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Abstract
Density functional theory (DFT) using the local density approximation or
the generalized gradient approximation for the description of exchange and
correlation of the electrons has been the workhorse of theoretical solid state
physics since the last few decades. Although a lot of materials are described
successfully using these methods, the number of cases steadily grows where
standard DFT calculations are not sufficient to give accurate results. This
concerns for instance ground state properties like lattice parameters of solids,
in particular also excited state properties (spectroscopy), since DFT is a the-
ory of the ground state. In this work improved exchange-correlation func-
tionals for the electrons and many body perturbation theory methods within
the full potential augmented plane wave method using the WIEN2k package
are investigated and applied to selected materials and their properties, where
standard DFT calculations are not accurate enough.
In the first part of this work the so called F center in lithium fluoride is
investigated. The F center is the simplest type of color center, which is cre-
ated, when a single fluorine atom is removed from the host crystal. Different
schemes for the DFT exchange and correlation are compared such as the
functionals PBE, YS-PBE0 and TB-mBJ, but also the GW method. Since
the removal of a single fluorine leaves an electron of a lithium strongly local-
ized in the vacant fluorine site, strong excitonic (or electron-hole) effects are
present. These effects are included by solving the Bethe–Salpeter equation
for electron-hole pairs. Additionally the results have been closely compared
to quantum chemistry calculations. Very good agreement is found between
our calculations using TB-mBJ and GW (plus Bethe–Salpeter corrections),
quantum chemistry calculations and experiment.
In the second part the methods established for lithium fluoride have been
applied to other alkali halides. The dependence of their absorption energy
on the lattice parameter, or the Mollwo–Ivey relation which states that the
absorption energy with respect to the lattice constant has an exponential
decay, has been studied since the 1920s. Good agreement is found between
our calculations and experiment. Previous investigations claimed that the
Madelung potential is the main factor for the Mollwo–Ivey behavior. Our
investigations prove that ion-size effects and exchange of the electrons play
the major role.
The last part is dedicated to the investigation of correlation energies obtained
from the adiabatic connection fluctuation dissipation theorem. This method
links the response function to the correlation energy and is in principle exact.
We investigate the convergence of the correlation energy within the random
phase approximation. Finally geometrical properties of selected materials are
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calculated and compared to former calculations and experiment. Although
we find good agreement for materials, such as diamond, Ar and Kr, in many
cases we have some differences to former calculations and experiment that
are not negligible. The disagreements might be due to the possible neglect
of core states in the calculation of the correlation energy and to incomplete
basis sets for the excited states within the spheres around the atoms. Unfor-
tunately we cannot exclude possible errors in our code.
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Übertragung des Abstracts
Dichtefunktionaltheorie (DFT) zusammen mit der lokalen Dichtenäherung
(LDA) beziehungsweise der Gradientennäherung (GGA) für den Austausch
und die Korrelation der Elektronen war das Zugpferd der theoretischen Fes-
tkörperphysik in den letzten Jahrzenten. Obwohl eine Vielzahl an Materialien
erfolgreich mit dieser Methode beschrieben werden kann, steigt die Anzahl
der Fälle in denen DFT Rechnung nicht ausreichend genau sind stetig an.
Dies betrifft Grundzustandseigenschaften wie zum Beispiel die Gitterpara-
mater von Festkörpern, aber vor allem auch Eigenschaften abgeleitet aus
angeregten Zuständen (Spektroskopie), weil DFT nur für den Grundzustand
eine gültige Theorie ist. In dieser Arbeit werden verbesserte Austausch-
und Korrelationsfunktionale der Elektronen beziehungsweise Methoden aus
der Vielteilchenstörungstheorie im Rahmen der "Full Potential Augmented
Plane Wave" (FLAPW) Methode untersucht und an ausgewählten Fällen,
für welche standard DFT versagt, angewendet.
Im ersten Teil dieser Arbeit wird das so genannte F -Zentrum in Lithiumflu-
orid untersucht. Das F -Zentrum ist der Prototyp der Farbzentren, welches
dann entsteht, wenn ein einzelnes Fluor Atom aus dem Krystallgitter entfernt
wird. Mehrere verschiedene Methoden für den Austausch und die Korrela-
tion der Elektronen werden verglichen. Unter anderem sind das die Funk-
tionale PBE, YS-PBE0 und TB-mBJ beziehungsweise auch die GW Methode
aus der Vielteilchenstörungstheorie. Da ein fehlendes Fluor Atom ein stark
lokalisiertes Elektron an der Fehlstelle zurücklässt sind starke exzitonische
(oder Elektron-Loch) Wechselwirkungen vorhanden. Diese Effekte werden in
den Rechnungen inkludiert, indem die Bethe-Salpeter Gleichung (BSE) für
Elektron-Loch Paare gelöst wird. Alle unsere Rechnungen wurden auch mit
quantenchemischen Methoden verglichen. Wir finden hervorragende Übere-
instimmung für unsere TB-mBJ und GW (plus BSE) Ergebnisse mit den
Resultaten aus der Quantenchemie und den Experimenten.
Im zweiten Teil wurden die aus dem ersten Teil etablierten Methoden auf
andere Alkalihalide angewendet. Die exponentielle Abhängigkeit ihrer Ab-
sorptionsenergie von der Gitterkonstante ist seit den 1920er Jahren unter
der sogenannten Mollwo-Ivey Beziehung bekannt. Wir finden allgemein eine
gute Übereinstimmung zwischen unseren und experimentellen Resultaten.
Frühere Untersuchungen behaupten alle, dass das Madelung Potential die
Hauptursache für das Mollwo-Ivey Verhalten ist. Unsere Ergebnisse zeigen
im Gegensatz dazu, dass der Austausch der Elektronen und die Größe der
Ionen den größten Einfluss haben.
Der letzte Teil befasst sich mit der Untersuchung der Korrelationsenergien
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abgeleitet aus dem sogennanten "Adiabatic Connection Fluctuation Dissi-
pation" Theorem. Diese Methode ist im Prinzip exakt und verknüpft die
lineare Antwortfunktion der Elektronendichte mit der Korrelationsenergie.
Wir untersuchen die Konvergenz der Korrelationsenergien im Rahmen der
"Random Phase Approximation". Im Schlussteil werden die strukturellen
Eigenschaften gerechnet und mit anderen Rechnungen bzw. Experimenten
aus der Literatur verglichen. Obwohl wir in einigen Fällen, wie zum Beispiel
für Diamant, Argon und Krypton gute Übereinstimmung finden, weichen
unsere Resultate oft stark von den Literaturergebnissen ab. Die Abweichun-
gen sind höchstwahrscheinlich mit dem Weglassen von Kernzuständen bei
der Berechnung der Korrelationsenergien und von nicht vollständigen Basis
Sätzen in den Sphären um die Atome herum zu erklären. Wir schließen aber
auch Fehler in unserem Programm nicht aus.
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1 Introduction

1.1 DFT

The basis of this work is the static (non-relativistic) Schrödinger equation
within the Born–Oppenheimer approximation(
− ~2

2m

N∑
i=1

∇xi2 +
1

2

∑
i 6=j

e2

|xi − xj|
+
∑
i

vext(xi,R) + W(R)

)
Ψ(x)

= E(R)Ψ(x)

(1)

with R denoting the ionic coordinates and with x = (r, s) denoting the
coordinates and the spin for the electrons,respectively. The first and second
term are the kinetic energy and coulomb energy of the electrons. The third
term represents the contribution due to the movement of the electrons in an
external potential (vext). W describes the energy contribution due to the
repulsion of the ionic cores.
Since equation 1 relies on 4N coordinates for the electrons, it is more or
less computationally intractable to solve this equation for more than very
few electrons. Hohenberg and Kohn [1] (see Hohenberg–Kohn theorem in
appendix 5.1) showed that the ground state of an N electron system can be
uniquely described (up to an additiv constant) by the electron density

ρ(r) = N

∫
d3r2 . . . d

3rNΨ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN) = 〈Ψ|ρ̂(r)|Ψ〉 (2)

or
ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉. (3)

With this knowledge the many-body problem with 4N variables is mapped to
4 variables and the electronic ground state total energy is written as follows:

EHK [ρ] = F [ρ] +

∫
d3rρ(r)v(r) F [ρ] = min〈ψ|T̂ + V̂ee|ψ〉. (4)

Here T̂ describes the kinetic energy and V̂ee the potential energy due to the
electron electron repulsion of the many-electron system. F [ρ] is a unique
functional of ρ but there is no concrete expression available for it. In the late
1920’s and early 1930’s Thomas and Fermi [2,3] suggested an approximation
for F [ρ] which utilizes the electron density of the homogeneous electron gas
for the kinetic energy, but they failed to describe bonding in atoms or solids.
In 1965 Kohn and Sham [4] suggested a different approach to describe F [ρ]
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and hence the total energy:

E [ρ(r)] = Ts [ρ(r)] +

∫
d3rρ(r)

(
1

2
vH + vxc [ρ(r)] + vext [ρ(r)]

)
. (5)

The idea in this ansatz is to replace the term for the kinetic energy of the
electrons of the interacting many-body system by the kinetic energy of inde-
pendent electrons Ts moving in an external potential vext [ρ(r)] and to put all
remaining many body effects, beyond the coulomb potential of the electrons
(Hartree potential)

vH [ρ(r)] = e2

∫
d3r′

ρ(r′)

|r− r′|
(6)

and the external potential, into an exchange and correlation term vxc. In
other words the many electron system with density ρ is mapped to a single
electron system moving in an effective potential which describes the influence
of the other electrons at the same density ρ. The exact ground state energy is
obtained by minimizing equation 5 with respect to ρ(r) leading to the famous
Kohn–Sham equations(

− ~2

2m
∇2 + veff [ρ(r)]

)
ψn = εnψn (7)

where
veff [ρ(r)] = (vH [ρ(r)] + vxc [ρ(r)] + vext [ρ(r)]) (8)

is the effective potential. The exchange-correlation potential is defined as

vxc(r) =
δExc [ρ]

δρ(r)
. (9)

The Kohn–Sham formulation is in principle an exact formulation for the
ground state electron density and total energy, but there is no concrete ex-
pression for the exchange-correlation energy Exc.

1.2 Basis functions

Throughout this work we are representing the (macroscopic) samples with a
unit cell and a lattice with periodic boundary conditions which obviously is a
good approximation for solids. This means that the unit cell of the crystal is
repeated "quasi infinitely" in all 3 directions of space and the wave functions
can be described as Bloch functions:

ψnk(r) = unk(r)eikr. (10)
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where unk describes the cell periodic part of the wave function with phase
factor eikr. The Kohn–Sham wave functions ψnk are expanded into a linear
combination of some basis functions φk

K. There are a lot of possible choices
for the basis functions as e.g. Gaussian-like functions. An intuitive choice
for the basis functions φk

K are plane waves ei(k+K)r leading to the following
expression for unk

unk(r) =
∑
K

cnk(K)eiKr. (11)

and for the wave functions

ψnk =
∑
K

cnk(K)φk
K (12)

where the wave vector k lies in the first Brillouin zone of the reciprocal lattice
and the sum runs over reciprocal lattice vectors K. The variational coeffi-
cients cnk(K) are determined by the Rayleigh–Ritz variational principle for
each k point separately. The total energy is then calculated as an integral
over k (e.g. by the tetrahendron method [5]).
Since we need an extraordinary large number of plane waves in equation 11
for the description of wave functions showing strong oscillations such as elec-
trons close to the nuclear cores, the description of the wave functions only
by plane waves is computationally intractable.
One solution to circumvent this problem is to include only valence elec-
trons within the Kohn–Sham equations and to describe the nuclear region
within the pseudopotential (PP) [6, 7] or projector augmented-wave method
(PAW) [8,9]. We are not going to further discuss these methods in this work.

1.2.1 APW method

Another way to circumvent the problem of the strong oscillations of the
electrons in the vicinity of the nuclei is by the augmented plane wave (APW)
method. The fundamental idea of this method is to replace the wave function
around atom α within a given radius RMT,α (we call it muffin tin radius
since it resembles a muffin tin when looked at it perpendicularly from the
top) around each atom by atomic like wave functions and to keep the plane
waves in the interstitial. This ansatz was originally proposed by Slater [10]
in 1937 and has gone through a lot of development since. The basis set in
this method is defined as follows:

φk
K(r) =


1√
Ω
ei(k+K)r r ∈ I

∑
α,l,m

Aα,k+K
lm uαl (r, E)Y l

m(r̂) r ∈ RMT,α

(13)
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where Ω is the volume of the unit cell. It should be noted that the coordinates
of r are given with respect to the atomic centers Rα. Y l

m(r̂) are spherical har-
monics. uαl (r, E) are solutions of the radial Schrödinger equations for atom
α at the eigenenergy E. Aα,k+K

lm is a coefficient that matches the interstitial
plane wave at the sphere boundary to the atomic wave functions. It is de-
termined by expanding a plane wave in a Rayleigh expansion with spherical
harmonics and Bessel functions of order l jl around the center of atom α

1√
Ω
ei(k+K)r =

4π√
Ω
ei(k+K)Rα

∑
l,m

iljl(|r−Rα||k+K|)Y l,∗
m (k̂ + K)Y l

m(r̂−Rα)

(14)
and requiring that r=RMT,α which leads to the final expression for the ex-
pansion coefficients

Aα,k+K
lm =

4πilei(k+K)r

√
Ωuαl (RMT,α, El)

jl(RMT,α|k + K|)Y l,∗
m (k̂ + K). (15)

1.2.2 LAPW method

The problem with the basis function around each atom as defined in equa-
tion 13 is that the eigenenergies E in uαl (r, E) are a priory unknown and
have to be determined by finding the roots of the secular equations |H−ES|
which is a very demanding task. One solution to this is to linearize the en-
ergy dependence by making a first-order Taylor expansion for ul around the
trial energy Et:

uαl (r, E) = uαl (r, Et) + (E − Et)u̇αl (r, Et) +O(E − Et)2. (16)

When we also consider the energy derivative of the solution of the radial
Schrödinger equation u̇l in equation 13 we arrive at the linearized augmented
plane wave method [11–13] (LAPW) which is defined as follows:

φk
K(r) =


1√
Ω
ei(k+K)r r ∈ I

∑
α,l,m

(
Aα,k+K
lm uαl (r, El) +Bα,k+K

lm u̇αl (r, El)
)
Y l
m(r̂) r ∈ RMT,α

.

(17)
The matching coefficients Blm for the u̇αl ’s are similarly obtained as the Alm’s
by requiring that not only the wave function but also the first derivative of
the plane waves match the atomic like wave function at the sphere boundary.
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1.2.3 APW+lo method

The drawback of LAPW compared to APW is that by replacing ul by ul+ u̇l
a new matching coefficient Blm is introduced which unfortunately increases
the required basis set size (number of plane waves needed to reach a certain
convergence) compared to the one in APW [14]. To deal with this problem
we keep the APW basis and augment it with local orbitals (lo) which ensure
the variational flexibility of the radial part of the basis functions. So the
APW+lo consists of two parts, the usual APW basis, but at fixed energy El

φk
K(r) =


1√
Ω
ei(k+K)r r ∈ I

∑
l,m

Aα,k+K
lm uαl (r, El)Y

l
m(r̂) r ∈ RMT,α

(18)

and lo’s

φlmα,lo(r) =


0 r ∈ I(
Aα,lolm uαl (r, El) +Bα,lo

lm u̇αl (r, El)
)
Y l
m(r̂) r ∈ RMT,α

. (19)

These additional basis functions look very similar to the ones by APW but
they don’t depend on k and their coefficients Aα,lolm and Bα,lo

lm are determined
by the requirement that the lo’s are matching to zero at the sphere boundary
(plus normalization). The APW+lo basis is similar in size to the APW basis
since we are adding only a few lo’s to the APW basis.

1.2.4 LAPW+LO and APW+lo+LO method

One drawback of the LAPW and APW+lo method is that for a given quan-
tum number l only one state near the energy El can be described. The
problem is that uαl (r, El) is only valid in a small region around El and differ-
ent states with the same l but different principal quantum number, such as
e.g. semi-core states or conduction bands, are described wrong. To remedy
this additional local orbitals [15] (LO’s) are added to the basis (LAPW or
APW+lo)

φlmα,n,LO(r) =


0 r ∈ I(
Aα,n,LOlm uαl (r, El)+Bα,n,LO

lm u̇αl (r, El)

+Xα,n,LO
lm uαl (r, ELO

l,n )
)
Y l
m(r̂) r ∈ RMT,α

. (20)
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Inside the muffin-tin spheres for a given l the solutions of the radial functions
uαl (r, ELO

l,n ) are added to the basis for the desired principal quantum numbers
n at energies ELO

l,n with coefficient Xα,n,LO
lm . The coefficients Aα,n,LOlm , Bα,n,LO

lm

and Xα,n,LO
lm are determined so that φlmα,n,LO(r) (and the first derivative) van-

ishes at the sphere boundary.

1.3 XC functionals

An exact expression for the exchange-correlation energy Exc or the exchange-
correlation potential vxc in equation 8 is not known. The earliest approxima-
tion for Exc is the so called local density approximation (LDA) [3, 16]. This
approach assumes that at a given electron density vxc[ρ] can be replaced by
the exchange-correlation energy of the homogeneous electron gas ehomxc [ρ] and
the exchange-correlation energy is written as follows

ELDA
xc [ρ(r)] =

∫
d3rρ(r)ehomxc |ρ|. (21)

Since the exchange-correlation functional in the LDA is replaced only locally
at a given density, one should expect that this approach is only valid for
systems with slowly varying density. Nevertheless the LDA works for a very
large number of solids. An improvement to the LDA is achieved within
the generalized gradient approximation (GGA) by not only considering the
electron density but also the gradient of the electron density ∇ρ(r) in the
exchange-correlation functional

EGGA
xc |ρ(r)| =

∫
d3rf(ρ,∇ρ). (22)

We will use the GGA parametrization by Perdew, Burke and Ernzerhof [17]
(PBE), which is the most widely used GGA, throughout this work. PBE
and LDA, or other semi-local functionals (SL), have been (and still are) the
working horses for decades but nevertheless they have major shortcomings in
the computation of solids, e.g. too small band gaps in semiconductors and in-
sulators [18–20], inaccurate lattice constants etc. In the following subsection
we will introduce two examples as improvements over SL functionals. Both
methods modify the form of the exchange potential either by including the
kinetic energy density (meta-GGA) as in section 1.3.1 or by replacing frac-
tions of the SL exchange by (non local) exact exchange (hybrid functional)
described in section 1.3.3.
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1.3.1 TB-mBJ

The optimized effective potential [21,22] (OEP) method applied to the exact
exchange functional is considered as giving improved band gaps over LDA in
atoms and molecules. Since this method is computationally very expensive
Becke and Johnson [23] proposed a simple approximation which leads to
similar results as OEP in atoms. The Becke–Johnson (BJ) exchange potential
is written as follows

Vx,σ(r) = V Slater
x,σ (r) +

1

π

√
5

12

√
2τσ(r)

ρσ(r)
(23)

where σ denotes the spin for spin polarized systems. V Slater
x,σ is the Slater [24,

25] potential and τ is the kinetic energy density

τσ =
1

2

∑
i

|∇ψiσ|2. (24)

This potential reproduces OEP potentials for atoms and molecules but gives
little improvement over LDA or PBE for the band gap in solids in many
cases.
Tran and Blaha [26] proposed a modification of the Becke–Johnson exchange
potential which yields accurate band gaps for a wide range of solids. The
Tran–Blaha modified Becke–Johnson (TB-mBJ) potential is written as fol-
lows

vTB−mBJ
x,σ (r) = cvBR

x,σ(r) + (3c− 2)
1

π

√
5

12

√
2τσ(r)

ρσ(r
. (25)

vBR
x,σ denotes the Becke–Russel [27] potential which models the Coulomb po-
tential generated by the exchange hole. The original BJ used the Slater
potential instead of the Becke–Russel potential but it was shown that these
potentials are very similar for atoms [23]. The crucial part of TB-mBJ is the
coefficient c, which is obtained from

c = α + β

(
1

Ω

∫
Ω

|∇ρ(r)|
ρ(r)

d3r

)1/2

(26)

where Ω is the unit cell volume. α and β are free parameters which are
obtained by minimization of the mean absolute relative error of the band
gaps for a given set of solids. We will mainly use the parametrization of
Koller et al. [28] throughout this work which is especially parametrized to
give good results for wide-gap insulators and semi-conductors. Equation 25
is chosen such that the LDA exchange potential is obtained for a constant
density and that for c = 1 the original Becke–Johnson exchange potential is
recovered.
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1.3.2 Hartree–Fock based methods

The Hartree–Fock [29,30] (HF) equation for a many-body system in the DFT
formalism is given as (

− ~2

2m
∇2 + v̂HF (r)

)
ψn = εnψn (27)

where the one-electron HF operator is defined as follows

v̂HF (r) = vext(r) +

∫
d3r′

e2

|r− r′|
ρ(r′)−

∫
d3r′ρ1(r′, r)

e2

|r− r′|
. (28)

The second and third term in equation 28 are the Coulomb and exchange
term, respectively. The exchange term uses the two-electron density which
is given as

ρ1(r′, r) =
N∑
i=1

ψ∗i (r
′)ψi(r). (29)

The biggest limitation of the HF approximation is that it does not include
any correlation. Thus one way to remedy this problem is to start from a HF
calculation and then correct for correlation, such as in e.g. Moller-Plesset
perturbation theory [31] (MPn, where n is the order of the correction), multi-
configurational self-consistent field [32] (MCSCF) method, configuration in-
teraction [33] (CI) method and coupled cluster [34] (CC) theory. We will not
discuss these methods here. The interested reader can find detailed descrip-
tions of these methods in references [35,36].

