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Kurzfassung. Diese Arbeit sha�t einen axiomatishen Rahmen für den

Beweis von optimalen Konvergenzraten adaptiver Algorithmen. Das Haupt-

anwendungsfeld hierfür sind die Finite-Element-Methode sowie auh die

Randelement-Methode. Drei Axiome für den Fehlershätzer und drei wei-

tere für die zugehörige Netzverfeinerung garantieren optimale Konvergenz-

raten. Der axiomatishe Zugang erlaubt es, spezielle Fragen nah der Not-

wendigkeit von (diskreten) unteren Fehlershranken, dem Einsatz von ap-

proximativen Lösern, der Einbindung von inhomogenen Randdaten oder

auh der Verwendung von äquivalenten Fehlershätzern zu beantworten.

Die Weiterentwiklungen und Verbesserungen im Vergleih zum aktuellen

Stand der Forshung (ausgenommen der eigenen Arbeit [24℄, welhe in die-

ser Dissertation teilweise erweitert wird) werden im Folgenden zusammen-

gefasst:

• Es wird ein einheitliher und komplett abstrakter theoretisher Rah-

men gesha�en, der die aktuelle Literatur zum Thema optimaler Konver-

genzraten umfasst. Die abstrakte Form erlaubt es, lineare sowie nihtlineare

Probleme zu behandeln, und sie ist unabhängig von der zugrundeliegenden

(konformen, niht-konformen, gemishten) Methode. Verwendet und analy-

siert wird einzig der Fehlershätzer, welher als Funktion der Triangulierung

betrahtet wird. Dieser Zugang ermögliht es, Axiome zu formulieren, die

unabhängig von allen Annahmen an das konkrete Modell sind.

• Die Beweise für Konvergenz und Konvergenz mit optimaler Rate kom-

men ohne E�zienz des Fehlershätzers aus. E�zienz wird in dieser Arbeit

nur verwendet, um die Approximationsklasse mittels Best-Approximations-

fehler und Datenfehler zu harakterisieren. Als Konsequenz davon und im

Untershied zur gegenwärtigen Literatur hängt die obere Shranke für op-

timale Markierungsparameter niht mehr von der E�zienzkonstante ab.

• Die Arbeit führt eine allgemeine Quasi-Galerkinorthogonalität ein, die

niht nur hinreihend, sondern auh notwendig für die R-lineare Konver-

genz des Fehlershätzers ist. Betrahtet man die optimale Konvergenzrate

des Fehlershätzers bezüglih der Komplexität des Verfahrens (das heiÿt:

die Komplexität der Berehnung des aktuellen Shritts und die Komplexi-

tät aller vorausgegangenen Shritte), so stellt sih die R-lineare Konvergenz
selbst als notwendig heraus. Die optimale Komplexität wird dann als Kon-

sequenz der optimalen Konvergenzraten des Fehlershätzers bewiesen.

• Anstatt der Overlay-Eigenshaft (eine üblihe Annahme in aktueller

Literatur) verwendet diese Arbeit eine tieferliegende Eigenshaft der Netz-

verfeinerung. Dies erlaubt es, auh für populäre Verfeinerungsmethoden wie

die Rot-Grün-Blau-Verfeinerung, optimale Konvergenzraten zu beweisen.

• Shlussendlih behandelt diese Arbeit equivalente Fehlershätzer, ap-

proximative Löser sowie inhomogene und gemishte Randdaten. Zusätzlih

wird eine neue Methode zur adaptiven Geometrie-Approximation für eine

spezielle Randelement-Methode eingeführt und deren Konvergenz bewie-

sen.
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Abstrat. This work aims �rst at the development of an axiomati frame-

work for the proof of optimal onvergene rates for adaptive algorithms,

with the main �eld of appliation being the �nite element method and the

boundary element method. Seond, the axiomati view allows re�nements

of partiular questions like the avoidane of (disrete) lower bounds, inex-

at solvers, inhomogeneous boundary data, or the use of equivalent error

estimators. Three axioms whih are related to the estimator guarantee op-

timal onvergene rates in terms of the error estimator for any re�nement

strategy whih satis�es additional three triangulation related axioms. Com-

pared to the state of the art in the literature (exept for the reent own

work [24℄ whih is partially generalized), the improvements of this work

an be summarized as follows:

• First, a general and ompletely abstrat framework is presented whih

overs the existing literature on rate optimality of adaptive algorithms. The

abstrat analysis overs linear as well as nonlinear problems and is inde-

pendent of the underlying (onforming, non-onforming, or mixed) �nite

element or boundary element method. Solely, the error estimator, onsid-

ered as a funtion of the underlying triangulation, is used and analyzed.

This allows to formulate axioms whih are not restrited to any onrete

model assumption.

• Seond, e�ieny of the error estimator is neither needed to prove

onvergene nor quasi-optimal onvergene behavior of the error estima-

tor. In this work, e�ieny exlusively haraterizes the approximation

lasses involved in terms of the best-approximation error and data resolu-

tion. Therefore, the upper bound on the optimal marking parameters does

not depend on the e�ieny onstant.

• Third, some general quasi-Galerkin orthogonality is not only su�ient,

but also neessary for the R-linear onvergene of the error estimator, whih

turns out to be neessary itself when it omes to optimal omplexity es-

timates. The latter means the optimality of the adaptive algorithm when

onsidering the overall ost of the algorithm (whih inludes the omputa-

tion of all previous steps) and is proved as a by-produt of rate optimality.

• Fourth, we irumvent the use of the overlay estimate of the re�nement

strategy, whih is a standard assumption in the reent literature, to inlude

popular re�nement shemes like red-green-blue re�nement into the analysis.

• Finally, the general analysis allows for equivalent error estimators and

inexat solvers as well as di�erent non-homogeneous and mixed boundary

onditions and is even employed to prove onvergene of some novel adap-

tive geometry approximation for a ertain boundary element method.
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CHAPTER 1

Outline & Introdution

1.1. Adaptivity

In this work, adaptivity is understood as the property of some numerial algorithm to

adapt its behavior to the given instane of a problem. In ontrast to that, a uniform algorithm

is assumed to show more or less the same behavior for any given problem in a ertain lass

for whih the algorithm is designed. This means, that the algorithm uses a priori knowledge

of the problem only. One example for that di�erene is the numerial integration, i.e, the

approximation of

∫ 1

0
f(x) dx for some given funtion f : [0, 1] → R. A uniform algorithm

evaluates the funtion f at a priori determined grid points and omputes an approximation.

An adaptive quadrature, on the other hand, tries to add grid points, where f appears to

be rough, and to remove grid points, where f appears to be smooth. This is done with the

overall goal of reduing the omputational ost to reah a ertain auray (see Figure 1 for

an example). The key di�erene of both approahes is that the uniform algorithm uses all

evaluations of f for the omputation of the approximation. The adaptive algorithm, invests

some of the evaluations in the determination of better evaluation points. This strategy makes

only sense, if the additional investment of omputational time pays at some point in terms

of an improved auray. Therefore, an adaptive algorithm is only useful, if the problem

at hand bene�ts from a non-uniform approah. In terms of the quadrature example above,

this is the ase if one wants to design a blak-box algorithm, whih integrates a large lass

of funtions equally well in terms of auray, sine for any partiular funtion, one ould

design an optimal grid of evaluation points a priori.

But also for very spei� problems, an adaptive approah an make sense. An illustrative

example for this situation (whih however is way beyond the urrent state of theory), is the

following: Assume one wants to predit how a ar will deform under a front impat. It is

obvious that the front bumpers and the hood will su�er from major deformation and thus

require high omputational auray. However, in low speed rashes, the strong ylinder

blok ould survive without any deformation and thus it su�es to ompute how the ylinder

blok translates and rotates within the ar. This is, of ourse, muh heaper in terms of

omputational time, than omputing the loal deformations of the blok. For high speed

rashes, when even the ylinder blok deforms, this might not be su�iently aurate any

more. Therefore, a detailed omputation is neessary. The partiular threshold speed, whih

separates those two ases, may not be known a priori. Hene, it might not be possible to

design a uniform algorithm, whih uses only a priori knowledge of the problem, but still

omputes the solution e�iently.

An often heard argument in favor of uniform algorithms is that omputing power and

memory have beome so heap that one just inreases the size of the omputing faility, if a

given algorithm does not produe the desired auray. This argument is misleading for two

reasons: First, even the upgraded omputers an bene�t from an adaptive approah whih

fouses the omputational power on where it is needed most. Seond, it might be not even

possible to reah a given auray just by upsaling the failities. To illustrate that, assume
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Figure 1. Numerial integration of some given funtion with uniform grid

(left) and adaptively generated (grid).

that the approximation error (e.g., the quadrature error or the geometri di�erenes of the

simulated rash ompared to an atual rash test) behaves as a funtion of the degrees of

freedom of the disretized system, i.e.,

err(N) ≃ N−s

for some s > 0 and N ∈ N denoting the degrees of freedom (e.g., the number of evalua-

tion points). This is a very realisti assumption for many problem lasses. Note that the

onvergene rate s does not only depend on the problem itself, but also on the method of

approahing this problem. A quadrature algorithm whih wastes omputational time on

smooth parts of the integrand, will ahieve a lower rate s′ < s. Furthermore, assume that

the omputational time needed to ompute the approximate solution is related to the degrees

of freedom in the sense of

time(N) ≃ N t seconds

for some t > 0 (for the diret solution of a densely populated linear system of N equations

we have, e.g., t = 3). If the exat solution is known, one an design ustom made grids to

approximate the exat solution with some optimal rate sopt > 0, i.e.,

err(N) ≃ N−sopt.

Hene, to reah a desired auray of, e.g. 10−5
, it su�es to use N ≈ 105/sopt degrees of

freedoms, when they are optimally distributed. In terms of omputational time, we obtain

time ≃ 105t/sopt seconds.

Under realisti assumptions of the involved parameters, i.e., t = 1 (linear time) and sopt = 1
(e.g., lowest order �nite element method), this results in

105 seconds ≈ 1 day.

However, it is entirely possible, that due to non-uniformities in the solution a uniform ap-

proah will reveal a redued rate of onvergene of s = 1/2 (due to degrees of freedom wasted

12



for mostly uniform parts of the solution, whereas non-uniform parts lak the neessary res-

olution). Then, we end up with

1010 seconds ≈ 316 years.

Even inreasing the omputational power by an order of magnitude does not bring the

uniform approah anywhere near feasibility. This is the reason why the understanding of

adaptivity plays a ruial role.

The onept of adaptivity aims to provide a method whih automatially, without user

intervention, reahes optimal onvergene rates, i.e., s = sopt. Moreover, it aims to rigor-

ously prove that this optimal onvergene is ahieved for a given problem. The existing

literature on adaptivity fouses on very spei� model problems (see the historial overview

in Setion 2.8 for referenes), i.e., ertain types of (ellipti) partial di�erential equations. In

ontrast to that, this work provides a framework, sort of a onstrution guide, for adaptive

algorithms whih realize optimal onvergene rates. To that end, ertain requirements on

the algorithm (later alled axioms) are derived, whih are su�ient and even neessary to

prove the optimal onvergene behavior. This allows to apply the abstrat theory to a large

number of model problems and partiularly determines what are the key properties of an

optimally onvergent adaptive algorithm. This might help in the design of new algorithms

for omplex problems and situations.

1.2. An exemplary adaptive algorithm

This introdutory setion demonstrates an adaptive re�nement algorithm for a very sim-

ple approximation problem. To that end, onsider some funtion u ∈ L2(0, 1) and a partition
T of [0, 1] into ompat intervals T ∈ T suh that [0, 1] =

⋃
T∈T T . Let U(T ) ∈ P0(T ) denote

the L2
-orthogonal projetion of u onto the spae of T -pieewise onstant funtions

P0(T ) :=
{
V ∈ L2(0, 1) : V |T ∈ R, for all T ∈ T

}

de�ned by

b(U(T ) , V ) :=

∫ 1

0

U(T )V dx =

∫ 1

0

uV dx for all V ∈ P0(T ). (1.2.1)

Suppose that one is interested in the weighted error measure

err(T ) :=
(∑

T∈T

|T |2‖u− U(T )‖2L2(T )

)1/2

= ‖h(T )(u− U(T ))‖L2(0,1),

where h(T )|T := |T | for all T ∈ T and |T | denotes the length of the interval T . This ould
be of interest, if one wants to approximate the volume fore of some seond-order ellipti

PDE (whih usually has to be approximated in the H−1(0, 1)-norm). Standard results show

that for u ∈ L2(0, 1) ⊂ H−1(0, 1) it holds ‖u− U(T )‖H−1(0,1) . err(T ).
Provided that u ∈ H1(0, 1), the Poinaré inequality proves that

err(T ) ≤ Capriori‖h(T )2u′‖L2(0,1) ≤ Capriori‖u′‖L2(0,1) max
T∈T

|T |2. (1.2.2)

Thus, the naive strategy is to uniformly redue |T | in some sequene of partitions (T unif
ℓ )ℓ∈N0

suh that maxT∈T unif
ℓ

|T | ≤ 2−ℓ
. If u ∈ H1(0, 1), this results in a onvergene rate of

‖u− U(T unif
ℓ )‖L2(0,1) . 2−2ℓ

for all ℓ ∈ N0,

whih one ould all exponential onvergene. The reason why we do not onsider this as

exponential onvergene, is beause the number of steps ℓ has nothing to do with the degrees
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of freedom of the linear system (1.2.1). However, the omputational e�ort involved to get

U(T unif
ℓ ) is diretly related to the degrees of freedom, sine the linear system (even if it

is diagonal in this ase) has |T | many rows and olumns (here |T | denotes the ounting

measure, i.e., the number of elements). In terms of degrees of freedom, the onvergene rate

dereases to

‖u− U(T unif
ℓ )‖L2(0,1) . |T unif

ℓ |−2
for all ℓ ∈ N0.

This shows algebrai onvergene rate s = 2 if u ∈ H1(0, 1). If u has less regularity, e.g.,

u(x) := xα for some −1/2 < α < 1/2, the onvergene rate is even slower, see Figure 2

for an example. However, one an onstrut graded partitions T grad
ℓ , suh that the funtion

u(x) := xα an be approximated with rate s = 2. To that end, a uniform partition T unif
ℓ is

mapped via an appropriate funtion x 7→ xβ for β := 3/(2 + α), i.e., T grad
ℓ = (T unif

ℓ )β; see
Figure 2�3 for an example. Standard estimates prove

‖u− U(T grad
ℓ )‖L2(0,1) ≤ Cgrad|T grad

ℓ |−2
for all ℓ ∈ N0 (1.2.3)

for some uniform Cgrad > 0, even though the exat solution is not in H1(0, 1) for α < 1/2.
The ultimate goal of adaptivity is to automatially generate suh partitions for a general lass

of exat solutions u. To that end, the following algorithm is widely used in the literature:

Algorithm 1.2.1. Input: Initial partition T0 and bulk parameter 0 < θ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute the re�nement indiators ηT (Tℓ) := |T |‖u− U(Tℓ)‖L2(T ) for all T ∈ Tℓ.

(ii) Determine some set Mℓ ⊆ Tℓ of minimal ardinality suh that

1

2

∑

T∈Tℓ

ηT (Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (1.2.4)

(iii) De�ne the next triangulation Tℓ+1 by bisetion of all marked elements.

Output: Sequene of approximations U(Tℓ) for all ℓ ∈ N0.

Figure 2 shows the performane of this algorithm in terms of error redution and Figure 3

plots the generated partitions Tℓ.

We aim to prove the observed onvergene behavior of Algorithm 1.2.1 in Figure 2, i.e.,

the fat that err(Tℓ) . |Tℓ|−2
for all ℓ ∈ N0. To that end, we �rst prove a ontration

property of the error as illustrated in Figure 2, i.e.,

‖h(Tℓ+1)(u− U(Tℓ+1))‖L2(0,1) ≤ κ‖h(Tℓ)(u− U(Tℓ))‖L2(0,1) for all ℓ ∈ N0 (1.2.5)

for some 0 < κ < 1. This follows with the fat that bisetion halves the element lengths and

that U(Tℓ)|T depends only on u|T by

‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(0,1)

= ‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(∪(Tℓ+1∩Tℓ))

≤ 1/4‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1∩Tℓ))

≤ (1/4− 1)‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(0,1).

With the marking riterion (1.2.4), the fat that Mℓ = Tℓ \ Tℓ+1, and
⋃
(Tℓ \ Tℓ+1) =⋃

(Tℓ+1 \ Tℓ), this implies

‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(0,1) ≤ (1− (1− 1/4)/2)‖h(Tℓ)(u− U(Tℓ))‖2L2(0,1),
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whih is (1.2.5) with κ =
√
5/8 (see also Figure 2 for the omparison with the experimental

results). Hene, the error onverges linearly to zero. This linear onvergene is the bakbone

of the optimality analysis. The next step is to ompare the adaptively generated partitions

with some optimal partitions. As disussed above (and demonstrated in Figure 2), there

exist graded partitions T grad
ℓ , whih realize the optimal onvergene rate s = 2 in (1.2.3).

Hene, the neessary thing to do is to look at the di�erene of Tℓ and T grad
ℓ . To that end,
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Figure 4. The error distribution h(T )(u− U(T )) for the uniform approah

with |T unif
10 | = 1024 and the adaptive approah with |T34| = 928 shows that

the error is more or less equidistributed on the adaptive partitions, whereas

for the uniform partitions the error is onentrated around the singularity at

x = 0. In this example, there holds err(T34) ≈ 10−7
and err(T unif

10 ) ≈ 10−5
.

hoose the minimal k ∈ N suh that

|T grad
k |−2 ≤ C−1

graderr(Tℓ)/4. (1.2.6)

For simpliity assume that k > 1 in this ase. Minimality of k then implies |T grad
k−1 |−2 >

C−1
graderr(Tℓ)/4, i.e., |T grad

k−1 | < 2C
1/2
graderr(Tℓ)

−1/2
. Sine we have by onstrution |T grad

k | =

|T unif
k | = 2|T unif

k−1 | = 2|T grad
k−1 |, the minimality of k shows

|T grad
k | = 2|T grad

k−1 | ≤ 4C
1/2
graderr(Tℓ)

−1/2. (1.2.7)

The overlay of T grad
k and Tℓ gives some measure of the distane of those two partitions, i.e.,

T grad
k ⊕Tℓ :=

{
T ∩T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩T ′| > 0
}
is the oarsest ommon re�nement

of Tℓ and T grad
k . Assume T0 ∈ (T grad

k ⊕ Tℓ) \ Tℓ. By de�nition, there exist T ∈ T grad
k and

T ′ ∈ Tℓ suh that T0 = T ∩ T ′
and |T ∩ T ′| > 0. Moreover, sine T is not in Tℓ, there holds

T 6⊆ T ′
. This shows that there holds

(T grad
k ⊕ Tℓ) \ Tℓ =

{
T ∩ T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩ T ′| > 0, T ′ 6⊆ T
}
.

Sine T ∈ T grad
k is an interval, there exist at most two T ′ ∈ Tℓ with |T ∩ T ′| > 0 and T ′ 6⊆ T

(the elements T ′
must ontain at least one endpoint of T ). This, however, implies

|(T grad
k ⊕ Tℓ) \ Tℓ| = |

{
T ∩ T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩ T ′| > 0, T ′ 6⊆ T
}
|

≤ 2|T grad
k |.

(1.2.8)

On the other hand, eah T ∈ Tℓ \ (T grad
k ⊕ Tℓ) has at least two sons T ′ ⊆ T with T ′ ∈

(T grad
k ⊕ Tℓ) \ Tℓ. This implies

|Tℓ \ (T grad
k ⊕ Tℓ)| ≤ |(T grad

k ⊕ Tℓ) \ Tℓ|. (1.2.9)
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Together with (1.2.7) this shows

|Tℓ \ (T grad
k ⊕ Tℓ)|

(1.2.8)

≤ 2|T grad
k |

(1.2.7)

≤ 8C
1/2
graderr(Tℓ)

−1/2. (1.2.10)

It remains to relate |(T grad
k ⊕Tℓ) \ Tℓ| to |Mℓ|. To that end, note that the element-wise best

approximation property U(Tℓ) shows

err(T grad
k ⊕ Tℓ) ≤ err(T grad

k )
(1.2.3)

≤ Cgrad|T grad
k |−2

(1.2.6)

≤ err(Tℓ)/4.

With err(T grad
k ⊕ Tℓ) = ‖h(T grad

k ⊕ Tℓ)(u− U(T grad
k ⊕ Tℓ))‖L2(0,1), this implies

err(Tℓ)
2 = ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad

k ⊕Tℓ)\Tℓ))

+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad
k ⊕Tℓ)∩Tℓ))

≤ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad
k ⊕Tℓ)\Tℓ))

+ ‖h(T grad
k ⊕ Tℓ)(u− U(T grad

k ⊕ Tℓ))‖2L2(0,1)

≤
∑

T∈Tℓ\(T
grad
k ⊕Tℓ)

ηT (Tℓ)
2 + err(Tℓ)

2/16.

(1.2.11)

Hene, we derive

1

2

∑

T∈Tℓ

ηT (Tℓ)
2 ≤ 15

16
err(Tℓ)

2 ≤
∑

T∈Tℓ\(T
grad
k ⊕Tℓ)

ηT (Tℓ)
2. (1.2.12)

Sine Mℓ is a set of minimal ardinality with (1.2.4), we obtain

|Mℓ| ≤ |Tℓ \ (T grad
k ⊕ Tℓ)|

(1.2.10)

≤ 8C
1/2
graderr(Tℓ)

−1/2
for all ℓ ∈ N0.

By de�nition of the re�nement in Step (iii) of Algorithm 1.2.1, there holds

|Tℓ| − |T0| =
ℓ−1∑

k=0

(|Tk+1| − |Tk|) =
ℓ−1∑

k=0

|Mk| ≤ 8C
−1/2
grad

ℓ−1∑

k=0

err(Tk)
−1/2.

By indution, the linear onvergene (1.2.5) proves

err(Tℓ) ≤ κℓ−kerr(Tk).

Hene, by onvergene of the geometri series, we obtain

ℓ−1∑

k=0

err(Tk)
−1/2 ≤ err(Tℓ)

−1/2
ℓ−1∑

k=0

κ(ℓ−k)/2 ≤ (1−√
κ)−1err(Tℓ)

−1/2.

Altogether, this yields

|Tℓ| − |T0| ≤ 8C
1/2
grad(1−

√
κ)−1err(Tℓ)

−1/2,

and we end up with onvergene rate s = 2, i.e.,

err(Tℓ) ≤ (1−√
κ)−282Cgrad(|Tℓ| − |T0|)−2

for all ℓ ∈ N.
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1.3. Disussion of the example

The sketh of the optimality proof above reveals ertain interesting things. First, we

extensively used the fat that the error estimator

∑
T∈T ηT (T )2 and the error ‖h(T )(u −

U(T ))‖2L2(0,1) oinide for this example, sine we approximate a known funtion. If one thinks

of u as the solution of some PDE, it is more likely that one omputes the approximations

to u without knowing u itself (i.e., by solving a �nite element system). Then, the error

estimator di�ers from the error, but an be related to it by reliability

err(T ) ≤ Crel

(∑

T∈T

ηT (T )2
)1/2

(1.3.1)

and/or e�ieny

C−1
eff

(∑

T∈T

ηT (T )2
)1/2

≤ err(T ) + data(T ) (1.3.2)

for some uniform onstants Crel, Ceff > 0 and some perturbation term data(T ), whih often

depends on the given data.

The linear onvergene (1.2.5) is an important tool for the analysis. To prove it, we used

that fat that U(Tℓ) satis�es the orthogonality

‖u− U(Tℓ)‖2L2(0,1) = ‖u− U(Tℓ+1)‖2L2(0,1) + ‖U(Tℓ+1)− U(Tℓ)‖2L2(0,1).

This identity holds only for the ase of a bilinear form b(· , ·) whih is a salar produt on

the given Hilbert spae and hene restrits the appliability of the analysis.

The overlay estimate (1.2.8) bounds the di�erene between the optimal partition T grad
k

and the adaptively generated partition Tℓ. In the 1D ase, the overlay estimate seems almost

trivial, however for 2D and 3D re�nement strategies, it is not straightforward to prove, and

it is even wrong for some strategies (see Setion 3.2.9 below for a ounterexample for red-

green-blue re�nement in 2D).

Finally, the identity

|Tℓ| − |T0| =
ℓ−1∑

k=0

|Mk|

is trivial in our ase, but poses a real issue in the ase of ertain pratial re�nement strate-

gies. The main problem here is, that usual re�nement strategies have to re�ne more elements

than only the marked ones, to keep the partition regular in a ertain sense (e.g., avoidane of

hanging nodes; see Setion 3.2 for details). Then, the question is how to bound the number

of re�ned elements by the number of marked elements.

Chapter 2 states exatly, what is neessary to prove optimal onvergene rates for some

given problem in a very abstrat and general framework and will thus fous on the error

estimator instead of the error.

1.4. Outline

This setion states the main results of the following hapters and setions.

Chapter 2:

The hapter introdues an abstrat framework for adaptive algorithms and formulates a

partiular algorithm (Algorithm 2.2.1). Within this framework, the adaptive approximation

problem formulated in Setion 2.2.3, is stated. This problem assumes a ertain quantity η(·)
(the error estimator) whih is a funtion of an underlying disretization (the triangulation).
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The goal is to drive the error estimator to zero as fast as possible, i.e., limℓ→∞ η(Tℓ) = 0
with optimal rate for a sequene of triangulations (Tℓ)ℓ∈N0. We state six axioms (E1)�(E3)

& (T1)�(T3) whih determine the behavior of the adaptive algorithm and su�e to show

that optimal onvergene rates are obtained, i.e.,

η(Tℓ) . |Tℓ|−s
for all ℓ ∈ N0,

where |Tℓ| denotes the number of elements in the triangulation Tℓ and s > 0 denotes the

best possible onvergene rate whih is ahievable for a partiular problem. The latter is

the main result of this hapter and stated formally in Theorem 2.3.3. The axioms an

roughly be ategorized into estimator related axioms (E1)�(E3) and triangulation related

axioms (T1)�(T3). The �rst ategory (E1)�(E3) an be paraphrased as follows:

(E1) Stability and redution: The estimator is a Lipshitz ontinuous funtion of the

triangulation, and it is ontrative up to a perturbation when the triangulation is

loally re�ned.

(E2) General quasi-orthogonality: The perturbation from (E1) is ℓ2-summable and also

bounded by the estimator on the oarsest triangulation.

(E3) Disrete reliability: The error estimator is a loal upper bound of the perturbation

from (E1).

The triangulation related axioms (T1)�(T3) an be heuristially formulated as follows:

(T1) Son estimate: The re�nement strategy inreases the number of elements at most

linearly.

(T2) Closure estimate: The number of elements is bounded by the number of marked

elements.

(T3) Uniform approximability: The problem allows for a ertain onvergene rate.

Chapter 3:

This hapter applies the abstrat theory from Chapter 2 to ertain model problems. We

onsider the onforming �nite element method (FEM) for the Poisson problem with bi-

setion based re�nement and red-green-blue re�nement. The optimality result for general

seond-order ellipti PDEs marks the main ahievement of this hapter (Setion 3.6.1). This

inludes also an adaptive algorithm for problems whih satisfy a Gårding inequality only,

where the di�ulty is, that the disrete system is not neessarily solvable in eah step (Se-

tion 3.6.2). Therefore, we propose an algorithm whih guarantees unique solvability after

a �nite number of steps. Moreover, we onsider non-linear problems with quite general

oe�ients. Altogether, we prove optimality results for the following problem lasses:

• FEM for the Poisson problem (Consequene 3.5.2�3.5.5),

• FEM for general seond-order ellipti PDEs with

� elliptiity estimate (Consequene 3.6.2),

� Gårding inequality (Consequene 3.6.15),

� non-linear oe�ients (Consequene 3.7.5),

• boundary element method (BEM) for

� weakly-singular integral equation (Consequene 3.5.9),

� hyper-singular integral equation (Consequene 3.5.11�3.5.12).

Chapter 4:

This hapter extends the abstrat theory of Chapter 2 to equivalent error estimators, where

Theorem 4.3.1 states the main result. We onsider error estimators whih satisfy the axioms

only in average, but not in every single step of the adaptive algorithm. This abstrat setting
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overs inexat solve, i.e., the ase of iterative solvers, where instead of the error estimator

only an approximation

η̃(T ) ≈ η(T )

is omputed but the axioms are only satis�ed for the exat error estimator. Moreover, we

over estimators whih are equivalent to some weighted error estimator, i.e.,

η̃(T ) ≃ ‖h(T )res(T )‖,
where h(T ) is a triangulation related weight funtion and res(·) is some quantity whih mea-

sures the error in the appropriate norm, e.g., the residual in ase of a weighted-residual error

estimator. To that end, we exploit ertain properties whih are automatially satis�ed by

weighted error estimators and develop a super ontrative weight funtion (Proposition 4.5.4)

whih enables us to ontrol the equivalene onstants.

Chapter 5:

This hapter applies the extended theory of Chapter 4 to ertain model problems. The main

result of this setion is the inorporation of inhomogeneous boundary data into the FEM

optimality analysis. This is possible by use of the super ontrative weight funtion from

Chapter 4 in ombination with the Sott-Zhang projetion. Altogether, we onsider the

following problems:

• FEM for non-residual error estimators in the frame of the Poisson problem (Conse-

quene 5.2.3�5.2.11),

• FEM for the p-Laplaian (Consequene 5.3.3),

• FEM for non-trivial boundary onditions (Consequene 5.4.3).

Chapter 6:

This hapter steps out of the line of the other hapters, as we introdue a new adaptive

algorithm (Algorithm 6.2.2) for the solution of integral equations on pieewise smooth ge-

ometries. The idea is to approximate the exat geometry with pieewise a�ne line segments

and to solve a standard BEM problem on the approximate geometry. A posteriori analysis

for this kind of problem is available for FEM, but is missing entirely for BEM, where very

di�erent tehniques are neessary. We introdue an error estimator

η(T )2 = ρ(T )2 + geo(T )2,

where ρ(T ) is a standard residual error estimator for the weakly singular integral equation

on pieewise a�ne geometries and geo(T ) is a geometri error estimator whih measures

the approximation quality of the approximate geometry. We prove that the error estima-

tor provides an upper error bound and use this to prove onvergene of the orresponding

adaptive algorithm (Consequene 6.4.2). The onvergene proof is done within the frame of

Chapter 2. Although we are onvined that optimal onvergene rates are possible with the

given algorithm, the proof requires additional ideas whih are beyond the sope of this work.

Chapter 7:

The �nal hapter is foused on the general quasi-orthogonality (E2). The reason for this

is that for many problem lasses (e.g., for non-symmetri or non onforming approahes)

the general quasi-orthogonality is the most di�ult axiom to verify. We show that the

general quasi-orthogonality holds for the non-symmetri and non-linear example problems

in Chapter 3.
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CHAPTER 2

Abstrat Theory

2.1. Introdution, state of the art & outline

The purpose of this hapter is to �nd an abstrat framework within, e.g., the results of the

introdutory hapter an be reprodued. The reprodution of existing results is, of ourse,

not the main reason for developing the abstrat framework. The abstrat point of view

sheds new light on this terrain and enables us to prove new results for a very general lass of

problems (as is demonstrated in the appliations of Chapter 3, 5, 6). To that end, we abandon

the framework of exat solutions and their disrete approximations and fous ompletely

on the error estimator. The funtion η(·) an be seen as a funtion on the underlying

triangulations with some spei� properties. Then, the goal of the adaptive algorithm is to

manipulate the triangulation in suh a way, that the error estimator onverges to zero as fast

as possible. An immediate onsequene of this viewpoint is that it removes the need for the

lower error bound (1.3.2). An earlier version of this abstrat framework an be found in [24℄.

However, this work takes one step further into the abstration of the onrete problems. This,

for example, enables us to prove optimal onvergene rates of the adaptive algorithm for

re�nement strategies whih do not satisfy the overlay property (1.2.8) (e.g., red-green-blue

re�nement). Moreover, the onditions (axioms) whih we derive in this hapter turn out to

be su�ient for optimal onvergene rates, and, under realisti assumptions, even neessary.

Therefore, we obtain expliit riteria whih determine if a given problem or problem lass

will reveal optimal onvergene behavior. For the state of the art in the literature, we refer

the reader to the histori overview of Setion 2.8. The remainder of this hapter is organized

as follows: Setion 2.2 desribes the abstrat framework whih is neessary to formulate

the axioms. This inludes a formal de�nition of the error estimator, the triangulations,

the approximation problem of driving the estimator to zero, and the adaptive algorithm to

solve the approximation problem. Setion 2.3 states the main theorem (Theorem 2.3.3) of

this hapter as well as the axioms whih are then used to prove optimal onvergene rates.

Setion 2.4�2.5 give alternative approximation problems (optimal onvergene of the error

and optimal omplexity in terms of omputational work) and state the respetive results.

Setion 2.6 proves that the axioms are not only su�ient, but even neessary for proving

optimal onvergene rates. Setion 2.7 demonstrates ertain problem lasses, for whih one

or more of the axioms are a priori satis�ed. Finally, Setion 2.8 onludes with a histori

overview and motivates the partiular hoie of axioms in Setion 2.3.1.

2.2. Abstrat setting

This setion is devoted to the de�nition of the problem and the preise statement of the

adaptive algorithm.

2.2.1. Triangulations. Let T∞ be a ountable set. Eah �nite subset T ⊆ T∞ with

|T | < ∞ elements is alled a triangulation. Let T be a set of triangulations (whih is

ountable sine the set of all triangulations is ountable) with the orresponding re�nement
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strategy T(·, ·) :
{
(T ,M) : T ∈ T, M ⊆ T

}
→ T. This is a funtion whih satis�es

T(T ,M) ∩ M = ∅ for all M ⊆ T and all T ∈ T. Here, M is alled the set of marked

elements. Given T ∈ T, de�ne T(T ) ⊆ T suh that T̂ ∈ T(T ) if and only if there exists a

sequene of triangulations T0 = T , T1, . . . , Tℓ = T̂ as well as a sequene of marked elements

M0, . . . ,Mℓ−1 with Mj ⊆ Tj for all j = 0, . . . , ℓ − 1 suh that Tj+1 = T(Tj ,Mj) for all
j = 0, . . . , ℓ− 1. We all T(T ) the set of re�nements of T . We assume that there exists an

initial triangulation T0 ∈ T suh that T(T0) = T. Additionally, we assume that T ∈ T̂ ∩ T
if and only if T ∈ Tj for all j = 0, . . . , ℓ.

The subset of all re�nements whih have at most N ∈ N elements more than a triangu-

lation T ∈ T reads

T(T , N) :=
{
T̂ ∈ T(T ) : |T̂ \ T | ≤ N

}
,

where | · | = ard(·) is the ounting measure. Sine eah triangulation T ∈ T allows for

at most 2|T |
sets of marked elements, there holds |T(T , N)| < ∞. Moreover, we write

T(N) := T(T0, N).

2.2.2. Error estimator. The error estimator is a funtion η(·) : T → ⋃
T ∈T[0,∞)T

(where AB
denotes the set of funtions mapping B to A) with η(T ) : T → [0,∞) for all

T ∈ T. By ηT (T ) for some T ∈ T , we denote the evaluation of the funtion η(·)(T ) := η(T ).

For brevity of notation, we also write η(T ) :=
(∑

T∈T ηT (T )2
)1/2 ≥ 0, whih is the global

error estimator.

2.2.3. Adaptive approximation problem. The goal of the adaptive approximation

problem is to �nd a sequene of triangulations Tℓ, ℓ ∈ N0 suh that

sup
ℓ∈N0

η(Tℓ)(|Tℓ|+ 1)s <∞

for s > 0 as large as possible. This implies that the error estimator onverges to zero with

rate s, i.e., there exists a onstant C > 0 suh that

η(Tℓ) ≤ C|Tℓ|−s
for all ℓ ∈ N0.

2.2.4. Adaptive algorithm. The algorithm to solve the adaptive approximation prob-

lem from Setion 2.2.3 reads

Algorithm 2.2.1. Input: Initial triangulation T0 and bulk parameter 0 < θ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute re�nement indiators ηT (Tℓ) for all T ∈ Tℓ.

(ii) Determine set Mℓ ⊆ Tℓ of (up to the multipliative onstant Cmin) minimal ardi-

nality suh that

θ η(Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (2.2.1)

(iii) De�ne the next triangulation Tℓ+1 := T(Tℓ,Mℓ).

Output: Error estimators η(Tℓ) for all ℓ ∈ N0.

Remark 2.2.2. Suppose that Sℓ ⊆ Tℓ is some (not neessarily unique) set of minimal

ardinality whih satis�es the Dör�er marking riterion (2.2.1). In step (iii) the phrase up

to the multipliative onstant minimal ardinality means that |Mℓ| ≤ Cmin |Sℓ| with some

ℓ-independent onstant Cmin ≥ 1.
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Remark 2.2.3. A greedy algorithm for (2.2.1), sorts the elements Tℓ = {T1, . . . , TN}
suh that ηT1(Tℓ) ≥ ηT2(Tℓ) ≥ . . . ≥ ηTN

(Tℓ) and takes the minimal 1 ≤ J ≤ N suh that

θη(Tℓ)
2 ≤ ∑J

j=1 ηTj
(Tℓ)

2
. This results in logarithmi-linear growth of the omplexity. The

relaxation to almost minimal ardinality of Mℓ allows to employ a sorting algorithm based

on binning so that Mℓ in (2.2.1) an be determined in linear omplexity [78, Setion 5℄ with

Cmin = 2.

Remark 2.2.4. Small adaptivity parameters 0 < θ ≪ 1 lead to only few marked ele-

ments and so to possibly very loal re�nements. The other extreme, θ = 1, basially leads to

uniform re�nement, where (almost) all elements are re�ned.

2.2.5. Approximability. Given T ∈ T and s > 0, de�ne

‖η,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)sη(T̂ )). (2.2.2)

The fat ‖η,T(T )‖s <∞ implies that there exists a sequene of triangulations (T opt
ℓ )ℓ∈N in

T(T ) whih satis�es onvergene

lim
ℓ→∞

η(T opt
ℓ ) = 0

and the onvergene rate

η(T opt
ℓ ) . (|T opt

ℓ \ T |)−s
for all ℓ ∈ N.

Remark 2.2.5. The quantity ‖η,T(T )‖s measures how fast the error estimator an be

driven to zero when starting from the triangulation T . The main interest, of ourse, lies in

the approximability when starting from the initial triangulation ‖η,T‖s.

2.3. The axioms

This setion introdues the set of axioms and states the main result (Theorem 2.3.3) derived

from these axioms. In the following, Tℓ denotes a triangulation generated in the ℓ-th step of

Algorithm 2.2.1.

2.3.1. Set of axioms. The following axioms (E1)�(E3), (T1)�(T3) at on the funtion

η(·) : T → ⋃
T ∈T

(
[0,∞)T

)
with η(T ) : T → [0,∞) for all T ∈ T, some perturbation funtion

̺(·, ·) : T× T → [0,∞), T(·) : T → 2T, and involve the set T as well as the onstants s > 0,
Cdrel, Cref , Cqo, Cson, Cclosure ≥ 1, 0 < κdlr ≤ ∞, and 0 ≤ ρred, εqo, εdrel < 1.

(E1) Stability and redution: For all re�nements T̂ ∈ T(T ) of a triangulation T ∈ T,
there exist sets S(T , T̂ ) ⊆ T and Ŝ(T , T̂ ) ⊆ T̂ with T \ T̂ ⊆ S(T , T̂ ) suh

that (E1a)�(E1b) hold

(a)

∣∣∣
( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

−
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2∣∣∣ ≤ ̺(T , T̂ ),

(b)

∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + ̺(T , T̂ )2.

(E2) General quasi-orthogonality: There holds

0 ≤ εqo < sup
δ>0

1− (1 + δ)(1− (1− ρred)θ)

2 + δ−1
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and the sequene of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1 satis�es for all

ℓ, N ∈ N0

ℓ+N∑

k=ℓ

(
̺(Tk, Tk+1)

2 − εqoη(Tk)
2
)
≤ Cqo η(Tℓ)

2.

(E3) Disrete reliability: For all re�nements T̂ ∈ T(T ) of a triangulation T ∈ T with

η(T̂ ) ≤ κdlrη(T ), there exists a subset R(T , T̂ ) ⊆ T with S(T , T̂ ) ⊆ R(T , T̂ ) and

|R(T , T̂ )| ≤ Cref |T \T̂ | suh that

̺(T , T̂ )2 ≤ εdrelη(T )2 + C2
drel

∑

T∈R(T ,T̂ )

ηT (T )2.

(T1) Son estimate: The sequene of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1 satis-

�es |Tℓ+1| ≤ Cson|Tℓ| for all ℓ ∈ N0.

(T2) Closure estimate: The sequene of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1

satis�es |Tℓ \ T0| ≤ Cclosure

∑ℓ−1
j=0 |Mj| for all ℓ ∈ N0.

(T3) Uniform approximability: The sequene of triangulations (Tℓ)ℓ∈N0 from Algo-

rithm 2.2.1 satis�es Capprox(s) := supℓ∈N0
‖η,T(Tℓ)‖s <∞ for all ℓ ∈ N0.

Definition 2.3.1. We say that a ertain subset of the axioms de�ned above A ⊆
{(E1), . . . , (E3), (T1), . . . , (T3)} is satis�ed, if the error estimator η(·) and the re�nement

strategy T(·) (whih are lear from the ontext if not mentioned otherwise) allow for the

neessary funtions and onstants from Setion 2.3.1, whih are involved in the axioms of

A, to exist.

Remark 2.3.2. Proposition 2.6.2 below shows that general quasi-orthogonality (E2)

together with (E1) implies (E2) even with εqo = 0 and 0 < Cqo <∞.

2.3.2. Optimal onvergene rates for the error estimator. The main results of

this Setion state onvergene and optimality of the adaptive algorithm in the sense that

the error estimator onverges with optimal onvergene rate. This is a generalization of

existing results as disussed in Setion 2.4. On the other hand, Theorem 2.3.3 (iii) shows

that the adaptive algorithm haraterizes the approximability of a problem in the sense of

Setion 2.2.5.

Theorem 2.3.3. (i) Suppose (E1) is satis�ed and assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0.
Then, for all 0 < θ ≤ 1, the estimator is onvergent in the sense

lim
ℓ→∞

η(Tℓ) = 0. (2.3.1)

(ii) Suppose (E1)�(E2) are satis�ed. Then, for all 0 < θ ≤ 1, the estimator is R-linear
onvergent in the sense that there exists 0 < ρconv < 1 and Cconv > 0 suh that

η(Tℓ+j)
2 ≤ Cconvρ

j
conv η(Tℓ)

2
for all j, ℓ ∈ N0. (2.3.2)

(iii) Suppose (E1)�(E3) and (T1)�(T3) are satis�ed for some s > 0. Then 0 < θ <
θ⋆ := (1−εdrel)/(1+C2

drel) implies quasi-optimal onvergene of the estimator in the

sense of

coptCapprox(s) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
≤ CoptCapprox(s), (2.3.3)

where the lower bound requires only (T1) to hold.
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The onstants Cconv, ρconv > 0 depend only on ρred, Cqo, εqo, and on θ. The onstant Copt > 0
depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while copt > 0 depends only

on Cson and |T0|.
Remark 2.3.4. The upper bound in (2.3.3) states that given Capprox(s) < ∞, the

estimator sequene η(Tℓ) of Algorithm 2.2.1 will deay with order s, i.e., if a deay with

order s is possible if the optimal triangulations are hosen, this deay will in fat be realized

by the adaptive algorithm. The lower bound in (2.3.3) states that the asymptoti onvergene

rate of the estimator sequene haraterizes the theoretially optimal onvergene rate.

2.3.3. Estimator redution and onvergene of η(Tℓ). We start with the obser-

vation that stability (E1a) and redution (E1b) lead to a perturbed ontration of the error

estimator in eah step of the adaptive loop.

Lemma 2.3.5. Let 0 < θ ≤ 1 and let T̂ ∈ T(T ) denote a re�nement of T ∈ T suh

that

θη(T )2 ≤
∑

T∈S(T ,T̂ )

ηT (T )2. (2.3.4)

Then, the following relaxation of (E1a)

( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

≤
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2

+ ̺(T , T̂ ) (2.3.5)

and redution (E1b) imply the estimator redution

η(T̂ )2 ≤ ρest η(T )2 + Cest ̺(T̂ , T )2 (2.3.6)

with the onstants 0 < ρest < 1 and Cest > 0 whih relate via

ρest = (1 + δ)(1− (1− ρred)θ) and Cest = 2 + δ−1
(2.3.7)

for all su�iently small δ > 0 suh that ρest < 1. This partiularly implies

η(Tℓ+1)
2 ≤ ρest η(Tℓ)

2 + Cest ̺(Tℓ, Tℓ+1)
2

(2.3.8)

for all ℓ ∈ N0.

Proof. The Young inequality together with stability (2.3.5) and redution (E1b) shows

for eah δ > 0 and Cest = 2 + δ−1
that

η(T̂ )2 =
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 +
∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2

≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ)
∑

T∈T \S(T ,T̂ )

ηT (T )2 + Cest̺(T , T̂ )2.

Therefore, the Dör�er marking (2.3.4) leads to

η(T̂ )2 ≤ (1 + δ)
(
η(T )2 − (1− ρred)

∑

T∈S(T ,T̂ )

ηT (T )2
)
+ Cest̺(T , T̂ )2

≤ (1 + δ)
(
1− (1− ρred)θ

)
η(T )2 + Cest̺(T , T̂ )2.

The hoie of a su�iently small δ > 0 allows for ρest = (1 + δ)
(
1 − (1 − ρred)θ

)
< 1.

This shows (2.3.6). By de�nition of the re�nement strategy T(·, ·) in Setion 2.2.1, there

holds Mℓ ⊆ Tℓ \ Tℓ+1 ⊆ S(Tℓ, Tℓ+1). Hene, Dör�er marking (2.2.1) for Mℓ implies Dör�er

marking (2.3.4) for S(Tℓ, Tℓ+1). This onludes the proof. �
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The estimator redution onept used in the the following proof is studied in [5℄ and

applies to a general lass of problems and error estimators.

Lemma 2.3.6. Suppose that the estimator satis�es estimator redution (2.3.8) and sup-

pose that

lim
ℓ→∞

̺(Tℓ, Tℓ+1) = 0.

Then, there holds estimator onvergene in the sense limℓ→∞ η(Tℓ) = 0.

Proof. Mathematial indution on ℓ proves with (2.3.8) for all ℓ ∈ N0

η(Tℓ+1)
2 ≤ ρℓ+1

est η(T0)
2 + Cest

ℓ∑

j=0

ρℓ−j
est ̺(Tj , Tj+1)

2

≤ η(T0)
2 + Cest sup

j∈N0

̺(Tj , Tj+1)
2

ℓ∑

j=0

ρℓ−j
est

≤ η(T0)
2 + Cest sup

j∈N0

̺(Tj , Tj+1)
2(1− ρest)

−1.

(2.3.9)

The assumption ̺(Tℓ, Tℓ+1) → 0 implies supℓ∈N η(Tℓ) <∞. Moreover, (2.3.8) yields

lim sup
ℓ→∞

η(Tℓ+1)
2 ≤ lim sup

ℓ→∞

(
ρest η(Tℓ)

2 + Cest ̺(Tℓ, Tℓ+1)
2
)

= ρest lim sup
ℓ→∞

η(Tℓ+1)
2.

This shows lim supℓ→∞ η(Tℓ)
2 = 0, and hene elementary alulus proves onvergene η(Tℓ) →

0. �

Proof of Theorem 2.3.3 (i). Lemma 2.3.6 is appliable and onludes the proof. �

2.3.4. Uniform R-linear onvergene of η(Tℓ) on any level. The general quasi-

orthogonality (E2) allows to improve (2.3.1) to R-linear onvergene on any level. To that

end, we prove the following auxiliary lemma.

Remark 2.3.7. The term uniform R-linear onvergene on any level needs some ex-

planation. A sequene (ak)k∈N0 is said to onverge (Q-)linearly to zero, if

lim sup
k→∞

|ak+1|
|ak|

= q < 1.

A sequene (bk)k∈N0 is said to onverge R-linearly to zero if there exists a Q-linearly onver-
gent sequene (ak)k∈N0 with

|bk| ≤ |ak| for all k ∈ N0. (2.3.10)

The R stands for root, sine the de�nition above is equivalent to

lim sup
k→∞

|bk|1/k = q < 1. (2.3.11)

To see that, note that (2.3.10) implies (2.3.11) sine |ak| ≤ qk−k0|ak0| for all k ≥ k0 and

some su�iently large k0 ∈ N. On the other hand, (2.3.11) implies (2.3.10) with ak :=
(supj≥k |bj |1/j)k.

26



Uniform R-linear onvergene on any level of a sequene (bk)k∈N0 (in the following denoted

by R-linear onvergene) means that there exists a onstant C > 0 and some 0 < q < 1 suh

that

|bℓ+k| ≤ Cqk|bℓ| for all ℓ, k ∈ N0.

This partiularly implies (2.3.11) for all sequenes (bk+ℓ)k∈N0, ℓ ∈ N0.

Lemma 2.3.8. Given a real sequene (aℓ)ℓ∈N0 with aℓ ≥ 0 for all ℓ ∈ N0 suh that aℓ = 0
implies ak = 0 for all k ≥ ℓ. Then, the statements (i)�(iii) are pairwise equivalent.

(i) Uniform summability: There exists a onstant C1 > 0 suh that

∞∑

k=ℓ+1

a2k ≤ C1a
2
ℓ for all ℓ ∈ N0. (2.3.12)

(ii) Inverse summability: For all s > 0, there exists a onstant C2 > 0 suh that

ℓ−1∑

k=0

a
−1/s
k ≤ C2a

−1/s
ℓ for all ℓ ∈ N with aℓ > 0. (2.3.13)

(iii) Uniform R-linear onvergene on any level: There exist onstants 0 < ρ1 < 1 and

C3 > 0 suh that

a2ℓ+k ≤ C3ρ
k
1 a

2
ℓ for all k, ℓ ∈ N0. (2.3.14)

The relation between the respetive onstants is given by

C2 ≤
C

1/(2s)
3

1− ρ
1/(2s)
1

, ρ1 ≤
C1

1 + C1
, C3 ≤ 1 + C1,

C1 ≤
C3ρ1
1 + ρ1

, ρ1 ≤
( C2

1 + C2

)2s
, C3 ≤ (1 + C2)

2s.

(2.3.15)

Proof. For sake of simpliity, we show the equivalene of (i)�(iii) by proving the equiv-

alenes (iii)⇐⇒ (i) and (iii)⇐⇒ (ii).

For the proof of the impliation (iii) ⇒ (i), suppose (iii) and use the onvergene of the

geometri series to see

∞∑

k=ℓ+1

a2k ≤ C3a
2
ℓ

∞∑

k=ℓ+1

ρk−ℓ
1 = C3ρ1(1− ρ1)

−1a2ℓ .

This proves (i) with C1 = C3ρ1(1− ρ1)
−1
.

Similarly, the impliation (iii)⇒ (ii) follows via

ℓ−1∑

k=0

a
−1/s
k ≤ C

1/(2s)
3 a

−1/s
ℓ

ℓ−1∑

k=0

ρ
(ℓ−k)/(2s)
1

≤ C
1/(2s)
3 (1− ρ

1/(2s)
1 )−1a

−1/s
ℓ .

This shows (ii) with C2 = C
1/(2s)
3 (1− ρ

1/(2s)
1 )−1

.

For the proof of the impliation (i) ⇒ (iii), suppose (i) and onlude

(1 + C−1
1 )

∞∑

j=ℓ+1

a2j ≤
∞∑

j=ℓ+1

a2j + a2ℓ =

∞∑

j=ℓ

a2j .

27



By mathematial indution, this implies

∞∑

j=ℓ+k

a2j ≤ (1 + C−1
1 )−1

∞∑

j=ℓ+k−1

a2j ≤ (1 + C−1
1 )−k

∞∑

j=ℓ

a2j

and hene

a2ℓ+k ≤
∞∑

j=ℓ+k

a2j ≤ (1 + C−1
1 )−k

∞∑

j=ℓ

a2j

≤ (1 + C1)(1 + C−1
1 )−ka2ℓ .

This proves (iii) with ρ1 = (1 + C−1
1 )−1

and C3 = (1 + C1).
The impliation (ii) ⇒ (iii) follows analogously. To that end, assume aℓ+k > 0. Then,

there holds

(1 + C−1
2 )

ℓ−1∑

j=0

a
−1/s
j ≤

ℓ∑

j=0

a
−1/s
j .

Mathematial indution shows then shows

ℓ∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−1

ℓ+1∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−k

ℓ+k∑

j=0

a
−1/s
j

and hene

a
−1/s
ℓ ≤

ℓ∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−k

ℓ+k∑

j=0

a
−1/s
j

≤ (1 + C2)(1 + C−1
2 )−ka

−1/s
ℓ+k .

With the assumption that aℓ+k = 0 implies aℓ+k+n = 0 for all n ∈ N0, this proves a
2
ℓ+k ≤

(1 + C2)
2s(1 + C−1

2 )−2ska2ℓ for all ℓ, k ∈ N0. This is (iii) with ρ1 = (1 + C−1
2 )−2s

and

C3 = (1 + C2)
2s
. �

Proposition 2.3.9. Suppose estimator redution (2.3.8). Then, general quasi-ortho-

gonality (E2) implies (2.3.12)�(2.3.14) with aℓ = η(Tℓ) for all ℓ ∈ N0. The onstant C1 > 0
depends only on ρest, Cest, and εqo, whereas the onstants C2, C3 > 0, and 0 < ρ1 < 1 are

given by (2.3.15).

Proof. In the following, the general quasi-orthogonality (E2) implies eah the state-

ments (2.3.12)�(2.3.14) sine (E2) implies (2.3.12). To that end, the estimator redu-

tion (2.3.8) from Lemma 2.3.5 yields for any ν > 0 that

ℓ+N+1∑

k=ℓ+1

η(Tk)
2 ≤

ℓ+N+1∑

k=ℓ+1

(
ρestη(Tk−1)

2 + Cest̺(Tk−1, Tk)
2
)

=
ℓ+N+1∑

k=ℓ+1

(
(ρest + ν)η(Tk−1)

2 + Cest

(
̺(Tk−1, Tk)

2 − νC−1
est η(Tk−1)

2
))
.

(2.3.16)

With the onstants ρest and Cest from (2.3.7), the onstraint on εqo in (E2) reads

0 ≤ εqo <
1− ρest
Cest

≤ sup
δ>0

1− (1 + δ)(1− (1− ρred)θ

2 + δ−1
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for some hoie of δ > 0. Note that this hoie is valid sine ρest < 1. In partiular, it exists

ν < 1− ρest suh that εqo ≤ νC−1
est . This allows to apply general quasi-orthogonality (E2) to

the last term of (2.3.16), i.e.,

ℓ+N+1∑

k=ℓ+1

̺(Tk−1, Tk)
2 − νC−1

est η(Tk−1)
2 ≤ Cqoη(Tℓ)

2. (2.3.17)

The ombination of (2.3.16)�(2.3.17) and passing to the limit N → ∞ proves

∞∑

k=ℓ+1

η(Tk)
2 ≤

∞∑

k=ℓ+1

(ρest + ν)η(Tk−1)
2 + CestCqoη(Tℓ)

2.

Some rearrangement leads to

(1− (ρest + ν))

∞∑

k=ℓ+1

η(Tk)
2 ≤ (ρest + ν + CestCqo)η(Tℓ)

2.

This shows that aℓ := η(Tℓ) satis�es that aℓ = 0 implies ak = 0 for all k ≥ ℓ. Hene, we

have (2.3.12) with C1 = (ρest + ν + CestCqo)/(1− (ρest + ν)) and onlude the proof of (E2)

⇒ (2.3.12). Lemma 2.3.8 yields the equivalene (2.3.12)�(2.3.14). �

Proof of Theorem 2.3.3, (ii). Stability and redution (E1) guarantee estimator re-

dution (2.3.8) for η(Tℓ) by Lemma 2.3.5. Together with quasi-orthogonality (E2), Proposi-

tion 2.3.9 shows (2.3.14) for aℓ = η(Tℓ). This proves Theorem 2.3.3 (ii) with Cconv = C3 and

ρconv = ρ1. �

2.3.5. Optimality of Dör�er marking. Theorem 2.3.3 (i)�(ii) state that Dör�er

marking (2.2.1) essentially guarantees limℓ→∞ η(Tℓ) = 0 or even R-linear onvergene to

zero. The next statement asserts the onverse.

Proposition 2.3.10. Let T̂ ∈ T(T ) denote a re�nement of T ∈ T. Stability (E1a)

and disrete reliability (E3) imply that for all 0 < θ0 < θ⋆ := (1 − εdrel)/(1 + C2
drel), there

exists some 0 < κ0 < min{κdlr, 1} suh that

η(T̂ )2 ≤ κ0η(T )2 =⇒ θ η(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2 (2.3.18)

holds for all 0 < θ ≤ θ0, where S(T , T̂ ) ⊆ R(T , T̂ ) ⊆ T with |T \ T̂ | ≤ |R(T , T̂ )| ≤
Cref |T \ T̂ | from (E3). The onstant κ0 depends only on Cdrel, εdrel, and θ0.

Remark 2.3.11. Note that the proof requires (E3) to hold only for the partiular T
and T̂ in (2.3.18).

Proof. The Young inequality and stability (E1a) show, for any δ > 0, that

η(T )2 =
∑

T∈S(T ,T̂ )

ηT (T )2 +
∑

T∈T \S(T ,T̂ )

ηT (T )2

≤
∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ−1)
∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2 + (1 + δ)̺(T , T̂ )2.
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Reall S(T , T̂ ) ⊆ R(T , T̂ ) by (E3). The appliation of the disrete reliability (E3) and the

assumption η(T̂ )2 ≤ κ0η(T )2 yield

η(T )2 ≤ (1 + δ−1)κ0η(T )2 + (1 + δ)εdrelη(T )2

+
(
1 + (1 + δ)C2

drel

) ∑

T∈R(T ,T̂ )

ηT (T )2.

Some rearrangement of those terms reads

1− (1 + δ−1)κ0 − (1 + δ)εdrel
1 + (1 + δ)C2

drel

η(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2.

Reall εdrel < 1 by (E3), hoose δ > 0 su�iently small, and determine 0 < κ0 < 1 suh that

θ0 ≤
1− (1 + δ−1)κ0 − (1 + δ)εdrel

1 + (1 + δ)C2
drel

<
1− εdrel
1 + C2

drel

= θ⋆. (2.3.19)

�

The next result is a variant of Proposition 2.3.10 whih is not atually needed in the

forthoming analysis. However, we inlude it for ompleteness.

Corollary 2.3.12. Let T̂ ∈ T(T ) denote a re�nement of T ∈ T. For all 0 < κ0 <
1 with κ0 ≤ κdlr, there exists a onstant 0 < θ0 < 1 and some 0 < ε0 < 1 suh that

stability (E1a), disrete reliability (E3) with εdrel ≤ ε0, and 0 < θ ≤ θ0 imply (2.3.18). The

onstants θ0, ε0 depend only on Cdrel and κ0.

Proof. For arbitrary 0 < κ0 < 1 with κ0 ≤ κdlr hoose δ, ε0 > 0 su�iently small suh

that (2.3.19) beomes

θ0 :=
1− (1 + δ−1)κ0 − (1 + δ)εdrel

1 + (1 + δ)C2
drel

≥ 1− (1 + δ−1)κ0 − (1 + δ)ε0
1 + (1 + δ)C2

drel

> 0.

As in the proof of Proposition 2.3.10, this onludes (2.3.18). �

2.3.6. Quasi-optimality of adaptive algorithm. This setion proves optimal on-

vergene rates for the estimator and thereby renders the theoretial heart of the proof of

Theorem 2.3.3 (iii).

Lemma 2.3.13. Let T ∈ T suh that η(T ) > 0. Then, for s > 0 with ‖η,T(T )‖s <∞,

there exists a re�nement T̂ ∈ T(T ) with

η(T̂ )2 ≤ κ0η(T )2, (2.3.20a)

|T̂ \ T | < ‖η,T(T )‖1/ss κ
−1/s
0 η(T )−1/s. (2.3.20b)

Assume that the impliation (2.3.18) is valid for one partiular hoie of 0 < κ0, θ0 < 1 and

the triangulations T and T̂ . Then, the set R(T , T̂ ) ⊇ T \T̂ from Proposition 2.3.10 satis�es

|R(T , T̂ )| < Crefκ
1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss (2.3.21a)

and satis�es the Dör�er marking for all 0 < θ ≤ θ0, i.e.,

θη(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2. (2.3.21b)
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Proof. Choose a minimal N ∈ N0, suh that ‖η,T(T )‖s(N + 1)−s ≤ κ
1/2
0 η(T ) (note

that N > 0 by the fat that η(T ) ≤ ‖η,T(T )‖s and κ0 < 1). By assumption (and the fat

that T(T , N) is �nite), there holds

min
T̂ ∈T(T ,N)

((N + 1)sη(T̂ )) ≤ ‖η,T(T )‖s

and hene, there exists a triangulation T̂ ∈ T(T , N) with (N + 1)sη(T̂ ) ≤ ‖η,T(T )‖s. This
implies

η(T̂ ) ≤ (N + 1)−s‖η,T(T )‖s ≤ κ
1/2
0 η(T ).

The minimality of N implies N−s > κ
1/2
0 η(T )‖η,T(T )‖−1

s and hene

N < κ
1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss . (2.3.22)

Sine T̂ ∈ T(T , N), this onludes (2.3.20). The impliation (2.3.18) thus guarantees that

the set R(T , T̂ ) ⊆ T with |R(T , T̂ )| ≃ |(T \ T̂ )| satis�es the Dör�er marking (2.3.21b).

Estimate (2.3.21a) follows from (2.3.22), i.e.,

C−1
ref |R(T , T̂ )| ≤ |(T \T̂ )| ≤ N < κ

1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss .

This onludes the proof. �

The following two propositions state the optimality of the adaptive algorithm.

