {x{1}/_

@) o bP (x2)) ) FrD (20,

wfii = f ymlxln Il fouwa !xln,xl, ), (2.26)

S
vemy,

and normalizing.
The set{ (x{’), w}”)) }j is a PR ofb(®) (x;,,). Hence { (x{7), w}”)) }j is a PR of

bP)(x;,,) o / bP) (%)) dX77L (2.27)
(This is becaus&l(fg can be obtained by discarding froiaﬁ];z all VeCIOI'SXl(,{T)l with I # 1, i.e.,

by discarding[xl(f)]l,eMS , which is the Monte Carlo implementation of the marginalization
b (., x [ b®) (%), dxl )

FmaIIy, a resampling [Ristic et al., 2004] is performed to obtain equally weightetd-
cles representing® (x1,). These particles are broadcast to all neighboring CAs Mz o
where they are used to calculate the beligfs!) (x;,,,). This algorithm avoids kernel density

estimation for the measurement messages.

2.4.2 Computation and Communication Requirements

In the following discussion of the computation and communication for the alteenaéirticle-
based BP algorithm, we assume for simplicity that all stajgs! € S have identical dimension
L at all times. Particle-based filtering algorithms in general suffers fronxporential scaling
of the computational complexity in the dimensibnwhich is known as curse of dimensionality
[Doucet et al., 2001, Daum and Huang, 2003]. However, as ardliyzfbaum and Huang,
2003] the curse of dimensionality is avoided if the propog@r!)( (X;,,) strongly resembles
the beliefb) (%, ,,). If this is the case for our alternative particle-based BP algorithm can not
be answered in general, since it depends mainly on the variance of ttesprooisey; ,, for
all I’ € {I} UM,, (cf. (1.1)) and on the availability of informative belief& (%, ,,_1),
' € {I} UM,,, from the prior time step. — 1.

Furthermore, it is straightforward that the computational complexity of theuatian for
all J particles in (2.26) scales &(| M7, |.J), i.e., only linearly in the number of particles
(The conventional NBP described in Section 2.1.2 scales quadraticallynmithieer of particles
J.) The dimension of the distributicii?’ (X;,,) involved in the importance sampling scheme is
(]M7,] +1) L, and thus higher than that o) (x) in the case of NBP (cf. (2.8)). Nevertheless,
we will see in Section 2.6 that for the simulated setting where the number of msjbl‘blfn
is moderately large, using a similar number of particless for conventional NBP reviewed in
Section 2.1.2 yields a comparable accuracy at a strongly reduced runtime.
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The communication requirements of both NBP methods are equal and reliiyelyMore
specifically, at timen and message passing iteratipn CA | receivesJ L real values cor-
responding to the particles representing the beﬂiéfl)(fqlm) from all I’ € an(this is
needed to calculate the belig® (x1,)), and it broadcastg L real values representing the
belief b(P—l)(xl/m). If the measurement model in (2.38) involves only substaigs of the
statesx; ,, only subparticles corresponding 2 ,, have to be transmitted. Due to the higher
dimensional problem, in the new NBP scheme, the number of particiesypically higher
compared to standard NBP. Therefore, the lower complexity comes at shefdugher com-
munication requirements (this drawback can however be avoided by ugargmetric message
representation for communication [Savic and Zazo, 2012]).

2.5 Sigma Point Belief Propagation (SPBP)

In this section, we present SPBP, a new low-complexity approximation offd&his a promis-
ing approach for cooperative navigation. It is based on the dimensigmanted reformulation
of BP and extends the sigma point filter to general factor structures. Webgteeviewing the
basic principles of sigma points and state then the SPBP algorithm using theu&fted BP
message passing equations from Section 2.3. SPBP is is particular intefestiogperative
navigation due to its low computation and communication requirements

25.1 Review: Sigma Point Basics

In this section we denote by € R” a general (non-Gaussian) random vector whose mean
1x = E{x} and covariance matri€, = E{(x— pux)(x—pux)"} are known, and a transformed
random vector =T'(x), wherel'(-) is a generally nonlinear function. Sigma poir{ts(j)}j.i

and corresponding weigh{sﬂﬁf)}?io and{wéj) }jio are chosen such that the weighted sample
mean

2L ) ‘
ﬂx = Z wr(%)x(j)
§=0
and weighted sample covariance matrix

2L

Cx =Y wd (x) — i) (x1V) — i) (2.28)

§=0

are exactly equal tpe, andCy, respectively. Closed-form expressions of the sigma points and
weights are provided in [Wan and van der Merwe, 2001]. The sprithe sigma points around
the meanuy can be adjusted via tuning parameters, whose choice depends on theidimens
L of x [Julier and Uhlmann, 1997, Wan and van der Merwe, 2001]. Next, sigcha point is
propagated throughi(-), resulting inz9) = T'(x\9)), j € {0,..., 2L} (“unscented transforma-
tion”). The set{(x(), z200), w¥, wéj))}jiothen represents the joint second-order statistics of
andz in an approximate manner. In particulas,, C,, andCy, = E{(x—pux)(z—pu,)"} are
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approximated by

2L

o = 3 wlf) a0 (2.29)
7=0
2L

G =S Wl (@) - fi,) (29— i) (2.30)
7=0
2L

Crr = 3 0 (P — i) (29— fi,)T. (2.31)
7=0

It has been shown in [Julier and Uhlmann, 1997] and [Wan and van dex&] 2001] that these
approximations are at least as accurate as those resulting from a litiear{fiast-order Taylor
series approximation) df(-). Note also that the numbe@r. + 1 of sigma points grows linearly
with the dimension ok and is typically much smaller than the number of random samples in a
particle representation.

Next, we consider the use of sigma points for Bayesian estimation of a ranelctior x
from an observed vector

y =z+n, withz=I(x).

Here, the noisé n is statistically independent af and generally non-Gaussian, with zero mean
and known covariance matrix,,. Bayesian estimation relies on the posterior PDF

fxly) o< flylx)f(x), (2.32)

where f (y|x) is the likelihood function andgf(x) is the prior PDF. Direct calculation of (2.32)
is usually infeasible. An important exception is the case wheaadn are Gaussian random
vectors and’(x) = I'x with some known matriX’. Then f(x|y) is also Gaussian, and the
posterior mearu, |, and posterior covariance mati@,,, can be calculated as

Pxy = Bx + K(y — pz), Cyy = Cx — K(Cz+Cn)K', (2.33)
where
py=Tpy, C,=TCxIT (2.34)
and
K = Cyy(Cy+Cpn)7l,  with Cyy = C, I, (2.35)

These expressions are used in the measurement update step of the Kladm&taiykin, 2001].
The minimum mean-square error estimatexaé given bypu, ., and a characterization of the
accuracy of estimation b§, .

In the general case of nonline&X-), the basic approximation underlying the extended

2Note that for simplicity we here use additive noise. As described in [Wahvan der Merwe, 2001], the
reviewed procedure can easily be extended to a general noise model.
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Kalman filter [Haykin, 2001] is obtained by using (essentially) (2.33)—(2wdth I" being the
Jacobian matrix resulting from a linearizationItf ). A more accurate alternative is to approx-
imatepy,, andC,,, by means of sigma points. For this, we use (2.33) and the first equation in
(2.35), withp,,, C,, andC,,, replaced by the sigma point approximatiging C,, andCy, in
(2.29)—(2.31). This gives

:ax\y = px + K(y - I]'Z) ) Cx\y = Cx — K(Cz + Cn)KT7 (236)

with K = Cy,(C,+Cr)~!. We thus obtain the following approximate sigma point implemen-
tation of (2.32).

Step 1 Sigma points and weight§(x?) ) (]))}j are calculated fromu, and Cy
[Wan and van der Merwe, 2001].

Step 2 The transformed sigma poinzéi> =T(x19),j€{0,...,2L} are calculated.

Step 3 From {(x\9), 211, wd) (9))} , the means and covariancgs, C,, andCy in
(2.29)—(2.31) and, in turni,|, andC in (2 36) are calculated.

x|y

2.5.2 Statement of the SPBP Algorithm

We will now derive the SPBP algorithm for cooperative navigation. For kaityg we per-
form this derivation using additive noise in both measurement model and rmtidaf. More
specifically, instead of the motion model in (1.1) and the measurement mode2jmg use

Xin = g(Xin—1) A, (€S, (2.37)
and
Vi = dXin, X n) + Vi, €S, 1€ an ; (2.38)
respectively.
Prediction

First, we discuss how a approximate meap, and covariance matri€y, , corresponding to
the normalized prediction message,, (x; ) in (2.6) can be obtained from the approximate
mean,uéizl’nil) and covariance matri(Céanil) corresponding to(") (x;n—1) at CAl € S.
Note, that this procedure is identical to the prediction step in the sigma point[¥\fer and
van der Merwe, 2001]. The following steps are now performed fadipten (note that the first
three steps are analogous to those in Section 2.5.1).

Step 1 Sigma points and WelghtfP‘(xl ,wrﬂ), wéj))}jilo" corresponding t&") (x;,, 1)
are calculated frorwé( ) D andCéi() [\Nan and van der Merwe, 2001].

Step 2 The transformed sigma pong) =g(x; n) j€{0,...,2L;,} are calculated.

3The proposed algorithm can easily extended to a general noise moaelgid van der Merwe, 2001]
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Step 3 From {(zl ) wid) wd ))}2Ll ", the mean and covariance matri§) andCy’ are
calculated as in (2.29) and (2.30).

Step 4 Finally, the approximate megm, , and covariance matriy, , corresponding to
¢—n(x1,) are obtained as

I“Lxl,n = I‘Lzl,n +l'1'q Cxl,n - Czln +C

Here,uq andCq are mean and covariance matrix of the driving naisg, respectively. Note
that in case the motion model is linear, i.e., (2.37) can be writtexy as= G;x;,—1 + Qi n,
Steps 1-4 can be avoided and we directly get

lJ'xl,n - Gluxl,n—l + lj’q Cxl,n - Glcxl,n—lc;-;[‘l + Cq

M easurement Update

Now, to develop an sigma-point-based approximate calculatiéﬁi’&klm), we rewrite (2.20)
as

D) (x1.0) = / b (%, A (2.39)

where
b (%1,) < f(FinlZin) FPD (Rpn)- (2.40)

Note that the dimension of; ,, is Lln = L+ Y e M| Ly, whereL;,, denotes the di-
mension ofx; ,,. Because the expression (2.40) of the “composite belié?(x, ) is anal-
ogous to (2.32), we can obtain an approximate sigma point representatiét (&f,,) ina
similar way as we obtained an approximate sigma points representatiffxf) in Sec-
tion 2.5.1. We first specify the “neighbor” set of CAc S as/\/lfn = {l1, 1o, ... ,Z‘an|}
and define a mean vector and a covariance matrix corresponding to thgdsie prior”

FP (R 0) o ¢oyn(Xin) [T1e M b= (xp1,,):

;
1 nT 1T
e (T k" Y (2.41)
s |Mf ‘7
cl V2 diag{Cy,,..Cf V.V, e L (2.42)
) ) ) MS |

In

Here, we interprete@]l,er b(P‘l)(xl/,n) as the product of the PDFs of statistically indepen-

dent random variables; furthermorpl(f:) and Cl(f’;l) are the mean and covariance matrix
of b(pfl)(xléyn); anddiag{-} denotes tF1e block dia{gonal matrix whose diagonal blocks are the
listed matrices. The following steps are now performed for measuremeateaufytbte that the
first three steps are analogous to those in Section 2.5.1).

Step 1 Sigma points and Welgh{s(x wi?, (]))}j L corresponding tg P~ (x, ,,) are
calculated fromu(p Y andc! p U [Wan and van der Merwe, 2001]. (Note that the dimension
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and number of the sigma points depend on the number of neighbqf§|, and thus the tuning
parameters that adjust the spread of the sigma points should be adajpteﬁnﬂo)
Step 2 The transformed sigma poinigg =D, (i(j)),j e{o,... 72El,n} are calculated.

l,n
Step 3 From {(x") 257;3, wr(ﬁ),wéj))}iil’” the means and covariancg§’ , C¥) | and

,n? 0’ il,n'
Cg)nzl _ are calculated as in (2.29)—(2.31). Subsequeplél@l ) andCl(f(:),q ) (the sigma point

approximations of the mean and covariance matri>b(6)f(5q7n)) are calculated as in (2.36),

usingp;’l’)n, Cg’)n andcg)nil _instead ofp,, C,, andCx, respectively.
Step 4 From ué’(’;l ) and C,(f(’)),q ) the elements related to;,, are extracted (this cor-

responds to the marginalization (2.39)). More specifically, the approximaae nﬁ%)(l ) and

covariance matriC” of the “marginal belief’s®) (x;,,) are given by the firsk,; ,, elements

b(xl,n)

of “g(??z,n) and the upper-left; ,,xL; ,, submatrix ofC,()’(’;l’n), respectively (cf. the stacked struc-

ture of Y in (2.41) and the block structure 62" in (2.42)).

2.5.3 Computation and Communication Requirements

As in Section 2.4.2 for NBP, in the following discussion of the computation anghaanica-
tion requirements of the proposed SPBP algorithm, we assume for simplicityltsiatesx; ,,,

[ € S have identical dimensioh at all times. Similar to the sigma point filter [Wan and van der
Merwe, 2001], SPBP requires the computation of the square root 6Mﬁematrices(3%;” to
calculate the sigma poinféfg in Step 1. This is the most complex part of the SPBP algorithm.
An efficient computation of the matrix square root uses the Cholesky dexsitiom [Press et al.,
1992], whose complexity is cubic ih = \an|(L + 1). Thus, the complexity of SPBP at one
CA [ and one time step is cubic in|M;, | and, also, in the number of sigma points (which
is 2L + 1). The complexity of NBP is linear |¢an\ Furthermore, it is quadratic in the
number of particles [Lien et al., 2012] for the conventional NBP and it isalime the number

of particles for the low-complexity alternative presented in Section 2.4. Mewe NBP the
number of particles is usually much higher than the number of sigma points in. SRBE&
over, the quadratic and cubic complexity terms of the Cholesky decomposiéaataer small
(aboutL? /6 multiplications,L? /2 divisions, andL square root operations are used [Press et al.,
1992]). Therefore, as also investigate in the next Section 2.6 for catgenavigation, SPBP

is significantly less complex than the conventional NBP implementation and its cdtypiex
comparable to that of the alternative BP implementation in Section 2.4.

SPBP has very low communication requirements. Because the déﬂk{ﬁsl,n) are repre-
sented by a mean vector and a covariance matrix, at MQSLL(L;U = L(L;?’) real values per
message passing iteratipre {1, ..., P} have to be transmitted from C/Ao neighboring CAs,
rather than hundreds or thousands of particles in NBP. More specifiafligessage passing
iterationp, CA [ receivesul(?*l) and Cl(f’*l) from all I’ € an (this is needed to calculate
ug_n andcg_l), see (2.41) and (2.42)), and it broadcaﬁ%%_l) andCl(p_l) toalll’ e M7,
These communications are a precondition for Step 1 of the SPBP algorithra.nifgasurement
model in (2.38) involves only substatag,, of the statest; ,,, only the mean and covariance
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matrix corresponding td ,, have to be transmitted.

2.6 Simulation Results

We simulated a decentralized, cooperative navigation scenario using erkeffS|=>5 CAs,

of which three are mobile and two are static anchors, i.e., CAs with perfetigoinforma-
tion. The state of mobile CA € {1,2,3} at timen = 1,...,100 consists of the position
Ain 2 (T100 T2.,)" and the velocity, i.ex;, = (2110 To1n ©140 T2.,)"- Each mobile

CA moves within a field of size 5050, performs distance measurements relative to all other
CAs, communicates the mean and covariance matrix of its current position thell@As, and
estimates its own state. We assume that each mobile CA is able to associate its meatsure
with the individual CAs. Each anchor CAc {4,5} communicates its own (true) positiog.

