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Introduction

One of the most eminent themes of our times is the responsible use and distri-
bution of resources and consequently the question for the appropriate sources for
our energy production.
A very important sector in this area are the private consumers who make their
choices mainly based on the technologies available and affordable. Nowadays,
the households in Europe have an increasing variety of sources for their energy
consumption consisting both of old, formerly market dominating resources and
technolgies as well as new upcoming ones.
One of these very popular technolgies, especially in the German-speaking coun-
tries, are pellet furnaces for the climate-neutral heating of houses with wood
pellets, a form of compressed waste generated as byproduct of the lumber indus-
try.
This thesis aims at finding price connections between this form of fuel with its
main resource wood, the fossil fuels gas and oil as well as key economic devel-
opments represented by the gross domestic product and consumer price index in
Germany.
For these purposes we will seek longrun steady-state ”price mixes” between those
various time series by applying Johansen’s method of trying to find cointegration
relationships.
This work is structured in four parts: At first we will be introducing the data to
be used. In the second part general basics about time series, in particular vector-
autoregressive models for them, and a conceptual presentation of cointegration
shall be given. The third chapter will be dealing with various tests and methods
to prepare the original data for analytical usage, as well as the core technique
applied in this work, the cointegration method developed by Johansen, in theory.
Lastly, an analysis with the formerly introduced methods will take place, various
models will be observed and refined and the results will be discussed.
All computations are being performed by RStudio, a user interface for the sta-
tistical programming language R. Both, precast packages as well as routines pro-
grammed by myself are being applied. The particular codes are provided at the
end of this work.
I would particularly thank the C.A.R.M.E.N e.V., a charitable coordination of-
fice for renewable resources, for providing price indices on the matter of oil, gas
and pellets prices. All other time series have been taken from the database of
the German federal statistical office Statistisches Bundesamt. Data from German
sources have been used due to a longer observation period than those from Aus-
trian sources.





At this point I really want to thank everyone that has helped with the creation of
this diploma thesis. First and foremost Ao.Univ.Prof. Wolfgang Scherrer for his

intense and competent supervision and for always finding and making time to
help me with improving and extending the content of this work.

I want to thank my Dad and Dr. Gerhard Dell for the initial advice.
Furthermore, I want to thank my Mum, who found the time to proofread these

pages.
A very special thank you to Tanja, who was always there to support and

motivate me.
Moreover, I want to thank all of my friends and colleagues, especially Dominik

and Philipp, for backing me up.

In general I want to thank Tanja, my family, my brothers Lorenz and Tobias,
and all of my friends and colleagues for believing in me and for always being

there for me throughout all of my studies.





Contents

1 The Data 1
1.1 Wood Pellets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Oil Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Wood Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 The German GDP . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 The German CPI . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Time Series and the Concept of Cointegration 11
2.1 Basics about Time Series . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Least-square Regression . . . . . . . . . . . . . . . . . . . . . 15
2.3 The Choice of Lag Length . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The Concept of Integrated and Cointegrated Time Series . . . . . 19
2.5 Models for the Deterministic Component . . . . . . . . . . . . . . 21

3 Methods, Tests and Tools 23
3.1 Data Interpolation for Quarterly Data . . . . . . . . . . . . . . . 23
3.2 Estimations for Seasonality and Deterministic Trends . . . . . . . 24
3.3 The Augmented Dickey-Fuller Unit Root Test . . . . . . . . . . . 25
3.4 The Ljung-Box Test . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 The Reduced Rank Regression . . . . . . . . . . . . . . . . . . . . 26
3.6 The Varimax Method . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Modelling, Variations, Tests and Results 32
4.1 The General Model . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Discussion of the Information Set . . . . . . . . . . . . . . . . . . 43
4.3 The Model without Gas . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

List of Figures 54

List of Tables 56

A References 57

B Program Codes for R 59
B.1 R Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.3 Data Reading and Basic Data Processing . . . . . . . . . . . . . . 66
B.4 Estimations for the General Model . . . . . . . . . . . . . . . . . 70
B.5 Calculations Performed to Further Discuss the Information Set . . 77
B.6 Estimations for the Model without Gas . . . . . . . . . . . . . . . 82



1 The Data

A base motivation for our analysis of wood pellets prices and their connections to
other time series is given through the strongly changing composition of heating
systems in newly built properties.

year gas oil district heating heat pump electric wood others
2002 75.8 11.0 7.2 2.1 1.7 – 2.2
2003 74.3 12.0 7.0 2.8 1.2 – 2.7
2004 74.9 10.7 7.3 3.1 1.2 1.2 1.6
2005 74.0 6.4 8.6 5.4 1.2 3.0 1.4
2006 66.9 4.3 9.0 11.2 1.0 6.0 1.6
2007 65.6 3.2 10.2 14.3 1.3 3.0 2.4
2008 58.4 2.3 12.0 19.8 1.0 4.0 2.5
2009 50.9 1.9 13.1 23.9 0.8 5.0 4.4
2010 50.2 1.8 14.6 23.5 1.0 5.0 4.1
2011 50.1 1.5 16.3 22.6 0.9 5.6 2.6
2012 48.5 0.9 18.6 23.8 0.6 6.3 1.4
2013 48.3 0.8 19.8 22.5 0.7 6.4 1.5
2014 49.9 0.7 21.1 20.1 0.6 6.2 1.4

Table 1: Share of heating systems in 150 000 to 350 000 newly built German properties
according to Bundesverband der Energie- und Wasserwirtschaft e.V. in [Bun15b]. Wood-based
heating includes wood pellets and is listed among others until 2003.

Over the last decade we can observe a strong movement away from fossil energy
forms to renweable new technologies such as heat pumps and woodbased heat-
ing, the latter one being fueled by the success of wood pellets heating systems.
Though many newly built properties have switched to the still mainly fossil-based
district heating systems, the netto growth of the share of renewable energies is
nearly 25% in comparison to 2002.
Though the overall share of pellets and other renewable heating systems still lags
behind in the grand scheme of things, especially in the southern regions such as
Bavaria and in one or two family houses those forms of heating are becoming
more and more market relevant (compare for example with [uSF14]). Especially
for the matterbased wood pellets this raises the question whether there are under-
lying market interdependencies with other resources such as the formerly market
dominating fossil fuels.
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year gas oil district heating heat pump electric others
2002 46.0 31.9 12.4 – 4.5 5.2
2003 46.6 31.6 12.4 0.1 4.4 4.9
2004 47.2 31.2 12.4 0.1 4.3 4.8
2005 47.6 30.9 12.5 0.2 4.2 4.6
2006 48.0 30.5 12.5 0.3 4.1 4.6
2007 48.3 30.1 12.6 0.5 4.0 4.5
2008 48.5 29.8 12.6 0.7 3.8 4.6
2009 48.9 29.3 12.7 0.8 3.6 4.7
2010 49.0 28.9 12.8 1.0 3.4 4.9
2011 49.1 28.3 12.9 1.1 3.2 5.4
2012 49.2 27.8 13.1 1.2 3.1 5.6
2013 49.2 27.2 13.3 1.4 3.0 5.9
2014 49.3 26.8 13.5 1.5 2.9 6.0

Table 2: Share of heating systems in the entirety of 41 million German properties according to
Bundesverband der Energie- und Wasserwirtschaft e.V. in [Bun15b]. Wood and wood pellets
is listed among others.

1.1 Wood Pellets

Wood pellets are a form of pellet fuel made from industrial wood wastes like saw-
dust or sometimes also from storm-damaged timber [Wik15a]. In the last decade
with the boom of biomass-based energy production and heating wood pellets
have become one of the pioneer technologies in green tech in Europe. Especially
on the private heating sector the amount of pellets users has exploded. Since
the year 2000 the amount of pellet heating system has increased from an almost
neglectable amount to a (for 2015 prognosed) amount of 400 000 in Germany
(numbers taken from [Wik15a] and [Sta15]).
The lower price of wood pellets in comparison to fossil fuels as well as public
fundings seem to be main reasons for this trend.
With the entrance of wood pellets as an important player on the market the ques-
tion how the market influences its price has become more and more interesting.
Besides a disturbance of the price in the winter of 2006/07, caused by retailer
misjudgement of the demand and the available stock, the pellets price has been
very stable. In times of growing energy prices, its change has been small in com-
parison to others.
The relative price growth in the twelfth year between January 2002 and January
2014 is given by 56,89%, or 29.25% after eliminating the general German rate of
inflation.
The data structure shows a small, periodic price fluctuation which, unsurpris-
ingly, makes the product cheapest during summer time and most expensive in
the winter.
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Figure 1: The German monthly pellets price in euro per megawatt hour, provided by CAR-
MEN institute.

Figure 2: The growth rates of the German monthly pellets price in euro per megawatt hour.

