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A B S T R A C T

The work at hand deals with the simulation of flow in nanopores.
Nanopores may serve as the ultimate tool for analyzing DNA and
biomolecules due to their label-free single-molecule approach. This
thesis aims at providing an efficient numerical approach and simula-
tions to yield a better understanding of the physics inside nanopores
and hence enable rational design.

The model is based on a steady-state continuum model, namely the
Poisson-Nernst-Planck-Stokes (or drift-diffusion-Stokes-Poisson) sys-
tem. Since boundary and interface conditions are not straightforward,
they are discussed explicitly.

The computational method for solving the system of partial differ-
ential equations relies on the finite element method. An efficient nu-
merical approach was developed in order to increase accuracy of the
solutions while keeping memory requirements and computational
time low. The approach involves a modified Newton’s method and
adaptive mesh refinement. Due to the axisymmetric nature of nano-
pores, most simulations are performed in cylindrical coordinates. The
implementation is based on the free software package FEniCS to be
capable of steering the numerical solution process.

In order to validate the modeling approach and to gain further
insights into the physics, simulations are performed. Two state-of-
the-art nanopores are examined in detail, a small DNA origami and a
larger solid-state nanopore. The focus lies on simulations of the forces
acting on molecules and on reproducing current-voltage curves. Cur-
rent simulations indicate that physical parameters have to be carefully
examined inside the pore so that simulation and experiment agree.
Furthermore, simulations of the forces acting on a molecule are pre-
sented and compared with forces calculated under the assumption
of a point-like molecule. A force field is shown to demonstrate the
possibility of a comprehensive simulation of nanopores as stochastic
sensors.
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Z U S A M M E N FA S S U N G

Die vorliegende Arbeit beschäftigt sich vor allem mit der Simulati-
on des Ionenflusses in Nanoporen. Nanoporen könnten dank ihrer
einfachen Ansatzes die Sequenzierung von DNA und die Analyse
von Biomolekülen revolutionieren. In dieser Arbeit wird sowohl eine
effiziente numerische Methode zur Lösung der partiellen Differential-
gleichungen als auch eine Übersicht über die Simulationsergebnisse
präsentiert. Dadurch soll ein besseres Verständnis der ablaufenden
physikalischen Vorgänge ermöglicht werden.

Die Modellgleichungen sind durch ein zeitunabhängiges System
partieller Differentialgleichungen gegeben, den stationären Poisson-
Nernst-Planck-Stokes (oder Drift-Diffusions-Stokes-Poisson) Gleichun-
gen. Die Wahl der Randbedingungen ist nicht trivial und wird expli-
zit diskutiert.

Die numerische Methode zur Lösung dieser Gleichungen basiert
auf der Methode der finiten Elemente und dem Newton-Verfahren.
Die Methode wird weiters optimiert durch eine Adaptierung des ver-
wendeten Gitters. Dadurch werden Rechenzeit und Aufwand niedrig
gehalten, ohne Genauigkeit zu verlieren. Da Nanoporen oftmals ro-
tationsymmetrisch aufgebaut sind, werden die Gleichungen auch für
zylindrische Koordinaten formuliert und numerisch gelöst. Das freie
Software-Paket FEniCS wurde zur Implementierung genützt, um den
numerischen Lösungsprozess steuern und untersuchen zu können.

Die Simulationen werden für zwei Nanoporen, einer kleinen bio-
logischen und einer größeren Solid-State Nanopore, genauer unter-
sucht. An Hand von Strom-Spannungs-Kennlinien wird das Modell
validiert. Gewisse Parameter müssen sorgfältig bestimmt werden, um
Übereinstimmung zwischen Simulation und Experiment zu erhalten.
Außerdem werden die Kräfte auf ein räumlich ausgedehntes Molekül
für verschiedene Positionen simuliert. Die dadurch berechneten Kräf-
te werden unter anderem mit denen eines punktförmigen Moleküls
verglichen. Ein Kraftfeld wird berechnet, um die Möglichkeit einer
umfassenden Simulation von Nanoporen als Sensoren zu zeigen.
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1
I N T R O D U C T I O N

Nanopores excel at label-free single-molecule detection, including
small molecules as well as charged polymers such as DNA and RNA.
Thus, major applications of nanopores include DNA and RNA se-
quencing [41, 18, 11, 21, 7] and stochastic sensing of molecules [9, 70].
These applications can be summarized as nanopore analytics.

1.1 Nanopore Analytics

Nanopore analytics is based on modulations of ionic currents caused
by molecules entering the nanoscale channel in the nanopore device.
A molecule inside the channel briefly changes the electrical resistance
of the nanopore system. A nanopore system typically consists of a
nanopore, a tiny hole, inside a membrane, which divides two rela-
tively large electrolyte reservoirs. The basic setup of a nanopore is
shown in Figure 1. In each of the reservoirs an electrode is immersed

membrane

electrolyte
+

− A

molecule

Figure 1: Basic setup, slightly modified from [58].

and a trans-membrane potential is applied, leading to an ionic cur-
rent. The current is called open pore current if there is no particle
inside the channel. Charged particles are pulled through the pore
by the electrical field. If a particle enters the pore, it alters the ionic
current due to its physical size and characteristics. Hence, particles
can be detected by their associated current modulations. The princi-
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2 introduction

ple is comparable to that of a Coulter counter. The simplicity of the
approach makes nanopore analytics attractive.

Today there is a diverse field of man-made nanopores ranging from
organic to inorganic materials [38]. The review articles [32, 38, 69,
57] give an accessible overview of the fast-growing research field. A
relatively new type of nanopores are DNA origami nanopores, con-
sisting of a self-assembled DNA spanning a lipid bilayer [14, 65, 46]
or inserted into solid-state nanopores [11].

1.2 State-of-the-Art Simulations

The experimental research stimulates simulations of nanopores as
sensors to provide a better quantitative understanding of the physics,
which in turn can be enabled for rational design. There are several
techniques for simulating nanopores, ranging from continuum mod-
els to Brownian dynamics (BD), also called stochastic dynamics, up
to all-atom molecular dynamics (MD) models. The techniques differ
largely in computational complexity, as in MD all atoms are treated
explicitly, thus leading to high computational costs and limiting sim-
ulation time [55]. Also their scope of applications differs. MD simula-
tions are well-suited for tiny nanopores, however, continuum models
surpass them for bigger nanopores [23].

In this thesis the focus lies on a continuum model. State-of-the-art
simulations relying on continuum models can be found in numerous
papers. Most nanopore simulations with continuum models done so
far use the commercial software COMSOL Multiphysics [71, 49, 26,
56, 54, 2, 47]. In contrast, simulations in this thesis are done with
FEniCS, a free software package, which provides a flexible tool for
the solution of partial differential equations (PDEs). Furthermore, it
allows a thorough understanding and investigation of the numerical
approach used in the solution process.

Different aspects of nanopore analytics have been analyzed, rang-
ing from current simulations [72] to simulations of the effective driv-
ing force [54], which pushes the particle through the pore. Another
interesting aspect for conical nanopores is ion current rectification
(ICR) [66, 22], which leads to asymmetric current-voltage (IV) mea-
surements. The effect of ICR is that IV curves are not symmetric
anymore with regard to the applied voltage. This means that the
current at negative voltages is different in magnitude than at posi-
tive voltages, in this case IV curves deviate from Ohmic behavior and
become more diode like [2, 49, 71].
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The targeted continuum model in this thesis consists of several
PDEs, namely the Poisson-Nernst-Planck-Stokes (PNPS) equations.
The PNPS equations are also called the drift-diffusion-Stokes-Poisson
(DDSP) equations, see [34], where transport equations for nanopores
are discussed. In short, the PNPS system essentially describes the
electric field, the concentrations of the ions and the movement of the
fluid under the applied electric potential. The PNPS equations are
presented and solved numerically in 3D. One complication in the nu-
merical solution process stems from the unstructured mesh due to
the irregularities of realistic geometries. The irregularity of the mesh
steered the numerical approach towards finite element method (FEM).
Another complication is introduced by the instability of the Poisson-
Nernst-Planck (PNP) system at relatively high charges or currents.
This can be understood in terms of the local uniqueness of the PNP
system.

In a bigger picture the ultimate goal is a comprehensible simulation
of a stochastic single molecule sensor based on nanopore technology.
This can be done by coupling the deterministic forces acting on the
molecule with the indeterministic Langevin equation accounting for
the Brownian motion of the molecule, similar to [40], but allowing
off-centered particle paths. With these two ingredients plus a rate
dependent simulation of the binding kinetics one obtains a mathe-
matical description for a stochastic sensor. Thus, for a comprehensive
sensor simulation a quantitative description of the flow and the forces
acting on the molecule is necessary.

As the PNPS equations achieve equilibrium quickly, their character-
istic time variable is smaller than the characteristic time variable of
the Langevin equation. Thus, it is sufficient to solve the steady state
PNPS equations for certain particle positions. For the slower stochas-
tic motion of the particle the stationary solutions are then employed
to solve the time dependent Langevin equation. In practice, the forces
are only calculated for a specific set of particle positions in the fluid
domain and are then interpolated on the whole fluid domain. The ma-
jor benefit is that for a known configuration transient pore-molecule
simulations are feasible within short computational time.

The focus of this thesis is to simulate the flow in nanopores. The
thesis centers on the steady state part of the model described above.
The steady state model includes a variety of interesting features, a
selection of those is presented in this thesis. Since the numerical
method chosen for the PDE system is an essential feature, it receives
extra attention.
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1.3 Overview of the Thesis

In Chapter 2, the assumptions on the model and the model equations
are addressed. Boundary conditions for the continuum model are
discussed in detail and an approximation of the model equations is
introduced.

In Chapter 3, the numerical approach is presented. As the approach
is based on FEM, the FEM method is shortly discussed. The actual
solution process couples Newton’s method and a fixed-point method
to guarantee fast convergence. The convergence behavior and effec-
tiveness of this approach is discussed.

In Chapter 4, simulations of realistic structures are presented. Two
nanopores, one solid-state and one DNA origami pore, are discussed
in detail. The focus lies on simulations of the current flow and on the
computation of the driving forces.

Finally, conclusions are drawn in Chapter 5. In the appendix a list
of physical constants and material parameters is provided.



2
M O D E L

The goal in this chapter is a mathematical description of the move-
ment of ions, water and large molecules inside a nanopore. Thus,
the interest is in physical quantities such as the ionic currents and
the effective force acting on a molecule, described in detail in Sec-
tion 2.3. In order to be capable of calculating these quantities a de-
scription of the electrical field, the ionic concentrations and the flow
of the solvent is necessary. The Poisson-Nernst-Planck-Stokes (PNPS)
equations model the physics and are addressed in the upcoming Sec-
tion 2.1. Later on boundary conditions (BCs) and interface conditions
(ICs) for the PNPS system are specified in Section 2.2. An approxima-
tion of the electric field and the ionic concentrations is described in
Section 2.4.