Proposition 2.3.14. The son estimate (T1) implies

coptCapprox(s) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
, (2.3.23)

where the onstant copt > 0 depends only on Cson and |T0|.
Proposition 2.3.15. Suppose that (2.3.20)�(2.3.21a) of Lemma 2.3.13 are valid for

one partiular 0 < κ0 < 1 and s > 0, as well as for all T = Tℓ, ℓ ∈ N0 with η(Tℓ) > 0.
Assume that there holds (T2)�(T3) and that (2.3.13) from Lemma 2.3.8 holds for αℓ := η(Tℓ).

Then, |Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)| for all ℓ ∈ N0 (with R(Tℓ, T̂ℓ) from Lemma 2.3.13) implies

sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
≤ CoptCapprox(s). (2.3.24)

There holds Copt = 2sCs
2C

s
closureC

s
minC

s
refκ

−1/2
0 and copt > 0 depends only on Cson and |T0|.

Proof of Proposition 2.3.14. Choose N ∈ N0, ℓ ∈ N0, and the largest possible

k ∈ N0 with |Tℓ+k \ Tℓ| ≤ N . Due to the maximality of k and (T1), there holds N + 1 <
|Tℓ+k+1 \ Tℓ| + 1 ≤ |Tℓ+k+1| + 1 . Cson(|Tℓ+k| + 1) . Cson(|Tℓ+k \ T0| + 1), where the hidden
onstant depends only on |T0|. This leads to

inf
T̂ ∈T(Tℓ,N)

(N + 1)sη(T̂ ) . (|Tℓ+k \ T0|+ 1)sη(Tℓ+k)

and onludes the proof. �

Proof of Proposition 2.3.15. If η(Tℓ0) = 0. Then, (2.3.13) implies η(Tℓ) = 0 for all

ℓ ≥ ℓ0. Hene, we may onsider 0 ≤ ℓ ≤ ℓ0 only. By assumption (2.3.21a), there holds

|Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)| ≤ CminCrefκ
1/(−2s)
0 η(Tℓ)

−1/s‖η,T(Tℓ)‖1/ss .
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The uniform approximability (T3) shows

|Mℓ| ≤ CminCrefCapprox(s)
1/sκ

1/(−2s)
0 η(Tℓ)

−1/s
for all ℓ ∈ N0. (2.3.25)

The inverse summability (2.3.13) together with (2.3.25) and the losure estimate (T2) show

for all ℓ ∈ N0

|Tℓ \ T0|+ 1 ≤ 2(|Tℓ \ T0|) ≤ 2Cclosure

ℓ−1∑

j=0

|Mj|

≤ 2CclosureCminCrefCapprox(s)
1/sκ

1/(−2s)
0

ℓ−1∑

j=0

η(Tj)
−1/s

≤ 2C2CclosureCminCrefCapprox(s)
1/sκ

1/(−2s)
0 η(Tℓ)

−1/s.

(2.3.26)

Consequently,

η(Tℓ)(|Tℓ \ T0|+ 1)s ≤ 2sCs
2C

s
closureC

s
minC

s
refκ

−1/2
0 Capprox(s) for all ℓ ∈ N.

This leads to the upper bound in (2.3.24). �

Proof of Theorem 2.3.3 (iii). Choose θ0 := θ < θ⋆. Stability (E1a) and disrete

reliability (E3) guarantee that (2.3.18) holds for θ0, some 0 < κ0 < 1, and in partiular

for all T = Tℓ, ℓ ∈ N0. This implies that (2.3.20)�(2.3.21) of Lemma 2.3.13 are valid

partiularly for all T = Tℓ, ℓ ∈ N0. Step (iii) of Algorithm 2.2.1 selets some set Mℓ with

(almost) minimal ardinality whih satis�es the Dör�er marking (2.2.1) for θ. The Dör�er

marking (2.3.21b) for θ = θ0 implies |Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)|. Redution and stability (E1)

proves the estimator redution (2.3.8) from Lemma 2.3.5. This and quasi-orthogonality (E2)

allow to employ Proposition 2.3.9 whih ensures that (2.3.12)�(2.3.14) hold for αℓ := η(Tℓ).
Finally, Proposition 2.3.14�2.3.15 onlude the proof. �

Remark 2.3.16. Note that the proof of Theorem 2.3.3 (iii) requires (2.3.18) only for

T = Tℓ, ℓ ∈ N0. Hene, Remark 2.3.11 shows that it is su�ient to laim (E3) for all

T = Tℓ, ℓ ∈ N0 to obtain Theorem 2.3.3 (iii). This relaxation is exploited in Setion 3.6.2,

below.

2.4. Equivalent approximation problems

Assume that there exist onstants Crel, Ceff > 0 as well as funtions err(·) : T → [0,∞)
and data(·) : T → [0,∞) suh that there holds reliability

err(T ) ≤ Crelη(T ) for all T ∈ T. (2.4.1)

as well as e�ieny

C−1
eff η(T ) ≤ err(T ) + data(T ) for all T ∈ T. (2.4.2)

Suppose that the funtions err(·) and data(·) are quasi-monotone (see also (2.7.6) below) in

the sense that there exists a onstant Cmon > 0 suh that all T̂ ∈ T(T ) and all T ∈ T satisfy

err(T̂ ) ≤ Cmonerr(T ) and data(T̂ ) ≤ Cmondata(T ). (2.4.3)
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We de�ne the orresponding approximability norms analogously to (2.2.5) as

‖err,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)serr(T̂ )),

‖data,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)sdata(T̂ )).

Analogously to (T3), we say that err(·) and data(·) satisfy uniform approximability if

Cerr
approx(s) := sup

T ∈T
‖err,T(T )‖s <∞, (2.4.4a)

Cdata
approx(s) := sup

T ∈T
‖data,T(T )‖s <∞. (2.4.4b)

for some s > 0.

Proposition 2.4.1. Assume that there holds reliability (2.4.1), e�ieny (2.4.2),

and quasi-monotoniity (2.4.3). Then, the uniform approximability statements in (2.4.4)

and (T3) are equivalent in the sense that

(i) 2−sC−1
eff Capprox(s) ≤ Cerr

approx(s) + CmonC
data
approx(s),

(ii) Cerr
approx(s) ≤ CrelCapprox(s).

Remark 2.4.2. The literature, e.g., [78, 35℄, usually assumes ‖err,T‖s+‖data,T‖s <
∞ and uses the equivalene (2.4.1)�(2.4.2) as well as the overlay estimate (2.5.1) below to

obtain rate optimality of the error estimator and the so alled total error err(T ) + data(T ).
Our approah, however, is muh more fundamental as we only use properties of the error

estimator itself to dedue the rate optimality of Theorem 2.3.3 (iii). The statements on

error onvergene are derived in this setion by bootstrapping the results on the estimator.

This point of view allows to inlude a muh broader lass of appliations as is shown in the

examples of Chapter 3, 5, 6, below.

Proof. The upper bound (2.4.1) shows

‖err,T(T )‖s ≤ Crel‖η,T(T )‖s for all s > 0.

This proves (ii).

To see (i), suppose (2.4.4) for some s > 0. For all even N ∈ N0, this guarantees the

existene of a triangulation TN/2 ∈ T(T , N/2) with
err(TN/2)(N/2 + 1)s ≤ Cerr

approx(s)

and also the existene of a triangulation TN ∈ T(TN/2, N/2) with

data(TN)(N/2 + 1)s ≤ Cdata
approx(s). (2.4.5)

With quasi-monotoniity (2.4.3), there holds

err(TN) ≤ Cmonerr(TN/2) ≤ Cmon(N/2 + 1)−sCerr
approx(s).

This and the lower bound (2.4.2) yield

C−1
eff η(TN) ≤ err(TN ) + data(TN )

≤ (Cdata
approx(s) + CmonC

err
approx(s))(N/2 + 1)−s

≤ 2s(Cdata
approx(s) + CmonC

err
approx(s))(N + 1)−s.

By de�nition, there holds |TN \ T | ≤ |TN \ TN/2| + |TN/2 \ T | ≤ N . This shows TN ∈
T(T , N) and hene proves ‖η,T(T )‖s ≤ 2sCeff(C

data
approx(s) + CmonC

err
approx(s)). This onludes

the proof. �
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In the frame of this setion, we prove following analog of Theorem 2.3.3 whih provides

onvergene results for the error instead of the estimator.

Theorem 2.4.3. (i) Suppose (E1) is satis�ed and assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0
(with ̺(·, ·) from Setion 2.3.1). Then, for all 0 < θ ≤ 1, the error is onvergent in
the sense

lim
ℓ→∞

err(Tℓ) = 0. (2.4.6)

(ii) Suppose (E1)�(E2) are satis�ed. Then, for all 0 < θ ≤ 1, the error is R-linear
onvergent in the sense that there exists 0 < ρconv < 1 and Cconv > 0 suh that

err(Tℓ+j)
2 ≤ C2

effCconvρ
j
conv (err(Tℓ) + data(Tℓ))

2
for all j, ℓ ∈ N0. (2.4.7)

(iii) Suppose (E1)�(E3) and (T1)�(T3) are satis�ed for some s > 0. Then 0 < θ < θ⋆ :=
(1− εdrel)/(1 +C2

drel) implies quasi-optimal onvergene of the error in the sense of

coptC
err
approx(s) ≤ sup

ℓ∈N0

err(Tℓ)

(|Tℓ \ T0|+ 1)−s

≤ 2sCoptCrelCeff(C
data
approx(s) + CmonC

err
approx(s)),

(2.4.8)

where the lower bound requires only (T1) to hold.

The onstants Cconv, ρconv, copt, Copt are de�ned in Theorem 2.3.3.

Proof. The statements (i)�(ii) follow immediately from Theorem 2.3.3 (i)�(ii) and the

equivalenes (2.4.1)�(2.4.2). To see the upper bound in (iii), ombine the upper bound in

Theorem 2.3.3 (iii) with Proposition 2.4.1 and the upper bound (2.4.1). For the lower bound

in (iii), hoose N ∈ N0, ℓ ∈ N0, and the largest possible k ∈ N0 with |Tℓ+k \ Tℓ| ≤ N .

Due to maximality of ℓ and (T1), there holds N + 1 < |Tℓ+k+1 \ Tℓ| + 1 ≤ |Tℓ+k+1| + 1 .
Cson(|Tℓ+k|+1) . Cson(|Tℓ+k \T0|+1), where the hidden onstant depends only on |T0|. This
leads to

inf
T ∈T(Tℓ,N)

(N + 1)serr(T ) . (|Tℓ+k \ T0|+ 1)serr(Tℓ+k)

and onludes the proof. �

Before we onlude the setion, we provide a riterion, under whih reliability (2.4.1)

follows from disrete reliability (E3).

Proposition 2.4.4. Suppose a onstant C > 0 suh that the following holds. Given

T ∈ T, there exists a sequene of triangulations T̂ℓ ∈ T(T ) with limℓ→∞ η(T̂ℓ) = 0 suh that

C−1err(T ) ≤ lim
ℓ→∞

̺(T , T̂ℓ)

with ̺(·, ·) from Setion 2.3.1. Then, disrete reliability (E3) (where the restrition εdrel <
1 is not neessary) and quasi-monotoniity (2.7.6) imply reliability (2.4.1) with C2

rel =
C2(C2

drel + εdrel).

Proof. Assume η(T ) = 0. Then, (2.7.6) implies η(T̂ℓ) = 0 for all ℓ ∈ N and hene

η(T̂ ) ≤ κdlrη(T ) for all ℓ ∈ N. Assume η(T ) > 0. Then, limℓ→∞ η(T̂ℓ) = 0 shows η(T̂ ) ≤
κdlrη(T ) for all ℓ ≥ ℓ0 for some su�iently large ℓ0 ∈ N. In either ase, (E3) is appliable

and shows

C−2err(T )2 ≤ lim
ℓ→∞

̺(T , T̂ℓ)
2 ≤ (εdrel + C2

drel)η(T )2.

This onludes the proof. �
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2.5. Optimal omplexity

This setion understands omplexity as a measure of omputational e�ort neessary to

ompute one step of Algorithm 2.2.1. We assume that the e�ort is related to

|Tℓ|γ

for some γ > 0 and all this quantity single-step omplexity. This is a reasonable assumption,

sine usually the solution of some linear or nonlinear systems is involved where the omplex-

ity is related to the degrees of freedom. To ompute the ℓ-th step of Algorithm 2.2.1, it

is neessary to ompute all the previous steps, too. Therefore, we de�ne the umulative

omplexity of the ℓ-th step of Algorithm 2.2.1 by

ℓ∑

j=0

|Tj|γ.

The following theorem shows that for the adaptive algorithm, both measures oinide. To

that end, we de�ne the overlay estimate whih states that there exists a onstant C4 > 0

suh that any two triangulations T , T̂ ∈ T have a oarsest ommon re�nement T ⊕ T̂ ∈
T(T ) ∩ T(T̂ ) with

|(T ⊕ T̂ ) \ T | ≤ C4|T̂ \ T0|. (2.5.1)

Theorem 2.5.1. Suppose a sequene (T opt
ℓ )ℓ∈N0 ⊂ T with T opt

ℓ+1 ∈ T(T opt
ℓ ) and |T opt

ℓ+1 | ≤
Cson|Tℓ| for all ℓ ∈ N0 suh that T opt

0 = T0 and that there holds the single-step omplexity

rate

sup
ℓ∈N0

η(T opt
ℓ )

(|T opt
ℓ |γ)−s

<∞ (2.5.2)

for some s > 0 and some γ > 0. Suppose (E1)�(E3) and (T1)�(T2) as well as the overlay es-

timate (2.5.1). Then, given 0 < θ < θ⋆ := (1−εdrel)/(1+C2
drel), the output of Algorithm 2.2.1

satis�es the same umulative omplexity rate

sup
ℓ∈N0

η(Tℓ)

(
∑ℓ

j=0 |Tj|γ)−s
<∞. (2.5.3)

Remark 2.5.2. The above result shows that Algorithm 2.2.1 realizes any possible single-

step omplexity rate even with respet to the umulative omplexity

∑ℓ
j=0 |Tj|γ. This means

that the overall investment of omputational time is asymptotially optimal and the iter-

ative steps of Algorithm 2.2.1 do not spoil the performane. Partiularly, it shows that

under the assumptions of Theorem 2.5.1, the adaptive approah onverges faster or at least

with the same omplexity rate as the uniform re�nement strategy whih realizes T unif
ℓ+1 :=

T(T unif
ℓ , T unif

ℓ ). To see this, note that the uniform re�nement does not require to ompute

eah previous step of the algorithm. Hene, its omplexity to ompute the ℓ-th step is best

measured by the single-step omplexity |T unif
ℓ |γ. If uniform re�nement satis�es the single-step

omplexity rate s > 0, i.e.,

sup
ℓ∈N0

η(T unif
ℓ )

(|T unif
j |γ)−s

<∞,

Theorem 2.5.1 (with T unif
ℓ = T opt

ℓ ) shows that Algorithm 2.2.1 onverges with at least the

same rate of umulative omplexity. Partiularly, the same e�ort in terms of omputational

time leads to asymptotially better approximation auray.
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Proof. The assumption (2.5.2) implies ‖η,T‖sγ < ∞. To see this, we follow the proof

of Proposition 2.3.14. Choose N ∈ N0 and the largest possible ℓ ∈ N0 with |T opt
ℓ \ T0| ≤ N .

Due to the maximality of ℓ and by |T opt
ℓ+1 | ≤ Cson|T opt

ℓ |, there holds N +1 < |T opt
ℓ+1 \ T0|+1 .

Cson(|T opt
ℓ \ T0|+ 1), where the hidden onstant depends only on |T0|. This leads to

min
T̂ ∈T(N)

(N + 1)sγη(T̂ ) . (|T opt
ℓ \ T0|+ 1)sγη(T opt

ℓ )

and onludes

‖η,T‖sγ = sup
N∈N0

min
T̂ ∈T(N)

(N + 1)sγη(T̂ ) <∞.

Lemma 2.7.5 below shows quasi-monotoniity (2.7.6) of η(·). With the above, Lemma 2.7.4

implies Capprox(sγ) < ∞. This shows that (T3) holds. Therefore, Theorem 2.3.3 (i)�(iii)

apply and prove

η(Tj) ≤ CoptCapprox(sγ)(|Tj \ T0|+ 1)−sγ . CoptCapprox(sγ)|Tj|−sγ, (2.5.4)

where the hidden onstant depends only on |T0| and sγ. Moreover, there holds R-linear
onvergene (2.3.2). We assume η(Tℓ) > 0 for all ℓ ∈ N0, sine otherwise R-linear onver-
gene (2.3.2) implies η(Tℓ) = 0 for all ℓ ≥ ℓ0 for some ℓ0 ∈ N and hene (2.5.3) follows

immediately. With (2.5.4), this implies

|Tj |γ . η(Tj)
−1/s

for all j ∈ N0.

Together with R-linear onvergene (2.3.2) and the equivalent inverse summability from

Lemma 2.3.8 (ii), this shows

ℓ∑

j=0

|Tj|γ .

ℓ∑

j=0

η(Tj)
−1/s . η(Tℓ)

−1/s.

We obtain immediately (2.5.3) and onlude the proof. �

2.6. Neessity of the axioms

The onvergene results in Theorem 2.3.3 show that the axioms (E1)�(E3), (T1)�(T3)

are su�ient for rate optimality. By de�nition of the axioms (E1)�(E3), it is lear that if

there exists a funtion ̺(·, ·) suh that (E1)�(E3) hold, we an hoose the point wise minimal

̺min(·, ·) ≤ ̺(·, ·) to satisfy (E1), without violating (E2)�(E3). Given a triangulation T ∈ T,
a re�nement T̂ ∈ T(T ), ρred, and sets T \ T̂ ⊆ S(T , T̂ ) ⊆ T , Ŝ(T , T̂ ) ⊆ T̂ , this reads

̺min(T , T̂ ) := max
{∣∣∣

( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

−
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2∣∣∣,

∣∣∣
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 − ρred
∑

T∈S(T ,T̂ )

ηT (T )2
∣∣∣
1/2}

.

This setion examines the neessity of the axioms with ̺(·, ·) = ̺min(·, ·).
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2.6.1. Convergene implies (E1). The stability and redution (E1) leads to the on-

vergene result of Theorem 2.3.3 (i) and provides the basis for all the other onvergene

results. The following result shows that (E1) is even neessary.

Proposition 2.6.1. Assume onvergene (2.3.1). Then, (E1) holds for arbitrary 0 ≤
ρred < 1 and arbitrary sets Ŝ(·, ·), S(·, ·) with limℓ→∞ ̺min(Tℓ+1, Tℓ) = 0.

Proof. Stability and redution (E1) is satis�ed by de�nition of ̺min(·, ·). By onver-

gene (2.3.1), we obtain limℓ→∞ ̺(Tℓ, Tℓ+1) . limℓ→∞(η(Tℓ) + η(Tℓ+1)) = 0. This onludes
the proof. �

2.6.2. R-linear onvergene implies (E2). Theorem 2.3.3 (ii) proves that (E1)�

(E2) yield linear onvergene (2.3.2). The following proposition shows that linear onver-

gene (2.3.14) implies the general quasi-orthogonality (E2). In view of Proposition 2.6.1�

2.6.2, linear onvergene (2.3.14) is equivalent (E1)�(E2).

Proposition 2.6.2. The R-linear onvergene (2.3.2) implies general quasi-orthogo-

nality (E2) with εqo = 0 and Cqo > 0.

Proof. Sine ̺min(T , T̂ ) . η(T ) + η(T̂ ), R-linear onvergene (2.3.2) together with

Lemma 2.3.8 (where αk = η(Tk)) show

ℓ+N∑

k=ℓ

̺(Tk, Tk+1)
2 .

ℓ+N+1∑

k=ℓ

η(Tk)
2 . η(Tℓ)

2

for all ℓ, N ∈ N0. This is (E2) with εqo = 0. �

2.6.3. R-linear onvergene implies (E3). The disrete reliability (E3) proves the

optimality of the Dör�er marking in Proposition 2.3.10. The following result shows that,

under some minor assumptions, also the onverse is true.

Proposition 2.6.3. Assume R-linear onvergene (2.3.2) and S(T , T̂ ) ≤ Cref |T \ T̂ |.
Then, disrete reliability (E3) holds on the sequene of triangulations (Tℓ)ℓ∈N0 generated by

Algorithm 2.2.1 with εdrel = 0, Cdrel = Cconvρconv/θ, and R(Tℓ, Tℓ+1) = S(Tℓ, Tℓ+1), i.e.,

̺min(Tℓ, Tℓ+1)
2 ≤ Cconvρconvθ

−1
∑

T∈S(Tℓ,Tℓ+1)

ηT (Tℓ)
2

for all ℓ ∈ N0.

Proof. The de�nition of ̺min(·, ·) implies that either (E1a) holds with equality, i.e.,

( ∑

T∈Tℓ+1\Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

=
( ∑

T∈Tℓ\S(Tℓ,Tℓ+1)

ηT (Tℓ)
2
)1/2

+ ̺(Tℓ, Tℓ+1) (2.6.1)

or (E1b) holds with equality, i.e.,

∑

T∈Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2 = ρred

∑

T∈S(Tℓ,Tℓ+1)

ηT (Tℓ)
2 + ̺(Tℓ, Tℓ+1)

2. (2.6.2)

In ase of (2.6.1), we obtain

C1/2
convρ

1/2
convη(Tℓ) ≥ η(Tℓ+1) ≥

( ∑

T∈Tℓ+1\Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

≥ ̺(Tℓ, Tℓ+1).
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Analogously, (2.6.2) implies

C1/2
convρ

1/2
convη(Tℓ) ≥ η(Tℓ+1) ≥

( ∑

T∈Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

≥ ̺(Tℓ, Tℓ+1).

Sine the triangulations Tℓ satisfy the Dör�er marking (2.2.1), the above implies

̺(Tℓ, Tℓ+1)
2 ≤ Cconvρconvη(Tℓ)

2 ≤ Cconvρconvθ
−1

∑

T∈Mℓ

ηT (T )2. (2.6.3)

Sine, by de�nition of the re�nement strategy, there holds Mℓ ⊆ Tℓ \ Tℓ+1 ⊆ S(Tℓ, Tℓ+1), we
obtain (E3) with εdrel = 0, Cdrel = Cconvρconv/θ, and R(Tℓ, Tℓ+1) = S(Tℓ, Tℓ+1). �

The following result shows that Proposition 2.3.10 is sharp in the sense that (E3) is even

equivalent to (2.3.18).

Proposition 2.6.4. Assume stability and redution (E1) with ̺(·, ·) := ̺min(·, ·). As-
sume that for κ0 = κdlr exists some θ0 suh that the impliation (2.3.18) holds. Then,

disrete reliability (E3) is satis�ed with εdrel = 0 and R(T , T̂ ) from Proposition 2.3.10 and

Cdrel = θ
−1/2
0 .

Proof. Let T̂ ∈ T(T ) suh that η(T̂ ) ≤ κdlrη(T ). By assumption, there exists 0 < θ0 <

1, whih depends on κdlr, suh that the impliation (2.3.18) holds and shows that R(T , T̂ )
satis�es the Dör�er marking (2.2.1). As in (2.6.3), we obtain

̺(T , T̂ )2 ≤ η(T̂ )2 < η(T )2 ≤ θ−1
0

∑

T∈R(T ,T̂ )

ηT (T )2.

This onludes the proof. �

2.6.4. Optimal omplexity implies R-linear onvergene. The optimal omplex-

ity result of Theorem 2.5.1 implies R-linear onvergene (2.3.2) in the following sense. As-

sume that the error estimator onverges with a ertain rate

|Tℓ|−s . η(Tℓ) . |Tℓ|−s
for all ℓ ∈ N0 (2.6.4)

and assume that the impliation of Theorem 2.5.1, i.e., (2.5.2) implies (2.5.3), is true. Un-

der (T1), we may use T opt
ℓ := Tℓ and obtain

sup
ℓ∈N0

η(Tℓ)

(
∑ℓ

j=0 |Tj |γ)−s/γ
<∞.

With this, (2.5.3) shows

η(Tℓ)
−γ/s &

ℓ∑

j=0

|Tj |γ &

ℓ∑

j=0

η(Tj)
−γ/s

for all ℓ ∈ N0. Lemma 2.3.8 with αℓ = η(Tℓ) onludes R-linear onvergene (2.3.2).

Remark 2.6.5. Although it is possible to onstrut examples whih satisfy rate opti-

mality (2.3.3) but fail to satisfy (2.6.4), there are many pratial examples with (2.6.4). In

this sense, R-linear onvergene might not be neessary for any partiular instane of the

approximation problem, but is de�nitely neessary for the general ase.
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2.6.5. The re�nement axioms (T1)&(T3). The assumption (T1) is not neessary

from a theoretial point of view. However, sine |T | is usually related to the degrees of

freedom, a reasonable re�nement strategy will aim to produe a re�nement with |Tℓ+1| ≃ |Tℓ|.
The uniform approximability (T3) is neessary sine it follows immediately from (2.3.3).

2.7. Partiular realizations of the axioms

In many ases, some of the axioms (E1)�(E3), (T1)�(T3) hold due to some more spei�

properties of the estimator η(·) or the re�nement strategy T(·, ·).

2.7.1. A priori onvergene. Suppose a Banah spae X with norm ‖ · ‖2X as well as

a solver funtion U(·) : T → X . Assume that

̺(T , T̂ )2 := α‖U(T )− U(T̂ )‖2X
for some α > 0.

Lemma 2.7.1. Suppose that there exist subspaes X (Tℓ) ⊆ X for all ℓ ∈ N0 (where Tℓ

denotes the output of Algorithm 2.2.1) and a funtion U∞ ∈ X∞ :=
⋃

ℓ∈N0
X (Tℓ) suh that

the Céa lemma holds, i.e.,

‖U∞ − U(Tℓ)‖X ≤ C
Céa

min
V ∈X (Tℓ)

‖U∞ − V ‖X for all ℓ ∈ N0, (2.7.1)

where C
Céa

> 0 is some onstant whih does not depend on ℓ ∈ N0. Then, there holds

a priori onvergene

lim
ℓ→∞

‖U∞ − U(Tℓ)‖X = 0 = lim
ℓ→∞

̺(Tℓ, Tℓ+1). (2.7.2)

Proof. By de�nition of X∞, the right-hand side of (2.7.1) onverges towards zero as

ℓ → ∞. The onvergene limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 follows immediately with the triangle

inequality. This onludes the proof. �

2.7.2. ̺(·, ·) is a Hilbert norm. If the perturbation has the struture of a Hilbert

norm, the general quasi-orthogonality follows immediately.

Lemma 2.7.2. Suppose a Hilbert spae X with ‖ · ‖2X := 〈· , ·〉X and U(·) : T → X .

Let ̺(·, ·) be given as in Setion 2.7.1 and suppose that the solver U(·) satis�es Galerkin

orthogonality

〈U(Tℓ+k)− U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉X = 0 for all k, ℓ ∈ N0. (2.7.3)

Then, disrete reliability (E3) with κdlr = ∞ (where the restrition εdrel < 1 is not neessary)
implies the general quasi-orthogonality (E2) with εqo = 0 and Cqo = εdrel + Cdrel. Moreover,

there holds a priori onvergene

lim
ℓ→∞

̺(Tℓ, Tℓ+1) = 0. (2.7.4)

Proof. The Galerkin orthogonality (2.7.3) implies for k,N ∈ N0

‖U(Tk)− U(Tk+1)‖2X = ‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X
− 2〈U(Tℓ+N)− U(Tk+1) , U(Tk)− U(Tk+1)〉X

= ‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X .
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Hene, there holds for ℓ ∈ N0

ℓ+N∑

k=ℓ

̺(Tk, Tk+1)
2 ≤ α lim

N→∞

ℓ+N∑

k=ℓ

‖U(Tk)− U(Tk+1)‖2X

= α lim
N→∞

ℓ+N∑

k=ℓ

(
‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X

)

= α lim
N→∞

(
‖U(Tℓ+N )− U(Tℓ)‖2X − ‖U(Tℓ+N)− U(Tℓ+N+1)‖2X

)

≤ α lim
N→∞

‖U(Tℓ+N )− U(Tℓ)‖2X
= lim

N→∞
̺(Tℓ, Tℓ+N)

2 ≤ (εdrel + Cdrel)η(Tℓ)
2.

The above for ℓ = 0 onludes also (2.7.4) and hene the proof. �

2.7.3. Quasi-orthogonality implies general quasi-orthogonality. In the litera-

ture, one often �nds the following quasi-orthogonality: Let 0 ≤ ε < 1, and Crel > 0 suh

that all ℓ ∈ N0 satisfy

C−1
rel ̺(Tℓ, Tℓ+1)

2 ≤ (1− ε)−1α2
ℓ − α2

ℓ+1, (2.7.5a)

for some αℓ ∈ R with

α2
ℓ ≤ Crelη(Tℓ)

2. (2.7.5b)

Lemma 2.7.3. The quasi-orthogonality (2.7.5) with 0 ≤ ε < 1 and Crel > 0 implies the

general quasi-orthogonality (E2) with εqo = Crelε/(1− ε) and Cqo = Crel.

Proof. There holds with εqo = Crelε/(1− ε) and (2.7.5)

N∑

k=ℓ

(
̺(Tk, Tk+1)

2 − εqoη(Tk)
2
)
≤

N∑

k=ℓ

( α2
k

1− ε
− α2

k+1 −
Crelεη(Tk)

2

1− ε

)

≤
N∑

k=ℓ

( α2
k

1− ε
− α2

k+1 −
εα2

k

1− ε

)

≤
N∑

k=ℓ

(α2
k − α2

k+1) ≤ α2
ℓ ≤ Crelη(Tℓ)

2.

�

2.7.4. Quasi-monotoniity and the overlay estimate. We say that a funtion λ(·) :
T → [0,∞) is quasi-monotone, if there exists a onstant Cmon > 0 suh that all triangulations
T ∈ T satisfy

λ(T̂ ) ≤ Cmonλ(T ) for all T̂ ∈ T(T ). (2.7.6)

Lemma 2.7.4. Assume that the re�nement strategy T(·, ·) satis�es the overlay esti-

mate (2.5.1) and that the funtion λ(·) : T → [0,∞) is quasi-monotone (2.7.6). Then,

‖λ,T‖s <∞ for some s > 0 implies

sup
T ∈T

‖λ,T(T )‖s ≤ Cmon(C4 + 1)s‖λ,T‖s.

Partiularly, for λ(·) = η(·), ‖η,T‖s <∞ implies (T3).
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Proof. Let N ∈ N0 and de�ne M := floor(N/C4). The fat ‖λ,T‖s < ∞ allows to

hoose some triangulation T N ∈ T(M) with

λ(T N)(M + 1)s ≤ ‖λ,T‖s.

Given any T ∈ T, the overlay estimate (2.5.1) states |(T N ⊕ T ) \ T | ≤ N and hene

T N ⊕ T ∈ T(T , N). The quasi-monotoniity (2.7.6) and N + 1 ≤ (M + 1)(C4 + 1) shows

λ(T N ⊕ T )(N + 1)s ≤ Cmon(C4 + 1)sλ(T N)(M + 1)s ≤ Cmon(C4 + 1)s‖λ,T‖s.

This implies

inf
T̂ ∈T(T ,N)

(N + 1)sλ(T̂ ) ≤ Cmon(C4 + 1)s‖λ,T‖s

and onludes the proof. �

The quasi-monotoniity (2.7.6) follows from the stability and redution (E1) together

with disrete reliability (E3) or quasi-orthogonality (2.7.5).

Lemma 2.7.5. Assume (E1) (where the restrition ρred < 1 is not neessary) as well

as (E3) with κdlr = ∞. Then, there holds (2.7.6) with λ(·) = η(·) and Cmon =
(
max{ρred, 2}+

3(εdrel + C2
drel)

)1/2
.

Proof. The stability (E1a) and the redution estimate (E1b) imply

η(T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + 2
∑

T∈T \S(T ,T̂ )

ηT (T )2 + 3̺(T , T̂ )2.

The disrete reliability (E3), leads to

η(T̂ )2 ≤ (max{ρred, 2}+ 3εdrel)η(T )2 + 3C2
drel

∑

T∈R(T ,T̂ )

ηT (T )2

≤
(
max{ρred, 2}+ 3(εdrel + C2

drel)
)
η(T )2.

This is (2.7.6) with Cmon :=
(
max{ρred, 2}+ 3(εdrel + C2

drel)
)1/2

. �

Lemma 2.7.6. Assume (E1) (where the restrition ρred < 1 is not neessary) as well

as the quasi-orthogonality (2.7.5) for Tℓ = T and Tℓ+1 = T̂ . Then, there holds (2.7.6) with

λ(·) = η(·) and Cmon =
(
(max{ρred, 2}+ 3C2

rel(1− ε)−1)
)1/2

.

Proof. The stability (E1a) and the redution estimate (E1b) imply

η(T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + 2
∑

T∈T \S(T ,T̂ )

ηT (T )2 + 3̺(T , T̂ )2

(2.7.5)

≤ max{ρred, 2}η(T )2 + 3Crel((1− ε)−1α2
ℓ − α2

ℓ+1)

≤ (max{ρred, 2}+ 3C2
rel(1− ε)−1)η(T )2.

This onludes the proof. �
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2.7.5. Other versions of the overlay estimate (2.5.1) and of (T2). The following

estimate provides a lower bound for the number of newly generated elements, i.e.,

|T \ T̂ | ≤ |T̂ | − |T | for all T̂ ∈ T(T ) and all T ∈ T. (2.7.7)

This is partiularly satis�ed if eah re�ned element T ∈ T \ T̂ generates at least two sons

T1, T2 ∈ T̂ \ T .
Lemma 2.7.7. Let the re�nement strategy satisfy (2.7.7), then there holds for all re-

�nements T̂ ∈ T(T )

|T̂ | − |T | ≤ |T̂ \ T | ≤ 2(|T̂ | − |T |). (2.7.8)

Proof. The �rst inequality follows from

|T̂ \ T | = |T̂ | − |T̂ ∩ T | ≥ |T̂ | − |T |.
The seond inequality follows similarly by

|T̂ \ T | = |T̂ | − |T̂ ∩ T | = |T̂ | − (|T | − |T \ T̂ |) ≤ 2(|T̂ | − |T |),
where we used (2.7.7). �

Lemma 2.7.8. Under (2.7.7), the losure estimate (T2) is equivalent to

|Tℓ| − |T0| ≤ C̃closure

ℓ−1∑

j=0

|Mj| for all ℓ ∈ N0, (2.7.9)

where the losure estimate (T2) implies (2.7.9) with C̃closure = Cclosure and (2.7.9) im-

plies (T2) with Cclosure = 2C̃closure. Moreover, the overlay estimate (2.5.1) is equivalent

to

|(T ⊕ T̂ )| ≤ C̃4(|T̂ | − |T0|) + |T | for all T̂ ∈ T(T ), (2.7.10)

where (2.5.1) implies (2.7.10) with C̃4 = 2C4 and (2.7.10) implies (2.5.1) with C4 = 2C̃4.

Proof. Both statements follow diretly with (2.7.8). �

2.8. Historial remarks

This setion is based on and extends [24, Setion 3.2℄. This work provides some unifying

framework on the theory of adaptive algorithms and the related onvergene and quasi-

optimality analysis. Some histori remarks are in order on the development of the arguments

over the years. In one way or another, the axioms arose in various works throughout the

literature. We aim to motivate the spei� hoie of axioms (whih turn out to be even

neessary in Setion 2.6) in terms of histori development of the �eld.

2.8.1. Reliability (2.4.1). Reliability basially states that the unknown error tends to

zero if the omputable and hene known error bound is driven to zero by smart adaptive

algorithms. As the main result of this hapter (Theorem 2.3.3) fouses solely on the error

estimator, the reliability is not expliitly used in the analysis. However, Setion 2.4 intro-

dues reliability to prove optimal onvergene of the error. Sine the invention of adaptive

FEM in the 1970s, the question of reliability was thus a pressing matter and �rst results for

FEM date bak to the early works of Babuska & Rheinboldt [7℄ in 1D and Babuska &

Miller [6℄ in 2D. Therein, the error is estimated by means of the residual. In the ontext

of BEM, reliable residual-based error estimators date bak to the works of Carstensen &
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Stephan [34, 33, 20℄. Sine the atual adaptive algorithm only knows the estimator, reli-

ability estimates have been a ruial ingredient for onvergene proofs of adaptive shemes

of any kind.

2.8.2. E�ieny (2.4.2). Compared to reliability (2.4.1), e�ieny (2.4.2) provides the

onverse estimate and states that the error is not overestimated by the estimator, up to some

osillation terms data(·) determined from the given data. An error estimator whih satis�es

both, reliability and e�ieny, is mathematially guaranteed to asymptotially behave like

the error, i.e., it deays with the same rate as the atual omputational error. Consequently,

e�ieny is a desirable property as soon as it omes to onvergene rates. For FEM with

residual error estimators, e�ieny has �rst been proved by Verfürth [82℄. He used

appropriate inverse estimates and loalization by means of bubble funtions. In the frame

of BEM, however, e�ieny (2.4.2) of the residual error estimators is widely open and only

known for partiular problems [3, 19℄, although observed empirially, see also Setion 3.5.3.

In terms of onvergene proofs, e�ieny is often a useful tool as is mentioned in the

following setion. However, the main result of this hapter (Theorem 2.3.3) does not require

the e�ieny estimate (2.4.2) and thus allows appliations to a muh wider problem lass.

2.8.3. Disrete loal e�ieny and �rst onvergene analysis of [40, 65℄. Reli-

ability (2.4.1) and e�ieny (2.4.2) are nowadays standard topis in textbooks on a poste-

riori FEM error estimation [1, 82℄, in ontrast to the onvergene of adaptive algorithms.

Babuska & Vogelius [8℄ already observed for onforming disretizations, that the se-

quene of disrete approximations U(Tℓ) always onverges (see Setion 2.7.1 for an abstrat

form of this a priori onvergene). The work of Dörfler [40℄ introdued the marking

strategy (2.2.1) for the Poisson model problem

−∆u = f in Ω and u = 0 on Γ = ∂Ω (2.8.1)

and onforming �rst-order FEM to show onvergene up to any given tolerane. Morin,

Nohetto & Siebert [65℄ re�ned this and the arguments of Verfürth [82℄ and Dör-

fler [40℄ and proved the disrete variant

C−2
eff η(Tℓ)

2 ≤ ‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + data(Tℓ)
2

(2.8.2)

of the e�ieny (2.4.2). See also [50℄ for the expliit statement and proof. The proof relies

on disrete bubble funtions and thus required an interior node property of the re�nement

strategy, whih is ensured, e.g., by bisetion for d = 2 from Setion 3.2.8 and �ve bisetions

for eah re�ned element. With this, [65℄ proved error redution up to data osillation terms

in the sense of

‖∇(u− U(Tℓ+1))‖2L2(Ω) ≤ κ ‖∇(u− U(Tℓ))‖2L2(Ω) + C data(Tℓ) (2.8.3)

with some ℓ-independent onstants 0 < κ < 1 and C > 0. This and additional enrihment

of the marked elements Mℓ ⊆ Tℓ to ensure data(Tℓ) → 0 as ℓ→ ∞ leads to onvergene

‖∇(u− U(Tℓ))‖L2(Ω)
ℓ→∞−−−→ 0. (2.8.4)

The reason why this work neglets the disrete loal e�ieny (2.8.2) is that it an only

be proven for a very narrow lass of model problems, and thus does not allow for some general

framework. Moreover, the over re�nement due to the interior node property is pratially

observed to be unneessary.

43



2.8.4. Quasi-orthogonality (E2). The approah of [65℄ has been generalized to non-

symmetri operators in [64℄, to nononforming and mixed methods in [26, 25℄, as well

as to the nonlinear obstale problem in Braess, Carstensen & Hoppe [17, 18℄. One

additional di�ulty is the lak of the Galerkin orthogonality whih is irumvented with

the general quasi-orthogonality axiom (2.7.5) in Setion 2.7.3. Stronger variants of quasi-

orthogonality have been used in [26, 25, 64℄ and imply (2.7.5) in Setion 2.7.3. In its urrent

form, however, the general quasi-orthogonality (E2) goes bak to [46℄ for non-symmetri op-

erators without arti�ial assumptions on the initial triangulation as in [36, 64℄, see also

Setion 3.6.1. Proposition 2.6.2 shows that the present form (E2) of the quasi-orthogonality

annot be weakened if one aims to follow the analysis of [35, 78℄ to prove quasi-optimal

onvergene rates. Moreover, Setion 2.6.4 shows that the optimal omplexity result of The-

orem 2.5.1 neessarily impliesR-linear onvergene and thus general quasi-orthogonality (E2)
by Proposition 2.6.2.

2.8.5. Optimal onvergene rates and disrete reliability (E3). The seminal work

of Binev, Dahmen & DeVore [14℄ was the �rst one to prove algebrai onvergene rates

for adaptive FEM of the Poisson model problem (2.8.1) and lowest-order FEM. They ex-

tended the adaptive algorithm of [65℄ by additional oarsening steps to avoid over-re�nement.

Stevenson [78℄ removed this arti�ial oarsening step and introdued the basi form of the

axiom (E3) on disrete reliability, i.e., with εdrel = 0 and κdlr = ∞. He impliitly introdued

the onept of separate Dör�er marking : If the data osillations data(Tℓ) are small ompared

to the error estimator η(Tℓ), he used the ommon Dör�er marking (2.2.1) to single out the

elements for re�nement. Otherwise, he suggested the Dör�er marking (2.2.1) for the loal

ontributions of the data osillation term data(Tℓ). The ore proof of [78℄ then uses the

observation from [64℄ that the so-alled total error is ontrated in eah step of the adaptive

loop in the sense of

∆ℓ+1 ≤ κ∆ℓ for ∆ℓ := ‖∇(u− U(Tℓ))‖2L2(Ω) + γ data(Tℓ)
2

(2.8.5)

with some ℓ-independent onstants 0 < κ < 1 and γ > 0.
Moreover, the analysis of [78℄ shows that the Dör�er marking (2.2.1) is not only su�ient

to guarantee ontration (2.8.5), but somehow even neessary, see Setion 2.3.5 for the re�ned

analysis whih avoids the use of e�ieny (2.4.2).

2.8.6. Stability and redution (E1). Antiipating the onvergene of [39℄ for the p-
Laplaian, the AFEM analysis of [78℄ was simpli�ed by Cason, Kreuzer, Nohetto

& Siebert [35℄ with the introdution of the estimator redution in the sense of

η(Tℓ+1)
2 ≤ κ η(Tℓ)

2 + C ‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) (2.8.6)

with onstants 0 < κ < 1 and C > 0. This is an immediate onsequene of stability and

redution (E1b) in Setion 2.3.3 and also ensures ontration of the so-alled quasi-error

∆ℓ+1 ≤ κ∆ℓ for ∆ℓ := ‖∇(u− U(Tℓ))‖2L2(Ω) + γ η(Tℓ)
2

(2.8.7)

with some ℓ-independent onstants 0 < κ < 1 and γ > 0. The analysis of [35℄ removed

the disrete loal lower bound from the set of neessary axioms (and hene the interior node

property [65℄). Impliitly, the axiom (E1) is part of the proof of (2.8.6) in [35℄. While (E1a)

essentially follows from the triangle inequality and appropriate inverse estimates in pratie,

the redution (E1b) builds on the observation that the element sizes of the sons of a re�ned

element uniformly dereases. For instane, bisetion-based re�nement strategies yield |T ′| ≤
|T |/2, if T ′ ∈ Tℓ+1\Tℓ is a son of T ∈ Tℓ\Tℓ+1.
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2.8.7. Extensions of the analysis of [35℄. The work [60℄ onsiders lowest-order

AFEM for the Poisson problem (2.8.1) for error estimators whih are loally equivalent

to the residual error estimator. The works [36, 46℄ analyze optimality of AFEM for linear,

but non-symmetri ellipti operators. While [36℄ required that the orresponding bilinear

form indues a norm, suh an assumption is dropped in [46℄, so that the latter work on-

luded the AFEM analysis for linear seond-order ellipti PDEs. Convergene with optimal

rates for adaptive boundary element methods has independently been proved in [47, 80℄.

The main additional di�ulty was the development of appropriate loal inverse estimates

for the nonloal operators involved. The BEM analysis, however, still hinges on symmetri

and ellipti integral operators and exludes boundary integral formulations of mixed bound-

ary value problems as well as the FEM-BEM oupling. AFEM with nononforming and

mixed FEMs is onsidered for various problems in [71, 32, 29, 31, 12, 61℄. AFEM with

non-homogeneous Dirihlet and mixed Dirihlet-Neumann boundary onditions are analyzed

in [48℄ for 2D and in [4℄ for 3D. The latter work adapts the separate Dör�er marking from [78℄

to deide whether the re�nement relies on the error estimator for the disretization error or

the approximation error of the given ontinuous Dirihlet data, see Setion 5.4. The results

of those works are reprodued and partially even improved in the frame of the abstrat ax-

ioms of Setion 2.3.1. Finally, the proofs of [4, 46℄ simpli�ed the ore analysis of [78, 35℄

in the sense that the optimality analysis avoids the use of the total error and solely works

with the error estimator. The work [24℄ on whih this work is based, derives a �rst set of

axioms to unify the theory of the mentioned works. In this work, we take one step further

and also drop the notion of exat solution and approximate solution, to solely fous on the

error estimator. Moreover, we relax some standard assumptions on the re�nement strategy

to inlude a more general lass of triangulations into the optimality analysis.
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CHAPTER 3

Appliations I

3.1. Introdution, state of the art & outline

This hapter applies the abstrat mahinery of the previous hapter to onrete model

problems. This means that for eah problem, the axioms of Setion 2.3.1 are heked and

the abstrat results are interpreted. We reprodue well-known optimality results (e.g., for

the Poisson problem of Setion 3.5.1 whih was �rstly proved in [78℄ and then generalized

by [35℄), improve reent results for general ellipti seond-order operators from Setion 3.6

(whih was �rstly proved in [46℄ but is generalized in this work for operators whih satisfy

a Gårding inequality), and even derive ompletely new results as for example the optimality

result for reg-green-blue re�nement from Setion 3.5.2. Some of the examples are already

found in similar manner in [24℄. The remainder of this hapter is organized as follows:

Setion 3.2 introdues usual properties of onrete re�nement strategies and gives some ex-

amples. Setion 3.3 proves the uniform approximability (T3) for a ertain lass of problems.

Setion 3.4 introdues the notion of weighted error estimators, for whih some of the ax-

ioms follow from simpler assumptions. Setion 3.5 validates the axioms for examples from

�nite element and boundary element methods. Setion 3.6 extends the problem lass to

general seond-order ellipti equations and Setion 3.7 introdues nonlinear model problems

for whih optimal onvergene rates an be proven.

3.2. Real world triangulations and re�nement strategies

The following Setions 3.2.1�3.2.7 desribe properties whih re�nement strategies from

Setion 2.2.1 an additionally satisfy. Below, we provide several examples of possible re�ne-

ment strategies T(·, ·).

3.2.1. General assumptions. We onsider a pieewise smooth d-dimensional Lipshitz

manifold Ω ⊆ RD
for some d ≤ D with surfae measure | · | suh that there exists a onstant

Cω > 0 with

|Bδ(x)| ≤ CΩδ
d

for all x ∈ Ω and Bδ(x) :=
{
z ∈ Ω : |x− z| ≤ δ

}
. (3.2.1)

We assume that all triangulations T ∈ T onsist of ompat elements T ∈ T ⊆ T∞ (where T∞

is the set of all possible elements de�ned in Setion 2.2.1) with

⋃
T∈T T = Ω and |T ∩T ′| = 0

for all T, T ′ ∈ T with T 6= T ′
.

3.2.2. K-mesh property. The K-mesh property relates the size of neighboring ele-

ments in the sense

K(T ) := max
{
|T |/|T ′| : T, T ′ ∈ T , T ∩ T ′ 6= ∅

}
. (3.2.2)

We say that a re�nement strategy preserves the K-mesh property, if there exists a onstant

CK > 0 suh that

K(T ) ≤ CKK(T0) for all T ∈ T. (3.2.3)
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3.2.3. Shape regularity. In the following appliations, the shape regularity of trian-

gulations plays an important role. De�ne for d ≥ 2

γ(T ) := max
{
diam(T )/|T |1/d : T ∈ T

}
. (3.2.4)

We say that a re�nement strategy preserves shape regularity, if there exists a onstant

Cshp > 0 suh that

γ(T ) ≤ Cshpγ(T0) for all T ∈ T. (3.2.5)

Lemma 3.2.1. Let T be shape regular and satisfy the K-mesh property. Then, all z ∈ Ω
and all T ∈ T satisfy

|
{
T ′ ∈ T : z ∈ T ′

}
| ≤ K(T )γ(T )dCΩ,

|
{
T ′ ∈ T : T ∩ T ′ 6= ∅

}
| ≤ K(T )2γ(T )dCΩ.

Proof. Let δ := diam(T0), z ∈ T0 denote the maximal diameter of all T ∈ T with

z ∈ T . Then,
⋃{

T ∈ T : z ∈ T
}
⊆ Bδ(z) :=

{
x ∈ Rd : |z− x| ≤ δ

}
. Shape regularity and

the K-mesh property imply |T | ≥ K(T )−1|T0| ≥ K(T )−1γ(T )−dδd. Altogether, this shows

|
{
T ∈ T : z ∈ T

}
| ≤ |Bδ(z)|δ−dK(T )γ(T )d ≤ K(T )γ(T )dCΩ.

Analogously, we obtain for T ′∩T 6= ∅ and T0∩T 6= ∅, that |T ′| ≥ K(T )−1|T | ≥ K(T )−2|T0| ≥
K(T )−2γ(T )−dδd. This and the above onlude the proof. �

3.2.4. Existene of a referene element. Most of the pratially used shape regular

triangulations allow for a referene element Tref ⊆ Rd
suh that there exist bijetive funtions

FT : Tref → T for all T ∈ T∞. The funtions are smooth and uniformly bounded, i.e., all

p ∈ N satisfy

sup
T∈T∞

(|T |−p/d‖DpFT‖L∞(Tref ) + |T |p/d‖DpF−1
T ‖L∞(T )) <∞, (3.2.6)

where Dp(·) denotes the p-th order derivative whih is de�ned on Rd
and on Ω (as a surfae

derivative) suh that there holds (DF−1
T ) ◦ FT = (DFT )

−1
with pointwise regular matries

in Rd×d
. This partiularly implies bi-Lipshitz ontinuity

C−1
5 |x− y| ≤ |T |−1/d|FT (x)− FT (y)| ≤ C5|x− y| for all x, y ∈ Tref (3.2.7)

for some onstant C5 > 0. Moreover, we suppose that all T, T ′ ∈ T with z ∈ T ∩ T ′ 6= ∅
satisfy

FT ◦ F−1
T ′ (z) = z. (3.2.8)

This allows to de�ne the usual spaes of pieewise polynomials

Pp(T ) :=
{
V ∈ L2(Ω) : V ◦ FT is polynomial of degree ≤ p for all T ∈ T

}
(3.2.9)

and

Sp(T ) := Pp(T ) ∩ C(Ω). (3.2.10)
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3.2.5. Father-son relation. Often, a re�nement strategy allows for a unique father son

relation, i.e., for all T̂ ∈ T(T ) and all T ∈ T \ T̂ , there exist son elements T ′
0, . . . , T

′
n ∈ T̂ \T

for some 2 ≤ n ≤ nson ∈ N suh that

T =

n⋃

i=1

T ′
i . (3.2.11)

We all T the father of T ′
0, . . . , T

′
n. Note that (3.2.11) partiularly implies (T1). Eah of the

sons satis�es

q′con|T | ≤ |T ′| ≤ qcon|T |, (3.2.12)

for some onstants 0 < q′con ≤ qcon < 1.

3.2.6. Closure estimate. The axiom (T2) states that the output of Algorithm 2.2.1

satis�es the losure estimate. However, a generally de�ned re�nement strategy often satis�es

the losure estimate for any re�nement T̂ ∈ T(T ) and T ∈ T, i.e.,

|T̂ \ T | ≤ Cclosure

ℓ−1∑

j=0

|Mj|, (3.2.13)

where T = T̂0, . . . , T̂ℓ = T̂ for some T̂j ∈ T and M̂j ⊆ Tj with T̂j+1 = T(T̂j ,M̂j) for all
j = 0, . . . , ℓ− 1. By Lemma 2.7.8, this is also equivalent to (2.7.9) if Setion 3.2.5 applies.

3.2.7. Simpliial triangulations. Under the assumptions of Setion 3.2.1�3.2.5, we as-

sume that Tref is a simplex of dimension d with set of nodes K(Tref). By K(T ) := FT (K(Tref)),
we denote the nodes of the elements T ∈ T∞ and K(T ) :=

⋃
T∈T K(T ) denotes the nodes of

the triangulation. We prohibit hanging nodes, i.e., all T, T ′ ∈ T satisfy K(T ) ∩ T ′ ⊆ K(T ′).
The element mappings FT : Tref → T are a�ne funtions.

The following result is well-known in the literature

Lemma 3.2.2. Let T ∈ T and z ∈ K(T ) suh that z /∈ T . Then, there holds

diam(T ) ≤ C6min
z′∈T

|z − z′|, (3.2.14)

where the onstant C6 > 0 depends only on γ(T ), d, and K(T ).

3.2.8. Example 1: Bisetion. For d ≥ 1, the elements in T∞ are ompat simplies

T ⊆ Rd
, i.e., a�ne line segments for d = 1, triangles for d = 2, and tetrahedra for d = 3.

All triangulations T ∈ T are regular in the sense that all verties z ∈ K(T ) are verties of
all elements T ∈ T with z ∈ T (no hanging nodes).

For d = 1, bisetion splits the elements T ∈ M ⊆ T marked for re�nement at a generi

point xT ∈ T (e.g., the baryenter) to generate two new elements T1 and T2 whih both share

the endpoint xT . Additional bisetions have to be imposed to ensure that the bisetion

preserves the K-mesh property (3.2.3). We refer to [3℄ for some extended 1D bisetion

algorithm.

For d ≥ 2, the bisetion is desribed in [78℄ (alled newest vertex bisetion for d = 2)
and [79℄ (for d ≥ 3). Eah element T ∈ T has a distinguished edge (the referene edge). If

the element is re�ned, �rst the referene edge is split. See Figure 1 for an illustration of the

re�nement rules for d = 2.
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Figure 1. Re�nement rules for 2D bisetion (newest vertex bisetion). The

referene edge is indiated in blue. The leftmost triangle depits the bise3

re�nement of a marked element. The other three re�nement rules (bise2 and

bise1 ) are reursively applied to avoid hanging nodes. The dashed line outside

of the triangles indiates where the neighboring triangle is re�ned.

Lemma 3.2.3. The bisetion strategies for d ≥ 1 are re�nement strategies in the sense of

Setion 3.2.1�3.2.7 and satisfy (T1)�(T2) as well as the overlay estimate (2.5.1) and the son

estimate (2.7.7). For d ≥ 3, an appropriate labeling of the edges of the initial triangulation

T0 is neessary to guarantee (T2) (see [14, 79℄ for details).

Proof. The d = 1 ase is proved in [3℄. The estimate (2.7.7) holds sine eah of the

re�nement strategies generates at least two son elements for eah re�ned element. The proof

of (2.7.10) with C̃4 = 1 is found in [78, Proof of Lemma 5.2℄ for d = 2 and [35, Lemma 3.7℄

for d ≥ 2. By Lemma 2.7.8, this is equivalent to (2.5.1) with C4 = 2. However, sine [35,

Lemma 3.7℄ shows that the oarsest ommon re�nement T ⊕ T̂ ∈ T(T ) ∩ T(T̂ ) is given by

T ⊕ T̂ :=
{
T ∈ T : ∃T̂ ∈ T̂ , T ⊆ T̂

}
∪
{
T̂ ∈ T̂ : ∃T ∈ T , T̂ ⊆ T

}
, (3.2.15)

ounting the elements reveals

|(T ⊕ T̂ ) \ T | = |
{
T̂ ∈ T̂ : ∃T ∈ T , T̂ ( T

}
| ≤ |T̂ \ T | ≤ |T̂ \ T0|.

This, however, is (2.5.1) with C4 = 1.
For the proof of (2.7.9) and hene (T2) and (3.2.13) (by Lemma 2.7.8), we refer to [14℄

for d = 2 and [79℄ for d ≥ 2. The works [14, 79℄ assume an appropriate labeling of the

edges of the initial triangulation T0 to prove (T2). This poses a ombinatorial problem on

the initial triangulation T0 but does not onern any of the following triangulations Tℓ, ℓ ≥ 1.
For d = 2, it an be proven that eah onforming triangular triangulation T allows for suh

a labeling, while no e�ient algorithm is known to ompute this in linear omplexity. For

d ≥ 3, suh a result is missing. However, it is known that an appropriate uniform re�nement

of an arbitrary onforming simpliial triangulation T for d ≥ 2 allows for suh a labeling [79℄.
Moreover, for d = 2, it has reently been proved in [59℄ that (T2) even holds without any

further assumption on the initial triangulation T0. The axiom (T1) is proved by use of [52,

Corollary 3.5℄, whih shows the level di�erene between some T ∈ T(T ,M) for someM ⊆ T
and its father element T ′ ∈ T with T ⊆ T ′

is uniformly bounded. Sine the level measures

the number of bisetions used to generate the element from T0, this implies that eah father

element T ′ ∈ T has uniformly bounded number of sons in T(T ,M). This onludes the

proof. �
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Figure 2. Re�nement rules for 2D red-green-blue re�nement. The leftmost

triangle is red-re�ned, i.e., all of its edges are biseted, the right most triangle

is blue-re�ned, i.e., only its referene edge is re�ned, and the other triangles

are green-re�ned. The referene edges of the son triangles are indiated with

a solid red line. Red re�nement is used for marked elements, green and blue

re�nement are used to avoid hanging nodes. There are two methods to deter-

mine the referene edge. The simplest one is to take the longest edge of the

triangle. The seond one (also known as modi�ed red-green-blue re�nement)

is to hoose a labeling of the initial triangulation T0 as for bisetion from Se-

tion 3.2.8. The referene edge of eah son triangle is then hosen suh that it

is ongruent with its father triangle. Under ertain onditions on the interior

angles of the triangles, [70, Satz 4.17℄ (in German) shows that both methods

oinide as is the ase in the example above.

3.2.9. Example 2: Red-green-blue re�nement. For d ≥ 2, the elements are om-

pat simplies T ⊆ Rd
.

The red-green-blue re�nement (disussed e.g., in [82℄) re�nes a given triangulation for d =
2 aording to Figure 2. For d = 3, the situation is more ompliated as a tetrahedron is split

into four similar tetrahedra at the parents verties plus an otahedron in the enter whih

has to be split furthermore. This is laid out in detail in [9℄. In ontrast to bisetion from

Setion 3.2.8, red-green-blue re�nement fails to satisfy (2.5.1) as seen from a ounterexample

in [70, Satz 4.15℄ (in German). For illustration purposes, we provide a slightly simpli�ed

example in Figure 3

Lemma 3.2.4. The red-green-blue re�nement strategies for d = 2, 3 are re�nement

strategies in the sense of Setion 3.2.1�3.2.7 and satisfy (T1)�(T2) as well as the son esti-

mate (2.7.7) at least for d = 2 (if referene edges are inherited as for 2D bisetion and the

initial triangulation satis�es an appropriate labeling of the edges; see [14, 79℄ for details).

Proof. For the proof of (2.7.9) and hene (T2) and (3.2.13) (by Lemma 2.7.8), we refer

to [53, Appendix A℄ or [70, Satz 4.14℄ for d = 2 under the assumption of an appropriate

labeling of the edges of the initial triangulation T0 as is Setion 3.2.8. The axiom (T1) is

obvious for d = 2, sine all possibilities are depited in Figure 2. The estimate (2.7.7) follows

sine eah re�nement produes at least two sons. This onludes the proof. �

3.2.10. Example 3: Quad re�nement with one hanging node. If one admits

hanging nodes, also quad-re�nement is an option. The elements T ∈ T∞ are quadrilaterals

for d = 2 an hexahedra for d = 3. The re�nement of an element is realized by dividing the

element into 2d ongruent sons. This strategy is desribed in [16℄.

Lemma 3.2.5. The quad re�nement strategies for d = 2, 3 are re�nement strategies in

the sense of Setion 3.2.1�3.2.6 and satisfy (T1)�(T2) as well as the overlay estimate (2.5.1)

and the son estimate (2.7.7).
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T ⊕ T ′

Figure 3. Counter-example to (2.5.1) for red-green-blue re�nement. With

j = 4, there holds |T ⊕T ′ \T | = 4j and |T ′| = 2. Obviously, the onstrution
an be extended to any j = 2n, n ∈ N by red-re�nement of the marked triangles

in T and thus ontradits (2.5.1) for any onstant.

Proof. The losure estimate (2.7.9) and hene (T2) and (3.2.13) (by Lemma 2.7.8) is

proved [16, Setion 6.3℄. The overlay estimate (2.5.1) follows from the fat that it is a binary

re�nement strategy, i.e., there holds (3.2.15). The estimate (2.7.7) follows from the fat that

eah re�nement produes four sons. Finally, (T1) follows by onsideration of all possible

element intersetions. �

3.2.11. Example 4: Faet based re�nement strategies. The re�nement strategies

from Setion 3.2.8 and Setion 3.2.9 an be formulated in a faet based way. In this ase,

T∞ is the set of faets whih an be generated and T ⊆ T is a triangulation represented

by the element faets. For re�nement, we mark faets M ⊆ T and generate the re�nement

T(T ,M) aording to the rules depited in Figure 1�2 for d = 2. For d ≥ 3, we refer

to [79℄ for bisetion and [9℄ for red-green-blue re�nement. The results of Lemma 3.2.3 and

Lemma 3.2.4 hold also for faet based re�nement.

3.3. Uniform approximability

Apart from Lemma 2.7.4, the uniform approximability axiom (T3) is relatively una-

essible without looking at onrete problems. To that end we aim to provide a har-

aterization of (T3) for a ertain lass of problems in terms of Proposition 2.4.1, where

err(·) := minV ∈Sp(·) ‖u− V ‖H1(Ω) measures the best approximation error of some given fun-

tion u ∈ H1(Ω). The key problem is that the results on the haraterization of approximabil-

ity, e.g., [55, 56℄, usually show ‖err,T(T0)‖s <∞ under ertain assumptions on the funtion

u. However, the proofs in [55, 56℄ do not give expliit dependene of the onstants with

respet to T0 and work only for bisetion from Setion 3.2.8. In the following, we generalize

the result from [55℄ to general re�nement strategies and with expliit onstants. It might

also be possible to generalize [56℄ with similar tehniques as shown in this setion, however,

this is beyond the sope of this work.

