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Kurzfassung

Computersimulationen zählen heute zu den populärsten Ansätzen für die Analyse komplexe Systeme.
Darunter fallen auch Energiesysteme, bei deren Design und Analyse Computersimulationen nicht mehr
wegzudenken sind. In den letzten Jahren hat die vermehrte Einbindung von erneuerbaren Energieträgern
dabei die Komplexität von Energiesystemen deutlich erhöht. Die Integration von unterschiedlichen En-
ergiequellen, beispielsweise Photovoltaikanalgen, Solarthermieanlagen oder Geothermalanlagen, machen
die Analyse dieser Energiesysteme zu einer großen Herausforderung. Um einen konkreten Anwendungs-
fall analysieren zu können, ist es daher wichtig eine Simulationsumgebung zu haben, die eine korrekte
und effiziente Simulation des Gesamtsystems erlaubt.
Betrachtet man die Entwicklung von Simulationspaketen (SP) bemerkt man, dass diese auf natürliche
Weise demselben Schema der gegenseitigen Abgrenzung folgen, das man auch zwischen unterschiedlichen
wissenschaftlichen Bereichen vorfindet. Die meisten SPs fokussieren sich hauptsächlich auf eine ganz
bestimmte Problemdomäne. Das ist vorteilhaft, denn die Entwickler dieser SPs sind Experten auf ihrem
Gebiet, sodass der Einsatz dieser SPs in der spezifischen Domäne die Zuverlässigkeit der entwickelten
Modelle erhöht. Dazu im Widerspruch befinden sich aber komplexe Modelle, wie etwa im Bereich mod-
erner Energiesysteme, die oft mehrere Domänen umfassen. Um solche komplexen Modelle entwickeln zu
können gibt es zwei Optionen: entweder man entwickelt ein neues Simulationspaket, dass alle Domänen
abdeckt, oder bereits entwickelte Simulationspakete werden in gemeinsamer Verbindung verwendet. Of-
fensichtlich erfordert die erste Option viel mehr Ressourcen als die zweite, sofern es allgemeine Ansätze
für die Kopplung beliebiger Simulationspakete gibt.
Viele Wissenschaftler haben sich bereits diesem Thema aus verschiedenen Richtungen gewidmet. Eine
Gruppe von Wissenschaftlern hat sich dabei auf die Entwicklung einer Simulationsmethodik spezialisiert,
welche die Modellentwicklung komplexer Domänen ermöglicht. Das ist der Erstellung eines übergeord-
neten Simulationspaketes sehr ähnlich, was zwar vorteilhaft ist aber keine schnellen Resultate liefert. Eine
andere Gruppe spezialisierte sich auf die Entwicklung von Standards für die Simulationsinteroperabilität,
während wieder andere sich auf die mathematischen Aspekte von Simulationskopplung fokussierten. An-
dere versuchten einfach verschiedene Simulationspakete auf die eine oder andere Art miteinander zu kop-
peln. Aus den Fehlern der letzten Gruppe konnte der Autor ableiten, dass es einen Bedarf an daran gibt
mathematisch gut fundierte Methoden für Ingenieure, die sich mit Simulation befassen, zur Verfügung
zu stellen. Der Beitrag der vorliegenden Arbeit ist, dass sie einen Blick auf mathematische Metho-
den für die Kopplung verschiedener Simulationen wirft, die gebräuchlichsten Standards für Simulation-
sinteroperabilität wählt und dann diese Methoden in Algorithmen für Simulationskopplung konvertiert.
Die entwickelten Algorithmen gehen mit den ausgesuchten Standards für Simulationsoperabilität kon-
form. Die die meisten Simulationspakete in separaten Prozessräumen laufen, handelt es sich inhärent
um ein verteiltes Problem. Deshalb sind die resultierenden Algorithmen auch verteilt. Algorithmen mit
all diesen Eigenschaften sind nach bestem Wissen des Autors noch nie der wissenschaftlichen Gemein-
schaft präsentiert worden. Nachdem es in diese Richtung laufende Forschungsaktivitäten gibt, sind hier
die populärsten Methoden ausgewählt worden, um verteilte Algorithmen zu erstellen. Die ausgewählten
Standards für Simulationsinteroperabilität sind High Level Architecture (HLA) und Functional Mock-up
Interface (FMI). Die präsentierten Algorithmen wurden getestet, um ihre Vor- und Nachteile zu evaluieren.
Das Endergebnis der präsentierten Arbeit ist ein Framework, dass es Ingenieuren mithilfe von Simula-
tionspaketen, die HLA unterstützen, erlaubt, Simulationen zu entwickeln, die unterschiedliche Domänen
verbinden. Das Framework beinhaltet Implementierungen all der abstrakten Algorithmen, die in der vor-
liegenden Arbeit diskutiert sind. Dabei abstrahiert es die Komplexität von HLA und FMI. Um die laufende
Forschung zu unterstützen, ermöglicht das präsentierte Framework Wissenschaftlern die Entwicklung und
das Testen von neuen Algorithmen auf einfache Weise.
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Abstract

Simulation is currently one of the most popular methods for analysis of complex systems. Like many other
domains, energy systems rely heavily on simulations for model verification and analysis. In past few years
promotion and increase of renewable energy systems have added many complexities into energy systems.
Introduction of many different forms of energy sources, like, solar electrical energy, solar thermal energy,
geothermal energy and others, have made the analysis of energy systems much more challenging. To
analyze a complete scenario given at hand, it is important to have a simulation framework which is able
to simulate the scenario accurately and effectively.
Looking at the development of simulation packages (SPs), it is natural that they have followed the same
pattern of separation as found in different scientific fields. Most SPs are focused mainly on one certain type
of problem domain. It is beneficial, because the people who have developed SPs are experts in their fields,
so using SPs for their specific domain increases reliability in the developed models. Contrarily, complex
models, like modern energy systems, are often related to multiple domains. To develop complex models
there are two options, either a new simulation package could be developed which covers all domains,
or already developed simulation packages could be used in conjunction. Clearly, first option requires
much more resources than the second one, only if techniques could be devised to couple any number of
simulation packages.
Many scientists have already been focusing on the problem from different directions. One group of scien-
tists focused on developing a simulation methodology which could enable model development of complex
domains. It is similar to creating a grand simulation package for all types of simulations, which is ben-
eficial but does not give rapid results. Another group focused on developing standards for simulation
interoperability, while others focused on mathematical aspects of simulator coupling. Some others just
tried to couple different simulation packages by one way or the other.
Learning from mistakes of the last group, it is realized by the author that there is a need of putting math-
ematically sound techniques into the reach of simulation engineers. The contribution of this work is that
it looks into the mathematical techniques of coupling different simulations, and choses most popular sim-
ulation interoperability standards, then converts those techniques into algorithms for simulator coupling.
The developed algorithms conform to the selected simulation interoperability standards. As most simu-
lation packages run in separate process spaces, so the problem is inherently distributed. Consequently,
the resulting algorithms are also distributed. As per knowledge of the author, algorithms having all these
capabilities have never been presented before in the research community. As there is ongoing research
on simulator coupling techniques, so here most popular techniques have been chosen to be converted into
distributed algorithms. The selected simulation interoperability standards are the High Level Architec-
ture (HLA) and the Functional Mock-up Interface (FMI). Tests have been performed on the presented
algorithms to measure their limitations and benefits.
In the end the combined effort is converted into a framework, which allows simulation engineers to de-
velop multi-domain simulations, using simulation packages conforming to HLA or FMI. The framework
contains implementation of all the abstract algorithms discussed in the presented work. While doing
so, it abstracts away the intricacies of the HLA and the FMI. To facilitate ongoing research, presented
framework enables the scientists to develop and test new algorithms with ease. A simulation framework
enabling standardized co-simulation with the ability to use such wide range of simulation packages in a
distributed environment, is not known to be presented before.
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1 Introduction

Simulation engineering is very important in present day scientific studies and industrial applications. Some
philosophers [Win99] argue that simulations offer a complete new method to prove hypotheses and observ-
ing real world phenomena. They argue that this is an augmentation in the human methods of observations.
In many industries, simulation has now become an essential part of design and engineering. Weather
forecasts have always been dependent on simulations of weather models. The increasing complexity in
energy systems has also motivated scientists to consider simulation as a method of analysis. Albeit, its
large acceptance poses some intriguing challenges.

1.1 Motivation

To properly motivate the reader of importance of the presented work, some background knowledge is
necessary. Following subsections introduce the relevant material and emphasize the importance of the
presented work. Based on the discussion, grounds for the problem statement (section 1.2) are set up.

1.1.1 Necessity of Co-Simulation

As modeling and simulation has become a corner stone for verification of mathematical models of systems
found in nature. Development of simulation packages followed the same pattern of categorization and
segmentation which is natural to the study of natural phenomena. Physicists, chemists, mathematicians
and mechanical engineers have developed simulation packages suitable for their domain. For past few
decades there have been a number of simulation packages popular for simulation engineering. In one way
or the other all Simulation Packages (SP) either focused on one domain of problems, or a specific type of
simulation engineering.

Due to the easy availability of simulation packages, recently researchers have found themselves in a sit-
uation where developing simulations in programming languages like C++ or Java has not remained time
and cost effective. Because already developed simulation packages offer great time efficiency and cost
effectiveness, scientist and practitioners are motivated to use them. As almost all of the simulation pack-
ages conform to certain domain of problems, their use is restrictive. This is one reason that scientists are
finding ways to use more than one simulation packages in conjunction to create a larger simulation. The
technique has additional benefits, as the models developed using domain specific SPs are well tested and
properly verified, so a simulation constructed using them is supposedly stable.
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A very handy example is of Cyber Physical Systems (CPS), where scientists want to couple cyber aspect
of a system to its physical aspect. In many cases cyber and physical parts are simulated using separate
simulation packages. Another example is modern energy systems. Complexity of energy systems has in-
creased due to many factors. One reason is that the modern energy systems comprise of many subsystems
which themselves are significantly complex. For example, traditional power systems were studied as a
standalone system, but this is not true anymore. Just to keep a power system running in an optimal way,
it is necessary to use many other systems to its aid. For example, an optimized model-predictive control
of an urban power system is not possible without Information and Communications Technologies (ICT).
Adding heating system into it will increase the complexity even more.

1.1.2 Hybrid Simulation

From the perspective of time management a simulation can be divided into three categories [Van00]. A
brief overview of all three types is given below.

• Fixed Time Stepped Simulations (FTSS): Such simulations have fixed time advances. If there are
more than one simulations, then they communicate with each other after a fixed logical time. All
simulations interacting with each other must have a common notion of logical time, and the logical
time should advance by a fixed unit .

• Discrete Event based Simulations (DES): Such simulations advance in time only when an explicit
event occurs. An event may be anything important for the simulation. For example, network simu-
lators are commonly discrete event based simulators. An event occurs when an element in network
produces or transmits a packet.

• Continuous Simulations (CS): Such simulations are normally a mathematical representation of a
physical system. The state variables in such systems change their values infinitely. To simulate these
systems computers have to apply some discretization. To reduce the discretization errors normally
the time steps are kept very small. Because the physical systems are represented as Ordinary Dif-
ferential Equations (ODEs), Partial Differential Equations (PDEs), Differential Algebraic Equations
(DAEs) or as a mixture of all, so numerical methods are applied to solve such systems. The bound-
aries of CS and FTSS paradigm are overlapping, due to the way continuous systems are simulated.
Many a times continuous systems are simulated in a fixed time stepped manner. The simulating
module has an interface which turns it into a strictly FTSS interface. Still the differences remain
there and cannot be ignored. For example, adding a step size control mechanism to a continuous
simulation may take it out of the realm of FTSS simulation.

In literature, the term heterogeneous simulation and hybrid simulation is used interchangeably for different
purposes. Sometimes, it is used where more than one methodologies of simulation are used in conjunction
[EJL+03]. It is also used when there is a simulation comprising of more than one components where each
component has different time advance mechanism [KKK03], [LK01]. Sometimes the term is used for
the simulation of systems which are hybrid in nature [SK11]. Hybrid systems are the ones which have
discrete and continuous aspects in them, like many cyber physical systems. Simulating a hybrid system
may not necessarily result into a heterogeneous simulation, it mainly depends on the nature of the system
that it can be simulated by a single simulation methodology or not. Sometimes it is possible to simulate
a hybrid system with the help of a purely CS, FTSS or DES. Later in chapter 2 simulation packages will
be introduced which are designed specifically for hybrid systems and they use only one type of simulation
paradigm. In the thesis, the term hybrid refers to the simulation of hybrid systems. Heterogeneity in a
simulation occurs when different types of simulation mechanisms are combined together.

2



Introduction

1.1.3 Standardized Simulation

Using already verified models to construct a simulation of a larger system, like an urban energy system,
is very beneficial, but the benefits can go in waste if the developed technique itself requires the simulation
packages to modify. Suppose that in result of the presented study a technique is developed to use many
different simulation packages. One thing is for sure that such a technique must have following components

• Data Sharing: because more than one simulation has to interact with each other, so there has to be
a way to share the values of state variables among all simulations.

• Time Synchronization: from section 1.1.2 reader knows the importance of time in simulations. To
create a simulation from more than one simulation packages, there has to be a common notion of
time for all the simulations, or a way to synchronize time for all of them.

Now suppose that both of these components are developed from scratch, then it will be another problem
to make the developed technique acceptable for the practitioners. So intuitively the most useful tech-
nique could only be the one which follows already developed standards of simulation interoperability
(co-simulation). Using standards can make the technique acceptable in industry as well as research.

1.1.4 Distributed Simulations

Computers have made solving systems of differential equations much easier than before. Numerical
methods made solving some systems much easier in comparison to very tedious analytic methods. New
advances in computer technology has opened even new horizons in simulation of differential equation
systems. Mostly, simulation of non-linear systems assumes a monolithic approach towards a complete
system. A common approach is to symbolically simplify the given system by applying different algo-
rithms, such as Tearing algorithm [CK06], and then apply the numerical techniques on the “simplified”
system. In this way the simulated system is a perturbation of the original system, but it is still valid under
given conditions.

With the advent of parallel computing, there had been much focus on devising algorithms which could
benefit from the parallel architecture. The overall technique remains the same, the only difference is that
scientists try to find algorithms which can parallelize the instructions and thus benefit from the parallel
architecture. For example, Runge-Kutta methods have been intensively studied for this purpose [KW14].

Another way to achieve parallel execution is to exploit the inherent distributed structure of the problem
and execute the atomic parts as separate executables on different machines. Figure 1.1 show the difference
between serial, parallel and distributed techniques. In order to use distributed technique the system should
have some specific properties. First and foremost, the structure of the system should allow such distributed
execution. Secondly, solver algorithm needs some modification for such construction. Thirdly, data ex-
change among individual components has to be synchronized. Despite its limitations, such a technique
has many benefits.

• A complex simulation, for example a smart grid [PK13] simulation, must use models generated
from many different simulation packages. Network simulators and power simulators have to work
together to produce a “correct” simulated result. The problem can be used for benefit, by exploiting
the distributed nature of the problem and orchestrate a simulation using a distributed topology.

3
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• In some cases, there is an option of creating a simulation from scratch, or to use an already developed
and tested simulation component in the target simulation. In such cases, it is much cheaper and less
error prone to use an already tested simulation components. Distributed simulation is useful in this
regard.

• Distributed simulation techniques are also useful when there is no complete mathematical definition
of a system. For example, agent based simulations normally target such problems where modeling
component interaction is much easier than modeling a complete mathematical description of the
system. Smart grids simulations and other similar co-simulation problems also fall in the category.

• A direct consequence of distribution is process isolation. In any simulation, where there is a need
to simulate parts of a system in different simulation packages, distributed simulation techniques are
the only choice.

1.2 Problem Statement

Summarizing above sections, following are the main aspects of the study.

• Co-Simulation: due to the reasons described earlier, scientists and practitioners want to use already
developed simulation packages to create a larger simulation.

• Hybrid Simulation: co-simulation becomes harder when hybrid nature of the system or simulation
is introduced, yet it is essential to overcome this hurdle.

• Standardized Simulation: if the goal of co-simulation is achieved without using standards then it
will not be very useful for industry.

• Distribution: simulating using separate simulation packages is already a distributed phenomena,
especially when more than one simulators are running in separate processes. The distribution is a
challenge as well as an opportunity.

In order to achieve above mentioned goals it is clear that a collection of distributed algorithms have
to be developed. The algorithms should cover range of already proposed solutions for co-simulation.
The algorithms should conform to most suitable simulation interoperability standards. The algorithms
should allow engineers to create a large simulation using more than one simulation packages conforming
to the chosen simulation interoperability standards. One or more algorithms should also be able to tackle
the hybrid nature of the simulation.

4



Introduction

Model 

Sequential Hardware 

Solver 

(a) Simple separation of three main components of a simulation.
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2 State of the Art

Many scientist have tried to solve different aspects of the problem described in section 1.2. Until the
time of writing no body focused on distributed algorithms, although parts of the problem were researched.
Researchers from the filed of mechatronics have addressed the problem of hybrid simulation [Val09], but
they did not focus on its distributed and algorithmic aspect. Some other domain specific solutions have
also been presented in the research, for example smart grids simulators, but they also lack in different
respects, as discussed in subsection 2.4.

Interoperability Reference Models
Category Name Description Example

A Entity Transfer An entity leaves a
representative model and
another must reclaim its

ownership.

Assembly lines consist of many
such examples.

B Shared Resource Two or more representative
models depend on the same
source, shared in common.
Synchronization is the main

problem in this case, as changes
made to the source should take

effect properly.

A sensor making a reading and
many models needing that

information.

C Shared Event One event has a broadcast
nature, affecting many
representative models

simultaneously.

Signals for same kind of
processes are common in many

forms.

D Shared Data Structure At an implementation level a
variable or structure that must

be accessed commonly.

It is much the same as shared
resource but here things are

handled at data structure level.

Table 2.1: Interoperability Reference Models
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2.1 Interoperability Reference Models (IRM)

The Product Development Group (PDG), working under Simulation Interoperability and Standardized
Organization (SISO) has suggested the standard Interoperability Reference Models (IRM) for simulation
packages [BBC+10].

These IRMs provide a structured way to compare the capabilities of any interoperability or co-simulation
standard. Table 2.1 shows the summary of these IRMs. For detailed explanation reader is directed to
[BBC+10]. Keeping these IRMs in mind, different simulation interoperability standards can be analyzed
better.

2.2 Simulation Interoperability Standards

The modeling and simulation community has presented many different standards for simulation interop-
erability, targeting the same problem from different perspectives.

• US Modeling and Simulation Coordinating Office (M&S CO) developed the Distributed Interactive
Simulation (DIS) standard [C+98]. The DIS was specifically designed for military simulations.

• During the development of the DIS the MITRE corporation was developing its own standard named,
the Aggregate Level Simulation Protocol (ALSP) [WW94].

• Later lessons learned from these simulation standards were applied to present the High Level Ar-
chitecture (HLA) [DFW97]

• A web based framework named as the Extensible Modeling and Simulation Framework (XMSF)
[BPM+04] is an extension of both DIS and HLA. The XMSF addresses the issue of creating a
web-based interoperable platform for simulations.

• Few years back the M&S CO had proposed another architecture named the Test and Training En-
abling Architecture (TENA) [DoD02]. TENA is not yet available openly.

Researchers working on topics related to weather and climate modeling have also faced the same dif-
ficulties in sharing each others experiences, so they have proposed solutions for their own spectrum of
problems. Few of these solutions are listed here.

• The Model Coupling Toolkit (MCT) [LJO05] is a Fortran 90 toolkit for exchanging earth models. It
targets multiprocessor computers and clusters. It is similar in architecture to the Message Massing
Interface (MPI). It is an API based on Message Passing Interface so, it may be considered another
layer above the layer of MPI. It promotes a specific programming paradigm (parallel programming
in Fortran). It has constructs which are specialized to parallel coupling of the models, and does not
allow flexibility in organizing different aspects; like data distribution and time management.

• The Earth System Modeling Framework (ESMF) [HDS+04] is one of the biggest initiatives taken
for modeling earth systems. It envisions coupling many different models into one entity.

• The Open Modeling Interface or OpenMI [GGW07] was initiated as a model coupling platform for
earth systems, but now it is further refining itself to become a generic interoperability solution for
simulations.
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2.3 Hybrid Simulation Techniques

Discrete EVent Specification (DEVS) provides a systematic way of converting a continuous simulation
into a discrete event simulation [DW03]. DEVS has been considered an important concept for heteroge-
neous simulations. Although, the biggest draw back though is, with DEVS arbitrary simulation packages
are difficult to couple. Only those simulation packages can be used which create DEVS specific simula-
tions, or produce DEVS compliant components.

Ptolemy II [EJL+03] is another attempt to make development of heterogeneous simulations easier and
faster. It may effectively be used to solve any system of differential equations. Ptolemy II, in a limited
perspective, may be considered as a tool which supports distributed simulation. The biggest disadvantage
of using Ptolemy II is its lack of flexibility. Although the methods for implementing a new solver or in-
corporating a new “director” are well documented, yet there are some limitations imposed by the Ptolemy
II kernel. For example, how it treats the events in the queue, and when and how it processes them. The
behavior can only be changed by changing the kernel of the Ptolemy II.

2.4 Smart Grid Simulators

Due to introduction of ICT into the power grids management, it has become vital to simulate power grids in
conjunction with ICT infrastructure. In recent past there have been quite a number of efforts to couple ICT
network simulators with power system simulators [MOD14] to simulate cyber physical energy systems or
in other words smart grids [PK13]. There are a few flaws in the proposed systems.

Most smart grid simulators do not try to couple more than one continuous systems. Mostly only a con-
tinuous power system simulator is coupled with a discrete network simulator. In this case, the continuous
system formed does not have any algebraic relationship among simulation components, which make things
much easier and manageable. Despite this, there are some problems which remain unanswered.

Many of the smart grid simulators include implicit assumptions about the synchronization of simulation.
For example, many of smart grid simulators do not even address the problem of time synchronization.
They implicitly assume it to be a solved problem. It is not mentioned whether there is any level of
parallelism involved or not? If yes, then how they make one process to wait for the other process to reach
the same time step?

The use of fixed time step or a variable one is also not clear in many solutions. If variable step size is
used, then how the time step is adjusted? Some power system SPs used in aforementioned solutions, only
support fixed time step execution. It can cause problem, when a discrete event does not occur right at the
boundary of a fixed time step. Researchers do not mention how the problem is solved?

Some solutions give discrete events higher priority than other events. Before advancing to the next time
step (tn+1 = tn + h), they first process the discrete event and then proceed forward. Calculation will be
erroneous if discrete event does not occur right at the boundary of a fixed time step. If fixed time step has
to be altered to match the discrete event, then only those power system SPs can be used which support
variable step size, and their step size control is programmable. Moreover, if there is some error discovered
after publishing the discrete event, then solutions do not mention how to tackle the problem.

Lack of theoretical basis is not customary in all the solutions developed for smart grids, there are solutions
developed under formally defined simulation paradigms, for example, solutions developed using Ptolemy
and DEVS.
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3 Opportunities and Challenges of Co-Simulation

Before looking into the proposed solution presented in the document, it seems appropriate to have more
knowledge about the problem itself. In the present chapter, nature of the problem is discussed, along with
the opportunities already available for the targeted solution.

3.1 Challenges of Co-Simulation

First the challenges of the problem are discussed, which also educate the reader about the nature of the
problem.

3.1.1 Correctness of Results

A co-simulation problem is different from a normal simulation problem. Let us first examine what is a
simulation, and why it is helpful? Figure 3.1 shows the steps to properly model a physical phenomenon
and simulate it. One critical part in this is “validation” of results. Anything which is simulated does not
necessarily present correct results. Instead, after preparing a model, the scenario in physical model should
be altered with some specific parameters, then the same parameters should be applied to the model and
the results produced by simulation and the real world should be compared. With some error tolerance the
results should match if the model is correct.

With respect to validation there are following main problems with co-simulation

• Sometimes the model is complex enough that the scientists do not understand the model completely,
instead, they know parts of the system and model them. Now the expectation from the co-simulation
algorithm is to produce results near to the “expected” correct results. In such cases verification may
not be possible at all, as a researcher may not be certain that how alteration in a parameter would
produce difference in results.

• In many cases, as discussed in section 1.1.4 the phenomenon is just not possible to be simulated by
one simulation package. The only option remains to rely solely on the co-simulation algorithm to
produce correct results. The results are verifiable in this case, only if this is practically possible. As
sometimes the phenomenon under study is too large or too complex to verify at all. For example
simulation used in planning phase of a power grid of a city. In the long run it may become possible
to get real life data for the city grid but in short term the simulated scenario my not be verifiable.
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Figure 3.1: How to model a physical phenomenon and simulate it [BS86].

In scenarios where simulation results are not verifiable, modelers would naturally like to choose an al-
gorithm which is known for its correctness of results, no matter how much slow it is, as correct results
produced after some time are more useful for deduction, than wrong results produced swiftly. So one
challenge of co-simulation is to produce correct results in many different scenarios and for many different
problems.

