
Reliable Control Network
Gateways

A Case Study for KNX and ZigBee

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Stefan Seifried
Matrikelnummer 0925401

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr. Lukas Krammer

Wien, TT.MM.JJJJ
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Reliable Control Network
Gateways

A Case Study for KNX and ZigBee

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Stefan Seifried
Registration Number 0925401

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Univ.Ass. Dipl.-Ing. Dr. Lukas Krammer

Vienna, TT.MM.JJJJ
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Stefan Seifried
Wiedner Gürtel 50/12, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

First of all, I want to thank my advisor, ao. Univ. Prof. Dipl.-Ing. Dr. Wolfgang Kastner
and Univ. Ass. Dipl.-Ing. Dr. Lukas Krammer for their ongoing support, encouragement and
feedback throughout the whole progress of this thesis.

Further, I want to thank my parents, which were always there for me and provided me with
their loving care and support through all those years.

Also, my dear friends throughout my study: Matthias Burgholzer, Djordje Slijepcevic,
Christian Steinkress, Anelia Dincheva and Jürgen Pannosch. Thanks for your support and the
funny time!

Additionally, I want to thank my dear colleagues at the Automation System Group: An-
dreas Fernbach, Thomas Frühwirth, Stefan Gaida, Daniel Schachinger, Jürgen Schober and Pe-
ter Hausberger. They made working there, an experience of a life time and provided me with
additional feedback on my thesis.

iii

Abstract

From the so-called fieldbus wars on, automations systems suffered from an increased hetero-
geneity [26]. Since then solutions for the interconnection and integration of different communi-
cation technologies throughout the automation pyramid (see Figure 1.1) are still high in demand.
However, past efforts tended to introduce additional abstraction layers above the field level, and
direct interconnection between field protocols was seldom considered. Despite the fact that more
and more critical infrastructure is incorporated into automation systems, only little effort is put
into proper reliability mechanisms throughout existing integration solutions.

Therefore, this thesis introduces a gateway solution targeting the problem of horizontal in-
tegration at the field level of the automation pyramid in a reliable way. A general applicable
translation process between field networks has been advised. Field devices residing in one field
network are mapped into another fieldbus by the means of a proposed information model. The
information model has been inspired by modeling capabilities of well-established integration
solutions like object linking and embedding (OLE) for process control (OPC) - unified architec-
ture (OPC UA) [16] and open building information exchange (oBIX) [14].

The reliability concept has been based on the replication of multiple gateway devices to form
a redundant compound. Therefore, synchronization and end-to-end communication monitoring
mechanisms are proposed. Synchronization tasks are performed via existing fieldbus connec-
tions, which obviates the need for a separate backbone link between individual gateway devices.
Furthermore, the fault hypothesis of the redundant compound and the overall interconnected
automation systems are stated and analyzed.

Besides an analytic discussion of all fault scenarios and fault recovery processes, a proof-of-
concept testbed for the technologies KNX and ZigBee has been developed to verify the results
of the fault analysis.

In conclusion, the described gateway approach has been proven to be a feasible and viable
solution to the integration problem of different field level protocols. However, there are still tasks
for future work, that have not been addressed by this thesis. This includes several management
operations for the redundant gateway compound and more sophisticated mechanisms for fault
handling.

v

Kurzfassung

Durch die historisch gewachsene Vielfalt an Feldbuslösungen nutzen Automatisierungsysteme
oftmals ein heterogenes Konglomerat unterschiedlichster Kommunikationsprotokolle [26]. Lö-
sungen für die Vernetzung und Integration der verschiedenen Feldbusprotokolle sind noch im-
mer sehr gefragt. Bisherige Anstrengungen in diese Richtung resultierten daher in Ansätzen die
zusätzliche Abstraktionsebenen einführten. Auch die fortschreitende Automatisierung kritischer
Systeme wurde nicht immer ausreichend mit Mechanismen zur Sicherung der Zuverlässigkeit
berücksichtigt.

Die vorliegende Diplomarbeit führt eine Gateway Lösung ein, die sowohl auf das Problem
der horizontalen Integration als auch auf die zuverlässige Anbindung kritischer Systeme abzielt.
Dafür wurde ein allgemeines Informationsmodell entwickelt. Das Informationsmodell wurde
inspiriert von etablierten Lösungen, wie OPC UA [16] und oBIX [14].

Die Zuverlässigkeit der eingeführten Gateway Lösung wird durch Replikation mehrerer
Gatewaygeräte erreicht, die in einem redundanten Verbund zusammengeschlossen sind. Dabei
müssen die einzelnen Gatewaygeräte untereinander synchronisiert werden, was über die bereits
vorhandenen Feldbusverbindungen geschieht. Dies macht eine separate Backbone Verbindung
überflüssig. Weiters werden zu besseren Verteilung der Synchronisationstelegramme Buslast-
metriken erhoben und eine Ende-zu-Ende Verbindungssicherung zwischen den einzelnen Gate-
waygeräten durchgeführt. Außerdem wurde eine Fehlerhypothese für den Gatewayverbund und
für das gesamte, verbundene Automatisierungssystem aufgestellt und analysiert.

Eine detaillierte Fehleranalyse wurde mittels vollständiger Enumeration aller möglichen
Fehlerfälle durchgeführt. Weiters wurden die Fehleranalyseergebnisse in einer Testumgebung
mit einer prototypischen Gatewayimplementierung für die Technologien KNX und ZigBee auf
ihre Richtigkeit hin überprüft.

Abschließend betrachtet ist der beschriebene Gateway Ansatz nicht nur eine mögliche, son-
dern auch eine sinnvolle Lösung für das Integrationsproblem verschiedener Feldbusse. Für zu-
künftige Arbeiten sind unter anderem Managementprozeduren für die einzelnen Teilnehmer ei-
nes Gatewayverbunds und differenzierte Methoden zur Fehlerbehandlung.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Reliability . 2
1.3 Problem statement . 3
1.4 Aim of the work . 4
1.5 Methodological approach . 5
1.6 Structure of the work . 5

2 State of the art 7
2.1 Related Work . 7
2.2 Interconnection Approaches . 8
2.3 Integration Technologies . 11
2.4 Conclusion . 20

3 Design and concept 23
3.1 Requirements . 23
3.2 Communication structure . 27
3.3 Architecture . 34
3.4 Information model . 37
3.5 Reliability . 45

4 Fault Analysis 53

5 Implementation 59
5.1 Field protocols . 60
5.2 Testbed . 69
5.3 Architecture . 72
5.4 Information model . 74
5.5 Test cases and results . 76

6 Conclusion 79

List of Abbreviations 83

ix

Bibliography 87

x

CHAPTER 1
Introduction

1.1 Motivation

Automation systems use a large variety of communication mechanisms due to mostly histori-
cal reasons. At the advent of automation systems, well established standards from the world
of office networking were not readily available or not appropriate for the task. Furthermore,
automation was strongly driven by particular application domains with very own requirements
in types of communication services, information modeling and processing. The emergence of
the automation pyramid [32] and further on the wide-spread success of Ethernet/IP, led to a con-
solidation of communication protocols. Nowadays, the upper layers of the automation pyramid
are mostly based on IP networks and use information modeling and process techniques present
in modern information and communication technology (ICT) systems.

However, the field level remained a conglomerate of different protocols, despite standardiza-
tion efforts and the introduction of Ethernet/IP. The diversity is driven by maintaining existing,
well-established solutions and the exploitation of new technological advances that enable new
approaches to application domains. Hence a lot of field protocols serving effectively the same
application domains, share mostly semantically equivalent information models and processing
mechanisms. Significant differences often arise at the physical transport medium, where indi-
vidual protocols target a particular set of requirements. (e.g. long distance, reliability)

This gives rise to the integration problem at the vertical and the horizontal dimension of the
automation pyramid. While the challenge of the vertical integration lies in information aggrega-
tion and filtering, the challenge of horizontal integration is finding a common information model
between protocols. Furthermore in the scenario of automating critical infrastructure, reliability
plays an important role. Different communication protocols along the pyramid implement their
very own reliability mechanisms and single points of integration be it at the vertical or horizontal
dimension would compromise a holistic reliability concept for the automation pyramid model.
Therefore, a well defined integration concept must also consider multiple coupling devices be-
tween or in layers.

1

Management

Field

Automation

Figure 1.1: Automation pyramid for BACS according to ISO 16484-2:2004 [11] illustrating the
heterogeneity of the field layer

The continuing success of Ethernet/IP at the management and automation layer of the au-
tomation pyramid already solved the integration problem by unifying message transmission.
Different information structures can be easily transformed by well-established means, like Web-
services. All that remains is the integration problem at the horizontal dimension of the field
level, which lacks ready to use approaches. [46]

1.2 Reliability

Reliability is an important factor in the design of dependable communication systems and de-
scribes the probability that a system will continue a correct service, given that it was working
properly at the very beginning [36]. A correct service is delivered when a system works accord-
ing to its specification, whereas an incorrect service delivers no results at all or even worse bogus
information. The transition between a correct service and an incorrect service is characterized
by three terms: fault, error and failure. A fault is the hypothetical origin of an error. It is called
inactive, when the system has not triggered the fault and active when the system has produced
an error. An error is then a part of the system that is affected by the fault and experiences a
malfunction. Then, a failure occurs when an error is able to affect the delivered service [22].

There are several concepts to sustain reliability, either during the development or operation
of a system. The first method is fault prevention, which subsumes quality control mechanisms
during the development and manufacturing phase of a system. Fault removal aims to correct

2

faults during the development cycle and operation of a system. The process of fault removal is
partitioned in three steps: verification, diagnosis and correction. The verification step describes
the checking of properties and conditions according to the specification. In case the such a check
fails, the root cause is determined by diagnosis. Finally the fault is fixed by a proper correction.

But the most important method regarding this work is fault tolerance. Fault tolerance main-
tains the correct service of a system even in if faults are active. This is achieved by first detecting
such an error and then subsequently apply proper countermeasures to avoid a failure. Error de-
tection can take place either during service delivery or while a system is in idle mode. Upon a
detected error, an affected system has two options: Either it resides on recovery or fault han-
dling. Recovery involves mechanisms that reverse to a known good previous state, recover due
to the presence of redundancy information, or even switch to an entirely new state which is error
free. Fault handling on the other hand tries to exclude the faulted component from the operation
of the system, called fault isolation. Or even further, a rearrangement of tasks or swap-in of
spare components is performed by system reconfiguration. Finally an active fault can also be
dealt with by performing a system reinitialization. [22]

1.3 Problem statement

The focus of this work lies on the horizontal integration of field layer protocols that share similar
information models i.e. targeting the same application domain. Furthermore, any proposed so-
lution must retain the level of availability and reliability for the protocols involved. Additionally
aggravating, data representation and communication mechanisms of those protocols are usually
not stateless.

Two designated field level protocols from the domain of home and building automation
(HBA), KNX [34] and ZigBee [15] are chosen to restrain the problem domain. Both protocols
implement completely different communication stacks and even operate on different physical
media, but define similar device, data and functional models. KNX [34] specifies its information
model in Volume 7 - Application Descriptions and ZigBee provides a supplement standard, the
ZigBee Home Automation Profile [17].

One of the objectives of this work is to strictly remain at the same layer of the automation
pyramid. Hence, an information translation mechanisms needs to be advised, which transforms
information between the models of the involved protocols. In case of KNX [34] and ZigBee [15],
the problem is complicated by the fact that the communication is not stateless. Furthermore both
also differ at the mode of communication. ZigBee only defines event based communication,
whereas KNX [34] both allows polling and event driven communication. Thereby, a viable
solution must be capable of storing the respective protocol state and enabling a native view of
the whole field layer for each involved protocol.

Another important requirement is to maintain the same quality of service throughout the
whole integrated network with respect to availability and reliability. ZigBee defines a mesh
topology which is capable of tolerating a silent failure of a single node without affecting the
remaining network ([15], [20]). Also KNX is able to cope with the failure of single bus devices
and can be enhanced to even tolerate the failure of single network segments [40]. In conclusion,
an acceptable solution then must also tolerate single silent failures.

3

There are in general two feasible approaches to interconnect arbitrary disjoint field networks
with each other, a tunneling or a gateway solution. The tunneling approach is only suitable
when all elements that shall be interconnected at the field level are utilizing the same field level
protocol. Another field level protocol then serves as a mere medium of transportation. However,
field level protocols may impose strict timing constraints, which another protocol might not be
able to fulfill [41].

Finally, only the gateway approach remains and hence is further evaluated. The proposed
gateway translates between the chosen field protocols KNX and ZigBee by storing its own in-
formation model. Furthermore, several gateways may be linked together to form a redundant
compound gateway. A prototype realizing a lighting scenario is deployed. Then the approach is
evaluated by the means of the prototype and a theoretical analysis.

1.4 Aim of the work

The major aim of the thesis is a concept on how to integrate disjoint field protocols with resem-
bling information models in a reliable way. As a additional constraint, the integration shall be
established within the limits of the field layer of the automation pyramid. Therefore two repre-
sentative protocols, namely KNX [34] and ZigBee [15] are chosen. The main criteria supporting
this choice are similar information models, but are sufficiently diverse. The chosen protocols are
even implemented on two different physical media and require different modes of communica-
tion (polling and event driven).

A profound literature study reveals, that the most promising feasible solution for the inte-
gration problem at the field level is a gateway approach. It is shown, that the use of such a
gateway device enables the use of the whole field network by a single protocol. Effectively
hiding the needed complexity of the inter-working between field protocols in a gateway device.
Thereby, the upper automation level does not need to be adapted and the deployment side effects
of another field protocol is contained within the field layer of the automation protocol. Hence
a gateway solution to the horizontal integration problem between KNX and ZigBee is modeled,
implemented and analyzed such that it fulfills the previously stated requirements.

At first, an information model is proposed in order to manage the state of all network ele-
ments, regardless at which fieldbus they reside. Further, a translation service will be sketched,
that is able to transform the information model to the respective representation of the integrated
field protocols. Hence, the information model is effectively a super-model to the models of the
chosen field protocols.

Next, a redundancy service is introduced that synchronizes the information models of dis-
joint gateway devices using a accompanying redundancy protocol. An arbitrary number of gate-
way devices can then be subsumed into a redundant compound, called virtual redundant gate-
way (VRG). One of the gateways will then assume the role of a master and the other ones will
assume the role of backup devices. The redundancy service will also serve as the protocol stack
and watchdog. Therefore, a detailed fault analysis is done, together with an analysis of critical
timing paths.

Finally, the complete gateway device is implemented as a proof-of-concept prototype in
order to show the feasibility and efficiency of the proposed approach. Furthermore. detailed

4

performance data is gathered and used to provide a detailed comparison to similar state-of-the-
art methods.

1.5 Methodological approach

At first, a literature and Internet research on existing approaches to the integration problem at
the field level is performed. Findings are classified either as horizontal solutions, when they
remain within the limits of the field layer. Otherwise, they are classified as vertical solutions, in
case they introduce additional layers of abstraction to the overall automation system. All found
approaches are analyzed and described at the state-of-the-art chapter 2. Further, the gateway
approach is sketched and illustrated by a block diagram. Furthermore, each building block is
examined and feasible concepts and data models are discussed.

Then the information model building block is designed, tailored to the application domain
of HBA, using suitable models. Furthermore, a mechanism for information transformation is
advised, so the stored data can be converted into representations native to the chosen field pro-
tocols. Especially solutions that perform the integration on the vertical domain are investigated
while modeling information model and the translation service, as they usually provide abstract
data models of the advised problem domain using established concepts.

As a next step, the redundancy service and the accompanying redundancy protocol are mod-
eled. Different approaches found during the literature research are discussed, compared, and
finally a appropriate approach is chosen and implemented. The final outcome will be speci-
fied using UML and message sequence diagrams. Furthermore the timing, fault tolerance and
communication overhead will be theoretically examined.

Finally the theoretical gateway approach is implemented in a prototype gateway device using
suitable hardware and testbed. The information model and translation service will be evaluated
in terms feasibility and performance. Especially CPU utilization and memory consumption are
of importance. The redundancy mechanisms of the prototype are evaluated through careful
chosen test cases and compared to existing approaches where applicable.

1.6 Structure of the work

At the beginning a short overview about the motivation, the integration problem and the overall
goals of this work are stated. Further, the basic terms of reliability are introduced, emphasizing
the importance of this topic (see Chapter 1). In Chapter 2, an overview of existing concepts
and solutions tackling the integration problem is given. It is shown that the readily available
solutions indeed solve the integration problem, but either lack fault handling mechanisms or in-
troduce additional abstraction layers. No existing approach favors a flat hierarchy approach, like
the gateway presented by this work. Chapter 3 then outlines the fundamental requirements of
a reliable gateway. Then, possible fieldbus topologies are analyzed and an overall architecture
of a generic gateway device is developed. The components of this architectural model are then
described in detail and are evaluated regarding their reliability and fitness for the given task.
Chapter 5 describes a proof-of-concept implementation using two concrete instances of the tar-
geted fieldbus family, namely KNX and ZigBee. The implementation is discussed in detail and

5

the feasibility for real-world applications is shown. Finally, Chapter 6 concludes the thesis with
a critical reflection of the presented approach. It further includes an outlook of possible furture
enhancements.

6

CHAPTER 2
State of the art

Existing solutions and approaches throughout the history of the fieldbusses are discussed in Sec-
tion 2.1. The analysis gives rise to a classification into integration approaches and integration
technologies. The integration approaches section describes concepts deployed by most fieldbus
protocols to achieve integration with disjoint instances. Whereas the integration technologies
section presents vertical integration approaches, that provide a unified layer of abstraction for
communication and data models over several fieldbus protocols. This additional layer is imple-
mented in the bounds of the overlying automation layer regarding the automation pyramid [11].
A feasible gateway solution, as discussed by this work, may be directly compared and measured
by the performance and scalability to such vertical integration solutions. Further, the unifying
information models of such solutions procure proven approaches and practices that are consid-
ered designing the data model of the proposed gateway approach.

2.1 Related Work

In the very beginning, field level networks were particularly developed for automation purposes
and hence quite different from traditional ICT networks. This led to a vast amount of different
protocols each tailored to a specific automation or measurement task [45]. First attempts of in-
tegrating the automation communication busses were driven from the desire to access factory
data from the office. Thus, in the 1980’s the automation pyramid emerged to give a hierarchical
model for Computer Integrated Manufacturing (CIM) [50]. Early attempts of a standardized
horizontal integration of the individual layers of the automation pyramid are described in [28].
However, for most of the proprietary protocols this was never the intention and integration hap-
pened largely on an individual basis if ever.

Starting in the late 1980’s, the so called fieldbus war [26] fully emerged and made the inte-
gration problem to one of the top issues of the domain. However, it was believed that a unified
fieldbus protocol had to be found which could subsequently tackle all possible tasks that may
occur in the automation domain. The most notable attempt for a holistic fieldbus approach was

7

the Interoperable System Project (ISP). Unfortunately, ISP was canceled before reaching a ma-
ture state in 1994 [44]. Another attempt was IEC 61158 [6] standard, where only the physical
layer was finished and published. The main issue with the holistic fieldbus approaches was, that
a full implementation of the standard was too expensive in terms of space and computing power.
Further, only partial implementation would have resulted in widely incompatible devices.

In the early 1990’s another horizontal integration approach emerged from Supervisory Con-
trol and Data Acquisition (SCADA) in conjunction with fieldbus technology and more sophis-
ticated office grade ICT. As a result the OPC standard was published in 1996, which offered a
unified interface to different attached fieldbusses [38]. However, direct communication between
field devices originating in different field protocols were still unable to communicate. This was
still not changed with later iterations like OPC UA (see Section 2.3 – OPC UA) or other incar-
nations like oBIX (see Section 2.3 – oBIX).

The rise of Ethernet and internet protocol (IP) based office networks enabled the advance
of this protocol into the field layer. Recently, the Industrial Ethernet attempts revive the hopes
for a holistic field protocol. However, also wireless field protocols gained a decent amount of
momentum, which do not utilize the Ethernet and IP stack so far [45]. Further most fieldbusses
that survived the fieldbus wars provide a Ethernet and IP tunneling solution (see Section 2.2 –
Tunneling solutions), which enables to interconnect disjoint field networks. Also solutions that
utilize other fieldbusses as such a backbone link have been considered [41]. However, all these
approaches only support integration of networks that use the same field protocols.

Gateway approaches (see Section 2.2 – Gateway solutions) to the integration problem are
mostly intended as Web interfaces to fieldbusses. On the other hand, a vertical integration so-
lution enabling similar field level protocols to exchange information has rarely been consid-
ered [50]. An attempt has been made in ([56], [57]) to bridge specifically KNX and ZigBee.
However, the presented approach only focus on pure message translation capabilities and force
restrictions on the topology of the networks and their addressing scheme. Further, it lacks a
reliability concept and capabilities to store information (see Figure 2.2).

2.2 Interconnection Approaches

Tunneling solutions

Tunneling connections over other protocols is a well-known mechanism in corporate ICT sys-
tems. Essentially, tunneling refers to the concept of wrapping data packets from one protocol in
the packet payload of another protocol without performing any modification to the original data.
In [50], two scenarios are listed: IP Tunneling over Fieldbus Protocols and Fieldbus Data Tun-
neling over Backbone Networks. Both scenarios are well-established use-cases int the automa-
tion system domain and are subject to active research and standardization attempts. However,
tunneling solutions that extend the reach of one fieldbus by a tunnel through another fieldbus are
rarely considered. One example of a fieldbus tunneling another fieldbus can be found in [41].