Theorem 3.3.1. Assume T and a orresponding re�nement strategy T(·, ·) in the sense

of Setion 3.2.1�3.2.7. Let Ω ⊆ Rd
for d = 2, 3 denote a polyhedral domain (not neessarily

Lipshitz) and let T0 be an initial triangulation of Ω. Given p ∈ N, suppose u, u0 ∈ H1(Ω)
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suh that u0|T ∈ Hp+1(T ) for all T ∈ T0 and

u = u0 +
N∑

i=1

ui with ui(ri, θi) := ci log(ri)
µirγii gi(θi)χi for all i = 1, . . . , N. (3.3.1)

Here, N ∈ N0, ci ∈ R, µi ≥ 0, 0 < γi < 1, and

(i) χi ∈ C∞(Ω) is an arbitrary funtion,

(ii) (ri, θi) ∈ [0,∞) × [0, 2π) × [0, π]d−2
denote the polar (spherial) oordinates with

respet to some origin xi ∈ Ω with xi ∈ K(T0),
(iii) gi ∈ W 1,∞(Ω) are onstant with respet to ri, i.e., gi(ri, θi) := gi(θi), and satisfy

gi|T ∈ W p+1,∞(T ) for all T ∈ T0.

Then, given p ∈ N, there exists C7 > 0 suh that for all T ∈ T and all ε > 0, there exists

T̂ ∈ T(T ) with

err(T̂ ) := min
V ∈Sp(T̂ )

‖u− V ‖H1(Ω) ≤ ε and |T̂ \ T | ≤ C7ε
−d/p.

The onstant C7 depends only on u, p, and T0, but not on T ∈ T.
We postpone the proof of Theorem 3.3.1 to the end of the setion and ollet several

intermediate results.

3.3.0.1. Sott-Zhang projetion. The Sott-Zhang projetion was introdued in [76℄. We

give a slightly modi�ed de�nition.

Definition 3.3.2 (Sott-Zhang projetion). Assume a triangulation T in the sense of

Setion 3.2.1�3.2.7 and let p ∈ N. For eah z ∈ K(T ) hoose Tz ∈ T with z ∈ Tz. Consider
the nodal basis

{
φz ∈ S1(T ) : z ∈ K(T )

}
with φz(z

′) = 0 for all z′ 6= z and φz(z) = 1.
Let p ≥ 1 and onsider the extended basis {b1, . . . , bn} ∈ Pp(Tref) for some n ∈ N with

‖bi‖L∞(Tref ) ≤ 1 suh that

span
{{
φz : z ∈ K(T )

}
∪
{
bT,i := bi ◦ F−1

T : i = 1, . . . , n, T ∈ T
}}

= Sp(T ).

For eah T ∈ T let {φ⋆
T,z, b

⋆
T,1, . . . , b

⋆
T,n} ⊆ Pp(T ) denote the dual basis funtions with respet

to {φz|T , bT,1, . . . , bT,n}. De�ne for v ∈ L2(Ω)

J(T )v :=
∑

z∈K(T )

φz

∫

Tz

φ⋆
Tz ,zv dx+

∑

T∈T

n∑

i=1

bT,i

∫

T

b⋆T,iv dx.

Moreover, de�ne the path ω(T, T ) :=
{
T ′ ∈ T : T ∩ T ′ 6= ∅

}
.

The stability estimates (3.3.2a)�(3.3.2b) are known sine the seminal work [76℄. However,

the optimality estimate (3.3.2) was �rst derived in [4℄ for triangulations whih are generated

by bisetion from Setion 3.2.8. Later, this result was generalized in [81℄ to shape regular

triangulations. Below, we provide a simpli�ed proof with the tehniques of the original proof

in [4℄.

Lemma 3.3.3 (Sott-Zhang projetion). Assume a triangulation T in the sense of

Setion 3.2.1�3.2.7 and let p ∈ N. The Sott-Zhang projetion from De�nition 3.3.2 satis�es

for all T ∈ T and all v ∈ H1(Ω)

‖J(T )v‖L2(T ) ≤ Csz‖v‖L2(∪ω(T,T )), (3.3.2a)

‖∇J(T )v‖L2(T ) ≤ Csz‖∇v‖L2(∪ω(T,T )), (3.3.2b)

‖∇(1− J(T ))v‖L2(T ) ≤ Csz min
V ∈Pp−1

∇ (T )
‖∇v − V ‖L2(∪ω(T,T )), (3.3.2)
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where

Pp−1
∇ (T ) :=

{
V ∈ L2(Ω)d : V |T = W DF−1

T , W ∈ Pp−1(T )d, T ∈ T
}
. (3.3.2d)

The onstant Csz > 0 depends only on the onstants in Setion 3.2.1�3.2.7, T, and p ∈ N.
Before we prove Lemma 3.3.3, we state the following auxiliary lemma from [41℄.

Lemma 3.3.4 (Generalized Poinaré-Friedrihs inequality). Assume a triangulation T
in the sense of Setion 3.2.1�3.2.7. Let v ∈ H1(Ω), T, T ′ ∈ T with T ∩ T ′ 6= ∅. Then, there
holds with vT := |T |−1

∫
T
v dx

‖v − vT‖L2(T ) + |T |1/2|vT − vT ′ | ≤ C8|T |1/d‖∇v‖L2(∪ω(T,T )),

where C8 > 0 depends only the onstants in Setion 3.2.1�3.2.7. �

Proof of (3.3.2a)�(3.3.2b). By de�nition of the dual basis, J(T ) is a projetion. To

see (3.3.2b), onsider T ∈ T and b⋆ ∈ {φ⋆
T,z, b

⋆
T,1, . . . , b

⋆
T,n}. A saling argument proves

‖b⋆‖L∞(T ) . |T |−1,

where the hidden onstant depends only on γ(T ), p, and the referene element Tref from
Setion 3.2.4. With this, there holds

∣∣
∫

T

b⋆v dx
∣∣ ≤ ‖b⋆‖L∞(T )‖v‖L1(T ) . |T |−1/2‖v‖L2(T ).

An inverse estimate shows for any basis funtion b ∈
{
φz : z ∈ K(T )

}
∪
{
bT,i : i =

1, . . . , n, T ∈ T
}
with |supp(b) ∩ T | > 0

‖∇b‖L2(T ) . |T |1/2−1/d,

where the hidden onstant depends only on the onstants in Setion 3.2.1�3.2.7 and p.
Altogether, this implies

‖∇J(T )v‖L2(T ) ≤
∑

z∈K(T )

‖∇φz‖L2(Tz)

∣∣
∫

Tz

φ⋆
Tz ,zv dx

∣∣ +
n∑

i=1

‖∇bT,i‖L2(T )

∣∣
∫

T

b⋆T,iv dx
∣∣

. |T |−1/d‖v‖L2(∪ω(T,T )),

where the hidden onstant depends only on the onstants in Setion 3.2.1�3.2.7, T , and
p. De�ne vT := |T |−1

∫
T
v dx. Then, there holds with the last estimate and the projetion

property J(T )vT = vT

‖∇J(T )v‖L2(T ) = ‖∇J(T )(v − vT )‖L2(T ) . |T |−1/d‖v − vT‖L2(∪ω(T,T )).

Lemma 3.3.4 implies

‖v − vT‖2L2(∪ω(T,T )) ≤ 2
∑

T ′∈ω(T,T )

‖v − vT ′‖2L2(T ′) + |T ′||vT − vT ′|2

≤ 2C2
8K(T )2/d|T |2/d‖∇v‖2L2(∪ω(T,T )).

Altogether, this proves (3.3.2b). The same argument shows also (3.3.2a). �

Lemma 3.3.5. Assume a set of triangulations T in the sense of Setion 3.2.1�3.2.4 Let

v ∈ H1(Ω) with ∇v ∈ Pp−1
∇ (T ). Then, v ∈ Sp(T ) and ∇Sp(T ) ⊆ Pp−1

∇ (T ).
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Proof. Let v ∈ Sp(T ), then v ◦ FT ∈ Pp(Tref) and hene ∇v = ∇(v ◦ FT ) ◦ F−1
T DF−1

T .

Sine ∇(v ◦ FT ) ∈ Pp−1(Tref)
d
, this shows ∇Sp(T ) ⊆ Pp−1

∇ (T ).

By de�nition of Pp−1
∇ (T ), there holds for T ∈ T , ∇v|T = W |TDF−1

T for some W ∈
Pp−1(T )d. This shows

∇(v ◦ FT )(DFT )
−1 = (∇v) ◦ FT =W ◦ FT (DF−1

T ) ◦ FT .

By assumption in Setion 3.2.4, there holds (DFT )
−1 = (DF−1

T )◦FT with point wise regular

matries. Hene, we end up with ∇(v ◦ FT ) = W ◦ FT ∈ Pp−1(Tref)
d
, whih implies v ◦ FT ∈

Pp(Tref). Sine v ∈ H1(Ω), this onludes the proof. �

Lemma 3.3.6. Assume a set of triangulations T in the sense of Setion 3.2.1�3.2.4

suh that there exists a set Eref := {∅, E1, . . . , EMref
} of boundary parts Ei ⊆ ∂Tref suh that

for all T, T ′ ∈ T holds F−1
T (T ∩ T ′) ∈ Eref. Then, for all T ∈ T and all T ∈ T, there exists

a bi-Lipshitz ontinuous map GT :
⋃
ωref(T ) →

⋃
ω(T, T ) with

C−1
9 |x− y| ≤ |T |−1/d|GT (x)−GT (y)| ≤ C9|x− y| for all x, y ∈ ωref(T ),

where ωref(T ) ∈ ω(T) for a �nite subset ω(T) ⊆
{
ω(T, T ) : T ∈ T, T ∈ T

}
. For T ′ ∈

ωref(T ), there holds GT |T ′ = FT ′′ ◦ F−1
T ′ for T ′′ := GT (T

′) ∈ ω(T, T ). This partiularly

implies that GT maps polynomials onto polynomials, i.e., V ◦ GT ∈ Pp(ωref(T )) for all

V ∈ Pp(ω(T, T )) and V ◦G−1
T ∈ Pp(ω(T, T )) for all V ∈ Pp(ωref(T )). The onstant C9 > 0

depends only on T, Eref , and the onstants in Setion 3.2.1�3.2.4.

Remark 3.3.7. This result is only applied in the ase of triangulations in the sense

of Setion 3.2.7 for whih the proof would simplify vastly. However, we inlude the general

result as we think it might be of independent interest, as it holds for a huge lass of possible

triangulations inluding non-regular ones.

Proof. The �rst step is to sort the pathes into ertain equivalene lasses. With

Lemma 3.2.1, there holds |ω(T, T )| ≤ n1 := K(T )2γ(T )dCΩ for all T ∈ T . De�ne G :=
E2
ref × {1, . . . , n1}2. Eah path ω(T, T ) has a signature

GT :=
{
(E1, E2, T1, T2) ∈ E2

ref × T 2 : T1, T2 ∈ ω(T, T ), F−1
Ti

(T1 ∩ T2) = Ei, i = 1, 2
}
.

For G ′ ⊆ G and T ∈ T , we write G ′ ∼ GT if and only if there exist an injetive map

MT : ω(T, T ) → {1, . . . , n1} with

(E1, E2, T1, T2) ∈ GT ⇐⇒ (E1, E2,MT (T1),MT (T2)) ∈ G ′. (3.3.3)

De�ne Gref :=
{
G ′ ⊆ G : ∃T ∈ T, ∃T ∈ T , GT ∼ G ′

}
. The set Gref ⊆ 2G is �nite by

de�nition. For eah G ′ ∈ Gref , hoose one T
′ ∈ T ′ ∈ T with GT ′ ∼ G ′

and maximal element

measure |T | to de�ne the �nite set

ω(T) :=
{
ω(T ′, T ′) : G ′ ∈ Gref

}
.

De�ne the funtion GT as follows: Given T ∈ T for some T ∈ T, hoose some G ′ ∈ Gref with

GT ∼ G ′
as well as ω(T ′, T ′) ∈ ω(T) suh that GT ′ ∼ G ′

. For all T1 ∈ ω(T, T ) determine

T2 :=M−1
T ′ ◦MT (T1) and let

GT |T2 := FT1 ◦ F−1
T2
.

This de�nes a funtion GT :
⋃
ω(T ′, T ′) → ⋃

ω(T, T ). To show that GT is ontinuous,

onsider T3 ∈ ω(T, T ) with T4 := M−1
T ′ ◦ MT (T3). Sine (E,E ′, T2, T4) ∈ GT ′

for some

E,E ′ ∈ Eref , and sine GT ′ ∼ G ′ ∼ GT , there holds (E,E
′, T1, T3) ∈ GT . This implies

F−1
T2

(T2 ∩ T4) = F−1
T1

(T1 ∩ T3) and T2 ∩ T4 6= ∅. (3.3.4)
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Let z ∈ T2 ∩ T4. Then, (3.3.4) implies FT1 ◦ F−1
T2

(z) ∈ T1 ∩ T3. By the ontinuity assump-

tion (3.2.8), this shows

FT3 ◦ F−1
T2

(z) = (FT3 ◦ F−1
T1

) ◦ FT1 ◦ F−1
T2

(z)
(3.2.8)

= FT1 ◦ F−1
T2

(z) ∈ T1 ∩ T3. (3.3.5)

Another appliation of the ontinuity (3.2.8) (with z ∈ T2 ∩ T4) then onludes

GT |T4(z) = FT3 ◦ F−1
T4

(z) = FT3 ◦ F−1
T4

◦ FT4 ◦ F−1
T2

(z) = FT3 ◦ F−1
T2

(z)

(3.3.5)

= FT1 ◦ F−1
T2

(z) = GT |T2(z).

This proves ontinuity of GT . The element wise bi-Lipshitz ontinuity of the FT (3.2.7)

together with the K-mesh property (3.2.3) and the fat that Ω is Lipshitz onlude the bi-

Lipshitz ontinuity of GT . The fat that GT is de�ned element wise with the element map-

pings FT implies V ◦GT ∈ Pp(ωref(T )) for all V ∈ Pp(ω(T, T )) and V ◦G−1
T ∈ Pp(ω(T, T ))

for all V ∈ Pp(ωref(T )). This onludes the proof. �

Proof of (3.3.2). Lemma 3.3.6 with Eref := {∅} ∪ {faets, edges, nodes of Tref} is ap-

pliable due to the assumptions in Setion 3.2.7 and allows to prove the statement on the

�nitely many referene pathes ωref ∈ ω(T) and to obtain the general result (3.3.2) by trans-
formation. Assume that (3.3.2) holds for G−1

T (T ) and ωref ∈ ω(T). Then, w = v ◦ GT ∈
H1(

⋃
ωref) implies

|T |1/d−1/2‖∇(1− J(T ))v‖L2(T ) . ‖∇(1− J(ωref))w‖L2(G−1
T (T ))

≤ Csz min
W∈Pp−1

∇ (ωref )
‖∇w −W‖L2(∪ωref ) (3.3.6)

. |T |−1/2Csz min
W∈Pp−1

∇ (ωref )
‖(∇w) ◦G−1

T −W ◦G−1
T ‖L2(∪ω(T,T )),

where J(ωref)w|G−1
T (T ) := (J(T )v) ◦ GT . By de�nition of GT and sine the FT are a�ne,

J(ωref) is a Sott-Zhang projetion on ωref in the sense of De�nition 3.3.2. By de�nition of

w, there holds

min
W∈Pp−1

∇ (ωref )
‖(∇w) ◦G−1

T −W ◦G−1
T ‖L2(∪ω(T,T ))

≤ ‖DGT‖L∞(∪ωref) min
W∈Pp−1

∇ (ωref)
‖∇v −W ◦G−1

T (DGT )
−1 ◦G−1

T ‖L2(∪ω(T,T )).

(3.3.7)

By de�nition of Pp−1
∇ (·) and GT , there holds W |T ′ = V DF−1

T ′ for some V ∈ Pp−1(ωref)
d
.

By Lemma 3.3.6, there holds DGT |T ′ = DFT ′′ ◦ F−1
T ′ DF

−1
T ′ for T ′′ = GT (T

′) ∈ ω(T, T ) and
hene

(DGT )
−1 ◦G−1

T |T ′′ = (DF−1
T ′ )

−1 ◦G−1
T |T ′′ (DFT ′′)−1 ◦ F−1

T ′ ◦G−1
T |T ′′

= (DF−1
T ′ )

−1 ◦G−1
T |T ′′(DFT ′′)−1 ◦ F−1

T ′′

= (DF−1
T ′ )

−1 ◦G−1
T |T ′′(DF−1

T ′′ )|T ′′.

This shows that

(W ◦G−1
T (DGT )

−1 ◦G−1
T )|T ′′ = (V ◦G−1

T DF−1
T ′′ )|T ′′,
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and hene W ◦G−1
T (DGT )

−1 ◦G−1
T ∈ Pp−1

∇ (ω(T, T )). Sine this relation between the spaes

Pp−1
∇ (ω(T, T )) and Pp−1

∇ (ωref) is bijetive, we proved together with (3.3.7)

min
W∈Pp−1

∇ (ωref )
‖(∇w) ◦G−1

T −W ◦G−1
T ‖L2(∪ω(T,T ))

. |T |1/d min
W∈Pp−1

∇ (ω(T,T ))
‖∇v −W‖L2(∪ω(T,T )).

With (3.3.6), this shows (3.3.2). It remains to show

‖∇(1− J(ωref))w‖L2(G−1
T (T )) ≤ Csz min

W∈Pp−1
∇ (ωref )

‖∇w −W‖L2(∪ωref ), (3.3.8)

for some onstant Csz > 0. We proeed by ontradition. Assume (3.3.8) is false for any

onstant Csz > 0. Then, there exists a sequene wn ∈ H1(
⋃
ωref) with

‖∇(1− J(ωref))wn‖L2(G−1
T (T )) > n min

W∈Pp−1
∇ (ωref )

‖∇wn −W‖L2(∪ωref )

for all n ∈ N. Without loss of generality, we may assume ‖wn‖H1(∪ωref ) = 1 for all n ∈ N.
Let Q : H1(

⋃
ωref) → Sp(ωref) denote the H1

-orthogonal projetion. The sequene vn :=
(1−Q)wn satis�es

‖∇(1− J(ωref))vn‖L2(G−1
T (T )) > n min

W∈Pp−1
∇ (ωref )

‖∇vn −W‖L2(∪ωref )

for all ℓ ∈ N sine J(ωref) is a projetion and hene (1− J(ωref)Qwn = 0 on G−1
T (T ) as well

as ∇Qwn ∈ Pp−1
∇ (ωref). The above together with the stability of J(ωref) imply

min
W∈Pp−1

∇ (ωref)
‖∇vn −W‖L2(∪ωref ) ≤ Csz‖vn‖H1(∪ωref )/n ≤ Csz/n, (3.3.9)

and hene there exists a sequene Wn ∈ Pp−1
∇ (ωref) with

lim
n→∞

‖∇vn −Wn‖L2(∪ωref ) = 0 (3.3.10)

and ‖Wn‖L2(∪ωref ) ≤ Csz/n + 1 for all n ∈ N. Sine Pp−1
∇ (ωref) is a �nite dimensional spae,

we may extrat a onvergent subsequene Wnk
∈ Pp−1

∇ (ωref) with limk→∞Wnk
= W0 ∈

Pp−1
∇ (ωref). By (3.3.10), there holds limk→∞ ‖∇vnk

− W0‖L2(∪ωref ) = 0. The boundedness

‖vn‖H1(∪ωref ) ≤ 1 allows to extrat another subsequene (also denoted with nk) suh that

vnk
⇀ v0 ∈ H1(∪ωref) weakly and (by Rellih ompatness) ‖vnk

− v0‖L2(∪ωref ) → 0. This

implies ∇vnk
→ ∇v0 ∈ L2(∪ωref) weakly, and by uniqueness of limits also ∇v0 = W0.

With (3.3.10), we obtain

lim
k→∞

‖vnk
− v0‖H1(∪ωref) = 0.

This implies ‖v0‖H1(∪ωref ) = 1, and by de�nition of the vn = (1 − Q)wn, also Qv0 = 0. On

the other hand, ∇v0 = W0 ∈ Pp−1
∇ (ωref). Therefore, Lemma 3.3.5 shows v0 ∈ Sp(ωref) and

hene (1 −Q)v0 = 0. Altogether, we have v0 = 0, whih ontradits ‖v0‖H1(∪ωref ) = 1. This
onludes the proof. �
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3.3.0.2. Proof of Theorem 3.3.1. For all triangulations T ∈ T and all T ∈ T , de�ne
rT := mini=1,...,N min(ri,θi)∈T ri, where ri denotes the radius as de�ned in Theorem 3.3.1.

Lemma 3.3.8. Let S ⊆ T∞ denote a set of elements whih is shape regular in the sense

γ(S) <∞ (where γ(·) is de�ned in Setion 3.2.3), satis�es |T |1/d ≤ CrT for all T ∈ T with

rT > 0 and some C > 0, and |T ∩ T ′| = 0 for all T, T ′ ∈ S. Given α > −d, there holds for

all T ∈ T
∫

∪
{
T∈S : rT>0

} rαT ≤ C10.

The onstant C10 > 0 depends only on C, γ(S), α, N , d, and Ω.

Proof. With Bi(a, b) :=
{
z ∈ Ω : a ≤ |xi − z| ≤ b

}
, there holds

∫

∪
{
T∈S : rT>0

} rαT ≤
N∑

i=1

∞∑

n=− log2(diam(Ω))−1

∫

Bi(2−n,2−n+1)

rαT

.

N∑

i=1

∞∑

n=− log2(diam(Ω))−1

2−nα
∑

T∈S
T∩Bi(2

−n,2−n+1) 6=∅

|T |,

where the hidden onstant is 1 in ase of α ≤ 0 and depends only on diam(Ω) and α for

α > 0. For all T ∈ S with T ∩Bi(2
−n, 2−n+1) 6= ∅ holds |T |1/d ≤ CrT ≤ C2−n+1

. The shape

regularity (3.2.5) shows diam(T ) ≤ γ(S)C2−n+1
and hene T ⊆ Bi(0, (1 + γ(S)C)2−n+1).

This and (3.2.1) imply

∑

T∈S
T∩Bi(2

−n,2−n+1) 6=∅

|T | ≤ |Bi(0, (1 + γ(S)C)2−n+1)| ≃ 2−dn.

Altogether, this shows

∫

∪
{
T∈S : rT>0

} rαT .

N∑

i=1

∞∑

n=− log2(diam(Ω))−1

2−n(α+d) . N
( 1

1− 2α+d
+ 2(| log2(diam(Ω))|+1)(α+d)

)
.

This onludes the proof. �

Lemma 3.3.9. Assume T and a orresponding re�nement strategy T(·, ·) in the sense of

Setion 3.2.1�3.2.4. Let u be given as in (3.3.1) and de�ne γ := mini=1,...,N γi/2 > 0. Given
i = 1, . . . , N , all triangulations T ∈ T and all T ∈ T with xi /∈ T satisfy

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖L2(T ) ≤ C11|T |p/drγ−p−1

T ‖1‖L2(T ).

The onstant C11 > 0 depends only on diam(Ω), p, the onstants in the de�nition of ui, the
onstants in Setion 3.2.1�3.2.4, T, as well as on ‖gi‖W∞,p+1(T ) and ‖χi‖W∞,p+1(T ).

Proof. The �rst step is to bound the derivative Dp+1ui on T ∈ T with rT > 0. To that
end, let e1, . . . , ed ∈ Rd

denote the unit vetors. Moreover, given a point z0 = (ri, θi) ∈ T ,
let eri , eθi,1, . . . , eθi,d−1 ∈ Rd

denote the unit vetors assoiated with (ri, θi) in the sense

that z0 = xi + rieri and that the eθi,j are orthogonal onto eri and onto eah other. De�ne
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us,i(ri) := log(ri)
µirγii and the operator norm ‖ · ‖L(⊗p

n=1Rd,R) in the spae of linear operators

from ⊗p
n=1Rd

to R. Then, there holds

‖Dp+1ui(z0)‖L(⊗p+1
n=1Rd,R)

. max
i=1,...,N

|ci|
( p+1∑

k=0

‖Dk(giχi)(z0)‖L(⊗k
n=1Rd,R)

)( p+1∑

k=0

‖Dkus,i(z0)‖L(⊗k
n=1Rd,R)

)
,

where the hidden onstant depends only on p. The derivatives Dk(giχi) are uniformly

bounded on T by maxi=0,...,N(‖χi‖W p+1,∞(Ω) + ‖gi‖W p+1,∞(Ω)). Let Dv1,...,vm denote the de-

rivative matrix (tensor) with respet to the vetors v1, . . . , vm ∈ Rd
and m ≤ d. Sine

Deθi,1,...,eθi,d−1
us,i(z0) = 0 by de�nition, hange of basis shows for any matrix (tensor) norm

‖ · ‖F that

‖Dkus,i(z0)‖L(⊗p
n=1Rd,R) ≃ ‖Dk

e1,...,ed
us,i(z0)‖F

≃ ‖Dk
eri ,...,eθi,d−1

us,i(z0)‖F ≃ |∂kerius,i(z0)|,

where the hidden onstants depend only on d and p. A straightforward omputation shows

∂kerius,i = rγi−k
i

k∑

j=0

αi,j,k log(ri)
µi−j

for some onstants αi,j,k ∈ R whih depend only on γi, µi, p, k. This shows

p+1∑

k=0

‖Dkus,i(z0)‖L(⊗k
n=1Rd,R) .

p+1∑

k=0

rγi−k
i

k∑

j=0

|αi,j,k log(ri)
µi−j|

.

p+1∑

k=0

rγ−k
i

k∑

j=0

|αi,j,kr
γi−γ
i log(ri)

µi−j|.

For eah j = 0, . . . , p+ 1, there holds

rγi−γ
i | log(ri)|µi−j ≤ max

0≤r≤diam(Ω)
rγi−γ| log(r)|µi−j <∞,

sine γi − γ > 0. Moreover, there holds for all k = 0, . . . , p+ 1

rγ−k
i . rγ−p−1

i ,

where the hidden onstant depends only on diam(Ω). The above estimates imply

p+1∑

k=0

‖Dkus,i(z0)‖L(⊗k
n=1Rd,R) . rγ−p−1

i . (3.3.11)

Altogether, for i = 1, . . . , N , we end up with

‖Dp+1ui(z0)‖L(⊗p+1
n=1Rd,R) . rγ−p−1

i ,

where the hidden onstant depends only on diam(Ω), p, the onstants in the de�nition of ui
as well as on ‖gi‖W∞,p+1(T ) and ‖χi‖W∞,p+1(T ). A saling argument and the Bramble-Hilbert
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lemma show

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖L2(T ) ≃ |T |1/2 min

W∈Pp−1(Tref )d
‖(∇(ui ◦ FT )−W )DF−1

T ◦ FT ‖L2(Tref )

. |T |1/2−1/d min
W∈Pp−1(Tref )d

‖∇(ui ◦ FT )−W‖L2(Tref )

. |T |1/2−1/d‖Dp+1(ui ◦ FT )‖L2(Tref )

. |T |p/d‖Dp+1ui‖L2(T ) . |T |p/drγ−p−1
T ‖1‖L2(T ).

(3.3.12)

This onludes the proof. �

Lemma 3.3.10. Assume T and a orresponding re�nement strategy T(·, ·) in the sense

of Setion 3.2.1�3.2.4. Let u be de�ned as in (3.3.1). Given i = 1, . . . , N , all triangulations

T ∈ T and all T ∈ T with xi ∈ T satisfy

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖L2(T ) ≤ C12|T |(2γ+d−2)/(2d).

The onstant C12 > 0 depends only on diam(Ω), the onstants in the de�nition of ui, the
onstants in Setion 3.2.1�3.2.4, T, as well as on ‖gi‖W 1,∞(T ) and ‖χi‖W 1,∞(T ).

Proof. With γ := mini=1,...,N γi/2, there holds point wise in T

|∇ui| . rγ−1
i ,

where the hidden onstant depends only on diam(Ω), the onstants in the de�nition of ui as
well as on ‖gi‖W 1,∞(T ) and ‖χi‖W 1,∞(T ). This implies

‖∇ui‖2L2(T ) .

∫ diam(T )

0

rd−1
i r2γ−2

i dri . diam(T )2γ+d−2 ≃ |T |(2γ+d−2)/d

and onludes the proof. �

Proposition 3.3.11. Assume T and a orresponding re�nement strategy T(·, ·) in the

sense of Setion 3.2.1�3.2.7. Let u be given as in (3.3.1). Then, there exists C13 > 0 suh

that all T ∈ T and all 0 < ε < 1, p ∈ N with

C−1|T |1/d ≤
{
ε1/pr

1−γ/(2p)
T for all T ∈ T with rT > 0,

min{ε2/(2γ+d−2), ε1/p} for all T ∈ T with rT = 0,
(3.3.13)

for some onstant C > 0 satisfy

err(T ) ≤ C13ε.

The onstant C13 > 0 depends only on p, N , C, C11, C12, the onstants in Setion 3.2.1�

3.2.7, T, and on Ω.

Proof. The approximation result (3.3.2) implies

err(T )2 . min
V ∈Pp−1

∇ (T )
‖∇u− V ‖2L2(Ω)

.
∑

T∈T

(
min

V ∈Pp−1
∇ (T )

‖∇u0 − V ‖2L2(T ) +
N∑

i=1

min
V ∈Pp−1

∇ (T )
‖∇ui − V ‖2L2(T )

)
.
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With Lemma 3.3.9�3.3.10 and (3.3.13), this shows

err(T )2 .
∑

T∈T

min
V ∈Pp−1

∇ (T )
‖∇u0 − V ‖2L2(T ) + ε

∑

T∈T
rT >0

r
γ/2−1
T ‖1‖2L2(T ) + ε

∑

T∈T
rT=0

1.

Assumption (3.2.14) implies |T |1/d . rT for all T ∈ T with rT > 0. Hene, Lemma 3.3.8

shows

∑

T∈T
rT>0

r
γ/2−1
T ‖1‖2L2(T ) =

∫

∪
{
T∈T : rT>0

} rγ/2−1
T dx . C10.

As in (3.3.12), one obtains

min
V ∈Sp−1(T )

‖∇u0 − V ‖2L2(T ) . |T |p/d‖Dp+1u0‖L2(T ).

Altogether, we obtain

err(T )2 . ε(C10 + |
{
T ∈ T : rT = 0

}
|+ ‖Dp+1u0‖L2(Ω)).

Lemma 3.2.1 bounds |
{
T ∈ T : rT = 0

}
| and hene onludes the proof. �

Proposition 3.3.12. Assume T and a orresponding re�nement strategy T(·, ·) in

the sense of Setion 3.2.1�3.2.7. Suppose u as de�ned in (3.3.1). Given ε > 0, p ∈ N
and T ∈ T, there exists a triangulation T̂ ∈ T(T , C14ε

−d/p) whih satis�es (3.3.13). The

onstant C14 ≥ 1 depends only on qcon, u, p, d, the onstants in Setion 3.2.1�3.2.7, T, and
Ω.

Proof. De�ne hmin := min{ε2/γ , ε1/p}. In the following, we onstrut an almost minimal

re�nement of T suh that all elements satisfy

|T |1/d ≤ max{hmin, ε
1/pr

1−γ/(2p)
T }. (3.3.14)

Generate the triangulation T̂ ∈ T(T ) with the following algorithm:

Algorithm 3.3.13. Set T̂0 = T and ℓ = 0

(i) De�ne M̂ℓ :=
{
T ∈ T̂ℓ : T does not satisfy (3.3.14)

}
.

(ii) If M̂ℓ = ∅, set T̂ = T̂ℓ and stop, else goto (iii).

(iii) De�ne T̂ℓ+1 := T(T̂ℓ,M̂ℓ), ℓ = ℓ+ 1, and goto (i).

The algorithm stops after a �nite number of steps, sine |T |1/d is redued by q1/dcon with eah

re�nement and eventually is smaller than hmin. Hene (3.3.14) is satis�ed for all elements

T ∈ T̂ = T̂ℓ after a �nite number of steps. If for some element T ∈ T̂ holds ε1/pr
1−γ/(2p)
T ≥

hmin, then (3.3.13) follows diretly from (3.3.14). If there holds ε1/pr
1−γ/(2p)
T < hmin, then we

obtain

rT ≤ rmax := h
2p/(2p−γ)
min ε−2/(2p−γ)

(3.3.15)

and sine hmin ≤ ε2/γ, it follows

r
γ/(2p)
T ≤ h

γ/(2p−γ)
min ε−γ/(p(2p−γ)) ≤ ε2/(2p−γ)−γ/(p(2p−γ)) = ε1/p for all T ∈ T .

With (3.2.14), this implies

C−1
shpγ(T0)

−1C−1
6 |T |1/d ≤ rT ≤ ε1/pr

1−γ/(2p)
T for rT > 0,

|T |1/d ≤ hmin for rT = 0.
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Sine 2/γ ≥ 2/(2γ + d − 2) and 0 < ε < 1, there holds hmin ≤ min{ε2/(2γ+d−2), ε1/p}. Thus,
the above implies (3.3.13) with the onstant C := max{1, Cshpγ(T0)C6}.

It remains to ount the elements of T̂ \ T . To that end, reall T̂ = T̂ℓ and de�ne the

funtion M : T∞ → [0,∞] by M(T ) := max{hmin, ε
1/pr

1−γ/(2p)
T } as well as

Sj :=
{
T ∈

ℓ⋃

k=0

M̂k : q−j
con < |T |/M(T )d ≤ q−j−1

con

}
.

Note that T ∈ M̂j implies |T | > M(T )d and hene

⋃∞
j=0 Sj =

⋃ℓ
j=0 M̂j. Assume T, T ′ ∈ Sj

with |T ∩ T ′| > 0. Without loss of generality assume T ′ ⊆ T , then (3.2.12) and rT ′ ≥ rT
imply the ontradition q−j

con < |T ′|/M(T ′)d ≤ qcon|T |/M(T )d ≤ q−j
con. Hene |T ∩ T ′| = 0 for

all T, T ′ ∈ Sj . Given j, split Sj = Mr ∪Mh with

Mr :=
{
T ∈ Sj : ε1/pr

1−γ/(2p)
T ≥ hmin

}
and Mh := Sj \Mr.

De�ne the funtion A : Ω → [0,∞) by A|T := |T | for all T ∈ Mr. Then, there holds with

Lemma 3.3.8 and |T |1/d . rT for all T ∈ Mr from (3.2.14) that

|Mr| ≤
∫

∪Mr

A−1 ≤
∫

∪Mr

M(T )−dqjcon

= qjconε
−d/p

∫

∪
{
T∈Ŝj : rT>0

} rd(γ/(2p)−1)
T ≤ C10q

j
conε

−d/p.
(3.3.16)

On the other hand, T ∈ Mh implies |T | ≥ q−j
conh

d
min. Together with (3.2.14), (3.3.15), and

Bi(b) :=
{
x ∈ Ω : |x− xi| ≤ b

}
, this shows T ⊆ Bi((1 + C6)rmax) for some i ∈ {1, . . . , N}

and hene

|Mh| ≤ qjcon

N∑

i=1

|Bi((1 + C6)rmax)|
hdmin

. qjcon

N∑

i=1

rdmax

hdmin

. qjconh
2pd/(2p−γ)−d
min ε−2d/(2p−γ).

Sine hmin ≤ ε1/p, we end up with

|Mh| . qjconh
dγ

2p−γ

min ε
2d

2p−γ ≤ qjconε
dγ

p(2p−γ)
+ −2d

2p−γ = qjconε
−d(2p−γ)
p(2p−γ) = qjconε

−d/p. (3.3.17)

The ombination of (3.3.16) and (3.3.17) shows

|Sj | . qjconε
−d/p

for all j = 0, . . . , ℓ. (3.3.18)

The losure estimate (3.2.13) implies

|T̂ \ T | ≤ Cclosure

ℓ−1∑

j=0

|Mj| =
∞∑

j=0

|Sj | . ε−d/p
∞∑

j=0

qjcon.

The onvergene of the geometri series onludes the proof. �

Proof of Theorem 3.3.1. Given ε > 0 and p ∈ N, Proposition 3.3.12 provides a trian-
gulation T̂ ∈ T(T , floor(C14(ε/C13)

−d/p)) suh that (3.3.13) is satis�ed for ε/C13. Therefore,

Proposition 3.3.11 onludes the proof. �
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3.3.0.3. Proof of uniform approximability. Reall the uniform approximability onstants

for the error Cerr
approx(s) as well as for the data C

data
approx(s) de�ned in Setion 2.4.

Theorem 3.3.14. With err(·) := minV ∈Sp(·) ‖u − V ‖H1(Ω) and under the assumptions

of Theorem 3.3.1, there holds Cerr
approx(p/d) <∞.

Proof. Let T ∈ T. Given N ∈ N, de�ne ε = N−p/dC
p/d
7 . Theorem 3.3.1 provides a

triangulation T̂ ∈ T(T , N) with err(T̂ ) ≤ ε. Hene, there holds

(N + 1)p/derr(T̂ ) ≤ (N + 1)p/dε ≤ (N + 1)p/dN−p/dC
p/d
7 ≤ 2C

p/d
7 .

This onludes the proof. �

The following result is the analog of Theorem 3.3.14 for the approximability of the data.

Theorem 3.3.15. Given f ∈ L2(Ω) and α ≥ 0, de�ne

data(T )2 := min
V ∈Pp(T )

∑

T∈T

|T |2α/d‖f − V ‖2L2(Ω).

Assume f |T ∈ Hp(T ) for all T ∈ T0. Let the re�nement strategy T(·, ·) satisfy the assump-

tions from Setion 3.2.1�3.2.6. Then, Cdata
approx((p+ α)/d) <∞.

Proof. Given ε > 0 and T ∈ T, generate the triangulation T̂ in T(T ) with the following
algorithm:

Algorithm 3.3.16. Set T̂0 = T and ℓ = 0

(i) De�ne M̂ℓ :=
{
T ∈ T̂ℓ : |T |(α+p)/d > ε

}
.

(ii) If M̂ℓ = ∅, set T̂ = T̂ℓ and stop, else goto (iii).

(iii) De�ne T̂ℓ+1 := T(T̂ℓ,M̂ℓ), ℓ = ℓ+ 1, and goto (i).

By de�nition of Algorithm 3.3.16 and (3.2.12), the algorithm stops after �nitely many

steps, i.e., T̂ = T̂ℓ. De�ne the sets

Sj :=
{
T ∈

ℓ⋃

k=0

M̂k : q−j
con < |T |/εd/(α+p) ≤ q−j−1

con

}
.

Assume T, T ′ ∈ Sj with |T ∩ T ′| > 0. Without loss of generality, there holds T ′ ⊆ T . The
assumption (3.2.12) implies the ontradition

εd/(α+p)q−j
con < |T ′| ≤ qcon|T | ≤ εd/(α+p)q−j

con.

Hene |T ∩ T ′| = 0 for all T, T ′ ∈ Sj . This implies immediately

|Sj | ≤ |Ω|qjconε−d/(α+p).

With the losure estimate (3.2.13), this shows

|T̂ \ T | ≤ Cclosure

ℓ∑

j=0

|M̂j| = Cclosure

∞∑

j=0

|Sj | . Cclosureε
−d/(α+p)

∞∑

j=0

qjcon

≤ Cclosure(1− qcon)
−1ε−d/(α+p).
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A saling argument, (3.2.6), and the Bramble-Hilbert lemma show

data(T̂ )2 =
∑

T∈T

|T |2α/d min
V ∈Pp(T̂ )

‖f − V ‖2L2(T )

.
∑

T∈T̂

|T |2(α+p)/d‖Dpf‖2L2(T ) ≤ ε2
∑

T∈T0

‖Dpf‖2L2(T ).
(3.3.19)

Finally, given N ∈ N, de�ne ε > 0 by Cclosure(1 − qcon)
−1ε−d/(α+p) = N . Then, the above

onstrution provides T̂ ∈ T(T , N) suh that data(T̂ ) . ε = C−p/dN−(α+p)/d
. This shows

Cdata
approx((p+ α)/d) <∞. �

As a straightforward but important onsequene, we obtain the following result.

Corollary 3.3.17. Suppose that η(·) satis�es reliability (2.4.1) and e�ieny (2.4.2)

with err(T ) := minV ∈Sp(T ) ‖u − V ‖H1(Ω) and data(T )2 := minV ∈Pp(T )

∑
T∈T |T |2α/d‖f −

V ‖2L2(Ω) for some α ≥ 0. Then, under the assumptions of Theorem 3.3.1 and with f |T ∈
Hceil(p−α)(T ) ∩ L2(T ) for all T ∈ T0, there holds Capprox(p/d) <∞ and hene (T3).

Proof. Theorem 3.3.14 and Theorem 3.3.15 show Cerr
approx(p/d) + Cdata

approx(p/d) < ∞.

The quasi-monotoniity (2.4.3) holds by de�nition of err(·) and data(·) with Cmon = 1.
Proposition 2.4.1 (i) implies Capprox(p/d) <∞ and hene (T3). This onludes the proof. �

3.4. Weighted error estimators

Under the general assumption in Setion 3.2.1, this setion assumes that the error es-

timator η(·) depends not only on the triangulation, but also on a ertain weight funtion

h ∈ L∞(Ω). We all the error estimator η(·, h) a weighted error estimator with weight

h. In the appliations below, we de�ne for eah T ∈ T a ertain natural weight funtion

h(T ) : Ω → (0,∞) for whih we write η(T ) := η(T , h(T )). This natural weight funtion

must be ontinuous on Ω\⋃T∈T ∂T . Suppose that η(·, ·) satis�es the following homogeneity

ondition: There exist onstants 0 < r+ ≤ r− < ∞ suh that all T ∈ T ∈ T, and all

α : Ω → [0, 1] with α ∈ L∞(Ω) satisfy

min
x∈T

|α(x)|r− ηT (T , h) ≤ ηT (T , αh) ≤ max
x∈T

|α(x)|r+ ηT (T , h). (3.4.1)

Suppose stability in the following sense: All re�nements T̂ ∈ T(T ) of a triangulation T ∈ T
and all subsets S ⊆ T with Ŝ :=

{
T ∈ T̂ : T ⊆ ⋃S

}
satisfy

∣∣∣
(∑

T∈Ŝ

ηT (T̂ , h)2
)1/2

−
(∑

T∈S

ηT (T , h)2
)1/2∣∣∣ ≤ ˜̺(T , T̂ ), (3.4.2)

where h : Ω → (0,∞) is a weight funtion with h|T ≤ h(T̂ )|T for all T ∈ S and ˜̺(·, ·) :
T× T → [0,∞).

Proposition 3.4.1. Let the error estimator η(·) be a weighted error estimator whih

satis�es homogeneity (3.4.1) and stability (3.4.2) and de�ne S(T , T̂ ) :=
{
T ∈ T : h(T̂ )|T ≤

qconh(T )|T
}

for some 0 < qcon < 1. With Ŝ(T , T̂ ) :=
{
T ∈ T̂ : T ⊆ ⋃S(T , T̂ )

}
,

ρred = (1 + δ)q2r+con , and ̺(T , T̂ ) := (1 + δ−1)1/2 ˜̺(T , T̂ ) for all δ > 0, this implies (E1b). If

additionally h(T̂ )|T = h(T )|T for all T ∈ T \ S(T , T̂ ). This implies even (E1a).
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Proof. Let h be a weight funtion. The homogeneity (3.4.1) implies for some T ∈ T
and

h̃ :=

{
h|T on T,

0 on Ω \ T

that

ηT (T , h) = min
x∈T

|h̃(x)/h(x)|r− ηT (T , h) ≤ ηT (T , h̃)

≤ max
x∈T

|h̃(x)/h(x)|r+ ηT (T , h) = ηT (T , h).

Hene ηT (T , h) depends only on h|T . With this, stability (E1a) follows from (3.4.2) with

S := T \ S(T , T̂ ) and h := h(T ), sine ηT (T̂ , h(T )) = ηT (T , h(T̂ )) for all T ∈ S.
Redution (E1b) follows with (3.4.1) and (3.4.2). For δ > 0, there holds

∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 ≤ (1 + δ)
∑

T∈S(T ,T̂ )

ηT (T , h(T̂ ))2 + (1 + δ−1)˜̺(T , T̂ )2

≤ (1 + δ)
∑

T∈S(T ,T̂ )

max
x∈T

h(T̂ )2r+(x)

h(T )2r+(x)
ηT (T )2 + (1 + δ−1)˜̺(T , T̂ )2

≤ (1 + δ)q2r+con

∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ−1)˜̺(T , T̂ )2.

This onludes the proof. �

3.5. Example 1: Laplae problem with residual error estimator

This setion applies the abstrat analysis of the preeding setions to di�erent disretizations

of the Laplae problem. The examples are taken from onforming �nite element methods

(FEM) as well as the boundary element methods (BEM) for weakly-singular and hyper-

singular integral equations. More examples, e.g., non-onforming or mixed methods (with

the error estimator from [21℄), are found and disussed in [24℄. A general review on error

estimators for �nite element methods is found in [23℄.

3.5.1. Conforming FEM. This setion is based on [24, Setion 5℄. In the ontext

of onforming FEM for symmetri operators, the onvergene and quasi-optimality of the

adaptive algorithm has �nally been analyzed in the seminal works [35, 78℄. In this setion,

we show that their results an be reprodued and even extended in the abstrat framework

developed.

Let Ω ⊂ Rd
, d ≥ 2, be a bounded Lipshitz domain with polyhedral boundary Γ := ∂Ω.

With given volume fore f ∈ L2(Ω), we onsider the Poisson model problem

−∆u = f in Ω and u = 0 on Γ. (3.5.1)

For the weak formulation, let X := H1
0 (Ω) denote the usual Sobolev spae, with the equiva-

lent H1
-norm ‖v‖H1

0 (Ω) := ‖∇v‖L2(Ω) assoiated with the salar produt

b(u, v) :=

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx for all v ∈ H1
0 (Ω). (3.5.2)
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Then, the weak form of (3.5.1) admits a unique solution u ∈ H1
0 (Ω). Based on a triangulation

T of Ω generated by bisetion (Setion 3.2.8), we use the onforming �nite element spaes

Sp
0 (T ) := Pp(T ) ∩H1

0 (Ω) of �xed polynomial order p ≥ 1. The disrete form

b(U(T ), V ) =

∫

Ω

fV dx for all V ∈ Sp
0 (T ) (3.5.3)

also admits a unique FE solution U(T ) ∈ Sp
0 (T ). Following [35℄, we use the loal weight

funtion

h(T ) ∈ P0(T ) with h(T )|T := |T |1/d, (3.5.4)

where |T | denotes the volume of an element T ∈ T . The standard residual error estimator

onsists of the loal ontributions for all T ∈ T
ηT (T )2 := h(T )|2T ‖f +∆U(T )‖2L2(T ) + h(T )|T ‖[∂nU(T )]‖2L2(∂T∩Ω), (3.5.5)

see, e.g., [1, 82℄ as well as [35, 78℄.

Here, [∂n(·)] denotes the jump of the normal derivative over interior faets of T . Hene,
η(·) is a weighted error estimator in the sense of Setion 3.4 (the proofs of (3.4.1) and (3.4.2)

follow below).

Sine the admissible triangulations T ∈ T are uniformly shape regular (3.2.5), we note

that h(T )|T ≃ diam(T ) with the Eulidean diameter diam(T ). In partiular, η(·) oinides,
up to a multipliative onstant, with the usual de�nition found in textbooks, f., e.g., [1, 82℄.

We refer to Setion 5.2.2 for the proof that the hoie of the weight funtion does not a�et

onvergene and quasi-optimality of the adaptive algorithm.

Proposition 3.5.1. The onforming disretization of the Poisson problem (3.5.1) with

residual error estimator (3.5.5) and bisetion as re�nement strategy T(·, ·) satis�es
(i) stability and redution (E1) with ρred = 2−1/d

, S(T , T̂ ) := T \ T̂ as well as

Ŝ(T , T̂ ) := T̂ \ T , and ̺(T , T̂ ) := Cpert‖U(T )− U(T̂ )‖H1
0 (Ω),

(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) disrete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability and e�ieny (2.4.1)�(2.4.2) with err(T ) :=
‖u− U(T )‖H1

0 (Ω) and

data(T ) := min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω), (3.5.6)

where Cdata
approx(p/d) < ∞ (de�ned in Setion 2.4) is guaranteed if f |T ∈ Hp−1(T ) for all

T ∈ T0. The onstants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degree p ∈ N,
T0, and on Ω.

Proof. Stability (E1a) as well as redution (E1b) are part of the proof of [35, Corol-

lary 3.4℄. The disrete reliability (E3) is found in [35, Lemma 3.6℄ with εdrel = 0 and

κdlr = ∞. Sine ̺(T , T̂ ) is a Hilbert norm and the Galerkin orthogonality (2.7.3) is satis-

�ed by de�nition, Lemma 2.7.2 implies (E2) with εqo = 0 and Cqo = Cdrel. Lemma 3.2.3

shows (T1)�(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-monotoniity (2.7.6). Hene,

Lemma 2.7.4 proves (iv).
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The bounds (2.4.1)�(2.4.2) are well exposed in text books on a posteriori error estimation,

see, e.g., [1, 82℄. Theorem 3.3.15 implies Cdata
approx(p/d) < ∞ and hene onludes the proof.

�

Consequene 3.5.2. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to onvergene with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

with optimal omplexity in the sense of Theorem 2.5.1. Moreover, the error onverges in the

sense of Theorem 2.4.3 for s = p/d if f |T ∈ Hp−1(T ) for all T ∈ T0. �

Numerial examples for the 2D Laplaian with mixed Dirihlet-Neumann boundary on-

ditions are found in [51℄ together with a detailed disussion of the implementation. Examples

for 3D are found in [35℄.

3.5.2. Conforming FEM without bisetion. A major drawbak of the urrent re-

sults on adaptive �nite element methods, is the restrition to bisetion (Setion 3.2.8) as a

re�nement strategy. This omes from the fat that other popular re�nement strategies (i.e.,

red-green-blue re�nement from Setion 3.2.9) do not satisfy the overlay estimate (2.5.1),

whih is a key ingredient in state of the art literature. However, the present abstrat frame-

work irumvents the use of (2.5.1) by using (T3) instead. The results from Setion 3.3 allow

to proof optimal onvergene for re�nement strategies in the sense of Setion 3.2.1�3.2.7.

We onsider the Poisson problem (3.5.1) on a polygonal domain Ω ⊆ R2
. The following

result from [55, Setion 2℄ proves that Theorem 3.3.14 is appliable.

Proposition 3.5.3. Given p ∈ N, let f ∈ Hp−1+ε(Ω) for some ε > 0 if p > 1 and

f ∈ L2(Ω) for p = 1. Then, the solution u ∈ H1(Ω) of (3.5.1) allows for the deomposi-

tion (3.3.1). �

We suppose that T(·, ·) is a re�nement strategy whih satis�es the assumptions from

Setion 3.2.1�3.2.7. Additionally to the bisetion strategy whih was treated in Setion 3.5.1,

this partiularly inludes the red-green-blue re�nement from Setion 3.2.9.

Proposition 3.5.4. Let T(·, ·) denote an arbitrary re�nement strategy in the sense

of Setion 3.2.1�3.2.7. The onforming disretization of the Poisson problem (3.5.1) with

residual error estimator (3.5.5) satis�es

(i) stability and redution (E1) with ρred = 2−1/d
, S(T , T̂ ) := T \ T̂ as well as

Ŝ(T , T̂ ) := T̂ \ T , and ̺(T , T̂ ) := Cpert‖U(T )− U(T̂ )‖H1
0 (Ω),

(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) disrete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(p/d) <∞ for all p ∈ N with

f ∈
{
Hp−1+ε(Ω) for some ε > 0 p > 1,

L2(Ω) p = 1.
(3.5.7)

Moreover, the estimator satis�es (2.4.1)�(2.4.2) with err(T ) := ‖u− U(T )‖H1
0 (Ω) and

data(T ) := min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω), (3.5.8)

where Cdata
approx(p/d) <∞ (de�ned in Setion 2.4) is guaranteed if p ∈ N satis�es (3.5.7). The

onstants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degree p ∈ N, T0, and on

Ω.

Proof. The statements (i)�(iii) follow as in Proposition 3.5.1. The assumptions in

Setion 3.2.5�3.2.6 imply the axioms (T1)�(T2). Moreover, Proposition 3.5.3 shows that
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Theorem 3.3.1 is appliable if (3.5.7) is satis�ed. With the Céa lemma (5.4.5) below, we

obtain even

err(T ) ≃ min
V ∈Sp(T )

‖u− V ‖H1(Ω)

(note the lak of boundary onditions on the right-hand side) and hene Theorem 3.3.14

shows Cerr
approx(p/d) < ∞. Under the same assumptions, Theorem 3.3.15 is appliable and

shows that Cdata
approx(p/d) < ∞. Moreover, Corollary 3.3.17 implies Capprox(p/d) < ∞. This

onludes the proof. �

Consequene 3.5.5. Let p ∈ N satisfy (3.5.7). Then, the adaptive algorithm leads

to onvergene with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 for

s ≤ p/d. Moreover, the error onverges in the sense of Theorem 2.4.3 for s = p/d. �

3.5.3. Conforming BEM for weakly-singular integral equation. In this setion

(whih is based on [24, Setion 5℄), we onsider the weighted-residual error estimator in

the ontext of BEM for integral operators of order −1. Unlike FEM, the e�ieny of this

error estimator is still an open question in general and mathematially guaranteed only

for partiular situations [3℄ while typially observed throughout, see, e.g. [20, 28, 33, 34℄.

Nevertheless, the abstrat framework of Chapter 2 provides the means to analyze onvergene

and quasi-optimality of the adaptive algorithm. Non-residual error estimators are proposed

in [30, 50℄, whih are numerially straightforward to implement but lak the neessary

properties to prove optimality.

In a spei� setting, optimal onvergene of adaptive algorithms has independently �rst

been proved by [47, 80℄ for lowest-order BEM. While the analysis of [80℄ overs general

operators, but is restrited to smooth boundaries Γ, the analysis of [47℄ fouses on the

Laplae equation only, but allows for polyhedral boundaries. In [44℄, these results are

generalized to BEM with ansatz funtions of arbitrary, but �xed polynomial order.

Let Ω ⊂ Rd
be a bounded Lipshitz domain with polyhedral boundary ∂Ω and d = 2, 3.

Let Γ ⊆ ∂Ω be a relatively open subset whih has a Lipshitz boundary itself. For given

f ∈ H1/2(Γ) :=
{
φ|Γ : φ ∈ H1(Ω)

}
, we onsider the weakly-singular �rst-kind integral

equation

Vu(x) = f(x) for x ∈ Γ. (3.5.9)

The sought solution satis�es u ∈ H̃−1/2(Γ). The negative-order Sobolev spae H̃−1/2(Γ) is
the dual spae of H1/2(Γ) with respet to the extended L2(Γ)-salar produt 〈· , ·〉L2(Γ). We

refer to the monographs [58, 62, 75℄ for details and proofs of this as well as of the following

fats on the funtional analyti setting: With the fundamental solution of the Laplaian

G(z) :=

{
− 1

2π
log |z| for d = 2,

+ 1
4π

1
|z|

for d = 3,
(3.5.10)

the simple-layer potential reads

Vu(x) :=
∫

Γ

G(x− y)u(y) dΓ(y) for x ∈ Γ. (3.5.11)

We note that V : H−1/2+s(Γ) → H1/2+s(Γ) is a linear, ontinuous, and symmetri operator

for all −1/2 ≤ s ≤ 1/2. For 2D, we assume diam(Ω) < 1 whih an always be ahieved by

saling. Then, V is also ellipti (see also Proposition 6.2.23, below) , i.e.,

b(u, v) := 〈Vu , v〉L2(Γ) (3.5.12)
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de�nes an equivalent salar produt on X := H̃−1/2(Γ). We equip H̃−1/2(Γ) with the in-

dued Hilbert spae norm ‖v‖2
H̃−1/2(Γ)

:= 〈Vv , v〉L2(Γ). Aording to the Hahn-Banah theo-

rem, (3.5.9) is equivalent to the variational formulation

b(u, v) = 〈f , v〉L2(Γ) for all v ∈ H̃−1/2(Γ). (3.5.13)

It relies on the salar produt b(·, ·) and hene admits a unique solution u ∈ H̃−1/2(Γ)
of (3.5.13).

Let T be a regular triangulation of Γ, generated by bisetion from Setion 3.2.8 from

some initial triangulation T0. We employ onforming boundary elements Pp(T ) ⊂ H−1/2(Γ)
of order p ≥ 0. The disrete formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Pp(T )

admits a unique BE solution U(T ) ∈ Pp(T ).
Under additional regularity of the data f ∈ H1(Γ), we onsider the weighted-residual

error estimator of [20, 28, 33, 34℄ with loal ontributions

ηT (T )2 := h(T )|T ‖∇Γ(f − VU(T ))‖2L2(T ) for all T ∈ T . (3.5.14)

Here, ∇Γ(·) denotes the surfae gradient and h(T ) ∈ P0(T ) denotes the weight funtion

de�ned by h(T )|T = |T |1/(d−1)
for all T ∈ T as Γ is a (d−1)-dimensional manifold. We note

that the analysis of [20, 28, 33, 34℄ relies on a Poinaré-type estimate ‖R(T )‖H1/2(Γ) .

‖h(T )1/2∇ΓR(T )‖L2(Γ) for the Galerkin residual R(T ) = f − VU(T ) and requires shape-

regularity of the triangulation T for d = 3, in partiular, the fat that h(T )|T ≃ diam(T ).

Proposition 3.5.6. The onforming disretization of the Poisson problem (3.5.9) with

residual error estimator (3.5.14) satis�es

(i) stability and redution (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H̃−1/2(Γ), ρred =

2−1/(d−1)
, and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2) with εqo = 0,
(iii) disrete reliability (E3) with

R(T , T̂ ) :=
{
T ∈ T : ∃T ′ ∈ T \T̂ T ∩ T ′ 6= ∅

}
, (3.5.15)

κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability (2.4.1) with err(T ) := ‖u − U(T )‖H̃−1/2(Γ). The

onstants Cdrel, Cqo, Cpert, Crel depend only on the polynomial degree p ∈ N, T0, and on Γ.

Proof. Reliability (2.4.1) is well-known in the literature (e.g. [28, 33, 34℄). Stabil-

ity (E1a) as well as redution (E1b) are part of the proof of [47, Proposition 4.2℄ and also

found in [44℄. The proof essentially follows [35℄, but additionally relies on the novel inverse-

type estimate

‖h(T )1/2∇ΓVV ‖L2(Γ) . ‖V ‖H̃−1/2(Γ) for all V ∈ Pp(T ).

While the work [47℄ is onerned with the lowest-order ase p = 0 only, we refer to [2,

Corollary 2℄ for general p ≥ 0 so that [47, Proposition 4.2℄ transfers to p ≥ 0. Disrete

reliability (E3) is proved in [47, Proposition 5.3℄ for p = 0, but the proof holds aord-

ingly for arbitrary p ≥ 0. Lemma 2.7.2 implies general quasi-orthogonality (E2) with
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εqo = 0. Lemma 3.2.3 shows (T1)�(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-

monotoniity (2.7.6). Hene, Lemma 2.7.4 proves (iv). �

Consequene 3.5.7. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to onvergene with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

optimal omplexity in the sense of Theorem 2.5.1. �

Numerial examples that underline the above result an be found in [33℄.

The lower bound (2.4.2) for the weighted-residual error estimator (3.5.14) remains an

open question. The only result available [3℄ is for d = 2, and it exploits the equivalene

of (3.5.9) to some Dirihlet-Laplae problem: Assume Γ = ∂Ω and let

Kg(x) :=
∫

Γ

∂n(y)G(x− y) g(y) dy (3.5.16)

denote the double-layer potential K : H1/2+s(Γ) → H1/2+s(Γ), for all −1/2 ≤ s ≤ 1/2.
Then, the weakly-singular integral equation (3.5.17) for given Dirihlet data g ∈ H1/2(Γ)
and f := (K + 1/2)g is an equivalent formulation of the Dirihlet-Laplae problem

−∆φ = 0 in Ω and φ = g on Γ = ∂Ω. (3.5.17)

The density u ∈ H̃−1/2(Γ), whih is sought in (3.5.9), is the normal derivative u = ∂nφ to

the potential φ ∈ H1(Ω) of (3.5.17).
For this speial situation and lowest-order elements p = 0, the lower bound (2.4.2) is

proved in [3, Theorem 4℄.

Proposition 3.5.8. We onsider lowest-order BEM p = 0 for d = 2 and Γ = ∂Ω.
Let σ > 2 and g ∈ Hσ(∂Ω) :=

{
φ|∂Ω : φ ∈ Hσ+1/2(Ω)

}
. For f := (K + 1/2)g, the

weighted-residual error estimator (3.5.14) satis�es (2.4.1)�(2.4.2) for some (in general non-

omputable) data(·) with Cdata
approx(3/2) <∞ (de�ned in Setion 2.4).

Proof. The statement (2.4.2) is found in [3, Theorem 4℄, where data(T ) is based on

the regular part of the exat solution u. The de�nition [3, De�nition 15℄ shows data(T ) .
‖h(T ))3/2+ε‖L∞(Γ) for T ∈ T and some σ-dependent ε > 0. The same argumentation as in

the proof of Theorem 3.3.15 shows Cdata
approx(3/2) <∞ and onludes the proof. �

For some smooth exat solution u, the generially optimal order of onvergene is O(h3/2)
for lowest-order elements p = 0, where h denotes the maximal element size. For quasi-

uniform triangulations with N elements and 2D BEM, this orresponds to O(N−3/2) and
hene s = 3/2. With the foregoing proposition and aording to Theorem 2.4.3, the adaptive

algorithm attains any possible onvergene order 0 < s ≤ 3/2 and the generially optimal

rate is thus ahieved.

Consequene 3.5.9. Let 0 < s ≤ 3/2 with ‖η,T‖s < ∞. Under the assumptions of

Proposition 3.5.8, the adaptive algorithm leads to the generially optimal rate for the error

in the sense of Theorem 2.4.3. �

Numerial examples that underline the above result an be found in [3, 20, 28, 33, 34,

47℄.