3.1.2 Differential Algebraic Equations

A Differential Algebraic Equations (DAE) is a differential equation with implicit derivatives. The general
form of a DAE is given as following

F(ẋ, x, t) = 0, t0 < t < t f (3.1)

Here t is the independent variable which is mostly time. General purpose solvers first analyze a DAE and
try to reduce it to an Ordinary Different Equation(ODE). DAE is also formed when implicit derivatives
are introduced in a system of ODEs and algebraic equations. Often the situation occurs in co-simulation,
because coupling more than one systems can cause algebraic loops to be constructed. If the complete
system is not available, then it is not reducible to a system of ODEs. In such situations modelers will
like to choose solvers which produce correct results for DAEs. Chapter 5 presents algorithms for such
problems.
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3.1.3 Heterogeneity

Chapter 1 described different types of simulations with respect to time synchronization. A co-simulation
may require to contain components with different time synchronization techniques. Mixing different time
synchronization techniques offer few challenges. For example, there are certain limitations in mixing
FTSS and DES simulations. Suppose an FTS simulation has a time step of 5 logical units. If the accom-
panying DES simulation generates events after such logical time intervals, where the length of interval is
an integer multiple of 5, then there will be no problem in mixing both simulations. If this is not the case,
then there will be problem of synchronization in them.

Similarly, coupling a continuous time simulation with any DE or FTS simulation poses many challenges.
For example, if a solver for continuous time simulation converges on a result after some fixed point
iterations, and a discrete event occurs after the last successful time step, then how to manage the time
step of continuous simulation that the discrete event only occurs at the boundary of the time step. If
discrete event does not occur at the boundary of a time step, then either the fixed point iteration will
not successfully converge at any solution, or the result will be erroneous. The convergence, most likely,
will not be achieved if the change in values of state variables resulted in consequence of discrete event,
are considered in the calculation. If discrete event is completely ignored, then no doubt results will be
erroneous. Section 5.5 presents an algorithm to tackle this problem.

3.1.4 Sensitivity of Model Parameters

When coupling two subsystems using techniques mentioned in later sections, few things has to be kept
in mind. No matter how good the coupling algorithm is, with current state of the art, it cannot point out
the modeling mistakes. One mistake a modeler is likely make while simulating coupled systems, is bad
separation of models. It will be discussed later in section 5.2, that how important separation of sub-models
can be, here only one example is presented to illustrate its importance. The example model is named as
“hopf bifurcation” [WH91].

Before coupling a subsystem with any other, the least a modeler must know about the subsystems is the
valid boundary of each parameter value. As shown in following example, some systems are very sensitive
to some of their parameters, if naively such parameters are chosen to be inputs to the subsystem, and their
values come from the output of another subsystem, then problems may arise. Before doing so a modeler
must verify that the outputs bound to such sensitive inputs do not produce trajectories which force the
system to go into an undefined state. The exemplary model is described by following system of equations,
which is very sensitive to its parameter α. Changing the value of α from 1.2 to 1.5, changes the system
state to a great deal. Further exceeding the value of α beyond 1.5, takes the system into undefined state.

ẋ = 1 + x2y − (z + 1)x

ẏ = xz − x2y

ż = −xz + α
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(a) Hopf bifurcation, here α = 1.2
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Figure 3.2: Hopf bifurcation model simulated using different values of α.

3.2 Tools for Simulation Interoperability

As the presented problem has a focus on interoperability of the simulation packages–which can be con-
sidered tools for simulation–so it is very important to look into the tools for “simulation interoperability”.

Chapter 2 enlists different interoperability standards. Choosing the right standards is very important, due
to their diversity. Following are some of the characteristics used for the selection.

• How well the standard is accepted in industry or research? More conforming SPs–pertaining to
different domains of simulation—will enhance the usability of the standard.

• How modern are the conforming SPs of the standard? Are conforming SPs also offer support, and
are they improving their quality? It has been observed that software decay with the passage of time,
so software under continuous development are observed to be more suitable for use with modern
systems.
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• Is the standard openly available? Open availability enhances the chances of continuous improve-
ment. Also, it enhance the number of users and contributors, which may be helpful in improving
the quality.

• Is the standard specific to some domain of applications, e.g. weather simulations, mechanics, etc.
If this is the case, then it may not be useful to develop any algorithms based on that standard, as it
will enforce domain specific constructs, limiting the generality of the proposed architecture.

• Is the standard capable of being used in conjunction with other standards? The answer may be
subjective, and may depend upon the answers of the above questions. Ideally, a generic standard
should be usable with others.

Based on the above mentioned criteria, according to author's knowledge the Functional Mock-up Interface
(FMI) and the High Level Architecture (HLA) are two standards which suite best for the proposed solution.
To further support the claim, let us examine the interoperability standards mentioned in section 2.2, based
on the criteria just mentioned.

• In interoperability standards developed by US Modeling and Simulation Coordinating Office (M&S
CO), the HLA is the most popular one. The standard proposed before HLA was DIS and it has
become obsolete after development of the HLA. M&S CO does not support it anymore, neither
there is any ongoing research activity on the DIS. Similarly ALSP was merged into the HLA and
have lost its separate identity. TENA standard though is not obsolete, but it is not open source.
Access to it is very hard to get, so it is not useful to make it part of an open research activity.

• The Extensible Modeling and Simulation Framework (XMSF) is not a separate standard, rather it
enhances the capabilities of the DIS and HLA to be executable on the web. So it may only be chosen
for further research if the purpose is to target any web based application.

• The Model Coupling Toolkit (MCT) is an open source toolkit. It cannot be called as a standard,
because it is not only restricted to specific implementation tools like Fortran 90, but it is only
executable on certain hardware platforms. It does not give a strong sense of data sharing and time
synchronization like the HLA. It enforces a specific programming model. Its scope is also limited
because there are not many general purpose simulation packages which support MCT. Its application
is confined mainly to the weather simulations, which are developed using the specific toolkit.

• The Earth System Modeling Framework (ESMF) is also not a standard, rather it is a software,
enforcing some rules on the developer who wants to use it. Again, not many general purpose
simulation packages conform to the programming model of ESMF.

• The Open Modeling Interface (OpenMI) is one standard that can be compared to the FMI. It mainly
focuses on the correct mechanism of data sharing among different models. As its documentation
mixes up the specification with the implementation, so even the specification is characterized by
the implicit assumptions of the runtime to be used. OpenMI proposes a Standard Development
Kit (SDK), which includes the specification of the runtime. It may be argued that the HLA also
enforces the implementation under the assumption of using an RTI. The difference is that HLA is
more close to a distributed protocol, but OpenMI requires to use its SDK, which is much more
restrictive. OpenMI SDK also gives greater flexibility of developing the simulation but it also limits
the researcher from using choice of his tools. OpenMI is not distributed in nature, supporting
distributed simulation will require additional effort. The biggest disadvantage though is, there are
hardly any “general” purpose simulation packages which conform to it. As it is focused on weather
simulations, so only the relevant software try to conform to it.
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In general the HLA provides a very abstract way of data sharing and time synchronization constructs
which are essential for any simulation. Additionally its distributed nature gives even greater flexibility
and makes it scalable. The FMI is relevantly silent about the data sharing mechanisms and time synchro-
nization. It leaves all of these things to the user code, but it does provide an abstract way to control a
simulation component. It represents a simulation in a pure mathematical way. As HLA is silent about
the representation of the simulation component, so both HLA and FMI fit very well together to provide
a researcher the basic constructs he needs for the research. The vast acceptance of the FMI in general
purpose simulation packages makes the research highly practical and beneficial.

3.2.1 The Functional Mock-up Interface (FMI)

Functional Mock up interface is given a special focus in the research. Mainly because it provides an oppor-
tunity to use many different simulation packages for development of specialized simulation components.
Secondly, it has been developed on a thorough and sound mathematical basis.

Historically, the FMI (in FMI 1.0) had mainly two portions.

1. FMI for Co-Simulation

2. FMI for Model exchange

The main difference among both of these standards is the level of encapsulation. Components conform-
ing to the FMI for co-simulation have a very straight forward interface, mainly due to the fact that, the
integrator of the model is included inside the component. While a component conforming to the FMI
for model-exchange does not include the integrator, so the user code has access at more granular level,
making it less encapsulated. Later, this clear separation was abandoned in FMI 2.0, yet the underlying
concept of different level of encapsulation remained intact. As this difference of encapsulation provides
a better way to investigate the two approaches, here they are explained separately. The documentation of
the latest FMI standard can be viewed at [60].

Some terminologies of the FMI are mentioned before we go into the detail of these specifications.

FMU Functional Mock-up Unit (FMU) is a component in form of a zipped archive which conforms to
the FMI specifications. The most important part of this zipped archive is a shared C/C++ library
which can be imported and used as component. This shared library contains the implementation of
the simulated model.

Master The master is an application or component using the FMU. This normally is a simulation developed
in a simulation package, which supports the FMI. Ideally it uses one or more FMU components
for assistance in a larger simulation. In hierarchical architecture, the master can be any other FMU
itself.

Slave The slave is the FMU being used by some other simulation component or application.

In order to completely understand the functionality of FMI, it is necessary to understand the construction
of FMU. As mentioned earlier an FMU is a zipped archive, and following are the contents of this archive.
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• Model Description file: This is an XML file which contains all the important information needed to
use the implementation. The main contents of this XML schema are the input variables of the FMU
with their data type, its parameters and its output variables. In addition, it encloses the information
about the default start time, end time of FMU along with the tolerance. It has the author and version
information. It also includes, the GUID attached to the FMU, model prefix or name, number of
continuous states and number of event indicators. It tells whether the FMU can be used without
any integrator (meaning integrator is inside the FMU) or not, this is equal to telling that the FMU
supports co-simulation or not?

Some of the descriptive tags and attributes vary depending on the fact that the FMU is for co-
simulation or model exchange. It contains the information, whether the FMU can accept events or
not, it can run asynchronously or not, the maximum order of the derivatives, it can raise events or
not, does FMU has a GUI interface or not? Besides these, there is a lot of information which may
be provided into model description file, details of this can be seen in the documentation provided at
[60].

• The most important part of an FMU is the shared library. This can be a .dll file in case of shared
library supported by Windows, and .so file in case of *nix based systems. It contains the implemen-
tation of the model. In case of FMI for co-simulation it also contains the integrator. The access to
this model is according the interface specification defined by the FMI.

• Third optional part is the code of the FMU. In case of propriety FMUs this part will not be present,
but in case of open source FMUs it is zipped inside the archive for further improvements.

3.2.1.1 FMI for co-simulation

The concept of “master” and “slave” in the FMI is very different from that of HLA’s. When an SP imports
an FMU, it becomes its “master” and the loaded component becomes its “slave”. FMI for co-simulation
provides the means to utilize models using an API, where slave appears as a black box to the master. It
can react to inputs and gives outputs at discrete time steps. While using an FMU conforming to FMI for
co-simulation, one does not need to know which integration method is actually applied to solve the model.

Parameters to this black box can be set in the initialization phase and cannot be changed afterwards,
while the inputs can be changed between discrete time steps. Functions in the FMI can be categorized in
following categories. Figure 3.3 gives possible execution steps of an FMI component.

• Initialization and instantiation functions: These are used to load the component, supply the pa-
rameters and allocate memory.

• Progress functions: There is “fmiDoStep()” function which requests the component to step one
time step ahead.

• Getter and setter functions: Getter functions are used to read the output values and their deriva-
tives. Setter functions can be used to set input values and their derivatives for interpolation.

• Termination functions: These are used to unload the component and free the memory.

From figure 3.3 it is clear that there are few alternative paths of execution for an FMU, hence it is possible
to write a program which loads it and performs these actions repeatedly.
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Figure 3.4: FMI for model exchange (courtesy FMI 2.0 specification)

3.2.1.2 FMI for Model Exchange

All FMUs are exported the same way as described earlier in section 3.2.1. The only difference is the kind
of data they export for the user and the functionalities they offer.

According to FMI 1.0 specifications [BOA+11], the FMI for Model Exchange (ME) is intended to couple
hybrid Ordinary Differential Equations (hybrid-ODE). However, FMI allows that a component conform-
ing to FMI, called Functional Mock-up Unit (FMU), may have algebraic equations within. One most
important thing to remember about FMI for ME is that is does not come with a solver or integrator. It
virtually acts like a “right hand side” of a conventional ODE. User has the responsibility of providing the
solver for this ODE. Despite this FMI for ME gives much greater control over the FMU. User can access
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the model in a very flexible way and hence it is ideal to be used for co-simulation. Figure 3.4 gives an
overview of the data exposed by a model exchange FMU and how it may be used.

3.2.2 The High Level Architecture (HLA)

The HLA [C+00] was developed by the U.S. Modeling and Simulation Coordination Office (M&S CO).
The HLA considers individual simulations at the level of processes, rather than libraries. Later sections
make it clearer that the HLA provides solutions to the most common simulation interoperability problems.
It facilitates a distributed environment, suitable for military simulations. It provides a specification for the
development of simulation components, such that they remain usable even after the changes in the data
model of the overall simulation. The data model is called the Federation Object Model (FOM).

In the HLA terminology, a distributed simulation is called a “federation”. A federation comprises of
several components called “federates”. The HLA was designed at a level independent of any language
and platform. Hence it may also be considered as a protocol. For the detailed specification of the HLA,
reader is directed to [C+00]. In the forthcoming discussion the HLA is examined at the functional level and
not at specification level. The Run Time Infrastructure (RTI) plays a key role in the HLA implementation.
The RTI regulates individual federates. It is the central point for communication, time synchronization,
event passing and data exchange. All the communication among federates must take place using the
RTI. Any federate taking an active part in HLA federation should advance in simulation time only when
permitted by the RTI. It should also obey all the commands issued by the RTI, for example, state updates
and event handling commands.

Sufficient understanding of working of the RTI is required to completely comprehend the next coming
discussion. Reader may consult [KWD99] and [DFW97] for a deeper understanding. Important services
of the RTI, directly related to this discussion, are mentioned below

• Declaration management: These services are related to publishing and subscription of objects
and attributes. Declarations of all the objects and events are done inside FOM. All federates must
publish their global instances and attributes. Interested federates can subscribe to attributes of any
instance.

• Object management: The RTI propagates the update of an object or an attribute to all subscribing
federates.

• Ownership management: At one given time any attribute should belong to one and only one
federate, otherwise there are conflicting updates.

• Time management: These services regulate the advances in federation time. The RTI supports
many different synchronization approaches. Conservative time synchronization approach guaranties
that state updates or events are passed to all federates in non-decreasing time order.

• Event management: Messages can be passed amongst federates in the form of events. If conserva-
tive approach is used, then RTI guarantees that no event arrives at the receiver later than its logical
simulation time. Events can be used to propagate a condition to all the federates, for example an
emergency alarm.

• Data distribution management: When there is large amount of data—including events and state
updates—needed to be passed over to different simulations, then there must be some routing mech-
anism in place. Routing makes the delivery faster, and reduces the bandwidth requirements.
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3.2.2.1 Timing Services of the High Level Architecture

In order to grasp different algorithms presented later it is useful to understand the timing services of HLA.
Timing services comprise the core of synchronization. The data exchange and other services mentioned
earlier are normally used invariably for a broad scope of scenarios.

3.2.2.2 Time Advance Request

Time Advance Request or TAR for acronym, may be the most widely used time advance service of the
HLA. Many open source RTIs normally only implement this service. It is used for Fixed Time Stepped
simulations. The idea is to advance time a fixed amount of time ts in each cycle by each simulation. At
the elapse of each ts all the simulation components (also called as federates) are synchronized. The time
ts can also be called as “step size”.The bigger the interval is the faster the simulation will proceed. Albeit,
the step size is not the only thing to consider, the second main timing component is “lookahead”. Each
simulation must register a lookahead time tla at the start of the simulation, which normally should not
change during the simulation. Lookahead tla is the amount of time beyond the simulation elapsed time
tsim a federate assures that it will not generate any event. For details of the concept reader may look at
[Fuj00]. Normally the tla is greater or equal to ts. Lookahead becomes more important when the federates
do not want to step ahead in time with equal step sizes ts. In this case the synchronization process becomes
more complex. With lookahead value equal to 0 (tla = 0) and variable step size the simulation may end up
hanging up at some stage. Lookahead time also makes the simulation process more efficient.

The ordinary simulation cycle starts when a federate f ed1 asks for a time advance t0 by calling TAR
service. Once the time advance t0 is granted federate is not allowed to generate any event at or below the
time t0 + tla. After sending some messages to other federates, federate f ed1 goes into a state where it can
only receive messages. During this state it issues a call to TAR service for time t1 = t0 + ts repeatedly, but
the time advance is not grated until it is safe to proceed. It will be safe to proceed when the RTI knows that
there will be no more messages from other federates for federate f ed1 below t1. In this way the simulation
cycle proceeds.

3.2.3 Time Advance Request Available

Time Advance Request Available (TARA) service is specifically used for zero lookahead based simula-
tions. Zero lookahead based simulation is needed when there is a situation that needs repetitive message
passing at an instant of simulation time. The technique is useful to simulate partitioned differential equa-
tion systems. In contrast to TAR service a federate f ed1 calling TARA can send and receive messages
on time t0, where t0 is the time requested from the RTI using TARA. The federate f ed1 cannot send and
receive messages below t0. Another difference from TAR service, federate f ed1 can call the TARA service
for t0 multiple times. So the message exchange among federates can continue indefinitely at t0, until a
federate calls TAR service. When a federate calls TAR service then it assures RTI that it will not generate
any event at or below t0. The time advance beyond t0 will only be granted when all the federates call TAR
and hence assure that there is not going to be any event generated by any federate at t0. After this the
simulation cycle proceeds.
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3.2.4 Next Event Request Services

When using Next Event Request (NER) and Next Event Request Available (NERA) services a federate
does not asks for time but instead it asks for the next event enqueued for it in the message queue. Due to
requesting for next event rather than next time advance the federate does not know in advance what time
it will be granted to proceed, when the time advance will be granted. This is very useful for variable step
size simulations and discrete event simulations. The relationship of NER and NERA is the same as TAR
and TARA. Using NERA federates can communicate a certain instance indefinitely, just like the TARA
service.

3.2.4.1 Flush Queue Request

Flush Queue Request (FQR) service of RTI was originally proposed for the purpose of optimistic simu-
lation algorithms [KWD99]. Time advances in optimistic simulations rely completely on the federates.
The RTI just provides the delivery of the messages in a manner called Time Stamped Order (TSO). TSO
means that the messages from one federate to any other will always be delivered in a non-decreasing time
stamped order. This assures that if a federate receives a message from any other federate at a certain time
stamp, then that federate will not send any other message whose time stamp is less than the previously
sent messages. In later sections there will be some examples of the usage of FQR service.

3.3 Using HLA and FMI in Collaboration

Chapter 1 motivated the necessity of a simulation framework which should have following attributes

• Supports interoperability among different simulation packages.

• Is able to add parallelism, preferably using distribution.

• Supports hybrid simulation

Here it is argued that using FMI and HLA together can provide all these functionalities. For this the
capabilities of both standards (HLA and FMI) are examined while considering the opportunities to realize
the desired framework.

3.3.1 The FMU-Federate

The executable part of an FMU is a software component in form of a shared library. A shared library
cannot replace a standalone process, but still it is possible to write code which can host an FMU as
a process. To write a generic code which can convert an FMU shared library into a process requires
generic programming techniques to be used. Second important question is, how should the standalone
process interact with the outside world, or with other similar processes? The answer is, by using the HLA
standard. Enabling the processes hosting FMUs to communicate using HLA standard makes them capable
of using best of both worlds, the HLA and the FMI. We call such a program an “FMU-federate”. Using
HLA terminology, a federation of such federates should be called an “FMI-federation”. Referring back to
IRMs mentioned in the section 2.1, we can say that if an FMU-Federate fully obeys the rules set by the
HLA then it also supports the IRMs supported by the HLA [APE+13].

Advantages of generically hosting FMUs as HLA compatible federates are following.
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• The complexity of a real world system can be great. Generating an FMU from a simulation package
abstracts away the complexities. Creating a generic wrapper guaranties the integrity of a complex
simulation component.

• Debugging of an FMU becomes much easier because all test cases can be checked easily in isolation
by just providing the desired input trajectories.

• Process separation provides easy mechanism for distribution. Simulation components can be hosted
on remote machines easily. In absence of a standard interface, a master importing an FMU must
also implement an interface for remote procedural call.

• Conforming to HLA implies that the communication among simulation components can occur on
all protocols and media HLA supports. Different architectures supporting these mediums become
easily usable, including clusters and clouds.

• Separation of communication layer enables new communication technologies to become available
much more easily. With the traditional importing technique of FMI, new communication schemes
would also require to change the importing code of the master.

3.3.2 The FMI-Federation

In order to orchestrate a simulation federation using FMU-Federates few capabilities must be present in
the coordinating component. Here the HLA RTI is used as that component. Following are few capabilities
present in the RTI which makes it a very suitable choice as a FMI-Federation orchestrator. The code which
converts an FMU into FMU-Federate should be able to respond to these RTI services properly.

Declaration management: From solely the perspective of an FMU it is clear that when they form a
federation they must share among them. An FMU has inputs and outputs. It is clear that in a publish-
subscribe model the outputs should be published and the inputs should be subscribed.

The FOM provides the publish-subscribe model. The problem here is how to define the inputs and outputs
of FMU-Federates in a FOM. One possible way is to add additional information to the model-description
file, which covers all the information about which input is bound to which output variable. The problem
is that the model-description file represents a single FMU, but FOM represents a complete federation.
Putting global information into model-description file is not only misplaced but it will also require to
add redundant information into different model-description files. From this it is clear that the creation
of FOM itself should be separate from the model-description file, but there are other possibilities to put
model-description file to a good use.

A simulation modeler is the person who should know that how different FMU-Federates are connected
with each other by input output relationship. Based on this information the modeler should design a FOM.
Based on that FOM each FMU must know which state variable of the FMU corresponds to an attribute in
the FOM.

The connection of FOM attributes with the state variables of FMU-Federates can be coded into model-
description file. Although, currently it is performed using command line parameters. Based on the com-
mand line parameters the subscription and publishing of the attributes is automatically performed in the
code.

Object management: There are situations where complex objects may need to be shared among the
federates, yet currently FMI does not support setting or getting of complex objects. Each state variable
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should be considered on it own. Despite the fact the HLA FOM supports every type of an object in a
federation, it may not be needed in a FMI-Federation.

Due to the flat structure of FMUs there may not arise any complexity in FMU-Federate code regarding
managing the objects in a federation. The straightforward mapping from attributes to state variables
allows the straightforward management of updates provided by the RTI. The hosting code however should
perform the activities in a generic way that does not depend on the structure or type of FOM or the state
variable of the FMU. As mentioned before complex command line parameters are used to elaborate the
mapping for hosting code.

Ownership management: Ownership management is mainly a problem when there are many different
objects. In a flat hierarchy where attributes simply represent a state variable in some FMU-Federate,
ownership management is simple. Although, the simulation modeler must ensure that one attribute should
only be published by a single FMU-Federate. Subscription by many attributed is not a problem, rather is
needed in many real life scenarios. It is hard to imagine a cyber-physical simulation where the ownership
of the objects is absolutely essential to be transferred. Due to this fact and based on the flat view provided
by the FMUs it is assumed in the presented work that ownership of the objects do not change during the
course of simulation.

Time and event management: FMI 1.0 for co-simulation supported events only partially. In order to
use discrete event there were few problems which were not addressed. FMI 2.0 though, is much more
elaborate and clear about the usage of events [BOAk+12]. It specifies many different scenarios where a
discrete variable can be used in an FMU. For details of this matter reader it is suggested to read the FMI
2.0 specification in detail.

In a nutshell, using FMI 2.0 makes it very easy to identify the time of discrete events. According to the
policy defined, an FMU automatically stops processing before, after or right at the moment a discrete
event occurs. It is up to the importing code how to tackle the situation. In the presented implementation it
is assumed that FMU progresses the time until the discrete event occurs, meaning it reports the exact time
when the value of a discrete variable changes.

The HLA is designed around the concept of discrete event simulation, so there is no problem incorporating
the idea. As soon as the FMU raises an event the generic code importing the FMU reports the value to the
RTI with time stamp of the event. The RTI based on this schedules the next time step.

The RTI works as a middleware for the distributed simulation. The RTI provides the “declaration man-
agement”, “object management”, “ownership management”and “time management”services to all the
federates over the lifetime of the simulation. The FMU provides the actual simulation services, while
FMU-Federate provides a hosting services to any FMU to become part of a simulation federation. The ar-
chitecture is shown in figure 3.5. Although, it should be kept in mind that the architecture is just a general
description, during the course of this document slight different configurations of the same components
will be presented.

3.3.3 An Experimental Case Study

The simplest possible integration of HLA and FMI can be using fixed time stepped simulation. An exam-
ple can lay the foundations and examines the potentials. The test case is simulation where two balls are
moving freely in a box colliding with each other and changing directions. The simulation can contain any
number of simulation federates representing a ball, but in this example only two balls are used to present

21



Opportunities and Challenges of Co-Simulation

RTI 

FMU 

FMU-Federate 

FMU 

FMU-Federate 

FMU 

FMU-Federate 

Figure 3.5: A general architecture of how FMUs, FMU-Federate and the RTI fit in.

the synchronization mechanism easily. The mechanics of a ball are modeled using an FMU. The FMU is
developed using FMU SDK [64].

The object management services of RTI are responsible for the event and data sharing. The FOM structure
contains a class named “BilliardBall” having attributes “x” and “y”. Both attributes “x” and “y” represent
a ball’s position at a specific time. Each FMU-Federate creates an instance of this class managed by the
RTI. Each FMU-Federate also subscribes to both of the attributes because it needs updated information of
all other instances, in order to check whether there is a collision or not. Boundaries of the frame where
the balls are moving are passed as parameters to the FMUs. The figure 3.6 shows a sample run of the
application.

Figure 3.6: Billiard balls moving in different directions, colliding and changing directions. Images from left to right
show how the system is evolving.

