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Abstract

In this work the experimental realization of frequency stabilizing a mid-infrared contin-

uous wave distributed feedback quantum cascade laser by use of the Pound-Drever-

Hall technique with a high-finesse optical resonator as a stable optical reference was

investigated. As a consequence of this frequency stabilization the build-up of light

intensity within the resonator should have been investigated for its practical purpose

in spectroscopic applications. After some research of the respective literature and

the selection of some specific components for the setup it was built up in the lab.

Some adaptations were made compared to the suggestions of the literature in order

to comply with the requirements of a mid-infrared quantum cascade laser. Due to the

presence of electronic noise and ongoing failure of resonant conditions on a repeat-

able basis, the focus was set on noise investigation, which led to an improvement of

the laser system’s noise performance. Finally, it was possible to acquire weak signals

that indicated the partial emergence of resonant conditions on a short time-scale.

The coherence time of the laser was identified to be the most critical parameter for

producing resonance when injecting laser light into an optical resonator. The results

of this work pave the way for further practical approaches. With no doubt additional

investigations have to be carried out but would exceed the extent and time-efforts

of this master thesis.
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Glossary of used Mathematic Symbols

A(~r) ........ complex beam amplitude

c ........ speed of light in vacuum

F (ω) ........ complex reflection coefficient of a resonator

F ........ finesse

k ........ modulus of the wave-vector k = |~k | = 2π/λ

L ........ resonator length

λ ........ wavelength

n ........ refractive index

ν ........ frequency

g1, g2 ........ g-parameters of a spherical mirror resonator

qi ........ complex q-parameter at position i

~r ........ position vector in 3-dim space (x, y , z)

rn ........ radius of curvature of a mirror n

R ........ reflection coefficient

R(z) ........ radius of curvature of a Gaussian beam

t ........ time

T ........ transmission coefficient

τcoh ........ coherence time

U(~r , t) ........ time-dependent complex beam amplitude

U(~r) ........ time-independent complex beam amplitude

W0 ........ beam waist radius of a Gaussian beam

W (z) ........ beam radius of a Gaussian beam

ω ........ angular frequency ω = 2πν (e.g. of the carrier wave)

Ω ........ modulation angular frequency (of the sidebands)

z0 ........ Rayleigh-range of a Gaussian beam
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Zusammenfassung

In der vorliegenden Arbeit wurde die experimentelle Realisierung der Frequenzstabil-

isierung eines Quantenkaskadenlasers durch die Pound-Drever-Hall Technik anhand

eines optischen Resonators mit hoher Finesse als stabile optische Referenz unter-

sucht. Als Konsequenz dieser Frequenzstabilisierung hätte der Anstieg der Lichtinten-

sität im Inneren des Resonators auf seine praktische Anwendbarkeit in spektroskopis-

chen Anwendungen untersucht werden sollen. Nach dem Studium der einschlägigen

Literatur und der Auswahl passender Komponenten wurde der experimentelle Aufbau

im Labor vorgenommen. Einige Anpassungen wurden dabei gemacht, um die Vor-

gaben der Literatur an die Erfordernisse eines Quantenkaskadenlasers anzupassen,

welcher im mittleren Infrarot emittiert. Aufgrund des vorhandenen elektronischen

Rauschens und der nicht erzeugbaren Resonanz innerhalb des Resonators auf repro-

duzierbarer Basis, wurde der Fokus auf die Untersuchung dieses Rauschens gelegt,

was zu einer Verbesserung des System-Rauschens führte. Am Ende war es möglich,

schwache Signale zu erfassen, welche auf einen teilweisen und kurzzeitigen Aufbau

resonanter Bedingungen schließen lassen. Die Kohärenzzeit des Lasers wurde als kri-

tischster Parameter identifiziert, um Resonanz innerhalb eines optischen Resonators

zu erzeugen. Die Resultate dieser Arbeit ebnen den Weg für weitere praktische An-

sätze. Ohne Zweifel müssen zusätzliche Nachforschungen angestellt werden, welche

jedoch den Umfang und zeitlichen Rahmen dieser Diplomarbeit übersteigen würden.
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Chapter 1

Introduction and Theoretical Basis

Quantum cascade lasers (QCL) operate from the mid-infrared (mid-IR) region to the

far terahertz region of the electromagnetic spectrum, and are nowadays one of the

most beneficial light sources in the field of infrared spectroscopy (e.g. [2, 3]). Opti-

cal resonators have a wide field of application in spectroscopy (e.g. [4]). Absorption

spectroscopy is based on the quantized absorption of electromagnetic radiation by

excitation of rotations and vibrations in molecules. If an absorbing medium is located

between the mirrors of an optical resonator, the interaction length of the light field

with the absorbing medium is increased due to the multiple reflections. As a con-

sequence the detection sensitivity can be enhanced depending on the reflectivity of

the used mirrors, especially if resonant conditions are present. Some of the existing

techniques are not based on cavity resonance but in this work it shall be investigated

which requirements have to be experimentally met to enhance the power build-up

of a QCL in combination with an external optical resonator to produce resonance.

If the light waves of a laser source are actively controlled to produce constructive

interference within an external resonator, one would observe an intensity increase

according to the mirror reflectivity therein. In order to achieve resonant conditions

the laser frequency has to be stabilized because the linewidth of a free running laser

source is typically larger than the linewidth of a high-finesse optical resonator, which

would lead to poor coupling of laser power into the resonator. This frequency sta-

bilization can be achieved by using an optical resonator as a stable reference for the

laser source, and by applying electronic feedback from the reference to the source.

In the following sections an overview of the theory and concepts that are funda-

mental for this work is given. A brief introduction about QCLs and their operational
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principle is followed by a short discussion about the natural linewidth of laser sources.

Afterwards some of the basics of wave optics and Gaussian beams are presented,

which is of fundamental importance for laser beam calculations. Subsequently, some

theory on optical resonators is introduced, together with the basic equations that

are needed further on. Using the insight of these chapters it might be obvious that

stabilizing the laser frequency is critical for producing resonance within a high-finesse

optical resonator. A detailed description of the Pound-Drever-Hall (PDH) frequency

stabilization technique will be given in the final section of this introduction.

1.1 Quantum Cascade Laser

A quantum cascade laser (QCL) is a semiconductor laser device based on intersub-

band transitions of electrons in a periodic quantum well heterostructure. The first

experimental realization of a QCL was published in the year 1994:

“Electrons streaming down a potential staircase sequentially emit pho-

tons at the steps. The steps consist of coupled quantum wells in which

population inversion between discrete conduction band excited states is

achieved by control of tunneling.” [1]

In contrast to conventional semiconductor diode lasers that are based on interband

transitions where electrons and holes recombine to emit photons, it is not the band-

gap of the involved materials which determines the emission-wavelength of a QCL

but rather the width of the quantum wells and barriers of the active region. These

layers are grown with molecular beam epitaxy (MBE) or metal-organic chemical va-

por deposition (MOCVD) [2], and offer a wide range of wavelengths in the mid-IR

and terahertz region. QCLs are unipolar devices, which means that only electrons

contribute to the lasing process. QCLs can either be operated in continuous wave

or in pulsed mode. In figure 1.1 the basic (simplified) working principle is shown by

an illustration of the potential well staircase.

Semiconductor layers of a certain thickness are cascaded to produce regions of vary-

ing electric potential: active and injector regions. An electron from the injector

region is driven into the active region by an applied electric field (voltage) into the

uppermost energy state E3. The tilt of the potential staircase arises from the applied

voltage drop. A laser photon of energy E23 = hν = E3 − E2 (where h is Planck’s
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Figure 1.1: Operation principle of a quantum cascade laser

constant h = 6.626 · 10−34 Js, and ν the frequency in Hz of the electromagnetic

wave) is emitted when electrons jump from the uppermost energy level E3 to a lower

level E2. The energy difference E23 is mainly determined by the thickness of the

wells of the active region. As for any lasing process a population inversion is needed

between energy levels E3 and E2, hence the lifetime in level E3 has to be much larger

than in E2. In order minimize the lifetime of electrons in state E2, the energy level

E1 is engineered to be about the energy of an optical phonon apart lower than E2,

which ensures rapid scattering from E2 to E1 (compare [2]).

After this process the electron from E1 stays in the conduction band, and is therefore

available to emit another laser photon in the adjacent active region starting from E3

again. This cascading of active and injector regions, and the consequential recycling

of electrons is responsible for the relatively large power output of QCLs in comparison

to semiconductor diode lasers, since one electron can produce a photon in each of

the transitions from E3 to E2 within the active region. In conventional diode lasers

an electron recombines with a hole to produce a single photon and is consequently

not capable of emitting another laser photon.

In principle a QCL structure emits a broad spectrum of wavelengths. However,

QCLs can be designed to emit at a single wavelength and additionally feature some

wavelength tunability, which makes them attractive in chemical sensor systems (see

[3]). The wavelength tunability is based on the temperature dependency of the re-
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fractive index of the QCL’s waveguide material. Single mode operation with a small

tuning range in a compact device is achieved by integrating a distributed feedback

(DFB-QCL) grating structure into the active region [5]. An external and rotatable

diffraction grating can be utilized to select specific wavelengths in an external cavity

configuration (EC-QCL), which offers a wider tuning range than the DFB technology

[6].

More than twenty years after their first experimental realization, QCLs are nowa-

days a superior light source in the mid-IR range (approximately from 3.0 - 24 µm

in wavelength) of the electromagnetic spectrum, covering fundamental vibrations in

molecules including the so called molecular fingerprint region. It is possible to distin-

guish between different molecules based on their different characteristic rotational-

vibrational spectrum. Applications reach from environmental monitoring such as

trace gas sensing (e.g. quartz-enhanced photoacoustic spectroscopy or cavity ring-

down spectroscopy) or liquid phase spectroscopy, frequency metrology and to a va-

riety of other high-resolution spectroscopic applications [7].

1.1.1 Natural Linewidth of Quantum Cascade Lasers

The minimal linewidth δν of a laser device is limited as Schawlow and Townes inves-

tigated in 1958 [8] even before the first demonstration of a laser; they found that

the minimal linewidth is limited by spontaneous emission and can be described by

δν =
4πhν

P
(∆ν)2. (1.1)

Herein ∆ν is the half-width at half maximum (HWHM) intensity of a laser mode

and P the power in the oscillating field; spontaneous emission adds waves of random

phase (“zero-point fluctuations” [8]) to the stimulated coherent electromagnetic field,

leading to a broadening of the linewidth. This restriction can be eventually inter-

preted in terms of a quantum limit and as a consequence of Heisenberg’s uncertainty

relation.

As a correction for the fundamental Schawlow-Townes limit (1.1) Henry gave 1982

an explanation for the linewidth broadening in single-mode semiconductor lasers by

introducing a linewidth enhancement factor; he identified a change of the refractive

index of the semiconductor with carrier density fluctuations, which couples phase and

intensity fluctuations [9].
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In contrast to conventional semiconductor lasers the refractive index of QCLs was

expected to show only negligibly small variations at the peak of the gain curve in

the initial work of 1994 [1]; therefore, the linewidth enhancement factor of QCLs

would be close to zero, and one might assume the intrinsic linewidth similar to the

Schawlow-Townes limit.

However, a theoretical investigation by Yamanishi et al. [10] in 2008 discovered

the participation of ultrafast non-radiative relaxation processes from the uppermost

energy level into the lower levels (for a QCL with a three level energy-scheme as

presented above) that do not contribute to spontaneous emission, leading to a novel

version of the Schawlow-Townes limit and to a narrower linewidth. Moreover, this

theory contains the line-broadening by thermal photons that had been so far over-

looked.

Bartalini et al. [11] experimentally verified these theoretic predictions in 2010; the

experimental data showed the awaited behavior. Furthermore, the noise power spec-

tral density (PSD) was lower than theoretically expected. This ultimately proofed

that the QC laser type overcomes the Schawlow-Townes limit leading to narrower

linewidth features.

They also investigated the noise in the absence of these ultrafast non-radiative re-

laxation processes, which lead to comparable noise features that can be observed in

conventional semiconductor lasers [11] showing good coincidence with Henry’s the-

ory [9].

A common method to determine the frequency noise of a QCL is to convert the

frequency fluctuations into intensity fluctuations, by the use of a side of a Doppler-

broadened molecular line [7] of a gas molecule placed in the optical path of a

QCL source, and by measuring the corresponding absorption of the laser signal

with a photo-detector. The quantum-limited linewidth for a mid-IR QCL at room-

temperature has been determined to be approximately 200 Hz 1 [7]. These results

motivate that a large contribution to frequency noise may originate from the current

source that drives a QCL. Low-noise current drivers are therefore an essential part

when detecting the intrinsic noise of a QCL (see [13]).

Tombez et al. used a custom-made current driver with a current noise density lower

than 350 pA/
√
Hz [12], which they found of having no broadening influence on the

1For comparison: this would mean a wavelength interval of 1.4× 10−8 nm for the QCL employed
in this work (which had a center wavelength of 4.59 µm)
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intrinsic linewidth of a 4.6 µm DFB-QCL at room temperature. Moreover, they

predicted this particular current driver to be sufficiently low-noise to improve the fre-

quency stability of the DFB-QCL by implementing a feedback loop with a bandwidth

in the order of 100 kHz.

1.2 Wave Optics, Gaussian Beams and Optical Res-
onators

The concept of wave optics extends conventional ray (geometric) optics by taking

into account the wave nature of light. Based on wave optics the Gaussian beam is

described, accounting for the fact that many laser types emit with a similar beam-

profile. This applies for the QCL-source employed in this work as well. A Gaussian

beam differs from a plane wave as it has curved wavefronts, and its lateral extension is

of finite diameter; both, the radius of the wavefronts, and the diameter of the beam,

change with the distance to the center of the beam. The latter leads to a diverging

beam. Optical resonators are then described to familiarize with the involved formulas

and for the comprehension of terms like mode linewidth, finesse, and intensity build-

up. The interference phenomena that arise during the operation of an optical cavity

cannot be described by simple ray optics; here it is inevitable to use the description

of the wave nature of light. The final subsection describes mode-matching, which is

an essential technique to optimize the transferred power from a laser source into an

optical resonator.

1.2.1 Wave Optics

A light wave can be described by a scalar wavefunction u(~r , t) with ~r = (x, y , z), and

is a solution of the wave equation2 (1.2) traveling at the speed of light3 c = c0

n
in a

medium. In case of a homogeneous medium, n ≥ 1 is a real number, and is called

index of refraction.

∆u(~r , t)−
1

c2

∂2u(~r , t)

∂t2
= 0 (1.2)

The wave equation (1.2) is a linear partial differential equation. Therefore, two solu-

tions can be linearly superimposed giving another possible solution. This principle is

fundamental, e.g. for the formation of standing waves, since they are a superposition

2Laplace operator ∆ = ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

3Speed of light in vacuum: c0 = 299792458 m/s
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of incident and a reflected waves (see section 1.2.3). The wave-function u(~r , t) is

given either by the electric E(~r , t) or the magnetic field B(~r , t). This is of course

a simplified description because one would have to treat these quantities as vectors,

which is not possible in wave optics because it is a scalar theory. This would be

part of a full electromagnetic theory of light, which offers the ability to describe e.g.

polarization as well. Nevertheless, each component of the electric or magnetic field

vector on its own has to be a solution of the wave equation (1.2) (compare [14],

p.157). The following discussion stays in the simple picture of wave optics, since it

will be sufficient for the description of a Gaussian beam and resonator optics.

Starting with a simple monochromatic wave one can write

u(~r , t) = a(~r) cos(2πνt + ϕ(~r)), (1.3)

with the real amplitude a(~r), the frequency of the wave ν = c/λ, with the wavelength

λ, and the phase ϕ(~r). Equation (1.3) can also be written in a complex form,

which will be important in section 1.3 Pound-Drever-Hall (PDH) Laser Frequency

Stabilization for describing a phase-modulated beam:

U(~r , t) = U(~r)e iωt = a(~r)e iϕ(~r)e iωt , (1.4)

with the complex amplitude U(~r) and the angular frequency ω = 2πν. The relation

between the real u(~r , t) (1.3) and the complex form of U(~r , t) (1.4) is given by

u(~r , t) = Re(U(~r , t)) = 1
2

(U(~r , t) +U∗(~r , t)), where ∗ denotes complex conjugation.

The intensity I of a monochromatic wave is given by

I(~r) = |U(~r , t)|2, (1.5)

and is therefore a time-invariant quantity.

In the case of a plane wave with |~k | = 2π/λ the complex amplitude is (compare

[14], p. 44)

U(~r) = Ae−i
~k·~r , (1.6)

whereas A is a complex constant and denoted as the complex envelope. A paraxial

wave that propagates along the z-axis has a varying complex envelope A(~r). There-

15



fore, one writes (compare [14], p. 47):

U(~r) = A(~r)e−ikz . (1.7)

It can be shown (compare [14], p. 48), that if the beam envelope varies slowly within

the distance of a wavelength λ, and the complex envelope A(~r) satisfies certain

conditions (see [14], p. 48, eqn. 2.2-21. 2.2-22), the paraxial wave is a solution of

the paraxial Helmholtz equation (1.8):(
∂2

∂x2
+
∂2

∂y 2

)
A− i2k

∂A

∂z
= 0. (1.8)

One of the possible solutions of this differential equation is the Gaussian beam (1.9)

([14], p. 76), which will be the object of the following section. To summarize this:

one possible solution of the Helmholtz equation is the paraxial wave. By using some

assumptions regarding these paraxial waves one obtains another differential equation,

i.e. the paraxial Helmholtz equation.