There are several obstacles tunneling solutions need to tackle. One of the most tempting
problems is packet latency. Communication partners, residing in disjunctive segments just con-
nected by such a tunnel are not aware of the tunnel itself. Hence communication partners that

8

Communication
Partner

normal packet flownormal packet flow encapsulated traffic

Tunneling protocol

Communication
Partner

Bridge Bridge

Figure 2.1: Tunneling concept network topology

are connected through a tunnel do not apply any special considerations or treatment to their data
packets. Furthermore field level protocols require harsh communication timeouts due to their
realtime characteristics. Hence, a feasible tunneling solution needs to meet the timing specifica-
tions of the tunneled protocol.

Another problem related to packet latency is packet fragmentation. First, consider the case
where the payload of the tunneling protocol is smaller than the data frame size of the tunneled
protocol. Then the tunneled packet needs to be split up on the sending endpoint of the tunnel and
later joined on the receiving endpoint. This introduces additional computing and transmission
overhead for the tunneling protocol. But on the other hand, a tunneling protocol more capable
in payload size may combine several packets from the tunneled protocol. Subsequently, this can
benefit field protocols that frequently send out significant amounts of small datagrams that may
be aggregated in one packet for the tunneling protocol.

But the most important conceptual issue with field level tunneling solutions is that commu-
nication endpoints are only able to reach out to other endpoints within the limits of the same
field protocol. Hence devices residing in the tunneling protocol segment and devices utilizing
the tunneled protocol are unable to communicate and exchange information.

Reliability for tunneling solutions is rather hard to achieve due to the unawareness of the
tunneled protocol about the tunnel itself. Possible single points of failure are the access points
to the tunnel and the tunneling connection itself. A possible solution can be found at [41], but
there is no applicable approach in general.

In conclusion, tunneling solutions are only feasible for field protocols with relaxed timing
constraints. Furthermore a tunneling protocol is only capable of forwarding datagrams and
cannot be incorporated in the tunneled communication infrastructure.

9

Gateway solutions

A gateway device is a full member of each connected fieldbus. Its main purpose is the exchange
of data between different field level protocols independent of different communication modes
or data encoding. But unlike the tunneling approach, communication is always targeted from
and to the gateway device. There are three main components in a gateway device (see Figure
2.2). First, there are the individual protocol handlers for each supported fieldbus. Second, the
core component implementing the gateway logic and providing additional services (e.g. diag-
nostic services). Finally, the database or information model which stores the bits of information
necessary to process and forward data between the involved fieldbusses.

Field Device Field Device

Field Device Field Device

 Gateway Device

Fieldbus Drivers

Fieldbus Drivers

Gateway Logic
Services

Data Processing

Address Translation

Address Translation

Database

Figure 2.2: Gateway device and network topology [50]

Every information exchange between fieldbus devices, utilizing different field protocols in-
volves the gateway device as a mediator. In general, the gateway needs to provide a process
image [50] of each fieldbus segment of the automation system. Such a process image consists of
the data points and functionality a gateway publicly exposes to the connected fieldbusses. Fur-
ther, a process image is a concrete instance of the information model which characterizes each
separate fieldbus for the gateway device. Two common approaches for the information model

10

are either a organization by logical functionality or by physical topology of the involved field
devices.

The latency problem inherit to the tunneling solution is addressed by the gateway by acting
as an intermediary communication partner. However, a gateway only tackles timing constraints
on the field layer. End-to-end timing guarantees cannot be given, unless the gateway is able to
synchronize (e.g. act as a master) both fieldbusses [50]. On the plus side, a gateway may act as
a buffer which decouples fieldbusses and can deliver results stored in the process image.

Till today, the gateway approach was often considered, but never implemented as a product
or even prototype device. The main reason relies in the increased heterogeneity and domain
specific tailoring of fieldbusses. Hence, establishing a one-to-one entity mapping between the
involved protocols is often not achievable.

Since the gateway approach was seldom implemented for the field-to-field communication
scenario, there are no common approaches to provide fault-tolerant modes of operation. One
solution used in corporate ICT environments is Virtual Router Redundancy Protocol (VRRP),
which is standardized in [43]. Originally, VRRP was designed for network routers, but can easily
be used for any compound of devices that need fail-over capabilities. Apart from the individual
address, there is a common address that is assigned to the current active device. Communication
from and to the VRRP compound is handled via the common address and hence through the
active VRRP device. A failure of the active VRRP device is detected by frequent monitoring
messages between devices. In case of a failure, a backup device assumes the role of the active
device and is subsequently assigned the common address.

2.3 Integration Technologies

OPC UA

The roots of OPC UA date back as far as the year 1995. A new formed industry task force, the
OPC Foundation, was formed to enable the exchange of real-time data between devices from
different vendors. Effectively attacking the arisen integration problem for the numerous avail-
able field layer protocols (PROFIBUS, Modbus, ...). The focus was especially on developing a
common abstraction model used to interconnect programmable logic controllers (PLCs).

During the mid 1990’s, automation systems based on Windows powered PCs were gain-
ing popularity. And so after only one year of development, a standard based on Windows de-
vice drivers and Microsofts OLE technology, hence the name OPC, was released. Later, Mi-
crosoft’s succeeding technologies component object model (COM) and distributed component
object model (DCOM) for distributed automation systems have been used. The usage of standard
ICT technology at that time enabled a quick adoption and wide-spread acceptance throughout
the industry. As of today, every important corporate player in the field of industrial automation
is a member of the OPC foundation, that develops and maintains the standard.

The architecture of the OPC standard follows a strict client/server model. The OPC server
hides all the communication details of the underlying fieldbusses and provides a platform in-
dependent service model. One or more OPC clients may connect to such an OPC server and
consume those service. Different services are described in the initial standard and several com-

11

plementary standards that have been released shortly after. Nowadays, those standards are bun-
dled together as the OPC Classic standard and consist of:

• Data Access (OPC/DA) [8] resembles the original OPC standard and comprises the defi-
nition of the client/server architecture. Furthermore the definition of an address space and
general activities like reading, writing and data update notifications.

• Historical Data Access (OPC/HDA) [10] describes client access to data about past events,
usually stored in some form of database.

• Alarms and Events (OPC/A&E) [5] describes the monitoring of areas and dispatching of
notifications upon events, as opposed to the continuous communication used by the data
access standard.

• XML-Data Access (OPC/XML-DA) [12] supplements the original data access standard by
a Extensible Markup Language (XML) based format usable for Web services and simple
object access protocol (SOAP) applications.

• Data eXchange (OPC/DX) [9] addresses the communication between different OPC servers.
Moreover management, monitoring and diagnostic services.

• Complex Data [7] supplements the distribution of whole XML documents and arbitrary
binary data.

• Security [3] offers an optional layer of security, tightly integrated with Windows NT do-
main services. Furthermore adding access control to applications and data.

• Batch [4] is an extension that addresses the execution of tasks without human interaction.

OPC Classic set of standards was and is still very successful, but was strongly linked to
the Microsoft Windows eco-system. Furthermore, additional use cases emerged from traditional
SCADA and Human-Machine Interface (HMI) tasks to Enterprise Resource Planning (ERP) and
Manufacturing Execution Systems (MESs) tasks. Action was taken and in 2006, after more than
three years of development, OPC UA was released as a successor. However there were several
more reasons, why a simple update of the standard was no longer adequate [38]:

1. Discontinuation of COM/DCOM as of 2002, Microsoft declared COM/DCOM deprecated
technologies in favor of their new .NET technology. Although future versions of Windows
are not dropping support for COM/DCOM, it still means that COM/DCOM is not a ac-
tively developed technology. Quite recent, COM/DCOM was again resurrected as part of
the new Windows RT in Windows 8.

2. DCOM limitations, especially cumbersome security settings and difficult access privilege
administration. Moreover, communication timeouts were not adjustable, resulting in a
delayed detection of communication problems. Tunneling mechanisms were deployed as
a workaround and avoided the use of DCOM as a whole.

3. OPC communication across firewalls was limited by the underlying DCOM technology.
In IP communication, a port is usually assigned to a fixed service, e.g. port 80 is as-
signed to Hypertext Transfer Protocol (HTTP). DCOM uses multiple ports, which vary

12

and change from instance to instance. Therefore, a wide range of ports needs to be opened
at the firewall, where each open port means a potential security gap for the automation
system.

4. Use of OPC on non-Windows platforms like Linux powered PCs or embedded devices
became increasingly more important. Especially high performance system on chip (SOC)
powered embedded devices gave rise to the demand of OPC running on platforms like
QNX, VxWorks or embedded Linux.

5. High-performance OPC communication via Web services was also seeing more and more
demand. The OPC Foundation addressed the problem by issuing the OPC/XML-DA stan-
dard. But operation was too slow, since it was constructed as a wrapper around tradi-
tional OPC/DA resulting in a performance degradation of five to seven times compared to
OPC/DA.

6. Unified data model in contrast to the separated approach of OPC Classic, where three
different OPC Servers were needed for data access, alarms & events and historical data
access.

7. Support of complex data structures for configuration services was needed. While simple
data types, like byte, array or real are sufficient for state and process data, more structured
data is needed to configure a device through a OPC Server.

8. Process data communication without data loss is a key parameter for communication in
automation systems. Originally, a cyclic data update mechanism was foreseen between an
OPC Server and an OPC Client. Data was simply lost, in case the physical data changed
more often than the cyclic update rate or the communication link broke down.

9. Increased protection against unauthorized data access was more and more an issue due
to the use of OPC Servers for remote control and maintenance. As already mentioned,
OPC suffered from the cumbersome security settings and firewall configuration natural to
DCOM.

10. Support of method calls besides the read and write transactions, like starting or stopping
an actor were not supported by the OPC specification.

OPC UA is again built on the client-server concept. But contrary to OPC Classic it utilizes
well accepted Web-standards like Web Services, XML and HTTP for communication between
server and client. Also a binary-optimized TCP protocol for high performance connections has
been advised. However, the abstract communication model itself does not depend on any specific
feature and allows the addition of future protocols.

Another fundamental building block of OPC UA is the data model (see Figure 2.3). The data
model is a meta-model which defines building blocks and restrictions for the domain specific
information model. The general architecture of OPC UA data model is very versatile and is
designed to represent diverse automation systems. Further, it allows a client to access only parts
of the exposed information model, without the need to gain knowledge of the whole system.

13

Vendor Information Model

Industry Standards Information Models

OPC UA
Data Access

(Part 8)

OPC UA
Alarm &

Conditions
(Part 9)

OPC UA
Programs
(Part 10)

OPC UA
Historical

Access
(Part 11)

OPC UA Base Information Model
(Part 5)

OPC UA Address Space Model
(Part 3)

Figure 2.3: OPC UA information model architecture [54]

OPC UA provides analogous information model building blocks for every major standard in the
set of OPC Classic in order to keep backwards compatibility.

Information Modeling

As depicted by Figure 2.3, information modeling in OPC UA can be separated into several lay-
ers. A vendor information model may depend on the foundation of models defined by industry
standards and further parts of the OPC UA standard. But essentially, all domain specific models
are based on the base information model defined in part 5 and further on the address space model
defined in part 3 of the OPC UA standard [16].

The address space model is based on the idea that every entity of information is enumerated
and can be accessed by an identifier. The concept very much resembles the idea of how a
computer stores and manipulates data. Basically there are two types of elements in the address
space model: Nodes and References (see Figure 2.4).

The OPC UA base information model builds on the address space model and is the founda-
tion of domain specific information models (see Figure 2.3). OPC UA information models are
used to define and describe domain specific node types and constraints. Consequently, informa-
tion models can be derived from other information models and form a hierarchy.

• Nodes are the basic entity of information in OPC UA and are utilized to represent in-
stances, types, and other modeling elements. Every Node is characterized by a set of
attributes dependent on the respective NodeClass of a Node. NodeClasses cannot be cus-
tomized or extended and stick to the standard node classes predefined by the OPC UA
standard.

14

Node 1

Attributes

Node 2

Attributes

Node 3

Attributes

Reference 4

Reference 6

Reference 5

Reference 1

Reference 3

Reference 2

Figure 2.4: Nodes and references [42]

The definition of an attribute consist of an id, a name, a description and a data type.
Access to attributes of arbitrary nodes is possible by the services Read, Write, Query
and Subscription / MonitoredItem. An notable attribute is the NodeId, which serves as a
unique address for a node in an OPC UA server.

• References are used to connect Nodes and are equivalent to directed edges in a graph the-
oretical model. However, references in OPC UA are represented as Nodes themselves and
are simply characterized by their own NodeClass. Unlike other NodeClasses, References
cannot be browsed directly, but only followed.

Basically references are classified as HierarchicalReferences and NonHierarchicalRefer-
ences. The semantic of a reference is solely defined by its ReferenceType, since it does
not posses any attributes. Again it is not possible to extend the meta-model with own
reference types.

Standard Node Classes

• Base is the fundamental NodeClass. Every other NodeClass is derived from Base.

• View provides a subset of the available NodeClasses to a OPC UA client. It serves as a
starting point for traversing the address space.

• Object is similar to the concept of an object instance as perceived from a modern pro-
gramming languages. An Object is a group of contextual related methods and variables.
Hence, Nodes derived from the NodeClasses Method or Variable always have an owner-
ship relation to an Object.

15

References

HierarchicalReferences NonHierarchicalReferences

Organizes HasChild HasEventSource

HasSubtype Aggregates HasNotifier

HasProperty HasComponent

HasOrderedComponent

HasModelParent

GeneratesEvent

HasEncoding

HasModellingRule

HasDescription

HasTypeDefinition

Figure 2.5: Reference types [16]

BaseNode

Attributes:
- NodeId
- BrowseName
- NodeClass
- DisplayName
...

Variable

VariableType

Object

ObjectType

View

DataType ReferenceType

Method

Figure 2.6: Standard node classes [16]

• Variable is a NodeClass that represents simple or complex data value.

• Method defines a NodeClass that is used in conjunction with the Call service to execute
arbitrary functionality on the server.

16

• ObjectType provides type definitions for Objects. The ObjectType NodeClass resembles
the class definition concept of an object oriented programming language.

• VariableType provides type definitions for Variables. Again, a VariableType resembles
the concept of a type definition in object oriented programming.

• DataType is a NodeClass that describes the syntax of a Variable or VariableType.

• ReferenceType defines the semantics of a reference owned by a Node.

Reliability

OPC UA bases its reliability on a client and server redundancy concept. There are specialized
data structures and services provided by OPC UA that support mirrored instances of both clients
and servers.

OPC UA client redundancy is for example important for the continuous supervision and
control of safety-critical automation systems. Usually, two or more OPC UA clients are deployed
in such a redundancy scenario. One, which assumes the role of the active client and all other
denoted as backup clients. Every client logged into an OPC UA server maintains a connection
monitored session. In case, the active client fails to maintain the session due to either a device
or connection fault, the session information is closed. The backup clients keep again a live
session and monitor the session of the active client. When the active client session is closed,
a backup client initiates a so called TransferSubscriptions service. This service transfers all
data notification subscriptions form the previously active client to the backup client taking over.
Any notification event that might occur during such a TransferSubscription service execution is
queued on the server and then pushed to the newly active client.

OPC UA server redundancy is again split into the notion of transparent and non-transparent
server redundancy. In the transparent redundancy case, all servers that are members of such a
transparent redundant pool are mirrored. Hence, all participating servers in such a pool maintain
exactly the same session and data information. When an active server ceases functioning, one
of the backup servers takes over without interrupting any client operation.

In the non-transparent server redundancy case, client action is necessary for a failover. In
general, the client needs to create a new session on the backup server once the active server
has failed. Data notification subscriptions are either duplicated on all servers of a redundant
pool or transferred by the TransferSubscription service. As for the backup servers, the OPC UA
standard defines different failure modes:

• Cold: The backup server is running. Once the active server fails, the backup server
becomes active. A client then needs to completely recreate the session on the new active
server.

• Warm: The backup server is running and also accepts client connections. A client main-
tains both sessions on the active and on the backup server. Contrary to the hot case, the
backup server does not communicate with actual field level devices, but rather mirrors
information from the active server.

17

• Hot: The backup server is acting by no means different than the active server. Clients
again connect to both the active and backup server.

oBIX

oBIX is an industry standard specifically designed to provide a common and platform indepen-
dent interface for various building automation systems (BAS). The standard defines its own low
level object model (see figure 2.7) and publishes it by the means of Web services and XML.
Like OPC UA, oBIX is based on a client/server architecture, where a client can interact with the
modeled BAS via the model exposed by the server. Version 1.0 of the standard was released in
2006 and a revised version 1.1 is in the works since 2009.

obj

name:str
href:uri
is:contract
null:bool
icon:uri
displayName:str
display:str
writable:bool
status:status

val

val:<type>

reflist

of:contract
min:int
max:int

errop

in:contract
out:contract

bool

range:uri

feed

in:contract
of:contract

int

min:int
max:int
unit:uri

real

min:real
max:real
unit:uri
precision:int

str

min:int
max:int

enum

range:uri

abstime

min:abstime
max:abstime

reltime

min:reltime
max:reltime

uri

Figure 2.7: Object model [14]

The standard consequently follows an object first design approach, where everything is an
object and is derived from an common root object (see Figure 2.7). This includes not only data
types, but also operations. The objects themselves are represented utilizing the oBIX XML
scheme. Hence allowing multiple inheritance and composition of objects resulting in a highly
extensible data model.

Further, oBIX defines the concept of contracts in order to provide templates for recurring
patterns throughout the data model. There is already a predefined set of contracts defined by the
oBIX core contract library (e.g. unit defines a object resembling the physical SI-units). Also a
number of specialized objects exist:

18

• Watch: Implements an event queue on the oBIX server, which is then continuously polled
by clients for updated data.

• Points: Resembles the concept of a data point in automation systems by the means of
a direct mapping of an object to a physical actuator or sensor. The goal of oBIX is to
provide a normalized representation via this object.

• History: Provides access to persisted information from the past for trending or logging
purposes.

• Alarm: Is an object that implement event notifications for either a user or an application.

The Web service part is implemented using the Representational State Transfer (REST) soft-
ware architecture style. Therefore the set of operations is limited to three basic service calls [14].
The Read service returns the current state of an object in a XML format. The Write service takes
an XML description, updates the state of an object and finally returns the updated state again as
an XML document. The Invoke service takes the input parameter again via a XML description,
executes the method specified by a Uniform Resource Identifier (URI) and returns the result
again in a XML format.

Similar to the address space concept in OPC UA, oBIX uses a complementary concept of two
naming systems. First of all every object that needs to be accessed via REST calls is identified
via a URI. A URI is basically a string of characters incorporating the hierarchy layers and a
common name that uniquely identifies an object residing in a oBIX server. Also URIs are used
for referencing between objects. Second, naming of nested objects is done via a name attribute.

Since oBIX is considered a fairly low-level standard, it does not define any reliability mea-
sures. Although a redundancy concept similar to OPC UA is possible, oBIX does not define any
services that might assist a controlled failover between clients or servers.

EEBus

The EEBus specification [19] is designed to interconnect BAS with metering and control net-
works deployed by power supply companies to enable the so-called Smart grid. The term Smart
grid refers to technology that allows bidirectional communication of energy demand and supply
between consumers and producers, leading to a more efficient utilization of available resources.
The EEBus standard is still in draft stage, but its release of the final specification is soon to be
announced.

The core element of the EEBus communication model is the gateway device (see Figure
2.8). Like oBIX (see Section 2.3 – oBIX), the EEBus specification is based around an XML
data model located at the Outbound Communication Layer. The XML data model is designed to
represent information in a technology neutral form and can be accessed in a REST like manner
via Ethernet and IP. The EEBus data model is designed around a function-first design approach,
where everything is a callable function. Hence, access to various datapoints is achieved by
calling the corresponding read and write access functions defined in the EEBus meta-model.
The hierarchy of the data model deployed by the EEBus is divided into different levels:

19

Outbound Communication Layer

Core

Inbound Communication Layer

KNX ZigBee IP ...

IP
 A

cc
es

s

Energy Management Systems (EMS)

Gateway

Figure 2.8: EEBus gateway architecture

• Class: Highest level of the EEBus defined problem domains. (E.g. Metering)

• Sub-Class: Is an optional hierarchy level and allows a fine grained differentiation between
different functionality.

• Function-Group: Groups contextual related functions for access to capabilities of mod-
eled entities.

• Function: Describes concrete interaction methods, like read and write functionality for
arbitrary access to datapoints.

Different field level protocol mappings to the EEBus data model are foreseen at the Inbound
Communication Layer (see Figure 2.8). However, the draft specification still lacks the descrip-
tion of detailed binding mechanism between the data model and different fieldbus technologies.

The current draft of the EEBus standard does not include any reliability measures. However,
reliability concepts as deployed by the proposed gateway approach (see Section 3.1 – Reliability)
are possible.

2.4 Conclusion

The current available solutions to the stated integration problem either introduce additional lay-
ers of abstraction to an automation system or lack a reliability concept. OPC UA (see Section 2.3
– OPC UA) implements a versatile information model and also leverages a reliability concept.
However, due to the SCADA centric orientation, a noticable amount of overhead is introduced
at the information model. Due to the verbosity of OPC UA telegrams a separate high bandwidth
backbone network is needed between OPC UA clients and servers for synchronization and hence
fails to achieve integration at the field level.

