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Abstract

We consider a set of Boolean expressions with a probability measure on it
and call this our model. This model induces a probability measure on the
Boolean functions. The induced probability depends strongly on the under-
lying Boolean expressions, so we consider several di�erent sets of Boolean
expressions, i.e. di�erent models, distinguished by the connectors they are
built with and/or by the structure of the expressions. We examine the re-
lation between the underlying class of Boolean expressions and the induced
probability and investigate the shape and its properties. We study the ques-
tion if this probability measure has a limit when the size of the underlying
Boolean expressions tends to in�nity. The aim of this thesis is to give a
broad overview of several di�erent set-ups for such models considered in
the literature with a slight focus on models that allow interesting conclusions
regarding the number of satis�able assignments of read-one expressions. Fur-
thermore we develop an abstract model that uni�es the models studied in
the literature.
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Zusammenfassung

In dieser Arbeit interessieren wir uns für Wahrscheinlichkeitsverteilungen
auf Booleschen Funktionen in n Variablen, welche durch eine Wahrschein-
lichkeitsverteilung auf Booleschen Ausdrücken induziert werden. Dabei sind
die Eigenschaften der induzierten Wahrscheinlichkeitsverteilung von den zu
Grunde liegenden Booleschen Ausdrücken abhängig. Daher betrachten wir
verschiedene Klassen von Booleschen Ausdrücken, die wir bezüglich der vor-
kommenden logischen Operationen beziehungsweise bezüglich ihrer Struktur
einteilen. Wir untersuchen den Zusammenhang zwischen den Eigenschaften
der induziertenWahrscheinlichkeitsverteilung und den verwendeten Booleschen
Ausdrücken und untersuchen wann diese Wahrscheinlichkeitsverteilung eine
Grenzverteilung hat. Das Ziel dieser Arbeit ist es dem Leser einen guten
Überblick über bestehende Literatur und darin untersuchte Modelle zu geben,
wobei wir dabei einen leichten Fokus auf Modelle legen, welche interes-
sante Schlussfolgerungen bezüglich des Erfüllbarkeitsproblem im Kontext von
Read-Once-Funktionen erlauben. Auÿerdem wird auch ein abstraktes Modell
entwickelt, welches die in der Literatur studierten Modelle vereinheitlicht.
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Chapter 1

Introduction

Consider a model of random Boolean expressions. Every Boolean expression
computes a Boolean function and therefore the model induces a distribution
on the Boolean functions. Such models of Boolean functions often occur in
the �eld of theoretic computer science; at �rst as a helpful tool for deriving
upper bounds on the complexity of special Boolean functions and graphs
and later as an autonomous research �eld: The �rst to utilize such models
was Valiant [Val84] who used it to prove the existence of small monotone
Boolean expressions computing the majority function. The proof mainly
consists of approximating a Boolean function by iteratively constructing a
Boolean expression with a single connector. This method was later called the
ampli�cation method, see [Bop85]. Razborov [Raz88] used random expres-
sions for showing an upper bound on the formula size complexity of special
graphs. Savický was the �rst to study models of Boolean expressions per se
[Sav87, Sav90]. Paris et al. [PVW94] used random Boolean expressions with
connectives ∧, ∨ and literals {x1, x̄1, ..., xn, x̄n}, called Catalan-And/Or tree
model, to construct a natural prior probability distribution on the interval
[0, 1] by considering the expected values of large Boolean expressions. They
were the �rst who investigated the Catalan tree model although their mo-
tivation for examining this model came mainly from the �eld of uncertain
reasoning.

The area of research of random Boolean expressions received heightened in-
terest since Woods' paper on coloring rules for trees [Woo97]. He proved,
as a consequence of a far more general statement, the existence of the limit
distribution on Boolean functions when the size of the underlying Catalan
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trees approaches in�nity. His paper inspired the ongoing research in two
ways: He showed that analytic combinatorics lend themselves for this kind
of considerations and he formulated in [Woo97, Problem 6.6.] the question
whether and how the probability of a Boolean function occurring in the limit
distribution is related to the formula size complexity1 of the function. This
question was communicated to Savický who found together with Lefmann
an a�rmative answer to it in [LS95]. Moreover, since then such questions
have been investigated in the literature on numerous occasions in relation
to a di�erent range of models of Boolean functions induced by Boolean ex-
pressions. See [CFGG04, GW05, Koz08] for the chronological development
regarding the And/Or-Catalan model and [GGKM15] that takes commuta-
tivity and/or associativity into account as well as the early survey [Gar06] for
an informative overview. Similar models for expressions allowing only the im-
plication were investigated in the same context [FGGG12, GG10, GGKM12].

Around the year 2000 a group of Polish researchers started to systemati-
cally analyze the density of tautologies in di�erent logical systems with a
view to comparing classical and intuitionistic logic quantitatively, see e.g.
[Zai03, FGGZ07, GK09] and again the survey of Gardy [Gar06] for a �rst
overview on this topic and more references. The structures that were found
alongside the main concepts and methods used in their research are very
similar to those in the study of random Boolean expressions. Both areas
did pro�t from each others' results which manifested itself in the several
works that were jointly undertaken by leading scientists in both �elds. In
[FGGZ07] it is proven that in the implication model (Propositional formulas
with the single connector being the implication) asymptotically all tautolo-
gies are intuitionistic ones and 5

8
for the full propositional system, see [GK09].

The aim of this thesis is to provide an overview of the at �rst glance very man-
ageable seeming area of random Boolean functions induced by (large) random
expressions. It aims to demonstrate the most important results achieved in
this area. Upon closer inspection there are two di�erent lines taken in the
literature. One was initiated by the search for good upper bounds for spe-
cial Boolean functions, the so called ampli�cation method. The models of
random functions/expressions used there are built from a few functions that
are successively composite with themselves so that they amplify themselves

1Here this is the smallest Catalan tree that expresses the function
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to a special function with high probability. The depth of the expressions
constructed in this case is growing continuously in contrast to the models
reviewed in the other line of research, where all expressions of a given size
(that is not the depth) built from a distinguished set of connectors and vari-
ables were considered. The two models have very di�erent behaviors and the
di�erences are going to be demonstrated and captured. It shows where the
models have been applied or where they might be applicable.

Going into further detail, the structure of the thesis is as follows. In the
second chapter the methodological background is given and the basic objects
of interest are de�ned. The most elementary notions can be found in the
appendix for completeness. Subsequently we will specify in Chapter 3 the
notion of random Boolean function models induced by random expressions
in a very abstract way, so one can see everything that follows from this point
of view. Moreover, the questions that may arise concerning these models
and which have been studied in the literature are stated on an abstract level
so that it is easier for the reader to maintain an overview of the numerous
di�erent models that are being considered. In the fourth chapter we will
examine the �rst class of models, namely random Boolean functions induced
by expressions built from a set of connectors and a set of variables2. There
one looks at expressions of a given size and then examines the behavior
for big expressions, meaning that the size of the expressions tends to ∞.
The size function has to satisfy some regularity conditions, in the moment
we can think of the size as the number of connectors. This model class
will prove to have a very regular behavior and the general requirements for
falling under that regime are elaborated. After this universal approach some
concrete models that have been investigated in the literature are presented
and the most important results are stated. A model introduced by Yashunskii
[Yas05], that considers the Boolean values of random expressions for random
assignments, is investigated at the end of that chapter and a very interesting
connection in relation to satis�ability of read-once formulas (c.f. De�nition
2.8) is pointed out. In Chapter 5 the second model class of our interest
will be introduced. In contrast to the �rst class, the size function of the
expressions is the depth. So a large Boolean expression in this context is a
Boolean expression of large depth. As a consequence such models exhibit

2In the general setting we will not consider only variables as the inputs of the expressions
but also Boolean functions.
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a far di�erent behavior. Also the methods that are used to analyze such
models are of di�erent shape as we will see. After introducing the set-up for
this model-class and demonstration of the structural di�erences by means of
some simple examples, we will see where the origin of the research of such
models comes from and then we will investigate some more recent results.
In this thesis we will lay the focus on the �rst model class and investigate
it in more detail. Nevertheless, we will also provide a good overview and
thorough treatment of the second class. In the last part of the thesis we will
very brie�y present two more models that are strongly connected to the other
models under consideration and two models that show far less connections,
but are still related. After that we will conclude the thesis and additionally
will state some open questions.

4



Chapter 2

Basic de�nitions, notions and

used concepts

In this chapter the main de�nitions and notions that will be used through-
out this work are provided. These are the de�nitions of Boolean functions,
Boolean expressions and Catalan-And/Or trees. Moreover, we will present
the modus operandi in enumerative combinatorics, the symbolic method and
singularity analysis, which refer to some basic concepts that are at the very
core of analytic combinatorics. This will be essential for the analysis of
the questions arising within this work, especially for the �rst model under
consideration, and for the treatment of the structures that we are going to in-
vestigate. The last section will brie�y introduce the complexity of a Boolean
function. Most of the readers will be very familiar with the following, never-
theless, it is presented here for the sake of completeness and exactness. The
�rst part reviews Boolean functions and Boolean expressions and should not
be skipped because they are the main objects used in this thesis and some of
the de�nition might be unusual and have its subtlety. Moreover, one needs
to take into consideration:

�The advanced reader who skips parts that appear too
elementary may miss more than the less advanced reader
who skips parts that appear too complex.� -G.Pólya [Pó54]
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2.1 Boolean functions and Boolean expressions

Let us start with the notion of a Boolean function, where a brief discussion
and a table of the most important Boolean functions is also presented in
A.1. Let N denote the natural numbers starting from 1 and N0 the natural
numbers with 0.

De�nition 2.1 (Boolean function)
A Boolean function is a function from {0, 1}N to {0, 1} and is denoted by f .
B is the set of all Boolean functions.

For the input variable of a Boolean function we use the symbol x and x1, x2, ...
for its entries. So ~x = (x1, x2, ...) and the xi, i ∈ N, are called the vari-
ables of the function. Let f be a Boolean function and j ∈ {0, 1}; with
f[xi 7→j] we mean the Boolean function that is de�ned pointwise according to:
f[xi 7→j]((x1, x2, ..., xi−1, xi, xi+1, ...)) = f[xi 7→j]((x1, x2, ..., xi−1, j, xi+1, ...)).

De�nition 2.2 (Essential variable)
A variable xi, i ∈ N, of a Boolean function f is an essential variable when
the function value depends on xi, i.e. when there are two inputs di�ering
only in variable xi such that the images of these inputs are di�erent. This is
equivalent to: f[xi 7→0] is not the same function as f[xi 7→1].

A Boolean function f , having all its essential variables in the set {x1, x2, ..., xn},
can be trivially seen as a function f̂ :{0, 1}n → {0, 1} with variables {x1, x2, ..., xn}:
f̂(x1, x2, ..., xn) = f(x1, x2, ..., xn, 0, 0, 0, ...). Let us call such a function f �-
nite Boolean function or also just Boolean function if it is clear from the
context and de�ne the arity of it as n:

De�nition 2.3 (Finite Boolean function)
A �nite Boolean function f with arity n, (arity(f) = n) is a function from
{0, 1}n to {0, 1} and is denoted by f . Bn is the set of all Boolean functions
of arity n.
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Observe that for example x1 ∧ x2 is not a Boolean function as long as we
do not specify the arity of it. And that > : (x1, x2, x3) 7→ 1, the constant
function TRUE, is a Boolean function with arity 3. A �nite Boolean function
f̂ in Bn can be injectively identi�ed with a(n) (in�nite) Boolean function f :

f(x1, x2, ..., xn, xn+1, ...) := f̂(x1, x2, ..., xn)

or with a Boolean function of Bk, k ≥ n in a similar way. A variable xi,
i ∈ {1, 2, ..., n} is called essential variable of f̂ ∈ Bn when the corresponding
f ∈ B has xi as essential variable. Most of the time the considered Boolean
function space will be clear from the context, but we should keep these identi-
�cations and embeddings in mind. In Appendix A.1 there is also a discussion
on this topic and a table with the most important Boolean functions that we
take into consideration.

As the title of this thesis suggests, we are interested in Boolean expressions
and extensions of these. So let us de�ne inductively what we understand by
a Boolean expression:

De�nition 2.4 (Connectors K, base functions F )
Let K be a �nite set of �nite Boolean functions with arities > 0 called the
connectors. Let F be a �nite set of �nite Boolean functions, called the basis.

A Boolean expression with connectors in K over the Basis F can be de�ned
in several ways.

De�nition 2.5 (Boolean expression, inductive)
A Boolean expression with connectors in K over the Basis F, is either:

• an element of F.

• or (c, e1, ..., ei)
1, i ∈ N, if e1, e2, ..., ei are Boolean expressions with

connectors in K over the Basis F and c is a connector in K with
arity(c) = i.

1In this context the tuple (c, e1, ..., ei) is also written as c(e1, e2, ..., ei) when no misun-
derstanding occurs, if c(e1, e2, ..., ei) is either an expression or a function.
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De�nition 2.6 (Boolean expression, graph de�nition)
A Boolean expression with connectors in K over the Basis F is a plane(c.f.
De�nition A.3) tree with leaves labeled by elements from F and inner nodes
labeled by elements from K such that the in-degree of every inner node equals
the arity of the connector used for labeling this node. Due to this de�nition
we call Boolean expressions also Boolean trees.

The set of Boolean expressions with connectors in K over the Basis F will
be denoted by EK,F and the set of all such Boolean expressions by E, so
E :=

⋃
K,F EK,F. We will use the terms (Boolean) expression, tree and for-

mula synonymously depending on the actual point of view. In Figure 2.1
there is an example of two di�erent Boolean expressions. The left has con-
nectors in K = {∨,¬,⊕,∧} and base functions in F = {>,⊥, x1, x2, 1∧3},
whereas 1∧3 is the function represented by the expression x1 ∧ x3, the AND
on x1, x3. The right expression has connectors in K = {∨,¬,⊕,∧} and base
functions in F = {>,⊥, x1, x1, x2, x3}. Both expressions indeed represent the
same Boolean function but in our setting they are di�erent expressions.

Our �rst de�nition of expressions is similar to the de�nition of a Boolean
expression in propositional logic and conforms more with the intuitive view
of an expression and also shows one way to identify a Boolean expression
e with a Boolean function: Let n be the number of di�erent variables used
in the expression. If the expression e is a function from the basis then we
identify the expression with this function. In the other case the expression
c(e1, e2, ..., ei) is recursively evaluated by

c(e1, e2, ..., ei)((x1, x2, ..., xn)) = c(e1(x1, x2, ..., xn), e2(x1, x2, ..., xn), ..., ei(x1, x2, ..., xn)),

whereas all ej belong to Bn (maybe after embedding). When e is an expres-
sion, we denote the unique function that is computed by e by fe.

The second de�nition will be our point of view of Boolean expressions because
it seems that for our purpose this descriptive de�nition is more accessible2.
Such a Boolean tree computes a Boolean function by evaluating all nodes of

2The concepts that are used to analyze Boolean expressions regarding questions arising
in this work use some kind of extensions, expansions and pruning and terms like sprouting
and growing which are all very descriptive when taking the point of view of trees
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Figure 2.1: Two di�erent expressions.

the tree starting with the leaves by plugging in the input values. Both de�ni-
tions are trivially seen to be combinatorially equivalent3 and corresponding
expressions also represent the same Boolean function. The inductive charac-
ter of the �rst de�nition is maintained in the inductive description of trees,
which is worked with and analyzed throughout this thesis. Moreover, the
de�nition with trees easily gives rise to a more general de�nition of Boolean
'expressions', namely the one of Boolean circuits (c.f. De�nition A.5) which
will be brie�y discussed later in this work. Before we continue employing
more main concepts we should de�ne the Catalan-And/Or trees, the expres-
sions that are most intensively studied in the literature as well as the concept
of read-once formulas resp. functions.

3That means that there is a size preserving bijection, which is stated more precisely in
the next pages.
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De�nition 2.7 (Catalan-And/Or trees)
The set of Catalan-And/Or expressions or trees with n variables is the set of
Boolean expression with connectors in K = {∧,∨} over the basis
F = {x1, x2, ..., xn, x1, x2, ..., xn}, where ∧ and ∨ are the logical AND respec-
tive OR functions from {0, 1}2 to {0, 1}, as usual.4 In other words: Catalan-
And/Or expressions are binary plane trees with nodes labeled by ∧ and ∨ and
leaves labeled by literals {x1, x2, ..., xn, x1, x2, ..., xn}.

De�nition 2.8 (Read-once formula/expression and function)
Let K be an arbitrary set of connectors and F = {x1, ..., xn}. An expression
e ∈ EK,F is called read-once formula/expression when every variable xi occurs
at most once as a leaf of e. If only positive literals occur in the formula then
we call such a formula a monotone read-once formula. A function f is called
read-once function (w.r.t (K,F)) if there is a read-once expression e ∈ EK,F
with fe = f .

2.2 Enumerative combinatorics

In this section we will introduce the main tools that we are going to use for
our treatment of the objects reviewed above. At a later stage it will become
clearer that we are interested in the number of expressions of a given shape
and size. We, therefore, want to �nd the answer to questions like: How many
Boolean expressions with connectors in K with m inner nodes (

∧
= connectors)

are there or how fast/slow does this number grow with m, if it grows at all?
Related questions for arbitrary structures are investigated in enumerative
combinatorics. In the following section a brief introduction to the concepts
used in this �eld will be given.

2.2.1 Counting and the symbolic method

As previously explained we are interested in the behavior of Boolean func-
tions coming from large Boolean expressions respectively Boolean trees. So
we need a way to measure the size. There are a lot of di�erent possibilities

4Here is a small subtlety. Due to the associativity of ∧ and ∨ one could interpret both
operations as functions from {0, 1}k to {0, 1} for any k ≥ 2. For a �xed k this would lead
to k-ary And/Or trees.
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to feasibly de�ne the size. The size measure needs to meet some very ba-
sic properties to make it accessible to the so called symbolic method. The
following section is strongly based on the book 'Analytic Combinatorics' by
Philippe Flajolet and Robert Sedgewick [FS09, I.1] but can also be found in
the introductory chapters of many other textbook on combinatorics.

De�nition 2.9 (Combinatorial class)
A �nite or countable in�nite set A with a size function µA : A 7→ N0, with
property

• |µ−1(m)| ∈ N,

meaning that the number of elements a ∈ A having size m ∈ N is �nite, is a
combinatorial class, or just class.

Given a combinatorial class, we de�ne the number of elements a ∈ A with
size m as am (resp. bm if the class is B etc.). Throughout this work it will
be our goal to examine these numbers am; at least for combinatorial classes
having some structure that allows us to do so. The numbers are either tried
to be evaluated exactly or their asymptotic behavior is elaborated. We are,
therefore, going to count the number of objects in a combinatorial class of a
given size m. For this counting it might help to count an 'equivalent' class
that might be more descriptive:

De�nition 2.10 (Combinatorial equivalence, counting)
A combinatorial class A is said to be combinatorially equivalent to class B
when am = bm ∀m ∈ N0. This is equivalent to the existence of a size pre-
serving bijection between the classes.

Now we can de�ne the ordinary generating function, short generating func-
tion or GF, of a combinatorial class as a formal power series:

De�nition 2.11 (Ordinary generating function)
Given a combinatorial class A. The ordinary generating function of A is the

11



formal power series

A(z) =
∞∑
m=0

amz
m

We say that z is marking the size in the generating function. The num-
ber of elements from A with size m is the coe�cient of zm in A(z), written
[zm]A(z) = am. Regarding combinatorial equivalence (counting) it is su�-
cient to know the GF of a combinatorial class: Two combinatorial classes
are combinatorial equivalent i� their generating functions are identical. This
means that we are not losing any information in the combinatorial sense when
working with GFs instead of the classes. The same concept works also when
one is interested in marking multiple parameters by introducing additional
variables. We call such GFs multidimensional GFs, whereas we only need GFs
that take trace of one additional parameter so that such two-dimensional GFs
have the form

A(z) =
∞∑
m=0

∞∑
n=0

am,nz
myn.

Our later analysis requires the following property of GFs:

De�nition 2.12 (Aperiodicity)
The period of a formal power series g(z) is the biggest number d ∈ N such
that g(z) = zrh(zd), with h(z) a power series and r ∈ N0. A power series is
said to be aperiodic if the period is 1. With E := {n ∈ N0|[zn]g(z) 6= 0} and
r := min(E) the period can be computed as the greatest common divisor of
E− r := {n− r|n ∈ E}. A power series g(z) is aperiodic i� there ∃i < j < k
with gi := [zi]g(z), gj := [zj]g(z), gk := [zk]g(z) 6= 0 and the greatest common
divisor of j − i, k − i is 1.

Our objects of interest are combinatorial classes:

Example 2.13 (Boolean expressions)
The class of Boolean expressions according to De�nition 2.5 with connec-
tors in K over the basis F with the size being the number of occurrences
of elements in K is a combinatorial class. The class of Boolean expressions
according to De�nition 2.6 with connectors in K over the basis F with the
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size being the number of internal nodes is a combinatorial class. These two
classes are combinatorially equivalent. Other possible size measures, which
satisfy the properties needed for combinatorial classes, are: number of leaves,
total number of nodes (internal nodes plus leaves), number of occurrences of
functions from a distinguished subset of K or F (or weighted versions), depth
etc. 4

The vast advantage of using GF is that operations on combinatorial classes
translate directly to simple computations with their GFs, see [Wil94, chapter
2] for an introduction to formal power series and manipulations of them. This
important ingredient to combinatorics is called the symbolic method. First
de�ne the sum of two formal power series, A(z) =

∑∞
m=0 amz

m, B(z) =∑∞
m=0 bmz

m as:

A(z) +B(z) :=
∞∑
m=0

(am + bm)zm.

and the product as:

A(z)B(z) :=
∞∑
m=0

m∑
i=0

(aibm−i)z
m.

The �rst combinatorial operation is the union:

Fact 2.14 (Combinatorial union)
Given two disjoint combinatorial classes A, B and a combinatorial class C.
Suppose that C = A ∪ B and

µC(c) =

{
µA(c) if c ∈ A
µB(c) if c ∈ B

Then the GF of C is the sum of the GFs of A and B, i.e.

C(z) = A(z) +B(z).

Now the Cartesian product of combinatorial classes:
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Fact 2.15 (Cartesian product)
Given three combinatorial classes A, B and C. Suppose that C = A × B =
{(a, b)|a ∈ A, b ∈ B} and

µC(c) = µC((a, b)) = µA(a) + µB(b).

Then the GF of C is the product of the GFs of A and B, i.e.

C(z) = A(z)B(z).

With this formal background we should be able to count the number of
Catalan-And/Or trees with m leaves, so we are reviewing the combinatorial
class of Catalan-And/Or trees with size function being the number of leaves.

Example 2.16 (Catalan-And/Or trees, exact)
Let T be the combinatorial class of Catalan-And/Or trees and L the set
of leaves labeled by literals from {x1, x2, ..., xn, x1, x2, ..., xn}, both equipped
with the size being the number of leaves5. A Catalan-And/Or tree with i
variables is either a literal from {x1, x2, ..., xn, x1, x2, ..., xn}, so an element of
L, or a root labeled by an ∨ (

∧
= 6) with left and right subtree being Catalan-

And/Or trees or a root labeled by an ∧ (
∧
= 7) with left and right subtree

being Catalan-And/Or trees. This translates to the symbolic description of
Catalan-And/Or trees:

T = L ∪ T × {6} × T ∪ T × {7} × T .

