
D I P L O M A R B E I T

Deformierbare Bildregistrierung mittels Featurelet
Algorithmen - Implementierung in die 3D Slicer

Software und Validierung

Ausgeführt am
Atominstitut

der Technischen Universität Wien

in Zusammenarbeit mit dem
Christian Doppler Labor für Medizinische Strahlenforschung für die Radioonkologie

der Medizinischen Universität Wien

unter der Anleitung von

Univ.-Prof. Dr. DI Dietmar Georg

durch

Andreas Renner

Gudrunstraße 117/2/27
1100 Wien

Wien, 12. September 2015

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

The typical course of a radiotherapy (RT) treatment is several weeks. In that
time organ motion and shape changes can introduce uncertainties in the application
of dose to cancerous tissue and organs at risk. Monitoring and quantifying these
changes can yield a more precise treatment margin definition and thereby reduce
dose delivery to healthy tissue and adjust tumor targeting. Deformable image regis-
tration (DIR) has the potential to fulfill this task by calculating a deformation field
between a planning CT and a repeated CT of the altered anatomy. Application of
the deformation field on the original contours yields new contours that can be used
for an adapted plan. DIR is a challenging method and therefore needs careful user
interaction and validation. Without a proper graphical user interface (GUI) a mis-
registration cannot be easily detected by visual inspection and the result cannot be
fine-tuned by changing registration parameters. To provide a DIR algorithm with
such a GUI available for everyone, we created the extension Featurelet-Registration
for the open source software platform 3D Slicer. The registration logic is an upgrade
of an in-house-developed DIR method, which is a featurelet-based piecewise rigid
registration. The so called „featurelets” are equally sized rectangular subvolumes of
the image which are rigidly registered to rectangular search regions on the target
image. The output is a deformed image and a deformation field. Both can be visual-
ized directly in 3D Slicer facilitating interpretation and quantification of the results.
For validation of the registration accuracy two deformable phantoms are used. The
performance is benchmarked against the initial in-house-developed algorithm with
comparable or better results.

Contents

1. Introduction 1

2. Radiation Oncology 4
2.1. Volume Concepts in Radiotherapy . 5

2.1.1. Margins in RT . 6
2.2. Advanced Treatment Techniques . 7

2.2.1. IMRT . 8
2.2.2. Image-guided Radiotherapy 8

2.3. Adaptive Radiotherapy . 9

3. Image Registration 11
3.1. Classification of Registration Methods 11

3.1.1. Transformation Models . 13
3.2. Deformable Registration . 13

3.2.1. Deformation Models . 13
3.2.2. Matching Criteria . 14
3.2.3. Optimization Methods . 16
3.2.4. Demons Registration . 18

3.3. Featurelet Registration . 19
3.4. Validation of Registration Accuracy 21

3.4.1. Validation Methods . 21
3.4.2. Validation Metrics . 23

4. Software Development Tools 26
4.1. 3D Slicer . 26

4.1.1. Slicer Architecture . 28
4.1.2. Slicer Modules . 29

4.2. ITK . 30
4.3. VTK . 31
4.4. Qt . 31

4.4.1. Qt Designer . 31
4.4.2. Qt Creator . 32

5. Software Development - Featurelet-Registration 33
5.1. Basic Design of the Featurelet Algorithm 33
5.2. Featurelet-Registration . 35

5.2.1. Slicer Extension . 35

i

Contents

5.2.2. Development Environment . 35
5.2.3. Structure of the Source Code 36
5.2.4. Registration Logic . 37
5.2.5. GUI of Featurelet-Registration Module 42
5.2.6. Workflow using Featurelet-Registration 42

6. Validation of the Featurelet Algorithm 45
6.1. Prior Validation Studies . 45

6.1.1. Validation Studies of Söhn et al. 45
6.1.2. Validation Studies of Fabri et al. 47

6.2. Validation of the Slicer Implementation 53
6.2.1. Visual Inspection . 53
6.2.2. Phantom I . 54
6.2.3. Phantom II . 55

7. Discussion and Conclusion 56

8. Acknowledgments 57

A. Appendix 58
A.1. Code for DeformationFieldGenerator 58

page ii

1. Introduction

Patient anatomy usually changes over the course of radiotherapy (RT) treatments,
which can last for several weeks. During this time, patients typically loose weight,
tumors can shrink or grow and organs like the bladder or the rectum have different
filling at each treatment session. These factors lead to organ motion and shape
changes between sessions as illustrated in Figure 1.1. Not taking into account the
expected changes can lead to an underdose of the tumor and an overdose of the
organs at risk (OAR). One strategy to accommodate for a known tumor motion is
enlargement of irradiation margins, but this also leads to an increased irradiation of
surrounding healthy tissue. Several previous studies [1, 2, 3, 4, 5, 6] have shown that
a strategy accounting for patient-specific changes of organ position can provide both
adequate tumor irradiation and a better OAR sparing. Thus, taking into account
temporal effects of the tumor position is a benefit for the patient and can reduce side-
effects of the RT treatment. However, such an individualized strategy requires image
guidance techniques as well as sophisticated treatment planning. Four-dimensional
(4D) RT is the explicit inclusion of temporal changes in anatomy during imaging,
planning, and dose delivery. It is an intense area of study in radiation oncology [7].
Yan et al. [8] proposed adaptive radiation therapy (ART) as a tool to minimize the
discrepancy between the target volume and the actual dose distribution. It requires

Figure 1.1.: 4D effects in RT: the setup process of each session, differences in organ filling
and dose response as well as the breathing process have to be considered for a successful RT
treatment (picture from [9]).

1

1 Introduction

finding the spatial relationship between all images of the same patient for treatment
planning and a possible adaption of the plan. This can be a very time-consuming
process as often a re-delineation of structures in the updated images is needed.

Deformable image registration (DIR) can solve this problem by deforming the
contours from a planning CT to the altered anatomy of the patient represented by
a rescanning CT or a cone-beam CT (CBCT). Image registration aims to geometri-
cally align two images. A comprehensive survey of image registration in general and
different algorithms available is given in [10, 11]. A systematic overview of DIR and
recent advances in that field is given in [12]. One concept of a model-independent,
multi-modal registration method is a featurelet algorithm based on the approach of
Söhn et al. [13]. The authors suggest to break down the global problem of DIR
to multiple independent rigid registrations of small subvolumes called „featurelets”.
This idea was picked up by Fabri [14] to develop an in-house DIR method. Subse-
quent validation studies [15, 16] have shown promising results for deformable phan-
toms, but for clinical datasets in some cases the algorithm did not satisfy.

The aim of this work was to build a graphical user interface (GUI) for the already
existing in-house-developed DIR method to facilitate user interaction. It should
allow for direct visualization of the output and quick adjustment of registration pa-
rameters. Thus, it should pose as a tool for investigation of cases with not satisfying
registration results and facilitate further developments of the registration method.
In addition we wanted the algorithm to be open source to ensure reproducibility.

To provide a DIR algorithm with such a GUI available for everyone, we created the
extension Featurelet-Registration for the open source software platform 3D Slicer. It
is a freely available software package for visualization and image analysis. 3D Slicer
provides a powerful GUI to explore and interact with imaging datasets, and it is
designed to be available on multiple platforms, including Windows, Linux and Mac
Os X.

In the first part of the thesis an introduction to RT with a focus on external-beam
RT is given (Chapter 2). Volume concepts in RT are presented and a short overview
of image-guided RT (IGRT) is given as motivation for image registration. Chapter
3 is an introduction into image registration and gives an overview of different exist-
ing methods. Also the basic concept of the featurelet algorithm as well as several
validation methods for the accuracy of a registration algorithm are presented there.
Chapter 4 is about the software development tools that were necessary to create the
3D Slicer extension. In the following Chapter 5 the implementation of the featurelet
algorithm is presented. There, the first Section 5.1 is about the software develop-
ment of Fabri [14] which was used as basis for the Featurelet-Registration extension
of Slicer. In the subsequent Sections details about the developed software are pre-
sented. In Chapter 6 validation studies of the featurelet algorithm are summarized.
Section 6.1 provides an overview of already existing studies on the basic concept of

page 2

1 Introduction

the featurelet algorithm and the software development of Fabri. Section 6.2 is about
the validation of the Slicer implementation. In the final Chapter 7 the conclusion
about our software development is presented and an outlook of future extensions to
the algorithm is given.

page 3

2. Radiation Oncology
During the lifetime one in 3 women and one in 2 men in the United States will
develop cancer [17]. Common treatment techniques are surgery, chemotherapy and
radiotherapy. The latter one is covered in more detail in the present chapter. A
comprehensive overview of radiation oncology in general and the basis of medical
physics as well as recent advances in radiotherapy techniques is amongst others given
in [18] and [19].

Radiotherapy (RT) or radiation oncology aims to destroy cancerous cells by uti-
lizing ionizing radiation. As main beam delivery system linear accelerators are used.
Beside tumor control, minimization of damage to surrounding healthy tissue has to
be considered. This selectivity can be achieved by exploiting the difference of tumor
control probability (TCP) and normal tissue complication probability (NTCP) as
shown in Figure 2.1. Biological response processes depend on spatial and tempo-
ral distribution of the applied dose. The temporal contribution is considered by
splitting up the total dose in several daily doses, so called fractions, which can be
delivered over a period of weeks. It was empirically found that this method results
in good tumor control and less severe side effects. The spatial contribution of the
applied dose is the main topic of the following sections.

Figure 2.1.: Therapeutic window: the probability of tumor control and normal-tissue
damage shown as function of the radiation dose; between these two graphs is a region
where complication-free control of the disease (dashed line) is possible (picture from [18]).

4

2 Radiation Oncology

Figure 2.2.: Volume concepts in RT: graphical illustration of the volumes-of-interest, as
defined by the ICRU 50 and 62 reports [20] (picture from [19]).

2.1. Volume Concepts in Radiotherapy

The basis for the treatment planning process as well as for comparison of treat-
ment outcomes is the definition of certain volumes as a common language for all
professional groups involved in RT. This is done in ICRU Report 50, 62 and 83
[20, 21, 22]. The following volume concepts are provided as principal volumes re-
lated to 3D treatment planning (compare Figure 2.2) [19]:

GTV Gross Tumor Volume: „is the gross palpable or visible/demonstrable extent
and location of malignant growth.” (ICRU Report 50) The GTV may consist
of the primary tumor, metastatic regional nodes, or distant metastasis.

CTV Clinical Target Volume: „is the tissue volume that contains a demonstrable
GTV and/or subclinical microscopic malignant disease, which has to be elim-
inated. This volume thus has to be treated adequately in order to achieve the
aim of therapy, cure or palliation.” (ICRU Report 50)

ITV Internal Target Volume: is a newer concept defined in ICRU Report 62, that
attempts to divide treatment inaccuracies into internal patient factors and
external factors. The ITV consists of the CTV and an additional internal
margin which considers variations in the size and position of the CTV relative
to a reference frame of the patient.

PTV Planning Target Volume: „is a geometrical concept, and it is defined to select
appropriate beam arrangements, taking into consideration the net effect of all

page 5

2 Radiation Oncology

possible geometrical variations, in order to ensure that the prescribed dose is
actually absorbed in the CTV.” (ICRU Report 50) The PTV is an expansion
from the ITV to account for external treatment inaccuracies such as set-up
uncertainties, machine tolerances and intra-treatment variations. It is linked
to a reference frame of the treatment machine. Consideration of internal and
external uncertainties together leads to an expansion from the CTV to the
PTV.

OAR Organ at Risk: are normal tissues and organs adjacent to the PTV which
are non-target. The radiation sensitivity of OARs may significantly influence
treatment planning and/or prescribed dose. For many OARs a certain toler-
ance dose is defined at which a given level of late radiation morbidity can be
expected [18]. In general, the aim should be to minimize irradiation of OARs.

PRV Planning Organ at Risk Volume: OAR volumes uncertainties through set-up
and organ movement have to be considered in the same way as for the CTV.

2.1.1. Margins in RT

For the success of a treatment it is important that the CTV is irradiated with the
prescribed dose. This is ensured by considering possible geometrical uncertainties
in the planning process. Occurring errors can be:

• Poor organ/tumor definition: Some tumors have a similar radiographic density
compared to the surrounding healthy tissue or they can have diffuse infiltration
at the tumor periphery. In these cases delineation of the GTV is not obvious
and it is possible that the shape of the tumor and its size will not be completely
appreciated by the clinician. This can lead to a considerable inter-observer
variation [18].

• Set-up error: Patient set-up is usually performed based on markers placed on
the skin. Reproducibility of the set-up is limited by the motion of the skin
relative to internal anatomy [23]. Newer approaches reduce this error by the
use of image-guidance.

• Internal organ movements: Organ motion with respect to bony anatomy in-
troduces additional uncertainties. Different filling states of hollow organs such
as bladder and rectum or respiration can lead to tumor motion and shape
changes from day to day and even throughout a single day [18].

Thus, margins are used to deal with errors that occur both relative to treatment
planning as well as during the actual treatment delivery. As mentioned above this
is done by expanding the CTV or the ITV with a safety margin to obtain the PTV.
High dose is delivered to the PTV to ensure that the CTV receives the required
dose for tumor control despite the presence of geometrical errors. The downside of
considering errors by the use of safety margins is a high-dose irradiation of healthy

page 6

2 Radiation Oncology

tissue. Thus, margins should not be excessive, but sufficient. Detailed information
about errors and margins in RT is given in [23].

2.2. Advanced Treatment Techniques

In this part, we cover external beam RT techniques, which do not fit into con-
ventional treatment planning. A tumor volume is usually irregular-shaped. Con-
ventional RT uses simple rectangular treatment fields, which are not sufficient to
provide an ideal irradiation to such a volume. Accordingly, normal tissue has to be
irradiated as well to guarantee that the CTV receives the prescribed dose. With
the aim to deliver a possibly high dose to the tumor while sparring the surrounding
tissue and OARs new approaches have been developed to achieve higher conformity
of CTV and the delivered dose distribution. Such techniques are called conformal
RT (CFRT) and can be divided into two broad classes:

• conventional CFRT, involving only geometrical field shaping and

• intensity-modulated RT (IMRT) techniques.

The 3D dose distribution of the first method can only have a convex shape, whereas
the second technique is able to produce a concave 3D dose distribution. Because of
its high achievable conformity, IMRT is a rapidly expanding subspecialty of CFRT
and is presented in more detail in the following section.

The reason CFRT is possible nowadays is a simultaneous development in all dif-
ferent fields involved in the process of RT treatment. The single steps required for
a successful therapy are called „chain of RT” and are illustrated in Figure 2.3 [18].

