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Kurzfassung

In der vorliegenden Arbeit, wird eine numerische Methode zur Simulation des Verhaltens
eines verdünnten Gases vorgestellt. Das mathematische Modell zur Beschreibung eines
solchen Gases ist die Boltzmann Gleichung. Ihre Lösung, die üblicherweise mit f =
f(t, x, v) bezeichnet wird, steht für die Anzahl an Teilchen die sich nahe dem Punkt x
befinden und Geschwindigkeit nahe zu v haben.

Die im Weiteren vorgestellte Diskretisierung ist eine Petrov-Galerkin Projektion. Für die
numerische Approximation der Lösung, welche in R7 definiert ist, wird ein Tensorpro-
dukt verwendet. Die Testfunktionen sind globale Polynome in der Geschwindigkeitsvari-
able und lokale, unstetige, stückweise Polynome bezüglich der Orstkoordinate. Diese
Testfunktionen liefern die Erhaltung physikalischer Erhaltungsgrößen natürlich. Die
Ansatzfunktionen sind ähnlich den Testfunktionen lokale, unstetige, stückweise Poly-
nome bezüglich der Ortsvariablen. In der Geschwindigkeitsvariablen wählen wir den
Ansatz globaler Polynome multipliziert mit Gaussfunktionen. Das liefert gute Approxi-
mationseigenschaften nahe dem Equilibrium, also nahe der Fluiddynamik.
Aufgrund der Unstetigkeit der Ansatz und Testfunktionen treten Kantenintegrale in der
Variationsformulierung auf. Durch die Wahl natürlicher Upwind Flüsse in diesen Inte-
gralen wird eine stabile Diskretisierung erzielt.

Der Gausspeak in den Ansatzfunktionen stellt sicher, dass alle Integrale über den
unbeschränkten Geschwindigkeitsraum existieren. Für deren Berechnung verwenden
wir Gauss Hermite Quadraturformeln. Im Gegensatz zu vielen anderen determin-
istischen Methoden wird kein zusätzlicher Modellfehler eingeführt, da weder der
Geschwindigkeitsraum noch die Integrationsgebiete beschränkt werden müssen.

Die Grundidee wird nun folgendermaßen erweitert: Die Gaussfunktion im Ansatzraum
wird elementweise entsprechend der lokalen mittleren Geschwindigkeit und Temperatur
geshiftet bzw. skaliert. Diese Parameter werden hierfür aus dem vorigen Zeitschritt er-
mittelt. Die Approximationseigenschaften des Ansatzraumes werden durch so eine An-
passung sehr stark verbessert, auf der anderen Seite treten Stabilitätsprobleme auf. Durch
leichtes Glätten der eben genannten Parameter sind diese jedoch zum großen Teil in den
Griff zu bekommen.

Die Berechnung der Kollisionsintegrale hat in numerischen Berechnungen den größten
Aufwand. Um diesen zu reduzieren führen wir die numerische Lösung von nodalen auf
hierachische Polynome über um den innersten auftretenden Integraloperator in diagonale
Form zu bringen. Wir zeigen, wie man spezielle Eigenschaften der Ansatzräume nutzen
kann um effizient zwischen den Polynombasen zu transformieren.
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Abschließend zeigen wir numerische Ergebnisse als Validierung für das Verfahren.
Dabei werden sowohl örtlich homogene als auch inhomogene Probleme gezeigt. Diese
zeigen die exzellenten Approximationseigenschaften der angepassten Basisfunktionen,
speziell nahe an der Fluiddynamik. Die Rechenzeiten der Beispiele zeigen außerdem
den erzielten Geschwindigkeitsvorteil in der Auswertung der Kollisionsintegrale.
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Abstract

In the underlying thesis, we present a numerical method to solve for the behaviour of a
dilute gas. The mathematical model behind such a gas is the Boltzmann equation. It’s
solution, usually denoted by f = f(t, x, v) depends on time, position and velocity and
holds the average number of particles having position close to x and velocity close to v.

The discretization presented in the sequel is a Petrov-Galerkin projection. To numeri-
cally approximate the solution, which is defined in R7, we use a tensor product. The
test functions are global polynomials in the velocity variable and local, discontinuous,
piecewise polynomials in the position variable. These test functions yield the conserva-
tion of physically conserved properties naturally. The trial functions are similar to the
test functions chosen as discontinuous, piecewise polynomials in the spatial variable. In
the velocity variable, we take an approach of global polynomials multiplied with Gaus-
sian peaks. This gives good approximation properties of solutions close to equilibrium
and thus, close to the fluid regime.
The discontinuities of the trial and test functions yield skeleton integrals in the varia-
tional formulation. By choosing natural upwind fluxes in these skeleton integrals a stable
discretization is achieved.

The Gaussian peak in the trial functions ensures additionally that all integrals over
the unbounded momentum domain exist. For the evaluation we use the Gauss Hermite
quadrature rules. In contrast to many other deterministic methods there is no additional
modelling error due to domain truncation.

We extend the main idea in the following way: we shift and scale the Gaussian peaks
element wise according to the gas’ local mean velocity and temperature calculated from
the previous time step. The approximation properties of the trial space are greatly en-
hanced by such a dependency on the solution. On the other hand, stability is decreased.
By smoothing the above mentioned parameters mean velocity and temperature slightly,
the stability issue can be avoided for the most part.

The evaluation of the collision integrals in actual computations is a critical part since
this involves a lot of numerical work. To reduce the complexity in the calculations we
transform the solution from nodal to hierarchical polynomials to arrive at an inner inte-
gral operator in diagonal form. We show how to use the properties of the trial spaces to
execute this transformations efficiently.

Finally we show a lot of numerical examples as a validation for the method. This includes
space homogeneous as well as space dependent problems. The results demonstrate the
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excellent approximation properties of the shifted and scaled basis functions, especially
close to the fluid regime. In addition, the computation times show the speed up achieved
by the evaluation techniques for the collision integral.

iv



Acknowledgements

The present thesis was written during my work at Vienna University of Technology at
the Institute for Analysis and Scientific Computing.

I would like to express my gratitude to my advisor professor Joachim Schöberl for his
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1 Introduction

In many industrial applications the knowledge of the flow around an obstacle is important: In
aeronautics, the resulting flow around an air foil enables one to calculate lift and drag force acting
on the air foil. Due to immense expenses needed for wind tunnel experiments and the capability
of modern computers to solve for such computational intensive problems, numerical simulation
has become more and more relevant. Typically people solve the system of Navier-Stokes or Euler
equations to obtain the flow field. The Navier-Stokes equations are capable to model friction and
thus include turbulences and also hydrodynamic boundary layers.
In contrast to Navier-Stokes, the Euler equations do not include turbulences, neither boundary
layers. However, if no boundary layers or turbulences occur, the Euler equations provide a satis-
factory description of the flow.
As the gas becomes more and more dilute, the description by the above models is not satisfactory
any more since they are based on a local thermodynamic equilibrium of the flow. This requires a
sufficiently large amount of collisions. If the gas becomes more and more rarefied there are too
few collisions to guarantee local equilibrium and thus we need an alternative model for such a gas.

1.1 The Boltzmann Equation

The Boltzmann equation is a model for transport phenomena in a sufficiently dilute gas. The equa-
tion models the transport (free flow) of particles and in addition a relaxation process (particle
interaction) to equilibrium. In the simplest case, the interaction can be imagined as hard sphere
collisions. In terms of the Boltzmann equation, the gas is described by a density distribution func-
tion, usually denoted by f . The Boltzmann framework may be seen as a reduced description of
the microscopic state (relaxation is modelled in the mean). Clearly, a complete description incor-
porates the position and momenta of all particles under consideration. For a realistic situation this
would incorporate approximately 1019 particles, making a direct approach unsuitable and thus,
gives need to study the Boltzmann equation. The equation can be rigorously derived from a sys-
tem of N particles which are moving according to Newtons laws. A small gap is left which can be
closed by the Boltzmannschen Stozahlansatz.
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1 Introduction

1.1.1 Deriving The Boltzmann Equation

At the beginning we give a short presentation of the derivation of the Boltzmann equation. It is
essentially based on the derivation in [Cer90, CIP94].

We consider the motion ofN particles with positions xi, i = 1 . . . N and velocities vi, i = 1 . . . N .
If no interaction occurs, the evolution of the particles is given by

ẋi = vi v̇i = Xi, (1.1.1)

where Xi is the force acting on the i-th particle divided by its mass. We look for an alternative
representation of this evolution given by one single function depending on all the positions and
velocities

C :

{
R × ΩN × R3N → R
(t, xi . . . xn, v1, . . . vN ) 7→ C(t, xi . . . xN , v1, . . . vN )

, (1.1.2)

such that C = 1 if xi = xi(t), i = 1 . . . N , vi = vi(t), i = 1 . . . N and 0 otherwise. We denote
the space ΩN × R3N as the phase space of the system of the N particles.
The function C can be written as a product of δ distributions,

C(t, x1 . . . xN , v1 . . . vN ) =
N∏
i=1

δ(xi − xi(t))δ(vi − vi(t)). (1.1.3)

Its time derivative satisfies

∂C

∂t
+

N∑
i=1

vi
∂C

∂xi
+

N∑
i=1

Xi
∂C

∂vi
= 0. (1.1.4)

The last equation provides a governing equation for the evolution of the system in terms of the
certainty density C. (1.1.4) is called the Liouville equation. Assuming that one is able to obtain
the initial data of a set ofN ≈ 1019 particles exactly, the Liouville equation would – supplemented
with appropriate boundary conditions – describe the gas entirely for each t > 0. However, it is
unfortunately not possible to obtain the initial data exactly. Therefore we drop the assumption that
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1.1 The Boltzmann Equation

we know each particles position and momentum exactly and replace C by a probability density
P = P (t, x1, . . . xN , v1, . . . vN ).

Prob((x1 . . . xN , v1 . . . vN )) ∈ D) =

∫
D

P dx1 . . . dxN dv1 . . . vN , (1.1.5)

where D is a region of the phase space. We note that – under the absence of particle interactions
– also P satisfies the Liouville equation (1.1.4). Due to the consideration of identical particles we
assume that the function P is symmetric w.r.t. the particles positions and velocities.

Remark 1.1.1. Describing the system by the certainty density C and changing it afterwards to a
description by the probability density P is the approach presented in [Cer90]. In [CIP94] Cer-
cignani starts with a description of the system under consideration with the probability density
P . By a consideration of the time evolution of the points in phase space he also ends up with the
Liouville equation for P .

Next we want to consider particle interactions in addition. For simplicity we consider hard
sphere molecules which interact like billiard balls, thus with perfectly elastic collisions. A col-
lision happens if we are at a point in phase space such that ∃ i, j ∈ {1 . . . N}, i 6= j with
|xi − xj | = σ, where σ is the molecular diameter. If we consider only points in phase space
such that |xi − xj | > σ, i, j = 1 . . . N, i 6= j, then no particle interaction takes place and the
evolution is still governed by the Liouville equation

∂P

∂t
+

N∑
j=1

vj
∂P

∂xj
= 0, (1.1.6)

with Xi = 0. Note that P ≡ 0 if ∃ i, j : |xi − xj | < σ, since such a state of the system can not be
attained.

Our goal is now to derive an evolution equation for the one particle distribution function, that is
the probability density to find a certain particle 1 at position x1 having a velocity v1 and the other
particles to have any position and velocity. This function is given by

P (1)(t, x1, v1) :=

∫
R3N−3

∫
ΩN−1

P (t, x1 . . . xN , v1 . . . vN ) dx2 . . . dxN dv2 . . . dvN . (1.1.7)

It is intuitive how we can generalize this definition to a s-particle probability density function.
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1 Introduction

In order to obtain an evolution equation for P (1) we integrate the Liouville equation over the
positions and velocities of all particles except the first one. The integration domain for the veloc-
ities vj , j = 2 . . . N is the whole space R3N−3, while for the positions xj , j = 2 . . . N we have
the integration domain ΩN−1 without the points that satisfy |xi − xj | < σ for at least one pair
(i, j), i, j = 1 . . . N, i 6= j. In order to perform the following steps we have to assume sufficient
regularity on the probability density P .
We start with integrating the time derivative of P resulting in

∫ ∫
∂P

∂t
dx2 . . . dxN dv2 . . . dvN =

∂P (1)

∂t
, (1.1.8)

where we just had to interchange the order of differentiation and integration.

Integrating the first term v1
∂P
∂x1

in the sum of (1.1.6) has to be done carefully if differentiation
and integration shall be exchanged since the boundaries for the positions also depend upon x1. By
applying Leibnitz’ rule we obtain the correct result

∫
R3

∫
BN

v1 ·
∂P

∂x1
dxN dvN = v1 ·

 ∂

∂x1

∫
R3

∫
BN

P dxN dvN −
∫
R3

∫
∂BN

vT∂BNnP ds(xN )dvN

 .

(1.1.9)
The integration domain BN for the N -th particle is given by {x ∈ Ω : |xi − xN | > σ, i =
1 . . . N − 1}. n is the outer unit normal vector to the boundary ∂BN and v∂BN is the ”velocity”
of the boundary w.r.t x1. This velocity is given by the identity matrix for the part of ∂BN with
|x1−xN | = σ and is zero for the other parts of ∂BN . Using this fact, we can restrict the boundary
integral to the sphere Sx1,σ with center at x1 and radius σ. Now we integrate both sides of (1.1.9)
w.r.t. xN−1, vN−1 and apply Leibnitz’ rule again. By this procedure, we can interchange the order
of integration w.r.t. xN−1, vN−1 and differentiation w.r.t x1. After (N − 2) steps we end up with

∫
v1 ·

∂P

∂x1
dx2 . . . dxn dv2 . . . dvN = v1 ·

∂P (1)

∂x1
−

N∑
j=2

∫
R3

∫
Sx1,σ

v1 · njP (2) ds(xj)dvj .

(1.1.10)
In the above equation, nj denotes the inner normal vector to the sphere Sx1,σ at the point xj .
Having a closer look at the above equation, we note that the integrals are independent of the index
j and therefore we can omit it in the sequel. Instead of xj and vj we write x∗ and w in the sequel.
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1.1 The Boltzmann Equation

For the above sum we now obtain

∫
v1 ·

∂P

∂x1
dx2 . . . dxn dv2 . . . dvN = v1 ·

∂P (1)

∂x1
− (N − 1)

∫
R3

∫
Sx1,σ

v1 · nP (2) ds(x∗)dw.

(1.1.11)
The arguments of P (1) are t, x1, v1 and for P (2) we have the arguments t, x1, x

∗, v1, w.

Next, we want to interchange the order of differentiation and integration in the terms with j > 1
in (1.1.6). Now the derivative is taken w.r.t. one if the integration variables in contrast to the term
with j = 1. Therefore, one can directly apply the Gaussian theorem yielding

∫
vj ·

∂P

∂xj
dx2 . . . dxN dv2 . . . dvN

=

∫ ∫
R3

∫
∂Bj

n∂Bj · vjPds(xj)dvj

 dx2 . . . xj−1xj+1 . . . dxN dv2 . . . dvj−1dvj+1 . . . dvN

(1.1.12)
In the above equation, the integration domain Bj for xj is given by {x ∈ Ω : |xi − xj | > σ, i =
1 . . . N, i 6= j}, n∂Bj denotes the outer unit normal vector at a point in ∂Bj . We note that the
boundary integral over ∂Bj can be split in a sum of integrals over the spheres Sxi,σ what we do
in the next step. To be more precise,

∫
∂Bj

consists of one additional part, the integral over the
boundary of the domain Ω itself. As is shown in [CIP94] this term vanishes if the boundary is such
that particles are perfectly reflected, see (1.2.4a).
In the integral consisting of the part of the boundary where |x1 − xj | = σ, we execute the in-
tegration w.r.t. all variables except xj and vj . In the other terms consisting of the boundaries
|xi − xj | = σ, 1 < i ≤ N we execute the integration w.r.t. all variables except xj , xi, vj and vi.
This leads to

∫
vj ·

∂P

∂xj
dx2 . . . xN dv2 . . . dvN

=

∫
R3

∫
Sx1,σ

n · vjP (2) ds(xj)dvj +
N∑
i=2
i 6=j

∫
R3

∫
B1
i

∫
R3

∫
Sxi,σ

ni · vjP (3) ds(xj)dvjdxidvi.
(1.1.13)

As before, n and ni are the inner unit normal vectors of the spheres with center x1 and xi respec-
tively. The notation for the integration domain B1

i of xi shall reflect that xi is integrated over all
positions x ∈ Ω, excluding those points where |xi−x1| < σ. In the first integral P (2) is evaluated
at t, x1, xj , v1, vj . In the second term P (3) is evaluated at t, x1, xj , xi, v1, vj , vi. We note, that the
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1 Introduction

first term in the above equation is independent of the index j and thus, if we sum according to
1.1.6 from j = 2 . . . N , we obtain this term N − 1 times. As we did before, we write x∗ and w
instead of xj and vj in this term in the sequel.

In the next step we want to show that the last integral in (1.1.13) which involves the 3 particle
distribution function vanishes. The first thing we do to come to this end is rewriting the integral.

∫
R3

∫
B1
i

∫
R3

∫
Sxi,σ

ni · vjP (3) ds(xj)dvjdxidvi =
1

2

∫
R3

∫
B1
i

∫
R3

∫
Sxi,σ

ni · (Vji)P (3) ds(xj)dvjdxidvi

(1.1.14)
with the relative velocity Vji = vj − vi.
The second ingredient we need is a condition on the behaviour of P when 2 particles collide. Since
P has to be constant along the trajectories of a point z in phase space this condition is

P (t, x1 . . . xN , v1 . . . vi . . . vj . . . vN )

= P (t, x1 . . . xN , v1 . . . vi − n(n · Vij) . . . vj + n(n · Vij) . . . vN ) if |xi − xj | = σ,
(1.1.15)

with the relative velocity Vij = vi − vj and the unit vector n =
xi−xj
|xi−xj | .

In order to see that the integral vanishes, we now consider 2 velocities vi, vj , such that ni ·Vji > 0.
The velocities v′i := vi−ni(ni ·Vij) and v′j := vj+ni(ni ·Vji) satisfy ni ·(v′i−v′j) = −ni ·Vji < 0.
Therefore, by the transform (vi, vj) 7→ (v′i, v

′
j), we can map each point on the hemisphere defined

via ni · Vji > 0 to a point on the hemisphere ni · Vji < 0, such that P (3) has the same value at
these two points, but the factor in front of P (3) has opposite sign at these two points. Thus, the two
contributions cancel each other.

The remaining terms yield

∂P (1)

∂t
+ v1

∂P (1)

∂x1
= (N − 1)

∫
R3

∫
Sx1,σ

n · (v1 − w)P (2)ds(x∗)dw, (1.1.16)

where P (1) and its derivative are evaluated at (t, x1, v1) and P (2) in the integral is evaluated at
(t, x1, x

∗, v1, w). In order to simplify notation we drop the subscript 1 from x1 and v1 in the
sequel since it is not needed any more.
To end up with the desired result, it is convenient to split the integral over the sphere Sx,σ. For a
given pair of velocities (v, w) we consider the contributions from S+ := {y ∈ Sx,σ : n ·(v−w) >
0} and S− := Sx,σ \ S+ separate. Due to a better readability we omit the dependency of these
hemispheres on v − w in the notation.
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1.1 The Boltzmann Equation

The contribution from S− corresponds to those particle pairs which are going to collide, from the
plus hemisphere we obtain the contribution of the collisions that have immediately happened.
In both hemispheres we now interchange the surface element ds of the sphere with radius σ by
that of the unit sphere denoted by dn, with the relation to ds given by σ2dn = ds. This transforms
the right hand side of (1.1.16) into

(N−1)σ2

∫
R3

∫
S+

P (2)|n · (v − w)| dn(x∗)dw−
∫
R3

∫
S−

P (2)|n · (v − w)| dn(x∗)dw

 . (1.1.17)

To obtain an evolution equation for P (1) we have to get rid of P (2) in the collision integrals on
the right hand side of (1.1.16). To come to that end we consider Boltzmanns Stozahlansatz. To
that end we think of the following situation: Let the gas be enclosed in a box of size 1 cm3 and
assume that the number of molecules inside the box is large ≈ 1020, while it’s size is rather small
σ ≈ 10−8 cm. Thus, the volume occupied by the particles is in the order of Nσ3 ≈ 10−4 cm3 and
is very small compared to the size of the box. Therefore, if we fix a pair of particles, we find that
a collision between them is a very rare event. Thus, we can think of two particles that are going
to collide as 2 randomly chosen particles which moved independent from each other. Thus, for
particles which are going to collide we write

P (2)(t, x, x∗, v, w) = P (1)(t, x, v)P (1)(t, x∗, w) if n · (v − w) < 0. (1.1.18)

We can use the above factorization, stating statistical independence on the minus hemisphere.
Clearly, the collision creates a strong correlation between these two particles and we can not apply
the above splitting to the plus hemisphere (As explained in [Cer90], one would obtain a zero col-
lision contribution if one does). In order to factorise P (2) also on the plus hemisphere, we express
the collision in terms of the ingoing configuration v′ = v−nn ·(v−w) and w′ = w+nn ·(v−w).
According to (1.1.15) this does not change P (2). Now we have P (2) evaluated at an ingoing colli-
sion configuration, and therefore we can again apply the idea of statistical independence and write
on the plus hemisphere

P (2)(t, x, x∗, v′, w′) = P (1)(t, x, v′)P (1)(t, x∗, w′) if n · (v − w) > 0. (1.1.19)
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1 Introduction

If we accept these simplifying arguments of Boltzmann we obtain for the collision integral

(N − 1)σ2

∫ ∫
S+

(
P (1)(t, x, v′)P (1)(t, x− nσ,w′)− P (1)(t, x, v)P (1)(t, x+ nσ,w)

)
|nV | dndw,

(1.1.20)
where V = v − w, v′ = v − n(nV ) and w′ = w + n(nV ). In the above equation we have
interchanged the direction of the normal vector on the minus hemisphere to write it as an integral
over the plus hemisphere also. Additionally we used that the points x∗ on the hemispheres are
given by x± nσ.

Finally we perform the Boltzmann-Grad limit, that is N → ∞, σ → 0 such that Nσ2 remains
finite. Accordingly we have x± nσ → x, resulting in

∂P (1)

∂t
+ divx(vP (1)) +

∫ ∫
S+

(
P (1)(v′)P (1)(w′)− P (1)(v)P (1)(w)

)
|nV | dndw = 0. (1.1.21)

Here we have omitted the time and space dependency in the integrand since it is t and x throughout.
In addition we may also omit the superscript (1) from P (1) since it is not needed any more.
As stated in [CIP94], the integration over the plus hemisphere can be extended to the whole surface
of the sphere which requires a multiplication of the result by 1

2 .

It shall be noted, that there are different representations for the collision operator. The above rep-
resentation uses the unit vector n, joining the centers of the 2 spheres at the instant of the collision.
This vector is often denoted as the angle of collision. Another way to describe the collision is by
the use of the scattering vector which we denote by e′. The scattering vector represents the direc-
tions of the outgoing particles relative to their mean velocity. In Figure 1.1.1 these 2 approaches
for describing a collision are sketched.
The connection between the angle of collision and the scattering vector is

e′ =
v − w
|v − w|

− 2nn · v − w
|v − w|

. (1.1.22)

The post collision velocities are represented by the scattering vector via

v′ =
v + w

2
+ e′
|v − w|

2
and w′ =

v + w

2
− e′ |v − w|

2
, (1.1.23)
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1.1 The Boltzmann Equation

and the collision operator reads

Q(P )(t, x, v) :=

∫
R3

∫
S2

B(v, w, e′)
[
P (v′)P (w′)− P (v)P (w)

]
de′ dw, (1.1.24)

with the collision kernel B(v, w, e′) given by B(v, w, e′) = |v − w|. In the sequel we deal with
the collision representation in terms of the scattering vector e′.

Since rotational symmetry is demanded from the interaction law, the dependency of B on its
input arguments reduces to a dependency on the relative velocity and on the angle formed by the
scattering direction and the relative velocity:

B(v, w, e′) = B(|v − w|, (v − w) · e′

|v − w|
).

The kernel we obtained in derivation corresponding to hard sphere collisions is the physically best
justified interaction law for binary particle interaction. In the derivation we implicitly assumed a
finite interaction distance given by the molecular diameter σ. In contrast to hard sphere interaction,
an interaction law in terms of an inverse power law consists of an infinite interaction distance,
leading to a collision kernel of the following form [RW05]

B(v, w, e′) = |v − w|1−
4
α bα(θ) sin(θ)−1,

with θ = arccos
(
e′·(v−w)
|v−w|

)
. Such interaction laws lead to a huge number of grazing collisions, i.e.

collisions with v′ ≈ v andw′ ≈ w. As a consequence, the differential cross section |v−w|−
1
4 bα(s)

becomes singular at s = 0 and is even not integrable. In that case, the usual splitting of the collision
operator into its gain and loss term is not applicable what is a crucial point in many numerical
approaches.

Often one does not solve for the one particle probability density P , but one introduces a quantity
close related to P and denotes it by f usually.

f(t, x, v) = P (t, x, v)Nm, (1.1.25)

where N is the number of particles under consideration and m the mass of the particles. The
unknown f is per construction the mass density at a single point (x, v) in phase space at time t.
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nv

w

v′

w′

(a) A graphical representation of the angle of
collision. The circles represent colliding par-
ticles, the incoming velocities are v and w
respectively, the outgoing are denoted with
as v′ and w′. The angle of collision n is the
connection of the 2 midpoints at the instant
of collision.

v

w

v′

w′

v̄

e′

(b) Here we show a graphical representation of
the scattering vector e′. W. r. t. the mean ve-
locity, the pre as well as the post collision
velocities lie diametrically opposite on a cir-
cle with its center at the mean velocity and
its diameter being the relative velocity.

