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Abstract

A large amount of the performance of a solar cell device is governed by point defects
and impurities within the material. The computation of defect formation energies
therefore allows the calculation of numerous macroscopic quantities such as diffusion
coefficients, charge carrier or defect concentrations.
In the last decades, first-principle calculations have emerged as a powerful tool to
compute formation enthalpies of point defects. However, it has been so far difficult to
include temperature dependence within such calculations. An approach to solve this
issue is the inclusion of temperature through the calculations of formation entropies.
Until now large discrepancies for the value of the formation entropy can be found
in the literature for systems as simple as the silicon vacancy. The interest of this
work therefore lies in establishing and testing a methodology to compute formation
entropies to reach the next level in accuracy for point defect calculations.
In this context, first principle density functional theory methods are used to study
the energetics of various structural configurations of the silicon vacancy in charge
states ranging from -2 to +2. The harmonic phonon frequencies and the vibrational
formation entropy are calculated using the frozen phonon method. Moreover, the
literature on different computational models used to calculate the formation entropy
is reviewed.

For the silicon vacancy, three stable charge states (neutral, +2 and -2) are found that
exhibit different symmetry configurations in their ground state structure. Moreover,
the neutral silicon vacancy undergoes a Jahn-Teller distortion from a Td to a D2d

symmetry configuration. For the neutral vacancy a formation entropy of -2 kB is
obtained for Td and -3 kB for D2d at high temperatures. Extensive comparisons with
several theoretical and experimental studies show that the conducted calculations
are heavily impacted by finite size effects. Additionally, it is concluded that a high
precision is required for real space projectors and sampling of the k-point and q-
point grid. Furthermore, it is found that different symmetry configurations trigger
different formation entropies and that frequency regions contribute differently to the
total formation entropy.
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Kurzfassung

Die Effizienz einer Solarzelle wird zu einem großen Anteil durch die im Halbleiter-
material vorkommenden Punktdefekte bestimmt. Die Berechnung der zur Defekt-
bildung notwendigen Energie kann daher Aufschluss über makroskopische Größen
wie Diffusionskoeffizienten, Ladungsträger und Defektkonzentrationen geben. First-
principle Methoden haben sich über die letzten Jahrzehnte als Standard für die
Berechnung der Enthalpie der Defektbildung etabliert. Allerdings hat es sich bisher
als schwierig herausgestellt Temperaturabhängigkeiten mit dieser Methode zu berück-
sichtigen.
Ein Ansatz zur Lösung dieses Problems ist das Miteinbeziehen der Berechnung der
Defektbildungsentropien. Jedoch wurde bisher kein Konsens gefunden, wie diese zu
berechnen seien. Selbst für einfache Systeme, wie für die Leerstelle in Silizium, wer-
den verschiedenste Werte in der Literatur berechnet. Deshalb ist es von Interesse
einen Formalismus zur Berechnung der Defektbildungsentropien, der die Bildung
von Punktdefekten genauer beschreiben kann zu bestimmen und zu testen.

In diesem Zusammenhang wird die first-principle Dichte Funktional Theorie ver-
wendet, um den elektronischen Grundzustand und die elektronische Grundstruktur
der Leerstelle in Silizium für verschiedene Ladungszustände zu bestimmen. Die
’frozen phonon’ Methode wird herangezogen, um die harmonischen Frequenzen der
Phononen und die Defektbildungsentropie zu berechnen. Außerdem wird ein kurzer
Überblick über die verschiedenen bereits entwickelten theoretischen Modelle gegeben.

Für die Leerstelle in Silizium werden drei stabile Ladungszustände gefunden (neu-
tral,+2 und -2), die in ihrem Grundzustand verschiedenste Symmetriekonfiguratio-
nen einnehmen. Des Weiteren erweist es sich als energetisch günstig für die neutral
geladenen Leerstelle ihre Symmetrie über den Jahn-Teller Effekt von Td auf D2d

Symmetrie zu erniedrigen. Es ergeben sich eine Defektbildungsenropie von -2 kB für
Td und -3 kB für D2d Symmetrie bei hohen Temperaturen.
Der Vergleich mit vielzähligen theoretischen und experimentellen Studien zeigt, dass
im Allgemeinen Berechnungen stark von der endlichen Größe der verwendeten Sim-
ulationsbox abhängen. Außerdem wird klar, dass eine hohe Präzision für die Pro-
jektoren zwischen realem und reziprokem Raum und für die Integration über k- und
q-Raum für akkurate Berechnungen unabdingbar ist. Schlussendlich wird erkannt,
dass verschiedene Symmetriekonfigurationen zu unterschiedlichen Defektbildungsen-
tropien führen und dass einzelne Frequenzdomäne unterschiedlich zur totalen De-
fektbildungsentropie beitragen.
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1 Introduction

The increasing consumption of non-renewable energy sources has been voted one
of the top ten global issues to tackle in our lifetime by the United Nation’s Global
Action Forum forum in 2015 [1]. The development of affordable, inexhaustible and
sustainable energy systems is therefore one of the most important challenges facing
mankind today and in the near future.

In this context, solar energy has become an interesting technology to move towards
renewable energy sources. It enjoys a glowing outlook due to falling solar energy
costs and gains in efficiency.
In the following section, the chances of solar energy generation will be highlighted
and the role of point defects and impurities will be introduced.

1.1 Why Solar Energy?

The sun has an impressive renewable energy potential: everyday a power of 1.362kW
per m2 reaches the Earth from the Sun (D0 = 1.362 kW per m2 is called the solar
constant [2]). Subsequently, one can deduce than an outstanding potential energy
of approximately 23000 TW-years [3] reaches the Earth every year. In comparison,
the world’s primary energy supply in 2012 of electricity and fossil energy amounted
to 18 TW-years (corresponding to 155 500 TWh of energy or 13371 Mtoe [4]).
But how do other energy sources stand in comparison? Figure 1 shows a comparison
between the known reserves of finite fossil and nuclear resources and the yearly
potential of renewable alternatives.

Figure 1: Energy spheres - The volume of each sphere represents on the left the total
amount of energy recoverable per year from renewable sources and on the right the
known finite reserves of non-renewables [3, 5, 6]

One can easily notice that the solar resource is orders of magnitude larger than all
other reserves together. If one wants to meet the world’s energy demand by using
wind and biomass, the two sources would almost have to be pushed to the edge of
their exploitable potential. On the other hand, only a small fraction of the sun’s
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potential would be sufficient to meet the same requirements. Finite reserves like
coal and uranium are still vastly endogenous, but far from limitless. Therefore,
theoretically a big portion of the consumed energy per year could be supplied by
solar energy. However, the world’s current total primary energy consumption tells
a different story.

In 2013, 82% of the worlds energy supply was derived from coal, oil and gas [4].
At the same time our global annual consumption of 18 TW-years rose at a rate
of 2.3% [6]. According to the IEA Key World Energy Statistics [4], in 2012 the
renewable energy share of the total primary energy supply made about 13% (see
Figure 2). A large share of this amount was generated by traditional biomass and
biofuel, whereas only 3.5% did come from modern renewable energies like hydro,
wind, solar and biomass heat [7]. Within the global electricity generation renewables
had a share of 22% in 2012 [8].

Figure 2: World total primary energy supply and the renewable energy share in
2012 [4, 7]

Assuming the world’s energy consumption continues to grow by two percent
annually [6], fossil and nuclear reserves which today represent an energy source
of 1700 TW-y [3], will be depleted around 2080 and the world will be dependent
on alternative energy sources. Looking back at Figure 1 the importance of solar
energy ultimately derives from the lingering long-term threat of climate change due
to increased CO2 emissions. It is a technology that promises to sustain the world’s
long-term energy requirements while reducing CO2 emissions.

To get an estimate on what it would mean to meet the world’s energy demand with
current solar cell technologies, one can calculate the following. Under Standard Test
Conditions (STC: AirMass = 1.5, T = 25◦C [9]) a radiation intensity of 1000 W
strikes 1 m2 of land on Earth. Considering an area that has 250 sun days per year and
8 hours of daylight, one obtains 2000 sun hours per year (e.g. Vienna’s annual sun
hours: 1930 h [10]). Current commercially available solar panels have an efficiency
η of around 20%. All together this yields a power of 0.2 kW/m2 and a capacity of
400 kWh per square meter for a solar panel. Using this capacity the surface of a
solar panel necessary to power the whole world would be about 400 000 km2 big.
This is comparable to the size of Spain or 4 times the size of Austria or 1/18 of
the size of the Sahara desert. However, solar technology still has to overcome the
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obstacles of being integrated into a network of existing electricity systems on a large
scale. One problem thereby is the intermittent supply of electricity of solar resources
which are not continuously available and do not produce power at night.

Figure 3: Size of a solar panel to meet the world energy consumption would be
400 000 km2, which is approximately 4-times the size of Austria

A commonly used term to economically compare different energy generation
solutions is the levelized costs of electricity (LCOE). The LCOE [11] represent the
netto value of the unit-cost of electricity over the lifetime of a power generation
plant. The LCOE can be calculated as follows

LCOE =
CAPEX + OPEX

EP
(1)

where CAPEX are the capital expenditure and investment costs, OPEX are the
operations, maintenance and fuel costs and EP is the electricity production (in
kWh). In the case of photovoltaic CAPEX are higher than for fossil energies, while
one does not have to account for fuel cost when calculating OPEX. In Figure 4
the levelised costs of solar electricity are shown for different countries. On the
contrary to its poor share in the total energy mix solar energy has very well become
a competitive alternative to conventional energy sources in certain areas. Especially
in sunny places or places where conventional electricity is expensive. To take some
examples from Figure 4a in China, India and the US the LCOE can range around
100 USD/MWh.
In addition to the levelized costs of electricity, it is crucial to put into perspective
the way prices are set. The competitiveness of solar energy depends on the cost and
value of energy in the respective market where it is sold. Markets in China, the US
or India may lead to various marginal costs of electricity depending on policies and
regulations.

To compare the LCOE for PV to other energy reserves in Figure 4b the LCOE
for different energy sources in Germany is shown. One can see that photovoltaic
technologies are almost at the same level as conventional energy resources. Moreover,
it is predicted that PV utility-scale power plants in Germany will drop below the
average LCOE for all fossil fuel power plants by 2030 [12].
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Figure 4: Levelised cost of Electricity (LCOE): (a) for solar electricity by region
(USD/MWh), Source: Bloomberg New Energy Finance [13] and (b) LCOE of
renewable energy technologies and conventional power plants of Germany in 2013,
Source: Frauenhofer Institut for solar energy systems [12]

Generally, solar energy enjoys a glowing outlook due to falling energy costs and
gains in efficiency in recent years. In 2013 PV power generation grew by 30% [6]
and PV prices reported a drop of 50%− 70% per installed watt [14]. In fact during
the last 40 years one could observe a very constant relationship between the cost
and the deployment of solar panels. The Swanson law [15] states that with every
doubling of production solar panel costs fall by 20%.
One obstacle PV technologies still have to overcome are their relatively low
efficiencies of large scale solar panels. Although theoretically, only an hour of sun
provides enough energy to power the world for a year, it is impossible to capture
all energy due to limitations in efficiency. The efficiency η of an energy generating
device is defined by

η =
Useful energy output

Energy input
(2)

For example the efficiency of a solar cell is defined as the incident solar power from
the sun Plight and the usable converted amount of electrical power Pm.

ηsolar =
Pm
Plight

(3)

According to the Carnot theorem [16] the maximum efficiency ηCarnot of a moving
solar cell device is 85% and can be calculated by

ηCarnot = 1− T1

T2

(4)

where T1 is the temperature of the solar cell and T2 the temperature of the sun.
However, practical efficiencies today are still far from the theoretical limit of 85%
due to reflectance inefficiency, charge carrier separation and conductive inefficiencies.
Current commercially available large scale photovoltaic (PV) technologies have
efficiencies of 16 − 20% on average. Record efficiency of a large scale solar cell
panel is 25.6% (2014 Panasonic) and the record efficiency for a small scale solar cell
obtained in the laboratory is 46% (2015 Frauenhofer ISE and Soitec [17]).
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It is known that the efficiency of a solar cell is highly influenced by the charge
carrier lifetime properties to extract currents [18, 19]. The lifetime of the charge
carriers is influenced by the defect structure of the material. Due to defects in the
bulk material and on surfaces of a solar cell material its charge carrier lifetime and
therefore its efficiency is altered by the presence of defects. It is therefore important
to be able to control the formation of defects and impurities in the material.

1.2 The role of defects and impurities in solar cell materials

The efficiency of a solar cell device can be significantly altered by the introduction of
point defects and impurities. Some defects can be beneficial and desired when they
provide a free charge carrier of a certain type to the system leading to an increase in
conductivity. On the other hand, their presence can be unintentional and harmful
when they recombine with the charge carriers in the solar cell yielding lower device
efficiencies.
In semiconductor devices, the intentional incorporation of impurities is called doping
and can currently be regulated with high accuracy, especially in silicon. When
exploiting semiconductor materials one needs to be able to control the formation
of defects. However, the experimental investigation of point defects is typically
difficult and can sometimes only be achieved by an ingenious combination of different
techniques [20,21]. With the advent of numerical methods and powerful computers,
theoretical modeling has emerged as a predictive tool to complement experiments.
A formalism based on the Gibbs free energy of forming a defect allows the
calculation of point defect structures and concentrations. Currently, the energetics
of point defects are mostly studied using first principle techniques. Due to
the importance of this methodology several review papers have been published
[22,23]. This methodology has been quite successful in calculating electric properties
and formation enthalpies of native and impurity defects. However, those defect
calculations are mostly conducted assuming 0 K for the temperature.
For several years, temperature dependent contributions to the formation energy
were neglected because of their high computational effort. However, the formation
of defects is triggered by temperature such as the defects encountered during thin
film growth like annealing or evaporation.
especially during high temperature processing conditions like annealing or evapo-
ration the concentration and formation of defects depend heavily on temperature.
Several recent studies [24–26] claim that the formation entropy of a defect cannot
be neglected and can add a term as high as 1.3 eV to the defect formation energy at
elevated temperatures [27]. It is therefore thermodynamically necessary and correct
to include the formation entropies, or in other words ”without entropy to comple-
ment energy, thermodynamics would have the impact of one hand clapping” [28]
. Consequently, the creation of a computational methodology to calculate the for-
mation entropy is a crucial step to reach the next level in accuracy of point defect
computation. The inclusion of formation entropies promises a better prediction of
the experiment and a deeper insight on the formation of point defects. Furthermore,
it will supply knowledge on how to create higher efficiency solar cells.
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In this work, at first a theoretical overview on the role of point defects and impurities
in solids is given to supply the reader with a basic review on semiconductor
physics. The reader will learn about the thermodynamic formalism that allows the
investigation of physical properties of point defects, indicating how thermodynamic
quantities like formation energy and entropy can be derived. Within Chapter 3 the
computational approach to this formalism is explained by laying out the theoretical
background on electronic ground state and phonon calculations. This is done by a
description of density functional theory (DFT) and the frozen phonon method.

