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Deutsche Kurzfassung

Diese Dissertation beschäftigt sich mit mehrdimensionalen autoregressiven Systemen im Fall von

Beobachtungen mit unterschiedlichen Abtastraten, sogenannten mixed-frequency (MF) Beobachtun-

gen. In dieser Arbeit wird ausschlieÿlich der Fall behandelt, bei der die Outputvariable in eine schnelle

(high-frequency) und eine langsame (low-frequency) Komponente separiert werden kann. Ein Beispiel

für so ein Beobachtungsschema wäre eine zweidimensionale Zeitreihe bei welcher die erste Komponente

monatlich, z.B. Arbeitslosigkeit, und die zweite quartalsweise, z.B. Bruttoinlandsprodukt, beobachtet

wird. Dem zugrundeliegenden System wird dabei unterstellt, dass der gesamte Output zu jedem

schnellen Zeitpunkt generiert, jedoch der Output der langsamen Komponente nicht zu jedem Zeit-

punkt beobachtet wird. Hierbei sei erwähnt, dass die mixed-frequency Annahme ein regelmäÿiges

Beobachtungsschema voraussetzt.

Dieses spezielle Beobachtungsschema spielt bei hochdimensionalen Zeitreihen eine immer wichtigere

Rolle, wo die Verfügbarkeit von univariaten Zeitreihen zu unterschiedlichen Abtastraten gegeben ist.

Als beliebter Modellierungsansatz haben sich die verallgemeinerten linearen dynamischen Faktormod-

elle etabliert, bei denen sich die statischen Faktoren typischerweise mit einem singulären autoregres-

siven System modellieren lassen.

Ein zentraler Teil der Arbeit befasst sich mit der Identi�zierbarkeit und dem asymptotischen Ver-

halten von Parameterschätzern der hochfrequenten autoregressiven Systeme gegeben mixed-frequency

Beobachtungen. Dabei werden bei der langsamen Komponente zwei Fälle berücksichtigt: die Fluss-

und die Bestandsgröÿe. Wie sich herausstellt sind nicht alle Systeme identi�zierbar, jedoch eine

�groÿe� Teilmenge des Parameterraumes. Aufgrund von regelmäÿig fehlenden Beobachtungen kön-

nen gewisse Autokovarianzen nicht beobachtet und somit die klassischen Yule-Walker Gleichungen für

die Schätzung nicht verwendet werden. Deswegen werden die erweiterten Yule-Walker (XYW) Gle-

ichungen eingeführt. Diese XYW Gleichungen stellen in gewissem Sinn das mixed-frequency Analogon

zu den klassischen Yule-Walker Gleichungen dar.

In weiterer Folge wird der XYW Schätzer und der verallgemeinerten Momentenschätzer (GMM)

diskutiert und gezeigt, dass diese unter gewissen Annahmen asymptotisch normalverteilt sind. Hi-

erfür wird eine Verallgemeinerung der Bartlett Formeln für den mixed-frequency Fall benötigt. Des

Weiteren wird der Maximum Likelihood (ML) Schätzer eingegangen und die exakte asymptotische

Varianz für den speziellen AR(1) Fall hergeleitet. Wie anhand von Beispielen gezeigt wird, ist im

Allgemeinen der GMM Schätzer asymptotisch nicht e�zient. Des Weiteren werden einige endliche

Stichprobeneigenschaften anhand von Simulationen untersucht.
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Abstract

This thesis deals with multivariate autoregressive systems in the case of observations with di�erent

sampling rates, the so-called mixed-frequency (MF) observations. In this work the case where the

output variable can be separated into a fast (high-frequency) and a slow (low-frequency) component

will be given attention. An example of such an observation scheme would be a two-dimensional time

series in which the �rst component is observed monthly, for instance unemployment, and the second

quarterly, for instance GDP. It is assumed that the underlying system generates the output at each

time point, the so-called high-frequency, however, the output of the slow component is only observed

at an integer multiple of the high-frequency. It is worth mentioning that the mixed-frequency case

assumes a uniform observation pattern.

This special observation pattern plays an important role in high-dimensional time series, where

the availability of the univariate time series is given at di�erent sampling rates. A popular approach to

model high-dimensional time series are the generalized linear dynamic factor models, where the static

factors can be typically modeled by a singular autoregressive system.

A central part of this thesis is concerned with identi�ability and with the asymptotic behavior of

parameter estimators of the high-frequency autoregressive system given mixed-frequency observations.

Here two cases for the slow component are considered: the stock and the �ow case. It turns out that not

all systems are identi�able, however, a �large� subset of the parameter space is still identi�able. Due to

missing observations certain autocovariances cannot be observed and thus the standard Yule-Walker

equations for the estimation cannot be used. Therefor the extended Yule-Walker (XYW) equations

are introduced. These XYW equations represent, in a certain sense, the mixed-frequency analogue to

the standard Yule-Walker equations.

Furthermore, the XYW estimator and the generalized method of moments estimator (GMM) are

discussed and it is shown that they are asymptotically normal under certain assumptions. In order

to achieve this, a generalization of Bartlett's formula for the mixed-frequency case is required. Also

the maximum likelihood (ML) estimator is treated and the exact asymptotic variance for the special

AR (1) case is derived. As shown by examples, the GMM estimator is, in general, not asymptotically

e�cient. In addition, some �nite sample properties are investigated through simulations.
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CHAPTER 1

Introduction

In the last decades the availability of time series, especially of high-dimensional time series, has

extremely increased. One of the most popular approaches to model such time series are the generalized

linear dynamic factor models (GDFMs), which were introduced in Forni et al. (2000) and Stock and

Watson (2002). The main reason why this high-dimensional time series cannot be modeled by a stan-

dard AR or ARMA system is that the number of parameters which have to be estimated quadratically

increases with the number of output variables. As an example of such high-dimensional time series we

mention the Stock and Watson (2008) data set, which contains 144 di�erent time series from industrial

production over prize indices to exchange rates. In contrast to the classical time series analysis, in

which the cross-sectional dimension is small or only one-dimensional, we are interested in the structure

of the relationship between the individual time series. The aim of this modeling approach is to ana-

lyze the driving forces of the high-dimensional time series, whose dimension is in general rather small

compared to the dimension of observations, and to use that information to forecast in an optimal way.

In GDFMs typically the dimension of the static factors is greater than the dimension of the dynamic

factors and thus this static factors can be modeled by singular autoregressive models (see Deistler et al.

(2010)). It is worth mentioning that most of the standard literature of estimating GDFMs is based on

the assumption that all observations are observed at the same time points (single-frequency).

For high-dimensional time series it is very likely that the univariate components are observed at

di�erent sampling rates. We call this mixed-frequency observations. For instance, in the data set above

there occur time series, which are sampled monthly, for example industrial production, as well as time

series which are sampled quarterly, for example exports. One solution to overcome the problem of

mixed-frequency observations, which was also used in Stock and Watson (2008), is to obtain �single�-

frequency data by aggregating the monthly data to a quarterly. Of course, such aggregation will lead

to an information loss.

In this thesis the emphasis is placed on autoregressive systems in the mixed-frequency case, which

is in a certain sense a part of modeling GDFMs in the mixed-frequency case. It is assumed that the

multivariate time series can be separated into two sub-series: On the one hand in the high-frequency

series, which can be observed at any time point, and on the other hand in the low-frequency series,

which are only observed at an integer multiple of the high-frequency time points. Furthermore, it is

assumed that the underlying autoregressive system generates the outputs at the highest frequency, but

the data are only available in the missing observation pattern described above. Throughout the whole

1



2 1. INTRODUCTION

thesis we assume that the autoregressive system of dimension n is stable, i.e. all roots lie outside the

unit circle, the lag order p of the autoregressive polynomial is known, the covariance matrix of the

innovations has rank q ≤ n and that the dimension of the high-frequency series is at least one.

The main focus of this work is on identi�ability of the autoregressive systems based on mixed-

frequency observations and the associated autocovariances. Due to the mixed-frequency structure not

all autocovariances are observable and therefore the standard identi�ability results for autoregressive

systems are not valid. For this reason, the extended Yule-Walker equations are introduced and with

them the identi�ability problem will be considered in more detail. If we replace the population second

moments in the extended Yule-Walker equations by their sample counterparts, we directly obtain the

extended Yule-Walker estimators and in a wider sense the generalized method of moments estimator.

Furthermore, we investigate the statistical properties of these estimators and especially their asymp-

totic behavior. Moreover, we introduce the (Gaussian) maximum likelihood estimator and the EM

algorithm for state space models, which is based on the Gaussian likelihood. All of these estimation

methods have the disadvantage that they might lead to unstable estimates of the system parameters

and do not ful�ll the desired rank condition of the innovation covariance matrix. Thus, in a second

step, we show how to project these estimated parameters back on the parameter space.

It is worth mentioning that there exists an enormous number of publications which deals with

mixed-frequency observations, see e.g. Harvey and Pierse (1984); Kohn and Ansley (1986); Zadrozny

(1988); Chen and Zadrozny (1998); Mariano and Murasawa (2003); Ghysels et al. (2004, 2007); Kuzin

et al. (2011). A good overview of further mixed-frequency work is given in Wohlrabe (2008). In

particular, we have to emphasize the work of Chen and Zadrozny (1998), which is used as a starting

point. Another approach which has become very popular in the last years is the Mixed Data Sampling

(MIDAS) regression, which is presented in Ghysels et al. (2004). The main idea behind this approach

is that the slow component will be projected onto the space spanned by fast lagged components.

Of course, this approach is fundamentally di�erent to the approach used in this thesis and thus a

comparison between these two can only be made by comparing the one-step-ahead prediction error

covariance matrix.

The thesis is organized as follows: In Chapter 2 stationary processes where the emphasis lies

on autoregressive systems in the single-frequency case are introduced. Two di�erent estimation pro-

cedures, which are very important, are discussed in detail, namely the Yule-Walker and (Gaussian)

maximum likelihood estimation. Furthermore, the asymptotic behavior of these estimators is investi-

gated. Chapter 3 deals with identi�ability of system and noise parameters of autoregressive systems

in the mixed-frequency case. For the AR(1) case, which is investigated separately, the non-identi�able

set can be described explicitly. In addition, for the general AR(p) case, the extended Yule-Walker

equations are introduced as well as a so-called genericity property. Both cases where the slow compo-

nents are observed as stock and as �ow variables are discussed. In Chapter 4 four di�erent estimation
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procedures for the mixed-frequency case are presented. In Chapter 5 asymptotic properties of the au-

tocovariance estimators, the extended Yule-Walker estimator and the generalized method of moments

estimator are derived. Chapter 6 deals with the problem of projecting the estimated system and noise

parameters back on the parameter space. In Chapter 7 some �nite sample properties are investigated

through simulations. In Appendix A the maximum likelihood estimator for the AR(1) case is derived.

Appendix B contains the proofs of two lemmas from Chapter 5. Appendix C summarizes a few prop-

erties of the Kronecker product and derivation rules. Furthermore, tables of the simulations study are

displayed.





CHAPTER 2

Vector Autoregressive Systems

Vector autoregressive (VAR) models are probably the most popular class for modeling time series

since they are well understood and very easy to deal with. An autoregressive model depends on a �nite

number of system parameters as well as, for instance in the Gaussian case, on a �nite number of noise

parameters, which can be estimated via several methods, e.g. (Gaussian) maximum likelihood, Yule-

Walker equations or Burg algorithm (see Hannan (1970); Burg (1975); Brockwell and Davis (1987);

Reinsel (1993); Anderson (1994); Lütkepohl (2005); Hannan and Deistler (2012)).

In this chapter the focus is on single-frequency VAR models, i.e. VAR models in which all variables

are observed at a single sampling rate. The case of mixed-frequency observations is treated in Chapter

3 to Chapter 5. Furthermore, we do not consider the case where missing data can occur.

We split this chapter into two parts. The �rst part introduces basic terminology of stationary time

series and presents two popular estimators for autoregressive processes, namely the maximum likelihood

estimator and the Yule-Walker estimator. The second part provides insights into convergence concepts

and their corresponding properties as well as the asymptotic behavior of the mean, the autocovariance,

the Yule-Walker and the maximum likelihood estimators.

2.1. Introduction to Autoregressive Systems

In this section well known concepts about multivariate (weak) stationary time series and au-

toregressive processes are introduced. Whereas most of the standard literature (see Rozanov (1967);

Hannan (1970); Anderson (1994); Lütkepohl (2005); Hannan and Deistler (2012)) only considers the

case where the autoregressive model is regular, i.e. the covariance of the innovation matrix is non-

singular, we include in our analysis the case where the autoregressive model is singular. Thereby we

introduce the density of a multivariate normal distributed variable where the covariance matrix is

singular, which was, as far as we know, �rst considered in Khatri (1961). Furthermore, we represent

the autoregressive model in state space form so that system theoretical approaches can be applied (see

Kailath (1980)). Finally, we deal with the Yule-Walker equations for the regular and singular case.

For further discussion, the reader is referred to Hannan (1970); Chen et al. (2011); Filler (2010).

Let (Ω, A,P) be a probability space and consider the stochastic process (yt)t∈Z, which is a sequence

of random vectors yt : Ω→ Rn de�ned on the same probability space (Ω, A,P).

Definition 2.1.1. A process (yt)t∈Z is said to be (weakly) stationary if

(1) E
(
yTt yt

)
<∞ for all t ∈ Z

(2) E (yt) = µ for all t ∈ Z

5



6 2. VECTOR AUTOREGRESSIVE SYSTEMS

(3) γ (t, s) = γ (t+ r, s+ r) for all t, s, r ∈ Z where γ (t, s) = E
(

(yt − µ) (ys − µ)
T
)

is the

autocovariance function.

For a stationary process the autocovariance function only depends on the di�erence s − t rather
than on (t, s) itself. This is the reason why we write the autocovariance function for a stationary

process as γ (t) = γ (t, 0).

Definition 2.1.2. A stochastic process is called strictly stationary if the distribution of

yt1 , yt2 , . . . , ytn

and of

yt1+t, yt2+t, . . . , ytn+t

is the same for every �nite set of integers (t1, t2, . . . , tn) and for every t ∈ Z.

It immediately follows that a strictly stationary process with �nite second moments is also (weakly)

stationary. Note that the converse of this conclusion is not true. Indeed, a process which is independent

identically Cauchy distributed is strictly stationary but not weakly stationary.

Let L2 (Ω, A,P) be the set of univariate square-integrable random variables de�ned over (Ω, A,P).

We say that two elements y1, y2 ∈ L2 (Ω, A,P) are equivalent if y1 = y2 a.s. Let L2 (Ω, A,P) be the

space of these equivalent classes and note that L2 (Ω, A,P) is a Hilbert space. Further let Hy (t) be

the Hilbert space spanned by
{
yjt−i : i ≥ 0, j = 1, ..., n

}
in L2 (Ω, A,P). A stationary process is called

linearly regular if E (yt) = 0 and

lim
s→∞

E
(
yTt+s|tyt+s|t

)
= 0 (2.1.1)

holds, and linearly singular if

yt+s|t = yt+s a.s. (2.1.2)

holds for one (t, s), s > 0 and therefore for all (t, s) and where yt+s|t is the best linear least squares

predictor of yt+s based on yi, i ≤ t. Denote z as the backward shift operator on Z, i.e. z (yt)t∈Z =

(yt−1)t∈Z, as well as a complex variable. The next theorem is called Wold Decomposition (see Wold

(1938); Rozanov (1967); Hannan (1970); Hannan and Deistler (2012)):

Theorem 2.1.3 (Wold Decomposition Theorem). Every stationary process (xt)t∈Z can be repre-

sented in a unique way as

xt = yt + zt (2.1.3)

where yt, zt ∈ Hx (t) and

yt is linearly regular

zt is linearly singular

E
(
ytz

T
s

)
= 0 ∀ t, s ∈ Z.
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Every linearly regular process can be represented as

yt =

∞∑
j=0

kjνt−j =

∞∑
j=0

kjz
j

︸ ︷︷ ︸
k(z)

vt (2.1.4)

where Hy (t) = Hν (t) and where (νt)t∈Z is white noise with covariance Σν ,
∑∞
j=0 ‖kj‖2 < ∞ and

k0 = In. Thus the νt are the innovations of yt. Here ‖.‖ stands for an arbitrary matrix norm.

For a detailed discussion about linearly singular processes see Hannan and Deistler (2012). Fur-

thermore, the spectral density of a linearly regular process always exists and is given by

fy(ω) =
1

2π
k
(
e−iω

)
Σνk

(
eiω
)T
. (2.1.5)

Definition 2.1.4. The process (yt)t∈Z of dimension n is said to be an autoregressive process if it

is a stationary solution of an AR(p) system

yt = A1yt−1 + . . .+Apyt−p + νt t ∈ Z (2.1.6)

where p is an integer, Ai ∈ Rn×n and (νt)t∈Z is white noise with zero mean and a covariance Σν =

E
(
νtν

T
t

)
.

Let a(z) = In − A1z − . . . − Apzp be the so-called AR polynomial. Throughout this thesis we

impose the stability condition

det (a(z)) 6= 0, |z| ≤ 1. (2.1.7)

Further we restrict ourselves to the stationary and causal solution of (2.1.6). This solution can be

expressed as

yt = a (z)
−1
νt (2.1.8)

=

∞∑
j=0

kjνt−j

where k(z) = a(z)−1 is the transfer function from (νt)t∈Z to (yt)t∈Z. It is easy to see that (yt)t∈Z is

linearly regular. It is worth noting that (2.1.8) is also the Wold representation of the process (2.1.6).

The spectral density of (2.1.8) is given by

fy(ω) =
1

2π
a−1

(
e−iω

)
Σνa

−1
(
eiω
)T
. (2.1.9)

The parameter space for the high-frequency models considered is:

Θ = {(A1, . . . , Ap) | det (a(z)) 6= 0, |z| ≤ 1}︸ ︷︷ ︸
S

×
{

Σν | Σν = ΣTν ,Σν ≥ 0, rk (Σν) = q ≤ n
}︸ ︷︷ ︸

D

.

We do not allow cross restrictions between the system and noise parameters. Throughout this thesis

we will assume that the integers p and q are given. Furthermore, we assume that the rank of Σν is

greater than or equal to one.

It is possible to rewrite (νt)t∈Z as νt = bεt where b is a n×q matrix with full column rank, Σν = bbT

and (εt)t∈Z is white noise with covariance E
(
εtε

T
t

)
= Iq. Notice that b can only be determined up
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to post multiplication by a constant orthogonal matrix from the second moments of the observations.

For a particular unique choice of b see Proposition 3.1.2 in Filler (2010). Then equation (2.1.6) can be

written as

a (z) yt = bεt. (2.1.10)

By writing A > B (A ≥ B), where A and B are two matrices with the same dimension, we

mean that A − B is positive (semi)-de�nite. If Σν > 0, then clearly q = n and the AR(p) system

(2.1.6) is called regular. On the other hand, when rk (Σν) = q < n holds, we call the system singular.

Singular AR(p) systems are very important for modeling the latent variable in generalized dynamic

factor models (GDFMs) (see Forni et al. (2000), Stock and Watson (2002), Doz et al. (2011), Forni

et al. (2015)). They occur if the dimension of the minimal static factors is greater than the dimension

of the minimal dynamic factors. For further discussion see Deistler et al. (2010).

The system (2.1.6) can be represented in state space form as
yt
...

yt−p+1


︸ ︷︷ ︸

=xt+1

=


A1 · · · Ap−1 Ap

In 0

. . .
...

In 0


︸ ︷︷ ︸

=A


yt−1

...

yt−p


︸ ︷︷ ︸

=xt

+


b

0
...

0


︸ ︷︷ ︸

=B

εt (2.1.11)

yt = (A1 · · ·Ap)︸ ︷︷ ︸
C

xt + bεt, (2.1.12)

where (2.1.11) is the state equation and (2.1.12) the observation equation. In this context the matrix

A is called the companion form of the system parameters and xt is called the state. We say that A is

stable if all its eigenvalues are inside the unit circle. Note also that if a(z) is stable, then A is stable

as well, and vice versa, since the eigenvalues of A are the roots of det
(
zpa

(
z−1
))

(see Hannan and

Deistler (2012), p. 19). The system (2.1.11) and (2.1.12) is called minimal if the dimension of the

state xt is minimal among all realizations of the transfer function (see Hannan and Deistler (2012)).

The solution of (2.1.11), (2.1.12) is of the form

yt = a(z)−1νt = a(z)−1bεt =
(
C (I −Az)−1 Bz + b

)
εt, (2.1.13)

where k(z)b = C (I −Az)−1 Bz+b is the transfer function from (εt)t∈Z to (yt)t∈Z. The spectral density

can analogously be represented as

fy(ω) =
1

2π

(
C
(
I −Ae−iω

)−1 Be−iω + b
)(
C
(
I −Aeiω

)−1 Beiω + b
)T

. (2.1.14)

The Lyapunov equation for the system (2.1.11) is

Γp −AΓpAT = BBT , (2.1.15)
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where Γp = E
(
xtx

T
t

)
. The system (2.1.15) has a unique solution for given (A,B) under the stability

assumption (2.1.7) and the covariance of (xt) can be expressed as

Γp =

∞∑
j=0

AjBBT
(
AT
)j
. (2.1.16)

Definition 2.1.5. The pair (C,A) where A ∈ Rm×m and C ∈ Rn×m is called observable if

rk


C
CA
...

CAm−1

 = m. (2.1.17)

The pair (A,B) where A ∈ Rm×m and B ∈ Rm×q is called controllable if

rk
(
B,AB, . . . ,Am−1B

)
= m.

It can be shown that a system is minimal if and only if it is observable and controllable (see

Hannan and Deistler (2012), p. 48).

The system (2.1.11) and (2.1.12) is controllable if and only if Γp > 0 since

Γp =
(
B,AB, . . . ,Anp−1B, . . .

)


BT

BTAT
...

BT
(
Anp−1

)T
...


. (2.1.18)

The next theorem, called Popov-Belevitch-Hautus (PBH) test, gives an easy condition to determine if

a system is observable or controllable (see Kailath (1980), p. 135).

Theorem 2.1.6 (PBH Test). Let A ∈ Rm×m, B ∈ Rm×q and C ∈ Rn×m. Then the pair (C,A) is

observable if and only if the matrix (
A− Imλ
C

)
(2.1.19)

has full column rank for all λ ∈ C and the pair (A,B) is controllable if and only if the matrix(
A− Imλ, B

)
(2.1.20)

has full row rank for all λ ∈ C.

The following lemma gives us insights into the structure of the eigenvectors of the companion form:

Lemma 2.1.7. Let A ∈ Rnp×np be the companion form of the polynomial a (z) . Let

pi =
((
p1
i

)T
, . . . , (ppi )

T
)T

where pji ∈ Cn and pi be a right eigenvector of the matrix A with the corresponding eigenvalue λi 6= 0.

Then p1
i 6= 0, pji = p1

iλ
−j+1
i for j = 2, . . . , p and p1

i lies in the right kernel of a
(
λ−1
i

)
.
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Proof. see Anderson et al. (2012), Lemma 2. �

Considering the system (2.1.11) and (2.1.12), it is easy to conclude that this system is observable

if and only if Ap is nonsingular. Indeed if Ap is singular the system is not observable since every vector

which lies in the kernel of A is also orthogonal to the rows of C and thus the PBH test fails. On the

other hand, if Ap is nonsingular, Lemma 2.1.7 guarantees that the �rst n entries of an eigenvector of A
are not all equal to zero. Thus there exists no nontrivial vector which lies in the kernel of the matrix

(2.1.19). Therefore we have proved the following lemma:

Lemma 2.1.8. The system (2.1.11) and (2.1.12) is minimal if and only if Γp > 0 and Ap is

nonsingular.

The next lemma gives us a relation between the positive de�niteness property of Γp and the

parameters of the autoregressive system.

Lemma 2.1.9. The covariance matrix Γp is positive de�nite if and only if (Ap, b) is of full row

rank and (a(z), b) is left co-prime, i.e. if the only left divisors of (a(z), b) are unimodular ones.

Proof. see Felsenstein (2014), Lemma 1.1.6. �

Thus the autocovariance matrix Γp is always nonsingular for a regular autoregressive system.

2.1.1. Forecasting and Interpolation. If we project yt onto the space Hy (t− 1), it is easy to

see that the best linear predictor is given by

yt|t−1 = PHy(t−1) (yt) = A1yt−1 + · · ·+Apyt−p, (2.1.21)

since the components of
(
yt − yt|t−1

)
are uncorrelated with the components of yt−i, i > 0, i.e.

E
((
yt − yt|t−1

)
yTt−i

)
= 0, i > 0.

The next theorem, which considers the problem of interpolation, is a generalization of Pourahmadi

(1988) to the multivariate case. For further discussion about interpolation see Grenander and Rosen-

blatt (1957); Friedman (1962); Rozanov (1967); Brubacher and Tunnicli�e Wilson (1976); Gomez

et al. (1999). For the purpose of simplicity we assume that Σν is nonsingular, which implies that∑p
k=0A

T
k Σ−1

ν Ak, where A0 = −In, is also nonsingular.

Theorem 2.1.10. Assume that Σν is nonsingular and let ρj =
∑p−j
k=0A

T
k Σ−1

ν Ak+j for j = 0, . . . , p

where A0 = −In and Ho
y (t) be the Hilbert space spanned by{

yjt−i : i > 0, j = 1, . . . , n
}

and
{
yjt+i : i > 0, j = 1, . . . , n

}
.

Then the projection of yt on the space Ho
y (t) is given by

PHoy(t) (yt) = ρ−1
0

(
−

p∑
i=1

ρiyt−i −
p∑
i=1

ρTi yt+i

)
. (2.1.22)

Furthermore, the interpolation error covariance matrix is given by ρ−1
0 .
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Proof. In a �rst step we want to split the Hilbert space Ho
y (t) into the sum of three orthogonal

subspaces. Let H+
y (t+ 1) be the Hilbert space spanned by

{
yjt+1+i : i ≥ 0, j = 1, . . . , n

}
and observe

that yt+p+1|t+p = A1yt+p + · · · + Apyt+1. Thus yt+p+1 can be represented as a linear combination of

{yt+p, . . . , yt+1, νt+p+1}. Also observe that

yt+p+2|t+p+1 = A1yt+p+1 + · · ·+Apyt+2 (2.1.23)

= A1yt+p+1|t+p + · · ·+Apyt+2 + k1νt+p+1

and thus yt+p+2 can be represented as a linear combination of {yt+p, . . . , yt+1, νt+p+1, νt+p+2} and so

on. Therefore we can represent H+
y (t + 1) as span {yt+1, . . . , yt+p, νt+p+1, νt+p+2, ...} where Ā is the

closure of A. Let Hp
y (t+ 1) be the Hilbert space spanned by {yt+1, . . . , yt+p}. By construction we see

that H+
y (t + 1) = Hp

y (t+ 1) ⊕ H+
ν (t + p + 1) where H+

ν (t + p + 1) is the Hilbert space spanned by

{νt+p+1, νt+p+2, . . . }.
Since yt+i − yt+i|t−1 =

∑i
j=0 kjνt+i−j for i ≥ 0 and νt+k, k ≥ 0 is orthogonal to Hy(t− 1) we can

conclude that Ho
y (t) = Hy(t− 1)⊕Hp

t−1 (t+ 1)⊕H+
ν (t+ p+ 1) where Hp

t−1 (t+ 1) is spanned by νt+1 + k1νt︸ ︷︷ ︸
one-step-ahead pred. error

, νt+2 + k1νt+1 + k2νt︸ ︷︷ ︸
two-step-ahead pred. error

, . . .

 =
{
yt+1 − yt+1|t−1, yt+2 − yt+2|t−1, . . .

}
.

Now it follows that

PHoy(t) (yt) = PHy(t−1) (yt) + PHpt−1(t+1) (yt) + PH+
ν (t+p+1) (yt)︸ ︷︷ ︸

=0

(2.1.24)

= A1yt−1 + · · ·+Apyt−p + PHpt−1(t+1) (yt) .

We can conclude that projecting on the space spanned by {yt−i, |i| = 1, . . . , p} is the same as
projecting on Ho

y (t). Finally, we have to show that (2.1.22) is indeed the best linear interpolation, i.e.

E
((
yt − PHoy(t) (yt)

)
yTt−i

)
= 0 for |i| = 1, . . . , p. For this purpose we consider the linear system of

equations which has to be ful�lled:

(γ (1) , . . . , γ (p) , γ (−1) , . . . , γ (−p)) = (H1, . . . , H2p)



γ (0) · · · γ (p− 1) γ (−2) · · · γ (−p− 1)
...

. . .
...

...
. . .

...

γ (−p+ 1) · · · γ (0) γ (−p− 1) · · · γ (−2p)

γ (2) · · · γ (p+ 1) γ (0) · · · γ (−p+ 1)
...

. . .
...

...
. . .

...

γ (p+ 1) · · · γ (2p) γ (p− 1) · · · γ (0)


.
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Inserting the coe�cient of (2.1.22) into the above system of equations we obtain for i = 1, . . . , p,

ρ0γ (i)
!
= −

p∑
j=1

ρjγ (i− j)−
p∑
j=1

ρTj γ (i+ j)

= −
p∑
j=1

p−j∑
k=0

ATk Σ−1
ν Ak+jγ (i− j)−

p∑
j=1

p−j∑
k=0

ATk+jΣ
−1
ν Akγ (i+ j)

= −
p∑
j=1

p−j∑
k=0

ATk Σ−1
ν Ak+jγ (i− j)−

p∑
j=1

p∑
k=j

ATk Σ−1
ν Ak−jγ (i+ j) .

Using the fact that
∑p−k
j=1 Ak+jγ (i− j) +

∑k
j=1Ak−jγ (i+ j) = −Akγ (i) for i > 0, we can rewrite the

above term as follows

ρ0γ (i)
!
= −

p−1∑
k=0

p−k∑
j=1

ATk Σ−1
ν Ak+jγ (i− j)−

p∑
k=1

k∑
j=1

ATk Σ−1
ν Ak−jγ (i+ j)

= −
p−1∑
k=1

ATk Σ−1
ν

p−k∑
j=1

Ak+jγ (i− j) +

k∑
j=1

Ak−jγ (i+ j)


−

p∑
j=1

AT0 Σ−1
ν Ajγ (i− j)−

p∑
j=1

ATp Σ−1
ν Ap−jγ (i+ j)

=

p−1∑
k=1

ATk Σ−1
ν Akγ (i) + Σ−1

ν γ (i) +ATp Σ−1
ν Apγ (i)

= ρ0γ (i) .

In an analogous way one can prove the case i = −1, . . . ,−p. The interpolation error covariance matrix

can be rewritten into V
(
yt − PHoy(t) (yt)

)
= ρ−1

0 V
(
ρ0yt +

∑p
i=1 ρiyt−i +

∑p
i=1 ρ

T
i yt+i

)
ρ−1

0 . Further-

more, it is straightforward to show that ρ0yt+
∑p
i=1 ρiyt−i+

∑p
i=1 ρ

T
i yt+i = −

∑p
k=0A

T
k Σ−1

ν νt+k. Thus

V
(
ρ0yt +

∑p
i=1 ρiyt−i +

∑p
i=1 ρ

T
i yt+i

)
= ρ0 and therefore V

(
yt − PHoy(t) (yt)

)
= ρ−1

0 which completes

our proof. �

Note that if we de�ne the process yDt = aT (z)ηt where (ηt)t∈Z is white noise with covariance Σ−1
ν

and let γD (i) be the corresponding autocovariance function of lag i, we see that γD (i) = ρTi .

Example 2.1.11. Consider the AR(1) case where Σν is nonsingular. Then the best linear inter-

polation is given by

PHoy(t) (yt) =
(
Σ−1
ν +AT1 Σ−1

ν A1

)−1 (
Σ−1
ν A1yt−1 +AT1 Σ−1

ν yt+1

)
and the interpolation error is

yt − PHoy(t) (yt) =
(
Σ−1
ν +AT1 Σ−1

ν A1

)−1 (
Σ−1
ν νt −AT1 Σ−1

ν νt+1

)
.

Thus the covariance matrix of the interpolation error is

V
(
yt − PHoy(t) (yt)

)
=
(
Σ−1
ν +AT1 Σ−1

ν A1

)−1
= ρ−1

0 .
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Proposition 2.1.12. Let yt =

(
y1
t

y2
t

)
, y1

t = (In1
, 0) yt, y

2
t = (0, In2

) yt, n1 + n2 = n and assume

that Σν is nonsingular. In addition, let ρj =
∑p−j
k=0A

T
k Σ−1

ν Ak+j for j = 0, . . . , p where A0 = −In and

Ho,1
y (t) be the Hilbert space spanned by

{
yjt−i : i > 0, j = 1, . . . , n

}
,
{
yjt+i : i > 0, j = 1, . . . , n

}
and{

y1
t

}
. Then the projection of y2

t on the space Ho,1
y (t) is given by

PHo,1y (t)

(
y2
t

)
=
(
ρ22

0

)−1

(
− (0, In2

)

p∑
i=1

ρiyt−i − (0, In2
)

p∑
i=1

ρTi yt+i − (0, In2
) ρ0

(
y1
t

0

))
(2.1.25)

where ρ22
0 = (0, In2) ρ0 (0, In2)

T
is nonsingular. Furthermore, the interpolation error covariance matrix

is given by
(
ρ22

0

)−1
.

Proof. The proof follows the same steps as in Theorem 2.1.10. �

2.1.2. Maximum Likelihood Estimation. Before we derive the (Gaussian) maximum like-

lihood estimator for system (2.1.6) we introduce the density of a multivariate normally distributed

variable for the nonsingular and singular case. Whereas in the nonsingular case the density is uniquely

de�ned except for a Lebesgue null set, the density in the singular case does not exist in the usual way.

The reason for this is that the covariance is singular and thus its inverse does not exist.

Let x0 be univariate normally distributed with mean µ and covariance 0 < σ2 <∞. In this thesis

we use the notation x0 ∼ N1

(
µ, σ2

)
where the subscript denotes the dimension of the random variable.

The following de�nition for the multivariate case is due to Rao (1972), p. 522. Note that this de�nition

also includes the case where the covariance matrix, say Σ, might be singular.

Definition 2.1.13. A n-dimensional vector x0 is called multivariate normally distributed with

E (x0) = µ ∈ Rn, V (x0) = Σ ∈ Rn×n and rk (Σ) = q ≤ n if it can be expressed as

x0 = µ+ bx1 (2.1.26)

where b ∈ Rn×q has rank q, bbT = Σ and x1 is a q-dimensional vector of univariate independently

normally distributed variables with zero mean and variance one.

Note that this de�nition is equivalent to say that x0 is normally distributed if for any vector c ∈ Rn

with cTΣc > 0 the linear combination cTx0 is normally distributed with mean cTµ and variance cTΣc.

It is obvious that the factorization of Σ is not unique so that we can �nd another b1 6= b for which

b1b
T
1 = Σ holds. In the case where the covariance matrix is singular x0 is called singular normally

distributed, otherwise it is called regular normally distributed. For a detailed discussion see Rao

(1972), p. 516. or Anderson (1994), p. 29.