Collision detection occurs at every ball. The model of collision detection is quite straightforward as there
are only two balls. If there had been more than two, then there could be some additional complexity.
Each ball publishes its x and y position, and subscribes to the x and y position of the other one. Similarly,
each ball publishes its direction of movement and subscribes to the direction of the other. The direction is
represented as a vector of two elements. Each element can be either 1 or −1, indicating whether the ball is
moving in positive or negative direction of each of the x and y axes. At the end of each time step each ball
checks whether its position overlaps with any other ball or the frame boundary. If the answer is positive,
then it calculates its new direction based on its own direction of movement and the direction of the other
ball.

For time synchronization and data exchange a straightforward algorithm is used. Each FMU-Federate
works independently following the algorithm shown in figure 3.7. By abiding to the presented algorithm,
time synchronization and data integrity is automatically achieved with the help of the RTI.

It is beneficial to mention that the algorithm shown in figure 3.7 is not an ideal algorithm to be used in
continuous simulations. The shortcomings of this algorithm will be discussed shortly in the following
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Figure 3.7: Time synchronization algorithm

In case of fixed time stepped simulation, time synchronization is easy. The only thing that has to be
assured is the proper “Time Stamp Ordered delivery” (TSO delivery) of updates and events. TSO delivery
of events and updates means that if any event is generated, or a change in any of the shared objects is
made by an FMU-Federate at a time t0 then the event or the updated value will be delivered to all other
FMU-Federates, before any of them have reached simulation time greater than t0. Also any two events (or
updates) e0 and e1 generated at t0 and t1, where t0 < t1, e0 will always reach at the target FMU-Federate
before e1.

The time stepped simulation with a non-zero positive lookahead makes time management easy. The
“lookahead value” is always defined in terms of “logical simulation time” (or shortly logical time) of a
federate. The “logical time” of a federate is the time advance it asks from the RTI using Time Advance
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Request (TAR)1. If logical time of an FMU-Federate is t0 and it has a lookahead value of tla then by issuing
TAR at t0 it promises to RTI that is will not generate any event before t0 + tla. When the lookahead value
tla is same for all federates and is also equal to the time step ts then the synchronization is straightforward.
As when a federate issues TAR at t0 then it means that the RTI can grant time to any other federate to time
t0 + tla, when the federate asks for it. In this way lookahead value provides the opportunity of parallel
execution of the simulations.

In figure 3.8 a petri net diagram is used to demonstrate the synchronization of FMU-federates for the case
study. The transitions in figure 3.8 represent function calls or in automatic actions taken by the RTI. The
places in the figure represent the states achieved by the RTI or the FMU-Federates. Actions or function
calls have a name asking to do something, while name of states represent something is already done. The
central rectangle in figure 3.8 represents the actions and states of the RTI. On each side of this rectangle
are states and actions of two balls.

The yellow colored highlighted states and transitions impose synchronization. The first transition impos-
ing synchronization is named as “Process Pending Updates”. At this transition the RTI must make all
those federates wait who may receive any event from others, and granting them time may mean the vio-
lation of TSO delivery principle. In other words to ensure the TSO delivery of events, in this particular
case, one thing RTI has to ensure is that if t0 is the minimum time requested by any federate then it should
not grant any other federate time greater than t0 + la. Here la is the lookahead value, which is equal for all
federates in this particular case. Secondly, before granting time t to any federate, it should first be ensured
that the time stamped events queued with time stamps less than or equal to t are already delivered to the
federate. These are the two “constraints” which are ensured in the state named “Constraints Ensured”.
By ensuring these constraints the TSO delivery of events is guaranteed in case of Fixed Time Stepped
simulation, where lookahead value and length of time step is equal for all federates.

Looking at the loop of execution in figure 3.7 and comparing it to figure 3.8, the execution starts from
where both FMU-federates send a Time Advance Request (TAR) to the RTI. When RTI receives TAR it
makes sure that if there are any pending updates to be sent to one or more federates then it should send them
immediately. After sending the updates according to the constraints described earlier, the time advance
can be granted. After the grant both FMU-Federates simulate the FMU to the time granted. There could
be different methods of simulating them. In case of “FMI for co-simulation” the “DoStep()” function is
called. In case of “FMI for model exchange” more steps have to be performed. In the example under
consideration there is not much sense to use “FMI for model exchange”, as the rules for modeling the
behavior of a ball are already coded inside the FMU. In later sections though, “FMI for model exchange”
will be used for greater flexibility in relatively different scenarios. After simulating the FMU, the states of
FMU are updated. The updated states are propagated to the RTI. The RTI enqueues the updates and cycle
ends. The updates enqueued are revisited again in the transition named “Process Pending Updates”, after
which the synchronization procedure starts as explained earlier.

3.3.4 HLA and FMI for Continuous Simulation

In contrast to Fixed Time Stepped Simulations discussed above, continuous simulations are more complex
in nature to be coupled together. Primarily because there are numerical stability and accuracy issues in
continuous simulations. Not only the time synchronization and data sharing has to be taken care of, but
it should be ensured that the synchronization schemes devised do not produce any incorrect results and

1A detailed discussion on timing and other simulation constructs can be seen in [Fuj00].
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Figure 3.8: The synchronization implied by the RTI during communication with the FMUs is shown in the form of
a Petri net diagram.

are numerically stable. The notion of simulation interoperation is much stronger in the case of continuous
simulation.

The researchers working in the area of continuous simulation use the word “simulator coupling” for the
phenomenon of “simulation interoperation”. To be precise “simulator coupling” itself represents a broad
range of studies. It seems appropriate to introduce some definitions and categories of “simulator coupling”,
or in other words “methods of simulation interoperation”. Introducing these definitions is also important
because it puts the presented work in larger context of the research being conducted in the field.
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• Strong or Tight Coupling: A type of coupling where the solver or the integrator for two or more
models is the same, is called as “tight coupling” . Sometimes it is called as coupling using “function
call”, because models have to be incorporated into the complete simulation using direct function
calls [Val09]. FMI for model exchange represents this type of coupling.

• Weak Coupling: A type of coupling where the solver or the integrator for all models are indepen-
dent, is called as “weak coupling” [Val09]. FMI for co-simulation represents this type of coupling.

Here it seems useful to mention that the term “co-simulation” is also mentioned in literature for variously
different phenomena. For example, sometimes it is used to represent a hardware in the loop simulation
[R+94], while sometimes it is used for a simulation where more than one simulation packages want to
interact with each other [Val09]. Sometimes, it is used for a simulation where two or more models have
to interact with each other and both of these models have their independent internal solvers, regardless of
the fact that the simulation packages are the same or not. In the field of simulation engineering the last
definition of the word “co-simulation” is most popular. Referring back to “weak coupling”, the definition
of “co-simulation” is also similar to the definition of “weak coupling”, which sometimes in literature is
also called as “solver coupling” [SL14a].

As the literature suggests, for the course of this document, it seems best to use the word of “co-simulation”
for “weak coupling” approach. “Weak coupling” is sometime also mentioned as “solver coupling” in lit-
erature. It should be kept in mind that “FMI for model exchange” provides to implement “tight coupling”,
while “FMI for co-simulation” provides easiest methods to implement “weak coupling”. Although, most
of the text in the document is served for the “weak coupling” techniques, yet for the sake of completion
one “tight coupling” technique is also mentioned in section 5.4.1.

There are following three types of “solver coupling” techniques mentioned in the literature [BS12]. Al-
though, the definitions stated below may be a little unclear for some readers but during the text they will
become more elaborate when each one of the methods will be discussed in detail, in light of HLA and
FMI.

1. Explicit methods: For these methods the macro-step, or the communication among the simulators
at a certain point in time, does not have to be repeated. This is advantageous because it reduces
communication among simulators, but these methods are less stable.

2. Implicit methods: Macro steps have to be repeated for these methods, requiring more communica-
tion and computation, but the methods are more stable.

3. Semi-implicit methods: Macro steps for these methods have to be repeated, but the communication
among simulators is reduced.

A distributed co-simulation is more suitable to be “weak” because there are more than one different pro-
cesses involved, and the integrator is more often kept separate. Although in later sections it is presented
how HLA and FMI can be used for “tight coupling”.

It was previously mentioned that FMI for model exchange” is built to support tight coupling, but it is
important to mention that when a model exchange FMU is converted into an FMU-Federate, then it
contains an independent solver or integrator, unless in a very special case mentioned in section 5.4.1. So
in the presented work, weak coupling is achieved using model exchange FMUs, because co-simulation
FMUs offer far less flexibility and control. Another important thing to mention is, from here onwards
the complete emphasis remains on the FMI 1.0 specification, mainly because no open source simulation
package supports FMI 2.0 specification when this document is being written. However, explanation of
both standards is included, where necessary.
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3.3.5 Timing Constructs in Continuous Simulation

Normal computers cannot do anything purely continuous, let it be simulation. There has to be some dis-
cretization applied on some level to use computers to solve numerical equations. Different fields in science
came across this phenomena, so scientists devised ways to discretize the continuous signal produced by
real world systems. Similar techniques are benefited by modeling and simulation community. Following
are two types of discretization techniques used.

• Time Discretization (Sampling): Sampling may be the oldest and most used method of discretiza-
tion. It divides the time into discrete chunks, taking the value of the signal at that time. Figure 3.9
explains the sampling of a signal on discrete time steps. The idea is to take values of the signal
at selected times (t0, t1, t2, . . . , tn) and use them to understand the complete signal. The points of
interest t0, t1, t2, . . . , tn are at equal distances, meaning ti+1 − ti = constant.

Similar thing happens in the case of time discretized numerical solvers. Nearly, all traditional
algorithms that numerically solve differential equations, rely on this technique. Let us suppose
that there is only a single state variable associated with the differential equation, then the idea is to
solve the differential equation at discrete times (t0, t1, t2, . . . , tn) and then use interpolation to find the
values at any other time. The distance between (t0, t1, t2, . . . , tn) is constant, when not, it is in some
relation to the previous distance and the error estimate. So if the estimated error of the calculated
value is η at any time step ti then the distance to the next time step ti+1 is a function of the error η,
i.e. ti+1 − ti = f (η). The distance between time steps is called as “step size”

• Value Discretization (Quantization): The idea of quantization is shown in figure 3.10. In this case
the discretization is done on the value rather than the time. A representative value is selected as
soon as it crosses a threshold. The time ti at which the value passed the threshold is also important,
but it does not have to be in any relation to the previous interest point ti−1. In case of differential
equations, the values of state variables are mostly not directly available, they have to be calculated.
Mostly, only the time derivatives of state variables are available. In such cases, the solvers using
quantization as a medium of discretization, have to employ much different techniques than time
based solvers.

Most of the literature for solving differential equations has been relevant to time based or sampling based
techniques. Currently, Discrete EVent specification (DEVS) is the only technique relying on the quanti-
zation based discretization [FCK10]. Due to the well established mathematical basis of the time based
theory, in the presented work time based techniques are used widely. Although quantization is also used
where appropriate, for example in section 4.2.3.

It seems appropriate to discuss the type of time discretization done in co-simulation environment. The
main difference in a traditional solving of differential equations with a co-simulated method of solving
differential equation is that in the former case there is only one solver (or integrator) involved, while
in the later case there must be more than one solver. So there are time steps for each solver and there
are time steps when all solvers should communicate with each other. The internal time step of each
solver is called as the “micro time step” or simply the “time step” while the points in time when some
or all solvers communicate with each other are called “macro time steps”, or sometimes “communication
points”. Figure 3.11 explains both time steps when there are only two solvers involved.
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Figure 3.9: Time based discretization or sampling of a continuous signal.
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Figure 3.10: Value discretization or quantization of a signal using floor function.
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Figure 3.11: Macro and micro time steps in continuous simulation. Dotted lines show the possible paths of com-
munication among subsystems, which can occur only with respect to macro time steps (Tn,Tn+1, . . . ).
Internal integration time steps (t1, t2, t3, . . . ) do not have any meaning with respect to overall system
evaluation.
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4 Standalone Explicit Algorithms Using HLA and
FMI

As mentioned in chapter 1, the presented work looks into the state of the art mathematical concepts of
solver coupling, and further develops them for distributed simulation. In the last chapter, an idea was
presented that how the HLA and the FMI can be used together for distributed simulation. The idea was
first presented by the author in [APE+13]. In the current chapter, explicit methods of solver coupling are
discussed (for solver coupling methods, see section 3.3.4). In section 4.2 the Jacobi method is discussed,
while in section 4.3 Gauss-Seidel method is discussed. Each section starts with the introduction of the
method, which is part of state of the art. Based on the mathematical concepts presented in the first few lines
of each section (4.2 and 4.3), following subsections develop “distributed” algorithms for solver coupling.
Section 4.3 presents one algorithm and section 4.2 presents two distributed algorithms, one fixed time
step based, and another discrete event based. Section 4.2 also discusses a step size control mechanism,
which is not the major focus of the thesis. Section 4.2.2 presents the idea of using quantization as step size
control mechanism, and its relevance to the DEVS (section 2.3) approach of simulation. All the distributed
algorithms presented here have not been presented before in the research community. If any results have
been published before by the author of the thesis, then the references are mentioned at appropriate places.

4.1 Introduction

Standalone algorithms are only applicable to the explicit methods of coupling. To understand explicit
coupling techniques first it is essential to present the problem of co-simulation in mathematical way.
When there is only one differential equation system then it is represented by equation 4.1

ż = f (z, u)

y = g(z, u)
(4.1)

The state space representation of the same system is given in equation 4.2

ż = f (z, u, t)

y = g(z, u, t)
(4.2)

Here z represent the state variables, u inputs, y outputs, g represents the algebraic portion of the system
while f represents the differential portion. In co-simulation environment there are at least more than one
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such systems interacting with each other. So each system can be numbered from 1 to n, the ith subsystem
represented by equation 4.3, where 1 ≤ i ≤ n and n is an element of natural numbers.

żi = fi(zi, ui, t)

yi = gi(zi, ui, t)
(4.3)

In result, inputs ū and outputs ȳ are connected to each other in different ways. Their connection can be
represented by equation 4.4. Where matrix Ā contains real numbers defining how outputs of different
subsystems are connected to inputs of others. It is important to mention that any subsystem shown in
equation 4.3 can have one or many inputs and outputs.

ū = ¯̄A.ȳ (4.4)

Referring to figure 3.11 Tn and Tn+1 are two points on time horizon. Both subsystems are being solved
on the same time horizon, having separate solvers for each one of them. At “communication points” such
as Tn and Tn+1, outputs of all subsystems are provided to the inputs of subsystems. The output to input
relation is derived from the matrix ¯̄A referenced in equation 4.4. From time Tn to Tn+1 both subsystems
(here FMU-Federates) are being integrated internally, with different step sizes and perhaps different types
of numerical algorithms.
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Figure 4.1: Jacobi scheme of data sharing at the end of each time step, in explicit coupling. The figure only repre-
sents the case when only two subsystems are coupled.

4.2 Jacobi Method

As mentioned earlier explicit methods do not require the macro steps to be repeated. Shown in figure
4.1 is the Jacobi scheme of explicit coupling. It is clear from the figure 4.1 that at each communication
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point the input-output exchange is done only once. Once the values are exchanged they are not exchanged
again at that point in time. The figure 4.1 only shows the situation when there are only two subsystems
coupled with each other. If there are more than two subsystems then the same idea can be extended easily.
It is a very important quality of the Jacobi method that extending it to any number of FMU-Federates is
easy. Even if there are circular or complex dependencies among FMU-Federates, the scalability is not a
problem. For example, figure 4.3 and 4.2 shows two scenarios of complex dependency. Subsystem S 1
provides its output to S 2, in figure 4.3 S 2 provides its output to subsystems S 4, while in figure 4.2 S 2
provides its output back to S 1. In both of these cases Jacobi method will not have any problem in solving
the system.

S2 

S3 S4 S1 

Source Sink 

Figure 4.2: Complex dependency among subsystems, easily solvable using Gauss-Seidel method and Jacobi
method.

S2 

S3 S4 S1 

Source Sink 

Figure 4.3: Complex dependency among subsystems, difficult to be solved using Gauss-Seidel method, but can be
solved easily using Jacobi method.

4.2.1 Fixed Time Step Based Distributed Algorithm

As mentioned in section 3.3.5 the time based solvers may use a constant step size or may try to vary it
based on the error estimate. If a constant step size is used then it looks appealing to use a similar algorithm
as Fixed Time Stepped algorithm mentioned in section 3.3.3. Conceiving the same concept as general, it
takes the shape of figure 4.4 [APM+13].

It may be termed naive to use such an algorithm when its drawbacks are examined. Figure 4.5 highlights
one important drawback of the algorithm. Figure 4.5 shows a situation where one FMU-Federate has its
state variable, say v1 updated from 0 to 1, the effect of that update should take effect on the other FMU-
Federate by changing value of another state variable v2 from U to D. The process goes fine enough, only
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with one problem that the two federates do not get the updates as soon as they occur, rather there is a
delay in propagation of the updated values due to the non zero lookahead value. So for FMU-Federate F1
there is a delay of at least one time step in seeing the effect of its actions. If lookahead value is greater
than the time step, the delay will be even more than one time step. In solving differential equations this
discrepancy can cause numerical errors. Even if there is no direct feedback, if change originated from one
component is propagated to the other one with a delay then the numerical solution will exhibit errors.

Simulation time < end Time

Request Time Advance 
for “t + step”

Step ahead time (t) and 
Apply updates

Integrate model to time 
plus lookahead (t+la)

Send updates

Updates cannot be sent 
before “t + lookahead”

Set the shared state 
variables

S

E

Time Granted

Save the updates

No

Yes

t= t+ step
Set the values of input 

variables

Yes

No

Figure 4.4: Naive algorithm is identical to the algorithm used for simulation of “billiard balls”.

Figure 4.5 shows a scenario where two FMU-Federates have different lookahead values, but both of them
are less than the “step size”. A rather more common case is when “step size” is equal to the “lookahead”
value. This situation is shown in figure 4.6, which is not much different from figure 4.5 with respect to
cause and effect delay. It should be clear from these figures that if lookahead value is greater than the step
size, then the delay will be even greater than one step size.
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Figure 4.5: Draw back of naive algorithm.
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Figure 4.6: Draw back of naive algorithm with lookahead value equal to step size.
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Figure 4.7: Cause and effect model in improved fixed time stepped algorithm
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Figure 4.8: Cause and effect model in discrete event algorithm
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Figure 4.9: Fixed time stepped algorithm

The improved algorithm shown in figure 4.9 has two significant changes.

• It does not have a lookahead value, in this way simulation is synchronized as soon as the time step
has elapsed.
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• It does not use TAR service rather it uses combination of TAR and TARA service. First the TARA
service is used which allows all the federates to get synchronized at the granted time. Secondly
the TAR service is issued when it become clear that federate is not going to generate any other
messages.

Algorithm of figure 4.9 can be named as improved Fixed Time Stepped algorithm or FTS algorithm. The
improved mechanism of TARA service is very useful. First of all it does not allow to have the time lag
between cause and effect as shown in figure 4.7. It also becomes important when we need to have error
control or fixed point iteration for more than one FMUs integrating simultaneously.

4.2.2 Discrete Event Based Distributed Algorithm

It looks appealing to use variable step size for explicit algorithms, because step size control can bring
performance improvement to the simulation. Being a separate field of study, step size control in co-
simulation is not the main topic of discussion, so it is briefly discussed in later sections. For more details
on step size control in co-simulation [SAC12] and [BS10a] are suggested.

One way of implementing variable step size is to use Discrete Event based algorithm or DE algorithm
[APM+13]. From implementation point of view, the only difference of DE algorithm from FTS algorithm
is its use of Next Event Request Available (NERA) and Next Event Request (NER) services, instead of
TARA and TAR services. The algorithm is shown in figure 4.10. Unlike FTS algorithm, which advances
time in fixed time steps, DE algorithm can advance with variable time steps. The cause and effect model
is just the same, shown in figure 4.8, with only one difference of variable time advances. Both algorithms
share the data at the end of each time step like shown in figure 4.1.

As highlighted in figure 4.10, prediction of next event is the only thing which allows to use variable step
size in DE algorithm. Prediction of next event can be done in many different ways. Quantization (intro-
duced in section 3.3.5) can also be used for prediction of next event time, which effectively is another form
of step size control [CK06]. In case of coupled simulations, continuous simulations can be transformed
into discrete event based simulations by using quantization. The methodology of using quantization to
convert a continuous simulation into a discrete based simulation was proposed by DEVS (section 2.3)
community [KJ01]. As DEVS community is doing a credible work on the topic so in detail discussion
is avoided. However, the algorithm presented here does a valuable contribution of showing the opportu-
nity of coupling DEVS based simulation components with other FMI based simulation components in a
distributed topology.

In many different ways quantization can be used for predicting next event time, the simplest one though, is
to use linear interpolation. Suppose during a simulation we have stored some number of past values of all
output trajectories with their time. For example, an output y at time step tn has value vn and at time step tn−1
it has value vn−1. As told in section 3.3.5, quantization process divides a continuous signal into discrete
values such that consecutive values have the same absolute difference. For example, a floor function
discretizes a continuous signal in a way that the absolute difference of consecutive values is always 1.
Here absolute difference of consecutive values is named as “quantum”, symbolized by q. Given the values
tn, tn−1, vn, vn−1 and q for output y, the time of next event tn+1 can be calculated from equation 4.5.
Equation 4.5 uses slope formula and assumes that the slope of y is not going to change from tn to tn+1.
Many other advanced techniques can be used for prediction of next event time. For example, instead of
using linear interpolation, a better cubic interpolation technique may produce more accurate results.
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Figure 4.10: Discrete event algorithm. Gray colored state is a new state introduced with respect to FTS algorithm.
White colored states show the the respective fixed time stepped states. Discrete event algorithm uses
event based timing services.

tn+1 = q
∣∣∣∣∣ tn − tn−1

vn − vn−1

∣∣∣∣∣ + tn (4.5)

If there is an algebraic loop (interdependence of FMUs) among subsystems, then there must be at least
one output of each subsystem. Considering a simple case of two coupled subsystems shown in figure 4.8,
the DE algorithm uses the minimum of the predicted next event time. The mechanism is straight forward.
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Both FMU-federates predict the next event time and ask for time grant using NERA, the RTI only grants
the minimum of both, say F1 had requested for the minimum of time advances tg. As the output of F1 is
passed to F2, so F2 is also granted a time advance of tg. Both systems integrate themselves till tg and share
their outputs. After exchange of outputs, both subsystems predict the next even time once again, and the
cycle continues. In case of more than two coupled subsystems, the process executes the same way.

4.2.3 Case Study

To demonstrate the correctness of the above presented algorithms, a test example has been chosen. The
choice was made based on the fact that the example has been tested with many different tools. See
[WPE12] and [EWP12] for the details of problem and the tools used for simulating the problem. Here
only a brief overview of the problem will be presented.

There are three main components of the model

1. House : Consists of volume, a heater with controller and an agent.

2. Environment temperature: A fluctuation of ambient temperature.

3. Market: Component regulating the price of electricity based on the consumption.

A “house” is a thermal system, which consumes energy in order to maintain its temperature. An “agent” is
responsible for setting the maximum and minimum temperature threshold of the house, based on the price
of energy. There is a heater, which is responsible for heating the house, it is controlled by a controller,
which gets its minimum and maximum temperature threshold from the agent. The volume of the house
has a significant effect on its temperature profile. Each house is also attached to the ambient temperature,
coming from “environment”. The “environment” is a very simplified model, based on sinusoidal fluc-
tuation of temperature. The “market” defines the price of energy based on the total consumption of the
houses. Figure 4.11 shows the overview of the model. For the details of the model and the mathematical
description see [EWP12].

In order to use the full functionality of the HLA RTI, there is no option but to use a commercial version
of the RTI. The academic version of commercial RTIs offer a limited number of federates, hence there are
only 7 houses simulated to produce results.

Significant values of the model are enumerated below, which form the basis of comparison.

1. Average inside temperature of all the houses.

2. Price fluctuation, based on the energy consumption.

Three runs of the sample simulation were executed. One with OpenModelica [59], its results were used as
a reference. Second, with DE algorithm functioning as the main algorithm for all federates. Third, where
all of the federates were running FTS algorithm, except the “market” federate. The “market” federate
could not be used as a time stepped federate due to a limitation in OpenModelica. The FMU for “market”
was not producing the correct results, presumably due to the fact that it was a piecewise continuous
function.

As described earlier, all the components were first implemented and simulated using OpenModelica. Then
the same components were exported as FMUs, except the “market” component. The “market” component
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Figure 4.11: Model overview (taken from [WPE12])

took a reading of all consumptions after each 15 minutes, took the averages and calculated the new price.
In the FMU generated by OpenModelica fluctuations were not occurring as they were supposed to. To
replace it, a federate was implemented by hand, which acted identical to the prescribed definition of the
“market”.

The initial values for all the simulations were identical and fixed, so the results are reproducible. The
simulation was run for 3 days of simulation time, which is 2, 59, 200 seconds. One unit of simulation
time represented one second. For the integration of FMUs, any step size could be chosen, even a fraction
of a unit was also allowed. The communication among FMU-Federates took place after 5 seconds of
simulation time, this is only valid for FMU-Federates using FTS algorithm. FMU-Federates using DE
algorithm could vary their step size, so they could send updates after arbitrary time intervals. Their time
step was calculated using “Quantization” mechanism. Each federate predicted the time of next event and
requested for the the “time advance”. The time was granted to all federates with the minimum amount of
time requested. The concept is explained in figure 4.8.

Before comparing the results it is important to have a look at figure 4.12, it shows the ambient temperature.
It is a simplistic sinusoidal fluctuation, which governs all the values in the simulation. It can be seen
in figure 4.12 that the temperature reaches its peak at noon, when the sun is shining at its maximum.
After noon the temperature starts to fall and reaches to its minimum at midnight. The temperature keeps
fluctuating between 5 ◦C to 15 ◦C. Although the model is not very elaborate but it can be replaced by any
statistical model.