20

oBIX (see Section 2.3 – oBIX) is only focused on the domain of BAS and lacks a relia-
bility concept. The rather new EEBus specification (see Section 2.3 – EEBus) resembles the
architecture of a single gateway device of the proposed approach, but again does not define any
reliability measures.

Hence, there is no available solution that is capable of integrating two different field level
protocols at the field level and simultaneously deploys a reliable concept.

21

CHAPTER 3
Design and concept

As already elaborated in Chapter 2, there are two viable approaches to the integration problem
at the field level. On the one hand the tunneling concept and on the other hand the gateway
approach. The tunneling solution has been already extensively discussed in [41], whereas the
gateway solution was only briefly analyzed in [50].

Hence, a gateway approach is designed and evaluated, that enables information exchange
between fieldbusses. Further in this chapter, the requirements such a gateway shall fulfill are
stated (see Section 3.1). Then, an analysis of different usage scenarios and possible network
topologies is performed. A feasible gateway approach should be able to be connected with any
of the presented communication structures (see Section 3.2).

Then, the overall architecture is advised, based on the gateway approach basics already
discussed in the previous chapter (see Section 3.3). The architecture of the proposed gateway
solution gives then rise to a detailed analysis of each major building block. At first, the informa-
tion model is discussed (see Section 3.4), which describes a possible meta-model to structure the
internal state of a gateway device. Further on, in Section 3.5 the reliability concept is introduced.

3.1 Requirements

A proper gateway solution should comprise three key properties. Namely, a feasible masquerad-
ing or address translation respectively, an appropriate reliability concept and to be able to seam-
less integrate into the chosen fieldbusses network topology.

Seamless integration

In order to promote rapid deployment and hassle free integration, a feasible gateway solution
should blend into an existing network topology as natural as possible. Hence, devices from one
fieldbus shall neither need any special knowledge about the gateway device itself, nor about
other fieldbusses attached to it. Seamless integration is a major requirement, since fieldbus
devices often only allow limited user-defined application layer programs and configuration of

23

their protocol stack behavior. Even worse, some field protocols allow no modification at all to
their operational behavior.

A lot of field protocols promote various device classes with different implementation levels
of the protocol stack functionality. Device classes that realize the role of mediators in a field
network are good choices for a device class usable by a gateway device. Typical mediator
device classes are either coupling devices between different network segments, physical media
or devices with some kind of message routing and forwarding capabilities. A gateway solution,
implementing a mediator like device class can then simply pretend that other attached field
protocols are just different segments of the same network.

There are several topological network structures typically used throughout different fieldbus
protocols. Namely, star, ring, line/bus, tree and mesh. But the most commonly used network
topologies are the line or bus topology for wired networks and the mesh topology for wireless
networks [51]. The available device classes, and therefore the possible seamless integration
approaches are highly dependent on the network topology. As an example, device classes that
implement routing capabilities are typically foreseen in field level protocols that are based on
a mesh network. In order to give an example of the selection of a proper device class, two
prominent representatives for the two most common fieldbus topologies are analyzed:

• The ZigBee standard serves as a good example for a wireless automation protocol utilizing
a mesh network topology. There are three device classes defined in the ZigBee protocol:
End device, router, and coordinator [15]. The end device class is intended for constrained
devices that only need minimal networking functionality. From a graph-theoretical per-
spective, an end device is always a leaf. The coordinator class acts as a network master
providing routing capabilities, security mechanisms and manages the network in general.
There is always only one coordinator allowed in a ZigBee network. Finally, the purpose
of the router device class is to relay and route messages throughout the mesh topology. In
case of the ZigBee protocol, the only possible choices for a feasible gateway solution are
the router or the coordinator device class due to their routing capabilities. Thus, messages
to other fieldbusses can be redirected through the gateway by utilization of the inherent
routing mechanisms of the ZigBee stack (see also Section 3.1 – Masquerading).

• An example for a well-established wired automation protocol based on a line topology
is the KNX standard [34]. More specifically, a line topology comprising of three distinct
stages is advised by KNX. The superordinate line is called the backbone line, which further
connects down to the main line and finally to the plain lines. The connection between
each stage of the line hierarchy is carried out by special devices. The connection from
the backbone line to the main line is realized by a zone coupler, whereas the connection
between the main line to the plain line is done by a line coupler. The usual KNX device is
called bus device and resembles an arbitrary communication partner.

Following the directive of choosing device classes that implement message relaying ca-
pabilities, one of the coupler devices would be a good candidate for a possible gateway
approach. However, also a simple bus device may be used to realize a gateway. This is due
to the shared medium nature of a KNX line, where a message transmitted on an arbitrary

24

line is visible to all communication partners connected to the very same line. Hence, a
gateway device can listen and relay any telegram as long as it is forwarded to its line.

Another possibility for a gateway solution to seamlessly integrate with a field protocol is the
promiscuous mode of communication. In this mode, a possible gateway implementation behaves
like an eaves dropper. Meaning, that a gateway device listens to every message on a fieldbus
and intercepts telegrams that need to be forwarded to another fieldbus. The other way round, the
gateway injects information from a foreign fieldbus by packet spoofing mechanisms.

The biggest disadvantage of a promiscuous mode gateway is the missing separation between
traffic destined in another field network and normal bus traffic. Thus, every eaves dropped packet
needs to be forwarded to the application layer of a gateway device for inspection. Whereas, the
utilization of mediator device classes benefits from the mechanisms present at the protocol stack.

Masquerading

In Ethernet and IP based ICT networks, masquerading [23] is a common mechanism to translate
messages between different classes or hierarchy levels of networks. Actually there are two
common techniques for the same purpose, one is Network and Address Translation (NAT) and
the other IP Masquerading or Port and Address Translation (PAT).

Assume that there are two network segments, each assigned a different IP class. One network
segment is named private network and the other one is denoted as public network. A router
or gateway, implementing NAT, would then make use of a so called address translation table,
where IP addresses from the private network are mapped to IP addresses from the public network
and vice verse. Messages arriving at the NAT router or gateway are examined and the destination
IP address is replaced by the equivalent counterpart of the other network segment stored in the
address translation table.

On the other hand, IP Masquerading uses a different kind of mapping to translate messages
between different network segments. A single IP address is used at one network segment, where
communication partners can connect to different ports. Further, those different ports are mapped
to different IP addresses, residing in the other network. Hence, an IP Masquerading gateway
resembles the functionality of an aggregation device or proxy.

In case of the proposed field level gateway solution, masquerading refers to the concept
of translation and forwarding of messages between field devices located in different disjoint
fieldbusses. Like IP Masquerading, the goal is to allow interconnection of different fieldbusses
without adding additional knowledge to the field devices. Given, that the gateway implements a
stateful translation mechanism, like an information model.

Every device present in field network A that is to be visible to field network B and vice verse
is modeled at the gateway information model. Hence, messages targeted to a field device orig-
inating in another fieldbus are translated and forwarded with the help of such a model, further
called virtual device. Thus, a device residing in one field network, that wants to send information
to a device residing in another field network does so by communicating with the virtual device at
the gateway. Further, the information is forwarded to its final destination by the virtual device.
Hence, the virtual device at the gateway masquerades the real device residing at the other field-

25

bus. Depending on whether the gateway information model is organized as a logical or physical
topology, either NAT like behavior or IP Masquerading like behavior is resembled.

A similar classification has already been performed by the INTERBUS Integration working
group, in order to map Interbus devices to the Profinet IO device model. Basically, there are
three approaches how to organize such a virtual devices at the gateway information model:

• Compact topology: The compact topology simply concentrates all available bus devices
in a single virtual device at the gateway information model. Although, the compact topol-
ogy promotes a flat information model design, it also implies loss of any network structure.
Hence it is only suitable for small instances of field networks.

• Logical topology: Suppose, that the gateway is constructed such that it facilitates a logical
topology for its information model. Such a topology promotes the grouping of devices
by their functionality in logical entities. Assume a simple heating system comprising
of a heater and a temperature sensor as an example. Although both are independent bus
devices, they can be presented as a single virtual device at the gateway information model.
On the other hand, it is possible to represent the functionality of a single physical device
in two separate logical virtual devices.

• Physical Topology: Assume the case of a physical topology based information model, a
NAT like behavior is carried out. Like in NAT defined for Ethernet and IP based systems,
the virtual device performs a direct translation of the address and content of a message into
the native format of the other field protocol. In contrary to the logical topology, where an
IP masquerading like behavior is applicable. In IP masquerading every port is redirected
to a different computer. So to speak, the logical virtual device redirects calls to different
services to possible different field devices. Whereas, a physical topology requires a strict
bijective mapping between field devices and representing virtual devices.

In conclusion, the choice whether to favor a logical or a physical topology to implement a
proper masquerading mechanism is arbitrary. Regarding the fact, that the proposed gateway is
targeted at field level protocols approaching the same problem domain, a bijective mapping is
most likely. In any case, a logical topology is a superset of a physical topology. Thus, a possible
realization of the proposed gateway approach is more flexible by supporting a logical topology.

Further, a feasible gateway approach shall always obey the seamless integration requirement
(see Section 3.1 – Seamless integration). Some field protocols, like CANopen [2], define differ-
ent categories of field devices in order to enforce compatibility between different device vendors.
Hence, also a possible information model implementation should comply to such categories.

Reliability

Fieldbus technology is already widely used throughout safety critical applications. Hence, reli-
ability is an important requirement for a feasible gateway approach. Up till today, most existing
gateway solution focused on the interconnection problem, but gave no considerations about reli-
ability of the resulting system. A single gateway device connecting two different field protocols
easily becomes a single point of failure, unless some kind of reliability mechanism is deployed.

26

A gateway should at least be able to handle as many different failures as an attached fieldbus
in order to retain the same level of reliability. A well-established reliability mechanism leverag-
ing the principle of fault tolerance is gateway redundancy. Assume two fieldbusses, which are
both able to tolerate one failure each and are interconnected by a gateway device. Then, such
a gateway needs to abide one failure without major interruption of operation. Hence, a second,
redundant gateway needs to be deployed, which resumes operation in the event of an outage of
the first gateway device. Therefore, a mechanism needs to be advised, which allows gateway
devices to monitor each other, synchronizes their information model and coordinates the fault
isolation procedure.

A possible synchronization protocol, originally designed for redundant router configurations
in Ethernet and IP based ICT systems is VRRP [43]. This mechanism groups redundant routers
in a single virtual device. Therefore a common IP address is assigned to that virtual device,
apart from the individual IP addresses of the physical router devices. Hence, a communication
partner can either address the virtual device by its common IP address or single devices by their
individual IP address. One router, part of a virtual device, is assigned the role of a master and
hence claims ownership of the common IP address. The master device is then responsible to
handle all incoming traffic through the common IP address. All other routers assume the role of
backup or hot-standby devices. In order to detect a fault, the master router sends out periodic
heart-beat packets. In case the backup devices are unable to receive several heart-beat messages
in a row, an election procedure is started and a new master device is chosen.

In conclusion, a proper gateway solution shall be able cooperate with similar devices and
form a redundant compound. A valid redundancy mechanism takes care of synchronization and
monitoring of all members of such a gateway compound. Monitoring messages have to be sent
out on all available communication links, in order to detect link faults. Further, it is desirable that
also synchronization traffic is distributed on all available fieldbus connection links. Thus sharing
the load of the synchronization traffic on all available fieldbus connections and therefore min-
imizing the communication overhead from the gateway devices on the automation system as a
whole. As an alternative, a separate backbone connection may be established between individual
gateways to completely separate normal bus traffic and communication between gateways.

3.2 Communication structure

The gateway communication structure describes considerations regarding the requirements stated
in Section 3.1 and their fitness for different fieldbus network topologies. As already stated in
Section 3.1 – Seamless integration, individual fieldbusses are based on different network layout
concepts, whereas mesh and line/bus are the most frequently used topologies. But for the design
of a general applicable gateway approach, all possible topologies have to be considered, and a
gateway device must be able to interconnect those. Aggravating, also network topology cases
leveraging redundancy concepts need to be analyzed in conjunction with a feasible gateway
approach.

27

star redundant star

Figure 3.1: Star topology

Star

The star topology directly connects every fieldbus device to a central communication hub. Be-
fore the emergence of field protocols, such a hub was usually a PLC controlling directly attached
sensor and actuator devices. After the advent of fieldbusses, the star topology nearly vanished
from the industrial and building automation domain. Throughout the last decade however, the
star topology celebrated a comeback by the increased usage of Ethernet and IP and Ethernet
based fieldbusses. In the case of Ethernet and IP, the central node would be a switch, hub or
router device. [51]

Given that the field devices in a star topology have no message forwarding capabilities, a
gateway solution would naturally be best placed in the role of the central communication hub.
In the other case, where field devices are able to redirect messages, a gateway device may also
be placed at a leaf position of a star topology. If none of the prior mentioned conditions is
applicable, meaning that field devices have neither message forwarding capabilities, nor that the
gateway is allowed to be the central node, no general applicable gateway position can be found.
Depending on the deployed field protocol and intended application, the gateway device can be
attached to the central device (e.g. PLC) via internal mechanisms. Another possibility for the
gateway is to behave like a bridging device acting as a transparent bridge placed at a leaf position
of the star topology.

A star topology based fieldbus may also be organized in a redundant way, meaning that field
devices and communication links are present multiple times. Thus, in the event of a failure of
a redundant component, a functioning part replaces the faulty one. A single gateway device
would then become a single point of failure. Hence, multiple gateways need to be deployed and
combined to retain the desired level of fault tolerance. Suppose a scenario, where the gateway
is positioned as the central element of the star topology with multiple links connecting to each
field device. Further, it is assumed that the field devices are not able to redirect message traffic.
Hence the star topology based fieldbus cannot be utilized to synchronize and monitor the indi-
vidual devices of a redundant gateway compound. Then, a separate backbone link between the
single elements of a gateway compound has to be implemented (see Section 3.1 – Reliability).

28

Furthermore, such a backbone link needs also to be laid out in a redundant way to ensure a
sufficient level fault tolerance.

A fault analysis, given that all components emit a fail-silent behavior, is described next. As
depicted in Figure 3.1, a redundant star topology based system may be designed such as that
for every field level device originating at a leaf position of the star topology, there exists an
equivalent backup device forming a redundant compound. Additionally there is also a backup
communication link between the central element and the field devices of a redundant compound
available. Thus, in the event of a link fault, the backup communication link resumes operation.
Further, in case of a device fault, the backup field device continues service, resulting in an
arrangement, where such a system is capable of tolerating one link fault and one device fault.
More communication links or backup field devices can be added to enable immunity against
even more failures. Also the gateway device has to be laid out multiple times, in order to avoid a
single point of failure at the central node. Thus, in the event one of the central gateway devices
ceases operation, one of the deployed backup gateways resumes operation.

Assume again a gateway device is part of a redundant star topology fieldbus. This time the
gateway is not placed at the central hub position, but rather at one of the leaf positions (see Figure
3.1). Again, every field device is laid out in a redundant manner. Further, every communication
link is present multiple times and shared among the individual devices of redundant field device
compounds. Thus, the fault hypothesis, stating the tolerance of one device fault and one link
fault remains the same for a system deploying double field devices and connections. In order to
provide the same level of fault tolerance as the previously described system, individual gateway
to the same extent as field devices of a redundant compound have to be present. Also the amount
of shared communication links has to be the same as for redundant field device compounds.
Thus, the fault hypothesis of the overall system is not compromised by the gateway. The fault
analysis is similar to the scenario, where the gateway is placed at the central node. In case of
a device fault at a gateway node, one of the backup gateway nodes resumes operation. In case
of a link fault, one of the additional communication links from the central hub device continues
service. Hence the proposed gateway solution retains the same level of fault tolerance as the rest
of the field network.

Ring

ring redundant ring

Figure 3.2: Ring topology

29

Another fieldbus topology variant is the ring. Each field device of a ring topology is con-
nected to the next bus participant by the means of a disjoint communication channel. Hence a
field device is connected by a separate input link from one neighboring device and output link
to another neighboring device. A great advantage of the ring topology is its inherent immunity
against a single link fault. Fieldbus participants sensing a faulty connection or device next to
them, simply bridge their internal network input and output channels. A prominent example of
a fieldbus utilizing the ring topology is INTERBUS [31].

All nodes of a ring have inherent message forwarding capabilities as required by the topol-
ogy. Hence, a gateway device may be inserted as an arbitrary participant in a ring based field
network. A gateway device that integrates in such a ring topology needs to mimic a complete
segment of the ring. Therefore, virtual field devices modeled at the gateway behave like ring
communication partners. Incoming messages at the physical input channel of the gateway de-
vice are therefore forwarded through all virtual field device models until finally forwarded back
into the real ring network. A particularity of the ring network structure is that a device fault or
link fault basically degenerates the ring to a line topology (see Section 3.2 – Line). A gatway
device operates by no means other than other field devices part of a ring based field network.
Fault tolerance against a single link fault is still valid. However, in case the gateway device fails,
the whole segment of virtual field devices is unreachable.

A redundant ring, as depicted by Figure 3.2, leverages multiple connections between field
devices compounds, which consist of several nodes as well. In case of n communication links,
2n − 1 link faults are handled at worst. Further, assuming that a redundant node consists of m
field devices, m − 1 device faults are tolerated. A redundant gateway node residing in a ring
network and required to retain the same level of device fault tolerance needs also to consist of
m individual devices. Also n communication channels are used to interconnect the gateway
compound with the remaining ring in order to provide the same level of link fault tolerance.

In the event of a link failure at one of the gateway devices in a single, non-redundant ring, as
depicted by Figure 3.2, the same mechanism is performed as for every other bus participant. The
input communication channels and output communication channels of the devices neighboring
the faulted connection are linked in such a way that messages are looped back through the still
operating connection links. In case of a device fault at the gateway, the neighboring nodes will
again shorten their communication channel and isolate the gateway device. Unfortunately, this
effectively shuts down communication to any virtual field device modeled at the gateway.

Continuing with a fault analysis of the redundant ring topology scenario, the gateway nodes
behave just like every other bus participant. Synchronization of individual gateway appliances
forming a compound may be done either via the ring network or a separate backbone link. Like
for the star topology (see Section 3.2 – Star), a separate backbone link must be implemented as
such that it retains the same level of fault tolerance as the ring based field network. Assuming n
individual connections between each disjoint communication partner in a ring topology, at least
2n− 1 backbone channels interconnecting the gateway devices must be present.

Line

The line topology is the most frequently used network structure throughout all fieldbusses [51].
Its development was a direct response to the cabling overhead inherent to field protocols utilizing

30

line / bus

redundant line / bus

Figure 3.3: Line topology

the star topology. The line or bus topology consists of a single communication channel that is
shared among all connected field devices. Prominent usages of the bus topology are RS485 [47]
or CAN [1]. Remarkably, the line topology is usually not deployed in its purest form. Often, a
fieldbus network utilizing a line topology is partitioned, where separate lines are used for each
level of a hierarchy. Such a network structure, consisting of multiple levels of busses is called a
tree topology (see Section 3.2 – Tree).

A gateway device may be inserted instead of any arbitrary field node part of a bus topology.
A line topology based field protocol always leverages an addressing scheme to direct messages
to individual bus participants. Hence, virtual field devices exposed by a gateway appliance are
each assigned an individual address. A gateway node then listens on the bus for messages on
their behalf, facilitating a so-called promiscious mode of communication. Hence a gateway acts
like a coupling device interconnecting different lines as defined for field protocols utilizing that
implement a tree topology [34].

Given a redundant setup, like depicted in Figure 3.3, every field node consists of multiple
independent devices grouped together in a redundant compound. In order to overcome link
faults, the communication channels interconnecting such redundant compounds are also present
multiple times. A gateway device placed in such a redundant line network must be arranged like
the other bus participant. Hence, a redundant gateway compound is facilitated, which consists
of multiple gateway devices and is redundantly connected to the available bus lines by several
disjoint communication links.

In the event of a device fault, the affected field node is no longer reachable. If the device
fault happens to be at an arbitrary gateway node, all of its modeled virtual field devices become
unreachable. Considering a worst case link fault, occurring in a simple line topology, splits
the network in half, meaning, that field nodes, including gateway nodes, completely lose all
communication capabilities to all bus participants beyond the affected link segment. This usually
renders the complete fieldbus unusable and effectively shuts down the whole network.

A redundant bus network, deploying n communication links, is able to handle up to n−1 link
faults. It is also able to tolerate m− 1 device faults, where a compound field node consists of m

31

individual devices. The same case is true if the field node is in fact representing a gateway node.
Synchronization between different gateway devices, member to a redundant gateway compound
can either be achieved by utilizing the available fieldbus links or separate backbone links. Again,
to retain the same level of fault tolerance, the backbone links must be present in just the same
amount as the redundant fieldbus lines.

Tree

The tree topology is a hybrid network structure composed of a mix of a star topology and line
topologies. A tree topology in its simplest form consists of a root device or a root bus with
possible several devices attached. The attached nodes are connected with disjoint point-to-point
communication channels (star topology, see Section 3.2 – Star) to the root device or bus. The
previously mentioned field devices can again service as a single connecting device for further
field devices or bus communication channels (line topology, see Section 3.2 – Line). Important
protocols that leverage a tree topology are KNX and LONWorks.