The distance measurement of mobile CA {1, 2, 3} relative to CAl’ at timen is (cf. (2.38))

”Al,n - )‘l’,nH + Vilm 4 € {17 27 3}\{l}

Yii'im = _ ,
”Al,n - )‘l’ H + Ul,l’;rm l € {47 5} )

wherev, ;/.,, is zero-mean Gaussian measurement noise with varighed .
The states of the mobile CAs evolve independently according to [Li and JR2K®3]

Xin=GxXpp1 +Waqy,, n=12,.... (2.43)

Here, the matrice& andW are given by

1 010 05 0
0101 0 0.5
G = , W= ) (2.44)
0 010 1 0
0 001 0 1

and the driving noise vectorg ,, € R* are Gaussian, i.eq , ~ N (0, 02I), with variances? =
10—, In the generation of the state sequences, this recursive evolutionmqf fiveas initialized
with x30 = (0 0 0.1 0.5)T, x290 = (25 50 0.25 —0.4)T, andx3 = (50 0 —.5 0.2)T. The
anchor CAs are located &, = (0 25)"T and5 = (50 25)T for all n. Fig. 2.3 shows the network
topology used for the simulations and example realizations of the mobile CA tnagsctm the
simulation of the various cooperative localization algorithms, for the mobile @&sjsed the
initial prior PDF f(x;0) = N (1,0, C10). Here,C;o = diag{1,1,0.01,0.01} represents the
uncertainty in knowingk; o, andp, o is a random hyperparameter that was randomly sampled
(for each simulation run) fromV (x; o, C; o). For the anchor CAs, the true positions were used.
The number of message passing iteratipas each time: was set taP = 2.

We compare the proposed conventional NBP algorithm (NBP-1) with theoged alter-
native NBP algorithm (NBP-2) and the SPBP algorithm (using 25 sigma poit)three
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0 10 20 30 40 50
x1

Figure 2.3: Network topology used for the simulations and example realizaifdhs trajec-
tories of the three mobile CA. Initial mobile CA positions are indicated by crossmbanchor
positions are indicated by circles.

methods use the same message passing scheme (2.5)—(2.7) known as. JP&MBP meth-
ods use/ = 500, or J = 5000 particles. In NBP-1, the bandwidth of the Gaussian kernels was
equal to the measurement noise variange= 1 [Ihler et al., 2005]. Fig. 2.4 shows the sim-
ulated average root-mean-square error (ARMSE) of the various netbhod = 1, ..., 100.

This error was determined by averaging over the three mobile CAs andsifdQ@ation runs.

It is seen that, for/ = 500, SPBP outperforms the two NBP methods. However, if the
number of particles used in the NBP methods is increased to 5000 NBP-1 outperforms
SPBP and NBP-2 performs equally well than SPBP. Note that, the perfoeramvantages of
NBP over SPBP are expected to be larger in the case of a stronger momfieasurement model
or a nonlinear motion model.

The average runtime of our SPBP implementation on an Intel Xeon X5650 @Pdll
100 time steps of one simulation run, was1s. The average runtime of NBP-1 w®.38s,
and842.02s (for 500, and 5000 particles, respectively), that of NBP-2 &vags, and1.23s.
Thus, the improved performance of NBP-1 using 5000 particles ovePS#©Bie at the cost of
a dramatically increased computational complexity. Finally, it is interesting tatlsaeSPBP
and NBP-2, which perform equally well, do also have a similar computatimmaptexity.

With SPBP, since our measurement model involves only the two-dimensiositibpo\; ,,,
each mobile CA broadcasts the mean vector and covariance masf(@,, ;) = [ [ b® (x,.;)
ddy ,dde,,; at each message passing iteratigrcorresponding t@ + 3 = 5 real values.
By contrast, for the NBP methods with 500, and 5000 particles, the numberabialues
broadcast by each mobile CA at each message passing iteration is 1000089, respectively.
Thus, SPBP requires significantly less communications than the NBP method&vét, the
drawback of higher communication requirements of NBP methods can besdvioydusing a
parametric message representation for communication [Savic and ZaZj, 201 all three
methods, each anchor CA broadcasts its position, corresponding to @lveatees; however,
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Figure 2.4: ARMSE of the simulated self-localization algorithms versus time

this is a preparatory step that is executed only once.)
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Chapter 3

Cooper ative Simultaneous Navigation
and Tracking (CoSNAT)

This chapter introduces a BP-based framework and methodology fal&loSvhich, for the
first time, provide a consistent combination of cooperative navigation iatribdited tracking in
decentralized mobile agent networks. In CoSNAT, mobile CAs track singteuttiple targets
while simultaneously localizing themselves. This is based on pairwise meastisdmeémneen
CAs and targets as well as between CAs.

We start by reviewing distributed target tracking. Then, we proposei@ms&on of the BP
message passing scheme for cooperative navigation discussed inrChapteoncooperative
targets. Finally, we develop a distributed particle-based implementation ofghkimg CoS-
NAT message passing scheme. This algorithm is the first method for CoSNATiliy dynamic
setting. The key feature of the proposed CoSNAT algorithm is a bidired¢tmohabilistic in-
formation transfer between the navigation and tracking stages. In thiswesrtainties in one
stage can be taken into account by the other stage, which results in an @dperformance of
both navigation and tracking.

3.1 Review: Distributed Tracking Using Particle Filtering

Besides cooperative navigation using particle-based BP messagegmesdiscussed in the last
Section 2, a second methodological component of our COSNAT algorithistigodted tracking
using data dissemination techniques. This component will therefore bevesl/igext.

In distributed tracking, at time, the CAsl’ € S, ,, acquire measuremengs ,,,., associated
with targetm € 7. Each CAl € S then estimates all target states ,,, m € 7 from the past and
present measurements of all CAE Sy, UP to timen, ym,1:n £ [yimin]
This is done, e.g., by means of the MMSE estimator

UE€Smn,n€{l,...,n}

QM%SE £ /Xm,n f(xm,n‘ym,lsn§ Xin)dxm,n , meT. (3.1)
(Alternatively, MAP estimation similar to (2.2) can be used.) The estimate (3.1)ralslves

37
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the set of CA states up to time x{,, = Xtnlies, meqt,....ny» Which normally would have to be
estimated separately using a cooperative navigation method. Howeveistifiteuted tracking
method reviewed in the following merely assumes that eacli €4 knows its own position
in the global reference frame. Note that this assumption of known CA positidhbe lifted in
the cooperative navigation and tracking setting.

3.1.1 Consensus-based ParticleFilter for Distributed Tracking

The statistical relationship between the set of all measurements involving targe,, ,, £
[Yi,minljes,, .- @and the target state;, ,, is described by thglobal likelihood functior(GLF)

Gm,n(xm,n) = f(Ym,n|Xm,n; Xf) = H f(YZ,m;n|Xm,n; Xl,n)7 (32)
IE€ESm,n

where assumption (A6) was used in the last step. Note thatgres the known position of
CA [. Based on assumptions (A2)—(A5), the posterior PDF involved in (3ripeacalculated
sequentially according to [Ristic et al., 2004]

f(xm,n|Ym,1:n; an) X Gm,n(xm,n) /f(Xm,n’Xm,n—l)

X f(Xmm1|Ym1m—1;X0n_1) dXmn_1 - (3.3)

A feasible approximation of sequential state estimation as given by (3.1)38di$ pro-
vided by the particle filter (PF) [Ristic et al., 2004]. The PF uses a{l(’ié%?n,w%?n)}jzl

of f(Xm.n|Ym,1:n: xfm), from which an approximation of the MMSE estimate (3.1) can be ob-
tained (cf. (2.12)).

The weight&u%?n are calculated by evaluating the GIF,, ,,(x, ) at the particle&%?n
[Ristic et al., 2004]. Following [Farahmand et al., 2011] and [Savic et 8lL4P this evalua-
tion can be performed in a distributed manner by employirgarallel instances of an average
consensus or gossip scheme [Olfati-Saber et al., 2007, Dimakis et 4], Zbkse schemes are
iterative and update an “internal state” at each iteration; they requirecontynunication with
neighboring CAs. Letl(%)n denote the internal states of GAc S at iterationi € {1,...,C}.

Each internal state is initialized as

(5;0) _ { 10g f(YZ,m;n|X$7J1?n; Xl,n)’ le Sm,n (34)

Lmin 0, 1¢ Spn.

If the network’s communication graph is connected, then after conveeggfithe consensus or
gossip algorithm, i.e., a8 — oo, the internal state would equal the average of all the initial
values in the agent network, i.e.,

: i 1 -
lim 7 = 5] 2o 08t XX (3.5)
lESm,n
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Therefore, if the numbet’ of iterations is sufficiently large, then due to (3.2), a good approxi-

mation ofG,, ,, (x\%),,) can be obtained at each CA B, ,(x7,) ~ exp(|S| gl(jmcg) Because

perfect consensus on the weights is required (to guarantee identitialgzaat all CAs) but
cannot generally be obtained with a finite numbeof iterations, in addition a max-consensus
scheme [Farahmand et al., 2011] is used. This scheme computes the exattmaf all val-
ues using only local communication; it converged itberations, wherd denotes the diameter
of the CA network. Furthermore, the pseudo-random number genetali CAs have to be
initialized with the same seed at time= 0; this ensures that they are in identical states at all
times.

Alternatively, the likelihood consensus scheme [Hlinka et al., 2012, Hlinkal.e2013]
can be employed to approximate the functional forﬁﬂﬁ,)n(xm,n) at each CA using only
local communication. The local likelihood functions are approximated by paresion into a
given set of basis functions; then consensus over the expansifiitieo¢s is employed. This
typically requires less communications than the “consensus on the weigh&shec However,
the computational effort is larger since each CA has to solve a leasesqurablem to calculate
its coefficients [Hlinka et al., 2012, Hlinka et al., 2013], and a more infonmatiitial prior is
required for good performance.

3.1.2 Message Passing I nterpretation

For later reference, we note that sequential Bayesian distributed tgemt@ording to (3.2) and
(3.3) is equivalent to running BP on the factor graph shown in Fig. 3.&l[ger, 2004]. Because
of the tree structure of this graph, BP is performed noniteratively, i.e., thesage passing
procedure (2.5)—(2.7) is performed only once to calculése,, ,,). Furthermorep(x,, ) is
exactly equal tof (X, n|ym.1:n; X3, )- We have (cf. (2.5))

b(Xm,n) 0.8 Qban(xm,n) H ¢l—>m(Xm,n)a (36)

leSm,n

whereg_,,, (x,, ) is calculated similarly to (2.6). The messages,,, (Xm ), | € Sy, » Need not
be calculated using (2.7) because they equal the local likelihood fungtigns, ., |Xm.n; Xi.n)-
(This follows from our assumption that each CA S, ,, knows its own true state, and will
be shown in Section 3.2.) The messages and beliefs involved in the calculaticn,0,) are
depicted in Fig. 3.1. We emphasize that messages entering or leaving avéaigele node in
the factor graph in Fig. 3.1 do not imply that there occurs any communicatiotving targets.
As mentioned earlier, the targets are noncooperative.

The PF is a particle implementation of (3.3) and a special case of NBP. Pa{ﬁé@ﬁ}j:l
representing_,, (x..») (cf. (3.6)) are drawn by performing message filtering as described in
Section 2.1.2. Furthermore, using importance sampling with (x,, ) as proposal distribu-
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me fL(rrL

f2,m fL,m

Figure 3.1: Distributed tracking factor graph for target 7, involving CAsl € S, , = {1,
2,...,L}. The time instants — 1 andn are shown; time indices are omitted for simplicity.

The short nOtatiorfm £ f(xm,n/yxm,n/—l)a fl,m = f(Yl,m;n’|Xl,n’> Xm,n’)a bm £ b(Xm,n’)a

n’ € {1,...,n} is used. Factors inside the dotted box correspond to calculations pedftiyme
CA 1 € S, factors outside the box imply communication with other CAs. Only messages
and beliefs involved in the computationigk,, ) are shown. Edges with non-filled arrowheads
depict particle-based messages and beliefs, while edges with filled @ad&/klepict messages
involved in the consensus scheme.

tion, corresponding Weightéw%,)n ;]:1 are obtained by evaluating the message product

H ¢l—>m(xm,n) = H f(YZ,m;n|Xm,n;Xl,n) (37)

lESm,n lesm,n

at these particles. This message multiplication is simpler than that of Section Zchilsbano
kernel estimates are required.

Since each CA is interested in all target statgs,, m € T, the corresponding beliefs
b(xm,) are stored (temporarily) at all CAs= S in parallel.

3.2 COoSNAT Message Passing Scheme

The CoSNAT message passing scheme developed in this section combinesgbrative nav-
igatio and distributed tracking message passing schemes reviewed in Sé@ctiamsl 3.1, re-
spectively. A distributed CoSNAT algorithm based on this message passiems will be
presented in Section 3.3.

In CoSNAT, each CA € S estimates both its statg ,, and all target states,, ,, m € T

from theentire measurement sgt., = [y x|,/ ) i.e., from the pairwise

€S, keMy ' €{1,.
measurements between the CAs and those between the CAs and the targdisamtorhe

MMSE estimator of the CA and target states is given by (remembeSthaf = A)

sMMSE
Xk’n = /Xk:,nf(xk,n

Vin)dXpn, keA. (3.8)

Alternatively, MAP estimation (2.2) can be employed. In the cooperative simutnaviga-
tion and tracking estimates (3.8), compared to the cooperative navigationtesti{®4d) and the
distributed tracking estimates (3.1), the measurement set is extended in tohtdemalso the
respective other measurements—i.e., the pairwise measurements betwesardG#gets in the
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CA state estimates and the pairwise measurements between CAs in the targedtistaties
This is a major reason why cooperative navigation and tracking outpesfseparate coopera-
tive navigation—distributed tracking and SLAT. In fact, by using in the estim&t8) the PDF
f(Xk.n|y1:m), Which involves the total set;.,, of all present and past measurements available
throughout the entire network, the inherent coupling between the catmenavigation and
distributed tracking tasks is exploited in an optimum manner.

The marginal posteriorg(xy.,|y1:n), k € A in (3.8) can be obtained by marginalizing
f(x1:n]y1:). Using Bayes’ rule and assumptions (A1)—(A6), one obtains the faatmiz

f(Xlzn’ylzn) X [ H f(xk,O)] H [ H f(Xkl,n’|Xk1,n/—1)

ke A n’=1Lk1eA

X H H f(YZ,kQ;n’|Xl,n’7ng,n’) .

lesS kQGMl’n/

The corresponding factor graph, shown in Fig. 3.2, is the cooperadiigation factor graph in
Fig. 2.1 extended by the target states. In contrast to the distributed trdakiog graph in Fig.
3.1, the likelihood function related to measurements of a tafd®4,.,.n|x: n, Xm.n), IS NOW a
factor (f; ., in Fig. 3.2) between a target state and a CA state. These factors enabtba “tu
like” probabilistic information transfer [Wymeersch, 2007] between coafpee and distributed
tracking (see Fig. 3.3), which is another reason for the superiormpesftce of COSNAT.

On the CoSNAT factor graph in Fig. 3.2, we run a modified BP message passieme.
This is motivated by the advantages of BP that were discussed in the ateperavigation
context in Section 2.1.1. Again, since the factor graph is loopy, SPAWNtret BP schemes
are suboptimum. However, as we will show in Section 3.5, BP provides @ecestimates.

