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Abstract

Although many different model transformation languages (MTLs) and model transformation
frameworks (MTFs) exist, each of them is requiring a developer to learn an additional language.
Moreover since many of them follow a declarative approach, they are often less intuitive for pro-
grammers familiar with imperative language. Therefore a Java based imperative library called
jTL has been developed which enables the user to write the whole transformation process in
pure Java. The resulting jTL is applicable to a wide range of transformation tasks that include
classical graph based source models or especially source code translation, because transforma-
tion of legacy code is still a not yet solved challenge in software migration. Since source code
transformation is a quite complex and performance intensive task, the jTL represents an easy
to use approach, which focuses on goals like maintainability, readability, reusability and perfor-
mance improvements. To achieve these goals two similar existing approaches were examined
to uncover weaknesses and deduce possible improvements for the resulting jTL. Moreover jTL
further benefits from new Java 8 features like bulk operation, lambda expression, functional in-
terface and parallel stream processing. Although jTL has been kept as simple as possible, it is
still a complete transformation approach, since it also supports further important features like
tracing or reuse mechanisms like rule inheritance which should be part of every state of the art
transformation language.
As an evaluation, two concrete transformation examples are given that make use of jTL. This
should give an idea how a transformation with jTL can be established and what differences and
improvements come up with jTL in contrast to other Java based transformation solutions.
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Kurzfassung

Seit in den letzten Jahren die modellbasierte Softwareentwicklung erheblich an Bedeutung ge-
wonnen hat, entstanden gleichermaßen auch eine Reihe von Modell-zu-Modell Transformati-
onssprachen (MTL). Heutzutage gibt es eine Vielzahl an populären Vertreter dieser Sprachen,
wie zum Beispiel ATL, Kermeta oder Sprachen, die auf QVT basieren. Auch wenn diese speziell
für den Zweck der Modelltransformation geschaffen wurden und damit eine benutzerfreundliche
und einfache Art der Transformation ermöglichen sollen, verlangen sie dennoch vom Entwick-
ler sich eine komplett neue Sprache anzueignen. Außerdem sind viele dieser MTLs deklara-
tive Sprachen und verfolgen damit oft einen, für viele Entwickler, welche oft vorrangig oder
ausschließlich mit imperativen Sprachen arbeiten, komplett neuen Ansatz. Die, in dieser Ar-
beit entwickelte Bibliothek namens jTL soll Entwicklern die Möglichkeit bieten, eine komplette
Modelltransformation in der von ihnen gewohnten Umgebung, nämlich Java zu schreiben. Des
Weiteren wurde jTL aber auch mit Hinblick auf komplexe Source Code Übersetzungen entwi-
ckelt. Gerade bei diesem Anwendungsfall bietet der imperative Ansatz einen erheblichen Vorteil
im Gegensatz zum deklarativen Ansatz. Außerdem bietet sich mit automatisierter Source Code
Migration durch direkte Übersetzung eine Möglichkeit an, die es erlaubt Legacy Code in Quell-
text moderner Programmiersprachen zu übersetzen. Da in der Industrie noch immer eine große
Menge an beispielsweise Cobol oder PL/1 Applikationen verwendet wird und der finanzielle
und personelle Aufwand diese zu warten, die Unternehmen vor immer größere Herausforderun-
gen stellen, kann automatisierte Source Code Transformation eine mögliche Strategie bieten, um
diese Softwaresysteme in das 21 Jahrhundert überzuführen. jTL erfüllt dabei die Anforderungen
um als Fundament einer solchen Übersetzung zu dienen, auch wenn natürlich noch viele weitere
Herausforderungen bei dieser Art der Softwaremigration warten.
Um von den Problemen und Schwachstellen vorhandener Java basierten Transformationen zu
lernen, wurde in dieser Arbeit eine bereits existierende Bibliothek namens SiTra, sowie ein
ebenfalls Java basierter Transformer, der eine konkrete Implementierung einer automatischen
Source Code Transformation von Cobol & PL/1 auf Java darstellt, untersucht und analysiert.
Des Weiteren wurde ein besonderes Augenmerk auf neue Java 8 Features gelegt, die jTL nicht
nur zu einer state-of-the-art Library machen soll, sondern von welchen diese auch im Bezug
auf Wartbarkeit, Lesbarkeit und Performance profitieren soll. Auch wenn eines der Hauptziele
die komfortable und benutzerfreundliche Nutzung von jTL war, wurden auch wichtige Featu-
res wie Tracing und Wiederverwendungsmechanismen wie Rule-Inheritance (Regelvererbung)
implementiert. Damit bietet jTL einen kompletten Ansatz um die unterschiedlichsten Transfor-
mationen durchführen zu können.
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Am Ende dieser Arbeit wird anhand einer Modeltransformation und einer Source Code Trans-
formation die Anwendung von jTL demonstriert und gleichzeitig aufgezeigt welche Vorteile jTL
gegenüber den zwei weiteren Java basierten Ansätzen bietet.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

Transformation is an important field of software migration and modernization. Although trans-

formation is the purest form of migration, because the conversion takes place in a 1:1 form,

there are also some strong arguments why a transformation could face a lot of difficulties and

challenges. The superior problem is that a transformation, regardless of whether code, model

or data has to be transformed, is only as good as the tool and the underlying transformation

library is. So there are many challenges to overcome, like the deep understanding of the source

and target technology, the mostly very complex task of the mapping between them, as well as

the financial effort. This master thesis focuses on a Java based transformation technique. It ad-

dresses the architecture and techniques source model transformation in general as well as source

code transformation. Based on a simple transformation library called SiTra and an already ex-

isting PL/1/Cobol to Java Transformer, improvement especially by adding new Java 8 features

and adaption to the architecture, should lead to a better performance of the transformation and

a better readability and maintainability of transformation code. The findings should result in

a library called Java Transformation Library (jTL). To test and demonstrate parts of the jTL, a

transformation of PL/I source code to Java source code should serve as examples. There is also

a special interest in transforming legacy code to state-of-the-art programming language, since

the challenge of migrating over decades growing legacy software application is a well-known

problem since many years in industry. A well-designed transformation can be the answer to this

problem or at least can act as a main element of source code migration.
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1.2 Aim of this Work

The aim of this work is to provide a guideline respectively a framework/library for complex

transformation issue. The focus in this master thesis lies on the transformation of source code,

although the findings and results should also be applicable for transformation of models, data

or other issues. Although a number of different model transformation frameworks exist, each of

them requires from developers to learn a different language and each of them possessing its own

specific language peculiarities, even if they are based on the QVT standard. On the other hand

these transformation frameworks were designed for model transformation and not for source

code transformation, which would result in a worse maintainability and readability. Based on

SiTra (Simple Transformer) and findings from an existing PL/1/Cobol to Java Transformer a Java

Transformation Library (jTL) is developed. Adding current Java 8 features like bulk operation,

lambda expression, functional interface and parallel stream processing to the transformation

library, should contribute to better performance, readability and maintainability as well as a high

flexibility of the transformation process. This master thesis should answer the following research

questions:

• What are the weaknesses of existing transformation approaches?

• What improvements in contrast to existing approaches can be implemented?

• Which important requirements and goals for a transformation library can be identified?

• Which Java 8 features can be used to improve the transformation library and how can they

be assembled?

• What initial steps are necessary to use the resulting jTL also as basis for source code

transformation?

• Can the resulting jTL act as basis for source code transformation?

• How can the improvements being measured and what are the results, compared to existing

solutions?

1.3 Methodological Approach

1. Literature Review A literature review should serve as the theoretical basis and an intro-

duction to the domain of model transformation, software migration - especially in the area of

2



language transformations and existing Java-based transformation approaches. Further the liter-

ature review should provide a deeper insight into process models for transformations and new

Java 8 features, from which a transformation process and jTL can profit.

2. Designing a running Example Two example transformation are introduced in the begin-

ning of this master thesis, which are used throughout this work. It should act as a basis to

demonstrate the application of the two analysed transformation issues of SiTra and PC2Java-

Converter as well as the resulting jTL.

3. Analysis and Comparison of two existing Transformation Approaches The second

chapter of this master thesis covers the analysis of two transformation approaches. The first one

covers SiTra (Simple Transformation in Java) - a general library aiming to use Java for imple-

menting model transformation. The second approach is a specific transformer, which was built

to automatically generate Java Code out of Cobol or PL/I Code, simply called PLI/Cobol Trans-

former. A comparison of these two approaches should result in emphasizing possible strengths

and weaknesses of both.

4. Process Model for generating a Source Model The resulting jTL should also be useable as

a basis for source code transformation. Therefore a general process for source code transforma-

tion has to be designed and described to give a guideline which steps are necessary to generate

a source model out of the underlying source code. The resulting source model then can be used

as an input to the jTL. Since these preparation steps are necessary to transform also source code

with the help of jTL, this part act as an excursus and should demonstrate shortly the process of

generating a source model.

5. Analysis of how new Java 8 Features could support the Transformation Analysing

if and how new Java 8 features, like bulk operation, lambda expression or stream processing

can create added value to the transformation. Features that turn out to improve readability or

performance of the jTL should further be added to it.

6. Evaluation A qualitative analysis respectively a comparison between the resulting jTL and

the existing approaches of SiTra as well as the PL/1/Cobol to Java Transformer should emphasize

the changes and improvements of jTL. Furthermore for measuring the execution time should

demonstrate the potential improvement to the performance of jTL

3



1.4 Related Work

This Section is divided into two subsections. The first one addresses a rough overview of model

to model transformation approaches, while the second focuses on the aspect of automated trans-

lation of legacy code, especially Cobol source code to object oriented code, especially Java.

1.4.1 Model to Model Transformation

Since model transformation is a wide spread and often used approach nowadays, there are many

already existing transformation solutions. To get an overview about possible characteristics of

model transformation solutions the articles [7] and [24] provide a detailed description of possible

classification features. This may help a developer to choose the best suitable transformation

approach, by verifying which of these characteristics are important for the transformation task,

before one starts the actual work. The following enumeration should give examples for important

characteristics of model transformation solutions. For a complete and more detailed description

see the article [24].

1. Declarative or operational

2. Unidirectional or bidirectional

3. Scalability

4. Static or dynamic transformation approach (CRUD)

5. Traceability

6. Ability to set up reuse mechanism

Based on these characteristics the resulting output of this work jTL, can be classified as an opera-

tional, unidirectional, scalable, dynamic approach which supports tracing and reuse mechanisms

by rule inheritance.

Many publications are available which focus on the description and comparison of model trans-

formation languages like [43] [13] [15]. This work should only give a quick overview about the

most common ones, that are:

• ATL [17]: developed by ATLAS INRIA & LINA. ATL supports a declarative model trans-

formation approach, but also provides imperative additions, since some transformation

problems are not intuitively solvable with a pure declarative approach. Such a mixed
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approach is known as hybrid language. Further ATL comes up with a very good IDE

integration in Eclipse.

• Kermeta [25]: developed by Triskell/IRISA. It follows an imperative, aspect-oriented and

object-oriented approach for the model transformation description. Like ATL, Kermeta

has a good IDE integration in Eclipse.

• QVT [30]: is not a concrete implementation of a model transformation approach, but

a standard defined by the Object Management Group (OMG). It defines three model

transformation languages consisting of QVT-Operational, which follows an imperative

approach and QVT-Relations as well as QVT-Core, which both represent a declarative

approach for model to model transformation. An example for an implementation of QVT-

Operational is SmartQVT 1, while medini QVT 2 is an implementation example for QVT-

Relations. In contrast to QVT-Operational and QVT-Relations, no implementation of

QVT-core was developed.

Further examples for model transformations are RubyTL [6] which follows a hybrid transforma-

tion approach or TGG (Triple Graph Grammar) [18]. It is called Triple Graph Grammar, since

the transformation task consists of three graphs, that are the source- and the target graph and the

transformation rules that are also represented by a graph called correspondence graph. The TGG

is a context-sensitive approach and can be classified as a declarative transformation approach.

Altogether have in common that they require from the developer to learn a new language for the

transformation task. Further declarative approaches seem to be not the best solution for complex

transformation tasks like source code translation. Although source code can be represented by a

model like an AST (Abstract Syntax Tree) a fully imperative approach for transformation is the

more suitable and comfortable approach. SiTra [38] [1] developed by the University of Birm-

ingham, is an approach that comes up with a light weighted and fully imperative Java-based

model transformation language. Since the whole transformation process can be implemented as

pure Java, SiTra can be easily used by any Java developer without the need of learning further

transformation languages. But there are also some problems that come up with Sitra. Based on

this library and a not yet finished Cobol/PLI to Java Transformer from the industry, a general

Java 8 transformer library should be developed which also addresses source code transformation

and profit from uncovering problems of existing solutions.
1QVT - Relations Language Modellierung mit der Query Views Transformation [30]
2Official Website: http://projects.ikv.de/qvt [23]

5



1.4.2 Migration/Transformation of Legacy Code

Legacy code, especially Cobol code is still widely used in industry. Although, in most cases, the

performance of Cobol applications is still better than their equivalents in Java, there are a lot of

problems when dealing with legacy Cobol applications. The following enumeration should give

an overview about the main problems with Cobol applications and other corresponding legacy

programming languages [27] [22]:

• Staffing problem: Nowadays, it’s hard for companies to find developers who have high

Cobol skills, since the education in software development concentrates on more recent

programming languages like Java or the .NET-Framework.

• Cost problem: Higher cost for mainframe infrastructure has to be accepted.

• Maintenance problem: Regardless of the staffing problem, the maintenance of mono-

lithic Cobol applications is always a major challenge. Since average Cobol modules con-

sist of about 600 lines of code [10] and further comes up with the bad smell of goto

implementations, the maintenance of a Cobol application is in general much harder than it

would be for a common Java application, where the average module size is about 30 lines

of code. Furthermore the high popularity of Java leads to wider acceptance of unit testing

and refactoring techniques that further improves the maintainability.

• Not state-of-the-art: Java or .net languages, for example, simple and yet powerful pro-

gramming languages come up with state of the art technologies like abstraction, modu-

larization, encapsulation and an extensive built-in class library. On the other hand Java

refrained from implementing problematic programming concepts like goto-statements.

Although Java defines goto as an keyword it never have been implemented. Despite the

fact that Cobol moved forward too and provides object oriented aspects like classes and

polymorphism, these concepts are very rarely used because most Cobol applications ex-

ists over decades and where developed at a time where these concepts where not part of

the programming language.

So there are many strong reasons for moving from Cobol to state of the art programming lan-

guages. But in most cases the migration task is also a very complex and difficult challenge.

Problems like poor documentation of existing Cobol applications, less knowledge about the

technical implementation as well as the application context and a high financial expense as well

as a high time effort for the migration process, will arise in big migration projects.

6



Nevertheless, if the decision is taken to move from a legacy programming language to a state of

the art language there are three different approaches of migration that can be faced [22]:

1. Reimplementation of source code: This software migration approach is carried out by

developers and can be seen as manual code transformation technique. Since this software

migration strategy requires a very deep understanding of the source code and the appli-

cation context, the time effort as well as the financial effort is enormous for the process

of code comprehension and the translation of the source code. In large project this is a

nearly insurmountable barrier to overcome. Furthermore a huge amount of tests have to

be executed to ensure the same functionality of the reimplemented software in contrast

to the previous version. Nevertheless the big advantage of this approach is that a well

executed reimplementation project leads to a state of the art software application which

ensures readability, maintainability and extensibility.

2. Source code wrapping: This approach describes the encapsulation of legacy code, with-

out changing the data and source code of the legacy application. The new system ac-

cesses the legacy application over interfaces. The big advantages of the migration strategy

’Wrapping’ is that it comes up with a minimal risk and less time effort. Apart from that,

the initial problematic of bad written legacy code that is difficult and complex to maintain,

comes up with no or less documentation and long for developers who are familiar with the

legacy technology, is still present. So this migration strategy is only a short term solution.

3. Conversion: The software migration strategy conversion is an automated source code

transformation to the target environment. The quality of the output of the transformation

depends heavily on the quality of the transformation tool. Since programming language

translation is a very complex task the development of such a transformation tool is also a

time and cost intensive task. So it also depends on the amount of source code which has

to be transformed whether this migration strategy is appropriate or not. Furthermore some

refactoring work after the actual transformation process will be necessary in most cases to

further improve the quality of the target source code.

Transformation as a possible migration strategy of source code especially from legacy code like

COBOL or PL/I to state of the art programming language like Java is still an unsolved problem

in science and industry. Sneed [22] illustrates some projects where a transformation of COBOL

to object oriented language e.g. Java code were carried out. Most of these migration projects

failed or followed a different path. In the early nineties the IBM labour in Toronto made the first

attempt of transforming COBOL source code to object oriented code [45], but changed their
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strategy soon to encapsulation of COBOL code. Another project which goal was to develop a

Cobol-to-Java transformation, named Relativity from the company Triangle Technologies failed,

because the refactoring effort after the transformation was too high [44]. But there are also some

first achievements like a more or less successful transformation process from Cobol to Java

shows, which was developed by the university of Vienna and was carried out by an Austrian

social insurance group [41]. The resulting Java code is executable and semantically correct,

although the appearance of the resulting Java Code corresponds more to Cobol than to object

oriented code. Since there are about 200 billion lines of Cobol code [36] working worldwide,

the question of how migrating them is still an important not yet answered question. A well-

designed, good maintainable and easy to use Java Transformation Library could act as a basis

for complex software migration project, although there are much more challenges to overcome.

1.5 Structure of the Work

This master thesis is divided into the following six chapters that are:

1. Introduction

2. State of the art

3. Java 8 features

4. jTL

5. Evaluation

6. Conclusion and Future Work

After this introduction part, the second chapter ’State of the art’ emphasizes two different Java

based transformation approaches. One concerns a transformation library called SiTra that is

applicable for almost every possible transformation task, while the second is a concrete imple-

mentation of a PLI/Cobol to Java transformation. The analysis of them should act as basis for

the design and implementation of jTL. The third chapter should conclude the current state anal-

ysis by explaining new Java 8 concepts and features that are profitable to use in a transformation

library and therefore should further be part of the jTL.

The fourth chapter ’jTL’ presents the goals, the architecture and the implementation of jTL in

a detailed way. Moreover this Section make references to SiTra and the PC2J-Transformer to

give reasons why different implementation approaches and further extensions has been applied
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to jTL. The last chapter ’Evaluation’ firstly points out which characteristics and implementation

approaches of jTL has been established to reach the goals that have been defined in the chapter

’jTL’. Further a simple graph based transformation example is used to measure the performance

improvements in execution time of jTL in contrast to SiTra. Finally, at the end of this chapter,

a simple PL/1 to Java transformation example demonstrates how jTL can be used to set up a

source code translation project.

1.6 Running Examples

For this master thesis two running examples has been chosen. One acts as example for graph

based transformation and is used to demonstrate the development of a transformation applica-

tion with SiTra and jTL. Further it used for the performance comparison between theses two

transformation libraries. This example is a well known model transformation example taken out

of the literature and transforms a class diagram into an entity relationship diagram. The meta

models which act as reference for this example transformation is demonstrated in Figure 1.1. For

the sake of clarity these example meta models are always used for this kind of transformation

example but it will be slightly adjusted to simplify some demonstrations. Moreover the same

applies to the concrete class model, that will also differ slightly from one application example to

another.

Figure 1.1 Simple metamodels as basis for the transformation of a class diagram to an ER Diagram

The second example should demonstrate a source code translation that can be classified as tree

based transformation. Therefore a simple PL/1 code snippet, consisting of variable declara-

tions, assign-statements, if-statements and expressions was designed that further is represented

as source object tree (AST) that represents the source code. Therefore Figure 1.2 represents a
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small excerpt of an PL/1 meta-model, that is used to construct a compliant AST of the PL/1

code snippet. The concrete PL/1 example code that is used to demonstrate the functioning of the

PC2-Transformer and jTL is presented once it is required in this work.

Figure 1.2 Sample Meta Model of the programming language PL/1

10



CHAPTER 2
State of the Art - Two Approaches

2.1 SiTra

2.1.1 Introduction

SiTra (Simple Transformer) is a small and simple Java library, which defines a framework for

model driven transformation, which was designed by Behzad Bordba from the University of

Bristol. The goal of this library was to use Java to simplify the challenge of transformation by

defining the general architecture and structure as well as the process of transformation.

The task of model transformation is always a complex one, because it forces the understanding

of the source domain, respectively the source model and the target domain/model. Even when

both domains are well known, the transformation process often requires knowledge in special

transformation specification languages. Graph transformation approaches (e.g. TGG) as well as

declarative rule based approaches (e.g. ATL) and even imperative approaches (e.g. QVT-O) have

in common that novice users, although if they have a lot of experience in software development,

have to learn new concepts, new languages or new tools and applications. So a lot of time has

to be spent for knowledge acquisition of new environments and applications, configuration and

language syntax. To overcome these issues the idea of SiTra was to simply use pure Java for the

transformation by using a minimal framework to avoid the overhead of learning a completely

new transformation. Although SiTra is not intended to replace a full transformation framework

it’s enough for the most transformation issues, especially for the transformation of source code

from one language to another.

Because the SiTra framework gives very good guiding principles to cover a whole transformation

11



process and also represents a good basis for language transformation, it should act as a starting

point for the Java Transformation Library (jTL) and therefore should be explained in more detail.

2.1.2 Framework - Overview

Figure 2.1 An outline of the SiTra framework [5]

A first rough overview over the architecture of SiTra is shown in Figure 2.1. As demonstrated

SiTra takes a source model, which is instance of the source meta-model as input and produces

a destination model corresponding to the definition of the destination meta-model. The meta-

models are depicted with Java classes. So the first step when implementing a model transforma-

tion is to define the structure of the source as well as the structure of the target objects which

then represent the source meta-model as well as the target-meta-model [5].

The two main components of the transformation, that are the interfaces Rule and Trans-

former respectively their implementation classes, are also demonstrated in Figure 2.1.

Rules: Rules are specific Java classes which implement the SiTra-interface Rule. They de-

scribe the guidelines how specific source objects are mapped to target objects. Rules should be

split up in a manner, so that they are atomar. This fact leads to a better readability and maintain-

ability and especially to a high reusability, whereas the rule can be reused in different context

easily without repeating code in different rules. Further information to the interface Rule is

given in the Section 2.1.3.
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Transformer: The main purpose of the interface Transformer respectively its implemen-

tation is to execute the defined transformation on a particular source model by choosing the

applicable rules (see Figure 2.1). A more detailed description is provided in the Section 2.1.3.

2.1.3 Basic Structure

Figure 2.2 Architecture of SiTra

As shown in Figure 2.2, the SiTra library consist of two packages. The first one uk.ac.bham.sitra

is the core component of the SiTra library, since it consists of interfaces and classes which are

needed for the actual transformation, while the second package uk.ac.bham.sitra.tracing

only tracks the information of the mapping between the source model/source elements and the

target model/target elements.

1. SiTra core package: uk.ac.bham.sitra

• Rule: Interface which represents the structure of a Rule.

• Transformer: Interface which handles the transformation of a specified source

object by choosing the corresponding rule.

• SimpleTransformerImpl: An example for an implementation of the Trans-

former-interface.
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• RuleNotFoundException: Exception which should be raised when the Trans-

former doesn’t find a corresponding rule for the transformation of the specified

source object.

2. SiTra Tracing: uk.ac.bham.sitra.tracing [40]

• ITrace.java: An interface that exposes the methods that can be used for tracing.