In Chapter 3.3, the literature on computational models for calculating the formation
entropy is reviewed. Subsequently, phonon calculations on the silicon bulk material
are conducted using DFT and the frozen phonon method. Afterwards, the
methodology is tested by carrying out a systematic study of the formation entropy
of the silicon vacancy in its different structural modifications.

Finally, in Chapter 7 an overview on the conducted research is given and results and
findings are summarized.

2 Theory on Defects and Impurities in Solids

Semiconductors are useful for device applications because of the possibility to modify
their electrical properties by incorporating impurities and defects. In fact, defects
can have a huge impact on the electronic properties of semiconductors.

2.1 Energy Band structure

The behavior of the electrons in a solid can be described within the model of
the electronic band structure. In a single, isolated atom electrons occupy discrete
energy levels. In a crystal, atoms are not isolated anymore and their allowed energy
levels are smeared out into energy bands. Those energy bands can be occupied by
electrons. In between those bands lie energy states that electrons cannot occupy
called energy band gaps. The highest energy band that is occupied by electrons is
called the Valence Band Maximum (VBM). The conduction band (CB) quantifies the
band of orbitals above the valence band (VB) that is high in energy and unoccupied.
In between the CB and the VB lies an energy gap, the so-called band gap.

2.2 Semiconductors

Semiconductors are classified according to their conductivity intermediate between
the conductivity of metals and insulators. Alternatively, semiconductors can be
defined regarding their energy band gap Eg for electronic excitations. The best-
known semiconductor is probably silicon, whose band gap is about 1.1 eV large.
Metals are materials with zero band gaps, while insulators are mostly known to
have an energy gap larger than 3 eV [29]. It turns out that materials with large
band gaps are difficult to obtain with a conductivity similar to the one of metals.
In a semiconductor at T = 0 K the VB is filled with electrons and the CB states
are unoccupied. For T > 0 K conduction can take place if electrons acquire enough
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energy to overcome the band gap, leaving a hole behind in the VB. In an intrinsic
pure semiconductor the energy required by the electrons to do so is the energy gap
Eg. Such properties do not exist in metals and thermal activation of electrons can
be difficult in insulators.

Fermi-Level

The occupation of an energy state by a given particle is defined by the Fermi-
Dirac statistics. In semiconductors, particles occupying those energy states can be
electrons or holes, both are fermions. The Fermi-Dirac distribution f(E) gives the
probability that an electronic state at energy E is occupied by an electron. Similarly,
1− f(E) gives the probability of finding a hole at the energy E.

f(E) =
1

1 + exp((E − EF )/kBT )
(5)

In equation (5), kB is the Boltzmann constant, T is the Temperature and the Fermi-
Level EF is a chemical potential whose position depends on the electron and hole
carrier concentrations n and p. In an intrinsic semiconductor the Fermi-Level lies
in the vicinity of the middle of the band gap due to the same number of electrons
and holes (n = p). If however the concentration of free holes p increases the Fermi-
Level will shift towards the valence band maximum (VBM - EV ). A higher electron
concentration n in the system will lead to a shift of the Fermi-Level towards the
conduction band minimum (CBM - EC).

Carrier concentration

At first the case of an intrinsic semiconductor is considered where no impurities are
added to the material. In an intrinsic semiconductor the number of electrons n is
equal to the number of holes p, the intrinsic concentration ni,

n = p = ni (6)

n =

∫ ∞
EC

Ne(E)f(E)dE (7)

The integral in (7) goes over the conduction band and Ne(E) is the total number of
allowed energy states per unit energy per unit volume:

Ne,h(E) = 4π

(
2me,h

h2
E

1
2

)
(8)

whereas me,h is the electron or hole mass. To obtain equation (8) the parabolic
approximation is applied, assuming that energy states can be expressed by E =
h̄2k2

2me,h
. In the same manner, the number of holes p is calculated:

p =

∫ EV

−∞
Nh(E) [1− f(E)] dE (9)

For non-degenerate and intrinsic semiconductors the integrals in (8) and (9) can
be approximated by Boltzmann Statistics [30], whereas NC and NV represent the
effective density of state in the CBM and VBM.
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n = NCexp(EF − EC/kBT ) (10)

p = NV exp(EV − EF/kBT ) (11)

This approximation applies for low doping concentrations and the Fermi-Levels lying
several kBT below the CBM. For an intrinsic semiconductor ni equals

n2
i = NCNV exp(Eg/kBT ) (12)

For degenerate semiconductors, equation (6) does not apply anymore and one should
rely on the exact expressions (7) and (9).

Doping

In semiconductors, doping or native defects can modulate the electrical properties.
The term doping refers to the intentional or unintentional incorporation of impurities
and defects in the lattice. Dopants are called donors when they donate an electron
to the system and render it n- type. If they accept an electron resulting in an extra
hole in the system they are called acceptors and render the material p-type. ND

stands for the number of donor dopants and NA for the number of acceptors.

Charge neutrality

However, not all impurities introduced into a material get ionized. For instance, the
number of ionized donors N+

D is given by

N+
D =

ND

1 + gDexp((EF − ED)/kBT )
(13)

and depends on the respective impurity energy level ED and on gD the ground state
degeneracy factor. In a material, the charge neutrality equation must be valid.

p+N+
D = n+N−A (14)

The charge neutrality equation (14) can be used to calculate the Fermi energy
EF . For example if one considers a donor impurity with the concentration ND,
at relatively high temperatures the number of electrons n is approximately equal to
the number of ionized donors N+

D .

n ≈ N+
D (15)

If one knows ND, ED, EC , ND and T one can calculate EF by comparing equation
(10) for n with equation (13) for N+

D .

2.3 Crystallographic defects

Before the probability of forming a defect and its effects on the electronic band
structure is explained, a short overview on crystalline solids and the different
crystallographic defects will be given.
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A crystalline solid is characterized by a periodic arrangement of atoms. The smallest
subdivision which forms the entire crystal lattice when periodically arranged is called
the primitive cell (for a more detailed explanation see 2.7).

A common classification is done regarding the dimension of the defects in point and
line defects. Point defects are isolated atoms and can further fall into the following
categories:

Vacancy: A vacancy is a missing atom A the periodic structure A – symbol VA
Interstitial: An interstitial empty site is occupied by atom A – symbol IA
Substitutional or antisite: A host atom A is replaced by Atom B – Symbol BA

A detail specific to semiconductors is that point defects are more complex as they
can occur in different charge states that exhibit different symmetries [31].

Defects are called intrinsic or native, if they do not involve foreign atoms otherwise
they are called extrinsic.

2.4 Formation enthalpy of a defect

Before one turns to the calculation of the formation enthalpy of a defect, one
should take a closer look at the inherit thermodynamics of the problem. The
thermodynamic enthalpy H is commonly given by

H = U + pV (16)

whereas U stands for the internal energy of the system, p stands for pressure and V
for volume. The formation enthalpy for forming a defect ∆Hf for constant pressure
p and temperature T can be written as

∆Hp,T
f = ∆Up,T

f + p∆V p,T
f (17)

where ∆V p,T
f is the formation volume of the defect. The internal energy U consists

of the static part the total energy at T = 0K Etot and the term Uvib which is
caused by lattice vibrations and accounts for temperature dependence and entropy
contributions.

U = Etot + Uvib (18)

The next steps shortly outline the thermodynamic method that allows the calcu-
lation of the formation enthalpy ∆Hf (D, q) of the defect D in its charge state q.
Additionally, Figure 5 displays a visual illustration of the following equation:

∆HD,q(EF , µ) = [Etot(D, q)− Etot(bulk)]︸ ︷︷ ︸
a)

+
∑
i

niµi︸ ︷︷ ︸
b)

+ q(EV BM + ∆EF )︸ ︷︷ ︸
c)

(19)

a) Total energies The first term is the difference between the total energy
Etot(D, q) of the crystal containing the defect D in its charge state q and the total
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energy of the perfect host crystal Etot(bulk). This difference gives the energy that
is needed to form a defect. Those total energies can be obtained from electronic
structure calculations based on Density Functional Theory (DFT) as explained in
section 3.1.

b) Chemical potentials The number of atoms of type i that are involved in
the defect D is defined by ni. The second term takes into account the chemical
potentials µi = µ0

i + ∆µi which reflect the growth conditions. Hereby, µ0
i is the bulk

chemical potential of atoms of type i under standard thermodynamical conditions
(STP: 273.15 K and p = 1 bar). The difference ∆µi of the chemical potential µi and
that of the elemental material µ0

i has an upper limit for growth conditions that are
rich of atom i: ∆µi ≤ 0.
The integer ni can be ni = +1 if an atom is removed from the perfect host crystal
(e.g.: vacancy) and ni = −1 if an atom is added to the perfect crystal (e.g.:
interstitial defect).

This term b) can also be viewed as the energy of the reservoirs with which the atoms
of the defect are being exchanged. The chemical potential µ0

i can be calculated by
the computational method FERE (Fitted elemental-phase reference energies) [32].

c) Charge effects Similarly, in the third term the ’charge reservoir’ is represented
by its chemical potential, the Fermi Level EF . EF is conventionally defined with
respect to the energy EV BM of the VBM given by EF = EV BM + ∆EF . The charge
state of a defect is indicated by q. If an electron is removed q = +1, if an electron is
added q = −1 and for a neutral defect q = 0. The slope of the formation enthalpy is
positive q > 0 for a donor defect and negative q < 0 for an acceptor defect, whereas
q corresponds to the charge of the ionized defect. For a neutral defect ∆Hf is not
dependent on EF and is represented as a horizontal line.

Figure 5: Illustration of the formalism used to calculate defect formation enthalpies

The concentration of impurity dopants in a material is related to the different terms
of equation (19) and several reviews have been published explaining the factors
limiting the doping of semiconductors [22, 33].

A high free carrier concentration will require a high dopant impurity. This is however
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limited by the solubility of the material which defines how many incorporated
impurities the material can sustain at thermodynamic equilibrium. One can enhance
dopant solubility via control of the chemical potentials in equation (19).

Of course the amount of free charge carriers will also depend on how many dopants
can actually be ionized, and therefore on the ionization energy.

Furthermore, Fermi-Level induced compensation effects can limit the doping as well.
Equation (19) shows that for a donor defect q > 0 and the energy to form a donor
defect increases with EF . When a donor defect is introduced it adds electrons to the
free-carrier charge reservoir whose energy is EF . In the same way, acceptor defect
formation energies decrease with increasing EF . So when doping materials n-type
the formation energy of native acceptors will decrease until they form spontaneously
and take away electrons as free charge carriers.

2.4.1 Defect formation enthalpy diagram

An example of a diagram for the defect formation enthalpy ∆Hf with respect to
the Fermi-Level EF is shown in the following Figure 6 in the case of intrinsic and
extrinsic point defects in ZnO. The Fermi Level is hereby referenced to the VBM.
Visibly, ∆Hf in Figure 6 is strongly Fermi-Level dependent as the defects are shown
in their different charge states.

Figure 6: Defect formation enthalpies with respect to the Fermi energy EF in ZnO
obtained by ab-initio calculations taken from [34]

In the case of ZnO the formation enthalpy of donor defects is found to be lower
indicating a native n-type conductivity. It is also shown that chlorine is a good
candidate to dope the ZnO [34]. For a Fermi energy EF from 1.5 eV to 3 eV the
dominant donor is an antisite defect of a chlorine atom on an oxygen atom. The

17



chlorine atom prefers the antisite defect ClO over the chlorine interstitial Cli due
to its lower formation enthalpy. ClO acts as a n-type dopant as it remains ionized
over the full range of the Fermi energy. This will lead to more free electrons being
available to the system and a shift of the Fermi Level towards the CBM. However,
the n-type doping of chlorine is limited by zinc vacancies VZn.

The stabilization of different charge states as a function of the Fermi level is called
amphoterism. Depending on the location of the Fermi energy defects occur in
different negative or positive charge states. For example, the chlorine interstitial
defect Cli can occur in four different charge states (q = −1, 1, 2 or 3) for different
values of EF .

2.4.2 Transition Levels

Charged defects will occur in the energetically most favorable charge state regarding
the position of the Fermi Level. The transition level between charge state q1 to q2

is the position of the Fermi-Level at which the formation enthalpy of the differently
charged defect are the same ∆fH(D, q1) = ∆fH(D, q2). The transition level ε(q1/q2)
is then given as:

ε(q1/q2) =
∆fH(D, q1)−∆fH(D, q1)

q2 − q1

(20)

A term often found in the literature are shallow and deep dopants. Deep dopants
refer to impurity energy levels ε(q/q′) that are located near the middle of the band
gap. On the other hand the energy levels of shallow donors (acceptors) lie close to
the CBM (VBM) and require little ionization energy to add free charge carriers to
the system. In Figure 7 a deep donor transition level ε(+/0) and a deep acceptor
level ε(0/−) are shown.

Figure 7: Defect formation enthalpy of a defect in three charge states with respect
to the Fermi Level [22]
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2.5 Formation Gibbs free energy of a defect

Contrary to the formation enthalpy ∆Hf the Gibbs free energy ∆Gf of forming a
defect considers full temperature and volume dependence. At temperatures T > 0 K
the entropy of the system has an impact on the formation of a defect. The following
expression gives the formation Gibbs free energy

∆Gf (T ) = ∆Hf (T )− T∆Sf (T ) (21)

Similarly, to the formation energy ∆Hf , the formation entropy of a defect ∆Sf is
given by the difference between the entropy of the defective and the perfect cell

∆Sf = S(defect)− S(perfect)−
∑
i

niµi(T ) (22)

For a vacancy defect in an elemental material this can be simplified to

∆Sf = S(defect)−
(
N − 1

N

)
S(perfect) (23)

with N being the number of atoms in the perfect cell.

