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Streuung in komplexen Medien:
Kohärenter Transport an der Schwelle
zur Anderson-Lokalisierung

Abstract in German - Deutsche Kurzfassung

Anderson-Lokalisierung ist ein Wellenphänomen, welches exponentielle Lokalisierung
von elektronischen Wellenfunktionen oder klassischen Wellen in stark ungeordneten
Medien vorhersagt. Dieses Fehlen von Diffusion begründet erstaunliche Eigen-
schaften lokalisierter Systeme, die Physiker seit der Entdeckung des Effekts durch
P.W. Anderson im Jahr 1958 in Atem hält.

Eine dieser Eigenschaften ist das Auftreten des sogenannten Ein-Kanal Transport-
Regimes, welches wir numerisch und, in Zusammenarbeit mit der Universität von
San Antonio (Texas), auch experimentell untersuchen. Das Erkennungsmerkmal des
genannten Regimes ist die Konzentration des Transports auf nur einen einzigen der
zur Verfügung stehenden Transmissionskanäle in einem ungeordneten Wellenleiter.
Das Auftreten von Ein-Kanal-Transport wird durch die Analyse der Transport-
Statistik sowie der Intensitätsverteilung innerhalb des ungeordneten Mediums gezeigt.
Insbesondere verifizieren wir die Existenz sogenannter “necklace states” sowie deren
Zusammenhang mit den internen Moden des offenen Systems.

Während das Ein-Kanal-Regime eine direkte Folge von Anderson Lokalisierung
darstellt, haben jüngste Forschungen gezeigt, dass bestimmte Systeme sehr robust
gegen Lokalisierung sind. Solche “topologische Isolatoren” besitzen Randzustände
mit genau dieser Eigenschaft. Darüberhinausgehend können diese Zustände nicht
nur der Unordnung trotzen sondern sogar erst durch sie erzeugt werden. Dieses
Phänomen, welches “topologischer Anderson-Isolator” (TAI) genannt wird, unter-
suchen wir für den Fall eines räumlich korrelierten Potentials. Unsere numerischen
Simulationen zeigen, dass solch eine Korrelation den Übergang in die TAI-Phase
unterdrücken kann, was die Existenz des Phänomens in echten elektronischen Sys-
temen in Frage stellt. Im Zuge dessen erweitern wir die bestehende analytische
Theorie für den TAI auf den Fall räumlich korrelerierter Potentiale.

Unsere zweite Studie zum Thema TAI befasst sich mit dem neuerlichen Ver-
schwinden der TAI-Phase bei sehr starker Unordnung, welche zuvor mit einer De-
lokalisierung der Volumen-Zustände (also jener Zustände, die nicht entlang des
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Randes laufen) in Verbindung gebracht werden konnte. Wir zeigen, dass sowohl
die Entstehung als auch das Abklingen der TAI-Phase in enger Verbindung mit
sogenannten Perkolations-Zuständen steht, welche um die Hügel und Täler des Un-
ordnungspotentials laufen. Weiters befindet sich in dieser Arbeit ein Vorschlag für
die Realisierung eines Mach-Zehnder Interferometers in einem System topologischer
Isolatoren. Ein solches könnte in Zukunft Anwendungen als Spin-Transistor finden.

Neben Lokalisierung befassen wir uns auch mit einem zweiten fundamentalen
Wellenphänomen genannt “branched flow”. Dieser Effekt tritt für Wellen auf, welche
durch ein langreichweitiges und schwaches Potential laufen. Dabei verteilt sich ihre
Intensität in verästelter Weise anstatt sich gleichmäßig im System auszubreiten. In
solchen Systeme, die in der Physik von der Nanoelektronik bis zu Monsterwellen
im Ozean zu finden sind, führt der Effekt zur Bildung von Ästen konzentrierter
Intensität (“branches”) entlang welcher sich die Welle über große Distanzen ausbre-
iten kann. Wir befassen uns mit der Frage, inwieweit diese natürliche Eigenschaft
zur Wellenkontrolle genutzt werden kann und Fokussieren durch ein ungeordnetes
Medium ermöglicht. Unsere Methoden, die durch die Fortschritte in der Technologie
mittlerweile auch schon im Experiment zugänglich sind, zeigen, dass durch gezielten
Einschuss einzelne “branches” selektiert werden können.

Neben den physikalischen Anwendungen befasst sich diese Arbeit auch mit der
erforderlichen Numerik, welche die Grundlage für die Erforschung der Transport-
und Streueigenschaften ungeordneter Medien bildet. Die herkömmlichen Berech-
nungen verwenden die sogenannte “modular-rekursive Greensfunktions-Methode”,
welche sehr effizient den numerischen Rechenaufwand minimiert. In dieser Arbeit
konzentrieren wir uns hauptsächlich auf eine noch effizientere Parallelisierung der
bekannten Algorithmen und erreichen eine signifikante Leistungssteigerung. Eine
solche Verbesserung der Numerik erlaubt den Zugang zu größeren und stärker unge-
ordneten Systemen. Zusätzlich stellen wir einen Algorithmus namens “parallel per-
muation algorithm” (PPA) vor, welcher die Grundlage für die parallele Berechnung
von Wellenfunktionsbildern, lokaler Zustandsdichten und ungeordneten Superzell-
Strukturen ist. Es werden für alle drei dieser Anwendungen Algorithmen imple-
mentiert, die hochparallelisierte Berechnungen ermöglichen und somit noch tieferen
Einblick in die Streu- und Transporteigenschaften ungeordneter Systeme bieten -
ein vielversprechender Ausgangspunkt für zukünftige Entwicklungen.
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Introduction

Anderson localization is a general wave phenomenon that predicts exponential lo-
calization of electronic wave functions or classical wave intensities in strongly disor-
dered media. This absence of diffusion is accompanied by many intriguing features
that have occupied physicists since the effect’s discovery by P.W. Anderson in 1958
[1].

One of these features is the onset of a regime that we refer to as the „single-channel
regime of transport“ [2] which we study here numerically in two dimensions. This
regime is hallmarked by the entire transmission being carried by only a single of
the many available channels through a randomly disordered medium. In this work
the cross-over to the single-channel regime is explored by transport statistics as
well as by the analysis of intensity patterns inside the disordered medium. In a
collaboration with the University of Texas at San Antonio the universality of this
transition is investigated by comparison of our numerical data to experimental data
in microwave experiments. In addition, we investigate the evolution of so-called
“necklace states” proposed by Pendry in 1987 [3]. In particular, we clarify the link
between these states, the single transmission channel that dominates in this regime
and, what we call, the internal modes of the system.

While the aforementioned regime is a direct consequence of Anderson localization,
we also study here physical systems that are very robust against disorder and the
effects of localization in transport. In particular, we are dealing with the recently
discovered materials called topological insulators that feature edge states, whose
robustness against disorder makes these media promising candidates for various
applications in nano-electronics [4–6]. In this work we suggest one such application
in the form of a topological Mach-Zehnder interferometer that could serve as a spin
transistor.

Not only are the edge states of a topological insulator robust against disorder,
they can even be evoked by the presence of disorder. This counter-intuitive topo-
logical phase was named topological Anderson insulator (TAI) and was discovered
in numerical studies [7, 8]. In this work, we investigate a more realistic ansatz
for the disorder potential by making it spatially correlated. The impact of these
correlations on the TAI is investigated and the underlying theoretical framework
is adapted to this more general case [9]. Additionally, we study the presence of
percolating states in disordered two-dimensional topological insulators. The decay
of the TAI phase could previously be connected to a delocalization of bulk states
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with increasing disorder strength. During the course of this work, we investigate
the connection between percolating states and the evolution and the decay of the
TAI phase [10].

Besides localization another general wave phenomenon called branched flow [11]
is explored in this thesis. Waves travelling through a random, long-ranged and
weak disorder potential show branching behavior instead of a smooth spreading of
flow. In such systems, that may range from nano-electronics to ocean acoustics,
this branching effect leads to the formation of surprisingly focused branches in the
disordered medium along which the waves propagate over large distances. We ad-
dress the question, if and how wave front shaping techniques may allow us to use
this effect for improved focusing through the medium.

Apart from the physical aspects, this work is also concerned with the numerics
that are used to investigate the scattering and transport properties of random media.
These numerics rely on the modular recursive Green’s function method [12–16].
While the above method is very efficient in terms of minimizing the calculation effort,
we improve the method in particular by proposing a more efficient parallelization.
This effort is crucial for the future as it will allow to access even larger and more
strongly disordered systems. Moreover, we develop an algorithm that efficiently
allows a parallel evaluation of a scattering region in such a way that a number of
tasks are simplified. These tasks are the parallel computation of scattering wave
functions, the local density of states and disordered super-cell structures. For these
three applications we implement new algorithms that represent a solid and efficient
foundation for future research in this field.



Chapter 1.

Classical waves in disordered media

1.1. The scattering problem

In Fig. 1.1 we show the prototype of a scattering problem in two dimensions that
we are concerned with in all our studies. We assume a scattering region that can

lead modes

lead modes

left lead
right lead

|𝜒𝑎⟩
𝑡𝑎𝑏

|𝜒𝑏⟩
𝑟𝑎𝑏

|𝜒𝑎⟩ |𝜒𝑏⟩ (disordered) scattering region

Figure 1.1.: Sketch of a prototype scattering problem. A disordered region is
connected to two semi-infinite and clean leads on the left and on the right. The
leads feature propagating modes |𝜒𝑖⟩ through which the wave enters and leaves the
system. Black arrows indicate an exemplary injection of a lead mode |𝜒𝑏⟩ in the
left lead. The complex number 𝑡𝑎𝑏 is the transmission amplitude of this injected
mode coming out in the right lead in lead mode |𝜒𝑎⟩. Analogously, 𝑟𝑎𝑏 represents
the reflection amplitude for the wave coming back travelling to the left in the left
lead in lead mode |𝜒𝑎⟩.

contain disorder and is connected to two semi-infinite but clean leads on the left and
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on the right. These leads feature a finite number of propagating lead modes |𝜒𝑖⟩
through which the wave can enter and leave the disordered system. The underlying
equation of our studies is usually the stationary Schrödinger equation governed by
a Hamiltonian 𝐻̂:

𝐻̂𝜓(𝑟⃗) = 𝐸𝜓(𝑟⃗)

evaluated at some scattering energy 𝐸 and with the wave function being labelled
by 𝜓(𝑟⃗). In some of our studies we also consider optical systems in two dimensions
which obey the scalar Helmholtz equation

[︀
Δ+ 𝑘2𝑛2(𝑟⃗)

]︀
𝜓(𝑟⃗) = 0 . (1.1)

In this case 𝜓(𝑟⃗) represents the out-of-plane 𝑧-component of the electric field and
scattering occurs at a fixed incoming wave number 𝑘 = 𝜔/𝑐. Fortunately, this
equation can be reordered to read

[︂
−Δ

2
+
𝑘2

2

(︀
1− 𝑛2(𝑟⃗)

)︀]︂
𝜓(𝑟⃗) =

𝑘2

2
𝜓(𝑟⃗) , (1.2)

which is equivalent to the electronic stationary Schrödinger equation in atomic units
(~ = 1, 𝑚𝑒 = 1): [︂

−Δ

2
+ 𝑉 (𝑟⃗)

]︂
𝜓(𝑟⃗) = 𝐸𝜓(𝑟⃗) .

With this knowledge, we can treat the Helmholtz equation 1.1 as a Schrödinger
equation with energy

𝐸 =
𝑘2

2

and an energy-dependent potential

𝑉 (𝑟⃗) = 𝐸
(︀
1− 𝑛2(𝑟⃗)

)︀
.

While this energy-dependence is problematic for solving an eigenvalue problem (as
the Hamiltonian depends on the eigenvalue 𝐸), a scattering problem governed by
the Helmholtz equation can be straight-forwardly solved like in the case of the
Schrödinger equation since the energy 𝐸 is a fixed parameter. For a detailed de-
scription of the numerics that we are using see chapter 3.

The entire information on how the scattering inside the disordered region mani-
fests in its transport behavior is included in the so-called scattering matrix

𝑆 =

(︂
𝑟 𝑡′

𝑡 𝑟′

)︂
. (1.3)

The matrices 𝑡 and 𝑟 are called the transmission and reflection matrix, respectively.
The individual elements of 𝑡 (𝑟) are the complex transmission (reflection) amplitudes
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𝑡𝑎𝑏 (𝑟𝑎𝑏) describing transmission (reflection) from mode 𝑏 incoming through the left
lead to mode 𝑎 leaving through the right (left) lead. The primed quantities 𝑡′ and
𝑟′ are the analogues of 𝑡 and 𝑟 for injection from the right.

All the above quantities can be numerically evaluated in the basis of open lead
modes |𝜒𝑖⟩ according to Eqs. (3.20)-(3.23) and the descriptions in section 3.3. Mind
that these quantities such as the transmission matrix 𝑡 can be very large objects
when there is a large number of incoming and outgoing modes as is the case in
optical systems. Nowadays, however, the task of measuring large parts of this
matrix has almost been completed [17–21] in optical system and entirely fulfilled in
microwave systems [22]. Due to these achievements the methods of wave control do
no longer rely on numerical simulations alone (as, e.g., Ref. [23]) but are ready to be
implemented in real physical systems in the laboratory. As part of this upcoming
search for applications, fundamental knowledge about transport through random
systems is of critical importance. Our research in the next two sections goes into
this direction.

1.2. The single-channel regime of transport

The effects of disorder are of basic interest for developing applications concerned
with imaging and focusing of light through random media [18]. Additionally the con-
cepts are applicable for many different materials of natural or artificial origin. The
corresponding theoretical framework allows for the description of a range of physi-
cal systems reaching from mechanical waves over classical electromagnetic waves to
matter waves in nano-structures governed by quantum mechanics. In the previous
section 1.1 (see also Fig. 1.1) we already introduced the prototype of a scattering
problem that can be approached by a variety of theories such as random-matrix
theory [24] or, as in our case, by methods of mesoscopic transport theory. A fun-
damental quantity in this theory is the transmission matrix 𝑡 that was introduced
in the previous section 1.1. Numerically, this matrix is usually evaluated in the
basis of incoming and outgoing lead modes. However, a switch of basis reveals in-
teresting information about the effects of disorder. This new basis is spanned by
the eigenvectors (called transmission eigenchannels) of the 𝑡†𝑡-matrix. The corre-
sponding eigenvalues 𝜏𝑛 are referred to as transmission eigenvalues. The statistics
of the latter are closely connected to Anderson localization. As long as transport
is diffusive (i.e., for small sample length 𝐿 compared to the localization length 𝜉),
a finite number 𝑀 ≈ 𝜉/𝐿 out of the 𝑁 existing transmission eigenchannels show
a corresponding transmission eigenvalue 𝜏𝑛 that is close to 1. Apart from these,
the remaining channels are closed manifesting in their 𝜏𝑛 being exponentially small
[25, 26]. When the sample is elongated, the ratio 𝜉/𝐿 decreases and so does the num-
ber 𝑀 of open transmission eigenchannels. Moreover, when the localized regime,
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i.e., 𝐿 > 𝜉, is entered, this decrease manifests in an effect that is referred to as
the “crystallization of transmission eigenvalues” [27]. Not only does the number of
open channels, on average, go down, also the distribution of transmission eigenval-
ues 𝑃 (𝜏𝑛) is significantly altered in the localized regime showing a peaked structure.
The effect is hallmarked by the increasing separation of these peaks in 𝑃 (𝜏𝑛) and
has also been verified experimentally [22]. As this crystallization of transmission
eigenvalues occurs on a logarithmic scale, we expect that in the deeply localized
regime where 𝐿≪ 𝜉, only the largest transmission eigenvalue 𝜏1 has a value that is
not negligibly small1. In this regime, that we will call "the single-channel regime of
transport", the total transmission 𝑇 =

∑︀
𝑛 𝜏𝑛 ≈ 𝜏1 through the disordered sample

occurs through only the first transmission eigenchannel and decreases exponentially
due to Anderson localization [1, 28].

The considerations above show, that the deeply localized limit actually simplifies
transmission behavior through a long and strongly disordered system by eliminating
the contribution of all but one transmission eigenchannel. This simple picture in-
spired the idea that other fundamental properties in the complicated world of trans-
port through disordered systems can be more intuitively observed and established
in this regime. A hint into this direction comes from a recent observation reported
in Refs. [22, 29]: Measurements of the output intensity profile of microwaves sent
through a disordered medium revealed that in the localized regime the intensity
profile (speckle pattern) is literally frozen. This means, that the output profile does
not depend on the input at all. While in strict contrast to the diffusive regime,
where the output depends strongly on the input, this observation is a clear sign of
a single channel dominating transmission [22].

However, the difficulty in exploring the single-channel regime lies in the fact that
it is hard to access numerically as well as experimentally. From the numerical point
of view this is because the systems have to be long (𝐿≪ 𝜉), wide (to reach a large
number 𝑁 of open lead modes) and the strong disorder requires an even better
resolution at the same time. In the microwave experiment all measurements in the
localized limit feature small signals. Additionally these signals suffer from absorp-
tion which is inevitably present in photonic systems resulting in a low signal-to-noise
ratio. By overcoming these challenges, this work reveals several fundamental prop-
erties of strongly disordered systems.

This study is a collaborative work between our group and the group of Prof.
Andrey Chabanov in San Antonio, Texas, USA. In this thesis, I decided to describe
in detail all the results that emerged from this fruitful cooperation in order to present
a well-rounded picture of all the physics and to clarify the importance of our results.
However, we clarify here that my contribution mainly consisted of producing the

1 Conventionally, the 𝜏𝑛 are always arranged in descending order of their magnitude, i.e., 𝜏1 >
𝜏2 > . . . > 𝜏𝑁 .
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numerical results and the corresponding statistical analysis of this data, while the
experimental data was measured and analyzed by Abe Peña, who was at that time
a PhD student in Andrey Chabanov’s group.

To verify the onset of the single-channel regime, we employ numerical simulations
on planar disordered waveguides of width 𝑊 and length 𝐿 attached to clean semi-
infinite leads on the left and right. We modeled the disorder by randomly placing
non-absorbing dielectric scatterers of diameter 0.041𝑊 and refractive index 3.14
into the middle portion of the waveguide at a filling fraction of 0.125, keeping
a minimum distance of 0.0205𝑊 between the scatterers. The width 𝑊 of the
waveguides is chosen such that there are 𝑁 = 15 lead modes open and hence in total
also 15 transmission eigenchannels present. For a more detailed description of the
numerics see chapter 3. We calculated transmission spectra for 100 random disorder
configurations at a sample length of 𝐿 = 5𝑊 = 3.29𝜉. For each disorder realization
the transmission matrix was evaluated in a frequency window with altogether 2397
equally spaced frequency points. A small portion of such a spectrum is shown in
Fig. 1.2(a). For this spectrum we check explicitly that the total transmission 𝑇 is
indeed dominated by only the largest transmission eigenvalue 𝜏1. For this purpose
we diagonalized the 𝑡†𝑡 matrix at each frequency point and find that the second
largest transmission eigenvalue 𝜏2 is indeed negligibly small (𝜏2 < 0.01 throughout
the entire frequency range). This finding ensures that we have indeed pushed far
enough into the deeply localized regime to reach the expected single-channel regime.

While the transmission eigenvalues are a good indicator for the onset of the single-
channel regime, we now focus on the question how these channels are formed inside
our randomly disordered waveguide. Such knowledge could in principle be extracted
from the singular value decomposition of the transmission matrix [30], we choose,
however, to refer to what we will call the “internal modes” in the following. The
picture of such internal modes also allows for a very intuitive approach to the phe-
nomenon of Anderson localization as put forward by Thouless [31]. In this frame-
work the so-called Thouless number, 𝛿 ≡ 𝛿𝜈/Δ𝜈, can be used as a parameter to
observe localization [32]. Since 𝛿𝜈 in the above formula stands for the typical spec-
tral width of the modes in the disordered medium and Δ𝜈 is the average spacing
between neighboring modes, the Thouless number 𝛿 measures to which extent the
internal modes in a sample overlap. Intuitively, this degree of overlap is charac-
teristic for the corresponding transport regime: While in the diffusive regime, the
overlap between modes is large (𝛿 > 1), the modes become more and more isolated
when entering the localized regime (𝛿 < 1). The latter statement is also reflected in
the shape of the typical spectrum in the localized regime featuring sharp, isolated
peaks as shown in Fig. 1.2(a).

For the calculation of internal modes, we impose constant-flux outgoing boundary
conditions [33] at the left and right edges of our disordered waveguides at which the
leads are attached in the scattering problem. Then we solve the eigenvalue prob-
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Figure 1.2.: (a) Numerically calculated transmittance 𝑇 (red line) versus detun-
ing 𝜈 from the mid-frequency of the localization band, normalized by the average
mode spacing Δ𝜈, in a disordered planar waveguide of 𝐿/𝜉 = 3.29. The black
line on top of the red curve shows the result of a fit of the transmittance, us-
ing the real [Re 𝜈𝑚] and imaginary [Im 𝜈𝑚] parts of the eigenfrequencies 𝜈𝑚 of
the internal modes of the disordered region as fixed parameters (see empty and
solid circles, respectively). Isolated eigenfrequencies represent individual localized
modes (𝑏), whereas closely spaced eigenfrequencies correspond to spectrally over-
lapping modes identified as necklace states (𝑐). A spectral separation between the
neighboring necklace states of about 5Δ𝜈 can be noticed. (b) Spatial intensity
pattern of the scattering state of the transmission eigenchannel (upper panel) and
of the individual localized mode (lower panel) at the resonance peak 𝑏. (c) Spatial
intensity profile of the scattering state of the transmission eigenchannel (upper
panel) and of the two-mode necklace state (top panel in the framed box) at the
resonance peak 𝑐. The lower two panels in the framed box display the two eigen-
modes of the two-mode superposition. Figure and caption were adapted from our
collaborative work Ref. [2].
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lem for the resulting non-hermitian Hamiltonian that consequently yields complex
frequency-eigenvalues 𝜈𝑚. We expect that the real parts of these eigenfrequencies
indicate the position of transmission resonances while the imaginary part is related
to the resonance width Γ𝑚 by Γ𝑚 = −2Im 𝜈𝑚. These relations are very nicely con-
firmed by the comparison of the spectrum (red curve) in Fig. 1.2(a) and the real
(empty circles) and imaginary (filled circles) parts of the eigenfrequencies 𝜈𝑚. As
expected, a nice correspondence between the resonance positions and the real parts
of the 𝜈𝑚 as well as a correlation between the resonance widths and the imaginary
parts of 𝜈𝑚 can be at least qualitatively perceived. In order to verify this agreement
on a quantitative level, we formulate the total transmission 𝑇 (𝜈) in the internal
mode picture as a sum of Lorentzian curves,

𝑇 (𝜈) =

⃒⃒
⃒⃒
⃒
𝑁∑︁

𝑚=1

𝐶𝑚
Γ𝑚/2

Γ𝑚/2 + 𝑖(𝜈 − 𝑘𝑚)

⃒⃒
⃒⃒
⃒

2

, (1.4)

with the real and imaginary parts of 𝜈𝑚 entering the formulation via

𝑘𝑚 = Re 𝜈𝑚 and
Γ𝑚 = −2Im 𝜈𝑚 .

We fit this ansatz to the numerically calculated spectra 𝑇 (𝜈). The comparison of
the red and the black curve in Fig. 3(a) reflects the excellent fit that this ansatz
yields. While the validity of such a description has been confirmed before [23, 29] we
only used the complex amplitudes 𝐶𝑚 of each mode as fit parameters. This perfect
agreement allows us to draw the conclusion that the total transmission can indeed
be expressed by a superposition of internal modes that contribute. Moreover, the
positions and widths of the transmission resonances are indisputably included in
the complex eigenfrequencies 𝜈𝑚. As we found before that the total transmission
is carried by only a single channel in the single-channel regime, we assess that also
the dominant transmission eigenchannel is formed by a unique such internal mode
or a combination of few modes that are spectrally overlapping.

To go further, we investigated these two distinct cases in panels (b) and (c) of
Fig. 1.2, respectively. For the resonance on the right of the spectrum in Fig. 1.2(a)
we find that only one internal mode is spectrally close to (as indicated by the sin-
gle open black circle underneath it). In this simpler case, the single transmission
eigenchannel is hence formed by only this single internal mode. While this corre-
spondence has just been proven on the level of the total transmission, we should
also be able to verify it having a look inside the disordered sample. More precisely,
we expect the transmission eigenchannel to have a similar internal shape as this
internal mode. This correspondence is shown in panel (b) of Fig. 1.2 where we show
the scattering wave function belonging to the first transmission eigenchannel on top
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and the intensity profile of the corresponding internal mode underneath. As easily
visible, these two patterns are astonishingly similar throughout the entire sample.
The only visible deviations occur close to the attachment of the left lead and can be
attributed to the incoming flux that is included in the scattering problem but not
in the boundary conditions for the internal modes. On the other hand, the wave
functions inside the disordered sample are insensitive to a change of the boundary
condition which is another hallmark of Anderson localization [31].

For the other case of a resonance that consists of two spectrally overlapping modes
[labelled 𝑏 in Fig. 1.2(a)], we want to find a similar correspondence as previously.
As shown at the bottom of Fig. 1.2(c), the two internal modes do not resemble the
scattering wave function of the first transmission eigenchannel (shown at the top
of the same panel, marked by a red arrow). Due to mode hybridization [34, 35]
they do show, however, a reasonable degree of spatial correlation with each other.
We find that the resemblance of the transmission eigenchannel can be achieved by
superimposing these two internal modes by the use of the corresponding coefficients
𝐶𝑚 from the fit performed for the total transmission using Eq. (1.4) as convincingly
presented in Fig. 1.2(c) (labelled by ”Necklace state”). This striking correspondence
establishes a link between transmission eigenchannels and internal modes. Mind,
however, that although multiple modes contribute to its formation, it is still only
a single dominating channel that carries transmission through the sample. This
insight allows for the identification of such a composed channel as a so-called ”neck-
lace state" [3, 36]. In an intuitive physical picture, we can imagine the situation
as follows: In the single-channel regime the entire transmission is carried by only
a single transmission eigenchannel throughout the whole spectrum. While in most
cases this channel is formed by a single internal mode, it can happen that two or
more modes spectrally overlap. In this situation, the internal modes merge into a
single channel that can be imagined as a necklace of connected internal and localized
modes that allow for transmission through the disordered region.

In a next step we want to investigate the single-channel regime on a statistical
basis. In order to do so, we introduce three quantities that can all be calculated
from the elements 𝑡𝑎𝑏 of the transmission matrix 𝑡. The first of these is the modal
transmission

𝑇𝑎𝑏 = |𝑡𝑎𝑏|2 (1.5)

that is just the absolute values squared of an individual transmission matrix element.
Furthermore, there is the total modal transmission

𝑇𝑎 =

𝑁∑︁

𝑏=1

|𝑡𝑎𝑏|2 (1.6)

that represents the transmission through the sample for only one specific incident
mode 𝑎. As used already in the previous considerations, we will again refer to the
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Figure 1.3.: (a) Probability density distributions 𝑃 (ln𝑇 ) (squares) and 𝑃 (ln 𝑠𝑎𝑏)
(circles) from the numerical data for a planar waveguide of 𝐿/𝜉 = 5.25. The solid
lines plotted through the data are the predictions from Eqs. (1.9) and (1.10), re-
spectively, with 𝐿/𝜉′ = −⟨ln𝑇 ⟩/2 = 4.57. Inset: ⟨ln𝑇 ⟩ versus 𝐿/𝑊 in the planar
waveguides of eight different lengths (squares). The solid line is the best linear fit
to the data, which yields the localization length 𝜉 = 1.52𝑊 . The broken line is
⟨ln𝑇 ⟩ = −2𝐿/𝜉′ for the planar waveguide of 𝐿 = 8𝑊 , furnishing the renormal-
ized localization length 𝜉′ = 1.74𝑊 . (b) Experimental results and prediction for
𝑃 (ln 𝑠𝑎𝑏) in the quasi-1D system of 𝐿/𝜉 = 2.52 (Sample 𝐷). Here, 𝐿/𝜉′ = 1.25 is
obtained from fitting the bulk of the measured distribution (circles) with 𝑃 (ln 𝑠𝑎𝑏)
from Eq. (1.10) (solid line). Figure and caption were adapted from our collabora-
tive work Ref. [2].
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total transmission

𝑇 =
𝑁∑︁

𝑎,𝑏=1

|𝑡𝑎𝑏|2 =
𝑁∑︁

𝑎=1

𝑇𝑎, (1.7)

which is in some contexts in the literature also often called transmittance or dimen-
sionless conductance 𝑔 [37, 38].

As we want to do statistics, it has proven more convenient to also define three
analogous quantities (labelled by the letter 𝑠) that just include a normalization by
the disorder average (denoted by ⟨. . .⟩). These renormalized transmission quantities
hence read

𝑠𝑎𝑏 =
𝑇𝑎𝑏
⟨𝑇𝑎𝑏⟩

,

𝑠𝑎 =
𝑇𝑎
⟨𝑇𝑎⟩

,

𝑠 =
𝑇

⟨𝑇 ⟩ .

In addition we will in this part for the first time also substantiate our results by
the use of a microwave experiment that was carried out by our collaborators in this
project. In these experiments, microwaves are sent through long copper tubes of
4.4 cm in diameter. To mimic the disorder, these tubes are filled with a random
arrangement of alumina (Al2O3) spheres. In order to lower the filling fraction of
these spheres, they were coated with Styrofoam which is essentially transparent for
microwaves. For insight into the statistics, many different configurations of disorder
(i.e., arrangements of alumina spheres) have to be evaluated. This is achieved by
rotating the tube and thereby making the spheres randomly fall in different places.
For even more experimental details, see the methods section of our joint publication
Ref. [2].

For the description of transmission statistics in the single-channel regime, one
would ideally wish for an analytical expression. To get an intuition, we first es-
tablish that our strongly disordered system in the single-channel shows similarities
with a one-dimensional sample. While in a one-dimensional system transport is due
to the lack of a transverse degree of freedom naturally restricted to a single chan-
nel, localization is in our multi-dimensional and disordered systems responsible for
limiting transport to a single channel. The difference is that for a one-dimensional
system, the transmission statistics, i.e., the probability density 𝑃 (𝑇 ), are known
analytically [28, 39, 40]. The main finding in our following results is, that the same
one-dimensional analytic theory can be applied to our multi-dimensional samples
in the single-channel regime. The only adjustment that has to be made is a renor-
malization of the localization length 𝜉. In other words, our single-channel samples
can be described as one-dimensional samples with an effective localization length
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𝜉′. This enlargement of the localization length accounts for the fact that the multi-
dimensional samples first undergo a diffusive regime before localization sets in. Such
a regime is entirely absent in a purely one-dimensional disordered system [41].

How this mapping to a one-dimensional system works in detail will be elaborated
in the following. Usually in our numerics, the localization length 𝜉 is determined by
plotting the disorder-averaged logarithmic total transmission ⟨ln𝑇 ⟩ as a function of
the system length 𝐿. As the transmission drops exponentially with system length
due to Anderson localization, we can fit this curve by a straight line the slope of
which is proportional to the inverse localization length, specifically −2/𝜉, which
allows for an easy calculation of 𝜉. An exemplary such fit is also shown by the
solid line in the inset of Fig. 1.3(a). The effective localization length 𝜉′ on the other
hand is determined by assuming that even for zero length 𝐿 there is only a single
channel for propagation through the sample, i.e., ⟨ln𝑇 ⟩(𝐿 = 0) = 0. Analogously,
𝜉′ is calculated from the slope of the straight line that is connecting the origin to
the particular point of ⟨ln𝑇 ⟩ at some length 𝐿 [as shown by the dashed lines in the
inset of Fig. 1.3(a)]. This leads to the relation

𝜉′ = −2𝐿/⟨ln𝑇 ⟩(𝐿) . (1.8)

Note that, while the pure localization length is universal for all lengths 𝐿 of a
sample, the effective localization length 𝜉′ still depends on 𝐿.

To explicitly test whether the above renormalization of the localization length
allows us to analytically describe the statistics of a strongly disordered sample in
the single-channel regime, we compare both our numerical and experimental re-
sults to predictions for the probability density of transmission of a theory that was
originally put forward for only one dimension [42]. The only thing that we change
in the formula for the probability density distribution 𝑃 (𝑇 ), is replacing 𝜉 by the
renormalized 𝜉′:

𝑃 (𝑇 ) = 𝐶

√︀
arccosh(𝑇−1/2)

𝑇 3/2(1− 𝑇 )1/4
exp[− 𝜉′

2𝐿
arccosh2(𝑇−1/2)] , (1.9)

where 𝐶 is a normalization constant. Using this formula, we derived an expression
also for 𝑃 (𝑠𝑎) and 𝑃 (𝑠𝑎𝑏) reading

𝑃 (𝑠𝑎) =

∫︁ ∞

0

𝑑𝑠

𝑠
𝑃 (𝑠) exp (−𝑠𝑎/𝑠) ,

𝑃 (𝑠𝑎𝑏) = 2

∫︁ ∞

0

𝑑𝑠

𝑠
𝑃 (𝑠)𝐾0(2

√︀
𝑠𝑎𝑏/𝑠) , (1.10)

where 𝐾0(𝑥) is a modified Bessel function of the second kind. This derivation in-
volves the relations between the statistical moments of the normalized transmissions,
i.e.,

⟨𝑠𝑛𝑎𝑏⟩ = 𝑛!⟨𝑠𝑛𝑎⟩ = (𝑛!)2⟨𝑠𝑛⟩ ,
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and so-called moment generating functions [43]. The comparison of our results and
the prediction from Eq. (1.9) is shown in Fig. 1.3. As indicated by the comparison of
the red and green lines with the numerical data represented as squares and circles
of the corresponding color in panel (a), our results show excellent agreement for
the statistics of 𝑇 as well as 𝑠𝑎𝑏. Importantly, this agreement is not achieved from
a fit of any kind but by a real match of prediction and numerical data. Such a
fit is only necessary for the experimental results of panel (b) since measuring the
total transmission is not possible in our experiment. Still, for the experimental
data we also find that Eq. (1.9) fits nicely the results [as shown in Fig. 1.3(b)]
with 𝜉′ now a fit parameter that is also in this case found to be larger than the
actual localization length 𝜉. The only discrepancy in this fit occurs in the tails of
the experimental distribution and can be attributed to subdominant transmission
eigenchannels and/or the small signals due to the ever-present absorption in the
experiments.

Overall, these results allow for an analytical model of the statistics of strongly
disordered systems. This was achieved by a mapping of our system on an effective
one-dimensional system featuring a renormalized localization length 𝜉′ > 𝜉. We
also found that this approach is valid in our numerics as well as the experiments.
This universality is astonishing given that the numerics are carried out for two-
dimensional systems that neglect the vectorial character of the microwaves in our
three-dimensional experiment.

In the following we will see that not only this mapping is a universal property of
localized disordered systems, also the cross-over to the single-channel regime itself
happens in a universal manner and can be charted by statistical means.

For this purpose, it will be useful to find a parameter that reflects the entrance
into the single-channel regime. In addition, this parameter should be experimentally
(and also numerically) accessible. To find such a quantity, we look at the singular
value decomposition of the transmission matrix

𝑡 = 𝑢 · diag(√𝜏𝑛) · 𝑣 ,

which involves the two unitary matrices 𝑢 and 𝑣. As in the single-channel regime
we can neglect all the 𝜏𝑚 for 𝑚 > 1, we find that

𝑇𝑎𝑏 = |𝑢𝑎1|2𝜏1|𝑣1𝑏|2 ,

𝑇𝑎 = |𝑢𝑎1|2𝜏1 ,

and of course also 𝑇 = 𝜏1. Since 𝑇𝑎 is independent of the input mode 𝑏, this formula
also reveals an intuitive explanation for the frozen speckle patterns observed in the
experiment [22, 29]. According to Refs. [24, 43], |𝑢𝑎1|2 and |𝑣1𝑏|2 obey negative
exponential statistics leading to the relation

⟨|𝑢𝑎1|2𝑛⟩/⟨|𝑢𝑎1|2⟩𝑛 = ⟨|𝑣1𝑏|2𝑛⟩/⟨|𝑣1𝑏|2⟩𝑛 = 𝑛! .
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Figure 1.4.: The crossover to the single-channel regime is charted in terms of
the ratio 𝑅 of the statistical moments of the normalized transmitted intensity
𝑠𝑎𝑏 = 𝑇𝑎𝑏/⟨𝑇𝑎𝑏⟩ and the normalized transmittance 𝑠 = 𝑇/⟨𝑇 ⟩, 𝑅 = ⟨𝑠2𝑎𝑏⟩/⟨𝑠2⟩, as
a function of 𝐿/𝜉. From the microwave experiment, 𝑅 was obtained in Sample 𝐴
(orange circles), 𝐶 (red squares), and 𝐷 (brown triangles). The data points of the
same color and style correspond to different frequencies in samples of the same
filling fraction and length. In the numerical simulations, planar disordered waveg-
uides of eight different lengths were considered at a single scattering frequency
(green line-connected diamonds). Both the experimental and numerical data agree
well with exact non-perturbative calculations of 𝑅 for a quasi-1D geometry shown
by the black solid line. The black dotted line represents the perturbative limit
of 𝑅, for 𝐿/𝜉 ≪ 1, 𝑅 = 2 + 4𝐿/3𝜉, and the black dashed line represents the
single-channel value 𝑅 = 4 in the deeply localized limit. Figure and caption were
adapted from our work collaborative Ref. [2].

This leads to an equation for the statistical moments of the normalized transmission
quantities,

⟨𝑠𝑛𝑎𝑏⟩ = 𝑛!⟨𝑠𝑛𝑎⟩ = (𝑛!)2⟨𝑠𝑛⟩ .

Evaluated for the second moments (𝑛 = 2), this inspired us to define a ratio

𝑅 = ⟨𝑠2𝑎𝑏⟩/⟨𝑠2⟩ , (1.11)

that will in case of single-channel transport show a unique value of 𝑅 ≈ 4. In the
diffusive limit (𝐿 ≪ 𝜉), however, we perturbatively find for 𝑁 ≫ 1 the equations
[44, 45]

⟨𝑠2⟩ = ⟨𝑇 2⟩/⟨𝑇 ⟩2 ≈ 1 + 2𝐿2/(15𝜉2),

⟨𝑠2𝑎𝑏⟩ ≈ 2 + 4𝐿/(3𝜉) and

⟨𝑠2⟩ ≈ 1 + 2𝐿2/15𝜉2 .
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Plugging this into the definition of 𝑅 from Eq. (1.11) leads to the result 𝑅 ≈
2 + 4𝐿/(3𝜉) which lets us expect a value of 𝑅 ≈ 2 for vanishing system length 𝐿.
The above considerations show that the quantity 𝑅 should allow us to chart the
cross-over from diffusive transport into the single-channel regime as these regimes
feature distinct values of 𝑅 ≈ 2 and 𝑅 ≈ 4, respectively. The results for 𝑅 in these
two limits are shown in Fig. 1.4 as the black dotted lines.

In order to find an analytical approach to the ratio𝑅, we utilize the results of exact
and non-perturbative calculations of Ref. [46] to express ⟨𝑇 ⟩ and ⟨𝑇 2⟩. In addition
we took the relations ⟨𝑠2𝑎𝑏⟩ = 2⟨𝑠2𝑎⟩ and ⟨𝑠2𝑎⟩ = 1+ var𝑠𝑎 = −(𝜉/⟨𝑇 ⟩2) 𝜕⟨𝑔⟩/𝜕𝐿 from
the literature [47, 48]. This analytic result for 𝑅 is shown as the black solid line
in Fig. 1.4 and shows a monotonic cross-over from 𝑅 = 2 in the diffusive limit to
𝑅 = 4 in the single-channel regime with increasing 𝐿/𝜉. In order to verify these
predictions, we also calculate 𝑅 as a function of 𝐿 in units of 𝜉 numerically in our
two-dimensional planar and disordered waveguides. As a starting point, 𝜉 can be
determined from the slope of the linearly decaying average logarithmic conductance
⟨ln𝑇 ⟩ as discussed before already. We numerically calculate the full transmission
matrix 𝑡 for 2000 random disorder realizations at 8 different values of 𝐿 leading to
a determination of 𝜉 = 1.52𝑊 . From this data it is also possible to calculate 𝑅 as
a function of 𝐿/𝜉 for which the results are shown as line-connected green diamonds
in Fig. 1.4. This data agrees very well with the analytical prediction for 𝑅. We
emphasize that especially at large 𝐿/𝜉 the convergence of 𝑅 to an approximate value
of 4 is nicely confirmed by our numerical simulations. For further substantiation of
the universality of this cross-over, our collaborators in San Antonio also measured
𝑅 as a function of 𝐿/𝜉 in the microwave experiment. For this purpose, we used
4 different samples: 𝐴 (alumina filling fraction, 𝑓 = 0.064, and 𝐿 = 30.5 cm),
𝐵 (𝑓 = 0.064, 𝐿 = 45.7 cm), 𝐶 (𝑓 = 0.064, 𝐿 = 91.4 cm) and 𝐷 (𝑓 = 0.125,
𝐿 = 45.7 cm). In order to determine 𝑅 one needs to measure the second moment
⟨𝑠2⟩ of the normalized total transmission 𝑠. Since the total transmission cannot
be measured in the experiment, this challenge has to be overcome by using the
relation [44, 49] ⟨𝑠2⟩ = ⟨𝑠𝑎𝑏𝑠𝑎′𝑏′⟩𝑎̸=𝑎′,𝑏 ̸=𝑏′ . In this way the second moment can be
expressed as a correlator of normalized modal transmissions 𝑠𝑎𝑏 and 𝑠𝑎′𝑏′ that can
be measured by rotating simultaneously both the emitting and receiving microwave
antennas by 900. As the number 𝑁 of transmission channels in the experiment
is directly proportional to the cross-section area of the copper tube, we find that
𝑁 varies from 24 to 32 in the frequency range considered. We investigated 15000
different disorder configurations to have good statistics. The ratio 𝑅 is plotted
versus 𝐿/𝜉 in Fig. 1, represented by the unlinked data points. These points are
gathered from a variation of frequencies and their color and style varies with the
sample in use: Sample 𝐴 is represented by the orange circles, 𝐵 by red squares and
𝐷 by brown triangles. We find that these data points are falling on the same curve
predicted by analytic theory and numerics. This is astonishing, in particular when
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considering that three different samples with varying filling fractions and lengths at
different frequencies were used. The strong variations in the data occurring at larger
𝐿/𝜉 ≥ 2.5 are caused by small signals that emerge from the increasing absorption
in those strongly localized systems. Note that the cross-over to the single-channel
regime in terms of the ratio 𝑅 is not even distorted by the fact that the experiment
is done with vector waves while the numerical waves are scalar.