1.2.2 Gaussian Beams

The complex envelope of a Gaussian beam is a solution of the paraxial Helmholtz

equation (1.8) (see [14], p. 76). It is given by

A(~r) =
C1

q(z)
e−ik

x2+y2

2q(z) . (1.9)

C1 is a constant; q(z) = z + iz0 is denoted as the complex beam-parameter; z0 is

the Rayleigh-range. The complex q-parameter of a Gaussian beam is given by

1

q(z)
=

1

R(z)
− i

λ

πW 2(z)
, (1.10)

which fully characterizes a Gaussian beam. R(z) is the radius of curvature of a

wavefront; W (z) is the beam radius at position z . Since the wavefronts are planar

at the beam waist, the radius of curvature is infinite, and the q-parameter becomes

purely imaginary.

The complex beam amplitude U(~r) is (compare [14], p. 77)

U(~r) = C0

W0

W (z)
e
− x2+y2

W2(z) e
−i(kz−k x

2+y2

2R(z)
+tan−1 z

z0
)
, (1.11)
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Figure 1.2: Shape of the Gaussian beams intensity I(ρ, 0) for a wave propagating
in z-direction, in the plane z = 0 : I(ρ, 0) ∼ e−(x2+y2). Plotted in arbitrary units.
Additionally, the projection onto the x- and y-plane is shown.

with a new constant C0 = C1

iz0
. It is given here for the purpose of completeness.

The meaning of the newly introduced quantities will be clear in the subsequent. The

phase of a Gaussian beam differs from that of a plane wave, which would be kz . Ac-

cording to (1.11), the phase of a Gaussian beam is given by kz + k x
2+y2

2R(z)
− tan−1 z

z0
.

Herein, ζ(z) = tan−1 z
z0

is known as the Gouy-phase (see [14], p. 81).

Referring to (1.5), the intensity of a Gaussian beam is obtained by taking the ab-

solute square of the complex amplitude U(~r), i.e. I(~r) = |U(r)|2, which leads to

(compare [14], p. 79)

I(ρ, z) =
2P

πW 2(z)
e
− 2ρ2

W2(z) . (1.12)

It is plotted for z = 0 in figure 1.2. We have used polar coordinates due to the radial

symmetry, and introduced ρ =
√
x2 + y 2 and the power in the beam

P =
1

2
I0W

2
0 π, (1.13)

with I0 = |C0|2. Equation (1.13) is obtained by integrating the intensity over any of

the transverse planes at a position z = const (compare [14], p. 78). As one can see,

the spatial intensity profile, in a perpendicular plane with respect to the direction of

propagation, is of a Gaussian shape, which explains the origin of its denomination.

From equation (1.12) one concludes, that the beam intensity not only varies in radial

direction with ρ but also in z-direction along the axis.

Consequently, the properties of a Gaussian beam can be summarized as follows (com-

pare with figure 1.3): the beam power is concentrated along the beam axis. The
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distribution of its intensity in any transverse plane is given by a symmetric Gaussian

function, centered at the beam axis, where the intensity is a maximum. At the beam

waist the diameter of the beam is a minimum and becomes larger with increasing

distance from the waist, which means a diverging beam shape from the center into

both directions along the optical axis. This leads to a lowering of the beam center

intensity along the axis. The wavefronts of a Gaussian beam are planar at the beam

waist and become spherical in the far field, hence, they are gradually curved in the

near field, and almost planar in the far field.

For a Gaussian beam (see figure 1.3) with its waist located at z = 0, the beam

width, i.e. the radius, is given by

W (z) = W0

√
1 +

z2

z2
0

, (1.14)

with the radius W0 at the beam waist (z = 0)

W0 =

√
λz0

π
. (1.15)

Equation (1.15) describes the laser beams minimal beam waist diameter 2W0, which

is sometimes denoted as the spot-size. By rearrangement of equation (1.15), one

Figure 1.3: Gaussian beam with its envelope ±W (z) and calculated curved wave-
fronts R(z). The beam waist radius W0 is located at z = 0, the Rayleigh range 2z0

is denoted and the corresponding waist radii are shown.
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obtains z0, the Rayleigh range of a Gaussian beam (1.16)

z0 =
πW 2

0

λ
. (1.16)

Hence, for a given wavelength, a Gaussian beam is completely characterized by defin-

ing either the waist size W0 or the Rayleigh range z0. The radius of curvature (RoC)

of the wavefronts is

R(z) = z +
z2

0

z
, (1.17)

which is infinite at the waist (z = 0) and in the far field (z →∞) with planar wave-

fronts. The minimum of the radius of curvature is located at a distance z0, i.e. the

Rayleigh range with R(z0) = 2z0.

The divergence angle θ0 of a Gaussian beam is described by

θ0 =
λ

πW0

. (1.18)

This equation is of fundamental importance and states that for a certain wavelength

the angle of divergence of a Gaussian beam is defined by the spot-size and vice versa.

Lowering the spot-size will therefore result in a higher beam divergence, while increas-

ing the spot-size would lower the beam divergence. This circumstance is utilized if

it is the aim to focus a laser beam to the smallest spot-size possible. In a first step

the beam is widened up by a lens to get a low beam divergence (beam expander);

the resulting rays are almost parallel and can then be focused into the focal point of

a second lens to produce the smallest spot-size possible, limited by wave-diffraction

only.

To calculate the beam-propagation of a Gaussian beam through optical components

or surfaces the ABCD-law (2.1), in terms of paraxial approximation, can be applied

q2 =
Aq1 + B

Cq1 +D
. (1.19)

In this equation the incident beam is characterized by the complex beam-parameter

q1, and is transformed by the matrix-elements of a certain ABCD-matrix (ray-transfer

matrix) into the beam-parameter q2. In the following it is assumed that a light ray

travels from left to right, i.e. in the positive x-direction. Furthermore, one should

always stay within the general convention, that all radii of optical boundary-surfaces
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are counted as negative if the center of the corresponding circle lies to the left and

vice versa ([16], p. 271). The ABCD-Matrix4 of e.g. a thin lens with focal length f

is (
1 0

−1/f 1

)
.

The ABCD-matrix of space propagation in a medium with an index of refraction n

over the distance d is given by (
1 d/n

0 1

)
.

The refraction of a paraxial ray passing through a spherical surface with radius R,

separating two materials with refractive indices n1 and n2, is described by (compare

[16], p. 288) (
1 0

n1−n2

R
1

)

If optical components are cascaded in a beam-path (e.g. lenses, mirrors, boundary

surfaces between different media etc.) the resulting ABCD-matrix is

MABCD = MNMN−1...M2M1, (1.20)

wherein M1 represents the ray-transfer matrix of the first optical component in the

beam-path, andMN the last one, respectively. These equations will be used in section

2.3.2 to calculate the parameters for a mode-matching lens in order to optimize the

power transfer from the laser beam into the optical resonator.

1.2.3 Optical Resonators

An optical resonator can store light of a certain frequency and for a certain time, de-

pending on its physical properties. There exist several types of optical resonators; the

basic configuration consists of two plane-parallel mirrors called Fabry-Pérot etalon

(or planar-mirror resonator). One major disadvantage of it arises, when the angle

of incidence is slightly inclined or the mirrors are not perfectly parallel aligned; the

rays are then likely to escape from the resonator. Another configuration that uses

spherically curved mirrors is called spherical mirror resonator. Here the multiple beam

4Reflection from a spherical mirror with radius R:
(

1 0

2/R 1

)
, R < 0: concave, R > 0: convex
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reflections are easier held in place by the focusing effect of the curved mirrors, which

makes a cavity of this type less critical to mis-alignment. There are even more types

of resonators, e.g. a combination of one flat and one curved mirror or more than

two mirrors forming a ring resonator. In the following the Fabry-Pérot etalon is used

as a starting point, and then the equations for the spherical mirror resonator are

described, since the latter was employed in this work.

If one considers a light wave propagating in z-direction with an electrical field am-

plitude U0

U(~r , t) = U0e
ik(z−ct), (1.21)

and perpendicular incidence on the first (or entrance) mirror of a Fabry-Pérot res-

onator (figure 1.4), one part of the beam intensity gets reflected, and another part

gets transmitted. The amount of light that enters the cavity travels further on to

the second mirror, and experiences another reflection and transmission. The light

wave, that is reflected back from the second mirror, gets then reflected and trans-

mitted again at the first mirror, and so forth. This multiple bouncing of interfering

light waves is responsible for the amplification of optical power within the cavity but

only when the resonance condition is met, which is, when the light waves interfere

constructively within the cavity; that is only possible if the cavity’s length L is an

integer number q times the half wavelength λ of the incident light wave, i.e.

L = q
λ

2
. (1.22)

If the mirrors are not perfectly reflecting, which is the case for any real mirror, this

resonance-condition is loosened up with decreasing mirror-reflectivity. In this case,

there will be some wavelength-interval where the cavity will be resonant on. That

leads to the term finesse of an optical resonator (see equation 1.31).

To derive the resonance-condition presented above one has to solve the Helmholtz

equation (1.23) [see [14], p. 368].

[∇2 + k2]U(~r) = 0 with k =
2πν

c
=
ω

c
(1.23)

Herein U(~r) is the transverse component of the field amplitude of the electric field.

The Helmholtz equation (1.23) can be obtained from the wave equation (1.2) by
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Figure 1.4: (a) Planar mirror resonator, (b) spherical mirror resonator

separating a generic wavefunction u(~r , t) into a product of the form

u(~r , t) = U(~r)T (t) (1.24)

in order to reduce the complexity of this partial differential equation, and to end up

with a time-independent equation for the electric field-amplitude. Putting (1.24)

into the wave-equation (1.2) one obtains

∇2U(~r)

U(~r)
=

1

c2T (t)

∂2T (t)

∂t2
(1.25)

Since the left hand-side of equation (1.25) only depends on the position ~r , and the

right hand-side only depends on the time t, it must be equal to a constant number

that can be set −k2 without loss of generality, therefore ending up with equation

(1.23).

Introducing boundary-conditions for the electric field amplitude U(~r) at the lossless

mirror surfaces, assuming that the first mirror is located at z = 0, and the second

mirror at z = L, respectively

U(~r) = 0 at z = 0 and z = L (1.26)

so that the Helmholtz-equation can be solved for kL = nπ; that represents a standing

wave (1.27)

U(~r) = A sin(kz) (1.27)
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with a constant amplitude A. The boundary-conditions (1.26) require q to be a

whole number

kq = q
π

L
for q = 1, 2, ... (1.28)

so that on resonance the corresponding frequencies are restricted to

νq = q
c

2L
for q = 1, 2, ... (1.29)

wherein q is denominated as the mode number. The distance of two adjacent reso-

nances in frequency space νFSR is called the free spectral range (FSR) of an optical

resonator

νFSR =
c

2L
. (1.30)

This expression shows that the mode-spacing decreases with increasing cavity length,

i.e. an increase of the mode-density. The formulas which describe optical resonators

following below, tightly follow reference [14] (Chapter 10, Resonator Optics). The
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Figure 1.5: Transmission of an optical resonator for different values of mirror re-
flectivity: R = 0.7, 0.8, 0.9, 0.99 and 0.9998; the narrowing of the linewidth with
increasing reflectivity is illustrated

finesse F of an optical cavity is given by

F =
π
√
R

1− R (1.31)
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with the mirror reflectivity R. As mentioned above, the sharp lines of resonances

that are separated by the FSR get widened up if losses are introduced by the mirrors;

the linewidth broadening arises from a phase shift of two successive reflections of a

wave, generated in every single round-trip (see [14], p. 371), and then consequently,

by superposition of these phase-shifted waves; the amplitude is attenuated in each

reflection, since the reflection coefficient is R < 1.0; the resulting characteristic is

plotted5 in figure 1.5, and is given by the Airy-function (e.g. see [16], p. 312); the

full-width at half maximum (FWHM) of one resonance-peak is given by

∆ν ≈
νFSR

F . (1.32)

Basically there are two sources of losses: imperfect reflection at the mirrors (including

fraction losses), and losses αs due to absorption and scattering within the cavity

medium, which can in sum be described by an effective overall loss coefficient αr
(compare [14], p. 374):

αr = αs +
1

2L
ln

1

R2
≈ αs +

1− R
L

. (1.33)

The approximation-sign in equation (1.33) refers to identical mirror reflectivities and

high-reflectivity mirrors (R1 = R2 = R ≈ 1). The finesse F can now also be written

in terms of the loss coefficient αr :

F ≈
π

αrL
. (1.34)

In a real system, losses will always lower the finesse of a resonator due to possible

presence of absorbing media or reflection losses introduced by imperfect or unclean

mirror surfaces. One way to examine the real finesse of a system would be to deter-

mine the ratio of νFSR/∆ν from equation (1.32) by actual measurement.

The lifetime τp of a photon can be interpreted in terms of a time-frequency un-

certainty relation as

τp =
1

cαr
=

1

2π ∆ν
, (1.35)

5In this vector-graphic one may zoom in and take a view on the narrowest linewidth for R = 0.9998,
which applies to the high-reflectivity mirrors employed in this work
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leading to the linewidth broadening mentioned above. τp is also called cavity ring-

down time ([17], p. 2)6. If a light wave incident on a resonating optical resonator

is blocked, the light intensity drops to 1/e after the time τp. Conversely, if a light

wave with a frequency that matches the resonance frequency of the resonator is

unblocked, the intensity builds up to (1 − 1/e) after the time τp. The ring-down

time can also be interpreted in terms of a response-time of a cavity, averaging over

any intensity fluctuations of the incident beam, occurring within that time-span.

The intensity build-up within a resonant optical cavity, as a consequence of multiple

reflections and ongoing constructive interference, leads to an intra-cavity intensity

of (compare [18], eqn. 4.78)

Iint =
1

(1− R)

I0

1 + (2F/π)2 sin2(πν/νFSR)
. (1.36)

with the intensity of the incident wave I0 = |U0|2. This intra-cavity intensity is

1/T = 1/(1 − R) times larger than the intensity that is transmitted out of the

resonator. The build-up factor gbuild-up that is generated within an optical resonator7

with no losses is therefore given by

gbuild-up =
1

1− R. (1.37)

Considering the law of energy conservation, the transmitted intensity of an optical

resonator with no losses, nor any internal gain, in a steady state has to be equal

to the input intensity; otherwise the intra-cavity field would diverge in an unphysical

way.

Spherical Mirror Resonator Up to now considerations have been in the picture of

the planar mirror resonator. The spherical mirror resonator introduces more com-

plexity and thereby some interesting phenomena such as Gaussian modes and higher

order modes. The characterizing property of a spherical mirror resonator is based

on the curvature of the mirrors. Not every combination of mirror radii of curvature

ri and resonator lengths L leads to a usable and efficient resonator. The confine-

ment condition for a stable spherical mirror resonator can be derived by use of the
6The numeric value of the cavity ring-down or decay time is basically the same as the ring-up or

build-up time - but one has to distinguish the different context
7According to a mirror reflectivity of 0.9998, this intensity build-up would be given by a factor of

5000.
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ray-transfer matrix formalism (compare [14], p. 379) to

0 ≤
(

1 +
L

r1

)(
1 +

L

r2

)
≤ 1, (1.38)

with the g-parameters g1 and g2, which are given by8

gn =
(

1 +
L

rn

)
n = 1, 2. (1.39)

All combinations that do not comply with condition (1.38) would lead to an unstable

resonator with increased losses. The waist-size (radius) that builds up within a

spherical resonator can now be expressed with these g-parameters (see [17], p. 31):

W0 =

√
Lλ

π

[ g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2

]1/4

, (1.40)

which is an important quantity for mode-matching (see section 1.2.4).

So far only the fundamental modes were considered, i.e. the Gaussian TEMmn →
TEM00 modes9. The paraxial Helmholtz equation also provides solutions, known as

the Hermite-Gaussian beams (see [14], p. 94), based on Hermite-Gaussian polyno-

mials that are characterized by the mode numbers (m, n) and lead to certain patterns

of the beam intensity. Nevertheless, these modes can be part of a stable resonator

configuration, since the wavefronts are of the same paraboloidal form as for the

Gaussian beam. However, the resonance frequencies of these modes differ from the

one provided by the Gaussian mode (see [14], p. 387). In order to maximize the

power build-up within an optical resonator at a certain resonance frequency, it is

therefore appreciable to select only modes with a single resonance frequency. This

is done by mode-matching, which leads to the Gaussian TEM00 modes.

1.2.4 Mode Matching of Gaussian Beams

Improper alignment or a mismatch of the beam waist size of a Gaussian beam, that

is incident on a stable spherical mirror resonator configuration, leads to off-axis spa-

tial eigenmodes, and therefore not only to fundamental Gaussian modes within the

resonator (TEM00) but also to higher order modes (TEMmn, m, n > 1) [22]. The

8The radius rn has to be taken negative for a concave mirror
9TEM (transverse electro magnetic). The mode numbers m, n (corresponding to the transverse

beam directions x, y) indicate the respective order of the underlying Hermite-polynomials
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first is up to practical beam alignment technique, which is described in section 2.3,

while the latter has to be dealt with in advance by some calculation, and will be the

object in the following.