2.6 Formation Entropy of a defect

In thermodynamics, the entropy S is a measure of the disorder of a system. In the
1870s Ludwig Boltzmann defined entropy as

S = kB ln Ω (24)

with Ω the number of distinct ways in which a system can be arranged and kB
the Boltzmann factor [28]. For a given macroscopic state, Ω defines the number
of different possible microstates for which the given macrostate can be obtained.
The variables defining a macrostate are thermodynamic averages. Microstates are
specified by the variables of each molecule of the system, their momentum and their
position. If one defines pi as the probability that the system is in the i-th microstate,
the entropy can be written as

S = −kB
∑
i

pi ln pi (25)

By further assuming that the occupation of each microstate is equally probable
resulting in pi = 1/Ω, one again obtains the Boltzmann equation (24).

A necessary step to calculate the entropy of a system to count all the possible
microstates which give rise to the same macroscopic state. In practice this can be
done by calculating the partition function Z of the system,

Zi =
∞∑
n

e−βEi (26)

19



with β = 1/kBT and the total energy E of the i−th microstate of the system.
From calculating the Helmholtz free energy F one can further obtain the entropy
by differentiating by T

F = −kBlnZ S = −∂F
∂T

(27)

Often this problem can be simplified by separating the internal coordinates into
configurational and dynamical ones leading to a configurational and a dynamical
entropy.

2.6.1 Configurational Entropy

Configurational entropy Sconf was to a huge amount understood by Gibbs [35]. The
configurational degree of freedom is defined by the number of distinct ways Ωconf

by which one can arrange n defects on N lattice spots.

Ωconf =
(gDN)!

(gDN − n)!n!
=

(gDN)n

n!
(28)

The internal degree of freedom of the point defect is accounted with the degeneracy
factor gD. This factor takes into account the different states of a defect which
have the same energy. The configurational entropy Sconf can be approximated by
equation (24) and the Stirling approximation

Sconf = kB[n ln(gD) + n ln(n/N) + n] (29)

Using the defect concentration c = n/N equation (29) can be written as

Sconf (c) = kB[cln(gD)− cln(c) + c] (30)

With equation (21) and by applying the equilibrium condition ∂G
∂c
≡ 0 one can

obtain the defect equilibrium concentration c for which G has a minimum.

∆G = c∆Gf − TSconf (c) (31)

c(T ) = gDexp

(
−∆Gf

kBT

)
(32)

2.6.2 Vibrational Entropy

The vibrational entropy Svib takes into account the different possible energy states
M which m phonons can occupy.

Ωvib =
(M +m)!

M !m!
(33)
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Phonons are bosons and fill up energy states with an unlimited amount of particles.
Phonons follow the Bose-Einstein distribution n(εi) given by

n(εi) =
1

e(εi−µ)/kBT − 1
(34)

which gives us the expected number of particles in an energy state εi, while µ is the
chemical potential, kB is the Boltzmann constant, and T the absolute temperature.

As explained at the beginning of section 2.6 to determine Svib one usually starts
by calculating the partition function Z. For a single harmonic oscillator with the
energy εi = h̄ωi the partition function is

Zi =
∞∑
n

e−(n+1/2)εi/kBT =
e−εi/2kBT

1− e−εi/kBT
(35)

The extension to a solid with N atoms requires the consideration of 3N independent
oscillators

ZN =
3N∏
i

e−εi/2kBT

1− e−εi/kBT
(36)

After calculating the vibrational free energy Fvib by using equation (27) one can
then obtain the vibrational entropy Svib.

Svib = kB

3N∑
i

[
− ln

(
1− exp

(
−h̄ωi
kBT

))
+

h̄ωi
kBT

exp

(
−h̄ωi
kBT

)
− 1

]
(37)

To express Svib using the phonon density of states (DOS) g(ω) one considers
3Ng(ω)dω phonons in an interval dω, whereas n = n(εi) was defined in (34) and
one gets

Svib = −3kBN

∫ ∞
0

g(ω)
[
n ln(n)− (1 + n) ln(1 + n)

]
dω (38)

2.6.3 Electronic Entropy

The electronic entropy Sel relates to the number of possible energy states N that m
electrons can occupy. It is therefore dependent on the electronic density of states
g(E) and the Fermi-Dirac distribution f(εi), as electrons are fermions. The Fermi-
Dirac distribution f(εi) is given by

f(εi) =
1

e(εi−µ)/kT + 1
(39)
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Then again, similarly to the vibrational entropy in equation (38) the electrical
entropy yields

Sel = −kBN
∫ ∞
−∞

g(E) [f ln(f) + (1− f) ln(1− f)] dE (40)

Other contributions to the entropy can further be the magnetic entropy, polaronic
entropy, etc.

2.7 Crystal structure and Bloch Theorem

A crystalline solid is characterized by a well-structured periodic arrangement of
atoms [30]. The smallest assembly of atoms that if periodically repeated can build up
the whole crystal is called the primitive cell. Several semiconductors like silicon have
a diamond crystal lattice structure. In silicon, the first four equidistant neighbors
to an atom sit on the corners of a tetrahedron. In general, the three primitive basis
vectors of the primitive cell a, b and c set up the crystal structure in direct space
and the direct lattice sites can be defined by the direct lattice vector R

R = ra + sb + tc (41)

where r, s and t are integers. From the direct basis vectors a set of lattice vectors
in reciprocal space a∗, b∗ and c∗ and the reciprocal lattice vector G can be derived

a∗ = 2π
b× c

a · b× c
b∗ = 2π

c× a

a · b× c
c∗ = 2π

a× b

a · b× c
(42)

G = ha∗ + kb∗ + lc∗ (43)

whereas h,k and l are integers. The reciprocal lattice represents the Fourier-
Transformation of the direct lattice and an important resulting relationship is

G ·R = 2πn (44)

where n is again an integer. Therefore each vector of the reciprocal lattice is normal
to a set of planes in the direct lattice. The primitive cell in reciprocal space is
represented by a Wigner-Seitz cell and is called the first Brillouin Zone or just
Brillouin Zone (BZ).

The Bloch-Theorem

The band structure of a crystal is often obtained by solving the Schrödinger equation,
simplified to a one electron-problem [36][

− h̄2

2m∗
∇2 + V (r)

]
ψ(r,k) = E(k)ψ(r,k) (45)

whereas ψ(r,k) is the wave function with r · k being a multiple of 2π and m∗

the effective mass. An important theorem, the Bloch-Theorem, can be applied to
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equation (45) when the effective potential V (r) is periodic in the real space. The
solution of the wave functions is then given by

ψ(r,k) = eirkub(r,k) (46)

where ub(r,k) is the cell periodic part of the wave function and b the band index.
It can further be shown that the energy fulfills the relation E(k) = E(k + G)
. Therefore for a given b, one only needs to consider k-vectors lying within the
Brillouin Zone to define the energy uniquely. This will come in handy for theoretical
calculations of the energy structure of materials using supercells. Within this
method a crystal structure is described using a supercell which is a repeating unit
cell of the crystal that contains several primitive cells.

2.8 Experimental ways to probe defects

Identifying defects with experimental methods can be difficult and indirect, requiring
a combination of different techniques [20,21]. Experiments can often only probe the
consequence of a defect such as an electronic excitation and not the defect directly.
It is therefore difficult to provide a complete picture of all defects and their influence
on physical properties. Therefore, computational predictions have become a helpful
tool as their reliability increases.
Experimentally, there are two quantities that are useful to measure when wanting
to find out about the defects and impurities comprised in a material. On one hand
one can look at the changing of the voltage which can be led back to a changing
Fermi-Level. On the other hand one can take a look at the capacitance with regard
to a change in temperature to learn about the transition energy.
When running computational calculations of semiconductor properties, it is impor-
tant to consider the essential physical quantities which can be compared to the
experiment. An important quantity is the defect and impurity concentration which
can be obtained when calculating the formation Gibbs free energy using expression
(32). Experimentally, the defect concentration can be determined using Secondary
ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and
specific heat measurements. Atomic and electronic structures are investigated by
x-rays, scanning tunneling microscopy (STM) or scanning tunneling spectroscopy
(STS). The theoretical obtained transition levels can be compared to the measure-
ments of Deep-level transient spectroscopy (DLTS).

3 Theory on Computational models to calculate

point defects in solids

In this chapter the thermodynamic formalism that allows the investigation of point
defects will be explained. Within this formalism the Gibbs free energy of defect
formation ∆Gf can be calculated. We will start by outlining the different terms
in equation (47) and computational models that are necessary to calculate the
formation energy of a defect.
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∆Gf (EF , µ, T ) = ∆Hf − T∆Sf =

= [Etot(D, q)− Etot(bulk)] +
∑
i

niµi + qEF − T∆Sf

1) 2) 3) 4)

(47)

1 Total energy Etot
Etot(D, q) and Etot(bulk) calculated by Density Functional Theory (DFT)
(Section 3.1)

2 Chemical potentials µi
FERE calculation method: Fitting procedure based on Density Functional
Theory (DFT) total energy

3 Fermi energy EF
Resolution of the neutrality equation

4 Formation Entropy of a defect ∆Sf

(a) Configurational Contribution

(b) Electronic Contribution

(c) Vibrational Contribution: see section 3.2 and section 3.3

In equation (47) the Gibbs free energy of formation is dependent on the defect D
and its charge state q. The number of atoms that are involved in the defect D is
defined by ni.

3.1 Total energy calculations using Density Functional The-
ory (DFT)

One of the most popular and successful quantum mechanical approaches to solve the
Schrödinger equation for condensed matter is the Density functional theory (DFT).
Due to its few computational effort and its high accuracy without the need for
adjustable parameters, DFT has become the standard tool for electronic structure
calculations. The next paragraph is therefore devoted to describing the theoretical
background of this theory.

Let us first outline the quantum mechanics of the electronic structure of a crystal,
which will lay the ground for computational methods and the formulation of density
functional theory (DFT). A many body problem can be described by the many body
time-independent, non relativistic Schrödinger equation.

Ĥψ(r1, ..., rN ,R1, ...,RL) = Eψ(r1, ..., rN ,R1, ...,RL) (48)

In this expression the 3N coordinates denote the position of the i-th electron while
the 3L coordinates give the position of the l-th nucleus. The Hamiltonian in this
equation can be split into several parts:
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Ĥ = Te + Ve,e + Ve,N + TN + VN,N =

=
∑
i

p2
i

2mi

− 1

2

∑
i,i′

e2

4πε0|ri − ri′|
+

1

2

∑
i,l

Zle
2

4πε0|ri −Rl|

+
∑
l

P 2
l

2Ml

− 1

2

∑
l,l′

ZlZl′e
2

4πε0|Rl −Rl′|

(49)

Te and TN are the kinetic energy of electrons and nuclei. Ve,e is the potential for the
repulsive electrostatic electron interaction, Ve,N the interaction potential between
electrons and nuclei and VN,N stand for the interaction potential between the nuclei.
The electron and nucleus mass are mi and Ml and e the electronic charge. The sum∑

i,i′ means that summation is only done over pairs that are not the same.

Equation (49) is difficult to solve because its solution is a function of 3N + 3L
variables. If we were to calculate its solution by a numerical integration the required
computational time would scale exponentially with the number of particles. It is
here where the DFT method provides a viable alternative to the struggle of solving
a many body problem.

Assuming that the kinetic energy of the much heavier and slower nuclei can be
neglected TN ≈ 0, it allows the separation of the electronic and nuclear degrees of
freedom.

Ĥelec = Te + Ve,e + Ve,N and Ĥnucl = VN,N (50)

Ĥelecψelec = Eelecψelec (51)

For the many electron system with the Hamiltonian Ĥelec under the influence of an
external nuclear potential we consider the Hohenberg-Kohn formulation of DFT [37],
which is based upon the following two theorems:

• Theorem 1 For any system consisting of electrons moving under the influence
of an external potential, the external potential and therefore all ground state
properties are a unique functional of the electron density n(r).

• Theorem 2 The ground state energy can be obtained by solving a variational
problem: the electron density n(r) that minimizes the total energy E is the
exact ground state density.

According to Theorem 1 the total energy Eelec is a functional of the density of
particles n(r), which is given by the expectation value of the density operator
n̂(r) =

∑
i=1,...,N δ(r− ri)

n(r) =
〈Φ|n̂(r)|Φ〉
〈Φ|Φ〉

= N

∫
d3r2...d

3rN |Φ(r, r2, ..., rN)|2∫
d3r1, ..., d3rN |Φ(r1, r2, ..., rN)|2

(52)

Theorem 2 defines an energy functional Eelec = E[n] that is minimized by the ground
state density n0(r), whereas n′ is an arbitrary density.
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Eelec[n] = Te[n] + Ee,e[n] + Ee,N [n] (53)

E[n] = min〈ψ[n]|Te + Ee,e + Ee,N |ψ[n]〉 (54)

E[n0] ≤ E[n′] (55)

The Hohenberg-Kohn theorems do not provide a practical method to compute
the ground state density. A scheme to minimize the energy functional (54) was
introduced by Kohn and Sham [38] one year after the Hohenberg-Kohn theorems.

The Kohn-Sham formalism maps the full real potential of the interacting system
onto a non-interacting system in which particles move under the single influence of
a local potential VKS. Using the VKS potential greatly simplifies the calculation and
still yields the same ground state as the interacting system. For example the kinetic
energy could be determined exactly and easily for a non-interacting system. The
groundstate wavefunctions ψKS can be described as the single determinant of single
particle orbitals φi(ri):

ψKS =
1√
N
det(φ1(r1), φ2(r2), ..., φN(rN) (56)

They then rearranged equation (53) into four terms

E[n(r)] = TS[n(r)] + EH [n(r)] + EXC [n(r)] + Ee,N [n(r)]

= TS[n(r)] +

∫
n(r)[VH(r) + VXC(r) + Vext(r)]dr

(57)

In equation (57) all terms except for the exchange relation potential EXC [n] are
known : TS[n] refers to the kinetic energy of a non interacting electron gas with the
density n(r), EH [n] is the classic Hartree energy of electrons.