2.1 The Poisson-Nernst-Planck-Stokes

(PNPS) System

The physical laws governing activity in a nanopore are modeled by
a system of partial differential equations (PDEs). As outlined in the
introduction, only a steady-state problem is examined. Hence some
notes on the legitimacy of this approach will follow shortly. The
problem can be seen as a multiscale problem in the following way.
The translocation of a protein through the pore takes much longer
than the time needed for the equilibrium of the PNPS system. This
can be seen by looking at typical relaxation times of the different
particles. Typical timescales for various processes are given in [59].
For example, water relaxes in around 10−14 s and ions in around 10−11

s. The typical timescale for the molecule relaxation is bigger than for
ions, as molecules are larger. A molecule with radius bigger than 1
nm relaxes around an order of magnitude slower. Thus, the model
for ions and water molecules is assumed to be time-independent.

As aforementioned, the system of PDEs should describe the electro-
statics, the ion currents and the fluid flow. The model of choice con-
sists of the Poisson, the Nernst-Planck (NP) and the Stokes equations;
together they form the PNPS equations. In semiconductor physics,
the NP equations are commonly referred to as the drift-diffusion

5



6 model

equations, thus another term for the PNPS system is drift-diffusion-
Stokes-Poisson (DDSP) system [34].

Let us begin with the electrostatics, they are described by the well-
understood Poisson equation

−∇ · (ε∇φ) = ρ0 + e(c+ − c−) , (2.1)

where ε is the permittivity, φ is the electrostatic potential, e is the
(positive) elementary charge and ρ0 is the permanent charge density,
c+ and c− are the absolute concentrations of positive and negative
ions, respectively. The permittivity ε can be written as ε = ε0εr,
where ε0 is the vacuum permittivity and εr the relative permittivity
of the material. The Poisson equation is solved on the whole domain
Ω, which is the union of the fluid domain Ω f and (possibly various)
solid domains Ωi.

The ion flow in the fluid domain Ω f is described by the NP equa-
tions. Only the case for two ion species with valence ±1 is considered,
for example a solution of K+ and Cl−. The NP equations read

∇ · j+ = 0 , (2.2a)

∇ · j− = 0 , (2.2b)

j+ = −e
(

D+∇c+ + µ+c+∇φ− c+v
)

, (2.2c)

j− = e
(

D−∇c− − µ−c−∇φ− c−v
)

. (2.2d)

Here j+ and j− are the electric current densities of positive and neg-
ative ions, respectively, D+ and D− are the ion diffusion coefficients
and µ+ and µ− are the electrical ion mobilities of positive and neg-
ative ions, respectively. The terms c+v and c−v are nonstandard in
the NP equations (2.2a) - (2.2d) and provide the link to the incom-
pressible Navier-Stokes equations. The Navier-Stokes equations in
conservative form on Ω f read

−∇ ·
(

η
(
∇v +∇vT)− ρfluid(v⊗ v)− pI

)
= fS ,

fS = −e(c+ − c−)∇φ ,
(2.3)

∇ · v = 0 , (2.4)

where v is the velocity field, ρfluid the fluid density, η the viscosity, p
the pressure. The right hand side fS of (2.3) represents the electric
force on ions in the solvent. Equation (2.3) is derived from the prin-
ciple of momentum conservation, whereas mass conservation infers
the latter equation (2.4). Equation (2.4) is called the incompressibility
equation in fluid mechanics. In order to justify an approximation of
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the Navier-Stokes equation with the Stokes equations the Reynolds
number Re has to be orders smaller than 1. The Reynolds number
Re is defined by Re := ρfluidvL

η , where v is the characteristic velocity
and L the characteristic length. The fact that Re ≈ 10−4 � 1 justifies
neglecting the quadratic velocity term in (2.3).

The conservative formulation or strain tensor formulation of the
Stokes problem reads

−∇ · σ = fS ,

∇ · v = 0 ,
(2.5)

with

σ := −pI + η(∇v +∇vT) = −pI + 2η sym(∇v) (2.6)

denoting the stress tensor, where sym(∇v) := 1
2 (∇v +∇vT) is the

symmetric gradient.
By letting the incompressibility condition explicitly enter the mo-

mentum equation in the conservative Stokes system, the momentum
equation can be written in the more common form

−η∆v +∇p = fS ,

∇ · u = 0 .
(2.7)

The Stokes system provides an adequate model of the viscous flow in
the pore.

The PNPS system, (2.1)- (2.2d) and (2.5) or (2.7), is a coupled system
of semilinear elliptic PDEs for the unknowns φ, c+, c−, v and p. A
derivation of the PNPS model can be found in [64], which is inspired
by [15]. In the former citation existence and uniqueness of solutions
for a time-dependent PNPS problem are also analyzed.

The PNPS equations can be reformulated in terms of molar concen-
trations c+ and c− by slightly abusing notation and using the Faraday
constant F

0 = −∇ · (ε∇φ)− F(c+ − c−)− ρ0 , (2.8a)

0 = ∇ · j± , (2.8b)

j± = ∓F(D±∇c± ± µ±c±∇φ− c±v) , (2.8c)

0 = −η∆v +∇p + F(c+ − c−)∇φ , (2.8d)

0 = ∇ · v . (2.8e)

The limitations of the Poisson-Nernst-Planck (PNP) model are dis-
cussed in Section 4.3. The relationship between diffusion coefficients
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and electrical ion mobilities is given by the Einstein-Smoluchowski
relation

µ± =
eD±

kBT
. (2.9)

This relationship allows us to rewrite the current densities in the fol-
lowing form

j± = ∓F
(

D±(∇c± ± e
kBT

c±∇φ)− c±v
)

. (2.10)

Furthermore, the ion mobility in the pore is lower according to [36]
due to the confined structure. This means that the diffusion constant
D is modeled by different constants in and outside the pore. This
issue is going to be discussed in Chapter 4.

2.2 Boundary and Interface Conditions

In this section the BCs of the PDE system are specified. Furthermore,
to include permanent charges sitting on the interfaces of charged
solid parts and the fluid ICs are employed. Hence, the permanent
charges of the membrane and the DNA are included via surface
charges at the interfaces. The surface charge ρS is assumed to be
constant along the interface with a value according to the adjacent
materials, e. g. ρDNA for the DNA boundary. The interfaces are de-
noted by Γi = Ω f ∩Ωi, where i is some solid domain, e. g. SiN.

For the Poisson equation the interface condition[
ε∇φ · n

]
Γi
= ρS

∣∣
Γi

(2.11)

holds. Here [ψ]Γ = ψ(+)− ψ(−) denotes the jump operator, which
is unequal to zero for discontinuous functions ψ at Γ. The charge of
the molecule QM is smeared over the whole volume VM of the ball,
i. e. ρS|ΓM = 0 and ρ0 = QM/VM. Even if there is no surface charge
present, the interface conditions result in a discontinuous electric field
−∇φ across the interfaces for different permittivities.

Coming back to the BCs, the applied potential of the electrodes is
included via Dirichlet boundary conditions on the top and bottom
boundary. To make the computational effort smaller, the computa-
tional domain is truncated to the vicinity of the pore. That it is rea-
sonable to still apply the biased voltage in a vicinity of the pore is
outlined in the following paragraph.

In order to keep the approach simple, the solvent is modeled by a
series of resistors. This means that for an applied electrode potential
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U the transmembrane potential near the pore can be calculated by
treating the whole system as a series circuit. In a series circuit, the
current is the same at each point in the circuit, thus by Ohm’s law

U = Rtotal I = 2R f I + Rp I , (2.12)

where R f is the resistance of the solvent above and below the pore
and Rp is the resistance of the solvent in the pore. The resistance R
of an electrolyte is given by

R =
l

κS
,

where l is the length of the considered domain, S the area of its cross-
section and κ the local electrolyte conductivity. The conductivity κ of
the solvent is known and given by [54]

κ = F(µ+c+ + µ−c−) . (2.13)

The pore resistance Rp for a conical pore can be approximated by

Rp =
4

πκ

lp

dpDp
, (2.14)

where lp, dp and Dp are the pore’s length and the diameter of the pore
at the narrow tip and at the larger base, respectively. This approxi-
mation is a very simple geometric mean approximation, also used in
[6] for a conical pore. For the fluid resistance R f , a cylindrical elec-
trolyte reservoir of length l f = 1µm and diameter d f = D f = 1µm is
considered. Then, if lp ≈ 10 nm and DP ≈ 10 nm ≈ dp, it holds that

lp

dpDp
= 108 � 106 =

l f

d f D f
.

Thus, the potential drop of the solvent outside the pore is neglected
and the applied potential U is prescribed as a transmembrane po-
tential ∆V = U in the vicinity of the pore. Moreover, the presented
estimation neglects dielectric double layers near charged boundaries,
especially the electrical double layer near the electrodes. Dirichlet
BCs for the potential on the top and bottom boundary of the compu-
tational domain were used. In the simulations, the top boundary is
grounded and at the bottom of the computational domain the poten-
tial drop ∆V is set as an inhomogeneous Dirichlet BC. At the side
boundaries insulating BCs are specified, assuming that these bound-
aries are far enough away and hence are not influencing the electrical
potential near the pore.
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For the NP equations, homogeneous Neumann BCs

j · n = 0,

are imposed on the interfaces Γi, where n is the outward normal of
the fluid domain. This corresponds to the requirement that there
should be no ionic flow through the fluid-solid interfaces. At the top
and bottom fluid boundaries of the computational domain inhomo-
geneous Dirichlet BCs are applied to keep the concentration at the
reservoir at bulk value.

The BCs for the Stokes equations are a mix of no-slip and stress-
free BCs. On the surfaces of the solid no-slip BCs given by v = 0 are
prescribed. The no-slip BCs can be seen as homogeneous Dirichlet
boundary conditions for the velocity v. On the top, side and bot-
tom boundaries no-stress or stress-free BCs are chosen. As remarked
in Section 12.1.4 in [48], the appropriate choice for modeling flow
into a large reservoir are stress-free BCs σ · n = 0. These BCs are
vanishing in the case of the strain tensor formulation of the Stokes
problem. So they can be seen as “do-nothing” BCs for the conserva-
tive formulation. The term “do-nothing” refers to artificial boundary
conditions that are implicitly given in the variational forms [35]. They
differ from the natural flow condition (∇v− pI) · n = 0. For the non-
conservative form of the Stokes problem (2.7), the natural outflow
conditions are analogous to Neumann BCs for the Poisson problem.
The natural flow BCs are also referred to as the “do-nothing” BCs be-
cause with these BCs, the Neumann boundary term vanishes in the
non-conservative weak formulation of the Stokes problem.

2.3 Physical Quantities of Interest

As mentioned in the beginning of this chapter, the goal is to compute
the effective force acting on a molecule and the pore current. The
effective force Feff is composed of a bare electric force Fel and a drag
force Fdrag:

Feff = Fel + Fdrag . (2.15)

The electric force originates from the action of the electric field on the
charged molecule. The electric field is induced by the electrodes and
the charged surface inside the pore. It is given by

Fel = −
∫

M
ρM∇φ dx . (2.16)

Molecule charges are not modeled as discrete point charges. Instead,
they are smeared out across the whole molecule resulting in a volume
charge density ρM.
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The drag force sums up the interactions of the solvent particles with
the molecule and is given by

Fdrag =
∫

∂M
n ·
(
− η

(
∇v +∇vT

)
+ pI

)
ds . (2.17)

The drag force can also be expressed as the sum of the viscous stress
force

Fshear = −2
∫

∂M
n · η sym(∇v) ds (2.18)

and the pressure stress force

Fp =
∫

∂M
n · pI ds . (2.19)

The current I is given by surface integrals over a cross-section C of
the nanopore and is positively oriented along the z-direction

I =
∫

C

(
j+z + j−z

)
ds . (2.20)

2.4 The Poisson-Boltzmann (PB) Equation

The Poisson-Boltzmann (PB) equation is an often-used approximation
for the PNP equations in the solvent. In this section no hydrodynamic
coupling is assumed, i. e. v = 0 in the PNP equations. The PB equa-
tion is capable of providing a good estimate for the ion concentrations
in electrical double layers at equilibrium and at low voltages. The lin-
ear PB equation is also called Debye-Hückel approximation due to
their classic paper [24].