However, we have to mention that the numerical and the experimental systems
are still both quasi-one-dimensional. For this reason, samples with a slab geom-
etry [50, 51] may require a theoretical treatment that reaches beyond the quasi-
one-dimensionality considered here. The reason for this is that the behavior of 𝑅
relies intrinsically on the negative exponential statistics of |𝑢𝑎𝑛|2 and of |𝑣𝑛𝑏|2 which
might not be guaranteed without quasi-one-dimensionality. A hint in the opposite
direction can be found in Refs. [52, 53] where the distribution 𝑃 (𝑠𝑎𝑏) measured in
three-dimensional setups were found to agree nicely with a quasi-one-dimensional
theoretical prediction. Also the eigenvalue distribution of the disordered system
should not be very sensitive to the shape of the disordered sample [54]. Testing the
cross-over to the single-channel regime also under this circumstances would be an
interesting task for the future.

In the last part of this study we also investigate the time-response and thereby
the dynamics of the single-channel regime. For this purpose, we evaluate the time-
dependent transmission amplitudes 𝑡𝑎𝑏(𝑡) by multiplying the spectrum with a Gaus-
sian shaped envelope of width 𝜎. This is done in the same way with the stationary
experimental data as well as numerical data. We also again employ the statistical
ratio 𝑅(𝑡) but now as a function of time delay 𝑡. As in the stationary case, we
expect to be able to identify single-channel transport by finding 𝑅(𝑡) ≈ 4.

Following the arguments from the discussion of Fig. 1.2, we already assessed
that in the single-channel regime the dominant transmission eigenchannel is formed
by either a localized internal mode or a necklace state. From this we conclude,
that the bandwidth of the eigenchannel is equal to the width of the transmission
resonance. For a pulsed excitation of the disordered sample this leads us to the
intuitive expectation that for a pulse bandwidth 𝜎 that is much smaller than the
average mode spacing Δ𝜈 (average spectral distance of the resonances), the waves
will transmit only through a single eigenchannel. On the other hand a broader pulse
with bandwidth much larger than this spacing will occupy multiple eigenchannels
on its way through the disordered region. In such a situation, one would observe
a non-exponential decay of transmission in time and spreading of the signal due to
modal dispersion [55].

As a starting point, the red line in Fig. 1.5(a) shows 𝑅(𝑡) as a function of time
delay 𝑡 in a microwave experiment of sample 𝐷 (𝐿/𝜉 = 2.9) for a pulse bandwidth
that is smaller than the average mode spacing Δ𝜈 (𝜎 = 0.5Δ𝜈) but still significantly
larger than the average resonance width 𝛿𝜈 (𝜎 = 5𝛿𝜈). A comparison of this data
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Figure 1.5.: Time-dependent ratio 𝑅(𝑡) in random quasi-1D [(a) experiment] and
planar 2D [(c) numerics] waveguide systems following a Gaussian pulsed excitation
of bandwidth 𝜎. The horizontal dashed lines indicate 𝑅 = 4 of the single-channel
regime. The experimental data in (a) are for a localized sample of 𝐿/𝜉 = 2.9
(Sample 𝐷, red line) and for a diffusive sample of 𝐿/𝜉 = 0.4 (Sample 𝐷, blue
line), using a pulse bandwidth of 𝜎 = 5𝛿𝜈 = 0.5Δ𝜈 and 𝜎 = 1.8𝛿𝜈 = 3.9Δ𝜈,
respectively. Note that for the localized sample a single transmission eigenchannel
dominates the pulsed transmission for all times, whereas a crossover to the single-
channel regime with increasing time delay can be noticed in the diffusive system.
The numerical data in (c) are for a localized sample of 𝐿/𝜉 = 3.29, using a
bandwidth 𝜎 = 2.3Δ𝜈 (green line) and 𝜎 = 9.2Δ𝜈 (brown line). Note that for
both cases we have 𝜎 > Δ𝜈, for which the single-channel regime sets in at long
time delays. In addition, for the case where 𝜎 is less than the average separation
between neighboring necklace-state resonances of 5Δ𝜈, the single-channel regime
can be realized by transmission through a necklace state at short time delays (see
the green line at 𝑅 = 4 for small 𝑡). For all cases, the average pulsed transmission,
⟨𝑇𝑎𝑏(𝑡)⟩, is shown in (b) (experiment) and (d) (numerics). The experimental
transmission curves were normalized to have a peak of unity and the curve for the
localized system was displaced by a decade for clarity of presentation. Figure and
caption were adapted from our collaborative work Ref. [2].
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with the associated average modal transmission ⟨𝑇𝑎𝑏(𝑡)⟩ [see red line in Fig. 1.5(b)]
reveals that the onset of the single-channel regime (hallmarked again by 𝑅 ≈ 4)
occurs right after the maximum of the modal transmission. This observation just
perfectly fulfills the expectation that for 𝜎 < Δ𝜈 the pulse is typically transmitted
through a single channel.

The contrasting case of a pulse bandwidth that is larger than the average mode
spacing is investigated experimentally by the blue lines in Fig. 1.5(a) and (b). (sam-
ple 𝐵, 𝐿/𝜉 = 0.4 and 𝜎 = 1.8𝛿𝜈 = 3.9Δ𝜈). As observed there, 𝑅(𝑡) starts out from
a stationary value of 2.8 before monotonically crossing over to and saturating at
a value of 𝑅 ≈ 4. Again, the comparison to the average modal transmission in
the time-domain allows the conclusion that in this case the cross-over to the single-
channel regime occurs at way larger values of 𝑡 and considerably long after most of
the intensity had leaked out of the sample. Also this observation is in line with our
expectations: At short times most of the intensity transmits through the sample
by the use of multiple channels because such a spectrally broad pulse collectively
excites several of them at the same time. However, there are obviously also strongly
localized, spectrally sharp resonances that are long-lived and transmit intensity
only after a significantly larger amount of time. Such modes are called pre-localized
modes in the literature [56] and can be held responsible for the occurrence of the
single-channel regime also under these circumstances but at much later times than
in the case of narrow pulses. These results are further numerically corroborated by
the calculation of 𝑅(𝑡) for two-dimensional waveguides with 𝐿/𝜉 = 3.29 and charted
by the green and brown lines in Fig. 1.5(c).

Comparing these two lines that are featuring a different pulse band width 𝜎
even reveals further information. As opposed to a single localized internal mode, a
necklace state is characterized by a short lifetime [23]. Consequently we can hope
for seeing signs of necklace states at small time-delays. Such a sign can be found
for the green line in Fig. 1.5(c) that clearly starts out from a value of 𝑅 ≈ 4 at very
short time-delays. The bandwidth of 𝜎 = 2.3Δ𝜈 in this calculation is larger than
the average mode spacing and hence multiple resonances are excited. However, at
this value of 𝜎 we can still expect that only one necklace resonance is excited by a
single pulse as typically the spectral distance between two necklace states is larger
than the average mode spacing Δ𝜈. This latter argument is supported by a look
at Fig. 1.2(a) where one finds the two necklace resonances (those resonances with 2
internal modes underneath) are about 5Δ𝜈 apart. In order to further check on the
above considerations, we also excite a pulse of bandwidth 𝜎 = 9.2Δ𝜈 [see the brown
line in Fig. 1.5(c)] which is so broad that we can expect it to also excite multiple
necklace states. Indeed we find, that 𝑅(𝑡) in this case does not quite reach the value
of 4 at very short times. For larger times, the green and the brown line again behave
similarly: After the necklace resonances have leaked out of the sample, transport
is for intermediate times dominated by multiple localized internal modes resulting
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in multiple channels and a drop in 𝑅(𝑡). Only for very large times, single-channel
transport is revived by pre-localized modes with very long life times (as discussed
in the previous paragraph).

1.3. Controlling branched flow

Although wave scattering has been studied for several decades now already, the
fundamental phenomenon of branched flow has only been discovered not much longer
than a decade ago for electrons in semiconductor heterostructures [11]. The density
of electrons injected through a quantum point contact into these two-dimensional
systems shows clear branched patterns instead of the expected fan-like spreading into
the system. This behavior could be attributed to the weak and smooth background
potential that is always present in such structures [57]. Soon afterwards it was shown
that this phenomenon can be largely explained in a classical way by the formation
of caustics due to the smooth disorder potential acting like imperfect lenses [58].
This focussing effect leads to the formation of branches in the flow of the electrons
which can drastically alter transport properties [59–61]. Although first discovered
as a nano-scale wave effect, branched flow in the following proved to have an impact
on wave-phenomena over a wide range of length scales reaching up to the formation
of freak-waves in the ocean [62–65].

While many previous studies focussed on the statistics of the phenomenon [58,
65, 66] as well as its classical [58, 67] or quantum [57, 68, 69] origin, there is, to our
best knowledge, no study so far that addresses the question how branched flow can
actually be used for wave control or focussing through disordered media. In this
work we are developing methods that let us guide the waves’ intensity flow along
single branches in a disordered medium. We are turning towards an optical system
since in such experiments methods of wave control are sufficiently advanced for a
possible experimental realization of our proposed methods.

First results regarding this topic were produced by Andre Brandstötter during the
course of his project thesis [70] that was carried out under Prof. Rotter’s, Philipp
Ambichl’s and my supervision.

In a first step we define the system under consideration more precisely (see
Fig. 1.6): We consider a rectangular scattering region of length 𝐿 and width 𝑊
that is attached to two clean semi-infinite leads of the same width 𝑊 on the left
and on the right. In transverse direction hard-wall boundary conditions are used. As
branched flow is at least partially a classical phenomenon [67], we need to consider
a preferably large number 𝑀 of propagating open modes in the leads. In all the
calculations we choose 𝑀 = 200 and a fixed wavenumber 𝑘 = 𝑚𝜋

𝑊 of the incoming
light. In order to choose well-suited units in our system, we set 𝑊 = 𝑚 = 200.01 re-
sulting in 𝑘 = 𝜋. This choice ensures that a length of 1 in our system corresponds to
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Figure 1.6.: Illustration of the setup under study. A cavity of length 𝐿 and width
𝑊 containing the smooth disorder potential as well as the aperture is attached to
an incoming left and an outgoing right lead. The system parameters are all given
in units of half a wave length and are the same in all figures if not stated otherwise.
The width of the disordered region is 𝑊 = 200.01, the length 𝐿 = 1.4𝑊 . The
aperture between left lead and scattering region is of height 𝑑 = 50.5. The refrac-
tive index of the disorder varies smoothly between 𝑛 = 1.0 and 𝑛 = 1.1 with a
correlation length of 𝜉 = 6.0. Light at constant wavenumber 𝑘 = 𝜋 is injected from
the left lead one-by-one in the 𝑛-th transverse lead mode. The plotted intensity
distribution shows the incoherent superposition of the corresponding scattering
intensities of mode 1 to 25 injected through the left lead. The color code is log-
arithmic and high intensity regions are shown in red. The branched structure is
clearly visible and 5 main branches are identified and marked by their respective
numbers. Separating these branches exploiting techniques of wavefront shaping is
the main goal of this study.
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half a wavelength. Since historically branched flow has first been observed for elec-
trons injected through a constriction (quantum point contact) into a high-mobility
electron gas [11], we also include such a constriction in form of an aperture of width
𝑑 = 50.5 between the left lead and the cavity in our geometry. The length of the
cavity is typically chosen to be 𝐿 = 1.4𝑊 .

The smooth long-ranged disorder necessary to observe branched flow is modelled
by a spatially dependent index of refraction 𝑛(𝑟⃗) throughout the whole scattering
region. This disorder is chosen in such a way that it is characterized by its maximal
refractive index 𝑛max = 1.1, while the minimal index of refraction is always kept at
vacuum value 𝑛min = 1. The smoothness of the potential is guaranteed by a finite
choice of correlation length 𝜉 = 6.0 measuring the long-rangedness of the disorder.
This length 𝜉 is defined as the standard deviation of the Gaussian auto-correlation
function

𝐶(
⃒⃒
⃒𝑟⃗ − 𝑟′

⃒⃒
⃒) = ⟨(𝑛2(𝑟⃗)− 1) · (𝑛2(𝑟′)− 1)⟩ ∝ 𝑒

−|𝑟⃗−𝑟′|
2𝜉

We choose 𝜉 = 6, which is of the order of the wave length 𝜆=2. Discretizing the
geometry on a square grid using finite differences, we solve the scattering problem of
this 2-dimensional setup via the Helmholtz-equation (1.1) with 𝜓(𝑟⃗) representing the
out-of-plane 𝑧-component of the electric field and a fixed incoming wave number 𝑘 =
𝜔/𝑐. We use a discretization of 10 points per half-wavelength in all our calculations.

We employ the modular recursive Green’s function technique [12] for the calcu-
lation of the scattering matrix Eq. (1.3). Our numerical method [13] also allows for
calculating the intensity |𝜓(𝑟⃗)|2 of the electric field for arbitrary injection in the left
lead (see also section 3.6 for a detailed explanation of the numerics).

In Fig. 1.6 we show an incoherent superposition2 of the first 25 waveguide modes
injected one-by-one through the left lead. In this way we can visualize the underlying
branched structure caused by the smooth disorder potential. We are able to identify
5 main branches at the output that are marked by the corresponding numbers in
Fig. 1.6.

The goal of this work is to separate these 5 main branches observed in Fig. 1.6
by finding suitable coherent superpositions of lead modes to inject from the left.
Such purposeful excitations of single branches would be an interesting step forward
in wave control in systems allowing for branched flow. The methods we are using in
order to achieve this goal involve the scattering matrix 𝑆 from Eq. (1.3) of which at
least parts can already be measured in optical experiments thanks to recent tech-
nological developments of spatial light modulators. Such an approach in terms of 𝑆
usually entails finding an operator that is able to separate the scattering states with
respect to a physical quantity that is described by the operator’s eigenvalues. From

2 with incoherent we mean that the sum is taken over the absolute values squared of 𝜓(𝑟⃗) and
thus ignoring interferences.
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an experimental point of view methods that are based on (parts of) the scatter-
ing matrix only, are of special interest since only asymptotic scattering amplitudes
are available for measurement while full control of the wave inside the system is
not possible. The most famous example of such an operator is the Wigner-Smith
time-delay operator [71, 72]

𝑄 = −𝑖𝑆† dS

d𝜔
(1.12)

which measures the time-delay of an arbitrary injected superposition of lead modes
in our optical system. Special eigenstates of 𝑄, were so far used numerically to sep-
arate scattering states by their delay-times yielding particle-like scattering patterns
inside the system (termed NOTEs) [73].

In a first approach we try to use this exact method for the separation of branches.
The left column of Fig. 1.7 shows those 5 eigenstates of 𝑄11 that correspond to the
smallest time delay eigenvalues of the system. One can clearly see, that the states
excite branches with a similar path length through the medium but none of them
cleanly excites only one single branch. It is also important to mention that due to
the large number of 𝑀 = 200 open modes, the scattering matrix contains a lot of
information. In a possible experiment it will hence be hard to determine the full
scattering matrix 𝑆 and in optics it is so far only possible to measure (small) parts
of it [17, 74].

However, a recent study proposed a method in case only a quadratic part 𝑠 of
size 𝑁 ×𝑁 with 𝑁 < 2𝑀 of the scattering matrix 𝑆 is known [75]. In this case a
reduced time-delay operator 𝑄𝑠 can be defined by

𝑄𝑠 = −𝑖𝑠−1 ds

d𝜔
. (1.13)

This definition is almost analogous to Eq. (1.12) except that now the operator
is calculated from the inverse 𝑠−1 instead of the hermitian conjugate 𝑆†. The
only problem with this definition is, that the existence of the inverse of 𝑠 is not
guaranteed in any way and that 𝑠 in general does not even have to be quadratic.
For example if only the transmission matrix 𝑡 is known, i.e., 𝑠 = 𝑡, and the system
under consideration features many modes that are hardly or not at all transmitted
(like in our case due to the aperture), 𝑡 is usually singular and 𝑄𝑠 thus not defined.

We overcome the aforementioned problem that may occur computing the inverse
of 𝑠 by projecting out the singular channels of 𝑠 for the definition of an alternative
operator 𝑄̃𝑠. For this purpose we utilize the singular value decomposition (SVD) of
𝑠 reading

𝑠 = 𝑈Σ𝑉 †,

with the unitary matrices 𝑈 and 𝑉 as well as a real diagonal matrix Σ consisting
of the singular values 𝜎𝑖 of 𝑠 ordered by 𝜎1 > 𝜎2 > ... > 𝜎𝑁 . 𝑈 and 𝑉 contain in
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(a) (b)

Figure 1.7.: Intensity distributions when injecting the 5 eigenstates of (a) 𝑄11

[Eq. (1.12)] and (b) 𝑄̃𝑡 [Eq. (1.14)] that belong to the smallest time-delay eigenval-
ues of the corresponding operator. The derivative with respect to wavenumber 𝑘 is
for both operators approximated numerically by a symmetric difference quotient
with a spacing of Δ𝑘 = 𝜋 · 10−8. The cutoff for singular values in the calculation
of 𝑄̃𝑡 in (b) is set to 𝜖 = 0.1.
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their columns the left and right singular vectors, respectively. If 𝑠 is singular or non-
quadratic, some singular values will become zero. In order to guarantee regularity,
we construct an alternative matrix 𝑠 that includes only those 𝑁̃ singular values of
𝑠 that are larger than some small value 𝜖. For this purpose we define

Σ̃ = 𝑈̃ †𝑠𝑉

with 𝑈̃ and 𝑉 deriving from 𝑈 and 𝑉 by truncation of all columns (all singular
vectors) with index 𝑗 > 𝑁̃ . The inverse of 𝑠 in the definition of Eq. (1.13) is in this
way replaced by

𝑠−1 → 𝑉 Σ̃−1𝑈̃ †

and the wavenumber derivative in Eq. (1.13) is projected onto the subspace of the
chosen singular values by the use of 𝑈̃ and 𝑉

ds

d𝜔
→ 𝑈̃ 𝑈̃ † d𝑠

d𝜔
𝑉 𝑉 †.

Overall we arrive at an alternative and always existing definition of a time-delay
operator 𝑄̃𝑠 reading

𝑄̃𝑠 = −𝑖𝑉 Σ̃−1𝑈̃ †𝑈̃ 𝑈̃ † d𝑠

d𝜔
𝑉 𝑉 † := −𝑖𝑠−1 d𝑠

d𝜔
(1.14)

with
𝑠−1 = 𝑉

(︁
𝑈̃ †𝑠𝑉

)︁−1
𝑈̃ †

and
𝑠 = 𝑈̃ 𝑈̃ †𝑠𝑉 𝑉 †.

We tested the above method by assuming that only the transmission matrix 𝑡 was
known in the branched flow systems under consideration, i.e. 𝑠 = 𝑡. This approach
is also of special meaning for future experiments since it is in general easier to
experimentally determine the transmission matrix 𝑡 than the reflection matrix 𝑟.
The 5 eigenstates belonging to the 5 smallest eigenvalues of 𝑄̃𝑡 for a cutoff value in
the SVD of 𝜖 = 0.1 are shown in the right column of Fig. 1.7. These states closely
resemble the corresponding eigenstates of 𝑄11 as can be seen by comparison to the
left column of the same figure. Even more so it seems that the eigenstates of 𝑄̃𝑡 tend
to even better emphasize single branches and are thus a step forward towards the
final goal of clean branch separation. The reason for this is that 𝑄̃𝑡 is not as much
affected by increased reflections as 𝑄11 and is thus less sensitive to the scattering
from the edges of the aperture. This result is astonishing when considering that
only a quarter of the information was used for the calculation of 𝑄̃𝑡 than for the
calculation of 𝑄11.
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However, for the separation of branches there is still plenty of room for improve-
ments. As it turned out, the delay time criterion is not sufficient for the clean
separation of branches. This comes from the fact that many of the branches show
very similar delay times making this property not unique for each single branch in
the system. It is obvious though that spatial information at the outgoing right lead
is unique to every main branch in the system. By this we mean that knowing the
positions of the intensity maxima at the output and restricting ourselves to this
section should in principle allow for a clean separation of branches.

For this purpose we have to transform the scattering matrix 𝑆 (or only the trans-
mission matrix 𝑡) from the lead mode basis to the space basis. One defines a
transverse position operator

𝑦𝑚𝑛 =

∫︁ 𝑊

0
𝜒*
𝑚(𝑦)𝑦𝜒𝑛(𝑦)dy (1.15)

where 𝜒𝑛 represents the 𝑦-dependent part of the 𝑛-th lead mode. With this operator
we can define a transformation matrix 𝑌 that in its columns contains the eigenstates
of 𝑦𝑚𝑛. The 𝑖-th of these eigenstates is a well localized peak around a position 𝑦𝑖 in
the lead and converges to a delta-distribution 𝛿(𝑦 − 𝑦𝑖) in the high frequency limit.
These positions 𝑦𝑖 divide the lead into 𝑀 equally spaced parts. The transmission
matrix 𝑡 can then be transformed to the transmission matrix 𝑡 in transverse space
basis via

𝑡 = 𝑌 †𝑡𝑌 . (1.16)

The 𝑖-th row of 𝑡 describes the transmission from the whole input lead to the 𝑖-th
peak belonging to an eigenstate of 𝑦𝑚𝑛 at the output lead. At this point we want
to mention, that this transformation is only an issue in a numerical approach. In
a possible experiment all the measured parts of the scattering matrix will even be
easier accessible in the space basis. In our calculations we aim at focussing just
onto those parts of the output where a certain branch arrives. Thus we cut out the
corresponding 𝑁 ×𝑀 -block from the matrix 𝑡 and we will call this block 𝑔 in the
following. In this case 𝑁 represents the number of 𝑦𝑚𝑛-eigenstates located in the
region we want to consider at the output (while 𝑀 is still the number of open lead
modes). By calculating the eigenstates of 𝑔†𝑔 with the largest eigenvalues we find
those states that have the largest transmission into the selected region.

In more detail, when trying to separate a branch, we proceed as follows: First
we calculate the scattering wave functions for different injections into our system
and superimpose those incoherently. Further we plot the spatial overlap of these
distributions with the eigenstates of 𝑦𝑚𝑛 that are centered at positions 𝑦𝑖. Such pro-
files at the output of our system for an incoherent superposition of the first 25 lead
modes as well as a superposition of the 10 𝑄11-eigenstates with smallest eigenvalue
are shown in Fig. 1.8. In a next step, we pick a certain branch (corresponding to
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Figure 1.8.: Intensity output profiles as a function of central positions 𝑦𝑖 of 𝑦𝑚𝑛-
eigenstates for an incoherent superposition of the first 25 lead modes (red solid line)
and 10 𝑄11 eigenstates with smallest eigenvalues (blue dashed line). The maxima
caused by the branched flow in the system are clearly visible. The regions where
these maxima occur are used in our method to gain spatial information for the
separation of branches.

a maximum in the output intensity) and choose a range of 𝑁 such eigenstates that
are located in the vicinity of the corresponding maximum at the output. Finally,
we only keep those lines of 𝑡 that correspond to such an overlapping eigenstate.
The resulting spatial transmission matrix 𝑔 is then used for the calculation of the
𝑔†𝑔 eigenstates. Experimentally this procedure would also be easily accessible: The
output profiles can be determined by scanning the output facet measuring intensity
and phase for injection through point sources at different positions. In this way 𝑔
can be measured directly and can further be used for the procedure.

As an example we turn towards branch 5 in our system (see Fig. 1.6). We find
that the intensity from this branch ends up mostly in the region between 𝑦 = 126
and 𝑦 = 154. We truncate 𝑡 by only keeping lines 126 to 154 yielding the desired
spatial transmission matrix 𝑔. A singular value decomposition of 𝑔 tells us that in
fact 8 singular values are larger than 0.8 which lets us expect that many eigenstates
of 𝑔†𝑔 will transmit most of their intensity into the desired output region.

In Fig. 1.9(a) we show the first 5 such 𝑔†𝑔 eigenstates for branch 5. We find that
as expected these states very nicely transmit most of their intensity to the region
between 𝑦 = 126 and 𝑦 = 154. In addition the eigenstate with the largest eigenvalue
(largest transmission, top of the figure) already shows almost perfect excitation of
only a single branch in our disordered cavity. Yet, a small contribution at the
bottom can be seen that reflects from the boundary and is from there transmitted
to the region at the output where also the main branch arrives. Such contributions
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(a) (b)

Figure 1.9.: Comparison of (a) eigenstates of 𝑔†𝑔 with highest transmission eigen-
values and (b) eigenstates of 𝑄̃𝑔 with lowest time-delay eigenvalues. We restricted
ourselves to the region from 𝑦 = 126 to 𝑦 = 154 in transverse direction at the
outgoing lead. (a) The operator 𝑔†𝑔 yields states that almost exclusively transmit
into this region. States that bounce off the boundary several times are visible
besides the clean main branches. (b) The 𝑄̃𝑔 operator is able to filter the sub-
space of 𝑔†𝑔 for states that have similar delay times and thus leads to even cleaner
separation of branches. All system parameters are the same as stated in the main
text and the caption of Fig. 1.6.
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with larger angles are in large number present in the other eigenstates of 𝑔†𝑔 but
still all of them arrive to a large extent in the desired region.

(a) (b)

Figure 1.10.: We show the best states we were able to find for branches 1 to 5
of our system by considering (a) the 𝑔†𝑔 eigenstates and (b) the 𝑄̃𝑔 eigenstates.
One can see that both operators yield fairly similar results even though 𝑄̃𝑔 leads
to a small improvement and elimination of larger angle contributions. The cutoff
for accepted singular values in the calculation of 𝑄̃𝑔 is set to 𝜖 = 0.8 for all 5
branches. All system parameters are the same as stated in the main text and the
caption of Fig. 1.6.

We also applied this method to the other branches that were marked in Fig. 1.6.
For every branch we show in Fig. 1.10(a) the eigenstate (of the respective 𝑔†𝑔-matrix)
that resembles best a single branch. It is obvious that this method already works
well as the desired main branches are almost exclusively excited in all 5 pictures.
However, in some of the pictures we can still find small contributions from larger
angles. In the following we will improve our results further by merging all the used
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approaches into a single method.
Since the aforementioned large angle contributions have a longer way through the

medium it can be expected that their time delay is significantly larger than for the
main branch. It would be thus desirable to find an operator in the subspace of 𝑔 that
separates the 𝑔†𝑔 eigenstates once more by time delay. Realizing that 𝑔 is (in space
basis) just a part of the full scattering matrix, we can additionally use our knowledge
from the first section and interpret 𝑔 as a partially known scattering matrix 𝑠 as
considered for the definition of a partial time-delay operator 𝑄̃𝑠 in Eq. (1.14). The
only technical difference is the choice of the parameter 𝜖 that represents a minimal
value for singular values of 𝑔 (𝑠) to be included in the calculation. Usually this
value should be close to zero since it shall only guarantee regularity of 𝑄̃𝑠 but
leave as many degrees of freedom as possible. However, in case of our time-delay
operator 𝑄̃𝑔 it is essential that the states included have high transmission into a
desired output region, i.e. have singular values close to 1. Still, choosing 𝜖 too
close to 1 will remove degrees of freedom for the eigenstates of 𝑄̃𝑔 and impede clean
separation of branches. In our calculations we find that choosing 𝜖 such that 5 to 10
𝑔†𝑔-eigenstates are included (which is usually a value of 𝜖 ≈ 0.8 in our system) has
proven to be a reasonable compromise. In Fig. 1.9(b) we show those 5 eigenstates of
𝑄̃𝑔 with smallest eigenvalue (again these results are calculated for branch 5 of our
system as before for the 𝑔†𝑔-eigenstates). We find that especially the first eigenstate
(on top of the panel) shows very clean excitation of a single branch and the high-
angle contribution that was visible before [see top picture of Fig. 1.9(a)]. We can
also see from the third row of Fig. 1.9 that the operator 𝑄̃𝑔 nicely eliminated the
contribution of the main branch in the corresponding eigenstate of 𝑔†𝑔. However,
also in this state there are still contributions of two branches that reflect from the
upper and lower boundary, respectively, but feature a very similar path length and
thus a similar runtime. While this problem might be overcome by an additional
operator separating this state with regard to the injection angle, it clearly does not
occur for the main branches as these are not reflected from any of the boundaries.

As intended, the time-delay operator 𝑄̃𝑔 restricted in the subspace of large trans-
mission to the region 126 ≤ 𝑦 ≤ 154 proved to be able to separate those states
by delay time and finds a proper injection to exclusively excite the desired main
branch. As shown in Fig. 1.10(b) we find that this way of exciting main branches
works for all the branches that we identified in our system. We receive clean pic-
tures of branches that almost show no diffraction and have over 90 percent of their
intensity focussed on a small output region. These results show that our method
leads to nice focussing through the disordered region as well as controlled branch
flow.

One could argue that in this classical limit of many open modes single branches
may be excited if one simply injects a state that corresponds to the classical angle in
which the branch spreads. In order to check whether our own approach corresponds
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Figure 1.11.: Best single-branch 𝑄̃𝑔-eigenstates injected into empty cavity. Re-
moving the disorder potential leads to spreading of the states. All other system
parameters are the same as stated in the main text and the caption of Fig. 1.6.

to this trivial strategy, we performed calculations where we injected the same super-
positions of lead modes for which we found nice branch separation in Fig. 1.10(b)
but now into an empty cavity. These results are shown in Fig. 1.11. One can clearly
see that these states do not correspond just to a certain angle but rather spread
widely in a clean region. This proves that our method does not yield trivial results
and the disorder is mainly responsible for the nice collimation and focussing effects
observed.

Another question that we turn towards is, how stable our results are with respect
to injection frequency. For this purpose we increased the wavenumber 𝑘 by up to
10%. The results in Fig. 1.12 show that the excitation of branches hardly changes
and only very slowly gets worse as a function of the incident wave’s frequency (or
wavenumber). Such an insensitivity to a frequency variation is a desirable feature
for possible future experiments. This is because it allows for the injection of pulses
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Figure 1.12.: Best 𝑄̃𝑔-eigenstates of branch 5 with a variation of the wavenumber
𝑘 = 1.0𝜋, 1.05𝜋, 1.1𝜋, respectively. The superposition exciting the single branch
that was previously calculated for 𝑘 = 𝜋 proves to be very stable against variations
of the wave number (frequency). All other system parameters are the same as
stated in the main text and the caption of Fig. 1.6.

that naturally contain many frequency components. Since our single-branch states
hardly change as a function of injection frequency we can expect that, in future
experiments, one can also inject whole pulses which then propagate along single
branches through the disordered system.

Overall we have shown that our methods allow for the selection of single branches
in a disordered system with a smooth correlated disorder. These insight reveals the
possibility of focussing waves through a disordered medium onto specific spots at
the output, promising a broad range of future applications. One possible task that
our methods could be helpful for is, e.g., the focussing of light through biological
tissue which naturally features correlated disorder. Since the wave phenomenon of
branch flow is not limited to optics but can be observed in all different kinds of wave
systems, also steering electrical currents through nanostructures or even directing
water waves in the ocean towards specific targets could, in principle, be realized.



Chapter 2.

Two-dimensional topological insulators

Topological insulators are recently discovered materials with promising electronic
properties [4–6]. This chapter will be concerned with our research on this topic.
Parts of this chapter are incorporated from our published papers Refs. [9] and [10].

2.1. Introduction

A two-dimensional topological insulator [4] features edge states similar to those of
the quantum Hall effect with the difference that electrons of different spin move in
the same direction at opposite edges. Accordingly, this so-called “quantum spin Hall”
(QSH) effect [76] can be understood as two noninteracting copies of a quantum Hall
system, one for each spin. These edge states are protected by time-reversal symme-
try which forbids scattering into the counter-propagating edge state with opposite
spin, strongly stabilizing them against non-magnetic disorder [77, 78]. These proper-
ties, which have recently attracted considerable attention [79–85], make topological
insulators promising candidates for key components in future spin-tronic devices
[86, 87].

In 2006 HgTe/CdTe quantum wells were proposed as suitable systems for a first
experimental realization of the QSH effect [88] which was, indeed, achieved shortly
thereafter [89, 90]. This experimental identification relied on observing the quan-
tized conductance plateau hallmarking such disorder-insensitive conducting edge
states.

As discovered in a successive numerical study [7], such edge states are not only
immune from backscattering but can even be elicited by disorder in systems that
have no topologically distinct properties in the clean limit. This disorder-induced
topological phase was first believed to be caused by Anderson localization, and was
thus named ”topological Anderson insulator” (TAI). Meanwhile the TAI has been
investigated numerically in a variety of different systems [91–95] including the case
of a three-dimensional topological insulator [96].

In 2009 a theory was put forward [8] that lead to a detailed understanding of the
TAI, showing that the phase boundaries at the transition from an ordinary insulator
to the TAI can be explained by an effective medium theory. In this approach the
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presence of disorder leads to a re-normalization of the medium parameters [8] in
particular to the topological mass which pushes the system into the TAI phase. In
this sense, the TAI appears due to a change of topology in the effective medium.

However, due to the challenges involved in controlling the disorder in a HgTe/CdTe
quantum well, the TAI has not yet been realized experimentally. This problem can
be overcome by employing photonic lattices that are be fabricated in such a way that
topologically induced edge states can be observed [97, 98]. In such a macroscopic
system, the disorder can be controlled experimentally. Moreover, these systems are
discrete which, for reasons to be explained below, makes them the most-promising
candidates for an experimental observation of the TAI. Another system that could
achieve this experimental observation are ultra-cold atomic gases in optical lattices
[99]. In such a highly tunable model system the disorder could be introduced by an
optical laser speckle potential [100, 101] which also has the advantage of being under
external control. An important point to emphasize in this context is that both the
speckle pattern for cold atomic gases as well as the disorder which naturally occurs
in a quantum well are characterized by a finite spatial correlation length 𝜉.

2.2. Model

We proceed along the lines of previous studies, where an appropriate description
of the two dimensional HgTe/CdTe quantum well was proposed in terms of an
effective Hamiltonian [88]. This Hamiltonian which was derived based on the k · p
perturbation theory and the six-band Kane-model takes the following form:

𝐻eff(𝑘𝑥, 𝑘𝑦) =

(︃
ℎ(𝑘⃗) 0

0 ℎ*(−𝑘⃗)

)︃
, (2.1)

with

ℎ(𝑘⃗) = 1𝜖(𝑘⃗) + 𝑑𝑖(𝑘⃗)𝜎
𝑖 (2.2)

𝜖(𝑘⃗) = 𝐶 −𝐷
(︀
𝑘2𝑥 + 𝑘2𝑦

)︀

𝑑𝑖 =

⎛
⎝

𝐴𝑘𝑥
−𝐴𝑘𝑦
𝑀(𝑘⃗)

⎞
⎠

𝑀(𝑘⃗) = 𝑚−𝐵(𝑘2𝑥 + 𝑘2𝑦)

and 𝜎𝑖 labeling the Pauli-matrices. The basis of this effective Hamiltonian consists
of the s-like E1 and the p-like heavy-hole H1 quantum well sub-bands for spin up (+)
and down (−). The ordering is chosen to be |𝐸1+⟩, |𝐻1+⟩, |𝐸1−⟩, |𝐻1−⟩. Details
on the numerical implementation of this model Hamiltonian Eq. (2.1) can be found
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in appendix A and in a similar form also in my diploma thesis [102]. A more detailed
derivation of the model is given in the original paper [88] and also in my diploma
thesis [102].

2.3. Topological insulator in the presence of spatially
correlated disorder

An interesting feature of topological insulators is the so-called topological Ander-
son insulator (TAI) phase as mentioned already in the introduction. This phase is
hallmarked by the fact that introducing disorder in the potential can actually in-
troduce order in the electronic properties by causing unidirectional edge states that
are typical of the Quantum Spin Hall effect [7]. Preliminary results on this topic
can be found in my diploma thesis [102]. Parts of the following texts in this section
are taken from our publication Ref. [9].

Here we ask the question, if a more realistic ansatz for the disorder potential
including spatial correlations will have an effect on the appearance and decay of
this phase. Since this correlation has been disregarded in all previous numerical
studies of the TAI which we are aware of [7, 8, 95, 103, 104] the question was
posed [104] how a finite correlation length 𝜉 would influence the predictions for
the appearance and for the stability of the TAI. In view of the fact that spatial
correlations in the disorder have already been shown to play an important role in
the context of various other scattering scenarios [73, 105–119] one may expect such
correlations to be a relevant factor also for topological insulators. We address this
topic by studying explicitly how a static and spatially correlated disorder influences
the transport characteristics of topological insulators (Fig 2.1). As we will specify
in detail below, our numerical results show marked deviations from conventional
simulations with uncorrelated disorder.

For our calculations we use the Bernevig-Hughes-Zhang (BHZ) model Hamil-
tonian from Eq. (2.1). Since the spin-up and spin-down parts ℎ(𝑘⃗) and ℎ*(−𝑘⃗),
respectively, in the Hamiltonian are decoupled as a consequence of time reversal
symmetry [120] it is sufficient for our calculations to only use the spin-up block ℎ(𝑘⃗)
since the solution for the spin-down block follows from a time-reversal operation.
The material-dependent constants 𝐴, 𝐵 and 𝐷 in the calculations of this section are
set to realistic values 𝐴 = 364.5 meVnm, 𝐵 = −686 meVnm2, 𝐷 = −512 meV nm2

and 𝐶 = 0 meV taken from Ref. [121]. The sign of the topological mass 𝑚 has a
strong impact on the system’s transport behavior: for positive 𝑚 the system be-
haves like an ordinary insulator with a band gap of 2 |𝑚|, whereas if 𝑚 is set to
a negative value the system turns into a topological insulator featuring perfectly
transmitting edge states for the Fermi energy 𝐸𝐹 lying inside the bulk band gap
|𝐸𝐹 | < |𝑚|. To simulate such a system we use the experimentally determined value
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Figure 2.1.: Illustration of the scattering setup for the considered topological
insulator: A rectangular disordered middle part of height 𝐿𝑦 and width 𝐿𝑥 is
attached to two semi-infinite leads on the left and right. Random potentials with
and without correlations between neighboring grid points in the underlying lattice
discretization are shown in the bottom and top panel, respectively.

