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Kurzfassung

Im Bereich der Produktionstechnik steigen die Anforderungen hinsichtlich Flexibilität. Diesem
Trend müssen neben den eigentlichen Produktionsmaschinen auch die Transportsysteme Rechnung
tragen. Ein möglicher Ansatz für �exiblere Produktionssysteme ist der Wurftransport-Ansatz, bei
dem Objekte durch automatisiertes Werfen und Fangen transportiert werden. Für erfolgreiche
Fangvorgänge ist eine präzise und schnelle Prognose der Flugbahn notwendig, um die Fangvor-
richtung zeitgerecht zu positionieren.
Inhalt hier ist ein bionisches Wurftransportsystem, das aus einer Wurfvorrichtung, einem Ka-
merasystem, einem Prognosesystem und einem Roboter mit Steuerungsalgorithmen besteht. Für
alle Teilsysteme, ausschlieÿlich der Wurfvorrichtung, werden bionische Ansätze für die Informa-
tionsverarbeitung und Steuerung vorgestellt und diskutiert. Beim Auslesen der Kameradaten
werden, ähnlich den Fixationen und Sakkaden beim Menschen, dynamisch verschiedene Teil-
bereiche des Bildes ausgelesen, um die zu verarbeitende Datenmenge auf die relevanten Daten
zu beschränken. Das Prognosesystem basiert auf einem Erfahrungsschatz. Hier werden zwei
Verfahren zur Repräsentation und Prognose von Flugbahnen eingeführt, die einzig auf bereits
erfahrenen Flugbahnen die Prognose der aktuellen Flugbahn zulassen. Erfahrene Flugbahnen
können hier sowohl simulierte Flugbahnen als auch aufgezeichnete Flugbahnen sein. Das Fangen
wird mit einem, vom Menschenarm inspirierten, Roboter durchgeführt. Auch hier ist die Natur
Vorbild für die Steuerungsalgorithmen und ermöglicht dadurch das weiche Fangen von geworfenen
Objekten.
Das Gesamtsystem erreichte eine Fangrate von 86 % beim weichen Fangen. Durch das weiche
Fangen ist es möglich, die Kräfte auf das geworfene Objekt beim Fangen deutlich zu reduzieren
und damit auch den Wurftransport für eine gröÿere Menge von Objekten anzuwenden. Der
Rechenaufwand für die Prognose und Steuerung des Roboters kann von jeweils einem herkömm-
lichen PC zeitgerecht bewältigt werden.
Mithilfe der vorgestellten bionischen Ansätze ist es in jenen Bereichen, in denen die menschliche
Einschätzung den maschinellen Vorhersagen überlegen ist, möglich präzisere Prognosen durchzuführen.
Eine Weiterentwicklung der Auswertung der Kameradaten mit direkter Integration auf dem Sen-
sor ermöglicht die Steigerung der E�zienz der Bildübertragung vor allem in Domänen, wo einzig
Veränderungen oder Bewegungen relevant sind. Auch bei der erfahrungsschatzbasierten Prognose
können zum Beispiel durch eine Glättung bzw. Filterung noch Steigerungen der Prognosege-
nauigkeit erreicht werden.
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Abstract

Current and future production facilities are confronted with rising demands for �exibility. Besides
the impact on the production machinery also the transportation systems have to accommodate
this. A possible solution for more �exible transportation systems is transport-by-throwing, where
objects are relocated based on automatic throwing and catching. Successful catching requires an
accurate and timely prediction of the �ight trajectory in order to place the catching device on
time.
The content of this work is a bionic transport-by-throwing system, which is formed out of a throw-
ing device, a camera system, a prediction system and a robot with the related controller system.
For all subsystems, except the throwing device, bionic approaches for information processing and
control are introduced and discussed. The image processing is based on �xations and saccades,
similarly to the human, where the read-out areas of the cameras are dynamically adapted. This
reduced the amount of data which has to be processed on the relevant data. The prediction sys-
tem is working on the base of an experience database. Two procedures to represent and predict
trajectories are introduced, which work only on previously experienced/recorded �ight and allow
the prediction of the current �ight. The used experience can contain real as well as simulated
�ights. Catching the thrown object is done with a robotic arm that has a kinematic chain similar
to the human arm. Soft catching of human is the archetype for the control algorithms here and
allows soft catching, with low di�erential velocity, of the object.
The whole systems achieves a success rate of 86 % for soft catching. Soft catching allows to
reduce the forces on the object during catching signi�cantly. This opens the transport-by-throwing
approach to a wider range of application. The calculation demands for prediction and control of
the robot is done by two personal computers within the timing constraints of the overall system.
The introduced prediction algorithm allows to predict the �ight of a ball with an accuracy on par
with the state of the art prediction approaches. Future research targeting smoothing/�ltering of
the acquired/stored trajectories is one of the possibilities to enhance this approach further.
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1 Introduction

The processing power of modern computer system has increased tremendously during the last
decades. In spite of the possibility to process huge amounts of data within seconds with com-
puters, humans are still required to execute certain tasks where pure calculation power is not the
absolute requirement. Most of the related tasks for humans include abstraction, generalization,
and prediction of data. One example task is video surveillance where humans identify abnormal
or dangerous behavior based on their experience. Humans ability to identify regularities and
irregularities in "data streams" and abstract a rule for regular or normal sequences is used here.

Besides the raw processing power of modern computer architectures and computer systems, the
ability to perform these tasks by arti�cial systems is extremely limited and a current research topic
in a number of domains (by example video surveillance and elderly support to name two of them).
While processing power does not seem to limit the application of computer systems for these tasks,
the basic principles for data acquisition [Vel07], data representation [Vel07], abstraction [Vel07]
are limit factors. Prediction is one example that can improve the human-robot interaction [KS11,
pg. 1]. In these domains, the application of human or biological information-processing principles
can lead to more sophisticated systems.

Here the principles of human abstraction, memory and prediction are applied to the research
�eld of automated material transport by throwing and catching. A trajectory prediction system
based solely on previously experienced trajectories is introduced and the prediction performance
(prediction accuracy over time) is compared to state of the art physical model based prediction
systems. The Evaluation of the prediction accuracy under di�erent environment states is done to
identify advantages and drawbacks of this information processing principle.

1.1 Motivation

Biological systems like the human body use a number of sophisticated mechanisms to deal with
the enormous amount of sensory data from all over the body. The main principle here is the
abstraction that is used for every sense in the human body. An example for the abstraction
taking place for sight is the comparison of the number of cones and rods inside the eye (overall
more than 120 million) with the number of nerves (1.2 million) that connect the eye to the brain
for further information processing [9]. According to [Foe93, pg. 42�] [Foe99, pg. 37f] the layered
structure of the neurons inside the eye allow to combine information of neighboring photoreceptor
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Introduction

cells to obtain a higher level abstraction of the visual data containing objects like edges, areas,
and similar ones.

Another versatile mechanism of the human information processing is the association of previously
acquired experience with the current sensory input. Association has a huge number of applica-
tions for humans ranging for the recognition of persons or personal objects to the prediction of
future events or behavior. The �rst two examples are mainly relevant for sight and deal with an
association of lower complexity. Only the special attributes (also called features) of an object are
used to �nd similarities and thus also the associated memory of the object. For face recognition
by example, humans evaluate a number of points in a face where they look for a certain time
(�xations) [FHH+00]. The other example for an association, where also the future is predicted,
is a more complicated task. Examples here range from predicting the reaction of a person to a
sensible information to the prediction of a balls trajectory for an interception in sports. While
the prior case demands in-depth knowledge of the person and its personality, the ball-catching
task demands experience of a number of similar throws and a good association with historical
trajectories with the actual one. The number of repetitions for achieving a certain quality of a
task also depends on the intensity of the experience during practice for humans [Col08, p. 65�].

The previously mentioned mechanisms and principles are mainly used in combination. By exam-
ple, a child that is able to catch a green ball thrown at it is also able to catch a red ball thrown
with the same velocity and trajectory. Here the combination of abstraction (either the red as well
as the green ball is a ball) and the association of previously experienced trajectories of balls is
combined and used to predict the interception position and time that allows successfully catching
the ball. In addition research by Sloman suggests that the role of association, prediction and
online-perception for vision and the resulting (re-)action is ignored by nearly all vision researchers
[10]. Humans continuously use (short-time-)predictions or expectations to check their sensory
input for plausibility [Hoh14]. In case, a bottle is put over the edge of a table the expectation is
that the bottle falls to the ground and breaks there in case it is made of glass. Another example
is a ball that's thrown between two people. Consider an object is blocking a part of the view
on the �ight for an observer. The observer still will expect the ball to enter his �eld of view
based on the initial trajectory of the ball and his previous experience of thrown ball's trajectories.
His assumption for the location where the ball will enter his �eld of view again might even be
exceptionally accurate.

Regarding visual information, di�erent technical solutions for abstraction have already been pro-
posed and implemented. Solutions for abstraction of di�erent degrees is possible. Examples are
edge-detectors that allow extracting contours from images, feature-detectors that identify distinc-
tive areas of images and allow to �nd corresponding areas in other images or object libraries and
segmentation algorithms that spatially divide images into related subsections. Regarding technical
maturity, these algorithms might not be on par with the methods applied in biological systems,
but the basic functionality is existing and working. In general, it is possible to �nd a ball inside
an image, detect the contours of the ball, which is an abstraction, and derive two-dimensional
information about the center of the ball, which is another abstraction. This might not be possible
in every case considering lighting, background/foreground di�erences and ball distance/size but it
is possible under well-adjusted conditions. Analyzing human information processing and applying
it to the problem of abstraction still has a lot of potential for future research but this will not be
the main topic here.

In the �eld of association of experience with current sensory input the state-of-the-art is less
advanced. Similar to abstraction, the application of biological principles or the mimicry of the
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functions of biological systems for the task of experience creation and association have the poten-
tial to substantially level the abilities of technical systems. Establishing a functional model for
experience and association inspired by the human archetype will be the core area here. Due to
the given task of trajectory prediction for transport-by-throwing the requirements for this data
processing model are a fast association of related experience with the current event, e�cient man-
agement of the emerging database of movements and adequate abstraction and generalization of
information.

The research question in this work is whether a system, solely based on abstracted information of
previous �ight trajectories, can outperform a state-of-the-art model-based prediction system for
the task of trajectory prediction with respect to computation cost and accuracy of prediction. In
addition to the two mentioned aspects also, the in�uence of undocumented impact factors like air
streams or deviations of the object's �ight properties will be discussed.

Such a system will allow mimicring biological information processing for this task. This means
that the �ight trajectory will not be predicted based on the consideration of gravity, aerodynamic
forces or other physical aspects but only be based on the "knowledge" of the prediction system
that is following the human way of �ight trajectory prediction. No baseball player would consider
calculating the �ight trajectory of a baseball based on di�erential equations or other equations, his
experience and record of �ying balls will enable him to catch the ball with a high rate of success.
The proposed processing model is derived from this behavior.

1.2 Problem Statement

Material transport, in general, deals with the relocation of mass. Properties like e�ciency, vari-
ability and applicability are main attributes to transport systems. State of the art production faces
the challenge of the con�icting requirements of automation and �exibility [PEG05] [GRF06, p. 2].
Traditional transportation system shows disadvantages on these attributes under some circum-
stances. Especially at junctions of a transport system more �exible approaches to transportation
may show great potential.

1.2.1 Transport by Throwing

Transport-by-throwing has been proposed by Frank [FWWH+06]. The basic principle of autom-
atized throwing and catching signi�cantly increases the �exibility due to the lapse of additional
infrastructure for material handling like conveyor belts. Regarding the three main shapes of
�exibility, namely layout-�exibility, throughput-�exibility and the �exibility of the transported
material proposed by Günthner [GW02, p. 1f], the transport-by-throwing approach has excellent
properties regarding the layout �exibility and the throughput �exibility. In case, the production
line is composed of modular production units the layout of the whole line is only restricted by
the range of throwing. In the case of longer transportation paths routing via other production
units is possible (similar to multi-hop routing in communication networks). All other (modular)
production units can be used for transporting in case they are within the reach of the origin unit.
In addition to the transportation on the same height-level also the transfer to di�erent levels is
possible without additional infrastructure. Regarding the �exibility of transported material, re-
search has only dealt with highly symmetrical (point-symmetrical, axial-symmetrical) objects like
tennis balls, cylinders or similar objects [FBM+08, BFK08, FMS09, BFPK09, PKFB10]. On the
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other hand, challenges of the transport principle lie in the trajectory and orientation prediction
and soft and harmless catching at the destination site. The task of successfully transporting an
object between two spatial di�erent locations is divided into four subtasks [FWWH+06, 92]. The
four subtasks can be seen in Figure 1.1.

Figure 1.1: Overview of transport-by-throwing approach

Throwing

For the throwing site, the main task of the throwing unit is to accelerate the object to a suit-
able launching velocity and direction to reach the catching area of the catching site. Object's
aerodynamic properties determine the suitable �ight trajectory and thus the required launching
parameters. Variances in the launching parameters can lead to a trajectory that does not allow
the object to be caught at the destination site, thus, the requirement for accurate throwing in
dependency to the catching area of the catching system exists [FBM+08, p. 1]. To minimize the
stress on the thrown object the forces during acceleration have to be minimized.

Trajectory Prediction

Accurate �ight trajectory prediction is necessary in order to position the catching device on
time at the interception position. An object's �ight trajectory depends largely on the launching
parameters and the object's aerodynamic properties. Variances in the trajectory emerge due to
small deviations in the launching parameters as well as deviations in the medium's properties (e.g.
air streams, air temperature) [FWWH+06, p. 92] [FBM+08, p. 978]. An illustration of this problem
is given in [FWWH+06, pg. 94]. A more detailed analysis with the determination of deviation
distances for di�erent objects is given in [BFK08, pg. 894f]. Most of these in�uencing factors can
not be measured and considered during the �ight time of the object. Consider measuring the
magnitude and direction of the air streams along the object's trajectory - this is technically not
feasible. Thus in addition to the information about the launching parameters of the object, the
current object's motion state is used to update the current prediction for the �ight trajectory.

Tracking

As mentioned in the previous paragraph additional information is necessary to predict the �ight
trajectory of an object with the required accuracy to catch the object at the destination site.
Due to the object's motion visual sensors (e.g. cameras) are used mainly for the task of tracking
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[KMK+10, PKFB10, Bar10, LRÅJ09]. Mainly stereo vision setups are used for this task but
also research work based on single cameras exists [Bar10]. One approach is dealing with di�erent
numbers of cameras and also considers unsynchronized images from multiple cameras is presented
in [LRÅJ10].

Catching

The information from the tracking and trajectory prediction system is �nally used to position the
catching device on time at the interception position and catch the object out of the air. While
the forces on the object during the free �ight are negligible, the catching-event is putting external
forces on the object. In contrast to throwing, where the object is under full control of the throwing
device during the acceleration phase, this is not valid for the catching site, especially at the instant
of impact. Most of the current implementations primary focus on positioning the gripper at the
predicted interception position [BSW+11] [Bar10]. High accuracy of the trajectory prediction in
the early phase of the object's �ight allows to adjust the velocity of the catching device to the
velocity of the object and thus minimize the forces on the object during catching. This approach is
covered only in a small number of approaches [HS91] (compare �rst paragraph in Section 2.2.2.1)
and most recently with a cylindrical thrown object that has a stable �ight [Fra12] (compare fourth
paragraph in Section 2.2.2.1).

1.2.2 Scienti�c Challenge

For using transport by throwing on in a real production environment challenges in all four pre-
viously introduced areas have to be mastered. Especially in the areas of trajectory prediction,
tracking and catching current approaches are not practical for general usage. For example work
by the national aeronautics and space research center of the Federal Republic of Germany uses a
cluster with 32 CPU cores for the planning of the �rst optimal movement path to the catching
position and stops the search for the optimal solution after 60 ms [BWH10, pg. 2]. For updating
the movement planning after every frame one of three cores of a 2.2 GHz Quad-Core-Xeon CPU is
used in a round-robin scheme with a worst case running time of 60 ms per core. Considering such
a setup for each transportation link renders transport by throwing to computational expensive for
general usage. The combination of image acquisition, processing and object detection, trajectory
prediction and catching motion planning needs to be more e�cient regarding computational costs.

Still, while using such a potent system, the achieved success rate is ≈ 80 %. Here the main question
is why the analytical/physical approaches only achieve this success rate. Reasons, given in the
literature, are the accuracy of the tracking system, the prediction accuracy and the challenges of
the robotic actuator.

Visual Input

Experiments on the in�uence of image resolution and frame rate on the accuracy of the predicted
trajectory [Pon09, pg. 62�] show that both a high resolution and a high frame rate improve
accuracy. On the other hand, an increase in either of them increases the amount of data to be
processed within a given time as well. This yields in a con�icting state of interests. Methods
to increase frame rate and resolution while keeping the processing requirements within a given
envelope are required.
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Experience Based Prediction

Calculating the �ight trajectory based on computational �uid dynamics is the most accurate
technical solution for predicting an objects �ight path. This approach, on the other hand, is
extremely expensive regarding computational power that also results in signi�cant energy con-
sumption. Simpli�ed motion models for simple thrown objects have been introduced by [Bar10,
pp. 115�] [Pon09, pp. 38�] [LRÅJ09, p. 3] that consider point-symmetrical objects like a tennis
ball. These approaches show disadvantages in case the motion model does not consider all forces
in�uencing the �ight trajectory (e. g. spin of the tennis ball) [Pon09, p. 66]. More recent work
has also dealt with axial-symmetrical objects [FMS09]. Experiments examining and using the
aerodynamic e�ect of shoulder stabilization as well as a rotation along the symmetry axis are
presented.

Here a bionic experience based prediction system will be introduced and implemented in a simu-
lation environment as well as for practical experiments. The challenges for this system are:

• What is a suitable representation of the data?

• How to keep the memory consumption of the "experience" low? (depends largely on the
representation)

• How to associate current processes or events with previous events?

• How can the general application of the data to current trajectories be achieved?

The solution for these challenges shall be found based on human- or bio-inspired information
processing because:

• Humans are able to generalize the experience they have.

• A human associates historical events, a human recognizes people, a human is able to �nd
orderliness/principles.

• Human build abstract models (physics, chemistry, mathematics).

• Humans accurately, e�ciently and nearly instantaneously associate experience (e.g. a balls
trajectory in tennis).

Biological trajectory prediction systems show all the aspects that are necessary for the task of
transport-by-throwing and thus deal as an archetype for the experience based prediction system.
Primary functions of the human trajectory prediction will be identi�ed, and a hypothesis for
the information processing model will be tested in a simulation environment and a practical
experiment.

Based on the attributes of biological trajectory prediction systems the derived model for trajectory
prediction is expected to

• Have advantages in terms of accuracy/computation power over state-of-the-art trajectory
prediction models/systems

• Allow to use less sophisticated camera systems (lower resolution, lower frame rate thus lower
cost)

• Provide feedback to verify if the derived model is suitable to describe the trajectory predic-
tion in biological systems
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Catching Movement

Another relevant aspect is the motion planning of the catching device. Usually, a catching device
is mounted on a robot with varying number of Degrees of Freedom (DoF) ranging from a gantry
robot [Bar10, pg. 11f] with 2 DoF to state of the art robots with 7 DoF [BWH10, pg. 1]. The used
robot de�nes the possible movements (in the case of the gantry robot only positioning within a
plane is possible) and, on the other hand, raises requirements for the movement planning. For each
of the joint, the related position has to be calculated which raises the computational demands
and, on the other hand, also the demands for the algorithm determining the joint's position.
Additionally, the aspect of robotic mastering (setting the robot's parameters in the best possible
way to have accurate Cartesian positioning based on the seven rotational joints possible) is more
challenging for systems with higher DoF. By example, a 7 DoF System like the KUKA LWR 4+
used for this work has more DoF than needed to reach a particular position (3 DoF) with a certain
orientation (3 DoF). This additional DoF can be used to reach the same position and orientation
with di�erent internal positions of the robot or a zero space movement while staying in the same
place.

Also, more complex systems (systems with higher DoF) allow to align the trajectory of the catching
device with the trajectory of the thrown object and thus enabling to catch the object in a soft
way. This catching reduces the forces acting on the object during catching. Here it will be referred
as soft catching. A bene�t of soft catching is that the transport by throwing approach can be
applied to a higher number of objects. For implementing soft catching e�cient catching movement
planning and timely synchronization of the trajectories is necessary.

1.3 Proposed Methodology

When approaching the challenges of transport by throwing the environment for the application
have to be analyzed initially. This requirements analysis allows narrowing down the problems and
di�culties that have to be targeted throughout the process of developing a transport by throwing
system. The current state of the art transportation systems will be analyzed, and the bene�ts
and possible disadvantages of a transport by throwing system will be derived.

An investigation of current research work will be used to identify related problems and their
solutions. Open issues will be speci�ed and basic information and principles to master these
problems will be collected, this concludes the part of investigations. An analysis of the state of
the art trajectory prediction and especially modeling will be done. Problems in this �eld will be
identi�ed.

Proposal

Based on the current research work a system architecture for a bionic transport by throwing
system will be proposed. This system includes bionic aspects regarding image acquisition, image
processing, trajectory prediction and catching movement planning. Using biological archetypes
a more e�cient way to calculate an object's position based on visual information from a set of
cameras is presented. For the aspect of trajectory prediction, two approaches for experience based
prediction will be proposed and discussed. The foundations are in the �eld of studies targeting
the human information processing. While most of the studies cannot be validated or proven the
approach here is also used to test the hypothesis and provide feedback on the related models.
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Introduction

Their respective advantages and disadvantages compared to each other and considering the state
of the art physics-based prediction approaches will be discussed. Furthermore, an e�cient method
to determine a robot's catching movement will be proposed and reviewed.

Evaluation

The proposed approach for trajectory prediction will be evaluated in a simulation and real world
experiments. To allow a realistic evaluation of the algorithms the analysis of a stereo camera
system's accuracy regarding spatial position detection will be done. This data is required input
for the simulation to model the error of the position detection introduced by the camera systems.
Due to the fact that any real world system is only able to process this measured data, including
the errors, the simulation has to consider this errors as well for position detection. The advantage
of using a simulation, where the ground truth is known, will be used to determine the impact of
the position detection error on the �nal prediction error, thus enabling to give statements about
required position detection accuracies.

The process of experience build-up and the in�uence of the number of datasets for the resulting
prediction accuracy will be examined. The possibility to expand the data set for the real world
experiments with simulated data will be discussed and reviewed.

The additional steps to apply the proposed prediction methods to real world experiments with a
linear-throwing machine, a set of two cameras, a standard PC including general purpose graphics
processing units for image processing and trajectory prediction, as well as a KUKA LWR 4+
industrial robot, will be examined. Access to the robot is possible because this work is embedded
in the KOROS initiative at the TU Wien. In this initiative, nine institutes of 4 faculties at the TU
Wien cooperate in the �eld of robotics and human-robot interaction. The hardware infrastructure,
consisting of 2 KUKA LWR 4+ robotic arms, one Aldebaran Romeo, and additional equipment
was funded by the WWTF in 20101. Here included is the application of the proposed bionic
concepts to the vision system, the prediction based on experience including the built-up process
with real world data and the application of the soft catching movement to the robot. For the
latter task, the challenge of synchronizing the status and command data of the robot with the
image acquisition process of the cameras has to be mastered.

An evaluation based on a comparison of the bionic approaches with state of the art physics-based
prediction algorithms will be done. This evaluation will be made twofold - in simulation, and the
real world experiments will be used to test the most suitable developed prediction algorithm.

Reasoning

The results from both approaches and both test environments will be analyzed and discussed
giving the foundation for the identi�cation of future work and possible future improvements as
well as a wider �eld of application.

1KOROS proposal for UIP 2010 WWTF, granted on 2. Feb. 2011 (TU-Kooperationszentrum)
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2 State of the Art and Related Work

In the following sections, the current state of the art for the three main parts of the transport-
by-throwing approach will be analyzed and discussed. The �rst section deals with transportation
systems and material �ow in current production facilities and outlines advantages and disadvan-
tages. Trends in production and transportation systems, as well as projections, are discussed.
Furthermore potential bene�ts of the transport-by-throwing approach over current implementa-
tions are outlined.

Based on these realizations in the initial section of this chapter research work in the areas of
robotic catching and biological archetypes for catching will be discussed. Furthermore promising
solutions to the challenge of robotic catching will be discussed. The content of the sections in
detail:

The second section, robotic catching, will deal with scienti�c work on grasping and catching with
robotic systems. Approaches targeting catching of objects thrown from distances ranging from
a few centimeter up to some meters will be discussed in two separate subsections. In the �rst
subsection mainly approaches that do not require trajectory prediction due to the small throwing
distance will be discussed. The seconds subsection will deal with throwing and catching on a
larger scale (up to several meters) where trajectory prediction is required.

For the later part of research work tracking systems and trajectory prediction approaches and
algorithms will separately be discussed in two subsections. Mainly analytical methods for de-
termining the interception position of the objects are presented and discussed. Work targeting
point-symmetrical and more general objects will be reviewed and also the aspect of orientation
prediction will be considered. Current approaches in di�erent �elds are introduced and discussed.
Their primary attributes will be outlined, and the suitability for the transport-by-throwing ap-
proach will be examined.

Biological archetypes for catching are the topic of the third section. Research on human catching
will be discussed, and the impacts of these �ndings on technical systems will be evaluated. This
section is closed with a discussion of bio-inspired information processing approaches and their
suitability for the task of catching objects.

The closing section of this chapter is dedicated to the most promising approach for transport-
by-throwing based on the �rst three sections of related work. Open problems will be discussed
and the base for the following chapter, proposed solution for a bio-inspired prediction system for
transport by throwing, will be outlined.
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2.1 Material Transfer in Production Facilities

The requirements on production facilities have shifted to a very great extent during the previous
years. While mass production has been a primary attribute since the Industrial Age a more
complex requirement, the "Mass Customization" [CA98, GW03], is challenging current production
facilities. While the same, or even higher, output in terms of pieces is required, the variety of the
produced objects has increased signi�cantly. Figure 2.1 shows some examples of goods where the
variety has increased tremendously between the early 70s and the late 90s [CA98, p. 6].

Figure 2.1: Examples of increased variety of goods between 1970 and 1998 [CA98, p. 6]

The increase of variations of goods produced raises the requirement on the production facili-
ties. Flexibility is of main interest while cost e�ciency and reliability have to be kept at the an
unchanged high level. Flexible production systems also require �exible transportation systems
[GW02, p. 1]. The overall increased complexity of the production process (both production and
transportation system) cause an increased control- and material transfer complexity [Pil01, p. 93f].

Because of signi�cantly increased production- and transportation costs, the production of small lot
sizes still raises high costs. Automatized solutions for transportation are only suitable for larger
lot sizes [GH03, p. 2]. The illustration used to point out this relation is presented in Figure 2.2.
The signi�cant increase in costs per piece with increased degree of automation in combination
with �exibility (keyword "Mass Customization") [GW02, p. 1] is clearly illustrated here. State
of the art production and transportation systems undoubtedly hamper the penetration of "Mass
Customization".

Figure 2.2: Schematic relation between degree of automation, �exibility and costs per piece [GH03, p. 2]

Comparison of di�erent transportation systems and their suitability for �exible production sys-
tems requires explicit assessment criteria. Günthner suggests three main �exibility attributes of
transportation systems [GW02, pp. 1f]. These are the �exibility of
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• Goods
Targeting the variety of goods to be transported. Maximum �exibility here means that
goods of di�erent shape, size, mass, mechanical properties, surface properties, texture and
other properties can be handled with the transportation system.

• Layout
Describing the connection of transfer stations. Given examples are �xed layout, �exible
layout along a straight line, �exible layout along an arbitrary line and unrestricted layout
[GH06, p. 2].

• Throughput
Classifying the possible directions of transportation. Presented examples [GH06, p. 2] sug-
gest a line bound transportation system as a base that causes a sequential transportation
along di�erent stations. A fully meshed topology can also be realized in particular environ-
ments.

and states that a transportation system that ful�lls these three requirements is convertible but
that the costs for such a system are extraordinarily high, and even that such a system might
not be possible to realize [GW02, p. 2]. This statement is not speci�ed more accurately which
raises some questions: what are the domains (in terms of goods), are there any? It is obvious
that a transportation system �exible enough to deal with fully assembled cars and small plugs for
electronic components is highly �exible, but the question is whether such a system is necessary at
all. Hence, the statement leaves room for criticism.

In addition to the three main attributes of �exibility two more characteristics are suggested:

• Extendability
Allowing to extend the transportation system with new transfer station within the system's
area.

• Integrability
Being a measure of the complexity of the system's integration into the managing system
and bonding with other processes in the production system.

In addition, later work suggests another additional requirement: �exibility of automation's grade
[GHW06, p. 3] but the attribute is not speci�ed furthermore. The interpretation of the title is
that either fully automatized stations as well as manually (by human) operated stations can be
feed (loaded/unloaded) with the transportation system.

Another approach rates the modularity as the most important attribute of convertibility [Wie05,
p. 26]. Modules are considered as autonomous working units with compatibility and interchange-
ability that are provided with material-, information- and energy-�ows to perform the production
task. In comparison to the requirements by Günthner [GW02, pp. 1f] here, a more revolutionary
approach and de�nition of convertibility is used. The key to �exible manufacturing is seen in the
realization of the production facility with independent modules that can be replaced or extended.
This includes the attributes integrability, extendability, throughput, layout and goods but doesn't
allow to rate transportation systems in di�erent domains. Still the modularity can be seen as
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one step further away from conventional transportation systems: Imagine a complete produc-
tion facility realized out of a number of modular production unit connected by a self-con�guring
transportation systems. Such a system is comparable to the "emerging intelligence" of an ant
colony.

Conventional transportations systems will now be discussed in the light of the current and espe-
cially future requirements based on the previously established knowledge and rating attributes.

Conveyors

Production facilities with conveyors for transportation task have been assigned the attributes
of high operations e�ciency and productivity [Miy06, p. 5]. Starting from 1995 a shift in the
Japanese electronics industry from conveyor line production to cell production has been investi-
gated. This trend has continuously been identi�ed in studies 2004. The downsides of conveyor
based systems cause costly and time-consuming recon�guration of the production line for new
models and extreme di�cult layout recon�guration. [Miy06, p. 3]

When considering the attributes established by Günthner, it is obvious that, while o�ering a
good �exibility in terms of goods (not considering loading/unloading that can be a challenging
task for a signi�cant variation of products), the layout- and throughput-�exibility of conveyor-
based transportation systems are limited due to their massive and bulky construction (compare
Figure 2.3).

Figure 2.3: Typical conveyor in an industrial production environment c©CanStockPhoto

Automatic Guided Vehicle

In comparison to conveyors, automatic guided vehicles do not allocate the whole transportation
line's space during the operation. This results in an added �exibility of the system as the area
can be used otherwise when the vehicle is loaded/unloaded or is not passing the respective area in
near future. Still such vehicles heavily rely on preset markers like wires or optical sensors [Akh11,
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Figure 2.4: Example automatic guided vehicle with markers for route execution on the ground
c©CanStockPhoto

p. 14] (compare Figure 2.4). This limits �exibility especially when �x installed wires are used to
guide the route of the vehicles.

In terms of the attributes by Günthner �exibility in terms of goods is limited due to the support
�xture. The examples presented by Akhter by example show pallets for two of the three presented
vehicles [Akh11, p. 14]. Loading and unloading these pallets results in additional manufacturing
steps and thus increased time and costs. In terms of layout-�exibility, the routes of the automated
guided vehicles could be altered or even be dynamically planned by a higher level control system.
In the latter case also the throughput �exibility is very high.

The non-continues �ow of goods is seen as a disadvantage, as process inventory is accumulated
before transporting which results in higher process inventory. Furthermore, the high utilization of
space is disadvantageous. Usage of automatic guided vehicles for transportation of goods between
work cells raises the assumption that they are the successor to conveyors based on the trend from
conveyor line production to cell production [Miy06, p. 3] but they rather complement conveyors
in applications where they are better suited.

Rotary Transfer Machines

In contrast, to conveyors mostly linear approach to transport rotary transfer machines gather a
number of production process steps around a rotating table that �xes the goods and allows to
move them from one processing unit to the next one. Such machines represent a combination
of a small transportation system with the related processing steps and can be used to build a
production cell. Loading and unloading are usually done with a robot like shown in Figure 2.5.
Such work cells can be connected by automatic guided or conveyors to form larger systems.

In terms of �exibility such machines are very limited. The layout is predetermined by the round
rotating table, usually the size is based on the numbers of processing steps which results in close
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Figure 2.5: Example rotary transfer machine with an robotic arm for loading and unloading
c©CanStockPhoto

to impossible extendability, throughput is clearly orientation and �exibility of goods is limited
due to the �xtures for the goods on the table.

Throwing or Shooting

Simple realizations of throwing or shooting are used in production facilities. Examples are the
sled for weaving, slotted casting cores in casting houses and de�cient product dropout based on
blow-processes. A more complex realization of throwing is used to stack sanitary products with a
rate of 800 pieces per minute. A throwing distance of a lower number of centimeters is achieved
by accelerating the objects with two belts. [Fra12, p. 7]

Transport by Automatized Throwing and Catching

The insu�cient usability of the state of the art transportation systems for current �exibility
requirements opens the door for innovation. Considering the trend towards work cell-based pro-
duction systems [Miy06, p. 3] and a possible implementation of a work cell similar to Figure 2.5
with an industrial robot the approach of transport by throwing shows potential regarding the
�exibility requirements. The robot used to load/unload the production cell could also be used
to transport goods via throwing and catching to the next production cell. Limitations in terms
of transportation distance exist based on the limited amount of energy for throwing that has to
be consumed at the destination site without damaging the object. Still longer transportation
distances could be realized by multi-hop throwing and catching. Here it has to be noted that a
robot busy with the processing of an object can not be used for transportation of any other good.
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Thus, the requirement for additional robots dedicated to transportation or redundant robots at
a manufacturing cell might arise. In the latter case, the second robot could also be used for
increasing the throughput at times when no other transport has to be processed. Flexibility here
leads to increased complexity of planning and scheduling [Pil01, p. 93f].

In terms of �exibility the layout- and throughput-�exibility are extraordinarily high. Even three-
dimensional production lines based on modular production cells could be realized where new cells
with new processing abilities or for load balancing could be added any time. In terms of goods-
�exibility the mass and aerodynamic properties of the object limit the application. Naturally high
mass objects raise unmanageable requirements on the catching device.

2.2 Research on Robotic Catching

Robotic catching has been a research topic for more than 20 years now. The challenge of catching
a thrown object are often seen as a test for the potential of current robotic hardware and control
algorithms. This causes a wide range of theoretical and practical approaches to the topic. In this
chapter, the related work is divided into four subsections.

The �rst subsection is dealing with robotic catching research where the origins of the task settings
can be traced back to grasping. Due to a small free-�ying distance of the object, the prediction
of the object's trajectory is usually not necessary in these cases. Small distances are covered with
these approaches and usually direct control algorithms, omitting prediction are used.

The second group, discussed in the second subsection, consists of research work where a larger
distance is covered (several meters of free �ying distance) and thus the requirement for trajectory
prediction is existing. The larger distance also causes bigger deviation in the trajectories of
the thrown objects and thus also catching devices, that can be moved over a wider range of
spatial motion, have to be used. The bigger range of movement also requires that the movement
towards the catching point is initiated as early as possible to minimize the mechanical stress
on the catching device and limit the used energy. Due to the high number of approaches they
are discussed in general initially and in speci�c subsections the aspects of the tracking systems,
trajectory prediction, and the catching movements are compared and discussed.

2.2.1 Catching Emerging from Grasping

Robotic catching can be seen as a more sophisticated grasping problem where the object's state
(position and orientation) changes over time in contrast to grasping a static object. Thus, the
requirement of timely synchronization arises. In addition, to the transport-related application
of throwing and catching also the usage of this application for demonstrations of the abilities of
robots has been done.

Catching emerging from grasping has been surveyed at the University of Tokyo [NNII99]. The
system presented is mainly built to show the capabilities of a high-speed vision system (presented
1992 [IMT92]) based on parallel data processing [NNII99, pg. 3200]. A 1 ms processing time
is achieved by using seven DSPs (Digital Signal Processors) and the task of catching is enabled
without the need for prediction based on this processing time [NNII99, pg. 3197]. An advantage
of the system over more common approaches using cameras and prediction (explicitly mentioned
is [HS91]) is seen in the avoidance of prediction. Considering the requirement for active vision due
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to the limited resolution of the optical system (256 pixel overall) and the sophisticated hardware
with dedicated tasks for each DSP the usage as a base for a general purpose tracking or catching
system is limited. This algorithm is not comparable to other object tracking algorithms in machine
vision because it was purposely built for this application [INI96].

Improved work with an updated sensor is presented in [NI03]. The resolution of a vision system
is increased to 16384 (128 by 128) pixels [NITM00]. The focus is mainly on the processing
improvements. The data, acquired with 1 ms cycle time, from the photodetectors is processed in
column-parallel con�guration instead of the completely parallel architecture for the previous 128
(16 by 16) pixel sensor. Further improvements are the usage of a stereo con�guration with 3D
self-windowing [NII02]. The main statement of the contribution is that the increasing speed of
mechanical actuators (e. g. robotic arms) in combination with high-speed sensors allows to avoid
prediction for tasks like catching. The disadvantages of a slower visual perception (like humans
have) are the requirement of high-level prediction that requires hard learning with a long learning
rate. Direct mapping from the sensor data to motor commands for the robotic arm is used. It is
interesting that the rate of successful catches is not given in the publication.

This argumentation apparently leaves other aspects open. Even if the speed of the actuators is
further increased the amount of power consumed for a movement is still depending and increased
by the mass, that has to be moved, and also increases as the time of execution is decreasing.
Under the aspect of energy e�ciency, the statement clearly can be opposed by this fact.