In the modified BP scheme, the belief of agent nédeS or m € T at message passing
iterationp € {1, ..., P} is given, up to a normalization factor, by (cf. (2.5) and (3.6))

) (x1,0) ¢ Ssn () [ 6 (un) s LES, (3.9)
kEMlyn

bP) (ximn) % Gsn(Xmn) [ 6 (Kenn) . mET, (3.10)
1€Smn

with the prediction message (cf. (2.6))

G—n(Xk,n) —/f(Xk,n!Xk,nl)b(P)(Xk,n1)ka,n1, kecA (3.11)
and the measurement messages (cf. (2.7))

[ FikmlXin, Xen) 8P (x4 ) dxpe kEMS,, IES

o) (x10) = (3.12)
ff(yl,k;n‘xl,n 5 Xk,n) w;(f:ll) (Xk,n) dxk,n ke Mz—n ; leS
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Figure 3.2: CoSNAT factor graph showing the states of CAs 1,2 and of a targetn
at time instantsh — 1 and n; time indices are omitted for simplicity The short notation

fo & & [Xen—1)s ik = FYikn X, Xin), b;(gp) 2 5P (x4, 1/1k_>1 %E;p_)ﬂ(ka'),
n’ € {1,...,n} is used. The upper three (black) dotted boxes correspond to theratiope
navigation part; the bottom (red) dotted box corresponds to the distribaieldrig part. Edges
between black dotted boxes imply communication between CAs. Only messapjéelais
involved in the computation df”) (x; ,,) andb®)(x,, ,) are shown. Edges with non-filled ar-
rowheads depict particle-based messages and beliefs, while edgedledthrfiowheads depict

messages involved in the consensus scheme.

(P B 4P) o)
Sl havigation—>"e 5121 navigatior—o:
P ‘
X\(ST)L wSﬁT n { 4 wT*)S n
o) I (P ' B
—L2lel tracking ——"e —Lnly | tracking —Ll e

(@) (b)

Figure 3.3: Block diagram of (a) separate navigation and tracking an@@BNAT, with
P) P)

b( {b P) Xl” }leS’ '(T'rL = {b(P an)}mET’ wS—ﬂ—n = {wl—ﬂn Xin }ZGSmEMT !

P

wTﬁS,n = {wm—ﬂ(van)}me’TJeSmyn’ andx‘(’S,g* [ l(,n)]

ing, only the final CA state estimaté:ép ) are transferred once from navigation to tracking.

les. In separate navigation and track-

In CoSNAT, probabilistic information (the extrinsic mformatmzvg_ﬁn and w%lf)_)s ,) IS ex-
changed between navigation and tracking at each message passmg”nyﬁratio
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(3.13)

and
gbl(i)m (Xm,n) = /f(YZ,m;n |Xl,n ; Xm,n) wl(i_,i) (Xl,n) Xm,n ! :Sm,n , Me T. (314)

Here zpm N (xmm) andwl(i_ni) (x1,»,) (constituting the extrinsic information) are given by

WP i) = donxia) [ 085 (xin) (3.15)
keMl n\{m}

YO Kmn) = S mm) [ 0o (Kmn) (3.16)
UeSm n\{l}

For reasons discussed in Section 2.1.1, the prediction messages in ¢8.{2)5)) and the CA-
related measurement messages in (3.12) (cf. (2.7)) differ from thessthB&® message passing
rules, i.e., the extrinsic information is equal to the belief. The messages beid ba/olved in
the calculation 0b®)(x; ,,) andb®) (x,,,,) are depicted in Fig. 3.2.

Again, messages entering or leaving a target variable node in Fig. 3.2 gopip that there
occurs any communication involving targets.

In the “pure distributed tracking” case considered in Section 3.1/ €AS,, ,, knows its
own true statex!™®, and thuaﬁl(f;i) (x1,n) is replaced by (x; ,, — x}rquf) Hence, (3.14) yields

l,n?

gbl(i)m(xm,n) = f(YZ m; n|Xm n; Xfrze)
as was claimed in Section 3.1.2.

As in cooperative navigation, each CA beliéf) (x;,,) is stored (temporarily) only at the
respective CA. However, as each CA is also interested in all the target states the cor-
responding beliefs®) (xm,n) are also computed and stored (temporarily) at all CAsS in
parallel.

3.3 Distributed CoSNAT Algorithm

We will next devise a distributed CoSNAT algorithm that combines particled&P—i.e., a
particle-based implementation of (3.9)—(3.16)—with consensus. This algorébuires only
local communication between neighboring CAs. The distributed calculatioe ¢tdthet beliefs,
CA beliefs, and extrinsic information will be discussed in separate subgssctio

3.3.1 Distributed Calculation of the Target Beliefs

Estimation of the target states, ,,, m € 7 fromy;.,, according to (3.8) essentially amounts to
a computation off (x,,.»|y1.»). The following discussion describes the calculations associated
with the red dotted box in Fig. 3.2.

The target belieb) (x,, ), p € {1, ..., P} approximatingf (X, »|y1.») is given, up to a
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factor, by (see (3.10))

0P (X)) < G (Ximn) PE (X (3.17)
with (recalling (3.11))
(b%n(xm,n) = /f(xm,n|xm,n1) b(P) (Xm,nfl) dxm,nfl (318)
and
(I)gg?n(xm,n) = H ¢l(p_>)m(xm,n)- (3.19)
lesm,n

The key observation now is that expression (3.17) along with (3.18) iseoféime form as
the distributed tracking recursion (3.3), but with the G&F, ,,(x,») replaced by the message
product@%?n(xm,n). The beliefb®) (xm,n—1) Occurring in (3.18) was calculated by each CA
at timen—1; using this belief, the CA is able to calculate the messagg(x,, ) involved in
(3.17). Regarding the message prod@fﬁ?n(xm,n), the individual messag i)m(xm n) (cf.
(3.19)) involve the extrinsic information,sl(i:nl) (x1,) (see (3.14)); calculation of the latter will
be discussed in Section 3.3.3. However, because the targets do netategmt each CA at
most one messagép (xm,n) is available (for a givemr). Thus, the overall message product

cI)ffZ?n (xm,n) is not available at the CAs.

Particle-based Calculation of b®) (x,, )

A particle-based implementation of (3.17) can be obtained via importance samjitingro-
posal distributiorp_, ,, (x,,.» ). First, based on (3.18), particléx%?n ;]:1 representing_., (Xm.»)
are calculated from particles representhg (xm,n—1) by means of message filtering (cf. Sec-
tion 2.1.2). Next, weights{w%?n ;]:1 are calculated as

o) 2 oP) (x0) ) (3.20)

followed by normalization. Finally, resampling is performed to obtain equally ket parti-

cles representing(®’ (xm,n). However, this particle-based implementation presupposes that the
message produmgn)n(xm n) Is available at the CAs. Therefore, in the foIIowing, we present
a distributed scheme for the evaluatlon@)fﬁ ) at the partlcles{xmn} . This scheme

requires only local communication.

Distributed Evaluation of @%?n(-)

For a distributed computation dfﬁf{)n(xgn)n) jeA{l,...,J}, we employJ parallel instances
of a consensus or gossip scheme [Olfati-Saber et al., 2007, Dimakis2QH)], In analogy to
(3.4), the internal states are initialized as

(G0 _ { log ¢, (xih), L€ S (3.21)

L 0 1¢ Spn.
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Note that a closed-form approximation @5‘” . (Xm,n) Can be obtained via a kernel estimate
(see (2.10)) or via a parametric representation (see Sections 2.1.2 &)da2.@ell as [Caceres
etal., 2011]). If the network’s communication graph is connected, then@nvergence of the
consensus or gossip algorithm, the internal state would become

lim lmn = Z IOg ¢§ﬁ)>m (] )

1—00
leSm n

Thus, for a sufficiently large numbér of iterations, because of (3.19), a good approximation
of @ﬁﬁ?n(x%?n) is obtained at each CA byﬁﬁ?n(x%)n) ~ exp(!S\Cl(’Zfrz). Here, the number of
CAs|S| can be determined in a distributed way by using another consensus i aigssithm
attimen = 0 [Pham et al., 2009]. Furthermore, as explained in Section 3.1.1, an addlition
max-consensus scheme [Farahmand et al., 2011] has to be used to @tedt ponsensus
on the weightab%?n in (3.20) and, in turn, identical particles at all CAs. The max-consensus
converges inl iterations. Finally, the pseudo-random number generators of all CAsthdwe
initialized with the same seed at time= 0. This distributed evaluation @gﬁ?n(x%?n) requires
only local communication: at each iteration, for each consenkusal values are broadcast by
each CA to neighboring CAs [Olfati-Saber et al., 2007, Dimakis et al., 2010]

As an alternative to this “consensus on the weights” scheme, the likelihawgkrsus
scheme [Hlinka et al., 2012, Hlinka et al., 2013] can be employed to apprteithe func-
tional form of@ﬁﬁ?n(xmm) at the CAs, again using only local communication.

Probabilistic | nfor mation Transfer

According to (3.14), the messagg(g (xm,n) OCCUrring |n<I>$n)n(xm n) = Hzesm,,ﬁbl(ﬂm(xm,n)
involve the extrinsic mformatlonﬁva (x;,,) Of all CAs [ observing targetn, i.e.,l € Sy, .
Therefore, they constitute an information transfer from the coopenaéivigation part of CoS-
NAT to the distributed tracking part (cf. the directed edges entering theatdd box in Fig.
3.2). The estimation of target statg, ,, is based on the beligf?) (xm,n) as given by (3.17), and
thus on@%?n(xm,n). This improves on pure distributed tracking because probabilistic informa-
tion about the states of the CAs S,,, ,—provided byzpl(ﬁ;,? (x1,,)—is taken into account. By
contrast, pure distributed tracking uses the GLFE ,,(x,,,) instead o@ﬁﬁ,)n(xmm) (see (3.3)).
According to (3.2), this presupposes that the CA states are knownpémage navigation and
tracking, estimates of the CA states provided by cooperative navigatiamsatk rather than
probabilistic information about the CA states as is done in CoSNAT. This pildiec informa-
tion transfer is visualized in Fig. 3.3 The improved accuracy of target ssétaation achieved
by our CoSNAT algorithm compared to separate navigation and tracking evdelmonstrated
in Section 3.5.1.
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3.3.2 Distributed Calculation of the CA Beliefs

For distributed calculation of the CA belie®) (x; ), 1 € S, the following information is avail-
able at CAl: (i) equally weighted particles representim&j)(xmm) for all targetsm € T
(which were calculated as described in Section 3.3.1 and 3.3.3); (ii) equeilijhted particles
representing;(f’—l)(xlxm) for all neighboring CAd’ € an (which were received from these
CAs); and (jii) a PR ob") (x;,,_1) (which was calculated at time-1). Using this information
and the measurementsy., k € My, a PR{ (x{), wl(]g)} of bP)(x;,,) can be calculated
in a distributed manner by implementing (3.9), using NBP for mobile CAs as resliew8ec-
tion 2.1.2 or the new low-complexity method presented in Section 2.4. Finallynpise is
performed to obtain equally weighted particles represeriﬂﬁgxl,n). This calculation of the
CA beliefs improves on pure cooperative navigation as reviewed in Seztloim that it uses
the probabilistic information about the states of the targeEsM provided by the messages
w(p) (xm,n) (cf. (3.16)). The improved accuracy of CA state estlmatlon will be demaesira

m—l

in Section 3.5.

3.3.3 Distributed Calculation of the Extrinsic I nfor mations

Since (3.15) is analogous to (3.9) and (3.16) to (3.10), partl(:lemlg};;1 (%1, orzpmﬁl(xm n)
can be calculated similarly as for the corresponding belief. However,oft@ving shortcut
reuses previous results. To obtain partlcle&ﬁﬁfﬁ (Xm.n), We proceed as far») (xXm.n) (SEE
Section 3.3.1) but replace

m,n

o) (x9), )NeXp(‘S‘QJC)) (3.22)
with
exp(|S|Cl(7],frz — U0 ) forallj=1,...,J.

l,m;n
(This is based on the relatianm_)l Xm,n) X b(®) (xm, n)/qbl_)m(xm n), cf. (3.10) and (3.16).)
Here Cl andgl] ) are already available locally from the calculatiorb&? (Xm.n)-
3.3.4 Statement of the CoOSNAT Algorithm

The proposed distributed CoSNAT algorithm is obtained by combining thetpes discussed
in Sections 3.3.1 through 3.3.3, as summarized in the following.

ALGORITHM 1: DISTRIBUTED COSNAT ALGORITHM

J

Initialization: The recursive algorithm described below is initializetirae . = 0 with particles{x,(fé =1

drawn from a prior PDF (xy.0), fork e {I{} U T.
Recursion attime: At CA [, equally weighted particle@fcgj;zl_1 ;,]:1 representing the belieté”) (Xk,n—1)
with k € {I} U T are available (these were calculated at time 1). At time n, CA [ performs the fol-
lowing operations.

Step 1—Predictian From {5‘1(@73171};: PRs{x(J) , of the prediction messages., (Xk.n),
k € {l} UT are calculated via message filtering (see Sectlon 2.1.8¢dban the state-transition model
in (1.1). That is,x,(jfl = g(xgzl l,u,(jzl) where the particleéu,(j;zl}jzl are drawn fromf (ug,,, ).
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Step 2—BP message passingor eachk € {I} U T, the belief is initialized a$(® (xy ,) =
¢—n(Xk.n), in the sense that the PR of,, (x; ) is used as PR df) (x;, ,,). Then, forp = 1,.. ., P:

a) A PR {(x%)n,wfﬁ)n)}J:l of b (x,,.,) in (3.10) is obtained via importance sampling with
proposal distributions_,,, (x,,.,) (see Section 3.3.1). That is, using the partic{eé,j) }‘.]
representings_,,, (x,.,) (calculated in Step 1), we|ghl{sw(” o are obtained by evaluating
wﬁ,{)n = <I>(xm n) forallj =1,...,J in adistributed manner as descrlbed in Section 3.3.1 and

normalizing.

b) For each targetr € M/, a PR ofwff)_)l(xm,n) is calculated in a similar manner (see Section
3.3.3).

c) APR{ (xl i wﬁi) }] of bP)(x, ,,) is calculated by implementing (3.9) as described in Section
3.3.2; this involves equally weighted particles oftaf—1) (xk,n), ke M.

d) Foreachn e /\/ll . aPR oqujl(ﬁzm(xlm,) is calculated in a similar manner.

e) For all PRs calculated in Steps 2a—2d, resampling is peefd to obtain equally weighted parti-
cles.

f) The equally Weighted particles &f)(x; ,,) calculated in Step 2e are broadcast to all CAer
whichl e Ml, ,,» and equally weighted particles oP) (x;,.,) are received from each neighboring
CAly e M7,. Thus, at this point, equally weighted particbfsgf) }Jf of the following quanti-
ties are available at CA b®) (x;, ,,) for k € {1} UT U M ¢7(5)—>1(Xm n) form e MJ; and

P (xin) forme M7,

l—m

Step 3—EstimationFor k € {/} UT, an approximation of the global MMSE state estima/s
in (3.8) is computed from the Plﬁ(x,(jzl, w;(le) }j of b¥)(xy,,,,) according to

Rion = Z wl)x), ke{luT.

Alternatively, a PR-based approximation of the MAP eston@iDriessen and Boers, 2008] can be used.

The communication requirements of this algorithm will be analyzed in Section 3.4.3.

3.4 Variationsand | mplementation Aspects

Next, we discuss some variations and implementation aspects of the CoSNAthaigo

3.4.1 Local Distributed Tracking

The convergence of the consensus or gossip algorithms used to ca(8ujts slow if|S,,, ,,| <
|S|, because then many initialization Va'u@g’n’BJYz,m;n) are zero. We therefore introduce a
modification, termedocal distributed trackingLDT), in which b()(x,, ,,) for a targetn € T

is calculated via (3.10) only at CAsthat acquire a measurement of the target, i.€..5,, ..
The convergence is here faster due to the smaller “consensus netf¥akS,, ,, instead of

I € 8) and the fact that zero initialization values are avoided. LDT presugpbse the com-
munication graph of the network formed by all CAs S,,, ,, is connected. To ensure that CAs
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U € Smnt1\Smn (€., withl’ ¢ S, ,, butl’ € S, ,+1) obtain the information needed to track
targetm at timen + 1, each CAl € S, broadcast$®) (xm,n) (calculated as described in
Section 3.3.1) to its neighbots C; ,,. Usingd") (x,,.,,), neighboring CAS’ € S, 41\ S
are then able to calculate.,, 1 (xm n+1) (S€€ (2.6) and Section 2.1.2) and to track targeit
timen + 1 according to (3.10).

