
Reliable devices for safe
communication in networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Markus Klein
Matrikelnummer 0726101

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Lukas Krammer, Bakk.techn.

Wien, 29.09.2015
(Unterschrift Markus Klein) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Markus Klein
Spaunstraße 101, 4020 Linz

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - ein-
schließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wort-
laut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Markus Klein)

i

Danksagung

“Manch Ding braucht viel Weile” und so hat sich auch die vorliegende Master-Arbeit über einen
viel zu langen Zeitraum erstreckt. Diese Zeit, geprägt von universitärer und außeruniversitärer
Arbeit, in der die eigene Master-Arbeit nur allzu oft liegen blieb und das wissenschaftliche
Arbeiten aus den täglichen Gedanken verdrängte, war von vielen Tiefen durchwachsen, wie
keine andere Zeit in meinem bisherigen Leben. So manchen Selbstzweifel galt es zu überwinden
und Motivation zu finden, war wahrlich nicht leicht. Trotz allem habe ich mein Ziel diese Arbeit
zu einem Abschluss zu bringen, nie aufgegeben.
Dies alleine zu bewerkstelligen, wäre allerdings ein Ding der Unmöglichkeit gewesen.

Ich bedanke mich daher aufrichtigst bei meinen Eltern, die mich über die lange Zeit des zähen
Werdens dieser Arbeit, aber auch im gesamten bisherigen Lebensweg, in allen Belangen immer
unterstützt haben und mir, mit weisen Worten und aus eigener Erfahrung sprechend, immer
wieder Mut gemacht haben und immer an mich geglaubt haben. Leider gelang es mir nicht
immer die Hilfestellungen in jenem Maß anzunehmen, wie es notwendig gewesen wäre.
Danke, dass ihr mich meinen Weg gehen habt lassen und immer als Wegweiser zur Verfügung
standet, wenn ich ihn brauchte.

Ich danke meiner lieben Katharina für das Durchhaltevermögen und das Verständnis für meine so
zahlreichen Stunden und Abende, die ich vor dem Computer für meine Vielzahl an Tätigkeiten
zubrachte. Danke, dass du mich trotzdem immer wieder in die Arme schließt und mit mir den
Weg gehst.

Ein großes Dankeschön geht an meine Betreuer Lukas Krammer und Wolfgang Kastner, die
trotz dieser langen Zeit und den vielen Pausen nicht müde geworden sind, meine Arbeit zu
einem guten Ende zu begleiten.

Schlussendlich möchte ich meinen Freunden Johannes und Gerald für ihr Entgegenkommen
danken. Den Freiraum und das Vertrauen zu bekommen, neben den gemeinsamen Projekten
noch seine Ausbildung unterzubringen, ist nicht selbstverständlich. Aus unseren erfolgreichen
Projekten konnte ich immer wieder positive Energie schöpfen.

Vielen Dank!
Markus

iii

Abstract

Embedded systems are part of our daily life and they pervade almost all areas of living. Mobile
phones, cars, debit cards, medical equipment, energy meters and the intelligent fridge are just a
few examples. These embedded systems also come in a variety of designs, from tiny single chip
applications to wide-spread distributed solutions.

All these systems have one thing in common - some may call it even a requirement - they
have to be able to communicate. Communication is the key-factor, no matter if this communi-
cation happens within a system or with other connected systems or even with the environment.
Integration is getting tighter and tighter in any case and demand for even more integration is
never ending.

Another demand these systems share is the fact that those system are getting cheaper. Ob-
viously, the manufacturers of these systems have to reduce costs, with the consequence that
safety-margin in the production are reduced to save material. This results mostly in less lifetime
of products and also error-proneness is rising. The overall reliability is therefore getting worse.

A small part of those networked embedded systems though plays a special role. These are
those systems which actually care about human safety. Typically those safety systems are not
very visible to the average person as they work rather in the background. They are to be found
in cars, airplanes, the processing-industry or the fire-safety domain. Clearly, this special role
implies some additional requirements those systems have to fulfil.

This thesis takes a closer look at communication and reliability of such safety-critical embedded
systems, taking the fire-safety domain as a reference use case. System requirements within this
domain combine all properties mentioned above in a special way: frequent communication over
longer distances, low-priced hardware, but high reliability demands.

The thesis suggests a combined software- and hardware-framework, which improves relia-
bility (and therefore also communication) of the devices in smaller embedded systems, which
are connected in a larger network while keeping the necessary hardware costs low. The require-
ments in the fire-safety domain are regulated in various standards, which will be explained and
used to describe the challenge of constructing such systems.

v

Kurzfassung

Embedded Systems sind aus unserem täglichen Leben nicht mehr wegzudenken. Sie durch-
dringen beinahe sämtliche Bereiche unseres Lebens. Mobiltelefon, Auto, Bankomatkarte, Herz-
schrittmacher, Smartmeter und der intelligente Kühlschrank sind nur einige Beispiele. Diese
embedded Systems sind in einer Vielfalt an Ausprägungen zu finden, von kleinen Einzel-Chip
Anwendungen bis zu weiträumig verteilten Lösungen.

Alle diese Systeme haben eine Sache gemeinsam - manche würden es sogar eine Vorausset-
zung nennen: sie müssen in der Lage sein zu kommunizieren. Kommunikation ist ein Schlüs-
selfaktor, unabhängig davon, ob diese Kommunikation innerhalb eines Systems stattfindet oder
ob mit anderen Systemen oder sogar mit der Umwelt kommuniziert wird. Die Integration wird
jedenfalls immer dichter und dichter, und die Nachfrage nach mehr Integration steigt stetig.

Eine Eigenheit, die diese Systeme teilen, ist die Tatsache, dass sie immer billiger werden
sollen. Notwendigerweise müssen Hersteller solcher Systeme daher Kosten einsparen, mit der
Konsequenz, dass der Sicherheitszuschlag in der Produktion zunehmend geringer wird, um Ma-
terial zu sparen. Daraus resultiert meist eine geringere Lebenszeit dieser Produkte, aber auch die
Fehleranfälligkeit steigt. Daher nimmt die Zuverlässigkeit ab.

Ein kleiner Teil dieser embedded Systems spielt eine spezielle Rolle. Das sind jene Systeme,
die für die Sicherheit von Menschen sorgen. Typischerweise sind solche Systeme im Normalfall
für den Durschnittsbürger nicht sonderlich sichtbar, da sie eher im Hintergrund arbeiten. Solche
Systeme lassen sich in Autos, Flugzeugen, der Prozess-Industrie oder im Brandmelde-Bereich
finden. Naheliegend ist daher auch, dass solche Systeme zusätzliche Anforderungen erfüllen
müssen.

Die Arbeit fokussiert auf die Kommunikation und Zuverlässigkeit von Geräten in solchen sicher-
heitskritischen embedded Systems, wobei der Feuersicherheits-Bereich als Referenz-Beispiel
herangezogen wird. Die Systemvoraussetzungen aus diesem Bereich kombinieren alle zuvor-
genannten Eigenschaften auf spezielle Weise: häufige Kommunikation über längere Distanzen,
günstige Hardware, aber hoher Zuverlässigkeitsbedarf.

Diese Arbeit stellt eine kombinierte Software- und Hardware-Grundstruktur vor, die die Zu-
verlässigkeit (und damit auch die Kommunikation) von Geräten in kleineren embedded Systems
verbessert, die in einem größeren Netzwerk miteinander verbunden sind und dessen Hardware-
kosten niedrig sind. Die Anforderungen im Feuersicherheits-Bereich sind in mehreren Normen
geregelt, die vorgestellt und verwendet werden, um die Herausforderungen der Konstruktion
solcher Systeme zu beschreiben.

vii

Contents

1 Introduction 1
1.1 Definition of safety . 1
1.2 Target application domain . 3
1.3 Problem statement and motivation . 5

2 Standard specifications 7
2.1 EN 54 . 8
2.2 IEC 61508 . 10
2.3 Other standards . 18

3 Functional safety - state of the art methods 19
3.1 Definition of terms . 19
3.2 Hardware methods . 20
3.3 Approaches for fault detection . 22
3.4 Software architecture . 26
3.5 Other concepts . 28
3.6 Applications for fieldbuses . 28

4 Concept 33
4.1 Requirements analysis . 33
4.2 Proposed model . 35
4.3 Behavior of the framework . 43
4.4 Booting the CIE . 45
4.5 Shut down of a subunit . 46

5 Results 47
5.1 Analysis of the concept . 47
5.2 Proof of concept . 50
5.3 Evaluation . 57

6 Conclusion 65
6.1 Lessons learned . 66
6.2 Outlook . 68

ix

Acronyms 71

List of Figures 72

List of Tables 73

Bibliography 75

x

CHAPTER 1
Introduction

The human need for safety and security shows its characteristics more than ever. Feeling safe
and secure is a salving mood and tends to relieve many sorrows, although it is obvious that a
100% safety and security can never be achieved. Safety is also always coupled with trust. One
has to trust a system for being and feeling safe, but nothing is worse than being lulled into a false
sense of safety and security.

Safety can have a variety of forms, such as:

• The safety of a tether

• The safety of driving a well constructed vehicle

• The safety of a machine to not cause harmful accidents

• The safety of governmental protection through police or military

1.1 Definition of safety

The Oxford Dictionary defines safety as:

The condition of being protected from or unlikely to cause danger, risk, or injury.

Wikipedia extends this definition and defines safety as:

Safety is the state of being “safe” (from French sauf), the condition of being pro-
tected against physical, social, spiritual, financial, political, emotional, occupa-
tional, psychological, educational or other types or consequences of failure, dam-
age, error, accidents, harm or any other event which could be considered non-
desirable. Safety can also be defined to be the control of recognized hazards to

1

achieve an acceptable level of risk. This can take the form of being protected from
the event or from exposure to something that causes health or economical losses. It
can include protection of people or of possessions. [4]

Naturally, institutions with focus on a certain area of expertise have a slightly more selective
view on safety. The International Electrotechnical Commission (IEC), for instance, defines the
term safety in a way that is clearly targeted for the Functional Safety Standard and its strong
relationship to risk assessment:

Freedom from unacceptable risk of physical injury or of damage to the health of
people, either directly, or indirectly as a result of damage to property or to the
environment. [19]

Safety is therefore a relative term. It may even depend on the perception if somebody feels
safe or not. Each of the definitions above clearly relaxes the strong term by adding phrases of
“likeliness” and “risk”.

Because safety is such a fundamental topic in human life, it is reasonable that today’s technical
applications have to be checked on their impact on safety. For many areas, there are regulations
and standards that set a lower bound to what is required for an application in regards to functional
safety. The standards are updated in rather short intervals and additional standards for more fields
of application are released regularly.

Although the requirements are getting stricter over time and manufacturers are trying to
achieve higher levels of safety, there are some limitations for manufactures that hinder them
to reach the next level of safety with their application. These limitations may be of spatial,
energetic or financial kind. For example, it might not be possible for a manufacturer to fund
a desired SIL-3 for an application that only requires SIL-1 by standards (details on SIL are
described in Chapter 2), as the required investments would overprice the product, which in turn
would prevent a successful placement on the market. Another example for a combined spatial
and energetic limitation are embedded devices, which are omnipresent in today’s safety critical
environments. These devices may not have enough space around them to be supplied by a bigger
or redundant power supply or battery.

An important, yet unfortunate, aspect of safety - although a common aspect for lots of other
examples in daily life as well - is that safety is always a trade-off. A trade-off between effort
and safety gained by this effort, or - even more visible for a customer - a trade-off between
convenience and safety. Well known examples for this trade-off in our daily life are safety
belts, helmets and similar “tools”. A helmet is a good safety tool, but it is usually not really
convenient to wear or to carry around. A helmet represents the trade-off of reduced convenience
but increased safety.

Functional safety

As already outlined above, it is our goal to get today’s safety related systems as safe as possible.
That is, the risk that a system’s intended functionality is not present anymore is as low as possible
or as reasonably achievable.

2

This goal is subsumed by the IEC under the term "Functional Safety", which is specified as:

. . . the part of the overall safety that depends on a system or equipment operating
correctly in response to its inputs.
Functional safety is the detection of a potentially dangerous condition resulting in
the activation of a protective or corrective device or mechanism to prevent haz-
ardous events arising or providing mitigation to reduce the fight consequence of the
hazardous event. [19]

The definition already summarizes well what it means to care about functional safety. Still, on
closer examination, the question arises what those “hazardous events” actually are, depending
on the context, and what instruments are suitable to mitigate or even prevent such events. In
this point the whole complexity of this topic is hidden. Determining what is generally to
be considered a “dangerous condition” and to what extent it is reasonable to require a system to
implement certain measures is the scope of the IEC 61508 standard [20], which will be described
in Chapter 2.

1.2 Target application domain

Fire plays the major role in human evolution. Humans always loved and used fire, while at the
same time fearing it for its destructive nature. The importance of fire is depicted in Wikipedia
as:

The control of fire by early humans was a turning point in the cultural aspect of hu-
man evolution that allowed humans to cook food and obtain warmth and protection.
Making fire also allowed the expansion of human activity into the dark and colder
hours of the night, and provided protection from predators and insects. [3]

With fire, and the fear of it, comes the need for protection against (unintended) fires.
As of today, people are used to the fact that many safety instruments to prevent and/or fight fires
are established in our environment. Examples range from simple smoke detectors over fire extin-
guishers, via semi-automatic fire doors to fully automated sprinkler and other fire extinguishing
systems. Putting special focus on fire safety within buildings, the law in most countries of the
world regulates a minimum set of equipment that has to be available for fire safety, depending
on the type and usage of a building.

More and more of these systems nowadays are fully automated. Consequently, all big-
ger functional buildings are therefore equipped with so called “Fire Detection and Fire Alarm
Systems (FDASs)”. These systems may incorporate thousands of sensors and actuators and
therefore need a certain degree of automation in order to be manageable. It should be clear to
the reader by now that these FDASs are safety critical by nature as their non-functionality or
wrong functionality will increase the likeliness “to cause danger, risk, or injury”.

This thesis targets safety in the FDASs domain with a specific focus on the hardware responsible
for information exchange with an FDAS.

3

FDAS in building automation

In buildings, the FDASs are part of the overall building automation system. As depicted in
Figure 1.1, an FDAS is situated in the lower layers of the classical “automation pyramid” used
to describe automation in buildings, in particular the sensors (e.g. smoke detectors) and actuators
(e.g. fire doors) being on the “field level” whereas Control and Indicating Equipment (CIE) being
situated in the “controller level” or even above, depending on the actual functions performed by
each device.

Figure 1.1: FDAS are located in the field and controller levels of the automation pyramid [14]

Before programmable controllers have been introduced in the fire alarm domain several years in
the past, these systems where rather isolated systems with little to no interfaces to other systems.
Today, where Microcontroller Units (MCUs) are omnipresent in any kind of automation system,
also the interfaces between systems evolved and integration of systems in general got a boost.
This trend of course does not skip FDASs, where features like connecting such a system to a
shared network - e.g. the Internet - or connecting distributed subsystems via shared networks
are commonly asked by customers.

Clearly this integration is feasible for gaining efficiency, but also allows for more advanced
safety features. As example, one can consider the cooperation of an FDAS with a Heating,
Ventilation and Air Conditioning (HVAC) system in case of smoke alarms. The FDAS can
switch off all the air conditioners to prevent further dissemination of smoke.

Inevitably the growing number of interfaces and interactions within or among systems raises
complexity and error-proneness, making it even more important to provide solid means of dan-
gerous condition detection to prevent hazards.

4

1.3 Problem statement and motivation

Typically the fire alarm domain has direct impact on human life and health and needs to guar-
antee safety in everyday life. Fire safety equipment has to provide its services in rather tough
environments, which tend to

• have equipment distributed in big and unstructured areas,

• be comprised of multiple diverse subsystems from different manufacturers,

• be susceptible to power outages and

• have a variety of interfaces to third party systems,

which are by far not optimal for easily achieving high safety levels.

Besides the challenges in deploying such a system, it is even more critical to distribute informa-
tion correctly within such FDASs (e.g. fire alarm messages). Therefore, one of the critical paths
in such projects is proper communication. As most of the systems at larger scale are networked
in the one or the other way, it seems important that fault tolerant communication mechanisms
are deployed. That comprises of network structure, network protocols, but of course also the de-
vices connected by these networks. Consequently, it must be ensured that at least those devices,
which are crucial for the overall system functionality, are fault tolerant as well, in a sense that
overall communication is neither interrupted nor disturbed by a faulty device. The devices in
this view shall of course not be limited to safe communication, but must of course provide safe
data handling in general as well. Therefore, it does not suffice to guarantee data transmission is
fault tolerant, but the devices being responsible for sending and receiving the data (data source
and data sink) must be fault tolerant as well, otherwise the overall fault tolerance of the system
would be limited by the availability of the non-fault tolerant devices. For instance, it does not
make sense to have a perfect fault tolerant transmission channel, if the data sent through such a
channel is already corrupted due to some error on the sending device.