The used gripper is introduced in another article [NIIK03]. The three-�ngered hand is presented
and the experimental results for catching a falling foam ball with a radius of 4 cm at about 4 m

s are
given. The sensor for this task is the same sensor system as in [NI03] that is presented in [NITM00]
in a stereo con�guration with the same processing algorithms as in [NII02]. Consequently, predic-
tion is not needed. The success rate of the gripper grasping the ball with a deviation of ±2 cm
from the center of the palm is more than 90 %.

This contribution shows potential for small scale catching. Still for the small deviation of only
±2 cm the catching rate should even be higher than 90 %. Especially with a catching friendly
foam ball. Further optimizations are given, and one aspect is the increase of actuator speed that
is a brute force approach. The combination of the small scale catching system with a robotic
arm, as presented in [NI03], looks very promising, but the lack of a stated success rate raises
the thought that the real-time mapping of the sensor data to the movement of the robotic arm
is not accurate enough. Reasons for this are seen in the delay of the robotic controller and the
mechanical actuators to execute the movement commands.

The next step in the line of research is the catching of a more complex object, in this case, a
cylinder with 5 cm diameter and 10 cm length [INHI04]. The vision system is similar to the
one used in [NIIK03] and [NI03]. Again the lack of a stated success rate raises the thought that
a successful catch was a rather rare event. For the overall system again the limitations of the
catching area and the positive impact of foam (soft) object for catching are valid.

In 2005, the dribbling of a ball on a �at surface was presented [SNI05]. This raises the demands
for the dynamic stability of the manipulation. A fundamental change was done in the area of
the vision sensor as an integrated vision chip with 4096(64 by 64) pixels was used [KIIY03].
The processing times for the momentum of the binary image could be reduced to 17.5 µs while
the determination of the area could be achieved within 1.3 µs. The whole vision system was
built out of two of these vision chips in a stereo con�guration. The determination of the center
of the spherical object was done based on the calculation of the moments of each image. The
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actuator/gripper, the multi-�ngered hand presented in [NIIK03], was used to dribble a ball with
a diameter of 30 mm with an amplitude of 0.15 m. This factors caused a period of 100 ms for the
dribbling motion. Here prediction was used for the movement in order to reach a target position
where stable dribbling is possible.

The process was stable in the simulation but not in the experiment. The limited resolution of the
vision system with an assumed 3D position error of 10 mm was considered to be responsible for
that. Also, the calculation of the center of the ball based on the (simple) determination of the
momentum might also be a major source for the error. More advanced algorithms like the Hough
Transform [P.V62] might reduce this error signi�cantly.

In 2003 also research targeting the control architecture of a combined robotic manipulator (the
multi-�ngered hand and a robotic arm) was presented by the Japanese research team [NHI03]. The
architecture was derived from the human archetype. The highly sophisticated human ability for
dynamic tasks with visual feedback like tennis, basketball, baseball or even day-to-day activities
like hitting a cockroach with a folded newspaper based on visual feedback [NHI03, pg. 873] inspired
the research to develop a hierarchical control architecture. In comparison to earlier work based on
simple visual feedback more sophisticated feedback was necessary for multi-objective, �exible and
high-speed visual servoing [NHI03, pg. 873]. The hierarchical structures with e�erent and a�erent1

signals that interact on each level in biological systems was discussed and a model for technical
systems established [NHI03, pg. 874]. A main attribute here is that the sensory information
(e�erent signals) is fed to all the layers of control architecture. This is reasoned by the requirement
of real-time task selection in each layer for complex tasks [NHI03, pg. 875]. Additionally also the
relation between the gaze behavior and the movement of the manipulated object is discussed based
on [JWBF01]. Conducting the manipulator to the object is seen as the main function here. This is
opposed to other research that is discussed in Section 2.3. Also the attributes of the visual system
are discussed and an engineering implementation using saccades is established [NHI03, pg. 876].
Interestingly the usage of position-based control, de�ned as control based on extracted positions,
compared to image-based control, de�ned as control based on target images, is used in the model.
While the argumentation of the authors favors image-based control due to the higher stability,
and even argues that this might be the reason for the high stability of the human manipulation
skills, this is clearly opposed by other research in Section 2.3. Another point of criticism is that
the structure's property that all sensory information is fed to all layers without further processing
is opposed by newer �ndings of the human process of perception (compare Section 2.3). The
proposed control architecture is tested in an experiment with a 2 degrees of freedom (DoF) active
vision consisting of the previously discussed SPE-256 (16x16) visual sensors, a 7 DoF arm and a
14 DoF four-�ngered hand. A number of assumptions are used to simplify the overall task like the
assumption that the object is only moving within one plane allowing the usage of a single camera
and the experiment uses low dynamics with a ball mounted on a stick. Highly dynamic tasks (like
catching a thrown ball), that are the main goal of the proposed architecture are not tested.

One year later, in 2004, research work dealing with the topic of batting a ball with a robotic arm
is published [SNI04]. Batting here is a dynamic contact with the object and is in many aspects
similar to catching. The main di�erence is that for catching the impact should be minimized while
the impact is necessary for batting and should lead to an intended movement of the object. The
article states that batting does not require the application of a human processing architecture,
the human mechanisms. The way humans process information is seen as clear results of the "low
throughput" visual system [SNI04, pg. 1192]. Thus, also the use of an e�erence copy to compensate

1E�erent is de�ned here as sensory input while a�erent is de�ned as (motion) command
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the delay in visual processing of humans is not required by a technical implementation that has
a high speed and low delay vision system. It is noted again that more recent research here
clearly shows a di�erent point of view (compare Section 2.3). In regards of the vision system the
commonly used system with 1 ms cycle time and 16384 (128 by 128) pixels is used. Successful
hits of the ball are achieved in with 90 % rate. The batting point is initially calculated based on a
simple prediction that is updated during the movement of the arm based on the high-speed vision
setup.

In the following year an update to the gripper was introduced [NI05]. The multi-�ngered hand
was enhanced to a three-�nger hand with a design for maximum output for a short period of
time [NI05, pg. 2655]. With the common stereo vision system [NITM00] a rate of 90 % success
catches could be achieved. Similar to earlier work this number is based on a balls deviation equal
to ±2 cm from the center of the ball. The main focus of the paper is the analysis of catching.
The dynamics of the catching movement are discussed, and a major result is that the impedance
of the object and the control have to be matched. More precisely the mechanical impedance and
the feedback control have to be balanced for stable catching [NI05, pg. 2660].

The updated actuator was subsequently used for dynamic re-grasping [FNTI06]. Di�erent objects
were manipulated without the need for multiple actuators. A single three-�ngered hand was used
for the quick operation. Compared to putting the object down and re-grasping it from there, this
approach for object manipulation is a signi�cant speed-up. The actuator's joint speed reached
1800

◦

s and the common vision system in a stereo con�guration was used for the research work. The
vision system was used to extract the position and the orientation of the object and more complex
objects than the point symmetrical sphere were used. The most complex task achieved was to
re-grasp a cylinder from power position (�ngers around the object) to precision grip (cylinder axis
normal to palm). For achieving this, a parabolic orbit for the center of mass was used, considering
the mass of the object and gravity. In combination with the hang time and the initial velocity the
orientation when falling was calculated [FNTI06, pg. 184]. The success rate for this experiment
was at 35 %. This relatively low rate was explained by timing problems. The velocity of 2 m

s
resulted in a 2 ms timing tolerance for the whole system in order to stay within the limits for
successful catching [FNTI06, pg. 186]. Other reasons for unsuccessful re-grasping trials were seen
in the inaccuracy of the target's/object's physical model and the physical model for throwing and
catching. The tolerances of the system were ±2 cm position error and ±0.3 rad orientation error.
All three reasons, the researchers identi�ed to be responsible for the low success rate, are based
on the fundamental principles of the approach. While arguing that only low throughput vision
systems require prediction to achieve high dynamic tasks the results of the experiments clearly
show the opposite. The required timely accuracy is simply too high. Using information from a
number of recently acquired samples of position and orientation a more accurate determination
of the current (or even future) object's state could be done. The other two aspects regarding the
inaccuracies of the models can be targeted with simple learning algorithms where, at least, some
parameters are updated based on the acquired data.

More recent research has focused on knotting and object handling in hand. Common attributes of
these topics are the small range the object moves before it is caught and the high-speed position
detection. These two restrictions allow catching based on the actual measured position of the
object, omitting the need of an interception time, position, and orientation prediction system.
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2.2.2 Larger-Scale Catching

The big variety of approaches to large-scale catching is shown here, and the theoretical and
practical research works are discussed here. The �rst subsection aims to give an overview over
the approaches dealing with ball catching (passive and active catching devices) as well as with
catching of other objects and is closed by a paragraph about previous work by the research team
at the FH Heilbronn and the Institute for Computer Technology at the Vienna University for
Technology.

In the two further subsections are devoted to the speci�c aspects of the tracking systems and the
prediction systems and algorithms. Common and di�erentiating aspects will be the main topic
here. This structure allows to give a good overview over the wide range of approaches.

2.2.2.1 Discussion/Overview of/over Large-Scale Catching Approaches

Large scale catching approaches are divided into three main categories here. The �rst category
is dealing with catching balls with passive catching devices. Passive here means that no part of
the catching device is moving in order to obtain a without form- or force-closure grasp. Simple
catching devices like baseball gloves, boxes with holes or cups are used here. The second category
deals with catching darts with passive catching devices.

The third category is devoted to any objects with active grippers where the gripper is actuated
during the catching phase. These approaches have a higher degree of complexity as the addi-
tional control requirements on the gripper are existing. In the �nal subsection, the previous own
contributions to large-scale catching from the research team are discussed.

Catching Balls with Passive Catching Devices

One of the �rst approaches to robotic catching was done by Hove in 1991 [HS91]. The system
designed makes use of a 30 Hz stereo vision system for the tracking of the thrown ball. This sensor
system is the only input to the prediction and robot control as no other knowledge (like starting
position or velocity are used) [HS91, pg. 380]. The reason for this is not stated in the report.
The prediction of the trajectory is done within 0.5 s, that are a part of the �ight time of the
thrown object [HS91, pg. 380]. The robot motion starts as early as possible, and the goal for the
motion is to minimize impact bouncing and slippage. In addition, the idea to mimic a good human
catcher is stated. Details about the robot control are not given, but it is assumed that the robot is
controlled in Cartesian space. This is based on Figure 4 of the publication [HS91, pg. 383] where
a control loop for the whole system is given. This method avoids to use the joints of the robot
in an e�cient way and is an obstacle of the objective to mimic a good human catcher (compare
2.3.3). The avoidance of backtracking2 is done to achieve a more graceful movement. Instead of
an active gripper or similar catching tool, the robot end e�ector is moved along the trajectory
of the ball with the same velocity [HS91, pg. 380]. Following on this velocity synchronization
period a deceleration along the ball's former trajectory is executed. Workspace limitations of
the robot are handled by using the best possible movement instead. The prediction is based
on trajectory matching using a parabola to predict the ball's motion and a second order �lter
ẍ = 2 ∗ F ∗ (x.des − x.) + F 2 ∗ (x.des − x.) [HS91, pg. 381]. The parameter F is used to change the

2here used to describe the circumstance that the end e�ector of the robotic arm initially moves towards the
object and changes its direction afterward to follow the object
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response of the whole system when the ball is closer to the robot. For a distance of less than 0.2 m
the a smaller value is used to reduce jitter, for higher distances F has a higher value. The exact
values are not stated. For the whole system, a success rate of 70−80 % is stated. A successful case
is here that the convergence of the end e�ector and the ball to 0−5 cm is achieved. The reason for
the unsuccessful trials is seen in the inaccuracies of the visual system causing the trajectory data
to contain bigger measurement errors. Interestingly later work by Riley [RA02, pg. 122] considers
the usage of trajectory matching as not suitable for a robot with a more limited workspace.

In contrast to the previously discussed work, where no actual actuator was used, a research team
published �ndings on nonprehensile manipulation in 1998 [LM98]. Nonprehensile here means that
no gripper is used for the manipulation of the object. Only a very simple actuator (without form-
or force-closure grasp) with 2 DoF is used [LM98, pg. 27]. Based on the usage of gravitational,
centrifugal and Coriolis forces the object's pose is manipulated. A typical example of human's
object manipulation based on these forces is given with the throw of a basketball. Potential
bene�ts include the extension to new robot primitives (option for too large and too heavy objects),
a simple manipulator, �exibility and general usability of the "gripper", increased workspace size
based on object throwing and higher DoF of the object's manipulation compared to the DoF of
the manipulator (underactuated manipulation) [LM98, pg. 2]. These possible advantages come at
the cost of an increased complexity of planning and control and the dependence on the (accurate)
dynamic model and the requirement for an object with at least one partially planar surface.
The complexity is transfered from the gripper, joints and actuator to planning and control but
the fact that also higher complexity systems require higher complexity control algorithms has to
be considered. This reduces the penalty of the increased requirements in these regards. In the
practical experiments, a simple robot is used to control an object to a full-dimensional subset
of the six-dimensional state space by slipping an rolling. The robot is used in related work for
feeding tasks [LM98, pg. 3]. The movement of the robot for four types of motion are simulated
before implementation using a fourth-order Runge-Kutta method to �nd the optimized solution.
For snatching an object (cuboid), special friction and velocity constraints are existing and the
optimized solution for the movement is found after 200 iterations which took 120 seconds. The
movement has 9 knot points and is experimentally robust. For throwing the same object with
reorientation (comparable to dynamic regrasping [FNTI06] but without form- or force-closure
grasp) 98 iterations in 13 seconds needed for the optimization. 7 knot points and a special
"double pump" behavior to increase the friction are attributes of the resulting movement. For
the included catching the problem that the object tilts out of the plane arose for the experiments
that were robust. The roll motion (similar to throwing with rotation but without the loss of
contact) used only 1 DoF of the manipulator and was optimized with 55 iterations in 32 seconds.
Without a limit on impact velocity, this motion was stable but after limiting the impact velocity
to zero, the solution is not experimentally robust. The last motion is a roll-throw with the 1 DoF
manipulator. The attributes of the movement, found after 54 iterations in 35 seconds, are 9 knot
points and that it is fairly repeatable but has a lower accuracy than the normal throw. Overall
the work shows the increased possibilities of dynamic manipulation (like rolling or throwing) but
also the disadvantages of the limitation to partially planar objects are obvious. In addition, the
dynamic modeling of such simple (cuboid) objects, and the challenges already examined there,
show how hard it is to establish an accurate model.

In 2000, a humanoid robot was used for catching experiments [RA00]. The robot had 30 DoF and
was used for dancing and catching experiments. A child's baseball glove was used for catching.
A color stereo system was used to detect the position of the ball in space. The movement in x
and y dimension is considered as linear while the movement in z dimension (height) is described
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using a parabola. This description is transformed to a state representation, and a �rst prediction
is done after �ve measurements of the camera system. The motion of the robot is planned using
a programmable pattern generator [SS98]. This results in a bell shaped point-to-point movement
to the interception point. The interception point is speci�ed by a certain z dimension (height).
The results of the experiments were that problems with the depth measurements arose and that
experiments on adding a Kalman Filter were conducted [RA00, pg. 40]. This initial work was
continued, and a more recent article was presented 2002 [RA02].

The updated work targeted human-humanoid interaction in the form of playing catch [RA02]. The
aim was to do ball prediction and robot trajectory generation with human-like characteristics. The
suggested bang-bang or bang-coast-bang trajectories from previous work was found to result in a
movement that was not smooth enough and excited too much vibration on the humanoid robot.
The vision system used as sensors was the same as in the earlier work [RA00] and supplied the
centroids of pixels of a particular color at a frame rate of 60 fps. Also, the baseball glove used
in the prior work was kept for catching. The vision system was located beside the human and
humanoid so that the baseline of the stereo system was parallel to the plane of the thrown [RA02,
pg. 122]. Regarding the prediction of the trajectory and the determination of the interception
point the approach from the work presented in 2000 was kept. The parabola for the movement
(considering gravity but ignoring drag) was formulated with zi = a ∗ t2i + b ∗ ti + c while the
movement in x and y was assumed to be linear. The trajectory prediction started with �ve
frames of the vision system and was updated with each new frame. The preferred catch height
was speci�ed and used to derive the interception position. Due to the limitations in the robot's
speed-up and slow down in the moving range the usage of velocity matching during catching was
avoided. A follow through movement is used to keep the ball in the baseball glove. The researchers
use human inspired jerk free movements that result in bell-shaped velocity pro�les. These velocity
pro�les reduce the vibrations and are desirable for the humanoid. The overall motion, determined
with the programmable pattern generator [SS98] is based on the average velocity and the target
position. Based on an earlier work [TS00] the inverse kinematic is used, and trajectory planning
can be updated after every new measurement from the vision system. The required peak hand
velocities for paths < 1 m are < 2.5 m

s for a ball caught in a height of 0.32− 0.4 m. The catching
movement takes between 350 ms and 850 ms. A speci�c number for the success rate is not stated,
but a number of reasons for missed catches are given. Overall it is stated that the reasons are
di�cult to quantify. Two reasons are based on the working envelope of the robot. These are balls
thrown outside the workspace of the robot and balls thrown too close to the torso. In some cases,
the robot bumps the ball with the glove. This is caused because the direction of reaching into the
interception positions is not speci�ed and thus the glove hit the ball on the way to the interception
position. The strategy to move the hand from the opposed direction of the ball's trajectory to the
interception position is given as a promising solution to this problem even if the impact energy
is increased due to the added di�erence in velocity. Another reason for unsuccessful catches is
that the ball bounces out of the glove. Here the adding of a grasping mechanism or lessening
the relative hand-ball velocity to reduce the abruptness of impact is considered as a solution
strategy that is con�icting with the prior mentioned strategy to avoid bumps. In some cases, the
trajectories are not executed well. Regarding the vision setup, the noisy position information is
also considered as a reason for missed catches but still considered better than the implementation
of a Kalman �lter, that requires models for the sensor and process errors and noise. Furthermore,
the trajectories show overshoot behavior that is a trade-o� between speed and accuracy thus
balancing the reachable balls and overshoot. The main improvements for the system are given in
the reduction of the relative velocity and the usage of a template from human motion capture in
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the form of a movement library, possibly with an interpolation scheme. The presented work has
interesting aspects regarding (jerk free) motion planning, mimicry human motion behavior and
the sources for the missed catches in combination with the suggested strategies for solving these.
The statement versus the usage of a Kalman �lter is nearly unique in the �eld of robotic catching.

A catching system using only commercial o� the shelf components (from scratch) was presented in
2007 by Smith [SC07]. The system was designed for a throwing distance of 5 m with a �ight time
of 0.8 s. The velocity should be in the range of 6 m

s when arriving in the area of the robot. The
catching area was speci�ed at 0.6 by 0.6 m. A standard vision system with 50 fps was used and
based on the �ndings of Frese [FBH+01, pg. 1628] the reduced accuracy of the cameras might lead
to the necessity that up to 10 measurements have to be used for an accurate prediction [SC07,
pg. 4057]. Based on the consequential assumption that 200 ms are used for prediction, 100 ms
can be used for an optional human in the loop a maximum movement time of 500 ms was used
for the determination of the mechanical components. In addition, the position accuracy of 1 cm
and the movement of 0.9 m within 0.5 s are requirements. Furthermore, the requirement to have
a closed solution for the kinematics to ful�ll real-time requirements is raised. On the actuator
side, the constructed robot uses three 1.5 kW motors and weights 10 kg. The link con�guration is
found based on an exhaustive search with a simulation of the arm [SC07, pg. 4058]. A computer
with the real-time extension RTAI (Real-time Application Interface for Linux) is responsible for
dynamic and kinematic calculations and trajectory generation. The performance of this computer
is considered as good in the report. The control loop is implemented in soft-real-time with a
latency of less than 1 ms. The result of the design is a robot that has a repeatability that is
better than ±1 mm. For the robotic catching experiments, the robot is equipped with a 14 cm
diameter cardboard basket with damping material. The used throwing device is a mechanical
launcher with a precision of ±10 cm at 5 m distance. On the sensor side, a stereo set with
a baseline of 60 cm is used in combination with a color segmentation based on the HSV (hue
saturation value) color space and an extended Kalman �lter to track the trajectory of the ball.
The determination of the ball's center is based on an algorithm that calculates the center of the
mass of pixels that have at least three neighbors with a su�cient similarity in the HSV color space.
In order to reduce the computational expenses, only a subwindow is processed after the initial
search for the ball. The size of this subwindow is several times the standard deviation in position.
The result is a 4 ms long processing time per stereo-pair. The catching position is determined by
intersecting the robot's workspace/plane with the prediction of the thrown ball's positions. In the
conducted experiment 25 out of 32 balls are caught which equals a success rate of ≈ 78 %. The
overall cost's for the robot are given at 50, 000 EUR. The fact that the robot's price is at this
value and the very high power demands (3 1.5 kW motors) rather limit the range of application
of the robot. Robots developed by bigger manufacturers achieve similar or better performance in
combination with lower energy consumption and similar or lower costs.

Catching Darts with Passive Catching Devices

In contrast to all the previous work, where balls were thrown and caught, Linderoth presents
research work dealing with the "catching" of a dart [LRÅJ09]. To "catch" the dart, a dartboard
is mounted to the robot. The task is to move the dartboard in order to hit a bull's eye with
a dart thrown towards the robot. For tracking of the dart, two color cameras with a resolution
of 656 by 490 pixel are used. The placement of the cameras is on the catching side with the
argumentation that higher accuracy is achieved when the dart is closer to the dart board [LRÅJ09,
pg. 884]. The detection of the darts in the images is based on the color in HSV color space (similar
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to [SC07]) and the criteria for classi�cation is found empirically. The center detection was based
on the number of pixels with the adequate color and to determine this e�ciently an integral image
was used. The rather simple rule for the center determination is based on two successive main
criteria: 7 out of 9 (3 by 3) pixels have to be of the right color (this �lters outliers) and furthermore
the highest number of pixels with the right color in a box of 5 by 5 pixels is considered as the
center of the dart. If more than one square has the same number of neighbors, the center of gravity
of these pixels is used. Interestingly the window size is not adapted to the distance of the dart
to the vision system but �xed. The data of the detection system is fed to a Kalman �lter where
the prediction is done. The dart is therefore modeled as a particle without orientation. The state
vector contains information bout the positions and velocities. Regarding in�uencing forces only
gravity is considered, and air drag is neglected. Multiple iterations of the Kalman �lter are used
to predict the interception position. The criteria for the dart is to reach the plane, in that the
dart board is moved. Two approaches for dealing with the input data from the vision setup (two
cameras) are presented. The �rst, widely used approach, is to do stereo triangulation and use
this 3D data for the Kalman �lter. The second approach is to use individual constraints for the
Kalman �lter. This allows that each dataset is used independently and that more cameras can be
added. In terms of computation time, the achieved results are 10 ms time to process the images
and do the prediction. That means that the prediction is readily available for each frame of the
50 fps vision system. Overall all frames are processed until the motion command is executed,
which takes between 40−50 ms [LRÅJ09, pg. 887]. The author states that problems with objects
of the same color (e. g. another dart with the same color) lead to detection and thus prediction
errors. The accuracy of the whole system is given at 1− 2 cm. For wobbling darts, the accuracy
is decreased to ≈ 5 cm. This is a system design problem as the object for tracking is the tail of
the dart but this point clearly di�ers from the center of mass, and an even bigger spatial distance
is existing to the point of interest, namely the tip of the dart. As the orientation of the dart is
not considered at all (modeling as a particle) this problem prevails.

Successive work presented in 2010 [LRÅJ10] changes the application to catching a ball with a
robot. Here the problem with the orientation and the mismatching of the point of interest and
the point that is tracked is avoided. A box with a round hole is used for catching instead of the
previously used dart board. The scienti�c background is sensor data fusion for visual sensors in
combination with Kalman �lters. The focus is lying on a concept that is robust to errors in image
acquisition and processing [LRÅJ10, pg. 4225]. The usage of view lines, described as intersections
of two planes, as constraints for the Kalman �lter allows an acquisition error tolerant processing
of the sensor data. The prediction is based on a Kalman �lter where gravity is modeled, but air
drag is neglected. The visual sensor system is based on two cameras with 50 fps and a resolution
of 656 by 480 pixels. In contrast to the previous work, stereo triangulation is completely avoided,
but an approach with the two unsynchronized cameras (alternate frames) is presented. This
approach shows good convergence after only 4 frames (2 for each camera). Even using only one
camera is possible and examined but problems with rather big errors exist [LRÅJ10, pg. 4229].
The approach easily handles any number of cameras, and the accuracy is signi�cantly improved
for two or more of them. The performance of the ball catcher with a 5 cm diameter ball and a
6 cm diameter hole in the box is ≈ 50 %. The problem behind this rather low success rate is seen
in the low velocity/acceleration of the robot (0.5 m

s / 13 m
s2
). From a distant position also the

usage of a Kalman �lter, that is designed for measuring/predicting linear processes and the used
model, neglecting drag by example, are also possible reasons for the relatively low success rate.

In 2010, Bätz presented a new approach to the nonprehensile manipulation of a basketball
[BYW+10]. This work uses a standard industrial robot compared to the simple 1 DoF to 2
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DoF manipulator used in [LM98]. Similar to the earlier work the advantages are seen in the omis-
sion of a gripper and the usage of a generic end e�ector that allows handling [BYW+10, pg. 365].
The industrial robot is a Stäubli RX90B with a circular plane with a 17 cm diameter plate used
as an end e�ector. For the whole work the assumptions are that the air resistance and rotational
velocity of the basketball are negligible and that the impact is an inelastic collision. The con-
trol algorithms are implemented on a standard PC with Matlab/Simulink and RTAI (Real-time
Application Interface for Linux). The sensor system is built out of two high-speed cameras with
frame grabbers in a stereo con�guration with 2 m baseline and a resolution of 1280 by 1024 pixels.
Using a window search with a window size of 180 by 180 pixels with linear position prediction a
frame rate of 150 fps is achieved. The tracking of the basketball is based on the color in HSV
color space and two opening operations (erosion and dilation) are used. The �rst order moment
of the classi�ed pixels is used for the center ball. The prediction model considers only gravity
and (similarly to most other approaches) neglects air drag. A recursive least squares estimation
for the parameters of the trajectory is done. Two types of catches are examined: direct catches
where the ball is kept in contact3 from the very �rst touch of the ball on the circular plane and
indirect catches where the ball is rebounding on purpose to be caught afterward. Furthermore,
the balancing of the ball on the plane after catching is done. Regarding the prediction error, the
prediction with a time horizon of 0.5 s is stated with less than 0.05 m. The success rate for direct
catches is 35 %. Limitation factors are seen in the inaccurate ball trajectory prediction and tra-
jectory tracking errors when the path is too close to the hardware limits of the manipulator. For
the indirect catches the two assumptions made are considered as inadequate as the visual feedback
shows di�erent behavior during rebound than the model based on the prediction trajectory. An
idea for optimization is to use a spring between the robot and the end e�ector in order to relax
the dynamic requirements for the robot and possibly increase the success rate. The results clearly
show that the assumptions established for the work are problematic. The air resistance for the
rather heavy basketball still has a noteworthy in�uence on the trajectory that can be derived from
the indirect catching experiments. The challenges of modeling a process accurately once more are
shown here.

Catching with Active Catching Devices

In 1995 Hong and Slotine were able to show the realization of the system introduced in 1991 based
on a set of more advanced cameras [HES95] compared to [HS91] (�rst paragraph in Section 2.2.2.1).
The vision system, identi�ed as one main reason for unsuccessful trials, is updated with a system
capable of 60 fps instead of the 30 fps of the previous system. The prediction is still based on
a parabolic function that is �tted with least squares to the measured data of the vision system.
The closest point of the trajectory to the robot's stand is used as catching position allowing
acceleration of the robot within its workspace to reach the interception position. During the long
time of 330 ms to close the gripper no updates on the robot's movement are done. The achieved
success rate is again 70 − 80 %. The requirement here for a successful trial is that the hand
is catching the ball. The hand's tolerance is said to be 12.5 mm. Another statement is made
about the tolerance of timing errors of the prediction. A value of 5 ms is stated here. This is an
interesting statement as this time combined with a throwing distance of 1.5− 2.5 m and a �ight
time of ≈ 0.7 s results in a spatial distance of 10 − 17 mm. The partition into temporal and
spatial errors here is questionable as there is a clear relationship between time and position given
by the (vectorial) velocity. The majority of the failures is attributed to the noisy data from the

3or very close to contact
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vision system [HES95, pg. 8]. In addition, the latency of the vision system is hard to compensate
as the output is only available after computing the ball's position based on the image data. In
addition to the balls also foam balls and paper airplanes are thrown, but only general information
is given about these experiments.

Two years later the usage of a humanoid robot was used to show human dexterity, especially
the catching of a thrown object [NIN+97, pg. 94]. In contrast, to the assumed human catching
behavior based on the balls location, mapping of arm movement and catching based on visual
feedback the last aspect is not considered in the research work. Only the prediction of the �ight
trajectory and the movement of the catching device (a cooking basket with 120 mm diameter) is
done. The visual sensor acquiring the information for the trajectory prediction is a unsynchronized
stereo set. For these set two strategies are introduced and used: for a falling ball the distance of
the cameras to the ball is assumed to be constant and for a thrown ball the distance of the ball
to the camera is derived from the size of the ball in the image. The measurement error for this
procedure is given at 13 mm on a range of 300− 1200 mm distance. A neuronal network is used
to learn the inverse kinematic of the 5 DoF arm/hand. No reason for the usage is stated, but
it is assumed that this was an easy solution with a suitable performance. The higher number of
DoF for the arm/hand than the 3 DoF for the ball cause the problem to be ill-posed. By using
two prede�ned conditions, this challenge is dealt with. The average error of the neural network
based inverse kinematic calculation is given at 5 mm for theoretical data while only 52 mm are
achieved by using the real robot with the visual sensor. The backlash of the gears and the o�sets
in the origins of the joint's angles is considered to cause this rather big deviation. Compared
to many other approaches the challenge of the robotic mastering (determining the origins of the
joint's angles) is considered and targeted here. The catching strategies depend on the task: for
a falling ball, the hand is moved under the measured ball position and the 7 cm ball is caught;
for the thrown ball a parabola in the sagittal plane is �t with least squares method. The �rst �t
is done based on 5 data points, and each new data point is used for a new determination of the
parabola's parameters. In addition, weights for the impact of each of the �ve measured points
are used to raise the in�uence of the later acquired positions of the ball. The equations used to
describe the movement are x = a0 + a1 ∗ z for the horizontal plane and y = b0 + b1 ∗ z + b2 ∗ z2
for the sagittal plane. Interestingly, while a parabola is stated in the text for the sagittal plane
both equations have the variable z while the time is not used. Here an error due to the decrease
of the velocity over time due to the air drag is introduced. Using additional visual feedback for
the hand position during the �nal catching phase is a future topic. No �nal success rate is given,
but the hint on the visual feedback suggests that the achieved success rate is rather low.

The national aeronautics and space research center of the Federal Republic of Germany has a
wide selection of articles targeting robotic catching. The initial work is done in 2001 with a light
weight robot version 2 (LWR II) and is devoted to the development and evaluation of an o�-
the-shelf vision system for a robotic ball catcher [FBH+01]. The con�guration of the experiment
is a throwing distance of 5 m and a �ight time of 0.8 − 1 s of the foam ball used. The vision
system used is a set of two cameras in a stereo con�guration. The reason for this design decision
is given in the fact that the prediction of a ball with one camera is an extremely ill-conditioned
problem [FBH+01, pg. 1623]. The cameras are synchronized, have a baseline of 1 m, are aligned
vertically and mounted on the throwing side in order to get more accurate measurements in the
initial phase [FBH+01, pg. 2]. The relation between the robot and the camera is determined
based on ≈ 10 measurements of the robot's position with the cameras in the �eld of view of the
cameras. The data is evaluated manually. The cameras output image data in phase alternating
line (PAL) format at a frame rate of 25 fps or 50 fields

s . Each of the �elds is considered as a full
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frame thus an error of 0.5 pixels is systematically introduced. The segmentation of the image and
detection of the ball is based on background subtraction with a reference image, thresholding and
shape detection based on �tting of the shape of the tracked object (here a 2:1 ellipse). A region
of interest (RoI) of 2− 40 % of the image is used for the di�erence image in order to reduce the
computational expenses. The precision achieved based on this tracking system is 3 cm [FBH+01,
pg. 1624]. The position data from the vision system is fed to an extended Kalman �lter (EKF)
for state tracking in 3D. The motion model considers gravity and air drag. A Reynolds number
(compare Section 4.2.1) of 20, 000 is stated for a tennis ball or foam ball which results in a drag
coe�cient of cd = 0.45 [FBH+01, pg. 1626]. A new prediction is done for each new �eld from the
cameras. The overall system latency including exposure, image transfer, frame-grabber driver,
vision algorithm, prediction and robot control is lower than 75 ms. For the determination of the
catching position limitations in the workspace of the robot are considered, and an approach based
on linearization is used where the position and velocity for catching are determined. [FBH+01,
pg.1627]. The system achieves a success rate of 2/3 with a net used for catching. The majority
of the faults is ascribed to the camera limitations [FBH+01, pg. 1628]. A high accuracy of the
prediction (< 10 cm) in the early �ight phase is a special attribute of the system. Problems with
the illumination/lighting system are also stated to exist [FBH+01, pg. 1625].

Nine years later a new uni�ed approach for catch point selection, catch con�guration computa-
tion and path generation for better performance was presented by the same research institution
[BWH10, pg. 2593]. Also, the hardware platform was updated to a 13 DoF system with the
successor of the robotic arm (LWR III) and a newly developed gripper, called DLR Hand II. The
vision setup was taken over from earlier research (similar setup to [FBH+01]). Tracking of the
ball with an extended Kalman �lter (EKF) was successful for > 80 % of the �elds (line interlaced
frames of the camera). Path planning for the robotic arm was done in an optimizer after the initial
planning solution was computed on a 32 CPU core cluster. The calculation of the initial solution
was stopped after 60 ms and yielded approximately 100 optimized solutions that were considered
to contain the globally optimal movement. For each new frame, the planning algorithm was up-
dated. This computation was done on a 2.2 GHz CPU and took 60 ms to compute. Three cores
were used in a round-robin scheme in order to compute the new prediction immediately after the
acquisition of the new image from the cameras. The precision of the trajectory prediction reached
< 2 cm only 100 ms before the catch. Another CPU core was used for the control law of the hand
that required fast closing and vibration suppression. The overall latency from the shutter of the
cameras to the execution of the robot movement is stated at 90 ms. The robot communication
is based on the fast research interface (FRI, compare [KW10]). The combination of high joint
acceleration and comparable low maximum joint velocity of the robot results in a movement that
is 80 % at the maximum velocity of the joints and only 0.1 s is taken for acceleration. Three
di�erent catching strategies are presented that change the amount the robot moves and the po-
sition the catching is done. All of the three strategies catch the ball without synchronization of
the robot's velocity to the ball's velocity. The success rate of the experiments is at 80 % for two
of the three strategies and lower for the third one. Errors are attributed to lost tracks of the ball,
failures in the vision system and prediction errors (too low prediction accuracy) while the robot
path planning and motion execution is considered as highly reliable. Also, the hand's orientation
is important for successful catching [BWH10, pg. 2594]. The impressive system used very high
computational power (1 PC for image processing, 1 32 core cluster for path planning, 1 PC for
robot trajectory generation) and is rather a brute force and e�ective than an e�cient solution.
Still it achieves the highest catching rate to date.

The approach was applied to another robot platform, the "Rollin' Justin", that is a 53 DoF
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mobile robotic system (2x7 DoF Arms + 2x12 DoF Hands and 5 DoF torso+head). The same
success rate was achieved as for the individual robotic arm (80 %). Another application for the
robot is preparing co�ee, showing the versatile usability of the platform [BSW+11]. More details
on this approach are presented in [BBW+11]. The challenges for catching on this platform are
the high complexity (53 DoF) of the robot where the movements of the onboard sensors have
to be tracked and the synchronization without a global clock [BBW+11, pg. 514]. The robot is
therefore adapted for this task with minimal impact on other applications. All sensors used for
catching are onboard of the robotic platform, but the computation of the data is mainly done on
an o�-board cluster that is WLAN coupled. The main sensor for the ball prediction and catching
is a stereo-system with a small baseline (inside the robot's head) running at 25 fps. The balls
used for the experiments are 8.5 cm diameter balls with 50 g that have a > 20 cm shorter �ight
trajectory than a purely ballistic trajectory. The challenges in detail are:

• low latency (< 1 s �ight time, instantaneous reaction)

• precision in time and space (2 cm position, 5 ms time accuracy)

• moving camera system (inside the head)

• vibrations in the system [BBW+11, pg. 515]

• observation of kinematic state

• limited on-board resources and communication bandwidth

• no global clock and communication latency

The arms of the robot are LWR II arms and the gripper used is the DLR Hand II (similar to
the more simple approach presented in [BWH10]). Controlling of the torso and arms is done in
joint space. The visual system is composed of two cameras with 1616 by 1220 pixels running
at 25 fps with an exposure time of 1.5 ms and a baseline of 20 cm. The choice of the vision
setup is based on the statement that only high resolution is required, and that high frame rate is
unnecessary since ball �ight is well predictable. This is in contrast to the frame rate/resolution
experiments presented in [Pon09, pg. 62�]. Image data is processed with a circle detector and fed
to a Multiple Hypothesis Tracker, that is handling multiple unscented Kalman �lters (UKFs). The
motion model used in the UKFs is considering gravity and (nonlinear) air drag. Prediction is done
on propagating position and velocity. The visual tracking data equals 100 MB

s (Megabytes/s)
and is processed onboard of the robotic platform. Also, the control system for the movements
is running on board due to the high control rate (1 kHz) while the path planner (responsible
for the prediction of the ball's trajectory and the determination of the commanded joint paths)
for the whole platform is running o�-board. The path planner is the same as in [BWH10] and
outputs soft motion for minimal joint accelerations, thus computing smooth and optimal joint
paths [BBW+11, pg. 518]. The head movements are obtained by an inertial measurement unit
(IMU) which raises the challenges of drifts in the measurements. The spatial calibration of the
cameras, arms and IMU is done with a checkerboard and the temporal calibration is based on
manually matching predicted ball positions. For synchronization of the sensor's measurements, the
modules' timestamps and clocks are synchronized to 100 µs within minutes after system startup
with a dedicated time synchronization demon [BBW+11, pg. 516]. Furthermore, the subsystems
are de-jittered, and the latencies of the subsystems are calibrated in order to compensate them.
Feedforward tracking terms are used to improve the overall accuracy and allow to consider the
dynamic coupling between torso and arms. Regarding the calculation time the following numbers
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are given: circle detection for an image pair takes 25 ms, tracking takes 5 − 10 ms, prediction
and path planning (similar to [BWH10]) takes 60 ms for planning 7 DoF. This rather low time
is considered as important, as the prediction changes signi�cantly over time [BBW+11, pg. 518].
This statement is rather interesting as it is in contrast to the previously mentioned statement
about the well predictable �ight trajectory. Most probably, this problem lies in the tracking
system. Experiments on di�erent frame rate/resolution combinations would be interesting here.
The results achieved is that "Rolin' Justin" is able to catch two balls simultaneously with a
success rate of 80 % [BBW+11, pg. 513]. In contrast to the expected challenges the kinematic
subchain head-hand improves the accuracy and releases the requirements for compensation of
torso-movements. Moving from a kinematic4 to a dynamic5 movement planner is stated as future
work, but the hard timing constraints make this a challenging tasks.