In order to optimize the power that can be coupled from a laser beam into an optical

resonator, and to excite only the fundamental TEM00 Gaussian modes, it is indis-

pensable to match the laser beam waist to the one that evolves within the resonator.

To show this in practice a detailed mode-matching calculation will be carried out in

chapter 2.3.2, while the theoretical background is addressed here.

Consider an optical resonator consisting of two spherical mirrors and a laser-source

emitting a beam with a Gaussian profile. As presented in section 1.2.2, a Gaussian

beam is fully characterized by its wavelength and waist-size. Another certain property

of a Gaussian beam is the radius of curvature of the wavefronts given by equation

(1.41) or equivalently by (1.17). Here the coordinate in propagation direction z is

measured with respect to the position of the waist, where z = 0.

R(z) = z

(
1 +

(
πW 2

0

λz

)2
)

(1.41)

It might be intuitively clear that if the diameter of an incident laser beam is much

larger than a resonator mirror’s diameter, losses will be introduced; but another

critical parameter is the radius of curvature of the wave-fronts of a Gaussian beam,

in comparison to the radius of a curved cavity mirror. Hence, the aim of a mode-

matching calculation is to match the beam waist size that evolves within an optical

resonator to that of the laser beam at the cavity’s waist position. As one has seen

above, the waist that evolves within a cavity depends on the radius of the curved

mirrors and the cavity length (see equation 1.40). Equivalently speaking, one could

say that the aim of a mode-matching calculation is to fit the radius of curvature of

the beam to that of the curved cavity mirror at the boundary surface. That both of

these objectives are one and the same follows from the fact that a Gaussian beam

is fully characterized by its waist-size (for a given wavelength).

One possible mathematical approach to manage this calculation is using the Gaussian

q-parameter formalism in combination with the ray-transfer matrix formalism (see

equation 2.1). First, the beam waist diameter W1 of the incident laser beam and

its position zW1 has to be determined (see figure 1.6). This leads to the complex
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Figure 1.6: Mode-matching a laser beam to an optical resonator

q-parameter q1, which is purely imaginary at the beam waist (where RoC → ∞).

In most cases the beam waist size and position will be measured experimentally,

since this is the most accurate method. Alternatively one could calculate these

parameters, but this would be effortful and time-consuming. Moreover, the results

could be inaccurate because of the underlying tolerances of used components (lenses,

pinholes, etc.) and due to an uncertainty in lens positioning. The beam waist within

the cavity can now be calculated with equation (1.40), leading to the complex q-

parameter q2, which is again purely imaginary at the cavity’s beam waist (RoC→∞).

Putting q1 and q2 into (2.1) and using a certain ABCD-Matrix that describes the

entire beam propagation as follows: starting from a beam waist, passing the mode-

matching lens, passing the entrance cavity-mirror and finally arrives at the waist of

the cavity. This gives an equation that has to be solved for the unknown distances

d1 and d2, which describe the distance from the waist W1 of the incident beam to

the mode-matching lens, and from this position to the entrance mirror of the cavity.

1.3 Pound-Drever-Hall (PDH) Laser Frequency Sta-
bilization

The frequency stability of a tunable laser can be improved by use of the PDH-

technique [20]. The basic idea of this method is to detect the reflected signal from

a Fabry-Pérot cavity, and to control the laser frequency by an electronic feedback

loop to hold the power that is reflected from the cavity at zero. This is possible be-
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cause the optical back-reflection of a Fabry-Pérot resonator vanishes on resonance.

The cavity resonance acts as a frequency-reference for the laser source. The PDH-

technique is not only restricted to optical applications; it can be also realized with

purely electrical components by use of RF-equipment [21]. E.D. Black has given an

excellent introduction to this technique [19], which will be followed tightly in this

section.

In the PDH-technique (see figure 1.7) the laser frequency (or equivalently the phase)

is modulated with a local oscillator and a Pockels cell or electro-optic modulator to

produce sidebands on the carrier signal. This carrier is given by the emission wave-

length of the laser source. The laser beam is back-reflected from the optical resonator

and detected with a high-speed photo-detector. On resonance this signal vanishes.

However, out of resonance the sidebands can be observed, oscillating at the modu-

lation frequency. Since these sideband waves are oscillating at a frequency that does

not match the carrier frequency, the sidebands are totally reflected from the cavity.

As one will see, these sidebands carry some phase-information of the position of the

carrier wave in frequency space. That offers the possibility to distinguish whether

the carrier is above or below resonance. The photo-detector signal picked up from

the back-reflection is mixed10 with the modulation signal to generate an error signal

that has opposing signs above and below resonance. It is this signal that can be fed

back to the laser source after some low-pass filtering to hold the cavity on resonance

and to lock the laser frequency.

The primary aim in this work was to generate an intensity build-up within the res-

onator providing some enhancement of detection sensitivity for an eventual spec-

troscopic application (e.g. applications could be: cavity enhanced absorption spec-

troscopy (CEAS), cavity ring-down spectroscopy (CRDS), or intra-cavity quartz en-

hanced photoacoustic spectroscopy (I-QEPAS)). In a different application a stable

laser frequency might be the primary aim. Of course both appears at the same time,

and is a consequence of constructive interference of waves inside the resonator.

As shown in section 1.2.3 light can only pass an optical resonator if the frequency

of an electromagnetic wave is an integer number of the free spectral range. The

transmission of light is maximized if this condition is met. This leads to periodic
10Forming the product of the inputs
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Figure 1.7: Basic setup of the PDH-system, based on [19]

transmission and no reflection in frequency space every free spectral range. Stabi-

lizing the frequency of a laser could also be achieved by detecting the signal that is

transmitted through the resonator; but in this case it is unknown if fluctuations of

the detected signal are due to frequency drift or intensity changes of the laser beam.

In order to decouple these two quantities, Drever et al. [20] suggested to measure

the reflected signal.

The reflected intensity of a laser beam from a Fabry-Pérot resonator has the same

periodicity as the transmission (consider T + R = 1). It is symmetric in the vicinity

of resonance, as shown in figure 1.8, leading to the fact that the value of the re-

flected power alone provides no information whether the laser frequency is below or

above resonance, as one can see from the following: assume that the momentaneous

laser frequency is slightly above resonance. If the frequency increases, the reflected

power will also increase. Otherwise, if the frequency decreases, the reflected power

will decrease. Below resonance this situation is inversed. However, the derivative

of the reflected power provides the information needed. A positive change of the

laser frequency above resonance will increase the reflected power, whereas below

resonance, increasing the laser frequency will decrease the reflected power. In the
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PDH-technique though this information is utilized by the phase of the reflected signal

as will be shown in the subsequent.

If one considers an incident wave of frequency ω arriving at the resonator Einc =

E0e
iωt and a reflected wave Eref = E1e

iωt one can write the reflection coefficient

of a lossless symmetric Fabry-Pérot cavity (see [19], p. 81), which is given by the

amplitude-ratio of the incident and the reflected electromagnetic wave

F (ω) =
Eref

Einc
=
r(e

i ω
∆νFSR − 1)

1− r 2e
i ω

∆νFSR

(1.42)

with the amplitude reflection coefficient of the mirrors r . The angular frequency of

the laser, ω = 2πν, will be the carrier11 frequency in the discussion following below.

A plot of the squared absolute value of the reflection coefficient |F (ω)|2 is shown in

figure 1.8. For a monochromatic wave this quantity is equal to the reflected power.

A mirror reflectivity of 0.9 was chosen to better visualize the characteristic. The

phase of the reflection coefficient, given by arg(F (ω)) = arctan( Im(F (ω))
Re(F (ω))

), is shown

in figure 1.9. It has a discontinuity on resonance and opposing signs below and above

resonance, which is crucial for the PDH-technique.

ωres

Frequency ω

1

Reflection Coefficient |F (ω ) 2

Figure 1.8: Reflection coefficient in the vicinity of resonance

The reflected beam is the sum of two beams. One part is reflected instantaneously,

and another one is leaking out of the cavity. Exactly on resonance, those two beams

interfere destructively and the signal vanishes. To make use of the phase information

in the reflection coefficient, the PDH-technique is based on frequency modulation (or

11The carrier frequency ω = 2πc/λ ≈ 4.104× 1014 Hz is given by the QCL emission wavelength,
which is λ = 4.59 µm for the employed QCL in this work.
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Figure 1.9: Phase of the reflection coefficient in the vicinity of resonance
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Figure 1.10: Reflection coefficient: evenly spacing in frequency space, separated by
the FSR
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equivalently phase modulation). If the laser frequency is modulated by an oscillator

with a modulation frequency Ω and modulation depth β described by

Einc = E0e
i(ωt+βsin(Ωt)), (1.43)

the incident wave12 can be approximated using a Taylor-series expansion or alter-

natively, as in [19], Bessel functions Ji(β) of order i . The resulting wave can be

written

Einc = E0[J0(β)e iωt + J1(β)e i(ω+Ω)t − J1(β)e i(ω−Ω)t ], (1.44)

and shows the presence of three waves: a carrier wave13 oscillating with ω, and two

sidebands14 oscillating with ω ± Ω. It will be the sidebands that provide the phase

information from the reflected signal.

To get a mathematical expression for the reflected signal, the incident modulated

wave from equation (1.44) has to be multiplied in each term by the reflection coef-

ficient evaluated at the corresponding frequency, leading to

Eref = E0[F (ω)J0(β)e iωt+F (ω+Ω)J1(β)e i(ω+Ω)t−F (ω−Ω)J1(β)e i(ω−Ω)t ]. (1.45)

Since the photo-detector can only measure the power in a laser beam, one has to

calculate Pref = |Eref|2 = E∗refEref, so that one ends up with the total reflected power

Pref (see [19], p. 82, eqn. 3.3) that arrives at the photo-detector

Pref =Pc|F (ω)|2 + Ps|F (ω + Ω)|2 + Ps|F (ω −Ω)|2

+ 2
√
PcPs(Re[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω −Ω)]cos(Ωt)

+ Im[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω −Ω)]sin(Ωt))

+ (2Ω terms)

(1.46)

The first three terms of equation (1.46) are constant for a given carrier frequency

ω and modulation frequency Ω, and therefore would only produce a DC signal on

the detector15. The expressions of interest are the cosine-term and the sine-term,

oscillating with the modulation frequency Ω. These terms contain the phase infor-
12The total power of the incident wave is given by P0 = |E0|2
13The power in the carrier is given by Pc = J2

0 (β)P0
14The power in one sideband is given by Ps = J2

1 (β)P0
15Technically it depends on the pre-amplifier of a photo-detector if a DC signal is visible. In most

cases it is not. This also applies to the utilized photo-detectors in this work.
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mation of the carrier wave. At high modulation frequencies, i.e. Ω � 2π∆νFSR
Finesse , only

the sine-term is important, and the cosine-term vanishes [19].

This signal is fed into one input of the mixer and multiplied by modulation-signal

that is fed into the second input. The product of two sinusoidal signals, that oscil-

late with different frequencies, is given by

sin(Ωt)sin(Ω′t) =
1

2
[cos[(Ω−Ω′)t]− cos[(Ω + Ω′)t]]. (1.47)

Therefore, if Ω = Ω′, and additionally, the phase of the modulated signal is manipu-

lated by the phase-shifter to match the phase of the detector signal, the output of

the mixer will contain a DC-part from cos[(Ω−Ω′)t], and a fast oscillating part from

cos[(Ω + Ω′)t]. Since the output-signal from the mixer is subsequently filtered by a

low-pass filter, only the DC-part remains, and one finally ends up with an appropriate

error-signal that can be fed back to the laser-source.

For high modulation frequency (as defined above) this error-signal [19] is given by

equation (1.48)

ε = 2
√
PcPs(Im[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω −Ω)] (1.48)

which is plotted in arbitrary units in figure (1.11). As one can see the reflected signal

ω+Ωω-Ω

Frequency ω

Error Signal ϵ

Figure 1.11: PDH error-signal

is zero on resonance16 (located at ω = 0) and has a steep slope around resonance

with opposing signs, which is the essence of the PDH-technique.

16The center of this signal where ω = 0 corresponds to any integer multiple of the FSR that is
added to the cavity’s resonance frequency
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Chapter 2

Experimental Setup and
Investigations

In this section the experimental setup is described, as well as the development of the

system throughout the course of this work. The mode linewidth of a high-finesse

optical resonator can be extremely narrow depending on the finesse and cavity length.

The need of a low noise laser system basically arises from this fact. It might be intu-

itively clear that any noise within the system could have adverse effects on the laser

signal, and consequently could lead to a broadening of the laser linewidth. As one will

see in the final chapter the laser linewidth is a very critical parameter when injecting

laser light into a high-finesse optical cavity, and is strongly influenced from noise.

Therefore, one of the major tasks in this work was the investigation of noise-sources

within the setup and the laboratory, as well as grounding and shielding measures

together with signal filtering.

The original setup from Drever et al. [20] was adopted with some suggestions of

Black [19], and applied to the domain of QCLs with todays offerings of the mid-IR

market. The technical equipment is described in section 2.2 to get an overview about

the used components. Hints and investigations that were made during the setup of

the system are included regarding these components. The laser beam alignment is

then described, as this might not always be straight-forward, especially when align-

ing the cavity mirrors. The mode-matching parameters are calculated in a separate

detailed section following in the subsequent. A short, theoretic section about the in-

fluence of some cavity parameters on the PDH error signal shall visualize some given

correlations. Different types of noise are described, and some counter-measures are
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proposed that were later applied in this work. The attained improvement of noise

performance is then presented before, in the end of this chapter, some experimental

approaches are described.

2.1 Basic Experimental Setup

The setup presented in section 1.3 Pound-Drever-Hall (PDH) Laser Frequency Sta-

bilization was adopted in a way that is visualized in figure 2.1. As to the author’s

knowledge and at the time of writing there was no electro-optic modulator operating

in the mid-IR commercially available. Therefore, the frequency modulation for gen-

erating the sidebands had to be fed directly into the laser driver. As turned out, this

had, from a noise performance point of view, adverse effects because additional noise

was introduced to the driver by this connection. Moreover, this lead to a different

approach than in the original setup: when the phase of the laser beam is modulated

with some electro-optic modulator the intensity of the beam is not influenced. This is

in contrast to the current-modulation applied in this work because the output power

of the laser depends on the current. If one adds a sinusoidal signal onto the carrier-

wave, for generating frequency modulation (FM), this leads to a periodic change of

the beam intensity which may have unwanted effects depending on the modulation

depth.

A more detailed drawing of the final PDH-setup is provided by figure 2.2. Here

the whole system is shown as it was built up in the lab. A photograph where most

of the used components are depicted is given in the Appendix. An optical bench

supported by an active suspension to attenuate vibrations was used. The single

components of the setup are described in detail in the following section 2.2 about

Technical Equipment. For practical purposes a right handed coordinate system shall

now be introduced: the laser beam direction is denoted as the z-direction. Transverse

directions are given by x and y. This means that the x-z plane is parallel to the bench.

The laser beam emitted by the CW-DFB-QCL was spatially filtered by a telescope

configuration, consisting of a 100 mm lens, a pinhole and a 40 mm lens. The beam

then propagated through the Faraday isolator, a polarizer and a wave-plate. After-

wards, the beam was deflected in the x-z plane with an adjustable gold-coated mirror,

passed through the 500 mm mode-matching lens and was again deflected in the x-z

plane by another gold-coated mirror. Finally, the beam hit the cavity entrance mirror.
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Figure 2.1: Basic schematic of the PDH-system adapted to the QCL requirements
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The detection of its back-reflection was achieved by a high-speed photo-detector.

The acquired signal was fed into the control electronics (main in), which internally

applied the signal processing, i.e. mixing, filtering and phase-shifting as described

in section 1.3. The QCL driver as well as the TEC controllers were powered by

batteries. The scan control and the modulation output of the electronics unit were

connected directly to the driver via some filtering circuits. All signal connections were

made up of shielded BNC cables and connectors, except for the connection between

TEC 1 and the QCL protection circuit, as well as the connection from the laser driver

to the QCL protection circuit. These connections were realized with triaxial cables

and connectors (cable: Belden 9222, connectors: Pomona). The cavity mirrors, the

40 mm lens, the pinhole (spatial filter), the 500 mm lens and the Faraday isolator

were mounted on linear micrometer stages with the possibility of full x-y-z adjust-

ment. In addition, the cavity mirrors were held by a kinematic mirror mount with

two tilt-able axes for aligning purposes. The two gold-coated mirrors were mounted

on kinematic mirror mounts, offering the possibility of perpendicular alignment of

the laser beam with respect to the cavity axis. During the setup the signal from

the photo-detector was investigated with an oscilloscope in the time-domain, and

with a spectrum analyzer in the frequency-domain. The latter was valuable for the

investigation of noise.

2.2 Technical Equipment

In this section the technical equipment is described in some detail. Therefore, if

reasonable, a few anticipations are made that will be treated in the sections following

below. This particularly applies to components that were involved in issues with

electronic noise.