• TraceInstance: Interface that represents the mapping between one source ele-

ment and its corresponding target elements, through a SiTra rule.

• TraceImpl: An already delivered implementation of the interface ITrace, which

provides several methods to query the collection of TraceInstance. More specif-

ically the resolve-methods take a source object as input, browse the collection

and return the targets elements, which have been generated during the transforma-

tion, out of the given source object. Vice versa, the invreslove-methods take a

target object and return the source object. Unfortunately the inverse resolve method

are not yet implemented.

• TraceInstanceImpl: Implementation class of the interface TraceInstances,

which hold the actual mapping between source an target elements.

Although tracing is not must for source code transformation it is an important feature for model

transformation in general. Since the resulting jTL should be applicable for source model trans-

formation too, that do not aim to transform only source code, tracing play also an important role

in jTL. So the Section 2.1.3 will give a deeper insight to tracing in general.

Core Package

Rule Interface and Rule Methods The interface Rule, which should be implemented by

every class which provide mapping information to transform the source elements, consists of

three methods:

1. check: Before the rule is executed this method checks whether the rule is applicable

to the source object or not. So the rule itself checks whether it is able to deal with the

type of the source element or not. Another possible special use of this method is to check

precondition, before the actual transformation starts.

2. build: This method should implement the actual transformation process to generate

the target object out of the information of the source object. Although the signature of
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this method provides the Transformer-object, it shouldn’t be used for calling further rules

recursively. This should be outsourced to the setProperties-method (see next point).

3. setProperties: After the target construct is committed, this method can be used to

set values to the generated object and triggers the transformation for referenced objects

or sub-objects. The distinction between the transformation of the source object in the

build-method and the call of further transformation in the setProperties-method

is important if the source model is graph-based and consists of cycles. Otherwise a non

terminating recursive transformation cycle can occur (see Section 2.1.4).

Transformer The interface Transformer of SiTra already comes up with an implementa-

tion class called SimpleTransformerImpl. It represents the core of SiTra and is responsi-

ble for the execution of the defined transformation on a particular source model [5], especially

for the selection of the applicable rules.

The core task of the Transformer are

1. Holding the rule repository: A collection in the implementation of the Transformer-

interface should store all known rule-classes. Rules can be set to this collection over the

constructor or can be added through the addRuleType-method (see next point). The

transformer can then pic the applicable rule by iterating over all known rule types.

2. Method addRuleType: If the rule repository has not been initialized over the construc-

tor of the SimpleTransformerImpl, or additional rules have to set to the repository,

this can be done by using this method.

3. Methods transform/transformAll: Takes the source element/s as input and dele-

gates them to the rule which are stored in the rule repository (see Section 2.1.3).

Further Transformer Methods All kinds of transform-methods of the interface Trans-

former take a source object (or a list of source objects in case of method transformAll) as input

and return the target object (respectively a list of target objects). There are two kinds of versions

of the transform method, which have to be implemented:

1. For this simple version of the transform-method only the source object has to be passed

to the method. The method assumes that all rules, or to be more specific all types of rules

(classes which implement the rule-interface), are potential candidates for the transforma-

tion of the passed source objects.
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public Object transform(Object object) throws RuleNotFoundException

Listing 2.1 Simple transform-Method without rule specification

The advantage here is that the developer doesn’t have to specify the rule for the trans-

formation process. On the other hand the disadvantage is that every registered rule type

is a potential candidate. This leads to a situation where the transformer has to call the

check-method for every single rule (see Section 2.1.3) by passing the type of the source

object, to find out whether the visited rule can handle and transform the source object or

not. If a complex and extensive large transformation is carried out, this could become a

very time and performance consuming job. Nevertheless in most cases this would be the

preferred method, since the user do not have to establish type checks on his own.

2. Another signature of the method transform is listed in Listing 2.2. This version re-

quires passing also the type of rule for the actual transformation, so that the transformer

class receive information which rule should be used to transform the given source object.

public <S, T> T transform(Class<? extends Rule<S, T>> ruleClass, S source) throws
RuleNotFoundException

Listing 2.2 transform-method with rule specification

The advantage of this method is, that the transformer does not have to check all known

rules wether they are candidates for transformation or not. Instead the method getRules()

(see Section 2.1.4) just selects and returns suitable rules to the Transformer, by comparing

the given rule type with the rule types from the rule repository.

The disadvantage is that the developer needs knowledge about all the possible rules and

has to choose the right rule during compile time. This is of course an uncomfortable and

in most cases unwanted overhead.

Tracing/Traceablility

Tracing or Traceability can be understood as the runtime footprint of transformation execution.

A common form to hold trace-information is a so called trace-link, which holds the associa-

tion between the source element and the generated target elements, as well as the accomplished

transformation rule [7]. Establishing such links, allow defining the reverse transformation au-

tomatically [40]. These approach solves the interoperability problem between source and the

target model [4]. So one reason is the change propagation in chains of transformation. Another

benefit of tracing is the possibility of better debugging opportunities.
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Although the jTL should focus on the transformation of programming language, it should also be

applicable to a wide range of different transformation task. That’s the reason why tracing should

also play an important role when designing the jTL. Nevertheless it should be mentioned that

the concrete transformation-task of programming language translation does not require tracing.

2.1.4 Process of Transformation

Overview

Figure 2.3 Transformation Process with SiTra

A rough overview of the overall transformation process in SiTra is given in Figure 2.3 showing

an UML sequence diagram. It assumes that a source object A with a referenced object (or

subobject) B should be transformed. The two lifelines of the transformer objects represent the

same instance of the SiTra class SimpleTransformerImpl and are only split up for the

reason of clarity.
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The following enumeration summarizes the individual steps of the progress in more detail.

1. registerAllRules: Register all known rules to hold the rule types in a central repository

of the Transformer-class (see Section 2.1.3).

2. transform: Starting point for the transformation of an individual source object (see Sec-

tion 2.1.3)

3. getRules: This method, which is not part of the Transformer-interface but of the sam-

ple implementation class SimpleTransformerImpl, is used by the transform-

method. It walks all registered rules and checks if the visited rule is a candidate for the

transformation. Therefore the method looks if the passed rule type is a super type of the

visited rule type. All rule classes, which fulfill this condition, are returned to the transform

method.

If the transform-method was called without specifying the rule type for the transforma-

tion of the source object, the transform-method passes a very general rule type Class<?

extends Rule<Object, Object» to the method getRules. That result in the

fact, that the method getRules, will return every single rule type which is stored in the

rule repository as potential candidate for the transformation of the given source object.

Listing 2.3 shows how the potential rule types are selected.

<S, T> List<Rule<S, T>> getRules(Class<? extends Rule<S, T>> ruleType) {
List<Rule<S, T>> rules = new Vector<Rule<S, T>>();
for (Class<? extends Rule<?, ?>> rt : getRuleTypes()) {

if (ruleType.isAssignableFrom(rt)) {
rules.add((Rule<S, T>) rt.newInstance()) }

}
return rules;

}

Listing 2.3 Method getRules of SiTra SimpleTransformerImpl

4. Check rules: After all potential rule types are collected, the transform-method walks

all the items to call the check-method of every single rule. A ClassCastException

is thrown when the passed source object is not supported by the rule. If a rule has been

found which fulfills the check-condition the actual transformation starts (see next item -

’Apply Rule’). So the first occurrence of a rule, which is applicable, is executed. If no

transformation rule has been found to transform the source object, it is reported by raising

the predefined SiTra Exception RuleNotFoundException.

5. Apply rule: Before the actual transformation starts by calling the applicable Rule-class,

the applyRule-method (see Listing 2.4) checks if the rule has already deployed on the

18



source object. This ensures that one transformation rule is not executed twice for one and

the same source object. That feature is a must if transforming a graph-based structure to

avoid non terminating recursive transformation (see Section 2.1.4). If the source object

has not been transformed yet the build-method of the rule is executed as well as the

setProperties-method. Afterwards the transformation is finished and the target ob-

ject is returned.

<S, T> T applyRule(Rule<S, T> r, S source) throws RuleNotFoundException {

Class<? extends Rule<S, T>> ruleType = (Class<? extends Rule<S,T>>)r.getClass

();

T target = getExistingTargetFor(ruleType, source);

if (target == null) {

target = r.build(source, this);

recordMaping(ruleType, source, target);

r.setProperties(target,source,this);

}

return target;

}

Listing 2.4 Method applyRule of SiTra SimpleTransformerImpl

6. Build: This method of the rule-class is responsible for the actual transformation and there-

fore takes the source object and returns the resulting target object.

7. Set properties: Executes further configuration on the resulting target object and also

looks for further source objects which are linked with this object. If such a linked object

or sub-object was found, the setProperties-method triggers a further transforma-

tion for this object (like it can be seen in Figure 2.3, where setProperties calls the

transform-method for object B). So the transformation process starts again from the

beginning but certainly without the rule registration step, which is only carried out once.

Transformation Challenges

Transformation Hierarchies Because a transformation process of an object, which doesn’t

have any sub-objects or referred objects is very rare, a concept is necessary that detects such

sub-objects and transform them too.

If a rule detects a sub-object, which has to be transformed, it executes its own transforma-

tion process. Therefore it calls the transform-method of the passed transformer object,

which chooses again the corresponding rule (see the sequence diagram of the transformation

process in Figure 2.3). The advantage of this approach is that the first rule does not need to
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know which rule has to be used to transform a sub-object. The rule only calls the trans-

former-interface-method transform with the sub-object as source object. The trans-

former-implementation then chooses the right rule. This progress results in a calling chain

where a transformer calls a rule, the rule calls the transformer and so on. The problem of this

approach, is that this chain could also develop to a non-terminating transformation cycle. How

this problem could occur and how to overcome this issue is described in the next Section (see

Section 2.1.4).

Avoiding non terminating recursive transformations When transforming source code from

one programming language to another, the source model is represented by a tree. Because

trees don’t have cycles the problem of non-terminating recursive transformation can’t occur.

Nevertheless this problem should be highlighted shortly because it’s a well known problem

when transforming a graph-based source model and therefore is addressed by SiTra and will be

addressed by jTL too.

Figure 2.4 Simple Cycle Problem of bidirectional source objects

Lets assume a bidirectional relationship between two classes where class A has a reference to

class B and class B back to class A (see Figure2.4). Here the transformer calls the rule to trans-

form class A. This rule notices that there is another source object, which has to be transformed

that is class B. So it calls the transformer, who calls the rule for transformation of class B. When

transforming class B the problem occurs because rule B notices that there is another object to

transform. So class B again calls the transformer, which prompts the transformation of A again.

There the infinitive loop starts (see Figure 2.5).

Figure 2.5 S Non-terminating recursive transformation
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To overcome this issue the SimpleTransformerImpl-class of SiTra holds the following

map:

Map<Class<? extends Rule<?, ?>>, Map<Object, Object>> mappings;

Listing 2.5 Source-Target-Mapping

As shown in Listing 2.4, which represents the apply-method of the class SimpleTrans-

formerImpl, every time a rule is executed, it has to be checked if the rule was already ex-

ecuted for the specified source object before by calling the method getExistingTarget-

For(sourceObject). This method searches in map mappings (see Listing 2.5) if the

specified source object was already transformed with the specified rule. If a match is found, the

already transformed target object is returned. In this case neither the build-method nor the

setProperties-method of the specified rule is executed. The map already returns the target

object, without transforming the source object again. So a non-terminating recursive transfor-

mation could be avoided with SiTra.

If there is no match in the collection mapping, the rule has to be executed for the source object

and afterwards the rule, the source-object as well as the target object are stored to the Map

mappings. This ensures that a source object is not transformed more than once by using the

the same rule type. Nevertheless one an the same source objects can be transformed more than

once by using different types of rules.

2.2 PC2Java Transformer

2.2.1 Introduction

After discussing SiTra, which introduced a concept and first good guidelines for general trans-

formation issues with Java, the framework should be compared with an implementation of an

already existing transformation approach. The so called PLI/Cobol to Java Transformer (here-

after in short referred to as PC2J-Transformer) is not a framework but a concrete and more

specific solution for transformation and focuses on the translation from one programming lan-

guage to another. Although these two approaches have many things in common, they differ in

a few issues, since SiTra is a generic approach and applicable for different kind of model trans-

formations, while the ’PLI/Cobol to Java Transformer’ represents a concrete implementation of

transformation. So SiTra can be used for transforming a wide range of different kind of model

like graph based models with cycles. In contrast the PC2J Transformer can only transform tree

based graphs since it was designed to transform source code which is represented by an Ab-
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stract Syntax Tree (AST). The Abstract Syntax tree is a tree representation of the source code

and is called abstract since it not represent every single detail of the source code. Constructs like

parentheses, semicolons or dots are not necessary to represent in the AST.

Before the actual transformation process of the PC2J-Transformer, as well as the comparison

between SiTra and the PC2J-Transformer is discussed in more detail, the approach to generate

the AST out of the underlying source code should be explained briefly. On the one hand the

following Section 2.2.2 should give an idea how the AST, which then servers as the source model

for the transformation can be generated and on the other hand the following Section should also

serves as a demarcation for this work.

2.2.2 Process Model

Since the PC2J-Transformer is a source code transformer we don’t get the source model as basis

for the transformation for free. There are a few additional steps to overcome until a source

model respectively the AST is built. The phase of gaining the source model can be divided

into six different tasks, that are meta-model creation, pre-processing, executing a lexer, parsing,

optimizing and tree-parsing to generate the final AST. Figure 2.6 shows an overview of the

process model which separates the whole process in two different phases. The first phase is the

preparation phase which generates the source model represented by an AST, that acts as input

for the second phase - the actual transformation phase.

Although the preparation phase is an essential part of the PC2J-Transformer only a short excur-

sus should give an idea of this phase since the core of the work is based on the transformation

phase. But to be complete the next Section should give a brief overview about the preparation

phase.

2.2.3 Excursus - Generating the Source Model (Preparation Phase)

To generate a source model (that is represented as an AST) as input for the transformer, the

underlying source code has to go through certain steps. In PC2J-Transformer the following six

steps are obligatory to achieve the source model:

1. Meta-model design

2. Preprocessor

3. Lexer

4. Parser
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Figure 2.6 Process Model

5. Optimizer

6. Tree parser / Object generator

Meta-model Design

In case of the PC2J-Transformer the source meta-model was designed for PL/I respectively

Cobol. The PL/I meta-model alone consists of more than 100 classes. More or less they all

were implemented as POJOs (plain old Java objects) and act as the framework for the AST

Generation of the underlying PL/I source code. The target model is simply the meta-model for

the programming language Java. Since the target model of the PC2J-Transformer is more or less

Java code there is no need to define a target meta-model based on classes. The use of the library

jenesis4Java ensures automatically that the generated source code is valid to the Java meta-

model. The first step when working with jenesis4Java is do generate a DOM that represents the

Java code. Only when the tree construction phase has finished the DOM is encoded to a Java

source code file.
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Preprocessor

The preprocessor-task prepares the PL/I or Cobol source code file for the following parsing

phase. This simplifies the parsing of the source file. The following list gives an overview which

subtask are performed by the preprocessor.

• Remove line numbers: In traditional Cobol and PL/I source code files the first six columns

are reserved for the line numbers. This information is not necessary for the transformation

to Java code. So the first six characters of each line are removed by the preprocessor.

• Concatenate lines: If literals, expressions or statements are split up into more than one

line, this is indicated by a character in the column number seven. So the preprocessor

concatenates these lines to one single line because in contrast to the original Cobol or

PL/I Compiler the parser of the PC2J-Transformer can naturally deal with lines which are

longer than 80 characters.

• Resolve include files: The approach of the PC2J-Transformer is to copy the source code

of an include file (in terms of Cobol include files are called copy books) directly into the

source file. Although this seems not always to be the most elegant solution, in many cases

it is the only possible solution. Since Cobol and PL/I use the include-mechanism also

to include source code snippet which can’t be executed independently from its surround-

ing code block. An example would be an include file, which is part of a structure type

definition.

• Further tasks: There are a few more special cases where the preprocessor does some

important tasks to prepare the source code file to simplify the following parsing phase.

Further examples in Cobol are adding ’END-IF’-statements to ’IF’-statements or setting

the decimal point to a comma-symbol instead of the dot-symbol, so that the parser could

easily differ between the end of a statement and a comma. Also the treatment of some

preprocessor directives are necessary before the actual parsing starts.

The result of the preprocessor is a clean source code file which only consists of necessary infor-

mation for the transformation and unambiguous input for the lexer and parser.

Lexer

PC2J-Transformer uses ANTLR [35] as a parser generator. Similar to other technologies like

javacc or Coco/R the basis for the generation of the parser is an EBNF - Extended Backus-Naur
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context-free grammar. ANTLR is used for the generation of the lexer, the parser (see Section

2.2.3) as well as the tree parser (see Section 2.2.3).

The first phase is called lexical analysis and operates directly on the incoming character stream

of the underlying Cobol or PL/I source code file. A lexer grammar written in EBNF is executed

to recognize valid words/tokens to generate a stream of tokens which is used as input for the

following parser-phase.

Parser

To generate a valid source model in form of an AST the ANTLR-parser validates that input and

generates an intermediate AST. In contrast to an concrete syntax tree, the abstract syntax tree

does not represent every detail of the original syntax. For example, grouping constructs like

parentheses or other kind of blocks are expressed implicit. Some other information like dots or

semicolons, which emphasize the end of statement are fully ignored by the AST. Furthermore,

information which were necessary for the PLI or Cobol compiler but aren’t necessary for the Java

compiler anymore, are also not depict in the resulting AST. An example for such information

would be the length-condition for character strings, since those constructs are transformed into

Java string which do not have a length condition. So it is obvious that the PC2J-Transformer

already pays attention during the parser-phase which information is necessary for the actual

transformation process to Java and what information only leads to an insignificant overhead.

Nevertheless the resulting AST does not only hide unnecessary information, but also adds mean-

ing to sub-nodes by some additional nodes. In ANTLR these additional nodes are called imag-

inary tokens. Especially this concept is unavoidable when the syntax alone is ambiguous and

further analysis have to be carried out. For instance in PL/I a Pseudovariablen-assignment has

the same syntax than an assignment to an array-field and can’t be differentiate by an syntactic

analysis alone (see Listing 2.6). So a small semantic analysis, which is also part of the parser,

determines the meaning of the statement and adds the gained information as imaginary token

to the AST. This is at least the chosen approach of the PC2J-Transformer. A better approach

would be a complete separation of syntactic and semantic analysis by performing a pure syntac-

tic analysis in the parser-phase and transfer the semantic analysis to the optimizer-phase, since

the optimizer already handle some semantical issues [49].

/*Depends on the context whether the following statement is interpreted as a
pseudovariablen-assignment or an assignment to an array-field.*/

SUBSTR(r,p,l) = v;

Listing 2.6 Pseudovariablen-Assignment or Assignment to Arrayfield?
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Optimizer

In the optimizer-phase the resulting AST is walked many times in case of the PC2J-Transformer,

to prepare the tree for the transformation process. The tasks performed by the optimizer-classes

can be multifaceted. Some examples are listed below.

• Refactoring: Removes unused labels, procedures and variables from the AST.

• Resolve ’Gotos’: Although Java defines ’goto’ as a keyword, it has never been imple-

mented and therefore no goto-concept for Java exists. Furthermore the goto-concept

has been considered as harmful programming mechanism since decades [8]. Neverthe-

less most of the developers had still made use of it and so this concept is unfortunately

widespread over old programs which have been written in PL/I or Cobol. The task of re-

solving ’gotos’ automatically is a difficult one. The PC2J-Transformer tries to overcome

this issue by building methods instead of using jump-labels. The goto-statement is then

replaced by a simple method call. Although that’s not always the best solution it is a gen-

eral concept and applicable for almost every goto-implementation. Other solutions which

focus also on the context and the surrounding syntax are discussed in [11].

• Resolve function parameters: In PL/I, parameters which are used in the signature of the

function definition have to be declared at the beginning of their body. In Java the declara-

tion is done directly in the signature. According to this principle the optimizer moves up

the variable declarations to the header of the function.

The optimizer-phase is probably the most important phase for generating well readable and

maintainable Java code and therefore should always considered for further improvements.

Tree Parser / Object Generator

The tree parser is also implemented as an EBNF grammar in ANTLR. The target of this last

phase before the actual transformation starts, is, to identify special subtree-structures to gen-

erate the appropriate source objects. These source objects then are represented as simple Java

instances like if-statement objects or assignment objects. The resulting object structure is then

again represented as a tree.

26



Figure 2.7 Architecture of the PC2J-Transformer core

2.3 SiTra vs. PLI/Cobol Transformer - A Comparison

2.3.1 Overview

Figure 2.7 represents the core of the PC2J-Transformer, which consists of the three items, that

are classes Converter, ConverterRepository and the interface IXPLConverter.

The following listing briefly explains the domain and tasks of these three items:

1. Converter: Looks for the appropriate sub-converter and further executes it to transform

the source element to the target element. In SiTra the corresponding interface would

be the interface Transformer respectively the implementation of it SimpleTrans-

formerImpl.

2. ConverterRepository: Holds the mapping between the type of the source element and

the corresponding Converter, which is responsible for the transformation. In SiTra there

is no corresponding construct, since every single rule has to check if it is able to transform

the given source object. A concrete mapping between the source element and the rule is

not designated in SiTra.

3. IXPLConverter: Represents the global interface for all sub-converters. The correspond-

ing SiTra construct would be the interface Rule.

For further detailed comparison between SiTra and the PC2J-Transformer, the most important

concepts of these two approaches are taken out, to highlight which ideas are equal or similar and

what differences can be uncovered. Therefore Table 2.1 gives an first overview.

27



Conept SiTra PLI/Cobol Transformer
Rule Rule <S,T> IXPLConverter<T ex-

tends XplObject>
Rule methods

1. check
2. build
3. setProperties

1. convert

Transformer inter-
face

Transformer -

Transformer im-
plementation

SimpleTransformerImpl Converter

Rule Repository List of all registered Rules in
SimpleTranformerImpl

Own class ConverterRepos-
itory - holds a map which
maps known source object types
to applicable converters

Table 2.1 Overview - corresponding concepts of SiTra and PLI/Cobol Converter

2.3.2 Sitra’s Rule Interface vs. P2J-Transformer’s IXPLConverter Interface

As described earlier the Rule-interface of SiTra defines the general structure how a source

object should be mapped to a target object. This interface has to be inherited by every rule

implementation. Further the implementation class of this interface is responsible for the actual

transformation of the source element. In case of the P2J-Transformer the corresponding interface

to the Rule-interface is called IXPLConverter.

Listing 2.7 shows how this Rule-interface look like in SiTra and Listing 2.8 shows the corre-

sponding Rule-interface, named IXPLConverter, in the PLI/Cobol Transformer.

public interface Rule<S,T> {
boolean check(S source);
T build(S source, Transformer t);
void setProperties(T target, S source, Transformer t);

}

Listing 2.7 Rule Interface (SiTra)

public interface IXPLConverter<T extends XplObject> {
Codeable convert(T xplObject, Codeable parent);

}

Listing 2.8 Rule Interface (PLI/Cobol Transformer)

Because SiTra is a general framework, which should be applicable to all possible transformation,

the interface defines the source object as well as the target object as generics, so that the target
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object type can be different for every single implementation. This can be seen in the signature

of the interface definition where S represents the generic source object type and T represents the

generic target object type.