Observe that L(z) = 2nz, because all the 2n Objects in L have one leaf, and
that the generating function from 6 and 7 are both 1 = 1z0 because they
are internal nodes and no leaves. With Fact 2.14 and Fact 2.15 this leads to
an equation for the generating functions:

T (z) = 2nz + T (z)1T (z) + T (z)1T (z).

5One could also take the size to be the number of internal nodes or as the sum of leaves
and internal nodes to get the same results with shifts n 7→ n − 1 respective n 7→ 2n − 1
because a binary tree with n leaves has n−1 internal nodes. Also for k-ary trees, k ≥ 2 (so
for trees with internal nodes having exactly k children) such a shift is applicable and the
size measures above can be transformed easily, but for general trees these size measures
are substantially di�erent.
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Using manipulation rules for formal power series this leads to the two so-
lutions T (z)1,2 = 1±

√
1−16nz
4

. Because T (0) = t0 is the number of Catalan-
And/Or trees of size 0, which is 0, T (z) �nally evaluates to

T (z) =
1−
√

1− 16nz

4
.

Looking in a table of generating functions coe�cients as in [Wil94, chapter
2.5] and elementary calculations lead to the coe�cients

t0 = 0, tm = [zm]T (z) = 2m−1(2n)mCm−1, m ≥ 1,

with the Catalan number Cm = (2m)!
m!(m+1)!

. This formula was �rst given in
[PVW94]. 4

2.2.2 Analytic combinatorics - Singularity analysis

The next step from combinatorics to analytic combinatorics is to interpret a
GF, primary a formal power series, as an analytic function around 0.6 This
is not always possible because the coe�cients of the power series might grow
too fast7 for convergence around 0 as it is the case for e.g. the number of
directed graphs (cf. A.2) with m nodes, of which there are 24m2

. If the
investigated GFs are analytic functions, then the very powerful approaches
of analytic combinatorics can be used to analyze the asymptotic behavior of
the coe�cients of the GFs and therefore to count the combinatorial classes.
P. Flajolet and R. Sedgewick describe the general approach of analytic com-
binatorics in two principles [FS09, p.227]:

• First Principle of Coe�cient Asymptotics.
The location of a function's singularities dictates the exponential growth
of its coe�cients.

• Second Principle of Coe�cient Asymptotics.
The nature of a function's singularities determines the associated subex-
ponential factor.

6The readers who are not familiar with elementary complex analysis �nd the necessary
background in [Rud87], but also [FS09] o�ers the basic concepts of elementary complex
analysis needed for analytic combinatorics.

7Too fast here means superexponential.
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A singularity is a point in the complex plane where the function ceases to
be analytic and a function θ(m) from N0 to R is called subexponential when
lim sup |θ(m)| 1m = 1. The principles say that the coe�cients of an analytic
GF A(z) are a composition of an exponential growing factor Am and a subex-
ponential factor θ(m), i.e. [zm]A(z) = Amθ(m), and is determined by the
location and type of the singularities. The �rst principle is speci�ed with the
following:

Fact 2.17 (Exponential growth, [FS09, Theorem IV.7])
If A(z) is a GF (non-negative coe�cients) analytic at 0 and R is the radius
of the singularity nearest to the origin:

R := sup{r ≥ 0|A is analytic at all points of 0 ≤ z < r}8

then the coe�cient am = [zm]A(z) satis�es

am = R−mθ(m)

with θ(m) being subexponential.

The real singularity nearest to the origin is also called (real) dominant sin-
gularity. For extracting the subexponential factor one substitutes z with z

R

so that we can w.l.o.g. assume that the dominant singularity is at 1. Re-
garding growth rates and the asymptotic behavior of functions related to
coe�cients of GFs, the O-notation is convenient. For readers who are not
familiar with this notation a short summary can be found in the Appendix
A.3. The second principle claims that the subexponential factor of the co-
e�cients depends only on the nature of the singularity. So it suggests that
if we know the behavior of the GF near its singularity, then we know the
associate subexponential factor. More concrete if f(z) admits an expansion
around its dominant singularity σ of the form

f(z) ∼
z→σ

g(z),

then
[zm]f(z) ∼

m→∞
[zm]g(z)

8Pringsheim's Theorem guaranties that if a GF has a singularity then it has a real
singularity with no other singularity nearer to the origin. Nevertheless, it might be the
case that there are several (complex) singularities with the same distance to the origin.
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or similarly

f(z) =
z→σ

o(g(z)) −→ [zm]f(z) =
m→∞

o([zm]g(z)),

f(z) =
z→σ
O(g(z)) −→ [zm]f(z) =

m→∞
O([zm]g(z)).

These suggestive transfers of the behavior of a function near its dominant
singularity to the behavior of the coe�cients manifest themselves in the next
three results due to Flajolet and Odlyzko [FO90] with an expansion and good
presentation in [FS09]. Before we can state the precise conditions, on which
the asymptotic approximation of a GF near its singularity transfers to an
asymptotic approximation for the coe�cients, we need the de�nition of a
∆-domain

De�nition 2.18 (∆-domain, [FS09, De�nition VI.1])
Given two numbers φ, R with R > 1 and 0 < φ < π

2
, the domain ∆(φ,R) is

de�ned as

∆(φ,R) := {z | |z| < R, z 6= 1, |arg(z − 1)| > φ}

and is called a ∆-domain. A function is ∆-analytic if it is analytic in some
∆-domain.

Fact 2.19 (Transfers: big-Oh, little-Oh and ∼, [FS09, Section VI. 3])
Let α be an arbitrary real number, not a negative integer and 0; and let f(z)
be a ∆-analytic function with ∆-domain ∆.

(i) Assume that f(z) = O((1− z)−α), as z → 1, z ∈ ∆. Then one has:

[zm]f(z) = O(mα−1).

(ii) Assume that f(z) = o((1− z)−α), as z → 1, z ∈ ∆. Then one has:

[zm]f(z) = o(mα−1).

(iii) Assume that f(z) ∼ (1− z)−α, as z → 1, z ∈ ∆. Then one has:

[zm]f(z) ∼ mα−1

Γ(α)
.
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All three statements together show that the transfer of the behavior of a
GF near its singularity to its coe�cients as suggested holds for the class
of functions above. The authors prove these results by means of Cauchy's
integration formula for the coe�cients from complex analysis and a special
integration contour called Hankel contour. It is also shown that a similar
result holds for a more general class of functions, namely for functions of the
form (1 − z)−α(log 1

1−z )β, but we will not encounter such functions. In this
thesis we will encounter the case where α = 1

2
and we will say that a function

T (z) has a square-root singularity at ρ (or square root singular expansion
around ρ) if

f(z) = a− b
√

1− z

ρ
+O(1− z

ρ
)

around ρ. A direct application of the above transfers is the following result:

Lemma 2.20 ([GGKM15, Lemma 3.4])
Let T (z), S(z) be GF with the same unique dominant singularity ρ and with

square-root singular expansions around ρ. Then, lim
m→∞

Sm

Tm
= lim

z→ρ
S′(z)
T ′(z)

.

With these results we are very well prepared for our further analysis of the
Catalan-And/Or model and models encountered in the fourth chapter, and
the reader will agree with the validity of the quote:

�Analytic methods are extremely powerful
and when they apply, they often yield estimates

of unparalleled precision.� -A.Odlyzko [Odl95]

Example 2.21 (Catalan-And/Or trees, asymptotics)
In 2.16 we calculated the GF of Catalan-And/Or trees as

T (z) =
1−
√

1− 16nz

4
.

This function is analytic for |z| < 1
16n

and has an algebraic singularity at
z = 1

16n
. Fact 2.17 gives (16n)m for the exponential growth factor of the
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coe�cients. Substituting z = x
16n

in 1−
√

1−16nz
4

gives

T (x) =
1− (1− x)

1
2

4
.

With the ∼-transfer above one �nally gets

tm = [zm]T (z) = (16n)m[xm]T (x) ∼ (16n)m
m−

3
2

2
√
π

1

4

as an asymptotically equivalent expression for the number of Catalan-And/Or
trees. We will use that

tm = O((16n)m)m−
3
2 .

4

The square-root singularity and the associated subexponential factor of form
( 1
m

)
3
2 are very often encountered in combinatorics, especially when counting

tree structures. In the words of Bell, Burris, and Yeats [BBY06]

�almost any family of trees de�ned by a recursive equa-
tion that is nonlinear [. . . ] lead[s] to an asymptotic law of the

Pólya form t(n) ∼ Cρ−mm−
3
2 �

There is a generic underlying principle why these square-root singularities
emerge in a lot of cases:

Fact 2.22 (Implicit functions, [FS09])
Suppose that G(z, y) is an analytic function

G(z, y) =
∑
m,n≥0

gm,nz
myn

in a domain |z| < R and |y| < S, for some R, S > 0 such that

g0,0 = 0, gm,n ≥ 0, g0,1 6= 1, ∃m∃n ≥ 2 : gm,n > 0 (2.1)

and that the characteristic system

y = G(z, y)

1 = Gy(z, y)
(2.2)
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has a solution (z0, y0) in the domain of analyticity of G(z,y) and z0, y0 > 0.
Then, there is an unique solution y(z), analytic for |z| < z0 and convergent
at z = z0, where it has a square-root singular expansion:

y(z) =
z→z0

y0 − γ
√

1− z

z0

+O(1− z

z0

), γ :=

√
2z0Gz(z0, y0)

Gww(z0, y0)

that is valid in a ∆-domain. Additionally, if y(z) is aperiodic, then we have
the asymptotic expansion for the coe�cients of y(z) of the form

[zm]y(z) =
m→∞

γ

2
√
πm3

(
1

z0

)m
(1 +O(m−1)).

The so called Drmota-Lalley-Woods theorem is one facet of the 'generality'
of the square-root singularity. Before we study the theorem in the fourth
chapter we will �nish this chapter with a brief discussion of the basic concepts
of combinatorial complexity theory.

2.3 Combinatorial complexity theory

In computer science a main focus of studies is to perform tasks with as little
resource as possible, e.g perform a computation, store an object etc. Imagine
you have a set of abstract objects/tasks T and a set of possible representa-
tions/solutions S for this task with a function µ : S 7→ N that realizes the
notion of resources needed for a representation/solution in S. Moreover,
you have a function τ : S 7→ T that maps a representation/solution to the
object/task it represents/solves. That means every representation/solution
represents/solves exactly one task, but maybe there are multiple representa-
tions/solutions for one object/task or even none. With this the complexity
L is de�ned as a function from T to R ∪ {+∞} as

L(t) := min{µ(s)|τ(s) = t, s ∈ S}

and we say that t has complexity L(t) (in S). If there is no r with τ(r) = t
then L(t) = ∞ meaning that t cannot be represented/solved in S. We
are going to use this notion for S being a combinatorial class and µ be-
ing its size measure. More concrete we are representing Boolean functions
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f by Boolean expression from a combinatorial class C of Boolean expres-
sions. The complexity L(f) of f is then the smallest size (according to the
size measure µ) of an expression e from C that represents this function, so
L(f) = min{µ(e)|fe = f, e ∈ C}. In one single sentence: The complexity of a
Boolean function with respect to C is the smallest size of a Boolean expres-
sion in C representing it. The complexity of Boolean functions is a broad �eld
of research, the standard reference in this �eld [Weg87] is a recommended
starting point to explore this area in more depth.

21



Chapter 3

Random Boolean functions

induced by random Boolean

expressions

In this chapter the general object of interest that we are going to study is
de�ned, namely models of Boolean functions induced by random Boolean
expressions. A huge number of such models has been de�ned and analyzed
since the 90s, all of them having small di�erences and their own subtlety. We
introduce an abstract model, including the models examined in the literature,
and pose questions that may arise.

3.1 General model and the Shannon e�ect

In this section we de�ne a general model of Boolean functions that o�ers a
framework in which almost all models regarded in this thesis can be reviewed.
Moreover, by means of this framework we will demonstrate what properties
we are going to investigate and what di�erent points of view one can take.

De�nition 3.1 (Random Boolean function model)
Let PS : S 7→ [0, 1] be a probability function on S ⊆ E. We de�ne a probability
function P on the set of all Boolean functions B as the image probability of
the function e 7→ fe:

P(f) := PS({e ∈ S|fe = f}) =
∑

e∈S:fe=f

PS(e)
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and call the new probability space model of random Boolean functions or short
random functions and denote it by (S,PS). The set S is called the domain of
the model and PS its distribution.

W.l.o.g. we assume that PS is positive, meaning that every expression in S
really occurs (has probability > 0) in the model. Observe that every model
in our de�nition has the same domain for the induced probability function,
namely B. Since an expressions is a �nite object, there are only �nitely
many variables occurring in an expression. This means that in our model
only Boolean functions f with a �nite number of essential variables have a
positive probability P(f), so we could take the set of Boolean functions having
only �nitely many essential variables, B≤∞, as our domain for P. Moreover,
in most cases we are going to investigate, there is only a �nite number of
variables {x1, ..., xn} used in all expressions from S, then we can also identify
P as a probability function on Bn. We might also have a sequence of models
(Sm,PSm)m∈N or want to implement the notion of size in our model, meaning
that we have a size function µ on S, making S a combinatorial class. Such
a model will be indicated by (S,PS, µ). Consequently a couple of questions
arise concerning such models:

• Which Boolean functions have positive probability in the model (S,PS)?

• What is the 'typical' behavior of a random Boolean function.

• What is the average or 'typical' complexity of a function in the model
(S,PS, µ)?

• What is the 'typical' shape of an expression computing f .

• Does the sequence (Sm,PSm)m∈N converge to a limit distribution P∞?

• If so, what is the shape of it, which functions have positive probability,
can we compute it explicitly, does it converge and how fast?

• If it does not converge, can we �nd out something about its asymptotic
behavior? For example:

� What is the asymptotic behavior of the probability of a �xed func-
tion?
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� What is the asymptotic behavior of the average or maximal com-
plexity of a function?

� Are most/all functions of high or low complexity?

� etc.

• etc.

The aim of this work is to investigate di�erent random Boolean function
models that have been examined in the literature and to answer at least some
of the questions posed above. Which functions have positive probability, thus
really occur in the model, depends on the used expressions. When we consider
the expressions EK,F with connectors in K and base functions F as S, then the
functions with positive probability are exactly the ones that are expressible
by means of K and F. This gives rise to the de�nition of the set of Boolean
functions induced by (K,F) and the notion of completeness:

De�nition 3.2 (BK,F, Completeness)
The set of all functions induced by the set of connectors K and the set of base
functions F is

BK,F := {f ∈ B|∃e ∈ EK,F : fe = f}

and we call the tuple (K,F) complete i� BK,F = Bn, with n being the number
of di�erent variables used in F. We also say that the set of expressions EK,F
is complete.

That the tuple ({∧,∨}, {x1, x2, ..., xn, x1, x2, ..., xn}) is complete is folklore1,
so for every function on n variables there is a Catalan-And/Or expression
computing this function. Before we proceed with introducing subclasses of
random Boolean function models, let us consider the most natural model,
the uniform distribution on Bn, with the complexity of a function being the
size of the smallest And/Or formula expressing the function and examine on
it the so called Shannon e�ect for Boolean formula size complexity:

Example 3.3 (Uniform distribution and the Shannon e�ect)
In terms of our de�nition above we consider (Sn,PSn , µ), with Sn being the

1Consider the disjunctive or conjunctive normal form of a function.
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Catalan-And/Or trees with n variables, PSn an appropriate probability func-
tion that induces the uniform distribution on Bn2 and with µ(t) being the
number of leaves of a tree t. Let us denote the probability induced on the
Boolean functions as Pn. Since there are 22n functions in Bn and Pn is the
uniform distribution on this set, Pn(f) = 1

22n
and Pn(f) →

n→∞
0, so the func-

tion converges in distribution to the limit function P∞ = 0 and is, therefore,
not a probability measure. Concerning the tree size complexity of a formula
we now establish an upper bound for this complexity and examine the ques-
tion of how many functions in Bn approximately adopt this value. We follow
the presentation of [FS09, page 77]: An upper bound for the complexity of
a Boolean function f in n variables is 2n+1 − 2. To see this, consider the
representation of f

f(x1, ..., xn−1, xn) = (xn ∧ f(x1, ..., xn−1, 0)) ∨ (xn ∧ f(x1, ..., xn−1, 1)),

used for Boolean decision trees. With this and the four functions

> ≡ (x1 ∨ x1), ⊥ ≡ (x1 ∧ x1), x1, x1,

having complexity at most 2 we get the (upper bound) recursion

cn+1 ≤ 2cn + 2, c1 ≤ 2

for cn being the complexity of a function in n variables. Solving this recursion
we get the claimed upper bound. Lupanov [Lup60] showed a stronger upper
bound for the complexity: 2n

log2(n)
(1 + o(1)). For examining a lower bound

for the complexity of most functions, i.e. of a fraction tending to 1 when n
tends to ∞, we compare the number of Catalan-And/Or expressions of size
at most m, say T≤m, (this is an upper bound of the number of functions in
Bn with complexity at most m) to the total number of functions in Bn, which
is 22n . If we �nd a(n) (hopefully big) m(n) depending on n such that T≤m(n)

is little-Oh of |Bn|, i.e.
T≤m(n)

|Bn| tends to 0, then we have established a lower
bound m(n) on the number M that ful�lls: A fraction tending to 1 when
n tends to ∞ has at least complexity M . Let us make the corresponding
calculations: According to 2.21 the number of Catalan-And/Or expressions

2This is possible because K = {∧,∨} with F = {x1, x2, ..., xn, x1, x2, ..., xn} is a com-
plete tuple.
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of size m is Tm = O(16mnmm−
3
2 ) and easy computations show that also T≤m

as a function of m is of that order:

T≤m :=
m∑
i=1

Ti = O(16mmnm−
3
2 ).

When we choose m(n) to be

m(n) :=
2n

4 + log2(n)

then T≤m(n) is indeed little-Oh of 22n . So we established the following result
due to Riordan and Shannon [RS42] 4

Fact 3.4 (Shannon e�ect for the uniform distribution)
Let Pn be the uniform distribution on Bn. There is a function g(n) = o(1) so
that

Pn({f ∈ Bn|L(f) ≥ 2n

log2(n)
(1− g(n))}) −→ 1

when n tends to ∞.

Regarding the upper bound of Lupanov this means that the probability/ratio
of functions having almost maximal complexity tends to 1. This gives rise to
the following de�nition:

De�nition 3.5 (Shannon e�ect, [Weg87, Section 4.1])
Let An be a sequence of �nite sets with probability measures Pn on it and
complexity functions Ln : An → R ∪ ∞ and let Lmax(n) be the maximal
complexity of an element in An, i.e. Lmax(n) := max {Ln(An)}, then we say
that this system exhibits the Shannon e�ect i� there is a function g(n) = o(1)

Pn({e ∈ An|Ln(e) ≥ Lmax(n)(1− g(n))}) −→ 1

when n tends to ∞.

There are also stronger and weaker de�nitions of the Shannon e�ect occur-
ring in the literature, see [Weg87] for the uniform distribution and [GGM14,
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De�nition 6]. A similar result holds for circuits with the quantity 2n

n
instead

of 2n

log2(n)
and over K = {∧,∨,¬} and F = {x1, ..., xn}. That was again estab-

lished by Lupanov [Lup58](general upper bound) and Shannon [Sha49](lower
bound for most functions). At this point it should be mentioned that the very
broad �eld of Boolean function complexity works on establishing exactly such
general lower and upper bounds as above and also for special functions as the
majority- and parity-function. Mainly this happens for circuit size complex-
ity, which is the smallest size of a Boolean circuit of a given class representing
the function, but also for formulas. For a very up-to-date book in Boolean
function complexity that concentrates on lower bounds see [Juk12].

In the next tree chapters, which represent the main part of this thesis, we
are am introducing subclasses of random Boolean function models that we
are going to investigate in detail as speci�cations of the general model.
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Chapter 4

DLW Models

This chapter will review the �rst subclass of the random Boolean function
model that we are considering. This class will ful�ll the structural require-
ments for being accessible for singularity analysis, especially for the so called
Drmota-Lalley-Woods Theorem (DLW Theorem) which will be introduced
later. The DLW Theorem requires models of a certain structure and there-
fore we call the models regarded in this chapter DLW models. These models
will turn out to exhibit a lot of regularity, smoothness and robustness.

4.1 The model

In this part we will restrict ourselves to special domains S of the model and
size functions µ so that the structure of the combinatorial class is well suited.
As domain of this subclass we allow expressions with �xed connectors K and
base functions F of a given size m ∈ N0, so

Sm := {e ∈ EK,F|µ(e) = m}.

To start with we will consider the probability on the expressions to be the
uniform distribution:

PSm(e) :=
1

|Sm|
.

Then the probability of a Boolean function f is the ratio of expressions of
size m computing f , to the total number of expressions:

Pm(f) := PSm({e ∈ Sm : fe = f} =
|{e ∈ Sm : fe = f}|

|Sm|
. (4.1)
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With S(z) being the GF of all expressions from EK,F and f(z) being the GF
of the expressions computing f , this can be written as

Pm(f) =
[zm]f(z)

[zm]S(z)
. (4.2)

Later in this section we will look at a generalization of the uniform distri-
bution on the expressions. In this model every function f which has an
expression of size m in Sm has positive probability. Since the base func-
tions are �xed, only a �nite number of variables occur in this model, say
{x1, ..., xn}. Therefore, only functions on these variables have positive prob-
ability and we can restrict the domain of Pm to Bn. We are interested in
the shape of the model for large expressions, i.e. large m. It is not a priori
clear if this question has an answer, because we have no guarantee that for
two di�erent, large numbers m1, m2 the models (Sm1 ,Pm1), (Sm2 ,Pm2) have
a common shape. However, as we will see in this section, the question is
well posed and permits an answer for a very general set-up. The answer will
be the following: The probability measure Pm, on the Boolean functions Bn,
converges in distribution to a probability measure P∞, called limit distribu-
tion. Because the domain of Pm is Bn which has only �nitely many elements
this convergence is uniform. In this sense the shape of the model for large
m is P∞. So, this would answer the question how the induced probability of
large Boolean expressions built with internal nodes from K and leaves from
F looks like. As mentioned in [CFGG04] one could also be interested in the
ratio of expressions computing f among all expressions of size ≤ m. The
probability of a function f can then be computed as

P≤m(f) =

∑m
i=0 [zi]f(z)∑m
i=0 [zi]S(z)

=
[zm]f(z)/(1− z)

[zm]S(z)/(1− z)
. (4.3)

1
1−z introduces a singularity at 1, but since both functions f(z), S(z) have
the same singularity σ < 1 (see later), the asymptotic expansion of the co-
e�cients does not change due to singularity analysis and it holds that both
probability distributions are the same in the limit, whereas it is clear that
P≤m and Pm are di�erent.

The number of variables, occurring in functions of F, is �nite and not growing.
So another dimension that we wish to include in our considerations, to achieve
the goal to say something about models induced by large expressions, is to
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consider somehow growing or developing base functions and/or connectors.
Assume we have a sequence of sets of expressions

EKn,Fn

with Fn and Kn sequences of connectors resp. base functions such that for
all n the limit distribution P∞,n exists. Then, one can be interested in the
question of the behavior of the limit probabilities of a function:

"What is the behavior of P∞,n(f) for large n."