3.5.4. Conforming BEM for hyper-singular integral equation. In this setion

(whih is based on [24, Setion 5℄), we onsider adaptive BEM for hyper-singular integral

equations, where the hyper-singular operator is of order +1. In this frame, onvergene and

quasi-optimality of the adaptive algorithm has �rst been proved in [80℄, while the neessary

tehnial tools have independently been developed in [2℄. While the analysis of [80℄ only
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overs the lowest-order ase p = 1 and smooth boundaries, the reent work [45℄ generalizes

this to BEM with ansatz funtions of arbitrary, but �xed polynomial order p ≥ 1 and

polyhedral boundaries.

Throughout, we use the notation from Setion 3.5.3. Additionally, we assume that Γ ⊆
∂Ω is onneted. We onsider the hyper-singular integral equation

Wu(x) = f(x) for x ∈ Γ, (3.5.18)

where the hyper-singular integral operator formally reads

Wv(x) := ∂n(x)

∫

Γ

∂n(y)G(x− y)v(y) dΓ(y). (3.5.19)

By de�nition, there holdsWg(x) = ∂nKg(x) if the double-layer potential Kg(x) is onsidered
as a funtion on Ω by evaluating (3.5.16) for x ∈ Ω. Again, we refer to the monographs [58,

62, 75℄ for details and proofs of the following fats on the funtional analyti setting: The

hyper-singular integral operator W is symmetri as well as positive semi-de�nite and has

a one-dimensional kernel whih onsists of the onstant funtions, i.e., W1 = 0. To deal

with this kernel and to obtain an ellipti formulation, we distinguish the ases Γ $ ∂Ω and

Γ = ∂Ω.
3.5.4.1. Sreen problem Γ $ ∂Ω. On the sreen, the hyper-singular integral operator

W : H̃1/2+s(Γ) → H−1/2+s(Γ) is a ontinuous mapping for all −1/2 ≤ s ≤ 1/2. Here,

H̃1/2+s(Γ) :=
{
v|Γ : v ∈ H1/2+s(∂Ω) with supp(v) ⊆ Γ

}
denotes the spae of funtions

whih an be extended by zero to the entire boundary, and H−1/2+s(Γ) denotes the dual

spae of H̃1/2−s(Γ). For given f ∈ H−1/2(Γ), we seek the solution u ∈ H̃1/2(Γ) of (3.5.18).

We note that 1 /∈ H̃1/2(Γ) and W : H̃1/2(Γ) → H−1/2(Γ) is a symmetri and ellipti

operator. In partiular,

b(u, v) := 〈Wu , v〉L2(Γ) (3.5.20)

de�nes an equivalent salar produt on X := H̃1/2(Γ). We equip H̃1/2(Γ) with the indued

Hilbert spae norm ‖v‖2
H̃1/2(Γ)

:= b(v, v). The hyper-singular integral equation is thus equiv-

alently stated as

b(u, v) = 〈f , v〉L2(Ω) for all v ∈ H̃1/2(Γ) (3.5.21)

and admits a unique solution.

Given a regular triangulation T generated by bisetion from Setion 3.2.8 and a poly-

nomial degree p ≥ 1, we employ onforming boundary elements Sp
0 (T ) := Pp(T ) ∩ H̃1/2(Γ).

The disrete formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Sp
0 (T )

admits a unique BE solution U(T ) ∈ Sp
0 (T ).

Under additional regularity of the data f ∈ L2(Γ), we may de�ne the weighted-residual

error estimator from [20, 27, 33, 34℄ with loal ontributions

ηT (T )2 := h(T )|T‖f −WU(T )‖2L2(T ) for all T ∈ T . (3.5.22)

As for the weakly-singular integral equation from Setion 3.5.3, the lower bound (2.4.2) is

only observed empirially [20, 27, 33, 34℄, but a rigorous mathematial proof remains as

an open question.

Proposition 3.5.10. The onforming BEM disretization of the hyper-singular inte-

gral equation (3.5.18) on the sreen with weighted-residual error estimator (3.5.22) satis�es
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(i) stability and redution (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H̃1/2(Γ), ρred =

2−1/(d−1)
, and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) disrete reliability (E3) with R(T , T̂ ) := T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability (2.4.1) with err(T ) := ‖u− U(T )‖H̃(1/2)(Γ). The

onstants Cdrel, Cqo, Cpert, Crel depend only on the polynomial degree p ∈ N, T0, and on Γ.

Proof. The reliability (2.4.1) is well-known in the literature (e.g. [20, 27, 33, 34℄).

The disrete reliability (E3) follows with the tehniques from [35℄ whih are ombined with

the loalization tehniques for the H1/2(Γ)-norm from [27℄. We refer to [45℄ for details. For

the lowest-order ase p = 1, an alternate proof is found in [80, Setion 4℄, where R(T , T̂ ) are

the re�ned elements T \ T̂ plus one additional layer of elements, see (3.5.15). Stability (E1a)

and redution (E1b) are proved in [45℄ and use the inverse estimate from [2, Corollary 2℄.

The remaining statements follow as in Proposition 3.5.6. �

Consequene 3.5.11. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to onvergene with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3

and optimal omplexity in the sense of Theorem 2.5.1. �

Numerial examples that underline the above result an be found in [33℄.

3.5.4.2. Laplae-Neumann problem Γ = ∂Ω. On the losed boundary Γ = ∂Ω, the hyper-
singular integral operator (3.5.19) is ontinuous for all −1/2 ≤ s ≤ 1/2

W : H1/2+s(Γ) → H−1/2+s(Γ).

Due to 1 ∈ H1/2(Γ), we have to stabilize W, e.g., with the rank-one operator Sv :=
〈v , 1〉L2(Ω) 1. Alternatively, it is possible to onsider W on the fator spae H1/2(Γ)/R ≃
H

1/2
⋆ (Γ) :=

{
v ∈ H1/2(Γ) :

∫
Γ
v ds = 0

}
. The (stabilized) hyper-singular integral equation

reads

(W + S)u(x) = f(x) for x ∈ Γ. (3.5.23)

The sought solution satis�es u ∈ X := H1/2(Γ). The stabilization S allows to de�ne an

equivalent salar produt on H1/2(Γ) by

b(u, v) := 〈Wu , v〉L2(Γ) + 〈u , 1〉L2(Γ)〈v , 1〉L2(Γ).

We equip H1/2(Γ) with the indued Hilbert spae norm ‖v‖2
H1/2(Γ)

= b(v, v). Then, the

equation (3.5.23) is equivalent to

b(u, v) = 〈f , v〉L2(Γ) for all v ∈ H1/2(Γ). (3.5.24)

In ase of 〈f , 1〉L2(Γ) = 0, we see that 〈u , 1〉L2(Γ) = 0 by hoie of the test funtion v = 1.
Then, the above formulation (3.5.23) resp. (3.5.24) is equivalent to (3.5.18).

For given g ∈ H−1/2(Γ) and the speial right-hand side f = (1/2 − K′)g, it holds

〈f, 1〉L2(Γ) = 0. Moreover, (3.5.18) resp. (3.5.23) is an equivalent formulation of the Laplae-

Neumann problem

−∆φ = 0 in Ω and ∂nφ = g on Γ = ∂Ω. (3.5.25)
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Clearly, the solution φ ∈ H1(Ω) is only unique up to an additive onstant. If we �x this

onstant by 〈φ , 1〉L2(Γ) = 0, the density u ∈ H1/2(Γ) whih is sought in (3.5.18) for f =
(1/2−K′)g, is the trae u = φ|Γ of the potential φ.

For �xed p ≥ 1 and a regular triangulation T generated by bisetion from Setion 3.2.8

of Γ, we employ onforming boundary elements Sp(T ) := Pp(T ) ∩ H1/2(Γ). The disrete

formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Sp(T ) (3.5.26)

admits a unique solution U(T ) ∈ Sp(T ). In ase of 〈f , 1〉L2(Γ) = 0, it follows as for the
ontinuous ase that 〈U(T ) , 1〉Γ = 0 and therefore SU(T ) = 0. Hene, the de�nition of the

error estimator as well as the proof of the axioms (E1)�(E3), (T1)�(T3) is verbatim to the

sreen problem in Setion 3.5.4.1 and therefore omitted.

Consequene 3.5.12. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to onvergene with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3

and optimal omplexity in the sense of Theorem 2.5.1. �

Numerial examples that underline the above result an be found in [27℄.

Although one may expet a lower bound (2.4.2) similar to that from [3℄ for Symm's inte-

gral equation from Setion 3.5.3, see Consequene 3.5.9, the details have not been worked out

yet. In partiular, quasi-optimality of the adaptive algorithm in the sense of Theorem 2.4.3

remains as an open question.

3.6. Example 2: General seond-order ellipti equations

This setion ollets further �elds of appliations for the abstrat theory developed in Chap-

ter 2 beyond the Laplae model problem from Setion 3.5. The results of Setion 3.6.1

appear �rst in [46℄. A �rst version of this setion an be found in the reent own work [24,

Setion 6℄.

3.6.1. Conforming FEM for non-symmetri, ellipti linear problems. On the

bounded Lipshitz domain Ω ⊂ Rd
, we onsider the following linear seond-order PDE

Lu := −divA∇u+ b · ∇u+ cu = f in Ω and u = 0 on Γ. (3.6.1)

For all x ∈ Ω, A(x) ∈ Rd×d
is a symmetri matrix with A ∈ W 1,∞(Ω;Rd×d

sym). Moreover,

b(x) ∈ Rd
is a vetor with b ∈ L∞(Ω;Rd) and c(x) ∈ R is a salar with c ∈ L∞(Ω). Note

that L is non-symmetri as

L 6= LT = −divA∇u− b · ∇u+ (c− divb)u.

We assume that the indued bilinear form

b(u , v) := 〈Lu , v〉 =
∫

Ω

A∇u · ∇v + b · ∇uv + cuv dx for u, v ∈ X := H1
0 (Ω) (3.6.2)

is ontinuous and H1
0 (Ω)-ellipti and denote by ‖v‖2 := b(v , v) the indued quasi-norm

on H1
0 (Ω), whih satis�es ‖∇(·)‖L2(Ω) ≤ Cnorm‖ · ‖ for some Cnorm > 0. Aording to the

Lax-Milgram lemma and for given f ∈ L2(Ω), the weak formulation

b(u , v) =

∫

Ω

fv dx for all v ∈ H1
0 (Ω) (3.6.3)

admits a unique solution u ∈ H1
0 (Ω).

Historially, the onvergene and quasi-optimality analysis for the adaptive algorithm has

�rst been developed for ellipti and symmetri operators, e.g., [40, 65, 14, 78, 35℄ to name
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some milestones, and the analysis strongly used the fat that ‖v‖ is a Hilbert norm and hene

Lemma 2.7.2 applies. The work [64℄ introdued an appropriate quasi-orthogonality (2.7.5) in

theH1
-norm to prove linear onvergene of the so-alled total error whih is the weighted sum

of error plus osillations. Later, [36℄ used this approah to prove quasi-optimal onvergene

rates. However, [64, 36℄ are restrited to div b = 0 and su�iently �ne initial triangulations

T0 to prove this quasi-orthogonality. The reent work [46℄ removes these arti�ial assumption

by proving the general quasi-orthogonality (E2) with respet to the indued energy quasi-

norm ‖ · ‖. Moreover, the latter analysis also provides a framework for onvergene and

quasi-optimality if b(· , ·) is not uniformly ellipti, but only satis�es some Gårding inequality.

For details, the reader is referred to Setion 3.6.2

The disretization of (3.6.3) is done as in Setion 3.5.1, from where we adopt the nota-

tion: For a given regular triangulation T generated by bisetion from Setion 3.2.8 and a

polynomial degree p ≥ 1, we onsider Sp
0 (T ) := Pp(T ) ∩ H1

0 (Ω) with Pp(T ). The disrete

formulation also �ts into the frame of the Lax-Milgram lemma and

b(U(T ), V ) =

∫

Ω

fV dx for all V ∈ Sp
0 (T ) (3.6.4)

hene admits a unique FE solution U(T ) ∈ Sp
0 (T ). Moreover, one has the Céa lemma

‖u− U(T )‖ ≤ C
Céa

min
V ∈Sp

0 (T )
‖u− V ‖ for all T ∈ T, (3.6.5)

where C
Céa

> 0 depends only on b(· , ·).
The residual error-estimator η(·) di�ers slightly from the one in Setion 3.5.1, namely

ηT (T )2 := h(T )|2T‖L|TU(T )− f‖2L2(T ) + h(T )|T‖[A∇U(T ) · n]‖2L2(∂T∩Ω) (3.6.6)

for all T ∈ T and L|TV := −div|TA(∇V ) + b · ∇V + cV , see e.g. [1, 82℄.

Proposition 3.6.1. The onforming disretization of problem (3.6.1) with residual

error estimator (3.6.6) satis�es

(i) stability and redution (E1) with ρred = 2−1/d
, ̺(T , T̂ ) := Cpert‖U(T )−U(T̂ )‖, and

S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2),

(iii) disrete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satis�es reliability and e�ieny (2.4.1)�(2.4.2) with err(T ) :=
‖u− U(T )‖ and

data(T )2 := min
F∈Pq(T )

∑

T∈T

h2T‖L|TU(T )− f − F‖2L2(T )

+ min
F∈Pq′(T )

∑

T∈T

hT‖[A∇U(T ) · n]− F‖2L2(∂T∩Ω),
(3.6.7)

where q, q′ ∈ N0 are arbitrary. If the di�erential operator L has pieewise polynomial oe�-

ients, su�iently large q, q′ ∈ N0 even provides (2.4.2) with

data(T ) = min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω). (3.6.8)

In this ase, there holds Cdata
approx(p/d) < ∞ (de�ned in Setion 2.4) if f |T ∈ Hp−1(T ) for

all T ∈ T0. The onstants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degrees

p, q, q′ ∈ N, T0, Ω, and on L.
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Proof. The statements (i),(iii)�(iv) follow as for the Poisson model problem from Se-

tion 3.5.1. Standard arguments from, e.g., [1, 82℄ provide (2.4.1)�(2.4.2). The bound on

Cdata
approx(p/d) follows as in Proposition 3.5.1. The general quasi-orthogonality (E2) is proved in

Theorem 7.2.5. The solution of (3.6.4) with X∞ :=
⋃

ℓ∈N0
Sp
0 (Tℓ) instead of Sp

0 (Tℓ) satis�es the
assumptions of Lemma 2.7.1. Hene, (2.7.2) and Theorem 2.3.3 (i) prove limℓ→∞ η(Tℓ) = 0.
Together with reliability (2.4.1), this implies limℓ→∞ ‖u−U(Tℓ)‖ = 0. Thus, all requirements

of Theorem 7.2.5 are satis�ed. This onludes the proof. �

Consequene 3.6.2. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to onvergene with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

optimal omplexity in the sense of Theorem 2.5.1. Moreover, the error onverges in the sense

of Theorem 2.4.3 at least for s = 1/d. This is the optimal rate for lowest-order elements

p = 1. For pieewise polynomial oe�ients of L and f |T ∈ Hp−1(T ) for all T ∈ T0, one

obtains even s = p/d. �

Numerial examples for the symmetri ase that underline the above result an be found

in [64℄.

3.6.2. Conforming FEM for non-symmetri problems whih satisfy a Gårding

inequality. We onsider the setting of Setion 3.6.1 with the di�erene that the bilinear

form b(· , ·) from (3.6.2) satis�es only the Gårding inequality

b(u, u) + Cgrd‖u‖2L2(Ω) ≥ qgrd‖∇u‖2L2(Ω) for all u ∈ H1(Ω) (3.6.9)

with onstants Cgrd, qgrd > 0. Suppose that T(·, ·) denotes bisetion from Setion 3.2.8. We

have to assume that b(·, ·) is de�nite on the ontinuous level, i.e., for all v ∈ H1
0 (Ω), it holds

b(v, w) = 0 for all w ∈ H1
0 (Ω) =⇒ v = 0. (3.6.10)

This together with Fredholm's alternative guarantees the unique solvability of (3.6.3) and

implies a ontinuous inf-sup ondition, i.e.,

inf
v∈H1

0 (Ω)\{0}
sup

w∈H1
0 (Ω)\{0}

b(v, w)

‖∇v‖L2(Ω)‖∇w‖L2(Ω)

≥ δ > 0. (3.6.11)

To aount for the fat that not eah triangulation T ∈ T allows for a solution of (3.6.4)

and hene for an error estimator, we set η(T ) := 1 if (3.6.4) is not uniquely solvable. With

this, ‖η,T‖s is well-de�ned.
We propose a modi�ed adaptive algorithm to solve this partiular problem.

Algorithm 3.6.3. Input: Initial triangulation T0, bulk parameter 0 < θ ≤ 1, expeted
onvergene rate s > 0 with ‖η,T‖s <∞.

Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Try to solve (3.6.4) on T = Tℓ:

(i1) If (3.6.4) is not uniquely solvable, set Tℓ+1 = T(Tℓ, Tℓ) and goto (i).

(ii) Compute ηT (Tℓ) for all T ∈ Tℓ.

(iii) Determine set Mℓ ⊆ Tℓ of (almost) minimal ardinality suh that

θ η(Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (3.6.12)

(iv) De�ne the next triangulation as follows:

(i2) If

∑ℓ−1
k=0 |Mk| > (1 + log(ℓ+ 1))η(Tℓ)

−1/s
, set Tℓ+1 := T(Tℓ, Tℓ).

(i3) If not (i2), set Tℓ+1 := T(Tℓ,Mℓ).
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Output: Error estimators η(Tℓ) for all ℓ ∈ N0.

Remark 3.6.4. The algorithm requires the expeted optimal rate of onvergene s > 0
as an input parameter. This may be regarded as a drawbak of the analysis. On the other

hand, we do not assume any disrete inf-sup ondition and Lemma 3.6.11 below shows that

Algorithm 3.6.3 leads to onvergene even for arbitrary s > 0.

Remark 3.6.5. Case (i1) requires the algorithm to deide whether the linear sys-

tem (3.6.4) is uniquely solvable. Due to �nite dimension, this is equivalent to solvability.

However, an iterative solver usually produes an approximation regardless of the solvability

of the system. In this ase, on may skip ase (i1) and only hek for ase (i2)�(i3). The

analysis and all the results from this setion remain valid.

Lemma 3.6.6. There exists a onstant Crel > 0 suh that all T ∈ T for whih (3.6.4)

is uniquely solvable satisfy

‖∇(u− U(T ))‖L2(Ω) ≤ Crelη(T ), (3.6.13)

where η(·) is de�ned in (3.6.6).

Proof. The reliability of η(·) is well-known and depends only on the ontinuous inf-sup

ondition (3.6.11), see also Proposition 3.5.1 for referenes. �

Remark 3.6.7. Due to Lemma 3.6.6, we may assume that η(Tℓ) > 0 for all ℓ ∈ N0,

sine otherwise u = U(Tℓ) and the adaptive algorithm onverges with any rate by de�nition.

Proposition 3.6.8. The onforming disretization of problem (3.6.1) with residual

error estimator (3.6.6) satis�es under the assumptions of this setion

(i) stability and redution (E1) with ̺(T , T̂ ) := Cpert‖∇(U(T ) − U(T̂ ))‖L2(Ω), ρred =

2−1/d
, and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T if (3.6.4) is uniquely

solvable on T and T̂ ,

(ii) the re�nement axiom (T1) and the losure estimate (3.2.13).

The onstant Cpert > 0 depends only on the polynomial degree p ∈ N, Ω, and on L.

Proof. The proof of (i) in Proposition 3.6.1 (with ‖ · ‖ = ‖∇(·)‖L2(Ω)) is independent

of the bilinear form and thus remains valid. Moreover, (T1) and (3.2.13) are proved in

Lemma 3.2.3. �

Lemma 3.6.9. Let T′ ⊆ T denote a set of triangulations with the following property:

Any sequene (T ′
ℓ )ℓ∈N0 ⊆ T′

with T ′
ℓ 6= T ′

k for all ℓ 6= k satis�es limℓ→∞ ‖h(T ′
ℓ )‖L∞(Ω) = 0.

Then, there exists ε0 > 0 suh that all but �nitely many T ∈ T′
satisfy

inf
V ∈Sp

0 (T )\{0}
sup

W∈Sp
0 (T )\{0}

b(V,W )

‖∇V ‖L2(Ω)‖∇W‖L2(Ω)

≥ ε0 (3.6.14)

as well as the Céa Lemma

‖∇(u− U(T ))‖L2(Ω) ≤ C
Céa

min
V ∈Sp

0 (T )
‖∇(u− V )‖L2(Ω) (3.6.15)

for some onstant C
Céa

> 0.

Proof. Assume that the statement (3.6.14) is wrong. Then, there exists a sequene of

triangulations T ′
ℓ and orresponding Vℓ ∈ Sp

0 (T ′
ℓ ) with ‖∇Vℓ‖L2(Ω) = 1 for all ℓ ∈ N0 suh
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that

lim
ℓ→∞

sup
W∈Sp

0 (Tℓ)\{0}

|b(Vℓ,W )|
‖∇W‖L2(Ω)

= 0. (3.6.16)

The boundedness implies the existene of a weak onvergent subsequene Vℓk ⇀ V ∈ H1
0 (Ω)

where we assume without loss of generality that Tℓk 6= Tℓj for all k 6= j.

By assumption, there holds limℓ→∞ ‖h(T ′
ℓ )‖L∞(Ω) = 0 and hene

⋃
ℓ∈N0

Sp
0 (T ′

ℓ ) = H1
0 (Ω).

Let w ∈ H1
0 (Ω) and ε > 0. Then, the above guarantees some W ∈ Sp

0 (T ′
ℓ ) suh that

|b(V, w)| ≤ |b(V,W )|+ |b(V, w −W )| ≤ |b(V,W )|+ ε = lim
ℓ→∞

|b(Vℓ,W )|+ ε.

Sine ε > 0 is arbitrary, and with (3.6.16), this shows b(V, w) = 0 for all w ∈ H1
0 (Ω).

De�niteness (3.6.10) then implies V = 0. On the other hand, the Gårding inequality shows

|b(Vℓk , Vℓk)|+ Cgrd‖Vℓk‖2L2(Ω) ≥ qgrd for all k ∈ N0.

The Rellih ompatness theorem implies Vℓk → 0 in L2(Ω). Hene, the above together

with (3.6.16) shows the ontradition

0 = lim
k→∞

(
|b(Vℓk , Vℓk)|+ Cgrd‖Vℓk‖2L2(Ω)

)
≥ qgrd.

This onludes the proof of (3.6.14). The Céa lemma 3.6.15 follows by standard arguments.

�

Lemma 3.6.10. There exists ℓ0 ∈ N suh that ase (i1) in Algorithm 3.6.3 is not

exeuted for any step ℓ ≥ ℓ0.

Proof. Assume that ase (i1) is exeuted in in�nitely many steps ℓ ∈ N0. Sine ase (i1)

triggers a uniform re�nement, this implies that limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Lemma 3.6.9 with

T′ =
{
Tℓ : ℓ ∈ N0

}
shows that for all but �nitely many Tℓ there holds (3.6.14). This implies

that (3.6.4) is uniquely solvable for all T = Tℓ and ℓ ≥ k for some k ∈ N0 and ontradits

the assumption that ase (i1) is exeuted in in�nitely many steps ℓ ∈ N0. �

Lemma 3.6.11. Algorithm 3.6.3 guarantees onvergene of estimator and error, i.e.

limℓ→∞ η(Tℓ) = 0 = limℓ→∞ ‖∇(u− U(Tℓ))‖L2(Ω).

Proof. First, we prove onvergene

‖∇(u− U(Tℓ))‖L2(Ω) → 0 as ℓ→ ∞. (3.6.17)

To that end, we distinguish two ases. First, assume that ase (i2) is exeuted for in-

�nitely many steps ℓ ≥ ℓ0. Then, sine ase (i2) triggers uniform re�nement, it holds

limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Lemma 3.6.9 with T′ =
{
Tℓ : ℓ ∈ N0

}
provides some k ∈ N0 suh

that the Céa lemma (3.6.15) holds for all Tℓ with ℓ ≥ k. The fat u ∈ H1
0 (Ω) =

⋃∞
ℓ=0 Sp

0 (Tℓ)
implies minV ∈Sp

0 (Tℓ)
‖∇(u− V )‖L2(Ω) → 0 as ℓ→ ∞ and partiularly (3.6.17).

Seond, assume that ase (i2) is not exeuted after some k ≥ ℓ0. Then, by de�nition,

there holds

ℓ−1∑

k=0

|Mk| ≤ (1 + log(ℓ+ 1))η(Tℓ)
−1/s

for all ℓ ≥ k. (3.6.18)

Sine |Mk| ≥ 1, this implies

η(Tℓ) ≤
((1 + log(ℓ+ 1))

ℓ

)s

→ 0 as ℓ→ ∞.
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With (3.6.13), this shows (3.6.17). It remains to show limℓ→∞ η(Tℓ) = 0 in the ase that

ase (i2) is exeuted in�nitely many times. To that end, reall that Proposition 3.6.8

shows (E1). Convergene (3.6.17) and Lemma 3.6.10 show limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 and sine

Dör�er marking (3.6.12) is satis�ed for eah step, Lemma 2.3.6 implies limℓ→∞ η(Tℓ) = 0.
This onludes the proof. �

Lemma 3.6.12. Assume that there holds limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Then, ‖η,T‖s <∞
for some s > 0 implies (T3).

Proof. We mimi the proof of Lemma 2.7.4. Let N ∈ N0 and de�ne the integer M :=
floor(N/(2C2

4)). The fat ‖η,T‖s <∞ allows to hoose some triangulation T N
0 ∈ T(M) with

η(T N
0 )(M + 1)s ≤ ‖η,T‖s.

If limN→∞ ‖h(T N
0 )‖L∞(Ω) = 0, set T N := T N

0 . Otherwise, onsider a sequene of uniformly

re�ned triangulations T unif
ℓ with T unif

0 = T0 and T unif
ℓ+1 := T(T unif

ℓ , T unif
ℓ ). Given N ∈ N0,

de�ne T N := T N
0 ⊕ T unif

ℓ , where ℓ is maximal with |T unif
ℓ \ T0| ≤ N/(2C4). The overlay

estimate (2.5.1) shows

|T N \ T0| ≤ |T N \ T unif
ℓ |+ |T unif

ℓ \ T0| ≤ C4|T N
0 \ T0|+N/(2C4) ≤ N/C4.

Moreover, there holds limN→∞ ‖h(T N )‖L∞(Ω) = 0. Given any Tℓ, ℓ ∈ N0, the overlay esti-

mate (2.5.1) states |(T N ⊕ Tℓ) \ Tℓ| ≤ N and hene T N ⊕ Tℓ ∈ T(Tℓ, N). Lemma 3.6.9 with

T′ :=
{
Tℓ : ℓ ∈ N0

}
∪
{
T N ⊕ Tℓ : ℓ, N ∈ N0

}
shows that (3.6.4) is uniquely solvable and

the Céa lemma (3.6.15) holds for all but �nitely many T ∈ T′
. This, together with (3.6.13)

and (E1) from Proposition 3.6.8, implies

η(T N ⊕ Tℓ) . η(T N) + ̺(T N , T N ⊕ Tℓ) . η(T N) + ‖∇(u− U(T N ))‖L2(Ω) . η(T N)

for all N, ℓ ≥ k and some k ∈ N0. Consequently, there holds

η(T N ⊕ T )(N + 1)s . η(T N )(M + 1)s ≤ ‖λ,T‖s
and we obtain

inf
T̂ ∈T(Tℓ,N)

(N + 1)sη(T̂ ) . ‖λ,T‖s.

This onludes the proof. �

Lemma 3.6.13. There exists ℓ1 ∈ N suh that ase (i2) in Algorithm 3.6.3 is not

exeuted for any step ℓ ≥ ℓ1.

Proof. Assume that ase (i2) is exeuted in�nitely many times. Then, there holds⋃∞
ℓ=0 Sp

0 (Tℓ) = H1
0 (Ω) or equivalently limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. With this, Theorem 7.3.4

proves (E2) for all ℓ ≥ ℓ0.
Proposition 3.6.8 together with Lemma 3.6.10 and Lemma 3.6.12 prove (E1) and (T1)�

(T3) for the parameter s hosen in Algorithm 3.6.3. Lemma 2.3.13 then shows that for all

T = Tℓ, there exists T̂ℓ ∈ T(Tℓ) with (2.3.20). Moreover, Lemma 3.6.9 with T′ :=
{
Tℓ : ℓ ∈

N0

}
∪
{
T̂ℓ : ℓ ∈ N0

}
implies the disrete inf-sup ondition (3.6.14) for all Tℓ and T̂ℓ with

ℓ ≥ k for some k ∈ N0.
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Therefore, the proof of disrete reliability (E3) of Proposition 3.6.1 remains valid for all

T = Tℓ and T̂ = T̂ℓ, ℓ ≥ k sine (3.6.14) implies

‖∇(U(Tℓ)− U(T̂ℓ))‖L2(Ω) . sup
W∈Sp

0 (T̂ℓ)

b(U(Tℓ)− U(T̂ℓ) , W )

‖∇W‖L2(Ω)

.

The remaining proof of (E3) follows as in the referenes given in the proof of Proposi-

tion 3.6.1. With this, Proposition 2.3.10 (and Remark 2.3.11) shows the impliation (4.2.2)

for T = Tℓ and T̂ = T̂ℓ for all ℓ ≥ k and therefore (2.3.21) holds, too.

Sine Mℓ satis�es Dör�er marking (3.6.12) for all ℓ ≥ ℓ0 with (almost) minimal ardi-

nality, there holds |Mℓ| . |R(Tℓ, T̂ℓ)| with the set R(Tℓ, T̂ℓ) from (2.3.21).

Theorem 2.3.3 (ii) implies R-linear onvergene (2.3.2) for all ℓ ≥ k and Lemma 2.3.8

shows

ℓ−1∑

k=ℓ0

η(Tk)
−1/s ≤ C2η(Tℓ)

−1/s.

With this and (2.3.21), we obtain

ℓ−1∑

k=ℓ0

|Mk| .
ℓ−1∑

k=ℓ0

|R(Tk, T̂k)| . Capprox(s)
ℓ−1∑

k=ℓ0

η(Tk)
−1/s . Capprox(s)η(Tℓ)

−1/s.

Sine Capprox(s) <∞ by (T3), the above implies for all ℓ ≥ ℓ0 for whih ase (i2) is exeuted

(1 + log(ℓ+ 1)) . Capprox(s)
1/s.

Hene, the number of steps ℓ ≥ ℓ0 for whih ase (i2) is exeuted, must be �nite. This,

however, ontradits the assumption and thus onludes the proof. �

Theorem 3.6.14. Given θ < θ⋆ = (1 − εdrel)/(1 + C2
drel), Algorithm 3.6.3 onverges

with almost optimal rate s− ε for all ε > 0 (where s is hosen in Algorithm 3.6.3 suh that

‖η,T‖s <∞) in the sense

coptCapprox(s− ε) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s+ε
≤ Copt, (3.6.19)

where Copt > 0 depends only on ε, ℓ0, ℓ1, |T0|, Cclosure and copt is de�ned in Theorem 2.3.3.

Proof. Lemma 3.6.10 and Lemma 3.6.13 show that after step k := max{ℓ0, ℓ1} only

ase (i3) is exeuted. This partiularly implies

ℓ−1∑

k=0

|Mk| ≤ (1 + log(ℓ+ 1))η(Tℓ)
−1/s

for all ℓ > k.

The losure estimate (T2) and the fat that ase (i1)�(i2) is exeuted only �nitely many

times show

|Tℓ \ T0|+ 1 .

ℓ−1∑

k=0

|Mk|+ 1 . (1 + log(ℓ+ 1))η(Tℓ)
−1/s

for all ℓ ∈ N0.

This implies

η(Tℓ) . (1 + log(ℓ+ 1))s(|Tℓ \ T0|+ 1)−s.

Sine |Tℓ \T0|+1 ≥ ℓ+1, and supℓ∈N0
log(ℓ+1)s(ℓ+1)−ε <∞, this implies the upper bound

in (3.6.19). The lower bound follows as in the proof of Theorem 2.3.3 (iii). �

79



Consequene 3.6.15. Algorithm 3.6.3 onverges with optimal rates in the sense of

Theorem (3.6.14).

3.7. Example 3: Conforming FEM for ertain strongly-monotone operators

The result of this setion is �rst found in [46℄. A �rst version of this setion an be found

in the reent own work [24, Setion 10℄. We onsider the following non-linear operator

Lu(x) := −divA(x,∇u(x)) + g(x, u(x),∇u(x)),
for funtions A : Ω × Rd → Rd

and g : Ω × R × Rd → R. We assume that A(·,∇u),
g(·, u,∇u) ∈ L2(Ω) for all u ∈ H1

0 (Ω). On the polyhedral domain Ω ⊆ Rd
, d ≥ 2 and given

f ∈ L2(Ω), the weak formulation of

Lu = f in Ω,

u = 0 on ∂Ω,
(3.7.1)

reads: Find u ∈ H1
0 (Ω) suh that

〈Lu , v〉 =
∫

Ω

A(x,∇u(x)) · ∇v(x) + g(x, u(x),∇u(x))v(x) dx =

∫

Ω

fv dx (3.7.2)

for all v ∈ H1
0(Ω). De�ne two auxiliary operators A, C : H1

0 (Ω) → H−1(Ω) as

Av := −divA(·,∇v) and Cv := g(·, v,∇v) for all v ∈ H1
0 (Ω).

Let T(·, ·) denote the bisetion strategy from Setion 3.2.8. Given T ∈ T and p ∈ N, the
disrete form of (3.7.2) reads: Find U(T ) ∈ Sp

0 (T ) suh that

〈LU(T ) , V 〉 =
∫

Ω

fV dx for all V ∈ Sp
0 (T ). (3.7.3)

We formally de�ne the residual error estimator for a triangulation T ∈ T and all T ∈ T by

ηT (T )2 := |T |2/d‖L|TUℓ − f‖2L2(T ) + |T |1/d‖[A(·,∇Uℓ) · n]‖2L2(∂T∩Ω). (3.7.4)

The solvability and uniqueness of (3.7.2) as well as the regularity assumptions needed suh

that (3.7.4) is well-de�ned are part of the subsequent setions.

3.7.0.1. Regularity assumptions. We onsider the frame of strongly monotone operators

and require the following regularity assumptions on L:
‖A∇w −A∇v‖H−1(Ω) ≤ C15‖∇(w − v)‖L2(Ω), (3.7.5a)

‖Cw − Cv‖L2(Ω) ≤ C15‖∇(w − v)‖L2(Ω) (3.7.5b)

for all w, v ∈ H1
0 (Ω) and some onstant C15 > 0 as well as

〈Lw −Lv , w − v〉 ≥ C16‖∇(w − v)‖2L2(Ω) (3.7.6)

for all w, v ∈ H1
0 (Ω) and some onstant C16 > 0. These assumptions, in partiular, allow to

apply the main theorem on strongly monotone operators [86, Theorem 26.A℄ and to obtain

the unique solvability of (3.7.2) as well as of (3.7.3). Additionally, (3.7.5)�(3.7.6) guarantee

that the norms of the residual and the error are equivalent, i.e.,

‖Lu−LU(T )‖H−1(Ω) ≃ ‖∇(u− U(T ))‖L2(Ω) for all T ∈ T,

‖LU(T̂ )−LU(T )‖H−1(Ω) ≃ ‖∇(U(T̂ )− U(T ))‖L2(Ω) for all T̂ ∈ T(T ).
(3.7.7)

We also obtain the Céa lemma

‖∇(u− U(T ))‖L2(Ω) ≤ 2C15C
−1
16 min

V ∈Sp
0 (T )

‖∇(u− V )‖L2(Ω). (3.7.8)
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Moreover, we require that (3.7.4) is well-de�ned and satis�es (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T )−
U(T̂ ))‖L2(Ω). For possible non-linearities A whih allow for (2.3.6), we refer to Lemma 3.7.2

below.

We assume that L : H1
0 (Ω) → H−1(Ω) as well as A : H1

0 (Ω) → H−1(Ω) are twie Fréhet
di�erentiable, i.e., there exist

DL, DA :H1
0 (Ω) → L(H1

0 (Ω), H
−1(Ω)),

D2L, D2A :H1
0 (Ω) → L

(
H1

0 (Ω), L(H
1
0 (Ω), H

−1(Ω))
)
.

(3.7.9)

The seond derivative should be bounded loally around the solution u of (3.7.2), i.e., there

exists εℓoc > 0 with

C17 := sup
‖∇(u−v)‖L2(Ω)<εℓoc

(
‖D2L(v)‖

L
(
H1

0 (Ω),L(H1
0 (Ω),H−1(Ω))

)

+ ‖D2A(v)‖
L
(
H1

0 (Ω),L(H1
0 (Ω),H−1(Ω))

)
)
<∞.

(3.7.10)

Finally, we assume that DA(v) : H1
0 (Ω) → H−1(Ω) is symmetri for all v ∈ H1

0 (Ω), i.e., for
all w1, w2 ∈ H1

0 (Ω) holds

〈DA(v)(w1) , w2〉 = 〈DA(v)(w2) , w1〉. (3.7.11)

Remark 3.7.1. Note that if A : Ω × Rd → Rd
and g : Ω × R × Rd → R are twie

di�erentiable, and if the Jaobian JyA(x, y) ∈ Rd×d
additionally is a symmetri matrix,

then L and A satisfy (3.7.9) as well as (3.7.10). Moreover, DA(v) is symmetri for all

v ∈ H1
0 (Ω), sine there holds for w ∈ H1

0 (Ω)

DA(v)(w) = divx

((
JyA(x,∇v(x))

)(
∇xw(x)

))
.

We stress that the symmetry assumption (3.7.11) posed on DA overs in partiular the

operator lass from [54℄, where

A(x, y) = α(x, |y|2)y
for some funtion α : Ω × R → R with ontinuous derivative t 7→ ∂tα(x, t). In ontrast

to [54℄ where α(x, ·) ∈ C1(R) is su�ient, the analysis here overs a wider lass of operators,

however, for this speial ase needs α(x, ·) ∈ C2(R) to guarantee (3.7.10).

Lemma 3.7.2. Su�ient regularity assumptions in addition to (3.7.5b) and (3.7.6) to

guarantee that the error estimator (3.7.4) is well-de�ned and satis�es (E1) are, for instane,

either of the following onditions (i) and (ii):

(i) A(·, ·) : Ω × Rd → Rd
is Lipshitz ontinuous and there exists a onstant C18 > 0

suh that for all T ∈ T and all V,W ∈ Sp
0 (T ) there holds divA(·, V (·)) ∈ L2(Ω) as

well as

‖div|T
(
A(·, V (·))−A(·,W (·))

)
‖L2(T ) ≤ C18‖V −W‖H2(T ) for all T ∈ T . (3.7.12)

(ii) There holds p = 1 (lowest-order ase) as well as

A(x, y) = A(y) for all x ∈ Ω, y ∈ Rd,

and additionally A(·) : Rd → Rd
is Lipshitz ontinuous.
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Proof. The jump terms in (3.7.4) are well-de�ned in both ases (i) and (ii) sine

A(·,∇U(·)) is a pieewise Lipshitz ontinuous funtion. Moreover, this immediately shows

that divA(·,∇U(T )(·)) ∈ L∞(T ) ⊂ L2(T ) for all T ∈ T . Therefore, (3.7.4) is well-de�ned.
Given T+, T− ∈ T as well as W,V ∈ Sp

0 (Tℓ), the Lipshitz ontinuity also proves the

following point wise estimate for all x ∈ T+ ∩ T−
|[(A(x,∇W (x))−A(x,∇V (x))) · n]|

≤
∣∣∣
(
A(x, (∇W )|T+(x))−A(x, (∇V )|T+(x))

)
· n|T+

∣∣∣

+
∣∣∣
(
A(x, (∇W )|T−(x))−A(x, (∇V )|T−(x))

)
· n|T−

∣∣∣

.
∣∣∣(∇W )|T+(x)− (∇V (x))|T+

∣∣∣+
∣∣∣(∇W )|T−(x)− (∇V )|T−(x)

∣∣∣.

Combining the estimate above with the trae inequality for polynomials, we obtain

|T+|1/d‖[(A(·,∇W )−A(·,∇V )) · n]‖2L2(T+∩T−) . ‖∇(W − V )‖2L2(T+∪T−). (3.7.13)

This hidden onstant depends only on the polynomial degree p ∈ N as well as the Lipshitz

ontinuity of A(·, ·) and the shape regularity γ(T ). It remains to prove a similar estimate

for the volume residual in (3.7.4), i.e.,

∑

T∈T

|T |2/d‖L|TW −L|TV ‖2L2(T ) . ‖∇(W − V )‖2L2(Ω) for all T ∈ T . (3.7.14)

In ase of (i), this follows immediately from the ombination of (3.7.12) and (3.7.5b) together

with a standard inverse estimate. In ase of (ii), we observe that ∇Uℓ is pieewise onstant.

Therefore, A(∇V ) is pieewise onstant and hene A(∇V ) = divA(∇V (·)) = 0. Thus,

L|T = (CV )|T , and it su�es to apply (3.7.5b) to prove (3.7.14). The estimates (3.7.13)�

(3.7.14) imply stability and redution (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T ) − U(T̂ ))‖L2(Ω) and

S(T , T̂ ) = T \ T̂ as well as Ŝ(T , T̂ ) = T̂ \ T . To see this, note that η(·) is a weighted

error estimator in the sense of Setion 3.4 and satis�es homogeneity (3.4.1) with r− = 1 and
r+ = 1/2. Moreover, stability (3.4.2) holds for some S ⊆ T and h ≤ h(T ) by

∣∣∣
(∑

T∈Ŝ

ηT (T̂ , h)2
)1/2

−
(∑

T∈S

ηT (T , h)2
)1/2∣∣∣

≤
(∑

T∈S

h(T )|2T‖L|TU(T )− L|TU(T̂ )‖2L2(T )

)1/2

+
(∑

T∈S

h(T )|T‖[(A(·,∇U(T ))−A(·,∇U(T̂ ))) · n]‖2L2(∂T∩Ω)

)1/2

. ‖∇(U(T )− U(T̂ ))‖2L2(Ω).

Therefore, Proposition 3.4.1 applies and proves (E1). �

3.7.0.2. Proof of the axioms.

Lemma 3.7.3. The residual error estimator η(·) satis�es disrete reliability (E3) and

reliability (2.4.1) with err(T ) := ‖∇(u− U(T ))‖L2(Ω). Moreover, there holds onvergene

‖∇(u− U(Tℓ))‖L2(Ω) → 0 as ℓ→ ∞. (3.7.15)
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Proof. The residual error estimator η(·) is well-de�ned under the assumptions in Se-

tion 3.7.0.1. With the equivalene (3.7.7), the standard arguments from [35℄ apply to prove

disrete reliability (E3). Also the reliability (2.4.1) follows with standard arguments from

the literature. The estimator redution (2.3.6) holds by assumption in Setion 3.7.0.1. The

assumptions for a priori onvergene of Setion 2.7.1 are satis�ed. The main theorem on

strongly monotone operators [86, Theorem 26.A℄ proves that there exists a solution U∞

of (3.7.3) when Sp
0 (T ) is exhanged with X∞ :=

⋃
ℓ∈N0

Sp
0 (Tℓ). Sine the U(Tℓ) are also

Galerkin approximations to U∞ ∈ X∞, the Céa lemma (3.7.8) implies (2.7.1). Hene the re-

quirements of Lemma 2.7.1 are satis�ed and we obtain limℓ→∞ ̺(Tℓ, Tℓ+1) = 0. Lemma 2.3.6

together with reliability (2.4.1) proves the onvergene. �

Proposition 3.7.4. The onforming disretization of (3.7.1) with residual error esti-

mator (3.7.4) satis�es

(i) stability and redution (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T ) − U(T̂ ))‖L2(Ω) as well as

S(T , T̂ ) = T \ T̂ and Ŝ(T , T̂ ) = T̂ \ T ,

(ii) general quasi-orthogonality (E2),

(iii) disrete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

The onstants Cdrel, Cqo depend only on the polynomial degree p ∈ N, T0, Ω, and on L.
Proof. Stability and redution (i) follows by assumption. Disrete reliability (iii) is

proved in Lemma 3.7.3. The re�nement axioms (iv) follow as for the Poisson model problem

from Setion 3.5.1. The proof of the general quasi-orthogonality (E2) follows with Theo-

rem 7.4.5. This onludes the proof. �

Consequene 3.7.5. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to onvergene with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and

optimal omplexity in the sense of Theorem 2.5.1. �
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CHAPTER 4

Abstrat Theory: Equivalent Error Estimators

4.1. Introdution, state of the art & outline

This setor extends the abstrat approah of Chapter 2 and inludes equivalent error

estimators. The idea behind is that the axioms do not have to be satis�ed by the error

estimator itself, but only by an equivalent error estimator. Of ourse, this observation ould

be inluded diretly into the axioms in Chapter 2. However, we think that this separate

presentation of the arguments is learer and is easier to understand. The overall idea is the

following: If a ertain estimator is used for omputations, this is often beause it is easy

to implement or it possesses some nie numerial features. This, however, is often in stark

ontrast with the analyti features in terms of Chapter 2 of the error estimator. For example,

an error estimator might satisfy the ontration in (E1) on average, but fails to satisfy it

in eah single step (see, e.g., Setion 5.2 for some examples). Moreover, any omputation

is prone to numerial errors (e.g., round-o� errors). This means that any implementation

of the adaptive algorithm will, in fat, ompute an approximate error estimator (this is of

even more signi�ane if iterative solvers are used; see Setion 4.4 for details). Hene, the

omputed error estimator will satisfy the axioms only up to some error and only the exat

(theoretial) error estimator �ts into the abstrat framework of Chapter 2.

The framework of this hapter allows to prove the axioms for some equivalent, well-

behaving, error estimator, and gives results for the error estimator in use. This idea �rstly

appeared in [60℄, where several error estimators equivalent to the residual error estimator

for the Poisson problem of Setion 3.5.1 are analyzed (see also the examples in Setion 5.2).

A similar version of this hapter an be found in the reent own work [24℄. However, this

work simpli�es the arguments and generalizes the results.

The remainder of the hapter is organized as follows: Setion 4.2 states the assump-

tions on the equivalent error estimator and Setion 4.3 given the main result on optimal

onvergene rates. Setion 4.4 treats the partiular ase of approximate omputations and

Setion 4.5 proves the assumptions of Setion 4.2 for the speial ase of weighted error es-

timators. Finally, Setion 4.5.4 proves the existene of a super ontrative weight funtion,

whih might be of independent interest.

4.2. Abstrat setting

4.2.1. Equivalent error estimator. Reall the sets T∞ and T from Setion 2.2.1.

We assume that T̃ is a set of triangulations whih is based on a set T̃∞ (where we allow

T̃∞ = T∞ as well as T̃ = T) and a re�nement strategy T̃(·, ·) (also T̃(·, ·) = T(·, ·) is allowed).
We assume that there is a one-to-one orrespondene between T ∈ T and T̃ ∈ T̃ and that

there exists a onstant Ceq ≥ 1 suh that C−1
eq |T | ≤ |T̃ | ≤ Ceq|T |.

Additionally to the error estimator from Setion 2.2.2, we de�ne an equivalent error

estimator as a funtion η̃(·) : T̃ → ⋃
T̃ ∈T̃

(
[0,∞)T̃

)
(where AB

denotes the set of funtions
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mapping B to A) with η̃(T̃ ) : T̃ → [0,∞) for all T̃ ∈ T̃. As for the error estimator, we also

write η̃(T̃ ) :=
(∑

T∈T̃ η̃T (T )2
)1/2

, whih is the global equivalent error estimator.

Suppose that the error estimators are equivalent in the sense that there exists Ceq ≥ 1
suh that

C−1
eq η̃(T̃ )2 ≤ η(T )2 ≤ Ceqη̃(T̃ )2 for all T ∈ T, (4.2.1)

and suh that for all M̃ ⊆ T̃ ∈ T̃ and all 0 < θ̃ ≤ 1, there exists M ⊆ T (where T is

uniquely determined by T̃ ) with C−1
eq |M̃| ≤ |M| ≤ Ceq|M̃| and

θ̃ η̃(T̃ )2 ≤
∑

T∈M̃

η̃T (T̃ )2 =⇒ C−1
eq θ̃ η(T )2 ≤

∑

T∈M

ηT (T )2. (4.2.2a)

Conversely, for all M ⊆ T ∈ T and all 0 < θ ≤ 1, there exists M ⊆ T̃ (where T̃ is uniquely

determined by T ) with C−1
eq |M| ≤ |M| ≤ Ceq|M| and

θ η(T̃ )2 ≤
∑

T∈M

ηT (T )2 =⇒ C−1
eq θ η̃(T̃ )2 ≤

∑

T∈M

η̃T (T̃ )2. (4.2.2b)

4.2.2. Equivalent adaptive approximation problem. The goal of the equivalent

adaptive approximation problem is to �nd a sequene of triangulations T̃ℓ, ℓ ∈ N0 suh that

sup
ℓ∈N0

η̃(T̃ℓ)(|T̃ℓ|+ 1)s <∞

for s > 0 as large as possible.

4.2.3. Adaptive algorithm. The algorithm to solve the equivalent adaptive approxi-

mation problem from Setion 4.2.2 reads

Algorithm 4.2.1. Input: Initial triangulation T̃0 and bulk parameter 0 < θ̃ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute re�nement indiators η̃T (T̃ℓ) for all T ∈ T̃ℓ.

(ii) Determine set M̃ℓ ⊆ T̃ℓ of (up to the multipliative onstant Cmin) minimal ardi-

nality suh that

θ̃ η̃(T̃ℓ)
2 ≤

∑

T∈M̃ℓ

η̃T (T̃ℓ)
2. (4.2.3)

(iii) De�ne the next triangulation as T̃ℓ+1 := T̃(T̃ℓ,M̃ℓ).

Output: Error estimators η̃(T̃ℓ) for all ℓ ∈ N0.

4.3. Optimal onvergene

In the following, the notion that a ertain subset A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)}
is satis�ed means that the axioms in A are satis�ed for the error estimator η(·), the orre-
sponding re�nement strategy T(·, ·), and the respetive onstants from Setion 2.3.1. The

triangulations (Tℓ)ℓ∈N0 in (E2), (T1)�(T3) are determined by (T̃ℓ)ℓ∈N0 via the funtion (̃·).
Theorem 4.3.1. Suppose that the error estimator η(·) satis�es the estimator redu-

tion (2.3.8). Then, (i)�(iii) holds

86



(i) Assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 (with ̺(·, ·) from Setion 2.3.1). Then, for all 0 <

θ̃ ≤ 1, the equivalent estimator is onvergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0. (4.3.1)

(ii) Suppose (E2) is satis�ed by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear onvergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
suh that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2
for all j, ℓ ∈ N0. (4.3.2)

(iii) Suppose that R-linear onvergene (4.3.2) holds and that (E1a), (E3) and (T1)�(T3)

are satis�ed by η(·) and some s > 0. Then 0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1−εdrel)/(1+C2
drel)

implies quasi-optimal onvergene of the estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s), (4.3.3)

where the lower bound requires only (T1) to hold.

The onstants C̃conv, ρ̃conv > 0 depend only on ρred, Cqo, εqo, Ceq, and on θ̃. The onstant

C̃opt > 0 depends additionally on C̃conv, ρ̃conv, Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while
c̃opt > 0 depends only on Cson and |T0|.

Proof of Theorem 4.3.1 (i). Lemma 2.3.6 for η(·) shows limℓ→∞ η(Tℓ) = 0. The

global equivalene (4.2.1) onludes the proof. �

Proof of Theorem 4.3.1 (ii). Proposition 2.3.9 together with the global equivalene

estimate (4.2.1) implies

η̃(T̃ℓ+j)
2 ≤ Ceqη(Tℓ+j)

2 ≤ CeqC3ρ
j
1η(Tℓ)

2 ≤ C2
eqC3ρ

j
1η̃(T̃ℓ)

2

for all ℓ, j ∈ N0. This onludes the proof. �

Lemma 4.3.2. Reall M̃ℓ ⊆ T̃ℓ from Algorithm 4.2.1. Let M0
ℓ ⊆ Tℓ (where Tℓ is

uniquely determined by T̃ℓ, f. Setion 4.2.1) be a set with minimal ardinality whih satis�es

Ceqθ̃η(Tℓ)
2 ≤

∑

T∈M0
ℓ

ηT (Tℓ)
2. (4.3.4)

Then, the set Mℓ from (4.2.2a) satis�es |Mℓ| ≤ CminCeq|M0
ℓ | as well as

C−1
eq θ̃η(Tℓ)

2 ≤
∑

T∈Mℓ

ηT (Tℓ)
2. (4.3.5)

Proof. With (4.3.4), the impliation (4.2.2b) states the existene of M0

ℓ ⊆ T̃ with

|M0

ℓ | ≤ Ceq|M0
ℓ | and

θ̃ η̃(T̃ℓ)
2 ≤

∑

T∈M
0
ℓ

η̃T (T̃ℓ)
2.

Sine M̃ℓ is a set of almost minimal ardinality whih satis�es (4.2.3), there holds C−1
eq |Mℓ| ≤

|M̃ℓ| ≤ Cmin|M0

ℓ | ≤ CminCeq|M0
ℓ |. The impliation (4.2.2a) shows (4.3.5). �
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Proof of Theorem 4.3.1 (iii). Stability (E1a) and disrete reliability (E3) guarantee

that (2.3.18) holds for all 0 < θ0 < θ⋆ and some 0 < κ0 < 1. The assumption θ̃ < C−1
eq θ

allows to hoose θ0 = Ceqθ̃. This implies that (2.3.20)�(2.3.21) of Lemma 2.3.13 are valid

for θ = Ceqθ̃. Sine R(Tℓ, T̂ℓ) from 2.3.21 satis�es (2.3.21b) for all 0 < θ ≤ θ0 = Ceqθ̃, (4.3.4)

shows that |M0
ℓ | ≤ |R(Tℓ, T̂ℓ)|. Hene, Lemma 4.3.2 implies |Mℓ| ≤ CminCeq|R(Tℓ, T̂ℓ)|. By

assumption (4.3.2), Lemma 2.3.8 implies that (2.3.12)�(2.3.14) hold for αℓ := η(Tℓ). The

appliation of Proposition 2.3.14�2.3.15 shows (2.3.3) for all θ̃ < C−1
eq θ⋆. Additionally, there

holds

|Tℓ \ T0|+ 1 ≤ |Tℓ|+ 1 ≤ Ceq(|T̃ℓ|+ 1) . |T̃ℓ \ T̃0|+ 1 . |Tℓ \ T0|+ 1,

where the hidden onstants depend only on Ceq and |T0|. Together with (4.2.1), this onludes
the proof. �

4.4. Inexat Solve

This setion overs a partiular ase of the abstrat theory from Setion 4.2. To that end,

let T̃ = T and T̃ = T . We assume that there exists an approximate error estimator η̃(·),
whih results from an inexat omputation of the exat error estimator η(·) and satis�es for

all T ∈ T and all S ⊆ T
∣∣∣
(∑

T∈S

ηT (T )2
)1/2

−
(∑

T∈S

η̃T (T )2
)1/2∣∣∣ ≤ ϑη̃(T ) (4.4.1)

for some onstant 0 < ϑ < 1. Naturally, it is onvenient to hek the axioms (E1)�(E3)

for the exat error estimator rather than inorporating the numerial error bounds into the

analysis.

4.4.1. Loal and global equivalene.

Lemma 4.4.1. Under (4.4.1), there exists Ceq > 0 whih depends only on ϑ < 1, suh

that the approximate error estimator η̃(·) satis�es (4.2.1) as well as (4.2.2) with M = M̃ =
M.

Proof. The global equivalene (4.2.1) follows diretly from (4.4.1) with S = T , i.e.,
(1− ϑ)η̃(T ) ≤ η(T ) ≤ (1 + ϑ)η̃(T ).

For (4.2.2a), set S = M to obtain for all δ > 0 with (1 + δ)ϑ < 1
∑

T∈M

η̃T (T )2 ≤ (1 + δ−1)
∑

T∈M

ηT (T )2 + (1 + δ)ϑ2
∑

T∈M̃

η̃T (T )2.

Moreover, there holds

θ̃η(T )2 ≤ θ̃(1 + ϑ)2η̃(T )2 ≤ (1 + ϑ)2
∑

T∈M̃

η̃T (T )2.

Together, this implies

θ̃η(T )2 ≤ (1 + ϑ)2(1− (1 + δ)ϑ2)−1(1 + δ−1)
∑

T∈M

ηT (T )2.

88



Analogously, one derives (4.2.2b), i.e.,

θη̃(T )2 ≤ (1− ϑ)2(1 + 2ϑ2)−12
∑

T∈M̃

η̃T (T )2.

With Ceq := max{(1+ϑ), (1−ϑ)−1, (1+ϑ)2(1− (1+ δ)ϑ2)−1(1+ δ−1), 2(1−ϑ)2(1+2ϑ2)−1},
we onlude the proof. �

4.4.2. Optimal onvergene.

Proposition 4.4.2. Let stability and redution (E1) be satis�ed. Then, η(·) satis�es
estimator redution (2.3.8).

Proof. Lemma 4.4.1 shows that Dör�er marking (2.2.1) holds with θ = Ceqθ̃. Hene,

Lemma 2.3.5 onludes the proof. �

In the following, the notion that a ertain subset A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)}
is satis�ed means that the axioms in A are satis�ed for the error estimator η(·), the orre-
sponding re�nement strategy T(·, ·), and the respetive onstants from Setion 2.3.1. The

triangulations (Tℓ)ℓ∈N0 in (E2), (T1)�(T3) are determined by (Tℓ)ℓ∈N0 = (T̃ℓ)ℓ∈N0 from Algo-

rithm 4.2.1.

Theorem 4.4.3. Suppose that the error estimator η(·) satis�es (E1).

(i) Assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 (with ̺(·, ·) from Setion 2.3.1). Then, for all 0 <

θ̃ ≤ 1, the equivalent estimator is onvergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0.

(ii) Suppose (E2) is satis�ed by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear onvergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
suh that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2
for all j, ℓ ∈ N0.

(iii) Suppose that (E1a), (E2)�(E3) and (T1)�(T3) are satis�ed by η(·) for some s > 0.

Then 0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1− εdrel)/(1 + C2
drel) implies quasi-optimal onvergene

of the estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s),

where the lower bound requires only (T1) to hold.

The onstants C̃conv, ρ̃conv > 0 depend only on ρred, Cqo, εqo, and on θ, ϑ. The onstant

C̃opt > 0 depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while c̃opt > 0
depends only on Cson and |T0|.

Proof. Lemma 4.4.1 proves that the assumptions in Setion 4.2.1 are satis�ed and

Proposition 4.4.2 shows that the estimator redution holds. Hene, the requirements of

Theorem 4.3.1 are ful�lled. This onludes the proof. �
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4.5. Weighted error estimators

This setion overs the partiular ase of weighted error estimators of the abstrat theory

from Setion 4.2. Examples whih �t in the abstrat framework are presented in Setion 5.2.

To that end, we assume the onventions and notation from Setion 3.4, partiularly, the

existene of a ertain natural weight funtion h(T ) : Ω → (0,∞) for all T ∈ T suh that

‖h(T )‖L∞(Ω) < ∞ and h(T ) is ontinuous on Ω \ ⋃
T∈T ∂T as well as the assumptions

on the triangulations in Setion 3.2.1. In the following maxx∈T g := ess supx∈T g(x) and

minx∈T g := ess infx∈T g(x) denote the essential supremum resp. essential in�mum of the

funtion g on the element T ∈ T . In addition to Setion 3.4, this setion assumes the

following: There exist onstants 0 < qcon < 1 and Csum ≥ 1 suh that

(i) The weight funtion h(·) satis�es for all T ∈ T ∈ T, all T̂ ∈ T(T )

h(T̂ )|T 6= h(T )|T or T /∈ T̂
=⇒

max
x∈T

h(T̂ ) = ‖h(T̂ )‖L∞(T ) ≤ qcon min
x∈T

h(T ),

(4.5.1)

where 6= is understood in the sense not equal on a set with positive measure. Note

that this assumptions implies partiularly h(T̂ ) ≤ h(T ) almost everywhere in Ω.

(ii) All T ∈ T ∈ T and eah sequene Ti ∈ T̂i ∈ T(T ), i = 1, . . . N for some N ∈ N with

|Ti ∩ Tj| = 0 and |T ∩ Ti| > 0 for 1 ≤ i 6= j ≤ N satisfy

N∑

i=1

max
x∈Ti

h(T̂i)
d ≤ Csum min

x∈T
h(T )d. (4.5.2)

Remark 4.5.1. Assumption (4.5.2) implies that the abstrat area of an element h(T )|dT
derived from the weight funtion, is additive up to onstants.

4.5.1. De�nition of pathes. Given a onstant Cpatch > 0 and a weight funtion h(T )
for all T ∈ T, a path ω(·, ·) satis�es the following properties:

(i) All T ∈ T and all S,S ′ ⊆ T satisfy S ⊆ ω(S, T ) ⊆ T and ω(S, T ) ∪ ω(S ′, T ) ⊆
ω(S ∪ S ′, T ).

(ii) All T ∈ T and all S ⊆ T satisfy

|S| ≤ |ω(S, T )| ≤ Cpatch|S|. (4.5.3)

(iii) All S ⊆ T ∈ T and all T̂ ∈ T(T ) with S ⊆ T̂ satisfy

⋃
ω(S, T̂ ) ⊆

⋃
ω2(S, T ), (4.5.4)

where ω2(S, T ) := ω(ω(S, T ), T ).
(iv) There holds for all T ∈ T ∈ T and all T ′ ∈ ω({T}, T )

C−1
patch min

x∈T ′
h(T ) ≤ h(T )|T ≤ Cpatch max

x∈T ′
h(T ). (4.5.5)

For brevity of notation, we also write ωk(T, T ) := ωk({T}, T ) for elements T ∈ T .
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4.5.2. Error estimators. Additionally to η(·) let η̃(·) denote the equivalent error es-

timator from Setion 4.2.1. Suppose that for all M̃ℓ from Algorithm 4.2.1, the set Mℓ

from (4.2.2a) satis�es

Mℓ ⊆ ω(Tℓ \ Tℓ+1, Tℓ). (4.5.6)

Finally, suppose that η(·) is a weighted error estimator as de�ned in Setion 3.4.

Remark 4.5.2. Examples of error estimators whih �t in the abstrat framework of

this setion an be found in Setion 5.2.