EH [n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ (58)

The non-interacting kinetic energy TS which is part of EXC is given by

TS[n(r)] = −1

2

N∑
i

∫
φi(r)∇2φi(r)dr (59)

The exchange relation potential EXC [n] is the difference in energy between the exact
and non-interacting system which can be recast as

EXC = (Te − TS) + (Ee,e − EH) (60)

the difference of the kinetic energies and the non-classical contribution to the
electron-electron interactions. The Kohn-Sham potential then becomes

VKS(r) = VH(r) + VXC(r) + Vext(r) (61)
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The ground state density is now obtained by solving the single particle Schrödinger
equations of the fictional Kohn-Sham system

[−h2

2m
∇2 + VKS(r)

]
φi(r) = εiφi(r) (62)

and constructing the density of the real and the fictional system KS.

nKS(r) = n(r) =
N∑
i

|φi(r)|2 (63)

As VKS is a function of n(r) the Kohn-Sham equations (61)-(63) have to be solved
by a self consistent procedure:

• Thereby one starts with an estimate of n(r)

• With this n(r), VKS is calculated. Next the Kohn-Sham equation (62) is solved
and φi(r)’s are obtained.

• Then a new n(r) is calculated from (63) as well as the total energy E[n] from
equation (57).

• Afterwards the loop starts anew as long as the convergence condition is not
fulfilled.

The DFT method has been extensively used to describe defects in semiconduc-
tors [39–42]. However, its predictive power has been limited due to constrains in
accuracy. When calculating the defect concentration with the help of the formation
energy of the defect, an accuracy of 0.2 eV at 1000 K is necessary to have a minimum
error of less than an order of magnitude.

The next challenge of DFT calculations is that the formalism proposed by Kohn and
Sham does not provide a practical way to calculate the exchange and correlation
energy Exc. One practical method to obtain Exc is the local density approximation
(LDA) [43] which states that, for regions of a material where the charge density
is slowly varying, the exchange and correlation energy at a given point can be
considered the same as that for a locally uniform electron gas of the same charge
density. In this case Exc can be written as

Exc =

∫
n(r)εxc(n)dr (64)

where n is the electronic density and εxc is the exchange-correlation energy
per particle of a homogeneous electron gas of charge density n(r). Another
functional, the Generalized Gradient Approximation (GGA) [44] is also a local
density approximation, but also takes into account the gradient of the density. Both
approximations are effected by uncertainties due to a systematic underestimation of
the band gap that is inherent to the DFT method. In practice, it has been difficult
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to obtain the right band gap using a local Kohn-Sham potential. Furthermore, it
has been found difficult to find common electrostatic references for the systems with
and without a defect.

Moreover, within DFT calculations a large number of parameters is involved which
can make it difficult to reach convergence when treating systems with flat energy
landscapes. Methods for correcting the band gap problem are LDA+U methods and
several other methods have been proposed (see [22,45]).

3.2 Phonon calculations

To calculate the vibrational entropy described in section 2.6.2, it is crucial to
calculate the lattice dynamics of the crystal and therefore its phonon density of
states g(ω), which enters expression (38).

Phonon frequencies can be calculated within the Born Oppenheimer approximation.
In the context of this approximation the movement of the ionic core atoms and the
electrons can be separated due to the much slower displacement of the ionic atoms
compared to the electrons. The displacement out of equilibrium of an ion A can be
described by uA(t) with ω being the angular frequency.

uA(t) = uA(0)eiωt (65)

The force acting on the displaced ion A can be written equivalent to Newton’s 2nd
law of motion:

FA = MA
d2uA
dt2

= −MAω
2uA(t) (66)

With the potential energy Epot of the moving ion, the force FA can also be given by

Fα
A = −∂Epot

∂uαA
(67)

where α indicates that the force FA is 3-dimensional vector. Next, the Taylor
expansion of the potential energy Epot is made:

Epot =
[
Epot

]
0

+
∑
A,α

uαA

[∂Epot
∂uαA

]
0

+
1

2

∑
A,B,α,β

uαAu
β
B

[ ∂2Epot

∂uαA∂u
β
B

]
0

+ ... (68)

The zeroth order term is the potential energy at equilibrium position ui(t) = ui(0)
for i = [1, ..., N ]. The first order term is the force acting on all atoms at equilibrium
and is therefore zero. The second order term can be compared to the potential
energy of a spring Epot = 1

2
kx2 with x being the displacement and k the coupling

constant.

Ignoring terms of third order and higher is called the harmonic approximation.
Within this approximation the displacements of the atoms from their average
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positions are assumed to be small and the interaction potential can be described
by a spherically symmetric harmonic well. The potential energy can be given as

Uharm = Eperf +
1

2

∑
lAα,l′Bβ

ΦlAα,l′BβulAαulBβ (69)

where ulA is the displacement of atom A in unit cell l and α and β indicate that u
are 3-dimensional vectors. ΦAα,Bβ is the force constant matrix and is given by

ΦAα,Bβ =
∂FBβ
∂uAα

=
∂2Epot

∂uAα∂uBβ
(70)

where FBβ are the calculated forces on atom B, due to a displacement uAα of atom
A in direction α. The inter atomic coupling constants give the so called Hessian
matrix DAα,Bβ(q) which is the Fourier transformation of ΦAα,Bβ at wave vector q.

Dαβ
AB(q) =

1√
MAMB

∑
l

ΦlAα,l′Bβ exp [iq · (Rl′ + vB −Rl − vA)] (71)

Herby, Rl − vA represents the original position of atom A with mass MA in the
primitive cell l and the sum runs over all primitive cells in the crystal. If one
knows the complete force constant matrix then Dαβ

AB(q), the frequencies ωqA can be
calculated at any q. For this the force acting on atom A can then be written using
the Hessian matrix D and a diagonalisation of the matrix can be performed

Fα
A = −MAω

2uαA(t) = −
∑
A,α

Dαβ
ABu

α
A (72)

∑
A,α

(
Dαβ
AB −MAω

2δABδαβ

)
uαA = 0 (73)

When diagonalizing the matrix one can determine its eigenvalues ωi of band index
i which determine the vibrational frequencies.

D(q)wqi = ω2
iwqi (74)

* with wqi being the eigenvectors. The total phonon density of states (DOS) g(ω)
is then obtained as sum of all states i and wave vectors q

g(ω) =
∑
i,q

δ(ω − ωi,q) (75)

In practice, a Gaussian function is used to model the delta function.

3.3 Method to calculate lattice dynamics in solids

Ab initio and DFT methods have been the dominant method to calculate defect
formation energies at T = 0 K [46] and the calculation of the temperature
dependent contributions have not been considered [39, 47]. However, nowadays
differing opinions exist, if one can just neglect the temperature dependent entropy
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contributions due to the argument of similarity in compared structures of the perfect
crystal and the crystal with defect [24, 40]. It is found that especially at higher
temperatures during processes like defect migration and annealing processes entropy
contributions play an important role.

An important part of finite temperature thermodynamics of crystals is the energy
and entropy of vibrations. Calculating the vibrational entropy allows the calculation
of defect concentrations, which is useful for the comparison with experiments [24].
Ab initio methods are often limited to the use of small supercells and small defective
regions. Throughout the literature it is agreed that formation entropy is strongly
dependent on supercell sizes. It has been largely investigated that the convergence
for formation entropies starts at super cell sizes that are larger than 216 atoms
[42, 48]. For larger super cells not only the computational cost increases, but
also the diagonalisation of bigger matrices can be numerically problematic [49].
A verification that is often used is the comparison of scaling of calculations with
different supercells [24,41]. Another drawback of the supercell approach are artificial
periodic images of a defect caused by the periodic placement of the supercells and
the resulting boundary conditions.

Several researchers addressed the problem of the optimal handling of large super
cells or finite size corrections. Different methods were introduced and compared to
meet the demand of high accuracy for vibrational entropy calculations.

Harmonic approximation A common approach is to study defects using harmonic
approximations [41] or quasi harmonic approximations (QHA) [28]. Local harmonic
approximations are frequently used [50–52], in which atoms are treated as harmonic
oscillators, as described at the beginning of this section.

Embedded Cluster Another approach to overcome the shortcoming of periodic
images of the defect are ’embedded cluster schemes’ [24,53,54] . Within this method
one divides the supercell into a sphere around the defect, the cluster, in which the
lattice dynamics of the atoms are calculated. Outside of the clusters atoms are
viewed as static. Hatcher et al [55] and several other studies [24,40] furthermore add
long term corrections according to linear elasticity theory. To overcome the problem
of inaccessibility of the formation entropy at constant volume experimentally it is
often converted to the formation entropy at zero pressure [25,56].

Empirical potentials Simulations of large supercells (> 1000 atoms) are computa-
tionally too costly to be calculated by first principle methods. Empirical potentials
are often used instead [52, 57, 58]. Within such models the cohesive energy of a
system of particles is given by an interatomic potential.

Linear response method The Density Functional Perturbation Theory (DFPT)
or linear response method [59] provides an analytical way of computing the second
derivative of the total energy to calculate lattice dynamics.

Frozen phonons Another way to compute the formation entropy is the frozen
phonon method [60]. In practice one calculates the forces between every atom in
the crystal using DFT and the Hellman-Feyman theorem. The shortcomings of this
method are the explicit displacement of one atom in a small supercell will lead to
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forces in all the periodic images of the supercell. The frozen phonon method is
usually computationally cheaper than the linear response method but requires a
larger supercell.

4 Bulk Silicon calculations

The theory and formalism explained in Chapter 2 and 3 will now be applied to the
calculation of the thermodynamical properties of silicon. As the formation entropy
of a defect ∆Sf is the difference of the entropy of the defective cell and the perfect
cell (see section 2.6) one will start by treating the perfect system of bulk silicon. One
will see later on, in comparison with Chapter 5, that the perfect and the defective
cell have to be treated as different systems.

4.1 Ground state structure relaxation

Electronic structure calculations are performed using the Vienna Ab-initio Simula-
tion Package (VASP) [61]. The VASP program uses density functional theory (DFT)
to compute an approximate solution of the many-body Schroedinger equation (for
an explanation of DFT see Section 3.1).

Furthermore, the Projected Augmented Wave formalism (PAW) [62, 63], as well as
Local Density Approximation (LDA) [43] and Generalized Gradient Approximation
(GGA) [44] functionals are used to determine ground state structures.

A short description of the most important input files of VASP will now be given.
How each of the input files is set up and what they define will be explained while
simultaneously determining the ground state structure, energy and lattice constant
of bulk silicon.

POSCAR

The POSCAR file contains all the information on the atomic positions. The input
data contains the lattice constant in Angstrom, the number of atoms in the unit
cell, the three lattice vectors defining the unit cell and we use direct fractional
coordinates to determine the position of the atoms, i.e. coordinates expressed in the
coordinate system of the primitive cell. In the case of silicon a face centered cubic
(fcc) primitive cell was used containing 2 atoms. The calculations are started using
the experimental value a = 5.431 Å [64] for the lattice constant. Table 1 shows the
resulting lines for the POSCAR input file.
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Si
5.43
0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0
2

Direct
0.0 0.0 0.0
0.25 0.25 0.25

Table 1: Input file POSCAR for a 2 atom fcc primitive cell of bulk silicon

KPOINTS

When using density functional theory within the VASP code the evaluation of many
properties, like densities or energies, requires an integration over k throughout the
Brillouin Zone (BZ) [65] p. 89, 239). For example for a function fi(k) the average
value over the BZ f̄ is given by

f̄i(k) =
1

Ω

∫
BZ

fi(k)dk (76)

where Ω is the volume of the Brillouin Zone and i denotes the discrete band index.

To evaluate those integrals computationally one can use a weighted sum over special
k-points. This is called k-point sampling of the Brillouin Zone.

1

Ω

∫
BZ

→
∑
k

ωki
(77)

The widely used Monkhorst and Pack method [66] provides a formalism to set up the
k-point mesh and to assign the k-points a weight. One wants to have many k-points
were the integrand varies rapidly and fewer when the integrand varies slowly.
Furthermore symmetry can be used to reduce the calculation. In a perfect crystal
all independent information can be found from states whose k-vectors lie in the
irreducible Brillouin Zone (IBZ). The algorithm extracts the irreducible k-points.
The input lines of the KPOINTS file include the number of intersections in each
direction along the three reciprocal lattice vectors. One has to consider that longer
axes in real space lead to shorter axes in reciprocal space. Meaning that larger
supercell sizes lead to smaller Brillouin Zones which can be sampled by k-point
grids with fewer intersections while keeping the same accuracy.
For our primary convergence calculations Figure 8 shows a convergence of the total
energy ETOT with regard to the number of intersection in the reciprocal space. We
find that the total energy of the fcc primitive cell of silicon is converging for a
k-points mesh parameter of 8 intersections in each direction, see Figure 8.
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POTCAR

The POTCAR file includes information on the chemical identity of each atomic
species mentioned in the POSCAR file. It provides information on the electronic-
ionic interaction potential Ve,N in the Schroedinger equation (49). Because the exact
ionic potential would be computationally to costly to use one takes advantage of the
pseudopotential approximation ( [65] p.204). Within this approximation the strong
Coulomb potential of the nucleus is replaced by a smoother effective ionic potential
which only acts on the valence electrons. The tightly bond core electrons are thereby
screened out. The Projector Augmented Wave method (PAW) is used in our case
to establish the basis set of the pseudopotentials.

INCAR

The central input file of our VASP calculation is called INCAR. Here one defines
the size of the basis set for the wavefunctions, the numerics and the precision of
the calculation. It is also here where one has to define, if a static calculation or a
structural relaxation of the atomic positions should be performed.

# Define size of the basis set: ENCUT
The parameter ENCUT controls mostly the technical accuracy of the calculation.
This parameter sets the size of the basis set of the wavefunctions. It is convenient
to use plane waves because they are fast to compute and many elements can be
interpreted in a free electron picture and one can apply periodic boundary conditions
through the Bloch theorem.

After the Bloch theorem wave functions ψk of wave vector k of a single electron can
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be written as
ψk(r) = eikruk(r) (78)

uk(r) = uk(r + T) (79)

where uk(r) is the cell periodic Bloch function and T is the translation vector of the
cell periodicity. The part uk(r) can be written as a sum of plane waves which will
be used as the basis functions for the wavefunctions.

un,k(r) =
1

Ω1/2

∑
G

Cn,G,ke
iGr, ψk(r) =

1

Ω1/2

∑
G

CnGke
i(G+k)r (80)

where n corresponds to different electron bands and G is the wave vector in
reciprocal space. The variables form the basis.