The star and line topology have been discussed in Section 3.2 – Star and Section 3.2 – Line
respectively. In fact, aspects of a tree network structure, like interconnected line hierarchies or
deeply nested star like structures have been dealt with in the accompanying sections. Since the
tree topology does not display different behavior as the already discussed topologies, results
gained from their respective analysis are also valid for the tree topology.

Mesh

Figure 3.4: Mesh topology

Mesh topologies had little to no importance in the domain of traditional wired field proto-
cols [51], because of the routing mechanisms needed to keep telegrams from circling. However,
the mesh network structure is the most important topology for wireless field protocols, such as
ISA100.11a [18] or ZigBee [15]. Although other topologies are implemented for the prior men-
tioned protocols, a mesh topology has the advantage of enabling arbitrary multiple links between
field devices. Therefore, the fault tolerance regarding permanent and transient distortions inher-
ent to the wireless communication medium is drastically increased by the available connections
to other communication partners in the same network. Considering that mesh networks are not

32

used for wired field protocols, the gateway approach is discussed with a focus on wireless field-
busses. However, any gained insights may be transferred to a possible wired fieldbus as well
without any loss of generality.

Wireless field protocols usually introduce different device classes for their field devices.
Each device class has a different level of communication capabilities. Taking the ZigBee proto-
col as a representative example: There are three device classes, namely end device, router and
coordinator. An end device possesses only the very basic communication capabilities needed
for a ZigBee device to function. This includes sending and receiving of telegrams, authentica-
tion and encryption. A router additionally defines message redirection and forwarding capa-
bilities. Whereas a coordinator device is capable of additional administrative services like key
distribution and acknowledging authentication requests. Further, a coordinator implements all
capabilities of the end device and router communication stacks.

In other discussed network topologies, it was always emphasized that a possible gateway
device needs to assume the role of a mediator to naturally blend into the communication infras-
tructure. For a mesh topology, a single gateway may also act as an end device without message
redirect capabilities. The key for proper operation in such a scenario is the promiscuous mode of
communication and packet spoofing. A wireless field network based on a mesh topology deploys
an addressing scheme to uniquely identify devices. Each virtual field device residing inside a
possible gateway device therefore also needs a valid address assigned to it by the mesh network.
Messages directed to virtual field devices then need to be captured by the gateway with the help
of the promiscuous mode. Furthermore, messages directed from virtual field devices need to be
sent out by utilizing their very own address, but not the gateway devices own address.

However, the previously outlined solution is rather cumbersome and uses mechanisms like
message spoofing that are usually not foreseen by the protocol specification. A much better
approach is to facilitate the communication capabilities of defined mediator device classes like
the router or coordinator class specified by the ZigBee protocol. A single gateway device would
announce itself to the network as a field node with routing capabilities. Every virtual field device
residing in the gateway is then modeled like an end device exclusively attached to the gateway
node.

A redundant gateway compound facilitates two or more individual gateway devices with
routing capabilities. Hence, messages directed to a virtual field device have the option of trav-
eling along two communication paths. In order to prevent messages from circling, protocols
utilizing a mesh topology, must advise some mechanism to select and determine a single com-
munication path without loops between arbitrary communication partners. Especially wireless
protocols consult connection metrics like packet drop, signal strength or bit error rate to choose
a path that is most likely to deliver a message without retransmits. Hence a gateway acting as a
backup device ought to artificially weaken the metrics for its virtual field devices. Even further,
a backup gateway states that virtual field devices are unreachable, until it assumes the role of the
master gateway. Thus, a communication path along the gateway master device is chosen by the
means of the field protocols own routing mechanism.

The impact of a node fault in a mesh topology scenario depends on the device class of
the faulty node. In case the affected node resembles an end device, the node simply becomes
unavailable, but the rest of the network remains intact. If the prior mentioned node happens

33

to be a gateway device utilizing promiscuous mode of communication, all virtual field devices
are unreachable. Further, if the faulty node implemented routing capabilities, a device fault
foremost results in the fact, that the affected node is removed from the network. Furthermore,
field devices which are solely connected by a single communication path via the concerned node
are isolated from the rest of the network. Thus, it is beneficial that mesh topologies are laid out
in such a way that every node part of a network is connected by several communication paths.
Finally, if a single gateway device implementing the router or coordinator device class is faulty,
all virtual field devices residing in the gateway vanquish from the network. Additionally, field
nodes which are solely connected via the concerned gateway node to the remaining network are
unable to exchange messages anymore.

In case of a link fault at an arbitrary field node, the device tries to redirect traffic via an
alternative route. If there is no alternative route, the device becomes isolated and is no longer
able to participate in communication with other network nodes. Assuming that the affected node
is a gateway device and no other communication path exists, all messages from and to the virtual
field devices are dropped. Hence, all devices modeled by the gateway vanquish at once from the
mesh network.

Suppose a redundant mesh network scenario, where every field device is present at least
twice. Furthermore, each field device is connected via two disjoint communication paths to each
other. In case of an arbitrary field device fault, an associated backup field device is available
to resume operation. A device fault may also result in several broken communication paths.
As stated in our assumption about the redundant mesh network under test, every field device
has an alternative route that does not involve the faulty device. Hence message exchange is
still possible throughout the whole mesh network. The same holds true in case the concerned
node is a gateway device. Additionally the backup device resumes operation of all virtual field
devices. In fact, the backup gateway works in such a way, that it appears as an additional route
to any arbitrary virtual field device modeled at the individual gateway devices of a redundant
compound. The routing mechanisms of the field protocol have to adapt the communication paths
to the virtual field devices, since a backup gateway device most likely maintains a different set
of communication links.

Synchronization traffic between gateway devices of a redundant compound is transacted
either by means of the fieldbus, or a separate backbone link. Like for other topologies, a possible
separate backbone connection has to be laid out multiple times to meet the desired fault tolerance
against link faults. Hence, in case n link faults are handled by a mesh network, at least n + 1
separate backbone links must be present.

3.3 Architecture

Considering all the possible communication structures, an internal structure for the gateway can
be advised. Essentially there are two main tasks that a gateway device part of a logical redundant
compound needs to fulfill. First, it needs to forward and translate the communication between
the attached field networks. Second, a gateway has to coordinate its operation with all the peer
gateways in a logical redundant compound.

34

In Section 2.2 – Gateway solutions of Chapter 2, a general gateway approach is described
and pictured by Figure 2.2, which serves as a well-established basic model for a feasible gateway
approach.

As depicted by Figure 2.2, each gateway device must be capable to communicate with
the attached fieldbusses. Thus, fieldbus drivers must be available that handle the operation of
individual attached field networks. Such protocol stacks must implement at least the Physi-
cal, DataLink, Network and Transport Layer of the International Organization for Standardiza-
tion (ISO)/Open Systems Interconnection (OSI) model [23] (See Figure 3.5).

Information Model

Data Link

Network

Transport

Session

Presentation

Application

Redundancy Manager

Bus
GuardBus Load

Monitor

GatewayFieldbus A Fieldbus B

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Physical

Transport Bus
Guard Bus Load

Monitor

Data Link

Network

Physical

Transport

Protocol
Binding

Protocol
Binding

Figure 3.5: ISO/OSI 7 layer model incorporating a gateway

Field level protocols usually also differ in their timing requirements, mode of communication
and message formats. Hence, a feasible gateway device solving the interconnection problem
for diverse field level protocols cannot be stateless. As an example consider a fieldbus A that
transmits a data frame, which contains the current room temperature and a heating setpoint.
However, fieldbus B interconnecting with fieldbus A cannot express both user data variables
in a single telegram. Thus, a feasible gateway solution must be capable of at least temporary
information storage. The information model is intended as such an information storage. Its main
purpose is to provide an independent model of the data required for interconnection of two or
more field networks (see Section 3.4). It further resembles the database, pictured in Figure 2.2.

Further, an additional protocol binding component has to be foreseen, which handles the
translation from raw field message frames into a format the information model is able to un-
derstand. Such a protocol binding must be specifically designed for each individual field level
protocol. Thus, it is best suited as the presenter or session layer atop of the protocol stack.
Hence, it is not viewed as an independent component, but further an integral part of the protocol
stack.

In order to provide the required grade of reliability, a component which coordinates the

35

members of a redundant gateway compound must be advised. Since the proposed gateway
approach is stateful, each peer of a redundant gateway compound must also replicate its inner
state. Therefore, the redundancy manager as depicted in Figure 3.6 is foreseen to handle those
coordination and synchronization tasks.

Furthermore, the redundancy manager component must sense failures of other gateway de-
vices part of a logical compound and react accordingly. Hence, the bus guard is advised, which
targets the monitoring of other gateway devices. Another auxiliary component, aiding the re-
dundancy manager, is the bus load monitor. Given, the synchronization and coordination traffic,
necessary in a redundant gateway scenario, is directed via the attached field networks and not via
a separate backbone link. The bus load monitor then provides load metrics to the redundancy
manager. Such metrics enable the redundancy manager component to choose less frequented
fieldbus links. Thus, field networks already experiencing peak load situation are relieved and
less busy connections are utilized.

A block diagram of the overall proposed gateway architecture is depcited by Figure 3.6. It
resembles the basic model from the previous chapter (see Figure 2.2). To further illustrate the
intended functionality of each characterized building block, a layer diagram according to the
ISO/OSI standard model is illustrated by Figure 3.5. The next sections refine the design and
concepts of each presented building block.

Field Device Field Device

Field Device Field Device

Gateway Device

Protocol Stack

Protocol Stack

Redundancy Manager
Protocol Bindings

Bus Guard

Information
model

Bus Load Monitor

Bus Guard

Bus Load Monitor

Figure 3.6: Gateway core components

36

3.4 Information model

The main purpose of a gateway device is the translation of messages between all attached field
networks. As already outlined in Section 3.1 – Masquerading, fieldbus protocols make use
of various different forms of network topologies, information representation and addressing
schemes. Hence, a feasible gateway solution must provide mechanisms to transform addresses
and data between the native representation formats of arbitrary attached field level protocols.
Furthermore, different modes of communication like polling or event triggered message trans-
mission also requires additional attention.

As long as all field level protocols considered by a gateway device follow the same mode of
communication a stateless translation is possible. But even subtle differences in the transmission
mode, like diverging message frame intervals of time triggered field protocols [37] or varying
telegram content, make stateless communication infeasible. Hence, information exchange at a
gateway device can only be achieved in a stateful manner for a general applicable solution.

Like for other approaches to the integration problem (see Section 2.2) a model for fieldbus
devices, the information model needs to be advised. The information model is designed to rep-
resent logical entities of information in a field protocol independent way and enables the storage
of the current state of an attached field network. A model of an arbitrary field network designed
by the means of the information model must be transformable such that it is accessible for other
field networks without additional arrangements or knowledge. Therefore, logical entities ex-
isting in such a field network model contain all necessary information to perform exactly like
similar, native field devices of another fieldbus attached to the gateway.

Concentrating every bit of information in a single entity at the gateway tends to become
cumbersome and inflexible. As an example, a virtual field device entity needs to store address
information for every field protocol supported by the gateway. Hence, only a subset of the
information modeled is needed for a single supported fieldbus, whereas the rest is unused. Fur-
thermore, one classification into logical entities may be suitable for a single fieldbus, but may be
infeasible for another one. Hence a separation of concerns [52] between the raw user data and
the protocol specific data needs to be realized.

A possible solution is the deployment and adaption of the Model View Presenter (MVP)
software architectural design pattern [49]. The MVP pattern originates from the more popular
Model View Controller (MVC) design pattern [49] and is usually used for building and design-
ing user interfaces. As depicted by Figure 3.7, the MVP pattern consists of three interconnected
components. The model defines the available user data and offers information update mech-
anisms and state-change notification services. The view is the front-end presented to the user
and is responsible for forwarding user commands to the presenter. The presenter acts as glue,
interconnecting model and view and is responsible for the formatting and filtering of information.

Applying the MVP design pattern to the information model of the proposed gateway ap-
proach, the model is partitioned into a general segment and a field protocol specific segment.
The general part resembles the model introduced by the MVP design pattern and stores user
data. On the other hand, the protocol specific part, resembling the presenter and describes in-
formation only relevant to a single protocol. Therefore, a gateway device information model
contains one model and presenters for each attached field protocol. Finally, there is the view

37

View

Presenter

Model

user events

model update state-change event

view update

Figure 3.7: MVP design pattern [49]

component from the MVP pattern, which defines a unique access point of the the gateway de-
vices field protocol stacks.

Model

As already suggested, a model represents the user data of arbitrary field devices, which are
members of field networks attached to a gateway device. Considering a simple temperature
sensor, possible user data is a floating point decimal expressing the current ambient temperature,
whereas device addresses and other protocol specific information modeled at the presenter.

A feasible meta-model framework describing the model must provide a the necessary means
and flexibility to model even complex user data structures. On the other hand, it should be
as simple and fast as possible to take resource constraints inherent to embedded devices into
account. When considering a design for the meta-model, it is beneficial to refer to existing
abstractions due to the vast amount of available field protocols. A good orientation about needed
primitives and complex data types needed, is given by OPC UA (see Section 2.3 – OPC UA),
which itself is designed to be an abstraction layer above multiple fieldbusses. However, only a
narrow subset of the available OPC UA features is needed for the gateway approach. Hence, a
stripped down version of the OPC UA information meta-model is advised.

At first, a BaseNode entity type is defined which is the fundamental entity of the proposed
type hierarchy. Every, from BaseNode derived element can be directly addressed using the
NodeID attribute. The value of the NodeID must hence be unique throughout the whole gateway
device. Attributes are simple key-value pairs that model essential information regarding other
elements of the hierarchy. Further, Attributes cannot be directly addressed and always belong
to a BaseNode derived type. An Attribute consists of two elements, a Name and a Value. The
Name identifies an Attribute uniquely in the context of an arbitrary BaseNode derived entity
type. Thus, no two Attributes with the same Name are allowed to exist throughout a derivation
chain. The Value part of an Attribute stores its current state and must be encoded according to
one of the defined ValueTypes (See Table 3.1). The relationship from an Attribute to a ValueType
is modeled as a directed reference with a 1 : ∗ cardinality. Thus, an Attribute can be part of
exactly one ValueType.

38

*

 BaseNode

NodeID : UInt64

 Variable

Name : String
Value : <type>
IsScalar : Boolean
*ArrayDimension : Int32

 ValueType

 Boolean Int16 ...

 Attribute

Name : String
Value : <type>

 Object

Name : String

<<Reference>>

<<has>>
<<has>>

<<has>>

1

*1

1 *

Figure 3.8: Meta-model for model

A Variable entity type resembles arbitrary data values, and is similar to the concept of a
variable in an arbitrary programming language. Its set of attributes consists of the mandatory
properties Name, Value, IsScalar and an optional ArrayDimension (See Figure 3.8). Variable
types are intended to be put in the context of an Object entity type. But also global Variables
are allowed to exist, meaning that no Object has a reference to the prior mentioned Variable.
Furthermore, a Variable with a reference to an Object may be addressed by its Name attribute
or the NodeID unique in a gateway device, whereas a global Variable can only be accessed via
the NodeID. The modeled Value of a Variable is either a scalar or array type, determined by the
IsScalar attribute. In case the IsScalar property is set to FALSE, the ArrayDimension attribute
has to be present. The ArrayDimension defines the fixed number of different values this Variable
may hold.

The purpose of an Object element is to group contextual related Variable types in a single
entity and to allow the modeling of deeply nested data structures. An Object is allowed to have
an arbitrary number of references to other Objects or Variables. The only mandatory Attribute
for an Object is the Name, so it may be identified in the context of another Object without
knowing its gateway wide unique NodeID.

The VariableType element represents the supported data encoding formats of the Value en-
tries for both Attribute and Variable entity types. There is an exhaustive amount of commonly
used data encodings predefined in Table 3.1. An extension of the meta-model with custom built
VariableTypes is not yet foreseen, but part of the considerations for future work (see Chapter 6).

In comparison to OPC UA, most of the mandatory attributes of a BaseNode have been
discarded in favor of a lean meta-model. The only remaining mandatory Attribute of a BaseNode
is the NodeID. The NodeID property is foreseen as a 64-bit wide integer value, which limits
the maximal number of available elements to 264. The available NodeID address space should
suffice to model even huge systems.

39

Value Type Description

Boolean represents a boolean variable, which can either assume the value true or false
Byte unsigned single byte value with 8-bit width
ByteString 32-bit wide length plus additional number of length bytes for arbitrary storage
DateTime UTC time format encoded time stamp
Double IEEE double precision 64-bit floating point number
Float IEEE single precision 32-bit floating point number
Int16 signed integer with 16-bit width
Int32 signed integer with 32-bit width
Int64 signed integer with 64-bit width
String represents a string of unicode characters
UInt16 unsigned integer with 16-bit width
UInt32 unsigned integer with 32-bit width
UInt64 unsigned integer with 64-bit width

Table 3.1: Basic value types

Also the complex reference hierarchy present in OPC UA has been abandoned (see Chapter
2). Only a single reference type is foreseen, with no additional semantic, apart from direction
and endpoint cardinality. Thus, a flat hierarchy is encouraged, which should benefit resource
constrained devices in both storage space and reduced navigation times throughout the model.
The different sized integer and unsigned integer types are utilized. Although a single integer
type with 64-bit width would suffice, the more complex arrangement was chosen to again allow
modeling for resource constrained devices.

Presenter

The purpose of the presenter is the representation of the various virtual field devices to an in-
dividual field network. Thus, the presenter serves as a glue logic between the model and an
arbitrary field level protocol. Further, it allows the modeling of fieldbus devices specific to a
single field level protocol without inducing additional information into the model.

As depicted by Figure 3.9, the presenter part of the information model utilizes the same
BaseNode, Variable, ValueType and Attribute entity type as the model. The NodeID attribute of
the BaseNode must be again unique throughout the whole gateway device. Furthermore, this
effectively means that the model and the presenter entity types share the same NodeID address
space. On the positive side the binding between the model and presenter is simplified by unified
addressing mechanisms and a common system of value types. This even allows the combination
of model and presenter. On the other hand, there is no sharp distinction between the model and
the presenter.

40

*

 BaseNode

NodeID : UInt64

 Variable

Name : String
Value : <type>
IsScalar : Boolean
*ArrayDimension : Int32

 ValueType

 Boolean Int16 ...

 Attribute

Name : String
Value : <type>

 FieldDevice

Address : ByteString

<<has>>
<<has>>

<<has>>

1

*1

1 *

Figure 3.9: Meta-model for presenter

The new entity type, introduced especially for the presenter part of the information model,
is called FieldDevice. It is designed to enable the modeling of virtual field devices presented to
arbitrary gateway attached busses. Such a modeled virtual field device is exclusive to one field
protocol and cannot be shared among different views. The only mandatory attribute, Address,
represents the native address for a single field level protocol. It is encoded in the targeted field
protocols native encoding and is stored as an arbitrary ByteString. Additional Information, like
special status flags or device class indication, can be linked to FieldDevices in form of Variable
entities. Further, FieldDevices make user data available to the attached field network, by binding
to Objects and Variables from the model via their respective NodeID.

There is no official equivalent model or binding mechanism defined in OPC UA. However,
OPC UA information models for specific field level protocols are discussed in several papers,
like [54]. Such documents usually specify a binding layer, which complements the OPC UA in-
formation model, and is exclusively designed to interact with a single field level protocol. Hence,
such an OPC UA binding mechanism, is able to provide a more detailed modeling abstraction
than the proposed presenter model. Hence, Comparison between a specific OPC UA binding
layer and the proposed presenter model is meaningless, since the proposed presenter model is
designed to be as general as possible.

View

The view part of the proposed information model resembles a presentation layer for a concrete
field network protocol stack. The View entity type depicted in Figure 3.10 serves as a single entry
point for a protocol stack, and therefore has references to all FieldDevice entities designated to a
certain field network. Hence, an arbitrary protocol stack bound to a View entity must be able to
parse and interpret the data stored in the information model. Furthermore, services handling data
updates and notifications on changing data are provided (see Section 3.4 – Information Model

41

Transactions).

*

 BaseNode

NodeID : UInt64

 Variable

Name : String
Value : <type>
IsScalar : Boolean
*ArrayDimension : Int32

 ValueType

 Boolean

 Int16

...

 Attribute

Name : String
Value : <type>

 Object

Name : String

<<Reference>>

<<has>>

<<has>>

<<has>>
1

*

1

1 *

 FieldDevice

Address : ByteString

*

*

<<has>><<has>>

*

 View

<<Reference>>

1

*

Figure 3.10: Overall meta-model

Figure 3.10 depicts the overall meta-model describing the proposed information model,
while Figure 3.11 shows an example of a concrete information model connecting two differ-
ent field networks. Virtual field devices, accessible through View FieldBus A are visible to one
network, while virtual field devices connected to View Fieldbus B are seen by View FieldBus B.
Information is then passed via the respective virtual field devices to the Variables and Objects.

View
Fieldbus B

View
Fieldbus A

FieldDevice #1

FieldDevice #2

FieldDevice #3

FieldDevice #4

...

FieldDevice
#n+1

FieldDevice
#n+2

FieldDevice
#n+3

FieldDevice
#n+4

...