LDT has certain drawbacks. First, only CAs S,,,, obtain an estimate of the state of
targetm. (Equivalently, each CA € S tracks only targets: € M[n.) Second, the size of the
consensus networksS,, .|, has to be estimated at each timeThird, in agent networks with
few communication links, it is possible that a CAc Sy, 5,+1\ Sim,» CanNNot communicate with
any CAl € S,,, attimen, i.e.,l ¢ Cy,,. Then, CAl' does not obtain"’) (x,, ,) and cannot
track targetm at timen + 1, even though it acquired a corresponding measurement attime
However, in many scenarios, the communication regions of the CAs are cégni§i larger than
their measurement regions. The situation described above is then vergiyinlik

3.4.2 Alternative Processing at n =1

In the CoSNAT algorithm, a PR &f?) (xx,n) is calculated viaimportance sampling with,,, (xy, ,,)
used as proposal distributigfixy, ,,). Attimen =1, ¢_,1(xx1) = [ f(Xp,1]%Xk,0) f (Xk,0) dXk 0-
Often, insufficient prior information about the substaig, actually involved in the measure-
ment (1.2) is available, and thus a (partly) uninformative prior Ik, o) is used. (An exam-
ple is given by agents with an uninformative position prior and measuremgepfsthat depend
only on the positions of agetc A and CAl € S, such as, e.g., in (1.3).) This uninformative
prior PDF implies that the proposal distribution,; (x; 1) is (partly) uninformative as well, and
thus, if a moderate number of particléds used, the generated particles will be widely spread
and the estimation performance will be poor.

We therefore propose an alternative processing atitimé for agents with an uniformative
prior attimen = 0. This processing leads to accurate estimates attimel even if a moderate
number of particled is used; it can be employed for distributed tracking, dynamic cooperative
navigation, and CoSNAT. Note that anchors do not use the alternaticegsing because their
prior is perfectly informative.

In the following, we will describe the alternative processing for the calmraof a target
beliefb(x,,,1), m € T this scheme can be used for the calculation of a CA béfief;),l € S
with obvious modifications. For the prediction message at time 1, we adopt the model
P—1(Xm,1) = f(Xm,1) f(Xm,1),

where f(%,,,1) is an uninformative PDF of the positian,, ; (e.g., uniform on the entire
localization region) and (%, 1) is an informative PDF of the complementary subvegiqr of
xm,1 (€.9., Gaussian with small variance). Now, instead of uging(x.,.1) = f(Xm,1) f (Xm,1)
as proposal distribution, we use

¢ (xp1) = ¢§P)

l—m

(Xm,1) f(Xm,1) (3.23)
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with somel € Sm,1 (the choice ofl will be discussed later). Her@,}i)m(xm,l) is a function

of x,,, 1 but not ofx,, 1; thus, with an abuse of notation, we will wri&éﬂzm(xm,l) instead of
qﬁl(p_zm(xm,ﬁ- Replacingf (X,,,1) by ¢l§i)m(5<m71) is reasonable i(f)zgi)m(im’l) is more informa-
tive than f (X, 1). Particles{xfﬁb)l}‘] from ¢(®) (xm, 1) can be obtained by stacking particles

{x(]) | drawn fromqﬁ () _ (¥%m,a) and partlcles{x Azl drawn fromf (X, 1). Typically,

m,1

drawmg partlcles frony (xml) is trivial. Equally weighted particles representi@@m(iml)
can be calculated from equally weighted particles represebﬂ’h@azl) by using message fil-
tering as described in Section 2.1.2.

APR{(x),wl)) };.]:1 of b) (x,,.1), m € T is obtained by means of importance sam-

pling using the proposal distributiayt?) (xm,1) In (3.23): particles{xg?l}jzl are drawn from
qP (xn.1), and Weights{wfi?1 }]:1 are calculated according to (cf. (3.9) and (3.10))

g 0D Ties, 00 (K9
e @ (x))
FEIDD FEDD) s, 60 m &)
o) <>~<£i?1>f<>“<£i?1>

l—m

IT o7&,

1€8m,1\{i}

w

followed by normalization.
To makeq?) (x,,,.1) in (3.23) maximally informative, we choose

| = argmin 67 . (3.24)
l€5m71

Here, 52 is the empirical variance df” (%;,). For non-anchor CAs3? is calculated from
equally weighted particle%icl“l)}j:1 representingpl(p) (%,1) as

J
1 _G) -

6t = 5 > |%7 ). (3.25)

j=1

with
1)
= > %7 (3.26)
j=1

For anchors, we seét’ = 0.

A distributed implementation is obtained, by computing (3.24) using the min-camsens
scheme [Olfati-Saber and Murray, 2004], which convergdstierations [Olfati-Saber and Mur-
ray, 2004] (in the case of LDT, the number of iterations is the diameter of AheeBvork given
by Sp,,1). This min-consensus scheme is also used to disseminate the optyb%f_i)hmn@xm,l)
within the network.
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3.4.3 Communication Requirementsand Delay

In the following discussion of the communication requirements of the propOs&INAT al-
gorithm, we assume for simplicity that all states,,, k¥ € A have identical dimensioh and

all x; ,, k € A (i.e., the substates actually involved in the measurements, cf. (1.2) and (1.3))
have identical dimensiof. Furthermore, we denote iy the number of consensus or gossip
iterations used for averaging, By the number of message passing iterations/tllge number

of particles, and by the network diameter. Finally,” denotes the maximum of the diameters

of the CA networks given by ths,,, ,,, m € 7. For an analysis of the delay introduced by the
communication, we assume that broadcasting the belief of the CAs countg @elay time

slot, and broadcasting all values corresponding to one consensumitalso counts as one
delay time slot.

e For consensus-based calculation of the target béligfsc,, ,,), m € T (see Section 3.3.1
and Step 2a in Algorithm 1), at each timgCA | € S broadcastsVv® £ P(C + I)J|T]
real values to CA$' € C,,. In the case of LDT (see Section 3.4.1§€ is reduced to
NER2 P(C + I])J|M],|. Note that in the LDT case;' is smaller, and even much
smaller for a large network. Consensus-based calculation of the talggsb®) (x,, ,,),
m € T contributesP(C + I) time slots to the overall delay (d°(C + I]) time slots
in the case of LDT), because the consensus coefficients of all tagyetsecbroadcast in
parallel.

e For calculation of the CA beliefs®)(x, ,,) (see Section 3.3.2 and Step 2e in Algorithm
1), ateachtime, CAl € S broadcastsVNB” £ P.J [, real values to CA8 with [ € M, .
The delay contribution i€ time slots, because each CA has to broadcast its belief in each
message passing iteration.

o If the alternative processing of Section 3.4.2 is used, then atitime 1, CAl € S
broadcastsvAP £ P.JLI|T| real values to CA# € C;, (in addition toN°® and NNBP),
In the case of LDTVAP is reduced taV/*"R £ P.JLIT | M, |. Since the dissemination of
the proposal distribution for each target is consensus-based, Lismgsensus iterations
in each of theP message passing iterations, the contribution to the overall defay-at
is PI time slots (orPI, time slots in the case of LDT).

e Inthe case of LDT, if at time a targetn € 7 enters the measurement region of CAS,
i..,1 € Spn\Smn—1, thenNtPT £ J[ real values are transmitted from one arbitrary
CAl'€ S n—1NCy to CAL The contribution of this transmission to the overall delay
is one time slot.

Therefore, at timex > 1, the total number of real values broadcast by CAS during P
message passing iterations is

NTOT = NNBP L NC— P(JL 4+ CJ|T)).
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The corresponding delay B(C + I + 1) time slots. If the alternative processing is used, then
attimen=1,

This results in a delay oP(2/ + C + 1) time slots. In the case of LDT, at time > 1, the
number of real values broadcast by CA S during P message passing iterations is

NIOTR = NN R = P(IL + CIIMT, ).

I,n

Here, the case underlyin§-PT was neglected because its occurrence strongly depends on the
network topology and is typically very rare. If the alternative processngsed, then at time
n=1,

NPTR = NfPRy NNBP L NER = P(JLIIM] |+ JL + CIIMT)).

If LDT is employed, the delay i®(I] + C + 2) time slots. Note that with LDT¢' is smaller
than in the standard case. Also note thaio™ < NTOT since|M], | < |T|foralll € S.

In addition, NNBP, NAP NAPR and NPT can be reduced by transmitting the parameters of a
suitable parametric representation for the beliefs. Typically, these paranaeteobtained by
clustering the particles representing the beliefs (see Section 2.2.1 and§8dwZazo, 2012]).

3.5 Simulation Results

We will study the performance and communication requirements of the pro@xeNAT mes-
sage passing algorithm in two dynamic scenarios and in a static scenario. tRimstairce files
and animated plots are available at http://www.nt.tuwien.ac.at/about-us/staffAtoexaer/.

3.5.1 Dynamic Scenarios

We consider a network 95| =12 CAs and|7 | =2 targets as depicted in Fig. 3.4. Eight CAs
are mobile and four are static anchors (i.e., CAs with perfect position infayma Each CA
has a communication range of 50 and attempts to localize itself (except for ¢therghand
the two targets. The states of the mobile CAs and targets consist of positioelaaity, i.e.,
Xk = (T1kn T2kn 140 T2kn)". CAsl € S acquire distance measurements according to
(1.3), -8 Y1kn = [|Xin— Xkenl| + Vi ke, Wherexy, £ (21 k0 T2k.,)" is the position of agent
k € A and the measurement noisg..,, is independent across k, andn and Gaussian with
variances? =2.

The states of the mobile CAs and targets evolve independently accordinpaiod Uilkov,
2003]

Xpn = GXp o1 + Wug,,, n=1,2,...,

where



52 CHAPTER 3. COOPERATIVE SIMULTANEOUS NAVIGATION AND TRACKING

T2
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Figure 3.4: Network topology in the dynamic scenario, with initial agent positeord example
realizations of the target and mobile CA trajectories. Initial mobile CA positioasralicated
by crosses, anchor positions by circles, and initial target positions ks Sthe dashed circles
indicate the measurement regions of the four (mobile) CAs that are initially ibcegar the
corners.
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The driving noise vectorsy, ,, € R? are Gaussian, ey, ~ N(0,021), with variance

02 = 5-1075 for the mobile CAs and-2 = 510~ for the targets; furthermoreyy ,, and
uy,y are independent unlegs, n) = (k’,n’). Each mobile CA starts moving only when it is
sufficiently localized in the sense that the empirical variance of the estimaggéibpovector

is below502 = 10; it then attempts to reach the center of the scener (37.5 37.5)T, in

75 time steps. The mobile CA trajectories are initialized using a Dirac-shapedquéded at
Hio= (:m,z,o x50 (T1,c—21,1,0)/75 (f2,0—$27170)/75)1—, wherex; ; o andzy ;o are chosen as
shown in Fig. 3.4. The two target trajectories are initialized using a Diragpesharior located at
(15 0 0.8 0.6)T and(75 20 —0.8 0.6)" (see Fig. 3.4). Note that knowledge of these positions
is not used in our simulations of the various algorithms.

We compare the proposed CoSNAT algorithm and its low-complexity variaarding to
Section 2.4—briefly termed “CoSNAT-1" and “CoSNAT-2,” respectivelyith that of a refer-
ence method that separately performs cooperative navigation by metresdBP method of
[Lien et al., 2012] and distributed tracking by means of a consensestbiéstributed PF [Farah-
mand et al., 2011, Savic et al., 2014] as reviewed in Section 3.1; the latsethesgnobile) CA
position estimates provided by cooperative navigation. All three methods grnyEoage con-
sensus with Metropolis weights [Xiao and Boyd, 2003] for a distributed impiéatien. In
all three methodsP = 1 message passing iteration asid= 1000 particles are used, and the
alternative processing at time= 1 described in Section 3.4.2 is employed. The average con-
sensus useS =6 iterations. For our simulations of the algorithms, we used a position prior for
targets and mobile CAs that is uniform 200, 200] x [—200, 200] and a Gaussian velocity
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prior for the mobile CAs (after the mobile CA is sufficiently localized as desdrédi®ve) with
mean((F1.c—a1,)/75 (F2,0—#24n)/75)" and covariance matriiag {10-3,10-3}. Here,
ch is the location estimate at the timé at which mobile CA! is sufficiently localized for
the first time. The velocity prior of the targets was Gaussian with mgap and covariance
Cyu0. Here,C,, o = diag{0.001,0.001} represents the uncertainty in knowing the velocity
Xm0 Of targetm at timen = 0, andpu,, o is a random hyperparameter that was sampled for
each simulation run fromV (%0, C.0)-

We simulated two different dynamic scenarios. In dynamic scenario 1, theumsgaent
range of those four mobile CAs that are initially located near the cornersoagnsin Fig. 3.4
(these CAs will be termed “corner CAs” in what follows) is limited as specifieerlavhereas
all the other CAs cover the entire field of siz& x 75. In dynamic scenario 2, the measurement
range of all CAs is limited t®0. We note that these scenarios cannot be tackled by SLAT
algorithms [Taylor et al., 2006, Funiak et al., 2006, Savic and WymeeP&dg, Kantas et al.,
2012, Teng et al., 2012] since they involve mobile CAs whereas SLAThassstatic CAs.

Fig. 3.5 shows the simulated ARMSE of self-localization and target localization =
1,...,75in dynamic scenario 1 where the measurement range of the corner @Adise self-
localization ARMSE was determined by averaging over all mobile CAs andld@@simulation
runs, and the target localization ARMSE by averaging over all mobile GRsrgets, and 100
simulation runs. It is seen that CoOSNAT-1 and CoSNAT-2 perform almmpsaley well, both
with respect to self-localization and target tracking; thus, the significanthgda@omplexity
of CoSNAT-2 is offset by only a small performance loss. Furthermore s#if-localization
ARMSE of both CoSNAT algorithms is significantly smaller than that of the refezenethod.
This is because with pure cooperative navigation, the corner CAs duawetenough partners
for accurate self-localization, whereas with CoSNAT, they can use theisuned distances to
the targets to calculate the messages from the target n¢§é_§(xmyn), which support self-
localization. The target tracking ARMSESs of both CoSNAT algorithms and efrétierence
method are very similar at all times.

In Fig. 3.6, we show the self-localization and target localization ARMSEsagesl over
time n versus the measurement range of the corner CAs. For small and largerereant
range, CoSNAT performs similarly to the reference method but for difteesmsons: When the
measurement range is smaller than 12.5, the targets appear in the measuegmestof the
corner CAs only with a very small probability. Thus, at most times, the mesgﬁéﬁgl(xmm)
from the target nodes cannot be calculated. For measurement raggetkan 25, the corner
CAs measure three well-localized CAs at time= 1, and thus they are also able to localize
themselves using pure cooperative navigation. For measurement ratvgeeh 15 and 25,
CoSNAT significantly outperforms the reference method (cf. our disouss Fig. 3.5). It
is furthermore seen that up to a measurement range of 25, the targéngraékMSE of the
reference method increases with increasing measurement range. Tédaisé in the reference
method, only an estimate of the CA positions is used in distributed tracking. foheréhe
poorly localized corner CAs negatively affect distributed tracking, gl situation becomes
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Figure 3.5: Self-localization and target localization ARMSES versus tirt@ynamic scenario
1).
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Figure 3.6: Self-localization and target localization ARMSES versus meamsnt range of the
corner CAs (dynamic scenario 1).