Similar to SiTra the type of the source object is also defined as generic in the correspond-

ingIXPLConverter and represented by subtype of the abstract superclass XplObject. So

every single element of the source model (Abstract Syntax Tree) is a subtype of this class and

can be passed to this interface.

In contrast to SiTra the target object isn’t specified as generic in the PLI/Cobol Transformer in-

terface IXPLConverter because the return type is always from the same type, that is Code-

able. Codeable is an interface of the library jenesis4java, and can represent all possible

Java source code constructs, such as classes, methods, statements or expressions. Because jene-

sis4java is a domain object model (DOM) of the Java programming language, the target model

is again represented by a tree structure.

Excursus - Jenesis4Java [42]

Jenesis4Java is an open source library and was designed for generating Java Code out of a DOM.

So a complete Java class including annotations and comments is constructed as a DOM that can

be manipulated with many different easy-to-use methods till it is encoded and written out to a

Java file. A class called VirtualMachine acts as factory for the root of the resulting tree.

This root is represented by the object type CompilationUnit which is already a subtype of

the interface Codeable. Outgoing from the root CompilationUnit, children like package

definition, imports, classes, type definitions, control structures, etc. can be generated which

again are subtypes of the interface Codeable.

2.3.3 Rule Interface - Methods

According to Listing 2.7 in SiTra the rule interface distinguishes between prerequisite tests,

which take place in the check-method, the actual transformation in the build method and

configuration to the target object in the setProperties-method as well as further transfor-

mation of sub-objects or linked objects, while the PLI/Cobol transformer combines all these

activities in only one Method called convert.

In SiTra the check-method is unavoidable because before the actual transformation takes place

by calling the build method, SiTra has to check if the source object is applicable to the specific

rule. In case of the PLI/Cobol Transformer this step can be left out because the transformation

class Converter already ensures that the right rule type is called (see Section 2.3.4).
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An important aspect of the interface Rule of SiTra is that the actual transformation of a source

object is carried out in a separate method (build-method), while further transformation of

referenced- or sub-object takes place in the setProperties-method. For a general frame-

work like SiTra this is a must to avoid the non-terminating recursive transformation problem

(see Section 2.1.4). Because the PC2J-Transformer transforms only source code which is repre-

sented by an Abstract Syntax Tree (AST), this problem can not occur, since a tree do no contain

cycles. So the separation into two methods isn’t necessary and simplifies the interface further.

Rule Interface - Implementation

Listing 2.9 shows exemplarily how the framework of an implementation of the Converter-

interface for a transformation of an if-statement can look like. The Listing emphasizes, how the

convert-method takes an instance of the classXplIfStatememt, which is a sub class of

general type XplObject, as source object and how it generates an object of the jenesis4Java

class If, which is a sub-object of Codeable. This object represents then the resulting target

object.

public class XplIfConverter implements IXPLConverter<XplIfStatement> {
@Override
public Codeable convert(XplIfStatement ifStatement, Codeable parent) {

If resultingIfStat = ((Block)parent).newIf(/*<Expression>*/);
//Actual transformation-code
return resultingIfStat;

}
}

Listing 2.9 Rule Interface Implementation

2.3.4 Transformer

The core of both transformation approaches is the class which chooses the applicable rule

for the transformation of the source object to the target object. In SiTra this class is called

SimpleTransformerImpl which implements the interface Transformer. In the PC2J-

Transformer an interface doesn’t exist and so this issue is covered only by the class called Con-

verter. Since the SiTra Transformer-interface was introduced in Section 2.1.3, this Sec-

tion covers the differences to the Converter-class of the PLI/Cobol Transformer.

The major difference is the way the Transformer in SiTra and the Converter in PC2J-

Transformer holds their rule repository. This is described in the next Section (2.3.4).
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Rule Repository

In SiTra the rule repository is represented by a simple list in the SimpleTransformerImpl,

which only holds all registered rule-classes (see Section 2.1.3). The disadvantage of this ap-

proach is that there is no mapping between source types and the corresponding rule types. So if

the developer doesn’t provide any information which rule should be called for transforming the

source object, SiTra assumes that every rule is a candidate. As shown in Listing 2.3 the method

getRuleswill then return every rule of the repository. So the list of rules must be looped again

to call the check-method for every possible rule to determine wether the rule can transform the

type of the source object or not. The first matching rule is then used for the transformation of

the source object.

The PLI/Cobol Transformer chooses a different approach. A separate class called Convert-

erRepository holds not only a list of all registered rules but a collection Map, which maps

source object types to one or more possible converters (in context of Sitra converters are called

rules). The following code snippet in Listing 2.10 shows the declaration of the map and an ex-

ample of adding a tuple consisting of the source object type XplIfStatement.class and

the corresponding converter XplIfStatementConverter to the map.

public class ConverterRepository {

private final Map<Class<?>, List<IXPLConverter<?>>> converters =
new HashMap<Class<?>, List<IXPLConverter<?>>>();

private void addConverter(Class<?> classToConvert, IXPLConverter<?> converterObject
) {
List<IXPLConverter<?>> converterList = converters.get(classToConvert);
if (converterList == null) {

converterList = new ArrayList<IXPLConverter<?>>();
this.converters.put(classToConvert, converterList);

}
}

public Iterable<IXPLConverter<?>> get(Class<?> expressionClass) {
return this.converters.get(expressionClass);

}

private void initConverters(GenerationType generationType) {
addConverter(XplIfStatement.class, new XplIfConverter());

//Adding all the other source object types with their corresponding converters to
the map...

}

Listing 2.10 ConverterRepository of the PLI/Cobol Transformer

The method addConverter adds a tuple consisting of the source object type and the corre-

sponding converter to the converter-repository. So before the actual transformation starts the

whole converter-repository map has to be initialized.
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Further the method get in the ConverterRepository returns the sub-converter according

to the passed source object type.

Choosing the right Rule/Converter

In Section 2.1.4 the SiTra’s process of choosing the corresponding rule to the specified source

object, which was carried out in the class SimpleTransformImpl, was already explained.

Based on the slightly different rule repository approach of the PC2J-Transformer, the Con-

verter-class (in terms of SiTra this class is called Transformer) has a slightly different

implementation. The source code Listing 2.11 shows the most important parts of the Con-

verter-class.

Description of the Converter-class

(1) conversionStack: stores the call hierarchy of the sub converters (known as rules in

SiTra)

(2) ConverterRepository: holds the mapping between source object types and applicable

converters

(3) convert-method: the corresponding method to SiTra’s transformmethod. The xplOb-

ject-parameter represents the current source object while the parent-parameter repre-

sents the surrounding code block as object.

(4) Gets the type of the source object.

(5) Iteration over the whole ConverterRepository to find the corresponding sub-converter

to the type of the source object

(6) After finding the right sub-converter the method convertUsingConverter (7) is called

(7) convertUsingConverter: pushes the Converter to the stack and executes the sub con-

verter.

(8) If no converter was found for the type of the source object, the super class type of the source

object is gained. For that super class the convert method tries to find a corresponding

converter.

To summarize, the significant difference between SiTra and the PLI/Cobol Converter is the rule-

repository and the way, how to select the corresponding rule. The rule-repository in SiTra only
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public class Converter {

private final Stack<RunningConversion<?>> conversionStack = new Stack<
RunningConversion<?>>(); //(1)

private final ConverterRepository repository; //(2)

public Codeable convert(XplObject xplObject, Codeable parent) { //(3)
if (xplObject != null) {

Class<?> expressionClass = xplObject.getClass(); (4)
while (expressionClass != null) {

Iterable<IXPLConverter<?>> converterList = this.repository.get(
expressionClass); //(5)

if (converterList != null) {
for (IXPLConverter<?> converter : converterList) { //(5)

Codeable result = convertUsingConverter(xplObject, parent,
converter); //(6)

if (result != null) {
return result;

}
}

}
expressionClass = expressionClass.getSuperclass();//(8)

}
}
return null;

}

private Codeable convertUsingConverter(XplObject xplObject, Codeable parent,
IXPLConverter converter) { // (7)
if (converter != null && !converter.equals(Object.class)) {

this.conversionStack.push(new RunningConversion(xplObject, converter,
parent));

try {
return converter.convert(xplObject, parent);

} finally {
this.conversionStack.pop();

}
}
return null;

}
}

Listing 2.11 Converter Class of the PLI/Cobol Transformer

consists of all registered rules and so an additional step, namely the check-method for every

possible rule, has to be executed, when searching for the corresponding rule to transform the

source object. In PLI/Cobol Transformer this extra step can be left out because of the fact

that the rule repository already stores the concrete mapping between the source object and the

corresponding converter.

Another difference is that the architecture of the PC2J-Converter was built to transform abstract

syntax trees. For transforming graphs with cycles this approach is not applicable, since the

attempt will result in a non-terminate recursive transformation.
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2.3.5 Transformation Example

In this Section a small PL/1 source code snippet acts as example (see Figure 2.8) and should

demonstrate a basic transformation process for a simple if-statement in PLI using the PC2J-

Transformer. Therefore the excerpt of the PL/1 meta model is used, that was presented in the

introduction of this work (see Figure 1.2 in Section 1.6). The PC2J-Transformer uses simple

Java classes (POJOs) as representation technique of this meta model, while instances of these

classes act as the actual source elements which have to be transformed and together build the

source model as AST.

Figure 2.8 Source Code of a simple PLI if-statement

After the meta model has been designed the next step covers the extraction of the source object

out of the plain PLI source code. The easiest way to do this is by writing a grammar to construct

an abstract syntax tree out of the source code. Figure 2.8 shows an if-statement written in PL/I.

The braces emphasizes roughly the source objects - corresponding to the meta model - resulting

from an extraction process. The simplified corresponding AST and thus the tree which is the

actual input for the transformer is shown in Figure 2.9.

Converter - Actual Transformation

Listing 2.12 shows the Listing of the specific converter PliIfConverter, which is responsible

to generate a Java if-statement. To focus on the key point of this class some non-significant

issues were shorten. For example the instance of the general Converter-class (see Listing

2.11) is used directly in the following Listing, although there is no corresponding declaration

respectively initialization for it. In the original code every sub converter would have an instance

of a so-called context-object, which holds an object of the main converter class. By calling for

the global Converter-instance the sub converter (in this example the PliIfConverter) is able to

launch further sub converters. Holding the global instance of the class Converter in a public
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Figure 2.9 AST of a simple PLI if-statement

context, saves the developer from passing the instance to every single sub-converter like it is

necessary in SiTra. The following enumeration emphasizes the most important statements of

Listing 2.12

public class PliIfConverter implements IXPLConverter<PliIfStatement> { //(1)

@Override
public Codeable convert(PliIfStatement ifStatement, Codeable parent) { //2)

If ifStmt; //(3)
final Block block = (Block) parent;

Expression expression = (Expression) converter.convert(ifStatement.getCondition
(), parent); //(4)

ifStmt = block.newIf(expression); //(5)

converter.convert(ifStatement.getIfStatements(), ifStmt);//(6)
converter.convert(ifStatement.getElseStatements(), ifStmt.getElse());//(6)
return ifStmt; (7)

}
}

Listing 2.12 Simple Converter Example for an if-statement

(1) Every sub-converter has to implement the general IXPLConverter-interface, which con-

sists only of the method convert. This is similar to SiTra where every rule has to imple-

ment the interface Rule.

(2) The convert-method holds the actual transformation process. As arguments a subtype of

PliObject has to be passed, which represents the source element, as well as the surrounding

Java code block of already transformed source code.

(3) Instance which will hold the resulting Java if-statement.
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(4) Transformation of the expression which further will represent the if-condition.

(5) Generating the if-statement with the previous transformed if-condition in the surrounding

code-block.

(6) Calling the additional sub-converters to transform further statement of the two branches

of the if-statement. If all sub-statements have been generated, the transformation of the if

statement is finished.

(7) According to the library jenesis4Java the instance of class If is a Codeable and can be

returned to the surrounding converter.
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CHAPTER 3
Java 8 Features for Transformations

3.1 Overview

Java 8 was recently released on March 18, 2014 with some very useful new features. The most

important ones are listed below

1. Functional programming

2. Lambda expression

3. Bulk operation and streams

4. Default methods

5. Method references

6. Optional<T>

7. Parallel operation on arrays, etc.

8. Date And Time API

9. Java FX

Further the focus lies on the first seven points, since these concepts could be used for transforma-

tion issues and result in different advantages which also have a high relevance when transforming

issues have to carry out.
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In [48], Richard Warburton states the needs as well as the advantage of Java 8. In the last

few years the rise of multicore CPUs was an important development. With this trend there is

also a need for programming language to support this behaviour. Java 1.0 already supports

threads and locks as a way to deal with concurrency, which was the best practice at the time.

Nevertheless this concept forced the developer to write a lot of boilerplate code, which often

leads to an avoiding of this concept. Java 5 then invented the concept of thread pools and

concurrent collection (package java.util.concurrent), while Java 7 added the fork/join

mechanism, making parallelism more practical but still difficult [46]. Although the fork/join

mechanism helps to write code that performs well on multicore CPUs with an much easier

approach than by implementing the same tasks with threads, it still has not been used frequently.

This results in the fact, that time consuming iteration issues over large collection were carried

out in a sequential way. So there was a strong need for a concept to easily implement bulk

operation in a parallel way on collection [48] .

Java 8 supports parallel bulk operation for collections in a compact, user-friendly and easy to

read way. Although there are some new concepts to learn like lambda expressions, streams,

bulk operation and method references this kind of parallel programming is much easier than to

handwrite a large quantity of complex thread-safe source code.

Another advantage is that the resulting code of an iteration over a collection is shorter and easier

to read. There is no need for defining iterators (java.util.Iterator) and implementing

loops by hand. So the focus lies on the business logic without defining much overhead code.

This all results into source code which is easier to read and maintain and also code which is

more reliable and less error-prone. To support these new features of Java 8 appropriately, the

concept of functional programming was improved, to a more user friendly way.

Transformation projects are often very complex and also performance consuming jobs. There-

fore transformation issues can benefit from the new Java 8 features. Before Section 3.3 discusses

in which manner lambda expressions, bulk operations and method references can support the

transformation process and how the transformation process benefits from these new concepts, a

short introduction to these concepts should be given.

3.2 Functional Programming

With Java 8 a new programming paradigm to Java was invented, which already was in use in

other object-oriented like C#, Groovy or Scala. With this new feature it is possible to pass code

(behaviour) to an API, return it or even store it to a data structure. In programming language

there is a distinction between first-class values and second-class values. A first-class value (also
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called citizen, object or entity) is an entity which supports all the operations generally available

to other entities. These operations typically include being passed as a parameter, returned from a

function, and assigned to a variable. [39]. Second-class values like functions, methods or classes

which describe the behaviour of the application or express the structure of first-class values, can’t

be passed to around during the program execution. [47] According to this definition in traditional

Java, first-class values are primitive values as well as concrete objects, while second-class values

are methods and classes.

Since Java 8 there is an easy way to pass around methods at runtime, and hence making them

to first-class values (see Lamda Expression in Section 3.3). Experiments in other languages

like Groovy or Scala determine the high relevance of this concept and how it can support the

daily programming routines. [46] Although previous Java versions support behaviour parame-

terization by making use of anonymous inner class, this approach showed increased code con-

ciseness. To demonstrate the benefit of lambdas, as implementation technique for functional

programming, a simple example is given, which only sorts a list of Integer. Listing 3.1 shows

the implementation with the old approach of an anonymous inner class, while Listing 3.2 shows

a solution by using functional programming with lambda expressions

Collections.sort(numberList, new Comparator<String>(){
public int compare(String a, String b){
return a.compareTo(b);

}
});

Listing 3.1 Sort by using anonymous inner class

Collections.sort(numberList, (a,b)-> {return a.compareTo(b);});

Listing 3.2 Sort by using functional programming with Lambda Expression

The benefits of the new functional programming approach of Java 8 are obvious, namely less

and better readable source code. The next Section gives a brief overview about the Java specific

implementation of functional programming with the help of lambda expressions.

3.3 Lamda Expressions

’A lambda expression can be understood as a concise representation of an anony-

mous function that can be passed around: it doesn’t have a name, but it has a list of

parameters and a body.’ [48]
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According to this definition the general structure of a lambda expression is:

(parameter-list) -> {single expression or statement block}

The following Listing (3.3) shows three different implementation techniques of lambda expres-

sions which further are explained in more detail [33].

//Parameter with type definition and a statement block
(int x, int y) -> {return x + y;} //(1)

//Parameter without type definition and an expression
(x, y) -> x+y; //(2)
a -> a+1; //(3)

Listing 3.3 Lamda Expression Examples

(1) The use of more than one parameter requires to enclose the parameter elements with paren-

thesis. If the function consists of more than one expression or of one or more statements the

braces are obligatory.

(2) The specification of the parameter types is optional and could be omitted since the type

could be derived from the functional interface (see Section 3.3.1). If the body of the lambda

expression consists only of one expression, the braces can also be omitted. In this case the

expression is evaluated and the result is returned automatically without the need of using the

return statement explicitly.

(3) If the parameter list consists of only one parameter the parentheses are optional.

After clarifying what benefits the use of lambda expressions offers and how the syntax looks like

the question of ’Where lambda expression could be used’ rises which is answered in the next

Section 3.3.1.

3.3.1 Functional Interfaces

Lambda expression can be used in the context of a functional interface. The term of a functional

interface is new in Java since version 8. It represents an interface which consists of exactly one

abstract method. These types of interfaces are also called SAM type - Single Abstract Method

type and aren’t really new to Java, although there was no well known term for it. Examples for

SAMs (resp. functional interfaces) in former Java versions are Runnable, EventHandler or
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ActionListener. They all have in common that the implementation of these interfaces were

often carried out with the help of anonymous inner classes [16]. The reason for that approach

was, that an implementation of these interfaces in an own class file, which only consist of one

single method, would be an overwhelming approach. As mentioned earlier the use of anonymous

inner class was the only way to pass functionality to such a functional interface but since Java 8

lambda expressions provide a much more comfortable way to do this. So the direct connection

between functional interface and lambda expression is that lambda expression provides an easy

way to pass an implementation of method of a functional interface.

Java 8 provides a list of about 40 predefined functional interfaces in the package java.util.function,

which should protect the developer from defining trivial interface over and over again. The Table

3.1 shows some examples of useful functional interfaces of the package java.util.function.

Interface Method Usage
Consumer <T> void accept(T) Represents an operation that accepts a sin-

gle input argument and returns no result.
Supplier <T> void get(T) Represents a supplier of results (for exam-

ple to generate objects)
Predicate <T> boolean test(T) Represents a predicate (boolean-valued

function) of one argument
Function<T,R> R apply(T) Represents a function that accepts one ar-

gument and produces a result. This further
represents the transformation concept.

Table 3.1 Sample of Functional Interfaces - taken out of the Java API [34]

3.3.2 Type Inference

The concept of type inference isn’t new to Java, since it was already used in Java 7 in context of

generics and the diamond operator. Listing 3.4 shows an example for type inference in Java 7

where the diamond operator asks the Java compiler (javac) to infer the generic arguments from

the List-declaration. [48]

List<Integer>numberList = new ArrayList<>();

Listing 3.4 Type inference in Java 7

Java 8 goes one step further and allows to leave the types for all parameters of a lambda expres-

sion. Listing 3.5 demonstrates how lambda expressions are used without specifying the optional

type. There is no need to specify the type for the parameter number, because it can derived

from the generic type of the functional interface Predicate <Integer> predicate.
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public static void condition(List<Integer> list, Predicate<Integer> predicate) {
//testSomething

}

public void typeinference(List<Integer> numberList) {
//Without type definition
condition(numberList, number -> number%2==0);
//With type definition
condition(numberList, (Integer number) -> number%2==0);

}

Listing 3.5 Type Inference with Lambda Expression

3.3.3 Default Methods

Default methods are a brand new concept of Java 8, which allow to add a method with implemen-

tation to an interface by declaring it with the keyword default. That feature offers the opportunity

to make changes to already existing interfaces without loosing backward-compatibility. Before

inventing default methods in Java 8, an adding of a method to an interface results in the need,

of reimplementing all classes which inherit from this interface. Because the introduction of

lambda expressions needs changes to already existing interfaces in the JDK, the introducing of

the concept ’default methods’ was more or less a must.

An example for a standard interface of the JDK is java.util.Collection. This inter-

face was already invented with Java version 1.2 [31]. Until Java 7 the signature of this in-

terface didn’t change and so it was no problem to upgrade the Java version for applications

which implement this interface. However in Java 8 there was a strong need to upgrade the inter-

face java.util.Collection, to supply new methods for using streams like stream()

and parallelstream() or to support the use of lambda expression like the method re-

moveIf(Predicate<? super E> filter) does. A change to the interface in a tra-

ditional way, would have led to backward-compatibility problem, since all existing Java appli-

cations which implement this interface would have to be refactored to implement these new

methods. The answer to overcome this problem was to invent the concept of default methods.

On the one hand backward-compatibility was ensured and on the other new methods including

their implementation could have been added to the Collection-interface.

3.3.4 Method References

Method References are also a new concept in Java 8 to achieve an even better readability of the

source code. For lambda expressions which only consist of one method call, a method reference

can be used as shorter and more compact equivalent. Listing 3.6 contrasts these two approaches.

The syntax of a method reference in general is:
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<class>::<methodname>

List<String>numberList = Arrays.asList(new String[] {"6","2","7"});
//Lamda Expression
numberList.stream().forEach(number -> System.out.println(number));

//Equivalent Method Referencee
numberList.stream().forEach(System.out::println);

Listing 3.6 Method Reference Example

As demonstrated in Listing 3.6 the parameter specification can be omitted, since the compiler

determines the information and passes them automatically when the method is called. This

automatically derivation of the parameter works only if the signature of the called method is

compatible with the used functional interface. [19]

Another concept, which can be seen in the previous Listing 3.6, is the use of the Collec-

tion.stream()-method which is another big improvement of Java 8 and therefore is de-

scribed in the next Section 3.4.

3.4 Streams and Bulk Operations

Although Collections is the most heavily used API in Java, the way how to deal with col-

lections was neglected and often results in writing nearly the same Code again and again. The

focus when implementing manipulation on collection lies rather on the way how to manipulate

them, than on the actual task (see Section 3.4.1). Before Java 8 was released, the poor support

of manipulating collections was a well known problem and so there have been a few attempts

to provide Java programmers with better libraries to overcome this problem. Guava, Apache

Commons Collection library and lambda are examples for such libraries. But finally Java 8

fulfills the need for a better manipulation of collections, by inventing the concept of streams

(java.util.Stream) and comes up with its own official library to deal with collections in

a more declarative way [46]. Instead of operating on the collection directly, the collection is

converted to a stream. This enables many new opportunities and advantages to the developer:

• A declarative approach to work with collections

• An easier and shorter source code

• An easy way for data parallelism (see Section 3.4.3)
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3.4.1 External vs. Internal Iteration

The traditional approach in Java when working with collections was to iterate over a whole

collection to execute the desired operation on every single element. This approach is also known

as external iteration. But there are several problems which come with this approach. Boilerplate

code was needed to be written to iterate over all elements of the collection.

Another problem with this approach is, that it was hard to implement parallelism, so that op-

erations on the elements of the collection could exploit the power of multi-core processors and

executes them in a parallel way. Even more boilerplate would have been necessary, to fulfill the

ability of making use of parallel execution on collections. So, in nearly every Java application,

collections were used in a sequential way to overcome the problem of high implementing effort

and worse readable source code.