In the PB approximation, the ion concentrations are assumed to
satisfy equilibrated Boltzmann distributions

c± = c0 exp
(
∓ eφ

kBT

)
, (2.21)

with a potential φ. The zero in potential corresponds to the bulk
concentration c0, essentially φ equals zero far away from any charged
object. Plugging (2.21) into (2.8a) yields the nonlinear PB equation

−∇ · (ε∇φ) = −2Fc0 sinh
( eφ

kBT

)
,

where permanent charges are omitted for simplicity of presentation.
Another often-used simplification is the linearization of the ion con-
centration in the Boltzmann distribution (2.21) by assuming eφ

kBT � 1.
Then

c± = c0 exp
(
∓ eφ

kBT

)
≈ c0

(
1∓ eφ

kBT

)
. (2.22)
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Using this linear approximation in (2.8a) yields the linearized PB
equation,

−∇ · (ε∇φ) = F(c+ − c−) = −2Fc0
eφ

kBT
. (2.23)

For constant permittivity this can be simplified to

∇ · (∇φ) =
φ

λ2
D

.

where

λD =

√
εkBT
2eFc0

is the so-called Debye length. The PB approximation can also be
viewed in the following way. Instead of prescribing flux conservation
in (2.8b), vanishing fluxes are prescribed everywhere, i. e. j± = 0
in (2.10). If permanent charges are included, the linear PB equation
reads

−∇ · (ε∇φ) = −2Fc0
eφ

kBT
+ ρ0 , (2.24)

with appropriate boundary and interface conditions.
The PB approximation is actually not a direct part of the model.

But it is used later for mesh prerefinement, cf. Section 3.6.2, as the PB
equation provide a computationally cheap approximation to the PNP
system.



3
M E T H O D S

In order to solve the system of partial differential equations (PDEs)
the finite element method (FEM) was employed. One of the major
advantages of FEM is that it can handle irregularities in realistic ge-
ometries. The problem of resolving a complicated geometry is passed
down to mesh generators. There exist FEM packages which enable
an easy and simple implementation, e. g. FEniCS [50].

The Poisson-Nernst-Planck-Stokes (PNPS) system was solved itera-
tively by a hybrid approach. This means that the numerical solution
was computed by using a fixed-point iteration consisting of solving
alternatively a Newton step of the Poisson-Nernst-Planck (PNP) sys-
tem and a subsequent iteration of the Stokes system. This proved
beneficial since it is computationally cheaper and faster than a New-
ton iteration of the full PNPS system. Moreover, the separation splits
the coupled PNPS equations into two systems which are relatively
well understood.

In this chapter, FEM is briefly reviewed in Section 3.1. Weak for-
mulations of the PNP and Stokes equations are stated and the hybrid
Newton-Picard iteration is described in more detail from Section 3.2
to Section 3.4. Also, the numerics of the PNP and Stokes equations
are investigated in these sections. In Section 3.5, an axisymmetric for-
mulation in cylindrical coordinates is provided. Furthermore, some
notes on adaptivity, the computation of the goal quantities and it-
erative solvers are given in Section 3.6, Section 3.7 and Section 3.8,
respectively. Implementation and mesh generation are discussed in
Section 3.9.

3.1 The Finite Element Method

In this section only a short introduction to the FEM is provided, as
this method is quite popular and well-covered by a large amount of
textbooks. For an accessible introduction to FEM, which also covers
implementational aspects [31] can be recommended. For a more rig-
orous mathematical treatment see [13] or [48]. First, let us state the
abstract mathematical framework.

13
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3.1.1 Abstract Framework

In the following, a basic knowledge of Sobolev spaces and their prop-
erties is assumed. For a comprehensive textbook on Sobolev spaces
and their properties see [1]. Also most books about abstract FE anal-
ysis, e. g. [13], dedicate a chapter to Sobolev spaces.

Let (V, (·, ·)V) be a Hilbert space with inner product, for example
H1

0(Ω), the Sobolev space with differentiability index 1 and homoge-
neous boundary conditions (BCs). Furthermore, let a : V × V → R

be a bilinear form that is

(a) coercive: ∃ α > 0 : a(v, v) ≥ α‖v‖2
V , and

(b) continuous: ∃Ca > 0 : a(u, v) ≤ Ca‖u‖V‖v‖V ,

and l : V → R be a continuous (∃Cl > 0 : l(v) ≤ Cl‖v‖V) linear
functional. Consider the following variational problem: find u ∈ V
such that

a(u, v) = l(v) ∀v ∈ V . (3.1)

In view of showing existence and uniqueness for this variational prob-
lem the following theorems are well-known.

Theorem 3.1 (Riesz representation theorem). Let (V, (·, ·)) be a Hilbert
space with inner product. Every continuous linear form l(·) on V can be
uniquely represented as

l(v) = (u, v)

for some u ∈ V.

so, if the bilinear form a is symmetric, it defines an inner product and
therefore the existence and uniqueness of a solution of (3.1) directly
follows from the Riesz representation theorem. More interesting is
the non-symmetric case.

Theorem 3.2 (Lax-Milgram Lemma). Let (V, (·, ·)) be a Hilbert space
with inner product. Let a(·, ·) be a coercive continuous bilinear form on V,
and let l(·) be a continuous linear form on V. Then there exists a unique
solution u ∈ V to the abstract variational problem (3.1).

For the theorems and the proofs see for example Section 7.3 in [48].
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3.1.2 The Galerkin Method

The starting point for every discretization is a variational formulation
of the corresponding PDE. The goal is to approximate the solution u
in the possibly infinite-dimensional Hilbert space V of the problem:
find u ∈ V such that

R(u, v) := a(u, v)− l(v) = 0 ∀v ∈ V , (3.2)

where R denotes the residual of the variational problem. In the
Galerkin method, one chooses finite-dimensional trial and test func-
tion spaces Wh and Vh, respectively. If the trial and test function
space coincide, then the method is referred to as Bubnov-Galerkin
method. If the space Vh is a subset of V one speaks of conforming FEM.
The Galerkin formulation of the variational problem (3.2) reads: find
uh ∈ Vh ⊆ V, the so-called Galerkin projection of u, such that

R(uh, vh) = 0 ∀vh ∈ Vh ⊆ V. (3.3)

The existence and uniqueness of the discrete variational problem is
inherited from the continuous case. Subtracting (3.3) from (3.2) yields
the important Galerkin orthogonality

a(u− uh, vh) = R(u− uh, vh) = 0 ∀vh ∈ Vh ⊆ V .

Another important result is Céa’s lemma, also known as quasiopti-
mality or best approximation result:

‖u− uh‖V ≤
Ca

α
‖u− vh‖V ∀vh ∈ Vh ,

where Ca and α are the continuity constant and coercivity constant of
a, respectively. Céa’s lemma is inferred from Galerkin orthogonality
and establishes the fact that up to a constant the approximation uh
is as best as it can be in Vh. By choosing a specific vh, usually an
interpolation of u, one can derive an a priori error estimate for the
error u− uh in V with the help of interpolation estimates.

3.1.3 The Finite Element Method

The finite element method (FEM) is Galerkin’s method with finite di-
mensional subspaces Vh consisting of piecewise polynomial functions.
The subdomains K on which the polynomials are defined are called
elements of the mesh or tessellation T on Ω. Details for the formal
definition of FEM can be found, e. g. in Chapter 3 of [13]. Later on
some notation for FEM subspaces is needed, thus let

Sp(T ) :=
{

ψh ∈ C0(Ω)
∣∣ ψh|K is a polynomial of degree p

}
(3.4)
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3.1.4 Application to the Linear PB Problem

The standard Galerkin method is demonstrated on the linear Poisson-
Boltzmann (PB) problem (2.23) as an application of the abstract frame-
work derived in the subsection above.

First, a weak formulation of the PB problem is derived. The advan-
tage of a weak formulation is that requirements on the regularity of
the solution u can be dropped, in contrast to the strong formulation.
The starting point is the original PDE or so-called strong form of the
linear PB equation (2.24) for the potential φ. The assumption that no
potential is applied corresponds to homogeneous Dirichlet BCs. As
Dirichlet BCs are included in the function space, the Hilbert space
V = {v ∈ H1(Ω) : v|∂Ω = 0} with norm ‖v‖V = ‖v‖H1 is well-suited
for our needs. In the case of homogeneous Dirichlet BCs, Friedrichs’
inequality shows that the H1-norm is equivalent to ‖∇v‖L2 for all
v ∈ V.

Furthermore, a partition of the domain Ω into finitely many sub-
domains Ωi on which the permittivity ε and the bulk concentration
c0 are constant is assumed. On the interface Γi the interface condi-
tion (2.11) is prescribed. To be precise, positive permittivities and
zero bulk concentration are assumed everywhere, except on the fluid
subdomain Ω f . There, a positive bulk concentration is assumed.

The weak formulation is derived by multiplying original PDE (2.23)

−∇ · (ε∇φ) = −2Fc0
eφ

kBT

with some test function ψ ∈ V and by integrating on each subdo-
main. Then a subsequent integration by parts and substitution of the
interface conditions (ICs) yields

∑
i

( ∫
Ωi

εi∇φ · ∇ψ dx +
∫

Ωi

kc0φψ dx−
∫

Γi

ρSψ ds
)
= 0 ,

where k = 2Fe/kBT > 0. By defining the bilinear form aPB and the
linear form lPB the following variational problem has to be solved:
find φ in V such that

aPB(φ, ψ) :=
∫

Ω
ε∇φ · ∇ψ dx +

∫
Ω f

kc0φψ dx

=
∫

ρSψ dx =: lPB(ψ) dx ∀ψ ∈ V.

Both the bilinear form aPB : V × V → R and the linear form lPB :
V → R are continuous. That the bilinear form aPB is continuous
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is straightforward. The continuity of lPB can be seen by the trace
inequality. Coercivity of aPB follows from

aPB(u, u) ≥ min
i

εi‖∇u‖2
L2(Ω) + kc0‖u‖2

L2(Ω f )
≥ min

i
εi‖∇u‖2

L2(Ω)

and the equivalence of the norms ‖·‖V and ‖∇(·)‖L2(Ω). The vari-
ational Poisson problem can be restated in the abstract framework:
find u ∈ V such that

aPB(u, v) = lPB(v) ∀v ∈ V. (3.5)

Now existence and uniqueness of the solution of the above problem
(3.5) is guaranteed by the Lax-Milgram Lemma.

It is also possible to use FEM for the nonlinear elliptic PB equation.
An analysis of the PB equation with additional point charges can be
found in [17]. In [37] an adaptive FEM is developed for the nonlinear
PB system and a priori estimates are given.

