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Kurzfassung der Dissertation

Im ersten Kapitel beweisen wir einen Martingalzerlegungssatz für beliebige lokale

Martingale. Wir vergleichen diese Zerlegung, die wir Radon–Nikodym–Zerlegung

nennen, mit der wohlbekannten Kunita–Watanabe–Zerlegung. Anhand verschie-

dener Beispiele illustrieren wir, dass die Kunita–Watanabe–Zerlegung im Allge-

meinen nicht existiert. Nichtsdestotrotz, die Radon–Nikodym–Zerlegung existiert,

und wir geben diese für die speziellen Beispiele an.

In Kapitel 2 widmen wir uns der Struktur lokal quadratintegrierbarer Semimartin-

gale. In mehreren Strukturtheoremen beleuchten wir die Verbindung zwischen

der Struktur lokal quadratintegrierbarer Semimartingale einerseits und der Struk-

tur strikt positiver σ–Martingaldichten andererseits. Während die Struktur lokal

quadratintegrierbarer Semimartingale mit Hilfe sogenannter Strukturbedingungen

beschrieben werden kann, lässt sich die Struktur der σ–Martingaldichten mit Hilfe

verschiedener Martingalzerlegungsätze beschreiben. Wir vergleichen diese neuen

Strukturbedingungen mit der wohlbekannten Strukturbedingung (SC) und überdies

mit der schwachen Strukturbedingung (SC′). Anhand zahlreicher Beispiele illustrie-

ren wir, wie diese neuen Strukturbedingungen verwendet werden können, um strikt

positive σ–Martingaldichten zu finden.

Im dritten Kapitel wenden wir uns der Modellierung mehrerer Phänomene zu, die

im Zusammenhang mit der Anwesenheit großer Händler in Finanzmärkten stehen.

Um diese Phänomene sauber trennen zu können, orientieren wir uns am Baukas-

tenprinzip. Hierbei steht jeder einzelne Baustein für ein im Zusammenhang mit

der Anwesenheit eines großen Händlers auftretendes Phänomen. Wir konzentrie-

ren uns hier auf zwei Phänomene. Das erste betrifft die Art und Weise, wie ein

großer Händler Einfluss auf den Preisprozess nehmen kann. Um ein Finanzmarkt-

modell mit großem Händler einführen zu können, das nicht im Widerspruch zu

gängigen no–arbitrage–Annahmen für den kleinen Händler steht, widmen wir uns

im zweiten Teil des dritten Kapitels diesem Phänomen. Schließlich untersuchen wir

das Nutzenmaximierungsproblem des großen Händlers. Dabei stellt sich heraus,

dass ein großer Händler, trotz erfüllter no–arbitrage–Bedingungen, einen Finanz-

markt destabilisieren kann.
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Abstract

In Chapter 1, we provide a martingale decomposition theorem for arbitrary local

martingales. Moreover, we compare this decomposition, named Radon–Nikodym de-

composition, to the well known Kunita–Watanabe decomposition. Furthermore, we

give examples in which the Kunita–Watanabe decomposition does not exist. Finally,

we provide the Radon–Nikodym decomposition in these particular examples.

Chapter 2 is dedicated to structure conditions for locally square–integrable semi-

martingales. In several structure theorems, we highlight the connection between the

structure of locally square–integrable semimartingales, encoded in different struc-

ture conditions, and different martingale decomposition theorems of strictly positive

σ–martingale densities with respect to the local martingale part of the semimartin-

gale under consideration. We compare these new structure conditions to the well

known structure condition (SC) and the weak structure condition (SC′). Through

numerous examples we highlight how these new structure conditions can be used in

order to find strictly positive σ–martingale densities.

In Chapter 3, we provide a modular model approach to large traders. The idea

is to ‘decompose’ the different phenomena, related to the presence of a large trader

in a financial market, into several modules. Here, we consider the ‘price module’

and the ‘no arbitrage for the small trader’ module. In the first one, we provide a

flexible model that allows us to model the impact of the large trader on the price

process. In the second module, we provide minimal assumptions that ensure that

the turbulences, caused by the large trader’s actions, do not lead to arbitrage op-

portunities for the small trader. With the help of the structure condition (SC), we

provide sufficient conditions that ensure that these results hold for a large class of

large trader strategies. Finally, we consider the large trader utility maximization

problem. We discover new phenomena that reveal that the presence of a large trader

might destabilize the financial market. These phenomena appear even though the

large trader strategy is not an arbitrage strategy in the sense of the classical no

arbitrage condition.

v



vi



Acknowledgements

This thesis could not have been finalised without the support of many people. Thus,

I would like to take this opportunity to express my gratitude to everyone who sup-

ported me throughout this period. First of all, I would like to express my special

appreciation and thanks to my advisor Prof. Dr. Thorsten Rheinländer. I would

like to thank him for encouraging my research and for allowing me to introduce my

own ideas and thoughts. I am thankful for his guidance, constructive criticism, and

friendly advice. I would also like to thank my second referee Prof. Dr. Jan Kallsen

for taking the time to review my thesis. A special thank you goes to my colleagues

at FAM. Furthermore, I would like to acknowledge the strong support and valuable

suggestions of Prof. Dr. Friedrich Hubalek. A final thank you goes to Prof. Dr.
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Introduction

“It is by logic that we prove, but by intuition that we discover.

To know how to criticize is good, but to know how to create is better.”

H. Poincaré

in “Science and Method”

“[...] the Black–Scholes model, which has, since it was first proposed by Samuelson

[44], established itself as the undoubted benchmark model and changed the whole

industry, as was pointed out in the justification of the Nobel Foundation for award-

ing the 1997 Nobel prize in economics to F. Black and M. Scholes, two of the main

contributors (along with R. Merton) of the theory behind the model [21]. The model

was the first to offer a convincing principle to find unique option prices based on

the argument of no arbitrage.”1 Here, we want to add that the principle is, in this

particular model, intuitive, too.

On the one hand, this principle is convincing, as it can be proven by logic. On

the other hand, this principle is intuitive due to the ‘geometry’ provided by the

underlying Brownian motion. The Black–Scholes model does not only allow for a

unique price for an option, but it also allows for a complete replication of the option.

The latter is a consequence of a martingale representation theorem for the Brownian

motion. It allows for replicating the payment stream of an option without making

any hedging error at all. Moreover, as the price process in the Black–Scholes model

is continuous, it has to satisfy the so–called structure condition (SC) to allow for

the existence of an equivalent local martingale measure. The structure condition in

turn relates the price process in an (almost) direct way to the ‘convincing principle

to find option prices’, the equivalent local martingale measure. Again, this con-

nection is provided by a structure theorem that relates the ‘geometry of the price

process’, encoded in the structure condition (SC), to the ‘geometry of the equiva-

lent local martingale measure’. The geometry of the latter is essentially provided

by its Kunita–Watanabe decomposition with respect to the local martingale part of

the price process; see [12]. Hence, the Black–Scholes model is a good mathematical

instrument for the financial engineer in the sense of Poincaré: “The engineer must

receive a complete mathematical training, but of what use is it to be to him, except

1Blum; [8].
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to enable him to see the different aspects of things and to see them quickly? He has

no time to split hairs. In the complex physical objects that present themselves to

him, he must promptly recognize the point where he can apply the mathematical

instruments we have put in his hands. How could he do this if we [mathematicians ]

left between the former and the latter that deep gulf dug by the logicians?”2

Thus, the Black–Scholes model is, from an intuitive, as well as from a logical point

of view, a beautiful mathematical instrument for a financial engineer. But, there

are also downsides. Two, amongst others, are the normally distributed logarithmic

returns and the absence of jumps. As pointed out in [24], these facts lead to an

underestimation of rare events.

To overcome these downsides, one has to consider far more general processes.

Thanks to the Fundamental Theorem of Asset Pricing (FTAP) [17], the connection

between a no arbitrage principle on the one hand, and the existence of a convincing

pricing operator on the other, remains stable for the large class of semimartingale

price processes.

Unfortunately, this is not true for the geometric interpretation mentioned in the

context of the Black–Scholes model. Although the geometric connection, provided

by the structure theorem of Choulli and Stricker [12], remains stable for a sufficiently

large class of semimartingales, it neither provides an intuitive link to a strictly posi-

tive pricing operator, nor does it ensure the existence of the latter. In this regard,

the (FTAP), although undoubtedly correct due to a ‘proof by logic’, lacks a ‘simple

proof by intuition’ as in the Black–Scholes model.3 But, as Poincaré pointed out:

“It is through it [intuition] that the mathematical world remains in touch with the

real world, and even if pure mathematics could do without it [intuition], we should

still have to have recourse to it to fill up the gulf that separates the symbol from

reality. The practitioner will always need it [intuition], and for every pure geome-

trician4 there must be a hundred practitioners.”5

The purpose of the first part of this thesis is, in the words of Poincaré, to provide

first steps towards a recourse to intuition to fill up the gulf that separates the symbol

from reality.

In order to do so, we have to adapt the ideas of the structure theorem by Choulli

and Stricker to not necessarily continuous semimartingales. On the one hand, we

have to look at special semimartingales and their unique decompositions in a dif-

2Poincaré; [41]. Here, the logicians are those that mainly focus on a logical proof and neglect the

intuition behind it.
3This is an allusion to the quotation of Poincaré at the beginning of this introduction! In no way

this statement means to degrade the great achievement that the rigorous proof of the (FTAP)

constitutes!
4In the context of this thesis, the term ‘pure geometrician’ should be thought of as ‘a mathemati-

cian in the (academic) field of mathematical finance’.
5Poincaré; [41].
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ferent light. In which sense are these decompositions unique? Is it possible to look

at this decomposition from different points of view to end up with more than one

decomposition of the same special semimartingale? The answer to this question will

lead us to several new structure conditions. On the other hand, we need a decom-

position theorem for arbitrary local martingales in order to provide a link between

strictly positive σ–martingale densities and the semimartingale under considera-

tion. These links are provided in several structure theorems. Each of them focuses

on a different geometric aspect of the connection between semimartingales on the

one hand, and σ–martingale densities on the other hand. Moreover, each of these

structure theorems serves as a tool that helps to find strictly positive σ–martingale

densities. Through numerous examples, we highlight the different mechanisms of

these structure conditions and how powerful they might be, if they act in concert.

In the second part of this thesis, Chapter 3, we leave the pricing theory of fric-

tionless small trader markets behind. Several studies, amongst them [32], point out

that, in general, the competitive market paradigm is not justified. As a consequence,

there has to be a large trader (or a group of small traders that act in concert) that

has an impact on the evolution of the price process. Our goal is to incorporate

different aspects of this impact into different modules. Assembling these modules

leads to the large trader modular model. This modular model approach allows us,

for instance, to incorporate different phenomena such as liquidity risks, related to

market depth and market resiliency, into the model. The famous Almgren–Chriss

model [2, 1], which seems to be the benchmark large trader model, is one particular

example that is covered by our modular model approach.

Apart from modelling different types of liquidity risk, we address the question of

whether or not the presence of a large trader might lead to arbitrage opportunities

for the small traders. It is remarkable that, in order to extend certain no arbitrage

assumptions for the small trader to a large set of large trader strategies, the structure

conditions are, again, a powerful tool to achieve this goal.

3
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1. A martingale decomposition

theorem

1.1. Introduction

In [37], Kunita and Watanabe provide a decomposition theorem for square–integra-

ble martingales. This decomposition is unique and characterized in the following

way. Given two square–integrable martingales N,M , the theorem ensures the exis-

tence of a predictable process λ̃ and a martingale L̃ such that

N =

∫
λ̃ dM + L̃,

where [L̃,M ] is a martingale. Moreover, this representation property is a symmetric

property, i.e. there also exists a decomposition of M with respect to N . This result

can be extended to the case of locally square–integrable martingales by localization.

The proof for the existence of this decomposition strongly relies on the Hilbert space

structure of the space of square–integrable martingales. Therefore, it is not surpris-

ing that the class of locally square–integrable martingales is essentially the most

general class that allows for such a decomposition for all its elements. This fact is

proved by Ansel and Stricker [3] by means of counterexamples. In order to provide a

similar decomposition theorem for arbitrary local martingales, one has two options.

Either one changes the assumptions on the orthogonality of L̃ and M , or one uses

a more general concept of stochastic integration.

We take the second option. More precisely, we use the compensated stochastic

integral, introduced by Meyer in [40], to provide an integral decomposition for ar-

bitrary local martingales N and M of the following form. There exists an optional

integrand H such that the compensated stochastic integral H•cM exists and

N = H•cM + L, (1.1)

where [L,M ] is a σ–martingale. The integrand in this decomposition arises from

the relation of N and M in a very natural way. It is the Radon–Nikodym derivative

of the quadratic covariation of N and M with respect to the quadratic variation

of M , i.e. H.[M ] = [N,M ]. For this reason we call the decomposition (1.1) the

5



Chapter 1. A martingale decomposition theorem

Radon–Nikodym decomposition of N with respect to M . Moreover, we provide a

more detailed characterization of (1.1). If we denote by

N c =

∫
λ̃ dM c + L̃

the Kunita–Watanabe decomposition of the continuous local martingale part N c of

N w.r.t. M c, then

(H•cM)c =

∫
λ̃ dM c and Lc = L̃

holds up to indistinguishability.

The chapter is organized as follows. In Section 2, we give an overview of the

compensated stochastic integral of Meyer. Besides, we fix notations and provide a

short collection of definitions, including σ–martingales and compensable processes.

Furthermore, we recall some well known results related to these processes. Section

3 is the main part of this first chapter. Apart from the results on the Radon–

Nikodym decompositions for local martingales, it contains an inequality (needed for

the proof of existence of the Radon–Nikodym decomposition) being of interest in its

own right. In Section 4, we compare the Kunita–Watanabe decomposition and the

Radon–Nikodym decomposition for locally square–integrable martingales. Finally,

Section 5 contains the examples presented in [3]. They highlight that the Kunita–

Watanabe decomposition does not exist in general. We complete these examples by

computing the corresponding Radon–Nikodym decompositions.

1.2. Definition and preliminary results

Throughout this chapter we consider a complete stochastic basis (Ω,F ,F, P ), where

the filtration F := (Ft)t≥0 satisfies the usual conditions. Furthermore, all semi-

martingales are assumed to have càdlàg paths. For unexplained notation we refer

to [27].

In this section, we briefly recall the definition of the stochastic integral w.r.t.1

local martingales for predictable integrands. Moreover, we provide a more detailed

overview of stochastic integration theory w.r.t. local martingales for optional inte-

grands. This stochastic integral is referred to as compensated stochastic integral.

In the third subsection, we introduce a quotient space which we need in order to

define a certain Hilbert space in Section 1.4. Finally, we provide definitions and

basic results on σ–martingales and compensable processes in the last subsection.

1abbr.: with respect to

6



1.2. Definition and preliminary results

1.2.1. Stochastic integral w.r.t. local martingales

We briefly recall the classical definition of stochastic integrals w.r.t. local martingales

for predictable integrands. For details we refer to [27].

Definition 1.1 ([27, 9.1 Definition]): Let M be a local martingale, and H be a

predictable process. If there exists a local martingale L such that

[L,N ] = H. [M,N ] (1.2)

holds for every local martingale N , then we say that H is integrable w.r.t. M in the

domain of local martingales (or simply, integrable), and L (it is uniquely determined

by the above equation) is called the stochastic integral of H w.r.t. M , and denoted

by H.M . The collection of all predictable processes which are integrable w.r.t. M is

denoted by Lm(M).

The elements of Lm(M) can be characterized in the following way.

Theorem 1.2 ([27, 9.2 Theorem]): Let M be a local martingale, and H be a pre-

dictable process. Then H ∈ Lm(M) if and only if
√
H2.[M ] ∈ A+

loc.

We end this subsection with the following lemma.

Lemma 1.3: Let H,K ∈ Lm(M). Further, let (Tn)n≥1 be a non–decreasing se-

quence of stopping times that tends to ∞ a.s. and that localizes
√
H2.[M ] and√

K2.[M ]. If E
[√

(H −K)2.[MTn ]∞

]
= 0 for all n ≥ 1, then H.M and K.M

are indistinguishable.

Proof: The Kunita–Watanabe inequality, see [27, 8.3 Theorem], and Definition 1.1

ensure that [H.M − K.M,N ] = 0 for all N ∈ Mloc. Due to [27, 7.36 Theorem],

H.M and K.M are indistinguishable.

1.2.2. Compensated stochastic integral w.r.t. local martingales

There are various approaches to extend the definition of stochastic integrals to

a broader class of integrands. Here, we recall the definition of the compensated

stochastic integral as given in [27, Chapter IX §2.]. Although the integral is defined

for progressive integrands, we are only interested in optional integrands. For a more

detailed analysis we refer to [20, Chapter VIII §2.] and the French literature [40,

Chapitre V]. We start the overview with the following theorem. It basically says

that the stochastic integral and the compensated stochastic integral are the same

for continuous local martingales.

7



Chapter 1. A martingale decomposition theorem

Theorem 1.4 ([27, 9.6 Lemma]): Let M be a continuous martingale, and H be

an optional process. Then there exists a L ∈ Mloc such that (1.2) holds for all

N ∈Mloc if and only if H2.[M ] ∈ V+. In this case there exists a predictable process

K ∈ Lm(M) such that K.M = L. We say that H is integrable w.r.t. M , and L is

called the stochastic integral of H w.r.t. M, denoted by H.M .

The main difference between the stochastic integral and the compensated stochas-

tic integral becomes apparent when the integrator is a purely discontinuous local

martingale.

Definition 1.5 ([27, 9.7 Definition]): Let M be a purely discontinuous local martin-

gale, and H be an optional process. If H∆M has a predictable projection, and there

exists a purely discontinuous local martingale L such that ∆L = H∆M − p(H∆M),

we call L the compensated stochastic integral of H w.r.t. M, and denote L = H•cM .

Remark 1.6: Note that if H is predictable, Definition 1.5 and Definition 1.1 co-

incide. Indeed, [27, 7.13 Theorem] ensures that p(H∆M) = Hp(∆M) = 0.

The next lemma characterizes the jumps of a compensated stochastic integral.

Lemma 1.7: Let M be a purely discontinuous local martingale starting in zero,

H be an optional process and T be a stopping time. Suppose that the compensated

stochastic integral of H w.r.t. M exists. Then we have on {T <∞}:

∆ (H•cM)T =

{
H∆MT − E [H∆MT |FT−] a.s., if T is predictable,

H∆MT a.s., if T is totally inaccessible.

Proof: If T is predictable, the statement results from the definition of the pre-

dictable projection; see [27, 5.2 Theorem]. Let T be totally inaccessible. First note

that p(H∆M) is a predictable thin process. Indeed, the compensated stochas-

tic integral H•cM is a purely discontinuous local martingale such that ∆H•cM =

H∆M − p(H∆M). Therefore, we get

{p(H∆M) 6= 0} =

= {p(H∆M) 6= 0} ∩ ({H∆M − p(H∆M) 6= 0} ∪ {H∆M = p(H∆M)})
⊂ {∆H•cM 6= 0} ∪ {∆M 6= 0} .

Due to [27, Theorem 3.32], the r.h.s.2 of the equation above is a thin set. [27,

Theorem 3.19] ensures that the set {p(H∆M) 6= 0}, as a subset of a thin set, is itself

a thin set. Since the predictable projection p(H∆M) is by definition a predictable

process, it has to be a predictable thin process. [30, 2.23 Lemma] ensures that there

2abbr.: right hand side

8



1.2. Definition and preliminary results

exists a sequence (Tn)n≥1 of predictable stopping times with disjoint graphs such

that {p(H∆M) 6= 0} =
⋃
n≥1[[Tn]]. Accordingly, it appears that

p(H∆M)T = p(H∆M)T1
⋃
n≥1[[Tn]](T ) = p(H∆M)T1

⋃
n≥1{Tn=T}.

Since T is totally inaccessible and (Tn)n≥1 are predictable stopping times, we have

P

(⋃

n≥1

{T = Tn <∞}
)

= 0.

Combining the last two equations, we get

p(H∆M)T = 0 a.s. on {T <∞}.

It is well known that a local martingale can be uniquely decomposed into a con-

tinuous local martingale and a purely discontinuous local martingale; see [27, 7.25

Theorem]. Thus, it is natural that the compensated stochastic integral w.r.t. arbi-

trary local martingales is essentially a composition of Theorem 1.4 and Definition

1.5.

Definition 1.8 ([27, 9.9 Definition]): Let M be a local martingale, and H be an

optional process. If H2.[M c] ∈ V+, p(H∆M) exists and

√∑
(H∆M − p(H∆M))2 ∈ A+

loc,

define

H•cM = H0M0 +H.M c +H•cM
d.

H•cM is called the compensated stochastic integral of H w.r.t. M .

Example 1.9 ([27, 9.8 Lemma]): Let M be a purely discontinuous local martingale.

Put H = 1{∆M 6=0}. Then the compensated stochastic integral of H w.r.t. M exists

and H•cM = M .

The subsequent theorem is the definition of the compensated stochastic integral

as given by Meyer in [40]. Note that it is closely related to the Definition 1.1 and the

characterisation (Theorem 1.2) of the stochastic integral for predictable integrands.

Theorem 1.10 ([27, 9.10 Theorem]): Let M be a local martingale, and H be an

optional process. If
√
H2.[M ] ∈ A+

loc, then H•cM exists, and it is the unique local

martingale L such that for every bounded martingale N , [L,N ]−H.[M,N ] ∈Mloc,0.

Remark 1.11: In the following, all compensated stochastic integrals H•cM will sat-

isfy
√
H2.[M ] ∈ A+

loc.

9



Chapter 1. A martingale decomposition theorem

The next lemma is an analogue to Lemma 1.3.

Lemma 1.12: Let H,K be optional processes such that
√
H2.[M ] ∈ A+

loc and√
K2.[M ] ∈ A+

loc holds. Let further (Tn)n≥1 be a non–decreasing sequence of stop-

ping times that tends to ∞ a.s. and that localizes
√
H2.[M ] and

√
K2.[M ]. If we

have E
[√

(H −K)2.[MTn ]∞

]
= 0 for all n ≥ 1, then H•cM and K•cM are indistin-

guishable.

Proof: The proof is similar to the proof of Lemma 1.3. Due to the Kunita–

Watanabe inequality, we find that (H −K).[M,N ] = 0 for all bounded martingales

N ∈ Mloc. The unique characterization of H•cM and K•cM in Theorem 1.10 results

in the fact that H•cM and K•cM are indistinguishable.

The following example is probably the archetype example for the compensated

stochastic integral.

Example 1.13 ([40, Chapitre V, 21 Theoreme]): Let M be a local martingale

starting in zero. Then
√

(∆M)2.[M ] ∈ A+
loc holds if and only if M is locally square–

integrable. Furthermore,

(∆M)•cM = [M ]− 〈M〉,
where 〈M〉 denotes the predictable quadratic variation of M .

The generalisation of the stochastic integral to the compensated stochastic integral

as presented so far has some drawbacks. For example, the compensated stochastic

integral is not associative in general. To overcome this drawback, Yor [54] suggests a

different definition of the stochastic integral for suitably chosen optional integrands.

However, for predictable integrands we have the following associativity formula.

Lemma 1.14 ([20, Chapter VIII.2, 40 (c) Associativity formula]): Let H be an

optional process and K be a predictable process. If
√
H2.[M ] ∈ A+

loc and K is locally

bounded, the following three compensated integrals exist and are equal:

K.(H•cM) = (KH)•cM = H•c(K.M).

Remark 1.15: For our purposes the most important consequence of Lemma 1.14

is the following stopping rule. Let T be a stopping time and set K := 1[[0,T ]]. Due to

Lemma 1.14, we get

(H•cM)T = (1[[0,T ]]H)•cM = H•cM
T .

We end the overview with the following remark. It strengthens the characterisa-

tion of the compensated stochastic integral as given in Theorem 1.10 under certain

integrability conditions.

10



1.2. Definition and preliminary results

Remark 1.16: For M ∈M2
loc and H2.[M ] ∈ A+

loc the characterisation of the com-

pensated stochastic integral can be sharpened. Denote by (Tn)n≥1 a non–decreasing

sequence of stopping times tending to ∞ a.s. that localizes M ∈M2
loc and H2.[M ] ∈

A+
loc. Due to [20, Chapter VIII.2, 33 Theorem] and Lemma 1.14, we get

E
[
[H•cM

Tn ]∞
]
≤ E



∞∫

0

H2
u d[MTn ]u




for all n ≥ 1. Furthermore,

[H•cM,N ]−H.[M,N ]

is a local martingale for all N ∈M2
loc.

1.2.3. Quotient space of optional integrands

Lemma 1.12 indicates that two compensated stochastic integrals are indistinguish-

able, if the integrands are essentially the same. In the following, we do not want to

distinguish between optional integrands (in the sense of Theorem 1.10) generating

the same compensated stochastic integral. Due to Lemma 1.12, we can accomplish

this task by defining a proper quotient space. For a local martingale M we define

BO := BO (M) :=



H ∈ O :

√√√√
.∫

0

H2
u d[M ]u ∈ A+



 .

It is straightforward to check that BO is a R–vector space and that the functional

‖.‖ :BO −→ R≥0

H 7−→ E




√√√√√
∞∫

0

H2
u d[M ]u




defines a seminorm on BO. Moreover,

N :=
{
H ∈ BO : ‖H‖ = 0

}

is a linear subspace of BO. For H,K ∈ BO we define the equivalence relation

H ∼ K :⇐⇒ H −K ∈ N .

Definition 1.17: Let M be a local martingale. We denote by

oL := oL (M) := BO/N

the quotient space of BO and N . The localized space is denoted by oLloc := oLloc(M).

11



Chapter 1. A martingale decomposition theorem

Remark 1.18:

1. With the usual abuse of notation, we call the elements of oLloc(M) optional

processes or optional integrands w.r.t. M .

2. Using the same procedure for predictable integrands, we can define the sub-

spaces pL(M) ⊂ oL(M) and pLloc(M) ⊂ oLloc(M) of predictable integrands in

a similar way.

As a consequence, we get the following result.

Lemma 1.19: (oL (M) , ‖.‖) and (pL (M) , ‖.‖) are normed R–vector spaces.

1.2.4. σ–martingales and compensable processes

The concepts of σ–martingales and compensable processes trace back to the work of

Chou [14] and Émery [22]. Both authors consider a certain subclass of semimartin-

gales. Their elements are called semimartingales de la classe (Σ). This class has

also been studied by Kallsen [33]. We are interested in the subclass (Σm) ⊂ (Σ).

In the English literature the elements of (Σm) are most often called σ–martingales.

We work with the following definition. For simplicity, we only consider processes

starting in zero a.s..

Definition 1.20: Let X be a semimartingale starting in zero. X is a σ–martingale,

if there exists a strictly positive, bounded, and predictable process K, such that K.X

is a uniformly integrable martingale.

Several equivalent characterisations of σ–martingales are provided in the next

proposition.

Proposition 1.21: Let X be a semimartingale starting in zero a.s.. The following

statements are equivalent.

1. X is a σ–martingale.

2. There exists a predictable partition (An)n≥1 ⊂ P of Ω × R+ such that 1An .X

is a local martingale for all n ≥ 1.

3. There exists a predictable partition (Dn)n≥1 ⊂ P of Ω × R+ such that 1Dn .X

is a uniformly integrable martingale for all n ≥ 1.

4. There exists a non–decreasing sequence (Ãn)n≥1 ⊂ P such that
⋃
n≥1 Ãn =

Ω× R+ and 1Ãn .X is a local martingale for all n ≥ 1.

5. There exists a non–decreasing sequence (D̃n)n≥1 ⊂ P such that
⋃
n≥1 D̃n =

Ω× R+ and 1D̃n .X is a uniformly integrable martingale for all n ≥ 1.

12



1.2. Definition and preliminary results

We call the sequence (D̃n)n≥1 ⊂ P, that satisfies 5., a localizing sequence for X.

Proof: The equivalence of the first three statements is exactly [22, Proposition 2].

To prove ‘2. ⇒ 4.’ just set Ãn :=
⋃
m≤nAm. To see that ‘4. ⇒ 2.’ holds, we define

A0 := ∅ and An := Ãn \ Ãn−1 for n ≥ 1. ‘3. ⇔ 5.’ follows in the same way.

The following concept has been introduced by Émery to characterize those semi-

martingales that can be decomposed into the sum of a σ–martingale and a pre-

dictable process of finite variation.

Definition 1.22: Let V be a process of finite variation starting in zero. V is called

compensable, if there exists a predictable process C of finite variation starting in

zero such that process V − C is a σ–martingale. C is called the compensator of V .

The next proposition is similar to Proposition 1.21. It provides several criteria to

identify the compensator of a compensable process.

Proposition 1.23 ([22, Proposition 3]): Let V be a process of finite variation

starting in zero and C be a predictable process of finite variation. The following

statements are equivalent.

1. V − C is a σ–martingale.

2. There exists a predictable partition (An)n≥1 ⊂ P of Ω × R+ such that 1An .V

is of locally integrable variation and its compensator is given by 1An .C for all

n ≥ 1.

3. There exists a predictable partition (Dn)n≥1 ⊂ P of Ω × R+ such that 1Dn .V

is of integrable variation and its compensator is given by 1Dn .C for all n ≥ 1.

4. There exists a strictly positive, bounded, and predictable process K such that

the Stieltjes integral w.r.t. V and C is well defined and K.V −K.C is a uni-

formly integrable martingale.

Furthermore, for all processes of finite variation there exists at most one predictable

process of finite variation satisfying the conditions above.

Remark 1.24: As in Proposition 1.21, the predictable partition in 2. and 3. can

be replaced by a non–decreasing sequence of predictable sets tending to Ω× R+.

We collect several results concerning the existence of a compensator and its shape

in the following lemmas. The first lemma gives a sufficient condition for the existence

of a compensator.

Lemma 1.25: Let V ∈ V. V ∈ Aloc if and only if there exists a predictable process

C of finite variation process such that V − C is a local martingale. If either of the

conditions holds, V is compensable.

13



Chapter 1. A martingale decomposition theorem

Proof: [27, 7.20 Corollary].

If a process of finite variation is non–decreasing, Lemma 1.25 can be sharpened.

Lemma 1.26: Let V be a non–decreasing process of finite variation. V is com-

pensable if and only if V ∈ A+
loc.

Proof: Due to Lemma 1.25, the ‘if’ part is clear. Let V be compensable and

denote its compensator by C. Since C is predictable and of finite variation, [27, 5.19

Theorem] ensures that there exists a non–decreasing sequence (Tm)m≥1 of stopping

times such that Tm ↑ ∞ a.s. and CTm ∈ A for all m ≥ 1. Denote by (Dn)n≥1

the localizing sequence of predictable sets such that 1Dn .V − 1Dn .C is a uniformly

integrable martingale for all n ≥ 1. Due to the monotone convergence theorem, we

get

E
[
V Tm

]
= lim

n→∞
E
[
1Dn .V

Tm
]

= lim
n→∞

E
[
1Dn .C

Tm
]

= E
[
CTm

]
<∞.

Thanks to Example 1.13, we know that for a locally square integrable martingale

M the process [M ]−〈M〉 is a local martingale. In particular, [M ] is compensable and

its compensator is given by 〈M〉. The next lemma characterizes the compensator of

a Stieltjes integral λ.[M ] having predictable integrands.

Lemma 1.27: Let λ be a predictable process and M ∈ M2
loc. Denote by 〈M〉 the

predictable quadratic variation of M .

1. V :=
∫
|λ| d[M ] ∈ A+

loc if and only if C :=
∫
|λ| d〈M〉 ∈ A+

loc. If either of the

conditions hold, V − C is a local martingale.

2. If either of the above conditions hold, λ ∈ Lm([M ]− 〈M〉).

Proof: We start with the first item. Let V ∈ A+
loc. Due to Lemma 1.26, we only have

to prove that the compensator is given by C. This follows from [27, 5.23 Theorem

2)] and the uniqueness of the compensator. Let C ∈ A+
loc. Since C =

∫
|λ| d〈M〉 =∫

(
√
|λ|)2 d〈M〉, we know that

√
|λ|.M ∈ M2

loc. Due to the Burkholder–Davis–

Gundy inequality, see [27, 10.36 Theorem], we conclude that
∫
|λ| d[M ] ∈ A+

loc. The

second statement follows from [27, 9.5 Theorem].

1.3. Radon–Nikodym decomposition for local

martingales

Now we are in the position to state and prove the main results of this chapter. We

prove the following decomposition theorem for local martingales.
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1.3. Radon–Nikodym decomposition for local martingales

Theorem 1.34 : Let N and M be local martingales starting in zero. Let H be the

Radon–Nikodym derivative of d[N,M ] w.r.t. d[M ]. Define L := N −H•cM ∈ Mloc.

Then [L,M ] is a σ–martingale and the decomposition

N = H•cM + L

is called the Radon–Nikodym decomposition of N w.r.t. M .

Throughout this chapter we work with the following definition of a Kunita–

Watanabe decomposition.

Definition 1.28: Let N and M be local martingales starting in zero. N features

a Kunita–Watanabe decomposition w.r.t. M , if there exists a predictable process

K ∈ Lm(M) such that

N = K.M + L̃

and [L̃,M ] is a local martingale.

The Radon–Nikodym decomposition

In order to prove the existence of the Radon–Nikodym decomposition, we need to

know whether the Radon–Nikodym derivative of d[N,M ] w.r.t. d[M ] is integrable

w.r.t. M . We formulate this statement in the next theorem being of interest in its

own right.

Theorem 1.29: Let X and Y be two semimartingales starting in zero. Then there

exists an optional process H such that [Y,X] and H.[X] are indistinguishable. More-

over, √
H2.[X] ≤

√
[Y ] (1.3)

holds up to indistinguishability.

The proof of Theorem 1.29 is essentially an application of the Kunita–Watanabe

inequality and the following lemma.