3



1.2 Oil Fuel

When talking about energy prices one cannot help talking about oil, in this case
in particular oil processed to be used for heating. Despite losing in popularity in
the last decades, oil fuel still makes for a quarter of the German heating systems
in households (see table 2) and thereby ranks second.
In general we can conclude that oil is considered one of the most important indices
for energy market developments and its price changes usually have far reaching
consequences, in particular on other energy demands and prices. It is therefore
only natural when researching the price of a source of heating like wood pellets,
to also have a look at the oil price.
The oil price is largely influenced by its availability on the global market. With
its biggest suppliers in the Middle East going through various military and diplo-
matic conflicts the price is heavily dependent on political developments. Also the
heavy speculations about its maximum production (the so called Hubbert peak
[Hub56]) and longrun availability in times of vastly growing global energy de-
mand can often take their toll on the price, e.g. in the years 2007-2008. A single
reason for the supply-demand growth discrepancy in certain periods is often hard
to find. It is usually a combination of reasons that can make the oil price fall or
rise relatively quickly.
In late 2014 and going forward the policies of the Organization of the Petroleum
Exporting Countries (OPEC) have caused a massive drop in prices for oil.

Figure 3: The German monthly oil price in euro per megawatt hour, provided by CARMEN
institute.
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Figure 4: The growth rates of the German monthly oil price in euro per megawatt hour.

1.3 Gas

Gas-based heating is the most popular form in German households and had a
market share of 49.3% in 2014 according to table 2. The acquisition of the
heating system is cheap and requires the least amount of space, since no local
storage is required. Additionally the external storage and delivery leads to a high
efficiency because the fuel consumption can easily be regulated and adjusted to
temporary needs.
Since the 1960s Germany has allowed an oil price link for gas. The main argument
for it was to ensure that gas prices will rise when oil prices rise, which protects
industry interests of the oil and gas producing firms. It generates windfall profits
for them, i.e. a higher oil price leads to higher profits from selling gas, and
also prevents that in competition with the gas prices the oil prices have to be
lowered. Nowadays this link is controversial and seen as outdated, yet, in principle
still remains (a more extensive read on the topic can be found in [Wik15b]).
By comparison with other fossil energy forms the burning of gas leads to less
enviromental pollution due to lower emissions of carbon dioxide and sulphur.
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Figure 5: The German monthly gas price in euro per megawatt hour, provided by CARMEN
institute.

Figure 6: The growth rates of the German monthly gas price in euro per megawatt hour.
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1.4 Wood Price

Wood as the natural resource should obviously be considered in one way or an-
other as a factor in any price analysis of wood pellets. However, due to its
versatile nature, wood has many purposes besides energy generation like as a
building material for houses or it can be processed to paper and carton. We
therefore should not expect a one-to-one correlation between wood and the wood
pellets product, which is mainly a byproduct of named other products, generated
from wood waste.
Additionally, the amount of wood produced can vary strongly every year due to
weather conditions. For example the amount of wood produced reached its peak
in 2007 after the storm Kyrill laid waste to German forests and lots of storm
damaged timber had to be processed. This does obviously also impact prices in
the shortrun.
Lastly, there are many forms of wood processed from different trees and used for
different purposes. The given data is therefore a joint, aggregated index of all
forms of wood generated in Germany.

Figure 7: The German monthly wood price index as researched by Statistisches Bundesamt.
2000=100
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Figure 8: The growth rates of the German monthly wood price index.

1.5 The German GDP

The gross domestic product and its development are a general measure for changes
in wealth and industrial progression or standstill of a country. Price developments
often behave similar in one way or another to the development of GDP.
The German GDP, despite the general worldwide and European crisis, has shown
a relatively stable growth rate in the past decade. In particular, Germany’s
growth rates have been above those of the EU-28 as well as the EURO-countries
in the 5 years following the 2009 global financial crisis according to Eurostat
([Eur15]).
According to Statistisches Bundesamt, in today’s German economy the biggest
contributor to GDP are services with nearly 68.6%, followed by industrial produc-
tion that makes for 25.9% and the construction industry with 4.8%. The sector
agriculture, fishery and forestry only contributes with 0.8% (numbers taken from
[Bun15a]).
The given time series as the only one in this work contains quarterly data, while
all other time series hold monthly data. For working purposes it is therefore
convenient to process a monthly estimate for the German GDP.
We can immediately see a strong, quarterly periodicity from the growth rates of
the GDP.
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Figure 9: The German quartely GDP in billion euro as researched by Statistisches Bundesamt.

Figure 10: The growth rates of the German quarterly GDP.

1.6 The German CPI

The consumer price index is a measure for the general level of prices for goods
purchased in a country. It is calculated from a mix of wares and services that is
seen representative of the consumption in those countries. Especially the CPI’s
rate of change is of great interest as a measure for general inflation.
Historically the German CPI-growth has been fluctuating between one and four
percent yearly since the mid-90s and has been relatively stable. However, in times
of the worldwide and European regression the inflation rate has dropped to values
close to zero percent.
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The CPI in this work is being used as a measure for general inflation and applied
indirectly by being factored out of the other time series.

Figure 11: The German monthly CPI as researched by Statistisches Bundesamt. 2010=1

Figure 12: The growth rates of the German monthly CPI.
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2 Time Series and the Concept of Cointegration

2.1 Basics about Time Series

Before explaining the methods used for the analysis of the data certain basic
properties and definitions about time series need to be made (compare for example
[Neu11], [DS10], [rJ95]). The most basic definition we will build upon in this work
is the definition of a stochastic process, or more specifically, that of a stochastic
process in discrete time.

Definition 2.1.1. Let (S,A, P ) be a probability space, then we call a collection
of random variables (Xt|t ∈ Z) with values in R

p, p ∈ N a stochastic process in
discrete time.

In the case p > 1 we call the process multivariate, in the case that p = 1 univari-
ate. Multivariate processes can be denoted as a vector, i.e.

Xt =

 X1t
...
Xpt

 .

If they exist, a stochastic process can be characterized by its first and second
moments mean and covariance.

µit = E(Xit), for i = 1, . . . , p
γij(t, s) = E(Xit − µit)(Xjs − µjs), for i, j = 1, . . . , p and s, t ∈ Z

Accordingly, in the multivariate case we also combine these to form a vector

µt =

 µ1t
...
µpt


and a matrix

Γ(t, s) =

 γ11(t, s) . . . γ1p(t, s)
...

. . .
...

γp1(t, s) . . . γpp(t, s)

 ,

which is called the covariance function of the process.

Definition 2.1.2. Given a discrete stochastic process Xt defined on (S,A, P )
and ω ∈ Ω, we call a finite sample of the trajectory Xt(ω) a time series.

An important property when handling time series is stationarity of the underlying
process or its lack thereof.
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Definition 2.1.3. We call a process in discrete time (Xt|t ∈ Z) stationary if for
its joint-distribution F it fulfills

F (x1, . . . , xT ) = F (x1+τ , . . . , xT+τ ) ∀τ ∈ Z,∀T ∈ N.

However, for many purposes, the easier to handle concept of stationarity in the
weak sense will be enough.

Definition 2.1.4 (Weak-sense Stationarity). We call a process in discrete time
(Xt|t ∈ Z) weak-sense stationary if

E(XtX
′
t) <∞ ∀t ∈ Z

E(Xt) = µt = µ ∀t ∈ Z
Γ(t, s) = Γ(t+ r, s+ r) ∀r, s, t ∈ Z,

i.e. if the mean of the process is independent from the particular t and its
covariance function only depends on the time difference between two observed
variables. If there exists a deterministic function

f : Z→ R
p

so that the process (Yt|t ∈ Z) defined by Yt = Xt − f(t) is stationary we call Xt

trend stationary.

Example 2.1.5 (White Noise Process). A stationary process with µ = 0, covari-
ance matrix Σ > 0 which fullfills Γ(t, s) = 0 for t 6= s and Γ(t, s) = Σ for t = s is
called a (multivariate) white noise process. White Noise Processes are important
when modelling statistical errors and similar, unpredictable occurances.

Figure 13: A trajectory of a one-dimensional white noise process generated by 150 standard
normal distributed variables
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Definition 2.1.6. A process represented by

Xt =
k∑
j=0

βjεt−j, βj ∈ Rq×p

with (εt) being a white noise process is called a moving average process of order
k (assuming β0 6= 0 and βk 6= 0), in short MA(k).

Definition 2.1.7. A process represented by

Xt =
∞∑

j=−∞

βjεt−j, βj ∈ Rq×p

with (εt) being a white noise process is called an infinite moving average process.
The infinite sum has to be understood as the mean-square sense limit of its partial

sums
N∑

j=−N
βjεt−j, N ∈ N.