4.5.3. Optimal onvergene. In the following, the notion that a ertain subset of the

axioms A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)} is satis�ed means that the axioms in A are

satis�ed for the error estimator η(·), the quantities from (4.5.7) below, the orresponding re-

�nement strategy T(·, ·), and the respetive onstants from Setion 2.3.1. The triangulations

(Tℓ)ℓ∈N0 in (E2), (T1)�(T3) are determined by (T̃ℓ)ℓ∈N0 via the funtion (̃·).
The following theorem allows to drop the assumption of estimator redution in Theo-

rem 4.3.1 due to the additional assumptions in this setion.

Theorem 4.5.3. Under the assumptions of Setion 4.5 (partiularly (4.5.1)�(4.5.5))

and with homogeneity (3.4.1) and stability (3.4.2), η(·) satis�es (E1) with

S(T , T̂ ) :=
{
T ∈ T : h(T̂ )|T ≤ qconh(T )|T

}
,

Ŝ(T , T̂ ) :=
{
T ∈ T̂ : T ⊆

⋃
S(T , T̂ )

}
,

ρred = (1 + δ)q2r+con ,

̺(T , T̂ ) := (1 + δ−1)1/2 ˜̺(T , T̂ )

(4.5.7)

for all δ > 0 suh that ρred < 1. Moreover, there holds the following:

(i) Assume limℓ→∞ ̺(Tℓ+1, Tℓ) = 0. Then, for all 0 < θ̃ ≤ 1, the equivalent estimator is

onvergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0.

(ii) Suppose (E2) is satis�ed by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear onvergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
suh that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2
for all j, ℓ ∈ N0.

(iii) Suppose that (E2)�(E3) and (T1)�(T3) are satis�ed by η(·) for some s > 0. Then

0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1− εdrel)/(1+C2
drel) implies quasi-optimal onvergene of the

estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s),

where the lower bound requires only (T1) to hold.

The onstants C̃conv, ρ̃conv > 0 depend only on qcon, r+, r−, Cqo, εqo, qcon, Cpatch, Csum, and

on θ̃. The onstant C̃opt > 0 depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on

s, while c̃opt > 0 depends only on Cson and |T0|.
91



Proof. The assumption (4.5.1) implies that h(T̂ ) = h(T ) on Ω\⋃S(T , T̂ ). Therefore,
Proposition 3.4.1 proves (E1) with (4.5.7). Sine η(·) is a weighted error estimator, onsider

η(·, hω(·)), where hω(·) denotes the super ontrative weight funtion hω(·) from Proposi-

tion 4.5.4 below. The homogeneity (3.4.1) of η(·) and the equivalene (4.5.9) show for all

T ∈ T .

min
x∈T

|hω(T )/h(T )|r− ηT (T ) ≤ ηT (T , hω(T )) ≤ max
x∈T

|hω(T )/h(T )|r+ ηT (T )

and hene

C
−r−
19 ηT (T ) ≤ ηT (T , hω(T )) ≤ ηT (T ). (4.5.8)

Proposition 3.4.1 shows redution (E1b) for the estimator η(·, hω(·)) with Sω(T , T̂ ) :={
T ∈ T : hω(T̂ )|T ≤ qschω(T )|T

}
, Ŝω(T , T̂ ) :=

{
T ∈ T̂ : T ⊆ ⋃S(T , T̂ )

}
, and ̺(·, ·)

from (4.5.7). Moreover, monotoniity (4.5.11), homogeneity (3.4.1), and stability of the

weighted error estimator (3.4.2) show

( ∑

T∈T̂ \Ŝω(T ,T̂ )

ηT (T̂ , hω(T̂ ))2
)1/2

≤
( ∑

T∈T̂ \Ŝω(T ,T̂ )

ηT (T̂ , hω(T ))2
)1/2

≤
( ∑

T∈T \Sω(T ,T̂ )

ηT (T , hω(T ))2
)1/2

+ ˜̺(T , T̂ ).

Sine ˜̺(·, ·) ≤ ̺(·, ·), this shows stability (2.3.5). By (4.5.1) and Proposition 4.5.4 (ii), one

obtains ω(T, T ) ⊆ Sω(T , T̂ ) for all T ∈ T \T̂ . By assumption (i) in Setion 4.5.1, this shows

ω(T \ T̂ , T ) ⊆ Sω(T , T̂ ) and the assumption (4.5.6) implies Mℓ ⊆ Sω(Tℓ, Tℓ+1). Sine M̃ℓ

satis�es Dör�er marking (4.2.3), (4.2.2a) shows for all ℓ ∈ N0

C−1
eq θ̃ η(Tℓ)

2 ≤
∑

T∈Sω(Tℓ,Tℓ+1)

ηT (Tℓ)
2.

This and (4.5.8) imply immediately for all ℓ ∈ N0

C−1
eq C

−r−
19 θ̃ η(Tℓ, hω(Tℓ))

2 ≤
∑

T∈Sω(Tℓ,Tℓ+1)

ηT (Tℓ, hω(Tℓ))
2.

Therefore, Lemma 2.3.5 with T̂ = Tℓ+1 and T = Tℓ shows that estimator redution (2.3.6)

and hene (2.3.8) holds for all ℓ ∈ N0 and η(Tℓ, hω(Tℓ)). Sine ˜̺(·, ·) ≃ ̺(·, ·), Lemma 2.3.6

shows limℓ→∞ η(Tℓ, hω(Tℓ)) = 0 under the assumptions of (i). Equivalene (4.5.8) shows

limℓ→∞ η(Tℓ) = 0 and (4.2.1) implies (i).

Sine (2.3.8) holds for all ℓ ∈ N0 and η(Tℓ, hω(Tℓ)), Proposition 2.3.9 shows that the gen-

eral quasi-orthogonality (E2) implies R-linear onvergene (2.3.14) with αℓ = η(Tℓ, hω(Tℓ)).
Again (4.5.8) and (4.2.1) imply (ii).

The R-linear onvergene from (ii), (4.5.7) and the assumptions from (iii) imply the

assumptions of Theorem 4.3.1 (iii). This proves (iii) and onludes the proof. �

4.5.4. Super ontrative weight funtion. The next proposition de�nes an equiva-

lent weight funtion hω(·), whih ontrats even if h(·) ontrats only nearby (namely within

the path). To that end, reall the de�nition of maxx∈T and minx∈T from Setion 4.5.

Proposition 4.5.4. Suppose a weight funtion h(·) with h(T ) ∈ L∞(Ω) for all T ∈ T.
Moreover, we assume that (4.5.1) and (4.5.2) are satis�ed and that h(T ) is ontinuous on
Ω \⋃T∈T ∂T . Let ω(·, ·) denote a path funtion whih satis�es (4.5.3)�(4.5.5). Then, there
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T

Figure 1. Consider the standard path from Remark 4.5.5. Then, the path

area of the red triangle in the left �gure oinides with the path area of eah

of its two sons after two bisetions. The area of the large green square in the

right �gure is 1. The average of areas in its path is smaller than 0.22. After
two bisetions, the average of areas of the path of T is 0.25.

exists a super ontrative weight funtion hω(·) suh that hω(T ) is T -pieewise onstant for

all T ∈ T, whih satis�es (i)�(iii).

(i) Equivalene: For all T ∈ T and all T ∈ T , it holds:

C−1
eq min

x∈T
h(T ) ≤ hω(T )|T ≤ min

x∈T
h(T ). (4.5.9)

(ii) Contration on the path: All re�nements T̂ ∈ T(T ) and all T ∈ T satisfy

hω(T̂ )|T ≤ qschω(T )|T if h(T )|∪ω(T,T ) 6= h(T̂ )|∪ω(T,T ). (4.5.10)

(iii) Monotoniity: All re�nements T̂ ∈ T of a triangulation T ∈ T satisfy

hω(T̂ ) ≤ hω(T ) almost everywhere in Ω. (4.5.11)

The onstants C19 ≥ 1 and 0 < qsc < 1 depend only on Cpatch, Csum, d, and qcon.

Remark 4.5.5. A typial example would be h(T )|T := |T |1/d and the standard path

funtion ω(S, T ) :=
{
T ∈ T : ∃T ′ ∈ S, T ∩T ′ 6= ∅

}
for some T generated by bisetion from

Setion 3.2.8. Then, Proposition 4.5.4 provides a super ontrative weight funtion hω(T )

whih satis�es hω(T̂ )|T ≤ qschω(T )|T for all T ∈ ω(T \ T̂ , T ).
Even for very spei� re�nement strategies, i.e., bisetion from Setion 3.2.8, the straight-

forward onstrutions of hω(·) by averaging over the path or by onsidering the area of the

path fail to satisfy (i)�(iii). See Figure 1 for some ounterexamples.

The proof of Proposition 4.5.4 requires the next three lemmas, whih onsider an arbitrary

sequene of onseutive triangulations

(Tℓ)ℓ∈N ⊂ T with Tℓ+1 ∈ T(Tℓ) for all ℓ ∈ N0. (4.5.12)

Note that throughout this setion (Tℓ) is not neessarily the sequene generated by Algo-

rithm 2.2.1.

Lemma 4.5.6. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and

ℓ, N ∈ N0, suppose a stritly monotone sequene 0 ≤ m0 < m1 < . . . < mN ∈ N0 with

h(Tℓ+mN
)|T = h(Tℓ)|T for some T ∈ ⋂mN

j=ℓ Tj. Suppose there exist elements Ti ∈ ω(T, Tℓ+mi
),
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i = 0, . . . , N suh that all i = 0, . . . , N − 1 satisfy

min
x∈Ti+1

h(Tℓ+mi+1
) ≤ max

x∈Ti

h(Tℓ+mi+1
) ≤ qcon min

x∈Ti

h(Tℓ+mi
). (4.5.13)

Then, N ≤ 2 log(Cpatch)/| log(qcon)|.
Proof. The assumptions imply maxx∈TN

h(Tℓ+mN
) ≤ qNcon minx∈T0 h(Tℓ). The assump-

tion (4.5.5) shows

h(Tℓ)|T = h(Tℓ+mN
)|T ≤ Cpatch max

x∈TN

h(Tℓ+mN
)

≤ Cpatchq
N
con min

x∈T0

h(Tℓ) ≤ C2
patchq

N
conh(Tℓ)|T .

(4.5.14)

This implies that N is bounded above by the restrition 1 ≤ C2
patchq

N
con. �

Lemma 4.5.7. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and

ℓ, N ∈ N0, suppose a stritly monotone sequene 0 ≤ m0 < m1 < . . . < mN ∈ N0 with

h(Tℓ+mN
)|T = h(Tℓ)|T for some T ∈ ⋂mN

j=ℓ Tj. Suppose that for all i = 0, . . . , N − 1 exists

Ti ∈ ω(T, Tℓ+mi
) with

max
x∈Ti

h(Tℓ+mi+1
) ≤ qcon min

x∈Ti

h(Tℓ+mi
). (4.5.15)

Then, N ≤ 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch.

Proof. For all T ′ ∈ ω2(T, Tℓ) de�ne

αT ′ :=
{
Ti from (4.5.15) : |Ti ∩ T ′| > 0

}
.

Sine

⋃
ω(T, Tℓ+mi

) ⊆ ⋃
ω2(T, Tℓ) for all i = 0, . . . , N by de�nition of the path, and

|ω2(T, Tℓ)| ≤ C2
patch, there exists at least one T ′

0 ∈ ω2(T, Tℓ) with n := |αT ′
0
| ≥ N/C2

patch.

Let now αT ′
0
= {Ti1 , . . . , Tin} suh that i1 ≤ i2 ≤ . . . ≤ in. We de�ne a direted graph G

with set of verties αT ′
0
. Two verties Tij , Tik ∈ αT ′

0
are onneted by an edge Ejk ∈ G if and

only if there holds

min
x∈Tik

h(Tℓ+mik
) ≤ max

x∈Tij

h(Tℓ+mik
) ≤ qcon min

x∈Tij

h(Tℓ+mij
). (4.5.16)

With (4.5.1), the fat Ejk ∈ G implies immediately k > j and hene prohibits Ekj ∈ G.
Therefore, any path E := {Ej0j1 , Ej1,j2, . . . , Ejm−1jm} ⊆ G satis�es j1 < j2 < . . . < jm and

thus an't be losed. Moreover, the orresponding verties Tijk , k = 0, . . . , m satisfy the

requirements of Lemma 4.5.6. This shows

|E| = m ≤ mmax := 2 log(Cpatch)/| log(qcon)|. (4.5.17)

Consider the set of leafs L0 :=
{
Tij ∈ αT ′

0
: ∀Ej1j2 ∈ G, j1 6= j

}
of G. Moreover, for k ∈ N

de�ne the set of leafs Lk of the subgraph Gk on the redued verties set αT ′
0
\⋃k−1

j=0 Lj . Sine

no losed path E an exist, any path E whih is maximal with respet to ⊆, must end with

a leaf.

First, we prove

mmax⋃

j=0

Lj = αT ′
0
. (4.5.18)

To that end, we show by indution that any path E ⊆ Gk satis�es

|E| ≤ mmax − k. (4.5.19)
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For k = 0 and G0 := G this is (4.5.17). Assume the indution hypothesis (4.5.19) holds for

k > 0. Sine a path E ⊆ Gk+1, whih is maximal with respet to ⊆, must end with a leaf, it

an not be maximal in Gk (otherwise the leaf is in Lk and hene not in αT ′
0
\⋃k

j=0Lj whih

is the vertex set of Gk+1). This implies the existene of a path E ′ ⊆ Gk with |E| < |E ′| ≤
mmax − k and hene proves the hypothesis (4.5.19) for k + 1. Indution onludes (4.5.19)

for all 0 ≤ k ≤ mmax. Sine no path of positive length an exist in Gmmax , there holds

Lmmax = Gmmax . This implies Lmmax+1 = ∅ and hene (4.5.18).

By de�nition, the Lj are disjoint. Therefore (4.5.18) implies that there exists 0 ≤ j0 ≤
mmax suh that

|Lj0| ≥ |αT ′
0
|/mmax. (4.5.20)

Assume there holds |Tij ∩ Tik | > 0 for Tij , Tik ∈ Lj0 with Tij 6= Tik . Then, by de�nition in

Setion 3.2.1, there holds ij 6= ik. Without loss of generality, assume ij < ik. Sine |Tij ∩
Tik | > 0, there holds Tij /∈ Tℓ+mik

, and hene by (4.5.1), there holds maxx∈Tij
h(Tℓ+mik

) ≤
qcon minTij

h(Tℓ+mij
). This and |Tij ∩ Tik | > 0 imply (4.5.16) and hene Ejk ∈ Gj0. This,

however, ontradits the de�nition of Lj0 as a set of leafs. Therefore, all elements of Lj0

have pairwise intersetions with measure zero. Hene, (4.5.5) and (4.5.2) imply

C−d
patch

∑

Tij
∈Lj0

min
x∈T

h(Tℓ+mij
)d ≤

∑

Tij
∈Lj0

max
x∈Tij

h(Tℓ+mij
)d

≤ Csum min
x∈T ′

0

h(Tℓ)
d ≤ CsumC

d
patch min

x∈T
h(Tℓ)

d.

This and the assumption h(Tℓ+mN
)|T = h(Tℓ)|T = h(Tℓ+mi

)|T for all i = 0, . . . , N imply

|Lj0| ≤ CsumC
2d
patch.

Together with (4.5.20), this implies

N/C2
patch ≤ |αT ′

0
| ≤ mmaxCsumC

2d
patch

and onludes the proof. �

Lemma 4.5.8. Under the assumptions of Proposition 4.5.4 and given (4.5.12), there

exists a weight funtion h̃ω(Tℓ) whih satis�es for all ℓ ∈ N0 (i)�(iii)

(i) All T ∈ Tℓ satisfy:

qNmax/(Nmax+1)
con min

x∈T
h(Tℓ) ≤ h̃ω(Tℓ)|T ≤ h(Tℓ)|T pointwise almost everywhere.

(ii) All T ∈ Tℓ and all k ≥ ℓ satisfy

max
x∈T

h̃ω(Tk) ≤ q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ)|T if h(Tℓ)|∪ω(T,Tℓ) 6= h(Tk)|∪ω(T,Tℓ).

(iii) All k ≥ ℓ satisfy

h̃ω(Tk) ≤ h̃ω(Tℓ) almost everywhere in Ω.

There holds Nmax := 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch.
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Proof. For ℓ = 0, set h̃ω(T0) = h(T0). For ℓ ≥ 0 and for all T ∈ Tℓ set

h̃ω(Tℓ+1)|T :=





h(Tℓ+1)|T ase 1: h(Tℓ+1)|T 6= h(Tℓ)|T ,
q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ) ase 2:

h(Tℓ)|∪ω(T,Tℓ)
6=h(Tℓ+1)|∪ω(T,Tℓ)

h(Tℓ)|T=h(Tℓ+1)|T
,

h̃ω(Tℓ)|T ase 3: else.

The upper bound in (i) follows immediately by indution on ℓ ∈ N: It holds for ℓ = 0.

Assume the upper bound holds for ℓ ∈ N. Then, the de�nition of h̃ω(Tℓ+1) implies for

T ∈ Tℓ+1 and all T ′ ∈ Tℓ with |T ′ ∩ T | > 0

h̃ω(Tℓ+1)|T∩T ′ ≤
{
h(Tℓ+1)|T∩T ′

ase 1,

h̃ω(Tℓ)|T∩T ′
ase 2 and 3.

The indution hypothesis for ase 2�3 and the monotoniity from (4.5.1) for ase 1 prove

h̃ω(Tℓ+1)|T∩T ′ ≤ h(Tℓ)|T∩T ′
. This onludes the indution. The lower bound (i) follows by

ontradition. Consider an element T ∈ Tj , j ∈ N, with

min
x∈T

h̃ω(Tj) < qNmax/(Nmax+1)
con min

x∈T
h(Tj). (4.5.21)

Let ℓ ≤ j be the minimal index with T ∈ Tℓ. If ℓ = 0, there holds h̃ω(T0)|T = h(T0)|T by

de�nition. For ℓ > 0, the assumption (4.5.1) implies h(Tℓ)|T ′ 6= h(Tℓ−1)|T ′
for all T ′ ∈ Tℓ−1

with |T ′ ∩ T | > 0 and hene by de�nition h̃ω(Tℓ)|T ′ = h(Tℓ)|T ′
(ase 1). Altogether, we have

an index 0 ≤ ℓ ≤ j with h̃ω(Tℓ)|T = h(Tℓ)|T . We rede�ne ℓ ≤ j to denote the largest index

smaller or equal to j with h̃ω(Tℓ)|T = h(Tℓ)|T . Therefore, ase 1 annot our for any index

ℓ < i < j. This implies also T ∈ ⋂j−1
i=ℓ Ti. To obtain (4.5.21), there must exist at least

Nmax+1 indies ℓ+mi < j with ase 2. This partiularly implies h(Tℓ+mNmax+1
)|T = h(Tℓ)|T

and T ∈ ⋂ℓ+mNmax
j=ℓ Tj . We aim to verify the remaining assumptions of Lemma 4.5.7. To

that end, note that ase 2 for T ∈ Tℓ+mi
and (4.5.1) imply the existene of Ti ∈ ω(T, Tℓ+mi

)
with maxx∈Ti

h(Tℓ+mi+1) ≤ qcon minx∈Ti
h(Tℓ+mi

). The monotoniity of h(Tℓ) from (4.5.1)

and ℓ + mi + 1 ≤ ℓ + mi+1 imply even (4.5.15). Hene, the requirements of Lemma 4.5.7

are satis�ed and the ontradition Nmax + 1 ≤ 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch = Nmax

follows. This proves the lower bound in (i).

To prove the ontration estimate (ii), distinguish two ases. If T ∈ Tℓ satis�es ase 1 in

the de�nition of h̃ω(·), then, with the lower bound in (i) and (4.5.1), it holds

max
x∈T

h̃ω(Tℓ+1) = max
x∈T

h(Tℓ+1) ≤ qcon min
x∈T

h(Tℓ)

≤ qcon q
−Nmax/(Nmax+1)
con min

x∈T
h̃ω(Tℓ) = q1/(Nmax+1)

con min
x∈T

h̃ω(Tℓ).
(4.5.22)

If T ∈ Tℓ satis�es ase 2 in the de�nition of h̃ω(·), then, it holds
max
x∈T

h̃ω(Tℓ+1) = q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ). (4.5.23)

Eah ase leads to some ontration with onstant qsc = q
1/(Nmax+1)
con ∈ (0, 1).

This also implies monotoniity (iii) for ase 1 and ase 2. Let T ∈ Tℓ whih satis�es

ase 3. The de�nition shows

h̃ω(Tℓ+1)|T = h̃ω(Tℓ)|T
and hene (iii). This onludes the proof. �
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Proof of Proposition 4.5.4. The weight funtion h̃ω(·) depends on the sequene (Tℓ)
from (4.5.12). Hene, we write

h̃ω(Tℓ) = h̃ω(T0, . . . , Tℓ).

Given T ∈ T, de�ne the set of all sequenes whih lead to that partiular triangulation, i.e.,

T(T0, T ) :=
{
(T0, . . . , Tℓ = T ) : ℓ ∈ N, Tj+1 ∈ T(Tj) \ {Tj} for all j = 0, . . . , ℓ− 1

}
.

The de�nition of the re�nement strategy T(·, ·) in Setion 2.2.1 implies that T(T0, T ) is �nite.
De�ne hω(T0)|T := minx∈T h(T0) for all T ∈ T0 and for T ∈ T \ {T0} by

hω(T )|T := min
(T0,...,Tℓ)∈T(T0,T )

min
x∈T

h̃ω(T0, . . . , Tℓ) for all T ∈ T .

We denote by (T T
0 , . . . , T T

ℓ ) ∈ T(T0, T ) a sequene whih satis�es

min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) = hω(T )|T .

To see the equivalene (4.5.9), Lemma 4.5.8 (i) shows

min
x∈T

h(T ) . min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) ≤ min
x∈T

h(T ),

where the hidden onstants do not depend on the partiular sequene T T
0 , . . . , T T

ℓ . This

implies (4.5.9).

The ontration property (4.5.10) follows with Lemma 4.5.8 (ii). To see that, let T ∈ T
with h(T )|∪ω(T,T ) 6= h(T̂ )|∪ω(T,T ). There holds (T T

0 , . . . , T T
ℓ , T̂ ) ∈ T(T0, T̂ ) and hene for all

T ′ ∈ T̂ with |T ′ ∩ T | > 0

hω(T̂ )|T ′ ≤ min
x∈T ′

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ max
x∈T

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ q1/(Nmax+1)
con min

x∈T
h̃ω(T T

0 , . . . , T T
ℓ ) = q1/(Nmax+1)

con hω(T )|T .

(4.5.24)

Sine the involved onstants do not depend on the partiular sequene T T
0 , . . . , T T

ℓ , this

shows (4.5.10) with qsc = q
1/(Nmax+1)
con .

Finally, we show (4.5.11). Therefore, let T ∈ T and T̂ ∈ T(T ). If T 6= T̂ , the ontra-

tion (4.5.24) applies and shows monotoniity (4.5.11) on T . If T ∈ T̂ , Lemma 4.5.8 (iii)

implies

hω(T̂ )|T ≤ min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) = hω(T )|T .

This onludes the proof. �
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CHAPTER 5

Appliations II

5.1. Introdution, state of the art & outline

This hapter applies the abstrat results from the previous hapter to ertain model

problems. The examples below are found in a similar manner in [24℄. Note that the super

ontrative weight funtion from Setion 4.5.4 allows to prove optimal onvergene rates, even

if the equivalene of the error estimators is only path wise. This is a major improvement

over [60℄, where all the pathes are re�ned, too. Moreover the super ontrative path

funtion is used in Setion 5.4 to prove the ontration of data osillations. This improves

the work [4℄, where a modi�ed marking strategy is employed to overome this problem.

The remainder of the hapter is organized as follows: Setion 5.2 shows rate optimality

for ertain estimators whih are equivalent to the residual estimator from Setion 3.5.1.

Setion 5.3 reprodues the results of [13℄ for the p-Laplaian and Setion 5.4 demonstrates

the inorporation of inhomogeneous boundary data into the optimality analysis.

5.2. Example 1: Loally equivalent error estimators for the Poisson problem

This setion applies the analysis Chapter 4 to a spei� model problem, where the adaptive

algorithm is steered by some loally equivalent and possibly non-residual error estimator.

5.2.1. Poisson model problem. In the spirit of [60℄, onsider the Poisson model

problem (3.5.1) in Ω ⊆ Rd
,

−∆u = f in Ω and u = 0 on Γ,

and reall the weak formulation (3.5.2), and the FE disretization (3.5.3) by means of piee-

wise polynomials Sp
0 (T ) = Pp(T )∩H1

0 (Ω) of degree p ≥ 1. The residual error estimator η(·)
with loal ontributions

ηT (T )2 = ηT (T , h(T ))2 := h(T )|2T ‖f +∆T V ‖2L2(T ) + h(T )|T ‖[∂nV ]‖2L2(∂T∩Ω) (5.2.1)

with h(T )|T := |T |1/d for all T ∈ T and ∆T the T -element wise Laplaian serves as a

theoretial tool. Under the assumptions of Setion 3.5.1 or Setion 3.5.2 (partiularly that

T(·, ·) is a re�nement strategy in the sense of Setion (3.2.1)�(3.2.7)), the following result

holds.

Proposition 5.2.1. In addition to the properties stated in Proposition 3.5.1, the resid-

ual error estimator (5.2.1) satis�es homogeneity (3.4.1) with r+ = 1/2 and r− = 1 and

stability (3.4.2) with ˜̺(·, ·) = ̺(·, ·).
Proof. Stability (3.4.2) is well-known and follows by use of the triangle inequality as

well as standard inverse estimates analogously to the proof of [35, Corollary 3.4℄. The

homogeneity (3.4.1) is obvious. �

The following setions onern di�erent error estimators η̃(·) whih are equivalent to η(·)
and �t into the framework of Setion 4.5. Setion 5.2.2 studies the in�uene of equivalent
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hoies of the weight funtion h(T ) for the residual error estimator (This is well-known by

experts but does not appear in the literature exept for the reent own work [24℄. Moreover, it

�ts perfetly into the abstrat framework of Chapter 4). Setion 5.2.3 onerns a faet-based

formulation of η(·), while Setion 5.2.4 analyzes reovery-based error estimators. Further

examples for the lowest-order ase p = 1, whih also �t in the frame of the analysis from

Setion 4.5, are found in [60℄.

5.2.2. Estimator based on equivalent weight funtion. This setion is based on

the reent own work [24, Setion 9℄. Instead of |T |1/d for weighting the loal ontributions

of η(·), one an also use the loal diameter diam(T ). This leads to

η̃T (T )2 := diam(T )2 ‖f +∆V ‖2L2(T ) + diam(T ) ‖[∂nV ]‖2L2(∂T∩Ω).

This variant of η(·) is usually found in textbooks as e.g. [1, 82℄. Under the assumptions

of Setion 3.5.1 or Setion 3.5.2 the shape regularity (3.2.5) leads to h(T )|T ≤ diam(T ) ≤
Cshpγ(T0) h(T )|T for all T ∈ T ∈ T. In partiular, η(·) and η̃(·) are element wise equivalent.

Proposition 5.2.2. The estimators η(·) and η̃(·) are globally equivalent in the sense

that (4.2.1) with T̃ = T, T̃(·, ·) = T(·, ·) and Ceq = C2
shpγ(T0)

2
. Moreover, (4.2.2) holds with

M = M̃ = M. The weight-funtion h(T ) satis�es (4.5.1) and (4.5.2). Moreover, (4.5.6) is

satis�ed with the trivial path funtion ω(S, T ) = S for all S ⊆ T and all T ∈ T. Together
with Proposition 5.2.1, all the assumptions of Theorem 4.5.3 are satis�ed.

Proof. De�ne the weight funtion h : Ω → (0,∞) by h|T := diam(T ) for all T ∈ T.
Then, there holds η̃T (T ) = ηT (T , h) for all T ∈ T . The homogeneity (3.4.1) of η(·) shows

min
x∈T

|(h(T )/h)(x)|r− η̃T (T ) ≤ ηT (T , h(T )) ≤ max
x∈T

|(h(T )/h)(x)|r+ η̃T (T )

and hene

C−1
shpγ(T0)

−1η̃T (T ) ≤ ηT (T ) ≤ η̃T (T ) for all T ∈ T .
From this element wise equivalene, the statements (4.2.1) and (4.2.2) follow immediately.

The estimate (3.2.12) implies (4.5.1) and (4.5.6) follows from M̃ = M. Finally, the esti-

mate (4.5.2) follows with Csum = 1. �

Consequene 5.2.3. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to onvergene with optimal rate for the estimator η̃(·) in the sense of Theorem 4.5.3. If the

assumptions of Setion 3.5.2 are satis�ed, then the adaptive algorithm leads to onvergene

with optimal rate for the estimator η̃(·) in the sense of Theorem 4.5.3 for all s ≤ p/d. �

5.2.3. Faet-based formulation of residual error estimator. This setion is based

on [24, Setion 9℄. For a given triangulation T ∈ T generated by bisetion from Setion 3.2.8,

let T̃ := E(T ) denote the orresponding set of faets whih lie inside Ω, i.e., for eah E ∈ T̃
there are two unique elements T, T ′ ∈ T with T 6= T ′

and E = T ∩ T ′
. Let

ω(E, T ) := {T, T ′} and

⋃
ω(E, T ) = T ∪ T ′

(5.2.2)

denote the path of E ∈ T̃ . Let T(·, ·) denote bisetion (Setion 3.2.8) and let T̃(·, ·) denote
the orresponding faet based version from Setion 3.2.11. Assume that eah element T ∈ T
has at most one faet on the boundary Γ = ∂Ω whih is a minor additional assumption on

the initial triangulation T0 to exlude pathologial ases. In partiular, eah element T ∈ T
100



has at least one node z ∈ K(T ) inside Ω. For eah faet E ∈ T̃ , let FE ∈ Pp−1(
⋃
ω(E, T ))

be the unique polynomial of degree p− 1 suh that

‖∆T V − f − FE‖L2(∪ω(E,T )) = min
F∈Pp−1(∪ω(E,T ))

‖∆T V − f − F‖L2(∪ω(E,T )). (5.2.3)

With the introdued notation, onsider the following faet-based variant of the residual error

estimator (5.2.1)

η̃(T̃ )2 =
∑

E∈T̃

ηE(T̃ )2, (5.2.4a)

η̃E(T̃ )2 = diam(E)2 ‖∆T V − f − FE‖2L2(∪ω(E,T )) + diam(E) ‖[∂nV ]‖2L2(E). (5.2.4b)

Convergene and quasi-optimality for this estimator is diretly proved for d = 2 and p = 1
in [48℄ via the tehnial and non-obvious observation that the edge osillations are ontra-

tive [69, 68℄. The novel approah of this paper generalizes the mentioned works to arbitrary

dimension d ≥ 2 and polynomial degree p ≥ 1.

Proposition 5.2.4. The estimators η(·) and η̃(·) are globally equivalent in the sense

of (4.2.1). Moreover, (4.2.2) holds with

M :=
⋃

E∈M̃

ω(E, T ) and M :=
{
E ∈ T̃ : ∃T ∈ M, E ∩ T 6= ∅

}
.

The weight-funtion h(T ) satis�es (4.5.1) as well as (4.5.2) and (4.5.6) is satis�ed with the

path funtion

ω(S, T ) :=
{
T ∈ T : ∃T ′ ∈ S, T ∩ T ′ 6= ∅

}

for all S ⊆ T and all T ∈ T. Together with Proposition 5.2.1, all the assumptions of

Theorem 4.5.3 are satis�ed.

The proof of Proposition 5.2.4 requires some tehnial lemmas and some further notation:

For an interior node z ∈ K(T )∩Ω of T , de�ne the star Σ(z, T ) :=
{
E ∈ T̃ : z ∈ E

}
as well

as the path ω(z, T ) :=
{
T ∈ T : z ∈ T

}
. Let Fz ∈ Pp−1(

⋃
ω(z, T )) denote the unique

polynomial of degree p− 1 suh that

‖∆T V − f − Fz‖L2(∪ω(z,T )) = min
F∈Pp−1(∪ω(z,T ))

‖∆T V − f − F‖L2(∪ω(z,T )). (5.2.5)

To abbreviate notation, write r(T ) := ∆T U(T )− f for the residual.

Lemma 5.2.5. Any interior node z ∈ K(T ) ∩ Ω and T ∈ T with z ∈ T satis�es

C−1
20 ‖r(T )‖2L2(T ) ≤ h(T )|−1

T ‖[∂nU(T )]‖2L2(∪Σ(z,T )) + ‖r(T )− Fz‖2L2(∪ω(z,T )). (5.2.6)

The onstant C20 > 0 depends only on γ(T ) and hene on T.

Proof. Consider the nodal basis funtion φz ∈ S1(T ) haraterized by φz(z) = 1 and

φz(z
′) = 0 for all z′ ∈ K(T ) with z 6= z′. In partiular, supp(φz) =

⋃
ω(z, T ). Let

Πp−1 : L2(
⋃
ω(z, T )) → Pp−1(

⋃
ω(z, T )) be the L2

-orthogonal projetion and note that
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Fz = Πp−1r(T ). A saling argument and ‖φz‖L∞(Ω) = 1 prove

‖Fz‖2L2(∪ω(z,T )) . ‖φ1/2
z Fz‖2L2(∪ω(z,T ))

=

∫

∪ω(z,T )

r(T )φzFz dx−
∫

∪ω(z,T )

(
(1− Πp−1)r(T )

)
φzFz dx

≤
∫

∪ω(z,T )

r(T )φzFz dx+ ‖(1−Πp−1)r(T )‖L2(∪ω(z,T ))‖Fz‖L2(∪ω(z,T )).

Consider the �rst term on the right-hand side and use that V := φzFz ∈ Sp
0 (T ) is a suitable

test funtion. With the Galerkin formulation (3.5.3) and element wise integration by parts,

it follows that ∫

∪ω(z,T )

r(T )φzFz dx =

∫

∪ω(z,T )

r(T )V dx

=

∫

∪ω(z,T )

∆T U(T ) V dx+

∫

∪ω(z,T )

∇U(T ) · ∇V dx

=

∫

∪Σ(z,T )

[∂nU(T )]φzFz dx

≤ ‖[∂nU(T )]‖L2(∪Σ(z,T ))‖Fz‖L2(∪Σ(z,T )).

Sine Fz ∈ Pp−1(
⋃
ω(z, T )), an inverse-type inequality with hz := diam(

⋃
ω(z, T )) shows

‖Fz‖L2(∪Σ(z,T )) . h−1/2
z ‖Fz‖L2(∪ω(z,T )).

The hidden onstant depends only on γ(T ). The ombination of the previous arguments

implies

‖Fz‖2L2(∪ω(z,T )) .
(
h−1/2
z ‖[∂nU(T )]‖L2(∪Σ(z,T )) + ‖r(T )− Fz‖L2(∪ω(z,T ))

)
‖Fz‖L2(∪ω(z,T )).

The triangle inequality together with hz ≃ h(T )|T proves

h(T )|2T‖∆T U(T ) + f‖2L2(T )

. h(T )|2T‖Fz‖2L2(∪ω(z,T )) + h(T )|2T‖r(T )− Fz‖L2(∪ω(z,T ))

. h(T )|T‖[∂nU(T )]‖2L2(∪Σ(z,T )) + h(T )|2T‖r(T )− Fz‖2L2(∪ω(z,T )).

This onludes the proof. �

The following lemma shows that edge osillations (5.2.3) and node osillations (5.2.5) are

equivalent on pathes.

Lemma 5.2.6. Any interior node z ∈ K(T ) ∩ Ω and T ∈ T with z ∈ T satis�es

C−1
21 ‖r(T )− Fz‖2L2(∪ω(z,T )) ≤

∑

E∈Σ(z,T )

‖r(T )− FE‖2L2(∪ω(E,T ))

≤ C22 ‖r(T )− Fz‖2L2(∪ω(z,T )).

(5.2.7)

The onstants C21, C22 > 0 depend only on T, the polynomial degree p ≥ 1, and the use of

bisetion.

Proof. The upper bound in (5.2.7) follows from

‖r(T )− FE‖L2(∪ω(E,T )) ≤ ‖r(T )− Fz‖L2(∪ω(E,T )) ≤ ‖r(T )− Fz‖L2(∪ω(z,T ))

for all E ∈ Σ(z, T ) and the fat that the ardinality |Σ(z, T )| is uniformly bounded by

γ(T ) ≤ Cshpγ(T0).
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The lower bound in (5.2.7) is �rst proved for a pieewise polynomial r(T ) ∈ Pp−1(T ). We

employ equivalene of seminorms on �nite dimensional spaes and saling arguments. Note

that both terms in (5.2.7) de�ne seminorms on the �nite dimensional spae Pp−1(ω(z, T ))
with the kernel Pp−1(

⋃
ω(z, T )) and hene are equivalent with onstants C21, C22 > 0. A

saling argument proves that these onstants depend only on the shape of

⋃
ω(E, T ) or⋃

Σ(z, T ). Sine bisetion from Setion 3.2.8 only leads to �nitely many shapes of triangles

and hene pathes and faet stars, this proves that C21 and C22 depend only on T, p, and
the use of bisetion.

It remains to prove the lower bound in (5.2.7) for general f ∈ L2(Ω). Let Πp−1 : L2(Ω) →
Pp−1(T ) denote the L2

-projetion so that F (T ) = Πp−1r(T ) is the unique solution to

‖r(T )− F (T )‖L2(T ) = min
F∈Pp−1(T )

‖r(T )− F‖L2(T ) for all T ∈ T .

Note that Pp−1(
⋃
ω(E, T )) ⊂ Pp−1(ω(E, T )) and hene

〈(1−Πp−1)r(T ) , F (T )− Fz〉L2(T ) = 0 = 〈(1− Πp−1)r(T ) , F (T )− FE〉L2(T ).

Aording to the T -element wise Pythagoras theorem and the foregoing disussion for T -

pieewise polynomial r(T ), it follows

‖r(T )−Fz‖2L2(∪ω(z,T )) = ‖r(T )− F (T )‖2L2(∪ω(z,T )) + ‖F (T )− Fz‖2L2(∪ω(z,T ))

.
∑

E∈Σ(z,T )

(
‖r(T )− F (T )‖2L2(∪ω(E,T )) + ‖F (T )− FE‖2L2(∪ω(E,T ))

)

=
∑

E∈Σ(T ;z)

‖r(T )− FE‖2L2(∪ω(E,T )).

This onludes the proof. �

Proof of Proposition 5.2.4. Shape regularity (3.2.5) yields hE = diam(E) ≃ h(T )|T
for all E ∈ T̃ and T ∈ T with E ⊆ T . Hene

η̃E(T̃ )2 = h2E ‖r(T )− FE‖2L2(∪ω(E,T )) + hE ‖[∂nU(T )]‖2L2(E)

≤
∑

T∈ω(E,T )

(
h2E‖r(T )‖2L2(T ) + hE ‖[∂nU(T )]‖2L2(∂T∩Ω)

)

≃
∑

T∈ω(E,T ))

ηT (T )2.

Lemma 5.2.5 and 5.2.6 imply

ηT (T )2 = h(T )|2T ‖r(T )‖2L2(T ) + h(T )|T ‖[∂nU(T )]‖2L2(∂T∩Ω)

.
∑

z∈K(T )∩Ω

(
h(T )|2T ‖r(T )− Fz‖2L2(∪ω(T,z)) + h(T )|T ‖[∂nU(T )]‖2L2(∪Σ(z,T ))

)

≃
∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )

(
h2E ‖r(T )− FE‖2L2(∪ω(E,T )) + ET ‖[∂nU(T )]‖2L2(E)

)

≤
∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )

η̃E(T̃ )2.
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The last two estimates imply immediately (4.2.1). The �rst impliation (4.2.2a) follows by

θ̃η(T )2 . θ̃η̃(T̃ )2 ≤
∑

E∈M̃

η̃E(T̃ )2 .
∑

E∈M̃

∑

T∈ω(E,T )

ηT (T ) =
∑

T∈M

ηT (T )2.

To see the seond impliation (4.2.2b), onsider

θη̃(T̃ )2 . θη(T )2 ≤
∑

T∈M

ηT (T )2 .
∑

T∈M

∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )
z∈K(T )∩T

η̃E(T̃ )2 ≤
∑

E∈M

η̃E(T̃ )2.

The remaining statements follow as in Setion 5.2.2. �

Consequene 5.2.7. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to onvergene with optimal rate for the faet based estimator η̃(·) in the sense of

Theorem 4.5.3.

Numerial examples that underline the above result an be found in for 2D and lowest-

order elements in [49℄. Moreover, numerial examples for the obstale problem with the

faet-based estimator are found in [69, 68℄.

5.2.4. Reovery-based error estimator. This setion is based on [24, Setion 9℄.

We onsider reovery-based error estimators for FEM whih are oasionally also alled ZZ-

estimators after Zienkiewiz and Zhu [87℄. These estimators are popular in omputational

siene and engineering beause of their implementational ease and striking performane in

many appliations. Reliability has independently been shown by [72, 22℄ for lowest-order

elements p = 1 and later generalized to higher-order elements p ≥ 1 in [10℄. For the lowest-

order ase, onvergene and quasi-optimality of the related adaptive algorithm has been

analyzed in [60℄. In the following, the result of [60℄ is reprodued and even generalized to

higher-order elements p ≥ 1. Moreover, the abstrat analysis of Setion 4.5 removes the

arti�ial re�nements in [60℄.

Let G(T ) : L2(Ω) → Sp
0 (T ) denote the loal averaging operator whih is de�ned as

follows:

• For lowest-order polynomials p = 1, de�ne G(T )(v) ∈ S1
0 (T ) by

G(T )(v)(z) :=
1

|ω(z, T )|

∫

∪ω(z,T )

v dx for all inner nodes z ∈ K(T ) ∩ Ω.

• For the general ase p ≥ 1, de�ne G(T ) = J(T ) : H1
0 (Ω) → Sp

0 (T ) as the Sott-

Zhang projetion from [76℄, see also De�nition 3.3.2.

Based on G(T ), the loal estimator ontributions of the reovery-based error estimator η̃(·)
read

η̃τ (T )2 :=

{
‖(1−G(T ))∇U(T )‖2L2(T ) for τ = T ∈ T ,
diam(E)2 ‖∆T U(T )− f − FE‖2L2(ω(E,T )) for τ = E ∈ E(T ),

(5.2.8)

where FE is de�ned in (5.2.3). Given a set of triangulations T with the bisetion re�nement

strategy T(·, ·) from Setion 3.2.8, the reovery-based error estimator ats on the set T̃ :={
T̃ : T ∈ T

}
and T̃ := T ∪ E(T ). The re�nement strategy T̃(·, ·) employs faet based

variant from Setion 3.2.11, where eah marked element T ∈ T marks the orresponding

faets E ⊆ ∂T . Moreover, given T ∈ T and S ⊆ T de�ne the 2-path

ω2(S, T ) :=
{
T ∈ T : ∃T0, T1 ∈ T , T0 ∈ S, T0 ∩ T1 6= ∅, T1 ∩ T 6= ∅

}
. (5.2.9)
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Proposition 5.2.8. For general polynomial degree p ≥ 1, the error estimators η(·)
from (5.2.1) and η̃(·) from (5.2.8) satisfy for all E ∈ E(T ) with E = T0 ∩ T1 for some

T0, T1 ∈ T
η̃E(T̃ )2 + η̃T0(T̃ )2 ≤ C23

∑

T∈ω2(T0,T )

ηT (T )2, (5.2.10a)

as well as

ηT0(T )2 ≤ C23

∑

τ∈T̃
τ∩T0 6=∅

η̃τ (T̃ )2. (5.2.10b)

The onstant C23 > 0 depends only on γ(T ), the use of bisetion, and p.

The proof requires the following lemma whih states that the normal jumps are loally

equivalent to averaging. The result is well-known for the lowest-order ase, and its proof is

inluded for the onveniene of the reader.

Lemma 5.2.9. For some interior node z ∈ K(T ) ∩ Ω, it holds

C−1
24 hT ‖[∂nU(T )]‖2L2(∪Σ(z,T )) ≤ ‖(1−G(T ))∇U(T )‖2L2(∪ω(z,T ))

≤ C25

∑

z′∈Σ(z,T )∩K(T )∩Ω

hz′‖[∂nU(T )]‖2L2(∪Σ(z′,T )).
(5.2.11)

The onstants C24, C25 > 0 depend only on T0, the polynomial degree p ≥ 1, and the use of

bisetion.

Proof. We use equivalene of seminorms on �nite dimensional spaes and saling argu-

ments. To prove (5.2.11), it thus su�es to show that the hain of inequalities holds true if

one term is zero.

First, assume (1 − G(T ))∇U(T ) = 0 on

⋃
ω(z, T ). This implies ∇U(T ) ∈ Sp(ω(z, T ))

and hene [∂nU(T )] = 0 on

⋃
Σ(z, T ).

Seond, assume [∂nU(T )] = 0 on

⋃
Σ(z′, T ) for all inner nodes z′ of Σ(z, T ). This

shows that the normal jumps of ∇U(T ) are zero over

⋃
Σ(z′, T ). Sine U(T ) ∈ H1(Ω),

the tangential jumps of ∇U(T ) also vanish over Σ(z′, T ). Altogether, this implies ∇U(T ) ∈
Sp−1(ω(z′, T )) for all z′. If the Sott-Zhang projetion de�nes the averaging, G(T )∇U(T )(z′)
depends only on ∇U(T )|ω(z′,T ), this implies G(T )∇U(T ) = ∇U(T ). In the partiular ase

p = 1 and path averaging, ∇U(T ) is onstant on ω(z′, T ). In any ase, we thus derive

(1−G(T ))∇U(T ) = 0 on

⋃
ω(z, T ).

The onstants in (5.2.11) depend on the shapes of pathes

⋃
ω(z′, T ) involved. Sine

bisetion from Setion 3.2.8 leads to only �nitely many path shapes, we dedue that the

these onstants depend only on the polynomial degree p ∈ N and on T0. �

Proof of Proposition 5.2.8. In order to prove the loal equivalene (5.2.10), let z ∈
K(T ) ∩ Ω be an interior node of T ∈ T . The upper estimate in (5.2.11) yields

η̃T (T̃ )2 .
∑

T ′∈ω2(T,T )

ηT ′(T )2.

For E = T0 ∩ T1 ∈ T̃ , it holds

η̃E(T̃ )2 = diam(E)2‖r(T )‖2L2(T0)
+ diam(E)2‖r(T )‖2L2(T1)

.
∑

T ′∈ω(T0,T )

ηT ′(T )2.
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The ombination of the last two estimates proves (5.2.10a). The proof of (5.2.10b) employs

Lemma 5.2.5 and 5.2.6 as well as the lower bound in (5.2.11). For an interior node z ∈
K(T ) ∩ Ω of T ∈ T , it follows

ηT (T )2 . h(T )|T ‖[∂nU(T )]‖2L2(∪Σ(z,T )) + h(T )|2T
∑

E∈Σ(z,T )

‖r(T )− FE‖2L2(∪ω(E,T )

.
∑

τ∈T̃
τ∩T 6=∅

η̃τ (T̃ )2.

This onludes the proof. �

Proposition 5.2.10. With the path funtions from (5.2.2) and (5.2.9), the estimators

η(·) and η̃(·) are globally equivalent in the sense of (4.2.1). Moreover, (4.2.2) holds with

M :=
⋃

E∈M̃∩E(T )

ω2(ω(E, T ), T ) ∪
⋃

T∈M̃∩T

ω2(T, T )

and

M :=
{
τ ∈ T̃ : ∃T ∈ M, τ ∩ T 6= ∅

}
.

The weight-funtion h(T ) satis�es (4.5.1) and (4.5.2). Moreover, (4.5.6) is satis�ed with the

path funtion ω2(·, ·). Together with Proposition 5.2.1, all the assumptions of Theorem 4.5.3

are satis�ed.

Proof. The global equivalene follows from Proposition 5.2.8. The impliation (4.2.2a)

follows by (5.2.10a) and

θ̃η(T )2 . θ̃η̃(T̃ )2 ≤
∑

E∈M̃∩E(T )

η̃E(T̃ )2 +
∑

T∈M̃∩T

η̃T (T̃ )2

.
∑

E∈M̃

∑

T∈ω2(ω(E,T ),T )

ηT (T )2 =
∑

T∈M

ηT (T )2.

To see the seond impliation (4.2.2b), onsider (5.2.10b) and

θη̃(T̃ )2 . θη(T )2 ≤
∑

T∈M

ηT (T )2 .
∑

T∈M

∑

τ∈T̃
τ∩T 6=∅

η̃τ (T̃ )2 =
∑

τ∈M

η̃τ (T̃ )2.

The remaining statements follow as in Setion 5.2.2. �

Consequene 5.2.11. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm

leads to onvergene with optimal rate for the faet based estimator η̃(·) in the sense of

Theorem 4.5.3.

5.3. Example 2: Conforming FEM for the p-Laplaian

This setion is based on [24, Setion 10℄. The p-Laplaian allows for a review of the

results of [13℄ in terms of the abstrat framework of Chapter 4. Sine no lower error bound

is required, the present analysis provides some slight improvement over [13℄. The following

allows generalizations to N-funtions as in [13℄, whih we, however, omit in favor of a

straightforward presentation.
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Consider the energy minimization problem

J (u) = min
v∈W 1,p

0 (Ω)
J (v) with J (v) :=

1

p

∫

Ω

|∇v|p dx−
∫

Ω

fv dx (5.3.1)

for p > 1 and W 1,p
0 (Ω) equipped with the norm ‖v‖W 1,p(Ω) :=

(
‖v‖2Lp(Ω)+‖∇v‖2Lp(Ω)

)1/2
. The

diret method of the alulus of variations yields existene and strit onvexity of J (·) even
uniqueness of the solution u ∈ W 1,p

0 (Ω). With the nonlinearity

A : Rd → Rd, A(Q) = |Q|p−2Q,

the Euler-Lagrange equations assoiated to (5.3.1) read

〈Lu , v〉 =
∫

Ω

A(∇u) · ∇v =
∫

Ω

fv dx for u, v ∈ X := W 1,p
0 (Ω). (5.3.2)

The disretization of (5.3.2) and the notation follows Setion 3.5.1. For a given regular

triangulation T ∈ T (where T is generated by bisetion from Setion 3.2.8), we onsider

the lowest-order Courant �nite element spae S1
0 (T ) := P1(T ) ∩H1

0 (Ω). Arguing as in the

ontinuous ase, we obtain that the minimization problem

J (U(T )) = min
V ∈S1

0 (T )
J (V ) (5.3.3)

admits a unique disrete solution U(T ) ∈ S1
0 (T ), whih satis�es

〈LU(T ) , V 〉 =
∫

Ω

fV dx for all V ∈ S1
0 (T ). (5.3.4)

De�ne F (Q) := |Q|p/2−1Q for all Q ∈ Rd
. There holds the Céa Lemma [13, Lemma 3.1℄ for

all T ∈ T

‖F (|∇u|)− F (|∇U(T )|)‖L2(Ω) ≤ C
Céa

min
V ∈Sp

0 (T )
‖F (|∇u|)− F (|∇V |)‖L2(Ω). (5.3.5)

In terms of Chapter 4, we de�ne T̃ = T and T̃ = T . With 1/p+ 1/q = 1, the residual error
estimator η̃(·) reads

η̃T (T )2 := |T |2/d
∫

T

(
|∇U(T )|p−1 + |T |1/d|f |

)q−2|f |2 dx

+ |T |1/d‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)

(5.3.6)

for all T ∈ T and all T ∈ T (see [13, Setion 3.2℄).

Sine the �rst term of η̃(·) depends nonlinearly on U(T ), [13, Setion 3.2℄ introdues an

equivalent error estimator η(·) with loal ontributions

ηT (T )2 := |T |2/d
∫

T

(
|∇u|p−1 + |T |1/d|f |

)q−2|f |2 dx

+ |T |1/d‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)

(5.3.7)

for all T ∈ T and all T ∈ T. Note that η(·) an only serve as a theoretial tool as it employs

the unknown solution u.

Proposition 5.3.1. The residual error estimator (5.3.7) is a weighted error estimator

in the sense of Setion 3.4, i.e.,

ηT (T , h)2 :=
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx+ h|T‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)
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and satis�es

(i) homogeneity (3.4.1) with r+ = 1/2 and r− = 1 and stability (3.4.2) with

˜̺(T , T̂ ) := Cpert‖F (|∇U(T )|)− F (|∇U(T̂ )|)‖L2(Ω),

(ii) general quasi-orthogonality (E2) with ̺(·, ·) given by Proposition 3.4.1,

(iii) disrete reliability (E3) for all εdrel > 0 with Cdrel := Cdrel(εdrel) andR(T , T̂ ) = T \T̂
as well as κdlr = ∞,

(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0.

Moreover, the estimator is reliable (2.4.1) with err(T ) := ‖F (|∇u|) − F (|∇U(T )|)‖L2(Ω).

The onstants Cdrel, Cqo, Cpert, Crel depend only on the parameter p > 1, T0, and on Ω.

Proof. To see the homogeneity (3.4.1), onsider the funtion g(t) := t2b2(a+ tb)q−2
for

some a, b ≥ 0. The funtion g is onvex and hene there holds for 0 ≤ α ≤ 1 that

g(αt) ≤ αg(t) + (1− α)g(0) = αg(t).

This shows g(αt) ≤ α2r+g(t) for r+ = 1/2. Moreover, we have

α2r−g(t)

g(αt)
=
α2r−t2b2(a+ tb)q−2

α2t2b2(a+ αtb)q−2
= α2r−−2 (a+ tb)q−2

(a+ αtb)q−2
≤

{
α2r−−2 q ≤ 2,

α2r−−q q > 2.

For q ≤ 2, hoose r− = 1 and for q > 2, hoose r− = q/2 to ensure α2r−g(t) ≤ g(αt). Sine
the �rst term of ηT (T , h) reads

∫
T
g(h|T ) dx with a = |∇u|p−1

and b = |f | pointwise, the
above onsiderations imply

min
x∈T

|α(x)|2r−
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx

≤
∫

T

(αh)|2T
(
|∇u|p−1 + (αh)|T |f |

)q−2|f |2 dx

≤ max
x∈T

|α(x)|2r+
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx.

Sine the seond term in the de�nition of η(·) behaves analogously, this implies homogene-

ity (3.4.1). Sine the �rst term of η(·, h) does not depend on T , standard inverse esti-

mates as for the linear ase (Proposition 5.2.1) prove stability (3.4.2) (see also [13, Propo-

sition 4.4℄). Reliability (2.4.1) is proved in [13, Lemma 3.5℄. The disrete reliability (E3)

with R(T , T̂ ) = T \T̂ for η̃(·) follows from [13, Lemma 3.7℄. Together with the equivalene

from [13, Proposition 4.2℄, there holds for all δ > 0

̺(T , T̂ ) .
∑

T∈R(T ,T̂ )

η̃T (T )2 . Cδ

∑

T∈R(T ,T̂ )

ηT (T )2 + δerr(T )2.

The onstant Cδ > 0 is de�ned in [13, Proposition 4.2℄. Together with reliability (E3),

this proves disrete reliability (E3) for all εdrel > 0, where Cdrel > 0 depends on εdrel. The

statement (iv) follows as in Proposition 3.5.1. To see general quasi-orthogonality (E2),

onsider [13, Lemma 3.2℄, whih implies for all re�nements T̂ ∈ T(T )

J (U(T̂ ))−J (u) ≃ ‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω),

J (U(T ))− J (U(T̂ )) ≃ ‖F (|∇U(T̂ )|)− F (|∇U(T )|)‖2L2(Ω)
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with hidden onstants, whih depend only on p > 1. This immediately implies for all

ℓ ≤ N ∈ N that

N∑

k=ℓ

̺(T , T̂ )2 .
N∑

k=ℓ

J (U(Tℓ))−J (U(Tℓ+1))

= J (U(Tℓ))− J (U(TN+1))

≤ J (U(Tℓ))− J (u) ≃ ‖F (|∇u|)− F (|∇U(Tℓ)|)‖2L2(Ω).

Together with reliability (2.4.1), this implies (E2) with εqo = 0. �

Proposition 5.3.2. The estimators η(·) and η̃(·) are globally equivalent in the sense

of (4.2.1). Moreover, (4.2.2) holds with

M = M̃ = M.

The weight-funtion h(T ) satis�es (4.5.1) as well as (4.5.2) and (4.5.6) is satis�ed with the

trivial path funtion ω(S, T ) := S. Together with Proposition 5.3.1, all the assumptions of

Theorem 4.5.3 are satis�ed.

Proof. The global equivalene (4.2.1) is proved in [13, Corollary 4.3℄. The equivalene

from [13, Proposition 4.2℄ implies for all δ > 0 and all T ∈ T

ηT (T )2 ≤ Cδη̃T (T )2 + δ‖F (|∇u|)− F (|∇U(T )|)‖2L2(T ),

η̃T (T )2 ≤ CδηT (T )2 + δ‖F (|∇u|)− F (|∇U(T )|)‖2L2(T ),

where Cδ > 0 depends only on p > 1 and on δ. With this, the impliation (4.2.2a) follows

from reliability (2.4.1) and global equivalene (4.2.1) by

θ̃η(T )2 ≤ θ̃Cδ1 η̃(T )2 + θ̃δ1‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω)

≤ θ̃(Cδ1 + δ1C
2
relCeq)η̃(T )2

≤ (Cδ1 + δ1C
2
relCeq)

∑

T∈M̃

η̃T (T )2

≤ (Cδ1 + δ1C
2
relCeq)

(
Cδ2

∑

T∈M̃

ηT (T )2 + δ2‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω)

)

≤ (Cδ1 + δ1C
2
relCeq)

(
Cδ2

∑

T∈M̃

ηT (T )2 + δ2C
2
relη(T )2

)
.

For arbitrary δ1 > 0, hoose δ2 su�iently small suh that (Cδ1 + δ1C
2
relCeq)δ2 < θ̃ to

onlude (4.2.2a). The analogous argument shows also (4.2.2b). The remaining statements

follow as in Setion 5.2.2. �

Consequene 5.3.3. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads

to onvergene with optimal rate for η̃(·) in the sense of Theorem 4.5.3. �

Numerial examples for 2D that underline the above result an be found in [13℄.

109



5.4. Example 3: Non-homogeneous and mixed boundary onditions

The literature on adaptive �nite elements fouses on homogeneous Dirihlet onditions

with the exeption of [11, 66, 48, 4℄. This setion extends the previous results to non-

homogeneous boundary onditions of mixed Dirihlet-Neumann-Robin type, where inho-

mogeneous Dirihlet onditions enfore some additional disretization error. The present

setion is based on [24, Setion 11℄ and improves [4℄ sine we show that standard Dör�er

marking (2.2.1) leads to onvergene with optimal rates if the Sott-Zhang projetion [76℄

is used for the disretization of the Dirihlet data [4, 74℄. The heart of the analysis is the

appliation of the super-ontrative weight funtion hω(T ) from Proposition 4.5.4.

5.4.1. Model problem. The Laplae model problem in Rd
for d ≥ 2 with mixed

Dirihlet-Neumann-Robin boundary onditions splits the boundary Γ of the Lipshitz do-

main Ω ⊂ Rd
into three (relatively) open and pairwise disjoint boundary parts ∂Ω =

ΓD ∪ ΓN ∪ ΓR. Given data f ∈ L2(Ω), gD ∈ H1(ΓD), φN ∈ L2(ΓN), φR ∈ L2(ΓR), and
α ∈ L∞(ΓR) with α ≥ α0 > 0 almost everywhere on ΓR, the problem seeks u ∈ H1(Ω) with

−∆u = f in Ω, (5.4.1a)

u = gD on ΓD, (5.4.1b)

∂nu = φN on ΓN , (5.4.1)

φR − αu = ∂nu on ΓR. (5.4.1d)

The presentation fouses on the ase that |ΓD|, |ΓR| > 0, with possibly ΓN = ∅. However,

the ases ΓD = ∅ and |ΓR| > 0, |ΓD| > 0 and ΓR = ∅, as well as the pure Neumann problem

ΓN = ∂Ω are also overed by the abstrat analysis.

5.4.2. Weak formulation. The weak formulation of (5.4.1) seeks u ∈ X := H1(Ω)
suh that

u = gD on ΓD in the sense of traes (5.4.2a)

and all v ∈ H1
D(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓD

}
satisfy

b(u, v) :=

∫

Ω

∇u · ∇v dx+
∫

ΓR

αuv ds = RHS(v) (5.4.2b)

with

RHS(v) :=

∫

Ω

fv dx+

∫

ΓN

φNv ds+

∫

ΓR

φRv ds. (5.4.2)

Sine |ΓR| > 0 and α ≥ α0 > 0, the norm ‖ · ‖ := b(·, ·)1/2 is equivalent to the H1(Ω)-norm.

Let uD ∈ H1(Ω) with uD|Γ = gD be an arbitrary lifting of the given Dirihlet data and

set u0 := u− uD ∈ H1
D(Ω). Then, (5.4.2) is equivalent to seek u0 ∈ H1

D(Ω) with

b(u0, v) = RHS(v)− b(uD, v) for all v ∈ H1
D(Ω). (5.4.3)

Aording to the Lax-Milgram lemma, the auxiliary problem (5.4.3) admits a unique solution

u0 ∈ H1(Ω) and thus u := u0 + uD is the unique solution of (5.4.2).
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5.4.3. FEM disretization and approximation of Dirihlet data. Assume the

initial triangulation T0, and hene all triangulations T ∈ T of Ω, to resolve the boundary

onditions in the sense that for all faets E ⊂ ∂Ω on the boundary, there holds E ⊆ γ for

some γ ∈ {ΓD,ΓN ,ΓR} and let T(·, ·) denote bisetion from Setion 3.2.8. Let Sp
D(T ) :=

Pp(T ) ∩ H1
D(Ω) with �xed polynomial order p ≥ 1. To disretize the given Dirihlet data

gD, for any given triangulation T ∈ T, hoose an approximation

GD(T ) ∈ Sp(T |ΓD
) :=

{
V |ΓD

: V ∈ Sp(T )
}

of the Dirihlet data gD. Here and throughout this setion, let T |ΓD
:=

{
T |ΓD

: T ∈ T
}
de-

note the restrition of the volume triangulation to the Dirihlet boundary ΓD, and Sp(T |ΓD
)

is the disrete trae spae. A onvenient way to hoose this approximation independently of

the spatial dimension is the Sott-Zhang projetion J(T ) : H1(Ω) → Sp(T ) from [76℄. The

formal de�nition also allows for an operator J(T |ΓD
) : L2(ΓD) → Sp(T |ΓD

) on the boundary

(see also De�nition 3.3.2 for details). The reader is referred to [4℄ for details and further

disussions.