3.5. SIMULATION RESULTS 55

30 T T T T T T
‘‘‘‘‘ Self-localization ARMSE (reference)
= = = Self-localization ARMSE of COSNAT-2
251 Self-localization ARMSE of CoSNAT-1 |1
‘‘‘‘‘ Target localization ARMSE (reference)
Target localization ARMSE of COSNAT-Z
20 Target localization ARMSE of COSNAT-1
L
(92]
= 15
o
<
10
5
0 I I I I I I I
1 10 20 30 40 50 60 70

Figure 3.7: Self-localization and target localization ARMSESs versus tirf@ynamic scenario
2).

more likely with increasing measurement range. By contrast, the targetnga8RMSE of
CoSNAT stays constant for all measurement ranges. This is becaussSNAT, the beliefs
of the CA positions are used in distributed tracking, i.e., the actual uncertayt the CA
positions is taken into account. Thereby, the effect of poorly localized G#the tracking
performance is considerably reduced.

Finally, Fig. 3.7 shows the self-localization and target localization ARMSEs»fe=

1,...,75 in dynamic scenario 2 (i.e., the measurement range of all CA8)is It can be
seen that with all three methods, the targets are roughly localized afterinifiahtime steps.
However, with the reference method, due to the limited measurement rarigevemoa single
CA can be localized. With both CoSNAT methods, once meaningful probabildtionation
about the target positions is available, also the self-localization ARMSEeases and most
of the CAs can be localized after some time. This is possible since the CAs obthiivaal
information related to the measured targets. Which CAs are localized at whatdepends on
the target trajectories and varies between the simulation runs.

The quantities determining the communication requirements of COSNAT-1 anNATeS
according to Section 3.4.3 are as follows. We hatfe = 18000, NNBP = 2000, and NAP =
12000. For all CAsl, NSR = 9000 at timesn where one target is measuredl R = N© =
18000 at timesn where two targets are measured, dﬁﬁf = 0 otherwise. Furthermore,
NAPR = 6000 for CAs that measure one target at time= 1, NAPR = NAP = 12000 for
CAs that measure two targets at time= 1, and N/°R = 0 for all other CAs. The resulting
average total communication requirement per CA and time step, averagedlo@s, all
times, and all simulation runs, 8TOT = 18107 and NTOTR = 12916 for dynamic scenario 1
and NTOT = 18107 and NTOTR = 5440 for dynamic scenario 2. At the times where a target
enters the measurement region of a CA, additional™ = 4000. According to Section 3.4.3,
in dynamic scenario 1, the delay at time= 1 is 13 time slots (4 in the LDT case), and at
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Figure 3.8: Network topology in the static scenario, with anchor positiongxaichple realiza-
tions of non-anchor CA and target positions. Non-anchor CA positimnmdicated by crosses,
anchor positions by circles, and target positions by stars.

timesn = 2,...,75, itis 10 time slots {1 in the LDT case). In dynamic scenario 2, the delay
attimen = 1 is 13 time slots (2 in the LDT case), and at times = 2,...,75, itis 10 time
slots O in the LDT case). Note that in both dynamic scenarios, the reference miedisoithe
same communication requirements and causes the same delay as COSNATSNAT-2.

3.5.2 Static Scenario

Next, we consider a network ¢&| = 63 static CAs and7 | = 50 static targets. 13 CAs are
anchors located as depicted in Fig. 3.8. The 50 remaining CAs and the B@starg randomly
(uniformly) placed in a field of size 100100; a realization of the positions of the non-anchor
CAs and targets is shown in Fig. 3.8. The states of the non-anchor CAsf éinel targets are
the positions, i.exX,, = Xpn = (T1kn xgjk’n)T. Each CA performs distance measurements
according to (1.3) with noise varianeé =2. All CAs have a measurement range of 22.5. The
communication range of each CA is 50. The prior for the non-anchor @dda& the targets

is uniform on[—200, 200] x [—200, 200]. In all three methods/ = 1000 particles are used.
The average consensus scheme dses 15 iterations. Since all CAs and targets are static,
we simulate only a single time step. This scenario is similar to that considered in [§¥§ohe
et al., 2009] for pure cooperative navigation, except that 50 of the @d in [Wymeersch
et al., 2009] are replaced by targets and also anchor nodes perfasuraments.

Fig. 3.9 shows the overall agent localization ARMSE (i.e., the average ARbSoth
CA self-localization and target localization) versus the message passiagpitendexp. This
error was determined by averaging over all agents and over 100 simulatisnlit is seen that
CoSNAT-1 and CoSNAT-2 perform almost equally well, with a slightly fastewveogence of
CoSNAT-1, and significantly better than the reference method. Againgtiertperformance of
COoSNAT is due to the fact that CAs that do not have enough partnesefelocalization can
use messagezﬁﬁll(xmm) from well-localized target nodes to better localize themselves.

In this scenario, assuming = 3, we haveNNBP = 6000 and N© = 2.70 - 10. The
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Figure 3.9: Agent localization ARMSE versus message passing iteratior infiatic sce-
nario).

remaining quantities determining the communication requirements depend on itiengasf

the non-anchor CAs and the targets, which are randomly chosen forsgaalation run. The
average quantities—averaged over all CAs, all times, and all simulatior+wese obtained as
NCR=6.91-105, NAP = 9.00 - 10°, and NAPR = 2.59 - 10°. The average total communication
requirements were obtained A8°T = 3.61 - 10¢ and NTOTR = 9.56 - 10°. Note thatNTOTR

is significantly smaller thatvTOT, due to the relatively large network size. For the reference
method, we obtainedTOT = 1.21 - 106 and NTOTR = 3.23 - 10°. The delay i$7 time slots {4

ref ref

in the case of LDT).
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Chapter 4

| nfor mation-Seeking Control for
Navigation and Tracking

To further increase the accuracy and robustness of cooperatigatian and distributed track-
ing, we now extend the CoSNAT estimation algorithm developed in Chapter 3ltml@écoop-
erative information-seeking control. The aim of the proposed controlker isove the CAs in
such a way that their measurements are maximally informative about the statesdtinbated.
Similar to the estimation algorithms developed in Chapters 2 and 3, the propotedlleois
suited to nonlinear and non-Gaussian navigation and tracking problemus,egonly commu-
nication with neighboring CAs, and is able to cope with a changing networkdgpo The
global (holistic) objective function used for control is the negative joogtprior entropy of all
states in the network at the next time step conditioned on all measurementsexttttima step.
An approximate maximization of this objective function is performed jointly by alkG#a a
gradient ascent, which reduces to the particle-based evaluation ofl gtadéent at each CA.
This evaluation is based on a probabilistic information transfer from the estimlatier to the
control layer. We show through simulations that the proposed algorithoofabined CoSNAT
estimation and control leads to intelligent behavior of the CAs and excelleigaten/tracking
performance.

Contrary to Chapters 2 and 3, where the control variables of the CAs sugpressed, we
will now use the full-blown state evolution model that includes the control by, ,,. That
is, the state evolution model for CAse S is x;,, = g1(Xin—1, W n, q,n) (Cf, (1.1)), with
corresponding state-transition PDEx; ,,|x; »,—1; 1,5 ).

4.1 The Combined Estimation and Control Problem

In Chapters 2 and 3 we presented estimation algorithms for navigation akth¢rae agent
networks. Now, estimation is extended by information-seeking control chgieats to obtain
higher navigation and tracking accuracy. A block diagram of the ovésigihal processing sys-
tem” for this setting is shown in Fig. 4.1 for a CA (including the estimation and cblatyers

59
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Figure 4.1: Block diagram of the overall “signal processing system{dpa CAl € S and (b)
atargetn € 7.

of the proposed method) and for a target. Note that in this chapter, to simpdifgatation,
we switch to a different topology model. More specifically, we assume that &Auire mea-
surements with respect to each other if and only if they are able to commuriitetenethods
proposed in this section can be generalized in a straightforward manreamareos where the
measurement neighborhoods are subsets of the communication neighd®dsoin the previ-
ous sections. The communication and measurement topology of the netwesdcitbhed by the
neighborhood set§ ,,, 7; ,,, and.A; ,, as follows. CAl is able to receive data via a communica-
tion link from CAl"if I’ C;,, € S\{}. In addition, CAl is able to acquire a measuremgpt.,
relative to CAl’ if I € C;,,. This relation is symmetric, i.el’ € C; ,, implies! € Cy ,,. Further-
more, CAl € S acquires a measurement,,,.,, relative to targein if m € 7;,, C 7. The targets
are noncooperative in that they do not communicate and do not acqyireessurements.

The operations performed in the dynamics and sensor block are deoyilige state transi-
tion modelin (1.1) and measurement model in (1.2), respectively. Algoritbritbdéestimation
layer were discussed in Chapters 2 and 3. An information-seeking contraiithlgofor the
control layerwill be developed of this chapter. The twofold goal at each tinoan be stated as
follows:

1. Each CAl € S estimates the states, ,, k € {l{} U T (i.e., its own local state and the
states of all targets) from prior information and all past and presenturerasnts in the
network.

2. Each CAis controlled such that the negative posterior entropy of sdlsstathe network
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at the next time, conditioned on all measurements in the network at the next time, is
maximized.

We solve these two problems in a distributed and recursive manner astimeation layer
and thecontrol layer, as shown in Fig. 4.1(a). In the estimation layer described in Chapters
2 and 3, CAl computes an approximation of the marginal posterior PDFs of the states
k € {l} U T given all the past and present measurements and control vectors intitee e
network. In the control layer presented in what follows, Ofses these marginal posteriors and
the statistical model to determine an optimal control variablg, ; in both layers, the CAs
communicate with neighboring CAs.

4.2 Objective Function and Controller

According to our definition at the beginning of Section 1.5.3, the vector csingrall the
measurements in the network at the next timel iSy,, ;1 = [yhkmﬂ]les,kem?nﬂ' However,
in this definition ofy,, 1, we now formally replaced; ,,+1 by A;,, since at the current time,
the sets4; .11 are not yet known. Thus, with an abuse of notatipp, is redefined as

Ynt1 = [YZ,k;nJrlLes,keAlm - (4.1)

In the proposed control approach, eachGAS determines its next control variabbg,, . ; such

that information about the next joint statg ,; givenyy.,.1 is maximized. We quantify this in-
formation by the negative conditional differential entropy [Cover andritas, 2006, Chapter 8]

of x,,+1 giveny, 11, with y1.,, being an additional condition that has been observed previously
and is thus fixed:

- h(Xn+1}yn+1SY1;mu1:n+1) = //f(Xn+1,yn+1‘Y1:n;u1;n+1)

x 10g f (Xn+1| Ynt1, Y Uiing1)dXny1dyns1,  (4.2)

wherelog denotes the natural logarithm. Note thﬁ(bcn+1]yn+1;Y1m,ul;n+1) depends on
the random vectorsx,+; andy,1, i.e., on their joint distribution but not on their values.
Our notation indicates this fact by using a sans serif fonkfgr; andy,,,; in h(xnﬂ\ynﬂ;
Y1:n,u1:n+1)-

According to expression (4.2%;h(Xn+1|¥, 11 Y1m, Uins1) is @ function of the control
vectoruy, 1. This function will be denoted aB), (u,, 1), i.e.,

Dp(tng1) £ = h(Xnt1|Yns15 Yim: Uling1) (4.3)

and it will be used as the objective function for control at each CA. Thjeative function is
holistic in that it involvesall the next states (of both the CAs and the targets),;, andall the
next measurementg,, ;1.
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Instead of a full-blown maximization oD, (un+1), we perform one step of a gradient
ascent [Fletcher, 1987] at each timeThus,u, 1 is determined as

Upt1 = u§{)+1 + cnt1 VD (un41) | O (4.4)

Unt+1= un+1

whereufBrl is a reference vector angl 1 > 0 is a step size. The choice uﬂl depends on

the manner in which the local control vectarg,, (which are subvectors af,,) enter into the

state evolution functiong (xl n—1,Un, ql’n) in (1.1); two common choices atéﬂrl =u, and
£L+1 = 0 (cf. Section 4.6.1).

Sinceu,, | = [ul,nﬂ]les, we have

0Dy (upy1)

VDh(u"H):[ oy i1 Les’

and thus the gradient ascent (4.4) with respect,{p; is equivalent to local gradient ascents at
the individual CAd with respect to the local control vectons,, ;. At CA [, the local gradient
ascent is performed as

. 9Dy (un+1
U nt1 = ul(?LJrl + Clin+1 a(n) (45)
U} n+1 unﬂzugll
whereu|") is the part ofu!\) , that corresponds to CA(we haveu!)\, = [u"), ], _.). The

local step sizes; ,,; are constrained by the conditian ,,; € U for given domaing/. In
practice, this condition can be easily satisfied by an appropriate scaling of th;. Note
that, as in [Julian et al., 2012], we use different local step sizgs; at the individual CAs
[. This heuristic modification is made to account for the possibly different dwidg and
to avoid the necessity of reaching a consensus on a common step size atthe CAs; it
was observed to yield good results. Because the objective functiorgehdrom one time
step to another, the local ascent described by (4.5) generally doesmatrge; this is similar
to existing information-seeking control algorithms [Hoffmann and Tomlin, 2040an et al.,
2012]. Indeed, the goal of the proposed control algorithm is to makiabie informative
measurements to the estimation layer; because of the dynamic scenario, shistioarespond
to a fixed optimum.

4.3 Expansion of the Objective Function

A central contribution of this work is a distributed particle-based techniquediculating the
gradients% N in (4.5).

As a starting pom?forﬁelveloping this technique, we next derive anresxpa of the ob-
jective functionDy, (un+1). We will use the following simplified notation. We do not indicate
the conditioning ory;., andu;.,, because at time + 1, y1., has already been observed and
uy., has already been determined; hence both are fixed. Also, we sufieisse index: and
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designate variables at time+1 by the superscript+". For example, we writéi(x " |y*; u™)
instead off (X1 | Yy, 15 Y1ins Utins1)-

For calculating the gradient, following [Hoffmann and Tomlin, 2010] andidduet al.,
2012], we disregard the unknown driving noigein (1.1) fork = [ € S by formally replacing
it with its expectationg; = [ q; f(q;) dq;. We can then rewrite (1.1) for = [ € S (with n
replaced by: + 1) as

x[+ = gl(Xl7u?_7 qj_> = gl(xl7ul—~_)7 leS. (46)

As shown in Appendix A, the conditional differential entropy in (4.3) careRpressed as

h(xtlytut) = hixs,xFlyTut) + > Gi(w)), (4.7)
les

wherexg = [xl]les,xT [X+]m€T’ and

agl (Xl7 ul+)
X '

Gl(ufr) = /f(Xl) log|ng (xl;uf)\ dx; with Jg (xl;uf) £ det (4.8)

The first term on the right-hand side of (4.7) can be decomposed agf{@od Thomas,
2006, Chapter 8]

h’(x$7x’7'|y+ +) = h(X57x7+') - I(stxTay+ u+) (49)

Here,I(xS,x$;y+;u+) denotes the two-variable mutual information betwég@,x% and
y T (with u™ being a deterministic parameter, i.e., not a third random variable), whicheg giv
by [Cover and Thomas, 2006, Chapter 8]

f X37X+7y ‘u+
I(xs,x$;y+;u+) :///f(xS,x;r-,y+;u+) log f(><<s ngf(W uJ)F)dXS dx?dyf

(4.10)

Note thath(xs,xp in (4.9) does not depend am’, since neither the CA statess nor the
future target statesff are controlled by the future control variabke. We explicitly express
the dependence di{xs,xF;y™; u™) onu™ by defining the function

DI(u+) = I(X87XTay+ u+) (411)

Combining (4.3), (4.7), (4.9), and (4.11) then yields the following expansiahe objective
function:

Dp(ut) = —h(xs,x}) + Di(u") = Gi(w)) = > Gu(uf). (4.12)
I'eS\{1}
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This entails the following expansion of the gradient in (4.5):

ODp(u") _ 9Dr(ut) oG (")
8ulJr N 8ulJr 8ulJr

. (4.13)

In the next section, we will develop particle-based techniques for caiml?%féif)
)

ut=ut®

+
and 261D The calculation oi‘M is cooperative and distributed; it
8ul+ llz +(r ut=ut®

requires communication with neighboring CKs= C;. The calculation ofacz;l "
u =

is noncooperative and performed locally at each ICAoth calculations use the partlcles of
relevant marginal posteriors that were computed by the estimation layer.