If det (Σ) 6= 0, x0 has a density

fx0(x) =

(
1

2π

)n/2
det (Σ)

−1/2
exp

(
− (x− µ)

T
Σ−1 (x− µ)

)
, x = (x1, . . . , xn)

T
. (2.1.27)

In this case one can use the linear transformation y0 = b−1 (x0 − µ), where Σ = bbT , to obtain a

standardized normal distribution, y0 ∼ Nn (0, In).
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If rk (Σ) = q < n, then of course the density in the usual sense does not exist. Nevertheless, the

density of x0 can be constructed as follows (see Khatri (1961), p. 275 or Rao (1972), p. 527): Let

bsp ∈ Rn×q be a matrix of orthonormal column vectors belonging to the span of Σ. For instance, this

matrix can be found by choosing the q eigenvectors of Σ associated with the q largest (and positive)

eigenvalues. Furthermore, let bke ∈ Rn×(n−q) be a matrix so that bTkeΣ = 0. Now consider the linear

transformation (
ysp

yke

)
=

(
bTsp

bTke

)
x0.

It follows that E (yke) = bTkeµ and V (yke) = 0 so that yke = bTkeµ with probability one. For ysp one

can conclude that E (ysp) = bTspµ and V (ysp) = bTspΣbsp, so that ysp ∼ Nq
(
bTspµ, b

T
spΣbsp

)
. Thus, the

density of ysp can be written as

fysp(y) =

(
1

2π

)q/2
1√

λ1 · · ·λq
exp

(
−
(
y − bTspµ

)T (
bTspΣbsp

)−1 (
y − bTspµ

))
(2.1.28)

where λi, i = 1, . . . , q are the positive eigenvalues of Σ. Note that this choice of the density is not

unique.

Now one choice of the density of x0 would be

fx0 (x) =

(
1

2π

)q/2
1√

λ1 · · ·λq
exp

(
− (x− µ)

T
bsp
(
bTspΣbsp

)−1
bTsp (x− µ)

)
provided bTkex0 = bTkeµ with probability one.

Let vec(.) denote columnwise vectorization and ⊗ the Kronecker product, see Appendix C for more

details. First, we derive the likelihood function for a regular autoregressive system: We assume that

the νt are independently normally distributed where Σν > 0 (see Lütkepohl (2005)):

v = vec (ν1, ν2, . . . , νT ) ∼ NTn (0, IT ⊗ Σν) .

Therefore, this variable has the density

fv(v) =
1

(2π)
nT/2

|IT ⊗ Σν |−
1
2 exp

(
−1

2
vT
(
IT ⊗ Σ−1

ν

)
v

)
.

Let Y = (y1, y2, . . . , yT ), X = (x1, x2, . . . , xT ) and A = (A1, . . . , Ap). De�ning y = vec (Y ) and using

v = y − (XT ⊗ In)vec (A), we get the density of y as

fy(y) =

∣∣∣∣ ∂v∂yT
∣∣∣∣︸ ︷︷ ︸

1

fv (v) =
1

(2π)
nT/2

|IT ⊗ Σν |−
1
2 (2.1.29)

exp

(
−1

2

(
y − (XT ⊗ In)vec (A)

)T (
IT ⊗ Σ−1

ν

) (
y − (XT ⊗ In)vec (A)

))
.

To simplify matters we have assumed that the initial values, i.e. x1 =
(
yT0 , . . . , y

T
−p+1

)T
, are given

�xed numbers. Taking the logarithm of the above formula and taking into account that the last term

in (2.1.29) can be rewritten into exp
(
tr
(

(Y −AX)
T

Σ−1
ν (Y −AX)

))
we obtain the likelihood for
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the AR(p) case:

ln (l (A,Σν)) = c− T

2
ln |Σν | −

1

2
tr
(

(Y −AX)
T

Σ−1
ν (Y −AX)

)
. (2.1.30)

If we assume that rk (Σν) = q < n, we choose the unique factorization of Σν = bbT in the free

parameters, which was proposed in Filler (2010): Let Σν = OΛOT = O1Λ1O
T
1 + O2Λ2O

T
2 where

O = (O1, O2) are the orthonormal eigenvectors and Λ is a diagonal matrix containing the eigenvalues

of Σν and Λ1 is a diagonal matrix containing the q positive eigenvalues. Now de�ne b = O1Λ
1/2
1 QT

where the orthonormal matrix Q comes from the LQ decomposition of the �rst nonsingular submatrix

of O1Λ
1/2
1 (we assume that the diagonal elements of the L matrix are all positive, which guarantees

uniqueness). For notational convenience we assume that the �rst q× q submatrix is nonsingular. Now

b has the structure

b =

(
b1

b2

)
∈ Rn×q

where b1 ∈ Rq×q is a lower triangular matrix and b2 ∈ R(n−q)×q. It is easy to see that det
(
bT b
)

=

det
(
QΛ1Q

T
)

= det (Λ1) and Σ† =
(
bbT
)†

= b
(
bT b
)−2

bT . Thus, the likelihood function for the

singular case can be represented as

ln (l (A,Σν)) = c− T

2
ln |Λ1| −

1

2
tr
(

(Y −AX)
T

Σ†ν (Y −AX)
)

= c− T

2
ln
∣∣bT b∣∣− 1

2
tr
(

(Y −AX)
T
b
(
bT b
)−2

bT (Y −AX)
)

(2.1.31)

Theorem 2.1.14. Let Γp > 0. Then the maximum likelihood estimators for system (2.1.6) in the

nonsingular and singular case are

ÂML = Y XT
(
XXT

)−1
(2.1.32)

Σ̂ML =
1

T

(
Y − ÂMLX

)(
Y − ÂMLX

)T
.

Proof. The proof for the nonsingular case, n = q, is given in Lütkepohl (2005) p. 90 and for the

singular case see Srivastava and von Rosen (2002). �

Remark 2.1.15. In the singular case Σ̂ML has the property that bTkeΣ̂ML = 0 since

bTkeΣ̂ML =
1

T
bTkeY

(
I −XT

(
XXT

)−1
X
)
Y T (2.1.33)

=
1

T
bTkeV

(
I −XT

(
XXT

)−1
X
)
V T = 0

where V = (ν1, ν2, . . . , νT ). Note that we assumed that the initial values are given �xed numbers,

which is a simplifying assumption. If, in particular, we replace these initial values by zeros, then it

follows that bTkeΣ̂ML 6= 0 and thus we have to project Σ̂ML back on D, see Chapter 6.

2.1.3. Yule-Walker Estimation. One of the most important estimation procedures for the

parameters of an AR(p) process is based on the so-called Yule-Walker equations. If we postmultiply
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equation (2.1.6) by yt−i, i = 1, . . . , p and take the expectation, we obtain

(γ (1) , . . . , γ (p))︸ ︷︷ ︸
γ1

= (A1, . . . , Ap) Γp. (2.1.34)

Analogously, if we postmultiply equation (2.1.6) by yt and take the expectation we obtain

Σν = γ (0)− (A1, . . . , Ap) (γ (1) , · · · , γ (p))
T (2.1.35)

which are the Yule-Walker equations in the single-frequency case.

Definition 2.1.16. The autocovariance estimator for the lag k ≥ 0 where we include the mean

correction is de�ned as

γ̂ (k) =
1

T

T∑
t=k+1

(yt − ȳT ) (yt−k − ȳT )
T (2.1.36)

γ̂ (−k) = γ̂ (k)
T

where ȳT is the mean estimator. Let γ̂1 be the estimator for γ1 and Γ̂p be the estimator for Γp. If we

assume that Γp is nonsingular, which is always the case for nonsingular Σν and is ful�lled in an open

and dense subset of the parameter space Θ for a singular Σν (see Lemma 3.1.8), the estimator Γ̂p is

nonsingular from a certain T0 onwards, too. Thus, we can de�ne the Yule-Walker estimators for the

system and noise parameters for the nonsingular and singular case as

ÂYW = γ̂1Γ̂−1
p (2.1.37)

Σ̂YW = γ̂ (0)− γ̂1Γ̂−1
p γ̂T1 . (2.1.38)

For the case where Γp is singular, see Deistler et al. (2011); Chen et al. (2011).

Whereas the maximum likelihood estimator for the noise covariance matrix ful�lls the desired rank

condition, provided that the initial values are given �xed numbers, the Yule-Walker estimator does not

have this property. Nevertheless, the Yule-Walker estimator for the system parameters always leads

to a stable system, provided that Γ̂p > 0 holds (see Deistler et al. (2010)), which is not the case for

the maximum likelihood estimator. If the condition number of Γp is poor, i.e. κ(A) = ‖A‖
∥∥A−1

∥∥ is

large, one should use the Burg estimator instead of the Yule-Walker estimator since a small bias on

the autocovariances may lead to a complete di�erent model, see De Hoon et al. (1996).

2.2. Asymptotic Behavior in the Single-Frequency Case

2.2.1. Convergence Concepts and their Properties. In this subsection we will introduce

some de�nitions and repeat well known concepts about the convergence of random variables. Through-

out this section let (xt)t∈N be a sequence of multivariate random variables of dimension n which are

all de�ned on the same probability space (Ω,A,P).

Definition 2.2.1. A random sequence of vectors (xt)t∈N with distribution function Ft is said to

converge in distribution to a vector x0 with distribution function F0 if

lim
t→∞

Ft (x) = lim
t→∞

P (xt ≤ x) = P (x0 ≤ x) = F0 (x) (2.2.1)
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for every continuity point x of F0.

To simplify matters we will denote the convergence in distribution with
d→, e.g. xt

d→ x0. The

limit x0 is in general non-unique. Let ‖x‖ : Rn → R be a norm, e.g. the Euclidean norm.

Definition 2.2.2. A random sequence of vectors (xt)t∈N is said to converge in probability to x0

if for every ε > 0

lim
t→∞

P (‖xt − x0‖ > ε) = 0. (2.2.2)

This convergence is denoted by xt
p→ x0.

Definition 2.2.3. A random sequence of vectors (xt)t∈N is said to converge almost surely to x0 if

P
(

lim
t→∞

‖xt − x0‖ = 0
)

= 1. (2.2.3)

This convergence is denoted by xt
a.s.→ x0.

Definition 2.2.4. A random sequence of vectors (xt)t∈N is said to converge in the mean square

sense to x0 if E
(
xT0 x0

)
<∞ and

lim
t→∞

E
(

(xt − x0)
T

(xt − x0)
)

= 0. (2.2.4)

This convergence is denoted by l.i.m.
t→∞

xt = x0.

The next two lemmas give relations between the di�erent concepts of convergence and their prop-

erties with respect to continuous functions. Further, we will introduce Slutsky's Lemma, which is a

consequence of these lemmas.

Lemma 2.2.5 (Continuous Mapping Theorem). Let (xt)t∈N and x0 be random vectors and let

f : Rn → Rk be a function which is continuous at every point of a set C with the property that

P (x0 ∈ C) = 1.

(1) If xt
d→ x0, then f (xt)

d→ f (x0).

(2) If xt
p→ x0, then f (xt)

p→ f (x0).

(3) If xt
a.s.→ x0, then f (xt)

a.s.→ f (x0).

Proof. see van der Vaart (2000), Theorem 2.3.

�
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Lemma 2.2.6. Let (xt)t∈N, x0, (yt)t∈N and y0 be random vectors and c a constant vector of the

same dimension.

(1) If l.i.m.
t→∞

xt = x0 then xt
p→ x0.

(2) If xt
a.s.→ x0 then xt

p→ x0.

(3) If xt
p→ x0 then xt

d→ x0.

(4) xt
p→ c if and only if xt

d→ c.

(5) If xt
d→ x0 and xt − yt

p→ 0, then yt
d→ x0.

(6) If xt
d→ x0 and yt

p→ c, then
(
xTt , y

T
t

)T d→
(
xT0 , c

T
)T
.

(7) If xt
p→ x0 and yt

p→ y0, then
(
xTt , y

T
t

)T p→
(
xT0 , y

T
0

)T
.

Proof. 1. follows immediately from Chebyshev's inequality and for 2.-7. see van der Vaart

(2000), Theorem 2.7.

�

The following lemma, which is called Slutsky's Lemma, is a special case of Lemma 2.2.6 and will

provide us a useful tool for calculating the asymptotic covariance of speci�c estimators in Section 5.

Lemma 2.2.7 (Slutsky's Lemma). Let (xt)t∈N, x0 be random vectors and (yt)t∈N be random vectors

or random matrices. If xt
d→ x0 and yt

d→ c for a constant vector or matrix c, then

(1) xt + yt
d→ x0 + c.

(2) ytxt
d→ cx0.

(3) y−1
t xt

d→ c−1x0 if c is nonsingular.

Proof. All three statements are special cases of Lemma 2.2.5 together with Lemma 2.2.6 (3), (5).

For more details, see van der Vaart (2000), Lemma 2.8.

�

The next theorem, which is called Cramér-Wold Device, reduces the problem of multivariate

convergence to a univariate one.

Theorem 2.2.8 (Cramér-Wold Device). Let (xt)t∈N and x0 be random variables. Then xt
d→ x0

if and only if λTxt
d→ λTx0 for all λ ∈ Rn.

Proof. see discussion after Proposition 2.17 in van der Vaart (2000), p. 16.

�

With the help of the last theorem and the discussion after De�nition 2.1.13 it is intuitively clear

how to de�ne the asymptotic normality of multivariate random variables in an alternative way:
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Definition 2.2.9. Let (xt)t∈N be a sequence of multivariate random vectors. This sequence of

vectors is said to be asymptotic normally distributed with mean µ and Σ if

cT (xt − µ)√
cTΣc

d→ x0 ∼ N1 (0, 1) (2.2.5)

for every c ∈ Rn so that cTΣc > 0. This de�nition includes the case where Σ is singular. The next

theorem is called Delta Method and can be used to calculate the asymptotic distribution of a random

statistic under a (in general non linear) function φ which is di�erentiable at a certain point.

Theorem 2.2.10 (Delta Method). Let S ⊂ Rn and φ : S 7→ Rm be a function which is di�eren-

tiable at θ0. Assume that (xT )T∈N be random vectors taking their values in the domain of φ. Further

assume that √
T (xT − θ0)

d→ Nn (0,Σ)

for T →∞. Then it follows that
√
T (φ (xT )− φ (θ0))

d→ Nm
(

0, (∇φ (θ0))
T

Σ (∇φ (θ0))
)

(2.2.6)

where ∇φ (θ0) is the derivation of φ at the point θ0.

Proof. see Theorem 3.1 in van der Vaart (2000), p. 26.

�

2.2.2. Asymptotic Properties of the Mean and Autocovariance Estimators. In this

subsection we want to give insights into the asymptotic properties of the estimates of the mean and

the autocovariance estimators in the single- or high-frequency case. Note that there exists a wide

range of literature about these estimates and their properties, see e.g. Rozanov (1967); Hannan (1970);

Brockwell and Davis (1987); Anderson (1994); Su and Lund (2011).

We commence with the de�nition of the mean estimator

ȳT =
1

T

T∑
t=1

yt (2.2.7)

and observe that this estimator is an unbiased one. It converges in the mean square sense to a stochastic

variable:

Theorem 2.2.11. Let (yt)t∈Z be stationary and

yt =

ˆ π

−π
exp (−itω) z (dω)

where (z (ω) |ω ∈ [−π, π]) is the process of orthogonal increments (for a detailed discussion see Rozanov

(1967)). Then it follows that

l.i.m.
T→∞

ȳT = z (0)− z
(
0−
)

(2.2.8)

where z
(
ω−0
)
denotes the left limit at frequency ω0.

Proof. compare Theorem 4 in Hannan (1970), p. 204. �
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It immediately follows that the mean estimator converges to µ = E (yt) (and is therefore consistent)

if and only if the covariance of z (0) − z (0−) is zero. Now we will introduce the de�nition of a linear

process:

Definition 2.2.12. A process (yt)t∈Z is called a linear process if

yt =

∞∑
j=−∞

kjνt−j , (2.2.9)

kj ∈ Rn×n,
∑∞
j=−∞ ‖kj‖ <∞ and (νt)t∈Z are independent identically distributed with zero mean and

�nite covariance Σν or (νt)t∈Z ∼ IIDn(0,Σν).

One property of a linear process is that
∑∞
j=−∞ ‖kj‖ < ∞ implies

∑∞
j=−∞ ‖γ (j)‖ < ∞. This

follows from the following inequalities:
∞∑

j=−∞
‖γ (j)‖ ≤ ‖Σν‖

∞∑
j=−∞

∞∑
i=−∞

‖ki‖ ‖ki+j‖

≤ ‖Σν‖

 ∞∑
j=−∞

‖kj‖

2

<∞.

Furthermore, it can be easily seen that
∞∑

j=−∞
‖γ (j)⊗ γ (j)‖ =

∞∑
j=−∞

‖γ (j)‖2 <∞.

One can conclude that a linear process always has a spectral density

fy (ω) =
1

2π
k
(
e−iω

)
Σνk

(
eiω
)T

=

∞∑
j=−∞

γ (j) e−ijω

where k (z) =
∑∞
j=−∞ kjz

j .

Example 2.2.13. Under the further assumption that νt ∼ IIDn(0,Σν), the process (yt)t∈Z, which

is the output of system (2.1.6), is a linear process. Indeed the process has the representation

yt = a (z)
−1
νt

=

∞∑
j=−∞

kjνt−j

where kj = 0 for j < 0.

Theorem 2.2.14. Let (yt)t∈Z be a linear process with spectral density fy (.). Then

lim
T→∞

TE
(
ȳT (ȳT )

T
)

= 2πfy (0) . (2.2.10)

Proof. see Corollary 4 in Hannan (1970), p. 208, where a more general theorem is stated. �
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Theorem 2.2.15. Let (yt)t∈Z be a linear process with spectral density fy (.). Then

√
T ȳT

d→ Nn (0, 2πfy (0)) (2.2.11)

Proof. compare Theorem 11 in Hannan (1970), p. 221, where a more general theorem is stated.

�

Reconsidering the estimator for γ (k) in (2.1.36) it is worth mentioning that for the asymptotic

analysis we will use the slightly di�erent estimator

ˆ̂γ (k) =
1

T

T∑
t=1

yty
T
t−k (2.2.12)

ˆ̂γ (−k) = ˆ̂γ (k)
T
,

which is a non feasible estimator for the sample y1, . . . , yT . The estimators in (2.1.36) and in (2.2.12)

di�er only by the mean correction and a �nite number or to be more precisely by k summands, i.e.

yty
T
t−k for t = 1, . . . , k. Whereas γ̂ (k) is a biased estimator for γ (k), ˆ̂γ (k) is not. If k is �xed, the next

lemma states that for a linear process the two di�erent estimators for the autocovariance, i.e. γ̂ (k)

and ˆ̂γ (k), do not di�er asymptotically to the rate
√
T .

Lemma 2.2.16. Let (yt)t∈Z be a linear process and k ∈ Z. Then
√
T
(
γ̂ (k)− ˆ̂γ (k)

)
p→ 0. (2.2.13)

Proof. We are following the lines of Hannan (1970), p. 329. Rewriting
√
T
(
γ̂ (k)− ˆ̂γ (k)

)
leads

to
√
T

((
1− k

T

)
ȳT ȳ

T
T −

1

T

T∑
t=k+1

ytȳ
T
T −

1

T

T∑
t=k+1

ȳT y
T
t−k −

1

T

k∑
t=1

yty
T
t−k

)
(2.2.14)

With the help of Theorem 2.2.15 it follows that
√
T ȳT

d→ Nn (0, 2πfy (0)) and Theorem 2.2.11 implies(
1− k

T

)
ȳT

p→ 0 and 1
T

∑T
t=k+1 yt

p→ 0. Thus, with Lemmas 2.2.6 and 2.2.7 the �rst three terms in

(2.2.14) converge to zero. The fourth term converges to zero, too, which can be seen from the Markov's

inequality

P

(∣∣∣∣∣ 1√
T

k∑
t=1

yity
j
t−k

∣∣∣∣∣ ≥ ε
)
≤

E
∣∣∣∑k

t=1 y
i
ty
j
t−k

∣∣∣
√
Tε

≤ c√
T

for i, j = 1, . . . , n. This proves the desired result. �

Analogously to the mean estimator for a linear process the autocovariance estimator is consistent,

too.

Theorem 2.2.17. Let (yt)t∈Z be a linear process and k ∈ Z. Then it follows that

γ̂ (k)
p→ γ (k) . (2.2.15)
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Proof. see Hannan (1970), p. 231. �

Note that the assumption of a linear process is a bit restrictive and can be relaxed, see e.g. Hannan

and Heyde (1972); Hall and Heyde (1980), where the i.i.d. assumption of the inputs is replaced by

E (νt|Ft−1) = 0 (2.2.16)

E
(
νtν

T
t |Ft−1

)
= Σν ,

where Ft is the σ-algebra generated by νs for s ≤ t.
The next lemma is important for obtaining the asymptotic covariance of the covariance estimators

γ̂ (k). Let η = E
(
νtν

T
t ⊗ νtνTt

)
and κ = η − vec (Σν) vec (Σν)

T − (Σν ⊗ Σν) −Kn,n (Σν ⊗ Σν) where

Kn,n is a commutation matrix (see Lemma C.0.2).

Lemma 2.2.18. Let (yt)t∈Z be a linear process and assume that η = E
(
νtν

T
t ⊗ νtνTt

)
exists. Then

we obtain

lim
T→∞

TCov (vec (γ̂ (p)) , vec (γ̂ (q))) = Rp,q + Sp,q (2.2.17)

for p, q ∈ Z where

Rp,q =

∞∑
k=−∞

(γ (k + q − p)⊗ γ (k)) +Kn,n (γ (k + q)⊗ γ (k − p))

Sp,q =

∞∑
k=−∞

∞∑
r=−∞

(kk−p ⊗ kk)κ (kr+k−q ⊗ kr+k)
T
.

Note that Sp,q can be obtained through

vec (Sp,q) = (γ̃ (p)⊗ γ̃ (q)) vec (κ) (2.2.18)

where γ̃ (p) =
∑∞
r=−∞ (kr−p ⊗ kr).

Proof. This lemma has been proved in Su and Lund (2011), where the line-by-line vectorization

is used. �

In a next step we want to derive the asymptotic distribution of the autocovariance estimators. In

order to prove this, we �rst need to introduce the concept of an M -dependent sequence.

Definition 2.2.19. A sequence (yt)t∈Z is said to beM -dependent if for each t the sets of variables

{yj , j ≤ t} and {yj , j ≥ t+M + 1} are independent.

The next theorem is from Anderson (1994), p. 429, which shows the asymptotic normality of the

mean estimator in the case of M -dependent sequences. Another version of this theorem can be found

in Brockwell and Davis (1987), p. 213.

Theorem 2.2.20. Let (yt)t∈Z be a strictly stationary M -dependent process with zero mean. Then
1√
T

∑T
t=1 yt converges to a normal distribution with zero mean and a covariance matrix given by ΣM =∑M

i=−M γ (i), i.e.

1√
T

T∑
t=1

yt
d→ Nn (0,ΣM ) . (2.2.19)
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The following lemma leads to a useful tool for calculating asymptotic distributions. In Hannan

(1970); Hall and Heyde (1980) it is called Bernstein's Lemma (see also Anderson (1958)):

Lemma 2.2.21. Consider the sequence (aT )T∈N of random vectors with zero mean. Let aT =

bKT + cKT for T, K ∈ N. If for every ε > 0 and η > 0 there exist a K0 so that for K > K0

bKT
d→ Nn (0,ΣK) ,

lim
K→∞

ΣK = Σ and P
((
cKT
)T
cKT > η

)
< ε for all T , then

aT
d→ Nn (0,Σ) . (2.2.20)

Proof. see Hannan (1970) p. 242 or Anderson (1958) p.425. �

Assuming that we want to calculate the asymptotic distribution of a random sequence (aT )T∈N,

but, for instance, we can only show that the �nearby� sequence
(
bKT
)
T∈N is asymptotically normal,

then, under the assumptions of the last lemma, we can conclude that also (aT )T∈N is asymptotically

normally distributed. The next theorem is a multivariate version of Bartlett's formula.

Theorem 2.2.22 (Bartlett's Formula). Let (yt)t∈Z be a linear process, s ∈ N and assume that

η = E
(
νtν

T
t ⊗ νtνTt

)
exists. Then we obtain

√
T



vec (γ̂ (0))

...

vec (γ̂ (s))

−

vec (γ (0))

...

vec (γ (s))


 d→ Nn2(s+1) (0,Σγ) (2.2.21)

where

Σγ = (Rp,q + Sp,q)p,q=0,...,s

can be obtained from Lemma 2.2.18.

Proof. We are following the lines of the proof of Theorem 14 of Hannan (1970), p. 228:

First of all note that using Lemma 2.2.16 we only have to consider ˆ̂γ (p) instead of γ̂ (p), since√
T
(
γ̂ (p)− ˆ̂γ (p)

)
p→ 0. We are considering a truncation of the linear process yt, say yKt , depending

on K

yKt =

K∑
j=−K

kjνt−j .

Now the vectorized unbiased autocovariance estimator of this truncated process is

vec
(

ˆ̂γK (p)
)

=
1

T

T∑
t=1

vec
(
yKt
(
yKt−p

)T)

=
1

T

T∑
t=1

(
yKt−p ⊗ yKt

)
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or vec
(

ˆ̂γK (p)
)

= 1
T

∑T
t=1 zt,p where zt,p =

(
yKt−p ⊗ yKt

)
. Note that zt,p and zt+h,p are independent if

h > 2K + p and so zt,p is a (2K + p)-dependent process. Let MK = 2K + s and

Γ =


vec (γ (0))

...

vec (γ (s))

 .

In an analogous way let us de�ne ˆ̂
Γ as the corresponding sample estimator. Further let

ΓK =


vec (γK (0))

...

vec (γK (s))


where γK (h) is the autocovariance of the truncated process yKt and let ˆ̂

ΓK be the sample estimator

of ΓK . Thus, with the help of Theorem 2.2.20, we obtain that
√
T
(

ˆ̂
ΓK − ΓK

)
d→ Nn2(s+1)

(
0,ΣMK

γ

)
where ΣMK

γ =
∑MK

i=−MK
Γ̃MK

(i) = 2πfMK
(0), Γ̃MK

(i) is the autocovariance and fMK
(λ) is the

spectral density of 
vec
(
yKt
(
yKt
)T)

...

vec
(
yKt
(
yKt−s

)T)
 .

The last blocked process is, of course, strictly stationary. Now we want to apply Lemma 2.2.21 to

prove the normality for the non-truncated process (yt)t∈Z. We de�ne: aT =
√
T
(

ˆ̂
Γ− Γ

)
, bKT =

√
T
(

ˆ̂
ΓK − ΓK

)
and cKT = bKT − aT . By taking the limes of ΣMK

γ we obtain that lim
K→∞

ΣMK
γ = Σγ =

2πf (0) where f (λ) is the spectral density of
vec
(
yty

T
t

)
...

vec
(
yty

T
t−s
)
 .

Note that, under our assumptions, this spectral density exists. Thus, by the Chebyshev's inequality,

it remains to prove that

lim
T→∞

TV
((

ˆ̂
Γ− ˆ̂

ΓK

)
m

)
= 0, m = 1, . . . , n2(s+ 1).

This step is tedious and will be omitted here (see p. 244 in Hannan (1970)). This proves the

asymptotic normality for the autocovariance estimators.

In a last step we can conclude that the covariance of the asymptotic distribution is the same as

the right hand side of equation (2.2.10) in Theorem 2.2.14. So we can use Lemma 2.2.18 to calculate

the desired asymptotic covariance. �
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Remark 2.2.23. The last theorem can be extended to any set of autocovariance lags including neg-

ative ones. As an example, one can use the lag set (−p+ 1, . . . , p), which includes all autocovariances

needed for the Yule-Walker estimator (2.1.34).

Note, too, that in the Gaussian case, i.e. when the νt are assumed to be normally distributed,

η = vec (Σν) vec (Σν)
T

+ (Σν ⊗ Σν) +Kn,n (Σν ⊗ Σν) holds and clearly in this case Sp,q vanishes.

Of course, Σγ can be a singular covariance matrix. For instance, if we want to derive the asymptotic

distribution of the estimator γ̂(0) = γ̂(0)T for the case n > 1, the asymptotic covariance has rank
n(n+1)

2 < n2 and thus is singular. This is one of the reasons why we introduced singular normal

distributions.

2.2.3. Asymptotic Properties of the Yule-Walker and Maximum Likelihood Estima-

tor. In a next step we want to derive the asymptotic behavior of the maximum likelihood estimator and

the Yule-Walker estimator. It will turn out that, under our assumptions, the Yule-Walker estimator

has the same asymptotic covariance as the maximum likelihood estimator and thus is asymptotically

e�cient, i.e. the asymptotic covariance of the Yule-Walker estimator equals the Cramer Rao bound.

Theorem 2.2.24. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν).

Assume that Σν is nonsingular, η = E
(
νtν

T
t ⊗ νtνTt

)
exists and let θ =

(
vec (A)

T
, vech (Σν)

T
)T

.

Then the maximum likelihood estimator for the AR(p) case is asymptotically normally distributed, i.e.

√
T
(
θ̂ML − θ

)
d→ Npn2+n(n+1)/2 (0,ΣML) (2.2.22)

where θ̂ML =

(
vec
(
ÂML

)T
, vech

(
Σ̂ML

)T)T
and has a covariance matrix given by

ΣML =

((
Γ−1
p ⊗ Σν

)
0

0 D†n

(
η − vec (Σν) vec (Σν)

T
) (
D†n
)T)

where D†n is the generalized inverse of the duplication matrix Dn (see Appendix C). In the Gaussian

case this variance changes to

ΣML =

((
Γ−1
p ⊗ Σν

)
0

0 2D†n (Σν ⊗ Σν)
(
D†n
)T
)
.

Proof. see Mann and Wald (1943), Anderson (1994) p. 183 or Lütkepohl (2005), p. 93. �

The next theorem states that the Yule-Walker estimators are asymptotically normally distributed.

Theorem 2.2.25. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν)

and assume Σν > 0. Then
√
T
(
vec
(
ÂYW

)
− vec (A)

)
is asymptotically normally distributed with zero

mean and the covariance matrix given by
(
Γ−1
p ⊗ Σν

)
, i.e.

√
T
(
vec
(
ÂYW

)
− vec (A)

)
d→ Nn2p

(
0,Γ−1

p ⊗ Σν
)
. (2.2.23)
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In addition, assume that η = E
(
νtν

T
t ⊗ νtνTt

)
exists. It follows that

√
T
(
vech

(
Σ̂YW

)
− vech (Σν)

)
is

asymptotically normally distributed, i.e.
√
T
(
vech

(
Σ̂YW

)
− vech (Σν)

)
d→ Nn(n+1)/2

(
0, D†n

(
η − vec (Σν) vec (Σν)

T
) (
D†n
)T)

.(2.2.24)

Proof. The proof for the system parameters is from Hannan (1970), p. 328 and can be separated

into two parts:

(1) Show that
√
T
(

Γ̂p ⊗ In
)(

vec
(
ÂYW

)
− vec (A)

)
=
√
Tvec (ê), where ê is de�ned below.

(2) Show that
√
Tvec (ê) is asymptotically normally distributed with zero mean and the covari-

ance matrix given by (Γp ⊗ Σν).

Consider √
T γ̂1 =

√
T (A1, ..., Ap) Γ̂p +

√
T (ê(1), ..., ê(p))︸ ︷︷ ︸

ê

+
√
TcT (2.2.25)

where

ê (i) =
1

T

T∑
t=1

νty
T
t−i i = 1, . . . , p

and
√
TcT

p→ 0, see Lemma 2.2.16, and thus will be neglected. Columnwise vectorization of equation

(2.2.25) leads to √
Tvec (γ̂1) =

√
T
(

Γ̂p ⊗ In
)
vec (A) +

√
Tvec (ê) ,

compare rule 3 in Lemma C.0.1. Replacing γ̂1 with equation (2.1.37) we directly get
√
T
(

Γ̂p ⊗ In
)
vec (A) +

√
Tvec (ê) =

√
Tvec

(
ÂYWΓ̂p

)
=
√
T
(

Γ̂p ⊗ In
)
vec
(
ÂYW

)
or in another form: √

T
(

Γ̂p ⊗ In
)(

vec
(
ÂYW

)
− vec (A)

)
=
√
Tvec (ê) . (2.2.26)

Thus, it remains to prove that
√
Tvec (ê) is asymptotically normally distributed with zero mean and

covariance (Γp ⊗ Σν). As it can be easily seen
√
Tvec (ê) has a zero mean and covariance (Γp ⊗ Σν),

since for a particular element of V
(√

Tvec (ê)
)
it follows that

E

 1

T

(
T∑
t=1

yt−p ⊗ νt

)(
T∑
n=1

yn−q ⊗ νn

)T =
1

T
E

(
T∑
t=1

yt−py
T
t−q ⊗ νtνTt

)

+
1

T
E

 T∑
t=1

T∑
n=1,t6=n

yt−py
T
n−q ⊗ νtνTn


︸ ︷︷ ︸

=0

= γ (p− q)⊗ Σν .
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Thus it is left to show that
√
Tvec (ê) is asymptotically normal. As in the proof of Theorem 2.2.22 we

de�ne

yKt =

K∑
j=0

kjνt−j

vec (êK (i)) =
1

T

T∑
t=1

(
yKt−i ⊗ νt

)
, i = 1, . . . , p.

or vec (êK (i)) = 1
T

∑T
t=1 zt,i, where zt,i =

(
yKt−i ⊗ νt

)
. Note that zt,i and zt+h,i are independent if

h > 2K + i and so zt,i is a 2K + i-dependent process. We de�ne MK = 2K + p,

êK =


vec (êK (1))

...

vec (êK (p))


and with Theorem 2.2.20 we obtain

√
T (êK)

d→ Nn2p

(
0,ΣMK

e

)
where ΣMK

e =
∑MK

i=−MK
Γ̃MK

(i) = 2πfMK
(0), Γ̃MK

(i) is the autocovariance and fMK
(λ) is the

spectral density of 
vec
(
νt
(
yKt−1

)T)
...

vec
(
νt
(
yKt−p

)T)
 .

Note that Γ̃MK
(i) does not need further assumptions on higher moments of (νt)t∈Z because

vec
(
νt
(
yKt−1

)T)
...

vec
(
νt
(
yKt−p

)T)
 =

K∑
j=0

(Ip ⊗ (kj ⊗ In))


(νt−1−j ⊗ νt)

...