The complete number of plane waves needed to describe exact potentials would
exceed computational limits. The energy cut off radius (ENCUT) defines the size
of the basis set {Cn,G,k}: by setting ENCUT to a specific value only plane waves
are included which satisfy

h̄2

2melec

| G + k |2< ENCUT (81)

Figure 9: Convergence of total energy ETOT with respect to the energy cut off radius
(ENCUT)

One wants to describe the wave functions with the minimal number of basis functions
as possible, which means a low ENCUT reduces computational time. At the same
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time one wants to remain within the area where the size of the basis set is large
enough to describe the interaction potential and the total energy correctly. For the
bulk silicon calculations we obtain a convergence of total energy around an energy
cut off radius of ENCUT=500 eV, see Figure 9. This energy represents a maximum
number of 1056 plane-waves for the two atom primitive cell.

# Parameters related to the Fermi Dirac occupation

ISMEAR defines which method is used to determine partial Fermi-Dirac occupancies
and integration; e.g.: Gaussian smearing, Methfessel-Paxton [67] or tetrahedron
method. SIGMA defines the temperature of the smearing. Moreover, the ISMEAR
flag relates to the density of the k-point grid. The finer the k-point grid is the more
one can afford to decrease the smearing. For our calculations we choose a Gaussian
smearing with a width of SIGMA=0.05 eV.

# Numerics and precision of calculation

For the precision of the electronic energy minimization we again converge the total
energy with regards to the convergence criteria for the electronic minimization and
find that an energy difference of EDIFF=1E-8 is precise enough. For the numerics
and Fast Fourier Transformation we set the general parameter Precision= Accurate
which will be explain later in 4.3 in greater detail. The evaluation of projection
operators is done in real space by setting LREAL=Auto.

# Structural relaxation

If one wants the ions to relax into their equilibrium positions to evaluate the volume
of the relaxed structure one can set the following parameters in the INCAR file:
The ISIF parameter defines if one wants to relax the ions, change the cell shape
and/or change the cell volume. NSW defines the number of allowed ionic relaxation
steps and EDIFFG its convergence parameter. The structural relaxation stops
when the remaining forces acting on all atoms F are smaller than the convergence
condition F < EDIFFG. Furthermore, IBRION defines which algorithm should be
used for the ionic iterations. This defines how the trajectory of the ions will be
updated. One can choose between Molecular Dynamics, Conjugate Gradient, etc.

For the 2-atom silicon cell, the only degree of freedom to be relaxed is the lattice
constant. Therefore a volume relaxation is conducted by changing the lattice
constant. When using the GGA functional a lattice constant of 5.465 Å was obtained
starting from the lattice constant of 5.431 Å obtained from the literature. Figure 10
displays the total energy plotted versus the volume. Using a LDA functional results
in a lattice constant of 5.403Å. This systematic error of LDA to underestimate
the volume and the error of GGA to systematically overestimate the volume is
expected [68]. One can then conduct a structural relaxation by setting the following
parameters to: ISIF = 7, IBRION = 2, NSW = 100, EDIFFG=5E-4 eV/Å.
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Figure 10: Volume profile, Structural relaxation of 2-atom silicon supercell with a
GGA functional

4.2 Phonon calculation of bulk silicon

The calculation of the phonon spectrum of a solid is a necessary step when evaluating
physical quantities such as the vibrational entropy, specific heat or the phonon band
structure. Phonon calculations of bulk silicon are carried out using the program
PHON [69], which is based on the frozen phonon method [70,71].

Within this method, one displaces one atom and calculates the force fields acting on
all other atoms using VASP. This is repeated for all atoms in the supercell to build up
the interatomic force constant matrix (IFC), see section 3.2. Using the IFC Matrix
one can set up the dynamical matrix at several k-points. However, it is not always
necessary to displace all atoms in the super cell due to the existence of symmetry
operations. On this account, the PHON code calculates the symmetry operations
and positions of atoms that need to be displaced, respectively. After the complete
force constant matrix has been calculated the vibrational phonon frequencies are
obtained as the square root of the eigenvalues of the dynamical matrix.

The PHON program looks for three input files INPHON, POSCAR and FORCES.
The POSCAR file is the same as the one discussed in the previous section. The
FORCES file contains the force field acting on all atoms for each displacement. In
the INPHON file one defines the input parameters and what calculations should be
executed.

1. Supercell generation

When computing forces appearing on all atoms in a cell due to a displacement
of a single atom, the interaction range is confined to the size of the used cell.
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Therefore one uses supercells which include several primitive cells. This way the
complete knowledge of the force constant matrix is derived from the calculation
of the dynamical matrix of the range of several primitive cells. Within the frozen
phonon method one assumes a short-ranged decay of the force constant matrix
within the size of the supercell.

Therefore supercells of different sizes are generated by using the relaxed face centered
cubic (fcc) primitive Si-cell of 2 atoms obtained in the previous section. Created
supercell sizes are shown in Table 2. The flag NDIM found in the INPHON file refers
to how often the primitive cell is multiplied along the 3 lattice vectors. For example
the 16 atom cell corresponds to a 2× 2× 2 q-point sampling for the construction of
the dynamical matrix.

After the supercell generation the program generates a file DISP which contains all
the displacements that need to be applied to calculate the force constant matrix
with regards to the found symmetry operations.
The magnitude of the displacement is set to 0.04 Å. This is chosen due to the fact
that larger displacements would not be within the harmonic approximation and
smaller displacements would lead to small energy differences prone to error and
numerical noises.

2. Calculating FORCES

Next, a calculation of the force fields is performed using VASP while looping over
all displacements. For the different supercell sizes, different k-point grids are used
to sample the irreducible Brillouin Zone, which shrinks as the supercell sizes gets
larger. The decreasing number of k-points for larger supercell sizes can be seen
in Table 2. It was found that, for phonon calculations, denser k-point grids are
required compared to the ones obtained from the convergence test of total energy.

NDIM KPOINTS Atoms in cell

1 1 1 12 12 12 2
2 2 2 6 6 6 16
3 3 3 4 4 4 54
4 4 4 3 3 3 128
6 6 6 2 2 2 432
8 8 8 1 1 1 1024
9 9 9 1 1 1 1458

Table 2: Generation of different supercell sizes: NDIM is the dimension of the fcc
primitive silicon cell, KPOINTS are the number of intersections along the reciprocal
lattice vectors

For the fcc perfect silicon cell, we find that only one displacement is necessary due
to the equivalence of all other atoms. 48 symmetry operations are found of which
24 involve fractionate translation. The corresponding FORCES file in eV/Å for the
16-atom super cell looks the following:
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1
1 0.00517206 0.00000000 -0.00000000
-0.02470500 -0.37442300 -0.37442300
0.00024700 0.02654000 0.02654000
0.01382000 -0.02431800 0.01266000
-0.01418100 0.01240600 -0.02435600
0.01382000 0.01266000 -0.02431800
-0.01418100 -0.02435600 0.01240600
-0.00013800 -0.00146700 -0.00146700
0.00006400 0.00359700 0.00359700
0.13364000 0.16515200 0.16515200
-0.11196900 0.14906900 0.14906900
0.00184900 0.03353400 0.03566500
-0.00005500 -0.00707000 -0.00722200
0.00184900 0.03566500 0.03353400
-0.00005500 -0.00722200 -0.00707000
-0.00726300 0.00007600 0.00007600
0.00725900 0.00015800 0.00015800

Table 3: Displacement of atom 1 and corresponding FORCES acting on 16-atom
supercell

4. Thermodynamical properties and Phonon DOS
The PHON code now uses the following formulas to calculate the phonon density of
states g(ω).

Fvib = Uvib − TSvib Svib = (Uvib − Fvib)/T (82)

Fvib = 3NkBT

∫ ∞
0

ln
[
2sinh

h̄ω

2kBT

]
g(ω)dω (83)

Uvib =
3N∑
i=1

{
h̄ωi

exp(h̄ωi/kBT )− 1

}
(84)

The result of the phonon spectrum of bulk silicon for different super cell sizes is
displayed in Figure 11. By increasing the size of the supercell in real space, the
Brillouin Zone in reciprocal space decreases. Therefore one increases the sampling
of the reciprocal space by using larger supercell sizes. Moreover, by using larger
supercell sizes one includes more information on how the displacement of one atom,
within the force field calculation, is disturbing the rest of the atoms at longer range.
For the 16-atom supercell one only considers the forces acting on the 15 other
atoms in the supercell. Therefore on the cell boundaries of the supercell artificial
interactions can take place that are then periodically repeated.
The Γ-centered Monkhorst and Pack point grid [66] is used to sample the Brillouin
Zone. It was found that a q-point mesh of 100 × 100 × 100 is necessary for the
sampling used for the integration of the phonon DOS to obtain smooth spectra.
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Figure 11: Phonon density of states g(ω) of bulk silicon for different super cell sizes

Figure 11 shows that the shape of the phonon DOS is already reproduced by supercell
sizes of 54 and 128 atoms. However, only for supercell sizes of 432 atoms and higher
the positions of the peaks match well and small features are being reproduced. This
corresponds to a 6 × 6 × 6 q-point sampling for the construction of the dynamical
matrix. Therefore we conclude that a computationally affordable and accurate
calculation can be conducted using a supercell size of 432 atoms, which will be
used in proceeding calculations.
For areas of low phonon density of states, where for example the phonon bands
are degenerate, it was especially difficult to obtain smooth spectra. This can be
explained by the fact that when looking at the Brillouin Zone high symmetry points
are easily calculated, e.g.: the Γ-point at q = (0, 0, 0) or the L-point at q = (1

2
, 1

2
, 1

2
)

which lies in the middle of the hexagonal faces of the BZ. Due to the periodic
boundary conditions the perfect silicon cell will have degenerate eigenvalues at high
symmetry points like Γ and L. All other points in the primitive Brillouin zone (BZ)
will be folded back into those points.

Consequently, Figure 12a and 12b show the convergence of the entropy of bulk silicon
for different size of supercells corresponding to a finer and finer q-point mesh. While
the entropy obtained with the 16 atom super cell is still 0.1 kB per atom higher
than expected, for super cell sizes beyond 128 atoms a good agreement with the
experiments [72] can be found with variations smaller then 0.01 kB. This trend is
emphasized in Figure 12b for a temperature of T =800 K.
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Figure 12: (a) Entropy S per atom as a function of temperature T for different
supercell sizes and experimental data from KSNLAF2015 [72] and (b) Entropy S
per atom at T = 800K as a function of 1/N , N being the number of atoms in the
Supercell.

For a more precise comparison with experiments Figure 13 shows a good agreement
for the phonon density of states. The experimental data was obtained by inelastic
neutron scattering on silicon to measure the phonon density of states. Longitudinal
and transversal acoustic and optical modes (LA,TA,LO,LT) are identified and the
experimentally found peaks match well with the calculated phonon spectrum and
the error made is less than 0.05 THz.

Figure 13: Comparison of phonon density of states with experimental data
KSNLAF2015 [72] at T=100K and identification of acoustic and optical modes
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4.3 Accuracy of phonon calculations

The critical parameter influencing the precision of the calculation will now be
explained and analyzed further.

Firstly the accuracy of the calculation depends strongly on the accuracy of remaining
forces acting on the atoms after the relaxation of the atomic positions [73]. It is
important to start from a relaxed structure where almost zero forces are acting on
the atoms. Therefore a stringent convergence condition for the remaining forces F
being smaller than 5× 10−4 is chosen. It is also noticed that due to a flat potential
energy of silicon, it is difficult to converge the forces completely to zero.

Moreover, for the phonon calculation of silicon we find it crucial to use the LREAL-
Tag with appropriate care. Within the Projected augmented wave method in the
evaluation of H|ψn〉 projection operators can be evaluated in real space or reciprocal
space.

When setting LREAL=.FALSE. one evaluates the projection operators in reciprocal
space and the number of operations scales with the size of the basis set. On the
other hand, for LREAL=Default the projection-operators are evaluated in real space
confined to spheres around each atom [61] and the necessary computation time does
not scale with the size of the system. Therefore the VASP guide recommends for
large supercell sizes to evaluate the projections operators in real space by setting
LREAL=Auto.
However, we observe that phonon calculations using the real space projection are
sensitive to aliasing errors. Those errors are called wrap around errors because high
frequency components are aliased to low frequency components. They appear for
an insufficiently meshed Fast Fourier Transformation grid (FFT-grid) when going
from reciprocal to real space. If the Fourier grid does not contain all wave vectors
up to 2×Gcut

h̄2

2m0

| Gcut |2= ENCUT (85)

when evaluating the charge density, components are wrapped around from the
other side of the box. In conclusion, computation time is cut in half by using
LREAL=Auto, however one has to converge the precision parameters of the FFT-
grid. Calculations where conducted using the real space projection and the precision
parameters ROPT=5E-5 and PREC=Accurate. Figure 14 shows a flow chart on how
to reach the right accuracy for the forces using real or reciprocal projection schemes
which is taken from the VASP guideline [61].
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Figure 14: Avoiding wrap around errors when calculating the FORCES using real
or reciprocal projections schemes taken from [61]

Another parameter that needs to be adjusted with care is the smearing employed in
the calculation of the phonon density of states. The DOSSMEAR parameter gives
the width of the Gaussian function used to represent the delta function in expression
75.
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Figure 15: Gaussian smearing DOSSMEAR of the q-point grid for the phonon
spectrum of bulk silicon

The phonon density of states depends on how many q-points are considered and
the smearing used: a large smearing will speed up the calculation while leading to
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an improper description of the phonon spectrum. Figure 15 shows the impact of
different smearing parameters. Convergence of the spectrum could be observed for
a smearing of 0.02 THz, 0.1 THz, 0.5 THz and 1 THz.

Other input parameters like the augmentation sphere of the basis set ENAUG,
changing the starting point of the phonon displacement by LCENTRAL and EDIFF
do not influence the calculation sizeably and are set to the following values:
ENAUG=1200, LCENTRAL=False, EDIFF=1E-8 eV.