4.4 Calculation of the Gradients

441 Gradient of D;(u™)

The mutual information in (4.10) can be rewritten as

+xg, x5 ut
= [ [ [+ o) s 1o TS FEND gy

Invoking [Julian et al., 2012, Th. 1], we obtain

dD;(u") uJr of (y*|xs, x5 u') L Sy T|xs,x5;ut)
2 X7 ] X)) dxg dxt dy ™.

(4.14)

Next, we will develop a Monte Carlo approximationﬁgs‘fﬂ
l

that uses importance

ut=utC

sampling and is based on a factorization of the likelihood funcfigrn™|xs, x;“-; u™). Subse-
quently, we will address the distributed computation of this approximation.

Factorization of the Likelihood Function for CA [

The likelihood functionf (y ™| xs, x; u™) involved in (4.14) can be written as

Ftxs, xpat) =[] 1 £ofulxn = ufw)) [ £ lxexhiat). (4.15)

lesliel meT;

Using (4.6), the local likelihood functions involved in (4.15) are exprésse

eS8, e

+ B + ot Tt
[y 1/|Xl7xl/v uuy) = fly; l’|Xl Xpr) X = qxau), x5 =gy (xpup)) ?

xt +
f(ylm|xl7 maul) f(ylm|xl7xm)| Z'F:gl(xl,ul-*')a l€S7 m€72.
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We can rewrite (4.15) for an arbitraty S as

f(y+|X$a X’;’v u+) = al(y—i_’ X37X’J7r’7 u+) Bl(y—t XS, X;’v u+) ) (416)
with
O‘l(y—hXS)X’J]r') Hf yll/‘xluxl’ ulaul/ H f Ylm|Xl7 l+) (417)
l'eC meT;
/Bl(th$7X;7 é H Hf yl1 l’|xl17xl’ ul17 H f yl1m|xl17 /7u?;)
LeS\{l} Ecll m 6771
(4.18)

Here, oy (y™, xs, x+, u™) depends on the local control vectaf whereass;(y ™, xs, x5, u™)
does not.
Monte Carlo Approximation

In Appendix B, it is shown that a Monte Carlo (i.e., particle-based) appraton of (4.14)
evaluated ati" =u™(" is given by

U

dD;(u™) 1 1
e Wl V.0 D0 D wrrrr R peeTE
Aoy (y+(j,j’)7 stj)a x;(j), u+)
s (4.19)
ou, ut=ut+®
o (y (G, X(J) x )5 ( X(j) a0 u+(r))
XlOg l S T l ST
f(y+( A ),u+:u+( ) ’
with
Flyt0) ut =ut®) Zaz ”), ;(j”), ut)x
N 1

X B, (y+(j7j’)’x‘(sj”), X;(j”), u+(r)) ) (4.20)

Here,y T3, xg), andxfr(j ) are particles of T, xs, andx7-, respectively that are drawn from
the importance density [Doucet et al., 2001]

a(yxs, xput=ut0) 2 f(xs,xF) f(y " |xs,xFut=ut0)

via the following two-stage procedure. First, partic{e(&g), x;(j )) };.]:1 are drawn from

fxs,xF) = [[ r&o) [ £ (4.21)

I'es meT

with an abuse of notation, the supersciip} now indicates theth particle, whereas previously, in our full-
blown notation, the subscriptindicated thenth time step.
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(This factorization expresses the conditional statistical independente s/, I’ € S and
thex, m € T given y(™) This is a common approximation, which was introduced in
[Wymeersch et al., 2009] and is also used in the estimation layer presentéehjine@ 2 and
3.) Then, for each particlex, ), particles{y“jﬂ")};.],,:1 are drawn from the conditional

PDF (cf. (4.16))
+ +(). g+ (D) — () @)+ + ) @) ()
( ’XS,XT ;uT=u ) al(y x5, Xrhu )Bl(y,XS,XT ,u ) (4.22)

The distributed calculation of these particles will be discussed in Sectionsahd.4.4.1 and
in Appendices C.1 and C.2. Finally, we note that using (4.17), one easilynskaa(rather
unwieldy) expression of the derivatlveo‘w occurring in (4.19). This expression
X + 0 11X X
involves the factors in (4.17) and the derivatlvM w for I’ € ¢, and
Xz

df(}’z m\xl xm)
axl
a distributed particle-based computation QL o according to (4.19) and (4.20).

Both schemes are distributed in that they requwe onIy local communicationgich. GAl € S
transmits data only to its neighbdfs C;.

for m € 7;. In the next two subsections, we present two alternative schemes for

Flooding-Based Processing

We first discuss a distributed scheme where eacti €4 performs an exact (“quasi-centralized”)
calculation of (4.19) and (4.20). As a result of the estimation layer, part{ed%%}jzl ~ f(xg),

k € {i} U T are available at CA (see Section 3.3.4, noting thafx;,) was denotedf (xx|y)
there). A flooding algorithm [Lim and Kim, 2000] is now used to make availabkatth CA/

the reference vectonﬁ,“(r) and the particleéxl(,j) };.]:1 ~ f(xy) of all the other CA3' € S\{l}.

In addition, CA! locally calculates predictive marginal posteriors for all target states via the
following prediction step (which is (1.1) with replaced by + 1):

_ /f(xmxm)f(xm)dxm, meT. (4.23)

A particle-based implementation of (4.23) using the parti({lﬁg)}jzl, m € T produced by
the estimation layer (which are available at Qfand yielding partlcles{xfn(])}j:1 ~ f(x;}),

m € T is described in Chapters 2 and 3. Because all statemre conditionally independent
giveny(1") (see (4.21)), particles (xg), x;(j))}jzl ~ f(xs,xF) can now be obtained by
simple stacking operations. More specifically, thk particle ofxgs is obtained by stacking

the jth particles of the vectors; for I’ € S, i.e., x(]) = [x}?) and similarlyx¥(j) =

}l’eS’
[xm(f)]m . Finally, for each(xs ,xT(])) CA [ computes particles

{y+(j,j’)};{’:1 Fly x99 ut =t ) (4.24)

as described in Appendix C.1.



4.4. CALCULATION OF THE GRADIENTS 67

Using the partlcles{xs ,xT( )) andytUd) j =1,...,J,4 =1,...,J, as well as the
reference vectora“r) I'e S, the gradlentL w0 can be computed locally at CA
[ according to (4.19) and (4.20). Note, however that this floodingebaskeme presupposes
that each CA knows the state evolution models (1.1) and the measurement models (1.2) of all
the other CAd’ € S\{i}.

The communication cost of the flooding-based scheme, in terms of the nufmbalealues
transmitted by each CA, i/ M + M,)W ~ JM W. Here,M and M,, are the dimensions of
thex; and theu;, respectively, andll” depends on the network size and topology and is bounded
asl <W < |S|. Thus, the number of transmissions scales linearly witnd does not depend
onJ’. In large networks, flooding protocols tend to require a large memory aoki-keeping
overhead and introduce a significant delay [Xiao et al., 2005]. If thwcurd; formed by the

CAs is fully connected, i.e.S = {I} U C, then all the partlcles{( ﬂ”)}j. can be

obtained without flooding: CA simply broadcasts its reference vectqr ) and its particles
{xl”} ~ f(x;) to all the other CAs in the network and receives their reference veators a
partlcles Here, the number of real values transmitted by each CA isjdvly- M,,.

Finally, the computational complexity of the flooding-based scheme—i.e., tealoé(4.19)
and (4.20), withJ andJ’ fixed—scales linearly with the number of agents in the network. Be-
cause the computational complexity and the communication cost increase wittiwehsize,
the flooding-based distributed processing scheme is primarily suited to srivedirks.

Consensus-Based Processing

A truly distributed computation of (4.19) and (4.20) that avoids the use oflithgoprotocol
and does not require each CA to know the state evolution and measurensgisraball the
other CAs can be performed as follows. First, CAroadcasts its own particle{s:l(j)}j:1 ~
f(x;) calculated in the estimation layer to all neighboring G/As(C;, and it receives particles

{xl,”} ~ f(xy) from all neighbord’ € C;. In addition, CAI locally calculates particles
{x +9) }j:1 ~ f(x;) for all m € 7T; via the prediction step (4.23) (witii replaced byT;),
using the particle-based implementation described in Chapters 2 and 3.aftbushe stacking
operationsx!) = [x{/'], . andx) = [x;] ., particles{(xl(j),><((jjl'),><%(j))};.]:1
f(x1,%¢,,x7,) are available at CA

The key question for a distributed computation of (4.19) and (4.20) now ts afether
the quantitiesy, (y“j’j'),xg"), x;(’w), ut()) and g, (y“jvj/),xg”), x;(j”), u*() are locally
available at CAl. The factors ofo;(y ™, Xg,x?, u™) (see (4.17)) correspond to measure-
ments to be acquired by CA they are known to CA since the own state evolution model
and measurement model are known to CAIn fact, it is easily verified using (4.17) that
oyt xs, xF,ut) = f(y/ ‘XZ,XCZ,XT,UC) Whereuc = [uﬂl’ecl and

~4+ A

Vi 2 ke, = [0 %500 e, - (4.25)

Note thatjfjr comprises the measurements acquired by IC#& the next time (except that
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Af is replaced with4; since it is not known at the current timg. Thus, we conclude that
o(yt, xs,xF,u™) is available at CA. On the other hand, the factors 6f(y ", xs,xF,u™)
(see (4.18)) correspond to measurements to be acquired by other @Asrénnot available at
CA [ since, typically, the respective state evolution and measurement modelst &reown to
CA . Therefore§;(y*, xs, x5, u') is notavailable at CA.

We will now present a distributed computation @f(y /" xg ) xT( R ut(). Using
(4.18), one can show that

Bi(y ™09, x4 xh U, w0 = exp (IS|Fy jogr — F, ). (4.26)
with
FO, 2 log £ (3707 |x, 0", 0" g —ul®) (4.27)
and
Fjjjn = IS] Z JJ’J”’ (4.28)
leCc

forj =1,...,J,7=1,...,J,andj”" = 1,...,J. To computeFj(?,j// in (4.27), CAl only
needs particles

510 Y 7 0 s =)

and the reference vectors, " for l’ € €. The computation of the particlggy, /") };] _,is

described in Appendix C.2. Thel, can be obtained at CAthrough communication with the
neighbor CAd’ € C;.

Once theF( ), ;» have been calculated at JAtheir average$ ;. ;» in (4.28) can be com-
puted in a dlstrlbuted way by using’.J’ parallel instances of an average consensus or gossip
scheme [Olfati-Saber et al., 2007, Dimakis et al., 2010]. These schemésrative; they are
are initialized at each CAwith Fj(lj) - They are robust to communication link failures [Olfati-
Saber et al., 2007, Dimakis et al., 2010] and use only communication betwigtboring CAs
(i.e., each CA € S transmits data to each neighlitg C;). After convergence of the consensus
or gossip schemd?; - i» and, hences (y+(j’j/),xg”), xf;(j”), +) for all 5, 5, j"is available
at each CA.

At this point, CAl has available all the information required to evaltxa;éy*(jvj') xg"),
0" w0 and 2 (090 2 ut)

St and an approximation gf; (y*+(7") xg//),
+(5")

" ut=ut®

X ,u+(r)) has been provided by the consensus or gossip schemg,#orl,...,J, 7/ =

., Jhyandj” = 1,...,J. Therefore, CAl is now able to evaluate (4.19) and (4.20).
In the course of the overall distributed computation, Qansmits/2J'|C;|R + JM + M, ~
J2J'|C;| R real values, wherg is the number of iterations used for one instance of the consensus
or gossip scheme. Asymptotically, fir — oo, this distributed computation (ngi S
converges to the exact centralized result given by (4.19) and (4'l'2\@)speed of convergence
depends on the topology and size of the network [Olfati-Saber et al., PO@akis et al., 2010].
Alarge R corresponds to a high degree of convergence of the consensussigp gcheme, which
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means that local data is disseminated over large distances in the netwodusBehe control
vector of a given CA might not be strongly affected by information fromefgay CAs, a small
R is often sufficient for good performance. Nevertheless, becausmthmunication require-
ments are proportional td2.J’, they are typically higher than those of the flooding approach
discussed in Section 4.4.1 unless the network is largefaiscssmall.

Finally, the computational complexity of the consensus-based processagevaluation
of (4.19) and (4.20), witl/, .J/, andR fixed—is constant in the number of agents in the network.

442 Gradient of G(u")

Next, we consider the second gradient in the expansion (4.13), i.e.,(ds8)g

0

We assume that for each valuexf J;,(x;; u;") is differentiable with respect ta,” at u,
and nonzero for alifr in some (arbitrarily small) neighborhood uf ; note that this implies
that Jg, (xl, ) # 0 and that alsd.J;, (x;; u;")| is differentiable with respect ta;" atu+(r).
We then have

6Gl(ul+)
8ul+

ul+:u ul+:u1+(')

+(1)

G (u)") dlog | Jg (x1;0)")|
—_— pu— d
ouf |y oy / Fox) Ou;’ wf—u® N
1 8|5, (x5 ;)|
:/f(xz) e 9’8 ! dx; . (4.29)
| Jg (i3, W u=u "

Based on the particlefP‘xl(j)};.]:l ~ f(x;), which were calculated in the estimation layer, a
Monte Carlo approximation of (4.29) is obtained as

9G (u) 1 1 0| J5,(x;
8l(:l_l ) ~ jz G0 ’ gl(;l - W )‘ (4.30)
W uf =, j=1 }Jéz( W )} i u =y l
G
+:ul+(r>
can be avoided altogether grw o can be calculated in closed form, without a
U =

particle-based approximation. Some examples are considered in the following

dGl(ul )

1. Jg (x;;u;") does not depend am,": In this case; = 0. An important example is

the “linear additive” state evolutlon model (cf. (4. 6))
gl(xl,ul ) = Ax; + C(ul ) (4.31)

with an arbitrary matrixA. and function((-) of suitable dimensions. Here, we obtain

Jg, (x5, ) = det A and thus% = 0. A second important example is tbdometry
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motion mode[Thrun et al., 2005, Section 5.3]. Here, the local statés the pose of a
robot, which consists of the 2D positidm; ;, x; 2) and the orientatiof;, and the control
vectoru; consists of the translational velocity and the rotational velocity,;. The state
evolution model is given by

21 + V;rcos(el —i—w;r)
gl(xl,ufr) = |z12 + stin(91+ w;r)
0, + w?’

+
Here, J; (x;;u;7) = 1 and thus%;l) =0.

. Jg,(x;;u)") does not depend ory: If Jg, (x;;u;") = Jg,(u;f), then (4.8) simplifies to

Gi(u)") = log|Jg,(u;")|. Thus, we have

0Gu(af) 1 0lJu(up)]
oup  a(u)l T ou

which can be calculated in closed form.

Summary of the Control Layer

The operations performed in the control layer are summarized in Fig. 4tRddlooding-based
method discussed in Section 4.4.1 and in Fig. 4.3 for the consensus-lsmessdd in Section

4.4.1.

4.5

Next,

Special Cases

we discuss two special cases: cooperative navigation (i.e., tteer® dargets) and dis-

tributed tracking (i.e., the CA positions are known).

451

Here,

Cooper ative Navigation with I nfor mation-Seeking Control

we assume that there are no targets, and thus the task considemzbistive navigation.

The estimation layer for this task is described in Chapter 2.