An approach on robotic catching focusing on learning is presented by Kim et. al. [KSB14]. The
basics are already presented in an article published 2010 [KGB10]. A time-independent version of
dynamic motor primitives is presented and used to represent the learning data from the motion
of forty human catches [KGB10, pg. 108]. Also, the object's motion dynamics are learned based
on a low number of 5 to 6 throws [KGB10, pg. 109]. The results are used to control a 7 DoF
robotic arm. The arms are controlled by using Cartesian control. No further information about
the trajectory tracking is given. The catching movement is limited to position the end-e�ector to
minimize the movement towards the intersection point. The results presented are that the system
is able to catch a �ying ball successfully [KGB10, pg. 109] while no further details on a success
rate or similar numbers are given. In addition, to this statement image-series of the humanoid
robot are shown where a ball with a reduced motion space (rolling on a table or hanging on
a wire from the ceiling) is caught. The successional work presented in [KSB14] extends to the
point where objects with uneven shapes are caught by a 7 DoF robotic arm [KSB14, pg. 1]. The
approach deals with all the aspects of catching a thrown object, namely trajectory prediction,
prediction of the catching con�guration and palling of the arm motion [KSB14, pg. 1]. Similar
to the previously discussed research work the dynamic models for the thrown objects (a hammer,
a tennis racket, an empty bottle, a partially �lled bottle, and a cardboard box) is based on
support vector regression [KSB14, pg. 4]. The information about possible grasping con�gurations
is stored based on a set of training grasps/presented possible positions [KSB14, pg. 5]. This
training set is the base to calculate a Gaussian mixture model (GMMM) for the reachable space
[KSB14, pg. 5]. Furthermore the reachable space of the used robot, a KUKA LWR 4+ robot, is
calculated (another GMM). In order to obtain the catching position both GMMs are multiplied
resulting in a probability distribution. During the time when the object is within the resulting
area, the likelihood of the respective catching con�guration is calculated. These calculations are
temporally separated by time slices. The con�guration with the maximum likelihood is considered
as the optimal con�guration. For each new input of the object tracking system these steps are
repeated [KSB14, pg. 7]. The motion capturing system uses markers and works with a sample
rate of 240 Hz. The Pose information is �ltered with a 25 Hz Butterworth �lter. Both velocity
and acceleration is determined based on cubic spline interpolation [KSB14, pg. 10].

The conducted experiments are based on 20 train trials [KSB14, pg. 13] feature an average �ying
time of 5 s ±0.5 s for the object [KSB14, pg. 13] and have a success rate of 73.3 % [KSB14,
pg. 13]. The whole prediction is running on a 2.7 GHz quad-core PC. Whenever possible closed

4kinematic here is referred as based on geometrical and time-based properties of the motion (e.g. joint angles
and/or Cartesian positions and their timely derivatives)[WGJ95, pg. 461]

5dynamic here is refereed as based on the forces and torques required to achieve a movement and considers the
properties of the actuator (mass, inertia, sti�ness) [WGJ95, pg. 461]
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solutions were used to calculate the best catching con�guration. In comparison, the research
of the national aeronautics and space research center of the Federal Republic of Germany the
computational power used by this approach is exceptionally low. As further details on the used
tracking system are not given6. The failures of the system are classi�ed as [KSB14, pg. 13]:

• too low robot velocity (12 out of 19)

• �nger hitting the object (4 out of 19)

• robot's torque limit exceeded (3 out of 19)

A rather dubious comparison with humans is done, that shows a success rate for catching the
respective objects between 10 % and 70 % [KSB14, pg. 14]. Even for the range of the presented
objects, the success rate of humans for catching should be signi�cantly above 10 %. Future work
is stated in the areas of compliant catching, collision detection/avoidance and to model the robot's
dynamics [KSB14, pg. 16] as well.

In 2000 Mehrandezh et. al. presented a method to intercept fast maneuvering objects. They
de�ned the task of interception as "approaching a moving object while matching its location and
velocity in the shortest possible time" [MSFB00, pg. 238]. Their hybrid approach consists of two
phases. The �rst part is modi�ed from navigation and guidance (missile interception) and the
second part is tracking. The publication lacks any practical results but shows simulation data
where the algorithm is compared to an algorithm that aims to minimize the angle between the
trajectory of the object and the line of sight. In this comparison, the algorithm shows a shorter
chasing time by 15 % to 30 % for the two most challenging setups. Here the two phases of the
algorithm are interesting because research in the �eld of human catching also suggests these two
phases (compare Section 2.3.3).

Aiming for a contactless interaction of a human with a robot Kober et. al. present work on robotic
catching an juggling [KGM12]. A special robot with 39 DoF is used. The robot's actuators are
mainly hydraulic driven. For the catching and juggling task 7 DoF of the arm and the 5 DoF
of the �ngers are used [KGM12, pg. 875]. The robot features a joint position controller with a
command/sampling rate of 30 Hz [KGM12, pg. 876]. The maximum hand velocity is ≈ 1.5 m

s .
Both the control cycle time and the maximum achievable velocity of the are rather low in this
setup compared to other approaches. The hand is modi�ed for a more cup-like shape [KGM12,
pg. 876]. This results in a tolerance of up to 5 cm variance [KGM12, pg. 878] for the catching
position while still executing a successful catch. The sensor system used is a Xtion Pro, which uses
active stereo at 30 Hz for a depth image and also delivers a color image with 640 by 480 pixel. The
position of the ball and the human peer are determined based on the information from this sensor
system. The �ight trajectory prediction is based on a second order model (parabola). The initial
parameters of the trajectory are determined with a Kalman �lter with 5 cm standard deviation
of the measurements and 5 mm of process noise [KGM12, pg. 877]. Reasons for choosing this
arbitrary values is not given. The magnitude of the measurement noise gives a rough estimation
of the tracking system's accuracy. A ball with a mass of 100 g and 7 cm diameter is used.
Modeling the drag for the calculation of the �ight trajectory is considered not required. This is
in clear opposition to [FBH+01, pg. 1626] where the in�uence of drag on the �ight distance of
di�erent balls is discussed. The usage of a signi�cantly heavier (+100 %) ball with a slightly bigger
diameter (between +2 % and +5 %) reduces the e�ect but still a reduction of ≈ 2 % is resulting.

6Additional information on the technical background of the tracking system was not available on the website of
the vendor either
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On a distance of 2.5 m the error of the trajectory model has the same size as the tolerance of the
catching device (5 cm). The catching position is obtained by intersecting a prede�ned plane with
the predicted trajectory [KGM12, pg. 877]. The area of possible catches is determined considering
the limitations of the robot's arm kinetics [KGM12, pg. 878]. For the success rate, two numbers
are given. 75 % of the catches in the reachable area are successfully caught while the overall
success rate is 47 %. The following reasons for the failures are given [KGM12, pg. 880f]:

• low control frequency

• low maximal velocity and acceleration

• delays and low frame rate of vision system

• inaccurate initial prediction

• errors due to linear model for inverse kinematics

For future work the extension of the catching movement to more joints of the robot and an
extension of the catching area from a single plane are given [KGM12, pg. 881]. Both extensions
result in more complex motion planning.

Own Contributions to Catching Objects

Within the research team, consisting of members at the Fachhochschule Heilbronn, the Bergische
Universität Wuppertal and the Vienna University of Technology, the �rst idea of using automatized
throwing and catching for object transportation was done by Frank et. al. in 2006 [FWWH+06].
In order to do an early examination of the feasibility of the concept an accuracy determination of
a 64 by 48 pixel depth camera, delivering 50 fps was done. This experiment showed the technical
feasibility.

In 2008 Barteit et. al. published a numerical analysis of prediction errors. The system examined
consisted of a single camera for object tracking and a light barrier for the determination of the
initial ball velocity. The setup allowed to use the measured velocity for determining the distance
of the ball to the camera, thus delivering depth information [BFK08, pg. 893]. The image of the
camera was processed with background subtraction (adjacent frame di�erencing), thresholding,
�ltering and Sobel �lter based Hough transformation [BFK08, pg. 895] (more details in [Bar10,
pg. 65�]). For the trajectory prediction the motion is assumed to be within one plane [BFK08,
pg. 897] and a model considering quadratic drag is used for the motion along both axes of the
plane (the x-axis is aligned with the gravity vector) (details again in [Bar10, pg. 97�]). The
�nal error analysis of the prediction shows the following results: Considering 45 throws 29 of
them had a horizontal prediction error of less than 12.5 mm and the respective value for the
vertical prediction error is 28 throws. A prediction error bigger than 20 mm was shown in less
than 10 % of the throws. This prediction error in signi�cantly smaller than the tolerance of the
catching device used in [KGM12] by example and in the same magnitude as the required prediction
error determined by Bäuml et. al. [BBW+11, pg. 512]. Details of the measurement system for
measuring an object's position within a plane is discussed in [BFPK09]. Two variants for gaining
the position information are given. The �rst is based on a grid of light barriers that trigger a
camera. Here the in�uence of the distance between the light barriers and the achieved accuracy
is given. The second variant is based on a touch screen and thus inversive. For both methods, the
achievable measurement accuracy is within 2− 3 mm.
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Complementary to the research work targeting the prediction of the ball also the development of
a control scheme for a Cartesian robot was done in 2008 [FBM+08]. The Cartesian robot planned
to be used for catching an object has a maximum acceleration of a = 50 m

s2
for the two dimensions.

The control algorithm is based on a square with a shrinking size based on the increasing prediction
accuracy. The robot is positioned in one corner of the square and smoothly moves during while the
predicted impact position is updated. Due to the limitation of the robot to 2 DoF , the catching
is exposing the object to high forces. The interaction with the vision system is not �nished at
this stage, so no results for the success rate of the whole system is given. This information is
available later in [Bar10] with a modi�ed system where the light barrier is made obsolete. Instead
of measuring the initial velocity of the ball and using this information for the calculation of the
depth (the distance from the ball to the camera), the size of the known ball in the image is used
for determining the depth information [Bar10, pg. 101�]. The prediction is done based on an
analytical description of the �ight trajectory with two simpli�cations: the trajectory is assumed
to be within a plane, and quadratic air drag is considered in an iterative model. The seconds
approach is an improvement over [BFK08] due to the fact that the relation between the drag for
the both dimensions is incorporated. The resulting success rates for the whole systems are 80 %
for 35 mechanically thrown tennis balls and 60 % for 70 human thrown tennis balls (thrown from
4 di�erent positions).

In 2009 parallel to the work on point symmetrical objects (tennis balls) also, the examination of
the �ight behavior of more complex objects was started. The objects under investigation were
cylinders, where the stabilization behavior was examined [FMS09]. The continuance and more
elaborate work targeting soft catching of cylindrical objects with and without sensor input are
given in [Fra12]. On main aspect here is the accurate throwing of the cylinders. This requires
an advanced model of the �ight behavior. The previously mentioned self-stabilization property
of the cylinders is used. This self-stabilization occurs when cylinders are thrown approximately
along their axis of symmetry. The extent of this behavior depends on the geometrical properties
of the cylinders. Frank examines the possibility to thrown and (softly) catch two cylinders, with
di�erent degree of self-stabilization) [Fra12, pg. 35�]. Two di�erent experimental setups are used:
the �rst has a one DoF catching arm with a simple gripper in �xed position, for the second setup
the gripper can be rotated around an axis parallel to the main axis of the arm to compensate
rotation of the cylinder during �ight. The additional sensors for the determination of the �ight
attitude are two distance sensors. The success rates for the catching experiments are: 98 % for the
more compliant �ying cylinder with the �xed gripper, 64 % for the less compliant �ying cylinder
with the �xed gripper and for the later case with the usage of the gripper rotation a catching rate
of 85 % is achieved.

Akhter presented work on the Pose7 in 2011 [Akh11, pg. 69]. The approach is using a combination
of feature tracking and homography to increase the e�ciency and accuracy of the overall tracking
procedure. The work is focusing tracking and uses standardized image series including the ground
truth data for evaluation. One main requirement for this approach is that the object has, at least,
a partially planar surface [Akh11, pg. 69].

Earlier work of the author is targeting only the prediction without the use of a catching robot
or catching tool [PKFB10] [Pon09]. The focus of this work lies in the comparison of di�erent
analytical approaches for trajectory prediction. Three models are derived and applied to the task
of prediction for a �ying tennis ball. The �rst model is a second order polynomial model with
independent movements for each direction (compare Equation 2.1).

7Pose here is the combination of position and orientation
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p(t) = p0 + v ∗ t+ a ∗ t2 (2.1)

One axis of the reference coordinate system is aligned with the direction of gravity. The second
model is a spatially separated model where the physics of the ball are considered (gravity, air
drag). Each spatial direction is considered independently. This results in a closed solution for the
description of the trajectory and allows least square �tting to the measured positions of the ball
(compare Equation 2.2, Equation 2.3, Equation 2.4 and Equation 2.5).

x(t) = x0 +
1

k
∗ ln (1 + k ∗ t ∗ vx0) (2.2)

y(t) = y0 +
1

k
∗ ln

(
cosh(

√
g ∗ k ∗ (t− t0)

cosh(
√
g ∗ k ∗ t0)

)
(2.3)

z(t) = z0 +
1

k
∗ ln (1 + k ∗ t ∗ vz(0)) (2.4)

k = cW ∗A ∗
ρ

2 ∗m
(2.5)

The third model is based on the �ight physics (gravity, air drag) and due to the non-linearity of
the air drag, a closed solution is not possible. The trajectory has to be calculated iteratively. Due
to this property, a Monte Carlo simulation is done to �t the model to the measured points. The
related equation for the third model is given in Equation 2.6, Equation 2.7 and Equation 2.8.

v(t+ ∆t) = v(t) + (adrag(t) + g) ∗∆t (2.6)

p(t+ ∆t) = p(t) +
v(t) + v(t+ ∆t)

2
∗∆t (2.7)

adrag(t) = −
cdrag ∗ ρ ∗A ∗ v(t) ∗ v(t)

2 ∗m
(2.8)

The experimental evaluation with a stereo camera system and the invasive position determination
system presented in [BFPK09, pg. 684] shows that the spatially separated model is the most stable
model. This is especially true for a position detection system with larger errors in the early �ight
phase. An additionally evaluated aspect is the in�uence of the temporal and image resolution
of the camera system on the prediction accuracy. Here a constant bandwidth limitation (camera
interface) limits the product of image resolution and frame rate. The result is that higher temporal
resolution leads to a more increased prediction accuracy than increasing the image resolution.

2.2.2.2 Tracking Systems

Due to the big amount and variety of the approaches to robotic catching the subject of tracking
systems will be brie�y discussed in this subsection again. For tracking systems, a more wide
de�nition is used than by example the de�nition of Lampert [LP10]. Lampert di�erentiates
between per-frame detection (object detection in a still image) and tracking (region of interest
based on the object's motion). Here both approaches are considered for the tracking system with
the argumentation that both approaches lead to the information of the object's trajectory in space
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within their �eld of application. Two parts of the tracking systems are elaborated on the sensor
delivering the input the further processing stages and the processing stages to deal with this data.
The output of the tracking system in the sense of the author is the position of the tracked object
over time.

Sensor

Recapitulating the variety of approaches discussed in the previous section in regards of the tracking
system the number of sensors and sensor con�gurations is rather limited. The main categories are
given here:

• Special sensor [IMT92] [NI03] [KYH13] [Fra12]

• Single camera [LRÅJ10] (also dual camera) [BFK08][Bar10]

• Dual camera but no stereo [NIN+97] [LRÅJ09] (also stereo) [LRÅJ10] (also single camera)

• Stereo vision system [HS91] [HES95] [SC07] [LRÅJ09] (also no stereo) [FBH+01] [BWH10]
[BBW+11] [BFB11] active stereo: [KGM12]

The special sensors are either high-speed black/white sensors speci�cally designed for the domain
of real-time control in the case of [IMT92] [NI03] [KYH13] or the combination of two distance
sensors used by [Fra12]. While the earlier have the advantage of delivering high resolution (spatial
and temporal) information, the downside is that they are very speci�c hardware and the applica-
tion of these sensors in the (more general) context of transport by throwing or automation causes
rather high costs. The combination of the two distance sensors is suitable for the detection of the
pose of an object within a certain plane [Fra12]. Tracking the object throughout the �ight is not
possible with these sensors in general.

Using cameras for the task of object tracking in the highly dynamic domain of robotic catching is
very common. Still di�erent approaches exist. The usage of an individual camera by Linderoth et.
al. is possible but shows rather big measurement uncertainties [LRÅJ10, pg. 4529]. In comparison,
Barteit uses either the size of the object or an additional sensor for the velocity measurement of
the object to determine the depth (distance from the camera's focal point to the object) [BFK08]
[Bar10]. Here the accuracy of the whole system is su�cient to allow successful catching. Still the
measurement error for "optimal" circumstances [Bar10, pg. 104f] and for tacking of a thrown ball
[Bar10, pg. 106f] are rather big, especially for larger distances of the ball to the focal point of the
camera.

The approaches of dual camera setups used di�er signi�cantly. Nishiwaki et. al. [NIN+97] use
a similar approach to Barteit [BFK08] [Bar10], where the size of the object is used for depth
information. More details on the combination of the information from both cameras is not given.
Still both cameras of the humanoid robot are used. Besides synchronized stereo Linderoth et.
al. also use a Kalman �lter with measurements from both cameras. Due to the di�erent viewing
angles of the cameras on to object the resulting state of the Kalman �lter incorporates both pieces
of information and allows to track the thrown object [LRÅJ09] [LRÅJ10].

Using a stereo vision system is by far the most common input sensor for the task of robotic
catching [HS91] [HES95] [SC07] [LRÅJ09] [FBH+01] [BWH10] [BBW+11] [BFB11] [KGM12].
While the implementation details (camera type, interface, resolution, frame rate) di�er largely
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gaining depth information, the main advantage of the stereo system is warmly welcome to in the
largest proportion of the experiments. Passive stereo cameras, consisting of two cameras, are the
main part but also one approach with active stereo using the Xtion Pro (similar to the Microsoft
Kinect) exists [KGM12]. Here the rather low frame rate of 30 fps is the main disadvantage. Other
stereo camera systems operate in the range of 50 fps. The main advantage of a stereo camera set
is the big range of available cameras and the expertise available on object detection.

Processing

When acquiring information via sensors, usually a �rst preprocessing step of the data is done in
order to suppress outliers or measured data with a high error probability. Regarding the �rst
processing steps in the research work discussed in the previous section two main variants are
distinguishable. The �rst approach uses no processing of the data and the input information of
the sensor is the base for the prediction/control algorithms ([HS91], [HES95], [NIN+97], [RA00]
and [RA02]).

The second option is to use a Kalman �lter. Here di�erent variants of the �lter are used. The initial
version, designed for linear systems, is used by [LRÅJ09] [LRÅJ10] but clearly seen as a �rst step
with the option to use an extended Kalman �lter in future. This variant of the recursive �lter was
designed for nonlinear systems and is using a linearization step. The application of this variant
is common ([SC07], [FBH+01] and [BWH10]). The most recent variant of the Kalman �lter,
the unscented Kalman �lter uses a sample based technique and shows improvements for highly
nonlinear systems. Due to the recent development this variant is only used by one implementation
discussed in the previous section ([BBW+11])

While most approaches give only a rough sketch on the implementation stages of the processing
like mentioning the algorithms use (e. g. Hough transform for ball/circle detection) the reports
about the vision system by Birbach et. al. [BFB11] is outstanding in the level of details. The
publication elaborates on the vision system used developed for the experiments of the national
aeronautics and space research center of the Federal Republic of Germany, especially on the stage
when the mobile platform "Rollin' Justin" is used. The stereo vision system for this platform has
a low baseline and for compensation a high resolution is used [BFB11, pg. 5955f]. The system
allows usage in an environment with an unde�ned background due to the robustness of the used
multi-hypothesis tracker. The multi-hypothesis tracker features unscented Kalman �lters for the
ball's trajectory and environmental factors like gravity, air drag and the aerodynamic properties
of the object (e. g. diameter) are learned. Being an improvement of previous work presented
in [BF09] the circle detectors output are likelihoods with a small number of false positives. This
output is used for the multi-hypothesis tracker that �lters the false positives based on the most
probable trajectories in the tracker. Here the question arises whether the opposed approach would
not be more e�cient. Using the multi-hypothesis tracker to prede�ne the search space for the circle
detection might be of higher e�ciency. Still a new way to detect new balls or their trajectories
would be required. The circle detection is optimized as well. An improve Hough transform with
the following features is introduced:

• Usage of a contrast normalized Sobel �lter

• Improving the circle response of Hough-transform by replacing the hard thresholds

• Searching for circles in a multiscale pyramid to detect circles on a coarse level and re�ning
the results
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• E�cient coding and usage of SIMD SSE3

• Other measures

The result is a circle detection system where no hard thresholds are used; the detection of the
false positives is outsourced to the multi-hypothesis tracker, and a desktop PC is faster than
needed by a factor of 2.5. The usage of a ball wrapped into retro-re�ective foil results in better
optical properties and help to improve the performance of the vision detection algorithms. The
overall latency of all processing step from image acquisition to data in a pot for the planning
algorithm is 75 ms. In the �nal part of the report, the lessons learned are given. One of them
is dealing real-time behavior versus performance. The operating system used was Linux and on
one a�ected machine time-slices in the order of 50 ms, were lost. This behavior could only be
avoided when activating several hardware components. Another problem was the lack of a global
clock. Especially for sensor data fusion, a common clock would have been bene�cial. In terms
of sources of the prediction errors a wide variety, including sensor noise, calibration errors and
timing problems, were given.

Further improvement of the system discussed above is presented in [BF11]. Instead of the multi-
hypothesis tracker a Gaussian Mixture Probability Hypothesis Density �lter is used. Using the
same hardware platform with two cameras and an inertial measurement unit, the same tracking
performance is achieved. The bene�ts are a reduced number of code lines (619 versus 3262 [BF11,
pg. 3432]) and only 50 % worst case calculation time [BF11, pg. 3432].

Color based tracking with a movable, small-baseline stereo camera system is discussed by Kao et.
al. [KYH13]. The movement of the stereo camera system is based on the position of the ball. The
advantages of using a Kalman �lter for this are discussed [KYH13, pg. 374f]. Using the Kalman
�lter, a smoother trajectory is extracted, and the compensation of delays is possible resulting in
a successful real-time tracking system[KYH13, pg. 376].

2.2.2.3 Trajectory Prediction

The following subsections are devoted to the trajectory prediction aspect of the approaches dis-
cussed in Section 2.2.2.1 and additional aspects. Trajectory prediction is divided into two parts:
the �rst where a physical model is the foundation for the prediction and the second where (ma-
chine) learning is used to predict the future trajectory. Most related work is focusing on the
physics-based prediction. In addition to the prediction for catching systems also, the prediction
for batting systems is discussed. Robotic catching using machine learning is limited to mainly one
research group. This work is very recent on the other hand.

Physics based Trajectory Prediction

Trajectory prediction based on a physical model of the �ight's dynamic is very common. Except
the work from two research groups, discussed in the second part of the following paragraph, all
approaches to object catching use models considering gravity and possibly air drag with di�ering
levels of modeling accuracy. In addition also research work, mainly focusing on batting (ping-
pong), is discussed as the task of trajectory prediction is required here as well.
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Prediction in Catching Experiments Applying automatized throwing and catching on the
task of transportation requires a distance in the range of 2−4 m between the origin and destination.
Due to this distance the variances of the object's trajectory at the destination site vary with a
larger extend [Bar10, pg. 8]. Due to this behavior, the requirement to position the catching device
timely arises. Trajectory prediction is required.

The successful realization of transport by throwing and catching heavily relies on an accurate
prediction of the object's position over time (trajectory) [Bar10, pg. 9�] in the case of point
symmetrical objects. In addition, the prediction of the orientation over time is required for more
general objects with a lower degree of symmetry. The trajectory of the object is in�uenced mainly
by gravity and the aerodynamic forces during the �ight. Simple models for the calculation of an
object's trajectory exist but when more accurate and detailed calculation of aerodynamic behavior
is required a shift towards computational �uid dynamics occurs. Due to the high computational
expenses of computational �uid dynamics a range of motion models, describing the trajectory of
a thrown object, have been developed. A variation of the considered impact factors and forces
exists. Di�erent approaches and their advantages and disadvantages will be discussed here.

One main group of models for trajectory prediction relies on the trajectory prediction with curve
(least squares) �tting [HS91] [HES95] [NIN+97] [RA00] [RA02] [Pon09]. The approaches within
this group di�er by the abstraction level of the trajectory modeling. The most simple way is to
consider only gravity and neglect all other aspects (air drag, Magnus force..). The solution for
the trajectory then can be found in a parabolic equation (compare Equation 2.1). This solution
is used in the following work: [HS91] [HES95] [NIN+97] [RA00] [RA02]. Another approach of
�nding a closed solution for the description of the �ight trajectory is presented in [Pon09]. There
the in�uence of air drag (quadratic model) is considered but, in order to �nd a closed solution,
the movement of the object is considered as independent for the three spatial directions.

A quite individual approach is done by Barteit [Bar10, pg. 113�]. The estimation of the launching
parameters is done based on the current measured position of the thrown ball, the initial position of
the ball and a parabolic model. After this step of estimation, the predicted trajectory is calculated
based on an iterative model considering air drag (quadratic model, similar to Equation 2.7. In
contrast to the following group, where a version of the Kalman �lter is used for the estimation of
the launching parameters, the Kalman �lter's initialization is considered as limiting this approach
to the usage.

The group of using a Kalman �lter for parameter estimation and an iterative model for the calcu-
lation/prediction of the �ight trajectory can be split up into three subgroups. This partitioning
is possible based on the variant of the Kalman �lter used. Linderoth et. al. used a Kalman �lter
with a model where only gravity is considered [LRÅJ09] [LRÅJ10]. On one hand this might be
related to the usage of darts as thrown objects, which have a lower degree of air drag due to
their shape, but on the other hand also experiments with a thrown ball are presented [LRÅJ10].
Interestingly is the fact that the orientation is considered to be important for the prediction task
for the dart's due to the distance between the tracked tail of the dart and the relevant tip. This
consideration in the model for the Kalman �lter is not done. The updated version of the Kalman
�lter for observation and prediction of nonlinear dynamics, the Extended Kalman �lter, is used
by [SC07] [FBH+01] [BWH10] in combination with the iterative model for the calculation of the
future �ight trajectory. The �lter uses a local linearization in order to be applicable to nonlinear
problems. A better estimation of the initial parameters should be possible due to this, but a
distinct comparison is not done. The third group of approaches used the most recent variant of
the �lter, the Unscented Kalman �lter. This update uses a unscented transform to accommodate

36



State of the Art and Related Work

the nonlinear dynamics. The only implementation using this variant for parameter estimation
and an iterative model for trajectory prediction is done by [BBW+11].

Another individual approach to �ight trajectory prediction is done by Frank et. al. [Fra12,
pg. 27�]. There a computational �uid dynamics simulation is used to determine the required
launching parameters in order to throw to a certain position beforehand. This can be considered
as accurate throwing. Depending on the �ight dynamics of the thrown cylinder an additional
sensor is used to determine the orientation of the cylinder in the catching area and align the
catching tool [Fra12, pg. 17�, pg. 87�].

Prediction in Batting Experiments Work targeting the task of robotic ping-pong is done
by Sun et. al. [SLW+09]. The examination of the dynamic model of a ping-pong ball is done.
This model is validated due to experiments and shows a accuracy better than 1 mm [SLW+09,
pg. 2381]. The statement on the e�ect of the initial velocity's deviation on the determined collision
point shows the high sensitivity of the trajectory to deviations in the launching parameters. A
di�erence of 1 % in initial velocity gives 0.5 cm change in collision point. An improvement over
the state of the art tracking algorithms is shown in experiments.

A German research group also used a physical model, that considered gravity and linearized air
drag, for prediction [MKP10]. The estimation of the initial parameters was done with an Extended
Kalman �lter. Speci�c for the approach is that the human hitting was used as an archetype. This
resulted in the usage of four distinct stages for the ball hitting: the awaiting stage, the preparation
stage, the hitting stage and the �nishing stage. The simulation of this approach was successful,
but the real experiments showed problems because of the neglected spin and inaccuracies of the
vision system.

Besides modeling the �ight behavior the work presented in [SFXT13] also models the rebound
of a ping-pong ball on the basis of physics. The model is considering gravity and air drag.
The simpli�cation done is that the movements in the three spatial directions are considered as
independent [SFXT13, pg. 2894]. This is done regardless of the introduced error. Additional fuzzy
�ltering before prediction allows to reduce the in�uence of measurement noise. On contrast to
all other approaches, where a variant of the Kalman �lter is used for this task, this renders the
approach unique. This approach shows improved real-time performance of prediction compared
to State-of-the-Art algorithms.

Machine Learning for Trajectory Prediction

The number of research papers devoted to the prediction of a �ying ball's trajectory is very limited.
Kim et. al. do an extensive test of various machine learning algorithms for trajectory prediction
of unsymmetrical objects. The learning methods compared are Support Vector Regression with
Radial Basis Function kernel (SVR), SVR with a polynomial kernel, Gaussian Mixture Regression,
Echo State Network, Genetic Programming and Locally Weighted Projection Regression [KB12,
pg. 1108]. For the evaluation, �ve di�erent objects are used: a ball, a fully-�lled bottle, a half-�lled
bottle, a hammer and a ping-pong racket. In order to track the objects for the practical evaluation
a 120 Hz motion tracking system is used. The tracking is done with additional marker on the
objects. Each object is thrown 20 times [KB12, pg. 1112] for learning purposes. The data of the
motion tracking system is �ltered with a 25 Hz Butterworth �lter. The acceleration and velocity
are calculated based on cubic spline interpolation. Support Vector Regression with Radial Basis
Function kernel is found to be best [KB12, pg. 1120]. The advantage of this approach is seen in the
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omission of the need of background knowledge about the object's properties. Only a few samples
are needed for the prediction. These samples, on the other hand, have to be representative. The
work is assuming that the position and orientation extraction is possible in real-time which is
about to be tested in future work.

This future work is the content of another publication from the year 2014 [KSB14]. The catching
of the objects mentioned above is the main objective. A minor change is done to the set of objects
as the ping-pong racket is exchanged with a tennis racket. Prediction of the trajectory of the
thrown object, as well as the catching con�guration in combination with the planning of the arm
motion, is realized. The grasping con�guration is stored, and the dynamic model of the thrown
objects is learned with the Support Vector Regression discussed in the previous work [KB12]. A
separate SVR model is used for each of the objects. The dynamics of the thrown object is modeled
by the following equation where ξ is the combination of position and orientation.

ξ̇ = f(ξ, ξ̇)

Similar tho the �ndings in [KB12] an Extended Kalman �lter is used for robustness reasons
[KSB14, pg. 5].

2.2.2.4 Catching Movement

The catching movement implemented in the variety of research work discussed in Section 2.2.2.1
can be divided into two groups. The �rst is "hard" catching where the catching device is moved to
the predicted interception position. In this case, the velocity di�erence between the object and the
catching device is the full object velocity causing mechanical stress on the object and the catching
device. This approach is used by [HES95], [NIN+97], [NI03], [SC07], [LRÅJ09], [LRÅJ10], [Bar10],
[BWH10] and [KGM12]. Advantages of this approach lie in the released timing constraints (if the
catching device is positioned right no further movement is necessary, and the ball will fall into the
device) and the more simple determination of the interception position and path planning.

The signi�cantly small group is implementing "soft" catching where, besides the catching position,
also the object's velocity is considered. Depending on the dynamic properties of the catching
device it is moved with the full velocity of the object or a proportion of it in order to minimize
impact energy. This approach is used by [HS91] and [Fra12]. The advantages here are the reduced
mechanical stress on the object and the catching device, also enabling catching of more fragile
objects, while the whole process, including catching time determination and interception trajectory
planning, is more complex.

Park et. al. presents ball catching based on captured data from human catching and a learning
approach with evolutionary algorithms [PKK+09]. The catching is done in the hard was where
simply the position is used for the control of the robotic arm. The survivor selection of the
candidates is based on the minimal torques without violating the joint limits. [PKK+09, pg. 811]

2.3 Biological Archetype for Catching

One common attribute of the research works discussed in Section 2.2.2.1 is that the success rate
is in the region of 80 % or below with one exception, the work of Frank [Fra12] where speci�c
cylinders are caught with 95 % success rate. When comparing this attribute to humans, even
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children, the success rate is remarkably low. Skilled human catchers are able to catch balls with
more than 100 km

h [5]. This fact puts the human or similar skilled biological systems into the
role of archetypes. The national aeronautics and space research center of the Federal Republic
of Germany mentioned for their extensive research on robotic catching in the previous section is
currently investigating on the topic of human-like ball catching [3].

Biomimicry can happen on three di�erent levels. These are form, process, and ecosystems [1]. In
this case, the process of object catching is the relevant information. In the following subsection
research work investigating human catching will be discussed. Similarly to the discussion of the
technical approaches in Section 2.2.2.2, Section 2.2.2.3 and Section 2.2.2.4 the topic will be divided
into three topics: the visual system, the information processing (prediction) and the catching
movement. Still in case of a human catching a clear isolation of these di�erent functions is hard
to do as the research discussed shows how tightly these aspects are coupled.

2.3.1 Analysis of the Visual System During Catching

Studies on the movements of head and eyes during catching are rather rare. This is caused by
the high dynamics of this task and the limited availability of suitable tracking systems. Only in
the most recent years surveys on this topic have been made. Mann et. al. is elaborating on the
observation of extremely skilled cricket batters during trajectory following and batting [MSA13].
Instead of moving the eyes during the phase of trajectory following they used the head to keep
the ball straight in front of their head. The eye movements were used for moving to the bounce
point with a predictive saccade8. Another predictive saccade was used to position the eyes on the
batting point. This allowed to watch the ball during batting [MSA13, pg. 10]. A similar behavior
is observed by the absolute elite of tennis players [BEC09, pg. 38f]

Another survey by Uchida et. al. shows that baseball batters have eyes that can move faster than
reference persons [UKH+13]. A relation to baseball training is suggested here. Interestingly this
in contradiction to the research work mentioned before where the very familiar task of tracking a
cricket ball is solved mainly by the movement of the head.

An earlier work on investigating the human head, eye and arm movements during playing catch
is presented by Hayhoe et. al. [MNBK05]. The dynamics of this task are signi�cantly lower
than by example during baseball, cricket or tennis due to the cooperative throwing and smaller
distances. In this investigation, the role of the internal model for the task of catching a bouncing
ball is done. During a series of throws/bounces/catches within a circle of test persons, the ball
is secretly exchanged by a ball with di�erent bouncing dynamics. For the �rst few catches, the
tracking errors of the eyes are increasing and thus the direct impact of an internal model of the
ball's dynamic properties is proved. A relation between the positioning of the eyes, dynamics
of the object and expected behavior is obvious. After approximately three catches the internal
model is updated, and the tracking accuracy is close to the initial tracking accuracy [MNBK05,
pg. 79f].

2.3.2 Bio-Inspired Information Processing

Visual information is the main input for human catching. Research on the properties of the
visual information pick-up by Förster shows that the structure of neurons in the early stages of

8this saccade is used to position the eyes in the bounce point prior to the ball reaching there allowing to observe
the complete bounce
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the information processing of visual information causes the calculation of abstract properties like
edges, corners and similar objects [Foe93, pg. 42�] [Foe99, pg. 37f]. This happens already on
the �rst few layers of neurons, and thus, the information for the following layers are abstract
information. By using similar structures again, even a greater degree of abstraction is possible
(e. g. ball, cup or similar objects). Förster suggests recursive calculations based on the neuronal
nets and calls this "Metaprogramm" or "Meta-Metaprogramm".