5 Silicon Vacancy

As mentioned in previous sections (2.6 and 4) the formation entropy of a point defect
is a weighted difference between the entropy of the defective and the perfect system.
For the defective system, the step for calculating the ground state structure is not as
straightforward as for the perfect cell. It will be shown that different ground state
structures are obtained when relaxing the atomic positions of differently charged
defects. Furthermore the extent of the distortion of the defective lattice will be
studied and the impact on the phonon spectra analyzed.

5.1 Ground state defect structure relaxation

When relaxing the atomic positions of the defect structure of the silicon vacancy,
one encounters several interesting phenomena related to the electronic structure of
silicon. To remain consistent, we set the same input parameters as used for the
perfect cell with respect to k-point grids, pseudopotentials and plane wave energy
cut offs for the ground state relaxations.

Firstly, it is found to be difficult to converge to a ground state structure as silicon
vacancy generally inherits a flat energy landscape [74]. For the structure of the
defective cell there can be found no definitive agreement in the literature whether
the relaxation of the first 4 neighboring atoms that are enclosing the vacancy are
undergoing an outward or inward relaxation [75, 76]. However, several authors
conclude that it is crucial to use supercell sizes of at least 216 atoms for ground state
structure relaxations [75,77] and that it is necessary to run calculations without any
symmetry restriction [78] and to set high accuracy on the remaining forces acting
on the atoms.

Secondly, differently charged defects may exist, exhibiting different symmetries.
Within this study, charged defects from -2 to +2 are investigated. For an
illustration of this distortion, the different symmetries are characterized by their
first 4 neighboring atoms which form a tetrahedral structure around the vacancy.
Figure 16 displays such tetrahedral structures with their characterizing length.

The different structures can be described by crystallographic point groups within
the Schönflies notation Cnd [79]. The capital letter C stands for cyclic, D for dihe-
dral and T for tetrahedral structures. The index n refers to the n-fold rotation axis
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of the group symmetry. Td is a simple tetrahedral structure with the same length
for all six edges. C2v is a cyclic structure with the addition of 2 mirror planes that
lie parallel to the axis of rotation making one edge shorter than the others five.
This can be seen in Figure 16 where the bond length R13 between atom 1 and 3 gets
shortened. Within the D2d symmetry the lengths of two edges facing each others are
reduced. Again one can compare with Figure 16 where the distances R12 and R34

get shorter. A D3d structure reduces the lengths of 3 edges ending at the same atom.
D2d / D3d has 2/3 mirror planes parallel to the n-fold axis. The D3d structure has
also been described as the ”split”-vacancy [80] or ”split”-interstitial [81]: one atom
moves halfway into the direction of the vacancy site and places itself in the middle
of an octahedral symmetry which is formed with the first 4 neighboring atoms and
2 second-nearest neighbors.

Figure 16: Defect symmetry structures in Schönflies notation: Displayed tetrahedra
show the 1st four neighboring atoms around the vacancy and how the distance
between them Rxy changes with regard to different symmetries.

As a next step we are interested in which ground state symmetry structures are
formed depending on the charge state of the considered defect. For an illustration
of different defect levels in the energy gap, Figure 17 shows the Watkins model [82]
for the defect charge states of the silicon vacancy. The vertical lines represent the
linear combination of atomic orbitals (LCAO) [83] as a quantum superposition of
atomic orbitals. In this model the electron configurations of atoms are described as
wave functions. When looking at the neutral silicon vacancy an ”energy state” in
the band gap is introduced (displayed in Figure 17 using the red arrows). It shows
that going from Td to a lower D2d symmetry the so-called Jahn-Teller distortion
is observed. The energy cost of the structural relaxation is counter balanced by a
splitting of energy levels and lowering of electronic energy. This basically describes
the effect of a non-linear molecule undergoing a geometrical distortion to obtain a
lower energy state. This removes part of the symmetry of the molecule and the
degeneracy of the electronic ground states. For the +2 charged defect the D2d

configuration is shown in the second column of Figure 17 using the black arrows. In
the same way the C2v defect levels for +1 is shown in the third column as well with
the black arrows displaying a further removal of the degeneracy of energy states.
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Figure 17: Model of the silicon vacancy for differently charged defects (and neutral
defect - red arrows) by Watkins [82] demonstrating a Jahn-Teller distortion for the
neutrally charged defect going from Td to D2d symmetry.

Table 4 displays the obtained symmetry structures for charged defects going from
-2 to +2 together with their energies. The atomic positions are relaxed until the
maximum forces acting on the atoms are within the criteria F < 5.10−5 eV/Å. This
ranges in the same area as previously published studies F < 2.10−4 eV/Å [84] and
F < 5.10−3 eV/Å [80].
As mentioned in the introduction of this section we also found it important to set the
flag ISYM to zero in order to find symmetry breaking relaxations and lift symmetry
constrains. Moreover, the expected Jahn-Teller distortion for the neutral defect is
only observed for supercell sizes of at least 216 atoms. This slow convergence could
be traced back to the interaction between periodic images of the defect center and
the underestimation of band gap by DFT [74].
Therefore, in Table 4 relaxed structures, bond lengths and ground state energies
are given for the 432 atom cell. Furthermore, to obtain structures significantly
differing from the Td, it is required to perform an initial random displacement of
the 1st neighboring atoms, so the system is able to escape the Td symmetry local
minimum. Moreover, it is important to start from a preconverged starting guess
and to continuously restart calculations for structures that are not yet converging.
It can also be helpful to change the algorithm employed for the relaxation. When
the starting point is located far away from the ground state structure the more
aggressive conjugate gradient algorithm (IBRION=2) is found helpful. Close to the
ground state structure it is better to use a quasi-Newton algorithm (IBRION=1) to
relax the atoms into their close ground state.

In column 2 of Table 4 one can see that the symmetry structures found within
this study (marked with a •) for charged defects of -2,0 and +2 lie in reasonable
agreement with previously found theoretical studies [77, 78, 80, 84]. For the -1,0,+1
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and +2 the observed structures further agree with deep level transient spectroscopy
(DLTS) and electron paramagnetic resonance (EPR) experiments of Watkins [85,86].

Table 4 also shows that the main discrepancies between previously published results
occur for the defect charge states +1 and -1. The same states are also found to be
the most problematic to relax. One can see that their different symmetry structures
only lie several meV of energy apart. This can be traced back to the negative-U
behavior of the isolated Si vacancy as it was firstly described in 1979 by Baraff [86]
and later found experimentally for the +1 state by Watkins [87]. In fact, the charge
states +1 and -1 are found not to be stable within the range of chemical potential
defined by the Si band gap [77]. The structure of the -1 charged defect is especially
drawn to remain in a metastable Td state forming a 3-times degenerated defect
level. Moreover, the stabilized structure does only come close to a C2v symmetry
remaining a difference of 0.05 Å between the length of two edges away from C2v.
One can improve the relaxation of those states by adding the degree of freedom for
spin polarization (by setting the parameter ISPIN=2). This leads to the same total
energies, but with a faster convergence of the calculations.

To check the accuracy of our results we conduct the same ground state relaxations
also with an LDA functional. Using LDA, the same stable symmetries where found
for -2,0,+1 and +2 charge states. Only for the -1 charge state the D3d symmetry
was found to have a 0.04 eV lower energy than C2v which was also found by other
previous studies [84].

The calculated formation enthalpy for the neutral D2d symmetry of 3.67 eV lies
close within the values obtained in recent studies [80,84]. Considering formula (32)
from section 2.6 one can obtain a defect concentration of the neutral vacancy with
D2d symmetry of 3.7 · 106 per cm3 which is in rough agreement with experimental
studies who found a vacancy concentration of 105 per cm3 in silicon wafers [89].

In comparison with the schematic model of defect levels in Figure 17 the electronic
density of states for the neutral defect is shown in Figure 18. One can see that
defect levels are introduced in the band gap in reasonable agreement with the model
proposed by Watkins [82]. The broad bands of the defect levels lie very close to the
CB and the energy difference between the defect levels and the CB is small.

46



D
is

ta
n

ce
b

et
w

ee
n

fi
rs

t
n

ei
gb

or
s

[Å
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Å

.
F

u
rt

h
er

m
or

e
to

ta
l

en
er

gi
es
E
to
t,

en
er

gy
d
iff

er
en

ce
s

∆
E

an
d

fo
r

th
e

n
eu

tr
al

va
ca

n
cy

th
e

fo
rm

at
io

n
en

th
al

p
ie

s
∆
H
f

ar
e

d
is

p
la

ye
d
.

47



 0

 50

 100

 150

 200

 250

-1.5 -1 -0.5  0  0.5  1  1.5  2

E
le

ct
ro

n
 D

O
S

E [meV]

Bandgap

Perfect
Td

D2d

Figure 18: Electron density of states shows states within the band gap for the
defective cell

5.2 Distortion of the lattice

Particular interest lies in evaluating the amount of disorder a certain symmetry
creates in the system, as it is loosely related to the entropy of the system. A
generally interesting aspect is therefore the distortion of the lattice compared to the
perfect crystal with regard to different symmetries and charge states (i.e. change of
atomic positions.
For the neutral vacancy larger displacements are found for D2d compared to Td
symmetry in agreement with lower number of symmetries of Td with regards to
D2d. In Figure 20, snapshots of the four different symmetries are shown. In all four
cases the first four atoms neighboring the vacancy are the most disturbed. For Td
symmetry the first for neighbors get displaced by 0.19 Å, for D2d symmetry 0.42 Å,
for C2v symmetry 0.51 Å and for D3d symmetry the split atom gets displaced 1.17 Å.
However, depending on the local symmetry of the defect, the distortion of the lattice
can extend to several successive shells.
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(a) Neutral Td (b) Neutral D2d

Figure 19: Distortion of the lattice induced by the neutral defect.. The size of the
sphere is proportional to the displacement of one atom out of the perfect structure
∆r:
Pink • ∆r > 0.1 Å, Cyan • 0.1 Å> ∆r > 0.05 Å, Blue • 0.05 Å> ∆r > 0.01 Å,
Black • ∆r < 0.01 Å

Also the shape of distortion can differ as can be seen in Figure 20. For the Td and
D2d symmetry the distortion spreads in form of a sphere around the vacancy site.
The 1st four neighbors experience the same magnitude of displacement, for both
cases separately. The C2v and the D3d tetrahedra display a less spherical symmetry.
The distortion of the D3d symmetry stretches out along the {110} axis and the split
vacancy atom is the most displaced. However, in this case one has to consider that
the fcc shape of the used supercell may magnify the shape of the D3d distortion. For
the C2v symmetry the two neighboring atoms coming closer together are the most
disturbed.
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(a) Neutral Td (b) Neutral D2d

(c) -1 C2v (d) -2 D3d

Figure 20: Distortion of the lattice induced by the vacancy. The size of the sphere
is proportional to the displacement of one atom out of the perfect structure ∆r:
Pink • ∆r > 0.1 Å, Cyan • 0.1 Å> ∆r > 0.05 Å, Blue • 0.05 Å> ∆r > 0.01 Å,
Black • ∆r < 0.01 Å

To further analyze the distortion of different symmetries in Figure 21 the displace-
ment of the atoms out of their perfect position is plotted against how far they lie
away from the vacancy. The length of the displacement ∆r for all shown symmetries
D2d, Td and D3d falls down to a certain value about 10 Å away from the vacancy
site and fluctuates around that value while never going completely to zero. This
shows that there is a small but long range interaction of the defect with atoms at
the edge of the used supercell. In comparison, in the 16-atom supercell an atom at
the edge of the supercell is only 5.47 Å away from the vacancy, in the 54-atoms cell
8.20 Å and 10.94 Å in the 128-atom supercell. This means that a 16, 54 or 128-atom
supercell would be too small to capture the greatest amount of the distortion and
will lead to periodic interactions of the forces at the cell borders. For a supercell of
432 atoms the atoms at the border are already 16.41 Å away from the defect and
do not feel the largest extent of the distortion anymore.
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It is also interesting to consider the relation between defect symmetry and distortion
of the lattice. One can clearly notice that the extent of the distortion is dependent
on the symmetry and not on the charge state of the defect. One can see that Td
symmetry experiences smaller displacements.
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Figure 21: Displacement of atomic position as a function of the distance from the
vacancy for D2d, Td and D3d structures for the 432-atom supercell.

Subsequently, the distortion of the lattice leads to different lattice vibrations for each
system and the question arises what the impact on the phonon density of states g(ω)
will be. In fact, the observed defect structures for different charge states have to
be treated as different systems for which phonon calculations have to be conducted
separately.

5.3 Phonon calculations

In the same way as described in section 5 for bulk silicon, the phonon density of
states are now computed for the defective supercell by calculating the force fields
acting on the atoms using VASP. At variance with the perfect silicon supercell more
atoms need to be displaced in the case of the defective supercell to compute the
phonon density of states.

At first, we focus on the neutral Td defect. For the Td symmetry, the PHON code
finds 24 remaining symmetry operations and 88 atoms out of 432 have to be displaced
to calculate the phonon density of states. This is highlighted here because the
number of calculations is related to the necessary computational time.

The obtained phonon density of states for the neutral vacancy with Td symmetry
can be seen in Figure 22. At first, one can notice that the phonon density of states
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of the 432-atom supercell containing a single defect only change cosmetically in the
low frequency range while larger changes are observed in the optical range. How-
ever, a lowering of the maximum frequencies is observed. The transverse acoustic
(TA) peak at 4.1 THz and the peak of the optical modes (LA/LO) around 14 THz
are reduced by approximately 0.5 THz−1. This relates to lower energies, forces and
less stringent spring constants acting between the atoms and generally speaking a
softening of the interaction. In general, a shift to higher frequencies of the whole
optical part of the DOS is observed.
Visibly, the phonon density of states does change less for the acoustical modes. The
change for the optical part of the phonon spectrum can be explained by the alter-
ation of local optical modes around the vacancy.