(νt−p−j ⊗ νt)


and thus νt−i−j and νt do not occur at the same time point. In order to apply Lemma 2.2.21 we set

aT =
√
Tvec (ê), bKT =

√
T êK and cKT = bKT − aT . If we take the limes of ΣMK

e , we get lim
K→∞

ΣMK
e =

Σe = (Γp ⊗ Σν). Then due to Chebyshev's inequality we only need to prove that

lim
T→∞

TV ((vec (ê)− êK)m) = 0 m = 1, . . . , n2p
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to ful�ll the assumptions of Lemma 2.2.21. For a certain j, i and s this follows directly from

TE ((vec (ê)− êK)m)
2

=
1

T
E

(
T∑
t=1

T∑
u=1

νite
T
j

(
yt−s − yKt−s

)
νiue

T
j

(
yu−s − yKu−s

))

=
1

T

T∑
t=1

T∑
u=1

∞∑
v=K+1

∞∑
w=K+1

E
(
eTi νtν

T
t−s−v

(
eTj kv

)T
eTi νuν

T
u−s−w

(
eTj kw

)T)

=
1

T

T∑
t=1

∞∑
w=K+1

E
((
eTi νt

)2
νTt−s−w

(
eTj kw

)T
νTt−s−w

(
eTj kw

)T)
= σ2

ii

∞∑
w=K+1

kjwΣν
(
kjw
)T K→∞−→ 0

where ei denotes the i-th unit vector. Now we apply Bernstein's Lemma to obtain that
√
Tvec (ê)

is asymptotically normal. Thereby
√
T
(
vec
(
ÂYW

)
− vec (A)

)
is asymptotically normal with the co-

variance matrix
(
Γ−1
p ⊗ Σν

)
. This follows immediately from Slutsky's Lemma 2.2.7 since

(
Γ̂p ⊗ In

)
p→

(Γp ⊗ In) and
√
Tvec (ê)

d→ Nn2p (0,Γp ⊗ Σν), so that
√
T
(
vec
(
ÂYW

)
− vec (A)

)
=
√
T
(

Γ̂−1
p ⊗ In

)
vec (ê)

d→ Nn2p

(
0,Γ−1

p ⊗ Σν
)
.

For the asymptotic behavior of the estimator of the noise parameters, i.e. Σ̂YW = γ̂ (0) − γ̂1Γ̂−1
p γ̂T1 ,

we can observe that γ̂ (0) = 1
T Y Y

T where again Y = (y1, . . . , yT ) and that γ̂1Γ̂−1
p γ̂T1 is approximately

Y XT
(
XXT

)−1
XY T where again X = (x1, . . . , xT ). Indeed, it is easy to show that

√
T

(
1

T
Y XT

(
1

T
XXT

)−1

− γ̂1Γ̂−1
p

)
p→ 0,

which states that the ML and the Yule-Walker estimator for the system parameters are asymptotically

equivalent. Furthermore, from Lemma 2.2.16 we can conclude that
√
T
(

1
T Y X

T − γ̂1

) p→ 0. Now with

the aid of Lemma 2.2.7 we directly obtain that

√
T
(
Y XT

(
XXT

)−1
XY T − γ̂1Γ̂−1

p γ̂T1

)
=
√
T

(
1

T
Y XT

(
1

T
XXT

)−1

− γ̂1Γ̂−1
p

)
XY T

+
√
T γ̂1Γ̂−1

p

(
1

T
XY T − γ̂T1

)
p→ 0,

which states that the ML and the Yule-Walker estimator for the noise parameters are asymptotically

equivalent.

�

Remark 2.2.26. Note that, as mentioned above, under our assumptions the Yule-Walker estimator

has the same asymptotic covariance as the maximum likelihood estimator and thus is asymptotically

e�cient. Whereas these two estimators do not di�er asymptotically, they have di�erent �nite sample

properties: The Yule-Walker estimator always leads to a stable system, provided Γ̂p > 0 holds, while

the maximum likelihood estimator, in general, does not lead to a stable system. The two estimators

for the noise covariance matrix are always positive semi-de�nite.



CHAPTER 3

Identi�ability of AR Systems in the Mixed-Frequency Case

In this chapter we deal with the problem of identi�ability of the high-frequency system (2.1.6) in

the mixed-frequency case, i.e. uniquely determine the system and noise parameters from the population

second moments which can be directly observed. We assume that at least one component of the process

(yt)t∈Z is observed at every time point t ∈ Z. It turns out that identi�ability cannot be achieved on

the whole set Θ but on a �large� subset. Therefore, we introduce a property for a subset called generic,

see Section 3.1. Section 3.2 shows the generic identi�ability �rst for the AR(1) and then for the AR(p)

where p ≥ 1 case. In the AR(1) case the non-identi�able set can be described explicitly. Identi�ability

of the fourth moment of the innovations (if it exists) is also discussed since it is needed for the analysis

in Chapter 5. While from Section 3.2.1 to Section 3.2.3 the stock case is considered, in Section 3.2.4

the results are generalized to the �ow case, i.e. where the slow component is aggregated by a known

scheme. This chapter is based on the results obtained in Anderson et al. (2012, 2015a).

3.1. What is generic?

In Section 3.2 we want to discuss which subset of the parameter space Θ is identi�able from the

second moments, which can be observed directly. It will turn out that not all parameters of the whole

parameter space Θ are identi�able but at least on a generic subset:

Definition 3.1.1. We say that a property holds generically on a space Θ if there exists an open

and dense subset of Θ on which the property holds.

First, we start with a lemma, which will be essential for the following proofs.

Lemma 3.1.2. Let f : Θ→ R be a polynomial function. If there exists a θ∗ ∈ Θ so that f(θ∗) 6= 0,

then the set of zeros of f is a proper algebraic set, i.e. an algebraic set of dimension smaller than the

dimension of Θ, and in particular its complement in Θ is generic.

Proof. For the proof and a detailed discussion see e.g. Lee and Markus (1967); Wonham (1985);

Bochnak et al. (1998). �

The following lemmas state some desirable properties which hold generically on the parameter

space Θ.

Lemma 3.1.3. Let A ∈ Rn×n. Then A is generically nonsingular in Rn×n.

Proof. In order to apply Lemma 3.1.2 we de�ne f (A) = det (A). Thus, we only have to �nd a

point in the parameter space for which f (A) 6= 0 holds. By choosing A∗ = In it follows f(A∗) 6= 0

29
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and thus the set of singular matrices is a proper algebraic set. The complement of this set is generic

in Rn×n. �

Lemma 3.1.4. Let zi ∈ C for i = 1, . . . ,m, m ∈ N and A be the companion form of (A1, . . . , Ap).

Then the subset of Θ on which zi i = 1, . . . ,m are no eigenvalues of A is generic.

Proof. The �nite intersection of open and dense subsets is still open and dense. Thus w.l.o.g.

we only have to show that generically z1 is not an eigenvalue of A. Again we want to apply Lemma

3.1.2. Thus, we have to �nd a point in the parameter space so that

f (A) = det (A− z1Inp) 6= 0

holds. We choose the point, A∗, where

Ai =

0 i = 1, . . . , p− 1

ρpC i = p
(3.1.1)

and ρ ∈ (0, 1) with the further assumption that ρ 6= |z1| and where

C =



0 0 · · · 0 1

1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0


(3.1.2)

is a so-called circulant matrix with eigenvalues ωj = exp
(

2πij
n

)
. It is easy to show that the eigenvalues

λj of A∗ have the property that |λj | = ρ. Therefore, det (A∗ − z1Inp) 6= 0 and the same property

holds generically on the parameter space Θ. �

Lemma 3.1.5. Let A be the companion form of (A1, . . . , Ap). Then the subset of Θ where the

eigenvalues of A are distinct is generic.

Proof. A proof has been given in Felsenstein (2014), Lemma 3.4.2. �

Note that it immediately follows that the matrix A has generically the representation A = PΛP−1

where Λ ∈ Rnp×np is a diagonal matrix which contains the eigenvalues λi of A and P = (p1, . . . , pnp)

where pi is the eigenvector corresponding to λi. It is worth mentioning that this representation is

generically also possible for unstable polynomials.

Lemma 3.1.6. Let 1 < N ∈ N and let ΘN ⊂ Θ so that every A ful�lls the property that for two

eigenvalues λi 6= λj of A it follows that λNi 6= λNj . Then ΘN is generic in Θ.

Proof. The proof follows the same idea as Lemma 3.4.2 in Felsenstein (2014): We de�ne pj (λ) =

det
(
Aj − λI

)
and qj (λ) = p′j (λ) =

∂pj(λ)
∂λ . It is well known that λi is a zero of pj (λ), j ∈ N with

multiplicity larger than one if and only if it is a zero of qj (λ), too. Thus, using the result of Sylvester,

which says that two polynomials, say a(z) and b(z), are co-prime if and only if det (S (a, b)) 6= 0 where
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S (a, b) is the Sylvester resultant (compare Kailath (1980) p. 142), we only have to �nd a point in

the parameter space Θ so that f(A) = det (S (p1, q1)) det (S (pN , qN )) 6= 0. Note that det (S (p1, q1))

guarantees that A has di�erent eigenvalues and det (S (pN , qN )) guarantees that λNi 6= λNj . An easy

way to construct such a point, f(A∗) 6= 0, is: Let zi ∈ R, i = 1, . . . , np with 0 < |zi| < 1 and

|zi| < |zi+1|. Furthermore, let ã (z) =
∏p
i=1 (ai − Inz) where ai is a diagonal matrix where the j-th

diagonal entry is z(i−1)n+j . Then ã (z) = A0 + A1z + . . . + Apz
p and by normalizing A0 we obtain

our point a∗ (z) = A−1
0 ã (z). Of course, this point ful�lls f(A∗) 6= 0 since A∗ has the eigenvalues

1/zi, i = 1, . . . , np and thus (A∗)N has the eigenvalues 1/zNi for i = 1, . . . , np which are of course

distinct. �

We can conclude that if pi is an eigenvector of A corresponding to the eigenvalue λi, then it is

generically an eigenvector of AN corresponding to the eigenvalue λNi and vice versa.

Lemma 3.1.7. Let A be the companion form of (A1, . . . , Ap). For i = 1, . . . , n, the pair
(
eTi ,A

)
where ei ∈ Rnp is the i-th unit vector is generically observable.

Proof. A proof has been given in Anderson et al. (2012), Lemma 3. Here we will present a

di�erent one: We have to �nd a point so that f(A) = det
((
ei,AT ei, . . . ,

(
AT
)np−1

ei

))
6= 0. We

choose the point, say A∗, where

Ai =

0 i = 1, . . . , p− 1

ρpC i = p
(3.1.3)

and where ρ ∈ (0, 1). It is a well known fact that C has the normalized right eigenvectors qj =
1√
n

(
1, ωj , ω

2
j , . . . , ω

n−1
j

)T
where ωj = exp

(
2πij
n

)
for j = 1, . . . , n. Note that ωj is the j-th eigenvalue

of C.

Using the PBH test (see Theorem 2.1.6) we only have to show that eTi pj 6= 0 for all eigenvectors pj

of A∗. Note that because of Lemma 2.1.7 pj =
((
p1
j

)T
,
(
p1
j

)T
λ−1
j , . . . ,

(
p1
j

)T
λ−p+1
j

)T
and p1

j ful�lls

a∗
(
λ−1
j

)
p1
j =

(
In − λ−pj ρpC

)
p1
j = 0. Thus, p1

j is an eigenvector of C and has no zero entry. To

summarize, this pair is observable and thus this property holds on a generic subset of the parameter

space Θ, too. �

Lemma 3.1.8. Let A be the companion form of (A1, . . . , Ap) and B as in equation (2.1.11). Then

Γp is generically nonsingular in Θ.

Proof. As mentioned before Theorem 2.1.6, Γp is nonsingular if and only if the pair (A,B) is

controllable, i.e.

rk
(
B,AB, . . . ,Anp−1B

)︸ ︷︷ ︸
C

= np.

Thus it remains to prove that generically C has full row rank or det
(
CCT

)
, which is a polynomial

function in the system and noise parameters, is generically unequal to zero.

Again we want to use Lemma 3.1.2 to establish our result: We choose the point, say θ∗, where A∗ is
the companion form where the system parameters are given in (3.1.3) and B∗ =

(
eT1 , 0, . . . , 0

)T ∈ Rnp



32 3. IDENTIFIABILITY OF AR SYSTEMS IN THE MIXED-FREQUENCY CASE

where e1 ∈ Rn is the �rst unit vector. Then for an AR(p) process (wt)t∈Z of a system with parameters

θ∗ the covariance γ∗(0) is diagonal and the covariances γ∗(j), j = 1, . . . , p − 1 are zero, which can

be easily seen by looking at the Wold decomposition wt =
∑∞
j=0 ρ

pjCje1εt−jp. Obviously, γ∗(0) =∑∞
j=0 ρ

2pjCje1e
T
1

(
Cj
)T

is nonsingular. Thus, Γ∗p > 0 holds and therefore det
(
C∗ (C∗)

T
)
> 0, which

leads to our desired result. �

It is a fallacy to claim that all roots of det (a (z)) are generically complex with non-zero complex

part since the real numbers are a one-dimensional subspace of the complex numbers. This can be

easily demonstrated by assuming that np is odd. Then, of course, at least one root has to be real since

complex roots have to occur in complex conjugate pairs.

3.2. g-Identi�ability of AR Systems

In this section we consider the problem of identi�ability, i.e. whether for given Θ the parameters

Ai and Σν of the high-frequency system are uniquely determined by the population second moments

of the observations.

Let

yt =

(
yft

yst

)
(3.2.1)

where the nf -dimensional, say fast (or to be more precise high-frequency) component yft is observed

at the highest (sampling) frequency t ∈ Z and the ns-dimensional slow (or to be more precise low-

frequency) component yst is observed only for t ∈ NZ (N being an integer N > 1), i.e. for every N -th

time point. Throughout we assume nf ≥ 1 and that we deal with stock variables. The matrices

Ai =

(
aff (i) afs(i)

asf (i) ass(i)

)
, i = 1, . . . , p, Σν =

(
σff σfs

σsf σss

)
(3.2.2)

are partitioned accordingly.

The population second moments which can be directly observed are

γff (h) = E
(
yft+h

(
yft

)T)
, h ∈ Z,

γsf (h) = E
(
yst+h

(
yft

)T)
, h ∈ Z,

γss(h) = E
(
yst+h (yst )

T
)
, h ∈ NZ. (3.2.3)

Example 3.2.1. Let N = 2, n = 2 and thus nf = ns = 1. Then we have the following observation

scheme:
t · · · 1 2 3 4 5 · · ·
yft · · · yf1 yf2 yf3 yf4 yf5 · · ·
yst · · · × ys2 × ys4 × · · ·

(3.2.4)

where × means that this observation is not available. The second moments which can be observed are

. . .

(
γff (0) γfs(0)

γsf (0) γss(0)

)
,

(
γff (1) γfs(1)

γsf (1) ×

)
,

(
γff (2) γfs(2)

γsf (2) γss(2)

)
,

(
γff (3) γfs(3)

γsf (3) ×

)
, . . .
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Figure 3.2.1. Di�erent sampling rates of a two-dimensional process for N = 2

As mentioned in Chapter 1 there are many alternative ways to overcome the problem of mixed-

frequency data. Two of these ways are motivated as follows: Since most of the standard literature

in time series analysis is based on single-frequency observations one could, for instance, interpolate

the slow component so that single/high-frequency �data� are available (see Friedman (1962)) and then

apply procedures as described in Chapter 2. One drawback of using interpolated data will be discussed

in Section 4.3. Another way would be to transform the observed data to the lowest frequency. One

possible transformation would be to use the observations which are only available at the same time

point. Figure 3.2.1 shows a two-dimensional time series with the fast component in black and the slow

component in red. In the left picture the time series is observed at every time point, in the middle we

have our mixed-frequency setting, where we assume that we only observe the slow component every

second time point, and in the right picture we observe the whole time series only at every second time

point. Of course, the behavior of the time series in the right picture is smoother than in the left one.

This �gure should indicate that omitting observed fast components leads to an information loss.

The next de�nition was �rst introduced in Anderson et al. (2015a):

Definition 3.2.2. A parameter space is called g-identi�able if there exists a generic subset of the

parameter space on which the parameters are identi�able.

Note that if identi�ability holds and if, in addition, there is an algorithm for obtaining the param-

eters of the high-frequency system from the population second moments of the observations, we can

reconstruct the missing second moments (see Section 3.2.3).

3.2.1. Identi�ability of AR(1) Systems. The content of this section has been published in

Anderson et al. (2015a) (except for Example 3.2.3 which is contained in Koelbl et al. (2015)). For

further discussion see also Anderson et al. (2012).

We consider the special case of AR(1) systems. In addition, for simplicity, we restrict ourselves

to the case N = 2, nf = ns = 1. Furthermore, we assume throughout this section that the AR(1)

system is regular. This is done for two reasons. Firstly, it gives an example illustrating the problem.

Secondly, as will be shown below, this analysis yields special results; in particular the subset ΘI of Θ,
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where identi�ability is obtained (without imposing additional restrictions), can be described explicitly.

We show that the complement of this set is a so-called semi-algebraic set, see Bochnak et al. (1998),

De�nition 2.1.4, i.e. a set of (multivariate) polynomial zeros where algebraic inequalities are imposed

additionally, and so we conclude that for generic parameter values identi�ability is obtained.

We �rst consider the case where in addition Σν is diagonal. We can write(
yft

yst

)
=

(
aff afs

asf ass

)
︸ ︷︷ ︸

A1

(
yft−1

yst−1

)
+

(
νft

νst

)
(3.2.5)

where we assume that every even time point is fully observed. Now the one-step-ahead predictor for

yft−1, t− 1 odd, based on observed outputs is obtained from the following equation:

yft−1 = affy
f
t−2 + afsy

s
t−2 + νft−1

and the two-step-ahead predictor of yt, t even, is obtained from

yt = A2
1yt−2 +A1νt−1 + νt.

Combining both equations gives a three-dimensional system on 2Z: yft

yst

yft−1


︸ ︷︷ ︸

ỹt

=

(
A2

1 0

aff afs 0

)
︸ ︷︷ ︸

Ã

y
f
t−2

yst−2

yft−3

+

(
A1νt−1 + νt

νft−1

)
︸ ︷︷ ︸

ν̃t

. (3.2.6)

Note that (3.2.6) is an AR(1) system on 2Z whose outputs ỹt are the observed variables and thus may

serve as a model for the mixed-frequency data.

As the components of ỹt−2 are linearly independent by the regularity assumption, Ã and Σν̃ =

E
(
ν̃tν̃

T
t

)
are uniquely determined from the second moments of (ỹt)t∈2Z. However, not all entries in Ã,

Σν̃ are free, since

Ã =

 a2
ff + afsasf affafs + afsass 0

asfaff + assasf asfafs + a2
ss 0

aff afs 0

 , (3.2.7)

Σν̃ =

σff 0 0

0 σss 0

0 0 0

+

aff afs

asf ass

1 0

(σff 0

0 σss

)(
aff asf 1

afs ass 0

)
(3.2.8)

must hold.

Here the high-frequency system has 6 free parameters, whereas a general AR(1) system for n = 3

has 15 free parameters. In order to analyze identi�ability we solve (3.2.7), (3.2.8) for given Ã, Σν̃

for the high-frequency parameters A1 and Σν . We see that if afs and asf are both zero, then only

a2
ss is unique, otherwise A1 and Σν are unique and thus we have non-identi�ability if and only if

afs = asf = 0 and ass 6= 0 hold.
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Figure 3.2.2. Sections of the likelihood functions for three di�erent values of asf

It is interesting to note that we have identi�ability whenever the two component processes
(
yft

)
t∈Z

and (yst )t∈Z are not orthogonal.

In order to demonstrate the e�ects of being close to the non-identi�able subset, we consider a

simple example (which is also contained in Koelbl et al. (2015)):

Example 3.2.3. Assume that p = 1, nf = ns = 1, N = 2 and Σν = I2. If we �x the parameters

aff , afs and ass, e.g. as

yt =

(
0.9 0

asf 0.8

)
yt−1 + νt (3.2.9)

and if we vary asf ∈ {0, 0.1, 0.25}, we obtain the following sections of the likelihood shown in Figure

3.2.2, where only ass varies. We see that if asf = 0 the likelihood has two maximums.

If we drop the assumption σsf = 0, we obtain:

Theorem 3.2.4. Assume that p = 1, nf = ns = 1, Σν > 0 and N = 2. The system and noise

parameters

(
aff afs

asf ass

)
, σff , σsf and σss are not identi�able if and only if they satisfy the equations

afs = 0,

asf +
σsf
σff

(ass − aff ) = 0, (3.2.10)

ass 6= 0.

The complement of the set of solutions of (3.2.10) contains a generic subset of Θ.
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Proof. If σsf is not necessarily equal to zero, then (3.2.7) does not depend on whether or not

σsf is zero and remains una�ected. Only (3.2.8) is changed to

Σν̃ =

σff σsf 0

σsf σss 0

0 0 0

+

aff afs

asf ass

1 0

(σff σsf

σsf σss

)(
aff asf 1

afs ass 0

)
. (3.2.11)

Thus aff , afs and σff are unique for given Ã, Σν̃ .

We are left with the problem to uniquely solve equation systems (3.2.7) and (3.2.11) in the variables

asf , ass, σsf , and σss. Thereto we distinguish two cases, namely the case afs = 0 and the case afs 6= 0

considering that we already know afs.

We start with the case afs 6= 0. It is easy to see that the missing parameters asf , ass and σsf can

be recovered using (3.2.7) and (3.2.11). Subsequently, σss can be recovered using equation (3.2.11).

In the event of afs = 0, then A2
1 is lower triangular with (2, 2) entry a2

ss. First, observe that the

(2, 3) and (2, 1) entries of Σν̃ are respectively σffasf + σsfass and aff (σffasf + σsfass) + σsf . It is

obvious that σsf is available.

Next, if ass = 0, something which is known from the (2, 2) entry of A2
1, then the (2, 3) entry of Σν̃

is simply σffasf and since σff is obviously nonzero, the value of asf can be obtained. Also, the (2, 2)

entry of Σν̃ is asf (σffasf + σsfass) + σss and one immediately has σss.

It therefore remains to consider the situation where ass 6= 0. The following quantities α and β,

corresponding to the (2, 1) entry of A2
1 and the (2, 3) entry of Σν̃ , are known:

asfaff + assasf = α

σffasf + σsfass = β

By eliminating asf , we obtain

−a2
ssσsf + (β − affσsf ) ass + affβ = ασff .

Using this equation and the value for a2
ss available from A2

1, it follows that ass is uniquely deter-

mined if and only if

β − affσsf 6= 0.

Introducing the expression above for β, this yields:

asfσff + assσsf − affσsf 6= 0.

To sum up, identi�cation is possible except for parameters satisfying

afs = 0

ass 6= 0

asfσff + assσsf − affσsf = 0.
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The set of non-identi�able points as described by equations (3.2.10) is a so-called semi-algebraic

set. Here, in particular, the set of all identi�able parameters, which is a complement of the semi-

algebraic set above, contains a generic subset of the parameter space, viz. the complement of the set

de�ned by the zeros of the polynomial equalities alone. �

An interesting interpretation of Theorem 3.2.4 is the following: The parameters of the underlying

high-frequency model cannot be obtained if and only if there is a static linear transformation so that

the transformed model has a diagonal innovation covariance and the transformed system matrix is

diagonal with nonzero (2, 2) entry. Note that such a transformation must be of the form

T =

(
1 0

−σsfσ−1
ff 1

)
and that for given T the conditions of non-identi�ability arising are exactly the same as in (3.2.10).

Thus, identi�ability for systems with non-diagonal innovation covariance can be traced back to iden-

ti�ability for systems with diagonal innovation covariance.

Note that equations (3.2.7), (3.2.8) may also be used for identi�ability analysis for n = q > 2

though dealing with the various special cases is more intricate since scalars are replaced by matrices.

We repeat that the advantage of the analysis given above is that the subset of identi�able parameters

is explicitly given and that the genericity property stands out clearly.

On the other hand, the analysis above cannot be extended to the case p > 1 since the blocked

process (ỹt) is in general no longer AR but ARMA.

3.2.2. g-Identi�ability of System Parameters by Extended Yule-Walker Equations. In

this section we establish the extended Yule-Walker equations, which are an analogue of the Yule-Walker

equations for the mixed-frequency setting. This section with the exception of Example 3.2.5 has been

published in Anderson et al. (2015a). For further discussion see also Anderson et al. (2012).

By postmultiplying equation (2.1.6) by yTt−j , j = 1, . . . , p and forming expectations we obtain the

Yule-Walker equations. The problem with these equations is that matrices on both the left and right

hand side contain unobserved second moments. In order to overcome this problem we postmultiply

equation (2.1.6) by
(
yft−j

)T
, j > 0 and form expectations. Thereby we obtain extended Yule-Walker

(XYW) equations proposed in Chen and Zadrozny (1998) as

E
(
yt

(
(yft−1)T , (yft−2)T , . . .

))
= (A1, . . . , Ap)E



yt−1

...

yt−p

((yft−1)T , (yft−2)T , . . .
) . (3.2.12)

Let

K := E
(
xt

(
yft−1

)T)
= E



yt−1

...

yt−p

(yft−1

)T = Γp


Inf
0
...

0

 . (3.2.13)
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From equation (2.1.11), i.e. xt+1 = Axt + Bεt, we see that xt =
∑∞
i=0AiBεt−i−1 and xt+s = Asxt +∑s−1

i=0 AiBεt+s−i−1. The block columns of the second matrix on the right hand side of (3.2.12) are of

the form

E
(
xt

(
yft−j−1

)T)
= E

(
xt+j

(
yft−1

)T)
= E

((
Ajxt +

j−1∑
i=0

AiBεt+j−i−1

)(
yft−1

)T)

= AjE
(
xt

(
yft−1

)T)
= AjK, j ≥ 0.

Thus the rightmost matrix in the extended Yule-Walker equations (3.2.12) can be written as

(K,AK,A2K, . . . ). (3.2.14)

From the Cayley-Hamilton Theorem and since A ∈ Rnp×np we see that the second matrix on the right

hand side of (3.2.12) has full row rank if and only if the matrix consisting of the �rst np blocks has

full row rank. In this way we have obtained our XYW equations which are of the form

E
(
yt

(
(yft−1)T , . . . , (yft−np)

T
))

︸ ︷︷ ︸
=Z1

= (A1, . . . , Ap)E



yt−1

...

yt−p

((yft−1)T , . . . , (yft−np)
T
)

︸ ︷︷ ︸
=Z0

. (3.2.15)

The crucial point is that the matrix Z0 can be written as

Z0 = (K,AK,A2K, . . . ,Anp−1K) (3.2.16)

and therefore has the structure of a controllability matrix.

Clearly, the system parameters (A1, . . . , Ap) of (2.1.6) are identi�able if Z0 has full row rank np

or equivalently the pair (A,K) is controllable. Note, however, that contrary to usual controllabil-

ity matrices here K depends on A, which makes the task of verifying generic controllability more

demanding.

Example 3.2.5. We consider the two-dimensional AR(1) system(
yft

yst

)
=

(
0.5 0.5

0 0

)(
yft−1

yst−1

)
+

(
νft

νst

)
(3.2.17)

where Σν = I2. It immediately follows that this system is identi�able since ass = σsf = 0. Nevertheless,

the matrix Z0 in equation (3.2.15) does not have full row rank:(
0.833 0.417

0 0

)
= Z1 = A1Z0 = A1

(
1.667 0.833

0 0

)
This shows that the condition that rk (Z0) = np holds is not necessary for identi�ability. Indeed, the

solutions of the above equation are given as

A1 = Z1Z
†
0 +H

(
I2 − Z0Z

†
0

)
=

(
0.5 0

0 0

)
+H

(
0 0

0 1

)
(3.2.18)
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(see Rao and Mitra (1971)) where H ∈ R2×2 is an arbitrary matrix and Z†0 is the Moore�Penrose

pseudoinverse (see Golub and Van Loan (1996)). As we know, for the case σsf = afs = asf = 0 the

classes of observationally equivalent parameters consist of two points (corresponding to the two choices

for the square root of a2
ss), whereas the solution set of the XYW equations is a nontrivial a�ne subset.

This shows that the XYW equations do not use the full information contained in the second moments

which are directly observed.

The parameter space in this section is the set Θ of all ((A1, . . . , Ap) ,Σν) where (A1, . . . , Ap) ∈ S
and Σν ∈ D. We analyze identi�ability of system parameters �rst.

The next theorem shows that the matrix Z0 in equation (3.2.15) is generically of full row rank and

thus we have generic identi�ability for (A1, . . . , Ap). Note that this holds both for regular and singular

AR systems for all sampling frequency ratios N and all nf ≥ 1.

Theorem 3.2.6. The matrix Z0 in the extended Yule-Walker equations (3.2.15) has full row rank

np on a generic subset of the parameter space Θ, and thus the system parameters are generically

identi�able.

Proof. In a �rst step, we have to show that Z0 is a rational function of θ ∈ Θ. It follows

immediately that Z0 is rational if we can show that K is a rational function of θ ∈ Θ. Vectorizing the

Lyapunov equation (2.1.15) we obtain

vec (Γp) = (A⊗A) vec (Γp) + vec
(
BBT

)
and thus

vec (Γp) = (I(np)2 − (A⊗A))−1vec
(
BBT

)
. (3.2.19)

Note that the absolute value of all eigenvalues λj of A is smaller than one by the stability assumption

(2.1.7). Therefore, the same holds for the eigenvalues of (A ⊗ A) since the eigenvalues of (A ⊗ A)

are λiλj i, j = 1, . . . , np and thus
(
I(np)2 − (A⊗A)

)
is nonsingular. This implies that vec (Γp) is a

rational function in ((A1, . . . , Ap) ,Σν) having no poles in Θ. Thus, K and AjK and subsequently Z0

are rational in ((A1, . . . , Ap) ,Σν) on Θ.

Without loss of generality we may restrict ourselves to the case where K is a vector and thus

Z0 is square. Multiplying Z0 by det
(
I(np)2 − (A⊗A)

)
we obtain a polynomial in the entries of

((A1, . . . , Ap) ,Σν) since det
(
I(np)2 − (A⊗A)

)
has no zeros on Θ. Thus, the set of zeros of the

determinant of the polynomial matrix det
(
I(np)2 − (A⊗A)

)
Z0 is the same as the set of zeros of the

determinant of Z0 and thus is an algebraic set in Θ (compare Bochnak et al. (1998) page 23).

Now consider a point θ∗ in Θ given by

A∗ =


0 · · · 0 ρpC

In
. . .

In 0

 , B∗ = E1 =


e1

0
...

0

 , (3.2.20)

where ρ ∈ (0, 1), C is again the circulant matrix (see Lemma 3.1.4) and e1 ∈ Rn is the �rst unit vector.

We will show that for this point in the parameter space det (Z0) 6= 0 holds:
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As can be seen in the proof of Lemma 3.1.8 for the point θ∗, Γp is a diagonal and nonsingular matrix

which implies that
(
B,AB, . . . ,Anp−1B

)
is of full row rank. Now it is immediate that Z0 is of full row

rank since, as Γp is diagonal, Z0 =
(
ΓpE1,AΓpE1, . . . ,Anp−1ΓpE1

)
is a multiple of

(
B,AB, . . . ,Anp−1B

)
and therefore det (Z0) 6= 0 holds.

Thus, the set of zeros of det (Z0) is a proper algebraic set, i.e. an algebraic set of dimension smaller

than the dimension of Θ. Therefore, its complement in the parameter space, which corresponds to all

controllable pairs, is the complement of a proper algebraic set and hence is generic in the parameter

space. �

Remark 3.2.7. Instead of postmultiplying
(
yft

)T
in equation (3.2.15) only the �rst or at least

one component of yft is needed to guarantee that the system parameters are g-identi�able. This issue

can be easily seen in the proof of Theorem 3.2.6. Of course, this causes a further information loss.

3.2.3. g-Identi�ability of the Noise Parameters and of the 4th Moments. In this section

we consider g-identi�ability of the noise covariance matrix and of the fourth moment (if it exists). The

�rst part of this section until Remark 3.2.9 has been published in Anderson et al. (2015a), see also

Anderson et al. (2012). Let us de�ne G = (In, 0, . . . , 0).

Theorem 3.2.8. The noise parameters Σν are g-identi�able in Θ from

vec (Σν) =
(

(G ⊗ G)
(
I(np)2 − (A⊗A)

)−1 (GT ⊗ GT ))−1

vec (γ (0)) . (3.2.21)

Proof. We commence from identi�able system parameters (A1, . . . , Ap). Through columnwise

vectorization of

γ(0) = E
(
yty

T
t

)
= GΓpGT

we obtain

vec (γ(0)) = (G ⊗ G)vec (Γp) .

This together with (3.2.19) leads to

vec (γ (0)) = (G ⊗ G)
(
I(np)2 − (A⊗A)

)−1
(GT ⊗ GT )vec (Σν) (3.2.22)

where we used BBT = GTΣνG.
Note that

(
I(np)2 − (A⊗A)

)
is nonsingular. (G ⊗ G)

(
I(np)2 − (A⊗A)

)−1 (GT ⊗ GT ) is a function
rational in (A1, . . . , Ap) having no poles. For A1 = · · · = Ap = 0, the matrix

(
I(np)2 − (A⊗A)

)−1
is

triangular with ones on its diagonal. Thus, in view of the particular form of G

(G ⊗ G)
(
I(np)2 − (A⊗A)

)−1 (GT ⊗ GT ) =

∞∑
j=0

(kj ⊗ kj)

is a principal submatrix of
(
I(np)2 − (A⊗A)

)−1
with the same property and is therefore nonsingular.

Thus, the set of zeros of this function is a proper algebraic set on Θ not depending on Σν . On the

complement of this proper algebraic set we have

vec (Σν) =
(

(G ⊗ G)
(
I(np)2 − (A⊗A)

)−1
(GT ⊗ GT )

)−1

vec (γ (0)) .
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�

Remark 3.2.9. From Theorems 3.2.6 and 3.2.8 we see that the system and noise parameters are

g-identi�able, i.e. identi�able on the intersection of the set described in the proofs of Theorem 3.2.6

and Theorem 3.2.8. Note that the results shown in the proofs above are stronger than the genericity

results because the set where Z0 has not full row rank np is a proper algebraic set (see Wonham (1985)

p. 28) and the same statement holds for the case of noise parameters.

Note that the property that Z0 has full row rank np depends on (A1, . . . , Ap) as well as on Σν

whereas the uniqueness of Σν obtained via (3.2.21) only depends on (A1, . . . , Ap).

If the system (2.1.11), (2.1.12) is not controllable, i.e. if Γp is singular, then we clearly have

non-identi�ability even for high-frequency data as the Yule-Walker equations then have no unique

solution.

Remark 3.2.10. We have not been able to give an explicit description of those elements in Θ

which are not identi�able or those parameters where Z0 is not of full row rank np. In Anderson et al.

(2015a) another approach to identify the system and noise parameters which is based on blocking has

been presented. The advantages of the blocking approach are on the one hand that we can specify

su�cient conditions under which the parameters are identi�able and on the other hand all second

moments which are directly observed are used.

An alternative method to identify the noise parameters is to reconstruct the missing autocovari-

ances from the observed autocovariances (3.2.3) and then use equation (2.1.35) to identify the noise

parameters. As will be shown in the next theorem, again this procedure only uses assumptions on the

system parameters.