Laser Source A continuous-wave distributed feedback quantum cascade laser (CW-

DFB-QCL, AdTech optics, model HHL-14-15) with a center-wavelength of 4.59 µm

and a maximum power output of 47.5 mW at 25 °C was utilized. The current wave-

length tuning factor was determined in a separate work to be −0.6 cm−1/40 mA,

which has good coincidence with the datasheet value of 30 nm/A. The temperature

wavelength tuning factor is 41 nm/K. The beam characteristics provided from the

manufacturer are summarized in the following table:
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optical planes lateral vertical unit

full beam waist 3.05 3.68 mm

beam waist location 1179.7 1651.4 mm

divergence angle 0.96 0.79 mrad

M2 (beam quality factor) 1.13 1.22 -

Laser Protection Circuit Quantum cascade lasers are very sensitive devices that

can easily be damaged or destroyed by electrostatic discharge (ESD), unallowable

high currents or temperatures, and reverse bias. In order to sustain the vitality of the

laser-source a protection circuit was built up with a special commercially available

protection diode (Lasorb), in combination with a transil-diode and a quartz-sand filled

fuse. The protection-diodes were placed in parallel to the QCL’s terminals in a reverse

direction. The fuse was placed within the positive supply line. To point out, there

might be a significant voltage-drop across fuses, due to their typical resistance of a

few ohms, which might be considered as an additional load for the laser-driver. This

particular circuit protected the laser from ESD-pulses, unallowable high currents and

reverse bias. The temperature was supervised and controlled by a thermo-electrical

controller (TEC) (see section 2.2). The unshielded protection circuit that was used

in the beginning, originated from a previous setup; it most likely picked up common

mode noise from switching elements and coils of a TEC that had also been previously

used; it was consequently substituted by a linear TEC later on in this work. Since

high-frequency (HF) noise from the environment and from the TEC strongly coupled

onto the laser-output signal via this path of the unshielded protection circuit, it was

shielded with a fully closed aluminum die-cast housing, and directly plugged onto the

pins of the QCL HHL-housing (high heat load) by a pin-connector. The housing

was equipped with three female triaxial-connectors. One to connect to the laser-

driver output, and two connections going to the TEC for the connection of a NTC

(negative temperature coefficient) sensor and the TEC current output. Finally, one

can say, it is a safe and low-noise approach to have a shielded housing for any laser

protection-circuit.

Thermo-Electrical Controller (TEC) Laser diodes as well as QCLs need active

cooling during operation. A TEC is capable of driving a Peltier-element by measuring

the temperature in the vicinity of the laser via, e.g. a NTC-sensor, and providing

PID (proportional integral derivative) control of a current that is fed into the Peltier-
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element by an electronic feedback loop to reach a specified temperature setpoint.

The initial setup included a TEC with noisy switching elements and coils. Obviously

the steep rise and fall time of the TEC-current signal coupled onto the laser signal;

it was directly visible with the photo-detector in a simple experiment. After replacing

this controller with a linear TEC (Wavelength Electronics, PTC2.5K-CH) this noise

source vanished. As from the datasheet, this particular TEC offers a long term

temperature stability of 0.002 K (24 h) and a short term temperature stability of

0.0012 K (1 h). It was connected to the HHL housing of the laser via the protection

circuit (triaxial-cable) and powered by a 24 V battery as a low-noise power supply. A

second, identical TEC was used to control the temperature of the laser housing.

Custom-Made Prototype of a Low-Noise CW-QCL Driver A custom-made laser

driver1 prototype was used from the start as a low-noise current source to operate the

QCL. It was based on 4-layer SMT board, and equipped with a modulation input and

a scan-input, which was a requirement for the use with the control electronics, i.e.

the frequency stabilizer (Digilock 110). This prototype was still under development

while this work was going on. The functionality and noise performance of this device

was of great importance for the success of this work. First, the performance of the

laser-driver was investigated with a 50 Ω power-resistor and a spectrum analyzer; this

particular value for the resistor was chosen to simulate an equivalent but resistive

load to the driver, as provided by the QCL, which is of capacitive [12] load. After safe

operation was approved, the laser driver was connected to the QCL. It was integrated

in a full aluminum die-cast housing for shielding purposes, equipped with a triaxial

connector for the connection to the QCL, and placed on top of the aluminum 19

inch rack containing the battery power supply. Finally, the development of this laser-

driver stopped because the person in charge left the institute. The device remained

in an early stage of development and was still suffering from some technical issues.

Therefore a commercial alternative had to be found.

Commercial Low-Noise CW-QCL Driver The QCL1000 manufactured by Wave-

length Electronics is a low-noise current source for driving a QCL. It features an

average noise current density of 2 nA/
√
Hz and a RMS noise current of 0.7 µARMS

in a 100 kHz bandwidth. This laser driver was employed in the ongoing work. The

results obtained are based on this device.
1Developed in a separate work at the Institute of Chemical Technologies and Analytics at Vienna

University of Technology; not published yet
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Battery Power Supplies Since it is a good strategy to diminish noise and ripple at

the source, the use of a battery power supply for the QCL was considered and built

up, serving as a low-noise and independent power source. A 19 inch full aluminum

rack provided a housing for two 24 V batteries. The laser driver had to be powered

with a symmetric power supply of +24/0/-24 V. In order to provide these voltages,

two rechargeable valve regulated lead acid batteries (each of 7 Ah power capacity),

suitable for an uninterruptible power supply, were connected in series. Two separate

charging devices were connected to each of the batteries to avoid the need of addi-

tional battery balancing that would have been necessary if a single charging device

with the double voltage had been used. A switch was mounted at the outside of the

housing to select between 3 states: charge, off and laser power on. A three-pole

main power connector with included line filter was attached on the backside of the

housing. This connection is intended to be only needed while charging the batter-

ies, and it should be disconnected during laser-operation in order to minimize noise.

Since usually battery voltage falls off with decreasing charge, and because the actual

voltage of the batteries was approximately 27.6 V at full charge, therefore exceeding

the electric power input specifications of the utilized driver, a heat-sinked voltage

regulator circuit was built up in order to not overload the laser driver (QCL 1000,

max. input voltage 25 V). An output voltage of 24 V was realized by use of voltage

regulators (LM317 for the positive supply line, LM337 for the negative supply line).

In a first approach only the laser driver was powered by batteries. To improve the

system noise performance the TEC was powered by a single 24 V battery as well,

and mounted in a separate 19 inch full aluminum rack.

Photo-Detectors For the detection of the back-reflected error signal a VIGO Sys-

tem detector (model PVMI-4TE-8) was used. It is a photovoltaic, multiple junction

MCT detector operating at a temperature of 194 K. It is equipped with an integrated

TEC and a pre-amplifier. The detector element has an active area of 1× 1 mm sep-

arated from the environment by a wedged BaF2-window. The pre-amplifier has a

low-cutoff frequency of 5 kHz and a high-cutoff frequency of 250 MHz. The specific

detectivity (±20% at λ = 8 µm) is D∗ = 1.5× 109 cm
√
Hz/W and the correspond-

ing output voltage responsitivity is 2.15 mV/W. The averaged output noise density

is 140 nA/
√
Hz.

The transmission signal of the cavity was investigated with a LN2-cooled MCT-

detector (Infrared Asscociates, model FTIR-16-2.00) that offers a higher detectivity
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of D∗ > 2.0 × 1010 cm
√
Hz/W and is able to detect signals from almost DC up to

multiple kHz.

Optical Isolator The optical isolator was placed between the laser and the res-

onator. The necessity of an optical isolator in the PDH setup is justified by protect-

ing the laser from destabilization or damage due to back-reflections from the cavity

mirrors. The functionality of the used isolator in this work is based on the Faraday-

effect: the plane of polarization of the incident laser beam is rotated by a strong

magnetic field from a permanent magnet after the beam has passed a vertical polar-

izer. After being rotated by the Faraday-rotator, a second polarizer (called analyzer)

only permits passing light in its main axis of polarization. Light that travels back-

wards through the optical isolator, first passes the analyzer and gets then rotated

again in the same direction as the incident wave. It is therefore completely canceled

out by the input polarizer leading to the diode-like behavior of an optical isolator.

After the beam leaves the isolator, the polarization axis is rotated clockwise by 45°

when looking in forward direction. The optical isolator used in the setup (eotech,

[32]) has a transmission of around 68 %, and offers an isolation of the reverse beam

intensity of around 34 dB at the according wavelength of 4600 nm.

Polarizer and Quarter Wave-Plate After passing the optical isolator the laser

beam is linearly polarized. A polarizer is an optical element that only permits the

passage of linear polarized light, while it attenuates waves of random or orthogonal

polarization. First the beam hits the polarizer, which is tilted horizontally in the plane

of the bench by 45° to operate as a beam-splitter for the back-reflected signal, and

to route it onto the photo-detector. The polarization axis of the polarizer therefore

has to be coincident with the output polarization of the beam after passing the

optical isolator. After passage of the polarizer, the beam hits the quarter wave-plate.

It generates circular polarization by an introduced phase shift to the polarization-

vector components of the incident field. This is achieved if the optical axis of the

quarter wave-plate is rotated by 45° with respect to the incident polarization. Other

rotation angles would lead to elliptic polarization. With now the beam being circularly

polarized it enters the cavity. After the beam returns from the cavity mirrors it still is

circularly polarized when it passes the quarter wave-plate; now the process is reversed,

and the beam gets linearly polarized again, ending up with orthogonal polarization

with respect to the polarizer’s axis. Consequently, the beam is attenuated by the
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polarizer, and the reflection from its surface is picked up with the photo detector.

To summarize that: the combination of the polarizer and the quarter wave-plate

works as a beam splitter and optical isolator. The mid-IR polarizer used in this work

was a holographic wire grid polarizer on a CaF2 substrate (Thorlabs). The mid-IR

quarter-waveplate (Altechna) is AR-coated on both sides; the center wavelength of

operation is 4500 nm, and offers a transmission coefficient of T ≈ 0.5 at 4600 nm.

Curved High-Reflectivity (HR) mid-IR Dielectrically Coated Mirrors The mir-

rors originating from CRD-optics [31] had a reflectivity of R = 0.9998, and usually

find their application in cavity ring-down spectroscopy (CRDS). The center wave-

length of maximum reflectivity was 4600 nm. The diameter was 0.8 inch at a

thickness of 0.635 cm. The radius of curvature was specified as 1 m. However, a

simple experiment uncovered that the actual radius of these mirrors was rather 6 m.

The curved side had an HR-coating, whereas the flat side has an AR-coating (anti

reflective). The bulk material was ZnSe, which has a refractive index of n = 2.431

at 4.59 µm wavelength [33]. Of course this high reflectivity is only reached if the

surface is not contaminated. Careful cleaning with lens tissue and acetone was done

before mounting the mirrors.

Mode-Matching Lens The lens for matching of the beam’s RoC to the cavity’s

RoC at the boundary surface, and consequent excitation of the resonators Gaussian

modes, was a conventional CaF2 plano-convex lens with a high transmission in the

mid-IR; the diameter was 25.4 mm and the focal length f = 500 mm. The calculation

of its required position in the beam path is carried out in section 2.3.2.

Electronics and Digital Control To control the laser frequency a commercially

available FPGA-based feedback control device, running a LabVIEW environment, was

used (Digilock 110, Toptica Photonics, [34]). It features 21-bit resolution for the

frequency scan control of the laser and offers different PDH modulation frequencies

(1.56 MHz to 25 MHz). Possible scan frequencies range from 0 − 104 Hz with a

triangular scanning ramp waveform. An integrated auto-lock mode based on two

fully configurable PID-controllers provided the PDH functionality needed. Some

modifications were made: the laser scan control of the Digilock 110 is designated

to be connected to a separately available module at the backplane (SC110, scan

control). The output at the front plate of the device only provided a scan resolution
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Figure 2.3: Passive electronic filters of 3rd order (a) LC low-pass (b) LC band-pass

of 14 bit. Therefore a standard DIN 96-pin connector was attached to the backplane

connection to get use of the full 21 bit resolution; the output pin for the scan control

(SC110 out, 21 bit) was soldered to a BNC cable, and connected to the analog input

of the laser driver.

Electronic Filters Due to the recognition of noise transmitted over the signal paths

between the electrical control unit (Digilock 110) and the laser driver electrical fil-

tering was necessary. Different approaches, covering active filters as well as passive

filters, finally led to the following choices: the signal path (BNC cable) between

the scan control output of the Digilock and the laser driver’s analog input was fil-

tered with a passive LC T-shape low-pass filter of 3rd order (figure 2.3 a) with a

cutoff-frequency (-3 dB) at 5 kHz. Additionally, open-able ferrite core rings for sup-

pression of electromagnetic interference (EMI) were attached on the BNC cables

for further noise improvement, showing effectivity especially in the higher frequency

domain above several MHz. The signal path between the Digilock (main out), for

the transmission of the modulation signal, was filtered with a LC T-shape band-pass

of 3rd order (figure 2.3 b) with a center frequency of 1.6 MHz and a band-pass gap

of 0.5 MHz. The components (capacitors and coils) were selected with focus on

low tolerances; in the case of coils the frequency response was taken into account to

effectively filter out higher frequency components, since coils usually show a lower

impedance at higher frequencies due to parasitic parallel capacitance. Each of the

filter circuits were soldered on a printed circuit board and mounted in a small fully en-

closed aluminum die-cast housing (shield) that had BNC-connectors attached. The

functionality of these filters was examined by a check of the filter response; the sig-

nal from a function generator was fed into the filter circuit, and the response was

measured with an oscilloscope.
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2.3 Laser Beam Alignment and Cavity Setup

The whole system was built up sequentially. First of all, the laser beam was aligned

parallel to the bench. This was done by measuring the height of the beam-output of

the laser with respect to the bench (105.0 mm) using an IR-CCD camera (Spiricon

Pyrocam III) that provided live-view of the lasers beam profile on a monitor screen.

It was compared to the lasers target point at the very end of the bench; the angular

shift was then corrected directly at the mounting of the laser source. The alignment

procedure described in the following in principle applies to every additional component

added to the beam path. The camera is placed in the beam-path further away from

the point where a new component shall be placed, and the position of the laser beam

targeting the CCD-chip of the camera is marked on the monitor screen. The new

optical component (e.g. lens, optical isolator, etc.) is then placed at a designated

position. It is moved in a transverse plane, and if necessary, tilted in a way to

pan the laser beam back onto the initial point on the monitor screen before the

component was added. This ensures the conservation of a strictly linear beam-

path after every additional component. To eliminate multiple reflections of the laser

beam between optical elements, and to avoid back-reflections into the laser-source,

every component was tilted slightly. This of course, was not applied to the cavity’s

mirrors. In order to appropriately fit the laser beam through the optical isolator,

without additional spatial attenuation by its aperture, a configuration of two lenses

was utilized; a plano-convex lens with f = 100 mm and another one with f = 40

mm were positioned in a telescope configuration to reduce the beam diameter for

this purpose. A pinhole with 300 µm diameter was placed at the overlapping focal

points of this lens-configuration in order to work as a spatial filter, and to reach an

almost perfect Gaussian beam profile. Subsequently the optical isolator was placed

in the beam-path, and it was ensured not to cut off the laser beam in its transverse

direction by the introduced aperture. The following element in the PDH setup was

a polarizer, working as a beam-splitter to route the back-reflected laser beam onto

the IR-detector. This was achieved by tilting the polarizer 45° in a plane parallel to

the bench with respect to the incident beam. Care was taken to rotate the polarizer

in a way to align the optical axis 45° with respect to the beam-axis because the

laser beam was polarized in the same direction after it passed the optical isolator.

As a next component the λ/4-wave-plate was placed; its optical axis was aligned

perpendicular to the bench in order to circularly polarize the incident beam. Because

of issues with the available space on the optical bench a gold-coated mirror was
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added as a next component to deflect the beam by 90° in the x-z plane further on

to the mode-matching lens. The mode-matching lens with 500 mm focal length was

placed at the calculated position on a x-y-z linear micrometer-stage; here again, as

for any other optical component, it was necessary to work with the IR-camera to align

the mode-matching lens in a way to compensate for misalignment in the transverse

direction. Another mirror was placed afterwards to deflect the beam once again

in order to guide it onto the cavity mirrors. Subsequently the cavity mirror being

farther away from the source was placed in the beam-path using a kinematic mirror

mount, which was tilt-able in two independent directions and attached on a fully x-y-

z adjustable linear slider to have superior control throughout the alignment process.

Specially customized adapter rings were manufactured in house to perfectly fit the

mirrors into the kinematic mirror mounts, providing the accuracy needed for aligning

the cavity mirrors. The mirror being farther away from the laser-source was aligned

by shifting the mirror in x-y direction so that the laser beam hit the center of the

curved mirror-surface. At this point it is crucial to have a reference for aligning both

cavity mirrors with respect to each other to achieve collinear back-reflection of the

beam, which is a necessary condition for the emergence of constructive interference.

Hence two adjustable iris diaphragms were added into the interspace between the

two mirror positions. The beam was aligned by altering the angular shift of the

beam with both gold-plated mirrors by means of their kinematic mountings to ensure

that the beam was passing linearly through both iris diaphragms. The aperture of

the iris diaphragm was continuously minimized for fine-adjustment of this alignment.

Then the reflected beam was visualized with the IR-camera, which was positioned

instead of (and at the usual position of) the photo-detector during the alignment

procedure; the x-y position of the beam targeting the CCD-chip was marked on the

monitor screen. Finally, the second mirror (front mirror) was added into the beam

path. Now the front mirror was tilted to bring the reflection back to coincidence

with the previously marked point on the monitor screen stemming from the cavity’s

rear mirror. After these steps the alignment process of the cavity was complete.