Figure 1.1.1: Two different representations of a binary collision.

Thus, ∫
Ω×R3

f(t, x, v) d(x, v) = Nm (1.1.26)

gives the total mass of the gas. In addition, also f(t,x,v)
m giving the number density in phase space

is used in literature.

Remark 1.1.2. The Boltzmann-Grad limit,N →∞, σ → 0,Nσ2 stays finite, means that the total
volume occupied by the gas tends to 0, i.e. is of 0 Lebesgue measure. Thus, it should be possible
to ”squeeze” all particles inside the domain of interest into a plane.

Remark 1.1.3. It shall be noted here, that the presented derivation of the collision integral via
integrating the N -particle distribution function was not yet done by Boltzmann. He combined
arguments of probabilistic nature, e.g:
(1) How many particles can undergo a certain collision with prescribed outcome?

(2) Assume that particles before a collision are statistically uncorrelated.

(3) Use the direct relation between pre and post collision velocities to argue for the splitting of
P (2) at those particles that have recently collided.
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1.1 The Boltzmann Equation

1.1.2 Fields of applications

In kinetic theory of dilute gases the Boltzmann equation forms a fundamental basis. Recent devel-
opments in aerospace, demand highly accurate solutions of the equation, for instance in re entry
problems.
Besides classical gases Boltzmann considered, proper generalizations of the Boltzmann equation
are found in electron transport in solids and plasmas also. The transport of charged electrons
through a semi conductor device can be described by a kinetic transport model, in addition exter-
nal forces acting on the electrons (the electric field) are present. The actual length scales of such
devices require an additional treatment by equations from quantum mechanics [Jün09].
Besides electron transport, neutron transport in nuclear reactors, phonon transport in super fluids,
and radiative transfer in planetary and stellar atmospheres can be modelled by kinetic transport
models.
In addition to classical applications, kinetic equations have attracted other scientific disciplines as
for instance applications in biology used for swarm modelling. A swarm in that sense is a col-
lection of at least 10, up to millions of individuals. Classically, mathematical models are derived
from first principles of swarming. These include the social tendency to form groups (attraction),
the space around each individual to feel comfortable in the group (collision avoidance) and the
synchronisation with a group (alignment). Classical models are based on simulation of each in-
dividual resulting in a large system of Odes. Besides them, kinetic models are likely used – the
individuals are described by a density distribution as in the theory of rarefied gases. Particle inter-
actions are based on the above considerations about attraction, collision avoidance and alignment.
These interaction model is known as a three zone model. Figure 1.1.2, which appears in [CFTV10]
represents these zones.

agent

collision
avoidance

alignment

attraction

Figure 1.1.2: A graphical representation of the three zone model. The ”particle interaction” is
defined separately for each of those zones.
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1.2 The Problem Setting

In the current section we present the exact form of the equation we are solving numerically, the
collision kernels we are able to handle in our method and the boundary conditions we considered
in our implementation. The numerical method presented in section 4 is presented for 2 spatial
and 2 momentum dimensions. In the remaining sections we will work with d spatial and also d
momentum dimensions with d = 2 or d = 3.
We denote the spatial domain by Ω ⊂ Rd. We describe the gas by the one particle distribution
function which we denote by f = f(t, x, v) ≥ 0. The form of the Boltzmann equation we use
reads

∂

∂t
f + divx(vf) =

1

Kn
Q(f) x ∈ Ω, v ∈ Rd, t ≥ 0, (1.2.1)

with divx being the divergence operator with respect to the spatial coordinate x. Q(f) denotes the
Boltzmann collision operator, given by:

Q(f)(t, x, v) :=

∫
Rd

∫
Sd−1

B(v, w, e′)
[
f(t, x, v′)f(t, x, w′)− f(t, x, v)f(t, x, w)

]
de dw.

(1.2.2)
The Knudsen number is defined as Kn := λ

L , where λ is the mean free path of the particles between
subsequent collision and L is a typical length scale of the problem. Note that x, v and t are scaled
by typical length, velocity and time of the problem. The post collision velocities are defined as in
the previous section in terms of the scattering vector e′ ∈ Sd−1 via

v′ =
v + w

2
+ e′
|v − w|

2
w′ =

v + w

2
− e′ |v − w|

2
e′ ∈ Sd−1. (1.2.3)

For the numerical method presented in section 4, we have to assume a separable collision kernel
B such that

B(v, w, e′) = br(|v − w|)bθ( (v−w)·e′
|v−w| ).

In order to treat the gain and loss terms separate, the differential cross section has to be integrable,
thus the function bθ has to satisfy Grad’s cut off assumption in addition:

∫ π

0
bθ(s) ds <∞.
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Finally, we assume a power law dependency of br on its argument |v − w|, such that

br(r) = rβ,

for some exponent β ∈ (−3, 1). These assumptions are natural for a wide range of collision
kernels, including (Pseudo) Maxwellian gases as well as variable hard sphere gases.

1.2.1 Boundary conditions

As a consequence of the first order time and space derivative the Boltzmann equation has to be
supplied with initial- as well as boundary conditions.
The initial condition reads

f(0, x, v) = f0(x, v),

describing the gas at time t = 0. The boundary conditions shall reflect the interaction of the
particles with ∂Ω which may be a wall or an open boundary as well. As a preparation we introduce
the incoming and outgoing directions at a certain point x ∈ ∂Ω.

Rdin := {v ∈ Rd : v · n < 0} and Rdout := Rd \ Rdin,

where n is the outer normal vector in a point x ∈ ∂Ω. Due to readability we suppress the x
dependency of these sets.
We consider the following conditions at ∂Ω:

• specular reflection

f(t, x, v) = f(t, x, v − 2n(x) · vn(x)) ∀v ∈ Rdin. (1.2.4a)

Particles hitting the wall behave like billiard balls. The tangential component of the par-
ticles’ velocity does not change, while the normal component is multiplied by -1. Since
v − 2v · nn ∈ R2

out, this boundary condition states a direct relation between incoming and
outgoing particles.
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• diffuse reflection

f(t, x, v) = ce
−
∣∣∣∣ v−Vbnd√

Tbnd

∣∣∣∣2 ∫
Rdout

f(t, x, w)w · ndw ∀v ∈ Rdin, (1.2.4b)

with c > 0 being a normalization constant for the Maxwell distribution or
more precisely for the flux of the Maxwellian distribution function (i.e. c =(∫

Rdin
e
−
∣∣∣ v−Vbnd
Tbnd

∣∣∣2 |w · n(x)| dw
)−1

). The normalization guarantees that the total incoming

and outgoing flux are the same.

∫
Rdin
f(t, x, w)|w · n(x)| dw =

∫
Rdout

f(t, x, w)|w · n(x)| dw.

This is the only relation between in and outgoing values of f in this case. The behaviour of
particles hitting the wall is affected by the temperature and velocity of the wall and also the
total outgoing flux. Note that Vbnd is tangential to ∂Ω at the point x.
Remark 1.2.1. As stated in [CIP94], a more general way to describe interaction of the
paricles with rigid obstacles is given by the following condition.

|v′ · n|f(t, x, v′) =

∫
R2
out

R(v 7→ v′)|v · n|f(t, x, v) dv ∀v′ ∈ R2
in.

In the above equation n is the outer unit normal vector at ∂Ω. R(v 7→ v′) is the probability
density that a molecule hitting the boundary with velocity v is re-emitted from ∂Ω with ve-
locity v′. By its meaning,R is demanded to satisfy positivity for valid pairs (v, v′). Moreover,
the wall shall not produce or capture particles, resulting in a normalization requirement for
R: ∫

R2
in

R(v 7→ v′) dv = 1 ∀v′ ∈ R2
out.

The choice of R(v 7→ v′) = δ(v′ − v + 2nn · v) yields the specular reflection condition.
Choosing R equal to an appropriate Maxwell distribution, one obtains a diffuse reflecting
wall.
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• inflow boundary condition

f(t, x, v) = fin(t, x, v) ∀v ∈ R2
in, (1.2.4c)

with fin being some given, non-negative distribution function at the boundary. In this case,
there is no relation between incoming and outgoing values of f .

1.3 Numerical Challenges

The Boltzmann equation provides a heavy task when being solved numerically. It is defined in
a seven dimensional space, the space is unbounded in three of these directions. The interaction
of particles, modelled as the Boltzmann collision operator is non linear in the solution function,
usually providing a quadratic form on the discrete level with a quite complicated matrix.

Present numerical methods can in general be split in deterministic and probabilistic approaches.
Despite of their simplicity, probabilistic methods, such as the Monte Carlo method yield highly
accurate results only if a huge number of particles is simulated, making them unsuitable if high
accuracy is desired. Moreover, these methods have to deal with stochastic fluctuations.
Many of the deterministic approaches are based on Fourier techniques, such as truncated Fourier
series expansion and Fourier transformation. Both, strong as well as weak formulations are present
in literature. In contrast to probabilistic methods, these methods are typically accurate as spectral
methods. On the other hand, using Fourier techniques binds oneself to deal with domain truncation.
Due to that, additional attention has to be paid to the conservation properties.

The method presented in section 4 is deterministic. It is based on a Discontinuous Galerkin pro-
jection in position and momentum space. We use global basis functions w.r.t. the momentum,
enabling us to treat the integration over the unbounded domains without truncation. Conservation
properties of the Boltzmann Collision operator suggest that a Petrov-Galerkin method allowing
for global polynomials as test functions in momentum direction, naturally yields the conservation
properties of the Boltzmann equation on the discrete level. To have good approximation proper-
ties, we let the basis functions within each cell depend on the actual solution.
The concept of global basis functions in the velocity domain, coupled with a Galerkin projection
is not new in the context of kinetic transport models. For the semiconductor Boltzmann equation
an expansion to Hermite polynomials was also used in [RSZ01].
A similar discretization for the transport operator is presented in [DDCS12, HGMM12].

Another deterministic approach in solving the Boltzmann equation is in terms of discrete velocity
methods. In such methods, the particles attain only velocities from a discrete set of values, particle

15



1 Introduction

interactions have to be in such a way, that the interaction outcome belongs again to the above men-
tioned set of discrete values. Also in such methods the conservation properties on the discrete level
have to be investigated carefully of course, but for such models exist well known conditions for
the parameters of the method, i.e. the ”collision coefficients” such that the conservation properties
and the H-theorem hold on the discrete level.

Finally we want to mention methods which are based on moment equations. A popular set of these
equations are Grad’s 13 moment equations, also known as the R13 equations [Gra49,Gra58,ST03].
These are evolution equations for the moments of the distribution function. The i-th resulting equa-
tion incorporates the i-th and (i + 1)-st moment. Thus, a finite set of equations is not complete
since it involves more moments than equations. This problem is solved by applying so called con-
stitutive equations which state relations between higher and lower order moments. This relations
can result from first principles (e.g. Fourier’s law, providing a relation between the second and
third moment). A numerical treatment of these equations is found in [RTS13].

Summarizing, when dealing with the Boltzmann equation from a numerical point of view, the
following issues have to be addressed:

• High dimensionality. As has already been seen, the Boltzmann equation is defined on a 7
dimensional, unbounded space. In other words, each spatial position x ∈ Rd is equipped
with a distribution function. We work on that space by introducing a tensor product basis.

• Integrals over unbounded domains have to be calculated. The pairing of our trial and test
functions enables us to calculate these integrals by Gauss Hermite quadrature rules.

• Evaluating the Boltzmann Collision operator provides a huge quantity of numerical work.
Moreover, it forms the basis of the macroscopic behaviour and thus its evaluation has to be
done with care.

• Spatial transport needs a stable discretization. We are going to work on that issue by using
a Discontinuous Galerkin method with upwind fluxes.

1.4 Outline

The outline of the underlying thesis is organized as follows:

• In section 2 some basic properties of solutions and of the collision term are collected. We
introduce the concept of collision invariant functions, state the kernel of the collision oper-
ator (the Maxwell distributions) and present the H-theorem. The second part of this section
is devoted to the connection of the Boltzmann equation with the Euler and Navier- Stokes
equations.
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1.4 Outline

• Section 3 provides a general view on existing numerical methods and presents various
Monte Carlo methods as well as certain deterministic approaches.

• Section 4 is the main part of the underlying work. Here the method developed as part of the
thesis of the author is presented. We formulate the basic method and show a technique to
calculate the collision integrals efficiently. This is based on various basis transformations in
the trial and test space, orthogonality relations shared by the different bases and their tensor
product structure.

• Finally, in section 5 we present numerical examples as a validation for the method.
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2 Elementary properties of solutions

In the current section we collect some basic properties of solutions of the Boltzmann equation
and of the Boltzmann collision operator. We begin with the definition of the moments and of the
macroscopic properties of the flow. In the main part of this section we focus on the Boltzmann col-
lision operator with the presentation based on the textbooks of Cercignani [Cer90, CIP94]; some
of the results are also presented in [RW05]. As a preparation, we show well known representations
for the variational form of the collision integrals and introduce the concept of collision invariants
which leads to the conservation properties of the collision operator. As an application of the col-
lision invariants and the above mentioned representations we show how to obtain the kernel of
the collision operator and present the H-theorem. At the end of this section we show a system
of partial differential equations satisfied by the moments of the distribution function. This system
leads to Euler or Navier-Stokes equations.

2.1 Moments and Macroscopic Properties

In the following we define the moments and macroscopic properties of the distribution function.

Definition 2.1.1. The moments of the distribution function are denoted by the quantities m(i).
These are defined by

m
(i)
j1...ji

:=

∫
Rd

vj1 . . . vjif(t, x, v) dv ji ∈ {1, . . . , d}.

The i−th moment is therefore an i−dimensional, symmetric tensor, i.e.:

m
(i)
j1...ji

= m
(i)
π(j1)...π(ji)

∀ permutations π
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Naturally, the 0−th order moment is interpreted as a scalar m(0), the first moment as a vector
m(1) = (m

(1)
1 , . . . ,m

(1)
d )T , and the second order moment as a matrix

m
(2)
(3d) =

m
(2)
11 m

(2)
12 m

(2)
13

m
(2)
21 m

(2)
22 m

(2)
23

m
(2)
31 m

(2)
32 m

(2)
33

 resp. m
(2)
(2d) =

(
m

(2)
11 m

(2)
12

m
(2)
21 m

(2)
22

)
.

The moments of the distribution function are closely connected to the macroscopically perceivable
properties of the flow.

Definition 2.1.2. The macroscopic behaviour of the gas is expressed by the following quantities,
which are referred to as the macroscopic properties of the gas. Note that these quantities can be
written in terms of the moments m(i)

j1...ji
, i ≤ 3, see section 2.4.

ρ(t, x) :=

∫
Rd

f(t, x, v) dv mass density,

V (t, x) :=
1

ρ(t, x)

∫
Rd

vf(t, x, v) dv mean velocity,

Pij(t, x) :=

∫
Rd

(vi − Vi)(vj − Vj)f(t, x, v) dv stress tensor,

p(t, x) :=
1

d

d∑
i=1

Pii pressure,

T (t, x) :=
p(t, x)

ρ(t, x)
temperature,

qi(t, x) :=
1

2

∫
Rd

(vi − Vi)|v − V |2f(t, x, v) dv heat flux.

(2.1.1)

The definition of the mass density follows from the definition of the distribution function. The
mean velocity V is what one perceives macroscopically from the random motion of particles and
describes the transport of mass.

The term stress tensor is justified by the fact that Pi,j plays the same role in the macroscopic equa-
tions obtained from the Boltzmann equation, as the stress tensor does in conservation equations
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derived from macroscopic considerations.
Another justification is stated in [Cer90] and is due to a comparison of the quantities

∫
Rd vivjf dv

and ViVjρ which are in relation via

∫
Rd

vivjf dv =

∫
Rd

(vi − Vi + Vi)(vj − Vj + Vj)f dv

= ViVjρ+

∫
Rd

(vi − Vi)(vj − Vj)f dv.

The temperature is defined using the equation of state for an ideal gas. To be precise, we have not
defined the physical temperature, but have defined the temperature multiplied with the Boltzmann
constant divided by the particles mass.

As in the case of the stress tensor, the term heat flux is justified by its role in the macroscopic
description. Another justification for the term heat flux – similar as for the stress tensor – can be
found in [Cer90].

Finally we give the expression for the energy density E:

E :=
1

2

∫
Rd

|v|2f dv =
1

2
ρ|V |2 +

1

2

∫
Rd

|v − V |2f dv.

Thus, according to the above equation, the energy density consists of the macroscopic kinetic
energy ρ|V |2 and an additional term which will be referred to as the internal energy of the gas.
Even if the macroscopic kinetic energy vanishes, the microscopic description still yields a non-
vanishing kinetic energy. This remainder part arises due to the arbitrary motion of the particles
around the mean velocity.

We conclude with an example:

Example 2.1.3. The macroscopic properties of a Gaussian peak f(v) = ρ

(2πT )
d
2
e
−| v−V√

2T
|2 are
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given by: ∫
Rd

f(v) dv = ρ

∫
Rd

vf(v) dv = V

∫
Rd

(vi − Vi)(vj − Vj)f(v) dv = δi,jρT

(2.1.2)

Thus, the constants denoted by ρ, V and T are in accordance with the macroscopic properties. In
the context of the Boltzmann equation we denote the above defined f as Maxwellians.

2.2 Properties of the Collision operator

In the current subsection we are dealing with the collision operator which is a local operator in
time t and position x, but acts globally on the velocity variable v. Thus, in order to study the
properties of Q it is sufficient to consider a simplified equation.

Definition 2.2.1. Let f = f(t, v) ≥ 0. We denote the following initial value problem as the
spatially homogeneous Boltzmann equation:

∂

∂t
f = Q(f) f(0, v) = f0(v). (2.2.1)

Remark 2.2.2. The initial value problem for the homogeneous equation (2.2.1) is quite well stud-
ied. It is well posed in the following sense: For initial data f0 such that for s ∈ {2, 4} there holds∫
Rd(1 + |v|2)

s
2 f0(v) dv < ∞, the problem has a unique solution f ∈ C1([0, T ];L1) with L1-

valued time derivative. Moreover, f satisfies
∫
Rd(1 + |v|)2f(t, v) dv <∞. Finally, the solution is

Lipschitz continuous w.r.t the initial data. However, a presentation of the quite long proof of these
statements is out of the focus of this thesis.

To study the properties of Q, the following theorem which provides different representations for∫
Q(f)φ(v) dv is very useful. Most of the subsequent results are based on it.
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2.2 Properties of the Collision operator

Theorem 2.2.3. Let v′ and w′ be defined via (1.2.3). Then for any functions φ, f for which the
integrals on both sides and

∫
B(v, w, e′)f(v′)f(w′)φ(v) de′dwdv exist, there holds

∫
Rd

Q(f)φ(v) dv =

∫
Rd

∫
Rd

∫
Sd−1

B(v, w, e′)f(v)f(w)[φ(v′)− φ(v)]de′dwdv

=
1

2

∫
Rd

∫
Rd

∫
Sd−1

B(v, w, e′)f(v)f(w)×

[φ(v′) + φ(w′)− φ(v)− φ(w)]de′dwdv

=
1

4

∫
Rd

∫
Rd

∫
Sd−1

B(v, w, e′)[f(v)f(w)− f(v′)f(w′)]×

[φ(v′) + φ(w′)− φ(v)− φ(w)]de′dwdv.

Proof. The proof of the theorem is done in [Cer90,RW05] for example. The proof in [RW05] is a
little more general: It is shown there, that for any suitable function ϕ(v, w, e′) = ϕ(|v − w|, (v −
w) · e′, v, w, v′, w′) there holds

∫
Rd

∫
Rd

∫
Sd−1

ϕ(|v − w|, (v − w) · e′, v, w, v′, w′) de′dwdv

=

∫
Rd

∫
Rd

∫
Sd−1

ϕ(|v − w|, (v − w) · e′, v′, w′, v, w) de′dwdv.

(2.2.2)

This can be obtained by transforming to mean and relative velocity. This yields v = v̄ + 1
2 v̂ and

v′ = v̄+e′|v̂|, forw andw′ the only difference is a minus instead of a plus. Then one transforms the
relative velocity v̂ = |v̂|e to polar coordinates to obtain v = v̄+ 1

2 |v̂|e and v′ = v̄+ 1
2 |v̂|e

′. Now one
combines |v̂|e′ into a new variable ṽ. At that point, we have actually exchanged the pre and post
collision velocities. To conclude, one transforms the result back to v andw as integration variables.
Note, that the transform (v, w) 7→ (v̄, v̂) and also its inverse have Jacobian determinant equal to
1. Finally one notes that under the above transformations |v − w| and v̂·e′

|v̂| remain unchanged.

The first assertion of the theorem then follows by lettingϕ(v, w, e′) = B(v, w, e′)f(v′)f(w′)φ(v).
The second can be obtained by simply interchanging v and w in

∫
Q(f)φ(v) dv and using
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2 Elementary properties of solutions

B(w, v,−e′) = B(v, w, e′). The third representation results again by applying (2.2.2) to the sec-
ond assertion of the theorem.

Remark 2.2.4. To study the properties of the collision operator it is often written as a bilinear
mapping

Q(f, g) =
1

2

∫
Rd

∫
Sd−1

B(v, w, e′)
(
f(v′)g(w′) + f(w′)g(v′)− f(v)g(w)− f(w)g(v)

)
.

Also for the above bilinear form, properties similar to those stated in theorem 2.2.3 can be shown,
the proof follows essentially the above lines. The bilinear notation, or more precisely the collision
contributions on f exerted by g and vice versa are used in mixtures of gases.

The third representation of
∫
Q(f)φ in theorem 2.2.3 is of particular interest. We directly obtain

that
∫
Q(f)φ vanishes independent of the particular function f , as soon as φ satisfies φ(v) +

φ(w)− φ(v′)− φ(w′) ≡ 0. This leads us to the definition of the collision invariants.

2.2.1 Collision Invariants

Definition 2.2.5. Let v′ and w′ be defined according to (1.2.3). A continuous function φ is called
a collision invariant if it satisfies

φ(v) + φ(w) = φ(v′) + φ(w′) v, w ∈ Rd. (2.2.3)

Using the definition of a collision invariant one can easily verify that Φ0(v) ≡ 1, Φj(v) = vj , j =
1 . . . d and Φd+1(v) = |v|2 are collision invariants which will be referred to as elementary collision
invariants. On the other hand, it can be shown that all continuous collision invariants are linear
combinations of the elementary collision invariants Φj , j = 0 . . . d+ 1. The requirements can be
even further relaxed as shown in [CIP94]. Already Boltzmann investigated the solutions of (2.2.3).
He already found its solutions under the additional assumption that they are in C2(Rd,R).

Theorem 2.2.6. Let Φ ∈ C(Rd,R). Φ is a collision invariant if and only if it is a linear combina-
tion of the d+ 2 elementary collision invariants Φj , j = 0 . . . d+ 1.
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2.2 Properties of the Collision operator

The proof under the above requirements is done in [CIP94]. Therein it is additionally shown that
the continuity requirement can be further relaxed to measurable functions Φ which satisfy 2.2.3
almost everywhere and are finite almost everywhere. A purely physical argumentation of the
proof is stated by Cercignani in [Cer90]. With higher smoothness assumptions on Φ, i.e. Φ ∈ C2,
the proof is worked out in [Bre].

Now we want to introduce a physical meaning for the d+2 elementary collision invariants Φj , j =
0 . . . d+ 1. By definition of the collision invariants and by the use of theorem 2.2.3 one finds that

∫
Rd

Q(f)Φ(v) dv = 0 (2.2.4)

holds for each collision invariant Φ, thus especially for Φj , j = 0 . . . d+ 1. This relation forms the
basis of the macroscopic behaviour of the gas. Let f be a solution of (2.2.1). By testing with the
elementary collision invariant Φ0 ≡ 1 one directly obtains

∂

∂t
ρ(t) =

∂

∂t

∫
f dv =

∫
∂

∂t
f dv =

∫
Q(f) dv ≡ 0.

This expresses the conservation of the total mass. In a similar way, conservation of momentum
and energy are obtained by testing with the remaining elementary collision invariants. Thus, for a
solution of the homogeneous Boltzmann equation the quantities

ρ(t) = ρ(0)

V (t) = V (0)

E(t) = E(0)

(2.2.5)

are conserved over time.
As the above considerations show, the conservation properties of the collision operator are the ba-
sis of the macroscopic behaviour of the gas. Therefore, a numerical approach should address these
properties. At that point there are even multiple sources for inappropriate macroscopic behaviour.
On the one hand, the elementary collision invariants should be collision invariants on the discrete
level also. On the other hand, by discretization no additional collision invariants shall occur. Other-
wise, a moment of the distribution function which is physically not conserved would be conserved
on the discrete level.
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2 Elementary properties of solutions

Next, the kernel of the collision operator and thus stationary solutions of the homogeneous prob-
lem shall be obtained. Again, a suitable representation for the collision operator in theorem 2.2.3
is chosen.

2.2.2 Solutions of Q(f) ≡ 0

Since the proof for the following theorem also gives a hint on how to arrive at Boltzmanns well
known H-theorem we decided to present it here.

Theorem 2.2.7. A strictly positive, continuous and integrable function f : Rd → R satisfies
Q(f) = 0 if and only if there exists a density ρ, a velocity V and a temperature T such that

f(v) =
ρ

(2πT )d/2
e
−
∣∣∣ v−V√

2T

∣∣∣2
.

Proof. Consider a positive density function f satisfying Q(f)(v) ≡ 0. Since f > 0, log(f) can
be used as a test function. The third part of theorem 2.2.3 gives

∫
Rd

Q(f)(v) log(f)(v) dv

=
1

4

∫
Rd

∫
Rd

∫
Sd−1

[f(v)f(w)− f(v′)f(w′)]×

[log(f(v′)) + log(f(w′))− log(f(v))− log(f(w))]de′ dw dv

=
1

4

∫
Rd

∫
Rd

∫
Sd−1

f(v)f(w)

(
1− f(v′)f(w′)

f(v)f(w)

)
log

(
f(v′)f(w′)

f(v)f(w)

)
de′dwdv = 0.