By using the Yule-Walker equations we observe that by choosing k =
⌈
p+1
N

⌉
, where dje leads to

the smallest integer greater than or equal to j, it holds

γ(kN) = GA


γ(kN − 1)

γ(kN − 2)
...

γ(kN − p)

 = GA2


γ(kN − 2)

γ(kN − 3)
...

γ(kN − p− 1)

 = . . . = GAkN−p


γ(p)
...

γ(1)

 .

Thereby, we can construct the following system of equations
γ(kN)

γ((k + 1)N)
...

γ((k + np− 1)N)


︸ ︷︷ ︸

=O1

=


GAkN−p

GA(k+1)N−p

...

GA(k+np−1)N−p


︸ ︷︷ ︸

=O


γ(p)
...

γ(1)

 (3.2.23)

where the matrix on the left hand side of equation (3.2.23) can be directly observed from mixed-

frequency data.
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Theorem 3.2.11. For (A1, . . . , Ap) ∈ S, if Ap is nonsingular and if for two eigenvalues λi 6= λj

of A it follows that λNi 6= λNj holds, the missing autocovariances γss (p), p 6= sN , s ∈ Z can be

reconstructed from the one which are directly observed.

Proof. We have to show that the matrix O has full column rank. Notice that O has an ob-

servability structure with the matrices
(
GAkN−p,AN

)
. Since we assume that Ap is nonsingular, there

exists no eigenvalue of A which is zero. Also note that, under our assumptions, if pi is an eigenvector of

A with λi 6= 0, then it is an eigenvector of AN with λNi 6= 0 and vice versa. To obtain a contradiction,

suppose that O fails at having full column rank. Here we can use the PBH test of Theorem 2.1.6 to

conclude that there exists an eigenvector pi with corresponding eigenvalue λi 6= 0 of A so that(
AN − IλNi
GAkN−p

)
pi =

(
0

(In, 0, . . . , 0) piλ
kN−p
i

)
= 0. (3.2.24)

We can immediately conclude that (In, 0, . . . , 0) piλ
kN−p
i = p1

iλ
kN−p
i = 0, which is a contradiction to

Lemma 2.1.7 because then pi would be zero and therefore no eigenvector. This implies that O has full

column rank. Therefore, we can reconstruct γ(i), i = 1, . . . , p with the Moore�Penrose pseudoinverse

of O, i.e. 
γ(p)
...

γ(1)

 =
(
OTO

)−1OTO1. (3.2.25)

Now the non-observed autocovariances can be obtained via

γ(p+ 1) = (A1, . . . , Ap)


γ(p)
...

γ(1)

 (3.2.26)

γ(−p) = γ(p)T .

�

By using Theorem 3.2.11 and equation (2.1.35) we directly get the next proposition:

Proposition 3.2.12. For (A1, . . . , Ap) ∈ S, if Ap is nonsingular and if for two eigenvalues λi 6= λj

of A it follows that λNi 6= λNj holds, the noise parameters Σν are identi�able.

Remark 3.2.13. The assumptions on the system parameters in Proposition 3.2.12 are generic in

the parameter space Θ (see Lemmas 3.1.3 and 3.1.6).

Theorem 3.2.11 can be modi�ed to obtain g-identi�ability for the MA part in the ARMA case under

further assumptions. One of these assumptions is that the order of the moving average polynomial is

smaller than or equal to p (see Anderson et al. (2015b)).

The next theorem states that the fourth moment of the inputs is g-identi�able, which is needed

for the asymptotic behavior of the XYW estimator in Chapter 5.
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Theorem 3.2.14. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt) ∼ IIDn(0,Σν),

assume that the fourth moment η = E
(
νtν

T
t ⊗ νtνTt

)
of νt exists and let

κ = η − vec (Σν) vec (Σν)
T − (Σν ⊗ Σν)−Kn,n (Σν ⊗ Σν) .

Then κ is g-identi�able in Θ from

vec (κ) =

(
G2

(
I(np)4 − (A⊗A⊗A⊗A)

)−1

GT2
)−1

vec (ψ) (3.2.27)

where ψ is de�ned in the proof and G2 = (G ⊗ G ⊗ G ⊗ G).

Proof. It is easy to show that under our assumptions

E
(
yty

T
t ⊗ ytyTt

)
= vec (γ (0)) vec (γ (0))

T
+ (γ (0)⊗ γ (0)) (3.2.28)

+Kn,n (γ (0)⊗ γ (0)) + S0,0 (3.2.29)

where S0,0 =
∑∞
i=0 (ki ⊗ ki)κ (ki ⊗ ki)T (compare Lemma 5.1.2 for the case N = 1, p = q = 0 and

omit the superscript f and s). Reformulating and vectorizing equation (3.2.28) leads to

vec (ψ) =

( ∞∑
i=0

(ki ⊗ ki ⊗ ki ⊗ ki)

)
vec (κ) (3.2.30)

where ψ = E
(
yty

T
t ⊗ ytyTt

)
− vec (γ (0)) vec (γ (0))

T − (γ (0)⊗ γ (0))−Kn,n (γ (0)⊗ γ (0)). Note that,

under the further assumption that the eighth moment E
(
νtν

T
t ⊗ νtνTt ⊗ νtνTt ⊗ νtνTt

)
of νt exists, ψ

can be consistently estimated from mixed-frequency data, see Theorem 5.3.2. Since kj = GAjGT holds,

the left term of the right hand side of (3.2.30) can be rewritten as

∞∑
i=0

(ki ⊗ ki ⊗ ki ⊗ ki) =

∞∑
i=0

G2

(
Ai ⊗Ai ⊗Ai ⊗Ai

)
GT2

=

(
G2

(
I(np)4 − (A⊗A⊗A⊗A)

)−1

GT2
)
. (3.2.31)

Following the same arguments as in the proof of Theorem 3.2.8 we can conclude that the right hand

side of equation (3.2.31) is nonsingular on a generic subset and thus

vec (κ) =

(
G2

(
I(np)4 − (A⊗A⊗A⊗A)

)−1

GT2
)−1

vec (ψ) .

�

One big drawback of equation (3.2.27) is that the dimension of the matrix in the middle, i.e.(
I(np)4 − (A⊗A⊗A⊗A)

)
, increases rapidly with np. For instance, for n = 4 and p = 3 the

dimension of the matrix is 20736. In practice, of course, it is impossible to invert this matrix in a

proper calculation time. One way out would be to use equation (3.2.30) and invert the �rst matrix on

the right hand side, which has dimension n4 or 256 in our example.

3.2.4. g-Identi�ability of the System and Noise Parameters in the Case of Flow Vari-

ables. The �rst part of this section until Theorem 3.2.15 has been published in Anderson et al. (2015a).
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In the previous sections only stock variables have been considered. Here we deal with the case where

the process (yst )t∈Z consists of �ow variables or variables aggregated by more general schemes.

For �ow variables the aggregation to the corresponding observed process, (wt)t∈NZ say, is of the

form

wt = yst + yst−1 + · · ·+ yst−N+1 = (1 + z + · · ·+ zN−1)yst , t ∈ NZ. (3.2.32)

Note that the second moments required in the extended Yule-Walker equations are the autocovariances

E
(
yft+h

(
yft

)T)
, h ∈ Z and the cross covariances E

(
yst+h

(
yft

)T)
, h ∈ Z. We now show how

these cross covariances can be retrieved from the cross covariances E
(
wt+h

(
yft

)T)
, h ∈ Z of the

observations.

To show this, assume for the moment that wt is available for all t ∈ Z and that the inverse of the

linear transformation (3.2.32) exists for all t ∈ Z, i.e.

yst = l.i.m.
M→∞

M∑
j=0

h
(M)
j wt−j , h

(M)
j ∈ Rns×ns , t ∈ Z (3.2.33)

where again l.i.m. denotes the limit in mean square. Then

γsf (h) = E
(
yst+h

(
yft

)T)
= lim
M→∞

M∑
j=0

h
(M)
j E

(
wt+h−j

(
yft

)T)
︸ ︷︷ ︸

γwf (h−j)

. (3.2.34)

The transfer function
(
1 + z + · · ·+ zN−1

)
Ins in (3.2.32) is inverted by inverting(

1 + e−iλ + · · ·+ e−i(N−1)λ
)

=

N−1∏
k=1

(
1− e−iλ

ei2π
k
N

)

by using a partial fraction expansion of
∏N−1
k=1

(
1− e−iλ

ei2π
k
N

)−1

and representing the inverse of each

linear factor
(

1− e−iλ

ei2π
k
N

)
as the limit of its Cesaro sum, i.e.

(
1− e−iλ

ei2π
k
N

)−1

= lim
M→∞

M∑
j=0

(
1− j

M

)
e−i(λ+2π k

M )j .

Note that for our purposes the inverse of the linear transformation (3.2.33) only has to exist for the

special input (wt)t∈Z. In order to show the existence of the inverse transformation (3.2.33), it is more

convenient to use the frequency domain rather than the time domain, see Rozanov (1967); Hannan

(1970). Let

fysys(λ) = (2π)
−1

∞∑
h=−∞

γss(h)e−iλh

and

fww(λ) = (2π)
−1

∞∑
h=−∞

E
(
wt+h (wt)

T
)
e−iλh



3.2. G-IDENTIFIABILITY OF AR SYSTEMS 45

denote the spectral density of (yst )t∈Z and (wt)t∈Z, respectively. As is well known, the spectral density

fww(λ) of (wt)t∈Z satis�es

fww(λ) =
(

1 + e−iλ + · · ·+ e−i(N−1)λ
)
Insfysys(λ)Ins

(
1 + eiλ + · · ·+ ei(N−1)λ

)
and thusˆ (

1 + e−iλ + · · ·+ e−i(N−1)λ
)−1

Insfww(λ)Ins

(
1 + eiλ + · · ·+ ei(N−1)λ

)−1

dλ

=

ˆ
fysys(λ)dλ <∞.

Therefore, each row of
(
1 + e−iλ + · · ·+ e−i(N−1)λ

)−1
Ins is an element of the frequency domain

L2 (fwwdλ) of fww and by the isomorphism between the frequency and the time domain the inverse

transformation (3.2.33) is well de�ned. From (3.2.34) we then obtain

fysyf (λ) = (2π)
−1

∞∑
h=−∞

γsf (h)e−iλh =
(

1 + e−iλ + · · ·+ e−i(N−1)λ
)−1

Insfwyf (λ) (3.2.35)

and thus γsf (h), h ∈ Z. In this way, we get all covariances in the extended Yule-Walker equations.

Note that, in contrast to stock variables, these covariances are the covariances of the observations, in

the case considered here they have to be reconstructed as described above.

A completely analogous derivation holds if we replace (3.2.32) by the more general aggregation

scheme

wt = C1y
s
t + C2y

s
t−1 + · · ·+ CNy

s
t−N+1 (3.2.36)

where Ci ∈ Rns×ns and C1 is nonsingular. Thus, taking into account that generically Z0 has row rank

equal to np, we obtain the following result:

Theorem 3.2.15. Given the aggregation scheme (3.2.36) for the slow variables (wt)t∈NZ, the

system and noise parameters of the high-frequency system (2.1.6) are g-identi�able from γff (h) and

γwf (h), h ∈ Z.

Note that if we set C1 = I and Cj = 0, j = 2, . . . , N, we have the case of stock variables. Thus,

Theorems 3.2.6 and 3.2.8 are special cases of Theorem 3.2.15. As it can be immediately seen, Theorem

3.2.15 also covers the case where the slow variables are formed by a mixture of stock and �ow variables.

In the following lines we introduce an alternative realization procedure where we assume that the

slow component is observed by an aggregation scheme which is based on a simple structure. Simple

structure means in this context that we assume aggregation schemes which are based, for example

on the mean or the sum of the high-frequency observations. To be more precise, we assume that the

aggregation scheme has the following representation:

wt = c1y
s
t + c2y

s
t−1 + . . .+ cNy

s
t−N+1 (3.2.37)

where ci, i = 1, . . . , N , are real scalars and at least one ci is unequal to zero. Examples of these

scalar weights are ci = 1, i = 1, . . . , N , which represents the sum and ci = 1/N, i = 1, . . . , N which

represents the mean. For the case ns = 1 the aggregation scheme in (3.2.36) and (3.2.37) coincide. We
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can rewrite the cross autocovariance function of wt and y
f
t as

γwf (h) =

N∑
i=1

ciγ
sf (h− i+ 1)

= c1γ
sf (h) + c2γ

sf (h− 1) + . . .+ cNγ
sf (h−N + 1) .

Furthermore, let

zt =

(
zft

zst

)
=

N∑
i=1

ciyt−i+1 =

(∑N
i=1 ciy

f
t−i+1

wt

)
,

γz(h) = E
(
ztz

T
t−h
)

=
∑N
i=1

∑N
j=1 cicjγ (j + h− i), γzsf (h) = E

(
zst

(
yft−h

)T)
= γwf (h) and γz

ff (h) =

E
(
zft

(
yft−h

)T)
=
∑N
i=1 ciγ

ff (h− i+ 1). For simplicity we assume that cN 6= 0. In this case we

obtain another form of the XYW equations as follows:
γz
f f (N)︷ ︸︸ ︷

cNγ
ff (1) + . . .+ c1γ

ff (N) γz
ff (N + 1) · · ·

γz
f f (N+np−1)︷ ︸︸ ︷

cNγ
ff (np) + . . .+ c1γ

ff (N + np− 1)

cNγ
sf (1) + . . .+ c1γ

sf (N)︸ ︷︷ ︸
=γwf (N)

γwf (N + 1) · · · cNγ
sf (np) + . . .+ c1γ

sf (N + np− 1)︸ ︷︷ ︸
=γwf (N+np−1)


︸ ︷︷ ︸

Zg1

=

(A1, ..., Ap)



γz
ff (N − 1) γz

ff (N) · · · γz
ff (N + np− 2)

γwf (N − 1) γwf (N) · · · γwf (N + np− 2)
...

...
. . .

...

γz
ff (N − p) γz

ff (N − p+ 1) · · · γz
ff (N + (n− 1)p− 1)

γwf (N − p) γwf (N − p+ 1) · · · γwf (N + (n− 1)p− 1)


︸ ︷︷ ︸

Zg0

.

Again one can ask when the matrix Zg
0 has full row rank and thus the system parameters are identi�able.

It is easy to see that the matrix Zg
0 can be rewritten as

Zg
0 =

(
K,AK,A2K, . . . ,Anp−1K, . . . ,AN+np−2K

) (
Inp ⊗ (cN , . . . , c1)

T ⊗ Inf
)

=
(
cNInp + cN−1A+ · · ·+ c1AN−1

)︸ ︷︷ ︸
F

(
K,AK,A2K, . . . ,Anp−1K

)︸ ︷︷ ︸
Z0

.

Since we already know that the matrix Z0 has generically full row rank we have to check if the matrix

F is at least generically nonsingular. For this purpose we assume that Ap is nonsingular (and thus A is

nonsingular, too) and that the eigenvalues of A are distinct. Again, these two assumptions are ful�lled

generically in the parameter space (see Lemmas 3.1.3 and 3.1.5). Thus, A has the representation

A = PΛP−1, where Λ is a diagonal matrix containing the eigenvalues of A and P = (p1, . . . , pnp) are

the corresponding eigenvectors. Thus, we can write F in the following form

F = P
(
cNInp + cN−1Λ + · · ·+ c1ΛN−1

)
P−1.
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Since we want to show that F is generically nonsingular we have to look at each diagonal entry in

cNInp + cN−1Λ + . . . + c1ΛN−1, which has to be generically unequal to zero. Thus, we have to show

that for a �xed simple aggregation scheme (c1, . . . , cN ) generically no eigenvalue of A is a root of

p (λ) = cN + cN−1λ + . . . + c1λ
N−1. Let (λ1, . . . , λN−1) be the roots of p (λ). Then Lemma 3.1.4

guarantees that generically no root of p (λ) is an eigenvalue of A and for this reason F is generically

nonsingular. Thus, we have shown:

Theorem 3.2.16. Given the aggregation scheme (3.2.37) for the slow variables (wt)t∈NZ, the

matrix Zg0 has full row rank on a generic subset of the parameter space.

The advantage of the XYW equations in this case case over the �rst approach, in which the missing

autocovariances have to be reconstructed, is that the spectral density is not needed. Of course, one

drawback is that only scalar weights are allowed. Note that if we set ci = 0, i = 1, . . . , N − 1 and

cN = 1, we obtain that Zg
0 = Z0 and Zg

1 = Z1.

For the noise parameters we can arrange the following system of equations which rely on the

equation set (3.2.23):

γz (N)

γz (2N)

γz (3N)
...

γz ((np− 1)N)


︸ ︷︷ ︸

Og1

=



G
(∑N

l=1

∑N
j=1 clcjAj−l+N

)
G
(∑N

l=1

∑N
j=1 clcjAj−l+N

)
AN

G
(∑N

l=1

∑N
j=1 clcjAj−l+N

)
A2N

...

G
(∑N

l=1

∑N
j=1 clcjAj−l+N

)
AN(np−1)


︸ ︷︷ ︸

Og

ΓpGT (3.2.38)

where the left hand side of equation (3.2.38) is available.

Theorem 3.2.17. Let the aggregation scheme (3.2.37), p (z) = c1 + c2z + . . . + cNz
N−1, for the

slow variables (wt)t∈NZ be given and (A1, . . . , Ap) ∈ S. Assume that Ap is nonsingular, det (a (z)) and

p (z) as well as det
(
a
(
z−1
))

and p (z) are co-prime and if for two eigenvalues λi 6= λj of A it follows

that λNi 6= λNj holds, then the autocovariances γ (s), s ∈ Z can be reconstructed from the ones which

are observed.

Proof. As in the proof of Theorem 3.2.11 we will use the PBH test to obtain our result. Because

of our assumptions the following equalities hold(
AN − InpλNi

G
(∑N

l=1

∑N
j=1 clcjAj−l+N

)) pi =

(
0

G
(∑N

l=1

∑N
j=1 clcjAj−l+N

)
pi

)

=

(
0

Gpi
(∑N

l=1

∑N
j=1 clcjλ

j−l+N
i

))

where λi is an eigenvalue ofA and pi the corresponding eigenvector. Rewriting
∑N
l=1

∑N
j=1 clcjλ

j−l+N =

λN
(∑N

j=1 cjλ
j−1
)(∑N

l=1 clλ
−l+1

)
and considering that we assume that det (a (z)) and p (z) and that
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det
(
a
(
z−1
))

and p (z) are left co-prime, we establish that the matrix Og has full column rank and

thus

ΓpGT =
(

(Og)
T Og

)−1

(Og)
T Og

1.

�

Note that the assumptions of Theorem 3.2.17 are generically ful�lled on the parameter space Θ.

If ci = c 6= 0, i = 1, . . . , N for a c ∈ R then p (z) has all its roots on the unit circle and thus the

additional assumptions for the scheme (3.2.37), i.e. det (a (z)) and p (z) as well as det
(
a
(
z−1
))

and

p (z) are co-prime, are ful�lled.

If we want to extend the result of Theorem 3.2.8 to the simple aggregation scheme (3.2.37), we

have to de�ne an alternative (maybe non-minimal) state space system: Let

xmt+1 = Amxmt + GTmνt (3.2.39)

zt = Hmxmt+1, (3.2.40)

where m = max (p,N), xmt =
(
yTt−1, . . . , y

T
t−m

)T
, Hm =

(
c1In, c2In, . . . , cNIn, 0n×n(m−N)

)
, Gm =(

In, 0n×n(m−1)

)
and Am be the companion form with system parameters

Am,i =

Ai i = 1, . . . , p

0 i = p+ 1, . . . ,m
.

It is easy to conclude that γz (0) = HmΓmHTm holds for Γm = E
(
xmt (xmt )

T
)
and that

vec (Γm) =
((
I(nm)2 − (Am ⊗Am)

)−1 (GTm ⊗ GTm)) vec (Σν) .

Therefore, we have that

vec (γz (0)) =
(

(Hm ⊗Hm)
(
I(nm)2 − (Am ⊗Am)

)−1 (GTm ⊗ GTm)) vec (Σν) .

Theorem 3.2.18. Given the aggregation scheme (3.2.37) for the slow variables (wt)t∈NZ, the noise

parameters Σν can be generically reconstructed from

vec (Σν) =
(

(Hm ⊗Hm)
(
I(nm)2 − (Am ⊗Am)

)−1 (GTm ⊗ GTm))−1

vec (γz (0)) . (3.2.41)

Proof. The proof is the same as the proof of Theorem 3.2.8 for the point A1 = . . . = Ap = 0.

Indeed, it follows for this point that

(Hm ⊗Hm)
(
I(nm)2 − (A∗m ⊗A∗m)

)−1 (GTm ⊗ GTm) =

N∑
i=1

c2i In > 0

since at least one ci 6= 0. Therefore this is also true for a generic subset of the parameter space. �

In an analogous way it is possible to generalize Theorem 3.2.14 to the case of a simple aggregation

scheme (3.2.37).



CHAPTER 4

Estimators in the Mixed-Frequency Case

As has been shown in Chapter 3 the system and noise parameters in the mixed-frequency case are

g-identi�able. We denote the generic subset of the parameter space obtained via the intersection of

the two subsets from Theorem 3.2.6 and 3.2.8 by ΘXYW and we restrict ourselves in this chapter to

the stock case.

We want to present di�erent estimators which are based on the one hand on Chapter 3, i.e. the

extended Yule-Walker estimator and the generalized method of moments estimator, and on the other

hand on (Gaussian) maximum likelihood type estimators, i.e. the maximum likelihood estimator as

described in Hannan and Deistler (2012) and the EM algorithm for state space systems. In Chapter 7

these estimators are compared, where the main focus lies on asymptotic parameter estimation. This

chapter is based on and further develops the theory of Koelbl et al. (2015).

4.1. Extended Yule-Walker Estimator

The autocovariances in equation (3.2.3) can be estimated by the mixed-frequency estimators

γ̂ff (h) =
1

T

T−h∑
t=1

(
yft+h − ȳ

f
T

)(
yft − ȳ

f
T

)T
h ≥ 0 (4.1.1)

γ̂ff (h) = γ̂ff (−h)T (4.1.2)

γ̂sf (h) =
1

T/N

t2∑
t=t1

(ysNt − ȳsT )
(
yfNt−h − ȳ

f
T

)T
(4.1.3)

where ȳfT = 1
T

∑T
t=1 y

f
t , ȳ

s
T = 1

T/N

∑bT/Nc
t=1 ysNt (bjc leads to the largest integer smaller than or equal

to j) and

t1 =

1 N > h⌊
h
N

⌋
+ 1 N ≤ h

t2 =


⌊
T
N

⌋
h ≥ 0⌊

T+h
N

⌋
h < 0

.

Due to the mixed-frequency structure the estimator of γsf (h) has only (approximately) 1/N of the

summands compared to the estimator of γff (h). Now we can replace the population second moments

in (3.2.15) with their sample estimates (4.1.1) to (4.1.3) and we obtain

Ẑ1 = AẐ0 (4.1.4)

49
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where Ẑ1 and Ẑ0 are the sample estimates of Z1 and Z0, respectively. Note that we do not distinguish

between the true system parameters in (2.1.6) and the variable A in (4.1.4). Note that for T large

enough and θ ∈ ΘXYW, Ẑ0 has full row rank and thus Ẑ0Ẑ
T
0 is nonsingular. Therefore, we get the

extended Yule-Walker estimator

ÂXYW = Ẑ1 Ẑ
T
0

(
Ẑ0Ẑ

T
0

)−1

︸ ︷︷ ︸
Ẑ†0

. (4.1.5)

In general, the estimated system parameters are not stable and thus have to be projected on Θ (see

Chapter 6). The estimator for the covariance matrix Σν is

vec
(

Σ̂ν

)
=

(
(G ⊗ G)

(
I(np)2 −

(
ÂXYW ⊗ ÂXYW

))−1 (
GT ⊗ GT

))−1

vec (γ̂ (0)) . (4.1.6)

Of course, this estimator depends on the estimated (projected) system parameters (and on the es-

timated autocovariance of the lag 0) and thus formula (4.1.6) can also be used when the system

parameters are estimated, for instance, by the (projected) generalized method of moments estimator.

It may be helpful to use the information contained in the covariances corresponding to higher

order lags in order to improve the quality of the estimator. Again we repeat that higher order lags do

not increase the generic subset of identi�able parameters which was obtained in Theorem 3.2.6. For

k ≥ 0, we obtain

E
(
yt

(
(yft−1)T , . . . , (yft−np−k)T

))
︸ ︷︷ ︸

Z1,k

=(A1, . . . , Ap)Z0,k

Z0,k =E



yt−1

...

yt−p

((yft−1)T , . . . , (yft−np−k)T
)

and thus we can de�ne the XYW estimator for the lag np+ k as

ÂXYW,k = Ẑ1,k Ẑ
T
0,k

(
Ẑ0,kẐ

T
0,k

)−1

︸ ︷︷ ︸
Ẑ†0,k

. (4.1.7)

Of course, there is no guarantee that this variation leads to a better estimator. One reason might be

that the number of observations which can be used for estimating the autocovariances decreases with

increasing lag order.

4.2. Generalized Method of Moments Estimator

In this section we want to propose the generalized method of moments (GMM) estimator, which

was derived in Chen and Zadrozny (1998) and is based on Hansen (1982). Note that this estimator

can only be applied in the �fat� case, i.e. where the matrix Z0 in (3.2.15) has more columns than rows.

In the classic GMM setting, i.e. in the absence of missing data, we are typically interested in

estimating �nite dimensional parameters, say A0. These parameters are de�ned via the moment
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condition of ft (A) for which

E (ft (A)) = 0⇔ A = A0 (4.2.1)

holds. Reconsider the XYW equations (3.2.15), this function would be in our case

ft (A) = vec


(
yt

(
yft−1

)T
· · · yt

(
yft−np

)T)
−A


yt−1

(
yft−1

)T
· · · yt−1

(
yft−np

)T
...

...

yt−p

(
yft−1

)T
· · · yt−p

(
yft−np

)T

 .

The results in Section 3.2.2 imply that the moment condition (4.2.1) is ful�lled on the generic subset

ΘXYW. Furthermore, we have to introduce a sequence of weighting matrices (QT ) ∈ Rn2pnf×n2pnf ,

which converges in probability to a symmetric, positive de�nite constant matrix Q0. Then we can

de�ne the GMM estimator as the minimum of

gT (A)
T
QT gT (A) (4.2.2)

with respect to A, where gT (A) = 1
T

∑T
t=np+1 ft (A).

One drawback of equation (4.2.2) in the mixed-frequency case is that ft (A) is not feasible and

thus also gT (A) is not feasible. In the last few years many papers have dealt with the GMM estimator

in the case of missing data, see for example Abrevaya and Donald (2011); Muris (2014). One way

to overcome this problem would be as described in Muris (2014), where a time depending selection

matrix, say St, is introduced, so that ft (A) is replaced by the feasible term Stft (A). In general, for

the mixed-frequency case this approach cannot be used since every entry in ft (A) contains missing

data and thus St would be the zero matrix.

Therefore, we de�ne our GMM estimator as

ÂGMM = arg min
A∈Rn×np

vec
(
Ẑ1 −AẐ0

)T
QTvec

(
Ẑ1 −AẐ0

)
. (4.2.3)

The solution of (4.2.3) is

vec
(
ÂGMM

)
=

((
Ẑ0 ⊗ In

)
QT

(
ẐT0 ⊗ In

))−1 (
Ẑ0 ⊗ In

)
QT︸ ︷︷ ︸

Ẑ†
GMM

vec
(
Ẑ1

)
. (4.2.4)

Here we assumed that Ẑ0 has full row rank and that QT is nonsingular. If nf = 1 (and k = 0), Z0 is

quadratic and therefore vec
(
ÂGMM

)
= vec

(
Ẑ1Ẑ

−1
0

)
= vec

(
ÂXYW

)
. An optimal weighting matrix

QT for the GMM estimator will be derived in Chapter 5. Also note that for the case QT = In2pnf it

follows that vec
(
ÂGMM

)
= vec

(
ÂXYW

)
.

4.3. Maximum Likelihood Estimator

4.3.1. The AR(1) N = 2 Case. As has been shown in Section 3.2.1 the blocked process in

the AR(1) case remains in the AR-class. Furthermore, the non-identi�able set has been described

explicitly for the case n = 2 and Σν > 0 by Theorem 3.2.4. Let ΘI be the identi�able set, which is

generic in the parameter space. In this section we want to derive the maximum likelihood estimator
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for the AR(1) case, where we assume that Σν is nonsingular, N = 2 and T is even. For that reason

we factorize the matrix Ã into Ã = a1a2 where

Ã =

 0 aff afs

0 asf ass

Inf 0 0


︸ ︷︷ ︸

a1

aff afs 0nf×nf
aff afs 0nf×nf
asf ass 0ns×nf


︸ ︷︷ ︸

a2

(4.3.1)

and rewrite Σν̃ = T1ΣνT
T
1 + T2ΣνT

T
2 where

T1 =

(
In

0nf×n

)
, T2 =

aff afs

asf ass

Inf 0

 . (4.3.2)

We assume that the νt are independently normally distributed and thus ν̃t are also independently

normally distributed, i.e.

ṽ = vec (ν̃2, ν̃4, . . . , ν̃T ) ∼ Nh
(
0, IT/2 ⊗ Σν̃

)
where h = T/2 (n+ nf ). Thus, this variable has the density

fṽ(v) =
1

(2π)
(n+nf )T/4

∣∣IT/2 ⊗ Σν̃
∣∣− 1

2 exp

(
−1

2
vT
(
IT/2 ⊗ Σ−1

ν̃

)
v

)
.

De�ning ỹ = vec
(
Ỹ
)
and using ṽ = ỹ − (XT ⊗ I(n+nf ))vec

(
Ã
)
, the density of ỹ is given by

fỹ(y) =

∣∣∣∣ ∂ṽ∂ỹT
∣∣∣∣︸ ︷︷ ︸

1

fṽ (v) =
1

(2π)(n+nf )T/4

∣∣IT/2 ⊗ Σν̃
∣∣− 1

2 (4.3.3)

exp

(
−1

2

(
y − (XT ⊗ I(n+nf ))vec

(
Ã
))T (

IT/2 ⊗ Σ−1
ν̃

) (
y − (XT ⊗ I(n+nf ))vec

(
Ã
)))

where Ỹ = (ỹ2, ỹ4, . . . , ỹT ), X = (ỹ0, ỹ2, . . . , ỹT−2) and Ṽ = (ν̃2, ν̃4, . . . , ν̃T ). For convenience we as-

sume that the initial values, i.e. ỹ0, are known. Taking the logarithm of the above formula and taking

into account that the last term in (4.3.3) can be rewritten into exp

(
tr

((
Ỹ − ÃX

)T
Σ−1
ν̃

(
Ỹ − ÃX

)))
we obtain the likelihood for the AR(1) case:

ln (l (A1,Σν)) = c− T

4
ln |Σν̃ | −

1

2
tr

((
Ỹ − ÃX

)T
Σ−1
ν̃

(
Ỹ − ÃX

))
(4.3.4)

In order to determine maximum likelihood estimators of A1 and Σν , the �rst order derivations are

needed with respect to the high-frequency parameters:
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Theorem 4.3.1. Assume that Σν > 0 and θ ∈ ΘI . Then for the AR(1) case the score functions

of (4.3.4) are given by

∂ ln (l (A1,Σν))

∂vec (A1)
= vec

(
TT2 Σ−1

ν̃

(
Ỹ − ÃX

)
XTT1

)
+ vec

(
TT1 Σ−1

ν̃

(
Ỹ − ÃX

)
XTaT2

(
0nf×n

In

))

−vec
(
TT1 Σ−1

ν̃

(
T

2
Σν̃ −

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T)
Σ−1
ν̃ T2Σν

)

∂ ln (l (A1,Σν))

∂vech (Σν)
= −1

2
DT
n vec

(
TT1 Σ−1

ν̃

[
T

2
Σν̃ −

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T]
Σ−1
ν̃ T1

+TT2 Σ−1
ν̃

[
T

2
Σν̃ −

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T]
Σ−1
ν̃ T2

)
where Dn is a duplication matrix (see Appendix C).

Proof. The proof is given in Appendix A. �

Thus, by setting the score function equal to zero, i.e.

∂ ln (l (A1,Σν))

∂vec (A1)
= 0 (4.3.5)

∂ ln (l (A1,Σν))

∂vech (Σν)
= 0,

we can calculate the maximum likelihood estimator by a numerical algorithm such as the Newton-

Raphson method. Of course, such an algorithm needs an initial value which can be obtained, for

instance, via the (projected) XYW estimator.

4.3.2. The General AR(p) p ≥ 1 Case. Throughout this section we assume that Σν is non-

singular. For a given N we de�ne the blocked observed process

ỹt =


yt

yft−1

...

yft−N+1

 , t ∈ NZ. (4.3.6)

A Wold representation of this blocked process (ỹt)t∈NZ has been given in Filler (2010). Let T be a

multiple of N . Then the likelihood of observations is given by (see Hannan and Deistler (2012))

ln
(
l̃(θ)

)
= c− T

2
ln
(

det
(

Γ̃T (θ)
))
− 1

2
ỹT
(

Γ̃T (θ)
)−1

ỹ (4.3.7)

where ỹ = vec (ỹN , ỹ2N , . . . , ỹT ) contains the observed data and Γ̃T (θ) = E
(
ỹỹT

)
has block Toeplitz

form. In Hannan and Deistler (2012) the consistency and the asymptotic normality of the maximum

likelihood estimator under rather general conditions has been shown.
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Note that the matrix Γ̃T (θ) has dimension (n+ (N − 1)nf )T/N and is in general a very large

matrix in block Toeplitz form. Accordingly its inversion may cause problems, even when taking

advantage of its block Toeplitz structure (see Wax and Kailath (1983)).

Therefore, we establish the EM algorithm for state space models which was introduced in Shumway

and Sto�er (1982) and is based on the work of Dempster et al. (1977). The main idea is to successively

maximize (M-step) the conditional expectation (E-step) of the complete data likelihood given the

observed data. In this context complete data likelihood stands for the high-frequency likelihood. As

can be shown the likelihood does not decrease in each iteration step.

As in the high-frequency case, we assume that the innovations νt are independently normally

distributed. First, we start with the complete data likelihood

ln (l (A,Σν ,Γp)) = c− 1

2
ln |V1| −

1

2
xT1 V

−1
1 x1

−T
2

ln |Σν | −
1

2
tr
(

(Y −AX)
T

Σ−1
ν (Y −AX)

)
(4.3.8)

where again Y = (y1, y2, . . . , yT ), X = (x1, x2, . . . , xT ) and A = (A1, . . . , Ap). It should be mentioned

that in this case we assume that the initial values are normally distributed, i.e. x1 = (yT0 , . . . y
T
p−1)T ∼

Nnp (0, V1) and independent from ν1, . . . , νT , which is a di�erent assumption than in Chapter 2, where

we assumed that the initial values are given. Let τ (k) =
(
A(k),Σ

(k)
ν , V

(k)
1

)
be the parameters at the

k-th iteration and de�ne

Q
(
τ |τ (k)

)
= Eτ(k) (ln (l(τ)) |ỹ) (4.3.9)

where again ỹ = vec (ỹN , ỹ2N , . . . , ỹT ) and τ = (A,Σν , V1). The function Q
(
τ |τ (k)

)
represents the

E-step in this procedure. The initial values τ (0) can be estimated, for instance, via the (projected)

extended Yule-Walker estimator (see Chapter 6). In addition let

xt|T = Eτ(k) (xt|ỹ) (4.3.10)

Pt|T = Eτ(k)

(
xt − xt|T

) (
xt − xt|T

)T
Pt,t−1|T = Eτ(k)

(
xt − xt|T

) (
xt−1 − xt−1|T

)T
.