Figure 2.3.: Chain of RT: to achieve the aim of higher conformity of dose distribution
and CTV a whole chain of processes is involved. At each stage good performance is required
(picture from [18]).

page 7

2 Radiation Oncology

2.2.1. IMRT

Figure 2.4.: Illustration why IMRT is needed for some cases; the prostate has a concave
shape and both bladder and rectum are in its proximity. An OAR in the concavity of the
PTV limits dose escalation (picture from [18]).

Intensity-modulated RT (IMRT) offers an enhancement of conformal high-dose
irradiation. This is achieved by the use of several treatment fields with nonuniform
photon fluence. A single field is divided into subfields of uniform photon fluence.
The latter one can be varied independently. Thus, the dose of one or several sub-
fields from one direction can be reduced when there is an OAR within the treatment
field. The missing dose can be compensated from another beam angle. Thus, IMRT
is able to create concavities in treatment volumes as it is the case for prostate shown
in Figure 2.4. In addition this approach reduces high dose areas outside the CTV
and therefore supports dose escalation for the tumor [18].

Internal tumor and organ movement as well as uncertainties in patient set-up
are important when considering IMRT, because of tight margins and steep dose
gradients. Thus, taking advantage of the progress in imaging techniques is needed
to improve the accuracy of treatment delivery. Daily imaging before each fraction
is required to capitalize on the potential benefits of high-precision RT [24, 18].

2.2.2. Image-guided Radiotherapy

The accuracy of a treatment delivery can be improved by the use of advanced imag-
ing methods throughout the whole process of RT. To describe this, the term Image-
guided RT (IGRT) is used (Mackie et al. 2003; Bortfeld et al. 2006). However,

page 8

2 Radiation Oncology

IGRT is not a precise concept. Most RT treatments in recent years could be de-
scribed as image guided. The term IGRT as presently used implies the use of a 3D
imaging system on the treatment machine, allowing for accurate assessment of the
patient setup and the tumor in relation to the beam before each individual fraction
[18]. The traditional approach to implement IGRT is to use the megavoltage treat-
ment beam and a so called electronic portal imaging device (EPID). The downside
of using the treatment beam for imaging is a lack of soft tissue contrast to show
organ motion. Therefore, kilovoltage imaging modalities like cone-beam computed
tomography (CBCT) are placed inside the treatment room or even within the trea-
ment machine to solve this problem.

Target motion results in smearing of gradients of the dose distribution, which leads
to smoothing of dose inhomogeneities within the target and dose washout beyond the
target edges. This is usually considered with increased planning margins to ensure
desired irradiation of the target [23]. Using the information of IGRT regarding the
tumor motion has the potential to reduce margins and possibly lead to an adaption
of the treatment plan. The availability of on-line image data from IGRT presents a
challenge to the treatment staff. They are required to make instant interpretations
of the data in order to decide whether to correct the position of the patient or not
before proceeding to treat the patient. In addition, techniques such as target of
the day and adaptive RT (Yan et al. 1997; Hugo et al. 2007) are currently being
evaluated [18].

2.3. Adaptive Radiotherapy

If anatomical changes such as weight loss or tumor shrinkage as well as organ motion
cannot be accounted for by adjusting the position of the patient, an adaptation of
the treatment plan may be necessary [25]. For these cases Yan et al. [8] proposed
adaptive radiation therapy (ART) as a tool to minimize the discrepancy between
CTV and the actual dose distribution through the concept of a closed feedback loop
control. It consists of four sub-processes [26]:

• assessment of treatment dose

• identification/evaluation of possible treatment variation

• decisions if treatment modification is necessary and

• adaptive treatment modification.

On-line imaging introduced in the course of IGRT enables to identify geometric un-
certainties. If a numerical model of tumor motion is available, which predicts the
behavior of the system, the last step of the feedback loop can be automatically ap-
plied. Re-optimization of the treatment plan is triggered only after an unacceptable
error is acknowledged based on updated patient images. In practice, the feedback

page 9

2 Radiation Oncology

loop of ART is not completely closed but manually triggered [26, 27].

A very time-consuming process in ART and re-planning in general is finding the
spatial relationship between all the images of the same patient, as it often requires
manual re-delineation of structures in the updated image. Deformable image regis-
tration (DIR) can solve this problem by deforming the contours from a planning CT
to the altered anatomy of the patient represented by a rescanning CT or a CBCT
[25].

page 10

3. Image Registration

Medical imaging modalities do not provide images of the patients anatomy
and physiology. They do record certain physical properties of tissue.
Birkfellner, 2011 [28]

Different modalities yield different information about the anatomy. This fact can
be used to get a more comprehensive „insight” into the patient. Also sometimes
changes of the anatomy over time are useful to know. They are usually not visi-
ble on a single image. Thus, a series of images of the same patient is needed. To
be able to evaluate such results of different modalities or different points in time,
there has to be some information about which point in one image corresponds to
a certain point in the other image. To get this information image registration is used.

The process of image registration can be described as the overlaying of two or
more images of the same scene, but taken with different imaging conditions such as
different viewpoints or different time points. In addition, different imaging modal-
ities show different anatomy. Image registration aims to geometrically align two
images. In this thesis, these two images are referred to as fixed image and moving
image. Unfortunately, there is no single method which can achieve the alignment for
every possible setting. A registration method has to take into account the diversity
of possible images to be registered as well as various types of degradations (e.g.
noise corruption) [11].

A comprehensive overview of image registration in general and different algorithms
available is amongst others given in [10] or [11].

3.1. Classification of Registration Methods

As there is a great number of different, sometimes very specialized applications,
there is also a variety of different registration algorithms. To get a better overview
of existing methods they can be subdivided into different categories according to
several possible criteria. Maintz et al. try „to paint a comprehensive picture of
current medical image registration methods” and use the following nine criteria to
classify different registration methods [10]:

• Dimensionality: e.g. 2D-2D, 2D-3D or 3D-3D

11

3 Image Registration

• Nature of registration basis

– Extrinsic: based on external objects introduced into the image space (e.g.
gold markers)

– Intrinsic: based on the image information of the patient itself

– Non-image based: possible in the case of two scanners which have coor-
dinate systems calibrated to each other

• Nature of transformation

– Rigid

– Affine

– Non-rigid

• Domain of transformation

– Local

– Global

• Interaction

– Interactive

– Semi-automatic

– Automatic

• Optimization procedure

• Modalities involved

– Mono-modal

– Multi-modal

• Subject

– Intra subject: all images involved in the registration are from one patient

– Inter subject: images are from different patients

– Atlas: images from a single patient are registered to a database (obtained
by the use of images from many subjects)

• Object: e.g. head, thorax etc.

In this thesis not every single criterion needs to be covered in detail. For the
following section the most important one is the nature of transformation.

page 12

3 Image Registration

3.1.1. Transformation Models

For every image registration algorithm a mapping function is needed. The type of
the underlying transformation model should correspond to the assumed geometric
deformation of the moving image and to the required registration accuracy [11].
In Figure 3.1 several transformation models are shown according to the degrees of
freedom (DOF).

Figure 3.1.: Different transformation models ordered by the number of parameters [14].

A rigid image coordinate transformation only allows for translation and rotations.
Thus, in 3D it has 6 DOF. If the transformation additionally allows for scaling and
shearing it is called affine. A composition of several transformations is categorized
as a single transformation of the most complex type in the composition. Both rigid
and affine transformations can be described with a single matrix equation [10].

For a more complex deformation of an image a non-rigid transformation is needed.
In this case the image can be viewed as a rubber sheet which is stretched by ex-
ternal forces. Stiffness or smoothness constraints act as internal forces to achieve
alignment with minimal amount of stretching [11]. In this thesis non-rigid methods
are referred to as deformable image registration.

3.2. Deformable Registration

A systematic overview of deformable image registration and recent advances in that
field is given in [12]. The findings of this survey are presented in the current section.
The authors claim three main components of a registration algorithm: a deformation
model, an objective function and an optimization method.

3.2.1. Deformation Models

The DOF of a deformation model correspond to the number of parameters the
registration algorithm has to extimate at the optimization process. Thus, the choice
of a certain deformation model is a trade-off between computational efficiency on the
one hand and richness of description of the registration problem on the other hand.
Deformation models can be classified into three different categories of geometric
transformations (compare Figure 3.2):

page 13

3 Image Registration

Figure 3.2.: Classification of deformation models; task-specific constraints are topology
preservation, volume preservation and rigidity constraints; detailed information about the
single models and references to original papers can be found in [12].

• Physical models: use a physical model for the deformation; can be computa-
tionally expensive.

• Interpolation theory: do not guarantee, that the deformation is according to
natural laws; uses interpolation and approximation theory instead.

• Knowledge-based: includes prior information of the registration problem.

In addition there are models which satisfy a task-specific constraint, but in general
they are used together with physical models or interpolation theory.

3.2.2. Matching Criteria

Three different groups of registration methods can be distinguished by how infor-
mation is used to drive the matching process (compare Figure 3.3):

• Geometric methods aim to find correspondences between meaningful anatom-
ical locations in the image. Such positions are called landmarks. Once such a

page 14

3 Image Registration

Figure 3.3.: Classification of matching criteria; detailed information about the different
criteria and references to original papers can be found in [12].

landmark has been identified the registration problem is straightforward. Ge-
ometric registration can also handle large deformations. However, landmark
extraction can be a difficult task and is an active topic of research.

• Iconic methods are also called voxel-based or intensity-based methods. They
evaluate the alignment of two images by means of an intensity-based criterion.
Such a criterion usually takes into account the whole image domain. Thus,
iconic methods are computational more expensive. In addition, the obtained
result is influenced by initialization. Nevertheless, this approach comes with
the potential to better represent a dense deformation field.

• Hybrid methods are a combination of geometric and iconic methods. They try
to use the advantages of each method.

page 15

3 Image Registration

Voxel-based Registration Methods

As for the featurelet algorithm voxel-based methods are used this particular topic
is covered in more detail.

Voxel-based methods take into account the whole intensity information of an im-
age. As there are different physical principles behind the numerous available image
acquisition techniques, the criterion should be able to account for different intensity
relations between two images. Thus, different matching criteria are necessary for
images obtained with one modality and multiple modalities.

In the mono-modal case the sum of squared differences (SSD) and the sum of
absolute differences (SAD) can be used if an identity relationship between image
intensities is assumed. The latter one is less sensitive to outliers. In the case a
linear relation between signal intensities is assumed correlation (C) and normalized
cross correlation (CC) can be used. The latter one is useful if images were acquired
with different intensity windowing.

In the multi-modal case two main approaches are used. The first one is the
reduction of the multi-modal problem to a mono-modal problem. This can be done
either by simulating one modality from another or by mapping both modalities to a
common domain. The second approach is the use of information theoretic measures.
Popular methods are mutual information (MI) and normalized mutual information
(NMI). The latter one is indepentend from the amount of overlap of two images.

3.2.3. Optimization Methods

The optimization process tries to find the best alignment between two images ac-
cording to a function which evaluates a certain matching criterion as well as a
regularization term. Thus, the choice of an optimization methods also affects the
quality of the result. Two categories based on the variables an optimization method
tries to infer can be distinguished (compare Figure 3.4):

• Continuous: The variables take real values and the function of the match-
ing criterion is differentiable. To estimate the optimal parameters continuous
optimization methods use an update rule given by:

~Θn+1 = ~Θn + αn~gn(~Θn) (3.1)

with the vector of parameters of the transformation ~Θ, the number of iteration
n, the step size αn and the search direction ~g. The search direction takes into
account the matching criterion as well as the regularization term.

• Discrete: The variables take discrete values. Recently, discrete Markov ran-
dom field (MRF) formulations have been investigated to be used for image

page 16

3 Image Registration

Figure 3.4.: Classification of optimization methods; detailed information about the single
methods and references to original papers can be found in [12].

registration. In the domain of probability, a MRF is a undirected graphical
model represented by:

G = {V,E} (3.2)

with the undirected graph G consisting of a set of vertices V and a set of
edges E. The nodes of the MRF encode the random variables. These random
variables can take values of a discrete set of labels. The edges connect the nodes
and represent the relationship between the variables. The MRF is solved by
assigning the optimal label to each node.

Beside continuous and discrete optimization methods there are heuristic and meta-
heuristic approaches such as evolutionary approaches representing a third category.
Because of their global optimization nature [29], they are able to explore a large
solution space, but do not provide any guarantee regarding the optimality of the
solution.

page 17

3 Image Registration

3.2.4. Demons Registration

As an example of a deformable image registration algorithm the demons method
of Thirion [30] is presented. The reason why such an algorithm was chosen to
be presented in more detail is because in Chapter 6 the results of the Featurelet-
Registration are compared to a demons registration method.

Thirion proposed a physical deformation model based on the thermodynamic con-
cept of diffusion. In analogy with Maxwell’s demons in one image the boundaries
of the structures are considered as semi-permeable membranes which let the other
image diffuse through these interfaces. For this step the second image is regarded
as a deformable grid. This diffusion model is illustrated in Figure 3.5.

Figure 3.5.: Thirions diffusion model for demons registration; the moving image, here
considered as a deformable grid, is diffusing through the contours of the structures in the
fixed image. This action is controlled by the so called „demons” sitting within these inter-
faces (picture from [30]).

The diffusion model relies mainly on the concept of polarity, which is in this
case „inside” or „outside”. In addition, for a demons registration an attraction force
depending on the distance can be introduced by an optical flow method.

Implementation of the Diffusion Model

Given a moving image M and a fixed image F it is assumed that:

• M is a deformable grid with particles as vertices; the particles can be classified
as „inside” or „outside”

• and the contour of a structure S in F is a membrane.

Along this contour there are the demons. A demon is defined as an effector situated
in a point P of the boundary of a structure S. If a point ofM is labeled with „inside”
or „outside” the demon either pushes it inside or outside of S. For the optical flow
the intensity function f in F as well as the intensity m in M are introduced at a
given point P . Based on the gradient ~∇f(P) a direction ~r from the inside to the

page 18

3 Image Registration

outside can be attached to each demon. The aim is to iteratively compute a final
transformation T between the space of the moving image M and the fixed image F .
After extracting a set of demons DF from the fixed image F , the iteration consists
of two steps:

• For each demon d ∈ DF the associated elementary demon force ~an(d) is com-
puted. This force depends on the direction ~rF of the demon at point P and
on the polarity of M at point T−1n (P).

• Using all the elementary demon forces Tn+1 can be calculated out of Tn.

The use of Demons, as introduced by Thirion, was an efficient algorithm providing
a dense correspondence, but lacked a sound theoretical justification in the beginning.
Thus, numerous papers tried to give theoretical insight into the mechanisms of this
successful algorithm [12].