The disrete ounterpart of (5.4.2) seeks U(T ) ∈ Sp(T ) suh that

U(T )|ΓD
= GD(T ), (5.4.4a)

b(U(T ), V ) = f(V ) for all V ∈ Sp
D(T ). (5.4.4b)

As in the ontinuous ase, (5.4.4) admits a unique solution and there holds a general Céa

lemma

‖u− U(T )‖H1(Ω) ≤ C26 min
V ∈Sp(T )

‖u− V ‖H1(Ω), (5.4.5)

where C26 > 0 depends only on the boundary parts, p, the shape regularity (3.2.5), and on

α. The Céa lemma (5.4.5) is proved in [4, Proposition 2℄ for the ase ΓR = ∅. The proof,

however, transfers to the present ase with the obvious modi�ations.

5.4.4. Quasi-optimal onvergene. The derivation of the residual-based error esti-

mator η(T ) follows similarly to the homogeneous ase and di�ers only by adding an osillation

term to ontrol the approximation of the Dirihlet data [4, 11, 48, 74℄. With the weight

funtion h(T )|T := |T |1/d for all T ∈ T , the loal ontributions read
ηT (T ) := h(T )|2T‖f +∆T U(T )‖2L2(T ) + h(T )|T‖[∂nU(T )]‖2L2(∂T∩Ω)

+ ‖h(T )1/2(φR − αU(T )− ∂nU(T ))‖2L2(∂T∩ΓR)

+ ‖h(T )1/2(φN − ∂nU(T ))‖2L2(∂T∩ΓN ) + dirT (T )2,

where

dirT (T )2 := h(T )|T‖(1−Πp−1(T |ΓD
))∇ΓgD‖2L2(∂T∩ΓD)

and Πp−1(T |ΓD
) : L2(ΓD) → Pp−1(T |ΓD

) :=
{
V |ΓD

: V ∈ Pp−1(T )
}
is the (pieewise)

L2
-orthogonal projetion, and ∇Γ(·) denotes the surfae gradient.
For eah faet E ⊂ ∂Ω, there exists a unique element T ∈ T suh that E ⊂ ∂T . In

partiular, h(T ) also indues a weight funtion on γ ∈ {ΓD,ΓN ,ΓR}.
The following proposition shows that inhomogeneous (and mixed) boundary data �t in

the framework of our abstrat analysis. Emphasis is on the novel quasi-orthogonality (E2)

whih improves the analysis of [4℄ on separate Dör�er marking. The super-ontrative weight

funtion hω(T ) from Proposition 4.5.4 establishes optimal onvergene of Algorithm 2.2.1

with the standard Dör�er marking (2.2.1).
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Given T ∈ T and S ⊆ T , de�ne the 5-path by

ω5(S, T ) :=
{
T ∈ T :∃T0, . . . , T4 ∈ T , T0 ∈ S, T4 ∩ T 6= ∅,

Ti ∩ Ti+1 6= ∅, i = 0, . . . , 3
}
.

(5.4.6)

Proposition 5.4.1. The onforming disretization of the Poisson problem (5.4.2) with

residual error estimator η(·) satis�es
(i) stability and redution (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H1

0 (Ω) as well as

S(T , T̂ ) := T \ T̂ and Ŝ(T , T̂ ) := T̂ \ T ,

(ii) general quasi-orthogonality (E2),

(iii) disrete reliability (E3) with R(T , T̂ ) = ω5(T \T̂ , T ), κdlr = ∞, and εdrel = 0,
(iv) the re�nement axioms (T1)�(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0.

Moreover, the estimator satis�es (2.4.1)�(2.4.2) with err(T ) := ‖u− U(T )‖H1(Ω) and

data(T )2 := dir(T )2 + min
F∈Pp−1(T )

‖h(T )(f − F )‖2L2(Ω)

+ min
Φ∈Pp−1(T |ΓN

)
‖h(T )1/2(φN − Φ)‖2L2(ΓN )

+ min
Φ∈Pp−1(T |ΓR

)
‖h(T )1/2(φR − Φ)‖2L2(ΓR).

(5.4.7)

The onstants Cdrel, Cqo, Cpert, Crel, Ceff depend only on the parameter p > 1, T0, and on Ω.

Proof. E�ieny (2.4.2) an be found in [11, 74℄ or [4, Proposition 3℄. The proof

of (5.4.7) follows similarly to that of Proposition 3.5.1 and exploits that ∆T U(T )|T is a

polynomial of degree ≤ p− 2.
The proofs of stability and redution (E1) are verbatim to the ase with ΓR = ∅ from [4,

Proposition 11℄. The proof of disrete reliability (E3) is more involved, however, the di�ul-

ties arise only due to the approximation of the Dirihlet data and the non-loal H1/2(ΓD)-
norm. The proof in [4, Proposition 21℄ for ΓR = ∅ generalizes to the present ase. The

statement (iv) follows as for the homogeneous ase in Setion 3.5.1.

It remains to verify the quasi-orthogonality (2.7.5) whih implies (E2) by virtue of

Lemma 2.7.3. The 5-path ω5(·, ·) is a path funtion in the sense of Setion 4.5.1. Moreover,

the weight funtion h(T ) satis�es the assumptions of Setion 4.5. Hene, Proposition 4.5.4

provides a super ontrative weight funtion hω5(·). It is proved in [4, Lemma 20℄ for ΓR = ∅
that there holds for all εqo > 0 and all T̂ ∈ T(T ), T ∈ T, that

‖U(T̂ )− U(T )‖2 ≤ ‖u− U(T )‖2 − (1− εqo)‖u− U(T̂ )‖2

+ Cpythεqo
−1‖(J(T̂ |ΓD

)− J(T |ΓD
))gD‖2H1/2(ΓD),

(5.4.8)

where Cpyth > 0 depends only on T and ΓD. Although [4℄ onsiders ΓR = ∅ and hene

‖ · ‖ = ‖∇(·)‖L2(Ω), the proof transfers to the present ase.

The fous in the derivation of quasi-orthogonality (2.7.5) is on the last term on the

right-hand side. First, let ω5
D(T \T̂ , T ) ⊆ T |ΓD

denote the set of all faets E of T with

E ⊆ ΓD ∩ ⋃
ω5(T \T̂ , T ). It is part of the proof of [4, Proposition 21℄ that there exists a

uniform onstant C27 > 0 suh that any triangulation T ∈ T and all re�nements T̂ ∈ T(T )
of T ∈ T satisfy

‖(J(T̂ |ΓD
)− J(T |ΓD

))v‖H1/2(ΓD) ≤ C27‖h(T )1/2(1−Πp−1(T |ΓD
))∇Γv‖L2(∪ω5

D(T \T̂ ,T ))
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for all v ∈ H1(ΓD). We note that this result hinges on the use of bisetion (Setion 3.2.8) in

the sense that the onstant C27 > 0 depends on the shape of all possible pathes. By means

of Lemma 3.3.3, the proof of [4, Proposition 21℄ an be extended to triangulations in the

sense of Setion 3.2.1�3.2.7.

This estimate is applied for v = gD. The de�nition of hω5(T ) in Proposition 4.5.4 implies

hω5(T̂ ) ≤ hω5(T ) pointwise on all T ∈ T ,
hω5(T̂ ) ≤ qschω5(T ) pointwise on all T ∈ T with h(T )|∪ω5(T,T̂ ) 6= h(T̂ )|∪ω5(T,T̂ ).

Reall that h(T )|∪ω5(T,T̂ ) 6= h(T̂ )|∪ω5(T,T̂ ) is in the present ase equivalent to ω5(T, T ) ∩ T \
T̂ 6= ∅ or T ∈ ω5(T \ T̂ , T ). Hene, we obtain

hω5(T̂ ) ≤ qschω5(T ) pointwise on all T ∈ ω5(T \ T̂ , T ).

This implies

(1− qsc) hω5(T )|∪ω5(T \T̂ ,T ) ≤ hω5(T )− hω5(T̂ ) pointwise in Ω.

The ontration above allows to write

(1− qsc)‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(∪ω5

D(T \T̂ ,T ))

≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD) − ‖hω5(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(ΓD).

This and the element wise best-approximation property of Πp−1(T̂ |ΓD
) prove that

‖hω5(T )1/2(1− Πp−1(T̂ |ΓD
))∇ΓgD‖2L2(ΓD) ≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(ΓD).

With h(T ) ≤ C19hω5(T ) from Proposition 4.5.4, we obtain

(1− qsc)C
−1
19 ‖h(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(∪ω5
D(T \T̂ ,T ))

≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD)

− ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD).

The ombination of the previous arguments leads to

‖(J(T̂ |ΓD
)− J(T |ΓD

))gD‖2H1/2(ΓD) ≤ α(T )2 − α(T̂ )2,

where

α(T ) := C
1/2
27 C

1/2
19 (1− qsc)

−1/2‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖L2(ΓD).

By equivalene (4.5.9), one obtains (2.7.5b) and hene Lemma 2.7.3 proves general quasi-

orthogonality (E2). This onludes the proof. �

Remark 5.4.2. We brie�y omment on the ase ΓR = ∅ with

‖v‖2 := ‖∇v‖2L2(Ω) + ‖v‖2H1/2(ΓD) 6= b(v, v).

The Rellih ompatness theorem guarantees that ‖ · ‖ is an equivalent norm in H1(Ω). The
ombination with [4, Lemma 20℄ (i.e. (5.4.8) with ‖ · ‖ = ‖∇(·)‖L2(Ω)) proves for su�iently

small εqo ≪ 1 that

‖U(T̂ )− U(T )‖2 ≤ ‖∇(u− U(T ))‖2L2(Ω) − (1− εqo)‖∇(u− U(T̂ ))‖2L2(Ω)

+ C̃pythεqo
−1‖(J(T̂ |ΓD

)− J(T |ΓD
))gD‖2H1/2(ΓD).

(5.4.9)

With (5.4.9) instead of (5.4.8), the arguments in the proof of Proposition 5.4.1 remain valid.
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The adaptive FEM for the mixed boundary value boundary (5.4.1) satis�es all assump-

tions of the abstrat framework.

Consequene 5.4.3. The adaptive algorithm leads to onvergene with optimal rate

for the estimator η(T ) in the sense of Theorem 2.3.3. For optimal rates of the disretization

error in the sense of Theorem 2.4.3, additional regularity of the data has to be imposed for

higher-order elements p ≥ 1, f. Consequene 3.5.2. �
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CHAPTER 6

Appliations III: Adaptive BEM with Geometry Approximation

6.1. Introdution, state of the art & outline

This hapter treats the weakly-singular integral equation from Setion 3.5.3 for gen-

eral boundaries. Most of the literature onerns pieewise polynomial boundary geome-

tries [20, 28, 33, 34, 27, 47℄. One way to irumvent this, is to employ the isogeometri

approah, where the boundary is given in terms of B-splines or NURBS whih stem from

omputer aided design systems. This, however, involves the drawbak, that one has to

ompute the integral operators on nonstandard geometries, whih is at the moment not

supported by available BEM libraries, and moreover is expensive. The approah proeeded

here, is to approximate the boundary by pieewise a�ne line segments and to perform the

omputation on the approximate polygonal boundary. This allows to employ standard BEM

implementations and moreover enables to ompute the operator matries analytially in 2D.

To estimate the approximation error, we develop an error estimator, whih reliably estimates

the disretization error of the approximation spaes as well as the geometri approximation

error introdued by the approximate boundary. While there are some results on geometry

approximation for the �nite element method [15, 63, 38, 42℄, this is the �rst a posteriori

analysis of geometry approximation for the boundary element method (several a priori results

for BEM are available in, e.g. [75, 67℄). Under some assumptions, we are able to prove plain

onvergene in the sense of (2.3.1) of the error estimator and the approximate solutions.

The remainder of the hapter is organized as follows: Setion 6.2 states the assumptions on

the geometry and introdues the geometri error estimator. The main result of this hapter

is stated in Setion 6.4 and the onvergene proof is given in Setion 6.3.

6.2. Setting

Consider the weakly-singular integral equation on the boundary Γ := ∂Ω of a onneted

Lipshitz domain Ω ⊆ R2
with diam(Ω) < 1

Vu = f,

where the weakly-singular integral operator V : H−1/2(Γ) → H1/2(Γ) is given by (3.5.11).

6.2.0.1. Exat and approximate geometry. Let the exat boundary Γ := ∂Ω allow for a

pieewise smooth parametrization γ : [0, 1] → Γ suh that both γ and γ−1
are Lipshitz

ontinuous with onstant Cγ > 0 and |γ′(s)| = |Γ| for all s ∈ [0, 1] (to avoid problems

with the endpoints of [0, 1], we identify {0} and {1} and onsider the metri d(s, t) :=
min{|s − t|, |1 − s| + |0 − t|, |0 − s| + |1 − t|} on [0, 1]). Let tΓ denote the unit tangent

on Γ and let nΓ denote the unit normal. By ∂Γ, we denote the ar-length derivative on

Γ (see De�nition 6.2.5 below). We assume that Γ has bounded urvature in the sense

that ‖∂ΓtΓ‖L∞(Γ) ≤ κΓ (where ∂Γ is understood pieewise on smooth parts of Γ) for some

κΓ > 0. Any approximate boundary Γ⋆ must be a nodal interpolation of Γ with nodes

K⋆ ⊆ Γ ∩ Γ⋆. The �nitely many non-smooth points PΓ of Γ have to satisfy PΓ ⊂ K⋆ and

the enlosed domain Ω⋆ (i.e., ∂Ω⋆ = Γ⋆) must satisfy diam(Ω⋆) ≤ 1− εscale for some uniform
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εscale > 0 (Note that this an always be ahieved by saling of the exat boundary Γ). The
approximation Γ⋆ is assoiated with the partition T⋆ whih onsists of the ompat line

segments of Γ⋆. We all the pair (T⋆,Γ⋆) an approximate geometry. Eah element T ∈ T⋆

satis�es

T ∩ Γ ⊆ K⋆ or T ∩ Γ = T,

i.e., the exat boundary touhes elements only at the nodes or oinides exatly with the

element. Eah T ∈ T⋆ de�nes a unique ompat urve segment T Γ ⊆ Γ with the same

endpoints as T . The olletion of all this urve segments de�nes a partition T Γ
⋆ of Γ. To

avoid degenerate ases, we onsider only partitions with |T Γ| < |Γ|/2 for all T ∈ T⋆.

Consider the map γ⋆ : Γ → Γ⋆ (see Figure 2 for an illustration) impliitly de�ned by

γ⋆(T ) ⊆ T Γ
for all T ∈ T⋆,

(x− γ⋆(x)) · tΓ(x) = 0 for all x ∈ Γ \ PΓ,

γ⋆(x) = x for all x ∈ K⋆.

(6.2.1)

Note that the subsript ⋆ denotes the relation to the approximate geometry (T⋆,Γ⋆).

Remark 6.2.1. In Lemma 6.2.17 below, we introdue an extension γ⋆ : R2 → R2
.

Hene, after Lemma 6.2.17, γ⋆ is also used to denote its extension, where the meaning will

be lear from the ontext.

The approximate geometry (T⋆,Γ⋆) must be su�iently lose to Γ suh that (Γ2)�(Γ4)
hold for uniform onstants CLip, Cµ > 0

(Γ1) The orthogonal projetion γ⋆ : Γ → Γ⋆ from (6.2.1) is well-de�ned and uniquely

determined, pieewise smooth, and is a ontinuous one-to-one map.

(Γ2) All x, y ∈ Γ satisfy

C−1
Lip|x− y| ≤ |γ⋆(x)− γ⋆(y)| ≤ CLip|x− y|.

(Γ3) All T ∈ T⋆ with endpoints xT , yT ∈ Γ satisfy that eah x ∈ T de�nes a unique

y ∈ T Γ
with

(x− y) · (xT − yT ) = 0.

This de�nes a map µ⋆ : Γ → Γ⋆ by µ⋆(y) := x (see Figure 2 for an illustration).

(Γ4) There holds

C−1
µ ‖idΓ − γ⋆‖2L∞(Γ) ≤ ‖idΓ − µ⋆‖2L∞(Γ) ≤ ‖idΓ − γ⋆‖2L∞(Γ).

Note that the upper bound holds for any geometry Γ⋆, sine µ⋆ is the orthogonal

projetion onto Γ⋆.

Lemma 6.2.9 below gives some su�ient onditions whih imply (Γ1)�(Γ4).
6.2.0.2. Approximate solution. With the T⋆-pieewise onstant funtions P0(T⋆), the

Galerkin approximation U(T⋆) ∈ P0(T⋆) is the solution of

∫

Γ⋆

V⋆U(T⋆) V dx =

∫

Γ⋆

f⋆V dx for all V ∈ P0(T⋆), (6.2.2)

where

V⋆w(x) := − 1

2π

∫

Γ⋆

log |x− y|w(y) dy

denotes the weakly-singular integral operator on Γ⋆ and f⋆ := f ◦ γ−1
⋆ .
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Figure 1. Boundary Γ with tangent vetor tΓ and normal vetor nΓ as well

as approximate geometry (T⋆,Γ⋆) with element T ∈ T⋆ and orresponding

T Γ ⊆ Γ.
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Figure 2. The mappings γ⋆ and µ⋆.

We propose to approximate the exat solution u ≈ U(T⋆)
Γ
by

U(T⋆)
Γ := U(T⋆) ◦ γ⋆|∂Γγ⋆|.

6.2.1. Error estimator. The partition T⋆ indues a loal weight funtion h⋆|T := |T | :=
length(T ) for all T ∈ T⋆. The error quantity of interest is

‖u− U(T⋆)
Γ‖H−1/2(Γ).

With the identity mapping idΓ : Γ → Γ and the geometri error

geo(T⋆) := max{‖idΓ − γ⋆‖1/2L∞(Γ), ‖tΓ − ∂Γγ⋆‖L∞(Γ)}, (6.2.3)

the error estimator reads

η(T⋆) :=
(
‖h1/2⋆ ∂Γ⋆(VU(T⋆)− f⋆)‖2L2(Γ⋆)

+ geo(T⋆)
3(1 + | log(geo(T⋆))|2)‖U(T⋆)‖2L2(Γ⋆)

)1/2

.
(6.2.4)

For brevity of notation, we write ρ(T⋆) := ‖h1/2⋆ ∂Γ⋆(VU(T⋆)−f⋆)‖L2(Γ⋆) and de�ne the element

wise ontributions for all T ∈ T⋆

ρT (T⋆) := h⋆|1/2T ‖∂Γ⋆(VU(T⋆)− f⋆)‖L2(T ),

geoT (T⋆) := max{‖idΓ − γ⋆‖1/2L∞(TΓ)
, ‖tΓ − ∂Γγ⋆‖L∞(TΓ)}.

(6.2.5)

6.2.2. Adaptive geometry approximation. We propose a modi�ed version of Algo-

rithm 2.2.1 whih inludes also the geometri error (a similar algorithm an also be found

in [15℄ for FEM). To that end, hoose an initial approximation Γ0 as well as the orresponding

partition T0 of Γ0 suh that the requirements of Setion 6.2.0.1 are satis�ed.
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Algorithm 6.2.2. Input: Initial triangulation T0 and parameters 0 < θ ≤ 1, 0 ≤
ϑ < 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iv).

(i) Compute solution U(Tℓ) of (6.2.2).

(ii) Compute error estimators ρT (Tℓ) and geoT (Tℓ) for all T ∈ Tℓ.

(iii) Determine a set of marked elements Mℓ ⊆ Tℓ with minimal ardinality whih satis-

�es the Dör�er marking

θρ(Tℓ)
2 ≤

∑

T∈Mℓ

ρT (Tℓ)
2

(6.2.6a)

as well as

Mℓ ⊇
{
T ∈ Tℓ : geoT (Tℓ) > ϑgeo(Tℓ)

}
. (6.2.6b)

(iv) De�ne the next partition Tℓ+1 = T(Tℓ,Mℓ) as detailed in Setion 6.2.5 below.

Output: Error estimators (η(Tℓ))ℓ∈N0 and approximations (U(Tℓ)
Γ)ℓ∈N0.

6.2.3. Some de�nitions. Below, we provide some de�nitions whih are used through-

out this hapter.

Definition 6.2.3. Given x, y ∈ Γ, de�ne the ompat and onneted set Γy
x ⊆ Γ with

x, y ∈ Γy
x as

∫

Γy
x

1 dx = inf
{∫

Γ̃

1 dx : Γ̃ ⊆ Γ ompat and onneted with x, y ∈ Γ̃
}
.

The set on the right-hand side is non-empty due to the fat that Γ is onneted by assumption.

Let xT , yT ∈ T ∩ Γ denote the endpoints of T ∈ T⋆. Note that sine |T Γ| < |Γ|/2, there holds
T Γ = ΓyT

xT
. Given the approximate geometry Γ⋆ and x, y ∈ Γ⋆, de�ne the ompat and

onneted set Γy
⋆,x ⊆ Γ⋆ with x, y ∈ Γy

⋆,x as

∫

Γy
⋆,x

1 dx = inf
{∫

Γ̃

1 dx : Γ̃ ⊆ Γ⋆ ompat and onneted with x, y ∈ Γ̃
}
.

See also Figure 3 for an illustration.

Definition 6.2.4. For a boundary part ω ⊆ Γ∪Γ⋆ with a given approximate geometry

Γ⋆, we denote by |ω| :=
∫
ω
1 dx the length of the urve. Moreover, given subsets ω, ω′ ⊆ Γ∪Γ⋆,

de�ne

dist(ω, ω′) := inf
x∈ω, y∈ω′

|x− y| ≥ 0.
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Definition 6.2.5 (Ar-length derivative). Given any approximate geometry Γ⋆ (also

the exat geometry Γ is allowed here), x ∈ Γ⋆, and g : Γ⋆ → Rd
, d ∈ {1, 2}, the ar-length

derivative ∂Γ⋆g(x) (if exists) is de�ned as follows: Choose some δ > 0 and some ontinuous

one-to-one mapping γx : (−δ, δ) → Γ⋆ with γ⋆,x(0) = x and γ′⋆,x(s) = tΓ⋆ ◦ γ⋆,x(s) almost

everywhere in (−δ, δ). Then, de�ne
∂Γ⋆g(x) := (g ◦ γ⋆,x)′(0) ∈ Rd. (6.2.7)

The de�nition is unique sine γx is uniquely de�ned loally around zero.

Given another approximate geometry Γ• (also the exat geometry Γ is allowed here) and

g : Γ⋆ → Γ•, the ar-length derivative ∂Γ⋆g(x) an be de�ned as in (6.2.7), or in the salar

version as

∂sΓ⋆
g(x) := (γ−1

•,g(x) ◦ g ◦ γ⋆,x)′(0) ∈ R. (6.2.8)

There holds the identity

∂Γ⋆g(x) = (γ•,g(x) ◦ γ−1
•,g(x) ◦ g ◦ γ⋆,x)′(0) = γ′•,g(x)(0)∂

s
Γ⋆
g(x) = tΓ• ◦ g(x)∂sΓ⋆

g(x). (6.2.9)

Finally, for a funtion g : Rd → Γ⋆, d ≥ 1, and some z ∈ Rd
de�ne

∂szg(x) := ∂z(γ
−1
g(x) ◦ g)(x) ∈ R.

There holds the identity

∂zg(x) = γ′g(x)(0)∂
s
zg(x) = tΓ ◦ g(x)∂szg(x). (6.2.10)

Definition 6.2.6. Given any approximate geometry Γ⋆ (also the exat geometry Γ is

allowed here), hoose a parametrization γΓ⋆ : [0, |Γ⋆|] → Γ⋆ with γΓ⋆(0) = γΓ⋆(|Γ⋆|) and γ′Γ⋆
=

tΓ⋆ ◦ γΓ⋆. Then, there holds for smooth funtions g1, g2 : Γ⋆ → R that ∂Γ⋆gi = (gi ◦ γΓ⋆)
′ ◦ γ−1

Γ⋆

and integration by parts

∫

Γ⋆

∂Γ⋆g1 g2 dx =

∫ |Γ⋆|

0

(∂Γ⋆g1) ◦ γΓ⋆ g2 ◦ γΓ⋆ dx =

∫ |Γ⋆|

0

(g1 ◦ γΓ⋆)
′ g2 ◦ γΓ⋆ dx

= −
∫ |Γ⋆|

0

g1 ◦ γΓ⋆ (g2 ◦ γΓ⋆)
′ dx = −

∫

Γ⋆

g1 ∂Γ⋆g2 dx.

With this, we de�ne

H1(Γ⋆) :=
{
g ∈ L2(Γ⋆) : ∂Γ⋆g ∈ L2(Γ⋆) in the weak sense

}
.

The spaes Hs(Γ⋆) := [L2(Γ⋆), H
1(Γ⋆)]s,2 are de�ned by real interpolation for all s ∈ (0, 1).

By H−s(Γ⋆) we denote the dual spae of Hs(Γ⋆) with respet to the extended L2(Γ⋆) salar
produt.

Lemma 6.2.7 (Chain-rule). Given the approximate geometries Γ⋆, Γ•, Γ+ (also the

exat geometry Γ is allowed instead of eah of the approximate geometries) as well as µ :
Γ⋆ → Γ•, λ : Γ• → Γ+, and g : Γ• → Rd

. Then, there holds almost everywhere in Γ⋆

∂Γ⋆(g ◦ µ) = (∂Γ•g) ◦ µ ∂sΓ⋆
µ and ∂sΓ⋆

(λ ◦ µ) = (∂sΓ•
λ) ◦ µ ∂sΓ⋆

µ (6.2.11a)

in the sense that eah side exists if and only if the other one does, too. Moreover, for

µ : R2 → Γ•, there holds

∂z(λ ◦ µ) = (∂Γ•λ) ◦ µ∂szµ. (6.2.11b)
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Proof. By de�nition, there holds

∂Γ⋆(g ◦ µ)(x) = (g ◦ µ ◦ γ⋆,x)′(0) = (g ◦ γ•,µ(x) ◦ γ−1
•,µ(x) ◦ µ ◦ γ⋆,x)′(0)

= (∂Γ•g) ◦ µ(x)∂sΓ⋆
µ,

as well as

∂sΓ⋆
(λ ◦ µ) = (γ−1

+,λ◦µ(x) ◦ λ ◦ µ ◦ γ⋆,x)′(0) = (γ−1
+,λ◦µ(x) ◦ λ ◦ γ•,µ(x) ◦ γ−1

•,µ(x) ◦ µ ◦ γ⋆,x)′(0)
= (∂sΓ•

λ) ◦ µ(x) ∂sΓ⋆
µ(x).

The identity (6.2.11b) follows by

∂z(λ ◦ µ)(x) = ∂z(λ ◦ γ•,µ(x) ◦ γ−1
•,µ(x) ◦ µ)(x) = (∂Γ•λ) ◦ µ∂szµ.

�

Lemma 6.2.8. Given an approximate geometry T⋆ with (Γ1)�(Γ2), there holds

(∂sΓ⋆
γ−1
⋆ ) ◦ γ⋆ = (∂sΓγ⋆)

−1
and |(∂Γ⋆γ

−1
⋆ ) ◦ γ⋆| = |∂Γγ⋆|−1. (6.2.12)

Proof. The hain rule (6.2.11) shows

1 = ∂sΓ(γ
−1
⋆ ◦ γ⋆) = (∂sΓ⋆

γ−1
⋆ ) ◦ γ⋆ ∂sΓγ⋆.

Sine (Γ2) implies ∂sΓγ⋆ 6= 0, the �rst statement follows. The identity (6.2.9) proves the

seond statement. �

6.2.4. Su�ient onditions for approximate geometries. Below, we investigate

the laimed properties of the exat and approximate geometries.

Lemma 6.2.9. There exists a onstant CΓ > 0 whih depends only on Γ, suh that all

x, y ∈ Γ satisfy

C−1
Γ |x− y| ≤ |Γy

x| ≤ CΓ|x− y|.
(6.2.13)

Under (Γ2) all x, y ∈ Γ⋆ satisfy

C−1
Γ C−1

Lip|x− y| ≤ |Γy
⋆,x| ≤ CLipCΓ|x− y|

(6.2.14)

and under (Γ1), there holds

(∂sΓγ⋆)
−1 = ∂sΓ⋆

(γ−1
⋆ ) ◦ γ⋆ > 0 (6.2.15)

almost everywhere on Γ. Moreover, there exist onstants hΓ > 0 and εΓ > 0 suh that for

the approximate geometry T⋆ holds

(i) h⋆ ≤ C−1
Γ κ−1

Γ /2 implies (Γ3) and (Γ4) with Cµ = 2CΓ,

(ii) h⋆ ≤ C−1
Γ κ−1

Γ /2 and geo(T⋆) ≤ κ−1
Γ /2 imply (Γ1),

(iii) geo(T⋆) ≤ C−1
Γ /2 implies (Γ2).

Proof of (6.2.13). Without loss of generality, assume that {0, 1} /∈ γ−1(Γy
x). The as-

sumption that |γ′| is onstant and the minimality of Γy
x shows that |γ−1(Γy

x)| ≤ 1/2 and

hene |γ−1(x) − γ−1(y)| = d(γ−1(x), γ−1(y)) (where d(·, ·) de�nes the metri on [0, 1] from
Setion 6.2.0.1). With this, there holds

|Γy
x| =

∫

Γy
x

1 dx =

∫ γ−1(y)

γ−1(x)

|γ′(z)| dz ≤ ‖γ′‖L∞([0,1])|γ−1(x)− γ−1(y)| . |x− y|,
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as well as

|x− y| . |γ−1(x)− γ−1(y)| =
∣∣
∫ γ−1(y)

γ−1(x)

1 dz
∣∣ =

∣∣
∫

Γy
x

|∂Γγ−1|
∣∣ . |Γy

x|.

�

Proof of (ii). To see (Γ1), we apply the impliit funtion theorem. Let T ∈ T⋆ with

endpoints xT , yT ∈ T , and let γT : (0, 1) → T, γT (s) := (xT − yT )s + yT be an a�ne

parametrization of the interior of T . The impliit de�nition (6.2.1) rewrites as follows: Find

γ̃T : [0, 1] → [0, 1] suh that

F (t, γ̃T (t)) = 0 for all t ∈ γ−1(T Γ), where F (t, s) = (γ(t)− γT (s)) · tΓ ◦ γ(t). (6.2.16)

Sine Γ and γ are pieewise smooth, there holds that F : γ−1(T Γ) × (0, 1) → R is smooth.

If ∂sF (t0, s0) 6= 0 for all (t0, s0) ∈ γ−1(T Γ) × [0, 1], the impliit funtion theorem provides

a unique map γ̃T : γ−1(T Γ) → (0, 1) whih is smooth and satis�es (6.2.16). With this,

γ⋆(x) := γT ◦ γ̃T ◦ γ−1(x) for all x ∈ T \ {xT , yT} satis�es (Γ1) up to injetiveness (whih is

shown below).

To prove ∂sF (t0, s0) = (xT − yT ) · tΓ ◦ γ(t0) 6= 0, assume

0 = ∂sF (t0, s0) = (xT − yT ) · tΓ ◦ γ(t0) =
∫

TΓ

tΓ(z) · tΓ ◦ γ(t0) dz. (6.2.17)

The integrand r(z) := tΓ(z) · tΓ ◦ γ(t0) satis�es r(γ(t0)) = 1. Due to (6.2.17), there exists at
least one z′ ∈ T Γ

with r(z′) = 0. This implies the existene of z′′ ∈ T Γ
suh that

κΓ ≥ |(∂ΓtΓ)(z′′)| ≥ |(∂Γr)(z′′)| ≥ |T Γ|−1 ≥ C−1
Γ |xT − yT |−1,

where we used T Γ = ΓyT
xT
. This shows

κ−1
Γ C−1

Γ ≤ |xT − yT | ≤ ‖h⋆‖L∞(Γ⋆).

This shows that for h⋆ ≤ κ−1
Γ C−1

Γ , ∂sF (t0, s0) 6= 0 and hene (Γ1) up to injetiveness.

To prove that γ⋆ is injetive, onsider

0 = ∂tF (t, γ̃T (t)) = (∂tF )(t, γ̃T (t)) + (∂sF )(t, γ̃T (t))γ̃
′
T (t),

whih implies by use of γ′(t) = |Γ|tΓ ◦ γ(t)

|γ̃′T (t)| =
∣∣∣ ∂tF (t, γ̃T (t))

(xT − yT ) · tΓ ◦ γ(t)
∣∣∣

=
∣∣∣γ

′(t) · tΓ ◦ γ(t) + (γ(t)− γT ◦ γ̃T (t)) · (tΓ ◦ γ)′(t)
(xT − yT ) · tΓ ◦ γ(t)

∣∣∣

≥ |γ′(t)| − |(γ(t)− γT ◦ γ̃T (t))||∂ΓtΓ||γ′(t)|
h⋆

.

Hene, for |(γ(t)−γT ◦ γ̃T (t))| ≤ geo(T⋆)
2 ≤ κ−1

Γ /2, there holds with the Lipshitz ontinuity

of γ

|γ̃′T (t)| ≥ |γ′(t)|/2 ≥ C−1
γ > 0,

whih implies that γ̃T : [0, 1] → [0, 1] is stritly monotone and hene injetive. By de�nition,

γ⋆|TΓ := γT ◦ γ̃T ◦ γ−1
is also injetive. �
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Proof of (i) =⇒ (Γ3). The property (Γ3) an be seen as follows: Let y1, y2 ∈ T Γ
suh

that (y1 − x) · (xT − yT ) = (y2 − x) · (xT − yT ) = 0 for some x ∈ T . Then, there holds

0 = (y1 − y2) · (xT − yT ) =

∫

Γ
y2
y1

tΓ(z) · (xT − yT ) dz. (6.2.18)

Rolle's theorem provides z0 ∈ T Γ
with |tΓ(z0) · (xT − yT )| = |xT − yT |. Hene, the integrand

r(z) := tΓ(z) · (xT − yT ) satis�es |r(z0)| = |xT − yT |. Assume y1 6= y2, then (6.2.18) shows

r(z1) = 0 for at least one z1 ∈ Γy2
y1
. This implies for some z2 ∈ T Γ

|T Γ|−1|xT − yT | ≤ |Γz1
z0
|−1|xT − yT | ≤ |∂Γr(z2)| ≤ |xT − yT |κΓ.

Hene, y1 = y2 for |T Γ| ≤ κ−1
Γ /2 or h⋆ ≤ κ−1

Γ C−1
Γ /2. This implies (Γ3). �

Proof of (iii). To see (Γ2) onsider

|γ⋆(x)− γ⋆(y)| ≤ |x− y|+ |x− γ⋆(x)− (y − γ⋆(y))|

≤ |x− y|+
∣∣
∫

Γy
x

tΓ(z)− ∂Γγ⋆(z) dz
∣∣

≤ |x− y|+ geo(T⋆)|Γy
x|

≤ (1 + CΓgeo(T⋆))|x− y|,
as well as

|γ⋆(x)− γ⋆(y)| ≥ |x− y| − |x− γ⋆(x)− (y − γ⋆(y))|
≤ (1− CΓgeo(T⋆))|x− y|.

Therefore, (Γ2) holds for geo(T⋆) ≤ C−1
Γ /2. �

Proof of (6.2.14)�(6.2.15). To see (6.2.15), apply (6.2.11) to see

1 = ∂sΓ(idΓ) = ∂sΓ(γ
−1
⋆ ◦ γ⋆) = ∂sΓ⋆

(γ−1
⋆ ) ◦ γ⋆ ∂sΓγ⋆.

This shows that ∂sΓγ⋆ 6= 0 almost everywhere on Γ. Moreover, sine γ⋆ is pieewise smooth,

∂sΓγ⋆ < 0 is only possible if ∂sΓγ⋆ < 0 in the interior of some element T Γ
for T ∈ T⋆ with

endpoints xT and yT . However, this in ombination with (6.2.9) and tΓ⋆ = (yT−xT )(|yT−xT |)
yields the ontradition

yT − xT = γ⋆(yT )− γ⋆(xT ) =

∫

TΓ

∂Γγ⋆(z) dz
(6.2.9)

=

∫

TΓ

tΓ⋆ ◦ γ⋆(z)∂sΓγ⋆(z) dz

=
yT − xT
|yT − xT |

∫

TΓ

∂sΓγ⋆(z) dz.

This proves (6.2.15).

To see (6.2.14), assume (Γ2). Then there holds γ−1
⋆ (Γy

x,⋆) = Γ
γ−1
⋆ (y)

γ−1
⋆ (x)

, sine the bi-Lipshitz

property (Γ2) ensures that endpoints are mapped to endpoints. This, however, implies

|Γy
x,⋆| =

∫

Γy
x,⋆

1 dx =

∫

γ−1
⋆ (Γy

x,⋆)

1|∂Γ⋆γ
−1
⋆ (x)| dx ≃ |Γγ−1

⋆ (y)

γ−1
⋆ (x)

| ≃ |x− y|,

where we used C−1
Lip ≤ |∂Γ⋆γ

−1
⋆ | ≤ CLip. �
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Proof of (i) =⇒ (Γ4). Let x ∈ T Γ
for some T ∈ T⋆ and onsider the right triangle

with nodes (x, γ⋆(x), µ⋆(x)) as depited in Figure 2. Let α ≥ 0 denote the interior angle

at the point x. By de�nition, the right-angle is at µ⋆(x). There holds by the Pythagoras

theorem

|x− γ⋆(x)|2 = |x− µ⋆(x)|2 + |µ⋆(x)− γ⋆(x)|2 = |x− µ⋆(x)|2 + |x− γ⋆(x)|2 sin2(α)

and hene

cos2(α)|x− γ⋆(x)|2 = |x− µ⋆(x)|2. (6.2.19)

Obviously, α is also the angle between T and tΓ(x). Hene, one obtains with xT , yT ∈ Γ∩ T
denoting the endpoints of T

| cos(α)| = |tΓ(x) ·
xT − yT
|xT − yT |

| =
∣∣∣|xT − yT |−1

∫

Γ
yT
xT

tΓ(x) · tΓ(z) dz
∣∣∣.

The integrand r(z) := tΓ(x) · tΓ(z) satis�es r(x) = 1 and therefore also |r(z) − r(x)| ≤
‖∂Γr‖L∞(Γ

yT
xT

)|ΓyT
xT
| ≤ κΓ|ΓyT

xT
|. For h⋆ ≤ C−1

Γ κ−1
Γ /2, this implies r(z) ≥ 1/2 for all z ∈ ΓyT

xT

and hene

| cos(α)| ≥ |xT − yT |−1|ΓyT
xT
|/2 ≥ C−1

Γ /2 > 0. (6.2.20)

Together with (6.2.19), this implies

1

2CΓ
|x− γ⋆(x)|2 ≤ |x− µ⋆(x)|2 ≤ |x− γ⋆(x)|2.

�

6.2.5. Mesh re�nement. Assume an approximate geometry (T⋆,Γ⋆) and de�ne the

onvex hull of two points x, y ∈ R2
by [x, y] :=

{
λ(x− y) + y : 0 ≤ λ ≤ 1

}
⊂ R2

. To biset

a given element T ∈ T⋆, apply the following algorithm (see also Figure 4 for an illustration)

Algorithm 6.2.10. T +
⋆ := bisect(T⋆, T )

(i) Compute cT := (xT + yT )/2, where xT , yT ∈ K⋆ ∩ T are the endpoints of T .
(ii) Find zT ∈ T Γ ⊆ Γ with (zT − cT ) · (xT − yT ) = 0.
(iii) Set T +

⋆ = (T⋆ \ {T}) ∪ {T1, T2} with T1 := [xT , zT ] and T2 := [zT , yT ].

Lemma 6.2.11. With (Γ3), Algorithm 6.2.10 is well-de�ned and satis�es

max{|T1|2, |T2|2} ≤ |T |2
4

+ ‖idΓ − µ⋆‖L∞(T ) ≤
(1
4
+ C2

γ‖γ′′‖2L∞([0,1])|T |2
)
|T |2, (6.2.21)

as well as |T |/2 ≤ min{|T1|, |T2|}, where {T1, T2} = T +
⋆ \ T⋆ denote the sons of T and

‖γ′′‖L∞([0,1]) is understood pieewise.
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Proof. Sine yT in Step (ii) of Algorithm 6.2.10 is unique due to (Γ3), the algorithm is

well-de�ned. The Pythagoras theorem implies |Ti|2 = |T |2/4 + |zT − µ⋆(zT )|2. This implies

|Ti| ≥ |T |/2 and the �rst ≤ in (6.2.21). Sine Γ⋆ is a nodal interpolation of Γ, a possible

parametrization of Γ⋆ is given by I⋆γ : [0, 1] → Γ⋆, where I⋆ : C([0, 1]) → S1(T[0,1]) is the
a�ne nodal interpoland on the partition T[0,1] whih is indued by the nodes γ

−1(K⋆) ⊆ [0, 1].
By de�nition, (I⋆γ) ◦ γ−1(x) ∈ T for all x ∈ T Γ

. There holds for y ∈ T Γ

|y − µ⋆(y)| = min
x∈T

|y − x| ≤ |x− (I⋆γ) ◦ γ−1(x)| = |(γ − I⋆γ) ◦ γ−1(x)|

≤ |γ−1(T )|2‖γ′′‖L∞([0,1]) ≤ C2
γ |T |2‖γ′′‖L∞([0,1]),

where the last norm on the right-hand side is understood pieewise. Thus, the above on-

ludes (6.2.21). �

Given a set of marked elements M⋆ := {T1, . . . , Tn} ⊆ T⋆, we de�ne the re�nement

T(T⋆,M⋆) by bisetion from Setion 3.2.8, where we use bisect(·, ·) to split the elements.

Note that the assumptions of Setion 3.2.1�3.2.7 are satis�ed.

6.2.6. Auxiliary results. This setion provides several results whih are used for the

a posteriori analysis of this hapter. Some of the tehniques used in the proofs below are

similar to the a priori analysis (with uniform partitions on smooth geometries) in [75, Chap-

ter 8℄.

Lemma 6.2.12. Let x, y ∈ Γ suh that Γy
x ∩ PΓ = ∅. Then, there holds for an approxi-

mate geometry T⋆ ∈ T

|(x− y) · (γ⋆(x)− x)| ≤ κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

Proof. De�ne r(z) := tΓ(z) · (γ⋆(x)−x). By de�nition of γ⋆, there holds r(x) = 0. This
implies

|(x− y) · (γ⋆(x)− x)| =
∣∣∣
∫

Γy
x

r(z) dz
∣∣∣ =

∣∣∣
∫

Γy
x

∫

Γz
x

∂Γr(w) dw dz
∣∣∣

≤ |Γy
x|2‖∂Γr(w)‖L∞(Γy

x) ≤ κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

�

Lemma 6.2.13. There exists a onstant C28 > 0 suh that all x, y ∈ Γ satisfy (i)�(iii).

(i) If Γy
x ∩ PΓ = ∅

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ) + ‖idΓ − γ⋆‖L∞(Γ).

(ii) If Γy
x ∩ PΓ = {z0}

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ)

+ ‖idΓ − γ⋆‖L∞(Γ)

(
1 +

|z0 − x| + |z0 − y|
|x− y|2

)

as well as

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖L∞(Γ).
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(iii) If x 6= y

C−1
28

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ) + ‖idΓ − γ⋆‖L∞(Γ)

(
1 +

1

|x− y|2
)
.

Proof. There holds for all a ∈ R

1− 1

a
≤ log(a) ≤ a− 1.

This implies

|x− y|2 − |γ⋆(x)− γ⋆(y)|2
|x− y|2 ≤ log

( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
≤ |x− y|2 − |γ⋆(x)− γ⋆(y)|2

|γ⋆(x)− γ⋆(y)|2

and hene

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ C2
Lip

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣

|x− y|2

= C2
Lip

|x− γ⋆(x)− (y − γ⋆(y))|2
|x− y|2

+ 2C2
Lip

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)|
|x− y|2 .

(6.2.22)

The �rst term on the right-hand side is estimated by

|x− γ⋆(x)− (y − γ⋆(y))|2 = |
∫

Γy
x

∂Γ(idΓ − γ⋆)(s) ds|2 ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ)|Γy
x|2

≤ C2
Γ‖tΓ − ∂Γγ⋆‖2L∞(Γ)|x− y|2. (6.2.23)

The seond term on the right-hand side of (6.2.22) is treated separately for eah ase.

Case (i): There holds with Lemma 6.2.12

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ 2κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

Case (iii): There holds

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ 2‖idΓ − γ⋆‖L∞(Γ)|x− y|.
Case (ii): Lemma 6.2.12 shows

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)|
≤ |(x− γ⋆(x)− (y − γ⋆(y))) · (x− z0))|+ |(x− γ⋆(x)− (y − γ⋆(y))) · (z0 − y)|
≤ ‖idΓ − γ⋆‖L∞(Γ)

(
κΓC

2
Γ|x− z0|2 + |x− z0|+ κΓC

2
Γ|y − z0|2 + |y − z0|

)

≤ ‖idΓ − γ⋆‖L∞(Γ)

(
2κΓC

6
Γ|x− y|2 + |x− z0|+ |y − z0|

)
,

where we used |x− z0| ≤ CΓ|Γz0
x | ≤ CΓ|Γy

x| ≤ C2
Γ|x− y|. To see the seond estimate in (ii),

proeed as in (6.2.23) to obtain

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ |x− y||x− γ⋆(x)− (y − γ⋆(y))|
. |x− y|2‖tΓ − ∂Γγ⋆‖L∞(Γ).

This onludes the proof. �
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Lemma 6.2.14. Let ν > 0 and let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ2).
Then, there holds ∂sΓγ⋆ = |∂Γγ⋆| and

C−1
ν ‖1− |∂Γγ⋆|‖L∞(Γ) ≤ ‖1− |∂Γγ⋆|ν‖L∞(Γ) ≤ Cν‖1− |∂Γγ⋆|‖L∞(Γ),

as well as for all T ∈ T⋆

‖1− |∂Γγ⋆|‖L∞(TΓ) ≤ ‖1− |∂Γγ⋆|2‖L∞(TΓ) ≤ (1 + 2κΓ)geoT (T⋆)
2.

The onstant Cν > 0 depends only on CLip and ν.

Proof. The identity (6.2.9) and (6.2.15) show

|∂Γγ⋆| = |tΓ⋆ ◦ γ⋆|∂sΓγ⋆ = ∂sΓγ⋆.

Taylor expansion shows that for all 0 < δ ≤ a ≤ δ−1 <∞ exists za > 0 with |1−za| ≤ |1−a|
suh that aν − 1 = νzν−1

a (a − 1). Sine aν − 1 and a − 1 have the same sign for all ν > 0,
this implies

C−1
δ |aν − 1| ≤ |a− 1| ≤ Cδ|aν − 1|, (6.2.24)

where Cδ > 0 depends only on δ and ν. Due to (Γ2), there holds

C−1
Lip ≤ |∂Γγ⋆| ≤ CLip almost everywhere on Γ.

This and (6.2.24) with δ = C−1
Lip and a = |∂Γγ⋆| show

‖1− |∂Γγ⋆|‖L∞(Γ) ≃ ‖1− |∂Γγ⋆|ν‖L∞(Γ).

Moreover, there holds for all a ≥ 0 that |1−a| ≤ |1−a2|. It remains to estimate 1−|∂Γγ⋆|2.
To that end, alulate

1− |∂Γγ⋆|2 = |∂Γγ⋆ − tΓ|2 − 2(∂Γγ⋆ − tΓ) · tΓ.
By de�nition of γ⋆, there holds (γ⋆ − idΓ) · tΓ = 0. This implies almost everywhere

0 = ∂Γ
(
(γ⋆ − idΓ) · tΓ

)
= (∂Γγ⋆ − tΓ) · tΓ + (γ⋆ − idΓ) · ∂ΓtΓ

and hene

|(∂Γγ⋆ − tΓ) · tΓ| ≤ ‖∂ΓtΓ‖L∞(Γ)‖idΓ − γ⋆‖L∞(TΓ) ≤ κΓ‖idΓ − γ⋆‖L∞(TΓ).

The ombination of the last estimates onludes the proof. �

Lemma 6.2.15. Any g ∈ L2(Γ) with supp(g) ⊆ Γy
x for some x, y ∈ Γ satis�es

‖|g|‖H−1/2(Γ) ≤ Cabs|Γy
x|1/2(1 + | log(|Γy

x|)|)1/2‖g‖L2(Γ).

The onstant Cabs > 0 depends only on Γ and Cγ.

Proof. Without loss of generality, assume g ≥ 0. Construt a uniform partition U of

Γ, with h(U) := |U | ≃ |Γy
x|1/2 for all U ∈ U and supp(g) ⊂ U0 for some U0 ∈ U . Let

Π0 : L2(Γ) → P0(U) denote the orresponding L2
-orthogonal projetion. There holds

‖g‖H−1/2(Γ) ≤ ‖Π0g‖H−1/2(Γ) + ‖(1−Π0)g‖H−1/2(Γ)

. ‖Π0g‖H−1/2(Γ) + h(U)1/2‖g‖L2(Γ).
(6.2.25)

By onstrution, there holds Π0g = αχU0 for some α ≥ 0, where χU0 denotes the harater-

isti funtion with respet to U0. Sine 〈V· , ·〉1/2 is an equivalent norm on H−1/2(Γ), there
holds

‖Π0g‖H−1/2(Γ) = α‖χU0‖H−1/2(Γ) ≃ α〈VχU0 , χU0〉1/2Γ .
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Without loss of generality, assume {0, 1} /∈ γ−1(U0). With the parametrization γ and h :=
|γ−1(U0)|, there holds

2π〈VχU0 , χU0〉Γ =
∣∣∣
∫

U0

∫

U0

log |x− y| dx dy
∣∣∣

≤
∫

γ−1(U0)

∫

γ−1(U0)

∣∣ log |γ(s)− γ(t)|
∣∣|γ′(s)||γ′(t)| dt ds

≤ C2
γ

∫

γ−1(U0)

∫

γ−1(U0)

| log(Cγ)|+
∣∣ log |s− t|

∣∣ dt ds,

= C2
γ

(
h2| log(Cγ)|+

∫ h

0

∫ h

0

∣∣ log |s− t|
∣∣ dt ds

)
.

The integral term on the right-hand side is further estimated by

∫ h

0

∫ h

0

∣∣ log |s− t|
∣∣ dt ds = h2

∫ 1

0

∫ 1

0

| log(h)|+
∣∣ log |s− t|

∣∣ dt ds

. h2(1 + | log(h)|),
sine the remaining integral is �nite. The Lipshitz ontinuity of γ shows h ≃ h(U). Alto-
gether, this proves

‖Π0g‖H−1/2(Γ) ≃ α〈VχU0 , χU0〉1/2Γ . αh(U)(1 + | log(h(U))|)1/2.
The fat ‖Π0g‖L2(Γ) ≃ αh(U)1/2 and h(U) ≃ |Γy

x| together with (6.2.25) onlude the proof.

�

The following lemma is well-known and repeated here only for ompleteness.

Lemma 6.2.16. Let O1, . . . , ON denote an open over of some ompat set C ⊆ Rd
,

d ∈ N. Then, there exists ε > 0 suh that for all x ∈ C, there exists i ∈ {1, . . . , N} with

Bε(x) ⊆ Oi.

Proof. Assume that the statement is wrong. Then, there exists a sequene xn ∈ C
with B1/n(xn) 6⊆ Oi for all i = 1, . . . , N and all n ∈ N. The ompatness of C provides a

subsequene xnk
→ x ∈ C. By de�nition, there exists i ∈ {1, . . . , N} with x ∈ Oi. Hene,

there also exists k ∈ N with B1/nk
(xnk

) ⊆ Oi, whih ontradits the assumption. �

Lemma 6.2.17. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3), there exists a
ontinuous extension γ̂⋆ : R2 → R2

of γ⋆ suh that

γ̂⋆|Γ = γ⋆, (6.2.26)

‖γ̂⋆ − idR2‖L∞(R2) ≤ ‖γ⋆ − idΓ‖L∞(Γ), (6.2.27)

‖∇γ̂⋆ − I‖L∞(R2) ≤ Cext‖∂Γγ⋆ − tΓ‖L∞(Γ), (6.2.28)

where I ∈ R2×2
denotes the identity matrix and Cext > 0 depends only on Γ. For geo(T⋆) ≤

C−1
ext/2, γ̂⋆ is bijetive and bi-Lipshitz suh that

|x− y|/2 ≤ |γ̂⋆(x)− γ̂⋆(y)| ≤ (1 + Cext/2)|x− y|. (6.2.29)

Partiularly, there holds γ⋆(Ω) = Ω⋆ (with ∂Ω⋆ = Γ⋆ from Setion 6.2.0.1) and

‖(∇γ̂⋆)−1‖L∞(R2) ≤ 2. (6.2.30)

Definition 6.2.18. After the following proof and throughout this hapter, we will not

distinguish between γ⋆ and its extension γ⋆ := γ̂⋆. The meaning will be lear from the ontext.

127



Proof. Without loss of generality, let the parametrization γ satisfy γ′|Γ|−1 = tΓ. Ap-

proximate γ by some smooth γε : [0, 1] → R2
, ∂ks γε(0) = ∂ks γε(1) for all k ∈ N0 suh that

‖γ−γε‖W 1,∞([0,1]) ≤ ε. LetM ∈ R2×2
denote the orthogonal matrix whih satis�esMtΓ = nΓ.

Then, de�ne nε := M(γ′ε ◦ γ−1)|Γ|−1 ∈ W 1,∞(Γ,R2). With nΓ = M(γ′ ◦ γ−1)|Γ|−1
, there

holds

‖nΓ − nε‖L∞(Γ) ≤ |Γ|−1‖(γ′ε − γ′) ◦ γ‖L∞(Γ) ≤ ε|Γ|−1.

De�ne the funtion ζ : [0, 1]×R → R2
by ζ(s, t) := γ(s)+tnε◦γ(s). There holds with (6.2.11a)

∇ζ(s, t) =
(
∂sγ(s) + t(∂Γnε) ◦ γ(s)∂ssγ(s) , nε ◦ γ(s)

)
∈ R2×2.

By de�nition, there holds

|∂sγ(s) ·M−1(nε ◦ γ(s))| ≥ |∂sγ(s) ·M−1(nΓ ◦ γ(s))| − |∂sγ(s)|‖nΓ − nε‖L∞(Γ)

≥ |∂sγ(s) · ∂sγ(s)||Γ|−1 − |∂sγ(s)|ε|Γ|−1

= |∂sγ(s)|2|Γ|−1 − ε|Γ|−1|∂sγ(s)|.
as well as

|t(∂Γnε) ◦ γ(s)∂ssγ(s) ·M−1(nε ◦ γ(s))| ≤ |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|‖nε‖L∞(Γ)

≤ |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|(1 + ε|Γ|−1).

Sine M realizes a rotation by π/2, this shows

|det(∇ζ(s, t))| = |∂sζ(s, t) ·M−1∂tζ(s, t)|
≥ |∂sγ(s)|2|Γ|−1 − ε|Γ|−1|∂sγ(s)| − |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|(1 + ε|Γ|−1).

Sine |∂sγ(s)| = |∂ssγ(s)| = |Γ|, su�iently small ε, t0 > 0 with |t| ≤ t0 imply

|det(∇ζ(s, t))| ≥ |Γ|/2.
Analogously, we bound for the Frobenius matrix norm ‖ · ‖F by

‖∇ζ(s, t)‖2F = (|Γ|+ |t|‖∂Γnε‖L∞(Γ)|Γ|)2 + (1 + ε|Γ|−1)2

and hene

‖(∇ζ(s, t))−1‖F =
1

|det(∇ζ(s, t))|‖(∇ζ(s, t))‖F

≤ 2|Γ|−1
√

(|Γ|+ |t|‖∂Γnε‖L∞(Γ)|Γ|)2 + (1 + ε|Γ|−1)2 := Cζ,

(6.2.31)

where Cζ > 0 depends only on ε, t0 and Γ. The inverse mapping theorem proves that

ζ is a loal di�eomorphism. The ompatness of [0, 1] × [−t0, t0] implies the existene of

an open over O1, . . . , ON suh that ζ |Oi
is a di�eomorphism onto its image. Let now

(si, ti) ∈ [0, 1]× [−t0, t0], i = 1, 2 with ζ(s1, t1) = ζ(s2, t2). Then, there holds

|γ(s1)− γ(s2)| ≤ 2max{t1, t2}‖∂Γnε‖L∞(Γ).

Lemma 6.2.16 shows that for t1, t2 ≤ t′0 and t
′
0 > 0 su�iently small, there holds (si, ti) ∈ Oj

for some j ∈ {1, . . . , N} and i = 1, 2. Sine ζ |Oi
is a di�eomorphism, this shows (s1, t1) =

(s2, t2). Hene, ζ |[0,1]×(−t′0,t
′
0)
is injetive, and by the inverse mapping theorem also a di�eo-

morphism. Partiularly, due to (6.2.31), ζ is a bi-Lipshitz, bijetive funtion onto its image

O := ζ([0, 1] × (−t′0, t′0)) ⊆ R2
, whih is [0, 1]-periodi with respet to its �rst argument.

We prove that ζ is also bi-Lipshitz with respet to the metri d(·, ·) whih identi�es 0 and
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1 of [0, 1] (as de�ned in Setion 6.2.0.1). To that end, onsider s1, s2 ∈ [0, 1], suh that

|s1 − 0|+ |s2 − 1| ≤ |s1 − s2|. There holds
|ζ(s1, t1)− ζ(s2, t2)| ≤ |ζ(s1, t1)− ζ(s2, t2)|

≤ |ζ(s1, t1)− ζ(0, t1)|+ |ζ(1, t1)− ζ(s2, t2)|
. |s1 − 0|+ |1− s2|+ |t1 − t2| = d(s1, s2) + |t1 − t2|

as well as with bi-Lipshitz ontinuity on [0, 1]× [0, 1] (without identi�ation)

|ζ(s1, t1)− ζ(s2, t2)| & |s1 − s2|+ |t1 − t2| ≥ d(s1, s2) + |t1 − t2|.
Sine the set [0, 1] × (−t′0, t′0) is open with respet to the produt topology generated by

d(·, ·) and the Eulidean topology, the set O is open by the bi-Lipshitz ontinuity above.

Partiularly, O is a neighborhood of Γ. With π1 denoting the projetion onto the �rst

argument, the funtion

P := γ ◦ π1 ◦ ζ−1 : O → Γ

is also Lipshitz ontinuous (where the periodiity of ζ is used) and satis�es P (x) = x for

all x ∈ Γ. Choose a smooth ut-o� funtion χ : R2 → [0, 1] with χ|Γ = 1 and supp(χ) ⊆ O.
Then, de�ne

γ̂⋆(x) := x+ χ(x)(γ⋆ ◦ P (x)− P (x)).

There holds γ̂⋆|Γ = γ⋆ as well as

|γ̂⋆(x)− x| ≤ ‖idγ − γ⋆‖L∞(Γ).

This implies (6.2.27). Moreover, with the hain-rule (6.2.11b), we obtain for z ∈ R2

∂z(γ̂⋆ − I) = (∂Γγ⋆ − tΓ) ◦ P (x) ∂szP (x).
The identity (6.2.10) shows |∂szP (x)| = |∂zP (x)| and hene proves (6.2.28) with Cext :=
‖∇P‖L∞(O). For geo(T⋆) < C−1

ext/2 and all x, z ∈ R2
, there holds

x · (∇γ̂⋆)(z)x ≥ |x|2 − |I −∇γ̂⋆(z)||x|2 ≥ |x|2/2. (6.2.32)

This implies (6.2.30). Assume that γ̂⋆(x) = γ̂⋆(y) for some x, y ∈ R2
. There holds with the

onvex hull [x, y] :=
{
λx+ (1− λ)y : 0 ≤ λ ≤ 1

}
and (6.2.32)

0 =
∣∣(x− y) · (γ̂⋆(x)− γ̂⋆(y))

∣∣ =
∣∣
∫

[x,y]

(x− y) · (∇γ̂⋆(z))
x− y

|x− y| dz
∣∣

≥ |x− y|
∫

[x,y]

1/2 dz.

This implies x = y. Hene γ̂⋆ is injetive. The inverse mapping theorem shows that γ⋆ is

a global di�eomorphism. The estimate (6.2.30) implies that γ̂⋆ is even bi-Lipshitz. The

estimate (6.2.29) follows from (6.2.28) and(6.2.30). It remains to show that γ̂⋆(Ω) = Ω⋆.

Assume that there exist x, y ∈ Ω suh that γ̂⋆(x) ∈ Ω⋆ and γ̂⋆(y) ∈ R2 \ Ω⋆. Then, there

exists a ompat path G ⊆ Ω whih onnets x and y. Sine γ̂⋆(G) is also a ontinuous and

ompat path, there exists z ∈ G suh that γ̂⋆(z) ∈ Γ⋆ and hene z ∈ Γ by bijetivity of γ̂⋆
and γ⋆. This, however, ontradits G ⊆ Ω. We showed that γ̂⋆(Ω) ⊆ Ω⋆ or γ̂⋆(Ω) ⊆ R2 \Ω⋆.