Figure 3.1 External vs. Internal Iteration [48]

With Java 8 an alternative approach, called internal Iteration, comes up and makes life much

easier when dealing with collection, even in a parallel way. The basic idea of this concept is to

use streams and pass functionality to internal iteration. Figures 3.1 shows the difference between

external and internal iteration. While external iteration has to deal with operation like creating

an iterator and boilerplate methods like hasNext() or next(), the internal iteration only

focuses on the actual operations which has do be performed on the underlying collection.

These two approaches should be demonstrated by using an example from the context of trans-

formation (see Listing 3.7 and 3.8). The source code searches for tokens which are from the

type ’VARREF’ (Variable Reference) and transfers the matches to a resulting list.

Although Listing 3.7 could have used the for-each loop instead, which only acts as syntacti-

cal sugar, the differences of these two listings and the advantages of the internal iteration are
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for (Iterator<E> i= tokenList.iterator(); i.hasNext();) {
Token nextToken = i.next();
if (nextToken.isTypeOf(TokenTypes.VARREF))

resultingList.add(nextToken);
}

Listing 3.7 External Iteration

resultingList = numberList.stream().filter(token -> token.isTypeOf(TokenTypes.VARREF)).
collect(toList());

Listing 3.8 Internal Iteration

obvious. The internal iteration is much shorter, better readable and focuses only on the actual

behaviour (see Section 3.4.2). Further it opens the opportunity to parallelism by only replacing

the method stream() with the method parallelstream() (see Section 3.4.3).

3.4.2 Using Streams

A data stream transports data from a source, for example a collection, through a pipeline. A

pipeline exists of a sequence of stream-methods. In general these methods use lambda expres-

sions as parameter to pass the actual functionality to the internal iteration. The elements are not

stored in the pipeline, but be passed from one method to another [2]. This results in the fact,

that a stream can only be traversed/consumed once (similar to iterators). So if the stream has

to be traversed more than once the first operation on the stream has to return a stream again, to

support further operation. As shown in Figure 3.2, working with streams consists of three steps,

while the second step is optional.

Figure 3.2 Pipeline for Stream Processing

The new interface java.util.Stream acts as implementation of this concept, and supports

that chaining mechanism of methods to execute function on collection in data streams. In the

following the implementation of these three steps in Java should briefly be discussed.
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1. Create Stream

This operation supports the creation of a stream out of a collection or array. The methods

stream() for collections and arrays and parallelStream() for collections only act as

such creation methods. The result of this methods is a stream from the source type of the

collection, for example Stream<String>, if the source collection was from the type String.

2. Intermediate Operation

In contrast to terminal operation intermediate operations have in common that they can be con-

nected in series. As mentioned earlier streams only can be processed once, so in case of inter-

mediate operation, after the operation was carried out, a new stream is returned. This enables a

chaining mechanism to execute several methods in a row.

Many of the intermediate methods in Java are so called higher-order functions. Higher-order

functions are methods which take another function as an argument [48]. In case of Java such

functions are recognizable by a functional interface defined as parameter. So higher-order func-

tions take behaviour as input.

Intermediate Operation can be categorized into three different fields [16]:

1. Stateless: Stateless operation executes the action on each elements of the stream indepen-

dently on each element. So the result of an operation on an element does not depend on

the result of another one. Therefore the stateless operation can be parallelized excellently.

2. Stateful: In contrast to stateless operation, stateful operation on single elements of the

streams requires the knowledge of the other elements or at least a subset of elements of

the same stream. Examples for such operations are the distinct or sorted.

3. Short-circuiting: Short-circuiting operation often doesn’t have to be carried out on all

elements of the stream. They stop as soon as they fulfill their operation like in case

of the method findFirst(). That’s the reason why short-circuiting operations have

advantages in performance, especially when they are carried out in a parallel way. Short-

circuiting operation can be stateless and stateful intermediate operation as well as terminal

operation.

3. Terminal Operation

Terminal operation returns a result from a stream pipeline. This result is a non stream value

such as any kind of collection, primitive types or even void. So a terminal operation concludes
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the stream operations and no further operation on the stream is possible. On the other hand,

a terminal operations is obligatory, since intermediate operations don’t perform any processing

until a terminal operation is invoked on the stream pipeline. So the intermediate operation can

be seen as lazy methods. [32].

3.4.3 Parallel Data Processing with Streams

In contrast to collection or arrays, streams do not cache data (or in case of stateful operations -

only few data) and so they consume significantly less memory space. Therefore the construc-

tion of streams commonly results in a lower memory demand and execution time than using

collections. In Java 8, the possibility to achieve even better performance by working on stream

in a parallel way, can be implanted in an easy user-friendly way. The only thing to do is to use

the creation method parallelStream() instead of stream(). For arrays the combina-

tion of the stream()-method and the parallel()-method is necessary since the method

parallelStream() doesn’t exist (see Listing 3.9).

//for Collections
Stream <String> = myStringCollection.parallelStream();
//for Arrays
Stream <String> = Array.stream(myStringArray).parallel();

Listing 3.9 Use of parallel Streams

Before Java 8 comes up, the way to go to achieve parallel data processing, was a hard one.

Roughly it consists of the following steps [9]

1. Splitting the data into subparts

2. Assigning each subpart to different threads

3. Synchronize them to avoid unwanted race condition. Further wait for the completion of

all threads and combine them again.

This complex procedure leads to a situation, that collections were processed nearly solely in

a sequential way. Although the Fork/Join Framework of Java 7 leads to a better usability

of parallel data processing, it also comes up with a lot of boilerplate code. So there was a

strong need for an easy way of parallelism in the context of collection. Java 8 has given the

answer by inventing the concept of parallel stream processing. In fact the methods paral-

lelStream() and parallel() internally make use of the Java Fork/Join mechanism but
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hiding it from the developer, so that the user do not have to deal with writing complex boiler-

plate code. Behind the scenes the parallel-methods determine the number of processor by calling

Runtime.getRuntime().availableProcessors(). According to the result of this

method the specific number of threads is created. [46]

Ordering Problem when using parallel Stream

When using the forEach()-method in combination with a parallel stream, it’s important to

notice that the operation of the forEach()-method is not executed in an ordered way. Since

stream operations use internal iteration when processing elements of a stream, the Java compiler

and runtime determine the order in which to process the stream’s elements to maximize the

benefits of parallel computing unless otherwise specified by the stream operation. Listing 3.10

shows the behaviour of sequential stream and parallel stream in combination with forEach(),

while the following enumeration serves as explanation to this Listing.

public void testOrderOfParallelProcessing (String []args) {

Integer[] intArray = {1, 2, 3, 4, 5, 6, 7, 8 };

/*(1)*/ Arrays.stream(intArray).forEach(System.out::print);
// Output--> 12345678

/*(2)*/ Arrays.stream(intArray).parallel().forEach(System.out::print);
// Output --> 68572314

/*(3)*/ Arrays.stream(intArray).parallel().forEachOrdered(System.out::print);
// Output --> 12345678

/*(4)*/ List<Integer> list= Arrays.stream(intArray).parallel().map(s -> s+1).collect(
Collectors.toList());
list.forEach(System.out::print);
// Output --> 1020304050607080

/*(5)*/ Stream<Integer> stream = Arrays.stream(intArray).parallel().map(s -> s+1);
stream.sequential().forEach(System.out::print);

// Output --> 1020304050607080
}

Listing 3.10 Ordering Problem in parallel mode

(1) Sequential stream processing with forEach()–> the result remains in the same order

(2) Parallel stream processing with forEach() –> the result appears in a random order

(3) Parallel stream processing with forEachOrdered() –> parallel processing but the <re-

sult appears in the same order like the starting stream
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(4) Parallel stream processing with map(), collect() and forEach() –> after executing

the intermediate operation map() and the terminal operation collect(), the elements in

the resulting collection are again in the right order.

(5) Combination of parallel and sequential stream processing –> the method map() is executed

on a parallel stream, but for the output with the methodforEach the stream is switched

to a sequential one. This again leads to an ordered output result. Nevertheless the use

of switching a parallel stream to a sequential one should be avoided if possible, since the

performance benefit of the parallel execution will be shot down again.

Parallel Data Processing - Field of Application

Although the implementation of parallel data processing isn’t a difficult task anymore, the use

of it is not always profitable. The main reason is that the processing time isn’t always lower

when implementing data processing parallelly. According to small examples in [48], [46] and

experiments in the context of this work (see Section 3.4.4), some situation can lead even to

a much higher execution time when using parallel streams, than using them in a sequential

way (see Section 3.4.4). It has to be noted that parallel streams have a much higher overhead

compared to sequential ones. Coordinating, splitting and combining are mandatory and time

consuming jobs when dealing with parallel streams. But these are not the only reasons why

parallel stream processing could behave worse than sequential ones. So the question is: when to

use parallel data processing, and when to use streams with sequential access or even use external

iteration? The answer to that question is not as simple as it seems at first sight, because there

are many factors which influence the execution time and further the decision if it’s worth to

use parallel streams. Nevertheless the following list should give some indicators and a basis for

decision-making [46] [21].

1. CPUs: The fundamental requirement to benefit from parallel stream processing is a CPU

with several cores or even a computer with multiple CPUs. If this requirement is not

fulfilled, the use of parallel streams would be nonsense since the execution time would

even rise.

2. Amount of data (N - Number of elements): The amount of data, which has to be pro-

cessed, is an important indicator for determining whether the use of parallel streams is

profitable or not. For small amount of data the use of parallel stream is almost never a

winning decision. The advantages of parallel processing of only a few elements aren’t

enough to compensate the additional cost introduced by the parallelization process.
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3. Complexity of the task (Q - Cost) : Let’s assume that N is the number of elements to be

processed (see previous list-item) and Q represents the costs of processing the elements

through the stream pipeline. Then N*Q gives an approximate estimation of this cost. So

not only a higher value of N but also a higher value of Q leads to a higher chance of a

better performance when using a parallel stream.

4. Kind of operation: The benefit of using parallel streams also depends on the operation

used on the stream. Some methods will naturally perform worse in parallel mode than

on a sequential stream. Such operations like findFirst() or limit often rely on the

order of the stream and so they are expensive in parallel mode. Others like findAny()

or map() will perform much better with parallel streams because it isn’t constrained to

operate in the encountered order.

Another problem is the use of functions which do I/O or synchronization. Those func-

tions are extreme examples as they don’t pass the independence criterion. Parallelizing

them would not make much sense. If every subtask (parallel operation) may be blocked

for a significant time waiting for I/O or access, CPU resources may sit idle without any

possibility for the JVM to use them [21].

5. Underlying data structure: Another important point to consider is the underlying data

structure (Collection or Array) of the stream. An ArrayList can be split with much

less effort than a LinkedList because the ArrayList can be divided without travers-

ing the whole collection, as it is necessary for linked data structures (see performance

experiment in Section 3.4.4).

6. Boxing and unboxing: Boxing (or Autoboxing) is the automatic conversion that the Java

compiler accomplished between a primitive type and the corresponding object wrapper

class, for example between the primitive type int and its corresponding class Integer. This

operation can influence the costs of processing of streams in a very bad way. The solu-

tion for this problem when working with primitive values is to use also primitive streams

which comes with Java 8. These primitive streams are represented in Java 8 by the classes

IntStream, DoubleStream and LongStream. By using these classes instead of

using for example Stream<Integer>, the additional and expensive step of boxing can

be omitted.

The above enumeration outlines how many aspects can influence the performance of parallel

stream processing. They all have to be considered when making decisions between sequential

and parallel processing. Although they give good indicators only more experience in dealing
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Test CPU
cores

Amount of
Data (N)

Complexity
of task (Q)

Kind of
operation

Underlying
Data Structure

Boxing

Test A 2 high -
1.Mill

low non-
blocking

multiple
Collection types

yes

Test B 2 very high -
20.Mill

low non-
blocking

multiple
Collection types

yes &
no

Test C 2 low - 10 high non-
blocking

multiple
Collection types

yes

Test D 2 medium -
100.000

low blocking ArrayList -

Table 3.2 Overview of the following test scenarios

with streams and parallel streams can prevent the programmer of picking the wrong one. So

in case of having doubt about the best solution it is advisable to measure the time-effort of the

two approaches and compare them. Since the change between the sequential and the parallel

version of stream processing is an easy task by only substitute a method name like stream()

to parallelStream() the effort of testing which processing method behaves faster, is low.

3.4.4 Quantitative Comparison between external Iteration, sequential and
parallel Stream Processing

Because the topic of parallel stream processing in Java is brand new and innovative, the neces-

sary experience when dealing with them is very low. This is also discernible in literature. Until

now, only very few literature sources exist, which address this topic and intensive studies and

comparisons from which new insights can be derived, are completely missing. Another problem

is that some findings of the few sources are contradictory.

So this Section should give an idea how the difference factors (compare with the enumeration of

the previous Section 3.4.3) like amount of data, complexity of task/operation, kind of operation,

Boxing and the the underlying data structure influence the execution time. Therefore four differ-

ent test scenarios should measure how the execution time changes by influencing these factors.

So the execution time in milliseconds acts as the benchmark. Table 3.2 summarizes the different

test scenarios and emphasizes the test settings roughly.

Test Description

Test Settings: According to Table 3.2, the first test scenario Test A demonstrates an example

from the article ’Iterating over collections in Java 8’ [26] executed on a 64 Bit Windows system

with a dual-core Pentium processor and 4 GB RAM, while the following three test scenarios
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(Test B - Test D) are own designed tests executed on a 64 Bit Mac OSX system with a Intel i5 -

2,5 GHz processor (two cores) and 8 GB RAM.

Measuring Approach: To measure the execution time, one and the same test scenario were

executed 100 times. The duration of each iteration was measured in nanoseconds, converted to

milliseconds and averaged over all 100 iterations (see Listing 3.11). This is how the values in

the result tables were calculated. Since for every single test scenario (like an external iteration of

an ArrayList or a parallel stream processing of an ArrayList), a new application was launched,

the JVM warm up phase was not taken into account, because the prerequisites were the same for

all of them. This fact ensures the comparability of the results.

To demonstrate also the impact of the underlying data structure when traversing collections,

the tests ’A’, ’B’ and ’C’ were executed for the most common ones, that are LinkedList,

ArrayList ,HashSet, LinkedHashSet and TreeSet.

public static void main (String []args) {
final int TEST_RUNS=100;
double duration;
double executionTime = 0;

for (int i=0; i<TEST_RUNS; i++) {
duration = System.nanoTime();
//EXECUTION OF THE SPECIFIC TEST SCENARIO HERE
executionTime += duration = (duration - System.nanoTime());
System.out.println(duration);

}
System.out.println((System.nanoTime() - duration)/1000000/TEST_RUNS);

}

Listing 3.11 General Measurement Approach

Result Representation: The results of the test scenario are represented by a Table with the

following columns:

• Collection type: Underlying type of data structure on which the test scenario is executed.

• External iteration (A): Execution time in milliseconds for processing the collection with

an external iteration approach.

• Sequential stream (B): Execution time in ms for processing the collection with a sequen-

tial stream approach.

• Parallel stream (C): Execution time in ms for processing the collection with a parallel

stream approach.
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• Relative change (C/A): Shows the relative change of execution time between external

iteration and parallel stream processing. A positive percentage value indicates a higher

execution time for parallel processing in contrast to external iteration, while a negative

one indicates a faster execution time.

• Relative change (C/B): Similar to the previous point, but this column demonstrates the

relative change between sequential stream and parallel stream processing

• Trend: Possible values are ↗, indicating a slower execution time of parallel execution,

and↘ to indicate a faster execution time parallel execution.

Test 1

This test scenario is taken from the article [26]. The benchmark code counts the numbers of

names in a collection with 1 million elements (N=1.000.000) that begin with letter ’A’. The

costs for each element (Q) are very low, since there is only one method call to check if the

element starts with the letter ’A’.

For the test three different methods were used which all do the same, but by using different

approaches. The first method testExternalIterator uses an external iteration approach,

while the second testSequential and the third testParallel method use an internal

iteration approach by using streams. In contrast to the second method, the third method is based

on parallel stream processing (see Listing A.1 in appendix). All these test scenarios where run

with five different collection types (see Table 3.3).

The average results of several runs are shown in Table 3.3.

Collection Type External
Iteration

(A)

Sequ.
Stream

(B)

Parallel
Stream

(C)

Trend Relative
Change

(C/A)

Relative
Change

(C/B)
LinkedList 5,21 5,17 7,99 ↗ + 53,36% + 54,55%
ArrayList 3,21 3,67 2,62 ↘ - 18,38% - 28,61%
HashSet 11,43 14,98 8,72 ↘ - 23,71% - 41,79%
LinkedHashSet 5,21 5,34 8,26 ↗ + 58,41% + 54,68%
TreeSet 11,80 12,42 8,51 ↘ - 27,88% - 31,48%

Table 3.3 Test 1 - Iteration benchmark results [26]

Test 2

To verify the data taken out of the literature in the last Section, a similar test should be performed

where the number of elements of the collection (N = 20 Mill.) is much higher. To examine also
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the influence of boxing (autoboxing), the test scenario has been changed slightly. The test now

deals with integers and checks a modulo-condition (see Listing A.2 in appendix). This fulfills

the requirements needed to emphasize the impact of autoboxing. The last method in Listing

A.2 shows the same test scenario, but by using an IntStream in parallel mode to avoid auto

boxing, to emphasize also the impact of boxing.

Table 3.4 shows the measurement results. The trends of these results are the same like in the

previous test (compare with Table 3.3), but in contrast to them, the influence on the execution

time is more distinct, since the number of elements (N) is much higher.

The additional last row in Table 3.3, shows the influence on execution time when omitting au-

toboxing, by using an IntStream instead of Stream<Integer>. As a result the execution

time decreased dramatically, no matter which iteration approach was used (external, internal or

parallel internal approach).

Collection Type External
Iteration

(A)

Sequ.
Stream

(B)

Parallel
Stream

(C)

Trend Relative
Change

(C/A)

Relative
Change

(C/B)
LinkedList 120,45 106,31 176,17 ↗ + 46,26% + 65,71%
ArrayList 62,97 59,76 35,65 ↘ - 43,39% - 40,34%
HashSet 151,68 189,43 105,64 ↘ - 30,35% - 44,23%
LinkedHashSet 142,22 149,17 228,58 ↗ + 60,72% + 53,23%
TreeSet 166,07 158,79 89,69 ↘ - 45,99% - 43,52%
IntStream.Range 24,19 48,24 23,83 ↘ - 1,49% - 50,60%

Table 3.4 Test 2 - Iteration benchmark results

Test 3

In contrast to the last test scenario, the number of elements is now very small (N=10) while the

cost (Q = 2 Mill.) of processing each element is much higher by iterating over a loop 2 million

times (see Listing A.3 in appendix).

The measurement results are represented in the Table 3.5. The finding clearly shows that the

influence of the underlying data structure is negligible in this case. That is because the number

of elements which has to be processed is with only 10 element very low, and so the influence

of a worse decomposability of some data structure is marginal. That leads to an improvement

of execution time when using parallel stream processing, no matter which type of data structure

the underlying collection has.
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Collection Type External
Iteration

(A)

Sequ.
Stream

(B)

Parallel
Stream

(C)

Trend Relative
Change

(C/A)

Relative
Change

(C/B)
LinkedList 80,8 85,5 66,4 ↘ - 17,82% - 22,34%
ArrayList 83,6 88,2 67,5 ↘ - 19,26% - 23,47%
HashSet 85,5 86,6 68 ↘ - 20,47% - 21,48%
LinkedHashSet 85,8 84,6 65,9 ↘ - 23,19% - 22,10%
TreeSet 86,4 84,2 66,8 ↘ - 22,69% - 20,67%

Table 3.5 Test 3 - Iteration benchmark results

Test 4

The last test should demonstrate the influence of blocking or synchronized functions. For that

test scenario, only the collection type ArrayList is used (see Listing A.4 in appendix), which

is a perfect decomposable data structure and consists of 100.000 elements (N). The cost for

processing each element (Q) is low since every element is only outputted to console without

doing further operations. As the values in Table 3.6 show, this task is not suitable for parallelism,

because the output function is a blocking function. Because of the additional overhead, which

has to be performed when using streams and parallel streams, the execution time is even higher

when parallel stream processing is used.

Collection Type External
Iteration

(A)

Sequ.
Stream

(B)

Parallel
Stream

(C)

Trend Relative
Change

(C/A)

Relative
Change

(C/B)
LinkedList 686,4 824,2 988,4 ↗ + 43,99% + 19,92%

Table 3.6 Test 4 - Iteration benchmark results
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CHAPTER 4
jTL - Java Transformation Library

4.1 Introduction

This chapter describes in a detailed way a general transformation approach by introducing an

Java-based library called Java Transformation Library, in short jTL. Based on the findings of

the Chapters 2.1.1 and 2.2.1 an architecture is designed that combines the advantages of these

two approaches and add some further improvements. These improvements also concerns the

concrete implementation of the jTL, as it takes also the benefit of using novel Java 8 features

into account.

The basic idea of this work was to design a transformation library which can be used in different

fields of application. This addresses graph based transformation as well as translation of pro-

gramms. Thus the architecture of jTL should at least fulfill a general approach, to use it for a

wide range of transformation problems. This means that the resulting jTL should not only deal

with tree based source models like an AST, but also with all kind of graph based source models.

Furthermore the jTL should be able to deal with cycles in the source model and therefore should

address the problem of non-terminating recursive transformation properly. Last but not least a

tracing approach and rule inheritance as reuse mechanism should complement the jTL.

The most important principles respectively goals of the jTL, which should be achieved when

designing and implementing the library are:

1. Performance improvements: especially in contrast to SiTra, where Section 2.1.1 reveals

some shortcomings.

56



2. Flexibility (external as well as internal flexibility): External flexibility means, that jTL

should address a wide range of application scopes, while internal flexibility addresses

issues like the flexibility of rule selection.

3. Simplicity and clarity

Simplicity/Clarity on the one hand and Flexibility on the other hand are somehow conflicting

issues. Therefore a satisfying and good tradeoff of these two characteristics has to be found.

4.2 Architecture

4.2.1 Naming Conventions

For the design of jTL, the naming convention should follow the well known notations which are

widely used in the area of model transformation and therefore contribute to a better readability

and maintainability. In contrast to the PC2J-Transformer which has slightly different naming

convention which seems to be a bit confusing, SiTra already follows these conventions. The jTL

has therefore the following named components

• Transformer - interface

• Rule - functional interface

• RuleTransformationException - exception class

• SourceElement - abstract class

• TransformationContext - class

• Tracing - class

4.2.2 Overview

Figure 4.1 shows the overview of the jTL consisting of the seven elements which were already

mentioned in previous enumeration 4.2.1. They all together are part of the package jTL and

build the basis for transformation process.

In the following the components of the jTL are discussed in more detail, without forgetting

to make cross-comparison between jTL and SiTra as well as PC2J-Transformer. These cross-

comparisons should especially outline which motivation and reasons cause differences in the

architecture and implementation compared to SiTra (2.1.1) and PC2J-Transformer (2.2.1) and

what advantages occur from them.
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Figure 4.1 Architecture of the jTL
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4.3 Source Element

The starting point of every transformation is the source model consisting of the different source

elements according to the source meta-model. The abstract class SourceElement should

serve as the general superclass for all kinds of source elements. Since there is no reason to

create an instance of this class it has been implemented as an abstract class. Although the source

elements in general have different kind of structures there are two reasons, which are introduced

in the next two subsections, why a general superclass SourceElement was designed to be

part of the jTL.