3.3. Featurelet Registration

The concept of the algorithm, which is used for the 3D Slicer extension, is based
on the approach of Söhn et al. [13]. The authors suggest to break down the global
problem of deformable image registration to multiple independent rigid registrations.

Figure 3.6.: Sagital view of a lung; the images are subdivided into a grid of featurelets.
The left side shows the grid before registration (a) and the right side the deformed grid after
registration (b). Featurelets that are missing in (b) moved completely out of the presented
slice (picture from [13]).

As illustrated in Figure 3.6 the image is divided into regularly distributed sub-
volumes, the so called „featurelets”. It is assumed that a featurelet is small and

page 19

3 Image Registration

deformed only by a small amount. Thus, the deformation can be approximated by a
3D rigid registration. In addition, it is assumed that the fixed and the moving image
are already rigidly preregistered. Thus, the center of mass shift as well as the bulk
rotation should be eliminated. The featurelet-based image registration algorithm
can be represented by five steps:

Step 1: Initialization of the featurelet grid
The region of the moving image which is indented to be registered is covered
by a 3D grid of equally sized rectangular featurelets. The size of a featurelet
is a parameter of the algorithm. It has to be chosen according to the typical
size of distinct anatomical features.

Step 2: Local rigid registration of featurelets
Each featurelet is registered to the fixed image. For algorithmic efficiency
possible transformations are restricted to translations. For every featurelet in
the moving image a corresponding rectangular local search region in the fixed
image is defined. The size of the search region is another parameter of the
algorithm. It has to be chosen according to the typical shift of a featurelet.
Two different voxel-based similarity measure functions are used: the correla-
tion coefficient (CC) for intra modal registration and the normalized mutual
information (NMI) for inter modal registration.

Step 3: Assessment of local registration quality
The registration quality of an individual featurelet can be assessed by the
configuration of the similarity measure around the optimum. Three cases are
distinguished:

• Case I: local image information of a featurelet is high enough to find
a unique, distinct optimum of the similarity measure; in Figure 3.6 (b)
featurelets with green frame.

• Case II: local image information is not enough to find a unique registra-
tion; similarity measure function has a degenerate optimum; in Figure
3.6 (b) featurelets with yellow frame.

• Case III: low or no image contrast of a featurelet; similarity measure
function has no clear optimum and low similarity values for all possible
shifts; in Figure 3.6 (b) featurelets with magenta frame.

For case III the deformation of the featurelet can not be determined based
on image contrast alone. Here, additional information from neighboring fea-
turelets is used. This is introduced by a subsequent relaxation step.

Step 4: Relaxation
To assure that the deformation field is physically meaningful additional as-
sumptions are made. This is implemented as minimization of a deformation
energy given by a spring-mass model. To each featurelet a virtual mass mi is

page 20

3 Image Registration

assigned. The dynamics are represented by the center position Xi which has
to satisfy the following differential equation:

miẌi = −DẊi + F
[i]
springs + F

[i]
image (3.3)

where D is a damping factor, F [i]
springs are the „internal” and F [i]

image the „exter-
nal” forces. The internal forces are the resulting forces introduced by virtual
springs connected to the center of each 3D neighbor. The external forces are
given by the gradient of the similarity measure. The minimum deformation
energy is represented by the asymptotic equilibrium where speed and acceler-
ation for all featurelets vanish → Ẍi = 0 = Ẋi. For the parameters D = 1.4
and m = 1 was chosen for case II and III. To effectively fix the well-registered
featurelets a high mass of m = 107 was assigned for case I.

Step 5: Calculation of global deformation field
The shift vectors δXi of all featurelets sampled on the grid of featurelet centers
of the fixed image represent the total displacement field. The deformation
field for any possible position is obtained by a B-spline interpolation of order
1 between the δXi.

The main advantages of the featurelet-based approach is a fast calculation time
of well below one minute for a modern multiprocessor PC and the fact that the
method is model-independent. Thus, maximum portability for use with different
organ sites as well as different image modalities is assured [13]. Validation studies
of the featurelet registration algorithm of Söhn et al. are presented in Section 6.1.1.
Beside the general hospital vienna, a comparable approach is used by Robertson et
al. [31] for a block matching-based registration of locally advanced lung tumors.

3.4. Validation of Registration Accuracy

For a user, a very important characteristic of a registration algorithm is accuracy. It
is a direct measure of the actual, „true” error at a specific image location [10]. Thus,
for the validation of the registration accuracy a true answer i.e. a gold standard is
needed. Unfortunately such a gold standard is generally not available for deformable
image registration. In literature, many different methods for validation have been
reported, but in most cases comparison of the accuracy claimed for one method
with the accuracy claimed for another one is difficult because of methodological
incompatibilities [32].

3.4.1. Validation Methods

Roger P. Woods discusses in [32] several strategies available for validation studies of
registration accuracy:

page 21

3 Image Registration

Validation by Visual Inspection An easy to „implement” qualitative validation
method is visual inspection of the registration result. This may seem like
an unreliable approach, but in [33] and [34] the authors have shown that a
misregistration of 2 mm can be reliably identified. In general, if a result looks
misregistered, it probably is. Thus, visual inspection should be used at every
image registration as a routine validation.

Validation of Point-Based Registration A basic method for rigid registration is
the selection of homologous points in the fixed and moving image. This can
be done by a person with anatomic expertise or with the use of internal (e.g.
gold markers) or external markers. In three dimensions three points would be
sufficient to compute the registration parameters. However, the selection of
corresponding points is usually inaccurate. Thus, more than three points are
chosen and the registration procedure tries to minimize the summed squared
distance between homologous points. The minimization is split up in a trans-
lational component and a rotational component. The first one is solved by
aligning the centroids of the points of both images. The second one is then
derived by the so called Procrustes algorithm. With increasing distance from
the centroid of the fiducials the errors grow larger. Thus, for the selection of
fiducial points it is preferable to use points that are on the one hand widely
dispersed and on the other hand as far from their centroid as possible. The
use of external fiducials markers is especially advantageous when registration
accuracy is extremely important e.g. during neurosurgical procedures. The
external fiducials are usually located farther from their centroid as it would
be the case for anatomically identified fudicials. In addition they are designed
to be easily seen and detected with high accuracy and are often constructed
as part of a stereotactic frame with known spatial relationships among the
fiducials. Thus, external fiducial frames can be used to derive gold standard
transformations for validation of other registration methods.

Cross-Validation It is also possible to use the results of an already validated reg-
istration method for cross-validation of a new method. Hereby, only highly
accurate methods that can be considered as gold standards should be used as
reference.

Simulations When there is no gold standard available a simulation can be used
to estimate registration accuracy. In that case real data is deformed with an
appropriate transformation model to create a virtual second image. Thus,
the entire deformation field is known precisely and can be compared with
the output deformation field of the registration of the initial image and the
virtual second image. Although this method can be very helpful in optimizing
the performance of a registration algorithm some important limitations have
to be taken into account. A simulation is always based on certain models of
reality. If these models (e.g. for spatial transformation, interpolation, or noise)
are congruent to the models used for the registration method the estimated

page 22

3 Image Registration

registration accuracy will be very good. Nevertheless the algorithm can fail in
the real world.

Phantoms and Cadavers Phantoms designed for medical imaging can reproduce
many limiting factors regarding registration accuracy. Especially characteristic
distortions produced by the imaging equipment or noise introduced either by
the imaging equipment or by image reconstruction are included by the use of
phantoms and cadavers for validation.

Internal Consistency Internal inconsistencies of a registration method itself can
be used for placing a boundary on true registration accuracy. This is done by
comparing two transformations: the result of the registration of an image A
to another image B and the result of the registration of the image B to the
image A. This procedure is not possible for every algorithm as some of them
are designed to output the exact inverse transformation of one another in this
context. For these registration methods a strategy involving three images is
necessary. In that case the combined transformation of the registration of
image A to B and image B to C is compared with the transformation of the
registration of image A to C.

If there would be a reliable gold standard available, there is still the question how
to report registration errors. For one user the average error at a certain location,
or as an alternative the root mean square (RMS) error at this point might be of
interest. For another one the most extreme error at a certain structure is useful,
but the extremes of a distribution can be misleading as they are usually not repro-
ducible, especially with a small number of observations. To be able to compare a
distribution of errors at a point of interest, the Kolmogorov-Smirnov test1 can be
used to test whether two distributions are significantly different or not.

A problem that remains is that errors are very likely to be not homogeneously
distributed over the image. Thus, to report the whole information a 3D plot of all
errors showing the direction and magnitude would be necessary, which is unfortu-
nately not very practical to handle. Thus, a common approach is to collapse all
errors to the same point and show the distribution in a single plot [32].

3.4.2. Validation Metrics

In the case of nonrigid registration usually there is no gold standard available. A
single metric is not sufficient to evaluate image registration results. However, the
use of different metrics can provide insight of the nonrigid image registration perfor-
mance [35]. Christensen et al. [35] propose for their Non-Rigid Image Registration
Evaluation Project (NIREP)2 four different metrics:

1The Kolmogorov-Smirnov test is a statistical test for equality of continuous, 1D probability
distributions.

2http://www.nirep.org/

page 23

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

3 Image Registration

Relative overlap The alignment of corresponding objects or structures within two
images can be used as indicator of how well the registration algorithm per-
formed. With P and S as two corresponding segmentations the relative overlap
metric is given by:

RO(P, S) =
volume(P ∩ S)

volume(P ∪ S)
(3.4)

Generally, this metric is used to determine how well one image is registered
onto another image. For comparing two registration algorithms the relative
overlap on its own is not satisfactory as there might be biases and errors due
to noise in the images, differences in anatomy and of course errors in the
segmentations P and S. To reduce these errors, a large number (N=16) of
datasets is proposed.

Squared intensity error Another method to measure the performance of a regis-
tration algorithm is to register a certain amount of images with a target image
and take the average intensity of all registered images. An algorithm with a
better performance should give registered images that look more like the target
image. This gives a sharper intensity average image. One way to characterize
the sharpness of the intensity average image is to calculate the variance of
the registered intensity images. The voxel-wise intensity variance (IVj(x)) or
squared intensity error of a population of M images registered to an image j
is given by:

IVj(x) =
1

M − 1

M∑
i=1

(
Ti
(
hij(x)

)
− avej(x)

)2
; avej(x) =

1

M

M∑
i=1

Ti
(
hij(x)

)
(3.5)

Ti is the ith image of the population and hij(x) is the transformation from
image i to j with respect to an Eulerian coordinate system.

Inverse consistency error This metric evaluates the performance of a registration
algorithm based on desired transformation properties. It compares forward
and reverse transformation between two images. In the optimal case the for-
ward transformation should be the same as the inverse of the reverse trans-
formation. Thus, when there is no error the composition of the forward and
the reverse transformations should produce the identity map. The inverse
consistency error is therefore defined as the squared difference between this
composition and the identity map. The voxel-wise cumulative inverse consis-
tency error (CICEj(x)) with respect to a template image j is given by:

CICEj(x) =
1

M

M∑
i=1

∥∥hji(hij(x)
)
− x
∥∥2 (3.6)

where hij is again the transformation from image i to j and M the number of
images in the evaluation population.

page 24

3 Image Registration

Transitivity error The transitivity metric evaluates the quality of a registration al-
gorithm by checking how good the transitivity property of an image population
is satisfied. This property is important for minimizing correspondence errors
in the case of composed transformations. In the optimal case a transformation
defining correspondence between three images should project a certain point
from image A → B → C → A back to the initial position. The transitivity
error for such a set of transformations is therefore defined as the squared error
difference between the composition to the transformations and the identity
map. The voxel-wise cumulative transitivity error (CTEk(x)) with respect to
a template image j is given by:

CTEk(x) =
1

(M − 1)(M − 2)

M∑
i=1
i 6=k

M∑
j=1
j 6=i
j 6=k

∥∥∥hki(hij(hjk(x)
))
− x
∥∥∥2 (3.7)

An additional metric used in Chapter 6 for validation of the featurelet algorithm
is the Hausdorff-distance as described in [36]:

Hausdorff-distance The Hausdorff-distance H(A,B) is a measure of mismatch be-
tween two structures A and B. Such a structure can be e.g. the delineation of
an organ in a CT image. The error of a registration algorithm is quantified by
measuring the distance of the point of structure A which is farthest from any
point of structure B and vice versa. Given two finite point sets A = a1, ..., an
and B = b1, ...bm the Hausdorff-distance is defined as:

H(A,B) = max
(
h(A,B), h(B,A)

)
with h(A,B) = max

a∈A
min
b∈B
‖a− b‖ (3.8)

The function h(A,B) is called the direct Hausdorff-distance from A to B.

page 25

4. Software Development Tools

„The medical image computing community has historically been fragmented in its ap-
proach to software development and distribution. A result of this fragmentation has
been a significant amount of re-implementation of common tools like file I/O, filters,
core algorithms, user interfaces, etc. and at the same time a lack of reproducibility
of results due to the complexity of algorithms and variations in the implementations
of these core components.” [37]
The National Alliance for Medical Image Computing (NA-MIC) was formed specif-
ically to address these issues. It is funded by the National Centers for Biomedi-
cal Computing (NCBC) program which is a part of the NIH1 Roadmap Initiative.
NA-MIC started operating in late 2004. Since that time it brings together sev-
eral ongoing threads of development dealing with various medical image computing
software problems. In addition NA-MIC provides the community with the needed
open platform. This platform is called NA-MIC Kit and includes three major types
of software technology: programming toolkits, end-user application software, and
system infrastructure. The programming toolkits rely both on the Insight Toolkit
(ITK) for image registration and segmentation and the Visualization Toolkit (VTK)
to support visualization and interactive rendering as well as manipulation. The end-
user application software of NA-MIC is 3D Slicer. It provides a cross-platform GUI
built on VTK and ITK [37].

For the implementation of the featurelets-algorithm (Chapter 5) into the 3D Slicer
platform (Section 4.1) both ITK (Section 4.2) and VTK (Section 4.3) are used in
this thesis project. To create a custom GUI for the Slicer module QtDesigner (Sec-
tion 4.4.1) is used.

An overview of available open-source software and software tools for biological
and medical imaging is given in [38].

4.1. 3D Slicer

Slicer2, or 3D Slicer, is a free, open source software package for visualization and
image analysis. It allows exploration of the imaging datasets in two, three and four
dimensions. 3D Slicer is natively designed to be available on multiple platforms,

1The National Institutes of Health (NIH) is the primary agency of the United States government
responsible for biomedical and health-related research.

2http://www.slicer.org/

26

4 Software Development Tools

including Windows, Linux and Mac Os X.