As integration of FDASs into other systems is a major trend, the combination bears new
safety risks as well. Combining non-safety critical applications now with safety critical appli-
cations also takes existing standards to their limits, as those well established documents were
originally crafted with the assumption of strict separation of those applications. To put it dif-
ferently, they assumed an encapsulated environment, where service disruptions could only stem
from a limited, well known, set of sources. The new risks implied by this combination of sys-
tems therefore even more require thorough design of the safety-critical parts, to ensure functional
safety.

Today, there is lots of knowledge on how to construct safety critical applications. Specifically
in the domain of IT systems this knowledge covers all fields from hardware construction to
software design. Some of the approaches are only theoretical, whilst others are practical. The
basis of the research conducted in this area even reaches back to the 1980s.

Still, each field of application of this knowledge requires targeted solutions, whose imple-
mentation is highly depending on the environment set out by the application. The fire safety

5

domain is one field of application, providing its own challenges when it comes to implementing
safe and interconnected systems.

As this thesis focuses on the fire safety domain, it tries to evaluate possible approaches for
gaining more safety in FDASs, going beyond what is required by standards today and still re-
specting the restrictions imposed by the environment by improving the reliability of the most
important devices of FDASs, the CIE, which are the crucial nodes within the communication
infrastructure of an FDAS. Increasing fault tolerance within those devices should open the doors
for higher levels of safety and finally strengthens the trust into these important, yet rather invis-
ible, devices.

This thesis presents a concept on what can be done to make CIE - based on modern MCUs
- fault tolerant, in order to help reach the overall goal of a bullet proof communication within
FDASs, with communication being the critical path for the availability and reliability of the
overall system.

Methodical approach

At first point an analysis of applicable standards for the fire alarm domain is given to define a
basis of requirements requested by legislators. Furthermore, a literature study about state of the
art safety concepts in hardware and software is presented.

In consequence, the presented state of the art concepts are analysed for applicability in the
target domain of FDASs. Based on this analysis, a concept for CIE, specifically shaped for
this application domain, is presented. A prototype implementation, based on modern hardware,
shows the key features and offers the basis for an evaluation of the presented concept, and
additionally serves to document the system’s behaviour in several typical fault scenarios.

Finally, the limits of the chosen concept are identified and an outlook to further possibilities
of improvement is given.

6

CHAPTER 2
Standard specifications

This chapter presents standards currently applicable to Fire Detection and Fire Alarm Systems
(FDASs) and standards around Functional Safety in general. These standards set the minimum
requirements faced when building FDASs. Albeit there might be further regulations by local
laws or national standards, the focus is on international standards as those are generally reflected
in the national regulations as well.

The “Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March
2011 laying down harmonised conditions for the marketing of construction products and re-
pealing Council Directive 89/106/EEC Text with EEA relevance” [1] requires all products in the
European Union (EU) to conform with harmonized technical standards (where such exist) in
order to qualify for a CE mark. The CE mark is the prerequisite, which allows free movement
of the product within the markets of the EU.

The harmonized standard for FDASs is the EN 54 Fire detection and fire alarm systems
standard. Any FDAS product needs to comply with the EN 54 standard in order to receive the CE
mark of the EU. On top of that the EN 54 standard is widely recognized and therefore qualifies
these products to be sold outside the EU as well.

Besides the EN 54 standard, an FDAS has to comply to several other standards mostly defined
by national building regulations.

For Austria, those standards are:

• TRVB-123 00 “Fire Detection Systems” [8]

• TRVB-114 06 [7]

For Germany, those standards are:

• DIN 14675 “Fire detection and fire alarm systems - Design and operation” [16]

7

• VDMA 24200-1 “Gebäudeautomation Automatisierte Brandschutz- und Entrauchungssys-
teme - ABE” [36]

• DIN VDE 0833-2 “Alarm systems for fire, intrusion and hold up” [15]

• VdS 2095 “Guidelines for automatic fire detection and fire alarm systems” [37]

In terms of Functional Safety there is the international “mother of all” standard IEC 61508. It
is an application independent - yet technology bound - standard, which builds the foundation of
a variety of derived standards, each of them tailored towards a specific field of application.

A brief listing of standards related to Functional Safety - most of them being derived from
IEC 61508 - includes:

• US RTCA DO-178B North American Avionics Software

• US RTCA DO-254 North American Avionics Hardware

• IEC 62304 - Medical Device Software

• IEC 62425 - Railway Signaling Systems

• IEC 61513 - Nuclear Systems

• ISO 26262 - Road Vehicles Functional Safety

• IEC 61511 - Functional safety – Safety instrumented systems for the process industry
sector

• IEC 62061 - Safety of machinery - Functional safety of safety-related electrical, electronic
and programmable electronic control systems

• ISO 13849-1, -2 Safety of machinery - Safety-related parts of control systems. Non-
technology dependent standard for control system safety of machinery

As there exists no specific Functional Safety standard for FDASs, standards like VDMA 24200-
1 provide guidelines on how to handle functional safety in these systems. It is worth noting
that most guidelines are again based on the non-normative parts of IEC 61508, hence, concepts,
methods and terms of IEC 61508 are used in these guidelines.

2.1 EN 54

The EN 54 standard comprises 25 parts in total1, covering all components involved in FDAS.
Each part describes one component or piece of equipment in detail.

The introduction to EN 54 is in part 1 [10] and describes the standard to specify amongst others:
1Part 6a and part 8 of EN 54 have been withdrawn.

8

• Requirements, test methods and performance criteria against which the effectiveness and
reliability of the component parts of FDAS can be assessed, and

• Requirements and test methods against which the ability of components to be combined
into an effective system can be assessed.

In the course of this thesis, the main focus is on the so called “Control and Indicating Equipment
(CIE)”. This equipment is specified to be responsible for monitoring the “correct functioning
of the system” and “warning of any faults”, which clearly points out that functional safety is the
major topic of this very equipment. Therefore, a closer look will be taken at the regulations in
EN 54 part 2 “Fire detection and fire alarm systems - Control and indicating equipment” [11],
as those regulations define most of the important guidelines for building CIE.

EN 54 part 2

The standard EN 54 part 2 defines its scope as:

This European Standard specifies requirements, methods of test, and performance
criteria for control and indicating equipment for use in fire detection and fire alarm
systems installed in buildings. [11]

The standard first defines general requirements how the state of the CIE has to be displayed and
indicated. This covers audible indications as well as indications on displays and lamps.

The subsequent chapters describe the various functional conditions a system can be in. This
is the list of recognized conditions by the European Standard:

• fire alarm condition

• fault warning condition

• disable condition

• test condition

• quiescent condition

The standard continues to elaborate on standardized input/output interface and design require-
ments. A separate chapter is dedicated to software controlled CIE and outlines more specific
design requirements for this type. Finally, the last chapter deals with tests and extensively de-
scribes all sorts of mandatory tests to be performed with the product in order to achieve standard
compliance.

The following paragraphs show a selection of requirements from the standard, which specifically
influence functional safety and are therefore important for this thesis.

Section 5.1.1 in EN 54 part 2 demands that a CIE needs to be able to unambiguously indicate
fire alarm and fault warning conditions. Moreover, the time limit to indicate such a fire alarm

9

condition may not exceed ten seconds. After a reset operation, indication of the current condition
has to be re-established within 20 seconds.

Chapter 8 of EN 54 part 2 is of special interest, as it is listing the requirements for coping with
various faults and how these have to be detected, indicated and resolved. In general, the CIE
should enter the fault warning condition within 100 seconds from detecting a fault situation.
Section 8.4 requires the equipment to emit an audible indication for at least one hour in case of
a complete loss of the main power source and Section 8.5 stipulates how software faults have to
be indicated.

In case faults can be indicated on some other equipment, Section 8.9 requires the FDAS to also
indicate de-energized CIEs. Section 12.5 additionally states that a fault in any transmission path
of the system shall not affect the correct functioning of the CIE or any other transmission path.
The re-establishment of function of operational devices after an interruption may not exceed 300
seconds.

For software controlled CIE, Section 13.4 requires a separate monitoring device with a separate
timebase to monitor software execution. Furthermore, the software has to enter a safe state
if a system fault is detected. Section 13.5 deals with memory aspects for program and data.
A requirement is that memory containing site specific data has to be continuously verified for
correctness in an interval not exceeding one hour.

Since this thesis deals with software controlled CIE only, this packed list of facts will serve as a
minimum basis for the further concept.

2.2 IEC 61508

The IEC 61508 standard plays a different role in the fire alarm domain. While it is not strictly
required by EN 54’s testing procedures or software requirements, it seems obvious that the
ideas of a standard entitled “Functional safety of electrical/electronic/programmable electronic
safety-related systems” shall be applied to state of the art CIEs being comprised almost entirely
of programmable electronics with the sole purpose of providing safety. The German standard
VDMA-24200-1 explicitly deals with safety requirements in Chapter 6 and refers to IEC 61508
in Section 6.2.

The origins of the standard reach back to 1984, where Hölscher and Rader described re-
quirements for microcontrollers in safety related systems [18]. The standard evolved from the
process control industry, yet it has to be pointed out, that the IEC 61508 standard is a generic
one. Therefore, it requires interpretation in some areas, in order to match the actual application.
For many industries derived standards have been released, which contain the interpretation of
IEC 61508 and add further requirements specific to that industry.

The standard covers the complete safety life-cycle and is split into seven parts, where only the
first three parts have normative character. Figure 2.1 shows which topics are addressed by the
parts of the standard. The basic concepts dealt with in the standard are risk assessment and

10

safety functions. Safety functions may include electronic technology and are used to lower a
certain risk that hazardous events cause severe consequences (such as death) by bringing the
equipment under control into a safe state.

Figure 2.1: The Parts of IEC 61508 [33, P. 17]

The types of failures we are looking at are random hardware failures and systematic failures.
The random hardware failures can be assessed in terms of failure rates, whereas the systematic
failures can only be addressed by applying sufficient rigor throughout the design process. Safety
has to be considered throughout the whole life-cycle of a product, for that reason the safety
life-cycle covers the complete life-cycle.

A central goal of the standard is to ensure that non-tolerable risk - which is to be found out
by risk assessment - is reduced As Low As Reasonably Practicable (ALARP).

11

One of the central terms in the IEC 61508 standard is the term Safety Integrity Level (SIL).
The “Safety Critical Systems Handbook” nicely describes how this term is to be understood:

The maximum tolerable failure rate that we set, for each hazard, will lead us to
an integrity target for each piece of equipment, depending upon its relative con-
tribution to the hazard in question. These integrity targets, as well as providing a
numerical target to meet, are also expressed as “safety-integrity levels” according
to the severity of the numerical target. [33]

The safety-integrity levels are specified from SIL 4 to SIL 1. The “Safety Critical Systems
Handbook” defines them as:

• SIL 4 is the highest target and requires state of the art techniques to achieve it. This level
is usually avoided as the effort involved to reach this target, is massive.

• SIL 3 requires sophisticated design techniques.

• SIL 2 only requires good design and operating practise on a level such as would be found
in an ISO 9001 management system.

• SIL 1 is the lowest target level, but still implies good design practise.

• Anything below SIL 1 is considered to be not safety related as of IEC 61508.

The general process is to first conduct hazard and risk assessments, which yield a target SIL.
The SIL then defines how the life-cycle and its processes have to be set up in order to be able to
justify that the final system attains the target SIL.

For hazard and risk assessment, the standard suggests to use either qualitative or quantita-
tive analysis techniques and provides examples. One of the qualitative approaches is a method,
where a set of categories of likelihood of occurrence is set in relation to a set of four categories of
consequences (catastrophic, critical, marginal, negligible). The resulting matrix provides infor-
mation how tolerable a certain risk is and assigns a class for this in each cell of the matrix. The
classes being from one (unacceptable) to 4 four (acceptable). For instance: Having occasional
occurrence combined with catastrophic consequences is assigned to Class 1, unacceptable.
Contrary to the qualitative risk assessment method described above, the VDMA-24200-1 stan-
dard requires risk assessment based on risk graphs. The authors outline that “real risk assess-
ments have shown that the majority of FDASs have to fulfil SIL 1” [36, S. 12], albeit some
situations - e.g. when deviating from construction laws - might require higher levels as well.

An example risk graph, as suggested in IEC 61508 part 5, is in the appendix of VDMA-
24200-1 (see Figure 2.2), which is specifically targeted for FDASs.
In order to define the requirements for each SIL, another distinction is made by the standard: The
demand rate. The standard separates the demand rates into only two groups. The high demand
rate applies to all systems that operate continuously or where the safety function is demanded
more than once per year. The low demand rate is used for all other systems. For each demand
rate the standard defines the maximum failure rate and the PFD as listed in Table 2.1.

12

Figure 2.2: VDMA-24200-1: Example for a risk graph to assess a target SIL [36]

SIL dangerous failures / hr (high demand rate) probability of failure on demand (low demand rate)

4 >= 10−9 to < 10−8 >= 10−5 to < 10−4

3 >= 10−8 to < 10−7 >= 10−4 to < 10−3

2 >= 10−7 to < 10−6 >= 10−3 to < 10−2

1 >= 10−6 to < 10−5 >= 10−2 to < 10−1

Table 2.1: SIL specification for low and high demand rates according to IEC 61508

Probability of failure on demand (PFD) is the same as probability of being failed at a random
chosen moment, which is the same as unavailability. The PFD is dimensionless and is given by:

PFD = UNAVAILABILITY = (λ MDT)/(1 + λ MDT) ∼= (λ MDT)

λ is the failure rate and MDT is the mean down time, which includes the mean time to repair
(MTTR), and usually λ MDT << 1 holds true.

The safety function of FDAS is classified as low demand rate system by VDMA-24200-1 (Ap-
pendix F.2), due to the fact that the demand, namely a fire incident, will occur only rarely on
average.2

2Obviously, the classification whether a low demand rate or a high demand rate is applicable is not very clear.
For instance, SafetyLON, a network protocol for safety related applications within the building automation domain,
was defined to be a high demand rate system [29], albeit its domain includes fire safety as well.

13

Section 7.4 of IEC 61508 part 2 outlines requirements for design and development. The follow-
ing list is a summary of those requirements as denoted in [33].

• Use of “in-house” design standards.

• On manual or auto-detection of a failure of the safety system, the design should ensure
system behaviour which maintains the overall safety targets. This implies additional mon-
itoring or a shut down of the equipment under control.

• Sector specific requirements have to be observed.

• The system design should be structured and modular.

• Systematic failures caused by the design should be tackled by monitoring the functionality
with extra circuitry. The complexity of this monitoring varies depending on the target SIL.

• Systematic failures caused by environmental stress: Components should be designed for
the environment in question. Generally, components reaching a CE marking approval (or
similar) would be expected to meet this requirement.

• Communications. The failure rate of the communications process has to be addressed.

• Synthesis of elements: The standard allows configurations involving parallel elements,
where each of them demonstrates a particular SIL in respect to systematic failures, to
claim an increment of one SIL. Prerequisite is that a common cause analysis has been
conducted to demonstrate independence. An example is shown in Figure 2.3

Figure 2.3: Two SIL 2 elements achieving a SIL 3 result. [33, P. 51]

A special focus is on the architecture of the design, the standard dedicates Section 7.4.4 to this
topic.

Besides the reliability calculations established for hardware, the standard specifies minimum
levels of redundancy together with levels of fault tolerance. This is subsumed by the term Safe
Failure Fraction (SFF). The SFF is defined as:

SFF =
Total revealed hazardous failures + Total safe failures

Total failures

14

Type A SFF SIL for Simplex HFT 0 SIL for (m+1) HFT 1 SIL FOR (m+2) HFT 2
< 60% 1 2 3

60%− 90% 2 3 4
90%− 99% 3 4 4
> 99% 3 4 4

Type B SFF
< 60% Not allowed 1 2

60%− 90% 1 2 3
90%− 99% 2 3 4
> 99% 3 4 4

Table 2.2: Requirements for SFF

where “Total revealed hazardous failures” are potentially dangerous failures revealed by auto-
test, “Total safe failures” being the number of failures resulting in a safe state and the “Total
failures” comprising the aforementioned PLUS the unrevealed hazardous failures.

There is another distinction into two types of components. Type A applies to components
where failure modes and behaviour under fault conditions are well defined and failure data is
available. The remainder of components is classified as Type B. Depending on the type, Table 2.2
shows the maximum SIL which can be claimed depending on the SFF. The number m specifies
the number of failures which lead to system failure, (m+1) designates redundancy, the number
of elements.

Part of the overall safety is of course also operations. Depending on the target SIL, the
systems are required to provide feedback or even correctional actions to operator activities. This
is the place where the “human factor” has to be considered. An example here are the fly-by-wire
systems of airplanes (typically SIL 3 to 4). These systems, for instance, prevent the pilots from
stalling the plane.3 Quantification of human error is not a requirement of IEC 61508, but the
consideration of human error is required and mentioned in various places in normative parts one
to three of the standard.

Planning and implementing the software should also include semi-formal methods as well
as coding standards and structured programming. Dynamic objects, interrupts, pointers and
recursion should be avoided as much as possible. The used programming language should be
restricted to a subset to minimize unsafe usage. An example is the MISRA-C standard from the
automotive sector that describes such a subset of the programming language C. For SIL 3 and 4,
it is furthermore strongly recommended to use certified tools only.