4.3.1 Default Rule

The main reason for the abstract class SourceElement being part of the jTL is the idea of

binding a default rule to every type of source element. This concept is new since SiTra and

PC2J-Transformer go completely different ways. Especially SiTra was the reason to rethink the

concept of how a corresponding rule is chosen to transform a source element.

SiTra’s concept is to call every single rule of the rule-repository to check if the visited rule is

able to transform the source element by checking the type and comparing it with the type which

the rule can handle. This concept is neither intuitive or practicable nor performant and leads to

an unnecessary overhead.

The PC2J-Transformer already follows a better and more performant approach by holding a

rule-repository (name ConverterRepository), which already links every source element

with the corresponding rule implemented by a Hashmap. In contrast to SiTra it is not necessary

anymore to iterate over all rules, since one single request to the rule-repository is enough to

retrieve the applicable rule. Although this approach is mature and practicable there is one aspect

which influences the decision against using a rule repository in jTL. In general every source

element type is always transformed by one and the same rule. In fact there is a fix linkage

between the source element type and its rule. So the question when designing the jTL was:

’Is there a real need for a repository to map this linkage?’. In fact no, because this linkage can

already be expressed in the source element. So the decision in jTL was to hold the mapping to the

applicable rule by referencing the rule in the world SourceElement. To fulfill also the design

principle of ’Separation of Concerns’ [37], it was important that the SourceElement does

not already hold the actual transformation code, but only holds the reference to the applicable

rule. So every concrete source element should inherit from the abstract class SourceElement

which already makes available an instance of the type Rule which represents the link to the

default rule, as well as a constructor to initialize the rule-object and an according getter for the

Rule-instance (see Listing 4.1).
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public abstract class SourceElement {

Rule<? extends SourceElement,?,?> defaultRule;

public SourceElement(Rule<? extends SourceElement,?,?> defaultRule) {
this.defaultRule=defaultRule;

}

public Rule<? extends SourceElement,?,?> getDefaultRule() {
return defaultRule;

}
}

Listing 4.1 Source Element (Abstract Class)

SiTra’s as well as PC2J-Transformer architecture enables the possibility that theoretically one

source element can have more than one applicable rule that transform it. In SiTra the check-

method of a rule could return true for more than one rule when passing one and the same source

object, while the PC2J-Transformer enables this possibility by mapping a list of rules to one

and the same source element. But in practice the implementation showed that SiTra only would

execute the rule which is found first and ignoring further possible matches, while the PC2J-

Transformer never made use of assigning more than one rule to a source element. Although it

would make use of this feature, the concrete implementation shows that it would only pics the

last rule of the list for the transformation of the source element and ignore the previous once.

Based on these findings the jTL avoids the possibility to link more than one rule to a source

element, since there is no use for it and would only worsen the readability. Nevertheless jTL

provides a possibility to transform an source object by an alternative rule instead of using the

default one. This approach is explained in the next paragraph.

In nearly every transformation case the use of the default rule would be the matter of choice

when transforming a source element. The use of a default rule would result in simplicity and

clarity, which was defined as one important goal when designing the jTL. But the problem

with this is that it would violate the goal of flexibility, since there would be no possibility to

run a different rule for a source element type in exceptional cases. To overcome this issue the

interface Transformer supports a possibility to pass an alternative rule for the transformation.

This possibility is described in more detail in the Section 4.6.2. The third goal ’Performance

Improvements’ defined earlier is satisfied, because the applicable rule is already known, when

a source element is passed to transform, since the source element holds the reference to this

rule. In contrast to SiTra, where the transformer has to search the applicable rule by iterating

over all rules and checking the compliance of the types, this is a big advantage of the jTL in

performance.
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4.4 Rule

4.4.1 Changes compared to SiTra

The interface Rule acts as super type for all concrete implementation of transformation rule. In

contrast to the corresponding interface in SiTra, it only consists of one abstract method named

convert and a default method recordMapping. SiTra’s equivalent of the interface Rule

consists of two more methods that are check and setProperties. The reason why the

SiTra library forces the developer to implement these methods were already explained earlier

(see Section 2.1.3). Hence, the following description is limited to the argumentation why the

jTL can waive the use of these methods.

• Waiver of the the check-method: Since SiTra does not hold any information to empha-

size the linkage between a source element type and its corresponding rule-class it has to

make use of this method to check every single rule whether it is applicable for the specific

source type or not. In contrast the jTL has already knowledge about the corresponding rule

class. Regardless of whether the default rule is used, which is referenced directly in the

source element (see Section 4.3.1), or any other specific alternative rule is chosen in the

Transformer (see 4.6.3), the called rule class can be sure that it can handle and transform

the passed source element. So this time consuming step has been omitted in the jTL.

• Waiver of setProperties-method: SiTra uses this method to split up the actual

transformation of the source element from the transformation of further referenced source

elements to avoid the non-terminating recursive transformation problem. But as men-

tioned above there are also many cases where this kind of problem can’t happen, for

example when transforming a tree based source model. Nevertheless SiTra forces the de-

veloper to implement this method and split up the actual transformation process. In my

opinion this is an overwhelming and in addition not necessary approach. Therefore the

jTL relies on a little more light weighted implementation by using the default method

recordMapping to avoid the non-terminating recursive transformation problem. As

soon as the target element is created the method recordMapping has to be called to

register it to the class Tracing (see 4.8.2). That has to happen before any further linked

source objects are transformed. So it’s up to the developer to handle the registration prop-

erly and in the right order. But in case of SiTra it’s also up to the developer to implement

the methods convert and setProperties as it is supposed to be and call them in

right order. So the jTL approach does not lead to any usability disadvantage. Moreover

jTL enables the user to avoid the call of the registration method recordMapping, when
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in a transformation case the non-terminating recursive can’t occur and the tracing ability is

not needed. In contrast to jTL, SiTra forces the user to implement the methods convert

and setProperties, although the split up wouldn’t be necessary.

4.4.2 Overview

import java.util.Optional;
import static jTL.TransformerContext.getContext;

@FunctionalInterface
public interface Rule<S extends SourceElement,T, U extends Object> {

public Optional<T> convert(S source, T target, Optional<U> parent);

public default void recordMapping(S source, T target) {
getContext().getTracing().recordMapping(source, this, target);

}

public default Optional<T> convert(S source, Optional<U> parent) {
return convert(source, null, parent);

}
}

Listing 4.2 Rule (Functional Interface)

When looking on Listing 4.2 the annotation @FunctionalInterface is noticeable which

indicates that the following interface definition has to be a functional one (also called SAM Type

- Single Abstract Method Type). The concept of functional interface was already invented in the

Section 3.3.1 but without noticing the annotation. The annotation @FunctionalInterface

can be used for denoting an interface as a functional interface. Although this decoration is not

necessary, it can support the development process by catching an error in the interface definition

at compile time. As soon as more than one abstract method is defined, the compiler will raise

an exception. Addition default method can be used anyway (see method recordMapping in

interface Rule in Listing 4.2).

The reason for the decision to use a functional interface for the interface Rule was to enable

the possibility to pass functionality by using lambda expressions. This is the prerequisite to de-

fine the implementation of the interface method and passing it to the Transformer without

creating an extra class for the implementation of the interface. The approach of using lambda

expression and gaining flexibility in the transformation process without loosing readability is ex-

plained in more detail in the Section 4.6.2. Nevertheless the classical approach, by implementing

the interface Rule in an extra class-file, is the preferred solution if the convert-method, which

contains the conversion code, is more complex or longer.
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4.4.3 Method convert

The interface Rule comes up with two different signatures of the convert-methods. The one

which only consists of one parameter called source and the placeholder for an optional parent

object, has a default implementation and shouldn’t be overwritten by the user. Unfortunately this

can’t be forced by using the keyword final, since a default method of a functional interface

does not support the use of it. This method only takes the source object and delegates it to the

second abstract version of the convert-method, by adding null as parameter for the target ob-

ject. The reason for this detour lies in the reuse mechanism rule inheritance and was necessary to

provide this important mechanism to the user. Section 4.9 describes this approach in more detail

and gives also a detailed answer why the Rule-interface has to hold two versions of the method

convert. For now it is enough to know that, whenever rule inheritance as reuse mechanism is

not used, the call of the simpler version of convert by passing only the source object satisfies

the needs for transforming a source object. This convert-method takes a source element from

the class-type SourceElement 4.1 and returns an Optional<Object>. The parameter

parent from the type Optional<Object> represents the parent object of the return element

respectively the current transformed target element. Since the parent target object is often neces-

sary for code generation when transforming source code, this parameter was necessary to be part

of convert method. For example if a move statement has to be part of a loop statement, the

rule which converts the move statement has to have knowledge about the parent loop statement

in which the move statement has to be generated. Thats the reason for the additional parameter

parent.

A possible implementation of this method should follow the steps emphasized in the Figure 4.2.

Figure 4.2 Guideline for the process of the convert-method
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1. The first step is the creation of the target element. At that moment the target element does

not have to be fully transformed respectively configured. Only an instance as placeholder

has to be generated, to register this target element in the next step.

2. Call of the default method recordMapping: Optional step - only necessary if the source

model contains cycle or tracing is required. Registering the previously generated target

element by calling the recordMapping, further indicates that the transformation is in

progress or already done. This is the prerequisite to avoid the non-terminating recursive

transformation. Furthermore the check if a specific source element was already trans-

formed, has to be done in the Transformer (see Section 4.6.2).

3. Further transformation activities: This contains all the necessary steps to configuring the

target element according to the source element. Optional these activities can also be ex-

ecuted after further linked source element has been transformed. So the order of the

procedure is not fixed. If the actual rule-transformation code detects further linked source

element, which has to be transformed by a separate rule, the rule delegates these source

elements to the Transformer.

4. Return the target element: For a transformation library like jTL which should cover a

wide range of possible transformation tasks, the target type has to be declared as general

as possible. This is the reason why the class Object has to be used as generic type.

In some cases one source element is transformed to more than one target element, so

the convert-method has to be able to return even a collection of target elements. This

requirement can only be fulfilled by using the general type Object. Although this is

not a very practicable approach, since every transformed target object has to be cast to

the expected type, it is the only possible approach to fulfill the goal of flexibility. Com-

pared to the library SiTra this approach is very similar. But in contrast to that, the PC2J-

Transformer is limited to transform source elements only to Java code, which is depicted

by the jenesis4Java class Codeable. Since the PC2J-Transformer is already a concrete

implementation of a transformation process, it can use the predefined return type Code-

able and does not have to execute additional casting operation but it does not fulfill the

goal of flexibility. In fact it is a rigid concept.

Instead of returning the target element directly as a type of Object, the new Java 8 con-

cept of Optional<T> is used. The reason and benefit of this approach is explained in

the next Section 4.4.4.

5. Raise exception: In exceptional cases the transformation by a rule can’t be executed suc-

cessfully. Examples would be the misconfiguration of a source element or missing in-
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formation. Then the rule implementation should raise the predefined exception Rule-

TransformationException to indicate the fail of the transformation process (see

Section 4.5).

4.4.4 Excursus: Return Type Optional

In jTL, the decision was made to use a further new concept of Java 8 that is the class Op-

tional<T>. The idea of the class is to avoid NullPointerException. Tony Hoare said

at an important speech: ’I call it my billion-dollar mistake. It was the invention of the null

reference in 1965. ... But I couldn’t resist the temptation to put in a null reference, simply

because it was so easy to implement. This has led to innumerable errors, vulnerabilities, and

system crashes, which have probably caused a billion dollars of pain and damage in the last

forty years’ [14]. Furthermore he pointed out that more recent programming languages like

Spec# have introduced concepts to overcome these issues, like declaration for null values. Since

version 8, Java invented also a way to face this problem by introducing the class Optional.

Although most developers have learned to live with NullPointerException over the years, it has

always been a questionable concept. Consequently the advantages of using Optional<T>

should be emphasized, why jTL relies on this concept. The following enumeration describes

three advantages of using Optional<T>:

1. A method which returns an object of Optional<T> states explicitly that the return value

is optional. For a developer who uses an API, for example jTL, it is obvious that she/he

has to deal with the optional value by implementing also a strategy to face an empty value.

2. With the consequent use of Optional<T> the occurrence of NullPointerExcep-

tion is a thing of the past. Often NullPointerException firstly occurred during

the operational phase, which leads to an unexpected error and a rise in costs.

3. Last but not least the class Optional provides many useful methods to easily deal which

alternatives. Such methods are isPresent, ifPresent, orElse, orElseGet or

orElseThrow. Some of them expect functionality as an argument, which can be passed

simply by a lambda expression.

From my own experience, when working on the PC2J-Transformer, NullPointerExcep-

tions occurred very often during the conversion phase, since a rule which can’t transform a

source element successfully, returns a null-value. In the implementation phase it was often for-

gotten to handle the case of a null-value, which leads to an unexpected error in a later phase of

development. So the developer was busy by searching the reason for that error and designing a
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solution for the exceptional case. With the use of the class Optional<T> the risk of forgetting

to handle the case of an empty return value is much lower.

4.5 RuleTransformationException

public class RuleTransformationException extends RuntimeException{
private SourceElement source;

public RuleTransformationException (SourceElement source, String msg) {
super(msg);
this.source = source;

}
public SourceElement getSource() {

return source;
}

}

Listing 4.3 Rule (Functional Interface)

The exception RuleTransformationException should be thrown in the method con-

vert() of any implementation class of the Rule-interface, when the transformation of the

source element can’t be processed successfully. This can happen when the source element

is configured wrong or if for example no parent target object was passed in case of source

code transformation. When throwing this exception the constructor of RuleTransforma-

tionException forces the developer to pass also the source element where the transforma-

tion error has occurred.

If the conversion is successfully but no target element has to be created, then this should be

obvious through an empty Optional-value by returning Optional.empty().

4.6 Transformer

4.6.1 Comparison to SiTra

The interface Transformer represents the core of the jTL and fulfills managing and distribu-

tion issues. The name of the interface is the same like in SiTra and also the tasks are similar.

Nevertheless the way of realization is significantly different compared to its counterpart in SiTra.

On the one hand defining an interface which specifies the structure of the transformation task

and giving the developer the chance to set up his own implementation of the Transformer-

interface represents a good best practice approach and further fulfills the goal of flexibility which

was defined as one of the three important goals when designing the jTL (see Section 4.1). But

on the other hand the two other defined goals that are ’Simplicity and Clarity’ and ’Performance
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improvements’ are only addressed insufficient or even not at all. Although the goal ’Simplicity

and Clarity’ is satisfied through an interface with less and clearly distinguished method signa-

tures, as in case of SiTra’s interface Transformer, the whole implementation of the interface

has to be addressed by the developer. In practice this seems to be an unnecessary approach, since

the concrete implementation of the interface Transformer would differ only in the rarest of

cases. That is because the transformer is going to address always the same tasks, that are man-

aging incoming source elements and delegating them to the applicable rules. So the question

is: ’Why has the developer to be forced to implement a task that probably stays the same over

different transformation contexts and fields?’.

Furthermore an example of a concrete implementation of SiTra’s interface Transformer

shows that further methods like for example getRule, applyRule or recordMapping

are more or less necessary to implement a complete transformer which however is not part of

the interface definition. So in my opinion SiTra’s interface is an insufficient, incomplete one.

Although it maybe fulfills the goal of ’flexibility’ perfectly, the definition seems to be too vague.

4.6.2 Transformer-interface of jTL

To overcome the above mentioned flaws, a goal when designing core components of jTL was

to provide not only a vague structure to the developer but also a well designed implementation,

that is applicable for most of the possible transformation tasks. Nevertheless it was important

not to lose sight of the goal ’flexibly’. So the aim was to design a framework component,

which already comes up with a ready-to-use implementation but also providing the possibility

for easily extending it by the developer. This of course would fulfill the goal of ’simplicity and

clarity’, since the developer is not forced to write his own implementation but without violating

the goal of ’flexibility’, since he would be able to override and reimplement the already provided

implementation.

With interface default methods of Java 8 a new option arises to fulfill the above mentioned re-

quirements. Before Java 8 was released, only abstract classes or concrete classes were possible

methods of choice. But since the core component of the transformer only consists of public

methods without declarations of any fields also an interface could be use to provide all the ad-

vantages to the developer. So the resulting component is an interface called Transformer as

it is also provided by SiTra, but this time in jTL it already comes up with a default implemen-

tation for each method. So the user of this interface easily notices that he has the possibility to

make his own implementation of the interface when needed in special cases, but on the other

hand has an already-to-use default implementation which is adequate in most situations. So the

goals of ’flexibility’ and ’simplicity and Clarity’ are fulfilled with this approach.
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4.6.3 Interface Methods

public interface Transformer{
/******************** TRANSFORM ONE BY DEFAULT RULE *************************/
public default Optional<Object> transform(SourceElement source) {

return this.transform(source, Optional.empty());
}
public default Optional<Object> transform(SourceElement source, Optional<? extends

Object> parent) {
return transformByRule(source, source.getDefaultRule(), parent);

}
/******************* TRANSFORM ONE BY SPECIFIC RULE *************************/
public default Optional<Object> transformByRule(SourceElement source, Rule<?

extends SourceElement, ?, ?> rule) {
return this.transformByRule(source, rule, Optional.empty());

}
public default Optional<Object> transformByRule(SourceElement source, Rule<?

extends SourceElement, ?, ?> rule, Optional<? extends Object> parent) {
Optional<Object> target = getContext().getTracing().getTargetByRule(source,

rule);
return target.isPresent() ? target : ((Rule<SourceElement, Object, Object>)rule

).convert(source, (Optional<Object>) parent);
}
/*********************** TRANSFORM ALL SEQUENTIAL ***************************/
public default List<Optional<Object>> transformAll(List<? extends SourceElement>

sourceList) {
return this.transformAll(sourceList, Optional.empty());

}
public default List<Optional<Object>> transformAll(List<? extends SourceElement>

sourceList, Optional<? extends Object> parent) {
return sourceList.stream().map(s -> transform(s,parent)).collect(Collectors.

toList());
}
/************************* TRANSFORM ALL PARALLEL ***************************/
public default List<Optional<Object>> transformAllParallel(ArrayList<? extends

SourceElement> sourceList) {
return this.transformAllParallel(sourceList, Optional.empty());

}
public default List<Optional<Object>> transformAllParallel(ArrayList<? extends

SourceElement> sourceList, Optional<? extends Object> parent) {
return sourceList.parallelStream().map(s -> transform(s,parent)).collect(

Collectors.toList());
}

}

Listing 4.4 Transformer Interface with default Method

Listing 4.4 shows the interface Transformer with its default methods which consists of eight

default methods, where four of these methods are only overloaded delegator methods which

takes the additonal parameter called parent. As already mentioned the parent object of the

current target element is often necessary when transforming for example source code. Neverthe-

less, since four methods are only overloaded delegators, the focus will lie on the four different

named method in general. The following classification shown in Figure 4.3 should give a first

sight when to use which method. Further the method are described in more detail.
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Figure 4.3 Classification of the Transformer-methods

Interface Method - transformByRule

This method takes not only the source element as input parameter, but also the rule which is

applicable for the source element and should be used for the transformation. This rule can be

the default rule which is referenced by the source element (see 4.6.3), or it can be a different

one specified by the developer. This ensures the achievement of the goal ’flexibility’ which was

defined above. One obvious possibility to pass a different rule than the default one, is to design a

class which implements the interface Rule and defines its behaviour and transform instructions

in the method convert. But since the Rule-interface is a functional interface with only one

abstract method, this enables also the possibility of using anonymous inner classes or lambda

expression as implementation definition. While the implementation of anonymous inner classes

is a well known practice in Java, the use of lambda expression is new since Java 8. Therefore

the example 4.5 should demonstrate a possibility to call the transformByRule-method by

passing the source element as well as a specified rule by using a lambda expression.

//Long Version
target = transformer.transformByRule(source,

(Source Element srcObj) -> {return Optional.of(new TargetClass(srcObj.getName()));});

//Short Version
target = getContext().getTransformer().transformByRule(man,

(srcObj) -> Optional.of(new TargetClass(srcObj.getName())));

Listing 4.5 Call of transformByRule by passing a Rule as lambda expression

Listing 4.5 shows how compact but still readable the transformation code of a rule can be passed

to the Transformer by using lambda expressions. The first and little more longer version

of the lambda expression enables the developer to also specifies more than one statement to
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describe the rule-transformation-code. Nevertheless it should be mentioned that the more state-

ments a lambda expression comprises, the more the readability and maintainability will suffer.

It’s up to the developer to decide whether a lambda expression is the better and easier solution or

not. If there are too many statements needed to describe a transformation process of a rule, the

better maintainable solution would be the implementation of a concrete rule-class derived from

the interface Rule in an extra Java-file.

Implementation technique to avoid the non-terminating recursive transformation prob-
lem: Before any source object is passed to it’s applicable rule the main task of the Trans-

former is to check if the source element was already transformed. This is established by using

the class Tracing, which is described in more detail in Section 4.8. To examine if the source

object was already transformed, the method getTarget is called by passing the source ele-

ment as well as the rule, which further should be used to transform the element. If the source

element was already transformed by the specified rule, the previously transformed target ele-

ment is returned. If not, the method getTarget returns an empty Optional-object. In

this case the transformation for the passed source element has to be established by calling the

transform-method of the class Transformer.

return Optional.of(
getContext().getTracing().getTargetByRule(source, rule).
orElseGet(
() -> ((Rule<SourceElement, Object, Object>)rule).convert(source, (Optional<

Object>)parent)));

Listing 4.6 Alternative implementation of transformByRule with orElseGet

Another elegant solution to check whether the passed source-element was already transformed

or not, would be the use of the method orElseGet (see Listing 4.6). Again the compiler

checks if the source element was already transformed. If an Optional.empty is returned the

specified lambda expression in the method orElseGet() is executed, which then converts the

source element to the target element. Using the method orElse of the class Optional instead

of orElseGet could worsen the performance and lead to an unnecessary overhead. Because,

in contrast to the method orElseGet, the method orElse is always executed, although the

else-branch is not needed and does not influence the result. According to the API of Java 8, the

method orElseGet, should be used when the computing of the else-branch is slow. Since in

this case the transformation of a source-element and all its possible linked source-elements can

be a very time consuming job, it’s strongly recommended to use the orElseGet-method.
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Interface Method - transform

The simple transform-method is the method of choice if the default rule should be used for

the transformation. Therefore the developer only has to pass the source element, but does not

need to specify the rule for the transformation rule. The transform-method then delegates

the calls to the method transformByRule (see Section 4.6.3) by passing the source element

as well as the default rule which is referenced by the source object. So in most cases this method

would fulfill the needs to transform a source object.

Interface Method - transformAll

This method take a collection from the type List, which represents the source elements, as

input and return a List of Optional<Object>, which represents the list of the transformed

target object. These method should be used if multiple elements has to be transformed by using

their default rules.

Interface Method - transformAllParallel

This method also transforms the passed collection of source elements. But in contrast to the

previous mentioned method transformAll, the implementation of the method transfor-

mAllParallel executes the actual transformation in parallel mode by using.

Input Parameter - ArrayList The method transformAllParallel, forces the de-

veloper to pass an ArrayList. At first sign this is a very unusual definition since usually a

more generic type like the interface List should be used. But according to findings in Chapter

3.4.4 the type of the underlying data structure is very important and significant for a possible

performance increase. While the use of linked data structures like LinkedList can worsen

the performance up to 60%, a data structure based on the type ArrayList can improve the

performance up to 43% (see the benchmark in Section 3.4.4). Choosing the generic type List

as parameter otherwise would enable the developer to choose also a LinkedList, what should

be avoided.