Slicer was initiated as a masters thesis project of David Gering between the Surgi-
cal Planning Laboratory (SPL) at the Brigham and Women’s Hospital (BWH) and
the MIT Artificial Intelligence Laboratory in 1998. Afterwards, Steve Pieper took
over the role of the Chief Architect and started the work of transforming 3D Slicer
into an industrial-strength package. Since 1999 Slicer has been under continuous
development at the SPL under the leadership of Ron Kikinis. Today it is developed
mostly by professional engineers and computer scientists, with the participation of
Isomics Inc., Kitware Inc. and GE Global Research. At the same time numerous
groups and individual users participate in the software development process. The
3D Slicer community is continuously improving the code by reporting software prob-
lems and contributing solutions, suggesting new features and developing new tools
[39]. Altogether 3D Slicer consists nowadays of more than 1.8M lines of code, mostly
C++ (68.5 %). Further languages are C (12.7 %), Python (5.7 %), XML (4.3 %),
CMake (4.1 %) and Tcl (3.6 %) as well as 12 other languages3.

This massive software development effort has been enabled by the participation
of several large scale NIH funded efforts, including the NA-MIC4, NAC5, BIRN6,
CIMIT7 and NCIGT8 communities.

The Software is designed for research purposes only. It has not been reviewed or
approved by the Food and Drug Administration (FDA) or by any other agency.
Regarding derivative works the licensing model of Slicer does not place any restric-
tions on the use of its source code. This has the aim to include both academic and
industry partners to the user community. In addition, it simplifies the transition of
a pure research tool into a commercial product.
Thus, a method can potentially be developed into an FDA-cleared clinical device
after optimization and validation [39].

Slicer provides a powerful GUI to interact with the data. Amongst numerous
possible applications there is manual segmentation and the creation of 3D surface
models from conventional MRI images or deformable image registration. Slicer
has also been used to incorporate models of the neurovascular bundle using image
segmentation in MRI-guided prostate interventions. According to the homepage,
Slicer is also frequently used in image-guided therapy research and is growing up
alongside that field. The extension SlicerRT has the goal of making 3D Slicer a
powerful radiotherapy research platform.

3Figures taken from https://www.openhub.net/p/slicer (June 2015)
4National Alliance for Medical Image Computing - http://www.na-mic.org/
5Neuroimage Analysis Center - http://nac.spl.harvard.edu/
6Biomedical Informatics Research Network - http://www.birncommunity.org/
7Center for Integration of Medicine and Innovative Technology - http://www.cimit.org/
8National Center for Image-Guided Therapy - http://www.ncigt.org/

page 27

4 Software Development Tools

Figure 4.1.: Slicer is a cross-platform package. However, certain requirements on the
graphics system, such as OpenGL drivers, should be met to support accelerated rendering.
The dependency libraries are portable across platforms and are distributed under compat-
ible licenses. Slicer itself consists of the main application framework (core) and plugins
(modules). Custom functionality is introduced by implementing external modules (Slicer
extensions) [39].

4.1.1. Slicer Architecture

The architecture of 3D Slicer follows a modular and layered approach, as shown in
Figure 4.1. At the lower level of the architecture there are the fundamental libraries
provided by the operating system. These are not packaged with Slicer. At the level
above, there are the programming languages and libraries that provide higher level
functionality and abstractions.
3D Slicer integrates a number of powerful open source projects into an end-user
application. Some of the libraries used by the application are:

• Qt - a cross-platform GUI framework → Section 4.4

• DICOM Toolkit (DCMTK) - it implements parts of DICOM standard and is
used to interact with DICOM data

• CMake - enables cross-platform build system configuration, packaging and
testing of 3D Slicer and NA-MIC Kit libraries

• The Visualization Toolkit (VTK → Section 4.3) - it provides the key building
blocks for 3D computer graphics and visualization

• The Insight Toolkit (ITK→ Section 4.2) - it is a library developed specifically
for the tasks related to medical image registration and segmentation, and for
implementing new image analysis algorithms

• The Common Toolkit (CTK)9 - it is a biomedical image computing library
with the focus on application-level DICOM support, plugin framework and
specialized GUI widgets.

9http://www.commontk.org/

page 28

4 Software Development Tools

All of these dependency libraries of 3D Slicer are cross-platform portable and are
distributed under licenses fully compatible with Slicer, which do not restrict their
use in either commercial or open source products [39].

3D Slicer itself consists of the lean application core, Slicer Modules, and Slicer
Extensions. The core implements the Slicer user interface, provides support for data
input/output (IO), visualization and developer interfaces that support extension of
the application with new plugins.
The classes implementing the 3D Slicer core are organized into three main groups
based on their functionality [39]:

The Model is responsible for data organization and serialization. It is supported by
the XML-based Medical Reality Markup Language (MRML). MRML defines
the hierarchies of the data elements, and the application programming inter-
faces (APIs) for accessing and serializing the individual nodes. The MRML
library is a key component of the Slicer architecture, but does not have any
dependencies on the other core components. It is used by the Slicer core and
plugins to instantiate the MRML nodes and organize them into a coherent
internal data structure called the MRML Scene. The MRML scene maintains
the links between the individual data items, their visualization and any other
persistent state of the application and modules.

The View maintains the state of the visual elements of the application. Its func-
tionality is provided by the GUI and displayable manager classes of the Slicer
core. These classes take care of consistency between the internal MRML state
(Model), and the visual appearance of the Qt GUI data viewers of the appli-
cation.

The Controller or Logic component encapsulates the processing functionality of
the application core. The logic does not depend on the existence of GUI, but
is fully aware of the MRML data structures. Communication between the
view and controller components is realized indirectly through changes of the
MRML data structures. The logic classes use the MRML nodes for storing the
computation results. The view classes can register to receive event updates
from the MRML scene and the individual nodes, which in turn initiate updates
of the visualization elements.

4.1.2. Slicer Modules

To implement new functionality into the software, modules are used. Slicer modules
are the plugins that depend on the Slicer core. A module can be independent, or it
can rely on other modules.
Slicer supports three different types of modules. While the developer has to choose

page 29

4 Software Development Tools

between one of them to implement its module, the end user won’t notice the differ-
ence as they all share the same look and feel. The choice for a given type of module
is usually based on the type of inputs/parameters of that module.

Command Line Interface (CLI) are standalone executables with a limited input-
output arguments complexity (simple argument types, no user interactions).
They are typically implemented using ITK (→ Section 4.2)

Loadable Modules are C++ plugins that are built against Slicer. They define cus-
tom GUIs for their specific behavior and have full control over the application;
they are optimized for heavy computations.

Scripted Modules are written in Python. They have full access to the API; rec-
ommended for fast prototyping and custom workflow development.

Unlike Slicer modules that are packaged as part of the Slicer distribution, Slicer
extensions are external plugins. They can be installed „on demand” by the user.
The extensions mechanism enables sharing of tools based on Slicer that can not be
included into the package due to incompatible licenses or other constraints [39].

4.2. ITK

The Insight Segmentation and Registration Toolkit (ITK)10 is an open-source, cross-
platform system that provides developers with an extensive suite of software tools
for image analysis. ITK provides leading-edge algorithms for registering and seg-
menting multidimensional data.
The toolkit does not address visualization or graphical user interface. These are left
to other toolkits e.g. VTK, ParaView or Slicer.

ITK is implemented in C++. It is using the CMake build environment to manage
the configuration process. In addition, an automated wrapping process generates
interfaces between C++ and interpreted programming languages such as Java and
Python. This enables developers to create software using a variety of programming
languages. ITK’s C++ implementation style is referred to as generic programming
(i.e., using templated code). Such C++ templating means that the code is highly
efficient, and that many software problems are discovered at compile-time, rather
than at run-time during program execution. It also enables ITK to work on two,
three, four or more dimensions.

The toolkit is organized around a data-flow architecture. That is, data is repre-
sented using data objects which are in turn processed by process objects (filters).
Data objects and process objects are connected together into pipelines. Pipelines

10http://www.itk.org/

page 30

4 Software Development Tools

are capable of processing the data in pieces according to a user-specified memory
limit set on the pipeline. Object factories are used to instantiate objects. Factories
allow run-time extension of the system. A command/observer design pattern is used
for event processing.

The memory model depends on smart pointers that maintain a reference count
to objects. Smart pointers can be allocated on the stack, and when scope is exited,
the smart pointers disappear and decrement their reference count to the object that
they refer to [40].

4.3. VTK

The Visualization Toolkit (VTK)11 is an open-source, freely available software sys-
tem for 3D computer graphics, image processing, and visualization. It consists of a
C++ class library and several interpreted interface layers including Tcl/Tk, Java,
and Python. VTK was created by the team of Kitware12 which also continues to
extend the toolkit.

VTK supports a wide variety of visualization algorithms including scalar, vector,
tensor, texture, and volumetric methods, as well as advanced modeling techniques
such as implicit modeling, polygon reduction, mesh smoothing, cutting, contouring,
and Delaunay triangulation. VTK has an extensive information visualization frame-
work and a suite of 3D interaction widgets. The toolkit supports parallel processing
and integrates with various GUI toolkits such as Qt and Tk. VTK is cross-platform
and runs on Linux, Windows, Mac, and Unix platforms [41, 42].

4.4. Qt

Qt13 („cute”) is a cross-platform application and UI framework used for application
development. It supports deployment to over a dozen leading platforms.
The Qt framework comprises of modular cross-platform C++ class Qt libraries and
an Integrated Development Environment (IDE) with Qt Creator as well as User
Interface (UI) designer tools.

4.4.1. Qt Designer

Qt Designer14 is the Qt tool for designing and building graphical user interfaces
(GUIs) with Qt Widgets. All properties set in Qt Designer can be changed dy-

11http://www.vtk.org/
12http://www.kitware.com/
13http://www.qt.io/
14https://doc.qt.io/qt-5/qtdesigner-manual.html

page 31

4 Software Development Tools

namically within the code. Widgets and forms created with Qt Designer integrate
seamlessly with programmed code, using Qt’s signals and slots mechanism.

Signals and Slots

Signals and slots15 are used for communication between objects. The signals and
slots mechanism is a central feature of Qt and probably the part that differs most
from the features provided by other frameworks.
In GUI programming, when one widget changes, often another widget is wanted to
be notified. For example, if a user clicks a Close button the window’s close()
function should be called.
Other toolkits achieve this kind of communication using callbacks. A callback is
a pointer to a function. While successful frameworks using this method do exist,
callbacks can be unintuitive and may suffer from problems in ensuring the type-
correctness of callback arguments. More generally, objects of any kind should be
able to communicate with one another.
In Qt a signal is emitted when a particular event occurs. A slot is a function that is
called in response to a particular signal. Qt’s widgets have many predefined signals
as well as slots. Widgets can always be subclassed to add customized signals and
slots to them. The signals and slots mechanism is type safe: The signature of a
signal must match the signature of the receiving slot. In fact a slot may have a
shorter signature than the signal it receives because it can ignore extra arguments.
Signals and slots are loosely coupled: A class which emits a signal neither knows
nor cares which slots receive the signal.

4.4.2. Qt Creator

Qt Creator16 provides a cross-platform, complete integrated development environ-
ment (IDE) for application developers to create applications for multiple desktop
and mobile device platforms. It is designed to make development with the Qt ap-
plication framework faster and easier.

15https://doc.qt.io/qt-5/signalsandslots.html
16http://www.qt.io/ide/

page 32

5. Software Development -
Featurelet-Registration

The main aim of this work was to develop a graphical user interface (GUI) for the
already existing in-house-developed DIR method of Fabri [14] to facilitate user inter-
action and to allow for further investigation of cases with unsatisfying registration
results. The software should enable direct visualization of the output and quick
adjustment of registration parameters. Thus, we decided to create an extension for
the open source software platform 3D Slicer. Our extension consists of a loadable
module called Featurelet-Registration.

5.1. Basic Design of the Featurelet Algorithm

The registration logic of our 3D Slicer extension is an implementation of the piece-
wise non rigid registration algorithm of Fabri [14]. It is based on the approach of
Söhn et al. [13] as presented in Section 3.3. The basic design of the algorithm is
illustrated in Figure 5.1. It is written in C++ and follows the subsequent steps:

• Open fixed and moving image: reading of volumetric DICOM images from a
file is implemented using the ITK class itk::ImageFileReader.

• Create subvolumes: subvolumes are featurelets of a certain size A in the mov-
ing image and search regions of a certain size B in the fixed image; they are
created as temporal images.

• Rigid registration of every featurelet of the moving image to the corresponding
search region of the fixed image. For the whole registration process functions
and objects from the ITK library are used:

– Transform: itk::TranslationTransform;

– Metric: itk::NormalizedCorrelationImageToImageMetric;

– Optimizer: itk::RegularStepGradientDescentOptimizer;

– Interpolator: itk::LinearInterpolateImageFunction.

• Save the transformation in a vector volume; for storing the output of the
registration process the class FeatureletRegistrationResult was created;
the main parameters are:

– offset given by the transform vector,

33

5 Software Development - Featurelet-Registration

– final value of the metric,

– size and index of search region,

– size and index of featurelet and

– number of featurelets.

• Create three 1D volumes for every direction of the vector volume: this is done
by the member function GenerateDeformationField() of the class Defor-
mationFieldGenerator which processes the deformation field; all the follow-
ing steps are handled by member functions of this class.

• Interpolate the center of every featurelet to an actual voxel of the image: done
by the function RescaleDeformationField(); this function uses the ITK class
itk::ResampleImageFilter.

• Create and save a 3D vector image: the interpolated transformation vectors of
x, y and z direction are brought together to obtain the total deformation field
by the function TotalDeformationFieldCreator(); it is written to a file by
the ITK class itk::ImageFileWriter.

• Create and save a warped image: the deformation field is applied to the moving
image by the function WarpImagebyDeformationField() to obtain a deformed
image for visual inspection; it is written to a file by using again the ITK class
itk::ImageFileWriter.

Figure 5.1.: Flowchart of featurelet algorithm (picture from [14]).

page 34

5 Software Development - Featurelet-Registration

5.2. Featurelet-Registration

The software platform 3D Slicer (see Section 4.1) offers the possibility to introduce
new functionality with its extension mechanism. As an initial step the Slicer appli-
cation itself has to be build in Release mode. Then, an extension can be developed.