Since (1 − z) log(z) < 0 holds for each positive z ∈ R \ {1}, (1 − z) log(z) = 0 ⇔ z = 1 we
obtain that the integrand is non positive. By the continuity of f we conclude that the integrand has
to vanish completely in order to obtain a vanishing integral. This means that the f(v′)f(w′)

f(v)f(w) ≡ 1 has
to hold, leading to

log

(
f(v′)f(w′)

f(v)f(w)

)
= 0⇔ log(f(v′)) + log(f(w′)) = log(f(v)) + log(f(w)).
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2.3 Boltzmann H-theorem

The last equation states that log(f) is a collision invariant. Thus, there exists a, c ∈ R, b ∈ Rd
with

log(f(v)) = a+ b · v + c|v|2 ⇔ f(v) = ea+b·v+c|v|2 .

Note that due to integrability of f , the constant c in the above equation has to be negative. Taking
this into account we can rewrite f as

f(v) =
ρ

(2πT )d/2
e
−
∣∣∣ v−V√

2T

∣∣∣2
.

The above mentioned Gaussian peaks forming the kernel of the collision operator are termed
Maxwellians in context of the Boltzmann equation. James Clark Maxwell already studied the
problem of thermal equilibrium of a gas. He was able to prove – even without knowing the Boltz-
mann equation – that the one particle distribution function is a Maxwellian if the gas is in thermal
equilibrium, see [Cer90] for more information.

The proof of the above theorem shows that for any solution f of the homogeneous Boltzmann
equation

∫
Q(f) log(f) dv ≤ 0 is satisfied. This forms the basis of the H-theorem.

2.3 Boltzmann H-theorem

Definition 2.3.1. We start by defining the functionals

H(f)(t, x) :=

∫
Rd

f(t, x, v) log(f(t, x, v))dv

Hi(f)(t, x) :=

∫
Rd

vif(t, x, v) log(f(t, x, v))dv i = 1 . . . d

H(f)(t) :=

∫
Ω

H(f)(t, x) dx.
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2 Elementary properties of solutions

2.3.1 The Space Homogeneous case

Similar to the proof of theorem 2.2.7 one obtains the following statement.

Lemma 2.3.2. For a solution f of the space homogeneous Boltzmann equation, the H-functional
satisfies

∂H(f)

∂t
(t) ≤ 0.

The equal sign is achieved if and only if f is a Maxwellian feq(v) = ρ

(2πT )d/2
e
−
∣∣∣ v−V√

2T

∣∣∣2 . The
functional then evaluates to

H(feq) = ρ

(
log
( ρ

(πT )d/2

)
− d

2

)
.

Proof. We have almost everything collected to proof the above theorem. The only thing that is
left, is a suitable representation for the time derivative of f log(f). We obtain

∂

∂t
(f log(f)) =

∂f

∂t
(log(f) + 1) = Q(f)(log(f) + 1), (2.3.1)

where the second equal sign is due to f being a solution of the homogeneous Boltzmann equation.
Now we integrate both sides of the above equation with respect to v and interchange the order of
differentiation and integration on the left hand side to arrive at

∂H(f)

∂t
(t, x) =

∂

∂t

∫
Rd

(f log(f)) dv =

∫
Rd

Q(f)(log(f) + 1)dv =

∫
Rd

Q(f) log(f)dv ≤ 0.

This shows the first part of Lemma 2.3.2. From the proof of 2.2.7 it is clear, that the equal sign in
the above equation is obtained if and only if f is a Maxwellian function. In this case, the value of
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2.3 Boltzmann H-theorem

the functional is given by

∫
Rd

f log(f)dv =
ρ

(2πT )d/2

∫
Rd

e
−
∣∣∣ v−V√

2T

∣∣∣2 (
log(ρ(2πT )

−d/2)−
∣∣∣∣v − V√

2T

∣∣∣∣2
)
dv

=
ρ

πd/2

∫
Rd

e−|v|
2
(

log(ρ(πT )
−d/2)− |v|2

)
dv

=
ρ

πd/2

(
log(ρ(2πT )

−d/2)π
d/2 − πd/2d

2

)
= ρ

(
log
( ρ

(2πT )d/2

)
− d

2

)
.

This completes the proof.

2.3.2 The Space Inhomogeneous case

A generalization of the H-theorem to space dependent problems is under certain boundary condi-
tions also possible. To this end, just as before we assume that f = f(t, x, v) > 0 is a solution of
the Boltzmann equation in our spatial domain Ω. For simplicity we consider the boundary ∂Ω of
the domain to be a specular reflecting wall.

The first observation is that – as for the time derivative – there holds

∂

∂xi
(vif log(f)) =

(
∂

∂xi
vif

)
(1 + log(f)).

Now we multiply both sides of the Boltzmann equation with (1 + log(f)), use the relations for the
derivatives w.r.t. xi and t; (2.3.2) and (2.3.1) respectively and integrate the result over the velocity
space to obtain

∂H
∂t

+ divx

H1
...
Hd

 =

∫
Rd

Q(f) log(f) dv ≤ 0. (2.3.2)

In the next step we integrate both sides with respect to the spatial coordinate over the domain Ω
and apply the divergence theorem

∂H

∂t
+

∫
∂Ω

H1
...
Hd

 · n ≤ 0. (2.3.3)

29



2 Elementary properties of solutions

If the boundary condition prohibits inflow of H, then
∫
∂Ω

H1
...
Hd

 · n ≥ 0, since we may interpret

the boundary integral as the outflow ofH. As we stated in the beginning of our considerations, the
gas is enclosed in a box with a specular reflecting wall. For that case it is shown in [Cer90] that
the boundary integral in (2.3.3) vanishes completely. Moreover, in the case of a diffuse reflecting
wall, the boundary integral has at least a positive sign such that we end up with

∂H

∂t
≤ 0. (2.3.4)

Clearly, the equal sign is achieved if

∫
∂Ω

H1
...
Hd

 · n = 0 and
∫

Ω×Rd

Q(f) log(f) = 0. (2.3.5)

In accordance with the properties of the collision operator,
∫
Rd×Rd Q(f) log(f) vanishes in the

case of a point wise Maxwellian distribution. Otherwise it is non-positive such that we may inter-
pret the collision process as a negative source for the quantity H . Finally, we arrived at

Lemma 2.3.3. Let the gas of interest be enclosed in a box Ω with either perfectly smooth or diffuse
reflecting walls. Define H,Hi, H as in definition 2.3.1 and let f = f(t, x, v) be a solution of the
Boltzmann equation on Ω. Then the H-functional satisfies

∂H

∂t
≤ 0. (2.3.6)

Proof. The proof is already sketched in the above lines, a rigorous derivation is found in [Cer90].

The H-theorem brought a lot of criticism to Boltzmann. It can be interpreted as some sort of irre-
versibility, what was the discussion starter. We consider a set of N particles (xi, vi), i = 1 . . . N .
If we – at a certain time t0 interchange the velocity of each particle to −vi, then the system will
go back to its initial state, just with negative velocities. If we consider the same situation w.r.t. to
our statistical description, then let f(t0, x, v) be the density of the number density before we inter-
changed the velocities. The system with interchanged velocities shall be described by f̃(t, x, v).
We find that f(t0, x, v) = f̃(t0, x,−v) holds. If we assume for the moment that – as in the Newton
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2.4 Moment equations

dynamics – the Boltzmann equation brings f̃ back to the initial state with mirrored velocities, i.e.
f̃(2t0, x, v) = f(0, x,−v). Then we would have H(f̃(2t0) = H(f)(0). On the other hand since
the H-functional is strictly decreasing we have H(f)(0) > H(f)(t0) = H(f̃(t0) > H(f̃(2t0),
thus, H(f)(0) > H(f̃(2t0), and we have obtained the contradiction H(f)(0) > H(f̃(2t0) =
H(f)(0). Thus, the Boltzmann equation will not bring f̃ back to the initial configuration. This
irreversibility is a result from our manipulation of the gain term of the collision operator in the
derivation of the Boltzmann equation. For a detailed discussion on the H-theorem we refer once
more to [Cer90, CIP94].

2.4 Moment equations

In this section we consider a gas close to equilibrium. We use the properties of the collision invari-
ants to derive a system of five partial differential equations with 13 unknowns (in 3 dimensions).
To obtain a closed set of equations we have to postulate equations that relate the heat flux q and
the stress tensor P to the lower order moments. These relations are called closure relations.

From the basic properties of the collision operator we obtain for a solution of the Boltzmann
equation ∫

Rd

∂f

∂t
+ divx(vf) dv = 0

∫
Rd

∂f

∂t
vj + divx(vf)vj dv = 0 j = 1 . . . d

∫
Rd

∂f

∂t
|v|2 + divx(vf)|v|2 dv = 0,

(2.4.1)

by testing the Boltzmann equation with the elementary collision invariants. Interchanging the or-
ders of differentiation and integration yields conservation equations for the moments

∂m(0)

∂t
+ divx(m(1)) = 0

∂m(1)

∂t
+ divx(m(2)) = 0

∂tr(m(2))

∂t
+ divx

m
(3)
111 + · · ·+m

(3)
1dd

...
m

(3)
d11 + · · ·+m

(3)
ddd

 = 0.

(2.4.2)
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2 Elementary properties of solutions

Note that the divergence is applied row wise to the matrix m(2) in the second equation. By tr( . )
we denote the trace of a matrix, i.e. tr(m(2)) =

∑
im

(2)
ii .

The conservation equations for the moments form the basis of the ongoing calculations. Our goal
is to express the moments and their divergence respectively in terms of the macroscopic properties.
There holds

m(0) =

∫
Rd

f dv = ρ m
(1)
i =

∫
Rd

vf dv = ρV

m
(2)
ij =

∫
Rd

vivjf dv = Pi,j + ViVjρ tr(m(2)) = (dT + |V |2)ρ.

For the calculation of m(3)
i,j,j we express the heat flux vector q as

2qi =

∫
Rd

(vi − Vi)|v − V |2f dv =

d∑
j=1

∫
Rd

(vi − Vi)(vj − Vj)2 dv

=
d∑
j=1

∫
Rd

viv
2
j f − Viv2

j f − 2Vjvivjf + 2ViVjvjf + V 2
j vif − ViV 2

j f dv

=
d∑
j=1

m
(3)
ijj − Vim

(2)
jj − 2Vjm

(2)
ij + 2ViV

2
j ρ

=
d∑
j=1

m
(3)
ijj − Vitr(m

(2))− 2Vjm
(2)
ij + 2Vi|V |2ρ.

Finally, writing m
(2)
ij = Pij + ρViVj in terms of the macroscopic properties and expressing∑

jm
(3)
ijj from the above equation, one finds

d∑
j=1

m
(3)
ijj = 2qi + ρVi(dT + |V |2) + 2

d∑
j=1

VjPij .
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2.4 Moment equations

Now rewriting the moment conservation (2.4.2) in terms of the macroscopic quantities results in

∂ρ

∂t
+ div(ρV ) = 0

∂(ρV )

∂t
+ div(P + ρV ⊗ V ) = 0

∂(dTρ+ |V |2ρ)

∂t
+ div(2q + ρ(dT + |V |2)V + 2PV ) = 0.

(2.4.3)

The system 2.4.3 is the already mentioned unclosed system of equations. In 3 dimensions there
are five equations for 13 unknowns: 1 for ρ, 3 for both, V and q, and finally the pressure tensor P
requires 6 unknowns due to it’s symmetry. In 2 dimensions one obtains 4 equations for 8 unknowns
(1 + 2 + 2 + 3). Thus, in fact we need to solve the Boltzmann equation to arrive at the missing
information. If we have solved it, we can already extract all the quantities in the above equation
from the distribution function itself.

In order to obtain a useful set of equations, so called constitutive or closure relations have to be
postulated. These relations express additional (experimentally obtained) relations between macro-
scopic properties [Cer90].

2.4.1 From Boltzmann to Euler

The constitutive equations for the Euler equations can be obtained by assuming that the gas has a
Maxwellian distribution function:

f(t, x, v) = ρ(t,x)√
2πT (t,x)

d e
− |v−V (t,x)|2

2T (t,x) .

The heat flux and the pressure tensor can be evaluated to

q ≡ 0 and P = p(t, x)I = TIρ.
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2 Elementary properties of solutions

Thus, (2.4.3) turns into

∂ρ

∂t
+ div(ρV ) = 0

∂(ρV )

∂t
+ div(ρ(TI + V ⊗ V )) = 0

∂(d2Tρ+ 1
2 |V |

2ρ)

∂t
+ div(ρV (d+2

2 T + 1
2 |V |

2)) = 0.

(2.4.4)

The above equations are called Euler equations, describing a so called Euler fluid.

2.4.2 From Boltzmann to Navier-Stokes

When deriving the Euler equations from the Boltzmann equation, the constitutive equations arise
naturally by the ansatz of a Maxwellian distribution function. For the Navier-Stokes equations we
assume that Fourier’s law holds

q = −κ∇T. (2.4.5)

Additionally we assume that (i) P depends linearly on the deformation, (ii) P is isotropic and (iii)
Pij = −pδij if no deformation occurs. This yields the following expression for P

P = p(t, x)I − 2µε(V )− λdiv(V )I, (2.4.6)

with the symmetric gradient ε(V )i,j := 1
2

(
∂Vj
∂xi

+ ∂Vi
∂xj

)
. The parameter µ is the dynamic viscosity,

λ is called volume viscosity.

Remark 2.4.1. The viscous stress tensor as well as Fourier’s law can be systematically derived
from the Boltzmann equation in context of the Chapman-Enskog expansion. This would be the
proper way to derive the Navier-Stokes equations from the Boltzmann equation. However, this
derivation is out of the focus of the thesis. We refer to [CIP94] and the references therein for more
information.

As for the Euler equations, the continuity equation reads

∂ρ

∂t
+ div(ρV ) = 0. (2.4.7)
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2.4 Moment equations

For the momentum balance equation the divergence of P is required. If we take into account
that the divergence of pI and div(V )I are given by the gradients of the quantities p and div(V )
respectively, then the divergence of P evaluates to

div(P ) = ∇p− µdiv(ε(V ))− λ∇(div(V )). (2.4.8)

Note that the divergence is applied row-wise to the matrix ε(V ). The i-th component of the diver-
gence of ρ(V ⊗ V ) results in

div(ρV ⊗ V )i =
d∑
j=1

∂ρ

∂xj
ViVj + ρ

(
∂Vi
∂xj

Vj +
∂Vj
∂xj

Vi

)

= Vi

 d∑
j=1

∂ρ

∂xj
Vj + ρ

∂Vj
∂xj

+ ρ

d∑
j=1

∂Vi
∂xj

Vj

= Vi div(ρV ) + ρ∇Vi · V.

If we use the continuity equation ∂ρ
∂t = −div(ρV ), we can rewrite the divergence of ρ(V ⊗ V ) as

div(ρ(V ⊗ V )) = −∂ρ
∂t
V + ρ∇V V. (2.4.9)

In the above equation∇V denotes the Jacobian of V w.r.t. the spatial variables.
Finally we consider the time derivative of ρV resulting in

∂(ρV )

∂t
= V

∂ρ

∂t
+ ρ

∂V

∂t
. (2.4.10)

Plugging (2.4.8), (2.4.9) and (2.4.10) into the second line of (2.4.3) one obtains the Navier-Stokes
momentum balance

ρ

(
∂V

∂t
+∇V V

)
− 2µdiv(ε(V ))− λ∇(div(V )) = −∇p. (2.4.11)

Next we consider the energy balance. The divergence of the heat flux results in

div(2q) = −2κ∆T, (2.4.12)
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2 Elementary properties of solutions

the divergence of dρTV evaluates to

div(dρTV ) = d (ρV · ∇T + div(V ρ)T ) , (2.4.13)

and the divergence of |V |2ρV is

div(|V |2ρV ) = |V |2div(ρV ) + ρV · ∇(|V |2). (2.4.14)

Now we calculate the divergence of PV . There holds PV = pV − λdiv(V )V − 2µε(V )V , such
that we can write

div(PV ) = ∇p · V + pdiv(V )− λ∇div(V ) · V − div(V )2 − 2µdiv(ε(V )V ). (2.4.15)

The divergence of ε(V )V can be written as

div(ε(V )V ) = tr(∇V ε(V )) + div(ε(V )) · V. (2.4.16)

From the momentum balance equation one obtains

−2µdiv(ε(V )) · V =
(
−∇p+ λ∇(div(V ))− ρ

(
∂V
∂t +∇V V

))
· V,

such that we can write div(PV ) as

div(PV ) = pdiv(V )− 2µtr(∇V ε(V ))− λdiv(V )2 − ρ
(
∂V
∂t +∇V V

)
· V. (2.4.17)

The time derivative of dTρ+ |V |2ρ is given by

∂(dTρ+ |V |2ρ)

∂t
= dρ

∂T

∂t
+ dT

∂ρ

∂t
+ ρ

∂|V |2

∂t
+ |V |2∂ρ

∂t
. (2.4.18)

Now we plug all the representations found above into the third moment equation, use the continuity
equation and the identities V · ∇(|V |2) = 2∇V V · V as well as ∂|V |2

∂t = 2∂V∂t · V to arrive at

dρ
∂T

∂t
+ 2(pdiv(V )− 2µtr(∇V ε(V ))− λdiv(V )2) + dV ρ∇T − 2κ∆T = 0.
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2.4 Moment equations

Finally we rewrite pdiv(V ) = Tρdiv(V ) = T (div(ρV )−∇ρ ·V ) = T (−∂ρ
∂t −∇ρ ·V ), introduce

the definition of the internal energy e = d
2T and the material derivative D.

Dt := ∂.
∂t + V · ∇(.) to

end up with the common form of the energy balance equation for the Navier- Stokes system.

ρ
De

Dt
− T Dρ

Dt
= 2µtr(∇V ε(V )))− div(q) + λdiv(V )2. (2.4.19)

The obtained system of equations now reads

Dρ

Dt
= −ρdiv(V )

ρ
DV

Dt
= 2µdiv(ε(V ))− λ∇(div(V ))−∇p

ρ
De

Dt
− T Dρ

Dt
= 2µtr(∇V ε(V )))− div(q) + λdiv(V )2.

(2.4.20)
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2 Elementary properties of solutions
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3 Numerical Methods

In the following section we give a general view of numerical methods for the Boltzmann equation.
Even though some of them have been considered for the full Boltzmann equation, we only present
the discretization in the velocity domain. Thus, we only treat space homogeneous problems in
this section. Moreover we restrict the presentation of the methods to the dimension of the velocity
space used in the presentation in the literature.
In the first subsection we deal with a description of stochastic methods, in the second subsection
deterministic methods are presented.

3.1 Stochastic methods

Monte Carlo methods are widely used for the numerical treatment of the Boltzmann equation.
These methods impress by their simplicity and efficiency, the proposed algorithms are of compu-
tational effort N , where N is the number of simulated particles. The schemes are based on the
simulation of a subset of the particles of interest, resulting in simple algorithms. On the other hand
the methods have to deal with low accuracy and stochastic fluctuations. We present here the meth-
ods proposed by Nanbu and Babovsky [Nan80, Bab86]. We also refer the reader to the approach
by Bird [Bir95] and to the textbook of Rjasanow and Wagner [RW05].

3.1.1 Monte Carlo methods – Nanbu - Babovsky scheme

We start with the homogeneous equation and apply the usual splitting into the gain and loss term
to the collision operator.

∂f

∂t
=

1

Kn
Q(f)

=
1

Kn

∫
R3

∫
S2

B(v, w, e′)f(v′)f(w′) de′ dw − f(v)

∫
R3

∫
S2

B(v, w, e′)f(w) de′ dw

 .

(3.1.1)
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3 Numerical Methods

We assume f is a probability density, i.e. f ≥ 0 and
∫
f = 1. For simplicity we consider

Maxwellian molecules with B(v, w, e′) = 1
4π . In that case, the above equation simplifies to

∂f

∂t
=

1

Kn
1

4π

∫
R3

∫
S2

f(v′)f(w′) de′ dw

︸ ︷︷ ︸
:=Q+(f)

− 1

Kn
f(v). (3.1.2)

If one denotes by f (n) the solution at time t = n∆t and applies a forward Euler scheme with time
step ∆t to (3.1.2) one obtains

f (n+1) − f (n)

∆t
=

1

Kn
Q+(f (n))− 1

Kn
f (n) ⇔

f (n+1) = (1− ∆t

Kn
)f (n) +

∆t

Kn
Q+(f (n)).

(3.1.3)

The method is based on a probabilistic interpretation of (3.1.3). To this end we note that Q+(f) ≥
0 and that

∫
Q+(f) = 1, thusQ+(f) is a probability density. Now, a particle sampled from f (n+1)

is sampled from Q+(f (n)) with probability ∆t
Kn and from f (n) with probability 1 − ∆t

Kn . Roughly
speaking, the particle does not collide with probability 1 − ∆t

Kn in the time interval [n∆t, (n +
1)∆t]. From this interpretation one derives Algorithm 1. We denote byN the number of simulated
particles and by nt the number of time steps.

for i = 1 : N do
Set v(0)

i by sampling it from the initial distribution f0(v).
end
for t = 1 : nt do

for i = 1 : N do
Sample a uniform distributed random number ξ ∈ [0, 1]
if ξ < 1− ∆t

Kn then
Set v(t+1)

i = v
(t)
i

else
Sample a uniform distributed random integer j ∈ [1, N ]
Calculate v′i according to a collision with particle j, i.e.
Sample a uniform distributed e′ ∈ S2

Set v(t+1)
i =

v
(t)
i +v

(t)
j

2 + e′
|v(t)
i −v

(t)
j |

2

end
end

end
Algorithm 1: A first version of the Monte Carlo method
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3.1 Stochastic methods

Remark 3.1.1. The method proposed by Nanbu [Nan80] is quite similar to the presented algo-
rithm. Therein a stochastic law for the density function at time ∆t is derived under the assumption
that the initial distribution is of the form f(0, v) = 1

N

∑N
i=1 δ(v − vi), based on a first order

expansion of f at t = 0 w.r.t. time. The scheme is presented for a larger class of collision kernels,
yielding individual collision probabilities for individual particles and their collision partners. In
our setting with constant collision kernel B(v, w, e′) = 1

4π , the method can be formulated as in
Algorithm 1.

We note the strategy to sample from Q+(f (n)). In fact we perform a collision according to (1.2.3)
and sample the scattering vector uniformly from the sphere S2.
Having a closer look at the collision process one notes that only particle i changes its velocity
according to a two particle collision and thus momentum and energy are not conserved at a single
collision. A simple modification leading to the desired conservation properties at each single col-
lision can be obtained by the following considerations. The idea is to select independent collision
pairs without repetition and change both velocities according to the interaction law. The expected
number of collisions in a small time interval ∆t is given by N ∆t

Kn . Thus, the number of expected
collision pairs is N ∆t

2Kn . With this considerations, Algorithm 1 can be reformulated as

for i = 1 : N do
Set v(0)

i by sampling it from the initial distribution f0(v).
end
for t = 1 : nt do

Select Nc := N∆t
2Kn independent pairs (i, j) from all possible pairs

for (i, j) collision pair do
Compute v′i, v

′
j according to a collision of vi and vj

Set v(t+1)
i = v′i and v(t+1)

j = v′j
end
Set v(t+1)

i = v
(t)
i for all particles which were not selected

end

Algorithm 2: A conservative version of the Monte Carlo scheme.

In Algorithm 2 both particles i and j interchange their state according to a binary collision and
thus, momentum and energy are conserved at each collision in this version of the algorithm. The
computation of the post collision velocities is done as is in Algorithm 1.

We note that these algorithms have the time step restriction 1 − ∆t
Kn > 0 ⇔ ∆t < Kn in order

to guarantee a probabilistic interpretation, what is critical if the Knudsen number becomes small.
This problem can be avoided with a suitable time discretization, yielding to time relaxed Monte
Carlo methods.
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3 Numerical Methods

3.1.2 Time relaxed Monte Carlo methods

The time relaxation approach is based on a suitable series expansion of the solution, a truncation
of this series and a replacement of higher order terms by the equilibrium solution. A detailed
description of such methods can be found in [PT05], the main aspects are presented in the sequel.

We consider the homogeneous Boltzmann equation for the probability density f in the form

∂f

∂t
=

1

Kn
(
Q+(f, f)− f

)
, f(0, v) given. (3.1.4)

Here we used the same collision kernel as before, B(v, w, e′) = 1
4π . The bilinear operator Q+ is

defined as Q+(f, g) = 1
8π

∫
R3

∫
S2 f(v′)g(w′) + g(v′)f(w′). Now the function f can be expanded

to the following formal series, which is known as Wild’s sum [Wil51].

f(t, v) = e−
t

Kn

∞∑
k=0

(1− e−
t

Kn )kfk(v), (3.1.5)

with fk given by

f0(v) = f(0, v)

fk+1(v) =
1

k + 1

k∑
u=0

Q+(fu, fk−u), k = 0, 1 . . .
(3.1.6)

To construct a numerical method on the basis of the above expansion, the Wild sum is truncated at
a fixed k = m and the coefficient of (1 − e−

t
Kn )m+1 is replaced by the equilibrium M(v), where

M denotes the normalized Maxwellian with appropriate velocity and temperature. The numerical
solution at time ∆t is defined via

f(∆t, v) = e−
∆t
Kn

m∑
k=0

(1− e−
∆t
Kn )kfk(v) + (1− e−

∆t
Kn )m+1M(v). (3.1.7)

Truncating at m = 1 leads to

f(∆t, v) = A0f0 +A1f1 +A2M f0 = f(0, v), f1 = Q+(f0, f0)(v). (3.1.8)
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3.1 Stochastic methods

The coefficients Aj satisfy Aj ≥ 0 as well as A0 + A1 + A2 = 1. They are given by Aj =

τ j(1− τ), j = 0, 1 and A2 = τ2, with τ = 1− e−
∆t
Kn .