1.3.3 Screened hybrid functionals

The Hartree–Fock exchange energy can be split into three contributions:

EHF
x = EHF

x,vv + EHF
x,vc + EHF

x,cc (30)

where EHF
x,vv, EHF

x,vc and EHF
x,cc describe the valence-valence, valence-core and

core-core contributions, respectively. These three contributions are written
as follows

EHF
x,vv = −1

2

∑
σ

∑
nk,n′k′

wσnkw
σ
n′k′

∫
Ω

∫
Ω

ψσ∗nk(r)ψσn′k′(r)

× v(|r− r′|)ψσ∗n′k′(r′)ψσnk(r′)d3r′d3r

(31)

EHF
x,vc = −

∑
σ

UC∑
α

∑
nclcmc

∑
nk

wσnk

∫
Sα

∫
Sα

ψσ∗nk(r)ψασnclcmc(r)

× v(|r− r′|)ψασ∗nclcmc(r
′)ψσ∗nk(r′)d3r′d3r

(32)
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EHF
x,cc = −1

2

∑
σ

UC∑
α

∑
nclcmc

∑
n′
cl

′
cm

′
c

∫
Sα

∫
Sα

ψασ∗n′
cl

′
cm

′
c
(r)ψασ∗nclcmc(r)

× v(|r− r′|)ψασ∗nclcmc(r
′)ψασ∗n′

cl
′
cm

′
c
(r′)d3r′d3r.

(33)

In these equations σ represents the spin, Ω the crystal volume and α runs
over all atoms in the whole unit cell (UC) with corresponding atomic sphere
radius Sα. wσnk is the product of the k point weight and the occupation
number of state n. v represents usually the unscreened coulomb potential

v =
1

|r− r′|
. (34)

Since in solids the k point convergence of the long range (LR) part of the
exchange energy can be quite slowly, screened potentials can be used instead
of the bare coulomb potential to assure faster convergence with the same
accuracy. One example for a screened potential is the Yukawa [37] screened
potential

v =
e−λ|r−r

′|

|r− r′|
(35)

where λ is a screening parameter.
The fundamental idea of screened hybrid methods is that a certain fraction
α of the short-range (SR) SL exchange energy ESL

x is replaced by (non-local)
Hartree–Fock (HF) exchange energy EHF

x , but the correlation is kept purely
SL:

ESL
xc = ESL

xc + α(ESR−HF
x − ESR−SL

x ). (36)

The success of this method is more or less ascribed to an error cancellation of
HF and the underlying SL exchange. For example the band gap is in many
cases on one hand underestimated by SL functionals, which is known as the
band gap problem, and on the other hand overestimated by HF, but a cer-
tain combination of both methods can give good agreement with experiment.
The most commonly used screened hybrid functional for solids is the HSE [38–
40] functional which uses the error function for the long-range screening and
α = 0.25 of unscreened v (also known as PBE0 [41,42]). In the remainder of
this work we are going to use the Yukawa screened potential instead of the
error function but with the same α as PBE0 and hence denote this method
as YS-PBE0.
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1.4 Linear response theory

1.4.1 Linear response function

The response function [43] χ(r, r′, t− t′) describes the change of the density
δρ(r, t) of an N electron system with respect to the change of the external
potential δvext(r

′, t′) due to a small external perturbation (e.g. light)

χ(r, r′, t− t′) =
δρ(r, t)

δvext(r′, t′)
. (37)

By requiring that the change in the density is the same the response function
in the Kohn-Sham formalism is written in a similar way

χKS(r, r′, t− t′) =
δρ(r, t)

δveff(r′, t′)
. (38)

where veff describes the effective potential as described in equation 8. Com-
bining this two equations and going to frequency space leads to a relation for
the response function which has the form of the Dyson equation [44]

χ(r, r′, ω) = χKS(r, r′, ω) +

∫
d3r1d

3r2χ
KS(r, r1, ω)

×
(

e2

|r1 − r2|
+ fxc(r1, r2, ω)

)
χ(r2, r

′, ω)

(39)

where fxc is the exchange-correlation kernel which is defined in real time-
space as the derivative of the time-dependent exchange-correlation potential
with respect to the time-dependent density. The most common approxima-
tion for fxc is the random phase approximation [45–47] (RPA) with fxc = 0.
An explicit expression for the Kohn–Sham response function derived by Adler
and Wiser [48,49] or alternatively by Pines and Nozieres [50] is given as fol-
lows

χKS(r, r′, ω) = −
∑
n

∑
m

2fn(1− fm)

×
(
ψ∗m(r′)ψn(r′)ψ∗n(r)ψm(r)

εm − εn − ω − iη
+
ψ∗n(r′)ψm(r′)ψ∗m(r)ψn(r)

εm − εn + ω + iη

) (40)

where n and m run over all bands and fn and fm are 1 and 0 for occupied
and unoccupied states. Since Equation 40 is invariant in real space due to
a shift by a lattice vector χ(r, r′, ω) = χ(r + R, r′ + R, ω), the response
function in reciprocal space χ(q,q′, ω) is only non zero when q and q′ differ
by a reciprocal lattice vector G. Using Bloch’s theorem the reciprocal space
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indices (q,q′) are reduced to q and a sum over all k points, where both
are lying in the first Brillouin zone. The Kohn-Sham response function in
reciprocal space is then expressed as

χKS
G,G′(q, ω) = − 1

Ω

∑
nmk

2(fmk+q − fnk)
MG

m,n(k,q)MG′
n,m(k,q)

εmk+q − εnk − ω − iη
(41)

where the matrix elements

MG
m,n(k,q) = 〈ψmk+q|ei(q+G)r|ψnk〉 =

∫
Ω

d3rψ∗mk+q(r)ei(q+G)rψnk(r) (42)

and

MG′

n,m(k,q) = 〈ψnk|e−i(q+G′)r′|ψmk+q〉 =

∫
Ω

d3rψ∗nk(r)e−i(q+G′)rψmk+q(r)

(43)
are integrated over the whole unit cell with volume Ω. The expressions for
the matrix elements within the LAPW method are given in appendix 5.2.

1.4.2 Dielectric function

A general description of the electric field E inside a material with respect to
an external field Eext is given as

E = ε−1Eext (44)

where ε is the dielectric function.
The dielectric function is defined both on the microscopic and macroscopic
level and the corresponding equations are given as follows

e(r, ω) =

∫
d3r′ε−1

mic(r, r
′, ω)Eext(r

′, ω) (45)

E(r, ω) =

∫
d3r′ε−1

mac(r− r′, ω)Eext(r
′, ω) (46)

The microscopic total electric field e(r, ω) shows large oscillations and the
microscopic dielectric function ε−1

mic(r, r
′, ω) depends on r and r′ explicitly.

For the total macroscopic function these large oscillations are more or less
averaged out and the macroscopic dielectric function ε−1

mac(r− r′, ω) depends
only on the difference of r and r′. Analogously to reference [51] we will derive
a connection between the microscopic and macroscopic quantities.
The macroscopic and microscopic total electric fields are coupled by

E(R, ω) =
1

Ω

∫
Ω

d3re(r, ω) (47)
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where the integration is carried out over the unit cell with volume Ω. We
note that ER,ω depends on the lattice vector R. By Fourier transforming the
right hand side of equation 47 we arrive to the following equation

E(R, ω) =
∑
G

∫
BZ

d3q

(2π)3
e(q + G, ω)

1

Ω

∫
Ω

d3rei(q+G)r (48)

where the first integration is carried out in the first Brillouin zone. Since we
are mainly interested in external fields with a wavelength much larger than
the atomic distances (e.g. visible light), q << G and eiqr can be moved in
front of the integral over the unit cell volume. The sum and the integration
over G is then averaged out and equation 48 can be approximated as

E(R, ω) =
∑
G

∫
BZ

d3q

(2π)3
e(q+G, ω)

1

Ω
eiqr

∫
Ω

d3reiGr =

∫
BZ

d3q

(2π)3
eiqre(q, ω).

(49)
The Fourier transform of E(R, ω) is given as follows

E(R, ω) =
∑
G

∫
BZ

d3q

(2π)3
ei(q+G)rE(q, ω). (50)

This looks very similar to equation 49 and by comparing the two equations
the following relationship is established between the macroscopic and micro-
scopic total electric field

E(q + G, ω) = e(q, ω)δG,0. (51)

Since
E(q, ω) = ε−1

mac(q, ω)Eext(q, ω) (52)
the following relationship is given for G = 0

E(q, ω) = e(q, ω) =
∑
G′

ε−1
mic,0G′(q, ω)δG′,0Eext(q, ω) = ε−1

mic,00Eext(q, ω).

(53)
By comparing equations 52 and 53 the connection between the macroscopic
and microscopic dielectric constant is given as follows

εmac(q, ω) =
(
ε−1
mic,00(q, ω)

)−1
. (54)

Since the calculation of the inverse of εmic,00 with respect to G,G′ is often
very costly, it is common to approximate the macroscopic dielectric function
by the head(first element) of the microscopic dielectric function

εmac(q, ω) = εmic,00(q, ω). (55)

This assumption is known as "neglect of local fields" (NLF) and is in principle
only valid for materials where there are no rapid oscillations due to strongly
varying external fields like e.g. for the homogeneous electron gas.
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1.4.3 Calculation of the dielectric function

For a homogeneous material a longitudinal electric field, which is parallel to
the wave vector q, induces only a longitudinal response of the system and
a transverse electric field induces only a transversal response. For homoge-
neous materials the response to a longitudinal electric field results in both
a transversal and a longitudinal current. The same is valid for a transverse
electric field. We are mainly interested in the response of the system to an
external transversal wave, e.g. light. In references [52,53] it has been shown
that for q → 0 the transversal and longitudinal dielectric functions become
the same. Therefore we will only discuss the longitudinal dielectric function.
The longitudinal microscopic dielectric function (see derivation in reference [51])
is given as follows

εmic,GG′(q, ω) = δG,G′ − vG,G′(q)PG,G′(q, ω) (56)

where
vG,G′(q) =

4πe2

|q + G||q + G′|
(57)

is the bare Coulomb potential and

PG,G′(q, ω) =
δρ(q + G, ω)

δvtot(q + G, ω)
(58)

is the screened response function which describes the response of the den-
sity to the total potential. Since there is no exact expression known for
PG,G′(q, ω) the most common approximation is to replace PG,G′(q, ω) by the
Kohn-Sham response function χKS

G,G′(q, ω) as defined in equation 41 which is
equivalent to the RPA

εKS
mic,GG′(q, ω) = εRPA

mic,GG′(q, ω) = δG,G′ − vG,G′(q)χKS
G,G′(q, ω). (59)

The head (G,G′ = 0) and wings (G = 0) of the resulting matrix are singular
if G + q = 0 and G′ + q = 0. The singularities are treated within k ·p
perturbation theory (see below).
In the case of the macroscopic dielectric function we are interested in the
long-wavelength limit which means vanishing q in reciprocal space

εKS
mac(q, ω) = limq→0εmic,00(q, ω) = 1− 4πe2

q2
χKS

0,0(q, ω). (60)

For vanishing q and G, using k·p perturbation theory, the matrix element
M0

m,n(k,q) in equation 42 is approximated as

M0
m,n(k, 0) = δm,n + (1− δm,n)

〈ψnk|p̂|ψmk〉q
εn(k)− εm(k)

. (61)
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where p̂ denotes the momentum operator. The matrix element M0
n,m(k,q)

is derived analogously. Using the long-wavelength matrix elements in equa-
tion 60 finally leads to following expression

εKS
mac(q→ 0, ω) = 1− 4πe2

Ω

∑
nmk

〈ψnk|p̂|ψmk〉〈ψmk|p̂|ψnk〉
(εm(k)− εn(k)− ω)(εm(k)− εn(k))2

. (62)

It should be noted that the Coulomb singularity from equation 60 is success-
fully removed in equation 62. Using the identity

Im
1

εm(k)− εn(k)− ω − iδ
= −iπδ (εm(k)− εn(k)− ω) (63)

the imaginary part of the macroscopic dielectric function ImεKS
mac , which is

directly proportional to the absorption spectrum, is written as follows

ImεKS
mac(q→ 0, ω) =

16π2

Ωω2

∑
nmk

〈ψnk|p̂|ψmk〉〈ψmk|p̂|ψnk〉δ (εm(k)− εn(k)− ω) .

(64)
The macroscopic dielectric function is a 3 × 3 tensor on account of the mo-
mentum matrix elements.

1.5 Adiabatic connection fluctuation dissipation theo-
rem

In this chapter we will introduce the adiabatic connection fluctuation dissi-
pation theorem [54–56] (ACDFT), which gives us a method to calculate the
correlation energy of a system by the knowledge of the response of the system
to an external perturbation. This method relies on two theorems, namely the
adiabatic connection theorem and the fluctuation dissipation theorem that
are needed for the derivation of the formulas for the correlation energy.

1.5.1 Adiabatic connection

We define the many-body Hamiltonian of our interacting system as

Ĥ(λ) = T̂ + V̂ (λ) + λV̂ee (65)

with
V̂ee =

∑
i<j

e2

|ri − rj|
(66)

where the coupling constant λ allows us to determine the strength of the
electron-electron interaction of the many-body system. We restrict ourselves
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to systems where the ground state wave-function is non-degenerate and V̂ (λ)
is determined such that for each λ we get the same ground-state density as
for the fully interacting system.
For λ = 0 we get the Kohn–Sham system with the Hamiltonian Ĥ(0) and
wave function ψ(0)

Eλ=0 = 〈ψ(0)|Ĥ(0)|ψ(0)〉 = 〈ψ(0)|T̂ + V̂ (0)|ψ(0)〉 = Ts + EH + Eext + Exc.
(67)

For λ = 1, Ĥ(1) is the Hamiltonian of the fully interacting system

Eλ=1 = 〈ψ(1)|Ĥ(1)|ψ(1)〉 = 〈ψ(1)|T̂ + V̂ee|ψ(1)〉+ Eext. (68)

By combining equations 67 and 68 we arrive to the following equation

Eλ=1 = Eλ=0 +

1∫
0

dEλ
dλ

. (69)

Using the Hellmann–Feynman theorem the integrand of the coupling constant
integral is rewritten as

dEλ
dλ

= 〈ψλ|
∂Ĥ(λ)

∂λ
|ψλ〉 = 〈ψλ|V̂ee|ψλ〉 (70)

and the total energy at full interaction is written as

Eλ=1 = Eλ=0 +

1∫
0

〈ψλ|V̂ee|ψλ〉dλ. (71)

This is the adiabatic connection formula which connects the total energy of
the Kohn–Sham system to the total energy of the fully interacting system.

1.5.2 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem [57] in general states that the response
of a system to a small external perturbation is the same as its response to
a spontaneous fluctuation. Applying it to DFT, the fluctuation is a fluctu-
ation of the electron density and the perturbation is a small change in the
external potential. The response of the system is then described by the linear
response function χ as introduced in section 1.4.1.
A detailed derivation of the fluctuation-dissipation theorem is given in ref-
erences [58] and [59]. In the following we will only show how to get an
expression for the correlation energy following closely the references above.
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The exchange-correlation energy within the fluctuation-dissipation theorem
is expressed as

Exc = −e
2

2

1∫
0

dλ

∫
d3rd3r′

1

|r− r′|

ρ(r)δ(r− r′) +
1

π

∞∫
0

dωχλ(r, r′, iω)


(72)

where χλ is the response function at imaginary frequencies iω of a system
where the electron-electron interaction is scaled via the coupling constant
λ (see chapter 1.5.1). Considering the non-interacting case λ = 0 the inte-
gration over λ can be omitted and χλ becomes the response function of the
Kohn–Sham system χλ = χKS

EKS
xc = −e

2

2

∫
d3rd3r′

1

|r− r′|

ρ(r)δ(r− r′) +
1

π

∞∫
0

dωχKS(r, r′, iω)

 .

(73)
After explicitly writing the expression for χKS(r, r′, iω) and after further sim-
plifications the second integrand in equation 73 can be reformulated as

− e2

2

∫
d3rd3r′

1

|r− r′|
1

π

∞∫
0

dωχKS(r, r′, iω)

=
e2

2

occ∑
n

empty∑
m

2

∫
d3rd3r′

ψ∗m(r′)ψn(r′)ψ∗n(r)ψm(r)

|r− r′|

∞∫
0

dω
2ωnm

ω2
nm + ω

=
e2

2

occ∑
n

empty∑
m

2

∫
d3rd3r′

ψ∗m(r′)ψn(r′)ψ∗n(r)ψm(r)

|r− r′|

(74)

where indices n and m run over occupied and empty states, respectively. The
first integrand in equation 73 is rewritten as

−e
2

2

∫
d3rd3r′

ρ(r)δ(r− r′)

|r− r′|
= −e

2

2

occ∑
n

all∑
m

2

∫
d3rd3r′

ψ∗m(r′)ψn(r′)ψ∗n(r)ψm(r)

|r− r′|
(75)

where the following relations have been used

δ(r− r′) =
all∑
m

ψ∗m(r′)ψm(r) ρ(r) =
occ∑
n

2ψ∗n(r)ψn(r). (76)
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It should be noted that m runs over all bands. Inserting equations 74 and 75
into equation 73 leads to an expression for the Kohn–Sham exchange energy

EKS
x = −e

2

2

occ∑
n

occ∑
m

2

∫
d3rd3r′

ψ∗m(r′)ψn(r′)ψ∗n(r)ψm(r)

|r− r′|
. (77)

Combining equations 72, 73 and 77 the correlation energy within the ACFDT
in real space is written as

Ec = −
1∫

0

dλ

∫
d3rd3r′

e2

|r− r′|

∞∫
0

(
χλ(r, r′, iω)− χKS(r, r′, iω)

)
. (78)

and in reciprocal space as

Ec = −
1∫

0

dλ

∞∫
0

dω

2π

∑
q

∑
G

vG,G′(q)
(
χλG,G′(q, iω)− χKS

G,G′(q, iω)
)

(79)

where the bare Coulomb interaction is given as

vG,G′(q) =
4πe2

|q + G|2
δG,G′ . (80)

1.5.3 Total energies within the RPA

The correlation energy from equation 79 is in principle exact as long as
the response function of the interacting system χλ is known. The response
function within the RPA is related to the response function of the Kohn–
Sham system via the Dyson equation

χλ,RPA
G,G′ (q, iω) =

∑
G′′

(
1− λχKS

G,G′′(q, iω)vG,G′′(q)
)−1

χKS
G′′,G′(q, iω). (81)

By defining the trace [60]

Tr{vχλ,RPA} =
∑
q

∑
G,G′

vG,G′χλ,RPA
G′,G (82)

and using the relationship [60]

Tr{vχλ,RPA} = − ∂

∂λ
Tr{ln[1− λχKSv]} (83)
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the λ integration in equation 79 is avoided and the RPA correlation energy
is given as follows

ERPA
c =

∞∫
0

dω

2π
Tr{ln[1− χKSv] + vχKS}

=

∞∫
0

dω

2π

∑
q

∑
G,G′

{
ln[1− χKS

G,G′(q, ω)vG,G′(q)] + vG,G′(q)χKS
G,G′(q, ω)

}
.

(84)

The trace of the logarithm of the matrix 1− χKSv is easily calculated using
the following relationship [61,62]

Tr{ln[A]} = ln[det{A}]. (85)

The frequency integration is usually carried out using a Gauss-Legendre in-
tegration scheme (see appendix 5.3).
Finally the total energy within the ACFDT using the RPA is given as the
sum of the Hartree–Fock energy evaluated at the Kohn–Sham wave functions
plus the correlation energy as given in equation 84

Etot = EHF[ψKS] + ERPA
c [χKS]. (86)

1.6 GWA

1.6.1 Green’s function

Before we discuss the GW approximation [63, 64] (GWA) we have to define
the one-body Green’s function G(x,x′, t, t′) of an interacting system which
is the fundamental quantity needed in perturbation theory

G(x,x′, t, t′) = −i〈ψ|T[ψ̂(x, t)ψ̂+(x′, t′)]|ψ〉 (87)

where x describes the spatial and spin coordinates x = (r, s). T is the
time-ordering operator and ψ̂(x, t), ψ̂+(x′, t′) are annihilation and creation
operators in the Heisenberg picture for the Hamiltonian of the interacting
system Ĥ in second quantization [65]

Ĥ =

∫
dxψ̂+(x, t)h0ψ̂(x, t)

+
1

2

∫
dxdx′

1

|r− r′|
ψ̂+(x, t)ψ̂+(x′, t′)h0ψ̂(x′, t′)h0ψ̂(x, t).

(88)

The Green’s function describes the probability of finding and electron at x
when another electron is added to the system at x′. In other words one can
calculate the energies needed to add or remove an electron from the system.
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1.7 Quasi-particle equation

The Green’s function for a non-interacting system is in frequency space de-
fined as

G0(x,x′, ω) = (ω −H0(x))−1 (89)

where
H0(x) = −1

2
∇2 + v(x). (90)

The relation between the interacting Green’s function and the non-interacting
Green’s function is given as follows

G = G0 +G0ΣxcG. (91)

where all many-body effects describing exchange and correlation are included
within the exchange-correlation self-energy operator Σxc. Equation 91 is
known as the Dyson equation [66] for the Green’s function.
The single-particle excitation energies of a many-body system are given by
the poles of the Green’s function of the interacting system. Since the elec-
tron removal or addition is screened by the other electrons we are referring
to quasi-particles instead of electrons. The quasi-particle wave functions
ψnk(x, ω) and quasi-particle eigenenergies εnk(ω) are obtained as solutions
to the following equation

H0(x)ψnk(x, ω) +

∫
dx′Σxc(x,x

′, ω)ψnk(x′, ω) = εnk(ω)ψnk(x, ω). (92)

Equation 92 is usually replaced by the quasi-particle equation

H0(x)ψnk(x) +

∫
dx′Σxc(x,x

′, εnk)ψnk(x′) = εnkψnk(x). (93)

where the quasi-particle energies are at the poles of the corresponding Green’s
function G(x,x′, ω).