The above considerations for the Catalan And/Or tree model (see below)
have been extensively discussed in the literature. See [LS95] for the start of
the research and [CFGG04, GW05, Koz08, GGM14, GM15] for a consecutive
development and improvement on results in this area. Variants of this model
including associativity/commutativity and/or a di�erent size measure were
investigated in [GGKM15, GGKM14]. To make this abstract procedure more
concrete we demonstrate it by means of the Catalan And/Or model.

Example 4.1 (Catalan And/Or model, uniform distribution)
Consider the Catalan And/Or trees on n variable: Cn := EK,Fn with K :=
{∧,∨} and Fn = {x1, x2, ..., xn, x1, x2, ..., xn} and with size µ being the num-
ber of leaves. With that the probability Pm,n is

Pm,n :=
|{e ∈ Cn : µ(e) = m, fe = f}|
|{e ∈ Cn : µ(e) = m}|

and the limit distribution on n variables, if it exists, is

P∞,n := lim
m→∞

Pm,n.

At a later point in this section we investigate the results in the literature,
considering the behavior of P∞,n(f) for n→∞ for a �xed function. 4

A second model that was intensively studied in the literature is the ana-
logue of the Catalan And/Or model with the di�erence that internal nodes
are labeled only by the implication and the leaves with positive literals;
that means K = {→} and F = {x1, ..., xn}. This model was analyzed in
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[FGGG12, GG10] with the extension of associativity in [GGKM12]. Also
the Polish school around Zaionc investigated this model extensively with a
di�erent goal in mind, see [Zai03]. The survey of Gardy [Gar06] gives a very
good overview on the class of models reviewed in this part. In the example
above we let the size of the expressions grow �rst (m → ∞) and then we
let the number of variables grow (n → ∞). To let the number of variables
grow to in�nity at �rst and then let the size m grow next, is in our cases
not interesting because when the number of variables tends to in�nity, the
probability of a �xed function tends to 0 (see later). But to grow m and
n simultaneously can lead to interesting results. So one can investigate the
behavior of Pm(k),n(k) for functions m(k), n(k) tending to ∞ when k → ∞.
This was done for the �rst time and until now the only time in [GM15]. The
di�erent limits are visualized in 4.1.

The above considerations were primarily done for the Catalan And/Or model
and the model with implication. We now make some of the conclusions
made there, but on a more general and somehow extended fashion. Let
us now gather the requirements so that our general analysis works. Let
K = {k1, k2, ..., kl} and F arbitrary. De�ne S := EK,F. According to the
de�nition of the expressions in De�nition 2.5, this set is closed under the
following construction:

• Take a connector ki with arity(ki) = j as root and append j expres-
sions/trees e1, ..., ej in an ordered way to it.

So the constructed tree t := (ki, e1, ..., ej) is also in S. We now can de�ne the
property of the size function µ : S 7→ N0 that we need.

De�nition 4.2 (Admissible size function)
Regard the construction above. The size function µ is called admissible if:

• µ(t) = µ((ki, e1, ..., ej)) = wi + µ(e1) + ...+ µ(ej), wi ∈ N0.

• When at least one wi is 0, then µ(f) 6= 0, ∀f ∈ F.

• When wi = 0, then arity(ki) 6= 1.

• There is a wi > 0 with arity(ki) ≥ 2.
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Figure 4.1: Di�erent limits.

The �rst property is necessary because then the symbolic method with the
Cartesian product construction in Fact 2.15 is applicable. The second and
the third property ensure that S with µ(ej) is a combinatorial class by for-
bidding the situation that there are base functions and connectors with size
0 or a connector with arity 1 and weight 0, which both would lead to an
in�nite number of expressions of �xed size. Finally, the fourth property says
that there is at least one connector with arity greater equal 2 and positive
weight. With such size functions the construction above leads to larger and
larger expressions. The following observation characterizes the admissible
size functions and also gives an example of a size function that is not admis-
sible:
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Observation 4.3 (Admissible size function)
The admissible size functions can be seen as weighting the base functions and
the connectors and de�ne the size of an expression as the sum of the weights
of the base functions and connectors occurring as labels of the nodes. The
weights of the connectors are denoted by wi and the weight of the base func-
tions by ai. For example size functions that use the number of internal nodes,
external nodes or the total number of nodes are admissible size functions: All
base functions get the weight 0 and the connectors the weight wi = 1 (re-
spective 1 and wi = 0 or 1 and wi = 1). The depth of an expression is not
admissible: The depth of a tree is 1 plus the maximum of the depths of the
subtrees of the root.

In the entire section we will only consider models with admissible size func-
tions and therefore we will omit the term admissible by chance. Regarding
e.g. Fact 2.15, these models are perfectly suited for the symbolic method and
also for singularity analysis as the following observation demonstrates.1

Proposition 4.4 (Square-root singularity)
Let S := EK,F be a model with admissible size function µ and K = {k1, ..., kl}.
Let s0 be the number of base functions of size 0 and F (z) the GF of F. Then,
the GF S(z) of this model has a square-root singularity

S(z) =
z→z0

s0 + y0 − γ
√

1− z

z0

+O(1− z

z0

)

with γ, z0, y0, evaluated as in Fact 2.22 with

G(z, y) := F (z) +
l∑

i=1

zwi(y − s0)arity(ki) − s0

that is valid in a ∆-domain. Additionally, if S(z) is aperiodic, then we have
the asymptotic expansion for the coe�cients of S(z) of the form

[zm]S(z) =
m→∞

γ

2
√
πm3

(
1

z0

)m
(1 +O(m−1)).

1This circumstance results from the fact that the underlying trees used for the expres-
sions are of a special type, called simple variety of trees in the literature. Such trees are
perfectly suited for singularity analysis and a lot of interesting properties of such varieties
have been established see e.g. [FS09] and [MM78].
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Proof. Let K = {k1, k2, ..., kl} be the set of connectors. With this the de-
scription of S is

S = F ∪
l⋃

i=1

(ki × Sarity(ki)).

According to the symbolic method, which is applicable because of the �rst
property of µ, this translates to the equation for the generating functions

S(z) = F (z) +
l∑

i=1

zwiS(z)arity(ki). (4.4)

We consider two cases: In the �rst case assume that all base functions f ∈ F
have weight > 0 and de�ne G(z, y) as

G(z, y) := F (z) +
l∑

i=1

zwiyarity(ki)

so that in this case all requirements of 2.22 for the coe�cients 2.1 are satis�ed:
g0,0 = 0 because there are no base functions of size 0 and by de�nition
connectors have positive arity. That gm,n ≥ 0 is clear, g0,1 6= 1 because of the
third property of admissible size functions. Because of the fourth property
of admissible size functions ∃m∃n ≥ 2 : gm,n > 0. In the second case there
is a base function with weight 0 but no connector with weight wi = 0 due
to the second property of admissible size functions. To apply Fact 2.22 we
normalize the system S(z) = G(z, S(z)) to S(z) − s0 = G(z, S(z)) − s0 and
substitute Ŝ(z) := S(z)− s0:

Ŝ(z) = Ĝ(z, Ŝ(z)), Ĝ(z, y) := G(z, y + s0)− s0.

Again all conditions (2.1) in Fact 2.22 are satis�ed because of the normaliza-
tion and the fact that all wi are greater 0. In both cases the function S(z)
(resp. Ŝ(z)) is an analytic function around zero 2 with �nite radius of con-
vergence. The function S(z) (resp. Ŝ(z)) ceases to be analytic at z0 obtained
from the system 2.2 according to [FS09, Lemma VII.3]. So the solution of the
system 2.2 is indeed in the domain of analyticity of G(z, y) (resp. Ĝ(z, y)).
So all assertions follow directly from Fact 2.22.

2The number of expressions in S with a given size can be upper bounded with a family
of simple trees [FS09] labeled by �nitely many labels which leads to an analytic function.
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The above observation is applicable for the Catalan And/Or model, where in
Example 2.21 we were also able to directly derive that the GF of the Catalan
And/Or trees exhibit a square-root singularity. So it seems that we are able
to count (asymptotically) the total number of expressions of a given size m
in our models. But how can we count the number of expressions of size m
calculating a given function so that we can quantify the probability of this
function. We will not be able to do so explicitly but in a recursive way:

Example 4.5 (Generic equations)
Take again the Catalan And/Or model as in 4.1 for an illustrative example.
Imagine that there are am1 expressions of size m1 computing f1 and am2

expressions of size m2 computing f2 and that f1 ∧ f2 = f . Then, there
are am1am2 expressions of size m1 + m2 with root labeled by ∧ and left
subtree computing f1 and right subtree computing f2. Let fi denote the i-th
Boolean function in Bn in any order, as well as the class of Catalan And/Or
expressions computing fi with associated GF fi(z). Since the expressions
are complete and the number of variables occurring in the base functions is
n, all functions from Bn are occurring in the model, so i ∈ {1, ..., 22n}. The
recursive relation between the classes fi leads to the generic equations for
the generating functions: For 1 ≤ i ≤ 22n :

fi(z) = z1{fi is literal} +
∑

(fj ,fl):
fj∧fl=fi

fj(z)fl(z) +
∑

(fj ,fl):
fj∨fl=fi

fj(z)fl(z), (4.5)

whereas 1{fi is literal} is the indicator function of fi being a literal. 4

4.2 Existence and properties of the limit prob-

ability

These generic equations for the GFs of the expressions computing a function
can be used directly to recursively calculate the number of expressions of a
given size m computing a function f . So theoretically one is able to calcu-
late the probability Pm(f) for every function f , which is just the number
of expressions of size m computing f , divided by all expressions of size m.
Practically, for large m and n, this is not possible and it would not reveal
more than a clue if the limit probability P∞(f) := lim

m→∞
Pm(f) exists for every
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f .

The very important Drmota-Lalley-Woods Theorem (DLW Theorem) in con-
nection with the transfers in Fact 2.19 give a digni�ed answer to the question
of existence of the limit distribution. In a nutshell the DLW Theorem states
that GFs that satisfy a system of functional equations as in equation 4.5 have
a square-root singularity at a common point ρ. With that one shows the ex-
istence of the limit with a transfer. The DLW Theorem was independently
found by Drmota [Drm97], Lalley [Lal93] and Woods [Woo97] approximately
at the same time. The paper by Woods is of additional interest because he
had a similar goal in mind. Woods investigated coloring rules for �nite trees,
which are rules on how the colors of the leaves propagate to the root, and
the limit distribution of the colors of the roots. In our set-up one can see
the function computed by a node as the color of this node and this color is
determined according to the colors (functions) of the children-nodes and the
coloring rules that are simply the composition 'rules' for Boolean functions
with connectors. The version of the DLW Theorem due to [FS09, Theorem
VII.6] is provide. To start with some de�nitions which are found together
with the following explanations in [FS09]:

De�nition 4.6 (Formal power series: valuation and distance)
The valuation val(·) of a power series f(z) is the minimal m ∈ N0 so that
[zm]f(z) 6= 0. The valuation of a vector of power series ~y(z) = (y1(z), ..., yk(z))
is the minimum over the individual valuations of yi(z):

val(ỹ) := min{val(yi)|1 ≤ i ≤ k}.

The distance between two vectors of power series is

d(~y, ~w) := 2−val(ỹ−w̃).

With this distance measure the set of formal power series or vectors of them
is a complete metric space and we call the convergence in this space formal
convergence.

De�nition 4.7 (Polynomial system, positive, proper, irreducible)
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Let
y1 = Φ1(z, y1, ..., yk)

y2 = Φ2(z, y1, ..., yk)

...

yk = Φk(z, y1, ..., yk)

(4.6)

be a polynomial system of equations abbreviated with

~y = ~Φ(z, ~y)

that is nonlinear, i.e. at least one polynomial Φi is nonlinear in some of the
indeterminates y1, ..., yk.

(i) A polynomial system is said to be positive if all components Φi have
non-negative coe�cients.

(ii) A polynomial system is said to be proper if

d(~Φ(z, ~y), ~Φ(z, ~w)) < Kd(~y, ~w)

for some K < 13 and for ~y, ~w with [z0]~y = [z0]~w = [z0y0]~Φ(z, y)
componentwise.

(iii) A polynomial system is said to be irreducible if the graph G = (V,E)
with V := {1, ..., k} and
E := {(i, j)|yj occurs in Φi(~y)}, its dependency graph, is strongly con-
nected.

(iv) A polynomial system is said to be aperiodic if all solutions are aperiodic
power series.

Since we are working with GFs, positivity is a natural condition. Properness
says that the system is a contraction provided that the regarded functions
coincide in the zeroth coe�cient (the constant).4 Algebraic irreducibility
literally means that no subsystem of 4.6 can be solved before the whole
system is solved. This property is crucial so that all component solutions
adopt the same singularity:

3This is equivalent to the fact that the valuation of the di�erence of two vectors is
larger after the mapping.

4In [FS09] it is assumed that the system satis�es a Lipschitz condition as in (ii) for all

functions so that ~Φ is a contraction on the complete metric space. Then, by iterating the
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Theorem 4.8 (DLW Theorem, [FS09, Theorem VII.6])
Let ~y = ~Φ(z, ~y) be a nonlinear polynomial system as in 4.7 which is positive,
proper and irreducible. Then, all component solutions yi have the same radius
of convergence ρ <∞ and a square-root singularity:

yi(z) = αi − βi
√

1− z

ρ
+O(1− z

ρ
),

with positive numbers αi, βi. If in addition one component yi is aperiodic5

then the expansion holds in a ∆-domain and a transfer yields that the coef-
�cients of yi satisfy

[zm]yi ∼
βi

2
√
πm3

(
1

ρ

)m
(1 +O(m−1)).

Remark. This is the polynomial version of the DLW Theorem. There also
exists a general version of it, see [Drm97].

Investigating the proof of this theorem shows how to compute the numbers
ρ, αi and βi: One has to �nd the smallest positive ρ and α1, ..., αk which
solve the characteristic system

α1 = Φ1(ρ, α1, ..., αk)

α2 = Φ2(ρ, α1, ..., αk)

...

αk = Φk(ρ, α1, ..., αk)

0 = det(I− ~Φ~y(ρ, α1, ..., αk))

(4.7)

with I being the identity matrix and ~Φ~y the Jacobi matrix with respect to
y1, ..., yk (compare Fact 2.22). For the numbers βi Drmota [Drm97] proved
that (βi)i=1,...,k is an eigenvector to the eigenvalue 1 of the Jacobi matrix

function scheme ~si := ~Φ(z,~si−1), one obtains a sequence of functions converging formal to
the unique limit for an arbitrary start function. Our de�nition of properness is su�cient
for the DLW Theorem as can be seen from its proof in [FS09]. In this case, the convergence
of the scheme is guaranteed if we start with a function that coincides in the constant with
the unique solution.

5For an irreducible system this is equivalent to the fact that all components are aperi-
odic.
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~Φ~y(z, ~y(z)) at the singularity ρ, i.e. at the point (ρ, α1, ..., αk). Let us see
how the DLW Theorem applies to the Catalan And/Or model.

Example 4.9 (Existence of the limit probability of the And/Or model)
Consider the generic equations of the Catalan And/Or model in 4.5:

fi(z) = z1{fiis literal} +
∑

(fj ,fl):
fj∧fl=fi

fj(z)fi(z) +
∑

(fj ,fl):
fj∨fl=fi

fj(z)fi(z). (4.8)

They form a polynomial system in z and the components yi
∧
= fi. It is non-

linear because we have connectors with arity greater one and positive weights
and it is trivially positive. The properness follows because all base functions
have weight > 0, see the proof of the next theorem. It is irreducible because
TRUE is 'connected'6 to every Boolean function g; and g is 'connected' to
the function TRUE:

g = > ∧ g, > = > ∨ g.
The GF for TRUE is aperiodic because there are expressions of every size
greater equal 2 for TRUE:

> = (x1 ∨ x1) = (x1 ∨ x1) ∨ x1 = · · · .

All requirements of the DLW Theorem are satis�ed so that all components
have coe�cients

[zm]yi ∼
βi

2
√
πm3

(
1

ρ

)m
(1 +O(m−1)).

Let S(z) be the GF of all expressions and fi the Boolean function belonging
to yi. The total number of expressions of a given size m is the sum of these
coe�cients of index m

[zm]S(z) =
∑

1≤j≤22n

[zm]yi(z)

so that the probability of a function fi occurring among the expressions of
size m is

Pm(fi) =
[zm]yi(z)

[zm]S(z)
=

[zm]yi(z)∑
1≤j≤22n [zm]yj(z)

.

6The GF for the function TRUE appears on the RHS of the generic equation for g.
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Using the asymptotic expansions for the coe�cients this leads to:

P∞(fi) = lim
m→∞

Pm(fi) =
βi∑

1≤j≤22n βj
.

This shows that the limit probability exists for all n and that all Boolean
functions in Bn have positive probability. 4

The existence of the limit probability of the Catalan And/Or model was
�rst shown in [LS95]. In [CFGG04] the DLW Theorem was �rst applied on
this model as stated above. There one can also �nd numerical results for
n = 1, 2, 3. We now want to follow the same approach as for the Catalan
And/Or model but for a more general set-up. For this, observe that one can
also be interested in models where the base functions and/or the connectors
occur with di�erent frequencies: Let F = {b1, ..., bj} be the base functions and
K = {k1, ..., kl} the connectors. Furthermore, let pbi be the probability that
the base function bi occurs as a leaf of an expression and pki is the probability
that a connector ki occurs as the label of an inner node. As previously stated
we de�ne the probability Pm(f) as the probability that an expression of size
m computes f . This model is a random Boolean function model as de�ned
in De�nition 3.1. In contrast to the above model, where all expressions
were equally likely (because we used the uniform distribution on expressions
of size m), this model has a probability distribution on expressions that
is induced by the probability of the connectors and base functions. For
example in the Catalan And/Or model one could wish that x1 occurs twice
as often as the other literals and the connector ∧ three times as often as
∨. This is easy to implement in the model by taking as base functions
F = {x1, x̃1, x2, ...xn, x1, x2, ..., xn} and as connectors K = {∧,∧1,∧2,∨}.
This changes the generic equations in the way that 3 occurs as a multiplicative
factor in front of the sum responsible for the ∧ and in the equation for the
function x1 the constant 2 instead of 1 occurs. In that way every rational ratio
between the connectors resp. base functions can be realized. To implement
arbitrary real valued probabilities in the model so that every inner node
is labeled by connector ki with probability pki and every leaf with a base
function bi with given probability pbi one has to include this weighting in the
generic equations:
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De�nition 4.10 (Generic equations for the general DLW model)
Let F = {b1, ..., bj} be the set of base functions with probabilities pbi and
let K = {k1, ..., kl} be the connectors with probabilities pki, with

∑j
i=1 pbi =∑l

i=1 pki = 1. Let µ be an admissible size function with weights of the con-
nectors wi and weights of the base functions ai. Let n be the number of
di�erent variables occurring in all functions of F and s the number of dif-
ferent functions that are expressible in this model. W.l.o.g. assume that the
used variables are x1, ..., xn and let (fi)i=1,...,s be an ordering of the expressible
functions. Then, the system of the s equations, i = 1, ..., s

yi(z) =

j∑
h=1

zahpbh1{fi=bh}+
l∑

h=1

zwhpkh
∑

(fi1 ,...,fiarity(kh)
):

kh(fi1 ,...,fiarity(kh)
)=fi

yi1 ...yiarity(kh)
, (4.9)

abbreviated with
~y = ~Φ(z, ~y),

is called the system of generic equations.

Remark. With this de�nition the probability that an expression of size m
computes fi is

Pm(fi) =
[zm]yi(z)

[zm]
∑s

j=1 yj(z)
.

To the author's knowledge the only papers which consider such an intro-
duction of probability (at least for a simpler model and only for the base
functions) are by Yashunskii [e.g. [Yas05]], at which we will take a more
closer look later.7 Without any further conditions the equations in (4.9)
satisfy the following requirements of the DLW Theorem.

Lemma 4.11 (Generic equations: nonlinear, positive, proper)
Let the model S be as in De�nition (4.10) with admissible size function µ
and positive probabilities pbi > 0 and pki > 0. Then, the system of generic
equations (4.9) is a nonlinear polynomial system that is positive and proper.

7In the next section we will investigate a di�erent class of models for which such prob-
ability distributions on the base functions and connectors have been investigated in the
literature.
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Proof. The facts that it is positive and polynomial follow immediately. It is
nonlinear because µ is an admissible size function. For properness one has to
show that the valuation of ~Φ(z,~g(z))−~Φ(z, ~w(z)) is larger than the valuation
of ~g(z) − ~w(z) for vectors of power series ~g and ~w with [z0]~g = [z0]~w =

[z0y0]~Φ(z, y). Equivalently one shows that the valuation of the di�erence of
each component val(Φi(z, g̃) − Φi(z, w̃)) is increasing. When all connectors
have sizes wi > 0 then 4.9 can be written as

yi(z) =

j∑
h=1

zahpbh1{fi=bh} + z

l∑
h=1

zwh−1pkh
∑

(fi1 ,...,fiarity(kh)
):

kh(fi1 ,...,fiarity(kh)
)=fi

yi1 ...yiarity(kh)
,

(4.10)
with wh − 1 ≥ 0. So Φi(z,~g(z)) − Φi(z, ~w(z)) = z[Pi(z,~g(z)) − Pi(z, ~w(z))],
with Pi a polynomial. The valuation of Φi(z,~g(z)) − Φi(z, ~w(z)) thus is
indeed at least by one greater than the valuation of ~g(z)− ~w(z). For the case
that there is a weight wi = 0, all base functions have at least size 1 due to
admissibility of µ. Then, [z0y0]~Φ(z, y) = 0 causes that both ~g(z) and ~w(z)
start with z1 in every component. Since all monomials of Φi(z, ~y) in ~y are
at least quadratic except for the parts coming from unary connectors, which
have in turn a multiplicative z in front of them because unary connectors have
weight > 0 for admissible size functions, it again holds that the valuation of
the di�erence after the mapping is at least 1 larger than before the mapping:
val(Pi(z, g̃(z))− Pi(z, w̃(z))) > val(g̃(z)− w̃(z)).

Observation 4.12 (Generic equations: Irreducibility, Aperiodicity)
The irreducibility and aperiodicity of the system of generic equations (4.9) for
the generalized model with probabilities for the connectors and base functions
does not depend on the probabilities:
The system of generic equations is irreducible resp. aperiodic for �xed pbi > 0
and �xed pki > 0 with

∑j
i=1 pbi =

∑l
i=1 pki = 1, if and only if this holds for

all possible probability distributions on the connectors and base functions with
pbi > 0 and pki > 0.
This is easy to see and it is also clear that the system can fail to be irreducible
if there is an i with pbi = 0 or pki = 0; because then the whole structure of the
equations can change, since the functions that can be computed might change,
as well as the functions occurring on the RHS of a generic equation because

42



the connectors where it occurred have probabilities zero. So in this sense the
irreducibility depends only on the used connectors, base functions and µ and
so with aperiodicity.

We are now turning our attention to one of the main results in this section
concerning the existence of the limit probability P∞.