Object #1

Object #2

Variable #1 Variable #1 Variable #3

Variable #4 Variable #5

Figure 3.11: Example information model

42

Information Model Transactions

Three distinguished transactions are foreseen to interact with the information model: an up-
date transaction, a poll transaction and a notify transaction. Each described transaction is self-
contained and either succeeds as a whole or needs to be re-initiated. The information model
does not define any fault recovery mechanisms. Hence, a failed transaction must be triggered
again by its respective caller.

Update

The update transaction, as depicted by Figure 3.12, is triggered by an incoming message at the
protocol stack. The message is then interpreted by the protocol stack. At first, all available
virtual field devices at the gateway are enumerated in order to find the responsible FieldDevice
entity. Therefore, an enumerate_field_device service message call is issued to the View linked
to the protocol stack. As shown in Figure 3.12, the View needs to create a list of all the virtual
device addresses from each associated FieldBus entity. Thus, each FieldDevice entity associated
to the respective View has been queried for its mandatory address attribute. Further, the address
and the FieldDevice node identifier are combined in form of a map data structure, where the
address serves as a key and the node identifier NodeID as the value.

The prior mentioned map, consisting of the native field device addresses and the NodeIDs
is transferred to the protocol stack as a reply to the enumerate_field_devices service call. The
protocol stack compares the destination address from the received message to the individual
device address from each virtual field device address attribute received in the map. Upon finding
a matching address, the native fieldbus message payload is decoded. Assuming, that the payload
decodes to a write call to the virtual field device, an update_field_device service message is
transmitted to the concerned FieldDevice entity.

Next, the destination Variable, respectively Object has to be found. Hence, the protocol
stack must derive the proper naming convention from a possible device class defined by the
field protocol or from information stored in the received fieldbus message. Determining the
right Variable or Object target to update, given a received message can only be done without
ambiguity if the concrete model is properly designed. Hence, in conjunction with individual
protocol stacks, a proper naming convention for references at the presenter model has to be
advised. The concerned FieldDevice entities then need to implement the convention or design
rule. This illustrates yet again the necessity of a layered information model and emphasizes the
role of the presenter layer as independent binding mechanism.

After the correct Object or Variable entity has been found, an update_object and consecutive
an update_variable service message call is issued. The protocol stack is responsible to transfer
the new data value in the encoding of the destined Variable entity (see Section 3.1). Therefore, a
valid protocol stack implementation provides all possible encoding conversions services between
the native format of the represented fieldbus and the formats defined by the ValueType entity
derived types.

Finally, the transaction is closed, by returning an update_done reply message from the Ob-
ject to the FieldDevice and consecutively to the protocol stack. Further a data_change_notification

43

is issued to notify other FieldDevice entities and furthermore other protocol stack implementa-
tions about changed data values (See section 3.4 – Notify).

Physical
FieldDevice

View
Fieldbus A

FieldDevice
#1

Object #1

enumerate_field_devices

get_device_address

reply_device_address

reply_enumerated_field_devices

Protocol
Stack

received_upd_message

found_match

update_field_device

update_object

update_variable

data_change_notificationupdate_doneupdate_done

Information model

Figure 3.12: Information model update transaction

Poll

The poll transaction, as shown in Figure 3.13, is especially intended for field level protocols
which are based on a poll mode of communication. The transaction is triggered by an arbitrary
fieldbus message at the protocol stack which requests data from a virtual field device stored at
the information model.

In order to identify the virtual field device, an enumerate_field_device service message call is
issued to the View entity. This is in fact the very same procedure as already described in Section
3.4 – Update. Again, after the View has successfully queried all associated FieldDevice entities
for their address attribute, a map data structure is returned. The map is designed as such that the
key is the fieldbus native device address and the value contains the NodeID attribute.

After a matching FieldDevice has been found, by comparison of the destination address,
part of the field message received by protocol stack and the address attribute from the map, a
poll_field_device service message call is issued. Again the same thoughts about design rules that
enable the linkage of the presenter layer to the protocol stack apply as discussed in the previous
Section 3.4 – Update. The concerned FieldDevice entity will again query the referenced Object
entity and further the concerned Variable entity. Finally, the requested data value is returned by
the means of a poll_reply service message. The protocol stack is then responsible to encode the
received data value in the native format of the associated fieldbus. Further, a response message

44

to the original request is created and a reply on behalf of the virtual field device is sent out on
the field network. This successfully completes the transaction.

View
Fieldbus A

FieldDevice
#1

Object #1

enumerate_field_devices

get_device_address

reply_device_address

reply_enumerated_field_devices

Protocol
Stack

received_req_message

found_match

poll_field_device

poll_object

poll_reply

poll_reply

Information model

Physical
FieldDevice

Figure 3.13: Information model poll transaction

Notify

The notify transaction, as depicted in Figure 3.14, is triggered by a successful update transac-
tion (see Section 3.4 – Update). Its main purpose is to inform other FieldDevice entities about
changed data values at their associated Object and Variable entities. Further, the respective View
entities are notified and finally the concerned protocol stacks. Thus, the notify transaction is
especially useful for field protocols utilizing an event based mode of communication.

A data_changed_notification caused by a successful update transaction, triggers the notify
transaction. At first, all FieldDevice entities linked to the affected Object or Variable relay the
notification to all linked View elements. Further, the View entities call the protocol stack with
a notify_stack service message call. The information enclosed by this message contains the
FieldDevice reference, the affected Object or Variable reference.

In case an element of the attached fieldbus serviced by such a notified protocol stack requires
a report of the changed data value, a native fieldbus message is generated. The transaction is
successfully completed upon notification of the protocol stack.

3.5 Reliability

Another important building block regarding the design of a feasible gateway approach is the
linkage of several individual gateway devices to one logical compound. Such a gateway com-
pound is further called VRG. The VRG concept and design is heavily influenced by the Common

45

View
Fieldbus A

FieldDevice
#1

Object #1

notify_stack notify_view

Protocol
Stack

send_message

data_change_notification

update_variable

update_object

Information model

FieldDevice
#2

Physical
FieldDevice

Figure 3.14: Information model notify transaction

Address Redundancy Protocol (CARP) [21] approach and its proprietary predecessor VRRP,
originally intended for routers and firewalls of Ethernet and IP based ICT systems.

The reliability concept of the proposed gateway approach is based around a feasible fault
hypothesis. The fault hypothesis is the number and type of faults that a system is able to tolerate
[35]. As already mentioned in several previous sections, the fault hypothesis of the VRG should
be at least as strong as the weakest fault hypothesis among the attached fieldbusses. As depicted
in Figure 3.15, several areas can be defined where individual fault hypothesis’s hold. Faults
that occur in such an area are contained within the previously mentioned area, unless the fault
hypothesis is violated. Hence, the areas shown in Figure 3.15 form fault-containment regions
(FCRs) [35]. For an interconnected system of FCRs, the FCR with the least amount of tolerable
failures dictates the fault hypothesis for the whole system, since it is the most likely subsystem
where the fault hypothesis might be violated. It is required, that a VRG is by no means the FCR
with the weakest hypothesis alone. Hence, the fault hypothesis of a VRG must be at least as
strong as a fault hypothesis of one of the attached fieldbusses.

The implementation of the reliability concept is that a designated gateway device, member
of a VRG, handles all the work, while the other members are in a hot-standby mode. The
designated gateway device is called the active gateway, whereas the others are referred to as
inactive or standby gateways. Since gateway devices are stateful, apart from coordination tasks,
a synchronization mechanisms needs to be advised. As already mentioned throughout Section
3.2, there are two viable approaches interconnecting single gateway devices to a VRG.

The first option is a separate backbone link, completely disjoint from the tethered fieldbus
networks of an arbitrary gateway device. One advantage of such an approach is the complete
separation of the synchronization and coordination traffic on the hand and normal fieldbus op-
eration traffic on the other hand. As a disadvantage, additional wiring effort is needed. Also
an additional protocol stack might be needed for a gateway implementation, unless the back-
bone network utilizes a protocol stack of one of the gateways already implemented field level
protocols.

46

Fault Hypothesis A Fault Hypothesis VRG Fault Hypothesis B

Fieldbus A Fieldbus B

Gateway #1

Virtual Redundant
Gateway

Gateway #2

Figure 3.15: FCRs of an interconnected system

The second option utilizes the available fieldbusses already attached to a gateway device for
coordination and synchronization traffic. As a benefit, no additional wiring effort is needed and
existing protocl stacks readily available at the gateway are utilized. On the other hand, the traffic
overhead induced by the gateway devices may interfere with normal fieldbus operation. This is
especially true, when field level protocols with low data rate are interconnected by the gateway
devices. An improvement to a high load situation at one particular fieldbus, a bus load monitor
is introduced in Section 3.5 – Bus load monitor. The bus load monitor aids the gateway, so that
coordination and synchronization traffic is redirected via less frequented fieldbusses. Another
detail is, that a single gateway device itself needs to be assigned a native fieldbus address for
every attached fieldbus. Whereas with a backbone network, the gateway device does not need to
be addressed directly.

The second option is chosen, since the additional wiring effort inherent to the first proposed
option is opposing the seamless integration requirement stated in Section 3.1 – Seamless in-
tegration. The synchronization and coordination tasks of a single gateway part of a VRG are
handled by three main building blocks: The bus guard, the bus load monitor and the redundancy
manager.

Bus guard

The bus guard component is responsible for the detection and reporting of link faults at an arbi-
trary fieldbus interface of a gateway device. Therefore, an end-to-end connection monitoring is
deployed between active and inactive members of a VRG. Also mechanisms specific to individ-
ual field protocols, which are in general not available are utilized. An example of such a fieldbus
feature is carrier sense, which monitors if a base bus voltage level is present at the physical
interface, and hence detects a broken cable by the absence of such a voltage level.

The end-to-end connection monitoring is realized by sending a heart-beat message between
the active and inactive gateway. The inactive gateway is always the initiator of a heart-beat
transaction, whereas the active gateway solely acknowledges such incoming messages. The

47

transaction is successfully finished, as soon as the initiator of the heart-beat message receives a
valid acknowledge telegram.

The heart-beat transaction is repeated every HeartBeatInterval seconds. In case of a failed
heart-beat transaction, a grace counter is foreseen, which is incremented for each subsequently
failed heart-beat transaction. Thus, the notification of the redundancy manager is delayed until
an upper limit, named GraceLimit, is hit by the grace counter. In case a successful heart-beat
transaction is encountered after a previously failed heart-beat transaction, the grace counter is
reset.

GracePeriod = GraceLimit ·HeartBeatInterval (3.1)

The time span until a connection failure is signaled by the bus guard, the GracePeriod is
calculated by the Equation 3.1. In the event, that the GracePeriod is exceeded without interrup-
tion of a successful heart-beat transaction, the redundancy manager is notified and a fail-over
procedure is triggered (see Section 3.5 – Redundancy manager).

The prior stated end-to-end connection monitoring method reliably detects link faults be-
tween two different gateway devices. However, it is not capable of making a statement which of
the involved fieldbus interfaces is faulty. It is even possible that both interfaces work perfectly
and the fault is located somewhere between two routing nodes of the interconnecting field net-
work. Hence, a method needs to be advised that narrows the location of a link fault down to a
certain fieldbus interface.

The most simple solution to this issue, is the usage of a third gateway device approving a
failed heart-beat transaction. Like in a triple modular redundant system [24], the failed heart-
beat transaction has to be approved by the third gateway. Otherwise, the reporting gateway is
marked as faulty and subsequently removed from the VRG. However, this approach has not been
further considered since it would increase the economical costs and complexity of a VRG, but
not add any additional value compared to the ping solution presented next.

A better approach to verify an arbitrary fieldbus interface of a gateway device is a third party
communication partner also connected to the network interface under test. A service similar to
the ping command used in Ethernet and IP is advised, which verifies correct communication be-
tween the gateway and another fieldbus participant. The ping service itself can be implemented
by an arbitrary message with a defined payload, which gets acknowledged by a communica-
tion partner upon successful retrieval. The only constraint is, that the message sent out by the
ping service must not modify the state of the receiver, or trigger any action that will affect other
fieldbus participants.

In case of field level protocols which do not leverage any fault-tolerance mechanisms, a
single arbitrary fieldbus node is fit to serve as ping reference node. As soon as the attached
fieldbus implements fault-tolerance, a reference node according to the fault-hypothesis of the
network has to be found. Therefore, the concept of a virtual reference node is proposed. A
virtual reference node is a compound of otherwise disjoint bus participants. The number of
virtual reference node members is solely determined by the fault hypothesis of the fieldbus.
Hence, if it is stated that the field network is able to tolerate up to one device or link faults,
then the virtual reference node consists of two bus participants. Prior to the activation of a field

48

network, an order has to be defined for the members of a virtual reference node at the VRG.
Thus, if a fault occurs, the members of a virtual reference node are contacted by the means of
the ping service in the previously given order from the members of the VRG. This ensures a
consistent result of the ping service as long as the fieldbus itself operates according to its fault
hypothesis.

Bus load monitor

The bus load monitor component passively listens on a fieldbus and provides the redundancy
manager with load metrics regarding network operation. Such load metrics are then used to
choose the least frequented fieldbus link to transmit synchronization data frames. Otherwise,
additional synchronization traffic induced by the individual gateway devices may put a fieldbus
in an overload situation, which is undesirable for both the gateway and normal bus operation.

The network load is defined as the overall amount of data injected by the fieldbus participants
into the network, divided by the maximum amount of data which can be transacted [30]. An
overload situation is encountered when the ratio of the injected data amount and maximum
possible exchange rate of a network segment approaches 1.0. This usually results in higher
message jitter, increased packet latency and even lost telegrams.

Not all discussed fieldbus topologies from Section 3.2 are equally vulnerable to network
overload situations or traffic congestion of isolated network segments. The star topology (see
Section 3.2 – Star) deploys exclusive links between each communication partner. Hence, an
overload situation is contained within a network segment, connecting an exposed fieldbus node
with the central node. The ring topology (see Section 3.2 – Ring) and line topology (see Section
3.2 – Line) however are prone to such traffic congestion, which then may render the whole
fieldbus unusable. Therefore, a tree topology is more desirable, which partitions a single fieldbus
line into different hierarchical level of lines and is able to contains an overload situation in one
such network segment. A mesh topology is most fit to tolerate overload situations, since there
is usually more than one communication path available, which connect different nodes. But a
single network segment, interconnecting otherwise disjoint partitions of a network, experiencing
a traffic congestion will cause the mesh network to disintegrate into two separate areas.

A possible implementation of a bus load monitor has several different options to measure
the load of a network. In case of a line or ring topology, an eaves-dropping interface is able to
sample the number of telegrams per an arbitrary time unit. However, in a partitioned network
like a tree topology or multi-path network like a mesh topology, this would be rather inaccurate.
A mechanism, sampling only messages passing the network interface at the gateway, measures
only the load regarding the local line segment. Hence, it is not capable to indicate the traffic load
situation at another partition of the same field network.

Another possible load metric indicator, is the measurement of a time-stamped bus guard
message. The round-trip delay of such a telegram is then a possible indicator of the network
load along its communication path. Such a load metric mechanism effectively measures the
time it takes to grab a free communication time slot at the fieldbus for data transmission and
incorporates delays due to message queuing at forwarding nodes. As stated in [27], such an
indicator is only valid in networks which are not delay-tolerant. However, round-trip delay mea-
surement for gateway devices is a valid load metric, taking into consideration that it is designed

49

to operate on field level protocols which are most likely real-time capable and not delay-tolerant.
As a disadvantage, at least one sample round-trip measurement at a fieldbus idle situation must
be taken as a comparison reference for future measurements.

Other metrics available to the bus load monitor are dependent on the actual implementa-
tion of individual field protocols, like connection quality and signal strength of a wireless field
protocol. An ideal implementation of a bus load monitor regarding a certain field level proto-
col would consider all applicable metrics and combine them in a single numerical score value.
Utterly important, a score of one fieldbus must be comparable to the score of another fieldbus,
despite different metrics used for each individual network. Therefore, the score relies mostly on
the two general-applicable indicators described previously. Other metrics may be additionally
implemented, but are only intended to marginally alter the score value.

Redundancy manager

The redundancy manager is responsible for both synchronization and coordination of individ-
ual gateways. As long as no separate backbone link is used, the redundancy manager must be
assigned an individual address for each attached field network. Otherwise, it would not be pos-
sible to directly address and send synchronization and coordination telegrams to each gateway
device. Furthermore, every attached field level protocol must allow some field message type
which carries an arbitrary payload or at least tolerate messages with an arbitrary payload. The
worst case would be a field protocol, that does not only forbid, but actively opposes such mes-
sages. This could be done by deep packet inspection and further dumping of such packets at
mediator fieldbus node along a communication path between two gateway devices. Fortunately,
there is no known field protocol which deploys such rigorous restrictions. Otherwise, the only
solution is the deployment of a separate backbone link between the members of a VRG.

As already indicated, a synchronization message is triggered by the data_change_ notifi-
cation emitted by an Object or Variable from the information model. The updated data from
the Variable, including its NodeID identifier are packed into a synchronization frame. Once an
attached field network has been selected by evaluating recent metrics provided by the bus load
monitors, a native telegram is generated. The native message contains the synchronization frame
as payload and is sent out via the interface to the chosen fieldbus. The receiving gateway device
simply recognizes the arriving message as synchronization or coordination message, because it
is addressed directly to its individual field protocol address. Hence, the payload is extracted from
the native message and its content is interpreted accordingly. The unpacked frame is perceived
as synchronization frame by evaluating a message type data field. Further, the received NodeID
attribute identifies the Object or Variable and its content is updated with the received data by an
information model update transaction.

In a compound of redundant gateway devices, one unique gateway is active and assumes
the role of a master. All other gateways part of a compound are inactive. Hence, the master
gateway is responsible for the synchronization effort, while the other gateways are monitoring
the active device. The designated member of a VRG, which assumes the role of the master
gateway is determined by an election algorithm. The algorithm is designed in such a way, that
each peer gateway of a VRG reaches the same conclusion with a minimal amount of coordination
traffic. This is especially important in a fail-over scenario, where a failed active gateway must be

50

replaced by one from the inactive gateway pool. A minimal traffic amount results in the shortest
possible time, where communication between attached fieldbusses is not possible.

Fieldbus B

Fieldbus A

Fieldbus B

Fieldbus A

master_advertisement

master_advertisement

master_advertisement

master_advertisement

Gateway #1 Gateway #2

MasterAdvertisement
Timeout

MasterAdvertisement
Timeout

Master Backup

field_bus_a_msg
sync_msg

sync_ack
field_bus_a_ack

Device
Fieldbus A

Figure 3.16: Election algorithm

A minimal implementation of such an election is based on an arbitrary fixed order between
every member of a VRG. Such an order is achieved by assigning a fixed unique number to ev-
ery gateway within a redundant compound, like a gateway identifier or priority value. When
the election process is triggered, every functioning gateway, member of the VRG, participates
by sending out its own master priority value via multicast messages. Such a message is called
master_advertisement message. After a certain amount of time called MasterAdvertisement-
Timeout, no new priority values are accepted. Each gateway device participating in the election
then chooses the gateway device with the highest priority value as the new master.

The prior paragraph already outlines the main prerequisite for a reliable and consistent elec-
tion mechanism, a reliable multicast. Meaning, that either a master_advertisement message is
delivered to every participating, fully functional gateway device or to none. Otherwise, the list
of priority values may differ from gateway to gateway and the election process is inconsistent.

The election process itself is triggered either by the bus guard and subsequently the redun-
dancy manager, a received master_advertisement message or in case the VRG does not have a
current master set. When a master gateway itself receives a master_advertisement message, it
assumes that at least one communication link does not work. Thus, the failed master assumes
the role of a fail-silent device and does not participate in any communication.

51

The election algorithm advised is rather simple and more sophisticated approaches are part
of future work that is considered. As an example, a possible item for improvement is the recov-
ery or join of a previously failed gateway, which has not been addressed. Another possibility
for an improvement is the fault handling during either synchronization or information model
transactions.

52

CHAPTER 4
Fault Analysis

The fault analysis of a gateway compound is carried out by evaluating a scenario consisting of
two individual gateways without loss of generality. Such a VRG is capable of tolerating one
link fault at an arbitrary network interface of a gateway and one gateway device fault. The fault
analysis of the proposed gateway approach proceeds by a case distinction on all the different
situations a fault may occur. The following cases are considered:

• Link fault at master gateway. Given a link fault at an arbitrary field device interface of
the current active gateway, the monitoring inactive gateways will recognize the failure
through their respective bus guard components. Heart-beat messages remain unacknowl-
edged and the GracePeriod is started at the monitoring devices. The time span before the
current master gateway is considered failed is, as stated in Section 3.5 – Bus guard, the
GracePeriod plus a possible jitter of one Heartbeat interval. After the expiration of the
GracePeriod, the inactive gateway performs a self-test using the ping service on its inter-
faces to avoid erroneous triggering of the election process. Therefore, a backup gateway
reaches out to a virtual reference node via each fieldbus interface. In case such ping mes-
sages are acknowledged on every available field network interface, the inactive gateway
starts to multicast the master_advertisement messages simultaneously on all available in-
terfaces. The master gateway also senses the master_advertisement messages, since one
fieldbus link is still operational. As an effect, the failed master gateway shuts down any
operation and removes itself from the VRG. The backup gateways wait for MasterAdver-
tisementTimeout time for incoming master_advertisement_messages. After the timeout
has expired, the inactive gateway with the highest priority value is selected among all
gateway devices that participated in the master advertisement. Thus, the highest priority
gateway assumes the role of the new master device and continues normal operation. All
remaining inactive gateways, part of the VRG compound start to monitor the new master.