Definition 2.1.8. A process represented by the difference equation

Xt = c+
k∑
i=1

ΠiXt−i + εt, Πi ∈ Rp×p

where (εt) is a white noise process and c is a vector of constants is called an
autoregressive process of order k or in short AR(k), or in case of p > 1 vector
autoregressive process in short VAR(k).

Characterizing a VAR(p) process with the lag operator L, that is the unique,
linear, unitary operator defined by the property

LXt = Xt−1

gives the equation

c+ εt = Π(L)Xt (1)

with

Π(L) = (Ip − Π1L
1 − · · · − ΠpL

p).
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The z-transform of the later

Π(z) = Ip − Π1z
1 − · · · − Πkz

p

is called the characteristic polynomial of the process.

For many applications the basic VAR model proves to be insufficient. Only
including a vector of constants c may be too restrictive to represent the data and
its characteristics properly. Therefore, we give an alternative definition of a VAR
model:

Definition 2.1.9. We define a p-dimensional vector autoregressive process with
k lags, in short VAR(k), as a multivariate linear process of the form

Xt = Π1Xt−1 + · · ·+ ΠkXt−k + ΦDt + εt, t = 1, . . . , T (2)

where (εt) is a white noise process. The deterministic term Dt : R→ R
q is known

and may contain information such as constants, linear trends and seasonal dummy
variables. The matrix Φ is an element of Rp×q.

A typical choice of Dt =

(
1
t

)
, which assumes that the model follows a deter-

ministic trend.

A further representation of a VAR(k) process is the following:

Definition 2.1.10. A vector autoregressive process in the so-called error correc-
tion form is given by

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + εt, t = 1, . . . , T. (3)

The matrices Π and Γi, i = 1, . . . , k − 1 are defined as

Π =
k∑
i=1

Πi − I (4)

Γi =
k∑

j=i+1

Πj. (5)

Remark. There exists another frequently used vector error correction models,
called the longrun VECM. The form showcased above is called the transitory
VECM. Following the approach of Johansen as given in [rJ95] it is only necessary
to define with the later.

14



When looking for a solution for 2.1.9 we are in particular interested in a (trend)
stationary one. For that reason we need the following so-called stability condition.

Condition 2.1.11. For the unit roots, that are the solutions of

|Π(z)| := det(Π(z)) = 0

we demand that |z| > 1 or z = 1.

This leads us to the next result.

Theorem 2.1.12. Assuming that 2.1.11 holds, (Dt) is bounded by a polynomial
in t and |A(1)| 6= 0 the trend stationary solution to 2.1.9 takes the form

Xt =
∞∑
n=0

Cn(εt−n + ΦDt−n),

with the generating function C0(z) =
∞∑
n=0

Cnz
n = Π(z)−1 being convergent for

|z| > 1 + δ for some δ > 0. The Cn are recursively defined as

C0 = Ip,

Cn =

min(k,n)∑
j=1

Cn−jΠj, n = 1, . . . , t− 1.

This theorem and its proof can be found in [rJ95].

2.2 The Least-square Regression

The usual method to extract a VAR model from a given set of data vectors is
called least-square regression and should be outlined here. Let Xt be a set of
p-dimensional data vectors, T ∈ N the number of such data vectors and k ∈ N
being the desired order of the process.
Given that we need k data points to form an equation of the VAR(k) form, this
leads to the system of equations

Xk+1 = ΦDk+1 + Π1Xk + · · ·+ ΠkX1 + εk+1

...

XT = ΦDT + Π1XT−1 + · · ·+ ΠkXT−k + εT

15



with the coefficient matrices to be determined Φ,Π1, . . . ,Πk. The criterion in-
voked is that the residuals εt should be minimal in the least-square sense. Rewrit-
ing the equations as

Y = BZ + U (6)

with the notation

Y = (Xk+1, . . . , XT ) =

 x1,k+1 . . . x1,T
...

...
...

xp,k+1 . . . xp,T

 ,

B = (Φ,Π1, . . . ,Πk) =

=

 φ1,1 · · · φ1,q π1
1,1 · · · π1

1,p · · · πk1,1 · · · πk1,p
...

. . .
...

...
. . .

... · · · ...
. . .

...
φp,1 · · · φp,q π1

p,1 · · · π1
p,p · · · πkp,1 · · · πkp,p

 ,

Z =


Dk+1 · · · DT

Xk · · · XT−1
...

. . .
...

X1 · · · XT−k

 =



d1,k+1 · · · d1,T
...

. . .
...

dq,k+1 · · · dq,T
x1,k · · · x1,T−1

...
. . .

...
xp,k · · · xp,T−1

...
...

...
x1,1 · · · x1,T−k

...
. . .

...
xp,1 · · · xp,T−k


,

U =

 ε1,k+1 · · · ε1,T
...

. . .
...

εp,k+1 · · · εp,T

 .

The formulation of the problem becomes finding the least-square-sense solution
of (6), i.e. we seek a coefficient matrix B̂ such that

‖Y − B̂Z‖ = ‖u‖ = min
B
‖Y −BZ‖.

This can be achieved by usage of the Moore-Penrose-Pseudoinverse Matrix of Z
and is thus given by

B̂ = Z+Y

with

Z+ = (Z ′Z)−1Z ′ with (Z ′Z) > 0.

16



2.3 The Choice of Lag Length

Another important part of the modelling is the choice of a good lag length k.
This means one has to find a good compromise between the often conflicting
goals to find a model that has maximum explanatory power, whilst minimizing the
complexity of the model, often measured in the amount of lags used in a regression
model. It is usually derived by usage of an information criterium, e.g. Akaike
Information Criterion (AIC) or Bayesian Information Criterion (BIC) or Hannan-
Quinn Criterion (HQ). The point of these criteria is to punish complicated models,
for example when they use a greater lag length for only a small gain in fit. A
comparison of those can be found for example in [Lü91].
Johansen claims in that context that it is our experience that if a long lag length is
required to get white noise residuals then it often pays to reconsider the choice of
variables, and look around for another important explanatory variable to include
in the information set. That is, rather than automatically increase the lag length,
it is more fruitful in a multivariate context to increase the information set. [rJ95]
Furthermore the residuals should be tested for correlation. It is suggested to use
a Portmanteau Test such as the Ljung-Box or Box-Pierce test.

For the following definitions of the AIC, BIC and HQ criteria we define H1, . . . , Hn

as VAR(ki)-models with respective lag parameters k1, . . . , kn. The dimension shall
be p for all cases and a q-dimensional deterministic term is given (see 2.1.9).
Furthermore for (ε̂i,t) being the estimated residuals of the i-th model, i = 1, . . . , n
with the property that ε̂i,t = 0, ∀t ≤ ki, ∀i = 1, . . . , n we define their sample
covariance matrix

Σ̂i =
1

T

T∑
t=1

ε̂i,tε̂
′
i,t.

Definition 2.3.1 (The AIC Criterion). For testing models H1, . . . , Hn with re-
spectively k1, . . . , kn lag-parameters for goodness of fit we define the criterion

AIC(Hi) = log
∣∣∣Σ̂i

∣∣∣+
2

T
(kip+ q)p, for i ∈ 1, . . . n.

We call the model with the lowest AIC-value the best fit according to the AIC-
criterion amongst our models Hi, i ∈ 1, . . . , n.

Definition 2.3.2 (The BIC Criterion). For testing models H1, . . . , Hn with re-
spectively k1, . . . , kn lag-parameters for goodness of fit we define the criterion

BIC(Hi) = log
∣∣∣Σ̂i

∣∣∣+
log(T )

T
(kip+ q)p, for i ∈ 1, . . . n.

We call the model with the lowest BIC-value the best fit according to the BIC-
criterion amongst our models Hi, i ∈ 1, . . . , n.
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Definition 2.3.3 (The HQ Criterion). For testing models H1, . . . , Hn with re-
spectively k1, . . . , kn lag-parameters for goodness of fit we define the criterion

HQ(Hi) = log
∣∣∣Σ̂i

∣∣∣+
2 log(log(T ))

T
(kip+ q)p, for i ∈ 1, . . . n.

We call the model with the lowest HQ-value the best fit according to the HQ-
criterion amongst our models Hi, i ∈ 1, . . . , n.
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2.4 The Concept of Integrated and Cointegrated Time
Series

It was shown that the standard regression analysis fails when dealing with rela-
tions between non-stationary time series. Very often the phenomenom of spurious
correlation would occur, meaning the analysis would interprete relations where
there are none. In that context, Granger and Newbold stated that we would
conclude that if a regression equation relating economic variables is found to have
strongly autocorrelated residuals, equivalent to a low Durbin-Watson value, the
only conclusion that can be reached is that the equation is mis-specified, whatever
the value of R2 observed. [GN74]
For that purpose Engle and Granger and later on Johansen developed the concept
of cointegrated time series, which is the idea that multiple non-stationary time
series could be combined to form a stationary process. [EG87][rJ95]

Definition 2.4.1. We call a stochastic process Xt integrated of order 0, in short
I(0) if there exists a sequence of moving average parameters θi, i ∈ N with
∞∑
i=0

θ2i <∞ so that

Xt = E(Xt) + εt +
∞∑
τ=1

θτεt−τ .