Theorem 4.13 (Limit probability, existence, positivity and continuity)
Let the model S be the set of Boolean expressions with connectors in K =
{k1, ..., kl} and base functions in F = {b1, ..., bj}. The base functions occur
with probabilities pbi > 0 and the connectors with probabilities pki > 0, with∑j

i=1 pbi =
∑l

i=1 pki = 1. Let µ be an admissible size function. Let s be
the number of di�erent functions that are expressible in this model. If the
system of the generic equations forms an irreducible and aperiodic system,
then the limit distribution P∞ exists for all probability distributions pbi > 0,
pki > 0 and is positive on all expressible functions fi, i = 1, ..., s. Moreover,
the mapping

Q : D → Rs

(pb1 , ..., pbj , pk1 , ..., pkl) 7→ (P∞(f1), ...,P∞(fs))
(4.11)

with D := {(pb1 , ..., pbj , pk1 , ..., pkl)|pbi > 0, pki > 0,
∑j

i=1 pbi =
∑l

i=1 pki = 1}
is a continuous8 function.

Proof. This result is a consequence of the DLW Theorem and the observa-
tions made above. The conditions of this theorem are posed in such a way
that (with Lemma 4.11 and Observation 4.12) the conditions of the DLW
Theorem are satis�ed for all probability distributions with positive probabil-
ities. This gives:

P∞(fi) = lim
m→∞

[zm]yi
[zm]

∑s
j=1 yj

= lim
m→∞

βi
2
√
πm3

(
1
ρ

)m
(1 +O(m−1))∑s

j=1
βj

2
√
πm3

(
1
ρ

)m
(1 +O(m−1))

=
βi∑s
j=1 βj

,

8As usual, the domain and range are equipped by the subspace topology induced by
the Euclidean topology.
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with βi > 0, so the �rst assertion follows.

Now we prove the continuity of the function Q on the set

D̃ := {(pb1 , ..., pbj , pk1 , ..., pkl)|pbi > 0, pki > 0} ⊃ D.

Let ~pn →
n→∞

~p0 := (pb1 , ..., pbj , pk1 , ..., pkl) and let ~y = (y1, ..., ys) be the vec-

tor of component-solutions for ~p0 and σ the radius of convergence of the
components9 and consider the generic equations

α1 = Φ1(ρ, α1, ..., αs, ~p)

α2 = Φ2(ρ, α1, ..., αs, ~p)

...

αs = Φs(ρ, α1, ..., αs, ~p)

0 = det(I− ~Φ~y(ρ, α1, ..., αs, ~p)).

(4.12)

Let αni (i = 1, ..., s) denote the solutions of the system for parameters ~pn, ρn
their radius of convergence and Pn the corresponding probability function.
We show that the radius of convergence ρn as well as the values of the compo-
nents at this point αni (ρn) (i = 1, ..., s) all converge to the corresponding val-
ues σ and yi(σ) (i = 1, ..., s) for n→∞. This then leads to the convergence of
the probabilities Pn(fi) (i = 1, ..., s) to P(fi) (i = 1, ..., s) for n→∞ because
the vector (Pn(fi))i=1,...,s is an eigenvector of ~Φ~y(ρn, α

n
1 (ρn), ..., αns (ρn), ~pn)

to the eigenvalue 1. The matrix is nonnegative so the multiplicity of the
eigenvalue is 1 and the vector (Pn(fi))i=1,...,s is the unique positive normed
eigenvector of ~Φ~y(ρn, α

n
1 (ρn), ..., αns (ρn), ~pn). Therefore, the eigenvector de-

pends continuously on the coe�cients of the matrix that themselves depend
continuously on ~pn, ρn and αni (ρn) (i = 1, ..., s). Since these values all con-
verge to the corresponding values for ~p0, the convergence of (Pn(fi))i=1,...,s to
(P(fi))i=1,...,s is established.

So it remains to show that ρn → σ and αni (ρn) → yi(σ) (i = 1, ..., s) for
n→∞. We �rst show that ρn → σ and that

∑s
j=1 α

n
j (ρn)→

∑s
j=1 yj(σ) =:

Y (σ). For this we consider a simpler problem namely the single equation
for the sum of the components instead of the system of equations for all

9Due to DLW theorem all components have the same radius of convergence
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components. So we consider the equation Y (z) = Ψ(z, Y (z), ~p) for the sum
of the components with Ψ :=

∑s
j=1 Φj. For �xed parameter ~p this is a single

functional equation for Y (z) with a polynomial with nonnegative coe�cients
which depend continuously on ~p and z. For parameters ~pn the radius of
convergence of Yn(z)10 is ρn and is evaluated as the smallest positive value
such that

Yn(ρn) = Ψ(ρn, Yn(ρn), ~pn)

1 = Ψy(ρn, Yn(ρn), ~pn).
(4.13)

The �nitely many coe�cients of Ψ(ρ, y, ~p) depend continuously on ~p and
ρ; so if ρn converges to a value a, then there is an N ∈ N such that
sup
y∈[0,b]

‖Ψ(ρn, y, ~pn) − Ψ(a, y, ~p0)‖ + sup
y∈[0,b]

‖Ψy(ρn, y, ~pn) − Ψy(σ, y, ~p0)‖ < ε for

n > N and b > 0.11 De�ne the parameter p∗ as p0 − 1
2
p0 and ρ∗ as the

radius of convergence of the solutions for the parameter p∗. All radii ρn are
elements of [0, ρ∗] for large enough n12. So the radii ρn have an accumulation
point. Assume a < σ. Then, Ψy(a, Y (a), ~p0) < 113 and so there is an N1 ∈ N
with Ψy(ρn, Yn(ρn), ~pn) < 1 for n = N1 because there exists a subsequence
of Yn(ρn) that converges to Y (a), see Figure 4.2 for an illustration. So there
is an n such that (ρn, Yn(ρn)) does not solve the characteristic equations, a
contradiction. The case where a > σ works analogously. So ρn converges
necessarily to σ and therefore also Yn(ρn) converges to Y (σ).

Now in an intermediate step we consider a sequence ~pn that converges from
'below' to ~p0, meaning that for n1 < n2 ~pn1 ≤ ~pn2 ≤ ~p0 componentwise.
Let αni (z) =

∑∞
m=0 a

n
i mz

m, yi(z) =
∑∞

m=0 aimz
m. The �xed-point iteration

~wnu+1 = ~Φ(~wnu), w0 := ([z0~x0]Φi(z, ~x))i=1,...,s
14 gives a sequence of components

converging formally to αni (z) (i = 1, ..., s) and shows together with the pos-
itivity of the system that for n1 < n2 all coe�cients of αn2

i (z) are larger (or
equal) than (as) the coe�cients of αn1

i (z) and both are dominated by the
coe�cients of yi(z): [zm]yi(z) ≥ [zm]αn2

i (z) ≥ [zm]αn1
i (z). So the sequence of

10Yn(z) :=
∑s
i=1 α

n
i (z)

11This means that the sequence of the functions as well as their derivatives converge
uniformly on the compact set [0, b].

12See below.
13This holds because Ψy(a, Y (a), ~p0) as a function of a is (strict) increasing and a < σ

and Ψy(σ, Y (σ), ~p0) = 1
14Compare with properness in 4.7
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the radii is a nonincreasing sequence ρn1 ≥ ρn2 ≥ σ. Moreover, since yi(z)
is an analytic function which is �nite at its radius of convergence σ15 and
αni is dominated by yi(z) on [0, σ] there is an M ∈ N such that for all n the
sum of terms of αni (z) resp. yi(z) of degree M or greater is smaller than ε

3

for z ∈ [0, σ]: sup
z∈[0,σ]

‖
∑∞

m=M ani mz
m‖ < ε

3
resp. sup

z∈[0,σ]

‖
∑∞

m=M aimz
m‖ < ε

3
.

So sup
z∈[0,σ]

‖yi(z) − αni (z)‖ ≤ sup
z∈[0,σ]

‖
∑∞

m=M ani mz
m‖ + sup

z∈[0,σ]

‖
∑∞

m=M aimz
m‖ +

sup
z∈[0,σ]

‖
∑M−1

m=0 (aim− ani m)zm‖. The coe�cients ani m(m = 1, ...,M − 1) depend

continuously on the parameters ~pn16 and so there is an N such that the
(�nitely many) di�erences aim − ani m (m = 1, ...,M − 1) are su�cient small
such that sup

z∈[0,σ]

‖
∑M−1

m=0 (aim−an2
i m)zm‖ < ε

3
. Hence sup

z∈[0,σ]

‖yi(z)−αni (z)‖ < ε

for all n ≥ N(i = 1, ..., s).

Let now ~pn be a general sequence of parameters converging to ~p0 and let us
again denote the component solutions for parameters ~pn by αni , the sum of
these components by Yn and the radius of convergence by ρn. We already
know that ρn converges to σ and also that Yn(ρn) converges to Y (σ). More-
over, there is a sequence ~ln with the property that ~pn ≥ ~ln for all n, with the
property that ~ln converges from below to ~p0. Denote the component solutions
for ~ln by lni . Since α

n
i (z) ≥ lni (z) on the interval [0, ρn] it is not possible that

the sequence (αni (ρn))n∈N has an accumulation point that is smaller than yi(σ)
because this would lead to the existence of an n1 with ln1

i (ρn1) > αn1
i (ρn1)

due to the uniform convergence of ln1
i on [0, σ] as is illustrated in 4.3. So the

smallest accumulation point of αni (ρn) is ≥ yi(σ) for i = 1, ..., s. From above
we know that

∑s
j=1 α

n
j (ρn) = Yn(ρn) → Y (σ) =

∑s
j=1 yj(σ) and therefore

the largest accumulation point of αni (ρn) cannot be larger than yi(σ). So
αni (ρn)→ yi(σ) which eventually �nishes the proof.

The proof of the continuity is very technical because we used a reduction
to a one dimensional problem for the sum of the components for that we
can easily show at hand the continuity of the radius of convergence and the

15This holds because it has a square-root singularity.
16Again with the �xed-point iteration and formal convergence one sees that the coe�-

cients are polynomials in ~pn.

46



Figure 4.2

values of the component solutions at this point. Using results which consider
the dependence of the solution(s) of positive polynomial �xed-point systems
to the input parameters, the proof will presumably be much shorter and one
probably can prove that the map D is in�nitely often di�erentiable. A paper
that might be interesting in this context is [EGK10] and [EKL10] where the
least �xed points of positive polynomial systems are considered.

Nevertheless, the theorem above shows that if the size function is admissible
and the irreducibility and aperiodicity conditions are satis�ed, then all limit
distributions exist, are positive and depend continuously on the probabilities
of the base functions and connectors in the domain of positive probabilities
D, where the irreducibility and aperiodicity are not changing. The question
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Figure 4.3

now is: What are su�cient conditions for irreducibility and aperiodicity?
At �rst glance a model with connectors in K and base functions in F is
irreducible and aperiodic i� the dual model built from the sets K̃ and F̃,
the dual17 connectors and base functions, is irreducible and aperiodic. This
follows directly from the fact that if f = c(g, h), then f̂ = ĉ(ĝ, ĥ). Moreover,
the probability of a function in the initial model is the same as the probability
of the dual function in the dual model. For a complete model the properties
aperiodic and irreducible are monotone: Adding more connectors or/and base
functions can not change these properties for a model in which all functions
are expressible. An easy su�cient result that is stated because it shows the
way how one could try to prove the irreducibility and aperiodicity for a given
model is

17The dual function f̂ to function f is de�ned pointwise as f̂(x1, ..., xn) := f(x1, ..., xn).
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Lemma 4.14 (Regarding irreducibility, aperiodicity)
Let K and F be sets of connectors resp. base functions and n the number of
variables of the functions in F. Let f1 be a Boolean function so that there
exists a path from f1 to every function and from every function to f1 in the
dependency graph of the generic equations, then the model is irreducible. Let
f2 ∈ Bn be a Boolean function for that there exist expressions e1, e2 in EK,F
with fei = f2. Moreover, assume that the expression ei (i = 1, 2) has (at least)
ki leaves labeled by bi ∈ F with the property that these leaves are inessential
for the expression18 with gcd(k1, k2) = 1 and that there is a connector c with
weight 1 (resp. 0 and arity 2) and a base function b with weight 0 (resp. 1),
then the model is in addition aperiodic.

Proof. Irreducibility: Every function f is connected to every function via f1.
Aperiodicity: There exist expressions of every size in the model: c(b, ..., b)
has size 1, c(c(b, ..., b), ..., c(b, ..., b)) has size 2 and so on. Substituting the
ki leaves labeled by bi by an expression of size l gives an expression of size
si+ lki

19 computing f2. So for all l ∈ N0 there exist expressions of size si+ lki
expressing f2. Now one shows that there are two expressions for f2 that di�er
in size by one and therefore the system is aperiodic: Since gcd(k1, k2) = 1
there exist numbers li with l1k1− l2k2 = 1, so ((s2− s1 + 1)l1)k1− (s2− s1 +
1)l2k2 = (s2 − s1 + 1) leading to s1 − s2 + l∗1k1 − l∗2k2 = 1.

The above conditions are very restrictive and there are irreducible systems of
a far di�erent and more complicated connectivity. Nevertheless, the structure
of the two most investigated models, the Catalan And/Or model and the
model with implication, with size being the number of leaves (or internal
nodes), is exactly of the nature above with f1 = f2 = TRUE and k1 = 1: For
the And/Or model see Example 4.9 and for the implication observe

f = > → f, > = f → >, > = x1 → > = ((x1 → x1)→ >) = ... .

Moreover, the proof of the Corollary below shows that also all models with
connectors being a complete set of functions are of this structure.

18This means that the ki leaves can be exchanged by any other function (for all leaves
the same function) so that the expression still computes f2.

19si is the size of the expression ei where all leaves labeled by ki are substituted by
c(b, ..., b)
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Corollary 4.15 (Complete Connectors)
Let K be a complete set of connectors and F = {x1, ..., xn}. Let the size
function µ be the number of connectors, then the generic equations form an
irreducible and aperiodic system, hence Theorem 4.13 is applicable.

Proof. Since K is a basis there exists a tree e(x1, x2) representing the func-
tion x1 → x2. So every function f is connected to > and vice versa:
f = e(>, f), > = e(f,>). Moreover, every function is expressible. So the
irreducibility follows from Lemma 4.14. For the aperiodicity observe that
the only functions g(x1, ..., xn), so that every partially evaluated function
g[xi1 7→v1,...,xin−1

7→vn−1] (vj)j=1,...,n−1 ∈ {0, 1}n−1 is not > or ⊥, are the functions
⊕n and ¬(⊕n).20 The set of all these functions {⊕i,¬(⊕i)|0 ≤ i ≤ n} with
⊕0 := ⊥ and ¬(⊕0) := > is not a complete set of connectors: Indeed every
expression built from these connectors is again such a function but there are
Boolean functions that are not of this form. So a complete set K has to
contain at least one connector that is TRUE resp. FALSE for a partial eval-
uation: g[xi1 7→v1,...,xin−1

7→vn−1] ∈ {>,⊥} for a (vj)j=1,...,n−1 ∈ {0, 1}n−1. This
single connector as root, with all but one input substituted by expressions
computing >,⊥ according to the partial evaluation, is the required expres-
sion with 1 remaining leaf. So all requirements of 4.14 are ful�lled and the
assertion follows.

We will not further investigate the at �rst glance very complex seeming ques-
tion of precise conditions for irreducibility and aperiodicity. It should also
be mentioned that the limit probability can also exist without irreducibility;
but then the powerful DLW Theorem is not applicable. In the next section
the most important results regarding special models of the DLW-type and
extensions of it are presented and summarized.

4.3 Instances of the DLW model

In this section the di�erent instances of the DLW model that have been
studied in the literature are introduced and the results are presented. These

20These are the functions that are true i� an odd (resp. even) number of variables is 1.
It can be seen by induction (or by playing a kind of Sudoku in the truth table) that these
two functions are the only ones who have to be evaluated until the last bit of every input
in order to compute the whole function.
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instances can be divided up in three classes according to the used connec-
tors: The �rst class includes the Catalan And/Or expressions and extensions
of them. The second class covers the Catalan trees with the implication as
single connector and extensions of them. The third class involves arbitrary
connectors but restricts the base functions to {>,⊥}. This section is ar-
ranged according to this classi�cation, whereas we will see that the �rst two
classes have very similar behaviors.

4.3.1 (∧,∨)-Expressions

All 5 models introduced here do not incorporate the extension of probabilities
of the connectors or base functions. Hence all base functions and connectors
have the same probability to occur. So we are looking at models (Si, USi , µi),
i = 1, ..., 5. The Si's are distinguished sets of Boolean expressions, whereas
all of them have in common that the leaves are labeled by functions from
F = {x1, x2, ..., xn, x1, x2, ..., xn} , USi is the uniform distribution on subsets
of Si of �xed size. For the �rst 4 models the size function µi, i = 1...4, is the
number of the leaves and µ5 is the number of all nodes (leaves plus internal
nodes) which is also called tree size complexity. The Si's are:

S1 is the set of all binary trees with inner nodes labeled by ∧, ∨.

S2 is the set of all binary non-plane21 trees with inner nodes labeled by ∧,
∨.

S3 is the set of all trees with nodes labeled by connectors ∧, ∨ of arbitrary
arity ≥ 2 according to the in-degree of the labeled node such that an
inner node and its children do not have the same labels.

S4 is the set of all non-plane trees with nodes labeled by connectors ∧, ∨
of arbitrary arity ≥ 2 according to the in-degree of the labeled node
such that an inner node and its children do not have the same labels.

S5 is S3.

(S1, US1 , µ1) is just the Catalan And/Or model also called binary plane model.
The model (S2, US2 , µ2) incorporates the commutativity of the connectors:

21Non-plane trees are trees where the ordering of the children nodes is irrelevant. So
they are trees as de�ned in A.3 without the property (plane).
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x1∧x2 = x2∧x1, x1∨x2 = x2∨x1 and hence is called commutative-And/Or
model.22 The model (S3, US3 , µ3) incorporates the associativity of the connec-
tors: (x1∧x2)∧x3 = x1∧ (x2∧x3) and same for ∨; and is called associative-
And/Or model. The condition "so that an inner node and its children do not
have the same labels" means that internal nodes are labeled by ∧ and ∨ in a
strati�ed way. The model (S4, US4 , µ4) includes both commutativity and as-
sociativity of the connectors and is called commutative-associative-And/Or
model. Finally, (S5, US5 , µ5) is the associative-And/Or model with the tree
size complexity as size measure. For the associative-And/Or model this no-
tion of size is indeed di�erent from counting only leaves as the results show.
For not associative models (i.e. constant arity of the connectors) it does not
matter which size function one uses as explained earlier in this thesis. We
will abbreviate these models in the following by Si, i = 1...5

For all 5 models the limit distributions exist for arbitrary n. For the �rst
model we showed this by means of the DLW Theorem in the section above.
For the models with associativity the generic equations are no longer polyno-
mial in ~y but more general analytic functions. For irreducible and aperiodic
systems of such a form there exists a general version of the DLW Theorem see
[Drm97]. In the case of commutativity also terms in yi(z2), yi(z3), ... occur
and one needs another extension which is found in [Kra11, Lemma 1.13]. In
any case these extensions ensure the existence of the limit distribution and
we will indicate them uni�ed by Pn because it will be clear from the context
which model we are actually referring to.

The binary plane model was �rst investigated in [LS95] and then with large
improvements on results in [CFGG04, GW05, Koz08, GGM14, GM15]. The
commutative and associative models and as well the binary plane model are
investigated in [GGKM15]. [GGKM14] treats the model with tree size com-
plexity. Finally, the early survey of Gardy [Gar06] gives an introductory
overview on all these models and some more.

Let us �rst see what results have been established in the last 20 years in

22Observe that formally this model is not a random Boolean function model as de�ned
in 3.1 because it uses non-plane trees. But there is a somehow unnatural random Boolean
function model (of the strict de�nition) that coincides with (S2, US2 , µ2): Consider all
binary trees (plane) and de�ne the probability measure PS2 in such a way that the models
coincide.
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the case of our role model, the plane binary Catalan And/Or model S1.
In [Woo97, Problem 6.6.] Woods stated the question whether and how the
probability of a Boolean function occurring in the limit distribution is related
to the formula size complexity. This question found a �rst answer in the result
obtained by Lefmann and Savický in [LS95]. The result was improved in the
following in [CFGG04] (upper bound) and in [GW05] (lower bound) to the
�nal result:

Theorem 4.16
Consider the model S1. There exists a constant c > 0 such that for every
positive integer n the following is valid: Let f be a Boolean function on n
variables, then

(
1

8n
)L(f) ≤ Pn(f) ≤ (1 +O(

1

n
))e−c

L(f)
n2 . (4.14)

The lower bound is established by counting the number of elements of a
subset of expressions that compute a function f . This subset is su�ciently
large to get a good lower bound and is easy to recursively describe by means
of the symbolic method and they are able to derive an expansion around the
single dominant singularity. For the upper bound the Markov inequality is
used:

Pn(f) = Pn(e computes f) ≤ Pn((1 + ε)µ(e) ≥ (1 + ε)L(f))

E[(1 + ε)µ(e)]

(1 + ε)L(f)
,

(4.15)

where the �rst inequality arises because the probability is taken over all
expressions of size being larger than the complexity of f and the second is the
Markov inequality. The largest ε for which E[(1+ε)µ(e)] exists and is bounded
would lead to the best upper bound that can be derived by this technique.
The authors of [CFGG04] were able to derive ε = C

n2 leading to the above
upper bound. The approach is as follows. The limit distribution is identi�ed
in a di�erent way by means of in�nite expressions. To an in�nite expression
pruning rules are applied to obtain a small expression computing the same
function. The distribution of the in�nite expressions is described with the
help of a growing process which leads together with the pruning rules to
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recursive relations of quantities related to E[(1+ε)µ(e)]. These recursions have
to be analyzed to eventually obtain ε = C

n2 with E[(1 + ε)µ(e)] = (1 +O( 1
n
)).

After these results Kozik [Koz08] proved a very strong relation between the
limit probability of a given function and its complexity for S1. This result was
further re�ned and extended to the commutative and/or associative models in
[GGKM15]. In the following let us de�ne the complexity of the two constant
functions >,⊥ ad hoc as 0 so that the following theorem can be stated in an
uniform way. The main results in [Koz08] and [GGKM15] are: Fix a model
Si, i = 1...4.

Theorem 4.17 ([Koz08])
Let f be a Boolean function. Then, there is a constant λf

23 depending only
on f so that

Pn(f) ∼
n→∞

λf
nL(f)+1

. (4.16)

In [Koz08] it is proven that Pn(f) =
n→∞

Θ( 1
nL(f)+1 ) in model S1 and the

existence of the constant is suggested, which is veri�ed in [GGKM15]. In
[GGKM15] the exact values of the constants for the functions > and ⊥ and
for literals are computed and they give bounds for the constants for general
functions. These bounds depend only on the number of trees of smallest size
computing f (in the following called minimal trees) and on the complexity
of f . For the model S5 a similar result is established in [GGKM14] with the
di�erence that the function TRUE resp. FALSE has a probability bounded
from below. In 4.4 is listed an overview of these results with the numerical
values of the constants (if available) and associated asymptotic orders of the
probabilities Pn(f). The column labeled 'Shannon e�ect' indicates whether
the Shannon e�ect is disproved or not for the di�erent models.

These results de�nitely answer the question 'What is the asymptotic behavior
of the probability of a �xed function?' posed in section 3.1 for all 5 models.
In the following section we will present some of the approaches that are used
to establish these results.