• Device fault at master gateway. Assume a device fault at the current master gateway.
Hence the current active gateway ceases to respond on all its fieldbus interfaces. The

53

Fieldbus B

Fieldbus A

Fieldbus B

Fieldbus A

Master Backup

GracePeriod

heart_beat
heart_beat_ack

heart_beat
heart_beat_ack

heart_beat
heart_beat_ack

heart_beat

heart_beat

heart_beat
heart_beat_ack

self_test

self_test_ack

self_test

self_test_ack

master_advertisementmaster_advertisement

shutdown

MasterAdvertisement
Timeout

Master

Virtual Reference
Node

Fieldbus A Virtual Reference
Node

Fieldbus B

Figure 4.1: Link fault at master gateway

monitoring backup gateways again recognize the outage of the master via their respec-
tive bus guard components. Heart-beat messages remain unacknowledged. After the
expiration of the GracePeriod plus a possible jitter of one HeartBeat interval the inactive
gateways start a self-test of its fieldbus interfaces using the ping service. Again, a backup
device reaches out to the virtual reference node defined for each single operational field
network interface. After the self-test is successfully completed, the backup devices start
to send out master_advertisement_messages on all available field network interfaces, uti-
lizing reliable multicasts. Different to the previous link fault at master gateway case, the
current master device, experiencing a fault is already fail-silent and removed from the
VRG. Thus, it cannot receive or even respond to a master_advertisement_message. But,
since the failed device emits a fail-silent behavior in the first place, it already stopped

54

interacting with the remaining gateways and attached field networks. After the MasterAd-
vertisementTimeout has expired, all backup gateways choose the new master by compar-
ing the received priority values from the advertisement phase. The device with the highest
priority value is selected as the new master gateway and continues normal operation. All
remaining functional inactive gateways part of the virtual gateway compound switch their
bus guard monitoring to the new master device.

Fieldbus B

Fieldbus A

Fieldbus B

Fieldbus A

Master Backup

GracePeriod

heart_beat
heart_beat_ack

heart_beat
heart_beat_ack

heart_beat
heart_beat

heart_beat
heart_beat

self_test
self_test_ack

self_test
self_test_ack

master_advertisementmaster_advertisement

MasterAdvertisement
Timeout

Master

master_advertisement

Virtual Reference
Node

Fieldbus A Virtual Reference
Node

Fieldbus B

Figure 4.2: Device fault at master gateway

• Link fault at backup gateway. Suppose a link fault at an arbitrary backup gateway and
an arbitrary field device interface thereof. The affected inactive gateway is then unable to
send out heart-beat messages or receive synchronization telegrams at the failed interface.
Hence, the bus guard of the failed interface starts the GracePeriod. After the GracePeriod
plus a jitter of one HeartBeat interval has expired, the ping service is used to check the
function of its own interfaces. Thus, the failed interface on the inactive gateway is unable

55

to contact the virtual reference node and detects itself as faulted. Furthermore, the inactive
gateway does not send out any master_advertisement_message contrary to previous cases,
but shuts down any communication and effectively removes itself from the logical gateway
compound.

Fieldbus B

Fieldbus A

Fieldbus B

Fieldbus A

Master Backup

GracePeriod

heart_beat
heart_beat_ack

heart_beat
heart_beat_ack

heart_beat
heart_beat_ack

heart_beat
heart_beat_ack

self_test

self_test_ack

self_test

shutdown

Virtual Reference
Node

Fieldbus A Virtual Reference
Node

Fieldbus B

Figure 4.3: Link fault at backup gateway

• device fault at backup gateway. Assume a device fault at an arbitrary inactive gateway of
the logical gateway compound. Thus, such a failed gateway ceases to communicate with
any of its peers, member of a VRG. Synchronization attempts from the master device
and possible master_advertisement_messages remain unacknowledged. Hence, the failed
gateway is effectively removed from a logical gateway compound.

• Link fault at master gateway with pending transaction. Suppose a link fault at the
current master gateway, while the master is busy with a synchronization or information
model transaction. In such a case, a distinction must be made, whether the faulty interface
is involved in a pending transaction or not.

At first, assume that none of the regarded transactions is linked to the faulted field network
interface. Hence, the transaction is completed, despite any incoming master_ advertise-

56

Fieldbus B

Fieldbus A

Fieldbus B

Fieldbus A

Master Backup

heart_beat
heart_beat_ack

heart_beat
heart_beat_ack

Figure 4.4: Device fault at backup gateway

ment_messages. In detail, for a synchronization transaction, the master gateway device
finishes the transaction and then shuts down any operation. In case of an information
model transaction at the master gateway, the poll and update transactions are aborted.
The notify transaction is finished according to possibility, so any updated data is still
pushed out to attached field devices. In the meanwhile, after the GracePeriod plus one
HeartBeatInterval jitter has expired, all functional inactive gateways send out their mas-
ter_advertisement_ messages. When furthermore the MasterAdvertisementTimeout has
passed, the inactive gateways agree on a new master device. The aborted information
model transaction has been lost and must be retriggered by the retransmission capabilities
of the attached field networks.

Next it is considered, that the faulted interface interferes with a pending synchronization
or information model transaction. In case of an information model transaction there is
nothing which can be done to recover it. Thus, the transaction is unfortunately lost. On
the other hand, a synchronization transaction will timeout and remain unacknowledged,
but is retried on one of the remaining operable fieldbus interfaces. The retried synchro-
nization transaction then succeeds and will leave the information model in a consistent
state. In the meanwhile, the inactive gateways have gone through the GracePeriod plus
HeartBeatInterval jitter. Then again, after the self-test of the backup devices, the mas-
ter_advertisement_messages are sent out via multicast messages. After the MasterAdver-
tisementTimeout has expired, the fully operable inactive gateways agree on a new master
and normal operation of the logical gateway compound is resumed.

• Device fault at master gateway with pending transaction. Assume a device fault at a
master gateway with an ongoing synchronization or information model transaction. In ei-
ther case, the transaction is aborted and inadvertently lost. The inactive gateway will sense
the failure of the master device due to unacknowledged heart_beat messages. After the

57

GracePeriod plus a jitter of one HeartBeatInterval has passed, a self-test utilizing the ping
service is performed on all network interfaces. Then the master_advertisement_messages
are sent out by the inactive members of the VRG via multicast messages. The backup
gateways wait for the MasterAdvertisementTimout to expire. After the MasterAdvertise-
mentTimeout has finally passed, the inactive gateways choose the new master gateway by
comparing the received priority values. Finally, the newly selected master device contin-
ues operation.

• Link fault at backup gateway with pending transaction. Given is a link fault at an
arbitrary inactive gateway of a logical gateway compound, while a synchronization trans-
action is ongoing. A distinction has to be made, whether the synchronization transaction
is processed via the faulted network interface or not.

In case the synchronization transaction is affected by the faulty network interface, it is
aborted and inadvertently lost. The inactive gateway experiencing the link fault encoun-
ters unacknowledged heart-beat messages. Hence, the GracePeriod is started at the af-
fected member of the VRG. After the GracePeriod plus one HeartBeatInterval jitter has
expired, the backup gateway performs a self-test by contacting the virtual reference node
on each of its network interfaces. Since the message to the virtual reference node via the
faulted network interface also remains unacknowledged, the backup gateway assumes the
link fault is located on its own field network interface. Thus, the concerned inactive gate-
way stops operation and effectively removes itself from the logical gateway compound.

The other case is that the synchronization transaction is not affected by the faulty network
interface and therefore completed successfully. But the inactive gateway with the faulty
network interface still encounters unacknowledged heart_beat telegrams. Thus, after the
GracePeriod plus one HeartBeatInterval jitter has expired, the affected backup gateway
will start a self-test. Again, a virtual reference node is contacted on each field network in-
terface, and the message sent out via the faulty interface remains unacknowledged. Hence,
the inactive gateway experiencing the link fault shuts down its operation and effectively
removes itself from the logical gateway compound.

• Device fault at backup gateway with pending transaction. Assume a device fault at an
arbitrary gateway device part of the group of inactive gateways of a VRG. All synchro-
nization attempts from the master gateway will then fail and remain unacknowledged,
meaning that the backup device has removed itself from the logical gateway compound.

58

CHAPTER 5
Implementation

In this chapter, a proof-of-concept gateway implementation is presented, in order to demonstrate
the feasibility of the described concepts. The evaluation scenario is designed to be as simple
as possible, but is able to demonstrate the main features without any restrictions. Therefore, a
testbed interconnecting two field networks with the means of a VRG, consisting of two individ-
ual gateways is considered.

A schematic overview of the proposed testbed is shown in Figure 5.1. There are several cri-
teria for choosing two suitable field level protocols. First, each chosen field level protocol must
utilize a different network topology. Further, the topology must be one of the most widespread
used, either line/bus or mesh topology. Additionally, both field level protocols need to target
the same problem domain. Hence, KNX (see Section 5.1 – KNX) and ZigBee (see Section 5.1
– ZigBee) have been selected. First and foremost due to their corresponding network topology
and their application domain of BAS. A detailed statement, why those field level protocols are
chosen is outlined in Section 5.1.

LC

LC

LC

M
ain

 Lin
e

BC
Gateway 1

Master

Gateway 2
Backup

Gateway N
Backup

BD

BD
BD

BD

BDBD

BDBD

BDBD

C

R

R

R

R

E

E

R

R

R
E

E

E

E E

Gateway …
Backup

BDR

Virtual Redundant Gateway

Figure 5.1: KNX-ZigBee gateway schematic overview

59

Next, the structure of the testbed is discussed in Section 5.2. The test scenario is a lighting
scenario, consisting of a switch and a lighting actuator in each field network. The switches shall
be able to interact with the actuator, located in the very other network. A description of the used
hardware platform for the gateway proof-of-concept and field devices is given.

In Section 5.3, the software architecture and overall gateway setup is specified. All used
building blocks, implemented according to Chapter 3 are described briefly. Furthermore, con-
figuration and initial deployment of the gateway devices are outlined. A detailed look on one
of the most important components of the translation process between the field networks, the in-
formation model, is given in Section 5.4. Finally, test cases carried out on the prior mentioned
testbed and their results are delineated in Section 5.5.

5.1 Field protocols

There is a wide range of available field protocols from where to choose candidates for a proof-of-
concept implementation. Each fieldbus protocol leverages different, sometime unique properties
that makes them stand-out in their respective target domain. In order to implement a demonstra-
tion of the proposed gateway, two protocols have been selected.

Several criteria have been applied throughout the selection process. First, both field pro-
tocols have to serve the same problem domain. Second, the utilized physical media must be
different. Ideally, each chosen field protocol implements one of the major physical media do-
mains, namely wireless or wired. Further, the fieldbusses should either rely on a line/bus or mesh
topology.

Therefore, KNX and ZigBee/Home Automation (HA) have been selected as interconnected
protocols for the gateway prototype. Both fieldbus protocols are targeted for the domain of home
and building automation. A KNX solution, given it utilizes the TP1 physical layer, relies on a
wired medium and implements a hierarchical line topology. Whereas, a ZigBee/HA solution is
realized on top of the 802.15.4 wireless standard [13] and leverages a mesh network topology.

KNX

KNX is a well-established standard for Home and Building Automation, with core application
fields of Heating, Ventilating, and Air Conditioning (HVAC) and electrical installation. It is
operable on a wide spectrum of physical media, including powerline, twisted pair and radio (see
Section 5.1 – Topology and Physical Media). A special focus has been set on the interoperabil-
ity of devices from different vendors. This includes an exhaustive interworking model and a
rigorous certification process.

The roots of the KNX standard are originated in the fieldbus wars [26] of the early 1990’s.
Three fieldbusses were competing for supremacy of the electrical installation market, namely
the European Installation Bus (EIB), European Home Systems Protocol (EHS) and BatiBus. At
about 1996, the need for a more streamlined and integrated standard was recognized to compete
and promote each of the mentioned BAS standards on an international level. Therefore, in 1999
the Konnex Association was founded with the aim to merge EIB, EHS and Batibus. Later in

60

2004, the KNX protocol was standardized as norm EN 50090 [34]. Further, in November 2006,
KNX was recognized as the international ISO/IEC 14543-3 standard.

A key feature of the KNX message protocol is its observer pattern based mechanism of in-
formation exchange. Multiple observing bus devices are notified via a single multicast message
of changes to data on a single source. This allows the easy creation of m - n relations, since
the source is not a fixed device. Hence normal bus traffic is not transacted via point-to-point
messages, but so called group communication. Therefore, special group addresses are foreseen,
which enable a receiving device to decide if it is member of such a group. Thus, a received
message can either be ignored or processed.

Common Run Time

Easy Mode

TO
O

L System Mode

PC based
Tool

Ctrl PB LTE

N
ET

W
O

R
K

 M
A

N
A

G
M

EN
T

Communication

Standard Adressing

TP1 PL110 RF
Ether-

net

P
ro

fi
le

 1

P
ro

fi
le

 2

Common Logo

Common Object Definitions

Standard
Configuration /

Engineering Tool

Configuration

Runtime
Interworking

Common Kernel

Media Coupler
between Media

7

3

2

1

Figure 5.2: KNX Model [34]

Apart from group communication, KNX [34] defines four key aspects of its overall network
model as shown in Figure 5.2:

• Interworking and Distributed Application Models are the core component of KNX and
its intended application domain BAS. Therefore, KNX defines the idea of datapoints (see
Section 5.1 – Datapoints), which represent the process and control variables of a system. A
reduced instructions set with read and write operations is provided to interact with those
datapoints. Further, functional blocks (see Section 5.1 – Functional block) are defined,
which group datapoints into standard building blocks for applications.

61

• Schemes for Configuration Management to configure and manage various elements of
the network and their logical binding. This can be achieved on two levels, first the easy
mode leverages manual interaction on the single KNX bus components, like pressing a
button or setting a jumper. Or second, the system mode, which utilizes a PC based tool to
configure the KNX network via point-to-point messages.

• Communication System. This includes several different physical media like twisted pair,
powerline, radio, and Ethernet (see Section 5.1 – Topology and Physical Media). On top
of the physical layer and a medium dependent data link layer, a common communication
stack is defined with a compliant ISO/OSI model covering layers 3,4 and 7. Thus, bus
devices using different physical media can easily interact along coupling devices with
each other.

• Device Models, combine all elements listed above in ready to use device profiles. Apart
from functionality defined by functional blocks, capabilities of bus devices also varies
with their intended role in a KNX network, like application end device or configuration
master. All those different operational behaviors are defined in the device profiles.

Topology and Physical Media

The KNX protocol leverages a logical hierarchical line topology with a 16-bit wide address
space. The address space is divided into several subnetwork areas, called line, which are able to
connect up to 256 devices. 16 lines may be grouped together to areas, whereas 15 areas may
again form a domain connected by a backbone line. Different levels of lines are interconnected
by coupler devices, the line coupler and the area coupler.

• Twisted Pair (TP-1) is considered the main physical transportation medium and has a
data rate of 9600 bits/s data signal. Also a 29V DC supply voltage signal is carried by
the twisted pair medium, in order to power KNX devices without additional wiring. Data
frames are encoded in a balanced baseband signal encoding [34]. Further, TP-1 physical
topology can either be a line, tree, star or any mix of those topologies. A logical KNX line
can be comprised of up to four physical segments connected by special repeater devices,
called line couplers. Such a line can extend up to 1000 m and is able to address a maximum
of 255 end devices. TP-1 allows devices to concurrently access the fieldbus and therefore
deploys Carrier Sense / Multiple Access (CSMA) with bitwise arbitration as a control
mechanism. [33]

• Powerline (PL-110) allows the usage of the standard electrical wiring in a building as a
physical transport medium for communication. The data signal is modulated using Spread
Frequency Shift Keying on a frequency range of 95 kHz to 125 kHz according to norm
EN 50065-1. The physical topology follows the layout of the electrical wiring and is
not restricted by the specification. The data rate, achieved by PL-110 is 1200 bits per
second, and a maximum of 255 devices can be addressed in a single PL-110 domain. In
order to allow multiple access to the power line, a priority based time-slot mechanism is

62

deployed. Each priority level defines different back-off times after a previous transmission
to minimize bus collisions.

• KNX-RF enables communication via radio, utilizing the publicly available Industrial-
Scientific-Medical (ISM) frequency band at 868 MHz. KNX-RF devices are able to com-
municate at speeds up to 16384 bits per seconds. The data signal is modulated by Fre-
quency Shift Keying (FSK), and medium access is carried out by a CSMA algorithm.
Further, bidirectional and unidirectional communication are foreseen, whereas the last
mentioned mode of communication saves on battery life, because no receiver needs to be
powered. A speciality of KNX-RF, is its unique addressing scheme compared to the other
KNX media. In order to distinguish different KNX installations from their neighboring
installations, the serial number of the device is added to the traditional KNX address. Fur-
ther, the multicast group address of a sender contains its serial number, so no two senders
are able to address the same KNX-RF group address. Hence, the original m - n relation, is
reduced to a 1 - n relation for KNX-RF.

• KNX IP is the fourth physical medium and is not to be confused with KNXnet/IP. KNX
IP devices are directly connected to Ethernet, whereas KNXnet/IP allows only tunneling
between different segments of the KNX network. As a benefit, existing home and office IP
installations can be used jointly. Moreover, the high bandwidth inherent to this medium
allows new usage scenarios which were unthinkable with TP-1, PL-110 or KNX-RF. KNX
IP uses a User Datagram Protocol (UDP) to encapsulate the dataframes of the KNX pro-
tocol.

Functional block

Functional Block
name

Input(s) Output(s)

Diagnostic DataParameter(s)

I1

I2

P1 DD1

O1
DPT I1

DPT I2

DPT P1 DPT DD1

DPT O1 Name Output O1Name Input I1

Name Input I2

Name Parameter P1

Figure 5.3: Functional block [34]

The KNX interworking principles rely on the various application models defined by the stan-
dard [34]. A functional block is a standardized datapoint interface description of a component
utilized in such an application model. Each datapoint, part of a functional block, is assigned a

63

descriptive name and a datapoint type determining the format and encoding of such a process
data variable. A KNX bus device implements at least one functional block, but is also able to
house multiple different functional blocks.

As shown in Figure 5.3, a functional block consists of four categories of datapoints:

• Outputs are datapoints that publish data, and subsequently send out write messages to
connected input datapoints. An example, is a push button that makes its on/off state
available as a binary datapoint.

• Inputs are datapoints that are able to subscribe to compatible output data types. Given a
light bulb functional block, the state of the light bulb, on/off can be provided as a binary
datapoint. Regarding the example of the output category, the on/off state of the push
button can be bound to the on/off state of the light bulb. Hence, a simple light switch
application is created.

• Parameters are datapoints that define the operational behavior of the underlying physical
sensor or actuator. Given a temperature sensor, a possible parameter datapoint would be
the sampling time of the individual measurements.

• Diagnostic Data are special output like datapoints which are only used during debugging
or maintenance.

In Figure 5.4, an example of a functional block description is shown. The fields shaded in
dark gray are mandatory datapoints, whereas all other fields are optional datapoints. Obviously,
a valid realization of the sunblind actuator basic (SAB) may only implement the mandatory
datapoints.

Datapoints

KNX datapoints resemble the concept of communication endpoints or ports of a functional block.
The information flow direction of a datapoint is either out (transmit, write) or in (receive, read).
The semantics of such a datapoint is defined by its datapoint type. Hence, an outbound datapoint
can only be connected to a inbound datapoint of the same datapoint type. A datapoint type
provides the following information about the content of a datapoint variable:

• Format, firstly indicates the overall length of the datapoint field in bits. Furthermore, the
datatype of a field is specified, like boolean, string and so on.

• Encoding describes the concrete representation and possible valid values, given the for-
mat. Given an enumeration format, the encoding contains the valid states of the enumera-
tion.

• Range defines the numerical limits of a datapoint. Considering a format that stores a
percentage, range defines a minimum of 0% and a maximum of 100%.

• Unit specifies the used engineering unit.