[121] of 𝑚 = −10 meV. The scattering geometry which we consider consists of
a rectangular disordered region of width 𝐿𝑥 and height 𝐿𝑦 attached to two clean,
semi-infinite leads (see illustration in Fig. 2.1). We discretize the scattering region
on a square lattice with grid constant 𝑎 using the tight-binding approximation in
the continuum limit for the implementation of the effective Hamiltonian. If not
stated otherwise, the grid-constant 𝑎 is set to 5 nm, in agreement with the value
used in previous studies [7, 8, 103, 122, 123]. For simplicity, we consider the limit
of vanishing temperature 𝑇 → 0 and infinitely small bias voltages 𝑉 → 0 applied
between the two semi-infinite leads. According to the Landauer-Büttiker formalism
the conductance 𝐺 in this limit is proportional to the transmission probability 𝑇 at
the Fermi energy 𝐸𝐹 ,

𝐺 =
𝑒2

ℎ
𝑇 =

𝑒2

ℎ

𝑁∑︁

𝑛,𝑚

|𝑡𝑛𝑚|2 . (2.3)

The indices 𝑛 and 𝑚 extend over all 𝑁 lead modes and 𝑡𝑛𝑚 labels the transmis-
sion amplitude from mode 𝑛 in the incoming lead to mode 𝑚 in the outgoing lead.
Since we consider both spins separately, every mode only contributes a single con-
ductance quantum 𝑒2/ℎ. For the calculation of the transmission we employ the
advanced modular recursive Green’s function method [12, 13, 15] which incorpo-
rates the disorder by way of a static on-site energy value 𝑉 (𝑥⃗) imposed at every
grid-point 𝑥⃗ = (𝑥𝑖, 𝑦𝑗). In previous calculations the random on-site energies 𝑉 (𝑥⃗)
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were chosen to be uniformly distributed within a given energy interval [−𝑈/2, 𝑈/2],
and each random sample from this distribution was drawn independently for each
grid point. Since in this case the disorder value on each grid point has no correlation
with the values on neighboring grid points we will refer to this type of disorder as
“uncorrelated”. To go beyond this limitation and to account for the spatial correla-
tions which naturally occur in realistic situations we choose our disorder potential
such as to obey the Gaussian correlation function

𝐶(𝑟⃗) = ⟨𝑉 (𝑥⃗) · 𝑉 (𝑥⃗+ 𝑟⃗)⟩ ∝ exp

(︂
− 𝑟2

2𝜉2

)︂
(2.4)

where the brackets ⟨...⟩ stand for an average over all the grid points 𝑥⃗ and many
disorder realizations. The standard deviation of this Gaussian defines the correlation
length 𝜉, which measures the spatial range of the correlations. The value of the
disorder strength 𝑈 is established by demanding

⟨𝑉𝑖𝑗⟩ = 0 ,

⟨𝑉 2
𝑖𝑗⟩ =

𝑈2

12
. (2.5)

These values are chosen such as to agree with those of the uncorrelated disorder
potential distributed within the interval [−𝑈/2, 𝑈/2]. See Fig. 2.1 for an illustration
of the disorder potentials with and without spatial correlations in the employed
tight-binding grid. More details on the numerical construction of such a correlated
disorder potential can be found in my diploma thesis [102].

We first consider the conductance through a disordered rectangular bar of width
𝐿𝑥 = 2000 nm and height 𝐿𝑦 = 500 nm for a negative and a positive value of the
topological mass 𝑚 (𝑚 = −10 meV and 𝑚 = +1 meV), respectively. In the clean
limit the system with 𝑚 < 0 [see 𝑈 = 0 in Fig. 2.2(a)] features quantized edge
transport (green area) within the bulk band gap |𝐸𝐹 | < |𝑚|, whereas conductance
is entirely suppressed in the energy range |𝐸𝐹 | < |𝑚| for 𝑚 > 0 [see 𝑈 = 0 in
Fig. 2.2(c)] [7]. Adding now an uncorrelated disorder to the clean systems with
𝑚 < 0 and 𝑚 > 0 gives rise to an unconventional conductance plateau [see 𝑈 > 0
in Figs. 2.2(a) and 2.2(c) as well as Ref. [7]]. This so-called TAI phase of quantized
transport emerges in the presence of strong uncorrelated disorder at energies at
which no edge transport is present in the clean limit 𝑈 = 0 [7]. In the case of
𝑚 < 0 [Fig. 2.2(a)] this TAI phase extends the original QSH phase beyond the
disorder-free limits, given by |𝐸𝐹 | = |𝑚|. Note that our results from Figs. 2.2(a)
and 2.2(c) agree very well with the literature [7, 8], thereby confirming the validity
of our simulations.

In a next step we repeat this calculation for a correlated disorder potential. We
choose the value of the correlation length 𝜉 = 23.45 nm considerably larger than



46 2.3. Topological insulator in the presence of spatially correlated disorder

0 50 100 150 200 250 300
U (meV)

0 50 100 150 200 250 300
U (meV)

0

20

40

60

E
F
(m
eV
)

U (meV)

SCBA

0 50 100 150 200 250 300

0

20

40

60

E
F
(m
eV
)

0 0.5 1 1.5 2 2.5

0 50 100 150 200 250 300
U (meV)

>3

<G> (e
2
/h)

Figure 2.2.: Average conductance ⟨𝐺⟩ as a function of disorder strength 𝑈 and
Fermi energy 𝐸𝐹 for systems with negative 𝑚 = −10 meV (left column) and with
positive 𝑚 = 1 meV (right column). The system length 𝐿𝑥 = 2000 nm and the
height 𝐿𝑦 = 500 nm. The average is taken over 200 in (a) and 1000 disorder real-
izations in (b), (c) and (d). The green area shows where the average conductance
⟨𝐺⟩ reaches a plateau at a single conductance quantum 𝑒2/ℎ originating from edge
transport through the disordered system. Top row: For uncorrelated disorder the
TAI phase appears in this green area for strong disorder at energies where no edge
states exist for 𝑈 = 0. The blue lines in (a) show the phase boundaries of the
TAI predicted by the effective medium theory which is based on the self-consistent
Born approximation (SCBA) shown in Eq. (2.6). Bottom row: Spatial correlations
in the disorder with correlation length 𝜉 = 23.45 nm destroy the TAI conductance
plateau and for 𝑚 < 0 also narrow the QSH plateau to an interval within the
original bulk band gap. For positive topological mass (right column) the leads
have been doped resulting in an energy offset of Δ = 20 meV since otherwise no
lead states would exist in the band gap.
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the grid constant 𝑎 = 5 nm but still much smaller than the height 𝐿𝑦 = 500 nm
of the sample. Our results for such a finite correlation length [see Fig. 2.2(b) and
2.2(d)] differ dramatically from the uncorrelated case [see Fig. 2.2(a) and 2.2(c)]:
Apparently the chosen spatial correlations in the disorder lead to a total breakdown
of the TAI conductance plateau. In the case of 𝑚 < 0 we also observe an increased
disorder-sensitivity as well as a narrowing of the conductance plateau corresponding
to the original QSH phase in the clean limit. These results demonstrate that spatial
correlations in the disorder add an important new component to the physics of
topological insulators. Especially in view of the envisioned experiments that probe
the physics of strongly disordered topological insulators, our results can apparently
be expected to impose rather strict limits on the observability of the TAI phase.
For such an experimental realization of the TAI we can certainly conclude that it
is equally important to be able to control the correlation length 𝜉 as it is to control
the strength 𝑈 of a disorder potential.

To check the influence of spatial correlations also for larger samples than the ones
considered above we performed additional calculations. This is particularly impor-
tant as finite-size effects in small samples due to a coupling of counter-propagating
edge states can considerably distort the phase diagram of the TAI [103, 104, 120].
To determine these phase boundaries in extended samples we performed a scal-
ing analysis following previous work in this direction [92, 122]. For this purpose a
quadratic geometry of size 𝐿 = 𝐿𝑥 = 𝐿𝑦 is rolled up to a cylinder [8, 103, 122] using
periodic boundary conditions in the 𝑦 direction which eliminate the edge states in
the sample. The disorder-averaged logarithmic conductance ⟨ln𝐺⟩ of the remaining
bulk states is then calculated for three different sizes 𝐿1 < 𝐿2 < 𝐿3 of the quadratic
system as a function of the disorder strength 𝑈 . This analysis allows us to estimate
whether the bulk system in the limit of infinite size becomes conducting or insulat-
ing. For those values of 𝑈 where ⟨ln𝐺⟩ increases with increasing system size 𝐿, bulk
states also conduct in an infinite system and thus suppress any kind of TAI phase
due to the coupling of the edge states via bulk states. In contrast, in those regions
where ⟨ln𝐺⟩ decreases with increasing system size 𝐿 the bulk is insulating in an
infinitely large sample and clean edge transport can occur. The borders of these
transitions between conducting and insulating bulk states can be estimated from
the crossing points of ⟨ln𝐺⟩ [122, 123]. We calculated these phase transition points
for an uncorrelated and for correlated potentials with different correlation length 𝜉
in systems of three different sizes 𝐿1 = 500 nm, 𝐿2 = 700 nm and 𝐿3 = 1050 nm.
Due to the high numerical effort involved, we restrict ourselves to a single energy
of 𝐸𝐹 = 16 meV at which the TAI conductance plateau in the uncorrelated case is
wide and well established [see Fig. 2.2(a)].

The results of our scaling analysis are shown in Fig. 2.3, where the uncorrelated
case and two different correlation lengths 𝜉 are considered. For each of these three
cases the dependence of ⟨ln𝐺⟩ on the disorder amplitude 𝑈 is shown. The phase
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Figure 2.3.: (color online). Average logarithmic conductance ⟨ln𝐺⟩ through a
rolled up quadratic topological insulator (𝑚 = −10 meV) of size 𝐿𝑖 × 𝐿𝑖 as a
function of disorder strength 𝑈 . We consider three different system sizes 𝐿1 =
500 nm, 𝐿2 = 700 nm and 𝐿3 = 1050 nm for uncorrelated disorder (black)
and for correlated disorder with correlation length 𝜉 = 9.0 nm (red) and 𝜉 =
35.0 nm (blue) at an energy of 𝐸𝐹 = 16 meV (disorder average taken over 2000
configurations). The transitions into and out of the TAI phase occur at the crossing
points of curves with equal color (their positions are marked by small arrows.)
The TAI bulk band gap, present in the uncorrelated case in between the first and
second crossing point, disappears for correlated potentials and the delocalization-
localization region between second and third crossing point is broadened. The
top right inset shows the behavior of ⟨ln𝐺⟩ as a function of the system length
𝐿 with fixed system width 𝑊 = 500nm for 𝜉 = 9 nm and for three values of
disorder strength 𝑈 = 70, 100 and 130 meV (see red vertical bars in the main
panel). The localization length 𝐿loc is calculated from the slope of the best linear
fit of ⟨ln𝐺⟩: 𝐿loc(𝑈 = 70meV) = 518nm, 𝐿loc(𝑈 = 100meV) = 350nm and
𝐿loc(𝑈 = 130meV) = 379 nm. The top left inset shows a closeup of some crossing
points shown in the main panel.
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transition points occurring at the crossing points of curves for different system sizes
are marked by arrows. The top left inset of Fig. 2.3 shows a closeup of the crossing
points. As found previously, the crossing points move slightly to lower values of
𝑈 for increasing system size as a result of finite size effects [123]. We can thus
expect the real phase transition point to be at lower values of 𝑈 than our best
estimate that we gain from the crossing points between the curves for 𝐿2 and 𝐿3

which are marked by the arrows in Fig. 2.3. Considering first the uncorrelated
case studied already earlier (see black curves and arrows) we find that the lowest
crossing point occurs at a value of the disorder strength 𝑈 ≈ 65 meV which fits
well with the onset of the aforementioned TAI conductance plateau in Fig. 2.2(a)
(see also Ref. [122]). This onset coincides here with the opening of a bulk band gap
which is reflected in the scaling plots of Fig. 2.3 through a dramatic reduction of the
conductance by more than ten orders of magnitude. The second and third crossing
points, in turn, can be associated with the breakdown of the TAI phase observed in
Fig. 2.2(a). The corresponding transition is, however, not induced by a band edge
but rather by a mobility edge associated with those bulk states that fill the band
gap when increasing the disorder strength beyond the first crossing point. These
bulk states undergo a delocalization-localization transition at the second and third
crossing point which destroys the conductance plateau as soon as the delocalized
bulk states start coupling the edge states at opposite edges in the sample. Note
that for this to happen it is already sufficient for individual rather than for all bulk
states to delocalize such that finite size effects do play a role at this strong-disorder
boundary of the TAI [122, 123].

When extending the above scaling analysis now to the case of correlated disorder
with successively increasing correlation length 𝜉 we find a behavior different from
the uncorrelated case: Already for the case of very short-range correlations with
𝜉 = 9.0 nm (red curves in Fig. 2.3) significant differences appear. We still find
three crossing points as before, but the conductance no longer displays the very
strong suppression associated with a bulk band gap. Instead, we find that the
delocalization-localization region of bulk states, which was previously associated
with the strong-disorder boundary of the TAI, widens for increasing correlation
length 𝜉. Correspondingly, in the disorder interval between the first and the second
crossing points (which are now also much closer together) the conductance is much
less suppressed than in the uncorrelated case. This indicates that in the correlated
case the bulk band gap disappeared and was filled with localized bulk states.

To prove this statement we investigate more closely the behavior of ⟨ln𝐺⟩ in the
disordered cylinder with surface area 𝑊 × 𝐿. Keeping the circumference of the
cylinder and the correlation length of the potential fixed at 𝑊 = 500 nm, 𝜉 =
9.0 nm, we vary the system length 𝐿 and consider three different values of 𝑈 within
the region between the first and second crossing point where the bulk system is
insulating in an infinitely large system. The results are shown in the top right
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inset of Fig. 2.3. The bulk states are indeed localized as the averaged logarithmic
conductance ⟨ln𝐺⟩ drops linearly with increasing length 𝐿. From the slope 𝑘𝑙 of
the fitted lines we determine the localization length 𝜉 = −2/𝑘𝑙 of the bulk states
which ranges from 518 nm right after the first phase transition point (𝑈 = 70 meV)
down to 349 nm in the middle of the ”insulating” region (𝑈 = 100 meV). With
the localization length 𝜉 thus falling below the linear dimension 𝑊 = 𝐿 of the
quadratic disorder region considered in Fig. 2.3, we can understand that the reduced
bulk conductance is here produced by the localization of bulk states, rather than
by a band edge as in the uncorrelated case. We emphasize, however, that both a
band gap as well as localized bulk states can give rise to a TAI, as was explicitly
pointed out in a recent study [123]: In what was termed a TAI-I phase the coupling
between edge states is prevented by a bulk band gap which eliminates all bulk
states that would mediate such a coupling. In a system with negative topological
mass 𝑚 < 0 the TAI-I conductance plateau is joined with the original QSH plateau
existing within the original bulk band gap 𝐸𝐹 < |𝑚|. A second TAI-II phase was
characterized by a coexistence of localized bulk-states and extended edge-states. As
long as the localization length of these bulk states remains smaller than the width
of the sample, the coupling of edge states remains suppressed and the TAI persists.
Following these arguments, the transition into the TAI phase can either occur at
a band edge (for TAI-I) or at a mobility edge (for TAI-II). From this we conclude
that the original band edge at the weak-disorder boundary of the TAI-I phase in
the uncorrelated case gets replaced by a mobility edge as the new weak-disorder
boundary of a TAI-II phase in the correlated case. The corresponding suppression
of the TAI-I phase already at a rather small correlation length of 𝜉 = 9.0 nm suggests
that the TAI-II phase is more robust to spatial disorder correlation than the TAI-I
phase. The TAI-II phase is, in turn, more sensitive to finite size effects due to
individual localized bulk states which can couple counter-propagating edge states to
each other. Correspondingly we can understand the absence of a TAI conductance
plateau in Fig. 2.2(b) and Fig. 2.5 in between the first and second crossing points of
our scaling analysis in Fig. 2.3 as a finite-size effect which may disappear for much
larger samples than studied here. Further explicit calculations will be necessary to
better understand the infinite-size limit for TIs with long-range correlations in the
disorder. Our own results for the case of 𝜉 = 35 nm (see the blue curves in Fig. 2.3)
show that the widening of the delocalization-localization transition continues for
increasing correlation length 𝜉. However, since the transition region for 𝜉 = 35 nm
is here already very wide, detailed statements on the phase boundaries in the infinite
size limit are difficult to deduce from our finite-size calculations.

We may, however, get important insights into the nature of the localization-
delocalization transition for correlated disorder potentials by explicitly studying
the scattering wave functions close to this transition. In Fig. 2.4 we plot several
such wave functions for increasing disorder strength 𝑈 in our cylindrical system of
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𝑈 = 20 meV 𝑈 = 60 meV

𝑈 = 100 meV 𝑈 = 220 meV

(𝑎) (𝑏)

(𝑐) (𝑑)

Figure 2.4.: Scattering wave functions |𝜓|2 in a cylindrical system of length
𝐿 = 𝑊 = 1050 nm, Fermi energy 𝐸𝐹 = 16 meV in a random potential of correla-
tion length 𝜉 = 35 nm. The flux is incoming from the left and periodic boundary
conditions are implemented on the top and bottom of the images. The disorder
strength 𝑈 for each of the pictures shown is indicated right below each panel.
Note how the wave function turns into a percolating state when the localization-
delocalization transition is approached for increasing disorder strength 𝑈 (com-
pare with blue curves in Fig. 2.3 and with experimental data from quantum Hall
measurements as in Fig. 2.2 of Ref. [124]).

size 𝐿 =𝑊 = 1050 nm and correlation length 𝜉 = 35 nm (compare with blue curves
in Fig. 2.3). These plots indicate that the observed localization-delocalization tran-
sition is, in fact, a percolation transition similar to the one in the quantum Hall
effect [125]. At the percolation threshold which is realized at critical values of the
system parameters (like the disorder strength 𝑈) localized bulk states turn into
extended states which circumnavigate the hills and valleys of the disorder potential
rather than being trapped by them. The wave functions shown in Fig. 2.4 indicate
exactly such a behavior by displaying bulk states that propagate along the slopes of
pronounced potential variations [see Fig. 2.4(d)] as observed in quantum Hall mea-
surements (see Fig. 2 in Ref. [124]). This percolation explains the suppression of
uni-directional edge transport quite intuitively since close to the percolation thresh-
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old the bulk states which are otherwise localized may percolate from one edge to the
opposite one and thereby couple the counter-propagating edge states. Note that our
observation of the percolation transition fits well with earlier work [8] that found the
critical exponent for this transition in the uncorrelated case to be consistent with
the exponent from the quantum Hall universality class. The most closely related
work to this paper which we could identify is by Shen et al. [126] who recently
demonstrated that bound states in a quantum spin Hall anti-dot lattice feature a
percolation transition in the bulk band gap. Since in the present system we observe
the percolation transition at 𝐸𝐹 = 16 meV, which is well outside the bulk band gap
at |𝐸𝐹 | < 10 meV, a different mechanism seems to be at work here which we will
discuss in section 2.4.

In the following we will present additional evidence to corroborate our arguments
from above with respect to the suppression of the TAI-I phase due to correlations
in the disorder. If these arguments are correct, the QSH phase (characterized by
a negative topological mass and a chemical potential in the band gap, |𝜇| < |𝑚|)
should border, in the correlated disorder case, directly on the surviving TAI-II phase
(characterized by a negative topological mass and a chemical potential outside of
the band gap, |𝜇| > |𝑚|). In the corresponding plot in Fig. 2.2(b) we see that the
QSH conductance plateau (existing in the energy-range −10 meV < 𝜇 < 10 meV in
the disorder-free sample) extends only to much smaller values of disorder strength
𝑈 than in the uncorrelated case [compare with Fig. 2.2(a)]. Since for the above ar-
guments the borders of this reduced QSH conductance plateau with the neighboring
TAI-II phase are characterized by a band edge crossing, these borders should be de-
scribable in terms of a similar effective medium theory as has been developed for the
uncorrelated case [8]. This theory maps the disordered system onto a disorder-free
sample with a renormalized topological mass 𝑚̄ = 𝑚 + 𝛿𝑚 and chemical potential
𝜇̄ = 𝜇 + 𝛿𝜇. This renormalization was carried out in terms of the self-consistent
Born approximation (SCBA) using an integral equation for the self-energy Σ:

Σ =
𝑈2

12

(︁ 𝑎
2𝜋

)︁2
lim
𝜅→0

∫︁ 𝜋
𝑎

−𝜋
𝑎

𝑑𝑘𝑥𝑑𝑘𝑦

(︁
𝐸𝐹 + 𝑖𝜅−𝐻0(𝑘⃗)− Σ

)︁−1
. (2.6)

Whenever the renormalized chemical potential reaches the edge of the band gap
(|𝜇̄| = |𝑚̄|) the border of the QSH (or TAI-I) phase has been reached. Since this
indicator, as calculated through the above SCBA, is independent of the system size,
the effective medium theory offers an insightful and practical tool to determine the
boundaries of the QSH or possible TAI-I phases in the infinite-size limit.

In order to generalize the effective medium theory from above to the case of spa-
tially correlated potentials we resort to recent theoretical work in which an extension
of the coherent potential approximation to correlated disorder was proposed [127].
Following this line of work, one can conveniently include the disorder correlations
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through an additional term in Eq. (2.6) which is given by the normalized Fourier
transform of the disorder correlation function3, 𝐶(𝑘⃗),

Σ =
𝑈2

12
lim
𝜅→0

∫︁ 𝜋
𝑎

−𝜋
𝑎

𝑑𝑘𝑥𝑑𝑘𝑦 𝐶(𝑘⃗)
(︁
𝐸𝐹 + 𝑖𝜅−𝐻0(𝑘⃗)− Σ

)︁−1
. (2.7)

Since in the present case of Gaussian disorder correlations [see Eq. (2.4)] the ex-
pression for 𝐶(𝑘⃗) is a Gaussian itself (centered around 𝑘 = 0), the effect of the
disorder correlations is to smoothly cut off the above integral. The more long-range
the correlations are (in real space), the sharper this cut-off is (in Fourier space).

To extract the corrections 𝛿𝑚 and 𝛿𝜇 from the self-energy in Eq. (2.7), we proceed
along the lines of the uncorrelated case [8] and decompose the self-energy into the
Pauli matrices 𝜎𝑖

Σ = Σ0𝜎0 +Σ𝑥𝜎𝑥 +Σ𝑦𝜎𝑦 +Σ𝑧𝜎𝑧 (2.8)

with the help of

𝛿𝑚 = Re Σ𝑧 ,
𝛿𝜇 = −Re Σ0 . (2.9)

With the values extracted for the renormalized topological mass 𝑚̄ = 𝑚+ 𝛿𝑚 and
chemical potential 𝜇̄ = 𝐸𝐹 + 𝛿𝜇, we can now estimate the boundaries of the QSH
or TAI-I phase in the case of correlated disorder by determining the values of 𝐸𝐹
and 𝑈 for which the renormalized chemical potential 𝜇̄ drops into the effective band
gap at 𝜇̄ = ±𝑚̄. We start by first testing our approach for the uncorrelated case, for
which the weak disorder boundary of the TAI phase was estimated before. In this
case the discrete Fourier transform of the correlation function 𝐶(𝑘⃗) is constant. By
normalizing this function in 𝑘-space to the volume 𝑉 = (2𝜋)2/𝑎2 of the Brillouin
zone, we exactly reobtain the expression for the self energy in the uncorrelated case,
Eq. (2.6). If we determine with this approach the phase boundaries of the QSH
and TAI-I phases in the uncorrelated case we obtain the blue curves in Fig. 2.2(a)
which fit nicely to the conductance plateau of the QSH and TAI-I phases and to
previous calculations [7, 8, 122]. Extending our calculations to the case of corre-
lated disorder, the borders which we calculate through Eqs. (2.7) and (2.9) (see blue
curves in Fig. 2.5) describe the boundaries of the QSH conductance plateau very
well (without any adjustable parameters). The good agreement which we find for
different correlation lengths 𝜉 [see Fig. 2.5(a) and 2.5(b)] corroborates the validity
of our approach. Note that, in contrast to the uncorrelated case, no TAI-I conduc-
tance plateau is observed for |𝜇| > |𝑚| (i.e., outside of the energy region where the

3 Note that in our case the self-energy Σ is independent of 𝑘⃗, such that correlations between
different 𝑘⃗-vectors as originally described in Eq. (27) of Ref. [127] reduce here to the simplified
expression in Eq. (2.7)
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Figure 2.5.: The average conductance ⟨𝐺⟩ as a function of Fermi energy 𝐸𝐹

and disorder strength 𝑈 is shown for the system considered in Fig. 2.2(b), here
with correlation length (a) 𝜉 = 9 nm and (b) 𝜉 = 23.45 nm. The system is
𝐿𝑥 = 2000 nm long and 𝐿𝑦 = 500 nm high while the grid spacing 𝑎 = 5 nm.
The blue curves delineate the borders of the quantized conductance plateau as
estimated by the effective medium theory for correlated potentials, Eq. (2.7). Note
the very good agreement which we find with our numerical results.
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QSH phase is present in the clean sample). An increasing disorder strength rather
leads to a narrowing of the bulk band gap within which pure QSH edge transport
can occur. This reduced band gap corresponds to positive corrections 𝛿𝑚 and 𝛿𝜇
in the case of a correlated potential whereas in the uncorrelated case these correc-
tions were shown to be negative. [8]. It is exactly these positive corrections which
lead to the breakdown of the TAI-I phase that occurs in the uncorrelated case for
|𝜇| > |𝑚|. Moreover, this narrowing of the region of pure edge-transport might
be responsible for experimental difficulties in eliminating the bulk conductance in
three-dimensional topological insulators [128].

2.4. Percolating states in the topological Anderson
insulator

In this section (partially taken from our publication Ref. [10]) we investigate the
presence of percolating states in disordered two-dimensional topological insulators.
In particular, we investigate the connection between these states and the TAI phase.
While the transition from an ordinary insulator to the TAI could be explained by an
effective description [8] that we could also extend to spatially correlated potentials
(see previous section 2.3 and Ref. [9]), the transition from the TAI phase back to an
ordinary insulating phase at very strong disorder values proves more involved: the
bulk states localize at intermediate disorder strength allowing for unimpeded edge-
transport in the TAI phase, yet delocalize when disorder becomes even stronger
[8, 91, 93]. So far, the resulting breakdown of the TAI phase could be attributed
to the coupling of counter-propagating edge states on opposing edges through these
delocalized bulk states, resulting in a suppression of the edge states’ immunity from
backscattering [103, 123]. This mechanism is responsible for an increased sensitivity
to finite size effects [104, 122] making the transition hard to explore numerically and
leaving the true nature of this counter-intuitive delocalization unclear. While first
studies [92, 93, 122] interpreted the bulk delocalization as an intermediate metal-
lic phase, a later study [123] considering larger systems pointed out that only a
single bulk state is probably responsible for the delocalization and an intermediate
metallic phase is not present. In addition, a spatially correlated potential and the
associated pronounced bulk delocalization turn out to be able to destroy the TAI
phase entirely as outlined in the previous section 2.3. In this section, we resolve the
puzzle associated with these different observations by identifying the emergence of
percolating states as the origin of the delocalization and by clarifying the general
connection between such states and the TAI phase. Following Ref. [121], we use the
same set of realistic quantum well parameters in this section as in the previous one
2.3: 𝐴 = 364.5 nm · meV, 𝐵 = −686.0 nm2 · meV and 𝐷 = −512.0 nm2 · meV.
As before, the topology of the system is determined by the sign of the topological
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mass 𝑚: For 𝑚 < 0 the bulk band gap of size 2|𝑚| is topologically non-trivial and
thus filled with gap-less edge states characterizing a two-dimensional topological
insulator. On the other hand, for 𝑚 > 0, the bulk band gap is topologically triv-
ial and does not contain any states leaving us with a system that is an ordinary
insulator. Again we use the advanced modular recursive Green’s function method
[12, 13, 15] to calculate the conductance 𝐺 through two-dimensional rectangular
ribbons of HgTe/CdTe quantum wells discretized on a square grid with discretiza-
tion constants Δ𝑥 and Δ𝑦, width 𝑊 = (𝑛𝑦 + 1) ·Δ𝑦 and length 𝐿 = 𝑛𝑥 ·Δ𝑥. In
accordance with previous studies, [7–9, 93, 103, 104, 122, 123, 129] the discretiza-
tion constants are set to Δ𝑥 = Δ𝑦 = 𝑎 = 5 nm. Two clean semi-infinite leads are
attached to the left and right end of the ribbon. Following the Landauer-Büttiker
formalism Eq. (2.3), the conductance 𝐺 in the limit of vanishing temperature is
given by the total transmission 𝑇 at the Fermi energy 𝐸𝐹 . Our method also allows
for a calculation of the scattering wave functions 𝜓(𝑥, 𝑦) as well as the density of
states 𝜌(𝐸) = −Tr [Im𝐺𝑟(𝑥⃗, 𝑥⃗, 𝐸)] /𝜋 where 𝐺𝑟 is the retarded Green’s function.
Details on the calculations of the density of states are provided in section 3.7. Dis-
order is modelled by static on-site energy values 𝑉 (𝑥𝑖, 𝑦𝑖) at each grid point (𝑥𝑖, 𝑦𝑖)
randomly chosen from the interval [−𝑈/2, 𝑈/2] with 𝑈 the disorder strength. In
most studies [7, 8, 93, 103, 104, 122, 123, 129], the values of 𝑉 (𝑥𝑖, 𝑦𝑖) are chosen
without any spatial correlations between neighboring grid points [see Fig. 2.1]. Here,
we also consider spatial correlations in 𝑉 (𝑥, 𝑦) [see Fig. 2.1], characterized by a fi-
nite correlation length 𝜉, which can significantly affect the conduction properties
(see previous section 2.3 and Ref. [9]).

In our simulations we first consider a quadratic region of width 𝑊 = 𝐿 = 1000 nm
and an uncorrelated disorder potential (i.e., 𝜉 → 0). Two geometries will be studied
that only differ in their boundary conditions: a ribbon for which hard wall boundary
conditions along the edges are applied and a cylinder with periodic boundary condi-
tions in 𝑦-direction. A comparison between the disorder-averaged conductance ⟨𝐺⟩
through these two geometries has been used previously to distinguish between bulk
and edge phenomena as the periodicity of the cylinder eliminates the edges of the
geometry [103]. The results for ⟨𝐺⟩ in a topological insulator with 𝑚 = −10meV
at Fermi energy 𝐸𝐹 = 16meV are shown in Fig. 2.6(a) as a function of the disorder
strength 𝑈 for both geometries. The value of 𝐸𝐹 is chosen such that for uncorrelated
disorder the TAI conductance plateau with ⟨𝐺⟩ = 1 𝑒2/ℎ clearly appears in the rib-
bon [91, 103, 104, 123] for disorder strength 80meV ≤ U ≤ 280meV [see red curve
in Fig. 2.6(a)]. In the cylinder this plateau is clearly absent, since no edge states
can exist in this edge-less geometry. While for disorder values beyond this plateau
the conductance drops monotonically in the ribbon, the conductance through the
cylinder geometry [blue dashed curve in Fig. 2.6(a)] shows a renewed increase at
the same disorder strength. This is the signature of the aforementioned bulk de-
localization that has already been observed in uncorrelated potentials [8, 91, 93].
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Figure 2.6.: Average conductance ⟨𝐺⟩ as a function of disorder strength 𝑈
through different HgTe/CdTe quantum wells. All systems are of width and length
𝑊 = 𝐿 = 1000 nm and the Fermi energy is set to 𝐸𝐹 = 16meV. [Caption contin-
ued on next page]
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Figure 2.6.: [Continued caption from previous page] The ribbon geometries are
shown by red solid curves while the cylinder geometries are shown by the blue
dashed lines. (a) Average conductance through a system of topological mass
𝑚 = −10meV (topological insulator) in an uncorrelated potential. The disor-
der average is taken over 1000 configurations. The ribbon geometry features the
TAI conductance plateau of ⟨𝐺⟩ = 1𝑒2/ℎ for 80meV . U . 280meV. In this re-
gion the conductance through the cylinder is almost entirely suppressed followed
by a delocalization transition of the bulk states starting at 𝑈 ≈ 280meV. (b)
Average conductance through systems with the same parameters as in (a) but in
a correlated potential with correlation length 𝜉 = 35nm. The cylinder geometry
(blue dashed curve) clearly shows the bulk delocalization transition, which occurs
here for weaker disorder strengths 𝑈 than in the uncorrelated case. (c) Average
conductance through systems with positive topological mass 𝑚 = 10meV (ordi-
nary insulator) in a correlated potential of correlation length 𝜉 = 35nm. The
disorder average is taken over 200 configurations. The cylinder geometry shows a
less pronounced bulk delocalization transition than in (b), followed here also by
the results for the ribbon due to the absence of edge states.

A physical intuition for this transition is, however, still lacking, but will become
clear by considering disorder potentials that are spatially correlated (illustrations
for uncorrelated and correlated disorder potentials are shown in Fig. 2.1).

In the previous section 2.3 we demonstrated that spatial correlations in the dis-
order potential can destroy the TAI phase entirely. Here we consider a situation,
in which the correlations all but dissolve the plateau in the ribbon geometry [see
the red curve in Fig. 2.6(b)]. While for the uncorrelated potentials [see Fig. 2.6(a)]
the conductance plateau is a hallmark of the often-discussed TAI phase, the plateau
for the correlated case [see Fig. 2.6(b)] is not caused by clean edge transport but
by bulk states and its conductance close to unity is just a coincidence. This state-
ment is verified in Fig. 2.7 where we show the local density of states (LDOS) for
a disorder strength 𝑈 within these plateaus in the uncorrelated [panel (a)] and the
correlated [panel (b)] case. As clear from there, the uncorrelated potential allows
for the existence of edge states in the disordered system as the LDOS shows states
all located close to the edges of the geometry. In contrast, the LDOS in the corre-
lated case shows states extended all over the entire bulk which proves that the large
conductance observed in Fig. 2.6(b) must be attributed to bulk states.

Moreover, it is best visible for the parameter values chosen in Fig. 2.6, that the
dissolution of the plateau is accompanied by a delocalization of bulk states. As
can be seen by comparing the blue dashed curves in Fig. 2.6(a) and (b), this delo-
calization happens at much lower disorder values for correlated potentials than for
uncorrelated ones. In both cases, however, these delocalized bulk states contribute
to the conductance, but also suppress the edge conductance by coupling counter-
propagating edge states with each other, thereby leading to a breakdown of the TAI
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(a) (b)

Figure 2.7.: Pictures of the local density of states (LDOS) at energy 𝐸 = 16 meV
in a two-dimensional topological insulator with topological mass 𝑚 = −10 meV
attached to two semi-infinite leads. In both panels, we consider a ribbon geometry.
The disorder is entirely uncorrelated in (a) but correlated in (b) with a correlation
length of 𝜉 = 35 nm. This comparison shows the LDOS at the points of disorder
strength 𝑈 = 150 meV for the solid red lines in Fig. 2.6(a) and (b). It clarifies,
that while for uncorrelated disorder the plateau results from states located close
to the edges with only small strongly localized spots in the bulk, for a correlated
potential the states are mainly situated in the bulk. Details on the calculation of
the LDOS can be found in section 3.7.

conductance plateau.
To get a better insight into this scenario, we now consider the scattering wave

functions 𝜓(𝑥𝑖, 𝑦𝑖) during this delocalization transition [see Fig. 2.8(a) and (c) for
two such states at 𝑈 = 220meV]. A first optical inspection of these wave function
images suggests that the associated flux is circumnavigating the hills of the underly-
ing correlated potential [9], reminiscent of percolation states found in the Quantum
Hall effect [124] and in antidot topological insulator lattices [126]. To make this first
impression more quantitative, we analyze how the intensities of the wave functions
𝜓(𝑥𝑖, 𝑦𝑖) shown in Fig. 2.8 are correlated with the values 𝑉 (𝑥𝑖, 𝑦𝑖) of the under-
lying potential landscape. For this purpose we compute the weighted probability
𝑃 (𝑉 ) for a wave to encounter a potential value 𝑉 with the weights of this proba-
bility distribution being given by the intensity |𝜓(𝑥𝑖, 𝑦𝑖)|2 of the wave function at a
grid-point (𝑥𝑖, 𝑦𝑖) with potential value 𝑉 . The distribution 𝑃 (𝑉 ) resulting from an
average over 1000 disorder realizations shows a surprisingly pronounced enhance-
ment at positive disorder values 𝑉 approximately situated between 𝑉min ≈ 25meV
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Figure 2.8.: Comparison of the scattering wave function |𝜓(𝑥𝑖, 𝑦𝑖)|2 (shown on
a logarithmic scale in the left column) and the potential itself (right column) at
the delocalization transition (𝑈 = 220meV) for systems with 𝑊 = 𝐿 = 1000 nm,
𝐸𝐹 = 16meV and 𝑚 = −10meV. We only colored the potential values between
26meV ≤ V(xi, yi) ≤ 78meV for which the Fermi energy is effectively shifted
into the valence band of the clean band structure (the remaining potential values
are left in white). Two different disorder configurations for cylinder and ribbon
geometry are considered in the top and bottom row, respectively. The similarity of
the wave functions and these truncated potentials illustrates that the delocalizing
bulk states are percolating around the hills of the potential landscape and that
these percolating states have their origin in the bulk band structure of the clean
sample.
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Figure 2.9.: Probability density distribution 𝑃 (𝑉 ) for disorder values 𝑉 (𝑥𝑖, 𝑦𝑖)
at grid points (𝑥𝑖, 𝑦𝑖) weighted by the absolute value |𝜓(𝑥𝑖, 𝑦𝑖)|2 of the scattering
wave function at 𝐸𝐹 = 16meV with injection in the first lead mode in a system
of width and length 𝑊 = 𝐿 = 1000 nm and topological mass 𝑚 = −10meV.
A disorder average is taken over 1000 configurations of random potentials with
disorder strength 𝑈 = 220meV and correlation length 𝜉 = 35nm. The distribu-
tion shows an enhancement of the wave functions at disorder values 𝑉 situated
between 𝑉min ≈ 25meV and 𝑉max ≈ 75meV. These values correspond nicely to
the distance of Fermi energy 𝐸𝐹 to the flat valence bulk band states at the BZ
edges.

and 𝑉max ≈ 75meV [see Fig. 2.9], suggesting that disorder values from this inter-
val give rise to clearly enhanced wave function intensities. Apparently the states
responsible for the bulk delocalization tend to reside primarily at relatively high
values of the disorder potential, i.e., in a certain altitude interval of the hills in the
correlated potential landscape. Correspondingly, we find that the wave function
intensities shown in Fig. 2.8(a) and (c) strongly resemble contour plots of the asso-
ciated disorder potential, when we truncate that latter to the interval 𝑉 ∈ [25, 75]
meV [see Fig. 2.8(b) and (d)].

To identify the origin of this curious behavior, we first point to the fact that the
above interval bounds, i.e., 𝑉min ≈ 25meV and 𝑉max ≈ 75meV, are astonishingly
close to the minimal and maximal distances 𝐸min = 26meV and 𝐸max = 78meV
of the Fermi energy 𝐸𝐹 = 16meV to the energy range 𝐸bulk = [−10,−62]meV in
which the valence band states are situated in the clean system [see the band structure
of Fig. 2.10(a)]. This observation suggests that the flux in our correlated potential
is carried mostly by the disorder-analogues of these valence band states. Further
evidence for this correspondence can be deduced when considering the rescaled
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Figure 2.10.: (a) Band structure 𝐸(𝑘𝑥) of a system of width 𝑊 = 1000 nm and
topological mass 𝑚 = −10meV obtained by directly solving the Bloch-eigenvalue
problem numerically for the Hamiltonian in Eq. (2.1). (b) Density of states 𝜌(𝐸)
in a closed and clean system of width and length 𝑊 = 𝐿 = 1000 nm, topological
mass 𝑚 = −10meV and cylindrical geometry. (c) Weighted probability density
distribution 𝑃 (𝐸𝐹 − 𝑉 ) for systems with 𝑚 = −10meV, 𝑊 = 𝐿 = 1000 nm in a
correlated potential of correlation length 𝜉 = 35nm. The wave functions are cal-
culated in the region of the bulk delocalization at disorder strength 𝑈 = 220meV
and for 1000 random disorder configurations. The red solid and blue dashed lines
show 𝑃 (𝐸𝐹 − 𝑉 ) at 𝐸𝐹 = 16meV in the ribbon and the cylinder geometry. The
green dash-dotted and black dotted lines represent 𝑃 (𝐸𝐹 − 𝑉 ) for ribbon and
cylinder at 𝐸𝐹 = 30meV. The similarity of all four curves shows that the dis-
tribution is a very fundamental system property. The shape of the distributions
closely resembles the density of states at the BZ boundary shown in (b). This
indicates the bulk-like nature of the states responsible for the delocalization tran-
sition. (d) Weighted probability density distribution 𝑃 (𝐸𝐹 − 𝑉 ) with the same
system parameters as in (c) but in an uncorrelated disorder potential. The pic-
tures are again taken in the region of the bulk delocalization at disorder strength
𝑈 = 370meV and for 1000 disorder configurations.
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probability distribution 𝑃 (𝐸𝐹 −𝑉 ), which measures, as above, the probability for a
scattering state to reside at a potential value 𝑉 , but now shifted by the Fermi energy
𝐸𝐹 . We find that this distribution, quite remarkably, stays almost invariant with
respect to a change of the Fermi energy [see a comparison between two different
values of 𝐸𝐹 in Fig. 2.10(c)]. This observation reflects the fact that a change of
𝐸𝐹 just shifts the corresponding wave functions to different disorder values, but
that the origin of states in the valence bands stays unchanged. Furthermore, the
density of states 𝜌(𝐸), shown in Fig. 2.10(b), and the distribution 𝑃 (𝐸𝐹 − 𝑉 ),
shown in Fig. 2.10(c), are very similar - even the small kinks in 𝜌(𝐸) are clearly
reproduced in 𝑃 (𝐸𝐹 − 𝑉 ). Such kinks in the density of states are nothing else but
van-Hove-singularities resulting from the flat bands in the band structure. We may
thus conclude that the flat valence band states especially at the Brillouin zone (BZ)
edges [where the maximum of 𝑃 (𝐸𝐹 − 𝑉 ) is located] represent the most significant
contribution to the intensity of the scattering wave functions. In addition, we find
that the distribution 𝑃 (𝐸𝐹 − 𝑉 ) is not at all sensitive to the boundary conditions
since it is almost exactly equal for the ribbon and for the cylinder (see Fig. 2.10(b)).
The distribution 𝑃 (𝐸𝐹 − 𝑉 ) thus turns out to be quite fundamental in that it has
its origin in basic system properties, which are given here by the band structure in
Fig. 2.10(a) and by the flat band states contained in it.