In [Koz08] Kozik developed an approach, called 'pattern theory', which allows

23This constant is di�erent for all 4 models
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Figure 4.4: Overview of the asymptotic behavior of the probabilities of �xed
functions for the constant function, literals and general functions.

in the cases of models 1 to 4 to asymptotically count expressions which su�ce
structural constraints. He used this theory for the plane binary model be-
fore it was further extended and applied to the commutative and associative
extensions of the Catalan And/Or model in [GGKM15]. The approaches
for the models 1 to 4 have large similarities and are developed parallel in
[GGKM15] therefore we will only demonstrate the approach for the simplest
case, the binary plane model S1.

Let us �rst clarify the notation for this part and de�ne pattern languages.
The following de�nitions are found in [Koz08]: Let Fn be the set of Catalan
And/Or trees with leaves {x1, x1..., xn, xn} and Fn(z) its GF with singularity
ρn (= 1

16n
). We call the elements of Fn in the following expressions. A

tree structure is a binary plane tree with inner nodes labeled by ∧, ∨ and
leaves 'labeled' by •. The set of all tree structures is denoted by T with GF
T (z). The tree structure of an expression e is de�ned as the tree which is
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obtained by substituting every leaf of e by •. A pattern language P is a set of
binary plane trees with internal nodes labeled by ∧, ∨ and leaves labeled by
{•,�} and the elements are called patterns. Leaves labeled by � are called
placeholders and leaves labeled by • are called pattern leaves. Let T ⊂ T
be a set of tree structures and de�ne P [T ] as the set of all trees that can be
obtained by substituting every placeholder of an element of P by elements
of T . A pattern language P is said to be unambiguous if for every set of
tree structures T ′ there is only one way to construct an element (structure)
of P [T ′] as above. For unambiguous pattern language P and tree structure
t (or for expression e with tree structure t) in P [T ] one can distinguish the
leaves of t that correspond to the pattern leaves of the (unique) pattern used
to construct t, we call these leaves P -pattern leaves or just pattern leaves if
it is clear from the context which pattern language we mean. We also need
the composition of pattern languages: If P and S are pattern languages and
P [S] de�ned as above, then P [S] is a pattern language with pattern leaves
coming from both patterns. Let P (x, y) be the GF of the pattern language
P with x counting the pattern leaves and y the placeholders and S(z) the
GF of a set of tree structures. Unambiguity guarantees that the GF of P [S]
is P (z, S(z)). To make pattern theory amenable to singularity analysis we
need the concept of subcriticality:

De�nition 4.18 (Subcriticality, [Koz08, De�nition 2.2])
We say that function P (x, y) is subcritical for T (z) if T (z) is a GF having
unique dominant singularity of the square-root type in ρ ∈ R+ and P (x, y) is
analytic in some set {(x, y) : |x| ≤ ρ+ ε, |y| ≤ t(ρ) + ε} for some ε ∈ R+. We
say that an unambiguous pattern language P is subcritical for a set of tree
structures T ⊂ T if the GF P (x, y) of P is subcritical for T (z).

The pattern languages that we will use are:

N = N ∨N |� ∧N |•, P = P ∨ P |� ∧ P | • . (4.17)

It is easy to verify that both are unambiguous and subcritical for the set of all
structures T (z). The last de�nition to gather, before we can demonstrate the
approach of pattern theory, is the de�nition of repetitions and restrictions.

De�nition 4.19 (Repetitions, Restrictions)
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Let e be an expression, P an unambiguous pattern language and E ⊂ {x1, ..., xn}.
The number of P -repetitions of e is the number of P -pattern leaves of e mi-
nus the number of di�erent variables (not literals !) occurring among the
P -pattern leaves of e. The number of (P,E)-restrictions of e is the number
of its P -repetitions plus the number of di�erent variables in E that occur
among the P -pattern leaves of e. A leaf that counts to the restrictions resp.
repetitions will be called a restriction resp. a repetition.

If E is the set of the essential variables of e, then the leaves of e that are
not (P,E)-restrictions, are exactly the P -pattern leaves that can be evalu-
ated to TRUE resp. FALSE independently of the other P -pattern leaves
without changing the function computed by e. The core of pattern theory
is the fact that the number of restrictions seems to simultaneously be able
to 'classify' the set of expressions according to structural aspects as well as
aspects concerning the density of them. We will see that in the following.

Lemma 4.20 ([Koz08, Lemma 2.7])
Let T be a set of tree structures whose generating function T (z) has unique
dominant singularity in ρ ∈ R+ of the square-root type. Let P be an unam-
biguous pattern language, which is subcritical for T . Let P [T ](m, d) denote
the number of trees from P [T ] of size m containing exactly d pattern leaves,
and w(d) be a nonzero polynomial of degree γ. Then,

lim
m→∞

∑
d∈N P [T ](m, d)w(d)

T (m)
= cw

for some nonnegative real cw. If additionally w(d) has nonnegative values
for all elements of N and there exists integer r ≥ γ for which w(r) > 0 and
P contains a pattern with r regular leaves and at least one placeholder, then
cw 6= 0.

Proof. (Sketch) The function
∑

d∈N,h∈N x
dyhP (d, h)w(d) can be represented

as a sum of partial derivatives of the GF p(x, y) =
∑

d∈N,h∈N x
dyhP (d, h) of P

with respect to x. The subcriticality of P (x, y) transfers to the subcriticality
of
∑

d∈N,h∈N x
dyhP (d, h)w(d) for T . With subcriticality one can show that

Pw(z) := Pw(x, y)|(z,T (z)) has unique dominant square-root singularity in ρ in
the case with the additional assumptions (or radius of convergence strictly
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greater than ρ in the general case). Moreover, Pw(z) is the GF of the sequence∑
d∈N P [T ](m, d)w(d), therefore, lim

m→∞

∑
d∈N P [T ](m,d)w(d)

T (m)
= cw.

The next result is the main tool for the later analysis, it counts the expressions
with a �xed number of restrictions among the pattern leaves. This is the �rst
facet of the simultaneous 'classi�cation' of pattern theory and the main tool
of further analysis.

Theorem 4.21 ([Koz08, Lemma 2.8])
Let P be an unambiguous pattern language, which is subcritical for T and
let E ⊂ {x1, ..., xn} have cardinality l. We denote by F [k]

n (P [T ])(m) (resp.

F [≥k]
n (P [T ])(m)) the number of expressions from Fn of size m whose structure

belongs to P [T ] and which have k (resp. at least k) (P,E)-restrictions. For
every k ∈ N for which P contains a pattern with at least k+ 1 pattern leaves
and at least one placeholder, we have

lim
m→∞

F [≥k]
n (P [T ])(m)

[zm]Fn
∼

n→∞
lim
m→∞

F [k]
n (P [T ])(m)

[zm]Fn
∼

n→∞

ck,l
nk
,

for some ck,l ∈ R+.

Proof. (Sketch)
{
a
b

}
will denote the number of partitions of a set of size a

into b nonempty subsets (Stirling number of the second kind) and nk the
falling factorial: nk := n · (n− 1) · ... · (n− k + 1).

Let P [T ](m, d) be the number of structures from P [T ] of size m that have
exactly d pattern leaves as in the lemma above. For �xed number of variables
n the number of possible leaf labels of such a structure so that the constructed
expression has exactly k restrictions among the d P -pattern leaves is∑

r=0,...,k

{
d

d− r

}
·
(

l

k − r

)
· (d− r)k−r · (n− l)d−r−(k−r) · nm−d · 2m,

whereas the sum is taken over the number of repetitions which can be at
most the number of restrictions (k). So the number of expressions from Fn
of size m with d pattern leaves and n restrictions is P [T ](m, d) ·wk,l(d) · (n−
l)d−k · nm−d · 2m with wk,l(d) :=

∑
r=0,...,k

{
d
d−r

}
·
(

l
k−r

)
· (d − r)k−r being a
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polynomial in d (for �xed k, l) (See [Koz08, Observation 2.5 and Observation
1.2]). So we get

F [k]
n (P [T ])(m)

[zm]Fn
=

2m
∑

d∈N(P [T ](m, d) · wk,l(d) · (n− l)d−k · nm−d)
(2n)m[zm]Tn

and an upper bound

F [k]
n (P [T ])(m)

[zm]Fn
≤
∑

d∈N(P [T ](m, d) · wk,l(d) · nd−k · nm−d)
nm[zm]Tn

. (4.18)

From Theorem 4.20 we know that this bound is asymptotically equivalent to
ck,l
nk . A lower bound estimate of (n− l)d−k ([Koz08, Lemma 2.6]) which shows
that (n − l)d−k is well estimated by nd−k for big k eventually completes the
case for exactly k restrictions. For at least k restrictions observe that the
upper bound estimate of the expressions of size m with exactly k restrictions
and d pattern leaves that leads to the numerator in (4.18) is also an upper
bound for the expressions with at least k restrictions.

The �rst result that is established within this framework is that all tautologies
are simple tautologies, whereas a simple tautology is a tautology that has a
leaf labeled by x and a leaf labeled by x, for a variable x, which are connected
to the root by nodes labeled only by ∨. Such a path is called ∨-only path.

Theorem 4.22 (Tautologies,(cf. [Woo05],[Koz08, Theorem 3.2],[GGKM15,
Theorem 3.6.]))
The density of tautologies among Catalan And/Or trees with n variables
asymptotically (with n) equals the density of simple tautologies and

Pn(TRUE) =
3

4n
+O(

1

n2
).

Proof. (Sketch) The proof in [Koz08] that 'all' tautologies are simple makes
uses of the pattern N [N ] with similar considerations as in the following
proposition 4.24 and therefore will be omitted. In [GGKM15] it is shown
with Theorem 4.21 that the simple tautologies are asymptotically equivalent
to simple tautologies realized by just one variable. The authors are then able
to compute the constant in the asymptotic form of the probability of this set
of 'simple' expressions directly from its GF.
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The analogous statement also holds for contradictions due to symmetry rea-
sons. Before we state the main result from this section of the thesis we need
another de�nition.

De�nition 4.23 (Expansions, [GGKM15, De�nition 5.2])
Let t be an And/Or tree computing f , v one of its nodes and tv the subtree
rooted at v. An expansion of t in v is a tree obtained by replacing the subtree
tv rooted at v by a tree tv♦te or te♦tv, where ♦ ∈ {∧,∨} and where te is an
And/Or tree. We will say that such an expansion is valid when the expanded
tree still computes f .

Proposition 4.24 (cf. [Koz08, Lemma 3.4] and [GGKM15, Proposition 5.5])
The set of non-negligible trees computing a non constant Boolean function f
is the set of trees obtained by expanding a minimal tree of f once. Moreover,
the only non-negligible valid expansions are:

• The T-expansions: a valid expansion is a T-expansion if the inserted
subtree te is a simple tautology (resp. a simple contradiction) and if the
new label of v is ∧ (resp. ∨ ).

• The X-expansions: a valid expansion is an X-expansion if the inserted
subtree te is (up to commutativity and associativity) of the shape x∨...
(resp. x∧... ) where x is an essential variable of f and if the label of
the father of te is ∧ (resp. ∨).24.

Proof. De�ne r := L(f) and consider the pattern language R = N (r+1)[P ⊕
N ]. The pattern P ⊕ N is the pattern so that a leaf of a structure is a
P ⊕ N -pattern leaf i� it is a P -pattern leaf or an N -pattern leave. It is
straightforward that R is unambiguous and subcritical for T . We say that
anR-pattern leaf is on level i if it is anN (i)-pattern leaf, but noN (i−1)-pattern
leaf. The index i reaches from 1 to r+ 1 and there are no N0 pattern leaves.
An R-pattern leaf that is not an N (i+1) pattern leaf is said to be on level r+2.

Let t be a minimal tree, i.e. a tree of size L(f) computing f and E the set of
essential variables of f . We will only consider (P,E)-restrictions, with P a

24See 4.5 for an illustration of the subtree te for an X-expansions
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Figure 4.5: The shape of tree te that is used for an X-expansion. There has
to be a path from the root to variable x where inner nodes are labeled only
by ∨ (resp. ∧). Such a path will be called ∨-only-path (resp. ∧-only-path).

pattern, so for convenience we will call them P -restrictions. At �rst we show
that

Pn(f) ≥ a

nL(f)+1
.

For this consider all expressions of the form s ∧ t with s a simple tautology.
All these expressions compute f and let us denote the GF of simple tautolo-
gies by S(z). The function zL(f) is the GF of the single tree t so S(z)zL(f)

is the GF of expressions of the above form. With 2.20, 4.22 and the identity
(S(z)zL(f))′ = S ′(z)zL(f) + S(z)L(f)zL(f)−1 we get Pn(f) ≥ d

n
ρ
L(f)
n = a

nL(f)+1 .
From Theorem 4.21 we know that trees with at least L(f) + 2 R-restrictions
can be neglected for computing the constant λ. The trees that have no leaves
on level r+ 2 can also be neglected because due to subcriticality of R we can
show that the GF of such trees has a radius of convergence that is larger than
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ρn and therefore the contribution to the probability is zero. We now show
that such trees computing f have at least r+ 1 restrictions among R-pattern
leaves.

Consider the contrary: Let t be a term with at most r R-restrictions and at
least one leaf on the level r+ 2. De�ne i as the �rst level of t in which there
is no occurrence of a restriction, i.e. the smallest number so that t has the
same number of N (i−1)-restrictions that of N (i)-restrictions. Since there is at
least one restriction on the �rst level of t25, i is not greater than r + 1. We
consider two cases:

First case: t has at most r − 1 N (i)-restrictions. Then, there are no re-
strictions on level i and so we can substitute all leaves in level i with FALSE
without changing the function. Using the property of pattern language N we
can replace all subtrees rooted at level i by FALSE. Finally, substituting
FALSE for all remaining non essential variables26 and simplifying the tree
to get rid of all leaves labeled by a constant leads to a tree, with at most
r − 1 restrictions among all leaves, still computing f . Since all remaining
leaves are labeled by essential variables this means that t has size at most
r − 1, a contradiction.

Second case: t has exactly r N (i)-restrictions. Since t has at most r R-
restrictions there are no R-restrictions below level i and i ≤ r + 1. So all
leaves on level r + 2 (these are the leaves which are P -pattern leaves but
not N (r+1)-pattern leaves) are labeled by variables that are not essential and
occur only once among all P -pattern leaves. Since there is at least one P -
pattern leaf on level r+2 there is at least one node v on level r+2 with parent
on level r + 1. The subtree tv rooted at v has at least one P ⊕ N -pattern
leaf and with the property of the pattern language P ⊕N we know that we
can substitute the P ⊕N -pattern leaves of tv by TRUE and FALSE so that
the subtree tv valuates to the value TRUE or FALSE we wish. So we can
substitute every node v on level r+2 with parent on level r+1 by a constant
we wish, without changing the function the tree computes because all these
variables are inessential. The same holds for all P -pattern leaves that are

25Otherwise one can derive with the property of pattern N the contradiction that f is
constant.

26Now variables are substituted and not nodes, because there might be repetitions.

62



not labeled by a variable counting to the restrictions. Because at this stage
we do not know which values we should substitute, we substitute all these
nodes by a wildcard ∗ to obtain a tree t∗. Then, we use the following rules
and symmetric variants of them

∗ ∨ ∗ . ∗ ∗ ∧ ∗ . ∗
∗ ∨ ϕ . TRUE ∗ ∧ ϕ . FALSE

TRUE ∨ ϕ . TRUE FALSE ∧ ϕ . FALSE
FALSE ∨ ϕ . ϕ TRUE ∧ ϕ . ϕ

(4.19)

to trim the tree t∗ to �nally obtain an expression (so there are no wildcards
left) t′ that still computes function f . The symbol ϕ denotes an expression
which does not contain any wildcard. All remaining variables in t∗ are either
essential variables or repetitions. During the simpli�cation process a rule
from the second row has to be used at least once because all ∗ are eliminated
during the process. Applying such a rule eliminates at least one restriction,
so the expression t′ contains at most r − 1 restrictions and therefore its size
is r − 1, a contradiction.

So the non-negligible trees computing f have at least one leaf on level r + 2
and exactly r + 1 restrictions among R-pattern leaves. Let t be such a tree
and consider the pattern language R′ = N (r+1)[(P ⊕ N)2]. It is not possi-
ble that t has an R′-restriction that is not an R-restriction (so a restriction
on level (r + 3)). This is true because on the one hand there cannot be a
restriction on both level (r + 2) and (r + 3) because this would lead to a
contradiction as in the �rst case above. On the other hand if there would
be a restriction on level (r + 3) but none on level (r + 2), then node v on
level (r+ 2) with parent on level (r+ 1) can be substituted by ∗. This wild-
card now eliminates at least two R′-restrictions, the one on level (r+ 3) and
one due to using at least once a simpli�cation rule of the second row which
leads to a contradiction as in the second case. So there is no restriction on
level (r+3) and the non-negligible trees have at least one leaf on level (r+3)27.

We now show that these non-negligible trees t′ are valid expansions of min-
imal trees t. As in the second case above the node on level (r + 3) with
parent on level (r + 2) and all the other variables that are no restrictions

27See above for the same consideration for level (r + 2).
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can be substituted by a wildcard ∗ to obtain tree t∗. So there is at least one
wildcard in t∗ and applying the rules in (4.19) to t∗ gives a minimal tree t
of f , so all ∗ disappeared. The ∗'s can only decrease by applying a rule of
the �rst or second row. So a rule from second row is applied exactly once
and the other times a rule of the �rst row is applied. This means that there
is a node v of t∗ so that the subtree rooted at v has only ∗'s as leaf labels
and there are no other ∗ anywhere else in t∗. Therefore, v evaluates to ∗
according to the rules. The parent of the corresponding node of v in t′, lets
say v′ is the root of the tree te used in the expansion and the parent of v′ in
t is the node where the expansion takes place. So all non-negligible trees are
indeed expansions of minimal trees.

The last step in the proof is to show that T-expansions and X-expansions are
the only non-negligible expansions. For this we consider the pattern language
(P ⊕ N)2 and all commutative variations of them. From Theorem 4.21 we
know that expansions with trees te that have at least two (P⊕N)2-restrictions
in a variation are negligible. Therefore, te has exactly one (P⊕N)2-restriction
in every variation28. We distinguish two cases.

There is a variation of (P ⊕ N)2 for that the restriction is not an essential
variable of f : The minimal tree that is expanded contains only essential
variables. So if te does not compute TRUE or FALSE we can valuate te
independently from the rest of the tree to a value we wish. This would
give a tree smaller than the minimal tree still computing f . So te computes
TRUE or FALSE and therefore is a tautology resp. contradiction and with
Theorem 4.22 we conclude that we can assume that te is a simple tautology
resp. simple contradiction. Since the expanded tree still computes f the new
node for the expansion is an ∧ if te is TRUE and an ∨ if te is FALSE.
For every variation of (P ⊕ N)2 the restriction is an essential variable of f :
For every variation of (P ⊕N)2 its restriction is on level one29. Take a �xed
variation of (P ⊕ N)2 and call the essential variable of the restriction x. If
there is an ∧ and an ∨ on the path from the root of te to x then there is a
variation of (P ⊕ N)2 so that x is on level two and therefore this variation
has its restriction on level two, a contradiction.

28Otherwise one can evaluate this tree to FALSE or TRUE independently from the
rest of the tree, to obtain a tree still computing f with complexity smaller r.

29Again the contrary would lead to a tree computing f smaller than the minimal tree.
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Theorem 4.25 (cf. [Koz08, Theorem 3.3] and [GGKM15, Proposition 5.1])
Let f be a Boolean function, whose complexity is denoted by L(f). Then,

Pn(f) ∼
n→∞

λf
nL(f)+1

,

where λf is depending on the number of possible expansions of minimal trees
of f . We have

8L(f)− 3 + l

16L(f)
Mf ≤ λf ≤

4L(f)2 + 4L(f)− 3

16L(f)
Mf

where Mf is the number of minimal trees representing f and

l =

{
dL(f)

2
e for L(f) > 1

0 for L(f) = 1

Proof. (Sketch) Let Mf be the number of minimal trees computing f with
the corresponding trees t1,...,tMf

. Let λTi (f) denote the number of possible
T-Expansions of tree ti and ω1 the limit probability of simple tautologies
(resp. simple contradictions) and λXi (f) resp. ω2 the corresponding numbers
for X-Expansions. Theorem 4.22 shows that ω1 is 3

4n
and direct computations

with GFs in [GGKM15] show that ω2 = 1
2n
. From Propasition 4.24 we know

that the probability of f is asymptotically equivalent to the limit probability
of trees that are X- resp. T-Expansions of minimal trees of f . So with
Lemma 2.20 this gives

Pn(f) ∼
n→∞

Mf∑
j=1

ρL(f)
n (λTj (f)ω1 + λXj (f)ω2) =

λf
nL(f)+1

.

Upper and lower bounds on the numbers λTi (f) and λXi (f) eventually give
the bounds in the theorem.

The above approach is generalized in [GGKM15] to handle also the proofs
for the corresponding results for the commutative and/or associative models
(S2, ...,S4) to obtain the results listed in 4.4.

The Shannon e�ect is disproved in [GGM14] for model S1. With Theorem
4.21 it is easy to show that the limit probability of the set of functions of
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constant complexity is O(1/n) and therefore converges to 0 as n tends to
in�nity (cf. [GGM14, Corollary 7]). So to disprove the Shannon e�ect one
has to consider a family of functions with complexity tending to in�nity as n
tends to in�nity. Such considerations are very di�erent from the ones above
because there the probability of a �xed function hence constant (i.e. small)
complexity is investigated. This question requires another approach as above.
With a di�erent point of view of Catalan And/Or trees the authors prove
that the limit probability of functions that have complexity of order Θ(n2+ε)
for an ε > 0, is bounded from below by a positive constant for n tending to
in�nity, which disproves the Shannon e�ect. They consider Catalan trees as
a tree of ∧-labels (resp. ∨-labels) whose leaves are substituted by variables
or by a Catalan And/Or tree rooted by an ∨ (resp. ∧).

Observe that in the above considerations we let the size of the expressions
tend to in�nity (m → ∞) at �rst (for constant n) to obtain the limit prob-
ability Pn. Subsequently we let n tend to in�nity to obtain the asymptotic
behavior of Pn(f). In [GM15] the authors note that this leads to the fact that
the considered expressions have a lot of repetitions in their leaves. They ask
the question if this biases the induced distribution on Boolean functions. For
this they consider the probability distribution Pm := Pm,n(m) for the Catalan
And/Or model with a sequence (n(m))m≥1 that tends to in�nity with m.
So the size of the expressions and the number of variables tend together to
in�nity. The two di�erent approaches are pictured in Figure 4.130. As in
the approach from above, where the limit for the size and the number of
variables is separated, the asymptotic behavior of Pm(f) for a �xed function
f satis�es:

Theorem 4.26 ([GM15, Theorem 1] )
Let (n(m))m≥1 be an increasing sequence of integers tending to in�nity when
m tends to in�nity. Let f be a Boolean function f with complexity L(f),
then there exists a positive constant λf such that

Pm(f) ∼
m→∞

λf
n(m)L(f)+1

.

This result is proven with pattern theory whereas a modi�cation of Theorem

30For us m(k) equals k.
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4.21 is needed. With this modi�cation and some extra e�ort the line of the
proof follows the argumentation considered above. The theorem allows to
solve the Catalan satis�ability problem:

Corollary 4.27 ((Catalan- SAT )[GM15, Corollary 1] )
Let (n(m))m≥1 be an increasing sequence of integers tending to in�nity when
m tends to in�nity. Pick up uniformly at random a Catalan And/Or expres-
sion of size n with leaf-labels in {x1, x1, ..., xn(m), xn(m)}. This expression is
satis�able with probability tending to 1 when m tends to in�nity.