5.2.1. Slicer Extension

An extension is a „delivery package” bundling together one or more Slicer modules.
Such a module typically consists of several files of various types, those can be CMake
files, source files, and resource files. Usually, the names of the files and the names
of text strings within a file are related and need to match. To simplify the process
of creating and contributing an extension 3D Slicer offers a tool called „Extension
Wizard”. It provides a mechanism to create extensions and modules from templates.
The following line is used to run the wizard in a terminal program:

Code 5.1 # Invoke the Wizard

/path/to/slicer/bin/slicerExtensionWizard

The launcher script ensures that Python- and library-paths are set correctly to
find packages and libraries provided by Slicer, and it invokes the correct Python
binary if provided by Slicer. To create the folder structure for the extension called
„Slicer-Featurelets” comprising one C++module called „Featurelet-Registration” the
following commands are needed:

Code 5.2 # Create an extension with a module written in C++

slicerExtensionWizard --create Slicer-Featurelets ~/code/
cd ~/code/Slicer-Featurelets
slicerExtensionWizard --addModule loadable:Featurelet-Registration

This process automatically creates files for the extension Slicer-Featurelets and
its module Featurelet-Registration with appropriate names, and makes some crucial
content substitutions within the templates in order to produce code that can be
built immediately. Our registration module was chosen to be a loadable module, as
they are optimized for heavy computations, define custom GUIs for their specific
behavior and have full control over the application.

5.2.2. Development Environment

For the development of the 3D Slicer extension the following environment was used:

• Hardware:

page 35

5 Software Development - Featurelet-Registration

– Processor: 2x Intel Xeon CPU E5345 2.33 GHz

– RAM: 10GB DDR2

– Graphics card: NVIDIA GeForce 8800 GTS

• Software:

– Operating System: Ubuntu 14.04 LTS

– Development platform: Qt Creator 3.0.1

– Compiler: GCC 4.8.2

– Tool kits: Qt 4.8.6, Insight Toolkit 4.6.0

– 3D Slicer Version: 4.4

– Build system: CMake 2.8

5.2.3. Structure of the Source Code

Within the folder of the extension Slicer-Featurelets is the build-directory of the
whole extension, a folder for the module Featurelets-Registration and the CMakeList
for the extension. Within the module-directory there are three important folders:

Logic Contains the source code of the registration logic; is described in more detail
in Section 5.2.4.

MRML Contains the .cxx and .h-file of the vtkMRMLRegistrationNode which de-
fines a MRML-Node for the Featurelets-Registration module.

Resources Contains the resources for the custom GUI of the module and consists
of the file qSlicerRegistrationModule.qrc which stores information about
the icon of the module, and two folders:

• Icons: contains a .png-file which is used as icon of the module;

• UI: contains .ui-files which define custom widgets for the GUI; these files
are written in xml and can be edited with the Qt Designer (see Section
4.4.1).

In addition, the module-directory contains the following files:

• .cxx and .h-file qSlicerRegistrationModule which defines the module and
its dependencies as well as the category of the module, and is responsible for
loading the logic; helptext, acknowledgment and contributors can be edited in
the .cxx-file.

• .cxx and .h-file qSlicerRegistrationModuleWidget for the custom widget
of the GUI; here signals and slots can be defined.

• CMakeList for the module.

page 36

5 Software Development - Featurelet-Registration

The main difference between the initial code of Fabri presented in Section 5.1 and
the code used in the 3D Slicer extension is the handling of input/output and of the
images itself. The initial code reads DICOM-images from a file and uses a class called
regImage for image handling. The results of the registration process are written to
a file. For the extension, reading from and writing to a file is done by 3D Slicer.
Datasets are stored in so called „MRML-nodes”. For the Featurelet-Registration
module data is stored in the node defined by vtkMRMLRegistrationNode. Beside
the information of the volumes selected as fixed and moving image, the node contains
the values of all GUI widgets. This can be the integer value of a slider for the size
of a featurelet as well as the boolean value of a radio button. Communication
of changes in the GUI and the vtkMRMLRegistrationNode is defined in the file
qSlicerRegistrationModuleWidget.

5.2.4. Registration Logic

Beside the CMakeList the folder for the source code of the registration logic contains
the following files:

• vtkSlicerRegistrationLogic: is the main class containing a loop that runs
through the whole grid of featurelets as well as the connection of logic and
GUI.

• FeatureletRegistrationResult: a class for storing the information of the
registration of each featurelet.

• DeformationFieldGenerator: a class for generating the final deformation
field out of all the featurelet registration results.

• CommandIterationUpdate: a class for monitoring the evolution of the opti-
mization process of the registration.

vtkSlicerRegistrationLogic

The Featurelet-Registration module uses pixel type short and an image dimension of
three. Both are defined in the header file of the class vtkSlicerRegistrationLogic.
Beside the connection to the GUI the class comprises the following member func-
tions:

• RunClicked: is the „main” function of the registration logic; it is called when
the button „Run Registration” of the GUI is clicked. All needed parameters
from the GUI are loaded from the vtkMRMLRegistrationNode. After error
handling fixed and moving image are converted to ITK images by calling the
member function ConvertVolumeNodeToItkImage. Then the result storage
for the registration process is initialized and the following loop over every
featurelet grid position is used:

page 37

5 Software Development - Featurelet-Registration

Code 5.3 Loop over every featurelet position

for(unsigned int i=0;i<imageSizeFixed[0];i=i+FeatureletSize[0]){
iFeatureletGridPos[0]++;
iFeatureletGridPos[1]=0;
for(unsigned int j=0;j<imageSizeFixed[1];j=j+FeatureletSize[1]){

iFeatureletGridPos[1]++;
iFeatureletGridPos[2]=0;
for(unsigned int k=0;k<imageSizeFixed[2];k=k+FeatureletSize[2]){

this->UpdateFromMRMLScene();
iFeatureletGridPos[2]++;
iCurrentFeaturelet++;
ImageIndex[0] = i;
ImageIndex[1] = j;
ImageIndex[2] = k;
TempSize = FeatureletSize; //for featurelets on the edges
if (ImageIndex[0] + FeatureletSize[0] > imageSizeFixed[0])

TempSize[0] = imageSizeFixed[0] - ImageIndex[0];
if (ImageIndex[1] + FeatureletSize[1] > imageSizeFixed[1])

TempSize[1] = imageSizeFixed[1] - ImageIndex[1];
if (ImageIndex[2] + FeatureletSize[2] > imageSizeFixed[2])

TempSize[2] = imageSizeFixed[2] - ImageIndex[2];

SubsampleVolume(fixedImageItk, TempSize, SearchRegionSize,
ImageIndex, fixed=true);

SubsampleVolume(movingImageItk,TempSize, SearchRegionSize,
ImageIndex, fixed=false);

statusMoving=CheckFeaturelet(fixed=false,UseFiducialPoints,
fiducialPoints);

statusFixed =CheckFeaturelet(fixed=true, UseFiducialPoints,
fiducialPoints);

if(statusFixed==Featurelet::OK &&
statusMoving==Featurelet::OK){

if((!correl)&&(linear)) {
regResult = RegisterVolumesI(debugMode, rigid);
regis++;

}
if((correl)&&(!linear)) {

regResult = RegisterVolumes1(fixedImageItk,
movingImageItk, debugMode, rigid);

regis++;
}
if((!correl)&&(!linear)) {

regResult = RegisterVolumesII(debugMode, rigid);

page 38

5 Software Development - Featurelet-Registration

regis++;
}
if((correl)&&(linear)) {

regResult = RegisterVolumes2(fixedImageItk,
movingImageItk, debugMode, rigid);

regis++;
}

}
else if(statusFixed==Featurelet::fixedFeaturelet ||

statusMoving==Featurelet::fixedFeaturelet) {
fixedreg++;
regResult = FeatureletRegistrationResultType::New();

}
else {

noreg++;
regResult = FeatureletRegistrationResultType::New();

}

regResult->SetStatusFixed(statusFixed);
regResult->SetStatusMoving(statusMoving);
regResult->SetFeatureletIndex(ImageIndex[0],ImageIndex[1],

ImageIndex[2]);
regResult->SetFeatureletSize(TempSize[0],TempSize[1],

TempSize[2]);
regResult->SetFeatureletGridPosition(iFeatureletGridPos[0],

iFeatureletGridPos[1],iFeatureletGridPos[2]);
regResult->SetImageSizeM(iSize[0], iSize[1], iSize[2]);
regResult->SetFeatureletNumber(iCurrentFeaturelet);
regResults[iCurrentFeaturelet] = regResult;
regPointer = regResult.GetPointer();
resultStorage.AddFeaturelet(regPointer);

}
}
progress = (i*100)/imageSizeFixed[0];
pnode->Setprogress(progress);
this->UpdateFromMRMLScene();

}

Subsequently the total deformation field is created by calling the member
functions of the class DeformationFieldGenerator and the results are passed
on to corresponding MRML-nodes.

page 39

5 Software Development - Featurelet-Registration

• ShowVolume: to show the selected volume if the corresponding button is
pressed.

• ConvertVolumeNodeToItkImage: takes the volume of the selected node and
converts it to an ITK image for further processing; this function is taken from
the Slicer-RT-commons.

• ResampleVolumesToBeIsotropic

• SubsampleVolume: takes the input image and divides it into small subvolumes;
the subvolumes are featurelets for the moving image and the corresponding
search regions on the fixed image.

• CheckFeaturelet: checks a featurelet and returns its status

• RegisterVolumes*: performs the actual registration; the user can select be-
tween normalized cross-correlation (NCC) and mutual information (MI) as
metric and between linear and nearest neighbor (NN) interpolation. Thus,
there are four different functions for every possible case:

– RegisterVolumes1: for NCC and linear interpolation,

– RegisterVolumes2: for NCC and NN interpolation,

– RegisterVolumesI: for MI and NN interpolation and

– RegisterVolumesII: for MI and linear interpolation.

For both metric and interpolator classes which are already defined in ITK are
used:

– NormalizedCorrelationImageToImageMetric for NCC,

– MutualInformationImageToImageMetric for MI,

– LinearInterpolateImageFunction for linear interpolation and

– NearestNeighborInterpolateImageFunction for NN interpolation.

FeatureletRegistrationResult

The class FeatureletRegistrationResult is taken almost unchanged from the
code of Fabri. It stores the following five important parameters after every step in
the featurelet grid:

• The number of the current featurelet,

• size and index of both featurelet and its corresponding search region,

• status of both featurelet and its corresponding search region,

• the final value of the metric and

page 40

5 Software Development - Featurelet-Registration

• the transformation vector of the featurelet.

In addition the namespace Featurelet is defined in this class. It is used to store
the status of a featurelet or a search region. In comparison to the initial code of
Fabri the added status fixedFeaturelet is available. It is used in case a fixed
point is located within a featurelet or a search region.

Code 5.4 Definition of the namespace Featurelet

namespace Featurelet {
enum Status {

OK = 0,
SizeError = 1,
sameColor = 2,
internalError = 3,
fixedFeaturelet = 4

};
}

DeformationFieldGenerator

The class DeformationFieldGenerator comprises five important member functions:

• GenerateDeformationField(): as in the code of Fabri, this function creates
three 1D volumes for every direction of the vector volume out of the registration
result ; the source code can be found in the Appendix A.1.

• RescaleDeformationField(): this function interpolates the center of each
featurelet after its registration to an actual voxel position of the fixed image;
the source code can be found in the Appendix A.2.

• TotalDeformationFieldCreator(): creates a 3D vector volume with the
same size as the fixed image; the deformation at the edge of the deforma-
tion field is set to zero; within the 3D volume the interpolated transformation
vectors of x, y and z direction are brought together to obtain the total defor-
mation field; the source code can be found in the Appendix A.3.

• VTKDeformationFieldCreator(): this function is needed to transform the
deformation field from the coordinate system used by ITK to the one used
by VTK for visualization in 3D Slicer; the source code can be found in the
Appendix A.4.

• WarpImagebyDeformationField(): to create a warped image for visual in-
spection of the registration result the ITK class itk::WarpImageFilter is
used ; the source code can be found in the Appendix A.5.

page 41

5 Software Development - Featurelet-Registration

CommandIterationUpdate

Uses the class itk::Command as observer method. In debugMode the observer out-
puts the number of the current iteration of the optimizer as well as the current
value of the metric and its current position. Thus, the user gets information about
the optimization process of each featurelet. This can be useful in the case of a
misregistration.

5.2.5. GUI of Featurelet-Registration Module

The GUI of the 3D Slicer module Featurelet-Registration is defined in the folder
Resources. The module-widget consists of four sections, as shown in Figure 5.2:

Help & Acknowledgment The Help-section provides the user with an exemplary
workflow for image registration using the module Featurelet-Registration and
information about other Slicer modules for pre- and post-processing of images
and the registration output. The Acknowledgment-section provides informa-
tion about the basic idea used for the module and its contributors.

Input In the Input-section the user can select the fixed and moving image intended
to use for registration. Both images can be visualized immediately using the
particular „Show”-button. In addition, the user can define fixed points in the
image. A featurelet containing such a point is non moving.

Parameters In the Parameter-section both feturelet and search region size can be
defined. Optionally a different size in the z-direction can be set for the case
of large inter-slice spacings of an image. Regarding the registration process
itself the user can select the type of interpolator (linear or NN) and the metric
used for measuring the voxel-based similarity (MI or NCC). As advanced pa-
rameters optimizer settings can be changed and the registration process can
be executed in debug mode. In this debug mode additional information about
the registration process and its progress is shown in the terminal.

Output In the Output-section the user has to define the volume used for the de-
formed image as well as the one for the deformation field. By hitting the „Run
Registration”-button the registration process starts and the progress is shown
in the progress-bar below the button.

To facilitate usability several tooltips provide additional information for the user
about the item being hovered over.

5.2.6. Workflow using Featurelet-Registration

After loading the required images in 3D Slicer there are several built-in modules
available for pre- and post-processing as well as for evaluation of registration results.

page 42

5 Software Development - Featurelet-Registration

Figure 5.2.: Custom GUI of the 3D Slicer module Featurelet-Registration.

page 43

5 Software Development - Featurelet-Registration

A typical workflow using the Featurelet-Registration module consists of the following
steps:

• In the module Volumes in section Volume Information the user can get basic
information about the active dataset.

• If the pixel type is different to short the module Cast Scalar Volume can
be used to change the pixel type to short.

• In the module Threshold Scalar Volume the user can set image values to a
certain value if they are below, above, or between a user-specified threshold
value.

• For initial alignment of the fixed and the moving image the module Expert
Automated Registration can be used. It provides rigid, affine and BSpline
registration methods.

• To extract a subvolume of an image the module Crop Volume can be used. In
this module the user can set a region of interest (ROI) and apply it on both
the fixed and the moving image or just on one of them.

• After these pre-processing steps the registration can be performed using the
module Featurelet-Registration.

• For visualization of the output deformation field (an exampel is given in Figure
6.8 in the following Chapter) 3D Slicer offers the module Transforms. It can
also be used to apply the deformation field on other datasets such as contours
or labelmaps.