Incorporating a statistical model into a FTS simulation could be more problematic as compare to DE
simulation. Assume that the statistical profile of region is available in a dataset D. If D contains the
temperature information at equidistant time points, then incorporating D into an FTS simulation is easy.
One option is to represent the time step ts of the FTS simulation by the same interval of time I after
whichD provides the temperature information. If that is not possible, then use a time step ts whose whole
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Figure 4.12: Environment profile

number multiple w can represent I, meaning I = w × ts. Alternatively, if ts has to be made larger, then the
inverse could be possible, meaning ts = w × I.

In all three figures, figure 4.15, figure 4.14 and figure 4.16, the upper most figure is for FTS algorithm,
middle one for DE algorithm and the bottom one is for OpenModelica. The difference in the values of
both variables are shown in figure 4.13. Figure 4.13 shows the difference in results with the help of a “box
plot”. A box plot graph divides any statistical data into four quartiles, using three points. The first point
is the middle number between the minimum and the median of the data. The second point is the median
of the data, and the third is the middle value between the median and the maximum. The dotted lines in
box plot show the variability outside the upper and lower quartiles. The outliers are plotted as individual
points. In the case presented here, each box plot shows the difference from OpenModelica results. In
figure 4.13a the median of the difference lies at around 0.7 ◦C. The most probable maximum difference in
average temperature is around 1.25 ◦C. Sometimes there is a difference of temperature up to 3.2 ◦C.

The difference of results for both FTS and DE algorithms are identical. This is an evidence that quanti-
zation step size control has given the best results, as changing the step size using it did not make much
difference in the results. The same fact can be seen in figure 4.16, where an interval of simulation is
zoomed in to show how the average temperature of houses changes during the simulation. It can be seen
in figure 4.16 that both FTS algorithm and DE algorithm produce almost identical curves. The markers in
figure 4.16 show the communication points among the federates. Figure 4.16b has much less number of
markers than shown in figure 4.16a, which shows that DE algorithm had less number of communication
points (or macro step). In fact, the number of communication points in DE algorithm were 10 times less
than the FTS algorithm. In a distributed simulation this is a big achievement because more communication
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among federates leads to poor performance. The relation of communication points and performance of
the simulation is discussed in chapter 5.
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Figure 4.13: Difference of results from OpenModelica simulation.

Looking at the figure 4.13b this can be seen that the differences at certain points in the results for “average
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temperature”, have a little affect on the calculation of the “price”. The maximum difference found from
OpenModelica results does not exceed more than 0.0028, which is close to 1% of the maximum unit price
0.177 (see figure 4.14). The median of the differences lies at less than 0.0009, which is an indication that
most of the times the values of variable “price” calculated by DE or FTS algorithm were not different from
the values calculated by OpenModelica, more than 0.0009 units.

It is quite clear from the results and especially from figure 4.13 that all simulations are behaving similarly.
The minimum and maximum values are also the same. In reality there was no difference in “market”
component using FTS algorithm or DE algorithm, in both cases the price was being updated after 900
seconds (15 minutes), and the same code was used for both fixed step and discrete event simulations.
Only the consumption behavior of the houses could make any difference. The small difference in both the
results proves that there was no significant change in the consumption behavior of the houses, even with
changed algorithms.

The calculation of difference in results is easy in case of variable “price”, as all three simulations produced
results at precisely the same time intervals. This was not the case for figure 4.15, where approximations
had to be used. As OpenModelica, FTS algorithm and DE algorithm, calculated values at completely
different intervals, so for the sake of comparison only those points were considered which coexisted at the
same simulation time.

The “average temperature” profile in figure 4.15 also shows a similar behavior for all the simulations. It
was a variable with relatively high fluctuations, so its similarity shows promising results with the devel-
oped technique. It can be concluded from the results that the main statistical information of the model is
not changed by changing the simulation platform and algorithms used for simulation.
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(a) Fixed Time Stepped Simulation
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(b) Discrete Event Simulation
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(c) OpenModelica Simulation

Figure 4.14: Results for variable “Price”
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(a) Fixed Time Stepped Simulation
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(b) Discrete Event Simulation
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(c) OpenModelica Simulation

Figure 4.15: Results for variable “Average Temperature”
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(a) Fixed Time Stepped Simulation

5000 sec 6000 sec 7000 sec 8000 sec 9000 sec 10000 sec

Time

20.5

21.0

21.5

22.0

22.5

23.0

23.5

T
e
m

p
e
ra

tu
re

[o
C

]

(b) Discrete Event Simulation
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(c) OpenModelica Simulation

Figure 4.16: Results for variable “Average Temperature” are zoomed in at a randomly selected interval. The mark-
ers show the macro steps, their numbers clearly indicating how quantization step size control reduces
the number of events (compare a and b).
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4.3 Gauss-Seidel Method

Similar to Jacobi scheme, Gauss-Seidel scheme is also used in explicit coupling. In explicit schemes
the values are not repeatedly exchanged at a “communication point”. The main difference from Jacobi
method is that in case of two subsystems coupled as shown in figure 4.17, only the first subsystem is
integrated without knowing the value of its inputs at the next communication point Tn+1. The S ubsystem2
is integrated after updating the values of input variables. Unlike Jacobi method Gauss-Seidel has problems

7
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y1
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Communication Points

Figure 4.17: Gauss-Seidel scheme of data sharing in explicit coupling, only for two subsystems.

in scaling up. For example, figure 4.2 is relatively complex but there are no problems in using Gauss-Seidel
method, because there is a unique “source” and a unique “sink” in the system topology. If the dependency
from sink to source is removed, then the dependencies among subsystems form a directed acyclic graph.
Also, all paths from source to sink have the same number of nodes in between. If any of these properties
are missing, then the Gauss-Seidel algorithm can be used in a straightforward manner. One example is
shown in figure 4.3, unlike Jacobi method system shown in figure 4.3 is not easily solvable using Gauss-
Seidel technique.

4.3.1 Model of Distributed System

To explain the Gauss-Seidel scheme it is important to change the medium of description. Until now flow
charts were used to describe the algorithms, but due to the relatively complex nature of the algorithms
described afterwards, it is necessary to change the way of expression. In the present section, the distributed
computation model is described, based on which all the subsequent algorithms are designed. As mentioned
in [AW04], a system having different processes connected via a networking medium is best described as
a “asynchronous message passing system”. A “message passing system” is a system where different
processes communicate with each with the help of messages. This is in contrast to a “shared memory
system”, where processes do not send messages, rather they communicate using a shared memory space.
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Benefit of a message passing system is, there is no need for concurrency control in them, as compared to
shared memory systems. The model of the HLA RTI is close to the representation of an asynchronous
message passing system. The only difference with a traditional message passing system described in
textbooks like [AW04], is the “Time Stamped Ordered delivery”, or TSO delivery. In the asynchronous
model there is no relation between the order of messages sent and received. Contrarily, in TSO delivery
there is always a “time stamp” on each and every message sent, and the same order is retained when the
messages are received on the receiver end, although the messages sent with the same time stamp need
not follow any order. The RTI follows two different models of communication which correspond to the
two main communication protocols namely, TCP and UDP. When “reliable” mode of communication is
desired, the TCP protocol is used, while in case of “best-effort” mode the UDP protocol is used [KWD99].
Here it is assumed that “reliable” mode is used in all algorithms discuss earlier and later.

A system is considered to be an “asynchronous message passing system” when there is no fixed upper
bound on the messages to reach at the destination, or there is no fixed time limit on how much time
should be spent on any step. Due to these conditions, if there are two messages m1 and m2 sent from
processors p1 and p2 to a destination process pd, then there is no guarantee which message will reach the
destination first, unless m1 has a time stamp less than m2. Each process pi in a message passing system
has q number of input queues, and output queues, to store incoming and outgoing messages to store for
a limited time. So q is also the degree of pi, meaning the number of processes connected to the process
pi. For a better understanding of the algorithms the RTI will be considered as a separate process, rather
than a middleware as shown in figure 3.5, and it will be referred to as prti. It is important to remind that
describing the complete procedure of the RTI is far beyond the scope of this document. It is useful to
have a small description of the prti for the specific algorithm under consideration. The specific description
will contain the information how the RTI is assumed to react on specific messages under consideration,
according to the HLA standard, without going into the details of their implementation.

Because it is a message passing system, so while reading the algorithm it must be kept in mind that all the
processes are executing in separate binaries, remote or local, and they take actions as an interrupt driven
system. As the distributed processors assume an infinite execution of the processes [AW04], so in order to
represent the state where they do not entertain any new messages, a special state terminate is introduced.
Any distributed process acts in a specified manner on receiving a message. In the algorithm, a message
is identified by 〈Message〉. A message may contain different parameters, like time of message and the
value of some attributes, sometimes all these values are not mentioned in the algorithm, to avoid cluttering
of information. In such a case, either this information is clear from the context, or else meaning of each
parameter is explained in text.

4.3.2 Distributed Algorithm Using Gauss-Seidel Method

The distributed algorithms described in the previous sections were both fixed time step based and discrete
event based. For the Gauss-Seidel method only fixed time stepped algorithms can be designed. The reason
is the relatively complex dependency of simulation components formed in result of applying Gauss-Seidel
scheme [AME+13]. Later discussion will make the point more clear.

Algorithms described above had a specific topology shown in figure 3.5. Each FMU-Federate runs the
same algorithm and the synchronization is achieved by the guarantees provided by the RTI. Later in the
document, the algorithms have different types of FMU-Federates, which work in cooperation to achieve
the final goal of simulation. Explicit Gauss Seidel algorithm has three types of FMU-Federates. The
“source” , the “sink” and the “common” FMU-Federate.
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Algorithm 1 Explicit Gauss-Seidel Algorithm.
Initially 〈Step Forward, time〉 is enqueued for psource, where time = 0

1: Code for prti:
2: upon receiving 〈Flush Queue Request, time〉 from pi:
3: send all messages queued for pi to pi with time stamp ≤ time
4: upon confirmation of sending all updates send 〈Time Grant〉 to pi

5: upon receiving 〈Update, time〉 from pi:
6: enqueue 〈Update〉 with time stamp time, for all subscribing processes p j

7: upon receiving 〈Step Forward, time〉 from psink:
8: enqueue 〈Step Forward, time〉 for psource

9: upon receiving 〈Terminate〉 from psource:
10: enqueue 〈Terminate〉 for all processors.

11: Code for psink:
12: send 〈Flush Queue Request, time〉 to prti and wait for response
13: upon receiving 〈Terminate〉:
14: terminate
15: upon receiving 〈Update, time〉:
16: save the 〈Update, time〉 in queue Qsink

17: upon receiving 〈Time Grant, time〉:
18: if |Qsink| < subscriptions then
19: goto 12
20: else
21: time← Proceed(Qsink, FMU)
22: end if
23: Send 〈Step Forward, time〉 to psource

24: Code for psource:
25: send 〈Flush Queue Request, time〉 to prti and wait for response
26: upon receiving 〈Update, time〉:
27: save the 〈Update, time〉 in queue Qsource

28: upon receiving 〈Time Grant, time〉:
29: dequeue messages from Qsource and update input variables of FMU.
30: upon receiving 〈Step Forward, time〉:
31: integrate model to time + step
32: if time + step > S imulationEndTime then
33: send 〈Terminate〉 to all processors
34: terminate
35: else
36: send updated states using 〈Update, time + step〉 to prti

37: end if
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Algorithm 1 Explicit Gauss-Seidel Algorithm (Continued).
38: Code for pcommon:
39: send 〈Flush Queue Request, time〉 to prti and wait for response
40: upon receiving 〈Terminate〉:
41: terminate
42: upon receiving 〈Update,time〉:
43: save the 〈Update,time〉 in queue Qcommon

44: upon receiving 〈Time Grant,time〉:
45: if |Qcommon| < subscriptions then
46: goto 39
47: else
48: time←Proceed(Qcommon, FMU)
49: end if
50: Function Proceed(Q, FMU)
51: dequeue messages from Q and update input variables of FMU.
52: save the time of updates //all updates have the same time.
53: integrate model to time
54: send updated states to RTI using 〈Update〉 message
55: return time

It should be noted that to ensure TSO delivery every message must be sent with a time stamp. For clarity
the parameter time is mentioned in all messages. The prti is an exceptional process, it uses the time stamp
time of each message to ensures the TSO delivery of the message. The messages sent from prti also
have the same time stamp with which they were sent to prti. Secondly, it is reiterated that the “reliable”
medium of communication among processes is used for all events and updates. The exceptional path
when a message does not reach the destination, is not discussed here to avoid unnecessary complexity.
It is important to mention that there are lines of code which appear to send messages directly to another
process. Such way of description is only adopted for brevity and simplicity, in reality no process can
communicate to another process directly. All communication has to happen through the RTI.

• 〈Flush Queue Request〉: Flush Queue Request (FQR) has been explained earlier in section 3.2.4.1.
Here it is symbolized that by sending this messages FQR service of the RTI is invoked. After
sending this message the FMU-Federate goes into a condition where it only receives messages from
the RTI, until it receives the 〈Time Grant〉 message. The parameter of this message is the time to
which federates wishes to advance.

• 〈Time Grant〉: In result of FQR or any other time request (section 3.2.2.1) RTI has to grant the
time. Here it is symbolized using the 〈Time Grant〉 message. When this message is received by
the FMU-Federate, the FMU-Federate is allowed to proceed and produce messages greater than or
equal to the granted time. This message contains a parameter which is the time to which federate is
allowed to advance the time to.

• 〈Update〉: As explained earlier FOM is used to share the data amongst federates. It is also clear
that HLA works in a publisher subscriber model. So in the algorithms presented here, when the
〈Update〉 message is sent from FMU-Federate to the RTI then it means that it needs to update some
value of the attribute, whose ownership belongs to it, in other word it has the right to publish that
value. When the 〈Update〉 message is sent to any federate then it means that the published value of
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some attribute needs to be communicated to the subscribers. The values are passed on by the RTI
exclusively.

• 〈Step Forward〉: There are two types of data sharing options in HLA. One is through obects and
classes, the second is called the “interactions”. These are messages with some parameters. When an
interaction is sent from publisher all subscribers receive that interaction. Although, the interaction
always travel from origin to target through RTI, but for simplicity there is no problem in believing
that origin sends an interaction to the destination. So here it assumed that psink sends the 〈Step
Forward〉 interaction message to psource, although, in reality it goes through the RTI.

• 〈Terminate〉: When the psource identifies that the simulation execution has passed the desired end,
it sends the 〈Terminate〉message to all processors, which makes the processors change their state to
terminate. The 〈Terminate〉 has a time stamp time only to ensure TSO delivery. It is sent only once
in the life time of simulation.

Gauss-Seidel algorithm is different from aforementioned algorithms in that it does not have the same
execution order for all FMU-Federates. It has three types of FMU-Federates “sink”, “common” and
“source”, represented in Gauss-Seidel algorithm as psink, pcommon and psource. Algorithm 1 works like
a token based machine. The “source” initiates the token and the “sink” consumes it. No matter how
many FMU-Federates are there in between “source” and “sink”, the “source” and “sink” should always
be unique. In case of more than one “source” or “sink” algorithm will not work at all. It was mentioned
earlier that the system shown in figure 4.3 is not solvable using Gauss-Seidel algorithm. To see how, let
us first have a look how token based execution solves the system shown in figure 4.2.

Source Sink 

(a) Source starts the execution by integrating and
sending its outputs as an 〈Update〉 message to
the RTI.

Source Sink 

(b) Token is passed to “commons”. They can
proceed in parallel as there is no dependency
amongst them.

Source Sink 

(c) Execution cycle of a time step ends at “sink”,
who sends 〈Step Forward〉 message to pass on
the token to source again. The output values
alone from the “sink” do not cause the token to
pass.

Figure 4.18: Token based execution of explicit Gauss-Seidel method.
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Figure 4.18 shows the token based execution of the Gauss-Seidel algorithm. At the first step shown in
figure 4.18a, the token is originated by source, this refers to the 〈Step Forward〉message already enqueued
for the psource in the initial stage of Gauss-Seidel algorithm (see the first line of the algorithm). At sec-
ond step this token is passed to all subscribing FMU-Federates. These are “common” FMU-Federates,
represented as pcommon in Gauss-Seidel algorithm. In the second step (figure 4.18b) the token is passed
due to the updates originated by “source”, which are received by both “common” FMU-Federates. The
update is sent by psource in line 37. In line 45 pcommon checks whether it has received all updates that it
was subscribed to. In the current example, it is assumed that “source” has only one output variable to
which both “common” FMU-Federates have subscribed to. As the “source” has sent the update which
will “eventually” reach both “common” FMU-Federates, so they have the token of execution now. Simi-
larly the “sink” receives the updates from both “common” FMU-Federates and sends the 〈Step Forward〉
message to the “source”. In result “source” gets the token again and the cycle continues.

Comparing figure 4.3 with figure 4.2 and the execution order described here, it becomes clear that when
the token is passed from the psource to both “common” processes, one of the “common” processes S 2
will pass the token back to the psource again. The token will be passed to the “source” for the same
reason “sink” receives the token, i.e. the updates generated by S 2. The sink receives the token due to the
updates generated by S 3. In this way “source” can pass on another token before the previous one has been
consumed, resulting is erroneous execution.

By looking at the execution cycle it is clear that there are number of limitations on the kind of systems
Gauss-Seidel algorithm can operate on. First of all, there has to be a unique “source” and “sink”. Secondly,
if the edges are drawn among FMU-Federates from the publisher to subscriber, just like it is done in
figures 4.2 and 4.3, then it should form a tree where there are should be only a single cycle, which is
formed due to the feedback loop from “sink” to “source”. The “source” has to be at the root of the tree,
and “sink” should be the only leaf node without any children. Connection among siblings do not harm,
but if there is a connection from child to parent then the algorithm will not work. This limitation can
be removed by using some heuristics, but this is not discussed here, because better algorithms can be
designed, which are described later.

4.3.3 Case Study

It seems appropriate to describe a case study which distinguishes the importance of Gauss-Seidel method
over previously defined Jacobi method. The model is “Lotka-Volterra equation”, which is also called as
“Predator-Prey equation”. It is described as follows

ẋ = αx − βxy

ẏ = −γy + δxy
(4.6)

The parameters α, β, γ and δ are chosen to be α = 0.5, β = 0.7, γ = 0.27 and δ = 0.6. The reference
solution for the model is shown in figure 4.19. Figure 4.19a shows the variable x and y plotted separately
against the simulation time, while in figure 4.19b variable y is plotted against variable x to show the actual
behavior of the “Van der Pol” oscillator. Figure 4.19b shows the egg shaped condition of the oscillator
due to the parameters selected for the simulation.
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(a) Variables x and y plotted separately against simulation time.
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(b) Variables y plotted against variable x.

Figure 4.19: “Lotka-Volterra ” system simulated using OpenModelica. The “step size” is internally controlled by
OpenModelica, to which user does not have any access.
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The results of the reference solution are compared to the results produced by the Gauss-Seidel algorithm.
It is shown in figures 4.21 and figure 4.22 that how the results vary by just changing the method of data
exchange among subcomponents. In both cases the internal solver was the same, also the step size on time
horizon was also the same. In figure 4.21 it can be seen that the results are very similar to the results of
OpenModelica (figure 4.19). Figure 4.22 shows the results using explicit Jacobi method. It is clear that the
error is accumulating with the time, so the method is not stable for a problem like Lotka-Volterra system.
The reason is hidden in equation 4.7.

Equation 4.7 shows that the stability of the solution does not only depend on the method but also on the
system[KS00]. For the detailed discussion of how the system and coupling method are interrelated to the
stability of the solution it is suggest to read [BS10a] and [BS10b]. In brief if the system presented in
equation 4.3 is reduced to a system with only two subcomponents, then it can be reduced to a form where
solution of the system at communication point Tn+1 is given by(

z̄n+1
ȳn+1

)
=

[ ¯̄I − ¯̄Ωn+1
]−1

[
¯̄Ωn

(
z̄n

ȳn

)
+ ¯̄Ωn−1

(
z̄n−1
ȳn−1

)
+ ... + ¯̄Ωn−p

(
z̄n−p

ȳn−p

)]
(4.7)

Here p = max(k, j) where j represents the degree of interpolation for system 1 and k for system 2. ¯̄I is
the identity matrix, while ¯̄Ω is the coefficient matrix. The values of elements of ¯̄Ω depend on the coupling
method used, constraints of subsystems, and the coefficients of state variables. There are two components
which depend on the system itself, that is “constraints” and “coefficients of state variables”, while one
component depending on the coupling method is how inputs are connected to the outputs. For example,
in case of two subsystems s1 and s2, for the Jacobi method the inputs at time tn are defined by the outputs
of other subsystem at tn. On the other hand, in case of Gauss-Seidel method, the inputs of s1 at time tn are
the outputs of s2 at tn, but inputs of s2 at tn are outputs of s1 at tn+1. Conclusively, a coupling method is
stable for a system if all the eigenvalues λ of ¯̄Ω are in the unit circle i.e. |λ( ¯̄Ω)|max < 1.

It can be seen in figure 4.20a that the results generated from Gauss-Seidel method have a little difference
form the reference solution given in figure 4.19. The median of the error for variable x lies around 0.015,
which is close to 1% of the maximum value 1.1. For variable y the median lies around 0.02, which is also
close to 1% of the maximum value 1.4. Looking at figure 4.20b, in fact there is no median of the error
distribution. Most of the values are lying outside the quartiles. The reason is evident from figure 4.22,
where the error is increasing with the passage of time. An abrupt peak in the solution of variable y can
be seen near simulation time 50, in figure 4.22a. Similar smaller peaks can be seen in for variable x.
In figure 4.22b it can be seen that the prominent egg like shape of the oscillator has vanished and the
error is increasing at each cycle. In figure 4.21a, on the contrary, curves are very close to the ones shown
in figure 4.19a. The prominent egg like shape in figure 4.21b is also present in the same way it was in
figure 4.19b.

As the communication step size is fixed in the simulation of both Gauss-Seidel and Jacobi method, so
there is no variability to demonstrate. Although, by comparing figure 4.19a and figure 4.21a less number
of time steps in Gauss-Seidel method are evident. The comparison is not justified at he performance level
due to the reasons discussed in chapter 6, but still it can be seen that OpenModelica uses a very small
time step for solving the system. A smaller integration step size used by OpenModelica also indicates the
stiffness of the system. The macro step size in Gauss-Seidel method was 0.5 which is clearly much larger
than the integration step size of OpenModelica. Keeping in mind the stiffness of the system the results
produced by the Gauss-Seidel method can be considered very good.

54



Standalone Explicit Algorithms Using HLA and FMI

X Y
0.00

0.05

0.10

0.15

0.20

0.25

(a) Difference of results between Gauss-Seidel method and OpenModelica.
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(b) Difference of results between Jacobi method and OpenModelica. Combining it with figure 4.22, clearly shows large amount
of error in the values for variable y.

Figure 4.20: Cumulative differences of results between OpenModelica and other explicit methods, for “Lotka
Volterra” system. The box plot shows how the values produced at each time step using explicit methods
differ from the values of OpenModelica
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(a) Variables x and y plotted separately against simulation time.
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(b) Variables y plotted against variable x.

Figure 4.21: “Lotka-Volterra ” system simulated using explicit Gauss-Seidel method. The “step size” is 0.5 here.
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(a) Variables x and y plotted separately against simulation time.
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(b) Variables y plotted against variable x.

Figure 4.22: “Lotka-Volterra” system simulated using explicit Jacobi method. The “step size” is 0.5 here.
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5 Master-Slave Algorithms Using HLA and FMI

In the previous chapter, only explicit methods of solver coupling were discussed. In the present chapter,
other forms of solver coupling techniques (see section 3.3.4) are discussed. Just like the previous chap-
ter, the first few lines of each section introduce the mathematical concept behind the technique, then a
distributed algorithm is designed. The mathematical scheme of implicit solver coupling discussed in sec-
tion 5.2 has been proposed earlier, but the distributed algorithm based on that is developed by the author.
The semi-implicit coupling technique discussed in section 5.3 has also been proposed earlier, but in a
different way. Based on the previous concept the author further refines the concept specifically for FMI
1.0. Then a distributed algorithm is developed based on the refined technique. Strong coupling discussed
in section 5.4 has been discussed in literature before. There can be various different choices of tools to
be used with strong coupling, but the distributed algorithm developed here has not been presented before.
Hybrid simulation algorithm discussed in section 5.5 is based on the ideas discussed in section 5.2. The
algorithm developed in section 5.2 only works for coupling of continuous subsystems. Hybrid simulation
algorithm further enhances the idea of section 5.2 and allows it to work for hybrid simulations, where
coupling simulation components can have discrete valued state variables and outputs. The hybrid simula-
tion algorithm is based on the idea of implicit coupling, but it has never been used for hybrid simulations
before. The idea is first presented by the author. The last section (section 5.6) of the chapter discusses how
different algorithms presented in the thesis are made part of a framework called SAHISim framework. The
distributed algorithms presented in the thesis are not presented before in the literature. If there are any
results that the author himself has published, then their references are provided at appropriate places.

5.1 Introduction

Previously discussed algorithms have the ability to work independently without the need of any regulator.
The benefit of those algorithms is their ability to work independently. In this way single point failure
can be avoided. Nevertheless, in tightly coupled simulations single point failure may not make much
difference in many cases. As in order to proceed effectively it becomes essential for one federate to get an
updated information from other federates. So if it is possible to get greater flexibility by using master-slave
algorithms then it is completely logical and beneficial.