With the result Theorem 4.17 in the previous model one can conclude the
above theorem and corollary for a sequence (n(m))m≥1 that grows su�ciently
slow. But the two results above guarantee the asymptotic behavior resp.
the satis�ability observation for every (probably very quickly) increasing se-
quence (n(m))m≥1 tending to in�nity.

They also consider a model which they call quotient model and derive ana-
logue results in parallel. In the quotient model they consider equivalence
classes of Boolean expressions and the induced equivalence relation for Boolean
functions. Two expressions e1, e2 are considered equivalent when their un-
derlying labeled trees without the leaves are equal, leaves labeled by literals
of the same variable in e1 are labeled by literals of the same variable in e2

and leaves labeled by the same literals in e1 are labeled by the same literals
in e2. So e1, e2 are equivalent when the variables in e1 can be 'consistently'
substituted to get e2. This induces an equivalence relation on the Boolean
functions: Let f be a Boolean function, then de�ne < f > as the class of all
Boolean functions which have an expression that is equivalent to an expres-
sion of f . The probability of a class of equivalent functions < f > is then
de�ned as the number of equivalence classes of expressions that compute
< f >31. This model exhibits an interesting threshold or rather saturation
phenomena:

Theorem 4.28 ([GM15, Theorem 1] )

31More exactly: An equivalence class of expressions < E > computes an equivalence
class of functions < f > i� there is an representative e of < E > that computes a function
g that is a representative of < f >.
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Let (n(m))m≥1 be an increasing sequence of integers tend to in�nity when m
tends to in�nity. There exists a sequence (Mm)m≥1 such that Mm ∼

m→∞
m

lnm

and such that for all �xed equivalence classes of Boolean functions < f >
with R(< f >) being the complexity of < f > minus the number of essential
variables of < f >32, there exists a positive constant λ<f> satisfying:

(i) If (for all su�ciently large m) n(m) ≤Mm, then

Pm(< f >) ∼
m→∞

λ<f>
n(m)R(<f>)+1

.

(ii) If (for all su�ciently large m) n(m) ≥Mm, then

Pm(< f >) ∼
m→∞

λ<f>
( m

lnm
)R(<f>)+1

.

When we want to compare this to the the result Theorem 4.17 and then
observe that there are

(
n
e

)
2e di�erent functions in the equivalence class of

a function f with e essential variables. It holds that
(
n
e

)
2e ∼ ne so the

probability of the set of equivalent functions denoted by F evaluates to
Pn(F ) ∼

n→∞
λf

nL(f)+1n
e =

λf
nR(F )+1 .

It is clear that the system is saturated when the number of variables n(m) is
m because a tree of size m can be labeled with at most m variables and in
the quotient model it is not important which (at most) m-element subset of
the set of variables is used for the labeling. The result above shows that this
saturation happens earlier (for smaller growing m(n)). Indeed the system is
saturated when the number of variables grows faster than m

lnm
. This satu-

ration comes from the saturation of the multiplicative factor with which the
number of di�erent equivalent labellings of a structure of size m + 1 grows
compared to the number for m. Technical calculations show that this multi-
plicative factor grows as 2n(m) for n(m) ≤Mm and as 2m

lnm
for faster growing

n(m) (cf. [GM15, Proposition 3]). Let us now �nish this section with a brief
discussion of the tree size model (S5).

The model (S5), which is the model of associative trees with tree-size com-
plexity, is in detail investigated in [GGKM14], where the authors �nd a lot of

32It is easily seen that this number is well de�ned.
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similarities as well as di�erences between the formula size model(s) and the
tree size model. In words of the authors: "We did not expect much dif-
ference, but �rst experiments indicated a rather di�erent behavior.
Indeed, when we tried the method which worked for And/Or trees
to prove the results we expected, we failed. [ . . . ] Though it will
eventually turn out that the trees in the tree size model very well
fall under the same paradigms we encountered in many formula
size models, it requires a technically very di�erent treatment to
obtain those results. [ . . .] However, there is also a clear di�er-
ence: Whereas the limiting probabilities occurring in the formula
size models di�er among themselves by constant factor, the tree
size model gives a strong bias to the constant functions True and
False."-[GGKM14]

With 'the method' the authors mean pattern theory. The same paradigms
they encounter is at one hand that there is a strong relation between the
limit probability and the complexity. Moreover, the relation is of the same
asymptotic form as for the formula size model for not constant functions. On
the other hand most trees that compute a given function are a minimal tree
expanded33 once. The constant functions have a probability that is bounded
from below which immediately implies that the Shannon e�ect does not hold
for this model.

As the part 'in many formula size models' of the quote suggests, similar
behavior concerning expansions and asymptotic behavior is observed in other
tree size models, namely in the model with implication that we discuss very
brie�y in the next section.

4.3.2 (→)-Expressions

In this section we consider two di�erent models. The �rst is the model of
binary trees with inner nodes labeled by → and leaves labeled by (posi-
tive) variables {x1, ..., xn}, all with the same probability, so we are again
considering the uniform distribution on the expressions. The second model
incorporates the property x → (y → z) = y → (x → z) of the implication

33Clearly the expansions in this model are not the same as the expansions considered
above.
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into the model. The property shows that the order of the premisses of a
formula of the form A1 → (A2 → (A3 → (...Ak−1 → (Ak → α)))), is ir-
relevant for Ai being arbitrary expressions. So an expression of the second
model is either a single variable from {x1, ..., xn} or an expression of the form
{A1, ..., Ak} → α, with Ai expressions. This can be seen as a tree labeled
by α with (unordered) children A1, ..., Ak. Again the uniform distribution on
such trees is considered. The size function in both models is the number of
leaves (formula size). We will refer to the �rst model as the binary model
and to the second the generalized model.

In both models the same Boolean functions are expressible and it is clear that
not every function is expressible. In fact, the set of functions that are express-
ible is the Post class S0 [RW00] (or T∞0 in other resources). This is the set of
functions f ∈ Bn so that there is an i ∈ {1, ..., n} so that f(x1, ..., xn) ≤ xi
for all (x1, ..., xn), so f = xi ∨ g with an arbitrary function g; such functions
are called 0-separating functions.

As the authors of [FGGG12] note, the models with implication are interesting
for di�erent �elds of research for a couple of reasons: From the point of view
of logic the implicational fragment is interesting because of the importance
of modus ponens in propositional calculus and because it plays an important
role in intuitionistic logic. Moreover, from the satis�ability point of view the
relation to Horn formulas is interesting. For the scientists working in the �eld
of quantitative logic it is also of special interest because it is somehow the
easiest model34 that is still rich enough to incorporate interesting properties
and therefore it was also kind of a starting point in their studies.

The �rst who was interested in a quantitatively study of systems with impli-
cation was the Polish school around Zaionc who started a systematic research
of the density of truth in several logical systems. Systems with implication
are considered in [MTZ00, Kos03, Zai05]. In [Zai03, KZ04, FGGZ07, GK09]
intuitionistic logic is quantitatively compared with classical logic by compar-
ing the number of tautologies in both systems whereas [FGGZ07] is of special
interest for us because it is shown that most35 tautologies are of simple shape
and the asymptotic behavior of the limit probability (in exactly our sense)

34In the way that there is only one connector.
35In the sense of the previous section.
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of tautologies is precisely quanti�ed as 1
n
.

The �rst who investigated the probability of general functions (not only the
function TRUE) in the (binary) model with implication were the authors of
[FGGG08] (a preliminary version of [FGGG12])and some of the authors then
disproved the Shannon e�ect in [GG10]. Subsequently the results were ex-
tended to the generalized model in [GGKM12]. Let us state in the following
the most important results of these papers.

The existence of the limit probability in both models is proven with the DLW
theorem for polynomial systems resp. with the extended version for general
analytic functions. The irreducibility and aperiodicity follow from Lemma
4.14 (and the considerations below). The limit probability of a �xed function
f has the same asymptotic form as for the And/Or models. Let us ad hoc
de�ne the complexity of the function TRUE as 0. In the binary model:

Theorem 4.29 ([FGGG12, Theorem 7])
Let f be a Boolean function with complexity L(f). Then,

Pn(f) =
n→∞

λf
4L(f)nL(f)+1

+O(
1

nL(f)+2
),

with λf a constant independent of n.

In the generalized model:

Theorem 4.30 ([GGKM12, Theorem 1])
Let f be a Boolean function with complexity L(f). Then,

Pn(f) =
n→∞

λf
nL(f)+1

+O(
1

nL(f)+2
),

with λf a constant independent of n.

Both results are proven by means of valid expansions of minimal trees: It
is shown that in both models the non-negligible trees computing a given
function f are minimal trees expanded once. Expansions in these models
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with implication are of di�erent shape than the expansion considered in the
And/Or model(s) (cf. [FGGG12, De�nition 4] resp. [GGKM12, De�nition
14]). Both models do not exhibit the Shannon e�ect. In the normal model
the following holds:

Theorem 4.31 ([GG10, Theorem 2])
Let R = 9πk2/16. Then, the probability of all functions of complexity at most
R is larger than or equal to 9/64, when the number of variables k tends to
in�nity.

In the generalized model a positive bound is given:

Theorem 4.32 ([GGKM12, Theorem 3])
If g(n) is a function in n growing faster than n2, i.e. n2 = o(g(n)) , then

lim
n→∞

Pn({f |L(f) ≤ g(n)}) ≥ α > 0.

Both results show that there is no Shannon e�ect in the corresponding models
because the expressible functions are exactly the functions of the form x ∨ g
and there are at least 22n−1

such functions which is large enough to show
exactly as in Example 3.3 that the maximal complexity of an expressible
function is (at least) exponential in n.

4.3.3 (>,⊥)-Expressions
Let us �nally consider in this section a very simple36 model investigated by
Yashunskii in [Yas05, Yas06, Yas07]: The model has base functions {>,⊥}
and an arbitrary connector set K. The size function is the number of connec-
tors. The leaf > occurs with probability p and ⊥ with 1− p, the connectors
occur all with the same probability.37 Clearly the only functions that are ex-
pressible in this model are > and ⊥, so the probability distribution induced

36Simple in the sense that there are only two functions occurring in the model, but
nevertheless, not simple to analyze.

37Nevertheless, we allow the set K to contain connectors more than once, i.e. we are
considering a multiset which then introduces a probability distribution on the (distinct)
connectors.
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on the expressible functions is fully characterized by

P (p) := Pp(>) := lim
m→∞

Pm,p(>),

the limit probability of TRUE when the base function TRUE has probability
p. In [Yas05] the author shows that P (p) exists for arbitrary K and p ∈ (0, 1)
and is continuous on (0, 1) as a function of p (K is �xed).38. He also gives
an explicit formula for the value P (p) that depends only on two polynomials
directly related to the arities of the connectors and the number of 1's in their
truth tables. Let ci be the number of connectors with arity i and let r be the
largest arity of connectors in K. De�ne

B(x) := c1x+ c2x
2 + ...+ crx

r

and

A(t, f) :=
r∑
i=1

i∑
j=0

aijt
jf i−j,

with aij the total number of 1's in the truth tables of the connectors with
arity i on assignments with j 1's (i.e. with weight j). With these polynomials
the generic equations are:

T (z) = p+ zA(T (z), F (z))

F (z) = (1− p) + z(B(T (z) + F (z))− A(T (z), F (z)))
(4.20)

with T (z) (resp. F (z)) the GF of the expressions computing the function
TRUE (resp. FALSE). The following theorem is directly proven with the
help of the characteristic equations from the DLW Theorem for the general
case when the system is irreducible and a careful analysis of the cases when
the system is not irreducible.

Theorem 4.33 ([Yas06])
For any �xed p, 0 < p < 1, there exists the limit P (p) with

P (p) =
Ay(τ, σ − τ)

ω−1 − Az(τ, σ − τ) + Ay(τ, σ − τ)
,

38For not degenerated sets of connectors this is an easy consequence of 4.13.
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where ω and σ are real numbers, which form the unique solution of the system
of equations:

σ = 1 + ωB(σ)

1 = ωB′(σ)
(4.21)

under the additional claim that the value of |ω| is minimal, while Az and Ay
are the partial derivatives of A(z, y) and τ = τ(p) is the uniquely determined
algebraic function satisfying the equation

τ(p) = p+ ωA(τ(p), σ − τ(p)).

In [Yas06] he also shows that the function P (p) is in�nitely often continuously
di�erentiable on (0, 1) and he also gives exact conditions when the limit
probability on the boundary points 0, 1 exists and when the function P (p) is
continuous on the whole interval [0, 1]. Moreover, he gives explicit expressions
for a couple of di�erent sets of connectors K. His motivation for investigating
such models was the following (cf.[Yas05]): Imagine a 'black box' that chooses
a large random expression with connectors in K and with leaves labeled by
TRUE with probability p and by FALSE with probability 1− p. The 'black
box' then returns the value of the expression for the assignment. There arise
two questions (cf.[Yas05]):

(1) Imagine K is known and p is unknown but �xed. Is it possible to obtain
p from the outputs39 of the 'black box'?

(2) Imagine K is unknown, but perhaps some properties are known (e.g.
number of connectors, arities etc.). Is it possible to acquire some more
information about K, through the knowledge of the function P (p)40?

The answer of the �rst question in general is 'No' because there exist sets of
connectors of maximal arity 3 for which P (p) is not injective, see Figure 4.6.
Moreover, the following holds:

Theorem 4.34 (Uniform approximation [Yas07, Theorem 4])
Let f(p) be a continuous function mapping the segment [0, 1] into itself. Then,

39These outputs are nothing else than draws from {0, 1} according to P (p).
40This function can be approximated with the help of a lot of outputs of the 'black box'

for di�erent p.
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for any ε > 0 there exist connectors Kε whose functions are all di�erent and
essentially depend on all their variables so that the function P (p) is such that
for all p ∈ [0, 1] the relation |f(p)− P (p)| < ε holds.

This means that every continuous function f(p) : [0, 1] 7→ [0, 1] can be
uniformly approximated with functions P (p). So in general the function
P (p) is not injective. For binary bases he shows that P (p) is either strictly
monotonous or constant for 0 < p < 1 and also derives conditions for both
cases. So in the case of binary bases with P (p) not constant the answer is
'Yes'.

The answer of the second question for the 'black box' model is 'No' in the
general case because there are di�erent sets of connectors which have the
same function P (p). This is clear because there are di�erent sets of connec-
tors with the same polynomials B1 = B2 and A1 = A2, and there are even
cases where P (p) is the same for sets of connectors having di�erent polyno-
mials A, see [Yas05].

When trying to apply the results in this area to other areas of research then
Yashunskii's model has de�nitely something to o�er. The 'black box' con-
siderations of Yashunskii are very interesting and somehow answer what is
not possible to recognize when we only know the function P (p). On closer
inspection it directly o�ers an excellent statement regarding satis�ability of
monotone read-once expressions: When one steps back and reconsiders the
whole construction of the function P (p), then P (p) is nothing else than the
probability that an expression, chosen uniformly from expressions built with
connectors K of 'large' size m and leaves labeled independently by TRUE
(resp. FALSE) with probability p (resp. 1 − p), is TRUE. The fact that
all leaves are independently labeled allows to put it like this: In a random
monotone read-once formula eK all variables are independently substituted
by TRUE or FALSE with probability p resp. 1 − p. This random substitu-
tion is nothing else than evaluating the expression for random assignments
αp. So the theory of Yashunskii provides for EVERY set of connectors an
explicit formula for the probability that a random monotone read-once for-
mula eK is satis�able for a random assignment αp. Especially for p = 1

2
,

P (1
2
) approximately gives the expectation of the ratio of satisfying assign-

ments of a random monotone read-once formula drawn uniformly from all
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Figure 4.6: Non monotonous function P (p) with two connectors explained
by their truth tables in the �gure. The maximum of P (p) is at p∗ ≈ 0.36256

monotone read-once formulas with m41 connectors. Another application is
the following: If one wants to know, how to choose p∗ ∈ (0, 1) (resp. [0,1])
so that a random assignment α∗p satis�es a random formula eK with maximal
probability, then the answer is to choose

p∗ = argmax
p∈(0,1)

(P (p)).42

41Or with ≤ m connectors as explained in and below 4.3.
42This is true for su�cient large random formulas eK in the following sense: By private
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Consider for example 4.6, with the plot of P (p) for the two connectors
NOR and c2 pictured there. Then, approximately 0.695... of all assign-
ments (p = 1

2
) satisfy a large random expression eK. The best choice for

p is 0.36256... for which the probability of getting a satisfying assignment in-
creases to 0.70364.... This is not a dramatic improvement but, as mentioned
above, the function P (p) can have arbitrary shape so that there exists a set
of connectors K so that the expectation of P (p) for p, chosen uniformly at
random in [0, 1], is < ε and P (p∗) > 1 − ε for every ε > 0. Based on the
author's knowledge similar conclusions as above have not yet been carried
out and similar results on the ratio of satisfying assignments of monotone
read-once expressions do not exist. For sets of connectors with constant ar-
ity the conclusion can even be widened: A k-ary tree43 with m inner nodes
has (k − 1)(m − 1) + k leaves, so a formula with m k-ary connectors has
exactly (k − 1)(m − 1) + k variables. So for a set of k-ary connectors K
one can expect approximately P (1

2
)2(k−1)(n−1)+k satisfying assignments for a

random monotone read-once formula with m connectors from K. A similar
statement clearly also holds for p 6= 1

2
. If one wants a similar statement for

arbitrary connectors, not necessarily all with the same arity, one has to use
as size function the number of leaves instead of the number of internal nodes,
which just changes the generic equations to

T (z) = zp+ A(T (z), F (z))

F (z) = z(1− p) +B(T (z) + F (z))− A(T (z), F (z)).
(4.22)

It might turn out that similar results will also hold for this notion of size
and it should be possible to use ideas similar to Yashunskii's to prove them.
Another possibility would be to use relations between the number of vari-
ables (leaves) and internal nodes for simple varieties of trees similar to those
derived in [FS09, Proposition VII.2]. Let EK,m be the set of monotone read-
once expressions with connectors from K of size m. Then, it might also be
interesting to investigate the function

p 7→ Pαp([e is satis�ed by αp]) =: Pe(p)

communication with Yashunskii [Yas15] it was �gured out that the named showed in his
Ph.D. thesis (in Russian) that Pm,p(>) converges uniformly to P (p) on any interval [a, b]
contained within the interval (0, 1). For continuous P (p) on [0, 1] it might be possible to
show this uniform convergence on the whole interval [0, 1].

43This is a tree where all inner nodes have in-degree k.
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for a single sample expression e ∈ EK,m; this is the probability that a random
assignment satis�es the expression e. Since

Pm,p(>) = Ee(Pe(p)) =
∑

e∈EK,m

Pe(p)

|EK,m|

one could ask if Pe(p) is close to Pm,p(>) for any expression e or maybe with
high probability so that the shape of Pe(p) is close to the shape of Pm,p(>)
for a lot of expressions e. This investigation would give a hint of how much of
the macroscopic behavior of the model is found in the microscopic behavior
of single expressions.

In the next chapter we are investigating a di�erent branch of research, where
the set of expressions is of di�erent kind and the induced probability distri-
bution is of quite di�erent shape.
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Chapter 5

Ampli�ed expressions

In this chapter we present another class of models, let us call them ampli�ed
models, that, as we will see, are of essentially di�erent shape as the models
seen before and as a consequence have quite di�erent properties. At �rst we
will de�ne the model and discuss brie�y the structural di�erences. Then, by
means of some simple examples we will point out the di�erent behavior com-
pared to the DLW models. After this short introductory part we will present
the literature that is at the origin of the research of such models. After that
we will investigate some recent results. These models play an important role
in circuit design and Boolean complexity theory, so we will sometimes use
the terminology of this �eld and refer to internal nodes labeled by Boolean
connectors as (logical, Boolean) gates.

5.1 De�nition and �rst investigations

In the very beginning let us de�ne the models we are investigating in this
chapter: Let µ0 be a probability distribution on a set of Boolean functions
F =: H0 and K a set of k connectors with probability distribution P . De�ne
Hm as the set of expressions that are built with connectors of K and expres-
sions from Hm−1, so

Hm := {c(e1, e2, ..., earity(c))|c ∈ K, ei ∈ Hm−1 for 1 ≤ i ≤ arity(c)}, m ≥ 1.
(5.1)
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Then de�ne a probability distribution µm on the set of expressions Hm ac-
cording to the probability distributions µm−1 and P : Let e ∈ Hm be the
expression c(e1, e2, ..., earity(c)), then de�ne

µm(e) := P (c) · µm−1(e1) · ... · µm−1(earity(c)). (5.2)

As usual, this probability distribution on Hm de�nes a probability Pm on
Boolean functions. We are again interested in the limit distribution P∞ :=
lim
m→∞

Pm if it exists.

The expressions resp. trees in Hm are balanced, meaning that all leaves
(b ∈ F) have the same depth, i.e. the path from every leaf to the root has
the same length, which is exactly m. Such trees have the property that the
smallest depth of a leaf is maximal possible (linear in m) in contrast to the
expressions we investigated in the previous chapter where the typical path
length is O(

√
n), for n being the number of nodes (cf.[MM78]). Moreover,

a balanced binary tree of depth m has 2m leaves and 2m − 1 internal nodes.
When there are two or more elements in H0 or K1 then the total number
of expressions in Hm is at least 22m so in general we can not hope to use
analytic combinatorics to analyze such models. Indeed in the literature one
tackles such models by directly analyzing the recursive relations coming from
Identity 5.1 and Identity 5.2 or by means of a discrete Fourier transform.

Example 5.1
To demonstrate some of the above, let us consider a simple model, namely the
model with the 3-ary majority function maj3 (c.f. Appendix A.1) as single
connector (P (maj3) = 1) and leaves labeled by TRUE with probability p
or by FALSE with probability (1 − p), so H0 = {>,⊥}, µ0(>) = p and
µ0(⊥) = 1 − p. So Hm is the set of all balanced 3-ary trees of depth m
with internal nodes labeled by maj3 and leaves > or ⊥. Let X1 , X2 and X3

be three independent Bernoulli variables, each TRUE with probability p1,
p2 and p3, respectively. Then, maj3(X1,X2,X3) is TRUE with probability
F (p1, p2, p3) = p1p2 + p1p3 + p2p3 − 2p1p2p3 (cf. [GMS93]). Let us denote
Pm(>) as am and P∞(>) as a. One computes am+1 = 3a2

m − 2a3
m with

1The case where there is only one element in both sets is not interesting.
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a0 = p; this is a simple recursion of the form am+1 = f(am) with f(am) :=
F (am, am, am). It has 3 �xed points 0, 1/2 and 1, whereas 1/2 is an unstable
�xed point the others are stable. So a = 0 for p < 1/2, a = 1/2 for p = 1/2
and a = 1 for p > 1/2. Let P (p) be the limit probability of function TRUE
as in the considerations of the model of Yashunskii so that we have

P (p) =


0 p < 1/2
1/2 p = 1/2
1 p > 1/2

which is obviously not continuous. 4

The discontinuity of P (p) is in sharp contrast to the DLW models for which
we proved in Theorem 4.13 that this function is continuous. Regarding the
nature of maj3 this behavior is predictable but as it will turn out such a
behavior is typical for this kind of models. The majority function has the
property that it ampli�es the values to the majority value of the inputs. This
ampli�cation of the majority function was the starting point in the investiga-
tion of such models, as will be describe later and it is also exploited to exactly
identify special classes of read-once formulas [GMS93]. Let us investigate an
even more delicate situation.

