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Abstract

This work aims to analyze the pathways of patients with mental diseases through the

health care system. The prediction of the burden of disease is necessary to provide

sufficient capacities in the hospitals and to adjust for changes in the structure of the

population. In this work emphasis is put on the analysis of reimbursement data of af-

fected people and on the parametrization of a microsimulation model. Also, regional

differences of Lower Austria compared to the entire Austrian population are analyzed.

The available data sets contain information about patient attributes as well as times of

admissions to hospitals, ambulant contacts to psychiatrists and deaths.

Selected methods from survival analysis and model selection are compared and used

to analyze the given data in terms of the readmission times depending on patient pa-

rameters. The Cox regression and the model selection methods are used to determine

significant parameters for the simulation model. The hazard rates of the particular

events in the simulation are estimated using an extension of the Cox model for multiple

events.

Using the previous results, a microsimulation model is built to simulate the pathways

of mentally ill patients. The considered events are readmissions to hospital, contacts to

an ambulant psychiatrist and death. Every patient is classified according to a particular

set of parameters and can be in one of several predefined, exclusive states. The events

are implemented as state changes.

Three scenarios of simulations are defined to test the consequences of using differently

detailed patient-level data on result quality. The first one only takes data of the first

readmissions of a patient into account, the second scenario takes all readmissions into

account but without any order and the third takes all readmissions into account with

order.

All simulations and analyses of the results are performed in R. The simulations are based

on a fixed cohort and the duration is a fixed time span.

The overall numbers and times of patients events are analyzed as well as the number of

events per patient. Typical pathways of patients are defined to make a more detailed

analysis possible.

The differences between the results for the different scenarios and for the various subpop-

ulations regarding patient parameters are pointed out. Further analyses regarding the

connection between ambulant contacts and readmissions to the hospital are performed.

Finally, an intervention strategy with compulsory ambulant contacts is examined.
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Kurzfassung

Diese Arbeit beschäftigt sich mit der Analyse der Wege von psychisch erkrankten Pa-

tienten durch das Gesundheitssystem. Die dabei gewonnenen Informationen sollen dazu

dienen, entsprechende Kapazitäten in den Spitälern bereitzustellen und Anpassungen

bezüglich Veränderungen der Bevölkerungsstruktur vorzunehmen. Das Hauptaugen-

merk dieser Arbeit liegt auf der Analyse der Verrechnungsdaten der Patienten und auf

der Parametrisierung eines Mikrosimulationsmodells. Weiters werden regionale Unter-

schiede zwischen der niederösterreichischen und der gesamtösterreichischen Bevölkerung

untersucht.

Die verwendeten Datensätze enthalten Informationen über Eigenschaften der Patien-

ten sowie die Zeiten der Wiederaufnahmen, der ambulanten Psychiaterkontakte und

Todeszeitpunkte. Ausgewählte Methoden der Ereigniszeitanalyse (engl. survival analy-

sis) und zur Modellauswahl (engl. model selection) werden verglichen und im Folgenden

herangezogen, um die Wiederaufnahmezeiten in Abhängigkeit der Patientenparameter

zu bestimmen. Die Cox-Regression und die Modellauswahlmethoden werden zusätzlich

verwendet, um die signifikanten Parameter für das Simulationsmodell zu eruieren. Die

Hazardraten der einzelnen Ereignisse in der Simulation werden mit einer Erweiterung

der Cox-Regression geschätzt.

Unter Verwendung dieser Resultate wird ein Mikrosimulationsmodell zur Simulation

der Wege von psychisch erkrankten Patienten erstellt. Die untersuchten Ereignisse sind

Wiederaufnahmen, ambulante Kontakte zu Psychiatern und der Tod. Jeder Patient

besitzt bestimmte Eigenschaften und befindet sich zu jedem Zeitpunkt der Simulation

in einem von mehreren vordefinierten und voneinander abgegrenzten Zuständen. Die

Ereignisse sind als Zustandswechsel implementiert.

Um die Auswirkungen der Verfügbarkeit der Daten auf die Qualität der Ergebnisse

zu untersuchen, werden drei Szenarien definiert, die die Daten zu unterschiedlichen

Detailgraden verwenden. Im ersten Szenario werden ausschließlich Daten der ersten

Wiederaufnahmen verwendet, im zweiten Daten aller Wiederaufnahmen ohne Reihen-

folge, während im dritten Daten aller Wiederaufnahmen mit Reihenfolge herangezogen

werden.

Alle Simulationen und Auswertungen werden mit R durchgeführt. Den Simulationen

liegt eine fixe Kohorte zugrunde.

Die Gesamtanzahl und die Zeitpunkte der Ereignisse der Patienten sowie die Anzahl der

Ereignisse pro Patient werden analysiert. Um eine detailliertere Analyse zu ermöglichen,

werden typische Patientenpfade definiert.

Die Unterschiede in den Resultaten der einzelnen Szenarien und Subpopulationen wer-

den herausgearbeitet. Weitere Analysen zum Zusammenhang zwischen ambulanten Psy-

chiaterkontakten und Wiederaufnahmen werden durchgeführt. Abschließend wird eine

Interventionsstrategie mit verpflichtenden ambulanten Psychiaterkontakten getestet.
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1 Introduction

1.1 Motivation

In the field of chronic, mental diseases it is important to understand the conditions under

which patients are likely to be readmitted to hospital in order to provide sufficient care.

The ambulant treatment between the admissions is also involved in this process. With

this information the burden of mental disease can be predicted more accurately and the

health care needs can be adjusted. Besides, the increasing number of elderly people will

probably lead to an increasing number of patients and additional demand for treatment.

The health care management has to deal with this challenge.

1.2 Goals

The first goal is to determine the factors which influence the readmission times of pa-

tients. This information is also used for the determination of the pathways of patients

with mental diseases through the health care system. The overall number of readmis-

sions to hospital is estimated as well as the numbers of events for subpopulations defined

by certain patient characteristics to determine the required capacity and its changes over

time. The effect of an aging population is examined.

Also, the influence of ambulant contacts to the psychiatrist on time and number of read-

missions is examined. The question is if the contacts help patients to stay away from

hospitals or if they are an indicator for a worsening patient condition and an intermedi-

ate step on the way to a readmission to hospital.

The consideration of regional aspects is important for the accuracy of the simulation

results. So, the situation of patients with mental diseases for Lower Austria is investi-

gated in detail and compared with the situation for entire Austria to find out possible

specific characteristics of the population of Lower Austria.

The availability of data is often a problem especially when using sensitive patient data.

In these cases often privacy protection only allows usage of k-anonymized data. So, the

question arises if it is possible to get meaningful simulation results with the given data.

Differently detailed patient-level data of the same set is used to analyze the effect on the

result quality.

Overall, the goal of this work is to improve simulation models for planning of the re-
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sources and capacities in hospitals by putting emphasis on the analysis of the data and

the parametrization of the model.

1.3 Tasks

For the achieving the above described goal a number of tasks is defined in this section.

At the beginning, a descriptive statistical analysis of the available data sets containing

information about patient attributes is performed as well as times of admissions to

hospitals, ambulant contacts to psychiatrists and death.

Then, selected methods from the fields of survival analysis and model selection are

introduced and compared. These are used for the determination of significant parameters

for the readmission times and moreover for the parametrization of the model.

The next step is to build the actual microsimulation model. The considered events are

readmissions to hospital, contacts to an ambulant psychiatrist and death. Every patient

is classified according to a particular set of parameters and can be in one of several

predefined, exclusive states. The events are implemented as state changes.

Three scenarios of simulations are defined and compared. The first one takes only the

first readmissions of a patient into account, the second scenario takes fixed number of

several readmissions without any order into account and the third one takes the same

fixed number of several readmissions into account chronologically. All scenarios are

executed with and without contacts to a psychiatrist.

Finally, simulations for two populations, one from Lower Austria and one from entire

Austria, are performed and a detailed analysis of the numbers and times of the events is

carried out and all results for the different scenarios and subpopulations are presented

and compared.

1.4 Overview

In Chapter 2, the given data samples are presented and described. An introduction

to survival analysis is given in Chapter 3 and the methods which are applied in this

work are presented. Also, an overview of selected model selection methods is given. In

Chapter 4, the data is analyzed with the methods from Chapter 3. Microsimulation

models are introduced in Chapter 5. After that, the model and its implementation are

described. The model also is validated. For the simulations, scenarios are defined in

Chapter 6. The model is examined for stability and the results of the simulations of

the various scenarios are presented and compared. Finally, the results of the work are

summarized and conclusions are given in Chapter 7.



2 Data

Three data samples of patients data are available through the CEPHOS-LINK project

(Comparative Effectiveness Research on Psychiatric Hospitalisation by Record Linkage

of Large Administrative Data Sets, number = 603264). The data samples were recorded

in the years 2006 and 2007 in hospitals in Austria and are used for the parametrization

and the sampling of the population of the simulation model.

2.1 Sample Austria

The patient sample dataaut consists of over 240000 records of about 19000 patients

from Austria. Information about birth year, sex, date of death, dates of admissions

and releases, type of admission and release, postal code, length of stay in the hospital,

diagnosis in ICD-10 code [1], main or additional diagnosis, department in which the

patient stayed and length of stay in the psychiatric department of the hospital are

contained.

Since the simulation starts with the first release from hospital, only patients with first

admissions are considered. A first admission is defined that there was no admission in

the previous half year, because, according to experts, patients with psychiatric diseases

(F20-69) normally are readmitted to hospital at least every half of a year. The given

data is already adjusted to this criteria, so the first admission in the dataset is the actual

first admission according to this definition.

The data is filtered for various criteria. All incomplete data sets are eliminated and

only stays with main diagnosis psychiatric disease (F20-69 in ICD-10) and stays in the

psychiatric department of the hospital are considered. Thereafter the sample consists of

almost 30000 records of 18638 patients.

A second data set datapsy with times of ambulant contacts to a psychiatrist (outpatient

contacts = OPC) is used. This data set is merged with dataset dataaut by assigning

the contacts to assign the contacts to patients already contained in the first set.

Patient parameters

Table 2.1 shows an overview of the four patient parameters, sex, age, length of stay in

the psychiatric department of the hospital and diagnosis, that are included in the model

and their values. The diagnoses are split into six diagnosis groups for the simulations.

3



2 Data

Short Name Values

S Sex categorical: male, female

A Age ordinal: 18-97

L Length of Stay ordinal: 1-430

D Diagnosis categorical: F2x, F30+F31, F32-F39, F4x, F5x, F6x

Table 2.1: Parameters of the full model

The distribution of these four patient parameters in the patient sample dataaut is illus-

trated below.

Table 2.2 shows that almost 60 percent of the patients are female.

Sex Number Percentage

female 10911 58.72

male 7727 41.28

Table 2.2: Distribution of sexes in data sample dataaut

The histogram in Figure 2.1 shows the distribution of age in the data sample dataaut.

The median is at the age 43 and the range goes from 18 to 97 years. The group between

40 and 45 years is the biggest one. Almost two third of the patients are aged between

30 and 60 years.
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Figure 2.1: Histogram of age distribution in patient sample dataaut

In Figure 2.2, a histogram for the length of stay in the psychiatric department of the

hospital is shown. The distribution is nearly exponential with about 6000 stays shorter
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2 Data

than 10 days and 5000 between 10 and 19 days. Only 231 stays are longer than 100

days. This is slightly over one percent of all stays.
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Figure 2.2: Histogram of the distribution of the lengths of stay in patient sample dataaut

The distribution of the diagnosis groups is presented in Figure 2.3. The most common

diagnosis group is F32-F39 containing about 7000 patients. The group F5x is the most

uncommon with only 146 patients.
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Figure 2.3: Barplot of the distribution of the diagnosis groups
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2 Data

Distribution of events and event times

In the following the times and numbers of the readmissions, psychiatrist contacts and

death are analyzed.
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Figure 2.4: Numbers of readmissions per person

In Figure 2.4, an overview of the distribution of the numbers of readmissions is presented.

The biggest share with about 58% are patients with no readmission. The number of

patients decreases with an increase of the number of readmissions. Patients with more

than ten readmissions comprise less than 1%.
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Figure 2.5: Numbers of recorded psychiatrist contacts per person
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2 Data

Figure 2.5 shows the distribution of the numbers of contacts to a psychiatrist. Almost

80% of the patients have no contact to the psychiatrist, about 14% have one contact

and about 5% have two contacts. The patients with more than three contacts comprise

less than one percent of all patients.
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Figure 2.6: Boxplot for distribution of the times of the readmissions

The distributions of the times of the first, second, third and all higher readmissions are

displayed in Figure 2.6. The median gets higher with every readmission. Half of the

first readmissions occur within 100 days after the initial release.
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Figure 2.7: Boxplot for distribution of the times of the contacts to the psychiatrist

The distributions of the times of the first, second, third and all higher ambulant contacts

to a psychiatrist are displayed in Figure 2.7. It can be seen that the first contact to the
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2 Data

psychiatrist is often very shortly after the initial release from hospital. Half of them are

within 40 days after the release and more than three fourths within 100 days. Almost

all contacts occur within 500 days after the release.
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Figure 2.8: Boxplot of the death times

A boxplot of the death times is presented in 2.8. The median is at about 230 days and

almost 75 percent of the deaths occur within the first year after the release. About 3

percent of the patients died during the recording of the data.

2.2 Sample Lower Austria

The sample datanoe contains information about sex, age, diagnosis group and length of

stay in the hospital from 6822 patients from Lower Austria. This data set is used as

population sample for simulations.

In the following paragraph, the distribution of the four parameters in the sample datanoe

is illustrated.

Table 2.3 shows that about 58 percent of the patients are female.

Sex Number Percentage

female 3982 58.37

male 2840 41.63

Table 2.3: Distribution of sexes in data sample datanoe

The histogram in Figure 2.9 shows the distribution of age in the data sample datanoe.

The median is at the age 43 and the range goes from 18 to 93 years. The group between

35 and 40 years is the biggest one. Almost two third of the patients are aged between

30 and 60 years.
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Figure 2.9: Histogram of the age distribution in patient sample datanoe

In Figure 2.10, a histogram for the length of stay in the psychiatric department of the

hospital is shown. The distribution is nearly exponential with about 2500 stays shorter

than 10 days and 2000 between 10 and 19 days. Only 104 stays are longer than 100

days. This is about 1.5 percent of all stays.
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Figure 2.10: Histogram of the distribution of the lengths of stay in patient sample

datanoe

The distribution of the diagnosis groups is presented in Figure 2.11. The most common

diagnosis group is F1x with about 2300 patients. The group F5x is the most uncommon

with only 64 patients.
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Figure 2.11: Barplot of the distribution of the diagnosis groups in patient sample datanoe
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3 Methods

In this chapter, methods to build the statistical models including methods from survival

analysis and model selection as well as methods used for the parametrization of the

simulation model are presented.