The Life-cycle approach

The IEC 61508 standard is based on a safety life-cycle approach. The reason for that is that
qualitative safety criteria, such as avoidance of systematic failures, have to be tackled mostly on

3To stall an airplane means to increase the angle of attack (raise the nose) to a point, where the air flow over/under
the wings stalls, causing the plane to actually stop flying. This condition is deliberately used in aerobatics flight, but
is to be avoided for normal flights like on airliners as it could cause the plane to crash.

15

the management level and throughout the design phase of a product. Therefore, this approach
aims to control all phases of the life-cycle, which influence safety. The phases comprise of the
process from safety specification and assurance throughout the development and operations to
decommissioning. The standard describes a model for the life-cycle and identifies all activities
throughout the life-cycle based on this model. This assures that decisions made in the planning
and design phase are in the end fulfilling the target failure probabilities. A simple life-cycle
is depicted in Figure 2.4. It is worth noting that the Functional Safety Assessments are to be
carried out in all phases.

Figure 2.4: Safety life-cycle [33, P. 11]

The life-cycle has to be applied to all electrical and programmable aspects of the safety-
related equipment. In case such equipment is embedded in another system, the life-cycle applies
to the system as a whole. That involves also mechanical and pneumatic equipment. Keep in
mind though, that each safety function has its own SIL target, so different management functions

16

might be necessary for each safety function.
All steps in the life-cycle are to be verified by functional safety assessments. Following this

methodology helps to improve the quality of the product as well as it helps to detect mistakes
(systematic failures) at an early stage. Depending on the intended SIL, the assessments have to
be undertaken by dedicated safety managers or even external certification institutions.

Software

Any software involved in safety functions needs to comply to the requirements of IEC 61508,
too. Part 3 of the standard is called “Software requirements” and deals with systematic fail-
ures. The level of software verification needed may vary enormously and might even reach to
the adoption of formal methods, which is common for SIL 4 safety function for instance in air-
planes4. For lower levels, common automated tests and unit-testing will already suffice and are
generally accepted.

Tests

When striving towards the requirements of SIL 3, the complexity of the checking mechanisms
and test methods significantly jump up and the used methods have to be extended to involve:

• Memory checks with checksums or parity bits
This comprises of methods to detect or even tolerate memory corruption of all kinds.
Checksums may be calculated on the content of the memory on fixed intervals allowing
to detect unexpected corruption of any data. The checksum of course needs to be stored,
so this yields the necessity for planning on extra memory depending on the granularity of
the memory blocks to be checked. The bigger the area that is covered by a checksum, the
less memory is required to store those checksums, but on the other hand, writing data is
slowed down as the checksums have to be updated as well, which takes longer for bigger
areas of memory. Parity bits may have the advantage here that those are easy to implement
in hardware, hence the time to create those is not a problem.

• Signal checks
Any data sent around on communication interfaces has to be checked for validity. Means
for achieving this can be parity checks or reasoning about the adequateness of a signal
in the given state of an application. So these checks can happen at the various levels of
abstraction.

• I/O module tests
All I/O modules shall have appropriate test circuitry which allows testing their function-
ality. For instance, SPI interfaces may provide internal loopback functionality (inside the
circuit or even on pin level) to test the receiving and sending unit of the interface.

4A big European airplane manufacturer seeks help from German universities (Prof. Dr. Reinhard Wilhelm) in
order to reach SIL 4 for the primary flight control system. The code for the primary flight control is said to be verified
by formal methods to a large extent. [2]

17

• Sensor/Actuator tests
As with I/O modules, connected sensor or actuator devices shall provide self-test capabil-
ities, which allow periodic monitoring of their functionality.

• Fault injection tests
These kind of tests involve active injection of faults into the system (which are expected
to be covered by the fault hypothesis) and the verification whether the system under test
reacts as specified. Assuming a redundant network connection a possible fault injection
testing vector would be to forcefully disable a connection line in order to assert that the
equipment really correctly performs the expected fail-over.

• and many more

Besides complex monitoring of the equipment under control, there are other means that help to
reach the targeted SIL. On the architectural level, one important design method is modulariza-
tion, albeit the IEC 61508 standard (Part 2) asks to keep the number of modules in a “limited
size” for SIL 1 and 2. Moreover, these modules are required to have a certain documented field
experience. Instead of packing all the intelligence of safety into the safety functions (monitor-
ing), an even better approach would be to improve the equipment under control, such that the risk
imposed by it is lowered. This has direct impact on the risk assessment and therefore lowers the
(necessary) complexity of the safety functions. Note that this especially holds true for integrated
systems, where equipment under control and safety function are not separated. e.g. a monitoring
software is running on the same Central Processing Unit (CPU) as the control software.

2.3 Other standards

Apart from EN 54 part 2 and IEC 61508 some other standards are crucial for FDASs and their
CIE. For a reliable system, “power management” is an important asset. Therefore, EN 54 part 4
[9] specifies Power Supply Equipment (PSE). It requires at least two power sources per CIE unit,
where at least one of them has to be connected to the public grid and another one has to be a
rechargeable battery (Section 4.2.4). Each of them must be capable of operating the CIE within
its specification (Section 4.2.5).

Despite the existence of the mandatory European standard EN 54, the individual countries ad-
ditionally established national standards for FDASs. Some of those standards just extend on the
regulations of EN 54, whilst others include their own provisions independently.

18

CHAPTER 3
Functional safety - state of the art

methods

The field of functional safety and the technologies used and developed to tackle the challenges
linked with it, have undergone big improvements in the last decades, while the importance of
safety and security grows every day as embedded systems conquer our everyday life and ev-
eryday needs. Specifically systems that require high reliability and therefore having targets of
Safety Integrity Level (SIL) 3 to 4 face a very tough problem: “The system as a whole must be
more reliable than any one of its components.” [23]

This chapter will present an overview of state of the art techniques and methods used in the
context of functional safety. These methods specifically focus on design and implementation
methods. The chapter does not cover aspects like material quality, which of course is crucial for
safety of a product as well, but is not directly a factor of functional safety.

3.1 Definition of terms

As with every field of expertise, it is necessary to speak the same language in order to avoid
confusion. In the safety area, a few terms are of special importance, which are described as
follows:

• Fault
“Condition that can cause an element or an item to fail.” [20]

• Error
“Discrepancy between a computed, observed or measured value or condition, and the true,
specified, or theoretically correct value or condition.” [20]

• Failure
“Termination of the ability of an element, to perform a function as required.” [20]

19

• Fault hypothesis
“An assumption about the types and numbers of faults that must be tolerated by the
planned system.” [22]

• Fault-Containment Region
Fault-Containment Regions are a concept to define boundaries in a systems, where errors
do not propagate over and therefore do not cause the next part in the system to fail as well.

The subsequent chapters will use these terms extensively to describe various aspects. The reader
should put special focus on the subtle difference between fault and failure.

3.2 Hardware methods

To achieve a high level of safety, a variety of methods and guidelines exist on the hardware
level that can be utilized to reduce the likelihood of random hardware failures - which occur
throughout the runtime of a product - and to avoid systematic failures - which are shortcomings
in the design and development phase. On ASIC/chip level, the following list provides a selection
of those methods.

• Throughout the design phase: Validation of the whole code with simulation
The designed chip layout is validated by simulating the design with accordant simulation
tools for Hardware Definition Languages (HDLs) like Questa. For FPGA designs, Model-
Sim would be an example for a well known simulation tool. With these simulation tools,
it is possible to detect critical paths in the design, which may be the first spot in the system
to be the cause of a random hardware failure due to limit exhaustion.

• Design for testability [38] [25]
The HDL design is created with testability in mind. The tests to be conducted are defined
precisely and the design is built with account for ease of test execution. This may also
include built-in testing structures, which are finally disabled within the shipped product.1

• Functional tests on module and top-level
Designated testbeds are established for each module additionally to a testbed for the over-
all system. This allows detailed testing of the modules while the system test helps to rule
out emergent effects caused by the combination of modules.

• Avoidance of asynchronous circuits
For safety critical systems, only synchronous chip designs are recommended as it might
be impossible to verify correctness with asynchronous constructs.

• Consideration of gate and wire delays
The timing calculations for HDL designs as well as Printed Circuit Board (PCB) designs

1This is usually done via so called fuses, which provide the possibility to enable or disable parts of digital logic
after a chip has been produced. Commonly a laser ray is used to burn such fuses. Popular applications of this
technique range from “shaping a product to one’s needs” to “removing test circuits”.

20

should consider the delays imposed by wires and gates. HDL synthesis tools like Quartus
usually take care of gate delays automatically for calculating the maximum clock fre-
quency of a synchronous design.

• Separate physical blocks on the substratum for each channel and monitoring block
This precaution tries to prevent negative effects like errors in the system influencing a
monitoring circuit.

• Distance of physical blocks shall be large enough to avoid crosstalk
This measure helps to avoid crosstalk effects and reduces the probability that two or more
blocks are affected by a common cause fault.

• On-chip redundancy
Lifetime of certain elements might not always fulfil the estimation. Deploying units re-
dundantly on a chip allows to switch the operational unit or to validate results of those
units for correctness. See Section 3.3 for details of redundancy concepts.

• Flipped orientation of redundant elements on the die
The physical orientation of an element might be crucial when it comes to sporadic events
like cosmic radiation. [40]
Positioning redundant elements in different orientations on the die (flipping each by 90◦

for instance) will lower the chance that all elements are affected the same way and helps
to prevent common cause failure.

• Avoidance of unsymmetrical wiring

• Verification of the complete ASIC
Testing the complete ASIC against the specification.

Still, when using cheaper hardware components one may fail to reach the desired SIL.

For achieving a defined level of integrity either highly reliable hardware with a low
residual error probability has to be used or comprehensive online self tests have to
be performed. The chosen standard microcontrollers must perform online self tests
in order to detect as much hardware faults of the CPU internals as possible. [35]

These kinds of self tests can be implemented in hardware or software. Generally, hardware
implementation is to be preferred, as those tests have access on a lower level and can be executed
faster or even in parallel to normal CPU execution. Dedicated safety Microcontroller Units
(MCUs) provide a big set of embedded self tests for many MCU components.

Besides testing the hardware and improving its reliability, it is of course also necessary to
track proper execution of the overall functionality, which mostly is comprised by software. The
following section will deal with approaches to detect faults on a higher level.

21

3.3 Approaches for fault detection

In order to detect or even tolerate faults in a system and make it more safe, lots of ideas and
approaches have been proposed over the decades. This section will present some approaches
and outlines their solutions and the problems they solve.

Fault detection and tolerance always requires some form of redundancy in a system. In the
simplest incarnation the correct functionality of a system during runtime can be checked by em-
ploying monitoring. In hardware, this usually is a separate, distinct circuitry. The requirements
imposed on such a monitoring circuitry differs for complexity depending on the desired SIL. In
software, fault detection is usually solved by examining memory and calculating checksums for
data. Code-wise the detection is a bit more involved, but there are pure software solutions for
transient and permanent error detection as well. [30]

A simple monitoring system in hardware would be a watch-dog. A watch-dog is typically a
separated logic that consists of a timer and a reset line at its most basic style. The monitored
application has to reset the watch-dog’s counter within a certain amount of time, otherwise the
watch-dog logic initiates a reset of the application as corrective action. The concept is well
known from railways where this is called “dead man’s control”. A train is stopped automatically
if the locomotive driver does not trigger the watch-dog switch regularly. The corrective action
taken by a watch-dog varies of course. For some applications the watch-dog may trigger some
fail-safe circuitry and additionally starts a second watch-dog which monitors the the fail-safe
function again. Besides that, a watch-dog may also do some recording of program state to
ease fault detection or post-mortem analysis. Watch-dogs can also be combined with software
services to allow for more fine-grained corrections if software faults can be detected by such
services. The outer watch-dogs serves as last resort and monitors the software services only.
Yet the simple watch-dog leaves us with an issue, which was described by Lu in 1982:

Major issues in the design of watchdog processors are the selection of operations to
be checked for errors, the means of encoding and transmitting information from the
main processor to the watchdog, and the programming of the watchdog. [27]

A slightly different watch-dog approach is suggested by Michel, T. [28] which describes a watch-
dog processor that is specifically targeted to software flow control on an Intel 80386sx micro-
processor, with the special goal to avoid performance issues. So essential the watch-dog con-
currently monitors the program flow on the processor and solving the above issue by leveraging
knowledge about the internals of the processor.

In terms of functional safety, a watch-dog is generally considered a good design practice and
thus suffices for most applications with a SIL 1 target.

On the software side, a promising approach has been presented by Nahmsuk Oh [30] in 2000.
The idea is to save cost for hardware in space applications and use “Commercial Off The Shelve
(COTS)”, cheap, non-shielded hardware only. As radiation is a major topic for space appli-
cations, transient errors - like bit-flips - have to be detected. Oh proposes three techniques to

22

detect hardware faults in software, based on signatures and code duplication, with one of the
techniques reaching 98% fault coverage in injection tests.

A different kind of redundancy and to gain safety, is to actually use multiple instances of the
actual equipment. The setup changes in a way that error-checking can now be done by compari-
son, where error-checking component - called voter - does not need to know about the internals
of the system. This has the additional benefit that such a true redundancy covers all aspects of
the equipment, hardware and software. Any fault in any component can potentially be detected,
as long as the output shows sufficient discrepancy to the voter.

Redundant systems can be categorized by the number of faults they may tolerate. IEC 61508
uses the term XooY (“X out of Y”) to categorize the systems. This means that X out of Y
systems have to fail for the overall system to be inoperable.
Typical examples and their applications are:

• 1oo1: Single channel processing.

• 1oo2: If one of the two systems fails, the whole system is disabled (used for automatically
guided vehicles).

• 2oo2: If both systems fail, the whole system is disabled (used for gas-turbines).

• 2oo3: At least two systems have to be operable (used for airplanes and chemical plants).

• 2oo4: Three out of four systems must be operable (typically required for space shuttles
and nuclear power plants).

The following sections describe typical redundancy implementations.

Standby redundancy

A simple possibility of redundancy is the standby pattern. The general idea of the standby pattern
is to have a replica of the active system available in spare, which can be activated whenever the
primary system fails. However, to automatically switch between the primary and the spare
component, some additional logic is required. Figure 3.1 shows the setup of such a system. The
standby pattern is a dynamic redundancy concept, as it involves reconfiguration (switching the
component) after a fault has been detected. According to IEC 61508, this is a 2oo2 system.
The distinction between hot and cold standby refers to the state the spare system is held in.
For cold standby, the spare system is generally not active and needs to be initialized once it
is activated. Contrary, the hot standby scheme refers to a system, where the spare system is
active too, such that any operation performed by the primary system is also performed by the
spare system. Both systems are fed with the same inputs at the same time. This ensures the
spare system is up to date and a possible switchover can be made with minimal delay as no
initialization is necessary.

23

Figure 3.1: System setup for standby redundancy.

For hot standby systems, some literature suggests to include the switchover logic into the spare
system, such that the external logic can be omitted. This kind of setup (hot standby with in-
tegrated switchover logic) is very similar to the Dual Modular Redundancy (DMR) scheme
described below and hence the terms may be used interchangeably.

Dual and Triple Modular Redundancy

Modular redundancy refers to a system setup that has multiple instances of the same component
working in parallel which are synchronized. A voter is responsible to determine the final output
of the whole system. Popular setups are dual and triple modular redundancy. The N-modular
redundancy concept is, contrary to the standby concept, a static redundancy concept as the fault
is not propagated to the output.

DMR consists of two components working in parallel and is capable of detecting a fault, but
is not able to correct for this error. The voter is not able to determine which component is wrong
and which right. The difference between DMR and hot standby is rather subtle and mostly
relates to the amount of synchronization performed between the components. As described in
Section 3.3 on the preceding page, a hot standby system might be constructed to be similar to a
DMR system.

While a DMR system is not capable of tolerating a fault in general, a Triple Modular Redun-
dancy (TMR) system is able to actually tolerate a single fault by adding one more component.
This is the accepted standard for fault tolerance in system architecture.
Figure 3.2 shows the setup of DMR and TMR. The TMR setup allows the voter to decide which
component is faulty, as the non-faulty components’ outputs match. It can furthermore switch to

24

Figure 3.2: System setup for dual and triple modular redundancy

a DMR strategy until the faulty component has been repaired, so at least error detection is still
possible in case one component has failed. The TMR scheme can be extended to achieve even
higher levels of fault tolerance by adding more components.

H. Kopetz [23] defines the architectural services that are needed to implement TMR:

• Provision of an independent Fault-Containment Region for each one of the replicas
This ensures that the replicas do not influence each other and assures true independence.

• Synchronization infrastructure
The synchronization of the replicas is crucial as it is the basis for deterministic behaviour,
i.e., the voter needs to know when the output of the replicas is ready to make a decision.

• Predictable multicast communication
A one-to-many communication allowing each node in the system to talk to all nodes.
This can be understood as a fully connected graph of the communication channels in the
logical structure of a system.2 The predictability is important as everything else would be
an asynchronous communication pattern, which brings a lot of undesired properties.

2This does not imply that the actual communication system is really a fully connected network. The goal is to
ensure that every node can list to all other nodes, regardless whether it is the recipient of the message or not.