These observations allow us to construct a comprehensive picture of the physics
in the cylindrical geometry with a correlated potential [see blue dashed curve in
Fig. 2.6(b)]: While in the clean limit pure bulk conduction is observed, the conduc-
tance drops down to a minimum at disorder strength of 𝑈 ≈ 60meV due to the
increasing localization of the bulk states [see Fig. 2.6(b)]. When at 𝑈 ≈ 100meV
the hills of the correlated potential are high enough to locally shift the Fermi en-
ergy into the valence band, the bulk is filled with localized states deriving from
clean valence band bulk states spatially located around the hills of the underlying
disorder potential. With growing disorder strength, these localized states connect
with each other and go through a percolation threshold, which is responsible for the
delocalization transition and the increased bulk conductance. Only at very strong
disorder 𝑈 ≈ 300meV the connection between these percolating states weakens
and the conductance again decreases. This picture is also strongly supported by
previous studies of the TAI in the uncorrelated case (see Refs. [94] and [129]): Con-
sidering the arithmetic and geometric average of the local density of states it was
shown there that the states carrying the flux in the TAI are not single extended
states throughout the whole TAI phase (as would be expected for edge states) but
for very strong disorder rather formed by clusters of well localized states. Our per-
colating wave functions deriving from the valence band are perfect candidates for
such linked, localized states. This picture is also corroborated by the flatness of the
valence band states, which leads to the very small group velocity responsible for the
wave function enhancements around the potential hills as seen in the examples of
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Fig. 2.8(a) and (c).
The flatness of the states in the effective band structure is, in fact, also impor-

tant for the theory put forward in the aforementioned studies [94, 129]: Considering
disordered super-cell structures it was argued that flat and localized bands develop
small sub-gaps that can be of topological non-trivial type. Hence these gaps have
to be filled with edge states in the same way as the inverted band gap of a clean
topological insulator is [88, 89, 121]. In this picture the TAI phase is thus charac-
terized by edge states that appear in the energy gaps between localized bulk states
and are consequently again immune from backscattering.

At this point the question arises how the above results can be reconciled with
our own model, which so far does not contain any reference to edge states in the
percolation transition. To investigate this issue in detail, we performed additional
calculations for a system where no edge effects can be present due to a topological
mass, which we choose to take on the positive value of 𝑚 = 10.0meV. As shown in
Fig. 2.6(c) this sign change of 𝑚 significantly modifies the conductance properties.
While previously for 𝑚 < 0 and moderate disorder strength 𝑈 the conductance
in the ribbon was clearly enhanced in comparison to the cylinder [see Fig. 2.6(b)],
the conductance of the ribbon for 𝑚 > 0 is even smaller than in the cylinder [see
Fig. 2.6(c)]. This behavior can be attributed to the absence of edge states at the
sample edges for positive topological mass 𝑚 > 0. In the cylindrical geometries we
find that the delocalization transition is less pronounced for 𝑚 > 0 than it was for
𝑚 < 0 [compare blue dashed lines in Figs. 2.6(b) and (c)]. On the one hand the
fact that the delocalization transition still exists for 𝑚 > 0 supports our model of
flat bulk states undergoing a percolation transition. On the other hand, however,
the more pronounced nature of the transition for 𝑚 < 0 suggests that edge states
propagating along the edges of the potential hills provide an additional link between
localized states leading to a larger conductance. This picture, indeed, agrees very
well with the analyses of Refs. [94] and [129], since the connecting local edge states
in our model can directly be identified with the edge states that were predicted to
form in the non-trivial sub-gaps of the localized flat bands.

We would thus be in a perfect position to complement the theory of Refs. [94]
and [129] with the intuitive explanation that these sub-gap edge states exist locally
and connect bulk states localized around hills of the potential landscape to form a
percolating network of internal bulk states that lead to the decay of the TAI phase.
The missing piece to complete our argument is to show that the picture we derived
for the case of correlated disorder holds also for the uncorrelated case considered in
Refs. [94] and [129].

We check this point explicitly by verifying that our model can explain the ap-
pearance of the TAI as well as the observed delocalization-localization transition
of the bulk states for the case of uncorrelated disorder. Consider, in this context,
that the TAI conductance plateau in the ribbon geometry between 𝑈 ≈ 80meV and
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𝑈 ≈ 280meV [see red curve in Fig. 2.6(a)] is destroyed by the onset of the bulk
delocalization at 𝑈 ≈ 280meV in the cylinder [see blue dashed curve Fig. 2.6(a)]
which happens for much larger 𝑈 than in the correlated case. Still, when the delo-
calization transition is in full effect (at 𝑈 = 370meV) the corresponding scattering
states show a similar weighted distribution 𝑃 (𝐸𝐹 − 𝑉 ) in the now spatially uncor-
related potential as already observed in the correlated case [see Fig. 2.10(d)]. Again
the peak of this distribution fits nicely to the band structure of the clean limit,
indicating that our picture of local edge states percolating around internal edges of
strong disorder holds also for the uncorrelated case. Last but not least, we mention
that such a percolating state corresponds exactly to the “single bulk state” that is
held responsible for the delocalization in Ref. [123].

Our results suggest that the emergence as well as the decay of the TAI phase
depend strongly on the energy offset and on the flatness of bulk valence bands in
the clean limit. These flat bands feature an enhanced contribution to the density
of states and occur in the center as well as at the boundaries of the BZ. Yet, the
underlying BHZ model is only valid for small 𝑘𝑥 close to the Γ-point and thus does
not yield a good approximation for the valence bands at the BZ boundaries of a
real HgTe/CdTe quantum well [88]. Correspondingly, we find that when changing
the grid spacing 𝑎 in our discretized lattice from the value conventionally used in
the literature (𝑎 = 5nm) to different values, the position of the BZ boundaries
𝑘BZ
𝑥 = ±𝜋/𝑎 and the energy offset of these states at the BZ boundaries also change

significantly. We also verified that the flatness of the bands at the BZ boundary is a
direct consequence of the discreteness of the underlying lattice used for the numerical
solution of the transport problem (see also Refs. [7, 8, 103] where discretized models
were first employed to describe the TAI). As a result, the localization-delocalization
transition and possibly even the TAI phase itself associated with these states at the
BZ boundary will not occur in real HgTe/CdTe quantum wells as the strong-disorder
limit in these devices will be different from the predictions of the discretized model.
Quite remarkably, however, realizations of topological insulators have recently also
been considered based on photonic systems [97, 98]. These so-called Floquet topo-
logical insulators are based on a discretized lattice of sites, just like in the numerical
model used above to approximate the physics in HgTe/CdTe quantum wells. The
strong-disorder physics, which we have discussed here, have thus been realized in
experiments based on effective model systems in optics [97, 98]. Similar proposals
exist also in acoustics [130] and can in principle be developed in any other field
where wave scattering parameters can be tuned appropriately.
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2.5. Additional Hamiltonian corrections

So far in this work we have described the two-dimensional topological insulator
by the very simple BHZ model given in Eq. (2.1) which we repeat here for easier
readability:

𝐻eff(𝑘𝑥, 𝑘𝑦) =

(︃
ℎ(𝑘⃗) 0

0 ℎ*(−𝑘⃗)

)︃
(2.1 revisited)

with

ℎ(𝑘⃗) = 1𝜖(𝑘⃗) + 𝑑𝑖(𝑘⃗)𝜎
𝑖 (2.2 revisited)

𝜖(𝑘⃗) = 𝐶 −𝐷
(︀
𝑘2𝑥 + 𝑘2𝑦

)︀

𝑑𝑖 =

⎛
⎝

𝐴𝑘𝑥
−𝐴𝑘𝑦
𝑀(𝑘⃗)

⎞
⎠

𝑀(𝑘⃗) = 𝑚−𝐵(𝑘2𝑥 + 𝑘2𝑦) .

and 𝜎𝑖 labeling the Pauli-matrices. This original toy-model Hamiltonian for a two-
dimensional topological insulator (HgTe/CdTe quantum well) was derived based on
the k · p perturbation theory and the six-band Kane-model [88] resulting in the
above compact form. The parameters 𝐴, 𝐵, 𝐷 and 𝑚 are material parameters
taken from the literature as used in the previous calculations in sections 2.3 and
2.4. However, this model is still very simplified as many physical aspects in the
system are neglected.

For the remaining considerations of this chapter, especially regarding the con-
struction of a topological Mach-Zehnder interferometer (see section 2.7), this model
is not sufficient anymore and needs to be extended. For example it has so far been
intrinsically assumed that the crystal is bulk inversion symmetric which is clearly
not the case for the zinc-blende lattice of HgTe and CdTe. To account for this,
a correction can be implemented in the model by the addition of a bulk inversion
asymmetry (BIA) term according to Ref. [121] which reads

𝐻BIA =

⎛
⎜⎜⎝

0
0 −Δ
Δ 0

0 Δ
−Δ 0

0

⎞
⎟⎟⎠ . (2.10)

The strength of this correction is determined by the parameter Δ for which a realistic
value of Δ = 1.6 meV is taken from the literature [121]. This term is of basic
importance for observed physics especially in the presence of a magnetic field (see
section 2.6). It represents a coupling of the two spin components and hence the
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spin is not a good quantum number. Due to this coupling [120] it is not sufficient
anymore to use the spin-up block ℎ(𝑘⃗) Eq. (2.2) exclusively as done in all previous
numerical calculations of sections 2.3 and 2.4. Additionally this term will open up
a band gap between the edge states and lift the degeneracy at the Γ-point.

The second correction that is usually considered for an extension of the pure BHZ
model from Eq. (2.1), is the Rashba coupling term derived in Ref. [131], which in
the above 4-band basis reads:

𝐻RC =

⎛
⎜⎜⎝

0
−𝑖𝑅0𝑘− 0

0 0
𝑖𝑅0𝑘+ 0

0 0
0

⎞
⎟⎟⎠ (2.11)

with
𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦 .

This term is linear in 𝑘 and accounts for the coupling between the light-hole sub-
bands that is described by an effective electric field [131]. The strength of the
correction is determined by the Rashba coupling coefficient 𝑅0. The range of real-
istic values that are used for this correction is fairly large [131, 132]. For an electric
field 𝜖𝑧 in 𝑧-direction, 𝑅0/(𝑒𝜖𝑧) = −15.6 nm2 was found [131] with 𝑒 the elementary
charge. Another study performing simulations with similar QW parameters 𝐴, 𝐵,
𝐷 and 𝑚 that also we use in our calculations, takes 𝑅0 = 40 meV nm [132]. Also
old measurements in asymmetric (magnetic) quantum well structures [133] confirm
a similar value of Rashba splittings up to 30 meV. In reality 𝑅0 will also increase
with the absolute value |𝑚| of the topological mass and thus with increasing quan-
tum well thickness. This term splits the degenerate spin-up and spin-down states
leading to different dispersion relations for the spins. While the Rashba correction
is still linear in 𝑘 there are also higher order corrections proportional to 𝑘2± and
𝑘3± which can still be approximately neglected for our calculations near the Γ-point
[131]. Details on the numerical implementation of the Rashba coupling as well as
the BIA term can be found in appendix A.2.

In a first step, we try to get a feeling for how a Rashba coupling together with
the BIA changes the band structure of the two-dimensional topological insulator
quantum well. In Fig. 2.11, we show band structures of a clean topological insulator
lead of width 𝑊 = 500 nm for different values of combinations of the BIA and
Rashba corrections. The original band structure with both corrections set to zero is
shown in red in all panels. As expected, we find that this BIA induces a band gap
around the original Dirac point at 𝐸𝐹 ≈ 7.1 meV [compare red and blue lines in
Fig. 2.11(a)]. For a Rashba coupling of 𝑅0 = 40meVnm we find in Fig. 2.11(b) that
the effect of the spin splitting is still very small as it is hardly visible. When zooming
in to a cutout around the Dirac point [see Fig. 2.11(c)] we find that as expected the
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Figure 2.11.: Band structures of a QW with parameters 𝐴 = 365.0 nm·meV, 𝐵 =
−706.0 nm2 ·meV, 𝐷 = −532.0 nm2 ·meV, 𝑚 = −10.09 meV, 𝑅0 = 40.0meV nm
taken from Refs. [131] and [132] (and a realistic value of Δ = 1.6 meV taken from
Ref. [121]). The lead width 𝑊 = 500 nm (Δ𝑥 = Δ𝑦 = 5 nm). The red lines in
all panels show the original band structure with Δ = 𝑅0 = 0meV nm. In (a) we
investigate the Rashba term only and set Δ = 0 meV. Panel (b) shows the BIA
term Δ = 0 meV and only the Rashba term 𝑅0 = 40meVnm being considered. In
(c) both corrections are taken into consideration and a zoom close to the Γ-point
at 𝑘 = 0 nm-1 is shown in order to be able to make the spin-splitting resulting
from the Rashba term visible.
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splitting of the spins depends on 𝑘 and increases with increasing |𝑘|. These results
are in nice agreement with the literature [131, 132] and show the validity of our
numerical approach. We find that close to the Γ-point the Rashba splitting is still
negligibly small while the BIA inversion asymmetry opens a band gap. In addition
the Rashba term has almost no effect on the edge states below the Dirac point at
𝐸𝐹 . 7.1 meV.

In order to quantify this statement more precisely, we plot the spin splitting in
terms of Δ𝑘(𝐸𝐹 ) = 𝑘𝑥↑(𝐸𝐹 )−𝑘𝑥↓(𝐸𝐹 ) defined as the difference between spin-up and
spin-down wavenumbers at some fixed Fermi energy 𝐸𝐹 . In Fig. 2.12 we show this
quantity as a function of 𝐸𝐹 inside the bulk band gap between −|𝑚| < 𝐸𝐹 < |𝑚| for
the same quantum well parameters as in Fig. 2.11 but for different lead widths 𝑊 .
This energy range is of special interest since in section 2.7 we aim at using pure edge
transport for interference experiments of edge states and possible future applications
in spin-tronics. One can see that the splitting almost exclusively takes effect close
to the conduction band above the degeneracy point of the original Dirac cone at
𝐸 ≈ 7.1 meV and is increasing with energy. This comes from the fact that the edge
state above the Dirac point mostly derive from the |𝐸1±⟩ light-hole subbands of the
quantum well which are coupled by the Rasbha correction. In contrast, the edge
states below the Dirac point mostly stem from the |𝐻1±⟩ heavy-hole subbands and
are thus hardly affected by the correction. Another feature of this correction term
can be seen from the comparison of the red and blue lines in Fig. 2.12 which show
Δ𝑘(𝐸𝐹 ) for different lead widths 𝑊 = 500 nm and 𝑊 = 200 nm, respectively. The
sudden decrease of Δ𝑘 to zero for the small system (blue line) around the Dirac
point comes from the fact that here the small size of the lead allows edge states to
couple and induces a finite-size band gap. This absence of states in this small energy
region causes also Δ𝑘 to vanish. Still one notices that overall a smaller lead width
𝑊 increases the spin splitting. At the maximally chosen value of 𝐸𝐹 = 10 meV the
splitting is approximately 11 times larger for the smaller lead than in the larger one.
This indicates that the Rashba correction is fairly sensitive to finite size effects.

Overall these results show that the BIA term will be necessary to include when
looking into edge state physics as it opens a significant band gap in the relevant
region of pure edge transport. Additionally this term is also expected to be of
fundamental importance when including a magnetic field as pointed out in Ref. [121].
Such a field will be investigated in the next section. The Rasbha term on the other
hand hardly has an effect on the band structure and the edge state physics in
the bulk band gap between −|𝑚| < 𝐸𝐹 < |𝑚|. For the approximately maximal
energy inside the bulk band gap of 𝐸 = 10 meV and for 𝑊 = 500 nm we find a
Rashba splitting of Δ𝑘 ≈ 4 · 10−4 nm−1 which is still fairly small. Especially when
considering those edge states below the Dirac point at Fermi energies 𝐸𝐹 . 7.1 meV
and additionally choose the lead width 𝑊 large enough around 500 nm we can safely
neglect this correction.
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Figure 2.12.: Spin-splitting Δ𝑘 as a function of Fermi energy 𝐸𝐹 for a QW with
parameters 𝐴 = 365.0 nm ·meV, 𝐵 = −706.0 nm2 ·meV, 𝐷 = −532.0 nm2 ·meV,
𝑚 = −10.09 meV, 𝑅0 = −15.6meV nm taken from Ref. [131] and Δ = 1.6 meV
taken from Ref. [121] (𝑛𝑦 = 100, Δ𝑥 = Δ𝑦 = 5 nm). The red line shows the
results for a lead width of 𝑊 = 500 nm and the blue line shows 𝑊 = 200 nm. The
difference between these results shows the sensitivity of the Rashba spin splitting
to finite size effects.

2.6. Topological insulator in a magnetic field

Since the immunity of a topological insulator’s edge states against backscattering
fundamentally relies on the presence of time-reversal symmetry (TRS), it is essen-
tial to investigate their behavior when TRS is broken. The easiest way to break
this symmetry is by considering the presence of a magnetic field 𝐵⃗. According
to the literature [121] the impact of such a field on the transport properties of a
two-dimensional topological insulator depends strongly on the field’s direction with
respect to the effective two-dimensional plane of the quantum well structure. While
a perpendicular magnetic field causes strong deviations also for weak field strength,
an in-plane magnetic field should not lead to strong changes as long as it is not too
strong. For this reason we will verify these statements numerically and in this way
also verify the correctness of our numerical approach. Apart from the above motiva-
tion, the inclusion of a magnetic field forms an important basis for the construction
of a topological Mach-Zehnder interferometer, which we discuss in section 2.7. This
is because the application of such a field and the associated breaking of TRS allow
for using the device as a spin-transistor.

The field will be implemented in terms of the Peierls substitution which is de-
scribed in detail in appendix B.1. Apart from this, an additional Zeeman term
has to added to the effective Hamiltonian from Eq. (2.1). This correction also de-
pends on the field’s direction and will thus be treated separately in the following
subsections for out-of-plane and in-plane fields.



Chapter 2. Two-dimensional topological insulators 71

2.6.1. Perpendicular magnetic field

In this section we investigate the effect of a purely perpendicular magnetic field
of strength 𝐵 on the band structure of the HgTe/CdTe quantum well. For this
purpose we need to modify the effective Hamiltonian Eq. (2.1) accordingly and
introduce a Zeeman correction. This correction includes the Zeeman coupling due
to the perpendicular magnetic field in first-order perturbation theory of the effective
4-band model [121]. This correction to the model Hamiltonian 𝐻eff(𝑘𝑥, 𝑘𝑦) from
Eq. (2.1) reads [121, 134]

𝐻zm = 𝜇𝐵𝐵

⎛
⎜⎜⎝

𝑔𝐸⊥
𝑔𝐻⊥

−𝑔𝐸⊥
−𝑔𝐻⊥

⎞
⎟⎟⎠ (2.12)

with the usual g-factor values of 𝑔𝐸⊥ = 22.7 and 𝑔𝐻⊥ = −1.21 which are used in
all our calculations. The numerical implementation of this Zeeman terms, as well
as the implementation of the magnetic field by means of the Peierls substitution
are described in appendix B and more specifically in appendix B.1.3. Explicit
conversions for the occurring constants such as 𝜇𝐵 into the correct units can be found
in appendix B.1.6. Results for the band structure of a stripe of width 𝑊 = 500 nm
are shown in Fig. 2.13 for different field strengths 𝐵. The results especially for
𝐵 = 0.08 T [see black line in panel panel (b)] look very similar to those of figure 4
in Ref. [134]. However, a strict quantitative comparison is hardly possible since no
axis labels or tics are provided there and no statement about the specific parameters
used is given. As obvious from Fig. 2.13, the center of the bands structure is shifted
to larger values of 𝑘𝑥. This shift is clearly visible as the band structures as a whole
(see green and black lines) shift to the right with increasing field strength 𝐵 as
compared to the band structure at 𝐵 = 0 Tesla that is in all panels shown in
red for Δ = 0 meV and in blue for Δ = 1.6 meV. This behavior is clear as the
magnetic field is implemented by the minimal substitution 𝑘 → 𝑘 − 𝑒

~𝐴⃗ with 𝑘 the
wavenumber operator and 𝐴⃗ the magnetic vector potential. Also the breaking of
TRS is reflected in this band structure shift since now for a state at wavenumber
𝑘𝑥 one cannot automatically find a time-reversed partner at −𝑘𝑥. When the field
is turned on, the degeneracy between spin-up and spin-down is lifted and the edge
states split up. The original degenerate Dirac cone now splits into two cones - one
for each spin-polarization. The results also show that an inclusion of the bulk-
inversion asymmetry correction Δ as described in section 2.5 opens a band gap in
the vicinity of these Dirac points of the order of |Δ| (see comparison of red and blue
lines in Fig. 2.13). As expected the changes in band structure are significant for a
perpendicular component of the field. To check the correctness of our calculations,
we also plot the band structure at a strong magnetic field of 𝐵 = 1 T in Fig. 2.14
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Figure 2.13.: Band structure of a stripe of width 𝑊 = 500 nm for different
perpendicular magnetic fields. The QW parameters taken from Ref. [121] are 𝐴 =
365.0 nm·meV, 𝐵 = −706.0 nm2 ·meV, 𝐷 = −532.0 nm2 ·meV, 𝑚 = −10.09 meV.
The red and blue lines show the band structures for zero field 𝐵 = 0 T and a BIA
term Δ = 0 meV and Δ = 1.6 meV in all panels, respectively. Likewise the green
and black lines show the results for finite field 𝐵 according to the panel’s title
again for the BIA term once ignored and once included. The grid constants in the
numerics are set to Δ𝑥 = Δ𝑦 = 5 nm.
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Figure 2.14.: Band structure of a stripe of width 𝑊 = 500 nm for no field
(red and blue) and a perpendicular magnetic field of strength 𝐵 = 1 T (green
and black). The QW parameters taken from Ref. [121] are 𝐴 = 365.0 nm ·meV,
𝐵 = −706.0 nm2 · meV, 𝐷 = −532.0 nm2 · meV, 𝑚 = −10.09 meV. The red
and blue lines show the band structures at zero field 𝐵 = 0 T and a BIA term
Δ = 0 meV and Δ = 1.6 meV, respectively. Likewise the green and black lines
show the results for finite field 𝐵 = 1 T again for the BIA term again once
neglected (green) and once included (black). The grid constants in the numerics
are Δ𝑥 = Δ𝑦 = 5 nm.

(see green and black lines). In Ref. [121] a band gap of ≈ 3.1 meV is predicted when
including a BIA term as well. This prediction is approximately confirmed also in
our calculations where we find the band gap to be of size 2.0836 meV (see black
line). However, these calculations are for sure very sensitive to finite-size effects and
also Ref. [121] does not provide any numerical details of their calculations.

2.6.2. In-plane magnetic field in a plane lead

In contrast to the effects of a perpendicular field, an in-plane field is expected to
have only little effect on the transport properties of a two-dimensional topological
insulator [121]. To check this explicitly, we included the magnetic field in 𝑥-direction
through the implementation of a parallel Zeeman term

𝐻zm = 𝜇𝐵𝐵

⎛
⎜⎜⎝

0 0 𝑔‖ 0

0 0 0 𝑔‖
𝑔‖ 0 0 0

0 𝑔‖ 0 0

⎞
⎟⎟⎠ (2.13)
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with the value of 𝑔‖ = −20.5 taken from Ref. [121] and used in all our calcu-
lations. Details on the implementation of this correction and the corresponding
Peierls phases can be found in appendix B.1.4 and the constant values are in detail
derived in appendix B.1.6. Fig. 2.15 shows the band structures with such an in-plane
magnetic field of up to 0.24 T (see green and black lines) compared to the band
structures at no field (see red and blue lines). While a weak field of 𝐵 = 0.04 T
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Figure 2.15.: Band structure of a plane rectangular stripe of width 𝑊 = 500 nm
for an in-plane magnetic field in 𝑥-direction of different strength 𝐵. The QW
parameters taken from Ref. [121] are 𝐴 = 365.0 nm ·meV, 𝐵 = −706.0 nm2 ·meV,
𝐷 = −532.0 nm2 ·meV, 𝑚 = −10.09 meV. The red and blue lines show the band
structures for zero field 𝐵 = 0 T and a BIA term Δ = 0 meV and Δ = 1.6 meV
in all panels, respectively. Analogously the green and black lines show the results
for finite field 𝐵 as indicated on top of each panel for the BIA term once ignored
(green) and once included (black). The grid constants are Δ𝑥 = Δ𝑦 = 5 nm.

hardly changes the band structure [see panel (a)], an increasing field starts to open
a gap even if no BIA term is included, i.e. Δ = 0 meV [compare red and green
lines in panels (b) to (f)]. If the BIA term Δ = 1.6 meV is considered, the gap that
already exists at zero field (see blue lines) is actually shrunk with increasing field
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(see black lines). The BIA term causes the edge states of opposite spins to split with
increasing field strength 𝐵 close to the Dirac point at 𝑘 = 0 nm-1. This is evident
from the increasing splitting of the black lines as one goes to stronger magnetic
fields from panel (a) to (f) while on the other hand the green data neglecting the
BIA correction does not split and the edge states remain degenerate. This splitting
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Figure 2.16.: Band structure of a plane rectangular stripe of width 𝑊 = 500 nm
for no field (red and blue) and an in-plane magnetic field in 𝑥-direction of strength
𝐵 = 1 T (green and black lines). The QW parameters taken from Ref. [121]
are 𝐴 = 365.0 nm · meV, 𝐵 = −706.0 nm2 · meV, 𝐷 = −532.0 nm2 · meV,
𝑚 = −10.09 meV. The red and blue lines show the band structures at zero field
𝐵 = 0 T and a BIA term Δ = 0 meV and Δ = 1.6 meV, respectively. Likewise
the green and black lines show the results for finite field 𝐵 = 1 T for the BIA
term again once neglected (green) and once included (black). The grid constants
of the numerical finite-difference grid are Δ𝑥 = Δ𝑦 = 5 nm.

explains the decrease of the gap size since one of the spins is pushed up in energy
while the other spin polarization is pushed down. Accordingly, the gap is shrunk as
states of a single spin-polarization penetrate into the original gap from both sides
and hence diminish the gap as a result of the field. Again we are able to confirm
the validity of our calculations by looking at the prediction of the band gap size in
Ref. [121]. There it is found that such a parallel magnetic field of strength 1 T will
induce a band gap of ≈ 0.3 meV. The value that we find (see black line in Fig. 2.16)
is 0.31538 meV which is in good agreement. Overall we find that although some
details in the band structure especially close to the Dirac point at 𝑘 = 0 nm-1 are
changing, the band structure as a whole does not change as much. Also edge states
can be expected to exist and still be fairly stable with respect to disorder as also
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observed even experimentally before [89].

2.6.3. In-plane magnetic field for a cylindrical lead

The following considerations are fundamental for our work, since the topological
Mach-Zehnder interferometer that we propose in section 2.7, features leads that are
cylindrically deformed as sketched in Fig. 2.17. In this figure we show the quantum
well structure built in a cylindrical fashion and a lead that is cut off at 𝑥 = 0 to
make the layered structure visible. The effective two-dimensional plane that the
electrons live in is the inner layer of HgTe that is shown in blue.

Figure 2.17.: 3-d sketch of a cylindrical lead exposed to a magnetic field 𝐵⃗ in
𝑥-direction shown in orange. The quantum well layers are shown in red (CdTe)
and blue (HgTe) sandwiching the effective two-dimensional system.

The question to answer is which consequences this lead shape brings along, es-
pecially when a magnetic field in 𝑥-direction is applied to it. While the Zeeman
term Eq. (2.13) stays unchanged, further details of the numerical implementation
are described in section B.1.5. As shown in Fig. 2.18 we find that the cylindrical
shape of the lead has no visible impact on the band structure. The bands show
the same behavior also for a plane lead with in-plane magnetic field as discussed
in the previous section and shown in Fig. 2.15. The same shrinking of the band
gap (compare blue and black curves in Fig. 2.18) as well as the separation of edge
states with different spin-polarization close to the Dirac point (see splitting of black
lines in the same figure) can be observed. Also for a very strong magnetic field (see
Fig. 2.19) the band structure is the same as in the plane lead (compare to Fig. 2.16).
These results indicate that a cylindrical lead does not have any impact on the edge
states as long as the edges are not eliminated by closing the cylinder. For a lead
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Figure 2.18.: Band structure of a cylindrical lead of width 𝑊 = 500 nm for
different parallel magnetic fields of different strength 𝐵. The radius of the cylinder
is chosen such that the lead corresponds to exactly half a cylinder as sketched in
Fig. 2.17. The QW parameters taken from Ref. [121] are 𝐴 = 365.0 nm · meV,
𝐵 = −706.0 nm2 · meV, 𝐷 = −532.0 nm2 · meV, 𝑚 = −10.09 meV. The red
and blue lines show the band structures for zero field 𝐵 = 0 T and a BIA term
Δ = 0 meV and Δ = 1.6 meV in all panels, respectively. The green and black
lines show the results for finite field 𝐵 given in the panel’s title again for the BIA
term once ignored (green) and once included (black). The grid constants in the
numerics are Δ𝑥 = Δ𝑦 = 5 nm.
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Figure 2.19.: Band structure of a plane rectangular stripe of width 𝑊 = 500 nm
for no field (red and blue) and an in-plane magnetic field in 𝑥-direction of strength
𝐵 = 1 T (green and black lines). Again the radius of the cylinder is chosen such
that the lead corresponds to exactly half a cylinder as sketched in Fig. 2.17. The
QW parameters taken from Ref. [121] are 𝐴 = 365.0 nm ·meV, 𝐵 = −706.0 nm2 ·
meV, 𝐷 = −532.0 nm2 · meV, 𝑚 = −10.09 meV. The red and blue lines show
the band structures at zero field 𝐵 = 0 T and a BIA term Δ = 0 meV and
Δ = 1.6 meV, respectively. Likewise the green and black lines show the results for
finite field 𝐵 = 1 T again for the BIA term again once neglected (green) and once
included (black). The grid constants in the numerics are Δ𝑥 = Δ𝑦 = 5 nm.

that is half a cylinder our results show, that edge states still exist and are also rarely
affected along the cylinder axis. This knowledge will be of special importance in
the next section where we use such cylindrical leads as the in- and outputs of a a
spin-filter device in the form of a topological Mach-Zehnder interferometer.

2.7. A topological Mach-Zehnder interferometer

In this section we propose a setup that allows to use the edge states of topological
insulators for interference experiments. Our setup mimics a Mach-Zehnder inter-
ferometer (MZI) as proposed for light already in the late 19th century [135, 136]
and several years ago also realized for electronic edge states of the integer Quantum
Hall phase [137]. For convenience, we choose here to explain the setup from scratch
although the original idea was presented already in my diploma thesis [102] and in
Alexander Fuß’s bachelor thesis [138] that was supervised by Prof. Rotter and my-
self. In this work we go beyond the aforementioned studies by concretely exploring
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possible applications of the topological MZI and in much more detail exploring the
effects of a magnetic field applied to the device.

The functionality of a classical Mach-Zehnder interferometer is easily explained
and illustrated in Fig. 2.20(a): An incoming beam B is split by a beam-splitter BS1
into two beams B1 and B2 taking different geometric paths. After being exposed
to different physical conditions under which their phases evolve differently, these
two beams are again brought together by reflection off two mirrors M1 and M2 and
interfere at a second beam-splitter BS2. The two beams emerging from BS2 are
detected by two detectors D1 and D2. Depending on the phase difference, which
is in the original setup determined by the geometric path length difference Δ𝑙,
the interference can be tuned between constructive and destructive and the light
intensity measured in the detectors will oscillate as a function of Δ𝑙. The first
electronic MZI [137] realized in semiconductor heterojunctions in high magnetic
fields is sketched in Fig. 2.20(b). The unidirectional edge states caused by the
integer Quantum Hall effect are the analogues of the light beams in the classical
MZI. The quantum point contacts (QPCs) in this setup cause partial reflection of
incoming edge states and thus mimic the beam splitters. In this case the phase
difference depends on the strength of the applied perpendicular magnetic field and
the enclosed area that the edge-states circumnavigate due to the Aharonov-Bohm
effect. Additionally, the phase difference can in this setup be tuned by the two
modulation gates MG1 and MG2. While the interference of edge states in these
systems have already been realized [137], interference experiments with the edge
states of two-dimensional topological insulators are missing up to this point. A
device that enables experimentalists to observe such coherent interference would
be a huge step with a potentially broad field of applications [87] possibly even
at room temperature [86, 139]. For this purpose we propose a setup of a two-
dimensional topological insulator such as a HgTe/CdTe quantum well that is realized
in a cylindrical way as shown in a three-dimensional illustration in Fig. 2.20(d). A
simplified two-dimensional sketch of the proposed geometry is shown in Fig. 2.20(c)
where the cylindrical surfaces are unrolled into a two-dimensional picture that we
also use for our numerical simulations. The zig-zag lines at the top and bottom of
this figure indicate the periodic boundary conditions that are used for the simulation
of the underlying cylindrical structure.

In contrast to the Quantum Hall effect, the edge states of a topological insulator do
not rely on a strong and perpendicular magnetic field which would not be realizable
for a cylindrical surface. In return our setup allows for the observation of edge state
interference in only a two-terminal setup while any planar setup would at least
require the use of three terminals as the case in the electronic MZI [137]. In this
way the signals in D1 and D2 are proportional to the total reflection 𝑅 and the
total transmission 𝑇 through our system respectively. According to the Landauer
formula Eq. (2.3) the total transmission 𝑇 is in this two-terminal setup directly
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Figure 2.20.: Illustration of different types of MZIs. Light (electrons) are injected
from the source S on the way B to the first beams splitter BS1. The beams
propagate along two different ways B1 and B2 acquiring a phase difference of 𝜑
and are lead (after reflection at mirrors M1 and M2) back together at a second
beam splitter BS2 where interference takes place. Measurements are performed
at detectors D1 and D2. Illustration of (a) an optical MZI and (b) the first
electronic MZI [137]. The beam splitters in this setup are replaced by quantum
point contacts (QPCs) that partially reflect or transmit incoming electrons. (c)
Setup of our topological MZI. The path length difference Δ𝑠 is shown as well as
the stripe width 𝑊 which is the same in the leads as well as on the cylinder.
(d) 3-d sketch of the topological MZI. The quantum well layers are shown in red
(CdTe) and blue (HgTe) and are partially rendered transparent to leave a look
at the exemplary electronic wave function on the cylinder surface. The QPCs are
marked and the external magnetic field 𝐵⃗ that can be applied in order to use the
device as a spin filter is shown.
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proportional to the conductance of the device in the limit of vanishing temperature.
As easily verifiable from Fig. 2.20(c) our geometry again features the same topol-

ogy for the paths an electron can take as in the optical and the electronic MZI which
is achieved by arranging the QPCs on top and beneath the incoming lead. When
considering no coupling between the edge states of different spin, our setup can
be viewed as two copies of an MZI, one for each spin-polarization since inter-spin
scattering is in this case forbidden also at the QPCs’ constrictions. In this case
also, the transmission of spin-up and spin-down electrons is always equal since the
taken paths are just time-reversed partners and thus the phase difference 𝜑 that
determines the interference is always equal. As a result we can for now neglect the
presence of a second spin-degree of freedom. The scattering at the QPCs is of fun-
damental importance for the functionality of our device. In the following we label
the transmission and reflection amplitudes of an incoming edge state with given
spin at the 𝑖th QPC by 𝑡↑↓𝑖 and 𝑟↑↓𝑖 , respectively. As the spin has no influence on the
scattering amplitude for non-magnetic scattering and due to the use of symmetric
Gaussian shaped QPCs on can assume 𝑡↑𝑖 = 𝑡↓𝑖 = 𝑡𝑖 and 𝑟↑𝑖 = 𝑟↓𝑖 . The total transmis-
sion of a single spin polarization through the 𝑖th QPC is then given by 𝑇 ↑↓

𝑖 = |𝑡𝑖|2.
For an electron injected in a right-moving edge state of a specific spin-polarization
into our setup, one can easily verify the following behavior: To be reflected to the
source (D1) the electron must either be transmitted or reflected at both the QPCs
(𝑡1𝑡2 or 𝑟1𝑟2). On the other hand, to be transmitted through the whole geometry
(i.e. to reach the outgoing lead D2) it must be once reflected and once transmitted
(𝑡1𝑟2 or 𝑟1𝑡2). Due to the cylindrical layout any electron that has reached the second
QPC will leave the device and multiple scattering has not to be taken into account.
This is a fundamental difference to other devices that were proposed for interference
experiments before [134]. For simplicity we also choose the QPCs to be symmetric
and of Gaussian shape with equal gap width 𝑔 and thus the total transmission of a
single edge-state with well-defined spin through either QPC is equal:

𝑇 ↑↓
1 = 𝑇 ↑↓

2 = 𝑇𝑄 .

In this case the total transmission and reflection of both right-moving edge states
with opposite spin polarization can be expressed by

𝑇 = 4𝑇𝑄 (1− 𝑇𝑄) [1− cos (𝜑+ 𝜑0)] , (2.14)
𝑅 = 2− 4𝑇𝑄 (1− 𝑇𝑄) [1− cos (𝜑+ 𝜑0)] (2.15)

with 𝜑 representing the geometric phase difference that the electron picks up by
propagating along paths 𝐵1 and 𝐵2 of different lengths. As an edge state is travel-
ling at some constant wavenumber 𝑘 along the edges of our geometry, 𝜑 = 𝑘Δ𝑠 in
terms of the path length difference Δ𝑠.
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The HgTe/CdTe quantum well is described by the Bernevig-Hughes-Zhang (BHZ)
model [88] in terms of the effective 4-band Hamiltonian from Eq. (2.1) including the
BIA term Eq. (2.10) as discussed in section 2.5 and in appendices A. As worked out
explicitly in section 2.5, we neglect the Rashba correction Eq. (2.11) as it has very
little impact on the edge states, especially at energies below the Dirac point at 𝐸𝐹 ≈
7.1 meV, which we will focus on in the following. Unless stated otherwise, realistic
quantum well parameters [131] are chosen: 𝐴 = 365.0 meV, 𝐵 = −706.0 meV,
𝐷 = −532.0 meV and 𝑚 = −10.09 meV. A realistic value for the bulk-inversion
asymmetry term is used by setting Δ = 1.6 meV [121].
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Figure 2.21.: The red crosses show the numerically calculated band structure
of a clean waveguide of HgTe/CdTe quantum well with lead width 𝑊 = 500 nm
at zero magnetic field. Two hyperbolic functions 𝐸+(𝑘) and 𝐸−(𝑘) are fitted to
these data points using Eq. (2.16) to obtain an analytic expression for the band
structure in the bulk band gap region −|𝑚| < 𝐸𝐹 < |𝑚|. The fit parameters are
𝑎+ = 1.2995, 𝑏+ = 273.303, 𝑑+ = 1.197, 𝐸0+ = 7.605, 𝑎− = 1.472, 𝑏− = 282.94,
𝑑− = 0.976 and 𝐸0− = 7.409.

In a first numerical approach we are verifying the validity of the simple Eqs. (2.14)
and (2.15) for the description of transport. Since interference is modulated by the
wavenumber 𝑘 of the corresponding edge state we expect to observe oscillations of
𝑇 as a function of the Fermi energy 𝐸𝐹 that we choose in the scattering problem.
We are thus varying the Fermi energy in the energy interval −|𝑚| < 𝐸𝐹 < |𝑚|
where the edge states exist exclusively without any contributing bulk conductance.
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For this purpose we utilize a topological MZI as shown in Fig. 2.20(c) with lead
width 𝑊 = 500 nm and Δ𝑠 = 𝑊 = 500 nm. As the transmission Eq. (2.14) and
the interference of edge states depend strongly on their wave number 𝑘, we need
knowledge about the band structure 𝐸(𝑘) of the edge states. For this purpose we
compute the band structure numerically within the desired energy region. These
results are shown by the red crosses in Fig. 2.21. While without bulk inversion
asymmetry corrections (i.e. Δ = 0 meV) the edge states show a Dirac point at
𝑘 = 0 nm−1, choosing Δ = 1.6 meV opens a band gap. We fit the band structure
by hyperbolic functions

𝐸±(𝑘) = 𝐸0± ±
√︃
𝑑2± + 𝑏2±𝑘

2

𝑎±
(2.16)

that show an almost perfect fit in the important energy region (see blue and green
curves in Fig. 2.21).
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Figure 2.22.: Red crosses show the total transmission through a topological MZI
with lead width 𝑊 = 500 nm, QPC gap size 𝑔 = 30 nm and path length difference
Δ𝑠 = 500 nm. We fit these data points using Eqs. (2.14) and (2.17). The blue
curve shows the obtained fit for the total transmission 𝑇𝑄 through each of the two
QPCs. The obtained fit parameters are 𝑐 = 0.9996, 𝑘0 = −0.0177, 𝑓 = 99.343,
𝜑0 = 3.0914 and Δ𝑠 = 498.526.