2.3.1 Cavity Parameters

The cavity parameters can be summarized as follows: the reflectivity of the mirrors

R = 0.9998 leads to a finesse of around F = 15706 (equation 1.31). The free

spectral range for the experimental standard cavity length of 1 m is around νFSR =

150 MHz (equation 1.30). The corresponding cavity mode linewidth ∆ν = 9543 Hz
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(equation 1.32). The cavity’s decay time (ring-up time, photon life-time) is around

τp = 16.7 µs (equation 1.35) and the waist radius W0 = 1557 µm (equation 1.40).

In figure 2.4 these parameters are summarized for different resonator lengths. Figure

FSR / Hz

0,05 2,997925e+09 8,339e-07 190854 751

0,10 1,498962e+09 1,668e-06 95427 893
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2,00 7,494811e+07 3,336e-05 4771 1807

2,50 5,995849e+07 4,170e-05 3817 1887

3,00 4,996541e+07 5,003e-05 3181 1948
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Figure 2.4: cavity parameters

2.5 (a) shows the influence of the resonator length on the ring-up time. As one

will see in the final chapter this is a very critical parameter for producing resonance.

For comparison a mirror reflectivity of 0.999 is shown. As one can see, the ring-up

time for a cavity with a lower finesse is decreased. This is a consequence of the

lower bounce number of the photons on average, before they leave the resonator.

In figure 2.5 (b) the linewidth is plotted in dependency of the resonator length for

two different mirror reflectivities. The linewidth decreases with increasing resonator

length. In general, the linewidth of a lower finesse cavity is larger, indicated by

the lower slope of the corresponding line. Plot 2.5 (a) and (b) have an inverse

relationship with respect to each other described by equation (1.35). It is worth

to mention that the cavity’s linewidth can be drastically broadened by reducing the

resonator length as one can see from figure 2.5 (b). Figure 2.6 (a) shows the cavity’s

beam waist radius according to equation (1.40); it is plotted for three different mirror

radii. The uppermost blue line indicates the realization in the experiments. One can

see that a decreased mirror radius of curvature causes in general a smaller beam
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Figure 2.5: Influence of resonator length L on (a) on ring-up time τp (b) cavity mode
linewidth ∆ν for two different mirror reflectivties
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Figure 2.6: (a) Influence of resonator length L on intra-cavity beam waist radius
W0 for three different mirror radii r , and in turn (b) influence of mirror radius r on
intra-cavity beam waist radius W0 for three different resonator lengths L

waist; this might be of interest for certain spectroscopic applications. Due to the

stability criterion from equation (1.38) the confinement condition 0 ≤ L ≤ 2|r | for a
symmetric resonator (i.e. equal mirror radii r1 = r2) can be recognized. The cavity’s

beam waist will be important in terms of mode-matching.

2.3.2 Mode-matching Calculation

Referring to section 1.2.4, mode-matching of an optical resonator by use of one lens

is shown in the following. For a proper calculation the position of the beam waist as

a starting point had to be known. The determination of the beam waist was achieved

by use of the IR-camera, and by support of its delivered software. The camera was

placed at a certain distance apart from the 40 mm lens (in figure 2.2) within them

beams z-direction. The 1/e2 value of the beam diameter2 was continuously mea-

sured, averaged and plotted in a live-chart; the lens was shifted in z-direction to find
2Where the beam-intensity of the center drops to 1/e2 ≈ 0.135
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Figure 2.7: Comparison of the evolving Gaussian beam for three different cavity
lengths L within the symmetric, spherical mirror resonator that has a mirror radius
of r = 6 m: L = 1 m was realized in experiments (mirrors at ±0.5 m), L = 3 m
corresponds to the concentric resonator (mirrors at ±1.5 m), L = 6 m corresponds
to the confocal resonator (mirrors at ±3 m). The dotted lines correspond to a virtual
beam envelope beyond the resonator length; the beam waist is located at the origin.

the minimal waist. Consequently, the beam waist is located in the x-y plane of the

CCD-chip’s camera. Obviously in this case the lens was moved to minimize the laser

waist diameter projected onto the CCD-chip. Therefore one can choose the position

of the beam waist in advance by appropriate prior positioning of the camera, which

is very convenient.

With the knowledge of the exact position and diameter of the beam waist the cal-

culation starts with free space propagation by the distance d1 in air with refractive

index n1, from the determined beam waist to the mode-matching lens, i.e.

M1 =

(
1 d1/n1

0 1

)
.

The convex mode-matching lens with focal length f is introduced by

M2 =

(
1 0

−1/f 1

)
.
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Again it follows free space propagation by the distance d2 in air with refractive index

n1, from the mode-matching lens to the entrance-mirror of the cavity, i.e.

M3 =

(
1 d2/n1

0 1

)
.

The following three matrices M4,M5,M6 describe the plane-concave cavity mirror

with radius R, refractive index of the ZnSe-mirror n2 and of air n1, and the mirror

thickness s.

The transition from free space through the flat entrance-surface of the cavity mirror

is described by the unity matrix

M4 =

(
1 0

n1−n2

R
1

)
≈

(
1 0

0 1

)
, for R→∞.

The space propagation within the cavity mirror, with refractive index n2, towards the

curved surface over the distance s, representing the mirror thickness, is described by

M5 =

(
1 s/n2

0 1

)
.

The refraction of the beam at the curved boundary surface of the mirror with radius

R is described by3

M4 =

(
1 0

n2−n1

R
1

)
.

Finally, the beam propagates in free space to the center of the optical resonator,

where the cavity’s beam waist is located, i.e.

M7 =

(
1 L/2

n1

0 1

)
.

The ray-transfer matrix of the total system is then

MABCD = M7M6M5M4M3M2M1 =

(
A B

C D

)

Since the resulting matrix is quite large, its explicit form shall only be given in the Ap-

pendix. The calculation was carried out by use of some computational mathematics
3One has to pay attention here to the reversed order of the refractive indices ni
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software. The code is also provided in the Appendix.

q2 =
Aq1 + B

Cq1 +D
(2.1)

Equation (2.1) has to be solved for the distances d1 and d2. However, only real

solutions of this complex equation are of physical relevance; by rearrangement of

equation (2.1) one obtains equation (2.2). This form motivates that real solutions

only exist, if the imaginary part vanishes

A

(
W1

W2

)2

−D − i
(
B

λ

πW 2
2

+ C
πW 2

1

λ

)
︸ ︷︷ ︸

=0

= 0. (2.2)

This leads to a system of two equations (2.3), which provides real solutions for d1

and d2 (compare [17], p. 286)

A−D
(
W2

W1

)2

= 0

B + C

(
πW2

λ

)2

= 0.

(2.3)

This procedure is iterative because not every combination of input parameters such

as incident waist size, focal length of the lens or cavity length leads to useful results;

negative solutions have to be dismissed, and in this case the input parameters have

to be changed.

For a measured incident waist radius of wi = 397.5 µm the table in figure 2.8 shows

some calculated distances d1 and d2 for a set of different cavity lengths4.

2.4 Influence of Cavity Parameters on the PDH Error
Signal

The influence of some cavity parameters, in particular the mirror reflectivity R, the

cavity length L, and the modulation frequency Ω, shall now be investigated with

some plots of the PDH error signal given by equation (1.48). The plot in figure

2.9 (a) corresponds to the actual values used in the experiment. As one can read

off from these plots by comparison, the error signal does not show the steep slope
4 L = 3000 mm corresponds to the concentric resonator, L = 6000 mm to the confocal resonator
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L / mm f / mm

100 500 700,0 1348,8 892,7
500 500 624,6 1137,8 1323,5

1000 500 606,4 790,7 1556,6
1500 500 601,6 521,3 1702,7
2000 500 601,6 314,1 1807,5
2500 500 603,9 150,3 1886,8
3000 500 607,4 16,4 1948,3

6000 500 -
6000 1000 1336,4 1584,4 2093,6

d
1
 / mm d

2
 / mm w

0
 / μm

not possible not possible

Figure 2.8: Mode-matching parameters (cavity length L, focal length of the mode-
matching lens f , calculated distances d1 and d2, cavity waist radius W0). “not pos-
sible” refers to non-real results.
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Figure 2.9: Influence of cavity parameters on the PDH error signal (arbitrary units)
around the resonance frequency for a modulation depth β = 1. (a) standard values
as realized in the experiments (b) in comparison with a lower mirror reflectivity of
0.99
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Figure 2.10: Influence of cavity parameters on the PDH error signal (arbitrary units)
around the resonance frequency for a modulation depth β = 1. (a) cavity length 5
cm (b) modulation frequency 6.25 MHz

around resonance, in the case of low mirror reflectivity or small cavity length. As

expected, the sidebands move out from the center of resonance for higher modulation

frequencies (figure 2.10 (b)).

2.5 Electrical Noise

A compact overview about noise and some of the appropriate countermeasures fol-

lows. As this is more of a practical kind of nature, and owed to the fact that the

requirement of noise investigation emerged lately during the course of this work, it

is included in the experimental part here.

When measuring small and constant electric signals one will soon discover the fact

that there are no absolutely smooth and constant, but instead fluctuating signals.

There exist several kinds of noise and a rather simple definition of noise in electric

systems could be the following:

“Noise is any electrical signal present in a circuit other than the desired

signal.” ([23], p.3)

This is of course somewhat generalizing, and basically one has to distinguish between

inherent electronic noise, in the form of random fluctuations, that occurs in e.g. re-

sistors or semiconductors, and noise that is introduced from the outside into a system

via some coupling path. Minimizing the first is up to low-noise design of electronic

parts and systems; the latter can be degraded by grounding and shielding single elec-

tronic components, sections or the whole system. In general a typical noise problem
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consists of some noise source, a coupling path and a receptor (compare [23], p. 30).

This motivates that several possibilities exist to reduce the noise at the receptor, i.e.

a sensitive electronic circuit that has to be protected: after tracking down the noise

source, which can be difficult, noise can be eliminated by a replacement of its source

or diminished by some shielding. If the coupling path can be influenced, then this

would be another possibility to reduce adverse electromagnetic interferences. Finally,

one can shield the receptor. However, it is the most effective strategy to eliminate

the emission of noise directly at the source. Prominent noise sources, especially in a

laboratory environment that electronic systems could be exposed to are e.g. motors,

switches, personal computers, switching-mode power supplies, and digital circuits

with low signal-rise/fall times (i.e. fast switching speeds).

The existing literature on noise, its reduction and electromagnetic compatibility,

opens a wide and complex field that is worth a closer look for any engineer, but for

the sake of compactness the author wants to reduce this here to a bare minimum.

The reader should keep in mind though, that the information presented in the fol-

lowing is strongly simplifying and incomplete. This applies especially to the theory

of grounding and shielding of electrical systems.

2.5.1 Inherent Electronic Noise

Thermal Noise It is also called Johnson-Nyquist noise and an in inherent property

of every electrical system. Its origin can be explained with quantum mechanics: when

the carriers of electrical charge propagate through a conductor (or resistor), they are

randomly scattered at the atoms of the bulk material. This leads to a random time-

varying signal which is zero on average. The thermal noise power depends linearly

on temperature and is given by equation (2.4).

P = 4kT∆f , (2.4)

where k is the Boltzmann constant (1.38 · 10−23 J/K), T the absolute temperature

(K) and ∆f the bandwidth (Hz) of the system. Equation (2.4) can be written in

terms of voltage, which leads to U =
√

4kT∆f R. This gives rise to the following

considerations in order to limit thermal noise: First, cooling or at least temperature

stabilization of a system, and second, taking care to separate the signal of interest

from frequency components that do not contribute to the measurement, but would
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introduce additional noise. Electronic filters can be applied to shape a signal in its

frequency domain; e.g. by using a band-pass or a low-pass filter. The distribution of

thermal noise power is uniform in frequency space for which the well known term of

“white noise” exists. In practice this means that the integrated noise power within a

certain frequency interval only depends on the width of that interval and not where

it is located in frequency space.

Other Types of Noise Shot noise is of “white” characteristic and an inherent

property of all conductors that occurs when charge carriers flow over a potential

barrier; it arises from the particle nature of the charge carriers and their random

motions e.g. the recombination of electrons and holes in semiconductors. It can be

quantified by (see [23], p. 338)

Ishot =
√

2eIDC∆f ,

where e is the electron charge, IDC the DC current and ∆f the bandwidth. It shows

that besides bandwidth, shot noise depends on the amount of DC current that flows

through a conductor.

Contact noise on the other hand, shows a 1/f characteristic (“pink”) and is caused

by imperfect electrical contact of two conductors. This leads to a fluctuation of

voltage due to the not well defined resistance of the contact that is traversed by

a current. It can be problematic at low frequencies (LF) or at DC due to its 1/f

characteristic.

This contact noise might be indeed a severe problem, if one considers sub-optimal

soldering joints or the aging of cables and BNC connectors.

Adding up Noise Sources When more than one uncorrelated noise sources are

present in a system one has to sum up the square of all contributing noise voltages,

because it is the power that is physically relevant:

UN =

√∑
i

U2
i .
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2.5.2 Grounding and Shielding for Noise-Improvement

Grounding One basically has to distinguish between earth ground and signal ground.

While the first is an action electricians set for providing safety to humans and living

things that are in contact with electric systems, the only meaning of the latter is that

of a return path or common connection for signals and currents. For consideration:

every electric circuit has to be a closed loop but the functionality of a circuit depends

not on whether there is an earth ground connection or not. In some cases the noise

of a system might be adversely influenced if it is connected to earth ground, as one

can see from the following: the earth ground system consist of long cables which

act as receiving antennas. It is therefore receptive for any kinds of noise through

capacitive and inductive coupling. In addition, the earth ground may be loaded with

noise currents from other electrical equipment. Therefore, in most cases, one should

avoid an earth ground connection, from a noise reduction point of view, which is not

always possible as one has to meet the safety regulations first. There exist several

grounding schemes that can be applied depending on the circumstances of a system.

For low frequencies (DC to 20 kHz) a single point ground can be used (see [23], p.

124). Here all return paths are connected in one and only one point, whereby these

connections can be made either in series or in parallel. If the connections are in series

(“daisy chain”), this leads to the following problematic situation: consider a system

of several points that shall be grounded; due to only one common return path for all

grounding points, the different path-lengths of the conductors introduce a different

impedance back to ground for each of the grounding points. If a certain, respective

current flows back out of each grounding point, the potential drop over the different

impedances leads to a cross coupling of the potentials between the grounding points.

The voltage drop over the impedance of one conductor section within the daisy chain

influences the grounding potentials of all the following elements. In other words: a

current that flows out of one grounding point directly influences the grounding po-

tential of the adjacent grounding point and so on. If this current is time-dependent

with some frequency ω, then the other grounding potentials that are connected will

oscillate at that same frequency. This can be avoided by a parallel configuration

of return-conductors, ending in the same single point. However, due to the large

inductance of ground-conductors, the single point grounding scheme does not work

at high frequencies (HF). A HF-current is suppressed by the increasing inductance

(consider the inductive reactance XL = ωL) of a wire. But since currents flow in

closed loops, another path opens that offers a low reactance (consider the capacitive
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reactance XC = 1/(ωC) ) at HF: capacitive coupling through the omnipresent stray

capacitance to ground, which effectively leads to a multi-point ground. Therefore at

higher frequencies a common ground-plane makes sense.

Shielding Since James Clerk Maxwell postulated his famous equations in the 19th

century everything about electrostatics, magnetostatics and electrodynamics is known.

For instance, a charge carrier is the source of a static electric field. If a charge car-

rier moves a magnetic field is generated in form of a closed loop. An oscillating

dipole radiates electromagnetic waves out into the space. Different field sources

that could introduce noise have to be treated differently, as one can see from the

following: a static electric field is easily shielded by a Faraday-cage i.e. an electrically

conducting enclosure. The electric field influences the free charge carriers of the

conductor to build up a field that exactly cancels the outer electric field, leading to

a field-free inner space of the enclosure (i.e. the shield). And this can be inverted:

a charge within a conducting enclosure will lead to no electric field at the outside

of the shield. Static magnetic fields, on the other hand, are hard to shield. One

has to use materials with high permeability like mu-metal to confine the magnetic

field lines (compare [23], p. 204). If the magnetic field is quasi-static, i.e. a slowly

varying field, then one essentially observes, according to Faraday’s law of induction,

the emergence of eddy-currents. These eddy-currents increase with frequency and

electric conductivity of the shield, and produce a magnetic field that compensates

the outer magnetic field. This effect becomes more and more effective at higher

frequency, explaining the functionality of an electromagnetic shield (compare [24],

p. 101-102). One should add that the impact of a magnetic field is most effectively

reduced by minimizing the area of the interaction loop, which is given by the total

area that is enclosed by a current of a circuit (compare [23], p. 67). This is of

course again a consequence of Faraday’s law of induction5.