3.1 Introduction to survival analysis

Survival analysis deals with the analysis of data of the time until the occurrence of a

particular event. This kind of data is frequently encountered in medical research and

also in other areas of application and referred as survival data. However, the event of

interest is not always death. Also, other types of events such as hospitalization and a

change of diagnosis are possible. A critical issue in this context that makes standard

statistical methods inapplicable is censoring. This is the case when the data collection

ends before the event of interest occurs.

In this chapter, an overview of methods of survival analysis used in this thesis is given;

for example: the Kaplan-Meier estimate, the Nelson-Aalen estimate and the Cox model.

Definitions

Let T be a non-negative continuous random variable representing the time until the

occurrence of an event. The probability density function (p.d.f.) of T is denoted by f

and the cumulative distribution function (c.d.f.) by F . In survival analysis often the

complement of the c.d.f. is used. The survival function S is defined as

S(t) := P (T > t) = 1− P (T ≤ t) = 1− F (t) (3.1)

which gives the probability of being alive at time t.

By derivation follows: S ′(t) = −F ′(t).
Another useful function for survival analysis is the hazard function λ defined as

λ(t) := lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)

∆t
. (3.2)

The hazard function gives the instantaneous rate of occurrence of the event and can be

written in terms of the survival function and the p.d.f. as seen in Equation (3.3).
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λ(t) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)

∆t
=

= lim
∆t→0

P (T > t|t < T ≤ t+ ∆t)P (t < T ≤ t+ ∆t)

P (T > t)∆t
=

= lim
∆t→0

P (t < T ≤ t+ ∆t)

P (T > t)∆t
= lim

∆t→0

P (t < T ≤ t+ ∆t)

S(t)∆t
=
f(t)

S(t)
(3.3)

In the second step, starting from the definition of the hazard function Bayes’ Theorem

is applied. The third expression holds due to P (T > t|t < T ≤ t + ∆t) = 1. Then,

the definition of the survival function from Equation (3.1) is applied. Since −f is the

derivative of S Equation (3.3) can be rewritten as

λ(t) = − d

dt
logS(t). (3.4)

By integrating Equation (3.4) and introducing the condition S(0) = 1 that describes the

fact that it is sure that the event has not occurred by time 0, the survival function S

can be expressed in terms of the hazard function λ.

S(t) = exp

(
−
∫ t

0

λ(x)dx

)
(3.5)

The integral in Equation (3.5) is called the cumulative hazard function Λ and is denoted

by

Λ(t) =

∫ t

0

λ(x)dx. (3.6)

So, the survival function and the cumulative hazard function are connected by

S(t) = exp (−Λ(t)) . (3.7)

Representation of the data

In [2], two ways to represent survival data of individuals are presented. A short overview

of both ways is given in the following.

Firstly, the data of individual i can be represented as a pair of variables (ti, δi). Let

t∗i be the survival time of the individual and c∗i be the censoring time. So, only one of

the two times is known exactly depending on whether the event of interest or censoring

happens earlier. ti is the minimum of these two times: ti = min(t∗i , c
∗
i ). δi = I(t∗i≤c∗i ) is

an event indicator which is 1, if t∗i is observed and 0, if the observation is censored.

The other, more general, formulation is the counting process formulation which replaces

the pair of variables (ti, δi) with a pair of functions (Ni(t), Yi(t)):
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• Ni(t) = I(ti≤t,δi=1)

• Yi(t) = I(ti≥t)

That means Ni(t) is 1, if an event already happened until time t and 0 if not and Yi(t)

indicates, if individual i is at risk at time t.

The counting process formulation can easily be extended to represent multiple events.

In this case Ni(t) counts the number of observed events up to time t.

Censoring

Another distinctive aspect regarding survival data is censoring. This issue renders stan-

dard methods inappropriate for the analysis of survival data [3].

In medical studies data collection often ends before the event of interest occurred for

all individuals. For those individuals with no event until the end of the data collection,

the survival time cannot be determined exactly. It is only sure that the survival time

exceeds the time span of the observation of the particular patient.

The first distinction is made between informative and non-informative censoring. Non-

informative censoring means that the probability of being censored is unrelated to the

probability that the event of interest occurs. In this work, non-informative censoring is

assumed [3]. For informative censoring special methods have to be applied.

There are several types of non-informative censoring depending on, if the starting point,

the end point of the observation or both are censored. In the data sets at the base of this

work, only right-censoring occurs. That means that for some individuals the observation

ended or another competing event occurred before the event of interest occurred. More

details on competing events are given in Section 3.1.3.

3.1.1 Parametric estimators

This section lists the Weibull and the Exponential distribution which are the two most

common distributions used for parametric estimators in the context of survival analysis

and is based on [3].

In special settings a probability distribution is assumed for the survival times. In these

cases, parametric models can be used. Parametric estimators of the hazard function can

also be used for the baseline function of the Cox model introduced in Section 3.1.3.

Exponential distribution

The simplest model for the hazard function is to assume that it is constant over time.

Under this model, the hazard function may be written as λ(t) = α. From Equation

(3.5) follows that the corresponding survival function S is S(t) = exp(−αt). Since
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−f(t) = S ′(t), the implied probability density function f is f(t) = α exp(−αt). This is

the p.d.f. of a random variable which has an Exponential distribution with mean α−1.

Weibull distribution

The assumption of a constant hazard function is rarely tenable. A more general form

is λ(t) = αγtγ−1 with α, γ > 0. The special case of γ = 1 leads back to the ex-

ponential distribution. Following the procedure from above, the implied p.d.f. is

f(t) = αγtγ−1 exp(−αtγ). This is the p.d.f. of a random variable which has a Weibull

distribution with shape parameter α and scale parameter γ.

3.1.2 Nonparametric estimators

This section defines the two most common nonparametric estimators, the Kaplan-Meier

estimate and the Nelson-Aalen estimate, in the context of survival analysis and is based

on [4].

Kaplan-Meier estimate

The Kaplan-Meier estimate is an estimate for the survival function S. It uses the

information of the exact time of the occurrence of the event. The estimated survival

probability st at time t is:

st =
nt − dt
nt

(3.8)

nt is the number of people at risk at time t and dt is the number of people that experience

the event at time t. So, st is the ratio of the number of people who have no event at time

t to the number of people that are at risk at time t. Let ti denote the event times. Thus,

the probability of surviving up to time tj is calculated with the so-called product-limit

formula:

S(tj) =
∏
i:ti≤tj

sti (3.9)

Without censoring, the Kaplan-Meier estimate is equivalent to the complement of the

cumulative density function.

Nelson-Aalen estimate

The Nelson-Aalen estimate is an estimate for the cumulative hazard function Λ. Let dt
and nt again denote the number of people that experience the event at time t respectively

are at risk at time t. Let ti denote the event times again. Then Λ can be estimated by

Λ̂(tj) =
∑
i:ti≤tj

dti
nti
. (3.10)
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Based on the connection of S with Λ in Equation (3.7) the Nelson-Aalen estimate can

also be used as an estimate for the survival function:

Ŝ(t) = e
∑

i:ti≤t

dti
nti =

∏
i:ti≤t

e
dti
nti . (3.11)

Ŝ(t) is the so-called Breslow estimate.

3.1.3 Cox model

This section gives an overview of the Cox model and is based on [2] and [4] as well as [5].

Definition and properties

The Cox model focuses on modeling the hazard function. It was initially defined by

David Cox in [6]. The hazard at time t for individual i with covariate vector Xi is

assumed to be

λi(t) = λ0(t) exp (Xiβ) (3.12)

where λ0 is an unspecified nonnegative function called baseline hazard function and

β is an n-dimensional vector of regression coefficients. The baseline hazard function

describes the hazard function for an individual with reference values of Xi = 0. The

hazard function as expressed in Equation (3.12) is the product of two functions. The

function λ0 characterizes how the hazard function changes as a function of survival time.

The second factor characterizes how the hazard function changes as a function of subject

covariates Xi. So, the baseline hazard function is multiplied with a factor depending on

the covariates of the particular individual.

The proportional hazard assumption states that the ratio of the hazards of different

groups remains constant over time.

λi(t)

λj(t)
=
λ0(t) exp (Xiβ)

λ0(t) exp (Xjβ)
=

exp (Xiβ)

exp (Xjβ)
= C, ∀i, j (3.13)

Because of this property, the Cox model is also called proportional hazards model.

It it also possible to include interaction terms in the Cox model. That means that ad-

ditionally to the single variables interaction variables, implemented as product of the

involved single variables, enter the model. This product can consist of several variables.

For example, for two parameters S and A with values s and a, the Cox model with

interaction is λ(t) = λ0(t) · exp(βS · s+ βA · a+ βSA · s · a).

The Cox model is very convenient for estimating hazard ratios. When the hazard func-

tion or survival function is explicitly needed, the baseline hazard also has to be estimated.
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This can be done by using either non-parametric estimates such as the Nelson-Aalen

estimate or the Kaplan-Meier estimate or parametric estimates, if the data follows a

particular probability distribution.

Likelihood

In order to calculate the regression coefficient vector β suppose a subject is observed at

time ti. If the subject died at ti, its contribution to the likelihood function Li is the

p.d.f. at that time indicating Li = f(ti). If the subject is alive, the survival time is

greater than ti. So, the probability of this censored observation is Li = S(ti). With the

assumption of the independence of the observations the overall likelihood function L is

the product of the single likelihood functions Li. The identity f(t) = S(t)λ(t) leads to

the last expression

L =
n∏
i=1

Li =
n∏
i=1

f(ti)
δiS(ti)

1−δi =
n∏
i=1

λ(ti)
δiS(ti). (3.14)

This expression can be used for parametric models where the survival and the hazard

function can be stated explicitly. For the Cox regression, the partial likelihood function

proposed by Cox has to be used which is described below.

Suppose that data is available for n independent observations of individuals of whom

m have distinct and n−m right-censored survival times. The m distinct ordered event

times are denoted by t1 < t2 < · · · < tm. It is assumed that there are no tied survival

times. The so-called risk set R(tj) consists of the uncensored individuals at risk just

prior to tj. The partial likelihood proposed by Cox for β is

L(β) =
n∏
i=1

[
exp (Xiβ)∑

j∈R(ti)
exp (Xjβ)

]δi
=

m∏
i=1

exp (Xiβ)∑
j∈R(ti)

exp (Xjβ)
. (3.15)

The second product excludes the factors when δi = 0. So, the product is only over the

m distinct event times and Xi is the covariate vector for the subject with survival time

ti.

For the actual calculation, the log partial likelihood function log L(β) := l(β) is used.

l(β) =
m∑
i=1

(Xiβ)− log

 ∑
j∈R(ti)

exp (Xjβ)

 (3.16)

The maximum likelihood estimate of β can be found by maximizing this log likelihood

function. This maximization is generally accomplished using the Newton-Raphson al-

gorithm.
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Let u(β) = ∇l(β) be the so-called score vector of the first derivatives of l(β) with respect

to β and I(β), the negative p×p matrix of the second derivatives of l. So, I(β) = −Hl(β)

is the negative Hessian of l with respect to β.

The Newton-Raphson algorithm is an iterative algorithm to solve the partial likelihood

equation u(β̂) = 0. It starts with an initial guess β̂(0) and the iteration is

β̂(n+1) = β̂(n) + I−1(β̂(n))u(β̂(n)). (3.17)

The iteration stops, when β̂(n+1) ≈ β̂(n). The algorithm is very robust. The default

initial value is β̂(0) = 0.

Analysis of the Cox model

The most common analysis tools for the Cox model are hazard ratios and p-values for

each variable. An overview is given in the following paragraphs. More details can be

found in [4].

The hazard ratio (HR) for a variable xk with coefficient βk is HR = exp(βk). This

results from the proportional hazards assumption, because the baseline hazard and the

summands regarding the fixed variables cancel out as shown in Equation (3.13).

For continuous variables, the value of exp(βk) provides the factor the hazard function

is multiplied with when the particular variable is increased by one unit given that all

other variables in the model are fixed. For dichotomous variables, the value of exp(βk)

provides the factor the hazard function is multiplied with when the particular variable is

one in contrast to being zero given that all other variables in the model are fixed. Thus,

a hazard ratio greater than one means that the hazard increases when the particular

parameter is increased. By contrast, when the hazard ratio is less than one the hazard

decreases when the particular parameter is increased.

The p-values for single variables of the Cox model are calculated by the z-test. The

z-test statistic for regression coefficient β is z = β
s.e.

. The null hypothesis is that the

parameter β is zero. s.e. denotes the standard error. Then, the p-value is calculated

using the normal distribution p = P (x > |z|) for x ∈ N (0, 1). The p-value indicates if

the null hypothesis holds. If the p-value is smaller than the significance level, the null

hypothesis is rejected and the parameter is supposed to be significant for the model.

Tests on coefficients

The standard Wald, score and likelihood ratio tests can be used to test hypotheses about

the true parameter vector β. The global null hypothesis is H0: β = β(0). β̂ denotes the

final estimate by the Newton-Raphson algorithm. Below the test statistics for the three

tests are listed. l denotes the log partial likelihood function.

• Likelihood ratio test statistics: 2(l(β̂)− l(β(0)))
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• Wald test statistics: (β̂ − β(0))′Î(β̂ − β(0)) with Î = I(β̂)

• Score test statistics: u′(β(0))I(β(0))(−1)u(β(0))

The null hypothesis distribution of each of these tests is a χ2 with p degrees of freedom.

As usual, they are asymptotically equivalent, but in finite samples they may differ. If

so, the likelihood ratio test is generally considered the most reliable.

For a single variable, the Wald test reduces to the usual z-statistics.

These tests can also be used to test if all parameters of a certain subset are zero. So,

the parameter vector β is partitioned into two sets β1 and β2 with p1 elements in β1 and

p2 elements in β2. The null hypothesis is H0 : β2 = 0. This can be inserted into the

test statistics and the null hypothesis distribution of each of these tests is now a χ2 with

p2 degrees of freedom. This method can be used in the process of model selection, for

example, in the stepwise selection of the covariates of the model as described in Section

3.2.3.

Confidence intervals for the coefficients are usually created based on Wald statistics.

The lower and upper 95% confidence interval values are exp(β̂ ± 1.96s.e.(β̂)).