Definition 2.4.2. We call a p-dimensional process integrated of order d, for
d ∈ N, in short I(d), if (Ip − L)dXt, L being the lag operator, is integrated of
order 0.

Definition 2.4.3. Let Xt be a process of integration order I(1). If there exists
a β 6= 0 so that β′Xt can be made stationary by a suitable choice of its initial
distribution we call Xt cointegrated with the cointegration vector β.

Later on when using Johansen’s method we will have β ∈ Rp×r being a matrix of
r linearly independent cointegration relations. We call r the cointegration rank of
the cointegrated process Xt and the space spanned by the cointegration relations
the cointegration space.
For defining a process as cointegrated, however, it is sufficient to find a single
such relation.

As we can see, cointegration is multivariate by nature. Single time series cannot
be cointegrated as that would imply stationarity to begin with, which stands in
contrast to the prerequisition of being I(1).
The fundamental result on the topic of cointegration is Granger’s representation
theorem. It shows that there is a decomposition for a vector-autoregressive coin-
tegrated process in a random walk, a stationary process, a deterministic part and
a part that depends on the initial values. (see [Han04] or [rJ95])
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Given a VAR-process in error correction form as given by 2.1.10, Π(z) being its

characteristic polynomial with Π(z) = I −
k∑
i=1

Πiz
i, z ∈ C we give conditions to

ensure it being I(1).

Condition 2.4.4.

• ∀z ∈ C that satisfy det(Π(z)) = 0 we have that |z| ≥ 1 or z = 1.

• The matrix Π from (4) is of reduced rank r < p, hence can be represented
with Π = αβ′ with α, β being p× r matrices of full column rank r.

• α′⊥Γβ⊥, with Γ = I −
k−1∑
i=1

Γi is a matrix of full rank. α⊥ and β⊥ are the

orthogonal complements to the the matrices α and β.

Furthermore we bound the deterministic term Dt in 2.1.10 with the next condi-
tion.

Condition 2.4.5. There exist constants a, b ∈ R so that |Dt| < a+ |t|b.

This allows us to give the statement of the Granger representation theorem.

Theorem 2.4.6 (Granger’s Representation Theorem). For an autoregressive pro-
cess in error correction form as given in 2.1.10 under the conditions 2.4.4 and
2.4.5 we have the representation

Xt = C

t∑
i=1

(εi + ΦDi) + C(L)(εt + ΦDt) + A.

A depends on initial values such that β′A = 0, C = β⊥(α′⊥Γβ⊥)−1α′⊥ and C(z)
satisfies A−1(z) = C 1

1−z + C(z), z 6= 1, where the power series for C(z) is con-
vergent for |z| < 1 + δ for some δ > 0.
This implies that Xt is a cointegrated I(1)-process.
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2.5 Models for the Deterministic Component

In Error Correction Form we deal with a model that includes both levels and dif-
ferences to describe the development of the process. As it turns out the trend and
constant components of a deterministic or drift term Dt are similarily assigned
in that model.
From the Granger Representation Theorem 2.4.6 we find that in general the pro-
cess Xt has a deterministic trend of the form

CΦ
t∑
i=1

Di + C(L)ΦDt.

The Granger Representation Theorem shows that a constant drift term Dt will
induce a linear trend in the process Xt and a linear drift term Dt will induce a
quadratic trend. (see [rJ94] and [HJ00])
For the process Xt the theorem gives us

Xt = C
t∑
i=1

(εi + ΦDi) + C(L)(εt + ΦDt) + A. (7)

Since

β′C = β′(β⊥(α′⊥Γβ⊥)−1α′⊥) = 0 and

β′A = 0

we have for the cointegration relations

β′Xt = β′C(L)εt + β′C(L)ΦDt. (8)

The deterministic term ΦDt is represented by the linear and constant terms π+δt,
which we will split into components in α and α⊥ directions, i.e. we have

Dt =

(
1
t

)
Φ = (αρ1 + α⊥γ1, αρ2 + α⊥γ2)

with

π = αρ1 + α⊥γ1
δ = αρ2 + α⊥γ2.
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This leads to the five commonly used models for deterministic terms.

Case 1 ρ1 = ρ2 = γ1 = γ2 = 0, hence no drift term is present. We have
no growth or intercepts in the cointegration relations. This is a rare
case, since usually some intercept is needed to account for the starting
measure at X0. Only if the measuring starts at zero or if the different
levels cancel in the cointegration relations these restrictions should be
used.

Case 2 ρ2 = γ1 = γ2 = 0, but ρ1 6= 0, hence the constant part of the drift term
is present in the direction of α. Linear deterministic trends are not
present in the data. Since in this form CΦ = 0 we also only reproduce
a constant in both (7) and (8). This constant cancels in when taking
differences and thus we have E(∆Xt) = 0.

Case 3 ρ2 = γ2 = 0, but ρ1 6= 0 and γ1 6= 0 and thus the constant term
π is unrestricted. CΦ takes the form CΦ = (Cα⊥γ1, 0), which again

produces a constant in (7) and (8), but additionally from CΦ
t∑
i=1

Di we

get a linear trend in Xt. Having E(∆Xt) = Cα⊥γ1 6= 0 is consistent
with these restrictions.

Case 4 We only restrict γ2 = 0, but ρ1 6= 0, γ1 6= 0 and ρ2 6= 0. Since just
as in Case 3 we have CΦ = (Cα⊥γ1, 0) we also get a constant and a
linear trend in (7) again (this time caused by both of the last terms
in the representation). However, we now also get a linear trend and a
constant in (8). For E(∆Xt) 6= 0 applies again.

Case 5 There are no restrictions on the variables π and δ. We have ρ1 6= 0,
γ1 6= 0, ρ2 6= 0 and γ2 6= 0. This additionally produces a quadratic
trend through the sum in (7) in Xt. Usually it is adviced against this
case, unless it is plausible that the data actually contain quadratic
trends.
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3 Methods, Tests and Tools

This section deals with the theory to derive the lag parameter k for our Cointe-
gration Model, as well as all the matrices associated with cointegration Π, Φ, Γi
for i = 1 . . . k − 1 and the covariance of the errors Σ. But first of all we want to
check whether Cointegration is really necessary or if we are dealing with station-
ary time series anyway. For that purpose we have to briefly consider a unit root
test.

3.1 Data Interpolation for Quarterly Data

Since not all time series are of similar frequency it is often necessary to either
work with less information than available in common models of these time series,
or to estimate missing data points based on the existing, lower frequency data to
achieve the same periodicity. Since in our case all our time series except for one
are monthly, it would be a waste of information to perform calculation based on
the quarterly periodicity of the German GDP.
For that, we assume that a time series xt, t = 1, . . . , T with T ∈ 3N to be
completed is a random walk process, xt ∼ RW , i.e.

xt = xt−1 + εt.

For the variance of the process we therefore have

Extxs = min(t, s) , i.e.

Exx′ = σ2


1 1 1 · · ·
1 2 2 · · ·
1 2 3 · · ·
...

...
...

. . .

 with x =

 x1
...
xT


and σ2 being the variance of the white noise process εt.
Since we treat our original time series as incomplete, monthly time series for
which we only have the quarterly data points

Sx =


x1
x4
...
xT ∗

 with T ∗ = T − 2

we have for xt

xt = ( c1 c2 . . . cT/3 ) ·


x1
x4
...
xT ∗

+ ut = c(Sx) + ut. (9)
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By least-square regression we get for the vector of parameters c to be estimated

c = E(xt(Sxt)
′)E((Sxt)(Sxt)

′)−1

and thus, can interpolate our data through (9).

3.2 Estimations for Seasonality and Deterministic Trends

There are various ways to estimate seasonal trends. The method used in this
work is the Holt-Winters approach for triple exponential smoothing. ([Hol57],
[Win60])
For a time series xt, t = 1, . . . , T with a seasonal length L three sequences are
calculated:

st . . . a smoothed component

bt . . . a trend component

ct . . . a seasonal component.

The initial 2L-values for the smoothing component st are initialized with the
data-values xt. The trend component is initialized by

b1 =
1

L

(
xL+1 − x1

L
+
xL+2 − x2

L
+ · · ·+ xL+L − xL

L

)
.

The first L-values of the seasonal component ct are initialized by

ct =
1

N

N∑
i=1

xL(i−1)+t
Ai

with N being the overall amount of complete L-length cycles in the original time
series xt and Ai being the average value of x in the i-th cycle, hence

Ai =
1

L

L∑
j=1

xL(i−1)+j, for i = 1, . . . , N.