In a next step we explicitly derive (4.3.9): Note that xT1 V
−1
1 x1 can be rewritten into

xT1 V
−1
1 x1 = tr

(
V −1

1

(
x1|T + x1 − x1|T

) (
x1|T + x1 − x1|T

)T)
= tr

(
V −1

1

(
x1|Tx

T
1|T +

(
x1 − x1|T

) (
x1 − x1|T

)T
+x1|T

(
x1 − x1|T

)T
+
(
x1 − x1|T

)T
x1|T

))
.

Taking the conditional expectation leads to

Eτ(k)

(
xT1 V

−1
1 x1|ỹ

)
= tr

(
V −1

1

(
x1|Tx

T
1|T + P1|T

))
(4.3.11)

since Eτ(k)

(
x1|T

(
x1 − x1|T

)T |ỹ) = x1|TEτ(k)

((
x1 − x1|T

)T |ỹ) = 0. The second term, i.e.

tr
(

(Y −AX)
T

Σ−1
ν (Y −AX)

)
,
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can be rewritten in an analogous way:

tr
(

(Y −AX)
T

Σ−1
ν (Y −AX)

)
= tr

(
Σ−1
ν

(
T∑
i=1

(Gxt+1 −Axt) (Gxt+1 −Axt)T
))

and with the help of (Gxt+1 −Axt) =
(
Gxt+1|T + G

(
xt+1 − xt+1|T

)
−Axt|T −A

(
xt − xt|T

))
we ob-

tain

(Gxt+1 −Axt) (Gxt+1 −Axt)T = Gxt+1|Tx
T
t+1|TG

T + G
(
xt+1 − xt+1|T

) (
xt+1 − xt+1|T

)T GT
+Axt|Tx

T
t|TA

T +A
(
xt − xt|T

) (
xt − xt|T

)T
AT

−Gxt+1|Tx
T
t|TA

T −Axt|TxTt+1|TG
T

−G
(
xt+1 − xt+1|T

) (
xt − xt|T

)T
AT

−A
(
xt − xt|T

) (
xt+1 − xt+1|T

)T GT + . . .

where G = (In, 0, . . . , 0). Thus, with the same arguments as above, taking the conditional expectation

we get

Eτ(k)

(
(Gxt+1 −Axt) (Gxt+1 −Axt)T |ỹ

)
= G

(
xt+1|Tx

T
t+1|T + Pt+1|T

)
GT

+A
(
xt|Tx

T
t|T + Pt|T

)
AT

−G
(
xt+1|Tx

T
t|T + Pt+1,t|T

)
AT

−A
(
xt|Tx

T
t+1|T + Pt,t+1|T

)
GT

and thus

Q
(
τ |τ (k)

)
= −1

2
ln |V1| −

1

2
tr
(
V −1

1

(
x1|Tx

T
1|T + P1|T

))
(4.3.12)

−T
2

ln |Σν | −
1

2
tr
(
Σ−1
ν

(
GS11GT +AS00A

T − GS10A
T −AST10GT

))
where

S00 =

T∑
t=1

(
xt|Tx

T
t|T + Pt|T

)
(4.3.13)

S11 =

T+1∑
t=2

(
xt|Tx

T
t|T + Pt|T

)

S10 =

T+1∑
t=2

(
xt|Tx

T
t−1|T + Pt,t−1|T

)
.

The terms xt|T , Pt|T and Pt,t−1|T can be calculated, for instance, by the Kalman smoothing algorithm

for time varying models (see Shumway and Sto�er (1982)) or for simple cases by the interpolation

formulas from Proposition 2.1.12. In the M-step we maximize the expected conditional likelihood
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(4.3.12) with respect to the parameters τ . In Shumway and Sto�er (1982) it is argued that

A(k+1) = GS10S
−1
00 (4.3.14)

Σ(k+1) =
1

T

(
GS11GT − GS10S

−1
00 S

T
10GT

)
V

(k+1)
1 = P1|T + x1|Tx

T
1|T

maximize the expected conditional likelihood function. Now we can construct the EM algorithm for

our problem:

(1) Start with an initial estimator τ (0) which can be derived, for instance, by the (projected)

XYW estimator.

(2) Compute xt|T , Pt|T and Pt,t−1|T .

(3) Compute S00, S11 and S10 from (4.3.13).

(4) Compute the estimates for the (k + 1)-th step from (4.3.14).

(5) Repeat step 2-4 until the relative change of τ (k) and τ (k+1) is smaller than a prede�ned

threshold.

For a fast implementation of the EM algorithm see for instance McLachlan and Krishnan (2008);

Mader et al. (2014).

Remark 4.3.2. As has been mentioned above, each iteration step of the EM algorithm does not

decrease the likelihood function. Convergence of the EM algorithm is discussed in Wu (1983). One

drawback of the EM algorithm is that, in general, there is a large dependence on the starting values

τ (0). One strategy to overcome this problem is to start with many di�erent starting values and to

choose the estimated parameters which maximize the likelihood.

Another way to estimate the system and noise parameters would be to estimate the high-frequency

parameters via e.g. the extended Yule-Walker estimator, interpolate the missing slow variables, i.e. yst
t 6= N, 2N, . . . via the Kalman smoother and use the high-frequency maximum likelihood estimator to

obtain an update of the system and noise parameters, e.g.

Å(k+1) = G

(
T+1∑
t=2

(
xt|Tx

T
t−1|T

))( T∑
t=1

(
xt|Tx

T
t|T

))−1

. (4.3.15)

Of course, this procedure can also be iterated. One reason why this procedure should not be used is

that it is not guaranteed that the likelihood is non decreasing in each iteration step.

The main di�erences between the estimator (4.3.15) and the EM estimator, i.e.

A(k+1) = G

(
T+1∑
t=2

(
xt|Tx

T
t−1|T + Pt,t−1|T

))( T∑
t=1

(
xt|Tx

T
t|T + Pt|T

))−1

are the terms Pt,t−1|T and Pt|T . Loosely speaking, the EM algorithm takes the interpolation error into

account whereas the estimator (4.3.15) does not. Note that, in general, both estimators do not lead

to a stable AR polynomial.
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Since interpolation of missing observations is a central point of the EM algorithm we state two

examples of two systems, which will give us further insides into the problem of interpolation in the

mixed-frequency setting:

Example 4.3.3. Consider again the AR(1) case where Σν is nonsingular as in Example 2.1.11 and

let N = 2. Furthermore let Ho
y (t) be the Hilbert space spanned by all yt, t ∈ 2Z and yft , t ∈ 2Z − 1.

Then the best linear interpolation of yst is given by

PHoy(t) (yst ) = yst,int = (ρss0 )
−1

(0, Ins)

(
Σ−1
ν A1yt−1 +AT1 Σ−1

ν yt+1 − ρ0

(
yft

0

))
(4.3.16)

where ρ0 =
(
Σ−1
ν +AT1 Σ−1

ν A1

)
and ρss0 = (0, Ins) ρ0

(
0

Ins

)
. The interpolation error covariance is

V
(
yst − yst,int

)
= (ρss0 )

−1

since the interpolation error is yst − yst,int = (ρss0 )
−1

(0, Ins)
(
Σ−1
ν νt −AT1 Σ−1

ν νt+1

)
.

Thus, for a �nite set of mixed-frequency observations we get

xt|T =


yt t ∈ {0, 2, . . . , T} yft

yst,int

 t ∈ {1, 3, . . . , T − 1}
, (4.3.17)

Pt,t−1|T = 0 and

Pt|T =


0 t ∈ {0, 2, . . . , T}0 0

0 (ρss0 )
−1

 t ∈ {1, 3, . . . , T − 1}
(4.3.18)

where we assume that y0 is available and T is even. Note that each ρi depend on τ (k), i.e. the k-th

iteration of the EM algorithm. Thus, step 2 in the EM algorithm above can be replaced by (4.3.17)

and (4.3.18).

Example 4.3.4. Consider the AR(2) case where Σν is nonsingular and N = 2. In this case the

situation is more tricky since the interpolation of yst in the high-frequency case depends on yt+1, yt−1,

yt−2, yt+2 and yft , i.e.

· · · t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 · · ·
· · · yft−3 yft−2 yft−1 yft yft+1 yft+2 yft+3 · · ·
· · · yst−3 yst−2 yst−1 yst,int yst+1 yst+2 yst+3 · · ·

(4.3.19)
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As displayed above, the interpolation of yst depends on the observed yt+1, yt−1, y
f
t−2, y

f
t+2 and yft in

green and on the non-observed yst−2 and yst+2 in red. Thus, the best linear interpolation is given by

yst,int = (ρss0 )
−1

(0, Ins)

(
−ρ1yt−1 − ρT1 yt+1 − ρ2

(
yft−2

yst−2,int

)
(4.3.20)

−ρT2

(
yft+2

yst+2,int

)
− ρ0

(
yft

0

))

where ρi =

(
ρffi ρfsi
ρsfi ρssi

)
=

(
ρfi
ρsi

)
is obtained from Proposition 2.1.12 and the interpolation error is

yst − yst,int = (ρss0 )
−1

(0, Ins)

(
Σ−1
ν

(
A2

(
0

yst−2 − yst−2,int

)
+ νt

)
−AT1 Σ−1

ν νt+1 (4.3.21)

+AT2 Σ−1
ν

((
0

yst+2 − yst+2,int

)
+ νt+2

))
.

Equation (4.3.21) indicates that it is very hard to obtain an analogous formula for Pt|T as in the AR(1)

case.

Nevertheless for a set of observations t = 1, . . . , T , where we assume that T is even and to simplify

matters we assume that y0, y−1 and yT+1 is observed, we can arrange the following system of equations:

ρss0 ρss2

ρss2 ρss0 ρss2

ρss2 ρss0 pss2
. . .

. . .
. . .

ρss2 ρss0 pss2

ρss2 ρss0





ys1,int
ys3,int
...
...

ysT−3,int

ysT−1,int


= −Xob (4.3.22)

and

Xob =


ρs2 ρs1 ρs0

(
ρT1
)s (

ρT2
)s

ρs2 ρs1 ρs0
(
ρT1
)s (

ρT2
)s

ρs2 ρs1 ρs0
(
ρT1
)s (

ρT2
)s

. . .
. . .

. . .





y−1

y0(
yf1
0

)
y2

...(
yfT−1

0

)
yT

yT+1



.

So, in a certain sense, the Kalman smoothing algorithm interpolates the missing observations by solving

the system of equations (4.3.22) in a recursive way.



CHAPTER 5

Asymptotic Properties of the Mixed-Frequency Estimators

In this chapter we want to derive the asymptotic properties of the extended Yule-Walker and the

GMM estimator for the stock case. Whereas under our assumptions in the high-frequency case the

Yule-Walker estimator has the same asymptotic covariance as the maximum likelihood estimator and

thus is asymptotically e�cient, this is not the case for the XYW estimator in the mixed-frequency case.

One reason might be that the XYW estimator does not include the information from the observed

slow autocovariances. The asymptotic covariance of the XYW estimator is derived in two steps:

First we derive the asymptotic covariance of the sample second moments of the observations and

then we linearize the mapping attaching the parameters to the second moments of the observations.

Furthermore, we derive the asymptotic covariance of the maximum likelihood estimator for the AR(1)

case and the consistency of the second and fourth moment of the noise parameter estimators. Parts

of the results in this chapter are contained in Koelbl et al. (2015).

5.1. Bartlett's Formula for the Mixed-Frequency Case

In Niebuhr and Kreiss (2013) Bartlett's formula was derived for the univariate low-frequency case.

So the following results are on the one hand a generalization to the multivariate case and on the other

hand a generalization to the mixed-frequency case.

In the following we will use the partition kj =

(
kfj
ksj

)
where kfj denotes the �rst nf and ksj the

last ns rows of kj , respectively. Again let η = E
(
νtν

T
t ⊗ νtνTt

)
and κ = η − vec (Σν) vec (Σν)

T −
(Σν ⊗ Σν)−Kn,n (Σν ⊗ Σν).

Lemma 5.1.1. Let (yt)t∈Z be a linear process and assume that the fourth moment of νt, η =

E
(
νtν

T
t ⊗ νtνTt

)
, exists. Then

lim
T→∞

TCov
(
vec
(
γ̂ff (p)

)
, vec

(
γ̂ff (q)

))
= Sp,q +Rp,q (5.1.1)

for p, q ∈ Z where

Rp,q =

∞∑
k=−∞

(
γff (k + q − p)⊗ γff (k)

)
+Knf ,nf

(
γff (k + q)⊗ γff (k − p)

)
Sp,q =

∞∑
k=−∞

∞∑
r=−∞

(
kfk−p ⊗ k

f
k

)
κ
(
kfr+k−q ⊗ k

f
r+k

)T
and Knf ,nf and Kn,n are commutation matrices.

Proof. This is a consequence of Lemma 2.2.18. �

59
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In the next few pages we want to introduce Bartlett's formula for the mixed-frequency setting.

Thus, we need the following lemma whose proof is given in the Appendix.

Lemma 5.1.2. Let (yt)t∈Z be a linear process and assume that the fourth moment of νt, η =

E
(
νtν

T
t ⊗ νtνTt

)
, exists. Then

E
((

yft−p

(
yfNu−q

)T)
⊗
(
yft (ysNu)T

))
= vec

(
γff (p)

)
vec

(
γsf (q)

)T
+R(p, q,Nu− t)

+
(
γff (−Nu+ t+ q − p)⊗ γfs (−Nu+ t)

)
+Knf ,nf

(
γff (−Nu+ t+ q)⊗ γfs (−Nu+ t− p)

)
where p, q, t, u ∈ Z, 1 < N ∈ N and

R(p, q,Nu− t) =

∞∑
k=−∞

(
kfk−p ⊗ k

f
k

)
κ
(
kfk−q+Nu−t ⊗ k

s
k+Nu−t

)T
.

Proof. see Appendix B. �

The next lemma is a generalization of the well known formula

T∑
u=1

T∑
t=1

g (u− t) =

T−1∑
k=−(T−1)

(T − |k|) g (k) . (5.1.2)

Lemma 5.1.3. Let N ∈ N, g : Z→ Rk×q and T be a multiple of N . Then
∑T/N
u=1

∑T
t=1 g (Nu− t) =∑T/N−1

k=−(T/N−1)

(
T
N − |k|

)∑N−1
i=0 g (Nk + i).

Proof. We prove this lemma by counting the individual occurrences of the terms g (k), k =

− (T − 1) , ..., T −1: Let u = 1 be �x and observe that in the sum above the following terms g (N − T ),

..., g (2N − T − 1), g (2N − T ), ..., g (3N − T − 1) till g (0), ..., g (N − 1) occur. Now let u = 2 and

note that g (2N − T ), ..., g (3N − T − 1), ..., g (0), ..., g (N − 1) and g (N), ..., g (2N − 1) occur. It

follows that there is a shift of N . For u = T/N the terms g (0) , ..., g (N − 1) till g (T −N) , ..., g (T − 1)

occur. To summarize, we can display the occurrences of the term g (.) in Table 5.1.1, which proves this

lemma.

�

From To Count
g (0) g (N − 1) T/N
g (N) g (2N − 1) T/N − 1
...

...
...

g (T −N) g (T − 1) 1
g (−N) g (−1) T/N − 1

...
...

...
g (N − T ) g (2N − T − 1) 1

Table 5.1.1. Table of counts for the proof of Lemma 5.1.3



5.1. BARTLETT'S FORMULA FOR THE MIXED-FREQUENCY CASE 61

Note that if we set N = 1, we still obtain equation (5.1.2).

Lemma 5.1.4. Let (yt)t∈Z be a linear process and assume that the fourth moment of νt, η =

E
(
νtν

T
t ⊗ νtνTt

)
, exists. Then we obtain

lim
T→∞

TCov
(
vec
(
γ̂ff (p)

)
, vec

(
γ̂sf (q)

))
= Sp,q +Rp,q (5.1.3)

where p, q ∈ Z

Rp,q =

∞∑
k=−∞

(
γff (k + q − p)⊗ γfs (k)

)
+Knf ,nf

(
γff (k + q)⊗ γfs (k − p)

)
Sp,q =

∞∑
k=−∞

∞∑
r=−∞

(
kfk−p ⊗ k

f
k

)
κ
(
kfr+k−q ⊗ k

s
r+k

)T
.

Proof. Let us assume that T is a multiple of N . We will prove this lemma with

ˆ̂γsf (p) =
N

T

T/N∑
t=1

ysNt

(
yfNt−p

)T
, ˆ̂γff (p) =

1

T

T∑
t=1

yft

(
yft−p

)T
instead of γ̂sf (p) and γ̂ff (p), respectively, since, again as in the high-frequency case, it can be
shown that this does not in�uence the asymptotic behavior. We start with the observation that

vec

(
ysNt

(
yfNt−p

)T)
=
(
yfNt−p ⊗ ysNt

)
and

E
(
vec
(

ˆ̂γff (p)
)
vec
(

ˆ̂γsf (q)
)T)

=

(
N

T 2

) T/N∑
u=1

T∑
t=1

E

(
vec

(
yft

(
yft−p

)T)
vec

(
ysNu

(
yfNu−q

)T)T)

=

(
N

T 2

) T/N∑
u=1

T∑
t=1

E
(
yft−p

(
yfNu−q

)T
⊗ yft (ysNu)T

)
.

Now we can use Lemma 5.1.2 to obtain that the sum can be rewritten into(
N

T 2

) T/N∑
u=1

T∑
t=1

vec
(
γff (p)

)
vec
(
γsf (q)

)T
+

+
(
γff (−Nu+ t+ q − p)⊗ γfs (−Nu+ t)

)
Knf ,nf

(
γff (−Nu+ t+ q)⊗ γfs (−Nu+ t− p)

)
+R(p, q,Nu− t)

= vec
(
γff (p)

)
vec
(
γsf (q)

)T
+

(
N

T 2

) T/N∑
u=1

T∑
t=1

g (Nu− t) .

Using the formula from Lemma 5.1.3 we can conclude that

= vec
(
γff (p)

)
vec
(
γsf (q)

)T
+(

N

T

) ∑
|k|<T/N

(
1

N
− |k|

T

)N−1∑
i=0

((
γff (Nk − i+ q − p)⊗ γfs (Nk − i)

)
+

Knf ,nf

(
γff (Nk − i+ q)⊗ γfs (Nk − i− p)

)
+R (p, q,Nk + i)

)
.
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It is worth mentioning that the summands of the above formula (without the scaling factor) are

absolutely summable. Thus, dominated convergence leads to

lim
T/N→∞

T

N
Cov

(
ˆ̂γff (p) , ˆ̂γsf (q)

)
= Sp,q +

1

N

∞∑
k=−∞

N−1∑
i=0

((
γff (Nk − i+ q − p)⊗ γfs (Nk − i)

)
+

Knf ,nf

(
γff (Nk − i+ q)⊗ γfs (Nk − i− p)

))
or

lim
T/N→∞

T

N
Cov

(
ˆ̂γff (p) , ˆ̂γsf (q)

)
= Sp,q +

1

N

∞∑
k=−∞

((
γff (k + q − p)⊗ γfs (k)

)
+Knf ,nf

(
γff (k + q)⊗ γfs (k − p)

))
where

Sp,q =
1

N

N−1∑
i=0

∞∑
r=−∞

∞∑
k=−∞

(
kfk−p ⊗ k

f
k

)
κ
(
kfk−q+Nr+i ⊗ k

s
k+Nr+i

)T
=

1

N

∞∑
r=−∞

∞∑
k=−∞

(
kfk−p ⊗ k

f
k

)
κ
(
kfk−q+r ⊗ k

s
k+r

)T
.

�

Remark 5.1.5. Replacing γ̂sf (q) in the lemma above by the �high-frequency autocovariance es-

timator�, i.e. by 1
T

∑T
t=1 y

s
t

(
yft−q

)T
, the result of Lemma 5.1.4 is still valid. This result is surprising

since for the case N = 2 we only use half of the yst observations.

Lemma 5.1.6. Let (yt)t∈Z be a linear process and assume that the fourth moment of νt, η =

E
(
νtν

T
t ⊗ νtνTt

)
, exists. Then

E
((

yfNt−p

(
yfNt+Nh−q

)T)
⊗
(
ysNt (ysNt+Nh)T

))
= vec

(
γsf (p)

)
vec

(
γsf (q)

)T
+R(p, q,Nh)

+
(
γff (−Nh+ q − p)⊗ γss (−Nh)

)
+Knf ,ns

(
γsf (−Nh+ q)⊗ γfs (−Nh− p)

)
where p, q, t, h ∈ Z, 1 < N ∈ N and

R(p, q,Nh) =

∞∑
k=−∞

(
kfk−p ⊗ k

s
k

)
κ
(
kfk−q+Nh ⊗ k

s
k+Nh

)T
.

Proof. see Appendix B. �

The following result is a generalization of the result of Niebuhr and Kreiss (2013) to the multivariate

case.

Lemma 5.1.7. Let (yt)t∈Z be a linear process and assume that the fourth moment of νt, η =

E
(
νtν

T
t ⊗ νtνTt

)
, exists. Then we obtain

lim
T→∞

TCov
(
vec
(
γ̂sf (p)

)
, vec

(
γ̂sf (q)

))
= N (Sp,q +Rp,q) (5.1.4)
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for p, q ∈ Z where

Rp,q =

∞∑
k=−∞

(
γff (Nk + q − p)⊗ γss (Nk)

)
+Knf ,ns

(
γsf (Nk + q)⊗ γfs (Nk − p)

)
Sp,q =

∞∑
k=−∞

∞∑
r=−∞

(
kfk−p ⊗ k

s
k

)
κ
(
kfNr+k−q ⊗ k

s
Nr+k

)T
.

Proof. Let us assume that T is a multiple of N . Again we will prove this lemma with ˆ̂γsf (p) =

N
T

∑T/N
t=1 ysNt

(
yfNt−p

)T
instead of γ̂sf (p) since it can be shown that this change does not in�uence the

asymptotic behavior. Again we start with the observation that vec

(
ysNt

(
yfNt−p

)T)
=
(
yfNt−p ⊗ ysNt

)
and

E
(
vec
(

ˆ̂γsf (p)
)
vec
(

ˆ̂γsf (q)
)T)

=

(
N

T

)2 T/N∑
u=1

T/N∑
t=1

E

(
vec

(
ysNt

(
yfNt−p

)T)
vec

(
ysNu

(
yfNu−q

)T)T)

=

(
N

T

)2 T/N∑
u=1

T/N∑
t=1

E
(
yfNt−p

(
yfNu−q

)T
⊗ ysNt (ysNu)T

)
.

Now we can use Lemma 5.1.6 with u = t+ h to obtain that the sum can be rewritten into(
N

T

)2 T/N∑
u=1

T/N∑
t=1

vec
(
γsf (p)

)
vec
(
γsf (q)

)T
+(

γff (−N (u− t) + q − p)⊗ γss (−N (u− t))
)

+

Knf ,ns

(
γsf (−N (u− t) + q)⊗ γfs (−N (u− t)− p)

)
+R (p, q,N (u− t))

= vec
(
γsf (p)

)
vec
(
γsf (q)

)T
+

(
N

T

)2 T/N∑
u=1

T/N∑
t=1

g (u− t) .

Using the formula
∑n
u=1

∑n
t=1 g (u− t) =

∑n−1
k=−(n−1) (n− |k|) g (k) leads to

= vec
(
γsf (p)

)
vec
(
γsf (q)

)T
+(

N

T

) ∑
|k|<T/N

(
1− N |k|

T

)((
γff (Nk + q − p)⊗ γss (Nk)

)
+

Knf ,ns

(
γsf (Nk + q)⊗ γfs (Nk − p)

)
+R (p, q,Nk)

)
.

Thus, dominated convergence leads to

lim
T/N→∞

T

N
Cov

(
γ̂sf (p) , γ̂sf (q)

)
= Sp,q +

∞∑
k=−∞

(
γff (Nk + q − p)⊗ γss (Nk)

)
+Knf ,ns

(
γsf (Nk + q)⊗ γfs (Nk − p)

)
where

Sp,q =

∞∑
k=−∞

∞∑
r=−∞

(
kfk−p ⊗ k

s
k

)
κ
(
kfNr+k−q ⊗ k

s
Nr+k

)T
.

�
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Note that for the case N = 1 we still obtain Bartlett's formula for the high-frequency case. It is

worth mentioning that for the case N > 1, regarding the superscripts, the right hand side of equation

(5.1.4) is not a multiple of the right hand side of equation (5.1.1). Indeed, for �xed p and q the in�nite

sum Rp,q of the right hand side of equation (5.1.4) contains only every N -th summand of the in�nite

sum of the right hand side of equation (5.1.1).

Theorem 5.1.8. Let (yt)t∈Z be a linear process, assume that the fourth moment of νt, η =

E
(
νtν

T
t ⊗ νtνTt

)
exists and s ∈ N. Then we have asymptotic normality of the autocovariance esti-

mators, i.e.

√
T





vec
(
γ̂ff (0)

)
vec
(
γ̂sf (0)

)
...

vec
(
γ̂ff (s)

)
vec
(
γ̂sf (s)

)


−



vec
(
γff (0)

)
vec
(
γsf (0)

)
...

vec
(
γff (s)

)
vec
(
γsf (s)

)




d→ Nh (0,Σγ)

where h = (s+ 1)nnf and Σγ is obtained from Lemma 5.1.1, Lemma 5.1.4 and Lemma 5.1.7.

Proof. In order to apply Theorem 2.2.22 we de�ne a particular blocked process

ut =


yNt

yNt−1

...

yNt−(N−1)

 .

Of course, this process is again a linear one as can be easily seen:

ut =

∞∑
j=−∞


kNj kNj+1 . . . kNj+N−1

kNj−1 kNj . . . kNj+N−2

...
...

...
...




νN(t−j)
...

νN(t−j)−(N−1)


︸ ︷︷ ︸

ν̃t−j

where ν̃t ∼ IIDNn (0, IN ⊗ Σν). Now applying Theorem 2.2.22 leads to

√
T

N



vec (γ̂u (0))

...

vec (γ̂u (s))

−

vec (γu (0))

...

vec (γu (s))


 d→ Nn2(s+1) (0,Σu)

where γu (i) is the population autocovariance of the process (ut)t∈Z for lag i and γ̂u (i) is its sample

counterpart with T/N summands. In a last step we have to �nd a transformation matrix, say H,

which transforms γ̂u to the desired autocovariances. To obtain this transformation we de�ne H1 =(
1
N In2

f

1
N In2

f
· · · 1

N In2
f

)
and observe that for j = 0, . . . , s

vec
(

ˆ̂γsf (j)
)

=
N

T

T/N∑
i=1

vec

(
ysNt

(
yfNt−j

)T)
= Ssfj (vec (γ̂u (i)))i=0,...,s
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and

vec
(

ˆ̂γff (j)
)

= H1



N
T

∑T/N
i=1 vec

(
yfNt

(
yfNt−j

)T)
N
T

∑T/N
i=1 vec

(
yfNt−1

(
yfNt−1−j

)T)
...

N
T

∑T/N
i=1 vec

(
yfNt−(N−1)

(
yfNt−(N−1)−j

)T)


= H1S

ff
j (vec (γ̂u (i)))i=0,...,s

where Sffj and Ssfj are selector matrices for lag j. Finally, we can construct our particular transfor-

mation matrix H =

((
H1S

ff
0

)T
,
(
Ssf0

)T
, . . . ,

(
H1S

ff
s

)T
,
(
Ssfs
)T)T

to obtain the desired result√
T

N

((
vec
(
γ̂ff (i)

)
vec
(
γ̂sf (i)

) )−( vec
(
γff (i)

)
vec
(
γsf (i)

) ))
i=0,...,s

=

√
T

N
H (vec (γ̂u (i))− vec (γu (i)))i=0,...,s

d→ Nh (0,Σγ) .

The asymptotic covariance Σγ = HΣuH
T can be derived by using Lemmas 5.1.1, 5.1.4 and 5.1.7. �

Remark 5.1.9. The last theorem can be extended to any set of lags including negative ones.

Indeed we will use the set of lags (−p+ 1, . . . , np) for the XYW and GMM estimator. Also note, that

the assumption that the innovations are i.i.d. can be relaxed, see e.g. Hall and Heyde (1980).

We do not distinguish between singular and nonsingular normal distributions. A singular normal

distribution may occur since for example γ̂ff (i) = γ̂ff (−i)T holds.

5.2. Asymptotic Normality of the XYW/GMM Estimator

Before we consider the asymptotic normality of the XYW/GMM estimator, we �rst have a look

at the consistency, which can be easily obtained with the aid of Theorem 2.2.17.

Theorem 5.2.1. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν)

and θ ∈ ΘXYW. Then the XYW estimator for the system parameters is consistent, i.e.

ÂXYW
p→ A.

Proof. As mentioned above, Theorem 2.2.17 guarantees the consistency of the autocovariance

estimators, i.e. Ẑ0
p→ Z0 and Ẑ1

p→ Z1. This together with Lemma 2.2.5, i.e. Ẑ†0
p→ Z†0 , and Lemma

2.2.7, i.e. Ẑ1Ẑ
†
0

p→ Z1Z
†
0 , establishes our result. �

Having obtained the asymptotic distribution of the covariance estimators, we have to linearize

the mapping attaching the system parameters to the second moments of the observations. The next

theorem derives the asymptotic distribution of the XYW/GMM estimators and is related to Gingras

(1985).
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Theorem 5.2.2. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν),

θ ∈ ΘXYW and assume that η = E
(
νtν

T
t ⊗ νtνTt

)
exists. Then the GMM estimator

vec
(
ÂGMM

)
=

((
Ẑ0 ⊗ In

)
QT

(
ẐT0 ⊗ In

))−1 (
Ẑ0 ⊗ In

)
QT vec

(
Ẑ1

)
= Ĝ†QT vec

(
Ẑ1

)
is asymptotically normal with zero mean and a covariance matrix given by

ΣGMM =
(
G†Q0

JP
)

Σγ

(
G†Q0

JP
)T

, (5.2.1)

i.e. √
T
(
vec
(
ÂGMM

)
− vec (A)

)
d→ Nn2p (0,ΣGMM) . (5.2.2)

Here QT
p→ Q0 where Q0 is constant, symmetric and positive de�nite, Σγ is the asymptotic covari-

ance of the mixed-frequency autocovariances described in Theorem 5.1.8 for the lags (−p+ 1, . . . , np).

Furthermore,

G†Q0
=

(
(Z0 ⊗ In)Q0

(
ZT0 ⊗ In

))−1
(Z0 ⊗ In)Q0

J =


D 0n×n 0n×n

0n×n D
. . .

...
...

. . .
. . . 0n×n

0n×n · · · 0n×n D

 ∈ Rn
2pnf×n(n+1)nfp

D =

(
−Ap 0n×(nf−1)n −Ap−1 0n×(nf−1)n

... −A1 0n×(nf−1)n In 0n×(nf−1)n

)
and the permutation matrix P is given as P =

(
I(n+1)p ⊗ P2

)
where

P2 =

(
Inf ⊗

(
Inf

0ns×nf

)
, Inf ⊗

(
0nf×ns
Ins

))
.

Remark 5.2.3. It is easy to see that

vec

(
γ̂ff (h)

γ̂sf (h)

)
= P2

(
vec
(
γ̂ff (h)

)
vec
(
γ̂sf (h)

))
and thus P is a permutation matrix. In the case where only one fast component occurs, i.e. nf = 1,

the commutation matrix P is the identity matrix and

J =


−Ap ... −A1 In

−Ap ... −A1 In
. . .

. . .

−Ap ... −A1 In

 .

Also note that in this case (and if k = 0 holds) the weighting matrix QT is not needed.



5.2. ASYMPTOTIC NORMALITY OF THE XYW/GMM ESTIMATOR 67

Proof. We commence from the observation that
√
T
(
vec
(
ÂGMM

)
− vec (A)

)
=
√
T
(
Ĝ†QT vec

(
Ẑ1

)
− Ĝ†QT

(
ẐT0 ⊗ In

)
vec (A)

)
=
√
TĜ†QT vec

(
Ẑ1 −AẐ0 − Z1 +AZ0

)
=
√
TĜ†Qvec

((
In −A

)(Ẑ1 − Z1

Ẑ0 − Z0

))

=
√
TĜ†QT

(
Ipnnf ⊗

(
In −A

))
︸ ︷︷ ︸

J1

vec

(
Ẑ1 − Z1

Ẑ0 − Z0

)
.

The last term vec

(
Ẑ1 − Z1

Ẑ0 − Z0

)
has to be rewritten since there are many

(
γ̂ff (i)− γff (i)

γ̂sf (i)− γsf (i)

)
which

occur in Ẑ1 − Z1 and in Ẑ0 − Z0. Thus,(
Ẑ1

Ẑ0

)
=

(
In

0pn×n

)
︸ ︷︷ ︸

E1

(
γ̂ff (−p+ 1) · · · γ̂ff (np)

γ̂sf (−p+ 1) · · · γ̂sf (np)

)(
0pnf×npnf
Inpnf

)
︸ ︷︷ ︸

F1

+



0n×n

In

0n×n
.
.
.

0n×n


︸ ︷︷ ︸

E2

(
γ̂ff (−p+ 1) · · · γ̂ff (np)

γ̂sf (−p+ 1) · · · γ̂sf (np)

)
0(p−1)nf×npnf

Inpnf

0nf×npnf


︸ ︷︷ ︸

F2

+ · · ·

+

(
0pn×n

In

)
︸ ︷︷ ︸

Ep+1

(
γ̂ff (−p+ 1) · · · γ̂ff (np)

γ̂sf (−p+ 1) · · · γ̂sf (np)

)(
Inpnf

0pnf×npnf

)
︸ ︷︷ ︸

Fp+1

.

Vectorizing the above formula leads to

vec

(
Ẑ1

Ẑ0

)
=

(
p+1∑
i=1

(
FTi ⊗ Ei

))
︸ ︷︷ ︸

J2

vec

(
γ̂ff (−p+ 1) · · · γ̂ff (np)

γ̂sf (−p+ 1) · · · γ̂sf (np)

)
.

The last term in the last formula can be reformulated to

vec

(
γ̂ff (−p+ 1) · · · γ̂ff (np)

γ̂sf (−p+ 1) · · · γ̂sf (np)

)
= P

vec(γ̂ff (i)
)

vec
(
γ̂sf (i)

)
i=−p+1,...,np

.