Performance As mentioned in the beginning of this Chapter, the goal of ’Performance Im-

provements’ is also one of the three important ones to achieve. One approach to fulfill this goal

was the easy and fast selection of the applicable rule (see Section 4.3.1) in contrast to SiTra.

While SiTra has to iterate over all known rules the source elements in jTL already know the

according rule. Although if the developer wants do define another rule than the default one for

the transformation, the performance will not deteriorate.
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The second and further important approach to improve the performance in contrast to SiTra and

also PC2J-Transformer, is the implementation of parallelism. Since Java 8 this can be easily

done by using parallel streams instead of implementing a lot of boilerplate code to use threads

or the fork-join mechanism (see Section 3.4.3).

//Long Version
sourceList.parallelStream().map((SourceElement s) -> {return transform(s,parent)}).

collect(Collectors.toList());

//Short Version
sourceList.parallelStream().map(s -> transform(s,parent)).collect(Collectors.toList());

Listing 4.7 Using parallel Streams to start for parallel rule invocation

Parallel Streams Listing 4.7 shows two possibilities to start parallel transformation by using

parallel streams. Both have the following issues in common

• Based on the ArrayList which represents the passed source elements, a parallel stream

is created via the standard API-method parallelStream.

• The method map is executed on the resulting parallel stream, which means on every sin-

gle element of it. As input parameter this method takes a function which describes how

the elements of the streams should be mapped to target elements. Therefore a lambda

expression is used to call the convert-method of the applicable rule.

• The previous described method map is an intermediate operation which returns a stream

again. Therefore an additional terminal operation has to be executed which is represented

by the collect-method. This method makes use of the standard API class Collec-

tors that provides various useful reduction operations. The Collectors.toList-

method which is used in the interface Transformer converts the stream back to a list.

4.7 TransformerContext

4.7.1 Purpose of TransformerContext

The class TransformerContext is an approach which already proves very useful in the

PC2J-Transformer. It is designated to hold all necessary environment variables and offering

useful utility and helper methods for the transformation process. Initial in jTL this class already

comes up with two environment variables, that are from the class-types Transformer and

Tracing and its related getters. Since the use of these instances are wide spread over the
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whole transformation process and many different rule-classes, a central unit where these objects

are stored is very expedient. In contrast to jTL, SiTra do not make use of this concept which

results in passing the Transformer-instance to every single rule and referenced sub-rules.

public class TransformerContext {

private static TransformerContext context;
private static Transformer transformer;
private static Tracing trace;

private TransformerContext () {}

public static final TransformerContext getContext() {
if (context == null) {

context = new TransformerContext ();
transformer = new TransformerImpl();
trace = Tracing.getTrace();

}
return TransformerContext.context;

}
// getter for Transfomer and Tracing object

}

Listing 4.8 Singleton - TransformerContext

4.7.2 TransformerContext as Singleton

The TransformerContext was designed as singleton pattern, which is a well known cre-

ational pattern of the GoF [12]. It ensures that one class holds exactly one instance of itself and

provides one global access point to it. This approach perfectly fulfill the needs of the Trans-

formerContext. Further this pattern is also used for the class Tracing (see Section 4.8) which

is referenced within the TransformerContext.

Since the global access point for the instance of TransformerContext is declared as ’static

final’ (Listing 4.8), the instance of this central class can be accessed from any other class through

a static import of TransformerContext.getContext. So every rule-class which needs

access to the Transformer-class to transform further referenced source elements, can directly

get access to the TransformerContext and further to the Transformer-object (see List-

ing 4.9).

import static jTL.TransformerContext.getContext;
//Convert-method by using the TransformerContext
getContext().getTransformer().transform(a);

Listing 4.9 Global Access to TransformerContext

73



4.8 Tracing

4.8.1 Purpose of Tracing in jTL

The needs and benefits of tracing, were already discussed in detail in Section 2.1.3. To sum up

the most important reasons for tracing are:

• Detection of cycles in the underlying source model

• Solving the interoperability problem by providing the possibility for reverse engineering

• Provides good debugging opportunities

Especially the first reason ’Detection of cycles in the underlying source model’ plays a very

important and indispensable role when implementing a general approach of a transformation

library. As soon as a source model is graph based and not tree based and consists of cycles the

feature of tracing is a must. Since jTL should not only be applicable to source code transforma-

tion, where the source model is based on an AST, which obviously does not contain cycles, it also

relies on Tracing. To put it in a nutshell, when an object of the source model is transformed to an

object in the target model, and later on the same source object appears as a reference, it should

not be transformed again. Instead the previously generated object of the target model should

be returned [3]. This kind of implementation was already demonstrated in the default method

transformByRule of the interface Transform (see Listing 4.4), where before a concrete

source object is transformed, it’s checked whether this object was already transformed or not.

If the concrete source object was already transformed, tracing is used to query the correspond-

ing target object/s, without repeating the actual transformation. Otherwise, if the transformation

would be repeated, this would lead to the non-terminating recursive transformation problem (see

Section 2.1.4).

4.8.2 Tracing implementation in jTL

In jTL the utility class Tracing holds the mapping between the source and the target objects

as trace links and provides different kinds of resolve methods. The class Tracing, which is

referenced by the previously mentioned class TransformerContext, is implemented as a

singleton class, since is it necessary that only one instance of this class exists, which represents

the mapping between the source and the target model for the whole transformation process.
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Trace Links

To receive all necessary information from tracing, the following attributes have to be represented

by a trace link:

• Source object

• Rule type which was used for the transformation

• Target object/s

So a trace link can be represented as a triple consisting of the above listed information. Storing

these triples/trace links in a simple list, for example a java.util.List, would violate the

previously defined goal of ’performance improving’ of jTL, since every request would result in

a time consuming iteration process to find the corresponding target object to a specified source

object. If number of n trace links are hold in the list, a worst case scenario would need n iteration

steps to find the designated trace link . To overcome this issue, it was important to choose an

applicable data structure that has low access time. Therefore two instances of HashMap were

chosen - one to hold the mapping from the source object to the target object/s and a second

one which holds the mapping from the target object back to the source object. Although this

approach needs two HashMap to represent the two unidirectional links from source to target

object and vice versa, the benefit of this approach is the low access time, since the cost for

several iteration steps are omitted [28].

Figure 4.4 Hash Maps holding the trace links: source → target & target → source
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1. sourceToTargetMap: Holds the unidirectional link between the source object and it’s

corresponding target object/s, where the source object represents the key of the source-

ToTargetMap. Since one and the same source object could be mapped to different

target object/s by choosing different rule types for the transformation process, this results

in an one-to-many relationship between the source object and its corresponding target ob-

jects. To represent this structure, every source object key, references another inner hash

map. This inner hash map consists of the rule type as key and the target object as value

(see Figure 4.4). These data structures ensures not only a fast access to the target object

but also the possibility to hold several trace links from one and the same source object to

different target objects, transformed by different rule types.

2. targetToSourceMap: To enable also a fast resolution from a target object back to the

corresponding source object, a second instance from the type HashMap is available in

the class Tracing called targetToSourceMap. This map stores the target object as

key and a tuple of source object and rule type as value. So the developer can gain the

information from which source object the specified target object was generated and which

rule type was used to transform it. The tuple, which consists of the source objects and the

rule type, is implemented as inner class, called Tuple which is part of the surrounding

class Tracing.

Although at first glance the use of two data structures with the same data leads to redundancy

and involves the danger of inconsistent data, it is still the best solution to minimize the time

complexity. When looking at SiTra, every resolve request leads to an iteration of all trace links

until the right one is found, which results in a high time complexity. The average iteration steps

which are needed to find the right trace link is n/2, for n trace links. Since every single source

object transformation leads to a recording of a trace link, the number soon rises dramatically.

Therefore in contrast to SiTra, jTL’s time complexity was decreased significantly to find the right

trace link, by using hash maps which omit the time consuming iteration task. This significant

improvement in time complexity is the reason for accepting the data redundancy. To avoid the

danger of inconsistency between the two hash maps, the manipulation of the two maps is encap-

sulated in only one method called recordMapping (see Section 4.8.2) in the class Tracing.

Since the two hash maps are declared as private attributes, and the recordMapping is the only

method which manipulates them, the risk of running into inconsistency is marginal.
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Record Method - recordMapping

The method recordMapping of the class Tracing (see Listing 4.10) is responsible to store

the trace link into the two hash maps sourceToTargetMap and targetToSourceMap.

This method has to be called as soon as the target object is generated by a rule class. Therefore

the interface Rule of jTL comes up with a default method also called recordMapping, to

forward the call to the method Tracing.recordMapping. It takes the source-, the target

object as well as the transformation rule as input to transfer this information into the hash maps.

Resolve Methods

Resolve Function in QVT Resolve Function in jTL
resolve getTarget
resolveIn getTargetByRule
- getTargetByTargetType
resolveOne getOneTargetByTargetType
invresolve getSource
invresolveIn getSourceByRule
- getSourceRuleTuple

Table 4.1 Resolve functions in QVT [29] and jTL

In QVT there are several proposed resolve-methods [3] [29]. Table 4.1 lists the most important

resolve-methods of QVT that have corresponding methods in jTL, plus two additional methods

that are specific to jTL. Also SiTra consists of similar methods to resolve the results of tracing,

except the issue that all inverse-resolve methods are not implemented yet in SiTra. The following

enumeration, describes the resolve methods of jTL in more detail. The implementation of them

can be found in Listing 4.10.

1. resolve vs. getTarget:

The counterpart of QVT’s function resolve in jTL, has exact the same functionality.

They both return a collection of target objects. These objects are the result of an recent

transformation [3]. The rule type which was responsible for the transformation is not taken

into account. This means, if one source object was transformed to different target objects

by different rule types, then this method return all target objects which were generated

from the source object.

2. resolveIn vs. getTargetByRule:

Again these two methods have the exact same behaviour. In contrast to the previous

mentioned methods, these methods take also the rule type into account. In QVT as well

77



as in jTL the user passes not only the source object but also the rule type. These methods

then return only the target object which were transformed out of the source object by the

specified rule type.

3. getTargetByTargetType:

This method is specific to jTL. The user passes the source element and the desired type

of the target type. In the end this method returns all target objects that have the requested

target type and were transformed out of the source object. Since one source element can be

transformed by different rule and nevertheless results in the same target type, this method

can of course return several target objects.

4. resolveOne vs. getTargetByTargetType:

These two functions have a similar behaviour. Like the above mentioned method get-

TargetByType, they take the source element and the target type as input parameter.

Instead of returning all found target object, these methods return only the first found tar-

get object that fulfill the requirements.

5. invresolve vs. getSource:

QVT’s invresolve, as well as its corresponding method getSource in jTL, take a

target object as input and return the source object.

6. invresolveIn vs. getSourceByRule:

Similar as above mentioned methods, but the user also has to specify the mapping/rule-

type which was used to for the transformation to the target object. The source object is

only returned if the target object was transformed by the specified rule type.

7. getSourceRuleTuple This specific jTL resolve-method takes a target object as in-

put and returns not only the source element, but also the rule type which was used for

the transformation, to provide the user additional information about the transformation

process.

public class Tracing {

private static Tracing trace;

private Map<SourceElement, Map<Class<Rule<? extends SourceElement, ?, ?>>, Object>>

sourceToTargetMap;

private Map<Object, Tuple> targetToSourceMap;

public synchronized Optional<Collection<Object>> getTarget (SourceElement source) {

if (sourceToTargetMap.containsKey(source))

return Optional.ofNullable(sourceToTargetMap.get(source).values());
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else return Optional.empty();

}

public synchronized Optional<Object> getTargetByRule (SourceElement source, Rule<?

extends SourceElement, ?, ?> rule) {

if (sourceToTargetMap.containsKey(source))

return Optional.ofNullable(sourceToTargetMap.get(source).get(rule.getClass

()));

else return Optional.empty();

}

public synchronized Optional<Object> getOneTargetByTargetType (SourceElement source

, Class<?> type) {

if (sourceToTargetMap.containsKey(source)) {

ArrayList<Object> list = new ArrayList<Object>(sourceToTargetMap.get(source

).values());

return list.stream().filter(o -> o.getClass()==type).findFirst();

}

else return Optional.empty();

}

public synchronized Optional<List<Object>> getTargetByTargetType (SourceElement

source, Class<?> type) {

if (sourceToTargetMap.containsKey(source)) {

ArrayList<Object> list = new ArrayList<Object>(sourceToTargetMap.get(source

).values());

return Optional.of(list.stream().filter(o -> o.getClass()==type).collect(

Collectors.toList()));

}

else return Optional.empty();

}

public Optional<SourceElement> getSourceByRule(Object target, Rule<? extends

SourceElement, ?, ?> rule) {

if (targetToSourceMap.get(target).getRuleType()==rule.getClass())

targetToSourceMap.get(target).getSource();

return Optional.empty();

}

public Optional<SourceElement> getSource(Object target) {

return Optional.ofNullable(targetToSourceMap.get(target).getSource());

}

public Optional<Tuple> getSourceRuleTuple(Object target) {

return Optional.ofNullable(targetToSourceMap.get(target));

}

private Tracing () {

sourceToTargetMap = new HashMap<SourceElement, Map<Class<Rule<? extends

SourceElement, ?, ?>>, Object>>();

targetToSourceMap = new HashMap<Object, Tuple>();

}

public static Tracing getTrace() {

return trace==null? trace = new Tracing ():trace;

}
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public synchronized void recordMapping (SourceElement source,Rule<? extends

SourceElement, ?, ?> rule,Object target) {

Class<Rule<? extends SourceElement, ?, ?>> ruleType = (Class<Rule<? extends

SourceElement, ?, ?>>) rule.getClass();

if (!(sourceToTargetMap.containsKey(source) && sourceToTargetMap.get(source).

containsKey(ruleType))) {

Map<Class<Rule<? extends SourceElement, ?, ?>>,Object> innerMap;

if (sourceToTargetMap.containsKey(source)) {

innerMap = sourceToTargetMap.get(source);

}

else innerMap = new HashMap<Class<Rule<? extends SourceElement, ?, ?>>,

Object>();

innerMap.put(ruleType, target);

sourceToTargetMap.put(source, innerMap);

targetToSourceMap.put(target, new Tuple(source, ruleType));

}

}

public class Tuple {

private SourceElement source;

private Class<Rule<? extends SourceElement, ?, ?>> ruleType;

//..... Constructor and Getter

}

}

Listing 4.10 First part of Tracing Class - get-methods

4.9 Rule Inheritance as reuse mechanism

In the area of model transformation reuse mechanisms are indispensable to support development

productivity, maintainability, readability as well as quality of transformation [20]. Rule inheri-

tance is one of the most important reuse mechanism and therefore should also be applicable in

jTL. Unfortunately this is not as straight forward and easy to implement as for example in ATL,

since of the down casting problem in Java (see Section 4.9.1). Nevertheless a good trade off has

been found in jTL to enable this reuse mechanism for the user

To demonstrate rule inheritance in jTL a simplified version of the clazz-to-entity transformation

example is used, which was already presented in the introduction (see Figure 1.1) and is also

based on the example taken from the article [20] (see Figure 4.5).

To simplify the example even a bit more only the components NamedElement and Class were

taken out to transform it to ModelElement and Entity. Figure 4.6 shows the implementation

in jTL, consisting of the two source elements, the super type NamedElement and the subtype

Clazz and the two corresponding target elements, that are the super type ModelElement and
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Figure 4.5 Transformation example for rule inheritance reuse mechanism [20]

the subtype Entity. According to the transformation link between the NamedElement and

ModelElement as well as Clazz and Entity two rule-types have been implemented that

are also in an inheritance hierarchy. The super rule type NamedElem2ModelElem transforms

the name of NamedElement to the name of the ModelElement, while the sub rule type

Clazz2Entity transforms the id of a Clazz to an id of Entity. As soon as a source object

from the type Clazz should be transformed the rule inheritance reuse mechanism is used. This

means that not only the rule Clazz2Enity is used for actual transformation, but also the super

type NamedElem2ModelElem is called during the transformation process (see next Section

4.9.1).

Figure 4.6 Example for rule inheritance in jTL

4.9.1 Possible Approaches fo Rule Inheritance

The principle of rule inheritance is to reuse transformation code from super type rules without the

need of reimplementation. So a sub-rule like Clazz2Entity should only execute transforma-
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tion work that is specific to a Clazz and should delegate all general transformation work that is

applicable to the general type NamedElement to the super-rule NamedElem2ModelElem.

Downcast Problem

The problem with rule inheritance in jTL was the challenge to overcome the downcast problem

in Java. In jTL every rule takes a specific source object and transform it to the final version

of the target object. According to the example of Figure 4.6, this results in a generation of a

target object ModelElement when using the super-rule typeNamedElem2ModelElem and

a generation of Entity when using the sub-rule type Clazz2Enity. This is of course the

right and desired solution when rule inheritance is not used at all.

But as soon as rule inheritance comes into play this approach has some limits. Back to the

example of Figure 4.6, a call of NamedElem2ModelElem.convert from the sub-rule type

Clazz2Entity will result in returning a target object of type ModelElement to the sub-

rule type Clazz2Entity. Since a downcast of a target type ModelElement to an Entity,

does not work in Java, but further transformation activities have to be carried out on an object of

Entity and not on an object of type ModelElement, a solution had to be found to overcome

this problem. Three conceivable solutions were identified, weighed and compared:

1. Approach - ’Conditional instantiation’: For this solution approach the super-rule type

could check the source object type and already generate the final type of the target object.

According to the example of Figure 4.6, the NamedElem2ModelElem would have to

check if the incoming source object is from the subtype Clazz and consequently would

have to generate a target object from the subtype Entity, that further is returned to

the sub-rule Clazz2Entity, which then could executed further transformation actives

on the Entity-object. Otherwise, if the source object is from the super type object

NamedElement, the rule NamedElem2ModelElem would generate a target object

from the general type ModelElement.

Although this solution would work somehow, there are some weaknesses respectively

imperfections. On the one hand the developer has to check every possible source object

sub type in the super rule type to generate the right target object type, which can result

in a considerable effort. On the other hand this solution would violate the separation of

concern principle, because as soon as a new sub type for the source object as well as

the target object is added, also the super rule type has to be adapted by adding a new

if-statement to it. Because of this weakness this solution was discarded.
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2. Approach - ’Copy constructor’: This solution can be seen as workaround for the down

casting problem by adding something similar like a copy constructor to the target sub

type. According to example of Figure 4.6, the sub rule type Clazz2Entity would call

the super rule type NamedElem2ModelElem and would get back a target object from

the super type ModelElement. The target type Entity should further provide a con-

structor that takes a ModelElement-object. The returned target object could then be

’downcasted’ from the super type ModelElement to the desired sub type Entity by

calling this constructor.

Although this approach is a progress in contrast to the ’Conditional Instantiation’ ap-

proach, the developer is still faced with a considerable increase of implementation work,

since every target sub rule type would have to hold an applicable copy constructor for

downcasting.

3. Approach ’Passing the target type’: The concept of this solution is based on the idea,

that the sub rule type already creates an object of the final sub target type and passes it

to the super type. The automatic upcast ensures that the super type rule can handle the

already created target object and can execute further configuration on this target object.

Afterwards the super rule returns the further configured target object back to the sub-rule,

which is able to downcast the object again and executes its own transformation code.

Although this solution is not as straight forward than the rule inheritance mechanism of

ATL, it is still the best solution with the lowest development effort and an approach which

fulfill the concept of ’Separation of concern’.

After weighing all pros and cons of the different rule inheritance approaches, the rule inheri-

tance mechanism of jTL was implemented by using the approach ’Passing the target type’. The

decisive factors to choose this approach were that this approach fulfills the requirement of object

oriented programming best and that it comes with low development effort.

4.9.2 Rule inheritance by example (’Passing the Target Type’ approach)

To enable rule inheritance in jTL, by using the the approach ’Passing the Target Type’ some

precondition has to be fulfilled.

1. Interface Rule: First of all the interface Rule has to provide a convert method which

enables the user not only to pass the source element but also an already created target

object. This is the reason why the Rule interface of jTL comes up with two different

signatures of the method convert. The first one which only takes the source element
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is implemented as a default method, and delegates the call to the second version of the

convert-method, by passing null as reference for the target object. This indicates

that a target object has not yet been created and that the convert method is responsible for

the creation of the object. So the simpler version of the convert-method is the means

of choice if rule inheritance is not used, and prevents the Transformer or the user of

passing null every time he calls a rule directly.

The second version of the method convert, which takes also the target instance as input

has to be called when using rule inheritance. Therefore the sub-rule additionally passes

the already created target object to the super-rule.

2. Super rule: A rule which is intended to be a super rule, has to check the additional

parameter ’target’. As shown in Listing 4.11, the super-rule NamedElem2ModelElem

checks first whether a target object was already created or not. If the target object is null,

then the super rule wasn’t called by an according sub-rule and therefore creates the super

type ModelElement. Otherwise, if an already created target object has been passed

from the sub-rule Clazz2Entity to the super-ruleNamedElem2ModelElem, further

configurations are applied directly on the passed target object, without instantiating a new

one.

public class NamedElem2ModelElem<S extends NamedElement, T extends ModelElement>
implements Rule<S, T, Object>{
@Override
public Optional<T> convert(S source, T target, Optional<Object> parent) {

if (target==null)
target = (T) new ModelElement();

target.setName(source.getName());
return Optional.of(target);

}
}

Listing 4.11 NamedElem2ModelElem - Rule Supertype

3. Sub-rule: To enable rule inheritance in the sub-rule, only one additional line has to be

inserted. This line consists of the explicit call of the super rule and the downcast of the

returned object. As shown in Listing 4.12, after the instantiation of the sub target object

from the type Entity and the logging of the trace link, the convert-method of the

super rule is called by passing the already created target object. Since the super convert-

method executes an upcast to the supertype ModelElement, the return value has to be

downcasted again to the subtype Entity. After that further configuration to the resulting

Entity-object could be executed.
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public class Clazz2Entity extends NamedElem2ModelElem<Clazz,Entity> {
@Override
public Optional<Entity> convert(Clazz source, Entity target, Optional<Object>

parent) {
target = new Entity();
recordMapping(source, target);
target = (Entity) super.convert(source, target, parent).get();
target.setID(source.getID());

return Optional.of(target);
}

}

Listing 4.12 Clazz2Entity - Rule Subtype

4.10 Summary

This chapter described in a detailed way the general architecture of jTL as well as each compo-

nent in an abstract manner. Further the concepts of tracing and rule inheritance and how they

have been implemented in jTL were explained. The next Chapter ’Evaluation’ 5, emphasizes

which constructs, methods and approaches was implemented in jTL to fulfill the earlier defined

main goals. A comparison between jTL, SiTra and PC2J-Transformer according to their char-

acteristics should further demonstrates the differences and especially the improvements of jTL.

Further the changes in execution time and performance of jTL in contrast to SiTra should be

tested. Moreover two sample transformations should exemplary demonstrate the use of jTL.

One is based on the well known graph based ’Class2ER’ transformation and the second is based

on a simple source code translation, starting from the abstract syntax tree.
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CHAPTER 5
Evaluation

5.1 Goal Achievements of jTL

As described in the previous Chapter 4.1, three superior goals were defined as requirements for

the jTL. These goals where ’Simplicity and Clarity’, ’Flexibility’ and ’Performance improve-

ments’. According to this definition the following list emphasizes which requirements were

implemented to fulfill these three basic goals.