• For further steps the extension SlicerRT can be used. It aims to make 3D
Slicer a powerful radiotherapy (RT) research platform. It offers several tools
for the field of RT such as contour and dose comparison and computation of
dose volume histograms.

page 44

6. Validation of the Featurelet
Algorithm

6.1. Prior Validation Studies

The Featurelet-Registration module of Slicer is an implementation of an existing
algorithm which was already evaluated in previous studies.

6.1.1. Validation Studies of Söhn et al.

For validation studies of the basic concept of the featurelet algorithm described in
Section 3.3 from Söhn et al. [13] lung datasets were used. Additionally, visual in-
spection was performed on head-and-neck datasets.

The registration quality was assessed:

• qualitatively by visually checking magenta-green overlay of the registered data
sets (results are presented in Figure 6.1) and

• quantitatively by
– a virtual thorax phantom and
– Landmark-based evaluation on respiratory-correlated CT (RCCT) pa-

tient test cases.

Virtual Thorax Phantom

For the first quantitative test, a simulation of the exhale state of a lung RCCT
patient was used. To create the virtual thorax phantom the deformation field of a
free-form deformable registration algorithm as described in Zhang et al. [43] was
used. Notice that for this step registration accuracy is not important as long as
the output deformation field roughly mimics the physiological motion of the original
lung dataset.

Results: The result of a voxelwise evaluation is illustrated in Figure 6.2. Mean
and standard deviation of the displacements of the virtual thorax phantom were
2.9 ± 2.8 mm. After deformable registration of the phantom i.e. of the inhale
deformed to exhale CT as moving image and the original inhale CT as fixed image,
the 3D residuals were reduced to 1.1± 1.2 mm.

45

6 Validation of the Featurelet Algorithm

Figure 6.1.: Visual inspection: the upper part shows an overlay of an exhale and an
inhale CT. (a) shows the overlay before registration. In (b) the inhale CT is deformed
to the exhale CT. The overall registration quality appears satisfactory, except for a region
around the posterior part of the diaphragm. There, some misregistrations occur because of
rotations on a scale smaller than the used featurelet size.
The lower part shows an overlay of a CT and a CBCT of head-and-neck. (c) is before and
(d) after the registration. In the area of the upper spine and the nasal cavities a remarkable
reduction of the residuals could be achieved through featurelet registration [13].

Landmark-based Evaluation

For the second quantitative test, bronchial bifurcations were deployed as anatomical
landmarks. The lung RCCT datasets of four patients were marked by a physician
in both inhale and exhale state. The landmarks were distributed regularly over the
lung volume. 11 to 15 homologous points were chosen per patient by the physician.
The corresponding displacements were calculated. Then these displacements were
compared with the outcome of the deformable registration.

Results: The result of an averaging over all 55 landmarks of all patients yielded
considerably smaller 3D residuals than the breathing motion itself. Mean and stan-
dard deviation of the 3D displacements of the breathing motion were 7.8± 5.1 mm
with a maximum of 21.3 mm. After deformable registration the 3D residuals were
reduced to 1.6± 1.0 mm with a maximum of 4.6 mm.

page 46

6 Validation of the Featurelet Algorithm

Figure 6.2.: Virtual thorax phantom: comparison of the 3D displacement of the simulated
deformation field (dotted line) with the 3D residuals after deformable registration with the
featurelet algorithm (continuous line) [13].

6.1.2. Validation Studies of Fabri et al.

Validation studies of the algorithm that is the basis for the Slicer implementation
were performed by [14, 15, 16]. Two phantoms and 29 clinical datasets were used.

Phantom I

A deformable box-shaped phantom consisting of four rigid and two flexible faces
was built. The box was filled with nine liters of gelatin containing 24 randomly
distributed spherical Teflon markers with 10 mm diameter. Three series of CBCT
images of the phantom were taken. The first one without deformation and the
other two with different weights added to the flexible faces to create two different
deformations. The total displacement of the 24 Teflon markers was calculated using
3D Slicer. For the image registration three different algorithms (rigid registration,
B-spline registration implemented in 3D Slicer, and the featurelet algorithm) were
used and the results compared.

Results: The results of both deformations are illustrated in Figure 6.3. Mean
and standard deviation of the 3D displacements and maximum displacement of the
first deformation and the corresponding 3D residuals of all three algorithms were:

• Deformation: 4.57± 1.25 mm (max 7.83 mm)

• Rigid registration: 2.78± 1.58 mm (max 7.15 mm)

page 47

6 Validation of the Featurelet Algorithm

Figure 6.3.: Phantom I: comparison of 3D displacements of the deformation and 3D
residuals of the three different registration algorithms applied. The left side shows the
results of the first deformation and the right side of the second deformation (picture from
[14]).

• B-spline registration: 2.43± 1.46 mm (max 6.16 mm)

• Featurelet registration: 1.40± 1.15 mm (max 5.62 mm)

Mean and standard deviation of the 3D displacements and maximum displacement
of the second deformation and the corresponding 3D residuals of all three registration
algorithms were:

• Deformation: 3.84± 1.41 mm (max 6.90 mm)

• Rigid registration: 1.86± 1.12 mm (max 5.00 mm)

• B-spline registration: 1.84± 1.13 mm (max 5.08 mm)

• Featurelet registration: 1.43± 0.91 mm (max 4.30 mm)

Phantom II

A deformable pelvis-shaped phantom with substructures representing bladder, pros-
tate, colon and intestines as well as spine and pelvis was built within a cubic plastic
box and used for simulation of intestine and bladder motion. The deformation
was achieved by variation of the volumina of two balloons inside the box (compare
Figure 6.4). More details about Phantom II can be found in [15]. Three series
of CT images of the phantom were taken. For every image the filling state of the
balloons as well as the position of the substructures was changed to get an internal
deformation. Then, another three CBCT images were taken, where the relative

page 48

6 Validation of the Featurelet Algorithm

Figure 6.4.: Phantom II was a pelvis-shaped deformable phantom. To mimic bony struc-
tures dental plaster was used. To simulate varying filling states of bladder and intestines
the volume of the balloons was changed by injecting a water-iodine soap solution. Addition-
ally, a prostate-shaped polystyrene object was glued to the „bladder” and a plastic bag filled
with glass beads was used to mimic the colon [15].

position of the substructure of the phantom was changed. The first CT was defined
to be „planning CT”. In all six datasets the bladder balloon, the prostate-shaped
polystyrene object and the rectum bag were delineated manually. For the evaluation
of the deformation first a rigid registration was applied for initial alignment and
then three different deformable registration algorithms (demon registration of the
iPlan software1, featurelet registration with normalized correlation (NC) metric,
and featurelet registration with mutual information (MI) metric) were used and the
results compared.
For analyzing the deformed contours two different metrics were used:

• Dice similarity coefficient (DSC): is also called volume overlap index and de-
fined as

DSC =
Vdeformed ∩ Vreference

(Vdeformed ∪ Vreference)/2
× 100 (6.1)

• Hausdorff-distance: is defined as the maximum distance in pixels between two
contours A and B

H(A,B) = max
(
h(A,B), h(B,A)

)
with h(A,B) = max

a∈A
min
b∈B
‖a− b‖ (6.2)

1RT planning software of Brainlab - http://www.brainlab.com/

page 49

6 Validation of the Featurelet Algorithm

Figure 6.5.: DSC for phantom II: results of the average DSC values of four different
registration algorithms for intra- (CT-CT; two deformations are included) and inter modal
(CT-CBCT; three deformations are included) registration of the deformable phantom. The
algorithms used are rigid registration (RR), featurelet registration with normalized corre-
lation (F. NC), featurelet registration with mutual information metric (F. MI) and the
demons algorithm of iPlan (iPlan).
In the case of intra modal registration the reference DSC for the rectum is 100 because this
structure is not moving [15].

Results: The results of the average DSC values for the deformable phantom can
be found in Figure 6.5. In the case of intra modal registration, both the featurelet
NC method and the iPlan method were able to substantially improve the DSC for
bladder and prostate. The featurelet MI method was just able to improve the DSC
for prostate. In the case of inter modal registration, for all structures only the fea-
turelet MI method was able to improve the DSC.

The results of the average maximum Hausdorff-distances for the deformable phan-
tom can be found in Figure 6.6. In the case of intra modal registration, the featurelet
NC method was able to substantially improve the Hausdorff-distance for bladder and
prostate. The featurelet MI method and the iPlan method were just able to slightly
improve the Hausdorff-distance for prostate. In the case of inter modal registration,
no deformable algorithm was able to significantly improve the result in comparison
to rigid registration, but at least both featurelet methods performed better than the
iPlan method.

Clinical Datasets

In addition to phantom studies some clinical datasets were examined. Detailed re-
sults can be found in [15] and [16].

For validation studies in [15] nine patients treated for prostate cancer and an-
other ten patients undergoing radiation therapy for non-small cell lung cancer or

page 50

6 Validation of the Featurelet Algorithm

Figure 6.6.: Hausdorff-distance for phantom II: results of the average maximum
Hausdorff-distance for four different registration algorithms for intra- (CT-CT; two de-
formations are included) and inter modal (CT-CBCT; three deformations are included)
registration of the deformable phantom. The algorithms are rigid registration (RR), fea-
turelet registration with normalized correlation (F. NC), featurelet registration with mutual
information metric (F. MI) and the demons algorithm of iPlan (iPlan).
In the case of intra modal registration the reference Hausdorff-distance for the rectum is 0
pixel because this structure was not moving [15].

lung metastasis were selected. For both prostate and lung cases a planning CT and
repeated CBCT images were acquired. For the prostate cancer patients bladder,
prostate and rectum were delineated on all images by one radiation oncologist. For
the validation study all datasets were taken into account. For the lung cases each
planning CT and one randomly selected CBCT were considered for the validation
study and the gross target volume (GTV) was delineated. For image registration
the same procedure as for phantom II (compare Section 6.1.2) was used (a rigid reg-
istration and three different deformable registration algorithms) and the deformed
contours were also compared with DSC and Hausdorff-distance. To check for sta-
tistical significance of the results the Wilcoxon signed rank test was used.

For validation studies in [16] datasets from ten cervical cancer patients were used.
For each patient a planning CT and repeated CT as well as CBCT images were
acquired. For the evaluation each planning CT, one repeated CT and one CBCT
was considered. The OARs were delineated by an expert physician. For the study
only bladder and rectum contours were taken into account. For image registration
the same procedure as for phantom II (compare Section 6.1.2) was used (a rigid reg-
istration and three different deformable registration algorithms) and the deformed
contours were compared by calculating their DSC. To check for statistical signifi-
cance of the difference between two methods a two-tailed Student’s t-test at a 95 %
confidence level was used.

Results: The results of the first study by Fabri et al. [15] did not show a clear
superiority over rigid registration for any deformable registration method for the

page 51

6 Validation of the Featurelet Algorithm

prostate cases. Only for the bladder contour the iPlan method was able to signifi-
cantly improve the result of the rigid registration.
For the lung cases the results can be found in Figure 6.7. Every deformable method
was able to achieve a significant improvement of the DSC value. For the Hausdorff-
distance only the featurelet method with normalized correlation was significantly
better than the initial rigid registration.

Figure 6.7.: Clinical studies - lung cases: boxplots of the dice similarity coefficient (left
side) and the Hausdorff-distance (right side) for the ten lung patients. The algorithms
used for registration are rigid registration (RR), featurelet registration with normalized
correlation (F. NC), featurelet registration with mutual information metric (F. MI) and
the demons algorithm of iPlan (iPlan).
Regarding the DSC all methods were able to significantly improve the result of the RR, with
the best performance from the iPlan algorithm. Regarding the Hausdorff-distance again all
methods showed an improvement from RR, but only the F. NC method was statistically
significantly better than the RR [15].

The results of the second study by Zambrano et al. [16] did not show a significant
improvement after deformable image registration for both featurelet methods as well
as the iPlan method. Reasons for failure could be on the one hand the high-intensity
variations introduced by the presence of air and on the other hand large deformations
in the bladder observed for some patients.

page 52

6 Validation of the Featurelet Algorithm

6.2. Validation of the Slicer Implementation

As the basic structure of the registration-logic is the same for the 3D Slicer module
Featurelet-Registration and the algorithm developed by Fabri [14], also some of the
validation methods as presented in Section 6.1.2 are used. Thus, the performance
can be compared directly, because there are no methodological incompatibilities.

6.2.1. Visual Inspection

The first stage of the validation of the 3D Slicer implementation was a visual in-
spection of the registration results. The main focus was on the orientation of the
deformation field. It had to be verified that all coordinate transformations of the
algorithm are performed in the right way. The reason behind this is the usage of
different coordinate systems of VTK and ITK. A transformation is necessary, as
visualization is done by VTK and computation by ITK.

For visual inspection two different datasets have been used. The first one is a series
of two MR-scans of a brain tumor patient. The images are provided by the 3D Slicer
„Sample Data” module. This dataset was used to check if the algorithm produces
meaningful deformations and if the size of the output deformation field corresponds
to the image size. The second dataset was a series of 11 thorax CT-scans showing
the lung from 0 % to 100 % inhalation in 10 % steps. This dataset was chosen as
an initial validation of the registration accuracy, because the extend of the motion
of the lung is clearly visible. The result and the corresponding deformation field of
the registration of the 0 % to the 100 % inhalation image is shown in Figure 6.8.

Figure 6.8.: The axial, sagital and coronal view show the warped image of the registra-
tion of a maximum exhale to a maximum inhale state CT of a thorax; the corresponding
deformation field is visualized directly in 3D Slicer using the built-in „Transforms” module.

page 53

6 Validation of the Featurelet Algorithm

6.2.2. Phantom I

For quantification of registration accuracy the box-shaped deformable phantom de-
scribed in Section 6.1.2 was used. The results of the Slicer implementation are
compared to the results of the initial featurelet-algorithm of Fabri, a B-Spline reg-
istration of Slicer and a rigid registration. Together with the actual displacements
of two deformations the figures are summarized in Table 6.1.

Displacement Rigid B-Spline Featurelet Slicer-Featurelet

1st 4.6±1.3 mm 2.8±1.6 mm 2.4±1.5 mm 1.4±1.2 mm 0.9±0.6 mm
2nd 3.8±1.4 mm 1.9±1.1 mm 1.8±1.1 mm 1.4±0.9 mm 1.3±0.9 mm

Table 6.1.: Results Phantom I: comparison of mean and standard deviations of dis-
placements and registration residuals of the 24 Teflon markers based on two different
deformations of the box-shaped phantom. „Featurelet” is the in-house-developed al-
gorithm of Fabri and „Slicer-Featurelet” is the Slicer implementation.