For the transmission 𝑇𝑄 at a single quantum point contact we are using a Fermi
function of the form

𝑇𝑄(𝑘) =
𝑐

1 + 𝑒−𝑓(𝑘−𝑘0)
(2.17)

with fit parameters 𝑐, 𝑓 and 𝑘0. The total transmission 𝑇 through the topological
MZI that was computed numerically (see red crosses in Fig. 2.22) can thus be fitted
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by the use of Eq. (2.14) (see red line in Fig. 2.22). These results confirm that even
in the case of Δ ̸= 0 meV the inter-spin scattering can be neglected and Eq. (2.14)
indeed holds. Being now able to describe analytically the transmission through
our device as a function of 𝐸𝐹 , we want to use this knowledge to propose basic
interference experiments with topological insulator edge states and to make our
device usable as a transistor. For this it is necessary to be able to observe both,
entirely constructive (i.e., 𝑇 = 2) and entirely destructive interference (i.e. 𝑇 = 0)
at the second QPC. It is evident from Eq. (2.14) that the maximal transmission
value of 𝑇 = 2 can only be reached when 𝑇𝑄 = 0.5, i.e. each QPC is set exactly to
half transmission. This behavior is also reflected in Fig. 2.22.

From our fitted function Eq. (2.17) we find that 𝑇𝑄 = 0.5 can be achieved by
tuning the Fermi energy to 𝐸𝐹 = 𝐸on = 3.198 meV. In order to reach 𝑇 = 2 the
interference must at this point be perfectly constructive corresponding to an overall
phase difference 𝜑 + 𝜑0 = 𝑘Δ𝑠 + 𝜑0 of 𝜋 for this given 𝑘(𝐸𝐹 ). For this purpose
we tune Δ𝑠 to yield 𝑇 = 2 according to Eq. (2.14) using the fixed parameters from
our fit in Fig. 2.22 and find a value close to Δ𝑠 = 350 nm. Keeping Δ𝑠 fixed
at this value, the next minimum of transmission 𝑇 = 0 is found at 𝐸𝐹 = 𝐸off =
1.14 meV. The scattering wave functions in panels (a) and (b) of Fig. 2.23 show that
indeed for 𝐸𝐹 = 𝐸on electrons are almost perfectly transmitted in both edge states,
respectively. Also the MZI can be tuned to almost no transmission by choosing
𝐸𝐹 = 𝐸off [see panels (c) and (d) in Fig. 2.23].

In an experiment such a switching between no and perfect transmission could
also be achieved by tuning the gate voltage at the cylinder surface and by this the
Fermi energy 𝐸𝐹 . While in the numerics we then choose to tune the path length
difference Δ𝑠, in an experiment this is hard to do since Δ𝑠 depends on the sample.
Instead one should there tune the gate voltages of the QPCs and thus the size of
their constrictions which is impractical in the numerics since we are there limited
by the discretization of the finite-difference square grid.

Our results indicate that it is not possible to filter one of the spin components
since, due to time-reversal symmetry, the transmission for the spin-up and spin-
down is always equal at any value of 𝐸𝐹 . To achieve this, we have to break this
symmetry which can in the easiest way be achieved by applying a weak magnetic
field along the cylinder axis [i.e. the 𝑥-direction, see also Fig. 2.20(d)]. Alternatively
also a ferromagnetic core in the cylinder’s center could be used. In this way the lead
states would not be influenced significantly and also pure edge transport should not
be inhibited since the magnetic field is in-plane and very weak [121]. We implement
such an in-plane magnetic field in 𝑥-direction by the use of the Peierls substitution
(see appendix B) and the addition of a Zeeman correction Eq. (2.13) to the Hamil-
tonian Eq. (2.1) as we already discussed in section 2.6. There we have also already
convinced ourselves that we can safely use cylindrically shaped leads for the in- and
output without destroying the edge states of the topological insulator, even in the
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(a) (b)

(c) (d)

Figure 2.23.: Pictures of the electronic scattering wave function through a topo-
logical MZI with path length difference Δ𝑠 = 350 nm and lead width 𝑊 = 500 nm.
Panels (a) and (b) show the patterns at energy 𝐸𝐹 = 𝐸on = 3.198 meV for injec-
tion of spin-up and spin-down right-moving edge states, respectively. The Fermi
energy is chosen such, that full transmission of 𝑇 = 2 can be achieved. The nu-
merics show that the transmissions of each spin component are equal and sum
up to a total transmission of 𝑇 = 1.99915 which is very close to the expected
value. Also the pictures reflect this almost perfect transmission. Panels (c) and
(d) show the scattering wave functions at energy 𝐸𝐹 = 𝐸off = 1.14 meV again
for spin-up and spin-down edge states, respectively. The Fermi energy is selected
to reside at the expected transmission minimum of 𝑇 = 0 meV corresponding to
destructive interference in the MZI. The pictures show, that almost no intensity
is transmitted to the right and the total transmission is indeed almost vanishing
with 𝑇 = 0.0037.
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presence of a weak magnetic field along the cylinder’s axis. The Zeeman coupling
strength is in all our calculations set to 𝑔‖ = −20.5 [121]. By the application of a
magnetic field we want to use the Aharonov-Bohm effect in order to filter one of the
spin-components. This is possible since these additional phase differences 𝜑AB have
opposite signs for spin-up and spin-down edge states since they are propagating in
opposite directions. These phase differences

𝜑↑↓AB = ± 𝑒
~
𝐴cyl𝐵 (2.18)

are proportional to the encircled magnetic flux enclosed by the cylinder with cross
section 𝐴cyl. At this point it is important to mention that it is not even necessary
for the electrons to get in touch with the magnetic field since the Aharonov-Bohm
phase is purely connected to the magnetic flux through the cylinder [140]. In this
way it is sufficient to use, e.g., a ferromagnetic core in the center of the cylinder
instead. Moreover one can see from Eq. (2.18) that a single flux quantum 𝜑0 =
2𝐴cyl𝐵0 = ℎ

2𝑒 is sufficient to gather an Aharonov-Bohm phase of ±𝜋. We expect
the total transmission for the individual spin components to be given by

𝑇 ↑↓(𝐵) = 2𝑇𝑄 (1− 𝑇𝑄)
[︁
1− cos

(︁
𝜑0 + 𝑘Δ𝑠± 𝑒

~
𝐴cyl𝐵

)︁]︁
. (2.19)

In order to realize a spin-switching device in our setup we again want to see
transmission oscillations with maximal amplitude. For this purpose we set 𝐸𝐹 =
𝐸on = 3.198 meV which guarantees 𝑇𝑄 = 0.5. From Eq. (2.19) it is obvious that in
order to observe spin filtering effects, we need to tune the field-independent phase
𝜑0+𝑘Δ𝑠 such that it is an odd multiple of 𝜋/2 in order to achieve 𝑇 ↑(𝐵) and 𝑇 ↓(𝐵)
to be out of phase as a function of the magnetic field. The reason for this behavior is
that the cosine in Eq. (2.19) is odd around 𝜋/2 but even around zero which allows for
both, in-phase and out-of-phase oscillations of 𝑇 ↑ and 𝑇 ↓. The latter corresponds
to tuning Δ𝑠 = 440 nm such that 𝑇 (𝐵 = 0) = 𝑇 ↑(𝐵 = 0) + 𝑇 ↓(𝐵 = 0) = 1
at energy 𝐸𝐹 = 𝐸on. We can then also expect that the total transmission 𝑇 at
this energy will yield a constant value of 𝑇 = 1 for all values of 𝐵 [see Eq. (2.19)
when 𝑇 (𝐵 = 0) = 1]. This result is confirmed by a nice match of the theoretical
prediction and the numerical results for the total transmission in this setup shown
by the red line and crosses in Fig. 2.24(b). In the same figure we also show that the
transmissions of individual spin components are indeed out of phase (see the green
and blue lines and arrows). We thus find that at values of 𝐵 = ±𝐵0 = ± 𝜋~

4𝑒𝐴cyl
=

±0.003452 T only one of the spin-components can fully transmit through the setup
while the other one is entirely reflected. In this way a spin-filter can be achieved
since the sign of the field of magnitude 𝐵0 will determine the spin-polarization of
the transmitted electrons.

However, it is still possible to also achieve almost full transmission 𝑇 = 2 and
no transmission 𝑇 = 0 by once again tuning the Fermi energy such that at zero
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Figure 2.24.: In both panels red crosses show the total transmission 𝑇 as a
function of the magnetic field 𝐵 through a topological MZI with lead width 𝑊 =
500 nm, QPC gap size 𝑔 = 30 nm and path length difference Δ𝑠 = 440 nm
from numerical calculations. The red lines show the total transmission predicted
by simple theory for Aharonov-Bohm interference. Theoretical predictions for
the transmissions 𝑇 ↑(𝐵) and 𝑇 ↓(𝐵) for the individual single spin-components are
shown by the green and blue lines, respectively. Numerical results for 𝑇 ↑(𝐵) and
𝑇 ↓(𝐵) are marked by small arrows of the same colors. In panel (a) the Fermi
energy is chosen at 𝐸𝐹 = 𝐸full = 2.378 meV such that at zero magnetic field the
total transmission is in theory equal to 𝑇 = 0. Numerics show for these parameter
values that indeed 𝑇 = 0.00011 close to zero. Expected full oscillations of 𝑇
as a function of 𝐵 are numerically verified with a maximal value of 𝑇 = 1.9333
at 𝐵 = 2𝐵0 = 0.0069. Also for the individual spin-components the numerical
calculations and theoretical predictions show a perfect match as well as the equality
of spin-up and spin-down transmissions at arbitrary field for this choice of 𝐸𝐹 .
Panel (b) shows the same quantities as above but for 𝐸𝐹 = 𝐸on = 3.198 meV. This
value is tuned in such a way that at zero magnetic field the total transmission is in
theory equal to 𝑇 = 1. Numerics confirm this expectation by 𝑇 (𝐵 = 0) = 0.99987.
Theoretically we expect the total transmission to be constant 𝑇 = 1 with respect
to 𝐵 which is numerically confirmed (see red crosses and line). The individual
spin components on the other hand now show alternating transmission and points
of pure spin-up and spin-down transmissions can be found at 𝐵 = ±0.00345 T,
respectively. Once again the numerics show the same behavior.
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magnetic field 𝑇 = 0. Using Eq. (2.14) this gives a value of 𝐸𝐹 = 𝐸full = 2.378 meV
for which the total transmission 𝑇 as well as the transmissions of spin-up and spin-
down electrons are again shown in red, green and blue, respectively in Fig. 2.24 (the
lines always show the theory, the crosses and arrows shown the numerical results).
We numerically confirmed that for no magnetic field the device is blocked for any
charge transfer at 𝑇 = 0.00011 while almost perfect transmission of 𝑇 = 1.93314
can again be achieved at 𝐵 = 2𝐵0. The reason why 𝑇 in this case does not exactly
reach 𝑇 = 2 is because at this value of 𝐸𝐹 the transmission through a single QPC
is 𝑇𝑄 ̸= 0.5. This problem could be overcome by simultaneously tuning the gate
voltages of the QPCs (their gap widths 𝑔) to again guarantee 𝑇𝑄 = 0.5. In addition
the deviations from 𝑇 = 2 will decrease when a larger MZI with a larger path
length difference Δ𝑠 is used since then the transmission maxima in energy are closer
together.

Overall, this specific topological MZI with lead width 𝑊 = 500 nm and path
length difference Δ𝑠 = 440 nm can serve as a spin-filter and spin-transistor in the
following way: By setting the Fermi energy 𝐸𝐹 to the value of 𝐸𝐹 = 𝐸full the de-
vice can be used in reflection mode featuring almost no transmission. Applying a
magnetic field along the cylinder axis of strength 𝐵 = 2𝐵0 will transfer the device
to transmission mode with total transmission close to 𝑇 = 2. By then changing the
Fermi energy to 𝐸𝐹 = 𝐸on and halving the field strength to 𝐵 = 𝐵0 one ends up in
pure spin-up transmission while spin-down electrons are entirely reflected. Invert-
ing the magnetic field to 𝐵 = −𝐵0 will also invert the spin of transmitted electrons
propagating on the opposite edge and filtering now the spin-up component while
spin-down is perfectly transmitted. Pictures of the device in these four possible
configurations are shown in Fig. 2.25 for injection of an equally-weighted coherent
superposition of right-moving spin-up and spin-down edge states. The desired be-
havior and the 4 possible settings of the spin-transistor can easily be verified by
looking at the transmitted electronic wave functions in the right lead. In contrast,
previous suggestions for devices featuring tunable spin and charge currents are re-
lying on four-terminal measurements [139, 141–147]. Also in the most popular such
device [141] the spin and charge conductances cannot be steered separately since
pure spin-conductance is accompanied by vanishing charge conductance. In our
two-terminal setup the charge transfer itself can be tuned to consist of a single spin-
component only. In return we have to use a magnetic field which is, however, very
weak and in-plane and thus is not destroying coherent edge transport or backscat-
tering immunity. Moreover, this magnetic field does not necessarily need to act on
the electrons themselves since it is sufficient to introduce an enclosed magnetic flux
through the cylinder to achieve this filtering property [140]. Additionally, in the
aforementioned suggested setup the interference is a combination of two distinct
mechanisms, namely Fabry-Pérot and electrical Aharonov-Bohm interference show-
ing complicated interplay [141]. In our setup the interference effects are of strict
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Figure 2.25.: Pictures of the electronic scattering wave function through a
topological MZI with path length difference Δ𝑠 = 440 nm and lead width
𝑊 = 500 nm. Panels (a) and (b) show scattering wave functions at energy
𝐸𝐹 = 𝐸full = 2.378 meV for injection of a coherent and equally-weighted su-
perposition of spin-up and spin-down right-moving edge states. In (a) the device
at zero magnetic field 𝐵 = 0 T is set to blocking status with 𝑇 = 0.000228. Panel
(b) shows the electronic wave function in the device in full transmission mode with
𝐵 = 2𝐵0 and 𝑇 = 1.933. Panels (c) and (d) show the scattering wave functions at
energy 𝐸𝐹 = 𝐸off = 1.14 meV again for the same coherent superposition of spin-up
and spin-down edge states. The Fermi energy is here chosen such that transmis-
sions for spin-up and spin-down are out of phase yielding a constant value for their
sum of 𝑇 = 1 for arbitrary field 𝐵. In (c) the MZI is exposed to a magnetic field
of strength 𝐵 = 𝐵0 resulting in pure spin-up transport 𝑇 = 𝑇 ↑ = 0.99987 while in
(d) the field’s direction is inverted, i.e. 𝐵 = −𝐵0, leaving us with pure spin-down
transmission 𝑇 = 𝑇 ↓ = 0.99987.
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Mach-Zehnder type making them possibly more easily controllable. Other propos-
als for spin-transistors [140, 148] rely on more sophisticated descriptions and would
thus need better control of material parameters in a real experiment. Furthermore
these devices do not allow for spin filtering but rather spin switching and could serve
as spin-transistors with 2 [140] or 3 [148] possible settings and do not rely on basic
interference effects. Our device would allow for spin filtering and could be used as a
spin-transistor with 4 possible settings. Further suggestions that point into a similar
direction [149, 150] are well suited for spin-polarized single-electron or single-pair
emission from a source but cannot serve as a spin-filter or spin-transistor.



Chapter 3.

Numerical methods and improvements

3.1. Finite differences method

In this chapter we give insight into the numerical model that is used in all our
calculations focusing on quite a few improvements that we performed. The systems
of interest can all be described by a Hamiltonian operator 𝐻̂ that is a differential
operator of second order. In a numerical scheme the solution of the corresponding
second order differential equation

𝐻̂𝜓(𝑥, 𝑦) = 𝐸𝜓(𝑥, 𝑦) (3.1)

has to be mapped onto a discrete pattern in any form. The easiest way to do this,
is to discretize the considered geometry on a rectangular grid featuring 𝑛𝑦 points
in 𝑦-direction and 𝑛𝑥 points in 𝑥-direction with the corresponding grid spacings Δ𝑦
and Δ𝑥 as sketched in Fig. 3.1. The discretized geometry is then characterized
by its coordinates (𝑥𝑖, 𝑦𝑗) with 𝑖 = 1, . . . , 𝑛𝑥 and 𝑗 = 1, . . . , 𝑛𝑦. The solutions
𝜓(𝑥, 𝑦) of Eq. (3.1) are in this scheme represented by a vector of complex values
𝜓(𝑥𝑖, 𝑦𝑖) = 𝜓𝑖𝑗 , one for every point of the geometry. The ordering of this vector 𝜓𝑖𝑗
is chosen such that the points are ordered column wise

𝜓𝑖𝑗 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓11

𝜓12
...

𝜓1𝑛𝑦

𝜓21
...

𝜓2𝑛𝑦

...
𝜓𝑛𝑥𝑛𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:= 𝜓⃗ . (3.2)
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Figure 3.1.: Sketch of the discretization in our numerical scheme on a rectangular
grid of 𝑛𝑥 × 𝑛𝑦 points. The grid spacings are Δ𝑥 and Δ𝑦 in 𝑥- and 𝑦-direction
respectively. The points of the geometry (𝑥𝑖, 𝑦𝑖) are labelled by their line index 𝑖
and their column index 𝑗.

In this way the Hamilton operator 𝐻̂ can be written as a matrix 𝐻 of dimension
𝑛𝑥 · 𝑛𝑦 × 𝑛𝑥 · 𝑛𝑦 taking a strictly tridiagonal block-form

𝐻 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐻
(1)
0 𝐻𝐼 0 . . . . . . 0

𝐻†
𝐼 𝐻

(2)
0 𝐻𝐼 0 . . .

...

0
. . . . . . . . . 0

...
... 0

. . . . . . . . . 0
... . . . 0 𝐻†

𝐼 𝐻
(𝑛𝑥−1)
0 𝐻𝐼

0 . . . . . . 0 𝐻†
𝐼 𝐻

(𝑛𝑥)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.3)

The 𝑛𝑦×𝑛𝑦 subblocks 𝐻(𝑖)
0 on the diagonal connect those wave function components

with the same 𝑥-coordinate 𝑥𝑖. In this sense 𝐻(𝑖)
0 describes a single stripe of points

at some constant 𝑥𝑖. The subblocks 𝐻𝐼 and 𝐻†
𝐼 on the other hand describe the

coupling between adjacent such stripes. For easier readability we assumed that 𝐻𝐼

and𝐻†
𝐼 do not depend on the position of the slices that they connect. For this reason

we dropped the index 𝑖 that they should in general depend on. Such a distinction
would for example be necessary if 𝑛𝑦 was not constant for all slices but varied with
the slice position 𝑥𝑖. We will add this index when necessary; in most cases the final
equations of our considerations remain essentially unchanged. The explicit form of
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these matrices is found by approximating the derivatives with respect to 𝑥 and 𝑦
by the corresponding symmetric difference quotients

𝑑𝜓(𝑥, 𝑦)

𝑑𝑥
→

𝜓𝑖+1,𝑗−𝜓𝑖,𝑗

Δ𝑥 +
𝜓𝑖,𝑗−𝜓𝑖−1,𝑗

Δ𝑥

2
=
𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗

2Δ𝑥
(3.4)

𝑑𝜓(𝑥, 𝑦)

𝑑𝑦
→ 𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1

2Δ𝑦
. (3.5)

In the same way the second derivatives are approximated by

𝑑2𝜓(𝑥, 𝑦)

𝑑𝑥2
→ 𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗

(Δ𝑥)2
(3.6)

𝑑2𝜓(𝑥, 𝑦)

𝑑𝑦2
→ 𝜓𝑖,𝑗+1 − 2𝜓𝑖,𝑗 + 𝜓𝑖,𝑗−1

(Δ𝑦)2
. (3.7)

For example the Hamiltonian 𝐻̂ of a free electron is given by

𝐻̂ = − ~2

2𝑚𝑒

(︂
𝑑

𝑑𝑥2
+

𝑑

𝑑𝑦2

)︂
. (3.8)

In atomic units usually ~ = 1 as well as the electron mass 𝑚𝑒 = 1. Using (3.6) and
(3.7) one finds that 𝐻(𝑖)

0 = 𝐻0 and 𝐻𝐼 are in this simplest case given by (we also
assume a square lattice here, i.e. Δ𝑥 = Δ𝑦)

𝐻0 = − 1

Δ𝑦2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 0 . . . . . . 0

1 −4 1 0 . . .
...

0 1 −4 1
. . .

...
...

. . . . . . . . . . . .
...

... . . . 0 1 −4 1
0 . . . . . . 0 1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.9)

𝐻𝐼 = − 1

Δ𝑥2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . 0

0 1 0 . . . . . .
...

... 0 1 0 . . .
...

... . . .
. . . . . . . . .

...
... . . . . . . 0 1 0
0 . . . . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.10)
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A static bulk disorder potential 𝑉 (𝑥, 𝑦) described by a corresponding vector 𝑉𝑖𝑗
yielding the potential value at each grid point (𝑥𝑖, 𝑦𝑗) will appear on the diagonal
of 𝐻(𝑖)

0 . The implementation of more complicated Hamiltonians works in the same
way, e.g. two-dimensional topological insulators as described in appendix A.

3.2. Band structures

Consider an infinitely long waveguide of width 𝑊 as sketched in Fig. 3.2. In a
discretized scheme, this waveguide can be seen as a periodic sequence of equal slices
each of which consists of 𝑛𝑦 points in 𝑦-direction with 𝑊 = (𝑛𝑦 + 1)Δ𝑦. One
such slice is described by the Hamiltonian subblock 𝐻0. The connection between

Δ𝑦

Δ𝑥

𝐻†
𝐼

𝐻0

−∞ ∞

𝐻𝐼

Figure 3.2.: Sketch of a discretized waveguide that is infinitely long and features,
depending on the energy 𝐸, a certain number of open lead modes ⟨𝑦|𝜒𝑎⟩. A slice
𝑖 is described by the Hamiltonian subblock 𝐻0. The coupling between adjacent
slices is described by the matrices 𝐻𝐼 and 𝐻†

𝐼 . The band structure and the lead
modes can be calculated numerically from these matrices.

adjacent slices is described by the matrices 𝐻𝐼 and 𝐻†
𝐼 . As the system can be viewed

as periodic in 𝑥-direction we can use Bloch’s theorem to decompose the real-space
representation of the wave functions, |𝜓(𝑥, 𝑦)⟩ into an 𝑥- and a 𝑦-dependent part:

⟨𝑥, 𝑦|𝜓𝑛⟩ = 𝑒𝑖𝑘𝑥,𝑛𝑥⟨𝑦|𝜒𝑛⟩ . (3.11)

As the waveguide is infinitely extended in the longitudinal direction, the 𝑥-dependent
part of the solution is just a plane wave with wave number 𝑘𝑥 that can take con-
tinuous values between −𝜋/Δ𝑥 and 𝜋/Δ𝑥. In transverse 𝑦-direction the waveguide
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is finite leading to discrete solutions |𝜒𝑛⟩ to which a wave number 𝑘𝑦,𝑛 = 𝑘𝑦 can
be assigned. The wave functions ⟨𝑥, 𝑦|𝜓𝑛⟩ from Eq. (3.11) are solutions of the
Schrödinger equation

𝐻̂|𝜓𝑛⟩ = 𝐸𝑛(𝑘𝑥)|𝜓𝑛⟩ . (3.12)

The eigenvalues 𝐸𝑛(𝑘𝑥) are called the band structure of the waveguide.
In our discrete scheme, the ansatz Eq. (3.11) turns into

⟨𝑟|𝜓𝑛⟩ →

⎛
⎜⎜⎜⎜⎜⎜⎝

...
𝑒−𝑖𝑘𝑥,𝑛Δ𝑥𝜒⃗𝑛

𝜒⃗𝑛
𝑒𝑖𝑘Δ𝑥𝜒⃗𝑛

...

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.13)

where we only show the components of the three slices around the position 𝑥 = 0
of the (in theory) infinitely long vector. The Schrödinger equation from Eq. (3.12)
in this discretized structure reads according to Eq. (3.3)

(︁
𝑒−𝑖𝑘𝑥Δ𝑥𝐻†

𝐼 +𝐻0 + 𝑒𝑖𝑘𝑥Δ𝑥𝐻𝐼

)︁
𝜒⃗𝑛 = 𝐸𝑛(𝑘𝑥)𝜒⃗𝑛 . (3.14)

Numerically, the band structure 𝐸𝑛(𝑘𝑥) can be easily determined by fixing 𝑘𝑥 and
solving the above eigenvalue problem. For the solution of a scattering problem
the numerics prove a little more complicated. In such a computation the given
quantity usually is the scattering energy 𝐸 for which all possible solutions 𝜒⃗𝑛 have
to be found. These solutions are usually referred to as lead modes and finding
them requires solving Eq. (3.14) for fixed 𝐸 instead of 𝑘𝑥. As in this case we are
confronted with a quadratic eigenvalue problem, the solution requires doubling the
dimension of the problem. This procedure leads to the equation

(︂
(𝐻†

𝐼 )
−1(𝐸 −𝐻0) −(𝐻†

𝐼 )
−1𝐻𝐼

1 0

)︂(︂
𝜁𝑛
𝜒⃗𝑛

)︂
= 𝛽𝑛

(︂
𝜁𝑛
𝜒⃗𝑛

)︂
(3.15)

with the definitions

𝛽𝑛 = 𝑒−𝑖𝑘𝑛,𝑥Δ𝑥,

𝜁𝑛 = 𝛽𝑛𝜒⃗𝑛.

The group velocity of a lead mode 𝑎 that will be needed for the flux normalization
of transmission and reflection amplitudes (see section 3.3) is given by [16, 151, 152]

𝑣𝑛 = 𝑖Δ𝑥⟨𝜒𝑛|
(︁
𝐻𝐼𝛽

−1
𝑛 −𝐻†

𝐼𝛽𝑛

)︁
|𝜒𝑛⟩ . (3.16)

More details on all the above relations and rigorous derivations can be found in
Refs. [16] and [152].
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3.3. Green’s functions and the Dyson equation

In most of our simulations we are considering a scattering problem in two dimensions
including one incoming and one outgoing lead. The common way of solving this
numerically is by the use of retarded Green’s functions [12, 14, 15, 153, 154]. This
object, labelled here by 𝒢, is defined by the equation

(𝐸 − 𝐻̂)𝒢(𝑟⃗, 𝑟⃗ ′, 𝐸) = 𝛿(𝑟⃗ − 𝑟⃗ ′). (3.17)

It is the so called propagator since it connects the wave function 𝜓(𝑟⃗) at some point
𝑟⃗ to all the other points 𝑟⃗ ′ in the system by

𝜓(𝑟⃗) =

∫︁
d3𝑟′𝒢(𝑟⃗, 𝑟⃗ ′, 𝐸)𝜓(𝑟⃗ ′) . (3.18)

In the discrete two-dimensional geometry we consider in our numerics, the Green’s
function becomes a matrix of the dimension of the Hamiltonian 𝐻. The delta
function in the definition Eq. (3.17) is in discrete systems represented by a unit
matrix. Consequently the discrete Green’s function (matrix) 𝒢 corresponds to the
inverse of the Hamilton matrix 𝐻 from Eq. (3.3):

𝒢 = (𝐸 −𝐻)−1 . (3.19)

Although this expression looks very compact, it is not easy to calculate this object
numerically since it requires the inversion of a matrix with (𝑛𝑥 · 𝑛𝑦)2 elements.
However, for the majority of physical problems it is sufficient to compute parts of
the Green’s function matrix. In our scheme we are usually dealing with 𝑛𝑦 × 𝑛𝑦

left lead

right lead
L

R

scattering region

Figure 3.3.: Sketch of a scattering problem consisting of a scattering region and
two attached semi-infinite leads to the left and to the right. The first and last
slice of the left and the right lead are labelled by L and R, respectively.

blocks 𝒢𝑖𝑗 denoting those parts of the matrix that connect slice 𝑗 with slice 𝑖. Those
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subblocks that connect the first and the last slice of the geometry are of special
interest in transport. These 4 blocks are referred to as the surface Green’s functions
𝒢𝐿𝐿, 𝒢𝐿𝑅, 𝒢𝑅𝐿 and 𝒢𝑅𝑅, where “L” stands for the last slice of the left lead and “R”
for the first slice of the right lead (with both leads attached to the scattering region,
see also Fig. 3.3). The set of the above four surface GFs will in the following be
denoted by {𝒢}. All the information about transport and the scattering matrix is
contained in these objects. The transmission and reflection amplitudes (the elements
of the scattering matrix), 𝑡𝑎𝑏 and 𝑟𝑎𝑏 respectively, can be calculated by the use of
the surface GFs {𝒢} using the following relations [16]:

𝑡𝑎𝑏 =

√︃
𝑣𝑅𝑎
𝑣𝐿𝑏

⟨𝜒𝑅𝑎 |𝒢𝑅𝐿𝑉 𝐿|𝜒𝐿𝑏 ⟩ , (3.20)

𝑟𝑎𝑏 =

√︃
−𝑣𝐿𝑎̄
𝑣𝐿𝑏

⟨𝜒𝐿𝑎̄ |𝒢𝐿𝐿𝑉 𝐿 − 1|𝜒𝐿𝑏 ⟩ , (3.21)

𝑡′𝑎𝑏 =

√︃
𝑣𝐿𝑎̄
𝑣𝑅
𝑏̄

⟨𝜒𝐿𝑎̄ |𝒢𝐿𝑅𝑉 𝑅|𝜒𝑅𝑏̄ ⟩ , (3.22)

𝑟′𝑎𝑏 =

√︃
−𝑣𝑅𝑎
𝑣𝑅
𝑏̄

⟨𝜒𝑅𝑎 |𝒢𝑅𝑅𝑉 𝑅 − 1|𝜒𝑅𝑏̄ ⟩ . (3.23)

The unprimed quantities 𝑡𝑎𝑏 and 𝑟𝑎𝑏 describe transmission and reflection of a lead
mode 𝑏 injected in the left lead to another lead mode 𝑎. The primed quantities 𝑡′𝑎𝑏
and 𝑟′𝑎𝑏 describe injection in the right lead. The lead modes have been previously
calculated by the use of Eq. (3.15) and are here denoted by |𝜒𝑅/𝐿𝑎 ⟩. The lower
index represents the corresponding right-moving mode while a bar over this mode
index indicates the left-moving mode. Analogously 𝑣𝑎 and 𝑣𝑎̄ denote the group
velocities of the 𝑎th right-moving and the 𝑎th left-moving lead modes, respectively.
These velocities are evaluated by the use of Eq. (3.16) and their occurrence as
prefactors in Eqs. (3.20)-(3.23) accounts for the flux normalization of incoming and
outgoing modes. The matrix 𝑉 is a projection operator that in essence resembles
the transformation between lead mode and space basis [16, 151, 152]. It can be
easily calculated from the lead solutions Eq. (3.15) according to the appendix of
Ref. [16]. The upper indices “L” or “R” in the lead modes, the group velocities and
projection operators 𝑉 distinguish between the left and the right lead, respectively.

While these lead modes 𝜒⃗𝑛 and Bloch eigenvalues 𝛽𝑛 are numerically fairly easy
to calculate [see Eq. (3.15)], the challenging task is the computation of the set
of surface Green’s functions {𝒢} = {𝒢𝐿𝐿,𝒢𝑅𝐿,𝒢𝐿𝑅,𝒢𝑅𝑅}. Mind that these GFs
labelled by the caligraphic 𝒢 include the attachments of the two semi-infinite leads.
These connections to the waveguides can also be done numerically very efficiently
since the surface GFs of the leads themselves are again given by the lead solutions 𝜒⃗𝑛
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𝐺12

𝐺
2
2

𝐺
1
1

𝐺21

21

𝐺
𝐴1
1

𝑖 2𝐻𝐼
𝐺
𝐴 𝑖𝑖

𝐺𝐴1𝑖1

path I

𝐺𝐴𝑖1
𝐻†
𝐼

𝐺
0 2
2

𝐺
2
2

+ =

Figure 3.4.: Sketch of the numerical attachment of a single slice (labelled 2) to a
module 𝐴 of which the surface GFs {𝐺𝐴} are known. The interaction of slice 2 is
mediated by the block matrices 𝐻𝐼 and 𝐻†

𝐼 . As an example, the “path” that can
be used to find Eq. 3.27 is shown in red and labelled “path I”. The contributions
of each path segment are also shown in red. This illustrates how Dyson equations
based on the Hamiltonian block matrices 𝐻0, 𝐻𝐼 and 𝐻†

𝐼 can be established.

and Bloch eigenvalues 𝛽𝑛 calculated from Eq. (3.15). The details of this procedure
can, e.g., be found in Ref. [16].

Fortunately, there is a very useful tool which allows for an iterative calculation of
the surface GFs alone. This tool is the so-called Dyson equation which represents a
relation between the Green’s function 𝐺̂0 of an unperturbed system and the Green’s
function 𝐺̂ of the system including a perturbation 𝑉 :

𝐺̂ = 𝐺̂0 + 𝐺̂0𝑉 𝐺̂ . (3.24)

While this self-consistent operator equation is analytically not easy to solve, it
numerically turns into a self-consistent matrix equation that can be solved by matrix
multiplications and inversions. A possible approach used in the recursive Green’s
function method is to iteratively build up the surface GFs of the whole geometry
slice by slice. In the following we will provide an idea of how this works in detail.
To start the iteration, one considers only the first slice (labelled 1) of the geometry
for which the total GF is by definition given by

𝐺(1) = (𝐸 −𝐻
(1)
0 )−1 ,

with 𝐸 the scattering energy. For this trivial module, all four surface GFs are equal
to 𝐺(1). In every subsequent step 𝑖 + 1, one already knows the surface GFs {𝐺𝐴}
of the module 𝐴 reaching from slice 1 to slice 𝑖 as depicted in Fig. 3.4. To this
structure we want to add the next slice labelled by 2. The matrix of the full GF 𝐺
that we need for the use of the Dyson equation (3.24) is viewed as matrix consisting
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of blocks of dimension 𝑛𝑦 ×𝑛𝑦 (where we for simplicity assume that the number 𝑛𝑦
of points in 𝑦-direction is equal for all slices):

𝐺 =

⎛
⎜⎝

𝐺11 · · · 𝐺12
...

. . .
...

𝐺21 · · · 𝐺22

⎞
⎟⎠ . (3.25)

In this notation we only labelled the blocks representing the surface GFs of the
structure that we are finally interested in. The GF matrix 𝐺0 of the unconnected
structure where slice 2 is not yet attached reads

𝐺0 =

⎛
⎜⎜⎜⎝

𝐺𝐴11 · · · 𝐺𝐴1𝑖 0
...

. . .
...

...
𝐺𝐴𝑖1 · · · 𝐺𝐴𝑖𝑖 0
0 · · · 0 𝐺0

22

⎞
⎟⎟⎟⎠ .

The blocks labelled by 𝐴 are the surface GFs of module 𝐴 known from the previous
iteration and 𝐺0

22 is the GF of the single slice 2 defined by

𝐺0
22 = (𝐸1−𝐻

(2)
0 )−1 .

As a perturbation 𝑉 we treat the connection between the last slice of A and slice
2. This connection is numerically represented by the subblocks 𝐻𝐼 and 𝐻†

𝐼 of the
Hamiltonian H [see Eq. (3.3)]. Thus 𝑉 reads

𝑉 =

⎛
⎜⎜⎜⎝

0 · · · 0 0
...

. . .
...

...
0 · · · 0 𝐻𝐼

0 · · · 𝐻†
𝐼 0

⎞
⎟⎟⎟⎠ .

These ingredients can be used for the discrete version of the Dyson equation

𝐺 = 𝐺0 +𝐺0𝑉 𝐺 . (3.26)

Instead of always considering the full multiplications of these matrices it is conve-
nient that the resulting equations for the subblocks (surface GFs) can be extracted
in a diagrammatic way. As an example we are considering the calculation of the
surface GF 𝐺22. The corresponding Dyson equation can be found by following the
“path” (which is labelled “path 𝐼” and shown by red arrows in Fig. 3.4). This di-
agrammatic way of finding Dyson equations works as follows: As in this case we
want to find an expression for the full GF 𝐺22 of the structure in which slice 2
is already attached, we need to start with the unperturbed 𝐺22 before slices 2 is
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glued on, which is in this case the GF of the single slice 2, 𝐺0
22. In the following,

we have to add the “path” across the site of fracture starting at the beginning slice
(first index of the GF under consideration, in this case slice 2, marked by the red
circle in Fig. 3.4) and follow the red arrows while writing down the corresponding
contributions (shown next to the corresponding arrow in Fig. 3.4). The procedure
ends, when the final slice (in this case slice 2) is reached and all possible paths (in
this case there is only one) have been included. In the current example one finds
for 𝐺22:

𝐺22 = 𝐺0
22 +𝐺0

22𝐻
†
𝐼𝐺

𝐴
𝑖𝑖𝐻𝐼𝐺22 . (3.27)

Whenever a Dyson equation is used throughout this work, we endeavored to provide
the corresponding sketch and all the contributions shown by similar arrows as in
Fig. 3.4.

Solving this matrix Eq. (3.27) yields a compact expression for 𝐺22 that only
requires the inversion of a 𝑛𝑦 × 𝑛𝑦 matrix and some multiplications of equally sized
matrices:

𝐺22 = (1𝐸 −𝐻
(2)
0 −𝐻†

𝐼𝐺
𝐴
𝑖𝑖𝐻𝐼)

−1 . (3.28)

The remaining surface GFs and their respective Dyson equations are then obtained
analogously and can be easily evaluated by multiplications of known matrices only:

𝐺12 = 𝐺𝐴1𝑖𝐻𝐼𝐺22 , (3.29)

𝐺21 = 𝐺22𝐻
†
𝐼𝐺

𝐴
𝑖1 , (3.30)

𝐺11 = 𝐺𝐴11 +𝐺𝐴1𝑖𝐻𝐼𝐺21 . (3.31)

In a very similar way also two modules 𝐴 and 𝐵 of which the surface GFs 𝐺𝐴 and
𝐺𝐵 are known can be glued together. We spare the details of these calculations for
easier readability [151]. This modular treatment that the Dyson equation allows for
is the basis of the modular recursive Green’s function method (MRGF) [12, 13, 155].

3.4. Improving the modular recursive Green’s function
method

In the following we want to introduce an improved algorithm that we implemented
in order to speed up the calculation of the surface GFs which by far takes most of the
time in the numerical solution of our scattering problems. The crucial improvement
in this algorithm is the fact that the whole parallelization of the code is done purely
by hand while before the parallelization of the code was relying on numerical parallel
inversion routines included from MUMPS [156, 157].

This new algorithm can be run on 𝑛 = 2𝑚 cores (threads) with 𝑚 ∈ N and relies
on the automatic split-up of our scattering region into 𝑛 equally sized submodules.
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In the following we will explain the algorithm by using an example of a scattering
region of which the desired set of surface GFs is labelled {𝐺}. This example is also
illustrated in Fig. 3.5.

In a first step, the scattering region is split into 𝑛 equally sized modules that are
in our example Fig. 3.5 labelled by Latin letters from 𝐴 to 𝐻. Each such module
is assigned to a core, e.g., core 0 is responsible for module 𝐴, core 1 for module
𝐵 and so on. As a starting point, each core 𝑖 calculates the surface GFs {𝐺𝑋}
of its module 𝑋 exclusively on its own. This is done by starting with the GFs
of the first slice of the module and adding each slice iteratively using the Dyson
equations (3.28)-(3.31). This procedure has been described towards the end of the
previous section 3.3. We then distribute the surface GFs of these modules in such a
way that the whole geometry can be glued together in the end by Dyson equations.

However, we still want to do this in an optimally parallel way. For this purpose the
modules’ surface GFs are distributed in such a way, that in the next step we can glue
together the modules pairwise ending up with surface GFs {𝐺𝐴𝐵}, {𝐺𝐶𝐷}, {𝐺𝐸𝐹 }, . . ..
The communication process is indicated in Fig. 3.5 by the use of arrows. In our
example we can see that in this case now cores 0, 3, 4 and 7 calculate these module
pairs. Essentially from here on out this procedure is repeated: The surface GFs of
the paired modules are distributed such that cores 0 and 7 can now calculate the
surface GFs of 4 such modules, i.e. {𝐺𝐴→𝐷} and {𝐺𝐸→𝐻}. Finally, core 7 provides
his surface GFs for core 0 which completes the final step ending up with the surface
GFs {𝐺𝐴→𝐻} = {𝐺} of all the modules assembled together.