Preparation of data for R

Basically, an individual is represented by a time-to-event along with censoring status,

stratum and covariate variables. The stratified Cox model is explained in the next

section in detail.

In order to extend the possibilities of the Cox model the data is cast into a counting

process form [2]. The only difference is that individuals have not only a time-to-event but

a interval of risk (start, stop]. The interval of risk is always open on the left and closed

on the right. Now, a subject can be represented by a set of observations, containing an

interval of risk (start, stop] along with status, strata and covariate variables. This can

be useful for time-dependent covariates, time-dependent strata and multiple events per

subject. In Table 3.1, an example for time-dependent strata is given. Subject 1 with age

67 is in stratum 1 until day 157 and afterwards in stratum 2 until the end of follow-up

after 205 days.

Id Interval Status Age Stratum

1 (0,157] 0 67 1

1 (157,205] 0 67 2

Table 3.1: Example for a dataset in the counting process form
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Stratified Cox model

This extension of the Cox model allows multiple strata. The strata divide the subjects

into disjoint groups and each subject is member of exactly one stratum. Each of which

has a distinct baseline hazard function but common values for the coefficient vector β.

The hazard for individual i belonging to stratum k is

λk(t)e
Xiβ. (3.18)

The overall log likelihood is the sum of the log likelihoods of each stratum.

l(β) =
K∑
k=1

lk(β) (3.19)

The major application of the stratified Cox model is to adjust for a confounding variable

whose effect does not have to be taken into account in the model.

Extension of the Cox model to multiple events

In order to apply survival analysis to data sets with multiple events per subject, the Cox

model can be extended. This section about the Cox model for multiple events is based

on [2].

A common approach is the marginal approach. The marginal approach is carried out in

three steps:

• Decide on a model and structure the data set accordingly

• Fit the data as an ordinary Cox model, ignoring possible correlations

• Replace the standard variance estimate with one which is corrected for the possible

correlations

The ordinary Cox model estimate of the variance for β̂ treats each of the observations

as independent. This assumption does not hold, when a given subject may contribute

multiple events. A possible correction is the use of the so-called jackknife estimate for

the variance. For data where the correlation is restricted to disjoint groups (subjects)

the obvious choice is a grouped jackknife estimate that leaves out one subject at a time

rather than one observation at a time. More details on the jackknife estimate can be

found in [2].

Unordered multiple events

For unordered, but correlated events the data set contains one stratum for each type of

event. So, it consists of (number of patients) · (number of types of events) observations.
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The time-to-event is censored for all types except for the type of event that occurred at

first. The censoring time is the time to the first event. Commonly, the data is stratified

by the type of event. An analysis without stratification would lead to a time-to-first-

event analysis.

In Table 3.2, an example with two patients and three types of unordered events is

presented. The types of events are called A,B,C. For reasons of simplicity, only one

covariate, age, is considered. The first patient at the age of 55 experiences event A after

80 days and the second patient at the age of 67 event C after 157 days. The status is

one for the type of event that occurred and zero for all the others which are censored.

Id Time Status Type of Event Age

1 80 1 A 55

1 80 0 B 55

1 80 0 C 55

2 157 0 A 67

2 157 0 B 67

2 157 1 C 67

Table 3.2: Example of a dataset with unordered multiple events

Ordered multiple events

Three different approaches for ordered multiple events are presented. All of them belong

to the group of marginal models: Anderson-Gill model (AG), Wei-Lin-Weißfeld model

(WLW), Conditional model (Cond). All three approaches use the counting process style

of data input.

In the AG model, each subject is represented as a series of observations with time

intervals (0, first event], (first event, second event],...,(mth event, last follow-up]. This

model is similar to the original Cox model with only one difference that in the AG model

the subject is still at risk after the first event. The AG model is suited for situations of

mutual independence of the observations within a subject.

The hazard function for the ith subject is:

Yi(t)λ0(t) exp(Xi(t)β) (3.20)

The WLW model treats the ordered outcome data as an unordered competing risk set.

First of all, the maximum number of events n per subjects is determined. Then, the

data set is split into n strata, so there are n rows for each subject in the analysis, one

for each stratum, even if the subject has less than n events. In that case, the baseline

hazard can be different for each stratum.
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The hazard function for the jth event for the ith subject is:

Yij(t)λ0j(t) exp(Xi(t)βj) (3.21)

The Cond model assumes that a subject is not at risk for event m until event m-1

occurs. The input style is similar to the AG model but each event is assigned to a

separate stratum. Again, the baseline function can vary for different events. The hazard

is formally identical to the hazard of the WLW model with only one difference that Yij
is zero until the (j-1)th event and only then becomes one.

As example, a person with events at times 14 and 35 and follow-up until time 47 is

displayed for all three models in Table 3.3.

Interval Stratum

AG (0,14] 1

(14,35] 1

(35,47] 1

WLW (0,14] 1

(0,35] 2

(0,47] 3

Cond (0,14] 1

(14,35] 2

(35,47] 3

Table 3.3: Representation of a subject for the three marginal models: AG, WLW and

Cond

The example in Table 3.3 shows that both, the AG and the Cond method, treat the

data as time-ordered outcome, differing only in their use of stratification. In the AG

model, there is only one stratum, so the subjects always stay in stratum 1, whereas in

the Cond model, the subjects move to the next stratum after each event. In contrast to

that, the WLW model has a row for each possible event and all intervals start at time

zero. Thus, the WLW style data set is usually larger than the sets of the other styles,

because not every possible event occurs for each person.

Multi-state/Combination models

The three presented approaches can be combined to a multi-state model. In this frame-

work, every transition between states is possible. Thus, all of the three approaches must

be combined. The WLW model for competing risks, the AG model for subjects that can

reenter states and the conditional model for series of disjoint states in particular order.

In the given situation, after a subject is released from hospital, it is at risk for either

a visit to a psychiatrist or for readmission to hospital. So, this is a case of competing
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P

AR

Figure 3.1: Graph of possible transitions between release (R), readmission (A) and visit

to psychiatrist (P)

events (WLW). After the visit to the psychiatrist, the patient can still be readmitted to

hospital, but after a readmission no visit to the psychiatrist is possible. So, we also have

an order of events (Cond). In Figure 3.1, a directed graph with all possible transitions

is shown. There are three possible transitions.

After the release, there can be a transition to the psychiatrist or to hospital and after the

visit to the psychiatrist can be a readmission to hospital. The visit to the psychiatrist

acts as a censoring event for the time from release directly to readmission to hospital.

Therefore, the data set is extended that every patient has three observations, one for

each transition. It consists of the given covariates of the particular patient, the time in

the according state and the censoring status, if the transition actually happened or was

censored. Then, the data is stratified into three strata.

For example, consider a patient with a visit to the psychiatrist on day 80 after the release

from hospital and a readmission on day 120. In this framework, there are three strata.

So, the patient is encoded as three observations. The first one in stratum ”release-psych”

with time 80 and status one, the second one in stratum ”release-readmission” with time

80 and status zero and the third one in stratum ”psych-readmission” with time 40 and

status one. In Table 3.4, the according data sample for this patient is shown.

Time Status Stratum

80 1 release-psych

80 0 release-readmission

40 1 psych-readmission

Table 3.4: Example for representation of a subject in the combination model

Transition probabilities

The transition probabilities can be calculated from the cumulative transition hazards [7].

Let (Xt)t≥0 be a time-inhomogeneous Markov process with state space {0, 1, ..., J}. It

is assumed that (Xt)t≥0 has right-continuous sample paths, which are constant between
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the transition times. On any finite interval are only finitely many transitions.

The matrix of the transition probabilities is defined as

P (s, t) := (Pjk(s, t))j,k, j, k ∈ {0, 1, ..., J} (3.22)

with transition probabilities

Pjk(s, t) := P (Xt = k|Xs = j), s ≤ t. (3.23)

Let a(t) := (P (Xt = i))i=0,...,J be the state occupation probabilities vector. It can be

calculated by multiplying the initial state occupation vector with P (0, t):

a(t) = P (0, t) · a(0) (3.24)

The cumulative transition hazards Ajk(s), j 6= k, can be estimated through the multi-

state extension of the Cox model and Ajj(t) := −
∑J

k=0,k 6=j Ajk(t).

Consider times s < v < t. Using the Markov property:

Pjk(s, t) =
J∑
z=0

P (Xv = z|Xs = j) · P (Xt = k|Xv = z) (3.25)

If v is close to t, the usual interpretation of the transition hazards is P (Xt = k|Xv =

z) ≈ ∆Azk(t), z 6= k and consequently P (Xt = z|Xv = z) ≈ 1+∆Azz(t) with ∆Azk(t) =

Azk(t)− Azk(v). Putting this into Equation (3.25) leads to

Pjk(s, t) ≈
J∑
z=0

P (Xv = z|Xs = j) · (1k(z) + ∆Azk(t)). (3.26)

The matrix version of Equation (3.26) is

P (s, t) ≈ P (s, v)(I + ∆A(t)) (3.27)

I denotes the (J + 1)× (J + 1) identity matrix and ∆A(t) the (J + 1)× (J + 1) matrix

with (∆A(t))j,k = ∆Ajk(t).

A fine partition (ti)i=0,...,L with s = t0 < t1 < ...tL−1 < tL = t of the interval [s, t] is

considered. Then, an approximation for P (s, t) is

P (s, t) ≈
L∏
l=1

(I + ∆A(tl)) (3.28)

3.2 Selected methods for model selection

The goal of model selection is to find the model that fits the data ”best” from a pre-

defined set of models at hand. In the course of this work, often Cox models that only

differ by the set and usage of the covariates are compared. So, this could also be called

covariate selection.

The presented methods are the Lasso method, ”Akaike’s Information Criterion” (AIC)

and a stepwise selection procedure by statistical tests.
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3.2.1 Lasso method

The Lasso (Least Average and Shrinkage Operator) method is used in the process of

model selection to eliminate coefficients in regression analysis. Particularly, this is ap-

plied to the Cox model. This method was proposed by Robert Tibshirani in [8].

The regression coefficients are calculated as usual by minimizing the partial log likeli-

hood, but additionally the sum of the absolute values of the regression coefficients is

bounded by a constant s that can either be chosen arbitrarily or automatically based on

the data. Two methods for automatic choice are described in the next paragraph. The

regression coefficients β̂ are estimated via the following criterion (l denotes the partial

log likelihood):

β̂ = min
β

l(β), subject to ‖β‖1 =
n∑
i=1

|βi| ≤ s (3.29)

An alternative formulation of the problem is:

β̂ = min
β

(l(β) + λ · ‖β‖1) (3.30)

The tuning parameter λ controls the strength of the penalty. The greater λ is, the more

the norm of β is penalized.

An advantage of this method is that often some coefficients are exactly zero, so the

related variables are removed from the model and the model becomes smaller and better

interpretable.

One way to calculate the constraint s automatically is to use an approximate generalized

cross-validation (GCV) statistic. Let ls be the log partial likelihood for the constrained

fit with constraint s and p(s) the effective number of parameters, the GCV-style statistic

is constructed as follows:

GCV (s) =
1

N
· −ls
N [1− p(s)/N ]2

(3.31)

Also, an AIC-style criterion can be used. The AIC is described in the following section.

3.2.2 Akaike’s Information Criterion (AIC)

This section introduces Akaike’s Information Criterion and is based on [9].

Kullback-Leibler (K-L) Information I between the truth f and the model g that approx-

imates the truth is defined as

I(f, g) :=

∫
f(x) ln

(
f(x)

g(x|θ)

)
dx. (3.32)

I denotes the information loss, when g is used to approximate the truth f . It can also

be interpreted as distance from g to f . Now we want the model g that loses the least
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information regarding to f . Thus, we have to minimize I with fixed f , and g varying

over a space of models denoted by θ.

EyEx[ln(g(x|θ̂(y)))] is the target of all model selection approaches based on K-L infor-

mation. This results into ”Akaike’s Information Criterion” (AIC):

AIC = −2 log(L(θ̂|y)) + 2K (3.33)

K denotes the number of parameters in the considered model, y denotes the given data,

θ̂ denotes the maximum-likelihood estimator (MLE), the expression log(L(θ̂|y)) is the

numerical value of the log likelihood at its maximum point.

In order to compare different models, AIC differences are computed, because the relative

values of the AIC are more important than the absolute values. An AIC difference below

two is an indicator for substantial support of the according model. The AIC differences

are calculated by subtracting the AIC value of the model with the least AIC from the

AIC values of each model. The AIC difference for model i is calculated by

∆i = AICi − AICmin. (3.34)

While the AIC differences are used to rank the models, it is also possible to quantify the

plausibility of each model as being the actual K-L best model. In order to do this, the

concept of likelihood is expanded to the concept of the likelihood of the model given the

data, hence L(gi|x). The likelihood L(gi|x) of the model gi is proportional to exp(−1
2
∆i):

L(gi|x) ∝ exp

(
−1

2
∆i

)
(3.35)

This statement can be used to calculate the so-called Akaike weights wi given the data

and a set of models:

wi =
exp(−1

2
∆i)∑R

r=1 exp(−1
2
∆r)

(3.36)

The Akaike weight wi is considered the weight of evidence in favor of model i being the

actual K-L best model for the situation at hand given a set of R models.

An important aspect regarding the AIC is that models can only be compared when they

have been fit to exactly the same set of data.

3.2.3 Tests

Statistical tests can be used for a stepwise selection of the model. It is tested if the

extension of a model provides additional information. Two models are nested when the

parameter set of one is a subset of the parameter set of the other model. Various test

statistics are used. The most commonly used tests are the likelihoodratio test, the score

test and the Wald test which have been presented in Section 3.1.3.

This instructions roughly follows the procedure presented in [10].
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• Step 0: The p-values for all covariates in univariable models are determined.

• Step 1: A model containing all variables with a p-value in the univariable model

under 0.25 and all variables that are considered important for other reasons is fit.

• Step 2: Covariates with higher p-values from the Wald test might be deleted from

the model.

• Step 3: The reduced model is fit and checked, if there is an ”important” change

in the coefficients. If the excluded variable is an important confounder, it should

be added back into the model. This process is continued until no covariate can be

deleted.

• Step 4: One at a time, all variables excluded from the initial multivariable model

are added to the model to confirm that they are neither statistically significant

nor an important confounder.

• Step 5: The scale of the continuous covariates is examined.

• Step 6: The final step in the variable selection process is to determine whether

interactions are needed in the model.