To summarize, we can rewrite
√
T
(
vec
(
ÂGMM

)
− vec (A)

)
as

√
T
(
vec
(
ÂGMM

)
− vec (A)

)
=
√
TĜ†QT J1J2︸︷︷︸

J

P

vec(γ̂ff (i)
)

vec
(
γ̂sf (i)

)−
vec(γff (i)

)
vec
(
γsf (i)

)
i=−p+1,...,np
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Theorem 5.1.8 implies that

√
T

vec(γ̂ff (i)
)

vec
(
γ̂sf (i)

)−
vec(γff (i)

)
vec
(
γsf (i)

)
i=−p+1,...,np

d→ Nh (0,Σγ) .

Since the sample autocovariances are consistent estimators and QT
p→ Q0, the same is true for Ĝ†QT JP ,

i.e. Ĝ†QT JP
p→ G†Q0

JP . Now Slutsky's Lemma 2.2.7 directly leads to the result of the theorem. �

Remark 5.2.4. As has been shown in Theorem 2.2.25 the asymptotic covariance for the standard

high-frequency Yule-Walker estimator is of the form
(
Γ−1
p ⊗ Σν

)
and thus, in this case, the fourth

moment of the innovations does not in�uence the asymptotic covariance of the parameter estimates.

In the case discussed here the fourth moment of the innovations does not vanish under linearization in

general.

Having obtained the expression for the asymptotic covariance matrix we can determine the asymp-

totically optimal weighting matrix.

Theorem 5.2.5. Under the assumptions of Theorem 5.2.2, the optimal asymptotic weighting ma-

trix for the GMM estimator is

Q∗0 =
(
JPΣγP

TJT
)−1

(5.2.3)

and the corresponding asymptotic covariance is given by

Σ∗GMM =
(
(Z0 ⊗ In)Q∗0

(
ZT0 ⊗ In

))−1
. (5.2.4)

Proof. The theorem directly follows from Theorem 3.2 in Hansen (1982). �

Proposition 5.2.6. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν),

θ ∈ ΘXYW and assume that η = E
(
νtν

T
t ⊗ νtνTt

)
exists. Then the XYW estimator

vec
(
ÂXYW

)
=
((
Ẑ0Ẑ

T
0 ⊗ In

))−1 (
Ẑ0 ⊗ In

)
vec
(
Ẑ1

)
is asymptotically normal with zero mean and a covariance matrix given by

ΣXYW =

((
Z†0

)T
⊗ In

)
JPΣγP

TJT
(
Z†0 ⊗ In

)
(5.2.5)

i.e. √
T
(
vec
(
ÂXYW

)
− vec (A)

)
d→ Nn2p (0,ΣXYW) (5.2.6)

Proof. This is a special case of Theorem 5.2.2 with the weighting matrix QT = Inpnf . �

To obtain a feasible GMM estimator we also have to estimate the optimal weighting matrix Q∗0 in

a consistent way, say Q̂T . Note that Q∗0 depends on the system parameters, on the fourth moment of

νt and on in�nite sums of the autocovariances. Thus, in a �rst step we have to estimate the system

parameters and the fourth moment of νt (for consistency see Theorem 5.3.2) which can be done, for

instance, by the XYW estimator. In Robinson (1977); Berlinet and Francq (1997) it is stated that a

consistent estimator for the in�nite sums can be obtained by using, for instance, a truncation of these
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sums where the truncation depends on the sample size T . As an example one can use the truncation

at the bK (T/N)
αc summand where K > 0 and 0 < α < 1.

With these results from a certain T0 onwards, we can de�ne our feasible (two-step) GMM estimator

for the mixed-frequency case as

vec
(

ˆ̂
AGMM

)
=
((
Ẑ0 ⊗ In

)
Q̂T

(
ẐT0 ⊗ In

))−1 (
Ẑ0 ⊗ In

)
Q̂Tvec

(
Ẑ1

)
, (5.2.7)

where the optimal weighting matrix is estimated in a �rst step.

Remark 5.2.7. Until now, the asymptotic results obtained in this section are only valid for the

stock case. Nevertheless, a generalization to the �ow case with a simple aggregation scheme is straight-

forward: Using an obvious notation and following the same steps as in the proof of Theorem 5.2.2, we

obtain

√
T
(
vec
(
Âg
GMM

)
− vec (A)

)
=
√
T
(
Ĝg
QT

)†
JP

vec(γ̂zff (i)
)

vec
(
γ̂wf (i)

)−
vec(γzff (i)

)
vec
(
γwf (i)

) ,

for i = N − p, . . . , N + np− 1. For the asymptotic covariance matrix of the autocovariance estimators

we can modify Lemmas 5.1.1, 5.1.4 and 5.1.7 to

lim
T→∞

TCov
(
vec
(
γ̂z

ff (p)
)
, vec

(
γ̂z

ff (q)
))

= S1
p,q +R1

p,q (5.2.8)

lim
T→∞

TCov
(
vec
(
γ̂z

ff (p)
)
, vec

(
γ̂wf (q)

))
= S2

p,q +R2
p,q (5.2.9)

lim
T→∞

TCov
(
vec
(
γ̂wf (p)

)
, vec

(
γ̂wf (q)

))
= N

(
S3
p,q +R3

p,q

)
, (5.2.10)

where p, q ∈ Z and

R1
p,q =

∞∑
k=−∞

(
γff (k + q − p)⊗ γz

f zf (k)
)

+Knf ,nf

(
γz
f f (k + q)⊗ γfz

f

(k − p)
)

S1
p,q =

N∑
i,j=1

∞∑
k=−∞

∞∑
r=−∞

cicj
(
kfk−p ⊗ k

f
k−i+1

)
κ
(
kfr+k−q ⊗ k

f
r+k−j+1

)T
R2
p,q =

∞∑
k=−∞

(
γff (k + q − p)⊗ γz

fw (k)
)

+Knf ,nf

(
γz
f f (k + q)⊗ γfw (k − p)

)

S2
p,q =

N∑
i,j=1

∞∑
k=−∞

∞∑
r=−∞

cicj
(
kfk−p ⊗ k

f
k−i+1

)
κ
(
kfr+k−q ⊗ k

s
r+k−j+1

)T
R3
p,q =

∞∑
k=−∞

(
γff (Nk + q − p)⊗ γww (kN)

)
+Knf ,ns

(
γwf (Nk + q)⊗ γfw (Nk − p)

)

S3
p,q =

N∑
i,j=1

∞∑
k=−∞

∞∑
r=−∞

cicj
(
kfk−p ⊗ k

s
k−i+1

)
κ
(
kfNr+k−q ⊗ k

s
Nr+k−j+1

)T
.

In the next example we will have a closer look at the estimates of the mean and the autocovariance

for the �ow case.
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Example 5.2.8. For the case N = 2, consider the aggregation scheme

wt = yst + yst−1

where we observe wt at every second time point. Taking the expectation of wt we get E (wt) =

E (yst ) + E
(
yst−1

)
= 0. The mean estimator in this case is

w̄T =
2

T

T/2∑
t=1

w2t =
2

T

T/2∑
t=1

(
ys2t + ys2t−1

)
(5.2.11)

=
2

T

T∑
i=1

yst = 2ȳsT .

The cross-covariance of wt and yt is γwf (i) = E
(
wt

(
yft−i

)T)
= E

(
yst

(
yft−i

)T)
+E

(
yst−1

(
yft−i

)T)
=

γsf (i) + γsf (i− 1) whereas the same relation is not true for the cross-covariance estimators:

γ̂wf (i) =
2

T

T/2∑
t=1

(w2t − w̄T )
(
yf2t−i − ȳ

f
T

)T
=

2

T

T/2∑
t=1

(
ys2t + ys2t−1 − 2ȳsT

) (
yf2t−i − ȳ

f
T

)T
=

2

T

T/2∑
t=1

(
(ys2t − ȳsT )

(
yf2t−i − ȳ

f
T

)T
+
(
ys2t−1 − ȳsT

) (
yf2t−i − ȳ

f
T

)T)
6= γ̂sf (i) + γ̂sf (i− 1)

where γ̂sf (i) is the autocovariance estimator in the stock case.

5.2.1. Upper and Lower Bounds for the Asymptotic Covariance. In Chen and Zadrozny

(1998) on p. 56, upper and lower bounds for the asymptotic covariance of the XYW estimator are

introduced. There are mainly three reasons why we are interested in such bounds:

• Firstly, as can be seen from Lemmas 5.1.1, 5.1.4 and 5.1.7 in�nite sums occur in the formulas

for the asymptotic variances. If we want to calculate these variances, we have to approximate

them by �nite ones. Of course, this approximation error can be made arbitrarily small (note

that the γ(i) decrease to zero in a geometric way) but on the other hand this will increase

the computational load.

• Secondly, as mentioned in Remark 5.2.4, we have to calculate the fourth moment of νt, i.e.

η = E
(
νtν

T
t ⊗ νtνTt

)
or at least to assume that (νt)t∈Z are normally distributed so that the

fourth moment does not occur.

• Thirdly, as will become clear later on, we want to split the estimation loss from high-frequency

Yule-Walker to mixed-frequency extended Yule-Walker in several parts. The lower bound will

be an appropriate intermediate step for that analysis.

For the lower bound we will use the XYW equations, as described in (3.2.12), but instead of using the

mixed-frequency autocovariance estimators we will use the high-frequency autocovariance estimators.
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Theorem 5.2.9. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν)

and θ ∈ ΘXYW. Then the XYW estimator obtained via the high-frequency autocovariance estimators,

say ÂfullXYW, is asymptotically normal with a zero mean and covariance matrix given by

ΣfullXYW =

(((
Z†0

)T
ΓffnpZ

†
0

)
⊗ Σν

)
(5.2.12)

i.e. √
T
(
vec
(
ÂfullXYW

)
− vec (A)

)
d→ Nn2p

(
0,ΣfullXYW

)
(5.2.13)

where

Γffnp =


γff (0) · · · γff (np− 1)

...
. . .

...

γff (1− np) · · · γff (0)

 . (5.2.14)

Proof. The proof follows the same idea as the proof of Theorem 2.2.25. Consider
√
T Ẑ1 =

√
T (A1, . . . , Ap) Ẑ0 +

√
T (ê(1), . . . , ê(np))︸ ︷︷ ︸

ê

+
√
TcT (5.2.15)

where

ê (i) =
1

T

T∑
t=1

νt

(
yft−i

)T
i = 1, . . . , np

and
√
TcT

p→ 0 and thus will be neglected. Columnwise vectorization of equation (5.2.15) leads to

√
Tvec

(
Ẑ1

)
=
√
T

((
Ẑ0

)T
⊗ In

)
vec (A) +

√
Tvec (ê) .

Thus, premultiplying the above equation by

((
Z†0

)T
⊗ In

)
we directly get

√
Tvec (A) +

√
T

((
Z†0

)T
⊗ In

)
vec (ê) =

√
T

((
Z†0

)T
⊗ In

)
vec
(
Ẑ1

)
=
√
Tvec

(
Âfull
XYW

)
or in another form:

√
T
(
vec
(
Âfull
XYW

)
− vec (A)

)
=
√
T

((
Z†0

)T
⊗ In

)
vec (ê) . (5.2.16)

It is easy to see that
√
Tvec (ê) has a zero mean and covariance (Γffnp ⊗ Σν) since for a particular

element of V (vec (ê)) it follows that

E

 1

T 2

(
T∑
t=1

yft−p ⊗ νt

)(
T∑
n=1

yfn−q ⊗ νn

)T =
1

T 2
E

(
T∑
t=1

yft−p

(
yft−q

)T
⊗ νtνTt

)

+
1

T 2
E

 T∑
t=1

T∑
n=1,t6=n

yft−p

(
yfn−q

)T
⊗ νtνTn


︸ ︷︷ ︸

=0

=
1

T

(
γff (p− q)⊗ Σν

)
.
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The remainder of the proof is the same as in Theorem 2.2.25. �

Now we are interested in the upper bound as described in Chen and Zadrozny (1998). The idea is

to use a modi�cation of the autocovariance estimator for γff (h) which uses only approximately half of

the observations for N = 2, i.e. γ̂ff (h) = 2
T

∑T
t=2,4,... y

f
t

(
yft−1

)T
and the same γ̂sf (h) estimator as in

the mixed-frequency setting. The authors of Chen and Zadrozny (1998) argue that the upper bound is

the lower bound times N since for N = 2 we are using half of the observations for the autocovariance

estimators. The next example shows that this is a false conclusion.

Example 5.2.10. Consider an AR(1) model (n = 2, N = 2) with inputs (νt)t∈Z ∼ IID2(0,Σν)

and assume that every even data point (yt)t∈2Z is fully observed. Then we can arrange the following

system of equations:(
2
T

∑T
t=2,4,... yty

f
t−1

2
T

∑T
t=2,4,... yty

f
t−2

)
= A1

(
2
T

∑T−1
t=3,5,... yt−1y

f
t−1

2
T

∑T−1
t=3,5,... yt−1y

f
t−2

)
+ê2 +A1ê3

where

ê2 =
(

2
T

∑T
t=2,4,... νty

f
t−1

2
T

∑T
t=2,4,... νty

f
t−2

)
and

ê3 =
(

2
T

∑T
t=2,4,.. yt−1y

f
t−1

2
T

∑T
t=2,4,.. yt−1y

f
t−2

)
(5.2.17)

−
(

2
T

∑T−1
t=3,5,... yt−1y

f
t−1

2
T

∑T−1
t=3,5,... yt−1y

f
t−2

)
.

In a next step we have to derive, as in the proof of Theorem 5.2.9, the covariance of vec (ê2 +A1ê3),

which is, of course, not straightforward. Nevertheless, we can argue that the covariance of vec (ê2), i.e.

V (vec (ê2)) =
2

T

(
γff (p− q)⊗ Σν

)
p,q=1,2

, (5.2.18)

is two times the covariance of the lower bound, i.e.

V (vec (ê)) =
1

T

(
γff (p− q)⊗ Σν

)
p,q=1,2

. (5.2.19)

Now we can conclude that, in general, the covariance of vec (ê2 +A1ê3) cannot be two times the

covariance of the lower bound, too. Since the exact covariance of the upper bound is more complicated

to derive than the asymptotic covariance of the XYW estimator and does not give us further insights,

we pass the upper bound for our asymptotic analysis.

5.2.2. Asymptotic Behavior of the Maximum Likelihood Estimator for the AR(1)

Case. In Theorem 4.3.1 we have derived the score function of the AR(1) likelihood. Now we are

interested in the asymptotic behavior of this estimator.

Theorem 5.2.11. Let (yt)t∈Z be the output of system (2.1.6) with independent inputs (νt)t∈Z ∼
Nn(0,Σν), assume Σν > 0, N = 2 and θ ∈ ΘI . Then the maximum likelihood estimator for the AR(1)



5.2. ASYMPTOTIC NORMALITY OF THE XYW/GMM ESTIMATOR 73

case is asymptotically normally distributed, i.e.

√
T

 vec
(
ÂML1

)
vech

(
Σ̂MLν

)−( vec (A1)

vech (Σν)

) d→ N(3n2+n)/2 (0,ΣAR 1) (5.2.20)

where ΣAR 1 =

(
ΣA1

ΣA1,Σν

ΣTA1,Σν
ΣΣν

)
can be constructed with the formulas

ΣA1
= 2H2

(
(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃)

)
HT

2

+2H3 (γ̃ (0)⊗ Σν̃)HT
3

ΣA1,Σν = 2H2

(
(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃)

)
HT

1

ΣΣν = 2H1

(
(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃)

)
HT

1

where H1, H2 and H3 are given in Appendix A.

While the asymptotic covariance between the system and noise parameters in the high-frequency

case is zero, this is not true for the mixed-frequency case. Furthermore, as will be shown in the next

example, the mixed-frequency XYW estimator is, in general, not asymptotically equivalent to the

mixed-frequency maximum likelihood estimator.

Example 5.2.12. Consider the following AR(1) model with dimension n = 2 and N = 2:

yt =

(
−1.1665 −0.1865

1.4113 0.1063

)
yt−1 + νt (5.2.21)

where we assume that the innovations are normally distributed with a zero mean and covariance matrix

Σν = I2. The roots of det (a (z)) are

z0 = −1.1029

z1 = −6.5120.

Tables 5.2.1 and 5.2.2 show the asymptotic covariance of the XYW estimator in the mixed-frequency

and the maximum likelihood estimator in the high- and mixed-frequency case corresponding to Theo-

rem 2.2.24, Proposition 5.2.6 and Theorem 5.2.11.

ΣXYW =


aff asf afs ass

aff 1.38 1.31 1.04 0.94
asf 10.99 1.12 8.11
afs 0.85 0.79
ass 6.14


Table 5.2.1. Asymptotic covariance of the XYW estimator for the system param-
eters for model (5.2.21)

While the asymptotic variance of the XYW estimator of the aff and of the afs part is approxi-

mately twice the variance of the maximum likelihood estimator in the mixed-frequency case, the two
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remaining variances are much larger. Indeed, the variance of the asf part of the XYW estimator is

six times higher than the variance of the maximum likelihood estimator. In this case the asymptotic

variances of the mixed-frequency maximum likelihood estimator of the aff and afs part are very close

to the one of the high-frequency estimator. Nevertheless, the asf and ass part are rather high.

ΣAR 1 =


aff asf afs ass

aff 0.78 −0.04 0.55 −0.03
asf 1.89 −0.01 1.36
afs 0.46 −0.02
ass 1.13

 ΣYW =


aff asf afs ass

aff 0.65 0.45
asf 0.65 0.45
afs 0.37
ass 0.37


Table 5.2.2. Asymptotic covariance of the ML estimator for the system parameters
for model (5.2.21) in the mixed-frequency case (left) and in the high-frequency case
(right)

5.3. Consistency of the Noise Covariance Estimators

The next theorem shows that the two di�erent estimators of the noise parameters from Section

3.2.3 are both consistent.

Theorem 5.3.1. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν)

and θ ∈ ΘXYW. Then the estimator of the noise parameters from equation (3.2.21), i.e.

vec
(

Σ̂ν

)
=

(
(G ⊗ G)

(
I(np)2 −

(
Â ⊗ Â

))−1 (
GT ⊗ GT

))−1

vec (γ̂(0)) (5.3.1)

= L̂−1vec (γ̂(0)) (5.3.2)

where the system parameters are estimated consistently, is also consistent. Under the further assump-

tions of Theorem 3.2.11 the same is true for the estimator of the noise parameters given by (3.2.25)

and (2.1.35), i.e. 
γ̂(p)
...

γ̂(1)

 =
(
ÔT Ô

)−1

ÔT Ô1. (5.3.3)

Σ̂ν = γ̂ (0)−
(
Â1 · · · Âp

)
γ̂ (−1)

...

γ̂ (−p)

 . (5.3.4)

Proof. Under our assumptions Theorem 2.2.17 implies that the mixed-frequency estimator of

the autocovariance at lag i ∈ NZ is consistent, i.e. γ̂(i)
p→ γ(i). Furthermore, it follows from our

assumptions that Â p→ A and therefore with the aid of Lemma 2.2.5 it follows that L̂−1 p→ L−1, which

implies vec
(

Σ̂ν

)
= L̂−1vec (γ̂(0))

p→ L−1vec (γ(0)) = vec (Σν). In a same way one can argue that the

second estimator is also consistent. �
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Theorem 5.3.2. Let (yt)t∈Z be the output of system (2.1.6) with inputs (νt)t∈Z ∼ IIDn(0,Σν), θ ∈
ΘXYW, assume that the eighth moment E

(
νtν

T
t ⊗ νtνTt ⊗ νtνTt ⊗ νtνTt

)
exists, let η = E

(
νtν

T
t ⊗ νtνTt

)
and let the system and noise parameters be consistently estimated. Then the estimator of η, i.e.

vec (η̂) =

(
G2

(
I(np)4 −

(
Â ⊗ Â ⊗ Â ⊗ Â

))−1

GT2
)−1

vec
(
ψ̂
)

+ (5.3.5)

vec
(

Σ̂ν

)
vec
(

Σ̂ν

)T
+
(

Σ̂ν ⊗ Σ̂ν

)
+Kn,n

(
Σ̂ν ⊗ Σ̂ν

)
is consistent where G2 = (G ⊗ G ⊗ G ⊗ G),

ψ̂ = χ̂− vec (γ̂ (0)) vec (γ̂ (0))
T − (γ̂ (0)⊗ γ̂ (0))−Kn,n (γ̂ (0)⊗ γ̂ (0))

and χ̂ is the sample mixed-frequency estimator of E
(
yty

T
t ⊗ ytyTt

)
.

Proof. Under our assumptions the consistency of the estimators of the autocovariance of lag

0, of the system parameters and of the noise parameters are guaranteed. Thus, it remains to prove

that χ̂ is a consistent estimator for E
(
yty

T
t ⊗ ytyTt

)
. This has been shown in Lomnicki (1961) for the

high-frequency case. Again using Lemma 2.2.5 establishes our result. �





CHAPTER 6

Projecting Estimators on the Parameter Space

It is well known that in the single-frequency case the Yule-Walker estimator always leads to a

stable AR polynomial, provided Γ̂p > 0 holds, and the estimated covariance matrix of the noise is

non-negative de�nite. In general, the XYW estimator does not ful�ll these desirable properties. So,

in a second step, one has to check whether the estimated parameters, say θ̂, lie in the parameter space

Θ. If θ̂ is not contained in this space, the question of �nding a θ̂P ∈ Θ which is su�ciently close to

θ̂ arises. In this chapter we are separating this problem in two sub-problems: The �rst problem is

to �nd a stable polynomial matrix close to an unstable estimator of a(z). The second problem is to

�nd a positive (semi)-de�nite covariance matrix of rank q, which is close to an inde�nite (symmetric)

estimator of Σν . Parts of the results of this chapter are contained in Koelbl et al. (2015).

6.1. Stabilization of the Estimated System Parameters

In this section we assume that we have an estimate for the system parameters, say Âun ∈ Rn×np,
corresponding to at least one unstable root, say z0 ∈ C, so that |z0| ≤ 1 and det (âun(z0)) = 0. Note

that the parameter space S (as described in Section 2.1) is an open set and thus there exists no best

approximation of such an Âun, for instance in Frobenius norm, by an element of S. In addition, S is

even for the multivariate AR(1) case non-convex as the following example shows:

Example 6.1.1. Consider the two stable AR(1) system matrices

A =

(
0.8 10

0 0.8

)
and B =

(
0.8 0

10 0.8

)
.

Then the linear combination
1

2
A+

1

2
B =

(
0.8 5

5 0.8

)
is not stable and thus not contained in S. Indeed, the eigenvalues of this linear combination are

λ0 = 5.8 and λ1 = −4.2. A picture of the non-convex stability set for the univariate AR(3) case has

been given in Combettes and Trussell (1992).

We consider the problem of �nding

inf
A∈S

∥∥∥A− Âun

∥∥∥2

F
(6.1.1)

where S is the parameter space and ‖.‖F denotes the Frobenius norm. There exists a huge range of

literature about �nding the nearest stable polynomial in the univariate case in an iterative way. In

Moses and Liu (1991); Stoica and Moses (1992); Combettes and Trussell (1992) the �stabilization� of a

77
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univariate polynomial is discussed where the re�ection coe�cients are used to guarantee the stability.

In D'haene et al. (2006); Balogh and Pintelon (2008) some special minimization methods are used to

stabilize the multivariate transfer function. In this case the step size of the optimization algorithm

is chosen so that the obtained transfer function is still stable and causal. A more interesting way to

solve the univariate stabilization problem is proposed in Orbandexivry et al. (2013) using the so-called

Dikin Ellipsoid. We will repeat the most important steps from this procedure and generalize it to

the multivariate case, which can be easily done. We point out that all these di�erent methods need a

stable initial value.

Problem (6.1.1) can be reformulated by the Lyapunov Theorem (see Theorem 1 in Orbandexivry

et al. (2013)) as

inf
A,P

1

2

∥∥∥A− Âun

∥∥∥2

F
(6.1.2)

where minimization with respect to P runs over P = PT > 0, P−APAT > 0 where A is the companion

form of A. For a �xed P = PT > 0, we can de�ne the set

SP =
{
A ∈ Rn×np : P −APAT > 0, A is the companion form of A

}
⊂ S

and the function bP (A) = − ln
(
det
(
P −APAT

))
, which is a barrier function. It follows from Theorem

5 in Orbandexivry et al. (2013) that for A ∈ S, P = PT > 0 so that P−APAT > 0 and any 0 ≤ α < 1,

the so-called Dikin Ellipsoid

E (P,A;α) = A+
{
H ∈ Rn×np :

〈
b
′′

P (A)H,H
〉
≤ α

}
is a subset of SP where 〈A,B〉 = tr

(
ABT

)
and

〈
b
′′

P (A)H,H
〉
is the second derivative of bP (A) in a

given direction H. Now, for given A ∈ S and α, the question arises which P should be chosen so that

E (P,A;α) is maximized. In Orbandexivry et al. (2013) the authors argue that a good choice is given

by solving the problem

min
P∈PA

bP (A) (6.1.3)

where PA =
{
P ∈ Rnp×np : P = PT > 0, P −APAT > 0, tr (P ) = 1, A is the companion form of A

}
.

The solution, say P ∗, of problem (6.1.3) satis�es

Q−1 −ATQ−1A = npInp

P ∗ −AP ∗AT = Q > 0

and can be derived via

vec
(
Q−1

)
=

(
I(np)2 −

(
AT ⊗AT

))−1

vec (npInp) (6.1.4)

vec (P ∗) =
(
I(np)2 − (A⊗A)

)−1

vec (Q) . (6.1.5)

Note that A ∈ S and that the absolute value of all eigenvalues of A (and obviously AT ) is smaller

than one. Now we are in a position to formulate a new, restricted optimization problem for a given
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0 ≤ α < 1, A ∈ S and a corresponding P ∗:

min
H

1

2

∥∥∥A+H − Âun

∥∥∥2

F
(6.1.6)

where H is so that
〈
b
′′

P∗(A)H,H
〉
≤ α. Note that we now have a convex optimization problem. It

can be shown that
〈
b
′′

P∗(A)H,H
〉
≤ α can be rewritten as vec (H)

T
Bvec (H) ≤ α where

1

2
B =

(
P ∗ ⊗ GQ−1GT

)
+ (6.1.7)(

P ∗ATQ−1AP ∗ ⊗ GQ−1GT
)

+(
P ∗ATQ−1GT ⊗ GQ−1AP ∗

)
Kn,np

and Kn,np is a commutation matrix.

Lemma 6.1.2. The matrix B ∈ Rn2p×n2p is symmetric positive de�nite and thus can be factorized

as B = UDUT where D is a diagonal matrix with positive entries di, i = 1, . . . , n2p and U is an

orthonormal matrix.

Proof. Since P ∗ and Q are positive de�nite matrices the �rst term of the right hand side of

(6.1.7) is positive de�nite. Thus it remains to show that the sum of the second and third term is at

least positive semi-de�nite. These two terms can be rewritten as(
P ∗ATQ− 1

2 ⊗ GQ− 1
2

)
(Inp +Knp,np)

(
Q−

1
2AP ∗ ⊗Q− 1

2GT
)
.

Now it is easy to conclude that B is positive de�nite since Knp,np is a symmetric matrix which has

eigenvalues ±1 (see Magnus and Neudecker (1979)) and therefore (Inp +Knp,np) has eigenvalues 0 and

2. �

The solution of (6.1.6) ful�lls the following equations:(
In2p + λB

)
vec (H) = vec

(
Âun −A

)
(6.1.8)

vec (H)
T
Bvec (H) = α.

The solution of (6.1.8) can be derived by �nding the root of the following function (see Orbandexivry

et al. (2013), p. 1199)

ψ(λ) =

n2p∑
i=1

di

(
eTi U

Tvec
(
Âun −A

))2

(1 + λdi)
2 − α = 0 (6.1.9)

with respect to λ ∈ (0,∞) where ei is the i-th unit vector and then substituting into

vec (H) =
(
In2p + λB

)−1
vec
(
Âun −A

)
. (6.1.10)

It is worth mentioning that there exists a unique λ and therefore a unique H. In a last step we can

derive our new approximation by A+H.

The whole procedure has to be iterated:
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(1) Start with a stable polynomial A(0) which can be derived by an initial method a − e below
and choose an η > 0.

(2) Compute Q and P ∗ from (6.1.4) and (6.1.5).

(3) Compute λ and H from (6.1.9) and (6.1.10).

(4) A(i) = A(i−1) +H

(5) Repeat steps 2-4 until ‖H‖2F < η

We consider �ve di�erent initializations for the algorithm described above:

a: Re�ecting the unstable roots of âun(z) on the unit circle: Method 1

In Hannan (1970); Lippi and Reichlin (1994) a procedure was proposed to obtain a causal

(fundamental) representation of a transfer function from a non-causal (non-fundamental) one

via the so-called Blaschke matrices. We say that B(z) is a Blaschke matrix if

B(z)
(
B
(
z−1
))T

= In. (6.1.11)

We will adapt this procedure to our problem for the generic case that all roots of the

polynomial âun(z) are di�erent and do not lie on the unit circle. Let us assume that there

exists an unstable root z0 ∈ C so that |z0| < 1 and det (âun (z0)) = 0. Then there exists a

vector 0 6= g ∈ Cn with gT ḡ = 1, which lies in the left kernel of âun (z0), i.e.

gT âun (z0) = 0.

Now letK be a unitary matrix, i.e. KK̄T = In, where gT is in the �rst row ofK. For instance,

such a K can be obtained by de�ning K2 =

(
gT

(0, In−1)

)
and applying the Gram�Schmidt

process (note that K2 is generically nonsingular). If we premultiply âun (z) by K, we can

observe that all entries in the �rst row of Kâun (z) contain the factor z − z0. Let Bz0 (z) be

the matrix (
1−z̄0z
z−z0 0

0 In−1

)
.

Then premultiplying Kâun (z) by Bz0 (z) we obtain that ã(z) = Bz0 (z)Kâun (z) has not a

root at z0 anymore. Furthermore, it is easy to see that Bz0 (z)K is a Blaschke matrix. It is

worth mentioning that ã(z) is still an AR(p) polynomial. One can repeat this procedure until

no root is inside the unit circle. In a last step one has to premultiply the obtained polynomial

with Ã−1
0 so that the stable polynomial ful�lls the restriction A0 = In.

One nice property of this procedure is that if we apply this procedure to a regular AR(p)

process, i.e. b−1a(z), the spectral density will be preserved.

b: Re�ecting the unstable roots of âun(z) on the unit circle: Method 2

As mentioned after Lemma 3.1.5, generically, the unstable polynomial has the following

representation

A = PΛP−1

where Λ is a diagonal matrix containing the eigenvalues λi 6= 0 and P contains the corre-

sponding eigenvectors of A. Furthermore, we assume that |λi| 6= 1. As has been shown in
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Lemma 2.1.7 P has a special structure:

P =


P1

P1Λ−1

...

P1Λ−p+1


where P1 ∈ Rn×np. We can now de�ne our new companion form A(0) = P (0)Λ(0)

(
P (0)

)−1

where Λ(0) is a diagonal matrix with the entries

λ0
i =

λi |λi| < 1

1/λ̄i else

and

P (0) =


P1

P1

(
Λ(0)

)−1

...

P1

(
Λ(0)

)−p+1

 ,

which is, of course, stable.

c: Setting the magnitude of the unstable zeros to 1 + ε

This method is analogous to Method b, but now we de�ne

λ0
i =

λi |λi| < 1

(1−ε)
|λi| λi else

where 0 < ε < 1 and ε is close to 0.

d: Scaling of the polynomial: Method 1

We start with 0 < µ0 < 1 and de�ne µ0 (A1, . . . , Ap) = Bµ0
. If Bµi is not stable, set

µi+1 = µi/2 and repeat until Bµi is stable. Set Bµi = A(0).

e: Scaling of the polynomial: Method 2

For 0 < ε < 1 de�ne µ = (1− ε) min
i

(|zi|) < 1. Now de�ne the initial starting point as

A(0) = (A1µ, . . . , Apµ
p), which is stable.

Example 6.1.3. The question arises which of these initialization methods should be chosen for the

algorithm. In a simulation framework we would choose the method which leads to a stable polynomial

which is as close as possible to the true system parameters (and where the computation time is

appropriate small), which is, of course, infeasible in practice.

We compare the stabilization algorithm described above initialized with the initialization methods

a− e for an AR(2) polynomial of dimension 3 for di�erent points in the parameter space S. To get an

unstable polynomial we add to each component a perturbation, say ψj,ki i = 1, 2, j, k = 1, 2, 3, where

ψj,ki ∼ N1 (0, 0.1). We repeat this simulation for every point 103 times. As a performance criteria

we consider the norm
∥∥∥Ast − Âun

∥∥∥
F
where Ast is the stabilized polynomial, the computation time in

seconds and the count of the iteration steps of the stabilization procedure. It turns out that in most
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Figure 6.1.1. Comparison of the �ve initialization methods for an AR(2) n = 3 polynomial

of the cases the initialization method a performs best. Thus, we only want to present a point of the

parameter space S:

A1 =

−0.844 0.658 −1.182

0.428 0.471 −1.209

1.401 −1.760 0.005

 , A2 =

−1.127 0.971 −0.815

−0.049 0.127 0.102

1.536 0.077 −0.855

 (6.1.12)

which has the roots:

z0,1 = −0.398± 0.962i (6.1.13)

z2 = −1.149

z3,4 = 0.376± 1.095i

z5 = 1.481.

In Figure 6.1.1 there are boxplots of the performance of the �ve di�erent initialization methods a− e
displayed with respect to the three criteria. As can be seen in the left picture of Figure 6.1.1 the

medians of the calculated norms are (0.07, 0.08, 0.10, 0.11, 0.11) which shows that Method a performs

best. Furthermore, the medians of the computational times in seconds are (0.05, 0.07, 0.22, 0.25, 0.13),

which are displayed in the picture in the middle of Figure 6.1.1. The medians of the iteration steps of

the �ve methods are (8, 12, 35, 40, 20), which are displayed in the picture in the right of Figure 6.1.1.

To summarize, the stabilization algorithm works quite fast for �small� polynomials, where �small�

means depending on n and p and gives us stable polynomials which are near to the unstable ones. Of

course, this algorithm is an iterative algorithm and thus di�erent starting values should be considered.

One drawback of the stabilization procedure is that if we are close to the border of the stability region,

the matrix Q, which is in a certain sense a measure for the distance to the border, will be near to

singularity. Thus, the inverse of it will cause numerical troubles, for instance the matrix B will not

be symmetric anymore. This problem can be �xed by increasing the threshold η for ‖H‖2F or to use
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B2 =
(
B +BT

)
/2 instead of B. Note that B2 is the nearest symmetric matrix to B (see Higham

(1989)).