The rest of the values for st, bt and ct can be derived by the recursions

st = α
xt
ct−L

+ (1 + α)(st−1 + bt−1)

bt = β(st − st−1) + (1− β)βt−1

ct = γ
xt
st

+ (1− γ)ct−L.
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The smoothing parameters α, β, γ ∈ (0, 1) are chosen following a criterium like
least-square error estimation.

A forecast of the form

Ft+m = (st +mbt)ct−L+1+(m−1) mod L

can be generated, which uses the data values x1 . . . xt for a forecast for the value
xt+m,m > 0.

Our time series xt can now be deseasonalized by factoring out the determined
seasonal components ct.

3.3 The Augmented Dickey-Fuller Unit Root Test

The Augmented Dicker-Fuller Unit Root Test ([DF79]) is necessery because for
cointegration we want our original data series to be I(1). Hence, the differenced
time series should be stationary. Furthermore it helps us determining the validity
of a hypothesis on the cointegration rank r by testing for actual stationarity of
resulting steady-state relations.
To conduct an ADF test we first estimate autoregressive models for each time
series in our data of the form

∆xt = α + βt+ γxt−1 +
i=k−1∑
i=1

δi∆xt−i + εt.

The parameters α and β can be set to 0 if no trend should be assumed. The
amounts of lags k used in the model is found by fitting various such models and
testing them for goodness of fit, for example by usage of the AIC-criterion.

The unit root test is then carried out under the null hypothesis γ = 0 against
the alternative hypothesis γ < 0. The test statistic used is derived as γ̂

σ̂
for the

estimated parameter γ̂ and the estimated standard error σ̂. The idea is that in
case of an integrated series xt−1 should turn out to be irrelevant in the model,
hence, the γ = 0 hypothesis is not rejected.
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3.4 The Ljung-Box Test

The Ljung-Box test belongs to the so called Portmanteau tests and it tests the
null hypothesis that the data are independently distributed against the alternative
hypothesis that they exhibit serial correlation. We will apply it to see whether an
estimated vector autoregressive or vector error correction model represents the
data properly. In particular, we test whether the residuals of the fitted model are
actually independently distributed.
The test statistic for the Ljung-Box test is

Q = n(n+ 2)
h∑
k=1

ρ̂2k
n− k

with n being the sample size of the data, ρ̂2k being the sample autocorrelation at
lag k and h being the number of lags being tested.
The null hypthesis is rejected at significance level α whenQ exceeds the α-quantile
of the χ2-distribution with h degrees of freedom, , i.e. when Q > χ2

1−α,h.

3.5 The Reduced Rank Regression

We start off with a mathematical result that we will need later.

Lemma 3.5.1. Let M,N ∈ R
p×p, p ∈ N be two symmetric, positive definite

matrices. Then the function

f(V ) = |V ′MV | / |V ′NV |

is maximized among all p× r matrices by V̂ = (v1, . . . , vr) and the maximal value

is
r∏
i=1

λi, with vi ∈ R
p, λ1, . . . , λr > 0 being solutions of the general eigenvalue

problem

λNv = Mv.

| · | is the determinant of a matrix.

Proof. A proof for this Lemma can be found in [rJ95]

We follow the guidance and notation of Johansen from [rJ95]. We start with the
Error Correction Form of a VAR Process given in 2.1.10 by

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + εt, t = 1, . . . , T.
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For the purpose of cointegration we shall define matrices α ∈ Rp×r and β ∈ Rp×r
such that we have

Π = αβ′.

Furthermore, define

Z0t =∆Xt

Z1t =Xt−1

Z2t =(∆Xt−1, . . . ,∆Xr−k+1, Dt)
′

Ψ =(Γ1, . . . ,Γk−1,Φ)

such that 2.1.10 becomes

Z0t = αβ′Z1t + ΨZ2t + εt, t = 1, . . . , T. (10)

This is a linear regression model with unrestriced parameters Ψ and the coefficient
matrix to Z1t being of reduced rank. Therefore, we can apply reduced rank
regression as developed by Anderson [And51].
The log-likelihood function is given, apart from a constant, by

logL(Ψ, α, β,Σ) = −1

2
T log |Σ| − 1

2

T∑
t=1

(Z0t − αβ′Z1t −ΨZ2t)
′Σ−1(Z0t − αβ′Z1t −ΨZ2t)

and thus, the first order condition for estimating Ψ is

d (logL(Ψ, α, β,Σ))

dΨ
=0

T∑
t=1

(Z0t − αβ′Z1t − Ψ̂Z2t)Z
′
2t =0. (11)

We denote the product moment matrices

Mij = T−1
T∑
t=1

ZitZ
′
jt for i, j = 0, 1, 2

which have the symmetry-property

Mij = M ′
ji for i, j = 0, 1, 2.

This transforms (11) into

M02 = αβ′M12 + Ψ̂M22 (12)
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with

Ψ̂(α, β) = M02M
−1
22 − αβ′M12M

−1
22 .

We can now define

R0t =Z0t −M02M
−1
22 Z2t

R1t =Z1t −M12M
−1
22 Z2t,

which are the residuals we would obtain by regressing Z0t and Z1t on Z2t (i.e.
∆Xt and Xt−1 on the lagged differences ∆Xt−1, . . . ,∆Xr−k+1 and Dt ).
The concentrated likelihood function is

logL(α, β,Σ) = −1

2
T log(Σ)− 1

2

T∑
t=1

(R0t − αβ′R1t)
′Σ−1(R0t − αβ′R1t).

From a regression equation for the residuals

R0t = αβ′R1t + ε̂t (13)

we would get the same likelihood, hence the parameters Ψ can be eliminated by
regression and what remains in (13) is a reduced rank regression as investigated
by [And51].
Finally, we define Sij by

Sij = T−1
T∑
t=1

RitR
′
jt = Mij −Mj2M

−1
22 M2j, for i, j = 0, 1

which, for a fixed β, provides us with an easy way to estimate α and Σ through
regression of R0t on βR1t and leads to

α̂(β) =S01β(β′S11β)−1,

Σ̂(β) =S00 − S01β(β′S11β)−1β′S10 = S00 − α̂(β)(β′S11β)α̂(β)′

What is left to do is to find is a good estimator for β.
The contracted likelihood function is given by

L−2/Tmax (β, α̂(β), Σ̂(β)) = L−2/Tmax (β) =
∣∣∣Σ̂(β)

∣∣∣ =
∣∣S00 − S01β(β′S11β)−1β′S10

∣∣ .
(14)
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Examining this expression and using the invertibility of S00 and β′S11β, we have

|S00 − S01β(β′S11β)−1βS10| =
∣∣S00 − S01β(β′S11β)−1βS10

∣∣ |β′S11β|
/
|β′S11β| =

=

∣∣∣∣ I S01β
0 β′S11β

∣∣∣∣ ∣∣∣∣ S00 − S01β(β′S11β)−1β′S10 0
(β′S11β)−1β′S10 I

∣∣∣∣ / |β′S11β| =

=

∣∣∣∣ S00 S01β
β′S10 β′S11β

∣∣∣∣ / |β′S11β| =

=

∣∣∣∣ S00 0
β′S10 I

∣∣∣∣ ∣∣∣∣ I S−100 S01β
0 β′S11β − β′S10S

−1
00 S01β

∣∣∣∣ / |β′S11β| =

= |S00|
∣∣β′S11β − β′S10S

−1
00 S01β

∣∣ / |β′S11β| =
= |S00|

∣∣β′(S11 − S10S
−1
00 S01)β

∣∣ / |β′S11β| . (15)

Since S11 − S10S
−1
00 S01 and S11 are both positive finite, symmetric matrices, we

can apply 3.5.1, i.e. (15) and therefore, the maximum-likelihood function (14) is
maximized by solving the general eigenvalue problem∣∣λS11 − S10S

−1
00 S01

∣∣ = 0

for eigenvectors vi and eigenvalues λi, for i = 1, . . . , r and putting

β̂ = (v1, . . . , vr)

with the maximization value

L−2/Tmax = |S00|
r∏
i=1

(1− λi). (16)

The symmetry and positive finity properties of S11 − S10S
−1
00 S01 and S11 (and

the use of a normalization) also provide a simultanous diagonalization for these
matrices

v′jS11vi =

{
1 for i = j
0 for i 6= j

(17)

and

v′jS10S
−1
00 S01vi =

{
λi for i = j
0 for i 6= j

.