Cable Shielding A cable that is unshielded or improperly shielded works as an effi-

cient receiving and emitting antenna, and it is therefore of great importance to pay

attention that shielded cables are used correctly. This involves the selection of the

appropriate cabling, as well as the proper shield termination, i.e. if - and at what

point - a shield has to be grounded or not. If one takes a look at a coaxial cable,

it is obvious that the outer shield provides two functions: first it works as a shield,

5As of reference ([16], p. 125) this is Uind = − d
dt

∫
~B · d ~A, with ~B the magnetic field, and d ~A the

infinitesimal surface vector element
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and second as a return path for signals. If a magnetic field emitted from some other

conductor (i.e. a noise source) induces a current into the shield, it is important to

ground the shield at both ends in order to conduct the currents that are induced

into the shield to ground. However, one can show (compare [23], p. 56) that the

currents in the shield induce a current in the center conductor due to the mutual

inductance between the shield and the center conductor. These currents cannot be

suppressed by any non-magnetic shield, and there exists a low-cutoff frequency for

any certain shield-configuration that is proportional to the shield resistance6 ([23],

p. 60, equation 2-26). In the case of the all too common RG-58 coaxial cable this

limit7 is at around 2 kHz (see [23], p. 62, table 2-1), providing that slowly varying

magnetic fields cannot be shielded, even if the shield is grounded at both ends ([23],

p. 62). If the magnetically induced shield currents are prevented from flowing in

the shield by not grounding the shield or grounding it only at one end, the magnetic

field shielding is useless above the low-cutoff frequency (compare [23], p. 64, figure

2-17), and the center conductor is completely unshielded against magnetic fields.

To summarize that: low impedance grounding of a coaxial cable at both ends pro-

vides good magnetic shielding above the low-cutoff frequency, but there is no way

to shield against static or LF magnetic fields below the low-cutoff frequency by use

of conductive non-magnetic shielding materials. To circumvent the lack of a coaxial

cable shielding against LF magnetic fields, one can use shielded twisted pairs instead

(compare [23], p. 88) because the twisted conductors protect against the coupling

of magnetic fields by their mutual inductance.

In the LF domain one usually terminates the shield of a coaxial cable on one end

(compare [23], p. 89). This eliminates the coupling of e.g. power-line noise (50/60

Hz) and possible ground-loops. However, in this case there is no shielding against HF

magnetic fields, and therefore the cable becomes an emitting and receiving antenna.

Additionally, if the shield that is terminated at one side of a housing is connected to

a circuits common, this HF-noise is coupled into the circuit. Therefore, one should

avoid making this connection, and instead terminate the cable shield at the enclosure
6Therefore a low shield resistance is of great importance, and one should bear in mind that this

resistance is the sum of all conductors that are connected to a grounded shield. Essentially this means
that the best conducting shield is useless against magnetic field shielding if it is terminated with a
high resistance

7Actually things are worse: one has to take approximately 5 times the cut-off frequency because
this would sufficiently exceed the 3 dB corner frequency. This means a 10 kHz low-cutoff frequency
for a RG-58 coaxial cable (see [23], p. 62, table 2-1)
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by the lowest impedance path possible (compare [23], p. 89).

For noise improvement in the HF-domain the shield connection is much more im-

portant than grounding. If the connection between two shielded housings is made

up by a shielded cable, the shield of the cable ideally should extend the shield of the

enclosure. To sustain the integrity of the whole shield, the cable shield has to be

connected on both ends of the cable, and additionally, have a good electrical contact

on 360° around the cable. Pigtail connections8 have to be avoided (compare [24], p.

383).

An interesting option in grounding a cable shield is offered when using a triaxial

cable. Its design provides two independent coaxial shields around the center conduc-

tor. The outer shield can then be connected to the conducting enclosures, providing

an extension of their shields, and therefore an effective shielding against HF-fields.

The inner coaxial shield can be used as a signal ground that is protected from exter-

nal HF-field coupling by the outer shield.

Finally, it shall be mentioned that one should also pay attention to the fact that

the lifetime of a cable with a braided shield will shorten if it is frequently moved. The

friction between the single filaments produces additional abrasion, which can approx-

imately shorten the lifetime down to a third. One of the most common sources of

failure, even of professional tailor-made cables with a braided shield, is the connec-

tion between the shield and the HF-connector. This connection is subject to strong

aging when stressed with frequent movement, and adversely alters the vitality of the

HF-shield (see [24], p. 371).

Grounding of a Shield Enclosure A shield that is completely closed, forming a

Faraday-cage, does not have to be grounded to be effective9. However, the shield

should be connected to the circuit common in order to prevent any differing potentials

between the circuit and the surrounding shield (compare [23], p. 296). In addition,

the earth-grounding of a shield effectively conducts away static electric charge that

would otherwise cumulate on the shield.
8Connection of the entire cable shield in only one point to the shield of the housing, and not

around the entire cable shield
9As mentioned above this still does not provide any protection against static or LF magnetic fields
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Filtering of HF-Noise using Ferrites Ferrites represent a practical and efficient

low-cost measure and introduce a large HF-impedance in a circuit, without producing

a noteworthy resistance at LF or DC (compare [23], p. 225). These filters are easily

attached on the outside of a wire or a coaxial-cable (snap on), and can provide

significant HF-noise filtering from around 1 MHz up in the GHz range (compare [23]

p. 226-227). One should note, that the use of multiple turns of a wire around

a ferrite core ring is a common practice, leading to an increase of the inductive

reactance. But one should consider that this also increases the capacitance between

the windings, and therefore degrades the HF capacitive reactance (compare [23], p.

228) and leads to a lower filtering efficiency at higher frequencies. In conclusion, one

should use several windings around a ferrite core if HF in the lower domain have to

be filtered, and up to one winding if the filter has to be effective in the HF-domain.

Furthermore, there exist several ferrite materials from different manufacturers, all of

them showing different impedance behavior as a function of frequency, which results

in a variety of HF-filtering performance. But one rule applies to all and shall not

be overseen: the longer a ferrite core, the larger its impedance, and the higher its

filtering capabilities. Moreover, ferrite cores not only act effective in reduction of

conducted noise but also in reducing the radiated emission (antenna) of a cable

(compare [23], p. 233).

2.6 System Noise Investigations and Countermeasures

At the beginning of the experimental part of this work the author was not aware of

the strong impact electronic noise can have on a laser output signal. This noise can

be understood as some unintended modulation that is applied on the laser emission.

Several noise sources where discovered in the setup and lab and consequently elimi-

nated, or in some case diminished by grounding and shielding-measures by using the

methods described above. For example, fully enclosed aluminum metal boxes served

as effective HF-shields for the protection of some electronic circuitry. For the stan-

dard connections shielded RG-58 or RG-174 coaxial cables with BNC, SMA or SMB

connectors were used. The whole system was built up on an optical bench, made

from massive steel. It served as a reasonable common ground plane as suggested

above, and should have provided a good capacitive coupling return path for noise

signals in the HF-domain. For safety reasons, the bench was connected to a recently

new installed lab earth ground of 26 mm cable diameter. A single point ground on top
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of the bench, where all ground connections of the components were linked together

on a polished copper plate, was established. The copper plate (10 × 10 cm) had a

direct low impedance contact to the optical table. The earth ground was connected

to its center. This approach should offer both, HF-grounding by the common ground

plane, and LF-grounding by the single point ground connections.

A spectrum analyzer10 came in as very useful tool for investigating the frequency

domain of signals, and for tracking down noise sources. An oscilloscope displays

electric signals in the time-domain. Triggering selects a wave of the possibly ex-

tensive noise spectrum. In comparison, a spectrum analyzer opens the view to the

frequency domain, and is capable of logarithmic visualization of the signal amplitudes,

therefore acquiring a larger dynamic range of signals. It provides simultaneous view

of noise-peaks located at different frequencies, detected in one frequency-sweep. A

typical measurement of the signal noise floor of the utilized photo-detector (Vigo)

was approximately -110 dBm at a resolution bandwidth of 1 kHz, whereas the small-

est voltage-scale adjustable on a common digital oscilloscope is in the 1 mV/div

region11, which makes e.g. a 3 dBm peak, occurring at a noise-floor of that size of

order invisible on an oscilloscope.

To overcome problems with different potentials between devices and grounding points,

and moreover, to improve the shielding, triaxial-cables were utilized for connecting

the laser-driver to the QCL. As mentioned in the preceding, in contrast to conven-

tional BNC-cables (as RG-58 or RG-174) triaxial-cables (e.g. Belden 9222) feature

an additional outer coaxial shield around the inner coaxial shield and the innermost

core wire. The literature suggests two reasons for using a double-shielded cable

([23], p. 93): first to increase the HF shielding effectiveness, and second, if low and

high frequency signals are transmitted over one and the same cable. This applies

to the current work, since the connection from the laser driver current output to

the QCL input carries a basic DC signal for the operation of the QCL, a slow scan

signal, which is of triangular waveform up to 100 Hz in frequency12, and additionally

the faster modulation signal with a frequency of at least 1.56 MHz to generate the

sidebands utilized in the PDH-technique.

10Agilent 4395A, 0-500 MHz
11For comparison: at 50 Ω termination e.g. -100 dBm equals 2,236 µVrms, -40 dBm equals 2,236

mVrms
12A frequency domain measurement showed Fourier-components up to approximately 5 kHz
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The connections between the TEC-housing and the QCL protection-circuit housing

were equipped with triaxial panel-mount connectors. In more detail, the TEC-current

connection, the NTC-sensor connection and the QCL current-input connection were

equipped with triaxial panel-mount connectors. The appropriate triaxial-cables were

tailor-made in house. As there were no triaxial panel-mount connectors with isolated

outer shield commercially available, the first approach was to craft the triaxial-cable

in a way that the outer shield was not connected; it has been isolated by PTFE foil

within the cable between the shield and the outer shield cable clamp. While at a

first glance this might be useful to isolate ground loops by avoiding direct electrical

contact (which was approved by a check of the shield conductivity) a more practical

view reveals a problem with this: any isolation of two conductors by an insulating

material introduces a certain amount of capacitance to the signal path; while this

might be useful in the LF domain, working as a break up for the circuit to avoid

ground-loops and different potentials, it might be a short circuit in the HF domain

due to the low impedance at high frequencies; this may lead to adverse noise effects

in the HF-domain, and sometimes to more noise than caused by ground-loops and

potential differences.

A solution to this dilemma can only be determined by trial and error, and conse-

quently going then for the lower noise approach. As Henry W. Ott writes in his book

about electromagnetic compatibility engineering, there is not only one solution to

solving a grounding problem, and two different engineers might come to different

solutions to a certain problem (compare [23], p. 123):

“Another factor to keep in mind is that grounding always involves com-

promise. All ground systems have advantages as well as disadvantages.

...grounding problems have more than one acceptable solution. There-

fore, although two different engineers often will come up with two dif-

ferent solutions to the same grounding problem, both solutions may be

acceptable.” ([23], p. 123)

A wider view in this context emphasizes that a certain noise problem might never

be entirely eliminated but instead a satisfying solution can be found, and, moreover,

this procedure is not always straight-forward.

Consequently the following approach was carried out: the outer shield of the triaxial

cables was electrically connected on both ends to the panel-mount triaxial-connectors
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outer shield; the inner shield served as a return path for the signals and was therefore

isolated from the involved enclosures.

The process of noise investigation and improvement was iterative, as shall be shown

by the following example: after eliminating the noise that was emitted from the tem-

perature controller, which was equipped with switching elements (most likely based

on pulse width modulation) and coils, by substituting it with a linear temperature

controller, the connection from the control electronics (Digilock) to the modulation

input of the laser-driver was investigated. Excessive noise showed up with a major

peak at 100 MHz (peak amplitude -65 dBm at a noise floor of -110 dBm (see figure

2.11), most likely coming from a clock-frequency from the internal electronic cir-

cuitry of the Digilock device13. If one takes a closer view on the spectrum in figure

2.11 it is clear that a very large amount of noise was introduced by this device. A

passive LC pass-band as an intermediate connection in a shielded aluminum case

with two BNC-connectors attached, in combination with multiple ferrite core rings

mounted on the outside of the coaxial-cables between the Digilock (main out) and

the modulation input of the laser-driver, was investigated to be an effective counter-

measure against this noise-source.

The connection between the laser-scan output of the Digilock (SC110 out) and

the analog input of the laser driver was observed to introduce most of the noise onto

the laser signal. First, a passive filter-approach failed, as there were still consider-

ably large peaks left in the frequency spectrum. A second approach used an active

RC low-pass filter, based on an operational amplifier circuit in a shielded aluminum

case, built as an intermediate filter with two BNC-connectors attached. It could

be investigated that this configuration attenuated the noise in the entire frequency

spectrum almost down to the floor (-110 dBm). However, it also had an unwanted

effect: the damping of a sinusoidal test signal was too large, and showed that this

approach was not practical. Consequently, the active filtering was again replaced,

this time with a LC low-pass filter with a cut-off frequency of 5 kHz. This partic-

ular value had to be chosen because of the frequency spectrum of the applied laser

scan. The scanning-waveform generated by the Digilock device is of a triangular

shape with a typical frequency of approximately 10 Hz. Hence, it contains a Fourier-

spectrum of higher order frequency components (harmonics), i.e. multiples of the

13Indeed, the datasheet revealed a 100 MHz FPGA clock frequency
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Figure 2.11: Noise power spectrum (dBm) in the range 0-250 Mhz, resolution band-
width 1 kHz. All measurements with averaged data acquisition (5x). The data
plotted in red color indicates the system without any countermeasures, whereas the
data plotted in green color shows the improved noise power spectrum after applying
specific countermeasures. SA: noise floor of spectrum analyzer, Det: noise floor of
detector. For a detailed description of configurations A, B, C refer to the text

10 Hz ground-frequency.

Laser Signal Noise Measurements For the purpose of these measurements the

optical setup was slightly modified; in fact in was simplified by placing the photo-

detector (Vigo) right after the optical isolator in the beam path (see figure 2.2). The

laser current was set to 220 mA at a TEC temperature setpoint of around 22°C.

The obtained results, i.e. the noise power spectra in dBm, are plotted in figure 2.11,

2.12, 2.13, and 2.14. For the measurement of the spectrum analyzer’s noise floor

the signal connection was removed from the analyzer input. The noise floor of the

photo-detector was measured by covering the detector-element.

Configuration A All cables without ferrites attached; triaxial cables from

laser to the laser driver, and from the TEC to the laser; no connections

between the laser driver and the control electronics unit (Digilock).
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Figure 2.12: Noise power spectrum (dBm) in the range 0-20 MHz, resolution band-
width 100 Hz. All measurements with averaged data acquisition (5x). The data
plotted in red color indicates the system without any countermeasures and turned on
PDH-electronics, whereas the data plotted in green color shows the improved noise
power spectrum after applying specific countermeasures. SA: noise floor of spectrum
analyzer, Det: noise floor of detector. For a detailed description of configurations
A, B, C refer to the text
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Figure 2.13: Noise power spectrum (dBm) in the range 0-100 kHz, resolution band-
width 10 Hz. All measurements with averaged data acquisition (5x). The data
plotted in red color indicates the system without any countermeasures and turned on
PDH-electronics, whereas the data plotted in green color shows the improved noise
power spectrum after applying specific countermeasures. SA: noise floor of spectrum
analyzer, Det: noise floor of detector. For a detailed description of configurations
A, B, C refer to the text
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Figure 2.14: Noise power spectrum (dBm) in the range 0-10 kHz, resolution band-
width 3 Hz. All measurements with averaged data acquisition (5x). Det: noise floor
of detector, for configurations A, B, C refer to the text

Configuration B Similar as in configuration A, but now with all elec-

trical connections between the Digilock and the laser driver.

Configuration C Similar as in configuration B, but now with all coun-

termeasures as described above: LC filters on both connections between

the Digilock and the laser driver (scan and modulation). Additionally,

ferrites were attached on the outside of the cables.

As one can see by comparison of figures 2.11 and 2.12 by means of configuration B

and C, the actions that were set, lead to some improvement of noise performance.

The averaged noise power (dBm) measured in the system bandwidth 0-20 MHz (801

data-points) at a resolution bandwidth of 100 Hz, relative to the photo-detectors

noise floor (Det) is as follows (compare with figure 2.12):

• Configuration A: 2.72 dBm

• Configuration B: 6.57 dBm

• Configuration C: 2.64 dBm
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Therefore, the averaged improvement of noise-performance (0-20 MHz bandwidth)

between configuration B and C is 3.93 dBm. However, there is still further improve-

ment preferable, especially in the LF domain below 300 Hz. As an anticipation to

the last chapter reference [25] motivates that in practice it is the LF noise only that

contributes to a broadening of the Lorentzian linewidth of a laser, and therefore it

would be highly appreciable to reduce the LF noise in the system. This may be

achieved by the use of twisted-pair cables, because, as one has seen above, they

provide effective LF magnetic field shielding.

An interesting observation can be made by means of figure 2.12 for all configu-

rations A, B and C: obviously the detected laser signal shows a relatively broad noise

spectrum, starting from the very low frequency end, reaching up to around 12 MHz

with, on average, a 10 dBm difference with respect to the detectors noise floor. At

the time of writing the author is not able to give an appropriate explanation of its

origin, but it seems that all of the applied measures have no influence on this.

2.7 Experimental Approaches

Different approaches have been carried out during the course of this work. As it is

not the author’s intention to pretend anything in advance, the reader shall now be

enlightened about the fact that measurements based on the following approaches

did not lead to the intra-cavity build-up targeted at the beginning of this work, nor

any frequency stabilization as was the initial aim. As will be discussed in the final

chapter this might have several reasons. With this along comes the fact that there

are no actual measurement data, nor any analysis that can be present here, which is

truly not satisfying.