1.7.1 Hedin’s equations

The self-energy operator Σxc itself is a very complex quantity. In 1965
Hedin [67] established a formalism for the calculation of Σxc by relating it to
the dynamically screened Coulomb interaction

W = ε−1v (94)

where ε is the dielectric function and v is the bare coulomb potential. Since
the derivation of Hedin’s equations is quite lengthy we will refer the reader to
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references [67,68] for a detailed derivation. The final expressions for Hedin’s
equations are given as follows

P (12) = −i
∫
d(34)G(13)G(41+)Γ(342) (95)

W (12) = v(12) +

∫
d(34)W (13)P (34)v(42) (96)

Σ(12) = i

∫
d(34)G(14+)W (13)Γ(432) (97)

Γ(123) = δ(12)δ(13) +

∫
d(4567)

∂Σ(12)

∂G(45)
G(46)G(75)Γ(673) (98)

G(12) = G0(12) +

∫
d(34)G0(13)Σ(34)G(42) (99)

where the numbers in parenthesis denote the spatial and spin coordinates and
the corresponding time (n = xn, tn). P is the irreducible polarizability or
screened response function (see chapter 1.4.3) and Γ is the so called vertex
function. These equations can be solved self-consistently starting with an
initial Green’s function G0 and following the cycle given in figure 1.

Figure 1: Schematic representation of Hedin’s equations taken from refer-
ence [69].

1.7.2 GW approximation

Hedin’s equations are in principle exact but highly complicated and impossi-
ble to solve exactly even for small systems. The most common approximation
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is the GW approximation (GWA) which is given by the zero-order approxi-
mation for the vertex function

Γ(123) = δ(12)δ(13). (100)

Consequently the self-energy operator becomes the product of a Green’s func-
tion and the screened Coulomb interaction

Σ(12) = iG(12+)W (21) (101)

hence the name "GW" approximation. Since the vertex function in the GWA
consists only of two delta functions the irreducible polarizability becomes the
product of two Greens’ functions

P (12) = −iG(12)G(21+) (102)

which is equal to the RPA.
As mentioned above the GWA is in principle calculated self-consistently, but
since the Kohn–Sham wave functions are often good zeroth-order approxi-
mations to the quasi-particle wave functions, the quasi-particle energies εQP

nk

are calculated as first-order corrections to the Kohn–Sham eigenvalues εKS
nk ,

which is known as G0W0 method. The quasi-particle energies are then given
as follows

εQP
nk = εKS

nk + Znk(εKS
nk )〈ψKS

nk |Σxc(ε
KS
nk )− V KS

xc |ψKS
nk 〉 (103)

with the renormalization factor

Znk(εKS
nk ) =

(
1− Re[〈ψKS

nk |
(
∂Σxc(ω)

∂ω

)
ω=εKS

nk

|ψKS
nk 〉]

)−1

. (104)

The Green’s functions for the fully interacting system are replaced by the
non-interacting Green’s functions G0 from the Kohn–Sham calculations

G0(r, r′, ω) =
∑
nk

ψKS
nk (r)ψKS∗

nk (r′)

ω − εKS
nk − iηsgn(εF − εKS

nk )
(105)

where η is a small positive number and εF is the Fermi energy. W0(r, r′, ω)
is given as follows

W0(r, r′, ω) =

∫
ε−1(r, r′′, ω)v(r, r′)dr′′ (106)
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where the dielectric function is obtained using equation 59. The self-energy
operator is usually decomposed into two terms for convenience

Σ(r, r′, ω) = Σx(r, r′) + Σc(r, r′, ω) (107)

The exchange term Σx is given by the Hartree–Fock potential

Σx(r, r′) = i

∫
G0(r, r′, ω′)v(r, r′)dω′ = −

∑
nk

fnkψnk(r)v(r, r′)ψ∗nk(r′)

(108)
where fnk denotes the occupation number of the state nk. The correlation
term Σc is given as

Σc(r, r′, ω) = i

∫
G0(r, r′, ω + ω′) (W0(r, r′, ω′)− v(r, r′)) dω′. (109)

In many cases it has been proven that the quasi-particle energies can be fur-
ther improved by introducing partial self-consistency where only the eigen-
values εnk in equation 105 are replaced by the newly obtained quasi-particle
energies but the dynamically screened Coulomb interaction W is kept the
same [70]. This method is known as GW0 or energy-only GW method.
It should be noted that fully self-consistent calculations of the GW are avail-
able [71–75], but since the calculationW is very costly, only the GW0 is used
throughout this work.

1.8 Electron-hole interactions

In the previous chapter we discussed excitations where an electron is added
to (N → N +1) or removed from (N → N−1) the system, which are impor-
tant for photo-electron emission and inverse photo-emission spectroscopy. In
this chapter we discuss electron-hole excitations where the total number of
electrons is not changed (|N, 0〉 → |N,S〉) as e.g. in absorption spectroscopy.

1.8.1 Bethe–Salpeter equation

The electron-hole interactions are described by the two-particle Green’s func-
tion and its equation of motion which is also known as Bethe–Salpeter equa-
tion [76] (BSE). The derivation of the BSE is lengthy and the reader is
referred to references [77–79] for a complete description. The BSE for the
correlation function L(12, 1′2′) is given as

L(1, 1′, 2, 2′) = L0(1, 1′, 2, 2′)

+

∫
d(3, 3′, 4, 4′)L0(1, 1′, 3, 3′)K(3, 3′, 4, 4′)L(4, 4′, 2, 2′)

(110)
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where
L0(1, 1′, 2, 2′) = G0(1, 2′)G0(2, 1′) (111)

describes free electron-hole pairs. The numbers in parenthesis comprises
spatial, spin and time variables (i = ri, si, ti). K(3, 3′, 4, 4′) is the so called
electron-hole interaction kernel which is an effective two particle interaction
given as the functional derivative of the self-energy energy operator plus
Hartree potential VH with respect to the single particle Green’s function

K(3, 3′, 4, 4′) =
δ[VH(4)δ4,4′ + Σxc(4, 4

′)]

δG(3, 3′)
. (112)

In the so called screened interaction approximation the self-energy operator
in equation 112 is approximated in the GWA. By additionally assuming that
the derivative of the dynamically screened interaction W with respect to G
is negligible the electron-hole interaction kernel is written as

K(3, 3′, 4, 4′) = −iδ3,3′δ4,4′v3,4 + iδ3,4δ3′,4′W (3, 3′)

= Kx(3, 3′, 4, 4′) +Kd(3, 3′, 4, 4′).
(113)

where Kx and Kd are the so-called exchange and direct term, respectively.
The direct term describes the attractive electron-hole interactions and is re-
sponsible for the formation of bound electron-hole states as e.g. excitons,
whereas the exchange term controls the splitting between states (e.g., split-
ting between singlet and triplet states).
When equation 110 is Fourier transformed to frequency space only the dif-
ference of two time variables is important due to the homogeneity in the
absence of external fields and the number of frequency indices is reduces to
one L(x1,x

′
1,x2,x

′
2, ω), where xi = ri, si. The correlation function is then

written in frequency space as follows

L(x1,x
′
1,x2,x

′
2, ω) = i

∑
S

(
ΞS(x1,x

′
1)Ξ∗S(x′2,x2)

ω − ES
eh

−ΞS(x2,x
′
2)Ξ∗S(x′1,x1)

ω + ES
eh

) (114)

where the index S denotes electron-hole excitations with the corresponding
excitation energies EehS and electron-hole amplitudes

Ξ(xi,x
′
i) = −〈ψ0|ψ̂+(x′i)ψ̂(xi)|ψS〉. (115)

By expressing equation 115 as combinations of occupied and empty bands

Ξ(xi,x
′
i) =

occ∑
v

empty∑
c

ASvcψc(x)ψ∗v(x
′) +BS

vcψv(x)ψ∗c (x
′) (116)
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the BSE can be reformulated into the following eigenvalue equations

(εc − εv)ASvc +
∑
v′c′

KAA
vc,v′c′(E

S
eh)ASv′c′

+
∑
v′c′

KAB
vc,v′c′(E

S
eh)BS

v′c′ = ES
ehA

S
vc

(117)

and
(εc − εv)BS

vc +
∑
v′c′

KBB
vc,v′c′(E

S
eh)BS

v′c′

+
∑
v′c′

KBA
vc,v′c′(E

S
eh)ASv′c′ = −ES

ehB
S
vc.

(118)

It was shown that the contribution of the off diagonal matrix elements KAB

and KBA are almost zero in Si [80–83]. By assuming the same for other
materials we will make the approximation KAB, KBA = 0. The solutions
for the coupling coefficients ASv′c′ and BS

v′c′ lead then to the same excitation
energies but with a negative sign in the case of BS

v′c′ . Knowing this it is
sufficient to solve only the equation for ASv′c′

(εc − εv)ASvc +
∑
v′c′

KAA
vc,v′c′E

S
ehA

S
v′c′ = ES

ehA
S
vc (119)

which is equivalent to the Tamm–Dancoff approximation [65,84].
The exchange and direct term are given as

〈vc|KAA,x
vc,v′c′|v

′c′〉 =

∫
dxdx′ψ∗c (x)ψv(x)v(r, r′)ψc′(x

′)ψ∗v′(x
′) (120)

and
〈vc|KAA,d

vc,v′c′(E
S
eh)|v′c′〉

= i

∫
dxdx′ψ∗c (x)ψc′(x)ψv(x

′)ψ∗v′(x
′)

∫
dωW (r, r′, ω)

×

[
1

ES
eh − ω − (EQP

c′ − E
QP
v )

+
1

ES
eh + ω − (EQP

c − EQP
v )

]
,

(121)

respectively. It should be noted that the exchange term contains the bare
Coulomb interaction v and the direct term uses the screened Coulomb inter-
action W as given in equation 106.
It is common to approximate equation 121 by

〈vc|KAA,d
vc,v′c′(E

S
eh)|v′c′〉 = −

∫
dxdx′ψ∗c (x)ψc′(x)ψv(x

′)ψ∗v′(x
′)W (r, r′, ω = 0)

(122)
where the dynamical properties of W are fully ignored. We will use this
approximation throughout this work.
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1.8.2 Optical spectrum within the BSE

The macroscopic dielectric function in the independent particle picture is
given as (see equation 64)

ImεKS
mac(q→ 0, ω) =

16π2

Ωω2

∑
vck

〈ψvk|p̂|ψck〉〈ψvk|p̂|ψck〉δ (εc(k)− εv(k)− ω) .

(123)
where v and c run over valence and conduction bands, respectively. The
excitations are given as vertical transitions between independent electron and
hole states. The main effect of the BSE on the macroscopic dielectric function
is the coupling of different electron-hole configurations for each excitation
channel S via the coupling coefficient ASvc

〈ψ0|p̂|ψS〉 =
∑
n

∑
m

ASvc〈ψvk|p̂|ψck〉. (124)

The imaginary part of the macroscopic dielectric function using the BSE is
consequently written as

ImεKS
mac(q→ 0, ω)

=
16π2

Ωω2

∑
vck,S

ASvc〈ψvk|p̂|ψck〉〈ψvk|p̂|ψck〉δ (εc(k)− εv(k)− ω) .
(125)

In contrast to equation 123, where all local field effects are neglected, equa-
tion 125 includes local field effects due to the exchange term in the electron-
hole excitations [53]. These effects can in many cases cause a significant
change of the dielectric function.

1.9 Computational details

All DFT calculations throughout this work (if not stated otherwise) were
performed using the full-potential LAPW code WIEN2k [85]. The main
parameters, e.g. atomic radii, Brillouin zone sampling (k mesh) and the
energy cutoff parameter RKmax, which is the product of the largest reciprocal
vector and the smallest atomic radius, are specified in each subsection. All
GW calculations were performed with the FHI-GAP code [86] which has a
direct interface to WIEN2k. This code is currently under development by
Hong Jiang and is freely obtainable from his personal webpage 1.

1http://www.chem.pku.edu.cn/jianghgroup/
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2 The F center in LiF
Wide gap insulators featuring color centers are considered in a growing num-
ber of optical applications [87], such as tunable solid state lasers [88], and
have been investigated extensively [89–96] since the 1950s. Many different
defects can be hosted in these materials, which are introduced by exposure
of the crystal to high energy photons, charged particles, or neutrons. The
most simple color center in the rock-salt structure (or the "prototype") is
the so called F center, where an electron is trapped at a vacant anion site.
The single electron in its ground state is almost spherically localized in the
vacancy with an s-like wave function. The first excited state corresponds
to a p-like wave function, which results in an s→p transition and would be
naively described by a "particle in a box".
In this chapter we will investigate the F center in lithium fluoride, which is
a prototypical wide-band gap insulator with the largest known band gap [97]
of 14.2 eV. Many of the results in this chapter are taken from reference [98]
and will not be cited separately.

2.1 Review of experimental work

The F center (together with other color centers) in LiF has been investigated
in some older works since the early 1960s [99–103] and recently [104–107].
All measurements obtained a 1 to 1.5 eV broad single peak in the absorption
spectrum of the F center. Dawson and Pooley [105], Schwartz et al. [106]
and Baldacchini et al. [107] observed the maximum of the absorption peak
at 5.08 eV (T ≈ 5 K), at 4.98 eV (room temperature) and at 5.07 eV (room
temperature) by optical absorption spectroscopy, respectively.

2.2 Review of theoretical work

Several first-principles theoretical investigations for F centers in LiF have
been published in the last few decades but none of them have results which
are in close agreement with experiment. These calculations are either based
on DFT [108, 109] treating the extended system using periodic boundary
conditions or on quantum-chemical [109–112] methods explicitly treating a
cluster. Previous DFT calculations were based on the LDA suffering from
the well known underestimation of the band gap for insulators [18–20] and
the nonphysical de-localization of localized states. Another problem in pre-
vious calculations is the use of the independent-particle approximation (IPA)
within which the electron-hole interaction is not accounted for in the determi-
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nation of the excitation energies of the F center. Previous quantum-chemical
calculations were performed on the Hartree-Fock level neglecting correlation
effects from the outset. Moreover, limited cluster and basis-set sizes restrict
the accuracy of these calculations.
In the past few years, a few advanced periodic super-cell calculations of
defects have been performed with the methods of ab-initio many-body per-
turbation theory such as GWA and BSE for other materials such as CaF2

(Ref. [113]), SiC (Ref. [114]), BN (Ref. [115]), MgO (Ref. [116]), and diamond
(Ref. [117]). However, to our knowledge, all of these calculations lack a com-
parison to quantum-chemistry calculations of comparable sophistication.

2.3 Modeling the F center

In order to describe an isolated F center properly we have to use supercells
to make the influence of vacancies in neighbouring unit cells on each other
as small as possible. The Bravais matrix of the supercell As (following the
formalism in reference [118]) is given as

As = A · S (126)

where A is the initial Bravais matrix, S is the transformation matrix, which
is either a diagonal matrix describing a primitive supercell or a non-diagonal
matrix describing, e.g. face-centered or body-centered supercells. The result-
ing supercell is defined as a mx ×my ×mz supercell, where mx,my,mz ∈ N,
with atomic positions in crystallographic coordinates

aSi;cx,cy ,cz = S−1 ·

ai +

 cx
cy
cz


cx = 0, 1, . . . ,mx − 1
cy = 0, 1, . . . ,my − 1
cz = 0, 1, . . . ,mz − 1

i = 1, 2, . . . , n

(127)

where a denotes the atomic positions of the conventional unit cell.
Figure 2 shows the two most important supercells for pristine LiF, namely the
primitive 2× 2× 2 supercell with 64 and the body-centered cubic 2× 2× 2
supercell with 32 atoms, used throughout this work (additionally there is
also a face-centered cubic 2× 2× 2 supercell which is not shown in figure 2).
The F center unit cells are obtained by taking the respective supercells and
removing a single fluorine atom resulting in LixFx−1. The unit cells for the F -
center model structures considered throughout this work are given in table 1.
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Table 1: Stoichiometry and symmetry of the F -center model structures used
throughout this work.

Stoichiometry Space Group Space Group Number

Li8F7 Fm3m 225
Li16F15 Im3m 229
Li32F31 Pm3m 221
Li64F63 Fm3m 225

Figure 2: Conventional fcc unit cell and the 2 × 2 × 2 supercell obtained
from the conventional fcc unit cell for LiF. a, b, c: Lattice vectors of the
conventional fcc unit cell. a′, b′, c′: Lattice vectors of the primitive 2× 2× 2
- supercell with 64 atoms. a′′, b′′, c′′: Lattice vectors of the rhombohedral 2×
2× 2 supercell with 32 atoms. Only Li atoms are shown for the conventional
fcc unit cell.

2.4 Pristine LiF

Before we discuss the F center in LiF, we briefly review the results obtained
for pristine LiF. We used atomic radii of 1.57 and 2.02 for Li and F, re-
spectively, and an energy cutoff parameter RKmax of 7. For all calculations
we used the experimental lattice constant of 4.03 Å [97]. k-mesh sizes of
21× 21× 21 for PBE, TB-mBJ and 10× 10× 10 for YS-PBE0, GW0 and all
BSE calculations were used, respectively. Q = 1.0, barcevtol=0.0, emingw=-
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6 Ha, emaxgw=6.0 Ha and 16 frequency points within the frequency integra-
tion have been used in the GW calculations (for details on these parameters
see appendix 5.5.1 and reference [86]). 6 Bohr−1 and a value of 5 were used
for the largest reciprocal vector Gmax in the plane wave expansion of the ma-
trix elements within the calculation of the microscopic dielectric function and
lmmax, which the largest quantum number of the l and m combinations used
in the Rayleigh expansion of the plane waves and the wave functions within
the muffin-tin spheres (see equations 149 and 150), within the BSE calcula-
tions, respectively. 10 Ryd has been used for the cutoff of the conduction
bands in the calculation of the microscopic dielectric function, which is used
in the screening of the direct term. Due to the very strong localization of the
F center it is sufficient to only consider the s-like valence band and the first
three p-like conduction bands of the F center in the BSE Hamiltonian. A
cutoff of 10 Ryd for the largest conduction band was used in the calculation of
the microscopic dielectric matrix within the GW and BSE calculations. The
calculated band gaps of LiF using different calculational methods are given
in figure 3. As expected PBE and HF strongly underestimate and overesti-
mate the band gap by several eV, respectively. Since the YS-PBE0 potential
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Figure 3: Band gaps for pristine LiF obtained with different calculational
methods. Red dotted line: Experimental band gap from reference [97].
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uses 25 percent of exact exchange (or HF exchange), it gives, due to an error
cancellation of PBE and HF, slightly improved band gaps compared to PBE,
but is still strongly underestimating the experimental gap. Both GW and
TB-mBJ give results which are in very good agreement with the experiment.
We used two different parametrizations for TB-mBJ labelled according to the
year they were published (TB-mBJ09 [26] and TB-mBJ11 [28]). The calcu-
lated band gaps using these methods with respect to the experimental gaps
for many alkali halides are given in figure 4. TB-mBJ09 is parametrized for a

Figure 4: Calculated band gaps vs. experimental gaps for all alkali halides.
All calculations were performed using the experimental lattice constants from
reference [119].

large number of compounds with strongly varying band gaps. Since the band
gap of LiF is more or less an extremum on the list of considered compounds,
a broad range parametrization is not accurate enough to give accurate agree-
ment with experiment. The parameters of TB-mBJ11 are mainly obtained
for high band gap insulators, hence the excellent agreement with experiment.
In the remainder of this work, we will omit the discussion of TB-mBJ09 and
refer to TB-mBJ11 as TB-mBJ. Since both the G0W0 and the GW0 cor-
rections are applied perturbatively, the resulting band gaps strongly depend
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Figure 5: Imaginary part of the macroscopic dielectric function (ε2) of pristine
LiF. The experimental absorption spectrum is taken from reference [97].

on the underlying wave functions. Applying these corrections to TB-mBJ
leaves the band gap more or less unchanged. This would naively indicate
that TB-mBJ describes the wave function of LiF quite well. However if we
include electron-hole interactions via BSE calculations and take a look at
the imaginary part of the macroscopic dielectric function ε2, which is di-
rectly proportional to the absorption energy, as given in figure 5 we see that
all methods fail to describe the position of the main peak (the excitonic ef-
fect of approximately 3 eV for GW and TB-mBJ seems to be too large and
shifts the strong first peak too much down in energy). But if we shift the
position of the main peak to the one by the experiment (see figure 6) we see
that the structure of the absorption spectrum is reproduced quite well for all
methods.

41



Figure 6: Imaginary part of the macroscopic dielectric function (ε2) of pristine
LiF. The position of the main peak in the calculated spectra is shifted to the
experimental position.
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2.5 F -center relaxations and formation energies

The supercells for LixFx−1 were constructed from the conventional unit cells
using the experimental lattice constant of 4.03 Å [97]. All degrees of freedom
within the space group of each structure were considered in the structural
relaxations. All structure relaxations were calculated using the PBE func-
tional.
The relaxation energy ∆Erel is defined as the difference of the total energy
of the relaxed structure Er(LixFx−1) and the total energy of the unrelaxed
structure Eu(LixFx−1)

∆Erel = Er(LixFx−1)− Eu(LixFx−1). (128)

The F -center formation energy ∆Ereact for the reaction

LixFx → LixFx−1 + F (129)

is given as
∆Ereact = E(F) + E(LixFx−1)− E(LixFx) (130)

where E(LixFx) is the total energy of the supercell of pristine lithium fluoride.
The total energy of the single fluorine atom E(F) was calculated by putting
a fluorine atom in the center of an empty lattice with a lattice constant
that is large enough to minimize the interaction between neighbouring unit
cells. A lattice constant of 10.175 Å and a single k point was sufficient for
the calculations. The calculated relaxations of the nearest-neighbour lithium
and fluorine atoms in for Li32F31 in the [100] plane are plotted in figure 7.
It is evident that the relaxations of the next neighbour F and the outer
Li atoms (labelled with the numbers 2 and 3 in figure 7) are more or less
negligible and the main contribution to the relaxation energy comes from
the nearest neighbour Li atoms (the second largest contribution is from a
slight inward relaxation of the second nearest neighbour Li atoms in the
[110] plane which is not shown in figure 7). But all these relaxations are
negligible compared to the size of lattice constant (less than 0.05 Å for the
nearest neighbour Li atoms). The relaxation energies and vacancy formation
energies with respect to the number of atoms in the unit cell are given in
table 2. The relaxation and vacancy energies (second and fifth column in
table 2, respectively) are already converged for Li16F15 and suggest that this
unit cell size is big enough to model an F center. Although these numbers
don’t give direct information on how vacancies in neighbouring unit cells are
influencing each other, we will show in the next chapter that the influence on
the band structure of neighbouring vacancies is almost negligible in Li16F15.
Therefore we use Li16F15 as the starting point for the more time consuming
calculations within this work.
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Table 2: Lattice relaxation parameters and relaxation energies as function of
unit cell (UC) size. Er: relaxation energies, dLi, dF : relaxation distances
away from the vacancy of nearest-neighbour lithium and fluorine atoms,
Ereact: removal energies for a single fluorine atom without structural re-
laxations. All energies in eV, distances in Å.