25

• Replicated communication channels
Of course the channels need to have redundancy as well, since a single communication
channel would introduce yet another single point of failure, which would contradict the
goals of TMR.

• Voting support

• Deterministic (which includes timely) operation
The various steps of operation have to be deterministic in order to be able to guarantee
fault tolerance. This excludes asynchronous communication and generally requires known
worst-case execution times.

As can be concluded from this list of services, TMR or bigger redundancy implies a lot more
hardware effort and involves significantly higher costs than standby redundancy. This is a main
reason why lower levels of redundancy is generally preferred if the system and the indented
functionality permits that.

3.4 Software architecture

While the methods above mostly focus on transient failures, hence physical issues, this section
takes a look at possibilities to avoid systematic failures.

Software does not fail randomly, hence any fault is always a consequence of a wrong imple-
mentation, or even worse, a wrong specification. These systematic failures have to be tackled
throughout the design phase of the life-cycle. There is only one exception, a random hardware
fault might alter state, which causes the software to execute in an undesired manner.

Safety tactics

In [39], Wu and Kelly present a guidance on how to develop a basic safety strategy in software
architecture design. They describe so called “safety tactics”, which connect software safety and
software architecture. The safety tactics focus on the three aspects elicitation, organisation and
documentation and can be organized as a hierarchy shown in Figure 3.3.

The derived safety tactics should then be used to create software patterns, which are subse-
quently used to design the software architecture.

In [34], from 1995, a number of industrial applications were inspected for used software pat-
terns. The survey included a wide spectrum of applications in various sizes (in terms of code
size) and important system characteristics. The introduction of that paper already states one im-
portant fact about architectures: “When poorly understood, these aspects (component interaction
and interconnection) of design are major sources of errors.” The paper defines four categories
of structures, where each of them can be described in different perspectives. The identified cate-
gories are: conceptual architecture, module interconnection architecture, execution architecture
and code architecture.

26

Figure 3.3: Hierarchy of safety tactics [39]

Twenty years later, the available technology vastly changed and these categories of architec-
tures are integrated into frameworks and methodologies, which purport several aspects of these
architecture descriptions into new concept.

Development process and patterns

Every software development process involves a methodology which defines the basic workflow
how code is created. In the recent years a whole new class of such methodologies emerged, all
of them named with a three letter code ending with the characters DD (standing for "-driven
development"). The first character makes up the difference and the focus of each framework.
Those are: BDD (Behaviour), FDD (Feature), DDD (Domain), MDD (Model) and TDD (Test)

Those methodologies of course mostly stem from the classic application software develop-
ment industry, but still some approaches might be useful for safety related applications as well.
For instance, test-driven development is an approach, which has one rule as essence: “Write the
test first.” This assumes that a suitable testing framework is at hand, which allows to write the
specification in the form of tests, before starting to implement the actual functionality. Since
safety systems need to be tested thoroughly anyway and best practise, like unit-testing, should
be applied to the development process according to IEC 61508, employing a methodology like
TDD seems to be a good choice to ensure high software quality.

Besides the workflow used to create the software, IEC 61508 also suggests a clear structure of
the software in modules as a good design practise for software. Good ways to structure software
for various appliances are usually described by so called patterns.

On the top level, the architectural patterns describe the general scheme how the compo-
nents of a software application should interact. The goal of those patterns is usually to ad-
dress hardware, performance or availability limitations on a high level of abstraction. Popular
and commonly known architectural patterns for instance are: Event-driven architecture, Model-
View-Controller, Microservices, Service-oriented architecture, and so forth.

Design patterns are located on a lower abstraction level than architectural patterns and are used
to either simplify the structure of code or to build code in a way that is easier to understand for

27

a developer used to the pattern. Lowering the complexity barrier is a major factor in avoiding
systematic failures. It must be noted though, that a wrong usage of patterns may also increase
complexity of software.

Design patterns are available for all possible levels of software engineering. Clearly, since
object-oriented programming is the predominant design paradigm for application software, many
patterns exist around this topic. To name a view popular: Factory method, Object pool, Single-
ton, Facade, Proxy, Template method, Scheduler, etc.

For safety systems it seems adjuvant to leverage such patterns as well. Specifically the concur-
rency design patterns - like Scheduler or Thread pool - are of interest for embedded systems
as well. Mostly such patterns are already incorporated into existing libraries or even operating
systems.

3.5 Other concepts

The introduction to this chapter already foretold the problem that targeted integrity levels may
not be achievable by single systems, even though they leverage one or more of the above pre-
sented methods. In order to reach those higher integrity levels, the system needs to be decom-
posed into modules, which are connected together. The resulting system is called a distributed
system, i.e., independent subsystems are connected to each other with a suitable communication
medium.

With distributed systems and the communication channels involved, we face a whole new
category of problems that arise in such systems. To name only a few of them: [6]

• Leader election

• Mutual exclusion

• Consensus

• Clock synchronization

A solution for these problems is again a prerequisite to enable the service required for TMR as
listed above. It should be clear to the reader that none of these problems is easy to solve. A huge
amount of research has been and is still being conducted in this problem area. [13] [31] [32]

3.6 Applications for fieldbuses

Several fieldbus systems are available on the market, which employ safety properties either in
their core or as extension. A selection shall be outlined in the following.

SafetyLON

The Local Operating Network (LON) is a fieldbus system standardized in EN 14908. The Safety-
LON project aims to extend LON with a so called “safe node” [29], which provides means to

28

achieve compatibility with IEC 61508 SIL 3. The focus of SafetyLON is on safe communication
by extending the network protocol LonTalk and the network nodes with safety properties.

A first description explains that due to backwards compatibility any existing network must
be extendable, hence establishment of a dedicated safety-network is not feasible. Therefore
the prevalent hardware is extended. The components of a SafetyLON node are depicted in
Figure 3.4.

Figure 3.4: Components of a SafetyLON node [29]

SafetyLON employs a 1oo2 system in hardware by adding two more MCUs. The software
stack is modified to comprise of three layers, one of them being the Safety Layer taking care
of safe communication. For the application software, the safe communication is therefore fully
transparent. The protocol for safe data transfer is embedded into the standard LonTalk (protocol
tunnelling).

As the chosen hardware does not provide excessive means of self-test functionalities, the
safety software has to provide all self-test routines. This of course comes with loss of perfor-
mance.

CAN based solutions

Based on the CAN bus technology there are several solutions for safety related applications.
Two of those are “CANopen safety”, standardized in EN 50325-5 [12], and “SafetyBUS p”.

Within a SafetyBUS p network only safety-related devices are used exclusively, which are al-
ready multi-channel internally. Parallel processors process data simultaneously and only if out-
put signals do match an output is generated. This is a 1oo2 system.

CANopen safety employs functional safety communication based on CANopen (EN 50325-4).
It employs the basic idea to transmit each safety-related message twice. The second message has
bit-wise inverted data. On reception, the two messages are compared. The CANopen-Safety-
Protocol (CiA 304) is used. The standard does not specify any safety guidelines or requirements
for the devices themselves, but uses two CAN controllers internally for redundancy.

29

PROFIsafe

PROFIsafe is specified in IEC 61784-3 and is a pure software solution. It only adds various
safety precautions on top of the existing protocol for better fault detection.

openSAFETY

“The first open and bus-independent safety standard for all Industrial Ethernet solutions.”
This is the slogan on the openSAFETY website. openSAFETY is a protocol stack available as
open-source software, which is certified by TÜV Rheinland up to SIL 3 in accordance with IEC
61508:2010. The protocol stack is created by the Ethernet POWERLINK Standardization Group
and designed to work on top of virtually any bus system. It claims to be the fastest IEC 61508
SIL 3 communication solution on the market. The protocol is furthermore standardized in IEC
61784-3 FSCP 13.

Figure 3.5: openSAFETY interoperability [open-safety.org, 20.9.2015]

As shown in Figure 3.5, openSAFETY is usable in many of the widely used bus systems. Yet
it has to be acknowledged that the actual results depend on the used bus technology. Especially
the real time capabilities vary a lot between the available bus systems.

The open safety protocol is designed to work in "Black Channel operation" and therefore only
specifies the application layer 7 of the OSI model. The stack provides an extremely flexible
telegram format and also allows to automatically redeploy a configuration into a new application,
which has been stored in the safety controller beforehand.

An openSAFETY network may comprise of up to 1023 safety domains with up to 1023
nodes each. The unique feature is that each domain can span over different and inhomogeneous
networks. A Safety Configuration Manager monitors all safety nodes within a domain.

30

A special focus is laid on cross-traffic transfers, which allow direct end-to-end communica-
tion between nodes, which is not routed over a central master node. The protocol encapsulates all
safety data within a standard Ethernet frame and guarantees fault-free transmission by providing
precautions like in-frame data redundancy, timestamps and unique frame identifiers.

31

CHAPTER 4
Concept

This chapter presents a concept to tackle the problems and challenges identified for Fire De-
tection and Fire Alarm Systems (FDASs) in the preceding chapters. After a short requirements
analysis, a framework that matches the assessed demands is specified. Subsequently, the in-
tended behaviour and the internal structure of the framework is described in detail.

4.1 Requirements analysis

As we have seen in the previous discussion of state-of-the-art functional safety methods (Chap-
ter 3), lots of hardware, sophisticated software and thorough design processes are required to
achieve high level safety goals.

In the context of domains like the fire safety domain on the other hand, we encounter rather
soft limits and requirements regarding the safety (compare Chapter 2 on page 7), but stringent
requirements regarding processing power, memory size and energy consumption are given. Ad-
ditionally, one should not to forget about a competitive market limiting financial flexibility of
manufacturers.

We may define a bottom line of requirements for the fire safety domain, derived from the appli-
cable standards, as follows:

• The Control and Indicating Equipment (CIE) must be able to indicate alarm and fault
conditions. The overall time limit for indicating an alarm condition must not exceed ten
seconds. This includes the whole process from retrieving an alarm signal from a sensor,
processing the signal and finally issuing the alarm.

• After a reset condition, e.g. after rebooting the device, the current condition and its ac-
cording indication have to be established no longer than 20 seconds after the reset.

33

• The CIE must be able to detect faults. We distinguish between faults of devices connected
to the CIE such as sensors and system faults of the CIE itself. After detecting a fault
condition on the CIE, the condition has to be indicated within 100 seconds.

• The requirement for audible indication for at least one hour in case of complete loss of the
main power source of the Power Supply Equipment (PSE) implies that - assuming only
the battery is left as power source - the whole system has to be designed to survive at least
one hour on battery.

• In order to indicate a de-energized CIE on another device, the CIE has to provide means
for detecting such a situation. This might be a physical line which is directly connected to
some indication device or a smart network communication solution, which can conclude
the power loss (or any other crash failure) from previous known states of the CIE affected.

These minimum requirements are rather easy to achieve with an up to date embedded system.
The time limits for alarm alerts and re-establishment of state after reset operations stem from
earlier times many years ago, where powerful integrated circuits were not common. With the
processing power of today’s embedded hardware it seems that these actions should be possible
in a fraction of the specified time. Of course the actual time needed strongly depends on where
the alarm signalling has to happen. In case the signalling is distributed over a wide and slow
network, this may of course take a bit longer.

Fault detection, if implemented independently in the various subsystems (e.g. sensor net-
works), is also possible in a quick manner. On chip level, many safety chips already include
special hardware circuits to detect a wide range of possible hardware faults already in hardware,
so time-consuming checks on software level can be reduced a lot. The communication overhead
(for the network of CIE) is again subject to the structure of the FDAS. Still the limit of 100
seconds shall be far outside the scope of targeted limits for current systems.

The “survive one hour on battery” requirement can be tackled by using either a battery with
big capacity or by reducing power consumption to a level, where a reasonable battery can be
used. With modern hardware, the power consumption is in a range, where this should be easily
possible as embedded systems tend to get smaller and smaller and the power needed by a chip
decreases with its size. Mobile phones with really powerful processors can be operated for many
hours under full load with rather small batteries. Since fire incidents, which cause higher load
on the hardware, are rare cases, typical battery blocks used for uninterruptable power supplies
should easily suffice to power the system for at least one hour.

In addition to the soft requirements presented above, this thesis tries to undermatch the require-
ments as much as possible and add additional ones as it seems practicable and adjuvant to have
these for a modern FDAS. In addition to that, and although not strictly required by the EN 54
standard, any new functional safety related equipment built today should comply to the require-
ments retrieved from the analysis conducted as outlined in IEC 61508. Fulfilling these require-
ments is definitely a benefit regarding market positioning and insurance coverage.

Therefore, the “requirement” to achieve a system that mostly complies to Safety Integrity Level
(SIL) 2 or even SIL 3 on a technical level are added on top. This thesis does not provide any

34

means of documentation which is asked for by these targets, but focuses mainly on improving
reliability for the overall FDAS by increasing the reliability of the individual devices (CIE). The
main focus is therefore on the devices and not on the network connecting those devices.

In terms of IEC 61508 the concept therefore aims for a system that has single fault tolerance
and therefore is a Type B system with a target Safe Failure Fraction (SFF) of approximately
90%.

Fault hypothesis

The concept is based on a fault hypothesis which can be outlined as follows:

The first and most important definition to add to the fault hypothesis is to at least tolerate a single
fault in the whole FDAS, where an FDAS comprises multiple CIE units connected to each other
(see also Figure 4.1). This trivial sentence may sound ordinary, but actually has a huge impact
on the whole system design as will be described in Section 4.2. The permitted failure modes
are limited though. Specifically Byzantine failures [26] in general are excluded. In the temporal
domain of faults the focus is on consistent crash failures (permanent faults) and transient faults.

Byzantine faults are omitted, as they would require a much more involved solution, partic-
ularly in terms of necessary hardware, and this thesis is specifically tailored to resource limited
hardware. Literature shows many variants of problems with Byzantine faults and defines a lower
bound for tolerating k Byzantine faults to a minimum of 3k + 1 nodes with 2k + 1 connectiv-
ity [17]. Of course those numbers may be different if prerequisites change such as the scheduling
model, switching asynchronous or synchronous communication and the like. Nevertheless, even
for a single Byzantine fault we would need four nodes, which is beyond the goal of this thesis.

Another goal of the concept is to let CIEs form independent fault containment regions. In par-
ticular, any fault occurring within a CIE, which results in a failure, must not be propagated to
the outside of the CIE, hence the error must not lead to another fault in another device.

4.2 Proposed model

After having had a look at the requirements and into state-of-the-art solutions for well-known
safety and reliability problems, we shall now propose a suitable concept to solve the problem
described in Section 1.3, whilst fulfilling the requirements as outlined in Section 4.1.

The proposed concept provides a framework consisting of hardware and software parts
building the necessary foundation for application software to be run on top of the framework.
This system, comprising the hardware and the software, will be called a “CIE unit” throughout
this thesis.

Multiple of these units are to be connected in a network to create the full-featured FDAS. As one
unit is not capable of containing all possible single faults (refer to Chapter 5 on page 47) and as
single faults on the network have to be covered as well, it is necessary to wisely choose a proper
network connection, network structure and according network protocols in order to comply to

35

the single fault tolerance requirement for the overall FDAS. A solution for the network part,
specifically tailored to the fire safety domain, is presented in [21], but the presented approaches
for fieldbuses in Section 3.6 can be used as well. Those are SIL 3 compliant and are therefore a
solid basis for an overall SIL 3 compliance.

Figure 4.1: Basic structure of an FDAS not including supplementary equipment

Figure 4.1 shows an exemplary structure of an FDAS with its direct components, the CIE units.
The figure does not show sensor and actuator networks or other equipment, which is likely
present for network connectivity or other means.

Basic principle

The basic principle of the proposed hard- and software framework is based on the hot-standby
pattern (see Section 3.3), with the special addition that both components include the switching
logic. The main reason for choosing this specific pattern over the described Dual Modular
Redundancy (DMR) or Triple Modular Redundancy (TMR) patterns is the simplicity of the
setup and the saved costs due to saved hardware.

DMR is very similar to the hot-standby pattern, but the cost advantage over TMR is signif-
icant, as we save a complete subunit and the voting logic. Moreover, by replacing the voting

36

logic in the DMR pattern by a cross-checking mechanism, another single point of failure can be
avoided.

Of course - and this should be clearly pointed out here again - neither the pure DMR ap-
proach nor the hot-standby pattern are generally able to tolerate all possible single faults of the
system. This is acceptable for the intended solution proposed though, as further detection of
errors over multiple units can be done on a higher level by other nodes of the network. Still, by
modifying the hot-standby pattern we are able to detect several abnormalities on a node level
and can furthermore even correct for some of these faults on the node level without bothering
any other nodes on the network, which is already an important step towards improving system
reliability. A node forms a fault containment region in this case. The ability to tolerate some
faults is an extension of the classic hot-standby pattern, whose sole intention is to be fail-safe,
but does not care for being (partially) fail-operational.