The same arguments prove γ̂⋆(R2\Ω) ⊆ Ω⋆ or γ̂⋆(R2\Ω) ⊆ R2\Ω⋆. However, the bi-Lipshitz

ontinuity prohibits γ̂⋆(R2 \ Ω) ⊆ Ω⋆, sine R2 \ Ω is unbounded. This shows γ̂⋆(Ω) = Ω⋆

and hene onludes the proof. �
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By use of the hain-rule, there holds under the assumptions of Lemma 6.2.17 that

I = ∇(γ−1
⋆ ◦ γ⋆) = (∇γ−1

⋆ ) ◦ γ⋆∇γ⋆
and sine ∇γ⋆ is a regular matrix by (6.2.30), this shows

(∇γ−1
⋆ ) ◦ γ⋆ = (∇γ⋆)−1. (6.2.33)

Lemma 6.2.19. Given an approximate geometry T⋆ ∈ T whih satis�es (Γ2), there
holds for all ψ ∈ H−1/2(Γ) and all v ∈ H1/2(Γ)

C
−1/2
Lip ‖ψ‖H−1/2(Γ) ≤ ‖ψ ◦ γ−1

⋆ |∂Γ⋆γ
−1
⋆ |‖H−1/2(Γ⋆) ≤ C

1/2
Lip‖ψ‖H−1/2(Γ) (6.2.34)

as well as

C
−1/2
Lip ‖v‖H1/2(Γ) ≤ ‖v ◦ γ−1

⋆ ‖H1/2(Γ⋆) ≤ C
1/2
Lip‖v‖H1/2(Γ). (6.2.35)

Proof. There holds for v ∈ H1(Γ) with (6.2.12)

‖∂Γ⋆(v ◦ γ−1
⋆ )‖L2(Γ⋆) = ‖(∂Γv) ◦ γ−1

⋆ |∂Γ⋆γ
−1
⋆ |‖L2(Γ⋆)

=
( ∫

Γ⋆

((∂Γv) ◦ γ−1
⋆ )2|∂Γ⋆γ

−1
⋆ |2 dx

)1/2

=
( ∫

Γ

(∂Γv)
2|(∂Γ⋆γ

−1
⋆ ) ◦ γ⋆|2|∂Γγ⋆| dx

)1/2
= ‖∂Γv|∂Γγ⋆|−1/2‖L2(Γ)

as well as

‖v ◦ γ−1
⋆ ‖L2(Γ⋆) = ‖v|∂Γγ⋆|1/2‖L2(Γ).

Due to (Γ2), there holds C−1
Lip ≤ |∂Γγ⋆| ≤ CLip and hene

C
−1/2
Lip ‖∂Γv‖L2(Γ) ≤ ‖∂Γ⋆(v ◦ γ−1

⋆ )‖L2(Γ⋆) ≤ C
1/2
Lip‖∂Γv‖L2(Γ),

C
−1/2
Lip ‖v‖L2(Γ) ≤ ‖v ◦ γ−1

⋆ ‖L2(Γ⋆) ≤ C
1/2
Lip‖v‖L2(Γ)

Interpolation theory onludes (6.2.35).

On the other hand, there holds

‖ψ ◦ γ−1
⋆ |∂Γγ⋆|−1‖H−1/2(Γ⋆) = sup

v∈H1/2(Γ⋆)

〈ψ ◦ γ−1
⋆ |∂Γγ⋆|−1 , v〉Γ⋆

‖v‖H1/2(Γ⋆)

= sup
v∈H1/2(Γ⋆)

〈ψ , v ◦ γ⋆〉Γ
‖v‖H1/2(Γ⋆)

= sup
v∈H1/2(Γ)

‖v‖H1/2(Γ)

‖v ◦ γ−1
⋆ ‖H1/2(Γ⋆)

〈ψ , v〉Γ
‖v‖H1/2(Γ)

(6.2.35)≃ sup
v∈H1/2(Γ)

〈ψ , v〉Γ
‖v‖H1/2(Γ)

= ‖ψ‖H−1/2(Γ).

This onludes the proof. �

Lemma 6.2.20. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2, there exists a lifting operator L⋆ : H
1/2(Γ⋆) → H1(R2) with

(L⋆v)|Γ⋆ = v and ‖L⋆v‖H1(R2) ≤ Clift‖v‖H1/2(Γ⋆) for all v ∈ H1/2(Γ⋆).

The onstant Clift > 0 depends only on Γ and Cext, CLip.
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Proof. Let L : H1/2(Γ) → H1(R2) denote a standard lifting operator. De�ne

L⋆v := (L(v ◦ γ⋆)) ◦ γ−1
⋆ .

Then, there holds (L⋆v)|Γ⋆ = (Lv ◦ γ⋆) ◦ γ−1
⋆ |Γ⋆ = v|Γ⋆ . Moreover, we obtain

‖L⋆v‖2H1(R2) = ‖L⋆v‖2L2(R2) + ‖∇(L⋆v)‖2L2(R2)

= ‖L⋆v‖2L2(R2) + ‖∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆ ‖2L2(R2).

The identity (6.2.33) implies

‖∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆ ‖2L2(R2) =

∫

R2

∣∣∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆

∣∣2 dx

≤
∫

R2

∣∣∇(Lv ◦ γ⋆)
∣∣2∣∣(∇γ−1

⋆ ) ◦ γ⋆
∣∣2|∇γ⋆| dx

= ‖∇(Lv ◦ γ⋆)|∇γ⋆|−1/2‖2L2(R2)

≤ ‖|∇γ⋆|−1‖L∞(R2)‖∇(Lv ◦ γ⋆)‖2L2(R2)

as well as

‖L⋆v‖2L2(R2) = ‖L(v ◦ γ⋆)|∇γ⋆|1/2‖2L2(R2)

≤ ‖|∇γ⋆|‖L∞(R2)‖L(v ◦ γ⋆)‖2L2(R2).

With (6.2.30) and the ontinuity of L, the last two inequalities prove

‖L⋆v‖2H1(R2) . (1 + ‖∇γ⋆‖L∞(R2))‖Lv ◦ γ⋆‖2H1(R2)

≤ ‖v ◦ γ⋆‖H1/2(Γ).

With (6.2.35), we see

‖v ◦ γ⋆‖H1/2(Γ) ≤ C
1/2
Lip‖v‖H1/2(Γ⋆).

Moreover, (6.2.28) implies ‖∇γ⋆‖L∞(R2) ≤ 1+Cextgeo(T⋆) ≤ 3/2 and onludes the proof. �

The proofs of Lemma 6.2.21�6.2.22 and Proposition 6.2.23 are well-known in the liter-

ature. We repeat them for the sole purpose of ensuring the uniform boundedness of the

onstants appearing with respet to the domains Ω⋆, as this is usually not found in the

literature.

Lemma 6.2.21. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2, there holds

〈V⋆v , v〉Γ⋆ ≥ C−1

Ṽ
‖v‖H−1/2(Γ⋆) for all v ∈ H−1/2(Γ) with 〈v , 1〉Γ = 0. (6.2.36)

The onstant CṼ > 0 depends only on Γ and Cext.

Proof. Let v ∈ L2(Γ⋆) with 〈v , 1〉Γ⋆ = 0. De�ne the interior and exterior normal

derivatives ∂intn , ∂extn . Then, there holds by Greens-identity, the fat ∆V⋆v = 0 in R2 \ Γ⋆,

and |(V⋆v)(x)| ≃ |x|−1
as |x| → ∞, that

‖∇V⋆v‖2L2(R2) = 〈∂intn V⋆v − ∂extn V⋆v , V⋆v〉Γ⋆ .

The jump property of V⋆, i.e., ∂
int
n V⋆v − ∂extn V⋆v = v, shows

‖∇V⋆v‖2L2(R2) = 〈v , V⋆v〉Γ⋆ .
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On the other hand, the jump property implies

‖v‖H−1/2(Γ⋆) ≤ ‖∂intn V⋆v‖H−1/2(Γ⋆) + ‖∂extn V⋆v‖H−1/2(Γ⋆).

With the lifting L⋆ from Lemma 6.2.20 and ∆V⋆v = 0 in R2 \ Γ⋆, we get

‖∂intn V⋆v‖H−1/2(Γ⋆) = sup
w∈H1/2(Γ⋆)\{0}

〈∂intn V⋆v , w〉Γ⋆

‖w‖H1/2(Γ⋆)

≤ sup
w∈H1/2(Γ⋆)\{0}

|〈∇V⋆v , ∇L⋆w〉R2\Γ⋆
|

‖w‖H1/2(Γ⋆)

. ‖∇V⋆v‖L2(R2).

The analogous statement holds for ∂estn Vv. Altogether, this onludes (6.2.36) �

Lemma 6.2.22. There exists ueq(T⋆) ∈ H−1/2(Γ⋆) with V⋆ueq(T⋆) = λeq(T⋆) ∈ R and

〈ueq(T⋆) , 1〉Γ⋆ = 1. All approximate geometries T⋆ ∈ T satisfy

λeq(T⋆) ≥ 2π| log(diam(Ω⋆))| ≥ 2π| log(1− εscale)| > 0.

Proof. Let (v⋆, λ⋆) ∈ H−1/2(Γ⋆)× R solve the saddle-point problem

〈V⋆v⋆ , v〉Γ⋆ − 〈v , λ⋆〉Γ⋆ = 0,

−〈v⋆ , µ〉Γ⋆ = −µ

for all (v, µ) ∈ H−1/2(Γ⋆) × R. Sine Lemma 6.2.21 proves that V⋆ is ellipti on the kernel

of 〈· , µ〉Γ⋆ , standard LBB theory shows

‖v⋆‖H−1/2(Γ⋆) + |λ⋆| . 1,

where the hidden onstant depends only on CV but not on the partiular geometry T⋆. There

holds ueq(T⋆) = v⋆ and λeqT⋆ = λ⋆. De�ne Robins onstant of the set Γ⋆ by

VΓ⋆ := − inf
µ∈B

∫

Γ⋆

∫

Γ⋆

log |x− y| dµ(x) dµ(y),

where B denotes the set of all Borel probability measures on Γ⋆. A well-known result of

potential theory (see, e.g., [84, Setion 1℄ for the proof) is that the logarithmi apaity

exp(−VΓ⋆) satis�es exp(−VΓ⋆) ≤ diam(Γ⋆) = diam(Ω⋆). The result [84, Theorem 1.2℄ shows

that

1
2π
λ⋆ = 〈v⋆ , 1〉Γ⋆VΓ⋆ = VΓ⋆ .

Altogether, this implies by de�nition of Ω⋆ in Setion 6.2.0.1

1
2π
λ⋆ ≥ − log(diam(Ω⋆)) ≥ − log(1− εscale) > 0.

This onludes the proof. �

Proposition 6.2.23. Given an approximate geometry T⋆ ∈ T with (Γ1)�(Γ3) with

geo(T⋆) ≤ C−1
ext/2, there holds

‖V⋆v‖H1/2(Γ⋆) ≤ CV‖v‖H−1/2(Γ⋆) for all v ∈ H−1/2(Γ⋆) (6.2.37)

as well as

〈V⋆v , v〉Γ⋆ ≥ C−1
V ‖v‖2H−1/2(Γ⋆)

for all v ∈ H−1/2(Γ⋆). (6.2.38)
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The onstant CV > 0 depends only on εscale, CṼ, Γ, Cext and T. This partiularly implies for

any losed subspae P0(T⋆) ⊆ X ⊆ H−1/2(Γ⋆) and the solution UX ∈ X of 〈V⋆UX , V 〉Γ⋆ =
〈f⋆ , V 〉Γ⋆ for all V ∈ X that

‖UX − U(Tℓ)‖H−1/2(Γ⋆) ≤ C2
V min

V ∈P0(Tℓ)
‖UX − V ‖H−1/2(Γ⋆). (6.2.39)

Proof. To see (6.2.38), we use Lemma 6.2.21 and Lemma 6.2.22. Let v ∈ H−1/2(Γ⋆)
and v0 := v − ueq(T⋆)〈v , 1〉Γ⋆. Then, 〈v0 , 1〉Γ⋆ = 0 and with (6.2.36)

〈V⋆v , v〉Γ⋆ = 〈V⋆v0 , v0〉Γ⋆ + 2〈v , 1〉Γ⋆〈V⋆ueq(T⋆) , v0〉Γ⋆

+ 〈v , 1〉2Γ⋆
〈V⋆ueq(T⋆) , ueq(T⋆)〉Γ⋆

= 〈V⋆v0 , v0〉Γ⋆ + 〈v , 1〉2Γ⋆
〈λeq(T⋆) , ueq(T⋆)〉Γ⋆

≥ C−1

Ṽ
‖v0‖2H−1/2(Γ⋆)

+ λeq(T⋆)〈v , 1〉2Γ⋆
& ‖v‖2H−1/2(Γ⋆)

,

where the hidden onstant depends only on εscale and on CṼ.

To see (6.2.37), let Ω⋆ ⊂ R2
denote the domain enlosed by Γ⋆, i.e., Γ⋆ = ∂Ω⋆. Let Ω̂ ⊂ R2

denote a bounded Lipshitz domain suh that Ω⋆ ⊆ Ω̂ for all T⋆ ∈ T with geo(T⋆) ≤ C−1
ext/2

as well as Ω ⊆ Ω̂. There holds for v ∈ H−1/2(Γ⋆) and g ∈ L2(Ω⋆)

〈V⋆v , g〉Ω⋆ =
1
2π

∫

Γ⋆

v(x)

∫

Ω⋆

log |x− y|g(y) dy dx

= 1
2π

∫

Γ⋆

v(x)

∫

Ω̂

log |x− y|g(y) dy dx = 〈v , N g〉Γ⋆,

where N : H̃−1(Ω̂) → H1(Ω̂) denotes the Newton potential (see, e.g., [75℄ for the mapping

properties). We obtain

〈v , N g〉Γ⋆ = 〈v ◦ γ⋆|∂Γγ⋆| , (N g) ◦ γ⋆〉Γ
. ‖v ◦ γ⋆|∂Γγ⋆|‖H−1/2(Γ)‖(N g) ◦ γ⋆‖H1(Ω).

Lemma 6.2.19 shows ‖v ◦ γ−1
⋆ |∂Γγ−1

⋆ |‖H−1/2(Γ) ≃ ‖v‖H−1/2(Γ⋆) and Lemma 6.2.17 implies that

γ⋆ is globally bi-Lipshitz and γ⋆(Ω) = Ω⋆. Hene, we have

‖(N g) ◦ γ⋆‖2H1(Ω) . ‖N g‖2H1(γ⋆(Ω)) ≤ ‖N g‖2
H1(Ω̂)

.

Moreover, sine supp(g) ⊆ Ω⋆, there holds

‖N g‖H1(Ω̂) . ‖g‖H̃−1(Ω̂) = sup
v∈H1(Ω̂)\{0}

〈g , v〉Ω̂
‖v‖H1(Ω̂)

≤ ‖g‖H̃−1(Ω⋆)
sup

v∈H1(Ω̂)\{0}

‖v‖H1(Ω⋆)

‖v‖H1(Ω̂)

≤ ‖g‖H̃−1(Ω⋆)
.

Altogether, this shows

〈V⋆v , g〉Ω⋆ . ‖v‖H−1/2(Γ⋆)‖g‖H̃−1(Ω⋆)
.

Taking the supremum over all g shows ‖V⋆v‖H1(Ω⋆) . ‖v‖H−1/2(Γ⋆). Finally, there holds

with (6.2.35)

‖V⋆v‖H1/2(Γ⋆) . ‖(V⋆v) ◦ γ⋆‖H1/2(Γ) . ‖(V⋆v) ◦ γ⋆‖H1(Ω)

. ‖V⋆v‖H1(Ω⋆),
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where the hidden onstant depends again on the bi-Lipshitz ontinuity of γ⋆ and γ⋆(Ω) = Ω⋆.

This shows (6.2.37). The Céa Lemma (6.2.39) follows by standard arguments from (6.2.38)�

(6.2.37). This onludes the proof. �

Lemma 6.2.24. Given x, y ∈ R2
and the approximate geometry T⋆ ∈ T with (Γ1)�(Γ3)

and geo(T⋆) ≤ C−1
ext/2, the kernel

κ⋆(x, y) := log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
(6.2.40)

satis�es for j = 1, 2

1
2
∂xj

κ⋆(x, y) =
x− y

|x− y|2 ·
(
ej − ∂xj

γ⋆(x)
)
+
( x− y

|x− y|2
|γ⋆(x)− γ⋆(y)|2 − |x− y|2

|γ⋆(x)− γ⋆(y)|2

+
(x− y)− (γ⋆(x)− γ⋆(y))

|γ⋆(x)− γ⋆(y)|2
)
· ∂xj

γ⋆(x). (6.2.41)

This partiularly implies

∣∣∇xκ⋆(x, y)
∣∣ ≤ C(1 + geo(T⋆))

1

|x− y|‖tΓ − ∂Γγ⋆‖L∞(Γ) (6.2.42)

for all x, y ∈ R2
, where C > 0 depends only on CLip, Cext, and Γ. For x, y ∈ Γ, there holds

even

∣∣∇xκ⋆(x, y)
∣∣ ≤ CCΓ(1 + geo(T⋆))

1

|x− y| max
T∈T⋆

|TΓ∩Γ
y
x|>0

‖tΓ − ∂Γγ⋆‖L∞(TΓ). (6.2.43)

as well as

C−1
∣∣∂Γ,xκ⋆(x, y)

∣∣ ≤ |(tΓ − ∂Γγ⋆)(x)|
|x− y| + (1 + geo(T⋆))geo(T⋆)

2 1

|x− y|2 . (6.2.44)

Proof. The identity (6.2.41) follows from straightforward di�erentiation. Sine ∇γ⋆ ∈
L∞(R2), there holds with [x, y] :=

{
λ(x− y) + y : 0 ≤ λ ≤ 1

}

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ |γ⋆(x)− γ⋆(y)− (x− y)|
(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ (1 + CLip)
∣∣∣
∫

[x,y]

(I −∇γ⋆(z)) ·
x− y

|x− y| dz
∣∣∣|x− y|

≤ ‖I −∇γ⋆(x)‖L∞(R2)|x− y|2.

This and (6.2.28) show

|γ⋆(x)− γ⋆(y)|2 − |x− y|2
|γ⋆(x)− γ⋆(y)|2

. ‖tΓ − ∂Γγ⋆‖L∞(Γ).

Finally, the same argument shows

γ⋆(x)− γ⋆(y)− (x− y)

|γ⋆(x)− γ⋆(y)|2
.

1

|x− y|‖tΓ − ∂Γγ⋆‖L∞(Γ).
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The bound (6.2.28) implies |∂xj
γ⋆(x)| ≤ 1 + geo(T⋆). This shows (6.2.42). The esti-

mate (6.2.43) follows analogously by use of [x, y] := Γy
x instead, i.e.,

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ |γ⋆(x)− γ⋆(y)− (x− y)|
(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ (1 + CLip)
∣∣∣
∫

Γy
x

tΓ(z)− ∂Γγ⋆(z) dz
∣∣∣|x− y|

≤ ‖tΓ − ∂Γγ⋆‖L∞(Γy
x)|x− y|2.

The estimate (6.2.44) follows from (6.2.41) and

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

. geo(T⋆)
2|x− y|.

This onludes the proof. �

The following result an be found in [43, 77, 83℄ for real and omplex interpolation. We

inlude the proof for ompleteness and to underline the fat that the onstant is independent

of Γ̃.

Lemma 6.2.25. Let Γ̃ = ∂Ω̃ ⊂ R2
denote a Lipshitz boundary. Let f1, . . . , fN ∈ H1(Γ̃)

suh that the supports supp(fi) are onneted and pairwise disjoint, i.e., supp(fi)∩supp(fj) =
∅ for all 1 ≤ i 6= j ≤ N . Then, there holds

‖
N∑

i=1

fi‖2H1/2(Γ̃)
≤ 2

N∑

i=1

‖fi‖2H1/2(supp(fi))
.

Proof. De�ne the auxiliary operators T0 :
∏N

i=1 L
2(supp(fi)) → L2(Γ̃) as well as T1 :∏N

i=1H
1(supp(fi)) → H1(Γ̃) by

Tϑ((f1, . . . , fN)) :=

N∑

i=1

fi for ϑ ∈ {0, 1}.

Obviously, there holds

‖T0(f1, . . . , fN)‖2L2(Γ̃)
≤

N∑

i=1

‖fi‖2L2(supp(fi))
= ‖(f1, . . . , fN)‖2∏N

i=1 L
2(supp(fi))

,

‖T1(f1, . . . , fN)‖2H1(Γ̃)
≤

N∑

i=1

‖fi‖2H1(supp(fi))
= ‖(f1, . . . , fN)‖2∏N

i=1 H
1(supp(fi))

for all (f1, . . . , fN) ∈ ∏N
i=1 L

2(supp(fi)) resp. all (f1, . . . , fN) ∈ ∏N
i=1H

1(supp(fi)). Real

interpolation shows for T1/2 : X → H1/2(Γ̃), T1/2(f1, . . . , fN) :=
∑N

i=1 fi that

‖T1/2(f1, . . . , fN)‖2H1/2(Γ̃)
≤ ‖(f1, . . . , fN)‖2X ,

where X := [
∏N

i=1 L
2(supp(fi)),

∏N
i=1H

1(supp(fi))]1/2 denotes the spae de�ned with real

interpolation. There holds X =
∏N

i=1H
1/2(supp(fi)) with equivalent norms. It remains to

bound the equivalene onstants. By de�nition of X , there holds

‖(f1, . . . , fN)‖2X :=

∫ ∞

0

t−2K2
t dt, (6.2.45)
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where

Kt := inf
{( N∑

i=1

‖f0,i‖2L2(supp(fi))

)1/2
+ t

( N∑

i=1

‖f1,i‖2H1(supp(fi))

)1/2
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

De�ne

K̃2
t,i := inf

{
‖f0,i‖2L2(supp(fi))

+ t2‖f1,i‖2H1(supp(fi))
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

Given ε > 0, let g0,i ∈ L2(supp(fi)) and g1,i ∈ H1(supp(fi)) suh that fi = g0,i + g1,i and

‖g0,i‖2L2(supp(fi))
+ t2‖g1,i‖2H1(supp(fi))

≤ ε

N
+ K̃2

t,i for all i = 1, . . . , N.

Then, there holds

K2
t /2 ≤

N∑

i=1

‖g0,i‖2L2(supp(fi))
+ t2

N∑

i=1

‖g1,i‖2H1(supp(fi))
≤ ε+

N∑

i=1

K̃2
t,i.

Sine ε > 0 is arbitrary and a2 + b2 ≤ (a+ b)2 for all a, b ≥ 0, the above implies

K2
t /2 ≤

N∑

i=1

K̃2
t,i ≤

N∑

i=1

K2
t,i,

where

K2
t,i := inf

{(
‖f0,i‖L2(supp(fi)) + t‖f1,i‖H1(supp(fi))

)2
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

Together with (6.2.45), this shows

‖(f1, . . . , fN)‖2X ≤ 2

N∑

i=1

∫ ∞

0

t−2K2
t,i dt = 4

N∑

i=1

‖fi‖2H1/2(supp(fi))
.

Altogether, this onludes the proof. �

Given T ∈ T⋆, de�ne the k-path of T for all k ≥ 1 as

ω(T, T⋆) := ω1(T, T⋆) :=
⋃{

T ′ ∈ T⋆ : T ∩ T ′ 6= ∅
}
,

ωk(T, T⋆) := ωk−1(ω(T, T⋆), T⋆).

Note that ω(·, ·) is a path funtion in the sense of Setion 4.5.1.

A similar result to the following is proved in [43℄ for ertain residuals.

Lemma 6.2.26. Let T denote a partition of Γ into onneted urve segments. De�ne

the weight-funtion h(T )|T := |T | for all T ∈ T . Let J(T ) : H1(Γ) → S1(T ) denote the

Sott-Zhang projetion from De�nition 3.3.2. Then, there exists a onstant Cfaer > 0, suh
that all v ∈ H1/2(Γ) satisfy

‖(1− J(T ))v‖2H1/2(Γ) ≤ Cfaer

∑

T∈T

‖(1− J(T ))v‖2H1/2(∪ω2(T,T )).

The onstant Cfaer depends only on Γ and K(T ) (where K(·) is de�ned in Setion 3.2.2).
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Proof. Let ξ1, . . . , ξN ∈ C(Γ) denote a T -pieewise smooth partition of unity on Γ suh

that all j = 1, . . . , N satisfy

‖ξj‖L∞(Γ) ≤ 1,

supp(ξj) ⊆ Tj,1 ∪ Tj,2 for some Tj,1, Tj,2 ∈ T with Tj,1 ∩ Tj,2 6= ∅,
‖∂Γξj‖L∞(Tj,i) ≤ Ch(T )|−1

Tj,i
for i = 1, 2

for some onstant C > 1. There holds

‖(1− J(T ))v‖2H1/2(Γ) = ‖
N∑

j=1

ξz(1− J(T ))v‖2H1/2(Γ).

Let K1
T ∪ K2

T = {1, . . . , N} suh that |supp(ξj) ∩ supp(ξk)| = 0 for all j 6= k, j, k ∈ K1
T and

for all j 6= k, j, k ∈ K2
T . Lemma 6.2.25 shows

‖
N∑

j=1

ξj(1− J(T ))v‖2H1/2(Γ)

≤ 2‖
∑

j∈K1
T

ξj(1− J(T ))v‖2H1/2(Γ) + 2‖
∑

j∈K2
T

ξj(1− J(T ))v‖2H1/2(Γ)

≤ 4
∑

j∈KT

‖ξj(1− J(T ))v‖2H1/2(supp(ξj))
.

(6.2.46)

With ωj := supp(ξj), by de�nition of the H1/2
-norm by real interpolation, and with w :=

(1− J(T ))v, there holds

‖ξjw‖2H1/2(ωj)
=

∫ ∞

0

t−2K2
t dt,

where

Kt := inf
{
‖w0‖L2(ωj) + t‖w1‖H1(ωj) : ξjw = w0 + w1, w0 ∈ L2(ωj), w1 ∈ H1(ωj)

}
.

Additionally, onsider

K̃t := inf
{
‖w0‖L2(ω2

j )
+ t‖w1‖H1(ω2

j )
: w = w0 + w1, w0 ∈ L2(ω2

j ), w1 ∈ H1(ω2
j )
}

with ω2
j :=

⋃{
T ∈ T : T ∩ ωj 6= ∅

}
. Choose w̃0, w̃1 suh that ‖w̃0‖L2(ω2

j )
+ t‖w̃1‖H1(ω2

j )
≤

K̃t + ε for some ε > 0. Sine (1 − J(T ))w = w, there holds w = w̃0 + w̃1 = w0 + w1 on ωj

with wi := (1− J(T ))w̃i for i = 1, 2. With ξjw = ξjw1 + ξjw2 and |∂Γξj| ≃ diam(ωj)
−1
, this

allows to estimate

Kt ≤ ‖ξjw0‖L2(ωj) + t‖ξjw1‖H1(ωj)

. ‖w0‖L2(ωj) + t
(
‖w1‖L2(ωj) + ‖∂Γ(ξjw1)‖L2(ωj)

)

. ‖w0‖L2(ωj) + t
(
‖w1‖L2(ωj) + ‖∂Γw1‖L2(ωj) + diam(ωj)

−1‖w1‖L2(ωj)

)
.

The fat that wi = (1 − J(T ))w̃i for i = 1, 2 as well as the stability and approximation

properties (3.3.2) of J(T ) lead to

Kt . ‖w̃0‖L2(ω2
j )
+ t

(
‖w̃1‖L2(ω2

j )
+ ‖∂Γw̃1‖L2(ω2

j )

)

. ‖w̃0‖L2(ω2
j )
+ t‖w̃1‖H1(ω2

j )
. K̃t + ε.

137



PSfrag replaements

Tk,4 Tk,2

T ′

Tk,1

Tk,3

Tk,5

Figure 5. Illustration of the situation in the proof of Lemma 6.2.27.

Sine ε > 0 is arbitrary and the hidden onstants depend only on K(T ) (where K(·) is

de�ned in Setion 3.2.2) and Γ, there holds Kt . K̃t and hene

‖ξj(1− J(T ))v‖2H1/2(ωj)
=

∫ ∞

0

t−2K2
t dt .

∫ ∞

0

t−2K̃2
t dt = ‖(1− J(T ))v‖2H1/2(ω2

j )
.

In ombination with (6.2.46), this onludes the proof. �

Lemma 6.2.27. There exists a onstant CΣ > 0 suh that eah partition T of Γ satis�es

for α ≥ 1

max
T ′∈T

∑

T∈T
dist(T,T ′)>0

|T |α
dist(T, T ′)α

≤
{
CΣ| log

(
maxh(T )
minh(T )

)
|(log(|T |)|+ 1) for α = 1,

CΣ| log
(maxh(T )
minh(T )

)
| for α > 1,

where h(T )|T := |T | for all T ∈ T and the onstant CΣ depends only on K(T ) (with K(·)
from Setion 3.2.2) and Γ.

Proof. For T, T ′ ∈ T , de�ne ΓT ′

T = Γy
x for some x ∈ T and y ∈ T ′

with |ΓT ′

T | =
minx∈T,y∈T ′ |Γy

x|. Let T ′ ∈ T . De�ne Pk :=
{
T ∈ T : |Γ|2−k ≤ |T | < |Γ|2−k+1

}
and

hoose a numbering {Tk,1, . . . , Tk,nk
} =

{
T ∈ Pk : dist(T, T ′) > 0

}
suh that Γ

Tk,j

Tk,1
ontains

⌊ j−2
2
⌋ elements from Pk and dist(Tk,1, T

′) is minimal (see Figure 5 for an illustration of the

onept). This implies

dist(T ′, Tk,j)
(6.2.13)

≥ C−1
Γ |ΓTk,j

T ′ | ≥ C−1
Γ (⌊j − 2

2
⌋ − 1)2−k.

Moreover, for 1 ≤ j < 4, the K-mesh regularity and the fat that dist(Tk,1, T
′) is minimal

imply

dist(T ′, Tk,j) ≥ dist(T ′, Tk,1) ≥ K(T )−1|Tk,1| ≥ K(T )−12−k ≥ K(T )−1/2|Tk,j|.
With this, ompute

∑

T∈T
dist(T,T ′)>0

|T |α
dist(T, T ′)α

=
∞∑

k=0

∑

T∈Pk
dist(T,T ′)>0

|T |α
dist(T, T ′)α

=
∞∑

k=0

nk∑

j=1

|Tk,j|α
dist(Tk,j, T ′)α

.

max
{
k∈N :nk>0

}
∑

k=0

(
1 +

nk∑

j=4

2α(−k+1)

(⌊ j−2
2
⌋ − 1)α2−αk

)

.

max
{
k∈N :nk>0

}
∑

k=0

(
1 +

nk∑

j=1

1

jα

)
.
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There are at most | log2(maxh(T ))− log2(min h(T ))| numbers k ∈ N0 with nk > 0. Hene,
an asymptoti estimate for the harmoni series shows for α = 1

∑

T∈Tℓ
dist(T,T ′)>0

|T |
dist(T, T ′)

.
∑

k∈N0
nk>0

(
| log(|Pk|))|+ 1

)

. | log
(maxh(T )

min h(T )

)
|(log(|T |)|+ 1).

For α > 1, the Dirihlet series onverges and hene

∑

T∈Tℓ
dist(T,T ′)>0

|T |α
dist(T, T ′)α

. | log
(maxh(T )

min h(T )

)
|.

This onludes the proof. �

6.2.7. Reliable error ontrol. The following results prove the reliability of the error

estimator.

Theorem 6.2.28. There exists Crel > 0 suh that all approximate geometries T⋆ ∈ T
with h⋆ ≤ C−1

Γ κ−1
Γ /2 and geo(T⋆) ≤ min{C−1

ext/2, C
−1
Γ /2, C−1

Γ κ−1
Γ /2} satisfy the reliable error

estimate

‖u− U(T⋆)
Γ‖H−1/2(Γ) ≤ Crelη(T⋆). (6.2.47)

The proof is divided into several lemmas.

Lemma 6.2.29. The approximate geometry T⋆ ∈ T de�nes the formal operator

M⋆g(x) :=

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
g(x) dx for all x ∈ Ω ∪ Γ. (6.2.48)

If T⋆ satis�es (Γ1)�(Γ3), there exists a onstant Cres > 0 suh that all v⋆ ∈ L2(Γ⋆) with

vΓ⋆ := v⋆ ◦ γ⋆|∂Γγ⋆| satisfy

C−1
res ‖u− vΓ⋆ ‖H−1/2(Γ) ≤ sup

w∈H−1/2(Γ⋆)

〈f⋆ − V⋆v⋆ , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

+ ‖M⋆v
Γ
⋆ ‖H1/2(Γ),

where we de�ne ‖M⋆v
Γ
⋆ ‖H1/2(Γ) := ∞ for M⋆v

Γ
⋆ /∈ H1/2(Γ). This holds partiularly for

v⋆ = U(T⋆) and hene vΓ⋆ = U(T⋆)
Γ
.

Proof. The error ‖u− vΓ⋆ ‖H−1/2(Γ) satis�es for w̃ := w ◦ γ−1
⋆ |∂Γ⋆γ

−1
⋆ |

‖u− vΓ⋆ ‖H−1/2(Γ) ≃ sup
w∈H−1/2(Γ)

〈V(u− vΓ⋆ ) , w〉Γ
‖w‖H−1/2(Γ)

= sup
w∈H−1/2(Γ)

〈f − VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

= sup
w∈H−1/2(Γ)

〈f , w〉Γ − 〈V⋆v⋆ , w̃〉Γ⋆ + 〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

.

The identity 〈f , w〉Γ = 〈f⋆ , w ◦ γ−1
⋆ |∂Γ⋆γ

−1
⋆ |〉Γ⋆ = 〈f⋆ , w̃〉Γ⋆ shows

‖u− vΓ⋆ ‖H−1/2(Γ) ≃ sup
w∈H−1/2(Γ)

〈f⋆ − V⋆v⋆ , w̃〉Γ⋆ + 〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

. sup
w̃∈H−1/2(Γ⋆)

〈f⋆ − V⋆v⋆ , w̃〉Γ⋆

‖w̃‖H−1/2(Γ⋆)

+ sup
w∈H−1/2(Γ)

〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

,

(6.2.49)
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where we used Lemma 6.2.19 to get ‖w‖H−1/2(Γ) ≃ ‖w̃‖H−1/2(Γ⋆). The numerator of the last

term in (6.2.49) transforms to

−4π
(
〈V⋆v⋆ , w ◦ γ−1

⋆ |∂Γγ−1
⋆ |〉Γ⋆ − 〈VvΓ⋆ , w〉Γ

)
= −4π

(
〈(V⋆v⋆) ◦ γ⋆ − VvΓ⋆ , w〉Γ

)

=

∫

Γ

(∫

Γ⋆

log
(
|γ⋆(x)− y|2

)
v⋆(y) dy −

∫

Γ

log
(
|x− y|2

)
vΓ⋆ (y) dy

)
w(x) dx

=

∫

Γ

(∫

Γ

log
(
|γ⋆(x)− γ⋆(y)|2

)
vΓ⋆ (y) dy −

∫

Γ

log
(
|x− y|2

)
vΓ⋆ (y) dy

)
w(x) dx

= −
∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
vΓ⋆ (y) dy w(x) dx = −〈M⋆v

Γ
⋆ , w〉Γ.

(6.2.50)

This onludes the proof. �

The following result an also be found in [34, 28℄. We re�ne the proof to ensure that

the involved onstants behave uniformly with respet to the approximate geometries Γ⋆.

Lemma 6.2.30. Given the approximate geometry T⋆ ∈ T, there holds

sup
w∈H−1/2(Γ⋆)

〈f⋆ − V⋆U(T⋆) , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

≤
√
8K(T⋆)

1/2(5K(T⋆)
2 + 3)1/4 ρ(T⋆)

with K(T⋆) from Setion 3.2.2.

Proof. Let ξ1, . . . , ξN ∈ C(Γ) denote a T⋆-pieewise smooth partition of unity on Γ⋆

suh that all j = 1, . . . , N satisfy

‖ξj‖L∞(Γ⋆) ≤ 1,

supp(ξj) ⊆ Tj,1 ∪ Tj,2 for some Tj,1, Tj,2 ∈ T⋆with Tj,1 ∩ Tj,2 6= ∅,
‖∂Γ⋆ξj‖L∞(Tj,i) ≤ 2h⋆|−1

Tj,i
for i = 1, 2.

There holds

sup
w∈H−1/2(Γ⋆)

〈f⋆ − V⋆U(T⋆) , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

= ‖f⋆ − V⋆U(T⋆)‖H1/2(Γ⋆)

= ‖
N∑

j=1

ξj(f⋆ − V⋆U(T⋆))‖H1/2(Γ⋆).

Let K1 ∪K2 = {1, . . . , N} suh that |supp(ξj)∩ supp(ξk)| = 0 for all j 6= k, j, k ∈ K1
and all

j 6= k, j, k ∈ K2
. Lemma 6.2.25 with Γ̃ = Γ⋆ shows

‖
N∑

j=1

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)
≤ 2‖

∑

j∈K1

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)

+ 2‖
∑

j∈K2

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)

≤ 4

N∑

j=1

‖ξj(f⋆ − V⋆U(T⋆))‖2H1/2(supp(ξj))
.
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Real interpolation theory shows

‖ξj(f⋆ − V⋆U(T⋆))‖2H1/2(supp(ξj))

. ‖ξj(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))‖ξj(f⋆ − V⋆U(T⋆))‖H1(supp(ξj)),

where the hidden onstant depends only on the salar �eld of the involved Hilbert spaes,

whih is, in our ase, R. Hene, with vj := ξj(f⋆ − V⋆U(T⋆)), there holds

‖f⋆ − V⋆U(T⋆)‖2H1/2(Γ) ≤ 4

N∑

j=1

‖vj‖L2(supp(ξj))

(
‖vj‖2L2(supp(ξj))

+ ‖∂Γ⋆vj‖2L2(supp(ξj))

)1/2
.

Elementary alulus and the de�nition of the ξj show

‖vj‖L2(supp(ξj)) ≤ ‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj)),

‖∂Γvj‖L2(supp(ξj)) ≤ 2max
i=1,2

h⋆|−1
Tj,i

‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj))

+ ‖∂Γ(f⋆ − V⋆U(T⋆))‖L2(supp(ξj)).

Sine U(T⋆) solves (6.2.2) and f⋆ −V⋆U(T⋆) ∈ H1(Γ⋆), there exists at least one zero zT ∈ Γ⋆

with (f⋆ − V⋆U(T⋆))(zT ) = 0 for all T ∈ T⋆. Hene, Friedrih's inequality proves

‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj)) ≤ max
i=1,2

h⋆|Ti,j
‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj)).

The above together with the K-mesh property show

‖f⋆ − V⋆U(T⋆)‖2H1/2(Γ)

≤ 4

N∑

j=1

‖vj‖L2(supp(ξj))

(
‖vj‖2L2(supp(ξj))

+ ‖∂Γ⋆vj‖2L2(supp(ξj))

)1/2

≤ 4

N∑

j=1

(
‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj))

(
5max

i=1,2
h⋆|−2

Tj,i
‖f⋆ − V⋆U(T⋆)‖2L2(supp(ξj))

+ 3‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖2L2(supp(ξj))

)1/2)

≤ 4

N∑

j=1

(
K(T⋆)‖h⋆∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))

(5K(T⋆)
2 + 3)1/2‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))

)

≤ 4K(T⋆)(5K(T⋆)
2 + 3)1/2

N∑

j=1

‖h1/2⋆ ∂Γ(f⋆ − V⋆U(T⋆))‖2L2(supp(ξj))

≤ 8K(T⋆)(5K(T⋆)
2 + 3)1/2‖h1/2⋆ ∂Γ(f⋆ − V⋆U(T⋆))‖2L2(Γ⋆)

.

This onludes the proof. �

Lemma 6.2.31. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3). Then, there

exists CL2 > 0 suh that all g ∈ L2(Γ) satisfy

‖M⋆g‖L2(Γ) ≤ CL2geo(T⋆)
2(1 + | log(geo(T⋆))|)‖g‖L2(Γ),

where M⋆ is de�ned in (6.2.48).
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Proof. By de�nition of M⋆, there holds

‖M⋆g‖2L2(Γ) =

∫

Γ

(∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
g(y) dy

)2

dx

≤
∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx‖g‖2L2(Γ).

The remaining integral is split. Let Γ1, . . . ,ΓN denote the smooth and onneted parts of Γ.
There holds

∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx =

N∑

i=1

N∑

j=1

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx.

Case Γi = Γj: Lemma 6.2.13 (i) implies

∫

Γi

∫

Γi

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . |Γ|2geo(T⋆)
4.

Case Γi ∩ Γj = ∅: Lemma 6.2.13 (iii) implies

∫

Γi

∫

Γi

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . |Γ|2min
x∈Γi
y∈Γj

|x− y|−2geo(T⋆)
4

. geo(T⋆)
4.

Case Γi ∩ Γj = {z} ⊆ PΓ: Given ε > 0, de�ne Bε :=
{
y ∈ Γ : |y − z| < ε

}
. There holds

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx (6.2.51)

=

∫

Γi\Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx+

∫

Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx.

For the �rst term, Lemma 6.2.13 (ii) and |x− z| ≤ Γz
x ≤ Γy

x . |x− y| for all x ∈ Γi, y ∈ Γj

imply

∫

Γi\Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx

. geo(T⋆)
4

∫

Γi\Bε

∫

Γj

(
1 +

|z − x|+ |z − y|
|x− y|2

)2
dx dy

. geo(T⋆)
4

∫

Γi\Bε

∫

Γj

1 + |x− y|−2 dx dy.
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Without loss of generality, there holds [a, b− δ] = γ−1(Γi \Bε) and [b, c] = γ−1(Γj) for some

a < b < c ∈ [0, 1] and 0 < δ ≃ ε. The Lipshitz ontinuity of γ shows

∫

Γi\Bε

∫

Γj

|x− y|−2 dx dy =

∫

γ−1(Γi\Bε)

∫

γ−1(Γj)

|γ(s)− γ(t)|−2|γ′|2 ds dt

.

∫

γ−1(Γi\Bε)

∫

γ−1(Γj)

|s− t|−2 ds dt

=

∫ b−δ

a

∫ c

b

(s− t)−2 ds dt

=

∫ b−δ

a

(b− t)−1 − (c− t)−1 dt

. 1 + | log(δ)| ≃ 1 + | log(ε)|.
For the seond term of (6.2.51), Lemma 6.2.13 (ii) shows

∫

Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . geo(T⋆)
2|Bε||Γ| . εgeo(T⋆)

2.

Altogether, this proves

∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx =
N∑

i=1

N∑

j=1

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx

. N2(geo(T⋆)
4 + geo(T⋆)

4| log(ε)|+ geo(T⋆)
2ε).

Sine N depends only on Γ, the hoie ε := geo(T⋆)
2
onludes the proof. �

Lemma 6.2.32. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2. Given g ∈ L∞(Γ) and with M⋆ from 6.2.48, there holds M⋆g ∈ H1(Ω), whereas
g ∈ L2(Γ) implies M⋆g ∈ H1(Γ).

Proof. Given x ∈ Ω, κ⋆(x, y) is smooth and hene (6.2.42) shows

|∇xM⋆g(x)| := |
∫

Γ

∇xκ⋆(x, y)g(y) dy| . ‖g‖L∞(Γ)

∫

Γ

|x− y|−1 dy

. ‖g‖L∞(Γ)(1 + | log(dist(x,Γ))|),
where the hidden onstants depend only on Cγ and an upper bound of geo(T⋆). This proves
that ∇xM⋆g(x) ∈ L2(Ω). Lemma 6.2.31 onludes M⋆g ∈ H1(Ω). There holds

M⋆g(x) = Vg(x)−
∫

Γ

log |γ⋆(x)− γ⋆(y)|g(y) dy = Vg(x)−
(
V⋆(g ◦ γ−1

⋆ |∂γ−1
⋆ |)

)
◦ γ⋆(x).

Sine g ∈ L2(Γ) and g ◦ γ−1
⋆ |∂γ−1

⋆ | ∈ L2(Γ⋆), the mapping properties of V and V⋆ show

Vg ∈ H1(Γ),V⋆(g ◦ γ−1
⋆ |∂γ−1

⋆ |) ∈ H1(Γ⋆). Sine γ⋆ is ontinuous and pieewise smooth, this

onludes the proof. �

Lemma 6.2.33. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2. Then, there exists a onstant CH̃1/2 > 0, suh that all g ∈ L2(Γ) with supp(g) ⊆ Γy
x

for some x, y ∈ Γ satisfy

‖M⋆g‖H1/2(Γ) ≤ CH̃1/2

(
geo(T⋆)|Γy

x|1/2(1 + | log(|Γy
x|)|)1/2

+ geo(T⋆)
2(1 + | log(geo(T⋆))|)

)
‖g‖L2(Γ),
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where M⋆ is de�ned in (6.2.48). The onstant CH̃1/2 depends only on CL2
, CLip, Cext, and

on Ω.

Proof. De�ne the volume potential

Dv(x) :=

∫

Ω

∇yκ⋆(x, y)v(y) dy.

Assume for the moment g ∈ L∞(Γ). Lemma 6.2.32 shows M⋆g ∈ H1(Ω). Given v ∈ L2(Ω),
there holds

〈∇M⋆g , v〉Ω =

∫

Ω

∫

Γ

∇yκ⋆(x, y)g(x) dx v(y) dy

=

∫

Γ

∫

Ω

∇yκ⋆(x, y)v(y) dy g(x) dx = 〈g , Dv〉Γ.
(6.2.52)

Consider the simple-layer potential VΩ : H̃−1/2(Ω) → H1/2(Ω) on the 2D manifold Ω

VΩg(x) :=
1

4π

∫

Ω

|x− y|−1g(y) dy for all x ∈ R3.

The identity (6.2.52) together with (6.2.42), shows

〈g , D(v)〉Γ .

∫

Γ

|g(x)|
∣∣∣
∫

Ω

∇yκ⋆(x, y)v(y) dy
∣∣∣dx

. ‖tΓ − ∂Γγℓ‖L∞(Γ)

∫

Γ

|g(x)|
∣∣∣
∫

Ω

1

|x− y| |v(y)| dy
∣∣∣dx

≃ ‖tΓ − ∂Γγℓ‖L∞(Γ)〈|g| , VΩ(|v|)〉Γ.

With |Γy
x| = h, Lemma 6.2.15 shows ‖|g|‖H−1/2(Γ) . h1/2(1 + | log(h)|)1/2‖g‖L2(Γ). This and

the ontinuity VΩ : L2(Ω) → H1(Ω) show

sup
v∈L2(Ω)

〈g , D(v)〉Γ . ‖tΓ − ∂Γγℓ‖L∞(Γ)‖|g|‖H−1/2(Γ)‖VΩ(|v|)‖H1/2(Γ)

. ‖tΓ − ∂Γγℓ‖L∞(Γ)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ)‖VΩ(|v|)‖H1(Ω)

. geo(T⋆)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ)‖v‖L2(Ω).

Altogether, this proves

‖∇M⋆g‖L2(Ω) = sup
v∈L2(Ω)

〈∇M⋆g , v〉Ω
‖v‖L2(Ω)

. geo(T⋆)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ).

Continuous extension shows that the restrition g ∈ L∞(Γ) is not neessary.
Let M := |Γ|−1

∫
Γ
M⋆g(x) dx denote the integral mean. Rellih's ompatness theorem

proves ‖M⋆g −M‖H1(Ω) . ‖∇M⋆g‖L2(Ω). Altogether, this shows

‖Mg‖H1/2(Γ) ≤ ‖M‖H1/2(Γ) + ‖M⋆g −M‖H1/2(Γ)

. ‖M‖L2(Γ) + ‖∇M⋆g‖L2(Ω)

. ‖M⋆g‖L2(Γ) + h1/2| log(h)|1/2geo(T⋆)‖g‖L2(Γ).

(6.2.53)

Lemma 6.2.31 and (6.2.53) onlude the proof. �
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Lemma 6.2.34. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)�(Γ3) and geo(T⋆) ≤
C−1

ext/2. There exists a onstant CH1/2 > 0 suh that all g ∈ L2(Γ) satisfy

‖M⋆g‖H1/2(Γ) ≤ CH1/2geo(T⋆)
3/2(1 + | log(geo(T⋆))|)‖g‖L2(Γ),

where M⋆ is de�ned in (6.2.48). The onstant CH1/2 depends only on CH̃1/2, CL2
, Cfaer, C28,

Cext, CLip, CΣ, and on Ω,

Proof. Construt a uniform partition U of Γ with element size h(U) ≃ geo(T⋆). With

the Sott-Zhang projetion J(U) : L2(Γ) → S1(U) from De�nition 3.3.2, split

‖M⋆g‖H1/2(Γ) ≤ ‖J(U)M⋆g‖H1/2(Γ) + ‖(1− J(U))M⋆g‖H1/2(Γ)

. h(U)−1/2‖M⋆g‖L2(Γ) + ‖(1− J(U))M⋆g‖H1/2(Γ),

where we applied the inverse estimate from [57℄. The �rst term on the right-hand side is

onsidered in Lemma 6.2.31. Lemma 6.2.26 applies for the seond term to obtain

‖(1− J(U))M⋆g‖2H1/2(Γ) .
∑

U∈U

‖(1− J(U))M⋆g‖2H1/2(∪ω2(U,U)).

With gU,1 := g|∪ω4(U,U) and gU,2 := g−gU,1 and by use of the approximation properties (3.3.2)

of J(U), eah term on the right-hand side is bounded by

‖(1−J(U))M⋆g‖2H1/2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U)) + ‖(1− J(U))M⋆gU,2‖2H1/2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U))

+ ‖(1− J(U))M⋆gU,2‖L2(∪ω2(U,U))‖∂Γ(1− J(U))M⋆gU,2‖L2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U)) + h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)),

(6.2.54)

where Lemma 6.2.32 shows that the right-hand side is well-de�ned. Sine |supp(gU,1)| ≃
h(U), Lemma 6.2.33 applies for the �rst term and, with h(U) ≃ geo(T⋆), leads to

∑

U∈U

‖M⋆gU,1‖2H1/2(∪ω3(U,U)) . geo(T⋆)
3(1 + | log(geo(T⋆))|)

∑

U∈U

‖gU,1‖2L2(Γ)

. geo(T⋆)
3(1 + | log(geo(T⋆))|)‖g‖2L2(Γ).

Given U ∈ U , an expliit omputation together with Lemma 6.2.24 shows

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

∂Γ,xκ⋆(x, y)g(y) dy
)2

dx

. geo(T⋆)
2

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

|x− y|−1|g|(y) dy
)2

dx (6.2.55)

≤ geo(T⋆)
2| ∪ ω3(U,U)|

sup
x∈∪ω3(U,U)

(
‖|x− ·|−1/2‖2L2(Γ\∪ω4(U,U))‖|x− ·|−1/2g(·)‖2L2(Γ\∪ω4(U,U))

)
.

A omputation in the parameter domain shows for x ∈ ⋃
ω3
U

‖|x− ·|−1/2‖2L2(Γ\∪ω4(U,U)) .

∫

γ−1(Γ\∪ω4(U,U))

|γ−1(x)− t|−1 dt

. (1 + | log(h(U))|),
(6.2.56)
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sine |γ−1(x) − t| & |x − γ(t)| & h(U). With (6.2.13), there holds for all U ′ ∈ U with

U ′ 6⊆ ω4(U,U)

dist(U, U ′) . dist(∪ω3(U,U), U ′) + 2h(U) ≤ 3dist(∪ω3(U,U), U ′)

and hene

sup
x∈∪ω3(U,U)

‖|x− ·|−1/2g(·)‖2L2(Γ\∪ω4(U,U)) = sup
x∈∪ω3(U,U)

∑

U ′∈U\ω4(U,U)

∫

U ′

|x− y|−1g(y)2 dy

.
∑

U ′∈U\ω4(U,U)

1

dist(U, U ′)
‖g‖2L2(U ′).

Plugging the last two estimates into (6.2.55), we end up with

‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)) =

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

∂Γ,xκ⋆(x, y)g(y) dy
)2

dx

. geo(T⋆)
2| ∪ ω3(U,U)|(1 + | log(h(U))|)

∑

U ′∈U\ω4(U,U)

1

dist(U, U ′)
‖g‖2L2(U ′)

. geo(T⋆)
2(1 + | log(geo(T⋆))|)

∑

U ′∈U\ω4(U,U)

|U |
dist(U, U ′)

‖g‖2L2(U ′).

With the onvention dist(U, U ′) = 1 for U ∩ U ′ 6= ∅ and h(U) ≃ geo(T⋆), this leads to
∑

U∈U

h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U))

. (1 + | log(geo(T⋆))|)geo(T⋆)
3
∑

U∈U

∑

U ′∈U\ω4(U,U)

‖g‖2L2(U ′)

|U |
dist(U, U ′)

≤ (1 + | log(geo(T⋆))|)geo(T⋆)
3
∑

U ′∈U

‖g‖2L2(U ′)

∑

U∈U

|U |
dist(U, U ′)

.

Lemma 6.2.27 provides an estimate for the last sum of the right-hand side. Altogether, this

shows

∑

U∈U

h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)) . (1 + | log(geo(T⋆))|)geo(T⋆)
3‖g‖2L2(Γ)(1 + | log(|U|)|).

Sine |U| ≃ |Γ|/h(U) ≃ geo(T⋆)
−1
, the ombination of the previous estimates onludes the

proof. �

Proof of Theorem 6.2.28. Lemma 6.2.29�6.2.30, and Lemma 6.2.34 show the state-

ment. �

6.3. Convergene

Throughout this setion, we assume that Lemma 6.2.9 (i)�(iii) and geo(T⋆) ≤ C−1
ext/2 hold

for all approximate geometries T⋆ ∈ T. Moreover, we assume that the exat boundary Γ
satis�es the following: All approximate geometries T⋆ ∈ T and all elements T ∈ T⋆ allow for
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a parametrization

γT : [0, 1] → T Γ,

γ′T (s) ∈ span{tΓ ◦ γT (s)} for all s ∈ [0, 1],

C−1
par|T Γ| ≤ |γ′T | ≤ Cpar|T Γ|,

‖γ′′T‖L∞([0,1]) + ‖(γ⋆ ◦ γT )′′‖L∞([0,1]) ≤ Cpar|T Γ|

(6.3.1a)

for some onstant Cpar > 0 whih depends only on Γ. Moreover, there exists some p ∈ N
suh that for all T ∈ T⋆ exist γ̃T , γ̃T,⋆ ∈ Pp([0, 1])2 suh that

‖γT − γ̃T‖W 1,∞([0,1]) + ‖γ⋆ ◦ γT − γ̃T,⋆‖W 1,∞([0,1]) ≤ CpargeoT (T⋆)
2. (6.3.1b)

Remark 6.3.1. The assumption (6.3.1) basially states that the Taylor expansion of

the parametrization γ behaves niely. Sine γ⋆ is uniquely determined by γ, (6.3.1b) is an as-

sumption on the Taylor expansion of γ, sine inf γ̃T∈Pp([0,1]) ‖γT − γ̃T‖W 1,∞([0,1]) . ‖γ′′T‖L∞([0,1])

and geoT (T⋆) & minTΓ |γ′′ ◦ γ−1|. Assumption (6.3.1) holds for example if Γ is parametrized

by pieewise polynomials of arbitrary order, i.e., B-splines, or by NURBS.

Lemma 6.3.2. Under assumption 6.3.1 and with Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2, there exists a onstant Cinv > 0 suh that the approximate geometry

T⋆ ∈ T satis�es for all T ∈ T⋆

‖tΓ − ∂Γγ⋆‖L∞(TΓ) ≤ Cinv|T |−1geoT (T⋆)
2. (6.3.2)

Given x, y ∈ Γ with x ∈ T Γ
0 for some T0 ∈ T⋆, there holds additionally

|∂Γ,xκ⋆(x, y)| ≤ Cinv

( |T0|−1

|x− y| +
1

|x− y|2
)

max
T∈T⋆

TΓ∩Γ
y
x 6=∅

geoT (T⋆)
2

(6.3.3)

as well as for x, y ∈ ⋃
ω(T Γ

0 , T Γ
⋆ )

|∂Γ,xκ⋆(x, y)| ≤ Cinv
|T0|−1/2

|x− y| max
T∈ω(T0,T⋆)

geoT (T⋆)
3/2. (6.3.4)

The onstant Cinv depends only on Cpar, K(T⋆) (with K(·) from Setion 3.2.2), and CΓ.

Proof. Given T ∈ T⋆, there holds with (γT − γ⋆ ◦ γT )′ = (tΓ − ∂Γγ⋆) ◦ γTγ′T and (6.3.1a)

that

‖tΓ − ∂Γγ⋆‖L∞(TΓ) ≃ |T Γ|−1‖(γT − γ⋆ ◦ γT )′‖L∞([0,1]). (6.3.5)

Assumption (6.3.1b) and norm equivalene on Pp([0, 1]) imply

‖(γT − γ⋆ ◦ γT )′‖L∞([0,1]) ≤ ‖(γ̃T − γ̃T,⋆)
′‖L∞([0,1]) + geoT (T⋆)

2

. ‖γ̃T − γ̃T,⋆‖L∞([0,1]) + geoT (T⋆)
2

. ‖γT − γ⋆ ◦ γT‖L∞([0,1]) + geoT (T⋆)
2.

Finally, there holds

‖γT − γ⋆ ◦ γT‖L∞([0,1]) = ‖idΓ − γ⋆‖L∞(TΓ).

The ombination of the last three estimates onludes the proof of (6.3.2). To see (6.3.3),

ombine (6.2.44) and (6.3.2). The estimate (6.3.4) follows from (6.3.2) and

‖tΓ − ∂Γγ⋆‖L∞(TΓ) . |T |−1/2geoT (T⋆)‖tΓ − ∂Γγ⋆‖1/2L∞(TΓ)
≤ |T |−1/2geoT (T⋆)

3/2.
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Together with the K-mesh property and (6.2.43), this implies (6.3.4) and onludes the

proof. �

Lemma 6.3.3. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. Given T ∈ T⋆, de�ne

gT (s) :=

∫ 1

0

log
( |γT (s)− γT (t)|2
|γ⋆ ◦ γT (s)− γ⋆ ◦ γT (t)|2

)
|γ′T (t)||∂Γγ⋆| ◦ γT (t) dt.

There holds for all ε > 0

‖g′T‖L2([0,1]) ≤ Capx|T Γ|(ε+ (1 + | log(ε)|)‖tΓ − ∂Γγ⋆‖L∞(TΓ)). (6.3.6)

where the onstant Capx > 0 depends only on Cpar, Cext, and on CLip.

Proof. Let κT (s, t) denote the logarithmi kernel of gT . Straightforward di�erentiation

shows for γT,⋆ := γ⋆ ◦ γT
1

2
∂sκT (s, t)

=
(γT (s)− γT (t)) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2 − (γT,⋆(s)− γT,⋆(t)) · γ′T,⋆(s)|γT (s)− γT (t)|2

|γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2
.

Taylor expansion shows for some z1, z2, z3, z4 ∈ [0, 1] and s, t ∈ [0, 1] that

|∂sκT (s, t)||γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2/2
= (s− t)|γ′T (s)|2|γT,⋆(s)− γT,⋆(t)|2 + (s− t)2γ′′T (z1) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2

− (s− t)|γ′T,⋆(s)|2|γT (s)− γT (t)|2 − (s− t)2γ′′T,⋆(z2) · γ′T,⋆(s)|γT (s)− γT (t)|2

= (s− t)3|γ′T (s)|2|γ′T,⋆(s)|2 + (s− t)5|γ′′T,⋆(z3)|2|γ′T (s)|2

− (s− t)3|γ′T (s)|2|γ′T,⋆(s)|2 + (s− t)5|γ′′T (z4)|2|γ′T,⋆(s)|2

+ (s− t)2γ′′T (z1) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2

− (s− t)2γ′′T,⋆(z2) · γ′T,⋆(s)|γT (s)− γT (t)|2.
Assumption (6.3.1a) bounds the above by

|∂sκT (s, t)||γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2

. (s− t)5(‖γ′′T,⋆‖2L∞([0,1])‖γ′T‖2L∞([0,1]) + ‖γ′′T‖2L∞([0,1])‖γ′T,⋆‖2L∞([0,1]))

+ (s− t)2‖γ′′T‖L∞([0,1])‖γ′T‖L∞([0,1])|γT,⋆(s)− γT,⋆(t)|2

+ (s− t)2‖γ′′T,⋆‖L∞([0,1])‖γ′T,⋆‖L∞([0,1])|γT (s)− γT (t)|2

. (s− t)5(‖γ′′T,⋆‖2L∞([0,1])‖γ′T‖2L∞([0,1]) + ‖γ′′T‖2L∞([0,1])‖γ′T,⋆‖2L∞([0,1]))

+ (s− t)4
(
‖γ′′T‖L∞([0,1])‖γ′T‖L∞([0,1])‖γ′T,⋆‖2L∞([0,1])

+ ‖γ′′T,⋆‖L∞([0,1])‖γ′T,⋆‖L∞([0,1])‖γ′T‖2L∞([0,1])

)

. |T Γ|4((s− t)5 + (s− t)4),

where the hidden onstants depend only on Cpar and on CLip. Again with (6.3.1a), the above

implies

|∂sκT (s, t)| . 1 + |s− t|, (6.3.7)
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where the hidden onstant depends only on Cpar and on CLip. On the other hand, there

holds κT (s, t) = κ⋆(γT (s), γT (t)) and hene by use of (6.2.43)

|∂sκT (s, t)| ≃ |(∂1κ)(γT (s), γT (t))||T Γ| . |T Γ||γT (s)− γT (t)|−1‖tΓ − ∂Γγ⋆‖L∞(TΓ)

≃ |s− t|−1‖tΓ − ∂Γγ⋆‖L∞(TΓ). (6.3.8)

The estimates (6.3.7)�(6.3.8) and |∂Γγ⋆| ◦ γT ≤ 1 + geo(T⋆) ≤ 1 + C−1
ext/2 show for ε > 0

|g′T (s)| .
∣∣
∫

[0,s−ε)∪(s+ε,1]

∂sκT (s, t)|γ′T (t)| dt
∣∣+

∣∣
∫ s+ε

s−ε

∂sκT (s, t)|γ′T (t)| dt
∣∣

.
∣∣
∫

[0,s−ε)∪(s+ε,1]

|s− t|−1 dt
∣∣‖tΓ − ∂Γγ⋆‖L∞(TΓ)|T Γ|+ ε|T Γ|

. |T Γ|(1 + | log(ε)|)‖tΓ − ∂Γγ⋆‖L∞(TΓ) + |T Γ|ε.
This onludes the proof. �

Lemma 6.3.4. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. Given G⋆ ∈ P0(T Γ

⋆ ), there holds for all T ∈ T⋆

|T |1/2‖∂ΓM⋆((G⋆|∂Γγ⋆|)|∪ω(TΓ,T Γ
⋆ ))‖L2(TΓ)

≤ CMgeo(T⋆)
3/2(1 + | log(geo(T⋆))|)‖G⋆‖L2(∪ω(TΓ,T Γ

⋆ )),

where M⋆ is de�ned in (6.2.48) and the onstant CM > 0 depends only on Cinv, CLip, Cext,

CΓ, Capx, K(T⋆) (with K(·) from Setion 3.2.2), and on Γ.