A probabilistic interpretation of (3.1.8) can be stated as follows: A particle sampled from f at time
∆t is sampled from f1 with probability A1, it is sampled from f0 with probability A0. Finally it is
sampled from a Maxwellian distribution with probability A2. A numerical scheme based on this
interpretation can be implemented as presented in Algorithm 3.

Remark 3.1.2. By the above time discretization, the probabilistic interpretation of (3.1.8) holds
uniform in 1

Kn , enabling larger time steps. Besides the stochastic approach presented in [PT05],
the time relaxation approach can also be applied to deterministic methods, as is done in [GPT97],
where the time relaxation is combined with a discrete velocity model.

for i = 1 : N do
Set v(0)

i by sampling it from the initial distribution f0(v).
end
for t = 1 : nt do

Compute τ = 1− e−
∆t
Kn and Ai, i = 0, 1, 2.

Sample Nc := NA1
2 pairs (i, j) from all possible collision pairs

Set Nr := NA2

for (i, j) in collision pairs do
Compute v′i, v

′
j according to a collision of vi and vj

Set v(t+1)
i = v′i and v(t+1)

j = v′j
end
Sample Nr indices i from {1 . . . N}, store them in I
Calculate mean velocity V and temperature T of the sampled particles in I
Sample Nr particles wi, i = 1 . . . Nr from a Maxwellian MV,T

for i ∈ I do
Set v(t+1)

i = wi;
end
Set v(t+1)

i = v
(t)
i for all i : i /∈ I and for all particles which have not collided.

end
Algorithm 3: A time relaxed version of the Monte Carlo scheme.

To implement the algorithms just presented, one needs to be able to sample from a given distribu-
tion function in order to:

• Choose a uniform distributed vector on the unit sphere for sampling the post collision ve-
locities.

• Sample from the initial distribution to construct the initial data.

43



3 Numerical Methods

• Sample Nc collision pairs from a bivariate uniform distribution.

• Sample from a Maxwellian in the time relaxed schemes.

A possible way construct random variables which are distributed as a distribution function F with
density f is inverse sampling. To this end consider a random number ζ ∈ [0, 1] with uniform
distribution U . The random number x = F−1(ζ) is distributed as F :

P (x ≤ t) = P (F−1(ζ) ≤ t) = P (ζ ≤ F (t)) = F (t). (3.1.9)

Thus, we construct a uniform distributed random number ζ ∈ [0, 1] and solve x = F−1(ζ) to end
up with a random number x sampled from F .

As an example we show how to

Sample uniform distributed points from the unit sphere

We denote the point on the unit sphere S2 by its Polar coordinates (φ, θ) ∈ [0, 2π] × [0, π]. The
probability that x lies in an area A is given by

P (x ∈ A) =

∫
A

1

4π
ds =

φ1∫
φ0

1

2π
dφ

θ1∫
θ0

sin(θ)

2
dθ. (3.1.10)

According to the above equation, if the Polar coordinates are independent and distributed uniform
w.r.t. φ and distributed as Fθ(θ) := 1−cos(θ)

2 w.r.t. θ, then x is distributed uniformly on the sphere
S2. Thus, in order to sample such points it is sufficient to sample φ from a uniform distribution
and θ from Fθ. For that purpose we use the above ideas of inverse sampling and introduce two
uniform random numbers ζ1, ζ2 ∈ [0, 1] with

ζ1 =
φ

2π
and ζ2 =

1− cos(θ)

2
. (3.1.11)

Solving for φ and θ results in two random variables φ, θ which are sampled from the desired
distributions

2πζ1 = φ and arccos(1− 2ζ2) = θ. (3.1.12)
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3.2 Deterministic Methods

Finally, the point (x, y, z) on the sphere is computed via

xy
z

 =

cos(2πζ1) sin(arccos(1− 2ζ2))
sin(2πζ1) sin(arccos(1− 2ζ2))

cos(arccos(1− 2ζ2))

 . (3.1.13)

It is clear, that this technique is restricted to very special cases, when the effort for the inversion
of the distribution function is acceptably moderate. If this is not the case, other techniques, e.g.
acceptance-rejection techniques are preferred to sample from a given distribution F .
We note that this procedure can also be used to sample from a Maxwellian.

3.2 Deterministic Methods

When turning to deterministic approaches, the high complexity of the collision operator is a real
challenge. A popular class of methods is based on truncated Fourier series [PP96,PR00,FM10,PR].
Typically these methods require a truncation of the momentum domain for the solution function
and also for the collision integrals resulting in a perturbation of the conservation properties. By
adding periodicity to the solution function additional errors may occur in the calculation of the
collision integrals as we will see in the sequel.

In addition, we present discrete velocity models. The main idea of such methods is to replace the
continuous momentum domain by a discrete lattice. This yields evolution equations for fi(t) :=
f(t, vi). For these methods conditions can be derived to ensure that a discrete H-theorem holds
and that mass, momentum and energy are conserved. Specific attention has to be paid on the
integration over the sphere when calculating the collision integrals.

3.2.1 Fourier series expansion

We present the spectral method published in [PP96,PR00] for the space homogeneous Boltzmann
equation. The first problem one faces in the approximation is the unbounded domain the distribu-
tion function f is defined on and the unbounded domain of integration in the collision integrals. A
pure restriction of the integration domain for the collision integrals violates the conservation laws
for mass, momentum and energy. By means of the following proposition it is possible to trun-
cate the integration domain for solutions with compact support without violating the conservation
properties.
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3 Numerical Methods

Proposition 3.2.1. Let Supp(f) ⊂ B(0, R), where B(x, r) denotes the sphere with center at x
and radius r. Then there holds

(i) Supp(Q(f)) ⊂ B(0,
√

2R)

(ii)

Q(f)(v) =

∫
B(0,2R)

∫
S2

B(|g|, g · e′)[f(v′)f(w′)− f(v)f(v − g)] de′dg,

where g := v − w and v′, w′, v − g ∈ B(0, (2 +
√

2)R).

We assume that the initial distribution has compact support in B(0, R). We approximate it on
a 3 dimensional cube [−T, T ]3 by its truncated Fourier series and extend it by periodicity. By
adding periodicity we have to choose the cube large enough, in order to calculate the collision
integrals without contributions from the neighbouring cubes. This situation can be sketched as in
Figure 3.2.1, which is found in [PR00]: if the distribution has support in B(0, R), then we need to
evaluate f inside the sphere B(0, (2 +

√
2)R) to calculate the collision integral. In order to avoid

errors due to the periodic extension, this sphere should not overlap with the support of the copies
of the distribution. This is achieved if T = 3+

√
2

2 R. Note that the support of f grows w.r.t. time,
what needs to be considered during time stepping.

In order to avoid scaling in the argument of the Fourier series expansion, the presentation of the
method is restricted to the case where T = π and consequently R = 2

3+
√

2
π.

The Fourier series expansion on the cube [−T, T ]3 is denoted as

fN (v) =
N∑

k=−N
f̂ke

iv·k,

where

f̂k =

∫
[−π,π]3

f(v)eik·v dv.

(3.2.1)

In the above equation, N is the order of expansion. Due to readability the 3 dimensional sum over
the Fourier modes is denoted as a single sum over the expansion order N . Thus, we identify

N∑
k=−N

. . . with
N∑

kx=−N

N∑
ky=−N

N∑
kz=−N

. . . . (3.2.2)
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3.2 Deterministic Methods

(2+
√

2)R

R

T

Figure 3.2.1: Here we show the support of the distribution function, as well as a copy due to the
periodic extension in two dimensions. The gray shaded area is the actual support of
f , the large circle corresponds to the domain, where f has to be evaluated to calculate
the collision integrals. The squares are the 2d cubes [−T, T ]2, with T = 1

2(3+
√

2)R.
On the cube the Fourier approximation is performed.

In addition, by f̂k the quantity f̂(kx,ky ,kz) is denoted.
With the expansion (3.2.1) one obtains for the collision integral

Q(fN )(v) =

N∑
h,k=−N

B̂(h, k)f̂hf̂ke
iv·(h+k), (3.2.3)

where the kernel modes B̂(h, k) are given by

B̂(h, k) =

∫
B(0,2R)

∫
S2

B(|g|, g · e′)
[
e−i

g
2 ·(h+k)+i

|g|
2
e′·(h−k) − e−ig·k

]
de′dg. (3.2.4)

The kernel modes are independent of the specific function f and also independent of the evaluation
point v, depending only on the interaction law. Moreover, one can prove the following statement
about their dependency on the arguments h and k [PR00].

Proposition 3.2.2. B̂(h, k) is a function of |h− k|, |h+ k| and (h− k) · (h+ k). For a variable
hard sphere gas where B(v, w, e′) = C|v − w|α, this dependency reduces even to |h − k| and
|h+ k|.
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3 Numerical Methods

The previous proposition states for which pairs (h, k) one needs to store information in actual
computations. For the case of the variable hard sphere model, the values of B̂ depend on two
parameters and thus, B̂ can be stored in a matrix of size O(N6). Considering symmetry, this
number reduces in practice.
To obtain an ODE system for the coefficients we expand Q(fN ) to its Fourier series of order N
and denote this projection by QN .

QN (fN )(v) =

N∑
l=−N

Q̂le
iv·l

where

Q̂l : =

N∑
h,k=−N
h+k=l

f̂hf̂kB̂(h, k),

(3.2.5)

The above equation shows that QN (fN )(v) can be evaluated with O(N6) operations, where N is
the expansion order. For two dimensions O(N4) operations are obtained.
Now we plug the expansion (3.2.1) as well as the representation for the collision integral (3.2.5)
into ∂fN

∂t (v) = QN (fN )(v) to obtain a system of ODEs for the Fourier coefficients.

∂

∂t

N∑
k=−N

f̂k(t)e
ik·v =

N∑
l=−N

Q̂le
iv·l, v =

π

N
j, j ∈ {−N . . .N}3. (3.2.6)

The initial condition for the Fourier coefficients is obtained from f(0, v). We note that the evalua-
tion of (3.2.6) at all nodes vj = j πN can be performed using the fast Fourier transform resulting in
O(N3 log(N)) operations [JWC65].

Remark 3.2.3. In [PP96], the authors give a comment on the calculation of Q̂l for Maxwellian
molecules. For collision kernels independent of the relative velocity, they use a representation of
the collision operator found by Bobylev [Bob88]. This representation suggests that Q̂l in (3.2.5)
is well approximated if the sum is restricted to those h, k such that h · k = 0.
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3.2 Deterministic Methods

Galerkin Projection

The above expansion of the distribution function can also be used in a Galerkin method as pre-
sented in [PR00]. In addition to the previous approach, the usual splitting of the collision operator
to its gain and loss term is used. As before, we assume that the initial distribution has compact
support in B(0, R). The approximation is also done on a cube [−T, T ]3, with T = 3+

√
2

2 R. We
restrict the presentation again to the case where T = π to simplify the presentation. According to
proposition 3.2.1, the splitting reads

Q(fN ) = Q+(fN )− fNL(fN ),

where

Q+(fN ) =

∫
B(0,2R)

∫
S2

B(|g|, g · e′)f(v′)fN (w′) de′dg,

L(fN ) =

∫
B(0,2R)

∫
S2

B(|g|, g · e′)fN (v − g) de′dg.

(3.2.7)

Instead of plugging the expansion directly into the homogeneous equation, the residual is required
to be orthogonal to all trigonometric polynomials of order smaller or equal to N w.r.t. each direc-
tion.

∫
[−π,π]3

(
∂fN
∂t

+ fnL(fN )−Q+(fN )

)
ei(j·v) dv = 0, j ∈ {−N . . .N}3. (3.2.8)

The expressions for Q+(fN ) and fNL(fN ) result again in a double sum over the Fourier coeffi-
cients.

Q+(fN ) =
N∑

h,k=−N
f̂kf̂hB̂(h, k)ei(h+k)·v

fNL(fN ) =

N∑
h,k=−N

f̂kf̂hB̂(k, k)ei(h+k)·v

with

B̂(h, k) =

∫
B(0,2R)

∫
S2

B(|g|, e′)e−i
g
2 (h+k)+i

|g|
2
e′·(h−k) de′dg.

(3.2.9)
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The different notation for the kernel modes is due to the splitting of Q.
Now by the orthogonality of the trigonometric functions, i.e.

∫
[−π,π]3

eik·veil·v dv = (2π)3δkx,lxδky ,lyδkz ,lz (3.2.10)

and the expressions (3.2.9) for the collision operator, (3.2.8) turns into

∂f̂j
∂t

+
N∑

h,k=−N
h+k=j

f̂kf̂hB̂(k, k) =
N∑

h,k=−N
h+k=j

f̂kf̂hB̂(h, k), j ∈ {−N . . .N}3. (3.2.11)

Taking into account the restriction of the summation indices and extending the Fourier coefficients
by zero, the scheme can be written as

∂f̂j
∂t

+
N∑

k=−N
f̂j−kf̂kB̂(k, k) =

N∑
k=−N

f̂j−kf̂kB̂(j − k, k) j ∈ {−N . . .N}3. (3.2.12)

The initial condition for the k-th Fourier coefficient is obtained as the k−th Fourier coefficient of
f0, v). We note the the evaluation of (3.2.12) needs O(N6) operations in general.

For the analysis of the method and numerical results we refer to [PR00].

3.2.2 Discrete velocity models

Discrete velocity models are based on the assumption that the particles under consideration can
only have velocities on a discrete set of values V = {ζi, i = 1 . . . N} ⊂ R3. The distribution
function f(t, x, v) is replaced by the discrete values fi(t, x) which are identified with f(t, x, ζi).
The components fi evolute according to

∂fi
∂t

+ ζi · ∇fi = Qi(f)

with

Qi(f) =
∑

j,k,l∈{1...N}

Aklij (fkfl − fifj) i = 1 . . . N,

(3.2.13)
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3.2 Deterministic Methods

where Aklij are constants. They are interpreted as the rates of those collisions transferring particles
(ζi, ζj) into (ζk, ζl).

Now it can be shown that

∑
i

Qi(f)

 1
ζi
|ζi|2

 = 0 and
∑
i

Qi(f) log(fi) ≤ 0 (3.2.14)

hold, provided that the coefficients Aklij satisfy the symmetries

Aklij = Alkji and Aklij = Aijkl, (3.2.15)

and that momentum and energy are collision invariants.

ζi + ζj = ζk + ζl and |ζi|2 + |ζj |2 = |ζk|2 + |ζl|2, ∀(i, j, k, l) : Aklij 6= 0. (3.2.16)

In other words, the conservation properties of the Boltzmann equation are satisfied on the discrete
level and a discreteH-theorem holds.
The method described in the sequel was presented in [Bue96].

The velocity space R3 is discretized as

vi = ih, i = (ix, iy, iz) ∈ Z3, h > 0. (3.2.17)

The collision integrals
∫
R3

∫
S2 . . . de

′dw evaluated at v = vi are approximated via a sum over the
set of discrete velocities.

∫
R3

∫
S2

B(v, w, e′)(f(v′)f(w′)− f(v)f(w)) de′dw

≈ h3
∑
j∈R3

∫
S2

B(vi, vj , e
′)(f(v′i)f(v′j)− f(vi)f(vj)) de

′.

(3.2.18)

For the loss term only values of f at the lattice are needed. The gain term depends on the values of
f via an integral over the unit sphere. In the sequel, the integral over the surface of the unit sphere
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3 Numerical Methods

shall be approximated by a quadrature rule. The biggest issue when doing so is finding integration
nodes on the unit sphere S2 under the restriction that for given pre collision velocities (vi, vj) the
post collision velocities (v′i, v

′
j) shall again be nodes on the lattice, i.e. ∃ k, l : (v′i, v

′
j) = (vk, vl).

For given pre collision velocities vi, vj one sees that v′i, v
′
j vary on a sphere of radius 1

2 |vi − vj |
with center at 1

2(vi + vj) if e′ varies on the unit sphere. If v′i is found on the lattice then also v′j ,
which is located diametrically opposite, is a node of the lattice. For such post collision velocities
there exists a unique eklij ∈ S2 such that

1
2(vi + vj) + 1

2e
kl
ij |vi − vj | = v′ = vk (3.2.19)

and

1
2(vi + vj)− 1

2e
kl
ij |vi − vj | = w′ = vl, l = i+ j − k. (3.2.20)

For given pre collision velocities (vi, vj) these post collision velocities are characterized by the set
Sij which is defined as

Sij := {(k, l) ∈ Z3 ⊗ Z3 : i+ j = k + l, |k|2 + |l|2 = |i|2 + |j|2}, (3.2.21)

expressing conservation of momentum and energy. In addition to the sets Sij , a set of integration
nodes corresponding to Sij is defined via

Iij = {eklij ∈ S2 : (3.2.19) and (3.2.20) hold}. (3.2.22)

The weights are chosen equal to |S
2|
|Iij | , where |S2| = 4π denotes the surface of the unit sphere S2

and |Iij | denotes the cardinality of the set Iij .

With the above notation, for a fixed value of j ∈ R3, the integral over the unit sphere is approxi-
mated via

∫
S2

B(vi, wi, e
′)(f(v′i)f(v′j)− f(vi)f(vj)) de

≈ 4π

|Iij |
∑
eklij∈Iij

B(vi, vj , e
kl
ij )(f(v′i)f(v′j)− f(vi)f(vj))

=
4π

|Iij |
∑

(k,l)∈Sij

B(vi, vj , e
kl
ij )(f(vk)f(vl)− f(vi)f(vj)).

(3.2.23)
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3.2 Deterministic Methods

Consequently, (3.2.18) reads

Q(f)(vi) ≈ 4πh3
∑
j∈Z3

1

|Iij |
∑

(k,l)∈Sij

B(vi, vj , e
kl
ij )(fkfl − fifj). (3.2.24)

The above equation can be rewritten to fit into the general notation of discrete velocity methods.

Q(f)(vi) ≈
∑

(j,k,l)∈(Z3)3

Aklij (fkfl − fifj)

where

Aklij =


4πB(vi,vj ,e

kl
ij )

|Iij | if (k, l) ∈ Sij
0 otherwise

.

(3.2.25)

The coefficients Aklij satisfy the symmetry properties

Aklij = Aklji , (3.2.26)

expressing that 2 pre collision particles are indistinguishable. By the relation

Aklij = Alkij , (3.2.27)

the same statement is obtained for the post collision particles. Moreover, there also holds

Aklij = Aijkl. (3.2.28)

Combining the final three equations, one obtains that (3.2.14) is satisfied (Note that momentum and
energy are collision invariants by construction), and therefore the conservation laws are satisfied
on the discrete level and a discrete H-theorem holds.
One may ask about the quality of the approximation of the unit sphere integral. In [Bue96] a result
about splitting an integer into a sum of 3 squared integers [HW79] is adapted in order to show that
|Si,j | behaves like 4π|i−j|

6 , the distribution of the integration nodes on the sphere seems to be quite
arbitrary, as reported in [Bue96]. Rigorous error estimates are not known to the author for such
quadrature formulas.
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3 Numerical Methods

Remark 3.2.4. In [Bue96], the analysis of the method is done on the unbounded lattice. For actual
computations, the lattice as well as the sets Sij have to be restricted to a bounded domain V . The
sets Sij are replaced by S̃ij , defined via

S̃ij := {(k, l) ∈ Sij : vk, vl ∈ V } with vi, vj ∈ V. (3.2.29)

Remark 3.2.5. A possibility to avoid integration over the surface of the unit sphere is presented
in [PH02]. In this approach the Carleman representation of the collision integrals is used, which
provides an expression for the collision integrals without integrals over the surface of a sphere.
We do not present details of this approach, refer to [PH02] for more information.
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4 A Discontinuous Galerkin approach

This section is devoted to the presentation of the method developed in the context of the underlying
thesis. At the beginning we present the concept of Discontinuous Galerkin methods for a standard
linear transport problem. For the Boltzmann transport operator we do a reformulation to fit it in
the above mentioned class of transport operators in a 2+2 dimensional setting. We stabilize our
DG discretization by choosing upwind fluxes in the arising skeleton integrals.

The main part of the section deals with efficient application of the collision integrals. Our idea
is based on a reformulation of the integrals in terms of the mean and relative velocity of the
colliding particles. For the reformulated integrals we then propose a polynomial basis in which the
innermost integrals are diagonal and thus easy and fast to apply. In order to keep efficiency, we
show a technique to deal efficiently with the necessary transformation between the bases. The key
ingredient to come to that end will be a splitting of the transformation into 2 cheaper ones.

Our discretization consists of 2 parameters within each space element which are closely related
to temperature and mean velocity. Actual computations show that the stability of the method is
in strong correlation with the choice of these parameters. Thus, we conclude this section with a
discussion about their choice.

At that point we switch to a 2-dimensional presentation for both, x and v.

4.1 Discontinuous Galerkin Discretization

In the context of hyperbolic conservation laws, DG methods are well established. Already in
1973, Reed and Hill [RH73] proposed an approximation of the neutron transport equation by
discontinuous Ansatz functions. Convergence proofs for equations of the form div(bu) + αu = f
were then obtained by Johnson and Pitkäranta [JP86]. They proved error estimates of the form

‖e(T )‖L2(0,1) ≤ C|u0|Hk+1(0,1)h
k+

1
2 , with e denoting the error e(T ) := u(T ) − uh(T ) at time

T . A similar result was also obtained by LeSaint and Raviart [LR74]. In the case of non linear
conservation laws Cockburn and Shu presented in a series of papers so called Runge Kutta DG
methods [CS89, CLS89, CHS90, CS01, CKS00]. These methods consist of the typical DG space
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4 A Discontinuous Galerkin approach

discretization paired with explicit Runge Kutta time stepping schemes. A comparison of different
techniques including discontinuous as well as continuous Galerkin methods for first order linear
hyperbolic equations was presented by Falk in [Fal00]. We additionally refer the reader to the
finite element textbooks of Johnson [Joh12], Ern and Guermond [EG04] and the monograph of
Hesthaven and Warbuton [HW08]. Applications specifically for Euler and Navier-Stokes equa-
tions are presented in [BR97b, BR97a].

The impact of DG methods was significantly raised in the last decades, since besides their math-
ematical properties, these methods are very well suited for modern hardware architecture: The
schemes present in literature allow a straight forward implementation in parallel. Adaptivity in
terms of different polynomial degrees, the ability to handle non conformal meshes are in addition
among the benefits of DG methods.

In the case of elliptic equations, continuous Galerkin methods are known to perform very well,
also the theory is quite satisfactory [Joh12,Bra92]. Due to the need of solving convection-diffusion
problems with dominant convection, DG methods were also developed for elliptic equations, due
to their good properties concerning the convective part. We refer the reader to [ABCM01] for DG
methods for elliptic equations.

4.1.1 DG for a scalar linear convection equation

We present a short derivation of the DG method for a linear hyperbolic first order PDE in the
sequel. Let us consider the equation

∂u

∂t
(t, x) + div(b(x)u(t, x)) = 0 x ∈ Rd

u(0, x) = u0(x) x ∈ Rd,
(4.1.1)

with div(b) = 0. The discontinuous Galerkin space discretization for the above problem is de-
scribed in the sequel. First we assume a subdivision of Rd =

⋃
K∈Th

K is given. Now we look for a

discontinuous approximation uh of the solution u. For this purpose we define the space

V DG
h := {uh : uh

∣∣
K
∈ P p(K) ∀K ∈ Th}, (4.1.2)

where P p(K) denotes the polynomial space on the element K of degree at most p. The space
V DG
h is the usual DG approximation space. Let us denote by φj,K , j = 1 . . . ndofK the j−th basis
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4.1 Discontinuous Galerkin Discretization

polynomial on the element K, extended with 0 outside of K. Thus, we expand uh to

uh(t, x) =
∑
K∈Th

ndofK∑
j=1

uj,K(t)φj,K(x). (4.1.3)

For uh ∈ V DG
h we now require the transport equation to be satisfied in a weak sense in each

element K ∈ Th. Thus, we multiply by a test function v ∈ V DG
h , integrate over the element K and

finally sum over all elements in the triangulation. The restriction to single elements is necessary
since we want to integrate by parts. Due to the discontinuities of uh this holds only on the element
level. We obtain our variational formulation as

∑
K∈Th

∂

∂t

∫
K

uhv dx+

∫
∂K

b · nuhv ds−
∫
K

buh · ∇v dx = 0 ∀v ∈ V DG
h . (4.1.4)

In terms of the basis polynomials and the expansion (4.1.3), the above formulation reads

∑
K∈Th

ndofK∑
j=1

 ∂

∂t

∫
K

uj,Kφj,Kφj′,K+

∫
∂K

b · nuj,Kφj,Kφj′,K ds−
∫
K

uj,Kφj,Kb · ∇φj′,K dx

 = 0.

(4.1.5)

The first term results in a mass matrix multiplied with the time derivative of the coefficient vector,
also the third term doesn’t reveal unexpected troubles. The second term needs to be considered
with more care. If we use (4.1.5) exactly as it is, we realize immediately that there is no information
exchange across element boundaries. For a transport equation this sounds already inappropriate,
the transport would take place within each element only, but not globally. In other words, the
outflow from one element has no connection to the inflow of a neighbouring element. Apart from
these empirical observations the method becomes highly unstable without additional modification
of the skeleton terms.