As implied by the hot-standby pattern, one CIE unit consists of two identical subunits. The
subunits use the same hardware and the same software and are equivalent partners (except the
active/passive state). Each of these subunits consists of a Microcontroller Unit (MCU) and a bus
connection hardware including a bus-guard. A prerequisite for the MCU is the availability of a
general error pin, which is controlled by internal hardware fault detection. This important pre-
requisite should be mentioned here as it is of special importance for the overall principle. Note
that many hardware faults could be also detected by employing complicated software constructs
(double execution of code, frequent self-tests, etc.), but the availability of MCUs with dedicated
support for hardware fault detection eases the development process and provides a far superior
detection coverage than any software solution. Therefore this concept requires hardware with
self-test capabilities. All other requirements imposed on appropriate MCUs are specified in
Section 4.2 on page 39.

The two subunits - as shown in Figure 4.2 - are connected with each other in four distinct
and independent ways:

1. The first connection is via the normal network bus.

2. The second connection is a direct connection between the units via serial communication
lines.

3. The third connection is a low-level hardware line, directly connected to the general error
pin of the opposite MCU and to the bus-guard of the same unit. This pin has to be low-
active - a zero level indicates an error - to ensure that power loss is detected as failure.

4. The fourth connection is a control line from one unit to the bus-guard of the other unit.

This setup allows mutual cross-checking of the subunits in order to detect faults on the other
MCU and allows to react upon such a fault. The concept of mutual cross-checking is necessary
for tolerating faults within the boundaries of a CIE unit and comprises hardware fault detection
and software fault detection. Hardware fault detection is based on MCU internal fault de-
tection circuits, whereas software fault detection is based on software-state synchronization.
The monitoring responsibilities will be illustrated separately for hardware and software, as the
complexity involved in the two cases is substantially diverging.

37

Figure 4.2: Hardware structure of a CIE unit

Information exchange between subunits

This section will further describe the usage of the connections mentioned in Basic Principle-
Section 4.2 on page 36. As is the nature of a hot-standby system, it requires the definition of the
“active” and “passive” subunit. While both subunits perform all calculations, receive the same
input data and execute monitoring functions, only the active one may actually transmit data for
other CIEs via the network bus to other units and via the fieldbuses to sensors and actuators.

The first connection, the network bus, has its main functionality in allowing the reception of
network traffic on both subunits independently. Moreover, it allows the passive subunit to verify
the outgoing traffic of the active subunit. Additionally this connection will be used for validation
processes between the subunits as described in the scenarios below.

The monitoring of the hardware is kept simple and utilizes the third connection, which is a
direct indicator for a hardware failure on the other subunit. Reliable detection can be achieved
by monitoring the electrical state of this direct connection.

Looking at the software layer, monitoring of the software state is much more complex. For
this purpose, the framework provides an abstract state-machine, whose concrete peculiarity is
defined by the application software. Each state change, triggered by the application software,
is synchronized between the two subunits. This state synchronization is performed by using
the second connection, the serial communication lines. Those serial communication lines are
required to be full-duplex and must allow independent initiating communication from both sides.

38

As this connection is time-critical for the overall application performance, it should be a fast
connection. For this purpose we strongly suggest to use two Serial Peripheral Interface (SPI)
connections.

Finally, the fourth connection line has its importance when it comes to disabling access of one
subunit to the network bus. Take any situation where a subunit considers the other subunit to
be not trustworthy anymore, at this point it is of utmost importance that the detecting subunit
has the ability to cut off the faulty subunit from the system completely to avoid any kind of
disturbance by the faulty subunit.

Hardware requirements

As already described in Section 4.2, the MCU is required to feature internal hardware fault
detection. This is necessary to identify misbehaviour, which is crucial for achieving the desired
SIL 3, which requires Central Processing Unit (CPU) tests and memory checks.

To enable detection of transient processor faults, we require the MCU to provide two inde-
pendent, lock-stepped CPUs. Furthermore, all memory shall be secured with Error-Correcting
Code (ECC) mechanisms to be able to detect memory errors and bit flips. Again, this could
be done in software, but specialized hardware is a better approach. Additional built-in self test
routines for all core components of the MCU should be present in order to gain an overview of
the system’s hardware health easily.

Possible faults have to be detectable by the software running on the MCU and by external
hardware via dedicated connection pins.

The subunits use dedicated software tasks, which monitor the hardware state of the underly-
ing hardware as well as the hardware of the other subunit. This task plays a very important role,
because any kind of hardware error or failure is a severe system fault and according action has
to be taken upon. The task is hence responsible to shut down the subunit, if the error occurred
on the subunit currently running on, or to shut down the other subunit, if the error occurred there
and the subunit itself did not detect the situation and shut down on its own in a reasonable time
frame.

Bus-guards

The bus-guard used to control access of the MCU to the network bus should be as simple as pos-
sible, since any complexity involved would just provide more possible fault scenarios. Therefore
bus-guards are required to consist of passive electronic parts only, such as relays. Relays allow
physical separation of the MCU from the network bus.

More precisely, the bus-guard has to have a safe state in case of self-failure, which is to
make the complete subunit fail silent, i.e. the subunit is cut off the network bus. To achieve
this, mono-stabil relays are recommend, which will cut off the connection once the voltage level
drops on the control pin.

39

Software

As hardware has its internal independent fault detection mechanisms, software needs an equiv-
alent as well.

Software monitoring can be achieved by one of the following approaches, or can be a combina-
tion of these:

• A hardware watchdog. Considering a time-out based watchdog, the software tasks will
have to repeatedly reset the timer of the watchdog. If the timer goes down to zero, the
watchdog will initiate a hardware reset of the complete MCU ultimately forcing a clean
restart of the system.

• A dedicated software task. This can be implemented with either of two paradigms:

– In a similar manner like the watchdog paradigm above, where the software tasks
have to send a signal to the monitoring tasks in order to indicate being alive.

– The monitoring task permanently watches the state of the software tasks and deter-
mines progress by asserting specific time-outs for expected state changes.

A first approach would be to have a dedicated task on the same MCU that is responsible for mon-
itoring the other software tasks. This method would have the advantage of easy implementation,
but has some major drawbacks in what can be accomplished with it:

• It is hard to guarantee that no software bug may corrupt memory areas assigned to the
dedicated monitoring task, hence, a bug in the monitored software task may potentially
manipulate the monitoring task’s memory and consequently the behaviour of the monitor-
ing task.

• Any oddity in timing of tasks will also influence the monitoring task.

• If the monitoring task itself fails for some reason, there is no way to detect this failure.

Considering these drawback it seems obvious that it is not reasonable to have the monitoring
task on the same MCU, as it is not possible to have a totally separated software task to verify
software state on the same MCU. Still it does make sense to have a dedicated monitoring task,
which checks software states, but for an entirely different purpose as described hereinafter.

Cross-checking

A much better approach is to let this dedicated monitoring task observe the software state of
the MCU on the other subunit. To actually determine progress - which is usually measured as
change over time - of the other subunit a comparison reference is needed. Two possible types of
references for such a comparison are distinguished:

40

1. Absolute reference: Of course a globally precise solution would require the establish-
ment of an absolute reference. Implementing a common time base within a CIE unit - or
even a whole FDAS - requires sophisticated distributed algorithms for time synchroniza-
tion in real-time systems. Adequate algorithms can be found in [24] and [5].

2. Relative reference: A relative reference has its scope only on a local domain, in this case
the MCU. Progress is measured as change happening in comparison to this local reference.

In our use case it seems enough to go for a relative reference, that is a local clock or timer,
running at a given frequency. To determine progress we need to define instants on the reference,
where the current state is checked. Again for our use case, it seems reasonable to use the instant,
where the local task commits a state change, as the same state change is expected to happen
approximately around the same instant on the monitored subunit. We do allow a certain timespan
the other subunit’s state-change is allowed to be delayed. This bounded waiting time is required
to avoid infinite waiting time on the results of the other subunit. If the limit is crossed, we
may assume that the other subunit has failed. According actions will be taken by the subunit to
shutdown the other subunit.

The chosen state-change commit instants, chosen by the application engineer, eventually
define the synchronization points for the subunits.

By applying this scheme on both subunits, we establish a pattern, which shall be called a “lock-
stepped state synchronization” with mutual cross-checking.

The proposed framework provides the necessary tools for setting up this pattern to control the
execution of the predefined state flow on two subunits in a deterministic way. It is of course
up to the actual application to define the intended state flow. As H. Kopetz describes in his
introduction to fault tolerance, it “is absolutely necessary” to unreel end-to-end error detection
on application level. Therefore, it is important to say that the software using this framework
is responsible to define the granularity of the software states used to synchronize the subunits.

For instance, it may suffice in some cases that a state comprises the execution of a complete
function of code, but for some calculations it may be necessary to define extra states for the
if-branches of the validity check of the calculation result. This just depends on the criticality of
performed actions.

See Listing 4.1 and Listing 4.2 for an abstract example of a coarse state definition and a
detailed state definition.

Listing 4.1: Code with coarse state definition
void showResult() {

newState(1);
result = addNumbers(1,2,3,4)
if (isValidResult(result)) {
fputs("Successful result");
...

} else {
...

}

41

newState(2);
}

Listing 4.2: Code with detailed state definition
void calculate() {

newState(1);
result = addNumbers(1,2,3,4)
newState(2);
if (isValidResult(result)) {
newState(3);
fputs("Successful result");
...

} else {
newState(4);
...

}
newState(5);

}

Synchronization messages

The protocol used to synchronize the state between the subunits is kept fairly simple. The only
information transmitted are two types of messages.

1. State-Change messages. (type 0)

2. Command messages. (type 1) The command message may be one of the following

• Subunit is shutting down. (CMD_DOWN)

• Last transmission failed. (CMD_RETRY)

A message may not exceed the maximum message size the serial connection is able to send
in one transfer, e.g. 16 bits.

The messages are secured by using odd-parity for the transmission (handled by SPI) and by
using a message number, which is increased for each message.

Table 4.1 shows the message format. Note that the number of bits used for the message number
is not critical as it is only used to identify if two succeeding message are distinct or a retrans-
mission. It is suggested to encode all possible software states with an integer number.

0/1 - message type number content

Table 4.1: SPI message format

42

Network structure

As denoted already, multiple CIEs are connected in a network to comprise the full FDAS. This
connection medium and its structure used for this network connection is generally not relevant
for the concept presented here (except for one requirement), but of course it should guarantee
some properties like a certain availability. This commonly involves redundant networks or ring-
based structures. If a fieldbus is a feasable solution, one of the systems tailored for functional
safety presented in Chapter 3 Section 3.6 might be a good solution. A clever network setup may
already be able to tolerate a single fault of an arbitrary network component.

For this concept, there is one important requirement though: Both subunits must be able to read
all traffic on the network connection target for the CIE, but must still be able to address each
subunit individually.

As an example, we consider an IP-based network. In order to fulfil the requirement, one has
to ensure that the subunits are in the same collision domain. Hence, connecting both subunits
to a standard switch would violate the assumption as switches generally direct the traffic to the
targeted device’s port exclusively. An option would be to use manageable switches that allow
to alter the configuration accordingly, or to place a hub in front of the CIE, which generally
forwards incoming traffic to all ports. The subunits would then need to share an IP-address and
would each have an address on their own, to make them addressable individually.

Be aware though that this setup yields a single point of failure, the hub or managed switch.
A more intelligent setup would be required in such a case to circumvent this restriction.

The serial communication channel between the subunits, used for state synchronization, imposes
two requirements:

1. The connection must be full-duplex, so each side of the channel can talk to the other side
independently.

2. A hardware fault, e.g. a cable break-through, must be detectable by at least one side of
the channel.

Implementation-wise the first requirement can be met by using two SPI channels, where each
side is the master on one channel. The second requirements can be tackled by implementing a
communication protocol and checksums that make data loss and corruption recognizable.

4.3 Behavior of the framework

For the subsequent description of behavior of a CIE, for each case it is assumed to let subunit 1
be the active subunit. Furthermore, for simplicity of describing the solution, each software task
is assumed to be structured in a state-machine with three states, numbered 1 to 3.

The framework itself implements a state-machine as depicted in Figure 4.3.

43

Figure 4.3: State-machine of the framework

Normal operation

Throughout normal operation, the basic interaction scheme works like outlined in Figure 4.4.

Step 1: Subunit 1 receives input from some field device and starts processing.

Step 2: Subunit 2 receives same input and starts processing as well.

Step 3: Assuming subunit 1 finishes the first part of its current task and therefore has a state
change from state 1 to state 2. The state change is reported to the framework accord-
ingly.

Step 4: The framework reports this state change to subunit 2 and now blocks the task until
the framework running on subunit 2 reports the same state change being committed
there. The reporting happens via the dedicated serial communication lines number 2 in
Figure 4.2.

Step 5: Subunit 2 finishes the first part of the task, too.

Step 6: The framework communicates that to subunit 1 and lets the task continue as the suc-
cessful state change on subunit 1 has already been received.

44

Figure 4.4: Typical subunit interaction for normal operation

Step 7: The framework on subunit 1 now unblocks the task and it continues.

This scheme repeats for every task the application software executes.

4.4 Booting the CIE

Bringing a CIE to life for the first time requires some initial actions. This timespan, from the
un-powered state until the CIE is ready for operation, is called the boot-phase.

The boot-phase comprises the following steps:

1. Each subunit has to initialize its hardware modules.

2. If the hardware features built-in hardware self-tests (e.g. CPU test, RAM and flash ECC
tests, memory tests of I/O modules), those tests are executed.

3. The software-part of the framework is loaded.

4. The framework is initialized.

5. The framework waits for a configured timespan and listens for possible network traffic.

45

6. If no traffic is observed the framework sets its role according to its configuration (active
or passive), otherwise it chooses the passive role1. See below for more details.

7. The framework loads the application task.

Determining the active subunit

During the boot-phase a procedure is required to define which subunit will be the active subunit
and which will be the passive subunit. This very problem is the minimum instance of the leader
election problem in rings2 already mentioned in Chapter 3. The problem, solutions for it, and
proofs are extensively described in [6].

For the purpose of this framework though, it seems to be an overhead to run a full leader election
process/algorithm for determining the active subunit. Therefore, it is proposed to define the
initial state of a subunit in the subunit’s configuration. This has the advantage of a faster boot
process and guarantees a deterministic behaviour of the CIE unit.

4.5 Shut down of a subunit

In case of a failure being present within the CIE, it might be necessary to disable or shut down
a subunit to ensure fail-silence of the subunit on the main network bus. A subunit can be shut
down in multiple ways, depending on the situation. In order to assure fail-silence, the bus-guard
(connection number 4 in Figure 4.2) is forced to cut off the associated subunit from the main
communication bus (Number 1 in Figure 4.2).

In case of a software fault, the failure is detected by the opposite subunit, so the bus-guard is
triggered by this subunit via communication line number 4 in Figure 4.2.

In case of a hardware fault, the error is detected by the on-board hardware fault detection logic
and is therefore consequently triggering the bus-guard cut off by communication line number 3
in Figure 4.2. This cut off can be initiated by either of the two subunits, depending on which one
detects the failure first. If the hardware fault is not too severe, the subunit itself might be able to
gracefully shut down, otherwise the other subunit has to react.

1Although this case should never happen as both should subunits should always boot at the same time. This is a
safety precaution to not interfere with a possibly active subunit.

2We truly have a ring-structure at hand, as the two subunits are connected by a full-duplex channel.

46

CHAPTER 5
Results

In this chapter an evaluation of the concept proposed in Chapter 4 is given. First, some thoughts
on the concept itself are provided and how or to which degree it satisfies the requirements stip-
ulated. After that, a prototype implementation of the proposed framework is outlined as a proof
of concept.

5.1 Analysis of the concept

This section provides a comparison of the requirements defined in Section 4.1 and the applicable
standards of Chapter 2 and the potential of the presented concept in Chapter 4.

Difference to existing solutions

The presented concept is fairly different to the solutions described in Section 3.6. Those so-
lutions focus on safe communication on the network level exclusively and aim for high Safety
Integrity Level (SIL) compliance on that level. For achieving a fully certified product though, it
does not suffice to ensure safe network communication alone, but the actual devices sending and
receiving data are crucial in the end-to-end communication as well. A safe network connection
is only as good as the quality of data transferred over it. If the connected devices are corrupted,
the overall safety of the system is affected, even though the network might be perfectly fine.

The outlined concept therefore focuses on the devices and improves their resilience against fail-
ures. Together with a safe network and an appropriate application software, the presented frame-
work is one brick towards reaching the goals for functional safety on the overall Fire Detection
and Fire Alarm System (FDAS).

Requirements met

First, we will revisit the requirements of EN 54.

47

“Fire alarms have to be indicated within ten seconds.” This should be easily possible as
the Control and Indicating Equipment (CIE) has close to no load throughout normal operation.
Scanning the sensor bus every half a second and assuming the application’s evaluation code
takes another half second, then there is nine seconds left. Furthermore, assuming the evalua-
tion has 100 synchronization points, the overhead of the synchronization between the subunits
(50Mbit/s - two bytes per synchronization) makes up less than a millisecond. The overhead is
therefore negligible and there are still nine seconds left to send this information over the network
bus to another CIE. This is achievable with almost any network bus system.

The 100 second time limit for entering a fault warning condition should be easy as well. If we
only consider the CIE itself and leave the sensors aside, the detection of a failure should happen
at the next state synchronization point for software failures and will be detected immediately for
hardware problems. If we assume the application to have activity (in terms of state change to-
wards the framework) at least every ten seconds, for sending keep-alive signals over the network
bus for instance, then there is more than 90 seconds margin.