3.2 Hybrid Approach for the PNPS System

One goal of this thesis was the implementation of an efficient numer-
ical solver, especially in terms of goal functionals like the current or
the effective driving force applied on proteins. In pursuance of this
goal, the following two features proved important for a successful
numerical method:

1. a well-adapted mesh (regarding the target quantities),

2. an efficient solver for the PNPS system.

Obviously both steps should be done in an economical manner, con-
sidering computational time and memory consumption.

To tackle the first issue, the initial mesh from the mesh generator
was refined with a goal adaptive refinement strategy; this is described
in detail in 3.6.2. For the second part a hybrid approach proved ben-
eficial. As the standard way to solve the PNP equations is Newton’s
method [53], the proposed hybrid algorithm is:

While updates are bigger than a tolerance tol repeat the following
steps:

1. Solve a Newton step for the PNP equations.

2. Solve the Stokes system.

That means that for each solution of the Newton step, the Stokes
equations are solved and then the velocity is plugged back into the
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Newton step of the PNP equations. In view of this decoupling, the
Stokes system becomes linear. Only the right hand side changes at
each iteration, so the stiffness matrix of the Stokes problem can be
reused for all hybrid iterations. This is reasonable because numeri-
cal evidence showed that the Nernst-Planck (NP) equations and the
Stokes equation are weakly coupled, meaning that the terms linking
the Stokes and the NP equations are relatively small. This can also
be seen by the relatively small currents coming from the Stokes term
pointing in the axis direction, cf. Section 4.6.2. Essentially, the hy-
brid approach means that the nonlinear coupling of the Stokes and
the NP equations is treated iteratively instead of a comprehensive
Newton step.

The decoupling of the PNPS system has the advantage that the solu-
tion process is cheaper and faster. Since Newton’s method converges
quadratically it is not a priori clear if Newton’s method including
Stokes’ equation, from now on referred to as full Newton’s method,
or the hybrid approach is faster. However, the computational time
is worse for the full Newton’s method compared to the hybrid ap-
proach, even though it needs fewer iterations. This is shown by Fig-
ure 2B and Figure 2A, respectively. In terms of memory consumption
the hybrid approach needs around half the memory resources com-
pared to the full Newton system in the axisymmetric case.

One might ask: Why not also decouple the PNP system? Numerical
experiments showed that a Picard iteration of alternatively the Pois-
son equation and the NP equations diverged for moderately large
potentials or surface charges. In this context this means not as large
as in experiments and not so large that Newton’s method is unstable
(as for large potentials).

3.3 The Poisson-Nernst-Planck (PNP)
System

As already noted, the proposed way to solve the PNP equations is
a (possibly damped) Newton’s method. Thus, Newton-like methods
for Galerkin FEM are briefly discussed.

3.3.1 Newton-like Methods

In this section, a Newton-like method for FEM with a nonlinear weak
form 〈F(x), y〉 = 0, where F : H → H∗, H∗ denoting the topological
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Figure 2: Comparison of hybrid and Newton method for two meshes
with a different number of elements N.
A. Comparison in terms of error over iterations.
B. Comparison in terms of error over CPU time.
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dual of a Hilbert space H and duality pairing 〈·, ·〉, is motivated. The
Gâteaux-derivative DF(x) at x ∈ H is defined by the bilinear form

〈DF(x)z, y〉 = d
dτ
〈F(x + τz), y〉

∣∣∣
τ=0

, (3.6)

where z, y ∈ H. Taking x as the sum of an approximation x̂ plus some
correction δx, i. e. x = x̂ + δx, then linearizing F around x̂ yields

0 = 〈F(x), y〉 = 〈F(x̂ + δx), y〉 = 〈F(x̂), y〉+ 〈DF(x̂)δx, y〉 .

This observation motivates the following algorithm:

• Choose an initial guess x0, a tolerance tol and a damping pa-
rameter λ.

• While ‖δx‖ ≥ tol :

1. Solve 〈DF(x̂)δx, y〉 = −〈F(x̂), y〉 for δx.

2. Update x̂ with x̂ + λ δx.

3.3.2 Newton Method for the PNP System

In the concrete case of the PNP equations the nonlinear weak form is
defined by

〈F(x), y〉 =

 (ε∇φ,∇ψ)− F(c+ − c−, ψ)− (ρ0, ψ)− (ρS, ψ)Γi

(D+∇c+,∇ϑ+) + (µ+c+∇φ,∇ϑ+)− (c+v,∇ϑ+)

(D−∇c−,∇ϑ−)− (µ−c−∇φ,∇ϑ−)− (c−v,∇ϑ−)

 ,

where x = (φ, c+, c−) in H = H1(Ω)× H1(Ω f )× H1(Ω f ) with appro-
priate BCs and y = (ψ, ϑ+, ϑ−) in H. Here also the Stokes term is in-
cluded, where v is considered as a given function. Thus, the Gâteaux
derivative DF(x), cf. (3.6), of F in direction of z = (ϕ, θ+, θ−) reads

〈DF(x)z, y〉 =

 (ε∇ϕ,∇ψ)− F(θ+ − θ−, ψ)− (ρ0, ψ)− (ρS, ψ)Γi

(D+∇θ+,∇ϑ+) + µ+(θ+∇φ + c+∇ϕ,∇ϑ+)− (θ+v,∇ϑ+)

(D−∇θ−,∇ϑ−)− µ−(θ−∇φ + c−∇ϕ,∇ϑ−)− (θ−v,∇ϑ−)

 .

(3.7)

3.3.3 Discretization of the PNP System

For the discretization, the finite dimensional subspace S1(T ) with
homogeneous BCs was used for each component of H. The inhomo-
geneous Dirichlet BCs of the PNP equations are applied to the initial
guess x0. This is slightly different from the usual FEM setting, where
the Dirichlet BCs enter the trial function space.
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3.4 Stokes System

This section is largely based on Chapter 12 in [48]. Saddle-point prob-
lems, of which the Stokes problem is a special case, are discussed. For
saddle-point problems the choice of FE spaces is a delicate matter, so
a closer look is taken in Section 3.4.3. For simplicity of presenta-
tion in this section η = 1 is assumed. Furthermore, the analysis is
restricted to the non-conservative form of the Stokes problem with
homogeneous Dirichlet BCs.

3.4.1 Weak Formulation

Let U, Q be Hilbert spaces and define the forms

aS(u, v) := (∇u,∇v) , (3.8)

bS(u, q) := −(∇ · u, q) , (3.9)

lS(v) := ( f , v) .

Then a weak formulation of the Stokes problem reads: find (u, p) ∈
U ×Q such that

aS(u, v) + bS(v, p) = lS(v) ∀v ∈ V ,

bS(u, q) = 0 ∀q ∈ Q .
(3.10)

Sometimes the sign of the pressure p is flipped or the second equation
in (3.10) is multiplied by −1, to yield a system that is positive definite,
but no longer symmetric. As already noted, the Stokes system (3.10)
has the structure of a saddle-point problem, which is quite different
from that of the Poisson equation. It will turn out that things are
more difficult in this case. By defining a bilinear form

B((u, p), (v, q)) := aS(u, v) + bS(v, p) + bS(u, q) (3.11)

and a linear form F((v, q)) = l(v) another weak formulation can be
derived: find (u, p) ∈ U ×Q such that

B((u, p), (v, q)) = F((v, q)) ∀(v, q) ∈ U ×Q . (3.12)

3.4.2 Inf-Sup Condition

Existence and uniqueness of the Stokes problem are shortly discussed.
The goal here is to derive some kind of coercivity on the bilinear form
B in (3.11). As bS(u, p) = 0, it follows that

B((u, p), (u, p)) = aS(u, u) .
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This shows that there is no hope of showing coercivity in the usual
way, as the norm of the pressure is missing in the coercivity inequal-
ity B((u, p), (u, p)) ≥ α(‖u‖2 + ‖p‖2). Thus, one has to establish a
different condition or one can modify the bilinear form to acquire co-
ercivity. The latter possibility of modifying the bilinear form such
that it is coercive on U × Q is discussed in Section 3.4.5. In or-
der to show well-posedness for (3.10) define the closed null space
Z = {v ∈ U : b(v, q) = 0 ∀q ∈ Q} ⊂ U, which incorporates the
incompressibility condition. Then the following problem needs to be
solved: find u ∈ Z such that

aS(u, v) = lS(v) ∀v ∈ Z .

That this problem is well-posed can be deduced from Lax-Milgram,
because aS is coercive. It remains to show that the pressure problem:
find p ∈ P such that

bS(v, p) = lS(v)− aS(u, v) ∀v ∈ U ,

is also well-posed. The existence and uniqueness of this problem is
implied by the following theorem, known as Ladyshenzkaya-Babuška-
Brezzi theorem.

Theorem 3.3 (LBB). Let U, Q be Hilbert spaces and a(·, ·) : U×U → R

and b(·, ·) : U × Q → R be continuous bilinear forms. If additionally bS
fulfills the inf-sup condition: There exists β > 0 such that

inf
q∈Q\{0}

sup
v∈V\{0}

b(v, q)
‖v‖V‖q‖Q

≥ β . (3.13)

Then the problem

bS(v, p) = F̃(v) := lS(v)− aS(u, v) ∀v ∈ U

has a unique solution.

See Lemma 10.2.12 in [13] for a proof. In view of this theorem it
follows that the Stokes problem (3.10) has a unique solution if aS is
continuous and coercive and if bS is continuous and fulfills the inf-
sup condition. The only requirement that is not easy to show is the
inf-sup condition for bS. That the inf-sup condition holds follows
from the following theorem (see Section 12.2.4 in [48])

Theorem 3.4 (Inf-Sup Condition). Let U = H1
0(Ω)

d and Q = L2
0(Ω),

where L2
0(Ω) := {q ∈ L2(Ω)|

∫
Ω q = 0}. Then bS defined as in (3.9)

satisfies the inf-sup condition (3.13).
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3.4.3 Discretization of the Stokes System

After having shown existence and uniqueness in the continuous case,
the next step is the discrete case. Choosing finite-dimensional sub-
spaces Uh and Qh the discrete FEM problem reads: find (uh, ph) ∈
Uh ×Qh such that

aS(uh, vh) + bS(vh, ph) = lS(vh) ∀vh ∈ V,

bS(uh, qh) = 0 ∀qh ∈ Qh .
(3.14)

In order to establish discrete well-posedness similar to the continuous
case a discrete inf-sup condition on the discrete spaces Uh and Qh has
to be shown

inf
q∈Qh\{0}

sup
v∈Vh\{0}

bS(v, q)
‖v‖Vh‖q‖Qh

≥ β . (3.15)

However, even conforming spaces Uh ⊂ U and Qh ⊂ Q may vio-
late the discrete inf-sup condition (3.15), despite of holding in the
continuous case. One technique to somehow transfer the continuous
inf-sup condition to the discrete case is Fortin’s trick, which will not
be described in detail.

A method often-used for constructing spaces that satisfy the dis-
crete inf-sup condition is the following. Keep the degrees of freedom
for the pressure space fixed, while making the space for the velocity
rich enough. This can be motivated by

inf
q∈Qh\{0}

sup
v∈V\{0}

bS(v, q)
‖v‖V‖q‖Q

≥ inf
q∈Q\{0}

sup
v∈V\{0}

bS(v, q)
‖v‖V‖q‖Q

≥ β .