The improved registration accuracy of the 3D Slicer module Feautrelet-Registration
over the initial algorithm is due to the possibility of user interaction as well as
the availability of visualization. This makes it easier to leverage the powerful pre-
processing tools directly available in Slicer. Pre-processing of the box-shaped phan-
tom is illustrated in Figure 6.9.

Figure 6.9.: Pre-processing of Phantom I: to facilitate the registration process several 3D
Slicer modules allow for pre-processing of the dataset. The left side shows the box-shaped
phantom before and the right side after the selection of a region of interest as well as setting
all voxels below a certain threshold value to zero.

page 54

6 Validation of the Featurelet Algorithm

6.2.3. Phantom II

For a more sophisticated quantification of registration accuracy the pelvis-shaped
deformable phantom described in Section 6.1.2 was used. The evaluation was based
on the same three series of CT images and the same manually delineated datasets
as used by Fabri [14]. Also the first CT was defined to be the „planning CT”. The
other two CT scans of the phantom with altered filling state of the balloons and
changed position of the substructures were registered on the first CT scan. The
deformation field obtained with the Featurelet-Registration module was applied on
the manually delineated structures to obtain the deformed contours. For calculating
the Dice similarity metrics and the maximum Hausdorff-distance the SlicerRT mod-
ule „Contour Comparison” was used. There, the Hausdorff-distance is given in mm.
Thus, the numerical values are not directly comparable to the values from Section
6.1.2 obtained by Fabri, as they are given in pixel.

The results of the evaluation are shown in Figure 6.10. DSC values and maxi-
mum Hausdorff-distances are plotted against an ascending degree of user interac-
tion. Registration without user interaction (→ No Pre-Process) already leads to
an improvement of the relative overlap of the CTV. By reducing the images to a
subvolume containing only the necessary information (→ Crop Volume) registration
accuracy is comparable to the one of the initial algorithm. With a higher degree
of user interaction (→ Structure only) an improvement of the results presented by
Fabri et al. [15] is achievable.

Figure 6.10.: Results Phantom II: the graphics show the average DSC values and the
average maximum Hausdorff-distance of two deformations. Values of the rigid registration
(RR) correspond to the values for RR in the results of Fabri [15]. The first set of registra-
tions was performed without pre-processing of the images and with default settings of the
registration-parameters. For the second set only a region of interest (ROI) of moving and
fixed image was considered by using the Crop Volume module of Slicer. Additional thresh-
olding was used for the third set of registrations. The best result was achieved with the
highest degree of user interaction. For Structure only a ROI was set around the particular
organ and individual threshold values were used.

page 55

7. Discussion and Conclusion

We have created the Featurelet-Registration module, which adds usability to the
in-house-developed algorithm and makes it an accessible research tool for model-
independent image registration. It allows for direct visualization of the output and
quick adjustment of registration parameters. Thus, our algorithm can be used also
as tool for further investigation of cases with less satisfying registration results. In
addition, as the whole code of both 3D Slicer and our extension is open source, it is
easily accessible for everyone and can be used as basis for further development.

For the implementation the software platform 3D Slicer was chosen, as it pro-
vides a powerful GUI to explore and interact with imaging datasets. Steps such as
thresholding an image, cropping a volume or making an initial rigid registration of
two images as well as visualization of a deformation field can all be done by the
use of powerful built-in modules of 3D Slicer. Thus, pre-processing as well as image
registration and post-processing is combined within a single software application.
In addition, 3D Slicer is designed to be available on multiple platforms, including
Windows, Linux and Mac Os X.

One of the drawbacks of the algorithm, which still hinders full usability is compu-
tation time. A typical intra-modal registration of a CT with default settings takes
about 5-20 min. Thus, we plan to implement Graphics Processing Unit (GPU) opti-
mizations in the future to speed up the overall registration time. This parallelization
of the optimization process is possible, as each featurelet is registered independently
to its corresponding search region.

56

8. Acknowledgments

I would like to thank all the people, who supported me with this master thesis.
Especially I would like to thank in person:

• Prof. Dietmar Georg for introducing me to the interesting topic of radiation
oncology and enabling to carry out my master thesis at AKH, Vienna. In
addition, I want to express my gratitude for the guidance in writting and the
rapid responses.

• Hugo Furtado for introducing me to the world of software development and
his guidance, support and time he spent on discussing problems with me fo-
cusing on comprehension.

• Yvette Seppenwoolde for her assistance and feedback on my thesis as well
as for fruitful discussions in our workpackage 2 meetings.

• The students meeting was also nice to be kept informed about other projects
of the department and to maintain a good working atmosphere.

Last but by no means least I would like to thank my girlfriend Anna as well
as my Family who have been supporting me throughout my studies without any
reservations.

57

A. Appendix

A.1. Code for DeformationFieldGenerator

Code A.1 Member function GenerateDeformationField() of the class
DeformationFieldGenerator

void GenerateDeformationField()
{

FeatureletRegistrationResultListType::iterator it;
DeformationFieldType::IndexType start;
start[0] = start[1] = start[2] = 0.0;

DeformationFieldType::SizeType size;
size[0] = m_NumberOfFeaturelets[0]+1;
size[1] = m_NumberOfFeaturelets[1]+1;
size[2] = m_NumberOfFeaturelets[2]+1;

DeformationFieldType::RegionType region0;
region0.SetSize(size);
region0.SetIndex(start);

double spacing1[Dimension];
spacing1[0] = m_SizeOfFeaturelets[0]*m_ImageSpacingFix[0];
spacing1[1] = m_SizeOfFeaturelets[1]*m_ImageSpacingFix[1];
spacing1[2] = m_SizeOfFeaturelets[2]*m_ImageSpacingFix[2];

m_DeformationFieldRawX = DeformationFieldType::New();
m_DeformationFieldRawX->SetRegions(region0);
m_DeformationFieldRawX->Allocate();
m_DeformationFieldRawX->SetSpacing(spacing1);
m_DeformationFieldRawX->SetOrigin(m_ImageOriginFix);

PixelType zeroVector = 0;
m_DeformationFieldRawX->FillBuffer(zeroVector);

m_DeformationFieldRawY = DeformationFieldType::New();

58

A Appendix

m_DeformationFieldRawY->SetRegions(region0);
m_DeformationFieldRawY->Allocate();
m_DeformationFieldRawY->SetSpacing(spacing1);
m_DeformationFieldRawY->SetOrigin(m_ImageOriginFix);
m_DeformationFieldRawY->FillBuffer(zeroVector);

m_DeformationFieldRawZ = DeformationFieldType::New();
m_DeformationFieldRawZ->SetRegions(region0);
m_DeformationFieldRawZ->SetSpacing(spacing1);
m_DeformationFieldRawZ->SetOrigin(m_ImageOriginFix);
m_DeformationFieldRawZ->Allocate();
m_DeformationFieldRawZ->FillBuffer(zeroVector);

m_MetricValue = DeformationFieldType::New();
m_MetricValue->SetRegions(region0);
m_MetricValue->SetSpacing(spacing1);
m_MetricValue->Allocate();
m_MetricValue->FillBuffer(zeroVector);

PixelType transformVectorX, transformVectorY, transformVectorZ;

double bestValue;
metricthreshold = 1000;
int underthreshold = 0;
int abovethreshold = 0;

for (it = m_RegistrationResultList.begin(); //
it != m_RegistrationResultList.end(); it++) {

DeformationFieldType::IndexType pixelIndex ;
TransformType::OutputVectorType offset;
offset[0]= (*it)->GetTransform()->GetOffset()[0];
offset[1]= (*it)->GetTransform()->GetOffset()[1];
offset[2]= (*it)->GetTransform()->GetOffset()[2];
pixelIndex[0]= (*it)->GetFeatureletGridPosition()[0];
pixelIndex[1]= (*it)->GetFeatureletGridPosition()[1];
pixelIndex[2]= (*it)->GetFeatureletGridPosition()[2];

transformVectorX = offset[0];
transformVectorY = offset[1];
transformVectorZ = offset[2];

bestValue = (*it)->GetOptimizer()->GetValue();
if (bestValue < metricthreshold) {

abovethreshold++;

page 59

A Appendix

m_DeformationFieldRawX->SetPixel(pixelIndex,transformVectorX);
m_DeformationFieldRawY->SetPixel(pixelIndex,transformVectorY);
m_DeformationFieldRawZ->SetPixel(pixelIndex,transformVectorZ);

}
else {

underthreshold++;
m_DeformationFieldRawX->SetPixel(pixelIndex, 0);
m_DeformationFieldRawY->SetPixel(pixelIndex, 0);
m_DeformationFieldRawZ->SetPixel(pixelIndex, 0);

}
}

}

Code A.2 Member function RescaleDeformationField() of the class
DeformationFieldGenerator

void RescaleDeformationField()
{

typedef itk::ResampleImageFilter<DeformationFieldType,
DeformationFieldType> FilterType;

FilterType::Pointer filterX = FilterType::New();
FilterType::Pointer filterY = FilterType::New();
FilterType::Pointer filterZ = FilterType::New();
TransformType::Pointer transform = TransformType::New();

typedef itk::LinearInterpolateImageFunction< DeformationFieldType,
double > InterpolatorType;

InterpolatorType::Pointer interpolator = InterpolatorType::New();

DeformationFieldType::IndexType startII;
startII[0] = startII[1] = startII[2] = 0.0;

DeformationFieldType::SizeType sizeII;
sizeII[0] = m_ImageSizeFix[0];
sizeII[1] = m_ImageSizeFix[1];
sizeII[2] = m_ImageSizeFix[2];

DeformationFieldType::SizeType sizeFeaturelet;
sizeFeaturelet[0] = m_NumberOfFeaturelets[0]+1;
sizeFeaturelet[1] = m_NumberOfFeaturelets[1]+1;
sizeFeaturelet[2] = m_NumberOfFeaturelets[2]+1;

page 60

A Appendix

m_DeformationFieldRawXI = DeformationFieldType::New();
m_DeformationFieldRawYI = DeformationFieldType::New();
m_DeformationFieldRawZI = DeformationFieldType::New();

DeformationFieldType::RegionType regionII;
regionII.SetSize(sizeII);
regionII.SetIndex(startII);

m_DeformationFieldRawXI->SetRegions(regionII);
m_DeformationFieldRawYI->SetRegions(regionII);
m_DeformationFieldRawZI->SetRegions(regionII);

m_DeformationFieldRawXI->Allocate();
m_DeformationFieldRawYI->Allocate();
m_DeformationFieldRawZI->Allocate();

PixelType zeroVector = 0;
m_DeformationFieldRawXI->FillBuffer(zeroVector);
m_DeformationFieldRawYI->FillBuffer(zeroVector);
m_DeformationFieldRawZI->FillBuffer(zeroVector);

filterX->SetTransform(transform);
filterX->SetInterpolator(interpolator);
filterY->SetTransform(transform);
filterY->SetInterpolator(interpolator);
filterZ->SetTransform(transform);
filterZ->SetInterpolator(interpolator);

double origin[Dimension];
origin[0] = m_ImageOriginFix[0];
origin[1] = m_ImageOriginFix[1];
origin[2] = m_ImageOriginFix[2];

double spacingFeaturelet[Dimension];
spacingFeaturelet[0] = m_SizeOfFeaturelets[0]*m_ImageSpacingFix[0];
spacingFeaturelet[1] = m_SizeOfFeaturelets[1]*m_ImageSpacingFix[1];
spacingFeaturelet[2] = m_SizeOfFeaturelets[2]*m_ImageSpacingFix[2];

DeformationFieldType::SpacingType spacing;
spacing[0] = m_ImageSpacingFix[0];
spacing[1] = m_ImageSpacingFix[1];
spacing[2] = m_ImageSpacingFix[2];

page 61

A Appendix

double o2[3];
for(unsigned int i=0; i<3; i++) {

double center = origin[i] + (sizeFeaturelet[i] *
spacingFeaturelet[i]) / 2.0;

o2[i] = center - sizeII[i] * spacing[i] / 2.0;
}

filterX->SetOutputOrigin(o2);
filterX->SetSize(sizeII);
filterX->SetOutputSpacing(spacing);
filterY->SetOutputOrigin(o2);
filterY->SetSize(sizeII);
filterY->SetOutputSpacing(spacing);
filterZ->SetOutputOrigin(o2);
filterZ->SetSize(sizeII);
filterZ->SetOutputSpacing(spacing);

DeformationFieldType::DirectionType direction;
direction.SetIdentity();

filterX->SetOutputDirection(direction);
filterY->SetOutputDirection(direction);
filterZ->SetOutputDirection(direction);

filterX->SetInput(m_DeformationFieldRawX);
filterY->SetInput(m_DeformationFieldRawY);
filterZ->SetInput(m_DeformationFieldRawZ);

filterX->Update();
filterX->UpdateLargestPossibleRegion();
filterY->Update();
filterY->UpdateLargestPossibleRegion();
filterZ->Update();
filterZ->UpdateLargestPossibleRegion();

m_DeformationFieldRawXI = filterX->GetOutput();
m_DeformationFieldRawYI = filterY->GetOutput();
m_DeformationFieldRawZI = filterZ->GetOutput();

m_DeformationFieldRawXI->Update();
m_DeformationFieldRawYI->Update();
m_DeformationFieldRawZI->Update();

}

page 62

A Appendix

Code A.3 Member function TotalDeformationFieldCreator() of the class
DeformationFieldGenerator

void TotalDeformationFieldCreator()
{

DeformationFieldTypeVector::IndexType startII;
startII[0] = startII[1] = startII[2] = 0.0;

DeformationFieldTypeVector::SizeType sizeII;
sizeII[0] = m_ImageSizeFix[0];
sizeII[1] = m_ImageSizeFix[1];
sizeII[2] = m_ImageSizeFix[2];
DeformationFieldTypeVector::RegionType regionII;
regionII.SetSize(sizeII);
regionII.SetIndex(startII);

m_DeformationFieldRawII = DeformationFieldTypeVector::New();
m_DeformationFieldRawII->SetRegions(regionII);

DeformationFieldTypeVector::SpacingType spacingII;
spacingII[0] = m_ImageSpacingFix[0];
spacingII[1] = m_ImageSpacingFix[1];
spacingII[2] = m_ImageSpacingFix[2];
m_DeformationFieldRawII->SetSpacing(spacingII);

m_DeformationFieldRawII->SetOrigin(m_ImageOriginFix);

try {
m_DeformationFieldRawII->Allocate();