The re-establishment of function of operational devices after an interruption may not exceed
300 seconds. There are only a few conditions where a device would be considered still being
operational after some interruption. In case of a power-outage (and draining of the backup
batteries) the re-establishment is the same as resetting and booting the CIE. This takes for sure
less than a second for the framework part, so the limiting factor is the application software in
this case.

The requirements of Sections 13.4 and 13.5 - separate monitoring hardware and protected mem-
ory - are fulfilled by definition as we have two physically separated subunits monitoring each
other, each with a separate timebase and with Error-Correcting Code (ECC) protected memory.

Looking at the IEC 61508 standard, a full analysis whether the FDAS made up of a bunch
of CIE units reaches a certain SIL is not possible, as this would require to have the full-fledged
application at hand and operations is part of the safety integrity as well. Both is beyond the scope
of this thesis, therefore it will be outlined why the concept supports the application manufacturer
to reach higher SIL.

SIL 2 requires “good design practise”. This is clearly the case, as state-of-the-art methods
are used, which are considered best practise. Moreover, the framework helps to modularize the
application, which is an important criterion as well.

Towards SIL 3, the single fault tolerance is definitely a helpful property, which counts as
“sophisticated design method”. The technical challenge to reach a SIL 3 is for sure to reach the
necessary failure rate of< 10−7 dangerous failures per hour. Having a good redundancy concept
of the overall application is the first step towards this goal, where the presented framework is a
part of. In order to get a SIL 3 certification though, it is of course important that the underlying
hardware and the used network bus are also developed according to the standards.

Overall the concept should therefore fit pretty well to what is asked by the standards and what
can be considered useful for the application.

48

SPI communication

The communication protocol is a light-weight protocol. By definition a message shall not exceed
the size of what can be transferred in a single Serial Peripheral Interface (SPI) transmission. For
many hardware modules this is 16 bits. As described in the concept, the software states shall
be encoded as unique integer numbers. This limits the possible number of software states to
214 = 16384 if one bit is reserved for the message type and one bit is used for the message
number1.

In contrast to the main network bus connection, which can be freely chosen as long as the
minimum requirements are met, the internal connection and its protocol is under full control of
the framework. As outlined above, the use of SPI as technology is recommended. Table 5.1
provides an overview how typical communication errors as specified in IEC 61784-3 are being
handled for this internal connection and which safety measures are used.

Safety measures

Communication errors Se
qu

en
ce

nu
m

be
r

Ti
m

e
st

am
p

Ti
m

e
ex

pe
ct

at
io

n

C
on

ne
ct

io
n

au
th

en
tic

at
io

n

Fe
ed

ba
ck

m
es

sa
ge

D
at

a
in

te
gr

ity
as

su
ra

nc
e

R
ed

un
da

nc
y

w
ith

cr
os

s
ch

ec
ki

ng

D
iff

er
en

td
at

a
in

te
gr

ity
as

su
ra

nc
e

sy
st

em

Corruption 3

Unintended repetition 3

Incorrect sequence - not applicable -
Loss 3 3

Unacceptable delay 3

Insertion - not applicable -
Masquerade - not applicable -
Addressing - not applicable -

Table 5.1: SPI connection - errors and safety measures

Communication errors marked as “not applicable” are not considered for the SPI connection,
as this is a one-to-one connection with a dedicated channel for each communication direction,
therefore those errors cannot occur by construction.

1It suffices to use a single bit for the message number as only two subunits are connected and only one source
for messages is present for each communication direction. Therefore, alternation of the single bit already allows to
detect repeated transmissions.

49

Fault containment

The framework handles all, except one, of the described fault scenarios in a way which ensures
that a failure does not cause a fault in another component outside of the CIE.2 So the fault is
contained inside the CIE.

The only exception, where a fault may influence the remaining components in a negative
way, is the situation, when the internal serial communication channel for state synchronization
fails completely (e.g. a full cable break-through). In this case, some communication has to
happen via the network bus, which causes increased load on that bus. If this communication can
not be kept local to the CIE due to the chosen network bus technology, the fault containment
assumption is violated, as the increased traffic may interfere with regular traffic. In an extreme
unlikely worst-case, all serial lines of all CIE are broken and the full traffic has to be handled by
the network bus.

5.2 Proof of concept

As the proof of concept, a prototype implementation of the proposed framework was chosen.
The main focus was on implementing the software state synchronization and on testing typical
fault-scenarios to verify the robustness of the system.

Selected hardware

The prototype was implemented by using hardware parts that were specifically designed for
safety applications by the manufacturer. This may sound expensive and counterproductive to
what has been stated in the chapters before when talking about the low-cost requirement of the
hardware, but actually those chips are fairly cheap (only a few dollars), so they really fit best for
the purpose of this work.

The chosen products were the RM42 Launchpad boards from Texas Instruments. These
boards carry an ARM Cortex-R4 32bit Safety-Microcontroller Unit (MCU) (RM42L432) with
JTAG debugging interface and UART interface as well as power supply over USB right from
the PC. It additionally provides two SPI interfaces, but also multiple Controller Area Network
(CAN) and Local Interconnect Network (LIN) bus interfaces, next to a multitude of timers with
advanced pulse-width modulation (PWM) functionality. These properties clearly make this chip
targeted towards the automotive industry, which itself is of course heavily influenced by the
safety standard ISO 26262 “Road vehicles – Functional safety”, which is based on the IEC 61508
standard.

The chosen RM42L432 chip has a clock-speed of only 100MHz, but while writing this
thesis Texas Instruments released a newer version of the Launchpad series, which now comes
with the RM46 MCU providing twice the speed. Moreover the RM46 series also provides the
ARM Cortex-R4F architecture, which includes a floating point unit. This comes in very handy
for applications requiring heavy usage of floating point arithmetic. Albeit the clock-speeds

2Of course the unavailability of the CIE is an interruption of the normal state to other components as well, but it
does not cause those components to fail as well.

50

of the safety-hardware will not let the masses exult, this has the big advantage of low power
consumption.

In regards to safety-applications, some technical features of the platform have to be specifically
outlined:

• ECC support for memories to detect and correct memory corruption.

• Memory protection of almost any configuration memory including vital areas like inter-
rupt vector tables.

• Real time timer as independent separate hardware module, which is intended to be lever-
aged as a local timebase.

A few more advantages of the chosen board shall be named, which are considered beneficial for
this prototype:

• The hardware fulfils industrial standards for safety applications and may therefore be cer-
tified for IEC 61508 and ISO 26262.

• The hardware is developed following IEC 61508 standards up to SIL 3.

• Low energy consumption is a central criterion for FDAS, which is perfectly covered by
the selected hardware.

• The hardware provides enough interfaces and I/O pins to implement the proposed concept.

• The usage of Real-time Operating Systems (RTOSs), like FreeRTOS, is supported and
software ports are available.3

• External fault injection is possible to a certain degree.

• A real safety-project would surely choose such a hardware to ensure easy certification.

Hardware implementation

In Chapter 4, Figure 4.2 shows the suggested hardware setup for a CIE unit. The described
communication facilities are implemented or simulated using the I/O modules of the RM42
board and a terminal application on the PC.

Figures 5.1 and 5.2 show the setup of the prototype hardware with connected pins, but without
the USB connection to the PC.

3For the prototype implementation, RTOS has not been used, but generally this seems to be a good idea to ease
certification processes when using certified RTOSs.

51

Figure 5.1: Two RM42 Launchpads

Figure 5.2: The serial connection is realized with SPI2 and SPI3 to achieve two independent
full duplex connections.

Serial communication

The serial communication lines for software state synchronization are implemented as SPI con-
nections as suggested in the concept. The advantage of SPI is a high bandwidth. The test
hardware allows baudrates up to 50Mbit/s. To ensure independent full duplex communication
of both subunits, two separate SPI connections are used, one for each direction, where each sub-
unit is (clock) master of one connection. By construction, SPI is already full duplex by itself,

52

but with the limitation of having exactly one master chip, which controls the clock and therefore
initiates every communication. The concept, however, requires each subunit to be able to initiate
a data transfer independently. This is solved by using two SPI connections. The back-channel
(SOMI; slave-out-master-in) of each connection is used to transfer a strictly increasing value,
which allows to detect broken cables or other means of incomplete data transfers. In order to
be able to detect broken SOMI or MOSI (master-out-slave-in) lines, the channels have to use a
parity bit. More precisely odd-parity has to be used as this guarantees a parity-mismatch when
only zeros are transmitted, i.e. when a line is broken.

Network bus

Since the hardware does not support a physical layer for Ethernet, the primary network bus is
simulated by using the UART connection of the hardware board. The UART is tunnelled to the
PC via the USB interface and enables simple data transfers via COM-port.

Hardware error pin

The hardware error pin of each board is connected to a general purpose I/O pin of the other board.
These GPIO pins are configured to trigger hardware interrupts whenever a falling edge on such
a pin is detected. This assures immediate reaction to possible hardware faults. Unfortunately
the launchpads do not provide direct access to the hardware error pins as those have an LED
connected for demonstration purposes. A workaround for this problem is to exploit the Error
Signaling Module (ESM) (see Figure 5.3), which allows to react to a vast majority of hardware
faults with software routines. This allows to trigger a separate error pin. The errors are grouped
into three groups with group 3 being the most severe one.

Figure 5.3: Error groups of the Error Signaling Module with interrupt mapping and error pin
mapping.

As one can see from the diagram, it is not possible to react on errors in group 3 by interrupt
handler, so this form of severe hardware failure could only be handled if the built-in LED would
have been removed.

53

Purpose / Connection Subunit 1 Subunit 2
SPI2 CLK J10-24 J10-11
SPI2 SIMO J10-23 J10-14
SPI2 SOMI J10-22 J10-12
SPI2 CS J10-21 J10-13
SPI3 CLK J10-11 J10-24
SPI3 SIMO J10-14 J10-23
SPI3 SOMI J10-12 J10-22
SPI3 CS J10-13 J10-21
GND J2-1 J2-1
ERR OUT (GIOA0) J2-3 J2-4
ERR IN (GIOA1) J2-4 J2-3
J8 and J9 1=2 1=2
BUSGUARD local (GIOA7) J2-09 J2-10
BUSGUARD remote (GIOA4) J2-10 J2-09

Table 5.2: Pinout and jumper configuration used to connect the RM42 launchpads

The functionality of the error pin is easily testable with fault injection by writing a specified key
value into a register. This forces the error pin to a low-level.

Bus-guard control line

Due to the lack of the network bus interface, building physical bus-guards does not seem useful.
Therefore this functionality is controlled by the PC as well.

Pinout

Table 5.2 shows the detailed pinout and jumper configuration used to connect the devices.

Software implementation

Although the used hardware has a low price, the capabilities are overwhelming. Of course the
complexity of using such a manifold number of modules rises enormously. For instance, it takes
hours to grasp the concept and the details of interrupt handling in this chip. Luckily Texas
Instruments provides a great tool named HalCoGen, which provides convenient possibilities
to configure the various modules. The tool generates actual source code for initializing the
configured modules. The code has marked gaps the engineer can fill then with the application’s
code. The resulting code, where the C-files alone, without header-files, make a total of more
than 10,000 lines.

The code is structured in separate code-modules per hardware-module, a central interrupt han-
dling module and the modules of the framework itself. The entire I/O communication uses
interrupt-based transfer modes avoiding any kind of blocking the CIE by polling some hardware

54

state. The interrupt handling module allows for registration of callback functions helping to have
a clear separation of concerns.

Figure 5.4: Software stack of the prototype implementation.

The framework implementation itself, as depicted in Figure 5.4, consists of three modules,
each of them responsible for specific tasks. Generally, all modules provide an error-reporting
interface towards the application.

Network module

This module is responsible for controlling the interaction with the network bus and the SPI
and also controls the bus-guard. Additionally it holds the code to disable the bus-guard of the
opposite subunit. For testing purposes and due to the missing physical bus-guard of the test-
setup, it also contains code to simulate cutting off the local bus-guard.

The module listens to the complete traffic on the network bus and therefore provides the
interfaces to send and receive data over the normal network bus. For the application software this
means that the functions of this layer are used to send and receive data. Besides this functionality
the module filters out any traffic which is not meant for the application software. Specifically
this includes synchronization messages of the State Tracking module. While the subunit is in
passive mode, the network module reads all data from the network bus and stores it internally
until the matching output of the application software is captured or vice versa. Any mismatch or
missing or corrupted data is reported to the Redundancy Manager module for further handling
of the situation.

55

Towards the Redundancy Manager the module also provides the interface to cut off the
network connection by controlling its own and the opposite subunit’s bus-guard as well as the
necessary functions to send and receive messages from the other subunit via SPI. Therefore the
hardware pins associated with this functionality are assigned to the Network module and are
configured and handled by it. The module wraps the low-level hardware interaction and reacts
on any interrupt originating from those hardware modules.

For the purpose of testing the prototype, the module additionally provides dedicated filters
for the data transmitted via the UART connection towards the PC. As the network bus is also
simulated using the UART, the filter transparently adds commands and data targeted for the PC
and removes commands targeted for the subunit from the PC from the data stream on the UART
connection.

Redundancy Manager module

This module, sitting in the center of the framework, in between the other two modules, is the
heart of the framework and is responsible for making most of the decisions when it comes to
fault handling. Therefore, it keeps track of the role (active/passive subunit) the subunit currently
has and contains the configuration, which defines the default role of the system when it is reset.

The module provides interfaces towards the Network and the State Tracking module, but
does not communicate with the application except for the above mentioned error-reporting.

In case the Network module reports communication errors, either on SPI or the network
bus, or the State Tracking module instructs to switch the communication path, this module is
responsible for handling the error and initiates according actions like:

• Switching from SPI to the network bus in case the State Tracking module requests to do
so.

• Shutting down the subunit if the current situation requires this action.

• Cutting off the opposite subunit from the network bus (by instructing the Network module
to do so).

• Switching the role when necessary.

State Tracking module

This module provides the main functionality of keeping the subunits synchronized and provides
also the main API towards the application software. It holds the necessary configuration options,
like timeouts, which are essential to determine fault conditions.

The application software interacts with the module mainly by informing it about a new state.
Whenever a new state is reported by the application, the module sends the new state to the other
subunit via the interfaces provided by the Redundancy Manager module. Furthermore, it checks
if the other subunit already reported reaching the given state, otherwise it waits - and therefore
blocks the application process - until a new state is received. Once the new state is received,
the states are compared and checked for validity and the application process is unblocked and
operation can proceed.

56

At the level of this module, the correct reception of data is already guaranteed as any trans-
mission error is already handled within the other modules. Still, two fault cases may occur that
need to be dealt with in the State Tracking module. These are:

• No new state is received at all and the module runs into a timeout. In this case the other
subunit has to be assumed crashed, as no other error has occurred, like a connection prob-
lem. The appropriate actions have to be taken, i.e. shutting down the crashed subunit,
changing the own role to active, if not yet the case, and informing the application software
about the problem.

• The correctly received state does not match the local, expected state. As transmission er-
rors can again be ruled out, this means that some severe software error must have occurred,
which caused the subunits to run a different code branch, leading to different states.

Debugging and testing

In order to be able to test certain scenarios it is necessary to debug the hardware. Examples of
such scenarios are halting a Central Processing Unit (CPU) to provoke timeouts, altering variable
contents and other actions that require direct access to the target. The JTAG interface with the
USB connection has great integration with the Code Composer Studio (CCS) IDE used to write
the software.

Things are more interesting though, when debugging two targets at the same time using only
one PC. Albeit this feature is hopelessly under-documented in the IDE’s documentation, we
managed to convince CCS to start a debugging session for two targets at the same time.

This setup allows for comfortable debugging of two targets, being able to halt targets any
time and in any order. The UART connection to the PC is additionally used as logging facility
to transmit status messages.

5.3 Evaluation

The prototype was used to evaluate typical use cases and fault scenarios, which might occur
throughout life-cycle of such systems.

This section describes those scenarios and the results when executed or simulated on the
prototype. The described scenarios are valid without loss of generality.

Tests were conducted by injecting the various faults manually, either by disconnecting cable con-
nections or simulating hardware failures through software by either using internal hardware fault
injection mechanisms or by simply switching off certain hardware modules. For this purpose,
a set of commands were established, which can be sent via the (debugging) UART-connection
from the PC. Examples for such commands were "turn off SPI" or "send different state".

Each of the following sections will present a scenario with a description of the initial situation,
the expected behaviour of the system and the test procedure with the actual reaction of the
prototype implementation.

57

Complete power outage

Initial situation

The system is under normal operation. Abruptly the power supply for the whole CIE is not
available anymore and the CIE is without power.

Expected behaviour

This case is the most simple case. The system has to comply with the “fail-silence” requirement.
Due to the power outage the whole CIE should be physically cut off the network by construction,
as the mono-stabil relays are not powered anymore. The expected recovery from this state is a
normal bootup sequence.

Test case

As the prototype implementation does not provide physical relays, this scenario can’t be fully
validated. The system runs a full bootup sequence, though, after power is restored.