Reconsidering problem (6.1.1), one can ask the question of �nding

inf
A∈S

∥∥∥Ẑ1 −AẐ0

∥∥∥2

F
(6.1.14)

where S is again the stability set and the true system parameters are identi�able via the XYW

equations. With this problem we expect to �nd a stable matrix A, which will adapt to the estimates

Ẑ0 and Ẑ1 more directly. Following the same ideas as above we get our new, restricted optimization

problem

min
H

1

2

∥∥∥Ẑ1 −AẐ0 −HẐ0

∥∥∥2

F
(6.1.15)

with respect to
〈
b
′′

P∗(A)H,H
〉
≤ α. The solution of problem (6.1.15) has to satisfy the equations

vec (H) =

(
In2p + λ

((
Ẑ0Ẑ

T
0

)−1

⊗ In
)
B

)−1

vec
(
ÂXYW −A

)
(6.1.16)

vec (H)
T
Bvec (H) = α.

Note that the equations above and (6.1.8) only di�er in the term
(
Ẑ0Ẑ

T
0

)−1

, which has the drawback

that an analogue of (6.1.9) cannot be achieved. Thus, we have to �nd the root of

vec (H)
T
Bvec (H)− α = 0

with respect to the variable λ > 0 where we have to insert equation (6.1.16) into it. Of course, the

computational time will increase in general as can be seen in Example 6.1.4.

Example 6.1.4. We compare the two di�erent stabilization procedures proposed in (6.1.6), say

Method 1, and (6.1.14), say Method 2, for the AR(2) process with the system parameters (6.1.12)

and (νt)t∈Z ∼ N3 (0, I3). Again we repeat the simulation 103 times and we initialize the procedures

with Method a. As can be seen in Figure 6.1.2, it turns out that the medians of
∥∥∥Ast − Âun

∥∥∥
F
of the

two methods are (0.04, 0.11), respectively. Thus, Method 2 does not seem to perform quite well. The

calculation time of the second procedure also increases. Furthermore, the medians of ‖Ast −A‖F for

the two methods, where A are the true system parameters, are (2.90, 2.88), which do not di�er very

much.

6.2. Positive (Semi)-De�niteness of the Estimated Noise Covariance Matrix

Under speci�c assumptions the estimator for the noise covariance matrix Σν from equation (3.2.21)

is consistent. Furthermore, this estimate is symmetric since

vec
(

Σ̂Tν

)
= Kn,nvec

(
Σ̂ν

)
=

(
(G ⊗ G)

(
I(np)2 −

(
Â ⊗ Â

))−1

(GT ⊗ GT )

)−1

Kn,nvec (γ̂ (0))

= vec
(

Σ̂ν

)
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Figure 6.1.2. Comparison of the new stabilization method for an AR(2) n = 3 polynomial

but may not be positive (semi)-de�nite and of rank q and thus not contained in the set D. Note that

the estimate for the covariance matrix γ̂ (0) is always positive (semi)-de�nite in the single-frequency

setting, however, this is not the case in the mixed-frequency setting.

There exists an enormous amount of literature about �nding the nearest member of a class of

matrices to a given matrix, see e.g. Eckart and Young (1936); Higham (1989, 2002). In Higham

(1989) a survey of nearness problems is given, where the focus lies, among other properties, on positive

de�niteness or rank de�ciency.

Before we get further insides into our main problem, we �rst consider the problem of �nding the

nearest positive (semi)-de�nite diagonal matrix of rank q, when Σ̂ν is also a diagonal matrix where

the entries are ordered in a descending way. Thus, we are faced with the problem of �nding

inf
Λps∈Dd

∥∥∥Λps − Σ̂ν

∥∥∥2

F
(6.2.1)

where Dd = {Λν ∈ Rn×n|Λν is diagonal,Λν ≥ 0, rk (Λν) = q}. We can rewrite the norm of the dif-

ference as
∥∥∥Λps − Σ̂ν

∥∥∥2

F
=
∑n
i=1 (λpsi − λi)

2, where λpsi , λi are the diagonal entries of Λps and Σ̂ν ,

respectively. Thus one arbitrary near solution of (6.2.1) is the diagonal matrix Λ+ with the entries

λ+
i =

max (λi, ε) i = 1, . . . , q

0 i = q + 1, . . . , n

for a su�ciently small ε > 0. Of course, since the set of positive de�nite matrices is open, one cannot

assume that the solution of (6.2.1) is in the set Dd. This issue is presented in the next example:

Example 6.2.1. Let Σν be the inde�nite diagonal matrix

Σν =

(
1 0

0 −1

)
.
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Then, for a su�ciently small ε > 0, a near solution of problem (6.2.1) for the case q = 2 is given by

Λ+ =

(
1 0

0 ε

)
whereas the in�mum of (6.2.1) is (

1 0

0 0

)
= arg inf

Σps∈Dd

∥∥∥Σps − Σ̂ν

∥∥∥2

F
,

which is not contained in Dd.

Now we consider our main problem, namely to �nd a near solution to

inf
Σps∈D

∥∥∥Σps − Σ̂ν

∥∥∥2

F
(6.2.2)

where D =
{

Σν ∈ Rn×n|Σν = ΣTν ,Σν ≥ 0, rk (Σν) = q
}
and Σ̂ν is a symmetric matrix. The matrix

Σ̂ν can be represented as Σ̂ν = QΛQT where Λ is the diagonal matrix containing the eigenvalues λi
in a descending order and Q is a matrix containing the appropriate eigenvectors. For simplicity, we

assume that the q-th and the (q + 1)-th eigenvalue are distinct.

To obtain an arbitrarily close solution to the problem (6.2.2) we de�ne the following matrix Σ̂ps =

QΛ+Q
T where again Λ+ is a diagonal matrix with the entries

λ+
i =

max (λi, ε) i = 1, . . . , q

0 i = q + 1, . . . , n

for a su�ciently small ε > 0. Note that by the so-called Wielandt-Ho�man Theorem (see Ho�man

and Wielandt (1953); Wilkinson (1979))
∑n
i=1

(
λAi − λBi

)2 ≤ ‖A−B‖2F holds for symmetric matrices

A, B ∈ Rn×n, where λAi and λBi are the corresponding eigenvalues in a descending order, respectively.

Thus, Σ̂ps gives an arbitrarily close solution.

Example 6.2.2. Let q = 2 and

Σ̂ν =

(
0 −1

−1 0

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
1 0

0 −1

)(
1√
2
− 1√

2
1√
2

1√
2

)
.

Then the in�mum of (6.2.2) with rank one is

Σs = arg inf
Σps∈Dd

∥∥∥Σps − Σ̂ν

∥∥∥2

F
=

(
1
2 − 1

2

− 1
2

1
2

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
1 0

0 0

)(
1√
2
− 1√

2
1√
2

1√
2

)

and
∥∥∥Σs − Σ̂ν

∥∥∥2

F
= 1. In contrast, for an ε = 10−6, Σ̂ps with rank q = 2 is

Σ̂ps =

(
1√
2

1√
2

− 1√
2

1√
2

)(
1 0

0 ε

)(
1√
2
− 1√

2
1√
2

1√
2

)
=

(
1
2 − 1

2

− 1
2

1
2

)
+ 10−6

(
1
2

1
2

1
2

1
2

)

and
∥∥∥Σs − Σ̂ν

∥∥∥2

F
= 1 + ε.





CHAPTER 7

Monte Carlo Simulations

In this chapter the emphasis is on Monte Carlo simulations of the estimation procedures presented

in Chapter 5. We compare the �nite sample and the asymptotic behavior of the estimators for the case

of stock variables. We do this by simulating the �nite sample covariance matrix of the autocovariance

estimator, the extended Yule-Walker estimator and the generalized method of moments estimator and

compare them with the exact asymptotic ones. In order to do this, we choose two di�erent AR(2)

models where one model has a long and the other a short memory. Furthermore, we simulate the �nite

sample covariance matrix of the maximum likelihood estimator for the AR(1) case for one model.

Many of the simulation results presented in this chapter are based on the software in R written by

Alexander Braumann.

7.1. Mixed-Frequency Bartlett's Formula

In this section we compare the analytical asymptotic mixed-frequency Bartlett's formula, which

was derived in Theorem 2.2.22, with the �nite sample mean squared error for two di�erent AR(2)

models.

Example 7.1.1. We call the following model �Model 1�:

yt =

−0.844 0.658 −1.182

0.428 0.471 −1.209

1.401 −1.760 0.005


︸ ︷︷ ︸

A1

yt−1 +

−1.127 0.971 −0.815

−0.049 0.127 0.102

1.536 0.077 −0.855


︸ ︷︷ ︸

A2

yt−2 + νt, (7.1.1)

where we assume that the innovations are normally distributed with a zero mean and covariance matrix

Σν = I3. The roots of det (a (z)) are

z0,1 = −0.398± 0.962i

z2 = −1.149

z3,4 = 0.376± 1.095i

z5 = 1.481

and thus z0,1, where |z0,1| = 1.0411, is very close to the unit circle. The covariance matrix of this

model is

γ (0) =

32.13 20.38 −8.54

45.46 19.10

27.94

 . (7.1.2)

87
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Example 7.1.2. We call the following model �Model 2�:

yt =

 1.030 4.475 5.972

−0.314 −1.201 −1.533

−0.094 −0.224 −0.303


︸ ︷︷ ︸

A1

yt−1 +

−1.562 −5.656 −6.511

0.524 2.021 1.695

−0.004 0.049 0.628


︸ ︷︷ ︸

A2

yt−2 + νt, (7.1.3)

where we again assume that the innovations are normally distributed with a zero mean and covariance

matrix Σν = I3. The roots of det (a (z)) are

z0 = 1.250 z3 = 1.399

z1 = −1.279 z4,5 = −0.431± 1.334i

z2 = −1.302

.

The covariance matrix of this model is

γ (0) =

265.43 −68.88 −8.95

19.35 2.14

1.59

 . (7.1.4)

In Figure 7.1.1 the positions of the roots of Model 1 and Model 2 are shown. The blue points are

the roots of Model 1 and the green crosses are the roots of Model 2. The black circle represents the

unit circle. We assume that the �rst two components of each model are fast ones, i.e. observed at each

time point, and the third component is the slow one observed at each third time point. Thus, we have

the following situation: N = 3, n = 3, q = 3, nf = 2 and ns = 1.
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Figure 7.1.1. Positions of the roots of Model 1 (blue, points) and Model 2 (green, cross)

In Figure 7.1.2 the autocorrelations of Model 1 and Model 2 are displayed. To be more precise,

on the main diagonal the autocorrelations and on the o�-diagonal the cross-autocorrelations from lag
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Figure 7.1.2. Autocorrelations of Model 1 and Model 2 of the lags 0 to 20

0 to lag 20 are shown. As can be seen, Model 1 has a longer memory than Model 2. Also note that

the variance of the fast part of Model 2 is much higher than of the slow one (see (7.1.4)).

The sample mean squared error (SMSE) is de�ned as

SMSE
(
θ̂, θ
)

=
1

M

M∑
i=1

(
θ̂i − θ

)(
θ̂i − θ

)T
(7.1.5)

where θ is the vector of true values, θ̂i are the estimated values at the i-th repetition andM is the total

number of repetitions. Note that this sample error can be split into the sample covariance, S
(
θ̂
)
, and

into the squared bias, Bias2
(

¯̂
θM , θ

)
, i.e.

SMSE
(
θ̂, θ
)

=
1

M

M∑
i=1

(
θ̂i − ¯̂

θM

)(
θ̂i − ¯̂

θM

)T
+
(

¯̂
θM − θ

)(
¯̂
θM − θ

)T
= S

(
θ̂
)

+ Bias2
(

¯̂
θM , θ

)
(7.1.6)

where ¯̂
θM = 1

M

∑M
i=1 θ̂i.

For our �rst simulation we generate T = 105 observations of Model 1 with Gaussian innovations

and delete observations of the slow components to obtain our mixed-frequency pattern for N = 3.

Thereafter, we calculate γ̂ff (0), γ̂sf (0), γ̂ff (1) and γ̂sf (1) and repeat these steps M = 105 times.

In Table 7.1.1 the sample mean squared errors multiplied by
√
T for these autocovariance estimators,
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γ̂ff (0) γ̂sf (0) γ̂ff (1) γ̂sf (1)
γ̂
f
f
(0

)

9414 2907 11323
-3784 6421

-2584 8568 -8657 -2796
8244 3951

(-3776) (6433) (8239) (3926)

1849 3890
-822 1661

-45 2636 -1677 205
2511 2010

(-815) (1669) (2513) (2008)

13924
-4421 7619

-2799 10360 -9953 -2859
9847 4947

(-4410) (7634) (9844) (4920)

γ̂
s
f
(0

) 2728 -1584 1297 -3478 3822 1470 -2996 -1072
(1670) (-2678) (1298) (-3470) (3818) (1473) (-3332) (-1309)

6523 -2049 5819 -6355 -2380 6718 3189
(4609) (-2049) (5830) (-6361) (-2378) (5666) (2399)

γ̂
f
f
(1

)

1326 -2336 3205 1661
-2282 -432

(-2279) (-421)

7863 -7829 -2457
7501 3573

(7497) (3550)

9203 3864
-7691 -2878

(-7685) (-2850)

2255
-2535 -338

(-2531) (-325)

γ̂
s
f
(1

) 8213 4378
(7311) (3552)

3968
(2575)

Table 7.1.1. Rounded SMSE multiplied by
√
T of the autocovariance estimators

of Model 1 in the mixed- (high-) frequency case for T = 105 and M = 105

say Σ̂γ , are displayed for the mixed-frequency case. Furthermore, the SMSEs multiplied by
√
T for

the high-frequency autocovariance estimators, say Σ̂high
γ , i.e. when all observations are available, are

shown in brackets. Of course, the autocovariance estimators for the fast components in the high- and

in the mixed-frequency case, e.g. γ̂ff (0), are the same and so the SMSEs do not di�er. It should be

mentioned that the bias in this simulation is very small and will not be presented.

As has been shown in Chapter 5 the asymptotic cross-covariance of γ̂ff (i) and γ̂sf (j) is the same

in the high- and in the mixed-frequency case. Indeed, as can be seen in Table 7.1.1, the SMSEs do not

di�er very much.

In Table 7.1.2 the exact asymptotic covariance matrix for the autocovariance estimators for the

mixed-frequency case, say Σγ , is displayed, where, again, the high-frequency covariance matrix, say

Σhigh
γ , is shown in brackets. Comparing Table 7.1.1 and Table 7.1.2 the sample mean squared error

multiplied by
√
T seems to converge to the exact asymptotic one.

Let us de�ne the relative Frobenius norm of two matrices as

$ (A,B) = ‖A−B‖F / ‖B‖F (7.1.7)

where ‖B‖F > 0. The relative Frobenius norms of the SMSEs multiplied by
√
T and the exact

asymptotic covariance matrix for di�erent sample sizes T = 102, 103, 104 and 105 for the high- and the

mixed-frequency case for Model 1 and Model 2 are given in Table 7.1.3, where the count of repetitions
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γ̂ff (0) γ̂sf (0) γ̂ff (1) γ̂sf (1)

γ̂
f
f
(0

) 9457 2913 11372 -3797 6463 -2601 8608 -8704 -2819 8276 3938
1849 3898 -819 1673 -48 2641 -1683 200 2517 2007

13981 -4434 7668 -2819 10405 -10005 -2884 9886 4934

γ̂
s
f
(0

)

2744 -1588
1307 -3490 3841 1483

-3001 -1055
(1680) (-2692) (-3350) (-1316)

6560
-2060 5857 -6393 -2393

6748 3191
(4629) (5692) (2408)

γ̂
f
f
(1

)

1332 -2353 3224 1669 -2294 -429
7900 -7872 -2478 7531 3561

9255 3889 -7725 -2865
2265 -2551 -334

γ̂
s
f
(1

)

8231 4363
(7342) (3561)

3959
(2576)

Table 7.1.2. Rounded asymptotic covariance matrix of the autocovariance estima-
tors of Model 1 in the mixed- (high-) frequency case

is M = 105. In accordance with the theory from Chapter 5 the relative norms seem to converge to

zero.

T = 102 T = 103 T = 104 T = 105

Model 1
MF Σ̂γ 0.1184 0.0103 0.0030 0.0048

HF Σ̂high
γ 0.1119 0.0097 0.0027 0.0048

Model 2
MF Σ̂γ 0.0266 0.0055 0.0043 0.0019

HF Σ̂high
γ 0.0266 0.0056 0.0043 0.0018

Table 7.1.3. Relative Frobenius norms of the SMSE multiplied by
√
T and of the

asymptotic covariance matrix of the autocovariance estimators for di�erent sample
sizes T for Model 1 and 2

7.2. Extended Yule-Walker Estimator

In this section we compare the asymptotic covariance matrix of the extended Yule-Walker estimator

with the �nite sample mean squared error multiplied by
√
T for Model 1 and Model 2. Again, we

choose the count of repetitions as M = 105. In Table 7.2.1 the relative Frobenius norms of the SMSE

multiplied by
√
T and the exact asymptotic covariance matrices are displayed for the two models with

di�erent increasing sample sizes T . Here MF corresponds to the asymptotic covariance in Proposition

5.2.6 and HF to the asymptotic covariance in Theorem 5.2.9. It seems that the relative norms converge

to zero, as they are supposed to in theory. It is worth mentioning that the convergence of Model 1 is

faster than the convergence of Model 2.

In Table C.0.1 the asymptotic covariance and in Table C.0.2 the SMSE multiplied by
√
T for

T = 105 for the extended Yule-Walker estimator in the mixed-frequency case for Model 1 are shown.
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T = 102 T = 103 T = 104 T = 105

Model 1
MF ÂXYW 0.8999 0.2449 0.0169 0.0062

HF Âfull
XYW 2.5622 0.2468 0.0253 0.0074

Model 2
MF ÂXYW 0.8865 0.3736 0.1832 0.0217

HF Âfull
XYW 2.6586 0.6384 0.0655 0.0053

Table 7.2.1. Relative Frobenius norms of the SMSE multiplied by
√
T and of the

asymptotic covariance matrix of the XYW estimator for di�erent sample sizes T for
Model 1 and 2

In addition, in Table C.0.3 the asymptotic covariance of the extended Yule-Walker estimator using high-

frequency autocovariance estimators and in Table C.0.4 the asymptotic covariance of the standard high-

frequency Yule-Walker estimator for Model 1 are displayed. By comparing these tables we immediately

see that there is a large gap between the high- and mixed-frequency estimators, i.e. the covariance

matrix of the mixed-frequency extended Yule-Walker estimator in Table C.0.1 is much larger than

the covariance matrix shown in Table C.0.3, where the autocovariances are estimated via the high-

frequency estimators. Furthermore, we can observe that there is also a gap between the asymptotic

covariance matrices displayed in Table C.0.3 and Table C.0.4, which correspond to the two di�erent

high-frequency estimators.

7.3. Generalized Method of Moments Estimator

In an analogous way as in the section before, we compare the asymptotic covariance matrix of the

feasible generalized method of moments estimator with the �nite sample mean squared error multiplied

by
√
T for Model 1 and Model 2. In Table 7.3.1 the relative Frobenius norms of the SMSE multiplied

by
√
T and the exact asymptotic covariance are displayed for the two models, where the relative bias

is shown in brackets, i.e.

$
(

¯̂
A,A

)
=
∥∥∥( ¯̂
A1,

¯̂
A2

)
− (A1, A2)

∥∥∥
F
/ ‖(A1, A2)‖F

where ¯̂
Aj = 1

M

∑M
i=1 Â

i
j , j = 1, 2. Here we choose M = 104 repetitions and we truncate the in�nite

sum at the 100-th summand (for the case T = 102 we truncate the sum at the 50-th summand). This

has mainly two reasons: Firstly, the average calculation period decreases (which is nevertheless very

high) and secondly, the fractions of the norms of the autocovariance at lag i ≥ 100 and at lag 0 of

both models are rather small so that omitting these lags does not in�uence our results a lot.

The simulation shows that the relative SMSE of Model 1 for T = 102 is 22, which is very high and

it increases at T = 103 to 72. Also note that the relative bias is very high. Nevertheless, by increasing

sample size T they seem to converge to zero. Thus, we can conclude that in the case where T is small,

the �nite covariance matrix of the GMM estimator may di�er a lot from the asymptotic one.

As can be seen in Table 7.3.1, the same conclusion follows for Model 2, where the relative SMSE

as well as the relative bias seem to converge to zero, too.

In Table C.0.5 the asymptotic covariance matrix of the GMM estimator for Model 1 is presented.

In contrast to Table C.0.1, i.e. the asymptotic covariance matrix of the XYW estimator, this covariance
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T = 102 T = 103 T = 104 T = 105 T = 106

Model 1 22 (0.4801) 72 (0.0581) 15 (0.0045) 0.2338 (0.0001) 0.0101 (0.0001)
Model 2 42 (0.3154) 27 (0.0571) 22 (0.0357) 5 (0.0033) 0.0112 (0.0001)

Table 7.3.1. Relative Frobenius norms of the SMSE multiplied by
√
T and of the

asymptotic covariance matrix of the GMM estimator for di�erent sample sizes T for
Model 1 and 2

matrix is smaller, i.e. the di�erence between these two models is positive (semi)-de�nite. Indeed, the

relative norm between these two covariance matrices is 10.65. In Table C.0.6 the SMSE multiplied by√
T for T = 106 and M = 105 is displayed, which does not di�er very much from the exact asymptotic

variance displayed in Table C.0.5.

In the following lines we want to discuss the information loss measured by the asymptotic variance

of di�erent estimators which are based on the XYW equations. This information loss can be split

into mainly two parts: Firstly, the loss of information which occurs due to the structure of the XYW

equations, i.e. the missing observable slow autocovariances γss (h), h ∈ NZ. Secondly, the information

loss that occurs through the mixed-frequency setting, i.e. the mixed-frequency estimators for the

autocovariances. In Table 7.3.2 a comparison of the asymptotic covariance matrices of the following

estimators relative to the asymptotically e�cient high-frequency YW estimator, say ΣYW, is shown:

• XYW based on high-frequency observations, say Σfull
XYW

• GMM based on mixed-frequency observations, say ΣGMM

• XYW based on mixed-frequency observations, say ΣXYW

• GMM based on mixed-frequency observations with a further lag k = 1, say ΣGMM,1

• XYW based on mixed-frequency observations with a further lag k = 1, say ΣXYW,1

As can be seen in the �rst column, where the autocovariance estimators are obtained using high-

frequency observations, the relative norms for the two models are 3 and 62, which re�ects that the use

of the XYW equations instead of using standard YW equations can lead to a signi�cant rise in the

asymptotic covariances depending on the speci�c point in the parameter space. This e�ect increases

when using the mixed-frequency autocovariance estimators as can be seen in the third column, i.e. 1352

and 8103. If we add a further lag to the XYW estimator the relative di�erence decreases for Model 1,

i.e. 1124, and increases for Model 2, i.e. 9180, which is displayed in the last column. Nevertheless, the

GMM estimator diminishes this e�ects as can be seen in the second and in the fourth column.

$
(
Σfull
XYW,ΣYW

)
$ (ΣGMM,ΣYW) $ (ΣXYW,ΣYW) $ (ΣGMM,1,ΣYW) $ (ΣXYW,1,ΣYW)

1 3 117 1352 113 1124
2 62 650 8103 404 9180

Table 7.3.2. Comparison of the asymptotic covariance matrices for di�erent esti-
mators for Model 1 and 2

Tables C.0.7 and C.0.8 report the asymptotic covariance matrices of the XYW and the GMM

estimator for Model 1 in the case of �ow variables, where wt = yst +yst−1 +yst−2. Let Σ�ow
XYW and Σ�ow

GMM

denote these covariance matrices. The di�erence between the asymptotic covariance matrices of the
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XYW estimator for the stock and the �ow case, i.e. ΣXYW − Σ�ow
XYW, yields in an inde�nite matrix.

Thus, using �ow rather than stock data, does not seem to result in a better estimator in general. The

same conclusion holds for the GMM estimators.

7.4. Maximum Likelihood AR(1) Estimator

In this section we consider the asymptotic covariance matrix of the maximum likelihood estimator

for the special AR(1) case proposed in Section 5.2.2 and compare it to the SMSE multiplied by
√
T

of the roots of the score functions of Theorem 4.3.1 and to the SMSE multiplied by
√
T of the EM

algorithm introduced in Section 4.3.2. Since we are interested in asymptotic considerations we initialize

the EM algorithm as well as the Newton-Raphson algorithm, which we use to �nd the roots of the

score functions, with the true parameters. Note that this is in practice, of course, not possible.

In Table 7.4.1 the relative Frobenius norms of the SMSE multiplied by
√
T and of the asymptotic

covariance matrix are presented for Model (5.2.21), which we call �Model 3�, where N = 2, n = 2,

Σν = I2 and M = 5000 repetitions. According to the theory, the relative Frobenius norms of the roots

of the score functions seem to converge to zero. The relative Frobenius norms corresponding to the EM

algorithm also converge to zero. It is worth noting that the calculation time of the EM algorithm is

much higher than the time of �nding the roots of the score functions. This points out the importance

of more structure theory for the AR(p) p > 1 case.

Model 3 T = 102 T = 103 T = 104 T = 105

Roots of the score function 0.1009 0.0172 0.0091 0.0056
EM algorithm 0.1143 0.0207 0.0175 0.0152

Table 7.4.1. Relative Frobenius norms of the SMSE multiplied by
√
T and of the

asymptotic covariance matrix for di�erent sample sizes T for Model 3

As in the section before the same comparison of the asymptotic covariance matrices, compared to

the high-frequency YW covariance matrix, are displayed in Table 7.4.2 with the additional asymptotic

covariance matrix of the ML estimator in the mixed-frequency case, say ΣAR 1. Note that in the AR(1)

case, for k = 0, the GMM and the XYW estimator are the same. For this model, it follows that the

asymptotic covariance matrix of the ML estimator in the mixed-frequency case is at least three times

smaller than the asymptotic covariance matrices of the other mixed-frequency estimators.

$
(
Σfull
XYW,ΣYW

)
$ (ΣAR 1,ΣYW) $ (ΣXYW,ΣYW) $ (ΣXYW,1,ΣYW) $ (ΣGMM,1,ΣYW)

0.5730 1.4157 11.808 5.7571 4.736

Table 7.4.2. Comparison of the asymptotic covariance matrices for di�erent esti-
mators for Model 3



CHAPTER 8

Summary and Outlook

This thesis deals with identi�ability and the asymptotic behavior of estimators of vector autore-

gressive systems in the (single and) mixed-frequency case. The asymptotic distribution of the autoco-

variance estimator, the extended Yule-Walker estimator, a generalized method of moments estimator

and the maximum likelihood estimator (in the latter case only for the AR(1) case) are considered in

detail.

In Chapter 2 the main focus is on autoregressive systems in the single-frequency case. In particular,

the problem of forecasting and interpolation of observations and the estimation of the system and noise

parameters where the AR system could be regular as well as singular are considered. In addition, the

asymptotic behavior of two estimators is analyzed. Furthermore, system theoretical concepts, which

are needed for the theory of identi�ability and estimation of AR systems in the mixed-frequency

case, are explained. Chapter 3 deals with the problem of identi�ability of the system and noise

parameters from mixed-frequency observations. For that reason the genericity property on a subset of

the parameter space is introduced. It is shown that the parameters are g-identi�able in the parameter

space. The last part of this chapter treats the case of �ow rather than stock variables where g-

identi�ability is also established. In the fourth chapter di�erent estimation procedures which are based

on the XYW equations and on the (Gaussian) maximum likelihood theory are presented. One of the

main contributions of this thesis is contained in Chapter 5, where the asymptotic distribution of the

autocovariance, the XYW, the GMM and the ML estimator for the AR(1) case in the mixed-frequency

case are derived. It turns out that the XYW and the GMM estimator are both not asymptotically

e�cient. Furthermore, upper and lower bounds for the asymptotic covariance of the XYW estimator

are derived. In Chapter 6 the problems of projecting unstable AR polynomials and inde�nite symmetric

covariance matrices on the parameter space are considered. An adaption of a univariate stabilization

algorithm for the multivariate case is presented and the problem of the initialization of this algorithm

is treated. In Chapter 7 some �nite sample e�ects are investigated through simulations.

There are still a number of open questions for further research which are connected with the topic

of this thesis. The next few bullet points should give a small overview:

• Throughout this thesis it is assumed that the order of the AR polynomial p and the rank of

the innovation covariance matrix q are known. Of course, in practice these two parameters

have to be estimated, too.

• In Anderson et al. (2015a) an alternative realization procedure which is based on the idea of

blocking the observed outputs is presented. Indeed, this procedure, which uses a particular

state space representation, can be used to estimate the system and noise parameters of the

95
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high-frequency system. Nevertheless, further research is needed since estimating this state

space system yields in general an ARMA rather than an AR system. Thus, in a second step,

one has to project this estimate back on the AR class. Furthermore, a comparison of the

asymptotic behavior of this estimation procedure and the XYW estimator has to be done.

• As mentioned in Chapter 1 there are other ways to overcome the problem of forecasting from

mixed-frequency data, which are not necessarily connected with a high-frequency system.

One could think about a comparison of di�erent procedures by comparing the one-step-ahead

prediction error covariance matrix.

• In Anderson et al. (2015b) the mixed-frequency ARMA case is considered where g-identi�ability

of the system parameters is based on a modi�cation of the XYW equations. The asymptotic

results of Chapter 5 can be adapted to this ARMA case.

• One motivation of singular AR systems is that they can be used for modeling generalized

dynamic factor models. In the single-frequency case there exists a wide range of literature

about denoising, for instance Stock and Watson (2002); Doz et al. (2006, 2011); Choi (2012).

Nevertheless, in the mixed-frequency case only a procedure proposed in Felsenstein (2014),

which is based on the work of Hallin and Liska (2011), is known.



APPENDIX A

Derivation of the Maximum Likelihood AR(1) Estimator

The underlying representation of the AR(1) maximum likelihood with which we work is

ln (l (A1,Σν)) = c− T

4
ln |Σν̃ | −

1

2
tr

((
Ỹ − ÃX

)T
Σ−1
ν̃

(
Ỹ − ÃX

))
.

In order to obtain the score function we have to derive the �rst derivations with respect to the under-

lying high-frequency parameters, i.e.

vech (sΣν ) =
∂ ln (l (A1,Σν))

∂vech (Σν)
(A.0.1)

vec (sA1) =
∂ ln (l (A1,Σν))

∂vec (A1)
.

In a �rst step we derive the �rst term ln |Σν̃ | with respect to the noise parameters. All derivation rules

can be found in Appendix C.

∂ ln |Σν̃ |
∂vech (Σν)

T
=

∂ ln |Σν̃ |
∂vec (Σν̃)

T

∂vec (Σν̃)

∂vech (Σν)
T

= vec
(
Σ−1
ν̃

)T ∂vec (T1ΣνT
T
1 + T2ΣνT

T
2

)
∂vech (Σν)

T

= vec
(
Σ−1
ν̃

)T
((T1 ⊗ T1) + (T2 ⊗ T2))Dn

=
(
DT
n vec

(
TT1 Σ−1

ν T1 + TT2 Σ−1
ν T2

))T
where we used ∂vec(Σν)

∂vech(Σν)T
= Dn

∂vech(Σν)

∂vech(Σν)T
= Dn and Lemma C.0.3. Now the second term can be

derived as follows:

∂tr
(
Ỹ − ÃX

)T
Σ−1
ν̃

(
Ỹ − ÃX

)
∂vech (Σν)

T
= vec

(
Ỹ − ÃX

)T ((
Ỹ − ÃX

)T
⊗ I
)
∂vec

(
Σ−1
ν̃

)
∂vech (Σν)

T

= vec
(
Ỹ − ÃX

)T ((
Ỹ − ÃX

)T
⊗ I
)
∂vec

(
Σ−1
ν̃

)
∂vec (Σν̃)

T

vec (Σν̃)

∂vech (Σν)
T

= −
(
DT
n vec

(
TT1 Σ−1

ν̃

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T
Σ−1
ν̃ T1

+TT2 Σ−1
ν̃

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T
Σ−1
ν̃ T2

))T
.
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To summarize, the score function of the noise parameters is

vech (sΣν ) = −1

2
DT
n vec

(
TT1 Σ−1

ν̃

(
T

2
Σν̃ −

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T)
Σ−1
ν̃ T1

+TT2 Σ−1
ν̃

(
T

2
Σν̃ −

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T)
Σ−1
ν̃ T2

)
.

For the derivation of the second score function we will use

∂vec (T2)

∂vec (A1)
T

= (In ⊗ T1)

∂vec (a1)

∂vec (A1)
T

=

(
0nf×n

In

)
⊗ T1

∂vec (a2)

∂vec (A1)
T

= T1 ⊗

((
0nf×n

In

)
+

(
Inf 0nf×ns

0n×nf 0n×ns

))
and

∂vec (Σν̃)

∂vec (A1)
T

=
∂vec

(
T2ΣνT

T
2

)
∂vec (A1)

T

=
((
In+nf ⊗ T2Σν

)
Kn+nf ,n +

(
T2Σν ⊗ In+nf

)) ∂vec (T2)

∂vec (A1)
T

= Kn+nf ,n+nf (T2Σν ⊗ T1) + (T2Σν ⊗ T1) .

Thus, with the formulas above it is easy to conclude that

∂ ln |Σν̃ |
∂vec (A1)

T
= vec

(
Σ−1
ν̃

)T ∂vec (Σν̃)

∂vec (A1)
T

=
((
Kn,n

(
TT1 ⊗ ΣνT

T
2

)
+
(
ΣνT

T
2 ⊗ TT1

))
vec
(
Σ−1
ν̃

))T
=

(
Kn,nvec

(
ΣνT

T
2 Σ−1

ν̃ T1

)
+ vec

(
TT1 Σ−1

ν̃ T2Σν
))T

= 2vec
(
TT1 Σ−1

ν̃ T2Σν
)T
.

As can be shown the second term yields

∂tr

(
Σ−1
ν̃

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T)
∂vec (A1)

T
= 2vec

(
Ỹ − ÃX

)T (
I ⊗ Σ−1

ν̃

) ∂vec(Ỹ − ÃX)
∂vec (A1)

T
+

vec
(
Ỹ − ÃX

)T ((
Ỹ − ÃX

)T
⊗ I
)
∂vec

(
Σ−1
ν̃

)
∂vec (A1)

T
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where

vec
(
Ỹ − ÃX

)T ((
Ỹ − ÃX

)T
⊗ I
)
∂vec

(
Σ−1
ν̃

)
∂vec (A1)T

= vec
(
Ỹ − ÃX

)T ((
Ỹ − ÃX

)T
⊗ I
)
∂vec

(
Σ−1
ν̃

)
∂vec (Σν̃)T

∂vec (Σν̃)

∂vec (A1)T

= −vec
(
Ỹ − ÃX

)T ((
Ỹ − ÃX

)T
Σ−1
ν̃ ⊗ Σ−1

ν̃

)
(
Kn+nf ,n+nf (T2Σν ⊗ T1) + (T2Σν ⊗ T1)

)
= −

(
Kn,nvec

(
ΣνT

T
2 Σ−1

ν̃

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T
Σ−1
ν̃ T1

))T
−vec

(
TT1 Σ−1

ν̃

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T
Σ−1
ν̃ T2Σν

)T
= −2vec

(
TT1 Σ−1

ν̃

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T
Σ−1
ν̃ T2Σν

)T
.