The interaction between knowledge and perception is discussed by Blakemore et. al. in [BC70].
Based on an experiment with a cat, that is not able to perceive horizontal lines and thus crashes
into horizontal sticks the assumption is put up that biological systems like cats and humans are
only able to perceive what they know already [BC70, pg. 477f]. A sensitive phase at the age of
three weeks to three months is given for kittens. Especially the age of 28 days is given as a peak
sensitive phase where only one hour of exposing to a vertical bar on that day develops nearly all
neurons of the cortical area to prefer vertical edges [2]. According to Pratl this is also valid for
other senses like the perception of acoustic information. The example given is understanding a
song's lyrics [Pra06, p. 16]. Also, in this case, the existing knowledge is used and �tted to the
heard sound. The result might be a Mondegreen, a misinterpretation of the perceived phrase.
This clearly shows that perception is a construction process [Pra06, p. 16] and that the linkage
between the sensors and the experience/knowledge is very tight. Pratl thus also postulates a
symbolic (abstract) representation for physical values in the brain [Pra06, p. 35f]. In terms of
visual perception, this means that instead of using metric measures to classify velocity, symbolic
representations like "before" or "after" are used. Velik et. al. develops this symbolization further
for multi-modal perception [Vel08]

The tight interaction between knowledge and perceptions requires to have a look at this aspect as
well. The human memory can be divided into short-term and long-term memory [Sol02, pg. 143].
The long-term memory is further divided into three sub-memories by Schacter et. al. These
memories are the semantic memory, procedural memory (perceptuomotor or ideomotor skills)
and episodic memory. Deutsch et. al. shows that the usage of episodic memory has a positive
impact on the lifespan of agents in a virtual world [DGLV08]. Regarding the task of ball catching
the episodic memory (for the trajectory perception and prediction) and procedural memory (for
catching) are required. Most probably all memories are involved for the highly complex task of
ball catching.

A study done in zero gravity shows that also gravity is modeled in our brains [MZBL01] [4]. The
task of ball catching in zero gravity is used to examine the internal model of gravity and the
adaption to a new environment. The analysis of the arm's movement during catching shows that
besides continuous update still a general model for the �ight trajectory is used. In comparison
to the fast adaption during approximately 3 throws in the case of the experiments by Hayhoe
[MNBK05], discussed in the previous section, here the adaption takes about 15 days. During
these time, the model kept persisting [MZBL01]. Two aspects here are signi�cant: The model of
the brain is much more persistent than the model of the ball's dynamics in the previous section.
A reason for this might be the permanent experience of gravity during our life in comparison to a
wide variety of ball dynamics that might be perceived. On the other hand, the usage of a model
might be too limited. Certainly there is a representation of the permanent experience of gravity in
the brain but how this representation is stored is unclear. This might be a model, an exhaustive
set of experience or another representation. Obviously, it's there and can only be altered after a
relatively long time.

Recent work regarding the time perception in the human brain shows a relation between the visual
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perception and the encoding of time [SMKB13]. The very early stages of visual processing are
involved in the time encoding. These stages might be the same stages that construct abstraction
according to Förster [Foe93, pg. 42�] [Foe99, pg. 37f]. The research work does not rule out a
distributed or centralized temporal mechanism but clearly shows the involvement of the primary
visual cortex and extrastriate areas (areas responsible for general perception) in this mechanism.
This indicates a tight coupling of sensory input (visual, tactile or other senses) and the perception
of time.

Succeeding studies by Gavazzi et. al. show that the type of the movement impacts the per-
ception of the duration of the movement [GBP13]. In case, the movement matches a movement
produced by human kinetics the accuracy and precision of time reproduction as well as movement
reproduction are signi�cantly higher than when the movement is arti�cial. The research work
thus suggests a calibration of the time perception based on the models of action and the visual
representation of the human motor repertoire [GBP13, pg. 1169]. This is considered especially for
internal models of action. This opens the possibility that the brain is calibrating time-based on
the environment (Newtonian mechanics) [GBP13, pg. 1169]. These �ndings are in line with the
idea that the individual motor repertoire of the observer is a reference frame for visual events.
This information might be crucial for the temporal processing.

In terms of time perception, a remarkable statement from Bueti is a good �nal thought for the
section about human brain functions like perception or other processing. He stated that giving
a relation between brain area and the mechanisms for functions like time encoding is suboptimal
and that a more mechanistically oriented approach, targeting the underlying mechanisms, should
be used [Bue11, pg. 2].

A more technical approach is given by Namiki et. al. [NHI03]. An architecture mimicking the
human movement structure is established. This is a hierarchical/layered system connected with
e�erent/a�erent information lines with �ve layers. Level 4 and 5 are for task switching, level 1-3
for the execution of selected task. An interesting aspect is that the information �ow from the
higher levels to the lower levels (commands or e�erent information lines) are processed in each
layer before leading to a �nal movement. On the other hand, the sensory inputs (or a�erent
signals) are only processed once an each layer receives the same information. Regarding the work
of Förster the aspect of abstraction of input information is not considered at all while, on the
other hand, the specialization of the movement information in each layer is considered.

2.3.3 Analysis of the Catching Movement

The studies on human catching movement are targeted at distinguishable parts. One is the
catching movement of the whole body (relocation) in order to catch a ball similar to the task
of a baseball �elder. This movement is not relevant and thus not discussed in this section. The
seconds aspect is the movement of the hand in order to catch a �ying object/ball. The later task
is also required in the �rst one, so this task can be seen as a specialization or simpli�cation of the
catching problem.

Early work of Peper et. al. is examining the types of information that are used for catching
a ball. The tested variants are the ball's size and the angle of approach. The ball's size could
be used for velocity and distance estimation based on the knowledge of the object. A variety of
experiments is done and the results clearly indicate that the human is not predicting the trajectory
and executing the catch but continuously updating the information. This also shows a continuous
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coupling between perception and action [PBMB94, pg. 610]. This is in line with research by
Dessing [DPBB05]. The experiments examine the usage of predictive9 or prospective10 strategies
and the result is that a prospective strategy with continuous update is used [DPBB05, pg. 668].

In terms of soft catching by human (that means minimizing the contact force) Kajikawa et. al.
conduct an experiment where an object has to be caught from a "conveyor belt" [KSOI99, pg. 699].
This task can be interpreted as 2D catching. The velocity of the conveyor belt is varied from 0.2 m

s
via 0.4 m

s to 0.6 m
s . Two tasks are set for the test subjects: grasp the object from the conveyor

and grasp it with additionally minimizing contact force [KSOI99, pg. 699]. The research team
divides the catching movement into four phases [KSOI99, pg. 701]

• approaching the object

• turn motion

• accelerate hand to reduce velocity error

• grasping

The second phase is rather a single time instant than a phase between phase 1 and phase 3
[KSOI99, pg. 701]. Here the general usage of this turning point is questionable as another starting
position for the hand can lead to the omission of this point and thus the existence of this point is
clearly related to the initial position of the hand.

Another approach considering experiments on catching in two dimensions is done by Flash and
Hogan [FH85]. This study shows that the jerk (the timely derivate of acceleration, or third
timely derivate of position) is minimized for human movements in Cartesian space. Interestingly
a relation to joint space cannot be done [FH85, pg. 1698]. The question how the human motion
control is considering Cartesian jerk cannot be answered.

A further approach considering the mechanics of the movement is done by Nakano et. al.
[NIO+99]. The following four models for human movement planning are suggested [NIO+99,
pg. 2142f]:

• the minimum hand jerk model in an extrinsic-kinematic space

• the minimum angle jerk model in an intrinsic-kinematic space

• the minimum torque change model in an intrinsic-dynamic-mechanical space

• the minimum commanded torque change model in an intrinsic-dynamic-neural space

9De�nition for predictive: "Predictive strategies assume that the catcher computes an a priori estimate of where

the ball will go, selects an interception point along the ball's trajectory and then plans and executes a movement of

the arm so as to place the hand at the selected interception point at the right time. The predicted interception point

may be updated over time as new information about the target's trajectory is acquired, but the predictive strategy

basically assumes that the movement has a de�ned endpoint that is computed some �nite time before the arrival of

the ball or the hand at that interception point."[FMVDS12]
10De�nition for prospective: "Prospective strategies are, on the other hand, based on real-time calculations of how

to direct the hand in such a way that it should intercept the ball at some time in the future, without any advance

estimate of where the interception will occur."[FMVDS12]
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The used space de�nitions extrinsic is related to an external reference (e. g. external Cartesian
coordinate system) while the internal space is the joints motion space of the human subject. The
result of the research is that the internal space is used for movements which means that the muscle
dynamics are considered for the movement planning. For trained movements the minimum torque
change model describes the movement best. As the torque (for rotations) is related to a force (for
translations) the minimum torque change model is related to the minimum force change model or
minimum jerk model (compare [FH85] in the previous paragraph). Here the two studies agree but
in the case of the reference frame/space (e. g. joint space or Cartesian space) the clearly di�er.

The assumption that humans use movements according to the minimum jerk model is used by
Bratt et. al. for compensation of the delay in teleoperation [BSC07]. The set task for a human is
to catch a thrown ball via a teleoperation setup. Based on this movement model the prediction
of the catching position ≈ 200 ms before catching is possible. This is a considerable part of
the system's overall lag. Still the human reaction time is a limiting factor for successful catches
[BSC07, pg. 2716].

Fligge et. al. examines human catching in three dimensions [FMVDS12]. The whole movement
is seen as an initial fast movement and slow �ne adjustments [FMVDS12, pg. 581]. The models,
that result in similar motion patterns, are discussed. These are [FMVDS12, pg. 581f]:

• minimum torque change model (joint space)

• minimum variance model

• minimum jerk model (Cartesian space)

Due to the similar prediction based on these three models and the low computational expenses
for the last model the minimum jerk model is used to model and predict human movements. The
experiment is using 3D catching with a catapult, that throws from random positions with random
velocities [FMVDS12, pg. 582]. A standing position with the right hand on the leg is used as
starting position and no movement (walking) or bending of knees is allowed. The ball is caught
when the velocity peak occurs. The ball velocity is matched only partially. [FMVDS12, pg. 583].
The minimum jerk model is able to explain 74 % of the trajectories. The point of minimum
velocity is seen as a very characteristic attribute of the movement and is considered to divide
the movement into two parts. Regarding the classi�cation of these movements as predictive or
prospective, the result of the research work is that the �rst (large) movement is predictive and
that the following small movement is either prospective or predictive. The overall strategy could
thus be to move to the point of minimum velocity as fast as possible and, starting from there, try
to match the velocity of the ball or do the interception point prediction initially and update this
information during the �ight of the ball.

Complementary to the previous paragraph Okuda states that even the small movement is com-
posed of a rough and a precise control state [OTI+09, pg. 3058]. Findings by Novak et. al. show
that the primary movement and the submovement might overlap [NMH02, pg.l 363]. Cesqui et.
al. [CdPL12, pg. 9f] show that the number and timely overlapping of submovements vary even
when the same individual catches variously thrown balls. This composition of submovements is
seen to be necessary in order to ful�ll the task of ball catching.

In experiments by Mazyn et al. [MSML07] the in�uence of lightning on human catching is ana-
lyzed. Test subjects have to press a button until they initiate the catching movement. After a
number of trail runs, all lights are switched o� within 3 ms after the subject released the button.
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These experiments show that the additional submovements usually observed do not exist under
this circumstance [MSML07, pg. 67]. One has to note that subjects delayed catching movement in
order to gather more information about the �ight thus leading towards signi�cant faster catching
movements with di�erent velocity pro�les.

2.4 Promising Solutions

Recapitulating the technical and biological research work the foundation for the work here is built.
The promising solutions in the areas of the vision system, trajectory prediction, and catching
movement are discussed in the following paragraphs.

Vision System

In the related technical work, the majority of implementation use a stereo vision system. This is
based on the relatively common usability and the extraction of 3D data with thoroughly tested
algorithms for image segmentation and shape recognition. The also holds true for the biological
archetypes where most predators like leopards or eagles are equipped with two eyes and thus use
a stereoscopic view. In terms of technical systems, the depth information is acquired based on
stereo triangulation while a variety of cues for obtaining the depth information might be used for
biological archetypes. A technical system with unsynchronized stereo and more extensive post
processing of the data has been shown by Linderoth [LRÅJ10] but the technical implementation
shows a number of disadvantages. For the research work in this thesis the usage of a stereo vision
system is the most promising foundation for the further processing steps.

Regarding the �rst processing steps of the visual information most related work use speci�c algo-
rithms to gain higher level information of the acquired scene (by example Hough transformation
for circle detection when catching balls). This principle is in line with the research work on human
processing where an abstraction in the very �rst layers of neuronal processing is assumed. Further
processing is based on this abstracted information.

Trajectory Prediction

Regarding the �eld of trajectory prediction, nearly only analytical approaches for the prediction
of the thrown object's �ight trajectory are used. Usually, these approaches are based on a variant
of the Kalman �lter for parameter estimation followed by the calculation of the �ight trajectory
based on an iterative model considering the �ight dynamics (usually gravity and air drag in a
nonlinear way). The highest achieved catching rate of these approaches is in the range of 80 %
and in a signi�cant part of the research work the accuracy of the trajectory prediction is one
of the reasons given for catching failures. Regarding the biological archetype and the processes
involved in human catching only a little knowledge, relevant for a technical implementation, is
available. The tight coupling of visual perception and time is proven. Additionally direct feedback
from motor commands to the vision system is assumed to be existing. These attributes of the
biological system can only be modeled with a large degree of assumptions because the research
work in this area is not aiming for technical systems and thus delivers only marginal amounts of
information.
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For the further work here the existence of internal representations of previously perceived trajec-
tories is assumed to be existing. This experience is used to predict the path of any thrown object.
The disadvantage of dealing with entirely new circumstances like shown in the cat experiment (in
Section 2.3.2) will thus be accepted. Strategies for dealing with this disadvantage will be given in
the following chapter.

Catching Movement

Most of the research work targeting technical implementations for object catching simply position
the catching device in the predicted interception point. This is a simple option that puts me-
chanical stress on both the catching device and the thrown object. The two approaches dealing
with soft catching either use (limited) Cartesian control or accuracy throwing in order to avoid
the requirement of prediction. Here a general approach to soft catching is the goal. In terms
of research on human motion/catching, two phases are present. The �rst phase is a predictive
movement with a shape explainable by the minimum jerk model. The second movement is not
clearly classi�ed but requires the movement of the �eld of view of the vision sensor towards or even
into the catching position. Research work here shows that good catchers/batters are able to keep
the ball in constant eye position based on the head movements. In terms of technical systems,
this requires a movable vision system and increases the complexity of the position detection due
to the additional movement and the required calibration.

Here a soft catching movement based on the kinematics of the robot's joints will be used. In
terms of movement, the predictive movement to an initial point will be used either but due to the
dynamic limitations of the robot the length of this movement might be of limited extend. The
aspect of object tracking with an active vision system puts signi�cant constraints on the camera's
positioning and increases the computation demands and thus will be used optionally.
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Transportation of objects based on throwing and catching has mainly been approached with
modeling of the physical event and applying the mathematical solutions to the prediction problem.
Equations for �ight trajectories have been derived and algorithms for image processing developed.
While the later cannot be evaded due to the optical sensors and their data representation a
more bio-inspired approach to target the challenges will be proposed here. The approach models
biological data acquisition and processing on a particular level of abstraction, the di�erent platform
(binary logic, personal computer/workstation compared to the archetype human, enormous neural
network) causes this when realizing the proposed system.

A thrown tennis ball's trajectory is the result of a highly dynamic process that has a large num-
ber of in�uencing factors like the actual air density (temperature related), air streams in the
surroundings, variation of initial launching parameters of the ball, di�erences in tennis ball's mass
and diameter, di�erences in a tennis ball's felt and even more. It is obvious that predicting a tennis
balls trajectory is a challenging task that demands detailed information about these factors. On
contrary to technical systems that are based on physical models of the �ight, the human archetype
masters the task of predicting a tennis ball's trajectory extremely well. This prediction does not
require any information about the physical background and is only based on the experience of
similar situation previously. The result is that a human has to experience an adequate number of
throws with high dedication for obtaining this capability at expert level [EKTR93] [Col08]. Still,
basically, each child is able to catch a moderately fast thrown tennis ball. Extraordinary skills in
this domain are performed by professional tennis players that return tennis balls with a velocity
of up to 250 km/h [6]. An enormous amount of practice is necessary to master this challenge.

Overall System

For solving the challenge of catching a thrown object processes of data acquisition (mainly visual),
trajectory prediction (experience based) and actuator control (for the catching arm) is necessary.
Having a look at the way information is handled in the biological archetype (compare Section 2.3.2)
o�ers a number of improvements over the state of the art (compare Section 2) approaches.

Consistent catching of a thrown object depends largely on the accuracy of the trajectory prediction.
In comparison to a static positioning of the gripper in the interception point, where only the spatial
information is relevant, soft catching of the object with matched trajectories (alignment of the
object's and the catching device's movement at the instant of contact) requires timely accurate
prediction as well. The biological approach is not completely clear but work from Pratl [Pra06,
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pg. 35] suggests that the movement of objects is experienced as a symbol related to the attributes
of the movement (velocity in the example, but more general: velocity, direction). Experiencing
more di�erent movements leads to the more accurate prediction of future movements. This is in
line with learning theory for sports or musicians (compare [Col08, pg. 58f]) where the absolute
number of hours spent on training the activity in combination with a high degree of focus on
practice is made responsible for the actually accomplished performance.

Here two di�erent ways to achieve trajectory prediction based on previously experienced �ight
paths are introduced in the following sections. Due to the focus on this area and the more detailed
description only a short introduction is given here.

Based on the sequence of position acquired via the camera system and the processing of the image
data a holistic trajectory prediction is proposed. This prediction considers the whole sequence
of positions (sequence of positions as one movement-symbol) and matches similar movement-
symbols of previously experienced throws to predict the future trajectory. The matching of similar
movement-symbols can either be just the matching of the most similar individual symbol or the
combination of a set of most similar symbols1. This approach is introduced in Section 3.2.1),
in�uences of parameters are analyzed in Section 5.1.2.1 and achievable prediction results are
compared in Section 5.1.3).

An option here is to limit the number of considered positions of the measured trajectory for
the matching (usage of the "recent history" of the movement) and match the most similar sym-
bols to this dynamic changing movement-symbol. This approach demands less calculation power
compared to the previously described approach, o�ers advantages regarding changing external
in�uences on the trajectory (e. g. air streams) but the prediction accuracy has to be evaluated
as less information is used to predict the future �ight path.

The second approach uses the position change or velocity as the fundamental information for
predicting. Advantages are seen in the independence from the absolute position, and thus, the
data should be more versatile and allow more accurate prediction. Search complexity is a topic
here and a strategy to reduce it is discussed and the achievable prediction accuracy is examined
in Section 5.1.2.2 and Section 5.1.2.3.

In addition to the bionic approaches to image acquisition and trajectory prediction also, the task
of movement planning for catching is done on this base. The movement of a human for catching
an object softly is used to derive a strategy for catching an object softly automatically. The basic
strategy will be presented in Section 3.3 while the practical implementation will follow in the next
chapter (Section 4.5).

E�cient handling of the experience dataset is necessary for both approaches in order to ful�ll the
timely requirements of the overall system. The methods used to achieve this for the practical
experiments, and the implementation are presented in Section 4.5.

3.1 Image Acquisition

The human eye has an enormous number of sensors for retrieving visual information (color and
grayscale) with a variable resolution depending on the �eld of view [KO04, pg. 2]. Another
attribute of the human eye is that the visual information retrieval is only possible when the

1The term "most similar symbol" will be de�ned in the related section.
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eye does not move (�xations) and that visual information cannot be retrieved during movements
(saccades) [KO04, pg. 2]. During tracking of a moving object �xations and saccades are alternately
used to follow the object's trajectory, keeping the object in the visual area with the highest density
of light-sensitive cells [KO04, pg. 2]. This results in an optimized usage of the visual attributes of
the eye.

For resembling this for technical systems, di�erent approaches can be used. The system that
resembles the biological archetype most accurate is a system of moving cameras with a resolution
that is depending on the distance from the optical axis of the camera or with a small �eld of view.
The downside of such a system is complex control of the movement and the need for consideration
of the movement for the further processing of the image information.

Another possibility to resemble the visual sensor system is to use a camera with a �eld of view
covering the complete scene and retrieving only the information from the relevant area of the
image. State of the art cameras supporting AoI (Areas of Interest) provide this functionality.
Speci�cation of the relevant area can be done during runtime but depending on the camera's
properties changing the area is not executed immediately on the next acquired image but might
take more time depending on the camera's frame rate. In general, a short time prediction for
the object's movement is necessary to follow the object. A system actively adapting the AoI's
size and position depending on the motion history of the tracked object can be considered a good
resemble of the biological archetype.

Overall the system allows to improve the prediction accuracy while keeping the computational
costs at a reasonable level. The in�uence of a vision system's resolution and frame rate on
the prediction accuracy has been shown in [Pon09, pg. 62�]. A desirable high frame rate in
combination with a high resolution of the vision system comes in hand with a high bandwidth
camera interface and thus high cost. In order to keep the costs for the prediction system low an
AoI for each camera is used. Based on the information about an initial launching position or the
predicted �ight trajectory only a small area of the whole image can be read out at the camera
resulting in an increased frame rate. The reduced amount of information is bene�cial also for
the following step of object detection and pose estimation. A main requirement for this approach
is a reliable prediction of the object's trajectory and the limitation to a single object that shall
be tracked. If multiple objects are tracked based on this approach current cameras also support
multi-AoI or the workaround, that area covering all AoI has to be read out and transferred from
the camera.

For the biological archetype, this results in a focus of attention on the main object that shall be
observed. The environment within the visual �eld of view is still perceived, but the importance of
changes in this outer area in the �eld of view is reduced. Still signi�cant changes in the area with
reduced focus can lead to a shift in the focus of attention. In terms of a technical system based on
the AoI, this is not possible. The reason for the downside is the technical realization where either
pixels are read out or not. In comparison the human eye o�ers to change the resolution depending
on the area within the �eld of view [KO04, pg. 2]. For a more accurate resembling of this function
image sensors with an adjustable resolution for di�erent areas (similar to the available binning
feature for the whole transmitted image) are required. A sensor with a comparable capability has
been proposed an implemented [OEG13, pg. 327] where the main focus is to reduce the overall
bandwidth by compressing the image on the sensor already with minimal quality reduction. The
same principle could be used for a chip, with a set AoI, for the area outside the AoI in order to
allow to perceive the important data without any compression or loss in quality but still receive
the surrounding area with lower quality. Especially environments where a change in the image
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(e. g. surveillance applications or other security related tasks) could largely bene�t from such an
image sensor.

Determining the and adapting the optimal size of AoI as well as adapting the position of the
area is another challenging task. In the environment of transport by throwing the initial position
(origin of the object) can be considered as known. This allows to set up the initial position of the
AoI to the origin position of the object. The size of the AoI in this area depends on the physical
size of the object and the distance from the camera. The equation to derive the size of the AoI
in pixels (lAoI) depending on the object's size lobj , the focal length of the camera in pixels f and
the distance of the object to the cameras principal point dcamobj is given in Equation 3.1.

lAoI =
lobj

dcamobj
∗ f (3.1)

This equation limits the size of the AoI exactly to (expected) size of the object in the image and
thus does not have any tolerances for deviations in prediction or other error sources. Thus an
additional factor kAoI is introduced and the equation is modi�ed to Equation 3.2. The magnitude
of k depends on the maximum error of the (short term) prediction. Another factor is the reduced
amount of visual information, required to be processed, based on the reduction of image size. The
stress �eld of fault tolerance, the amount of information to be neglected and the increase in the
frame rate of the vision system

lAoI = k ∗
lobj

dcamobj
∗ f (3.2)

The open issue of adapting the AoI's position requires prediction of the object's movement. The
movement in space is projected to a relocation in the camera's frame. In order to predict the
relocation in the camera frame, the movement in space has to be predicted �rst and then projected
to the camera's frame.

The �rst step of motion prediction (in 2D image space) is done with a simple linear model due
to the high frame rate and the low computational expenses of this method. Assuming that no
knowledge about the movement is known except the initial position, it is obvious that an initial
value for the movement of the AoI is needed. These values are set based on manual measurements.

Limitations of the cameras in terms of hardware support for this feature lead to a more simple
approach for the experiments where the size of the AoI is �xed at 768 by 2048 pixels and further
the image is cut down in software to 300 by 300 pixels which corresponds to the maximum size
needed. The big AoI is needed to cover the whole �ight of the object and because the camera'
driver does not assure that changes of the AoI-position are already considered for the next acquired
image. Reducing the (software-)AoI's size further would lead to reduced computational demands
but further increasing the frame rate of the camera system is not possible due to a �xed data
acquisition rate.

3.2 Bionic Associative Memory

Work from Pratl [Pra06, pg. 35] suggests that the experience of movement is based on movement
symbols and that prediction of movements is only possible if similar movements have already
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been experienced. Work from Colvin [Col08, pg. 58f] suggests that the quality a human being is
able to perform a task mainly depends on the hours of deliberate practice. This is in line with
brain research [Pra06, pg. 12] that shows that perception is a mixture of sensory information
and knowledge. Unknown objects have to be processed in detail. Also, research from language
perception approves the assumption that the process of perception is constantly accompanied by
association of knowledge [Col08, pg. 87�] [Pra06, pg. 18].

Transferring this assumption to the task of catching an object raises the demand for a fast ac-
cessible experience of trajectories. Furthermore, a mechanism to associate these trajectories to
a currently ongoing movement is required. The fact that absolutely similar movements never
happen stands to reason that at least a certain level of generalization is happening. Thus, a
continuous scale of similarity is suggested instead of a binary measure categorizing two properties
as similar or di�erent. In addition, the capability of humans to combine experience and use this
to solve current problems suggests that the internal processing makes use of more than just the
most similar experience. In coordination-training (e. g. in sports) the opinion that a wider range
of experience allows to adapt to new circumstances faster is standard [Ph.13, pg. 210] [DGAB03].

An important factor here mentioned by Colvin [Col08, pg. 65�] is the intensity the human being
is working on the topic. The word "deliberate" is used here to express a higher degree of (intrinsic)
motivation. This higher degree is seen as a continuous process of feedback and self-evaluation of
the learner. Thus, this aspect is also required in a technical implementation that mimicries this
human processing model.

The basic idea of k-nearest neighbors (compare Section 2.2.2.3) ful�lls the prior mentioned at-
tributes only partially. Especially the combination and application to new circumstances is limited.
Furthermore, the evaluation and feedback process is not designated.

In the following two subsections, two modi�cations of k-nearest neighbors to incorporate the
main functions of the human movement experience, generalization, and prediction processing
are introduced and discussed. The �rst variant is introducing a working-set of experience and
a feedback and evaluation functionality to the classical approach, consequently targeting the
reduction of association time. The second variant is extending this furthermore towards a system
that allows to generalize and combine experience on a higher level. Thus allowing to extend the
�eld of application even towards new, previously unexperienced, processes.

3.2.1 Holistic Associative Memory

Nearest neighbor algorithm (compare Section 2.2.2.3) is simple, e�cient and e�ective in the �elds
of classi�cation and pattern or object recognition. The main challenges of this algorithm are the
computational complexity and memory requirements [BV10]. Here these challenges are considered
with respect to the application of this approach to the task of transport by throwing, more
accurately to the task of trajectory prediction. Biologically inspired approaches solving these
challenges are introduced and discussed.

Figure 3.1 outlines a dataset with a database with three trajectories (green, blue, orange) and a
current trajectory (red). For the task of trajectory prediction the future ball positions (circles)
of the red trajectory have to be predicted. A number of di�erent approaches exist to target the
problem of big datasets. Here the approach mimicry human association is presented.

In term of similarity measures, the Euclidean distance (further on meant by the word distance)
is the chosen unit as the trajectories are represented in 3D data Furthermore the combination
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Figure 3.1: Basics of k-nearest neighbor, 3 throws from database (green, blue, orange) and a new one
(red); solid lines for illustration, data points are circles, dashed lines connect related points
for similarity determinations

of multiple similar datasets is used as humans tend to combine information from the memory
as well. Thus, k-nearest neighbors are used instead of only the nearest neighbor. The strategy
for the combination of these similar trajectories based on the similarity scale (weighted nearest
neighbor) is considered suboptimal in environments with in�nite sample case [BJ78]. Still the
advantages of this approach are seen regarding the release of the limitation of equal weights in
k-nearest neighbors, the transformation to a global algorithm and the wider range of used samples
[BV10, pg. 303].

Memory Managements Principles

The combination of a wider range of samples raises the computational expenses. This is solved
by the introduction of a small working set that is a part of the complete experience database. A
illustration is given in Figure 3.2.

Figure 3.2: Whole experience database and small working set;
The small working set is used to improve the performance of the nearest-neighbor search in terms of search

time in case it is necessary.

For the task of prediction, only the small working set is considered. An illustration of the prediction
process is given in Figure 3.3. The number of acquired positions from a current velocity is
compared with the related positions of the trajectories in the working set. Based on the k most
similar trajectories (sum of distances) the future path is predicted. The inverse of the sum of
distances is used to weight the k most similar trajectories in order to derive the prediction.
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Figure 3.3: Prediction of the current trajectory based on the working set;
Due to the performance requirements the working set contains only a limited number of trajectories out of

the whole experience database.

The process illustrated in Figure 3.3 is executed each time a new measurement from the position
determination system is acquired. After the whole trajectory is acquired the current working set is
updated based on an exhaustive search for similar paths in the whole experience database (compare
Figure 3.4). Thus, during the time when the timing requirements are loosened up (between
two throwing transactions, the time-consuming evaluation of the whole experience database is
done. The reason for this behavior is the assumption that the most recent trajectory is a good
representative of the current state of the environment. The size of the working set is logically
adapted to the performance requirements and the used hardware for predicting.

Figure 3.4: Whole experience database and small working set;
The small working set is used to improve the performance of the nearest-neighbor search in terms of search

time.

The approach presented above can, in addition, be extended to an approach where the size of
the working set is managed more dynamically. Instead of using a �xed size of the working set,
the trajectories in the experience database obtain an additional parameter that speci�es how
frequently this trajectory was used as the nearest neighbor during the recent history. The recent
history is equal to a number of throws before the current one. By sorting the experience database
during the time between two throws and accessing it in a descending usage order the most similar
trajectories to the most recent throws will be accessed �rst. Again the assumption that the most
current paths represent the most probable environmental circumstances is used. Furthermore,
because the most relevant trajectories are compared foremost, this approach can be used to stop
the search for similar trajectories based on the timing constraints of the whole system.
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Further Challenges

A remaining challenge of the trajectory prediction based on the above-mentioned approach is the
prediction in the �nal phase of the �ight and the dependency on the initial position of a trajectory.
The �rst challenge can be illustrated by considering that the catching movement of the robot is
interfering with the image acquisition during the �nal �ight phase. In case this happens all
trajectories would end right before the objects enters the catching area, and thus the prediction
of the object's path in the relevant area could not be done at all.

The second challenge of the dependency on the initial position can be illustrated by reconsidering
Figure 3.1. Even if the green trajectory was the perfect resemble of the red trajectory, the fact
that the initial point (or starting point) of the green trajectory has a big distance to the starting
point of the red trajectory would hinder the usage for prediction. The problem behind this is that
the absolute position is considered here. A more general application of acquired knowledge to the
current task of prediction is desirable.
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Figure 3.5: Result and prediction error of k-nearest neighbor prediction; real �ight light red, predicted
�ight dark red

Finally, also the deviation in the �nal part of the �ight path is a problem as the position infor-
mation is considered for the prediction. Even using more trajectories (k) for the prediction shows
this problem as it is illustrated in Figure 3.5.

3.2.2 Progressive Associative Memory

Targeting the open challenges from the holistic associative memory the progressive associative
memory puts the task of prediction into another perspective. While positions are considered as
the main information in the previous subsection here, the velocity is the main information for
prediction. The trajectory prediction is done based on the current (measured) position of the
object and the previously acquired velocity information from the experience database. Figure 3.6
gives an overview over the basic principle. The fundamental problem is presented in Figure 3.6(a).
For a new trajectory (red) the future positions of the object shall be predicted based on a set
of available trajectories (orange, green, blue). Instead of processing the prediction step right on
this information the trajectories are transformed into velocities (Figure 3.6(b)). These velocities
are the base for the similarity comparison. Based on the last acquired position of the object and
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the most similar trajectory in terms of velocities (Figure 3.6(c)) the future trajectory is predicted
(Figure 3.6(d)).
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Figure 3.6: Basic principle of progressive prediction with the transformation to velocity space, association
and prediction in velocity space and transformation back to the position space

In comparison to the prediction based on the position information (discussed in the prior subsec-
tion), the dependency on the initial position is avoided. In the illustration in Figure 3.6 the green
trajectory is used for prediction despite being further away from the red trajectory in terms of
positions. Concerning velocity this trajectory is very similar to the red path that can be seen in
Figure 3.6b. Thus, any similar trajectory (in terms of velocity) can be used for prediction allowing
to apply an overall smaller dataset to a wider range of prediction tasks.

Spatial Discretization

In a general case where di�erent trajectories are stored in the experience database, the second
quarter of a previously experienced �ight path could be a good match the �nal quarter of the
current trajectory. This causes an increased search complexity (both for the holistic as well as
the progressive). Thus, the current velocities have to be compared to all previously experienced
ones. In order to allow a generalized prediction (prediction of the current path based on any
phase2 of other trajectories, the current velocity (or a number of recent velocity measurements)
have to be compared to the whole experience database. This raises the computational demands.

2Phase here in the means of time since start.
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A representation of the velocity information that allows to access similar velocities e�ciently is
desirable in this regards.

In order to tackle this challenge a spatial discretization is used to minimize the search space and
allow e�cient comparison of trajectories (velocities of trajectories). An illustration of the process
is given in Figure 3.7(a). Each velocity sample is a representative of a voxel, velocity class or
movement symbol. The related �gure in the continuous space is Figure 3.6(b). In contrast to
quantization, where analog signals are converted to digital representations, the spatial discretiza-
tion uses the already quantized data and decreases the resolution (increases the quantization error
due to the increased distance between the values). This can be compared to moving from �oat
point representation to �xed point representation of a number. The uncertainty introduced due
to discretization rises for the sake of a faster processing time. The increased size in discretization
steps is most obviously shown in the blue dataset. The x-component of the velocity is decreasing
continuously from the top of the diagram to the bottom. In continuous space (Figure 3.6(b))
this is resembled well while the discretized representation in Figure 3.7(a) shows a jump between
the third and the fourth measured velocity from the top of the dataset. This jump is caused by
x-component of the velocity falling into the next lower discretization interval.

(a) representation based on velocities (b) representation based on velocity-indexes (discretiza-
tion step size: 0.005; 0.05; 0.5 m/s for x; y; z)

Figure 3.7: Spatial discretized velocities;
The blue, green, red and orange boxes are representative categories of the related velocities of the trajectories.

The continuous velocities are shown with circles. The dataset is the same as used in Figure 3.7(b)

The process of spatial discretization is similar to what is done in digitalizing audio data or for
mapping for autonomous robots. In terms of robotic mapping either occupancy grid maps [TBF05,
pg. 281�] or maps based on normal distribution transform [BS03] are illustrative examples for this
approach. Basically, an error due to discretization is caused by this procedure, but the advantages
overbalance the intentionally introduced error. The size of the discretization steps is balancing
the overall accuracy versus the size of search space. Smaller steps result in more accurate position
representation but by example half the step size in each dimension causes an search space with
eight times size. A relation between the position detection's accuracy (unavoidable error caused
by the vision system and image processing algorithms) and the optimal size of the discretization
steps is assumed to exist. Section 4.2.2.1 deals with the determination of the tracking system's
accuracy and in Section 5.1.2.3 the simulation results for determination of the discretization step
size's in�uence on the prediction result is given.

Searching in a database containing this spatially discretized velocity information for the same
velocity is based only on the calculation of the indexes of the current velocity. Table 3.1 gives
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the related indexes for the velocities given in Figure 3.7(b). If, for example, a similar velocity to
the last measured velocity of the red trajectory is searched for, the database containing the blue,
green and orange trajectory would not yield any trajectory with the same velocity. Extending
the search to the neighbor velocity-representatives (all data �elds with indexes ±1)would yield
the second-last velocity of the red trajectory (compare the indexes of the 4th and 3rd sample of
red trajectory in Table 3.1). Opening up the search to data �eld with indexes ±2 delivers the
three �nal velocities of the red trajectory (compare the indexes of the 4th and 3rd/2nd sample of
red trajectory in Table 3.1) and �ve velocities (compare the indexes of the 4th sample of the red
trajectory with the second to sixth sample of the orange trajectory in Table 3.1) of the orange
one. Thus, the �rst association with an existing trajectory can be made. Finding the most similar
velocity is done based on the comparison of the indexes, to be more precise: picking the velocity of
a foreign trajectory with the least distance. Subsequently, the 4th sample of the orange trajectory
is the most similar to the 4th sample of the red trajectory with a distance of two discretization
steps in the x-direction.

blue green orange red

sample x y z y x z y x z y x z

1 -4 64 4 0 63 4 5 63 4 2 63 4

2 -4 63 3 0 62 3 5 62 3 2 62 3

3 -4 63 2 0 61 2 5 61 2 2 62 2

4 -3 62 1 0 60 1 5 60 1 2 61 1

5 -3 60 0 0 60 0 5 59 0 - - -

6 -3 60 -1 0 59 -1 5 59 -1 - - -

7 -3 59 -2 0 58 -2 5 58 -2 - - -

8 -3 59 -3 0 57 -2 5 57 -3 - - -

Table 3.1: Overview of the index representation of the trajectories given in Figure 3.7(b)

In order to keep the link between the individual velocities of a single trajectory the storage of
the velocities has to keep the information about the chronologically prior measured velocity. In
addition, for prediction, the information about the chronologically following velocity is required
as well. Storing the trajectories as a doubly linked list of velocities allow to access the whole
information about the path in both directions.

Reducing Quantization In�uence on Reconstruction/Prediction

The spatial discretization of the data can be done in the regime of velocities as outlined in
Figure 3.7(a) or on the position data shown in Figure 3.6(a) and afterward being transformed to
the velocity regime. The bene�ts and downsides of each processing sequence will be discussed
here brie�y.