The above considerations lead to the definition of the upwind flux. For this purpose fix an element

K in the mesh and split its boundary ∂K =
nedges⋃
i=1

Ei. Moreover we denote by Ki, i = 1 . . . nedges

the elements sharing the edge Ei with our actual element K. The upwind value is defined the
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4 A Discontinuous Galerkin approach

following way:

u
up,K,Ei
h (x) :=

{
uh
∣∣
K

(x) b(x) · n(x) > 0,

uh
∣∣
Ki

(x) otherwise.

With the upwind flux defined we can state the final DG formulation that is solved. In fact we
simply replace uh in the skeleton integrals in (4.1.4) by the upwind value uup

h .

∑
K∈Th

∂

∂t

∫
K

uhv dx+

∫
∂K

b · nuup
h v ds−

∫
K

buh · ∇v dx = 0 ∀v ∈ V DG
h . (4.1.6)

The definition of the upwind value provides a quite intuitive solution for the evaluation of the
skeleton integrals in (4.1.4). In addition for a continuous solution the upwind value reduces to
the function value on the boundary. This implies that the DG formulation with upwind fluxes is
consistent.

The benefits of DG methods are of different nature. First of all there is no coupling between the
local basis functions from one element and another one. This provides an easy way to use different
polynomial orders on different elements, making the method highly suitable for adaptivity.
Second, a time discretization by a forward Euler method with time step τ leads to

M
u(n+1) − u(n)

τ
+ Fu(n) = 0 ⇔

−τM−1Fu(n) + u(n) = u(n+1).

(4.1.7)

In the above equation, M denotes the mass matrix, i.e. Mij =
∫

Ω φiφj where φi, i =
1 . . . dim(V DG

h ) denotes the basis functions in V DG
h . F is the discrete analogy to the fluxes and

u denotes the coefficient vector in the expansion (4.1.3). Thus, in order to calculate u(n+1), the
inverse of the mass matrix needs to be applied. Due to the basis functions being non trivial only on
one element, the mass matrix M results in a block diagonal matrix with non overlapping blocks.
M = diag(M (1), . . . ,Mnelements), where M (K) ∈ RndofK×ndofK is the block connected with the el-
ement K. This matrix is inverted cheaply, only the element matrices M (K) need actual inversion.
Since M−1 is again a block diagonal matrix, it can be applied efficiently. Note that there is no
need to invert the matrix connected with the coupling terms what would need a global inversion.
The situation is similar when explicit higher order Runge Kutta schemes are used. The inverse
mass matrix has to be calculated, the coupling terms need only a forward application.
Third, the missing coupling between two elements also enables one to use non conformal meshes.
However, the numerical integration in such a case is somewhat tricky: If the edgeE of the element
K is connected with the edges of two different elements K̃, K̂, then the upwind value is not a
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4.1 Discontinuous Galerkin Discretization

polynomial along the edge E, but a piecewise polynomial only. We use as usual Gauss quadrature
formulas to numerically evaluate the integrals, these formulas are exact for polynomials but not
for piecewise polynomials. Therefore one has to calculate the skeleton term separate on E ∩ K̃
and E ∩ K̂ and sum up the contributions.

4.1.2 Applying DG to the Boltzmann transport operator

In the sequel we want to derive the discontinuous Galerkin formulation applied to the Boltzmann
equation (1.2.1). Just as usual we multiply it with a test function φ = φ(x, v) and integrate the
result w.r.t. to x over Ω and w.r.t. v over R2:

∂

∂t

∫
Ω×R2

fφ d(x, v) +

∫
Ω×R2

divx(vf)φd(x, v) =

∫
Ω×R2

Q(f)φd(x, v) ∀ suitable φ. (4.1.8)

As before we use discontinuous polynomial test and trial functions on a finite element mesh Th in
the spatial variable x. As we have seen in (2.2.4) and (2.4.1), conservation of mass, momentum
and energy arises by testing the Boltzmann equation with the collision invariants, which are poly-
nomials. This has an important meaning for our method: If the collision invariants are included in
the test space, then the discrete problem inherits the conservation properties directly from the con-
tinuous one. Thus, our discretization satisfies the same conservation equations for the macroscopic
properties as the continuous equation.

The choice of the trial functions in the velocity direction deals with the kernel of the collision

operator Q(f(t, x, .))(v), the Maxwell distributions MV,T (v) = ρ
Tπe

−
∣∣∣ v−V√

T

∣∣∣2 . We are particularly
interested in solutions close to equilibrium. Thus, to have accurate approximation in such situa-
tions, we choose the trial functions as polynomials multiplied with the local equilibrium MV,T (v)
in the velocity variable. A key ingredient – as confirmed by numerical examples – is the ability to
vary the parameters V and T over space and time.

To fix notation, we define the mesh Th := {K1, . . .Kr}, h being the usual mesh size parameter.
In addition we denote the space of polynomials of partial order at most N on R2 via

VN := QN (R2),

and the polynomial space of degree k on a single element K ∈ Th via

VK := P k(K).
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Note that VK is the space of polynomials of total degree at most k. The global space on the spatial
domain Ω is denoted as

V DG
h :=

∏
K∈Th

VK ,

being the usual DG approximation space in the spatial variable x. The full test space in momen-
tum and position variables is defined as a tensor product of the DG approximation space and the
polynomial space on R2.

Definition 4.1.1. We define the test space on the domain Ω̃ := Ω× R2 via

Vh,N := V DG
h ⊗ VN .

The trial space depends on additional parameters V (x) ∈ R2 and 0 < T (x) ∈ R, closely related
to the macroscopic quantities bulk velocity V (x) and temperature T (x). These parameters are
assumed to be piecewise constants with notation V

∣∣
K
≡ V K and T

∣∣
K
≡ TK . The resulting space

is denoted as

Ṽh,N :=
∏
K∈Th

VK ⊗ e
−

∣∣∣∣∣ v−VK√
TK

∣∣∣∣∣
2

VN .

The space Ṽh,N has dimension ndof :=
∑

K∈Th dim(VK)dim(VN ). The shorthand notation for
element wise degrees of freedom in x direction is dim(VK) =: ndofx and for the momentum space
dim(VN ) =: ndofv. The Maxwellian weight for the polynomials is termed element Maxwellian
and is denoted by MV K ,TK

.

The discontinuous Galerkin method is – as before – obtained by element-wise integration by parts
of the transport term in (4.1.8). Assuming sufficient regularity, the exact solution f satisfies:

∑
K∈Th

∂

∂t

∫
K×R2

fφ d(x, v) +

∫
∂(K)×R2

v · nfφ d(x, v)−
∫

K×R2

fv · ∇xφd(x, v)

=
∑
K∈Th

∫
K×R2

Q(f)φd(x, v),

(4.1.9)

for all test functions φ ∈ Vh,N . In the above equation, n is the unit outer normal vector to the
spatial element K.
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4.1 Discontinuous Galerkin Discretization

For the definition of the upwind flux it is convenient to interpret the transport operator as a standard
linear transport operator in R2+2. This is achieved by introducing the new variable y := (x, v) ∈
R4, the wind vector b := (v, 0) ∈ R4, the new domain Ω̃ := Ω × R2 and the mesh T̃h :=∏
K∈Th K × R2 with elements K̃. In that setting, the outer normal vector to an element of T̃h

results in ñ(y) = ñ(x, v) = (n(x), 0), where n is the outer normal vector to K at position
x ∈ ∂K. It is easy to see, that divx(vf) = divy(bf) and b · ñ = v · n hold. In the new variables
the variational problem for the pure transport equation reads

Find fh ∈ Ṽh,N :∑
K̃∈T̃h

∂

∂t

∫
K̃

fhφdy +

∫
∂(K̃)

b · ñfhφdy −
∫
K̃

fhb · ∇yφdy = 0, ∀φ ∈ Vh,N . (4.1.10)

This is a problem of the form (4.1.4) in a 2+2 dimensional space. Since the trial and test space do
not coincide, there is still a small difference. As for the lower dimensional case, we use the upwind
flux for the evaluation of the skeleton integrals in the transport operator. Thus, we replace fh in
the skeleton integrals by its upwind value fup

h , with fup
h given by

f
up
h :=

{
fh
∣∣
K

b · ñ > 0,

fh
∣∣
K̃

otherwise.

In the above equation, K̃ is the corresponding neighbour element to K. The definition of the
upwind flux is sketched in Figure 4.1.1.

The above definition of the upwind function holds for inner edges of the mesh Th only. For a
boundary edge the upwind value fup

h has to be adjusted. Instead of the solution value from the
neighbouring element, the boundary value is used. For an inflow boundary condition (1.2.4c) this
ends up in

f
up
h (x, v) :=

{
fh
∣∣
K

(x, v) v · n > 0,

fin(x, v) otherwise,

while for the specular reflection (1.2.4a) obtains

f
up
h (x, v) :=

{
fh
∣∣
K

(x, v) v · n > 0,

fh
∣∣
K

(x, v − 2n · vn) otherwise.

These two conditions are easily expressed in terms of the variables b, ñ and y, to fit in the (2+2)d
representation of the transport equation.
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  outgoing

  incoming outgoing  

incoming  

K

Figure 4.1.1: Sketch for a 1d × 1d situation, where Ω ⊂ R and the momentum space is also
restricted to R. The grey shaded domain is the actual element of interest K × R.
In the upper half of the plane are the positive velocities, the negative ones in the
lower part. The incoming boundary part consists of those (x, v) : n(x) · v < 0,
while the points (x, v) on the outgoing part satisfy n(x) · v ≥ 0, ∀ (x, v) ∈ ∂K.
Consequently a particle on the incoming part of the boundary is transported to the
inside of the element K × R and vice versa for particles on the outgoing parts,
justifying the notation ”incoming” and ”outgoing”. In context of the upwind value,
this means fup

h = fh|K on the outgoing and fup
h = fh|K̃ on the incoming parts.

The last two equations show the simplicity in implementing the boundary conditions. We let the
outgoing particles leave, corresponding to v · n ≥ 0 and have the incoming particles defined by
the boundary condition. This simple treatment of boundary conditions is a result of the nature of
the boundary conditions, since they are only imposed for velocities in R2

in and thus are easy to
incorporate in a DG method with upwind fluxes.

In order to arrive at a semi discrete equation we chose a basis {fj , j = 0 . . . ndof − 1} of the
trial space Ṽh,N , as well as a basis {φj , j = 0 . . . ndof − 1} of the test space Vh,N . We expand
fh(t, x, v) =

∑ndof−1
j=0 cj(t)fj(x, v), plug everything into the variational formulation (4.1.9) and
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4.1 Discontinuous Galerkin Discretization

obtain a system of ODEs for the coefficient vector c(t)

Mh
∂c

∂t
(t) +Ahc(t) = Qh(c(t)). (4.1.11)

Mh is the mass matrix, i.e. (Mh)ij =
∫

Ω̃ fiφj . Ah denotes the discretization of the transport term
andQh is the application of the collision operator. To solve this system by a forward Euler scheme
with time step τn = tn+1 − tn, we denote by cn ≈ c(tn), n = 0 . . . Nt and assume c0 given. This
results in

cn+1 = cn + τnM
−1
h (Qh(cn)−Ahcn). (4.1.12)

The situation is quite similar when using higher order Runge Kutta methods instead. Using these
schemes, typically the inverse of the mass matrix arises in the calculation of cn+1. Thus, a basis
of Vh,N respectively Ṽh,N , generating a sparse mass matrix is preferred.

4.1.3 Polynomial basis in Vh,N

We denote by (xip, ωip), i = 0 . . . N the nodes and weights of a Gauss-Hermite quadrature rule
satisfying ∫

R
e−v

2
p(v) =

∑
ip

ωipp(xip), ∀ p ∈ P 2N+1(R). (4.1.13)

The nodes are the roots of the (N + 1)-st orthogonal polynomial w.r.t. the weighted inner product
〈f, g〉 :=

∫
R e
−x2

f(x)g(x) dx, the Hermite polynomials. The j−th weight is obtained as integral
over the j−th Lagrange polynomial defined to the above mentioned roots, but is a non suitable
representation for the computation of the weights, since the numerical evaluation of the integrals
over the Lagrange polynomials already requires the knowledge of the weights.
Actual computation of the nodes is done via an eigenvalue problem, resulting from the three term
recurrence relation satisfied by the orthogonal polynomials. The weights are properly scaled en-
tries of the corresponding eigenvectors [Pla10, STW11].

The basis polynomials are defined as the Lagrange collocation polynomials to the Gauss-Hermite
quadrature nodes and are denoted by l:

lj(v) :=
N∏
i=0
i6=j

v − xi
xj − xi

. (4.1.14)
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The two dimensional basis is constructed as the tensor product of the 1d polynomials, its elements
are denoted by Lj , j = 0 . . . ndofv − 1:

Lj(v) = lu(vx)lv(vy), (4.1.15)

with j = (N + 1)u + v. This gives a total number of ndofv = (N + 1)2 basis functions, N is
the maximum partial polynomial degree in the space V N . Using the properties of the multivariate
Lagrange polynomials Lj and of the Gauss Hermite quadrature rule there holds

∫
R2

e
−

∣∣∣∣∣ v−VK√
TK

∣∣∣∣∣
2

Lm

(
v−V K√
TK

)
Ln

(
v−V K√
TK

)
dv = TK

∫
R2

e−|v|
2
Lm(v)Ln(v) dv

= TK

ndofv−1∑
ip=0

ω
(2)
ip Lm(x

(2)
ip )Ln(x

(2)
ip ) = TKδm,nω

(2)
n =: (MV )n,m, n,m = 0 . . . ndofv − 1.

(4.1.16)
Moreover, there also holds

∫
R2

ve
−

∣∣∣∣∣ v−VK√
TK

∣∣∣∣∣
2

Lm

(
v−V K√
TK

)
Ln

(
v−V K√
TK

)
dv = x(2)

n TKδm,nω
(2)
n , n,m = 0 . . . ndofv − 1.

(4.1.17)
Note that in (4.1.16) and (4.1.17) the nodes x(2)

ip and the weights ω(2)
ip correspond to the 2d Gauss

Hermite formula with nodes x(2)
ip = (xi, xj) and ω(2)

ip = ωiωj with ip = (N + 1)i+ j.

For given V K and TK , the polynomials are scaled and shifted in the argument to incorporate the
above orthogonality relations in the basis. Thus, we have

VN = span{Lj
(
v−V K√
TK

)
, j = 0 . . . ndofv − 1}. (4.1.18)

Note that the same space is obtained by VN = span{Lj(v)}, but the above notation additionally
emphasizes the scaling of the basis functions we use in practice. The approximation properties of
the scaled and non scaled basis polynomials clearly differ.

Denoting the spatial basis polynomials in a single element by ur, r = 0 . . . ndofx − 1 and testing
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4.2 Application of the collision integrals

φr,m = Lm

(
v−V K√
TK

)
ur(x) with φr′,n = Ln

(
v−V K√
TK

)
ur′(x) results in

∫
K×R2

φr,m(x, v)φr′,n(x, v)d(x, v)

=

∫
K

ur(x)ur′(x) dx

∫
R2

e
−

∣∣∣∣∣ v−VK√
TK

∣∣∣∣∣
2

Lm

(
v−V K√
TK

)
Ln

(
v−V K√
TK

)
dv

=

∫
K

ur(x)ur′(x) dx (MV )m,n.

Thus, if the degrees of freedom are enumerated lexicographically i.e.
φ0,0, . . . , φ0,ndofv−1, . . . , φndofx−1,0, . . . , φndofx−1,ndofv−1, the total mass matrix MK for a single
spatial element K is the Kronecker product MK = Mx ⊗MV ∈ Rndofxndofv×ndofxndofv . Here Mx

denotes the spatial mass matrix, i.e. (Mx)i,j :=
∫
K uj(x)ui(x) dx, i, j = 0 . . . ndofx − 1. Note

that the mass matrix in velocity MV is diagonal only.

The global matrix Mh results in a block diagonal matrix and is cheap to invert, only the element
matrices MK need to be inverted. Its inverse is again a block diagonal matrix and thus cheap to
apply.

Remark 4.1.2. As we have noticed, the element mass matrices MK are the Kronecker product
of the spatial mass matrix with the mass matrix in velocity space. The inverse of such a matrix is
given by the Kronecker product of the inverse mass matrix in space and the inverse mass matrix in
velocity, i.e. M−1

K = M−1
x ⊗M−1

V . Thus, only the spatial mass matrix Mx needs actual inversion
to calculate M−1

K .

4.2 Application of the collision integrals

A crucial part of the scheme is the application of the collision integrals. This is not due to the
discretization scheme but to the collision operator itself. For a given distribution function fh ∈
Ṽh,N and a fixed spatial point the evaluation of the operator takes O(N6) operations.
In the sequel we consider a fixed element K in the mesh Th. The collision integrals inside the
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4 A Discontinuous Galerkin approach

element K ∈ Th are calculated via

∫
K×R2

Q(fh)(t, x, v)φ(v) dv dx =

∫
K

 ∫
R2

Q(fh(t, x, .))(v)φ(x, v) dv


︸ ︷︷ ︸

:=g(x)

dx

=
∑

ip

ωipg(xip),

with the pair (xip, ωip) being an integration rule on the spatial element K, such that
∫
K p(x) dx =∑

ip ωipp(xip) ∀p ∈ V DG
h

∣∣
K

. The values of g shall be calculated independent of TK and V K .
Therefore we substitute

v − V K√
TK

=: ṽ and
w − V K√

TK
=: w̃. (4.2.1)

The post collision velocities in terms of the new variables are given by

v′ =

√
TK ṽ + V K +

√
TKw̃ + V K

2
+

√
TKe

′ |ṽ − w̃|
2

=

√
TK ṽ

′ + V K

w′ =

√
TK ṽ + V K +

√
TKw̃ + V K

2
−
√
TKe

′ |ṽ − w̃|
2

=

√
TKw̃

′ + V K ,

(4.2.2)

where ṽ′ = ṽ+w̃
2 +e′ |ṽ−w̃|2 and w̃′ = ṽ+w̃

2 −e
′ |ṽ−w̃|

2 are the post collision velocities in the variables
ṽ and w̃.
In the next equation we transform the collision integral according to the substitution (4.2.1) and use
the representation (4.2.2) for the post collision velocities. In addition we introduce the normalized
distribution f0,1

h (t, x, v) := fh(t, x,
√
TKv + V K) to obtain for the collision integral

∫
R2

Q(fh)φdv (4.2.3)

=

∫
R2

∫
R2

∫
S1

B(v, w, e′)[fh(t, x, v′)fh(t, x, w′)− fh(t, x, v)fh(t, x, w)]φ(x, v) dv

= T
2+

β
2

K

∫
R2

∫
R2

∫
S1

br(|v − w|)bθ( (v−w)·e′
|v−w| )×
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4.2 Application of the collision integrals

[f0,1
h (t, x, v′)f0,1

h (t, x, w′)− f0,1
h (t, x, v)f0,1

h (t, x, w)]φ0,1(x, v) dv

= T
2+

β
2

K

∫
R2

Q(f0,1
h )φ0,1 dv. (4.2.4)

The additional power β2 of TK results from br(|v − w|) = (TK)
β
2 br(|ṽ − w̃|).

With the expansion of our discrete solution in terms of the basis functions

fh(t, x0, v) = e
−

∣∣∣∣∣v−V K√
TK

∣∣∣∣∣
2

ndofv−1∑
m=0

ndofx−1∑
r=0

cr,mur(x0)︸ ︷︷ ︸
:=c

x0
m

Lm(v−V K√
TK

) (4.2.5)

we obtain for the normalized distribution

f0,1
h (t, x0, v) = e−|v|

2
ndofv−1∑
m=0

cx0
mLm(v). (4.2.6)

By conservation of energy during a binary collision (i.e. |v|2 + |w|2 = |v′|2 + |w′|2) we get

f0,1
h (t, x0, v

′)f0,1
h (t, x0, w

′) = e−|v|
2−|w|2

ndofv−1∑
m,n=0

cx0
m c

x0
n Lm(v′)Ln(w′)

f0,1
h (t, x0, v)f0,1

h (t, x0, w) = e−|v|
2−|w|2

ndofv−1∑
m,n=0

cx0
m c

x0
n Lm(v)Ln(w).

(4.2.7)

The post collision velocities enter only into the polynomial part of the product
f0,1
h (t, x0, v

′)f0,1
h (t, x0, w

′).

With the expansion in (4.2.5) we can evaluate g (using φ(x, v) = ur(x)Lk

(
v−V K√
TK

)
as test func-

tion ) via

g(xip) = ur(xip)T
2+

β
2

K

∑
m,n

c
xip
m c

xip
n ×

∫
R2

∫
R2

∫
S1

brbθe
−|v|2−|w|2×

[
Lm(v′)Ln(w′)− Lm(v)Ln(w)

]
Lk(v) de′ dv dw.

(4.2.8)
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4 A Discontinuous Galerkin approach

For the sake of simplicity in the above formula, the dependency of br and bθ on their arguments has
been omitted. The evaluation of the collision integrals on the discrete level is independent from the
current macroscopic velocity V K of the element Maxwellian, the dependency on the temperature
reduces to a simple multiplication with T 2+β/2

K .

From (4.2.8) we see that the numerical work needed to evaluate g is bounded byO(N6) operations.
To this end we note that the double sum is of length N4 and has to be evaluated for N2 different
values of k. In addition we see that the evaluation of g corresponds to the evaluation of a third
order tensor.

4.3 Efficient algorithm for the collision operator

To calculate the collision integrals in an efficient way we now present the techniques introduced
in [KS13, KS15]. The collision operator acts local in position and time, but is a global operator
in velocity. Thus, the t and x dependency of fh are omit for the rest of the section since they
only act as parameters in the collision integral. Moreover, we also drop the subscript h from
the discrete solution. Due to (4.2.4) the following considerations can be restricted to the case
V K = 0, TK = 1, the general case is then obtained by multiplying the collision result with
T

2+β/2
K .

4.3.1 Approximation on shifted grids

At the moment we have the approximation of the distribution function associated with the grid
defined by the Gauss Hermite nodes. In a first step we now shift this grid according to the mean
velocity of the collision partners and re approximate the distribution on the shifted grid. To come
to that end, we start with the first representation of the collision operator in (2.2.3) and substitute
v̄ := v+w

2 , v̂ := v−w
2 .

∫
R2

Q(f(v))φ(v) dv

= 4

∫
R2

∫
R2

∫
S1

br(|v̂|)bθ( v̂·e
′

|v̂| )f(v̄ + v̂)f(v̄ − v̂)[φ(v̄ + e′|v̂|)− φ(v̄ + v̂)] de′dv̂ dv̄.

(4.3.1)

Throughout the integrand, the argument of f and also of the test functions is of the form v̄ plus or
minus something. We interpret this as a shift of the coordinate origin. Thus, we approximate f not
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4.3 Efficient algorithm for the collision operator

on the initial grid associated with the Lagrange polynomials, but on the grid shifted by the mean
velocity v̄. We define approximations on the shifted grid, denoted by f v̄(v̂) := f(v̄ + v̂). For the
collision integral we obtain

∫
R2

Q(f(v))φ(v) dv

= 4

∫
R2

∫
R2

∫
S1

br(|v̂|)bθ( v̂·e
′

|v̂| )f
v̄(v̂)f v̄(−v̂)[φv̄(e′|v̂|)− φv̄(v̂)] de′dv̂ dv̄.

(4.3.2)

Letting f v̄2 (v̂) := f v̄(v̂)f v̄(−v̂), we arrive at

∫
R2

Q(f(v))φ(v) dv = 4

∫
R2

∫
R2

∫
S1

br(|v̂|)bθ( v̂·e
′

|v̂| )f
v̄
2 (v̂)[φv̄(e′|v̂|)− φv̄(v̂)] de′dv̂

︸ ︷︷ ︸
:=QI(brf v̄2 ,φ

v̄)(v̄)

dv̄. (4.3.3)

For a given function f ∈ Ṽh,N , the approximation on the shifted grid f v̄(v̂) can be calculated
within O(N3) operations. This is achieved by using the tensor product structure in the trial space.
We denote the expansion coefficients of f by c, require

f(v̄ + v̂) = e−|v̄+v̂|2
ndofv−1∑
i=0

ciLi(v̄ + v̂) = e−|v̄+v̂|2
ndofv−1∑
i=0

diLi(v̂) = f v̄(v̂) (4.3.4)

and solve for the unknown coefficients d. By the use of the Gauss Hermite quadrature nodes, i.e.
v̂ = x

(2)
j = (xr, xs), j = (N + 1)r + s, the previous equation turns into

dj =

ndofv−1∑
i=0

ciLi(v̄ + x
(2)
j ) j = 0 . . . ndofv − 1, (4.3.5)

or in more compact form

d = S v̄c,

with S v̄ ∈ Rndofv×ndofv , S v̄j,i = Li(v̄+ x
(2)
j ). The calculation of the sum in (4.3.5) requires ndofv

operations, and needs to be evaluated for ndofv different values of j, such that the calculation of
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4 A Discontinuous Galerkin approach

the coefficient vector d requires ndof2
v = O(N4) operations. Using the tensor product structure

in the trial space and the Cartesian structure in the 2d quadrature nodes, d can be calculated more
efficient via

dmr,s =

N∑
u=0

lu(vx + xr)

N∑
v=0

cmu,vlv(vy + xs). (4.3.6)

Here, the coefficient vectors c and d have been reshaped to matrices cm, dm in R(N+1)×(N+1) with
cmu,v = cu(N+1)+v and dmr,s = dr(N+1)+s. In addition the same splitting has been applied to the
multivariate Lagrange polynomials Li(vx, vy) = lu(vx)lv(vy), (N + 1)u + v = i, as well as to
the nodes x(2)

j .
The inner sum is required forN+1 different values of u,N+1 different values of s and the length
of the sum is N + 1, resulting in O(N3) operations for evaluation. The outer sum is required for
N + 1 values of r and v and is also of length N + 1, resulting again in O(N3) operations for
evaluation. In order to use optimized LAPACK [ABB+99] routines, we rewrite the above sums as
matrix products. For this purpose we define the 1d shift matrices

S v̄xi,j = lj (v̄x + (xi)x) , i, j = 0 . . . N, (4.3.7)

analogue for the y direction. The coefficients dm result in

S v̄ycm(S v̄x)T = dm. (4.3.8)

Here AT denotes the transpose of the matrix A ∈ R(N+1)×(N+1). The above factorization of the
sum in (4.3.5) can be interpreted as a shift of the grid in y direction first and a shift in the x
direction afterwards.