The master in these algorithms works like an orchestrator. Figure 5.1 shows how master and the RTI both
are connected to all slaves. The RTI works as a medium for data and time synchronization, but master is
the real orchestrator. Master drives all the slaves, guides them through different states and commands them
to reach a common goal. Slaves on the other hand, are the work horses. Each one of them contains an FMU
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inside, so they are the FMU-Federates in this topology. Master, on the contrary, does not contain any FMU,
it is an executional form of different algorithms. Each slave fulfills the commands sent from the master,
some of these commands require to take action on the FMU, like setting or getting state variables and
input variables, and setting or getting time of the FMU. The internal integration of each FMU also takes
place at the slave level. At “communication points” they share the data according to different schemes,
orchestrated by the algorithm executing at master level.

Using master-slave topology, following algorithms are discussed in later sections

• Fully Implicit Waveform Relaxation Algorithm

• Semi-implicit Algorithm

• Strong Coupling using the SUNDIAL, the HLA and the FMI

• Hybrid Simulation Algorithm

Figure 5.1: Architecture of how FMUs, FMU-Federate, Master and the RTI fit in, in case of master-slave algorithms.

RTI 

FMU 

FMU-Federate 

FMU 

FMU-Federate 

Master  
Federate 

5.2 Distributed Algorithm Based on Fully Implicit Solver Coupling

The implicit solver coupling technique based on waveform relaxation was first presented in [LRSV82].
The idea is to start with a guess about the system states, which can be considered as a “predictor” step, and
then rectify the guess in following fixed point iterations, which can be considered as the “corrector” steps.
Figure 5.2 shows how the repetitive evaluations at a certain communication point (macro step) should
work. It is worth noting that in the figure 5.2, Tn and Tn+1 represent the communication points, while t0,
t1, t2 and s0, s1 represent the internal integration time steps. The length or number of internal integration
steps is completely independent of each other and the length of communication step size (Tn+1 − Tn).

With respect to the algorithms discussed earlier, among other differences the Waveform Relaxation (WR)
algorithm also differs in the strategy of data exchange. In comparison to Gauss-Seidel algorithm (algo-
rithm 1) strategy of data exchange in WR algorithm is very robust. It does not imply any restrictions on the
type of dependency relationship among FMU-Federates. Although, it is a fact that Gauss-Seidel method
of data exchange can also be used in iterative methods like waveform relaxation algorithm [SBE+14],
[LRSV82]. Nevertheless, the most robust approach is discussed here.
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Figure 5.2: Waveform scheme for data exchange.
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5.2.1 Description of the Algorithm

Looking deeply into algorithm 2 reveals the mechanisms of data exchange, time synchronization and con-
vergence. Like the previous algorithm, here also there are three types of processors prti, which corresponds
to the RTI, pmaster corresponding to the master, and pslave corresponding to the slave FMU-Federates.

It is beneficial to have a look at the code for prti. The prti process has to cater three types of messages.
First type of message is the Time Advance Request Available (TARA) message, the other message is
also similar which is a Time Advance Request (TAR) message. To see the difference among TARA and
TAR services please have a look at the section 3.2.2.1. Both of these services cause the prti to deliver the
updates to the invoking process and then granting it the time advance.

Second type of messages are related to the update of shared attributes. For these messages the RTI has a
standard procedure which is followed in all algorithms. For readability, two variables are used to distin-
guish two different types of variables, inputs j

slave represent the input variables of jth slave FMU-Federate,
while states j

slave represent the state variables of jth slave FMU-Federate. Similarly, p j
slave is used to repre-

sent the jth slave FMU-Federate.

Third type of messages sent from the pmaster are destined to all “slave” processes. Although, the HLA RTI
itself cannot distinguish between the master or the slave, but here it is assumed that the pseudo represen-
tative RTI process prti has this ability. The assumption does not make any change in the implementation,
but only makes things more understandable and easy to read. While using the real RTI the exact same
functionality can be easily achieved using, publisher subscriber model, different classes of FOM, and
“interaction” classes for commands.

The “master” algorithm has two main parts, one is the “Main” procedure which embodies the main strategy
for the orchestrator. Second, the message handling portion, which handles two types of messages. One
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is the 〈Update〉 message, and the second is 〈Time Grant〉. The 〈Update〉 message is received in result of
the updated shared state variables. Upon receiving 〈Update〉 message the value of the update is extracted
from the message and then added to a list updates. The list updates contains the updates received from
all FMU-Federates (“slaves”). For simplicity, it is assumed that each shared state variable is represented
as a separate attribute in the Federation Object Model (FOM). When the attribute is updated, the master
receives the 〈Update〉 message, along with the updated value of the shared state variable. The updated
value is reflected into the updates list against its name. It should be kept in mind that whenever any
federate sends any “time advance” request to the RTI, it first receives all the updates queued for that
federate, then it receives the 〈Time Grant〉. Upon receiving 〈Time Grant〉 message, first the number of
received updates in updates are counted and if they are equal to the number of “expected” updates then
the “exceution state” (stored in ExecS tate variable) is change to U pdatesArrived. Which tells the “Main”
routine that all the updates from slaves have been received. If all the updates are not received then the
ExecS tate is set to WaitForU pdates, which means that the “Main” routine will wait for all the updates
to arrive.

The most important aspect for the understanding of the following algorithms is to acknowledge that the
state variables, outputs and inputs are “seemingly” represented using vectors, but individual values are
“always” accessed using their names, instead of the indices of the vectors. The reason is that the HLA
based implementation is only possible in this way. The HLA FOM has classes and their attributes. The
FOM structure for the algorithms mentioned here can be designed in many different ways, the simplest
one to understand is that each output or state variable is bound to a single attribute and the name of that
attribute is bound to the name of the output or state variable of the FMU. The mapping of the FOM
attribute and the respective FMU variable name can be saved in a map. Because the transformation from
one to other is straightforward, in presented algorithms only one name is used to access any variable,
instead of two. In reality, the vectors here are more like a “map”, containing both the values and their
names. So each element of the map is a pair, having a name and a value. If the name of any pair has to
be accessed then it can be accessed using name(x), where x is an element of map. Similarly, the value can
be accessed using value(x). In cases like evaluating a norm, only the values are of concern. A conversion
from a map to vector of values is quite easy. If there is a map æ and it is required to extract all its values
into a vector v, then all the values of æ can be copied into v using following

v← [value(x) | x ∈ æ] (5.1)

Similarly, if all the names have to be extracted in a set s then

s← {name(x) | x ∈ æ} (5.2)

The norm() function used in the following algorithms relies on the equation 5.1 to get the vector of values
from a map and then get their difference.

The “Main” routine has one main loop starting from line 8 and ending at line 32. The loop ends when
the simulation time exceeds the provided simlationEndTime. The loop starting at line 12 performs the
convergence check. The line 12 has the norm function to check the difference between the state variables
of current and previous fixed point iteration. If the difference is less than a certain tolerance value TOL
then it is assumed that the fixed point iteration has converged. If the number of fixed point iterations are too
much, even greater than a predefined value MAX, then it is supposed that convergence cannot be achieved
in that specific case. There could be different reasons when the convergence is not achievable. One reason
could be that the communication step size is too big, or the system is not convergent, or if the system is
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Algorithm 2 Fully Implicit Waveform Relaxation Algorithm.
1: Code for pmaster:
2: Procedure Main()
3: time← 0
4: send 〈Send Initial States, time〉
5: GetUpdates()
6: pS tates← pS tates ∪ updates
7: currS tates← pS tates[−1]
8: while time ≤ simulationEndTime do
9: time← time + step

10: iterationS tates← {(name(x),∞) | x ∈ updates}
11: iterationCount ← 0
12: while norm(iterationS tates − currS tates) > TOL do
13: iterationCount ← iterationCount + 1
14: if iterationCount > MAX then
15: throw exception “No convergence” and terminate
16: end if
17: send 〈Advance Time, time〉 to all “slave” processes.
18: send 〈Send States, time〉 to all “slave” processes.
19: GetUpdates()
20: iterationS tates← currS tates
21: currS tates← updates
22: for each p j

slave :
23: send 〈Update States, {x | x ∈ pS tates[−1] ∧ name(x) ∈ states j

slave}, time〉 to p j
slave

24: for each p j
slave:

25: send 〈Update Inputs, {x | x ∈ currS tates ∧ name(x) ∈ inputs j
slave}, time〉 to p j

slave
26: end while
27: send 〈Send States, time〉 to all “slave” processes.
28: GetUpdates()
29: pS tates← pS tates ∪ updates
30: send 〈End Iteration,time〉 to all “slave” processes
31: send 〈TAR,time〉 to prti

32: end while
33: send 〈End Simulation〉 to all “slave” processes
34: terminate
35: end
36: Procedure GetUpdates()
37: ExecS tate← WaitForU pdates
38: updates← {(name(x),∞) | x ∈ updates}
39: while ExecS tate , U pdatesArrived do
40: send 〈TARA,time〉 to prti

41: end while
42: end
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Algorithm 2 Fully Implicit Waveform Relaxation Algorithm (Continued).
43: upon receiving 〈Time Grant, time〉:
44: if |updates| = NUMBER OF S T AT ES then
45: ExecS tate← U pdatesArrived
46: end if

47: upon receiving 〈Update, states,time〉:
48: ∀x ∈ updates∀y ∈ states ((name(x) = name(y))→ (value(x)← value(y)).

49: Code for pslave:
50: upon receiving any message:
51: store every message into commandList
52: upon receiving 〈Time Grant, time〉:
53: search for all “allowable” messages for the current state in commandList.
54: execute the action on the first message found.
55: send 〈TARA,time〉 to prti except in case of 〈End Simulation〉 and 〈End Iteration〉

56: action for 〈Send Initial States, time〉:
57: Initialize the FMU, and send the initial states to pmaster in from of 〈Update, states,time〉
58: action for 〈Advance Time, time〉:
59: Integrate the FMU to time
60: action for 〈Send States, time〉:
61: send the state variables in form of 〈Update,states ,time〉 to pmaster

62: action for 〈Update States,state, time〉:
63: set the time of FMU to time
64: set the respective state variable of FMU to state
65: action for 〈Update Inputs,input, time〉:
66: set the respective input variable of FMU to input
67: action for 〈End Iteration, time〉 :
68: send 〈TAR, time〉 to prti

69: action for 〈End Simulation〉:
70: terminate

71: Code for prti:
72: upon receiving 〈TARA, time〉 from pi:
73: send all messages queued for pi to pi with time stamp ≤ time
74: upon confirmation of sending all updates send 〈Time Grant〉 to pi

75: upon receiving 〈TAR, time〉 from pi:
76: send all messages queued for pi to pi with time stamp ≤ time
77: upon confirmation of sending all updates send 〈Time Grant〉 to pi

78: upon receiving 〈Update,states, time〉 from pi:
79: enqueue states with time stamp time, for subscribing process pmaster

80: upon receiving any other command ζ from pmaster:
81: enqueue the command ζ for all subscribing “slave” processes.
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convergent, the partition of variables is not proper to make it convergent [LRSV82]. In case there is no
convergence achieved, a modeler should first try to minimize the macro time step. If that does not work
then the modeler should have a look at the system and see whether the system is contractive in nature or
not. To make the sure that system is contractive, there are few guidelines enumerated in [LRSV82].

It is important to understand the lines for updating inputs and states. The command to update states is
at line 23 and the command to update inputs it is at line 25. There is a set of sets inputs which contains
the names of all the inputs of all slave subsystems. Similarly, the names of state variables of all the slaves
are stored in the set of sets states. The expression inputs j

slave gives the set of names of inputs of jth slave.
Similarly the expression states j

slave gives the name of states of jth slave. At line 25 the statement says
that a parameter to 〈Update Inputs〉 message is the set of inputs which are specific to jth slave. Similar
is the case of state variables. Again, all these notation are used for describing the algorithm completely,
otherwise the actual implementation using the RTI and its Federation Object Model is a little different.
There we need not make any separate sets of inputs and states, instead separate classes and their unique
attribute identifiers produce exactly the same result.

Another thing should also be kept in mind that here it is assumed that all the outputs are connected directly
to their respective state variables. If that is not the case then a modification in the algorithm is required,
which will be discussed later in the section 5.5. Because there is no conversion from state variables to the
outputs, so outputs are not even mentioned in the algorithm, only state variables are considered.

The procedure “GetUpdates()” (defined at line 36) does an important work. It is used when the master
waits for the updates to arrive from all the FMU-Federates. It changes the execution state ExecS tate of
the master from U pdatesArrived to WaitForU pdates, and waits until it turns back to U pdatesArrived.
The change can only occur during the processing of 〈Time Grant〉 when all the updates are received. The
condition is checked using the expression “|updates| = NUMER OF S T AT ES ” at line 44. The line
counts the number of states whose values are not ∞, if their count is equal to the shared state variables
NUMBER OF S T AT ES , then this means that the values of shared state variables have been received. In
that case the execution state is changed to U pdatesArrived.

Using line 17 and line 18 the master asks the slaves to move forward in time, this refers to the “internal
integration” in figure 5.2. Using line 23 master moves the FMU-Federates back one step, and updates
the state variables. Using line 25 it connects the outputs to inputs. Here for simplicity it is assumed as
if pmaster sends an update to all “slave” processes one by one. It is not the case in reality, using FOM of
HLA “Input” and “State” classes can be defined. When an attribute of any class is updated, all subscribing
federates automatically receive an update.

The variable pS tates is a list, pS tates[−1] gives the mapped vector (discussed earlier) of state variables
stored at the last index of pS tates. At line 29 new elements to the list are added, which are the state
variables after the convergence. Using line 30 master tells all the FMU-Federates to close the internal in-
tegration of FMUs because the fixed point iteration has converged, upon receiving this command “slaves”
send the 〈TAR〉 request to RTI. Using line 31 master also sends the 〈TAR〉 request to RTI, which ends
one episode of execution. After sending TAR request with a parameter time, a federate cannot generate an
update on that time, it can only generate updates after that time.

5.2.2 Slave For Implicit Waveform Relaxation Algorithm

Although the real strategy of integration lies in the master algorithm, but obviously master algorithm can
only work with the participation of the slave algorithm. The slave algorithm is quite straightforward.
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Figure 5.3: Petri net diagram for master-slave synchronization.

It goes into an infinite loop and waits for commands to be sent from the master. The slave works like
a state machine, it changes its state based on the messages received from the master. It is important,
therefore, to understand the commands (in form of messages) sent to, and processed by the slave process.
In the messages when parameter time is not discussed explicitly then it means that it is only used for
time stamping. Again it is reiterated that few lines of code appear to send messages directly to another
process. In reality no process can communicate to another process directly, all communication has to
happen through the RTI. Following are the commands sent from the master to a slave via the RTI.

• 〈Send Initial States〉: The command is sent to “slave” processes to ask them to send the initial
values of the state variables. The slave in response sends the values of state variables using the
〈Update〉 message.

• 〈Send States〉: The message is used to ask slaves to send their newly calculated values of state
variables in the form of 〈Update〉 message.
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• 〈Update Inputs〉: The message is sent to ask a slave to update its input variables to the values sent
with the message.

• 〈Update States〉: The message is sent to ask a slave to update its state variables to the values sent
with the message.

• 〈Advance Time〉: On receiving 〈Advance Time, time〉, FMU-Federate integrates the FMU to time,
which is provided as parameter of the message.

• 〈End Iteration〉: The message is sent to inform the FMU-Federates that the fixed point iteration
has converged, so they can close the internal integration procedure up to time, which is a parameter
of the message.

• 〈End Simulation〉: The message asks an FMU-Federate to abandon all processing and go to termi-
nate state.

The “Main” procedure in algorithm 2 when converted to a state machine takes the form of figure 5.4b. For
more clarity input and output are written with every state transition like a Mealy machine. It is clear from
the figure 5.4b that the master only receives inputs on states S 1, S 3 and S 6. Exactly opposite is the case of
slave, which sends outputs only at states I, S 2 and S 5. We can say that for a slave except states I, S 2 and
S 5, all other states are quiescent [AW04]. Looking at lines following the line 18 in algorithm 2, it reveals
that the master keeps waiting for all the updates to come from all slaves, until then it does not send any
more command to any slave. This causes the states S 1, S 3 and S 6 in master to act like “synchronization
points”. In terms of Petri net diagram the concept of synchronization point is shown in figure 5.3.

The discussion of “synchronization point” is very important because it ensures the correct execution of
the algorithm. Suppose there was no synchronization point, in such a case there was no way to prove
that the slaves are obeying the commands in the right order. As mentioned earlier in section 4.3.1 that
the presented distributed model ensures “TSO” delivery, but it does not ensure that the messages will be
received at the slave in the order they were sent. Messages with the same time stamp may change the
order at reception. In such a situation if a slave, for example, applies the updated inputs before updating
the state variables then the calculation will go completely wrong. To avoid such a situation it is essential
to have synchronization points.

It should be clear in the mind of the reader that these “synchronization points” have nothing to do with
the HLA “synchronization points”. They are a completely different concept, and the use of HLA synchro-
nization points in current scenario would be extravagant. The purpose of HLA synchronization points is
to give control of regulation to a federate. A federate announces a synchronization point and waits until
all others do not respond to it. In turn all other federates also have to wait for the signal form the announc-
ing federate to begin their execution again. The procedure devised here is much cheaper than the HLA
synchronization points, because it does not disturb the normal execution of the RTI. Using HLA synchro-
nization points forces the RTI to push the complete federation into a special mode, until the federates are
not synchronized. After the synchronization is achieved, the same state has to be restored by the RTI.
The computational cost of performing the push and restore procedure is clearly higher than the presented
technique.
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Figure 5.4: Master and slave state machines. State S 6 and the relative command is introduced just to guarantee
correct synchronization, although without it every thing else could work properly.
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5.2.3 Proof of the Correct Synchronized Execution

In order to prove that a slave always follows the correct execution path induced by the master, we denote
the master state graph asM and slave state graph as S then

M � S (5.3)

Equation 5.3 means that S simulatesM, or in other wordsM and S have simulation preorder relationship
[VG01]. Each move generated by the master M can be simulated by slave S . From this fact it can be
concluded that a slave always follows the master correctly until and unless the order of commands sent
from the master to a slave, is changed during network communication.

Change in order only affects the execution when the slave is in a branching state. Branching states are
highlighted as red in figure 5.4a. At a branching state (or branching point), there can be cases when a slave
can go into a direction not intended by the master. Before proving that by using synchronization points
such a situation can be avoided, few structures must be defined

• Σ is the set of all commands {µ1, µ2, µ3, . . . , µn}.

• Γ is the list where a slave stores all the commands sent to it. A slave removes a command from
Γ when it executes it. At any time it may contain a limited number of commands induced by the
master algorithm. So Γ ⊂ Σ at any time of execution, with |Γ ∩ Σ| > 0

• Λ is the set of all states {s1, s2, s3, . . . , sn} in the slave state graph.

• Λm is the set of all states {sm
1 , s

m
2 , s

m
3 , . . . , s

m
n } in the master state graph.

• Λ f ⊂ Λ, contains all branching states in Λ.

• Λm
f ⊂ Λm, contains all branching states in Λm.

• Π is the set containing elements {Π1,Π2,Π3, . . . ,Πn}. An element Πi is the set of all commands
allowed at state si. So each Πi ⊂ Σ, with |Πi ∩ Σ| > 1

The slave algorithm works in a way that it keeps accepting the commands and saves them in the list Γ. At
each state si it follows the first command it finds in Γ ∩ Πi . In order to prove that the synchronization
algorithm works perfectly, it is sufficient to prove that at any time during the execution of the algorithm,
for the state si active at that time following is true

|Γ ∩ Πi| 6 1 (5.4)

In order to prove above statement, it should be noted that there are certain commands which work like
synchronization commands for salves and the master. The state where the slave ends up in result of
executing any of these commands is called as a “synchronization point” or synchronization state. The
master also ends up at the similar state, in its own state graph, with a difference that it first gets into the
state and then issues the command. At these points master waits for a response from all the slaves and it
does not issue any more command until it has received a response from all of them. It is easy to observe
that the condition given in equation 5.4 can only be violated at a branching state where |Πi| > 1.
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Lemma 1. Condition given in equation 5.4 remains valid, if starting from any state in Λm
f and Λ f respec-

tively, master and slave have to go through a synchronization point in their state graphs, in order to reach
any state— same or different—in Λm

f and Λ f again.

Proof. Suppose that the master has passed through a branching state sm
f . The corresponding state of sm

f in
slave is s f . By this, the master sends a command in Π f to slave. As synchronization point sm

s must follow
it by definition, so master must wait for a response from all the salves at sm

s . The corresponding state to
sm

s in slave is ss. At sm
s the master cannot send anymore commands until it receives all the responses. On

the side of a slave, the list Γ now may or may not contain a command present in Π f . In order to send a
response back to the master, the slave has to pass through s f and reach ss, because by equation 5.3 slave
simulates the master. To do this it must consume the command sent from the master. So essentially when
a slave reaches at ss, it must have consumed the command in Π f sent from the master. This means that
when a slave sends a response back to master, the list Γ of that slave does not contain any command in Π f .
The property holds for all branching states s f and their respective set of commands Π f , which proves that
lemma 1 is true.

The proof means that the condition given in equation 5.4 is entailed provided

1. Slave simulates the master and the master sends commands in correct order.

2. Conditions imposed by lemma 1 are valid in the state graphs of master and slave.

The above discussion proves that if the condition given in equation 5.4 remains valid at all times during the
execution of the simulation, then there will be no problem of synchronization. The property is enforced
by lemma 1. Looking at the slave state machine in figure 5.4a, it is clear that there are no two branching
states reachable from each other without passing through a synchronization point. For example, if the
state S 6 had been removed from figure 5.4a and figure 5.4b then a situation can arise that a slave could go
from state S 5 to state S 2, when the intention had been to go through S 7 and then go to S 2. It is important
to mention that the proof of synchronized execution is sufficient for any number of slaves, because for
the sake of synchronization each slave is only dependent on the master. This is a benefit of master-slave
topology.

5.2.4 Complexity of WR Algorithm

Time and space complexity analysis of distributed system is not straight forward [AW04]. In case of
numerical algorithms it becomes even more complex. As the way numerical algorithms divide a problem
into sub-problems is not straightforward. Each trajectory on time horizon is divided into steps, the points
on the trajectory may not be equidistant, because the step size is normally not constant. Although, in
aforementioned algorithms a constant step size is used, yet in later sections it will be discussed how it
can be made variable. This makes time complexity analysis different from other distributed algorithms.
Although a general model of complexity can be devised, but it does not tell anything how the problem
“size” is related to the time of execution. Rather it can only tell something about how the time of execution
is related to the “nature” of the problem. Message complexity is much more relevant in case of distributed
numerical algorithms. As message communication takes large amount of execution time in distributed
algorithms, so from message complexity, the time complexity can be derived in abstract terms.

Time complexity of distributed numerical algorithm is not comparable to a monolithic one, because nature
of the problem is completely different. In a situation where a subsystem Sp of a system S is coupled with
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another subsystem Sq. If Sp is tried to solve with a monolithic solver, while receiving updates from
Sq, then the results will most probably be nothing less than absurd. A distributed solver on the other
hand is robust. A subsystem Sp of a system S, under some restrictions can be coupled with some other
system S̃. At current stage of research, a monolithic solver for a monolithic problem has much more
choices and tools for optimization than any distributed solver. Hence, comparing a monolithic solver with
a distributed one is not justifiable. Both address their own spectrum of problems. The topic is revisited
later in section 6.1.

For message complexity, it should be realized that in master-slave configuration, a slave waits for the
commands from the master indefinitely. Meaning, slave does not do anything unless the master asks it
to. The commands from master have two types, one which do not require a response from slaves, second
which do require a response. This is shown in figure 5.5, along with the topology how the master, slaves
and the RTI are connected together. The same fact is clear from the figure 5.4, where master only seeks
response from slaves when it asks them to send the state variables.

RTI

co
m
m
an
d

respons e

Master

FMU
1

FMU
2

FMU
3

FMU
n

Figure 5.5: Figure shows how the master, slaves and the RTI are connected together. The dotted lines for responses
show that for some commands master may not be expecting a response.

There are main three elements which are affecting the number of messages during algorithm execution.
Number of subsystems or components nc, the number of macro steps ns, and the sum of number of fixed

point iterations ni per macro step (sumi =
ns∑

i=0
ni). Looking at algorithm 2 the main simulation loop sends

only three commands outside of the fixed point iteration. One of them (〈Send States〉) requires a response
from all slaves. Inside the fixed point iteration it sends four commands, one of them requires a response.
So the following expression can give the number of messagesMwr sent during the simulation .
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Mwr(ns, sumi, nc) = (2nsnc + 2nsnc) +

ns∑
i=0

(3ninc + 2ninc) = 4nsnc +

ns∑
i=0

5ninc (5.5)

Asymptotically speaking, if there is an upper bound Imax on number of fixed point iterations within any
macro step, then equation 5.5 can be converted to following

Mwr(ns, Imax, nc) = O (nsnc + nsImaxnc) = O (nsImaxnc) (5.6)

Equation 5.6 can be further refined by observing that the number of components can be considered as
initial parameter pc. In practice their number may not achieve three digits. So it can be considered as a
small constant multiple. Consequently, the message complexity can be reduced to

Mwr(ns, Imax, pc) = O (nsImax pc) = O (ns) (5.7)

From equation 5.7 it is clear that the most important factor which affects the performance of a distributed
numerical algorithm is the number of macro steps, which is a direct consequence of macro step size.
In most cases making the step size too big can cause the number of fixed point iterations to increase. So
making step size just as big as possible may not be the best option. An intelligent step size control strategy
has to be devised which increases the step size while keeping the fixed point iterations to minimum. The
result is in perfect harmony with the result of performance evaluation of monolithic algorithms.