Example 5.2
We consider again the majority function maj3, but in contrast to the previous
example we de�ne

Hm := {maj3(e1, e2, e3)|(ei ∈ Hm−1, i = 1, 2, 3) or (e1 ∈ Hm−1, e2, e3 ∈ H0)}

and

µm(e) :=

{
q · µm−1(e1) · µm−1(e2) · µm−1(e3) if ei ∈ Hm−1, i = 1, 2, 3
(1− q) · µm−1(e1) · µ0(e2) · µ0(e3) if e1 ∈ Hm−1, e2, e3 ∈ H0

So we are looking at expressions so that for growing m either all 3 vari-
ables of a majority gate in the last layer are substituted by majority trees
maj3(e1, e2, e3), ei ∈ H0 (with probability q) or only the left one (with prob-
ability 1 − q). This set-up is more general than our de�nition in 5.1; the
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occurring trees are not necessarily fully balanced but they have the property
that the subtrees of internal nodes of the same layer have the same depth.
For q = 1 the previous example is retrieved. For q = 0 every majority node
except for the last has exactly one majority gate as child. In this case we get
the linear recursion

am+1 = F (am, p, p) = 2amp+ p2 − 2amp
2 = am2(p− p2) + p2

for the probability of TRUE. Solving this recursion and let m tend to in�nity
gives the solution P (p) = p2

1−2(p−p2)
. Not surprisingly this is a continuous

function of p. So P (p) is continuous for q = 0 (1 majority node as child)
and not continuous for q = 1 (3 majority nodes as children). Is there any
0 < q < 1 so that P (p) is not continuous? The answer is yes; P (p) is
in�nitely often di�erentiable for q ≤ 0.5 , for q = 0.5 it is continuous but has
unbounded derivative at p = 0.5 and for q ≥ 0.5 it is not continuous. This
result can be obtained by analyzing the recursion for am:

am+1 = (1− q)F (am, p, p) + qF (am, am, am)
= (1− q)(am2(p− p2) + p2) + q(3a2

m − 2a3
m) =: f(am, p, q),

a0 = p.

In 5.1 P (p) is plotted for di�erent models and parameters. The yellow curve
belongs to the model with one or tree majority gates as children and q = 0.6.
The function has a single discontinuity at p = 0.5 where it has of course
the value 0.5. The limit from left (and right) lim

p−→0.5
P (p) exists and can

be evaluated as the smallest solution (�xed point) of the cubic equation
a = f(a, 0.5, 0.6) which gives 0.21132..., and analogous for other values of
q > 0.5. The orange curve is for q = 0.5 and gives a clue that for this pa-
rameter P (p) is not di�erentiable at p = 0.5. The green curve belongs to
q = 0.4 and the black one to q = 0. The blue curve is P (p) for the model of
Yashunskii and the red one �nally is F (p, p, p) which is clearly closest to the
identity function p 7→ p because it has the least ampli�cation incorporated,
namely none.

As in the model of Yashunskii one can relate P (p) to the ratio of satisfying
assignment of a monotone read-once function with majority operations. But
one has to take care with the conclusions that can be drawn because opposed
to the model of Yashunskii, Pm(>) de�nitely does not converge uniformly to
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P∞(>). For example if q = 0.6 it is not valid that a random assignment αp,
with p the probability for a 1 and p < 0.5, satis�es a large random monotone
read-once functions from Ĥm (This are all trees from Hm with distinct vari-
ables as leaves) with probability smaller than 0.21132 + ε. This only holds
for all p smaller than a �xed value c < 0.5. Of course there also exists a se-
quence (pm)m∈N converging (maybe very slow) to 0.5 from below so that αpm
satis�es a random monotone read-once function from Ĥm with probability
converging to 0.21132 for m tending to in�nity; but there also exists such a
sequence (pm)m∈N (converging su�cient fast to 0.5) for which this probability
converges to 0.5. 4

The above shows that ampli�cation models are of quite di�erent shape than
DLW models. The interest for them also comes from a di�erent direction as
we will see next.

5.2 Ampli�cation models and origin of their

study

The �rst who used ideas of amplifying was Shannon in [MS56]. He ampli�ed
the error probability of unreliable components to 0 by using more unreliable
components in contact networks, whereas he did not investigated any kind
of growth processes as above. The �rst who investigated such a model was
Valiant. He investigated the model with 3-ary majority gates as above to
obtain an upper bound on the size of monotone formulas computing the ma-
jority function [Val84]. A monotone formula in this context is a formula with
∧ and ∨ gates and positive literals. Because of its importance in the liter-
ature and because it was one of the �rst times random Boolean expressions
occurred in the literature we will sketch the approach. Moreover, it shows
an interesting way of using random Boolean expressions as a tool.

Example 5.3 (cf. [Val84])
Let majn(x1, ..., xn) be the majority function on n variables. For convenience
assume that n is odd, so majn(x1, ..., xn) is TRUE i� at least (n+1)/2 inputs
are TRUE. Consider the full 3-ary tree of depth m := c log n with maj3
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gates and label the leaves by the (positive) variables {x1, ..., xn} u.a.r. with
replacement. So we are actually considering Hm with H0 := {x1, ..., xn}
and µ0(xi) = 1

n
and K := {maj3}. Such a random expression t ∈ Hm has

depth O(log n) and polynomial tree size complexity. We now claim that for
m = c log n and for �xed input x = (x1, ..., xn) the probability that a random
formula t computes the majority function on x is larger than 1 − 2−n, so
Prob([t(x) = majn(x)]) > 1−2−n. This guarantees the existence of a formula
of logarithmic depth and polynomial size computing the majority function
majn because Prob([t 6= majn])<1:

Prob([t 6= majn]) = Prob([∃x : t(x) 6= majn(x)]) = Prob(
⋃
x

[t(x) 6= majn(x)])

≤
∑
x

Prob([t(x) 6= majn(x)]) < 2n · 2−n = 1.

So let us assume that majn(x) = 1 (the other case works similarly), so the
ratio p0 of 1's is at least 1

2
+ 1

2n
. The inputs of the random tree are chosen u.a.r

from x1, ..., xn meaning that they are Bernoulli distributed with parameter p0.
From the examples above we know that probabilities larger than 1

2
are am-

pli�ed towards 1. Analyzing again the recursion pm+1 = F (pm, pm, pm), p0 ≥
1
2

+ 1
2n

shows that this ampli�cation is fast enough to derive a constant c with
pc logn ≥ 1 − 2−n. So there is a formula t with depth c log n and polynomial
size with only maj3 gates computing the function majn. Since a maj3 gate
can be realized by a formula e with ∧ or ∨ gates of constant size (4) we can
substitute every maj3 gate by e to obtain a monotone formula of logarithmic
depth and polynomial size computing the majority function. 4

The example above is of probabilistic nature and only proves the existence
of such a formula. The bound of Valiant is O(n5.3) for the size. An improve-
ment of this (O(n4.9)) is established among some more general results in
[GM97]. A partial derandomization of the construction above can be found
in [HMP06] with a signi�cant improvement on size (O(n2)). The only deter-
ministic construction known for a monotone formula of polynomial size for
majn is found in [AKS83], unfortunately the polynomial is of very high order.

Boppana, who coined the term 'ampli�cation method', further investigated
this ampli�cation process on a more general level in [Bop85]. He showed that
the result of Valiant is in a sense optimal and showed a similar result for gen-
eral threshold function tr(k, n). Savický was not interested in constructing
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small formulas for given functions but he investigated the underlying con-
struction resp. growth process per se [Sav90]. He investigated the model with
µ0 the uniform distribution on H0 := {>,⊥, x1, ..., xn, x1, ..., xn} with a single
connector α that is balanced and nonlinear. Balanced means that α is TRUE
for exactly half of the inputs. It is nonlinear if α(x) 6= c0 ⊕ c1x1 ⊕ ...⊕ cnxn
any c0, ..., cn ∈ {0, 1}. He showed the following:

Theorem 5.4 ([Sav90, Theorem 5.4])
If n ≥ 2 then the following two statements are equivalent:

(i) α is balanced and nonlinear

(ii) for all f ∈ Bn the following holds:

P∞(f) = (
1

2
)2n .

This means that in the models with balanced and nonlinear connector every
function f is computed by the same probability for large depth m. This is
shown by means of a discrete Fourier transform technique of the probability
function. Further investigation of the approach would go too far but the
interested reader can take [dW08] as a starting point from which one can
delve further into the method of discrete Fourier transform on the Boolean
cube. With the same technique Savický generalized the result above to more
general leaf sets H0 and distributions µ0 satisfying a condition of 'unbiasness'
[Sav95]. Moreover, he proved a statement about the convergence speed of
Pm(f) to (1

2
)2n for �xed f , which says roughly speaking that for a function

f that is 'very' balanced the convergence is fast. Brodsky and Pippenger
[BP05] systematically investigated the growth process when H0 is a subset
of {>,⊥, x1, ..., xn, x1, ..., xn} and µ0 is the uniform distribution on this set
with a single connector α. Several restrictions on α so that the limit distri-
bution is the uniform distribution on distinguished sets of Boolean functions
(e.g. linear function, monotone functions, self-dual functions and threshold
functions etc.) were considered reaching from α being linear, self-dual non-
linear or monotone. The methods of choice for proving the results are once
again the Fourier transform as well as the direct study of recurrence relations.

All these results have one in common: In every case the limit distribution
is the uniform distribution on either a (small) set of Boolean functions, all
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Boolean functions or a single Boolean function. We will observe this regime
also in the models we are considering in the next section that will have ∧
and ∨ as allowed connectors.

5.3 (∧,∨)-Ampli�cation models

The �rst paper which investigates ampli�cation models with more than one
connector is [PW06] where the authors consider full binary trees of depth
m labeled by ∧ and ∨ both with probability 1/2 and leaves labeled by 2m

distinct variables x1,...,x2m from left to right. Let us denote this random
tree by tm. So the randomness of a tree comes from the random labeling of
the internal nodes and not from the (�xed) labeling of the leaves. They are
then interested in the random variable Xm de�ned as the mean output of the
random formula:

Xm :=
1

22m

∑
x∈{0,1}2m

tm(x).

By considering the random tree tm as a rooted subtree of the random in�nite
binary tree t∞ whose internal nodes are labeled by ∧ and ∨ u.a.r. all variables
Xm are de�ned on the same probability space for m ≥ 0.2 With this set-up
we are ready to state the main result of there investigations:

Theorem 5.5 ([PW06, Theorem 2.1.])
Xm converges almost surely to X with Prob([X = 0]) = Prob([X = 0]) = 1/2.
Moreover, the �rst two moments of Xm are

E(Xm) = 1
2

E(X2
m) = 1

2
− 1

m
+O( logm

m2 ).

Proof. (Sketch)
The �rst step in the proof is to establish that the sequence {Xm} is a martin-
gale with respect to the �ltration {Fm} := σ(G(v) : v is an internal node of tm).
Readers who are not familiar with these basic concepts of probability theory

2To be exact the random tree tm can be seen as a vector drawn u.a.r. from {0, 1}2m−1

,
whereas a 0 (resp. a 1) as i-th entry means that the i-th node (in level order) of tm is
labeled by ∧ (resp. ∨). So it is a vector of independent and identically 0 − 1-random
variables (G(i))i=1,...,2m−1 . An in�nite tree is a(n) (in�nite) sequence of such random
variables (G(i))i∈N and the tree tm is the vector of the �rst 2m−1 entries.
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can �nd the necessary background in [Dur05]; but we will not further need
them except for this proof. Martingales {X̂m} with bounded expectation of
the absolute value (i.e. E(|X̂m|) ≤ c ∈ R) converge almost surely (Mar-
tingale Convergence Theorem). Because 0 < Xm < 1, this requirement is
satis�ed so that Xm converges almost surely. That E(Xm) = 1

2
can be seen

from symmetry arguments or direct from the recursion for the expectation

E(Xm+1) =
1

2
(E(Xm))2 +

1

2
(1− (1− E(Xm))2) = E(Xm). (5.3)

Let X l
m and Xr

m be the mean outputs of the right resp. left subtree of the
random tree tm. Then, Xm+1 is X l

m · Xr
m when the root is labeled by ∧ or

1 − (1 − X l
m) · (1 − Xr

m) when the root is labeled by ∨. So one establishes
the recursive description of the second moment X2

m

E(X2
m+1) =

1

2
E((X l

m ·Xr
m)2) +

1

2
E((1− (1−X l

m) · (1−Xr
m))2).

X l
m and Xr

m are independent and X l
m, X

r
m, 1−X l

m, 1−Xr
m are all distributed

as Xm, so the recursion simpli�es to

E(X2
m+1) = E(X2

m)2 +
1

4
.

This equation has a single attracting �xed point 1
2
. Further investigation

of the equation with help of the transformations Zm := Xm(1 − Xm) and
Zm 7→ 1

Zm
leads to the stated rate of convergence of E(X2

m) to 1
2
. Finally, ob-

serve that E(X2) = lim
m→∞

E(X2
m) = 1/2, where the �rst identity follows from

the Bounded Convergence Theorem. The random variable X is symmetric
around 1/2 so E(X2) = 1/2 is only possible for Prob([X = 0]) = Prob([X =
1]) = 1/2.

Remark. The limit of Xm does not necessarily exist. Indeed one can consider
an in�nite tree consisting of layers of su�ciently large levels labeled only by
∧ resp. ∨ so that Xm is ampli�ed toward 0 and 1 alternately.

The authors of [PW06] o�er the following intuitive explanation for the con-
vergence of Xm to 0 and 1: There is either a slight predominance of nodes
with ∧ that forces Xm to 0 or a predominance of ∨ pushing Xm to 1. That
sounds plausible but it is a folklore fact from 1-dimensional random walks
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that for a(n) (unbiased) random 0 − 1-sequence (
∧
= ∧ − ∨-sequence) there

are in�nitely many numbers k so that there are k 0's and k 1's among the
�rst 2k entries of the sequence with probability 1. It should be possible to
follow that the ratio of nodes of a random balanced tree of depth m that are
labeled by ∧ is for in�nitely many m greater than 1/2. So the suggestive
explanation should be re�ned.

Similarly as above one can also derive recurrences for higher-order moments
of Xm to establish their asymptotic rates of convergence. In the paper this
is done up to the fourth moment and there is also an investigation of the
random variable Zm = Xm(1−Xm) with tail estimates. In addition to these
theoretical considerations they also tried to obtain a better understanding of
Xm by means of experiments. The problem with experiments is that for even
small values of m, say m = 20, it is computationally intractable to compute
Xm for all possible trees, and for m ≥ 40 it is computationally impossible to
compute even one sample of Xm. So they introduced the notion of sensitiv-
ity of a leaf of an And/Or tree to quantify the potential e�ect of the value
of this node to the value of Xm as the di�erence of the mean output when
substituting the leaf by 1 or 0 respectively. The idea then is to approximate
the value of samples of Xm by considering the value of Xm for a growing tree
starting with a single node. Then, in every step the leaf with the highest
sensitivity is chosen to be revealed to compute a better approximation of Xm

for this tree until the approximation of the sample is 'good' enough. Their
goal was to show that the number of nodes that have to be revealed to get
a good approximation of one sample is far smaller than evaluating all nodes
from the full balanced tree. This would disclose a lot about the distribution
of Xm but unfortunately they are not able to rigorously prove such a result.

Before we investigate another model, let us draw similar conclusions as we
did for the models of Yashunskii. We can interpret Xm as the mean output
of a balanced monotone read-once formula of depth m with connectors ∧ and
∨ that is drawn u.a.r. from all such expressions. Putting it in this way the
result above informally gives that such a monotone read-once expression (of
great depth) has either lots of satisfying assignments or very few. The case
that such a formula has an intermediate number of satisfying assignments
becomes very rare for increasing depth. The next result quanti�es this vague
formulation with the help of the results for Xm.
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Proposition 5.6
For every ε > 0 there exists an M(ε) such that for every m > M(ε) the
following holds: De�ne c :=

√
m

1+ε
. Take a random monotone read-once

formula obtained from labeling the internal nodes of the full binary tree of
depth m with ∧ and ∨ independently with probability 1/2. This formula has
at most (1

c
) · 22m satisfying assignments with probability at least 1

2
− 1

2c
and it

has at least (1− 1
c
) ·22m satisfying assignments with probability at least 1

2
− 1

2c
.

Proof. For �xed ε > 0 and c :=
√

m
1+ε

assume that there are arbitrarily large
m with P (1

c
≤ Xm ≤ 1 − 1

c
) ≥ 1

c
. For such m we can upper bound E(X2

m):
Let ai, i = 1, ..., s denote the �nitely many values Xm can take and de�ne
P (ai) := P (Xm = ai) and

P̃ (ai) :=

{
P (ai) if ai 6= 1

2
P (ai)

2
if ai = 1

2

to compute

E(X2
m) =

∑
i:ai<

1
c

P (ai) · a2
i +

∑
i: 1

c
≤ai≤1− 1

c

P (ai) · a2
i +

∑
i: 1

c
<ai≤1

P (ai) · a2
i

=
∑

i:ai<
1
c

P (ai) · (a2
i + (1− ai)2) +

∑
i: 1

c
≤ai< 1

2

P (ai) · (a2
i + (1− ai)2)

+
∑

i:ai=
1
2

P (ai)
2
· (a2

i + (1− ai)2)

=
∑

i:ai<
1
c

P (ai) · (a2
i + (1− ai)2) +

∑
i: 1

c
≤ai≤ 1

2

P̃ (ai) · (a2
i + (1− ai)2)

The second equality holds due to the symmetry of Xm. The function a 7→
a2 +(1−a)2 is monotonically decreasing in [0, 1/2] so we get the upper bound

E(X2
m) ≤

∑
i:ai<

1
c

P (ai) · 12 +
∑

i: 1
c
≤ai≤ 1

2

P̃ (ai) · ((1
c
)2 + (1− 1

c
)2)

= P (0 < Xm < 1
c
) + ((1

c
)2 + (1− 1

c
)2)P (1

c
≤ Xm ≤ 1

2
)

≤ max
1
c
≤p≤1
{1−p

2
+ ((1

c
)2 + (1− 1

c
)2)p

2
}

=
1− 1

c

2
+ ((1

c
)2 + (1− 1

c
)2) 1

2c

= ... = 1
2
− 1+ε

m
+ (1+ε)

3
2

m
3
2
.

From 5.5 we know that

E(X2
m) =

1

2
− 1

m
+O(

logm

m2
) ≥ 1

2
− 1

m
− d logm

m2
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for a constant d su�cient large. So we derived that there exist arbitrarily
large m with

1

2
− 1

m
− d logm

m2
≤ 1

2
− 1 + ε

m
+

(1 + ε)
3
2

m
3
2

,

a contradiction.

So there exists an M(ε) such that P (1
c
≤ Xm ≤ 1 − 1

c
) ≤ 1

c
for m ≥ M(ε)

and c =
√

m
1+ε

. So P (Xm < 1
c
) ≥ 1

2
− 1

2c
for m ≥ M(ε) which means that

22mXm < (1
c
) · 22m with probability at least 1

2
− 1

2c
. Since 22mXm is the

number of satisfying assignments the �rst part of the assertion follows and
the second part follows in the same way.

Remark. This shows that the probability that such a monotone read-once
function f has an intermediate number Af of satisfying assignments, i.e.
1
c
· 22m ≤ Af ≤ (1− 1

c
) · 22m, is at most 1

c
, which converges to 0 for m tending

to in�nity. So P (1
c
· 22m ≤ Af ≤ (1− 1

c
) · 22m) ≤ 1

c
→ 0

Let us now �nish this section with the discussion of a model that is the �rst
and to the author's knowledge only ampli�cation model in its full generality
as de�ned at the beginning of the chapter that is investigated in the literature,
namely the model of balanced And/Or trees in [FGG09]. In one sentence one
looks at balanced trees of depthm with inner nodes independently labeled by
∧ with probability p and with ∨ with probability 1− p. The leaves are then
labeled by variables {x1, ..., xn} according to a distribution. In the notation
from above this means H0 = {x1, ..., xn} with µ0 a probability distribution
on H0 and K = {∧,∨} with P (∧) = p and P (∨) = 1 − p. Before we can
state the main result of [FGG09] we need some de�nitions. The weight of an
assignment α ∈ {0, 1}n according to µ0 is de�ned as

w(α) :=
n∑
i=1

µ0(xi)αi.

Let β = (β1, ..., βn) be a vector in Rn and θ ∈ R and de�ne the linear
threshold function Tβ,θ pointwise as

Tβ,θ(α) = 1 i� β1α1 + ...+ βnαn ≥ θ.

The main results now read as follows:
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Theorem 5.7 ([FGG09, Theorem 2.1.])
Let µ0 be a positive probability distribution on {x1, ..., xn} and p ∈ [0, 1], then
the limit distribution P∞ exists and is fully describable as:

• If P (∧) = p > 1/2, then the support of P∞ reduces to the single function
x1 ∧ x2 ∧ ... ∧ xn.

• If P (∧) = p < 1/2, then the support of P∞ reduces to the single function
x1 ∨ x2 ∨ ... ∨ xn.

• If P (∧) = 1/2, then the limit distribution P∞ concentrates on the linear
threshold functions: Let θ0 = 0 < θ1 < ... < θs = 1 be the di�erent
weights of all assignments in {0, 1}n, then for i ∈ {1, ..., s} we have
P∞(Tµ0,θi) = θi − θi−1.

Proof. (Sketch) The proof of this theorem in [FGG09] is divided into a cou-
ple of lemmas. We will follow mainly this presentation and sketch the most
important steps. Observe that due to the duality of the problem for p and
1− p we can assume that p ≥ 1/2.

Let p ∈ [0, 1] and �x an α ∈ {0, 1}n. De�ne um as the probability that α
satis�es a random function f , that is distributed according to Pm:

um := Pm([f(α) = 1]).

P0 equals µ0 so u0 =
∑n

i=1 µ0(xi)αi = w(α). By considering the label of the
root of an expression from Hm+1 we get the recursive description

um+1 = (2p− 1)u2
m + 2(1− p)um.

0 is an attractive �xed point of this recursion for p > 1/2, so for α 6= (1, ..., 1)
um converges to 0. For p = 1/2 it is easily seen that um is constant, so
um = w(α).

This already allows to prove the case for p 6= 1/2: Assume that there is a
function f di�erent from x1 ∧ ... ∧ xn with Pm(f) 6→ 0. This function has a
satisfying assignment α 6= (1, ..., 1) for which Pm([f(α) = 1]) 6→ 0 which is a
contradiction. So Pm(x1 ∧ ... ∧ xn)→ 1.
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To prove the case p = 1/2 similar ideas apply: Let α, β be two di�erent
assignments with w(α) ≤ w(β). De�ne vm := Pm([f(α) = 1 and f(β) = 0]).
With the analogue quantities v(a,b)

m Pm([f(α) = a and f(β) = b]), for a, b ∈
{0, 1} one can derive3 a system of recursions of dimension 4 for the four se-
quences, from which it can be followed that vm → 0. So consequently a func-
tion f with Pm 6→ 0 satis�es that for all assignments α, β with w(α) ≤ w(β)
it holds that f(α) ≤ f(β). Functions ful�lling this condition are exactly the
linear threshold functions of the shape Tµ0,θ. Let θ0 = 0 < θ1 < ... < θs = 1
be all di�erent weights of assignments and αi, i = 1, ..., s corresponding as-
signments. From above we know that Pm([f(αi) = 1]) = w(αi) = θi. Exactly
the functions Tµ0,θ0 ,...,Tµ0,θi are 1 on αi so we have Pm({Tµ0,θ0 , ..., Tµ0,θi})→ θi
and by induction one follows that Pm(Tµ0,θi) = θi − θi−1. Which completes
the proof.