In terms of the trial space, the function f v̄2 is a polynomial of degree 2N , multiplied with a
Maxwellian with temperature 1

4 :

f v̄2 (v̂) = e−|v̄+v̂|2e−|v̄−v̂|
2

ndofv−1∑
i=0

diLi(v̂)

ndofv−1∑
i=0

diLi(−v̂)

= e−2|v̄|2−2|v̂|2P (v̂), P ∈ P 2N (R2).

(4.3.9)

We want to represent P in the above equation with Lagrange collocation polynomials L̃ ∈
P 2N (R2) of degree 2N . The polynomials L̃ are – as the polynomials L – defined as the prod-
uct of 1d Lagrange polynomials l̃, i.e. L̃m = l̃u l̃v,m = u(2N + 1) + v. The collocation nodes for

70



4.3 Efficient algorithm for the collision operator

the 1d polynomials l̃ are chosen as x̃i√
2
, i = 0 . . . 2N , where (ω̃i, x̃i), i = 0 . . . 2N is the Gauss

Hermite quadrature rule of length 2N + 1. For f v̄2 we now write

f v̄2 (v̂) = e−2|v̂|2−2|v̄|2
Ñ∑
i=0

eiL̃i(v̂), Ñ = (2N + 1)2 − 1. (4.3.10)

The coefficients can be obtained by evaluating the sums in (4.3.9) at the nodes x̃i√
2
. This would

require O(N4) operations.

To calculate the coefficients ei, i = 0 . . . Ñ efficiently, the representation of the shifted function f v̄

requires a small modification. Instead of representing it by basis polynomialsLj , j = 0 . . . ndofv−
1 of degree N , it is better to approximate it already by the polynomials L̃j ∈ P 2N , j = 0 . . . Ñ .
Thus, the requirement in (4.3.4) is replaced by

f(v̄ + v̂) = e−|v̄+v̂|2
ndofv−1∑
i=0

ciLi(v̄ + v̂) = e−|v̄+v̂|2
Ñ∑
i=0

diL̃i(v̂) = f v̄(v̂). (4.3.11)

The coefficients d can be computed analogue to the previous presentation. We just exchange the
collocation nodes xj from the quadrature rule of length N + 1 with the nodes x̃j√

2
, where x̃j is

from the quadrature rule (ω̃j , x̃j), j = 0 . . . 2N of length 2N + 1. The adapted 1d shift matrices
result in

S v̄xi,j = lj

(
v̄x + (x̃i)x√

2

)
j = 0 . . . N, i = 0 . . . 2N. (4.3.12)

The coefficients are calculated via

S v̄ycm(S v̄x)T = dm ∈ R(2N+1)×(2N+1). (4.3.13)

With this modification the calculation of the shifted function is more expensive, but is still bounded
by O(N3) operations. The benefit of the modification is in the calculation of f v̄2 . Replacing the
polynomials of orderN in (4.3.9) by the polynomials of order 2N and using the expansion (4.3.10)
for f v̄2 yields

Ñ∑
i=0

eiL̃i(v̂) =
Ñ∑
i=0

diL̃i(v̂)
Ñ∑
i=0

diL̃i(−v̂). (4.3.14)
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4 A Discontinuous Galerkin approach

Using v̂ =
(
x̃u√

2
, x̃v√

2

)
with j = u(2N + 1) + v gives

ej =
Ñ∑
i=0

diL̃i(
(
x̃u√

2
, x̃v√

2

)
)︸ ︷︷ ︸

=dj

Ñ∑
i=0

diL̃i(−
(
x̃u√

2
, x̃v√

2

)
)︸ ︷︷ ︸

=dÑ−j

= djdÑ−j . (4.3.15)

(4.3.15) shows that the coefficients e representing the function f v̄2 result in the multiplication of 2
coefficients of the shifted function. The second sum in the above equation simplifies to dÑ−j due
to the symmetry of the Gauss Hermite quadrature nodes. From (4.3.15), the benefit of representing
f v̄ by L̃ is obvious: The evaluation of ej requires the values of the shifted functions at the nodes x̃j√

2

and − x̃j√
2
. These values simply result in the coefficients dj and dÑ−j when using the polynomials

L̃ to approximate f v̄.

So far we arrived at

f v̄2 (v̂) = e−2|v̄|2−2|v̂|2
Ñ∑
i=0

eiL̃i(v̂), ei = didÑ−i (4.3.16)

within O(N3) floating point operations.

Shifting the test functions
Our initial variational formulation consists of the Lagrange polynomials on the non shifted grid.

Thus, after calculating the collision integral w.r.t. the test functions on the shifted grid φv̄ as in
(4.3.3), we have to transfer the result back to the Lagrange polynomials on the non shifted grid
as test functions. As we will see, this transformation corresponds – roughly speaking – to the
transpose of the forward shift of f . On the shifted grid we define the Lagrange polynomials Lv̄

via the nodes
x

(2)
j√
2
, j = 0 . . . ndofv − 1, where the nodes x(2)

j = (xu, xv), j = u(N + 1) + v are
obtained from the 1d Gauss Hermite formula of length N + 1. Since we do not need to increase
the polynomial order as in the calculation of f (v̄)

2 , order N polynomials are sufficient at this point.
We require

Lk(v̄ + v̂) =

ndofv−1∑
i=0

ϕiL
v̄
i (v̂), (4.3.17)
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and look for the unknown coefficients ϕi.

Using v̂ =
x

(2)
j√
2

= (xr,xs)√
2

gives

ϕj = Lk

(
v̄ +

x
(2)
j√
2

)
.

In compact form and simultaneously for all k = 0 . . . ndofv we obtain

 L0(v̄ + v̂)
...

Lndofv−1(v̄ + v̂)

 = S v̄,φ

 Lv̄0(v̂)
...

Lv̄ndofv−1(v̂)

 , (4.3.18)

with S v̄,φ ∈ Rndofv×ndofv and S v̄,φi,j = Li(v̄ +
x

(2)
j√
2

), i, j = 0 . . . ndofv − 1. To save operations, the
sum respectively matrix vector multiplication can be factorized similar to the forward shifting of
the solution function as was done in (4.3.6). If we use the factorization, the required number of
operations to shift the test functions is bounded by O(N3).

Remark 4.3.1. The evaluation of f̃ v̄2 := brf
v̄
2 is done at this point of the calculations and is

realized as a point-wise multiplication of the coefficients of f v̄2 with the values of br(|v̂|) at the
collocation nodes for f v̄2 . In the sequel, the tilde sign is removed and we denote by f v̄2 the above
mentioned function f̃ v̄2 . Note that the calculation of brf v̄2 is not exact, even if br is a polynomial.

4.3.2 The integral w.r.t. the mean velocity

Now we aim to evaluate the integration with respect to v̄ by a 2d Gauss Hermite quadrature rule

∫
R2

Q(f)(v)φ(v) dv = 4

∫
R2

e−2|v̄|2QI

e−2|v̂|2
Ñ∑
i=0

eiL̃i, S
v̄,φL(v̂)

 dv̄

= 2

nip−1∑
ip=0

ωipS
xip√

2
,φ
QI(f

xip√
2

2 , L)(
xip√

2
).

(4.3.19)

Here (ωi, xi), i = 0 . . . nip − 1 denote the weights and nodes of the quadrature rule, for the sake
of readability we have omit here the superscript (2), which was used to distinguish between the
one and two dimensional nodes and weights respectively. The additional scaling of the quadrature
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4 A Discontinuous Galerkin approach

nodes by 1/
√

2 is to obtain a Maxwellian with temperature 1/2 in the integral with respect to v̄, since
the Gauss-Hermite quadrature rule is well suited for such integrands.

Note that in actual computations the matrix S
xip√

2
,φ used to shift the test functions is not the trans-

posed of the matrix S
xip√

2 used to shift the solution function due to different polynomial degrees.
Thus, both matrices have to be calculated.

At this point, the computational effort is bounded by the number nip of integration points w.r.t. v̄,
multiplied with the computational effort for evaluating QI(f). Since QI is linear in f v̄2 , its evalua-
tion can be written as a matrix-vector productAb, whereA ∈ R(N+1)2×(2N+1)2

and b ∈ R(2N+1)2
,

resulting in O(N4) operations. This gives a total complexity of O(N4)nip for the moment. In ac-
tual computations we use a 1d Gauss Hermite rule of length N to construct the 2d formula. This
yields O(N2) integration points and thus, we still have costs of O(N6) for the collision integrals.
Therefore we now investigate the application of the inner collision operatorQI to reduce the effort
by one power of N .

4.3.3 Hermite and Polar-Laguerre polynomial bases

The efficiency considerations for QI are based on a basis transformation in the momentum space
for f v̄2 . QI shall be applied in a basis which is given in Polar coordinates. As we will see, in this
basis QI is diagonal and thus, cheap to apply. We are in the sequel going to define the basis func-
tions. In order to transform from the nodal to the Polar basis efficiently, we introduce an additional
basis spanned by the Hermite polynomials to reduce computational effort. The transformation will
be of the form

Lagrange→ Hermite→ Polar. (4.3.20)

By Hn(v) we denote the n-th (scaled) 1d- Hermite polynomial. These are orthonormal w.r.t.
〈f, g〉 =

∫
R e
−v2

fg dv [STW11]. In addition by Lαn we denote the n-th (scaled) generalized La-
guerre polynomial. These are orthonormal w.r.t. 〈f, g〉 =

∫
R+ v

αe−vfg dv [STW11].
From the Hermite polynomials we construct a 2-dimensional hierarchical basis

Hn,m(v) := Hn(vx)Hm−n(vy) n ≤ m, m = 0 . . . 2N. (4.3.21)
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The Polar polynomials are defined via the Laguerre polynomials and trigonometric functions and
are given by

Ψcos
j,k (v) :=


sj,k cos(2jϕ)r2jL(2j)

k
2−j

(r2), k ∈ 2N, j = 0 . . . k/2

sj,k cos((2j + 1)ϕ)r2j+1L(2j+1)
k−1

2 −j
(r2), k ∈ 2N + 1, j = 0 . . . bk/2c

and

Ψsin
j,k(v) :=


sj,k sin(2jϕ)r2jL(2j)

k
2−j

(r2), k ∈ 2N, j = 1 . . . k/2

sj,k sin((2j + 1)ϕ)r2j+1L(2j+1)
k−1

2 −j
(r2), k ∈ 2N + 1, j = 0 . . . bk/2c

.

(4.3.22)
Here, (r, ϕ) are the Polar coordinates of the velocity v, sj,k is a normalization constant for the

angular part, i.e. s0,2k =
√

2
π , sj,k =

√
1
π in all other cases.

In the sequel we use the notations

HN := {Hn,m : n ≤ m,m ≤ N}
LN := {Ψcos

j,k : k ≤ N, j ≤ bk2c} ∪ {Ψ
sin
j,k : k ≤ N, I2N(k) ≤ j ≤ bk2c}

to denote the sets of the Hermite and Polar basis polynomials respectively. In the above equations,
I2N denotes the indicator function of the even numbers. As a result of the ongoing calculations we
obtain that both, LN and HN form bases of span{xiyj : i + j ≤ N}. Therefore we will already
use the term Hermite basis and Polar Laguerre basis.

Properties of the Polar Laguerre basis functions

In the next lemmata we collect some useful properties of the recently introduced polynomials.
The first lemma ensures that we are indeed transforming to a polynomial basis w.r.t. Cartesian
coordinates.

Lemma 4.3.2. The Polar Laguerre functions Ψ
cos / sin
j,k ∈ Lk \ Lk−1 are polynomials in Cartesian

coordinates of total degree k.
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4 A Discontinuous Galerkin approach

Proof. For the proof we use the expansion of the trigonometric functions

cos(nϕ) =

bn2 c∑
i=0

(
n

2i

)
sin(ϕ)2i cos(ϕ)n−2i

sin(nϕ) =

bn−1
2 c∑
i=0

(
n

2i+ 1

)
sin(ϕ)2i+1 cos(ϕ)n−2i−1.

(4.3.23)

With the power series expansion for the trigonometric part we get for even k:

Ψcos
j,k =

b2j2 c∑
i=0

(
2j

2i

)
sin(ϕ)2i cos(ϕ)2j−2iL2j

k
2−j

(r2)r2j

=

j∑
i=0

(
2j

2i

)
sin(ϕ)2ir2i︸ ︷︷ ︸

y2i

cos(ϕ)2j−2ir2j−2i︸ ︷︷ ︸
x2j−2i

L2j
k
2−j

(r2)

=

j∑
i=0

(
2j

2i

)
y2ix2j−2iL2j

k
2−j

(x2 + y2)

Ψsin
j,k =

b 2j−1
2
c∑

i=0

(
2j

2i+ 1

)
sin(ϕ)2i+1 cos(ϕ)2j−2i−1L2j

k
2−j

(r2)r2j

=

j∑
i=0

(
2j

2i+ 1

)
sin(ϕ)2i+1r2i+1︸ ︷︷ ︸

y2i+1

cos(ϕ)2j−2i−1r2j−2i−1︸ ︷︷ ︸
x2j−2i−1

L2j
k
2−j

(r2)

=

j∑
i=0

(
2j

2i+ 1

)
y2i+1x2j−2i−1L2j

k
2−j

(x2 + y2)

(4.3.24)

The monomials y2ix2j−2i and y2i+1x2j−2i−1 are of total degree 2j. Multiplying with the La-
guerre polynomial L(2j)

k
2−j

(x2 + y2) which is a polynomial in Cartesian coordinates of total degree

2(k2 − j) = k − 2j results in a polynomial of total degree k. For odd k the proof is analogue.

Now we want to state the essential benefit of the Polar Laguerre basis for our calculations. That
is, the inner collision operator QI is diagonal in the Polar Laguerre basis. This is stated in the next
lemma.
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4.3 Efficient algorithm for the collision operator

Lemma 4.3.3. Let S, S0 ∈ {sin, cos} and ΨS
j,k,Ψ

S0
j0,k0

∈ LN . Then there holds

QI(e−|.|
2
ΨS
j,k,Ψ

S0
j0,k0

) = 1
2bk0,j0δj,j0δk,k0δS,S0 . The value of the constant bk0,j0 is given by

bk0,j0 =


2π∫
0

bθ(cos(α))(cos(2j0α)− 1) dα k0 ∈ 2N
2π∫
0

bθ(cos(α))(cos((2j0 + 1)α)− 1) dα k0 ∈ 2N + 1

. (4.3.25)

Proof. We start with the case k, k0 ∈ 2N. We transform the integration w.r.t. the relative velocity
v̂ to Polar coordinates yielding

QI(e−|.|
2
ΨS
j,k,Ψ

S0
j0,k0

)
v̂=r e
=

∫
R+

∫
S1

∫
S1

bθ(e · e′)e−r
2
rΨS

j,k(r e)

×
[
ΨS0
j0,k0

(r e′)−ΨS0
j0,k0

(r e)
]
de de′ dr.

(4.3.26)

On the unit sphere we use the usual parametrization e′ = (cos(α′), sin(α′))T and e =
(cos(α), sin(α))T respectively. Thus, the inner product e · e′ results in e · e′ = cos(α − α′).
Using the definition of the the Polar Laguerre polynomials, the integral for the inner collision
operator results in

QI(e−|.|
2
ΨS
j,k,Ψ

S0
j0,k0

)

=

∫
R+

e−r
2
rr2j0r2jL(2j)

k
2
−j(r

2)L(2j0)
k0
2
−j0

(r2) dr×

sj0,k0sj,k

2π∫
0

2π∫
0

bθ(cos(α− α′))S(2jα)
[
S0(2j0α

′)− S0(2j0α)
]
dα dα′.

. (4.3.27)

In the next step we substitute α = α∆ + α′ and consider the two innermost integrals. This yields

2π∫
0

2π∫
0

bθ(cos(α− α′))S(2jα)
[
S0(2j0α

′)− S0(2j0α)
]
dα dα′

=

2π∫
0

2π∫
0

bθ(cos(α∆))S(2j(α∆ + α′))
[
S0(2j0α

′)− S0(2j0(α∆ + α′))
]
dα∆ dα′.

(4.3.28)
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4 A Discontinuous Galerkin approach

Now we interchange the order of integration and investigate the dα′ integral in (4.3.28). In the
case S = S0 we obtain

2π∫
0

S0(2j(α∆ +α′))
[
S0(2j0α

′)− S0(2j0(α∆ + α′))
]
dα′ = δj,j0π(cos(2j0α

∆)− 1). (4.3.29)

For different trigonometric functions there holds

2π∫
0

S(2j(α∆ + α′))
[
S0(2j0α

′)− S0(2j0(α∆ + α′))
]
dα′ = ±δj,j0π sin(2j0α

∆). (4.3.30)

In fact, if S = sin and S0 = cos, the integral in (4.3.30) evaluates to πδj,j0 sin(2j0α
∆). In the vice

versa case it evaluates to −πδj,j0 sin(2j0α
∆). Both, (4.3.29) and (4.3.30) consist of a δ relation

for the angular frequencies. As a consequence, j and j0 have to coincide for the dα integral to be
non zero.

Next we carry out the integration w.r.t. α∆ for the case of different types of angular functions to
obtain

2π∫
0

2π∫
0

bθ(cos(α− α′))S(2jα)
[
S0(2j0α

′)− S0(2j0α)
]
dα dα′

= ±δj,j0π
2π∫
0

bθ(cos(α∆)) sin(2j0α
∆) dα∆ = 0.

(4.3.31)

The last equal sign in (4.3.31) is due to symmetries of the trigonometric functions, the integrand
f satisfies f(π + α∆) = −f(π − α∆). By the last equality we obtain for the angular integrals

2π∫
0

2π∫
0

bθ(cos(α− α′))S(2jα)
[
S0(2j0α

′)− S0(2j0α)
]
dα dα′

= δj,j0δS,S0π

2π∫
0

bθ(cos(α∆))(cos(2j0α
∆)− 1) dα∆

︸ ︷︷ ︸
:=bk0,j0

.
(4.3.32)
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4.3 Efficient algorithm for the collision operator

Plugging (4.3.32) into (4.3.27), the inner collision operator results in

QI(e
−|.|2ΨSj,k,Ψ

S0
j0,k0 ) = δj,j0δS,S0bk0,j0

∫
R+

e−r
2
rr4j0L(2j0)

k
2
−j0

(r2)L(2j0)
k0
2
−j0

(r2) dr

r=
√
r̃

=
1

2
δj,j0δS,S0bk0,j0

∫
R+

e−rr2j0L(2j0)
k
2
−j0

(r)L(2j0)
k0
2
−j0

(r) dr

︸ ︷︷ ︸
=δk,k0

=
1

2
δj,j0δS,S0δk,k0bk0,j0 .

(4.3.33)

We have presented the proof for the case k, k0 ∈ 2N, the case k, k0 ∈ 2N+1 is obtained in the same
way and differs only in the indices of the Laguerre polynomials and the order of the monomial in
the radial integral. In addition, the above proof shows that for k ∈ 2N and k0 ∈ 2N + 1 or vice
versa, one obtains a δ−relation between an even and an odd number for the dα integral. Thus, in
this case we also obtain 0 for QI(e−|.|

2
ΨS
j,k,Ψ

S0
j0,k0

).

Lemma 4.3.3 provides us with a polynomial basis in which the inner collision operator is very
cheap to apply. Unfortunately, the distribution function f v̄2 and the test functions are represented
by nodal functions. To use the sparse representation of the inner collision integrals, f v̄2 needs to
be transferred to the Polar Laguerre basis. A direct transformation would introduce a new bottle
neck. To have the transformations efficiently, the Hermite basis will be of great advantage since
it has properties of both spaces, the nodal space V2N and also of the hierarchical space spanned
by the Polar Laguerre polynomials. The tensor product structure on one hand provides again the
ability to factorise the transformations from the nodal to the Hermite space. The second important
property is stated in the next lemma and deals with the orthogonality of the Hermite and Polar
Laguerre polynomials w.r.t. the Maxwellian weighted L2 inner product on R2. This property will
be a key element when transforming from the Hermite space to the Polar Laguerre space, since it
gives structured and sparse transformation matrices.

Lemma 4.3.4. The above introduced polynomial bases H2N and L2N are orthogonal w.r.t. the
weighted L2-inner product 〈f, g〉 =

∫
R2 e

−|v|2fg dv.

Proof. The calculations are straightforward for the Hermite basis.

∫
R2

e−|v|
2Hn,m(v)Hn0,m0(v) dv

=

∫
R

e−v
2
xHn(vx)Hn0(vx) dvx

∫
R

e−v
2
yHm−n(vy)Hm0−n0(vy) dvy = δm,m0δn,n0 .

(4.3.34)
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For the Polar Laguerre basis the situation is a little more complex. Transforming the integral to
Polar coordinates, the calculations are quite similar to the proof of lemma 4.3.3. Again, we present
it exemplary for k, k0 ∈ 2N.

∫
R2

e−|v|
2
Ψα
j,k(v)Ψβ

j0,k0
(v) dv

=

∫
R+

∫
S1

re−r
2
Ψα
j,k(re)Ψ

β
j0,k0

(re) de dr

= δα,βδj,j0

∫
R+

re−r
2
r4j0L(2j0)

k
2
−j0

(r2)L(2j0)
k0
2
−j0

(r2) dr

= δα,βδj,j0δk,k0 .

(4.3.35)

If k, k0 are both odd the proof is analogue. If k is even and k0 is odd or vice versa, the angular
integrals already evaluate to zero.

From the orthogonality of the Hermite and the Polar Laguerre polynomials we additionally obtain
their linear independence. Counting the functions in L2N and H2N we see that both sets form a
basis of the space span{xiyj : i+ j ≤ 2N}.

Remark 4.3.5. Obviously the polynomial spaces for f v̄2 , V2N=span{xiyj , i, j = 0 . . . 2N} and
L2N do not coincide (The first one is of partial order 2N , the latter is of total order 2N ). At least
total order 4N is necessary to represent f v̄2 exact in the Polar Laguerre basis, 2N is sufficient
for the test functions. Thus, we choose a Polar Laguerre test space of order 2N . On the other
hand, the Polar Laguerre polynomials are hierarchical and orthogonal. Thus, if we project f v̄2 in
its nodal representation onto L2N and L4N we obtain the same coefficients up to total order 2N .
Using lemma 4.3.3, the collision integral vanishes for all Polar Laguerre trial functions of total
order greater than 2N . As a consequence, it is sufficient to project f v̄2 onto L2N to obtain the
exact contribution of the inner collision operator applied to f v̄2 . Figure 4.3.1 presents a sketch of
the different representations of f v̄2 .
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4.3 Efficient algorithm for the collision operator

N

2N

4N

Figure 4.3.1: The markers are the polynomial coefficients in vx respectively vy direction. The
blue ones represent the monomials in VN , the red ones the monomials in V2N . The
gray shaded domains represent the hierarchical bases. In the lighter one we have an
exact representation of f v̄2 in the spaces L4N and H4N respectively. The darker one
represents P2N (f v̄2 ), with P2N denoting the projection onto the space L2N .

4.3.4 Efficient transformation between polynomial bases

As has already been stated, the Hermite basis is of great use when transforming from our nodal
representation to the Polar Laguerre polynomials. The transformation we execute consists of two
steps. First we project f v̄2 onto the Hermite space H2N . Then we transform the result to the Polar
Laguerre basis L2N . In the sequel we show how to execute this transformations efficiently.

Transformation to Hermite

We start with the transformation from the Lagrange basis to the Hermite basis. Let f v̄2 =

e−2|v|2 ∑Ñ
m=0 cmL̃m(v), m̃ = (2N + 1)2 − 1. L̃m = l̃u l̃v,m = u(2N + 1) + v is the La-

grange polynomial of degree 2N . The 1d polynomials l̃ are defined via the scaled Gauss Hermite
quadrature nodes x̃j√

2
, j = 0 . . . 2N of the quadrature formula of length 2N+1. We perform an L2

orthogonal projection of f v̄2 on the Hermite space H2N . This results in the following requirement
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for the Hermite coefficients.

Ñ∑
m=0

cm

∫
R2

e−2|v|2L̃m(v)Hj0,k0(
√

2v) dv =
2N∑
k=0
j≤k

hj,k

∫
R2

e−2|v|2Hj,k(
√

2v)Hj0,k0(
√

2v) dv.

(4.3.36)
The additional scaling of the Hermite polynomials argument is due to the temperature 1

4 of the
Maxwellian weighting factor for f v̄2 and is necessary to keep the orthogonality properties of the
Hermite polynomials. The right hand side of the above equation turns due to orthogonality into

2N∑
k=0
j≤k

hj,k

∫
R2

e−2|v|2Hj,k(
√

2v)Hj0,k0(
√

2v) dv =
1

2
hj0,k0 . (4.3.37)

A straight forward evaluation of the left hand side of (4.3.36) for each 0 ≤ j ≤ k and 0 ≤ k ≤ 2N
requires O(N4) operations. To achieve the optimal floating point operations, a similar factoriza-
tion as for the shifting can be applied. As for the shifting, the factorization enables us to use effi-
cient LAPACK [ABB+99] routines to calculate the resulting matrix products. The factorization –
corresponding to a transformation in vx and vy direction separately – can be written as

Ñ∑
m=0

cm

∫
R2

e−2|v|2L̃m(v)Hj0,k0(
√

2v) dv =
2N∑
u=0

2N∑
v=0

cu(2N+1)+v

×
∫
R

e−2|vx|2 l̃u(vx)Hj0(
√

2vx) dvx

∫
R

e−2|vy |2 l̃v(vy)Hk0−j0(
√

2vy) dvy.