Lemma 1.30 (compare [9, p. 4.7.102.]): Let (Ω,F , µ) be a finite measure space,

p ∈ (1,∞), and f ∈ L1(Ω,F , µ). Then f ∈ Lp(Ω,F , µ) if and only if there exists a

constant C > 0 such that

M∑

k=0

µ(Ak)
1−p

∣∣∣∣∣∣

∫

Ak

f dµ

∣∣∣∣∣∣

p

≤ C (1.4)

holds for every finite partition of Ω into disjoint measurable sets Ak with positive

measure. In addition, the smallest possible constant equals ‖f‖pp.
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Chapter 1. A martingale decomposition theorem

Proof: By Hölder’s inequality we get for A ∈ F and p
q

= p− 1

∣∣∣∣∣∣

∫

A

f dµ

∣∣∣∣∣∣

p

≤ ‖1A‖pq‖1Af‖pp = µ(A)p−1‖1Af‖pp. (1.5)

Therefore, it suffices to prove that (1.4) implies f ∈ Lp(Ω,F , µ). By considering

separately the sets {f ≥ 0} and {f < 0}, we may and do assume that f ≥ 0 µ–a.s..

Define fN := min{f,N}. Since µ is finite, fN ∈ Lp(Ω,F , µ) and due to (1.5),

M∑

k=0

µ(Ak)
1−p

∣∣∣∣∣∣

∫

Ak

f dµ

∣∣∣∣∣∣

p

≤ ‖fN‖pp

holds for every finite disjoint partition (Ak)k≤M of Ω. Define for n ∈ N and k ∈
{0, . . . , n} the sets Ak,n := { k

n
N ≤ fN < k+1

n
N}. By choosing a subsequence, if

necessary, we can assume that µ(Ak,n) > 0. Due to the definition of the sequence

(Ak,n)k≤n and the mean value theorem, we get

‖fN‖pp =
n∑

k=0

∫

Ak,n

fpN dµ

≤ Np

n∑

k=0

µ(Ak,n)

(
k

n

)p
+Np

n∑

k=0

µ(Ak,n)

(
k+1
n

)p −
(
k
n

)p
k+1
n
− k

n

1

n

≤ Np

n∑

k=0

µ(Ak,n)

(
k

n

)p
+

1

n
Npµ(Ω)

(
n+ 1

n

)p−1

.

Now let Cmin > 0 be the smallest constant such that (1.4) holds for f . As a

consequence of monotonicity and the definition of (Ak,n)k≤n, we get

Cmin ≥
M∑

k=0

µ(Ak,n)1−p

∣∣∣∣∣∣∣

∫

Ak,n

fN dµ

∣∣∣∣∣∣∣

p

≥
M∑

k=0

µ(Ak,n)1−p
∣∣∣∣
k

n
Nµ(Ak,n)

∣∣∣∣
p

= Np

n∑

k=0

µ(Ak,n)

(
k

n

)p
.

Combining the two estimations, we get for all n ∈ N

‖fN‖pp ≤ Cmin +
1

n
Npµ(Ω)

(
n+ 1

n

)p−1

.

Hence, ‖fN‖pp ≤ Cmin for all N ∈ N. Due to Fatou’s lemma, we get ‖f‖pp ≤
Cmin. Applying Hölder’s inequality to (1.4), we get ‖f‖pp ≥ Cmin which proves the

claim.
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Proof of Theorem 1.29: The Kunita–Watanabe inequality and [27, 5.14 Theo-

rem] ensure the existence of an optional process H such that [Y,X] = H.[X] holds.

Since [Y,X] = H.[X], the total variation process of [Y,X] is given by |H|.[X]. Thus,

the Kunita–Watanabe inequality ensures that we can find a set Ñ of measure zero

such that for ω /∈ Ñ and for all pairs of rational numbers s ≤ t we have



∫

(s,t]

|Hu|(ω) d[X]u(ω)




2

≤
∫

(s,t]

d[X]u(ω)

∫

(s,t]

d[Y ]u(ω).

Since d[X].(ω) as well as d[Y ].(ω) are finite measures on each compact subset of R+,

the dominated convergence theorem ensures that the above inequality also holds for

any Borel–measurable set A ∈ B(R+) being a subset of a compact set. In particular,

we get for all A ∈ B(R+) and all T ∈ [0,∞)




∫

A∩[0,T ]

|Hu|(ω) d[X]u(ω)




2

≤
∫

A∩[0,T ]

d[X]u(ω)

∫

A∩[0,T ]

d[Y ]u(ω).

As for every finite partition of [0, T ] into disjoint measurable sets Ak we have

M∑

k=0

∫

Ak

d[Y ]u(ω) ≤ [Y ]T (ω),

we may apply Lemma 1.30 for p = 2. Due to the additional property at the end of

Lemma 1.30, we can conclude that

T∫

0

H2
u(ω).[X]u(ω) ≤ [Y ]T (ω)

holds for all T ∈ [0,∞). By taking the square–root on both sides we get the desired

result (1.3).

Using the Kunita–Watanabe inequality for the predictable covariation [27, Re-

mark p. 210] the same line of arguments leads to the following corollary.

Corollary 1.31: Let X and Y be two locally square–integrable semimartingales

starting in zero. Then there exists a predictable process K such that 〈Y,X〉 and

K.〈X〉 are indistinguishable. Moreover,

√
K2.〈X〉 ≤

√
〈Y 〉

holds up to indistinguishability.

17



Chapter 1. A martingale decomposition theorem

Remark 1.32: For locally square–integrable martingales M and N , this corollary

leads directly to the Kunita–Watanabe decomposition. Indeed, the corollary ensures

that there exists K ∈ P such that 〈N,M〉 = K.〈M〉 and K.M ∈ M2
loc. Hence, for

L := N −K.M ∈M2
loc we get 〈L,M〉 = 〈N,M〉 −K.〈M〉 = 0.

It is well known, see [27, 7.30 Theorem], that
√

[N ] ∈ A+
loc holds for all local

martingales N ∈ Mloc. Accordingly, the next corollary follows immediately from

Theorem 1.29.

Corollary 1.33: Let N and M be two local martingales starting in zero. Then the

Radon–Nikodym derivative H of d[N,M ] w.r.t. d[M ] satisfies
√
H2.[M ] ∈ A+

loc.

Now we have all tools at hand to prove the main result, the existence of the

Radon–Nikodym decomposition for local martingales.

Theorem 1.34 (Radon–Nikodym decomposition): Let N and M be local martin-

gales starting in zero. Let H be the Radon–Nikodym derivative of d[N,M ] w.r.t.

d[M ]. The compensated stochastic integral H•cM ∈ Mloc is well defined. Moreover,

if L := N −H•cM ∈Mloc, then [L,M ] is a σ–martingale and the decomposition

N = H•cM + L

is called the Radon–Nikodym decomposition of N w.r.t. M .

Proof: Due to Corollary 1.33 and Theorem 1.10, the local martingale H•cM ∈Mloc

is well defined. Accordingly, it suffices to prove that [L,M ] is a σ–martingale. As a

result of Theorem 1.4 and Definition 1.5 we get

[L,M ] = H.[M ]− [H•cM,M ]

= H.[M c,M c] +H.[Md,Md]− [(H•cM)c,M c]− [(H•cM)d,Md]

= H.[Md,Md]− [H•cM
d,Md]

=
∑

p(H∆Md)∆Md. (1.6)

Recalling the proof of Lemma 1.7, we know that p(H∆Md) is a predictable thin

process. Due to [30, 2.23 Lemma], there exists a sequence (Tn)n≥1 of predictable

stopping times with disjoint graphs such that
{
p(H∆Md) 6= 0

}
=
⋃
n≥1[[Tn]]. Define

ϕ := 1(
⋃
n≥1[[Tn]])c +

∑

n≥1

1

2n+1
1[[Tn]]

1

1 + |p(H∆Md)|

and note that ϕ is a predictable, bounded, and strictly positive process. Further,

we define

A :=
∑

n≥1

1

2n+1
1[[Tn,∞]]

p(H∆Md)

1 + |p(H∆Md)| .
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1.3. Radon–Nikodym decomposition for local martingales

Since A is an adapted, predictable process of finite variation, [27, 7.7 Theorem]

ensures that A is locally bounded. Therefore, A ∈ Aloc and its jumps are given by

∆As =
∑

n≥1

1

2n+1
1[[Tn]](s)

p(H∆Md)s
1 + |p(H∆Md)s|

.

Moreover,

ϕ.[L,M ] =
∑

s≤·

(∑

n≥1

1

2n+1
1[[Tn]](s)

p(H∆Md)s
1 + |p(H∆Md)s|

)
∆Md

s

=
∑

s≤·

∆As∆M
d
s = [A,Md]

holds and Yoeurp’s lemma [27, 9.4 Example 1)] ensures that [L,M ] is a σ–martingale.

Remark 1.35: Note that the existence of the Radon–Nikodym decomposition of

two local martingales M , N , is a symmetric property. Indeed, the Radon–Nikodym

decomposition of N w.r.t. M exists if and only if the Radon–Nikodym decomposition

of M w.r.t. N exists.

The next theorem gives a more detailed characterisation of the Radon–Nikodym

decomposition of local martingales.

Theorem 1.36: Let N and M be local martingales starting in zero and denote by

N = H•cM + L the Radon–Nikodym decomposition of N w.r.t. M . Moreover, let

N c = λ.M c + L̃

be the Kunita–Watanabe decomposition of N c w.r.t. M c, where λ ∈ Lm(M c), L̃ ∈
Mc

loc, and [M c, L̃] = 0. Then (H•cM)c = λ.M c, Lc = L̃, and the process [Ld,Md] is

a σ–martingale.

Proof: Recall that a process of finite variation can be decomposed in a unique way

into a continuous– and a purely discontinuous process of finite variation. Since

[N,M ] = H.[M ] = H.[M c] +H.[Md]

and

[N,M ] = 〈N c,M c〉+ [Nd,Md],

we can conclude that

H.[M c] = 〈N c,M c〉.
Due to Remark 1.32, we know that there exists a unique λ ∈ Lm(M c) such that

H.[M c] = 〈N c,M c〉 = λ.[M c] (1.7)

19



Chapter 1. A martingale decomposition theorem

holds up to indistinguishability. Furthermore, the Kunita–Watanabe decomposition

of N c w.r.t. M c is given by

N c = λ.M c + L̃,

where L̃ ∈ Mc
loc and [M c, L̃] = 0. Hence, it remains to prove that H.M c = λ.M c.

Because of the Kunita–Watanabe inequality, we know that

d[M c, R]� d[M c], ∀ R ∈Mloc. (1.8)

Combining (1.7) and (1.8), we can conclude that

H.[M c, R] = λ.[M c, R], ∀ R ∈Mloc.

Due to the definition of H.M c, the above equation ensures that

[H.M c − λ.M c, R] = 0, ∀ R ∈Mloc.

This implies that

H.M c = λ.M c

holds; see [27, 7.36 Theorem]. In turn, this ensures that Lc = L̃ and [L,M ] =

[Ld,Md]. Finally, Theorem 1.34 guarantees that [Ld,Md] is a σ–martingale.

Under certain regularity assumptions we can sharpen Theorem 1.36.

Corollary 1.37: Let N and M be local martingales starting in zero and denote by

N = H•cM + L the Radon–Nikodym decomposition of N w.r.t. M . If M is quasi–

left–continuous, the quadratic covariation [L,M ] is zero on [[0,∞[[.

Proof: Following the lines of the proof of Theorem 1.34, we find that

[L,M ] =
∑

p(H∆Md)∆Md

is a thin process. Furthermore, there exists a sequence (Tn)n≥1 of predictable stop-

ping times with disjoint graphs such that
{
p(H∆Md) 6= 0

}
=
⋃
n≥1[[Tn]]. This im-

plies that {[L,M ] 6= 0} ⊂ ⋃n≥1[[Tn]]. Since M is quasi–left–continuous, [27, 4.23

Theorem] ensures that [L,M ] is quasi–left–continuous, too. Due to [27, Remark

p. 122], there exists a sequence (Sm)m≥1 of totally inaccessible stopping times such

that {[L,M ] 6= 0} =
⋃
m≥1[[Sm]]. Therefore,

{[L,M ] 6= 0} ⊂
(⋃

m≥1

[[Sm]]

)
∩
(⋃

n≥1

[[Tn]]

)
=
⋃

m≥1

⋃

n≥1

{Sm = Tn} .

This implies that
{
1[[0,∞[[[L,M ] 6= 0

}
⊂
⋃

m≥1

⋃

n≥1

{Sm = Tn <∞} .

Since (Sm)m≥1 is a sequence of totally inaccessible stopping times and (Tn)n≥1 are

predictable stopping times we have P (Sm = Tn <∞) = 0 for all m,n ≥ 1.
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The next corollary is an immediate consequence of Theorem 1.36.

Corollary 1.38: For N,M ∈ Mc
loc the Kunita–Watanabe decomposition and the

Radon–Nikodym decomposition of N w.r.t. M exist and are indistinguishable.

1.4. Radon–Nikodym decomposition vs.

Kunita–Watanabe decomposition: the locally

square–integrable case

Throughout this section, we assume that N and M are locally square integrable

martingales. The classical proof for the existence of the Kunita–Watanabe decom-

position relies on the Hilbert space structure of the space of square–integrable mar-

tingales. We provide an alternative proof which relies on a different Hilbert space.

In particular, this approach enables us to compare the Kunita–Watanabe decompo-

sition and the Radon–Nikodym decomposition. The elements of this specific Hilbert

space are defined in the next definition.

Definition 1.39: For a locally square integrable martingale M ∈M2
loc, we define

oL2 := oL2 (M) :=



H ∈

oL(M) :

.∫

0

H2
u d[M ]u ∈ A



 (1.9)

and
pL2 := pL2 (M) :=

{
H ∈ oL2 (M) : H ∈ P

}
. (1.10)

Furthermore, we denote by oL2
loc (M) and pL2

loc (M) the localized classes.

The following theorem ensures that oL2 (M) and pL2 (M), being equipped with a

properly defined inner product, are indeed Hilbert spaces.

Theorem 1.40: The mapping

〈., .〉 : oL2 (M)× oL2 (M) −→ R

(H,K) 7−→ E



∞∫

0

HuKu d[M ]u




defines an inner product on oL2 (M). Moreover, the spaces (oL2 (M) , 〈., .〉) and

(pL2 (M) , 〈., .〉) are Hilbert spaces.
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Proof: It is straightforward to check that (oL2 (M) , 〈., .〉) is indeed an inner product

space. Additionally,

m : O −→ [0,∞]

B 7−→ E [1B.[M ]]

defines a σ-finite measure on the optional σ-algebra O. Due to the Riesz–Fischer

theorem, we know that oL2 (M) is a Hilbert space. By restricting the σ–finite

measure m to the sub–σ–algebra P ⊂ O of predictable processes, we can conclude,

using the same arguments as before, that (pL2 (M) , 〈., .〉) is a Hilbert space, too.

Remark 1.41:

1. To prove that (pL2 (M) , 〈., .〉) is a Hilbert space one can also use Lemma 1.27.

Indeed, it enables us to define an isometry between the inner product space

(pL2 (M) , 〈., .〉) and the well known Hilbert space L2(Ω× R+,P , m̃). Here, P
denotes the predictable σ–algebra and the σ–finite measure on P is defined via

m̃ : P −→ [0,∞]

B 7−→ E [1B.〈M〉] .

2. Ito’s isometry is an isometry between the Hilbert space (pL2 (M) , 〈., .〉) and the

subspace

H :=
{
N ∈M2| ∃K ∈ pL2 (M) : N = K.M

}
⊂M2

of the Hilbert space M2 of square integrable martingales. Consequently, H ⊂
M2 is closed. Using the orthogonal projection of N ∈ M2 onto H, this leads

to the classical proof of the Kunita–Watanabe decomposition of N w.r.t. M .

3. Note that the technical modification of Section 1.2.3 is essential for the proof

of the theorem. Otherwise, the mapping defined in the theorem above would

not be a norm.

Since oL2 (M) and pL2 (M) are Hilbert spaces and pL2 (M) ⊂ oL2 (M), we know

that for all H ∈ oL2 (M) there exists an orthogonal projection of H onto pL2 (M).

The next lemma ensures the existence of a ‘local orthogonal projection’ for elements

in oL2
loc (M).

Lemma 1.42: Let H ∈ oL2
loc (M). There exists a unique process λ ∈ pL2

loc (M) such

that for all K ∈ pL2
loc (M) there exists a sequence (Tn)n≥1 of stopping times that tends

to ∞ a.s. and localizes
∫
H2 d[M ],

∫
λ2 d[M ], and

∫
K2 d[M ]. Furthermore,

E



∞∫

0

(Hu − λu)Ku d[MTn ]u


 = 0, for all n ≥ 1. (1.11)
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1.4. Radon–Nikodym decomposition vs. Kunita–Watanabe decomposition

Proof: Let (Sn)n≥1 be a non–decreasing sequence of stopping times that tends to

∞ a.s. and localizes H, i.e. H1[[0,Sn]] ∈ oL2 (M). Denote by λn ∈ pL2 (M) the

orthogonal projection of H1[[0,Sn]] onto pL2 (M). Since (Sn)n≥1 is non–decreasing,

the uniqueness of the orthogonal projection ensures that λn = λm1[[0,Sn]] for all

natural numbers n ≤ m. Set S0 = 0 and define

λ := 1[[0]]λ
1
0 +

∑

n≥1

λn1]]Sn−1,Sn]].

By definition, we have λ ∈ pL2
loc (M). Let (Rn)n≥1 be a non–decreasing sequence

of stopping times that tends to ∞ a.s. and localizes K, i.e. K1[[0,Rn]] ∈ pL2 (M).

It is clear that the sequence (Tn)n≥1 of stopping times, where Tn := min{Sn, Rn},
satisfies all desired properties. The uniqueness follows from the uniqueness of the

(local) orthogonal projections.

Definition 1.43: Let H ∈ oL2
loc (M). The process λ ∈ pL2

loc (M) given by Lemma

1.42 is called the local orthogonal projection of H onto pL2
loc (M).

The next theorem is the main result of this section. It ensures the existence of

the Kunita–Watanabe decomposition for locally square integrable martingales and

explains the connection to the Radon–Nikodym decomposition.

Theorem 1.44: Let N,M ∈ M2
loc. The Radon–Nikodym derivative H of d[N,M ]

w.r.t. d[M ] satisfies H ∈ oL2
loc (M). Furthermore, the following statements hold:

1. The Kunita–Watanabe decomposition of N w.r.t. M is given by

N = λ.M + L̃,

where λ ∈ pL2
loc (M) is the local orthogonal projection of H onto pL2

loc (M).

2. Let N = H•cM + L denote the Radon–Nikodym decomposition of N w.r.t. M .

Then [M,L] is a local martingale.

3. The compensator of [N,M ] = H.[M ] is given by
∫
λ d〈M〉.

Proof: First note that H ∈ oL2
loc (M) holds due to Theorem 1.29. To prove 1., we

only have to prove that [M, L̃] is a local martingale. Since [M, L̃] = H.[M ]− λ.[M ],

we know that [M, L̃] ∈ A+
loc. Denote the localizing sequence of [M, L̃] by (Tn)n≥1.

Let s ≤ t and A ∈ Fs. Due to Lemma 1.42, we have

E
[
1A

(
[MTn , L̃]t − [MTn , L̃]s

)]
= E



∞∫

0

(Hu − λu)1A1(s,t](u) d[MTn ]u


 = 0
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for all n ≥ 1. Therefore, [M, L̃] is a local martingale. Next we prove 2.. In con-

sequence of Theorem 1.34, it suffices to prove that [M,L] ∈ Aloc. Since [M,L] =

[N,M ]− [H•cM,M ], item 2. follows from the Kunita–Watanabe inequality and Re-

mark 1.16. To prove item 3., we use the Kunita–Watanabe decomposition of N

w.r.t. M to get

H.[M ] = [N,M ] = λ.[M ] + [M, L̃] = λ. ([M ]− 〈M〉) + λ.〈M〉+ [M, L̃].

Rearranging the equation results in

H.[M ]− λ.〈M〉 = λ. ([M ]− 〈M〉) + [M, L̃].

Because of Lemma 1.27 and the first part of the proof, the r.h.s. of the above equation

is a local martingale.

Remark 1.45: Notice the difference between the classical proof of the Kunita–

Watanabe decomposition as described in Remark 1.41 and the proof presented above.

In the proof of Theorem 1.44, we used the fact that the Radon–Nikodym derivative

H ∈ oL2
loc(M) of d[N,M ] w.r.t. d[M ] is locally situated in the Hilbert space oL2(M)

and that its local orthogonal projection onto pL2
loc(M) satisfies (1.11).

1.5. Examples in which the Kunita–Watanabe

decomposition does not exist

As we have seen in Theorem 1.34, the Radon–Nikodym decomposition always exists.

As pointed out in Remark 1.35, the existence of the Radon–Nikodym decomposition

for two local martingales is a symmetric property. However, the Kunita–Watanabe

decomposition does not satisfy these properties in general. In [3], Ansel and Stricker

consider two different cases in which the Kunita–Watanabe decomposition does not

exist in general. We recall these examples and provide the Radon–Nikodym decom-

positions. We also show that the existence of the Kunita–Watanabe decomposition

is not a symmetric property in general. In all cases we consider local martingales

N,M ∈ Mloc and we show that the Kunita–Watanabe decomposition of N w.r.t.

M does not exist.

1.5.1. Case 1: N square integrable, M arbitrary

The example below shows that for a square–integrable martingaleN and an arbitrary

martingale M the Kunita–Watanabe decomposition does not exist in general. This

example is a combination of [29, Exercices 1.1, p. 23] and [29, Exercices 4.10, p.

141]. We start with a lemma which is an extension and slight modification of [29,

Exercices 1.1, p. 23]. It builds the core of the current example.
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1.5. Examples in which the Kunita–Watanabe decomposition does not exist

Lemma 1.46: Let (Ω,F , P ) be a complete probability space. Denote by N ⊂ F
the σ–algebra generated by the null sets of F w.r.t. P . Furthermore, let N ( F .

Define the filtration F = (Ft)t≥0 via

Ft =

{
N , ∀ t < 1,

F , ∀ t ≥ 1.

Then the following statements hold:

1. F satisfies the usual conditions.

2. If T is a stopping time and t ∈ [0, 1], then P (T < t) ∈ {0, 1}.

3. All optional processes on [0, 1) are indistinguishable from a deterministic mea-

surable function on [0, 1).

4. All predictable processes on [0, 1] are indistinguishable from a deterministic

measurable function on [0, 1].

5. M is a uniformly integrable martingale if and only if there exists a random

variable Z ∈ L1(Ω,F , P ) such that M = E[Z] + (Z − E[Z])1[[1,∞[[.

6. All local martingales are uniformly integrable martingales.

7. All semimartingales are of finite variation.

8. All σ–martingales are uniformly integrable martingales.

9. Let M be a local martingale starting in zero and let K ∈ Lm(M). Then K1 is

a.s. constant and

K.M = K1M11[[1,∞[[.

Proof: Item 1.: The first statement holds due to the definition of F.

Item 2.: Since T is a stopping time, we get for t ∈ [0, 1]

{T < t} =
⋃

n≥m
t− 1

1+m
≥0

{
T ≤ t− 1

n+ 1

}

︸ ︷︷ ︸
∈F

t− 1
1+n

=N

∈ N .

By definition, N contains only sets of measure zero or one. Therefore, 2. holds.

Item 3.: Due to [27, 3.17 Theorem], the optional σ–algebra on [0, 1) equals

σ ([[T, 1[[; T is a stopping time) .

Due to 2., we can conclude that for any stopping time T and all t ∈ [0, 1)

{T = t} = {T ≤ t} ∩ {T < t}c ∈ N .
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Chapter 1. A martingale decomposition theorem

Therefore,

[[T, 1[[= N × [t, 1), for N ∈ N and t ∈ [0, 1),

where ∅×[t, 1) := N×∅ := ∅ for all t ∈ [0, 1) and N ∈ N . Consequently, all optional

processes on [0, 1) are indistinguishable from a deterministic measurable function.

Item 4.: This holds thanks to the characterisation of the predictable σ–algebra in

[27, 3.21 Theorem].

Item 5.: The ‘if’ part is clear. Let M be a uniformly integrable martingale. Due

to 3., M has to be constant on [0, 1). Thanks to the definition of the filtration and

the martingale property, we know that Mt = M1 a.s. for all t ≥ 1. Since uniformly

integrable martingales have a constant expectation and Z := M1 ∈ L1(P ), we get

the desired result.

Item 6.: Let M be a local martingale and denote by (Tn)n≥1 a non–decreasing

sequence of stopping times tending to ∞ a.s. that localizes M . Thanks to item

2., there exists a N ∈ N such that P (Tn < 1) = 0 for all n ≥ N . Therefore,

M1 ∈ L1(P ). Due to the definition of the filtration and the martingale property of

MTn , we get Mt∧Tn = M1 a.s. for all t ≥ 1 and all n ≥ N . Since Tn ↑ ∞ a.s., we get

Mt = M1 a.s. for all t ≥ 1. Thanks to 5., M is a uniformly integrable martingale.

Item 7.: This follows from the definition of semimartingales, 5., and 6.

Item 8.: Due to 3., we may assume w.l.o.g.3 that X0 = 0 a.s.. By definition

there exists a strictly positive, bounded, and predictable process K such that K.X

is a uniformly integrable martingale. Due to item 5., K.X is zero on [0, 1). Since

K is strictly positive and deterministic on [0, 1), X has to be zero on [0, 1) up to

indistinguishablility, too. Indeed, due to 7., we know that X is of finite variation.

Since K.X is indistinguishable from zero on [0, 1), we can conclude that there exists

a null set Ñ such that for all ω ∈ Ñ c and all A ∈ B([0, 1))

∫

A

K(ω) dX(ω) = 0. (1.12)

We denote by N,P ∈ B([0, 1)) the Hahn–decomposition of the signed measure

dX(ω) on [0, 1). Due to (1.12), we have

0 =

∫

N∩A

K(ω) dX(ω) =

∫

N∩A

K(ω) d (−X(ω))

0 =

∫

P∩A

K(ω) dX(ω)

for all A ∈ B([0, 1)). Since K(ω) is strictly positive, this ensures that X(ω) has to

be zero on [0, 1).

3abbr.: without loss of generality
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Furthermore, K1 is a.s. constant due to 4. and K.X1 = K1X1−K1X1−+K.X1−.

Since K1 > 0 a.s., this implies in particular that X1 ∈ L1(P ). Because of the

martingale property of K.X and the definition of the filtration, we get K.X1 = K.Xt

a.s. for all t ≥ 1. The same argument as before ensures that X1 = Xt a.s. for all

t ≥ 1. Due to 5., the claim is proven.

Item 9.: Since M is a local martingale starting in zero, we know that

M = M11[[1,∞[[.

As a result of 4., K1 is a.s. constant. Moreover, K.M is a local martingale such that

K.M0 = 0 and ∆K.M1 = K1M1. Due to 5. and 6., we have

K.M = K1M11[[1,∞[[.

The next example shows that the Kunita–Watanabe decomposition does not exist

in general, if N is assumed to be square–integrable and M is arbitrary.

Example 1.47 (compare [29, Exercices 4.10, p. 141]): Consider the setting of

Lemma 1.46. Let U, V ∈ L1(Ω,F , P ) be centred random variables. Moreover, let

V ∈ L∞(P ), U /∈ L2(P ), and E[UV ] 6= 0. Define N = V 1[[1,∞[[ and M = U1[[1,∞[[.

Note that for K ∈ Lm(M)

[N −K.M,M ] = V U1[[1,∞[[ −K1U
21[[1,∞[[,

where K1 is a.s. constant. Due to Lemma 1.46 and the assumptions, [N −K.M,M ]

cannot be a σ–martingale for arbitrary K ∈ Lm(M). Hence, the Kunita–Watanabe

decomposition of N w.r.t. M does not exist.

Though the Kunita–Watanabe decomposition does not exit, the Radon–Nikodym

decomposition does exit.

Example 1.48: Consider the setting of Example 1.47 and note that

[N,M ] = V U1[[1,∞[[ =
V 1{U 6=0}

U
1[[1]].[M ], a.s..

Denote the Radon–Nikodym derivative of d[N,M ] w.r.t. d[M ] by H :=
V 1{U 6=0}

U
1[[1]].

Due to Lemma 1.46, it suffices to compute ∆H•cM1 in order to characterize H•cM . By

the definition of the compensated stochastic integral and the fact that ∆M1 = M1,

we can conclude that

∆H•cM1 = H1∆M1 − p(H∆M)1 = V 1{U 6=0} − p(H∆M)1.
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Lemma 1.46 guarantees that

(
V 1{U 6=0} − E

[
V 1{U 6=0}

])
1[[1,∞[[

is a uniformly integrable martingale. Hence, [27, 7.13 Theorem] ensures that

p
(
∆
(
V 1{U 6=0} − E

[
V 1{U 6=0}

])
1[[1,∞[[

)
= 0

and

p(H∆M)1 = p
(
∆
(
V 1{U 6=0} − E

[
V 1{U 6=0}

])
1[[1,∞[[

)
1

+ E
[
V 1{U 6=0}

]

= E
[
V 1{U 6=0}

]
.

Combining the results we end up with

∆H•cM1 = V 1{U 6=0} − E
[
V 1{U 6=0}

]
.

Due to Lemma 1.46, we get

H•cM =
(
V 1{U 6=0} − E

[
V 1{U 6=0}

])
1[[1,∞[[.

Consequently, L := N −H•cM satisfies

[L,M ] = [N −H•cM,M ] = V 1{U=0}U1[[1,∞[[ − E
[
V 1{U 6=0}

]
U1[[1,∞[[

= −E
[
V 1{U 6=0}

]
U1[[1,∞[[.

Since U is centred, Lemma 1.46 ensures that [L,M ] is a martingale.

1.5.2. Case 2: N arbitrary, M not continuous

The Kunita–Watanabe decomposition also does not exist in general in Case 2, i.e. if

N is arbitrary and M is not continuous. To set the example we need the next lemma.

It makes use of the following notation. A Borel–measurable function f : R+ → R is

an element of Lploc(R+, dt) for p ≥ 1, if f1[0,n] ∈ Lp(R+, dt) for all n ∈ N. In the next

lemma, we collect some technical results which we need for the following example.

Lemma 1.49: Let B be a standard Brownian motion, P be a Poisson process with

intensity 1, and f ∈ L1(R+, dt) \ L2
loc(R+, dt). Denote by (Tn)n≥1 the sequence of

jump times of P and define the local martingale M by M = B + P − t. Then

f ∈ Lm(P − t), (
∑

n≥1 f(Tn)1[[Tn]]) ∈ oLloc(M), and f /∈ Lm(M).

Proof: First note that

[(P − t)]t =
∑

s≤t

∆P 2
s =

∑

n≥1

1[Tn,∞)(t),

f 2. [(P − t)]t =
∑

n≥1

f 2(Tn)1[Tn,∞)(t).
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Furthermore, we have

(∑

n≥1

f(Tn)1[[Tn]]

)2

. [M ]t = f 2. [(P − t)]t .

Due to the sub–additivity of the square root, see Lemma A.20, we get

(
f 2. [(P − t)]t

) 1
2 ≤ |f |. [(P − t)]t .

Lemma 1.27 ensures that

E

[
|f |. [(P − t)]t

]
=

t∫

0

|fu| du.

Combining the last three equations, we get
∑

n≥1 f(Tn)1[[Tn]] ∈ oLloc(M) and f ∈
Lm(P − t). By assumption f /∈ Lm(B). Due to [27, 9.3 Theorem], we know that

Lm(M) = Lm(B) ∩ Lm(P − t). Hence, f /∈ Lm(M).

Here is another example which shows that the Kunita–Watanabe decomposition

does not exist in general.

Example 1.50 ([3, D.K.W. cas 4:]): Consider the setting of Lemma 1.49. Define

N = f.(P − t) and let K ∈ Lm(M). Since M is locally bounded, Fefferman’s

inequality, see [27, 10.17 Theorem], ensures that [N − K.M,M ] ∈ Aloc. Suppose

that there exists K ∈ Lm(M) such that [N−K.M,M ] is a local martingale. Lemma

1.27 and Fefferman’s inequality ensure that the l.h.s.4 of the equation

[N −K.M,M ] +K. ([M ]− 〈M〉) = f. [(P − t)]−K.〈M〉
= f. [(P − t)]− 2K.〈(P − t)〉

is a local martingale. As a result of the uniqueness of the compensator, we get

2K = f a.s. (w.r.t. the Lebesgue–measure). This is a contradiction to f /∈ Lm(M).

Therefore, N does not admit a Kunita–Watanabe decomposition w.r.t. M .

The Radon–Nikodym decomposition that corresponds to Example 1.50 is provided

in the next example.

Example 1.51: Consider the setting of Example 1.50 and note that

[N,M ] = f. [(P − t)] =

(∑

n≥1

f(Tn)1[[Tn]]

)
.[M ].

4abbr.: left hand side
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Due to Lemma 1.49, we know that H = (
∑

n≥1 f(Tn)1[[Tn]]) ∈ oLloc(M). Further-

more, Theorem 1.34 ensures that N = H•cM+L and [L,M ] is a σ–martingale. Since

M is locally bounded, we can apply Fefferman’s inequality to conclude that [L,M ]

even is a local martingale. Note that the more detailed characterization of Theorem

1.36 allows us to conclude that Lc = 0 and (H•cM)c = 0 up to indistinguishabil-

ity. Hence, by definition of the compensated integral for purely discontinuous local

martingales we can conclude that Ld = 0 and

N = H•cM

holds up to indistinguishability.

Although Example 1.50 shows that the Kunita–Watanabe decomposition of N

w.r.t. M does not exist, the next example shows that the Kunita–Watanabe decom-

position of M w.r.t. N does exist.

Example 1.52: Consider the setting of Example 1.50. If f is strictly positive, [27,

9.3 Theorem] ensures that f−1 ∈ Lm(N) and f−1.N = (P − t). Thus, M admits a

Kunita–Watanabe decomposition w.r.t. N . Indeed,

M = B + (P − t) = f−1.N +B

and [N,B] ≡ 0. Combining this result with Example 1.50 shows that the existence

of the Kunita–Watanabe decomposition is not a symmetric property in general.
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2. A structured approach to

structure conditions

2.1. Introduction

The Fundamental Theorem of Asset Pricing (FTAP) is for sure one of the most

important results in mathematical finance. It provides an economically meaningful

no arbitrage condition, the no free lunch with vanishing risk condition (NFLVR).