As mentioned before discretization introduces an error. To keep this error source's in�uence
minimal the logical approach is to do the discretization as late as possible in the processing
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steps in order to keep the minimum errors as long as possible3. This argumentation clearly
is preferring to calculate the velocities prior to discretization (Figure 3.7). Figure 3.8 shows a
comparison between both approaches when using the similar related discretization step size4 for
both processing possibilities.
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Figure 3.8: Comparison of initial velocity calculation and subsequent discretization and immediate dis-
cretization and subsequent velocity calculation;
Especially for reconstruction/prediction of the trajectory the immediate discretization o�ers advantages re-

ducing the e�ects of error accumulation

The results of both processing orders yields in two di�erent data sets in the spatially discretized
velocity database (illustrated in Figure 3.8(d)). This is caused by the in�uences of the discretiza-
tion errors. While the discretization error is the upper and lower limit for each of the discretized
velocities in Figure 3.8(b) and can be accumulated during the reconstruction/prediction process,
the same limits apply to the velocities based on the discretized positions even for any combina-
tion of the information. Thus, the seconds approach, to immediately do the discretization and
calculate the velocities based on this information is preferable and used for the prediction.

The di�erent size of the velocity representing cubes in Figure 3.8(d) originate from the di�erent
processing sequences. The smaller cubes are derived from immediate velocity calculation followed

3Mind the di�erence between quantization and the additional discretization here. Quantization is the sampling
of analog signals and translation into digital signals. The discretization is the reduction of the resolution of the
digital signal. Doing quantization as early as possible in the processing steps, similar to what is done in current
telecommunication engineering, is advantageous also here

4similar related discretization step size means that the discretization size is transformed from position space to
velocity space in the same manner as positions are transformed to velocities, thus o�ering the same discretization
step size
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by discretization while the bigger ones occur in the other way. The double size is caused by the
di�erence of two discrete values, where the real value can be up to one discretization step bigger
or smaller. The resulting size is two steps. In the other processing sequence, the size is limited to
half a step larger or smaller resulting in a size of one discretization step.

One might argue that this causes the comparison of apples and oranges but the relevant infor-
mation, the density or granularity of the velocity information database, is the same for both
processing sequences. This can clearly be seen by half the cube length steps between the bigger
cubes in Figure 3.8(d): While the representation size is larger, the distance between individual
data points is still the same. Presentation of the combined information in Figure 3.8(d) in two
individual �gures is done in Figure 3.9.

(a) spatial discretized velocities (�rst spatial discretized
positions, then velocity calculation)

(b) spatial discretized velocities (�rst velocity calcula-
tion, then spatial discretized positions)

Figure 3.9: Comparison of initial velocity calculation and subsequent discretization and immediate dis-
cretization and subsequent velocity calculation;
Especially for reconstruction/prediction of the trajectory the immediate discretization (Figure 3.9(a)) o�ers

advantages reducing the e�ects of error accumulation; for comparison the continues value velocities are also

shown in the diagrams as circles

Using the prior discretized data for velocity calculation allows combining the advantages of gen-
eralization o�ered by the usage of velocity information but still keeping the (integrative position)
information with a deterministic and limited error margin.

Recent History Consideration

Moving the starting point of the search from the starting point of the trajectory to the last
acquired velocity allows to de�ne a number of recent velocity-samples that are used for similarity
calculations. By example only the last three velocities of the red trajectories (samples 2 to
4; the second to fourth measured position from the top of the red dataset in Figure 3.8(b) or
Figure 3.8(d)) could be used. This allows relatively fast adoption to changes in the environment
and the general usage of any recorded trajectory for prediction tasks of the current one (consider
the discussion about the prediction of the �nal �ight phase in the previous subsection). An
elaboration on the suitable length of the recent history of prediction and the in�uence on the
prediction accuracy is done in Section 5.1.2.3.
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Real Time Performance Requirement

The usage of the velocity-based prediction allows to generalize trajectories to apply them for
predicting current ones. By immediately discretizing the position information still the integrative
information content of the trajectory is kept. This circumstance can be used to optimize the
prediction by changing the number of points for comparison. Instead of comparing all velocity
measurements in the recent history with the previously experienced ones, only a subset of the
velocity measurements in the window for comparison can be used as the velocities are steady
(results here are given in Section 5.1.2.3). This reduces the calculation expenses for comparison
and allows a to compare the current trajectory to a wider range of path within the same timely
envelope, possibly improving the prediction accuracy.

In order to ful�ll the real-time requirement for the trajectory prediction, a strategy to deal with
unsuccessful compares is needed. Here the chosen strategy is fall back to the previously associated
trajectory (with an additional shift of the considered samples due to the timely progress) is used.
A wide range of other strategies could be implemented, but they are the objective of further
research.

3.3 Catching Movement Planning

Besides image acquisition and prediction (described in the previous sections of this chapter), the
movement planning of the robot for successfully catching of the thrown object is the �nal part
of the whole systems (neglecting the implementation details covered in Chapter 4). The task for
the catching movement planning subsystem is to determine a suitable action for intercepting the
currently thrown object based on predicted trajectory supplied by the prediction system. Main
requirements for this movement are:

• Minimization of the impact energy and impact force during catching

• Adaptability to more recent and thus probably more accurate trajectory prediction data

• Mimicry human catching discussed in Section 2.3.3

The third requirement might seem unspeci�c but it can bee seen as a result of the �rst two
requirements. Human catching is adaptable (and thus reliable) and the impact force during
catching is minimized in order to avoid damage (to the caught object and the hand/arm). Thus
human catching is a very suitable archetype for ful�lling the two prior mentioned requirements,
validate and optimize the system. These aspects will be discussed in the following paragraphs.

Minimization of Impact Energy

A main aspect of a successful transport by throwing and the generalization of the approach to
mechanical sensitive objects is the reduction of the forces during throwing and catching. The
mechanical strain on the thrown object during launching is limited because of the common initial
velocity of the throwing device and the object and the inertia of the throwing device. On the other
hand, while catching nearly all approaches discussed in Section 2.2.2 simply move the catching
device into a position in line with the predicted trajectory of the object and thus expose the
thrown object to a signi�cant impact force.
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Research from Hove [HS91] and Frank [Fra12] di�ers from most other approaches since the move-
ment alignment of the catching device with the thrown object is of main interest. In the prior
work the Cartesian position of the predicted ball's trajectory and the current data from the cam-
era system is fed to the robot controller directly. Remarks about a special usage of the kinematic
of the robot are not given. But considering the robot's maximum velocity in Cartesian mode of
2 m

s [HS91, pg. 382] it is assumed that the Cartesian control mode of the robot is limiting the
maximum velocity of the catching device. The same is valid for the KUKA LWR 4+ robot used
for the implementation of the transport-by-throwing system. The maximum Cartesian velocity
equals 2 m

s [KUK11, pg. 277]. On the other hand, when using the joint position control mode the
achievable Cartesian velocity of the end e�ector or catching device is signi�cantly higher and in
the same order of magnitude as the velocity of the thrown object.

In order to minimize the relative velocity between thrown object and catching device the following
measures are taken:

• Launching parameters are chosen to cause the lowest magnitude of velocity in the catching
area

• Kinematic of the robot is used to add up velocities of di�erent joints in order to maximize
end e�ector velocity

Optimal Launching The work of Frank [Fra12] shows how di�erent launching parameters can
yield in approaching the same circular trajectory of a possible catching device. The �gure isKapitel 3 35 

Bild 3.3: Flugbahnen eines ideal folgsam fliegenden Zylinders mit vordefinierten Lagen in den Fangpunkten 

entlang einer kreisförmigen Trajektorie des Fangroboters. 

3.2 Ballistische Untersuchungen und Modellvalidierung 

Ein Modell ist ein Abbild eines realen Systems, das mit Hinblick auf dessen Zweck nicht alle Attribute 

des Originals erfasst (Stachowiak, 1973). Wie in Abschnitt 3.1.2 bereits erläutert, liegen den in dieser 

Arbeit beschriebenen Modellen für Flugbahnen ebenfalls Vereinfachungen zugrunde. Die Gewinnung 

verlässlicher Erkenntnisse aus diesen Modellen bedarf somit deren Validierung. Die Aufnahmen mit 

zwei High Speed Kameras in Bild 3.4 zeigen einen fliegenden Zylinder aus zwei unterschiedlichen 

Perspektiven (Seiten- und Unteransicht) in drei aufeinanderfolgenden Zeitpunkten. Es ist erkennbar, 

dass Positionsabweichungen    und    zwischen der realen Flugbahn und der berechneten Flugbahn 

eines ideal folgsam fliegenden Zylinders entstehen können. Des Weiteren können 

Zylinderorientierungen auftreten (    und    ), die von der Flugbahnrichtung abweichen und sich 

unter Umständen negativ auf die Flugstabilität auswirken. In den folgenden Abschnitten werden 

Ursachen dieser Abweichungen untersucht und ihre Auswirkungen auf die Berechenbarkeit der 

Zylinderlage auf Grundlage der oben beschriebenen Modelle überprüft. 

Figure 3.10: Trajectories of a thrown cylinder with a point tangential to the circular trajectory of the
catching robot [Fra12, pg. 35]; S is the starting position, TCP the tool center point of the
catching device;
Eight di�erent combinations of velocity and launching angle are given to reach the circular trajectory of

the TCP around the rotation center U

given here again in Figure 3.10 and illustrates that the circular motion path of the catching robot
can be reached with di�erent combinations of launching angles and velocities. An aspect that
has not been covered is the magnitude of the velocity at the point where the object's trajectory
is on the circular path of the catching device. This calculation will be done here. In order to
minimize impact force/energy the �ight trajectory with the minimum magnitude of velocity in the
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interception area is preferable. In Figure 3.11 the simulation of a transport-by-throwing system
is shown. The throwing device (TD) is locate at the position PTD = (−2.5 / − 1 / 0) m and the

−2.5−2−1.5−1−0.50
−1

−0.5

0

0.5

1

1.5

y [m]

x [m]

Figure 3.11: Visualization of di�erent throwing trajectories to reach a point on a circular interception
trajectory of the catching device
This simulation is based on the environment given above (position of throwing device PTD = (−2.5 / −
1 / 0) m, main joint of catching device PCD,J1 = (0 / 0 / 0) m, arm length larm = 1 m, gravitational

acceleration g = 9.81 m
s2
, mass of the tennis ball m = 0.0577 kg, diameter of the tennis ball d = 0.067 m,

drag coe�cient CD = 0.6 and air density ρ = 1.2041 kg
m3

main joint (J1) of the catching device's arm is in PCD,J1 = (0 / 0 / 0) m with an arm length of
1 m. Trajectories with launching angels between 15 ◦ and 80 ◦ di�ering by 1 ◦ are shown that all
have a point (interception point) where the trajectory of the ball is aligned with the trajectory
of the throwing device. The required launching velocity is calculated based on an iterative model
(compare Section 4.2.1) for the �ight with the following parameters: gravitational acceleration
g = 9.81 m

s2
, mass of the tennis ball m = 0.0577 kg, diameter of the tennis ball d = 0.067 m,

drag coe�cient CD = 0.6 and air density ρ = 1.2041 kg
m3 . For each throwing angle the velocity

is varied between 2 m
s and 8 m

s with an increment of 0.005 m
s and the best suitable velocity is

taken. The criteria for this selection is the deviation of the trajectory in the catching area from the
(circular) path of the catching device. For all tested throwing angles with the related velocity the
distance between the circular trajectory of the throwing device and the (calculated) trajectory of
the ball is smaller than 1.7 mm, thus, all paths pass within this distance to the circular trajectory
of the catching device. While Figure 3.11 shows selected trajectories the essential information
derived from this simulation, adapted to the geometrics of the �nal catching experiments is given
in Figure 3.12. The magnitude of the velocities in the interception point is shown for di�erent
launching angels. The velocities decrease up to the point where the launching angle is equal to 51 ◦

and increase afterward. For the speci�c con�guration of throwing device position and catching
device location the minimum velocity in the interception area equals 4.55 m

s . This con�guration
is also used for the simulation (compare Section 4.4) and implementation (compare Section 4.5).

Kinematic Consideration Here the work of Frank [Fra12] is used as a base. The approach
from Hove [HS91] is not suitable since the usage of Cartesian control mode results in outsourcing of
the motion planning to the robot controller causing the reduced maximum velocity. Frank, on the
other hand, uses a simple kinematic with just one degree of freedom to realize "soft" catching. The
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Figure 3.12: Visualization of the velocities in the interception point depending on the launching angle
(compare Figure 3.11).
This simulation is based on the environment of the �nal catching experiments. The optimum throwing

angle for a minimal velocity of the ball in the catching area is 51 ◦ and in the range of 46 to 56 ◦ only

slightly higher velocities have to be handled

usage of such a simple kinematic is possible because of the compliant �ight behavior of cylinders
with small deviations to the right or left [Fra12, pg. 53].

Here the basic idea of this strategy will be generalized to more complex kinematics that also
allow to catch objects with more variable �ight trajectories or thrown with more deviations in
the launching parameters. In the case used by Frank (compare Figure 3.10) the alignment of the
thrown object's trajectory with the trajectory of the catching device is only possible at one point.
This position is de�ned by same (3D) tangents on both trajectories. In case of a simple 1 DoF
(Degree of Freedom) robot the path of the catching device is circular and the tangents are always
90 ◦ on the connection between the center of the joint (U in Figure 3.10) and the e�ective tool
center point (TCP in Figure 3.10).

In case the model is generalized to a more complex kinematic like a 2 DoF main joint and an
adjustable-length arm (length between U and TCP is variable) the point where the trajectory
of the thrown object and the trajectory of the catching device (or TCP) is aligned is where the
distance between the path and the center of the joint (U) is minimal 5. This correspondence to
a tangent of the catching device's trajectory that is in line with the thrown object's trajectory.
An 3D illustration of this generalized model is given in Figure 3.13. The blue circles are a tennis
ball's trajectory sampled with a simulated camera at 100 Hz, the red dot is the center of the 2
DoF main joint, the green dot is the interception position and the blue line between the red and
the green dot is the arm with adjustable length. Mind that due to the scaling the angle between
the trajectory and the arm does not look like 90 ◦ but this requirement is ful�lled.

A relatively simple system (3 DoF) is su�cient to allow soft catching with trajectory alignment in
case the velocity of the thrown object can be reached. Additional DoF might not be used at all,
might be used to realize one of the three required DoF (by example the adjustable-length arm) or
might be used to increase the velocity of the catching device in case the main joint with 2 DoF is
not able to realize the required velocity. In addition small and fast adjustment movements might

5One remark here: this distance must not be bigger than the maximum length of the adjustable-length arm.
Otherwise, the object cannot be reached with the catching device.
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Figure 3.13: Visualization a simpli�ed robotic arm for catching; red dot: robot origin position, green
dot: interception position, blue line: robotic arm, blue circles: calculated ball positions

be realized with the additional joints. Whether this is reasonable depends on the relation between
the sum of the mass moment inertia a�ected by the link and the maximum torque and must be
evaluated separately for each robot/joint. The basic methodology for doing this is here while the
particular application to the KUKA LWR 4+ robot is given in Section 4.5.

The calculation of the moment of inertia for simpli�ed models of robot links and typical joint
con�gurations is summarized in Table 3.2. The symbols used are for the solid cylinder: the
moment of inertia J , the mass of the whole cylinder m, the radius of the cylinder r or length
of the stab l; These formulas will be used in Section 4.5 for determining maximum acceleration
parameters of the KUKA LWR 4+.

Con�guration (shape, rotation axis) Equation for moment of inertia

solid cylinder, rotation along axis of symmetry J = 1
2 ∗m ∗ r

2

solid sphere, rotation along axis through center J = 2
5 ∗m ∗ r

2

solid stab, rotating along an axis in the �at end J = 1
3 ∗m ∗ l

2

Table 3.2: Formulas for calculation of mass of inertia of simpli�ed robot links [8]; an example for joint 1
is the modeling of link 1 as a solid cylinder rotating along the axis of symmetry, link 2 to link
5 as cylinders rotating along an axis in the �at end and link 6 as a solid sphere rotating along
an axis through the center (compare Figure 4.3 and further details in Section 4.3.3)

The simpli�ed shapes are chosen to represent links of the KUKA LWR 4+. All links are modeled as
solid cylinders. Depending on the relation between the considered joint and the maximum possible
distance (resulting in the maximum possible moment of inertia) the formulas given in Table 3.2
allow to estimate the maximum angular acceleration for each joint based on the maximum torque
speci�ed. In addition, the parallel axis theorem (given in Equation 3.3) is used to consider links
in distance to the joint. The used symbols are the moment of inertia J , the initial moment of
inertia when rotating along an axis through the center of mass Jcm, the mass m and the distance
between the center of mass and the new rotation axis r.

J = Jcm +m ∗ r2 (3.3)
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The relation between the maximum joint acceleration αmax, the maximum joint torqueMmax and
the moment of inertia J is given in Equation 3.4.

αmax =
Mmax

J
(3.4)

Keeping the robot within the speci�ed limits for torques is essential to keep it in operation since
safety circuits disable the robot in case of a torque that is exceeding the speci�ed maximum. The
calculation of the maximum possible acceleration also allows to calculate the time required for
each joint to reach the speci�ed maximum velocity. The relation between maximum acceleration
αmax, maximum velocity ωmax and the acceleration time to maximum velocity tvmax is given in
Equation 3.5.

tvmax =
ωmax
αmax

(3.5)

The individual acceleration time to maximum velocity for each joint is a good measure for the
usage of the links. Slower joints can be used for a rough movement while the faster joints can be
used for error correction and �ne tuning of the catching movement (compare Section 2.3.3).

Online Adaptability of Movement

For a trajectory prediction system with position measurements of the thrown object as input data,
the prediction accuracy increases with the number of positions measured. The higher number of
input measurements that also allow to suppress big measurement errors (outliers) or decrease
the in�uence of unavoidable small measurement error in the position acquisition system and
the increasing accuracy of the position detection system as the object is moving towards the
cameras are responsible here. This suggests starting the catching movement of the robot as late
as possible in order to use the most accurate prediction. This, on the other hand, requires a very
fast movement of the catching system that increases wearing of the robot and, in addition, is
limited by the maximum allowed torque and velocity values of the robot.

A possibility to make use of the very latest prediction while still staying well within the speci�ca-
tion of the robot is to use an online trajectory generation algorithm. The Re�exx Motion Library
[KW10] [7] allows to adapt an already executed movement within one communication cycle of the
robot. In combination with the Fast Research Interface (FRI) of the KUKA LWR 4+ this allows
to adapt the catching movement of the robot on the �y.

In addition to the online adaptability also, the speci�cation of maximum velocity, acceleration
and jerk for the trajectory generation is possible since revision IV of the library. As discussed in
Section 2.3.3 humans use movements with minimum jerk. While the Re�exx Motion Library does
not allow to use minimum jerk as an optimization criteria for the movement, the speci�cation of
a jerk limit is possible and will be used. In addition, the Re�exx Motion Library also determines
the execution time to reach a certain movement state (position, velocity) from the current state.
This is a required feature to synchronize the movement of the catching device with the movement
of the thrown object. Further details regarding this aspect are discussed in the next subsection
and Section 4.5.

Mimicry Human Archetype

The two prior paragraphs dealt with deriving an optimal interception position for catching with
minimum impact force and the online adaptability of the movement during catching. Here the
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preparation to reach the catching position and synchronize the velocity to the approaching object
is described. Using more recent, and thus also more accurate, predictions for the �nal catching
movement is important to reach the interception position accurately.

Based on the Section 2.3.3 especially the work of Kajikawa [KSOI99] and Fligge [FMVDS12] is
usable here. The sequence of moving towards the object, reaching a turning point, reducing the
velocity di�erence and grasping [KSOI99] the object is used for catching. This process is extended
with the obvious but still missing phase of deceleration of the object/catching device. In order to
achieve this sequence three positions are de�ned:

• the waiting position

• the interception position

• the stopping position

The basis for the waiting and the stopping position is the interception position. The interception
position is derived like described in the �rst paragraph of this section. The waiting and stopping
positions are used to allow acceleration to the interception position and the deceleration phase.
The transition between the acceleration and the deceleration phase is smooth resulting in a limited
jerk movement throughout the whole catching process.

The movement for the initial towards the waiting position is initiated based on the �rst reliable
prediction of the �ight trajectory and updated throughout the movement. This is in line with the
research by Fligge [FMVDS12] where a predictive fast big movement is observed in combination
with a smaller and �ner adjustment movement. The second part of motion after a point of
minimum velocity is considered as prospective where the current information is always used to
re�ne the movement. The research suggests that during the initial movement all new information
is discarded based on the evidence that the movement follows the minimum jerk criteria of point-
to-point movements. Still the question arises whether the continues update of an action following
the minimum jerk criteria could be di�erentiated from a non-updated movement following the
same criteria. Experiments by Mazyn [MSML07] are carried out with a reduced information
intake based on changing light conditions (the light is switched o� after the hand's movement
is initiated), but the research focuses on a di�erent question and does not allow to clarify this
circumstance. The resulting overall movement is illustrated in Figure 3.14.

After the arrival of the initial trajectory prediction, the catching device is moved towards the
waiting position. This movement is recurrently updated with new prediction data. The criteria
for starting the acceleration movement towards the interception point is based on the predicted
remaining �ight time of the object to the (predicted) interception position and the movement
execution time of the acceleration movement. Even during the acceleration movement more recent
prediction data is used to update the movement but due to the hard real-time constraints of the
system and the limited torques, the magnitude of re�nement during this movement is limited.
After reaching the interception position, the robot is deceleration until reaching the stopping
position. Details for the implementation of the whole process are given in Section 4.5.

65



Proposal

−1

−0.8

−0.6

−0.4

−0.2

0
−2.5

−2
−1.5

−1
−0.5

0
0.5

−0.5

0

0.5

y [m]

x [m]

z [m]

(a) Catching device (purple dot) in initial position; ball
�ying in early �ight phase; red dot: robot origin po-
sition
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(b) Catching device (orange dot) in waiting position,
continous update of waiting position for optimal ac-
celeration to interception position; ball �ying; red
dot: robot origin position
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(c) Moment of interception; catching device and ball
in same/similar position (light green dot); red dot:
robot origin position
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(d) Catching device in stoping position (green dot);
ball's trajectory changed from ballistic trajectory to
circular in interception point; red dot: robot origin
position

Figure 3.14: Visualization of the overall catching process: a) initial position , b) waiting position, c)
catching position, d) stopping position; phases between the positions are a)-b) movement
to waiting position, continuous update, b)-c) acceleration movement, c)-d) deceleration
movement; overall a complete trajectory of a thrown ball (blue circles) and the related
catching movement of the (simpli�ed) robotic arm is shown
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4 Simulation and Implementation

The theoretical framework has been established in the previous chapter (Chapter 3). Now the
focus is put on examining the capabilities of the proposed solution to problems in synthetic (e.
g. a simulation environment) and real environments (e. g. a practical experiment with a robot).
The process of a tennis ball's throw and the prediction of the �ight trajectory will be examined
as this will be the benchmark process. The application of the established information processing
principle and prediction is used for predicting the future trajectory based on a set of previously
acquired trajectories.

For calculation of the ball's trajectory in the simulation framework, a physical model of the
process is required. This model consists of a model for the �ight of the object and a model for the
position acquisition error based on the used setup of cameras. While the common model in related
research work [LRÅJ09], [LRÅJ10], [SC07], [FBH+01], [BWH10] and [BSW+11] is used for the
�ight model, the variation in the throwing process and the model for the position acquisition error
is based on own work and practical experiments will be detailed in this Section.

The built-up process of the knowledge base will be the topic of the second section. This process
allows to increase arti�cially the size of the experience database for the practical experiments and
to determine the prediction accuracy's dependency on the size of the database.

The speci�c implementation of the soft catching strategy (discussed in Section 3.3) for the KUKA
LWR 4+ will be outlined and discussed in the next section of this chapter. The limitations of the
individual joint's mechanical properties (e. g. maximum torque, the range of movement) on the
catching process will be outlined and in�uence of these parameters on the time for catching will
be discussed.

A section devoted to the whole simulation process will follow. The simulation is used to improve
the prediction system and deliver essential feedback for the real world implementation. All pre-
viously established models for measurement errors and process properties are incorporated into
this section.

The closing section of the chapter covers the implementation of the prediction system in real
world experiments with an industrial robot, a stereo camera setup and a PC. Performance related
implementation details will be presented and discussed.

Results from simulation and real world experiments will be discussed in the following chapter
(Chapter 5).
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4.1 Environment and Nomenclature De�nition

For all the following chapters, sections and subsection a common nomenclature is used. This
terminology is de�ned here, and Figure 4.1 gives an overview of the components and a rough
relation of the coordinate systems. Main aspects are the relations between the coordinate system
of the robot and the camera system, the direction of the gravitational force and the origin of the
thrown object.
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Figure 4.1: De�nition of the two main coordinate system;
The robot- or world-coordinate system (XRWCS , YRWCS , ZRWCS) and the camera-coordinate system of the

left camera (XLCCS , YLCCS , ZLCCS) are presented. The position of the ball when it leaves the throwing

device is approximately (-0.54; -2.90; 0.38) (compare Table 4.4). The de�nition of the throwing angles for

the analysis of the throwing device's deviation uses θ as the angle in relation with the ascending component

of the velocity and phi is the sidewards angle. The blue camera illustration shows the position of the left and

the red illustration the position of the right camera

An image from the laboratory, used for the experiments, is given in Figure 4.2. A ball is just
launched and the cameras are hidden in the lower right corner of the image (compare Figure 4.1).

In addition to the general de�nition of the coordinate systems also, the nomenclature to express
certain information is de�ned here. This data included 2D- and 3D positions, joint angles, positions
of joints, distances between points or joints, Cartesian components of distances, masses of inertia,
masses, and links.

• Positions are denoted by the capital letter P with the name indexed and the triple of coordi-
nates in round brackets (example: Tool Center Point (TCP) PTCP = (0.7; 0.5; 0.3) m. The
meaning of this formalism is that the coordinate of the point TCP is x = 0.7 m, y = 0.5 m
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Figure 4.2: An image of the laboratory used for the experiments; the cameras are hidden in the right
lower part of the image; a ball is just launched (bottom right as well) (compare Figure 4.1)

Figure 4.3: a) The KUKA LWR 4+ mounted to the wall, b) The KUKA LWR 4+ with 7 joints (J1 to
J7, numbers increasing from the base of the robot to the �ange)

and z = 0.3 m in terms of the related coordinate system. If no coordinate system is speci�ed
the world coordinate system is used.

• φJx is the de�ection of the joint x from the neutral position. The robot with all joints in
the neutral position is shown in Figure 4.3. Also, the direction of positive and negative
de�ection is given in this �gure.

• PJx is the position of the intersection of a joint and the joint that is closer to the base (or
has the lower index). Only PJ2, PJ4 and PJ6 are used as these are the corners of the robot1.

• In addition to the joint position also the position of the tool center point (TCP) of the
catching device PTCP , the interception position PI and the origin of the coordinate system

1PJ2 is comparable to the human shoulder joint position, PJ4 to the human elbow joint position and PJ6 to the
wrist position. PJ2 by example does not change when φJ1 is changing
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P0 is used

• dJx−Jy is the distance between joint x and joint y

• PIx is the x-component of the interception position

• JJx is the mass of inertia relevant for joint x

• mLx is the mass of the link x between joint x and joint x1

• link x is the link directly following to joint x (between joint x and joint x+1)

• ∆ is the position detection error additional indexes like ∆r, ∆x specify the error further e.
g. error in the x-coordinate, overall error

• δ is the prediction error

• ι is the index for the discretized progressive prediction velocity voxel/class/movement symbol
additional indexes like ιx, ιy specify the index's direction

4.2 Benchmark Process

The process chosen to test the practicability of the proposed algorithms (compare Chapter 3)
is the prediction of a thrown tennis ball's trajectory. This highly dynamic process has a large
number of in�uencing factors like the actual air density or temperature, air streams in the sur-
roundings, variation of initial launching parameters of the ball, di�erences in tennis ball's mass
and diameter, di�erences in a tennis ball's felt and the orientation of the seams [MAS08, pg. 10]
and many more that a�ect the trajectory. It is obvious that predicting a tennis ball's trajectory
is a challenging task that demands detailed information about these factors. Reconsidering the
information discussed in Chapter 2, the maximum success rate for catching balls over more than
1 m achieved is 80 %. A number of researchers from that domain account the inaccurate modeling
of the physical process for this.

In the following paragraphs, a physical model for the �ight trajectory of a ball is discussed, this is
the base for the simulation process. In order to consider the measurement errors of the tracking
system in the simulation, the accuracy of the tracking system for moving spherical objects is
analyzed. The usage of the determined information is twofold: It is a required information for
the simulation of the whole process from the image acquisition until the planning of the robot's
catching position, and the information is used to determine the required vision setup (2/4/6
cameras) for a reliable catching system for the implementation.

4.2.1 Physical Description

In the introduction of this section, it is already mentioned that the �ight trajectory of a thrown
tennis ball is sensitive to high a number of impact factors. Main in�uencing forces are the grav-
ity and aerodynamic forces (Magnus force, lift force, drag force). For lower velocities even the
orientation of the tennis ball's seam has an in�uence on the drag coe�cient [MP01, pg. 10]
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Models for Aerodynamic Forces

Aerodynamic forces on a moving object depend on the type of �ow surrounding the object. De-
pending on the dominant �ow characteristic by example the drag coe�cient CD varies to a large
extent. The relations of inertia and viscosity forces can be described by the Reynolds number
(Re). Relatively low Reynolds numbers characterize laminar �ow while high Reynolds numbers
characterize turbulent �ow, the transition from laminar to turbulent �ow is called critical region.
In order to characterize the �ow occurring when a tennis ball is thrown at velocities of 3 m

s , 5 m
s

and 10 m
s the Reynolds number for these three velocities are calculated. The nomenclature is

based on the work by Mehta [MP01] (velocity of the ball U , diameter of the ball d and kinematic
viscosity ν; ν = 1.5 ∗ 10−5 m2

s for air at 20 ◦C) and a ball diameter of 0.067 m is used (approved
ball's diameter of Type 1 and 2 balls must be between 0.06541 m and 0.06858 m and the average
equals 0.0670 m):

Re =
U ∗ d
ν

(4.1)

Re3 =
3 ∗ 0.067

1.5 ∗ 10−5
≈ 13400 (4.2)

Re5 =
5 ∗ 0.067 ∗ 5

1.5 ∗ 10−5
≈ 22300 (4.3)

Re10 =
10 ∗ 0.067 ∗ 10

1.5 ∗ 10−5
≈ 44700 (4.4)

The characterization of the resulting �ow can be based on the critical Reynolds number for tennis
balls. This number can be calculated for a smooth sphere (400.000 [MP01, pg. 188]) but the
determination for tennis balls has to be done based on experiments. Experiments by Mehta
[MP01, pg. 189] with Reynolds numbers between 100.000 and 284.000 (equaling velocities from
≈ 22 m

s to ≈ 64 m
s ) do not cover the critical Reynolds number for either a new or a used tennis

ball. The interpretation that the critical Reynolds number of a used tennis ball is 100.000 [MP01,
pg. 194] with the statement that it is presumed that transition had already occurred which means
that the �ow for all velocities is considered to be transcritical.

Experiments by Dunlop [Dun13] cover a lower range of Reynolds numbers ranging from 30.000
to ≈ 85.000 (equaling velocities from ≈ 6.7 m

s to ≈ 19.0 m
s ). These experiments cover the upper

range of the relevant throwing velocities for transport�by�throwing based on tennis balls. The
drag coe�cient CD determined here is close to constant in the range of Re = 30.000 to 40.000
with a value of 0.7 decreasing to 0.6 at Re = 50.000. The same value can also be extrapolated
from the experiments by Metha.

The drag coe�cient determined with the experiments is needed to calculate the resulting drag
force FD based on the air density ρ, object velocity v, drag coe�cient Cd and the reference area
A. The relation is given in Equation 4.5

FD =
ρ ∗ v2 ∗ Cd ∗A

2
(4.5)

The direction of the resulting drag force is opposing the motion's direction between the object
and the medium. In case the medium is moving, the resulting drag force is in general not aligned
with the opposed direction of the object's movement.
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Practical Experiments on Aerodynamic Forces

Initiatives of the International Tennis Federation to specify adequate tennis balls for di�erent age
groups cause a number scienti�c initiatives to quantify the aerodynamic behavior of modern tennis
balls. Experiments at di�erent velocities with varying spin of the balls enable to extrapolate the
aerodynamic behavior for the presented task. This data is used for the simulation environment
to improve the similarity between the simulated process and real experiments. A highly accurate
simulation could improve the prediction performance based on simulated experience.

An early study by Chadwick [SGC98] determines the drag coe�cient of a tennis balls in an interval
between 0.35 for a worn ball up to 0.6 for a new ball. The velocity of the air stream for this results
is either 20 m

s or 26 m
s which equals a range for the Reynolds number of 85.000 to 117.000. Even

for maximum rough spheres, the limit of the drag coe�cient is seen in the range of 0.8.

More recent work from Alam [ATW+07] focuses on the in�uence of spin on the drag coe�cient
and other parameters. The study uses a wider range of velocities ranging from 40 km

h to 80 km
h .

Especially the lower end of this range is interesting for the transport by throwing approach. The
drag coe�cient determined in this range for a spin rate of 500 1

min equals 0.7 for standard tennis
balls. The tendency is that the drag coe�cient is increasing with decreasing velocity.

Om 2008 a newer publication was presented showing a wide range of measurements for the drag
coe�cient for a number of used and new tennis balls [MAS08]. Balls with a di�erent level of
wearing, taken from the US Open tennis tournament, were compared and the measured data from
wind tunnel experiments show that depending on the level of wearing the Reynolds number at
45 mph (72.4 km

h or 20.1 m
s ) varies between 0.45 and 0.68. Results from an earlier study even

show Reynolds numbers of up to 0.95 at lower velocities.

Chosen Parameters for the Simulation

There is a wide variation of the drag coe�cient in the experiments conducted in related work.
The dependency on the wearing level, where the drag coe�cient initially rises (presumably due
to the increase in roughness of the felt) and then decreases again is common to all experiments.
Based on the wear level of the used balls the value of 0.6 is considered as an initial value for the
simulation. This bandwidth of measured values also shows the complexity of the accurate physical
description/modeling of the presumably simple process of a tennis ball's aerodynamic behavior or
�ight trajectory. The �nal part of the following section will elaborate on the topic of parameter
selection.

4.2.2 Analysis of the used Equipment

For a simulation with relevant results for the practical experiment, the analysis of the used equip-
ment and algorithms is of high importance. This analysis is done in this section. Most of the
parameters that have to be determined for the simulation (properties of the position detection sys-
tem (Subsection 4.2.2.1) or the throwing device (Subsection 4.2.2.2) cannot be measured directly
due to the lack of the measurement system or the required ground truth for an error analysis. Due
to this fact the analysis is based on a set of acquired throws with a velocity of 4 m

s , 4.25 m
s , 4.5 m

s ,
4.75 m

s and 5 m
s initial velocity. This data is used to determine the deviation of the throwing

device and the accuracy of the position detection system. An analysis of the robot, which is used
for catching, is not done because the speci�cation gives information about the position accuracy
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of the robot and deriving a realistic dynamical model (which is not provided by the manufacturer)
would be a topic that equals another research project. The position detection system includes
processing steps where di�erent algorithms can be chosen along the processing chain, for example,
the usage of background subtraction or not and Hough or RANSAC circle detection. In addi-
tion to this parameters also the way to estimate the real positions based on a larger number of
datasets from an acquired trajectory can be varied (polynomial estimation, Rauch-Tung-Striebel
smoother, iterative estimation) and thus the matrix of parameter combinations is very high. In
order to cope with this circumstance the information from both steps was combined and thus the
analysis of the position detection system in Subsection 4.2.2.1 is using the polynomial position
estimation (which is a result of Subsection 4.2.2.2) and the parameters of the position detection
algorithms are varied. The determination of the throwing device's deviations, on the other hand,
is based only on the most suitable combination of position detection algorithms (in this case the
RANSAC algorithm with background subtraction that is the result of Subsection 4.2.2.1) and the
approaches for the position estimation are varied.

4.2.2.1 Position Detection System

The second main aspect of the simulation that has to be modeled is the accuracy of the tracking
system. The in�uence here is essential as the algorithms for prediction also have to deal with the
position detection errors of the system. Furthermore, the relationship between the setup and the
number of the cameras and the accuracy of the position detection achieved by the visual sensor
system is of main interest here. In the following paragraphs, the setup for the determination of
the vision system's accuracy and the results of the measurements will be presented and discussed.

Related Work

In terms of the analysis of a stereo camera system's accuracy a publication from 2006 [LZL06] o�ers
an error model that is veri�ed by an experiment. For the theoretical deduction of the error, the
researchers choose a combination of parameters to allow the generalization of the approach to other
environments. While the parameter α, used for the angle between the connections of the cameras
focal point with the object's position, is a logical and general one, the usage of the parameter h,
used for the height of the camera's focal point above the object, cannot be understood (compare
Figure 4.4). h is only depending on the de�nition of the coordinate system in the object's position
O and a rotation of the coordinate system obviously changes the parameter h signi�cantly. In
case the researchers identify the position detection error individually for each spatial direction
this would make a di�erence but as only the magnitude of the position measurement error is
�nally determined this de�nition is questionable. Using α and d in contrast would allow to use
the research results more general as a rotation of the coordinate system in O has no impact on the
magnitude of the positioning error. Still the basic method and the approach to the experiment
is done very well. Only the small number of measurements to verify the theoretical approach is
disadvantageous.