UC Er dLi dF Ereact
Li8F7 −0.010 0.02 0.00 8.209
Li16F15 −0.014 0.04 0.01 8.208
Li32F31 −0.015 0.04 0.01 8.213
Li64F63 −0.014 0.04 0.01 8.221

Figure 7: Structural relaxations for Li32F31 in the [100] plane. Arrows in-
dicate the relative extent of relaxation. 1: Next neighbour Li. 2: Next
neighbour F. 3: Second next neighbour Li.

44



2.6 Electronic (band) structure of the F -center

All results presented in this chapter were calculated using the Li16F15 and
Li32F31 cells. For all band structures in this chapter the zero value of the
energy axis is shifted to the fermi energy. An RKmax of 7 and a k mesh of
3× 3× 3 and 6× 6× 6 for Li16F15 and Li32F31, respectively, have been used
in the calculations. The following parameters have been used for the GW
calculations: Q = 0.4, barcevtol=0.6, emingw=-3 Ryd, emaxgw=5.0 Ryd
and 16 frequency points for the frequency integration (for details on these
parameters see appendix 5.5.1 and reference [86]).
The band structure of Li16F15 for both spins is given in figure 8. The zero
point of the ordinate is arbitrarily set to the highest occupied band of pristine
lithium fluoride. As expected, PBE strongly underestimates the experimen-
tal band-gap (by approximately 5 eV). The occupied valence band (or spin-up
band) of the F -center electron is located in the band gap of lithium fluoride
at 5.8 eV in figure 8. The corresponding (unoccupied) band for the other
spin (spin-down band) is located slightly above this band (at 7.5 eV). Since
the spectroscopic transition rules (see "Fermi’s golden rule" [120]) forbid spin
flips in excitation processes we are going to omit the discussion of spin-down
bands in the remainder of this work.
Not only the band gap (see chapter 2.4 for pristine lithium fluoride) but

also the position, dispersion and form of the F -center bands depends strongly
on the underlying calculational method. Figure 9 shows the band gaps for
calculations involving PBE, YS-PBE0, TB-mBJ and GW0. At first glance
we can see that only TB-mBJ and GW0 yield experimental band gaps in
good quality. Since the F -center electron is localized within the vacancy it
can be "naively" described by a particle in a box with an s-like character in
the ground state, given as a single flat band within the band gap, and with a
p-like character in the first excited state, appearing as 3 (degenerate) bands.
All methods position the valence band of the F center inside the gap but at
different energies. Since the measurement of the experimental band struc-
ture via inverse photoemission spectroscopy for large gap insulators such as
lithium fluoride is not available, we cannot say definitely where the exact
position of this band is. The F -center valence band shows very little dis-
persion for all methods, whereby TB-mBJ has the smallest dispersion. The
big difference for the various calculational methods lies in the appearance of
the first F -center conduction bands with p-like character at the lower edge
of the conduction bands of pristine lithium fluoride, which are only clearly
visible for TB-mBJ. These bands are slightly more energetically delocalized
than the valence band, since bands with p-like characteristics are generally
more diffuse than s-like bands. The spacial localization and also the s and
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p-like characteristics of the F -center valence and first conduction bands is
clearly visible from a contour plot for the wave functions shown in figure 10.
By performing a calculation where an empty sphere (with a radius that is
equal to the one of fluorine) is put into the vacancy, given in figure 11, we
can see that the valence and conduction states are purely of s and p charac-
ter, respectively. Going back to the band structures in the case of PBE and
YS-PBE0 the first conduction bands of the F center are shifted up compared
to TB-mBJ and completely dispersed into the conduction bands of pristine
lithium fluoride. By applying GW0 on PBE the dispersion of the F -center
bands is reduced (visible as a 3 fold degenerate state at the Γ point inside
the conduction bands at 15 eV in figure 9), but since GW0@PBE is a pertur-
bative method and strongly depends on the underlying Kohn–Sham orbitals,
it is still not able to correct for all of the delocalization of the bands and
to shift the first F -center conduction bands inside the band gap. In refer-
ence [92] it is predicted that the F -center conduction bands should appear
inside the band gap of pristine lithium fluoride, but it lacks any experimental
measurements to concretely support this prediction. We also believe that a
self-consistent GW calculation (including an update of the wave functions)
can give the accurate position of the p-band relative to the conduction-band
edge.

A comparison of the band structure for Li16F15 and Li32F31 using TB-
mBJ given in figure 12, shows that the influence of vacancies in neighbouring
unit cells on the valence band is only marginally stronger for Li16F15. How-
ever, the conduction bands of the F -center are more delocalized and there
is a visible change when going from Li16F15 to Li32F31. Nevertheless for the
calculation of optical spectra, inclusion of the strong electron-hole interaction
upon excitation from the s to the p state turns out to be more important
than the exact position and dispersion of the p-bands (see in the following
chapter).
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Figure 8: PBE band structure using the Li16F15 cell. Black lines: Spin-up
bands. Red (dotted) lines: Spin-down bands.
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Figure 9: Band structures obtained from PBE, YS-PBE0, TB-mBJ, and
GW0@PBE calculations. The black lines (full) show the band structure for
perfectly crystalline lithium fluoride with Li16F16 chosen as the unit cell. The
red lines (dashed) show the highest occupied valence band and the conduc-
tion bands for the F -center structure (only spin-up) from calculations where
Li16F15 was chosen as the unit cell. The blue line shows the experimental
band gap of 14.2 eV (taken from reference [97]).
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Figure 10: Wave function contour plot within the [100] plane at the Γ point
for the F -center bands in the Li32F31 supercell (only spin-up) using TB-mBJ:
a) occupied s-orbital, b) one of the three degenerate unoccupied p-orbitals.

Figure 11: Density of states (DOS) calculated for Li32F31 calculated with an
empty sphere (with a radius equal to that of fluorine) at the position of the
vacancy. The zero point is set to the Fermi level of pristine lithium fluoride.
TOT: Total DOS. ES TOT: Total DOS within the empty sphere. ES s, ES
p: Partial DOS with s and p-like character within the empty sphere. The
units are in (number of states)/eV/unit cell.
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Figure 12: Band structures obtained from TB-mBJ calculations using the
Li16F15 and Li32F31 unit cells. The black lines (full) show the band structure
for perfectly crystalline lithium fluoride with Li16F16 and Li32F32 chosen as
the unit cells. The red lines (dashed) show the highest occupied valence band
and the conduction bands for the F -center structure (only spin-up).
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2.7 Absorption spectra of the F -center

In the independent-particle approximation (IPA), the position of the F -center
absorption peak would be given by the energy difference between the s and
the p-band. The resulting absorption spectra (which are proportional to
the imaginary parts of the macroscopic dielectric function) are shown in the
upper part of figure 13. These results suggest that the absorption maxima
of PBE and YS-PBE0 are at 4.5 and 5.5 eV, respectively, close to the ex-
perimental absorption maximum of ∼5 eV while TB-mBJ and GW0@PBE
overestimate it by several eV. We emphasize that using the PBE or YS-PBE0
exchange-correlation potential in the IPA seems to reproduce the absorption
maxima in many cases quite well, however, it describes the wrong physics.
The agreement with experiment must be considered as accidental as was
recently also shown for the F center [121] in MgF2. The IPA neglects the
strong Coulomb attraction between the hole in the s state and the electron in
the p state. These excitonic effects, which are taken into account by solving
the Bethe–Salpeter equation, significantly change the structure and position
of the absorption peaks. This effect depends on the degree of localization of
the valence and conduction states and is expected to be large in cases where
those states are strongly localized, for instance layered compounds [122] or
excitation from core levels [123]. The absorption spectrum including the BSE
is shown in the lower part of Fig. 13 for various underlying single-particle
approximations. The following parameters have been used in the BSE cal-
culations: A k mesh of 6 × 6 × 6, RKmax = 7, Gmax = 2 Bohr−1 for the
largest reciprocal vector in the plane wave expansion of the matrix elements
within the calculation of the microscopic dielectric function and lmmax = 2.0,
which is the largest quantum number of the l and m combinations used in
the Rayleigh expansion of the plane waves and the wave functions within
the muffin-tin spheres (see equations 149 and 150). 10 Ryd has been used
for the cutoff of the conduction bands within calculation of the microscopic
dielectric matrix, which is used in the screening of the direct term. Due to
the very strong localization of the F center it is sufficient to only consider
the s-like valence band and the first three p-like conduction bands of the
F center in the BSE Hamiltonian. Addition of more bands will not change
the absorption spectrum significantly. Compared to the measured spectrum,
the PBE and YS-PBE0 spectra clearly underestimate the position of the ab-
sorption peak by about 2.5 eV. This is due to the strong underestimation of
the band gap and thus also of the s→p transition energy. The GW0@PBE
spectrum is blue-shifted with respect to the PBE spectrum by about 3 eV
and thus matches the experimental spectrum quite well. In the independent-
particle approximation, the main absorption peak would be at about 8.0 eV.
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Table 3: Convergence of the excitation energies (in eV) with respect to the
k-mesh size calculated for Li16F15 using different methods.

k mesh PBE YS-PBE0 GW@PBE TB-mBJ
3× 3× 3 2.38 2.37 5.46 5.54
4× 4× 4 2.38 2.38 5.54 5.12
5× 5× 5 2.38 2.38 5.53 5.04
6× 6× 6 2.38 2.38 5.52 5.00

The down-shift to about 5.5 eV is thus due to the very strong electron-hole
attraction between the s and p states which are both localized and thus very
close to each other. The TB-mBJ calculations yield an independent-particle
transition energy even 1.5 eV higher than for GW0@PBE. At the same time,
screening is weaker and thus the electron-hole attraction is stronger such that
the resulting absorption peak is close to the experiment and to the one of
GW0@PBE. The spectrum obtained from TB-mBJ shows a single peak due
to transitions between the discrete s and p states as also present in experi-
ment. All other calculations show a large peak together with several weak
absorption features appearing as tails at higher energies. This additional side
structure is related to the hybridization of the p states of the F center with
the conduction bands of the pristine material. We expect this fine structure
to change (or disappear entirely) upon a fully self-consistent GW-calculation
that would also change and likely reduce the hybridization of the defect states
with the conduction band states. The absorption maximum from TB-mBJ
and the absorption maximum of the first peak from GW0@PBE lie both
within 0.5 eV of the experiment.
Noteworthy is that the excitation energies obtained by the different meth-

ods converge differently with respect to the k-mesh size. It can be seen from
table 3 that for a k mesh of 3× 3× 3 a convergence is already obtained for
PBE while TB-mBJ exhibits a change of 0.5 eV when going from 3×3×3 to
6× 6× 6 k points. This can be ascribed to the strong spatial and energetical
localization of the potential for TB-mBJ, since a strongly localized quantity
in real space is strongly delocalized in reciprocal space and hence it needs a
large k mesh to describe it properly.
The coupling of electronic and nuclear degrees of freedom may lead to a

red shift of the absorption line of the F center with respect to its Franck-
Condon value. The contributions to this shift are extracted by analyzing the
energy surfaces along configuration coordinates of calculations involving an
embedded cluster. The corresponding quantum chemistry calculations were
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carried out by Paul Tiwald2 using the Molcas 7.8 program package [124].
For computational details see appendix 5.4.
By variation of the electronic potential surface along an effective coordinate
(Fig. 14), the relaxation energy of the excited state Erelax is extracted as an
upper bound for the shift ∆Ee−ph of the absorption energy, i.e., the difference
between the Franck-Condon line (“vertical” excitation) and the zero phonon
line (“non-vertical” excitation resulting in lowest possible absorption energy)
is extracted. The zero-phonon line corresponds to the excitation from the
minimum of the ground state to the minimum of the excited state energy (see

Figure 13: Imaginary part of the dielectric function (ε2) scaled to equal peak
height. Top: In the independent-particle approximation (neglecting electron-
hole interactions). Bottom: Results with electron-hole interactions taken
into account by solving the Bethe–Salpeter equation. Li16F15 was chosen as
the unit cell. The dashed line indicates the peak position of experimental
absorption spectra.

2Paul Tiwald, Institute for Theoretical Physics, Vienna University of Technology, Wied-
ner Hauptstraße 8-10, A-1040 Vienna, Austria

53



below) within the multidimensional space used in the geometry relaxations.
The difference between zero-phonon line and Franck-Condon line amounts
to Erelax ∼ 0.5 eV. This is regarded as an upper bound Erelax = ∆Emax

e−ph to
the contribution of electron-phonon coupling to the red-shift of the absorp-
tion line. The real shift will be generally much lower. Another estimate can
be obtained by calculating the overlap of the nuclear wave functions in the
ground and excited states for the different n-phonon lines.
Alternatively, within a polaron model the correction to an electronic energy
level is given by the polaron self-energy induced by virtual excitations of elec-
trons to the conduction bands and their interaction with longitudinal optical
phonons. Accordingly, differences between the polaron self-energies for the
electronic ground and excited state of the color center contributes to the shift
of the absorption line with respect to its Franck-Condon value. Since in alkali
halides electron-phonon coupling is large Feynman’s strong-coupling limit for
the polaron self-energy [125] (in a.u.eV) Epolaron = −(0.106α2 + 2.83)ω can
be applied, where α is the Fröhlich coupling constant [126] and ω is the lon-
gitudinal optical phonon frequency. The shift of the absorption line is then
estimated as ∆E

(Qj)
e−ph = −(0.106α2+2.83)∆ωQj through the largest difference

in vibration frequencies ∆ωQj of the local normal modes Qj involving the six
neighboring Li+ ions between ground and excited state of the color center.
The frequencies were obtained from parabolic fits to configuration coordi-
nate curves. A dominant contribution of ∆ωQ2 ≈ 0.015 eV is found, where
Q2 corresponds to the stretch vibration shown in Fig. 15. Using the Fröhlich
coupling constant of pristine LiF (α = 5.25) yields ∆Ee−ph = 0.09 eV.
In Figure 16 a comparison between the experimental absorption spectrum
[105] at T ≈ 5 K and absorption spectra obtained by the quantum-chemistry
and the solid-state physics approaches (DFT) are presented. The experimen-
tal spectrum is represented by a Gaussian distribution with parameters for
peak position Ep = 5.08 eV and full width at half maximum FWHM=0.61 eV.
This peak position is a blue shift relative to the experimental spectrum at
room temperature [105] by ∆ET ≈ 0.14 eV. All theoretical spectra include
the calculated zero-temperature line width of 0.27 eV (see appendix 5.4.1)
and are shifted towards lower energies by ∆Ee−ph = 0.09 eV due to the influ-
ence of electron-phonon coupling. Overall, the calculated absorption spectra
with peaks at 5.22 eV (CASPT2(ROHF)), 5.42 eV (GW@PBE + BSE) and
4.9 eV (TB-mBJ + BSE) show good agreement with the experimental data
for the F -center absorption spectrum of LiF.
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Figure 14: Schematic picture of the electronic potential energy surfaces of
ground and excited state of the F center as a function of an effective coor-
dinate. Arrows indicate the vertical (Franck-Condon like) transition and the
non-vertical transition to the minimum of the excited state potential energy
surface. The difference ∆Emax

e−ph in energy between these to excitations is an
upper bound for the red shift of the absorption line due to electron-phonon
interactions.

Figure 15: Schematic picture of the stretch vibration of the six Li+ ions
neighbouring the vacancy responsible for the dominant contribution ∆ωQ2 ≈
0.015 eV.
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Figure 16: Experimental [105] (dashed line) and calculated (solid lines) ab-
sorption spectra of the F center in LiF. The experimental spectrum is mea-
sured at T ≈ 5 K and is depicted as a Gaussian function with a peak position
of Ep = 5.08 eV and a full width at half maximum of FWHM= 0.61 eV. Spec-
tra calculated from (post) DFT methods (TB-mBJ + BSE and GW0@PBE
+ BSE) are determined within a Li16F15 unit cell. The quantum chemistry
result is obtained from an CASPT2(ROHF) (CASPT2 with a single ROHF
determinant) calculation in the converged basis set limit of an Li62F62 em-
bedded cluster. All theoretical curves are plotted with a calculated line width
at zero temperature of 0.27 eV (see appendix 5.4.1) and contain a red shifted
due to electron phonon-coupling of ∆Ee−ph = 0.09 eV.
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2.8 Summary and conclusions

The F center is a single electron trapped at a vacant anion site leading to
strong energetical and spatial localization of the electron and to so-called
"excitons", which are bound electron-hole pairs. This part of the thesis fo-
cuses on a quantitative and physically sound description of the structural
and electronic properties of the F center in LiF using state of the art DFT
and post-DFT methods (many-body perturbation theory methods). LiF was
chosen as the host because it has the largest known band gap of 14.2 eV
among the alkali halides and has so the most distinct spatial and energetical
localization of the F -center electron.
The F center was simulated by using supercells, where a single fluorine is
removed from the cell, as the unit cells. For the structural properties the
Li32F31 unit cell proved to be large enough and PBE was used for the treat-
ment of the exchange and correlation of the electron. In the structural re-
laxations the next neighbour Li and F tend to relax away from the F center
but the magnitude of relaxations is more or less negligible.
For the electronic properties the Li16F15 was used. Different calculational
schemes have been employed for the exchange and correlation of the elec-
trons: PBE, TB-mBJ, YS-PBE0 (hybrid-DFT functional) and GW0. PBE
and YS-PBE0 both underestimate the band gap strongly (approximately 3
to 5 eV) and more importantly describe the wrong physics in the absorption
process of the F center. The TB-mBJ and the GW0 both performed equally
good describing the band gap and the band structure of the F center. The
error of the calculated band gaps of 14.5 and 13.6 eV for TB-mBJ and GW0,
respectively, is within less than 5 percent to the experimental band gap of
14.2 eV.
Since DFT and GW0 doesn’t include electron-hole interactions the excitonic
correction were included by solving the Bethe–Salpeter equations of motion
for electron-hole pairs. The corrections turn out to be crucial in the calcu-
lation of band gaps and the neglect of these errors can lead to errors of 50
to 100 percent in the absorption energies and to a completely wrong struc-
ture of the absorption spectrum. Additionally the spectrum can be further
improved by including electron-phonon interactions which. The absorption
peak maxima of 4.9 and 5.42 eV for TB-mBJ and GW0 (including corrections
due to electron-hole and electron-phonon interactions), respectively, are in
very close agreement to the experimental peak maximum of 5.08 eV.
This part of the thesis was done in cooperation with Paul Tiwald 3 who cal-
culated the properties of the F center using embedded clusters and quantum

3Paul Tiwald, Institute for Theoretical Physics, Vienna University of Technology, Wied-
ner Hauptstraße 8-10, A-1040 Vienna, Austria
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chemistry methods. Not only the wave functions but also the absorption spec-
trum with a peak maximum of 5.22 eV using CASPT(ROHF) and a Li62F62

cluster are in excellent agreement to our and the experimental results.
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3 Mollwo-Ivey relation in alkali halides
Mollwo [127] and Ivey [128] studied the relations between the lattice constant
and the absorption energy of different alkali halides with rock-salt structure.
In a first attempt Mollwo estimated the scaling of the absorption energy
with respect to the anion-cation distance a as ≈ 1/a2. Later Ivey improved
this relation by introducing a proportionality constant C and the so-called
Mollwo-Ivey exponent n. The absorption energy Eabs is then given within
the Mollwo-Ivey relation as follows

Eabs = Ca−n. (131)

By applying this relation to a large number of experimental results for the F
center absorption energies of many alkali halides with rock salt structure [105,
129] the parameters of the Mollwo-Ivey relation were determined as C =
17.3± 2.8 eV and n = 1.81± 0.10.

3.1 Review of theoretical work

Some of the early work that contained somewhat oversimplified models such
as a nearly-free electron model by Fröhlich [130] and a rigid box model by
Stöckmann [131, 132] yield exactly a ≈ 1/a2 behaviour. More sophisticated
works are based on a defect electron in a point ion lattice [92]. Using such a
model Wood [133] predicts a Mollwo–Ivey exponent of n ≈ 1.8 in close agree-
ment with experiment by splitting the absorption energy into a potential and
kinetic contribution scaling with 1 = a and 1 = a2, respectively. Small devi-
ations from the Mollwo–Ivey law are explained by so-called ion-size effects,
i.e. the influence of the electronic structure of the ions surrounding the F-
center electron. The probably most elegant explanation is given by Malghani
and Smith [129, 134] who connect via the Vinti sum rule [135], exactly true
only for single-electron systems, different moments of the energy dependent
absorption coefficient with the extent of the wave function, i.e., 〈Ψs|r2|Ψs〉,
where 〈Ψs| denotes the ground state wave function of the defect electron.
By treating the defect states separately from that of the pristine material,
i.e. assuming only two states are involved in the absorption process (s→p
transition), one obtains

Eabs ≈
3~2

2me

1

〈s|r2|s〉
, (132)

with me being the mass of the electron. This behavior is due to a potential
well, where with increasing box size the spatial extent of the wave function
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increases while the level spacing and hence the absorption energy decrease.
However, Smith and coworkers [129,134] as well as all studies based on point-
ion models set out from, according to the results in this work, incorrect as-
sumptions and draw incomplete conclusions. They assume the spatial extent
of the defect wave function to be a continuously increasing function of the
lattice parameter essentially independent of the chemical elements building
up the crystal. More importantly, they conclude that the Madelung potential
is almost solely responsible for forming the potential well the defect electron
is bound to and that the so-called ion-size effects play only a minor role.
With ion-size effects Smith and co-workers refer to exchange effects, i.e. the
Pauli repulsion between the defect electron and the host-crystal ions.