To this end a higher polynomial degree for the velocity test functions
or a macroelement technique can be used. The macroelement tech-
nique focuses on subdomains, so-called macroelements, on which the
inf-sup condition is established. Then these stable macroelements are
patched together. Details for these methods can be found in Chapter
3 in [27].

Additionally for the mixed case, a quasioptimality result can be
shown under certain assumptions, see Cor. 10.5.18 in [13].

Theorem 3.5. Let (u, p) denote the solution to the problem (3.10) and
let (uh, ph) denote the solution to the discrete problem (3.14). There is a
constant c depending on the continuity constant C of a and l, the coercivity
constant α of a and the discrete inf-sup constant βh such that

‖u− uh‖V + ‖p− ph‖Q ≤ c
(

inf
v∈Vh
‖u− v‖V + inf

q∈Qh
‖p− q‖Q

)
. (3.16)
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The choice Uh = S1(T )d and Qh = S0(T ) ∩ L2
0(Ω) would be nice for

U = H1(Ω)d and Q = L2
0(Ω) since this would yield the same order

on both errors. But this choice for Uh and Qh unfortunately violates
the discrete inf-sup condition.

Two discretization methods that fulfill the discrete inf-sup condition
are presented, the Taylor-Hood discretization and an equal-order sta-
bilized system. The Stokes system with the lowest-order Taylor-Hood
discretization consumes a lot of memory, therefore it is expensive. To
remedy these shortcomings in the simulations the stabilized equal
order piecewise linear discretization was employed.

3.4.4 Taylor-Hood

The Taylor-Hood approximation consists of the choice Uh = S2(T )d

for the velocity space and Qh = S1(T ) ∩ L2
0(Ω) with Sp(T ) defined

as in (3.4). It is well-known that the Taylor-Hood elements fulfill the
discrete inf-sup condition, see, e. g., Section 10.6 of [13].

3.4.5 Equal-Order Stabilized System

Since the choice of (equal-order) piecewise linear elements for Uh and
Qh is unstable, one has to modify the system to ensure stability. The
problem is from spurious pressure modes. These are pressure modes
that are non-constant and in the null space of b(v, ·) = 0 [27, Section
3.3]. An often-used example is the “checkerboard-mode” where ad-
jacent elements have different signs. The loss of numerical stability
for equal-order methods is due to the fact that c in (3.16) is inversely
proportional to the discrete inf-sup constant β, which tends to zero
for mesh sizes approaching zero.

Hence some workaround for this problem has to be found. The
method described in the following is a sort of Galerkin-Least-Squares
(GLS) stabilization. For piecewise linear approximations in the dis-
crete Stokes system, the stabilization terms δ(∇ph,∇q) and δ( f ,∇q)
are added to the bilinear and linear form in (3.12), respectively. Then
the FEM approximation reads: find (uh, ph) ∈ Uh ×Qh such that

Bh((uh, ph), (vh, qh)) = Fh((vh, qh)) ∀(vh, qh) ∈ Uh ×Qh ,

Bh((uh, ph), (vh, qh)) := B((uh, p), (vh, qh)) + δ(∇ph,∇qh) ,

Fh((vh, qh)) := l(vh) + δ( f ,∇qh) .

The merits of this formulation are two-fold. First, Bh is coercive. Sec-
ond, large gradients of the pressure are penalized. The choice of δ is
crucial: δ should be large enough to gain numerical stability but at the



3.5 axisymmetric formulation in cylindrical coordinates 25

same time small to disturb the original problem as little as possible.
Furthermore, in pursuance of making the inf-sup constant indepen-
dent of h, a suitable choice is δ = Ch2, where C is some constant
[48].

3.5 Axisymmetric Formulation in

Cylindrical Coordinates

As the cavity in most pores is of approximately axisymmetric shape,
cylindrical coordinates provide useful. Obviously, an off-centered
molecule breaks the axisymmetry, so in this case a full 3d model is
required.

Assuming the data is axisymmetric with zero angular component,
the problem can be reduced to the 2d halfplane R+ × R, meaning
that solutions will only depend on the axisymmetric cylindrical coor-
dinates (r, z) instead of the three cylindrical coordinates (r, θ, z). For
example, the 3d velocity field v is then given by (under slight abuse
of notation)

v(x, y, z) = v(r, θ, z) =

 vr(r, z) cos θ

vr(r, z) sin θ

vz(r, z)

 .

Thus a function depends only on r and z and ∇φ = (∂rφ, ∂zφ) for a
scalar function φ and ∇ · u = ∂rur + ∂zuz for a vector field u. The
inner product (·, ·)Ω is understood as (φ, ψ)Ω = 2π

∫
Ω φ ψ r drdz. On

the computational side, the solution of an axisymmetric PNPS system
is much cheaper and faster.

For the sake of completeness, the axisymmetric weak form of the
PNP and the Stokes equations is stated. First, the PNP equations in
weak formulation are considered:(

ε∇φ,∇ψ
)

Ω −
(

F(c+ − c−), ψ
)

Ω f
−
(
ρ0, ψ

)
Ω −

(
ρS, ψ

)∣∣
Γi
= 0 ,(

D+∇c+ + µ+c+∇φ− c+v,∇θ+
)

Ω f

= 0 ,(
D−∇c− − µ−c−∇φ− c−v,∇θ−

)
Ω f

= 0 .

(3.17)
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Second, the weak formulation of the axisymmetric Stokes problem
reads(

η∇v,∇u
)

Ω f
+
(

η
vr

r
,

ur

r

)
Ω f

−
(
∇ · u, p

)
Ω f
−
(ur

r
, p
)

Ω f

+

+
(
(c+ − c−)∇φ, u

)
Ω f

= 0 ,(
∇ · v, q

)
Ω f

+
(vr

r
, q
)

Ω f

= 0 .

(3.18)

The weak formulation of the axisymmetric PNP equations in cylindri-
cal coordinates (3.17) is pretty straightforward. The derivation of the
weak axisymmetric Stokes problem (3.18) needs a little bit more care;
for details, see [25].

3.6 Adaptivity

In order to efficiently solve the equations, adaptive FEM was used.
Consequently the grid is refined, where the error is large. For the
error analysis of “goal” functionals and adaptive meshing strategies
minimizing the error [8] is a good source of information. This section
focuses on goal-oriented adaptivity and follows [8].

The goal of simulations is mostly focused on obtaining physical
quantities, thus these quantities can be represented as the value of
some functional J of the solution, referred to as “goal” functional.
The idea behind adaptivity is either to minimize the work W needed
for the computation for some given tolerance tol of the goal or to
maximize the accuracy of the goal for a fixed work W.
The adaptivity process is guided by a basic SEMR algorithm:

SOLVE→ ESTIMATE→ MARK→ REFINE .

Expanded, the SEMR algorithm reads:
While some termination criterion is unfulfilled, repeat:

1. Compute numerical solution for mesh,

2. Evaluate error indicators,

3. Mark/Select elements of mesh for refinement,

4. Refine mesh.

For the marking of elements, Dörfler-marking was chosen. The termi-
nation criterion can be a critical amount of elements corresponding
to a maximal work load or the estimated error of the goal functional
being less than a tolerance tol.
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For a system of PDEs it is not a priori clear which equation should
be guiding the adaptation process. For the PNPS problem, the sus-
pected regions prone to errors are near interfaces. The electrical dou-
ble layers near charged boundaries are regions that give rise to large
local gradients in the concentrations. This motivates the decision to
let the PNP equations guide the refinement process. Indeed, an even
cheaper method is to use the linear PB equation as a rough approxi-
mation for the PNP equations. As an additional bonus the solution
of the PB equation also delivers an initial guess for Newton’s method
on PNP.

3.6.1 Goal-oriented Adaptivity

An efficient strategy to obtain accurate values for a certain functional
is goal-oriented adaptivity. As in [8], the dual-weighted-residual
(DWR) method is going to be presented.

Given a linear functional J, the interest is to minimize the error
J(e) = J(u− uh) = J(u)− J(uh). Here e is the approximation error
of u and uh. Let u be the solution of the model problem: find u ∈ V
such that:

a(u, v) = f (v) ∀v ∈ V, (3.19)

where a is a continuous coercive bilinear form and l is a linear contin-
uous functional. So u is the exact solution of the original or primal
problem (3.19). As in Section 3.1, its Galerkin projection uh is given
by: find uh ∈ Vh ⊂ V such that:

a(uh, vh) = f (vh) ∀vh ∈ Vh . (3.20)

Equation (3.19) and (3.20) together imply the Galerkin orthogonality

a(e, ψh) = 0 ∀ψh ∈ Vh . (3.21)

For J : V → R the following so-called dual problem has to be solved:
find z and its finite element approximation zh defined by

a(φ, z) = J(φ) ∀φ ∈ V

a(φh, zh) = J(φh) ∀φh ∈ Vh .

Defining the residual

ρ(uh)(v) := l(v)− a(uh, v) ,

where v ∈ V, gives the following representation of the error

J(e) = a(e, z) = a(e, z− ψh) = ρ(uh)(z− ψh) ψh ∈ Vh .
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Here the Galerkin orthogonality (3.21) was exploited. The residual
ρ(uh)(·) can be regarded as a functional on V. Moreover, for a con-
crete tessellation Th one can define cell and edge residuals Rh and
rh. Then the following a posteriori error representation can be estab-
lished

J(e) = ρ(uh)(z−ψh) = ∑
K∈Th

(
(Rh, z−ψh)K + (rh, z−ψh)∂K

)
. (3.22)

The error J(e) can also be expressed in terms of element residuals ρK

and weights ωK for K ∈ Th:

|J(e)| ≤ ηω := ∑
K∈Th

ρKwK ,

ρK :=
(
‖Rh‖2

K + h−1
K ‖rh‖2

∂K

)1/2
,

wK :=
(
‖z− ψh‖2

K + hK‖z− ψh‖2
∂K
)1/2

.

For a more explicit example see the next Subsection 3.6.2, where this
method is applied on the linear PB problem.

The remaining goal is to develop an accurate yet cheap way to com-
pute J(e). Just plugging a Galerkin solution zh ∈ Vh ⊂ V as an ap-
proximation to z into the a-posteriori error J(e) in (3.22) is useless as
by Galerkin orthogonality J(e) vanishes. Thus, more elaborate meth-
ods must be used for the numerical approximation of z. A higher-
order interpolation method is considered on z, outlined in Section 4.1
of [8] for quadrilateral meshes and extended to tessellations in [62].

The main idea behind this method is to compute the Galerkin ap-
proximation zh, extrapolate zh patch-wise on a higher-order function
space Wh ⊃ Vh yielding the higher order interpolation Ezh ∈ Wh. So,
the method basically consists of the two steps:

1. Lifting, where the element-wise solution is fitted on a patch by
a least-squares approximation in a higher order space, and

2. Smoothing, where the (possibly multivalued) higher order func-
tion is averaged at shared degrees of freedoms (DOFs).

The method is illustrated in Figure 3, which is taken from [62] where
also the details for this method can be found.