1. Simplicity and Clarity

• Basic concepts already implemented: All methods that come up with the core

component Transformer are realized as default methods. This ensures that the

developer does not have to think about the implementation, but can use the default

methods of the interface.

• Rule selection: With the concept of default rules, which are already referenced by

the source element itself, the selection of the applicable rule is an easy task.

• Rule inheritance as reuse mechanism: The architecture of jTL comes up with an

approach of rule inheritance. In contrast to SiTra and PC2J-Transformer where this

reuse mechanism is not possible this is an enormous improvement, especially for

complex transformations.

• Simple Tracing: In contrast to PC2J-Transformer where traceability is not part of

the Transformer, and SiTra where traceability is not completely implemented yet,

jTL already comes up with most of the resolve-methods that are proposed by the

QVT Specification. The developer does not have to think about the implementation
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of tracing, since all necessary methods for recording and resolving are part of the

jTL.

2. Flexibility

• Specification of alternative rule: Although in most cases the default rule imple-

mentation would be the method of choice for the transformation task, the developer

always has the possibility to define a different one to transform a source element to

satisfy also special cases. Since the interface Rule is a functional interface this can

be done with the help of lambda expression, anonymous inner class or even an extra

implementation class. While the PC2J-Transformer does not enable a possibility to

define an alternative rule for the transformation of one and the same source object

type, SiTra does provide this possibility. But in contrast to jTL, SiTra only enables

this possibility by implementing an additional rule-class file. Since SiTra was de-

veloped before Java 8 was published and does not provide the interface Rule as

functional interface, lambda expression can’t be used for the definition of alternative

rules.

• Generic return types: In contrast to the PC2J-Transformer, that was defined only

for source code transformation and therefore only allows the type Codeable from

the framework jenesis4java as return type, jTL as well as SiTra support any kind of

return types for the target object. There is no constraint on it. This ensures that any

kind of transformation can be established by the jTL.

• Transformation of source models with cycles: The default methods of the interface

Transformer of jTL check already if a source element was already transformed.

This ensures that the non-terminating recursive transformation problem can’t occur,

although the source model consists of cycles. SiTra also fulfills this requirement,

while PC2J-Transformer is only accurate for tree transformations and therefore does

not support cycle based graph transformations.

3. Performance improvements

• No time-consuming search for applicable rule: Since every source element of

type SourceElement provides already a link to the default rule there is no need

to iterate over all known rules to find the right one for transformation of a source

element. Especially when there is a huge amount of rules and source elements, such

an iteration process for every single source element can be a very time consuming

task (see test scenarios in Section 5.3.2 and Section 5.3.2). Nevertheless jTL pro-

vides additionally the possibility of specifying a different rule for the transformation

(see previous goal ’Flexibility’). While PC2J-Transformer also provides a short rule
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selection time by using a rule-repository based on a HashMap, SiTra relies on a

time consuming iteration process for every single rule selection and source object.

• Parallelism as standard implementation: Especially since multi core CPUs are

more or less a standard and model transformations soon get complex and time con-

suming, parallel transformation can easily lead to a significant improvement of the

performance. Therefore the jTL already comes up with a standard implementation

of parallel stream processing to transform several source elements at the same time.

Since parallel stream processing is already implemented in the default methods of

the interface Transformer, the developer does not have to take further steps and

gets the parallelism nearly for free. Neither SiTra nor PC2J-Transformer support any

kind of parallelism.

• Fast Tracing: Instead of using an implementation of the interface List to hold the

trace links and force the application to iterate over all of them to find the designated

one, like SiTra does, jTL comes up with two collections from the type HashMap.

One maps source objects to target objects and another vice versa. This ensures a fast

access, although a huge amount of trace links are already present in the hashmaps.

The PC2J-Transformer does not support Tracing at all.

5.2 Comparison: jTL/Sitra/PC2J-Transformer

Table 5.1 summarizes the differences respectively the improvements of jTL in contrast to the

existing solutions of SiTra and PC2J-Transformer. Furthermore this Table emphasizes that jTL

combines the advantages of SiTra and PC2-Transformer and further adds some extra benefit like

rule inheritance and parallelism to it that has whether been part of SiTra nor PC2J-Transformer.

5.3 jTL vs. SiTra - Comparison by Example

To compare jTL with SiTra, especially the usage of both libraries as well as difference in per-

formance between them, a simple transformation example should be given. This example trans-

forms a simple UML class diagram into an ER diagram. The meta models for this example was

already presented in the introduction of this work (see Figure 1.1). These meta models shows

an excerpt respectively a significantly simplified version of the UML meta model as well as the

corresponding meta model for an entity relationship diagram.

Listing 5.1 demonstrates a concrete rule implementation called Clazz2Table, which trans-

forms a source object of the type Clazz to a target object of the corresponding type Table.

The equally named corresponding rule implementation, using SiTra as transformation library,
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jTL SiTra PC2J-
Transformer

Definition of alternative Rule yes yes no
Generic Return Type yes

(Object)
yes

(Object)
no

(jenesis4java
.Codeable)

Rule Inheritance yes no no
Transformation of Graphs
with Cycles

yes yes no

Tracing yes
- partially QVT

compliant

yes
- fully QVT

compliant but
not completely
implemented

no

Parallelism yes -
parallel Streams

no no

Runtime - Rule Selection -
Iteration steps needed
(Worst Case with n Rules)

1 n 1

Runtime - Tracing -
Iteration steps needed
(Worst Case with n Tracelinks)

1 n -

Table 5.1 jTL vs. SiTra vs. PC2J-Transformer

is shown in Listing 5.2. Two differences can be identified, when looking at the two different

implementation classes. Firstly SiTra requires the implementation of three methods. While the

method check does not need an equivalent in jTL, because of the different rule selection mech-

anisms (see Section 4.4), the further two methods build and setProperties, were com-

bined to only one method called convert in jTL. On the one hand that was the precondition

to design the interface Rule of jTL as a functional interface to further enable the use of lambda

expressions for rule specification, on the other hand this approach requires the user to manually

call the method recordMapping after creating the target object and before executing further

transformation of referenced object. This is of course the second significant difference between

jTL’s and SiTra’s rule implementation approach.
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public class Clazz2Table implements Rule<Clazz, Table,

Object> {

@Override

public Optional<Table> convert(Clazz source, Table

target, Optional<Object> parent) {

Table table = new Table(source.getName());

recordMapping(source, table);

List<Field> fieldList = new ArrayList<Field>();

for (Attribute a : source.getAttributeList()) {

fieldList.add((Field)getContext().getTransformer

().transform(a).get());

}

table.setFieldList(fieldList);

return Optional.of(table);

}

}

Listing 5.1 Rule Clazz2Entity - jTL

public class Clazz2Table implements Rule<Clazz, Table> {she

@Override

public boolean check(Clazz source) {

return true;

}

@Override

public Table build(Clazz source, Transformer t) {

Table table = new Table(source.getName());

return table;

}

@Override

public void setProperties(Table target, Clazz source,

Transformer t) {

List<Field> fieldList = new ArrayList<Field>();

for (Attribute a : source.getAttributeList()) {

try {

fieldList.add((Field)t.transform(a));

} catch (RuleNotFoundException e) {

e.printStackTrace();

}

}

target.setFieldList(fieldList);

}

}

Listing 5.2 Corresponding Rule Clazz2Entity - SiTra
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5.3.1 Test Settings

Figure 5.1 demonstrates an example according to the meta model shown in Figure 1.1. It consists

of all possible source objects, that are ’Clazz’, ’Association’, ’Attribute’ and ’Type’ and further

of a cycle which should demonstrate the ability of SiTra and jTL to handle such constructs

without running into the non-terminating recursive transformation problem. This example acts

further as a basis for performance comparisons between SiTra and jTL to test the processing time

of the transformation. Therefore the number of source objects as well as the number of rules are

going to be increased to demonstrate the changes in transformation time. To get representative

results, every test scenario was carried out 100 times in a row and further has been averaged.

Since the warm up phase of the Java virtual machine (jvm) takes a while and would result in a

significant longer transformation time and no meaningful time measurements, a initial warm up

phase without measuring of the execution time is taken into account (see description of the test

class in Section 5.3.4).

Figure 5.1 Simplified Class Diagram which is going to be transformed to a simple ER-Diagram

5.3.2 Sequential Test Scenarios

Table 5.2 emphasizes the execution time of the transformation of one and the same test scenario

for SiTra and jTL. The used transformation method for jTL as well as SiTra was transform

which executes every source object individually in a sequential mode. Therefore a loop passes

one single source object after another to the Transformer-class which then calls the applica-

ble rule. Further the following two variables were invented:

• m - Number of source objects constructs: The chosen source object construct was

already demonstrated in Figure 5.1, which altogether consists of three class-objects, three

associations and twelve attributes as well as twelve datatypes. Since transformation tasks
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are mostly much more complex and consist of significantly more source object the number

of these constructs (m) were increased stepwise, to achieve more representative results.

• n - Number of rules: Another important factor is the number of rules (n) that are

implemented by the developer. This factor does not influence the execution time of jTL,

since every source object in jTL knows already its default rule and does not rely on a time

consuming iteration process to find the applicable rule (see Section 5.1), but it influences

the transformation time in SiTra dramatically. Therefore a mock-rule called DummyRule

was invented that does nothing but returning false by invoking the check-method. This

tells SiTra that this rule is not the right one for the transformation of a source object.

These mock-rules are used in the second test scenario (see ) to investigate the influence on

execution time by the presence of much more rules.

First Test Scenario - n=3

According to the example shown in Figure 5.1 this first test scenario consists of a fixed amount

of three rules (n=3) without adding mock rules to the transformation task, whereas the amount

of source objects is increased stepwise by the factor 10. Since the used constructs consist of

altogether 21 source objects, the first test case sets m to 21.

Transformation Time in microseconds (µs)
m - Number of
Source Objects

SiTra jTL Relative Share jTL
/ SiTra

21 105 11 10,77%
210 556 63 11,33%
2100 1063 353 33,21%
21000 2913 1202 41,26%
210000 29913 13137 43,92%

Table 5.2 Average execution time (in micro-seconds) of jTL compared to Sitra with small n (after 10 runs)

Discussion: The results presented in Table 5.2, clearly state the performance increase of

jTL in contrast to SiTra, nevertheless if a small or a higher amount of source objects has to

be transformed. With a low number of source objects the performance increase is enormous,

since the transformation task in jTL lasts only a tenth of the transformation time of SiTra. If the

number of source objects is increased, the gap in execution time for the transformation decreases

but still the transformation with jTL is twice as fast as it is by using SiTra. The reason for the

decreasing difference in execution time between SiTra and jTL lies in the optimization which is

carried out by the jvm. Since, in constrast to jTL, SiTra longs for additional method calls like
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the methods check() and setProperties the optimization of the jvm affects the execution

time of SiTra in a more significant way.

For the explanation of the significant speed up by using jTL two reasons can be identified.

First the slow rule-selection process by iterating over the whole rule repository, that affects the

transformation time even if there are only few rule types in the rule repository and second, the

additional method calls that are needed for transforming a source object. While jTL only calls

one method named convert, SiTra longs for three method-calls, that are check, build and

setProperties.

Second Test Scenario - n=103

This test scenario focuses on cases where the number of rules is much higher. Since for example

a transformation of a Cobol file needs slightly more than 100 hundred rules, this test scenario

sets n to 103. To achieve SiTra’s average search time to find the applicable rule, the first 50 rules

in SiTra’s rule repository are mock-rules from the type DummyRule, followed by the three

rule types Clazz2Table, Association2Relation and Attribute2Field, that are

necessary for the transformation. To be complete further 50 mock-rules are added at the end of

the rule repository. The number of source objects (m) is again increased stepwise by the factor

10. The results of these test scenarios are represented in Table 5.3

Transformation Time in microseconds (µs)
m - Number of
Source Objects

SiTra jTL Relative Share
jTL/SiTra

21 604 18 2,98%
210 1469 30 2,04%
2100 3781 161 4,26%
21000 33095 1272 3,84%

Table 5.3 Average execution time (in micro-seconds) of jTL compared to Sitra with high n (after 10 runs)

Discussion: The results in Table 5.3 demonstrate the enormous improvement of execution

time by using jTL when a higher number of rules is necessary. In contrast to SiTra, jTL only

takes 2%-4% of the execution time that would be needed for the same transformation task by

using SiTra. At the same time this test scenario emphasizes the greatest weakness of SiTra, that

is the rule selection process, which is only suitable when a very small number of rules is needed

for the transformation task. But for more complex transformations, for instance for source code

transformation, this approach is quite inappropriate.
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5.3.3 Parallel Test Scenarios

Third Test Scenario - Parallel Execution

The following test scenario should emphasize the changes in execution time when using paral-

lel stream processing instead of using external iteration. Since SiTra does not support parallel

transformation the execution time of jTL’s parallel transformation can only be compared to the

sequential execution of jTL. As the results in Table 5.2 and Table 5.3 of the previous two sections

already pointed out, the sequential execution of the transformation with jTL is much faster than

the transformation with SiTra. So the following test scenarios should demonstrate whether there

could be a further improvement in execution time when using jTL’s parallel processing and how

this changes the time benchmark. To test the parallel transformation, the method transfor-

mAll of jTL’s Transformer is used, which takes a list of source objects and uses parallel

stream processing to transform each of the passed object in the list parallel. To clearly state the

difference in performance between sequential and parallel processing the test setting is changed

a little bit, to achieve the transformation of totally independent objects. On the one hand parallel

stream processing will perform better if the source objects do not depend on each other, but on

the other hand the source code transformation will always end up in transforming independent

source object since the AST does not contain cycles. For these test scenarios 10 independent

class-object are generated, without any association between them and each of these class-objects

have 4 attributes. The number of class-objects is then again increased stepwise by the factor 10.

Although the number of rules are not significantly important for the execution time of jTL, it

should be mentioned that again three rule types are used for the transformation.

Transformation Time in microseconds (µs)
m - Number of
Clazz objects

jTL - sequential jTL - parallel Relative Share
sequ./par.

10 40 235 587,5%
100 183 229 125,14%
1000 885 871 98,42%
10000 6486 2355 36,31%
100000 77612 28930 37,28%

Table 5.4 Average execution time (in micro-seconds) - Sequential use of jTL vs. Parallel use of jTL

Discussion: The result Table 5.4 shows, that the effort of parallel transformation is only prof-

itable if a high number of source object exists. Solving a problem in a parallel way always in-

volves performing more actual work than doing it in a sequential way. There are some overhead

tasks to do, that involves splitting the work between several threads and joining and merging
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the results. So the number of source objects has to be quite high or the actual transformation

of the source object has to be a complex and time intensive job. Only if at least one of these

requirements is fulfilled the execution time benefits from using parallel execution. According to

this test scenario, the breakeven point, with a quite simple transformation task, is reached when

passing about 1000 source object to the transformation method transformAll of jTL. But as

soon this limit is exceeded the time effort for transformation decreases dramatically and end up

in a time effort that is only one third of the sequential processing time.

5.3.4 Test Class

The test class which is designated to execute the above presented test scenarios can be found in

the appendix (see Listing A.5). It consists of following four phases:

1. Configuration phase (before the test class is executed): Before the test class is used to

start the test scenarios some configurations are necessary. The user can set the following

parameters:

• WARM_UP_RUNS: In order to get comparable and meaningful execution time re-

sults, the test class has to perform a JVM (Java virtual machine) warm up (see warm

up phase below). With this parameter the user can define the number of iterations

for this phase.

• RUNS: Another important factor to achieve meaningful and comparable results for

the execution time is to measure the transformation time of several runs of the same

transformation and average them. This ensures that outliers do not distort the mea-

surement results. The higher this parameter is set, the more meaningful the results

are, but also the more time is required to perform the different test scenarios.

• SOURCE_OBJECT_CONSTRUCTS: For generating the source objects the two ex-

ternal classes JTLGenerator and SitraGenerator are used. By setting this

parameter, the number of constructs which has to be created by these classes can be

determined by the users.

• DUMMY_RULE: This parameter is only used by SiTra test scenarios. Since the

execution time of the transformation with SiTra strongly depends on the amount of

rule types, this parameter sets the number of dummy rules which should be added to

the rule repository of SiTra.

2. Setup phase
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• Setup of SiTra test cases - setupSitraTest(): This method consists of adding

the rule types as well as the dummy rule types to the rule repository of SiTra. Further

the source objects, which are going to be transformed, are generated here, by using

a further external generation class called SitraGenerator.

• Setup of jTL test cases - setupJTLTest: This method is responsible for generat-

ing the source objects only, by using the generation class JTLGenerator.

3. Warm up phase - warmUp(): As mentioned above this phase is very important to get

comparable and meaningful execution time results. If a collection of one and the same

source object is transformed several time the execution time is getting lower until a certain

threshold is reached. So the user sets the parameter WARM_UP_RUNS to determine

how often a transformation should be carried out, until the execution time is going to be

measured. Several trials showed that about four warm-up-runs are enough in most cases.

4. Test phase: The last phase is the actual execution of the different test scenarios. This is

done by calling the method startTest(int kind,...) (see Listing 5.3), which

serves as distributing method. The parameter int kind is used to select the desired

transformation method, like jTL’s sequential or parallel transformation or SiTra’s sequen-

tial transformation. Moreover this method carries out the actual measurement of the ex-

ecution time. The measurement-results of several runs per test scenario are averaged and

returned.

public long startTest(int kind, ArrayList<SourceElement> jTLSourceObjs, List<
Object> sitraSourceObjs)

Listing 5.3 Method for test scenario selection

5.3.5 jTL vs. SiTra Conclusion

When looking at the performance benchmarks of jTL and SiTra the results demonstrate the

enormous improvements when using jTL. No matter how many source objects have to be trans-

formed or how many rules have to be implemented to fulfill the actual transformation task - the

improvement in processing time remains on a high level. In every test scenario this results in

an improvement of more than 50%. The more complex a transformation task becomes and the

more rule types are necessary, the greater the gap between the execution time of jTL and SiTra

gets. Since source code transformation are such complex transformation tasks and will certainly

end up in implementing more than 100 rules, the improvement in execution time for the trans-
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formation in jTL is even more obvious. The results of test scenario int Table 5.3 show, that jTL

only needs 2-4% of the execution that SiTra would need for the same transformation task.

Further Table 5.4 emphasizes, that also the parallel execution that comes up as one possibility

in jTL, could lead to a further improvement in execution time. This strongly depends on two

factors that are the number of source objects that has to be transformed and the complexity of

each rule. If the amount of source objects exceeds about 1000 and simple rules are implemented,

the execution time of parallel processing reaches the break even point and can drop to about 35%.

Since Cobol files often consist of over more than 10000 statements, which further represent the

source objects, the use parallel execution could be profitable in many situations. Moreover the

complexity of rules normally is much higher in source code transformation than it has been

established in this test scenario. So the break-even point would be reached earlier in source code

transformation applications.

5.4 Source Code Transformation with jTL

The last Section of this chapter should demonstrate how jTL can be used to set up a source code

transformation. Therefore the simple source code snippet in Listing 5.4 written in Pl/1, which

consists of simple variable declaration statements, assignment statements and if-statements,

should act as basis for a transformation example.

Further the framework jenesis4Java is used by jTL to generate the resulting Java source code in

a very handy way, whereas jenesis4Java is a DOM (domain object model) of the Java program-

ming language. In jenesis4Java the complete Java class including annotations and comments is

constructed as a DOM until it is encoded to a Java file [42]. Since jenesis4java uses a DOM the

parent target object has to be passed to a rule, so that the current target object can be appended

to its parent object.

DCL varA DEC FIXED(15,0);
DCL varB DEC FIXED(15,0);

varA = 540;
varB = 0 ;

IF varA > 0 THEN
BEGIN;

varA = varA / 100 * 90;
IF varA > 100 THEN

varB = varA;
END;
ELSE varA = varB;

Listing 5.4 Simple Pl/1 source code
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5.4.1 Preparation Steps

Figure 5.2 Small excerpt of a PL/1 Meta-Model incl. link to jTL

A process model which is designated to generate a source model respectively an AST from

source code was already explained in Section 2.2.3. According to this process model, the first

step is to define a meta model. The meta model which satisfies the need for the small Pl/1 exam-

ple code from Listing 5.4 was already invented in the introduction of this work (see Figure 1.2).

Figure 5.2 extends the meta model by the jTL specific classes SourceElement and Rule.

Since PliExpression and PliStatement are only super types and can’t be instantiated

directly they are both defined as abstract classes.

Figure 5.2 further demonstrates the association between jTL and the meta model, which is rec-

ognizable through the inheritance between the jTL class SourceElement, which acts as super

type, and all the statement and expression objects of PL/1. Moreover the relationship between

the class SourceElement and the jTL interface Rule shows, that every source object has to

have a link to its applicable rule.

All the other tasks of the process model 2.2.3, like pre-processing, parsing, optimizing or object

generation, aiming at generating the actual source model. Since the implementation of this

process model is not the scope of this work, the resulting source model was generated manually

(see 5.4.4). Nevertheless the output would be pretty the same if it is generated automatically by

implementing the process model. The resulting source model, which is an abstract depiction of

the PL/1 source code Listing 5.4 and consists of all necessary information for the transformation,
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is represented by an AST. That AST has to be compliant to the previously defined meta model

(see Figure 5.2). For the sake of clarity the last if statement of Listing 5.4 is only merely hinted

in Figure 5.3. Apart from the root-node, which acts as imaginary starting point, all the source

objects are compliant to the meta model in Figure 5.2 and together constitutes the source object

model which is the input for the actual transformation with jTL.

Figure 5.3 Abstract Syntax Tree of the PL/1 source code of Listing 5.4

5.4.2 Actual Transformation with jTL

After all preparation work is done, the implementation of the transformation can be established.

Figure 5.4 shows the most important parts of the transformation. The rules which hold the

actual transformation instructions and represents the core of the transformation are all derived

from the jTL interface Rule. As it can be seen in Figure 5.4, every source element type, de-

fined in the meta model (see Figure 5.2), has its corresponding rule type except the two abstract

classes PliStatement and PliExpression as well as the enumeration types PliVar-

Type and PliOperator, which do not long for an own rule implementation. This results in

defining six rules, where for example the rule PliBinaryExpressionRule is responsible

for the transformation of source object types PliBinaryExpression. To get an idea how

such a rule can be implemented in jTL to generate Java source code, Section 5.4.3 explains the

PliMoveStatementRule in more detail.
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Figure 5.4 Rules for the transformation of Pl/1 source objects

For the reason of clarity, only the two components Rule and SourceElement of jTL, which

have a direct linkage to the implemented rules respectively the source objects, are represented

in Figure 5.4. Nevertheless there are other components of jTL like Transformer or Trans-

formerContext that have to be part of the transformation (see jTL Architecture in Figure

4.1), except the Tracing. Since an AST does not have cycles and does not contain one and

the same source object more than once, there is no need for Tracing. Nevertheless it is up to the

developer to decide whether to make use of tracing or not.

Figure 5.4 further shows the two classes ConvertOperatorHelper and VmWrapperwhich

both intended to be helper classes. The ConvertOperatorHelper holds a mapping be-

tween Pl/1 operators and the corresponding Java operators, respectively the jenesis4Java repre-

sentations of them, and is needed by rules which transform expressions such as the PliBi-

naryExpressionRule. The class VmWrapper holds information, which is needed by the

framework jenesis4Java, such as an instance of the type VirtualMachine to generate source

code, or the current source code block where the generated source code has to be included.