Early approaches were based on a cavity with a length of 5 cm and the custom-made

laser driver. The laser scanning frequency was set to 0.1-10 Hz with a triangular

waveform, and the amplitude of the scan was set to cover at least one free spec-

tral range. A modulation frequency of 12.56 MHz was applied with an amplitude

at the laser output of lower than 1 mA. The high speed photo-detector (Vigo) was

positioned to pick up the reflected signal. This setup was also tried with 10 cm

cavity length and about 5 mm (as close as the mirror mounts allowed). In all of

these approaches nothing like an error signal was visible. Different phase angles were
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tried out to compensate for phase delays between the local oscillator of the modu-

lation signal and the detector signal. As the reflected signal still did not show any

evidence for intra-cavity resonance, the transmission signal was investigated with a

liquid nitrogen cooled MCT-detector (Infrared Associates). For this purpose, the

MCT detector was positioned right behind the output mirror of the cavity, and the

signal was monitored with an oscilloscope. From time to time there was some sort of

a signal visible that was not repeatable on a regularly basis though. It was therefore

classified as noise or any kind of a random event.

After the recognition of electronic noise within the laboratory, it was assumed to

have adverse influence on the build-up of resonance. So the focus was set on the

iterative process of noise investigation and reduction by using grounding, shielding,

filtering measures, supported by monitoring of the attained effects with the spec-

trum analyzer. Then another approach was carried out with an independent battery

power supply, linear TECs, grounding measures, shieldings and housings, which again

lead to no measurable cavity resonance. Nevertheless, the overall noise performance

of the system was improved. As the development of the custom-made laser driver

stopped, a commercial laser driver was utilized leaving the same results behind. Fi-

nally, the whole system was isolated from air flows, as they were suspected to cause

additional noise and interferences on the laser signal, by a local change of the refrac-

tive index of air with temperature and pressure fluctuations. A full enclosure from

the laser source along the whole beam-path was built up, and the resonator length

was set to 1 m. Increasing the frequency sweep speed as suggested by reference [26]

produced no measurable and repeatable transmission signal either. The frequency

sweep speeds applied were limited by the specifications of the Digilock device and

covered 0.1-10 kHz.

69



Addendum In the very end of this

work it was possible to see decay-

ing signals that were quite similar

to typical cavity ring-down signals

(compare with [17], p. 36) show-

ing exponential decay (see figure to

the right), and therefore motivat-

ing the emergence of a small partial

build-up of intra-cavity resonance.

The resonator length was chosen to

be 1 m and the system was com-

pletely isolated by some enclosure

to suppress air flows and acoustic

noise. The LN2-cooled MCT de-

tector was placed behind the cav-

ity output to measure any transmis-

sion. The oscilloscope was set to

single-shot trigger mode to monitor

any cavity output. From time to

time, a fast rising but weak signal

was visible, showing exponential de-

cay with a time constant in the ap-

proximate order of the cavity’s

ring-down time of 16.7 µs. And

these signals did not occur if the

laser was switched off. This is a

promising result and deserves fur-

ther investigations.
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Chapter 3

Results and Discussion

After several approaches with different cavity lengths and optimizations during a long

run in the lab to achieve ongoing and stable resonant conditions within the optical

resonator, eventually all of them failed. The wide-spread literature that exists on

resonant optical cavities motivates that it is straight-forward to excite cavity modes

by use of a laser source to achieve resonant conditions. A proper mode-matching

calculation was carried out, and the according measures were accomplished on the

bench. To the best of the author’s knowledge the laser beam alignment was done

precisely and with care. As a central aspect of this work the entire laser-system was

improved in its noise performance by building up a completely independent battery

power supply; by grounding and shielding as well as electronic signal-filtering, which

in sum lead to a significant improvement of noise (refer to figure 2.12). Finally,

it was possible to see a decaying signal that provided some indication of a partial

intra-cavity intensity build-up. However, on a repeatable basis it was not possible

to measure cavity signals in reflection or transmission that would have indicated a

significant intensity build-up within the resonator. Besides the probable presence of

an additional hidden systemic error, one thing that is undoubtedly of great importance

is probably clarified with the following quotation:

“Intrinsic phase noise is responsible for the finite laser Lorentzian width or

equivalently for its finite coherence time and actually prevents achieve-

ment of a steady state of the field injected into the cavity when the laser

linewidth is close to or larger than the cavity resonances.” [26]

This gives rise to the following considerations: the linewidth of the used QCL source

is broadened due to the intrinsic noise of the current driver, and dominating other

random phase and especially LF noise sources that are still present in the system.
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The linewidth of the utilized high-finesse cavity is approximately in the range of sev-

eral kHz, while that of the free running QCL is with no doubt in the MHz-range (e.g.

see [11]). Since the laser linewidth is inversely proportional to the coherence time

(i.e. ∆ν · τcoh = const, see [18], p. 177), the phase fluctuations of the laser are

critical if they are on an equivalent timescale or even faster as the cavity build-up

time. This fluctuating phase effectively prevents the intensity build-up due to the

deficiency of constructive interference within the resonator.

The allegation above is confirmed in [26] that in the ideal case two things are needed

to get a good cavity-performance: one is that the coherence time of the laser should

be much longer than the response time of the cavity (which is equivalent to a laser

linewidth that is much narrower than the cavity mode linewidth). The the second is

that the frequency scan should be adiabatic1, i.e. the time for one complete scan

through a cavity mode should be long in comparison to the response time of the

cavity. Their conclusion [26] is that for the use of a high-finesse cavity, with a typical

mode bandwidth of several kHz, it is required to have an ultra-narrow laser source.

This is supported by [27], where a laser source with a free running linewidth of 5 kHz

was employed in combination with a high-finesse vacuum mounted cavity that had a

finesse of 18000 and a linewidth of 10 kHz.

For comparison, another practical example is shown by means of a well-known tech-

nique called ICOS (Integrated Cavity Output Spectroscopy): in a typical ICOS setup

the finesse is commonly chosen to be about 104, with a cavity mode linewidth of

about 10-100 kHz and a laser linewidth of typically less than 100 kHz [26]. And, to

point out, this technique is reported to be known of being more tolerant to variations

in laser linewidth and frequency scanning speed [26].

The Pound-Drever-Hall technique is capable of dealing with such phase (or frequency)

noise of a laser source as stated in [20]. Even if the laser linewidth is broader than

the cavity mode linewidth the technique succeeds, because the sidebands that are

directly modulated on the carrier always have a fixed phase relationship relative to the

fluctuating phase of the carrier. But what if the stable reference of this technique,

i.e. the optical resonator, shows instabilities? The phase information in the side-

bands is measured with respect to the cavity’s resonance frequency. This motivates
1This was ensured in the experiments by a maximum scan frequency in the range of 10-100 Hz,

i.e. at least a time duration of 10 ms for one frequency scan versus τp ≈ 16.7 µs response time of
the cavity, which is a ratio of about 600
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that the employed PDH-setup is probably not capable of starting up a functioning

feedback-loop, in order to actively narrow the linewidth of the laser because, due

to mechanical instabilities, the center of a cavity mode is not fixated enough in

frequency space, causing some dithering of the resonance frequency. To see that,

consider the following simple calculation: if one takes the resonance frequency of an

optical resonator νn which is

νn = n
c

2L
, n = 1, 2, ...

and differentiates by the resonator length L, one obtains after rearrangement

dνn = −n
c

2L2
dL = −νn

dL
L
,

which shows that the relative change of resonance frequency is given by

dνn
νn

= −
dL
L
. (3.1)

If one puts in the numbers according to the experiment (center wavelength λ =

4.59 µm, cavity mode linewidth ∆ν = 9543 Hz, resonator length L = 1 m), one has:

9543 Hz
6.53 · 1013 Hz

= −
dL
1 m

.

It follows that a length stability of

|dL| = 1.46 · 10−10 m

would be appreciable, which is in the order of atomic length scales. Therefore, a good

mechanic stability of the resonator could be advantageous to minimize cavity noise.

Even if one allows for a cavity mode a linewidth of 1 MHz, which could only be real-

ized with a lower finesse, one would still need a length stability of |dL| = 1.53 · 10−8

m. And this discussion could also be extended concerning fluctuations of tempera-

ture and refractive index2 of the cavity medium. The modulation frequencies applied

in the experiments reached from 1.56 MHz to 6.25 MHz3, which probably is too

small in comparison to the fluctuations of the cavity resonance frequency, leading to

sidebands that do not carry the phase information relative to a stable reference as
2Which depends on temperature and pressure
3The modulation bandwidth is limited by the specifications of the laser driver (QCL 1000), although

the control electronics is capable of providing a modulation frequency up to 25 MHz
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expected. If one considers the narrow linewidth of a cavity transmission in combina-

tion with the dithering of its central frequency (i.e. the resonance frequency) due to

vibrations, the following problem arises: while this might not be too problematic for

a broader linewidth, i.e. a cavity with lower finesse, and therefore more uncertainty

regarding the transmission linewidth, it is far more problematic for a narrow linewidth

if one compares the linewidth relative to the resonance frequency deviation. In con-

clusion, the deviation of the resonance frequency should be not more than at least

equal to the cavity mode linewidth. To give an example: if one assumes a reasonable

mirror-position uncertainty of 1 nm, one can translate this by use of (3.1) into an

uncertainty of the resonance frequency of about 65 kHz; if one compares this to the

cavity linewidth of 9543 Hz, one notes that the ratio of the position uncertainty of

the central peak to its width is about 7, and would therefore have significant influence

on the build-up of intra-cavity field. So far the time scales on which these vibrations

could have significant influence have not been considered, as this will be done further

down.

Consequently, if there is no resonance achievable at any time during a laser frequency

scan, covering more than one free spectral range, then there is no point for the PDH

feedback-loop to start with and the technique fails.

In conclusion, the mis-achievement of stable resonance within the resonator is a

not only a consequence of the initially broad linewidth of the laser, but more a

combination of this with the additionally not well defined resonator frequency, and

moreover, the high finesse of the resonator. The finesse is crucial because, due to

the extremely narrow linewidth of the cavity mode, high precision is demanded in all

technical belongings. A solution to all of this is most likely a combination of the fol-

lowing measures: a cavity with more mechanical stability against acoustic vibrations

and pressure changes should be considered. On longer timescales, which is less crit-

ical for intensity build-up but important for a stable reference, even thermal stability

of the cavity could improve the passive resonator stability; this could be achieved by

a temperature stabilized vacuum chamber with a fixed mirror distance and with glued

mirrors; additionally one could make use of materials with a low thermal expansion

coefficient like Invar or Zerodur to have lower dependency on thermal expansion that

would lead to some cavity resonance drift on longer timescales. An example for op-

tical stabilization of a QCL where Zerodur was used is given in reference [28]. The

use of a lower noise current driver in a lower noise environment or even more sophis-
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ticated shielding and filtering measures could be applied. Shielded twisted pair cables

could be used for all signal connections to suppress LF inductive coupling of magnetic

fields. In addition, housings could be shielded against LF magnetic fields by use of

materials with high permeability like mu-metal. Furthermore, it would be interesting

to determine the natural linewidth of the employed QCL by some additional exper-

iment. In the case of finding an exceptionally broadened natural linewidth a lower

noise QCL source could then be considered. Tombez et al. have shown [30], that

there could be a significant difference in noise performance between two buried het-

erostructure 4.55 µm DFB-QCLs out from the same production run. They proposed

that the different noise performance arose from a difference in thermal resistance of

the two devices. Moreover, active linewidth narrowing of a mid-IR QCL has been

recently shown, which is based on a purely electrical feedback control without any

optical reference [29]. It would have to be evaluated if the PDH-technique could

be combined with such a pre-stabilized QCL. Alternatively, one could make use of

a system with a lower finesse, i.e. mirrors with a lower reflectivity, if this can be

tolerated within the scope of a certain future application.

To be a bit more specific and to substantiate the speculations regarding the current

driver presented above, one should take a view on the fact that the commercially

available low-noise laser current driver used in this work has a spectral current noise

density of 2 nA/
√
Hz. If one takes into account the minimal PDH modulation band-

width of 1.56 MHz that was fed into the driver, one ends at least up with a RMS

current noise of 2 nA/
√
Hz ×

√
1.56 · 106 Hz ≈ 2.5 µARMS or expressed in peak to

peak 2
√

2× 2.5 µARMS ≈ 7.1 µAp-p. This is the minimal current noise of the whole

system - or rephrased - as good as it can get. We have seen in section 1.1.1 that

the main contribution to the noise performance of a QCL in most cases is given

by the current driver, and not dominated by the natural linewidth of the QCL. Any

additional noise sources (that are undoubtedly present in the system) or a higher

system bandwidth would increase this value even further. The cavity mode linewidth

for a finesse of F ≈ 15706 and a cavity length of L = 1 m is ∆ν ≈ 9543 Hz,

which can be transformed into a laser current range by the use of the current tuning

factor of the QCL (−0.6 cm−1/40 mA), and determined to be I(∆ν) ≈ 21 nA. The

corresponding FSR expressed in terms of a current would be I(νFSR) ≈ 333.3 µA4.

Consequently, in terms of a current, the RMS-linewidth of the laser is approximately
4Of course these two quantities are related by the finesse: F = I(νFSR)/I(∆ν)
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120 times larger than the cavity mode FWHM linewidth, making the build-up of

resonance very unlikely. Furthermore, the build-up time for a lossless cavity5 of that

length and finesse is τp ≈ 16.7 µs. This means, according to ∆ν · τcoh = const = C

(with C = 1 for simplicity as of [18], p. 177), one demands a linewidth of the laser

of at least 60 kHz to be coherent enough for a complete intensity build-up. In turn,

if one assumes a generic DFB-QCL linewidth of around 10 MHz (which is very likely

the case for the used QCL) this would mean a laser coherence time of 0.63 µs, which

shows that the build-up time of the utilized cavity is more than 26 times larger than

the coherence time of the QCL, preventing a full intra-cavity intensity build-up. One

should add that even a slow scanning of the laser frequency, covering more than one

FSR of the resonator, and without applying any signal modulation, can not and did

not overcome this linewidth discrepancy.

From one of the experimental approaches it turned out that it was even impossi-

ble to produce any transmission signal if the laser driver was completely isolated

from any input signal that could introduce a certain noise bandwidth. In this case

the system noise was the lowest possible to be reached with this setup. The cavity’s

resonance-wavelength tuning was achieved by hand with a precise change of the cav-

ity length with the adjustable micrometer stages. The conclusion of this experiment,

which is of course in terms of the realized version of the PDH-technique in this

work6 a somewhat unpractical approach, could be that even if the driver noise can

be diminished by eliminating all input signals, there still is some noise present in the

system. May it be the noise of the unstable cavity itself or the noise that is inherent

to the laser. Something in the system is leading to a linewidth broadening, which

equivalently leads to an insufficient coherence time of the laser. This effectively

prevents the resonant build-up of an intra-cavity field amplitude.

Further Discussion regarding Cavity-Resonance Finally, a few of these concerns

are discussed from a basic physics understanding point of view. If one takes a

monochromatic and absolutely coherent light wave that enters a high-finesse optical

resonator (i.e. a Gaussian beam, perfectly mode-matched to only excite Gaussian

modes for simplicity) three things can basically happen: first, if a multitude of the

5The build-up time for a cavity with losses would even be longer (e.g. due to absorption or
scattering)

6The scanning could be performed by tuning the cavity length with a piezoelectric transducer
(PZT)
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half wavelength of the wave fits exactly into the resonator one will have resonant

conditions due to the absence of any phase shift between the multiple reflections,

i.e. after several round-trips all of the amplitudes interfere constructively, and the

intensity (the square of the amplitudes) increases to an absolute maximum, i.e. a

steady state emerges. Second, if the frequency does not match exactly the resonator

frequency but is within the linewidth of the cavity mode, a certain phase shift is in-

troduced that increases with each reflection at the mirrors. After several round-trips

this phase shift can reach π and the wave interferes destructively. Therefore, for a

wave that does not exactly match the resonance frequency of an optical resonator,

the build-up of intra-cavity resonance will settle at a lower steady state, leading to a

lower cavity output intensity. Third, if the frequency of an incident wave is far away

from being within a cavity mode linewidth, and is consequently located somewhere

else in the free spectral range, the deviation of phase between a wave in each re-

flection is large, and the intra-cavity intensity build-up is almost zero. Nevertheless,

the photons of this wave propagate according to their life-time (ring-down time)

within the resonator back and forth but interfere with some sort of a chaotic phase

relationship.

One should note, that in each reflection there will be some leakage of the waves

out of the resonator, according to the transmission coefficient of the mirrors (and

probably absorption if one takes into account). This leads to some measurable signal

intensity on either sides of the resonator - in transmission and in reflection. While

the transmitted signal is high on resonance, as discussed above, one investigates now

the case of a non-resonant cavity, assuming that the frequency of the input beam

is far off a cavity mode. Then the output signal intensity will be very small due to

the high reflectivity of the mirrors and the involved low transmission features. For

instance, if one neglects losses, then one can assume that for a reflectivity of 0.9998

the transmission coefficient is at most 0.0002. If the wave enters the cavity, first

the intensity is transmitted by a factor of 0.0002 and again by the same factor when

it passes the second mirror. It might be a bit hilarious to mention but this means a

transmission of the field intensity with a coefficient of 4 × 10−8. And due to losses

this amount decreases with each round trip even further. To summarize this: if the

frequency of a wave is far off resonance, the amount of intensity that is transmitted

through a high finesse cavity is extremely small and hard to detect. And due to the

fact that the ratio of the free spectral range to the cavity mode linewidth is given

by the finesse, it is not hard to imagine that for a free running laser in combination
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with a high finesse cavity (F & 104), it is far more likely to be off than on resonance

and therefore the cavity transmission signal is almost zero.