The big advantage of this algorithm, which we will call parallel Dyson algorithm
(PDA) in the following, is, that all the parallelization is done by hand in an optimal
way fitting the problem. The previously used algorithm relied on the parallelization
of matrix inversion and factorization routines that are very efficient in principle,
but less efficient for this particular problem of the iterative assembly of the surface
GFs of a scattering region. This fact is illustrated convincingly in Fig. 3.6 where we
compare the computation times of the old algorithm and the new PDA for quadratic
scattering regions as a function of 𝑁 = 𝑛𝑦 = 𝑛𝑥.

We clearly find that our PDA is faster for all considered system sizes 𝑁 . For the
largest considered geometry the PDA is almost 6 times faster than the old algorithm.
Additionally, we can estimate the PDA’s runtime in a very precise way depending
on 𝑛𝑥, 𝑛𝑦 and the number of used cores 𝑐. We expect that the total computation
time 𝑡 consists of 2 main contributions: First, there is the time that is needed for
every core to calculate the surface GFs of its own module. As this process requires
inversion and multiplication of 𝑛𝑦×𝑛𝑦-matrices, we expect it to scale with 𝑛3𝑦. The
length of the module of each core is 𝑛𝑥/𝑐, which is why we expect the total time 𝑡1
for this first step to be

𝑡1 = 𝑎
𝑛𝑥
𝑐
𝑛3𝑦 .
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Figure 3.5.: Illustration of our improved recursive GF algorithm for the case
of a parallel calculation on 8 cores. The goal is the calculation of the scattering
region’s surface GFs {𝐺} = {𝐺11, 𝐺12, 𝐺21, 𝐺22}, where 1 and 2 entitle the first
and the last slice of the geometry, respectively. For this purpose, the geometry is
split up in a first step such that each core calculates the surface GFs of an equally
sized module labelled from 𝐴 to 𝐻. This is done by putting together the module
slice-by-slice in a recursive way. Afterwards, the necessary GFs of each module
are sent to those cores that in the next step merge these modules together. This
communication process is indicated by black arrows. During the further procedure,
the surface GFs of the unified modules are calculated and communicated again in
such a way that the algorithm ends with the first (master) core calculating the
desired surface GFs {𝐺} in the last step. The procedure can be easily generalized
to 𝑛 = 2𝑚 cores where always 𝑚 communication steps are required to build up
the whole geometry.
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Figure 3.6.: Benchmark of the PDA (blue curve) in comparison to the old algo-
rithm (red curve). We are calculating the surface GF of a quadratic structures of
different size 𝑁 = 𝑛𝑥 = 𝑛𝑦. The new PDA algorithm shows significantly faster
calculation than the old one. These benchmarks were performed on the Vienna
Scientific cluster 3 (VSC-3).

The parameter 𝑎 is hardware-specific and describes the time that appending a single
slice to one core’s own module takes.

The second contribution to 𝑡 comes from the parallel assembly of the surface GFs
of the whole geometry including data exchange. This procedure consists of 𝑚 =
log2 𝑐 = ln 𝑐/ ln 2 steps each of which requires time for the assembly of 2 modules
which we again expect to scale with 𝑛3𝑦. Mind, however, that this contribution 𝑡2 is
independent of 𝑛𝑥 and we can write

𝑡2 = 𝑏
ln 𝑐

ln 2
𝑛3𝑦 ,

where again a free hardware-dependent parameter 𝑏 is introduced.
The data exchange between the cores will scale with 𝑛2𝑦 and can therefore be

neglected for large 𝑛𝑦. Overall we get a total computation time that reads

𝑡 = 𝑡1 + 𝑡2 = 𝑎
𝑛𝑥
𝑐
𝑛3𝑦 + 𝑏

ln 𝑐

ln 2
𝑛3𝑦 . (3.32)

For a quadratic geometry with 𝑛𝑦 = 𝑛𝑥 = 𝑁 this transforms to

𝑡 = 𝑎
𝑁4

𝑐
+ 𝑏

ln 𝑐

ln 2
𝑁3 . (3.33)

In Fig. 3.7 we check this law on 2 different clusters, the Vienna Scientific Cluster
1 (VSC-1) and the Vienna Scientific Cluster 3 (VSC-3). We measured the compu-
tation time of the surface GFs of a quadratic geometry for different core numbers
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Figure 3.7.: Benchmarks of the PDA algorithm on (a) VSC-1 and (b) VSC-3.
Quadratic geometries of size 𝑁 = 𝑛𝑥 = 𝑛𝑦 are evaluated on 64 (red crosses), 128
(green dots) and 256 (blue plusses) cores. The solid lines show a fit of the expected
total computation time from Eq. (3.33) with fit parameters 𝑎 and 𝑏. This fit is
done simultaneously for all 3 curves in each panel. The resulting values for 𝑎 and
𝑏 are cluster-specific and are also shown in the corresponding panel. We find that
the PDA obeys very nicely the expected time-scaling law Eq. (3.33).
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𝑐 on both clusters. The measured times are indicated by the markers, while the fit
according to Eq. (3.33) is shown by solid lines. Mind that on each cluster the fit
is done simultaneously for all three curves with different core number. The inac-
curacy of the fit for small system sizes can be entirely attributed to the fact that
we neglected initialization times or quadratic contributions in 𝑛𝑦 in our time law
Eq. (3.33). The very good quality of the fit at large system sizes 𝑁 shows that the
computation time is in this case very well described by Eq. (3.33) and also that the
code nicely scales in the expected way with the number of used cores.

These benchmarks show that our new algorithm is a major improvement regarding
computation time and Eq. (3.33) provides us with a useful tool in order to estimate
the runtime of a calculation. However, there is a small inefficiency that is left in the
PDA: As also obvious from Fig. 3.5 during the 𝑚 = log2 𝑐 steps used for the parallel
assembly of the surface GFs there are a number of cores inactive. More precisely, in
step 𝑖 there are only 2𝑚−𝑖 cores used in the computations. This inefficiency peaks at
the very end of the algorithm, when only the master core assembles the whole surface
GFs while the other 𝑐− 1 cores are inactive. It is possible to share the assembly of
2 modules between two cores which approximately halves the time needed for the
assembly part of the algorithm. Actually this improvement is already included in
the benchmarks from Figs. 3.6 and 3.7 but was for simplicity not included in the
algorithm’s scheme (see Fig. 3.5) and its description.

We chose to also explain one further improvement that can be implemented. As
obvious from the Dyson equations (3.27)-(3.31) a lot of the matrix multiplications
that have to be performed involve either 𝐻𝐼 or 𝐻†

𝐼 . Usually, these matrices are
composed of only few non-zero elements as, e.g., obvious in the case of free electrons
in Eq. (3.10). Hence most of these multiplications can be executed a lot faster
when sparse matrices and multiplications are used. Indeed, the implementation of
such provides another significant boost for the computation time of our algorithm
(Fig. 3.8). We find that the parameters 𝑎 and 𝑏 in our time law Eq. (3.33) are
significantly lowered resulting in a tremendous speed boost by another factor of
almost 2.
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Figure 3.8.: Benchmarks of the PDA algorithm using sparse matrix multiplica-
tions executed on VSC-3. Quadratic geometries of size 𝑁 = 𝑛𝑥 = 𝑛𝑦 are evaluated
on 64 (red crosses), 128 (green dots) and 256 (blue plusses) cores. The solid lines
show a fit of the expected total computation time from Eq. (3.33) with fit param-
eters 𝑎 and 𝑏. This fit is done simultaneously for all 3 curves in each panel. The
resulting values for 𝑎 and 𝑏 are cluster-specific and are also shown in the corre-
sponding panel. We find that sparse matrix multiplications significantly reduce
the time consumed by the PDA.

3.5. The parallel permutation algorithm

The PDA algorithm is the fastest way to calculate the scattering matrix 𝑆 since
for this information only the final surface GFs of the entire geometry are required.
As discussed before, there still is some unused computational power within the
algorithm. When the assembly of the modules progresses further, not all cores can
be used at all times.

However, there are other computations where additional information has to be
calculated. For this purpose we will in the following develop an algorithm that fills
the “white spaces” in the PDA and uses those to calculate data that will be very
useful to improve the calculation of scattering wave functions (see section 3.6) or
allows for the parallel calculation of the local density of states (see section 3.7). We
will call this algorithm parallel permutation algorithm (PPA). The meaning of this
name will become clear shortly.

As illustrated in Fig. 3.9 the algorithm starts out in the same way as the PDA:
Each of the 𝑛 cores is assigned an equally-sized part 𝑋 of the scattering region of
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Figure 3.9.: Illustration of our parallel permutation algorithm (PPA) for the
exemplary case of a calculation on 8 = 23 cores. The geometry is again split
into 8 parts labelled with the letters 𝐴 to 𝐻. Each such module is assigned to
a specific core, that calculates the surface GFs of this module in the first step.
This is done by putting together the module slice-by-slice in a recursive way. In
the following these surface GFs are distributed such that each core connects 2
modules in each step. This communication process is indicated by black arrows.
The algorithm is divided into communication steps each of which consists of a
sequence of communicate-calculate. In the lines labelled “memory” we sketch the
parts of the structure of which the surface GFs are stored on each core. After the
last step each core has calculated the surface GFs of the rectangles from the left
end of the whole structure to the right end of its module and from the right end of
the whole to the left end of its module. More details of the algorithm are provided
in the text. The procedure can be easily generalized to 𝑛 = 2𝑚 cores where always
𝑚 communication steps are required to build up all these permutations of surface
GFs.



108 3.5. The parallel permutation algorithm

which it calculates the surface GFs {𝐺𝑋} iteratively. Subsequently, just like in the
PDA, 𝑚 = log2 𝑛 communication-calculation steps are employed. A fundamental
difference with regard to the PDA is that now each core has to memorize 2 sets of
surface GFs instead of 1. These 2 different sets we will call “left” and “right” surface
GFs. In the initialization step where each core builds up its own module iteratively,
the surface GFs of this module is stored into both, the “left” and the “right”, memory
slots. In each following step 𝑖 the cores are first divided into 2𝑚−𝑖 subgroups each
of which consists of 2𝑖 cores to set up correct communication. These subgroups are
alternately called “lefties” and “righties”. The master core of the subgroups is for
the lefties always the core with the lowest ID, for the righties always the core with
the highest ID within the subgroup.

Communication at the beginning of each step works as follows: The master core
of each leftie-subgroup provides his left set of surface GFs to all the members of the
next rightie-subgroup. Likewise, the master core of each rightie-subgroup provides
his right set of surface GFs to all the members of the previous leftie-subgroup. In
the following, each leftie attaches the surface GFs that it just received to its right set
of surface GFs and replaces those with the result. The righties proceed analogously
and attach the surface GFs they have just received to their left set of surface GFs
and replace those with the new left set of surface GFs. Then step 𝑖 is completed
and the process is repeated.

As an example, we illustrated the algorithm for a calculation on 8 cores in Fig. 3.9,
The algorithm starts with preparation during which each core carries out the part
of the structure assigned to it. During this step (𝑖 = 0, starting with the first
“communicate” in Fig. 3.9) each core is a subgroup of its own. The cores 0,2,4
and 6 represent the leftie-subgroups and trivially are also the master cores of their
respective subgroup. The cores 1, 3, 5 and 7 are the only members of all the rightie-
subgroups and are thus also the rightie master cores. Hence, each leftie master core
sends its left set of surface GFs (in this case the surface GFs of the own module) to
all the righties in the next rightie-subgroup. This means core 0 sends {𝐺𝐴} to core
1, core 2 sends {𝐺𝐶} to core 3 and so on. The righties proceed analogously and
send the surface GF of their own module to all the lefties in the previous subgroup,
i.e. core 1 sends {𝐺𝐵} to core 0, core 3 sends {𝐺𝐷} to core 2 etc. The lefties and
righties attach the received surface GFs to those in their right and left memory slot,
respectively. This is illustrated in Fig. 3.9 where the state of the sets of surface GFs
of each core is always sketched in the line labeled by “memory”. As shown there,
core 0 now has the surface GFs of its own module 𝐴 and the pair of modules 𝐴 plus
𝐵, core 1 contains 𝐵 and also 𝐴 plus 𝐵, core 2 knows 𝐶 and 𝐶 plus 𝐷 and so on.

With this, step 0 is complete and step 1 is entered. Now, each subgroup consists
of 2 cores. This means now that core 0 and 1 are a leftie-subgroup with master core
0, core 2 and 3 are a rightie-subgroup with master core 3 and so on. Again, the
information is sent in the described way: Core 0 as a left master sends his left surface
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GFs (that is {𝐺𝐴𝐵}) to all the next righties, i.e. core 2 and 3. Core 3 as a right
master core sends {𝐺𝐶𝐷} to the previous leftie-subgroup, i.e. core 0 and 1. The
other master cores 4 and 7 do the analogous. Again, the received modules are glued
together and the procedure starts over. After the 𝑚th and last step the situation
is the following: Each core contains the surface GFs of its own module connect to
all the other modules to the left (left surface GFs memory slot) and those of its
own module connected to the rest of the modules to the right (right surface GFs
memory slot). As a result, the first and the last core have calculated the surface GFs
of the entire structure contained in their right and left slot, respectively. The other
permutations of modules stored on the other cores can be used for other applications
as will become clear in the following two sections.

We also need to mention, that while above we were talking about the surface
GFs {𝐺} of the whole structure, a scattering problem actually requires knowledge
about the surface GFs {𝒢} of the structure including the leads. This can, however,
be easily achieved by letting the first and the last core attach the leads [of which
the surface GFs can be calculated from the lead solution of Eq. (3.15)] by treating
those as an additional slice on the left or on the right during the assembly of the
first and last module in the first step of the PPA.

In comparison to the PDA, the PPA is more efficient in the sense that no core is
unemployed at any time. Also, in each step the actual calculation effort is the same
as in the PDA, namely the connection of 2 modules only. However, the effort for the
assembly of all the modules is a lot larger which is why we expect the PPA to be still
slower than the PDA but scale equally well with the number of used cores and the
system size. This additional effort can, in fact, be compensated for the applications
that we will consider later since the additional surface GFs can be reused and their
calculation within the PPA has been cheap since only a slight overhead is produced.

To verify the above statement, we show a benchmark of a quadratic structures
of sizes 𝑁 = 𝑛𝑥 = 𝑛𝑦 for both algorithms in Fig. 3.10(a) where we again fitted the
measured times using Eq. (3.33). This data shows that indeed the PPA produces a
slight overhead (compare red and blue curves) but also that it still obeys the time
laws from Eqs. (3.32) and (3.33). This overhead is about 12 % and 21 % at the
largest investigated system size of 𝑁 = 1920 on 64 and 128 cores, respectively. As
expected, the overhead increases with increasing core number.

We observe however, that the overhead percentually decreases with increasing 𝑁
as, e.g., at 𝑁 = 384 the overheads are almost 51 and 46 % on 64 and 128 cores,
respectively. Additionally, since the additional effort should not depend on 𝑛𝑥, we
also benchmarked our algorithms as a function of 𝑛𝑥 with 𝑛𝑦 kept constant. Our
benchmarks [see Fig. 3.10(b)] clarify on the one hand that indeed both algorithms
scale almost linearly with 𝑛𝑥 [see Eq. (3.32)] and on the other hand that in such
elongated rectangular structures the overhead is indeed independent of 𝑛𝑦. The
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Figure 3.10.: Benchmarks of the PDA and the PPA algorithm for (a) quadratic
systems as a function of system size 𝑁 = 𝑛𝑥 = 𝑛𝑦 and (b) rectangular geometries
with fixed 𝑛𝑦 = 1000 as a function of 𝑛𝑥. Plusses and dots show the measured
calculation times on 64 and 128 cores, respectively. The red data is for the PDA
while blue represents the PPA. Solid and dashed lines fit the calculation times
using Eq. (3.33) in (a) and Eq. (3.32) in (b). We find that the PPA also nicely
obeys the expected time-scaling laws.
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latter statement is proven by the fact that in these benchmarks the additional time-
consumption percentually stays almost constant at 10 and around 2 % on 64 and
128 cores, respectively. We find that although the PPA represents a computational
time investment, it scales as well as the PDA and produces an overhead that is fairly
small and does not diverge at least at accessible system sizes. In the next sections
we will introduce some applications of the PPA where this overhead is compensated
by the additional information the PPA calculates very efficiently.

3.6. Calculating scattering wave functions faster

While the calculation of the scattering matrix 𝑆 only requires the surface GFs {𝒢} =
{𝒢𝐿𝐿,𝒢𝐿𝑅,𝒢𝑅𝐿,𝒢𝑅𝑅} according to Eqs. (3.20)-(3.23), other quantities depend on
larger parts of the whole GF matrix. One of these are scattering wave functions
(see, e.g., Figs. 2.4 or 2.8). The PPA allows explicit parallelization of this task in
a much more efficient way than previously. We will first explain briefly how the
calculation of a scattering wave function has been performed so far (see Ref. [16]
for details). For this purpose we consider a scattering region labelled (𝑖) that is
attached to two semi-infinite leads which is the standard setup that is considered
in most of our calculations and is sketched in Fig. 3.11. One injects from the left
a superposition |𝑃 ⟩ of lead modes |𝜒𝑎⟩ characterized by some complex coefficients
𝑐𝑎. From now on, we denote these states by 𝑃 and 𝜒⃗𝑎 to emphasize their numerical
representation as vectors of size 𝑛𝑦. The injected flux-normalized state 𝑃 is then
given by

𝑃 = 𝑉
∑︁

𝑎

𝑐𝑎√
𝑣𝑎
𝜒⃗𝑎 , (3.34)

with 𝑣𝑎 being the group velocity of a right-moving lead mode 𝑎 in the left lead and
𝑉 labelling the projection matrix that already occurred in Eqs. (3.20)-(3.23). The
scattering wave function 𝜓(𝑥𝑗) = 𝜓⃗𝑗 at some slice 𝑗 can be expressed by

𝜓⃗𝑗 = 𝒢𝑗0𝑃 (3.35)

with 𝒢𝑗0 representing the block of the full GF matrix (including both leads) con-
necting slice 𝑗 with the last slice 0 of the incoming left lead. In order to calculate
the full scattering wave function of the scattering region, we now need to know all
the inner GFs 𝒢𝑗0 which is a much harder task than just calculating the four surface
GFs. However, there is an elegant way to solve this problem. These GFs 𝒢𝑗0 can
be expressed by the use of a Dyson equation in the following form:

𝒢𝑗0 = 𝐺𝑗1𝐻
†𝐿
𝐼 𝒢00 +𝐺𝑗2𝐻

(𝑖)
𝐼 𝒢30 . (3.36)

The GFs 𝐺𝑗1 and 𝐺𝑗2 describe inner GFs of the scattering region (𝑖) without the
leads. Fig. 3.11 illustrates how this equation can be found. The two contributions
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𝐻
(𝑖)
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Figure 3.11.: Illustration of a setup for the standard wave function picture cal-
culations. A scattering region called (𝑖) is attached to two semi-infinite leads.
Through the left lead, a superposition 𝑃 of propagating lead modes is injected
into the system. To calculate scattering wave functions at some slice 𝑗, the rel-
evant GF 𝒢𝑗0 has to be expressed by a Dyson equation (3.36). The occurring
contributions in this equation are shown diagrammatically at the bottom of the
figure. The corresponding GFs that contribute are highlighted in red.

result from one path that connects the left lead and one path that connects the right
one. Mind, that now the surface GFs 𝒢00 and 𝒢30, that probably have already been
calculated for the computation of the scattering matrix, appear again. 𝐺𝑗1 and 𝐺𝑗2
are the only contributions that depend on 𝑗. Thus, when we plug Eq. (3.36) into
Eq. (3.35) we find that the scattering wave function 𝜓⃗𝑗 at a specific slice 𝑗 is given
by

𝜓⃗𝑗 = 𝐺𝑗1𝐻
†𝐿
𝐼 𝒢00𝑃 +𝐺𝑗2𝐻

(𝑖)
𝐼 𝒢30𝑃 = 𝐺𝑗1𝜉 +𝐺𝑗2𝜂⃗ , (3.37)

where we introduced the definitions

𝜉 = 𝐻†𝐿
𝐼 𝒢00𝑃 and (3.38)

𝜂⃗ = 𝐻
(𝑖)
𝐼 𝒢30𝑃 . (3.39)

These vectors 𝜉 and 𝜂⃗ are independent of the specific slice 𝑗 that we are interested
in and furthermore contain quantities that we can calculate efficiently. As a result
in Eq. (3.37) we have reduced the problem to the products of the inner GFs 𝐺𝑗1
and 𝐺𝑗2 of the disconnected module (𝑖) with the once computed vectors 𝜉 and 𝜂⃗,
respectively. As these terms are only matrix-vector products it is not even necessary
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to ever calculate 𝐺𝑗1 and 𝐺𝑗2 to their full extent as will be become clear shortly.
Eq. (3.37) actually represents 𝑛𝑥 equations as there is one for every slice 𝑗. We can
thus for the full scattering wave function 𝜓⃗ write

𝜓⃗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜓⃗1
...
𝜓⃗𝑗
...
𝜓⃗2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

𝐺11
...
𝐺𝑗1
...

𝐺21

⎞
⎟⎟⎟⎟⎟⎟⎠
𝜉 +

⎛
⎜⎜⎜⎜⎜⎜⎝

𝐺12
...
𝐺𝑗2
...

𝐺22

⎞
⎟⎟⎟⎟⎟⎟⎠
𝜂⃗ , (3.40)

where 𝜓⃗ consists of the wave function vectors of the individual slices. On the right-
hand side all the inner GFs connecting the inner slices to the first and last slice of the
scattering region are also denoted in vector form. This vectors of 𝑛𝑦 × 𝑛𝑦-matrices
can in terms of the full GF matrix 𝐺 Eq. (3.25) be substituted in Eq. (3.40) in the
following way:

𝜓⃗ = 𝐺

⎛
⎜⎜⎜⎝

1

0
...
0

⎞
⎟⎟⎟⎠ 𝜉 +𝐺

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ 𝜂⃗ . (3.41)

According to the definition Eq. (3.19) this leads to

𝜓⃗ = (𝐸 −𝐻)−1

⎛
⎜⎜⎜⎝

1

0
...
0

⎞
⎟⎟⎟⎠ 𝜉 + (𝐸 −𝐻)−1

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ 𝜂⃗ . (3.42)

We can in the following bring the Hamiltonian 𝐻 of the full geometry to the left-
hand side in Eq. (3.42) and end up with

(𝐸 −𝐻)𝜓⃗ =

⎛
⎜⎜⎜⎜⎜⎝

𝜉
0
...
0
𝜂⃗

⎞
⎟⎟⎟⎟⎟⎠

. (3.43)

This equation is numerically more efficiently solved as it represents an ordinary
system of equations with an unknown solution 𝜓⃗. Moreover, the Hamiltonian 𝐻
is usually a sparse matrix and also the right-hand side contains mostly zeroes.
Therefore efficient numerical routines from MUMPS [156, 157] can be used in order
to factorize the matrix (𝐸 −𝐻) and efficiently calculate 𝜓⃗ in a parallel manner.
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However, this system of equations [Eq. (3.43)] can be huge as the vector 𝜓⃗ is 𝑛𝑥 ·𝑛𝑦
complex elements long. As we will see in the following, the PPA discussed in the
previous section 3.5 will provide a handle to manually split the work between the
individual cores in a way that simplifies the problem and speeds up the calculations.
For this purpose, we consider a geometry for which the PPA has been executed on 𝑛
cores (see Fig. 3.12). During the PPA, the geometry has been split into 𝑛 modules
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Figure 3.12.: Illustration of a multi-module setup for the parallel calculation of
pictures. The scattering region is divided into 𝑛 modules, labeled from (0) to
(𝑛 − 1). We concentrate on some inner module (𝑖) and its two neighbors (𝑖 − 1)
and (𝑖+ 1). At the ends of the entire region, two semi-infinite leads are attached.
Through the left lead, a superposition 𝑃 of propagating lead modes is injected into
the system. To calculate scattering wave functions at some slice 𝑗 within module
(𝑖), the relevant GF 𝒢𝑗(𝑖)0 has to be expressed by a Dyson equation (3.45). In the
lower panel we show the contributions to the Dyson equations (3.49) and (3.50).
For these the sets of surface GFs {𝐺(𝑖−1)𝐿} and {𝐺(𝑖)𝑅} that are calculated by
the PPA and the structures they describe are sketched in the lower part of this
figure.

that we label for simplicity from (0) to (𝑛−1). In the first step of the PPA the surface
GFs of module (𝑖) have then been calculated by core 𝑖. After this initialization core
0 attaches the left lead and core 𝑛− 1 attaches the right lead. The PPA ends with
core 𝑖 knowing the two sets of surface GFs {𝒢(𝑖)𝐿} = {𝐺(𝑖)𝐿

00 , 𝐺
(𝑖)𝐿
02 , 𝐺

(𝑖)𝐿
20 , 𝐺

(𝑖)𝐿
22 }

and {𝒢(𝑖)𝑅} = {𝐺(𝑖)𝑅
00 , 𝐺

(𝑖)𝑅
02 , 𝐺

(𝑖)𝑅
20 , 𝐺

(𝑖)𝑅
22 }. These describe the structure that is

composed of all the modules from (0) to (𝑖) including the left lead and the structure
composed of all the modules from (𝑖) to the last (𝑛 − 1) including the right lead,
respectively. To evaluate the scattering wave function 𝜓⃗(𝑖)

𝑗 at some slice 𝑗 for some
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injection 𝑃 inside module (𝑖) one finds

𝜓⃗
(𝑖)
𝑗 = 𝒢𝑗(𝑖)0𝑃 , (3.44)

with 𝒢𝑗(𝑖)0 denoting the internal GF of the full connected structure including the
leads from slice 𝑗 inside module (𝑖) to slice 0 as depicted in Fig. 3.12. As before, we
can decompose this GF using a Dyson equation (see contributions in Fig. 3.12)

𝒢𝑗(𝑖)0 = 𝐺
(𝑖)
𝑗1𝐻

†(𝑖−1)
𝐼 𝒢2(𝑖−1)0 +𝐺

(𝑖)
𝑗2𝐻

(𝑖)
𝐼 𝒢1(𝑖+1)0 . (3.45)

With the help of Eq. (3.44) we can write analogously to Eq. (3.37)

𝜓⃗
(𝑖)
𝑗 = 𝐺

(𝑖)
𝑗1𝐻

†(𝑖−1)
𝐼 𝒢2(𝑖−1)0𝑃 +𝐺

(𝑖)
𝑗2𝐻

(𝑖)
𝐼 𝒢1(𝑖+1)0𝑃 = 𝐺

(𝑖)
𝑗1 𝜉

(𝑖) +𝐺
(𝑖)
𝑗2 𝜂⃗

(𝑖) , (3.46)

where we introduced the vectors

𝜉(𝑖) = 𝐻
†(𝑖−1)
𝐼 𝒢2(𝑖−1)0𝑃 , (3.47)

𝜂⃗(𝑖) = 𝐻
(𝑖)
𝐼 𝒢1(𝑖+1)0𝑃 . (3.48)

With this the scattering wave contains contributions from the pure module GFs 𝐺(𝑖)
𝑗1

and 𝐺(𝑖)
𝑗2 , which depend on the position of slice 𝑗 while the other terms only depend

on the module number under consideration. While before [Eqs. (3.38) and (3.39)]
we found that the vectors 𝜉 and 𝜂⃗ are unique (for a given injection) throughout
the whole structure, we now can still define them to stay the same throughout each
module (𝑖). We will be able to use the information about the surface GFs of the
partial structures calculated by the PPA in order to be able to calculate 𝜉(𝑖) and
𝜂⃗(𝑖) in parallel for each module. For this purpose, we need to calculate the GFs
𝒢2(𝑖−1)0 and 𝒢1(𝑖+1)0 which are still complicated objects as they connect those slices
right before and after our module (𝑖) to the entrance at slice 0. Mind, that these are
inner GFs of the full geometry. First concentrating on 𝒢2(𝑖−1)0, we find the Dyson
equation (see also lower panel in Fig. 3.12):

𝒢2(𝑖−1)0 = 𝒢(𝑖−1)𝐿
20 + 𝒢(𝑖−1)𝐿

22 𝐻
(𝑖−1)
𝐼 𝒢1(𝑖)0 . (3.49)

Note, that the GFs 𝒢(𝑖−1)𝐿
20 and 𝒢(𝑖−1)𝐿

22 are surface GFs of composed modules calcu-
lated by the PPA on core (𝑖−1). We can here already see that some communication
will be required in order to correctly distribute the GFs as information needed on
core (𝑖) is for now only stored on core (𝑖 − 1). For the moment, we use another
Dyson equation

𝒢1(𝑖)0 = 𝒢(𝑖)𝑅
11 𝐻

†(𝑖−1)
𝐼 𝒢2(𝑖−1)0 (3.50)
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into which we can plug Eq. (3.49) and solve for 𝒢1(𝑖)0 yielding

𝒢1(𝑖)0 = 𝐴−1
(𝑖)𝒢

(𝑖)𝑅
11 𝐻

†(𝑖−1)
𝐼 𝒢(𝑖−1)𝐿

20 , (3.51)

with the definition of some matrix

𝐴(𝑖) = 1− 𝒢(𝑖)𝑅
11 𝐻

†(𝑖−1)
𝐼 𝒢(𝑖−1)𝐿

22 𝐻
(𝑖−1)
𝐼 . (3.52)

We strain that these Eqs. (3.51) and (3.52) only contain quantities that have been,
thanks to the PPA, already computed. Hence, we already know that we can calculate
our wave function pictures entirely in parallel. The problem that remains is to
develop an algorithm that does that in an efficient way as the information is scattered
over our cores. At first glance, the situation is confusing since when we look at our
equations for 𝜉(𝑖) [Eq. (3.47)] and 𝜂⃗(𝑖) [Eq. (3.48)], we find that some required data
is located at core (𝑖), some at core (𝑖−1) and some even at core (𝑖+1). The deciding
hint in unscrambling this puzzle comes by shifting our equation (3.47) for 𝜉(𝑖) to
the next module, i.e. doing 𝑖→ 𝑖+ 1:

𝜉(𝑖+1) = 𝐻
†(𝑖)
𝐼 𝒢2(𝑖)0𝑃 . (3.53)

The required GF 𝒢2(𝑖)0 can be found by applying the same trick to Eq. (3.49), giving

𝒢2(𝑖)0 = 𝒢(𝑖)𝐿
20 + 𝒢(𝑖)𝐿

22 𝐻
(𝑖)
𝐼 𝒢1(𝑖+1)0 , (3.54)

and finally to Eq. (3.52) plugged into Eq. (3.51) with the result

𝒢1(𝑖+1)0 = (1− 𝒢(𝑖+1)𝑅
11 𝐻

†(𝑖)
𝐼 𝒢(𝑖)𝐿

22 𝐻
(𝑖)
𝐼 )

−1
𝒢(𝑖+1)𝑅
11 𝐻

†(𝑖)
𝐼 𝒢(𝑖)𝐿

20 . (3.55)

This last equation contains only a single GF that is not known on core (𝑖), namely
𝒢(𝑖+1)𝑅
11 stored on core (𝑖 + 1). This represents the minimal data exchange effort

that we could have hoped for. Obviously, it makes sense to let each core (𝑖) actually
calculate 𝜉(𝑖+1) which will be needed on the next core. Even more so, when plugging
Eq. (3.54) into Eq. (3.53) and using the abbreviations

𝑎⃗(𝑖) = 𝐻
†(𝑖)
𝐼 𝒢(𝑖)𝐿

20 𝑃 , (3.56)

𝑏⃗(𝑖) = 𝒢1(𝑖+1)0𝑃 (3.57)

one finds that

𝜉(𝑖+1) = 𝐻
†(𝑖)
𝐼 𝑎⃗(𝑖) +𝐻

†(𝑖)
𝐼 𝐺

(𝑖)𝐿
22 𝐻

(𝑖)
𝐼 𝑏⃗(𝑖) = 𝐻

†(𝑖)
𝐼 𝑎⃗(𝑖) +𝐻

†(𝑖)
𝐼 𝐺

(𝑖)𝐿
22 𝜂⃗(𝑖) . (3.58)

This shows, that the desired quantity 𝜂⃗(𝑖) even comes along as an intermediate result
in the calculation of 𝜉(𝑖+1) on core (𝑖).
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Overall, the algorithm that we constructed works as follows: After running the
PPA each core (𝑖) starts out with calculating 𝑎⃗(𝑖) according to Eq. (3.56) for which
all data is present. Then it sends the single GF subblock 𝒢(𝑖)𝑅

11 to the previous core
and receives 𝒢(𝑖+1)𝑅

11 from the next core. With this it can now calculate

𝐴(𝑖+1) = 1− 𝒢(𝑖+1)𝑅
11 𝐻

†(𝑖)
𝐼 𝒢(𝑖)𝐿

22 𝐻
(𝑖)
𝐼 .

Plugging Eq. (3.55) into Eq. (3.57) yields after some rearrangements

𝐴(𝑖+1)⃗𝑏
(𝑖) = 𝐺

(𝑖+1)𝑅
11 𝑎⃗(𝑖) , (3.59)

which represents an ordinary system of 𝑛𝑦 equations with the solution 𝑏⃗(𝑖) that can
be easily calculated numerically. In a next step

𝜂⃗(𝑖) = 𝐻
(𝑖)
𝐼 𝑏⃗(𝑖)

is calculated [compare Eqs. (3.39) and (3.57)]. Finally 𝜉(𝑖+1) can be computed by
the use of Eq. (3.58). This vector has to be sent to the next core, while the own
vector 𝜉(𝑖) is received from the previous core. The only exception from these rules
is the last core 𝑛 − 1, which can simply use the surface GF of the whole geometry
to calculate

𝜂⃗(𝑛−1) = 𝐻
(𝑛−1)
𝐼 𝒢30𝑃

and therefore also saves time to calculate

𝜉(0) = 𝐻𝐿
𝐼 𝒢00𝑃

and send it to the first core 0, that would otherwise not receive its desired 𝜉(0).
By the end of this procedure, the entire wave function 𝜓⃗(𝑖) of each module can

be calculated on the corresponding core autonomously and fully in parallel. This
is because the derivation of Eq. (3.43) from the beginning of the section holds true
with only slight modifications:

(𝐸 −𝐻(𝑖))𝜓⃗(𝑖) =

⎛
⎜⎜⎜⎜⎜⎝

𝜉(𝑖)

0
...
0

𝜂⃗(𝑖)

⎞
⎟⎟⎟⎟⎟⎠

. (3.60)

Note that 𝐻(𝑖) here only is the part of the full Hamiltonian matrix 𝐻 that describes
the single module (𝑖) detached from the rest of the geometry and also 𝜓⃗(𝑖) only
contains as many elements as module (𝑖) alone has grid points. In this way we can
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Figure 3.13.: Benchmarks of the old picture algorithm preceded by the PDA and
the new picture algorithm after the PPA for (a) quadratic systems as a function of
system size 𝑁 = 𝑛𝑥 = 𝑛𝑦 and (b) rectangular geometries with fixed 𝑛𝑦 = 512 as a
function of 𝑛𝑥. Plusses and dots show the measured calculation times on 64 and
128 cores, respectively. All calculations were performed on the VSC-3. The red
data is for the PDA with the old wave function calculation while blue represents
the PPA followed by the new wave function computations. All calculations only
evaluate a single wave function picture for some injection 𝑃 . We find that the
new algorithm might be slower in a quadratic system with only a single picture
[see panel (a)]. However, for more pictures there will be a threshold where the
new picture algorithm can make up for the lost time due to the overhead of the
PPA with respect to the PDA. For fixed 𝑛𝑦 and increasing 𝑛𝑥, the new picture
algorithm is approximately twice as fast as the old one [see panel (b)].
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instead of solving one huge system of equations (3.43), solve 𝑛 systems of equations
(3.60) on 𝑛 cores almost perfectly in parallel. The communication effort is minimal
and we expect the algorithm to be a lot faster than the original one.

To show this, we performed some benchmarks shown in Fig. 3.13. In panel (𝑎)
of this figure we present the times that computations of the scattering matrix and
a subsequent calculation of a single scattering wave function take in a quadratic
structure of size 𝑁 = 𝑛𝑥 = 𝑛𝑦. In red one can see the fastest possible calculation
that is still using the old algorithm. As the latter does not rely on the PPA, we can
in this case use a PDA in order to calculate the surface GFs of the structure. As
the PDA is faster than the PPA (see previous section 3.5), we can see that the old
algorithm combined with a PDA is still faster in such a quadratic region than the
new one which relies on a preceding execution of the PPA.

However, these calculations only evaluated a single wave function picture (for
only one injected superposition 𝑃 in the left lead). When we look at the pure times
that our new algorithm alone takes without the disadvantage of the PPA’s overhead
compared to the PDA, we find, e.g., at 𝑁 = 1920 [rightmost points in Fig. 3.13(a)]
that the new picture algorithm only lasted 9 seconds as opposed to the 28 seconds
of the old picture calculation. Unfortunately the PPA took 598 seconds, while the
PDA was done after 462 seconds. Still, simple math tell us that when instead of only
a single picture, we calculate 8 of them, the algorithms will be approximately equally
fast. For a large number of pictures, as is often necessary (see, e.g., section 1.3) the
new algorithm is for sure preferable.

Another issue in this comparison is that we expect our algorithm to scale a lot
better with 𝑛𝑥. While the old algorithm relies on factorizing the full Hamiltonian
matrix containing (𝑛𝑥𝑛𝑦)

2 elements, our new algorithm splits the task into factor-
izing (𝑛𝑥

𝑛 𝑛𝑦)
2 matrices in parallel on 𝑛 cores. This comes with the downside that

data has to be exchanged between the cores in the PPA and also later for the wave
function calculations. The size of this data only depends quadratically on 𝑛𝑦. While
the old picture algorithm does not make a difference between 𝑛𝑥 and 𝑛𝑦, our new
algorithm should almost scale linearly with 𝑛𝑥, but be more sensitive to 𝑛𝑦. This
behavior can be clearly seen in the benchmark for rectangularly shaped structures
where 𝑛𝑦 is kept fix at a typical size of 512 and only 𝑛𝑥 is varied [see Fig. 3.13(b)].
For such structures our new algorithm is clearly faster than the old one even for
only a single picture. The improvement is almost 100 % as the new calculations on
64 cores are approximately as fast as the old ones on twice as many cores.

To emphasize the nice scaling behavior of the new algorithm even more, we per-
formed a benchmark for even bigger rectangular structures with 𝑛𝑦 = 1000 shown
in Fig. 3.14. One can see that the computation time indeed increases linearly with
𝑛𝑥 enabling us to compute very large structures in reasonable time. We also need
to mention, that when trying to execute this benchmark with the old algorithm on
the VSC-3, the calculations crashed due to a memory overflow at approximately
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Figure 3.14.: Bigger benchmark of the new picture algorithm preceded by the
PPA performed on 64 (red curve) and 128 cores (blue curve) performed on the
VSC-3. Here 𝑛𝑦 is fixed at 𝑛𝑦 = 1000 and 𝑛𝑥 is varied. Unlike before (see
Fig. 3.13), we could in this benchmark not perform the old picture algorithm as
it crashed on VSC-3 due to memory overflow in the 10th step of the benchmark.
We find that the new algorithm scales almost perfectly linear with 𝑛𝑥 as desired.

𝑛𝑥 = 10000. This also shows, that the new algorithm is also a lot more memory
efficient since the full Hamiltonian of the entire structure (containing already close
to 1014 elements at the mentioned crashing system size) never has to be constructed
to its full extent.

Overall, we conclude that our new algorithm is vastly superior compared to the
old one as it scales very well with 𝑛𝑥, scales well with the number of employed cores
and needs less memory in most cases. Problems might only occur when 𝑛𝑦 becomes
larger than 𝑛𝑥. In such situations, when the structure is a lot higher than it is long,
𝑛𝑦 ≫ 𝑛𝑥, and only few wave function pictures are required, it might still pay off to
use the old algorithm. In all the other cases, our new algorithm provides access to
larger systems and many more scattering wave functions as before.