The practical setup uses a robotic arm with a 6 mm diameter sphere mounted to its �ange. This
sphere is moved into 20 areas that are de�ned based on the parameters α and h. In these areas
15 positions in a grid of 50 mm are used for the accuracy determination and additional positions
are used for calibration. The position accuracy of the robot is given at ±0.013 mm. Whether this
parameter is the repeatability accuracy or the overall Cartesian accuracy is not stated explicitly.
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Figure 4.4: Camera setup, distances and angles between object O, camera 1 C1, camera 2 C2 and the
basis points A and B according to [LZL06, pg. 2];
The usage of parameter h is questionable as the distance between the cameras C1 and the

object O is depending on h. Increasing h while keeping d constant is equal to a rotation

around the x-axis of the object and should lead to the same euclidean error with a change of

the error components in y- and z-axis

No remarks about the mastering of the robot are given. The image data contains measurements
with a still standing robot thus no dynamic e�ects are considered. Due to the questionable
parameter selection the results are not relevant here but the setup for the experiment is used as
a base for the experiments here.

In addition to the position also, the resolution of the cameras in the stereo setup in�uences the
accuracy of the position detection system ([PKFB10, pp. 5f] and more extensively [Pon09]). For
a static object, the spatial resolution is relevant while for a moving object also the temporal
resolution has to be considered. In many applications, the available bandwidth of the camera's
interface is limited and thus the product of spatial and temporal resolution. Finding the optimum
balance between these two parameters is a main goal here. The usage of an Area of Interest (AoI)
allows to avoid running into this limitation in high-speed high-accuracy environments.

Experiment Setup for Static Objects

The availability of the KUKA LWR 4 robotic arm, which has both joint position and Cartesian
position control mode, allows to use the robot as a reference system to put an object into di�erent
positions in the �eld of view of the vision setup. The setup consists of the robot with a spherical
object mounted via an adapter to the mounting �ange. An illustration of the test object is given
in Figure 4.5(a).
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(a) KUKA LWR 4 with the spherical tool on
the �ange

(b) Stands for the sphere used for the cam-
era accuracy experiments; three stands
with di�erent heights (80 mm, 280 mm
and 480 mm) for experiment with
the external illumination, stand with
triangle-shaped base with self illuminat-
ing sphere.

Figure 4.5: Tools used for the determination of the camera system's accuracy

During the setup of the experiments the problematic aspect of mastering2 got evident. The
standard mastering of the robot based on vernier scale was not accurate enough to allow a precise
movement in Cartesian mode. This got obvious during a simple test where the robot's �ange was
�xed in a position, and the position of the robot's links was changed to the maximum extent.
This is possible due to the 7 DoF of the KUKA LWR 4 robotic arm. Reading out the Cartesian
position during this experiment brought up errors of up to 5 mm which are assumed to be in the
range of the camera system's accuracy and thus the robot cannot be used as a reference system.
Not that the Cartesian position accuracy does not correspond to the repeated positions accuracy
as the links are moved to the same position in the second case.

Experiment with external illumination The identi�ed problem of mastering will be dis-
cussed more extensively in Section 4.5. For the determination of the vision system's accuracy, a
di�erent test setup was designed. This setup consists of a glass plate and 3 di�erently sized stands
(small: 80 mm, medium: 280 mm and large: 480 mm) for a sphere (compare Figure 4.5(b)). A
millimeter paper is applied onto the glass plate giving a 2D coordinate system on a plane. The
stands with the sphere were positioned in a grid of 200 mm by 200 mm on the plate, and the
positions of the spheres acquired with the vision system. Thus, a 3D grid of the center positions
of the sphere could be extracted from the acquired images. For reference, the base points of the
stands were extracted manually from the images. This could by achieved by equipping the stands
with positions markings. These reference points were used to determine the accuracy of the vision
setup without considering the in�uence of the Hough transform used to obtain the center position

2Mastering here means the adjustment of the zero positions of each of the KUKA LWR 4's joints. This
information is essential for translating positions in joint space into Cartesian space
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of a circle or spherical object. By comparing these reference base-points with the real distance
on the millimeter paper, an alignment of the measured data with the plane was achieved (least
square �t of measured data to a plane and projection to this plane).
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Figure 4.6: Measurement data from camera accuracy determination: a) raw measurement data with
reference measurements from ground plane points, b) error-component-analysis, c) spatial
error over distance from camera system

The results of the measurements are presented in Figure 4.6. The main �nding of these measure-
ments is that a constant o�set from the measured points of (0.43; −0.48; 1.03) mm, that can
also be seen in Figure 4.6(b) as the center of the point cloud. The close to constant measurement
error with decreasing distance to the cameras (but also decreasing the distance to the �ood lights)
shown in Figure 4.6(b) is remarkable. The increased magnitude for the closest measurements is
due to errors of the object detection caused by the inhomogeneous illumination (small distance to
�ood lights). In order to clarify this circumstance, an updated experiment with a self-illuminating
sphere in dark conditions was made. In comparison to the previous experiment only data with one
mounting stand height was acquired (see the lower right stand in Figure 4.5(b)) but the in�uence
of illumination could be clari�ed.
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Experiment with self-illuminating sphere To avoid the in�uence of the inhomogeneous
light, a self-lightning sphere was used for another experiment to determine the accuracy of the
object detection algorithms isolated. The stand used is shown in Figure 4.5(b). The procedure for
the accuracy determination is the same as in the previous case. The sphere is put at prede�ned
positions on the millimeter paper, and these positions are also determined through the images of
the stereo camera system. For a baseline comparison again manually identi�ed positions on the
millimeter paper are used. The information obtained with this experiment is again the random
error of the position determination via the stereo camera system. The related �gures to Figure 4.6
are shown in Figure 4.7.
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Figure 4.7: Measurement data from camera accuracy determination: a) raw measurement data with
reference measurements from ground plane points, b) error depending on size of stand; mea-
surements have a mean o�set of (−1.49; 1.28; −0.02) mm, c) spatial error over distance from
camera system

Results and Interpretation The accuracy of the camera system is a main factor for the
overall system. In addition, the accuracy determination is needed to model the vision system's
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error accurately. The measurement error is given in a coordinate system called stereo camera
coordinate system (SCCS). The origin of this coordinate system is determined based on the average
position of both cameras; this means the origin is in the middle of the cameras. Determining the
orientation of the SCCS is more challenging. The used orientation is based on the optical axes of
the individual cameras determined with the camera calibration. The connection of the SCCS origin
with the intersection of both camera's optical axes is the base for the orientation determination.
As the two individual optical axes, in general, do not intersect in a point the center point of the
shortest connection between the two optical axes is used. This allows a general description of a
stereo camera setup and a general usage of the determined attributes (like accuracy in this case).
A graphical illustration of the SCCS origin position and orientation is shown in Figure 4.8 while
the more general de�nitions are given in Figure 4.1 in Section 4.1.
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Figure 4.8: Illustration of the stereo camera coordinate system (SCCS) in relation of the coordinate
system of the right and left camera; dash-dotted lines are the optical axes of the individual
cameras, the dashed line is the hypothetical optical axis of the stereo camera system, the
coordinate system's de�nition is shown in blue; all optical axes are in line with the related
z-axis of the camera coordinate system

In the experiments with external illumination the mean position detection errors were (0.43; −0.48;
1.03) mm. The unknown distance between the reference corner of the small triangular ground
plane of the stand and the center position of the self-lightning sphere prohibits to determine
this error in the later case. The values are given in the SCCS. An overall overview of the error
components (mean errors, error's standard deviation) is given in Table 4.1.

ext. light int. light

x y z y x z

mean errors 2.12 -5.88 2.26 - - -

standard deviations 2.24 1.92 2.27 1.76 0.77 1.34

Table 4.1: Numerical representation of the numbers shown in Figure 4.6 and Figure 4.7; ext. light is the
case with external illumination, int. light respective with the self illuminating sphere; x, y, z
are the components in the CSSC (compare Figure 4.8; all measures in mm

When comparing the errors, the root mean squares of the individual standard deviations are
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used. This value is 2.15 mm for the external illumination and 1.35 mm for the self-lightning
sphere. Obviously, the lighting conditions and illumination setup has an in�uence on the random
error. As a quintessence for the practical experiment, the setup of the illumination has to be done
with caution. Especially close to high power light the error of the position measuring system is
increasing. The random error seems to be una�ected by the lighting conditions for a large range
but in the case of very short distances to the dominating light sources the random error will
increase.

Experiment Setup for Moving Objects

The information of the static object's detection accuracy gives valuable information about the
algorithms inherent accuracy. The step to (fast) moving objects, in addition, gives information
about the in�uence of the motion blur, caused by the movement of the object during exposure,
on the accuracy in addition. Finally, the overall accuracy of the position detection system is the
relevant information for the simulation, and thus, this accuracy is estimated here. The problem
with this estimation is that the ground truth is not available and thus the trajectory estimation,
used in the previous Subsection 4.2.2.2, is used here as the baseline for the position detection
error determinations. Out of the three variants (polynomial �tting, Rauch-Tung-Striebel smoother
and iterative �tting) the polynomial �tting is used because of the stability and the accuracy of
trajectories' description (compare Subsection 4.2.2.2). The position detection system is the same
as used in the experiments (compare Section 4.5). Here variants for the implementation are
compared in addition. These variants are di�ering by the following aspects (compare Section 4.5
for further details):

• Usage of (static) background subtraction

• Usage of Hough algorithm or Random Sample Consensus (RANSAC) algorithm for circle
detection

The combinations of these parameters lead to four variants of algorithms. Due to the fact that the
Hough algorithm is deterministic, only one run of the Hough algorithm per trajectory is required.
For the non-deterministic RANSAC algorithm, a set of 1000 runs is done. A statistical analysis
of the set of runs with similar velocity and all velocities is done. The error analysis includes the
following aspects:

• Ground truth

� for the positions determined via the Hough algorithm the polynomial estimation for
the whole trajectory is used as the ground truth

� for the positions determined via the RANSAC algorithm to variants to determine the
ground truth are used. These are the polynomial estimation of the

∗ mean of the positions derived based on 1000 RANSAC runs
∗ median of the positions derived based on 1000 RANSAC runs

• The spatial components of the distance in the stereo camera coordinate system (SCCS, com-
pare Figure 4.8). This information is the relevant input for the simulation as a dependency
of the error on the position of the ball in relation to the center of the stereo camera system
is assumed to exist.
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• The measure r as the distance of the detected position to the estimated position (independent
of the coordinate system)

These error measures are analyzed with the distance of the object's center to the stereo camera
system's origin as baseline due to the obvious relation between distance and the absolute resolution
of the image information. In order to allow sound interpretation, the errors of the distance
measurement are binned in bins with a size of 0.1 m at a range of 0.6 m to 3.0 m and within these
bins a statistical analysis is done. For the spatial components (x, y, z) the error is modeled with
a normal distribution and the measures for µ and the 99 % con�dence band (µ ± 2.576 σ) are
presented in the three top rows of the related �gures (Figure 4.9 and Figure 4.10). In the bottom
row, the overall error is presented. Due to the fact that this error is limited to values above 0,
the error is modeled with a Weibull distribution and also, in this case, the mean and the 99 %
con�dence band is given. Figure 4.10 illustrates the three processing algorithms based on an input
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Figure 4.9: Error analysis of ball's position detection accuracy without background subtraction. 99 %
con�dence bands of distributions (x/y/z: Normal; r: Weibull); left column Hough, center
column RANSAC with mean positions of 1000 runs as ground truth, right column RANSAC
with median positions of 1000 runs as ground truth;
for all three cases polynomial functions are used to estimate the ground truth data from the complete dataset

of the trajectory

image without background subtraction. The related �gure determined with active background
subtraction is presented in Figure 4.10. Having a look at both �gures the usage of background
subtraction improves the accuracy in many cases, especially in a distance of more than 1 m from
the stereo camera system's origin. When comparing the di�erent algorithms the Hough algorithm
delivers the most accurate results. In the case of no background subtraction, this is clearly
visible when considering the bottom row of Figure 4.9, in the case of usage of the background
subtraction (bottom row of Figure 4.10) the di�erence between the Hough algorithm (�rst column)
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Figure 4.10: Error analysis of ball's position detection accuracy with background subtraction. 99 %
con�dence bands of distributions (x/y/z: Normal; r: Weibull); left column Hough, center
column RANSAC with mean positions of 1000 runs as ground truth, right column RANSAC
with median positions of 1000 runs as ground truth;
For all three cases polynomial functions are used to estimate the ground truth data from the complete

dataset of the trajectory

and the RANSAC algorithm with a mean ground truth is less signi�cant. Overall both the Hough
algorithm with background subtraction and the RANSAC algorithm with background subtraction
are viable options. One advantage of the RANSAC algorithm is the lower computation time by
approximately 33 % (compare [G�15, pg. 76�]). For comparison issues, all calculations with the
RANSAC algorithm (which use the mean or median of 1000 runs here as ground truth) were also
done by using the each individual runs polynomial estimation as ground truth. This is a realistic
scenario for the practical usage. The related statistical numbers and �gures are very similar to
the ones presented here. In below 0.7 m and above 1.5 m distance the errors are are little bit
lower but the main result is the same (compare Figure A.3 and Figure A.4). The statistical data
derived from these experiments is the basis for modeling the positions detection system's accuracy
in the simulation (compare Section 4.4 and the related results in Section 5.1).

Optimization

The position detection based on the RANSAC algorithm allows one more step to improve the
prediction accuracy. If the allowed radii for the circle search are limited, the detection error
can be decreased. Limiting the allowed radius of the circles can be done based on the currently
detected position of the ball for the next frame. The equations are given in Section 3.1 and the
results achieved base on limiting the circle's radius in the successive image into a range of 92.5 %
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to 107.5 % of the ball's calculated radius in the current frame with an additional �xed margin of
−2 pixels and +2 pixels for the lower and upper limit improved the position detection accuracy
signi�cantly over the whole range of the ball's motion. The results are presented in Figure 4.11.
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Figure 4.11: Error analysis of ball's position detection accuracy with background subtraction and addi-
tional radius prediction/limitation. 99 % con�dence bands of distributions (x/y/z: Normal;
r: Weibull);
polynomial functions are used to estimate the ground truth data from the complete dataset of the trajectory

The improvement is signi�cant, and the result shows that the tracking error over a distance of
0.7 m to 2.9 m is close to constant. As expected the error for the depth component (z in the
SCCS) is higher than the sidewards or upwards error. The errors in the initial part of the �ight
path are existing due to the ball's size being similar to the size of the AoI, and thus, a small miss
prediction of the AoI movement can cause cutting of the ball in the AoI. The error is limited to the
very �rst frame, and thus, the �rst frame of the detected positions is not used for the prediction
of the �ight. This can lead to an increased position detection error. The constant error over such
a long range also hints that the in�uence of the camera's resolution on this error is negligible in
this area as the error should increase otherwise with rising distance from he cameras. Regarding
the usage of more cameras, the constant error in this area also limits the bene�ts of using more
cameras and switching to the closest ones for improved tracking accuracy. The reasons for the
tracking error are more likely in the algorithm for detecting the edges of the ball. This also allows
to use more cost-e�cient cameras for the tracking task. The concept of increasing the frame rate
based on the AoI and the fact that the position detection accuracy is not mainly in�uenced by
the resolution should be examined further in future work.

4.2.2.2 Throwing Device

The throwing device used for the practical part of the work is a self-built throwing device with a
linear acceleration direction (shown in Figure 4.12). The device can be controlled remotely from
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a PC and allows to set the tension force of the linkage connected to the throwing cup. The initial
velocity is measured based on two light barriers at a distance of 8 cm at the very end of the
throwing device. The second light barrier is also used to start the triggering of the cameras (with
a rate of 110 fps).

(a) Throwing device rear view (b) Throwing device front/top view

Figure 4.12: Linear throwing device used for the catching experiments; acceleration based on two ten-
sioned springs with drag ropes; setting of a throwing force and measurement of throwing
velocity based on two light barriers is possible via a control unit

The variation of the throwing device is important information for the simulation of the whole
system. A sample dataset of trajectories at di�erent target velocities (4 m

s , 4.25 m
s , 4.5 m

s , 4.75 m
s ,

5 m
s ; 21 trajectories each) was acquired. The setup for the observation is shown in Section 4.5

and the same system is used for the determination of the position detection system's accuracy
as well (see Section 4.2.2.1). The setup for the acquisition of the variance of the throwing device
is similar to the one used for the determination of the accuracy of the position detection system
(compare Subsection 4.2.2.1) as well as the �nal practical experiments (compare Section 5.2). The
cameras are placed on the throwing side in order to allow a precise acquisition of the �ight's initial
phase. The estimation of the initial parameters velocity v (thus also magnitude of the velocity
v, the initial throwing angles for the ascending component θ and the sidewards angle φ (compare
de�nition in Figure 4.1)) and the initial position are done with three estimation methods which
will be compared and discussed in the following paragraphs.

Polynomial �tting based estimation

The �rst variant of parameter estimation is based on least squares polynomial function �tting.
The order of the functions are 3rd, 2nd and 2nd for the spatial directions x, y and z (compare
de�nitions of the whole system's world coordinate system in Figure 4.1). Outliers are suppressed
based on the following criteria: If the di�erence between the initially �tted value and the measured
value is bigger than two times the standard deviation of this distance for all the data points the
related point is suppressed for the second (and �nal) step of least squares �tting.
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Rauch-Tung-Striebel smoother based estimation

The Unscented Kalman Filter based Rauch-Tung-Striebel smoother is the second variant of the
parameter estimation. The �lter/smoother is con�gured to consider gravity and (an approximation
of quadratic) air drag. The initial values of the state vector including position and velocity are
based on the initial estimations fo the polynomial estimation. The matrices for the covariance
of the state, the covariance of the estimation noise and the covariance of the process noise are
chosen manually as no better approach could be identi�ed. The smoother processes the data forth
and back, thus, the smoothened output for all data points is based on the consideration of all
relevant measured points. The result of the smoother, and especially the initial parameters of the
trajectory, showed a big dependency on the initial parameters and the matrix of the covariance
of the state. In order to achieve stable results, the smoother was executed 12 times where the
smoothened result of the prior processing was used as input for the following. The number of
12 repetition is based on the minimal chances of the estimated parameters after the 8th to 10th

repetition.

Iterative model based estimation

The �nal variant of parameter estimation is based on the iterative �ight model discussed in
Section 4.2.1. Due to the non-linearity of the air drag, this model has to be calculated iteratively.
In order to �nd the best suitable trajectory for the related measurements a three repetition Monte
Carlo simulation with (by a factor of 3) decreasing variances are used with 5000 trajectories for
each repetition. Initially, the following parameters were (normally distributed) varied: velocity
v (thus also magnitude of the velocity v), initial throwing angles for the ascending component θ
and sidewards angle φ (compare de�nition in Figure 4.1) and the initial position. This resulted
in average distance of 3.0 cm per position between the �ts and the measured positions. Including
the drag coe�cient cd into the variations kept the estimation error at 3.0 cm. Varying the mass
of the tennis ball m in addition is not meaningful as the quotient of cd and m is used to determine
the drag force. This means that by varying cd implicitly also m is varied. The estimation error
is 1.9 times the error compared to using the RTS estimation (1.58 cm) and 2.1 times the error
of the polynomial model (1.43 cm). The challenge of �tting this model to the measured data is
already discussed in [Pon09, pg. 59�] and is partly related to the way the determined positions
are �t to the measured data. Still, even using 5000 trajectories and three steps of improvement,
the results could not be improved.

Results

Velocity The results of the estimation process of the three methods a brie�y presented and
discussed. Regarding the estimation of the velocity, the information about the measured value
(from the light barriers of the throwing device) could be incorporated into the analysis. Thus,
it is possible to compare the three estimation methods with the measured value and identify the
quality of the estimation. The histograms for all four velocity measures is given in the top row
Figure 4.13. Also normal distribution �ts are presented with the Gaussian bell curve. Due to the
fact that the particular relation between the values for a single trajectory is lost, additionally, the
scatter plot is given in the bottom row. The main results for all velocity-setpoints are the same.
The polynomial estimation showed very similar histograms and �tted Gaussian bell curves as the
measured values. The iterative estimation is similar but has a slight tendency to underestimate
the initial velocity and shows similar variations overall. The Rauch-Tung-Striebel smoother based
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Figure 4.13: Graphical illustration of the velocity estimation results in comparison to (light barrier based)
measurement data;
For the �ve velocities (4 m

s
, 4.25 m

s
, 4.5 m

s
, 4.75 m

s
, 5 m

s
) a histogram and a Gaussian bell curve �t

are presented in the top row. The bottom row shows scatter plot that outline the relation of corresponding

measurements for the measured and estimated velocities. The estimations based on the polynomial method

describe the measured data best, next best is the iterative method, and the RTS method has clearly the

highest systematic di�erence. The numbers for the Gaussian bell curve �ts are given in Table 4.2

estimation shows the biggest di�erence in the measured velocities. The scatter plots underline
this behavior. If all points are on a single line which can be extended through the point (0, 0)
the relation would be perfect (the dash-dotted line illustrates the optimum). Both the polynomial
method and the iterative method show this behavior with some errors, but the Rauch-Tung-
Striebel smoother method does clearly fail in ful�lling the second criteria. Overall this renders
the polynomial estimation as the most suitable one for the parameter estimation especially in the
�rst phase of the �ight path. The comparison of the distribution �ttings results is presented in
Table 4.2.

Ascending and sidewards angles In the case of the analysis of the initial angles' values, only
the three methods for estimation are available as measuring these angles in the experiment setup
with the virtual coordinate system located within the robot's enclosure is not accessible. The
analysis here includes graphs for all trajectories of each velocity group. The ascending angles
θ estimates are presented in the top row of Figure 4.14 while the bottom row illustrates the
sidewards angle φ.

Similar to the estimation of the initial velocity in the previous paragraph here the polynomial
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set v measured polynomial RTS iterative

all in m
s µ σ µ σ µ σ µ σ

4.00 4.14 0.33 3.95 0.31 3.25 0.29 3.93 0.32

4.25 4.22 0.37 4.03 0.34 3.32 0.32 4.01 0.35

4.50 4.53 0.34 4.34 0.33 3.61 0.29 4.33 0.33

4.75 4.84 0.34 4.67 0.36 3.89 0.30 4.67 0.36

5.00 5.08 0.31 4.86 0.27 4.13 0.32 4.86 0.27

Table 4.2: Numerical analysis of the velocity estimation visualized in Figure 4.13;
The (light barrier based) measured velocity and the estimates of the three estimation methods are compared in

terms of average (µ) and standard deviation (σ). All values are in m
s

and the iterative methods show stable and reasonable results in term of the ascending angle θ.
The throwing angle basically should be the same for all trajectories thus the standard deviation
is a good measure of the quality of the estimation. Here the polynomial method, similarly to
the estimation of the velocity, and the RTS smoothing have the lowest variations and (compare
Table 4.3). The parameters estimated with the RTS smoother show a systematically lower as-
cending angle than both other models. Both the velocity and the ascending angle rise during the
�rst part of the estimation here even though 12 runs of smoothing are done and the results of the
prior runs are used as initial value for the current one. These values of the polynomial and the
iterative method are in line with each other. Regarding the sidewards angle φ all the estimates

set v polynomial RTS iterative

[ms ] [◦] µ σ µ σ µ σ

4.00
θ 54.702 2.452 53.802 1.473 55.011 2.006

φ -2.177 0.666 -2.189 0.700 -1.658 1.211

4.25
θ 54.669 2.508 53.673 1.645 55.054 1.724

φ -2.302 0.309 -2.335 0.359 -1.923 0.744

4.50
θ 55.677 1.312 54.532 1.171 56.017 0.999

φ -2.051 0.407 -2.054 0.392 -1.681 1.070

4.75
θ 56.737 2.196 55.200 0.999 56.549 1.072

φ -1.745 0.875 -1.965 0.384 -1.575 0.807

5.00
θ 57.030 1.896 54.748 5.364 56.747 0.947

φ -1.914 0.500 -2.402 1.264 -1.521 1.002

All
θ 55.763 2.304 54.391 2.697 55.875 1.572

φ -2.038 0.608 -2.189 0.716 -1.671 0.973

Table 4.3: Numerical analysis of the ascending (θ) and sidewards angle (φ) visualized in Figure 4.14;
The three estimation methods are compared in terms of average (µ) and standard deviation (σ). All values

are in ◦
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Figure 4.14: Graphical illustration of the initial angles estimation results in comparison;
A line showing the ascending angle (φ) of the trajectories related to the �ve velocities (4 m

s
, 4.25 m

s
, 4.5 m

s
,

4.75 m
s
, 5 m

s
) is presented in the top row. The bottom row shows the sidewards angle (α). The estimations

based on the polynomial method describe the measured data best, next best is the iterative method, and

the RTS method has clearly the highest systematic di�erence. The numbers for the statistical analysis are

given in Table 4.3 for θ and φ

show similar mean values, but their standard deviations di�er signi�cantly (compare Table 4.3).
The polynomial method again shows lowest variations and thus best stability all methods show
similar standard deviations for the ascending angle θ. Regarding the sidewards angle φ the itera-
tive models shows signi�cantly higher deviations. This has to be seen in context with the further
parameter estimation discussed in the next but one paragraph. Overall the polynomial model
shows the best behavior also for estimation of the launching angles.

Initial position In addition to the initial velocity parameters of the throw tennis ball also,
the starting position has to be estimated. The initial position in the robot world coordinate
system (compare Figure 4.1) is the information extracted. Again the estimation is done in the
groups of the trajectories with the same target velocity and again for all the trajectories as this
initial position should be the same for all of the velocities (it is independent of the velocity as
it's acquisition is triggered straight when the ball leaves the second light barrier of the throwing
device). The statistical analysis is given in Table 4.4, a graphical illustration is not given here for
space reasons but put into the appendix as Figure A.1. Overall again the polynomial method is
the one with the lowest deviation and, due to the limited alternative information available, the
best method to estimate the initial position. In terms of mean position the iterative method's
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set v polynomial RTS iterative

[ms ] [m] x y z x y z x y z

4.00
µ -0.535 -2.901 0.384 -0.495 -2.869 0.383 -0.527 -2.903 0.380

σ 0.002 0.011 0.001 0.006 0.001 0.002 0.009 0.034 0.011

4.25
µ -0.536 -2.900 0.384 -0.494 -2.868 0.383 -0.528 -2.900 0.385

σ 0.003 0.008 0.001 0.007 0.002 0.001 0.015 0.019 0.017

4.50
µ -0.534 -2.899 0.384 -0.489 -2.868 0.383 -0.524 -2.894 0.380

σ 0.002 0.003 0.001 0.006 0.002 0.001 0.015 0.010 0.016

4.75
µ -0.534 -2.897 0.384 -0.484 -2.867 0.384 -0.532 -2.898 0.383

σ 0.005 0.008 0.002 0.006 0.001 0.001 0.015 0.021 0.012

5.00
µ -0.533 -2.900 0.384 -0.479 -2.877 0.387 -0.515 -2.898 0.379

σ 0.007 0.023 0.001 0.010 0.057 0.013 0.027 0.022 0.021

All
µ -0.535 -2.899 0.384 -0.488 -2.870 0.384 -0.525 -2.899 0.382

σ 0.004 0.012 0.001 0.010 0.026 0.006 0.018 0.022 0.015

Table 4.4: Numerical analysis of the initial position's estimations;
The three estimation methods are compared in terms of average (µ) and standard deviation (σ) of each spatial

component. All values are in m

estimation is similar to the polynomial method's again while the Rauch-Tung-Striebel smoother
method shows a signi�cantly di�erent position/estimation (again).

Variances of the iterative method's model parameter A remarkable thing occurred during
the realization of the iterative method. The quality of the model (in average distance from the
estimated positions to the measured positions) could not be reduced below twice the position
detection error of the other models. Allowing the method to vary the model's parameters drag
coe�cient cd (and implicitly the mass of the tennis ball m) did not improved the quality of the
model. The detailed statistical analysis of the drag coe�cient after the 3rd repetition is given in
Table 4.5, a graphical illustration is not given here for space reasons but in appendix (compare
Figure A.2 for the drag coe�cient and the overall estimation error). The statistical analysis shows
unexpected high variations in the parameters cd. The drag coe�cient shows a signi�cant di�erence
between the largest and the smallest value in relation to the mean value for a target velocity and
also the range expressed in the empirical work presented in Section 4.2.1.

Findings

The comparison of the estimated and the measured velocity (and thus also the positions) shows the
problem of parameter estimation. The non-physics-based polynomial method shows advantages
over both physics-based methods. In terms of parameter estimation based on the Kalman �lter (or
the derived usage of the Rauch-Tung-Striebel smoother) the initial estimation has larger deviations
from the real values as the initial state of the object is highly impacting these initial estimation
(compare [Bar10, pg. 116�]). The iterative estimation method with Monte Carlo simulation shows
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set v cd

m
s

4.00
µ 0.557

σ 0.136

4.25
µ 0.589

σ 0.108

4.50
µ 0.503

σ 0.142

4.75
µ 0.517

σ 0.117

5.00
µ 0.481

σ 0.186

All
µ 0.529

σ 0.143

Table 4.5: The variances of the iterative method's model parameter drag coe�cient cd

bigger errors by a factor of two compared to the other approaches, even when varying the drag
coe�cient cd (and thus implicitly the mass of the tennis ball m). This also shows a problem of
predicting with the iterative model based on prede�ned parameters and renders experience based
prediction as more useful. For the Kalman �lter based the iterative model is used in most related
work, and there �xed parameters are used.

Based on the estimated parameters the optimal launching velocity range at the estimated position
with the estimated throwing angles can be calculated. This is done in Section 4.4.2 where the
catching movement is planned. Additionally, the information about the estimated trajectory (and
thus ball position) can be used to determine the accuracy of the tracking algorithm for tracking
the moving objects. This is done in Section 4.2.2.1. Another aspect of this estimation is that the
experience database for the practical experiment can be extended with a suitable set of simulated
throws in order to speed-up the process of learning. As this arti�cial learning is based on the
iterative model, the variations of the parameters have to be considered, and the content of the
database has to replicate these deviations (or even use bigger ones) to allow accurate prediction.

4.3 Soft Catching

The determination of the interception position and the joint positions of the robot for reaching
the interception position is determined according to reach the goal of a maximum catching device
velocity. The robot's position maximizes the use of the joints to reach a maximum velocity of the
catching tool mounted to the end e�ector of the robot. When comparing the robot to the model
used in Section 3.3 the joints J1 und J2 are used to implement the 2 DoF (Degrees of Freedom)
main joint while other joints are used to implement the variable lever length. In addition, the
available joints are used to increase the velocity of the catching device in the interception point
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and/or ensure that the tangents of the trajectories in the interception point are aligned. Reconsider
Figure 3.13 in Section 3.3 for illustration of this simpli�ed model. This simpli�ed catching strategy
is the foundation of the implemented catching strategy detailed here.

4.3.1 Constraints

The KUKA LWR 4+ kinematic is inspired by a human arm and o�ers a similar �exibility for
movements. The development of the robot has been done by the German Center for Aerospace and
Avionics [HSAS+02]. In order to maximize the velocity of the catching device at the interception
position and using human inspired catching movement, the robot is mounted on a wall. This
mounting and the kinematic allows to mimic the movement and alignment of a human being when
catching an object and maximizing the e�ective lever length for the �rst joint, thus maximizing
the obtainable velocity. In the image of the robot mounted to the wall is presented in Figure 4.3.
In order to apply the strategy to the 7 DoF robotic kinematic additional steps are required. The
sequential steps are detailed here:

1. Assign Joint3 position to 90 ◦ to superimpose movements of Joint1, Joint4, and Joint6 for
maximum catching velocity

2. Determination of the interception position (normal on trajectory through Joint1 axis)

3. Assign Joint1 position (links between J2/J4 and J4/J6/TCP in one line); compare Fig-
ure 4.15

4. Calculation of the distance interception position / Joint1 axis

5. Determine Joint4 position accordingly

6. Calculate Joint2 position to reach interception point

The base for all calculations is the interception position. After this position is determined the
position of J1 and J4 can be based on trigonometric calculations. Only after J4's position is
know the position of J2 can be calculated. All calculations are executed with each new prediction
update, and thus, the interception position and the catching movement is re�ned. Details for all
steps of the process are given in the following paragraphs.

In addition Figure 4.3 gives an overview over the 7 joints of the LWR 4+ and illustrates the
names of the joints. The nomenclature used to describe positions and dimensions of the robot
and the calculations for masses of inertia or accelerations is given in Section 4.1. The angular
velocity limitations of the robot's joints (presented in Table 4.6) restrict the maximum velocity of
the end e�ector of the robot. When using a catching device with a tool center point 0.25 m from
the �ange and the joints J1, J4 and J6 (compare Figure 4.3) a maximum velocity of 4.25 m

s can
be achieved. This is of the same magnitude as the object's velocity at the interception point for
optimal throwing at a distance of 2.5 m (compare Section 3.3). In general, the velocity di�erence
of the robot and catching tool has to be minimized but still a di�erential velocity has to exist,
otherwise, the robot will move synchronized away from the ball as the trajectories only match in
the catching position. The bigger the velocity's di�erence, the less accurate the timing has to be
and vice versa. As the timely synchronization of the overall system is a challenging task (compare
Section 4.5) a reasonable �xed velocity limit is used to ensure soft catching at a high catching
rate.
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Joint maximum angular velocity

J1 112.5
◦

s

J2 112.5
◦

s

J3 112.5
◦

s

J4 112.5
◦

s

J5 180
◦

s

J6 112.5
◦

s

J7 112.5
◦

s

Table 4.6: Speci�cation of the KUKA LWR 4+ maximum joint velocity [KUK10, p. 8]

4.3.2 Interception Point Determination

In order to align the movement vector's direction of the object and the robot the interception
position is determined based on the rules discussed in Section 3.3. The interception position is
chosen based on the shortest distance between the predicted trajectory of the object and PJ2.
A visualization showing the robots origin (red dot), PJ2 (cyan dot), the interception position or
PTCP (green dot) and links of a simpli�ed robot model (blue lines) are shown in Figure 4.15.
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Figure 4.15: Visualization of the robot's catching position for soft catching; red dot: robot origin position,
pink dot: PJ2, PI green dot

Joint 1, Joint 3 and Joint 4 Position Determination

Based on the simpli�ed model shown in Figure 4.15 and the known interception position the
de�ection of two of the seven joints can be determined. For J1, only the x- and y-component of
the interception position are required. An illustration is given in Figure 4.16(a).

The equation for calculating φJ1 is given in Equation 4.6.

φJ1 = 180 ◦ + atan(
PIy
PIx

) (4.6)
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(b) Visualization of the robot's catching position for soft catching;
detailed view along throwing direction

Figure 4.16: Robot in catching position with all links considered; robot origin position: red dot, PJ2

cyan dot, PJ4 yellow dot, PJ6 black dot, PTCP /PI green dot

The o�set of 180 ◦ is necessary to keep the robot well within the working envelope of ±170 ◦. In
order to reach into the required quadrant the de�ection of J2 is must be in the range of 0 ◦ to
180 ◦. The detailed determination of J2's de�ection is in the �nal paragraph of this section.

For the computation of φJ4 the distance dJ2−I between the intersection of J1 and J2's axis PJ2 and
the interception position PI is the relevant parameter. An illustration is given in Figure 4.16(b)
where the simpli�ed model prior used is extended with additional joints and links. In order to
reach a position as given in Figure 4.16(b) φJ3 needs to be in it's neutral position (Equation 4.7),
otherwise the interception position will not be reached.

φJ3 = 0 ◦ (4.7)

The resulting triangle between the intersection of J1 and J2's axes (PJ2, cyan dot), the interception
position (PI , green dot) and the intersection of J3 and J4's axis (PJ4, yellow dot) is within one
plane and the length of the edges is given by the robot's dimension and the distance between
the �ange of the robot and the tool center point (TCP) of the catching device. For a catching
device with 25 cm distance as used in the implementation (compare Section 4.5) the dimensions
of the edges are: dJ2−J4 = 0.40 m for cyan dot - yellow dot; dJ4−I = 0.728 m for yellow dot -
green dot; distance from J1 and J2's axis intersection to interception position (dJ2−IP ) variable
and depending on trajectory for cyan dot - green dot. Based on these known dimensions the
calculation of the de�ection of J4 is possible based on the rule of cosine (Equation 4.8).

φJ4 = acos(
d2J2−J4 + d2J4−TCP − d2J2−TCP

2 ∗ dJ2−J4 ∗ dJ4−TCP
) (4.8)

Joint 2 Position Determination

With reference to Section 3.3 and the simpli�ed model with a 2 DoF base joint and the variable
length arm the position of joint 4 is used to adjust the lever length (distance between PJ2 and
PI) and the position of joint 2 (in cooperation with joint 1) determines the direction of the lever.
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Calculation of φJ2 is based on two steps with two triangles and the application of the rule of
cosine for each. The �rst triangle (illustrated in Figure 4.16(b)) is the triangle between the robots
origin (red dot), the interception position PI (green dot) and the intersection of J1 and J2's axes
(PJ2, cyan dot). The angle between the solid line and the broken line is one component of φJ2,
here named φJ2a. The determination is based on the rule of cosine and the equation is given in
Equation 4.9

φJ2a = acos(
d2J2−TCP + d2J2−0 − d2TCP−0

2 ∗ dJ2−TCP ∗ dJ2−0
) (4.9)

The second triangle is given by the intersection of J1 and J2's axes (PJ2, cyan dot), the intersection
of J3 and J4's axes (PJ4, yellow dot) and the interception position PI (green dot). Again the rule of
cosine is used to determine the second part of φJ2, φJ2b (Equation 4.10). φJ2 is the supplementary
angle to the sum of φJ2a and φJ2b (Equation 4.11).

φJ2a = acos(
d2J2−TCP + d2J2−0 − d2TCP−0

2 ∗ dJ2−TCP ∗ dJ2−0
) (4.10)

φJ2 = 6 180− (φJ2a + φJ2b) (4.11)

Joint 5, Joint 6 and Joint 7 Position Determination

The remaining three joints of the KUKA LWR 4+ have been considered to remain in their neutral
position up to now. With this assumption, the interception position is reached by the catching
device (or TCP). For reaching the interception position a movement for these three joints is not
required.