Bootup one subunit

Initial situation

The initial situation is to have one subunit crashed and the other one running as active subunit.
Specifically subunit 1 is assumed to be the crashed subunit, which is the default active subunit
by configuration. Subunit 1 is rebooted by issuing a reset.

Expected behaviour

Assuming resetting subunit 1 solves the crash cause, it is expected that throughout the bootup
of subunit 1 the already active subunit 2 will be recognized and subunit 1 will not try to get the
active subunit as well.

Test case

This scenario is tested by only using subunit 1. While booting it, the PC simulates network bus
traffic over the UART interface. The timeout for traffic detection on bootup was set to 5 seconds
for the purpose of the test to ensure enough time to start the traffic simulation manually.

The debug output of the booted subunit shows that the traffic is recognized properly and that the
subunit enters passive mode successfully.

Bus-guard fails

Initial situation

During normal operation a bus-guard abruptly fails.

58

Expected behaviour

In case a bus-guard fails, the subunit will be disconnected from the network bus automatically
due to the design requirements of a bus-guard (see Section 4.2).

Assuming the bus-guard of subunit 1 fails, the situation is easily detectable by subunit 2, as
expected network traffic - which is usually received on the network interface of subunit 2 - is not
present, but the lock-stepped state synchronization is still working.

If the problem is shifted over to subunit 2 (being the passive unit), the situation is more
difficult as the passive unit does not actively send data over the network bus. So subunit 1 has
no way to detect a failing bus-guard of subunit 2. Still the lock-stepped state synchronization
works normally and the impression for subunit 2 is that subunit 1 has a failed bus-guard, as it
receives no data at all from subunit 1.

This situation clearly implies that the principle "always trust yourself"4 is not applicable for this
scenario. It is not reasonable to let the subunit detecting the fault be the ruling subunit, hence it
may not be held responsible to switch the active subunit.

The solution to this scenario is therefore to only detect the missing bus activity on the passive
subunit5, but avoiding to take any overruling actions on the passive subunit. It is much cleverer
to let the subunit, which detected its own bus-connection is disrupted due to missing traffic, to
shut down on its own, i.e. signalling the remaining subunit explicitly that something is not OK.
In case the active subunit is the affected subunit, it can actively retreat as active subunit and can
switch the roles. This ensures that both subunits have correct perception of the state of the whole
unit. If the passive subunit’s bus-guard fails, the active subunit will notice that the passive one
shut down and will in no case try to switch over to it.

This scenario does not require any specific recovery actions. If the bus-guard is getting
repaired and connection to the network bus is re-established, the currently active subunit can
stay active.

Test case

As outlined above, missing communication on the network bus must never lead to an action
towards the opposite subunit.

Therefore, the tests conducted for this scenario were split into two approaches.

• The first approach was to hide network traffic for the passive subunit simulating a defective
bus-guard for the passive subunit. As intended, the passive unit retreated and declared
itself as shut down. The active subunit detected the missing SPI communication and acted
as if it was a passive subunit crash, which is perfectly fine.

4This principle comes in very handy in many cases, where a component detects a problematic situation, but does
not know the actual cause. In such a case the "always trust yourself"-principle suggests that the component should
assume it is fault-free and it should act accordingly until other components prove the opposite.

5Detecting a missing bus activity of the passive unit is not possible, as there is no bus activity by definition.

59

• The second approach was to implement a dedicated signal of the network bus interface
of each subunit to signalize a broken cable connection. Since the network bus is only
simulated via UART this should mimic the behaviour of Ethernet, which would detect if a
network cable is removed from its socket, or if the bus-guard cut the connection off. This
assumption of being able to detect a broken cable on hardware level is of course only one
way to achieve a distinction between a failing bus-guard and lack of active traffic on the
bus.6 The actual test was then to simulate the bus-guard cut off by sending the described
signal to the active subunit. The active subunit expectedly sent the CMD_DOWN com-
mand via SPI after receiving the signal. The passive subunit took over the active role as
intended.

Permanent hardware failure

Initial situation

Some hardware part fails permanently, without the option to repair it automatically.

Expected behaviour

Having some failing hardware part in a subunit will trigger the dedicated hardware failure pin,
which indicates the problem.7

As by construction of the connection between the subunits and the bus-guard (refer to Fig-
ure 4.2), the affected subunit will be disconnected from the network bus by its bus-guard auto-
matically (fail-safe state) when the error-pin is low. As the indication about the hardware error is
also seen by the other subunit, the other subunit elevates to the active subunit if it wasn’t already.

A permanent hardware failure involves manual intervention to replace the hardware. A
recovery is therefore happening only by rebooting the system with the new hardware.

Test case

As the physical error pin on the prototype hardware has a fixed connection to an LED, the error
pin has to be simulated. As denoted in Section 5.2, the additional error pin connection is used
by simulation to indicate a hardware error. The test was conducted by letting the subunit, being
assumed failed, send the error signal to the other subunit. This special action has again been
triggered by a command from the PC.

Serial communication fails (hardware)

Initial situation

While the two subunits are in sync, one SPI channel is disrupted.
6In case the real network bus does not support this kind of feature, the introduction of confirmation messages or

regular keep alive signals have to be employed on protocol or even application level to provoke network activity.
7One may implement hardware fault detection by software checks as described in Chapter 3, but this can never

happen on a level, which is possible for hardware-based detection. Hence, certain hardware faults are simply not
detectable by software.

60

Expected behaviour

Generally, we have to distinguish between a fault in the hardware, i.e. a cable break-through -
remember we assume the sender/receiver hardware units are checked by the on-board hardware
fault detection, so they are not considered here - or transient faults like electromagnetic radiation.
But regardless of the exact fault both cases need the same treatment, so we can neglect the exact
cause of the failure.

The state synchronization should detect this problem and should react appropriately by
changing the active subunit if necessary. The connection problem will be detected by the slave
unit of the disrupted channel as it will run into a timeout condition for the expected state change.

Whenever such a fault occurs, both subunits will notice the broken communication link. The
subunits consequently try to reach (e.g. ping) the other subunit via the normal network bus to
signalize being alive.

Once the physical connection is re-established the passive subunit has to re-synchronize with
the active subunit. In case of a real cable break-through, this procedure is of theoretical nature
obviously, because fixing a cable usually requires manual intervention and will require a reboot
of the CIE anyway, so the re-synchronization happens implicitly through the reboot.

For this scenario we see a major service degradation. First, it requires to move some of the com-
munication from the erroneous serial communication path to the main network bus. Second, the
communication speed on the network bus is far slower than on the internal serial bus. Imagine
the difference in bandwidth when using High Speed SPI (e.g. approximately 50 Mbit/s net) on
the internal serial channel versus 10base2 (maximum 10 Mbit/s gross) on the network channel,
which is not uncommon in the field of FDASs. Additionally, the load on the network bus in-
creases even more, as the synchronization overhead is added to the normal traffic. This might
also decrease the general bus performance outside the CIE, if the traffic can’t be kept local to the
CIE by the used bus technology.

Test case

The test was conducted by removing one cable of an SPI connection.
The application software was triggered by a signal via the UART to simulate a state change,

which started the state information exchange in the StateTracking module. In the prototype
implementation, a connection error is detected by the SPI hardware module. Depending on
whether SIMO/SOMI, CE or CLK cable is getting interrupted, the detection differs slightly.

• In the first case, where SOMI or SIMO lines are cut, the transfer would work as expected,
but the parity check would fail. Note that the concept requires odd-parity for the commu-
nication channel, so sending only zeros due to missing connection will trigger the parity
error interrupt.

• The second case is when the CE line is disconnected. This would trigger a falling edge on
the CE line causing the subunit being slave to initiate a new transfer. This is not a problem
for the transmission of data in general, but the transmission would never be finished as

61

this would require the CE line to return to high-level. The subunit would therefore never
receive the data.

• The third case is a missing CLK signal. This slave subunit would receive a falling edge CE
signal and would wait for the transmission to start. The transmission would be finished
from the master by pulling CE high. At this instant the slave unit would issue a data length
error interrupt due to missing data bits.

As expected, the slave side of the broken connection ran into a timeout, signalized this
condition and sent a CMD_RETRY to the other subunit via the network bus.

Application fails

Initial situation

We consider the same course as described in Section 4.3, but assume that in step 5 subunit 2 fails
to finish the first part and crashes. The serial communication, including the software stack of
the framework, is still fully functional as data is transferred successfully. Only the application
software fails to indicate the new state change, which should be the same as the one on subunit
1. This might be caused by a very short transient error in the hardware, which causes only the
application task to crash or run in an endless loop.

Expected behaviour

The consecutive process of operation has to change as depicted in Figure 5.5 and involves the
following steps:

Step 6: The framework on subunit 1 detects a timeout while waiting for the response from
subunit 2.

Step 7: The framework shuts down subunit 2 as described in Section 4.5.

Step 8: The framework classifies subunit 2 as failed and reports this to the application.

Step 9: The framework unblocks the waiting task.

The reaction of subunit 1 to shut down subunit 2 is correct as subunit 1 is the currently active
subunit by definition of the process in Section 4.3. The system’s functionality is preserved and
therefore this single fault can be tolerated.

If the active subunit is the failing subunit, though, the passive subunit will be in a slightly
different position. It faces the same symptoms as the active subunit would face, but may not
shut down the other subunit immediately. It rather has to figure out whether the active subunit
has really crashed by sending a CMD_RETRY command. Additionally, watching the activity
on the network bus for a defined time span may also reveal liveliness of the active subunit. If
there is no life-sign from the active subunit, the passive subunit has to become the active subunit
and can safely shut down the crashed subunit.

62

Figure 5.5: Subunit interaction with failure of one subunit

If the cause of the failure is only due to software reasons, a reset of the crashed subunit
should suffice to bring it back to life. This will of course require re-synchronization with the
active subunit. Unfortunately this re-synchronization of state is not limited to the framework
itself as it does not store any state of the application software. Most likely re-synchronization
involves heavy work by the application software as well. Since the actual application software
is out of scope of this work, this form of recovery is not covered by this thesis.

Resetting the whole CIE unit will generally be the cleanest solution, which allows both
subunits to gain up-to-date insight on the state of the overall system and the connected sensor
buses.

Test case

Active subunit crash:
This case was simulated by omitting the response on any communication path by putting an
endless loop into the demo application software just before output for the network bus would
have been generated and before the new state would have been signalled to the StateTracking
module.

The passive subunit successfully determined the failing active subunit due to timeout of the
state synchronization and lack of traffic on the network bus and insufficient response to the

63

CMD_RETRY command. It successfully issued a shutdown command towards the bus-guard of
the active subunit and took over the active role.

Passive subunit crash:
The simulation of this case was done like above by using an endless loop. Since it is usually not
critical to shutdown passive subunit, the implementation does this, whenever state synchroniza-
tion fails.

State mismatch

Initial situation

The information is received correctly via the serial communication line, but the received state
does not match the expected local state. The state synchronization reveals a state or message
number mismatch.

Expected behaviour

There are two possible reasons. Either a programming error caused the issue or the transmission
was corrupted, which did not trigger fault detection (parity check). The latter might happen
when an even number of identical bits have flipped.

In order to distinguish these two cases, the receiving subunit will reply a CMD_RETRY
message. If the retry fails again, the connection is assumed to be broken and the system reacts as
described in the scenario for failing serial communication by shifting communication to the
network bus. Consequently, if the mismatch persists, the first reason has to be assumed, a
programming error, and the whole CIE has to be shut down (safe state).

A recovery from this situation is not possible without manual intervention. A state mismatch is
severe issue and needs careful investigation. Programmatic errors need to be fixed in design and
a failing serial communication needs replacement of hardware.

Test case

This test case was simulated by employing an application software that simply runs a loop,
which increments the state number. The invalid state injection was done by a UART command,
which manipulated the state number, so a wrong state was sent to the other subunit in the next
iteration.

The other subunit successfully detected the mismatch.

64

CHAPTER 6
Conclusion

Safety does not come for free, neither does it in the real world, nor does it in an embedded
system. The methods for achieving higher levels of safety integrity presented in Chapter 3 come
with a major drawback: significant increase in cost. Also flexibility in design is very limited by
safety interests as flexibility requires freedom, but ultimate freedom and total safety (and also
security) simply do not fit together and neither of those two extremes are desirable.

As the complexity of the proposed framework clearly shows, it is not trivial to create a system
from resource-restricted hardware components1 that is compatible with international functional
safety standards, but it is certainly possible.

This thesis clearly shows that a well-chosen hardware and software combination in a hot-standby
pattern with mutual cross-checking is capable of identifying an arbitrary single fault and is also
capable of tolerating a number of single faults in the system. In order to guarantee single fault
tolerance, though, it is necessary to tackle those situations, which are not solvable on the Control
and Indicating Equipment (CIE) level, on the next higher abstraction level.

By using the proposed concept, a system can gain substantial benefits in terms of reliability
and dependability. Increasing the reliability of the devices connected to a (already safe) network
is one more step towards reaching higher Safety Integrity Levels (SILs). Detecting and dealing
with faults earlier, on a lower level, before those result in a total system failure, also eases
system design on the higher abstraction level as the devices of the system have less possible
failure states. Using the framework ensures that those devices reach a safe state in many fault
scenarios.

The critical reader may say that fault tolerance has to be present in the bigger system, the “Fire
Detection and Fire Alarm System (FDAS)” in the fire safety domain, anyway, so why bother
with individual units at all? We are convinced that tackling faults and failures at the lowest
possible level is always beneficial for the overall system. Even more so, as a CIE unit can be

1Resources are interpreted in a wide definition ranging from slow hardware, over missing interfaces, all the way
to costs. All of them might be restricted.

65

defined as a single fault containment region, freeing the upstream system from coping with the
nasty details of those faults.

6.1 Lessons learned

One of the first learned lessons was the one about hardware selection for the prototype. It is by far
not trivial to select the best fitting hardware today, as the market provides a lot of options, even
for the specific field of safety. Since the manufacturers invest a fortune into this market segment,
it is clear that the market for safety-appliances is growing faster than ever, which correlates with
the perception of tighter and more comprehensive integration of today’s embedded systems.

Another new insight was that microcontrollers designed for high safety levels play in a com-
pletely different league. The complexity involved to even get the basic bootup right is enormous.
Albeit a really small version of the available safety controllers was used, the technical reference
manual already ships with over 1000 pages and that does not include any safety manuals or
similar documents.

The complexity of today’s microchips is really daunting. Even the cheapest chip has capabil-
ities, which cause severe difficulties for bigger safety-projects in regards to safety management.
To give a simple example: The RM42 controller used for the prototype supports around 90 in-
terrupt channels, which can be mapped to the interrupt routines dynamically, hence allowing to
change priority of interrupts on the fly. Ensuring that there is no unsafe combination of inter-
rupt execution that might cause system failure is a challenging task. In aid of safety it is even
questionable whether certain features of those Microcontroller Units (MCUs) should be used at
all.

“Projects targeted for safety critical applications need to plan a lot of budget and time for even
the simplest tasks.” That very saying is widely known, yet understanding the real impact, one
has to work through such a project once to make this really comprehensible.

SPI can be nasty

A really tough problem, that had to be overcome, was the Serial Peripheral Interface (SPI)
connection between the boards of the prototype implementation. As denoted in Section 5.2,
two SPI interfaces are used to connect the subunits. On each of those interfaces one of the two
subunits is the master, on the other one it is slave.

The major problem faced was that the subunit communication did only work in one direc-
tion. More precisely, only one SPI interface worked flawlessly, the other interface only issued
corrupted data. After writing a dedicated SPI test software and doing many tests, it was figured
out that it is crucial for a working communication that the master subunit of an SPI connection
is always booted first, which is impossible for the proposed concept, where two CIE subunits
are always equal. Hence, there is no defined order on the boot sequence. One test case also
was to disconnect the two subunits from each other completely, let them boot independently and
reconnect them afterwards. But it turned out that this did not solve the problem either.

The reason, why initialization order is so important, is that if the slave is initialized first, it
might receive unintended signals on the CS or CLK lines - which might happen during the boot

66

up and initialization of the master unit - causing the slave to already start a transmission and
shifting bits. As the master is of course not sending/receiving anything in the meanwhile this
situation leads to a complete de-synchronization of master and slave. Even worse, a synchro-
nized state can never be re-established!

Commonly SPI is used to communicate with sensors, displays, and other devices, which are
really "slaves" also in the way that they are rather useless without a master controlling them.
This implies that usually the master is initialized first and then the slaves are initialized. Hence,
this sort of problem does not occur in those standard use cases.

In the case of the prototype, this initialization scheme is not true, as each of the subunits is
master and slave of two SPI connections and each subunit has its functionality independent of
the SPI "partner". This setup has a severe consequence, namely the initialization order of the
devices can not be fixed as both devices are equal.

Knowing the right initialization order, it would have been easy to define a “synchronized”
initialization order, which would always initialize the master of each connection first. But here
we face the next problem: We are not able to assure we can always achieve this particular order,
as we assume independent failure of any subunit at any time. So the only solution for fixing this
problem actually was to get rid of those disturbing signals before the SPI interfaces are properly
initialized.