Moreover, it ensures that (NFLVR) is necessary and sufficient for the existence of

a special pricing operator, an equivalent σ–martingale measure. For references on

the history of the Fundamental Theorem of Asset Pricing and a proof of (FTAP),

we refer to [17] and [18]. The building blocks of (NFLVR) are the following weaker

conditions: the no arbitrage condition (NA) and the no unbounded profit with

bounded risk condition (NUPBR). During the last decade, several authors provided

equivalent reformulations of the (NUPBR) condition. The most popular of these

reformulations is probably the existence of the so–called numéraire portfolio; see [34].

Most recently, Schweizer and Takaoka [52] proved that the (NUPBR) condition is

also equivalent to the existence of a strictly positive σ–martingale density for the

underlying semimartingale. A beautiful overview of this topic can be found in [28].

The main point of these equivalent reformulations is the fact that they all ensure the

existence of a reasonable pricing operator to price essentially the terminal wealth of

all 1–admissible trading strategies. But how can we find a natural candidate for e.g.

a strictly positive σ–martingale density for an arbitrary, locally square–integrable

semimartingale S = M +A, where M denotes the local martingale of the canonical

decomposition of S?

For continuous semimartingales the structure condition (SC) is a very good tool

that leads directly to a natural candidate for a strictly positive σ–martingale density,

the minimal martingale measure. In order to explain the importance of (SC) as a

good tool for finding strictly positive σ–martingale densities in the continuous paths

case, we recall its definition. S satisfies the structure condition (SC), if

S = M +

∫
λ̃ d〈M〉,
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where λ̃ ∈ P can be chosen such that
∫
λ̃ dM is a locally square–integrable mar-

tingale. Due to this specific structure of the semimartingale S, one can show that

all strictly positive σ–martingale densities E(−N) for S feature a specific Kunita–

Watanabe decomposition. More precisely,

N =

∫
λ̃ dM + L, (2.1)

where L is a local martingale, orthogonal to M , and
∫
λ̃ dM is a locally square–

integrable martingale. Throughout this chapter, we call this type of theorems, link-

ing the structure of a semimartingale S to the specific structure of strictly positive

σ–martingale densities E(−N) of S, structure theorems.

Let us get back to the structure theorem presented above. The crucial point is the

additional assumption that S has continuous paths. This ensures that the minimal

martingale measure

E
(
−
∫
λ̃ dM

)

is a strictly positive σ–martingale density for S. Although this particular struc-

ture theorem also holds for arbitrary, locally square–integrable semimartingales, it

loses its importance as an indicator for a natural candidate for a strictly positive

σ–martingale density. Moreover, the degree of flexibility provided by the structure

theorem (we can vary the orthogonal local martingale in (2.1)), in order to find a

strictly positive σ–martingale density, is rather low. For a proof of this particular

structure theorem, we refer to [15]. Similar results can be found in [50].

Another problem that arises if one translates the ideas of (SC) in a direct way to

arbitrary, locally square–integrable semimartingales, is the fact that (SC) is neither

necessary nor sufficient for the existence of a strictly positive σ–martingale density.

Besides, the structure condition (SC) is not invariant under (proper) equivalent

measure changes. All these drawbacks of (SC) are well known. So far, the only

detailed discussion on pros and cons of (SC) can be found in [15]. Summarizing

the above arguments leads to the conclusion that the structure condition (SC) and

the structure theorem related to (SC) are very good tools for finding strictly posi-

tive σ–martingale densities for continuous semimartingales. However, for arbitrary,

locally square–integrable semimartingales it loses its importance as a good tool for

finding strictly positive σ–martingale densities.

Of course, it would be very nice to have a complete characterisation of the

(NUPBR) condition (or equivalently the existence of a strictly positive σ–martin-

gale density) in terms of a structure condition, not only for continuous but for all

semimartingales. All objectives of this chapter go into this direction.

The first goal of this chapter is to explain the connection between ‘martingale

decomposition theorems’ of a (strictly positive) σ–martingale density for a semi-

martingale S on the one hand, and ‘structure conditions’ of S on the other hand.
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These connections are provided in several ‘structure theorems’. We use the Radon–

Nikodym decomposition of a strictly positive σ–martingale density E(−N) of locally

square–integrable semimartingale in order to provide our 1st Structure Theorem.

Moreover, we provide a geometric interpretation of the 1st Structure Theorem that

leads in a very natural way to our first structure condition, the minimal structure

condition (MSC). It turns out that (MSC) has several desirable properties. For

example, (MSC) is invariant under equivalent measure changes and equivalent to

(SC) for continuous semimartingales. By means of toy examples and different lem-

mata, we highlight the connections and differences between (MSC), (SC), and the

weak structure condition (SC′). Using the insights of the 1st Structure Theorem

and the minimal structure condition, we introduce an additional natural structure

condition (NSC). Under the assumption that a semimartingale satisfies the natural

structure condition, we provide our 2nd Structure Theorem. Its particular impor-

tance lies in its flexibility. Indeed, it takes into account that the predictable, finite

variation part A of a locally square–integrable semimartingale S = M + A might

have several possible decompositions. Furthermore, it links each of these decompo-

sitions to a natural candidate E(−N) for a strictly positive σ–martingale density.

These candidates, more precisely N , all feature a natural Kunita–Watanabe decom-

position w.r.t. M . Taking into account the different decompositions of A makes our

2nd Structure Theorem a remarkably powerful tool for finding possible candidates

for strictly positive σ–martingale densities.

In the second part of this chapter, we use the new insights achieved so far to

provide further structure conditions that are sufficient for the existence of a strictly

positive σ–martingale density. Using the refined version of the Radon–Nikodym

decomposition, see Theorem 1.36, we derive our 3rd Structure Theorem. Taking

into consideration the insights provided by this theorem, we introduce our third

structure condition, the strong structure condition (SSC). In several examples we

highlight the different amounts of ‘sensitivity’ of the different structure conditions

(SC), (NSC), and (SSC) as tools for finding a strictly positive σ–martingale den-

sity. As an application of the insights achieved so far, we provide a full structural

characterisation of the (NUPBR) condition for a class of toy examples. Finally,

we introduce our last structure condition, the floating structure condtion (FSC).

The condition (FSC) provides, similar as (SC) in the continuous paths case, a nat-

ural candidate for a strictly positive σ–martingale density, the floating martingale

density. Moreover, it turns out that for continuous semimartingales the minimal

martingale measure and the floating martingale density coincide.

The chapter is structured as follows. Section 2 provides an overview of several

classical no arbitrage conditions, definitions of σ–martingales and the classical struc-

ture conditions (SC) and (SC′). Besides, we recall some invariance properties of

these objects under equivalent measure changes. In Section 3, we use the Radon–
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Nikodym decomposition to derive the minimal structure condition. Furthermore,

we introduce the natural structure condition (NSC) for a semimartingale S and

explain its connection to the natural Kunita–Watanabe decomposition of strictly

positive σ–martingale densities for S. In Section 4, we focus on the practical use of

structure conditions as indicators for the existence of a strictly positive σ–martingale

density. This is done by introducing the strong structure condition (SSC) and the

floating structure condition (FSC). We end the chapter with Section 5. It pro-

vides a short conclusion and some remarks on possible generalizations of the results

provided before.

2.2. Definition and preliminary results

In this section, we collect several definitions of no arbitrage conditions and structure

conditions. Moreover, we summarize some well known results on measure changes

and stochastic integration for reference purposes. The reader, who is familiar with

this theory can skip this section. In order to allow the reader to easily compare the

results of this chapter to well known results in the literature, we adapt the notation

and setup of the survey article [28]. Throughout this chapter, we consider a complete

stochastic basis (Ω,F ,F, P ), where the filtration F := (Ft)0≤t≤T satisfies the usual

conditions and the time horizon is finite, i.e. T ∈ (0,∞). Results from the literature,

that are formulated for an infinite time horizon, are used by applying the respective

result to the stopped process. We consider a financial market with d+1 assets. One

of these assets serves as a numéraire and is denoted by S0. All other quantities are

expressed in units of this numéraire. W.l.o.g. we assume that S0 ≡ 1. The d risky

assets are modelled by a Rd–valued semimartingale S = (St)0≤t≤T , where Si denotes

the price of the ith risky asset. We suppose that trading in the financial market is

frictionless. Moreover, we only allow self–financing strategies, i.e. a trading strategy

is given by a pair (x, ϑ), where x ∈ R is the initial capital and ϑ = (ϑt)0≤t≤T ∈ L(S).

As usual, L(S) denotes the set of Rd–valued predictable and S–integrable processes.

The vector–stochastic integral of ϑ ∈ L(S) w.r.t. S is denoted by ϑ · S :=
∫
ϑ dS.

For details on the vector–stochastic integral, we refer to [12], [30], and [33]. The

wealth–process associated with a self–financing trading strategy (x, ϑ) is denoted by

Xx,ϑ
t := x+ ϑ · St = x+

t∫

0

ϑu dSu, 0 ≤ t ≤ T.

A strategy ϑ ∈ L(S) is called a–admissible for a ≥ 0, if ϑ · S ≥ −a. For x ≥ 0 we

define

X x :=
{
Xx,ϑ | ϑ ∈ L(S) and Xx,ϑ ≥ 0

}

and set X x
T := {Xx,ϑ

T | Xx,ϑ ∈ X x}.
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2.2.1. Strictly positive σ–martingale density and no arbitrage

conditions

Let us recall the definitions of the most popular no arbitrage conditions.

Definition 2.1 ([52, Definition 2.3]): The semimartingale S is said to satisfy the

no arbitrage condition (NA), if for all 1–admissible strategy ϑ ∈ L(S) the following

implication holds:

ϑ · ST ≥ 0 a.s. =⇒ ϑ · ST = 0 a.s..

The next condition is equivalent to (NA) in the discrete time setting; see [31].

However, in a continuous time setting this does not hold in general.

Definition 2.2 ([28, Remark 3), p. 11]): The semimartingale S is said to sat-

isfy the condition (NA+), if for any 0–admissible strategy ϑ ∈ L(S) the following

implication holds:

ϑ · ST ≥ 0 a.s. =⇒ ϑ · S ≡ 0.

For more details on (NA+) we refer to [51]. The next definition provides a math-

ematical characterisation of the (NUPBR) condition.

Definition 2.3 ([52, Definition 2.2]): The semimartingale S is said to satisfy the no

unbounded profit with bounded risk (NUPBR) condition, if the set X 1
T is bounded

in L0, i.e.

lim
c→∞

sup
ϑ is 1–admissible

P (|ϑ · ST | > c) = 0.

The terms ‘strictly positive σ–martingale density’ and ‘equivalent σ–martingale

measure’ are characterized in the next definition.

Definition 2.4 (compare [28, Definition p. 5]): A strictly positive σ–martingale

density (or strictly positive local martingale density) for S is a local P–martingale

Z = (Zt)0≤t≤T with the following properties:

1. Z0 = 1 a.s..

2. Z > 0 up to indistinguishability.

3. ZSi is a P–σ–martingale (a local P–martingale) for each i ∈ {1, . . . , d}.

If a strictly positive σ–martingale density (or a strictly positive local martingale

density) Z satisfies E[ZT ] = 1, the measure dQ := ZT dP is called an equivalent

σ–martingale measure ( equivalent local martingale measure) for S.
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Remark 2.5: Throughout this chapter, we frequently use the following fact. If

Z is a strictly positive local martingale, where Z0 = 1 a.s., then there exists an

(up to indistinguishability) unique local martingale N such that N0 = 0 a.s. and

Z = E(−N) hold; see [30, 8.3 Theorem].

We end this subsection with a lemma on strictly positive σ–martingale densities.

Lemma 2.6: Let S be a Rd–valued P–semimartingale and Z = (Zt)0≤t≤T a local

P–martingale with Z0 = 1 and Z > 0. Moreover, let ϕ be a R–valued process that

satisfies at least one of the following conditions:

1. ϕ is a strictly positive and locally bounded process with left–continuous paths.

2. ϕ is a predictable, bounded process that is bounded away from zero. I.e., there

exists ε > 0 such that |ϕ| ≥ ε.

Then Z is a strictly positive σ–martingale density (or strictly positive local martin-

gale density) for S if and only if ϕ·(ZSi) is a P–σ–martingale (a local P–martingale)

for each i ∈ {1, . . . , d}.

Proof: We only prove the statement for ϕ satisfying the first item. The proof

for 2. follows the same lines. Due to the properties of ϕ, we know ϕ−1 is a R–

valued, strictly positive, and locally bounded process with left–continuous paths,

too. Moreover, the class of σ–martingales as well as the class of local martingales

are stable w.r.t. stochastic integration of locally bounded integrands. Due to the

associativity of the stochastic integral, we get

ZSi = 1 ·
(
ZSi

)
=
(
ϕ−1ϕ

)
·
(
ZSi

)
= ϕ−1 ·

(
ϕ ·
(
ZSi

))
for i ∈ {1, . . . , d}.

2.2.2. Invariance principles and the classical structure conditions

Invariance principles

In mathematical finance equivalent measure changes are the most important tool.

In the following, we collect some important results that are invariant under an

equivalent change of measure.

Lemma 2.7: Let S be a Rd–valued semimartingale and let Q be a probability mea-

sure equivalent to P , i.e. Q ∼ P . Then S satisfies (NUPBR) ( (NA), (NA+))

w.r.t. P if and only if S satisfies (NUPBR) ( (NA), (NA+)) w.r.t. Q.

The existence of a strictly positive σ–martingale density is also invariant under

equivalent measure changes.
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Lemma 2.8: Let S be a Rd–valued semimartingale and Q ∼ P . Then there exists

a strictly positive σ–martingale density (or strictly positive local martingale density)

for S under P if and only if there exists a strictly positive σ–martingale density (or

strictly positive local martingale density) for S under Q.

Proof: If there exists a strictly positive σ–martingale density (or strictly positive

local martingale density) Z for S under P , we know that Z is a local P–martingale

and ZSi are P–σ–martingales (local P–martingales) for all i ∈ {1, . . . , d}. If we

denote by (Dt)t≤T the density process of P w.r.t. Q, [33, Proposition 5.1] ensures

that DZ is a strictly positive local Q–martingale and DZSi are Q–σ–martingales

for all i ∈ {1, . . . , d}.

All structure conditions being considered in this chapter rely on the existence of

the predictable quadratic variation of the local martingale part of a special semi-

martingale. The predictable quadratic variation of the local martingale exists if and

only if the local martingale is in fact locally square–integrable. Therefore, we need

the following subclass of special semimartingales.

Definition 2.9: Let S be a Rd–valued semimartingale and Q ∼ P . S is called a

locally square–integrable Q–semimartingale, if it is a special semimartingale under

Q with canonical decomposition S = S0 +M + A and the following properties hold:

1. M is a Rd–valued, locally square–integrable Q–martingale with M0 = 0.

2. A is a Rd–valued, adapted, and predictable process of finite variation with

A0 = 0.

We denote the set of locally square–integrable Q–semimartingales by S ∈ S2
loc(Q).

The next lemma ensures that we can always find such a nice equivalent measure.

Proofs of the statement can be found in [39] or [19].

Lemma 2.10: Let S be a Rd–valued semimartingale on (Ω,F ,F, P ). Then there

exists a probability measure Q ∼ P , such that S is a locally square–integrable Q–

semimartingale.

The following lemma is the key ingredient to prove our structure theorems. Ac-

tually, it is an application of the product rule for semimartingales.

Key lemma 2.11: Let S be a Rd–valued P–semimartingale and Q ∼ P . Further,

let S be a special Q–semimartingale and denote its canonical decomposition (under

Q) by S = S0 + M + A. Moreover, let Z = E(−N) be a strictly positive local

Q–martingale. Then Z is a strictly positive Q–σ–martingale (local Q–martingale)

density for S if and only if [N,M i]− Ai is a Q–σ–martingale (local Q–martingale)

for all i ∈ {1, . . . , d}.
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Proof: The definition of a strictly positive σ–martingale density is a ‘component–

wise’ definition. Therefore, we can assume w.l.o.g. that d = 1. Since Z = E(−N) =

1−
∫
E(−N)− dN , the product rule leads to

ZS − S0 = E(−N)− ·
(
−
∫
S− dN +M + A− [N,M ]− [N,A]

)

= E(−N)− ·
(
−
∫
S− dN +M − [N,A]

)
− E(−N)− · ([N,M ]− A) .

Since E(−N)− is left–continuous, locally bounded, and strictly positive, the process
1

E(−N)−
is well defined and satisfies the same properties. Integrating 1

E(−N)−
on both

sides of the equation gives

1

E(−N)−
· (ZS − S0) =

(
−
∫
S− dN +M − [N,A]

)
− ([N,M ]− A) .

Due to Yoeurp’s lemma [27, 9.4 Examples. 1)], the first bracket term on the r.h.s.

is a Q–local martingale. Thanks to Lemma 2.6, the l.h.s. is a Q–σ–martingale (a

local Q–martingale) if and only if Z is a strictly positive Q–σ–martingale (local

Q–martingale) density for S. Therefore, the claim is proven.

Structure condition and weak structure condition

We already mentioned the classical structure conditions, (SC) and (SC′), in the

introduction. In this subsection, we provide rigorous definitions. Let S be a Rd–

valued, locally square–integrable P–semimartingale with canonical decomposition

S = S0+M+A, where M is a Rd–valued local martingale. Since M is locally square–

integrable, the bracket process 〈M,M〉 exists. Note that 〈M,M〉 is a Rd×Rd–valued,

adapted, and predictable process. We denote its components by 〈M i,M j〉, where

i, j ∈ {1, . . . , d}. Moreover, we denote by 〈M〉 the Rd–valued process, whose ith

component is given by 〈M〉i := 〈M i,M i〉.

Definition 2.12 (compare [28, Definition p. 7]): Let S be a Rd–valued semimartin-

gale. S is said to satisfy the weak structure condition (SC′) under P , if S ∈ S2
loc(P )

with canonical decomposition S = S0 + M + A and such that A is absolutely con-

tinuous w.r.t. 〈M,M〉. A is absolutely continuous w.r.t. 〈M,M〉, if there exists a

Rd–valued, predictable process λ̂ = (λ̂t)0≤t≤T such that A =
∫
d〈M,M〉λ̂, i.e.

Ait =
d∑

j=1

t∫

0

λ̂ju d〈M i,M j〉u for i ∈ {1, . . . , d} and 0 ≤ t ≤ T.

λ̂ is called the (instantaneous) market price of risk for S.
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Let S be a Rd–valued semimartingale that satisfies (SC′). Denote its canonical

decomposition by S = S0 + M + A and its instantaneous market price of risk

by λ̂ = (λ̂t)0≤t≤T . Due to the Kunita–Watanabe inequality, the Radon–Nikodym

derivative λ̄i,j = (λ̄i,jt )0≤t≤T of d〈M i,M j〉 w.r.t. d〈M i〉 exists for all i, j ∈ {1, . . . , d}.
Therefore, the Rd–valued, predictable process λ̃ = (λ̃t)0≤t≤T , where

λ̃it :=
d∑

j=1

λ̂jt λ̄
i,j
t for i ∈ {1, . . . , d} and 0 ≤ t ≤ T, (2.2)

is well–defined and satisfies

Ait =

t∫

0

λ̃iu d〈M i,M i〉u =

t∫

0

λ̃iu d〈M i〉u for i ∈ {1, . . . , d} and 0 ≤ t ≤ T.

Throughout the whole chapter, we work with this version of the weak structure

condition. In order to refer to it, we state the result in the following lemma.

Lemma 2.13: Let S be a Rd–valued semimartingale that satisfies (SC′) and let

λ̃ = (λ̃t)0≤t≤T be the Rd–valued, predictable process defined in (2.2). Then S can be

written as S = S0 +M +
∫
λ̃ d〈M〉, where

Sit = Si0 +M i
t +

t∫

0

λ̃iu d〈M i〉 for i ∈ {1, . . . , d} and 0 ≤ t ≤ T.

Remark 2.14: One has to keep in mind that the predictable quadratic variation

of a locally square–integrable martingale is not invariant under equivalent measure

changes in general! To indicate that we mean the predictable quadratic variation

under a measure Q ∼ P , we write 〈M〉Q.

The next lemma states that any reasonable no arbitrage assumption implies the

weak structure condition (SC′).

Lemma 2.15 ([51, Theorem 2.2]): Let S be a Rd–valued P–semimartingale and

Q ∼ P such that S ∈ S2
loc(Q). If S satisfies either (NA), (NA+), or (NUPBR),

then S satisfies the weak structure condition (SC′) under Q.

The next definition characterizes the structure condition (SC).

Definition 2.16 (compare [28, Definition p. 7]): If S satisfies the weak structure

condition (SC′) under P , we define

K̂t :=

t∫

0

λ̂tru d〈M,M〉λ̂u =
d∑

i,j=1

t∫

0

λ̂iuλ̂
j
u d〈M i,M j〉u, 0 ≤ t ≤ T,
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and call K̂ = (K̂t)0≤t≤T the mean–variance tradeoff process of S. Because 〈M,M〉
is positive semidefinite, the process K̂ is increasing and null at 0; but note that it

may take the value +∞ in general. We say that S satisfies the structure condition

(SC), if S satisfies (SC′) and K̂T <∞ P–a.s..

The next lemma provides equivalent characterisations of (SC) that are also used

in the literature; see e.g. [50].

Lemma 2.17: Let S be a Rd–valued semimartingale that satisfies the weak structure

condition (SC′) under P . Denote by S = S0 + M + A its canonical decomposition

and by λ̂ the instantaneous market price of risk for S. The following statements are

equivalent:

1. S satisfies (SC).

2. There exists an increasing sequence (Tn)n≥1 of stopping times such that

a) P (Tn = T )→ 1 for n→∞,

b) K̂Tn =
d∑

i,j=1

Tn∫
0

λ̂iuλ̂
j
u d〈M i,M j〉u ≤ n.

3. There exists an increasing sequence (Tn)n≥1 of stopping times such that

a) P (Tn = T )→ 1 for n→∞,

b) E
[
K̂Tn

]
<∞.

4. λ̂ ∈ L2
loc(M

T ) in the sense of [29].

Proof: We first prove the equivalence of the first two statements. If S satisfies

(SC), the mean–variance tradeoff process K̂ is a càdlàg, increasing, and predictable

process. Due to [27, 7.7 Theorem], there exists an increasing sequence (Tn)n≥1 of

stopping times such that for all n ≥ 1

K̂Tn =
d∑

i,j=1

Tn∫

0

λ̂iuλ̂
j
u d〈M i,M j〉u ≤ n

holds. Since

P (Tn 6= T ) = P (KT > n) ,

the equivalence of the first two statements follows. As 2.⇒3.⇒4., it remains to

prove that 4. implies the first item. Since λ̂ ∈ pL2
loc(M

T ), there exists an increasing

sequence (Sn)n≥1 of stopping times such that

1. Sn →∞ P–a.s. for n→∞,
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2. E
[
K̂Sn∧T

]
= E

[
d∑

i,j=1

Sn∧T∫
0

λ̂iuλ̂
j
u d〈M i,M j〉u

]
<∞.

Moreover, the increasing sequence (Tn)n≥1 of stopping times, where Tn := Sn ∧ T ,

satisfies P (Tn = T )→ 1 for n→∞. Since

P
(
K̂T <∞

)
≥ P

({
K̂T <∞

}
∩ {Tn = T}

)
, ∀ n ≥ 1,

the claim is proven.

Remark 2.18:

1. A sequence of stopping times satisfying the property 2.a) is called a γ–localizing

sequence in [13].

2. The statement of the lemma is wrong, if we do not consider M as a stopped,

locally square–integrable martingale on Ω × R+. Indeed, consider a standard

Brownian motion M := B on Ω×[0, 1] and let λ̂ := (1[0,1)1/(1−u)+1{1})u∈[0,1].

Obviously,
∫ 1

0
λ̂2
u du = ∞ holds. On the other hand, the sequence (Tn)n≥1,

where Tn = 1−1/(1+n), satisfies Tn → 1 a.s. and |λ̂u1[[0,Tn]]| ≤ n+1. Hence,∫
λ̂1[[0,Tn]] dBu is a square–integrable martingale for all n ≥ 1. Notice that

(Tn)n≥1 is not a γ–localizing sequence.

Finally, we state the definition of the minimal martingale measure.

Definition 2.19: Let S satisfy (SC). The process E
(
−
∫
λ dM

)
is called the min-

imal martingale measure.

Remark 2.20: Note that the minimal martingale measure is neither a uniformly

integrable martingale, see [46], nor non–negative (as we will see below) in general!

2.3. Structure conditions and their connection to

martingale decomposition theorems

In [52], Schweizer and Takaoka proved the following result on the (NUPBR) con-

dition.

Theorem 2.21 ([52, Theorem 2.6]): The Rd–valued semimartingale S satisfies the

condition (NUPBR) if and only if there exists a strictly positive σ–martingale

density for S.
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This result ranks among a long sequence of equivalent reformulations of the con-

dition (NUPBR). All these results provide a reasonable pricing operator for wealth

processes of 1–admissible trading strategies. The most prominent ones are the growth

optimal portfolio and the numéraire portfolio; see [28] for references and details. For

continuous semimartingales the (NUPBR) condition is closely tied to a structure

condition of the underlying semimartingale. This condition is well known under the

name structure condition (SC). For continuous semimartingales the result above

can be extended in the following way.

Lemma 2.22 ([15, Théorème 2.9]): Let S = S0 + M + A be a continuous semi-

martingale, where M is the local martingale of the canonical decomposition. The

following statements are equivalent:

1. There exists a strictly positive local martingale density for S.

2. S satisfies the (NUPBR) condition.

3. S satisfies the (SC) condition.

There are several attempts to extend the ideas of the structure condition to ar-

bitrary, locally square–integrable semimartingales; see [15] and [50]. Although some

nice properties translate into this more general setting, see e.g. Corollary 2.43 be-

low, the structure condition is neither necessary nor sufficient for the existence of a

strictly positive σ–martingale density. Moreover, the structure condition (SC) lacks

to be invariant under equivalent measure changes. This is highly unpleasant, since

measure change techniques are the ‘bread and butter‘ techniques in mathematical

finance and appear in countless proofs and applications. For a nice and detailed

analysis of (SC), we refer to the work of Choulli and Stricker [15].

The goal of this section is to provide new structure conditions that overcome the

disadvantages of the structure condition (SC). We start with the minimal structure

condition (MSC). Apart from the fact that the minimal structure condition is nec-

essary for the (NUPBR) condition, it is also invariant under equivalent measure

changes. Furthermore, (MSC) is equivalent to (SC) for continuous semimartin-

gales, a property that (SC′) does not possess. We derive the definition of (MSC)

in a very natural and straightforward way from our first result, the 1st Structure

Theorem. This theorem provides a deep insight into the relation between strictly

positive σ–martingale densities on the one hand, and the structure of locally square–

integrable semimartingales and the potential decompositions of its predictable finite

variation part on the other hand. A natural, additional assumption on the min-

imal structure condition leads to the natural structure condition (NSC). Under

(NSC), we provide our 2nd Structure Theorem. It gives a deep insight into the

‘geometry’ of strictly positive σ–martingale densities and semimartingales. Besides,
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a reformulation of the 2nd Structure Theorem leads to the notation of a natural

Kunita–Watanabe decomposition. It turns out that (NSC) is essentially equiva-

lent to the fact that all strictly positive σ–martingale densities of a semimartingale

feature a natural Kunita–Watanabe decomposition. This reformulation of the 2nd

Structure Theorem significantly generalizes the, up to now, most general result in

this direction [15, Théorème 2.1], see Corollary 2.43.

2.3.1. From the Radon–Nikodym decomposition to the minimal

structure condition (MSC)

The following conventions are important for the rest of this chapter. In order to

refer to these conventions, we state them in the following remark.

Remark 2.23 (IMPORTANT CONVENTIONS): Since the definition of a strictly

positive σ–martingale density for a Rd–valued semimartingale is a component–wise

definition, we assume w.l.o.g. that d = 1. If we compare our results with literature,

this is always done under the standing assumption d = 1! Moreover, to simplify

notation, we formulate results for general Q ∼ P , only if the invariance of the result

under equivalent measure changes is an important part of the statement. Finally,

recall that we work with ‘the version’ of the weak structure condition given in Lemma

2.13.

The Radon–Nikodym decomposition and the 1st Structure Theorem

The 1st Structure Theorem explains the connection between the Radon–Nikodym

decomposition of a strictly positive σ–martingale density of a locally square inte-

grable semimartingale S = M + A and the predictable, finite variation process A.

Furthermore, it provides a ‘decomposition theorem‘ for A.

Theorem 2.24 (1st Structure Theorem): Let S be a P–semimartingale and Q ∼ P

be a probability measure such that S ∈ S2
loc(Q). Denote the canonical decomposition

of S by S = S0 + M + A. Furthermore, denote by M c and Md the continuous

and purely discontinuous local martingale part of M . Let Z = E(−N) be a strictly

positive local Q–martingale and denote by

N = λ.M c +H•cM
d + L

the Radon–Nikodym decomposition of N w.r.t. M . Then the following statements

are equivalent:

1. Z is a strictly positive σ–martingale (local martingale) density for S under Q.
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2. a) S satisfies the weak structure condition (SC′) under Q, i.e. there exists

a 〈M〉Q–a.s. unique predictable process λ̃ ∈ Lm
(
[M ]− 〈M〉Q

)
(under Q)

such that A =
∫
λ̃ d〈M〉Q.

b)
(
H − λ̃

)
.[M ] is a σ–martingale (local martingale) under Q.

3. a) There exists a unique process η ∈ Lm
(
[Md]− 〈Md〉Q

)
(under Q) such

that

A =

∫
λ d〈M c〉Q +

∫
η d〈Md〉Q.

(If either M c or Md is identical zero, we choose λ ≡ 0 or η ≡ 0.)

b) If M c ≡ 0 and Md = η.
(
[Md]− 〈Md〉Q

)
, then η.[Md] ≡ 0.

c) (H − η) .[Md] is a σ–martingale (local martingale) under Q.

The key to the proof of Theorem 2.24 is the following lemma.

Lemma 2.25: Let Q ∼ P , M ∈ M2
loc(Q) and H be an optional process, such

that the path–wise Lebesgue–Stieltjes integral H.[M ] exists. Moreover, let H.[M ] be

compensable and denote its compensator by C. There exists a 〈M〉Q–a.s. unique

predictable process K ∈ Lm
(
[Md]− 〈Md〉Q

)
(under Q), such that C = K.〈M〉Q.

Proof: If H.[M ] ∈ Aloc, the lemma’s statement is exactly [27, Chapter V, §2. Re-

mark p. 149]. As H.[M ] is compensable, Remark 1.24 ensures that there exists a non–

decreasing sequence (An)n≥1 ⊂ P such that
⋃
n≥1An = Ω×[0, T ] and (1AnH) .[M ] ∈

Aloc for all n ≥ 1. As a result of [27, Chapter V, §2. Remark p. 149], there exists

a sequence (Kn)n≥1 ⊂ P such that 1An .C =
∫
Kn d〈M〉Q =

∫
1AnK

n d〈M〉Q.

Due to the uniqueness of the compensator, we can conclude that 1AnK
n = 1AnK

m

〈M〉Q–a.s. for all m ≥ n. Define

|K| := lim
m→∞

1Am |Km|

and denote by TV (C) the total variation process of C. Due to the monotone con-

vergence theorem, we get
∫
|K| d〈M〉Q = lim

m→∞

∫
1Am|Km| d〈M〉Q = lim

m→∞
1Am .TV (C) = TV (C) ∈ Aloc.

Therefore, K := limm→∞ 1AmK
m is well–defined and C =

∫
K d〈M〉Q. Moreover,

[27, 5.19 Theorem] ensures that C ∈ Aloc. Finally, Lemma 1.27 allows us to conclude

that K ∈ Lm
(
[Md]− 〈Md〉Q

)
under Q.

Proof of Theorem 2.24: We start proving the equivalence of 1. and 2.. Due to

Key lemma 2.11, we know that Z is a strictly positive σ–martingale (local martin-

gale) density for S if and only if [N,M ]− A = H.[M ]− A is a σ–martingale (local
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martingale). Lemma 2.25 ensures that there exists a 〈M〉Q–a.s. unique predictable

process λ̃ ∈ Lm
(
[M ]− 〈M〉Q

)
(under Q) such that A = λ̃.〈M〉Q. Hence,

(
H − λ̃

)
.[M ] = H.[M ]− λ̃.〈M〉Q − λ̃.

(
[M ]− 〈M〉Q

)

is a σ–martingale (a local martingale) under Q if and only if H.[M ]− A is a Q–σ–

martingale (local martingale).

It remains to prove the equivalence of 1. and 3.. As before, Key lemma 2.11

ensures that Z is a strictly positive σ–martingale (local martingale) density for S if

and only if [N,M ] − A = H.[M ] − A is a σ–martingale (local martingale). Due to

the Radon–Nikodym decomposition of N w.r.t. M , this is equivalent to

H.[Md] + λ.〈M c〉Q − A

being a σ–martingale (local martingale). As a result of Lemma 2.25, we know that

there exists a 〈Md〉Q–a.s. unique predictable process η ∈ Lm
(
[Md]− 〈Md〉Q

)
(under

Q) such that

H.[Md]− η.〈Md〉Q

is a σ–martingale (local martingale). Hence, we can conclude that

A =

∫
λ d〈M c〉Q +

∫
η d〈Md〉Q.

Since

(H − η) .[Md] = H.[Md]− η.〈Md〉Q − η.
(
[Md]− 〈Md〉Q

)
,

we have proven that 1. and 3.a),3.c) are equivalent. Therefore, it remains to prove

the equivalence of 1. and 3.b). Assume that M c ≡ 0 and Md = η.
(
[Md]− 〈Md〉Q

)
.

Define

sign(η)t =

{
1 if ηt ≥ 0,

−1 if ηt < 0.

Since

sign(η) · S = sign(η) ·
(
M c +Md +

∫
λ d〈M c〉Q +

∫
η d〈Md〉Q

)

= sign(η) ·
(
η.
(
[Md]− 〈Md〉Q

)
+

∫
η d〈Md〉

)
= (sign(η)η) .[Md]

= |η|.[Md],

Lemma 2.6 ensures that Z is a strictly positive σ–martingale (local martingale)

density for S if and only if it is a strictly positive σ–martingale (local martingale)

density for |η|.[Md]. As |η|.[Md] is non–decreasing, this is possible if and only if

η.[Md] ≡ 0.