Thus, the error in J can be approximated via an extrapolated dual
solution

J(e) = J(u− uh) = ρ(uh)(z) ≈ ρ(uh)(Ezh). (3.23)

In [8] it is demonstrated that the patch-wise biquadratic interpolation
I2
2h of the bilinear Ritz projection zh leads to the estimate

J(e) = ρ(uh)(I2
2hzh − zh) +O(h3) ,
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A

zh

B

C

Ezh

Figure 3: Illustration of the process of lifting and smoothing. The
figure is adapted from [62]. Subfigure A shows a piecewise
linear approximation zh, which is then lifted in Subfigure B
and subsequently smoothed in the bottom Subfigure C.
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where some generous assumptions were granted.
As a remark, in [62] the emphasis is on proposing an automated

way for goal-oriented error control and not on examining the theoret-
ical basis of this method. The legitimacy of this method is demon-
strated on a set of problems.

In this section conforming Galerkin, i. e. Vh ⊂ V, was assumed. If,
like in our problem setup, curved boundaries are present, an addi-
tional source of error is introduced, as the space Vh is not conforming
anymore. As a side note, the DWR method can also be extended to
nonlinear problems, see Chapter 6 of [8].

3.6.2 Prerefinement with the PB Equation

To make the computation of the mesh indicators, which guide the
refinement process, computationally cheap the PNP equation was ap-
proximated by the linear PB equation with homogeneous Dirichlet
BCs and interface conditions (2.11). This means that the adaptation
process was guided by a goal functional composed of the Fel and
terms based on the electrical field inside the pore.

To provide a concrete example of the above abstract goal-adaptivity,
consider the linear PB equation (2.24). An explicit form for the resid-
uals is obtained by cellwise integration by parts and results in

ρ(φh)(z− ψh) = ∑
K∈Th

{
(ρ0, z− ψh)K + (ε∆φh, z− ψh)K

− λ̂D
−2
(χ f φh, z− ψh)K + (ρS, z− ψh)∂K

− (ε∇φh · n, z− ψH)∂K
}

,

where λ̂D
2
= 2Fc0e/(kBT) and χ f is the indicator function of the

fluid domain. Thus, for K and e being a cell and an edge of the
triangulation Th, respectively, cell and edge residuals Rh and rh read

Rh|K := ρ0 + ε∆φh − λ̂D
−2

χ f φh ,

rh|e :=


0 , if e ⊂ ∂Ω ,
1
2 (ρS − [ε∇φh · n]) , if e ⊂ ΓI ,
1
2 [ε∇φh · n] else .

Finally, an a posteriori error representation of the form (3.22) can be
derived:

J(e) = ∑
K∈Th

{
(Rh, z− ψh)K + (rh, z− ψh)e

}
.
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A B

Figure 4: Two meshes of the pore geometry (P3) with a molecule in-
side. Subfigure A shows a base mesh with 377 elements.
Subfigure B shows an adapted mesh with 9603 elements.
The mesh was refined with the method described in Sec-
tion 3.6.2.

First, the effect of goal-oriented adaptivity on the meshes is shown
in Figure 4. Second, the benefit of using goal-oriented adaptive mesh
refinement over residual-based or uniform refinement can be seen in
Figure 5. This figure also shows the need for fine meshes, as only fine
meshes produce accurate enough physical quantities of interest.

3.7 Computation of the Physical

Quantities

The accurate computation of the physical goal quantities is challeng-
ing, especially for the forces in the full 3d (non-axisymmetric) case.
The computation of gradients on surface integrals is numerically not
very stable, as shown for lift and drag coefficients in [8]. Hence vol-
ume integrals are preferred. The current was evaluated as a volume
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Figure 5: Convergence of forces and current over the total number of
triangles N for residual-based, goal-oriented and uniform
refinement.
A. Effective driving force Feff (2.15). B. Electric force Fel
(2.16). D. Viscous stress force Fshear (2.18). C. Pressure stress
force Fp (2.19). E. Current I (2.20).
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integral of a pore subdomain and subsequently divided by its length
in z-direction.

Considering the forces acting on the molecule, the bare electric force
is already a volume integral, thus the drag force remains the only
surface integral. In order to achieve accurate force calculations, the
adaptive approach described in Section 3.6 was necessary for the full
3d model for two reasons. First, as pointed out in Section 3.4.3, the
Stokes system is expensive. Second, the adaptive procedure yields
better values for the forces and the current at a lower number of
triangulation elements, which can be seen in Figure 5. Still, small
mesh sizes in the vicinity of the molecule and of charged pore walls
are crucial for accurate goal quantities. In Figure 5 one can see that
the number of elements N has to be at least 104 in order to obtain
reliable values for the forces. This number corresponds to a mesh
size of approximately 10−11 m. However, in 3d such small mesh sizes
result in huge linear systems and are at the computational limit of
current workstations.

3.8 Iterative Solvers

Since the most time-consuming step in FEM is usually the solution of
the large sparse linear system, one is interested in efficient methods.
In FEM the stiffness matrices are typically sparse. While direct sparse
solution methods are the safest choice regarding robustness, they are
expensive with respect to time and memory. This is even more true
for 3d models. Iterative methods are much faster; however, a good
knowledge of the structure of the underlying system is often needed.
Without preconditioning, iterative solvers often lack robustness and
one might end up in an unsatisfactory trial and error process. Thus,
preconditioning is often the key to an efficient and fast convergence
of iterative solvers [63].

For the linear problem arising from Newton’s method on the PNP
equations a Krylov subspace method, namely BiCGstab, together with
a preconditioner was used. However, if adaptive mesh refinement is
used the stiffness matrix might become ill-conditioned. This gives
rise to difficulties for iterative methods [31, p. 4.4]. This phenomenon
was also numerically observed.

Iterative solvers for the Stokes problem have to be designed with
care due to the saddle point structure [27]. In the simulations, a
direct method was used as the stiffness matrix of the Stokes problem
can be reused in every step of the hybrid iteration, as mentioned in
Section 3.2.
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3.9 Implementation and Mesh Generation

In the last section of this chapter the implementation is described
and the used software packages are listed. As a part of this thesis, a
Python package named nanopores was written together with Gregor
Mitscha-Baude and Benjamin Stadlbauer. The aim of the package
were simulations of nanopores with different geometries. Due to the
modular approach it is versatile and not only applicable to nanopores
and the PNPS system, but easily extendable to a wider class of PDEs.
The package makes heavy use of Gmsh and FEniCS.

FEniCS is a free and open-source software package aimed at the au-
tomated solution of PDEs [50]. It consists of several core components,
namely DOLFIN [51], FIAT [45], FFC [52], UFL [3], UFC [4] and SyFi
[5]. The API of FEniCS is based on a C++/Python library. The Python
interface allows intuitive and object-oriented scripting in Python and
is semi-automatically generated by SWIG. This is the reason why the
nanopores package was written in Python.

Gmsh is a three-dimensional mesh generator [30] aimed at fast and
light mesh generation. It is written in C++ and features a built-in
CAD engine and visualization. Gmsh uses a “bottom-up” approach,
meaning that one first has to define points. Then one has to connect
these points with lines, then these lines can be extruded to create
surfaces and so on. Thus, the description of the geometry is done by
its boundary representation. To provide good initial meshes, mesh
size fields were used to control the mesh size appropriately. Hence
in the vicinity of curved boundaries, the mesh size was decreased to
better feature the underlying geometry.

As Gmsh has its own scripting language another Python package,
namely py4gmsh1 by Nico Schlömer, proved very helpful. Roughly
speaking, py4gmsh translates Python code into gmsh code, thus facil-
itating an efficient and comprehensive implementation in Python.

1 https://github.com/nschloe/python4gmsh

https://github.com/nschloe/python4gmsh


4
R E S U LT S A N D D I S C U S S I O N

In this chapter, simulation results are presented and compared with
experiments and other simulations. First, in Section 4.1 the simulated
nanopore geometries are listed. In Section 4.2, the geometry parame-
ters of each of the presented pores are specified and notes on crucial
physical parameters are given. The limitations of the model equations
are discussed in Section 4.3. The effects of geometry and physical pa-
rameters on the conductance are discussed in Section 4.4. Also, the
simulations are compared with experiments to validate the model. In
Section 4.5, the calculated force is shown to coincide with a reference
solution. Lastly, in Section 4.6, more simulation results are presented.
Concentrations and solvent flow fields are shown. Current-voltage
(IV) curves for different pores are discussed and an effective force
field is shown.

4.1 Nanopore Geometries

Simulations were restricted to four different types of nanopores. The
selection is based on nanopores examined in experiments. These four
different nanopore setups are abbreviated as P1, P2, P3 and P4:

(P1) A solid-state nanopore with an 100 nm long DNA strand inside
as presented in [54], cf. Figure 6A.

(P2) A solid state nanopore designed for stochastic sensing as pre-
sented in [70], cf. Figure 6B.

(P3) A DNA origami nanopore consisting of six DNA strands as
presented in [14], cf. Figure 6C.

(P4) A biological heptameric staphylococcal α-hemolysin nanopore,
see [7] or [68], cf. Figure 6D.

Figure 6 shows the geometries of the four different nanopores. The
implemented geometries are an axisymmetric approximation of the
complicated realistic geometries.

35
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Figure 6: Cross-sections of the nanopores used for simulations. They
are not shown at the same length scale.
A. Solid-state nanopore (P1). B. Solid-state nanopore (P2).
C. DNA origami nanopore (P3). D. α-Hemolysin nanopore
(P4).
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4.2 Parameters

4.2.1 Geometrical Parameters

(P1) The geometry of the pore in [54] has an hourglass shape. The
diameter ranges from 5 to 20 nm. A DNA strand of one Kuhn
length, i. e. 100 nm, is assumed to reside inside the pore. The
exact geometry parameters can be found in Table 1.

Table 1: Geometry parameters (P1)

Inner pore radius 5.0 nm
Outer pore radius 20.0 nm
Inner pore length 20.0 nm
Membrane thickness 50.0 nm
DNA length 100.0 nm
DNA radius 1.1 nm

(P2) The geometry of the pore in [70] is conical. The lower diameter
of the pore varies from around 20 nm up to 45 nm. The aperture
angle was experimentally determined by TEM tomography to
be 40◦. The 50 nm SiN membrane was coated with a 10 nm Ti
and a 30 nm Au layer, resulting in a total membrane thickness
of 90 nm. For simplicity the Ti layer was neglected in the pore
model. Simulations are presented before and after formation
of a self-assembled monolayer (SAM) layer, thus the SAM layer
is removed or included accordingly. Table 2 lists the geometry
parameters of this pore.

Table 2: Geometry parameters (P2)

Effective pore radius 13 nm
Aperture angle 40 ◦

SiN membrane thickness 50 nm
Au membrane thickness 40 nm
Au thickness inside pore 10 nm
SAM layer thickness 3 nm

(P3) The geometry of the pore in [14] is a DNA barrel consisting of
six duplexes connected via crossovers. The DNA strands are
chemically modified to produce structurally stable lipid bilayer
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spanning nanopores. The pore was approximated by a hollow
cylinder. The geometry parameters are given in the following
Table 3.

Table 3: Geometry parameters (P3)

Pore radius 1.0 nm
Barrel outer radius 2.5 nm
Pore length 15.0 nm
Membrane thickness 2.2 nm

(P4) The geometry consists of an α-hemolysin pore spanning a mem-
brane. The α-hemolysin boundary was approximated by a total
number of 96 point coordinates. The inner pore radius ranges
from 0.6 to 2.0 nm. The pore length is 10 nm.