(4.3.38)

Again as for the shifting we store the coefficient vector as a (2N + 1) × (2N + 1) ma-
trix denoted by cm, with cmu,v = cu(2N+1)+v. In addition we define the 1d projection matrix
N2H ∈ R(2N+1)×(2N+1) via N2Hu,v :=

∫
R
e−2|v|2 l̃u(v)Hv(

√
2v) dv, u, v = 0 . . . 2N to obtain

1

2
hj0,k0 =

Ñ∑
m=0

cm

∫
R2

e−2|v|2L̃m(v)Hj0,k0(
√

2v) dv

=
2N∑
u=0

2N∑
v=0

cmu,vN2Hu,j0N2Hv,k0−j0

=
(
N2HT cm N2H

)
j0,k0−j0 .

(4.3.39)
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The calculation of the matrix products in (4.3.39) is bounded by O(N3) operations in total. The
integrals defining the entries of the matrix N2H can be evaluated by the Gauss Hermite quadrature
rule of length 2N + 1 resulting in

N2Hi,j =

∫
R

e−2|v|2 l̃i(v)Hj(
√

2v) dv =
1√
2

∫
R

e−|v|
2
l̃i(

v√
2

)Hj(v) dv

=
1√
2

2N∑
ip=0

ω̃ip l̃i(
x̃ip√

2
)Hj(x̃ip) =

1√
2
ω̃iHj(x̃i).

(4.3.40)

Transformation to Polar Laguerre

The transformation from the Hermite to the Polar Laguerre basis is also applied in the sense of an
orthogonal projection. Assume

f v̄2 (v) = e−2|v|2
∑
m≤2N
n≤m

hn,mHn,m(
√

2v) (4.3.41)

is given in the Hermite basis. With the Ansatz

f v̄2 (v) =
∑
k≤2N

j≤bk/2c
a∈{sin, cos}

ψj,k,ae
−2|v|2Ψa

j,k(
√

2v) (4.3.42)

we require

∑
m≤2N
n≤m

hn,m

∫
R2

e−2|v|2Hn,m(
√

2v)Ψb
j0,k0

(
√

2v) dv

=
∑
k≤2N

j≤bk/2c
a∈{sin, cos}

ψj,k,a

∫
R2

e−2|v|2Ψa
j,k(
√

2v)Ψb
j0,k0

(
√

2v) dv,
(4.3.43)

to be satisfied for all Polar Laguerre test functions Ψb
j0,k0

∈ L2N . We note that in the above
expansion to the Polar polynomials for even k and a = sin the value j = 0 does not arise in the
sum. We keep this in mind, but omit this in the notation. Due to the orthogonality of the Polar
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Laguerre polynomials, the right hand side of (4.3.43) turns into 1
2ψj0,k0,b. On the left hand side we

split the sum into

∑
m≤2N
n≤m

hn,m

∫
R2

e−2|v|2Hn,m(
√

2v)Ψb
j0,k0

(
√

2v) dv

=
∑
m<k0
n≤m

hn,m

∫
R2

e−2|v|2Hn,m(
√

2v)Ψb
j0,k0

(
√

2v) dv

︸ ︷︷ ︸
:=A

+
∑
m=k0
n≤m

hn,m

∫
R2

e−2|v|2Hn,m(
√

2v)Ψb
j0,k0

(
√

2v) dv

︸ ︷︷ ︸
:=B

+
∑
m>k0
n≤m

hn,m

∫
R2

e−2|v|2Hn,m(
√

2v)Ψb
j0,k0

(
√

2v) dv

︸ ︷︷ ︸
:=C

.

(4.3.44)

For the investigation of A we expandHn,m to Polar Laguerre polynomials.

∑
m<k0
n≤m

hn,m

∫
R2

e−2|v|2Hn,m(
√

2v)Ψb
j0,k0

(
√

2v) dv =

∑
m<k0
n≤m

hn,m

∫
R2

e−2|v|2
∑
k≤m

j≤bk/2c
a∈{sin, cos}

ψn,mj,k,aΨ
a
j,k(
√

2v)Ψb
j0,k0

(
√

2v) dv.
(4.3.45)

By the orthogonality of the Polar Laguerre polynomials we conclude A = 0 from the above
equation. For C we expand Ψb

j0,k0
to Hermite polynomials. Again by orthogonality we obtain

C = 0. Thus, the coefficients in the Polar Laguerre basis for a fixed total order k depend only on
those coefficients in the Hermite basis of the same total polynomial order. Summarizing the above
calculations, the coefficients of order k in the Polar Laguerre basis are given by

1

2
ψj,k,b =

∑
n≤k

hn,k

∫
R2

e−2|v|2Hn,k(
√

2v)Ψb
j,k(
√

2v) dv j ≤ bk
2
c, b ∈ {sin, cos}. (4.3.46)

For each total polynomial degree k, k+1 coefficients have to be calculated. Each of them requires
the evaluation of the above sum which is of length k+ 1. This gives a total computational effort of
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∑2N
k=0(k + 1)2 = O(N3) for the calculation of f v̄2 in the Polar Laguerre basis. Since the transfor-

mation is linear in the Hermite coefficients, it can be represented by a matrix-vector multiplication,
with a block diagonal matrix H2P. The structure of H2P is depicted in Figure 4.3.2.

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

Figure 4.3.2: The structure of the transformation matrix from the Hermite to the Polar Laguerre
basis, when sorting both bases hierarchical as in (4.3.48). The gray shaded blocks are
the only non zero entries in the matrix. The k-th block is of size (k+1)×(k+1). The
structure highlights the fact that coefficients in the Polar Laguerre basis of total order
k depend only on those coefficients in the Hermite basis of the same total order.

The (i, j) entry of the k-th block of the matrix N2H is given by the weighted L2 inner product of
the i-th Polar Laguerre polynomial of total order k and the j-th Hermite polynomial of total order
k. With an enumeration as in (4.3.48), such a block results for even k in

H2Pk =



∫
e−2|v|2H0,k(

√
2v)Ψcos

0,k(
√

2v) . . .
∫
e−2|v|2Hk,k(

√
2v)Ψcos

0,k(
√

2v)∫
e−2|v|2H0,k(

√
2v)Ψcos

1,k(
√

2v) . . .
∫
e−2|v|2Hk,k(

√
2v)Ψcos

1,k(
√

2v)∫
e−2|v|2H0,k(

√
2v)Ψsin

1,k(
√

2v) . . .
∫
e−2|v|2Hk,k(

√
2v)Ψsin

1,k(
√

2v)
...∫

e−2|v|2H0,k(
√

2v)Ψcos
k
2 ,k

(
√

2v) . . .
∫
e−2|v|2Hk,k(

√
2v)Ψcos

k
2 ,k

(
√

2v)∫
e−2|v|2H0,k(

√
2v)Ψsin

k
2 ,k

(
√

2v) . . .
∫
e−2|v|2Hk,k(

√
2v)Ψsin

k
2 ,k

(
√

2v)


. (4.3.47)

To arrive at the matrix structure depicted in Figure 4.3.2, a hierarchical enumeration of degrees of
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freedom is used in the Hermite and the Polar Laguerre basis

H :=



H0,0

H0,1

H1,1
...

H0,2N

H1,2N
...

H2N−1,2N

H2N,2N


Ψ :=



Ψcos
0,0

Ψcos
0,1

Ψsin
0,1
...

Ψcos
0,2N

Ψcos
1,2N

Ψsin
1,2N
...

Ψcos
N,2N

Ψsin
N,2N



. (4.3.48)

Note that the Hermite coefficients obtained in 4.3.39 need to be rearranged to fit the above
enumeration.

4.3.5 Transformations of the test functions

So far, f v̄2 is transferred to the Polar Laguerre basis efficiently and the collision integrals can be
evaluated for the Polar Laguerre test polynomials. In the original variational formulation the test
polynomials are the Lagrange polynomials of course. Thus, the shifting, Hermite transformation
and finally the Polar Laguerre transformation have to be applied also to the test functions vice
versa to end up with the Lagrange polynomials as test functions. Our strategy will therefore be to
transform f v̄2 to L2N , test with the Polar Laguerre basis polynomials, transform the result back to
the Hermite polynomials as test functions, to the shifted Lagrange polynomials and finally invert
the shifting of the test functions. These transformations of the test functions shall be discussed
in the following. It turns out that the transformations acting on the test space are the transposed
transformations as those for the function f v̄2 .

Polar to Hermite

We begin with transforming the result w.r.t. the Polar Laguerre test polynomials to the Hermite
polynomials. Due to the linearity of the collision operator w.r.t. the test functions, our goal is sim-
ply to compute the expansion coefficients of a fixed Hermite Polynomial in the Polar polynomial
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4.3 Efficient algorithm for the collision operator

expansion. By orthogonality one concludes that the Hermite polynomialHn,k is a linear combina-
tion of the Polar Laguerre polynomials ΨS

j,k, S ∈ {cos, sin}, j ≤ bk2c only. Thus, we are looking

for coefficients ψn,kj,S such that

Hn,k(
√

2v) =
∑

j≤bk/2c
S∈{sin, cos}

ψn,kj,SΨS
j,k(
√

2v) (4.3.49)

holds. Now we test the above Ansatz with the Polar Laguerre polynomial ΨS0
j0,k

, j0 ≤ bk/2c, S0 ∈
{cos, sin} in L2,ω(R2), where ω = e−2|.|2 . Due to orthogonality we obtain from (4.3.49)

∫
R2

e−2|v|2Hn,k(
√

2v)ΨS0
j0,k

(
√

2v) dv =
1

2
ψn,kj0,S0

. (4.3.50)

The integral on the left hand side is an entry of the matrix H2Pk, with column number n. The
row number coincides with the number of the Polar Laguerre polynomial ΨS0

j0,k
in the hierarchical

enumeration. If we denote this number by r(k, j0, S0), we can write for the sum in (4.3.49)

Hn,k(
√

2v) = 2
∑

j≤bk/2c
S∈{sin, cos}

(H2Pk)r(k,j,S),nΨS
j,k(
√

2v). (4.3.51)

We note that this sum is the inner product in Rk+1 of the n-th column of H2Pk and the vec-
tor consisting of the Polar polynomials of degree k. Thus, we calculate all Hermite polynomials
simultaneously via H0,k

...
Hk,k

 = 2 H2PTk

 Ψcos
0,k
...

Ψsin
k/2,k

 . (4.3.52)

Finally, by linearity of the inner collision operator w.r.t. the test polynomials we can write

QI(f v̄2 ,H) = 2 H2PTQI(f v̄2 ,Ψ). (4.3.53)

The quantitiesH and Ψ denote the complete set of Hermite and Polar Laguerre basis polynomials
in the hierarchical enumeration in (4.3.48).
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Hermite to Lagrange

For the transformation from the Hermite to the Lagrange basis of the test polynomials the strategy
is the same as before. We require

Lm(v) =
2N∑
k=0
j≤k

hmj,kHj,k(
√

2v), m = 0 . . . ndofv − 1 (4.3.54)

and look again for the coefficients hmj,k. In the above equation, the polynomials L denote the La-
grange polynomials on the shifted grid. For the sake of readability we suppress the superscript
v̄ in the ongoing calculations. Similar as before, we test the Ansatz with the Hermite polyno-
mial Hj0,k0(

√
2v) in L2,ω(R2), ω = e−2|.|2 . Using the orthogonality of the Hermite polynomials,

(4.3.54) turns into ∫
R2

e−2|v|2Lm(v)Hj0,k0(
√

2v) dv =
1

2
hmj0,k0

. (4.3.55)

The integral on the left hand side can be factorized as in the forward transformation, yielding

∫
R

e−2v2
x lu(vx)Hj0(

√
2vx) dvx

∫
R

e−2v2
y lv(vy)Hk0−j0(

√
2vy) dvy =

1

2
hmj0,k0

, (4.3.56)

with m = u(N + 1) + v. Both integrals in the above equation are entries of a matrix similar to
N2H, differing in the order of the Lagrange polynomial L only. Therefore we define the matrix
H2N ∈ R(N+1)×(2N+1) via

H2Ni,j :=

∫
R

e−2v2
li(v)Hj(

√
2v) dv,

and rewrite the sum in (4.3.54) in terms of the matrix entries H2N as

Lm(v) = 2
2N∑
k=0

k∑
j=0

H2Nu,jHj,k(
√

2v)H2Nv,k−j with m = u(2N + 1) + v. (4.3.57)
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For the further manipulation of the above sum it is convenient to sort the Hermite polynomials
similar to a tensor product. To that end we define the matrix H ∈ R(2N+1)×(2N+1) via

Hj,k :=

{
Hj,k+j(

√
2v) j + k ≤ 2N

0 j + k > 2N
.

In the matrix H the Hermite Polynomials are sorted in the same structure as we obtained for the
coefficients of f v̄2 in the Hermite basis in (4.3.39). The entriesHi,j with i+j = k correspond to the
i−th Hermite polynomial of total degree k in the enumeration in (4.3.48). Note that by definition
H is an upper left triangular matrix.

We now replace Hj,k in (4.3.57) by the matrix entries Hj,k−j and interchange the order of the
summations to arrive at

Lm(v) = 2
2N∑
k=0

k∑
j=0

H2Nu,jHj,k−jH2Nv,k−j

= 2
2N∑
j=0

2N∑
k=j

H2Nu,jHj,k−jH2Nv,k−j .

(4.3.58)

Note that the inner sum in the second line covers all values of k − j ∈ {0 . . . 2N − j} for which
Hj,k−j is non zero, such that we can write

Lm(v) = 2
2N∑
j=0

H2Nu,j(H H2NT )j,v

= 2 (H2NH H2NT )u,v.

(4.3.59)

Thus, the complete set of Lagrange polynomials is obtained via

L = 2 H2NH H2NT , (4.3.60)

where L denotes the set of all Lagrange basis polynomials sorted matrix wise, i.e. the u, v entry
of the matrix L is the m-th Lagrange polynomial, where m = u(N + 1) + v and u, v = 0 . . . N .

The transformations we obtained for the test functions show that the number of operations required
to perform them is the same as the forward transformations of f v̄2 . Thus, we are now able to
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4 A Discontinuous Galerkin approach

calculate the inner collision operator QI(f v̄2 , L) within O(N3) operations in total. Combining
this result with the integration formular w.r.t. v̄, we obtain a collision algorithm with O(N5)
complexity.

In order to illustrate our approach for the application of the collision integrals we present the
following pseudo code. Due to a better readability we do not use a representation of the operations
in terms of matrix products, but in terms of functions.

input : (c0 . . . cndofv−1) representing f(v)
output: qj =

∫
R2

Q(f)Lj dv, j = 0 . . . ndofv − 1

N =
√

ndofv − 1;
(x, ω) = GaussHermiteRuleTensored (N + 1);
q = 0;
foreach (xi, ωi) do

d = Shiftyi (Shiftxi (c));
for j = 0 : Ñ := (2N + 1)2 − 1 do ej = djdÑ−j ;
h = Nodal2Hermite (e);
p = Hermite2Polar (h);
pcoll = DiagCollision (p);
hcoll = Hermite2PolarT (pcoll);
ncoll = Hermite2Nodal (hcoll);
q+ = ωi ShiftTyi (ShiftTxi (ncoll);

end
Algorithm 4: a pseudo code for the collision integrals

Remark 4.3.6. The presented expansion in terms of a Maxwellian multiplied with a polynomial
has a close connection to the approach investigated in [FGH14]. In contrast to our approach, the
solution is directly expanded to generalized Laguerre polynomials with a Maxwellian weighting
factor. The efficiency considerations are based on the orthogonality of the trigonometric functions.
The paper generalizes the approach from [EE99] to radially non symmetric solutions.
For the transport operator, similar approaches are presented in [DDCS12, HGMM12], where a
Discontinuous Galerkin projection is applied to the Vlasov-Poisson System. In contrast to our
method, local polynomials in space as well as in velocity are used.

4.4 Adaptive choice of element Maxwellians

A crucial part of the scheme is the choice of the quantities V K and TK describing the element
Maxwellian. For convenience we restate the macroscopic quantities density ρ, mean velocity V
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and temperature T for a 2d setting below.

ρ(t, x) :=

∫
R2

f(t, x, v) dv V (t, x) :=
1

ρ(t, x)

∫
R2

vf(t, x, v) dv

T (t, x) :=
1

2ρ(t, x)

∫
R2

(v − V (t, x))2f(t, x, v) dv.

(4.4.1)

We expect good approximation properties if the parameters V K and TK of the element
Maxwellians are close to the macroscopic velocity V (t, x) and temperature T (t, x). We choose
element wise constant T ∈ P 0(Th) := {u ∈ L2(Ω) : u

∣∣
K
∈ P 0(K), ∀K ∈ Th} and V ∈

[P 0(Th)]2. By {u}K we denote the mean value of a function u ∈ L1, i.e. {u}K = 1
|K|
∫
K u(x) dx,

where |K| is the volume of the element K ∈ Th. A simple requirement for the parameters of the
element Maxwellian is

V K ≡ {V (t, .)}K and TK ≡ {T (t, .)}K ∀K ∈ Th. (4.4.2)

In practice this choice is not very useful, since it turns out to be quite unstable, a heuristic reason
can be obtained by the following considerations.
The definition of the upwind function incorporates f

∣∣
K

as well as f
∣∣
K̃

, with K̃ being a neighbour
element to K. In order to calculate the skeleton integrals by Gauss Hermite rules, the solution
from the neighbouring element has to be projected to the element Maxwellian of the element K.
This projection is not well defined for all pairs of Ansatz temperatures. To illustrate the problem

let L2,T := {f ∈ L2(R2) :
∫
R2 e

|v|2
T f(v)2 dv < ∞} and consider a discrete solution f(v) =

e
− |v|

2

T0 P (v) ∈ L2,T0 , with P ∈ PN (R2) which shall be projected to f̃(v) = e
− |v|

2

T1 P̃ (v) ∈ L2,T1 ,
with P̃ ∈ PN (R2). To have the orthogonal projection well defined, f has to be in L2,T1 . This
yields ∫

R2

e
v2

T1 f(v)2 dv =

∫
R2

e
v2

(
1
T1
− 2
T0

)
P (v)2 dv <∞⇔ T0 < 2T1. (4.4.3)

Thus, the projection is well defined if T0 < T1. The other way round, a condition on the tempera-
tures is necessary to have the L2,T1-projection well defined. In order to avoid this problem – which
effects stability in actual computations – we bound T0

T1
by a constant c ≤ 2. In addition we require

TK to be greater or equal than the mean of the macroscopic temperature in (4.4.1). Thus, we are
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looking for T as the minimizer of

T := argmin
sK∈P 0(Th)

∑
K∈Th

|sK − {T}K | |K|, (4.4.4)

under the constraints

(1) sK ≥ 1
2sK′ , ∀K

′s.t.:K ′ is neighbour of K

(2) sK ≥ {T}K .

In actual computations we initially set sK = {T}K . Now we loop over the elements of the mesh
and update sK to satisfy the constraints. We iterate this loop until no update of any sK is necessary
any more.

The choice of the velocity parameter V K is motivated by the behaviour at the boundary. The
boundary conditions presented in (1.2.4a) and (1.2.4b) yield a vanishing normal component of
the macroscopic velocity. This is the natural boundary condition for functions in H(div,Ω) :=
{u ∈ [L2(Ω)]2 : div(u) ∈ L2(Ω)}, which is equipped with the norm ‖u‖2H(div,Ω) = ‖u‖2L2(Ω) +

‖div(u)‖2L2(Ω) [BF91].

In order to incorporate the behaviour at the boundary in the Ansatz velocity V , we can interpolate
V (t, x) with a function V in H(div,Ω), such that u · n = 0 if x ∈ (∂Ω)ref by using the Raviart
Thomas interpolation operator IRT

K (of lowest order). By (∂Ω)ref we denote the part of the bound-
ary of Ω where reflection conditions, i.e. (1.2.4a) or (1.2.4b) are prescribed. However, by such an
interpolation the condition u · n = 0 affects the interpolant only in the elements which have at
least one edge in (∂Ω)ref. This can lead to large jumps in the Ansatz velocity, causing instabilities
in actual computations.
In order to obtain a boundary layer of a prescribed thickness and therefore smaller jumps, we use
the solution u of the following coercive H(div,Ω) problem for the Ansatz velocity V .

Find u ∈ H(div,Ω) with u · n = 0, x ∈ (∂Ω)ref s.t.:

∑
K∈Th

∫
K

u(x)ϕ(x) dx+ α2
∑
K∈Th

∫
K

div(u)(x)div(ϕ)(x) dx

=
∑
K∈Th

∫
K

V (t, x)ϕ(x) dx ∀ϕ ∈ H(div,Ω).

(4.4.5)
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The value of the constant α is related to the thickness of the layer in which the boundary condition
affects the solution. Thus, letting α2 = Ch, with h being the mesh size, we can – roughly speaking
– control on how many element layers the solution ”sees” the boundary condition. In other words
we can use α2 to balance between ”u = V ” and ”u is sufficiently smooth to end up with a stable
simulation”. This is quite similar to the boundary layers obtained when solving

Find u ∈ H1
0 (0, 1) s.t.:

1∫
0

u(x)v(x) dx+ ε2
1∫

0

u′(x)v′(x) dx =

1∫
0

1v(x) dx ∀v ∈ H1
0 (0, 1). (4.4.6)

The solution of the above problem has the constant value 1 corresponding to the right hand side.
To satisfy the boundary condition, it drops on (0, ε) and (1−ε, 1) towards 0. For small ε this yields
large gradients.

In order to obtain V , we solve (4.4.5) using the lowest order Raviart Thomas [RT77] element.
Since this gives a solution uh which is piecewise linear, we project uh onto [P 0(Th)]2 to arrive
finally at V .
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5 Numerical results

In this section we present numerical results as a validation for our method. First we discuss a space
homogeneous problem with a known analytic solution. The 2-dimensional examples involve two
model problems of the flow around a wedge and the flow through a tube with a cylindrical hole.
Then we apply the method to a NACA 7410 air foil with either specular and diffuse reflecting
boundary conditions. Additionally we show a simulation result for the Mach 3 wind tunnel with
backward facing step. All the above mentioned examples are simulated with a rather small Knud-
sen number. In order to demonstrate the performance of the method for larger Knudsen numbers
we conclude the section with a simulation result for a Knudsen pump, where the Knudsen numbers
0.1 and 0.7 have been tested.

All calculations were performed on a machine with 2 Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz processors with 12 cores each. The method is implemented within the Finite Element
Library NgSolve [Sch, Sch14], featuring shared memory parallelization [DM98].

5.1 Space homogeneous problems

5.1.1 BKW Solution

The spatially homogeneous example we present is well known as the BKW solution [Kru67,
Bob88,Ern84]. This is a non-stationary analytic solution of the spatially homogeneous Boltzmann
equation ∂f

∂t = Q(f) for a Maxwellian gas with B(v, w, e′) = 1
2π . In 2 dimensions it is given by

f(t, v) =
1

2πs(t)
e
− |v|

2

2s(t)

(
1− 1− s(t)

2s(t)

(
2− |v|

2

s(t)

))
, (5.1.1)

with s(t) = 1− e−
(t+t0)

8 .
We chose the starting time t0 such that s(0) = 1

2 and consequently f(0, v) = 1
π |v|

2e−|v|
2
. Since
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s→ 1 if t→∞, the stationary solution is given by

f∞(v) = (2π)−1e−
|v|2

2 ,

which is a Maxwellian with temperature 1, velocity 0 and density 1. Due to the conservation laws,
f∞ can also be obtained by calculating density, momentum and energy of f(t, . ) for any arbitrary
t such that f(t, .) ≥ 0, and then forming the Maxwellian corresponding to these macroscopic
quantities.
For the simulation we have chosen the global element Maxwellian in accordance with the equilib-
rium solution. This yields an expansion in terms of

fN (t, v) = e−
|v|2

2

ndofv−1∑
m=0

cmLm(
v√
2

). (5.1.2)

In Figure 5.1.1 we show cross sections of the solution at different points in time. In Figure 5.1.2 we
present the L∞(0, Tend) norm of the quantities ‖fh(t, .) − f(t, .)‖Lj ,ω, j = 1, 2,∞ with weight
functions ω(v) = e0.5|v|2 and ω(v) ≡ 1 respectively. We see exponential convergence of the
method in the momentum domain. The computation times for different polynomial orders are
presented in table 5.1 and Figure 5.1.3. We note the expected N5 asymptotic.

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.14

0.12

0.1

8 · 10−2

6 · 10−2

4 · 10−2

2 · 10−2

0

Figure 5.1.1: Snapshots of the distribution function for the BKW solution, obtained with an order
16 simulation. The solid line is at t = 0, the dashed line is at t = 2 and the dash-
dotted line is at t = 4. Note that the solution is radially symmetric at any time t.
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Figure 5.1.2: We present the L∞-error on [0, Tend] of the quantity eN (t) := ‖fN (t) −
f(t)‖Lj(R2),ω, j = 1, 2,∞ as a function of the expansion order N . By ‖.‖Lj(R2),ω

we denote the ω weighted Lj norms. The left Figure corresponds to ω(v) = e0.5|v|2 ,
on the right side the weight function is ω(v) ≡ 1.
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Figure 5.1.3: The computation times for the BKW solution. We present the time consumed for
a single time step over the different polynomial orders. The reference line is the
monomial n5. The times are also listed in table 5.1.
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n 10 20 30 40 50 60 70 80 90 100
t 0.003 0.008 0.126 0.131 0.314 0.731 1.548 2.926 5.288 8.289

Table 5.1: Computation times for the BKW solution. The numbers in the first line are the polyno-
mial orders, the number below is the computation time per step in seconds.