45



Chapter 2. A structured approach to structure conditions

Remark 2.26: Since

H.[Md] = [Nd,Md] = [H•cM
d + Ld,Md] = [H•cM

d,Md] + [Ld,Md],

Theorem 1.36 and the proof of the 1st Structure Theorem ensure that [H•cM
d,Md]−

η.〈Md〉Q is a σ–martingale under Q.

Geometric interpretation of the 1st Structure Theorem

The first step to provide a geometric interpretation of the connection between a

strictly positive σ–martingale density and a semimartingale S, is a measure change

Q ∼ P to ensure that S ∈ S2
loc(Q). In the following presentation, we assume that

S ∈ S2
loc(P ) and suppress the probability measure P to simplify notation. Moreover,

we denote the canonical decomposition of S by S = M + A, where A ∈ V ∩ P .

Furthermore, let Ω̄ := Ω× [0, T ] and denote by µ a σ–finite measure on
(
Ω̄,P

)
. For

p ∈ {1, 2} we define

Lploc
(
Ω̄,P , µ

)
:=

{∫
K dµ : K ∈ P and

∫
|K|p dµ ∈ Aloc

}
.

Besides, we set

L1
σ

(
Ω̄,O, d[M ]

)
:=

{∫
K d[M ] : K ∈ O and

∫
K d[M ] is a σ–martingale

}
.

In the first step of the proof of Theorem 2.24, we translate the formulation ‘Z =

E(−N) is a strictly positive σ–martingale density for S’ into ‘[N,M ] − A is a σ–

martingale’. Furthermore, by using the Radon–Nikodym derivative of d[N,M ] w.r.t.

d[M ], this turns into the formulation

‘H.[M ]− A = σ–martingale’. (2.3)

Since H is connected to N in a unique way, this is the ‘equation’ that contains

all objects that are crucial to decide whether or not E(−N) is a (strictly positive)

σ–martingale density for S. Equation (2.3) is the starting point of the geometric

interpretation of Theorem 2.24 2. and Theorem 2.24 3..

Geometric interpretation of Theorem 2.24 2.

In the first step, the weak structure condition (SC′) allows us to identify A ∈ V ∩P
in a unique way with an element

∫
λ̃ d〈M〉 on ‘the line’ L1

loc(Ω̄,P , d〈M〉); see Figure

2.3.1. Due to (2.3) and Theorem 2.24 2.b), this can be transformed, via adding and

subtracting λ̃.[M ], into a ‘2–dimensional picture’ (Figure 2.3.2), where the right

angle in Figure 2.3.2 indicates that (H − λ̃).[M ] is a σ–martingale. Although this is

a nice interpretation, Theorem 2.24 3. provides a much deeper understanding of the

geometric link between strictly positive σ–martingale densities and semimartingales.

In particular, these insights lead to a good minimal structure condition.
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L1
loc

(
Ω̄,P,d〈M〉

)A
(SC′)

b

λ̃.〈M〉

Figure 2.3.1.:

L1
loc

(
Ω̄,P,d〈M〉

)b

λ̃.〈M〉

±λ̃.[M ]

L1
loc

(
Ω̄,P,d[M ]

)

L1
σ

(
Ω̄,O,d[M ]

)

b

H.[M ]

b

λ̃.[M ]

(H − λ̃).[M ]

is a σ–martingale

Figure 2.3.2.:
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L1
loc

(
Ω̄,P,d〈Md〉

)

L2
loc

(
Ω̄,P,d〈M c〉

)
A

b

(λ.〈M c〉, η.〈Md〉)

Figure 2.3.3.:

Geometric interpretation of Theorem 2.24 3.

The key advantage of Theorem 2.24 3. is to consider H.[M c] and H.[Md] separately.

While Figure 2.3.1 identifies the predictable finite variation part A of S with an

element on the ‘predictable line’ L1
loc(Ω̄,P , d〈M〉), Theorem 2.24 3. allows us to

identify A with an element on the ‘predictable plane’

L2
loc(Ω̄,P , d〈M c〉) + L1

loc(Ω̄,P , d〈Md〉) ⊂ Aloc.

Here, A ∈ L2
loc(Ω̄,P , d〈M c〉) + L1

loc(Ω̄,P , d〈Md〉) means that there exist λ.〈M c〉 ∈
L2
loc(Ω̄,P , d〈M c〉) and η.〈Md〉 ∈ L1

loc(Ω̄,P , d〈Md〉) such that

A = λ.〈M c〉+ η.〈Md〉.

With an abuse of notation, we also write

(λ.〈M c〉, η.〈Md〉) ∈ L2
loc(Ω̄,P , d〈M c〉) + L1

loc(Ω̄,P , d〈Md〉).

With this notation we can translate Theorem 2.24 into Figure 2.3.3. While the weak

structure condition (SC′) suggests to consider A as an element

(λ̃.〈M c〉, λ̃.〈Md〉) ∈ L1
loc(Ω̄,P , d〈M c〉) + L1

loc(Ω̄,P , d〈Md〉)

of the ‘diagonal’, Theorem 2.24 3. indicates that it is much more reasonable to

consider A as an element

(λ.〈M c〉, η.〈Md〉) ∈ L2
loc(Ω̄,P , d〈M c〉) + L1

loc(Ω̄,P , d〈Md〉)
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L1
loc

(
Ω̄,P,d〈Md〉

)

L2
loc

(
Ω̄,P,d〈M c〉

)

b

(λ.〈M c〉, η.〈Md〉)

±η.[Md]

L1
loc

(
Ω̄,P,d[Md]

)

L1
σ

(
Ω̄,O,d[M ]

)

L2
loc

(
Ω̄,P,d[M c]

)
b

(H − η).[Md]

is a σ–martingale

bb

b

(λ.[M c], η.[Md])

H.[M ]

Figure 2.3.4.:

of the predictable plane. As in Figure 2.3.2, the transformation ±η.[Md] relates a

pair (λ, η) to H by ‘adding a further dimension’. Indeed, let (Tn)n≥1 be a sequence

of stopping times that exhausts the jumps of M . Then we get

H.[M ] = (H − η)1⋃
n≥1[[Tn]].[M ] +H1(

⋃
n≥1[[Tn]])c .[M ] + η1⋃

n≥1[[Tn]].[M ]

= (H − η).[Md] + λ.[M c] + η.[Md].

This embedding of the predictable plane into a ‘3–dimensional space’ is illustrated in

Figure 2.3.4. Again, the right angle sign in Figure 2.3.4 indicates that (H − η).[Md]

is a σ–martingale.

The minimal structure condition (MSC) and a toy example

To define a minimal structure condition for a semimartingale S ∈ S2
loc, where S =

M +A denotes the canonical decomposition, the question is basically the following:

‘What finite variation process A ∈ V ∩ P allows for the existence of a strictly

positive σ–martingale density?’. Using the characterisation of Theorem 2.24 and its

geometric interpretation, this question translates into the question: ‘What subset

B ⊂ L2
loc(Ω̄,P , d〈M c〉) + L1

loc(Ω̄,P , d〈Md〉) allows for the existence of a strictly

positive σ–martingale density?’; see Figure 2.3.5. Note that if there exist at least

two representations of A, i.e.

A =

∫
1λ d〈M c〉+

∫
1η d〈Md〉

=

∫
2λ d〈M c〉+

∫
2η d〈Md〉,

we get for α ∈ [0, 1]

A =

∫
α
(

1λ
)

+ (1− α)
(

2λ
)
d〈M c〉+

∫
α
(

1η
)

+ (1− α)
(

2η
)
d〈Md〉.
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L1
loc

(
Ω̄,P,d〈Md〉

)

L2
loc

(
Ω̄,P,d〈M c〉

)

B

Figure 2.3.5.:

L1
loc

(
Ω̄,P,d〈Md〉

)

L2
loc

(
Ω̄,P,d〈M c〉

)
A

decompositions of A

b

(λ̃.〈M c〉, λ̃.〈Md〉)

b

(1λ.〈M c〉,1 η.〈Md〉)
b

(2λ.〈M c〉,2 η.〈Md〉)

Figure 2.3.6.:
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L1
loc

(
Ω̄,P,d[Md]

)

L1
σ

(
Ω̄,O,d[M ]

)

L2
loc

(
Ω̄,P,d[M c]

)

b

(2λ.[Mc],2 η.[Md])

b

(1λ.[Mc],1 η.[Md])

b
(2H).[M]

b
(1H).[M] σ–martingale

densities for S

decompositions of A

Figure 2.3.7.:

This in turn means that A can be interpreted as a ‘line segment’ (which might

be a whole line or a point); see Figure 2.3.6. Notice that this is the key difference

between (SC′) and the characterisation of Theorem 2.24 3.a). While (SC′) considers

only one decomposition of A, A =
∫
λ̃ d〈M〉, Theorem 2.24 3.a) indicates that we

should look for all potential decompositions of A. Yet, how are these decompositions

connected to different strictly positive σ–martingale densities for S? If E(−(1N)) and

E(−(2N)) are strictly positive σ–martingale densities for the semimartingale S, Key

lemma 2.11 ensures that E(−(αN)), where

αN = α(1N) + (1− α)(2N), α ∈ [0, 1],

is also a strictly positive σ–martingale density for S. Hence, if αH denotes the

Radon–Nikodym derivative of d[αN,M ] w.r.t. d[M ] and (αλ, αη) the unique pair

corresponding to αN (see Theorem 2.24), we see that the line segment

(αλ.[M c], αη.[Md]) = α
(

1λ.[M c], 1η.[Md]
)

+ (1− α)
(

2λ.[M c], 2η.[Md]
)

is the ‘orthogonal projection’ of the line segment

αH.[M ] = α
(

1H
)
.[M ] + (1− α)

(
2H
)
.[M ]

onto the plane L2
loc(Ω̄,P , d[M c]) + L1

loc(Ω̄,P , d[Md]); see Figure 2.3.7. These ideas

lead to the following natural definition of the minimal structure condition.
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Definition 2.27 (Minimal structure condition): Let S be a P–semimartingale and

Q ∼ P a probability measure. We say that S satisfies the minimal structure condi-

tion (MSC) under Q, if the following properties hold:

1. S is a locally square–integrable Q–semimartingale with canonical decomposi-

tion S = S0 + M + A, where M c and Md are the continuous– and purely

discontinuous local martingale parts of M .

2. There exist processes λ ∈ Lm(M c) and η ∈ Lm([Md] − 〈Md〉Q) under Q such

that A =
∫
λ d〈M c〉+

∫
η d〈Md〉.

3. If M c ≡ 0 and Md = η.
(
[Md]− 〈Md〉Q

)
, then η.[M ] ≡ 0.

A pair (λ, η) that satisfies all conditions is called a version of (MSC) under Q.

Remark 2.28:

1. The definition of (MSC) takes into account that A ∈ V∩P might have several

decompositions into the sum of integrals w.r.t. d〈M c〉Q and d〈Md〉Q. This is

due to the fact that we do not insist on the uniqueness of the pair (λ, η) in 2..

This fact is crucial to understand the connection between semimartingales and

their strictly positive σ–martingale densities.

2. The structure condition (SC) forces (〈M〉Q–a.s.) the uniqueness of the pair,

as (SC) insists on a pair (λ̃, λ̃) on the diagonal.

3. If S ∈ S2
loc does not satisfy the third property of the definition, the paths of S

are of locally finite variation. Hence, all semimartingales whose paths are of

infinite variation always satisfy the third property of the definition. For exam-

ple, locally square–integrable Lévy–processes of Type C satisfy this property;

see [45, Theorem 21.9 (ii)].

In order to highlight connections and differences between (MSC), (SC′), (SC),

and a few other structure conditions, we introduce the following toy example.

Toy example 2.29 (Setting): Let

S = M +

∫
λ̃ 〈M〉

= c1B + c2N +

∫
λ̃ 〈c1B + c2N〉

be a semimartingale on the time interval [0, 1], where B is a standard Brownian mo-

tion and N = P−t a compensated Poisson process with intensity one. Furthermore,

let λ̃ ∈ P be a predictable process such that E
[∫ 1

0
|λ̃u| d〈M〉u

]
<∞. F is assumed
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to be the smallest filtration that satisfies the usual conditions and contains the nat-

ural filtration generated by S. Finally, c1, c2 ∈ {0, 1} are constants that enable us

to switch on and off the continuous and the purely discontinuous local martingale

part of M .

Remark 2.30: In the following ‘toy examples’ the assumptions above are assumed

to hold. To highlight specific points, we modify c1, c2 ∈ {0, 1} and λ̃ ∈ P.

The first lemma explains the connection between (MSC) and (SC′).

Lemma 2.31: Let S be a locally square–integrable semimartingale. The following

implication holds:

(MSC) =⇒ (SC′).

If S is continuous, then (SC) and (MSC) are equivalent.

Proof: Let S = S0 +M +A be the canonical decomposition of S, where A denotes

the predictable process of finite variation. Let (λ, η) be a version of (MSC). Then

A =
∫
λ 〈M c〉+

∫
η 〈Md〉. Hence, dA� d〈M〉 holds and [27, 5.14 Theorem] ensures

that there exists a predictable process λ̃ ∈ P such that A = λ̃.〈M〉. The second

statement is obvious.

The first toy example shows that the reverse implication in Lemma 2.31 does not

hold in general.

Toy example 2.32: The following examples show that (SC′) is indeed weaker

than (MSC). Moreover, these examples highlight at what point (SC′) is too weak

to ensure the existence of a strictly positive σ–martingale density.

1. (Continuous paths): Let c1 = 1, c2 = 0, and λ̃ ∈ L1([0, 1], du) \ L2([0, 1], du).

Due to Definition 2.27, we know that for continuous semimartingales it is

necessary that λ̃ ∈ L2([0, 1], du). Hence, (SC′) holds while (MSC) does not.

2. (Discontinuous paths): Let c1 = 0, c2 = 1, and λ̃ ≡ 1. Then S = N + t = P

is an increasing process which, of course, cannot admit a strictly positive σ–

martingale density. Moreover, it does not satisfy (MSC).

Theorem 2.24 ensures that (MSC) is invariant under proper equivalent changes of

measure. As this property is so important, we formulate it in the following theorem.

Theorem 2.33 (Invariance of (MSC) under equivalent measure change): Let S be

a P–semimartingale and Q ∼ P be a probability measure. Further, let S be a locally

square–integrable Q–semimartingale. If there exists a strictly positive σ–martingale

density for S under P , S satisfies the minimal structure condition (MSC) under

Q.
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Proof: Due to Lemma 2.8, the existence of a strictly positive σ–martingale den-

sity is invariant under equivalent measure changes. Hence, the statement follows

immediately from Theorem 2.24.

Remark 2.34: If S is locally bounded, Theorem 2.33 holds for all Q ∼ P . This

property does not hold for (SC) in general; see Toy example 2.45.

2.3.2. The natural Kunita–Watanabe decomposition and the

natural structure condition (NSC)

Natural Kunita–Watanabe decomposition and the 2nd Structure Theorem

Let S be a locally square–integrable semimartingale. If (λ, η) is a version of (MSC),

we know that
∫
λ dM c exists. Unfortunately, we do not know whether or not∫

η dMd exists and whether or not it is a local martingale. The next definition

focuses on those versions (λ, η) of (MSC) that satisfy this additional property.

Definition 2.35 (Natural structure condition): Let S be a locally square–integrable

P–semimartingale with canonical decomposition S = S0 + M + A that satisfies the

minimal structure condition (MSC). We say that S satisfies the natural structure

condition (NSC), if there exists a version (λ, η) of (MSC) such that η ∈ Lm(Md).

A pair (λ, η) satisfying this condition is called a version of (NSC).

Remark 2.36:

1. It is clear that for semimartingales having continuous paths, (NSC) and (SC)

are equivalent.

2. If the toy example satisfies (MSC), it also satisfies (NSC).

Definition 2.37: Let N and M be local martingales starting in zero. Further, let

M be locally square–integrable and denote by M c and Md its continuous– and purely

discontinuous local martingale part. We say that N features a natural Kunita–

Watanabe decomposition w.r.t. M , if there exists λ ∈ Lm(M c) and η ∈ Lm(Md) ∩
Lm([Md]− 〈Md〉) such that

N = λ.M c + η.Md + L,

where L is a local martingale and [L,M ] is a σ–martingale.

The first lemma highlights the connection between (SC), (MSC), and (NSC).

Lemma 2.38: Let S ∈ S2
loc and denote by S = S0 + M + A its canonical decom-

position. Moreover, let S satisfy (SC), i.e. A =
∫
λ̃ d〈M〉 with λ̃ ∈ pL2

loc(M). The

following statements hold:
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1. The pair (λ̃, λ̃) satisfies the first two properties of the definition of (MSC).

2. If (λ̃, λ̃) is a version of (MSC), then (λ̃, λ̃) is a version of (NSC).

Proof: Note that if we have proven the first statement, 2. follows automatically.

Hence, it remains to prove 1.. The first property is clear. Since λ̃ ∈ pL2
loc(M), it

follows that λ̃ ∈ Lm(Md) ∩ Lm(M c). Moreover, the Kunita–Watanabe inequality

ensures that

|λ̃|.[Md] ≤ 1

2

(
λ̃2.[Md] + [Md]

)
.

Hence,
∫
|λ̃| d[Md] ∈ A+

loc holds. Finally, λ̃ ∈ Lm([Md] − 〈Md〉) is true thanks to

Lemma 1.27.

The next lemma gives a simple, sufficient condition for (NSC).

Lemma 2.39: Let S be a semimartingale that satisfies (MSC). Furthermore, de-

note its canonical decomposition by S = S0 + M + A and let (λ, η) be a version of

(MSC). If there exists a constant ε > 0 such that |∆Md| ≥ ε, then (λ, η) is version

of (NSC).

Proof: It remains to prove that η ∈ Lm(Md). Set T0 := 0 and define (Tn)n≥1 via

Tn := inf {t > Tn−1 : ∆Mt 6= 0} , for n ≥ 1.

Due to the sub–additivity of the square root, see Lemma A.20, we get

√
η2.[Md]Tn∧R ≤

n∑

i=1

∣∣ηTi∧R∆Md
Ti∧R

∣∣

for all stopping times R. Hence, we get

√
η2.[Md]R ≤

∞∑

i=1

∣∣ηTi∧R∆Md
Ti∧R

∣∣ .

By assumption, there exists ε > 0 such that |∆Md| ≥ ε. Moreover, η.[Md] ∈ Aloc
holds. Denote its localizing sequence by (Rn)n≥1 and note that for all i, n ≥ 1

ε|ηTi∧Rn∆Md
Ti∧Rn| ≤ |ηTi∧Rn∆[Md]Ti∧Rn|

holds. Combining the last two equations, we conclude

√
η2.[Md]Rn ≤

∞∑

i=1

∣∣ηTi∧Rn∆Md
Ti∧Rn

∣∣ ≤ 1

ε
|η|.[Md]Rn ∈ A, ∀ n ≥ 1.
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The next result is the main result of this subsection. Under the condition (NSC),

the theorem provides a deep connection between the structure of the drift of a

semimartingale and the structure of its strictly positive σ–martingale densities.

Theorem 2.40 (2nd Structure Theorem): Let S satisfy (NSC) and denote its

canonical decomposition by S = S0 + M + A. Moreover, let (λ, η) be a version of

(NSC) and let Z = E(−N) be a strictly positive local martingale. Then Z is a

strictly positive σ–martingale (local martingale) density for S if and only if N can

be decomposed as

N = λ.M c + η.Md + L,

where L is a local martingale and [L,M ] is a σ–martingale (local martingale).

Proof: Let (λ, η) be a version of (NSC) and define

L := N − λ.M c − η.Md ∈Mloc.

Due to Key lemma 2.11, we know that E(−N) is a strictly positive σ–martingale

(local martingale) density for S if and only if

[N,M ]− A = [N,M ]− λ.〈M c〉 − η.〈Md〉
= [L+ λ.M c + η.Md,M ]− λ.〈M c〉 − η.〈Md〉
= [L,M ] + η.

(
[Md]− 〈Md〉

)

is a σ–martingale (local martingale). Due to (NSC), we can conclude that the pro-

cess η.
(
[Md]− 〈Md〉

)
is a local martingale. Therefore, E(−N) is a strictly positive

σ–martingale (local martingale) density for S if and only if [L,M ] is a σ–martingale

(local martingale). Hence, the claim is proven.

Remark 2.41:

1. The theorem provides a link between martingale decomposition theorem(s) of

the local martingale N and decomposition theorem(s) of the predictable finite

variation process A.

2. This characterisation is of great benefit for practical applications! One way

to apply it, in order to receive strictly positive σ–martingale densities, is pre-

sented in Section 2.4.2.

The theorem can be reformulated as follows.

Theorem 2.42 (2nd Structure Theorem; 2nd version): Let S be a semimartingale

and Z = E(−N) be a strictly positive σ–martingale density for S. Then S satisfies

(NSC) if and only if
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2.3. Structure conditions and their connection to martingale decomposition theorems

1. S ∈ S2
loc; we denote the local martingale of its canonical decomposition by M .

2. N features a natural Kunita–Watanabe decomposition w.r.t. M .

The second version of the 2nd Structure Theorem is a remarkable generalisation

of [15, Théorème 2.1] by Ansel and Stricker. We state their theorem in the following

corollary.

Corollary 2.43 ([15, Théorème 2.1]): Let S be a semimartingale and Z = E(−N)

be a strictly positive local martingale density for S. Then S satisfies (SC) iff1

1. S ∈ S2
loc; we denote the local martingale of its canonical decomposition by M .

2. N features a Kunita–Watanabe decomposition w.r.t. M . More precisely,

N = λ̃.M + L,

where λ̃.M is a locally square–integrable martingale and L as well as [L,M ]

are local martingales.

Proof: Note that the assumption (SC) as well as Corollary 2.43 1. imply that

S ∈ S2
loc. We denote its canonical decomposition by S = M + A, where M is

a local martingale. Moreover, note that the Kunita–Watanabe inequality ensures

that K ∈ pL2
loc(M) implies K ∈ Lm(Md) ∩ Lm([Md] − 〈Md〉). Due to Key lemma

2.11, we know that Z = E(−N) is a strictly positive local martingale density for S

if and only if [N,M ]−A is a local martingale. Now the rest of the proof follows the

same lines as the proof of Theorem 2.40.

Remark 2.44: Corollary 2.43 also provides a connection between one decomposi-

tion theorem (Kunita–Watanabe decomposition) for the local martingale N and the

drift A. Since the Kunita–Watanabe decomposition as well as the structure condi-

tion (SC) imply uniqueness of the particular decompositions, the practical use of

Corollary 2.43 is rather low compared to Theorem 2.40.

In the next toy example, we highlight some aspects concerning the relation of

(NSC) and (SC).

Toy example 2.45 (compare [15, Exemple 2.6.]): This toy example shows the

following:

1. S satisfies (NSC), but (SC) does not hold.

2. There exists an equivalent local martingale measure for S.

1abbr.: if and only if
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Chapter 2. A structured approach to structure conditions

3. (SC) is not necessary for the existence of equivalent local martingale measures.

4. (SC) is not invariant under an equivalent change of measure.

Let c1 = 0, c2 = 1, and λ̃ ∈ L1([0, 1], du) \ L2([0, 1], du) with λ̃ < 1 du–a.s..

Since N = [N ] − 〈N〉, the first statement holds. Note that if we have proven 2.,

statements 3. and 4. follow immediately. Indeed, 3. is obvious. Moreover, since S

is locally bounded, it satisfies (SC) under any equivalent local martingale measure.

Therefore, it remains to prove 2.. Since E
(
−
∫
λ̃ dN

)
is strictly positive, Theorem

2.40 ensures that it is a strictly positive local martingale density. Hence, it remains

to prove that E
(
−
∫
λ̃ dN

)
is uniformly integrable. Denote by (Tn)n≥1 a sequence of

stopping times such that Tn ↑ 1 a.s. and that E
(
−
∫
λ̃ dN

)Tn
is uniformly integrable

for all n ≥ 1. Due to the sub–additivity of the square root, we get for all n ≥ 1
√√√√
[
E
(
−
∫
λ̃ dN

)Tn]

1

=

√√√√√
1∫

0

(
E
(
−
∫
λ̃ dN

)Tn

u−
|λ̃u|
)2

d[N ]u

≤
∑

u≤1

E
(
−
∫
λ̃ dN

)Tn

u−
|λ̃u|∆[N ]u =

1∫

0

E
(
−
∫
λ̃ dN

)Tn

u−
|λ̃u| d[N ]u.

As S satisfies (NSC), we know that
∫
|λ̃| d[N ] ∈ Aloc. Since E

(
−
∫
λ̃ dN

)Tn
−

is

predictable and locally bounded,
∫
E
(
−
∫
λ̃ dN

)Tn
−
|λ̃| d[N ] ∈ Aloc, too. Moreover,

[27, 5.26 Theorem] ensures that

E




1∫

0

E
(
−
∫
λ̃ dN

)Tn

u−
|λ̃u| d[N ]u


 = E




1∫

0

E
(
−
∫
λ̃ dN

)Tn

u−
|λ̃u| du


 .

Due to [27, 5.3 Remark], the predictable projection of E
(
−
∫
λ̃ dN

)Tn
is given by

E
(
−
∫
λ̃ dN

)Tn
−

. Since F0 contains only sets of measure zero or one, [27, 5.26

Theorem] and [27, 5.32 Theorem] ensure that

E




1∫

0

E
(
−
∫
λ̃ dN

)Tn

u−
|λ̃u| du


 = E




1∫

0

E
(
−
∫
λ̃ dN

)Tn

u

|λ̃u| du




= E


E
(
−
∫
λ̃ dN

)Tn

1

1∫

0

|λ̃u| du




=

1∫

0

|λ̃u| du <∞

58



2.3. Structure conditions and their connection to martingale decomposition theorems

L1
loc

(
Ω̄,P,d[Md]

)

L1
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(
Ω̄,O,d[M ]
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L2
loc

(
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)

b b

b

(λ.[M c], η.[Md])

H.[M ]
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Lloc

(
dMd

)

Lσ (⊥ M)

Lloc (dM
c)

bb

b (∫
λ dM c,

∫
η dMd

)

N

L

Figure 2.3.8.:

for all n ≥ 1. Moreover, the monotone convergence theorem allows us to conclude

that E

[√[
E
(
−
∫
λ̃ dN

)]
1

]
≤

1∫
0

|λ̃u| du < ∞. Finally, the Burkholder–Davis–

Gundy inequality ensures that E
(
−
∫
λ̃ dN

)
is uniformly integrable.

Geometric interpretation of the 2nd Structure Theorem

We end this section with a geometric interpretation of the 2nd Structure Theorem

and its relation to the 1st Structure Theorem. The condition (NSC) and Theorem

2.40 enable us to translate the geometry of Figure 2.3.4 into a geometry in the space

of local martingales. As in the geometric interpretation of the 1st Structure Theorem,

we consider S ∈ S2
loc(P ) and suppress the measure in the following notation. We

denote the canonical decomposition of S by S = M+A, where A ∈ V∩P . Moreover,

we define the following spaces of local martingales:

Lloc (dM c) :=

{∫
λ dM c : λ ∈ Lm (M c)

}
,

Lloc
(
dMd

)
:=

{∫
η dMd : η ∈ Lm

(
Md
)
∩ Lm

(
[Md]− 〈Md〉

)}
,

Lσ (⊥M) := {L ∈Mloc : [L,M ] is a σ–martingale} .

If E(−N) is a strictly positive σ–martingale density for S, condition (NSC) ‘trans-

lates’ the geometry of Figure 2.3.4 into a geometry of the 3–dimensional space

Lloc (dM c) + Lloc
(
dMd

)
+ Lσ (⊥M); see Figure 2.3.8. Under (NSC), the inter-

pretation of Figure 2.3.7 translates in a similar way; see Figure 2.3.9. Note that

Corollary 2.43 and the structure condition (SC) allow for a similar transformation

of Figure 2.3.2 in a 2–dimensional way.
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L1
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2.4. Necessary and sufficient structure conditions for

(NUPBR)

In this section, we use the refined characterisation of the Radon–Nikodym theo-

rem, Theorem 1.36, and Yor’s formula to provide our 3rd Structure Theorem. It

leads directly to the definition of the strong structure condition (SSC). Further-

more, we prove that (SSC) is necessary and sufficient for the existence of a strictly

positive σ–martingale density. As an application, we provide a full structural char-

acterisation of the (NUPBR) condition for the class of toy examples. It is worth

mentioning that all examples provided by Choulli and Stricker in [15], highlighting

the drawbacks of (SC), fall into this class of toy examples. In the second part, we

introduce the floating structure condition (FSC) and explain its connection to the

other structure conditions. Moreover, we define the floating martingale density and

explain its connection to the minimal martingale measure. We end this section with

a simple, but nevertheless important observation: For continuous semimartingales

all structure conditions introduced in this chapter are equivalent to the structure

condition (SC).

2.4.1. 3rd Structure Theorem and the strong structure condition

(SSC)

So far we introduced the structure conditions (MSC) and (NSC). Both decompo-

sitions allow us to decompose a semimartingale S = S0 +M +A that satisfies either

of these conditions into the sum

S = S0 + Sc + Sd,
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2.4. Necessary and sufficient structure conditions for (NUPBR)

where

Sc := M c +

∫
λ d[M c],

Sd := Md +

∫
η d〈Md〉,

and (λ, η) is a version of (MSC). Due to Theorem 2.40, we know that there exists

a strictly positive local martingale density for Sc for all versions of (MSC). But

what about the existence of a strictly positive σ–martingale density for Sd? Our 3rd

Structure Theorem relates the existence of a strictly positive σ–martingale density

for S to the existence of a strictly positive σ–martingale density for Sd.

Theorem 2.46 (3rd Structure Theorem): Let Q ∼ P be a probability measure and

let S be a special Q–semimaritngale with canonical decomposition S = S0 +M +A,

where M is a local Q–martingale. Moreover, let N be a local Q–martingale and

denote by

N = λ.M c +H•cM
d + L

the Radon–Nikodym decomposition of N w.r.t. M . Moreover, define

Sc := M c +

∫
λ d [M c] and Sd := Md + A−

∫
λ d [M c] .

Then the following statements are equivalent:

1. Z = E(−N) is a strictly positive Q–σ–martingale density for S.

2. The process

E
(
−H•cMd − Ld

)

is a strictly positive Q–σ–martingale density for Sd.

Proof: First note that Yor’s formula [42, Chap. II §8, Theorem 38] ensures that Z

is strictly positive if and only if

E
(
−H•cMd − Ld

)

is strictly positive. Due to Key lemma 2.11, we know that Z is a strictly positive

Q–σ–martingale density for S if and only if

[N,M ]− A = [λ.M c +H•cM
d + L,M ]− A

= [Lc,M c] + [H•cM
d + Ld,Md]−

(
A−

∫
λ d [M c]

)
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Chapter 2. A structured approach to structure conditions

is a Q–σ–martingale. Because of Theorem 1.36, we can conclude that Z is a strictly

positive Q–σ–martingale density for S if and only if

[H•cM
d + Ld,Md]−

(
A−

∫
λ d [M c]

)

is a Q–σ–martingale. Applying Key lemma 2.11 once more, we conclude that the

last statement is equivalent to

E
(
−H•cMd − Ld

)

being a strictly positive Q–σ–martingale density for Sd.

As we are interested in structure conditions that are necessary and sufficient for

(NUPBR), the theorem directly leads to the following definition.

Definition 2.47: Let Q ∼ P and S ∈ S2
loc. Denote its canonical decomposition by

S = S0 + M + A, where M is a local Q–martingale. We say that S satisfies the

strong structure condition (SSC) under Q, if there exists λ ∈ Lm(M c) under Q

such that

Sd := Md + A−
∫
λ d [M c]

satisfies (NUPBR).

An immediate consequence of Theorem 2.21 and our 3rd Structure Theorem, The-

orem 2.46, is the following result.

Theorem 2.48: Let Q ∼ P be a probability measure and let S ∈ S2
loc(Q) with

canonical decomposition S = S0 + M + A, where M is a local Q–martingale. Then

the following statements are equivalent:

1. There exists a strictly positive Q–σ–martingale density for S.

2. S satisfies the (NUPBR) condition.

3. S satisfies the strong structure condition (SSC) under Q.

Proof: Due to Theorem 2.21 and Theorem 2.46, we know that ‘2.⇒1.⇒3.’ holds.

Hence, it remains to prove that ‘3.⇒2.’ holds. Since S satisfies (SSC), there exists

λ ∈ Lm(M c) under Q such that

Sd := Md + A−
∫
λ d [M c]

satisfies (NUPBR). Due to Theorem 2.21, there exists a strictly positive Q–σ–

martingale density E (−N) for Sd. Denote by

N = H•cM
d + L
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the Radon–Nikodym decomposition of N w.r.t. Md. Applying Theorem 2.46 (with

S = Sd and Sc = 0) ensures that

E
(
−H•cMd − Ld

)

is a strictly positive Q–σ–martingale density for Sd. Applying Theorem 2.46 once

more with S = Sc + Sd, where Sc := M c +
∫
λ d[M c], we can conclude that

E
(
−λ.M c −H•cMd − Ld

)

is a strictly positiveQ–σ–martingale density for S. Hence, S satisfies the (NUPBR)

condition.

The following lemma gives an equivalent reformulation of (SSC).

Lemma 2.49: Let Q ∼ P and S ∈ S2
loc. Denote its canonical decomposition by

S = S0 + M + A, where M is a local Q–martingale. The following statements are

equivalent:

1. S satisfies the strong structure condition (SSC) under Q.

2. S satisfies (MSC). Moreover, there exists a version (λ, η) of (MSC) such

that ∫
η d〈Md〉Q = A−

∫
λ d[M c]

and Sd := Md +
∫
η d〈Md〉Q satisfies the (NUPBR) condition.

Proof: This follows directly from Theorem 2.48 and Theorem 2.24.

Due to the lemma, we can also talk about ‘version of (SSC)’.

Definition 2.50: Let Q ∼ P and let S ∈ S2
loc satisfy (MSC) under Q. Moreover,

let (λ, η) be a version of (MSC) and define

Sc := M c +

∫
λ d[M c],

Sd := Md +

∫
η d〈Md〉.