Therefore, our choice of β̂ as the r largest eigenvectors gives us the r-dimensional
cointegration space. It shall be noted that we have solved all models H(r),
r = 0, . . . , p with the same eigenvalue calculation.
For the choice of the best hypothesisH(r) we derive the TRACE-Statistic through
the likelihood ratio test by dividing the expression in (16) for r by the same
expression for r = p and taking the logarithm

TRACE(r) = −T
p∑

i=r+1

log(1− λ̂j). (18)
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3.6 The Varimax Method

So far our matrices α and β are not identified. To see this, suppose that O is an
orthogonal p × p-matrix and β∗ = βO. Then β∗ also fulfills (17) from the last
section as we have

(β∗)′S11β
∗ = O′β′S11βO = OIO = I.

Therefore, and to allow for a better interpretation of the achieved cointegration
relations a so called varimax rotation can be performed. The idea behind apply-
ing this method is to rotate the orthogonal basis of the cointegration (sub-)space
in a way that it aligns with the coordinates.
The p× r matrix β containing our cointegration relations shall be called loading
matrix A in this context with its members being referred to as loadings aij.
Then the formal varimax-criterion suggested by Kaiser ([Kai58]) is the maximiza-
tion of the sum of variances of squared loadings in columns across all columns

v∗ =
r∑
j=1

v∗j =
r∑
j=1

p
p∑
i=1

(a2ij)
2 −

(
p∑
i=1

a2ij

)2

p2
.

The original method to determine a solution for the orthogonal rotation matrix
O that achieves that AO minimizes the criterion shall be outlined.
The criterion will always be applied to two factors at a time until the process
converges.
The orthogonal rotation can be represented as

x1 y1
x2 y2
...

...
xp yp

( cosφ − sinφ
sinφ cosφ

)
=


X1 Y1
X2 Y2
...

...
Xp Yp


with xi and yi, i = 1 . . . p being the present loadings of the two factors, Xi and
Yi being the desired loadings and φ being the angle of rotation to be found.
We also have the useful relations

Xi = xi cosφ+ yi sinφ

Yi = −xi sinφ+ yi cosφ

dXi

dφ
= Yi

dYi

dφ
= −Xi.
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The varimax-criterion is given by finding the maximum for

p2v∗ = p

p∑
i=1

(X2
i )2 −

(
p∑
i=1

X2
i

)2

+ p

p∑
i=1

(Y 2
i )2 −

(
p∑
i=1

Y 2
i

)2

.

Taking first derivatives and setting them to zero yields

p

p∑
i=1

XiYi(X
2
i − Y 2

i )−
p∑
i=1

XiYi

p∑
i=1

(X2
i − Y 2

i ) = 0.

With some algebraic manipulation we end up with

tan 4φ =

2

(
p

p∑
i=1

(x2i − y2i )(2xiyi)−
p∑
i=1

(x2i − y2i )
p∑
i=1

(2xiyi)

)
p

(
p∑
i=1

((x2i − y2i )− (2xiyi)2)

)
−

((
p∑
i=1

(x2i − y2i )
)2

−
(

p∑
i=1

(2xiyi)

)2
)

which gives us the maximized φ under the sufficiency conditions for the second
derivative. These are summarized in the table below for the numerator and
denominator of the right side of the above equation.

sign of numerator
+ -

sign of denominator
+ 0◦ to +22.5◦ 0◦ to −22.5◦

- +22.5◦ to +45◦ −22.5◦ to −45◦

Additionally it was suggested that the maximization should be applied to the
normalized loadings, therefore, dividing the loadings first by their squared com-
munalities

hi =
r∑
j=1

a2ij

which leads to the normalized varimax criterion

v∗ =
r∑
j=1

v∗j =
r∑
j=1

p
p∑
i=1

(
a2ij
h2i

)2 −
(

p∑
i=1

a2ij
hi

)2

p2
.

With H2 being the p × p diagonal matrix of communalities we act upon H−1A
and get the resulting matrix B∗ = H−1AO with O being the r × r orthogonal-
transformation matrix determined by the varimax criterion. Then the matrix to
be interpreted is the matrix B = HB∗.
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4 Modelling, Variations, Tests and Results

As a first step – before starting the analysis of the data – we factor the average
German inflation rate (represented by the CPI) out of the other five time series.
Purely for the cause of a better graphical representation we also divide each of
the time series by their mean-value.
Furthermore, a deseasonalization seems to be in line since pellets, oil, gas, wood
and the GDP all undergo cyclic changes through the course of a year. We
use the Holt-Winters triple exponential smoothing method with a period of 12,
α = β = γ = 0.05 as parameters.

Figure 14: A combined image of all the processed time series.

On the resulting time series we perform the Kwiatkowski–Phillips–Schmidt–Shin
and the Augemented-Dickey-Fuller Test to test for level and trend stationarity as
well as for unit roots. The results are summarized in the next table.
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p-value KPSS (level) p-value KPSS (trend) p-value ADF (trend)
Pellets < 0.01 < 0.01 0.07422

Oil < 0.01 0.02046 0.0892
Gas < 0.01 < 0.01 0.4426

Wood < 0.01 < 0.01 0.2501
GDP < 0.01 0.01396 0.2888

Table 3: KPSS and ADF values for the processed time series.

The KPSS null hypotheses implying level and trend stationarity are rejected for
all time series. The ADF test does not reject that a unit root is present for gas,
wood and oil prices and neither strongly reject it for pellets and oil. These results
confirm that we should not invoke a stationary model and instead assume we are
dealing with non-stationary, integrated data.

4.1 The General Model

We run a first analysis of the data calculating some basic statistics.

Name mean standard deviation min max
Pellets levels 1.021853 0.1055988 0.8704 1.2330

Oil levels 1.005213 0.2444876 0.6047 1.4540
Gas levels 1.022721 0.1239374 0.7944 1.3000

Wood levels 1.011749 0.139298 0.7939 1.2550
GDP levels 1.027516 0.03044649 0.9812 1.0940

Pellets increases 0.001263853 0.02090173 -0.10950 0.07677
Oil increases 0.003674951 0.2444876 0.04971851 0.14460
Gas increases 0.001786795 0.01742856 -0.1201000 0.0741500

Wood increases 0.001912349 0.139298 0.01682073 0.05024
GDP increases 0.0006683408 0.03044649 0.00481478 0.01516

Table 4: Some descriptive statistics for the prices and their increases

The purpose of these statistics is to help us find the proper calibrations for the
reduced rank regression procedure later.
We, therefore, first consider the Vector Error Correction Model given in 2.1.10
by

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + εt, t = 1, . . . , T.

Before performing the Johansen analysis we have to determine what form of
deterministic term we want to use and what lag k fits our data. Therefore, we
estimate various ECF through linear regression as described in section 2.2 for lags
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k = 2, . . . , 12 with and without a constant and a trend.
The tabulated results are

best k AIC BIC HQ
ECM 2 -41.65 -40.65 -41.25

ECM with constant 2 -41.73 -40.62 -41.28
ECM with constant and trend 2 -41.75 -40.54 -41.26

.

Table 5: Information criterions and best lag k according to all criterions in the general model.

In all cases and by all criterions the best fitting lag k seems to be the minimum
two. However, while the AIC suggests the usage of constant and trend, the BIC
suggests the usage of no deterministic term at all and the HQ suggests only using
a constant. We will further conduct a Ljung-Box test to see which of the models
features the smallest error correlation at the residues.
In all cases the test results for pellets, oil, gas and wood are satisfying, while the
residues for GDP seem to show correlation, especially when performing the test for
higher lag-parameters. The reason for this is most likely that the monthly GDP
index has been estimated from originally quarterly data. The model without
a constant or trend, which is the one supported by the BIC, shows the worst
correlation values. Of the remaining two there is no clear better model and
therefore, we choose, mainly for reasons of simplicity, the model with a constant
but no trend.
It shall be noted that, since there is no clear rule which lag-parameter to test for in
the Ljung-Box test tables for lags from 1, . . . , 20 are given. Literature on the topic
often gives no clear directive, but possible choices include values around 20 as a
universal standard or ln(T − k), which in our case becomes ln(148) = 4.997212.
Finally, for our deterministic term we need to consider section 2.5, that is in
which form to include it into the Johansen procedure. Since we have no linear
deterministic trends in the data indicated by E(∆XT ) ≈ 0 we choose Case 2, i.e.
we restrict the constant term used in the model to lie in the cointegration space.
Given the above results, for our VECM we reach

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + εt ⇔

⇔ ∆Xt = α(β′, ρ)

(
Xt−1

1

)
+ Γ∆Xt−1 + εt.

With the given model we perform the reduced rank regression as described by
Johansen. To determine whether and to which degree cointegration is present,
we calculate the TRACE-statistic. Calculation is performed by the R-package
urca. The critical values are also taken from the package.
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test 10pct 5pct 1pct
r ≤ 4 1.72 7.52 9.24 12.97
r ≤ 3 8.91 17.85 19.96 24.60
r ≤ 2 29.42 32.00 34.91 41.07
r ≤ 1 63.96 49.65 53.12 60.16
r = 0 114.63 71.86 76.07 84.45

Table 6: TRACE statistics and critical values for the general model derived by the Johansen
test.