5.2 Space dependent problems

For the space inhomogeneous problems with small Knudsen number we used B(v, w, e′) ≡ 1
2π .

Due to the small Knudsen number we expect that the choice of the Kernel does not significantly
influence the solution. For the Knudsen pump where the Knudsen numbers are chosen as 0.1 and
0.7, the hard sphere model, i.e. B(v, w, e′) = |v − w| was used.
We emphasize that quantitative accurate results require a three dimensional velocity space, what is
not the case in our approach. As a consequence we mainly demonstrate what kind of problems we
are able to solve by our method. The examples verify empirically that the method performs very
well near the fluid dynamic limits.

5.2.1 Model problem 1 - Flow around a wedge

The first 2d problem is a model problem in which we consider the flow around a deltoid. The ge-
ometry and the mesh for the computations are depicted in Figure 5.2.1a. We have a supersonic free
flow, resulting in a compression shock at the forefront of the deltoid. Due to the simple geometry,
the angle of the shock as well as the macroscopic behaviour after the shock can be pre calculated.
The relation between the angle of the compression β and the deviation angle θ is given via

tan(θ) = 2 cot(β)
M2
∞ sin(β)2 − 1

M2
∞(γ + cos(2β)) + 2

. (5.2.1)

In the above equation, M∞ denotes the free flow Mach number and γ is related to the degrees of
freedom d of the gas via γ = d+2

d . In our simulations d = 2 and consequently γ = 2. The angles
θ and β are both w.r.t. the direction of the free flow. The macroscopic properties ρ, p and T after
the compression shock are expressed by

ρ

ρ∞
=

(γ + 1)M2
n,∞

2 + (γ − 1)M2
n,∞

,
p

p∞
= 1 +

2γ

γ + 1
(M2

n,∞ − 1) and
T

T∞
=
pρ∞
p∞ρ

, (5.2.2)
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where ρ∞, p∞ and T∞ are the macroscopic properties of the free flow. The Mach numbers before
and after the compression are related via the free flow Mach number in normal direction of the
compression Mn,∞ = sin(β)M∞ via

M =
Mn

sin(β − θ)
with Mn =

√√√√1 + γ−1
2 M2

n,∞

γM2
n,∞ −

γ−1
2

. (5.2.3)

The simulation is performed for a free stream Mach 2 flow with ρ∞ = 1, T∞ = 0.5 and V∞ =
(2, 0)T . The behaviour after the compression is pre-calculated by the above equations.

ρ = 1.4122, p = 1.0191, T = 0.7217, M = 1.4686. (5.2.4)

The deviation angle is θ = 9.4623◦, resulting in a shock angle of β = 41.8238◦.

β
θ

M∞ = 2

(a) The geometry of the deltoid with deviation angle θ =
9.4623◦.

(b) The mesh at the 6th refinement
level.

The simulation was performed with order 2 spatial elements and order 6 momentum elements. The
mesh for the presented results consists of 8874 elements and was obtained by adaptive refinement
at the shocks. The estimation of the error was based on the macroscopic Mach number at time
t = 3 and was done as proposed by Zienkiewicz and Zhu [ZZ92a, ZZ92b].

As a time stepping scheme we use the improved Euler method with time step τ = 0.125e−3. The
Knudsen number of the flow is 5e−3.
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We model the inflow and the initial distribution in terms of Maxwellian distributions with the
desired macroscopic properties.

fin(t, x, v) = f(0, x, v) =
ρ∞

2πT∞
e
−
∣∣∣ v−V∞√

2T∞

∣∣∣2
. (5.2.5)

Figure 5.2.2 shows the macroscopic properties of the flow at time t = 3. Comparing the solution
after the shock with the theoretically obtained values is in good agreement. In the density, the
temperature, the Mach number and the pressure the expected values are obtained. The measured
angle of the compression is 41.82 and is in perfect agreement with the predicted one.

In Figure 5.2.3 we have depicted the distribution functions after the trailing edge along the sym-
metry axis of the deltoid at time t = 3. The distances to the edge are 0.02%, 1% and 2% of the
length of the deltoid. Due to the symmetry of the deltoid, the distributions can be expected to
be symmetric w.r.t. the vx-axis what is quite well satisfied. Very close to the deltoid we obtain
2 separated peaks, symmetric w.r.t. vy, resulting in a vanishing macroscopic velocity w.r.t. the
y-direction. This separation decreases when moving further away from the wedge.
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(a) Density

(b) Temperature
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(c) Mach number

(d) Velocity

Figure 5.2.2: Macroscopic properties for the Mach 2 flow around a wedge.
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(a) 0.02% (b) 1% (c) 2%

Figure 5.2.3: The microscopic behaviour at the trailing edge. From left to right the distance to the
deltoid increases. The percentages denote the distance to the trailing edge w.r.t. the
length of the deltoid.

5.2.2 Model problem 2 - Flow around a cylinder

In this example we consider the flow through a tube with a circular obstacle. Figure 5.2.4 shows
the geometry and the mesh for the computations. The flow enters the tube from the left side and
leaves it on the right side. The center of the circle is at (0.5, 0), its radius is 0.1. The y range of
the tube is [−0.25, 0.3], the x range is [0, 4]. Note that the circle is not centered with respect to the
y-direction.

For the simulation we used order 6 spatial basis functions on a mesh with 141 (partially) curved
elements. The order of the momentum space is chosen quite low as 4.

For time stepping we used again the improved Euler method with time step τ = 0.5e−3. The
Knudsen number in this simulation was chosen equal to 5e− 3.

As in the previous example, we model the inflow as well as the initial distribution in terms of
Maxwellian distributions with the desired macroscopic properties.

fin(t, x, v) = f(0, x, v) =
1

2πT∞(x)
e
−
∣∣∣∣ v−V∞(x)√

2T∞(x)

∣∣∣∣2
. (5.2.6)

The boundary conditions on the cylinder and also on the upper and lower boundary of the com-
putational domain are diffuse reflection (1.2.4b) with Tbnd = 0.5 and Vbnd = (0, 0)T . The ve-
locity V∞ of the initial distribution is chosen as a quadratic function with respect to y such that
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V∞(x,−0.25) = V∞(x, 0.3) = 0. The temperature of the initial distribution is constant all over
the domain and fits to the temperature of the wall.

V∞(x, y) =

(
0,
−1200y2 + 60y + 90
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)
, T∞(x) = 0.5. (5.2.7)

The maximum inflow velocity is max
y∈[−0.25,0.3]

V∞(x, y) = 0.75.

Figures 5.2.5a - 5.2.5d show the modulus of the macroscopic velocity |V (t, x)| of the solution at
different points in time. The first Figures capture the pressure wave that occurs in the beginning.
Additionally we observe that a non stationary behaviour of the solution is obtained.

Table 5.2 presents the computation times for this example. To obtain the table, we performed the
simulation multiple times with different polynomial orders in momentum space to find the fraction
of the time step that was spent with the collision integrals. For low order the time consumed for the
collision and the flux is more or less equally balanced. If the order is increased, we see a significant
growth of the fraction spent for the collision.

The results indicate that the qualitative behaviour of the obtained solution is in good agreement
with Navier-Stokes solutions for similar problems. Additionally they highlight the efficiency of
the approximation by the shifted and scaled basis functions, only order 4 polynomials are used
to approximate the whole velocity space R2. The timings in table 5.2 emphasize the necessity to
keep the order as low as possible.

order time [s] coll time coll .% flux time [s] flux % update time [s] update %

4 0.045 0.02 44 0.017 38 0.008 18
5 0.065 0.038 56 0.017 26 0.01 18
6 0.081 0.05 62 0.02 25 0.011 13
7 0.123 0.086 70 0.023 19 0.014 11
8 0.209 0.16 77 0.032 15 0.017 8
9 0.313 0.26 83 0.035 11 0.018 6
10 0.581 0.52 90 0.04 7 0.021 3

Table 5.2: Timings for the flow around a cylinder. The values in the table are obtained by running
the simulation multiple times with different polynomial order in the momentum domain.
All other parameters are kept unchanged. Already for order 10 polynomials 90 percent
of the computational time is spent for the collision integrals.
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Figure 5.2.4: Geometry and mesh for the computations.

(a) t = 0.45.

(b) t = 0.65.

(c) t = 1.5.

(d) t = 5.2.

Figure 5.2.5: Modulus of the velocity at different points in time.
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5.2.3 Flow around NACA 7410 air foil - specular reflection

Here we consider the flow around a NACA 7410 air foil. The surface of the air foil is assumed
to be perfectly smooth w.r.t. the molecular diameter. Thus, the specular reflection boundary con-
dition (1.2.4a) is applied along the air foil. At the outer boundary we apply the inflow boundary
condition (1.2.4c) with constant inflow fin over time. The length of the air foil is 1, the length of
the computational domain is 4 and its height is 6.
In the spatial space, the polynomial order is globally set to 2, the order of the velocity space is not
constant over the mesh. There are 3 element layers with order 10 around the air foil, followed by 2
element layers with order 8. All other elements have velocity order 6. The higher v-order around
the air foil is necessary to resolve the reflected particles.

To resolve the shocks, the computation is started on an initial mesh consisting of 749 elements,
depicted in Figure 5.2.6a. At t = 2 simulation seconds, an error based refinement of the mesh
is carried out and the simulation is restarted. The estimation of the error is done as presented by
Zienkiewicz and Zhu [ZZ92a,ZZ92b], the quantity the estimation was based on is the macroscopic
density. To end up with the mesh depicted in Figure 5.2.6c, 4 levels of refinement were done.

The initial distribution as well as the inflow distribution are chosen as Maxwellian distributions,
resulting in

fin(t, x, v) = f(0, x, v) =
ρ∞

2πT∞
e
−
∣∣∣ v−V∞√

2T∞

∣∣∣2
, (5.2.8)

with

ρ∞ = 1 T∞ = 0.5 V∞ = (2, 0)T . (5.2.9)

These values correspond to a free stream Mach number M∞ = 2.

Time stepping is again carried out by the improved Euler method with time step τ = 0.25e−4.
The Knudsen number is set to 5e−3.

Figure 5.2.7 depicts the macroscopic density, the temperature, the modulus of the macroscopic
velocity and the Mach number at time t = 3 on the mesh 5.2.6c. The compression shocks are
very well resolved as we see in each of the macroscopic quantities. The coloured results are hardly
distinguishable w.r.t. the meshes 5.2.6b and 5.2.6c. Thus, only results for the finest mesh are pre-
sented.
A comparison of solutions on these two meshes is shown with isolines in Figure 5.2.8. There are
fewer overshoots in the approximation of the shocks on the finer mesh.
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Figures 5.2.10 and 5.2.12 show the distribution function at different points in space through the
bow shock and close to the trailing edge of the air foil respectively.
The position in 5.2.10a is not yet affected by the air foil, it is directly in front of the shock and
represents the free flow distribution. Both, Figure 5.2.10b and 5.2.10c are placed in the transition,
we see a slight derivation from a Maxwellian. Figure 5.2.10d presents the distribution behind the
shock.
The distributions shown in Figure 5.2.12a-5.2.12d are on a horizontal line through the shock at the
trailing edge. Since the air foil is not symmetric, there is no symmetry w.r.t. the vx-axis any more,
only a small number of particles travels upwards in 5.2.12a. When moving away from the edge,
this effect decreases, in Figure 5.2.12c both, upwards and downwards moving particles are even
spread. The distributions obviously not Maxwellian.
The Figures 5.2.12e-5.2.12g show the distribution along the trailing edge shock.

(a) Initial mesh. (b) level 3. (c) level 4.

Figure 5.2.6: The initial mesh with 749 elements on the left, the refined mesh on the middle con-
sists of 3560 elements, the final mesh on the right is made of 5875 elements.
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(a) Macroscopic density.

(b) Macroscopic temperature.
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(c) Modulus of macroscopic velocity.

(d) Macroscopic Mach number.

Figure 5.2.7: Simulation results for NACA 7410 air foil on mesh 5.2.6c.
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(a) Isolines for the macroscopic density.

(b) Isolines for the macroscopic Mach number.

Figure 5.2.8: Isolines for macroscopic density and Mach number on the mesh 5.2.6b (left) and
5.2.6c (right).

dcba

Figure 5.2.9: The spatial positions of the distribution functions presented in Figure 5.2.10.
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(a) (x, y) = (−0.56, 0.2). (b) (x, y) = (−0.55, 0.2).

(c) (x, y) = (−0.54, 0.2). (d) (x, y) = (−0.53, 0.2).

Figure 5.2.10: Distribution functions on a straight line through the bow shock.

a b c d
e

f

g

Figure 5.2.11: The spatial positions of the distribution functions presented in Figure 5.2.12.
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(a) (x, y) = (0.501, 0.0018). (b) (x, y) = (0.506, 0.0018).

(c) (x, y) = (0.511, 0.0018). (d) (x, y) = (0.516, 0.0018).

(e) (x, y) = (0.53, 0.0085). (f) (x, y) = (0.57, 0.03).
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(g) (x, y) = (0.6, 0.047).

Figure 5.2.12: Distributions immediately after the trailing edge (5.2.12a-5.2.12d) and along the
trailing edge shock (5.2.12e-5.2.12g).

5.2.4 Flow around NACA 7410 air foil - diffuse reflection

Now we consider the NACA 7410 air foil geometry in a second simulation, but in contrast to the
previous example we use the diffuse reflecting boundary condition along the air foil. Particles are
reflected according to (1.2.4b) when hitting the boundary.

The polynomial order in the spatial domain is 2. For the order in the momentum domain we have
chosen two element layers around the air foil with polynomial order 4, all other elements consist
of polynomial degree 3 in velocity direction. The mesh was not refined by error estimation, but is
finer in general as in the Mach 2 example.

The time step τ was chosen as 0.25e−4. As a time stepping scheme we used again the improved
Euler method. The simulation was performed with Knudsen number 5e−3.

As before we model the initial distribution as well as the boundary distribution at the outer edges
in terms of Maxwellian distributions

fin(t, x, v) = f(0, x, v) =
ρ∞

2πT∞
e
−
∣∣∣ v−V∞√

2T∞

∣∣∣2
. (5.2.10)

The macroscopic properties of the free flow are ρ∞ = 1.0, T∞ = 0.5, V∞ = (0.7, 0.2)T ,
resulting in a free stream Mach number of M∞ ≈ 0.73, the flow is subsonic. The temperature of
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the boundary is chosen in accordance with the free flow temperature, Tbnd = 0.5, its velocity is 0.
The choice of the free flow velocity yields an angle of attack of 15◦.

In Figure 5.2.13 we depict the modulus of the velocity at different points in time. As a consequence
of the diffuse reflection condition we obtain a boundary layer around the air foil and the solution
becomes non stationary.

The example confirms once more the enhanced approximation properties of the shifted and scaled
basis functions. Actually we have only used 16 basis functions in most of the elements to approx-
imate the velocity space R2. The efficiency of our method therefore results not solely from the
techniques to apply the collision operator, but also from the rather low expansion order we are
able to chose in the velocity domain.

(a) Modulus of velocity at t = 3.

(b) Modulus of velocity at t = 5.
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(c) Modulus of velocity at t = 7.

(d) Modulus of velocity at t = 9.

Figure 5.2.13: Macroscopic behaviour for NACA 7410 airfoil with diffuse reflection boundary
condition.

5.2.5 Mach 3 wind tunnel with step

Here we consider the Mach 3 wind tunnel experiment. The geometry of the tunnel as well as the
mesh for the computations are presented in Figure 5.2.14. The tunnel has a backward facing step
at position x = 0.6 with height 0.2. The total length of the tunnel is 3, the height on the left side
is 1.
The mesh used for the calculation consists of 3772 spatial elements with order 2 trial and test
polynomials in space. The order in momentum is 8 almost over the whole domain. A small fraction
of elements close to the step has v-order 10.
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As in the previous examples, we use the improved Euler method for time stepping with time step
τ = 2.5e−5. The Knudsen number in the current example is equal to 2.5e−3.

The inflow occurs from the left side and is given by

fin(t, x, v) = f(0, x, v) =
ρ∞

2πT∞
e
−
∣∣∣ v−V∞√

2T∞

∣∣∣2 (5.2.11)

with

ρ∞(x) = 1.4, V∞(x) = (3, 0)T , T∞(x) = 0.5. (5.2.12)

On the upper and lower walls of the tunnel we apply the specular reflection condition, on the left
and the right side the inflow condition is used.

Figures 5.2.15a - 5.2.15c present the macroscopic density at different points in time. In the first
Figure the compression shock starts to evolve from the step. At t = 0.5 it has already reached the
top wall of the tunnel and gets reflected. At time t = 1 the shock has already detached from the
upper wall. We note small oscillations in the region of the reflected shock at t = 0.5.

A qualitative comparison of our results with solutions obtained by the Euler equations shows good
agreement. Typically, these results are for a gas with 5 degrees of freedom, yielding different
positions and strengths of the shocks.

The computation time for the simulation per time step is 0.858 s, where 0.74 s (86%) are spent for
the collision integrals, the flux takes 0.078 s (9%) and the application of the inverse mass matrix
including the solution update takes 0.04 s (5%). Almost 90% of the time per step are spent in the
calculation of the collision integrals. This shows the need for efficient evaluation of the collision
integrals.
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Figure 5.2.14: Wind tunnel geometry and computational mesh.

(a) Macroscopic Density ρ(x) at time t = 0.075.

(b) Macroscopic Density ρ(x) at time t = 0.5.
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(c) Macroscopic Density ρ(x) at time t = 1.0.

Figure 5.2.15: The simulation results for the Mach 3 wind tunnel experiment.

5.2.6 The Knudsen pump

In this example we consider the flow through a tube, the geometry is depicted in Figure 5.2.16.
For a gas under sufficiently rarefied conditions, a unidirectional flow through such a tube can be
obtained just by imposing a temperature gradient along the walls. Here this is done by keeping
the temperature at T0 at the points B and D and at temperature T1 at the points A and C. For
the other points on the boundary it is assumed, that the temperature changes linearly with the
distance along the walls. The geometry and the temperature distribution along the walls are taken
from [ADM+07]. The temperature T0 is chosen as 0.5, the larger temperature T1 is chosen as 1.5.

The mesh for the computations is depicted in Figure 5.2.16. The width of the tunnel is 1.5, the
length of the straight segments is 5 and the radius of the center line of the curved segment is 1.5.
The order in spatial space is 2. In the velocity space the polynomial orders are 7 (Kn = 0.1) and 9
(Kn = 0.7). We used the hard sphere interaction model, i.e. B(v, w, e′) = |v − w| in accordance
with the collision kernel used in [ADM+07].

The time step for the improved Euler method is 0.25e−2.

The initial distribution is given by

f(0, x, v) =
ρ∞

2πT∞
e
−
∣∣∣ v√

2T∞

∣∣∣2
, (5.2.13)

where T∞ = T0 and ρ∞ = 1.
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AB

AB

DC

DC

(a) The geometry.
(b) The mesh consisting of 2222 elements.

Figure 5.2.16: Geometry and mesh for the simulation of the Knudsen pump.

For both simulated Knudsen numbers we obtain a counter clock wise flow through the channel. For
the low Knudsen number, shown in Figure 5.2.17a, the flow is rather limited to the inner wall of
the channel in the curved segments and to the center of the channel in the straight segments. This
is different in the result for the higher Knudsen number as shown in Figure 5.2.17b. Here the flow
is not localized to the center of the straight segments any more, but spreads almost over the whole
cross section. Additionally, the flow enters deeper into the outer half of the curved segments. The
clock wise flow we observe in the straight segments for Kn = 0.1 is strongly reduced for Kn = 0.7.
This tendency is also reported in [ADM+07].

Figure 5.2.18 shows the expansion order that is necessary to approximate the L2-norm of the
stationary solution up to 99.5%. These results indicate the need for adaptivity w.r.t. the velocity
variable. For the lower Knudsen number we can approximate the solution with a low order expan-
sion almost in the whole channel, as is shown in Figure 5.2.18a. For the larger Knudsen number,
the situation is different. The desired expansion order is larger in general. However, there is still a
significant portion of domain where a lower order expansion would be sufficient to approximate
the solution as can be seen in Figure 5.2.18b. By virtue of this result it should be possible to
construct a criterion to adjust the expansion order based on this quantity.
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(a) Kn = 0.1

(b) Kn = 0.7

Figure 5.2.17: The simulation result for the Knudsen pump. Both Figures show the macroscopic
velocity of the flow. While the flow is rather localized for Kn = 0.1, it spreads over
almost the whole straight segments for Kn = 0.7.
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(a) Kn = 0.1

(b) Kn = 0.7

Figure 5.2.18: Here we show the necessary polynomial orders to obtain the L2 norm of the pre-
sented solution in Figure 5.2.17 with a relative error of 0.5%.
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6 Summary and Outlook

6.1 Summary and Conclusion

In the thesis we developed a numerical method for the (2+2) dimensional Boltzmann equation
based on a Discontinuous Galerkin projection. The approximation of the solution in the spatial
and the velocity space was done via a tensor product.

We have used global polynomials w.r.t. the velocity variable multiplied with an appropriate
Maxwellian to approximate the solution. As has been confirmed by numerical examples, this
yields very good approximation properties close to equilibrium. On the other hand, by the use
of polynomial test functions w.r.t. the velocity, the conservation equations satisfied by the solution
were naturally satisfied on the discrete level.

In contrast to a lot of proposed deterministic methods there was no need to truncate the support of
the solution function, neither the integration domains in the variational formulation. The arising
integrals were evaluated by Gauss Hermite quadrature rules. In other words, we did not introduce
additional modelling errors by truncation.

In order to enhance the approximation properties of the trial space we proposed an adaptation of
the Maxwellian in terms of a variable shift and scale. By the use of a Discontinuous Galerkin
method there is no coupling between the local basis functions on different elements. This allowed
us to choose the parameters of the Maxwellian locally, i.e. element wise. Thus, we could adapt
to the macroscopic velocity and temperature within each element, and only a low polynomial
order in the velocity space was needed to approximate the solution. In section 4.4 we have noted
that the choice of these parameters needs some additional treatment to avoid stability issues. We
showed an appropriate smoothing of the temperature parameter and discussed how to incorporate
the behaviour of the distribution function at the walls into the velocity parameter.

A huge part of the work was devoted to the application of the collision integrals. The collision
operator takes O(N6) operations for a straight forward application. The main ideas to arrive at
reduced costs were presented in section 4.3. We transformed the collision integrals to mean and
relative velocity and approximated the outer integral w.r.t. to the mean velocity by a Gauss Hermite
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quadrature rule. The number of integration points in this quadrature rule is bounded by O(N2).
For the evaluation of the remaining integral w.r.t. the relative velocity we proposed a hierarchical
polynomial basis in Polar coordinates. In lemma 4.3.3 we showed that the inner integral opera-
tor is diagonal in this basis and therefore easy and cheap to apply. For efficient transformation
from the nodal to the hierarchical representation we introduced an intermediate hierarchical basis
formulated in terms of Hermite polynomials. The transformation from the nodal to the Polar rep-
resentation was then executed as a composition of the transforms from nodal to Hermite and from
Hermite to Polar. The numerical work needed for both transforms is bounded by O(N3) opera-
tions in total as was shown in sections 4.3.4 and 4.3.5. The first bound was obtained by exploiting
the tensor product structure in both, the nodal and the Hermite basis. To arrive at the second bound
we used the orthogonality of the Hermite and Polar basis w.r.t. to the Maxwellian weighted L2-
inner product on the one hand and their hierarchical structure on the other hand.
Summarizing, we obtain costs of O(N3) times the number of integration points w.r.t. to the mean
velocity. This results inO(N5) operations for the application of the collision integrals,N denoting
the expansion order.

The numerical examples already showed the potential of the method. We obtained exponential
convergence empirically for a space homogeneous problem. On the other hand, the space inhomo-
geneous problems demonstrate that Euler as well as Navier-Stokes solutions can be produced by
our method. In addition, they demonstrate excellent approximation properties of the adapted trial
spaces. Already very low expansion orders w.r.t. the velocity give reasonable results. Due to the
immense costs of the collision operator, the importance of the ability to use low expansion orders
is evident.

6.2 Outlook

As a next step we plan to extend our method to three dimensions, in space and velocity. In partic-
ular, a 3d velocity space is important to obtain quantitative accurate results. Our algorithm for the
collision operator based on transformations between tensor product and hierarchical basis can be
extended to 3d also. The trigonometric basis on the unit sphere therefore has to be replaced by the
spherical harmonics. For the sparsity of the inner collision operator w.r.t. the Polar basis, the Funk
Hecke theorem should be useful. We expect a total cost of O(N7) operations. Choosing N = 10,
this means 100 times more operations compared to 2d. Our actual computations are in the range
of hours on a modern workstation. Thus, deterministic numerical simulation with the presented
method will be feasible in 3d on clusters in near future.

Another point we plan to address is adaptivity w.r.t. the velocity variable. Typically, close to a wall
a higher expansion order is necessary to resolve the reflected particles. On the other hand, in the
free flow region the solution is already well approximated by a low expansion order.
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The criterion we aim for is based on the hierarchical expansion of f . Therefore we compare the
contributions of each total polynomial degree to the L2 norm of f . By the decay of these contri-
butions, we plan to construct a rule to increase or decrease the expansion order.
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[Jün09] A. Jüngel. Transport Equations for Semiconductors. Lecture Notes in Physics.
Springer Berlin Heidelberg, 2009. 1.1.2

[JWC65] J. W. T. James W. Cooley. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation, 19(90):297–301, 1965. 3.2.1

[Kru67] R. S. Krupp. A Nonequilibrium Solution of the Fourier Transformed Boltzmann
Equation. PhD thesis, MIT, 1967. 5.1.1
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