4.3.3 Velocity Maximization/Synchronization

The resulting interception position of the robot presented in Figure 4.17 allows to use additional
joints to joint 1 to increase the velocity of the catching device. These joints are joint 3, joint 4
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Figure 4.17: Visualization of the robot's catching position for soft catching; robot origin position: red
dot, PJ2 cyan dot, PJ4 yellow dot, PJ6 black dot, PTCP /PI green dot
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and joint 6. The proportion of each joint for the overall catching device velocity depends on the
robot's position when reaching the interception points. With objects caught close to the robot's
joint one axis the proportion of joint three increases (compare human shoulder internal rotation)
while the proportion of joint 4 decreases (compare human elbow extension). Regarding the joints
5, joint 6 and joint seven the usage to increase the velocity of the catching device is based on a
movement of joint 6. In order to align the tangent of the circular movement with the trajectory
of the thrown object at the interception point, joint 5 has to be de�ected by 90 ◦ or −90 ◦.
Depending on the chosen value the movement direction of joint six changes. Joint 7 can be used
to rotate the catching device, balance mounting of the catching device or keep the object in the
catching device throughout the deceleration movement.

Based on the three positions (waiting position, interception position and stopping position) and
the joints used for soft catching the worst case acceleration time to maximum joint velocity for
each joint can be calculated (compare Section 3.3). The assumptions for each joint are based on
a linear deviation of mass throughout the modules between each joint of the KUKA LWR 4+ and
worst case scenario (robot position for maximum moment of inertia for each joint and a catching
device with a mass of 0.5 kg and 0.16 m distance between the center of gravity3 and the mounting
�ange).

As calculation complexity increases from joint 7 to joint one due to the increased number of
elements to consider, the estimation starts with joint 6 (joint 7 is not used for velocity synchro-
nization). The mass moved by joint 6 is the catching device (modeled as a cylinder with the length
0.16 mn and the mass 0.5 kg) with a displacement from the axis of 0.088 m and the spherical
link between joint 6 and joint 7 which is modeled as a solid sphere with (diameter 0.088 m, mass
16

7
kg). The resulting mass of inertia JJ6 is given in Equation 4.12.

JJ6 =
2 ∗mL6 ∗ r2L6

5
+ (

mCD ∗ l2CD
3

+mCD ∗ (rL6 + 0.01 m)2)

= 0.019 kg ∗m2
(4.12)

The �rst part corresponds to the spherical link (m67) of the robot between joint 6 and 7, the
seconds part of the catching device and the last part is the application of the Huygens-Steiner
theorem4 to the catching device due to the distance between the axis of joint 6 and the mounting
plane (mounting �ange).

Joint 5 is (similar to joint 7) not used for velocity synchronization. For joint four the mass of 3
links (mL4 mL5 and mL6) and the catching device have to be moved. The worst case scenario here
is that joint 6 is in the neutral position (joint 5 and joint seven only contribute to a longitudinal
rotation that has no impact on the mass of inertia). The overall mass of inertia is resulting
from the link 4, link 5 (modeled as one long stab), link 6 displaced by the sum of link 4's and
link 5's length and the catching device displaced by the sum of the length of links 4, 5 and 6
(Equation 4.13).

JJ4 =
mL4+L5 ∗ l2L4+L5

3
+ (

2 ∗mL6 ∗ r2L6
5

+mL6 ∗ l2L4+L5)

+(
mCD ∗ l2CD

3
+mCD ∗ (rL6 + lL4+L5 + 0.01 m)2

= 0.710 kg ∗m2

(4.13)

3for sake of simplicity a point-mass is used to model the catching device
4also known as parallel axis theorem
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In analogy for joint three, the mass of 4 links (mL3, mL4, mL5 and mL6) and the catching device
have to be moved. The worst case scenario here is that joint 4 is bend by 90 ◦ and joint 7 is in
the neutral position (joint 5 and joint seven only contribute to a longitudinal rotation that has
no impact on the mass of inertia). The overall mass of inertia is resulting from the link 3, link 4,
link 5 (modeled as one long stab), link 6 displaced by the sum of link 4's and link 5's length and
the catching device displaced by the sum of the length of links 4, 5 and 6 (Equation 4.14).

JJ3 =
mL3 ∗ r2L3

2
+
mL4+L5 ∗ l2L4+L5

3
+ (

2 ∗mL6 ∗ r2L6
5

+ ∗mL6 ∗ l2L4+L5)+

(
mCD ∗ l2CD

3
+mCD ∗ (rL6 + lL4+L5 + 0.01 m)2)

= 0.726 kg ∗m2

(4.14)

Finally, also the mass of inertia for joint 1 is determined (J2 has the same maximal torque but a
smaller mass of inertia due to the lacking in�uence of mL1). The worst case scenario is that joint
2 is bend by 90 ◦ and all other joints are in their neutral position. The overall mass of inertia is
resulting from the link 1, link 2, link 3, link 4, link 5 (link 2 to link 5 modeled as one long stab),
link 6 displaced by the sum of link 2's to link 5's length and the catching device displaced by the
sum of the length of links 2 to 6 (Equation 4.15).

JJ1 =
mL1 ∗ r2L1

2
+
mL2+L3+L4+L5 ∗ l2L2+L3+L4+L5

3
+

(
2 ∗mL6 ∗ r2L6

5
+ ∗mL6 ∗ l2L2+L3+L4+L5)+

(
mCD ∗ l2CD

3
+mCD ∗ (rL6 + lL2+L3+L4+L5 + 0.01 m)2)

= 3, 747 kg ∗m2

(4.15)

After the calculation of the masses of inertia for the joints, relevant for the catching movement, the
calculation of the maximum acceleration and thus furthermore the maximum acceleration time
to the maximum velocity can be done. Using Equation 3.4 and Equation 3.5 on the maximum
speci�ed joint torques and joints velocities [KUK10] the maximum acceleration time is calculated.
The results are given in Table 4.7. In addition, also the required distance in terms of the rotation
angle is given in this table.

J Mmax αmax ωmax tvmax αacc

joint (kg ∗m2) (Nm) (s−2) (1s ) (ms)
◦

1 3,75 200 53,4 1.96 36.8 4.14

3 0.73 100 137.7 1.96 14.3 1.60

4 0.71 100 140.9 1,96 13.9 1.57

6 0.02 30 1511 1.96 1.3 0.15

Table 4.7: Overview over the hardware restrictions in terms of acceleration time. Based on the mass of
inertia the �rst joint needs the longest time to accelerate to the maximum joint velocity. The
required time is 36.8 ms. All other relevant joints are faster by a factor of at least 2
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As stated above, the joints 2, 5 and 7 are not used for synchronizing the velocity and decreasing
the impact force during catching. In terms of maximum acceleration time, they usage can be
calculated in the same way or, by using the related joint with a one digit smaller index the
acceleration time can be bounded below this acceleration time. The joint characteristics are the
same, but the mass of inertia is smaller due to the lapse of one link.

Based on this strategy the robot's position for reaching interception position can be calculated
based on trigonometric functions from the interception position. Simulation and implementation-
speci�c attributes of the catching movement are outlined in the following two sections.

4.4 Simulation

Prior to the implementation with the target platform (described in the following Section 4.5) the
proposed algorithms for trajectory prediction and catching movement execution are tested in a
simulation environment. This allows the identi�cation of possible problems prior to executing the
algorithms on the target platform and tuning the algorithms for better performance.

Due to the real-time connected nature of the vision system with the adaptive Aria of Interest (AoI,
compare Section 3.1) the vision system is not simulated but only implemented and tuned for the
implementation (see details in Section 4.5). The measurement errors of the position detection
system (derived in Section 4.2.2.1) are considered throughout the simulation based on an error
modeled with standard deviation and the properties derived in the related section in terms of the
stereo camera system's coordinate system.

For the other two parts of the whole system (trajectory prediction and catching movement planning
and execution), Matlab was used to do the simulation. The level of detail for both parts is
described in the following subsections.

4.4.1 Trajectory Prediction

The trajectory prediction based on the proposed algorithms described in Section 3.2 and an
additional reference prediction system, based on a physical model, requires the modeling and the
basic process, the �ight of a tennis ball. The physical description of this process is discussed in
Section 4.2.1 and the relevant parameters are extracted in Subsection 4.2.2.2. The database for
the simulation and experiment is based on the parameters derived, also considering the variations
of the environment parameters necessary to �t the iteratively calculated trajectories accurately.

The level of detail here covers the in�uences of the gravitational force, the (quadratic) air drag,
the modeled deviation of the launching device and the determined acquisition accuracy of the
position detection system (compare Subsection 4.2.2.1). Besides the detailed description of the
e�ects in�uencing the trajectory as well as the position acquisition, the representation of the tennis
ball's position is done in Cartesian coordinates in the simulation environment. For visualization
reasons circular representations are used.

Overall �ve di�erent approaches to predict the tennis ball's trajectory are simulated. Two of them
are for reference and deal as the base for comparison. These models are the spatial separated model
derived in previous work [Pon09, pg. 44�] and the combination of parameter estimation with a
variant of the Kalman �lter (in this work here the unscented Kalman �lter (UKF) is used due
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to the bene�ts for nonlinear problems) which is used in a number of related works [LRÅJ09]
[LRÅJ10] [SC07] [FBH+01] [BWH10] [BBW+11].

In the following three paragraphs, the speci�c attributes of the �ve prediction approaches in
the simulation environment will be described in detail. The �rst discussed model will be the
holistic associative memory prediction (compare Subsection 3.2.1) followed by the progressive
associative memory prediction (compare Subsection 3.2.2). It is noteworthy that the prediction
database was created without adding the error due to the position detection system, determined
in Section 4.2.2.1. This is equivalent to smoothing the trajectories before storing them in the
database. Also, all the positions available for the current �ight are processed with the RTS
smoothing algorithm. This had an insigni�cant in�uence on the prediction accuracy of the holistic
model, minor in�uence on the progressive model without additional discretization but signi�cant
in�uence on the progressive prediction with additional discretization. The prediction results got
signi�cantly more stable with the usage of �ltering. Finally the two reference model, the analytical
model-based prediction [Pon09, pg. 44] and the UKF-iterative model will be discussed.

Holistic Associative Memory Prediction

The base for the holistic associative memory prediction is the experience dataset. This dataset
contains the position information of each previously measured trajectories. In the case of the sim-
ulation, this database is initialized with 2048 trajectories with the parameters given in the preface
of this subsection. The pure information containing the positions over time of each trajectory
are fed to the prediction algorithm. A sequential search compares the stored position of each
trajectory to the currently measured positions and calculates the individual distances' sum for
each trajectory. In order to cope with minor deviations of the timing, a shift of up to 5 positions
in both directions is possible. The number of 5 was chosen based on simulations runs where no
shift was the most frequent used option and shifts between -2 and 2 rarely occurred.

For the simulation, no real time constraints are considered. Still the computation times of all the
prediction models are acquired and brie�y discussed in Section 5.1. Here it has to be noted that the
computation times in the simulation environment (Matlab) are not comparable with an optimized
implementation in C/C++. Still the can be used as a rough guideline for the computational
demands.

Variations of the model here occur in terms of the size of the database, where random subsets of
1024, 512 and 256 trajectories from the 2048 trajectories of the main database are chosen. These
samples are stable for a set of predictions. Another variation parameter is the number of recent
positions/position-changes that are compared. The numbers here are all, 64, 32, 16 and 8.

Progressive Associative Memory Prediction

In addition to the straight comparison of the current positions with the positions of the trajectories
stored in the database also, the comparison of the change between two position acquisitions is
used. Here the dependency on the absolute position is avoided. The search algorithm is similar
to the one used for the absolute positions.

As an extension of the mentioned prediction, the progressive prediction with additional discretiza-
tion requires preprocessing of the position data from the trajectories of the experience dataset.
Main aspects are described in Subsection 3.2.2. The main steps are discretization of the posi-
tion data, determination of the velocities, transformation to indexes for more e�cient searching,
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storage as a double linked list for keeping the information about the connection of the individual
velocities to build up a whole trajectory. Memory management for this kind of storage is also
required as the deviation of the velocities might lead to some indexes and thus data �elds that
signi�cantly more trajectories have than others. Keeping track of the usage of the allocated mem-
ory (or the maximum size of an array) is required. Similarly, to the holistic associative memory
prediction the prediction is based on the most similar trajectory from the experience dataset. The
most recent measured position of the current trajectory is combined with the velocity data from
the experience dataset to acquire the predicted position information.

Within the prediction process, the same steps have to be done for the current velocity as for the
whole dataset (discretization, velocities, indexes, linked list). For the most current velocity, the
indexes are used to access all trajectories with that used the same velocity. No special search is
required, only the determination of the indexes leads to the related velocities in the database. The
storage as a linked list allows to compare the recent history with variable size of the previously
acquired trajectories from the database to the current trajectory.

Due to the fact that the integral information is kept (compare Subsection 3.2.2 a reduction of the
numbers of positions for the comparison with the recent history can be done (thus, the computation
expenses are reduced). The impact of various dense considerations (e. g. for 32 recent sample
the �rst, the last and the 30, 15, 8, 4, 2, 1, 0 samples within are considered). In addition to
this variation also the discretization resolution is varied with two fundamental ideas: the �rst
is to have the same discretization resolution for all three directions while the second considers
the accuracy of the position detection system. In order to have a good comparison, the volume
of one voxel is normalized, and additional the dimensions are varied in the steps of 1

4 , 1, and 4
giving a good overview of the discretization interval's impact on the prediction accuracy and the
computation time.

The search is initiated at the �rst and last discretized velocity. All trajectories containing the same
velocity are compared then to the current trajectory, and the sum of the Euclidean distance is used
to �nd the best �tting trajectory. Because also the �rst and the last velocity can di�er from the
currently measured one the next step is to compare all velocities with neighboring velocities. This
search is stopped when the distance at the �rst/last velocity is bigger than two times the average
error per considered position of the best-found trajectory. Figure 4.18 illustrates the accumulated
sequence of neighbors that are considered.
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Figure 4.18: Visualization of the discretized progressive prediction neighborhood search

Analytical Model-based Prediction

The �rst reference model for the evaluation of the experience based prediction is the analytical
model derived in [Pon09, pg. 44�]. The model is based on the physics of a throw including the
in�uences of gravity and air drag. The separated consideration of the movements in the three
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spatial directions allows to obtain closed solutions to describe the movement. This approach was
found to be the most accurate and most stable one in previous work [Pon09, pg. 59�].

Each of the measurements can be weighted individually for the least squares �tting of the analytical
solutions. A relation between the accuracy of the vision system and the weighting factors for the
�t is logical. Based on the results of the camera system's accuracy determination (compare
Section 4.2.2.1) the accuracy of the vision system is close to constant in the relevant region of the
object's distance thus, the usage of equal weights for the individually measured positions is used.

The second reference model is based on a UKF parameter estimation and the prediction of the
future trajectory based on the iterative model for the tennis ball's �ight. This approach is discussed
in detail in the related work section (compare Section 2.2.2).

4.4.2 Catching Movement Simulation

The strategy for soft catching discussed in Section 4.3 uses the robot's kinematic in order to achieve
a small velocity di�erence between the arriving ball and the robot's catching device. Based on the
dimensions of the links and the joint restrictions of the robot (compare Table 4.8) the catching
area and the corresponding achievable velocity of the throwing device in the catching point can be
calculated. The calculation of the velocity is based on the movement of the joints J1, J3 and J6

Joint angular range

J1 ±170 ◦

J2 ±120 ◦

J3 ±170 ◦

J4 ±120 ◦

J5 ±170 ◦

J6 ±120 ◦

J7 ±170 ◦

Table 4.8: Speci�cation of the KUKA LWR 4+ maximum joint movement range [KUK10, p. 8]

(compare Subsection 4.3.3). A visualization of the achievable velocities in the relevant part of the
robot's workspace is given in Figure 4.21. The overall volume of the relevant catching area of the
robot is 0.95 m3. The distance of the tool center point (TCP) to the mounting �ange of the robot
is based on the dimensions of the catching tool used for the experiments (compare Section 4.5)
and has the value of 0.2 m. This dimension is relevant for the achievable catching velocity as it is
directly in�uencing the length of the e�ective lever for the rotational movements. Figure 4.20 is
giving a good overview over the achievable velocities in more detail. Only the catching velocities
above a certain threshold (1.5 m

s , 2.5 m
s , 3 m

s and 3.25 m
s ) are illustrated, thus showing the

catching area's dependency on the velocity threshold. The area for catching velocities higher than
3 m

s with 0.35 m3 is rather small compared to the unconstrained catching area of 0.95 m3. On
the other hand catching velocity of 2.5 m

s reduces the impact energy of a ball arriving with 4 m
s

to ≈ 14 % and the related catching area has the size of 0.76 m3, thus the bene�t of soft catching
is usable in a relatively large area.
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Figure 4.19: Visualization of the robot's catching are with indication of the achieved velocity (1 to 3,5 m
s

increasing from yellow via green and blue to red); the overall catching area covers an areas
of 0.95 m3

Optimal Initial Velocity

The knowledge about the catching are of the robot derived in the previous paragraphs and the
knowledge about the throwing device's deviation allows determining the optimal average initial
velocity of the ball to maximize the catching rate (based on the reachability of the robot). The
information used for this determination is based on the polynomial parameter estimation done in
Subsection 4.2.2.2. The required additional information for this calculation is the relation between
the camera's coordinate systems (CCS) and the robot's world coordinate system (RWCS). This
information is acquired based on calibration sheets mounted to the robot's mounting �ange and the
usage of them for the camera calibration. Based on this information the rotation and translation
matrices between each of the CCS and the RWCS can be calculated. These matrices are given
below:

R =


0.9999 0.0109 0.0012
−0.0015 0.0230 0.9997
0.0109 −0.9996 0.0231


T =


−327.59
−3106.83

428.25


The additional parameters for the simulation are found in Subsection 4.2.2.2 and based on the
polynomial estimation. The following parameters and their deviations are considered: initial
position p, the initial velocity v (this parameter's mean is varied on purpose), the throwing
angles θ and phi, the tennis ball's mass m and the drag coe�cient cd. 2000 throws at velocities
between 3.8 m

s to 4.8 m
s with a step size of 0.02 m

s are calculated and the achievable catching rate,
when considering all the variances in the previously mentioned parameters, are derived based on
the soft catching strategy. The resulting catching rates in relation to the initial velocity are shown
in Figure 4.21. The graph presented clearly shows that the deviation of the throwing device is too
big to achieve even a theoretical catching rate of 100 %. The maximum catching rate is achieved
with a mean initial velocity of 5.0575 m

s and equals 91.56 %. Only in these cases, the robot's
catching area is traveled by the ball in a way that the soft catching strategy can be executed.
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ing velocity of at least 3.25 m

s
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Figure 4.20: Visualization of the robot's catching are with indication of the achieved velocity (1 to 3.5 m
s

increasing from yellow via green and blue to red);
The shape similar to a hollow cylinder is caused by the combination of the robot's link con�guration and

the catching algorithm. The catching area covers an areas for 1.5 m
s
, 2.5 m

s
, 3 m

s
and 3.25 m

s
are 0.95 m3,

0.76 m3, 0.35 m3 and 0.07 m3. Remarkably the catching area for velocities higher than 2.5 m
s

is 80 % of

the whole catching area.
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Figure 4.21: Graphical illustration of the theoretically achievable catching rate's dependency on the
mean velocity of the ball thrown by the throwing device. The maximum is achieved at a
velocity of 5.06 m

s with 91.6 %.

4.5 Implementation

This section is devoted to the experiment related implementation details and thus covers aspects
that extending the relevant aspects of the simulation. The covered aspects are the high-speed im-
age acquisition, the image processing, trajectory prediction, mastering of the robot, the catching
devices for the robot, velocity synchronization of the catching movement and the timely synchro-
nization of the whole system's components. Figure 4.22 shows an architectural overview of the

Figure 4.22: System architecture for the catching experiments

whole system. It consists of the two cameras interfaced with one PC via USB3.0. The position
detection algorithms run on the CPU and GPU. The CPU takes care of low-level prediction and
AoI shift while the GPU algorithms extract the center of the ball more accurately in the images
based on the RANSAC algorithm. This information is used for the triangulation in the forward
processing and as feedback for the expected ball diameter in the next frame for the ball detection
(green arrows). For each new frame, a new prediction is done on the second GPU of PC1, and
the result is sent via a network connection to the second PC that is a Linux real-time system with
Xenomai. This systems handles the real-time communication with the robot controller and also
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triggers the cameras based on the (deterministic) time-triggered communication with the robot.
This allows to synchronize the camera's images with the time base of the robot. All aspects are
elaborated in the following paragraphs.

Image Acquisition

The �rst part of the processing chain of the whole system is the image acquisition. The imple-
mented system aims to incorporate the proposed aspects discussed in Section 3.1 with a moving
Area of Interest (AoI) following the �ying ball. The proposal also considers the size of the AoI
to be adapted based on the distance of the object to the camera. Due to technical limitations
of the used cameras (IDS Imaging UI-3370CP-M-GL) some of the proposed ideas could not be
implemented, or software solutions instead of low-level hardware solutions had to be used. The
main goal, to increase the frame rate of the acquired image information while reducing the amount
of image information to extract the object's position was still kept as the main goal.

In terms of the AoI movement and size change the functionality of the camera and driver did not
allow to change the AoI between two frames with reliable results. In some cases still the image
information from the old position was transferred but presented at the more recent position. This
(documented) behavior would lead to big measurement errors in the position detection, and thus,
another way to implement the AoI movement had to be found. The solution implemented is to
use the cameras in rotated positions where the lines of the cameras are approximately in line with
the gravitational direction. This gives bene�ts regarding the achievable frame rate of the camera
as this is largely dependent on the number of lines read out. An area of 2048 by 800 pixels is
used for each of the two cameras. Within this sub-image, a smaller software-AoI is moved with a
size of 300 by 300 pixels. This software-AoI is moved based on an initial preset movement and a
linear prediction of the movement between two consecutive frames for the next AoI's position. The
overall system's functionality is close to the proposed functionality in Section 3.1 but the achievable
frame rate is limited to 110 fps in comparison to an estimated frame rate of ≈ 250 fps. The
future hardware implementation of the AoI movement depends on changes in the camera driver.
Based on information from the camera's manufacturer the time frame for this changes cannot be
foreseen now.

Image Processing

The main parts of the image processing are done on a general purpose graphics processing unit.
Roughly this contains the following steps (optional) background subtraction with a static back-
ground model, noise �ltering, Canny edge detection and Hough circle transform or Random Sample
Consensus (RANSAC) circle detection. The implementation of these main functions and addi-
tional steps like image conversion or similar things is covered in detail an a related master thesis
[G�15]. The additional step of triangulation is done on the central processing unit (CPU) because
of the lack of performance improvement on a parallel computation platform like a GPGPU. The
implementation of the image processing in combined with the software for image acquisition. The
300 by 300 pixel images and the additional information about the location of this AoI within the
whole image are transferred to the GPGPU, and the processing steps are executed. In terms of
software, the CUDA programming language is used, and the hardware platform is a Geforce 970
(which is an update compared to the GPGPU used in [G�15]). This master thesis deals with the
performance optimization of the algorithms for the timely requirements. The used combination of
image preprocessing (background subtraction) and circle detection (Hough or RANSAC) is done
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based on the �ndings on the accuracy of the system (compare Subsection 4.2.2.1) and thus the
background subtraction with RANSAC circle detection is used for stability reasons and calculation
time advantages.

Trajectory Prediction

Six variants for the trajectory prediction are proposed (compare Subsection 3.2) where the most
suitable one, based on the simulation results is implemented, using the advantages of GPGPU's
highly parallel architecture. The foundations of these prediction algorithms are given in related
work [G�15]. The initial variants given there are extended with the variants using only a window of
recent positions/velocities for the comparison with the experience database. Additional details to
the parameters of these trajectory prediction variants are given in the related results Section 5.2.

Robot Mastering

The aspect of robot mastering was already covered in Subsection 4.2.2.1 when dealing with the
accuracy of the position detection system. The problems mentioned there with the inaccurate
mastering causing a distance between the calculated (Cartesian) position and the real (Cartesian)
position are also existing during catching. In terms of the position detection accuracy analysis,
the single digit mm errors of the robot's position execution are in the same order of magnitude
as the expected (and in Section 4.2.2.1 determined) errors of the position detection system. In
terms of robotic catching, the errors of the prediction are considered to be one order of magnitude
above these errors, additionally, the general position of the robot is similar for di�erent catching
positions, and thus, the impact of these errors is considered to be minimal. Additionally, the
calibration of the robot to the camera system uses positions that are similar to the catching
positions in order to minimize this error. Improving the mastering of the robot above the best
e�ort level available would require extensive investigations on the mechanical characteristics of
the robot and the comparison with the speci�cation and thus is not done here.

Soft Catching and Velocity Synchronization

In order to enable soft catching with the KUKA LWR 4+ industrial robot, the determination of
the optimal interception position is necessary. The implementation details of the basic strategy,
developed in Section 3.3 and applied to the KUKA LWR 4+, are be given here. Based on the
mechanical estimation done in Subsection 4.3.3 the Re�exx Motion Library's (RML) (introduced in
Section 3.3) parameter of the catching movement are set to keep the robot's velocity, acceleration,
and overall stress within 90 % of the speci�ed values. During the �ight of the ball the robot's
waiting position is continuously updated based on updated interception positions, and thus, the
robot is moving, until the time for executing the �nal movement for soft catching is equal to
the predicted remaining time for the ball to �y. This �nal catching movement is extended with
a movement to decelerate the robot and the catching device while keeping the ball within the
catching device. In order to gain additional information about the precision of the prediction
in the experiment, three di�erent sizes of catching devices are used. These catching devices are
presented in Figure 4.23.

While the distance between the catching device's ring's center is 0.2 m for all of them, the inner
diameter of the ring is 80 mm, 100 mm and 110 mm. Using these di�erent catching devices allows
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Figure 4.23: Catching devices with the same distance of the center of the ring to the mounting �ange
and di�erent ring diameters (80 mm, 100 mm and 110 mm)

gaining additional information about the deviation of the prediction because the success rate of
catching depends on the tolerances of the catching device.

Timely Synchronization

The whole system's function is within the real time domain which means that besides the result
of certain calculations also the time the results is available is critical. A simple illustration is
that the interception position has to be known prior (even a certain time before) the ball actually
passes it. Otherwise, the information is worthless, and the ball will not be caught. This timely
requirement also raises the need for a relation between the individual system's time to each other
or timely synchronization. The robot controller is communicating with the remote host in a
con�gurable cycle time periodically. Due to the absence of any external clock output of the Kuka
Robot Controller (KRC), this communication is used to establish a global clock. The reception of
a UDP packet from the KRC, which is con�gured to happen each millisecond, is connected to a
kernel module in the Linux real-time kernel. A statistic module is keeping track of the reception
and a clock signal for triggering the cameras is derived (compare the master thesis [Hubss]). This
clock signal is, on the other hand, triggered based on the second light barrier of the throwing device
in order to limit the triggering of the cameras to times when a ball is thrown. The times when the
cameras are triggered are stored and thus, when information derived from these acquired images
are transferred to the remote host, the time when this information was valid can be restored.
This allows to move the robot to the catching position timely accurately. A statistical analysis
of this trigger behavior is given in [Hubss]. Based on a prede�ned movement where the robot
passes a light barrier the timely behavior of this architecture is examined. The latency of the
processing delay is compensated but a jitter in the magnitude of ≈ 300µs still exists. This jitter
can be neglected in terms of the camera's exposure time of 1 ms and the time of 9 ms between
two trigger events.
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5 Results

To test the proposed algorithms for the trajectory prediction both a simulation and a practical
experiment with an industrial robot is done. The simulation considers two state of the art mod-
els for reference, the model based on unscented Kalman �lter (UKF) parameter estimation and
iterative �ight path calculation (compare Section 4.4.1 and Section 2.2.2) and the spatially sepa-
rated model based on least square �tting of a simpli�ed physical mode (compare Section 4.4.1 and
previous work [Pon09, pg. 44�]). In addition, the results of the holistic associative prediction are
discussed in detail with two variants: one based on position association while the other based on
position change association. Here the in�uence of the database's size and the consideration of a
recent history (a certain number of position prior to the current measurement) and the in�uences
on the prediction accuracy are examined. Furthermore, the progressive associative predictions
results are presented and discussed. Again the in�uence of the main parameters (database size,
recent history size, discretization interval shape, and size) are presented and reviewed. For all the
simulation results a set of 20 throws acquired with the position detection system is used, and the
main information for the comparison is the 99 % bound of the catching position prediction error.
Whenever the values of the error are discussed without any special note, this is the meaning of
the numbers discussed. The best suitable setup is then used for the practical experiments with
the KUKA LWR 4+ robot. Here series of catching experiments of 20 throws are done with three
di�erently sized catching devices (compare Section 2.2.2.1) and thus, besides the binary informa-
tion about the catching success rate, also a dependency on the diameter of the catching device
can be used to quantify the accuracy of the prediction system.

5.1 Simulation

For the simulation results, the real process is modeled accurately in order to give valid results
for the practical experiment. The in�uences considered/modeled are: the accuracy of the camera
system (compare Section 3.1), the variation of the throwing device and the properties of the
prediction algorithm. In order to have a good measure of the accuracy which can be easily
interpreted the (optimal) catching position of the simulated �ight is compared with the catching
position of the predicted �ight. Here a problem arises due to the discrete positions with deviations
from a smooth trajectory due to the acquisition with the position detection system. This is valid
for all prediction methods (the two reference models, the holistic and the progressive prediction
model): A small deviation in the predicted trajectory can lead to the selection of an earlier or
later position in the trajectory for catching. This immediately leads to an error in the magnitude
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of the position change within one frame acquisition interval of the (simulated) camera system.
For the spatially separated reference prediction models this is only valid for the reference catching
position, but the �nal results are the same. Figure 5.1 illustrates one of these occurrences. The
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Figure 5.1: Illustration of the wrongly detected error
The reference catching position (green) is shifted in space and time, and thus the relevant error for the catch

of the ball is smaller than the calculated distance between this positions and the blue point (predicted catching

position). If, instead, the two closest position (red) are used and the normal distance to the connection of

these points is used as error measure the quantitative information on the prediction error is better

"wrong" position still lies on the �ight trajectory and based on the related change of the catching
time the position is well suitable again. In order to neglect this false error from the statistical
evaluation the neighborhood of the predicted catching position (up to 5 positions prior and past)
are compared to the reference catching position and the error is take from the two with the lowest
distance. The normal distance to the connection of these two points is calculated and used as
a measure for the prediction error. The important information for the practical experiment is
how accurately the catching position is predicted over time. The main diagrams in the following
sections indicate this relation. The magnitude of the error is used for the statistical analysis, where
the 99 % bound of the Rayleigh distribution modeled error is given as main information. For each
of these diagrams the catching time is shifted to the normalized position detection index 86 (thus,
the detected position at this time is the catching position).

5.1.1 Physics-based Prediction Results

Both reference models are used in the simulation to deal as comparison for the proposed prediction
algorithms. Here the mean catching position prediction error is given, and the statistical analysis
is illustrated as well, showing the lower and upper bound of the 99 % error band. The variation of
model speci�c parameters is not done in this case. The UKF-iterative model's initial parameters
are set based on the mean settings of multiple optimization runs.
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5.1.1.1 Spatial Separated Model Results

The spatially separated model is based on the consideration of independent movements along
the three dimensions. For each movement a closed solution is found (compare [Pon09, pg. 44�])
and depending on the dimension three or four (for the dimension where gravity is in�uencing the
movement) parameters have to be estimated in order to describe the movement. This estimation
is done based on least square �tting of the functions. The prediction results of this approach are
shown in Figure 5.2.
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(a) Mean error of the spatially separated model predic-
tion for the catching position of 20 throws over time;
Catching time is normalized to the time 0
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Figure 5.2: Illustration of the spatial separated prediction error over time
Catching time is normalized to the 86 time instant. Figure 5.2(a) shows the development of the mean error

for 20 throws over time, Figure 5.2(b) shows the (Weibull) distribution with the 99 % con�dence bounds;

overall the prediction error's band is relatively big more than 35 frames before the catching time, after that

the signi�cantly decreases and is stable with an upper bound of approximately 5 cm

Figure 5.2(a) shows unexpected behavior in between 80 and 40 frames before catching where the
mean prediction error is decreasing, increasing and decreasing again. This behavior is due to the
low numbers of the successful �ts/predictions in the early �ight phase. The spatially separated
prediction is getting stable only in the area of 45 frames before the catching time. Also, the step
10 frames prior to catching is caused by one �ight that can only be predicted accurately in the
very �nal phase.

5.1.1.2 Unscented Kalman Filter Estimated & Iterative Model Results

The combination of the (unscented) Kalman �lter estimation and the iterative model trajec-
tory calculation for prediction is the most frequently used approach for research work on robotic
catching (compare Section 2.2.2). The �lter estimates the measurement errors of the position
observation system and the state of the �ying ball, based on a physical model. The prediction
errors for the 20 throws are shown in Figure 5.3.

Figure 5.3(a) illustrates the mean error over time. The smooth line decreases signi�cantly until
60 frames before the catch (after that the error is below 5 cm). Then the mean error continuously
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(a) Mean catching position prediction error of the EKF-
iterative model over time; Catching time is normal-
ized to the time 0
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Figure 5.3: Illustration of the spatial separated prediction error over time
Catching time is normalized to the time 0. Figure 5.2(a) shows the development of the mean error for 20

throws over time, Figure 5.2(b) shows the (Weibull) distribution with the 99 % con�dence bounds

decreases furthermore from there to 0 cm. In terms of the error band the upper band (shown in
Figure 5.3(b)) of the errors is below 5 cm from the bin of 31 to 35 time steps before the catching
time and below 2 cm from the bin of 11 to 15 time steps before.

5.1.2 Bio-inspired Prediction Results

The bio-inspired prediction is tested with the same set of 20 �ights as the analytical reference
models in the simulation. For both approaches, a number of parameters exist. The in�uences of
variations in these parameters (e. g. number of �ights in the database) are investigated based
on the variation of these parameters. In order to provide a good overview of the in�uences, the
individual impacts are carved out based on the prediction errors (similar to the analysis of the
reference algorithms). The database with the �ights used for the prediction is calculated based
on the determined launching parameters of 82 �ights where an iteratively calculated trajectory is
�tted based on Monte Carlo Simulation with 4000 samples and 4 iterations, each using the best
previously found trajectory as a base and reducing the variations to one-third.

5.1.2.1 Holistic Associative Prediction Results

In the holistic prediction, the stored positions of �ight are compared with the current �ight and
the future trajectory of the current throw is predicted based on a similar trajectory in terms of
positions. The approaches' prediction results are discussed in the following paragraphs.

One main parameter of the position-based prediction is the size of the database for prediction.
This parameter has an in�uence on the prediction accuracy and the time necessary for calculating
the prediction (even in the case of calculating it on a parallel architecture unless all trajectories
can be processed in parallel). The �rst analysis of the prediction results is targeting this para-
meter. In addition also, the in�uence of the number of positions considered for the comparison is
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analyzed. Again this parameter has an in�uence on the processing time (as more positions have
to be compared) and it is assumed that also the prediction accuracy depends on it (as individual
measurement errors of the position detection system are less important).

Database Size The illustration of the holistic prediction's results with variable database size
is compared in Figure 5.5. Each of the �rst �ve diagrams is devoted to one recent history size
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(b) Prediction accuracy dependancy
with 16 recent samples
For 16 recent samples the predic-

tion accuracy's dependency on the

database size is signi�cant again.
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(c) Prediction accuracy dependancy
with 32 recent samples
With 32 recent samples the predic-

tion results gain stability through-

out the �ight and each increase in

database size shows (small) bene�ts

for the prediction accuracy
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(d) Prediction accuracy dependancy
with 64 recent samples
For 64 recent samples the behavior

of 32 samples is shown again but

overall the accuracy is increased

flight time [camera samples]
-80 -70 -60 -50 -40 -30 -20 -10 0 10

δ
e
 [m]

0

0.1

0.2

0.3

0.4

0.5 256 traj. in DB
512 traj. in DB
1024 traj. in DB
2048 traj. in DB

(e) Prediction accuracy dependancy
with all recent samples
The prediction error is very similar

to the version with 64 recent sample

positions

flight time [camera samples]
-80 -70 -60 -50 -40 -30 -20 -10 0 10

rel δ
e
 [m]

0

0.5

1

1.5

2

(f) Relative prediction accuarcy de-
pendancy with 64 recent samples
A database size of 2048 entries is

used for the nominal value and o�ers

25 to 35 % lower prediction errors

Figure 5.4: Illustration of the holistic prediction error over time
Catching time is normalized to the time 0. The recent history is �xed for each individual diagram. For

32 recent samples and more 1024/512/256 entries show ≈ 20/30/35% higher prediction errors in the �nal

phase than 2048 entries

(number of positions considered for the similarity determination; 8, 16, 32, 64 and 99/all as
options) and the sixth is showing the relative error in case of 64 recent positions. The size of
the recent history is the maximum of the positions considered. This has to be noted especially
for the initial �ight phase where the number of determined positions is (can be) smaller than the
number of the recent samples. Also, the version with 32 recent position is similar the one with
64 recent positions for the �rst 32 positions. For short recent histories (8 and 16 positions) the
in�uence of the database's size is minor due to instability because of the low number of samples
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and the sensitivity to measurement noise, especially in the middle phase of the �ight when the
ball's vertical movement is slow. Here shifts in the prediction can occur and cause prediction
errors. For the bigger recent history sizes increased database sizes show an increased prediction
accuracy for the main (especially the last two-thirds) part of the �ight. Overall the result is: the
bigger the database's size, the better the prediction accuracy.