5.4.3 Rule Implementation

This Section briefly explains the concrete implementation of a rule, with the aid of an example,

that is PliMoveStatementRule. As shown in Listing 5.5 this rule, which is derived from

jTL’s Rule-interface, takes a PliMoveStatement-object and transforms it to an object of

jenesis4java’s container interface Codeable.
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import jTL.*;
import static jTL.TransformerContext.getContext;
import net.sourceforge.jenesis4java.*;
import sourceObjects.PliMoveStatement;
import static utils.VmWrapper.vm;
import java.util.Optional;

public class PliMoveStatementRule implements Rule<PliMoveStatement, Codeable, Block>{
@Override
public Optional<Codeable> convert(PliMoveStatement source, Codeable target,

Optional<Block> parent) {
Variable var = (Variable)getContext().getTransformer().transform(source.

getVarRef(), parent).get();
Expression expr = (Expression)getContext().getTransformer().transform(source.

getExpr(), parent).get();
Assign assign = vm.newAssign(var, expr);
parent.orElseThrow(()->new RuleTransformationException(source,"No parent object

was defined."));
parent.ifPresent(x -> x.newStmt(assign));
return Optional.of(assign);

}
}

Listing 5.5 Simple Pl/1 source code

The actual transformation takes place in the method convert and consists of the following

steps:

1. Generation of the left hand side of the move-statement: To transform the left hand side,

which has to be a variable reference, the jTL class Transformer is called, which further

calls the rule PliVarRefRule and returns the already transformed variable reference

as Java/jenesis4java variable reference.

2. Generation of the right hand side of the move statement: Therefore a further transforma-

tion of the expression which is represented by the source object PliExpression has to

take place. So this source object is passed to the Transformer interface of jTL, which

then calls the applicable rule for the transformation of the right hand side expression, that

is the rule type PliBinaryExpression, and returns the target expression back to the

PliMoveStatementRule.

3. Generation of an assign-statement which consists of the left hand side variable and the

right hand side expression.

4. Checking if the parent target object was passed to the Rule. If not a RuleTransfor-

mationException will be thrown.

5. Attaching the assign-statement to the parent object respectively to the jenesis4java DOM.
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6. Returning the assign-statement

All the other rule types have a very similar implementation-concept to fulfill the transforma-

tion requirements. Therefore the listings of only two further rules, that are PliIfStatement

and PliBinaryExpression (see Listing A.7 and Listing A.8), are demonstrated in the ap-

pendix.

5.4.4 Test Class

This Section should shortly introduce the class which tests the transformation. The source code

Listing, including a few comments for the reason of explanation, of this class can be found in

the appendix A.6. As previously mentioned the source model (AST) of the PL/1 source code

Listing is generated manually in this work. Therefore the test class consists of the following

three methods:

1. generateSourceObjects(): This method is responsible for generating the com-

plete AST to the corresponding PL/1 source Listing 5.4, as it is demonstrated in Figure

5.3, .Therefore it generates all corresponding statements, like variable declarations, vari-

able initialisations, if-statements, etc. as object tree. This object tree further serves as

input to the method startTransformation.

2. generateSkeleton(): For sake of clarity and simplicity the transformation example

consists only of a small PL/1 source code snippet. So there is no surrounding function for

the PL/1 code, which has to be transformed. Nevertheless, in order to get a runnable Java

class as output, a skeleton class file is generated as jenesis4java-DOM before the actual

transformation starts. Therefore this method creates a public class with a main-method,

to act as container for the transformed Java source code.

3. startTransformation(List<PliStatements>): This method starts the ac-

tual transformation and adds the transformed jenesis4Java objects to the DOM. After the

transformation is done the DOM is encoded to a Java class file.
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5.4.5 Transformation Output - Java Class

Finally this last Section demonstrates the output of the small transformation example. Listing

5.6 should give an idea how the transformed PL/1 Code of Listing 5.4 could look like.

public class GeneratedJavaClass {
public static void main(String[] args) {

int varA = 0;
int varB = 0;
varA = 540;
varB = 0;
if (varA > 0) {

varA = varA / 100 * 90;
if (varA > 100) {

varB = varA;
}
else {

varB = varA;
}

}
varA = varA / 100 * 90;

}
}

Listing 5.6 Generated Java Source Code
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CHAPTER 6
Conclusion and Future Work

The last Chapter of this work is devided into two sub sections. The first one summarizes this

thesis and its results. The second Section ’Future work’ should emphasize additional possible

improvements of jTL that are not already part of it right now. Furthermore it should give an

overview about further challenges that a developer has to face when setting up a source code

transformation project in general and in particular with jTL. These challenges like for example

goto eliminations or clustering are scientific efforts, that are still not completely answered and

could therefore be topics for further scientific works, which may be based on jTL.

6.1 Conclusion

Since model-driven software engineering has become an important field of software develop-

ment, also model transformation technologies have developed to a very important task. This

leads to a wide range of different model transformation languages (MTLs) and tools that are

available to support this process. ATL, Kermeta or QVT based languages are only a few ex-

amples for model transformation languages. Although most of them perfectly fit to traditional

model transformation tasks each of them requires to learn a completely new language. Further

the declarative approach, which is used by ATL, or the graph based approach, which is used

by TTG, are approaches that have some merits, but require for many developers a new way of

thinking, since they are mostly confronted with imperative languages in daily business. Last

but not least, the implementation of complex transformation, like source code transformation,

are much more intuitive to write with an imperative language. So the idea of this work was to

provide a Java based transformation library that provides a simple framework to the developer
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to set up wide range of possible transformation tasks. Such a Java based imperative approach

enables the user to set up a transformation in a well known language without the need of learning

a new one. Moreover jTL provides also a very good basis for much more complex source code

transformation projects.

Although pure Java based transformation approaches are very rare, two of them, that are SiTra

and PC2J-Transformer, have been found and evaluated. The strengths and weaknesses of these

approaches have been determined, just to profit from them when designing and implementing

the jTL. Moreover these insights were used as a basis to build upon goals that should be focused

on, when building the jTL. Further, to let jTL represent a state of the art library that profit from

the new features of Java 8 the most important features like parallel stream processing, functional

interfaces, lambda expression or the new interface Optional were determined and integrated.

According to these facts the following enumeration summarizes the most important advantages

of the resulting jTL:

• External Flexibility: jTL is applicable for a wide range of possible transformation tasks.

No matter whether a small graph based transformation with cycles, or a complex abstract

syntax tree transformation, like source code transformation, should be carried out.

• Internal Flexibility: Generic target types and the possibility of defining another than the

default rule for a specific source object, support a flexibel transformation, even special

cases should be addressed.

• Improved Performance: A significantly improved rule selection mechanism, in contrast

to SiTra, a fast tracing implementation and the possibility of parallel stream processing,

ensures a fast execution time of jTL, which is a very important factor if complex source

code transformation should be carried out.

• Easy to use: A very simple rule selection mechanism supported by the definition of default

rule, a simple Transformer that already comes up with a default implementation, an

already implemented transformer method that allows the developer to switch to parallel

execution and a ready use tracing approach ensures that the jTL is a complete and easy to

use library for transformation tasks.

Finally the previous chapter ’Evaluation’ has demonstrated two different transformation scenar-

ios to test the jTL. An excerpt of a graph based ’Class-to-ER’ transformation as well as a tree

based ’PL/1-to-Java’ transformation were established and served as examples to demonstrate the

functionality and usage of the library and finally leads to the right and expected result output.
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6.2 Future Work

6.2.1 jTL Extensions

Two features that have not been addressed in this work, since they are not a must for a complete

transformation framework, but would further improve jTL are listed below.

• Ecore integration: Currently the developer who uses jTL, has to write the meta model

as pure Java classes. Since ecore diagrams of the eclipse modeling framework (EMF) are

a widely used approach to define meta models, a direct integration of an ecore model into

jTL would be a convenient solution. This would enable the developer to design the meta

model with EMF in a very handy way.

• Change propagation by using tracing information: Bonde [4] applies the traceability

to change propagation, thus if the source changes slightly, the change can be reflected

in the destination without re-running the whole transformation. Since Tracing is part of

the jTL the basis for change propagation is present. Nevertheless, due the complexity of

change propagation, no algorithm has been implemented that enables the use of change

propagation.

6.2.2 Source Code Transformation

As pointed out in this work, automated software migration by source code transformation is a

very challenging task. Until now there is now really satisfying product or solution that trans-

forms legacy code like Cobol or PL/1 source code to state of the art programming languages.

Although there have been many attempts, only few projects end up by replacing legacy code

with the automated transformed new source code. The reason for that was the mostly bad qual-

ity of the resulting source code, that does not fulfill the requirements of good readability and

maintainability. For example, characteristics like object orientation, encapsulation or separa-

tion of concern were not addressed properly. So the choice was to do a lot of refactoring work

to improve and adjust the source code or to use the resulting source code as it is with all the

disadvantages that come up with it.

So the challenge in the future will be the improvement of the automatic transformation process

to increase the quality of the resulting source code. Therefore many different fields of research

have to be addressed. The following enumeration should give a few example for that.

• Goto Elimination: The use of goto statements in legacy code is unfortunately widely

used. Since state of the art programming language blessedly does not support this out-
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dated and very problematic concept any longer, goto-constructs can’t be replaced in an

one-to-one manner. Since in many cases the resolve of goto-statements longs for dif-

ferent kinds of treatment, there has to be a bundle of different strategies to resolve such

constructs.

• Clustering and separation of concerns: Legacy code is often represented by a large

monolithic system architecture. The clustering into different functions or the separation

into different source code files were often completely missing or replaced by confusing

goto-constructions. Further the separation of concern concept wasn’t addressed at all since

it was not a well known paradigm at the time when the legacy code was written. So a one-

to-one transformation of such code would not lead to satisfying output, since the result

would be again a monolithic application, that do not fulfill the requirements of modern

and for example object oriented software.

• Automated testing: Nevertheless how well the transformation process is designed, test-

ing is a must when an automated software migration is performed. For sure manual testing

has to be part of the test phase, but can’t replace the need for an automated approach, since

otherwise the test of every single test scenario would become an overwhelming task. So

one further important scientific research area is the development of a process of automated

testing. Such a process has to test the transformed source code as well as the legacy code

to compare the results of them, to emphasize deviations.

As soon as these problems can be addressed in a satisfying way, software migration by automated

transformation will become a very important concept to get rid of legacy applications.
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APPENDIX A
Source Code Listings

A.1 Quantitive Comparison between external Iteration, sequential
and parallel Stream Processing

A.1.1 Test Scenario 1
private static long testExternalIterator(Collection<String> names) {

long count = 0;

for (String name : names) {

if (name.startsWith("A"))

++count;

}

return count;

}

private static long testSequential(Collection<String> names) {

return names.stream().filter(name -> name.startsWith("A")).count();

}

private static long testParallel(Collection<String> names) {

return names.parallelStream().filter(name -> name.startsWith("A")).count();

}

Listing A.1 Test1 - Test Scenarios
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A.1.2 Test Scenario 2
private static long testExternalIterator(Collection<Integer> numbers) {

long count = 0;

for (Integer number : numbers) {

if (number%4==0)

++count;

}

}

private static long testSequential(Collection<Integer> numbers {

return numbers.stream().filter(i -> i%4==0).count();

}

private static long testParallel(Collection<Integer> numbers) {

return names.parallelStream().filter(i -> i%4==0).count();

}

//Method to test the execution time of IntStream, to avoid auto boxing in parallel mode

private static long testIntStreamParallel(int[] numbers) {

IntStream intStream = Arrays.stream(numbers);

return intStream.parallel().filter(i -> i%4==0).count();

}

Listing A.2 Test2 - Test Scenarios

A.1.3 Test Scenario 3
private static long testExternalIterator(Collection<Integer> numbers) {

for (Integer number : numbers) {

for (int i=0; i<2000000; i++){

number++;

}

}

}

private static void testSequential(Collection<Integer> numbers) {

numbers.stream().forEach(Benchmarking2::incr);

}

private static void testParallel(Collection<Integer> numbers) {

numbers.parallelStream().forEach(Benchmarking2::incr);

}

private static void incr (Integer number) {

for (int i=0; i<2000000; i++){

number++;

}

}

Listing A.3 Test3 - Test Scenarios
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A.1.4 Test Scenario 4
private static void testExternalIterator(Collection<Integer> numbers) {

for (Integer number : numbers)

System.out.println(number);

}

private static void testSequential(Collection<Integer> numbers) {

numbers.stream().forEach(System.out::println);

}

private static void testParallel(Collection<Integer> numbers) {

numbers.parallelStream().forEach(System.out::println);

}

Listing A.4 Test1 - Test Scenarios - Blocking function

A.2 Test Class to compare the Transformation Time of SiTra &
jTL

public class ComparisonTest {

private jTL.Transformer jTLTransformer = getContext().getTransformer();

private uk.ac.bham.sitra.Transformer sitraTransformer;

private final static int WARM_UP_RUNS = 4;

private final static int RUNS = 100;

private final static int SOURCE_OBJECT_CONSTRUCTS = 1000;

private final static int DUMMY_RULES = 100;

public static void main (String args[]) {

ComparisonTest test = new ComparisonTest();

ArrayList<SourceElement> jTLSourceObjs = test.setupJTLTest();

List<Object> sitraSourceObjs = test.setupSitraTest();

long duration;

test.warmUp(jTLSourceObjs, sitraSourceObjs);

duration = test.startTest(0, jTLSourceObjs, sitraSourceObjs);

System.out.println("Sitra-Indiviual:" + duration/RUNS);

duration = test.startTest(1, jTLSourceObjs, sitraSourceObjs);

System.out.println("Sitra-ALL:" + duration/RUNS);

duration = test.startTest(2, jTLSourceObjs, sitraSourceObjs);

System.out.println("jTL-Individual:" + duration/RUNS);

duration = test.startTest(3, jTLSourceObjs, sitraSourceObjs);

System.out.println("jTL-parallel:" + duration/RUNS);

}
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/** SETUP METHODS **/

public ArrayList<SourceElement> setupJTLTest() {

//return JTLGenerator.generateConstructs(CONSTRUCTS);

return JTLGenerator.generateClazzes(SOURCE_OBJECT_CONSTRUCTS);

}

public List<Object> setupSitraTest() {

List<Class<? extends Rule<?,?>>> rules = new ArrayList<Class<? extends Rule

<?,?>>>();

//Adding half (DUMMY_RULES/2) of the mock rules before the actual rules

//and adding the further half mock rules to the end of the list

for (int i=0; i<DUMMY_RULES/2; i++)

rules.add((Class<? extends Rule<?, ?>>) DummyRule.class);

rules.add((Class<? extends Rule<?, ?>>) Clazz2Table.class);

rules.add((Class<? extends Rule<?, ?>>) Association2Relation.class);

rules.add((Class<? extends Rule<?, ?>>) Attribute2Field.class);

for (int i=0; i<DUMMY_RULES/2; i++)

rules.add((Class<? extends Rule<?, ?>>) DummyRule.class);

sitraTransformer = new SimpleTransformerImpl(rules);

//return SitraGenerator.generateConstructs(CONSTRUCTS);

return SitraGenerator.generateClazzes(SOURCE_OBJECT_CONSTRUCTS);

}

/** TEST METHODS **/

public long startTest(int kind, ArrayList<SourceElement> jTLSourceObjs, List<Object

> sitraSourceObjs) {

long duration=0;

for (int i=0; i<RUNS; i++) {

long start = System.nanoTime();

switch (kind) {

case 0: testSitraIndividual(sitraSourceObjs);

break;

case 1: testSitraAll(sitraSourceObjs);

break;

case 2: testJTLIndividual(jTLSourceObjs);

break;

case 3: testJTLAll(jTLSourceObjs);

break;

}

duration += (System.nanoTime()-start)/1000;

//System.out.println((System.nanoTime()-start)/1000);

}

return duration;

}

public void testJTLAll (ArrayList<SourceElement> jTLSourceObjs) {

jTLTransformer.transformAll(jTLSourceObjs);

}
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public void testSitraAll (List<Object> sitraSourceObjs) {

try {

sitraTransformer.transformAll(sitraSourceObjs);

} catch (RuleNotFoundException e) {

e.printStackTrace();

}

}

public void testJTLIndividual (ArrayList<SourceElement> jTLSourceObjs) {

for (SourceElement temp : jTLSourceObjs)

jTLTransformer.transform(temp);

}

public void testSitraIndividual (List<Object> sitraSourceObjs) {

try {

for (Object temp : sitraSourceObjs)

sitraTransformer.transform(temp);

} catch (RuleNotFoundException e) {

e.printStackTrace();

}

}

public void warmUp(ArrayList<SourceElement> jTLSourceObjs, List<Object>

sitraSourceObjs) {

for (int i=0; i<WARM_UP_RUNS;i++) {

startTest(0, jTLSourceObjs, sitraSourceObjs);

startTest(2, jTLSourceObjs, sitraSourceObjs);

}

}

}

Listing A.5 Test class to measure the transformation time of SiTra and jTL

A.3 Test Class to transform Pl/1 Source Code Model to Java
Source Code

public class P2JTransformer {

private CompilationUnit unit;

private String filePath = new File("").getAbsolutePath();

public static void main (String []args) throws IOException {

P2JTransformer p2jTransformer = new P2JTransformer();

List<PliStatement> statements = p2jTransformer.generateSourceObjects();

ClassMethod skeleton = p2jTransformer.generateSkeleton();

p2jTransformer.startTransformation(statements, skeleton);

}
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public ClassMethod generateSkeleton() throws IOException {

unit = vm.newCompilationUnit(filePath + "/PLI2Java/generated");

unit.setNamespace("generatedJava");

//Generate Class

PackageClass cls = unit.newClass("GeneratedJavaClass");

cls.setAccess(Access.PUBLIC);

unit.setComment(Comment.D, "Generated by jTL and jenesis4Java");

//Generate main method

ClassMethod method = cls.newMethod(vm.newType(Type.VOID), "main");

method.setAccess(Access.PUBLIC);

method.isStatic(true);

method.addParameter(vm.newArray("String", 1), "args");

return method;

}

public List<PliStatement> generateSourceObjects() {

// The source code for which the source model is generated in this method

/*

* DCL varA DEC FIXED(15,0);

* DCL varB DEC FIXED(15,0);

*

* varA = 540;

* varB = 0 ;

*

* IF varA > 0 THEN DO;

* varA = varA / 100 * 90;

* IF varA > 100 THEN

* varB = varA;

* ELSE varB = varA;

* END;

*/

List<PliStatement> statements = new ArrayList<PliStatement>();

ArrayList<PliStatement> ifstmnts1 = new ArrayList<PliStatement>();

ArrayList<PliStatement> ifstmnts2 = new ArrayList<PliStatement>();

//Variable declaration:

// int varA = null;

// int varB = null;

PliVariableDeclaration varA = new PliVariableDeclaration("varA", PliVarType.

DECIMAL_FIXED);

PliVariableDeclaration varB = new PliVariableDeclaration("varB", PliVarType.

DECIMAL_FIXED);

statements.add(varA);

statements.add(varB);

//Variable initialisations

// varA = 540;

// varA = 0;

PliVarRef refA = new PliVarRef(varA);
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PliVarRef refB = new PliVarRef(varB);

statements.add(new PliMoveStatement(refA, new PliValue(540)));

statements.add(new PliMoveStatement(refB, new PliValue(0)));

// Creating the INNER-IF

// if (varA > 100) {

// varB = varA;

// }

PliExpression condition2 = new PliBinaryExpression(PliOperator.Greater, refA,

new PliValue(100));

PliMoveStatement move2 = new PliMoveStatement(refB, refA);

ifstmnts2.add(move2);

PliIfStatement ifStmnt2 = new PliIfStatement(condition2, ifstmnts2,ifstmnts2);

// Creating the OUTER-IF

// if (varA > 0) {

// varA = varA / 100 * 90;

// <inner-if>

// }

PliExpression condition1 = new PliBinaryExpression(PliOperator.Greater, refA,

new PliValue(0));

PliBinaryExpression expr = new PliBinaryExpression(PliOperator.Divide, refA,

new PliBinaryExpression(PliOperator.Multiply, new PliValue(100), new

PliValue(90)));

PliMoveStatement move1 = new PliMoveStatement(refA, expr);

ifstmnts1.add(move1);

ifstmnts1.add(ifStmnt2);

PliIfStatement ifStmnt1 = new PliIfStatement(condition1, ifstmnts1);

//Adding the OUTER-IF to the statments --> ready for transformation

statements.add(ifStmnt1);

statements.add(move1);

return statements;

}

public void startTransformation(List<PliStatement> statements, Block skeleton)

throws IOException {

//Alle Statements werden iterativ transformiert

for (PliStatement stmnt : statements)

getContext().getTransformer().transform(stmnt, Optional.of(skeleton));

//Alternative calls (pass a collection) - transform it with ser. or parall. execution

/*************************************************************************/

//getContext().getTransformer().transformAll((ArrayList<PliStatement>)

statements, Optional.of(skeleton));

//getContext().getTransformer().transformAllParallel((ArrayList<PliStatement>)

statements, Optional.of(skeleton));

/*************************************************************************/

unit.encode();

String content = new String(Files.readAllBytes(Paths.get(filePath + "/PLI2Java/

generated/generatedJava/GeneratedJavaClass.java")));

System.out.println(content);
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}

}

Listing A.6 Test Class as starting point to transform a Pl/1 source model to Java source code

A.4 jTL-Rule to transform an if-Statement

public class PliIfStatementRule implements Rule<PliIfStatement, Codeable, Block>{
public Optional<Codeable> convert(PliIfStatement ifStatement, Codeable target,

Optional<Block> parent) {
recordMapping(ifStatement,null);

Expression expression = (Expression) getContext().getTransformer().transform(
ifStatement.getCondition(), parent).get();

//IF Generation with transformation of the condition-expression
parent.orElseThrow(()->new RuleTransformationException(ifStatement,"No parent

object was defined."));
If ifStmt = parent.map(p -> p.newIf(expression)).get();
//IF-Block Transformation
for (PliStatement stmnt : ifStatement.getIfStatements())

getContext().getTransformer().transform(stmnt, Optional.of(ifStmt));
Else elseBlock = ifStmt.getElse();
//ELSE-Block Transformation
if (ifStatement.getElseStatements()!=null) {

for (PliStatement stmnt : ifStatement.getElseStatements())
getContext().getTransformer().transform(stmnt, Optional.of(elseBlock));

}
recordMapping(ifStatement,ifStmt);
return Optional.of(ifStmt);

}
}

Listing A.7 PliIfStatementRule - Rule to transform an if-statement

A.5 jTL-Rule to transform a binary Expression

public class PliBinaryExpressionRule implements Rule<PliBinaryExpression, Codeable,
Block> {
@Override
public Optional<Codeable> convert(PliBinaryExpression source, Codeable target,

Optional<Block> parent) {
Expression expr1 = (Expression)getContext().getTransformer().transform(source.

getLeft(), parent).get();
Expression expr2 = (Expression)getContext().getTransformer().transform(source.

getRight(), parent).get();
return Optional.of(vm.newBinary(ConvertOperatorHelper.getJenesisType(source.

getOp()), expr1, expr2));
}

}

Listing A.8 PliBinaryExpressionRule - Rule to transform a binary expression
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