If simulations with a molecule inside the pore are run, a molecule
radius of rM = 0.55 nm is used if not specified otherwise.

4.2.2 Physical Parameters

In this section, the physical parameters used within the simulations
are listed. Tables of the fundamental physical constants and material
constants can be found in the Appendix, Table 4 and Table 5, respec-
tively.

• Surface charge:
The surface charge of some materials depends on the pH value
of the solution. In [39] the membrane potential was studied for
SAM in a 1 mM KCl solution with different pH values. For a
pH value of 7.5 the SAM surface potential is found to be ap-
proximately −22 mV and for a pH of 9.0 it is −49 mV. Then the
surface charge can be calculated by the Grahame equation

σ =
2εkBT
eλD

sinh
( eψ

2kBT

)
, (4.1)

where

λD =
(ε0εskBT

2eFc0

)1/2
(4.2)

is the Debye length. The Debye length was determined as 9.63
nm. This results in surface charges σ ≈ −1.6 mC/m2 and σ ≈
−4.1 mC/m2.
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For the surface charge of SiN an approximate value of −22
mC/m2 was used in the simulations, which agrees with a pH
value of 8.0, cf. [54]. In [28] the surface charge and zeta poten-
tial of SiN nanopores and their effects on protein translocation
was studied in dependence of the pH value. The surface charge
of the Au area in (P2) was varied. However, for large ion con-
centrations the surface charge may rise, as pointed out in [10]
and [67] for silica surfaces.

The charge of the lipid bilayer was assumed to be zero in (P3)
and (P4). Regarding the charge distribution on the DNA surface
in (P3), only the side boundaries of the strands were charged.
The top and bottom surfaces were assumed to be neutral.

• Protein charge:
The protein charge Q is stated explicitly for each simulation.

• Ionic concentration:
The bulk concentration of the ions ranged from 400 mM up to
1000 mM in the experiments. The simulations were restricted to
the case of KCl solutions, i. e. monovalent K+ and Cl− ions.

• Permittivites:
The relative permittivities are given in Table 5, except for the
permittivity of the α-hemolysin pore, where a relative permit-
tivity of 12.0 was assumed.

• Diffusivity, mobility and conductance:
Mobility and diffusion are related to each other via the Einstein-
Smoluchowski relation (2.9).

A comparison between measured bulk conductance values and
local conductance values given by (2.13) with physical param-
eters inserted (as specified in Table 4) suggests that one has
to correct the calculated conductance values [61]. Especially
for high salinities the experimentally determined conductance
deviates from the local conductance, as the latter depends lin-
early on the concentration, which opposes the nonlinearity in
the measurements.

Furthermore, the mobility and hence the diffusivity vary in
small pores; this issue is also discussed in the sections below.
Thus, in the validation process of (P3) and (P4) the diffusiv-
ity was reduced to achieve agreement between simulation and
data.



40 results and discussion

4.3 Limitations of the Model Equations

Before proceeding to the results of the simulations, some notes on the
known limitations of our model equations are presented.

Since the Poisson-Nernst-Planck (PNP) equations are derived from
the Boltzmann equation under certain assumptions, they suffer from
the inherent limitations of these assumptions. These assumptions
include point-like particles and a Maxwellian distribution for the
momenta of the ions. The Maxwellian distribution corresponds to
thermally equilibrated particles, hence the ion concentrations are not
velocity-dependent. The Maxwellian distribution is an appropriate
model for small momenta. For large applied voltages, which result
in large momenta, the model is no longer adequate, see Heitzinger et
al. [34].

In [33], a diffusion-type equation was derived for confined struc-
tures, e. g. nanopores or ion channels. There, the original Boltz-
mann equation for three spatial and three momentum variables was
reduced to a diffusion-type equation depending only on the position
of the particle, the local energy and time.

The PNP model tends to overestimate ion concentrations at high
voltages. Thus, Kilic et al. proposed modified PNP equations in [44],
which were computationally investigated in [16]. The modification
includes a term accounting for finite size effects because the PNP
equations treat ions as idealized mathematical points. These finite
size effects lead to a maximum concentration cmax, a so-called steric
limit, which is reached if the voltage is a few times higher than the
thermal voltage UT, see [43].

As stated in [55], the PNP model furthermore neglects ion-ion cor-
relations and the dielectric response of the system to an ion. In other
words, a single discrete charges in a high dielectric medium expe-
riences a strong image charge, in the vicinity of the boundary to a
low dielectric medium. This repulsive effect is largely lost due to the
implicit mean-field approximation in the PNP equations.

That the PNP model neglects forces arising from dielectric bound-
aries near interfaces is also pointed out in [59], where ionic diffu-
sion in confined geometries is investigated and a so-called conditional
PNP system (C-PNP) is derived. In [20] PNP equations with an ad-
ditional term to include dielectric self-energy are proposed and the
obtained results are compared with BD simulations for ion channels.
However, their new model only agrees well for certain pore radii, es-
pecially for very small pores or wide pores with a radius bigger than
two Debye lengths. The invalidity of continuum models for such
small pores is demonstrated in [19].
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In the model used for the simulations behind this thesis, charges
were included either as constant surface charges or as constant vol-
ume charges which is a main limitation for some effects, e. g. ion
current rectification (ICR) in pore (P4). Also, polarity of molecules
is excluded which makes effects such as solvation shells beyond this
model.

Another point worth a discussion is the fact that the membrane and
the DNA are totally excluded from ion and electron transport.

The Stokes equations also suffers from small weaknesses. For exam-
ple, the incompressibility condition might not hold in the vicinity of
nanopores as pointed out in [56].

4.4 Conductance Validation

In this section the conductance, the inverse of the resistance, of nano-
pores was studied. As a first step, the conductance of pore (P3) was
analyzed in detail. Furthermore, also pore (P2) was studied.

The conductance of the pore was simulated for different DNA sur-
face charges and different ionic diffusion constants in the pore. The
results are displayed for the absolute physical values and relative
DNA damping factors in Figure 7B and Figure 7A, respectively. That
these damping factors are reasonable is explained in the following
paragraphs. In the figures, the experimentally determined conduc-
tance from [14] is marked by a contour line at 395 pS.

Seifert et al. point out that there might exist two conductance states,
one high conductance state and one low conductance state [65]. Re-
ferring to [65], the above conductance value of 395 pS corresponds
to a low conductance state. The values given there for DNA nano-
pores mounted on nanopipettes are 1.5 nS and 0.24 nS for the high
and low conductance state, respectively. A numerical investigation
of this voltage-dependent conductance switching behavior is beyond
the scope of this thesis.

The conductance analysis of (P3) shows that in order to attain agree-
ment between experiment and simulation, the diffusion and the bare
surface charge values have to be lowered. Since for a single conduc-
tance value there exists a manifold of different possibilities regard-
ing the effective diffusion and surface charge constant, values for the
charge found in the literature provided guidance. In [67] and [42], an
effective charge reduction of 71% and 75%, respectively, is proposed.

In Ho et al. [36] it is shown for a SiN nanopore that the mobility
is not constant in the pore. This is backed by molecular dynamics
(MD) simulations for small nanopores. Especially at the pore walls,
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Figure 7: Interpolated conductance of (P3). The conductances were
obtained by taking means of respective IV curves.
A. Interpolated conductance of (P3) with relative damp-
ing factors. The white squares mark the interpolated data
points. B. Interpolated conductance of (P3) in dependence
of absolute pore diffusivity and DNA surface charge.
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the ion mobilities are reduced. There, the mobility of counterions is
quite small, down to 10 to 20% of the bulk value, see [72] or [36].
Roughly speaking, counterions “stick” to the charged surface. This
strengthens the assumption of a smaller averaged mobility through-
out the pore. As by (2.9) the mobility is related to the diffusivity; also,
the mobility is lowered inside the pore. Thus, in the following sim-
ulations of pore (P3) a value of 0.48 mC/m2 is used for the surface
charge and in Figure 7B the diffusivity D is set to 0.19 m2/s.

Summarizing, the diffusion coefficient inside the small nanopore
(P3) was adopted for the simulations in order to ensure valid currents.

Also, pore (P2) was analyzed regarding conductance. This pore is
much wider than pore (P3), thus bulk behavior is dominant. In Wei et
al. the pore diameter was estimated through a simple pore resistance
model for conical pores given by (2.14) [70]. The pore diameter is
afflicted with errors coming from this simple approximation, where
edge effects and electrical double layers are neglected.

A comparison of this simple model with the simulated resistance
provided by the more elaborate Poisson-Nernst-Planck-Stokes (PNPS)
model shows that the simulated resistance is higher. In the simula-
tions bulk values for the diffusivity and mobility are used inside the
pore, if one would lower them this would increase the bias between
the simple and the PNPS model even more.

Figure 8 shows the conductance dependence of the pore diameter
with and without a SAM layer. As the effective pore diameter is de-
creased by the SAM layer, the ionic current decreases as well. Thus
the resistance of the pore grows with decreasing diameter. In this
figure the membrane surface charge inside the pore was also var-
ied. For highly charged membranes the resistance converges to the
one predicted by the simple model. The simulations suggest that
the nanopores fabricated are not as small as stated in Wei et al. In-
deed, based on the PNPS model, the pore diameter at the tip would
be enlarged by a factor of around 1.25, depending on the membrane
surface charge inside the pore.

4.5 Validation of the Effective Driving

Force

In order to verify the computation of the effective driving force Feff,
it was analyzed for the DNA in (P1). As in Lu et al. [54], the surface
charge of the membrane was ranged from −60 to 0 mC/m2. The
values given in [54] are also simulated with the PNPS model and are
not determined in experiments. But the simulated values given in this
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Figure 8: Resistance of pore (P2) in dependence on the pore tip di-
ameter. Resistance levels were obtained at a biased voltage
of 200 mV and bulk concentrations of 400 mM as specified
in the supplementary information of [70]. The dashed lines
mark the diameters and resistances given there. The simple
resistance model is marked by squares. PNPS simulation
results are marked by x-marks.
A. Simulation results without a SAM layer for different
membrane charges of the gold layer inside the pore.
B. Simulation results with a SAM layer for different mem-
brane charges of the SAM layer inside the pore.
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Figure 9: Effective driving force in dependence of membrane surface
charge. Simulated values are compared with values given
by reference [54]. In [54], the effective driving force is also
simulated by the PNPS model.

reference were validated with experiments. The effect of the surface
charge on the driving force can be seen in Figure 9.

The agreement between the reference values and the simulated val-
ues of the effective force are very good. The small discrepancy can be
explained by the use of differently refined meshes and slightly differ-
ent geometries, e. g. sharp corners were rounded off. The bare electric
force is calculated by Fbare = σbare∆φ , where σbare = 136.2 mC/m2 is
the line charge density of the DNA and ∆φ is the potential drop on
the DNA molecule, as stated in [54]. To make the results compara-
ble, in this pore setup (P1) the electric force Fel was not computed by
(2.16) but by the surface integral

Fel = −
∫

∂DNA
σbare∇φ ds .