Number of Recent Samples In comparison to the previous illustration Figure 5.5 shows
di�erent recent history sizes at a �xed database size per diagram.
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(a) Prediction accuracy dependancy with 256 database
entries
The versions with 8 and 16 recent positions signi�cantly

di�er for the others in the second �ight phase quarter
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(b) Prediction accuracy dependancy with 512 database
entries
Again the variants with 8 and 16 recent positions show

bigger prediction errors in the second quarter of the �ight
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(c) 1024 database entries
The variants with 8 and 16 recent positions still show

bigger prediction errors but the magnitude, especially of

the 16 position version is signi�cantly smaller than at

lower database sizes
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(d) 2048 database entries; similar behavior to
256/512/1024

Figure 5.5: Illustration of the holistic prediction error over time
Catching time is normalized to the time 0. The database size is �xed for each individual diagram

The main behavior for all trajectory sizes is similar: 8 and 16 recent positions considered leads
to bigger prediction errors through main parts of the �ight. 64 recent positions and more show
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similar errors for all trajectory sizes. In the very �nal part of the throw, the small recent history
sizes manage to deliver better prediction results than the bigger ones due to the ability to adapt
to the current situation better.

Comparison and Discussion For all combinations, a recent history size of 8 or 16 positions
leads to instability in the prediction and causes bigger errors, especially in the middle �ight
phase. For bigger recent histories only small bene�ts exist when moving from 32 to 64 positions
and minimal bene�ts when moving from 64 to all/99 positions. In initial phase all (from 32 on)
are same because of the limited number of recent window size (number of positions detected is
the maximum number of positions compared). This lead to the conclusion that a size of 32 recent
position is a good trade of between calculation demands and prediction errors. In case additional
positions can be considered without performance implications, a bigger recent history size still
improves the prediction accuracy.

The in�uence of the database's size is more signi�cant when using recent windows sizes of more
than 32 positions that are the recommendation based on the analysis in the previous paragraph.
For 32 recent positions considered both, 1024 and 2048 entries, deliver similar prediction results
with small advantages for the higher database size. For the bigger recent history sizes the bigger
database deliver more than 20 % better prediction results than a database size of 1024 entries
(compare Figure 5.4(f)).For the implementation doubling the database's size results in double the
processing power required to consider all trajectories. Based on this fact the ideal combination of
parameters for the implementation of the holistic associative prediction is 1024 trajectories in the
database and a recent sample window of 64 positions. For the database size, an increase still leads
to a more accurate prediction, but the trade-o� for processing requirements has to be considered.

Overall the signi�cant prediction error in the �nal �ight phase shows a major problem of the
position-based prediction: A very close �t to the current trajectory has to exist in order to allow
an accurate prediction. The dependency on the absolute positions is a big restriction on the
usability of predictions in the database for prediction.

5.1.2.2 Progressive Associative Prediction Results

The progressive prediction based on the position change has the same parameters as the variant
based on the positions: database size and recent windows size. Again the in�uence of varying
these parameters on the prediction accuracy (upper bound of the 99 % error band) is done. A
main di�erence is that the relative movement of the ball is considered which allows to use a
the prediction database's entries more general which should lead to more accurate prediction,
especially in the �nal �ight phase.

Database Size In Figure 5.6 the in�uence of changing the database size while keeping the
recent windows size constant is illustrated. For all the recent history sizes the dependency of the
prediction accuracy on the database's size is insigni�cant. The suggested behavior, that fewer
entries in the database still allow an accurate prediction (raised in Section 3.2.2) is con�rmed by
the simulation.

112



Results

flight time [camera samples]
-80 -70 -60 -50 -40 -30 -20 -10 0 10

δ
e
 [m]

0

0.1

0.2

0.3

0.4

0.5

(a) Prediction accuracy dependancy
with 8 recent samples
For 8 recent samples the predic-

tion accuracy's dependency on the

database size is minor. In the mid-

dle �ight phase the prediction error

is rather big
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(b) Prediction accuracy dependency
with 16 recent samples
For 16 recent samples the predic-

tion accuracy's dependency on the

database size is again minor. In a

short phase in the middle of predic-

tion error is rather big
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(c) Prediction accuracy dependency
with 32 recent samples
Using 32 recent samples the pre-

diction accuracy's is improved in

the middle �ight phase compared to

short recent histories; minor in�u-

ences of the database's size
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(d) Prediction accuracy dependency
with 64 recent samples
At 64 recent samples the in�uence

of the database's size is invisible

through out the �ight, overall the

prediction error decreases and is

more continuous
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(e) Prediction accuracy dependency
with all recent samples
When considering all recent posi-

tions the in�uence of the database's

size is invisible through out the �ight

similar to 64 recent samples
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At 64 recent samples the in�uence

of the database's size is invisible

through out the �ight, overall the

prediction error decreases and is

more continuous, especially for big-

ger databases

Figure 5.6: Illustration of the progressive prediction error over time
Catching time is normalized to the time 0. The recent history is �xed for each individual diagram

Number of Recent Samples The second part of the progressive prediction error analysis is
targeting the recent history windows size's in�uence on the prediction accuracy. Figure 5.7 shows
the prediction errors with �xed database sizes while varying the size of the recent window in the
individual diagrams. The main behavior for all trajectory sizes is similar: bigger recent window
sizes lead to more accurate prediction results, especially in the middle and last part of the �ight.
For the database sizes of 1024 and 2048, the recent histories of 64 and 99/all show very similar
prediction accuracy. Using 32 recent positions instead leads to a bigger error in the middle part of
the �ight path prediction. The variants with 8 or 16 recent positions deliver substantially worse
prediction accuracy.

Comparison and Discussion For all database sizes the bigger recent history windows result
in a prediction error that decreases earlier, and lower prediction errors are achieved overall as well.
Longer recent windows than 64 positions do not yield in any further bene�t.
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(a) Prediction accuracy dependency with 256
database entries
In the main part of the �ight the higher numbers of

recent positions considered show signi�cantly better

prediction results
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(b) Prediction accuracy dependency with 512
database entries
The behavior here is similar to the behavior with a

database size of 256. Lower recent history sizes de-

liver worse prediction results throughout the main

part of the �ight
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(c) Prediction accuracy dependency with 1024
database entries
For 1024 database entries a similar behavior to the

smaller database sizes is shown
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(d) Prediction accuracy dependency with 2048
database entries
2048 entries in the database the main characteris-

tics stays the same

Figure 5.7: Illustration of the progressive prediction error over time
Catching time is normalized to the time 0. The database size is �xed for each individual diagram

In terms of the database's size, the in�uence of this parameter is interestingly small.This proves
the assumption raised in Section 3.2.2 that moving away from the absolute position to changes
causes a generalization of the data, and thus smaller databases lead to better prediction result and
the bene�t of moving to bigger ones is small to non-existing. To prove this assumption additional
simulation runs with a further reduced size of the database down to only two trajectories were
made. The results are shown in Figure 5.8 for a recent sample window of 64 positions. Overall the
prediction error in the �nal phase is small as this prediction model is able to use the information
more widely than by example the position-based prediction.

Even the tiny database of 2 trajectories allows to predict the �ight with reasonable accuracy. More
occupied databases lead to better results but still the general application of the small database's
content is remarkable. This is valid especially in the �nal phase of the �ight. While the relative
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(a) Prediction accuracy dependency with 1024
database entries
For 1024 database entries a similar behavior to the

smaller database sizes is shown
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(b) Prediction accuracy dependency with 2048
database entries
2048 entries in the database the main characteris-

tics stays the same

Figure 5.8: Prediction accuracy dependency with 64 recent samples; further reduced database size down
to 2 trajectories

error shown in Figure 5.8(b) is signi�cantly bigger for smaller databases the absolute error of the
progressive prediction is small compared to the holistic prediction by example. This means that
the overall error (compare Figure 5.8(a)) is still on a low level.

5.1.2.3 Progressive Associative Prediction Results with additional Discretization

The progressive associative prediction is examined in a similar way to the previously discussed
prediction approaches. The upper bound of the 99 % error band is the measure discussed for the
catching position prediction. The following diagrams will again show this parameter over time. For
this approach, the number of parameters is signi�cantly bigger than for the previous approaches.
Both, the database size and the number of recent samples considered, have been parameters of
the holistic associative prediction and in addition, the number of points considered in the recent
sample window and the discretization interval are additional parameters. The in�uences of these
parameters will be discussed with some examples in the following paragraphs.

Results of Parameter Variation

Overall the number of di�erent parameter combination is 840 (4 database sizes (256, 512, 1024 and
2048 trajectories), 5 di�erent recent windows sizes (8, 16, 32, 64 and 99/all), on average 7 di�erent
numbers of supporting points (5 for 8 recent samples, 6 for 16 recent samples, 7 for 32 recent
samples, 8 for 64 recent samples and 9 for 99 recent samples) and 6 di�erent discretization intervals
(either uniform or camera adapted relations between x/y/z-discretization steps and additionally
the following factors: 1

4 , 1 and 4). Similarly to the holistic associative prediction the database
size's and the number of recent samples' in�uence will be discussed �rst followed by the number
of supporting points and the discretization interval. Because of the relation to the progressive
prediction without additional discretization, the �ndings of the previous section are the starting
point for the analysis here.
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Database Size In order to provide a good overview of the database's size in�uence on the
prediction accuracy a number of parameter combination of the other parameters are chosen and
the related diagrams are shown in Figure 5.9. For the diagrams shown in Figure 5.9(a) and
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(a) Prediction accuracy dependency with 64 recent sam-
ples down to a database size of 2 trajectories
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(b) Relative prediction accuracy dependency with 64 re-
cent samples down to a database size of 2 trajectories
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(c) Prediction accuracy dependency with 64 recent sam-
ples down to a database size of 2 trajectories
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(d) Relative prediction accuracy dependency with 64 re-
cent samples down to a database size of 2 trajectories

Figure 5.9: Illustration of the progressive prediction error over time; Catching time is normalized to the
time 0; uniform discretization is used for the top diagrams and RANSAC-adpated for the
bottom two
The in�uence of the databases size is relatively small and even tiny databases allow an accurate prediction.

The RANSAC-adpated discretization shows bigger prediction errors which will be analyzed in Figure 5.13

and Figure 5.14 in more detail

Figure 5.9(b) the discretization interval is uniform. The same relation between prediction accuracy
and database size as for the progressive prediction is shown. The in�uence of the database's size
on the prediction accuracy is minor for the whole �nal �ight. Also the extension of the database's
size variation down to 2 entries is shown and again tiny databases allow to predict the �ight with
reasonable accuracy. This is comparable with the behavior of the progressive prediction where only
extremely small databases led to signi�cant larger prediction errors. The same is valid for the same
parameter combinations but a discretization interval adapted to the camera system's accuracy.
The error diagrams are shown in Figure 5.9(c) and Figure 5.9(d) and the interpretation is the same.
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The conclusion here is that the database size has a minor impact on the prediction accuracy down
to very small databases. As the database size has a clear impact on the processing time for the
calculation or memory requirements the size can be chosen adequately to �t the timing/memory
constraints of the prediction system. The database's size also has a direct direct in�uence on
the numbers of velocity measurements within one voxel/velocity class (compare Figure 4.18 in
Section 4.4.1). The occupancy of the individual voxels for the parameters database size and
discretization intervall are exmained in the paragraph related to the discretization intervall of this
section.

Number of Recent Samples The number of recent samples considered for the similarity
determination has an impact on the computation time as this proportionally depends on the
number of database accesses. For each additional position considered the linked list has to be
followed one more step and the distance calculation also has to be done to the additional position.
Due to this behavior, a low number of recent samples is of advantage. Another positive aspect of
a low recent history size is that the reaction to possible changes in the environment (sudden side
wide for example) is faster as this change is relatively more relevant to a shorter recent history.
On the other hand, a longer recent history is assumed to deliver a more accurate prediction
because more positions are compared and thus the similarity search is profound. The results
of the examination are shown in Figure 5.10 for uniform discretization. The recent history's
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(a) Prediction accuracy dependency with a database size
of 2048 and variable recent samples
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(b) Relative prediction accuracy dependency with a
database size of 2048 and variable recent samples

Figure 5.10: Illustration of the progressive prediction error over time; Catching time is normalized to
the time 0; uniform discretization is used
The in�uence of the recent history size is relatively small above 32; 16 and especially 8 recent samples show

signi�cantly bigger errors in the middle �ight phase

in�uence on the prediction is signi�cant for the lower recent history sizes of 8 and 16 positions
where the prediction error, especially in the middle part of the �ight phase is up to 50 % bigger
than for higher recent sample numbers. The di�erences between the higher numbers of positions
considered are insigni�cant. Figure 5.11 shows the same examination for the RANSAC-adapted
discretization. In general, the same behavior as for the uniform discretization interval is shown.
The extend of the in�uence on the prediction error is smaller in this case. The relative error for
predicting with only eight recent samples is, at all times, smaller than 150 % of the error in the
case when predicting with 99 recent samples.
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(b) Relative prediction accuracy dependency with a
database size of 2048 and variable recent samples

Figure 5.11: Illustration of the progressive prediction error over time; Catching time is normalized to
the time 0; RANSAC-adpated for the bottom two
The in�uence of the recent history size is relatively small for above 32

Number of Supporting Points Depending on the size of the recent history window (number
of recent samples considered) the number of supporting can be varied. In order to do this variation
systematically each step of reduction approximately halves the number of points considered. The
detailed number of points considered for the similarity determination for the variants of recent
samples are given in Table 5.1. At the beginning of the �ight, the number of acquired positions is

recent samples variants of additional supporting points

8 0 1 2 3 6

16 0 1 2 4 7 14

32 0 1 2 4 8 15 30

64 0 1 2 4 8 16 31 62

99 0 1 2 3 6 12 24 49 97

Table 5.1: Additional supporting point variants in dependency on the number of recent samples; �rst
and last velocity measurement are always considered

limiting the number of recent samples and thus also the number of supporting points is adapted
accordingly. The prediction error's dependency on the number of supporting points is shown in
Figure 5.12(a) and Figure 5.12(b). For the uniform discretization, the in�uence of the supporting
points considered is signi�cant. The fewer points considered the bigger the prediction error for
most of the �ight path's parts. Here the assumption that more points for the similarity calculation
deliver a better quality measure. Figure 5.12(c) and Figure 5.12(d) show the same illustration
for the RANSAC-adapted discretization. Interestingly the relative error's dependency on the
number of supporting points is less pronounced here. Overall the error of the RANSAC-adapted
discretization is ≈ 3 % bigger than for the uniform discretization. This aspect will be discussed
in more detail in the following section.
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(a) Prediction accuracy dependency with a database size
of 2048 and a variable number of supporting points
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(b) Relative prediction accuracy dependency with a
database size of 2048 and a variable number of sup-
porting points
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(c) Prediction accuracy dependency with a database size
of 2048 and a variable number of supporting points
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(d) Relative prediction accuracy dependencywith a
database size of 2048 and a variable number of sup-
porting points

Figure 5.12: Illustration of the progressive prediction error over time; Catching time is normalized to
the time 0; uniform discretization is used for the top diagrams and RANSAC-adapted for
the bottom two
The prediction error is increasing as the number of supporting points decreases for the uniform discretiza-

tion

Discretization Interval For the variation of the discretization interval, two main aspects are
predominant. One aspect the volume of one discretization voxel in space and the second is the
shape of the discretization voxel. The larger this voxel is, the larger the prediction uncertainty
due to the discretization is as well. On the other hand very small voxels cause the search time
to rise signi�cantly because the population of the voxels with entries of velocities is sparse. The
standard voxel used for the simulation has a uniform side length of 1 mm

frame = 0.1 m
s . This voxel's

size is scaled up and down with the following factors: 1
4 , 1 and 4 resulting in a 1

64 to 64 times the
volume of a voxel. In addition, the hypothesis that considering the position detection system's
accuracy for the determination of the voxel's shape is bene�cial is tested. For this, the accuracy
of the position detection system in the three directions is used as the proportion for the voxel's
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shape. Again the scaling factors for 1
4 to 4 are used. The in�uence of the used scaling factor on

the prediction error for the uniform voxel is shown in Figure 5.13 for uniform discretization in the
top row and RANSAC-adapted discretization in the bottom row.
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(a) Prediction accuracy dependency with a database size
of 2048 and three discretization intervals
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(b) Relative prediction accuracy dependency with a
database size of 2048 and three discretization inter-
vals
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(c) Prediction accuracy dependency with a database size
of 2048 and three discretization intervals

flight time [camera samples]
-80 -70 -60 -50 -40 -30 -20 -10 0 10

rel δ
e
 [m]

0

0.5

1

1.5

2

2.5

3

(d) Relative prediction accuracy dependencywith a
database size of 2048 and three discretization inter-
vals

Figure 5.13: Illustration of the progressive prediction error over time; Catching time is normalized to
the time 0; uniform discretization is used for the top diagrams and RANSAC-adapted for
the bottom two
The prediction error is increasing as the discretization interval increases for the uniform discretization

signi�cantly when moving to four times the interval. For the RANSAC-adapted discretization the in�uence

is less pronounced but also visible for the decreased interval size which leads to more accurate prediction.

The in�uence of the discretization interval's scaling is stronger at the uniform discretization but
only when moving to four times the interval's size. Using a smaller interval does not show bene�ts
there (compare Figure 5.13(a) and Figure 5.13(b) for 32 recent samples with all points used for
comparison). Figure 5.13(c) and Figure 5.13(d) show the error diagrams for the 64 recent samples
but for the adapted discretization interval as the basic unit for the scaling. The behavior here is
the similar to the case with the uniform discretization interval but less signi�cant and moving to
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a smaller prediction interval shows bene�ts in this case.

Figure 5.14 shows a prediction error's comparison for uniform and RANSAC-adapted discretiza-
tion intervals for 2048 databases and 64 recent samples with all recent samples considered. The
results presented show that the uniform prediction at a discretization interval of 1

4 and 1 are on par
with the RANSAC-adapted at 1

4 . The RANSAC-adapted prediction than shows lower increases
in the prediction error as the discretization interval is increased which causes the uniform interval
with a factor of 4 performing worst. One might argue that the smoothing of the trajectory renders
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(a) Prediction accuracy dependency with a database size
of 2048, 64 recent samples and variable discretization
intervals
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(b) Relative prediction accuracy dependency with a
database size of 2048, 64 recent samples and vari-
able discretization intervals

Figure 5.14: Illustration of the progressive prediction error over time; Catching time is normalized to
the time 0;
The uniform discretization leads to the most accurate prediction at factors of 1

4
and 1 and the least accurate

at 4. The RANSAC-adapted discretization is on par at 1
4
and within at the two remaining factors.

the tracking error of the position detection system insigni�cant. This argumentation is clearly
comprehensible but in this special case, the largest uncertainty in the tracking system aligns with
the main motion direction of the tracked object as the ball is thrown away from the cameras.
Adapting the discretization interval's size to the prevailing velocity is done here implicitly which
would also be an interesting topic to elaborate further on. On the other hand, if the system was
to be used for more general movements in any directions this makes this optimization impossible
due to the general application.

5.1.3 Discussion of the Simulation Results

While the previous sections were devoted to �nding the optimal parameters within the individual
proposes approaches here, the approaches are compared with the reference approach, the UKF-
iterative approach. Figure 5.15 shows the absolute and relative (to the UKF-iterative approach)
prediction error. Again the upper bound of the 99 % error band is used for comparison. All the
prediction models introduced show a better prediction accuracy for the �rst half of the �ight. In
the later part, only the progressive prediction variant with 64 recent positions considered bests
the reference approach with the progressive prediction with discretization showing a little bigger
prediction error in the magnitude of less than 30 %. The errors at the time when the reference
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Figure 5.15: The comparison of the prediction error in Figure 5.15(a) shows that all own contributions
show better prediction accuracy in the �rst third of the throw. In the second third, the
bene�ts of the holistic prediction with 32 recent positions are also visible. The relative
comparison in Figure 5.15(b) illustrates the di�erences in the �nal part better. In this area
the UKF-iterative reference

model bests the progressive prediction with discretization are already at ≈ 4 cm. The Table 5.2
shows when the individual approaches manage to predict the catching position within di�erent
thresholds. The table shows a clear advantage for the progressive prediction model when having a

prediction variant frames before catching when

prediction error is below

5 4 3 2 cm

progressive w. discretization 40 30 25 15

holistic 25 5 - -

progressive 80 75 40 35

UKF-iterative 35 35 35 15

Table 5.2: Number of supporting point variants in dependancy on the number of recent samples

look at the time when the accuracy is below 2 cm which is the accuracy speci�ed as the requirement
for successful catching in related work [BBW+11, pg. 514]. Reaching this accuracy earlier allows
to prepare the movement of the robot on time and gives headroom for the usage of the soft
catching approach proposed in Section 4.3. The progressive prediction with discretization reaches
this threshold at the same time as the UKF-iterative reference model and the holistic prediction
never reaches this threshold. This result renders the progressive prediction without discretization
as the most suitable prediction for the practical experiment and shows the possibilities of the
progressive prediction with discretization for more general problems.
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5.2 Implementation

Additional evaluation of the prediction results of the simulation presented in the previous subsec-
tion is done in a series of practical throws. The experiment setup is described in Section 4.5 and
the environment, including the modeling of the environment, is described in Subsection 4.2.2, the
used throwing device especially in Subsection 4.2.2.2. The catch rate for the three catching devices
with a diameter of 80 mm, 100 mm and 110 mm are determined for the soft catching strategy
introduced in Section 4.3.3. The di�erently sized catching devices allow putting the success rate
in relation to the prediction accuracy determined in the previous section. Table 5.3 shows the
catching rates achieved in experiments with 50 throws and the three catching devices. An image

dcat−dev 80 100 110 mm

50 throws
20 42 43 successful catches

40 84 86 success rate in %

Table 5.3: Catching rates of the robot with soft catching strategy and three di�erently sizes catching
devices (compare Figure 4.23)

series, containing the 1st, 37th, 82nd, 85th, 88th and 94th image acquired by the cameras of a
successful catch is shown in Figure 5.16. The left column is showing the �rst three image pairs of
the series while the right column is showing last three image pairs. The soft catching movement is

Figure 5.16: Image series of a successful catch; top row left images; bottom row right images; 1st, 37th,
82nd, 85th, 88th and 94th

illustrated in the images of the 82nd to the 94th frame. The robot is moving along the path of the
ball during catching. The catching device used in Figure 5.16 is the biggest catching device with
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110 mm diameter. Additionally images of the same thrown acquired with two external cameras,
that are synchronized with the main cameras, are shown in Figure 5.17 for the overview in Figure
and a series illustrating the details of the soft catching from the side is given in Figure 5.18.
The series in Figure 5.18 shows the adaption of the robot's position during the �ight of the ball.

Figure 5.17: Image series of a successful catch; images are synchronized with the ones shown in Fig-
ure 5.16

The robot's positions in the �rst three images di�er signi�cantly and show the adaptation to the
prediction during this time. Another image series, showing the sensitivity of catching process,

Figure 5.18: Image series of a successful catch; images are synchronized with the ones shown in Fig-
ure 5.16

is given in Figure 5.19. The catching device used in this case is the smallest one with 80 mm
diameter. A sequence of 15 images is given (84th to 98th frame of the throw). The catch is not
successful as the ball bounces four times on the corners of the catching device. This lowers the
relative velocity between the ball and the catching device, and because the trajectory of the robot
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Figure 5.19: Image series of an unsuccessful catch; left and right images side by side; �rst column frame
84th to 88th; second column frame 89th to 83th; third column frame 94th to 98th

is di�ering from the ball due to the robot's constraints and the used soft catching algorithm, the
ball is not caught. An additional evaluation of the system's timing aspect is given in the [Hubss].
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6 Conclusion and Future Work

In the introduction to this work, a number of questions have been raised, and the answers to
this questions can be given based on the results achieved here. It is important to note that the
work presented here is initial work while, for example, the reference prediction algorithm, more
explicatively the unscented Kalman �lter, is an algorithm that has been developed for 55 years
now with the iterations of the original Kalman �lter, the extended Kalman �lter and �nally the
unscented Kalman �lter. For the future, the prediction approach, presented here, has a lot of
potential for improvement, and some ideas are outlined in the second section of this chapter.

6.1 Conclusion

While the motivation of this work is based on the transport-by-throwing approach, I would like
to start this section by citing the conclusion of related work.

"To make a virtue out of necessity: One contribution of robotic sport activities is to operate robots
in a regime that reveals problems which remain unnoticed in more forgiving applications. This
is actually similar to sports training, where the goal is to come closer and closer to the level of
performance the human body can do in principle." [BFB11, pg. 5962]

During the work on the presented topics, especially on the experiment, the limits of the state
of the art technologies and algorithms has been visible many times. This is valid for all three
subunits (tracking system, prediction system, and robot control system). Improvements in all the
three regimes will lead to more successful object catching.

Raised Questions

In the introduction, the following questions have been raised, and the related answers will be given
here:

Why are analytical/physical approaches not working perfectly? The answer to this
question can be given based on the results presented in Section 4.2.2.1 and Section 4.2.2.2. One
one hand even an optimized vision system (with feedback from the further processing steps) only
achieves a tracking accuracy of ≈ 2 cm (99.5 % error band bound) for the main parts of the
observed �ight trajectory. This is in the same magnitude as the required prediction accuracy in

126



Conclusion and Future Work

for catching (compare Section 5.2 and [BBW+11]). If basic data's error is in the same order of
magnitude as the required accuracy of the prediction even the best algorithms, that also model and
consider the measurement errors, like the unscented Kalman �lter cannot ful�ll the task. On the
other hand, the modeling of the ball's trajectory with the iterative model also showed that even
with additional parameter variation of the drag coe�cient (and implicitly the mass of the tennis
ball) the estimation errors were two times the errors of the other methods. Here multiple factors
have in�uences: A spin on the thrown ball can cause a change in the drag coe�cient. Variations
of the balls (felt and mass) thrown can cause variation of the �tted parameters. Variations of
the temperature can cause variations in the drag coe�cient. Summing up: there are a number
of physical e�ects that are not modeled accurately and even if they were modeled accurately
the acquisition of the required information and processing of the data would be a big challenge.
An example for a successful accurate modeling of more complex �ight parameters is the work
presented in [Fra12], where self-stabilization of cylindrical objects is used for successfully catching
98 % of the thrown objects.

What is a suitable representation of the data? This question is answered by the predic-
tion results, shown in Section 5.1, especially Subsection 5.1.3. Moving from positions to position
changes or velocities has the advantage that the stored data can be used more general and widely
for the prediction. This causes a better prediction accuracy. When additional steps (here dis-
cretization) are used to reduce the search complexity and improve the search speed basically similar
results can be achieved, but the additional discretization can cause additional errors. These errors
are depending on the discretization interval and as shown in Section 5.1.3 these errors can be
insigni�cant if the interval is small enough. This means that the errors are below the errors of the
tracking system, and thus the prediction accuracy is on par with the standard variant considering
the position change.

How to keep the memory consumption of the experience low? In a general context,
even the largest database used for the experience-based prediction has a size of only 5 Megabyte.
For current PC systems, this database even �ts into the cache of a CPU. Hence, the memory
consumption is generally rather low here. In terms of the used GPU (Graphics processing unit)
also the onboard RAM has approximately 1000 times the size. Still for the general context
the usage of further discretization (as discussed in Section 3.2.2) allows to reduce the overall
required amount of data, especially for big datasets where the initial overhead is relatively small.
A second aspect to keep the memory consumption low is shown in Section 5.1.2.2. When the
data representation is suitable (here position change), even tiny datasets (tested with down to 2
trajectories) can lead to relatively good prediction results. This is valid for both the progressive
prediction without and with additional discretization. Here the introduced approach for prediction
shows the potential for embedded applications, where power, area, and performance are the main
limiting requirements.

How to associate current processes or events with previous events? The association of
the current �ight with the stored trajectories in the database can be done on currently available
parallel processing units like GPUs with brute force. These architectures allow to process a sig-
ni�cant amount of data in short time as long as the processing steps have reduced complexity and
have to be applied to multiple data. This is exactly the case when comparing one (current) tra-
jectory with multiple (stored) ones. In addition also more e�cient algorithms for �nding similar
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velocities within a bigger dataset can be used. One approach is introduced and discussed in Sec-
tion 3.2.2 and evaluated in Section 5.1.2.3. Additionally, to these approaches, further combination
of similar trajectories could be done, but this is left for future work at this stage.

How can general application of the data to current trajectories be achieved? Pre-
dicting the trajectory of mechanically thrown ball is a rather constrained problem compared to
predicting a ball thrown by a human from random positions. For the second case, e�cient data
storage and association are higher on the priority list than in the �rst case. The results here
show that the �rst challenge can be addressed well with brute force approaches using the position
change data. For a more general prediction, the usage of the additional discretization will have
bene�ts in terms of the association complexity and thus prediction performance in terms of time.
The error introduced due to the discretization has to be considered in relation to the required
prediction accuracy. Using the discretization is basically the same procedure as using a symbol for
the movement - this it is comparable to the current understanding of the processing in biological
systems which, in general, is expected to be e�cient and e�ective.

General Remarks

Additionally to the questions raised in the �rst chapter more aspects of the results obtained are
worth mentioning.

Vision System Using the feedback from the triangulation for limiting the allowed radii in the
next circle detection step increased the position detection system's accuracy signi�cantly. This
feedback on one hand allows this better accuracy but in a case of false detection, it can also lead to
missdetections in the following frame and possible all consecutive ones. Here again, the biological
system show higher stability despite using multiple feedbacks of information. The mechanism
behind this property would be highly useful for technical systems as well.

Human Catching The work presented here and in related work shows how sophisticated the
biological archetype, the human, is in terms of object catching. Despite using slow �ying balls,
cameras with a high resolution, state of the art image processing algorithms with additional
feedback and either state of the art or self-proposed prediction algorithms the prediction accuracy
is in the range of ≈ 2 cm. Especially in sports, for well trained humans, the capabilities of
the technical systems are comparable restricted. Here elaborating research on the mechanism in
biological systems can lead to better results for the technical systems as well.

The open issues in the regime of robotic sports will require additional research work in many
aspects until the performance of humans will be reached or even bettered.

6.2 Future Work and Outlook

The work presented here contains contributions in three main aspects. The future work is struc-
tured in this three main aspects in the following paragraphs. Some of the topics raised are relevant
in more than one aspects so the related ideas will be mentioned in each section.
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Vision System

For the vision system, the tracking accuracy improvement is the main aspect. Further improving
the tracking accuracy will lead to more accurate prediction results for all subsequent prediction
algorithms, either physics based or experience based. This improvement can be done based on
the object detection algorithm.

Object Detection The RANSAC algorithm used here is based on the edge detection of the ball
on the background. The processing power of current systems allows to use more algorithms for
object detection in parallel, and the combination of this information might lead to better tracking
accuracy. In the images processed here, the di�erence between the detected edge and the real
outline of the ball was noticeable in some cases. Calculating the ball's position in space with
stereo triangulation causes small deviations in the ball's position in the images to result in bigger
deviations in the ball's distance from the camera system.

Temporal Resolution Another possibility to improve the tracking accuracy is in terms of the
temporal resolution. The usage of areas of interests (AOIs) of the whole image for the further
processing only allows to increase the frame rate in case of a bandwidth limit of the interface as
it is the case here. Additionally, the calculation demands are decreased as only a subset of the
pixels has to be processed. In this work this ideas was used but the implementation was limited
due to the camera driver's support. Based on an experiment a frame rate of > 350 fps could be
achieved. This additional information can be used to reduce the mean tracking error further.

Multi-Cameras The usage of more cameras is another aspect that can lead to increased track-
ing accuracy. The magnitude of this method's success has to be questioned, evaluated and tested.
On the other hand, as the tracking error for the optimized tracking system shown in Section 4.2.2.1
is close to constant for a distance of 0.5 m to 3 m. This allows the assumption that the error
caused by the spatial quantization of the camera's pixels is not in the same order of magnitude
as the overall error, and another aspect (e. g. the edge detection and RANSAC circle detection)
is the main reasons for the error. Still this approach should be examined and evaluated.

Cost-e�cient Cameras It is mentioned in the previous paragraph already that the tracking
error of the camera system does not seem to be bound by the spatial resolution of the camera
systems (it has close to constant for distances of 0.5 m to 3 m, compare Figure 4.11). This
circumstance opens the �eld for usage of cameras with lower resolution and thus also lower cost.
Additionally, if the hardware support is improved, the usage of the AoI of the used cameras should
allow increasing the frame rate up to the range of 350 fps for the used cameras. This means that
cameras with better hardware support and lower (spatial and temporal) resolution should enable
a similar tracking accuracy with lower demands on the interface bandwidth, image processing and,
economically relevant, cost.

Prediction System

As mentioned in the introduction of this chapter the bio-inspired approach for object catching
is here in a very early stage. Experience based prediction can still be improved in many areas.
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Further knowledge about the information processing of the human can be incorporated and can
lead to improvements in the prediction accuracy. Here some ideas for the next steps to improve
the prediction system are discussed.

Usage of Abstracted Information One step further then the preprocessing, done based on the
unscented Kalman �lter and Rauch-Tung-Striebel smoother, is to store more abstract information
about the trajectories in the database. The �rst thought here is to store information as the
initial launching parameters (position, velocity) and estimated parameters of the environment
(gravity vector, drag coe�cient, the mass of the ball) and use this information for comparison and
prediction of the current �ight. This method requires the calculation of the �ight trajectory based
on a physical model and again raised the problem of the incomplete modeling of the trajectory
with simple models (compare Section 4.2.2.1). This leads to other ways of abstraction needed to
solve this challenge.

General Objects The extension of this approach to more general objects is another logical
step. Here the discretized progressive prediction has potential to show the bene�ts of the reduced
search time more signi�cant if the object is, for example, non-pointsymmetrical and additionally
to the velocity change the orientation(-change) information has to be compared. For unstructured
search strategies, this problem will lead to too long search times even for smaller databases. For the
discretized progressive prediction the number of dimensions can be extended for each additional
information (3 dimensions for orientation, one dimension for di�erent objects for example). Still
the neighborhood search is possible and similar object states can be associated with a short time.

Catching Hand-Thrown Objects Catching objects that are thrown by the throwing device
used for the experiments have a limited variation (compare Section 4.2.2.2) and limit the require-
ments of the prediction as well. On the other hand, even the deviation of the throwing device
leads to uncatchable balls for the robot. Still, catching hand thrown balls requires a more general
content of the database (more variation in the stored trajectories) and thus, the database size is
of signi�cant importance. Here the �ndings in Section 5.1.2.2 and Section 5.1.2.3 show that the
right representation of the data can cause that only small databases are required for a certain
prediction accuracy. Additionally, the search can be based on the algorithms proposed in Sec-
tion 3.2.2 and thus be faster and more e�cient for this more general problem. The combination of
the previously mentioned topics, especially the trajectory preprocessing, with this aspect would
be highly recommendable for additional improvements of the prediction accuracy.

Learning Learning is currently not used in the approach. Basically adding learning to the
approach means that the current trajectory information has to be smoothed to remove the errors
of the tracking system and added to the database. This implies additional aspects that are worth
mentioning. Firstly the database's size is growing if not additional measures are used. This causes
the search time to increase and will ultimately lead to too slow predictions for the standard search
algorithms. For the discretized progressive prediction this problem is less pronounced, and thus,
this approach is more suitable for learning. The second aspect here is that each new trajectory
only contains information until right before the catching instant as the ball is then hidden in the
catching device and the position tracking cannot be done successfully. This causes the trajectories
to be incomplete. Additional steps to prolong the trajectory throughout the catching area are
required in case the trajectory shall be usable in a future prediction. Here di�erent approaches can
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be evaluated: prolonging the trajectory based on a number of similar trajectories in the database
(o�-line and thus more complex possible), using feedback from the visual system and the robot
(Was it a successful catch? In which relation to the catching device's center was the ball?) to
pick the right extension of the trajectory.

Transport-by-Throwing

Closing the loop the initial motivation, the transport-by-throwing approach, the usage in industrial
environments requires additional e�orts in all areas. The industrial environment with a changing
background raises demands for more complex image processing algorithms, the more complex
shape of the processed goods raises the demands for the detection system, also requiring orientation
information and many other factors limit the implementation in this environment. Additionally,
the success rate of one individual transport hop has to be very close to 100 % in order to have
an economically feasible transportation system. This rate is still a seemingly unachievable goal,
especially if the complexity of the goods is rising.
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A Appendix

Figure showing the deviations of the launching position determined by the parameter estimation
in Section 4.2.2.1
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Figure A.1: Graphical illustration of the estimated launching position for the three estimation methods;
polynomial: green; Rauch-Tung-Striebel smoother: red; iterative: blue

Figure showing the deviations of the drag coe�cient and mean position error determined by the
parameter estimation in Section 4.2.2.1
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Figure A.2: Graphical illustration of the estimated drag coe�cient (top row) and the average estimation
error in regards of the ball's position (bottom row) for the iterative estimation model per
examined trajectory
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Figure A.3 is showing the position detection error based on �tted polynomial functions to each
individual �ight (ground truth) for Hough and without background subtraction.
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Figure A.3: Error analysis of ball's position detection accuracy without background subtraction. 99 %
con�dence bands of distributions (x/y/z: Normal; r: Weibull); left column Hough, right
column RANSAC with individual ground truth, for all two cases polynomial functions are
used to estimate the ground truth data from the complete dataset of the trajectory
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Appendix

Figure A.4 is showing the position detection error based on �tted polynomial functions to each
individual �ight (ground truth) for Hough and with background subtraction.
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Figure A.4: Error analysis of ball's position detection accuracy with background subtraction. 99 %
con�dence bands of distributions (x/y/z: Normal; r: Weibull); left column Hough, right
column RANSAC with individual ground truth, for all two cases polynomial functions are
used to estimate the ground truth data from the complete dataset of the trajectory
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