We call S = S0 +Sc+Sd the semimartingale decomposition of S w.r.t. (λ, η). More-

over, Sc and Sd are called the continuous and purely discontinuous semimartingale

part of S w.r.t. (λ, η). Finally, we call (λ, η) a version of (SSC), if Sd satisfies

(NUPBR).

The purpose of the next toy example is to highlight the different qualities of the

structure conditions (SC), (NSC), and (SSC) as indicators for a strictly positive

σ–martingale density.
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Toy example 2.51: Let c1 = c2 = 1, λ̃ = 1, and define for α ∈ [0, 1] the following

versions of (NSC):

(λα, ηα) = (2α, 2(1− α)).

Now the structure conditions have the following different ‘points of view’ on the

price process

S = B +N + 2t.

While (SC) considers S as

S = (B +N) +

∫
λ̃ d〈B +N〉,

(NSC) is more flexible. It considers ‘different versions’ of the drift of S, i.e. for

α ∈ [0, 1]

Sα = B +N +

∫
λα d〈B〉+

∫
ηα d〈N〉.

Finally, (SSC) considers all versions of the continuous and purely discontinuous

part of S w.r.t. (λα, ηα), i.e.

Sα = Sc,α + Sd,α,

where

Sc,α := M c +

∫
λα d〈M c〉,

Sd,α := Md +

∫
ηα d〈Md〉.

As a consequence of Theorem 2.48, it suffices to check whether or not

Sd,α = Md +

∫
ηα d〈Md〉

satisfies the (NUPBR) condition. Due to Theorem 2.40, it is immediately clear

that Sd,α satisfies the (NUPBR) condition if and only if α > 1/2. Simply put,

(SSC) selects the good versions (λα, ηα) that directly lead to the strictly positive

local martingale densities

E
(
−
∫
λα dB

)
E
(
−
∫
ηα dN

)
.

Under (NSC), we do not have Theorem 2.48 at our disposal. Thus, we have to

take care of the ‘whole process’ Sα. Thanks to the simple structure of the example,

Theorem 2.40 is still a powerful tool on its own. For each version (λα, ηα) it suggests

E
(
−
∫
λα dB −

∫
ηα dN

)
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as a natural candidate for a (strictly positive) local martingale density for S. After

taking a closer look at the example, Theorem 2.40 almost pinpoints to the version

(2, 0) of (NSC). This leads to the strictly positive local martingale density

E (−2B) . (2.4)

On the other hand, the structure condition (SC) suggests to choose

E
(
−
∫
λ̃ d(B +N)

)
= E (−(B +N))

as a candidate for a local martingale density. Unfortunately, E
(
−
∫
λ̃ d(B +N)

)

is not strictly positive. Corollary 2.43 suggests to look for a local martingale L such

that

E
(
−
∫
λ̃ d(B +N)− L

)

is strictly positive and such that [L,B + N ] is a local martingale. In general, this

characterisation does not seem to be a helpful tool to find strictly positive local

martingale densities.

With the help of (2.4), we can guess a candidate that satisfies the requirements.

If we choose L = B −N , a straightforward computation leads to

E
(
−
∫
λ̃ d(B +N)− L

)
= E (−2B) and [L,B +N ] = −N ∈Mloc.

Structural characterisation of (NUPBR) for the toy example

To highlight the power of the new insights on the relation between structure condi-

tions and martingale decompositions of strictly positive σ–martingale densities, we

provide a complete structural characterisation of the (NUPBR) condition for the

toy example.

We start with the continuous paths case which follows directly from Lemma 2.31.

Theorem 2.52 (Toy example: c1 = 1, c2 = 0): Consider the toy example and let

c1 = 1 and c2 = 0. Then it satisfies (NUPBR) if and only if (λ̃, 0) is a version of

(SSC). Moreover,

E
(
−
∫
λ̃ dB

)

is the canonical choice of a strictly positive local martingale density.

The case c1 = 0, c2 = 1 is also rather obvious.
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Theorem 2.53 (Toy example: c1 = 0, c2 = 1): Consider the toy example and

let c1 = 0 and c2 = 2. If the toy example satisfies (MSC), then the following

statements are equivalent:

1. S satisfies (NUPBR).

2. S satisfies (NA+).

3.
∫
1{λ̃≥1}λ̃ d〈N〉 ≡ 0.

4. There exists a version (0, η̃) of (SSC) such that
∫
1{η̃≥1}η̃ d〈N〉 ≡ 0.

Moreover, the version (0, η) = (0,1{λ̃<1}λ̃) = (0, λ̃) of (SSC) is the canonical choice

that leads to the strictly positive local martingale density

E
(
−
∫
η dN

)
.

Proof: Note, that if
∫
1{λ̃≥1}λ̃ d〈N〉 6≡ 0 the sequence (H(n))n≥1 ⊂ P , where

H(n) := nλ̃1{n≥λ̃≥1}, n ≥ 1,

is a sequence of 1–admissible trading strategies. Moreover,

H(n) · S = n

(
λ̃1{n≥λ̃≥1} · P +

∫
1{n≥λ̃≥1}λ̃

(
λ̃− 1

)
d〈N〉

)
≥ 0

for all n ≥ 1. Furthermore,
∫
1{λ̃≥1}λ̃ d〈N〉 6≡ 0 ensures that there exists N ∈ N

such that P (H(n) · ST > 0) > 0 for all n ≥ N . Therefore,

(NUPBR) =⇒ (NA+) =⇒
∫
1{λ̃≥1}λ̃ d〈N〉 ≡ 0

holds. Due to Theorem 2.40, the strictly positive local martingale E
(
−
∫
η dN

)
,

where η := 1{λ̃<1}λ̃, is a strictly positive local martingale density for S. Hence, the

statement is proven.

Intuitively, we achieve the structural characterisation of the (NUPBR) condition

of the compound toy example, i.e. c1 = c2 = 1, by piecing together the structural

characterisations found in the theorems above. Indeed, in the following theorem the

(NUPBR) condition ensures that this educated guess is in fact true.

Theorem 2.54 (Toy example: c1 = c2 = 1): Let the toy example satisfy (MSC)

and let c1 = c2 = 1. Then the following statements are equivalent:

1. S satisfies (NUPBR).
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2.
∫
1{λ̃≥1}λ̃

2 d〈M〉 ∈ Aloc.

3.
∫
1{λ̃≥ 1

2
}λ̃

2 d〈M〉 ∈ Aloc.

4. There exists a version (λ̃, η̃) of (SSC) such that
∫
1{η̃≥1}η̃ d〈N〉 ≡ 0.

Moreover, (λ, η) = (21{λ̃≥ 1
2
}λ̃, 21{λ̃< 1

2
}λ̃) is a version of (SSC) that satisfies 4. and

E
(
−
∫
λ dB −

∫
η dN

)
= E

(
−
∫
λ dB

)
E
(
−
∫
η dN

)
(2.5)

is the canonical choice of a strictly positive local martingale density.

Proof: 1.⇒2.: We prove that (NUPBR) is violated, if
∫
1{λ̃≥1}λ̃

2 d〈M〉 /∈ Aloc
holds. The idea of this proof in borrowed from [15, Théorème 2.9 ii)]. Suppose that∫
1{λ̃≥1}λ̃

2 d〈M〉 /∈ Aloc. Then there exists ε > 0 such that

P




1∫

0

1{λ̃≥1}λ̃
2
u d〈M〉u =∞


 > ε.

Define the sequence of bounded predictable processes (λ̃(n))n≥1 ⊂ P by λ̃(n) :=

λ̃1{1≤λ̃≤n} for n ≥ 1. As for all constants c ≥ 0




1∫

0

λ̃2
u(n) d〈M〉u ≥ c



↗





1∫

0

λ̃2
u1{λ̃≥1} d〈M〉u ≥ c





holds, we can find a sequence (cn)n≥1 ⊂ N such that cn ↑ ∞ and

P




1∫

0

λ̃u(n)λ̃u1{λ̃≥1} d〈M〉u ≥ cn


 > ε, ∀ n ≥ N. (2.6)

Now we define (Tn)n≥1 and (α(n))n≥1 via

Tn := inf



t > 0 :

t∫

0

λ̃u(n)λ̃u1{λ̃≥1} d〈M〉u > cn



 ∧ 1,

α(n) := c
− 3

4
n λ̃(n)1[[0,Tn]].

Due to the definition of (Tn)n≥1 and the continuity of 〈M〉, we get

1∫

0

α2
u(n) d〈M〉u = c

− 3
2

n

1∫

0

λ̃2
u(n)1[[0,Tn]] d〈M〉u

= c
− 3

2
n

1∫

0

λ̃u(n)λ̃u1{λ̃≥1}1[[0,Tn]] d〈M〉u

≤ c
− 1

2
n . (2.7)
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Next we define the sequence of stopping times (Sn)n≥1 and the bounded sequence

(H(n))n≥1 ⊂ P via

Sn := inf



t > 0 :

t∫

0

αu(n) dBu ≤ −1



 ∧ 1,

H(n) := α(n)1[[0,Sn]].

Since

H(n) · S = α(n) ·BSn + α(n) ·NSn +

∫
α(n)λ̃ d〈B +N〉Sn

= α(n) ·BSn + α(n) · P Sn+

+

∫
α(n)λ̃1{λ̃≥1} d〈B〉Sn +

∫
α(n)

(
λ̃− 1

)
1{λ̃≥1} d〈N〉Sn

≥ −1 (2.8)

for all n ≥ 1, (H(n))n≥1 ⊂ P is a sequence of 1–admissible trading strategies.

Moreover, (2.7) ensures that supu≤1 |α(n) ·Bu| tends to zero in L2(P ). This in turn

guarantees that

P (Sn = 1) −−−→
n→∞

1. (2.9)

Furthermore, the definition of (Tn)n≥1 and the continuity of 〈M〉 ensure that


ω ∈ Ω :

1∫

0

λ̃u(n)λ̃u d〈M〉u ≥ cn



 =



ω ∈ Ω :

Tn∫

0

λ̃u(n)λ̃u d〈M〉u ≥ cn





holds for all n ∈ N. Hence, (2.9) and (2.6) imply that there exists Ñ ∈ N such that

for all n ≥ Ñ

P




1∫

0

Hu(n)λ̃u1{λ̃≥1} d〈M〉u ≥ c
1
4
n




≥ P







1∫

0

λ̃u(n)λ̃u1{λ̃≥1} d〈M〉u ≥ cn



 ∩ {Sn = 1}


 ≥ ε (2.10)

holds. Decomposing H(n) · S in a similar way as in (2.8) we find that

1 +H(n) · S1 ≥ −c−
3
4

n

1∫

0

∣∣∣λ̃u
∣∣∣ d〈N〉u +

1∫

0

Hu(n)λ̃u1{λ̃≥1} d〈M〉u.

Since by assumption E

[
1∫
0

∣∣∣λ̃u
∣∣∣ d〈N〉u

]
<∞, (2.10) ensures that (H(n))n≥1 ⊂ P is a

sequence of 1–admissible trading strategies that provides an unbounded profit with
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Lloc

(
dMd

)

Lσ (⊥ M)

Lloc (dM
c)

b

(∫
λ dMc,

∫
0 dMd

)

b

(∫ 2λ dMc,
∫ 2η dMd

)

b
(∫ 1λ dMc,

∫ 1η dMd
)

b

1N

b

2N

Figure 2.4.1.:

bounded risk. The rest of the proof is straightforward. It is clear that the implication

2.⇒3. holds. Moreover, since (λ, η) = (21{λ̃≥ 1
2
}λ̃, 21{λ̃< 1

2
}λ̃) is a version of (MSC)

that satisfies 4., Yor’s formula [42, Chap. II §8, Theorem 38] and Theorem 2.40

ensure that

E
(
−
∫
λ dB −

∫
η dN

)
= E

(
−
∫
λ dB

)
E
(
−
∫
η dN

)

is a strictly positive σ–martingale density for S. This in turn implies the (NUPBR)

condition.

2.4.2. Floating structure condition (FSC) and floating

martingale density

Taking a closer look at Theorem 2.54 it becomes apparent that a proper decom-

position of the drift A =
∫
λ̃ d〈M〉 of the locally square–integrable semimartingale

S = M +A can automatically lead to a strictly positive σ–martingale density for S.

In Theorem 2.54 this goal is achieved by floating the ‘critical mass’ λ̃1{λ̃≥1} of the

drift towards the bracket process of the continuous martingale part. In this section,

we consider the special case in which it is possible to float not only the critical mass

of the drift but all its mass towards the bracket process of the continuous martingale

part. The idea of the floating structure condition is highlighted in Figure 2.4.1. It

is a special case of Figure 2.3.9 and ensures that E(−
∫
λ dM c) is a local martingale

density for S = M + A. These considerations lead to the following definition.
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Definition 2.55: Let S be a locally square–integrable semimartingale with canonical

decomposition S = S0+M+A that satisfies the minimal structure condition (MSC).

We say that S satisfies the floating structure condition (FSC), if there exists λ ∈
Lm(M c) such that (λ, 0) is a version of (MSC). E(−

∫
λ dM c) is called the floating

martingale density.

The next theorem ensures that the structure condition (FSC) is sufficient for the

existence of a strictly positive σ–martingale for S.

Theorem 2.56: If S satisfies (FSC), there exists a strictly positive local martin-

gale density for S.

Proof: Suppose that (FSC) holds, and let (λ, 0) be a version of (MSC). Then

E(−
∫
λ dM c) is a strictly positive and locally bounded local martingale. Due to

Theorem 2.40 the local martingale E(−
∫
λ dM c) is a strictly positive local martin-

gale density for S if and only if [
∫
λ dM c,M c]−λ.〈M c〉 is a local martingale. Hence,

(FSC) is sufficient for the existence of a local martingale density for S.

The following example highlights the ‘floating property’ of (FSC) in a simple ex-

ample. Moreover, it points out the advantages of (FSC) and the floating martingale

density compared to (SC) and the minimal martingale measure.

Toy example 2.57: As in Toy example 2.51, we choose c1 = c2 = 1 and λ̃ ≡ 1.

Clearly, (MSC) and (SC) are satisfied. Moreover, the decomposition of S according

to the structure condition is given by

S = B +N + 〈B +N〉.

On the other hand, for all α ∈ [0, 1] the pair (2α, 2(1 − α)) is a version of (MSC)

and the corresponding decomposition is given by

S = B +N + 2α〈B〉+ 2(1− α)〈N〉.

By floating α towards 1, we can float the drift towards the continuous martingale

bracket. Since the stochastic exponential of a continuous local martingale is always

strictly positive, E(−2B) is a canonical choice for a strictly positive local martingale

density. On the other hand it is clear that E(−2αB−2(1−α)N) hits zero for all α ≤
1
2
. For α = 1

2
we get the minimal martingale measure, i.e. E(−

∫
1 dM) = E(−2αB−

2(1 − α)N). The structure condition (SC) indicates this ‘martingale density’ as a

the natural candidate for a strictly positive σ–martingale density. Unfortunately,

it is not strictly positive in general. Therefore, it is not a natural candidate for a

pricing measure.

This idea also holds in a much more general setting.
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Theorem 2.58: Let S be a locally square–integrable semimartingale with canonical

decomposition S = S0+M+A that satisfies the minimal structure condition (MSC).

Moreover, let d〈Md〉 � d〈M c〉, where 〈Md〉 =
∫
η̄ d〈M c〉. If there exists a version

(λ, η) of (MSC) such that ηη̄ ∈ Lm(M c), then S satisfies the floating structure

condition (FSC).

Proof: Due to the assumptions of the lemma (λ+ηη̄, 0) is a version of (MSC).

Example 2.59: Let S = S0 + M + A denote the canonical decomposition of a

locally square–integrable semimartingale, where S is a Type C Lévy process with

non vanishing continuous local martingale part. If S satisfies (MSC), then d〈Md〉 �
d〈M c〉.

We end this section with the following lemma. It ensures that for continuous

semimartingales all structure conditions introduced in this chapter boil down to the

structure condition (SC).

Lemma 2.60: Let S be a continuous semimartingale. The following relations hold:

(SC) ⇐⇒ (MSC) ⇐⇒ (FSC) ⇐⇒ (SSC) ⇐⇒ (NSC)

2.5. Conclusions and final remarks

During the lecture of this chapter it became apparent that we should consider

‘structure conditions‘ as a dynamic concept. Combining this point of view with

the insights on the connection between structure conditions on the one hand, and

decompositions of strictly positive σ–martingale densities on the other hand, trans-

form these new ideas into a powerful tool for finding strictly positive σ–martingale

densities. Yet, the new structure conditions still allow for further developments.

Indeed, similar to Definition 2.16 of (SC), the natural structure condition (NSC)

can be defined in a d–dimensional way. This generalization would allow for a ‘simul-

taneous search’ for a strictly positive σ–martingale densities for all d risky assets.

Furthermore, these structure conditions can serve as a useful tool in other areas of

mathematical finance. For example, we will provide an application of (SC) in the

context of a large trader model in the next chapter.
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3. A modular model approach to

large traders

3.1. Introduction

Modelling a financial market with a large trader leads to a number of interesting

and challenging problems. Similar to Jarrow [32], we see a large trader as a trader

‘whose trades change prices’. The existence of a large trader goes hand in hand

with dropping the ‘competitive market paradigm’. This paradigm claims that any

trader can buy or sell unlimited quantities of the stock under consideration, without

influencing the stock’s price.

In order to model a financial market with a large trader, one has to specify the

goal of the large trader. In other words, one has to answer the following question:

‘What is the large trader’s motivation to trade?’

Schied and co–authors [48, 49, 26, 47] focus on finding optimal liquidation strategies

for the large trader, while Bank and Baum [4] tie the motivation of the large trader

to trade to a utility maximization problem. Regardless of the particular goal of

the large trader, there is another important question associated with a large trader

model:

‘What affects the large trader’s decision to achieve her goal?’

Clearly, any restriction of the large trader’s actions due to no arbitrage considera-

tions for the large trader influence the opportunities to achieve her goal. Apart from

no arbitrage considerations for the large trader, available information and liquidity

risk are further factors that have an impact on the ‘quality’ of the large trader’s

decision. Let us briefly comment on these points. Concerning the first point, it

seems to be reasonable that the large trader knows at least her current position and

the current price of the asset under consideration. As the large trader knows her

strategy, she has a natural edge on information compared to the small trader. The

latter only observes the current price of the asset. Given the large trader has addi-

tional (insider) information, it seems to be natural that this additional information

improves the ‘quality of the decision’ she makes in order to achieve her goal.
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Liquidity risk is a term used in the market micro–structure literature; see [38].

As pointed out in [11], liquidity risk is, roughly speaking, the additional risk due

to the timing and size of a trade. Kyle [38] distinguishes three different types of

liquidity risks. While ‘market tightness’ refers to the costs of turning over a position

in a short period of time, ‘market depth’ refers to the ability of a market to absorb

quantities without having a large effect on prices. The last one, ‘market resiliency’,

refers to the speed with which a certain price impact of the large trader vanishes.

Furthermore, any kind of trading restriction affects the large traders opportuni-

ties to achieve her goal. First of all, such trading restrictions arise from liquidity

risk, i.e. certain strategies might be too cost–intensive. Others might be discarded

as they do not allow for a certain risk control for the large trader’s wealth process.

Finally, if the large trader is any large fund, it is likely that the trading strategies

are, in general, not self–financing.

Apart from the factors that influence a large trader’s decision, a reasonable ques-

tion concerning the presence of a large trader is the following one:

‘How does a large trader’s strategy influence prices?’

This question is connected to the micro structure of the market. As pointed out

above, this question is related to the ‘market depth’ and the ‘market resiliency’.

The probably most popular large trader market model that takes both aspects into

account is the Almgren–Chriss model; see [2, 1].

Finally, the most important question is the following:

‘How are these phenomena linked to each other?’

If we propose a certain large trader model, we put several assumptions on the model

that lead to, or explain, the mechanisms of the various quantities above. Finding

empirical evidence for certain connections and mechanisms is a completely different

question.

The purpose of this chapter is to introduce a modular large trader model. The

idea is to provide a module for each phenomenon connected to the presence of a large

trader. In each module, we provide a definition of the particular phenomenon for

simple strategies. We then extend these definitions using a proper limit procedure.

Here, we focus on two modules. The first one is, of course, the ‘price module’. Our

definition of the price process, affected by a large trader strategy, is strongly con-

nected to the non–linear stochastic integration theory of Carmona and Nualart; see

[10]. Apart form the general definition and its extension, we provide several explicit

examples, among those is the popular Almgren–Chriss model.

The second module is connected to no arbitrage considerations for the small

trader. Again, we propose a minimal no arbitrage assumption that depends only
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on simple large trader strategies. It should be mentioned that our no arbitrage as-

sumption is closely connected to the no arbitrage assumption in the discrete time

setting of Jarrow; see [32]. Combining these two modules, the ‘price module’ and the

‘no arbitrage’ module, leads to the class of reasonable large trader market models.

These large trader models feature, in our opinion, the two most important prop-

erties. Firstly, the price process affected by the large trader is a semimartingale.

Secondly, the price process affected by the large trader is a reasonable arbitrage free

model for a financial market with small trader.

As argued above, the driving force in a large trader model is the large traders

motivation to trade. Usually, these goals are formulated using the large trader’s

real wealth process. Attaching the real wealth process to the class of reasonable

large trader market models leads to the class of minimal large trader market models.

Apart from the two features above, these large trader market models enable us to

define a real wealth process for the large trader. Here, ‘minimal’ refers to the fact

that these models allow us to model large trader phenomena without annihilating

the usual no arbitrage assumptions made in the small trader literature. We com-

pare this minimal large trader market model to the large trader model proposed by

Bank and Baum; see [4]. Finally, we introduce an admissibility concept for the large

trader and investigate the large trader’s utility maximization problem in a basic

minimal large trader market model. Despite its simple structure, it highlights new

phenomena that are a result of the presence of a large trader.

The chapter is organized as follows. In Section 2, we provide the definitions of

the price process, affected by a simple large trader strategy, and the minimal no ar-

bitrage assumption for the small trader. We explain how to extend these definitions

to general large trader strategies and provide several examples. In Section 3, we

use the sophisticated non–linear integration theory of Carmona and Nualart [10],

to provide a rich class of reasonable large trader market models. Section 4 provides

the definition of the real wealth process of a large trader. Moreover, we discuss

the connections and differences of the minimal large trader market model and the

large trader model proposed in [4]. Section 5 is dedicated to the analysis of the large

trader utility maximization problem. Moreover, it highlights new phenomena that

arise in a financial market due to the presence of a large trader.

Finally, it should be mentioned that a short overview of strong non–linear integra-

tors and the non–linear stochastic integration theory can be found in the Appendix.

3.2. Reasonable large trader market models

We start by introducing the two core modules of the large trader modular model.

These are the ‘price module’ and the ‘NA module’; of course, ‘NA’ is an acronym

for ‘no arbitrage’. As in all modules, the idea is to provide a minimal assumption
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that allows us to model the impact of the large trader on the module for all sim-

ple strategies. With this foundation, a proper definition of the module for simple

strategies, we extend the definition to more general large trader strategies using a

limit procedure. Summarizing the ideas of these to modules, we end this section

with the definition of the class of reasonable large trader market models. In our

opinion, this is the class of models that satisfies the two minimal requirements of

a large trader model. Firstly, it allows to model the price process affected by the

large trader as a semimartingale. Secondly, modelling the impact of a large trader

can be done in a way that respects a (minimal) economic no arbitrage assumption

for the small trader. Here, we choose the (NFLVR) condition as our minimal no

arbitrage assumption for the small trader.

It might be helpful, if the reader is familiar with the basic definitions of strong

non–linear integrators, strong non–linear integrals, as well as basic results on con-

vergence in the semimartingale topology. A detailed introduction to these concepts

is provided in the book by Carmona and Nualart; see [10]. An overview of these

concepts can be found in the Appendix. As we work on a finite time interval, we

use the following convention: Results from the literature formulated for an infinite

time horizon are used by applying the corresponding result to the stopped process.

3.2.1. The price module: Price process affected by a large

trader strategy

Our financial market consists of a probability space (Ω,F ,P) equipped with a fil-

tration F = (Ft)t∈[0,T ] that satisfies the usual conditions. Besides, F0 is trivial apart

from zero sets and T denotes some finite time horizon. At the core of our model,

we have a family (S (ϑ, .)), ϑ ∈ Rd, of R–valued semimartingales, adapted to F and

the following space of simple strategies.

Definition 3.1 ([10]): Let θ be a predictable process with representation

θ (t) = θ−11{0} +
n∑

i=0

θi1(τi,τi+1] (t) , (3.1)

where 0 = τ0 ≤ τ1 ≤ ... ≤ τn+1 = T is a finite sequence of (Ft)–stopping times,

θ−1 ∈ Rd, and θi is for each i ∈ {0, . . . , n} a bounded, Fτi–measurable, Rd–valued

random variable. We call θ a simple strategy, if the random variables θi as well

as the stopping times τi take only finitely many values. The space of all Rd–valued

simple strategies is denoted by S
(
Rd
)
.

Price process affected by simple large trader strategies

As pointed out in the introduction, there are different types of liquidity risk. These

liquidity risks are caused by the presence of the large trader. In order to model the
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different types of liquidity risk, depending on the large trader strategy θ ∈ S (R),

we introduce a function

F : S (R) −→ S
(
Rd
)
,

θ 7−→ F (θ) =: θ̃.

While we interpret the process θ ∈ S (R) as the large trader strategy, θ̃ := F (θ) ∈
S
(
Rd
)

is considered to be a breakdown of θ into those components that cause the

impact on the price process. Furthermore, let (τi)i≤n+1 denote the sequence of

stopping times appearing in the decomposition of θ̃. The stopping times (τi)i≤n+1

are interpreted as those points in the future when the large trader’s actions cause a

change of the price dynamics. With these ideas in mind, we model the discounted

price process, caused by those changes, by the elementary non–linear stochastic

integral

P θ
t :=

∫ t

0

S (F (θs), ds) := S(θ̃−1, 0) +
n∑

i=0

{
S
(
θ̃τi∧t+, τi+1 ∧ t

)
− S

(
θ̃τi∧t+, τi ∧ t

)}
.

(3.2)

There are two aspects that we have to take into account. First of all, the price

processes, affected by a large trader strategy, should serve as a reasonable price

process of a frictionless small trader model. As the class of semimartingales is the

classical choice for modelling price processes in frictionless small trader markets, we

work under the following standing assumption.

Assumption (P-I): For all θ ∈ S (R), the process P θ defined in (3.2) is a semi-

martingale.

The second aspect is related to the representation of a simple strategy. In ap-

plications, we would like to define the function F : S (R) −→ S
(
Rd
)

by using this

representation. As the representation is not unique, we have to select a particular

one.

Lemma 3.2: Let θ ∈ S(R). Then θt+ ∈ Ft for all t ∈ [0, T ]. Moreover, define for

t ≥ 0

∆+θt := lim
h↓0

(θt+h − θt) .

Denote by t1 < . . . < tK the jump times of θ ∈ S(R), i.e. those t ∈ [0, T ] such that

P(∆+θt 6= 0) > 0. Besides, set

Π :=

{
{0 = t0 ≤ t1 < . . . < tK < tK+1 = T} , if θ jumps with positive probability,

{0, T} , else.
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Then

θ−11{0} +
K∑

i=0
(ti)⊂Π

θti+1(ti,ti+1] (3.3)

is a representation of θ ∈ S(R) that is unique in the following sense: Π is the smallest

deterministic partition of [0, T ] that contains 0, T, and all jumps of θ ∈ S(R).

Proof: Recall that, by assumption, the filtration F satisfies the usual conditions.

Hence, F is right–continuous. Since θ ∈ S(R) is bounded, the right–continuity of F
ensures that θt+ ∈ Ft for all t ∈ [0, T ]. As θ ∈ S(R), it jumps at most finitely many

times. If we define Π as above, we know that it contains all jump times of θ ∈ S(R).

Hence, (3.3) is indeed a representation of θ ∈ S(R). As P(∆+θti 6= 0) > 0 for all

i ∈ {1, . . . , K}, the uniqueness is clear.

Definition 3.3: For θ ∈ S(R) we call (3.3) the minimal representation of θ.

Now, let us consider some concrete examples.

Example 3.4 (Classical small trader setting): If S(ϑ, .) = S(0, .) for all ϑ ∈ Rd,

the definition coincides with the classical one for small traders. Indeed, the price

process at time t is P 0
t . In this case, the trading activities of the large trader have

no impact on the evolution of the price process.

Example 3.5 (Stochastic Differential Equations): Let d = 1, F = id, and assume

that the primal price processes S (ϑ, .) are given as strong solutions of the SDEs

dS (ϑ, t) = bϑ (S (ϑ, t)) dt+ σ (S (ϑ, t)) dWt.

Here, W is a Brownian motion, the function

b : R× R −→ R
(ϑ, x) 7−→ bϑ(x)

is assumed to be continuous and non–decreasing in the first argument and Lipschitz

continuous in the second argument. Furthermore, we assume that σ is a function

that is bounded from below by some ε > 0 and satisfies |σ (x)− σ (y)|2 ≤ ρ (|x− y|)
for some ρ > 0. Besides, let S (ϑ, 0) ≤ S (ϑ′, 0) whenever ϑ ≤ ϑ′. Hence, in this

example, the trading decisions of the large trader influence the drift term instanta-

neously. Note that the comparison theorem [43, (3.7) Theorem] for SDEs ensures

that the family (S (ϑ, .))ϑ∈R satisfies the following condition:

Condition (O): ϑ ≤ ϑ′ implies S (ϑ, .) ≤ S (ϑ′, .).
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This condition has been introduced by Bank and Baum; see [4]. Due to Theorem

A.18, (S (ϑ, .))ϑ∈R is a strong non–linear integrator. This in turn ensures that As-

sumption (P-I) holds. Finally, we want to emphasize the following point. Condition

(O) has been introduced in [4] to exclude arbitrage opportunities for the large trader

in their model. We do not need Condition (O) for any particular reason. It is just

an additional feature of this primal family of price processes.

Example 3.6 (Reaction–Diffusion Setting): Let d = 1 and F = id. Moreover,

let ψ (t, x, ϑ) be a C1,2,1–function. Define, similarly as e.g. in [25], S = (S (ϑ, ·))ϑ∈R
via S (ϑ, t) = ψ (t,Wt, ϑ), where the Brownian motion W models some fundamental

state variable. Due to Ito’s formula, the dynamics of the primitive price processes

have the form

dψt =

(
∂

∂t
+

1

2

∂2

∂x2

)
ψt dt+

∂

∂x
ψt dWt.

We assume that ∂ψ/∂x is strictly positive. Note that ∂ψ/∂ϑ ≥ 0 implies (O). An

explicit example for a reaction function is given by ψ (t,Wt, ϑ) = exp(σWt + κϑt),

where σ, κ > 0. It satisfies in particular condition (O). Moreover, (P-I) holds due

to Theorem A.18. Finally, the dynamics of ψ (t,Wt, ϑ) = exp(σWt + κϑt) are given

by

dψt = ψt

((
κϑ+

1

2
σ2

)
dt+ σ dWt

)
.

Example 3.7 (Almgren–Chriss type model): Let d = 1 and

P̃ = P̃0 + σW,

where W is a Brownian motion, σ > 0 and P̃0 ∈ R. Besides, let h, g : R → R be

non–decreasing, continuous functions with g(0) = h(0) = 0. We define
∫
S
(
θ̃, ds

)

for θ̃ ∈ S(R) as

∫ t

0

S
(
θ̃s, ds

)
= P̃t +

t∫

0

n∑

i=0

g(θ̃i)1(τi,τi+1] (u) du+
n∑

i=0

h(θ̃i)1[τi,τi+1) (t) .

Hence, (P-I) holds. To achieve an Almgren–Chriss type model for simple strategies

let θ ∈ S(R). F : S(R)→ S(R) is defined as the composition of two functions. The

first one maps θ ∈ S(R) to its minimal representation

θ (t) = θ−11{0} +
n∑

i=0

θti+1(ti,ti+1] (t) .

The second one maps the minimal representation to

n∑

i=0

θti+ − θti−1+

ti − ti−1

1(ti,ti+1] (t) ,
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where we use the convention 0 · (±∞) = 0. Hence, we have

F (θ) =
n∑

i=0

θti+ − θti−1+

ti − ti−1

1(ti,ti+1] (t) . (3.4)

As a result, we get

P θ
t =

∫ t

0

S (F (θ), ds)

= P̃t +

t∫

0

n∑

i=0

g

(
θti+ − θti−1+

ti − ti−1

)
1(ti,ti+1] (u) du+

n∑

i=0

h

(
θti+ − θti−1+

ti − ti−1

)
1[ti,ti+1) (t) .

Price process affected by general large trader strategies

In all modules, the main idea how to extend the results for simple strategies to a

general strategy is similar. We extend the definition to arbitrary strategies using a

certain limit procedure. Of course, different limit procedures might lead to differ-

ent classes of possible price processes affected by the large trader. Using Example

3.7, we explain how different choices can indeed influence the class of possible price

processes affected by the large trader.

Intuitively, Example 3.7 leads to the Almgren–Chriss model [2, 1]. Indeed, let

θ ∈ L(R), where L(Rd) denotes the space of all Rd–valued, adapted processes having

càglàd paths. Moreover, we assume that the paths of θ are continuously differen-

tiable. Besides, define the sequence (θn)n≥1 ⊂ S(R) via

θn (t) = θ01{0} +
2n−1∑

i=0

θ i
2n
T1( i

2n
T, i+1

2n
T ] (t) .

Recall the definition of F in (3.4) and note that

F (θn) −−→
ucp

θ̇.

Since θ̇ ∈ L(R) has continuous paths, the dominated convergence theorem ensures

that

P θn −−→
ucp

P̃ +

∫
g(θ̇) du+ h(θ̇).

Although h(θ̇) has continuous paths, it is not clear whether or not h(θ̇) is a semi-

martingale. Indeed, let g ≡ 0, h ≡ id, and θ be a deterministic and continuously

differentiable function such that θ̇ is not of finite variation. Then the limit of P θn

in ucp is the sum of a martingale and a deterministic function that is not of finite

variation. Hence, the limit cannot be a semimartingale. Nevertheless, for the set

{θ ∈ L(R)| θ has twice continuously differentiable paths}
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of possible large trader strategies, this limit procedure leads to reasonable semi-

martingale price processes affected by the large trader.