Direct consequences of the theorem above are [FGG09, Corollary 2.1. and
Corollary 2.2]:

(i) If p = 1/2 and µ0 is the uniform distribution on {x1, ..., xn}, then the
limit distribution is uniform on the n threshold functions x1 +x2 + ...+
xn ≥ i for i = 1, ..., n.

(ii) If p = 1/2 and µ0 is the uniform distribution on {x1, x1, ..., xn, xn},
then the limit distribution 'collapses' to the constant function TRUE
and FALSE both with probability 1/2.

The result with negative literals is derived by considering (i) with 2n vari-
ables {x1, y1..., xn, yn} and substituting yi by xi. In the same manner one can
derive the limit distribution for arbitrary functions as leaf sets. As in the
other ampli�cation models the distribution concentrates on a small number
of functions and is highly discontinuous in the parameter p for the probability
of the connectors but it is continuous in the parameters of the distribution
on the variables (or more general functions) µ0.

The authors are also interested in the speed of convergence by investigating
the quantity ‖Pm−P∞‖∞ := max

f∈Bn

|Pm(f)−P∞(f)|. They are able to evaluate
the speed of convergence for �xed number of variables n and �xed µ0 and p.
For example by a careful analysis of the recurrence relations they found:

3This works as above by distinguishing the label of the root.
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Proposition 5.8 ([FGG09, Proposition 4.2.])
For p = 1/2, the convergence speed of (Pm) is

‖Pm − P∞‖∞ = 2−Θ(m)

if all assignments in {0, 1}n have distinct weights; otherwise it is

‖Pm − P∞‖∞ = Θ(1/m).

They also note that it would be interesting to investigate the rate of conver-
gence with respect to the number of variables m, but they do not expect it to
be fast. A su�ciently fast convergence would lead to monotone polynomial
size formulas for linear threshold functions which they are not known to have.

Since we have the limit distribution at hand in all cases, it is easy to derive
statements regarding the number of satisfying assignments of expressions
drawn according to the considered distribution. For example:

(i) If p = 1/2 with H0 = {x1, ..., xn}. Assume that there exists an xi with
µ0(xi) = a, then an expression drawn from Hm according to µm has
more than 1

2
22m satisfying assignments with probability converging to

a for m tending to in�nity.

Or with the help of the convergence rate in the case of 1/2 < p < 1, which
is 2−Θ(m):

(ii) If 1/2 < p < 1, then the probability that an expression drawn from Hm

according to µm has more than 1 satisfying assignment4 is exponentially
decreasing: Pm({f |∃α 6= β, f(α) = f(β) = 1]) = 2−Θ(m). Informally
speaking such a formula can only be satis�ed if all constraints (xi) are
ful�lled.

(ii) is in sharp contrast with the related DLW model where for every p this
probability Pm({f |∃α 6= β, f(α) = f(β) = 1]) converges to a positive con-
stant.

4The assignment (1,...,1) is always a satisfying assignment for the formulas considered
here.
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Figure 5.1: P (p) for di�erent models: yellow: q = 0.6, orange: q = 0.5,
green: q = 0.4, black: q = 0, blue: corresponding model of Yashunskii,
red: F (p, p, p). The function P (p) is approximated on the uniform grid with
mesh-width 1/1000 where for each point 1000 iterations are performed (the
blue and the red curves are exact).
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Chapter 6

Other models, Conclusion and

Open Problems

In the last part of the thesis we want to present in a nutshell several models
that have not found their way into the main part of this work although
they perfectly �t to the concept. After that we will very brie�y present
some papers that investigate problems of quite di�erent nature (nonetheless
there are connections). We will do so in an enumeration fashion and will not
provide the necessary background and all de�nitions that would be necessary
to fully capture the essence of the models. Nevertheless, these models are
broached for sake of taking a view on what else can be done. At the end we
will conclude the thesis and state open problems.

6.1 Other models

The �rst model that perfectly �ts is the model of so called decorated crit-
ical Galton-Watson trees. Such a random tree is (binary case) constructed
as follows: Start with a single node. Every leaf in the tree becomes with
probability 1/2 an internal node with two children and with probability
1/2 the branching process stops at a leaf. Such a random tree is almost
surely �nite [AN72]. As usual, a random Boolean expression is then ob-
tained by labeling the internal nodes by connectives and the leaves by literals
(resp. (positive) variables). There is a strong relation between these models
and the related DLW models, see [CFGG04, Proposition 1] and [Gar06];
that is why it was investigated almost parallel to the DLW models, see
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[CFGG04, GW05, Gar06, FGGG12, GG10]. This relation also gives that our
result 4.13 holds for these models when the conditions of the statement hold
for the corresponding DLW model1. Apposed to the DLW models there is no
existence question of the distribution, so one can investigate arbitrary con-
nectors and base functions. The most important result is that for arbitrary
binary connectors and variables {x1, ..., xn} the probability of all read-once
functions tends to 1 when the number n of variables tends to in�nity [GG10,
Theorem 10]. So this system does not exhibit the Shannon e�ect. The same
statement holds for arbitrary leaf set F (especially for {x1, x1, ..., xn, xn})
when one generalizes the notion of read-once function so that a function f is
called read-once when there is a tree with distinct leaves expressing f .

The second model uses random growing trees that are de�ned as follows
[CGM11]: A growing tree of size 0 is a single leaf with probability 1, so
H0 = {•} and µ0(•) = 1. A growing tree of size m is a growing tree of size
m− 1, where a leaf is chosen uniformly at random to transform to an inter-
nal node with two children (the authors call this process 'sprouting'). Or the
other way round: If one has a growing tree of size m and cuts uniformly at
random two leaves having the same parent then one obtains a growing tree
of size m−1. Such a tree is then labeled as usual. The relation to the ampli-
�cation model with balanced And/Or trees is apparent: In the ampli�cation
model all leaves of the (in this case single) growing tree sprout, whereas in
the growing tree model only one randomly picked leaf sprouts. [CGM11] in-
vestigates this model for several set-ups namely for connectors ∧ and ∨ with
a Bernoulli distribution with parameter p and a distribution µ0 on either
only positive literals or all literals2 and the model with the single connective
→ and positive literals only. The results considering the limit distribution
for the And/Or-model are found to be literally similar to the results from
the balanced And/Or-trees. The only di�erences are related to the speed of
convergence. In the model with implication the limit distribution collapses
to TRUE. The authors o�er two di�erent approaches for the results, one
with analytic combinatorics and the other with probabilistic methods con-

1The addressed relation is the following: Let yi(z) be the GF for the expressions com-
puting fi in the DLW model and Y (z) the GF of all expressions and σ their singularity,

then the probability of fi in the Galton-Watson model is yi(σ)
T (σ) , which we proved to be

continuous in 4.13.
2In the case of none uniform distribution µ0 on all literals the restriction µ0(xi) = µ0(xi)

is made.
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sidering the discrete growth process as a continuous process with exponential
clocks. Their intuitive explanation for the similarities between the balanced
And/Or model and this model is that this model exhibits the property that
the smallest path length from the root to a leaf is of order lnm with proba-
bility tending to one (cf.[Pit84]), and this quantity tends to in�nity.

The next model is a slight modi�cation of the ampli�cation models considered
above. [MS12] considers a single balanced connector α with arity k and
arbitrary initial set H0 ⊂ Bn with arbitrary distribution µ0. Then, as in
the ampli�cation model the balanced expressions built from α and H0 are
considered with the di�erence that they introduce a noise parameter ε which
gives the probability that a gate in an expression �ips the computed value. So
every single computation is false with probability ε. For a Boolean function
f ∈ Bn let f i (i = 1, ..., 2n) denote the i-th entry of f represented as a vector3

and by δ(a; b) the Kronecker delta. By that the probability of a �xed function
f is recursively described by:

Pm+1(f)

=
∑

f1,...,fk∈Bn

{
k∏
j=1

Pm(fj)

}{
2n∏
i=1

[
(1− ε)δ(f i;α(f i1, ..., f

i
k)) + εδ(1− f i;α(f i1, ..., f

i
k))
]}

.

(6.1)
The authors do not investigate this process but a simpli�ed and averaged
process:

P̃m+1(f) =
∑

f1,...,fk∈Bn

{
k∏
j=1

P̃m(fj)

}{
2n∏
i=1

expβf
iα(f i1,...,f

i
k)

2 cosh(βα(f i1, ..., f
i
k))

}
. (6.2)

β is related to ε by ε = (1−tanh(β))/2 and is called the inverse 'temperature'
parameter. The case β = 0 (

∧
= ε = 1/2) corresponds to the completely

random case and β → ∞ (
∧
= ε = 0) to the deterministic case. A subtlety

here is that the maximal unreliability or unpredictability of the system is
not obtained for ε = 1 but for ε = 1/2. When ε = 1 that means �ipping all
computations, which thus is then fully deterministic. This process is analyzed
by means of methods from statistical physics, which we can not provide here,
to obtain the following interesting result (cf. [MS12]):

3So f i is the entry of the truth table of the i-th line of f ,
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Theorem 6.1
For any initial distribution µ0

4 and balanced gate α with k ≥ 3; the uniform
distribution P∞(f) = 1

22n
is the unique and stable solution of the process

de�ned by Equation (6.2) when ε > ε(k) = 1−b(k)
2

, where b(k) is 2k−1

( k−1
(k−1)/2)

for

k odd and 2k−2

( k−2
(k−2)/2)

else.

The quantity ε(k) approaches 1/2 from below for k →∞. Informally speak-
ing this means that reliable computation for ε in this regime is not possible
for error probability greater than ε(k) and smaller 1− ε(k) because then the
process de�ned by Equation (6.2) has maximal possible entropy for m→∞.
The also prove that, in the cases when the noiseless process (ε = 0) concen-
trates on a single function, Pm concentrates on the same function with any
desired probability for increasing depth m when ε < ε(k). The authors also
investigate the related model for layered K ×m Boolean circuits, which are
circuits with depth m where the inputs of a layer are only gates from the
layer below and every layer has exactly K nodes, see [MSR10]. The litera-
ture of reliable computation in di�erent regimes for computation are broad;
the interested reader can �nd more literature on this, especially for similar
models of computation as here, in the two cited papers.

The last model we want to touch is a model investigated in [MSDM11]. The
authors consider a random layered K×m Boolean circuit of increasing depth
m, whereas the randomness of the circuit comes from the random labeling
with connectives (e.g. ∧ and ∨ or NOR, etc.) and the random connectivity
(i.e. the random inputs of every gate from the gates from the layer below).
The are interested in the behavior of the mean output of the nodes in the
last layer, which is a random variable. They examine cases where the mean
output converges for m → ∞ very quickly or where it �ows to a stable
period-two orbit. Moreover, they investigate if chaotic behavior is possible
(it is for a model with connectives of arity ≥ 5) and construct a connective
where the model has chaotic behavior.

4This especially means that H0 is arbitrary.
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6.2 Conclusion

We saw a great variety of di�erent random Boolean function models. We
classi�ed them according to the behavior of the induced probability distri-
bution on Boolean function. The �rst class, the DLW models together with
the decorated Galton-Watson trees, exhibits a very regular behavior. Every
(expressible) function has non vanishing probability to occur and the prob-
ability depends continuously (or probably in�nitely di�erentiable as in the
model of Yashunskii) on the parameters for the probabilities of the connec-
tors and base functions. For the DLW model this is formulated in Theorem
4.13. The second model class, the ampli�cation models and the growing
tree model, exhibit a quite di�erent behavior. Informally speaking they are
more sensitive. They are either uniform distributed on all Boolean func-
tions when everything is well 'balanced' and 'unbiased' or they collapse to a
small number of Boolean functions. Moreover, they are uncontinuous with
respect to the parameter for the probability of connectors and sometimes also
with respect to the distribution on the base functions. These di�erences and
the corresponding classi�cation are formulated on a 'macroscopic' level after
we have observed their behavior; but it seems that there is an underlying
'microscopic' structure that causes these two di�erent regimes, namely the
structure of the underlying trees. More concrete as already mentioned the
trees in the second regime have all the property that a leaf is far away from
its root as m tends to in�nity, whereas the trees from the �rst class have the
contrary property. So the question is: Can we somehow predict the 'macro-
scopic' behavior of the induced distribution when we know the 'microscopic'
properties of the trees? Or in what cases (connectors) can we do so? Does
this reveal anything about the structure of Boolean expressions and Boolean
functions?

Another fact that runs like a common thread through the thesis is that
all models we have seen (except for the uniform distribution) either do not
exhibit the Shannon e�ect or it is conjectured that they do not exhibit the
Shannon e�ect (commutative and associative And/Or-DLW-models) or lower
resp. upper bounds of the functions the distribution concentrates on (e.g.
linear threshold functions) that would prove or disprove the Shannon e�ect
are not known. So where is a 'natural' non uniform probability distribution
that does exhibit the Shannon e�ect? It is a matter of fact that in Boolean
complexity theory one is not able to �nd functions with large lower bounds
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on the complexity (with AND, OR, NOT gates) or is not able to prove them.
Or as S. Jukna formulates it

�we know that almost all Boolean functions are
complex, but we cannot exhibit any single

example of a complex function!� -S.Jukna [Juk12]

All random Boolean function models in the sense of this thesis and that
are found in the literature investigate large random Boolean expressions (

∧
=

trees). But there is also a natural extension of these models: Boolean func-
tions can not only be represented as Boolean expressions but also in a more
'powerful' way as Boolean circuits. So theoretically it is possible to consider
random Boolean circuits and the induced distribution on Boolean functions
but the analysis of such models needs a di�erent approach and di�culties
might arise. In the most general sense whenever one has a set of representa-
tions of Boolean functions one can de�ne a distribution on this set to obtain
a distribution on Boolean functions that might be interesting.

Another question that arises is if the results from pattern theory can be
generalized to prove a similar asymptotic behavior of the probability of a
�xed function in the general DLW model with non uniform probabilities
for the connectors and literals. For models where only the connectors are
non uniform this is straightforward because Theorem 4.21 holds without
any changes: The theorem says that the probability of expressions whose
structure belongs to P [T ] and which have k restrictions is asymptotically
ck,l
nk . Because the connectors are irrelevant here the theorem also holds for
non uniform distributions on the connectors. To generalize this theorem for
probabilities on the literals one has to analyze the probability that a tree
of size m with d pattern leaves is labeled by literals so that the tree has n
restrictions. In Theorem 4.21 this is done for the uniform distribution on the
literals by counting the number of such expressions.
As mentioned already in the section where we considered the model of Yashun-
skii, it would be interesting to study the same model with respect to the num-
ber of leaves or total number of nodes or other size measures. This would
lead to similar conclusions for monotone read-once functions as we draw for
the number of internal nodes. Moreover, it would be appreciable to extend
the results of in�nite di�erentiability of the function Pp(>) (with respect to
p) and of uniform convergence of Pm,p(>) to Pp(>) to related results for gen-
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eral DLW models.

In the tree size model of And/Or expressions the limit probability for TRUE
and FALSE is bounded from below and above by constants (see 4.4) but
the authors actually expect that this probability converge for n tending to
in�nity.

The apparent similarities of the DLW formula size models raise the question
of a uni�cation:

�Would it be possible to prove a meta-theorem that
would give a relation between the probability distributions

induced by logical models taking some properties
of the connectives into account, or not?� -[GGKM12]
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Appendix

Auxiliary Elementary Notions

This appendix covers the elementary notions used in this thesis, which have
been excluded from the main text to improve its legibility. Most readers will
be very familiar with these notions and notations and can omit them without
any doubt. We are commencing with a brief discussion on Boolean functions
and list the most important ones used in this thesis. Then, we will present
the de�nitions of graphs, trees and circuits. In the last part of the appendix
the O-notation for the asymptotic behavior of functions will be presented.

A.1 Special Boolean functions

The de�nition of Boolean function is stated in 2.1. In summary: A Boolean
function is a function from {0, 1}N to {0, 1}, a �nite Boolean function maps
from {0, 1}n to {0, 1} for an n ∈ N0 and we say the functions have arity n.
Every �nite Boolean function from {0, 1}n to {0, 1} can be identi�ed with
a Boolean function mapping from {0, 1}l to {0, 1} for l ≥ n and also with
a(n) (in�nite) Boolean function; and every Boolean function that depends
only on a �nite number of variables can be identi�ed with a �nite Boolean
function. With this identi�cations in mind one should pay attention to the
fact that when using a suggestive symbol as ∨ or ⊕ for a Boolean function
it is also important to specify the variables of this functions (if necessary)
because ∨(x1, x2) := x1 ∨ x2 and ∨

′
(x1, x3) := x1 ∨ x3 are di�erent functions

even after identifying them with in�nite Boolean functions. For functions
for which associative connectors as ∨ and ⊕ are used as symbol, there is
also the subtlety that the number of variables the functions are de�ned on is
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Figure A.1: Table of important Boolean functions.

not clear. In such a case it is important to clarify which ∨ we are actually
referring to. In A.1 all functions of arity 0, all functions with arity 1 with
respect to variable substitution and the most important functions of arity 2
and n are listed. For the threshold function tr(k,n) the n-ary AND(k = n), the
n-ary OR (k = 1) and the n-ary TRUE (k = 0) (resp. FALSE (k > n)) are
included. The threshold function tr(n+1,2n+1) is also called majority function
maj2n+1.

A.2 Graphs, trees, circuits

Graphs and specializations of them play an essential role in discrete mathe-
matics. Also in this thesis special graphs, called trees, are the main object
of interest.
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De�nition A.2 (Directed graph)
A directed graph, or just graph, G = (V,E) is a tuple of vertex (or node set
V ) and edge set E, both �nite, whereas E contains only (ordered) pairs of
elements in V but no loops: (v, v) /∈ E, v ∈ V .

One can think of a graph as the vertices being points in the plane and two
di�erent vertices v1, v2 being connected by an edge reaching from v1 to v2 i�
e = (v1, v2) ∈ E and we say that v2 is a parent of v1 and v1 is a child of v2. The
number of parents of a vertex is called the out-degree of the vertex and the
number of children is called in-degree. A sequence of nodes (n1, ..., ni), nj ∈ V
is called a path from n1 to ni i� (nj, nj+1) ∈ E,∀1 ≤ j ≤ i− 1 and the path
length from n1 to ni is then de�ned as i− 1. A graph is said to be strongly
connected if for every v1 6= v2 there is a path from v1 to v2. There are
a lot of other properties a directed graph can have, all of which give rise
to the de�nition of special families of graphs and there are also extensions
of graphs, e.g. multigraphs, weighted graphs, labeled graphs etc. Further
information can be found in books on graph theory, but the de�nitions are
often inconsistent in the literature. An extension and at the same time
restriction of graphs are rooted plane trees, called trees in this work:

De�nition A.3 (Rooted plane trees, short: trees)
A (rooted plane) tree is a graph G = (V,E) with the properties:

• (rooted) Exactly one vertex, called root, has out-degree 0.

• (tree) All nodes except for the root have out-degree exactly 1.

• (plane) The children of every node are ordered.

According to this ordering we call the child-nodes of a node the �rst child,
the second child and so on or in the case of two children, left and right child.

The depth of a tree is the maximal path length occurring in the tree. The
subtree rooted at a node v is the tree that consists of all nodes v1 for which
there exists a path from v1 to v and associated edges. Nodes with in-degree
> 0 are called inner or internal nodes and else input nodes or leaves. There
is an isomorphic recursive de�nition of trees that will be most of the time
the way of looking at things:
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De�nition A.4 (Rooted plane trees, short: trees)
A tree is either a single node or a tuple of trees: (t1, t2, ..., ti), i ∈ N, tj a tree.

In Figure A.2 one �nds a given graph and tree, represented in the plane,
whereas in the case of the graph the order of the children is irrelevant in
contrast to the tree-case. Next we will introduce a generalization of Boolean
expressions de�ned in De�nition 2.5 resp. De�nition 2.6, the circuit. In
Boolean complexity theory circuits are the main objects of interest, they are
designed to compute a special Boolean function. In circuit design it is of great
interest to �nd small circuits for computing a given function, because this
can lead to small/e�ective calculation units in computers, which abstractly
and idealized can be seen as circuits. For de�ning it, one needs to refer to
the de�nition of Boolean function from 2.1 or from A.1. Let K and F be sets
of �nite Boolean functions, i.e. they have only �nitely many input variables.

De�nition A.5 (Boolean circuits)
A Boolean circuit with connectors K over the basis F, is a graph with the
properties:

• Exactly one vertex, called output, has out-degree 0.

• The other nodes have out-degree greater or equal to 1.

• The children of every node are ordered.

• There is no path from any node to itself, i.e. acyclic.

• Nodes with in-degree 0 are labeled by elements from F and all other
nodes are labeled by a Boolean function from K with arity being equal
to the in-degree of the node.

The de�nitions of children nodes, parent nodes, inner nodes, input nodes
etc. for trees are similarly used for circuits. A circuit computes a Boolean
function: For an input ~x = (x1, ..., xn) start evaluating the input nodes as the
values of the function labeling these nodes. These values are the new inputs
for the functions that label the parent nodes. A demonstrative example of
a circuit and the evaluation of an input is pictured in Figure A.3. In the
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Figure A.2: Graph and Tree.

context of Boolean circuits one calls the in-degree of a node also fan-in and
the out-degree fan-out.
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Figure A.3: Circuit and evaluation for input (0, 1, 0). For the de�nition of
the used functions see Appendix A.1
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A.3 Oh-notation

A useful notation that we are going to utilize for specifying the asymptotic
behavior of a function at a point s or at ∞ and that we are going to use
extensively is the so called O-notation:

De�nition A.6 (Asymptotics)
Given two real valued functions from a subset of the real numbers, say g(x)
and f(x) and s ∈ R ∪ {−∞,∞}.

Little-Oh: We write f(x) =
x→s

o(g(x)) i� for all positive real numbers C and for

all sequences xn → s there is a number N with

|f(xn)| ≤ C|g(xn)|,∀n ≥ N

and say f is little-Oh of g as x→ s.

Big-Oh: We write f(x) =
x→s
O(g(x)) i� there exists a positive real number C so

that for all sequences xn → s there is a number N with

|f(xn)| ≤ C|g(xn)|,∀n ≥ N

and say f is big-Oh of g as x→ s.

Θ: We write f(x) =
x→s

Θ(g(x)) i� f(x) =
x→s
O(g(x)) and g(x) =

x→s
O(f(x))

and say f is of the same asymptotic order as g.

∼: We write f(x) ∼
x→s

g(x) i� lim
x→s

f(x)
g(x)

= 1 and say f and g are asymptoti-

cally equivalent as x→ s.

These notations alongside the most important rules for manipulations as well
as a range of examples can be found in [GKP68, Section 9.2]. We will use
them mostly for s =∞ and for functions de�ned on N0 ⊂ R, hence we will not
specify s when it is clear from the context. Then, we write f(n) = O(g(n))
instead of f(n) =

n→∞
O(g(n)) for convenience.
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