3.7. Computing the local density of states

The (local) density of states 𝜌(𝐸) (DOS) is an important quantity in physics in
general and even more specifically in disordered electronic systems. It contains in-
formation about transport properties and governs whether a material is a conductor
or insulator. A vanishing DOS at the Fermi energy 𝐸𝐹 will suppress transport while
a large one will leave opportunities for electrons to pass through the system. The
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local density of states 𝜌(𝑟⃗, 𝐸) (LDOS) also contains information about where these
states are located spatially within the system, or how localized such states at the
Fermi energy are. The two aforementioned quantities are in general connected by
the relation

𝜌(𝐸) =

∫︁
𝜌(𝑟⃗, 𝐸)d3r . (3.61)

In a closed system the LDOS is defined as

𝜌(𝑟⃗, 𝐸) =
∑︁

𝑖

⟨𝑟⃗|𝑖⟩𝛿(𝐸 − 𝐸𝑖) , (3.62)

where |𝑖⟩ are the eigenstates of the system’s Hamiltonian with corresponding en-
ergy eigenvalues 𝐸𝑖. Numerically, the usual approach to access this quantity is to
approximate the delta functions by a Breit-Wigner function

𝛿(𝐸) ≈ 𝜖

𝜋(𝐸2 + 𝜖2)
(3.63)

and choosing a numerically small value 𝜖→ 0+.
When the system is opened, e.g., by attaching two leads as the case in our stan-

dard two-dimensional scattering problems, the closed system’s energy levels 𝐸𝑖 will
naturally gain certain widths 𝜖𝑖. The open boundary conditions make the problem
non-hermitian and cause the energy eigenvalues 𝐸𝑖 to become complex. In this way
the width 𝜖𝑖 of each resonance will be given by the imaginary part of the energy
eigenvalues according to 𝜖𝑖 = −2Im𝐸𝑖 and the LDOS will be

𝜌(𝑟⃗, 𝐸) =
∑︁

𝑖

⟨𝑟⃗|𝑖⟩ 𝜖𝑖

𝜋
[︀
(𝐸 − Re𝐸𝑖)2 + 𝜖2𝑖

]︀ . (3.64)

Numerically, the task comes down to solving the non-hermitian eigenvalue problem
for the Hamiltonian matrix 𝐻. Remember that this matrix is a huge object and
solving its eigenvalue problem is time- and memory-intensive. Of course there are
very efficient algorithms like the Lanczos algorithm [158] implemented in PARPACK
[159] that allow for the fast calculations of those eigenvalues that are closest to the
energy 𝐸 at question. This approach is reasonable, as those eigenvalues that are
far away from 𝐸𝑖 will hardly contribute. Still, without any a-priori information on
the resonance widths (imaginary parts of 𝐸𝑖) and the number of eigenstates that
significantly contribute, it is always hard to be sure that the results are correct and
very often the calculations have to be fine-tuned by hand.

In this section, we will use a different approach in order to access the LDOS. This
method relies on an alternative definition of the LDOS

𝜌(𝑟⃗, 𝐸) = − 1

𝜋
ImTr𝒢(r̃, r̃,E) , (3.65)
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that involves the GF 𝐺(𝑟⃗, 𝑟⃗′, 𝐸). Numerically, on our usual rectangular finite dif-
ferences grid, this definition allows us to write the LDOS at some slice 𝑗 as

⃗̃𝜌𝑗 = − 1

𝜋
Imdiag(𝒢jj) , (3.66)

where the caligraphic 𝒢𝑗𝑗 stands for the 𝑛𝑦 × 𝑛𝑦 block of the full GF including the
leads connecting slice 𝑗 with itself. As this has to be evaluated at every slice of the
structure, the task comes down to calculating the diagonal of the full GF which is
obviously harder than evaluating surface GFs (section 3.5) or wave function pictures
(section 3.6).

However, the advantages of this method are obvious: First, calculations will not
depend on unphysical parameters such as the number of calculated eigenvalues of the
system. In this way all contributions to the LDOS will be included automatically
without worrying about approximations. Second, an iterative and fully parallel
algorithm would allow for saving memory and computation time. We found such
an efficient way to calculate the LDOS by iteratively using Dyson equations. As in
the previous section 3.6, we are also able to parallelize the problem by the means
of the PPA.

Assume once more a scattering structure that has a uniform height of 𝑛𝑦 points
and contains 𝑛𝑥 slices. Again, two semi-infinite leads are attached to left and right.

Our algorithm for the calculation of the LDOS requires calculation of all diagonal
blocks {𝒢𝑗𝑗} of this structure according to Eq. (3.66) (see Fig. 3.15). We assume
having already calculated the surface GF 𝐺33 of the right lead. For convenience at
later stages of our algorithm we start from the right. Starting from the right lead
the structure is now put together slice-by-slice working to the left4. The equations
are similar to those in section 3.3. One difference is that this time we only need to
calculate the diagonal parts 𝐺𝑗𝑗 of the surface GFs that describe the structure from
slice 𝑗 to the rightmost slice at 𝑛𝑥. However, we need to store all these 𝑛𝑦 × 𝑛𝑦
matrices which represents a significant but manageable effort.

The iteration to the left hence contains 𝑛𝑥 equally effortful steps. To find the
corresponding equations we consider the upper sketch in Fig. 3.15. In the previous
step we have calculated and stored the surface GF 𝐺𝑗+1,𝑗+1 describing the structure
from slice 𝑗 + 1 onwards to the right. In order to append the next slice 𝑗, we find
the Dyson equation

𝐺𝑗𝑗 = 𝐺0
𝑗 +𝐺0

𝑗𝐻
(𝑗)
𝐼 𝐺𝑗+1,𝑗+1𝐻

†(𝑗)
𝐼 𝐺𝑗𝑗 . (3.67)

Due to the definition of
𝐺0
𝑗 = (𝐸 −𝐻

(𝑗)
0 )−1

4 In case the system has no leads, we can alternatively start out with the GF of the last slice
𝐺𝑛𝑥,𝑛𝑥 = (𝐸 −𝐻

(𝑛𝑥)
0 )−1.
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... ...+ + + ++ +

iterate to left

{𝐺𝑗𝑗} = {𝐺11, . . . , 𝐺𝑗𝑗 , . . . , 𝐺𝑗+1,𝑗+1, . . . , 𝐺𝑛𝑥,𝑛𝑥
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Figure 3.15.: The top panel indicates the first interaction starting from the right
with the lead GF or, in the parallel calculation, the GF of the remaining structure
to the right provided by the PPA. In the following each slice is appended one-by-
one from right to left. At each of these steps the GF 𝐺𝑗𝑗 is calculated according
to Eq. (3.68) and stored. Reaching the leftmost slice 𝑗 = 1, the left lead (or in the
parallel case the remaining structure to the left provided by the PPA) is appended
and the full GF of the first slice 𝒢11 can be evaluated using Eq. (3.70). In the
following the algorithm iterates back to the right, retrieving the full GFs 𝒢𝑗𝑗 [see
Eq. (3.71)] relevant for the LDOS.

we can thus calculate

𝐺𝑗𝑗 = (𝐸 −𝐻
(𝑗)
0 −𝐻

(𝑗)
𝐼 𝐺𝑗+1,𝑗+1𝐻

†(𝑗)
𝐼 )−1 (3.68)

and also store it for later use.
Reaching slice 1 after 𝑛𝑥 iteration steps our memory contains a set {𝐺𝑗𝑗} of 𝑛𝑥

surface GFs. We can immediately append the left lead described by the surface GF
𝐺00 to evaluate 𝒢11 which already represents the first contribution to the LDOS
Eq. 3.66. The corresponding Dyson equation reads

𝒢11 = 𝐺11 +𝐺11𝐻
†(0)
𝐼 𝐺00𝐻

(0)
𝐼 𝒢11 (3.69)

and yields
𝒢11 = (1−𝐺11𝐻

†(0)
𝐼 𝐺00𝐻

(0)
𝐼 )−1𝐺11 . (3.70)
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At this point, we can iterate back through the system starting at 𝑗 = 2. In each of
these steps, we will evaluate another contribution 𝒢𝑗𝑗 of which the diagonal gives
the LDOS at slice 𝑗. The situation in each such step is illustrated in the lower
sketch of Fig. 3.15. The Dyson equation found from there,

𝒢𝑗𝑗 = 𝐺𝑗𝑗 +𝐺𝑗𝑗𝐻
†(𝑗−1)
𝐼 𝒢𝑗−1,𝑗−1𝐻

(𝑗−1)
𝐼 𝐺𝑗𝑗 , (3.71)

can be directly used since the 𝐺𝑗𝑗 are known from the previous iteration to the left
and 𝒢𝑗−1,𝑗−1 has just been calculated in the previous step. In this way one retrieves
step-by-step the full LDOS according to Eq. (3.65) which can be used to calculate
the total DOS by just summing over ⃗̃𝜌𝑗 and all slices 𝑗.

In a next step, we again address the parallelization of this algorithm. Unfortu-
nately each step in the iteration depends on the previous one and also the {𝐺𝑗𝑗}
are worthless if they do not describe the entirety of the remaining structure to the
right.

At this point again the PPA provides a remedy. We assume that the PPA has
been executed and each core 𝑖 is assigned its module (𝑖). Looking at the next
core (𝑖+ 1) we already know that the PPA stored the surface GFs {𝐺(𝑖+1)𝑅} there
describing the structure from module 𝑖+1 to the right including the right lead. This
is exactly what we need for the start of our LDOS algorithm on core 𝑖 for module
(𝑖). Moreover it is not even necessary to transfer all four of these surface GFs from
core 𝑖 + 1 to core 𝑖 as for the LDOS iteration only 𝐺(𝑖+1)𝑅

11 (taking the role of 𝐺33

in the description above) will be needed. Hence instead of starting from the right
lead, the outcome of the PPA provides core (𝑖) with the opportunity to treat the
rest of the structure like a lead and start from the surface GF that is sent to it by
core 𝑖+ 1.

After the iteration to the left storing 𝑛
(𝑖)
𝑥 [number of slices in module (i)] GFs

{𝐺𝑗𝑗}, we reach the left end of module (𝑖). Again, within the PPA the GF 𝐺
(𝑖−1)𝐿
22

describing the remainder of the structure to the left has already been calculated
and can be provided by core 𝑖 − 1. In this way each core can finally calculate the
LDOS of its own module entirely in parallel. The only necessary communication
effort involves the exchange of 2 𝑛𝑦 × 𝑛𝑦 matrices among the previous and the next
core.

However, this time the parallelization will not save as much time as in the new
picture algorithm. We expect that the single core calculation will still be faster
than the calculation on 2 cores. The reason is that, in the latter case each slice is
appended twice to the geometry, once at the start of the PPA and once during the
LDOS algorithm. As the two-core calculation will in addition require data exchange
effort, the computation will be slower than on only one core. From this point on,
however, we expect the algorithm to gain momentum and show significant speed
increase on 4, 8 and 16 cores. These expectations are very nicely confirmed by the
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Figure 3.16.: Benchmark of the LDOS algorithm preceded by the PPA performed
on 1, 2, 4, 8 and 16 cores on the VSC-3. The structures under consideration are
rectangular with fixed 𝑛𝑦 = 400 and the runtimes of the calculations are shown
as a function of 𝑛𝑥. The benchmark confirms the expected behavior. While the
2-core calculation is slower that on a single core, the times decrease rapidly when
more cores are used.

benchmark in Fig. 3.16.
Exemplary results of the DOS can, e.g., be found in our calculations regarding

the percolating states in the topological Anderson insulator of Fig. 2.10(b). Pic-
tures of the LDOS were presented in Fig. 2.7. The LDOS results of an upcoming
paper regarding etched graphene flakes are shown in Fig. 3.17. Since the size of
the numerically considered graphene flake is already comparable to the size of real
samples used in experiments, we show these results as an illustrative example for
the interesting applications of our new algorithm.
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Figure 3.17.: LDOS 𝜌(𝑟⃗) in a numerical simulation of an etched graphene flake
with a constriction. Regions of high LDOS appear in red while regions of low
LDOS are black. The upper boundary of the structure features graphene in arm-
chair configuration. The size of the numerical grid is 𝑛𝑦 = 2500 and 𝑛𝑥 ≈ 1800
and it thus consists of 𝑁 ≈ 4.5 million grid points. Figure adapted from Ref. [160].
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3.8. Super-cell band structures
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Figure 3.18.: The upper part of this figure illustrates the situation of an infinitely
long lead that is composed of super-cells periodically glued together. The cell can
contain disorder and arbitrarily shaped boundaries. The first slice of the cell is
labelled 1, the last one labelled 2. The cell in the middle of the figure is split into
its first slice and the rest described by its surface GFs {𝐺�}. This procedure is
part of the derivation leading to Eqs. (3.93)-(3.95). The considered super-cell can
be mapped onto a single slice as illustrated in the lower part of this figure. For
this procedure it is required to use effective Hamiltonian subblocks 𝐻̄0, 𝐻̄𝐼 and
𝐻̄†

𝐼 as given by Eqs. (3.93)-(3.95).

In this section, we want to consider a slightly different numerical problem that is
the calculation of band structures for super-cell geometries. In section 3.2 we were
interested in the numerical calculation of band structures for infinitely long systems
of clean rectangular leads. Within this approach it was intrinsically assumed that
the structure consists of infinitely many equal slices that are periodically glued
together. To put it in different words, the unit cell of a structure consists of only
a single slice. This approach, however, can be generalized to so-called super-cells:
In this case the unit cell does not consist of a single slice anymore, but of a module
that is continued periodically. The situation considered is sketched in the upper
panel of Fig. 3.18 (note that in the middle unit cell in this sketch the first slice is
cut-off just as an illustration for later purposes). In principle, Bloch’s theorem does
not put any restrictions on the shape of the unit cell, but only constraints that the
structure has to be periodic in some way. Considerations like that can be very useful
when investigating disordered systems since the unit cell in a super-cell structure
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can also contain bulk disorder or arbitrarily shaped boundaries (see Fig. 3.18). As
an example the band structure of a bent lead can be investigated by the methods
we developed.

The question now is, how we can calculate the Bloch eigenvalues 𝛽 = 𝑒−𝑖𝑘𝑥Δ𝑥 of
a periodic structure consisting of some arbitrary super-cell as a function of energy
𝐸. From this knowledge we could build the band structure 𝐸(𝑘𝑥) that contains
information about transport and, in the case of disorder, also the influence of local-
ization. We know that the Hamiltonian 𝐻𝑆𝐶

0 of our super-cell can be numerically
represented in tri-diagonal form analogously to Eq. 3.3 by

𝐻𝑆𝐶
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐻
(1)
0 𝐻

(1)
𝐼 0 . . . . . . 0

𝐻
†(1)
𝐼 𝐻

(2)
0 𝐻

(2)
𝐼 0 . . .

...

0
. . . . . . . . . 0

...
... 0

. . . . . . . . . 0
... . . . 0 𝐻

†(𝑛𝑥−2)
𝐼 𝐻

(𝑛𝑥−1)
0 𝐻

(𝑛𝑥−1
𝐼 )

0 . . . . . . 0 𝐻
†(𝑛𝑥−1)
𝐼 𝐻

(𝑛𝑥)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.72)

The interaction between adjacent super-cells can in this basis, that contains all the
grid-points of the cell, be represented by the two matrices

𝐻𝑆𝐶
𝐼 =

⎛
⎜⎜⎜⎜⎝

0 . . . . . . 0
...

. . .
...

0
. . .

...
𝐻𝐼 0 . . . 0

⎞
⎟⎟⎟⎟⎠

and (3.73)

𝐻†𝑆𝐶
𝐼 =

⎛
⎜⎜⎜⎜⎝

0 . . . 0 𝐻†
𝐼

...
. . . 0

...
. . .

...
0 . . . . . . 0

⎞
⎟⎟⎟⎟⎠

. (3.74)

These matrices mostly contain zeroes and only one non-zero block each that mediate
the interaction between the last slice of a super-cell and the first slice of the next
and vice versa. The Bloch function of the super-cell is numerically represented by
a vector 𝜒⃗ that is defined on each grid-point of the cell and consists of vectors 𝜒⃗𝑗
each of which describes one of the cell’s slices:

𝜒⃗ =

⎛
⎜⎝

𝜒⃗1
...
𝜒⃗2

⎞
⎟⎠ . (3.75)
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The first and last slice of the cell are labelled 1 and 2 for convenience as visualized in
Fig. 3.18 With these ingredients we can formulate a Bloch equation for the periodic
problem of an array of super-cells analogous to Eq. (3.14):

(︁
𝐻𝑆𝐶

0 + 𝛽−1𝐻𝑆𝐶
𝐼 + 𝛽𝐻†𝑆𝐶

𝐼

)︁
𝜒⃗ = 𝐸𝜒⃗ . (3.76)

Solving this equation directly can however be hard as the size of the matrices in-
creases quadratically with the number of grid points in the unit cell. Additionally,
one encounters problems when trying to solve the equation for fixed energy 𝐸.
The solution of this problem requires doubling of the dimension of the system of
equations and also involves the inversion of 𝐻†𝑆𝐶

𝐼 [see Eq. (3.15)] which is clearly
singular as it contains mostly zeros [see Eq. (3.74)]. In the following we will intro-
duce a different approach for a numeric solution of this problem. For this purpose,
we look at the Bloch equation (3.76) and divide the unit cell into its first slice 1 and
the rest described by a Hamiltonian matrix 𝐻�. Analogously, the Bloch function
𝜒⃗ is divided into the values 𝜒⃗1 at slice 1 and those at the remaining grid points
represented by 𝜒⃗�. In this scheme, Eq. (3.76) reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐻
(1)
0 𝐻

(1)
𝐼 0 . . . 0 𝛽𝐻†

𝐼

𝐻
†(1)
𝐼

0
... 𝐻�

0
𝛽−1𝐻𝐼

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(︂
𝜒⃗1

𝜒⃗�

)︂
= 𝐸

(︂
𝜒⃗1

𝜒⃗�

)︂
. (3.77)

By only looking at the first line of this matrix equation, we find

𝐻
(1)
0 𝜒⃗1 +

(︁
𝐻

(1)
𝐼 0 . . . 0 𝛽𝐻†

𝐼

)︁
𝜒⃗� = 𝐸𝜒⃗1 , (3.78)

while the rest of Eq. (3.77) can in compact form be expressed as
⎛
⎜⎜⎜⎜⎜⎝

𝐻
†(1)
𝐼 𝜒⃗1

0
...
0

𝛽−1𝐻𝐼 𝜒⃗1

⎞
⎟⎟⎟⎟⎟⎠

+𝐻�𝜒⃗� = 𝐸𝜒⃗� . (3.79)

Solving the latter for 𝜒⃗� yields

𝜒⃗� = (𝐸 −𝐻�)−1

⎛
⎜⎜⎜⎜⎜⎝

𝛽𝐻
†(1)
𝐼

0
...
0

𝛽−1𝐻𝐼

⎞
⎟⎟⎟⎟⎟⎠
𝜒⃗1 = 𝐺�

⎛
⎜⎜⎜⎜⎜⎝

𝐻
†(1)
𝐼

0
...
0

𝛽−1𝐻𝐼

⎞
⎟⎟⎟⎟⎟⎠
𝜒⃗1 , (3.80)
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which allows for substituting in the GF matrix

𝐺� = (𝐸 −𝐻�)−1

describing the super-cell but with the very first slice detached. The first slice of this
remaining super-cell we call 𝑎 and as usual write its GF in the block form

𝐺� =

⎛
⎜⎝

𝐺�𝑎𝑎 · · · 𝐺�𝑎2
...

. . .
...

𝐺�2𝑎 · · · 𝐺�22

⎞
⎟⎠ , (3.81)

with only the surface GFs {𝐺�} = {𝐺�𝑎𝑎, 𝐺�𝑎2, 𝐺�2𝑎, 𝐺�22} explicitly labelled. Plug-
ging this back into Eq. (3.80) and from there into Eq. (3.78) we can eliminate the
dependence on 𝜒⃗� and replace the dependence on 𝐻� by the surface GFs {𝐺�}:
(︁
𝐻

(1)
0 +𝐻

(1)
𝐼 𝐺�𝑎𝑎𝐻

†(1)
𝐼 +𝐻†

𝐼𝐺
�
22𝐻𝐼 + 𝛽−1𝐻

(1)
𝐼 𝐺�𝑎2𝐻𝐼 + 𝛽𝐻†

𝐼𝐺
�
2𝑎𝐻

†(1)
𝐼

)︁
𝜒⃗1 = 𝐸𝜒⃗1 .

(3.82)
This equation only depends on quantities situated on the first slice of the super-cell
and the surface GFs of the rest. Moreover, it has the same shape as the original
Eq. (3.76) but the occurring matrices are only of size 𝑛𝑦 × 𝑛𝑦 (with 𝑛𝑦 the number
of grid points in the first slice of the super-cell). As a result, this equation can be
mapped onto an equation that only considers the Bloch-function on the first slice
and is analogous to Eq. (3.14) and Eq. (3.76). This equation reads

(︁
𝐻̄0 + 𝛽−1𝐻̄𝐼 + 𝛽𝐻̄†

𝐼

)︁
𝜒⃗1 = 𝐸𝜒⃗1 . (3.83)

For this mapping (also illustrated in the lower part of Fig. 3.18) we have used the
definitions for the occurring Hamiltonian matrices 𝐻̄0, 𝐻̄𝐼 and 𝐻̄†

𝐼 describing the
super-cell as an effective single slice plus the interactions with the next one. The
definitions of these effective Hamiltonian subblocks are

𝐻̄0 = 𝐻
(1)
0 +𝐻

(1)
𝐼 𝐺�𝑎𝑎𝐻

†(1)
𝐼 +𝐻†

𝐼𝐺
�
22𝐻𝐼 , (3.84)

𝐻̄𝐼 = 𝐻
(1)
𝐼 𝐺�𝑎2𝐻𝐼 , (3.85)

𝐻̄†
𝐼 = 𝐻†

𝐼𝐺
�
2𝑎𝐻

†(1)
𝐼 . (3.86)

However, it appears inconvenient to use the surface GFs of a cut super-cell missing
its first slice as these have no other application. It would be of great use if we could
replace these with the surface GFs {𝐺} of the entire super-cell as these are also used
for scattering problems, wave function pictures and the LDOS. To achieve this goal,
we look at the middle super-cell in the upper part of Fig. 3.18 that illustrates the
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situation of the cell with the first slice cut off. From this sketch we can immediately
write down the Dyson equations

𝐺12 = 𝐺11𝐻
(1)
𝐼 𝐺�𝑎2 and

𝐺21 = 𝐺�2𝑎𝐻
†(1)
𝐼 𝐺11 ,

from which directly follows

𝐻
(1)
𝐼 𝐺�𝑎2 = 𝐺−1

11 𝐺12 and (3.87)

𝐺�2𝑎𝐻
†(1)
𝐼 = 𝐺21𝐺

−1
11 . (3.88)

The remaining Dyson equations for the diagonal surface GFs are

𝐺11 = 𝐺0
11 +𝐺0

11𝐻
(1)
𝐼 𝐺�𝑎𝑎𝐻

†(1)
𝐼 𝐺11 and (3.89)

𝐺22 = 𝐺�22 +𝐺�2𝑎𝐻
†(1)
𝐼 𝐺11𝐻

(1)
𝐼 𝐺�𝑎2 . (3.90)

By multiplication with 𝐺−1
11 from the right and the definition of the GF of the

decoupled first slice,
𝐺0

11 = (𝐸 −𝐻
(1)
0 )−1 ,

Eq. (3.89) is reshaped to yield

𝐻
(1)
𝐼 𝐺�𝑎𝑎𝐻

†(1)
𝐼 = 𝐸 −𝐻

(1)
0 −𝐺−1

11 . (3.91)

Eq. (3.90) is multiplied with 𝐻𝐼 from the left and 𝐻†
𝐼 from the right. By the use of

Eqs. (3.87) and (3.88) we find

𝐻†
𝐼𝐺
�
22𝐻𝐼 = 𝐻†

𝐼𝐺22𝐻𝐼 −𝐻†
𝐼𝐺21𝐺

−1
11 𝐺12𝐻𝐼 . (3.92)

Eqs. (3.87), (3.88), (3.91) and (3.92) are the desired replacements of the terms
depending on {𝐺�} in Eqs. (3.84)-(3.86). Substituting these, we find the definitions
of the effective Hamiltonian subblocks

𝐻̄0 = 𝐸 −𝐺−1
11 +𝐻†

𝐼

(︀
𝐺22 −𝐺21𝐺

−1
11 𝐺12

)︀
𝐻𝐼 , (3.93)

𝐻̄𝐼 = 𝐺−1
11 𝐺12𝐻𝐼 , (3.94)

𝐻̄†
𝐼 = 𝐻†

𝐼𝐺21𝐺
−1
11 . (3.95)

With this, we have established a method that maps the problem of a super-cell
structure back onto the problem of a clean rectangular lead of constant height. The
effective Hamiltonian subblocks of Eqs. (3.93)-(3.95) can be constructed entirely
by the surface GFs of single super-cells. However, we have to mention that the
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calculation of the band structure is still a little more complicated since one can
not just solve Eq. (3.83) for fixed 𝑘𝑥. The reason for this is that the effective
Hamiltonians intrinsically depend on the energy 𝐸. This dependence is a result of
the surface GFs. Hence, one needs to solve Eq. (3.83) by calculating 𝛽 for fixed 𝐸
which is done by doubling the dimension of the problem analogously to Eq. (3.15).

As an example of a disordered super-cell structure, we turn towards two-dimensional
topological insulators that were discussed in chapter 2. As these materials feature
gapless edge states that are very resilient to disorder, we can check on this resilience
by calculating a band structure of a disordered super-cell. Exemplary results are
shown in Fig. 3.19. The red crosses in the plot show the original band structure
of the topological system within the energy region where pure edge-transport is
present. One can clearly see that the linear edge states are present in this entire
energy interval. The blue crosses show the band structure of an infinitely long array
of disordered super-cells under strong disorder. As expected the edge-states persist
in most of the energy region and are just shifted in energy and momentum.
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Figure 3.19.: The red crosses show the band structure of a clean two dimensional
topological insulator with QW parameters 𝐴 = 364.5 nm ·meV, 𝐵 = −686.0 nm2 ·
meV, 𝐷 = −512.0 nm2 · meV, 𝑚 = −10.0 meV. The blue crosses represent the
band structure for a lead consisting of quadratic, disordered super-cells of length
and width𝑊 = 𝐿 = 500 nm. The disorder follows a uniformly random distribution
with a disorder strength 𝑈 = 60 meV. To allow for a better comparison, the band
structure of the clean lead (red crosses) is folded back into the shrunk Brillouin
zone of the super-cell structure between −𝜋/𝐿 and +𝜋/𝐿. We find that the edge
states indeed resist the disorder and exist also in the disorder super-cell. The
grid-constants in the numerics are in both calculations set to Δ𝑦 = Δ𝑥 = 5 nm.

3.9. Super-cell Bloch functions

In the previous section we have shown how surface GFs can be used to calculate
the Bloch eigenvalues 𝛽 and thereby the band structure of super-cell structures. In
Eq. (3.83) we found, that for the calculation of these eigenvalues, it is sufficient to
only consider a small part 𝜒⃗1 that is describing only the first slice of the super-cell
instead of the full eigenvector 𝜒⃗, However, the full Bloch eigenvector 𝜒⃗ is also of
physical interest and should be accessible. Hence, we will try to find a method in
order to also calculate the rest of the eigenvectors starting from 𝜒⃗1 that is computed
using Eq. (3.83). For this purpose we can start at the beginning of the derivation
in the previous section at Eq. (3.76) and directly plug in Eqs. (3.75), (3.73) and
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(3.74). By direct multiplication of 𝐻SC
𝐼 and 𝐻†SC

𝐼 we find

𝐻SC
0

⎛
⎜⎝

𝜒⃗1
...
𝜒⃗2

⎞
⎟⎠+

⎛
⎜⎜⎜⎝

𝛽𝐻†
𝐼 𝜒⃗2

0
...
0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

0
...
0

𝛽−1𝐻𝐼 𝜒⃗1

⎞
⎟⎟⎟⎠ = 𝐸

⎛
⎜⎝

𝜒⃗1
...
𝜒⃗2

⎞
⎟⎠ ,

which we can rearrange such that

⎛
⎜⎝

𝜒⃗1
...
𝜒⃗2

⎞
⎟⎠ = (𝐸 −𝐻SC

0 )−1

⎛
⎜⎜⎜⎜⎜⎝

𝛽𝐻†
𝐼 𝜒⃗2

0
...
0

𝛽−1𝐻𝐼 𝜒⃗1

⎞
⎟⎟⎟⎟⎟⎠

= 𝐺

⎛
⎜⎜⎜⎜⎜⎝

𝛽𝐻†
𝐼 𝜒⃗2

0
...
0

𝛽−1𝐻𝐼 𝜒⃗1

⎞
⎟⎟⎟⎟⎟⎠

. (3.96)

In this way, again the full GF𝐺 of the super-cell has entered. By using its block-form
Eq. (3.25) we can decompose Eq. (3.96) line-wise and find for the Bloch function 𝜒⃗𝑗
at some arbitrary slice 𝑗 within the super-cell the relation

𝜒⃗𝑗 = 𝐺𝑗1𝛽𝐻
†
𝐼 𝜒⃗2 +𝐺𝑗2𝛽

−1𝐻𝐼 𝜒⃗1 . (3.97)

Evaluating this equation at 𝑗 = 1 gives

𝜒⃗1 = 𝐺11𝛽𝐻
†
𝐼 𝜒⃗2 +𝐺12𝛽

−1𝐻𝐼 𝜒⃗1 . (3.98)

from which we find

𝜒⃗2 = 𝛽−1
(︁
𝐻†
𝐼

)︁−1
𝐺−1

11 (1− 𝛽−1𝐺12𝐻𝐼)𝜒⃗1 . (3.99)

Plugging this back into Eq. (3.97) leads to the final result for the Bloch function 𝜒⃗𝑗
at each slice 𝑗

𝜒⃗𝑗 = 𝐺𝑗1𝐺
−1
11 (1− 𝛽−1𝐺12𝐻𝐼)𝜒⃗1 +𝐺𝑗2𝛽

−1𝐻𝐼 𝜒⃗1 = 𝐺𝑗1𝜉
′ +𝐺𝑗2𝜂⃗

′ . (3.100)

This equation is of the exact same form as Eq. (3.37) that was used for the calcu-
lation of the scattering wave function, but with different definitions for

𝜉′ = 𝐺−1
11 (1− 𝛽−1𝐺12𝐻𝐼)𝜒⃗1 , (3.101)

𝜂⃗′ = 𝛽−1𝐻𝐼 𝜒⃗1 . (3.102)

This analogy allows us to use the picture algorithms introduced in section 3.6 also
for the calculation of Bloch functions, a very handy feature.
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(a) (b)

Figure 3.20.: This figure shows the Bloch functions of a disordered super-cell
of two-dimensional topological insulator of length and width 𝐿 = 𝑊 = 1000 nm.
The disorder follows a uniformly random distribution with amplitude (disorder
strength) 𝑈 = 180 meV. We used the parameters 𝐴 = 364.5 nm · meV, 𝐵 =
−686.0 nm2 · meV, 𝐷 = −512.0 nm2 · meV and 𝑚 = +1.0 meV, which is in the
clean limit an ordinary insulator due to the positive topological mass 𝑚 > 0. The
Fermi energy is set to 𝐸𝐹 = 16 meV. As the pictures show, the disorder, indeed,
leads to a topological phase transition and the depicted effective edge states exist
even in an infinitely long, disordered system that is our super-cell structure.

As an exemplary result we again look at two-dimensional topological insulators
as discussed in chapter 2. In section 2.3 we investigated in detail a disorder-induced
topological phase, called the topological Anderson insulator (TAI). This phase even
occurs in the presence of disorder if the clean system does not feature a topologically
distinct phase. This example of a topological phase transition was investigated
using transport calculations through a disordered stripe of finite length as shown
in Fig. 2.2(c). There, the TAI phase is identified as the green conductance plateau
that occurs at strong disorder. The calculation of Bloch functions allows us to also
look directly at the states of an infinitely long waveguide consisting of disordered
super-cells. Indeed, the pictures in Fig. 3.20 show that the only open modes at these
values of disorder and Fermi energy are counter-propagating edge-states situated at
opposing edges.





Summary and outlook

In this work we investigated effects that are closely related to Anderson localization
or the robustness against the latter. In a collaborative project with the University
of San Antonio, Texas, we were concerned with, what we called, the single-channel
regime of transport. Our numerical and experimental results validate a close rela-
tion between the single transmission eigenchannel dominant in this regime and the
internal modes of the system. We showed that in this regime a single transmission
eigenchannel is either formed by a single such mode or by a combination of a few
modes resulting in a necklace state. By statistical means we could show that a dis-
ordered sample in the single-channel regime can be described as a one-dimensional
system with a renormalized localization length, thereby providing a very simple de-
scription of such complex systems. In addition, we showed that the cross-over to
the single-channel regime is unique and can be charted in terms of a well-suited
statistical quantity that captures both the behavior in our two-dimensional nu-
merics as well as in the three-dimensional microwave experiments. This cross-over
could even be shown in the time-domain when the samples are excited by Gaussian
pulses. For pulses with suitably chosen width, the single-channel transport through
necklace states could be identified at short time-delays, whereas at large time de-
lays single-channel transport through single long-lived localized modes could be
observed. These results are fundamental for the understanding of waves in random
media and provide opportunities for enhancing energy transfer through strongly-
scattering systems.

Apart from Anderson localization, we investigated another wave-effect that has
concerned physicists for the past 15 years, i.e., the effect of branched flow. This
phenomenon occurs in disordered media in which the disorder potential is weak
but smooth. Such systems develop branches along which an injected flow is guided
through the medium. In particular, we asked the question how to control and utilize
this effect for future applications. In an exemplary optical system we developed a
method that allows for the injection of a wave in such a way that almost all the flow
travels just along a single such branch. We showed that this finding is not trivial
and fairly stable over a large frequency range. Although our methods rely on the
scattering matrix, we found that already small parts of it are sufficient for a fair
amount of control of branched flow. The amount of information that needs to be
measured should thus be within experimental reach and our results might provide
an important step forward in wavefront shaping and wave control.
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In the second part of this thesis, we were concerned with a new class of materials
that promise exciting properties in terms of transport. In such two-dimensional
topological insulators, edge states that are robust against disorder and Anderson
localization are present. Moreover, these edge states can even occur as a result of
disorder which leads to enhanced transport properties. Our calculations show that
a finite spatial correlation of the disorder potential enhances finite-size effects and
may entirely suppress the aforementioned regime of quantized conductance known
as the topological Anderson insulator (TAI) phase. We thereby extend previous
studies in which only uncorrelated disorder potentials were considered. To describe
the observed boundaries of quantized conductance theoretically, we perform a scal-
ing analysis and adapt an existing effective medium theory to the case of spatially
correlated potentials which yields quantitative agreement with our numerics. Our
results suggest that for observing the topological Anderson insulator phase experi-
mentally, it will be necessary to work with comparatively large samples (to suppress
finite size effects) and with very short ranged disorder potentials as any long-range
correlations may strongly suppress this topologically nontrivial phase. We speculate
that spatial correlations might also be an important impediment to eliminate the
bulk conductance in three-dimensional topological insulators. This would certainly
constitute an interesting topic for further investigations.

In a follow-up work, we linked this phenomenon with a quantum percolation tran-
sition that we found to occur in the limit of correlated strong disorder. While the
reason for the emergence of the TAI had already been understood, its breakdown
could so far only be vaguely connected to a delocalization of bulk states. Here we
showed that in a spatially correlated potential this delocalization is caused primarily
by bulk states, that are localized when circumnavigating the hills of the disorder
potential, but that become connected with each other when passing a percolation
threshold. These connections and thus also the delocalization transition are consol-
idated by local edge states that can internally form in the disordered sample. By
showing how the localized bulk states derive from flat bands in the valence band
structure of the clean sample without disorder, we clarified that the same physics
is at work also in the well-studied case of an uncorrelated disorder potential.

Additionally, we investigated the effects of magnetic fields on two-dimensional
topological insulators. We proposed a device that could be used for basic interfer-
ence experiments using the edge states of a two-dimensional topological insulator.
The setup relies on building a quantum well structure in a cylindrical shape or pos-
sibly by using topological insulator thin films. By the application of two quantum
point contacts (QPCs) the geometry is equivalent to a classical Mach-Zehnder in-
terferometer which lets us observe oscillations of the transmission (conductance) as
a function of Fermi energy. When applying a very weak and in-plane magnetic field
through the core of the cylinder, we find that the device can in addition use the
Aharonov-Bohm effect in order to serve as a spin-filter and spin-transistor. Again
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the numerical results agree very well with a simple analytical model that we de-
rived. Moreover, we could numerically demonstrate 4 possible settings of our spin-
transistor. The realization of such a device would open up countless opportunities
for measurements of topological insulator properties and technological applications
in spin-tronics and low-power information processing.

The last chapter of this work is dedicated to various computational strategies that
we implemented to make the numerics more efficient. As the numerical solution of
scattering problems comes down to the calculation of surface Green’s functions
(GFs) of the scattering region, we were concerned with making this task as effi-
cient as possible. While the calculation effort is already minimal in the commonly
used modular recursive Green’s function method, we concentrated here on an effi-
cient parallelization of the required tasks. Since the fastest way of calculating the
required surface GFs (called parallel Dyson algorithm - PDA) still leaves some of
the calculation power in a parallel computation unused, we developed an algorithm
(parallel permutation algorithm - PPA) that fills these gaps. While suffering from
some overhead due to additional communication effort, this extra time proves well
invested when, in addition to the scattering problem, scattering wave functions need
to be computed. Moreover, we developed an algorithm for the efficient calculation
of the local density of states. For this application, the PPA paves the way to paral-
lelization that would otherwise not be possible. All these results are tested through
by extensive benchmarks that proved our methods to allow access to larger and
better-resolved systems than before.

As another numerical task we addressed the evaluation of so-called super-cell
structures. Such a problem considers the task of periodically glueing together a
scattering region (super-cell) to itself which results in the existence of a band struc-
ture. We found an efficient way to calculate such band structures by the use of
surface Green’s functions. In addition, we also showed how one can calculate the
associated Bloch functions (eigenstates) in a parallel and efficient manner. For this
problem we found that the PPA is once more useful since our parallel algorithm
for the calculation of scattering wave functions can, with some adjustments, also
be employed. Both the aforementioned applications are very useful for a better
understanding and simulation of disordered system. In particular, our techniques
provide access to very large systems that could not be investigated previously.





Appendix A.

Numerical Implementation of the BHZ
model

A.1. Unperturbed BHZ model

The effective Hamiltonian of the BHZ model given by Eq. (2.1) includes no coupling
between the spin-up and spin-down block which is why we can in a simplified nu-
merical picture just use the upper block ℎ(𝑘⃗). Plugging in the explicit expressions
for 𝜖(𝑘⃗) and 𝑑𝑖(𝑘⃗) as well as the Pauli-matrices into Eq. (2.2) and setting 𝐶 = 0
yields

ℎ
(︁
𝑘⃗
)︁
=

(︂ −(𝐷 +𝐵)
(︀
𝑘2𝑥 + 𝑘2𝑦

)︀
+𝑀 𝐴 (𝑘𝑥 + 𝑖𝑘𝑦)

𝐴 (𝑘𝑥 − 𝑖𝑘𝑦) −(𝐷 −𝐵)
(︀
𝑘2𝑥 + 𝑘2𝑦

)︀
−𝑀

)︂
. (A.1)

In real space 𝑘𝑥 and 𝑘𝑦 are represented by the operators according to the Peierls
relations

𝑘𝑥 → −𝑖 𝑑
𝑑𝑥

= −𝑖𝜕𝑥 , (A.2)

𝑘𝑦 → −𝑖 𝑑
𝑑𝑦

= −𝑖𝜕𝑦 (A.3)

which in combination with Eq. (A.1) leaves us with

ℎ(𝑘⃗) =

(︂
(𝐷 +𝐵)

(︀
𝜕2𝑥 + 𝜕2𝑦

)︀
+𝑀 𝐴 (𝜕𝑦 − 𝑖𝜕𝑥)

𝐴 (−𝜕𝑦 − 𝑖𝜕𝑥) (𝐷 −𝐵)
(︀
𝜕2𝑥 + 𝜕2𝑦

)︀
−𝑀

)︂
. (A.4)

In order to solve the Schrödinger equation defined by the above Hamiltonian
ℎ(𝑘⃗) we need to numerically realize this operator. For this purpose we use the
finite differences method described in section 3.1 and approximate the occurring
derivatives by Eqs. (3.4)-(3.7).

The Hamiltonian in Eq. (A.1) raises further difficulties due to the additional
(orbital) degree of freedom provided by the quantum well subbands |𝐸1+⟩ and
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|𝐻1+⟩. Unlike in the case of a scalar wave function Eq. (3.2), this two-component
spinor

𝜓(𝑥, 𝑦) =

(︂
𝜓𝐸1+(𝑥, 𝑦)
𝜓𝐻1+(𝑥, 𝑦)

)︂
. (A.5)

must numerically be represented by two complex values 𝜓𝐸𝑖,𝑗 and 𝜓𝐻𝑖,𝑗 at each grid-
point (𝑥𝑖, 𝑦𝑗) instead of only a single one. The ordering of this components can in
principle be chosen at will, however, it is preferable to preserve the tridiagonal block
shape of the full Hamiltonian matrix according to Eq. (3.3) which can be guaranteed
by the following arrangement for the numerical wave function vector

𝜓⃗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓𝐸1,1
...

𝜓𝐸1,𝑛𝑦

𝜓𝐻1,1
...

𝜓𝐻1,𝑛𝑦

𝜓𝐸1,1
...
...