5.2.5 Case Study

The reasons why a system converges to fixed point and hence produces correct results while being solved
with a Waveform Relaxation (WR) algorithm, can be seen in [LRSV82] and referenced literature. The
proof is out of the scope of this work, but briefly it can be said that the system mentioned in equation 4.3
can a be transformed into a “canonical form” of WR algorithm [LRSV82], which is given as follows

ẋk = f (xk, xk−1, ẋk−1, zk−1, u)

zk = g(xk, xk−1, ẋk−1, zk−1, u)
(5.8)

Here f represents the differential part of the system wile g represent the algebraic constraints. It is proven
in literature that the system is guaranteed to converge if ( f , g) is Lipschitz continuous with respect to x
and globally contractive with respect to (ẋ, z).
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Figure 5.6: Difference of results between results of OpenModelica and WR algorithm for the problem of “Lorenz
attractor”.

A model is simulated using WR method, which is well renowned for its stiffness. It is also very popular for
its chaotic behavior and strong coupling among state variables [GWR86]. It is called as “Lorenz attractor”
and described as follows

ẋ = σ(y − x)

ẏ = x(ρ − z) − y

ż = xy − βz

(5.9)

The “Lorenz attractor” is a very good example of stability of WR method over others. Explicit Gauss-
Seidel method cannot be used for the system due to circular dependency of variable y and z. Explicit Jacobi
method does not give any results comparable to the standard solution even after reducing the simulation
step size below 0.01. However WR method gives comparable results shown in figure 5.7. The step size
had to be kept as small as 0.05 due to the stiff nature of the system. Later in section 5.5.2 a mechanism of
steps size control is also discussed, but because it is not the main topic of the study so in depth discussion
is avoided to prevent digression.
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Figure 5.7: “Lorenz attractor” simulated using the waveform relaxation algorithm, the “step size” is 0.05 here.
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Figure 5.8: “Lorenz attractor” simulated using OpenModelica.
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5.3 Distributed Algorithm Based on Semi-implicit Solver Coupling

A semi-implicit approach is different from a fully implicit approach in that it does not need to reevaluate
the complete trajectory from “communication point” Tn to Tn+1 [BS12]. If there are small internal integra-
tion points t0, t1, t2, . . . , tn for a sub-component F1, then in order to perform a fixed point iteration which
makes the solution to converge, it does not need to go through all the points t0, t1, t2, . . . , tn. This makes it
advantageous in cases where reevaluation of the complete macro time step is not possible.

The detailed mathematical description of the algorithm can be seen in [SBE+14], where it is named as
Interface Jacobian-based Co-Simulation Algorithm (IJCSA). In brief, if only two systems S1 and S2
are considered, with respective inputs U1, U2 and outputs Y1, Y2 then I1 and I2 are their compatibility
constraints defined as

I1(S1(U1),S2(U2),U1,U2) = 0

I2(S1(U1),S2(U2),U1,U2) = 0
(5.10)

According to IJCSA method, the right hand side of the equation 5.10 are 0 only in the ideal condition, in
reality they are non-zero values which can be named as R1 and R2. Values R1 and R2 are in fact residual
to the Newton iteration applied to the composite system. Components involved in the Newton iteration
are given below  ∂R1

∂U1

∂R1
∂U2

∂R2
∂U1

∂R2
∂U2


 ∆U1

∆U2

 = −

 R1

R2

 (5.11)

The system is ultimately converted to following, the details of the conversion can be seen in [SBE+14].I − ∂Y2
∂U2

−
∂Y1
∂U1

I

︸      ︷︷      ︸
¯̄J

 ∆U1

∆U2

 = −

 R1

R2


(5.12)

Here ∂Yi
∂Ui

is the derivative of output with respect to input, and ¯̄J is the Jacobian matrix. The method is
useful using FMI 2.0, because it supports Jacobian information[BOAk+12]. In the absence of Jacobian
information, either estimates to the Jacobian can be used, or a quasi-Newton scheme can be used in place
of Newton iteration. Until the time of writing there is no open source simulation package which supports
FMI 2.0, so the presented work is focusing on FMI 1.0, and the approach without Jacobian is presented
here.

5.3.1 Quasi-Newton Methods Replacing Newton Method

To replace the need of Jacobian information in semi-implicit coupling the author has developed a tech-
nique to use quasi-Newton methods for fixed point iteration, in place of Newton’s method for fixed point
iteration. In order to distinguish the difference between a quasi-Newton method and Newton method,
let us consider a quasi-Newton method presented by Broyden [Bro65]. To briefly cover how Broyden’s
method works, it must be compared to Newton’s method. Newton’s method defines a sequence xk for the
approximation of x∗ by

x̄k+1 = x̄k −
¯̄J−1
g (x̄k)g(x̄k), k = 0, 1, 2, . . . (5.13)

The Broyden changes the equation 5.13 into following
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x̄k+1 = x̄k −
¯̄B−1

k (x̄k)g(x̄k), k = 0, 1, 2, . . . (5.14)

The replacement of inverse Jacobian matrix ¯̄J−1
g is ¯̄B−1

k , what we may call as Broyden Matrix. Transform-
ing equation 5.13 into a co-simulation problem, and comparing with equation 5.12 we get following

¯̄J x̄k = R̄k (5.15)

Replacing Jacobian matrix by Broyden matrix

¯̄Bk x̄k = R̄k (5.16)

Equation 5.16 means that at each fixed point iteration Broyden matrix ¯̄B, inputs x̄ and residual R̄ are
updated simultaneously. The only known thing is the so called function g(x̄) which gives predicted outputs
given known inputs. The function g(x̄) comprises of the output values of all the FMUs when their inputs
are set to x̄. The system is evaluated iteratively until the norm of residual becomes less than a tolerance
value TOL.

Generalizing the problem, above statement shows that it is just the same as root finding problem of a
known function g(x), with unknown x. Besides Broyden there have been other techniques proposed to
find the roots of a functions. All the proposed methods update an approximation to Jacobian Matrix or
inverse Jacobian Matrix, along with the inputs x̄k and residual R̄k. Any of these methods can be used here,
including Broyden’s method. Another option is to use Newton Krylov method [KK04], which is proven
to be good for large systems. Whatever method is used in practice, for generalization, in algorithm 3 it
is abstractly represented as X at line 16. Similarly , the abstract representation of update of inputs xk

is represented by Z at line 17. The residual is calculated by the function Residual defined at line 26.
The function is called at line 15 to pass on the calculated residual to the functions calculating estimate of
Jacobian matrix and the inputs.

5.3.2 Description of the Algorithm

First, it is important to clarify an imminent ambiguity. While using algorithm 3 there seem to be little
difference in inputs and outputs of subsystems, which is true because they only represent a different point
of view to the same set of values. This is due to the reason that here only those outputs are of interest which
are inputs to other subsystems. The outputs which are not connected to any other subsystem virtually play
no role in convergence of the solution. Considering this situation with respect to equations 5.13 and 5.14,
if the outputs of function g are defined as ȳk = g(x̄k), then x̄k+1 = ȳk. Meaning, the same outputs at macro
time step Tn are going to be inputs for the first fixed point iteration at macro time step Tn+1, the only thing
which has to be done is to create a mapping from outputs to inputs.

As a brief overview, the purpose of applying quasi-Newton iteration on a co-simulation problem, at a
certain macro time step Tn, is to find those outputs of all subsystems which when fed as inputs to respective
subsystems do not change the outputs more than a tolerance value TOL. Looking at the implementation of
the concept in algorithm 3 (semi-implicit algorithm), it is evident that it is much the same as algorithm 2
(WR algorithm). Just like WR algorithm it has two loops, one, the main simulation loop which starts from
line 7, the second is fixed point iteration loop which starts from line 14. The simulation loop is responsible
for advancing time, and fixed point iteration loop is responsible for convergence. In section 5.2.3, by the
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Algorithm 3 Semi-implicit Algorithm.
1: Code for pmaster:
2: Procedure Main()
3: time← 0
4: send 〈Send Initial Outputs, time〉
5: GetUpdates() // Defined in listing for algorithm 2
6: x̄k ← updates
7: while time ≤ simulationEndTime do
8: time← time + step
9: send 〈Advance Time, time〉 to all “slave” processes.

10: send 〈Send Outputs, time〉 to all “slave” processes.
11: GetUpdates()
12: x̄k ← [value(x) | x ∈ updates]
13: R̄ ← ∞

14: while R̄ > TOL
15: R̄ ← Residual(x̄k, time)
16: ¯̄B−1

k = X(R̄, x̄k,
¯̄B−1

k )
17: x̄k+1 = Z(x̄k,

¯̄B−1
k )

18: x̄k ← x̄k+1
19: end while
20: send 〈End Iteration, time〉 to all “slave” processes.
21: send 〈TAR, time〉 to prti

22: end while
23: send 〈End Simulation〉 to all “slave” processes
24: terminate
25: end

26: Function Residual(ȳk, time)
27: for each p j

slave:
28: send 〈Update Inputs, {x | x ∈ ȳk ∧ name(x) ∈ inputs j

slave}, time〉 to p j
slave

29: send 〈Recalculate, time〉 to all “slave” processes
30: send 〈Send Outputs, time〉 to all “slave” processes
31: GetUpdates()
32: ȳk+1 ← [value(x) | x ∈ updates]
33: return ȳk+1 − ȳk

34: end

35: upon receiving 〈Time Grant, time〉:
36: if |updates| < NUMBER OF OUT PUTS then
37: ExecS tate← U pdatesArrived
38: end if

39: upon receiving 〈Update,outputs, time〉:
40: ∀x ∈ updates∀y ∈ outputs ((name(x) = name(y))→ (value(x)← value(y)).
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Algorithm 3 Semi-implicit Algorithm (Continued).
41: Code for pslave:
42: upon receiving any message:
43: store every message into commandList
44: upon receiving 〈Time Grant, time〉:
45: search for all “allowable” messages for the current state in commandList.
46: execute the action on the first message found.
47: send 〈TARA,time〉 to prti except in case of 〈End Simulation〉 and 〈End Iteration〉

48: action for 〈Send Initial Outputs, time〉:
49: Initialize the FMU, and send the initial outputs to pmaster in from of 〈Update,outputs, time〉
50: action for 〈Advance Time, time〉:
51: Integrate the FMU to time
52: action for 〈Send Outputs, time〉:
53: send the outputs in form of 〈Update,outputs, time〉 to pmaster

54: action for 〈Update Inputs,input, time〉:
55: set the respective input variable of FMU to input
56: action for 〈Recalculate, time〉 :
57: integrate the last integration step once again (with updated inputs).
58: action for 〈End Iteration, time〉 :
59: send 〈TAR, time〉 to prti

60: action for 〈End Simulation〉:
61: terminate

62: Code for prti:
63: upon receiving 〈TARA, time〉 from pi:
64: send all messages queued for pi to pi with time stamp ≤ time
65: upon confirmation of sending all updates send 〈Time Grant〉 to pi

66: upon receiving 〈TAR, time〉 from pi:
67: send all messages queued for pi to pi with time stamp ≤ time
68: upon confirmation of sending all updates send 〈Time Grant〉 to pi

69: upon receiving 〈Update,outputs, time〉 from pi:
70: enqueue outputs with time stamp time, for subscribing process pmaster

71: upon receiving any other command ζ from pmaster:
72: enqueue the command ζ for all subscribing “slave” processes.
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(b) State machine for master of semi-implicit algorithm

Figure 5.9: Master and slave state machines. Slave state machine has branching states highlighted, while master
state machine has synchronization states highlighted.

help of equation 5.3 and lemma 1 it is already proved that if master and slave have a simulation relationship
and both necessarily pass through a synchronization state after passing through a branching state, then
there is no possibility that the commands sent in order from master are not executed in the same order
by slave. Looking at figure 5.9 it is clear that the same condition is valid in state machines of master and
slave. So the execution of semi-implicit algorithm is also synchronized and will give the desired results.

The messages used by algorithm 3 are following.

• 〈Send Initial Outputs〉: The command is sent to “slave” processes to ask them to send the initial
values of the outputs. The slave in response sends the values of outputs using the 〈Update〉message.

• 〈Send Outputs〉: The message is used to ask slaves to send their newly calculated values of outputs
in the form of 〈Update〉 message.

• 〈Update Inputs〉: The message is sent to ask a slave to update its input variables to the values sent
with the message.
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• 〈Recalcualte〉: When slave receives the message, it has already updated inputs, now it recalculates
the outputs for that certain point in time. The time is sent as a parameter of the message.

• 〈Advance Time〉: On receiving the message, FMU-Federate integrates the FMU to time, which is
provided as a parameter of the message.

• 〈End Iteration〉: The message is sent to inform the FMU-Federates that the fixed point iteration
has converged, so they can close the internal integration procedure up to time, which is a parameter
of the message.

• 〈End Simulation〉: The message asks an FMU-Federate to abandon all processing and go to termi-
nate state.

5.3.3 Complexity of Semi-implicit Algorithm

Analysis of the message complexity of semi-implicit algorithm is very similar to complexity analysis of
WR algorithm. Both algorithms have two loops, one the simulation loop, and second the fixed point
iteration loop. The simulation loop in semi-implicit algorithm is just the same as WR algorithm, while the
fixed point iteration loop is different because its implementation may vary, based on the method chosen for
it. An in depth analysis of the complexity of different Jacobian free iterative methods is given in [KK04].
Based on the arguments presented in section 5.2.4 the message complexity of semi-implicit algorithm is
also dependent on the number of step ns and an upper bound on the number of fixed point iterations, i.e.

Msi(ns, Imax, nc) = O (nsImax pc) = O (ns) (5.17)

Here it is an added responsibility of the simulation engineer to use such quasi-Newton method for fixed
point iteration which ensures to keep the upper bound on fixed point iterations Imax to minimum, while
allowing to increase the step size to maximum.

5.3.4 Case Study

The same system described in equation 5.9 is used here to demonstrate the results. In case of semi-implicit
algorithm it should be noted that the results can vary a lot based on the quasi-Newton scheme used for
the fixed point iteration. For example in the given example if in place of Newton Krylov method, an
older Broyden method is used, then the system does not solve at all after few macro steps. Nevertheless,
describing the differences in iterative techniques is out of the scope of this document, any book on iterative
methods can be consulted for this, such as [OR00]. In the presented example Newton Krylov method with
LGMRES [KK04] is used for quasi-Newton iteration.

The reference solution for the “Lorenz attractor” is already given in figure 5.8. To avoid repetition it is not
copied here. The error distribution, or the deviation from the reference solution can be seen in figure 5.10.
Although the detailed comparison of the fully-implicit and semi-implicit method will be presented in
section 6.4, but here the results of the simulated system can be compared by examining figure 5.7 and
figure 5.11. The prominent shape of the “Lotenz attractor” can be seen in both the figures. Although, the
individual curves plotted against the simulation time are hard to comprehend due to their rapid changing
values, yet the overall shape of the curves is very much the same.
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Figure 5.10: Difference of results between results of OpenModelica and semi-implicit algorithm for the problem of
“Lorenz attractor”.

To examine the error distribution of the results produced by semi-implicit and full-implicit algorithms
with respect to the reference solution produced by OpenModelica, figure 5.6 and figure 5.10 have to be
observed. Comparing both figures, it is clear that the median of error for variable x in figure 5.10 is
slightly higher than the one in figure 5.6. The maximum error value is also slightly more than the one
in figure 5.10. Both these indicators suggest that the semi-implicit algorithm has slightly more error than
the fully-implicit algorithm, in the solution of variable x. The same situation can be seen for variable y.
For variable z the situation is opposite. Semi-implicit algorithm has the median and maximum error value
slightly less than the one of full-implicit algorithm. By and large, the differences in error distribution are
not high, and it can be said that two methods can be used interchangeably to suite the requirements at
hand. Further aspects of their comparison are delayed till section 6.4.
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Figure 5.11: “Lorenz attractor” simulated using the semi-implicit algorithm, the “step size” is 0.05 here.
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5.4 Distributed Algorithm for Strong Coupling Using SUNDIALS

As described earlier in section 3.3.4, research community divides coupling of models in two main cate-
gories, weak coupling and strong coupling. Aforementioned techniques were related to the weak coupling
techniques. The present section describes a method to use HLA and FMI for strong coupling. In this
type of coupling there is a single solver which solves the complete system. The only difference is that the
system to be solved is distributed in different subsystems. For example suppose a model of a house hold
consumption is developed using OpenModelica, and the model is exported in form of an FMU. While a
model of power grid is developed using another simulation package, for example OpenDSS 1. The model
of power grid is also exported in the form of an FMU. Now to see the effect of load of n number of houses
on the power grid, n instances of house FMU can be simulated with the FMU of power grid. The solver in
this case can be any, but when already developed and tested solvers are available, it is better to use them.
SUNDIALS [HBG+05] is one such solver, which is established as one of the efficient and accurate solvers
in practice.

5.4.1 Description of the Algorithm

The algorithm 4 (strong coupling algorithm) is a little different from the master-slave algorithms described
before. It has only one loop starting at line 8. The reason is quite obvious that the convergence is only
an internal matter of SUNDIALS. The SUNDIALS solver is represented here by �� used at line 10. The
solver function takes another function as a parameter represented here by RHS. The SUNDIALS solver
�� expects the RHS to evaluate the right hand side of the equation 5.18

˙̄y = f (t, ȳ), ȳ(t0) = ȳ0, (5.18)

and return ẏ. For details of how different functions of SUNDIALS library work, have a look at [HBG+05].
The only challenge here is to evaluate RHS while the subsystems, or in other words FMUs, are residing
in separate process spaces. The communication between solver code and the FMU is done using the
gluing code called FMU-Federate. The definition of the function RHS starts from line 20. The numerical
solution of the given system is completely hidden inside function ��, but use of time stepping mechanism
is still present at line 9. This may confuse the reader. The time stepping scheme here is only to tell ��
when user code wants to get the updated values of the state variables vector ȳ. When the RHS function
is evaluated depends completely on the internal implementation of the �� function. However, user can
request to get the updated values at a point in time, which is what code at line 9 is doing.

Just like the previous master-slave algorithms here too, there is no need to prove that the correct order
of execution is retained because of the correct placement of synchronizing states. The state digrams are
shown in figure 5.12. The commands sent from the master to a slave are given below.

• 〈Send Initial States〉: The command is sent to “slave” processes to ask them to send the initial
values of the state variables. Slaves in response send the values of state variables using the 〈Update〉
message.

• 〈Send States〉: The message is used to ask slaves to send their newly calculated values of state
variables in the form of 〈Update〉 message.

1http://smartgrid.epri.com/SimulationTool.aspx
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Algorithm 4 Strong Coupling Algorithm.
1: Code for pmaster:
2: Procedure Main()
3: time← 0
4: send 〈Send Initial States, time〉
5: GetUpdates() // Defined in listing for algorithm 2
6: ȳ← updates
7: Initialize SUNDIALS
8: while time ≤ simulationEndTime do
9: time← time + step

10: ȳ = ��(RHS, time)
11: send 〈Send States, time〉 to all “slave” processes.
12: GetUpdates()
13: ȳ← updates
14: send 〈End Iteration, time〉 to all “slave” processes.
15: send 〈TAR, time〉 to prti

16: end while
17: send 〈End Simulation〉 to all “slave” processes
18: terminate
19: end

20: Function RHS(ȳ, time)
21: for each p j

slave:
22: send 〈Update States, {x | x ∈ ȳ ∧ name(x) ∈ states j

slave}, time〉 to p j
slave

23: for each p j
slave:

24: send 〈Update Inputs, {x | x ∈ ȳ ∧ name(y) ∈ inputs j
slave}, time〉 to p j

slave
25: send 〈Send Derivatives, time〉 to all “slave” processes
26: GetUpdates()
27: ˙̄y← updates
28: return ˙̄y
29: end

30: upon receiving 〈Time Grant, time〉:
31: if |updates| = NUMBER OF S T AT ES then
32: ExecS tate← U pdatesArrived
33: end if

34: upon receiving 〈Update,ȳ, time〉:
35: ∀x ∈ updates∀y ∈ ȳ ((name(x) = name(y))→ (value(x)← value(y)).
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Algorithm 4 Strong Coupling Algorithm (Continued).
36: Code for pslave:
37: upon receiving any message:
38: store every message into commandList
39: upon receiving 〈Time Grant, time〉:
40: search for all “allowable” messages for the current state in commandList.
41: execute the action on the first message found.
42: send 〈TARA,time〉 to prti except in case of 〈End Simulation〉 and 〈End Iteration〉

43: action for 〈Send Initial States, time〉:
44: Initialize the FMU, and send the initial states to pmaster in from of 〈Update, states, time〉
45: action for 〈Send States, time〉:
46: send the state variables in form of 〈Update,states, time〉 to pmaster

47: action for 〈Send Derivatives, time〉:
48: send the state derivatives in form of 〈Update,derivatives, time〉 to pmaster

49: action for 〈Update States,state, time〉:
50: set the respective state variable of FMU to state
51: action for 〈Update Inputs,input, time〉:
52: set the respective input variable of FMU to input
53: action for 〈End Iteration, time〉 :
54: send 〈TAR, time〉 to prti

55: action for 〈End Simulation〉:
56: terminate

57: Code for prti:
58: upon receiving 〈TARA, time〉 from pi:
59: send all messages queued for pi to pi with time stamp ≤ time
60: upon confirmation of sending all updates send 〈Time Grant〉 to pi

61: upon receiving 〈TAR, time〉 from pi:
62: send all messages queued for pi to pi with time stamp ≤ time
63: upon confirmation of sending all updates send 〈Time Grant〉 to pi

64: upon receiving 〈Update,y, time〉 from pi:
65: enqueue y with time stamp time, for subscribing processes pmaster

66: upon receiving any other command ζ from pmaster:
67: enqueue the command ζ for all subscribing “slave” processes.
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• 〈Update Inputs〉: The message is sent to ask a slave to update its input variables to the values sent
with the message.

• 〈Update States〉: The message is sent to ask a slave to update its state variables to the values sent
with the message.

• 〈End Iteration〉: The message is sent to inform an FMU-Federate that one macro time step of the
simulation is completed, so the FMU-Federate can accept the current state variables as the final one
for the current macro time step.

• 〈End Simulation〉: The message asks an FMU-Federate to abandon all processing and go to termi-
nate state.
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(b) State machine for master of strong coupling algorithm

Figure 5.12: Master and slave state machines. Slave state machine has branching states highlighted, while master
state machine has synchronization states highlighted.
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5.4.2 Complexity of Strong Coupling Algorithm

Algorithm 4 (strong coupling algorithm) may look similar to WR algorithm and semi-implicit algorithm,
but in reality it is very different. The main simulation loop which starts at line 8, is not playing any part
whatsoever in setting the macro step size, although it may look like. The reality is that the step size is
completely under control of internal algorithms of SUNDIALS. The only thing set at line 9 is the next
time of getting the updated values of state variables. So in reality it is not prudent to enumerate number of
iterations in order to count the number of messages during the algorithm execution. The only way to count
the message complexity of strong coupling algorithm is to realize how SUNDIALS as a solver works.

Let us suppose that = is an advanced solver, which in present case is SUNDIALS. Looking at equa-
tion 5.18, every advanced solver = has to evaluate the right hand side of equation 5.18 repeatedly, in order
to evaluate the values of state variables, namely ȳ. In many cases the function f is not evaluated with
strictly increasing values of independent parameter t2. After evaluating the function f at certain points
in time and analyzing the rate of change, the solver = performs the sensitivity analysis, whose purpose,
among other things, is to find the optimal step size for solving the system. In modern solvers, the process
of solving the system and sensitivity analysis goes hand in hand [SH05]. Due to this, modern solvers are
good in identifying stiff portions of the system and vary the step size accordingly. Due to the involvement
of sensitivity analysis, step size itself does not guarantee anything about the number of times the function
f is evaluated during a simulation. Sometimes it is evaluated only to judge the stiffness of the system
alone. Keeping all these things in mind it is hard to associate the number of steps with number of mes-
sages as it was done in WR algorithm or semi-implicit algorithm. What can be done is to associate the
number of function evaluations with the number of messages.

Suppose the number of function calls during the solution of a system are n f . The main simulation loop
only contribute to get the updated values, suppose it has ns iterations, with constant c1 number of messages
sent per iterations. Inspecting the RHS function it is clear that there are no loops inside this function so
the messages sent during the execution of RHS function can be a constant number c2. The message
complexity of strong coupling is given below

Msc(ns, n f ) = c1ns + c2n f = O
(
ns + n f

)
(5.19)

Equation 5.19 does not choses anyone between ns and n f to be larger than the other, because it is not
possible to generalize. For stiff systems like the one discussed in case study (section 5.4.3), n f can be
much larger than ns, if the step size step in the algorithm is not chosen to be extremely small. While
keeping the same value of step, if the system to be evaluated is a smooth one then n f can be much less
than ns. The value of ns also depends on how long the simulation have to be executed. It is also not
possible to generalize the association of ns and n f among themselves. The nature of a system can vary
during the time. At one point in time, if a system is stiff, then at another, it can be smooth [WH91].

5.4.3 Case Study

The solving capabilities of SUNDIALS solver do not need any proof. The solver has been used in many
industrial and research projects. The purpose here is to demonstrate that the solver also works well in a
distributed setting described here. The same example is chosen to demonstrate the results, which was used
for WR algorithm i.e. “Lorenz attractor”. The description of the system can be seen in equation 5.9. The
reference solution produced by OpenModelica can be seen in figure 5.8.

2The independent parameter t can be something other than the time, but in case of simulations it is mostly the time.
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Figure 5.13: Difference of results between results of OpenModelica and strong coupling algorithm for the problem
of “Lorenz attractor”.