• Step 7: It does not become the final model until it is throughly evaluated. Model

evaluation should include: checking for adherence to key model assumptions using

case wise diagnostic statistics to check for influential observations and testing for

overall goodness-of-fit.



4 Data analysis and variables of

interest

In this chapter, the results of the analysis of readmission times of data set dataaut are

presented and compared using various methods of survival analysis and model selection

introduced in Chapter 3. The determination of significant parameters for readmissions

is the aim. Also, a comparison between different groupings of the diagnoses is performed.

4.1 First readmission

In this section, the goal is to estimate the time span between the initial release and the

second admission to hospital. So, the event in the context of this section is the first

readmission to the hospital. Thus, the survival function gives the probability of not

being readmitted to hospital up to a certain point of time.

In this work, the classical terminology from survival analysis is used and has to be in-

terpreted in the given context.

In the following, the four categories sex, age, length of stay and diagnosis are used as

parameters for the models. The parameters and the according abbreviations and types

are listed in Table 4.1.

Short Name Type

S Sex nominal: binary

A Age ordinal: integer

L Length of Stay ordinal: integer

D Diagnosis nominal: 5 groups

Table 4.1: Set of parameters of the full model

Sex is an ordinal variable with two values, male and female. The parameter age at first

admission is given in years. The length of stay is the number of days the patient stays

at the psychiatric department of the hospital during the initial stay.
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4 Data analysis and variables of interest

The diagnoses are given in ICD-10 code [1]. For the model, they are split in five groups

of similar diagnoses:

• D1: F20-F29

• D2: F30-F39

• D3: F40-F48

• D4: F50-F59

• D5: F60-F69

4.1.1 Parametric estimators

A Weibull distribution is used to model the given times between the initial release

and the first readmission from the dataset dataaut. The cumulative hazard function is

H(t) =
(
t
b

)a
. The result of the fit for the parameters is a = 1.02 and b = 217.89. In

Figure 4.1, the cumulative hazard function of the fitted Weibull distribution is displayed.
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Figure 4.1: Cumulative hazard function for the fitted Weibull distribution

Since a is almost equal to one, the cumulative hazard function is close to a straight line

with slope 1
b
, thus the hazard is almost constant over time.

4.1.2 Nonparametric estimators

The Kaplan-Meier method estimates the survival function. It is calculated for the whole

population, for each sex separately and for each diagnosis group separately.

In Figure 4.2, the Kaplan-Meier estimate with the two-sided 95% confidence interval for
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4 Data analysis and variables of interest

the whole population is shown. The figure represents an almost exponential decrease of

the survival function over time until at about 550 days a value of 0.7 is reached.
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Figure 4.2: Survival curve for the whole population with confidence interval

Figure 4.3 shows a comparison between the Kaplan-Meier estimates for male and female

patients from a model with sex as only parameter. The survival curve for females

is always lower than the curve for males. That is an evidence that the proportional

hazards assumption for the parameter sex holds. According to the log-rank test with a

p-value of 0.07 the difference between the curves is almost significant.
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Figure 4.3: Survival curves for each sex

Figure 4.4 shows a comparison between the Kaplan-Meier estimates for the five groups

of diagnosis of a model with diagnosis as only parameter.

According to the log-rank test with p-value smaller than 0.01 the differences between
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4 Data analysis and variables of interest

the curves are significant. Diagnosis group F40-48, represented by the green dotted

line, always has the highest survival probability. Group F50-59, represented by the blue

dash-dotted line, has the lowest survival probability until about 250 days. Afterwards,

group F20-29 has the lowest survival probability.

The blue line of group F50-59 crosses two of the other lines which can be an evidence of

a violation of the proportional hazards assumption. In the following it is assumed that

the possible violation is small enough to be neglected. Another possibility would be to

stratify the data in group F50-59 and the remaining other groups of diagnosis.
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Figure 4.4: Survival curves for each group of diagnosis

In Figure 4.5, the Breslow estimate, which is derived from the Nelson-Aalen estimate

for the cumulative hazard function, and the Kaplan-Meier estimate are compared.
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Figure 4.5: Breslow and Kaplan-Meier estimates for the whole population
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There is barely a visible difference between the two curves. This observation is consistent

with the arguments found in the literature [2]. It is argued that there is no reason not

to use the well-known Kaplan-Meier estimate since the estimates are asymptotically

equivalent and the differences are very small except for small data samples and a large

number of tied survival times. Both limitations are not relevant in this situation.
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4 Data analysis and variables of interest

4.1.3 Cox model

Linear Cox model

The Cox model estimates the hazard function λ. It is performed for all 16 possible

subsets of the parameter set of the full model {S,A, L,D}. In this scenario, only single

variables and no interaction terms are considered. For example, for two parameters S

and A with values s and a, the Cox model is λ(t) = λ0(t) · exp(bS · s+ bA · a).

Patients without a readmission enter the model. They are marked as censored with

censor time from the first release until the end of the follow-up.

For each parameter, a z-test is performed comparing the given model with the model

without the particular parameter. The null hypothesis means that the parameter is zero.

So, it can be eliminated from the model without a loss of information. The significance

level is set to 0.05. Parameters with p-values between 0.05 and 0.07 are also listed in

the tables and marked with the sign ∗.

In the implementation, the full model has in fact 7 parameters since the categorical

parameters have a dummy parameter for each group but one. The coefficient of the

dummy parameter for the first group can be set to zero because of the proportional

hazards assumption. This means that there is a dummy parameter for females and four

for the remaining diagnosis groups.

Model Significant variables (HR)

Null

S S2(1.048)∗

A A(0.992)

L L(1.002)

D D2(0.730), D3(0.512); D5(0.895)∗

SA S2(1.087), A(0.991)

SL L(1.002)

SD S2(1.069), D2(0.725), D3(0.510); D5(0.898)∗

AL A(0.991), L(1.002)

AD A(0.990), D2(0.767), D3(0.492), D5(0.792)

LD D2(0.730), D3(0.515); D5(0.898)∗

SAL S2(1.087), A(0.991), L(1.002)

SAD S2(1.117), A(0.990), D2(0.761), D3(0.487), D5(0.790)

SLD S2(1.069), D2(0.727), D3(0.513); D5(0.900)∗

ALD A(0.990), D2(0.769), D3(0.496), D5(0.795)

SALD S2(1.117), A(0.990), D2(0.763), D3(0.490), D5(0.793)

Table 4.2: Overview of the significant single variables and their type of effect for the Cox

models with linear terms
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In Table 4.2, an overview of the significant parameters for each of the 16 models is

presented. For the categorical parameters, each category is tested separately. Later in

Table 4.3, the parameters are tested as a whole which means that the model is compared

with the model without all categories of the particular parameter. For instance, the full

model is tested against the full model excluding all categories of diagnosis.

For each significant parameter i, the hazard ratio HR = exp(βi) is given in brackets.

It can be seen that the parameters A, D2, D3 and D5 are significant in all models in

which they are included. The parameter S2 is significant in all models in which it is

included except for the model SL. The parameter L is only significant in some models.

The hazard ratio is lower than one for significant parameters A, D2, D3 and D5 and

greater than one for S2 and L, when they are significant.

Model Significant parameters

Null

S S

A A

L L

D D

SA S, A

SL L

SD S, D

AL A, L

AD A, D

LD D

SAL S, A, L

SAD S, A, D

SLD S, D

ALD A, D

SALD S, A, D

Table 4.3: Overview of the significant parameters for the Cox models with linear terms

In Table 4.3, the significant overall parameters are presented. Table 4.3 shows that the

parameter D is also significant in all models in which it appears as a whole. The results

for the other parameters do not change.

Lasso method

In this subsection, the results of the Lasso method for the linear Cox model are presented.

In Figure 4.6, the coefficients of the linear Cox model are plotted over the l1-norm of the
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coefficients vector. On the upper x-axis the number of non-zero coefficients is displayed.

The coefficient that vanishes at last is the coefficient of the parameter D3, right after A

and D2. The other parameters are eliminated earlier.
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Figure 4.6: Lasso-plot for the full linear Cox model

A tenfold cross-validation (CV) is performed for the linear Cox model. In Figure 4.7, the

partial likelihood deviance is plotted over the logarithm of λ with confidence intervals.
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Figure 4.7: Tenfold cross-validation deviance for Lasso-method for full linear Cox model

The left vertical line in the plot shows where the CV-error curve hits its minimum. This

minimum error occurs for λ = 0.0005. The coefficients for this value of λ are all non-

zero. The right vertical line shows the most regularized model with CV-error within
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one standard deviation of the minimum and it is roughly at λ = 0.0141 with non-zero

coefficients bA = −0.0061, bD2 = −0.0331 and bD3 = −0.3594.

4.1.4 Cox model with interaction terms

In this scenario, interaction terms between the parameters also are considered. So,

a set of parameters enters the model like in the previous setting, but additionally to

the single parameters, also all possible products of the parameters enter the model as

parameters. For example, for two parameters S and A with values s and a, the model

is λ(t) = λ0(t) · exp(bS · s+ bA · a+ bSA · s · a).

Results for single variables are displayed in Table 4.4 and for whole parameters in Table

4.5.

Model Significant variables (HR)

SA S2(1.206), A(0.993)

SL

SD D2(0.653), D3(0.478), D4(0.281), D5(0.751), S2·D2(1.204),

S2·D4(4.424), S2·D5(1.392)

AL A(0.993), L(1.005), A·L(0.999)

AD A(0.988), D2(0.674), D3(0.390), A·D3(1.006)

LD D2(0.678), D3(0.459), D4(1.355), D5(0.800),

L·D2(1.003), L·D3(1.005), L·D4(0.990), L·D5(1.005)

SAL S2(1.262), A(0.996), L(1.007), S2·A(0.996), A·L(0.999)

SAD A(0.991), D2(0.644), D3(0.369); S(1.320)∗, D4(0.051)∗,

S2·A(0.994)∗

SLD D2(0.601), D3(0.419), D5(0.700), S2·D2(1.224), S2·D4(5.868),

L·D3(1.006); D4(0.281)∗, S2·D5(1.331)∗

ALD A(0.989), D2(0.609), D3(0.346), D4(2.020); A·D3(1.006)∗

SALD D2(0.609), D3(0.321), S2·A(0.991); S2·A·D5(1.023)∗

Table 4.4: Overview of the significant single variables and their type of effect for the Cox

models with interaction terms

Like in Table 4.2, the second column shows all significant parameters with significance

level 0.05. Parameters with p-value between 0.05 and 0.07 are marked with ∗. For each

significant parameter i, the hazard ratio HR = exp(βi) is given in brackets.

Again, the parameters D2 and D3 are significant in all models and their effect on the

hazard is decreasing. S2 and L are significant in only two models. Parameter A is signif-

icant in all models except for the full model and the effect on the hazard is decreasing.

The parameters A and D2 have a decreasing impact on the hazard for their own in
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models AD and ALD, but the product of these two parameters has an increasing impact

on the hazard.

Model Significant variables

SA S, A

SL S, L

SD S, D

AL A, L

AD A, D

LD L, D

SAL S, A, L

SAD S, A, D

SLD S, L, D

ALD A, L, D

SALD S, A, L, D

Table 4.5: Overview of significant parameters for the Cox models with interaction terms

In Table 4.5, the results of the Wald tests for the whole parameters show that for the

interaction models all included parameters are significant.

Lasso method

In this section, results of the Lasso method for the model with interaction are presented.
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Figure 4.8: Lasso-plot for full model with interaction terms

In Figure 4.8, the coefficients of the Cox model with interaction terms are plotted over

the l1-norm of the coefficients vector. On the upper x-axis, the number of non-zero
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coefficients is displayed. A range for the norm from 0 to roughly 0.8 is shown in the

plot.

From the overall 39 coefficients, only seven are still non-zero, when the norm is 0.8. The

coefficient that vanishes at last is the coefficient of parameter D3, right after A·D2 and

A. The other parameters are eliminated earlier.

A ten-fold cross validation (CV) is performed for the Cox model. In Figure 4.9, the

partial likelihood deviance is plotted over the logarithm of λ with confidence intervals.
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Figure 4.9: Tenfold cross-validation deviance for Lasso-method for full model with in-

teraction terms

The left vertical line in the plot shows where the CV-error curve hits its minimum.

This minimum error occurs for λ = 0.0005. For this value of λ 26 coefficients are non-

zero. The right vertical line shows the most regularized model with CV-error within

one standard deviation of the minimum and it is roughly at λ = 0.0170 with non-zero

coefficients bA = −0.0052, bD3 = −0.3128 and bA·D2 = −0.0052.
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4.1.5 Comparison of Cox models with and without interaction terms

The AIC and the AIC differences are calculated for all Cox models with and without

interaction. In Table 4.6 it can be seen that for the models without interaction the full

model and the model SAD have the lowest AIC by far. All the other models can be

excluded from the set of plausible models according to this analysis.

For models with interaction terms, the full model has the lowest AIC followed by the

models SAD and ALD within a reasonable range. Again, all the other models can be

excluded from the set of plausible models. The full model with interaction also has the

lowest AIC overall.

Model AIC lin AIC diff lin AIC inter AIC diff inter

Null -

SA 128515.5 353.3 128515.1 362.9

SL 128650.9 488.7 128652.1 499.9

SD 128332.2 170.0 128318.8 166.6

AL 128510.7 348.5 128506.1 353.9

AD 128178.9 16.7 128176.3 24.1

LD 128338.2 176.0 128323.3 171.1

SAL 128520.2 358.0 128497.9 345.7

SAD 128162.2 0 128155.5 3.3

SLD 128333.4 171.2 128311.2 159

ALD 128179.3 17.1 128161.6 9.4

SALD 128162.7 0.5 128152.2 0

Table 4.6: Rating of the models with and without interaction with AIC

In Table 4.7, a comparison of the significant variables of the models with and without

interaction terms is shown.