𝜓𝐻𝑛𝑥,𝑛𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.6)

In this way the doubling of the dimension of the whole Hamiltonian matrix 𝐻
from a 𝑛𝑦𝑛𝑥×𝑛𝑦𝑛𝑥 to a 2𝑛𝑦𝑛𝑥× 2𝑛𝑦𝑛𝑥 matrix translates to the block matrices 𝐻0

and 𝐻𝐼 being now of size 2𝑛𝑦 × 2𝑛𝑦. Additionally also 𝐻0 and 𝐻𝐼 are split into 4
blocks of size 𝑛𝑦 × 𝑛𝑦 in a similar way as the Hamiltonian in Eq. (A.1), explicitly

𝐻0 =

(︂
𝐻11

0 𝐻12
0

𝐻21
0 𝐻22

0

)︂
and (A.7)

𝐻𝐼 =

(︂
𝐻11
𝐼 𝐻12

𝐼

𝐻21
𝐼 𝐻22

𝐼

)︂
. (A.8)

Substituting the derivatives in (A.1) by the finite differences of Eqs. (3.4)-(3.7), the
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elements of the 𝑛𝑦 × 𝑛𝑦 matrices from (A.7) can be determined to be:

𝐻11
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2𝑎+𝑀 𝑐 0 . . . 0

𝑐 −2𝑎+𝑀 𝑐
. . .

...

0
. . . . . . . . . 0

...
. . . 𝑐 −2𝑎+𝑀 0

0 . . . 0 𝑐 −2𝑎+𝑀

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.9)

𝐻12
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑔 0 . . . 0

−𝑔 0 𝑔
. . .

...

0
. . . . . . . . . 0

...
. . . −𝑔 0 𝑔

0 . . . 0 −𝑔 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.10)

𝐻21
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝑔 0 . . . 0

𝑔 0 −𝑔 . . .
...

0
. . . . . . . . . 0

...
. . . 𝑔 0 −𝑔

0 . . . 0 𝑔 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.11)

𝐻22
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2𝑑−𝑀 𝑓 0 . . . 0

𝑓 −2𝑑−𝑀 𝑓
. . .

...

0
. . . . . . . . . 0

...
. . . 𝑓 −2𝑑−𝑀 𝑓

0 . . . 0 𝑓 −2𝑑−𝑀

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.12)

with

𝑎 = (𝐷 +𝐵)

(︂
1

(Δ𝑦)2
+

1

(Δ𝑥)2

)︂
,

𝑑 = (𝐷 −𝐵)

(︂
1

(Δ𝑦)2
+

1

(Δ𝑥)2

)︂
,

𝑐 =
𝐷 +𝐵

(Δ𝑦)2
,

𝑓 =
𝐷 −𝐵

(Δ𝑦)2
,

𝑔 =
𝐴

2Δ𝑦
,

(A.13)
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The diagonal of 𝐻0 (i.e. the diagonals of 𝐻11
0 and 𝐻22

0 ) come from the second
derivatives of Eqs. (3.6) and (3.7) which contain a term that produces an interaction
of every grid-point with itself with a factor 2. As a result the diagonal elements
−2𝑎 +𝑀 and −2𝑑 −𝑀 depend on both, Δ𝑥 and Δ𝑦, quadratically. The other
terms in the second derivative with respect to 𝑦 (namely 𝑐 and 𝑓) manifest in the
secondary diagonals of 𝐻11

0 and 𝐻22
0 . The first derivative with respect to 𝑦 in

the off-diagonals of Eq. (A.1) results in interaction between adjacent points in 𝑦-
direction [see Eq. (3.5)] and thus appears in the secondary diagonal of 𝐻12

0 and 𝐻21
0 .

Analogously the subblocks of 𝐻𝐼 (A.8) are given by

𝐻11
𝐼 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑏 0 . . . . . . 0

0 𝑏
. . . . . .

...
...

. . . . . . . . .
...

... . . .
. . . 𝑏 0

0 . . . . . . 0 𝑏

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.14)

𝐻12
𝐼 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−𝑖ℎ 0 . . . . . . 0

0 −𝑖ℎ . . . . . .
...

...
. . . . . . . . .

...
... . . .

. . . −𝑖ℎ 0
0 . . . . . . 0 −𝑖ℎ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.15)

𝐻21
𝐼 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−𝑖ℎ 0 . . . . . . 0

0 −𝑖ℎ . . . . . .
...

...
. . . . . . . . .

...
... . . .

. . . −𝑖ℎ 0
0 . . . . . . 0 −𝑖ℎ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.16)

𝐻22
𝐼 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑒 0 . . . . . . 0

0 𝑒
. . . . . .

...
...

. . . . . . . . .
...

... . . .
. . . 𝑒 0

0 . . . . . . 0 𝑒

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A.17)
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where we used the following abbreviations

𝑏 =
𝐷 +𝐵

(Δ𝑥)2
,

𝑒 =
𝐷 −𝐵

(Δ𝑥)2
,

ℎ =
𝐴

2Δ𝑥
.

(A.18)

The terms in the diagonals of 𝐻11
𝐼 and 𝐻22

𝐼 (namely 𝑏 and 𝑒) again originate from
the second derivative in the diagonal of ℎ(𝑘⃗) from Eq. (A.1), whereas the first
derivative terms in the off-diagonals with imaginary prefactor −𝑖 are take effect in
the diagonals of the off-diagonal blocks 𝐻12

𝐼 and 𝐻21
𝐼 .

A.2. Including Rashba coupling and Bulk inversion
asymmetry

So far it was sufficient to only solve the spin-up block ℎ(𝑘⃗) Eq. (2.2) of the full
effective Hamiltonian from Eq. (2.1) since the spin-down block directly follows by
a time-reversal symmetry operation. Still one could also exclusively solve the spin-
down block ℎ*(−𝑘⃗) which means just complex conjugation and substitution of 𝑘⃗ by
−𝑘⃗. Having a look at Eq. (A.4) we can see that this would not change entries in the
diagonal since they are real and only quadratic in 𝑘⃗. Also in the off-diagonal this
would only correspond to a substitution of 𝑑

𝑑𝑦 → − 𝑑
𝑑𝑦 since these are the only real

and linear terms in 𝑘⃗. The elements of the finite differences Hamiltonian matrix
resulting from the derivative with respect to 𝑦 appear only in the off-diagonal sub-
blocks of 𝐻0. Switching from 𝑑

𝑑𝑦 to − 𝑑
𝑑𝑦 will hence cause a change of sign in all

the matrix elements of 𝐻12
0 and 𝐻21

0 from Eqs. (A.9)-(A.12). So numerically we
can simply replace 𝑔 by −𝑔 in order to perform implementation of the time-reversal
counterpart ℎ*(−𝑘⃗).

Additional off-diagonal terms in the effective Hamiltonian Eq. (2.1) can be intro-
duced in order to make the description more accurate (see section 2.5). The first
such correction is the bulk inversion asymmetry (BIA) term which is repeated here
for easier readability:

𝐻BIA =

⎛
⎜⎜⎝

0
0 −Δ
Δ 0

0 Δ
−Δ 0

0

⎞
⎟⎟⎠ . (2.10 revisited)
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The second possible additional correction is the Rashba coupling term, which also
is repeated here for the reader’s convenience:

𝐻RC =

⎛
⎜⎜⎝

0
−𝑖𝑅0𝑘− 0

0 0
𝑖𝑅0𝑘+ 0

0 0
0

⎞
⎟⎟⎠ . (2.11 revisited)

As these corrections are off-diagonal in the four-band basis, a description in terms
of only a single spin-block ℎ(𝑘⃗) Eq. (2.2) is not sufficient anymore. In this case we
have to take into account also the spin-degree of freedom for both QW subbands,
meaning that the spin-up (+) subbands |𝐸1,+⟩ and 𝐻1,+⟩ are now also accompa-
nied by spin-down (-) subbands |𝐸1,−⟩ and 𝐻1,−⟩ making use of a four-component
spinor necessary. Ordering the complex wave functions in this spinor analogously to
Eq. (A.6) yields numerical matrices 𝐻0 and 𝐻𝐼 which both decompose into 4 blocks
each of which again consists of 4 𝑛𝑦 × 𝑛𝑦 blocks:

𝐻0/𝐼 =

(︂
𝐻0/𝐼,↑↑ 𝐻0/𝐼,↑↓
𝐻0/𝐼,↓↑ 𝐻0/𝐼,↓↓

)︂

=

⎛
⎜⎜⎜⎝

𝐻11
0/𝐼,↑↑ 𝐻12

0/𝐼,↑↑
𝐻21

0/𝐼,↑↑ 𝐻22
0/𝐼,↑↑

𝐻11
0/𝐼,↑↓ 𝐻12

0/𝐼,↑↓
𝐻21

0/𝐼,↑↓ 𝐻22
0/𝐼,↑↓

𝐻11
0/𝐼,↓↑ 𝐻12

0/𝐼,↓↑
𝐻21

0/𝐼,↓↑ 𝐻22
0/𝐼,↓↑

𝐻11
0/𝐼,↓↓ 𝐻12

0/𝐼,↓↓
𝐻21

0/𝐼,↓↓ 𝐻22
0/𝐼,↓↓

⎞
⎟⎟⎟⎠ . (A.19)

The upper left block 𝐻0/𝐼,↑↑ of 𝐻0 as well as 𝐻𝐼 correspond to ℎ(𝑘⃗) in Eq. (2.1)
and are thus given by Eqs. (A.9) to (A.12) and (A.14) to (A.17) respectively. The
constituents of 𝐻0/𝐼,↓↓ analogously represent ℎ*(𝑘⃗) and are correspondingly numer-
ically equal to those of 𝐻0/𝐼,↑↑ apart from a change of the parameter 𝑔 → −𝑔 in
𝐻12

0,↓↓ and 𝐻21
0,↓↓ as compared to 𝐻12

0,↑↑ and 𝐻21
0,↑↑ respectively.

To include the BIA term numerically we know that the Δ-terms from Eq. (2.10)
mediate an interaction between different degrees of freedom at, numerically speak-
ing, the same point (𝑥𝑖, 𝑦𝑖). Thus these terms have to be diagonal and appear in
the corresponding off-diagonal subblocks of 𝐻0,↑↓ and 𝐻0,↓↑ reading

𝐻12
0,↑↓ = 𝐻21

0,↓↑ =

⎛
⎜⎝

−Δ
. . .

−Δ

⎞
⎟⎠ and (A.20)

𝐻21
0,↑↓ = 𝐻12

0,↓↑ =

⎛
⎜⎝

Δ
. . .

Δ

⎞
⎟⎠ . (A.21)
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For the Rashba coupling terms of Eq. (2.11) implementation is slightly more
difficult since these terms depend on 𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦 which in real space transforms
into first derivatives with respect to 𝑥 and 𝑦:

𝐻RC =

⎛
⎜⎜⎝

0
𝑅0(−𝜕𝑥 + 𝑖𝜕𝑦) 0

0 0
𝑅0(𝜕𝑥 + 𝑖𝜕𝑦) 0

0 0
0

⎞
⎟⎟⎠ . (A.22)

Accordingly, the derivatives with respect to 𝑦 enter in the secondary diagonal of
specific subblocks of 𝐻0,

𝐻11
0,↑↓ = 𝐻11

0,↓↑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑖𝑟𝑦 0 . . . 0

−𝑖𝑟𝑦 0 𝑖𝑟𝑦
. . .

...

0
. . . . . . . . . 0

...
. . . −𝑖𝑟𝑦 0 𝑖𝑟𝑦

0 . . . 0 −𝑖𝑟𝑦 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.23)

with
𝑟𝑦 =

𝑅0

2Δ𝑦
. (A.24)

Analogously, the first derivatives with respect to 𝑥 enter the numerical formalism
in the diagonals of subblocks of 𝐻𝐼 ,

𝐻11
𝐼,↑↓ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−𝑟𝑥 0 . . . . . . 0

0 −𝑟𝑥
. . . . . .

...
...

. . . . . . . . .
...

... . . .
. . . −𝑟𝑥 0

0 . . . . . . 0 −𝑟𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and 𝐻11
𝐼,↓↑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝑟𝑥 0 . . . . . . 0

0 𝑟𝑥
. . . . . .

...
...

. . . . . . . . .
...

... . . .
. . . 𝑟𝑥 0

0 . . . . . . 0 𝑟𝑥

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.25)

defining

𝑟𝑥 =
𝑅0

2Δ𝑥
. (A.26)





Appendix B.

Implementation of a magnetic field

B.1. The Peierls substitution

Assume a physical system described by a Hamilton operator 𝐻̂(𝑘) with the wavenum-
ber operator 𝑘 being related to the momentum operator by 𝑝 = ~𝑘. The usual way
of including an external magnetic field 𝐵⃗ is the minimal substitution

𝑘 → 𝑘 − 𝑒

~
𝐴⃗ (B.1)

with 𝐴⃗ representing the magnetic vector potential fulfilling the relation rot𝐴⃗ = 𝐵⃗.
An important detail is that this form of the minimal substitution is given in SI units
while in atomic units the prefactor of the vector potential changes from 𝑒/~ to 𝑒/𝑐.
The Schrödinger equation then reads

𝐻̂(𝑘 − 𝑒

~
𝐴⃗)𝜓 (𝑟⃗) = 𝐸 𝜓 (𝑟⃗) . (B.2)

Numerically one could approach this problem straight forward by combining Eqs. (A.2)
and (A.3) with Eq. (B.1) and in this way directly modify the spatial derivatives 𝜕𝑥
and 𝜕𝑦 and all their resulting terms in the finite difference approach from section 3.1.
The problem with this solution is that the vector potential 𝐴⃗ usually depends on
the coordinates 𝑥 and 𝑦 of the geometry. Hence for large geometries the values for
the components of 𝐴⃗ can due to their positional dependence become very large and
cause heavy numerical instability. A far more convenient and numerically prefer-
able way of implementing the minimal substitution from Eq. (B.1) is in terms of
the Peierls substitution. The principle of this method is to instead of mapping the
effects of the external field into the Hamiltonian 𝐻̂(𝑘), the wave function 𝜓(𝑟⃗) is
replaced by

Φ (𝑟⃗) = 𝑒−𝑖
𝑒
~
∫︀ 𝑟⃗
0 𝐴⃗(𝑟⃗

′)d𝑟⃗′𝜓 (𝑟⃗) . (B.3)

Using the abbreviation for the phase in the prefactor of Eq. (B.3)

𝜑 (𝑟⃗) =

∫︁ 𝑟⃗

0
𝐴⃗
(︀
𝑟⃗′
)︀
d𝑟⃗′ (B.4)
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and the chain rule in order to investigate the action of the wavenumber operator
𝑘 = −𝑖∇⃗ on this wave function Φ(𝑟⃗) we get

𝑘 · Φ (𝑟⃗) = 𝑘
[︁
𝑒−𝑖

𝑒
~𝜑(𝑟⃗)𝜓 (𝑟⃗)

]︁
= 𝑒−𝑖

𝑒
~𝜑(𝑟⃗) 𝑘 𝜓 (𝑟⃗)− 𝑖

𝑒

~

[︁
𝑘 𝜑 (𝑟⃗)

]︁
𝑒−𝑖

𝑒
~𝜑(𝑟⃗)𝜓 (𝑟⃗) .

Using

𝑖
𝑒

~
[𝑘𝜑(𝑟⃗)] =

𝑒

~
∇⃗
∫︁ 𝑟⃗

0
𝐴⃗
(︀
𝑟⃗′
)︀
d𝑟⃗′ =

𝑒

~
𝐴⃗ (𝑟⃗)

this can be simplified to

𝑘 · Φ (𝑟⃗) = 𝑒−𝑖
𝑒
~𝜑(𝑟⃗)

(︁
𝑘 − 𝑒

~
𝐴⃗
)︁
𝜓 (𝑟⃗) . (B.5)

Analogously the action of every integer power 𝑘𝑛 of the wavenumber operator on
Φ(𝑟⃗) yields

𝑘𝑛 · Φ (𝑟⃗) = 𝑒−𝑖
𝑒
~𝜑(𝑟⃗)

(︁
𝑘 − 𝑒

~
𝐴⃗
)︁𝑛
𝜓 (𝑟⃗) (B.6)

and thus for every Hamiltonian 𝐻̂(𝑘) that can be expressed as a converging power
series in terms of 𝑘

𝐻̂
(︁
𝑘
)︁
=

∞∑︁

𝑛=0

ℎ𝑛𝑘
𝑛

it follows that

𝐻̂
(︁
𝑘
)︁
· Φ (𝑟⃗) = 𝑒−𝑖

𝑒
~𝜑(𝑟⃗)𝐻̂

(︁
𝑘 − 𝑒

~
𝐴⃗
)︁
𝜓 (𝑟⃗) = 𝐸Φ (𝑟⃗) = 𝑒−𝑖

𝑒
~𝜑(𝑟⃗)𝐸𝜓 (𝑟⃗) . (B.7)

This shows that the Schrödinger equation

𝐻̂
(︁
𝑘
)︁
𝜑 (𝑟⃗) = 𝐸𝜑 (𝑟⃗) (B.8)

for the original Hamiltonian 𝐻(𝑘) acting on the modified wave function 𝜑(𝑟⃗) is
after division by the Peierls phase factor in Eq. (B.7) exactly equivalent to the
Schrödinger equation in terms of the minimal substitution from Eq. (B.2). With
this knowledge we can rewrite Eq. (B.8)

𝐻̂
(︁
𝑘
)︁
𝜑 (𝑟⃗) = 𝐻̂

(︁
𝑘
)︁
𝑒−𝑖

𝑒
~𝜑(𝑟⃗)𝜓 (𝑟⃗) = 𝐸 · 𝑒−𝑖 𝑒~𝜑(𝑟⃗)𝜓 (𝑟⃗)

⃒⃒
⃒ 𝑒𝑖 𝑒~𝜑(𝑟⃗)·

⇒ 𝑒𝑖
𝑒
~𝜑(𝑟⃗)𝐻̂

(︁
𝑘
)︁
𝑒−𝑖

𝑒
~𝜑(𝑟⃗)𝜓 (𝑟⃗) = 𝐸 · 𝜓 (𝑟⃗) , (B.9)

which can be used to map the Peierls substitution from the wave function back onto
an effective Hamiltonian

^̃𝐻
(︁
𝑘, 𝐴⃗

)︁
= 𝑒𝑖

𝑒
~𝜑(𝑟⃗)𝐻̂

(︁
𝑘
)︁
𝑒−𝑖

𝑒
~𝜑(𝑟⃗) (B.10)
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acting on the original wave function 𝜓(𝑟⃗) according to

^̃𝐻
(︁
𝑘, 𝐴⃗

)︁
𝜓 (𝑟⃗) = 𝐸𝜓 (𝑟⃗) . (B.11)

All-in-all we are left with a description of the system by the effective Hamiltonian
from Eq. (B.10) as an alternative to the minimal substitution from Eq. (B.1). From
a numerical point of view, the phases in the transformation from Eq. (B.10) are
way easier to deal with since also large values of the components of 𝐴⃗ do not lead
to numerical instabilities as they are only included in the arguments of complex
numbers.

B.1.1. General numerical formalism for the Peierls substitution

In any numerical scheme the geometry will be discretized on an array of 𝑁 grid
points {𝑟⃗𝑛}. Thus the wave function 𝜓(𝑟⃗) is represented as a vector 𝜓⃗ of 𝑁 com-
ponents 𝜓𝑟⃗𝑛 := 𝜓𝑛 standing for the values of the wave function on any of these
points (see section 3.1). A linear operator such as the Hamiltonian 𝐻̂(𝑘) is then
represented by a matrix 𝐻 with matrix elements 𝐻𝑛𝑚 that describe the coupling
of the wave functions on 2 grid points 𝑟⃗𝑛 and 𝑟⃗𝑚. Hence the Schrödinger equation
numerically decomposes into a system of 𝑁 equations

𝑁∑︁

𝑚=1

𝐻𝑛𝑚𝜓𝑚 = 𝐸𝜓𝑛 (B.12)

which can be written as a matrix eigenvalue problem

𝐻𝜓⃗ = 𝐸𝜓⃗ . (B.13)

In order to numerically implement an external magnetic field with vector potential
𝐴⃗(𝑟⃗) we need to calculate the effective Peierls Hamiltonian from Eq. (B.10) in this
numerical scheme. The operators

𝑈̂ (𝑟⃗) = 𝑒𝑖
𝑒
~𝜑(𝑟⃗) and 𝑈̂ † (𝑟⃗) = 𝑒−𝑖

𝑒
~𝜑(𝑟⃗)

of this unitary transformation can in this discretized space be represented by the
diagonal matrices

𝑈 =

⎛
⎜⎝

𝑒𝑖
𝑒
~𝜑1

. . .
𝑒𝑖

𝑒
~𝜑𝑁

⎞
⎟⎠ and 𝑈 † =

⎛
⎜⎝

𝑒−𝑖
𝑒
~𝜑1

. . .
𝑒−𝑖

𝑒
~𝜑𝑁

⎞
⎟⎠ (B.14)

with the phases 𝜑𝑛 analogously to Eq. (B.4) given by

𝜑𝑛 := 𝜑 (𝑟⃗𝑛) =

∫︁ 𝑟⃗𝑛

0
𝐴⃗
(︀
𝑟⃗′
)︀
d𝑟⃗′ . (B.15)
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Consequently the matrix 𝐻̃ describing the Hamiltonian including the external field,
reads analogously to Eq. (B.10)

𝐻̃ = 𝑈𝐻𝑈 † , (B.16)

which for the individual matrix elements 𝐻̃𝑚𝑛 means

𝐻̃𝑛𝑚 =

𝑁∑︁

𝑖=0

𝑁∑︁

𝑗=0

𝑈𝑛𝑖𝐻𝑖𝑗𝑈
†
𝑗𝑚 =

∑︁

𝑖,𝑗

𝑒𝑖
𝑒
~𝜑𝑖𝛿𝑛𝑖𝐻𝑖𝑗𝑒

−𝑖 𝑒~𝜑𝑗𝛿𝑗𝑚 = 𝐻𝑛𝑚 · 𝑒−𝑖 𝑒~ (𝜑𝑚−𝜑𝑛) .

(B.17)
The definitions for the phases 𝜑𝑛 from Eqs. (B.15) and (B.4) yields

𝜑𝑚 − 𝜑𝑛 =

∫︁ 𝑟⃗𝑚

0
𝐴⃗
(︀
𝑟⃗′
)︀
d𝑟⃗′ −

∫︁ 𝑟⃗𝑛

0
𝐴⃗
(︀
𝑟⃗′
)︀
d𝑟⃗′ =

∫︁ 𝑟⃗𝑚

𝑟⃗𝑛

𝐴⃗
(︀
𝑟⃗′
)︀
d𝑟⃗′ . (B.18)

In summary, the Peierls transformation from Eq. (B.10) can numerically executed
by transforming every matrix element 𝐻𝑛𝑚 of the original Hamiltonian by means of

𝐻̃𝑛𝑚 = 𝐻𝑛𝑚 · 𝑒−𝑖 𝑒~𝜑𝑛𝑚 (B.19)

with the given Peierls phase argument 𝜑𝑛𝑚 depending on the grid point positions
𝑟⃗𝑛 and 𝑟⃗𝑚 and on the vector potential 𝐴⃗(𝑟⃗) according to

𝜑𝑛𝑚 := 𝜑𝑚 − 𝜑𝑛 =

∫︁ 𝑟⃗𝑚

𝑟⃗𝑛

𝐴⃗ (𝑟⃗) d𝑟⃗ . (B.20)

B.1.2. Implementation on a finite-difference square grid

In our work we usually use the finite differences method by means of discretization
of the geometry on a square grid. As already discussed in section 3.1, we can thus
use an ordering of the wave function vector 𝜓⃗ according to Eq. (A.6). In this way
the subblocks 𝐻0 and 𝐻𝐼 can be repeatedly used to build up the full Hamilton
matrix 𝐻 of the entire geometry as given in Eq. (3.3). Accordingly, the Peierls
transformation from Eq. (B.10) also holds for the matrix elements of 𝐻0 and 𝐻𝐼

according to

𝐻̃0,𝑛𝑚 = 𝐻0,𝑛𝑚 · 𝑒−𝑖 𝑒~𝜑
(0)
𝑛𝑚 , (B.21)

𝐻̃𝐼,𝑛𝑚 = 𝐻𝐼,𝑛𝑚 · 𝑒−𝑖 𝑒~𝜑
(𝐼)
𝑛𝑚 . (B.22)

The Peierls phases 𝜑(0)𝑛𝑚 and 𝜑(𝐼)𝑛𝑚 can be calculated analogously to Eq. (B.20) using
the knowledge about the geometrical positions 𝑟⃗𝑛 and 𝑟⃗𝑚 of the points connected
by 𝐻0 and 𝐻𝐼 . The matrix 𝐻0 describes the coupling between the 𝑛𝑦 points of a
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single stripe in y-direction. These points with position vectors 𝑟⃗ (0)𝑛 connected by
𝐻0 are thus given by

𝑟⃗ (0)𝑛 =

⎛
⎝

𝑥0
Δ𝑦 · 𝑛

0

⎞
⎠ (B.23)

with the constant 𝑥-component 𝑥0 within a single stripe. In order to calculate the
Peierls phase arguments 𝜑 (0)

𝑛𝑚 for the transformation of the matrix elements 𝐻0,𝑛𝑚

we have to choose a curve 𝑟⃗(𝑡) parameterized by the real number 𝑡 along which the
line integral from Eq. (B.20) is evaluated. If we use the direct connection between
the two points 𝑟⃗ (0)𝑛 and 𝑟⃗ (0)𝑚 we obtain

𝑟⃗(𝑡) = 𝑟⃗(0)𝑛 +
(︁
𝑟⃗ (0)𝑚 − 𝑟⃗ (0)𝑛

)︁
·𝑡 = 𝑟⃗ (0)𝑛 +

⎛
⎝

0
Δ𝑦(𝑚− 𝑛)

0

⎞
⎠·𝑡 =

⎛
⎝

𝑥0
Δ𝑦[𝑛+ (𝑚− 𝑛)𝑡]

0

⎞
⎠ .

(B.24)
The vector potential 𝐴⃗(𝑟⃗) can thus be evaluated along such a line and will hence
depend on 𝑥0, 𝑚, 𝑛, Δ𝑦 and the parameter 𝑡:

𝐴⃗ (𝑟⃗(𝑡)) = 𝐴⃗(𝑥0,𝑚, 𝑛,Δ𝑦, 𝑡) :=

⎛
⎝

𝐴𝑥(𝑡)
𝐴𝑦(𝑡)
𝐴𝑧(𝑡)

⎞
⎠ . (B.25)

The infinitesimal line element d𝑟⃗(𝑡) can also by the use of Eq. (B.24) be evaluated
to:

d𝑟⃗(𝑡) =
d𝑟⃗(𝑡)
d𝑡

d𝑡 =
(︁
𝑟⃗ (0)𝑚 − 𝑟⃗ (0)𝑛

)︁
· d𝑡 =

⎛
⎝

0
Δ𝑦(𝑚− 𝑛)

0

⎞
⎠ d𝑡 . (B.26)

In this way the Peierls phases 𝜑(0)𝑛𝑚 needed for the transformation from Eq. (B.21)
can be calculated via

𝜑(0)𝑛𝑚 =

∫︁ 𝑟⃗
(0)
𝑚

𝑟⃗
(0)
𝑛

𝐴⃗ (𝑟⃗) d𝑟⃗ =
∫︁ 1

0
𝐴⃗ (𝑥0,𝑚, 𝑛,Δ𝑦, 𝑡)

d𝑟⃗(𝑡)
d𝑡

d𝑡

which by the use of Eqs. (B.24) and (B.26) is given by

𝜑(0)𝑛𝑚 =

∫︁ 1

0

⎛
⎝

𝐴𝑥(𝑡)
𝐴𝑦(𝑡)
𝐴𝑧(𝑡)

⎞
⎠ ·

⎛
⎝

0
Δ𝑦(𝑚− 𝑛)

0

⎞
⎠ d𝑡

=

∫︁ 1

0
𝐴𝑦(𝑡)Δ𝑦(𝑚− 𝑛)d𝑡 . (B.27)
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The above considerations now have to be redone also for the transformation of
the matrix 𝐻𝐼 . A matrix element 𝐻𝐼,𝑛𝑚 connects two points adjacent stripes in
𝑦-direction. Hence their position vectors 𝑟⃗ (𝐼)𝑛 and 𝑟⃗ (𝐼)𝑚 are given by

𝑟⃗ (𝐼)𝑛 =

⎛
⎝

𝑥0
Δ𝑦 · 𝑛

0

⎞
⎠ and 𝑟⃗ (𝐼)𝑚 =

⎛
⎝

𝑥0 +Δ𝑥
Δ𝑦 ·𝑚

0

⎞
⎠ . (B.28)

Analogously to Eq. (B.24) we can parameterize the integration curve using

𝑟⃗(𝑡) = 𝑟⃗(𝐼)𝑛 +
(︁
𝑟⃗ (𝐼)𝑚 − 𝑟⃗ (𝐼)𝑛

)︁
· 𝑡 = 𝑟⃗ (𝐼)𝑛 +

⎛
⎝

Δ𝑥
Δ𝑦(𝑚− 𝑛)

0

⎞
⎠ · 𝑡 =

⎛
⎝

𝑥0 +Δ𝑥 · 𝑡
Δ𝑦[𝑛+ (𝑚− 𝑛)𝑡]

0

⎞
⎠

(B.29)
which leads to the fact that the vector potential this time also depends on Δ𝑥:

𝐴⃗ (𝑟⃗(𝑡)) = 𝐴⃗(𝑥0,𝑚, 𝑛,Δ𝑥,Δ𝑦, 𝑡) :=

⎛
⎝

𝐴𝑥(𝑡)
𝐴𝑦(𝑡)
𝐴𝑧(𝑡)

⎞
⎠ . (B.30)

The line element is now given by

d𝑟⃗(𝑡) =
d𝑟⃗(𝑡)
d𝑡

d𝑡 =
(︁
𝑟⃗ (𝐼)𝑚 − 𝑟⃗ (𝐼)𝑛

)︁
· d𝑡 =

⎛
⎝

Δ𝑥
Δ𝑦(𝑚− 𝑛)

0

⎞
⎠ d𝑡 . (B.31)

In order to use the transformation of 𝐻𝐼 according to Eq. (B.22), the Peierls phases
𝜑
(𝐼)
𝑛𝑚 need to be obtained analogously to Eq. (B.27) yielding

𝜑(𝐼)𝑛𝑚 =

∫︁ 1

0

⎛
⎝

𝐴𝑥(𝑡)
𝐴𝑦(𝑡)
𝐴𝑧(𝑡)

⎞
⎠ ·

⎛
⎝

Δ𝑥
Δ𝑦(𝑚− 𝑛)

0

⎞
⎠ d𝑡

=

∫︁ 1

0
(𝐴𝑥(𝑡)Δ𝑥+𝐴𝑦(𝑡)Δ𝑦(𝑚− 𝑛)) d𝑡 . (B.32)

The transformations from Eqs. (B.21) and (B.22) given by the phase arguments
from Eqs. (B.27) and (B.32) are holding generally for a numerical description in
terms of a square grid and finite differences approximation. Also the choices of
point position vectors along the integration line from Eqs. (B.24) and (B.29) for 𝐻0

and𝐻𝐼 , respectively, are unique in this layout and together with the vector potential
𝐴⃗(𝑟⃗) in a chosen gauge determine the precise form of the Peierls transformation.
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B.1.3. Perpendicular magnetic field

As a first special case we consider a magnetic field 𝐵⃗ = 𝐵 · 𝑒𝑧 of strength 𝐵 perpen-
dicular in 𝑧-direction perpendicular to the 2 dimensional plane. Such a field can be
generated by a vector potential

𝐴⃗(𝑟⃗) = 𝐴⃗(𝑥, 𝑦, 𝑧) =

⎛
⎝

−𝐵𝑦
0
0

⎞
⎠

which resembles the desired field

𝐵⃗ = rot𝐴⃗ (𝑟⃗) =

⎛
⎝

𝜕𝑥
𝜕𝑦
𝜕𝑧

⎞
⎠×

⎛
⎝

−𝐵𝑦
0
0

⎞
⎠ =

⎛
⎝

0
0
𝐵

⎞
⎠ .

Since in this case 𝐴𝑦(𝑟⃗) = 0 for all possible points 𝑟⃗ we can immediately conclude
according to Eq. (B.27) that all Peierls phase arguments 𝜑(0)𝑛𝑚 concerning 𝐻0 vanish,
i.e.

𝜑(0)𝑛𝑚 = 0 .

In the transformation for the elements of 𝐻𝐼 the second term in Eq. (B.32) vanishes
for the same reason as above, while the first term including

𝐴⃗(𝐼)
𝑥 (𝑡) = 𝐴𝑥(𝑦 = Δ𝑦[𝑛+ (𝑚− 𝑛)𝑡]) = −𝐵Δ𝑦[𝑛+ (𝑚− 𝑛)𝑡]

gives

𝜑(𝐼)𝑛𝑚 =

∫︁ 1

0
𝐴(𝐼)
𝑥 (𝑡)Δ𝑥d𝑡 = −

∫︁ 1

0
d𝑡 ·𝐵Δ𝑥Δ𝑦[𝑛+ (𝑚− 𝑛)𝑡]

= −𝐵Δ𝑦Δ𝑥(𝑛+
𝑚− 𝑛

2
) . (B.33)

Usually in a finite-differences approach only points that are nearest neighbors will
interact, which leads to 𝐻𝐼 being a diagonal matrix. For those elements 𝐻𝐼,𝑛𝑛

Eq. (B.33) simplifies to
𝜑(𝐼)𝑛𝑛 = −𝐵Δ𝑦Δ𝑥 𝑛 . (B.34)

In the special case of a two-dimensional topological insulator described by the
BHZ model Eq. (2.1), also a correction to the model itself is required for a flawless
description of a magnetic field (see section 2.6). This correction includes the break-
ing of time-reversal symmetry due to the perpendicular magnetic field and results
from Zeeman-coupling in first-order perturbation theory of the effective four-band
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model [121]. It is given by

𝐻zm = 𝜇𝐵𝐵

⎛
⎜⎜⎝

𝑔𝐸⊥
𝑔𝐻⊥

−𝑔𝐸⊥
−𝑔𝐻⊥

⎞
⎟⎟⎠ (2.12 revisited)

and is repeated here for convenience. Due to their diagonal form, these terms do
not depend explicitly on space. Numerically this means that they are only adding
constant terms to the diagonal subblocks of 𝐻0 from Eq. (A.19). In this way the
corrections

𝐻̃11
0,↑↑ = −𝐻̃11

0,↓↓ = 𝜇𝐵𝐵

⎛
⎜⎝

𝑔𝐸⊥
. . .

𝑔𝐸⊥

⎞
⎟⎠ and (B.35)

𝐻̃22
0,↑↑ = −𝐻̃22

0,↓↓ = 𝜇𝐵𝐵

⎛
⎜⎝

𝑔𝐻⊥
. . .

𝑔𝐻⊥

⎞
⎟⎠ (B.36)

have to be added to the subblocks 𝐻11
0,↑↑, 𝐻

22
0,↑↑, 𝐻

11
0,↓↓ and 𝐻22

0,↓↓ from Eq. (A.19).

B.1.4. Magnetic field in 𝑥-direction for a plane lead

For an in-plane magnetic field the Zeeman correction according to Ref. [121] is now
given by

𝐻zm = 𝜇𝐵𝐵

⎛
⎜⎜⎝

0 0 𝑔‖ 0

0 0 0 𝑔‖
𝑔‖ 0 0 0

0 𝑔‖ 0 0

⎞
⎟⎟⎠ (2.13 revisited)

as already mentioned before in section 2.6. In the numerical scheme of Eq. (A.19)
these corrections again only affect 𝐻0 and read

𝐻̃11
0,↑↓ = 𝐻̃11

0,↓↑ = 𝐻̃22
0,↑↓ = 𝐻̃22

0,↓↑ = 𝜇𝐵𝐵

⎛
⎜⎝

𝑔‖
. . .

𝑔‖

⎞
⎟⎠ (B.37)

which have to be added to the corresponding subblocks 𝐻11
0,↑↑, 𝐻

22
0,↑↑, 𝐻

11
0,↓↓ and 𝐻22

0,↓↓
from Eq. (A.19).

In order to execute the Peierls substitution for this case, we find that a suitable
gauge to retrieve 𝐵𝑥 = 𝜕𝑦𝐴𝑧 − 𝜕𝑧𝐴𝑦 = 𝐵 is given by 𝐴𝑦 = 𝐵 · 𝑧 with 𝐴𝑥 = 𝐴𝑧 = 0.
Trivially, in a plane two-dimensional lead, one can always choose the 𝑧 = 0 making
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the vector potential vanish in the entire 𝑥-𝑦-plane. Correspondingly the Peierls
phases according to Eqs. (B.27) and (B.32)

𝜑(0)𝑛𝑚 = 𝜑(𝐼)𝑛𝑚 = 0

all vanish.

B.1.5. Magnetic field in x-direction for a cylindrical lead

In a next step we want to implement a magnetic field again in 𝑥-direction but this
time for a cylindrical lead as explained in detail in section 2.6 of the main text.

In order to find a suitable gauge potential we use the cylindrical symmetry of this
envisioned geometry. While in the numerics we are limited to the two-dimensional
(𝑥, 𝑦)-plane, we can go to three-dimensional cylinder coordinates (𝑟, 𝜑, 𝑥) where the
original 𝑥-axis is defined as the cylinder axis. A vector 𝑟⃗ is then given by

𝑟⃗ =

⎛
⎝

𝑟 sin𝜑
𝑟 cos𝜑
𝑥

⎞
⎠ .

The unit vector along 𝜑 also corresponds to the unit vector along the 𝑦-coordinate
when the original plane is mapped onto the cylindrical surface and is given by

𝑒𝜑 =
𝜕𝑟⃗

𝜕𝜑
/

⃒⃒
⃒⃒ 𝜕𝑟⃗
𝜕𝜑

⃒⃒
⃒⃒ =

⎛
⎝

cos𝜑
− sin𝜑

0

⎞
⎠ = 𝑒𝑦 .

A magnetic field in 𝑥-direction is restored by a magnetic vector potential

𝐴⃗ (𝑟⃗) =
1

2
𝐵𝑟𝑒𝜑 =

1

2
𝐵𝑟𝑒𝑦

with 𝑟 being the cylinder’s radius. It can be easily verified that indeed

𝐵⃗ = rot𝐴⃗ =

⎛
⎝

0
0
𝐵

⎞
⎠ = 𝐵 · 𝑒𝑥

leaving us with the desired field in 𝑥-direction. The above chosen gauge has the
great advantage that it does not depend explicitly on any of the coordinates but
features a non-zero but constant 𝑦-component 𝐴𝑦. It is thus easy to immediately
find the corresponding Peierls phase arguments from Eqs. (B.27) and (B.32)

𝜑(0)𝑛𝑚 = 𝜑(𝐼)𝑛𝑚 =

∫︁ 1

0
𝐴𝑦(𝑡)Δ𝑦(𝑚− 𝑛)d𝑡 =

1

2
𝐵𝑟Δ𝑦(𝑚− 𝑛) . (B.38)

It is worth noting that in this way the effects on the band structure not only depend
on the strength of the magnetic field but also on the radius 𝑟 of the cylinder.
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B.1.6. Unit conversions

In order to correctly implement the magnetic field in our BHZ model [88] we need
to express the occurring prefactors, namely 𝜇𝐵 and 𝑒

~ in units of meV (millielec-
tronvolts) and nm (nanometers) which are the units that the other Hamiltonian
parameters are given in. While 𝜇𝐵 is occurring in the Zeeman correction in the
Hamiltonian due to the magnetic field [see Eqs. (2.12) and (2.13)], the prefactor 𝑒

~
is part of the phase factor of the Peierls Hamiltonian transformation from Eq. (B.10).

The Bohr magneton 𝜇𝐵 is in terms of natural constants given by

𝜇𝐵 =
𝑒~
2𝑚𝑒

= 9.27400968 · 10−24 J
T

.

Transformation of 1 Joule to the required units,

1 J = 6.241509 · 1018 eV = 6.241509 · 1021 meV ,

yields

𝜇𝐵 = 9.27400968 · 10−24 × 6.241509 · 1021 meV
T

= 0.0578838
meV
T

.

In the same way we have to convert the ratio of elementary charge and reduced
Planck constant

𝑒

~
=

1.602176565 · 10−19 C
1.054571726 · 10−34 J · s = 1.51927 · 1015 C

J · s
to units of millielectronvolts, nanometers and Tesla. For this purpose, we employ
the knowledge that the unit of the electric current is

1 A = 1
C
s

,

giving
𝑒

~
= 1.51927 · 1015 A

J
.

Since, 1 Tesla is also given by

1 T = 1
J

A · m2
,

it follows that

1
A
J

= 1
1

T · m2
= 1

1

T · 1018nm2
= 10−18 1

T · nm2
.

Therefore we receive the requested prefactor in the desired units as

𝑒

~
= 1.51927 · 1015 × 10−18 1

T · nm2
= 0.00151927

1

T · nm2
.
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