To see the error distribution of the solution produced by SUNDIALS with that of reference solution using
OpenModelica, figure 5.13 has to be examined. Further comparing the figure 5.13 with figure 5.6 and
figure 5.10, it is revealed that the error distribution is not much different in fully-implicit, semi-implicit
and strong coupling algorithms. As SUNDIALS is a very advanced solver so it can be seen that the
medians of errors for all variables x, y and z are less than the other two (semi-implicit and fully-implicit).
The maximum error values are also much less. The difference is not too large though, especially not large
enough to render the other two solutions (semi-implicit and fully-implicit) as useless. The application
domain of strong coupling algorithm is completely difference from the semi-implicit and fully-implicit
algorithms. The strong coupling algorithm is only applicable where the solvers are not distributed and
the centrally located solver has a complete control over the distributed models. Semi-implicit and fully-
implicit algorithms have distributed solvers, in contrast. The comparison of these methods is not justified,
due to the vast differences in their application domains.

88



Master-Slave Algorithms Using HLA and FMI

X

20
15

10
5

0
5

10
15

20

Y

30

20

10

0

10

20

30

Z

0

10

20

30

40

50

0 20 40 60 80 100

Time

30

20

10

0

10

20

30

40

50

V
a
lu

e
s

X
Y
Z

Figure 5.14: “Lorenz attractor” simulated using the strong coupling of FMUs, solved by SUNDIALS and connected
by HLA, the “step size” is internally controlled by SUNDIALS.
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5.5 Distributed Hybrid Co-Simulation Algorithm

Previous algorithms targeted solution of different continuous systems. Complex systems, though, mostly
comprise of continuous and discrete parts. Especially, Cyber Physical Systems (CPS) are inherently hybrid
in nature. The Information and Communication Technology (ICT) part is normally modeled as a discrete
event simulation. Due to these reasons it is essential to look into hybrid simulations, using distributed
components. As discussed in chapter 2 smart grid simulators try to combine one continuous and one
discrete event simulator. In real life the problems may be more complex than that. For example, a complex
energy system may have electric power and thermal energy interconnected with each other, along with
the ICT portion for intelligent management and control. Most simulators designed for thermal energy
simulation are not designed to model an electric grid. In such a scenario it is most beneficial to model and
simulate the relevant parts in suitable simulation package and then produce unified results.

For these reasons, in the current section the WR algorithm is modified in a way to accommodate discrete
events. As it is seen in section 5.2 that theoretically WR algorithm can accommodate any number of con-
tinuous systems to be coupled with each other, as far as they satisfy the contraction conditions described
earlier. Similarly, when expanding the algorithm to hybrid systems, there can be any number of continuous
and discrete subsystems. Only continuous subsystems have to fulfill the contraction conditions.

5.5.1 Description of the Algorithm

Listing 5 describes the hybrid simulation algorithm. One important difference of this algorithm from
previous ones is, its inputs and outputs when communicated among processors have three elements rather
than two. In section 5.2.1 it was discussed that inputs and outputs are communicated among processors
in form of list of pairs (map), and each element has two parts, a name and value. Here each element has
another part which is time, which is represented as time(x), where x is an element of a list of inputs or
outputs. It is important to mention the time of the updated values, because in case of discrete variables, it
is important to know when their state has changed.

The main idea of hybrid simulation algorithm revolves around WR algorithm. If the lines from 19 to 24
are removed from the algorithm 5 then it will just be another form of a WR algorithm. Lines from 19 to
24 make the portion which is responsible for detecting and taking care of a discrete event. The discrete
event itself is identified at the master level, when a slave sends a negative value as the update time of a
state variable. The statement is listed at line 19.

As it was discussed in section 5.2 that WR algorithm assumed that there is no change from state variables
to the outputs of a subsystem, which was a limitation. That limitation is removed in algorithm 5. Algo-
rithm 5 does not passes on the inputs and state variables to the subsystems, rather the subsystems exchange
the relevant outputs when master commands them to do so. This is done using the 〈Share Data〉 command.
When a slave receives this command, it waits for the inputs from other slaves and sends its outputs to sub-
scribing slaves. Similarly, now to go back one macro step Tn−1 there is no need to tell each slave the
values of their state variables, as each one can store them themselves from the last successful iteration.
So in algorithm 5 〈Rewind〉 command fulfills this job. There is no need to send explicit message to ask
slaves to send their updated state variables or outputs. When the 〈Advance Time〉 command is received,
the slave knows that after advancing the time to the desired value, it has to send its updated outputs back
to the master. Because 〈Advance Time〉 command replaces 〈Send States〉 command so it becomes a syn-
chronizing command. As figure 5.18 shows that the state machine for the hybrid algorithm is much more
complex than previous algorithms, so the synchronization of the master and slave processes is also more
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challenging. At few stages the synchronization has to be enforced. For this a special command 〈Synch〉 is
introduced which asks the slaves to send their updated outputs. In fact, the only purpose is to introduce a
synchronization point between two branching states as the requirement is stated in section 5.2.3.
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Discrete 
Event 

Figure 5.15: Main flow of hybrid simulation algorithm, excluding discrete event processing. The green states show
the synchronization points.
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Figure 5.16: Discrete event processing of hybrid simulation algorithm, in presence of efficient event detection it can
be called as stage-2 of event processing.
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Algorithm 5 Hybrid Simulation Algorithm.
1: Code for pmaster:
2: Procedure Main()
3: currS tates← {(name(x),∞) | x ∈ updates}
4: while time ≤ simulationEndTime do
5: time← time + step
6: discEvent ← False
7: iterationS tates← {(name(x),∞) | x ∈ updates}
8: iterationCount ← 0
9: while norm(iterationS tates − currS tates) > TOL do

10: iterationCount ← iterationCount + 1
11: if iterationCount > MAX then
12: throw exception “No convergence” and terminate
13: end if
14: send 〈Rewind, time − step〉 to all “slave” processes.
15: send 〈Advance Time, time〉 to all “slave” processes.
16: GetUpdates() // Defined in listing for algorithm 2
17: iterationS tates← currS tates
18: currS tates← updates
19: if ∃y | y ∈ updates ∧ time(y) < 0 then
20: discEvent ← True
21: time← time − step
22: send 〈Abort Iteration, time〉 to all “slaves”
23: ProcessDiscreteEvent()
24: else
25: send 〈Share Data, time〉 to all “slaves”
26: end if
27: end while
28: if discEvent = False then
29: send 〈Synch, time〉 to all “slave” processes.
30: GetUpdates()
31: currS tates← updates
32: send 〈End Iteration,time〉 to all “slave” processes
33: send 〈TAR,time〉 to prti

34: end if
35: end while
36: send 〈End Simulation〉 to all “slave” processes
37: terminate
38: end
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Algorithm 5 Hybrid Simulation Algorithm (Continued).
39: Procedure ProcessDiscreteEvent()
40: eventOccured ← False
41: while eventOccured = False do
42: time← time + δ

43: iterationS tates← {(name(x),∞) | x ∈ updates}
44: while norm(iterationS tates − currS tates) > TOL do
45: send 〈Rewind, time − δ〉 to all “slave” processes.
46: send 〈Advance Time, time〉 to all “slave” processes.
47: GetUpdates()
48: iterationS tates← currS tates
49: currS tates← updates
50: if ∃y | y ∈ updates ∧ time(y) < 0 then
51: eventOccured ← True
52: send 〈Share Data Non-discrete, time〉 to all “slaves”
53: else
54: send 〈Share Data, time〉 to all “slaves”
55: end if
56: end while
57: send 〈Synch, time〉 to all “slaves”
58: GetUpdates()
59: currS tates← updates
60: if eventOccured = False then
61: send 〈End Iteration, time〉 to all “slaves”
62: send 〈TAR,time〉 to prti

63: end if
64: end while
65: send 〈Share Data Only Discrete, time〉 to all “slaves”
66: send 〈End Iteration, time〉 to all “slaves”
67: send 〈TAR,time〉 to prti

68: end

69: upon receiving 〈Time Grant, time〉:
70: if |updates| = NUMBER OF OUT PUTS then
71: ExecS tate← U pdatesArrived
72: end if
73: upon receiving 〈Update, outputs,time〉:
74: ∀x ∈ updates∀y ∈ outputs

((name(x) = name(y))→ (value(x)← value(y) ∧ time(x)← time(y))).
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Algorithm 5 Hybrid Simulation Algorithm (Continued).
75: Code for pslave:
76: upon receiving any command message
77: store every message into commandList
78: upon receiving 〈Update Slave,outputs, time〉:
79: ∀x ∈ updates∀y ∈ outputs ((name(x) = name(y))→ (value(x)← value(y)).
80: upon receiving 〈Time Grant, time〉:
81: if mode = S hareData then
82: if |updates| = NUMBER OF FMU INPUTS then
83: mode← Execute
84: end if
85: else if mode = Execute then
86: search for all “allowable” messages for the current state in commandList.
87: execute the action on the first message found.
88: send 〈TARA,time〉 to prti except in case of 〈End Simulation〉 and 〈End Iteration〉
89: end if
90: action for 〈Advance Time, time〉:
91: Integrate the FMU to time
92: for each continuous output x of the FMU
93: send 〈Update,(y | value(y) = value(x) ∧ name(y) = name(x) ∧ time(y) = time) ,time〉

to pmaster

94: for each discrete output d of the FMU
95: if value of d has changed then
96: find the time of change (discrete event) and store in e
97: e = −1 × e
98: else
99: e← time
100: end if
101: send 〈Update,(y | value(y) = value(d) ∧ name(y) = name(d) ∧ time(y) = e),time〉

to pmaster

102: action for 〈Rewind,time〉:
103: set the time of FMU to time
104: set the states of FMU to the last saved states at time, if not saved then set to initial states.
105: action for 〈Abort,time〉:
106: set the time of FMU to time
107: set the states of FMU to the last saved states at time, if not saved then set to initial states
108: set the inputs of FMU to the last saved inputs at time, if not saved then set to initial values
109: action for 〈Synch, time〉:
110: send the outputs in form of 〈Update,outputs ,time〉 to pmaster

111: action for 〈Share Data, time〉:
112: send the outputs in form of 〈Update Slave,outputs ,time〉 to all subscribing “slave” processes
113: mode← S hareData
114: updates← {(name(x),∞) | x ∈ updates}
115: while mode , Execute do
116: send 〈TARA,time〉 to prti

117: end while
118: Set the inputs of the FMU to the updates received

95



Master-Slave Algorithms Using HLA and FMI

Algorithm 5 Hybrid Simulation Algorithm (Continued).
119: action for 〈Share Data Non-discrete, time〉:
120: like 〈Share Data〉, send and receive only continuous valued outputs
121: action for 〈Share Data Only Discrete, time〉:
122: like 〈Share Data〉, send and receive only discrete valued outputs
123: action for 〈End Iteration, time〉 :
124: send 〈TAR, time〉 to prti

125: save the states of FMU to be used for 〈Rewind〉 and 〈Abort〉 messages
126: save the inputs of FMU to be used for 〈Abort〉 message
127: action for 〈End Simulation〉:
128: terminate
129: Code for prti:
130: upon receiving 〈TARA, time〉 from pi:
131: send all messages queued for pi to pi with time stamp ≤ time
132: upon confirmation of sending all updates send 〈Time Grant〉 to pi

133: upon receiving 〈TAR, time〉 from pi:
134: send all messages queued for pi to pi with time stamp ≤ time
135: upon confirmation of sending all updates send 〈Time Grant〉 to pi

136: upon receiving 〈Update,outputs, time〉 from pi:
137: enqueue outputs with time stamp time, for subscribing process pmaster

138: upon receiving 〈Update Slave,outputs, time〉 from pi:
139: enqueue outputs with time stamp time, for all subscribing slave processes p j, where i , j
140: upon receiving any other command ζ from pmaster:
141: enqueue the command ζ for all subscribing “slave” processes.

Due to the relative complexity of the algorithm it was thought to illustrate the algorithm using flow chart
diagrams [AGDCP15]. Figure 5.15 shows the main execution part of the hybrid algorithm, while fig-
ure 5.16 shows the part where discrete event is tackled. The green colored states show the synchronization
points of the algorithm

The main idea behind tackling discrete event is to find the precise timing of the discrete event and then
allow the discrete state variables to change their state and be communicated to other slaves. The process
shown in figure 5.16 can be made faster by introducing stage wise finding of precise time of discrete
event. In the first stage, shown in figure 5.17 the step size is fractionally reduced whenever the discrete
event occurs during the iteration. Once the point is found closest to the discrete event where there is no
discrete event, the execution is shifted to stage 2, which is already described in figure 5.16. Process of
finding the discrete event in a stage wise manner, as shown in figure 5.17, is not part of the listing 5. It is
omitted to let the listing remain easily understandable.

5.5.2 Communication Step Size Control

Step size control offers many advantages in any numerical integration algorithm. Implemented correctly,
it can significantly enhance the performance of the algorithm. Here too, the communication step size
control offers many advantages. Most importantly, in a distributed simulation more communication steps
mean more communication, which means lesser performance. So increasing the communication step size
to the maximum where the solution remains valid is very beneficial.
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Figure 5.17: Stage-1 of discrete event processing of hybrid simulation algorithm. The purpose is to find the exact
timing of event more quickly.

Looking at figure 5.2, it is easy to understand that separating the ODEs means that some or all of the state
variables in a subsystem are going to grow without the knowledge of all other subsystems. Mathematically
speaking, suppose there is a system given in equation 5.20

ẏ = f (y, p) (5.20)

The state variable vector y contains n state variables y = y1, y2, y3, . . . , yn. To perform the numerical
integration of the system, if an implicit method is used, then the Jacobian of the system will be n × n
matrix, containing partial derivatives of all the state variables with respect to each of them. Partitioning
the system in two (equation 5.21) means that the Jacobian of each subsystem is also reduced to some
degree. If ŷ = y1, y2, y3, . . . , yi and ỹ = yi+1, yi+2, yi+3, . . . , yn, then this means that state variables in ŷ are
being evaluated without their partial derivatives with respect to yi+1, yi+2, yi+3, . . . , yn. Similar is the case of
ỹ. This causes divergence in the solution. If the divergence remains in a realm where the system remains
defined, then it is possible to recover the error through fixed point iteration. If not, then this means that
the gap between two communication steps is too large.
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Figure 5.18: The slave state machine of hybrid simulation algorithm.

˙̂y = f̂ (ŷ, p̂)
˙̃y = f̃ (ỹ, p̃)

(5.21)

Following the idea of divergence, apart from error tolerance, there is an additional parameter introduced,
which is called as “divergence tolerance” told. This is tolerance for the error caused by divergence. If the
state variable vector, as a result of initial guess at the start of WR iteration, is yi, and at the end of WR
iteration after convergence is y f , then the error ed caused by divergence is given in equation 5.22.

ed = |y f − yi|2 (5.22)
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At the end of each WR iteration the communication step size is either increased or decreased by some
percent, based on the fact that ed + τ0‖y f − yi‖max < told or ed + τ0‖y f − yi‖max > told. Here τ0 is a small
positive value used for normalization. During processing of discrete event, the communication step size
is intermediately reduced to minimum. After the discrete event, communication step size takes some time
to recover its value. At that moment the mechanics of communication step size control become evident.
Figure 5.19 shows the phenomenon by zooming into that situation.
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Figure 5.19: Variation of communication step size during processing of discrete event.
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Figure 5.20: OpenModelica treatment of discrete event.
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Algorithm 6 Discrete State Decisions
1: begin
2: if (y < stair) then
3: contact ← 1
4: else if (y > stair) then
5: contact ← 0
6: end
7: if (x − N + 1 + stair > 0) then
8: stair ← stair − 1
9: end

10: end

Vx, Vy X, Y 

Stair, 
Contact 

Vx,Vy 

Y 

X,Y Stair, 
Contact 

Figure 5.21: Division and interdependence of different subsystems. Arrows show information flow. Square element
shows discrete component while circular show continuous.

5.5.3 Case Study

To test the algorithm, a test system is used for simulation. It is first simulated using the OpenModelica. The
results are compared with the hybrid simulation algorithm presented earlier. The system is very popular
hybrid system i.e. a ball being dropped from a height on stairs, namely a “bouncing ball on stairs”. The
system is given by the system of equations 5.23. The discrete part is given by the algorithm 6. Figure 5.21
shows how different FMU-Federates are associated with each other, via their state variables.

ẋ = vx

ẏ = vy

v̇x = −c0vx

v̇y = −g − c1vy − contact((y − stair)c2 + c3vy)

(5.23)

Here g is the gravitational constant, while c0,c1, c2 and c3 are few constants facilitating the phenomena of
friction, air resistance, damping and mass of the ball. The variables stair and contact represent discrete
variables. The variable contact shows that the ball is in contact with the floor or not. When contact = 1 the
system shifts its behavior immediately at that point. It is sometimes called as “behavioral state change”.
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The variable stair shows that on which step of the stair ball is currently bouncing. Initially, its value is N
in algorithm 6.

For the presented run, the value of “divergence tolerance” was told = 1 × 10−3. Although, the value is
relatively large, using a smaller value makes results more accurate, but that causes more communication
steps and hence performance deteriorates. This is an area which needs further refinement in the algorithm.

0 10 20 30 40 50
Time

6

4

2

0

2

4

6

V
e
rt

ic
a
l 
v
e
lo

ci
ty

  
(V

y
)

Hybrid Sim.
OpenModelica

Figure 5.22: Comparative results produced by hybrid simulation algorithm and OpenModelica for variable vy in
equation 5.23. The variable vy represents the vertical velocity of the ball.

Figures [5.22 - 5.26] show the results produced by OpenModelica and hybrid simulation algorithm, for
the presented example. Especially examining figure 5.22 it can be seen that the vertical velocity of the ball
changes abruptly when the ball is in contact with the ground. This is a point when the line in figure 5.22
moves upward. Its decrement is a lot slower than its abrupt increment and change in direction. The
situation is specifically challenging for a solver of a partial system, because at this point the subsystem
under the influence of external discrete events behaves abruptly. The fact that under such influence the
WR iteration is able to converge back to the legitimate solution is appreciable. Figure 5.23 and figure 5.24
should be examined in conjunction with figure 5.22. In figure 5.23 the bouncing behavior of the ball can
be seen, plotted over the simulation time, while in figure 5.24 the plot shows how the trajectory of the
ball would be in real life, as the ball position is plotted on X-Y plan. It is also clear from these figure that
there are some differences in the results. The difference between results are obvious due to the completely
different treatment of events in OpenModelica DASSL algorithm. Figure 5.20 shows how OpenModelica
cuts the contact dynamics out, and converts the system into a piecewise continuous systems.
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Figure 5.23: Comparative results produced by hybrid simulation algorithm and OpenModelica for variable y in
equation 5.23. The variable y represents the height of the ball.
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Figure 5.24: Comparative results produced by hybrid simulation algorithm and OpenModelica for both variables x
and y in equation 5.23.
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For example, Lundvall et al. [LFB08] describe how OpenModelica changes a system of DAEs into a
hybrid system of DAEs, separating continuous part and a discrete part. This and many other simplifica-
tion methods are examples of those advantages which monolithic simulation packages have. A distributed
algorithm with current state of technologies cannot simplify the system as such. Most importantly, this
type of simplification is something which a modeler may not wish to apply in complex simulations. One
purpose of developing complex simulations is to understand any phenomenon which is difficult to exper-
iment in real life. In order to compensate the empirical evidence of working of a theory about a complex
phenomenon, modeler tries to verify the theory by simulating the real life phenomenon. In such situation,
mostly, there is not a “complete” mathematical description of the phenomenon. The only thing, in math-
ematical terms, a modeler knows are parts of the system. To be able to see how these parts interact and
evolve with each other, a modeler takes the help of a distributed simulation.

Figure 5.25 and figure 5.26 show the variables related to horizontal movement of the ball. Figure 5.25
shows how the horizontal velocity of the ball slowly decreases and reaches close to 0, which causes the
ball to stop at a certain point in time. There is some amount of error in the results produced by hybrid
simulation algorithm. In figure 5.26 it is shown how the ball covers the distance over time. As the initial
value of the variable x was already given greater than 0, so the graph starts from 0.57. Slowly it covers
the distance and as the horizontal velocity comes close to 0, it stops moving further and the graph on the
figure 5.26 becomes horizontal.
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Figure 5.25: Comparative results produced by hybrid simulation algorithm and OpenModelica for variable vx in
equation 5.23. The variable vx represents the horizontal velocity of the ball.
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Figure 5.26: Comparative results produced by hybrid simulation algorithm and OpenModelica for variable x in
equation 5.23. The variable x represents the distance traveled by the ball.

Focusing on the specific type of simulation methodology, the presented hybrid simulation algorithm, does
not simplify the phenomenon of bouncing ball on stairs. It models parts of the system, discrete and con-
tinuous, separately, and lets them evolve with each other governed by an algorithm. The results presented
here show the success of the algorithm, as they are so close to the results obtained by a monolithic sim-
ulator (OpenModelica), that it can be easily deduced that the algorithm is able to simulate an unknown
physical phenomena successfully. The purpose of using the word “unknown” is to emphasize the fact
that the “complete” model of physical (or cyber physical) phenomenon is not known, and the modeler, by
providing mathematical description of the parts of the system, is relying on the algorithm to accurately
simulate the parts of the system as a whole. This is also a reason of emphasizing the fact (section 5.2.4) that
comparing a distributed simulation algorithm with a monolithic, or even a parallel simulation algorithm,
is not justified. Both address their own specific realm of problems.

5.6 The SAHISim Framework

In order to enable a wider usage of the capabilities offered both by the HLA and the FMI, a framework
is developed which enables a simulation engineer to orchestrate a distributed and interoperable simu-
lation federation. The framework is named as Standardized Architecture for Hybrid Interoperability of
Simulations (SAHISim). It is standardized because it enforces the simulations to conform to HLA or
FMI. It enables hybrid simulation by implementing hybrid simulation algorithm presented in section 5.5,
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secondly, the simulation standards—HLA and FMI— allow hybrid simulation, so the framework also
supports hybrid simulations.

Current section should be considered as an extension to the previously presented section 3.3. In sec-
tion 3.3 reader did not had a clear picture of the presented work, so it was a bit too early to go into the
implementation details of the framework itself.

5.6.1 The FMU-Federate

An FMU-Federate can be considered as the worker of the simulation. Each FMU-Federate contains a
sub-model of the complete system. During previous discussions, FMU-Federate has also been called as
subsystem, which is what it represents in abstract terms. Figure 5.27 shows different components of an
FMU-Federate. It shows that there are two main components of an FMU-Federate

• HLA Messenger: A portion which communicates with other FMU-Federates through the RTI,
and the RTI itself for time synchronization. The main services provided by this portion are time
synchronization and data sharing. Apart from this, it initializes the FMU-Federate and makes it
part of the FMI-Federation. Simultaneous initialization of subcomponents is important in distributed
simulation. The functionality is achieved by synchronization services provided by the HLA.

• FMU Controller: At the level of FMU-Federate or in abstract terms at the level of subcomponents,
FMU controller is the part which directs the solver to solve an FMU according to the directions
passed onto it. This part also know how inputs or outputs of the FMU are connected to the attributes
of the FOM. The information is passed on to it in form of parameters. The executing program
takes few parameters which include following information. One parameter tells FMU controller the
federation to get registered to. Another parameter of type map tells which attributes of the FOM
should be bound to which inputs. Another parameter tells which outputs should published to which
FOM attributes. The publishing and subscription is performed automatically. In case of standalone
algorithms FMU controller also includes the simulation algorithms like the Jacobi algorithm and
the Gauss-Seidel algorithm. In case of master-slave algorithm it only follows the directions sent by
the master.

The HLA is a complex standards requiring deep knowledge of it to be able to use it. The abstraction
created in form of FMU-Federate simplifies its use. Modeler does not need to know the tiny details of
HLA specifications. Using time synchronization services of HLA , sending and receiving timely updates
itself is not a straightforward task, all these things are abstracted away in the from of FMU-Federate.

There are some intricacies involved in developing a generic solution using the FMI standard. FMU-
Federate simplifies its usage too. The most important aspect is to use a solver to solve an FMU. There
are many open source solvers available, so they can be used in conjunction, SUNDIALS is just one
example. Although, there are few problems in using SUNDIALS. The most important one appears when
an algorithm requires an FMU-Federate to rewind its solution to a specific time. It is so important that in
FMI 2.0 the functionality of rewinding the FMU to a previous state is made part of the specification. It
is found hard to solve get the functionality using SUNDIALS. One way could be that SUNDIALS could
allow the solved solution to be discarded till a certain time. Alternatively, it could provide the facility
to go back in time, but both things are not possible with SUNDIALS at the time of writing. Another
functionality that can be very useful is to be able to set the past states of the solver. For example, suppose
there is a system S to be simulated comprising of subsystems S 1 and S 2. When S 1 and S 2 are solved
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Figure 5.28: Components of a master federate.

for time step Tn separately using any solver, their results are not correct, until they go through some WR
iterations. Once the results are achieved by convergence, after that S 1 or S 2 are to be solved for Tn+1.
If the solver is using a multi step method, like Backward Difference Formula (BDF), to solve S 1 or S 2,
then the solver may use a local vector of past states, which may not be the correct one. Instead the solver
should use the vector of past states which were accepted as the legal states of the system after convergence.
In such a situation one may like to alter the vector of past states manually and would like the solver to
progress based on the provided states. A modification in SUNDIALS providing these functionalities can
allow the modeler to use SUNDIALS in place of any other solver in SAHISim framework.
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5.6.2 The Master Federate

The master federate is only used for the master-slave algorithms. It contains the so called master algorithm.
It directs the slaves or other FMU-Federates in a way that the collective simulation produces correct results.
Figure 5.28 shows a symbolic diagram of a master federate.