In general, the parameters that are significant in the linear setting are also significant

in the setting with interaction given the same set of parameters, but it occurs that

parameters that are significant in the linear model are not significant anymore in the

model with interaction, for example the parameter S2 is significant in almost all linear

models but only in two models with interaction. There are also parameters like D4

that are not significant in any linear model, but are significant in some models with

interaction.
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Model Linear Interaction

Null

S S2(+)∗ S2(+)∗

A A(−) A(−)

L L(+) L(+)

D D2(−),D3(−),D5(−)∗ D2(−),D3(−),D5(−)∗

SA S2(+),A(−) S2(+),A(−)

SL L(+)

SD S2(+),D2(−),D3(−),D5(−)∗ D2(−),D3(−),D4(−),D5(−),S2·D2(+),

S2·D4(+),S2·D5(+)

AL A(−),L(+) A(−),L(+),A·L(−)

AD A(−),D2(−),D3(−),D5(−) A(−), D2(−), D3(−), A·D3(+)

LD D2(−),D3(−),D5(−)∗ D2(−),D3(−),D4(+),D5(−),L·D2(+),

L·D3(+),L·D4(−),L·D5(+)

SAL S2(+),A(−),L(+) S2(+),A(−),L(+),S2·A(−);A·L(−)

SAD S2(+),A(−),D2(−),D3(−),D5(−) A(−),D2(−),D3(−);S2(+)∗,

D4(−)∗,S2·A(−)∗

SLD S2(+),D2(−),D3(−),D5(−)∗ D2(−),D3(−),D5(−),S2·D2(+),

S2·D4(+),L·D3(+);D4(−)∗,S2·D5(+)∗

ALD A(−),D2(−),D3(−),D5(−) A(−),D2(−),D3(−),D4(+),A·D3(+)∗

SALD S2(+),A(−),D2(−),D3(−),D5(−) D2(−),D3(−),S2·A(−);S2·A·D5(+)∗

Table 4.7: Comparison of the significant variables and their type of effect of the Cox

models without and with interaction terms

4.1.6 Different diagnosis groups

Additional diagnosis group

After receiving feedback from experts who indicate that diagnosis F30 and F31 may

differ in behavior from the other diagnoses in group D2, this group is split up in two

groups. One group consists of the diagnoses F30 and F31, the other consists of diagnoses

F32 to F39.

So, the diagnoses are divided into six groups:

• D1: F20-F29

• D2: F32-F39

• D3: F40-F48

• D4: F50-F59
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4 Data analysis and variables of interest

• D5: F60-F69

• D6: F30-F31

In Table 4.8, the significant variables and the AIC for the univariate Cox model with

parameter D and the full models with and without interaction terms for this setting are

shown.

It can be seen that D2 and D3 are significant in all three models. The full model with

interaction has the lowest AIC.

Model Significant variables (HR) AIC

D D2(0.682),D3(0.512);D5(0.895)∗ 128266

SALD S2(1.120),A(0.990),D2(0.715),D3(0.490),D5(0.080) 128104

SALD interaction D2(0.517),D3(0.321),S2·A(0.991);S2·A·D5(1.023)∗ 128093

Table 4.8: Overview of the significant variables and their type of effect and the AIC for

the Cox models with six diagnosis groups

Single diagnosis groups

Another scenario is to categorize every subgroup Fxy separately. This leads to 36 factors

for the parameter D in the analysis, because there are 37 different diagnoses in the data

set. Table 4.9 shows the results for this model.

Model Significant variables (HR) AIC

D D22(−),D23(−),D32(−),D33(−),D34(−),D39(+),D40(−),D41(−), 128158

D43(−),D44(−),D45(−),D48(−),D51(−),D60(−),D61(−),D63(−)

SALD S2(+),A(−),D22(−),D23(−),D32(−),D33(−),D34(−),D39(+), 127800

D40(−),D41(−),D43(−),D44(−),D45(−),

D48(−),D51(−),D60(−),D61(−),D63(−)

Table 4.9: Overview of the significant variables and their type of effect and the AIC for

the Cox models with single diagnosis groups
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4.2 Multiple readmissions

4.2.1 Cox model

A patient can have multiple readmissions to hospital. A Cox model with multiple,

consecutive events is used to model this scenario. The conditional model approach is

used. That means the events are distinguishable from each other, so, they are stratified

by the number of the event.

Table 4.10 shows the results for the Cox model with multiple events.

Model Significant variables (HR) AIC

S S2(+) 208175

A A(−) 207796

L L(−) 208179

D D2(−), D3(−), D4(+) 207942

SA S2(+), A(−) 207950

SL S2(+),L(−) 208166

SD S2(+), D2(−), D3(−), D4(+) 207926

AL A(−), L(−) 207972

AD A(−), D2(−), D3(−), D5(−);D4(+)∗ 207723

LD L(−), D2(−), D3(−), D4(+) 207920

SAL S2(+), A(−), L(−) 207946

SAD S2(+), A(−), D2(−), D3(−), D5(−) 207689

SLD S2(+), L(−), D2(−), D3(−), D4(+) 207903

ALD A(−), L(−), D2(−), D3(−), D5(−) 207704

SALD S2(+), A(−), L(−), D2(−), D3(−), D5(−) 208798

Table 4.10: Overview of the significant variables and their type of effect and the AIC for

the Cox models with multiple events

S2, A, D2 and D3 are significant in all models, D4 and D5 in some of the models. S2

and D4 have an increasing effect on the hazard, while all the other parameters have a

decreasing effect.

The comparison of the AIC values shows that the model SAD has the lowest AIC value.

4.3 Overview of significant variables

An overview of the significant variables of the linear Cox model, the Cox model with

interaction terms and the Cox model with multiple events is presented.

Figure 4.10 shows in how many models each of the single parameters is significant. Every
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single parameter appears in 23 models. The parameters D2 and D3 are significant in all

of the 23 models, A in all but one model.
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Figure 4.10: Counts of significant appearances of single parameters

Every product of two parameters appears in four models. In Figure 4.11, all parameters

that are significant in at least one model are represented by a bar. Parameter S2/A is

significant the most often with two significant and one almost significant appearances.
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Figure 4.11: Counts of significant appearances of interaction parameters



5 Model

5.1 Microsimulation models

These models for health care issues are thoroughly described in [11].

Microsimulation models are mostly used to compare and evaluate different intervention

strategies or scenarios by modeling a decision problem on a micro-unit level. Micro-units

are, for example, single individuals or small groups of individuals.

Microsimulation or first-order Monte Carlo models follow a bottom-up approach, so they

are individual-based. These models do not capture interactions between individuals and

model a closed cohort. Microsimulation models are well suited to represent heterogene-

ity among the population since the covariates of an individual represent the specific

attributes.

Formally, there are states, transitions between the states, transition probabilities, a cycle

length and logical tests performed at the beginning of each cycle to determine the tran-

sitions. The states are mutually exclusive. A modeled individual must be in exactly one

state at any time. The transitions are evaluated using first-order Monte Carlo simulation

by comparing a random number with the given transition probability. A cycle is a pre-

defined interval of time on which the transition probabilities are based. The transition

probabilities are also depending on the covariates of the individuals. Microsimulation

models generally have a fixed time horizon, for example, an average lifetime.

So-called tracker variables keep track of the path of each individual through the states in

order to be able to analyze and visualize it afterwards. It is possible to do cross-sectional

and longitudinal analyses on the results of microsimulation models.

5.2 General description

A simulation model for the prognosis of the development of the treatment status of a

cohort of patients with chronic mental diseases is built. Different scenarios and poli-

cies are examined. Cross-sectional as well as longitudinal studies are of interest. Thus,

the evolution of aggregate numbers is analyzed as well as the pathways of individuals

through the system in time. The course of the events of a patient is modeled indepen-

dently from other persons.

The chosen model type is a microsimulation model. That means that it follows the
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bottom-up approach and every single individual is modeled. This approach is cho-

sen because not only the cross-sectional analysis is important but also the longitudinal

pathways of single individuals. Furthermore, this approach is suitable for the analysis

of different policies and scenarios. Another reason is that the characteristics of the in-

dividuals are manageable with a bottom-up approach.

The events of a patient are expressed by state changes. The possible ways through the

states are described by a transition matrix which can be interpreted as a directed acyclic

graph. Every individual starts in state R (released after the first admission to hospital).

If the most recent event of the patient was the ith readmission, it is in state Ai, if the

most recent event was the ith ambulant psychiatrist visit, the patient is in state Pi and

if the patient died, it is in state D. From initial state R transitions are possible to the

states P1, A1 and D. From Pi the patient can go to Ai and D and from Ai to Pi+1, Ai+1

and to D. From death no transitions are possible since it is an absorbing state.

In order to calculate the times of the events respectively the probabilities for the events

to occur the hazard and survival functions have to be modeled. The methods from

Chapter 3.1 are applied to determine the according statistical models, especially the

Cox model, the Nelson-Aalen estimate and model selection methods. A stratified Cox

model is calculated to estimate the hazard function for the transitions. The strata rep-

resent the transitions.

The model has a stochastic aspect since random numbers are used to decide if an event

occurs.

The individuals are processed sequentially. This is possible since there is no interac-

tion between the individuals in the model. The overall simulation time is fixed. The

simulation starts for every patient with the day of the release from the first stay in a

psychiatric department of a hospital. The simulation is executed in discrete time steps

of one day.

The starting population is sampled from real data described in Chapter 2. It is modeled

as a closed cohort, so there is no change in the size of the population except for deaths.

Data is available for times of readmissions, ambulant visits to a psychiatrist and deaths.

It depends on the chosen scenario which events are actually considered in the model.

Patient parameters are age, sex, length of stay in the psychiatric department and the

diagnosis made during the initial stay at the hospital.

5.3 Technical description and implementation

The model is fully implemented in R. The advantage of R is that many common methods

of survival analysis are already implemented in packages. The package survival contains

functions for the Cox regression (coxph), the Kaplan-Meier estimate (survfit) and the
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Nelson-Aalen estimate (bazehaz ). Additionally, a package mstate for the multi-state

extension of the Cox model is available. This allows to transform data from wide for-

mat with one line per subject into long format with one row for each observation. This

is needed to put the data into the function coxph which computes the Cox regression

coefficients for each possible transition. The possible transitions are assigned to a tran-

sition matrix which can be generated via the function msprep. A positive integer in the

(i, j)-element of the matrix indicates a possible transition.

At first the data has to be prepared. The data files with the patient data and read-

mission times and with the data of the visits to the psychiatrist are imported as data

frames dataaut and datapsy from csv-files. After filtering out incomplete data sets, they

are converted to data tables and merged. All dates are converted to integers beforehand

manually. Although R can handle dates, this makes it much easier to handle the data

since the function for the data preparation for the Cox model only takes integers as

input. Also, the maximum number of readmissions z must be specified in advance.

For the multi-state extension of the Cox model, which is performed during the simu-

lation, four matrices are needed: a covariate matrix, a transition matrix, a event time

matrix and a status matrix. The creation of this matrices is described in the following.

The actual design of the matrices always depends on the given scenario that is simulated.

The covariate matrix can be extracted directly from the file dataaut.

The transition matrix is generated using the function transMat which takes a list of

vectors with possible transitions from each state as input. The matrix is a z × z matrix

and the possible transitions are numbered.

The event times are gathered from the two different data tables dataaut and datapsy.

Every column in the event times matrix corresponds to a specific state. The times of

each patient are chronologically ordered and put into the correct columns. There are z

possible readmissions and z possible visits to the psychiatrist, one is possible before each

readmission. There is also an initial state in which a patient is before any event happens

and the state of death. So, there are 2z+2 states in total. The next psychiatrist contact

after the last recorded admission is also included, if there is one, and multiple contacts

between two consecutive admissions are dismissed. Missing times from the data sets are

denoted by NA in the first place and then replaced by the time of the censoring event

which is either the end of the follow-up or death for readmissions and can additionally

be the following readmission for visits to the psychiatrist. Finally, the date of the initial

release from hospital is subtracted from all dates to get the times since the initial release.

Negative values resulting from data errors are left out.

The status of the events can easily be derived since all entries in the event matrix before

the adding of the censoring times which are indicated by NA are censored and therefore

have status 0.

Depending on the chosen scenario, the transition matrix, the event time matrix and the

status matrix are created. The covariate matrix is the same for all scenarios. When
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those four matrices are prepared, they are transformed into long format by the function

msprep. Then, the cumulative hazards are estimated by a Cox regression stratified by

transition number.

Before the simulation starts, the number of runs and the duration of the simulation are

specified. Then, the starting cohort for the simulation is generated. Also, the categorical

covariates are converted from factors to multiple columns of indicator variables. The

baseline hazard functions for each stratum and the hazard differences are also calculated

in advance.

The actual simulation is implemented by two nested for-loops. The outer one loops

over the individuals and the inner one over the time steps. In the outer for-loop for

each subject, the hazard differences for the particular individual are calculated by mul-

tiplying the baseline hazard differences with exp(Xβi). Then, in each time step, the

actual state of the individual is determined and for all possible transitions the transi-

tion probabilities are calculated. If a transition takes place is determined with the use

of random numbers. Two matrices keep track of the visited states and the according

state entry times of each subject to analyze and visualize the results after the simulation.

For the model selection, the Lasso-method is implemented in the glmnet package. It

also provides a plotting routine for the results. The waldtest function of the lmtest

package is used for Wald tests for nested models. For reasons of speed and practicability,

the package data.table is used. Most of the data is stored in the data table format.

Data tables still also are data frames but there are slight differences in handling and

faster methods for data manipulation. The ggplot2 package is used for generating more

sophisticated plots such as stacked area plots.

All calculations and plots are performed by RGui 3.1.0 and RStudio 0.98.953.

5.4 Validation and determination of sample size

5.4.1 Validation

The validation of the model is an important part of model building process. The vali-

dation is performed for the most extended scenario 3a. The simulated time span is two

years respectively 730 days.

The patient sample is partitioned into two disjoint sets. One fitting set for parametriza-

tion of the model with the Cox model and one set for the simulation and validation.

The fitting set is created by sampling randomly a certain percentage of the data sample.

Three runs are performed. The first run F60/V 40 is executed with 60 percent of the

data belonging to the fitting set, the second run F50/V 50 with equally sized sets and

the last run F40/V 60 with 40% fitting set.

Four quantities are defined to measure the goodness-of-fit of the model:
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• Overall number of events O

• Distribution of the numbers of actual events per patient at the end of the simulation

num

• Number of patients that visited each state during the simulation vis

• Number of patients in each state at the end of the simulation hist

The comparison of the overall number of events O is a first rough estimate if the results of

the simulation and the data are approximately of a similar scale. The number of events

per patient num shows in more detail if there are too many or too less events per patient.

Even if the overall numbers of events match there could be too many patients with few

events and too less with many events or vice versa. The number of visits to a certain

state vis shows, if the events are frequented in a similar way. It can be determined

if specific events are over- or under frequented. So, the particular event or its hazard

function can be investigated in detail. The combination of these quantities is reflected in

the fourth quantity hist. A combination of an adequate number of events and a correct

way through the states leads to a correct distribution of the patients at the end of the

simulation. These four quantities are calculated for the results of the simulation and for

the real data. Then, the errors regarding these quantities are calculated.