The hypothesis of no cointegration, the r = 0 case, as well as for a cointegration
rank of r ≤ 1 are discarded using 1%-Quantiles. Hypothesis with cointegration
rank r > 2 do not make it into any meaningful confidence intervalls. Therefore
we deduce a cointegration of r = 2 for our model, implying that there are two
stationary linear combinations of our data.
The normalized eigenvector cointegration relations β that the Johansen procedure
yields are given as

Pellets 1.0000 1.0000 1.0000 1.0000 1.0000
Oil −0.4350 0.3970 2.4037 0.1769 0.7824
Gas 0.6584 −0.2652 −0.3890 −1.5645 −2.0331
Wood 0.4815 −1.2932 0.4750 0.8447 0.9115
GDP −3.3255 1.8562 −22.4195 −5.6427 −2.4183

constant 1.6526 −1.7282 19.5126 5.4094 1.5461

and the respective loading matrix α as

Pellets −0.0211 −0.0038 0.0157 −0.0065 −0.0029
Oil −0.0849 −0.0635 −0.0384 0.0063 −0.0087
Gas −0.0661 0.0317 0.0063 0.0069 0.0006
Wood 0.0077 0.0817 −0.0017 −0.0036 −0.0014
GDP 0.0049 0.0052 0.0019 0.0039 −0.0006.

Notably the constant has become one of our variables in the cointegration space
by choice of our deterministic term. From the cointegration relations β we can
see for the first r = 2 columns what a price steady-state mix for prices could look
like. I.e we should have that

ξ1t = Pellets− 0.4350 ·Oil + 0.6584 ·Gas+ 0.4815 ·Wood

− 3.3255 ·GDP + 1.6526

ξ2t = Pellets+ 0.3970 ·Oil − 0.2652 ·Gas− 1.2932 ·Wood

+ 1.8562 ·GDP − 1.7282,

with ξ1t and x2t being stationary processes. We plot the resulting graphs for those
two
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Figure 15: The two steady-state relations in the general model.

and then we test these time series for actual stationarity and unit roots with the
KPSS and ADF tests.

p-value KPSS (Level) p-value KPSS (Trend) p-value ADF
ξ1t > 0.1 > 0.1 0.01453
ξ2t 0.04532 < 0.01 0.04338

Table 7: KPSS and ADF test values for the steady-state relations in the general model.

The results for the first series are satisfying. The null hypotheses of the two KPSS
tests, level stationarity and trend stationarity, are both not rejected. The null
hypothesis of the ADF test, the presence of a unit root is rejected.
The second relation, however, is less satisfying. The low test values of the KPSS
indicate that we are dealing with some form of non-stationarity and suggest that
we might have to discard the hypothesis of two cointegration relations in our
models and thus, lower the cointegration rank r to one. However, the low ADF
value still discards the notion of a unit root.
Furthermore, we want to repeat the above analysis of the Johansen results after
transforming the r = 2 cointergration relations from the β-matrix into a – hope-
fully – easier to interprete form through application of the Varimax procedure.
The resulting β∗ after Varimax transformation is given as

Pellets 0.0 1.411
Oil −0.589 0.0
Gas 0.670 0.235
Wood 1.215 −0.654
GDP −3.724 −0.798

constant 2.382 −0.209
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or written as (hopefully) stationary time series as

ζ1t = −0.589 ·Oil + 0.670 ·Gas+ 1.215 ·Wood

− 3.724 ·GDP + 2.382

ζ2t = 1.411 · Pellets− 0.235 ·Gas− 0.654 ·Wood

− 0.798 ·GDP − 0.209.

This is an interesting result, stating that we have two steady-state relations with
only 4 of our original variables. In the one relation pellets, in the other one oil is
discarded from the price mix.

Figure 16: The two steady-state relations in the general model after a varimax transformation
was performed.

The according KPSS and ADF test values are:

p-value KPSS (Level) p-value KPSS (Trend) p-value ADF
ζ1t > 0.1 < 0.01 0.02206
ζ2t 0.03795 > 0.1 0.01712

Table 8: KPSS and ADF test values for the steady-state relations in the general model after
a varimax transformation was performed.

Again we have mixed results. For both relations the KPSS values imply some
form of non-stationarity, while the unit root hypothesis is rejected again by the
ADF test.

We now take a look at the covariance matrix of the errors

Σ̂ = 10−4


3.1 −0.9 0.5 0.3 0.2
−0.9 22.2 −0.9 0.1 0.1

0.5 −0.9 2.2 0.2 0.2
0.3 0.1 0.2 2.2 0.1
0.2 0.1 0.2 0.1 0.2


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estimated from

ε̂t = ∆Xt − α̂(β̂′, ρ)

(
Xt−1

1

)
+ Γ̂∆Xt−1

with α̂, β̂ ∈ Rr×p being the first r-columns of α, β respectively.
Furthermore, we investigate the error plots as well as the autocovariance function
(ACF).

Figure 17: Residuals ε̂Pellets and their ACF in the general model.

Figure 18: Residuals ε̂Oil and their ACF in the general model.
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Figure 19: Residuals ε̂Gas and their ACF in the general model.

Figure 20: Residuals ε̂Wood and their ACF in the general model.

Figure 21: Residuals ε̂GDP and their ACF in the general model.

The results support the thesis that our residuals are indeed white noise and thus,
the chosen r and the consequent model approximate the (differenced) data in sat-
isfying fashion. We, furthermore, derive some statistics for the errors, the Median

Absolute Deviation, the Root Mean Square Error and the relative error V ar(ε̂)

V ar(X̂)
.
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Pellets Oil Gas Wood GDP
MAD 0.014 0.040 0.009 0.015 0.004
RMSE 0.018 0.047 0.015 0.015 0.004

relative error 0.700 0.896 0.709 0.772 0.776

Table 9: Statistics for the errors in the general model.

Lastly, we attempt a one-step forecast for values T + m with m = 1, . . . 6. For
the purpose of comparing the forecast we introduce the extended time series X∗

that is the original time series X extended by six data points. Again, we process
the data as described at the start of chapter. Note that we do not recalculate a
new deseasonalization, since thereby we would use the future data XT+1, . . . XT+6

for re-processing our dataset, but instead use the factors ct−L+1+(m−1) mod L as
described in section 3.2 for t = T and L = 12.
We take the prediction errors and get the statistics

Pellets Oil Gas Wood GDP
MAD 0.005 0.030 0.008 0.009 0.003
RMSE 0.009 0.073 0.007 0.007 0.004

relative error 0.020 1.396 0.173 0.127 0.518

.

Table 10: Statistics for the prediction errors in the general model.

Figure 22: The real pellets price growth rates, the modelled ones and the forecast extending
the data period in the general model.
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Figure 23: The real oil price growth rates, the modelled ones and the forecast extending the
data period in the general model.

Figure 24: The real gas price growth rates, the modelled ones and the forecast extending the
data period in the general model.

41



Figure 25: The real wood price growth rates, the modelled ones and the forecast extending
the data period in the general model.

Figure 26: The real GDP growth rates, the modelled ones and the forecast extending the data
period in the general model.
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4.2 Discussion of the Information Set

Now that we’ve run the analysis with a model including all our data we can draw
first conclusions. The TRACE test and the post-stationarity analysis have shown
that this model has cointegration rank r ≤ 2, hence a maximum of 2 cointegration
relations can be reached. Given that the original data is not stationary, we could
reach up to r = 4 cointegration relations with our original set containing pellets,
oil, gas, wood and GDP indices. The question arises whether all of these time
series are needed in the analysis and whether some of them are even holding the
model back from achieving better results.
As a first determination we perform the Johansen procedure on all pairs of our
data, determining the lag-parameter k by lowest AIC-value and using a constant
restricted to the cointegration space without running a deeper analysis into the
case determination since we are only interested in finding rough connections here.
The according 10%−, 5%− and 1%− quantiles of the TRACE test are reached
when the test statistic exceeds the following critical values

quantile 10% 5% 1%
critical value 17.85 19.96 24.60.

Table 11: The criticial values of the TRACE-test under the hypothesis r=0.

The test values and the used lags are given as

Pellets Oil Gas Wood GDP
Pellets – 17.95 3 12.32 4 17.09 3 17.55 2

Oil 17.95 3 – 11.88 6 12.62 3 11.79 2
Gas 12.32 4 11.88 6 – 8.20 4 14.75 4

Wood 17.09 3 12.62 3 8.20 4 – 23.76 2
GDP 17.55 2 11.79 2 14.75 4 23.76 2 –

.

Table 12: The TRACE-test values for pairs of data.