Due to these considerations, we suggest the following definition of a price process

affected by a general large trader strategy.

Definition 3.8: Let (S (ϑ, .))ϑ∈Rd satisfy (P-I). Moreover, let F : S (R) −→ S
(
Rd
)

be a function and θ ∈ L(R). If there exists a sequence (θn)n≥1 ⊂ S (R) such that

1. θn → θ in ucp,

2. (P θn)n≥1 is a Cauchy–sequence in in the semimartingale topology,

then the discounted price process P θ affected by the large trader strategy θ ∈ L (R)

is the limit of (P θn)n≥1 in the semimartingale topology, i.e.

P θn −−→
SM

P θ.

Remark 3.9: It should be mentioned that we do not know a priori whether or not

the definition is, in general, independent of the approximating sequence.

On the one hand, assuming that (S (ϑ, .))ϑ∈Rd is a strong non–linear integrator

might be too restrictive in some cases. On the other hand, it ensures the existence

of price processes affected by the large trader for arbitrary strategies.

Theorem 3.10: Let (S (ϑ, .))ϑ∈Rd be a strong non–linear integrator. Then the fam-

ily (S (ϑ, .))ϑ∈Rd satisfies (P-I). Moreover, if the function F : L(R) −→ L(Rd) is

continuous (w.r.t. the ucp–topology), then for all θ ∈ L (R) there exists a sequence

(θn)n≥1 ⊂ S (R) such that the following properties hold:

1. θn → θ in ucp.

2. (P θn)n≥1 is a Cauchy–sequence in the semimartingale topology.

Hence, the discounted price process P θ affected by the large trader strategy θ ∈ L (R)

exists. Finally, the definition of P θ is independent of the approximating sequence.

Proof: The statement is an immediate consequence of the definition of a strong

non–linear integrator and Theorem A.16.

3.2.2. The NA module: Incorporating no arbitrage

considerations for the small trader into the price module

In this section, our financial market consists of a probability space (Ω,F ,P) equipped

with a filtration F = (Ft)t∈[0,T ] that satisfies the usual conditions. Moreover, F0 is

trivial apart from zero sets and T ∈ (0,∞). Furthermore, the family (S (ϑ, .))ϑ∈Rd of
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R–valued semimartingales is adapted to F and satisfies (P-I). Finally, F : S(R) −→
S(Rd) is some fixed function.

Our goal is to incorporate no arbitrage considerations for the small trader into the

‘price module’. In the introduction of Chapter 2, we already pointed out that there

are various no arbitrage definitions that are linked to a pricing operator. Here,

we consider the (NFLVR) condition. Thanks to the (FTAP), this condition is

equivalent to the existence of an equivalent σ–martingale measure for the price

process P θ. An important question at this point is: ‘What filtration should we

choose?’. There are three natural candidates.

We denote by

FST =
(
FSTt

)
t∈[0,T ]

the smallest filtration that satisfies the usual conditions and contains the filtration

generated by P θ. Here, the superscript ‘ST’ means ‘small trader’. It emphasizes

that FST is the natural choice for the small trader’s information structure. The

situation for the large trader, applying the strategy θ, is different. Her information

structure is given by the smallest filtration

FLT =
(
FLTt

)
t∈[0,T ]

that satisfies the usual conditions and, moreover, satisfies FSTt ∨σ(θs : s ≤ t) ⊂ FLTt
for all t ∈ [0, T ]. In this case, the superscript ‘LT’ means ‘large trader’. Finally, the

most convenient choice for a filtration would be F itself.

In [32], Jarrow assumed that, “given the large trader’s information, there are no

arbitrage opportunities for the price taker”. In our setting, this would be equivalent

to assuming that there exists Qθ ∼ P such that P θ is a Qθ–σ–martingale w.r.t. FLT .

Here, we work with the following weaker no arbitrage assumption for the small

trader :

Assumption (NA-I): For all θ ∈ S (R) there exists Qθ ∼ P such that P θ is a

Qθ–σ–martingale w.r.t. FST .

We consider Assumption (NA-I) as our minimal standing assumption in this

module. The next definition is a reformulation of this idea for general large trader

strategies.

Definition 3.11: Let θ ∈ L(R), let (S (ϑ, .))ϑ∈Rd be a family of R–valued semi-

martingales adapted to F, and let F : S(R) −→ S(Rd) be a function. We say

that the triple (S, F, θ) is a reasonable large trader market model, if the following

conditions hold:

1. (S, F ) satisfies Assumption (P-I) and Assumption (NA-I).

2. The discounted price process P θ exists in the sense of Definition 3.8.
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3. There exists Qθ ∼ P such that P θ is a Qθ–σ–martingale w.r.t. FST .

We denote by (S, F,Ψ) the class of all reasonable large trader market models for the

pair (S, F ).

Remark 3.12: Note that by definition (S, F,S(R)) is a subclass of (S, F,Ψ). The

difficult question is: ‘How big is (S, F,Ψ)?’.

Without further restrictions, it seems to be almost impossible to give an answer

to this question. Nevertheless, in concrete examples it is at least possible to show

that (S, F,Ψ) is significantly bigger than (S, F,S(R)).

Example 3.13 (Classical small trader setting): Under the assumptions of Ex-

ample 3.4, we have S(ϑ, .) = S(0, .) for all ϑ ∈ Rd. Hence, for all functions

F : S(R) −→ S(Rd), Assumption (NA-I) holds if and only if P 0 features an

equivalent σ–martingale measure w.r.t. FST . In this case, (NA-I) is equivalent

to (S, F,Ψ) = (S, F,L(R)).

Example 3.14 (Almgren–Chriss model): Let d = 3 and let g be a non–decreasing

continuous function such that g(0) = 0. Besides, let h ∈ C1(R,R) be another non–

decreasing function such that h(0) = 0. For ϑ ∈ R3, we define the primal family

S = (S(ϑ, .))ϑ∈R3 by

S(ϑ, .) = P̃ + g(ϑ2)t+ ϑ3h
′(ϑ2)t,

where P̃ = P̃0 + σW for a Brownian motion W and σ > 0. For j ≤ 3 and θ̃ ∈
S(R3) with representation (3.1), we denote by (θ̃i)j the projection of θ̃i onto its jth

coordinate. A straightforward computation reveals that
∫ t

0

S
(
θ̃s, ds

)

= P̃t +

t∫

0

n∑

i=0

g((θ̃i)2)1(τi,τi+1] (u) du+

t∫

0

n∑

i=0

(θ̃i)3h
′((θ̃i)2)1(τi,τi+1] (u) du.

Thus, Assumption (P-I) holds. Furthermore, Girsanov’s theorem and Novikov’s

criterion ensure that (NA-I) is valid for any measurable function F : S(R)→ S(R3).

Let us choose a particular function. For θ ∈ S (R), F (θ) = (F1(θ), F2(θ), F3(θ)) is

defined as follows. F1 maps θ ∈ S (R) to its minimal representation

θ (t) = θ−11{0} +
n∑

i=0

θti+1(ti,ti+1] (t) .

F2 is defined as in the Almgren–Chriss model above; see (3.4). Finally, F3 maps the

minimal representation of θ ∈ S (R) to

n∑

i=0

θ̃i1(ti,ti+1] (t) ,
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where for i ≤ n

θ̃i =





θti+−2θti−2++θti−4+(
ti−ti−4

2

)2 if i− 4 ≥ 0 and i ≤ n,

0 else.
(3.5)

At first glance, this definition might seem a little weird. But, for

θ ∈ {θ ∈ L(R)| The paths of θ are twice continuously differentiable.} ,

we can choose an approximating sequence using the dyadic rationals. Indeed, let

Πn :=

{
iT

2n
: 0 ≤ i ≤ 2n

}

and define

θnu := θ01{0} +
2n−1∑

i=0

θ iT
2n
1( iT2n ,

(i+1)T
2n ](u)

For these strategies, (3.5) is given by

θ̃ni =





θ(2 T
2n

+
(i−2)T

2n
)−2θ(

(i−2)T
2n

)+θ(−2 T
2n

+
(i−2)T

2n
)

4( T
2n )

2 if i− 4 ≥ 0 and i ≤ n,

0 else.
(3.6)

Due to Taylor’s theorem, for all n ∈ N and all i ≤ n there exist ζ̂n,i, ζ̌n,i ∈ [0, T ]

such that (3.6) is given by

θ̃ni =





1
2

(
θ̈(ζ̂n,i) + θ̈(ζ̌n,i)

)
if i− 4 ≥ 0 and i ≤ n,

0 else.

where θ̈ denotes the second derivative of θ,

(i− 2)T

2n
≤ ζ̂n,i ≤ iT

2n
and

(i− 4)T

2n
≤ ζ̌n,i ≤ (i− 2)T

2n
.

Hence, the dominated convergence theorem allows us to conclude that

P θ
t = P̃t +

t∫

0

g(θ̇u) du+

t∫

0

θ̈uh
′(θ̇u) du

= P̃t +

t∫

0

g(θ̇u) du+ h(θ̇t)− h(θ̇0).

Moreover, Proposition A.6 ensures that

P θn −−→
SM

P θ.
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Hence, P θ is a discounted price process in the sense of Definition 3.8 for all

θ ∈ {θ ∈ L(R)| The paths of θ are twice continuously differentiable.} .

Moreover, if θ has bounded first and second derivatives, Girsanov’s theorem and

Novikov’s criterion ensure that the triple (S, F, θ) is a reasonable large trader market

model.

In order to provide a broader class of reasonable large trader market models, it is

sensible to consider a family (S (ϑ, .))ϑ∈Rd that satisfies certain regularity assump-

tions. At this point, the strong non–linear integrators seem to be tailor–made for

our model and its minimal assumptions (P-I) and (NA-I).

3.3. Strong non–linear integrators and the (LTMM)

In Section 3.2, we introduced Assumption (P-I). It ensures, that all price processes,

affected by a simple large trader strategy, are in fact semimartingales. As we pointed

out above, this assumption is satisfied as soon as the family S = (S(ϑ, .))ϑ∈Rd is

a strong non–linear integrator. Besides, Theorem 3.10 guarantees that the price

process P θ exists for all θ ∈ L(R) as soon as the function F : L(R) −→ L(Rd) is

continuous. Hence, for non–linear strong integrators S = (S(ϑ, .))ϑ∈Rd , it remains to

provide conditions that ensure the existence of an equivalent σ–martingale measure

for P θ. This in turn enables us to characterize the class (S, F,Ψ) of reasonable large

trader market models.

In the first part of this section, we introduce a no arbitrage assumption for the

small trader that is weaker than (NA-I). To be more precise, Assumption (NA-II)

claims that for all constant large trader strategies ϑ ∈ R there exists an equivalent

σ–martingale measure for P ϑ w.r.t. the underlying filtration F. The fact that S =

(S(ϑ, .))ϑ∈Rd is a strong non–linear integrator enables us to prove that (NA-II) is

sufficient for (NA-I). In the second part, we use the definition of the strong non–

linear integrator to provide sufficient conditions that guarantee the existence of an

equivalent σ–martingale measure for P θ, where θ ∈ L(R) is a general large trader

strategy.

As before, the financial market consists of a probability space (Ω,F ,P) equipped

with a filtration F = (Ft)t∈[0,T ] that satisfies the usual conditions. Furthermore,

F0 is trivial apart from zero sets and T ∈ (0,∞). Moreover, F : S(R) −→ S(Rd)

is some fixed continuous function and S = (S(ϑ, .))ϑ∈Rd is a family of R–valued

semimartingales, adapted to F, that satisfy the following assumption:

Assumption (P-II): (S (ϑ, .))ϑ∈Rd is a strong non–linear integrator that satisfies

the following conditions:
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1. S (ϑ, .) is a continuous semimartingale for all ϑ ∈ Rd;

2. Outside of a P–null set, S is continuous in the space parameter ϑ.

Recall that for θ ∈ L(R) the price process P θ is defined as

P θ =

∫
S(F (θ), ds),

where F : L(R) −→ L(Rd) is a continuous function. Since we are not interested

in a particular function F , we find it more convenient to consider
∫
S(θ, ds) as the

price process affected by the large trader. Note that this entails that we have to use

‘strategies’ in L(Rd)! Throughout this section, we extensively use the notion ‘ex-

tended simple strategy ’ and ‘convenient approximating sequence’. Essentially, both

notions refer to a slightly more general notion of simple strategies that have certain

nice properties. For the definition of the space of extended simple strategies, Se(Rd),

and the notion of ‘convenient approximating sequence’, we refer to Definition A.1

and Definition A.4. Finally, it should be mentioned that, if not otherwise stated, all

(in–) equalities between random variables are understood as P–a.s. (in–) equalities.

3.3.1. No arbitrage with simple strategies

Our main assumption is that there are no arbitrage opportunities for the small

trader, if the large investor only employs constant strategies. A mathematical for-

mulation is the following assumption:

Assumption (NA-II): For all ϑ ∈ Rd there exists an equivalent local martingale

measure Qϑ for S (ϑ, .) w.r.t. F.

The following example shows that in the ‘Stochastic Differential Equation’–setting

and in the ‘Reaction–Diffusion Setting’ Assumption (NA-II) is satisfied.

Example 3.15: Recall the assumptions of Example 3.5 and Example 3.6.

(i) Stochastic Differential Equations. The primal price processes S (ϑ, .) are given

as strong solutions of the SDEs

dS (ϑ, t) = bϑ (S (ϑ, t)) dt+ σ (S (ϑ, t)) dWt,

where W is a Brownian motion. Furthermore, the function

b : R× R −→ R
(ϑ, x) 7−→ bϑ(x)
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is continuous and non–decreasing in the first argument and Lipschitz continuous

in the second argument. Moreover, σ is bounded from below by some ε > 0 and

satisfies |σ (x)− σ (y)|2 ≤ ρ (|x− y|) for some ρ > 0. Due to Theorem A.18 and

Lemma A.10, we can conclude that S (ϑ, .) satisfies (P-II). Besides, Girsanov’s

theorem and Novikov’s criterion guarantee that assumption (NA-II) holds. Note,

however, that there is in general no universal martingale measure for all S (ϑ, .).

Hence, the analysis of Bank and Baum, see [4], does not apply to this situation.

(ii) Reaction–Diffusion Setting. Recall that the price process S = (S (ϑ, ·))ϑ∈R
is given by S (ϑ, t) = ψ (t,Wt, ϑ), where the Brownian motion W models some

fundamental state variable. Moreover, the dynamics of the primitive price processes

have the form

dψt =

(
∂

∂t
+

1

2

∂2

∂x2

)
ψt dt+

∂

∂x
ψt dWt,

where ∂ψ/∂x is strictly positive. For the explicit reaction function ψ (t,Wt, ϑ) =

exp(σWt + κϑt), where σ, κ > 0, the dynamics are given by

dψt = ψt

((
κϑ+

1

2
σ2

)
dt+ σ dWt

)
.

Here, condition (O) is valid. Moreover, Assumption (P-II) holds due to Theorem

A.18 and Lemma A.10. Again, Girsanov’s theorem and Novikov’s criterion ensure

that (NA-II) holds in this particular example. But, in general there does not exist

a universal local martingale measure for all S(ϑ, .). Thus, the analysis of Bank and

Baum does not apply to the Reaction–Diffusion Setting.

The next proposition is the main result of this subsection. It guarantees the

existence of an equivalent local martingale measure, if the large trader’s strategy is

simple.

Proposition 3.16: Let θ ∈ Se
(
Rd
)

be an extended simple strategy of the large

trader with representation (A.1). Moreover, let S = (S(ϑ, .))ϑ∈Rd satisfy (P-II).

Under (NA-II), there exists an equivalent local martingale measure Qθ for the price

process
∫
S (θ, ds). Moreover, (NA-II) is sufficient for (NA-I).

Proof: For ϑ ∈ Rd, let Zϑ denote the density process of a local martingale measure

Qϑ for S (ϑ, .) which exists because of (NA-II). As θ is a simple strategy, all the θi in

the representation (A.1) assume only finitely many values denoted by
{
ϑi1 , ..., ϑimi

}
.

We may assume by localization that the S (ϑ, .) are Qϑ–martingales for each ϑ from

this finite set. Define probability measures Qθi , i ∈ {0, ..., n}, by

Zθi
t :=

dQθi

dP

∣∣∣∣
Ft

:= ci

mi∑

j=1

Z
ϑij
t 1{θi=ϑij},
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where the ci are normalising constants. Then
∫
S (θi, ds) is Qθi–martingale for all

i ∈ {0, ..., n}. Indeed, for each i ∈ {0, ..., n} and t ∈ [0, T ] we set

∆t S
i := S (θi, τi+1 ∧ t)− S (θi, τi ∧ t) ,

∆t S
i,j := S (ϑij, τi+1 ∧ t)− S (ϑij, τi ∧ t) .

Bayes’ formula enables us to compute the conditional expectations under a measure

change; for i ∈ {0, ..., n} and s < t we get

EQθi
[
∆t S

i
∣∣Fs

]
=

1

Zθi
s

EP
[
Zθi
T ∆t S

i
∣∣Fs

]

=
1

Zθi
s

ci

mi∑

j=1

EP

[
Z
ϑij
T ∆t S

i 1{θi=ϑij}

∣∣∣Fs
]

= ci

mi∑

j=1

Z
ϑij
s

Zθi
s

EQϑij
[
∆t S

ij 1{θi=ϑij}
∣∣Fs

]
. (3.7)

Moreover, for fixed j ∈ {1, ...,mi} we compute

EQϑij
[
∆t S

ij 1{θi=ϑij}
∣∣Fs

]
= EQϑij

[
∆t S

ij 1{θi=ϑij}1{s≥τi}
∣∣Fs

]
+ (3.8)

+ EQϑij
[
∆t S

ij 1{θi=ϑij}1{s<τi}
∣∣Fs

]
.

First, let us compute the first term on the r.h.s.. Due to Assumption (NA-II),

we know that ∆t S
ij are Qϑij–martingales for all j ∈ {1, ...,mi}. As θi is Fτi–

measurable, we can conclude that

EQϑij
[
∆t S

ij 1{θi=ϑij}1{s≥τi}
∣∣Fs

]
= EQϑij

[
∆t S

ij
∣∣Fs

]
1{θi=ϑij}1{s≥τi}

= ∆s S
ij 1{θi=ϑij}1{s≥τi}.

In the second step, we compute the second term on the r.h.s. of (3.8). It is in

fact equal to zero. Indeed, by conditioning on Fτi and using the tower property of

conditional expectation, we get

EQϑij
[
∆t S

ij 1{θi=ϑij}1{s<τi}
∣∣Fs

]
= EQϑij

[
EQϑij

[
∆t S

ij 1{θi=ϑij}1{s<τi}
∣∣Fτi

]∣∣∣Fs
]

= EQϑij

[
1{θi=ϑij}1{s<τi} EQϑij

[
∆t S

ij
∣∣Fτi

]∣∣∣Fs
]
.

Due to the martingale property of S (ϑij,.), we can conclude that

EQϑij

[
1{θi=ϑij}1{s<τi} EQϑij

[
∆t S

ij
∣∣Fτi

]∣∣∣Fs
]

= EQϑij
[
1{θi=ϑij}∩{s<τi} ∆t∧τi S

ij
∣∣Fs

]

= 0.

Since ∆s S
ij1{θi=ϑij}1{s<τi} is zero, the computations above ensure that (3.8) is

equivalent to

EQϑij
[
∆t S

ij 1{θi=ϑij}
∣∣Fs

]
= ∆s S

ij1{θi=ϑij}.
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Summing up over j, we deduce from (3.7) that

EQθi
[
∆t S

i
∣∣Fs

]
= ∆s S

i.

Hence,
∫
S (θi, ds) is a local martingale under Qθi . Finally, we construct the density

process Zθ of Qθ on the whole time interval [0, T ] by concatenation,

Zθ
t :=

n∏

i=0

Zθi
t∧τi+1

Zθi
t∧τi

.

3.3.2. No arbitrage with dynamic strategies

We are looking for sufficient conditions that enable us to extend the results for

extended simple strategies to general θ ∈ L
(
Rd
)
. This in turn means that the class

of reasonable large trader market models is given by (S, F,L(R)). Our main tool is

the following version of the Fundamental Theorem of Asset Pricing.

Theorem 3.17: Let S = S0 +M +
∫
λ d[M ] be a continuous semimartingale.

1. S satisfies (SC) if and only if E
(
−
∫
λ dM

)
is a strictly positive local mar-

tingale density for S.

2. There exists an equivalent local martingale measure for S if and only if S

satisfies (SC) and the classical (NA)–condition.

Proof: Lemma 2.22 ensures that the first statement holds. The second statement

follows from the Fundamental Theorem of Asset Pricing [16].

Remark 3.18: Let θ ∈ L
(
Rd
)
. Due to the theorem it is clear that the structure

condition (SC) is necessary for the price process
∫
S (θ, ds) in order to admit an

equivalent local martingale measure. Hence, we start looking for sufficient conditions

that ensure that
∫
S (θ, ds) satisfies (SC).

The next lemma highlights that it is natural to use the definition of
∫
S (θ, ds) to

find conditions that ensure the existence of an equivalent local martingale measure.

Lemma 3.19: Let S = (S(ϑ, .))ϑ∈Rd satisfy (P-II) and let Assumption (NA-II)

hold. Further, let θ ∈ L
(
Rd
)
, (θn)n≥1 ⊂ Se

(
Rd
)
, where

θn (t) = θn−1 +
mn∑

i=0

θni 1(τni ,τni+1]
(t) .

Then the following statements hold:
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1. The canonical decompositions of
(∫

S (θn, ds)
)
n≥1

can be written as
∫
S (θn, ds) = Sn0 +Mn +

∫
λ(n) d [Mn] , (3.9)

where
∫ T

0

(
λ

(n)
u

)2

d[Mn]u <∞ P–a.s. and

Mn
t =

mn∑

i=0

(
M

θni
τni+1∧t

−M θni
τni ∧t

)
and λ

(n)
t =

mn∑

i=0

λ
θni
t 1(τni ,τni+1]

(t) . (3.10)

2. If
∫
S (θ, ds) = S̄0 +M +A denotes the canonical decomposition of

∫
S (θ, ds),

where M is a continuous local martingale, then θn −−→
ucp

θ ensures that

Mn −−→
SM

M and [Mn] −−→
SM

[M ] and

∫
λ(n) d [Mn] −−→

SM
A.

3. Under 2., there exists a subsequence (still indexed by n) such that P–a.s.

V

(∫
λ(n) d [Mn]− A

)

T

−→ 0. (3.11)

Proof: Assumption (NA-II) and Theorem 3.17 allow us to write the canonical

decompositions of (S(ϑ, .))ϑ∈Rd as

S(ϑ, .) = S0 +Mϑ +

∫
λϑ d[Mϑ],

where P(
∫ T

0
(λϑu)2 d[Mϑ]u < ∞) = 1 for all ϑ ∈ Rd. For any sequence (θn)n≥1 ⊂

Se
(
Rd
)
, Proposition A.14, Theorem 3.17, and Proposition 3.16 ensure that the

canonical decompositions of
(∫

S (θn, ds)
)
n≥1

can be written as
∫
S (θn, ds) = Sn0 +Mn +

∫
λ(n) d [Mn] ,

where
∫ T

0

(
λ

(n)
u

)2

d[Mn]u < ∞ P–a.s. for all n ≥ 1. Moreover, for θn (t) = θn−1 +∑mn
i=0 θ

n
i 1(τni ,τni+1]

(t) we have

Mn
t =

mn∑

i=0

(
M

θni
τni+1∧t

−M θni
τni ∧t

)
and λ

(n)
t =

mn∑

i=0

λ
θni
t 1(τni ,τni+1]

(t) .

Due to Proposition A.7, the claim is proven.

Remark 3.20: The lemma is the key tool for checking whether or not the price

process
∫
S (θ, ds) satisfies (SC). It allows us to use classical results from measure

theory that guarantee the convergence of Lebesgue–Stieltjes integrals as in (3.11) to

a limit of the form
∫
λ d[M ]; see e.g. [9, 4.7.132–4.7.133]. These results usually

assume point–wise convergence of the integrands (λ(n))n≥1. However, at this point,

we do not know a priori whether or not the ucp–convergence of (θn)n≥1 implies the

point–wise convergence of the integrands (λ(n))n≥1.
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Sufficient conditions for
∫
S (θ, ds) to satisfy (SC)

The following theorem gives a sufficient condition for the price process
∫
S (θ, ds) to

satisfy the structure condition without assuming point–wise convergence of (λ(n))n≥1.

Within the proof, we frequently use the following fact.

Lemma 3.21 ([42, Corollary, p. 40]): Let A be a non–negative, right–continuous,

and non–decreasing process and H be a jointly measurable process such that F =∫
H dA exists and is finite for all t > 0 up to indistinguishability. If V (F )T denotes

the total variation of F on the interval [0, T ], then

V (F )T =

T∫

0

|H|u dAu.

Theorem 3.22: If

lim inf
n→∞

T∫

0

(
λ(n)
u

)2
d [Mn]u <∞ (3.12)

holds P–a.s., then the price process
∫
S (θ, ds) satisfies the structure condition (SC).

Proof: We first prove that there exists a predictable process λ such that

A =

∫
λ d[M ]

holds. As [Mn] → [M ] in SM, Proposition A.7 ensures that there exists a subse-

quence (still indexed by n), such that (recall our convention that equalities between

random variables are to be understood P–a.s.)

lim
n→∞

V ([Mn]− [M ])T = 0, (3.13)

as well as

lim
n→∞

V

(∫
λ(n) d [Mn]− A

)

T

= 0. (3.14)

Therefore, we have

V (A)T ≤ lim inf
n→∞

V

(∫
λ(n) d [Mn]

)

T

. (3.15)

Due to Lemma 3.21, we get for n ≥ 1

V

(∫
λ(n) d [Mn]

)

T

=

T∫

0

∣∣λ(n)
u

∣∣ d[Mn]u =

T∫

0

1
∣∣λ(n)
u

∣∣ d[Mn]u. (3.16)
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Combining (3.15) and (3.16) and applying Hölder’s inequality to the r.h.s. of (3.16)

leads to

V (A)T ≤ lim inf
n→∞

([Mn]T )
1
2




T∫

0

(
λ(n)
u

)2
d[Mn]u




1
2

.

By assumption (3.12), we have

lim inf
n→∞

T∫

0

(
λ(n)
u

)2
d [Mn]u <∞,

and therefore

V (A)T ≤ ([M ]T )
1
2 lim inf

n→∞




T∫

0

(
λ(n)
u

)2
d[Mn]u




1
2

holds. Because of the Radon–Nikodym Theorem, see [30, 3.13 Proposition], there

exists a predictable process λ such that

A =

∫
λ d[M ]. (3.17)

It remains to prove that
∫ T

0
λ2
u d[M ]u < ∞ holds P–a.s. Due to (3.13), there exists

a set N c of measure zero such that the family ([Mn](ω))n∈N, [M ](ω) is uniformly

bounded for all ω ∈ N . According to Lemma A.21, there exist probability measures

dB(ω) on [0, T ] such that

∀n ∈ N : d[Mn](ω)� dB(ω), and d[M ](ω)� dB(ω),

hold for all ω ∈ N , where N is the set complement of N c. Due to Lemma 3.21 and

(3.13), we get for all ω ∈ N

lim
n→∞

V ([Mn]− [M ])T (ω) = lim
n→∞

T∫

0

∣∣∣∣
d[Mn]

dB
(ω, u)− d[M ]

dB
(ω, u)

∣∣∣∣ dBu(ω) = 0,

and
d[Mn]

dB
(ω, .) −→ d[M ]

dB
(ω, .), in dB(ω)–probability.

Combining (3.14), (3.17), and Lemma 3.21, we also have for all ω ∈ N
T∫

0

∣∣∣∣λ(n)
u (ω)

d[Mn]

dB
(ω, u)− λu(ω)

d[M ]

dB
(ω, u)

∣∣∣∣ dBu(ω) −−−→
n→∞

0,
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and

λ(n)
. (ω)

d[Mn]

dB
(ω, .) −−−→

n→∞
λ.(ω)

d[M ]

dB
(ω, .), in dB(ω)–probability.

For all ω ∈ N , we may apply Lemma A.23 and Fatou’s Lemma to end up with

T∫

0

λ2
u(ω) d[M ]u(ω) =

T∫

0

1{ d[M ]
dB

(ω,.)6=0}(u)λ2
u(ω)

d[M ]

dB
(ω, .) dBu(ω)

≤ lim inf
n→∞

T∫

0

1{ d[M ]
dB
6=0}(ω, .)

(
λ(n)
u (ω)

)2 d[Mn]

dB
(ω, .) dBu(ω)

≤ lim inf
n→∞

T∫

0

(
λ(n)
u (ω)

)2
d[Mn]u(ω).

Due to assumption (3.12), the claim is proven.

The next corollary is an immediate consequence of the theorem and Lemma 2.17.

Corollary 3.23: If there exists a sequence of stopping times (Sm)m≥1 ↑ T a.s. and

a sequence (Cm) ⊂ L2(P ) such that P(Sm = T )→ 1 for m→∞ and

lim inf
n→∞

Sm∫

0

(
λ(n)
u

)2
d [Mn]u ≤ Cm

holds P–a.s., then
∫
S (θ, ds) satisfies the structure condition (SC).

Proof: Apply Theorem 3.22 to
(
λ(n)1[0,Sm]

)
n≥1

. This ensures that there exists λ ∈
pL2

loc(M) such that A =
∫
λ d[M ] and E

[∫ T
0
λ2
u1[0,Sm](u) d[M ]u

]
<∞. As P(Sm =

T ) → 1 for m → ∞, Lemma 2.17 ensures that
∫
S (θ, ds) satisfies the structure

condition.

This corollary is tailor–made for our examples.

Example 3.24: Consider the setting of Example 3.15. Let (θn)n≥1 ⊂ Se(R) be a

convenient approximating sequence for θ ∈ L(R), where

θn (t) =
mn∑

i=0

θni 1(τni ,τni+1]
(t) , for n ≥ 1.

Denote by (Sm)m≥1 the sequence of stopping times such that the family {(θn)Sm , θSm}
is uniformly bounded and P(Sm = T )→ 1 for m→∞. Recall that

∫
S (θn, ds) = Mn +

∫
λ(n) d [Mn]
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is the canonical decomposition of
∫
S (θn, ds), where Mn and λ(n) are defined in

(3.10).

(i) Stochastic Differential Equations. In this setting the local martingales Mn as

well as the λ(n) are given by

Mn
t =

mn∑

i=0

σ (S(θni , τ
n
i ))
(
Wτni+1∧t −Wτni ∧t

)
,

λ
(n)
t =

mn∑

i=0

λ
θni
t 1(τni ,τni+1]

(t) =
mn∑

i=0

bθ
n
i (S(θni , τ

n
i ))

σ2 (S(θni , τ
n
i ))

1(τni ,τni+1]
(t) .

Since
T∫

0

(
λ(n)
u

)2
d [Mn]u =

T∫

0

(
mn∑

i=0

bθ
n
i (S(θni , τ

n
i ))

σ2 (S(θni , τ
n
i ))

1(τni ,τni+1]
(u)

)2

d[Mn]u

=
mn∑

i=0

(
bθ
n
i (S(θni , τ

n
i ))

σ2 (S(θni , τ
n
i ))

)2 (
τni+1 − τni

)
,

the assumptions made in the example and the special choice of (θn)n≥1 and (Sm)m≥1

ensure that we can apply Corollary 3.23. Hence, the price process
∫
S (θ, ds) satisfies

the structure condition (SC).

(ii) Reaction-Diffusion Setting. Similar calculations as in the example above show

that

Mn
t =

mn∑

i=0

∂

∂x
ψ
(
τni ,Wτni

, θni
) (
Wτni+1∧t −Wτni ∧t

)
,

λ
(n)
t =

mn∑

i=0

(
∂
∂t

+ 1
2
∂2

∂x2

)
ψ
(
τni ,Wτni

, θni
)

(
∂
∂x
ψ
(
τni ,W

n
τi
, θni
))2 1(τni ,τni+1]

(t) ,

and

T∫

0

(
λ(n)
u

)2
d [Mn]u =

mn∑

i=0




(
∂
∂t

+ 1
2
∂2

∂x2

)
ψ
(
τni ,Wτni

, θni
)

∂
∂x
ψ
(
τni ,Wτni

, θni
)




2

(
τni+1 − τni

)
.

For general reaction functions ψ it is likely that one has to impose certain conditions

on the fraction above to ensure that the condition of Theorem 3.22 is satisfied.

However, for the reaction function ψ(t, x, ϑ) = exp(σx + κϑt), where σ, κ > 0, we

get
T∫

0

(
λ(n)
u

)2
d [Mn]u =

mn∑

i=0

(
κ

σ
θni +

1

2
σ

)2 (
τni+1 − τni

)
.

Due to the special choice of (θn)n≥1 and (Sm)m≥1, we may apply Corollary 3.23 and

conclude that
∫
S (θ, ds) satisfies the structure condition (SC).
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The following example shows that (3.12) might depend on the choice of the ap-

proximating sequence.

Example 3.25: Let W be a standard Brownian motion and set S(ϑ, t) = Wt +ϑt.

For n ≥ 1 choose θn = λn = n1(0,n−3/2]. Clearly λn → 0 a.s. and in L1. Therefore,

∫
S(θn, ds) −−→

SM
W

holds. Although the limit satisfies (SC) with λ ≡ 0, the assumption of Theorem 3.22

does not hold. Indeed, we have
∫ T

0
|λnu|2 du =

√
n. On the other hand, θ̃n = 1/n→ 0

a.s. and satisfies (3.12).

Sufficient conditions for the existence of an equivalent local martingale

measure for
∫
S (θ, ds)

Due to Theorem 3.17, the structure condition is a necessary condition for the ex-

istence of an equivalent local martingale measure for the price process
∫
S (θ, ds),

where the canonical decomposition is given by

∫
S (θ, ds) = M +

∫
λ d[M ].

A possible candidate for a martingale measure is now given via the density process

E
(
−
∫
λ dM

)
= exp

(
−
∫
λ dM − 1

2

∫
λ2 d [M ]

)
. (3.18)

This stochastic exponential is a strictly positive local P–martingale and therefore

a P–supermartingale. It is well known that E
[
E
(
−
∫
λ dM

)
T

]
= 1 if and only if

the stochastic exponential is a true martingale. If it is a true martingale, dQ =

E
(
−
∫
λ dM

)
T
dP defines an equivalent local martingale measure for

∫
S (θ, ds).