For the defective supercells a q-point grid of 40 × 40 × 40 is found to be fine
enough for the sampling used for the phonon DOS in order to obtain smooth
density of states. Although, the same parameters for the Gaussian smearing are
used (DOSSMEAR=0.02 THz and DOSSTEP=0.1 THz) less q-points are required
to sample the BZ of the defective supercell. Somehow, by introducing a defect,
distortion of the lattice plays the role of an artificial smearing. For the defective
supercell the degeneracy of some states is removed which speed up the sampling of
the DOS.
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Figure 22: Phonon density of states g(ω) for the perfect and the neutral Td vacancy
and the used q-point grids (supercell size 432 atoms)

A further observation is made for the imaginary part of the phonon spectrum.
During the phonon calculation low imaginary frequencies ω2 < 0 are found, which
are not included in Figure 22 because they are too low in density to be seen.
The observation of those imaginary frequencies has been found by other studies
before [90] and can be traced back to the shallow nature of the energy landscape of
the silicon vacancy, to the use of the constant volume formalism or to the difficulties
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of obtaining the correct ground state structure, which can all lead to imaginary
frequencies. The imaginary frequencies make up less than 0.004% of the phonon
DOS. Only for the neutral Td vacancy the negative frequencies make up 0.016% of
the phonon DOS. This can be explained by the Td symmetry being dynamically
unstable and by Td not being the symmetry structure of the lowest energy for the
neutral vacancy.

When trying to disturb only clusters of the first second and third neighboring shells
around the vacancy and leaving all the other atoms in their perfect position, it
is not possible to increase the number of found symmetry operations to decrease
computational time. On the contrary, when only disturbing the first four neighboring
atoms less symmetry relations are found than when including all atoms. This
can be due to the distortion of the lattice going beyond the first three successive
shells around the vacancy. Furthermore it can be problematic to conduct phonon
calculations on non-relaxed structures where the forces acting on some atoms are
not zero.

For other ground state structures and different charge states the amount of symmetry
operations that can describe the relaxed structures is reduced and more displacement
for the phonon calculations are needed. For the 432-atom supercell Td structures
required 88-187 displacements and D2d 205-418 displacements. For the D3d structure
of the -2 charged defect, 6 symmetry operations result in 251 displacements. The
Td structure of the +2 charged defect requires 128 displacements corresponding to
11 found symmetry operations.

The corresponding phonon spectra can be found in Figure 23. Again, in the low
frequency the phonon DOS only changes cosmetically while larger changes are
observed in the optical range. However, for the neutral D2d and the +2 charged
vacancy small wiggles can be observed in the low frequency range between 0 and
4 THz. Moreover, the lowering of the maximum frequencies is observed for all charge
states and is the largest for the -2 charged vacancy.
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5.4 Finite size effects

When conducting phonon calculations for different supercell sizes, again finite size
effect are observed. Those will now be analyzed for the Td structure of the neutral
vacancy. The phonon density of states for different initial supercell sizes in Figure
24 clearly exhibits this effect. In fact, the different supercell sizes stand for different
concentrations of defects as the different cells contain one point defect in 54, 128,
432 or 1024 atoms. To still describe the q-point sampling of the Brillouin Zone
correctly when calculating the phonon DOS the following procedure is applied: for
the concentration of one defect in 54 and in 128 atoms supercells of 432 and 1024
atoms are used. A supercell of 54-atoms containing the defect is multiplied twice
in x-,y- and z-direction to obtain a supercell of 432 atoms containing 8 defects.
The supercell of 128 atoms containing one defect is multiplied twice in x-,y- and
z-direction to obtain a supercell of 1024 atoms containing 8 defects.

One observes that for supercell sizes of 54 and 128 atoms, the phonon DOS displays
fluctuations. A 54-atom supercell translates to a 3 × 3 × 3 q-point sampling of
the dynamical matrix, and the 128-atom supercell translates to a 4× 4× 4 q-point
sampling. The interaction range within those supercell sizes of the supercell may
be to small to include enough information for the force constant matrix. Periodic
interaction of the forces at the cell boundaries may also lead to poor description of
the phonon DOS. For 432 and 1024 atoms, a tendency towards the same phonon
DOS can be seen displaying peaks at the same position and height as the phonon
DOS of the perfect cell. For the 54-atom supercell large perturbation are observed
especially in the low frequency region which is difficult to model due to low phonon
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DOS. Around 13 THz a peak is observed for 54 and 128 atoms which vanishes for
larger supercell sizes. In general, a shift to larger frequencies and therefore energies
can be observed when going to larger supercell sizes.
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6 Formation entropy of the silicon vacancy

A wide range of values can be found in the literature for the formation entropy of
the silicon vacancy ∆Sf (T ), see Figure 25. The following calculations focus on the
vibrational formation entropy, as standard methods have been developed to calculate
the configurational and the electrical entropy (see section 2.6 and [22,26]).
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Large discrepancies for ∆Sf ranging from -4 kB to 11 kB at high temperature
have been found within theoretical [90–94, 96] and experimental studies [95, 97].
Furthermore, the peculiarity of the silicon vacancy exhibiting different symmetry
structures is not mentioned by all listed references. While some theoretical
studies [90, 91] obtain a D2d structure for the neutral vacancy, others do not
give precisions about the different defect structures considered [92–94]. Within
experimental investigations, vacancies, interstitials and maybe other defects coexist
at high temperatures and their measurement with positron annihilation becomes
difficult due to small defect concentrations [95]. Nevertheless, first-principle
calculations can serve as a predictive tool to support experiments and will now
be used for the calculation of the formation entropy ∆Sf of the silicon vacancy.

The formation entropy is obtained by taking the difference of the entropy of the
defective and the perfect supercell while accounting for the conservation of number
of particles. In chapter 2.6 this formalism was explained and is now applied to the
case of the silicon vacancy. One obtains for the formation entropy of a vacancy

∆Sf = Sdefect −
(
N − 1

N

)
Sperfect (86)
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In equation (86), Sdefect is the entropy of the system containing the defect, Sperfect
the entropy of the perfect system and N the number of atoms of the supercell. The
factor

(
N−1
N

)
accounts for the conservation of particle numbers and the temperature

dependence of the elemental chemical potential of Si. In comparison with chapter
2.6 the formation entropy can be written as

∆Svibf = −3kB(N − 1)

∫ ∞
0

∆g(ω)
[
n ln(n)− (1 + n) ln(1 + n)

]
dω (87)

where n is the Bose-Einstein distribution and ∆g(ω) the normalized difference of
phonon density of states (DOS) between the defective and the perfect supercell.
Thereby, ∆Svibf depends on the number of atoms N in the supercell for which g(ω)
is calculated, and it is proportional to ∆Sf ∝ N · ∆g(ω) In fact, the key quantity
that needs to be calculated to obtain ∆Sf is the difference of the normalized phonon
DOS ∆g(ω).

6.1 Formation entropy contributions

In Figure 26a the difference of phonon DOS ∆g(ω) is displayed for the neutral
vacancy in the Td symmetry. Different features can be recognized resulting in valleys
and peaks which will be called valley-peaks and which represent bond strengthening
(i.e. a shift of frequencies to higher energies). Two small valley-peaks can be
observed at 4 and 9 THz and one larger valley-peak at 14 THz. In between from 0 to
4 THz and from 5 to 9 THz lie flat regions where ∆g(ω) is low. For all three valley-
peaks, the area of the valley is slightly larger resulting in a negative contribution to
∆g(ω).

According to the different observed features the difference of the phonon DOS is
parted into several frequency domains. To get an estimate on how much each
frequency region contributes to the overall formation entropy an integration by
frequency domain is conducted and the result is showing in Figure 26b. Additionally,
the total formation entropy ∆Sf can be seen in Figure 26b as the red drawn through
line.

Figure 26b shows that all frequency domains that include a valley-peak result in
a negative contribution to ∆Sf . The first valley-peak at 4 THz gives the largest
negative contribution. The flat frequency domain from 0 to 4 THz gives the largest
positive contribution and the frequency range between 11 and 13 THz the second
positive contribution. In general, it appears that low frequency regions contribute
significantly more to the formation entropy than high frequency optical modes.

This can be explained by taking a closer look at the integration factor of equation
(87) in Figure 26c. This integration factor is highly dependent on the frequency
ω and even for high temperatures, still varies around a factor of 3-4 across the
whole frequency range. This requires an accurate modeling of low frequency regions.
Morever, especially in regions of low ∆g(ω) between 0 and 4 THz and between 5
and 9 THz the convergence of the phonon DOS with regards to q-point sampling is
particularly difficult: it is observed that insufficient sampling easily leads to wiggles
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and errors. The difficulties in modeling the phonon DOS in those regions can be
explained by the low phonon density of states and the energy band lying close to
Γ. This peculiar feature of the integration factor might have not been explicitly
considered by previous studies [93] which obtained phonon DOS displaying strong
fluctuation and variations.

By further examining equation (87) with n the Bose-Einstein distribution one can
approximate n using kBT � h̄ω resulting in n ≈ kBT

h̄ω
. As the integrand in

equation (87) is proportional to n, for large temperatures the contribution of different
frequency domains increases. Furthermore, the integration factor, as seen in Figure
26c, is positive over the whole frequency range resulting in a negative contribution
of the three valley-peaks.
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Figure 26: Different frequency regions contributing to the formation entropy ∆Sf
of the neutral Td vacancy

6.2 Finite size effects

The knowledge gained on the finite size effect for the defective and the perfect
system (see section 5.4), shall now be described further when considering the finite
size effects of the calculations for the formation entropy. In Figure 27 the difference
of the phonon density of states ∆g(ω) is displayed for different defect concentrations,
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where the defect concentration is given by the initial supercell size containing one
defect.

Although the phonon DOS of 54 and 128 atoms fluctuate over the whole frequency
range, one can see a trend towards smaller valley-peaks for the feature at 4 THz and
the one around 10 THz. On the other hand, increasing defect concentration increases
the area under the valley and the peak for the valley-peak located at 13 THz. Regions
of low ∆g(ω) tend to be flattened out for smaller defect concentrations.
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Figure 27: Finite size effect for the difference of density of states ∆g(ω) between the
perfect cell and the cell containing the neutral Td vacancy

The effect of different defect concentrations on the formation entropy can be seen
in Figure 28. The left side (a) shows the obtained formation entropies for supercell
of 54 to 1024 atoms. One observes that the formation entropy varies from -6 kB to
6 kB at high energies. When again conducting an integration by frequency domain
analysis similar to the one earlier, one obtains the following trends: for 54 and 16-
atoms the low frequency region from 0 to 4 THz gives a large positive contribution
resulting in a positive total formation entropy. Secondly, the negative contribution
of the valley-peak at 4 THz increases with increasing supercell sizes, although visibly
the area under the valley and the peak decreases. This could be due to the fact that
the formation entropy is proportional to the number of atoms in the supercell N
times the difference of the phonon DOS ∆g(ω), or ∆Sf ∝ N ·∆g(ω). This means
that any error made within the estimation of ∆g(ω) will be as well multiplied by the
number of atoms N and lead to greater errors in ∆Sf when using larger supercell
sizes.

A trend of the obtained formation entropies for different supercell sizes at T =800 K
plotted against 1/N shows some linearity, with a difference of 2.7 kB between a
supercell of 432 and 1024 atoms. Moreover, previous studies have shown that a linear
extrapolation of 1/N → 0 of constant volume calculations of formation entropies

59



for systems is possible [98]. This would mean that a supercell size of 432 atoms is
sufficient for obtaining a good estimate of the formation entropy.
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Figure 28: Linear interpolation to obtain ∆Sf for the dilute limit

6.3 Accuracy of results

The accuracy of the calculated formation entropy shall now be quantified with
regards to several parameters. It is noted that the level of accuracy required for
calculations on the defective cell is significantly different from the requirements
from the perfect cell. Important parameters setting the accuracy of the phonon
calculations are the real space projection operators (LREAL), FFT-Grid precision
(PREC,ROPT) and the q-point sampling of the phonon DOS (DOSSMEAR,q).
Moreover, the parameter is kept ISMEAR=0, which is recommended by the VASP
guide to use for semiconductors. When checking the electron density of states no
partial occupancies of the electron bands for the k-point k = {000} are found.

6.3.1 k-point grid

While the choice of finer k-point grid used to compute total energies did not lead
to a significant change for calculations of the phonon DOS of the perfect cell, it
particularly impacts the defective cell. For a 432-atom cell containing one defect
the precision of the calculation is increased by using a k-point grid of 2 × 2 × 2,
as seen in Figure 29a. Especially in the acoustic range, the phonon DOS of the
defective cell reproduces quite well the perfect phonon DOS. Subsequently, the use
of a finer k-point grid has a large impact on the formation entropy with a 9 kB
difference for for the neutral vacancy with Td symmetry and 5 kB difference for D2d

as observed at high temperatures as seen in Figure 29b.
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Figure 29: Effect of k-point under sampling for the phonon density of states of the
defective and the perfect cell for Td symmetry and the formation entropy of the
neutral vacancy with Td and D2d symmetry

6.3.2 Functionals LDA and GGA

Calculations of the formation entropy of the neutral vacancy are conducted using
two different functionals. The difference of the Local Density Approximation (LDA)
and the Generalized Gradient Approximation (GGA) functional are shown in Figure
30. The phonon density of states g(ω) for LDA in Figure 30a displays a rather good
reproduction of the perfect density of states in the acoustic region, except for the
low frequency range from 0 to 2 THz. For this frequency domain small wiggles are
observed. As stressed in section 6.1 this cosmetically small contribution can lead to
the difference obtained for the formation entropy in Figure 30b. A partial analysis
of the formation entropy for the Td vacancy reveals that its positive contribution
is mostly obtained from small differences in the frequency region of 0 to 4 THz
explaining the 4 kB rise in formation entropy. Contrary, a partial analysis of the
formation entropy for the D2d vacancy shows a small contribution in the frequency
region of 0 to 4 THz explaining the 2 kB fall in formation entropy.

Using a harder potential within the Generalized Gradient Approximation leads to
marginal changes of less than 0.5 kB in the formation entropy.
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Figure 30: Formation entropy of the neutral Td and D2d vacancy using different
functionals

6.3.3 Smearing of density of states

In section 3.2 it was explained how the phonon density of states for the frequencies
ω can be determined using

g(ω) =
∑
i,q

δ(ω − ωi,q) (88)

where the sum goes over all q-points of the Brillouin Zone and all states i. A
Gaussian function is used to model the delta function in equation (88). The
width of this Gaussian function the so-called smearing is defined by the parameter
DOSSMEAR. The smearing is linked to the q-point sampling for the construction
of the dynamical matrix as it can help establish the phonon DOS of calculations
of sparse q-point sampling where only the eigenvalues at q-points close to high
symmetry points are calculated. A large smearing can also help to speed up the
calculation while leading to an improper description of the phonon spectrum.