3.2 Calculational methods

The model defect structures for the other alkali-halides were constructed as
described for lithium fluoride in chapter 2.3. M16X15 (where M = Li,Na,K
and X = F,Cl,Br) was used as the unit cell in all calculations. The struc-
ture relaxations were performed using PBE. The electronic properties (band
structures and absorption energies) were calculated with the TB-mBJ poten-
tial. An energy parameter of RKmax = 7 was used with atomic radii of 1.57,
2.04, 2.5 Bohr for Li, Na, K and 2.02, 2.5, 2.6 for F, Cl, Br, respectively. A
k-mesh sampling of 6×6×6 for the real materials and 3×3×3 for stretched
lithium fluoride was chosen, respectively. The electron-hole interactions were
calculated analogously to chapter 2. The results for the quantum chemistry
calculations for the other alkali halides were obtained analogously to lithium
fluoride (see appendix 5.4). All quantum chemistry calculations were carried
out by Paul Tiwald 4.

3.3 Madelung and exchange-correlation potential

Many authors in the past identified the Madelung potential as the physical
reason underlying the Mollwo–Ivey relation. In fig. 17 (a) the Madelung po-
tential in lithium fluoride at the vacancy site, i.e. the origin, within the [001]
crystal plane is plotted. In a large area around the vacancy the Madelung
potential is almost flat, varying only slowly. Along the direction towards the
nearest-neighbor ions, [100] and [010], it decays monotonically without any
barrier that could prevent the defect electron from being attracted by the
Coulomb potential of the positive point charges. Since the second-nearest

4Paul Tiwald, Institute for Theoretical Physics, Vienna University of Technology, Wied-
ner Hauptstraße 8-10, A-1040 Vienna, Austria
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neighbor point ion has a negative charge the Madelung potential is increas-
ing along the [110] direction. In fig. 17 (b) the effective Kohn–Sham (KS)
potential in LiF obtained from periodic DFT calculations is plotted. The
result is quite different from the Madelung potential and features an attrac-
tive potential well. Its depth (and also the thickness of its walls) depends on
the crystal direction and varies between 17 and 25 eV. Qualitatively, the ef-
fective KS-potential resembles the model potential used by Buchenauer and
Fitchen [136] in their analysis of F-center absorption energies under high
pressure. A more detailed picture of the effective KS potential and its com-

Figure 17: Two-dimensional cut through (a) the Madelung potential and (b)
the effective Kohn–Sham potential (obtained from DFT calculations) at the
F-center vacancy site, located at the origin, within the [001] crystal plane.
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ponents in LiF is shown in fig. 18. With a green dashed line we plot a cut
along the [111] crystal direction of the Hartree potential, consisting of the
electrostatic contributions of the nuclei and the self-consistent electron den-
sity. Again the color center is located at the origin. In the defect region it
shows purely repulsive character making the formation of a localized color-
center electron impossible. It is the exchange-correlation potential (dotted
blue line) that is responsible for the formation of an attractive potential
well in the total effective Kohn–Sham potential (solid red line). We spot
exchange as the dominant mechanism for the well formation since we also
observe bound, i.e. well localized, defects in our Hartree–Fock calculations
(see below) which, per definition, only account for exchange.

Figure 18: Cut through the effective Kohn–Sham potential (red solid line)
in the F-center defect region of an LiF crystal. The red line is the effec-
tive Kohn–Sham potential. Green (dashed) and blue (dotted) lines are the
Hartree and the exchange-correlation potential, respectively. All potentials
obtained from a DFT calculation.
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3.4 Square well potential model

The effective Kohn–Sham potential in fig. 17 (b) resembles a spherical well
potential. Like a square well potential (or naively a "particle in a box"-like
model) , it leads to an exact inverse square dependence of the F-center ab-
sorption energy on its characteristic length scale, the radius of the spherical
well, and a linear increase of the spatial extent of the wave function. Such
kind of growth is simulated by what is called in the following as stretched
LiF. It means the absorption energy of the F-center in (unrelaxed) lithium
fluoride at an arbitrary lattice constant or, to be more precise, at the lattice
constants of other alkali-halide crystals, is calculated. This approach has the
advantage that of “turning off”, or “freezing”, the ion-size effects on the ab-
sorption energy and the Mollwo–Ivey relation since for all lattice parameters
the same ion species are used. The F-center absorption energies for stretched
LiF are shown in fig. 19. We find smoothly varying curves which, at least for
larger lattice constants, almost perfectly match the experiment. The calcu-
lated Mollwo–Ivey exponents are nQC = 2.04 and nDFT+BSE = 1.91 obtained
from quantum chemistry and (post-)DFT calculations, respectively, almost
perfectly matching the value 2 predicted by the spherical potential well. In
the fitting procedure of the quantum chemistry results the data point of LiF
at its natural lattice constant is left out due to the convergence behavior of
stretched LiF. Quantum chemistry results for LiF at a lattice constant of
already NaF seem to be essentially converged with respect to basis set and
cluster size for the cc-pvtz basis set and a Li38F18 cluster. This is not the
case for real LiF. When adding the converged value [98] for unrelaxed LiF,
indicated by the green diamond, it almost perfectly lies on the Mollwo–Ivey
line with nQC = 2.04. As a measure for the spatial extent of the defect wave
function in the ground state |s〉 the position of its first radial node along the
[100] direction r0 is used and, like Malghani and Smith [129], the root-mean
square (rms) radius 〈s|r2|s〉1/2. The radial node r0 serves as a directional
measure towards the nearest neighbor cation while the rms radius is a spher-
ically integrated measure. Both quantities are extracted from ROHF defect
orbitals of the F-center in lithium fluoride for different lattice constants and
are depicted in figure 20 together with cuts through the |s〉 ROHF wave
function along the [100] direction, the latter cut off at r0 for clarity. r0 and
the rms-radii of the F-center ground state wave function in stretched LiF
increase perfectly linear with the lattice distance. A linear increase of the
rms radii was also found by Malghani and Smith [129] by applying the Vinti
sum rule to experimental absorption spectra. Of course, their analysis was
done for the F-center in real materials, not on stretched LiF. They concluded
that ion-size effects have only a negligible influence on the spatial extent of
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Figure 19: F-center absorption energies of “stretched” LiF as a function of the
anion-cation distance. The solid red line shows quantum chemistry results,
the dashed blue line are results from DFT+BSE calculations. The green
cross is the converged absorption energy of unrelaxed LiF. Dotted red and
blue lines are fits of equation 131 to quantum chemistry and DFT results,
respectively. Fits yield a Mollwo–Ivey exponents of nQC = 2.04 and nDFT =
1.91. Black dots are experimental data.

|s〉 otherwise the rms values would show a stronger dependence on the ionic
species. If this conclusion by Malghani and Smith is true then the spatial
extent of the ground state F-center wave function in real materials should
show a similar behaviour as the one in stretched LiF shown in figure 20.

64



Figure 20: Cut through the ROHF orbital |s〉 of the F-center electron in its
ground state in “stretched” LiF crystals with lattice constants corresponding
to LiF, NaF, KF, LiCl, NaCl, and KCl. For clarity the wave functions are
plotted only up to their first radial node. The inset shows the position of
the first radial node and the root-mean square radius of |s〉 as a function of
anion-cation distance.
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3.5 Ion-size effects

Figure 21 shows the effective Kohn–Sham potential wells the defect electron
is bound to for the first three alkali fluorides and chlorides. Please note that
they are individually shifted in energy for clarity. The KS potentials clearly
separates into two groups with respect to the anion species. Within the group
of fluoride (solid lines) and chloride crystals (dashed lines), respectively, all
potential wells, independent of the lattice parameter, have a similar depth
and similar slope of the walls. This separation also becomes manifest in the
Kohn-Sham energies of the s-type defect orbitals indicated by the horizontal
lines in the potential wells in figure 21. The obviously non-continuous change
of the depth and the slopes of the KS potential wells suggests that the idea of
continuously increasing defect wave functions by Malghani and Smith [129] is
incomplete. A similar result in the spatial extent of the F-center ground state
ROHF orbital obtained in the quantum chemistry calculations is found. The
first radial node in the [100] direction r0, the rms radii 〈s|r2|s〉1/2 as well as
cuts through the s-type defect orbitals are plotted in fig. 22 for the F-center
in the different alkali halides. For clarity we cut off the orbitals after their
first radial node. Depending on the lattice constant 75 to 90% of the electron
are localized within a sphere around the defect with a radius r0. The defect
orbitals clearly split into two groups according to the anion species, too since
the radial nodes for a given anion species almost coincide. We find for fluo-
rides a radial node at rF0 ≈ 3.4 Bohr and for chlorides rCl0 ≈ 4.3 Bohr. In our
paper [98] on the F-center in LiF we determine a value for the displacement
of the Li cations due to relaxation which is a little below 0.1. Since this
displacement is rather small compared to the difference of the radial nodes
the separation of fluoride and chloride defect orbitals will not be lifted by
relaxing the crystal structure around the defect. In reference [98] we also
show a negligible difference between HF defect orbitals and orbitals derived
from methods taking into account correlation. Therefore, also correlation ef-
fects do not lift the separation. The rms radii follow a similar trend showing
a clear difference for fluorides and chlorides. For both anionic species they
linearly increase as a function of lattice distance, however, with a different
slope and a clear offset between them. Both slopes are smaller than the one
for stretched LiF.
A comparison of r0 and the rms-radii of the ROHF F-center ground-state
wave functions in stretched lithium fluoride and in real materials show a
strong dependence of the wave function’s spatial extent on the ionic species,
i.e., a strong dependence on the ion sizes. The offset between fluorides and
chlorides as well as reduced growth of the rms radii in real materials com-
pared to the ones in stretched lithium fluoride suggest that larger ions tend to
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Figure 21: Cut through the effective Kohn–Sham potentials in the F-center
defect region in fluoride crystals (solid lines) and chlorides (dashed lines).
Horizontal bars are the Kohn–Sham single particle energies of the corre-
sponding ground state, i.e., s-type defect orbitals.

compress the ground-state wave function. A qualitatively similar result was
found by Gourary and Adrian [137] who added effects of exchange to their
point-ion model. On the ab-initio level ion-size effects can be made visible
by comparing the density of the F-center electron ρMX of crystals MX with
a fixed lattice constant but different cation and anion species M , X, respec-
tively. Figure 23 shows the differences (a) ρNaF − ρLiF and (b) ρLiCl − ρLiF
in a crystal lattice with an anion-cation distance of 5.95 Bohr. Replacing the
Li cation by a Na cation (fig. 23 (a)) compresses the defect electron in the
vacancy and clearly the compression is induced by the change of the cation
size since it solely occurs along the [100] and the [010] crystal direction, the
x- and y-axis in figure 23 (a), respectively. The direction of the compression
changes when the F anion is replaced by a Cl anion (fig. 23 (b)). It occurs
along the [110] and [1 − 10] crystal axis, the two diagonals in figure 23 (b)
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Figure 22: Cut through the ROHF orbital |s〉 of the F-center electron in its
ground state in various alkali-halide crystals. For clarity the wave functions
are plotted only up to their first radial node. The inset shows the position
of the first radial node and the root-mean square radius of |s〉 as a function
of anion-cation distance.

and, additionally, it is weaker than for the exchange of cations. These find-
ings are in contradiction to the results of Smith and Inokuti [138]. They used
defect wave functions |s〉 from point ion models and studied ion-size effects
by orthogonalization of |s〉 to the neighboring ion cores. For NaCl and RbF,
crystals with a similar lattice constant, they determined the extent, the root-
mean square radius, of the F-center in RbF to be larger than the one in NaCl
and concluded that F-centers with larger cation neighbors are greater than
those with smaller neighbors. In a lattice with an anion-cation distance of
5.95 Bohr we find rms radii of 4.14, 4.18, 4.04 and 4.04 Bohr for |s〉 in LiF,
LiCl, NaF, and NaCl, respectively, i.e. smaller radii for the F-centers with
the larger nearest-neighbor cation and almost equal radii for F-centers with
the same nearest neighbor.
The constant value of r0 for a given anion species can be explained in terms of
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Figure 23: Defect-electron density differences in 10−4/Bohr3 for the F-center
in (a) NaF and LiF (ρNaF − ρLiF ) and (b) in LiCl and LiF (ρLiCl − ρLiF )
for a constant anion-cation distance of 5.95 Bohr. Replacing Li and F ions
with the larger Na and Cl ions, respectively, compresses the defect-electron
density in the anion vacancy.

the well-known model of effective ionic radii in crystals [139]. It sets constant
radii for anions and cations in, e.g., alkali-halide crystals independent of the
crystal composition. Adding up the effective radii rM and rX of the cation
M and the anion X, respectively, gives then a good approximation for the
anion-cation distance aMX of the crystalMX. According to this thought the
F-center electron should have the same spatial extent within all the fluorides
and within all chlorides which is in qualitative agreement with figure 22. Us-
ing the effective ionic radii model, we find even quantitative agreement when
we estimate the correction to r0 in stretched LiF when, instead of Li, the real
cation is used. The second column in table 4 lists values of r0 in stretched LiF
at a lattice constant equal to the one of the crystal Y indicated in the first
column. If Li in stretched LiF (with the lattice constant of the MY crystal)
is exchanged byM , r0 should shrink by the difference rM−rLi, where rM and
rLi are the effective ionic radii of M and Li, respectively. The effective radii
rR are listed in column three in table 4 and the corrected values for the radial
node r0− (rR− rLi) are shown in column four. After applying the correction
to r0 of stretched LiF all the radial nodes of the fluorides coincide as well
as the ones of the chlorides at exactly the value found in real materials in
fig. 22. This perfect match qualifies the effective-radii model for estimating
the extent of the defect electron wave function and it suggests the following
conclusions. Along the [100] direction the extent of the ground state defect
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Table 4: Correction of the radial node of the defect wave function of stretched
LiF due to the effective size of real, i.e., larger cation neighbors. The second
column lists the position of the first radial node along the [100] crystal direc-
tion of the ground-state defect wave function in stretched LiF rLiF@MX

0 with
the lattice constant of the material MX. The third column shows the effec-
tive cation radii [139] rM and the forth column gives the corrected position
of the radial node rLiF@MX

0 − ∆rM = rLiF@MX
0 − (rM − rLi). All distances

are given in Bohr.
Crystal MX rLiF@MX

0 rM rLiF@MX
0 − (rM − rLi)

LiF 3.33 1.70 3.33
NaF 3.85 2.19 3.36
KF 4.51 2.87 3.34
LiCl 4.25 1.70 4.25
NaCl 4.77 2.19 4.28
KCl 5.38 2.87 4.21

wave function in real materials is constant for a constant anionic species be-
cause the increase of the vacancy due to growing anion-cation distance when
going, e.g., from LiF to NaF is completely compensated for by the increase of
the cation size. When exchanging the anion at constant cation, going from,
e.g., LiF to LiCl, the defect-wave function increases along the [100] direction
exactly by twice the difference in anion radii between Cl− and F−. This is
reflected in our results by the difference of the r0 values between fluorides
and chlorides which is 0.9 Bohr and almost perfectly matches the difference
in anion-cation distance between crystals with the same cation but different
anions F− and Cl−. Along the [110] and [111] crystal axis, the directions
towards the second-nearest neighbor anion and the third-nearest neighbor
cation, the situation is different. In both directions the increasing ion size
can not completely compensate for the increasing lattice parameter since
the distance between the defect electron and the second and third-nearest
neighbors scale with

√
2aMX and

√
3aMX along the [110] and [111] direction,

respectively.
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3.6 Absorption energies in alkali halides

The analysis of the defect densities differences in fig. 23 and the behaviour
of the radial nodes r0 of the defect electron wave functions clearly show the
tendency of larger ions to compress the defect electron within the vacancy
region. Since alkali-halide crystals with larger lattice constants obviously fea-
ture larger ions than crystals with a smaller lattice constant the compression
by the larger ions inhibits a continuous growth of the extent of the defect
wave function with the anion-cation distance. Since via equation 132

Eabs ≈
3~2

2me

1

〈s|r2|s〉
, (133)

the absorption energies are indirectly proportional to the mean-square radius
of the F-center ground-state wave function we expect for the Mollwo–Ivey
relation an exponent below 2 and this is indeed what is found in experiment
and in our calculations.
Figure 24 shows the experimental absorption energies of the F-center in sev-
eral materials (black circles) together with the energies obtained from em-
bedded quantum-chemistry cluster calculations (solid red line and green di-
amonds) and from DFT calculations (dashed blue line). The Mollwo–Ivey
relation with parameters C = 17.3 eV and n = 1.81 taken from section 3
is indicated by the dotted pink line. In general we find good agreement
with experimental values. The offset between experiment and the quantum
chemistry results (solid red line) can be understood in terms of incomplete
convergence with respect to cluster and basis-set size due to the large com-
putational effort for crystals containing elements larger than lithium and
fluoride. In the case of LiF we find in reference [98] a reduction of the ab-
sorption energy by ∼ 0.5 eV by using geometry optimization, larger cluster
sizes and an extrapolation to the converged basis set limit. Fully converged
(ROHF)-CASPT2 results are indicated by green open diamonds and show
that the reduction of the absorption energy due to complete convergence and
a relaxed lattice structure lies in the range of ∼ 10%. Since all data points
obtained by quantum chemistry are treated on the same level of convergence
we expect to get reasonable results for trends such as the Mollwo–Ivey re-
lation. The issue of convergence is, at least for the basis set size, absent in
the DFT calculations which partly explains the better agreement with ex-
perimental results.
We extract the Mollwo–Ivey parameter n by fitting our data with C/an and
obtain nQC = 1.70 ± 0.12 and nDFT = 1.79 ± 0.13 from Quantum Chem-
istry and post-DFT data, respectively. These values are quite close to ex-
periment, nexp = 1.81 ± 0.10 and lie clearly below 2. In the most recent
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Figure 24: F-center absorption energies of various alkali-halide crystals as
a function of the anion-cation distance. Red solid line and green crosses
are quantum chemistry results, the dashed blue line are results from DFT
calculations, the pink dotted line is the Mollwo–Ivey relation with parameters
C = 17.3 eV and n = 1.81 taken from section 3 and the black dots are
experimental datac̃ite89.

literature [129, 133, 136, 140] analyzing the physical root of the Mollwo–Ivey
exponent there seems to be a consensus on the role of the ion-size effects
making them responsible only for deviations from the Mollwo–Ivey relation
scaling with 1/a1.81. Based on our ab-initio analysis, however, ion-size effects
seem to be the dominant reason why an experimental Mollwo–Ivey exponent
below 2 is found. If not for ion size effects, as realized in the ab-initio cal-
culations of stretched LiF, we find a Mollwo–Ivey exponent of ∼2 like in a
three-dimensional potential well ("particle in a box"-like behavior).
In figure 24 the F-center absorption energies for crystals with the same an-
ionic species are connected by straight lines. Following these lines from left
to right corresponds to increasing the lattice constant due to larger cations
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(nearest-neighbor of the defect electron) while keeping the size of the anions
(second-nearest neighbor) constant. Fitting the data separately for every an-
ion with a Mollwo–Ivey type relation leads to an exponent clearly below the
global experimental or theoretical value for the Mollwo–Ivey exponent. This
reduced decrease can be understood qualitatively in terms of ion-size effects
again via the effective ion-radii model. F -center defect wave functions in, e.g.,
fluorides have an almost constant extent along directions ([100],[010],[001])
pointing towards the six nearest neighbor cations. Along the [111] direction,
the direction towards the third-nearest neighbor cation, the wave functions’
extent is not constant but its growth is also, to some extent, compensated
for by the increasing cation size. Only along the [110] direction, towards the
second-nearest neighbor F− ion, the growth of the wave function is not hin-
dered by increasing ion sizes. In sum this leads to a somewhat flatter decrease
of the absorption energies with the anion-cation distance since the smallest
constriction due to the nearest neighbors does not increase for a constant
anion species. Changing from, e.g., fluorides to chlorides sets a new, larger
value for the smallest constriction leading to the offset between the lines con-
necting the absorption energies of fluoride and chloride crystals. The choice
of how to connect the data points is, of course, arbitrary and can be changed
by connecting the ab-initio F-center absorption energies with lines belonging
to crystals with the same cation. From left to right these lines correspond
to increasing lattice constants due to larger anions (second-nearest neighbor)
while the size of the cations (nearest-neighbor) is kept constant. A fit to
these line sections results in an exponent larger than the global experimental
and theoretical Mollwo–Ivey exponent. When the cation species is kept con-
stant a steeper decrease is found because the narrowest constriction of the
vacancy due to the nearest-neighbor cations increases continuously as well
as the [111] direction towards the third-nearest neighbors. Only along the
[110] direction increasing anion sizes partly dampen the growth of the defect
wave function. The Mollwo–Ivey relation, however, is a fit to all experimen-
tal absorption energies irrespective of anion and cation species resulting in a
“mean” Mollwo–Ivey exponent of 1.81.
Smakula [133,141] followed a similar route fitting separate Mollwo–Ivey rela-
tions to the experimental F-center absorption energies of crystals with con-
stant cations resulting in more accurate fits. However, such an analysis of our
data and a comparison of ion-specific exponents to experiment is not really
meaningful, since the experimental data show only a very small dependence
on the ionic species. Only the absorption energies in chloride crystals seem
to systematically lie above the Mollwo–Ivey line and decay with a some-
what smaller exponent. This discrepancy may have its roots in the relatively
large error bar of the experimental data due to the large full width at half
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maximum of the F-center absorption lines [105] ranging from 0.16 eV up to
0.61 eV in lithium fluoride. Furthermore, in our calculations we do not in-
clude electron-phonon interactions which induce a lowering of the absorption
energies. We estimate this downward shift [98] in lithium fluoride to be of the
order of 0.1 eV. Since electron-phonon interactions also depend on the size,
i.e. the mass of the crystal ions they should diminish the offset between the
F-center absorption energies of crystals containing a different anionic species.