}
catch(itk::ExceptionObject &e) {

std::cerr << "Failed to allocate memory: "
<< e.GetDescription() << std::endl;

return;
}

PixelTypeVector zeroVector;
zeroVector.Fill(0);
m_DeformationFieldRawII->FillBuffer(zeroVector);
PixelTypeVector TotalDeformationVector;
DeformationFieldTypeVector::IndexType pixelIndexII;

for (int i=1; i<m_ImageSizeFix[0]-1; i++) {
for (int j=1; j<m_ImageSizeFix[1]-1; j++) {

for (int k=1; k<m_ImageSizeFix[2]-1; k++) {

page 63

A Appendix

pixelIndexII[0] = i;
pixelIndexII[1] = j;
pixelIndexII[2] = k;

TotalDeformationVector[0] = m_DeformationFieldRawXI
->GetPixel(pixelIndexII);

TotalDeformationVector[1] = m_DeformationFieldRawYI
->GetPixel(pixelIndexII);

TotalDeformationVector[2] = m_DeformationFieldRawZI
->GetPixel(pixelIndexII);

m_DeformationFieldRawII->SetPixel(pixelIndexII,
TotalDeformationVector);

}
}

}
}

Code A.4 Member function VTKDeformationFieldCreator() of the class
DeformationFieldGenerator

vtkSmartPointer<vtkOrientedGridTransform> VTKDeformationFieldCreator()
{

grid_Ras = vtkSmartPointer<vtkOrientedGridTransform>::New();
deformationField = vtkSmartPointer<vtkImageData>::New();

deformationField->SetOrigin
(m_DeformationFieldRawII->GetOrigin()[0],
m_DeformationFieldRawII->GetOrigin()[1],
m_DeformationFieldRawII->GetOrigin()[2]);

deformationField->SetSpacing
(m_DeformationFieldRawII->GetSpacing()[0],
m_DeformationFieldRawII->GetSpacing()[1],
m_DeformationFieldRawII->GetSpacing()[2]);

const vtkSmartPointer<vtkMatrix4x4> gridDirectionMatrix_LPS =
vtkSmartPointer<vtkMatrix4x4>::New();

for (unsigned int row=0; row<3; row++) {
for (unsigned int column=0; column<3; column++) {

gridDirectionMatrix_LPS->SetElement(row, column,
m_ImageDirectionFix(row,column));

page 64

A Appendix

}
}
grid_Ras->SetGridDirectionMatrix

(gridDirectionMatrix_LPS.GetPointer());

DeformationFieldTypeVector::RegionType region =
m_DeformationFieldRawII->GetBufferedRegion();

DeformationFieldTypeVector::SizeType imageSize = region.GetSize();

int extent[6]={0,(int) imageSize[0]-1, 0, (int) imageSize[1]-1, 0,
(int) imageSize[2]-1};

deformationField->SetExtent(extent);
#if (VTK_MAJOR_VERSION <= 5)

deformationField->SetScalarTypeToDouble();
deformationField->SetNumberOfScalarComponents(3);
deformationField->AllocateScalars();

#else
deformationField->AllocateScalars(VTK_DOUBLE, 3);

#endif

double* displacementVectors_Ras = reinterpret_cast<double*>
(deformationField->GetScalarPointer());

itk::ImageRegionConstIterator<DeformationFieldTypeVector>
inputIt(m_DeformationFieldRawII,

m_DeformationFieldRawII->GetRequestedRegion());
inputIt.GoToBegin();
while(!inputIt.IsAtEnd()) {

DeformationFieldTypeVector::PixelType displacementVectorLps =
inputIt.Get();

*(displacementVectors_Ras++) = displacementVectorLps[0];
*(displacementVectors_Ras++) = displacementVectorLps[1];
*(displacementVectors_Ras++) = displacementVectorLps[2];
++inputIt;

}

#if (VTK_MAJOR_VERSION <= 5)
grid_Ras->SetDisplacementGrid(deformationField.GetPointer());

#else
grid_Ras->SetDisplacementGridData(deformationField.GetPointer());

#endif
return grid_Ras;

}

page 65

A Appendix

Code A.5 Member function WarpImagebyDeformationField() of the class
DeformationFieldGenerator

int WarpImagebyDeformationField(ImageType* InputImage,
ImageType* FixedImage,
ImageType* OutputImage)

{
typedef itk::WarpImageFilter<ImageType, ImageType,
DeformationFieldTypeVector> WarperType;

typedef itk::LinearInterpolateImageFunction<ImageType,
double> InterpolatorType;

WarperType::Pointer warper = WarperType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();

DeformationFieldTypeVector::SizeType sizeII;
sizeII[0] = m_ImageSizeFix[0];
sizeII[1] = m_ImageSizeFix[1];
sizeII[2] = m_ImageSizeFix[2];
warper->SetOutputSize(sizeII);

warper->SetInput(InputImage);
warper->SetInterpolator(interpolator);
warper->SetOutputSpacing(FixedImage->GetSpacing());
warper->SetOutputOrigin(FixedImage->GetOrigin());
warper->SetOutputDirection(FixedImage->GetDirection());
warper->SetDisplacementField(m_DeformationFieldRawII);
warper->UpdateLargestPossibleRegion();
warper->Update();
OutputImage->Graft(warper->GetOutput());
try {

OutputImage->Update();
}
catch(itk::ExceptionObject &e) {

std::cerr << e << std::endl;
return EXIT_FAILURE;

}

return EXIT_SUCCESS;
}

page 66

Bibliography

[1] Stewart, J. et al. Automated weekly replanning for intensity-modulated radio-
therapy of cervix cancer. International Journal of Radiation Oncology Biology
Physics 78, 350–358 (2010).

[2] Bondar, L. et al. Toward an individualized target motion management for IMRT
of cervical cancer based on model-predicted cervix-uterus shape and position.
Radiotherapy and Oncology 99, 240–245 (2011).

[3] Bondar, M. L. et al. Individualized nonadaptive and online-adaptive intensity-
modulated radiotherapy treatment strategies for cervical cancer patients based
on pretreatment acquired variable bladder filling computed tomography scans.
International Journal of Radiation Oncology Biology Physics 83, 1617–1623
(2012).

[4] Bondar, M. L., Hoogeman, M., Schillemans, W. & Heijmen, B. Intra-patient
semi-automated segmentation of the cervix-uterus in CT-images for adaptive
radiotherapy of cervical cancer. Physics in medicine and biology 58, 5317–32
(2013).

[5] Ahmad, R. et al. A margin-of-the-day online adaptive intensity-modulated
radiotherapy strategy for cervical cancer provides superior treatment accuracy
compared to clinically recommended margins: a dosimetric evaluation. Acta
oncologica (Stockholm, Sweden) 52, 1430–6 (2013).

[6] Castelli, J. et al. Impact of head and neck cancer adaptive radiotherapy to
spare the parotid glands and decrease the risk of xerostomia. Radiat Oncol. 10,
Epub ahead of print (2015).

[7] Keall, P. J., Chen, G. T. Y., Joshi, S., Mackie, T. R. & Stevens, C. W. Time
- The fourth dimension in radiotherapy (ASTRO Panel Discussion). Interna-
tional Journal of Radiation Oncology Biology Physics 57, 8–9 (2003).

[8] Yan, D., Vicini, F., Wong, J. & Martinez, A. Adaptive radiation therapy.
Physics in Medicine and Biology 42, 123 (1997).

[9] Georg, D. Basic Seminar of Radiation Oncology Physics. Chapter 4 (2015).

[10] Maintz, J. B. A. & Viergever, M. a. A survey of medical image registration.
Medical Image Analysis 2, 1–36 (1998).

67

Bibliography

[11] Zitová, B. & Flusser, J. Image registration methods: A survey. Image and
Vision Computing 21, 977–1000 (2003).

[12] Sotiras, A., Davatzikos, C. & Paragios, N. Deformable medical image registra-
tion: A survey. IEEE Transactions on Medical Imaging 32, 1153–1190 (2013).

[13] Söhn, M. et al. Model-independent , multimodality deformable image regis-
tration by local matching of anatomical features and minimization of elastic
energy. Medical Physics 35, 866–878 (2008).

[14] Fabri, D. Non-rigid Registration for Radiotherapy. Ph.D. thesis, Medical Uni-
versity of Vienna (2014).

[15] Fabri, D. et al. A quantitative comparison of the performance of three de-
formable registration algorithms in radiotherapy. Zeitschrift für Medizinische
Physik 23, 279–290 (2013).

[16] Zambrano, V. et al. Performance validation of deformable image registration
in the pelvic region. Journal of Radiation Research 54 (2013).

[17] Siegel, R. et al. Cancer Treatment and Survivorship Statistics , 2012. CA: a
cancer journal for clinicians 62, 220–241 (2012).

[18] Mayles, P., Nahum, A., Rosenwald, J. C. & Papanikolaou, N. Handbook of
Radiotherapy Physics: Theory and Practice (2008).

[19] Podgorsak, E. Radiation Oncology Physics: A Handbook for Teachers and
Students (International Atomic Energy Agency, 2005).

[20] ICRU Report 50. Prescribing, Recording and Reporting Photon Beam Therapy
(1993).

[21] ICRU Report 62. Prescribing, Recording and Reporting Photon Beam Therapy.
(Supplement to ICRU Report 50) (1999).

[22] ICRU Report 83. Prescribing, Recording, and Reporting Photon-Beam
Intensity-Modulated Radiation Therapy (IMRT). Journal of the ICRU 10,
1–106 (2010).

[23] Van Herk, M. Errors and Margins in Radiotherapy. Seminars in Radiation
Oncology 14, 52–64 (2004).

[24] Chan, P. et al. Inter- and Intrafractional Tumor and Organ Movement in
Patients With Cervical Cancer Undergoing Radiotherapy: A Cinematic-MRI
Point-of-Interest Study. International Journal of Radiation Oncology Biology
Physics 70, 1507–1515 (2008).

page 68

Bibliography

[25] Eiland, R. B., Maare, C., Sjöström, D., Samsø e, E. & Behrens, C. F. Dosi-
metric and geometric evaluation of the use of deformable image registration in
adaptive intensity-modulated radiotherapy for head-and-neck cancer. Journal
of radiation research 1–7 (2014).

[26] Yan, D. Adaptive Radiotherapy: Merging Principle into Clinical Practice.
Seminars in Radiation Oncology 20, 79–83 (2010).

[27] Oh, S., Jaffray, D. & Cho, Y.-B. A novel method to quantify and com-
pare anatomical shape: application in cervix cancer radiotherapy. Physics in
medicine and biology 59, 2687–704 (2014).

[28] Birkfellner, W., Figl, M. & Hummel, J. Medical Image Processing - A Basic
Course (CRC Press, 2011).

[29] Santamaría, J., Cordón, O. & Damas, S. A comparative study of state-of-the-
art evolutionary image registration methods for 3D modeling. Computer Vision
and Image Understanding 115, 1340–1354 (2011).

[30] Thirion, J.-P. Image matching as a diffusion process: an analogy with Maxwell’s
demons. Medical Image Analysis 2, 243–260 (1998).

[31] Robertson, S. P., Weiss, E. & Hugo, G. D. A block matching-based registration
algorithm for localization of locally advanced lung tumors. Medical physics 41,
11 (2014).

[32] Bankman, I. N. Handbook of Medical Imaginng - Processing and Analysis (Aca-
demic Press, London, 2000).

[33] Wong, J. C. H., Studholme, C., Hawkes, D. J. & Maisey, M. N. Evaluation
of the limits of visual detection of image misregistration in a brain fluorine-18
fluorodeoxyglucose PET-MRI study. European Journal of Nuclear Medicine
24, 642–650 (1997).

[34] Fitzpatrick, J. M. et al. Visual assessment of the accuracy of retrospective
registration of MR and CT images of the brain. IEEE Trans Med Imaging 17,
571–585 (1998).

[35] Christensen, G. E. et al. Introduction to the Non-Rigid Image Registration
Evaluation Project. Lecture Notes in Computer Science 4057, 128–135 (2006).

[36] Huttenlocher, D. P., Klanderman, G. A. & Rucklidge, W. J. Comparing images
using the Hausdorff distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence 15, 850–863 (1993).

[37] Pieper, S., Lorensen, B., Schroeder, W. & Kikinis, R. The NA-MIC Kit: ITK,
VTK, Pipelines, Grids and 3D Slicer as an Open Platform for the Medical
Image Computing Community. Biomedical Imaging: Nano to Macro, 2006.
3rd IEEE International Symposium 698–701 (2006).

page 69

Bibliography

[38] Eliceiri, K. W. et al. Biological Imaging Software Tools. Nature Methods 9,
697–710 (2013).

[39] Fedorov, A. et al. 3D Slicer as an Image Computing Platform for the Quanti-
tative Imaging Network. Magn Reson Imaging 30, 1323–1341 (2012).

[40] Johnson, H. J., McCormick, M. M. & Ibànez, L. The ITK Software Guide Book
1: Introduction and Development Guidelines Fourth Edition Updated for ITK
version 4.7 (Insight Software Consortium, 2015).

[41] Schroeder, W., Martin, K. & Lorensen, W. The design and implementation
of an object-oriented toolkit for 3D graphics and visualization. Proceedings of
Seventh Annual IEEE Visualization ’96 1, 93–100 (1996).

[42] Schroeder, W. J. & Martin, K. M. The visualization toolkit. In Visualization
Handbook, 593–614 (2005).

[43] Zhang, T., Chi, Y., Meldolesi, E. & Yan, D. Automatic Delineation of On-Line
Head-And-Neck Computed Tomography Images: Toward On-Line Adaptive
Radiotherapy. International Journal of Radiation Oncology Biology Physics
68, 522–530 (2007).

page 70

	Introduction
	Radiation Oncology
	Volume Concepts in Radiotherapy
	Margins in RT

	Advanced Treatment Techniques
	IMRT
	Image-guided Radiotherapy

	Adaptive Radiotherapy

	Image Registration
	Classification of Registration Methods
	Transformation Models

	Deformable Registration
	Deformation Models
	Matching Criteria
	Optimization Methods
	Demons Registration

	Featurelet Registration
	Validation of Registration Accuracy
	Validation Methods
	Validation Metrics

	Software Development Tools
	3D Slicer
	Slicer Architecture
	Slicer Modules

	ITK
	VTK
	Qt
	Qt Designer
	Qt Creator

	Software Development - Featurelet-Registration
	Basic Design of the Featurelet Algorithm
	Featurelet-Registration
	Slicer Extension
	Development Environment
	Structure of the Source Code
	Registration Logic
	GUI of Featurelet-Registration Module
	Workflow using Featurelet-Registration

	Validation of the Featurelet Algorithm
	Prior Validation Studies
	Validation Studies of Söhn et al.
	Validation Studies of Fabri et al.

	Validation of the Slicer Implementation
	Visual Inspection
	Phantom I
	Phantom II

	Discussion and Conclusion
	Acknowledgments
	Appendix
	Code for DeformationFieldGenerator