To obtain the second term we observe that

∂vec
(
ÃX

)
∂vec (A1)

T
=

(
XT ⊗ I

) ∂vec
(
Ã
)

∂vec (A1)
T

=
(
XT ⊗ I

)(
(I ⊗ a1)

∂vec (a2)

∂vec (A1)
T

+
(
aT2 ⊗ I

) ∂vec (a1)

∂vec (A1)
T

)

=
(
XT ⊗ I

)(
(T1 ⊗ T2) +

(
aT2

(
0nf×n

In

)
⊗ T1

))
where we used

a1

((
0nf×n

In

)
+

(
Inf 0nf×ns

0n×nf 0n×ns

))
= T2.

Now it follows

vec
(
Ỹ − ÃX

)T (
I ⊗ Σ−1

ν̃

) ∂vec(Ỹ − ÃX)
∂vec (A1)T

= −vec
(
Ỹ − ÃX

)T (
XT ⊗ Σ−1

ν̃

)(
(T1 ⊗ T2) +(

aT2

(
0nf×n

In

)
⊗ T1

))
= −vec

(
TT2 Σ−1

ν̃

(
Ỹ − ÃX

)
XTT1

)
−vec

(
TT1 Σ−1

ν̃

(
Ỹ − ÃX

)
XT aT2

(
0nf×n

In

))
which leads to

vec (sA1) = vec
(
TT2 Σ−1

ν̃

(
Ỹ − ÃX

)
XTT1

)
+ vec

(
TT1 Σ−1

ν̃

(
Ỹ − ÃX

)
XTaT2

(
0nf×n

In

))

−vec
(
TT1 Σ−1

ν̃

(
T

2
Σν̃ −

(
Ỹ − ÃX

)(
Ỹ − ÃX

)T)
Σ−1
ν̃ T2Σν

)
.

Under our assumptions the asymptotic covariance matrix of the ML estimator is given as

ΣAR 1 = lim
T
2→∞

T

2
IT (θ)

−1 (A.0.2)
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where

IT (θ) = E

(
∂ ln (l (A1,Σν))

∂vec (θ)

(
∂ ln (l (A1,Σν))

∂vec (θ)

)T)
. (A.0.3)

To obtain the information matrix we have to rewrite the score functions into

vech (sΣν ) = −1

2
DT
n

((
TT1 Σ−1

ν̃ ⊗ T
T
1 Σ−1

ν̃

)
+
(
TT2 Σ−1

ν̃ ⊗ T
T
2 Σ−1

ν̃

))
︸ ︷︷ ︸

=H1

vec

(
T

2
Σν̃ − Ṽ Ṽ T

)

vec (sA1
) = −

(
ΣνT

T
2 Σ−1

ν̃ ⊗ T
T
1 Σ−1

ν̃

)︸ ︷︷ ︸
H2

vec

(
T

2
Σν̃ − Ṽ Ṽ T

)

+
((
TT1 ⊗ TT2 Σ−1

ν̃

)
+
((

0n×nf In

)
a2 ⊗ TT1 Σ−1

ν̃

))
︸ ︷︷ ︸

H3

vec
(
Ṽ XT

)
.

The structure of X and Ṽ implies that E
(
Ṽ XT

)
= 0, E

(
vec
(
Ṽ XT

)
vec
(
Ṽ Ṽ T

)T)
= 0 since

E
(
ỹtν̃

T
t

)
= 0 and

E
(
vec
(
Ṽ XT

)
vec
(
Ṽ XT

)T)
=
T

2
(γ̃ (0)⊗ Σν̃)

where γ̃ (0) = E
(
ỹtỹ

T
t

)
. Let η̃ = E

(
ṼtṼ

T
t ⊗ ṼtṼ Tt

)
and observe that η̃ = vec (Σν̃) vec (Σν̃)

T
+

(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃). It is straightforward to show that Evec
(
Ṽ Ṽ T

)
= T

2 vec (Σν̃) and

E
(
vec
(
Ṽ Ṽ T

)
vec
(
Ṽ Ṽ T

)T)
=

(
T 2

4
− T

2

)
vec (Σν̃) vec (Σν̃)

T
+
T

2
η̃.

Thus,

E

(
vec

(
T

2
Σν̃ − Ṽ Ṽ T

)
vec

(
T

2
Σν̃ − Ṽ Ṽ T

)T)
=

T

2

(
η̃ − vec (Σν̃) vec (Σν̃)

T
)

=
T

2
(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃) .

Now we have everything to construct our information matrix for the AR(1) case:

E
(
vech (sΣν ) vech (sΣν )

T
)

=
T

2
H1

(
(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃)

)
HT

1

E
(
vec (sA1

) vec (sA1
)
T
)

=
T

2
H2

(
(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃)

)
HT

2

+
T

2
H3 (γ̃ (0)⊗ Σν̃)HT

3

E
(
vec (sA1) vech (sΣν )

T
)

=
T

2
H2

(
(Σν̃ ⊗ Σν̃) +Kn+nf ,n+nf (Σν̃ ⊗ Σν̃)

)
HT

1

=
(
E
(
vec (sΣν ) vec (sA1

)
T
))T

.



APPENDIX B

Proofs of Lemma 5.1.2 and Lemma 5.1.6

Proof of Lemma 5.1.2. Expanding yft and yst into
∑∞
i=−∞ kfi νt−i and

∑∞
i=−∞ ksi νt−i, respec-

tively, yields

E
((

yft−p

(
yfNu−q

)T)
⊗
(
yft (ysNu)

T
))

=

E

∑
h

∑
i

∑
j

∑
k

(
kfi νt−p−i ⊗ k

f
kνt−k

)(
νTNu−q−j

(
kfj

)T
⊗ νTNu−h (ksh)

T

) . (B.0.1)

In this context we use the notation
∑
i instead of

∑∞
i=−∞. The term in (B.0.1) can be separated into

four di�erent cases since in all other cases there occur terms such as E
(
νt−iν

T
t−j ⊗ νt−kνTt−l

)
, which

are zero for i 6= j, i 6= k and i 6= l. The following formulas will be used in the proof:

vec
(
γff (h)

)
=

∑
i

(
kfi−h ⊗ k

f
i

)
vec (Σν)

vec
(
γsf (h)

)
=

∑
i

(
kfi−h ⊗ k

s
i

)
vec (Σν) .

In the �rst case we assume that all νt occur at the same time point, i.e. p + i = k, j + q = h and

t− k = Nu− q − j. Thus, we obtain

I =
∑
k

E
(
kfk−pνt−k ⊗ k

f
kνt−k

)(
νTt−k

(
kfk−q+Nu−t

)T
⊗ νTt−k

(
ksk+Nu−t

)T)
=

∑
k

(
kfk−p ⊗ k

f
k

)
E
(
νt−kν

T
t−k ⊗ νt−kνTt−k

)︸ ︷︷ ︸
=η

(
kfk−q+Nu−t ⊗ k

s
k+Nu−t

)T
=

∑
k

(
kfk−p ⊗ k

f
k

)
η
(
kfk−q+Nu−t ⊗ k

s
k+Nu−t

)T
.
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In the second case we assume that the �rst two νt and the last two νt in equation (B.0.1) occur at the

same time point but not all at the same time, i.e. p+ i = k, q + j = h but t− k 6= Nu− q − j:

II =
∑
k

∑
j,t−k 6=Nu−q−j

E
((

kfk−pνt−k ⊗ k
f
kνt−k

)(
(νTNu−q−j

(
kfj

)T
⊗ νTNu−q−j

(
ksq+j

)T))

=
∑
k

∑
j,t−k 6=Nu−q−j

(
kfk−p ⊗ k

f
k

)
E (νt−k ⊗ νt−k)E

(
νTNu−q−j ⊗ νTNu−q−j

) (
kfj ⊗ k

s
q+j

)T
=

∑
k

∑
j,t−k 6=Nu−q−j

(
kfk−p ⊗ k

f
k

)
vec (Σν) vec (Σν)

T
(
kfj ⊗ k

s
q+j

)T
=

∑
k

∑
j

(
kfk−p ⊗ k

f
k

)
vec (Σν) vec (Σν)

T
(
kfj ⊗ k

s
q+j

)T
−
∑
k

(
kfk−p ⊗ k

f
k

)
vec (Σν) vec (Σν)

T
(
kfk−q+Nu−t ⊗ k

s
k+Nu−t

)T
= vec

(
γff (p)

)
vec
(
γsf (q)

)T −∑
k

(
kfk−p ⊗ k

f
k

)
vec (Σν) vec (Σν)

T
(
kfk−q+Nu−t ⊗ k

s
k+Nu−t

)T
.

In the third case we assume that the �rst and the third νt and the second and the fourth νt in equation

(B.0.1) occur at the same time point, but not all at the same time, i.e. t − p − i = Nu − q − j,

t− k = Nu− h but p+ i 6= k:

III =
∑
i

∑
k,k 6=p+i

E
((

kfi νt−p−i ⊗ k
f
kνt−k

)(
νTt−p−i

(
kfp+i−q+Nu−t

)T
⊗ νTt−k

(
ksNu−t+k

)T))

=
∑
i

∑
k,k 6=p+i

(
kfi ⊗ k

f
k

)
E
(
νt−p−iν

T
t−p−i ⊗ νt−kνTt−k

)((
kfp+i−q+Nu−t

)T
⊗
(
ksNu−t+k

)T)

=
∑
i

∑
k,k 6=p+i

(
kfi ⊗ k

f
k

)
(Σν ⊗ Σν)

((
kfp+i−q+Nu−t

)T
⊗
(
ksNu−t+k

)T)

=
∑
i

∑
k

(
kfi ⊗ k

f
k

)
(Σν ⊗ Σν)

((
kfp+i−q+Nu−t

)T
⊗
(
ksNu−t+k

)T)
−
∑
k

(
kfk−p ⊗ k

f
k

)
(Σν ⊗ Σν)

(
kfk−q+Nu−t ⊗ k

s
Nu−t+k

)T
=

∑
i

∑
k

(
kfi Σν

(
kfp+i−q+Nu−t

)T
⊗ kfkΣν

(
ksNu−t+k

)T)
−
∑
k

(
kfk−p ⊗ k

f
k

)
(Σν ⊗ Σν)

(
kfk−q+Nu−t ⊗ k

s
Nu−t+k

)T
=

(
γff (−Nu+ t+ q − p)⊗ γfs (−Nu+ t)

)
−
∑
k

(
kfk−p ⊗ k

f
k

)
(Σν ⊗ Σν)

(
kfk−q+Nu−t ⊗ k

s
Nu−t+k

)T
.

In the fourth case, where we assume that t − p − i = Nu − h, t − k = Nu − q − j but p + i 6= k, we

will use the result that for p+ i 6= k
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E
(
νt−p−iν

T
t−k ⊗ νt−kνTt−p−i

)
= E

(
E
(
νt−p−iν

T
t−k ⊗ νt−kνTt−p−i

)
|νt−k

)
= E

(
E
(
(In ⊗ νt−k)

(
νt−p−i ⊗ νTt−p−i

) (
νTt−k ⊗ In

))
|νt−k

)
= E

(
(In ⊗ νt−k)

(
E
(
νt−p−i ⊗ νTt−p−i

)) (
νTt−k ⊗ In

))
(B.0.2)

= E
(
(In ⊗ νt−k) Σν

(
νTt−k ⊗ In

))
(B.0.3)

holds. Then it follows:

IV =
∑
k

∑
i,p+i 6=k

E
((

kfi νt−p−i ⊗ k
f
kνt−k

)(
νTt−k

(
kfk−q+Nu−t

)T
⊗ νTt−p−i

(
ksi+p+Nu−t

)T))

=
∑
k

∑
i,p+i 6=k

(
kfi ⊗ k

f
k

)
E
(
νt−p−iν

T
t−k ⊗ νt−kνTt−p−i

) (
kfk−q+Nu−t ⊗ k

s
i+p+Nu−t

)T
.

Rewriting the above equation with equation (B.0.2) results in

IV =
∑
k

∑
i,p+i 6=k

(
kfi ⊗ k

f
k

)
E
(
(In ⊗ νt−k) Σν

(
νTt−k ⊗ In

)) (
kfk−q+Nu−t ⊗ k

s
i+p+Nu−t

)T
=

∑
k

∑
i,p+i6=k

E
(
kfi ⊗ k

f
kνt−k

)
Σν

(
kfk−q+Nu−tνt−k ⊗ k

s
i+p+Nu−t

)T
.

Now we use the well known fact that
(
kfi ⊗ k

f
kνt−k

)
= Knf ,nf

(
kfkνt−k ⊗ k

f
i

)
, compare Lemma C.0.2,

IV =
∑
k

∑
i,p+i6=k

Knf ,nfE
(
kfkνt−k ⊗ k

f
i

)
Σν

(
kfk−q+Nu−tνt−k ⊗ k

s
i+p+Nu−t

)T
= Knf ,nf

∑
k

∑
i,p+i 6=k

E
(
kfkνt−k ⊗ k

f
i Σν

)(
kfk−q+Nu−tνt−k ⊗ k

s
i+p+Nu−t

)T
= Knf ,nf

∑
k

∑
i,p+i 6=k

E
(
kfkνt−kν

T
t−k ⊗ k

f
i Σν

)(
kfk−q+Nu−t ⊗ k

s
i+p+Nu−t

)T
= Knf ,nf

∑
k

∑
i,p+i 6=k

(
kfkΣν ⊗ kfi Σν

)(
kfk−q+Nu−t ⊗ k

s
i+p+Nu−t

)T
= Knf ,nf

∑
k

∑
i

(
kfkΣν

(
kfk−q+Nu−t

)T
⊗ kfi Σν

(
ksi+p+Nu−t

)T)
−Knf ,nf

∑
k

(
kfkΣν

(
kfk−q+Nu−t

)T
⊗ kfk−pΣν

(
ksk+Nu−t

)T)
= Knf ,nf

(
γff (−Nu+ t+ q)⊗ γfs(−Nu+ t− p)

)
−Knf ,nf

∑
k

(
kfk ⊗ k

f
k−p

)
(Σν ⊗ Σν)

(
kfk−q+Nu−t ⊗ k

s
k+Nu−t

)T
.

Now combining all four cases and rearranging the according terms where we use Knf ,nf

(
kfk ⊗ k

f
k−p

)
=(

kfk−p ⊗ k
f
k

)
Kn,n yields our desired result. �
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Proof of Lemma 5.1.6. Expanding yft and yst into
∑∞
i=−∞ kfi νt−i and

∑∞
i=−∞ ksi νt−i, respec-

tively, yields

E
((

yfNt−p

(
yfNt+Nh−q

)T)
⊗
(
ysNt

(
ysNt+Nh

)T))
=

E

∑
u

∑
i

∑
j

∑
k

(
kfi νNt−p−i ⊗ k

s
kνNt−k

)(
νTNt+Nh−q−j

(
kfj

)T
⊗ νTNt+Nh−u (ksu)

T

) . (B.0.4)

In this context we, again, use the notation
∑
i instead of

∑∞
i=−∞. As in the proof of Lemma 5.1.2 we

split (B.0.4) into four di�erent cases, again in all other cases the expectation is zero:

In the �rst case we assume that all νt occur at the same time point, i.e. p+ i = k, j + q = u and

k = j + q −Nh. Thus, we obtain

I =
∑
k

E
(
kfk−pνNt−k ⊗ k

s
kνNt−k

)(
νTNt−k

(
kfk−q+Nh

)T
⊗ νTNt−k

(
ksk+Nh

)T)
=

∑
k

(
kfk−p ⊗ k

s
k

)
E
(
νNt−kν

T
Nt−k ⊗ νNt−kνTNt−k

)︸ ︷︷ ︸
=η

(
kfk−q+Nh ⊗ k

s
k+Nh

)T

=
∑
k

(
kfk−p ⊗ k

s
k

)
η
(
kfk−q+Nh ⊗ k

s
k+Nh

)T
.

In the second case we assume that the �rst two νt and the last two νt in equation (B.0.4) occur at the

same time point but not all at the same time, i.e. p+ i = k, q + j = u but k 6= j + q −Nh:

II =
∑
k

∑
j,k 6=j+q−Nh

E
((

kfk−pνNt−k ⊗ k
s
kνNt−k

)(
(νTNt+Nh−q−j

(
kfj

)T
⊗ νTNt+Nh−q−j

(
ksq+j

)T))

=
∑
k

∑
j,k 6=j+q−Nh

(
kfk−p ⊗ k

s
k

)
E (νNt−k ⊗ νNt−k)E

(
νTNt+Nh−q−j ⊗ νTNt+Nh−q−j

) (
kfj ⊗ k

s
q+j

)T
=

∑
k

∑
j,k 6=j+q−Nh

(
kfk−p ⊗ k

s
k

)
vec (Σν) vec (Σν)

T
(
kfj ⊗ k

s
q+j

)T
=

∑
k

∑
j

(
kfk−p ⊗ k

s
k

)
vec (Σν) vec (Σν)

T
(
kfj ⊗ k

s
q+j

)T
−
∑
k

(
kfk−p ⊗ k

s
k

)
vec (Σν) vec (Σν)

T
(
kfk−q+Nh ⊗ k

s
k+Nh

)T
= vec

(
γsf (p)

)
vec
(
γsf (q)

)T −∑
k

(
kfk−p ⊗ k

s
k

)
vec (Σν) vec (Σν)

T
(
kfk−q+Nh ⊗ k

s
k+Nh

)T
.

In the third case we assume that the �rst and the third νt and the second and the fourth νt in equation

(B.0.4) occur at the same time point but not all at the same time, i.e. p+ i = q+ j−Nh, k = u−Nh
but k 6= p+ i:
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III =
∑
i

∑
k,k 6=p+i

E
((

kfi νNt−p−i ⊗ k
s
kνNt−k

)(
νTNt−p−i

(
kfp+i−q+Nh

)T
⊗ νTNt−k

(
ksNh+k

)T))

=
∑
i

∑
k,k 6=p+i

(
kfi ⊗ k

s
k

)
E
(
νNt−p−iν

T
Nt−p−i ⊗ νNt−kνTNt−k

)((
kfp+i−q+Nh

)T
⊗
(
ksNh+k

)T)

=
∑
i

∑
k,k 6=p+i

(
kfi ⊗ k

s
k

)
(Σν ⊗ Σν)

((
kfp+i−q+Nh

)T
⊗
(
ksNh+k

)T)

=
∑
i

∑
k

(
kfi ⊗ k

s
k

)
(Σν ⊗ Σν)

((
kfp+i−q+Nh

)T
⊗
(
ksNh+k

)T)
−
∑
k

(
kfk−p ⊗ k

s
k

)
(Σν ⊗ Σν)

(
kfk−q+Nh ⊗ k

s
Nh+k

)T
=

∑
i

∑
k

(
kfi Σν

(
kfp+i−q+Nh

)T
⊗ kskΣν

(
ksNh+k

)T)
−
∑
k

(
kfk−p ⊗ k

s
k

)
(Σν ⊗ Σν)

(
kfk−q+Nh ⊗ k

s
Nh+k

)T
=

(
γff (−Nh+ q − p)⊗ γss (−Nh)

)
−
∑
k

(
kfk−p ⊗ k

s
k

)
(Σν ⊗ Σν)

(
kfk−q+Nh ⊗ k

s
Nh+k

)T
.

In the fourth case, where we assume that p+ i = u−Nh, k − q +Nh = j but p+ i 6= k, we will use

the result that for p+ i 6= k

E
(
νNt−p−iν

T
Nt−k ⊗ νNt−kνTNt−p−i

)
= E

(
E
(
νNt−p−iν

T
Nt−k ⊗ νNt−kνTNt−p−i

)
|νNt−k

)
= E

(
E
(
(In ⊗ νNt−k)

(
νNt−p−i ⊗ νTNt−p−i

) (
νTNt−k ⊗ In

))
|νNt−k

)
= E

(
(In ⊗ νNt−k) Σν

(
νTNt−k ⊗ In

))
(B.0.5)

holds. It follows:

IV =
∑
k

∑
i,p+i6=k

E
((

kfi νNt−p−i ⊗ k
s
kνNt−k

)(
νTNt−k

(
kfk−q+Nh

)T
⊗ νTNt−p−i

(
ksi+p+Nh

)T))

=
∑
k

∑
i,p+i6=k

(
kfi ⊗ k

s
k

)
E
(
νNt−p−iν

T
Nt−k ⊗ νNt−kνTNt−p−i

) (
kfk−q+Nh ⊗ k

s
i+p+Nh

)T
.

Rewriting the above equation with equation (B.0.5) results in

IV =
∑
k

∑
i,p+i 6=k

(
kfi ⊗ k

s
k

)
E
(
(In ⊗ νNt−k) Σν

(
νTNt−k ⊗ In

)) (
kfk−q+Nh ⊗ k

s
i+p+Nh

)T
=

∑
k

∑
i,p+i 6=k

E
(
kfi ⊗ k

s
kνNt−k

)
Σν

(
kfk−q+NhνNt−k ⊗ k

s
i+p+Nh

)T
.
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Now we will use the fact that
(
kfi ⊗ kskνNt−k

)
= Knf ,ns

(
kskνNt−k ⊗ k

f
i

)
, compare Lemma (C.0.2),

IV =
∑
k

∑
i,p+i 6=k

Knf ,nsE
(
kskνNt−k ⊗ k

f
i

)
Σν

(
kfk−q+NhνNt−k ⊗ k

s
i+p+Nh

)T
= Knf ,ns

∑
k

∑
i,p+i6=k

E
(
kskνNt−k ⊗ k

f
i Σν

)(
kfk−q+NhνNt−k ⊗ k

s
i+p+Nh

)T
= Knf ,ns

∑
k

∑
i,p+i6=k

E
(
kskνNt−kν

T
Nt−k ⊗ k

f
i Σν

)(
kfk−q+Nh ⊗ k

s
i+p+Nh

)T
= Knf ,ns

∑
k

∑
i,p+i6=k

(
kskΣν ⊗ kfi Σν

)(
kfk−q+Nh ⊗ k

s
i+p+Nh

)T
= Knf ,ns

∑
k

∑
i

(
kskΣν

(
kfk−q+Nh

)T
⊗ kfi Σν

(
ksi+p+Nh

)T)
−Knf ,ns

∑
k

(
kskΣν

(
kfk−q+Nh

)T
⊗ kfk−pΣν

(
ksk+Nh

)T)
= Knf ,ns

(
γsf (−Nh+ q)⊗ γfs(−Nh− p)

)
−Knf ,ns

∑
k

(
ksk ⊗ k

f
k−p

)
(Σν ⊗ Σν)

(
kfk−q+Nh ⊗ k

s
k+Nh

)T
.

Again, combining all four cases and rearranging the according terms where we useKnf ,ns

(
ksk ⊗ k

f
k−p

)
=(

kfk−p ⊗ ksk
)
Kn,n yields our desired result. �



APPENDIX C

Vectorization, Kronecker Product and Tables of Simulation

The following two lemmas repeat useful properties of the columnwise vectorization vec (.) and the

Kronecker operator.

Lemma C.0.1. Let A, B and C matrices from which the dimension should be clear out of the

context. Then:

(1) vec (A+B) = vec (A) + vec (B).

(2) vec (ABC) =
(
CT ⊗A

)
vec (B).

(3) vec (AB) = (I ⊗A) vec (B) =
(
BT ⊗ I

)
vec (A).

(4) tr (ABC) = vec
(
AT
)T (

CT ⊗ I
)
vec (B) .

(5) tr (ABC) = vec
(
BT
)T (

AT ⊗ I
)
vec (C) .

(6) A⊗B 6= B ⊗A, (A⊗B)
T

=
(
AT ⊗BT

)
.

(7) (A⊗B) (C ⊗D) = (AC ⊗BD).

(8) (A⊗B)
−1

=
(
A−1 ⊗B−1

)
where A and B are nonsingular.

(9) (A⊗B)
†

=
(
A† ⊗B†

)
where A† is the Moore�Penrose pseudoinverse of A.

(10) If A and B are square matrices with eigenvalues λAi and λBj , respectively, then (A⊗B) has

the eigenvalues λAi λ
B
j .

(11) |A⊗B| = |A|n |B|m where A ∈ Rm×m and B ∈ Rn×n.

Proof. see Lütkepohl (2005), Appendix A. �

Lemma C.0.2. Let A ∈ Rn×s, B ∈ Rm×t, x ∈ Rk and Ki,j ∈ Rij×ij be a commutation matrix,

i.e. vec
(
AT
)

= Kn,svec (A). Furthermore let Dn ∈ Rn2×n(n+1)
2 be a duplication matrix, i.e. vec (C) =

Dnvech (C) for any symmetric matrix C ∈ Rn×n, and Ln ∈ R
n(n+1)

2 ×n2

be an elimination matrix, i.e.

vech (D) = Lnvec (D) where D ∈ Rn×n. Then:

(1) Km,n (A⊗B)Ks,t = (B ⊗A).

(2) Kk,n (A⊗ x) = (x⊗A).

(3) KT
m,n = Kn,m .

(4) K−1
m,n = Kn,m .

(5) If C is symmetric, then D†nvec (C) = Lnvec (C) where D†n is the Moore�Penrose pseudoin-

verse of Dn.

Proof. see Magnus and Neudecker (1979). �
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The next lemma is useful for deriving the score and the information matrix in Appendix A.

Lemma C.0.3. Let A ∈ Rn×n and θ ∈ Rn. Then:

(1) ∂Aθ
∂θT

= A.

(2) ∂ ln|A|
∂A =

(
AT
)−1

where A is nonsingular.

(3)
∂vec(A−1)
∂vec(A)T

= −
((
A−1

)T ⊗A−1
)
where A is nonsingular.

(4) Let A(θ) ∈ Rm×p, C(θ) ∈ Rq×r and B ∈ Rp×q. Then ∂vec(ABC)
∂θT

= (Ir ⊗AB) ∂vec(C)
∂θT

+(
CTBT ⊗ Im

) ∂vec(A)
∂θT

.

Proof. see Lütkepohl (2005), Appendix A. �
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vec (A1, A2)
T

v
e
c
(A

1
,A

2
)

133 72 100 -339 -203 -299 177 97 129 86 44 89 57 45 51 -234 -158 -219

47 56 -166 -111 -156 99 60 77 44 27 42 19 19 25 -100 -76 -110

92 -254 -150 -262 148 91 112 58 23 88 36 28 36 -168 -111 -177

1038 580 842 -449 -214 -358 -274 -158 -220 -202 -126 -155 794 473 655

356 463 -268 -128 -232 -156 -113 -95 -103 -71 -87 423 273 361

820 -432 -257 -308 -203 -73 -288 -136 -93 -124 599 363 580

251 149 186 108 50 138 66 52 66 -299 -200 -302

107 93 46 2 109 19 22 31 -121 -88 -161

195 93 81 43 49 33 47 -244 -158 -225

80 54 41 52 31 42 -210 -124 -167

73 -38 31 15 25 -126 -78 -81

169 32 29 33 -145 -87 -178

55 31 32 -178 -101 -120

23 20 -101 -67 -75

27 -121 -73 -101

652 369 491

232 291

436

Table C.0.1. Rounded asymptotic covariance matrix of the XYW estimator of
Model 1 in the mixed-frequency case

vec (A1, A2)
T

v
e
c
(A

1
,A

2
)

132 72 100 -337 -202 -298 176 97 129 85 44 88 57 45 51 -233 -158 -218

46 56 -165 -111 -156 99 60 77 43 27 42 19 19 25 -99 -75 -109

92 -253 -149 -261 148 91 112 57 23 88 35 28 36 -167 -110 -176

1031 576 837 -447 -214 -356 -271 -156 -219 -200 -126 -154 789 471 651

354 460 -267 -128 -231 -155 -112 -94 -103 -71 -86 420 272 358

817 -430 -256 -307 -202 -72 -287 -135 -93 -124 595 361 577

251 149 186 107 50 136 65 52 65 -298 -199 -301

107 93 45 2 108 19 22 31 -120 -88 -161

195 92 80 43 48 33 47 -242 -157 -224

79 54 41 52 31 41 -208 -122 -165

72 -38 30 15 24 -124 -77 -80

169 32 28 33 -144 -86 -178

55 31 32 -177 -101 -119

23 20 -101 -67 -75

26 -120 -72 -100

648 367 487

231 289

433

Table C.0.2. Rounded SMSE multiplied by
√
T of the XYW estimator of Model 1

in the mixed-frequency case for T = 105 and M = 105
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vec (A1, A2)T

v
ec

(A
1
,A

2
)

0.7 -1.4 0.7 0.5 0.2 -0.8
0.7 -1.4 0.7 0.5 0.2 -0.8

0.7 -1.4 0.7 0.5 0.2 -0.8
4.0 -1.3 -1.4 -0.9 3.0

4.0 -1.3 -1.4 -0.9 3.0
4.0 -1.3 -1.4 -0.9 3.0

1.0 0.2 0.1 -0.7
1.0 0.2 0.1 -0.7

1.0 0.2 0.1 -0.7
0.8 0.2 -0.8

0.8 0.2 -0.8
0.8 0.2 -0.8

0.5 -1.0
0.5 -1.0

0.5 -1.0
2.8

2.8
2.8

Table C.0.3. Rounded asymptotic covariance matrix of the XYW estimator of
Model 1 in the high-frequency case

vec (A1, A2)T

v
ec

(A
1
,A

2
)

0.2 -0.2 0.1 0.1 0.0 0.0
0.2 -0.2 0.1 0.1 0.0 0.0

0.2 -0.2 0.1 0.1 0.0 0.0
0.7 -0.1 -0.3 -0.2 0.6

0.7 -0.1 -0.3 -0.2 0.6
0.7 -0.1 -0.3 -0.2 0.6

0.2 -0.1 0.0 0.0
0.2 -0.1 0.0 0.0

0.2 -0.1 0.0 0.0
0.4 -0.1 -0.1

0.4 -0.1 -0.1
0.4 -0.1 -0.1

0.2 -0.4
0.2 -0.4

0.2 -0.4
0.9

0.9
0.9

Table C.0.4. Rounded asymptotic covariance matrix of the YW estimator of Model
1 in the high-frequency case
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vec (A1, A2)
T

ve
c

(A
1
,A

2
)

11 7 4 -17 -12 -12 10 7 1 7 1 8 1 5 1 -5 -9 -7
6 2 -8 -8 -7 7 6 1 4 1 5 -2 2 1 2 -3 -4

6 -16 -5 -22 8 7 2 5 -2 14 1 1 2 -9 -3 -13
91 49 63 -26 -7 -32 -33 -27 -10 -13 -6 -9 68 34 48

38 16 -13 3 -24 -20 -27 13 -7 -6 -4 35 25 18
96 -30 -32 -5 -22 11 -64 2 2 -7 34 7 56

14 12 3 10 -1 20 -0 3 2 -10 -8 -17
19 -10 3 -16 34 -6 0 0 7 4 -13

23 13 26 -22 6 -0 3 -29 -14 -12
13 12 2 3 1 3 -22 -11 -17

33 -36 7 0 3 -28 -15 -5
71 -8 -0 1 9 9 -26

8 3 1 -17 -10 -2
5 0 -4 -8 1

2 -7 -3 -6
64 28 32

22 9
37

Table C.0.5. Rounded asymptotic covariance matrix of the GMM estimator of
Model 1 in the mixed-frequency case

vec (A1, A2)
T

ve
c

(A
1
,A

2
)

11 7 4 -17 -12 -12 10 7 1 7 1 8 1 5 1 -5 -9 -7
6 2 -7 -7 -7 7 6 1 4 1 5 -2 2 1 2 -3 -4

6 -17 -5 -22 7 7 2 5 -2 14 1 1 2 -10 -4 -13
92 49 63 -25 -6 -32 -33 -28 -10 -13 -6 -9 69 34 49

38 16 -13 3 -24 -20 -27 14 -7 -6 -4 35 25 18
96 -29 -32 -4 -22 11 -64 1 2 -7 34 7 56

14 12 3 10 -1 19 -0 3 2 -10 -8 -17
19 -10 2 -16 35 -6 0 0 8 4 -13

23 13 26 -22 6 -0 3 -30 -14 -12
13 12 1 3 1 3 -22 -11 -17

33 -37 7 0 3 -28 -15 -4
71 -8 -0 1 10 9 -26

8 4 1 -17 -10 -2
5 0 -4 -8 1

2 -7 -3 -6
66 28 33

23 10
38

Table C.0.6. Rounded SMSE multiplied by
√
T of the GMM estimator of Model

1 in the mixed-frequency case for T = 106 and M = 105
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vec (A1, A2)
T

ve
c

(A
1
,A

2
)

126 74 48 -191 -125 -93 31 0 -8 86 41 39 41 49 35 -102 -91 -74
66 27 -93 -94 -45 30 7 15 63 57 -1 -5 12 23 -19 -37 -41

57 -79 -32 -116 33 29 -24 29 -16 102 14 17 11 -43 -31 -51
354 221 125 -35 38 -18 -140 -100 -5 -109 -92 -62 248 187 119

233 -18 -33 55 -101 -121 -185 149 -37 -45 -41 117 134 39
336 -93 -129 129 -19 166 -374 -19 -40 -15 64 33 145

75 62 0 6 -29 94 -16 14 -5 8 -25 -36
95 -59 -31 -114 185 -33 -2 -15 57 29 -35

122 34 152 -211 -10 -11 4 -4 -33 43
88 102 -61 20 17 37 -70 -59 -43

260 -313 4 -12 35 -47 -60 31
519 -1 33 -20 10 29 -123

68 41 15 -119 -69 -27
42 7 -75 -64 -27

22 -40 -22 -28
237 145 75

128 43
89

Table C.0.7. Rounded asymptotic covariance matrix of the XYW estimator of
Model 1 in the mixed-frequency �ow case (ci = 1, i = 1, 2, 3)

vec (A1, A2)
T

ve
c

(A
1
,A

2
)

15 12 -3 -5 -14 6 9 6 -0 4 -0 1 -5 7 -2 13 -7 5
19 -8 7 -12 10 7 7 -0 7 7 -7 -16 -3 1 28 7 2

9 -2 12 -21 3 7 -8 -5 -16 25 6 2 -1 -6 -0 -5
30 28 -24 1 20 -23 -3 -23 35 -22 -16 4 37 34 -12

65 -69 0 33 -48 -15 -65 92 -7 -14 3 15 39 -28
97 -12 -51 63 19 90 -131 8 6 -1 -22 -35 35

9 13 -9 -1 -13 21 -5 4 -2 14 1 -1
39 -40 -8 -53 79 -16 -4 -1 36 25 -16

49 12 66 -94 12 6 -1 -28 -30 23
7 20 -27 -3 -2 2 3 -3 4

96 -134 9 0 3 -27 -31 29
193 -16 -3 -3 44 47 -42

23 11 -2 -40 -24 5
14 -5 -14 -21 7

4 1 6 -5
74 39 -8

45 -19
19

Table C.0.8. Rounded asymptotic covariance matrix of the GMM estimator of
Model 1 in the mixed-frequency �ow case (ci = 1, i = 1, 2, 3)
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