3.7 Summary and conclusions

In this section we present an ab-initio study of the Mollwo–Ivey relations for
F centers in alkali-halide crystals based on DFT (and post-DFT, many-body
perturbation theory methods) and quantum chemistry (post-HF) methods.
This part of the work was done in cooperation with Paul Tiwald 5. The
quantum chemistry calculations were all performed by Paul Tiwald. Both
the DFT calculations and quantum chemistry calculations were carried in
analogy to section 2 and appendix 5.4.
In contrast to earlier interpretations which stress the importance of the
Madelung potential we find exchange, i.e. ion-size effects, to be the pre-
dominant mechanism forming the potential well within which the defect
electron is bound. The sizes of the neighbor ions determine the shape of
the defect-electron wave function and are, therefore, responsible for the frac-
tional Mollwo–Ivey exponent of 1.81. If it were not for ion-size effects a
Mollwo–Ivey exponent of n = 2 is expected.
We have introduced the model system of scaled LiF in which we can increase
the anion-cation distance while keeping ion sizes constant. The F -center ab-
sorption energies in scaled LiF obey a Mollwo–Ivey relation with an exponent
of 2 equal to the 3D square-well potential model by Stöckmann [131, 132].
The reduced Mollwo–Ivey exponent for "real" materials suggests neighbor-
ing ions compressing the defect electron wave function within the vacancy
region. This leads to a reduced growth of the wave function’s extent with
increasing lattice parameter which, via the Vinti sum rule, is directly con-
nected to the absorption energy. A qualitative picture of this compression
is gained by studying ab-initio differences of defect-electron densities in dif-
ferent alkali-halides at a fixed anion-cation distance. A semi-quantitative
picture is obtained by examining radial nodes of Hartree–Fock defect elec-
tron wave functions the position of which perfectly agree with predictions
from the effective ion-radii model.

5Paul Tiwald, Institute for Theoretical Physics, Vienna University of Technology, Wied-
ner Hauptstraße 8-10, A-1040 Vienna, Austria
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4 Adiabatic connection fluctuation dissipation
theorem calculations

The correlation energy within the (RPA-)ACFDT is calculated following
equation 84

ERPA
c =

∞∫
0

dω

2π
Tr{ln[1− χKSv] + vχKS} (134)

where χKS is obtained using equation 41. The calculation of the total energy
within the RPA (see also equation 86)

Etot = EHF[ψKS] + ERPA
c [χKS] (135)

consist of three steps:

1. In a preliminary calculation the Kohn–Sham orbitals are calculated
using a (semi-)local potential. Since these orbitals are the basis for
the RPA calculations, dense k meshes, a high energy cutoff parameter
RKmax and a large number of conduction states are required for good
convergence of the energies.

2. The Hartree–Fock energy is calculated. The Kohn–Sham orbitals are
used as a basis and the Hartree–Fock energy is calculated in a single-
shot calculation without an update of the orbitals. The Hartree–Fock
calculations usually need denser k meshes than standard DFT calcula-
tions to achieve the same accuracy.

3. The RPA correlation energy is calculated within the ACFDT formal-
ism. The response function χKS is obtained from the Kohn–Sham or-
bitals and equation 84 is solved to obtain the correlation energy. This
energy is then added to the Hartree–Fock energy to obtain the total en-
ergy. As in the case of Hartree–Fock the RPA calculations need a denser
k mesh than standard DFT calculations to achieve good accuracy. Ad-
ditionally the evaluation of χKS requires a large number of conduction
states. Usually all available states within the basis for a given RKmax

are used. The evaluation of the correlation energy also needs a fre-
quency integration up to a maximum frequency (see appendix 5.3). So
the integration depends not only on the number of frequency points
but also on the value chosen as the maximum frequency.
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In our calculations the k mesh, RMT and RKmax are always the same in all
three steps.
In the following we will show convergence tests for the (RPA-)ACFDT cor-
relation energies. Convergence tests for the Hartree–Fock energies are not
provided since regarding the calculation time more or less no limits existed for
the investigated compounds and we used very high values for the Hartree–
Fock specific parameters. The following parameters have been used (for
explanation of these parameters see reference [85]): gmax=14, lmaxe=5,
lmaxv=5, tolu=0.0001.
All lattice constants and bulk moduli in this chapter are obtained by fit-
ting the calculated total energy vs. lattice constant (or volume) curves to
Birch–Murnaghan’s equation of state [142].

4.1 Frequency dependency

The correlation energy is calculated as a frequency integral of the response
function at imaginary frequencies χ(ω). Since the integrand Tr{ln[1−χKSv]+
vχKS is more or less a smooth function the integration does not constitute a
fundamental problem.
The integrand of the correlation energy with respect to the frequency for the
noble gas atoms Ar and Kr and solid C (diamond) is given in figure 25. The
correlation energy for the Ar and Kr atom was calculated by placing a single
atom in the center of an empty cell with a lattice constant of 15 Bohr and
using a single k point. All functions are quite smooth but at low frequencies
the correlation energy shows more structure and an equidistant grid would
only converge very slowly. For this we applied a Gauss–Legendre-quadrature
scheme on a non-equidistant grid where the integral is of the form (for details
see appendix 5.3)

I(f) =

ωmax∫
0

w(x)f(x)dx. (136)

The lower limit of the integral is always equal to zero. The upper limit ωmax
has to be chosen for each calculation. For insulators and semiconductors
this parameter doesn’t constitute a problem as long as it’s value is chosen
above the band gap of the calculated material. Since we didn’t experienced
significance of this parameter on the accuracy of the calculations, we will
not show convergence tests for this parameter. The total correlation energy
with respect to the number of frequency points is given in table 5. For the
atoms already 10 frequency points would be sufficient to have a convergence
below 0.1 mRyd. In the case of diamond 14 points would be enough to have
a convergence below 0.1 mRyd. In the remainder of this work (if not stated
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Figure 25: . Integrand of the correlation energy (see equation 134) with
respect to the frequency. ωmax = 35, RKmax = 9, lmmax = 4 and Gmax =
9 Ryd were used in the calculations. The correlation energies are only shown
for the Γ point.

otherwise) we used 16 points for the frequency integration to be on the save
side.

4.2 k mesh dependency

Although the k mesh for insulators represents generally no problem for the
(RPA-)ACFDT calculations, we will briefly discuss the behavior of the cor-
relation energy going from small to large k meshes. The correlation energy
with respect to the lattice constant using different k meshes is shown for
diamond in figure 26. The absolute correlation energy converges very slowly
with the number of k points and we would need a very high number of k
points, to converge the absolute value, reaching soon the limits of our com-
putational resources (i.e. by going from a k mesh of 4 × 4 × 4 to 8 × 8 × 8
the computational time is increased by a factor of 10). Since we are mainly
interested in the lattice constants and bulk moduli it is sufficient to calculate
the relative correlation energies between different volumes. By comparing
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Table 5: Calculated correlation energies with respect to the number of fre-
quency points N . ωmax = 35 Ryd was used in all calculations. All units in
mRyd.

N Kr Ar diamond

6 −457.460 −554.408 −
8 −457.404 −554.692 −
10 −457.474 −554.982 −987.196
12 −457.480 −554.988 −987.700
14 −457.480 −554.980 −987.886
16 −457.482 −554.982 −987.944
18 −457.482 −554.986 −987.964
20 −457.482 −554.986 −987.974

the slopes in figure 26 it can be seen that the relative energies converge much
faster. While a k-mesh of 4 × 4 × 4 shows small oscillations, the curve gets
smooth for 6 × 6 × 6. Also the lattice constant and the bulk modulus are
converged for 6 × 6 × 6 (see table 6), so that a k mesh of 6 × 6 × 6 seems
sufficient for diamond.

Figure 26: Correlation energy vs. lattice constant for diamond using different
k meshes. RKmax = 8, Gmax = 4.9 Bohr−1, lmmax = 4, omegamax = 35 Ryd
and 16 frequency points were used.
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Table 6: Calculated lattice constants a0 in Å and bulk moduli B0 in GPa of
diamond for different k meshes. RKmax = 8, Gmax = 4.9 Bohr−1, lmmax = 4,
ωmax = 35 Ryd and 16 frequency points were used. The values obtained using
the code VASP [143–146] are taken from reference [59]. The experimental
lattice constant and bulk modulus are taken from references [147] and [148],
respectively.

a0

k mesh PBE HF RPA
4× 4× 4 3.578 3.553 3.572
6× 6× 6 3.575 3.550 3.569
8× 8× 8 3.575 3.550 3.569

VASP 3.572
experiment 3.567

B0

k mesh PBE HF RPA
4× 4× 4 434 510 422
6× 6× 6 435 512 443
8× 8× 8 435 512 444

VASP 442
experiment 443

4.3 basis set dependency

The basis set within the (RPA-)ACFDT calculations mainly depends on three
parameters:

• The first parameter is RKmax, the product of the largest reciprocal
vector Kmax and the smallest atomic radius RMT , which is already
defined for the (semi-)local calculations.

• The second parameter is Gmax, the cutoff for the largest reciprocal
vector used for the plane wave expansion of the matrix elements in the
calculation of the response function (ei(G+q)r in equations 42 and 144).

• The third parameter is lmmax, the largest quantum number of the l
and m combinations used in the Rayleigh expansion of the plane waves
and the wave functions within the muffin-tin spheres (see equations 149
and 150). In principal one could use separate lmmax’s for the Rayleigh
expansion and the wave functions within the muffin-tin spheres. Since
lmmax converges very fast we used the same value for both.

Figure 27 shows the correlation energy vs. lattice constant curves for varying
RKmax, Gmax and lmmax. As for the k mesh the absolute value of the cor-
relation energy is very hard to converge for RKmax and Gmax. The absolute
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Figure 27: Correlation energy vs. lattice constant for diamond. A k mesh
of 6 × 6 × 6, ωmax = 35 Ryd and 16 frequency points were used in all
calculations. Left: Variation of RKmax. Gmax = 4.9 Bohr−1 and lmmax = 4
were used. Energies are shifted up by 0.831669 Ryd. Center: Variation of
lmmax. RKmax = 8 and Gmax = 4.9 Bohr−1 were used. Energies are shifted
up by 0.927567 Ryd. Right: Variation of Gmax. RKmax = 8 and lmmax = 4
were used. Energies are shifted up by 0.892315278 Ryd.

correlation converges much faster for lmmax than for the other three param-
eters. Also the relative correlation energies in figure 28 and the structural
data given in table 7 show no significant change for an lmmax larger than 4.
Convergence tests for other elements and compounds (MgO, LiF, Si, Ar and
Kr) also show that lmmax = 4 is save.
Since the calculation time depends very strongly on the size of Gmax and
in principle an infinitely large Gmax, denoted as G∞ is needed for the ex-
act absolute correlation energies, in reference [59] it is suggested that the
correlation energy for G∞ is approximated by the following expression

Ec(Gi) = Ec(G∞) +
A

(Gi)3
. (137)
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In practice the calculation is carried out by calculating the correlation en-
ergy for a series of decreasing cutoffs for Gmax denoted as Gi (usually 5 to
8 steps with a decrease of 2 to 5 percent per step) and extrapolated to in-
finity by using equation 137. Figure 29 shows the correlation energies for
different Gmax. The correlation energy for G∞ (denoted as Gextrapolated in
figure 29) was calculated for an initial Gmax of 5 Bohr−1, 6 reduction steps
and a reduction of 2 percent per step. The 1/G3

max behaviour of the cor-
relation is plotted in figure 30. We can see that this behaviour is more or
less only fulfilled for intermediate values of Gmax. Since the extrapolation
scheme introduces oscillations in the correlation energy vs. lattice constant
curves inf figure 29 we will not use this scheme in the remainder of this work.
Actually the relative correlation energy with respect to the volume seems to
converge quite well in figure 29 for 5 Bohr−1 which is approximately 85 per-
cent of Kmax = 5.76 Bohr−1 (from RKmax = 8 with, RKmax = RMTKmax

and RMT = 1.39 Bohr for diamond). This is in good agreement with ref-
erence [149] which suggests that Gmax should be 75 to 90 percent of Kmax

to obtain a balanced basis set. Since lmmax and Gmax can be fixed to

Table 7: Calculated lattice constants a0 in Å and bulk moduli B0 in GPa of
diamond for different Gmax and lmmax. RKmax = 8, k mesh of 6 × 6 × 6,
ωmax = 35 Ryd and 16 frequency points have been used. In the case of varying
Gmax lmmax = 4 has been used. For varying lmmax Gmax = 4.9 Bohr−1

was used. Units for Gmax are given in Bohr−1. The values obtained using
the code VASP [143–146] are taken from reference [59]. The experimental
lattice constant and bulk modulus are taken from references [147] and [148],
respectively.

Gmax a0 B0

3 3.588 492
4 3.573 456
5 3.569 442
6 3.567 443
7 3.567 444

VASP 3.572 442
experiment 3.567 443

lmmax a0 B0

2 3.591 426
3 3.573 441
4 3.569 444
5 3.568 445
6 3.568 445

VASP 3.572 442
experiment 3.567 443

lmmax = 4 and 0.75Kmax ≤ Gmax ≤ 0.90Kmax the main parameter for the
quality of the basis set to converge is RKmax. The correlation energies vs
lattice constants for different values of RKmax are plotted in figure 31 for
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Figure 28: Relative correlation energy vs. lattice constant for diamond using
different values for lmmax. All curves are relatively shifted to zero by the
energy of the smallest lattice constant. A k mesh of 6 × 6 × 6, RKmax = 8,
Gmax = 4.9 Ryd and ωmax = 35 Ryd and 16 frequency points were used.

diamond. The energies for a given volume are shifted relative to zero by the
value of the correlation energy for the smallest volume. For small RKmax

the correlation energy curves show strong oscillations which disappear for
higher RKmax. This is a similar behavior observed also in (semi-)local and
Hartree–Fock calculations, due to the incomplete basis set. Actually the cal-
culated (RPA-)ACFDT lattice constants and bulk moduli converge similarly
with respect to RKmax as the ones obtained from PBE and Hartree–Fock
(see table 8).
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Table 8: Calculated lattice constants a0 in Å and bulk moduli B0 in GPa
of diamond for different RKmax. A k mesh of 6 × 6 × 6, lmmax = 4,
Gmax = 4.9 Bohr−1 ωmax = 35 Ryd and 16 frequency points have been
used. The values obtained using the code VASP [143–146] are taken from
reference [59]. The experimental lattice constant and bulk modulus are taken
from references [147] and [148], respectively.

a0

RKmax PBE HF RPA
5 3.575 3.550 3.611
6 3.574 3.550 3.560
7 3.575 3.550 3.569
8 3.575 3.550 3.569
9 3.575 3.550 3.567

VASP 3.572
experiment 3.567

B0

RKmax PBE HF RPA
5 494 536 633
6 441 526 445
7 435 512 443
8 435 512 444
9 435 512 445

VASP 442
experiment 443

Figure 29: Relative correlation energy vs. lattice constant for diamond using
different values for Gmax. All curves are relatively shifted to zero by the
energy of the smallest lattice constant. A k mesh of 6 × 6 × 6, RKmax =
8, lmmax = 4, RKmax = 8, Gmax = 4.9 Bohr−1, ωmax = 35 Ryd and 16
frequency points were used.
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Figure 30: Correlation energy vs. G−3
max for diamond. The experimental

lattice constant of 3.572 Å was used in the calculations.A k mesh of 6×6×6,
RKmax = 8, lmmax = 4, ωmax = 35 Ryd and 16 frequency points were used.
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Figure 31: Relative exchange energy, relative correlation energy and total
energy vs. lattice constant for diamond using different values for RKmax.
All curves for the exchange and correlation energies are relatively shifted to
zero by the energy of the smallest lattice constant. A k mesh of 6 × 6 × 6,
lmmax = 4 and Gmax = 4.9 Ryd, ωmax = 35 Ryd and 16 points for the
frequency integration were used.
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4.4 ACFDT calculations for solids

In this chapter we show the calculated lattice constants and bulk mod-
uli for selected solids and compare them to results [59, 150] obtained from
VASP [143–146] and from experiment. A comparison of the correlation en-
ergies for selected cases to available data from VASP is also given in this
section.
The investigated solids together with the most important calculational pa-
rameters are listed in table 9. The calculated lattice constants and bulk
moduli are given in tables 10 and 11, respectively. The tables compare the
results for different levels of treatment for exchange and correlation (PBE,
Hartree–Fock, and RPA). In most of the cases we have a close agreement
with VASP for the PBE and Hartree–Fock results. The discrepancy for the
Hartree–Fock lattice constant for Si is explained by the fact that no 2s and
2p semi-core states were used in the pseudo-potential configuration of the
valence electrons in reference [59] (there is a second calculation available in
reference [59] including 2s and 2p states in the valence which agrees very well
with our Hartree–Fock calculations).
A very good agreement between our (RPA-)ACFDT result, the results ob-
tained from VASP and experiment is present for diamond. Although the
noble gas solids are very hard to converge since the energy vs. lattice con-
stant curves have a very shallow minimum a nice agreement is found for the
lattice constants and bulk moduli for solid Ar and Kr between our results
and VASP. The excellent agreement of the exchange and (RPA-)ACFDT
correlation energies for Kr with VASP is shown in figure 32. However, with
the exception of C, Ar and Kr we find in general a poor agreement with
VASP for the (RPA-)ACFDT lattice constants and bulk moduli, which we
account to the different steepness of the slopes for the correlation energies
with respect to the lattice constants, since the direction of the corrections is
correct but the magnitude is different (compare the difference between HF
and RPA lattice constants in table 10). The correlation energy with respect
to the lattice constant obtained with WIEN2k and VASP is plotted for Si in
figure 33. It is clearly visible that the VASP calculations have a slope that
is approximately by a factor of two larger than in our calculations, leading
to larger corrections for the lattice constant in table 10. We believe that the
VASP results are calculationally intact. In all of our calculations we neglect
core to conduction band transitions in the calculation of the response func-
tion, while we calculate the the Hartree–Fock exchange between core-valence
and core-core states too. Possible important contributions to the correlation
energy and counteracting effects of exchange could be missing when the core
to conduction band transitions are missing in the calculation of the response
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function. This could be the case for heavier elements such as Si and MgO.
The inclusion of core states is not straight forward and needs sophisticated
methods to be able to converge the results [149]. The discrepancy for LiF
cannot be described with the missing core states, since all electrons are con-
sidered in the calculation of this material. Another explanation might be,
that the basis sets are not well suited for the excited states. The FLAPW
method is known to be good for the ground state but in many cases the
wave functions in the excited states are not well described within the spheres
around the atoms. To solve this problem an extension of the basis set would
be needed such as in reference [149] for the OEP method. Nevertheless we
cannot exclude possible errors in our code.

Table 9: Calculational parameters of the calculated solids. Nfreq is the num-
ber of points for the frequency integration. The units for Gmax, RMT and
ωmax are in Bohr−1, Bohr and Ryd, respectively.

RKmax k mesh Gmax lmmax Nfreq ωmax RMT

C 8.0 8× 8× 8 4.9 4 20 35 1.39
Si 9.0 8× 8× 8 4.9 5 16 35 2.10
LiH 10.0 8× 8× 8 5.0 4 16 35 1.70
LiF 9.8 8× 8× 8 4.9 5 16 35 1.77
MgO 9.0 8× 8× 8 5.0 6 16 35 1.90
Ar 9.8 8× 8× 8 9.0 4 16 35 2.30
Kr 9.8 6× 6× 6 8.0 4 16 35 2.50
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Table 10: Calculated lattice constants in Å for different solids. The values [59,
150] obtained using the code VASP [143–146] are given in parenthesis. The
experimental values are taken from the following references: LiH [151]. Ar,
Kr [152]. LiF, MgO [153]. C, Si [147].

PBE HF RPA EXP
C 3.575(3.569) 3.550(3.540) 3.569(3.572) 3.567
Si 5.476(5.466) 5.499(5.482) 5.483(5.431) 5.430
LiH 4.007 4.124 4.095 4.084
LiF 4.074(4.069) 4.001(3.991) 4.066(3.998) 4.010
MgO 4.260(4.259) 4.178(4.173) 4.289(4.225) 4.207

Ar 5.961(6.0) − 5.232(5.3) 5.23
Kr 6.413(6.4) − 5.693(5.7) 5.61

Table 11: Calculated bulk moduli in GPa for different solids. The val-
ues [59, 150] obtained using the code VASP [143–146] are given in paren-
thesis. Experimental values for LiH, C, Si, LiF and MgO are taken from
references [154], [148], [153], [155] and [156], respectively.