Contr

ol Layer

Since there are no targets, the compon@ptu™) = I(xs,x+;y™; u™) of the objective func-
tion in (4.12) simplifies tdD;(ut) = I(xs;y™;u™). The expression of the gradientbf (u™)
in (4.19) and (4.20) here simplifies as wel(y , xs,xF, u*) = oy (y ", xs, ut) andg;(y ", xs,
x+,ut) = Bi(y ™, xs,u™) (according to (4.17) and (4.18), singe= 0)); furthermore, sampling
from f(xs,x7F) (see Sections 4.4.1 and 4.4.1) reduces to sampling from).
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{x(”}j:1 ~ f(xx), k € {{} U T (from estimation layer)
v

Flooding algorithm prowdea“r and{x l(?)} o~ e S\{1}
Prediction step map@c(”} ~ f(xm) to {xm(j)} _ ~f(x%}), meT (see (4.23) and Chapter 3)

At this point, particles] (x{ ,xJTr(’)) }j are available at CA

v
CamubﬂonOHy*UJq}?:lwjfy+|xg1x;0%1ﬂ?:u+UU

for each(xfﬁl xT( ))7 j=1,...,J (see Appendix C.1)

/ {xl }J_: ~ f(x;) (from estimation layer)
v

- 'Ll+
o (see (4.19) and (4.2D)| | Computation ofdcgl(llg ) see (4.30)

Computation of‘aDa’T(f)

1

ut=u uf=u®

| Evaluation of (4.13) and (4.5)

A
W

Figure 4.2: Flow chart of the flooding-based implementation of the contrel layCAl (see
Section 4.4.1).

45.2 Distributed Target Tracking with Infor mation-Seeking Control

Next, we discuss the case where the positions of the CAs are perfectiykand thus our task
is only the distributed tracking. The estimation layer for this task is revieweddtidde3.1.

Control Layer

Since there are no unknown CA states, the objective function in (4.12) siesptifthatD; (u™) =
I(xF;yT;ut) andGy(u) = 0. The expression of the gradient &f;(u™) in (4.19) and
(4.20) simplifies because;(y ™', xs,xr, u") = a(y"xF,ut) and Bi(y ", xs,xF,ut) =
Bi(y", x5, u'); furthermore, sampling fronf(xs, x7) reduces to sampling fromi(xt).

This special case was previously considered in [Julian et al., 2012]ce lgloecifically,
[Julian et al., 2012] studied estimation of one static global state and propodidributed,
gradient-based, information-seeking controller and a particle-basednmaptation. Our work
extends [Julian et al., 2012] to cooperative navigation and to trackingimieavarying.

4.6 Simulation Results

We demonstrate the performance of the proposed method for three mliféeenarios. In Sec-
tion 4.6.2, we study the behavior of the controller by considering noncatipe navigation of
four mobile CAs based on distance measurements relative to an anchaection4.6.3, we
consider cooperative navigation of three mobile CAs. Finally, in Section,4vodmobile CAs
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{xm}] o~ , k € {I} UT, (from estimation layer)
y
Communciation with CA¢' € C; prowde3u+(r and{xl,])} ~ f(xy),l'€C
Prediction step map&“ } .~ f(xm)t0 {xm(’)} f(xt), meT (see (4.23) and Chapter 3)
At this point, particles] (xl ,x(c ) x;(”)}j are available at CA
v
Calculation of{y, " } L~ F X xE 1D uE =ul )

for each(xl(”, xg)7 xT( ))7 j=1,...,J (see Appendix C.2)
v

Average consensus or gossip algorithm provides (see {4.26)
Byt x" b0 wt0) =1, =1, T =T

/ {x J)} L~ f(x1) (from estimation layer)
v

T
Computation of%@ (see (4.19) and (4.2p)| | Computation o% (see (4.30)
1 1

ut=ut+® u+:ul+(r)

\ /

‘ Evaluation of (4.13) and (4.$)

v

+
,

Figure 4.3: Flow chart of the consensus-based implementation of the ldag&pat CAl (see
Section 4.4.1).

perform cooperative simultaneous navigation and tracking of a target.l&iomusource files
and animated plots are available at http://www.nt.tuwien.ac.at/about-us/staffAtoeiaer/.

4.6.1 Simulation Setup

The following aspects of the simulation setup are common to all three scen@hiestates of
the CAs consist of their 2D position, i.e;, = [z,,1, xlm,Q]T in a global reference frame. In
addition to the mobile CAs, there is one anchor CA (indexed by1), i.e., a static CA that
broadcasts its own (true) position to the mobile CAs but does not perfoyrmaasurements.
The CA network is fully connected if not indicated otherwise. The stateseofrtbbile CAs
evolve independently according to [Li and Jilkov, 2003]

Xin = Xip-1+ Wy +dpn, n=12.... (4.32)

)

Here,q; € R? is zero-mean Gaussian with independent and identically distributed entrigs, i.e
an ~ N(0,021) with 62 = 1073, andq;, andqy s are independent unlegs n) = (I, n’).

The domairl; of the control vectomy,, is defined by the norm constraiffty || < u"®. For

the interpretation ofy ,, within (4.32), it is assumed that the CAs know the orientation of the
global reference frame. In the initialization of the algorithms, at time0, we use a state prior
that is uniform on—200, 200] x [—200, 200].
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The mobile CAs acquire distance measurements according to (1.3) j.8.,= Hxlm_
Xk.n H +vy 1:n, Where the measurement noisg.,, is independent acrogsk, andn and Gaussian
with variance

a3, HXl,n*Xk,nH < dy

Ul%k;n - 2 [1%1.n =Xk nll "
o | (Pt = 1) 1], = xeal| > do.

0

(4.33)

That is, the measurement noise variance stays constant up to some distaroe then in-
creases polynomially with some exponenfThis is a simple model for time-of-arrival distance
measurements [Garcia et al., 2014]. We@?;et: 50 andx = 2 and, if not stated otherwise,
do = 50.

In the estimation layer, we usk= 3600 particles. (Choosing below3000 was observed in
some rare cases to lead to a convergence to the wrong estimate.) A resateplisgperformed
to avoid weight degeneracy [Douc and Cappe, 2005]. Resamplinddrarssweighted particles
{(x,(jq)l, w,(jzl)}jzl representing the beliéf(x;,,) into nonweighted particle$x,(€{21}j:1. We
use a somewhat nonorthodox type of resampling that helps move particlesitions with high
probability mass, thereby reducing the number of particles needed. Mecdisally, at every
Lth time stem, we particle from a kernel approximation of the belief; at all other time stegs,
perform standard systematic resampling [Douc and Cappe, 2005].€Fhel lapproximation of
the beliefb(xy ,) is obtained as [Silverman and Green, 1986]

J
Xk n) Z Wi K (Xpen _Xl(cjzz) ’
with the Gaussian kernel
K(x) = (2moi) " exp (= x|/ (20%)). (4.34)
Here, the variance}( is chosen as

(J'IQ( _ { J1/3 tr(Ck,n)/2a |f tr(Ck,n) < 20’3

2 __ 2 i
oj; = 0§, otherwise,

wheretr(Ckvn) denotes the trace of the weighted patrticle covariance matrix defined as

T
Zwk nxk nxkn = Mkl where Hkn = Zwkn kn

This case distinction in the choice @} is used since2 = J'/3tr(Cy,,) /2 is only accurate for
a unimodal distribution [Silverman and Green, 1986] whergas: o3 is suitable for annularly
shaped distributions (here, the width of the annulus is determinetf iinler et al., 2005]).
We chooseL = 40 if tr(Cy,) < 80, L = 20 if 80 < tr(Cyn) < 1000, and L = 10 if
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tr(Cg,n) > 1000; this choice led to good results in our simulation setting.

We employ a censoring scheme [Lien et al., 2012] to reduce the numbertmigsmand
avoid numerical problems during the first time steps, where the mobile CAs stdl hia-
informative beliefs. More specifically, only CAswith tr(Cl,n) < 10 are used as naviga-
tion partners by neighboring CAs and (in our third scenario) are invoinddcalizing the
target. In the control layer, this censoring scheme corresponds to ltbeifg strategy: as
long as CAl is not localized (i.e.tr(C;,) > 10), its objective function isDj, (w,+1) £
—h(xl,n+1}y17n+1; Y1,1:m) ul,lmﬂ), i.e., the negative differential entropy of only the own state
conditioned on only the own measurement relative to the anchoyCA, .

The gradient ascent in the controller (see (4.5)) uses the refere'rlnsm(z =0, which are
consistent with the state evolution model (4.32), and step sjzeshosen such thatu, ,, || =
u"™. Thus, the controller moves every mobile CA S with maximum nominal speed (de-
termined byw"®) in the direction of maximum local increase of the objective function. The
number of particles used in the control layet/ig’ = 60000, with J = 1200 andJ’ = 50. A
reduction ofJ’ to J' = 1 was observed to result in more jagged CA trajectories and a slightly
slower reduction of the estimation error over time.

4.6.2 Noncooperative Navigation

In order to study the behavior of the controller, we consider four mobile CA 2,3,4,5
that perform navigation without any cooperation during 300 time step3he mobile CAs
measure their distance to the static anchor CA=(1), which is located at positiof0, 0],

but they do not measure any distances between themselves. Their mezstuneodels use
different values ofly, namely,dy = 20, 50, 100, and100 for [ = 2, 3, 4, and5, respectively.
The mobile CAs start at positign00,0]" and move with identical nominal speed determined
by uf"® = 1. The objective function for the control of CA% 3, and4 is Dy (w;,41) 2
—h(Xz,n+1}y1,n+1); Y115 ul,lmﬂ). CA 5 is not controlled; it randomly chooses a direction at
n =1 and then moves in that direction with constant nominal speed determinefi®y-= 1.
Fig. 4.4 shows an example of the trajectories of the four mobile CAs. Thgesettiaes are
quite different because of the different valueslgiand the fact that CA 5 is not controlled.

CA 4, after an initial turn, is roughly localized in the sense that the shape ofatginal
posterior has changed from an annulus to only a segment of an anmbkreafter, CA 4 turns
around the anchor, which is reasonable in view of the single distance rapssut available at
each timen and the fact that, sincé& = 100, the measurement noise cannot be decreased by
approaching the anchor. CA 3 (witly = 50) initially approaches the anchor. At a distance of
50 to the anchor, the measurement noise cannot be decreased any rdafeysa€A 3 turns
around the anchor without approaching it further. A similar behaviorhsbed by CA 2 (with
do = 20).

Fig. 4.5 shows the position ARMSEs of the four mobile CAs. These ARMSEs deter-
mined at each time by averaging over 300 simulation runs. As can be seen, the three CAs
performing information seeking-contral & 2, 3,4) are fairly well localized after about 100
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Figure 4.4. Example trajectories for noncooperative navigation with infbomaeeking con-
trol. The initial CA position and the anchor position are indicated by a bulletsstdr, respec-
tively.
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Figure 4.5: Position ARMSE for noncooperative navigation with informasieaking control.
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Figure 4.6: Example trajectories for cooperative navigation with informage®king control
(C—C scheme). The initial CA positions and the anchor position are indicgtbdllets and a
star, respectively.

time steps. CA 2 (withly = 20) takes longer to localize itself than CAs 3 and 4 since, prior to
reaching a distance @0 to the anchor, it has a larger noise variance (see (4.33)). The perfor
mance of CA 3 and CA 4 is almost identical; the larger noise variance of CAiBgithe initial

time steps is compensated by a smaller turning radius once a distab@eathe anchor has
been reached. CA 5 is unable to localize itself, due to the lack of intelligemtaton

4.6.3 Cooperative Navigation

Next, we study the proposed method for cooperative navigation with inf@maeeking con-
trol (abbreviated as C-C). There are three mobile CAs 2, 3,4 with different start points
([-50,0]7, [0, —50]", and[0, 70] T for I = 2, 3, and4, respectively) and different nominal speeds
(u"® =1, 0.3, and0.1 for I = 2, 3, and4, respectively). The mobile CAs measure their dis-
tances to a static anchbe= 1 located af{—60,0]" and to each other, using = 50. Example
trajectories are shown in Fig. 4.6. For comparison, we also consideoapertive navigation
with information-seeking control as studied in Section 4.6.2 (abbreviated-@3. Finally, we
consider another scheme (abbreviated as C—N) where the CAs cteoipetize estimation layer
but no intelligent control is performed. Here, each CA randomly choasi#igection and then
moves in that direction with constant nominal speed determinad"8¥

Fig. 4.7 shows the position ARMSEs of the three schemes, which were deterimyrav-
eraging over the three mobile CAs and over 300 simulation runs. It is seethéhARMSESs
of the two reference schemes N-C and C—N decrease only very slowhead after about 70
time steps, the ARMSE of the proposed C—C scheme decreases rathdy tuighow value.
This behavior can be explained as follows. Without cooperation (N—-@jithiout intelligent
control (C-N), CAs 3 and 4 need a long time to localize themselves becaysaréhslow and
initially far away from the anchor. On the other hand, CA 2 localizes itself garckly because
it is fast and initially close to the anchor. With cooperation and control (C€8)2 moves in



4.6. SIMULATION RESULTS 77

70

60

50

40

ARMSE

30

20

10

50 100 150 200 250
n

Figure 4.7: Navigation ARMSE of three different estimation/control methods.

such a way that it supports the navigation of the two other CAs. In fach@srsby Fig. 4.6,
CA 2 first localizes itself by starting to turn around the anchor and then nekbarp turn to
approach CAs 3 and 4, which helps them localize themselves. This demesstra function
and benefits of cooperative estimation and control.

4.6.4 CoSNAT

Finally, we consider CoOSNAT. Two mobile CAs= 2,3 starting at position20,20]" and
[~10, —10]", respectively and with nominal speed determined:p¥* = 1 cooperatively lo-
calize and track themselves and a mobile target. There is also a static @nehbrat po-
sition [—50,0]". The target state,, , = x4, consists of position and velocity, i.ex, , £
[a:47n71  Xan2, Tanl, 9‘54,,172]T. The target state evolves according to [Li and Jilkov, 2003]

X4n = GXypn-1+Wauy,, n=1,2,...,

where
1010 05 0
0101 0 0.5
G = ,W: )
0010 1 0
0001 0 1

andqy, € R? is zero-mean Gaussian with independent and identically distributed entrigs, i.e
qan~ N(O, &,?I) with 63 =105, and withqy,,, andqy ,» independent unless=n'. The target
trajectory is initialized with positiofiz4,0,1, 24,0.2] T_ [50,0]" and velocity[d4,0,1, #4,0.2] T_
[0.05,0.05]T. In the initialization of the algorithms, we use a target position prior that is uni-
form on[—200, 200] x [—200, 200] and a target velocity prior that is Gaussian with méam)]"

and covariance matriiag {10~%,10~!}. Fig. 4.8 shows an example of CA and target trajec-
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Figure 4.8: Example trajectories for COSNAT with information-seeking co(@eC scheme).
The initial CA positions are indicated by bullets, the initial target position by as;rand the
anchor position by a star.

tories obtained with the proposed method of cooperative navigation withmiatan-seeking

control (C—C). One can observe that the two CAs first start turningratthe anchor to localize
themselves and then approach the target. Finally, at a distaséaothe target, where further
approaching the target would no longer decrease the measurementthei§€As spread out
to achieve a geometric formation that is favorable for cooperatively locglemml tracking the

target.