4.6 Simulation Results

4.6.1 Solvent Flow and Ionic Concentrations

In this section, simulation results of the ionic and the solvent flow
are presented. A comprehensive insight into the ion distribution and
the solvent flow field inside and outside the pore is given by Fig-
ure 10 and Figure 11. Clearly, the concentrations reach their maxi-
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Figure 10: A color plot of the concentrations for pore (P3). The plot-
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A. Concentration of positive K+ ions. B. Concentration of
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Figure 11: The simulated velocity for pore (P3).
A. Velocity field. B. Flow magnitude.
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mum and minimum near the charged surface. One can see that the
cross-sectional velocity profile remains relatively unchanged inside
the pore. The maximal velocity is reached at the pore axis. For ab-
solute values consider the cross-sectional plots in Figure 12. Eddies
form in the reservoir, which was also observed in [56]. Moreover, the
solvent only experiences a significant acceleration in the vicinity of
the pore since there charges of coions and counterions do not cancel
out. As can be seen in Figure 12, the concentration of counterions
inside the pore is always greater than the concentration of coions.

In Figure 12 cross-sectional plots of the concentrations and the fluid
velocity field for the pore (P3) are shown. For the plots a voltage of
20 mV was applied. Recall that a reduced DNA surface charge and
a lower ionic diffusion inside the pore was assumed, i. e. σ = 48
mC/m2 and D = 0.19 m2/s.

The velocity profile of the flow decreases with the pore radius due
to the no-slip condition on the fluid-solid interface. The maximum
velocity 0.0008 m/s is reached at the pore center. Clearly, as the ions
are accelerated by the electric field they are faster on average than the
water molecules, which gain their momentum through interaction
with the ion molecules.

4.6.2 Current-Voltage Curves

An essential characteristic of a nanopore is its current-voltage (IV)
curve. In experiments, IV curves are obtained by measuring the cur-
rent while sweeping the applied voltage. Thus, an aim was to quanti-
tatively reproduce IV measurements.

In Figure 13 the IV curve and the current components of the pore
(P3) are shown. Since the pore is axisymmetric and symmetric with
respect to the xy-plane due to its cylindrical shape the diffusive cur-
rent flux vanishes. This is different from pore (P2).

Due to the conical shape of pore (P2) there is always a diffusive cur-
rent if the pore membrane is charged, as can be seen in Figure 14B.
The convective current component is nearly zero. Drift and diffusive
current cancel at no applied voltage. In Figure 14 the tip diameter
used in the simulations is 1.25 times bigger than stated in the experi-
ments in [70]. A surface charge of −22 mC/m2 was set on the whole
membrane boundary. In the first subfigure the IV curve is plotted
against a linear fit of the resistance given in the supplementary mate-
rial of [70]. Unfortunately, no IV curve with actual experimental data
is provided for this pore. As outlined in the introduction, the effects
of ICR, i. e. I(+V) 6= −I(−V), can be seen for this pore, since it is of
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Figure 12: Concentrations and flow plotted for a cross-section of pore
(P3) at the pore center. The variables are plotted over the
radial distance from the rotational symmetry axis. The De-
bye length for this configuration amounts to 0.3 nm.
A. Concentrations of positive and negative ions inside an
open pore. B. Vertical component of the fluid flow field in-
side an open pore. C. Concentrations of positive and nega-
tive ions inside a pore with a centered negatively charged
0.5 nm molecule. D. Vertical component of the fluid flow
field inside a pore with a centered negatively charged 0.5
nm molecule.
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Figure 13: IV curve and current components for (P3). The diffusiv-
ity and DNA surface charge are reduced by 90% and 70%
compared to their bulk values, respectively.
A. Comparison of the measured and simulated IV curve of
(P3). The simulated IV curve is in good agreement with the
experimental data. B. Current components over applied
voltage for (P3). The diffusive current component (blue)
is nearly zero, whereas there is a significant contribution
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Figure 15: IV curves for (P4) with a diffusivity of 0.475× 10−9 m2/s
and different surface charges inside the pore. IV curves
simulated with the PNPS model are compared with the IV
curve in [12].

conical shape. The asymmetry is stronger at higher voltages, as can
be seen in Figure 14C.

Also, IV curves of the α-hemolysin pore (P4) were investigated. The
results are shown in Figure 15. For the simulations behind this pore
(P4), a bulk concentration of 1000 mM was used and the surface
charge was varied. The diffusivity was reduced to 0.475× 10−9 m2/s,
i. e. to 25% of the bulk value. In [60], ionic flow through α-hemolysin
is investigated with a PNP and a Brownian dynamics (BD) model.
There, the diffusion constant was also lowered to around 70% of the
bulk value depending on the cross-sectional area of the pore. Still,
the PNP model in [60] overestimates the ion current.

The simulated IV curves were compared with the IV curve found
in [12]. In [12], the current rectification in α-hemolysin pores was
investigated for different cation types, as ICR is observed in the ex-
periments. This feature could not be reproduced quantitatively, since
only constant surface charges were used in the simulations. Clearly,
an asymmetric surface charge inside the pore would yield better rec-
tification properties.
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Figure 16: Current drop for a negatively charged molecule and an
uncharged molecule along the axis of pore (P3).

4.6.3 Current Trace

In Figure 16 the current for varying molecule positions is shown. For
both an uncharged and a charged molecule with radius 0.55 nm the
current trace is displayed. The configuration of this simulation is
chosen as specified in Section 4.4 for pore (P3). The current drop
corresponds to the current difference between open and closed state.
In this configuration, the current drop amounts to approximately 0.7
and 0.45 pA, respectively, as the open current is circa 8.9 pA.

4.6.4 Force Field

In this section, the force field for a 1.1 nm molecule is presented. The
force field was calculated for pore (P3). For this simulation the setup
was slightly different. There was no applied voltage across the pore;
instead a concentration bias on the negative ions was applied. The
molecule was negatively charged with valence −2, but the pore sur-
face was assumed to be positive with surface charge 48 mC/m2. One
might think of the positive surface charge as a result of chemical mod-
ifications on the DNA or of overscreening of counterions. Thus, the
negatively charged molecule is attracted to the pore wall. For a total
number of nearly 2000 molecule positions the force was calculated.
An interpolation of the obtained values can be seen in Figure 17. In
Figure 17 the different forces in z-direction are plotted. As can be
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Figure 17: Force fields for pore (P3).
A. Effective force field. B. Effective force in vertical direc-
tion. C. Electric force in vertical direction. D. Drag force in
vertical direction.
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seen in the plots, the electric force is stronger than the drag force,
thus the molecule is mainly driven by the electric force.

4.6.5 Comparison of Forces on Finite-Sized Molecules
with Forces on Point-Like Molecules

In this section a comparison of the forces calculated by a simple
model and the simulated forces is provided. The simple model as-
sumes a point-like molecule, thus the forces are given by the electric
force

Fel = −Q∇φ(z0) (4.3)

and the Stokes drag

Fdrag = γS v(z0) . (4.4)

Here γS = 6πηrMol is the friction coefficient, rMol is the radius and
z0 is the midpoint of the molecule. The Stokes-Einstein relation for the
diffusion coefficient reads

D =
kBT
γS

. (4.5)

Thus, if one combines (2.9) and (4.5), one finds that the mobility is
inversely proportional to the friction coefficient.

Results are displayed in Figure 18 for the configuration specified
in Section 4.4 for pore (P3). The simulations were restricted to the
axisymmetric case, in the figures the x-axis represents the rotational
symmetry axis z. Due to the axisymmetry only the vertical compo-
nent of the forces is plotted. As already seen in the last section, the
effective force is strongest at the opening, as shown in Figure 18A.
In fact, there is a big barrier hindering the molecule from entering
the pore. The electric force is in relatively good agreement with its
simulated counterpart, cf. Figure 18C.

Figure 18B shows that the simulated drag force is approximately
four times as big as the classic Stokes drag force. The results support
the assumption of a lowered mobility inside the pore. In fact, a re-
duced molecule mobility corresponds to a higher friction coefficient
and hence to a higher drag force. Edge effects at the pore openings
are only captured by simulations with a macroscopic molecule. They
can be observed for z-values between ±6 and ±8 nm.
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Figure 18: Forces acting on a molecule along the axis of pore (P3).
Only the vertical force component is shown.
A. Effective force Feff. B. Drag force Fdrag. The values for
the classic Stokes drag overlap. C. Electric force Fel.





5
C O N C L U S I O N A N D O U T L O O K

The overall goal of this thesis was twofold: The first task was the
development of an efficient solver of the steady-state PNPS equations.
The second task was to validate the modeling approach and to run
simulation for different nanopore setups.

The numerical solver is based on a discretization of the PDE sys-
tem by the method of finite elements (FEM). The first objective was
resolved by a refinement of Newton’s method and by adaptive mesh
refinement. The efficiency of this approach regarding accuracy and
computational effort was demonstrated. Still, full three dimensional
simulations of big solid-state nanopores remain at the potential edge
of today’s workstations.

The simulations performed for four different nanopore setups gave
valuable insight into the physics inside the pore. The computation of
the effective driving force was verified with values given by a refer-
ence simulation. The model was validated by a conductance analysis
for a DNA origami and a solid-state nanopore. Simulated IV curves
were compared with experiments for those two pores as well as for
the α-hemolysin pore. As the surface charge is not known exactly
for most of the different nanopore setups, simulations with varying
surface charge were run to clarify the influence of this parameter.
Since only constant surface charges were used, the effects of ICR in α-
hemolysin could not be completely reproduced. Therefore it might be
interesting to implement non-constant surface charge densities. For
the small DNA origami nanopore the upshot of the model validation
was that the effective DNA charge and the ion mobility inside the
pore have to be reduced.

Furthermore, in the case of the DNA origami nanopore the solvent
flow had significant contributions to the calculation of the forces act-
ing on molecules as well as to the current. For the large nanopore the
effect of the solvent flow on the current was found to be negligible.
After calibration of the parameters current-voltage curves were repro-
duced quantitatively. A calculated force field was shown to demon-
strate the possibility of a comprehensible simulation of nanopores as
stochastic sensors.

Another possible way of determining the forces acting on molecules
would be to base the force calculations on accurate simulations with-
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out finite-sized molecules as outlined in the last section of the pre-
vious chapter. Still, one would have to be careful with edge effects
and physical parameters. Besides, as charges were only applied as
constant surface or volume charges the force field may lack some fea-
tures. For discrete ions one may expect the force field to have wells
and springs, thus being not as uniform as in the performed simula-
tions.



A
A P P E N D I X

Physical Constants and Parameters

In this section two tables containing the physical constants and the
material parameters used in the simulations are provided.

Table 4: Fundamental physical constants

Symbol Constant Value Unit

e elementary charge 1.602× 10−19 C
NA Avogadro constant 6.022× 1023 mol−1

kB Boltzmann constant 1.381× 10−23 J K−1

ε0 vacuum permittivity 8.854× 10−12 C V−1 m−1

F Faraday constant 96 485 = eNA C mol−1

Table 5: Material parameters

Symbol Parameter Value Unit

µ bulk ion mobility of K+, Cl− 73× 10−9 m2/Vs
η fluid viscosity 1× 10−3 kg/m/s
ρ fluid density 1× 103 kg/m3

D bulk diffusivity of K+, Cl− 1.9× 10−9 m2/s
εL relative permittivity of the lipid bilayer 2.0 1

εDNA relative permittivity of dsDNA 12.0 a
1

εSAM relative permittivity of SAM 2.7 b
1

εAu relative permittivity of gold 6.9 1

T temperature 293 K

a according to [29]
b according to [70]
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