In Table 5.1, the differences in the overall number of events between the simulation and

data are presented. For all three runs, the error is about 2%, so it does not depend on

the actual choice of the sets.

Error F60/V 40 F50/V 50 F40/V 60

O 700(2.5%, n = 27622) 507(2.2%, n = 23162) 421(2.3%, n = 18373)

Table 5.1: Differences of the overall numbers of events for all three validation runs

In Table 5.2, an overview of the maximum deviation and the mean deviation in percent

is given for the vectorial quantities num, vis and hist for each validation run. For num,

only up to five events are considered since the number of patients with more than five

events is very low. Also, for vis only the first four readmission states, the first four psy-

chiatrist contact states and death are taken into account since too few patients visited

the other states and every patient visited state R, so the error for state R is always

zero. For hist the same states as for vis, except for the fourth readmission and fourth

psychiatrist contact states which are visited by a low number of patients are considered.

The mean deviation for all three quantities shows no significant variations.
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F60/V 40 F50/V 50 F40/V 60

num 8.5/3.4 19.2/6.5 11.7/7.0

vis 13.1/4.8 10.4/3.6 20.2/5.0

hist 13.1/7.2 10.1/6.1 20.2/5.4

Table 5.2: Maximum and mean errors for num, vis and hist for all three validation runs

in percent

Figure 5.1 shows the mean deviation in percent for each run from Table 5.2 visually.

The mean errors are not differing more than two percent points between the runs for each

quantity except for num where the value of the run F60/V 40 is lower. This indicates

that the errors do not depend on the particular partition into fitting set and validation

set and also not on the ratio of the sizes of the two sets.
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Figure 5.1: Mean errors in percent for all runs for quantities num, vis and hist

In Figure 5.2, the quantity vis for the simulation results and for the data sample for the

run F50/V 50 is compared. The height of each bar shows the number of patients that

visited the certain state during the simulation.

The numbers of patients that visited the readmission states is slightly higher in the

simulation results except for the fourth readmission A4. Also, more deaths occur in

the simulation. The number of ambulant contacts to the psychiatrist is lower in the

simulation. The differences are below five percent of the values for the data for each
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Figure 5.2: Comparison of numbers of patient entries per state between the results of

the simulation for run F50/V 50 and the data set

state except for deaths.
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Figure 5.3: Comparison of the distribution of numbers of events over the patients be-

tween the simulation results for run F50/V 50 and the data set

In Figure 5.3, the quantity num of the simulation results and of the data sample for the

run F50/V 50 are compared. The height of each bar shows the number of patients that

had a certain number of events during the simulation. Every subject has at least one

event since the initial release from hospital at time 0 is also counted as an event. So, the

first bar shows the number of patients that had no more events after the initial release.
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Their number is 0.8% higher in the data than in the simulation. Except for patients

with three and eight events the numbers are always slightly higher in the data.

The mean deviation of the number of events per patient is slightly above five percent for

all runs. The mean deviation of the visited states is between five and nine percent which

is a tolerable, especially because the number of readmissions is overestimated. When

the model results are used for planning it is more secure if the results tend to the worse

case. It was also shown that the errors are stable independent of the fitting set which is

necessary to provide reliable results and predictions.

5.4.2 Determination of the sample size

Random numbers are used to determine the state changes of the individuals in the

simulation. In order to reduce the effect of the random numbers on the overall results

the size of the population sample has to exceed a certain number. Since there is no

interaction between the individuals the required number of patients can be simulated

in a single run. A procedure to calculate the required number of samples is presented

in [12].

The quantity that is taken into account for the calculations is the overall number of

events. The variance of the overall number of events over several runs is calculated as

well as the variance of the individuals events number. From the calculations follows

that a sample of 7000 patients will provide a sufficiently small standard deviation of 30

events per run.



6 Simulations

6.1 Definition of scenarios

The given datasets contain full records of patients over a time span of up to two years.

Often the data at hand is incomplete or contains only information about specific events.

This can happen due to data protection issues, loss of data and many other reasons.

In order to examine the consequences of using differently detailed patient-level data on

result quality, three scenarios are defined. These scenarios only differ in the number and

order of the readmissions that are used for the Cox model. So, the scenarios only differ

in terms of the parametrization. This leads to different transition probabilities between

the states for the different scenarios. The simulation itself however is identical for all

scenarios.

Each scenario is executed with and without ambulant contacts to psychiatrists. All

simulations are based on the same set of data to ensure comparability of the results.

6.1.1 First readmission only (scenario 1)

In scenario 1, only the first readmission of each patient is considered and all the other

readmissions that are available in the data are dismissed. In the simulation, the transi-

tion rates from any readmission state Ai to states Ai+1, Pi+1 and D are assumed to be

equal for all i.

There are two versions of this scenario considering the visits to the psychiatrist, one

with ambulant contacts and one without.

6.1.2 Readmissions without order (scenario 2)

In scenario 2, the first z readmissions of each patient are considered. The same number

is used in scenario 3. All readmissions are regarded independently from each other, even

if they belong to the same subject. So, there is no order of the readmissions and every

readmission is regarded as first readmission. Like in scenario 1, the transition rates from

any readmission state Ai to states Ai+1, Pi+1 and D are assumed to be equal for all i in

the simulation.

For all events, the event time is the time since the last admission. Between two consecu-

tive admissions up to one contact to a psychiatrist is considered. After the last recorded
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admission of a patient one additional psychiatrist contact is considered, if there is one

present in the data and if less than z readmissions are recorded. Otherwise, each psy-

chiatrist contact would be followed by a readmission. This would bias the transition

rates from any psychiatrist contact state Pi to a readmission state Ai. The contacts are

also regarded independently from each other like the readmissions and the event time

is the time since the last readmission. Deaths enter the dataset z times, once for each

readmission with the time since the particular readmission as event time, in order not

to underestimate the number of deaths. Again, there are two versions of this scenario,

one with contacts to the psychiatrist (2a) and one without any contacts (2b).

6.1.3 Readmissions with order (scenario 3)

In scenario 3, the first z readmissions of each patient are considered with the same

number z as in scenario 2 but in contrast to scenario 2 the readmissions are ordered.

That means that for the first z readmissions the transition rates from a readmission

state are independent. From the (z + 1)th readmission on, the rates are assumed to be

equal to the transition rates starting from state Az. In scenario 3a, at most one con-

tact to a psychiatrist between two consecutive admissions is possible. Therefore, also the

psychiatrist contacts are ordered. In scenario 3b, no psychiatrist contacts are considered.

In Figure 6.1, the utilization of data in the three scenarios for a time line with three

readmissions is presented.

Figure 6.1: Schematic representation of the information needed in the three scenarios
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6.2 Results - Austria

In this section, results of simulations for the data from whole Austria are presented. Re-

sults for single scenarios and comparisons of the matching scenarios that only differ in

the inclusion of psychiatrist contacts and comparisons of all scenarios with and without

contacts to a psychiatrist are shown.

A simulation time of 2 years is chosen, because the majority of the readmissions, espe-

cially of the first readmissions, which are the most crucial events, happen within this

period, but also due to a lack of data for a longer time span. The maximum number of

readmissions z is 4. A population of 18638 individuals is sampled from data set dataaut

containing data of patients from whole Austria. The results of this section are based on

a particular population sample denoted by population AT . These settings are valid for

all following simulations in this section.

For every scenario, the evolution of the distribution of the patients over the states is

shown in a stacked area plot. On the x-axis time is plotted, on the y-axis the percentage

of each state is plotted on top of each other. The area under each curve is filled with a

distinctive color. The states are coded with colors. Dark green represents always state

R, the readmission states are assigned to lighter shades of green, the psychiatrist states

have shades of red and dark red represents the state death D.

The percentage of patients in state R is continuously decreasing since this state can only

be left but not reentered, state D on the other hand is an absorbing state. So, it can

only be entered but not left.

Different subpopulations are considered for each scenario. Male and female patients,

three age groups: younger than 45 years, between 45 and 64 years and older than 64

years, and two diagnosis groups, patients with psychotic diseases represented by the

ICD-codes F2x and F30 +F31 and patients with non-psychotic diseases, are compared.

Only selected results are presented in this section. The results are qualitative equivalent

for the other scenarios except noted otherwise.

In Table 6.1, the sizes of each subpopulation are presented.

Category Number Percentage

male 7796 41.8

female 10842 58.2

< 45 10085 54.1

45-64 6625 35.5

> 64 1928 10.3

psychotic 6995 37.5

non-psychotic 11643 62.5

Table 6.1: Overview of subpopulations of data sample dataaut
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6.2.1 First readmission only (scenario 1)

In this section, results for the whole population in scenarios 1a and 1b as well as a com-

parison between psychotic and non-psychotic patients are shown.

Stacked area plots of the evolutions of the patients distribution over the states are

presented in Figure 6.2.
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(a) Scenario 1a
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(b) Scenario 1b

Figure 6.2: Evolution of the patients distribution over the states in scenarios 1a and 1b

The share of the patients in state R has a similar evolution in both scenarios and de-

creases almost exponentially. After two years about 50 percent are remaining in state

R in scenario 1a, about 55 percent in scenario 1b. The percentage of deaths increases

almost linearly for both scenarios. At the end of the simulation around 3.4% of the

population died in scenario 1a and around 3.7% in scenario 1b. In scenario 1b always

more patients are in states Ai than in scenario 1a which can mostly be explained by the

fact that in scenario 1a where more competing events exist.

In the first months many patients enter state P1 in scenario 1a, after about half a year

the number decreases and stays about five percent until the end of the simulation.

The psychotic and the non-psychotic subpopulation are compared in Figure 6.3 in sce-

nario 1a. The percentage of psychotic patients still remaining in state R is decreasing

much faster than for non-psychotic. At the end of the simulation 41% of the psychotic

patients are still in state R while about 55% of the non-psychotic patients are in state

R. The percentages of patients in states Pi run very similarly in both subpopulations.
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(a) Psychotic patients
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(b) Non-psychotic patients

Figure 6.3: Evolution of the patients distribution over the states for psychotic and non-

psychotic patients in scenario 1a

6.2.2 Readmissions without order (scenario 2)

Results for the whole population in scenarios 2a and 2b as well as a comparison between

female and male patients are presented in this section.

Stacked area plots of the evolutions of the patients distribution over the states are

presented in Figure 6.4.
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(a) Scenario 2a
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(b) Scenario 2b

Figure 6.4: Evolution of the patients distribution over the states in scenarios 2a and 2b

The share of the patients in state R has a similar evolution for both scenarios and

decreases almost exponentially to about 39% in scenario 2a and about 47% in scenario

2b after two years. At the end of the simulation around 3.6% of the population died

in both scenarios. State P1 has its maximum number of patients within the first half
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year of the simulation. The numbers of states A1 and P2 increase until about 18 months

and start to decrease afterwards. The numbers of all other states are monotonically

increasing during the simulation.

The evolution of the patients distribution over the states for the male and female pop-

ulation is compared in Figure 6.5. The male population has a slightly higher share of

patients with no event remaining in state R after two years with about 41% compared to

38%. This difference is due to the fact that a higher percentage of the female population

has readmissions while the percentage in the states Pi is roughly the same for both sexes.

The percentage of deaths during the simulation is similar with around 3.6% for male

and around 3.7% for female patients.
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(a) Male patients
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(b) Female patients

Figure 6.5: Evolution of the patients distribution over the states for male and female

patients in scenario 2a

6.2.3 Readmissions with order (scenario 3)

In this section, results for the whole population in scenarios 3a and 3b as well as a

comparison between patients under 45 and over 64 years are shown.

Stacked area plots of the evolutions of the patients distribution over the states are

presented in Figure 6.6. The share of the patients in state R has a similar evolution for

both scenarios and decreases almost exponentially. In scenario 3a, about 50 percent are

remaining in state R at the end of the simulation, in scenario 3b about 55 percent. After

two years, around 4% of the population died in both scenarios.

The evolutions of the distribution over the states for patients younger than 45 years and

older than 64 years are compared in Figure 6.7. The decrease of the numbers of patients

in state R goes slightly faster for the younger patients. After two years 49% of the

younger patients are in state R and about 53% of the older ones. Also, the number of
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(a) Scenario 3a
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(b) Scenario 3b

Figure 6.6: Evolution of the patients distribution over the states for scenarios 3a and 3b

deaths at the end of the simulation are similar for both subpopulations with a percentage

of about 4.1.
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(a) Patients under 45
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(b) Patients over 64

Figure 6.7: Evolution of the distribution of the patients over the states for patients under

45 and over 64 in scenario 3a
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6.2.4 Comparison of scenarios

In this section, numbers and times of events for all scenarios are examined and compared.

In Table 6.2, the numbers of patients with readmissions are presented. It can be seen

that scenarios 2a and 2b have a higher percentage of readmissions. The reason is that

the transition probability from state R to state A1 is higher for scenario 2, because in

scenario 1 only the first readmissions from the data are used to fit the rate from state

R to A1 while in scenario 2 all readmission times are treated as first readmission times.

Since the times for the later readmissions are shorter in average, the median of the first

readmission times drops from 75 days for scenarios 1 and 3 to 63 days for scenario 2. This

leads to a higher probability for entering state A1 and having a readmission. Also, the

percentage of actual events is higher for scenarios 2a and 2b in comparison to censored

events.

Scenario 1a 1b 2a 2b 3a 3b

Readmissions (%) 42 43 51 51 42 42

Table 6.2: Percentage of patients with readmissions

In the following, statistics for the times of various events are compared for all scenarios.
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Figure 6.8: Boxplots of the first readmission times for scenarios with psychiatrist con-

tacts
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The times of the first readmissions are compared in Figure 6.8 for scenarios with contacts

to the psychiatrist and in Figure 6.9 the scenarios without contacts to the psychiatrist.

From the former scenarios 2a has the lowest median with 87 days followed by 3a with

98.5 days and 1a with 108 days, from the latter scenarios 2b has the lowest median with

84 days followed by 3b with 99 days and 1b with 100 days.
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Figure 6.9: Boxplots of the first readmission times for scenarios without psychiatrist

contacts

In Table 6.3, the numbers of patients with psychiatrist contacts are presented.

Scenario 1a 2a 3a

Psychiatric contacts (%) 20 28 28

Table 6.3: Percentage of patients with psychiatrist contacts

It can be seen that scenarios 2a and 3a have a higher percentage of readmissions with

28% than scenario 1a with 20%. Again, this can be attributed to the definition of the

scenarios and the differing usage of data of those. In scenario 2a all ambulant contact

times are used to calculate the rates for transitions to state P1. The median of all

psychiatrist times is higher than the median of the first contact times, but also the

relative number of actual events is higher for all contacts compared to censored events.