PBE HF ACFDT EXP
C 435(434) 511(512) 444(442) 443
Si 89(89) 107(108) 99(99) 99.2
LiH 36 32 29 33
LiF 67(68) 81(80) 69(76) 69.8
MgO 150(149) 195(196) 156(168) 165
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Figure 32: Comparison of the exchange energy and the correlation energies
for solid Kr between WIEN2k and VASP. The VASP results were take from
reference [59]. Both calculations used the wave functions from LDA. The
correlation energies for the largest volumes are arbitrarily set to zero. A k
mesh of 4×4×4, RKmax = 8, lmmax = 4, Gmax = 8 Bohr−1, ωmax = 35 Ryd
and 16 frequency points were used in the WIEN2k calculations.
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Figure 33: Comparison of the correlation energies for Si between WIEN2k
and VASP. The VASP results were take from reference [59]. Both calculations
used the wave functions from PBE. The correlation energy for the smallest
volume was set to zero. A k mesh of 8×8×8, RKmax = 9,Gmax = 5 Bohr−1,
lmmax = 4, ωmax = 35 Ryd and 16 frequency points were used in the WIEN2k
calculations.
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4.5 Summary and conclusions

This chapter is dedicated to the investigation of the correlation energies cal-
culated using the adiabatic connection dissipation theorem. By adding the
correlation energies to the Hartree–Fock energies one can obtain in principle
very accurate total energies.
In the main part of this chapter the convergence behavior of the correlation
energy for different parameters within the full potential linearized augmented
plan-wave method has been investigated. The main parameters which have
to be converged most carefully are the Brillouin zone sampling or k mesh
and the energy cutoff parameter RKmax the product of the largest reciprocal
vector and the smallest atomic radius. Our calculations for diamond show
that a k mesh of 6× 6× 6 and RKmax = 8 is enough for good convergence.
Parameters such as Gmax, the cutoff for the largest reciprocal vector used
for the plane wave expansion of the matrix elements in the calculation of
the response function and lmmax, the largest quantum number of the l and
m combinations used in the Rayleigh expansion of the plane waves and the
wave functions within the muffin-tin spheres can be chosen with lesser care.
Our calculations showed that Gmax = 5 Bohr−1 and lmmax = 4 are quite save
values.
In the last part of this chapter we calculated the lattice constant and bulk
moduli of several solids using the adiabatic connection dissipation theorem.
A good agreement to VASP and experiment is achieved for diamond, Ar
and Kr. The adiabatic connection dissipation theorem is very important for
solid Ar and Kr since standard DFT methods doesn’t include the long range
behavior of the important van der Waals interactions in these materials and
lead to very nonphysical and wrong results. Sadly for some of the other cal-
culated materials (Si, MgO and LiF) we find bad agreement with VASP and
experiment. The disagreements might be due to the possible neglect of core
states in the calculation of the correlation energy and to incomplete basis
sets for the excited states within the spheres around the atoms. Nevertheless
we cannot exclude possible errors in our code.
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5 Appendix

5.1 Hohenberg Kohn theorems

The first Hohenberg–Kohn theorem states that in a system with N interact-
ing electrons the external potential is uniquely determined (up to an additive
constant) by the ground-state electron density and vice-versa. The proof is
obtained (reductio ad absurdum) in the following way:
Lets assume we have a system with the ground-state density ρ0(r), the ex-
ternal potential v1(r), the Hamiltonian Ĥ1 and the wave function ψ1 leading
to the total energy

E1 = 〈ψ1|Ĥ1|ψ1〉 =

∫
d3rv1(r)ρ0(r) + 〈ψ1|T̂ + Û |ψ1〉. (138)

Also assume that we have a second system

E2 = 〈ψ2|Ĥ2|ψ2〉 =

∫
d3rv2(r)ρ0(r) + 〈ψ2|T̂ + Û |ψ2〉 (139)

leading to the same ground-state density ρ0(r). If we substitute Ĥ1 in the
first system by Ĥ2 we get following inequalities due to the Rayleigh-Ritz
principle

E1 < 〈ψ2|Ĥ1|ψ2〉

=

∫
d3rv1(r)ρ0(r) + 〈ψ2|T̂ + Û |ψ2〉

= E2 +

∫
d3r [v1(r)− v2(r)] ρ0(r).

(140)

Analogously we do the same for system 2

E2 < 〈ψ1|Ĥ2|ψ1〉

=

∫
d3rv2(r)ρ00(r) + 〈ψ1|T̂ + Û |ψ1〉

= E1 +

∫
d3r [v2(r)− v1(r)] ρ0(r).

(141)

After adding up equations 140 and 141 we arrive at

E1 + E2 < E1 + E2. (142)

This is clearly a contradiction leading to the only logical conclusion that
our hypothetical assumption where two different external potentials can lead
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to the same ground-state electron density is wrong, giving proof that the
external potential is uniquely determined by the electron density.
The second Hohenberg–Kohn theorem states that the total energy of the N
electron system is a functional of the electron density and that the ground-
state electron density ρ0(r) minimizes the total energy of the system leading
to the ground-state total energy

E0 = E [ρ0(r)] = min E [ρ(r)] . (143)

The proof of equation 143 is quite straight forward and will not be shown
here. For details see reference [1].

5.2 Matrix elements within the LAPW basis

In the following we will give an exact expression for the matrix element

MG
m,n(k,q) = 〈ψmk+q|e(q+G)r|ψnk〉 (144)

given in section 1.4.1. We divideMm,n into contributions from the muffin-tin
spheres and the interstitial region

MG
m,n(k,q) = MG,MT

m,n (k,q) +MG,I
m,n(k,q) (145)

The matrix element for the interstitial region is obtained within the plane-
wave basis as

MG,I
m,n(k,q) =

∫
VI

d3r ψ∗mk+q(r)ei(q+G)rψnk(r)

=
1

VI

∑
G′′

∑
G′′′

c∗m,k+q(G′′)cn,k(G′′′)

∫
VI

d3r ei(G+G′′′−G′′)r.
(146)

The integral over the plane waves in the interstitial region is obtained (as
given in reference [157]) by integrating over the whole unit cell and subtract-
ing the atomic sphere contributions

MG,I
m,n(k,q) =

1

Ω

∑
G

∑
G′

c∗m,k+q(G)cn,k(G′)

×

(
Ω δG,G′ −

∑
α

∫
MTα

ei(G−G
′)rdr

)
.

(147)

Ω denotes the unit cell volume. The atomic sphere contributions are given
as ∫

MTα

ei(G−G
′)rdr =


Vα if G = G′

3Vα
j1(Rα|G−G′|)
Rα|G−G′| e

i(G−G′)Sα if G 6= G′.
(148)
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where Sα denotes the position vector of atom α with radius Rα. For the de-
scription of the plane waves within the muffin tin spheres a Rayleigh expan-
sion in terms of spherical harmonics YLM and Bessel functions jL is utilized

eiGr = 4πeiGSα
∑
LM

iLjL(G|r− Sα|)Y ∗LM(Ĝ)YLM(r̂− Sα). (149)

The matrix element within the muffin-tin spheres is given as

MG,MT
m,n (k,q) =

∫
VMT

d3r ψ∗mk+q(r)ei(q+G)rψnk(r)

=
∑
p

∑
p′

∑
LM

∑
L′M ′

∑
L′′M ′′

∫
VMT

dΩ Y ∗LM × (r̂)YL′M ′(r̂− Sα)YL′′M ′′(r̂)

×
∫
VMT

dr r2 u∗L,p(r, εL)uL′′,p′(r, εL′′)jL′(|q + G||r− Sα|)

× ÃmLM,p(k + q)ÃnLM,p′(k)B̃n
L′M ′(q + G)

(150)

where the following relations have been used

ÃmLM,p(k + q) =
∑
G′′

c∗m,p,k+q(G′′)A∗LM,p(k + q + G′′)

ÃnLM,p′(k) =
∑
G′′′

cn,p′,k(G′′′)AL′′M ′′,p′(k + G′′′)

B̃L′M ′(q + G) = iL
′
4πei(q+G)SαY ∗L′M ′(q̂ + G).

(151)

5.3 Gauss quadrature

According to the Gauss quadrature integration scheme, the integral of a
polynomial function f(x) of degree 2N − 1 in the interval [a, b] with the
weight function w(x) > 0

I(f) =

b∫
a

w(x)f(x)dx (152)

is approximated by an N -point sum

I(f) ≈
N∑
i

wif(xi) (153)
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where wi and f(xi) are the weights and abscissas, respectively. Hence the idea
of the Gauss quadrature is to not only choose the supporting points freely but
be free to choose the weighting function too. One choice for the weighting
function and the interval of the abscissas is w(i) = 1 and −1 < x < 1,
respectively. This is also known as Gauss–Legendre integration (a table of
the other most common weight functions and abscissas is given in chapter 4.5
of reference [158]).
The integral for the correlation energy in equation 84 has the form of

Ec =

∞∫
0

f(ω)dω =

∞∫
0

(ln[1− χv] + vχ) . (154)

We calculate this integral with the general Gauss–Legendre integration for-
mula

Ec ≈
ωmax∫
0

f(ω)dω =
N∑
i

wif(ωi) (155)

following the FORTRAN [159] implementation given in chapter 4.5 of refer-
ence [158].

5.4 Quantum chemistry calculations

All calculations in this chapter and in appendix 5.4.1 were carried out by
Paul Tiwald6.
Active clusters of the sizes (1) Li14F12, (2) Li38F18, (3) Li62F62, and (4) Li92F86

were used. For proper embedding, several layers of ab-initio model poten-
tials (AIMPs) [160, 161] and a large matrix of point charges of cubic shape
arranged as proposed by Evjen [162] with fractional charges of +/- 0.5, 0.25
and 0.125 at faces, edges and corners, respectively, were used. AIMPs are
all-electron potentials in which, in contrast to pure point charges, also ex-
change terms are included by using non-local potentials. Exchange leads to
repulsive forces between electrons of equal spin, or in this case, between the
active electrons and the “frozen” electrons of the AIMPs. Their use is crucial
in order to prevent nonphysical excessive polarization of the active anions
due to neighbouring point charges and leakage of the electron cloud out of
the region of the active cluster. For every cluster the size of AIMP and point
charge embedding was chosen such that convergence of the absorption en-
ergy was reached. For the large cluster, which has cubic shape, four layers of

6Paul Tiwald, Institute for Theoretical Physics, Vienna University of Technology, Wied-
ner Hauptstraße 8-10, A-1040 Vienna, Austria
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AIMPs (2072 in total) and five layers of point charges (9970 in total) enclos-
ing the active region were used. Dunning’s correlation-consistent polarized
valence only basis sets [163] of double, triple and quadruple zeta quality (cc-
pVDZ, cc-pVTZ, cc-pVQZ) were applied which are in the following referred
to as the small, medium and large basis set, respectively. In addition to
the basis sets localized at the ionic sites, a set of basis states pertaining to
the F atom at the vacancy site were placed. It should be noted, however,
that in line with earlier studies [164–166] this latter basis set has only little
effect on the convergence. On the Hartree–Fock level, the absorption en-
ergy of the cluster is calculated as the energy difference of two restricted
open shell Hartree–Fock (ROHF) N-electron wave functions with different
symmetries corresponding to the ground state and the first optically allowed
excited state. Quantum chemistry offers a large variety of methods beyond
the Hartree–Fock level allowing for the inclusion of correlations. Methods
specifically suited for accounting for dynamical correlation were applied such
as complete active space second order perturbation theory based on a sin-
gle ROHF determinant CASPT2(ROHF) (a generalization of second-order
Møller–Plesset perturbation theory (MP2)), the coupled cluster single-double
(CCSD) and the coupled cluster single-double-perturbative triple (CCSD(T))
methods. For this group the starting point is the ROHF wave function of
either the ground or the excited state. The influence of static correlation by
applying the complete active space self-consistent field (CASSCF) method
and second order perturbation theory based on a multi-determinant wave
function (CASPT2(CAS)) was also checked. The CAS size for the ground
state (Ag symmetry) was determined by correlating all occupied valence or-
bitals (F-2p orbitals) of Ag symmetry plus a number of virtual orbitals also of
Ag symmetry. For the excited state the same procedure was applied within
one of the Bu symmetries. For the medium cluster and medium basis set
the largest CASs tested were (19,13) corresponding to 19 electrons in 13 or-
bitals and (17,11) for the ground and excited state, respectively leading to
only small shifts of the total energies. This indicates the strong dominance
of a single configuration. The effect of static correlation, i.e. difference be-
tween CASPT2(CAS) and CASPT2(ROHF), on the absorption energy is a
decrease of less than 0.02 eV. HF, CASPT2(ROHF), CCSD and CCSD(T)
excitation energies of the small cluster are given in table 12 for different basis
sets. Note that CCSD and CCSD(T) could not be calculated for the larger
basis sets. The last line in table 12 shows values for the converged basis
set (CBS) limit obtained by employing the extrapolation scheme proposed
by Truhlar [167, 168]. This scheme is tailored to extrapolate perturbation
theory, CCSD and CCSD(T) energies from the cc-pVDZ and cc-pVTZ basis
sets to the CBS limit allowing for application to cases where cc-pVQZ calcu-
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Table 12: Excitation energies of Li14F12 cluster calculated with different
quantum chemistry methods and basis set sizes using the unperturbed crystal
geometry and the experimental lattice constant.

Basis set ROHF CASPT2(ROHF) CCSD CCSD(T)
cc-pVDZ 6.31 5.99 6.00 5.94
cc-pVTZ 6.27 5.84 5.86 –
cc-pVQZ 6.26 5.79 – –
CBS limit 6.26 5.73 5.77 –

Table 13: CASPT2(ROHF) excitation energies calculated with different clus-
ter sizes and basis sets using the unperturbed crystal geometry and the ex-
perimental lattice constant.

Basis set Li14F12 Li38F18 Li62F62 Li92F86

cc-pVDZ 5.99 5.87 5.76 5.74
cc-pVTZ 5.84 5.73 5.61 –
cc-pVQZ 5.79 5.70 – –
CBS limit 5.73 5.63 5.50 –

lations were not possible. Table 12 shows that the CASPT2(ROHF) method
closely reproduces the excitation energy determined by methods that include
correlations to a larger degree such as CCSD and CCSD(T). For example,
the CBS limits of the CASPT2(ROHF) and the CCSD differ by only 0.04 eV.
A comparison between CASPT2(ROHF) and CCSD(T) excitation energies
is only possible for the small basis set. In this case the CCSD(T) excita-
tion energy is 0.05 eV lower than the CASPT2(ROHF) value. In view of
these negligible deviations (. 1% of the experimental excitation energies)
the numerically relatively cheap CASPT2(ROHF) method was employed to
larger clusters to check for cluster-size convergence. The CASPT2(ROHF)
excitation energies for the different cluster sizes and the different basis sets
as well as the extrapolated CBS values are given in table 13. Since for the
small basis set the difference between the large and very large cluster is only
0.02 eV, the excitation energy calculated for the large cluster is considered to
be converged within a satisfactory level of accuracy. All results given in the
following refer to the CBS limit of the large cluster unless otherwise stated.

The solid-state physics approach and the quantum chemistry approach
can be compared on several levels. On the single-particle level we can com-
pare the Hartree–Fock and the Kohn-Sham orbitals generated with the TB-
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mBJ exchange-correlation potential. Both approaches lead to a similar struc-
ture of the single particle levels in a ground-state calculation: the occupied
s-type and unoccupied p-type levels lie within the band gap and the corre-
sponding orbitals are localized within the vacancy region. Both orbital pairs
agree in size and shape (see figure 34).

We also find good agreement between the two approaches concerning the
ground state relaxation of the nearest and next-nearest neighbors surround-
ing the F center. DFT and CASPT2(ROHF) lead to an identical outward
relaxation of 0.04 Å of the nearest-neighbor Li+ ions and to similarly small
outward relaxation of the F− ions (0.01 Å in DFT (see chapter 2.5) and
0.024 Å in CASPT2(ROHF)). The small discrepancy for the F− ions might
be in parts caused by the limited cluster size for which the CASPT2(ROHF)
geometry relaxation was performed. It should be noted that such an agree-
ment between periodic DFT and quantum chemistry cluster calculations is
not standard. For example, for the F center in MgO the relaxation of the
Mg+ ion obtained from periodic DFT [116] and from cluster calculations on
the HF level [169] differ by a factor of ∼5.

5.4.1 Calculated line-width

The line width of the F -center absorption in alkali halides is significantly
influenced by electron-phonon interactions. Lifetime broadening can be ne-
glected due to the long lifetime [170] of up to ∼ 10−6 s of the excited state.
Typically one local mode defining the relevant configuration coordinate dom-
inates the line width and the absorption process [93,171]. In the present case
this mode is the symmetric breathing mode of the six Li+ ions surrounding
the vacancy (inset in Fig. 35). Using the medium basis set and medium
cluster size we have calculated the configuration coordinate diagram of this
mode for the ground and excited state of the F center (Fig. 35) and extracted
a vibration frequency (15.78 THz, 65.2 meV) and a line width of 0.27 eV
due to the zero-point fluctuations. Stoneham [93] proposed, as a “rule of
thumb”, that the frequency of this mode is comparable to the transverse op-
tical phonon frequency of the bulk material. For pristine LiF the TO modes
lie at ∼10 THz [172,173] which compares reasonably well with our estimates.
Also the resulting theoretical line width extracted from the configuration co-
ordinate curves is in fair agreement with the experimental values [105,174] at
low temperatures ranging from 0.42 to 0.61 eV. This single-mode estimate for
the line width should be considered as a lower bound to the experimental line
width. Possible effects that would further increase the theoretical line width
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are additional modes comprising ions beyond the nearest neighbors, thermal
broadening, broadening due to imperfections of the crystal (inhomogeneous
broadening), and experimental broadening (e.g.: finite line width/resolution
of source/detector).
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Figure 34: TB-mBJ and ROHF orbitals for the F -center bands within the
[100] plane: a) occupied s-orbital, b) one of the three degenerate unoccupied
p-orbitals. The DFT orbitals were calculated using the Li32F31 unit cell. The
ROHF orbitals are taken from a calculation using the (medium) Li38 F18
cluster and the (medium) cc-pVTZ basis set. Units are in atomic units.
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Figure 35: Calculated configuration coordinate curves for ground (red full
line) and excited (violet dashed) state of the F center in LiF as a func-
tion of the elongation along the symmetric breathing vibration of the six
Li+ ions surrounding the defect for the (medium) Li38F18 cluster and the
(medium) cc-pVTZ basis set. The blue (dotted) line is the absolute mag-
nitude squared of the ground-state wave function of an harmonic potential
with ~ω=0.0652 eV (green dash-dotted line). The inset schematically depicts
the symmetric breathing vibration of the six Li+ ions surrounding the defect.
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5.5 Tutorials for GW, BSE and ACFDT within theWIEN2k
package

A detailed description of how to run GW, BSE and ACFDT calculations
within the WIEN2k package is given in this chapter.

5.5.1 GW calculations

Since GW calculations are applied perturbatively on standard DFT calcula-
tions (using local or semi-local exchange-correlation functionals) good con-
vergence of the underlying standard DFT calculations is required.
The preparation of the GW calculations is done automatically by calling the
script "gap2_init" in the directory of the DFT calculation. All setup options
can be viewed by executing the command "gap2_init -h". The options "-d
sample" and "-nkp x" which define the subdirectory "sample" for the GW
calculation and the number of k points x, respectively, have to be set in each
calculation. Since the GW method involves transitions between valence and
conduction bands, a high number of conduction bands is required. To ac-
count for this the parameter emax in the case.in1 file has to be raised already
for the DFT calculations (a good value is around 7.5 to 10 Ryd for many
insulators). The GW calculation is started by changing into the GW subdi-
rectory "sample" and calling the mpi command "mpirun -np nproc gap2.x",
where nproc is the number of processors used. The number of mpi proces-
sors and the calculational parameters have to be chosen cautiously, since the
calculations can be very time and memory exhaustive (i.g. Li16F15 with 8
k-point, RKmax = 7, emax of 7.5, Q = 0.4, emingw of -3.0, emaxgw of 5.0
and barcevtol of 0.0 using 64 cores needs 15 GB memory per core and roughly
3 days to complete the calculation). The outputfile case.outgw contains the
most important outputs.
Inputfile:
The main input file for the GW options (which is created automatically by
the script "gap2_init") is the case.ingw file which usually looks as follows
(all frequencies and energies are in Hartree)

# Input file for gw calculation
# Initialization options: gap_init -d Sample -s 2 -nkp 8
# iopk=0
Task = "gw" # Option for task
Restart = F # Option for whether restarting a

# previous calculations
nspin = 2 # 1 for spin-unpolarized and 2 for

# spin-polarized calculations
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ComplexVector = F # T for for systems without inversal
# symmetry

CoreOpt = "all" # Option for treating core levels
UseScratch=T # Set F if not using scratch space

# in which zzk are all kept in core
# and minm is always calculated from
# scratch. This might be more
# efficient when using IBM Power 5
# without local space

SymVector = T # whether to use Kohn-Sham
# eigenvectors in the irreducible
# Brillouin zone

Minm_mblksiz = 48 # block size to split m-index for
# the calculations of minm

barcevtol = 0.6 # tolerance used to reduce the
# bare Coulomb matrix eigenvectors
# as the basis set for sp systems,
# barcevtol=0.6 is usually quite
# safe.

emingw = -3.0 # emingw and emaxgw (Ryd) are used
# to control the range of bands

emaxgw = 5.0 # for which GW correction are
# going to be calculated. Only
# states whose LDA energies falls
# between E_Fermi+emingw and
# E_Fermi+emaxgw are calculated

%SelfEnergy # option for correlation self-energy
2 | 0 | 1 # <npol> | <iopes> | <iopac>

% # Number of poles (previous maxexp+1,
# valid range: 2.. nomeg/2 )
# iopes: 0/1/2/3 - without or with
# iteration >
# iopsac:0/1 - Pade’s approximation
# /multipole fitting

%BZConv # BZ convolution options
"tetra" | "imfreq"
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%

%FreqGrid # Frequency grid param.
3 | 16 | 0.42 | 0.0 | 0 # iopf|nom|ommax|ommin|nomeg_blk
% # iopfq= 1 (eq. spaced),

# 2 (Gauss-Laguerre) or
# 3 (double Gauss-Legendre)

%MixBasis # Mixed basis parameters
0.4 | 1 | 1.E-2 # Q, lmax_mb, lamda_mb
%

%BareCoul # Options to control the calc. of
2.0 | 1.E-15 # the bare Coulomb matrix
%

nvel = 153.0 # the number of valence electrons

The most important parameters besides the k mesh, the energy cutoff pa-
rameter RKmax and the cutoff for the number of conduction bands (emax
in case.in1) are given in this file. The parameter Q is the main parameter
to control the quality of the basis set for GW within the product basis ex-
pansion (for details on this and all other parameters see reference [86]). The
parameter barcevtol is used to control the tolerance for the reduction of the
bare Coulomb matrix elements which are quite time and memory exhaustive
within the product basis expansion (a value of 0.6 is usually safe for many
systems). For most cases a Gauss–Legendre integration routine is used for
the frequency integral in equation 1.7.2 (usually 16 points and a maximal
frequency of 0.42 Hartree are safe values). In principle all parameters have
to be checked for convergence to obtain high quality results, but most of the
parameters given in the example file (and set automatically by "gap2_init")
are safe values. In summary the most important parameters controlling the
quality and computation time of the calculations are the size of the k mesh,
RKmax, number of conduction bands, Q and barcevtol.