As shown in figure 5.28 there are two parts of a master federate. One portion communicates with the
RTI and other FMU-Federates, using the RTI. The other portion contains the master algorithm. The HLA
messenger performs the tasks of time synchronization and data sharing. The algorithm portion contains the
strategy for simulation. In previously described algorithms the main focus was on this portion. Typically,
the HLA messenger part is common for all master-slave algorithms described earlier, while the algorithm
itself varies a great deal, as can be seen in previous sections.

Most important parts of the algorithm part are, the strategy for achieving convergence, and macro step
size control. Algorithms described in previous sections are not the last word in distributed simulation
algorithms. There are many other algorithms which can be implemented using the SAHISim framework.
Specially FMI 2.0 has opened many new opportunities of developing efficient algorithms for distributed
simulations. A researcher trying to come up with a new distributed simulation algorithm can use SAHISim
framework for research and experimentation. A researcher wishing to do so has to do following main tasks.

• After a researcher has come up with the abstract strategy of distributed simulation, and if the strategy
is a master-slave strategy. Then the master portion should encode the strategy in terms of execution
loops and the commands sent in those loops. A typical simulation strategy must contain two loops,
one for simulation and second for convergence.

• A corresponding slave state machine has to be developed after developing a master strategy. The
SAHISim framework is also helpful in developing a slave state machine, as it provides the basic
skeleton of a state slave machine.

• The researcher should also look for the situations where the synchronization of federates can go
wrong. The easiest way is to see where the conditions described in section 5.2.3 are violated. To
avoid such situations “synchronizing commands” can be introduced, as shown in previous sections.
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6 Evaluation and Comparison

Previous chapters introduced six different distributed algorithms. In the present chapter their mutual com-
parison and comparison to other solutions in the field, are presented. While comparing the presented
algorithms one thought comes to mind reflexively. Why and how the presented algorithms are better than
the numerical algorithms presented earlier by researchers? It is emphasized once again that distributed
algorithms for simulator coupling address their own unique set of problems. The problems they solve
are just not solvable using monolithic numerical algorithms. Comparing the presented algorithms, and
other algorithms for simulator coupling, with general purpose numerical methods of solving system of
DAEs, is not appropriate. Sections 1.1.4, 5.2.4 and 5.5.3 have already covered the related differences of a
distributed coupling algorithm and a monolithic or a parallel numerical algorithm.

In brief, one of the most important purpose a distributed algorithm serves is to allow the modeler to sim-
ulate a system which is not completely known as a system, rather only parts of the system are known,
along with the interdependencies to other subsystems. Distributed algorithms allow the modeler to exper-
iment with the complete system by evolving the subsystems in conjunction. In contrast, a monolithic or
a parallel algorithm for solving system of DAEs must know the complete system, in some cases even the
constraints applied on the system. Due to the complete knowledge of the system, a monolithic algorithm
can transform the system of DAEs into a much simpler to solve system of ODEs, or even a single ODE. A
distributed algorithm, on the other hand, cannot do this. If there is any simplification possible, it must be
applied at a subsystem level, which may make a subsystem easier to solve, but does not make any differ-
ence to the whole system. This is another reason why the performance comparison between a monolithic
and a distributed algorithm does not make much sense.

Before the presented work, the algorithms for solver coupling were only discussed in mathematics com-
munity on an abstract level. Here it is presented how these algorithms can take a form of a distributed
algorithm. According to the knowledge of author it is the first attempt to explain the distributed nature of
these algorithms. The SAHISim framework is also first of its kind. SAHISim framework allows all those
simulation packages to share their models which conform to either HLA or FMI. There is no framework
developed before which allows subsystems designed in so many different simulation packages to simulate
together. Even if the standards are not kept, there is no example of a distributed simulation framework
which embodies state of the art distributed numerical algorithms.

6.1 Comparison with FMI-Based Synchronous and Monolithic Algorithms

Distribution in nature offers an opportunity for parallelism, similarly, the distributed algorithms presented
earlier allow subsystems to execute in parallel, but in a limited way. A simulation subsystem has to keep
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up with other subsystems mainly to allow time synchronization. The presented algorithms are designed
to allow the limited parallelism a simulation can offer. It may sound counter intuitive, but parallelism
does not necessarily offer performance improvements. There are certain conditions that must be fulfilled
to get performance improvements [Gus88]. Similarly, in a simulation environment distribution affects
performance in a certain way, which is investigated in current section.

The time taken for a solver of a partitioned system can be divided into three parts, the integration part, the
communication part and the constant processing time at master to arrange the results. Due to the matter
under discussion, assume that the partitioned system S is simulated using FMUs as subsystems. For the
sake of comparison, suppose that there is an algorithm which solves system S by loading FMUs in single
process space. Because algorithm itself and FMUs reside in single process space, so no parallelism is
possible. The algorithm necessarily ends up being a serial or synchronous algorithm. Now the time Ts

taken by the synchronous algorithm for one macro time step is given by equation 6.1

Ts = S c +

n∑
i=1

(Ii + Csi) (6.1)

Where n is the number of FMUs, Ii is the cumulative integration time taken by FMUi and Csi is the
cumulative time spent on communication between master and FMUi. As FMUs are not hosted in a
separate process, and are linked statically or dynamically, the time Csi will be very small. S c is the
computation time taken by master to arrange the integration results and send commands. In case of
monolithic execution the time S c can be considered as 0.

Now examine the case of distributed simulation. The factors of time remain the same just the composition
changes to equation 6.2. Here Ii is the integration time taken by FMUi and Cpi is the time spent on
communication between master and FMUi.

Tp =
n

max
i=1

(Ii + Cpi) + Pc (6.2)

In place of the term S c, here the term Pc is used. Which is computation time of a parallel algorithm for
arranging the results and sending commands to the FMUs. The total number of macro time steps Ñ are
considered equal in both the serial and distributed algorithms, so T̃s = Ñ.Ts is the total time taken by the
serial execution, and T̃p = Ñ.Tp is the total time spent on the distributed execution. For simplicity, the
difference between the terms S c and Pc can be neglected.

It is clear from above equations that the performance gain due to distributed execution will only be sub-
stantial if the term

n
max
i=1

(Cpi) is minimum. In case of local linking the communication cost Csi is likely to

be very small as compared to the communication cost Cpi in case of distributed execution. In case of serial

execution the sum of integration time of all FMUs
n∑

i=1
Ii can be very large, especially if each represents a

large subsystem. If each FMUi is simulated by a separate simulation package, then the additional cost of
context switching on a monolithic architecture could also make performance very slow. On the contrary,
if the subsystems are very small and have to perform very few calculations for one integration step, then
overhead of context switching will be negligible. Moreover, in such a scenario the complete cost Ts may
remain far less than the communication cost

n
max
i=1

(Cpi) of the distributed execution. In other words, the

distributed execution will produce better results if subsystems represent very large systems, who have to
perform plenty of processing for each integration time step, or mathematically
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n∑
i=1

(Ii) >
n

max
i=1

(Ii + Cpi) (6.3)

In equation 6.3 left hand side represents the a simulation where FMUs are locally linked to the master
algorithm. The communication cost is negligible as it is just passing of parameters to the functions calls,
so it is not included in the equation. The term on right hand side is not separable, since we are considering
the maximum of sum of integration and communication time. Though, for the sake of bounded analysis,
lets assume there is an FMU FMUm which takes the maximum time Imax to solve one step. Suppose
that the time taken for communication by FMUm is Cpmax , and it is also an upper bound to other FMUs.
Putting these terms in equation 6.3 results in equation 6.4

n∑
i=1

(Ii) > Imax + Cpmax (6.4)

From this equation, it is easy to see the fact that asymptotically right hand side of equation 6.4 is just
a constant, while left hand side strictly keeps growing as the value of n grows. Taking average case
analysis, and considering Iavg to be the average time taken by FMUs for integration of one macro time
step, equation 6.4 becomes

n∑
i=1

(Iavg) > Imax + Cpmax =⇒ n.Iavg > Imax + Cpmax (6.5)

There must be some value n0 of n for which equation 6.5 is true. In other words, if the number of
FMUs is greater than a certain value n0, then the distributed algorithm will always perform better than the
synchronous one. The value n0 in the special case under consideration is

n0 =

⌈
Imax + Cpmax

Iavg

⌉
(6.6)

Comparing it to equation 6.3, the value n0 for a general case is

n0 ≈


n

max
i=1

(Ii + Cpi)

Iavg

 (6.7)

Sign ≈ is used to show approximation, because in this equation few factors have been neglected, such
as communication time of FMUs in case of serial algorithm, and the constant processing times of both
distributed and serial algorithms. Nevertheless, the equation forms the basis to define the relationship
between different factors of performance constraints in a distributed simulation. Equation 6.7 shows
the benefit of using asynchronous and parallel distributed algorithm in a situation where more than one
subsystems are part of the simulation, and each part must be simulated separately, due to different reasons.
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6.2 Comparison with General Purpose Solvers

Equation 6.7 is not based on a comparison between a general purpose DAE analyzer and a distributed
solver. Although, from equation 6.7 some interesting results can be deduced. Suppose there is a monolithic
simulator which takes Ñ time steps to solve the system S . Now suppose a distributed algorithm also solves
the system S in the same number of macro time steps i.e. Ñ. If the average time taken by the monolithic
system to solve one time step is Im

avg, then a distributed algorithm will perform faster than the monolithic
one if equation 6.8 holds.

Ñ.Im
avg >

Ñ∑
j=1

n
max
i=1

(I j
i + C j

pi) (6.8)

It is reminded that Ñ is the number of steps and n is the number of FMUs. Equation 6.8 means that in
order to make distributed algorithm perform faster, the sum of time spent by all FMUs for each macro
step should be less than the total time taken by a monolithic algorithm, to solve system S . In real world
problems there is no way to relate the terms Im

avg and I j
i with each other. It is far from realistic to assume

that average time (Im
avg) taken by a monolithic algorithm to solve one time step will always be greater than

the time (I j
i ) taken to solve one subsystem S i, for jth macro time step. As monolithic solvers simplify the

system before simulation and due to that the solution may become faster than its subsystem. Secondly,
in real life it is hardly possible that a monolithic algorithm and a distributed one have the same number
of steps (Ñ), for a given problem. So in essence equation 6.8 proves the point once again that it is not
appropriate to compare a monolithic solver with a distributed one.

6.3 Evaluation of Explicit Algorithms

In section 4.3.3 an example was presented which showed the benefit of using Gauss-Seidel method, here
some more examples are given. The results are compared to OpenModelica [59]. The systems which are
chosen for simulation are popular in simulation scientific community for their stiff behavior. The point of
presenting such systems is that the analysis of the system and simulation is easy when it does not have too
many variables, yet it is complex or stiff enough to establish the fact that if such systems are simulated
well enough, then the smooth systems may be simulated much more easily.

The first model was described earlier in section 4.3.3 named “Lotka-Volterra equation” or “Predator-Prey
equation”. Another example is called as the “Van der Pol osialcillator”. Its coupled differential equation
form is described below

ẋ = µ(x −
1
3

x3 − y)

ẏ =
1
µ

x
(6.9)

The parameter µ is chosen to be µ = 1.53. Third example is simple oscillator described by the equation
6.10

ẋ = −y

ẏ = x
(6.10)
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It was argued in section 4.3.3 that for “Predator-Prey equation” results of Jacobi method are not valid.
On the contrary for “Van der Pol” oscillator, the figures 6.1, 6.2 and 6.3 suggest that the results for both
algorithms are just the same. The error in the case of Jacobi method just like Gauss-Seidel method, is not
increasing with time, and with a step size of 0.3 the solution does not deviate much.

For the system described in equation 6.10, with Jacobi method the solution is not stable and the error
accumulates with the time (figure 6.6), while for Gauss-Seidel method results are similar to that of Open-
Modelica results (figures 6.4 and 6.5). Moreover, figure 6.7 shows that by reducing the step size of the
Jacobi method for unsuitable systems (Lotka-Volterra and Simple oscillator) the error also reduces. So
it may be concluded that the systems are zero-stable for Jacobi method but are not stable otherwise. For
details of zero stability and general stability conditions of a coupled system, reader is directed to [SL14b],
[Arn10] and [BS10a].

It is a good point to mentioned that the in all algorithms mentioned above, especially in explicit methods,
there is a special type of extrapolation used, which is called as constant extrapolation [Arn10]. Take
the example of two coupled systems S 1 and S 2 discussed above, being solved by Jacobi method. After
completing the integration for a communication step Tn, S 1 and S 2 move forward to solve the system at
Tn+1. The input variables of S 1 and S 2 remain constant during the internal integration from Tn to Tn+1.
An alternative method could be to use a linear extrapolation and change the input variables during internal
integration. Extending the idea further, a polynomial extrapolation could also be used. Similarly in Gauss-
Seidel method the “source” used the input values from the previous time step Tn and does not change
them to calculate its outputs at Tn+1. Here too, instead of using constant input values linear or polynomial
extrapolation could be used. In order to use polynomial extrapolation there should be some polynomial
expression of growth of input variables. Otherwise, polynomial approximation methods can be used, to
approximate a polynomial from past values. For linear extrapolation only past two values are needed to
extrapolate the next one. However, how accurate is such an approximation and what are the results on
accuracy and stability, is a completely separate topic of study. It was therefore emphasized in section 5.6
that there has been a need of a framework like SAHISim, using which a modeler can experiment with all
these parameters with ease.
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Figure 6.1: “Van der Pol” oscillator simulated using explicit Jacobi method. The “step size” is 0.3 here.
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Figure 6.2: “Van der Pol” oscillator simulated using explicit Gauss-Seidel method. The “step size” is 0.3 here.
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Figure 6.3: “Van der Pol” system simulated using OpenModelica. The “step size” is internally controlled by Open-
Modelica.
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Figure 6.4: “Simple oscillator” simulated using explicit Gauss-Seidel method. The “step size” is 0.5 here.
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Figure 6.5: “Simple oscillator” simulated using OpenModelica. The “step size” is internally controlled by Open-
Modelica.
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Figure 6.6: “Simple oscillator” simulated using explicit Jacobi method. The “step size” is 0.5 here.
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(a) “Lotka-Volterra” system simulated using explicit Jacobi method, with reduced step size 0.1.
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(b) “Simple oscillator” simulated using explicit Jacobi method, with reduced step size 0.1.

Figure 6.7: “Lotka-Volterra” and “Simple oscillator” simulated using explicit Jacobi method. The “step size” is
reduced to 0.1 here, which also reduces the error.
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6.4 Evaluation of Implicit and Semi-Implicit Algorithms

Theoretical differences of implicit (waveform relaxation) algorithm and semi-implicit algorithm have been
discussed in sections 5.2 and 5.3. Results presented in section 5.2.5 and 5.3.4 also show similar proximity
from OpenModelica results. Theoretical aspects of message complexities have been discussed in sections
5.2.4 and 5.3.3. Despite their similarities there are some differences from practical point of view

• Semi-implicit algorithm in case of FMI 1.0, where there is no Jacobian information available, cannot
produce any results, if there is no quasi-Newton method used. There is no way that a coupled system
can converge without making any difference to inputs of its subsystems. Semi-implicit algorithm
calculates residual with the help of a system Jacobian or any other quasi-Newton method, and tries
to minimize the residual by changing the inputs to subsystems. WR algorithm, on the other hand,
does not need any external algorithm or routine for adjusting inputs to subsystems. WR algorithm
relies on the structure of the problem to correct the error by iterative calculations. In practical terms
WR algorithm is more easily usable because it does not need any additional implementation for
convergence of the system.

• In a situation where the macro time step is much larger than the internal integration step of subsys-
tems, the number of function evaluations in case of semi-implicit algorithm may be less than the
number of function evaluations done by WR algorithm. The reason is semi-implicit algorithm only
adjusts the result using only the last internal integration time step. While WR algorithm integrates
through all previous internal integration time steps, starting from last macro time step. Although
the conclusion is not straightforward because number of function evaluations also depend on the
number of fixed point iterations. If fixed point iterations of semi-implicit algorithm are more than
WR algorithm then the advantage mentioned above can be lost.

• This has been noted by researchers that in absence of Jacobian information the convergence to the
result become much slower [CK06]. Because WR algorithm relies on the structure of the prob-
lem, so its convergence rate is observed to be better. Figures 6.8, 6.9 and 6.10 show its empirical
evidence.
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(a) Fixed point iterations in WR algorithm.
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(b) Fixed point iterations in semi-implicit algorithm

Figure 6.8: Histogram of fixed point iterations while solving “Lotka-Volterra” system.

121



Evaluation and Comparison

1 2
Number of Iterations

0

50

100

150

200

250

300

350

Fr
e
q
u
e
n
cy

(a) Fixed point iterations in WR algorithm.
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(b) Fixed point iterations in semi-implicit algorithm

Figure 6.9: Histogram of fixed point iterations while solving “Van der Pol” system.
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(a) Fixed point iterations in WR algorithm.
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(b) Fixed point iterations in semi-implicit algorithm

Figure 6.10: Histogram of fixed point iterations while solving “Lorenz attactor”.
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7 Conclusion

Focus of the presented thesis is co-simulation in distributed environment. To some the problem looks
pretty simple, because many practitioners think about co-simulation in terms of time synchronization and
data exchange only. Section 3.1 addresses the misconception and presents major challenges in dealing
with co-simulation of real world phenomena. Some scientists have already developed solutions targeted
to limited domains (see chapter 2), yet they have only focused on domain specific solutions without theo-
retical elaboration of the underlying simulation algorithms. Mathematicians have been working to develop
algorithms for solver coupling, but how they can be implemented in distributed topology is first explained
in the presented work.

Developed distributed algorithms heavily make use of the High Level Architecture (HLA), yet their spec-
ification is generic and does not bound the future developer to restrict himself to any standards at all.
Components complying to Functional Mock up Interface (FMI) can be viewed as an embodiment of ab-
stract subunits of the complete mathematical model. A future developer may not like to adhere to FMI,
and is free to use his own abstractions to simulation subunits. In this regard the presented distributed
algorithms are a formal specification of the numerical algorithms for co-simulation. Nevertheless, using
HLA and FMI for the implementation greatly reduces the effort. Timing, data sharing and other services
provided by the HLA allow to work in a more flexible distributed computing model. Similarly using FMI
truly makes the solution practical and beneficial for the practitioners, as there are quite a few simulation
packages adhering to, or trying to adhere to the FMI specifications.

As soon as FMI 2.0 specification is available in open source community, even more scientists will try to
come up with even better algorithms for distributed co-simulation. Lack of FMI 2.0 compliant simulation
packages restricted the author to delve into more advanced solver coupling algorithms already presented
in mathematics community. Semi-implicit algorithm, without having access to Jacobian information,
is less effective. FMI 2.0 can be very useful in this regard. Once there is an open source simulation
package which could generate FM1 2.0 specific FMUs, a great deal of development will be possible in
semi-implicit algorithm.

For continuous research and development a framework for distributed simulation is presented in section
5.6. The framework is named as Standardized Architecture for Interoperability of Hybrid Simulations
(SAHISim). Already presented six algorithms have been implemented using the SAHISim framework. In
future, more advanced algorithms can be developed and tested using SAHISim framework. The SAHISim
framework is built upon the foundations of HLA and FMI. In author’s opinions it is very beneficial be-
cause even if a scientist wants to develop some specific algorithms for distributed co-simulation, he can
use SAHISim framework to test and verify his idea with ease. So a rapid development using SAHISim
framework of a distributed co-simulation algorithm can serve as a proof of concept.
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Conclusion

Test examples for the developed algorithms are not picked from any specific domain, due to mainly two
reasons. One, picking a complex example from a specific domain makes it difficult for the reader to focus
on the real problem, that is, efficiency of the distributed co-simulation algorithm. Complex examples from
specific domains may serve as a news of conquering a difficult problem, and may offer better understand-
ing to the experts of that domain, but they serve less for general audience of modeling and simulation
community. So such test examples have been chosen which have been used in various texts of modeling
and simulation community. All those problems are well renowned for their certain types of challenges
in modeling and simulation community. Results produced by a developed algorithm are compared with
the results produced by OpenModelica, using results of OpenModelica as a reference solution. Difference
from the reference result are presented in the study. This leads us to the second main reason of not using
complex examples. A complex example takes a lot more effort to be verified with a reference implemen-
tation. An example with hundred different state variables with non-stiff nature may take many weeks to
implement in OpenModelica, but will not virtually offer any challenge to the distributed co-simulation
algorithm. On the other hand, a stiff system such as Lorenz attractor (equation 5.9) is pretty easy to imple-
ment in OpenModelica, but poses major challenges to a distributed co-simulation algorithm. Its famous
stiff behavior also saves the time and effort to learn about the nature of a new complex model.

Similarly a hybrid system like a bouncing ball on stairs (section 5.5.3) can be easily implemented in
OpenModelica, but simulating it without knowing the generation model of discrete events, makes it much
harder. As OpenModelica knows the system of equations, so it also knows the generation model of discrete
events. Tackling a discrete event with a known model of generation is not too difficult. Though, in real
world scenarios it is less likely to have a complete knowledge of how and when a discrete event is going
to occur. The hybrid simulation algorithm presented in section 5.5 tackles discrete events without any
knowledge of their generation model. It reacts to a discrete event spontaneously and keeps solving the
system accurately.

Just like the traditional monolithic algorithms, distributed algorithms can be used according to the problem
at hand. Explicit methods discussed in section 4 are used where the coupling between subsystems is
loose. Waveform relaxation algorithm and semi-implicit algorithm are more stable because they iteratively
converge on the right solution. However, the stability of the solution to some extent also depends on the
individual solver used at the subsystem level. SUNDIALS is very popular for its efficiency and stability,
and looks to be a promising choice, but there are few issues with it. SUNDIALS solver was not written
to become part of co-simulation solution, so it has its traditional way of solving systems. If there are few
changes made in the SUNDIALS solver then its can become very useful asset in co-simulation solutions.
The modifications in SUNDIALS that may make it useful for co-simulation are listed in section 5.6.1.

In section 6.2 a detailed argument is given why a distributed co-simulation algorithm should not be com-
pared with a monolithic algorithm, in time and efficiency. Both serve their own domains of problems.
Solver coupling algorithms in mathematical terms are a relatively new concept. They are not as advanced
as traditional numerical algorithms. With continuous research, it is possible that one day for some specific
types of problems, coupled algorithms may outperform traditional algorithms in all respects. With the
current state of the research, it is not possible to say so.
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A Results of Standalone Algorithms

A.1 Explicit Jacobi Method

127



Results of Standalone Algorithms

0 20 40 60 80 100

Time

20

10

0

10

20

30

40

50

V
a
lu

e
s

X
Y

12 10 8 6 4 2 0 2 4

X

0

5

10

15

20

25

30

35

40

45

Y

Figure A.1: “Lotka-Volterra ” system simulated using explicit Jacobi method. The “step size” is 0.5 here.
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Figure A.2: “Van der Pol” oscillator simulated using explicit Jacobi method. The “step size” is 0.3 here.
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Figure A.3: “Simple oscillator” simulated using explicit Jacobi method. The “step size” is 0.5 here.
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Figure A.4: Difference of results between Jacobi method and OpenModelica. The whisker bars show how the
values produced at each time step using Jacobi method differ from the values of OpenModelica.
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A.2 Explicit Gauss-Seidel Method
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Figure A.5: “Lotka-Volterra ” system simulated using explicit Gauss-Seidel method. The “step size” is 0.5 here.
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Figure A.6: “Van der Pol” oscillator simulated using explicit Gauss-Seidel method. The “step size” is 0.3 here.
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Figure A.7: “Simple oscillator” simulated using explicit Gauss-Seidel method. The “step size” is 0.5 here.
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Figure A.8: Difference of results between Gauss-Seidel method and OpenModelica. The whisker bars show how the
values produced at each time step using Gauss-Seidel method differ from the values of OpenModelica.
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B.1 Waveform Relaxation Algorithm
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Figure B.1: “Van der Pol” oscillator simulated using the waveform relaxation algorithm, the “step size” is 0.5 here.
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Figure B.2: “Lotka Volterra” system simulated using the waveform relaxation algorithm,the “step size” is 0.5 here.
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Figure B.3: “Lorenz attractor” simulated using the waveform relaxation algorithm, the “step size” is 0.05 here.
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Figure B.4: Difference of results between WR algorithm and OpenModelica. The whisker bars show how the values
produced at each time step using WR algorithm differ from the values of OpenModelica.
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B.2 Semi-Implicit Algorithm
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Figure B.5: “Van der Pol” oscillator simulated using the semi-implicit algorithm, the “step size” is 0.5 here.
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Figure B.6: “Lotka Volterra” system simulated using the semi-implicit algorithm,the “step size” is 0.5 here.
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Figure B.7: “Lorenz attractor” simulated using the semi-implicit algorithm, the “step size” is 0.05 here.
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Figure B.8: Difference of results between semi-implicit algorithm and OpenModelica. The whisker bars show
how the values produced at each time step using semi-implicit algorithm differ from the values of
OpenModelica.
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Figure B.9: “Van der Pol” oscillator simulated using the strong coupling algorithm, the “step size” is 0.5 here.
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Figure B.10: “Lotka Volterra” system simulated using the strong coupling algorithm,the “step size” is 0.5 here.
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Figure B.11: “Lorenz attractor” simulated using the strong coupling algorithm, the “step size” is 0.05 here.
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Figure B.12: Difference of results between strong coupling algorithm and OpenModelica. The whisker bars show
how the values produced at each time step using strong coupling algorithm differ from the values of
OpenModelica.
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