If one now takes a broadband light source that is still absolutely coherent (with the

awareness that this does not exist), one can think of it as a combination of the three

cases presented above. Since the wave equation that is based on Maxwell’s equa-

tions is linear, all of the waves within the resonator can be superimposed and exist

for themselves independently within the resonator. According to the overlap of the

linewidths of the laser source and the cavity mode, there will be some transmission

in the open spectral window of the cavity mode. Nevertheless, the intensity of this

transmitted wave is limited to the intensity of the input wave. This is a consequence

of the Airy-formula. The transmitted intensity for a lossless mirror cavity is equal

to the input intensity. But the narrow cavity transmission linewidth cuts out only a

very narrow part of this broadband source, leading to a much smaller intensity at the

output than at the input. One can think of it as a source with a broad spectral distri-

bution of optical power that is filtered by a narrow frequency band-pass. So far only

absolutely coherent light was considered. If one takes now a light wave with a broad

spectrum that is not absolutely coherent but has a coherence time in the order of,

or greater than, the time-constant of the resonator, then one basically has the same

discussion as above. But if the coherence time is smaller than the time constant,

one will see destructive interference again, even if the frequency of a wave matches

the resonance frequency. This is because of the fluctuating phase of the incident

wave, which leads to a loss of a defined phase relationship between the multiple

reflections, preventing constructive interference. This leads to a lower steady state

intra-cavity field, and consequently to a lower output intensity of the cavity. What

one could do is to let enter the wave into the cavity only for a duration of time that

matches its coherence time, and to investigate the output intensity. The build-up

of intra-cavity intensity would now be the same as in the case of the broad-banded

and absolutely coherent light source, except for the fact that the intensity build-up is

stopped if the wave gets incoherent, and one ends up with a lower intra-cavity field

as for a coherent wave. So far the incoherence of the source has been discussed.

But what if the resonance frequency of the cavity was not stable? Consider again a

monochromatic absolutely coherent wave that is incident on the cavity, and assume

its frequency is equivalent to the initial resonance frequency of the cavity. If the light

wave traveling between the two mirrors is very fast in comparison to the movement

of the vibrating mirrors, after some round trips the length of the cavity has changed

78



due to these vibrations, and therefore the wave experiences essentially a phase shift

at this point. After another sequence of round trips this happens again and so forth.

One sees that this uncertainty of resonator length introduces a certain amount of

phase noise along with at least partial destructive interference again. However, if the

period length of these vibrations is longer than the build-up time of the resonator, it

would have no significant influence on intensity build-up to reach a steady resonant

state. Consequently, this means one has to comply with both: first choose an injec-

tion time that is lower than the coherence time of the laser source, and second, to

choose a injection time that is lower than the period of mechanical vibrations, and

going for the shorter time span of those two.

3.1 Summary and Conclusion

In the beginning the author was entrusted with the demanding aim of frequency

stabilizing a QCL for the use in spectroscopic applications at a chemical institute,

where people had no theoretic nor practical experience with resonant optical cavities.

Since at this time even the author, a physicist, had no special experience within this

field, a study of the respective literature was carried out. Some components were

chosen and purchased for the setup to complete the existing equipment. A first

approach was accomplished on the bench but showed no results. Based on some

measurements it soon became clear that electronic noise could have adverse influence

on the build-up of resonant conditions. An iterative process of noise investigation

and improvement started. Several components were identified of emitting electronic

noise or being receptive for it and were consequently eliminated or replaced. Some

of the components originated from a previous setup and contributed fairly strong to

the system’s noise-spectrum. Again the respective literature was consulted to attain

a maximum improvement of the system’s noise. A spectrum analyzer was brought

into service for this purpose, and different actions in grounding, shielding, as well as

signal-filtering were set. At this point there was still no evidence that would have

accounted for the emergence of resonant conditions within the resonator. Once again

some intensive research of the respective literature on lasers and QCLs in particular

followed, and led to the - up to this time overseen - insight that the linewidth

of a laser is directly linked to its coherence time. This research also uncovered

the fact that the natural linewidth of a free running QCL could be significantly

larger than the mode-linewidth of the used high-finesse optical resonator, which
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suggested that the build-up of resonance was very unlikely. The passive stability of

the resonator was identified of being of crucial importance for the achievement of

resonant conditions and for implementing the PDH-technique. Therefore a housing

was built up to shield the experimental setup against air-flows and acoustic noise.

Finally, these actions were rewarded: weak signals indicated a partial build-up of

intra-cavity intensity and motivated the emergence of short lasting cavity-resonances

occurring from time to time. After overcoming all kinds of technical difficulties in a

challenging chain of consistently appearing problems, this successful proof of principle

may be classified as a remarkable result. However, further improvements have to be

carried out to establish a stable reference cavity and to reach the laser frequency

stabilization with the narrow linewidth features that were initially intended. The

benefits of a consequential large intensity increase could serve for future spectroscopic

applications. With no doubt the results of this work provides a solid basis to work

with and paves the way for further developments.

3.2 Outlook

The most important adaptations that have to be carried out to successfully imple-

ment the PDH-technique are more or less of the following: the passive resonator

stability has to be increased against vibrations even further by use of a stable mirror

cell. The LF magnetic shielding has to be improved by use of shielded twisted pair

cables and maybe mu-metal housings. The utilization of a laser driver with even lower

current noise density should be concerned. As an interesting experiment the natural

linewidth of the employed QCL could be determined to assess the actual mismatch

of the laser linewidth with respect to the cavity mode-linewidth.
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Chapter 4

Appendix

Code of Mode-Matching Calculation

The content of the following pages provides the Wolfram Mathematica code that

was worked out to calculate the mode-matching parameters. The plots of the beam-

envelope are based on some code of a Wolfram Demonstration [36] that was mod-

ified. These plots only show the propagation of the incident beam (orange) to the

mode-matching lens (thin, black vertical line segment) where the beam gets trans-

formed (blue). In addition, the cavity mirrors are shown (red). The beam waist of

the transformed (blue) beam is indicated by a vertical black line-segment. If the

mirror’s index of refraction n2 is modeled to be equal to that of air, and the mirror

thickness s is modeled to be zero, then the obtained beam-waist is located exactly

in the center of the cavity. This can be explained by the lens-effect of the entrance

mirror, which shifts the beam waist of the transformed (blue) beam into the center

of the cavity (not shown in the plots).

Finally, some photographs are shown that were taken during the course of this work.

85



In[372]:= (* Cavity mode-matching calculation for one lens *)

(* ************************************************** *)

(* ray transfer matrices *)

M1 = 
1 d1 / n1
0 1

;(* free space propagation by d1 from laser waist to lens in air n1*)

M2 = 
1 0

-1 / f 1
 ;(* lens *)

M3 = 
1 d2 / n1
0 1

;

(* free space propagation by d2 from lens to cavity mirror in air n1 *)

M4 =

1 s

n2
-n1+n2

R
1 +

s (-n1+n2)

n2 R

; (* concave cavity mirror with radius R,

thickness s, refractive index n2 *)

M5 = 
1 L / (2 n1)
0 1

;

(* free space propagation to the center of cavity to the waist in air n1 *)

MT = Dot[M5, M4, M3, M2, M1];(* ABCD - matrix product - mind the order of the matrices *)

AA = MT[[1, 1]]; (* select matrix elements and assign to A,B,C,D *)

BB = MT[[1, 2]];

CC = MT[[2, 1]];

DD = MT[[2, 2]];

(* parameters - all lengths in meters *)

λ = 4.59 × 10^(-6); (* laser wavelength *)

n1 = 1.00028;(* refractive index of air n1 = 1.00028 *)

n2 = 2.432; (* refractive index of ZnSe-mirror n2 = 2.432,

source: refractiveindex.info *)

s = 0.00635; (* mirror thickness *)

R = 6.0; (* cavity mirror radius *)

L = 1.00; (* cavity length / m *)

f = 0.50;(* focal length of mode matching lens *)

c = 299792458.0; (* speed of light in vacuum m/s *)

wi = 0.000795 / 2.0;(* waist radius of incident beam *)

qi = ⅈ π wi^2 / λ; (* complex beam parameter at waist of incident beam *)

q0 = ⅈ π w0^2 / λ; (* complex beam parameter at cavity waist *)

g1 = 1 - L / R; (* g1 parameter of cavity *)

g2 = 1 - L / R; (* g2 parameter of cavity *)

w0 = (L λ / π)^(1 / 2) (g1 g2 (1 - g1 g2) / (g1 + g2 - 2 g1 g2)^2)^(1 / 4);

(* intra-cavity beam waist radius *)

sol = Solve[{AA - DD (w0 / wi)^2 ⩵ 0, CC (π w0 wi / λ)^2 + BB ⩵ 0}, {d1, d2}];

(* numeric solve of beam propagation equation *)

(* solution d2 is the distance of lens from the cavity input mirror *)

d1sol = sol[[All, 1, 2]]; (* assign elements of equation solve for d1 *)

d2sol = sol[[All, 2, 2]]; (* assign elements of equation solve for d2 *)

Print["* * Results of calculation * * "]

Print["for a lens with focal length f: ", 1000 f, "mm, cavity length L: ", 1000 L "mm"]

Print["and incident waist radius wi: ", 10^6 wi "μm"]

Print["the cavity waist radius w0 is: ", 10^6 w0 "μm"]

Print["* * * * * * * * * * * * * * * * * "]
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Print["The distances are: "]

Print["Solution 1 for d1: ", 1000 d1sol[[1]], " mm"]

Print["Solution 1 for d2: ", 1000 d2sol[[1]], " mm"]

Print["Beam waist after lens: ", 1000 z00b[wi, d1sol[[1]]] " mm"]

Print["* * * * * * * * * * * * * * * * * "]

Print["Solution 2 for d1: ", 1000 d1sol[[2]], " mm"]

Print["Solution 2 for d2: ", 1000 d2sol[[2]], " mm"]

Print["Beam waist after lens: ", 1000 z00b[wi, d1sol[[2]]] " mm"]

Print["* * * * * * * * * * * * * * * * * "]

Print["Mind: negative or complex values are

not possible - change incident waist size and/or focal length"]

NextBeamWaist[W00_, z0_] := (* W00...incident waist,

z0...position of lens from incident waist *)

Module{bw = W00},

W1 = W00 1 +
λ × z0

π (W00)2

2

; (*beam width at the first lens*)

R0 = z0 1 +
π (W00)2

λ × z0

2

;

(*radius of curvature at the first lens, before transformation*)

R1 =
R0 × f

f - R0
; (*radius of curvature at the first lens, after transformation*)

bw = W1
1

1 + 
π (W1)2

λ ×R1

2

 (*the new beamwaist after transformation by thelens*)

NextBeamWaistPos[W00_, z0_] := (* W00...incident waist,

z0...position of lens from incident waist *)

Module{wp = z0},

W1 = W00 1 +
λ × z0

π (W00)2

2

;

R0 = z0 1 +
π (W00)2

λ × z0

2

;

R1 =
R0 × f

f - R0
;

wp =
-R1

1 + 
λ ×R1

π (W1)2

2
 (*the position where the first new beamwaist appears,

after transformation by the first lens*)

W01[W00_, z00a_] := NextBeamWaist[W00, z00a](* beam waist after lens *)

z00b[W00_, z00a_] := NextBeamWaistPos[W00, z00a] (* beam waist position after lens *)

lens[z_] := Graphics[Circle[{z, 0}, {0.003, 0.001}]]

Printed by Wolfram Mathematica Student Edition
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func1sol1 = wi 1 +
λ × z

π (wi)2

2

; (* beam envelope from incident waist to lens *)

func2sol1 = W01[wi, d1sol[[1]]] 1 +
λ × (z - z00b[wi, d1sol[[1]]] - d1sol[[1]])

π (W01[wi, d1sol[[1]]])2

2

;

(* beam envelope from lens to cavity *)

Show[{Plot[{func1sol1, -func1sol1, func2sol1, -func2sol1}, {z, -2.0, 2.0},

PlotStyle → {Orange, Orange, Blue, Blue}, PlotLabel → "Solution 1 (not possible)",

AxesLabel → {Style["distance d / m", Italic], Style["beam waist w / m", Italic] }],

lens[d1sol[[1]]], Graphics[{Thick,

Line[{{d1sol[[1]] + z00b[wi, d1sol[[1]]], -W01[wi, d1sol[[1]]]},

{d1sol[[1]] + z00b[wi, d1sol[[1]]], W01[wi, d1sol[[1]]]}}]}],

Graphics[{Thick, Red, Line[{{d1sol[[1]] + d2sol[[1]], -0.001},

{d1sol[[1]] + d2sol[[1]], 0.001}}]}],

Graphics[{Thick, Red, Line[{{d1sol[[1]] + d2sol[[1]] + L, -0.001},

{d1sol[[1]] + d2sol[[1]] + L, 0.001}}]}]

}]

func1sol2 = wi 1 +
λ × z

π (wi)2

2

;

func2sol2 = W01[wi, d1sol[[2]]] 1 +
λ × (z - z00b[wi, d1sol[[2]]] - d1sol[[2]])

π (W01[wi, d1sol[[2]]])2

2

;

Show[{Plot[{func1sol2, -func1sol2, func2sol2, -func2sol2},

{z, -0.2, 3.0}, PlotRange → {{-.2, 3.0}, {-0.01, 0.01}},

PlotStyle → {Orange, Orange, Blue, Blue}, PlotLabel → "Solution 2",

AxesLabel → {Style["distance d / m", Italic], Style["beam waist w / m", Italic] }],

lens[d1sol[[2]]], Graphics[{Thick,

Line[{{d1sol[[2]] + z00b[wi, d1sol[[2]]], -W01[wi, d1sol[[2]]]},

{d1sol[[2]] + z00b[wi, d1sol[[2]]], W01[wi, d1sol[[2]]]}}]}],

Graphics[{Thick, Red, Line[{{d1sol[[2]] + d2sol[[2]], -0.001},

{d1sol[[2]] + d2sol[[2]], 0.001}}]}],

Graphics[{Thick, Red, Line[{{d1sol[[2]] + d2sol[[2]] + L, -0.001},

{d1sol[[2]] + d2sol[[2]] + L, 0.001}}]}]

}]

Solve::ratnz : Solve was unable to solve the system with inexact coefficients.

The answer was obtained by solving a corresponding exact system and numericizing the result.

Printed by Wolfram Mathematica Student Edition
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* * Results of calculation * *

for a lens with focal length f: 500.mm, cavity length L: 1000. mm

and incident waist radius wi: 397.5 μm

the cavity waist radius w0 is: 1556.56 μm

* * * * * * * * * * * * * * * * *

The distances are:

Solution 1 for d1: 393.893 mm

Solution 1 for d2: -1521.27 mm

Beam waist after lens: -655.633 mm

* * * * * * * * * * * * * * * * *

Solution 2 for d1: 606.387 mm

Solution 2 for d2: 790.687 mm

Beam waist after lens: 1655.69 mm

* * * * * * * * * * * * * * * * *

Mind: negative or complex values are not
possible - change incident waist size and/or focal length

Out[421]=

-2 -1 1 2
distance d / m

-0.006

-0.004

-0.002

0.002

0.004

0.006

beam waist w / m

Solution 1 (not possible)

Out[424]=

0.5 1.0 1.5 2.0 2.5 3.0
distance d / m

-0.010

-0.005

0.005

0.010
beam waist w / m

Solution 2

Printed by Wolfram Mathematica Student Edition
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In[1]:= (*** Explicit form of the ABCD ray-transfer matrix ***)

M1 = 
1 d1 / n1
0 1

;

(* free space propagation by d1 from laser waist to lens in air n1*)

M2 = 
1 0

-1 / f 1
 ; (* lens *)

M3 = 
1 d2 / n1
0 1

;

(* free space propagation by d2 from lens to cavity mirror in air n1 *)

M4 =

1 s

n2
-n1+n2

R
1 +

s (-n1+n2)

n2 R

; (* concave cavity mirror with radius R,

thickness s, refractive index n2 *)

M5 = 
1 L / (2 n1)
0 1

;

(* free space propagation to the center of cavity to the waist in air n1 *)

MT = Dot[M5, M4, M3, M2, M1] // MatrixForm

Out[1]//MatrixForm=

1 +
L (-n1+n2)

2 n1 R
-

d2 1+
L -n1+n2

2 n1 R

n1
+

s

n2
+

L 1+
-n1+n2 s

n2 R

2 n1

f

d2 1+
L (-n1+n2)

2 n1 R


n1
+

s

n2
+

L 1+
(-n1+n2) s

n2 R


2 n1
+

d1 1+
L (-n1+n2)

2 n1 R
-

d2 1+
L -n1+n2

2 n1 R

n1
+

s

n2
+

L 1+
-n1+n2 s

n2 R

2 n1

f

n1

-n1+n2

R
-

1+
d2 (-n1+n2)

n1 R
+

(-n1+n2) s

n2 R

f
1 +

d2 (-n1+n2)

n1 R
+

(-n1+n2) s

n2 R
+

d1
-n1+n2

R
-

1+
d2 -n1+n2

n1 R
+
-n1+n2 s

n2 R

f

n1
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Figure 4.1: Some parts of the setup before it was covered with a housing. To the
very right end of the table, the QCL source with the protection circuit attached can
be seen.

Figure 4.2: High reflective mirrors in a very early stage of the experimental setup
(these mirror mounts were replaced later)
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