The final solution for fixing the two-way communication via two SPI interfaces was to ensure
that the output states of all involved pins (but especially the CS and CLK pins) are constant
until the SPI interfaces are initialized. As the datasheet, of the MCUs revealed, all the SPI
pins are preset to work as inputs with pull-up resistors activated upon power-up of the MCU.
Consequently, the configuration of the SPI interface has to ensure that those pins, which are
configured as outputs, will retain the high level of the pin when switched from input to output
direction, otherwise a change of level would potentially disturb the SPI connection again. As
matter of this prerequisite, the clock polarity for transmissions has to be changed to be inverted,
such that it is low-active. Additionally, all pins configured as input should keep their pull-up
resistors activated to avoid accidental level changes if the other subunit is disconnected for some
reason (e.g. power loss, cable broken, and others).

Special considerations

As with every concept there are cons of the proposed concept too, but no solution comes at no
cost. Therefore special consideration should be contemplated to minimize the impact of those
challenges.

The biggest challenge is obviously the maximum achievable speed the application may run
at. It is not primarily limited by the actual Central Processing Unit (CPU)’s clock-speed, but by
the speed (more precisely the net bandwidth) of the communication lines used to synchronize
software state. Therefore, it is highly recommended to use the fastest communication interface
available on the hardware for this very purpose.

The prototyping hardware allows to run the SPI on a maximum clock-speed half of the
system-clock. Depending on the density of synchronization points in the user application, the
execution speed has therefore an upper bound of 1

2 the system-clock speed reduced by the min-
imum delay the state synchronization via the serial communication line may cause. This tells

67

us that for applications with tough speed requirements it is of utmost importance to choose an
MCU with high clock frequency, if the speed of the synchronization channel is off the system’s
clock-frequency by such a high ratio. In addition to that, the number and density of synchro-
nization points in the application software as well is a major factor of performance. It has to be
stated with utmost importance that the number of synchronization points have to be kept as low
as reasonably possible.

When choosing a different transmission channel for the state synchronization, one has to keep
in mind the net bandwidth of this channel. The net bandwidth is heavily depending on the
overhead of the communication protocol used and on the communication mode. Certain bus
systems might provide a very fast connection, but are using an asynchronous communication
mode (e.g. Ethernet) and will consequently have indeterministic delays. This is especially valid
for bus systems using bus arbitration modes that may cause unlimited delay. So a synchronous
communication system, with deterministic transfer times, is really to be preferred, otherwise the
designed protection mechanisms do not suffice.

Note on the inter-CIE usage of the network bus: As the network bus is also used in certain
situations to communicate signals amongst the subunits, some additional traffic is imposed to
the network. It has to be ensured that this traffic is not captured by other units or subunits on the
network. In structured (switched) networks a properly configured collision domain will already
help to keep this sort of traffic local to the belonging CIE. On bus networks like 10Base2 a
proper network address structure has to be used to avoid wrong system behaviour.

6.2 Outlook

The current concept may not be satisfactory when it comes to handle multiple faults. In order
to handle such use cases, the system may be scaled to multiple nodes. In this respect, the cross-
checking provisions as currently designed, would require a fully connected network between all
nodes. Such a concept might not scale very well, hence further possibilities for interconnecting
those nodes have to be assessed. The downside of more nodes clearly is an increasing over-
head for lock-stepped state synchronization, which further degrades performance of the overall
system. Possible ways of adapting the framework towards this kind of applications are yet un-
explored.

In general, the presented concept is not bound to the fire safety domain and may be reused
for other appliances. Those appliances may impose less stringent requirements on the overall
system, such that the concept fits “out of the box”.

A possible field of usage would be the control systems of multicopter platforms (aka drones),
which are getting more and more popular these days also for commercial flying. These systems
face very limiting environments (size, battery power), but shall fulfil rather high levels of func-
tional safety. In some aspects those requirements are not far off the requirements imposed on
manned aircraft. Putting a fully equipped Triple Modular Redundancy (TMR) system in action
on such platform might not be feasible, but the proposed concept already provides a good fault
detection and partial tolerance and edge cases do always exist, in any application. Hence it

68

should suffice to reduce the likeliness that those edge cases cause e.g. a fatal crash to the lowest
reasonable value following the ALARP principle.

This chapter describes the selected hardware used for the prototype. When choosing this hard-
ware several aspects were left aside, which are relevant for productive systems and which de-
serve further assessment. For the sake of completeness, a listing of some of those criteria is
provided at this place:

• The temperature ratings of the hardware parts have to be matched for the intended envi-
ronment of deployment of the system.

• Safety systems tend to be used for a very long time in comparison to the ubiquitous elec-
tronic gadgets. For the product owner, it will be of great interest that guaranteed avail-
ability of the system parts for the intended lifetime of the product is warranted by the
manufacturer.

• When it comes to integration questions of the hardware parts, choosing a manufacturer
with good customer support might be a key criterion for choosing the hardware supplier.

• Last but not least, pricing of the hardware parts is a major decision factor.

Clearly, these criteria have more focus on the management and application life-cycle, but still
this is an important aspect of project planning. Future hardware may - or rather will for sure -
provide even more possibilities in the functional safety area, hence the concept presented in this
thesis may need adoption. More important, the assumptions need to be re-evaluated if they still
hold true.

An aspect that has not been mentioned up to this point is security. The presented concept
does not consider security as an integral brick. One might say this is careless, but security is not
considered a critical factor for the purpose of the framework. Important communication between
subunits (serial communication lines) and on fieldbuses (to sensors) happens on connections that
are exclusively used by the subunit’s application, so the attack surface is rather small for those
interfaces. Software “hacks” in general have to be tackled on the operating system level anyway.
Hence, further research may suggest security measures for the proposed concept which aids the
application software.

Another possible direction of research would be to integrate the software prototype into an Real-
time Operating System (RTOS). Doing so implies that the state synchronization scheme will
need improvements then as well, since the system may use multiple parallel running tasks.

Regarding a further improvement in reliability, the complete design could be modified to im-
plement “triple modular redundancy”. Furthermore, on the application software level, diversity
aspects may be implemented such as:

• Design diversity: Use different implementations of the same task on the subunits. This of
course would affect the possible granularity of the state synchronization mechanism.

69

• Temporal diversity: Calling the same task multiple times on both subunits (maybe syn-
chronizing the state in between those repeated calls) to compensate transient hardware
faults. Although it should be noted that such faults are unlikely to occur at the same time
on both subunits and additionally not being detected by the state synchronization mecha-
nism.

70

Acronyms

CAN Controller Area Network. 50

CIE Control and Indicating Equipment. 4, 6, 9, 10, 18, 33–38, 41, 43, 45, 46, 48, 50, 51, 54,
58, 61, 63–66, 68

COTS Commercial Off The Shelve. 22

CPU Central Processing Unit. 18, 39, 45, 57, 67

DMR Dual Modular Redundancy. 24, 36, 37

ECC Error-Correcting Code. 39, 48, 51

EU European Union. 7

FDAS Fire Detection and Fire Alarm System. 3–10, 12, 13, 18, 33–36, 41, 43, 47, 48, 51, 61,
65

HDL Hardware Definition Language. 20, 21

HVAC Heating, Ventilation and Air Conditioning. 4

IEC International Electrotechnical Commission. 2, 3

LIN Local Interconnect Network. 50

LON Local Operating Network. 28

MCU Microcontroller Unit. 4, 6, 21, 29, 37, 39–41, 50, 66–68

PCB Printed Circuit Board. 20

PSE Power Supply Equipment. 18, 34

PWM pulse-width modulation. 50

71

RTOS Real-time Operating System. 51, 69

SFF Safe Failure Fraction. 14, 15, 35

SIL Safety Integrity Level. 12–19, 21, 22, 34, 39, 47, 48, 51, 65

SPI Serial Peripheral Interface. 39, 42, 49, 50, 52, 53, 55, 56, 60, 61, 66, 67

TMR Triple Modular Redundancy. 24–26, 28, 36, 68

List of Figures

1.1 FDAS are located in the field and controller levels of the automation pyramid [14] . 4

2.1 The Parts of IEC 61508 [33, P. 17] . 11
2.2 VDMA-24200-1: Example for a risk graph to assess a target SIL [36] 13
2.3 Two SIL 2 elements achieving a SIL 3 result. [33, P. 51] 14
2.4 Safety life-cycle [33, P. 11] . 16

3.1 System setup for standby redundancy. 24
3.2 System setup for dual and triple modular redundancy 25
3.3 Hierarchy of safety tactics [39] . 27
3.4 Components of a SafetyLON node [29] . 29
3.5 openSAFETY interoperability [open-safety.org, 20.9.2015] 30

4.1 Basic structure of an FDAS not including supplementary equipment 36
4.2 Hardware structure of a CIE unit . 38
4.3 State-machine of the framework . 44
4.4 Typical subunit interaction for normal operation 45

5.1 Two RM42 Launchpads . 52
5.2 The serial connection is realized with SPI2 and SPI3 to achieve two independent

full duplex connections. 52
5.3 Error groups of the Error Signaling Module with interrupt mapping and error pin

mapping. 53
5.4 Software stack of the prototype implementation. 55
5.5 Subunit interaction with failure of one subunit . 63

72

List of Tables

2.1 SIL specification for low and high demand rates according to IEC 61508 13
2.2 Requirements for Safe Failure Fraction (SFF) . 15

4.1 SPI message format . 42

5.1 SPI connection - errors and safety measures . 49
5.2 Pinout and jumper configuration used to connect the RM42 launchpads 54

73

Bibliography

[1] Regulation (EU) No 305/2011 of the European Parliament and of the Council
of 9 March 2011 laying down harmonised conditions for the marketing of con-
struction products and repealing Council Directive 89/106/EEC Text with EEA
relevance. http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=
1423479686092&uri=CELEX:32011R0305, 03 2001.

[2] Validierung des Zeitverhaltens von kritischer Echtzeit-Software, volume INFORMATIK
2003. GI, Gesellschaft für Informatik, Bonn, 2003.

[3] Control of fire by early humans. http://en.wikipedia.org/wiki/Control_
of_fire_by_early_humans, April 2014.

[4] Definition of Safety. http://en.wikipedia.org/wiki/Safety, July 2014.

[5] Hagit Attiya and Jennifer Welch. Fault-Tolerant Clock Synchronization, pages 277–293.
John Wiley & Sons, Inc., 2004.

[6] Hagit Attiya and Jennifer Welch. Leader Election in Rings, pages 31–58. John Wiley &
Sons, Inc., 2004.

[7] Austrian Federal Association of Fire Brigades. Anschaltebedingungen von Brandmeldean-
lagen an öffentliche Feuerwehren, 2006.

[8] Austrian Federal Association of Fire Brigades. Fire Detection Systems, 2011.

[9] Austrian Standards Institute. EN 54 - Fire detection and fire alarm systems, Part 4: Power
supply equipment , October 1997/2006.

[10] Austrian Standards Institute. EN 54 - Fire detection and fire alarm systems, Part 1: Intro-
duction, May 2011.

[11] Austrian Standards Institute. EN 54 - Fire detection and fire alarm systems, Part 2: Control
and indicating equipment, November 2011.

[12] Austrian Standards Institute. Industrial communications subsystem based on ISO 11898
(CAN) for controller-device interfaces - Part 5: Functional safety communication based on
EN 50325-4, May 2013.

75

http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1423479686092&uri=CELEX:32011R0305
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1423479686092&uri=CELEX:32011R0305
http://en.wikipedia.org/wiki/Control_of_fire_by_early_humans
http://en.wikipedia.org/wiki/Control_of_fire_by_early_humans
http://en.wikipedia.org/wiki/Safety

[13] Bernadette Charron-Bost, Shlomi Dolev, Jo Ebergen, and Ulrich Schmid. Fault-Tolerant
Distributed Algorithms on VLSI Chips. Dagstuhl Seminar Proceedings. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany, 2009.

[14] DIN German Institute for Standardization. Building automation and control systems
(BACS) - Part 2: Hardware (ISO 16484-2:2004); German version EN ISO 16484-2:2004,
2004.

[15] DIN German Institute for Standardization. DIN VDE 0833-2 Alarm systems for fire, in-
trusion and hold up - Part 2: Requirements for fire alarm systems, June 2009.

[16] DIN German Institute for Standardization. DIN 14675 Fire detection and fire alarm sys-
tems - Design and operation, April 2012.

[17] Danny Dolev. The byzantine generals strike again. Journal of Algorithms, 3(1):14 – 30,
1982.

[18] Holger Hölscher and Johann Rader. Microcomputers in safety technique: an aid to orienta-
tion for developer and manufacturer; results of a research report supported by the German
Federal Minister for Research and Technology. TÜV Rheinland, 1986.

[19] IEC. Functional Safety Explained. http://www.iec.ch/functionalsafety/
explained/, April 2014.

[20] International Electrotechnical Commission. IEC 61508 - Functional safety of electrical/-
electronic/programmable electronic safety-related systems, 2010.

[21] Johannes Kasberger. Reliable IP based communication for fire alarm systems. 2013. Paral-
lelt. [Übers. des Autors] Reliable IP based communication for Fire Alarm Systems; Wien,
Techn. Univ., Dipl.-Arb., 2014.

[22] H. Kopetz. On the fault hypothesis for a safety-critical real-time system. In Manfred
Broy, Ingolf H. Krüger, and Michael Meisinger, editors, Automotive Software & Connected
Services in Mobile Networks, volume 4147 of Lecture Notes in Computer Science, pages
31–42. Springer Berlin Heidelberg, 2006.

[23] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed Embedded Ap-
plications. Real-Time Systems Series. Springer, 2011.

[24] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in distributed real-time
systems. Computers, IEEE Transactions on, C-36(8):933–940, Aug 1987.

[25] Parag K Lala. Fault tolerant and fault testable hardware design. Prentice-Hall, 1985.

[26] J.C. Laprie. Dependability: Basic concepts and terminology. In J.C. Laprie, editor, De-
pendability: Basic Concepts and Terminology, volume 5 of Dependable Computing and
Fault-Tolerant Systems, pages 3–245. Springer Vienna, 1992.

76

http://www.iec.ch/functionalsafety/explained/
http://www.iec.ch/functionalsafety/explained/

[27] D. J. Lu. Watchdog processors and structural integrity checking. IEEE Trans. Comput.,
31(7):681–685, July 1982.

[28] T. Michel, R. Leveugle, and G. Saucier. A new approach to control flow checking without
program modification. In Fault-Tolerant Computing, 1991. FTCS-21. Digest of Papers.,
Twenty-First International Symposium, pages 334–341, June 1991.

[29] T. Novak and T. Tamandl. Architecture of a safe node for a fieldbus system. In Industrial
Informatics, 2007 5th IEEE International Conference on, volume 1, pages 101–106, June
2007.

[30] Nahmsuk Oh. Software implemented hardware fault tolerance, 2000.

[31] Martin Perner. Self-stabilizing byzantine fault-tolerant clock distribution in grids. Master’s
thesis, Institut für technische Informatik, 2013.

[32] Manfred Schwarz. Solving k-set agreement in dynamic networks. Master’s thesis, Institut
für technische Informatik, 2013.

[33] D. Smith and K. Simpson. Safety Critical Systems Handbook - A Straightforward Guide
to Functional Safety, IEC 61508 (2010 Edition) and Related Standards. 2010.

[34] Dilip Soni, R.L. Nord, and Christine Hofmeister. Software architecture in industrial ap-
plications. In Software Engineering, 1995. ICSE 1995. 17th International Conference on,
pages 196–196, April 1995.

[35] T. Tamandl and P. Preininger. Online self tests for microcontrollers in safety related sys-
tems. In Industrial Informatics, 2007 5th IEEE International Conference on, volume 1,
pages 137–142, June 2007.

[36] VDMA. VDMA 24200-1 - Gebäudeautomation Automatisierte Brandschutz- und En-
trauchungssysteme - ABE, 03 2004.

[37] VdS Schadenverhütung GmbH. VdS 2095 Guidelines for automatic fire detection and fire
alarm systems - Planning and Installation, May 2010.

[38] Harald Pe Vranken, Marc F Witteman, and Ronald C van WUIJTSWINKEL. Design for
testability in hardware-software systems. IEEE Design & Test of Computers, 13(3):79–87,
1996.

[39] Weihang Wu and T. Kelly. Safety tactics for software architecture design. In Computer
Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th
Annual International, pages 368 – 375 vol.1, sept. 2004.

[40] J.F. Ziegler and W.A. Lanford. The effect of sea level cosmic rays on electronic devices.
Journal of Applied Physics, 52(6):4305–4312, Jun 1981.

77

	Introduction
	Definition of safety
	Target application domain
	Problem statement and motivation

	Standard specifications
	EN 54
	IEC 61508
	Other standards

	Functional safety - state of the art methods
	Definition of terms
	Hardware methods
	Approaches for fault detection
	Software architecture
	Other concepts
	Applications for fieldbuses

	Concept
	Requirements analysis
	Proposed model
	Behavior of the framework
	Booting the CIE
	Shut down of a subunit

	Results
	Analysis of the concept
	Proof of concept
	Evaluation

	Conclusion
	Lessons learned
	Outlook

	Acronyms
	List of Figures
	List of Tables
	Bibliography