So, these two effects level each other regarding scenarios 2a and 3a. In scenario 1a are

less ambulant contacts, because the transition probabilities for the states Pi after the

first readmission are the same as for P1 in scenario 1a, but higher in scenario 3a. So,
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patients are more likely to have the first contact to a psychiatrist after some readmissions

in scenario 3a.

The times of the first contacts to the psychiatrist are compared in Figure 6.10. For all

three scenarios, more than 75% of the first contacts happen during the first 100 days

after the initial release. The medians are all around 40 days with the median of scenario

2a being higher with 45 days.
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Figure 6.10: Boxplot of the times of the first contact to a psychiatrist

In Table 6.4, the numbers of dead patients are presented. It can be seen that scenarios

3a and 3b have the highest percentage but all scenarios are within a range of 0.6%.

Scenario 1a 1b 2a 2b 3a 3b

Deaths (%) 3.4 3.7 3.6 3.6 3.9 4.0

Table 6.4: Percentage of dead patients

Death times are compared in Figure 6.11. The medians range between 273 days for

scenario 2b and 296 days for scenario 1b. In general, more than half of the deaths occur

within the first year after the initial release.

In Table 6.5, an overview of the medians of the times of the first readmissions, the first

ambulant contacts to a psychiatrist and death is given.

The patients with ambulant contacts to a psychiatrist (OPC) are compared with those

without ambulant contacts (non-OPC). In Figure 6.12, the percentage of patients with
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Figure 6.11: Boxplots of the death times for all scenarios

Scenario 1a 1b 2a 2b 3a 3b

First readmission 108 87 98.5 100 84 99

First ambulant contact 38 45 41

Death 281 296 274 273 289.5 291

Table 6.5: Medians of times of first readmission, the first psychiatrist contact and death

for population AT in days

readmissions is shown for both groups. The percentage for the patients with ambulant

contacts is much higher, for scenarios 2a and 3a even twice as much as for patients

without ambulant contacts.
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Figure 6.12: Comparison of the percentages of patients with readmissions between pa-

tients with and without ambulant treatment

6.2.5 Pathways of patients

Typical pathways of patients during the simulation are characterized in this section to

be able to analyze the results of the simulation in more detail. For this purpose, in

addition to the number of readmissions of a patient also the times of the readmissions

are taken into account to classify the pathways.

The classification for the pathways is based on the given data sets dataaut and datapsy.

Nine typical, distinctive pathways are chosen to split the population in roughly equally

sized classes except for the class of patients with no readmission. This class is much

bigger than the others.

Nine classes are defined and described in the following. Class 1 consists of patients with

no readmissions. Classes 2 to 5 consist of patients with one readmission and differ by the

time of the only readmission of the patients. In class 2, patients have their readmissions

within the first month after the initial release, in class 3 between the second and sixth

month, in class 4 in the second half of the first year and in class 5 in the second year.

Classes 6 to 8 consist of the patients with two to four readmissions and differ by the

time of the first readmission. In class 6, patients have the first readmission within the

first month after the initial release, in class 7 between the second and sixth month and

in class 8 after the first half year. The time of the next readmissions is not specified.

Class 9 collects all individuals with more than four readmissions.

For the scenarios with psychiatrist contacts, each class is split into the patients with am-
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bulant contacts and without any ambulant contact. This doubles the number of classes

to a total of 18. The additional classes are numbered consecutively from 10 to 18. Class

10 corresponds to class 1, class 11 to class 2 and the other classes correspond analogously.

The defined pathways for patients are illustrated in Figure 6.13. The red crosses mark

readmissions and the time unit is months. For classes 6 to 9, there could also be more

readmissions as described in the paragraph above and seen in Table 6.6.

C1
01 6 12 24

C2
01 6 12 24

C3
01 6 12 24

C4
01 6 12 24

C5
01 6 12 24

C6
01 24

C7
01 6 24

C8
0 6 24

C9
0 24

Time in months
Readmission

Figure 6.13: Schematic overview of the 9 typical pathways for patients characterized by

the time in months and number of the readmissions

In Table 6.6, an overview in tabular form of the classification without ambulant contacts

is given.
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Class Number of readmissions Month of first readmission

1 0 −
2 1 1

3 1 2-6

4 1 7-12

5 1 13-24

6 2-4 1

7 2-4 2-6

8 2-4 7-24

9 > 4 any

Table 6.6: Classification of patient pathways

In Figure 6.14, the sizes of the classes for scenarios 1a, 2a and 3a are presented. Classes

1 and 10 are not shown in the plot, because the number of patients without readmission

has already been analyzed and the focus is on the patients with readmissions.
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Figure 6.14: Sizes of classes for the scenarios with ambulant contacts

In scenarios 1a and 2a are more than three times as many patients in classes 2 and 3

than in scenarios 3a. That means more individuals have exactly one readmission shortly

after the release. This can be explained by the fact that in scenario 3a more patients

have ambulant contacts, so more patients are in classes 10 to 18, and in scenario 2a more

patients have readmissions, so the overall number of patients in the presented classes is

higher. Scenario 3a has the most patients with one late readmission after the first year.

In scenario 3a the number of patients with more than four readmissions is higher than

in the other scenarios. In all scenarios, the number of patients with psychiatrist contacts
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have a higher number of readmissions in average and the first readmission later.

In Figure 6.15, the sizes of the classes for scenarios 1b, 2b and 3b are presented. Again,

class 1 is not shown in the plot, because the number of patients without readmissions

has already been analyzed and the focus is on the patients with readmissions.
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Figure 6.15: Sizes of classes for the scenarios without ambulant contacts

The trends are similar to the scenarios with ambulant contacts. In scenarios 1b and 2b

are more than twice as many patients in class 2 than in scenarios 3b and class 3 is also

bigger. This can be explained by the fact that in scenario 3b patients in average have

more readmissions and in scenario 2b more patients have readmissions in general. Also,

the number of individuals with more than four readmissions is much higher in scenario

3b.

6.2.6 Intervention

In order to reduce the number of readmissions, an intervention strategy is examined in

this section. According to this strategy a compulsory visit to an ambulant psychiatrist

30 days after every admission to hospital is implemented. The question is, can this

strategy reduce the number of readmissions to hospital?

In Table 6.7, the percentages of patients with readmissions, ambulant psychiatrist con-

tacts (OPC) and deaths are compared for scenario 3a. The percentage of patients with

readmissions is much higher with the intervention strategy. This leads to the conclusion

that an ambulant contact increases the probability for a readmission. This could already

be seen in the analysis of the pathways. In the intervention scenario almost every patient

visits a psychiatrist during the simulation. Only patients who die within the first month
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Type of Event No intervention Intervention

Readmissions 42.2 67.8

OPC 27.7 99.7

Deaths 3.9 3.6

Table 6.7: Comparison of percentages of the occurrence of events for scenario 3a with

and without intervention

have no contact. The number of deaths is slightly lower with the intervention strategy.

So, this strategy does not succeed in reducing the number of readmissions.
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6.3 Sensitivity analysis

In this section, the influence of the composition of the population on the number and

times of readmissions is examined.

Firstly, a base case with a random subpopulation sampled from dataset dataaut is consid-

ered. Starting from that population various other populations are generated by changing

one parameter of all patients at a time while leaving the other parameters of the pa-

tients unchanged. 12 populations are generated: all male/female (M , F ), all five years

younger/older (A−,A+), length of stay 50% shorter/longer (L−,L+) and all with each

of the six diagnosis groups (D1 to D6).

For the 13 populations, the medians of the times of the first readmissions are compared

in Figure 6.16. The base case has a median of 105 days. The populations with single

diagnosis groups F4x and F5x have the highest medians with 114.5 and 112 days.

Population with diagnosis group F6x has the lowest median with 94 days. The female

population has more than half of the first readmission within the first 100 days in contrast

to the male population. The results for the other populations differ hardly from the base

case.

The diagnosis has the biggest influence on the distribution of the first readmission times.

Depending on the diagnosis group the times are shifted to earlier or later times in average.

The female population has more early first readmissions than the male population.

Length of stay and age have very similar distributions to the base case.
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Figure 6.16: Medians of first readmission times for all considered populations

The number of patients with readmissions and the deviation of the number from the

base case is also calculated. In Figure 6.17, a tornado plot for the numbers of patients
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with readmissions for the given populations is presented. This diagram is a type of a bar

chart. The bars are listed vertically and ordered by length. The vertical line at 0 marks

the base case with no deviation. The bar for each parameter reaches from the deviation

of the highest value to the deviation of the lowest value of the populations where that

particular parameter is changed.
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Figure 6.17: Tornado plot for numbers of patients with readmissions

The populations with single diagnosis groups have the highest deviations. The popula-

tion with diagnosis F4x has about 23% less patients with readmissions than the base

case, while the population with diagnosis F2x has about 15% more. Also, the other

populations with single diagnosis groups have deviations between 6 and 13 which is not

displayed in the tornado diagram, but in Table 6.8. The male population has about 3%

less readmissions than the base case, the female has 1.2% more. Also, the older popula-

tion and the population with longer stays in hospital have a slightly higher number of

readmissions compared to the younger patients and the population with shorter stays.

All of these deviations are lower than 2% as seen in Table 6.8.

Population B M F A+ A− L+ L−
Patients with readmissions 4264 4134 4316 4341 4225 4269 4238

Deviation from base case(%) 0 −3.0 1.2 1.8 −0.9 0.1 −0.6

Population D1 D2 D3 D4 D5 D6

Patients with readmissions 4943 4858 4008 3260 3860 4769

Deviation from base case(%) 15.9 13.9 −6.0 −23.5 −9.5 11.8

Table 6.8: Numbers of patients with readmissions for different populations and the de-

viation from the base case in percent
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In Table 6.8, the numbers of patients with readmissions for all different populations and

the deviation from the base case are displayed in percent. The biggest deviations for the

variation of each of the parameters are also shown in Figure 6.17.

Again, the parameter diagnosis has the biggest influence on the results with deviations

up to 23%. Each population with uniform diagnosis group has a bigger influence on

the outcome than any of the considered populations. Sex is the parameter with the

second most influence with female population tending to more readmissions and the

male population to less. The parameters age and length of stay have little effect on the

outcome.
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6.4 Results - Lower Austria

In this section, results of the simulation for data from Lower Austria are presented.

Results for single scenarios and comparisons of the matching scenarios that only differ

in the inclusion of psychiatrist contacts and comparisons of all scenarios with and without

contacts to the psychiatrist are shown.

The general simulation time is 2 years, the population size is 6822 individuals and the

maximum number of readmissions z is 4. The population is sampled from the data set

datanoe containing data from Lower Austria and is denoted by LA. These settings are

valid for all following simulations in this section.

For every scenario, the evolution of the distribution of the patients over the states is

shown in a stacked area plot. On the x-axis time is plotted, on the y-axis the percentage

of each state is plotted on top of each other. The area under each curve is filled with a

distinctive color. The states are coded with colors. Dark green represents always state

R, the readmission states are assigned to lighter shades of green, the psychiatrist states

have shades of red and dark red represents the state death D.

The percentage of the patients in state R is continuously decreasing since this state can

only be left but not reentered. State D is an absorbing state and can only be entered

but not left.

Different subpopulations are considered for each scenario. Male and female patients,

three age groups: younger than 45 years, between 45 and 64 years and older than 64

years, and two diagnosis groups, patients with psychotic diseases represented by the

ICD-codes F2x and F30 +F31 and patients with non-psychotic diseases, are compared.

Only selected results are presented in this section. The results are qualitative equivalent

for the other scenarios except noted otherwise.

In Table 6.9, the sizes of each subpopulation of population LA are presented.

Category Number Percentage

female 3982 58.4

male 2840 41.6

< 45 3861 56.6

45-64 2235 32.8

> 64 726 10.6

psychotic 2894 42.4

non-psychotic 3928 57.6

Table 6.9: Overview of subpopulations for population LA
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6.4.1 First readmission only (scenario 1)

In this section, results for population LA in scenarios 1a and 1b as well as a comparison

between psychotic and non-psychotic patients are shown.

Stacked area plots of the evolutions of the patients distribution over the states are

presented in Figure 6.18. The share of the patients in state R has a similar evolution for

both scenarios and decreases almost exponentially. After two years about 48 percent are

remaining in state R in scenario 1a, about 54 percent in scenario 1b. The percentage of

deaths increases almost linearly for both scenarios. At the end of the simulation around

3.7% of the population died in scenario 1a and around 4.0% in scenario 1b. In scenario 1b

always more patients are in states Ai than in scenario 1a which can mostly be explained

by the fact that in scenario 1a there are more competing events.

In the first months many patients enter state P1 in scenario 1a, after about half a year

the number decreases and stays at about 5.7% until the end of the simulation.
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(a) Scenario 1a
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(b) Scenario 1b

Figure 6.18: Evolution of the patients distribution over the states in scenarios 1a and 1b

for population LA

The psychotic and the non-psychotic subpopulation are compared in Figure 6.19 for sce-

nario 1a. The percentage of psychotic patients still remaining in state R is decreasing

much faster than for non-psychotic. At the end of the simulation 41.5% of the psychotic

patients are still in state R while about 53% of the non-psychotic patients are in state

R. At the beginning the shares of patients in state P1 are almost equal for both sub-

populations. Towards the end of the simulation relatively more non-psychotic patients

are in state R1 than psychotic patients. Since the psychotic patients tend to have more

readmissions, a part of those has a readmission and goes to state A1.
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(a) Psychotic patients
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(b) Non-psychotic patients

Figure 6.19: Evolution of the patients distribution over the states for psychotic and non-

psychotic patients in scenario 1a for population LA

6.4.2 Readmissions without order (scenario 2)

Results for population LA in scenarios 2a and 2b as well as a comparison between female

and male patients are presented in this section.

Stacked area plots of the evolutions of the patients distribution over the states are

presented in Figure 6.20.
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(a) Scenario 2a
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(b) Scenario 2b

Figure 6.20: Evolution of the distribution of the patients over the states in scenarios 2a

and 2b for population LA

The share of the patients in state R has a similar evolution for both scenarios and de-

creases almost exponentially to about 37% in scenario 2a and about 46% in scenario 2b

after two years. At the end of the simulation around 4.0% of the population are dead
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in scenario 2a and around 3.7% in scenario 2b. State P1 has its maximum number of

patients within the first half year of the simulation. The number of state A1 increases

until about 18 months and then starts to decrease in both scenarios. The number of all

other states are monotonically increasing during the simulation.