However, in general E
(
−
∫
λ dM

)
is not a true martingale; see [46]. The following

proposition gives a sufficient condition for E
(
−
∫
λ dM

)
being a true martingale.

Hence, it provides a sufficient condition for the existence of an equivalent local

martingale measure for the price process
∫
S (θ, ds), if the large trader uses a general

strategy θ ∈ L
(
Rd
)
.

Proposition 3.26: Let θ ∈ L
(
Rd
)

be a large trader strategy. Moreover, denote

by (θn)n≥1 ⊂ Se
(
Rd
)

a sequence of strategies such that θn → θ in ucp. Recall the

notation of Lemma 3.19 and suppose that

1. E
(
−
∫
λn dMn

)
are true martingales for all n ≥ 1;

2. the family
(
E
(
−
∫
λn dMn

)
T

)
n≥1

of random variables is uniformly integrable;
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3.
[∫
λn dMn −

∫
λ dM

]
T
→ 0 in probability.

Then, E
(
−
∫
λ dM

)
is a true martingale. Hence, dQ = E

(
−
∫
λ dM

)
T
dP defines

an equivalent local martingale measure for the price process
∫
S (θ, ds) affected by the

large trader strategy θ ∈ L
(
Rd
)
. As soon as all θ ∈ L

(
Rd
)

satisfy these assumptions,

the class of all reasonable large trader market models is given by (S, F,L(R)) for

arbitrary continuous functions F : L(R) −→ L(Rd).

Proof: Due to [35, Proposition 2.7], the third assumption is equivalent to

∫
λ(n) dMn −−→

SM

∫
λ dM.

According to Proposition A.7, the composition of C2–functions with semimartingales

is continuous w.r.t. the semimartingale topology. Therefore,

E
(
−
∫
λ(n) dMn

)
−−→
SM
E
(
−
∫
λ dM

)

holds. Due to the second item, we have E
(
−
∫
λ dM

)
T

= 1. This ensures that

E
(
−
∫
λ dM

)
is a true martingale.

For θ ∈ bL
(
Rd
)
, where bL

(
Rd
)
⊂ L

(
Rd
)

is the subspace of all bounded càglàd

processes, our examples admit an equivalent local martingale measure for the price

process
∫
S (θ, ds) affected by the large trader.

Example 3.27: Consider the setting of Example 3.15. Let (θn)n≥1 ⊂ Se(R)

be a convenient approximating sequence for θ ∈ bL(R) and note that the family

{(θn)n≥1, θ} is uniformly bounded. Recall that for

θn (t) =
mn∑

i=0

θni 1(τni ,τni+1]
(t) , for n ≥ 1,

the canonical decomposition of
∫
S (θn, ds) is given by

∫
S (θn, ds) = Mn +

∫
λ(n) d [Mn] ,

where Mn and λ(n) are defined in (3.10).

(i) Stochastic Differential Equations. Due to Example 3.24, we have

T∫

0

λ2
u d[M ]u ≤ lim inf

n→∞

mn∑

i=0

(
bθ
n
i (S(θni , τ

n
i ))

σ2 (S(θni , τ
n
i ))

)2 (
τni+1 − τni

)
.
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As by assumption σ > ε, the ratio bϑ(x)/σ2(x) is again continuous in both arguments

and non–decreasing in ϑ. The same arguments as in Lemma A.10 ensure that

bϑ(x)/σ2(x) is jointly continuous. If, in addition, there exists a continuous function

f : R→ R and a constant c > 0 such that

∣∣∣∣
bϑ(x)

σ2(x)

∣∣∣∣ ≤ cf(ϑ), ∀ (ϑ, x) ∈ R× R,

then the fact that the family {(θn)n≥1, θ} is uniformly bounded, ensures that there

exists K > 0 such that

T∫

0

λ2
u d[M ]u ≤ c2 lim inf

n→∞

mn∑

i=0

f 2 (θni )
(
τni+1 − τni

)
≤ c2K2T.

Hence, Novikov’s condition ensures that E
(
−
∫
λ dM

)
is a true martingale. There-

fore, dQ = E
(
−
∫
λ dM

)
T
dP defines an equivalent local martingale measure for the

price process
∫
S (θ, ds). Moreover, if f is bounded (S, id, θ) is a reasonable large

trader market model for all θ ∈ L (R).

(ii) Reaction-Diffusion Setting. Due to Example 3.24, we get for the reaction

function ψ(t, x, ϑ) = exp(σx+ κϑt), where σ, κ > 0,

T∫

0

λ2
u d[M ]u ≤ lim inf

n→∞

mn∑

i=0

(
κ

σ
θni +

1

2
σ

)2 (
τni+1 − τni

)
.

Since the sequence is uniformly bounded by some constant K > 0, we get

T∫

0

λ2
u d[M ]u ≤ 2T

(
κ2K2

σ2
+
σ2

4

)
.

Again, Novikov’s condition ensures that E
(
−
∫
λ dM

)
is a true martingale and dQ =

E
(
−
∫
λ dM

)
T
dP defines an equivalent local martingale measure for

∫
S (θ, ds).

Conclusions

In this section, we pointed out that additional regularity assumptions on the primal

family S = (S(ϑ, .))ϑ∈Rd ensure that the price process P θ exists in the sense of

Definition 3.8 for all θ ∈ L(R). Moreover, the regularity Assumption (P-II) ensures

that the minimal no arbitrage Assumption (NA-I) holds as soon as for all constant

large trader strategies θ ∈ R there exists an equivalent local martingale measure

for P θ. In the second part, we provided a sufficient condition that guarantees the

existence of an equivalent local martingale measure for all large trader strategies
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θ ∈ L(R). This in turn implies that for all continuous function F : L(R) −→
L(Rd), the class of all reasonable large trader market models in given by (S, F,L(R)).

We achieved this result by extensively using the structure condition (SC) and its

connection to the (FTAP) for continuous semimartingales.

3.4. The minimal large trader market model

As pointed out in the introduction, the driving force behind a large trader model

is the motivation of the large trader to achieve a certain goal. Most often, the

formulation of this goal is strongly related to the large trader real wealth process.

This section provides the ‘last module’ introduced in this chapter, the definition of

the large trader real wealth process. As before, we define the wealth process for

simple strategies and extend the definition by taking limits in the semimartingale

topology. Combining all modules, the ‘price module’, the ‘NA module’, and the

‘wealth process module’, leads to the definition of a minimal large trader market

model. In the second part, we compare our minimal large trader market model to

the large trader model proposed by Bank and Baum; see [4].

3.4.1. The large trader wealth process

Due to the different economic considerations that influence the wealth process of a

large trader, this is for sure one of the most delicate tasks in a large trader model.

How to model the gains process due to trading? Should we insist on self–financing

conditions for the large trader? If the answer to the last question is ‘yes’, how

should we define the self–financing condition? Moreover, how should we incorporate

liquidity risks?

As [4] and [11], we only consider self–financing large trader strategies. To incor-

porate liquidity risk into their large trader model, Bank and Baum introduced a

special definition of the bank account as well as an idealized definition of the wealth

process, the asymptotic liquidation proceed process. In [11], the authors incorporate

liquidity risk into their model by using a new definition of self–financing strategies.

Using particular integration by parts formulas, both conclude that the real wealth

process V (θ) of the large trader is of the form

V (θ) = V0 +G(θ)− C(θ).

While G(θ) represents the gains and losses due to trading, the non–negative process

C(θ) is interpreted as costs due to liquidity risk. We take this representation of a

large trader real wealth process for a self–financing strategy as our definition.

Let (S, F, θ) be a reasonable large trader market model. First of all, it is natural
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to model the accumulated gains and losses G(θ), caused by trading, by the linear

stochastic integral of θ w.r.t. P θ, i.e.

G(θ) =

∫
θ dP θ. (3.19)

Suppose that the price process P θ, affected by the large trader, can be decomposed

into the sum of two semimartingales P̃ and Iθ. On the one hand, P̃ refers to the

exogenous part of the price process that is not influenced by the large trader. On

the other hand, Iθ models the impact of the large trader on the price process. With

this decomposition the accumulated gains and losses (3.19) are given by

G(θ) =

∫
θ dP̃ +

∫
θ dIθ. (3.20)

Note that the Almgren–Chriss model, Example 3.14, features such a decomposition.

As in the other modules, we only define the cost function, related to liquidity risk,

for simple large trader strategies θ ∈ S(R). More precisely, C is defined as a function

C : S(R)→ V+, (3.21)

where V+ denotes the set of all adapted, non–decreasing càdlàg processes. (Note

that we do not consider any kind of transaction costs!) With this notation, we define

the large trader real wealth process for θ ∈ S(R) by

V (θ) = V0 +

∫
θ dP θ − C(θ). (3.22)

Clearly, if P θ can be decomposed as above, the wealth process is given by

V (θ) = V0 +

∫
θ dP̃ +

∫
θ dIθ − C(θ). (3.23)

In general, we think that it is reasonable to add a further component D to the wealth

process. This component models payment streams of the large trader. Clearly, such

an additional component leads to strategies that are no longer self–financing. As we

do not consider such phenomena, we think of (3.22) as a representation of the real

wealth process, where D ≡ 0.

Let us get back to (3.22). As in the other modules, we define the new compo-

nent, the cost function C, only for simple strategies. For general strategies θ of a

reasonable large trader market model, C is defined by using a limit procedure.

Definition 3.28: Let θ ∈ L(R), let (S (ϑ, .))ϑ∈Rd be a family of R–valued semi-

martingales adapted to F. Moreover, let F : S(R) −→ S(Rd) and C : S(R)→ V+ be

a functions. We say that (S, F, C, θ) is a minimal large trader market model, if the

following conditions hold:
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1. (S, F, θ) is a reasonable large trader market model.

2. For the same sequence that appears in the definition of the discounted price

process P θ, the sequence (C(θn))n≥1 converges in the semimartingale topology.

Its limit, denoted by C(θ), is interpreted as the liquidity risk related to the

large trader strategy θ.

We denote by (S, F, C,Ψmin) the class of all minimal large trader market models

for (S, F, C). Moreover, we call the large trader strategy θ tame, if (S, F, C, θ) is a

minimal large trader market model and C(θ) ≡ 0.

3.4.2. Comparison with the large trader model of Bank and

Baum

In order to compare our modular model to the large trader model of Bank and Baum

[4], we consider a primal family (S(ϑ, .))ϑ∈R of continuous, R–valued semimartingales

that are all zero in 0. Furthermore, we assume that, outside of a null set, the

functions

S(ω, ., .) : R× [0, T ] −→ R

are jointly continuous. In the following, we compare the different modules of both

models to each other.

Price process module

For a simple large trader strategy θ ∈ S(R), the evolution of the price process in [4]

is modelled as

PBB(θt, t) := S(θt+, t).

(As Bank and Baum consider strategies having càdlàg paths, we have to use the

‘càdlàg version’ of our simple strategy θ ∈ S(R).) Note that this price process is

in general not continuous. Indeed, if θ is a simple large trader strategy, the jumps

of the strategy cause jumps of the price process to ‘different levels’ of the primal

family of price processes. Recall our definition of the price process for a simple large

trader strategy θ ∈ S(R). For F = id, the price process P θ is given by

P θ
t :=

∫ t

0

S (θs, ds) :=
n∑

i=0

{S (θτi∧t+, τi+1 ∧ t)− S (θτi∧t+, τi ∧ t)} .

It is clear that our price process has continuous paths. Indeed, due to our defi-

nition of the price process, the jumps caused by the simple large trader strategy

cancel out. Thus, our definition of the price process can be interpreted as ‘gluing

together’ the different levels of the primal family (S(ϑ, .))ϑ∈R of price processes. The
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simple large trader strategy θ ‘decides’ at what point in time what levels are glued

together. Nevertheless, for constant large trader strategies the definitions coincide.

As a consequence, the interpretation of the primal family (S(ϑ, .))ϑ∈R is the same

in both models. Bank and Baum considered PBB(ϑ, .) = P.ϑ = S(ϑ, .) as the “price

fluctuations of the risky asset given that the large trader holds a constant stake of

ϑ shares in the asset”. At this point, we want to recall our Condition (O):

ϑ ≤ ϑ′ =⇒ P ϑ ≤ P ϑ′ .

This is exactly [4, Assumption 2]. Bank and Baum argue that this is a necessary

condition (in their model) to exclude trivial arbitrage opportunities for the large

trader employing an in–and–out strategy. Note that this argument relies on the fact

that the in–and–out strategy causes jumps of the price process PBB(θ., .). As our

price process is continuous, Condition (O) is, from this point of view, not necessary

for our model to exclude arbitrage opportunities for the large trader. At this point it

must be said that in this comparison of both models there exists only liquidity risk

due to ‘market depth’. Indeed, the market depth refers to the ability of a market to

absorb quantities without having a large effect on the prices. Clearly, this ‘quantity’

is the current position of the large trader in the stock. But be aware of the fact that

our model allows us, in a quite general setting, to also incorporate liquidity risks due

to ‘market resiliency’. In Example 3.14, the Almgren–Chriss model, this is achieved

by a proper choice of the function F : S(R) −→ S(R3). Finally, let us consider the

definition of the price process for general large trader strategies. Bank and Baum

make two technical assumptions. The first one is a regularity assumption on the

primal family (S(ϑ, .))ϑ∈R. It is significantly stronger than our Assumption (P-

II), as it assumes essentially the differentiability of the primal family in the space

parameter ϑ. Moreover, Bank and Baum assume that the large trader strategies

are (càdlàg) semimartingales. In our opinion, this is a critical assumption from an

economic point of view as, in general, semimartingales are not predictable processes.

Hence, the large trader (in the Bank and Baum model) is, in a certain sense, able to

predict the future. Nevertheless, these assumptions allow Bank and Baum to apply

the Ito–Wentzell formula. This formula ensures in particular that the price process

PBB(θ., .) is in fact a semimartingale for all large trader strategies θ ∈ S. From this

perspective, their technical assumptions are similar to our Assumption (P-II). The

later also ensures that the price process P θ, affected by a large trader strategy, is a

semimartingale for all θ ∈ L(R).

Real wealth process module

Bank and Baum define the real wealth process for a semimartingale strategy of the

large trader as

VBB(θ, t) := βθt + L(θt, t),
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where the bank account βθ is defined as

βθt = β0− −
t∫

0

PBB(θu−, u) dθu − [PBB(θ., .), θ]t

The asymptotic liquidation proceed process L(θ., .) is defined as

L(θt, t) =

θt∫

0

PBB(u, t) du.

The main idea of this definition is the following. In order to avoid turbulences of

the price process, the large trader does not sell a huge position of shares en bloc.

She rather splits the position into small packages and sells “one after the other in

a small time period”. As soon as the duration of the liquidation tends to zero,

the corresponding proceeds converge to the asymptotic liquidation proceed process.

Applying the Ito–Wentzell formula once more, the real wealth process of Bank and

Baum can be represented as

VBB(θ, t)− VBB(θ, 0−) =

t∫

0

L(θs−, ds)− C(θ),

where the cost function due to liquidity risk is given by

C(θ) =
1

2

t∫

0

P ′BB(θu−, u) d[θ]cu +
∑

0≤s≤t

θs∫

θs−

(PBB(θs, s)− PBB(u, s)) du. (3.24)

Here, P ′BB(ϑ, .) denotes the first partial derivative of the price process w.r.t. the space

parameter. Due to Condition (O), we know that P ′BB(ϑ, .) ≥ 0 for all ϑ ∈ R. Hence,

the cost function is indeed non–decreasing. Note that the costs of liquidity risk

for strategies, whose paths are continuous and of finite variation, are zero. Thus,

in the setting of Bank and Baum these strategies are tame. Moreover, due to an

approximation result for the process
∫
L(θs−, ds), Bank and Baum can conclude that

a large trader only employs tame strategies. This process
∫
L(θs−, ds) “accounts

for profits or losses from stock price fluctuations due to exogenous shocks”. Let

us compare the real wealth process of Bank and Baum to our real wealth process.

There is one particular nice aspect of the cost function (3.24). It expresses the costs,

due to liquidity risk, as a function of the large trader strategy and the primal family

of price processes. Note that one has to be able to define the quadratic variation of

the large trader strategy. As Bank and Baum choose semimartingale strategies this

does not cause any problems. However, our large trader strategies are elements of
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L(R). And for those strategies the definition of a quadratic variation is not clear at

all.

In order to compare the gains and losses processes due to trading, recall our

definition of G(θ). It is given by

G(θ) =

∫
θ dP θ.

In our opinion, this process has two advantages. Firstly, the price process P θ appears

in a very natural way in the representation of the gains and losses process. It is the

integrator of the linear stochastic integral w.r.t. the large trader strategy θ. Secondly,

suppose that P θ can be decomposed as in (3.20), i.e.

G(θ) =

∫
θ dP̃ +

∫
θ dIθ.

This is a decomposition of the gains and losses process into two components. One

the one hand, the component
∫
θ dP̃ is only exposed to the exogenous shock P̃ . On

the other hand,
∫
θ dIθ is the part of the gains and losses process which might allow

the large trader to use her impact on the price process to her own advantage. In

our opinion, it is a priori not clear, why
∫
L(θs−, ds) should exclusively account for

exogenous shocks.

‘No arbitrage for the small trader’ module

In the last part, we compare the no arbitrage assumptions of our modular model

to those in [4]. [4, Assumption 3] supposes that there exists a probability measure,

equivalent to the historical measure, such that all semimartingales of the primal

family are local martingales under this measure. This is quite a strong assumption.

Indeed, consider the primal family (S(ϑ, .))ϑ∈R of [4, Example 2.1]. For all ϑ ∈ R,

the dynamics of PBB(ϑ, .) = S(ϑ, .) are given by the strong solutions of the SDEs

dPBB(ϑ, t) = PBB(ϑ, t)
(
µϑt dt+ σϑt dWt

)
,

where W is a standard Brownian motion. Bank and Baum pointed out that [4,

Assumption 3] implies that “the market price of risk (µϑt − r)/σϑt associated with

the exogenous risk factor dWt does not depend on the large trader’s position ϑ”.

In comparison, our Assumption (NA-II) is much weaker. It only assumes that for

all ϑ ∈ R there exists an equivalent local martingale measure for each primal price

process S(ϑ, .). This allows us to consider more general diffusion–type examples; see

Example 3.15.

We end this comparison with a short remark on no arbitrage conditions for the

large trader. [4, Assumption 3] combined with an admissibility condition for the
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large trader strategies allow Bank and Baum to derive a no arbitrage condition for

the large trader. This condition ensures that there exists a universal probability

measure, equivalent to the historical measure, such that all large trader real wealth

processes of 1–admissible trading strategies are local martingales and supermartin-

gales under this measure. Apart from this particular ‘no arbitrage condition’ for the

large trader, there are other ‘(no) arbitrage’ conditions for the large trader in the

literature. For example, Schied [26] discusses ‘transaction cost triggered price ma-

nipulations’ in the classical Almgren–Chriss model. How to incorporate a particular

‘no arbitrage module for the large trader’ in our model is left for further research.

3.5. Utility maximization

So far, we discussed the existence of an equivalent σ–martingale measure for the

price process P θ, affected by a large trader. This in turn ensures that there are

no free lunches with vanishing risk for the small trader. An even more interesting

question, which has been risen in the introduction, concerns the motivation of the

large trader to trade. Here, we tie the motivation of the large trader to a utility

maximization problem.

In order to formulate the utility maximization problem, we first have to provide

an admissibility concept for the large trader. On the one hand, we think that this

definition should coincide with at least one definition of admissibility in the small

trader setting, if the large trader does not influence the price process. In this case,

she is in fact a small trader. On the other hand, the most popular admissibility

concept, the a–admissibility, where the wealth process is bounded from below by

a finite credit line a, is not tractable in our setting. Although this admissibility

concept has a clear economic interpretation, it might lead to a prohibition of all

constant large trader strategies (except θ ≡ 0); see Remark 3.32 below. As simple

strategies form the core of all our modules, this would be highly unsatisfactory.

Here, we use a modified version of the concept suggested by Biagini and Sirbu [7].

These authors suggest (in a small trader setting) to consider those strategies that

allow for a loss control of the associated wealth process by a martingale under the

historical measure. Taking all these considerations into account, we end up with the

following definition of an admissible large trader strategy.

Definition 3.29: Let (S, F, C, θ) be a minimal large trader market model. The

large trader strategy θ ∈ L(R) is called admissible, if there exists a strictly positive

martingale Lθ under the historical measure P such that

V (θ) ≥ −Lθ

holds up to indistinguishability. We call Lθ loss control of the strategy θ ∈ L(R).

104



3.5. Utility maximization

In the following, we highlight several new phenomena arising in a financial market.

They arise due to the impact of the large trader on the price process P θ.

3.5.1. Phenomena arising in a simple large trader setting

In order to formulate the utility maximization problem, we need the following defi-

nition. It traces back to [6, 5].

Definition 3.30: Let u : R → R be a strictly concave, increasing, and twice con-

tinuously differentiable function that satisfies the Inada–conditions, i.e.

u′(−∞) := lim
x→−∞

u′(x) = −∞ and u′(+∞) := lim
x→+∞

u′(x) = 0.

An admissible large trader strategy θ ∈ L(R) is called u–compatible for α > 0, if

there exists a loss control Lθ that satisfies

E
[
u
(
−αLθT

)]
> −∞.

For α > 0, we denote by Hα the set of all admissible large trader strategies that are

u–compatible for α. Furthermore, we set H :=
⋂
α>0Hα.

We analyse the utility maximization problem of a large trader in a basic setting.

Despite its rather simple structure, it highlights new phenomena that are not present

in the classical utility maximization theory for small traders. At this point, we want

to emphasize that these phenomena appear even though the market is arbitrage free

for the small trader. And besides, all phenomena appear even though there exist

an equivalent local martingale measure for the wealth process of the large trader.

Moreover, in some cases the wealth process is even a supermartingale under this

measure. These new phenomena are a consequence of the non–linear structure of

the value process involved in the problem.

The continuous semimartingales of our primal family (S(ϑ, .))ϑ∈R are given by

S(ϑ, t) := S0 + µ(ϑ) [M ]t + σ(ϑ)Mt, t ∈ [0, T ], (3.25)

where M is a continuous and square–integrable martingale starting in zero a.s. and

having a deterministic quadratic variation [M ]. Besides, let S0 > 0, µ, σ ∈ C2(R,R),

such that µ vanishes whenever σ is zero. Hence, Assumption (NA-II) holds. Due

to Theorem A.18, S satisfies Assumption (P-II). Furthermore, let

C : S(R) −→ V+

be a cost function that maps constant strategies to zero. For an admissible large

trader strategy θ ∈ L(R), the price process and the large trader wealth process are

given by

P θ = S0 +

∫
µ(θu) d [M ]u +

∫
σ(θu) dMu
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and

V (θ) = V0 +

∫
θµ(θ) d [M ] +

∫
θσ(θ) dM − C(θ),

respectively. For constant and fixed initial value V0, we consider the exponential

utility maximization problem

sup
θ∈H1

E [u (VT (θ))] , (3.26)

where u(x) = 1 − e−αx for α > 0. The next lemma gives a partial characterization

of H1.

Lemma 3.31: Let (S(ϑ, .))ϑ∈R be given by (3.25) and let u(x) = 1−e−αx for α > 0.

If θ ∈ bL(R) and C(θ) is bounded then θ ∈ H. Moreover, for all α > 0 the process

Lθt := E

[
sup
s≤T
|Vs|
∣∣∣Ft
]

is an u–compatible loss control for θ.

Proof: W.l.o.g. we assume that C(θ) ≡ 0. Note that it suffices to prove

E

[
exp

(
α sup
s≤T
|Vs|
)]

<∞.

This implies that Lθ is a u–compatible loss control for θ. As θ is bounded and [M ]

is deterministic, we know that for all α > 0 there exists a constant K > 0 such that

exp

(
α sup
s≤T
|Vs|
)
≤ sup

s≤T
[exp (αVs)] + sup

s≤T
[exp (−αVs)]

≤ K sup
s≤T
E
(
−
∫
αθσ(θ) dM

)

s

+K sup
s≤T
E
(∫

αθσ(θ) dM

)

s

.

Due to Novikov’s condition, we can conclude that Lθ is an u–compatible loss control

for θ.

Remark 3.32: The lemma highlights that the concept of a–admissibility is not

suitable for our large trader setting. Indeed, if M is a standard Brownian motion it

would prohibit any constant large trader strategy except θ = 0.

Denote by Φ the set of all bounded, tame, admissible strategies, i.e.

Φ := {θ ∈ bL(R)| θ is a tame admissible large trader strategy.} .

Due to Novikov’s condition, we can define probability measures Qθ ∼ P via

dQθ

dP
:= exp


−α

T∫

0

θuσ(θu) dMu −
α2

2

T∫

0

θ2
uσ

2(θu) d [M ]u


 , ∀θ ∈ Φ. (3.27)
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This enables us to rewrite the utility maximization problem (3.26) for all strategies

θ ∈ Φ as

E [u(VT (θ))] = 1− exp (−αV0)EQθ


exp


−α

T∫

0

p(θu) d [M ]u




 , (3.28)

where

p(x) := xµ(x)− α

2
x2σ2(x), x ∈ R. (3.29)

After these preliminary observations, we first discuss the following reduced utility

maximization problem

sup
θ∈Φ

E [u (VT (θ))] . (3.30)

As we will see below, two different scenarios might happen. In the first scenario, the

so–called stable regime, we can find at least one optimal strategy. These optimal

strategies are constant. In the second scenario, the unstable regime, the presence of

the large trader completely destabilizes the market. This is caused by the fact that,

in an unstable regime, it is optimal for the large trader to buy/sell as many shares

as possible to maximize her expected utility from terminal wealth.

Remark 3.33: It will turn out that the existence of an optimal strategy boils down

to the existence of a maximum of the function p. The following observations show

that the market is stable, iff1 p, defined in (3.29), attains at least one maximum.

(i) Stable regime: Let us suppose that p has at least one maximum ϑ∗ ∈ R.

Reformulating (3.28), we get for θ ∈ Φ

E [u(VT (θ))]

= 1− exp (−α(V0 + p(ϑ∗) [M ]T ))EQθ


exp


−α

T∫

0

(p(θu)− p(ϑ∗)) d [M ]u




 .

Since

P (p(θ)− p(ϑ∗) ≤ 0, ∀θ ∈ Φ) = 1,

it follows that ϑ∗ is the optimal strategy and

sup
θ∈Φ

E [u (VT (θ))] = 1− exp (−α(V0 + p(ϑ∗) [M ]T )) .

(ii) Unstable regime: Let us suppose that p has no maximum. Due to the continuity

of p, we can find a sequence (ϑn)n∈N ⊂ Φ of constant strategies such that

sup
ϑ∈R

p(ϑ) =





lim
n→∞

p(ϑn) =: p∗ ∈ R, if p is bounded from above,

+∞, else.

1abbr.: if and only if
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Keeping this in mind, it follows that

sup
θ∈Φ

E [u (VT (θ))] =

{
1− exp (−α(V0 + p∗ [M ]T )) , if p is bounded from above,

1, else.

Since continuous functions attain their extreme points on compact intervals, it is

clear that ϑn → ±∞. Obviously, ϑn → +∞ means that the large trader tries to buy

as many shares as possible in order to reach her maximal expected utility of terminal

wealth. ϑn → −∞ means that she achieves her goal by short selling. Therefore,

there is no optimal strategy θ ∈ Φ. Such trading strategies lead to exploding or

collapsing prices and therefore destabilize the market.

We collect the above results in the following proposition.

Proposition 3.34: Under the assumptions made above, we have

sup
θ∈Φ

E [u (VT (θ))] = sup
θ∈H1

E [u (VT (θ))] .

Furthermore, either of the following statements hold:

1. (Stable regime): There exists at least one solution to the utility maximization

problem (3.26), iff the function p defined in (3.29) attains at least one max-

imum. The set of optimal strategies contains only constant strategies and (if

considered as subset of R) coincides with the set of maxima of the function p.

If ϑ∗ ∈ R is an optimal strategy, the value of the utility maximization problem

(3.26) is given by

sup
θ∈Φ

E [u (VT (θ))] = 1− exp (−α(V0 + p(ϑ∗) [M ]T )) .

2. (Unstable regime): There is no optimal trading strategy in H1. Moreover, by

maximizing the expected utility of terminal wealth, the large trader destabi-

lizes the market, since the prices either explode or collapse. Here, the utility

maximization efforts of the large trader lead to

sup
θ∈Φ

E [u (VT (θ))] =

{
1− exp (−α(V0 + p∗ [M ]T )) , p is bounded from above,

1, else.

Remark 3.35:

1. Due to Proposition 3.34, it is easy to find an example, in which the necessary

condition is not sufficient. Choose for example µ(x) = x and σ(x) = x2. Then

ϑ∗ = 0 satisfies the necessary condition p′(ϑ∗) = 0. As p′′(ϑ∗) = 2, ϑ∗ is a

local minimum of p. Due to Proposition 3.34, the constant trading strategy is

not optimal.
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2. Note that in the stable regime, there exists an equivalent local martingale mea-

sure for the large trader wealth process. Moreover, the ‘destabilization’ of the

market in the unstable regime can be achieved by a sequence of large trader

strategies such that for all of these wealth processes there exists an equivalent

local martingale measure. Finally, if M is a Brownian motion, the corre-

sponding wealth processes are also supermartingale unter the equivalent local

martingale measure.

3.5.2. Case study: An illiquid Bachelier model

Here, we discuss a concrete example in detail. It shows that, despite the absence of

arbitrage, the presence of a large trader may destabilise a financial market. There-

fore, absence of arbitrage alone is not enough to rule out unrealistic features when

modelling an illiquid financial market.

Consider a modified Bachelier model where the drift of the asset price is positively

influenced by the engagement of a large investor. One can think of this positive

influence being caused by momentum traders who react to the signal given by the

large investor increasing her stake. A similar Bachelier model (which contains in

addition a term modelling temporary impact) has been studied in the context of

illiquid markets e.g. in Schied and Schöneborn [48]. We would like to point out that

these illiquid Bachelier models are random field models. Therefore, they are much

more complex than the classical Bachelier model, in particular since the spatial

parameter will get replaced by dynamic trading strategies. The primitive family

(S (ϑ, .))ϑ∈R is given as

S (ϑ, t) = S0 + (µ+ κϑ) t+ σWt,

or, in differential notation,

S (ϑ, dt) = (µ+ κϑ) dt+ σ dWt,

where W is a Brownian motion and µ, κ, σ are positive parameters. The filtration

is supposed to be the smallest one fulfilling the usual conditions and containing the

one generated by W .

Remark 3.36: This model is not included in the model class studied by Kühn [36]

whose assumption 2.1 (‘Largeness is not favourable’) implies that the drift is non-

increasing in ϑ.

The dynamics of the discounted price process in the illiquid Bachelier model are

given by

P θ = P̃ + Iθ,
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where

P̃ = S0 + µt+

∫
σdWu,

Iθ = κ

∫
θ du.

Moreover, we have for θ ∈ Φ

VT (θ) = V0 +

∫ T

0

(
µ θu + κθ2

u

)
du+

∫ T

0

σθu dWu.

To analyse the model, we apply the same arguments as in Proposition 3.34. The

function p defined in (3.29) is a polynomial of order 2. In particular, we find that

−αp(x) = α
ασ2 − 2κ

2

(
x− µ

ασ2 − 2κ

)2

− αµ2

2(ασ2 − 2κ)
.

Clearly,

ϑ∗ =
µ

ασ2 − 2κ

satisfies the necessary condition p′(ϑ∗) = 0. If we define Qθ ∼ P as in (3.27), we find

that (for given initial wealth 0)

1− sup
θ∈Φ

E [u (VT (θ))] = − sup
θ∈Φ



−EQθ


exp


α

T∫

0

(
ασ2 − 2κ

2
θ2
u − µθu

)
du









(3.31)

= exp

(
− αµ2T

2 (ασ2 − 2κ)

)
inf
θ∈Φ

EQθ


exp


αασ

2 − 2κ

2

T∫

0

(
θu −

µ

ασ2 − 2κ

)2

du




 .

Therefore, utility maximization relies on the so–called stability condition

2κ < ασ2. (3.32)

(i) Unstable regime 2κ > ασ2: In this case the strategy ϑ∗ performs worst among

all strategies, while the expected utility grows with |ϑ| up to the maximum value.

This can be interpreted in a way that the impact of the strategy on the drift is so

substantial that the large investor buys as many shares as possible.

(ii) Stable regime 2κ < ασ2: The strategy ϑ∗ performs best under all strategies.

Moreover, it is the only strategy among all admissible ones which fulfils the necessary

optimality condition. In case the large trader chooses the candidate strategy ϑ∗, she

gains an expected utility of

1− exp

(
− αµ2T

2 (ασ2 − 2κ)

)
.

110



3.5. Utility maximization

We now want to compare the expected utility of the large trader with the optimal

utility in the classical Merton problem in this stable regime. Consider the Merton

problem where we face a hypothetical small investor with the same utility function

and initial wealth 0, and with given price process S (θ, .). We can calculate the

optimal strategy by substituting 0 for κ, and µ+ κθ for µ in the above calculations.

Given that the large trader is present in the market and behaves rationally, i.e.

chooses the constant strategy ϑ∗, it results that the small trader would choose a

constant strategy as well, namely

ψ = ψ (ϑ∗) =
µ+ κϑ∗

ασ2
.

His expected utility in that case would be

1− exp

(
−α

2ψ2 (ϑ∗)σ2T

2

)
= 1− exp

(
− αµ2T

2 (ασ2 − 2κ)

(
1 +

κ2

ασ2 (ασ2 − 2κ)

))
.

Therefore, the small investor would achieve a higher expected utility. If there was

no large trader around, which corresponds to the case θ = 0, the small trader would

hold an optimal portfolio of

ψ (0) =
µ

ασ2

stocks, and his expected utility in that case would be

1− exp

(
−µ

2T

2σ2

)
= 1− exp

(
− αµ2T

2 (ασ2 − 2κ)

(ασ2 − 2κ)

ασ2

)
.