64

Sunblind Actuator Basic (SAB)
Inputs Outputs

MovehUp/Down FMUDW InfohMovehUphDownhFIMUDW
StopStephUpDown FSSUDW Currenth Absoluteh Positionh Blindsh Length

FCAPBLW
DedicatedhStop FSTOPW Current AbsolutehPositionhBlindshPercentage

FCAPBPW
PresethPosition FPPW Currenth Absoluteh Positionh Slath Percentage

FCAPSPW
SethAbsolutehPositionhBlindshPercentage

FSAPBPW
Currenth Absoluteh Positionh Slatsh Degrees
FCAPSDW

SethAbsolutehPositionhBlindshLengthFSAPBLW ValidhCurrenthAbsolutehPositionhFVCAPW
ScenehLearnhModehEnable FSLMEW
SethAbsolutehPositionhSlatshPercentage

FSAPSPW

SethAbsolutehPositionhSlatshDegrees
FSAPSDW

ScenehNumber FSNW
Forced FFOW
WindhAlarm FWAW
RainhAlarm FRAW
FrosthAlarm FFAW
additionalhI/Os Parameters

SensorhforhdetectinghENDhPositions ReversionhPausehTime FRPTW
MovehUp/DownhTime FMUDTW
SlathStephTime FSSTW
PresethPositionh Time FPPTW
PresethPositionhPercentage FPPPW
Preset Positionh Length FPPLW
PresethSlath Percentage FPSPW
PresethSlath Angle FPSAW
BlindshPositionhforhScenehControl FBPSNW
SlatshPositionhforhScenehControl FSPSNW
StoragehFunctionhforhScenehNumber FSFSNW
ReactionhonhWindhAlarm FRWAW
HeartbeathWindhAlarm FHWAW
ReactionhonhRainhAlarm FRRAW
HeartbeathRainhAlarm FHRAW
ReactionhonhFrosthAlarm FRFAW
HeartbeathFrosthAlarm FHFAW
MaximumhSlathMovehTime FMSMTW
EnablehBlindshMode FEBMW

Figure 5.4: Functional block diagram example [34]

ZigBee

The ZigBee protocol is a well-established standard for low-cost, low-power, low-rate, wireless
personal area networks. The main idea behind the ZigBee specification, is the reliable intercon-
nection of exposed sensors or actuators that cannot be interconnected by wire for economical
reasons. So far, multiple application domains have been foreseen by the standard in form of
application profiles on top of the cluster library (see Section 5.1 – Application profiles and
cluster library). Examples for specified profiles are Industrial Plant Monitoring (IPM), Home
Automation (HA), or Advanced Metering Initiative (AMI) [29].

Similar protocols to ZigBee began to emerge in 1999. Since existing protocols, like WLAN –

65

IEEE 802.11 and Bluetooth, were unsuitable to form wireless sensor and control networks, due to
the lack of various features, like radio range or power consumption. Different vendors, realized
that such a new wireless standard can only succeed as a single world-wide standard. Hence,
in 2002 the ZigBee Alliance was formed. But it took two more years until the first version
of the standard was released to the public in 2004. In 2006, a new revision of the standard
was published, replacing the message / key value pair structure of the 2004 version with the
more versatile cluster library (see Section 5.1 – Application profiles and cluster library). The
current revision of the standard was published in 2007, which defines two different stack profiles.
First, the stack profile 1 or simply ZigBee, intended to be used for home and light commercial
applications. Second, the stack profile 2 or ZigBee PRO, which offers more capabilities, like
multicast messaging and many-to-one routing [53].

Figure 5.5 shows the architecture of the ZigBee stack resembling the ISO/OSI 7 layer model.
The ZigBee stack consists of several independent layers, which are interconnected by so called
Service Access Points (SAPs).

Application Framework

ZPU
I

ZigBee Device
Object (ZDO)

Security
Service

Provider

N
LSE

-SA
P

A
PSSE-SA

P

APSDE-SAP

Application Object
240

Application Object
1

APSDE-SAPAPSDE-SAP

Application Support Sub-Layer (APS)

A
PSM

E-SA
P

NLDE-SAP

Network Layer (NWK)

MCPS-SAP

N
LM

E-SA
P

MLME-SAP

Medium Access Layer (MAC)

PLME-SAPPD-SAP

Physical Layer (PHY)

Figure 5.5: ZigBee architecture [29]

The physical and data link layer of the ZigBee network model rely on the IEEE 802.15.4
standard [13] in the form of 2003. Although newer releases of the IEEE 802.15.4 norm are
readily available, they have never been adopted into the official ZigBee specification. There
are three different radio bands available. One, utilizing the ISM band at 868 MHz available in
Europe and operating on a bit rate of 20 Kbps. Second, the 915 MHz ISM band available in
North America, which provides a bandwidth of 40 Kbps. And finally, the 2.4 GHz band, which
is available world-wide and is able to sustain a bitrate of 250 Kbps [25].

66

The network layer is responsible for all tasks concerning message transmission and network
management. Hence, it provides facilities for broadcast, multicast, and unicast messaging. Fur-
ther, together with the Security Service Provider, secure joining, rejoining and packet encryption
are provided.

The main idea behind the application support layer is to simplify message handling for appli-
cation objects. Therefore, filtering for duplicate messages and a binding table for communication
partners is maintained by this layer. The application support layer also validates endpoints used
by application objects against application profiles (see Section 5.1 – Application profiles and
cluster library).

The ZigBee device object component represents and manages the current state of the node
inside a network. Thus, it provides mechanisms for discovering other devices and services within
a ZigBee network.

Finally, the application framework hosts different, independent application objects and con-
nects those application objects via individual endpoints to the remaining ZigBee stack. Different
endpoint numbers can then be used to redirect messages to different services or application
programs. The application framework also accommodates the ZigBee Cluster Library, which
provides ready-to-use application building blocks (see Section 5.1 – Application profiles and
cluster library) [29].

Device types

IEEE 802.15.4 defines two different device types, namely the Full Function Device (FFD) and
the Reduced Function Device (RFD). A FFD implements the full communication stack, defined
by the IEEE 802.15.4 norm and therefore is able to perform all foreseen task. Whereas the RFD
lays its focus on battery life, memory, and computation consumption. Hence, the capabilities of
the RFD are limited, and a RFD is only able to communicate with a FFD. On top of the device
types defined by IEEE 802.15.4, ZigBee deploys a more fine grained differentiation of types:

• ZigBee Coordinator (ZC) is the most capable device type in a ZigBee network. There is
exactly one ZC in an individual network, since it is responsible for starting the network in
the first place. Furthermore, this device type is responsible for the joining of new devices,
security and other management tasks. Since the tasks of a ZC are quite power hungry, it
is advised to choose an application that already requires mains connection for this role. In
terms of the IEEE 802.15.4 standard, this is a FFD device.

• ZigBee Router (ZR) is able to forward and redirect messages from other ZigBee devices.
It is also capable of hosting and serving arbitrary application. A ZR, again resembles the
functionality of a FFD in IEEE 802.15.4.

• ZigBee End Device (ZED) are the most limited devices, residing in a ZigBee network. It
only has basic communication mechanisms for transmitting and receiving data concerning
its own hosted application. Therefore, a ZED is the most power effective device type from
the ZigBee perspective, as it is able to stay asleep for a significant amount of time. Thus,
a ZED corresponds to a RFD device in terms of the IEEE 802.15.4 norm.

67

Topologies

Network topologies in ZigBee must assume one of the two communication structures defined in
the IEEE 802.15.4 specification:

• Star topology. In a star topology, every device in a ZigBee network is only able to com-
municate with the ZC that originated such a network. Therefore, this topology is only
suitable for small instances.

• Peer-to-peer topology. Every participant in a ZigBee network is allowed to communicate
with every other participant, as long as the device type sustains the necessary capabilities
of the communication stack. A peer-to-peer topology can assume different manifestations.
Ideally, a full mesh topology is formed, since multiple communication paths provide a
higher level of fault tolerance. But also tree topology like forms are possible, where ZED
devices are grouped around ZR devices which are then interconnected with the ZC.

Application profiles and cluster library

Every communication transaction fulfilled in a ZigBee network is carried out upon an applica-
tion profile. Such an application profile describes a certain problem domain, and hence groups
related devices into a single application model. The ZigBee specification differentiates between
two different classes of application profiles, namely public profiles and private profiles. Public
profiles are defined by the ZigBee Alliance and aim at interoperability between different device
manufacturers, whereas private profiles are specified by individual vendors.

Public profiles are built on the foundation of the ZigBee Cluster Library (ZCL), which pro-
vides predefined application objects or clusters. Therefore, clusters encapsulate attributes as the
current state and commands as actions that may be taken. Given the on/off cluster as an example,
it defines the necessary attributes and commands to model an arbitrary object that has an on and
off state. However, no additional semantic information is foreseen, which identifies a concrete
instance, like a pump or a light. Hence, with the ZCL alone, it is not possible to determine if a
pump, a light or something else is operated.

The ZCL utilizes the client/server principle. One endpoint is the client, which has a pre-
defined pool of transactions, dependent on the cluster, at its disposal. Another endpoint is the
server, which can execute a certain set of functionality based on the implemented cluster. Server
and client, implementing the same cluster are then able to interconnect. Figure 5.6 shows an
example of ZigBee devices, interconnected by the means of the ZCL. Thus, the On/Off Switch is
able to control the On/Off Light by the transactions defined by the On/Off Cluster.

Finally, Figure 5.7, depicts the specification of a shade actuator device profile from the
Home Automation Profile. There is a clear distinction between the client functionality and server
functionality of the ZCL. Additionally, not all suggested clusters are mandatory, and also op-
tional clusters are foreseen. This opens up the possibility to implement different set of features,
and still serving same device profile, while obeying the Home Automation Profile specification.

68

C S

S

C

C

C S

S

S

Configuration Tool On/Off Switch On/Off Light

Dimmer Switch Dimmable Light

On/Off Cluster

On/Off Cluster

Level Control
Cluster

Switch
Configuration

Cluster

C

S

Client

Server

Radio
Communication

Figure 5.6: Cluster client/server example [15]

Server Side Client Side

Mandatory

Shade Configuration None

On/Off

Level Control

Scenes

Groups

Optional

None None

Figure 5.7: ZigBee shade actuator [17]

5.2 Testbed

A schematic overview of the testbed for the proof-of-concept gateway implementation is de-
picted by Figure 5.8. Two field level protocols were chosen, that are representatives of the most
commonly used network topologies. As determined by Section 3.2, these are line/bus and mesh
topology. Therefore, as depicted in Figure 5.8, the green area represents the KNX network,
which leverages a line protocol. Whereas the red area illustrates the ZigBee network, which
deploys a mesh communication structure. Furthermore, both considered field protocols do not
only differ in their network topology. KNX is built upon wired connections and ZigBee commu-
nicates via radio. But, both field level protocols target the same application domain of BAS and
therefore model similar application tasks and functionality. Another nicety, are the extensive
interoperability models, provided in form of functional specifications for different devices and

69

scenarios. Hence, various ready-to-use field devices are available for the testbed.

=

~

640mA

2

Up

n

GAMMA trainings case

10.10.013

10.10.--

10.10.002

10.10.012

Coordinator
Light

End Device
Switch

Home Automation Demonstrators

Gateway #1

Gateway #2

10.10.015

10.10.016

Router

Router

Raspberry Pi
WLAN Access Point

192.168.10.5

192.168.10.6

192.168.10.1

Pwr.
Supply

Bus
Coupler

Switch

Actor

Figure 5.8: Topology of evaluation testbed

The application domain of BAS gives rise to several possible test scenarios, like heating,
lighting and venting. In order to keep the proof-of-concept gateway implementation as simple
as possible, a lighting scenario has been chosen. Each field network consists of a binary switch
field device and a lighting actuator field device. The switches of each network shall be enabled
to operate the lights by utilizing a VRG consisting of two disjoint gateway devices. Hence, the
testbed outlined by Figure 5.8 is advised.

The hardware platform for the two gateway devices in the depicted scenario are based on
beaglebone black development boards. The beaglebone black development boards consist of
a powerful ARMv7 CPU clocked at 1 GHz and 1 GB of RAM, running a customized Debian
Linux platform. Thus, there is plenty of processing power available to fulfill the tasks. The
interface devices, a TPUART USB module for KNX, and a CC2531 USB dongle for ZigBee, are
connected via USB. Further, there is a backbone Ethernet connection available which is used for
engineering purposes, but may also be used as a backbone link for gateway synchronization in
future work.

70

Virtual Redundant Gateway

Figure 5.9: Testbed

The KNX network is realized via a Siemens GAMMA training kit, which offers a base plat-
form for various HBA scenarios. However, only the field devices relevant to the proposed light-
ing scenario are considered. Therefore, a KNX switch and lighting actuator operating on two
light bulbs is selected among the available field devices. The base configuration already wires
the switch and lighting actuator, so existing group communication (see Section 5.1 – KNX) can
be reused without reconfiguration. This is done by simply binding the concerned virtual field
device statically to the respective group communication at the proof-of-concept gateway device.

The ZigBee network is implemented by two CC2538 development boards provided by Texas

71

Instruments. As part of the promotion of the ZigBee protocol, and the HA profile especially,
Texas Instruments offers demonstration software projects for each field device defined in the
context of the HA profile. Thus, one CC2538 development board is programmed as a ZigBee
coordinator, resembling a lighting actuator. As already mentioned in Section 5.1 – ZigBee, a
device with a permanent connection to a power supply is most suitable for the role of a coordi-
nator. Finally, another CC2538 development board implements the lighting switch in the role
of a ZigBee end device. Figure 5.9, shows a picture of the actual testbed used for testing of the
proof-of-concept gateway implementation.

5.3 Architecture

The internal architecture of the proof-of-concept gateway device follows the structure outlined
in Section 3.3. Therefore, the internal structure of the gateway software is divided into several
disjoint building blocks according to Figure 3.5. First and foremost, the coupling to the two
considered fieldbusses, KNX and ZigBee, and a communication stack is implemented. The next
vital building block is the information model, which powers the translation process between
the fieldbusses. The communication stack and the information model are interconnected by
the protocol binding layer, which consists of the necessary functionality to redirect fieldbus
telegrams and provides virtual field devices. Also, the information model itself is modeled (see
Section 5.4). Finally, components, part of the redundancy concept, the bus guard, bus load
monitor and the redundancy manager are created and integrated.

As an operating system platform for the software implementation of the proof-of-concept
gateway device, a Debian Linux has been chosen. Main reasons were the large amount of ready-
to-use software packages and rapid development cycle possible due to the familiarity with Linux
in general. Readily available software packages also included fieldbus drivers and communi-
cation stacks, while most of the remaining functionality had to be implemented. Notable, a
more sophisticated implementation of a proof-of-concept gateway device might choose a real-
time capable software platform, in order to satisfy certain latency guarantees. However, this
proof-of-concept implementation limits itself to demonstrate the feasibility and viability of the
proposed fieldbus translation mechanism and the reliability concept.

The following enumeration describes all the building blocks according to Figure 3.5, that
were created to form a working proof-of-concept gateway device:

• KNX communication stack: The knxd project provides the communication stack con-
necting the KNX network to the protocol binding layer and further to the information
model. knxd is a fork of the eibd project which has been advised in [55]. The com-
munication stack provides a complete API, including message monitoring, filtering and
forwarding. The physical connection is done via a USB attached bus coupler device that
forwards incoming messages via a tty software interface.

• ZigBee communication stack: The interface to the ZigBee network is achieved via the
Texas Instruments Z-Stack Linux Gateway. This gateway driver solution was intended as a
demonstration project for a gateway between Ethernet and IP based applications and Zig-
Bee/HA. However, the original implementation has been alienated by the proof-of-concept

72

Information Model

Redundancy Manager

Bus G uard

Bus Load
Monitor

KNX / Data Link

KNX /Network

KNX / TP1 Physical

KNX / Transport

Bus G uard

Bus Load
Monitor

Data Link (Not used by ZigBee)

ZigBee / NWK

ZigBee / 802.15.4 Physical

ZigBee / APS

Protocol Binding
KNX / Application

Protocol Binding
ZigBee / Application

Framework

Figure 5.10: Gateway component overview

implementation and was integrated via local unix sockets into the gateway software archi-
tecture.

• Information Model: The information model is implemented with the help of a mysql
relational database. A simple database schema directly tailored to the lighting test scenario
was created and used for the storage of the different entities of the information model.

• Protocol Binding: The protocol binding layer utilizes the stored entities at the informa-
tion model via atomic database transactions. Thus, the mysql database already provides
the necessary synchronization to avoid concurrent access to stored information. Virtual
field devices are directly implemented at the protocol binding layer of the corresponding
fieldbus. The address field of each message retrieved at the fieldbus interface of the proof-
of-concept gateway device is matched against the list of virtual field devices. In case a
match has been found, the message is processed by the responsible virtual field device. In
the other case, the message is simply dropped.

• Bus Guard: For each supported fieldbus, a bus guard component instance is created.
The bus guard then transmits periodic messages to the field network address, which are
automatically acknowledged by the communication stacks of the target gateway devices.
The configuration parameters of the proof-of-concept gateway device are hardcoded. The
heart-beat interval is set to one second, whereas the grace period is set to three consecu-
tive failed transmission attempts.

• Bus Load Monitor: The instances of the bus load monitor building block attach them-
selves to the field protocol stacks as passive listeners in promiscuous mode. Thus, simply

73

all incoming and outgoing messages are counted and a load indicator is built. Such an
indicator is calculated by the means of a moving average algorithm. More sophisticated
influence factors regarding the load indicator are not incorporated into the bus load moni-
tor, like signal strength or link quality index for wireless fieldbus networks. This is mainly
to keep the code simple and the load indicators from different field networks comparable
without any tweaking or balancing mechanisms or factors.

• Redundancy Manager: The redundancy manager utilizes the information from the bus
guard and the bus load monitor components to implement the reliability concept. Syn-
chronization between individual gateways is achieved by subscribing to change notifica-
tions from the information model. Furthermore, any message directly addressed to the
gateway device is interpreted as gateway backbone communication. Hence, such tele-
grams are always directed to the redundancy manager, while messages with differing
addresses are matched against the virtual field devices residing at the information model.

Finally, all outlined software components are interconnected via Unix sockets and the Ze-
roMQ message queue library. ZeroMQ provides a high performance message passing system
with publish/subscriber mechanisms and is able to serialize arbitrary data structures. There is
also support for various programming languages. All custom software core components of the
proof-of-concept gateway device have been written in C, with some minor binding written in
Python.

5.4 Information model

The information model describes the proposed lighting scenario built by the testbed. It consists
of a switch and a lighting actuator in each field network that is interconnect by the VRG, formed
by the proof-of-concept gateway devices. Thereby, the information model is created by the
means of the proposed meta-model in Section 3.4 and hence follows the MVP paradigm. Figure
5.11 illustrates the information model and its interconnection with the attached fieldbusses as
given by the testbed lighting scenario.

The dashed line, in Figure 5.11, shows the boundary of a single proof-of-concept gateway
device. The highlighted areas in red and blue illustrate the areas that interact with the field
level protocols. Therefore, the presenter layer and view layer are located in the afore mentioned
areas. Finally, the blue highlighted area contains the entities of the information model, that are
dedicated to the model layer.

• Model: The model part consists of two Object entities. A Object, represents the state
of one lighting application task. The Object instance, named Light1, depicts the KNX
switch field device interacting with the ZigBee lighting actuator. Whereas the other Object,
named Light2, resembles the binding of the ZigBee switch device to the KNX lighting
device. Each Object has a reference to a Variable entity holding the on/off state as a
boolean value.

• ZigBee Presenter: The presenter layer part, serving the ZigBee network, maps the two
KNX fieldbus devices considered by the lighting scenario into the ZigBee domain. Two

74

 FieldDevice

ZigBee Light

Address : 10.10.020

 FieldDevice

ZigBee Switch

Address : 10.10.021

Object

Name : Light1

onoff : <reference>

Object

Name : Light2

OnOff : <reference>

Variable

Name : Light1State

ValueType : Boolean

IsScalar: False

Variable

Name : Light2State

ValueType : Boolean

IsScalar: False

 FieldDevice

KNX Switch

Address : D444 11 788F

 FieldDevice

KNX Light

Address : D444 11 F11E

ViewView

KNX

Protocol

Stack

ZigBee

Protocol

Stack

10.10.013

Binary Switch
10.10.012

Light Actor

2

n

D444 11 0000

Light

Coordinator

D444 11 BC47

Light

End Device

Media Coupler

Bus Device

Media Coupler

Router

D444 11 E23D 10.10.015

Figure 5.11: Information model of evaluation testbed

FieldDevice entities are modeled, where one represents the KNX switch and the other one
the KNX lighting actuator. Both FieldDevice instances comprise of an address attribute,
storing the 64 Bit ZigBee address. For each FieldDevice instance, the protocol binding
layer creates a virtual field device and forwards changes via the proposed information
model transactions.

• KNX Presenter: The KNX part of the presenter layer consists again of two FieldDevice
entities. Both entities model the representation of the ZigBee field devices in the domain of
KNX. Therefore, each FieldDevice instance comprises of an address attribute, that stores
the KNX address. Again, the respective protocol binding layer creates a virtual field device
for each single FieldDevice entity and redirects incoming messages accordingly.

• View: As proposed in Section 3.4, a individual View entity provides a single entry point
for each protocol binding layer.

75

5.5 Test cases and results

Besides the intended operation of the proof-of-concept, each case from the fault analysis in
Chapter 4 was considered. The gateway devices were preconfigured by configuration files. One
gateway was initially set to assume the master role, while the other assumed the backup role. The
VRG and the rest of the field network were set up according to the testbed description in Section
5.2. The virtual reference node, according to Section 3.5 – Bus guard, was manually set to the
single switch field device, present in both field network segments. Results were obtained by
connecting via remote shell access to the individual gateways and evaluated via console outputs.

• Intended operation of VRG. The normal operation of the overall system was tested by
pressing one of the switch field devices. It is then observed that with respect to the prior
state of the lighting actuators, either all lights turn on or off. Different sequences of
button presses while varying the pressed switch did not show any unintended behavior.
Furthermore, proper synchronization from the master to the backup gateway was observed
by comparing the database dumps after a test sequence and by evaluation of the debug
console outputs on the individual gateway devices.