Proof. We abbreviate G := (G⋆|∂Γγ⋆|)|∪ω(TΓ,T Γ) and get

‖∂ΓM⋆G‖2L2(TΓ) =

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

.

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

+

∫

TΓ

(∫

TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx.

(6.3.9)

There holds with (6.3.4)

∫

TΓ

(∫

∪ω(TΓ,T Γ)\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

. (1 + geo(T⋆))|T |−1 max
T ′∈ω(T,T⋆)

geoT ′(T⋆)
3

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )\TΓ

|x− y|−1|G(y)| dy
)2

dx.

Let T1, T2 ∈ T Γ
⋆ suh that T1 ∪ T2 =

⋃
ω(T Γ, T Γ

⋆ ) \ T Γ
. Then, there holds for i = 1, 2

∫

TΓ

( ∫

Ti

|x− y|−1|G(y)| dy
)2

dx ≤ |G⋆|Ti
|2‖∂Γγ⋆‖2L∞(Ti)

∫

TΓ

(∫

Ti

|x− y|−1 dy
)2

dx

≤ (1 + geo(T⋆)
2)|G⋆|Ti

|2
∫

TΓ

log(dist(x, Ti))
2 dx.

The Lipshitz ontinuity of γ and (6.2.13) show for zi := Ti ∩ T ∈ Γ

C−1|x− zi| ≤ dist(x, Ti) ≤ C|x− zi|
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for some onstant C > 0. This implies

∫

TΓ

log(dist(x, Ti))
2 dx .

∫

TΓ

(log |x− zi|)2 dx+
∫

T

(log(C))2 dx . |T Γ|(log(|T Γ|)2 + 1).

Altogether, this shows

∫

TΓ

(∫

∪ω(TΓ,T Γ)\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

. (1 + geo(T⋆))|T |−1(log(|T |)2 + 1) max
T ′∈ω(TΓ,T Γ

⋆ )\TΓ
geoT ′(T⋆)

3‖G⋆‖2L2(∪ω(TΓ,T Γ
⋆ ))

. (1 + geo(T⋆))|T |−1(log(|T |)2 + 1)geo(T⋆)
3‖G⋆‖2L2(∪ω(TΓ,T Γ

⋆ )),

(6.3.10)

where we used the K-mesh property for the last estimate. The remaining term in (6.3.9) is

bounded by use of Lemma 6.3.3 with ε := geo(T⋆)
3/2

. Sine G⋆|TΓ is onstant, onsider

‖∂ΓM⋆G|TΓ‖2L2(TΓ) =

∫

TΓ

(
∂Γ,x

∫

TΓ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

= |G⋆|TΓ|2‖∂Γ(g ◦ γ−1
T )‖2L2(TΓ) = |T Γ|−1|G⋆|TΓ |2‖g′‖2L2([0,1])

.
(
ε2 + (1 + | log(ε)|)2‖tΓ − ∂Γγ⋆‖2L∞(TΓ)

)
‖G⋆‖2L2(TΓ)

.
(
geo(T⋆)

3 + (1 + | log(geo(T⋆))|)2‖tΓ − ∂Γγ⋆‖2L∞(TΓ)

)
‖G⋆‖2L2(TΓ).

Lemma 6.3.2 then shows |T |‖tΓ − ∂Γγ⋆‖2L∞(Γ) . geo(T⋆)
3
and hene

|T |‖∂ΓM⋆G|TΓ‖2L2(TΓ)

. (1 + | log(geo(T⋆))|)2geo(T⋆)
3‖G‖2L2(TΓ).

(6.3.11)

Putting together the estimates (6.3.9), (6.3.10), (6.3.11), we end up with

|T |‖∂ΓM(G|∪ω(TΓ,T Γ
⋆ ))‖2L2(T ) . geo(T⋆)

3(log(|T |)2 + log(geo(T⋆))
2 + 1)‖G⋆‖2L2(∪ω(TΓ,T Γ

⋆ ).

This onludes the proof. �

Lemma 6.3.5. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold forT⋆ ∈ T. All G ∈ L2(Γ) satisfy
∑

T∈T⋆

|T Γ|‖∂ΓM⋆(G|Γ\∪ω(TΓ,T Γ
⋆ ))‖2L2(TΓ)

≤ CMgeo(T⋆)
3|1 + log(min h⋆)|2(| log(|T⋆|)|+ 1)‖G‖2L2(Γ),

where M⋆ is de�ned in (6.2.48) and the onstant CM > 0 depends only on Capx, Cext, CLip,

CΣ, K(T⋆) (with K(·) from Setion 3.2.2), and on Γ.

Proof. Let x ∈ T Γ
for some T ∈ T⋆. The estimate (6.3.3) shows

|∂Γ,xκ⋆(x, y)| .
( |T |−1

|x− y| +
1

|x− y|2
)
geo(T⋆)

2.

The estimate (6.2.42) shows also

|∂Γ,xκ⋆(x, y)| . |x− y|−1geo(T⋆).
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The ombination of the last two estimates implies

|∂Γ,xκ⋆(x, y)| .
geo(T⋆)

3/2

|x− y|1/2
( |T |−1

|x− y| +
1

|x− y|2
)1/2

. geo(T⋆)
3/2

( |T |−1/2

|x− y| +
1

|x− y|3/2
)
.

We abbreviate G := G|Γ\∪ω(TΓ,T Γ
⋆ ) and employ the above estimate to obtain

‖∂ΓM⋆G‖2L2(T ) =

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

∂Γ,xκ⋆(x, y)G(y) dy
)2

dx

. |T |−1geo(T⋆)
3

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|−1|G(y)| dy
)2

dx

+ geo(T⋆)
3

∫

T

( ∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|−3/2|G(y)| dy
)2

dx.

For α ∈ {−1,−3/2}, there holds
∫

T

( ∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|α|G(y)| dy
)2

dx

≤ |T | sup
x∈T

‖|x− ·|−1/2‖2L2(Γ\∪ω(TΓ,T Γ
⋆ )‖|x− ·|α+1/2|G(y)|‖2L2(Γ\∪ω(TΓ,T Γ

⋆ )).

The �rst term is estimated as in (6.2.56) to obtain

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|α|G(y)| dy
)2

dx

≤ |T | sup
x∈T

‖|x− ·|−1/2‖2L2(Γ\∪ω(TΓ,T Γ
⋆ ))

∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

‖|x− ·|α+1/2|G(·)|‖2L2(T0)

. |T |(1 + | log(|T |)|)
∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

1

dist(T, T0)−2α−1
‖G‖2L2(T0)

.

Altogether, this yields

∑

T∈T⋆

|T |‖∂ΓM⋆G‖2L2(T )

.
∑

T∈T⋆

|T |2geo(T⋆)
3(1 + | log(|T |)|)

∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

( |T |−1

dist(T, T0)
+

1

dist(T, T0)2

)
‖G‖2L2(T0)

≤ geo(T⋆)
3(1 + | log(min h⋆)|)

∑

T0∈T Γ
⋆

‖G‖2L2(T0)

∑

T∈T Γ
⋆ \ω(T0,T Γ

⋆ )

( |T |
dist(T, T0)

+
|T |2

dist(T, T0)2

)
.

Lemma 6.2.27 implies

max
T0∈T⋆

∑

T∈T Γ
⋆ \ω(T0,T Γ

⋆ )

( |T |
dist(T, T0)

+
|T |2

dist(T, T0)2

)
. | log

(maxh⋆
min h⋆

)
|(log(|T⋆|)|+ 1)

and thus onludes the proof. �
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To formulate the next lemma, we de�ne an auxiliary error estimator on the exat bound-

ary. Of ourse, this in only a theoretial tool and does not have to be omputed. For all

T Γ ∈ T Γ
⋆ , de�ne

ρTΓ(T Γ
⋆ ) := ‖h1/2⋆ ◦ γ⋆ ∂Γ(VU(T⋆)

Γ − f)‖L2(TΓ). (6.3.12)

Lemma 6.3.6. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. Given some S⋆ ⊆ T⋆, there holds

∣∣∣
( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

−
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2∣∣∣ ≤ α⋆, (6.3.13)

where SΓ
⋆ :=

{
T Γ : T ∈ S⋆

}
and

α⋆ := geo(T⋆)
3/2

(
2κΓCνρ(T⋆)geo(T⋆)

1/2

+ CMCLip(1 + | log(geo(T⋆))|)(1 + | log(min h⋆)|)(1 + | log(|T⋆|)|)1/2‖U(T⋆)‖L2(Γ⋆)

)
.

Proof. There holds with ω⋆ :=
⋃S⋆ and ω

Γ
⋆ :=

⋃SΓ
⋆

( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

= ‖h1/2⋆ ◦ γ⋆∂Γ(VU(T⋆)
Γ − f)‖L2(ωΓ

⋆ )

≤ ‖h1/2⋆ ◦ γ⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2‖L2(ωΓ

⋆ )
(6.3.14)

+ ‖h1/2⋆ ◦ γ⋆
(
∂Γ(VU(T⋆)

Γ − f)−
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2

)
‖L2(ωΓ

⋆ )
.

We introdue the notation

A := ∂Γ(VU(T⋆)
Γ − f),

B :=
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2,

C := ∂Γ((V⋆U(T⋆)− f⋆) ◦ γ⋆).
The �rst term on the right-hand side of (6.3.14) transforms to

‖h1/2⋆ ◦ γ⋆B‖2L2(ωΓ
⋆ )

=

∫

ωΓ
⋆

h⋆ ◦ γ⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)2 ◦ γ⋆|∂Γγ⋆| dx

=

∫

ω⋆

h⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)2
dx =

∑

T∈S⋆

ρT (T⋆)
2.

(6.3.15)

The seond term on the right-hand side of (6.3.14) is further split into

‖h1/2⋆ ◦ γ⋆(A−B)‖L2(ωΓ
⋆ )

≤ ‖h1/2⋆ ◦ γ⋆(A− C)‖L2(ωΓ
⋆ )
+ ‖h1/2⋆ ◦ γ⋆(C − B)‖L2(ωΓ

⋆ )
.

The hain rule (6.2.11) implies

C = (∂Γ⋆(V⋆U(T⋆)− f⋆)) ◦ γ⋆ ∂sΓγ⋆.
With (6.2.15) and (6.2.9), we get ∂sΓγ⋆ = |∂Γγ⋆|. This shows together with (6.3.15) and

Lemma 6.2.14

‖h1/2⋆ ◦ γ⋆(C − B)‖L2(ωΓ
⋆ )

= ‖h1/2⋆ ◦ γ⋆(1− |∂Γγ⋆|1/2)B‖L2(ωΓ
⋆ )

≤ ‖1− |∂Γγ⋆|1/2‖L∞(Γ)‖h1/2⋆ ◦ γ⋆B‖L2(ωΓ
⋆ )

≤ 2κΓCνgeo(T⋆)
2
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2

.
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Moreover, sine f⋆ = f ◦ γ−1
⋆ , there holds

‖h1/2⋆ ◦ γ⋆(A− C)‖L2(ωΓ
⋆ )

≤ ‖h1/2⋆ ◦ γ⋆∂Γ
(
VU(T⋆)

Γ − (V⋆U(T⋆)) ◦ γ⋆
)
‖L2(ωΓ

⋆ )
.

We obtain for x ∈ Γ

−2π(V(U(T⋆)
Γ)− (V⋆U(T⋆)) ◦ γ⋆)(x)

=

∫

Γ

log |x− y|U(T⋆) ◦ γ⋆(y)|∂Γγ⋆| dy −
∫

Γ

log |γ⋆(x)− γ⋆(y)|U(T⋆) ◦ γ⋆(y)|∂Γγ⋆| dy

=
1

2
M⋆(U(T⋆)

Γ)(x).

We employ Lemma 6.3.4�6.3.5 to obtain

1

2
‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)

Γ)‖2L2(Γ)

≤
∑

T∈T⋆

‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)
Γ|∪ω(TΓ,T Γ

⋆ ))‖2L2(TΓ)

+
∑

T∈T⋆

‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)
Γ|Γ\∪ω(TΓ,T Γ

⋆ ))‖2L2(TΓ)

≤ C2
Mgeo(T⋆)

3(1 + | log(geo(T⋆))|)2‖U(T⋆) ◦ γ⋆‖2L2(Γ)

+ C2
Mgeo(T⋆)

3(1 + | log(min h⋆)|)2(| log(|T⋆|)|+ 1)‖U(T⋆)
Γ‖2L2(Γ)

≤ C2
MC

2
Lipgeo(T⋆)

3(1 + | log(geo(T⋆))|)2

(1 + | log(min h⋆)|)2(| log(|T⋆|)|+ 1)‖U(T⋆)‖2L2(Γ⋆)
.

This onludes

( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

≤
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2

+ α⋆.

The onverse inequality follows analogously by replaing all triangle inequalities with reverse

triangle inequalities. This onludes the proof. �

Lemma 6.3.7. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆) ≤ C−1
ext/2 hold for T⋆ ∈ T. With G⋆ ∈ P0(T Γ

⋆ ), there holds

‖h1/2⋆ ◦ γ⋆G⋆|∂Γγ⋆|‖L2(Γ) ≤ Cinv‖G⋆|∂Γγ⋆|‖H−1/2(Γ) + geo(T⋆)
2‖G⋆‖L2(Γ).

The onstant Cinv > 0 depends only on K(T⋆) (with K(·) from Setion 3.2.2), (Γ2), and on

Γ.

Proof. There holds with (Γ2) and the inverse estimate from [57℄

‖h1/2⋆ ◦ γ⋆G⋆|∂Γγ⋆|‖L2(Γ) ≤ CLip‖h1/2⋆ ◦ γ⋆G⋆‖L2(Γ)

. ‖G⋆‖H−1/2(Γ)

≤ ‖G⋆|∂Γγ⋆|‖H−1/2(Γ) + ‖G⋆(1− |∂Γγ⋆|)‖H−1/2(Γ).

Lemma 6.2.14 proves

‖G⋆(1− |∂Γγ⋆|)‖H−1/2(Γ) ≤ ‖1− |∂Γγ⋆|‖L∞(Γ)‖G⋆‖L2(Γ) . geo(T⋆)
2‖G⋆‖L2(Γ).

This onludes the proof. �
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Theorem 6.3.8 (Stability and redution (E1)). Let assumption 6.3.1 hold. Given two

approximate geometries T⋆ ∈ T and T• ∈ T(T⋆) suh that Lemma 6.2.9 (i)�(iii) as well as

geo(T⋆), geo(T•) ≤ C−1
ext/2 hold. Let q :=

√
1/4 + C2

γ‖γ′′‖2L2([0,1])maxh2⋆ < 1. Then, there

holds (E1) for ρ(·) from (6.2.5), with

̺(T⋆, T•) := Cpert(‖U(T⋆)
Γ − U(T•)

Γ‖H−1/2(Γ) + α⋆ + α•

+ (geo(T⋆)
2 + geo(T•)

2)(‖U(T⋆)‖L2(Γ⋆) + ‖U(T•)‖L2(Γ•))),

α⋆, α• from Lemma 6.3.6, S(T⋆, T•) := T⋆ \T•, Ŝ(T⋆, T•) := T• \T⋆, and 0 < ρred < 1 depends

only on q, whereas Cpert > 0 depends additionally on Cinv, CLip, Γ, and K(T•), K(T⋆) (with
K(·) from Setion 3.2.2).

Proof. To see (E1a), we employ Lemma 6.3.6 two times with S⋆ := S1 := T⋆ \S(T⋆, T•)

and S⋆ := S2 := T• \ Ŝ(T⋆, T•) to obtain

∣∣∣
( ∑

T∈S1

ρT (T⋆)
2
)1/2

−
( ∑

T∈S2

ρT (T•)
2
)1/2∣∣∣

≤
∣∣∣
( ∑

T∈S1

ρT (T⋆)
2
)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣

+
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

T∈S2

ρT (T•)
2
)1/2∣∣∣

+
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣

≤
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣+ α⋆ + α•.

(6.3.16)

By de�nition of the bisetion rule in Algorithm 6.2.10, there holds

⋃SΓ
1 =

⋃SΓ
2 . Moreover,

h⋆ ◦ γ⋆ = h• ◦ γ• on
⋃SΓ

1 . Hene, the remaining term in the above estimate satis�es

∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρT (T⋆)
2
)1/2∣∣∣ ≤ ‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ).

The inverse estimate from [2℄ shows

‖h1/2• ◦ γ•∂ΓV(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ) . ‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ)

+ ‖U(T•)
Γ − U(T⋆)

Γ‖H−1/2(Γ),
(6.3.17)
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where the hidden onstant depends only on Γ as well as K(T⋆) and K(T•) (with K(·) from
Setion 3.2.2). Lemma 6.3.7 and Lemma 6.2.14 onlude

‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ)

. ‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆) ◦ γ⋆|∂Γγ•|)‖L2(Γ)

+ ‖1− |∂Γγ•|‖L∞(Γ)‖U(T⋆)‖L2(Γ⋆)

. ‖(U(T•)
Γ − U(T⋆) ◦ γ⋆)|∂Γγ•|)‖H−1/2(Γ)

+ geo(T•)
2‖U(T•) ◦ γ• − U(T⋆) ◦ γ⋆‖L2(Γ)

+ ‖1− |∂Γγ•|‖L∞(Γ)‖U(T⋆)‖L2(Γ⋆)

. ‖U(T•)
Γ − U(T⋆)

Γ)‖H−1/2(Γ)

+ (geo(T⋆)
2 + geo(T•)

2)(‖U(T⋆)‖L2(Γ⋆) + ‖U(T•)‖L2(Γ•)).

(6.3.18)

This onludes (E1a). To see (E1b), we use Lemma 6.3.6 two times with S⋆ := S1 :=

S(T⋆, T•) and S⋆ := S2 := \Ŝ(T⋆, T•) to obtain for δ > 0
∑

T∈S2

ρT (T•)
2 ≤ (1 + δ)

∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2 + (1 + δ)−1α2

•

≤ (1 + δ)2‖h1/2• ◦ γ•∂ΓV(U(T⋆)
Γ − f)‖2L2(∪SΓ

1 )

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ)

≤ (1 + δ)2‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )
‖h1/2⋆ ◦ γ⋆∂ΓV(U(T⋆)

Γ − f)‖2L2(∪SΓ
1 )

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ)

≤ (1 + δ)3‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )

∑

T∈S1

ρT (T⋆)
2 + (1 + δ)2(1 + δ−1)α2

⋆

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ).

Lemma 6.2.11 implies that

‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )

≤ q < 1.

Hene, su�iently small δ > 0 together with (6.3.17)�(6.3.18) onlude the proof. �

To prove onvergene of Algorithm 6.2.2, we require the following assumption on the

exat boundary Γ and the initial geometry T0: There exists 0 < qgeo < 1 suh that all T⋆ ∈ T
satisfy

geoT ′(T•) ≤ qgeogeo(T⋆) for all T ′ ∈ T• \ T⋆. (6.3.19)

This assumption is met if, for example, the exat boundary Γ an be parametrized in terms

of pieewise polynomials of arbitrary degree or NURBS and h⋆ is su�iently small.

Moreover, we need the assume that there holds

sup
ℓ∈N0

max{ϑ, qgeo}(1−ε)3ℓ/2‖U(Tℓ)‖L2(Γℓ) <∞ (6.3.20)

for some ε > 0.

Remark 6.3.9. In ase of quasi-uniform partitions with min hℓ ≃ maxhℓ, assump-

tion (6.3.20) is straightforward to prove even with ε = 1, i.e., supℓ∈N ‖U(Tℓ)‖L2(Γℓ) < ∞.
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However, we did not sueed in �nding a proof for the general ase of loally re�ned parti-

tions. We onjeture that there exists ν > 0 suh that

sup
ℓ∈N0

ℓ−ν‖U(Tℓ)‖L2(Γℓ) <∞,

whih would imply (6.3.20). Note that not even uniform stability of the ontinuous problem

V−1
⋆ : H1(Γ⋆) → L2(Γ⋆) for all T⋆ ∈ T is known in the literature. From the uniform ase, we

derive the (very onservative) worst ase estimate ‖U(Tℓ)‖L2(Γℓ) . 2ℓ. Assumption (6.3.20)

is easy to hek numerially and in this sense, one should understand the onvergene re-

sults of Lemma 6.3.10 and Theorem 6.4.1. If one numerially detets stability (6.3.20),

Algorithm 6.2.2 leads to onvergene towards the exat solution.

Lemma 6.3.10. Suppose Lemma 6.2.9 (i)�(iii) as well as geo(Tℓ) ≤ C−1
ext/2 for all

ℓ ∈ N0. Under assumption (6.3.1), (6.3.19), and (6.3.20) there exists U∞ ∈ H−1/2(Γ) suh
that there holds a priori onvergene limℓ→∞ ‖U∞ − U(Tℓ)

Γ‖H−1/2(Γ) = 0. Moreover, there

holds limℓ→∞ ̺(Tℓ, Tℓ+1) = 0, where ̺(Tℓ, Tℓ+1) is de�ned in Theorem 6.3.8.

Proof. There holds

geoT (Tℓ)
(6.2.6b)

≤ ϑgeo(Tℓ) for T ∈ Tℓ \Mℓ

and

geoT ′(Tℓ+1)
(6.3.19)

≤ qgeogeo(Tℓ) for all T ′ ∈ Tℓ+1 \ Tℓ.

Sine all T ∈ Tℓ+1 satisfy either T ∈ Tℓ+1 \ Tℓ or T ∈ Tℓ+1 ∩ Tℓ ⊆ Tℓ \Mℓ, the ombination

implies

geo(Tℓ+1) = max
T∈Tℓ+1

geoT (Tℓ+1) ≤ max{qgeo, ϑ}geo(Tℓ). (6.3.21)

This implies geo(Tℓ) → 0 as ℓ → ∞. De�ne X∞ :=
⋃

ℓ∈N0

{
v|∂Γγℓ| : v ∈ P0(T Γ

ℓ )
}

⊆
H−1/2(Γ) and the a priori limit U∞ ∈ X∞ by

〈VU∞ , v〉Γ = 〈f , v〉Γ for all v ∈ X∞.

For all ℓ ∈ N0, de�ne X∞(Tℓ) :=
⋃

k∈N0

{
v ◦ γ−1

ℓ |∂Γℓ
(γk ◦ γ−1

ℓ )| : v ∈ P0(T Γ
k )

}
⊆ H−1/2(Γℓ)

and U∞(Tℓ) ∈ X∞(Tℓ) by

〈VℓU∞(Tℓ) , v〉Γℓ
= 〈fℓ , v〉Γℓ

for all v ∈ X∞(Tℓ).

Then, there holds for all v ∈ X∞

〈VU∞ , v〉Γ = 〈f , v〉Γ = 〈fℓ , v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |〉Γℓ

.

For v ∈ ⋃
ℓ∈N0

{
v|∂Γγℓ| : v ∈ P0(T Γ

ℓ )
}
(whih is a dense subset of X∞), there holds v =

w|∂Γγk| for some w ∈ P0(T Γ
k ) and k ∈ N0. In this ase, we get with (6.2.12) that

v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ | = w ◦ γ−1

ℓ |∂Γγk| ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |

= w ◦ γ−1
ℓ |∂Γℓ

(γk ◦ γ−1
ℓ )| ∈ X∞(Tℓ).

(6.3.22)

Together with ‖v‖H−1/2(Γ) ≃ ‖v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |‖H−1/2(Γℓ)

by Lemma 6.2.19, this implies

v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ | ∈ X∞(Tℓ) for all v ∈ X∞. (6.3.23)

Analogously, we obtain

w ◦ γℓ|∂Γγℓ| ∈ X∞ for all w ∈ X∞(Tℓ). (6.3.24)
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This shows

〈VU∞ , v〉Γ = 〈fℓ , v ◦ γ−1
ℓ |∂Γγ−1

ℓ |〉Γℓ
= 〈VℓU∞(Tℓ) , v ◦ γ−1

ℓ |∂Γℓ
γ−1
ℓ |〉Γℓ

(6.3.25)

for all v ∈ X∞.

With U∞ − U∞(Tℓ)
Γ ∈ X∞ by (6.3.24), we obtain with w̃ = w ◦ γ−1

ℓ |∂Γγ−1
ℓ |

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) ≃ sup

w∈X∞\{0}

〈V(U∞ − U(Tℓ)
Γ) , w〉Γ

‖w‖H−1/2(Γ)

= sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− U(Tℓ)) , w̃〉Γℓ
+ 〈VℓU(Tℓ) , w̃〉Γℓ

− 〈VU(Tℓ)
Γ , w〉Γ

‖w‖H−1/2(Γ)

.

(6.3.26)

As in (6.2.49), there holds with Lemma 6.2.19 and (6.2.37)

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . ‖U∞(Tℓ)− U(Tℓ)‖H−1/2(Γℓ)

+ ‖MℓU(Tℓ)
Γ‖H1/2(Γ).

The Céa Lemma 6.2.39 (sine P0(Tℓ) ⊆ X∞(Tℓ) and Lemma 6.2.34 onlude

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)
‖U∞(Tℓ)− Vℓ‖H−1/2(Γℓ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)‖U(Tℓ)‖L2(Γℓ).

(6.3.27)

As in (6.3.26), we get for Vℓ ∈ P0(Tℓ) and V
Γ
ℓ := Vℓ ◦ γℓ|∂Γγℓ| that

‖U∞ − V Γ
ℓ ‖H−1/2(Γ) ≃ sup

w∈X∞\{0}

〈V(U∞ − V Γ
ℓ ) , w〉Γ

‖w‖H−1/2(Γ)

= sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ
+ 〈VℓVℓ , w̃〉Γℓ

− 〈VV Γ
ℓ , w〉Γ

‖w‖H−1/2(Γ)

,

(6.3.28)

whih implies together with Lemma 6.2.34, Lemma 6.2.19, and the uniform elliptiity (6.2.38)

that

‖U∞(Tℓ)− Vℓ‖H−1/2(Γℓ)
. sup

w̃∈X∞(Tℓ)\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ

‖w̃‖H−1/2(Γℓ)

(6.3.23)≃ sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ

‖w‖H−1/2(Γ)

(6.3.28)

. ‖U∞ − V Γ
ℓ ‖H−1/2(Γℓ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|))‖Vℓ‖L2(Γℓ).

This and (6.3.27) imply

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)

(
‖U∞ − V Γ

ℓ ‖H−1/2(Γ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)(‖Vℓ‖L2(Γℓ) + ‖U(Tℓ)‖L2(Γℓ))

)
.

(6.3.29)

For all k ∈ N0, there holds with Lemma 6.2.14

‖U∞ − V Γ
ℓ ‖H−1/2(Γ) ≤ ‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) + ‖1− |∂Γγℓ|‖L∞(Γ)‖Vℓ ◦ γℓ‖L2(Γ)

. ‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) + geo(Tℓ)
2‖Vℓ‖L2(Γℓ).
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With (6.3.29), this shows

‖U∞−U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)

(
‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) (6.3.30)

+ (geo(Tℓ)
2 + geo(Tℓ)

3/2(1 + | log(geo(Tℓ))|))(‖Vℓ‖L2(Γℓ) + ‖U(Tℓ)‖L2(Γℓ)

)
.

The term geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)‖U(Tℓ)‖L2(Γℓ) onverges to zero by use of assump-

tion (6.3.20) and (6.3.21).

It thus remains to prove that U∞ ∈ ⋃
ℓ∈N0

{
Vℓ ◦ γℓ : Vℓ ∈ P0(Tℓ)

}
=

⋃
ℓ∈N0

P0(T Γ
ℓ ) ⊆

H−1/2(Γ). To that end, we show that X∞ ∩ ⋃
ℓ∈N0

P0(T Γ
ℓ ) is dense in X∞ ∩ L2(Γ) with

respet to the L2
-norm. Consider Γ0 :=

{
x ∈ Γ : limℓ→∞ hℓ ◦ γℓ(x) = 0

}
. Obviously,⋃

ℓ∈N0
P0(T Γ

ℓ )|Γ0 is dense in L2(Γ0) and thus also in X∞ ∩ L2(Γ0). For all x ∈ Γ \ Γ0, there

exists ℓ0 ∈ N suh that x ∈ Tx ∈ Tℓ0 with Tx ⊆ Γ and Tx ∈ Tℓ for all ℓ ≥ ℓ0. This implies

∂Γγℓ|Tx = tΓ|Tx and hene onstant for all ℓ ≥ ℓ0. Moreover, ∂Γγℓ|Tx = cℓ for all ℓ < ℓ0,
where cℓ ∈ R2

depends only on tΓ|Tx and the father element T ′ ∈ Tℓ of Tx. This shows that
X∞|Γ\Γ0

=
⋃

ℓ∈N0
P0(T Γ

ℓ )|Γ\Γ0
. Altogether, this implies that X∞ ∩⋃

ℓ∈N0
P0(T Γ

ℓ ) is dense in

X∞ ∩L2(Γ) with respet to the L2
-norm. Hene,

⋃
ℓ∈N0

P0(T Γ
ℓ ) is dense in X∞ with respet

to the H−1/2(Γ)-norm and thus U∞ ∈ ⋃
ℓ∈N0

P0(T Γ
ℓ ).

Given ε > 0, this allows to hoose Vℓ0 ∈ Pp(Tℓ0) suh that ‖U∞ − Vℓ0 ◦ γℓ0‖H−1/2(Γ) ≤ ε.
Then, hoose k ≥ ℓ0 suh that all ℓ ≥ k satisfy

(geo(Tℓ)
2 + geo(Tℓ)

3/2(1 + | log(geo(Tℓ))|))‖Vℓ0‖L2(Γ) ≤ ε.

Sine Vℓ0 ◦ γℓ0 ◦ γ−1
ℓ ∈ P0(Tℓ) and Vℓ0 ◦ γℓ0 ◦ γ−1

ℓ ◦ γℓ = Vℓ0 ◦ γℓ, (6.3.30) shows ‖U∞ −
U(Tℓ)

Γ‖H−1/2(Γ) . 2ε for all ℓ ≥ k. This onludes ‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) → 0 as ℓ→ ∞.

The above and the de�nition of ̺(Tℓ, Tℓ+1) shows limℓ→∞ ̺(Tℓ, Tℓ+1) = 0, where we use

(| log(|Tℓ|)|+ | log(min hℓ)|) . ℓ for all ℓ ∈ N0,

whih follows from the fat that eah step maximally doubles the number of elements and

approximately halves the size of the elements. This onludes the proof. �

6.4. Main result

Theorem 6.4.1. De�ne T as in Setion 6.2.5. Assume that all T⋆ ∈ T satisfy h⋆ ≤
C−1

Γ κ−1
Γ /2 and geo(T⋆) ≤ min{C−1

ext/2, C
−1
Γ /2, C−1

Γ κ−1
Γ /2} (suh that Lemma 6.2.9 (i)�(iii)

hold). Then, the error estimator η(·) satis�es reliability (6.2.47). Under the assump-

tion (6.3.1), the error estimator ρ(·) from (6.2.5) satis�es (E1) with ̺(·, ·) as stated in

Theorem 6.3.8. Moreover, under the assumptions (6.3.19)�(6.3.20), there holds onvergene

‖u− U(Tℓ)
Γ‖H−1/2(Γ) ≤ Crelη(Tℓ) → 0 as ℓ→ ∞.

Proof. Sine T0 satis�es (i)�(iii) from Lemma 6.2.9, all T⋆ ∈ T satisfy (i)�(iii), too.

Therefore, Theorem 6.2.28 and Theorem 6.3.8 prove (6.2.47) and (E1). The estimator ρ(·)
satis�es Dör�er marking (6.2.6a) in eah step of Algorithm 6.2.2. Therefore, Lemma 2.3.5

proves estimator redution 2.3.8 for ρ(·). Lemma 6.3.10 shows limℓ→∞ ̺(Tℓ, Tℓ+1) = 0. Hene,
Lemma 2.3.6 onludes the proof. �

Consequene 6.4.2. Under the assumptions (6.3.1)�(6.3.20), Algorithm 6.2.2 leads

to limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 and hene onvergene in the sense of Theorem 2.3.3 (i).
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CHAPTER 7

General Quasi-Orthogonality (E2) For Non-Symmetri Problems

7.1. Introdution, state of the art & outline

The general quasi-orthogonality (E2) renders an important tool for the optimality proofs

of the previous hapters. Setion 2.6 shows that it is even neessary if the algorithm is

R-linear onvergent. The following investigations provide su�ient assumptions for (E2) to

hold. Setion 7.2�7.4 appear in similar manner in [46℄. Figure 1 depits a geometri view

on the general quasi-orthogonality (E2).

7.2. General quasi-orthogonality (E2) for linear seond-order ellipti equations

We stress that the quasi-orthogonality proof makes expliit use of the fat that we already

have onvergene U(Tℓ) → u in H1
0 (Ω). We onsider the setting of Setion 3.6.1. The

PSfrag replaements

u

U(T2)

U(T1)

U(T0)

Figure 1. Geometri view on the general quasi-orthogonality (E2). For

̺(T , T̂ ) ≃ ‖U(T )−U(T̂ )‖, the general quasi-orthogonality bounds the ℓ2-sum
of the squared perturbations. Sine the adaptive algorithm performs a step-

by-step optimization of the triangulations without any foresight, it ontrols the

perturbations ̺(Tℓ, Tℓ+1) only. By Galerkin orthogonality, the solutions are in

some sense orthogonal to eah other. The general quasi-orthogonality (E2)

ensures that the overall approximation (dashed green line), whih is measured

by η(Tℓ), is an upper bound for the sum of the individual steps. This would

be automatially the ase if η(Tℓ) is a Hilbert norm whih orresponds to the

orthogonality between the solutions. If (E2) is not satis�ed, one has no argu-

ment that the individual steps approah the exat solution in an e�ient way

(dotted red line).
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operator L is split as follows

Au = −divA∇u,
Cu = b · ∇u+ cu.

The following observation is the key element of the proof of (E2).

Lemma 7.2.1. The operators A, C : H1
0 (Ω) → H−1(Ω) are bounded. Moreover, A is

symmetri, i.e., 〈Au , v〉 = 〈Av , u〉 for all u, v ∈ H1
0 (Ω), and C is ompat.

Proof. The symmetry of A is obvious as A(x) is symmetri, and both operators A and

C are also bounded, i.e.,

‖Av‖H−1(Ω) ≤ ‖A‖L∞(Ω)‖∇v‖L2(Ω),

‖Cv‖H−1(Ω) ≤ ‖Cv‖L2(Ω) . (‖b‖L∞(Ω) + ‖c‖L∞(Ω))‖∇v‖L2(Ω),

for all v ∈ H1
0 (Ω). This implies that C̃ : H1

0 (Ω) → L2(Ω), C̃v := Cv is well-de�ned and

bounded. It remains to prove that C is ompat. The Rellih ompatness theorem shows

that the embedding ι : H1
0(Ω) →֒ L2(Ω) is a ompat operator. Therefore, aording to

Shauder's theorem, see e.g. [73, Theorem 4.19℄, the adjoint operator ι⋆ : L2(Ω) → H−1(Ω)
is also ompat. Obviously, ι⋆ : L2(Ω) → H−1(Ω) oinides with the natural embedding,

and we may write

C = ι⋆ ◦ C̃ : H1
0 (Ω) → L2(Ω) → H−1(Ω).

Therefore, C is the omposition of a bounded operator and a ompat operator and hene

ompat. This onludes the proof. �

Lemma 7.2.2. Let (Tℓ)ℓ∈N0 denote the output of Algorithm 2.2.1. Assume that there

holds onvergene limℓ→∞ ‖U(Tℓ) − u‖H1
0 (Ω) = 0 with u and U(Tℓ) from Setion 3.6.1. The

sequenes (eℓ)ℓ∈N and (Eℓ)ℓ∈N de�ned by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else,

and

Eℓ :=

{
U(Tℓ+1)−U(Tℓ)

‖∇(U(Tℓ+1)−U(Tℓ))‖L2(Ω)
, for U(Tℓ+1) 6= U(Tℓ),

0, else,

onverge to zero, weakly in H1
0 (Ω), i.e.,

lim
ℓ→∞

〈w , eℓ〉 = 0 = lim
ℓ→∞

〈w , Eℓ〉 for all w ∈ H−1(Ω), (7.2.1)

where 〈· , ·〉 denotes the extended L2(Ω)-salar produt.

Proof. We prove weak onvergene of eℓ to zero. The weak onvergene of Eℓ fol-

lows with the same arguments. Let (eℓj) be a subsequene of (eℓ). Due to boundedness

‖∇eℓj‖L2(Ω) ≤ 1 for all j ∈ N, we may extrat a weakly onvergent subsequene (eℓk) of (eℓj)
with

eℓk ⇀ w ∈ H1
0 (Ω).

First, note that onvergene limℓ→∞ ‖U(Tℓ) − u‖H1
0 (Ω) = 0 implies that u, U(Tℓ) ∈ X∞ :=⋃

ℓ∈N0
Sp
0 (Tℓ) ⊆ H1

0 (Ω) implies eℓ ∈ X∞ and hene w ∈ X∞. Seond, for all ℓk ≥ ℓ with

eℓk 6= 0 and all V ∈ Sp
0 (Tℓ), it holds

b(eℓk , V ) = ‖∇(u− Uℓk)‖−1
L2(Ω)b(u− Uℓk , V ) = 0.
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For all ℓ ∈ N0, V ∈ Sp
0 (Tℓ), and ε > 0, there exists k0 ∈ N suh that all k ≥ k0 satisfy

|b(w , V )| = |〈w , L⋆V 〉| ≤ ε+ |〈eℓk , L⋆V 〉| = ε+ |b(eℓk , V )| = ε,

sine k0 is hosen large enough suh that ℓk ≥ ℓ. Therefore

b(w , V ) = 0 for all V ∈ Sp
0 (Tℓ) and ℓ ∈ N.

Due to de�niteness of b(·, ·) and w ∈ X∞ :=
⋃

ℓ∈N Sp
0 (Tℓ), this implies w = 0. Altogether, we

have now shown that eah subsequene of eℓ has a subsequene whih onverges weakly to

zero. This immediately implies weak onvergene eℓ ⇀ 0 as ℓ→ ∞. �

The previous lemma shows that although (Eℓ)ℓ∈N is no orthonormal sequene, it shares

the property of weak onvergene to zero with orthonormal systems. Note that our proof

already used onvergene Uℓ → u as ℓ→ ∞ in the sense that we required u−Uℓ ∈ X∞. This

su�es to prove the following quasi-Pythagoras theorem.

Proposition 7.2.3. De�ne ‖ · ‖ := b(· , ·)1/2 with b(· , ·) from Setion 3.6.1. Assume

that limℓ→∞ ‖U(Tℓ)− u‖H1
0 (Ω) = 0. Then, for all 0 < ε < 1, there exists ℓqo ∈ N suh that

‖U(Tℓ+1)− U(Tℓ)‖2 ≤
1

1− ε
‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2 (7.2.2)

for all ℓ ≥ ℓqo, where u and U(Tℓ) are de�ned in Setion 3.6.1.

Remark 7.2.4. As in [36, Theorem 5.1℄, the quasi-orthogonality (7.2.2) is an asymp-

toti statement. The advantage here is that (7.2.2) is automatially guaranteed after ℓ0 steps
of Algorithm 2.2.1. In ontrast to that, [36, Assumption 4.3℄ used to prove [36, Theorem 5.1℄,

inludes a element-size ondition of the form |T |1/d ≤ hmax ≪ 1 for all T ∈ Tℓ whih is not

neessarily enfored by Algorithm 2.2.1, unless the initial triangulation is already su�iently

�ne. Moreover, hmax is unknown in general and depends on the regularity of the dual prob-

lem.

Proof. Lemma 7.2.2 shows that eℓ, Eℓ ⇀ 0 as ℓ → ∞. Due to Lemma 7.2.1, C is

ompat. Therefore, we have strong onvergene Ceℓ, CEℓ → 0 in H−1(Ω) as ℓ → ∞. With

〈· , ·〉 := 〈· , ·〉H−1(Ω)×H1
0 (Ω), this shows

〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉 = 〈Ceℓ+1 , U(Tℓ+1)− U(Tℓ)〉‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ ‖Ceℓ+1‖H−1(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)

as well as

〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉
= 〈CEℓ , u− U(Tℓ+1)〉‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)

≤ ‖CEℓ‖H−1(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

For any δ > 0, this may be employed to obtain some ℓ0 ∈ N suh that for all ℓ ≥ ℓ0, it holds

|〈C(U(Tℓ+1)− U(Tℓ)) , u−U(Tℓ+1)〉|+ |〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

Together with Galerkin orthogonality

0 = b(u− U(Tℓ+1), Vℓ+1) = 〈L(u− U(Tℓ+1)) , Vℓ+1〉 for all Vℓ+1 ∈ Sp
0 (Tℓ+1),
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we estimate

|〈L(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|
= |〈A(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉+ 〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|
≤ |〈L(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|+ |〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|

+ |〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

(7.2.3)

The de�nition of ‖ · ‖ and Galerkin orthogonality (2.7.3) yield

‖u− U(Tℓ+1)‖2 + ‖U(Tℓ+1)− U(Tℓ)‖2 + 2〈L(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉
= ‖u− U(Tℓ)‖2,

whene

‖U(Tℓ+1)− U(Tℓ)‖2 ≤ ‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2

+ 2δC2
norm‖u− U(Tℓ+1)‖‖U(Tℓ+1)− U(Tℓ)‖,

where Cnorm > 0 is de�ned in Setion 3.6.1. The appliation of Young's inequality 2ab ≤
a2 + b2 and the hoie ε = δC2

norm onlude the proof. �

Theorem 7.2.5. Assume that limℓ→∞ ‖U(Tℓ) − u‖ = 0 with u and U(Tℓ) from Se-

tion 3.6.1. Then, for all εqo > 0, there exists Cqo > 0 suh that (E2) holds with ̺(Tℓ, Tℓ+1) :=
‖U(Tℓ)− U(Tℓ+1)‖L2(Ω) and eah estimator η(·) whih is reliable, i.e.,

‖u− U(Tℓ)‖ ≤ Crelη(Tℓ) for all ℓ ∈ N0.

Partiularly, this is satis�ed by the error estimator η(·) from Setion 3.6.1.

Proof. Proposition 7.2.3 proves the quasi-orthogonality (2.7.5) for all ℓ ≥ ℓ0 with

̺(Tℓ, Tℓ+1) = ‖∇(U(Tℓ) − U(Tℓ+1))‖ and αℓ := ‖u − U(Tℓ)‖2. The Céa lemma 3.6.5 and

reliability (in the setting of Setion 3.6.1 from (2.4.1)) imply

̺(Tℓ, Tℓ+1) . ‖u− U(Tℓ)‖ . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ ℓ0.

∞∑

k=ℓ

(
‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)

2
)
≤ C ′

qoη(Tℓ)
2.

For all ℓ < ℓ0, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

(
‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)

2
)
≤ Cℓη(Tℓ)

2,

sine both sides of the inequality are �nite and if η(Tℓ) = 0, then reliability (2.4.1) and the

Céa lemma (3.6.5) imply

‖U(Tk)− U(Tk+1)‖ . ‖u− U(Tℓ)‖ . η(Tℓ) = 0 for all k ≥ ℓ.

With Cqo := C ′
qo +maxℓ=0,...,ℓ0−1Cℓ, this onludes the proof. �
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7.3. General quasi-orthogonality (E2) for problems with Gårding inequality

Lemma 7.3.1. Let (Tℓ)ℓ∈N0 denote the output of Algorithm 3.6.3. Assume de�niteness

for all v ∈ X∞ :=
⋃∞

ℓ=0 Sp
0 (Tℓ), i.e.,

b(w , v) = 0 for all v ∈ X∞ =⇒ w = 0. (7.3.1)

Then, the sequenes (eℓ)ℓ∈N and (Eℓ)ℓ∈N (with u and U(Tℓ) from Setion 3.6.2) de�ned by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else,

and

Eℓ :=

{
U(Tℓ+1)−U(Tℓ)

‖∇(U(Tℓ+1)−U(Tℓ))‖L2(Ω)
, for U(Tℓ+1) 6= U(Tℓ),

0, else,

for all ℓ ≥ ℓ0 (from Lemma 3.6.10) onverge to zero, weakly in H1
0 (Ω) in the sense (7.2.1).

Proof. We prove weak onvergene of eℓ to zero. The weak onvergene of Eℓ fol-

lows with the same arguments. Let (eℓj) be a subsequene of (eℓ). Due to boundedness

‖∇eℓj‖L2(Ω) ≤ 1 for all j ∈ N, we may extrat a weakly onvergent subsequene (eℓk) of (eℓj )
with

eℓk ⇀ w ∈ H1
0 (Ω).

Lemma 3.6.11 proves limℓ→∞ ‖∇(u−U(Tℓ))‖L2(Ω) = 0 and partiularly u ∈ X∞. This implies

eℓ ∈ X∞ and hene w ∈ X∞. For all ℓk ≥ ℓ with eℓk 6= 0 and all V ∈ Sp
0 (Tℓ), it holds

b(eℓk , V ) = ‖∇(u− Uℓk)‖−1
L2(Ω)b(u− Uℓk , V ) = 0.

For all ℓ ∈ N, V ∈ Sp
0 (Tℓ), and ε > 0, there exists k0 ∈ N suh that all k ≥ k0 satisfy

|b(w , V )| = |〈w , L⋆V 〉| ≤ ε+ |〈eℓk , L⋆V 〉| = ε+ |b(eℓk , V )| = ε,

sine k0 is hosen large enough suh that ℓk ≥ ℓ. Therefore

b(w , V ) = 0 for all V ∈ Sp
0 (Tℓ) and ℓ ∈ N.

Due to (7.3.1) and w ∈ X∞, this implies w = 0. Altogether, we have now shown that eah

subsequene of eℓ has a subsequene whih onverges weakly to zero. This immediately

implies weak onvergene eℓ ⇀ 0 as ℓ→ ∞. �

Lemma 7.3.2. Assume de�niteness (7.3.1). There exists an index ℓnorm ∈ N suh that

for all ℓ ≥ ℓnorm there holds

C−1
norm‖u− Uℓ‖ ≤ ‖∇(u− Uℓ)‖L2(Ω) ≤ Cnorm‖u− Uℓ‖ and

C−1
norm‖Uℓ+1 − Uℓ‖ ≤ ‖∇(Uℓ+1 − Uℓ)‖L2(Ω) ≤ Cnorm‖Uℓ+1 − Uℓ‖

with u and U(Tℓ) from Setion 3.6.2.

Proof. With (3.6.9) and |b(·, ·)| = ‖ · ‖2, we may estimate

‖∇(u− Uℓ)‖2L2(Ω) . ‖u− Uℓ‖2 + ‖u− Uℓ‖2L2(Ω)

= ‖u− Uℓ‖2 + ‖eℓ‖2L2(Ω)‖∇(u− Uℓ)‖2L2(Ω).
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Lemma 7.3.1 shows weak onvergene eℓ ⇀ 0 in H1
0 (Ω). The Rellih ompatness theorem

thus implies strong onvergene eℓ → 0 in L2(Ω). Therefore, there exists an index ℓnorm ∈ N
suh that there holds

‖∇(u− Uℓ)‖2L2(Ω) . ‖u− Uℓ‖2 for all ℓ ≥ ℓnorm.

The remaining statements follow analogously. �

Proposition 7.3.3. Assume de�niteness (7.3.1). Then, for all 0 < ε < 1, there exists
ℓqo ∈ N with ℓqo ≥ ℓnorm suh that

‖U(Tℓ+1)− U(Tℓ)‖2 ≤
1

1− ε
‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2 (7.3.2)

for all ℓ ≥ ℓqo with u and U(Tℓ) from Setion 3.6.2.

Proof. With Lemma 7.3.2 and Lemma 7.3.1, the proof follows analogously to the proof

of Proposition 7.2.3. �

Theorem 7.3.4. Assume de�niteness (7.3.1) and the Céa lemma (3.6.15) for all ℓ ≥ ℓ1
and some ℓ1 ∈ N. Then, for all εqo > 0, there exists Cqo > 0 suh that (E2) holds with

̺(Tℓ, Tℓ+1) := ‖∇(U(Tℓ)−U(Tℓ+1))‖L2(Ω) for all ℓ ≥ ℓ0 with ℓ0 from Lemma 3.6.10 and eah

estimator η(·) whih is reliable, i.e.,

‖∇(u− U(Tℓ))‖L2(Ω) ≤ Crelη(Tℓ) for all ℓ ∈ N0.

The solutions u and U(Tℓ) are de�ned Setion 3.6.2. Partiularly, this is satis�ed by the

error estimator η(·) from Setion 3.6.2.

Proof. Proposition 7.3.3 proves quasi-orthogonality (2.7.5) with ̺(Tℓ, Tℓ+1) = ‖U(Tℓ)−
U(Tℓ+1)‖ and αℓ := ‖u− U(Tℓ)‖2 for all ℓ ≥ ℓqo. With the Céa lemma 3.6.15, Lemma 7.3.2,

and reliability (in the setting of Setion 3.6.2, reliability is proved in Lemma 3.6.6), this

shows for all ℓ ≥ max{ℓqo, ℓ1}

̺(Tℓ, Tℓ+1) . ‖u− U(Tℓ)‖ . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ max{ℓqo, ℓ1}.
∞∑

k=ℓ

‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)
2 ≤ C ′

qoη(Tℓ)
2.

For all ℓ0 < ℓ < max{ℓqo, ℓ1}, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

‖∇(U(Tk)− U(Tk+1))‖2L2(Ω) − εqoη(Tk)
2 ≤ Cℓη(Tℓ)

2,

sine both sides of the inequality are �nite and, by Remark 3.6.7, also η(Tℓ) > 0. The

ombination of the last estimates with the norm equivalene from Lemma 7.3.2 onludes

the proof. �
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7.4. General quasi-orthogonality (E2) for nonlinear seond-order ellipti

equations

Similar to the proof in Setion 7.2, we derive a orresponding result for the nonlinear

ase. We onsider the setting of Setion 3.7.

Lemma 7.4.1. Reall X∞ :=
⋃

ℓ∈N0
Sp
0 (Tℓ) ⊆ H1

0 (Ω). The operator (DL)|X∞u : X∞ →
X ⋆

∞ de�ned in Setion 3.7 is injetive and has losed range.

Proof. With (3.7.6) and the de�nition of the Fréhet derivative, there holds for all

v ∈ X∞

〈((DL)|X∞u)(v) , v〉 = lim
δ→0

δ−1〈L(u+ δv)−Lu , v〉

= lim
δ→0

δ−2〈L(u+ δv)−Lu , u+ δv − u〉

& lim
δ→0

δ−2‖∇(u+ δv − u)‖2L2(Ω) = ‖∇v‖2L2(Ω).

Hene, we have ((DL)|X∞u)(v) 6= 0 in X ⋆
∞ for all v ∈ X∞ \ {0}. Let wn ∈ range((DL)|X∞u)

denote a Cauhy sequene. Then, the above estimate proves for ((DL)|X∞u)vn = wn

‖∇(vn − vm)‖2L2(Ω) . 〈((DL)|X∞u)(vn − vm) , vn − vm〉
≤ ‖wn − wm‖X ⋆

∞
‖∇(vn − vm)‖L2(Ω),

whih onludes that vn → v ∈ X∞ and hene wn → ((DL)|X∞u)(v) ∈ X ⋆
∞ by ontinuity of

DL)|X∞u. This onludes the proof. �

Lemma 7.4.2 (Taylor). For all v, w ∈ H1
0 (Ω) with ‖∇(u−v)‖L2(Ω)+‖∇(u−w)‖L2(Ω) ≤

εℓoc, there holds

‖Lw − Lv −DL(w)(w − v)‖H−1(Ω) ≤ C17‖∇(w − v)‖2L2(Ω), (7.4.1a)

‖Aw −Av −DA(w)(w − v)‖H−1(Ω) ≤ C17‖∇(w − v)‖2L2(Ω), (7.4.1b)

where L and A are de�ned in Setion 3.7.

Proof. The loal boundedness (3.7.10) together with [37, Theorem 6.5℄ applied to the

operators L and A prove the statement. �

Lemma 7.4.3. The sequene (eℓ)ℓ∈N (with u and U(Tℓ) from Setion 3.7) de�ned by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else

onverges to zero, weakly in H1
0 (Ω) in the sense of (7.2.1).

Proof. With Galerkin-orthogonality and the onvention ∞ · 0 = 0, we obtain

lim
ℓ→∞

〈Lu− LU(Tℓ) , Vk〉
‖∇(u− U(Tℓ))‖L2(Ω)

= 0 for all Vk ∈ Sp
0 (Tk) and k ∈ N.

By ontinuity of the duality brakets, this results in onvergene for all v ∈ X∞

〈Lu−LU(Tℓ) , v〉
‖∇(u− U(Tℓ))‖L2(Ω)

→ 0 as ℓ→ ∞.
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By use of (7.4.1a) and onvergene from (3.7.15), we observe for all v ∈ X∞ and all su�iently

large ℓ ∈ N.

|〈Lu− LU(Tℓ) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

≥ |〈(DLu)(u− U(Tℓ)) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

− C17‖∇(u− U(Tℓ))‖L2(Ω)‖∇v‖L2(Ω).

Again, with onvergene U(Tℓ) → u in H1
0 (Ω) from (3.7.15), this implies immediately for all

v ∈ X∞

|〈u− U(Tℓ) , ((DL)|X∞u)
⋆v〉|

‖∇(u− U(Tℓ))‖L2(Ω)

=
|〈(DLu)(u− U(Tℓ)) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

→ 0 as ℓ→ ∞. (7.4.2)

Aording to Lemma 7.4.1, (DL)|X∞u is injetive and has losed range. Therefore, its

adjoint operator ((DL)|X∞u)
⋆
has is surjetive onto X ⋆

∞ by the losed range theorem [85℄.

Convergene (3.7.15) implies that eℓ ∈ X∞. Hene, (7.4.2) is equivalent to eℓ ⇀ 0 as ℓ→ ∞.

This onludes the proof. �

To abbreviate notation, we de�ne the quasi-metri (whih is symmetri, de�nite, and

satis�es the triangle inequality with a multipliative onstant)

dl(w, v)2 := 〈Lw − Lv , w − v〉 for all w, v ∈ H1
0 (Ω).

Note that due to (3.7.5)�(3.7.6), there holds

C−1
norm‖∇(w − v)‖L2(Ω) ≤ dl(w, v) ≤ Cnorm‖∇(w − v)‖L2(Ω) for all w, v ∈ H1

0 (Ω) (7.4.3)

with Cnorm = max{2C15, C
−1
16 } > 0.

Proposition 7.4.4. For any ε > 0, there exists ℓqo ∈ N suh that

dl(Uℓ+1, U(Tℓ))
2 ≤ 1

1− ε
dl(u, U(Tℓ))

2 − dl(u, U(Tℓ+1))
2

(7.4.4)

for all ℓ ≥ ℓqo and with u and U(Tℓ) from Setion 3.7.

Proof. Due to onvergene U(Tℓ) → u in H1
0 (Ω) from (3.7.15), there exists ℓ1 ∈ N suh

that for all ℓ ≥ ℓ1 we may apply (7.4.1b), to obtain

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈DA(U(Tℓ+1))(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|

+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω).

Using the symmetry of DA(U(Tℓ+1)), we onlude

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈DA(U(Tℓ+1))(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|

+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ C17‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖2L2(Ω).

(7.4.5)
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Analogously to the estimate above but by use of the reverse triangle inequality, we obtain

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≥ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

− C17‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

− C17‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖2L2(Ω).

(7.4.6)

Given δ > 0, onvergene U(Tℓ) → u as ℓ → ∞ provides an index ℓ0 ∈ N suh that

C17(‖∇(u − U(Tℓ+1))‖L2(Ω) + ‖∇(U(Tℓ+1) − U(Tℓ))‖L2(Ω)) ≤ δ. With (7.4.5)�(7.4.6) this

implies

∣∣|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉| − |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
∣∣

≤ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

for all ℓ ≥ ℓ1. Sine eℓ onverges to zero weakly in H
1
0 (Ω), we have strong onvergene eℓ → 0

as ℓ→ ∞ in L2(Ω). This together with Lipshitz ontinuity (3.7.5b) implies

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
. ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖eℓ+1‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

and hene

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
≤ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

for all ℓ ≥ ℓ0 with ℓ0 ≥ ℓ1 su�iently large. The adjoint term satis�es

|〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− u〉|+ |〈Cu− CU(Tℓ+1) , u− U(Tℓ)〉|
. ‖∇(u− U(Tℓ+1))‖2L2(Ω)‖eℓ+1‖L2(Ω)

+ ‖∇(u− U(Tℓ))‖L2(Ω)‖eℓ‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ δ
(
‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ ‖∇(u− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

)
.

So far, we end up with

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|+ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(u− U(Tℓ))‖L2(Ω)

)

≤ δ/2‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + 2δ‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ δ/2‖∇(u− U(Tℓ))‖2L2(Ω)
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by use of Young's inequality. Putting everything together and by use of Galerkin orthogo-

nality 〈(A+ C)u− (A+ C)U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉 = 0, we obtain

|〈(A+ C)U(Tℓ+1)− (A+ C)U(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

+ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ |〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈(A+ C)u− (A+ C)U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

+ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ |〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|+ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ 3δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + ‖∇(u− U(Tℓ+1))‖2L2(Ω) + ‖∇(u− U(Tℓ))‖2L2(Ω)

)
.

With that at hand, we obtain by de�nition of dl(·, ·)
dl(U(Tℓ+1), U(Tℓ))

2 ≤ dl(u, U(Tℓ))
2 − dl(u, U(Tℓ+1))

2

+ |〈(A+ C)U(Tℓ+1)− (A+ C)U(Tℓ) , u− U(Tℓ+1)〉|
≤ dl(u, U(Tℓ))

2 − dl(u, U(Tℓ+1))
2 + 3δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖2L2(Ω) + ‖∇(u− U(Tℓ))‖2L2(Ω)

)
.

With the equivalene (7.4.3), we onlude

(1− 3Cnormδ)dl(U(Tℓ+1), U(Tℓ))
2

≤ (1 + 3Cnormδ)dl(u, U(Tℓ))
2 − (1− 3Cnormδ)dl(u, U(Tℓ+1))

2

for all ℓ ≥ ℓ0. Finally, we hoose δ > 0 su�iently small suh that (1 + 3Cnormδ)/(1 −
3Cnormδ) ≤ 1/(1− ε) and onlude the proof. �

Theorem 7.4.5. Suppose the Céa lemma 3.7.8. For all εqo > 0, there exists Cqo > 0
suh that (E2) holds with ̺(Tℓ, Tℓ+1) := ‖∇(U(Tℓ)− U(Tℓ+1))‖L2(Ω) (with u and U(Tℓ) from
Setion 3.7), and eah estimator η(·) whih is reliable, i.e.,

‖∇(u− U(Tℓ))‖L2(Ω) ≤ Crelη(Tℓ) for all ℓ ∈ N0.

Partiularly, this is satis�ed by the error estimator η(·) from Setion 3.7.

Proof. Proposition 7.4.4 proves the quasi-orthogonality (2.7.5) for all ℓ ≥ ℓ0 with

̺(Tℓ, Tℓ+1) = dl(U(Tℓ), U(Tℓ+1)) and αℓ := dl(u, U(Tℓ)). The Céa lemma 3.7.8, (7.4.3), and

reliability (in the setting of Setion 3.7 from (2.4.1)) imply

̺(Tℓ, Tℓ+1) . ‖∇(u− U(Tℓ))‖L2(Ω) . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ ℓqo.

∞∑

k=ℓ

dl(U(Tk), U(Tk+1))
2 − εqoη(Tk)

2 ≤ C ′
qoη(Tℓ)

2.

For all ℓ < ℓ0, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

dl(U(Tk), U(Tk+1))
2 − εqoη(Tk)

2 ≤ Cℓη(Tℓ)
2,
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sine both sides of the inequality are �nite and if η(Tℓ) = 0, then reliability (2.4.1) and the

Céa lemma (3.7.8) imply

dl(U(Tk), U(Tk+1)) . ‖∇(U(Tk)− U(Tk+1))‖L2(Ω) . ‖∇(u− U(Tℓ))‖L2(Ω) . η(Tℓ) = 0.

With (7.4.3), the last two estimates onlude the proof. �
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non-symmetri and possibly non-linear problems, SIAM J. Numer. Anal. 52 (2014), 601�625.

C. Carstensen, M. Feishl, M. Page, D. Praetorius: Axioms of adaptivity, Comput. Math. Appl. 67 (2014),

1195�1253.

M. Feishl, M. Karkulik, J. Melenk, D. Praetorius: Quasi-optimal onvergene rate for an adaptive boundary

element method, SIAM J. Numer. Anal. 51 (2013) 1327�1348.

•Co-authors

Carsten Carstensen (Humboldt Universität zu Berlin), Jens Markus Melenk (Vienna University of Tehnol-

ogy), Ernst Peter Stephan (Leibniz University of Hannover), Dirk Praetorius (Vienna University of Tehnol-

ogy).

•Other publiations

Altogether, 21 peer-reviewed journal publiations sine 2012, e.g., in Appl. Numer. Math. (to appear 2015),

Numer. Math. (to appear 2015), Arh. Comput. Methods Engrg. (to appear 2015), Eletron. Trans. Numer. Anal.

(to appear 2015), Math. Models Methods Appl. Si. (2014) Calolo (2014), Numer. Algorithms (2014), Comput.

Math. Appl. (2014), Int. J. Numer. Anal. Model. (2014), J. Comput. Appl. Math. (2014), Comput. Methods Appl.

Math. (2013, 2014), SIAM J. Numer. Anal. (2013, 2014), Eng. Anal. Bound. Elem. (2012, 2014), Comput. Meh.

(2013), J. Magn. Magn. Mater. (2012, 2013), M2AN Math. Model. Numer. Anal. (2012, 2013).

Currently, 15 publiations are listed in MathSiNet and 19 in Sopus (state Marh 2015).

• Sienti� talks

Workshop for Adaptive Wavelets and Frames for BEM in Aoustis (invited, 2014), 11th. World Congress

on Computational Mehanis (2014), IABEM Symposium (2013), WONAPDE (2013), MAFELAP (2013),

ECCOMAS (2012), Austrian Numerial Analysis Day (2010�2013), Workshop on Fast BEM in Industrial

Appliations (2010�2013), Colloquium of Institute for Applied Mathematis at Humboldt-University of Berlin

(invited, 2012�2013), 7th Zürih Summershool (2012).