The evolution of the patients distribution over the states for the male and female pop-

ulation is compared in Figure 6.21.
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(a) Male patients
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(b) Female patients

Figure 6.21: Evolution of the patients distribution over the states for male and female

patients in scenario 2a for population LA

The share of the patients in state R has a similar evolution for both scenarios and

decreases almost exponentially to about 37% for both subpopulations after two years.

The percentage in the states Pi is roughly the same for both sexes. The percentage of

deaths during the simulation is similar with around 4.0% for both subpopulations.

6.4.3 Readmissions with order (scenario 3)

In this section, results for population LA in scenarios 3a and 3b as well as a comparison

between patients under 45 and over 64 years are shown.

Stacked area plots of the evolutions of the patients distribution over the states are

presented in Figure 6.22. The share of the patients in state R has a similar evolution

for both scenarios and decreases almost exponentially. In scenario 3a, about 47 percent

are remaining in state R at the end of the simulation, in scenario 3b about 53 percent.

After two years, around 4.0% of the population died in scenario 3a and around 3.9% in

scenario 3b.

The evolutions of the distribution over the states for patients younger than 45 years

and older than 64 years are compared in Figure 6.23. The decrease of the numbers of

patients in state R goes slightly faster for the younger patients. After two years 48% of
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(a) Scenario 3a
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(b) Scenario 3b

Figure 6.22: Evolution of the distribution of the patients over the states in scenarios 3a

and 3b for population LA

the younger patients are in state R and about 49% of the older ones. In percent, more

younger patients than older one die during the simulation.
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(a) Patients under 45
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(b) Patients over 64

Figure 6.23: Evolution of the patients distribution over the states for patients under 45

and over 64 in scenario 3a for population LA
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6.4.4 Comparison of scenarios

In this section, numbers and times of events for all scenarios are examined and compared.

In Table 6.10, the numbers of patients with readmissions are presented. It can be seen

that scenarios 2a and 2b have a higher percentage of readmissions. This is due to the

definition of scenarios as already explained in Section 6.2.4 about the simulation for

population AT .

Scenario 1a 1b 2a 2b 3a 3b

Readmissions (%) 44 43 54 52 45 45

Table 6.10: Percentage of patients with readmissions for population LA
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Figure 6.24: Boxplots of the first readmission times for scenarios with psychiatrist con-

tacts for population LA

The times of the first readmissions are compared in Figure 6.24 for scenarios with con-

tacts to the psychiatrist and in Figure 6.25 the scenarios without contacts to the psy-

chiatrist. From the former scenarios 2a has the lowest median with 89 days followed by

3a with 95 days and 1a with 97 days, from the latter scenarios 2b has the lowest median

with 85 days followed by 1b with 95 days and 3b with 96 days.

In Table 6.11, the numbers of patients with psychiatrist contacts are presented. It can

be seen that scenarios 2a and 3a have a higher percentage of readmissions with 28%
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Figure 6.25: Boxplots of the first readmission times for scenarios without psychiatrist

contacts for population LA

respectively 29% than scenario 1a with 22%. This is due to the definition of scenarios

as already explained in Section 6.2.4 about the simulation for population AT .

Scenario 1a 2a 3a

Psychiatric contacts (%) 22 28 29

Table 6.11: Percentage of patients with psychiatrist contacts for population LA

The times of the first contacts to the psychiatrist are compared in Figure 6.26. For all

three scenarios, more than 75% of the first contacts happen during the first 100 days

after the initial release. The medians are all around 40 days with the median of scenario

2a being a litte higher with 44 days.

In Table 6.12, the numbers of dead patients are presented. It can be seen that scenarios

3a and 3b have the highest percentage but all scenarios are within the range of 0.3

percent points.

Scenario 1a 1b 2a 2b 3a 3b

Deaths (%) 3.7 4.0 4.0 3.7 4.0 3.8

Table 6.12: Percentage of dead patients

The death times are compared in Figure 6.27. The medians range from 265 days in
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Figure 6.26: Boxplot of the times of the first contact to a psychiatrist for scenarios with

psychiatrist contacts for population LA

scenario 2b to 323 days in scenario 1b. In general, more than the half of the deaths occur

within the first year after the initial release.
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Figure 6.27: Boxplots of the death times for all scenarios for population LA
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In Table 6.13, an overview of the medians of the times of the first readmissions, the first

ambulant contacts to a psychiatrist and death is given.

Scenario 1a 1b 2a 2b 3a 3b

First readmission 97 89 95 95 85 96

First ambulant contact 39 44 36

Death 269 323 286 265 296 288

Table 6.13: Medians of times of first readmission, the first psychiatrist contact and death

for population LA

The patients with ambulant contacts to a psychiatrist (OPC) are compared to those

without ambulant contacts (non-OPC). In Figure 6.28 the percentage of patients with

readmissions is shown for both groups. The percentage for the patients with ambulant

contacts is much higher, for scenarios 2a and 3a even twice as much as for patients

without ambulant contacts.

0

20

40

60

80

Non−OPC OPC
Category

P
at

ie
nt

s 
w

ith
 A

dm
is

si
on

s 
%

Scenario
1a
2a
3a

Figure 6.28: Comparison of the percentages of patients with readmissions between pa-

tients with and without ambulant treatment for population LA

6.4.5 Pathways of patients

In this section, the pathways of patients for population LA are presented. A detailed

definition and explanation of the pathways are given in Section 6.2.5. In Table 6.14, an
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overview of the classification without ambulant contacts is given.

Class Number of readmissions Month of first readmission

1 0 −
2 1 1

3 1 2-6

4 1 7-12

5 1 13-24

6 2-4 1

7 2-4 2-6

8 2-4 7-24

9 > 4 any

Table 6.14: Classification of patient pathways

In Figure 6.29, the sizes of the classes for scenarios 1a, 2a and 3a are presented. Classes

1 and 10 are not shown in the plot, because the number of patients without readmission

has already been analyzed and the focus is on the patients with readmissions.
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Figure 6.29: Sizes of classes for the scenarios with ambulant contacts for population LA

In scenarios 1a and 2a are more than three times as many patients in the classes 2 and 3

than in scenarios 3a. That means more individuals have exactly one readmission shortly

after the release. This can be explained by the fact that in scenario 3a more patients

have ambulant contacts, so more patients are in classes 10 to 18, and in scenario 2a more

patients have readmissions, so the overall number of patients in the presented classes is

higher. Scenario 3a has the most patients with one late readmission after the first year.
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In scenario 3a the number of patients with more than four readmissions is higher than

in the other scenarios. In all scenarios, the number of patients with psychiatrist contacts

have a higher average number of readmissions and the first readmission later.
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Figure 6.30: Sizes of classes for the scenarios without ambulant contacts for population

LA

In Figure 6.30, the sizes of the classes for scenarios 1b, 2b and 3b are presented. Again,

class 1 is not shown in the plot, because the number of patients without readmission has

already been analyzed and the focus is on the patients with readmissions.

The trends are similar to the scenarios with ambulant contacts. In scenarios 1b and

2b are more than twice as many patients in class 2 than in scenarios 3b and class 3 is

also bigger. This can be explained by the fact that in scenario 3b patients have more

readmissions in average and in scenario 2b more patients have readmissions in general.

Also, the number of individuals with more than four readmissions is much higher in

scenario 3b.

6.4.6 Intervention

The intervention strategy introduced in Section 6.2.6 is also executed for population

LA. In Table 6.15, the percentages of patients with readmissions, ambulant psychiatrist

contacts and deaths are compared for scenario 3a. The percentage of patients with

readmissions is much higher with the intervention strategy. This leads to the conclusion

that an ambulant contact increases the probability for a readmission. This could already

be seen in the analysis of the pathways. In the intervention scenario almost every patient

visits a psychiatrist during the simulation. Only those patients who die within the first

month have no contact. The number of deaths is slightly lower with the intervention
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strategy.

So, this strategy does not succeed in reducing the number of readmissions.

Type of Event No intervention Intervention

Readmissions 44.8 68.4

OPC 28.6 99.7

Deaths 3.9 3.2

Table 6.15: Comparison of percentages of the occurrence of events for scenario 3a with

and without intervention for population LA
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6.5 Comparison of simulations for Austria and Lower

Austria

The results of the simulations for populations AT and LA are compared in terms of

numbers and times of events and the distribution over the classes defined by the pathways

for scenario 3a.

The evolutions of the patients distribution over the states for the two populations are

presented in Figure 6.31. The share of the patients in state R has a similar evolution for

both simulations and decreases almost exponentially. About 50 percent of the patients

from Austria are remaining in state R at the end of the simulation, about 47 percent of

the other population. So, patients in population LA have more readmissions, since the

numbers for the states Pi and D are very similar for both populations.
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Figure 6.31: Evolution of the patients distribution over the states in scenario 3a for

populations LA and AT

The proportions of the two populations with readmissions, ambulant psychiatrist con-

tacts (OPC) and deaths are displayed in Table 6.16. Population LA has more events

of every type. This can be linked to different compositions of the populations with a

higher percentage of psychotic patients in population LA.

The influence of ambulant contacts on the number of readmissions is investigated. It

is already known from previous sections that patients with OPC have more likely read-

missions and that the patients in population LA have slightly more readmissions. In

Figure 6.32, the percentage of patients with readmissions with and without ambulant

contacts(OPC) is shown and it can been seen that for both groups (OPC and non-OPC)

the latter effect is present.

The diagnosis always has a significant influence on the results. In Figure 6.33, the

percentage of patients with readmissions for both populations split into the diagnosis
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Type of Event Austria Lower Austria

Readmissions 42.2 44.8

OPC 27.7 28.6

Deaths 3.9 4.0

Table 6.16: Comparison of the proportions of the populations with readmissions, ambu-

lant contacts and deaths for populations LA and AT
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Figure 6.32: Comparison of the percentages of patients with readmissions between pa-

tients with and without ambulant treatment for populations LA and AT

groups is shown. The psychotic diagnosis groups D1 and D2 have relatively the most

patients with readmissions. The highest difference is in group D5, but this results are

not very reliable since the number of patients with this diagnosis is very small in both

populations.

The pathways of patients are also analyzed for the two populations. The numbers of

the patients that follow each path are presented in Figure 6.34. Classes 1 and 10 are

not shown in the plot, because the number of patients without readmission has already

been analyzed and the focus is on patients with readmissions. For population LA, more

patients without ambulant contacts have more than four readmissions (class 18). For

all of the other classes the difference between the two populations is almost negligible.

The comparison of simulations results for populations LA and AT shows that the pa-

tients of the former have more events, especially more readmissions. This results from

the bigger proportion of psychotic patients in the population of Lower Austria. The
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Figure 6.33: Comparison of the percentages of patients with readmissions for the six

diagnosis groups for populations LA and AT
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Figure 6.34: Comparison of the sizes of the classes for populations LA and AT

main observations for the population of Austria can be transferred to the population of

Lower Austria, so no other substantial differences can be found in the results.



7 Conclusions

From the various methods of survival analysis the Cox model is chosen as the primary

instrument for the data analysis regarding significant variables for the readmission times

and also for the parametrization of the simulation model since it provides the features

that are required for the given tasks. The main benefits of the Cox model are the inclu-

sion of patient parameters and the flexibility for extensions for multiple events. For the

parametrization, a multi-state extension is used. A drawback is the proportional hazards

assumption. This assumption can be violated quite easily. However, the analysis of the

data with the methods of survival analysis shows that the Cox model can be applied to

the given data.

From the model selection methods Akaike’s Information Criterion and the Lasso-method

proved to be useful to assess the different models and parameters. The AIC is very easy

interpretable. The issue with the Lasso-method is the difficult determination of the

constraint for the regression coefficients.

The results of these analyses of the data combined with considerations about the com-

plexity and running time of the model lead to the choice of the full linear Cox model to

estimate the hazard rates for the events in the microsimulation model.

The microsimulation model is an appropriate tool to model the pathways of the pa-

tients. Both the longitudinal analyses of the single patients as well as the cross-sectional

analyses can be carried out with little effort. The model is implemented in R which

proved to be useful, because of the existing packages for survival analysis, especially the

Cox model and even its extensions. Also, the visualization of the results can be done

efficiently with the ggplot-package. For large populations the running time of the model

can become an issue.

In general, the results show an exponential decrease of the number of patients with no

event. Nevertheless, about half of the patients have no readmissions during the simu-

lation. The number of patients with one ambulant contact and no readmission has its

peak after a half of a year and declines afterwards. So, many of these patients have a

readmission soon after the visit to the psychiatrist. The percentage of patients with a

particular number of readmissions is indirectly proportional to the number of readmis-

sions.

The comparison of the results of the different scenarios shows that in scenarios 2a and

2b the patients have more readmissions than in the other scenarios. This is due to an
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overestimation of the number of readmissions because the order of the readmissions is

not considered in these scenarios. Scenarios 2a and 2b as well as scenarios 3a and 3b

have a higher proportion of psychiatrist visits among the population which is mainly

caused by the definition of the scenarios again. So, the results of the scenarios with a

lower level of data detail show significantly varying results from scenario 3a which uses

the most detailed level of data. However, scenario 3a requires data of entire patient

histories which is rarely available due to data protection issues.

For a more detailed analysis, the population is split into classes defined by typical path-

ways of patients. The pathways are defined by the time and number of readmissions. In

comparison to the other scenarios, the readmissions of patients with only one readmis-

sion are later and the average number of readmissions per patients is higher in scenarios

3a and 3b.

The diagnosis is the parameter with the biggest influence on the number and times of

the readmissions and therefore also on the simulation results. The sensitivity analysis

shows that changing the diagnosis of the population has a dramatic influence on the

number of readmissions. The psychotic patients have considerably more readmissions

than non-psychotic patients.

The proportion of patients with readmissions is much higher for patients with previ-

ous ambulant psychiatrist visits. Thus, ambulant contacts increase the probability for

readmissions and are in most cases an indicator for a worsening of the condition of the

patient. This also leads to the fail of the reduction of readmissions by the intervention

strategy of compulsory visits to a psychiatrist after a certain time after the last admis-

sion.

The comparison of the populations of whole Austria and Lower Austria shows that more

patients of the latter have readmissions and also ambulant contacts. This can be the

result of the differing compositions of the populations regarding the parameter distribu-

tions.

A possible continuation of this is to perform the simulation with another model than

the linear Cox model for the parametrization of the model, for example a model with

interaction terms. Also, additional patient parameters can be included into the model.
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