• Link fault at master gateway. The link fault was triggered by simply disconnecting the
wires at the KNX USB dongle of the master gateway. As expected the backup gateway
recognized the interface outage due to failed heart-beat messages. Thus, the bus guard
notified the redundancy manager after the expiration of the grace period. The hand-over
procedure between the old master gateway and the backup gateway was accomplished
immediately after the notification. The whole procedure was verified by evaluation of
the console output. Furthermore, continued operation of the new master was verified by
another sequence of switch presses.

• Device fault at master gateway. The device fault was triggered by interrupting the power
supply of the master gateway. The backup gateway immediately recognized the failed
heart-beat messages and notified the redundancy manager after the expiration of the grace
period. The backup gateway then assumed the role of the master and continued operation.
This was again verified by evaluation of console output at the backup gateway. Also,
continued operation of the system as a whole was verified by a sequence of switch presses.

• link fault at backup gateway. The link fault was again triggered by disconnecting the
cable between the backup gateway and the rest of the KNX bus. Synchronization transac-
tion at the master gateway timed out as expected according to console log messages. The
backup gateway sensed the link fault. After the grace period expired, the backup gate-
way operation was shutdown. Again, a sequence of switch presses verified the continued
operation of the overall system.

• Device fault at backup gateway. The device fault was again simulated by detaching the
power supply from the backup gateway. Again, the synchronization attempt from the
master gateway failed, as observed at the console log. Operation of the residual system
continued as expected and was verified by a sequence of switch presses.

76

• link fault at master gateway with pending transaction. The master gateway was stopped
by a breakpoint, set by a software debugging tool during a pending information model
transaction initiated by a switch press. Next, the cable to the KNX bus was disconnected
and the transaction was resumed. The backup gateway sensed the disconnected link and
initiated the hand-over procedure. In the meanwhile, the master gateway tried to reach
out via both the ZigBee network and the KNX network to the backup gateway. As ex-
pected, the synchronization attempt via KNX failed, whereas the synchronization attempt
via the ZigBee interface succeeded. Finally, the backup gateway assumed the role of the
new master. Operation of the residual system was continued and a sequence of switch
operation, turning the lighting actuators on and off, confirmed the working condition.

• device fault at master gateway with pending transaction. This test case was not carried
out, as it is essentially the same procedure as described in test case device fault at master
gateway. The transaction concerned by the device fault at the master gateway is inevitable
lost and has to be recovered by the upperlying layer.

• link fault at backup gateway with pending transaction. A pending transaction involving
the backup gateway is in any case a synchronization transaction. A test program was
deployed at the ZigBee switch field device, which automatically toggles its on/off state
every 200 ms. Hence the VRG has to process constantly changing data and synchronize
its internal state, stored in the information model. The link fault was again simulated by
disconnecting the cable between the KNX network and the backup gateway. As observed
by the console output at the master gateway, a synchronization attempt via KNX was
carried out. The synchronization message timed out and a successful retry via the ZigBee
link was carried out. As observed at the console output, the backup gateway detected the
link fault and removed itself from the VRG. Flawless operation was verified by the before
mentioned test program and was observed at the lighting actuators.

• device fault at backup gateway with pending transaction. This test case is essentially
the same as case device fault at backup gateway. It was observed at the master gateway,
that synchronization attempts time out. However, continued operation was monitored and
additionally tested by a sequence of switch presses.

77

CHAPTER 6
Conclusion

The goal of this work was the design of a reliable gateway approach solving the horizontal
integration problem at the field level of the automation pyramid (see Figure 1.1), and a first
approach has been published in [48]. As stated by [51], horizontal integration of field networks
never reached significant relevance due to the heterogeneity of the mostly application driven
design of field level protocols. However, latest protocol consolidations at the field level, and
the emergence of standardized device profiles for field devices modify the prior statement. As
described in Chapter 2, existing approaches target mostly the vertical integration problem, with
a special focus on Ethernet and IP interconnection towards upperlying layers of the automation
pyramid. Further, the few approaches, that are conceived as horizontal integration solutions,
lack a reliability concept and are therefore not fit for critical systems like personal life safety
systems.

The proposed design especially focuses on the reliability aspect of such a gateway approach.
Therefore, possible network topologies of different field networks are analyzed at first in Chapter
3. The evaluation yields, that a proper gateway implementation must not compromise the fault
hypothesis of an attached fieldbus. However, the fault hypothesis of the whole interconnected
system is ideally determined by the field network with the weakest fault hypothesis and not the
interconnecting gateway. As already mentioned by the prior statement, the integrity of the fault
hypothesis of an arbitrary gateway attached fieldbus is not only influenced by the design of the
gateway device. Also, the fault hypothesis of another fieldbus must be taken into account. This
is due to the mapping of field devices, performed at the proposed gateway device, and the fact
that the gateway is not able to strengthen the fault hypothesis of an attached network.

For instance, consider two field devices, interconnected by the proposed gateway solution.
One such field device resides in a field network with a strong fault hypothesis, and the other
one resides in a network with a weak fault hypothesis. A mapped field device follows the fault
hypothesis of its originating field network. Hence, the virtual field device mapped from the net-
work with the weaker fault hypothesis into the field network with the stronger fault hypothesis
weakens the stronger fault hypothesis, while the mapping of the virtual field device with the
strong fault hypothesis does not strengthen the weak fault hypothesis. Hence, a general relia-

79

bility concept needs to be deployed to truly enable reliability, not only for the interconnecting
device, but also for the whole interconnected system. An exhaustive discussion on this topic in
the domain of BAS has been performed in [39]. A general approach to this problem is a highly
anticipated topic for future work.

The translation process between different field networks has been designed using a stateful
approach in this work, resting upon a common information model. A stateful approach allows a
decoupling of field protocol timing requirements, aggregation and dissipation of telegrams, and
a more flexible handling of information in general. But, a stateless translation process enables
direct end-to-end delivery of data, and therefore end-to-end acknowledgments. End-to-end ac-
knowledged messages eliminate the problem of lost information at a gateway during a fault,
whereas the proposed solution redirects the problem to the upperlying application. Furthermore,
in order to deploy a reliability concept in a stateless approach, every attached field protocol needs
to allow multiple links between communication partners. Additionally, proper routing mecha-
nisms need to be advised to select a single communication path and to provide rerouting in case
of a gateway outage. In conclusion, a direct stateless translation is superior in very particular
scenarios, but there is a vast amount of constraints to be fulfilled in order to be feasible. Hence,
a stateful approach, as chosen for the proposed gateway, which is more flexible and allows the
interconnection of arbitrary field protocols.

The information model was highly influenced by the model and concepts deployed by OPC
UA. However, considering resource constraints inherent to a typical embedded device, a stripped
down version has been advised. Furthermore, a separation of concerns between a field protocol
specific model and a core model has been realized by the means of the MVP paradigm. The cur-
rent design of the gateway approach delegates all functional tasks, like data format conversion,
to the protocol binding layer. A possible enhancement for future refinements of the proposed
concept is the integration of Function entities, which are able to model arbitrary operations on
the information model. OPC UA already implements such a concept, but it was chosen to drop
those features to use the information model only for data storage.

The protocol binding layer, interconnecting the individual fieldbus communication stacks
with the information model, is currently designed as a completely custom component. Among
its many tasks are data format conversion, virtual field device implementation and provisioning.
As part of a future work, the protocol binding layer may be analyzed and general mechanisms
extracted, so that a more sophisticated solution is derived. A first step, already outlined in the
previous paragraph, was the extraction of certain functionality into reusable elements as part of
the information model.

A topic, that remained entirely undiscussed by this work so far, is deployment and configu-
ration of the VRG. The gateway approach described, lacks of a proper management service for
configuration and formation of a VRG. Hence, a gateway management service has to be advised,
including important operations like joining, leaving and initial creation of a VRG.

The join operation must be capable of adding a new backup gateway to the VRG without
interrupting any ongoing tasks. As soon as the join is completed, the master gateway must start
synchronizing its internal state via the available fieldbus connections. In order to avoid peak load
situations, this can only be done over a longer period of time. Thus, in case of a failure at the
master gateway, an incomplete synchronized backup gateway shall not be able to participate in

80

the election process and assume the role of the new master device. The leave operation is much
simpler. Essentially, only a notification message has to be sent to all other gateway devices to
cancel the VRG membership of the concerned device. After this message, the leaving gateway
is no longer part of the VRG, and hence it is not synchronized or allowed to take part in master
elections. A possible way of creating a VRG has been already proposed by this work. A single
gateway device is powered up and subsequently elects itself as master. Then it is possible to
expand the VRG by the means of the join operation.

Another open item for future work, is the procedure, how a faulted gateway leaves the VRG.
The synchronization approach proposed by this work is rather simple and a more sophisticated
mechanism could be taken into account. For the proof-of-concept gateway implementation,
synchronization of an Object or Variable entity is only tried once via each available fieldbus in-
terface. The conceptual gateway approach presented in this work proposes an unlimited amount
of retries, not counting any retry mechanism deployed by the fieldbusses themselves. A more
practical approach would be a kind of orphanage algorithm deployed at the master gateway.
Heart-beat messages sent out by the backup gateways are not only used as an end-to-end com-
munication channel monitoring, but also as keep-alive signals for the individual backup gate-
ways. As soon as a single backup gateway device does not send a heart-beat message after a
certain amount of time, it is kicked out from the VRG compound. Hence, an orphaned backup
gateway needs to rejoin and trigger a full synchronization in case it wants to be again part of the
VRG. A suitable sequence of messages and notifications need to be designed. Firstly, to update
the membership list of the VRG at the backup gateways, and secondly to notifiy an orphaned
backup gateway, when it starts to send heart-beat messages again.

Furthermore, a tool needs to be designed that allows the creation of the information model in
a feasible way. The information model of the proof-of-concept information was manually filled
with all necessary information. But this is a rather crude approach, and a more sophisticated
tooling is strongly advised.

The presented work was able to show, that a horizontal integration between different field-
busses utilizing the gateway approach is feasible and viable. Other solutions presented in Chap-
ter 2 need either to deploy additional layers on top of the field network or lack a reliability
concept. Furthermore, it is even possible to retain the level of fault tolerance for the field net-
work with the weakest fault hypothesis by utilizing a replication approach. These open topics
give rise to future work or refinement of the presented gateway approach.

81

List of Abbreviations

BACS building automation and control systems

BAS building automation systems

CARP Common Address Redundancy Protocol

CIM Computer Integrated Manufacturing

COM component object model

CSMA Carrier Sense / Multiple Access

DCOM distributed component object model

EHS European Home Systems Protocol

EIB European Installation Bus

ERP Enterprise Resource Planning

FCR fault-containment region

FFD Full Function Device

FSK Frequency Shift Keying

HA Home Automation

HBA home and building automation

HMI Human-Machine Interface

HTTP hypertext transfer protocol

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilating, and Air Conditioning

ICT information and communication technology

83

IP internet protocol

ISM Industrial-Scientific-Medical

ISO International Organization for Standardization

ISP Interoperable System Project

MES Manufacturing Execution System

MVC Model View Controller

MVP Model View Presenter

NAT Network and Address Translation

oBIX open building information exchange

OLE object linking and embedding

OPC OLE for process control

OPC UA OPC - unified architecture

OSI Open Systems Interconnection

PAT Port and Address Translation

PLC programmable logic controller

REST Representational State Transfer

RFD Reduced Function Device

SAP Service Access Point

SCADA Supervisory Control and Data Acquisition

SCADA Supervisory Control and Data Acquisition

SOAP simple object access protocol

SOC system on chip

UDP User Datagram Protocol

URI Uniform Resource Identifier

VRG virtual redundant gateway

VRRP Virtual Router Redundancy Protocol

XML extensible markup language

84

XML Extensible Markup Language

ZCL ZigBee Cluster Library

ZC ZigBee Coordinator

ZED ZigBee End Device

ZR ZigBee Router

85

Bibliography

[1] CAN Specification Version 2.0. Bosch, 1991.

[2] CANopen Application Layer and Communication Profile, CiA/DS301. CAN In Automa-
tion, 2000.

[3] OPC Classic - Security. , OPC Foundation, 2000.

[4] OPC Classic - Batch. , OPC Foundation, 2001.

[5] OPC Classic - Alarms and Events. , OPC Foundation, 2002.

[6] Digital data communications for measurement and control Fieldbus for use in industrial
control systems. International Electrotechnical Commission, 2003.

[7] OPC Classic - Complex Data. , OPC Foundation, 2003.

[8] OPC Classic - Data Access. , OPC Foundation, 2003.

[9] OPC Classic - Data Exchange. , OPC Foundation, 2003.

[10] OPC Classic - Historical Data Access. , OPC Foundation, 2003.

[11] Building automation and control systems (BACS) - Part 2: Hardware. ISO, 2004.

[12] OPC Classic - XML Data Access. , OPC Foundation, 2004.

[13] IEEE 802.15.4 – Standard for Information technology – Local and metropolitan area
networks– Specific requirements– Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks
(WPANs). IEEE, 2006.

[14] oBIX 1.0 - Committee Specification 01. OASIS, 2006.

[15] ZigBee Specification. ZigBee Alliance, Jan 2008.

[16] IEC 62541 - OPC Unified Architecture Specification. IEC, 2010.

[17] ZigBee Home Automation Public Application Profile. ZigBee Alliance, Feb 2010.

87

[18] ISA100.11a-2011. Wireless systems for industrial automation: Process control and related
applications, 2011.

[19] EEBus Specification 1.0 beta 4. EEBus Initiative, 2015.

[20] Alena, R. and Gilstrap, R. and Baldwin, J. and Stone, T. and Wilson, P. Fault tolerance
in ZigBee wireless sensor networks. In Aerospace Conference, 2011 IEEE, pages 1–15,
March 2011.

[21] Attebury, G. and Ramamurthy, B. Router and Firewall Redundancy with OpenBSD and
CARP. In Communications, 2006. ICC ’06. IEEE International Conference on, volume 1,
pages 146–151, June 2006.

[22] Avižienis, A. and Laprie, J.C. and Randell, B. and University of Newcastle upon Tyne.
Computing Science. Fundamental Concepts of Dependability. Technical report series.
University of Newcastle upon Tyne, Computing Science, 2001.

[23] Bautts, T. and Dawson, T. and Purdy, G. Linux Network Administrator’s Guide. O’Reilly
Series. O’Reilly Media, 2005.

[24] Dhillon, B.S. Reliability in Computer System Design. Ablex series in software engineering.
Ablex Publishing Corporation, 1987.

[25] Farahani, S. ZigBee Wireless Networks and Transceivers. Elsevier Science, 2011.

[26] Felser, M. and Sauter, T. The fieldbus war: history or short break between battles? In
Factory Communication Systems, 2002. 4th IEEE International Workshop on, pages 73–
80, 2002.

[27] Galati, A. and Greenhalgh, C. A New Metric for Network Load and Equation of State.
In Networking and Services, 2009. ICNS ’09. Fifth International Conference on, pages
309–313, April 2009.

[28] G.G Wood. Survey of LANs and standards. Computer Standards and Interfaces, 6(1):27
– 36, 1987. Real-time Distributed Software.

[29] Gislason, D. ZigBee Wireless Networking. Elsevier Science, 2008.

[30] Jain, Sushant and Fall, Kevin and Patra, Rabin. Routing in a Delay Tolerant Network.
In Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM ’04, pages 145–158, New York,
NY, USA, 2004. ACM.

[31] Jürgen Jasperneite. INTERBUS. In Richard Zurawski, editor, Industrial Communication
Technology Handbook, Second Edition, chapter 15. CRC Press, Inc., 2014.

[32] Wolfgang Kastner, Stefan Soucek, Christian Reinisch, and Alexander Klapproth. State of
the Art in Smart Homes and Buildings. In Richard Zurawski, editor, Industrial Communi-
cation Technology Handbook, Second Edition, chapter 59. CRC Press, Inc., 2014.

88

[33] Kastner, Wolfgang and Neugschwandtner, Georg. Data Communications for Distributed
Building Automation. In Zurawski, Richard, editor, Networked Embedded Systems,
page 29. CRC Press, 2009.

[34] KNX Association. EN 50090-1:2011: Home and Building Electronic Systems (HBES).
Cenelec, 2011.

[35] Kopetz, H. On the Fault Hypothesis for a Safety-Critical Real-Time System. In Broy,
Manfred and Krüger, IngolfH. and Meisinger, Michael, editor, Automotive Software – Con-
nected Services in Mobile Networks, volume 4147 of Lecture Notes in Computer Science,
pages 31–42. 2006.

[36] Kopetz, H. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Real-Time Systems Series. Springer, 2011.

[37] Kopetz, Hermann and Ademaj, A. and Grillinger, P. and Steinhammer, K. The time-
triggered Ethernet (TTE) design. In Object-Oriented Real-Time Distributed Computing,
2005. ISORC 2005. Eighth IEEE International Symposium on, pages 22–33, May 2005.

[38] Lange, J. and Iwanitz, F. and Burke, T.J. OPC: From Data Access to Unified Architecture.
VDE-Verlag, 2010.

[39] Lukas Krammer. Dependability in building automation networks. PhD thesis, Vienna
University of Technology, December 2014.

[40] Lukas Krammer and Markus Klein and Johannes Kasberger and Wolfgang Kastner. A
fault-tolerant Communication Scheme for Fire Alarm Systems based on KNX. In KNX
Scientific Conference, November 2012.

[41] Lukas Krammer and Stefan Seifried and Wolfgang Kastner. A fault-tolerant Backbone
for IEEE 802.15.4 based Networks. In Proc. of the IEEE International Conference on
Industrial Technology (ICIT 2014), February 2014.

[42] Mahnke, W. and Leitner, S.H. and Damm, M. OPC Unified Architecture. SpringerLink:
Springer e-Books. Springer, 2009.

[43] R. Hinden. RFC3768 – Virtual Router Redundancy Protocol. URL: http://www.
ietf.org/rfc/rfc3768.txt, Apr 2004.

[44] Rathje J. Der Feldbus zwischen Wunsch und Wirklichkeit. In Automatisierungstechnische
Praxis, volume 39, pages 52–57, 1997.

[45] Sauter, T. The Three Generations of Field-Level Networks – Evolution and Compatibility
Issues. Industrial Electronics, IEEE Transactions on, 57(11):3585–3595, Nov 2010.

[46] Sauter, T. and Soucek, S. and Kastner, W. and Dietrich, D. The Evolution of Factory and
Building Automation. Industrial Electronics Magazine, IEEE, 5(3):35–48, Sept 2011.

89

http://www.ietf.org/rfc/rfc3768.txt
http://www.ietf.org/rfc/rfc3768.txt

[47] Schnell, G. Bussysteme in der Automatisierungs- und Prozesstechnik: Grundlagen
und Systeme der industriellen Kommunikation. Praxis der Automatisierungstechnik.
Vieweg+Teubner Verlag, 2013.

[48] Stefan Seifried, Lukas Krammer, and Wolfgang Kastner. A reliable and flexible KNX
Gateway. In KNX Scientific Conference, October 2014.

[49] Syromiatnikov, A. and Weyns, D. A Journey through the Land of Model-View-Design
Patterns. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages 21–
30, April 2014.

[50] Thilo Sauter. Fieldbus Systems: Embedded Networks for Automation. In Richard Zu-
rawski, editor, Embedded Systems Handbook, Second Edition: Networked Embedded Sys-
tems, chapter 20. CRC Press, 2009.

[51] Thilo Sauter. Fieldbus System Fundamentals. In Richard Zurawski, editor, Industrial
Communication Technology Handbook, Second Edition, chapter 1. CRC Press, Inc., 2014.

[52] Walter L. Hürsch and Cristina Videira Lopes. Separation of Concerns. College of Com-
puter Science, Northeastern University Boston, 1995.

[53] Wang, C. and Jiang, T. and Zhang, Q. ZigBee R© Network Protocols and Applications. CRC
Press, 2014.

[54] Wolfgang Granzer and Wolfgang Kastner and Paul Furtak. KNX and OPC UA. In Konnex
Scientific Conference, Nov 2010.

[55] Wolfgang Kastner and Georg Neugschwandtner and Martin Kögler. An open approach to
EIB/KNX software development. In Proc. 6th IFAC Intl. Conference on Fieldbus Systems
and their Applications (FeT ’05), pages 255–262 (preprints volume), nov 2005.

[56] Woo Suk Lee and Seung-Ho Hong. KNX-ZigBee gateway for home automation. In Au-
tomation Science and Engineering, 2008. CASE 2008. IEEE International Conference,
pages 750–755, Aug 2008.

[57] Woo Suk Lee and Seung-Ho Hong. Implementation of a KNX-ZigBee gateway for home
automation. In Consumer Electronics, 2009. ISCE ’09. IEEE 13th International Sympo-
sium, pages 545–549, May 2009.

90

	Introduction
	Motivation
	Reliability
	Problem statement
	Aim of the work
	Methodological approach
	Structure of the work

	State of the art
	Related Work
	Interconnection Approaches
	Integration Technologies
	Conclusion

	Design and concept
	Requirements
	Communication structure
	Architecture
	Information model
	Reliability

	Fault Analysis
	Implementation
	Field protocols
	Testbed
	Architecture
	Information model
	Test cases and results

	Conclusion
	List of Abbreviations
	Bibliography