Applying a very broad smearing to the width of the Gaussian can lead to a poor
reproduction of the phonon DOS, as shown in Figure 31a and discussed before
in 4.3. For a DOSSMEAR of 1 THz the phonon DOS is expanded over a wider
frequency spectrum and falls down to zero at 23 THz. Moreover, the peaks at
4 THz and at 13 THz get reduced by a third of their height. In Figure 31b the
resulting formation entropies for different smearing widths are displayed. It is
observed that an increase of DOSSMEAR and can lead to high formation entropies
of around 14 kB for a smearing of 1 THz and even higher values around 70 kB at high
temperatures for DOSSMEAR > 2 THz. This fact might not have been considered
in studies obtaining 10 kB for the formation entropy of at thigh temperatures [91].
An integration by part reveals that for a smearing width of 1 THz the contributions
of each frequency domain increase by a factor of 10 compared to a smearing width
of 0.1 THz.

In addition, Figure 31b shows a convergence of the formation entropy to a finite
value for DOSSMEAR < 0.02 THz. Therefore this value is used for all phonon
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calculations. Moreover, the smearing also has a physical meaning, the phonon
lifetime originating from phonon-phonon interactions. Thereby, the phonon lifetime
is decreasing with an increase of the smearing of the peak, which is related to the
energy spread of the phonons being indirectly proportional to their lifetime. The
value of smearing chosen within this study is 0.02 THz and corresponds to a phonon
lifetime of 5 ns which agrees with the experimental value found for longitudinal
acoustic modes [99]. For the defective cell the smearing is difficult to interpret as
the degeneracy of some states is removed by the perturbation through the defect.
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Figure 31: Convergences with respect to Gaussian smearing parameter of the q-
point sampling DOSSMEAR for the formation entropy of the neutral Td vacancy

6.3.4 Convergence criteria for the remaining forces

Several previous studies [80,84] and guidelines for phonon calculations [73,100] have
stressed the importance of conducting phonon calculations only on well relaxed
structures, i.e. whose remaining forces are close to zero. Any remaining forces
acting on the atoms after a structural relaxation would alter proceeding phonon
calculations. The parameter EDIFFG which is controlling the convergence criteria
for the remaining forces was introduced in section 4.1 and forces are converged until
they are F < EDIFFG. The parameter EDIFFG also has an effect on the positions
of the atoms and for more stringent convergence criteria for the remaining forces
the PHON code finds more and more symmetries for the given atomic positions.
Particular in the context of a flat energy landscape of silicon the precise description
of the atomic positions is important.

In Figure 32 the obtained phonon density of states g(ω) and the respective
formation entropies ∆Sf are displayed for different values of EDIFFG. Studying the
neutral Td vacancy one finds a trend towards lower formation entropies with higher
accuracy for the forces F resulting in a 0.6 kB difference at high temperatures.
For F < 5 · 10−5 eV/Å the formation entropy converged to a value of -2.4 kB
at high temperatures. Furthermore, performing an offset of the obtained force
fields of the PHON calculation by subtracting the forces that remained after the

63



structural relaxation does not alter the formation entropy more than 0.01 kB at
high temperatures.

Previous lectures and articles have described the effect of errors associated with
evaluating the forces [100, 101] on the calculated phonon frequencies. Errors of ab-
intio calculations cause second order errors in the energy, but result in first order
errors for the forces. Using the expressions (67)-(71) of section 3.2 for an error of
δF = 5 · 10−5 eV/Å one can deduce an error of ∼ 70% for low frequencies around
1 THz.
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Figure 32: Effect of different convergence criteria for the forces F in eV/Å, that
remain when relaxing the atomic positions, on g(ω) and the formation entropy of
the neutral Td vacancy

6.3.5 Central differences of the forces

Until now a forward difference of the forces F was used to numerically estimate the
interatomic force constant matrix ΦAα,Bβ introduced in chapter 3.2 by setting the
parameter LCENTRAL=False

ΦAα,Bβ =
∂FBβ
∂uAα

(89)

Hereby, the difference is taken between the forces acting on the atoms when the
atoms are not displaced, which are supposed to be zero, and the forces acting
on the atoms after applying a displacement ul′tβ. By setting the parameter
LCENTRAL=True one calculates the phonon DOS using central differences: two
displacements are applied in opposite direction and the difference of the resulting
force fields is taken.

The obtained phonon DOS can be seen in Figure 33 as the blue dotted line. It is
compared with the phonon density of states obtained from the defective cell using
LCENTRAL=False and the perfect cell. The phonon DOS displays small wiggles in
the low frequency region between 0 and 2 THz for central differences. Additionally,
at around 13 THz the spectrum exhibits a small peak. An analysis of the integration
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by frequency domain showed that the observed difference in Figure 33b for the
formation entropy can be traced back to the low frequency region between 0 and
4 THz. The contribution in that domain is slightly negative for central differences.
Contrary to using forward differences where it gives a high positive contribution of
12 kB at high temperatures. The small peak for longitudinal optic modes at 13 THz
had an impact of 1 kB at high temperatures. In total, the formation entropy for
central differences is found to be 2.5 kB lower at high temperatures than for forward
differences.
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Figure 33: Using forward or central differences by setting the parameter LCEN-
TRAL and its effect on g(ω) and ∆Sf for the neutral vacancy with Td symmetry

6.4 Different symmetries and charge states

In Figure 34a the difference of the phonon DOS ∆g(ω) is displayed for the neutral
vacancy in Td and D2d symmetry, for the +2 charged vacancy in Td symmetry and
for the -2 charged defect in D3d symmetry. Considering the neutral defect, in Figure
34a the difference between the ∆g(ω) of the Td and D2d symmetry is difficult to
visualize. However, Figure 34b shows that a change in local symmetry does induce
a differences for ∆Sf resulting in a formation entropy of -2.41 kB for Td and -3.18 kB
for D2d symmetry at high temperatures. For the neutral vacancy in D2d symmetry
this would add 0.2 eV to the formation enthalpy of 3.67 eV obtained in section 5
at high temperatures. Considering formula (32) from section 2.6 one can obtain
the concentration of defects of 3.3 · 105 cm−3 which is in rough agreement with
experimental studies who found a vacancy concentration of 105 cm−3 in silicon
wafers [89].

Looking at the charged defects one can observe small wiggles for the ∆g(ω) of the
+2 positively charged defect around 2 THz. This could be the cause of the increase
of the formation entropy in Figure 34b for lower temperatures. An integration by
part analysis shows that the contribution of the low frequency region to ∆Sf is the
highest for the +2 charged defect. At high temperatures the formation entropy of
the +2 charge defect resulted in a -1.88 kB formation entropy and the -2 charged
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defect in -2.04 kB.
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Figure 34: Difference of the phonon density of states of the defective and the perfect
cell and formation entropy for the neutral Td and D2d vacancy

7 Conclusions

Point defects can heavily influence the physical properties of a material and their
formation depends strongly on temperature. Due to the interest for several device
applications, including solar cells, particular focus has been put on computational
models that accurately calculate the formation energies of point defects with regards
to temperature. A common approach is to use first principle methods to compute
formation enthalpies [22]. However, no agreement has been found in the literature
on the best methodology to compute formation entropies. Large discrepancies can
be found for the value of the formation entropy of the silicon vacancy.

This variation cannot be traced back to the use of certain formalisms, but more
often to finite size effects of the used simulation box, a restriction of computational
time [90–93] or to errors in describing the acoustic modes [101].
Within this study, calculations are conducted using first principle density functional
theory and the frozen phonon method. For the energetic ground state structure,
several theoretical [77,78,80,84] and experimental studies [85,86] come to the same
conclusion of finding three stable charge states of the silicon vacancy. The +2 charge
state of the defect exhibits a Td structure and the -2 charge state a D3d structure. For
the neutral vacancy a Jahn-Teller distortion is observed, a symmetry breaking from
Td to the lower D2d symmetry resulting in a lower ground state energy. The obtained
formation enthalpy for the neutral D2d symmetry of 3.67 eV lies close within the
values obtained in recent studies [80, 84]. From this a vacancy concentration of
3.7 ·106 per cm3 is calculated which is in rough agreement with experimental studies
who found a vacancy concentration of 105 per cm3 in silicon wafers [89] which is a
very low concentration of defects. The Jahn-Teller distortion is found to be strongly
affected by finite size effects and is only displayed for system sizes larger than 216
atoms, which is probably due to the influence of the flat nature of the silicon energy
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landscape [74].
The lattice distortion is generally recognized to be more dependent on the symmetry
of the defect structure than on the charge state of the defect and Td is found to have
the lowest distortion. Additionally, it is deduced that the distinct defect symmetries
have a different impact on the formation entropy.
The calculations of the formation entropy of the neutral vacancy result in a value
of -2 kB for Td and -3 kB for D2d symmetry at high temperatures. For the neutral
D2d vacancy this adds 0.2 eV to the total formation energy lowering the vacancy
concentration to 3.3 · 105 per cm−3. The formation entropy calculations for the
neutral Td vacancy display a linear decline with decreasing defect concentrations
and a linear extrapolation can be performed to obtain the formations entropy for
the dilute limit.
For several technical parameters of the calculation it is found crucial to take
particular care of their stringent convergence, especially for the k-point and q-
point grid to obtain the phonon density of states as well as for the real space
projectors. High accuracy for the convergence criteria of the forces also leads to
an increase of the precision of the calculation. In addition, the formation entropy
needs to be converged with respect to the width of the Gaussian function which is
used to calculate the phonon density of states. The effect of different parameters
is summarized in Figure 35a with the formation entropy varying between -5 kB
and 2 kB at high temperatures. For each parameter an analysis of the different
contributions of different frequency domains all point to peculiar features in the
low frequency region which result in a large positive contribution to the formation
entropy. In Figure 35b the contribution of the low frequency region from 0 to 4 THz
is removed resulting in a more systematic trend for the formation entropy within
3 kB difference at high temperatures. This demonstrates that one of the problems
within the calculation of the phonon DOS is the modeling of the low energy acoustic
region. This region is difficult to model due to a low phonon density of states, where
the phonon bands are degenerate and close to the high symmetry Γ-point. Further
propositions are to use a larger supercell to obtain a finer q-point sampling of the
Brillouin Zone to describe this low phonon density region better. However, the
question arises if one could computationally afford a larger supercell size and still
remain within the same high precision of the calculation. Generally, one should take
particular care when treating the low frequency region of the phonon DOS.

Further propositions are to test the effect of using different functionals of GGA and
LDA and softnesses of the effective ionic potential acting on the valence electrons.
Finally, one has to consider that when going to more complex systems than silicon,
it will be difficult to remain within a high level of precision for the mentioned
parameters.
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Figure 35: Total formation entropy (a), and formation entropy ∆Sf without the
contribution of low frequency regions (b), for the neutral Td vacancy

Furthermore, the calculation of the forces by ab-intio methods results in first order
errors and gives an especially large error of ∼ 70% for low frequencies around 1 THz.

Another point worth mentioning, is that by using the frozen phonon method the
phonon density of states is calculated within the harmonic approximation and the
interaction potential between the atoms is described by a spherically symmetric
harmonic well. The displacements applied to the atoms to calculate the force fields
cannot be too large to remain within the harmonic approximation. Additionally, a
problem specific to silicon is that due to its flat energy landscape large displacements
may lead to an extent into local minima of the potential. For smaller displacements
the question arises if they will lead to small energy differences and therefore will
be more prone to error and numerical noises. The inclusion of anharmonic terms
and the investigation of possible displacements for which the forces can be reliably
calculated are therefore propositions for future research.
Moreover, within this study entropies were calculated at constant volume SV .
In experiments however, thermodynamic quantities are much easier accessible at
constant pressure. Therefore the inclusion of volume change within the calculation
and the determination of the entropy at constant pressure Sp from the obtained
entropy at constant volume SV might be of interest. One could include a volume
dependence using [102]

Sp − SV = βBVrel (90)

whereas β is the expansion coefficient and B the bulk modulus which are both well
known for silicon. Vrel is the relaxation volume which is given by the difference
between the formation volume of the defect and the volume of the perfect cell.

Furthermore, there are different ways how the low density acoustic region of the
phonon density of states could be treated. One could remove the contribution in
this area or estimate it by an average constant value. Another idea would be to
approximate the acoustic modes by a more simplified model in 1D to get an estimate
on what effect the presence of a point defect has on the speed of sound in a material.

In the end, a further increase of the precision of the calculation and a better
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description of the low frequency region of the phonon DOS will result in the
possibility to benchmark a methodology for the computation of the formation
entropy of point defects. This will give a deeper insight on the temperature
dependence of defect formation energies and the processes going on in a material
when a point defect is formed.
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Figure 36: Phonon density of states g(ω) for the neutral Td vacancy using a 1024
atom supercell
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Figure 37: Phonon density of states g(ω) for the neutral D2d vacancy
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Figure 38: Phonon density of states g(ω) for the perfect cell for different
displacement lengths ’DISP’
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Figure 39: Difference of phonon density of states ∆g(ω) for the neutral Td vacancy
using different EDIFFG
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Figure 40: Difference of phonon density of states ∆g(ω) using LDA and GGA
functionals
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Figure 41: Total formation entropies for the neutral Td vacancy using different
displacement lengths ’DISP’
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Figure 42: Partial formation entropies D2d
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Figure 43: Partial formation entropies Td for LDA
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Figure 44: Partial formation entropies for the neutral Td vacancy for the 54-atom
supercell
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Figure 45: Partial formation entropies for the neutral Td vacancy for EDIFFG=5E-6
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Figure 46: Partial formation entropies for the neutral Td vacancy for the displace-
ment length d = 0.02 Å
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Figure 47: Partial formation entropies for the neutral Td vacancy for different
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[23] C. W. M. Castleton, A. Höglund, and S. Mirbt, “Density functional theory
calculations of defect energies using supercells,” Modelling and Simulation in
Materials Science and Engineering, vol. 17, no. 8, p. 084003, 2009.

[24] E. Rauls and T. Frauenheim, “Entropy of point defects calculated within
periodic boundary conditions,” Phys. Rev. B, vol. 69, p. 155213, Apr 2004.
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