5.5.2 BSE calculations

The BSE calculations are applied perturbatively on top of standard DFT or
GW calculations. The BSE program consists of four separate programs:

• DM: Calculates the microscopic dielectric function.

• WD: Calculates the direct term of the BSE Hamiltonian.
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Table 14: Necessary files for BSE calculations. The first column shows the
WIEN2k file name. The second column shows the filename for BSE.

WIEN2k BSE

case.vsp vsp
case.vns vns
case.inop inop
case.struct struct
case.in1 in1_DM,in1_WDVX

inBSEkgen
input
energy_DM,energy_WDVX
vector_DM,vector_WDVX
mommat_DM,mommat_WDVX

• VX: Calculates the exchange term of the BSE Hamiltonian.

• BSEdiag: Solves the BSE Hamiltonian and calculates the coupling co-
efficients for the macroscopic dielectric function given in the form of
equation 125.

The BSE calculations are applied perturbatively on top of standard DFT
or GW calculations. Files containing the vectors and the eigenvalues for the
whole Brillouin zone are required to run the calculations. Also a higher num-
ber of conduction states than in standard DFT calculations is required. To
account for this the parameter emax in the case.in1 has to be increased (a
good value is around 7.5 to 10 Ryd for many insulators).
The necessary files for running a BSE calculation are listed in table 14.

If the calculations are carried out spin-polarized the calculation is split into
to calculations for the spin-up and spin-dn states. All files with the excep-
tion of inBSEkgen and inop get an affix "_up" and "_dn" for the spin-up
and spin-dn calculations, respectively. The BSE programs are not using the
"case.ending" nomenclature.
The following steps are needed to prepare a BSE calculation:

1. Setting up calculational directory

2. Copying the struct, vsp, vns, in1_DM, in1_WDVX inBSEkgen, inop
and input files from the preliminary calculation into the calculational
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directory. The parameter emax in in1_DM and in1_WDVX has to be
set to a higher value.

3. Executing "execBSEkgen". This program prepares the necessary input
files for the k, k′ pairs.

4. Executing execlapw1optic: This program calculates the necessary en-
ergy, vector and mommat files. The mommat files are needed for the
calculation of the head and the wings of the microscopic dielectric func-
tion.

The following mpi programs have to be executed consecutively to run the
BSE calculation ("-np nproc" defines the number of processors nproc):

1. "mpirun -np nproc DM [-up] [-dn]"

2. "mpirun -np nproc WD [-up] [-dn]"

3. "mpirun -np nproc VX [-up] [-dn]"

4. "mpirun -np nproc BSE_diag [-up] [-dn]"

In the case of no inversion symmetry all of these programs have to be called
with the suffix "c", i.e. DMc)
In the following the three input files needed to control the BSE calculations
are described.

inop:

500000 1 last and first k-point
-7.0 7.5 Emin, Emax for matrix elements
3 number of choices (columns in *outmat)
1 Im xx
2 Im yy
3 Im zz
ON

This file controls the input parameters for the macroscopic dielectric tensor,
which is calculated by calling the optic [157] program available within the
WIEN2k package.

inBSEkgen:
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1 0 = no symmetry , 1 = with symmetry
0 0 0 5 q-vector (qx,qy,qz,qdiv)
1 switch (see below)
3 3 3 division of Brillouin zone for DM
3 3 3 WD/VX

line 1 : 0 = no symmetry operations are used
1 = the symmetry of the given q-vector is exploited

line 2 : qx qy qz qdiv (do not change)

line 3 : 0 = generates 2 k-lists shifted by
the vector q (case.klist and case.klistq)

1 = generates list of all possible {k,k+q}
pairs, a list of all q-vectors
and a unix-script to calculate the
dielectric matrix for all q’s needed.

2 = generates 2 k-lists used for the matrix
elements needed for the computation
of lifetime of hot electrons.
case.klist : contains only the q-vector from

line 2 (actually it is a k
in this context)

case.klistq : contains all k+q vectors needed

line 4 : division of Brillouin zone for DM
line 5 : if exists division of Brillouin zone for VX, WD
line 6 : if exists extras ( na nb nc)
line 7 : if exists (1 - only extras, 0 - extras + rest)

This file controls the input parameter for the k mesh.

input:

scissors 0.0 # scissors shift [eV]
scalebands 1.0 1.0 # scaling factor for (val., cond.) bands
eminmaxDM -7.0 7.5 # energy cutoff for DM
gmax_WD 2.0 # max. magnitude of G vector for exp(iGr)
gmax_VX 2.0 # max. magnitude of G vector for exp(iGr)
gmax_DM 2.0
gmax_DM_max 2.0
lmax_besel 2 # max of l in expansion of exp(-i(q+G)r)
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lmax_wave 2 # max of l in expansion of wave func. (sphere)
offesDM 1 # calculate off-diag elements of eps_GGp(q)
formatVXWD 1 # VX, WD files 0-ascii, 1-binary
nbandsVXWD 1 5 # number of (val.,cond.) bands in VX, WD
nbandsBSE 1 5 # number of (val.,cond.) bands used in BSE
noccbands 77 # number of occupied bands
noccbandsDM 77

nbuf 1000

scrlevel 1 # screening level in WD:
# 1 - the full {g, g’} dependence is used
# 2 - a diag. approx. is used (g = g’) using
# the inve. diel. matrix eps^{-1}_{gg}(q)
# 3 - a diag. approx. is used (g = g’) using
# the dielectric matrix eps_{gg}(q)
# 4 - a long range screening
# is used (const. tensor)

epstensor #
6.8576111 0.0000000 0.000000
0.0000000 6.8576105 0.000000
0.000000 0.000000 6.5021884

diroffBSE 1 # 0 : local field effects only
# (direct interaction = zero)

nexoutBSE 10000 # number of states written
# into files

eminemaxBSE 0.0 30.0 0.02 # emin, emax, de in [eV]
broadBSE 0.12 0 # broadending of spectrum [eV]

# , lineshape
polBSE 1 # polarization
spinBSE 1 # 1 -singlet, 2 - triplet
factor_WD 1.0

g_par 0 # 0: parallelization only over
# number of G vectors
# 1: first parallelization over:
# number of k and q in DM
# number of kkp pairs in WD

108



# number of k points in VX
# second parallelization over number
# of G vectors

blocksize 64 # blocksize for G vector parallelization

This file controls the main input parameters for the BSE calculations. A
short description for the parameters is given in the following:

• scissors: Gives a scissor shift in the calculation of the microscopic di-
electric function.

• scalebands: Scaling factor of valence and conduction bands

• eminmaxDM: Controls the energy range for the bands involved in the
calculation of the dielectric matrix. A value of 7.5 to 10 Ryd is usually
safe for many insulators.

• gmax_DM,gmax_WD,gmax_Vx: Sets the maximum value of the G
vector in the expansion of ei(q+G)r for the matrix elements within the
muffin-tin spheres (see equation 150).

• lmax_bessel: Sets the maximum value of l in the expansion of ei(q+G)r.

• lmax_wave: Sets the maximum value of l in the expansion of the wave
function within the muffin-tin spheres.

• offesDM: Controls whether off diagonal elements of the microscopic
dielectric function are calculated or not (0 - off-diagonal elements are
zero. 1 - off-diagonal elements are calculated).

• formatVXWD: Controls the format of the output files in VX, WD.

• nbandsVXWD, nbandsBSE: Controls the number of valence and con-
duction bands used in the calculation of the exchange and direct term
of the BSE Hamiltonian and the diagonalization of the Hamiltonian,
respectively. The calculational time depends very strongly on these val-
ues. Usually for good quality calculations all valence bands and a lot
of conduction bands are needed. The number of bands can be reduced
for e.g. strongly localized valence electrons, but convergence tests have
to be conducted in each case.

• noccbands,noccbandsDM: Number of valence bands. This parameter
has to be set correctly, otherwise the program will not know how many
valence bands are used (these values can be easily obtained from the
case.scf files).
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• nbuf: Buffer size used in the calculations (a value of 1000 is quite safe).

• scrlevel: Describes the screening for the direct term (always use 1).

• epstensor: Describes the long rage tensor if option 4 is chosen for scr-
level.

• diroffBSE: Controls whether direct term is set to zero or not (0 - direct
term is set to zero, 1 - direct term is fully calculated).

• nexoutBSE: Number of states written into output files.

• eminemaxBSE: Sets the output parameters for the macroscopic dielec-
tric function.

• broadBSE: Controls the broadening of the spectrum.

• polBSE,spinBSE,factor_WD: Control parameters for special cases.

• g_par: Controls how the program is parallelized ( 0 - used for big cells
with a very high number of G vectors and a low number of k points or
when the memory allocation is a critical issue, 1 - used for small cells
with many k points and low memory usage).

• blocksize: Controls the blocksize for the scalapack routines.

Some comments on running and setting up the BSE calculations:

• Depending on the case several hundreds of computational cores are
needed for the calculations, i.e. a calculation for a Li16F15 cell with
RKmax = 7, k mesh of 6 × 6 × 6, Gmax = 2 Bohr−1 , emax = 10.5
Ryd, 1 valence band and 5 conduction bands for the BSE Hamiltonian
requires altogether a calculation time of 36 hours on 800 cores.

• The main output files are epsilon(_singlet, _triplet) and epsilon(_singlet,
_triplet)_noint files which contain the macroscopic dielectric function
with and without corrections from the BSE, respectively. The output
file exciton(_singlet, _triplet) contains the excitonic energies, binding
energies and oscillator strengths.
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5.5.3 Volume optimization within the ACFDT formalism

The ACFDT calculations consist of 3 steps (as described in section 4):

1. A preliminary DFT calculation using a (semi-)local exchange-correlation
functional.

2. Calculation of the Hartree–Fock exchange energy using the previously
calculated DFT orbitals.

3. Calculation of the ACFDT correlation energy using the DFT orbitals.

These steps are wrapped up into scripts for the volume optimization. The
(RPA-)ACFDT calculations are performed starting from the calculational
directory of the standard WIEN2k calculation using the following steps:

1. All files and the calculational directory have to be (re)named (from
"case.*") to "HFRPA.*", since the scripts need this kind of file struc-
ture.

2. "x optimize" has to be run in the calculational directory to obtain the
desired volumes.

3. The first parameter in "HFRPA.in0" has to be changed from TOT to
KXC. Also the IFFT grid and the enhancement factor (at least 4) in
"HFRPA.in0" have to be increased.

4. "init_hf" has to be run in the calculational directory to create the
necessary input files. α has to be set to 1.00 and the line contain-
ing λ (lambda=0.165) has to be deleted to obtain pure Hartree–Fock
exchange. The line for nband is not used, but should be set to an ar-
bitrary value. gmax has to be set to a very high value (gmax=12) to
obtain good convergence.

5. "x kgen" has to be executed again using the same k mesh as for Hartree–
Fock.

6. The parameter emax in HFRPA.in1 has to be set to a higher value
(usually 7.5 to 10 is safe for most insulators).

7. The necessary input files input, inop and inACkgen have to be copied
into the calculational directory and renamed as HFRPA.input, HFRPA.inop
and HFRPA.inACkgen, respectively. The input parameters in these
files are described below.
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8. The optimize.job script for ACFDT calculations has to be copied to
the calculational directory. After the setting the parameters in this file
the command "optimize.job" has to be executed. This script generates
the input directories for the ACFDT correlation-energy calculations at
different volumes, as e.g. "AC_HFRPA_vol*", and runs the (semi-
)local DFT and Hartree–Fock calculations.

9. The (RPA-)ACFDT correlation energy calculations are started for each
volume separately in the corresponding subdirectory "AC_HFRPA_vol*"
by calling the command "mpirun -np x AC", where "-np x" defines the
number of processors x.

10. The main output file is outputAC. The lattice constant using ACFDT
correlation energies is obtained by calling the script "hfrpa_analyzer"
in the calculational directory (for available options call the command
"hfrpa_analyzer -h").

The input files for the Hartree–Fock calculations are described within the
WIEN2k manual [85]. The 4 necessary input files for the calculation of the
ACFDT correlation-energy are explained in the following.

HFRPA.inop:

500000 1 last and first k-point
-7.0 10 Emin, Emax for matrix elements
3 number of choices (columns in *outmat)
1 Im xx
2 Im yy
3 Im zz
ON

Choices:
1......Im(eps)xx
2......Im(eps)yy
3......Im(eps)zz
4......Im(eps)xy
5......Im(eps)xz
6......Im(eps)yz
7......Re(eps)xy
8......Re(eps)xz
9......Re(eps)yz
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This file controls the input parameters for the macroscopic dielectric tensor,
which is calculated by calling the optic [157] program available within the
WIEN2k package. The macroscopic dielectric tensor is used for the construc-
tion of the head and wings of the microscopic dielectric matrix. The only
relevant parameters are Emin and Emax in this input file (usually a value of
7.5 to 10 for Emax is quite safe for many insulators).

HFRPA.inACkgen:

1 0 = no symmetry , 1 = with symmetry
0 0 0 10 q-vector (qx,qy,qz,qdiv)
1 switch (see below)
4 4 4 division of Brillouin zone for AC
4 4 4 WD/VX

line 1 : 0 = no symmetry operations are used
1 = the symmetry of the given q-vector is exploited

line 2 : qx qy qz qdiv

line 3 : 0 = generates 2 k-lists shifted by the
vector q (case.klist and case.klistq)

1 = generates list of all possible {k,k+q}
pairs, a list of all q-vectors and a
unix-script to calculate the dielectric
matrix for all q’s needed.

2 = generates 2 k-lists used for the matrix
elements needed for the computation
of lifetime of hot electrons.
case.klist : contains only the q-vector

from line 2 (actually it is
a k in this context)

case.klistq : contains all k+q vectors needed

line 4 : division of Brillouin zone for AC

This file controls the input parameter for the k mesh.

HFRPA.input:

noccbandsAC 4 # Number of occupied bands
scissors 0.0 # scissors shift [eV]
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eminmaxAC -7.0 900.5 # energy cutoff for AC
gmax_AC 8.0 # Cutoff for reciprocal lattice vectors
gmax_AC_max 8.0
gnum_extrapol 5 # Number of G’s for extrapolation
gratio_extrapol 0.05 # Reduction for each step in

# extrapolation (0.05=5%)
scalebands 1.0 1.0 # scaling factor for (val., cond.) bands
lmax_besel 4 # max of l in expansion of exp(-i(q+G)r)
lmax_wave 4 # max of l in expansion of wave

# function (sphere)
g_par 1 # 0: parallelization only over number

# of G vectors
# 1: first:number of k and q in AC
# second: parallelization over
# number of G vectors

blocksize 64 # blocksize for G vector parallelization
broadAC 0.0 # opt. input: broadening for polarization
omegaAC 1 0.0 35.0 16 # frequ. grid: integr. scheme, min, max,

# number of frequency points(even)
# integration schemes:
# 0 - equally space
# 1 - Gauss-Legendre

calc_head 0 # 0: head calculated
# 1: head set to 0

calc_wings 0 # 0: wings calculated
# 1: wings set to 0

freq_opt 1 # Option for storage of frequ. points
# 0: frequency outer loop
# (high cpu time, low mem)
# 1: frequency inner loop
# (low cpu time, high mem)

A short description for the parameters is given in the following:

• noccbandsAC: Number of valence bands. This parameter has to be
set correctly, otherwise the program will not know how many valence
bands are used (these values can be easily obtained from the case.scf
file).

• scissors: Gives a scissor shift in the calculation of the microscopic di-
electric function.
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• eminmaxAC: Controls the energy range for the bands involved in the
calculation of the dielectric matrix. Emax has to be set to a very
high value since all bands are needed to correctly describe the RPA
correlation energy (units in Ryd).

• gmax_AC: Sets the maximum value of the G vector in the expansion
of ei(q+G)r for the matrix elements within the muffin-tin spheres (see
equation 150. This value should be set to a value which is approxi-
mately 75 to 90 percent of Kmax, which is the cutoff for the largest
vector of the basis set in in1_AC (see RKmax), to obtain a balanced
basis set [149].

• gnum_extrapol: The correlation energy in the infinite large G limit
G∞ is obtained by extrapolation of the correlation energies at dif-
ferent Gi’s using the following equation Ec(Gi) = Ec(G∞) + A

(Gi)3
.

gnum_extrapol controls the number of points i for the extrapolation.

• gratio_extrapol: Sets the reduction step sr for Gi which are applied
as Gi = Gmax · sir.

• lmax_bessel: Sets the maximum value of l the in expansion of ei(q+G)r.

• lmax_wave: Sets the maximum value of l in the expansion of the wave
function within the muffin-tin spheres.

• g_par: Always use option 1. This feature is not tested well. Don’t
change this parameter!!!

• blocksize: Controls the blocksize for the scalapack routines.

• broadAC: Adds a broadening within the response function.

• omegaAC: Controls the options for the frequency integration. Usually
16 points for the Gauss–Legendre integration is enough. The maximum
frequency for the integration has to be higher than the band gap of the
material. If an equally distant grid is chosen for the frequency points
then no integration of the correlation energy is carried out.

• calc_head,calc_wings: Controls whether the head and wings are set
to zero or calculated using k·p (by using the mommat files). Mommat
files are also required to run the program if the head or wings are set
to 0!!!
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• freq_opt: Controls whether the frequency loop is an outer loop or an
inner loop. By setting this option to 1 the computational time can be
reduced by a factor equal to the number of frequency points, but at
the same time the memory requirement grows by the same factor.

optimize.job:

#!/bin/csh -f

if (-e HFRPA.clmsum && ! -z HFRPA.clmsum) then
x dstart -super

endif
if (-e HFRPA.clmup && ! -z HFRPA.clmup) then

x dstart -super -up
x dstart -super -dn

endif

foreach i ( \
HFRPA_vol__-9.0 \
HFRPA_vol__-6.0 \
HFRPA_vol__-3.0 \
HFRPA_vol___0.0 \
HFRPA_vol___3.0 \
HFRPA_vol___6.0 \
HFRPA_vol___9.0 \

)

rm HFRPA.struct # NFS-bug
cp $i.struct HFRPA.struct

clmextrapol_lapw
if (-e HFRPA.clmup && ! -z HFRPA.clmup) then

clmextrapol_lapw -up
clmextrapol_lapw -dn

endif

#-----------Semi_local_potential--------------------
run_lapw -ec 0.000001 -cc 0.000001 # -p -it

# runsp_lapw -ec 0.0001 -cc 0.0001 # -p -it
# min -I -j "run_lapw -I -fc 1.0 -i 40 "

#-----------Semi_local_potential--------------------
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#-----------Input_preparation_for_RPA---------------
mkdir AC_$i
cp HFRPA.struct AC_$i/struct
cp HFRPA.vns AC_$i/vns
cp HFRPA.vsp AC_$i/vsp
cp HFRPA.in1 AC_$i/in1_AC
cp HFRPA.inACkgen AC_$i/inACkgen
cp HFRPA.inop AC_$i/inop
cp HFRPA.input AC_$i/input
cd AC_$i
/psi19/ferenc/ACFDT/2nd_TRY/execACkgen
/psi19/ferenc/ACFDT/2nd_TRY/execlapw1optic
cd ..

#-----------Input_preparation_for_RPA---------------

#-----------Saving_semi_local_run-------------------
save SLOUT_$i

#-----------Saving_semi_local_run-------------------

#-----------Hartree_Fock_run------------------------
if (-e HFRPA.vectorhf) then

rm -f HFRPA.vectorhf
endif
run_lapw -hf -nonself

# runsp_lapw -hf -nonself
save HFOUT_$i
rm -f HFRPA.vectorhf*
rm -f HFRPA.energyhf*

#-----------Hartree_Fock_run------------------------

# set stat = $status
# if ($stat) then
# echo "ERROR status in" $i
# exit 1
# endif
# save_lapw -f -d XXX $i
end

This file has to be adapted to the individual needs before running it.
Some comments on running and setting up the ACFDT calculations:
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• The preliminary DFT calculations have to be converged very accu-
rately (usually by running with the option "run_lapw -ec 0.000001 -cc
0.000001").

• Depending on the case several hundreds of computational cores are
needed for the calculations, i.e. solid Kr with an RKmax of 9.8, Gmax of
8.0 Ryd−1 and a k mesh of 4×4×4 needs approximately 500 seconds on
1024 cores. k mesh and RKmax convergence has to be tested carefully
from the bottom up for each compound. The calculation time increases
very strongly with the number of k points and a higher RKmax, so the
convergence of the k mesh and RKmax have to be tested carefully from
the bottom up for each compound.
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