Hence, the small investor purchases less stocks than a large investor would do, and

he achieves, in contrast to the case studied in Bank and Baum [4], only a lower

expected utility, compared to the large investor. The only exception would be the

case µ = 0. However, in this case a large trader could not benefit from the fact

that her actions could enlarge the drift of the price process and thereby change a

martingale into a submartingale.

(iii) Critical case 2κ = ασ2: it follows from (3.31) that the result depends on µ.

In case µ = 0, all strategies perform equally as the investor always gets the expected

utility of the zero strategy. For µ 6= 0 she can, like in the unstable regime, achieve

expected utility arbitrarily close to the maximum value of one. Yet, now her stake

has to have the right sign, depending on the sign of µ.
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A. Appendix

A.1. Strong non–linear integrators and the non–linear

stochastic integral

The purpose of this section is to give an overview of strong non–linear integrators and

the non–linear stochastic integral. For a detailed and complete introduction of these

concepts, we refer to Carmona and Nualart [10]. We consider a probability space

(Ω,F , P ) equipped with a filtration F = (Ft)t∈[0,T ] satisfying the usual conditions.

Moreover, T is a finite constant and F0 is trivial apart from null sets. Results

from the literature formulated for an infinite time horizon are used by applying the

corresponding result to the stopped process.

A.1.1. Simple integrands and the semimartingale topology

As in the case of the linear stochastic integral, the main ingredients to define the

stochastic integral are the simple integrands and the semimartingale topology. Once

the non–linear stochastic integral is defined for simple integrands, the non–linear

stochastic integral for general integrands is defined via a limit procedure.

Simple integrands

There are different ways to define simple integrands. This version is given in [10].

Definition A.1: Let θ be a predictable process with representation

θ (t) = θ−11{0} +
n∑

i=0

θi1(τi,τi+1] (t) , (A.1)

where 0 = τ0 ≤ τ1 ≤ ... ≤ τn+1 = T is a finite sequence of (Ft)–stopping times,

θ−1 ∈ Rd, and θi is for each i ∈ {0, . . . , n} a bounded, Fτi–measurable, Rd–valued

random variable. We call θ an extended simple integrand, if the random variables

θi take only finitely many values. An extended simple integrand is called simple

integrand, if the stopping times τi take only finitely many values. We denote the

space of all Rd–valued, extended simple integrands by Se
(
Rd
)
. The space of all Rd–

valued simple integrands is denoted by S
(
Rd
)
. For d = 1 the set S1 ⊂ S (R) is the

set of all simple integrands bounded by 1.
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The next result is well known. A proof can be found in [10, Proposition II.1.1].

Lemma A.2: Let L
(
Rd
)

be the space of Rd–valued, càglàd, adapted processes and

denote by bL
(
Rd
)
⊂ L

(
Rd
)

the subspace of bounded, Rd–valued, càglàd, adapted

processes. The closure of S
(
Rd
)

w.r.t. the ucp–convergence is the space L
(
Rd
)
.

The following lemma collects several results about càglàd, adapted processes.

Lemma A.3: Let (θn)n≥1 ⊂ L
(
Rd
)

and θ ∈ L
(
Rd
)
.

1. If θn → θ in ucp, then there exists a subsequence (still indexed by n) such that

(θn − θ)∗ → 01 a.s. for n→∞.

2. The sequence (τm)m≥1 of stopping times, where

τm := inf {t > 0 : ‖θt‖Rd ≥ m} ∧ T, m ≥ 1,

converges a.s. to T and satisfies P (τm < T )→ 0 for m→∞.

3. Let c > 0 and (θn)n≥1 ⊂ S
(
Rd
)
. For m ≥ 1 define (θm,n)n≥1 ⊂ Se

(
Rd
)

for all

i ≤ d via

(θm,nt )i :=

{
min

{
m+ c,

(
θnτm∧t

)
i

}
, on {(θn)i ≥ 0},

max
{
−m− c,

(
θnτm∧t

)
i

}
, on {(θn)i < 0}.

Then, for all m ≥ 1, the family {(θm,n)n≥1, θ
τm} is uniformly bounded by m+c.

Furthermore, if θn → θ in ucp, then

θm,n
n→∞−−−→
ucp

θτm , for all m ≥ 1.

4. There exists a sequence of extended simple integrands (θn) ⊂ Se
(
Rd
)
, a se-

quence (am)m≥1 ⊂ N, and a sequence of stopping times (τm)m≥1 ↑ T a.s. such

that the following conditions hold:

a) (θn − θ)∗ → 0 a.s. for n→∞.

b) P (τm = T )→ 1 for m→∞.

c) The family {(θτmn )n≥1, θ
τm} is uniformly bounded by am.

Proof: The first statement is well known. It implies in particular that almost all

paths of θ ∈ L
(
Rd
)

are bounded. This fact clearly implies the second statement.

The first part of the third statement holds by definition. As for m,n ≥ 1 and

0 < ε ≤ c
2

E

[
1 ∧ sup

s≤T
‖θm,ns − θτms ‖Rd

]
≤ P

(
sup
s≤T
‖θns − θs‖Rd > ε

)
+ E

[
1 ∧ sup

s≤T
‖θns − θs‖Rd

]
,

1For a measurable function f on [0, T ] we set f∗ := supt≤T ‖f(t)‖Rd .
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the assumption θn → θ in ucp ensures that the third statement holds. To prove the

last statement, note that Lemma A.2 ensures that there exists a sequence (θ̃n)n≥1 ⊂
S
(
Rd
)

such that θ̃n → θ in ucp. Using the notation of item 3., we define for c > 0

the sequence (θn)n≥1 ⊂ Se
(
Rd
)

of extended simple integrands by θn := θ̃n,n. Due

to item 1., there exists a subsequence of (θn)n≥1 ⊂ Se
(
Rd
)

that satisfies the desired

properties.

Definition A.4: Let θ ∈ L
(
Rd
)
. A sequence (θn)n≥1 ⊂ Se

(
Rd
)

of extended simple

integrands that satisfies all properties of Lemma A.3 4. is called convenient approx-

imating sequence of θ.

Semimartingale topology

The semimartingale topology is induced by the metric

dSM : S × S −→ R≥0

(X, Y ) 7−→ sup
H∈S1

E


1 ∧


sup

t≤T

∣∣∣∣∣∣

t∫

0

Hu d (X − Y )u

∣∣∣∣∣∣




 ,

where S denotes the space of R–valued semimartingales. We say that a sequence

(Xn)n≥1 of semimartingales converges to X in the semimartingale topology (nota-

tion: Xn −−→
SM

X), if dSM(Xn, X) −→ 0 for n→∞.

Theorem A.5: (S, dSM) is a complete metric space. In particular, the set of

continuous semimartingales Sc is a closed subset in (S, dSM), i.e. (Sc, dSM) is a

complete metric space.

Proof: The first statement is [39, II.7 Théorème]. The second statement follows

from the fact that convergence in the semimartingale topology implies convergence

in ucp.

Denote by Aloc the space of all càdlàg adapted processes, whose total variation

process is locally integrable. The next result is [39, IV.7 Théorème].

Proposition A.6: The space Aloc is closed in S. Moreover, for A ∈ Aloc we have

dSM(0, A) = E [1 ∧ V (A)T ], where V (A)T denotes the total variation of A on [0, T ].

In the following proposition, we collect several results on convergence in the semi-

martingale topology.

Proposition A.7: Let (Mn)n≥0 be a sequence of local martingales and let (An)n≥0

be a sequence of processes of finite variation. Define

Sn := Mn + An, n ≥ 0.
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If (An)n≥0 ⊂ Aloc, then An −−→
SM

A0 if and only if the total variation process V (An−
A0)T converges to zero in probability. Moreover, if Sn −−→

SM
S0 then the following

statements hold:

1. If (Sn)n≥0 ⊂ Sc then Mn −−→
SM

M0 and An −−→
SM

A0.

2. If f : R→ R is twice continuously differentiable then f(Sn) −−→
SM

f(S0).

3. If (Xn)n≥0 ⊂ S and Xn −−→
SM

X0 then XnSn −−→
SM

X0S0.

4. If (Xn)n≥0 ⊂ S and Xn −−→
SM

X0 then [Xn, Sn] −−→
SM

[X0, S0].

Proof: W.l.o.g. we assume that all processes are a.s. zero in 0. The first statement

follows from Proposition A.6. The second and third statement are [39, Remarque

IV.3] and [23, Proposition 4], respectively. Since

XnSn =
1

4

(
(Xn + Sn)2 − (Xn − Sn)2)

holds, item 2. implies the third item. Hence, it remains to prove the last item. Due

to the product rule, we have

[Xn, Sn] = XnSn −
∫
Sn− dX

n −
∫
Xn
− dS

n.

As convergence in the semimartingale topology implies ucp–convergence, we know

that

Xn
− −−→

ucp
X0
− and Sn− −−→

ucp
S0
−.

Due to 3. and [39, III.13 Théorème], the claim is proven.

A.1.2. Strong non–linear integrators

Here, we give a short overview of strong non–linear integrators. A detailed dis-

cussion can be found in [10]. Throughout this subsection, we consider a family

S = (S (ϑ, ·))ϑ∈Rd of R–valued semimartingales on (Ω,F ,F, P ).

In the linear stochastic integration theory the semimartingales build the biggest

class of ‘good integrators’. For the non–linear stochastic integral, the strong non–

linear integrators form the class of ‘good integrators’. In order to give a definition of

a strong non–linear integrator, we need the following notation. Let L
(
Rd
)

denote

the set of all deterministic, Rd–valued, càglàd functions on the interval [0, T ]. For

h ∈ L
(
Rd
)

and t ∈ (0, T ) we set h(t+) := limtn↓t h(tn) and h(t−) := limtn↑t h(tn).

Furthermore, the elementary non–linear stochastic integral of θ ∈ S
(
Rd
)

w.r.t.
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S = (S (ϑ, ·))ϑ∈Rd , where the representation of θ ∈ S
(
Rd
)

is given in (A.1), is

defined as

∫ t

0

S (θs, ds) := S(θ−1, 0) +
n∑

i=0

{S (θτi∧t+, τi+1 ∧ t)− S (θτi∧t+, τi ∧ t)} .

Definition A.8 ([10, Proposition II.3.1]): Let S = (S (ϑ, ·))ϑ∈Rd be a family of

semimartingales on (Ω,F ,F, P ). S is a strong non–linear integrator if the following

conditions hold:

1. For all t ∈ (0, T ] and all h, h′ ∈ L(Rd) we have

S(h, t) = S(h′, t)

outside of a P–null set (possibly depending upon h, h′ and t) whenever:

h(s) = h′(s) for all s ≤ t and h(t+) = h′(t+).

2. For all fixed t ∈ (0, T ] and K > 0, the set of random variables
(
η ·
∫
S(θ, ds)

)
t

with θ ∈ S
(
Rd
)
, η ∈ S and max {θ∗, η∗} ≤ K is bounded in probability.

3. For fixed t ∈ (0, T ], the mapping θ 7→
∫
St(θ, ds) is locally uniformly contin-

uous from S
(
Rd
)
, endowed with the ucp–topology, into S, endowed with the

semimartingale topology.

Remark A.9: This definition is one way to define strong non–linear integrators;

see [10, Proposition II.3.1]. For our purposes, the last item is the most important

one. It allows us to define the non–linear stochastic integral for càglàd–processes.

Note that Definition A.8 1. is a regularity property of the family of semimartin-

gales S = (S (ϑ, ·))ϑ∈Rd . The following order condition is introduced in [4]:

Condition (O): ϑ ≤ ϑ′ implies S (ϑ, ·) ≤ S (ϑ′, ·).
Due to the next lemma, condition (O) is sufficient for S to satisfy Definition A.8 1..

Lemma A.10: Let d = 1. S = (S (ϑ, ·)) satisfies the first item of Definition A.8,

if at least one of the following conditions hold for almost all ω ∈ Ω:

1. The mapping S(., ., ω) : R× [0, T ]→ R is jointly continuous.

2. S is continuous in both arguments and satisfies condition (O).

Proof: The first statement is clear. To prove the second statement, we show that

condition (O) implies joint continuity. We oppress the ω in the following proof. Let
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(
ϑ, t
)
∈ R × [0, T ]. Since S(., t) is continuous, for all ε > 0 we can choose an open

interval (ϑmin, ϑmax) 3 ϑ such that

∣∣S
(
ϑmin, t

)
− S

(
ϑmax, t

)∣∣ < ε

3
. (A.2)

Besides, S (ϑmin, .) and S (ϑmax, .) are continuous, too. Therefore, for all ε > 0 we

can find δ > 0 such that for all t ∈ (t− δ, t+ δ) ∩ [0, T ]

∣∣S (ϑmin, t)− S
(
ϑmin, t

)∣∣ < ε

3
as well as

∣∣S (ϑmax, t)− S
(
ϑmax, t

)∣∣ < ε

3
.

By the triangle inequality, we get for (ϑ, t) ∈ (ϑmin, ϑmax)× (t− δ, t+ δ) ∩ [0, T ]

∣∣S
(
ϑ, t
)
− S (ϑ, t)

∣∣ ≤
∣∣S
(
ϑ, t
)
− S

(
ϑ, t
)∣∣+

∣∣S
(
ϑ, t
)
− S (ϑ, t)

∣∣ .

Due to (A.2) and the monotonicity of S(., t), the first term in the above equation is

less than ε
3

for all ϑ ∈ (ϑmin, ϑmax). By monotonicity, the second term is less than
2ε
3

for all ϑ ∈ (ϑmin, ϑmax) and for all t ∈ (t− δ, t+ δ) ∩ [0, T ]. Indeed, suppose

∣∣S (ϑ, t)− S
(
ϑ, t
)∣∣ = S (ϑ, t)− S

(
ϑ, t
)
.

Due to monotonicity, we get

−2ε

3
≤ S (ϑmin, t)− S

(
ϑmin, t

)
+ S

(
ϑmin, t

)
− S

(
ϑmax, t

)

≤ S (ϑ, t)− S
(
ϑ, t
)

≤ S (ϑmax, t)− S
(
ϑmax, t

)
+ S

(
ϑmax, t

)
− S

(
ϑmin, t

)
≤ 2ε

3
.

A.1.3. Non–linear stochastic integral

Let θ ∈ S
(
Rd
)

with representation (A.1). In [10], the elementary non–linear stochas-

tic integral of θ w.r.t. a strong non–linear integrator S = (S(ϑ, .))ϑ∈Rd is defined by

∫ t

0

S (θs, ds) := S(θ−1, 0) +
n∑

i=0

{S (θτi∧t+, τi+1 ∧ t)− S (θτi∧t+, τi ∧ t)} .

Remark A.11: Let d = 1. If S(ϑ, .) = ϑS(0, .) for all ϑ ∈ R, the definition

coincides with the classical linear stochastic integral.

For strong non–linear integrators S, the non–linear stochastic integral of θ ∈
bL
(
Rd
)

is defined as the limit in the semimartingale topology.
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Definition A.12: Let S = (S(ϑ, .))ϑ∈Rd be a strong non–linear integrator, θ ∈
bL
(
Rd
)

and let (θn)n≥1 ⊂ S
(
Rd
)

denote a uniformly bounded sequence of simple

integrands such that

θn −−→
ucp

θ.

The non–linear stochastic integral
∫
S (θ, ds) of θ ∈ bL

(
Rd
)

w.r.t. S is the limit of(∫
S (θn, ds)

)
n≥1

in the semimartingale topology, i.e.

∫
S (θn, ds) −−→

SM

∫
S (θ, ds) .

Remark A.13: Since S is a strong non–linear integrator, the limit in the above

definition exists.

The next proposition provides an explicit expression for the non–linear stochastic

integral of an extended simple integrand.

Proposition A.14: Let S = (S(ϑ, .))ϑ∈Rd be a strong non–linear integrator and

let θ (t) = θ−11{0} +
∑n

i=0 θi1(τi,τi+1] (t) be an Rd–valued extended simple integrand.

Then
∫
S (θ, ds) is given by

∫ t

0

S (θs, ds) = S(θ−1, 0) +
n∑

i=0

{S (θτi∧t+, τi+1 ∧ t)− S (θτi∧t+, τi ∧ t)} .

Proof: To prove the statement, we construct a uniformly bounded sequence of

simple integrands (θm)m≥1 ⊂ S
(
Rd
)

that converges to θ in ucp. Define for i ∈
{0, . . . , n} the sequence (τmi )m≥1 via

τmi :=
b2mτic+ 1

2m
.

By definition τmi ↓ τi a.s. for i ∈ {0, . . . , n}. Furthermore, (τmi )m≥1 is a sequence of

stopping times. Indeed, let k ≥ 0 such that r ∈ [ k
2m
, k+1

2m
) ⊂ [0, T ) holds. Then

{τmi < r} =

{
τi <

k

2m

}
∈ Fr.

Since, by assumption, the filtration is right–continuous, we have for t ∈ [0, T )

{τmi ≤ t} =
⋂

r>t

{τmi < r} ∈ Ft.

Define (θm)m≥1 ⊂ S
(
Rd
)

via

θm (t) = θ−11{0} +
n∑

i=0

θi1(τmi ,τmi+1]
(t) .
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By definition θm → θ in ucp. Since S is a strong non–linear integrator, the se-

quence
∫
S (θms , ds) converges to

∫
S (θs, ds) in the semimartingale topology . Due

to the fact that the limit in the semimartingale topology and the limit in ucp are

indistinguishable, the following computation proves the statement:

∫ t

0

S (θms , ds)− S(θ−1, 0) =
n∑

i=0

{
S
(
θτmi ∧t+, τ

m
i+1 ∧ t

)
− S

(
θτmi ∧t+, τ

m
i ∧ t

)}

=
n∑

i=0

{
S
(
θi, τ

m
i+1 ∧ t

)
− S (θi, τ

m
i ∧ t)

}
−→
ucp

n∑

i=0

{S (θi, τi+1 ∧ t)− S (θi, τi ∧ t)}

=
n∑

i=0

{S (θτi∧t+, τi+1 ∧ t)− S (θτi∧t+, τi ∧ t)}

=

∫ t

0

S (θs, ds)− S(θ−1, 0).

Proposition A.14 leads to the following rules for stopping times and non–linear

stochastic integrals.

Lemma A.15: Let S = (S(ϑ, .))ϑ∈Rd be a strong non–linear integrator, let τ be a

stopping time, and θ ∈ bL
(
Rd
)
. Then

∫ τ∧t

0

S (θs, ds) =

∫ t

0

Sτ (θs, ds) =

∫ t

0

Sτ (θτs , ds)

=

∫ τ∧t

0

S (θτs , ds) =

∫ τ∧t

0

Sτ (θτs , ds) .

Proof: Due to Proposition A.14, it is straightforward to check that the statement

holds for all extended simple integrands. Since S is a strong non–linear integrator,

the result holds for θ ∈ bL
(
Rd
)

by an approximation argument.

Now we have all tools at hand to prove the existence of the non–linear stochastic

integral for θ ∈ L
(
Rd
)
.

Theorem A.16: Let S = (S(ϑ, .))ϑ∈Rd be a strong non–linear integrator, (θn)n≥1 ⊂
S
(
Rd
)
, θ ∈ L

(
Rd
)

and

θn −−→
ucp

θ, n→∞.

The sequence
(∫

S (θn, ds)
)
n≥1

is a Cauchy–sequence in the semimartingale topology.

Furthermore, there exists a semimartingale
∫
S (θ, ds) such that

∫
S (θn, ds) −−→

SM

∫
S (θ, ds) . (A.3)

Moreover,
∫
S (θ, ds) is independent of the approximating sequence.
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Proof: Let θn → θ in ucp. We have to prove that
(∫

S (θn, ds)
)
n≥1

is a Cauchy–

sequence in the semimartingale topology. Then Theorem A.5 ensures that there

exists a limit, denoted by
∫
S (θ, ds), such that (A.3) holds. This limit is independent

of the approximating sequence due to the third item of Definition A.8. Let N, n,m ≥
1, c > 0 and recall the notation of Lemma A.3. Since θn = θN,n and θm = θN,m on

{τN = T} ∩
{

sup
s≤T
‖θns − θms ‖Rd ≤

c

2

}
,

Proposition A.14 guarantees that on this set
∫
S (θn, ds) =

∫
S
(
θN,n, ds

)
and

∫
S (θm, ds) =

∫
S
(
θN,m, ds

)

holds. Hence, we get

dSM

(∫
S (θn, ds) ,

∫
S (θm, ds)

)
≤ P (τN < T ) +

+ P

(
sup
s≤T
‖θns − θms ‖Rd >

c

2

)
+ dSM

(∫
S
(
θN,n, ds

)
,

∫
S
(
θN,m, ds

))
.

As (θn)n≥1 ⊂ S
(
Rd
)

is a Cauchy–sequence in ucp, Lemma A.3 and Definition A.12

ensure that the sequence
(∫

S (θn, ds)
)
n≥1

is a Cauchy–sequence in the semimartin-

gale topology for all N ≥ 1.

Definition A.17: Let S = (S(ϑ, .))ϑ∈Rd be a strong non–linear integrator, θ ∈
L
(
Rd
)
, (θn)n≥1 ⊂ S

(
Rd
)
, and

θn −−→
ucp

θ, n→∞.

The semimartingale
∫
S (θ, ds) , defined in Theorem A.16, is called the non–linear

stochastic integral of θ ∈ L
(
Rd
)

w.r.t. S.

The last theorem ensures that most of the examples considered in Chapter 3 are

indeed strong non–linear integrators.

Theorem A.18: Let A be a non–decreasing, continuous, adapted process, M be a

continuous local martingale with E
[√

[M ]T

]
<∞, and µ, σ : Rd×R→ R be jointly

continuous functions. Let S = (S (ϑ, .))ϑ∈Rd be given by

S(ϑ, t) = Sϑ0 +

t∫

0

µ(ϑ, S(ϑ, u)) dAu +

t∫

0

σ(ϑ, S(ϑ, u)) dMu,

and suppose that for almost all ω ∈ Ω the mapping S(., ., ω) : Rd × [0, T ] → R is

jointly continuous. Then (S (ϑ, ·))ϑ∈Rd is a strong non–linear integrator.
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Proof: W.l.o.g. we assume that Sϑ0 = 0 for all ϑ ∈ Rd. Due to Lemma A.10, the

first item of Definition A.8 holds. To prove the second item, let K > 0 and define

the sequence of stopping times (τKn )n≥1 via

τKn := inf

{
t > 0 : sup

‖ϑ‖Rd≤K
|µ(ϑ, S(ϑ, t))| ∨ sup

‖ϑ‖Rd≤K
|σ(ϑ, S(ϑ, t))| ≥ n

}
∧ T. (A.4)

For all K > 0 the joint continuity ensures that P (τKn < T ) → 0 as n → ∞. Let

θ ∈ S(Rd), η ∈ S(R), and max {η∗, θ∗} ≤ K. W.l.o.g. we may and do assume that

θ (t) =
n∑

i=0

θi1(τi,τi+1] (t) and η (t) =
n∑

i=0

ηi1(τi,τi+1] (t) .

Then η ·
∫
S(θ, ds) is given by

(
η ·
∫
S(θ, ds)

)

t

=

=
n∑

i=0

ηiµ(θi, S(θi, τi))
(
Aτi+1∧t − Aτi∧t

)
+

n∑

i=0

ηiσ(θi, S(θi, τi))
(
Mτi+1∧t −Mτi∧t

)
.

If we set

µ̃u(η, θ) :=
n∑

i=0

ηiµ(θi, S(θi, τi))1(τi,τi+1] (u) ,

σ̃u(η, θ) :=
n∑

i=0

ηiσ(θi, S(θi, τi))1(τi,τi+1] (u) ,

we get
(
η ·
∫
S(θ, ds)

)

t

=

t∫

0

µ̃u(η, θ) dAu +

t∫

0

σ̃u(η, θ) dMu.

Let C > 0 and n ∈ N. A straightforward computation leads to

P

(
sup
t≤T

∣∣∣∣
(
η ·
∫
S(θ, ds)

)

t

∣∣∣∣ > C

)

≤ P
(
τKn < T

)
+

+ P


sup

t≤T

∣∣∣∣∣∣∣

τKn ∧t∫

0

µ̃u(η, θ) dAu

∣∣∣∣∣∣∣
>
C

2


+ P


sup

t≤T

∣∣∣∣∣∣∣

τKn ∧t∫

0

σ̃u(η, θ) dMu

∣∣∣∣∣∣∣
>
C

2


 .
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Furthermore, by the definition of τKn , Chebyshev’s inequality and the Burkholder–

Davis–Gundy–inequality, we can conclude that

P


sup

t≤T

∣∣∣∣∣∣∣

τKn ∧t∫

0

µ̃u(η, θ) dAu

∣∣∣∣∣∣∣
>
C

2


 ≤ P

(
AT >

C

2nK

)
,

P


sup

t≤T

∣∣∣∣∣∣∣

τKn ∧t∫

0

σ̃u(η, θ) dMu

∣∣∣∣∣∣∣
>
C

2


 ≤ C̃

2nK

C
E
[√

[M ]T

]
.

Combining these results, we get

P

(
sup
t≤T

∣∣∣∣
(
η ·
∫
S(θ, ds)

)

t

∣∣∣∣ > C

)

≤ P
(
τKn < T

)
+ P

(
AT >

C

2nK

)
+ C̃

2nK

C
E
[√

[M ]T

]
.

Since the r.h.s. of the inequality is independent of θ ∈ S(Rd), η ∈ S(R), and P (τKn <

T )→ 0 as n→∞, the second item of Definition A.8 holds (for c→∞). Hence, it

remains to prove the last item of Definition A.8. Let (θn) ⊂ S(Rd) be a Cauchy–

sequence w.r.t. ucp–convergence that is uniformly bounded by K and set τm := τKm .

For N, n,m ∈ N we have

dSM

(∫
S (θn, ds) ,

∫
S (θm, ds)

)

≤ P (τN < T ) + dSM

((∫
S (θn, ds)

)τN
,

(∫
S (θm, ds)

)τN)
.

As P (τN < T ) → 0 for N → ∞, it remains to prove that ((
∫
S (θn, ds))τN )n≥1 is a

Cauchy–sequence in the semimartingale topology for all N ≥ 1. To see this, note

that ((θn)τN )n≥1 is a Cauchy–sequence in the ucp–topology and
(∫

S (θn, ds)

)τN
=

∫
SτN ((θn)τN , ds) , ∀ n ≥ 1,

for all N ≥ 1. Due to the joint continuity of µ, σ, and S(ϑ, t), and the dominated

convergence theorem for semimartingales, [39, III.13 Théorème], we can conclude

that (
∫
SτN ((θn)τN , ds))n≥1 is a Cauchy–sequence in the semimartingale topology

for all N ≥ 1. Hence, the theorem is proven.

A.2. Miscellaneous results

Definition A.19: A function f : R≥0 −→ R≥0 is called subadditive, if for all

x, y ∈ R≥0

f (x+ y) ≤ f (x) + f (y)
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holds.

Lemma A.20: If f : R≥0 −→ R≥0 is a concave function such that f(0) = 0, then

f is subadditive.

Proof: Let x, y ∈ R≥0 and w.l.o.g. x > 0. Due to the concavity of f , we get

f (x) ≥ y

x+ y
f (0) +

x

x+ y
f (x+ y) ,

f (y) ≥ x

x+ y
f (0) +

y

x+ y
f (x+ y) .

Since f(0) = 0, adding up the two inequalities gives the desired result.

Lemma A.21: Let (µn)n≥1 be a bounded sequence of measures on (Ω,F). Then

there exists a probability measure P on (Ω,F) such that

∀n ∈ N : µn � P.

Proof: Since all measures dominate the zero–measure, we assume w.l.o.g. that

µn(Ω) > 0 for all n ∈ N. Define

µ̃n :=
1

µn(Ω)
µn, n ∈ N.

As µ̃n ∼ µn for all n ∈ N, it suffices to prove the lemma for the sequence (µ̃n)n≥1 of

probability measures. Choose (αn)n≥1 ⊂ R such that

∀n ∈ N : αn > 0 and
∞∑

n=1

αn = 1.

By construction the measure

P :=
∞∑

n=1

αnµ̃n

satisfies the desired properties.

Theorem A.22 (Continuous Mapping Theorem): Let (M1, d1), (M2, d2) be com-

plete metric spaces and (Ω,F , P ) be a probability space. Further, let

X,Xn : (Ω,F , P ) −→ (M1, d1), n ∈ N,
h :(M1, d1) −→ (M2, d2)

be measurable functions such that P (X ∈ Dh) = 0, where Dh ⊂ M1 denotes the set

of discontinuity points of h. Then

Xn → X, in P–probability =⇒ h (Xn)→ h (X) , in P–probability.
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Proof: The proof of [53, 2.3 Theorem] translates directly in this slightly more gen-

eral setting.

Lemma A.23: For all n ∈ N let gn, g, fn, f be measurable functions on the proba-

bility space (Ω,F , P ). Further, let gn, g ≥ 0 P–a.s. for all n ∈ N,

fngn → fg, in P–probability and gn → g, in P–probability.

Then

1{g 6=0}f
2
ngn → 1{g 6=0}f

2g, in P–probability.

Proof: Due to Theorem A.22 and the assumptions, we have

f 2
ng

2
n → f 2g2, in P–probability and

1

gn + 1{g=0}
→ 1

g + 1{g=0}
, in P–probability.

Applying Theorem A.22 again, we get

f 2
ng

2
n

gn + 1{g=0}
→ f 2g2

g + 1{g=0}
, in P–probability.

This implies the desired result

1{g 6=0}f
2
ngn = 1{g 6=0}

f 2
ng

2
n

gn + 1{g=0}
→ f 2g2

g + 1{g=0}
1{g 6=0} = 1{g 6=0}f

2g, in P–probability.
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Index of Symbols

Stochastic Processes

H.M , stoch. integral of predictable integrand w.r.t. loc. martingale, 7

H•cM , compensated stoch. integral of optional integrand w.r.t. loc. martingale,

9

ϑ · S, vector–stoch. integral of predictable integrand w.r.t. semimartingale, 34∫
S (θs, ds), non–linear stochastic integral . . .

. . . w.r.t. simple integrand, 118

. . . w.r.t. càglàd–integrand, 121

P θ, price process affected by a . . .

. . . simple large trader strategy, 77

. . . càglàd large trader strategy, 81

〈M,M〉, Rd × Rd–valued, predictable quadratic covariation, 38

〈M〉, Rd–valued, predictable quadratic variation, 38

〈M〉Q, Rd–valued, predictable quadratic variation under Q ∼ P , 39

V (A)T , total variation of A on [0, T ], 115

Classes of Stochastic Processes

A+, A+
loc, adapted, non–decreasing processes with (locally) integrable variation,

A = A+ 	A+,

Aloc = A+
loc 	A+

loc,

V , adapted processes of finite variation,

M, Mloc, (locally) uniformly integrable martingales,

M2, M2
loc, (locally) square–integrable martingales,

Lloc (dM c), set of local martingales that are stoch. integrals w.r.t. M c, 59

Lloc
(
dMd

)
, set of local martingales that are stoch. integrals w.r.t. Md, 59

Lσ (⊥M), set of local martingales L s.t. [L,M ] is a σ–martingale, 59

Sc, set of continuous semimartingales, 115

S2
loc(Q), set of locally square–integrable Q–semimartingales, 37

S, set of semimartingales, 115

Sets of integrands w.r.t. a local martingale M or a semimartingale S

Lm(M), predictable integrands s.t. K.M is a local martingale, 7
pL(M), pLloc(M), predictable integrands s.t. K.M is a (local) martingale, 12
pL2 (M), pL2

loc (M), predictable integrands s.t. K.M is a (locally) square–integra-

ble martingale, 21
oL (M), oLloc (M), optional integrands s.t. H•cM is a (local) martingale, 11
oL2 (M), oL2

loc (M), optional integrands s.t. H•cM is a (locally) square–integrable

martingale, 21

L(S), predictable integrands s.t. ϑ · S is a semimartingale, 34
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L
(
Rd
)
, space of Rd–valued, càglàd, adapted processes, 114

bL
(
Rd
)
, space of bounded, Rd–valued, càglàd, adapted processes, 114

Se
(
Rd
)
, space of all Rd–valued, extended simple integrands, 113

S, space of all Rd–valued, simple integrands, 113

S1, set of all R–valued, simple integrands, bounded by 1, 113

Other Symbols

O, optional σ–algebra,

P , predictable σ–algebra,

Lploc
(
Ω̄,P , µ

)
, 46

L1
σ

(
Ω̄,O, d[M ]

)
, 46

dSM, Émery metric, 115

(S, F,Ψ), class of all reasonable large trader market models for (S, F ), 83

(S, F, C,Ψmin), class of all minimal large trader market models for (S, F, C), 100
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Index of Terminology

admissible strategy

. . . a–admissible, 34

. . . for the large trader, 104

assumptions

Assumption (NA-I), 82

Assumption (NA-II), 86

Assumption (P-I), 77

Assumption (P-II), 85

conditions

Condition (O), 78

stability condition, 110

convenient approximating sequence of θ ∈ L
(
Rd
)
, 115

decompositions of a local martingale

Kunita–Watanabe decomposition, 15

natural Kunita–Watanabe decomposition, 54

Radon–Nikodym decomposition, 18, 19

floating martingale density, 70

integrands / strategies

minimal representation of simple integrand, 78

simple integrand, 113

extended simple integrand, 113

large trader market model (LTMM)

. . . minimal (LTMM), 99

. . . reasonable (LTMM), 82

local orthogonal projection, 23

minimal martingale measure, 41

non–linear stochastic integral

. . . w.r.t. a càglàd–integrand, 121

. . . w.r.t. a simple integrand, 118

. . . w.r.t. an extended simple integrand, 119

regime

stable regime, 107
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unstable regime, 107

semimartingale decomposition w.r.t. (λ, η), 63

strong non–linear integrator, 117

structure conditions

floating structure condition (FSC), 70

minimal structure condition (MSC), 52

natural structure condition (NSC), 54

strong structure condition (SSC), 62

structure condition (SC), 40

weak structure condition (SC′), 38

tame strategy, 100
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chouk–Kunita–Watanabe”. In: J. Azéma, M. Émery, and M. Yor, eds. Sémi-
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[40] P. A. Meyer. “Un cours sur les intégrales stochastiques”. In: P. A. Meyer, ed.
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