As before, we compare our C—C method with two reference methods, namaebgopera-
tive navigation with information-seeking control (N—C) and cooperatasgation with fixed,
randomly chosen directions of movement (C-N). Fig. 4.9 shows the navigaRMSEs and
tracking ARMSESs of the three schemes, which were determined by avgraggn the two CAs
and over 100 simulation runs. The following observations can be made:

e The navigation performance of C-N is very poor: after an initial deesghe ARMSE
slowly increases. In fact, typically, no cooperation is actually taking placese the
CAs are unable to localize themselves and thus each CA is censored byeetie
other CA. The navigation ARMSEs of C-C and N-C decrease rather lyula low
value. They are very similar, which can be explained as follows. BedaoteCAs

move with the same nominal speed, they localize themselves approximately in the same

manner. Therefore, as long as the CAs are not localized, no coopetaiies place due
to censoring, and after they are localized, no further gain can be achiigvcooperation.

e The tracking ARMSEs of the three methods are initially equdllt@and slowly increase
during the first 40 time steps. Indeed, due to the censoring scheme, thst&Alwcal-
izing the target only when they are localized themselves. Therefore gdiménfirst 40
time steps, no measurements of the distance to the target are used by thedhe an
CAs’ target position estimation is solely based on the prior distribution, whichifermn.
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Figure 4.9: Performance of three different methods for simultaneougatemn and tracking:

(a) Navigation ARMSE, (b) Tracking ARMSE.
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This leads to a target position estimate[@f0]" and in turn (since the target is initially
located af50, 0]7) to an initial tracking ARMSE o060 at timen = 1. During the first 40
time steps, the ARMSE slowly increases since the target is slowly moving to thez upp
right corner. The ARMSE of C—N continues to increase in this manner &tern, = 40
since with C—N, the CAs are never localized and therefore never statiziog the tar-
get. For C-C and N-C (both employing information-seeking control), after40, the
ARMSE first increases and then decreases. The ARMSE of C—Cadessooner and
more quickly than that of N—C, which again shows the benefits of coopergtimation.

The initial increase and subsequent decrease of the tracking ARM&#Fvell with C—C

and N-C aftern, = 40 can be explained as follows. After the CAs localized themselves and
start localizing the target, the target position posterior at a given CA ishtpagnularly
shaped, with the center of the annulus being the CA position. (This positiaua o

the turning point of the respective CA trajectory in Fig. 4.8.) The resultinggtgrosition
estimate is located at that center. Thus, it is more distant from the true tagigbp than

the estimatg0,0]" that was obtained when the CA was not yet localized and the target
position posterior was still uniform. As the CAs approach the target, thettpogiion
posterior becomes unimodal and the target can be localized, resulting énemsle of the
tracking ARMSE.



Chapter 5

Conclusion

This thesis proposed decentralized and scalable algorithntoégrerative simultaneous navi-
gation and tracking CoSNAT) in mobile agent networks. The development of such algorithms
is challenging due to the potentially high mobility of the agents, the high accuratyobust-
ness required in many applications, and the decentralized structure oétiherk. A major
advantage of the proposed algorithms for estimation and control is theiradigneOur devel-
opment was based on general state evolution and measurement moddtsmaation-theoretic
objective function for control, and sample-based representations wivibleed probability dis-
tributions. These characteristics make the proposed algorithms suitablbitoarg nonlinear
and non-Gaussian system models. Numerical simulations of our CoOSNAT #stiraad con-
trol algorithms demonstrated intelligent behavior of the cooperative agedtsigh estimation
accuracy.

5.1 Summary of Contributions

The conventional implementation of nonparametric belief propagation (N&R)doperative
navigation suffers from high computation and communication costs. Thierdfor the case
of two-dimensional (2D) position information and distance measurements ére@gents, we
proposed a new particle-based BP scheme using parametric messagemegiions and a new
technique for message multiplication. In this scheme, computation and communicasisn
are significantly reduced.

In addition, we introduced dimension-augmentedformulation of BP for cooperative nav-
igation. This reformulation allows the systematic and straightforward applicattem arbitrary
sequential Bayesian estimator (or Bayesian filter) to BP-based comgeanatiigation. We used
this principle to develop a new nonparametric (particle-based) implementatBR wfith re-
duced complexity. The main advantage of the proposed NBP algorithm is tleainislexity
scales only linearly—rather than quadratically as in conventional NBPr[étlal., 2005, Lien
et al., 2012]—with the number of particles.

We also used the dimension-augmented BP scheme to develsjgiha point BRSPBP)
message passing algorithm for cooperative navigation. SPBP extensig e point filter—

81



82 CHAPTER 5. CONCLUSION

also known as unscented Kalman filter—to Bayesian inference on géloexa}) factor graphs,
such as they arise in cooperative navigation. Messages and margstedipoprobability den-
sity functions (PDFs) are represented by mean vectors and covanmaticees, which are calcu-
lated using sigma points and the unscented transformation. Thereby, S38iB8®the typically
high communication cost of conventional NBP. This fact makes SPBP iaefipegell suited
to cooperative navigation and certain other decentralized inferenbéeprs in wireless agent
networks. Our analysis and simulation results demonstrated significanttagea of SPBP
and of the new NBP scheme over conventional NBP regarding perfaanaomplexity, and
communication requirements.

Next, we extended the proposed NBP scheme to include noncooperagetstarhis pro-
vided a framework and methodology for COSNAT and, for the first timebktba consistent
combination of cooperative navigation and distributed tracking for multiple malgiémts and
targets. Starting from a factor graph formulation of the CoSNAT problemdeueloped a
particle-based, distributed BP algorithm for COSNAT that employs a censescheme for a
distributed calculation of the product of the target messages. More abneéhe proposed
integration of consensus in particle-based BP solves the problem ofmatagating nonco-
operative agent nodes in distributed BP implementations, and thus it may fué aise for
other distributed inference problems. The main advantage of the profe&MAT framework
and BP methodology over separate CSL and DTT and, also, over simulsatwaalization
and tracking (SLAT), is a probabilistic information transfer between the tatspf the factor
graph corresponding to cooperative navigation and distributed trackimg information trans-
fer allows cooperative navigation to support distributed tracking andwécsa. Our simulation
results demonstrated that this “turbo-like” principle [Wymeersch, 200i]reault in signifi-
cant improvements in both navigation and tracking performance comparedatéeo$-the-art
algorithms.

Finally, we extended our CoOSNAT scheme by an information-seeking demtrdhe goal
of this controller is to move the cooperative agents such that the informator tie states to
be estimated that is jointly carried by all the measurements in the agent networkiisipeal.
This is achieved in a distributed, cooperative way by maximizing the negaistenior entropy
of the agent states via a gradient ascent. A probabilistic information transfie the estima-
tion layer to the control layer enables effective control strategies arsdléaals to intelligent
agent behavior and, in turn, to significantly improved estimation performaRoe example,
in a cooperative localization scenario with only one anchor present, maalscan localize
themselves after a short time with an accuracy that is higher than that of taratisneasure-
ments.

5.2 Future Research

The development of distributed cooperative navigation and distributekiricpalgorithms for
agent networks is an active research area. In the following, we mewitioa gossible extensions
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of our work and some open questions and problems that establish intedisgictgpns for future
research.

e The dimension-augmented reformulation of BP introduced in Chapter 2 czontl@ined
with other existing sequential Bayesian estimation algorithms (besides the pfiltécle
and the sigma point filter considered in Chapter 2) to obtain new methods figanav
tion and tracking in networks. In addition, this approach may also be suitabteter
inference problems.

e The proposed CoSNAT framework and methodology can be extendeaddmatwdate
additional tasks (i.e., in addition to cooperative navigation and distributekirigcthat
involve local states of cooperative agents and/or global states of opeive agents.
Examples of such tasks include distributed synchronization [Etzlinger 2044, Meyer
et al., 2013a, Etzlinger et al., 2013] and cooperative mapping [DedeoglEukhatme,
2000].

e An important goal is an extension of the CoSNAT framework and methodologgde
narios involving an unknown number of targets [Mahler, 2007] and nreasents with
data-association uncertainty [Bar-Shalom et al., 2009].

e The proposed information-seeking controller is myopic, i.e., its objectivetium in-
volves the agent states only one time step ahead. A controller with a recealing h
zon [Mayne et al., 2000] is expected to improve the performance, efipégiacenarios
with multiple time-varying global states.

¢ Finally, the complexity and communication cost of the proposed estimationaritbt
method can be reduced by introducing variational approximations [Mazat#d., 2013]
and using cubature points [Arasaratnam and Haykin, 2009] insteahddm samples.
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Appendix A

Proof of Equation (4.7)

We will use the following transformation rule for differential entropy [Devéied Deville, 2012,
Equation 18] For a continuous random veciaand a transformed random vector of identical
dimensiorb = g(a), whereg(-) is a bijective differentiable function with Jacobian determinant
Jg(a) = det 898?,

h(b) = h(a) + e(a), with e(a) 2 / f(a) log |7, ()| da. (A1)

The conditional differential entropi(x*|y*;u") can be expanded as [Cover and Thomas,
2006, Chapter 8]
h(xFly";ut) = h(x,y";u™) — A(y";ut). (A.2)

The vectorx® consists ofx” andxy, , = [x],c 4 () @nd there isq” = 3i(x;, 0]") (see
(4.6)). Thus, the first term on the right-hand side of (A.2) can be aspkas

h(x+7 y+7u ) = h(gl(xluuj))xj\\{lpy—l—;u—‘r)'

Applying the transformation rule (A.1) to the “extended state evolution mapping”

T

g = [T v ) e [ u) Ty T

we then obtain

h(x+7 y+; u+) = h(Xl, X::\{l}v y+; u+) + €(Xl, X::\{l}a y+; u?_) ) (A3)

where
e(xl, Xj\\{l}v y+? ulJr) é///f(xla le\{l}a y+)10g ‘Jg};‘ (Xla le\{lp y+; ul+) ‘dxl dle\{l} dy+-

Here,J: (xi, xj‘\{l}, yT;u;") is the Jacobian determinantgjf(x;, xj\{l}, yT;u)). Itis easily
seen that

g (%0, % o Y T3 u") = g, (xu™),
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and thus we obtain further

e(xbxj\{l}ay—i_;uf) = // [/f(Xg,th\{l},yﬂdxj‘\{l}der IOg|J§z(Xl;ul+)‘ dx;
= /f(Xl) log |J§l (Xl; u;r)] Xm

= Gi(u}). (A.4)
Inserting (A.4) into (A.3) and the resulting expressiorh¢t™, y™; u™) into (A.2) gives
ROy ut) = h(xix gy iut) + Giluf) — Ay ut). (A5)

Next, we repeat this transformation procedure but apply it to the kebm ij\{l}’ y";uh)
in (A.5) instead of.(x™, y™; u™). Consider an arbitrarjf € C\{l}, and note thatjl\{l} consists
of x; andxj\\{l " £ [XﬂkeA\{z o wherex;, = gy (xy,u;;) according to (4.6). Proceeding

as above and inserting the resulting expressio’m(@t, xj\\{z}’ y*; u+) into (A.5) yields
h(x+’y+; u+) = h(xl7xl’7x1—l\{l7l/}a y+, u+) + Gl/(u;_) + Gl(ul—‘r) — h(y+, u+) .

We continue this procedure in a recursive fashion, splitting off CA startmr@fromle\{l "
until only the target states (contained:’u?) are left, and applying the transformation rule at
each recursion. In the end, we obtain

h(xtlytiut) = hxe,xtytiut) + ) Gi(w)f) - m(ytiut).
leC

Finally, Equation (4.7) is obtained by noting that

h(xc,xt,y"ut) = h(xe,xF|yt;u™) + h(yt;uh).
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Derivation of (4.19)and (4.20)

B.1 Derivation of (4.19)

Using (4.16) in (4.14) and recalling théi(y , x¢, x+, u™) does not depend am" (see (4.18))
yields

dD;(ut) doy(y ™, xe, xt ut
I ///f XCax’T Bl y XCvx’Tv ) ( T )
1

S out ou;

Oél(y >XCaXT7 u+)ﬁl(y 7XCaX’;L’a u+)
flytiut)

x log

dxc dxFdy ™. (B.1)

Settingu™ = u;, and multiplying and dividing the integrand in (B.1) by(y ", x¢,xF, u/"),
we obtain further

8D1(uJr /// +) 1
q(yhxe,xtut=u
aul ut=u" T ' Oél(er,X(j,X;:, u:r)
0 L Xe, xh ut
y Oél(y C’Jr T )
8ul u*:uﬁ'
al(yt XCaX’;” u;i_) ﬁl(y—h XC7X7+’> u;‘r) + +
x log dxc dx+dy (B.2)
flytiut=u) T
where

t.yt = +)A

a(y " xe, xpiu" = )

fxe,x7) aily ™t xe, x5, wh) Bily ™, xe, X7, o)
Then, (4.19) is recognized to be a Monte Carlo approximation of (B.2) thabtained by
performing importance sampling [Doucet et al., 2001] usjfg™, x¢,x+;u™ = u) as im-
portance density, i.e., the particlgs (7", x(j ) andxHJ) occurring in (4.19) are drawn from
q(yt xc, xT, ut=u;"). Using (4.16), this importance density can be expressed as

F_yt toyuth) =

q(y %o, xput =u) = f(xe,xF) fyt|xe, xF;ut =1y T=ul).

f(XC,XT,y+ u =u
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The second expressioffi(xc, xF) f(y*|x¢, x7; u™ = u/), underlies the two-stage sampling
procedure described in Section 4.4.1.

B.2 Derivation of (4.20)

We have
fiytiut=ul) //f +|xc,x7-, +—u;~')f(xc,x7—)dxcdx7- (B.3)

Using particles{ (xC : f}m)}j ~ f(xc,x7F) (see Section 4.4.1), a Monte Carlo approxima-

tion of (B.3) is obtained as

—

J
f(er,u _ur jZf +‘XC ,XT]),U.+:U|%) :
7j=1

Evaluating this foryt = y*(7") (again see Section 4.4.1) and inserting (4.16) yields (4.20).



Appendix C

Drawing Particlesfrom Likelihood
Functions

C.1 Flooding-Based Approach

We consider the flooding-based setting of Section 4.4.1, i.e., we presedtaeng of par-
ticles‘ fromf(yﬂxg), x;(J);qu =u;"). Note that particles{xl(f)}‘j]:1 ~ f(xy), I' € C and
x;;(])}jzl ~ f(x;}), m € T are available at CA, and it is assumed that the state evolution
and measurement models of all CAs= C are known to CAl. We start by noting that by

combining (4.1) and (1.2), the composite measurement vgctaan be written as

y+ = [dl(X;L, XZ? V?:k)]IEC,kGAZ : (Cl)

First, CAl obtains particles
{x, J)}j L~ ) £ /5(Xf7— g (xr,ufy)) f () dxe (C.2)
for all I’ € C by evaluatingjy (xy, u;}) in (4.6) atx, = x7) anduf = u, i.e.,

W = gu(xiuf), =10 (C.3)

Thus, at this point, particlex; (])} for all k € A are available at CA. Next, for each

je{l,...,J}, CAldraws partlcles{vﬂm }J, \~ f(vf) forl e C andk € A;. Finally, CA
[ obtains particles

{y—l-(j,j’)};]/ 1Nf( +|Xc ’X;r_(J)’u—O— —u}) (C.4)
by evaluating (C.1) at;" = x,; ¥, x; = x; V), andv;;, = v/} iie.,

) = [t O v 1

’vlJc ))]lec,keAl’ J
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C.2 Consensus-Based Approach

In the following we describe the drawing of particles frgffy;"| xl(j), xg), x%(j); ug =ufe)
as considered in the consensus-based setting of Section 4.4.1. Notarthm$){xl(7)}j:1

fxp), e {l}uc and{xﬁ;(j)}j:1 ~ f(x}), m € T; are available at CA. We recall from
(4.25) thaty;” = [di(x]", %}, v,)] Based on the analogy of this expression to (C.1), the
desired particles

ke A"

AN ) N .
yl"‘(JJ )}jle -~ f(yz+ ‘ ng)’ Xg)7x%(3); ug-l :u::Cz) (C.5)
can be calculated by carrying out the steps of Appendix C.1 with obviousficaithns—in
particular,y ™ is replaced by;", C by {I} U C;, andT by 7;. More specifically, CAl obtains
particles{x;,r(”};.]:1 for I’ € {I} U C; according to (C.3) and, for eaghe {1,...,J}, draws

particles{v;fk(j’j/)};-],/:l ~ f(Vszr,k) for k € A;. Then, foreach € {1, ..., J}, itobtains particles
{yf(j’jl)}j,lzl by evaluating (4.25) at;” = x; /), x{ = x V), andv}, = v/, ie.,

§H09) = [d(xF), xHD), v G5 —

' Vik )]keAly J sl
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