The test value for pellets with oil, wood and GDP all get close to or in the case of
oil even exceeds the 10%-quantile critical value. Furthermore, the result suggests
a strong relation of wood prices and GDP. Gas prices show no connection to the
other time series.
In terms of used lags the gas prices also seem to be an outlier. The VECM pairs
including was prices all require higher lags k = 4 or k = 6 to describe the data
best according to the AIC criterion, while all other models only have a lag of
k = 2 or k = 3.
A similar analysis dropping more than one variable and working only with triples
results in r ≤ 1 for all models. We decide to run the in-depth analysis as given
in the previous chapter for the general model for a model only containing the
pellets, oil, wood and GDP indices, hoping to reach a similar cointegration rank
r ≈ 2 as in the general model without gas.
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4.3 The Model without Gas

We start off again with the vector error correction model given in 2.1.10 by

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + εt, t = 1, . . . , T.

Our lag determination k and the according usage of a deterministic term work as
previously. We estimate the various forms of VECM through linear regression as
described in section 2.2 for lags k = 1, . . . , 12 with and without a constant and a
trend.

best k AIC BIC HQ
ECM 2 -33.26 -32.62 -33.00

ECM with constant 2 -33.35 -32.63 -33.06
ECM with constant and trend 2 -33.36 -32.56 -33.04

Table 13: Information criterions and best lag k according to all criterions in the model without
gas.

In all cases and by all criterions the best fitting k seems to be the minimum two,
similar to the general model. The minimum BIC and HQ are achieved when
including a constant, but not a trend, while the AIC suggests using a trend as
well. We further conduct the Ljung-Box test to check for error correlation in all
three models. In all three models the results for pellets, oil and wood suggest
no correlation, while, once again, for certain greater lag-calibrations of the used
Box-Ljung Test the residuals of the GDP seem to be correlated. The VECM with
a constant but without a trend (and lag 2) has the cleanest results and therefore,
we will use it.
We next consider the 5 Cases from section 2.5 for our inclusion of the deter-
ministic term in the Johansen procedure. We use the same argumentation as
previously: Since we have no linear deterministic trends in the data indicated by
E(∆XT ) ≈ 0 we choose Case 2, i.e. we restrict the constant term used in the
model to lie in the cointegration space.

Our VECM once again becomes

∆Xt = ΠXt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + εt ⇔

⇔ ∆Xt = α(β′, ρ)

(
Xt−1

1

)
+ Γ∆Xt−1 + εt.

Now that we have determined all the parameters we can perform the reduced
rank regression and give the according results like TRACE-statistic, the possible
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cointegration relations described by the normalized eigenvector matrix β and
their loading matrix α.

test 10pct 5pct 1pct
r ≤ 3 2.19 7.52 9.24 12.97
r ≤ 2 19.83 17.85 19.96 24.60
r ≤ 1 41.16 32.00 34.91 41.07
r = 0 74.62 49.65 53.12 60.16

Table 14: TRACE statistics and critical values for the general model derived by the Johansen
test.

The TRACE test gives us the result we hoped for rejecting hypothesis on the
cointegration rank for r = 0 and r ≤ 1. Additionally, to the retention of these
two statements, the test suggests that there could be an additional third steady
state relation possible by rejecting the hypothesis r ≤ 2 at the 10%-quantile and
only barely not reaching the critical value at 5%. It is in any case keeping the
possibility of r = 3 in mind in the further analysis.
The normalized eigenvector cointegration relations β deduced by the reduced
rank regression are

Pellets 1.0000 1.0000 1.0000 1.0000
Oil 0.2297 1.0553 −1.2970 0.1693
Wood −0.9453 1.2326 1.6852 1.6047
GDP 0.6251 −17.1226 −1.9944 4.3744

constant −0.9243 14.2479 0.6240 −8.1284

and the respective loading matrix α as

Pellets −0.0110 0.0162 −0.0191 −0.0012
Oil −0.1059 −0.0618 0.0110 −0.0039
Wood 0.0897 −0.0083 −0.0081 −0.0004
GDP 0.0097 0.0040 0.0033 −0.0004.

Once again we have one extra relation created by including the constant as part
of the cointegration space in our choice of the deterministic term. The up to
3 possible cointegration relations for steady state price mixes are given as the
processes

ξ1t = Pellets+ 0.2297 ·Oil − 0.9453 ·Wood

+ 0.6251 ·GDP − 0.9243

ξ2t = Pellets+ 1.0553 ·Oil + 1.2326 ·Wood

− 17.1226 ·GDP + 14.2479

ξ3t = Pellets− 1.2970 ·Oil + 1.6852 ·Wood

− 1.9944 ·GDP + 0.6240.
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The according plots are given

Figure 27: The three steady-state relations in the model without gas.

and then we test these time series for actual stationarity and unit roots with the
KPSS and ADF tests.

p-value KPSS (Level) p-value KPSS (Trend) p-value ADF
ξ1t 0.0232 0.02083 0.03803
ξ2t > 0.1 0.03517 0.4176
ξ3t 0.03628 < 0.01 0.09535

Table 15: KPSS and ADF test values for the steady-state relations in the model without gas.

The KPSS p-values for the most part suggest that the null hypothesis of station-
arity or trend stationarity should be rejected. At least the ADF test for the first
relation also rejects the null of a unit root.
We apply the Varimax transformation to the 3 relations and attain for the trans-
formed relations β∗

Pellets 1.661 0.128 0.473
Oil 0.0 1.664 −0.278
Wood 0.583 −0.275 2.199
GDP −7.155 −11.287 −10.907

constant 5.126 10.062 8.759
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i.e.

ζ1t = 1.661 · Pellets+ 0.583 ·Wood− 7.155 ·GDP + 5.126

ζ2t = 0.128 · Pellets+ 1.664 ·Oil − 0.275 ·Wood− 11.287 ·GDP + 10.062

ζ3t = 0.473 · Pellets− 0.278 ·Oil + 2.199 ·Wood− 10.907 ·GDP + 8.759

and their graphs

.

Figure 28: The three steady-state relations in the model without gas after a varimax trans-
formation was performed.

Only one of the variables has been rotated to 0 and also the KPSS and ADF test
statistics do not support this as a good model. In fact, the results are even less
probable to be stationary than the ones before the transformation.

p-value KPSS (Level) p-value KPSS (Trend) p-value ADF
ζ1t > 0.1 < 0.01 0.04031
ζ2t 0.07799 < 0.01 0.4098
ζ3t 0.05234 < 0.01 0.2056

Table 16: KPSS and ADF test values for the steady-state relations in the model without gas
after a varimax transformation was performed.

Since the choice of rank r matters for the results of our Varimax rotation, we
repeat it under the hypthesis of r = 2 instead of the previous one stating r = 3.
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Here the relations β∗ are given as

Pellets 1.409 0.126
Oil 0.853 0.662
Wood 0.0 1.552
GDP −10.506 −13.535

constant 8.432 11.522.

Figure 29: The two steady-state alternative in the model without gas after a varimax trans-
formation was performed.

or written in process form as

η1t = 1.409 · Pellets+ 0.853 ·Oil − 10.506 ·GDP + 8.432

η2t = 0.126 · Pellets+ 0.662 ·Oil − 1.552 ·Wood− 13.535 ·GDP + 11.522

with one variable rotated to 0. This time the results of the stationarity tests are
much better, at least for the KPSS tests of the first relation ζ1t.

p-value KPSS (Level) p-value KPSS (Trend) p-value ADF
η1t > 0.1 > 0.1 0.2983
η2t > 0.1 0.01431 0.4164

Table 17: KPSS and ADF test values for the steady-state alternatives in the model without
gas after a varimax transformation was performed.

With these results we tend towards the cointegration rank r = 2 in this model
without gas. Based on that hypothesis we will now also perform tests on the
errors and make a prediction for the time series that exceeds the original time
period.
The covariance matrix of the errors is given by

Σ̂ = 10−4

 2.9 −0.2 0.4 0.1
−0.2 21.1 −0.1 0.2

0.4 −0.1 2.2 0.1
0.1 0.2 0.1 0.2


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again, estimated from

ε̂t = ∆Xt − α̂(β̂′, ρ)

(
Xt−1

1

)
+ Γ̂∆Xt−1

with α̂, β̂ ∈ R
r×p being the first r-columns of α, β respectively. The according

error plots and their ACF are investigated.

Figure 30: Residuals ε̂Pellets and their ACF in the gasless model.

Figure 31: Residuals ε̂Oil and their ACF in the gasless model.
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Figure 32: Residuals ε̂Wood and their ACF in the gasless modell.

Figure 33: Residuals ε̂GDP and their ACF in the gasless model.

Again, the ACF for GDP as well as the covariance matrix show slight depen-
dencies (unsurprisingly given the underlying interpolation in that time series),
otherwise the graphs and the covariance matrix support the hypothesis of white
noise residuals.

Pellets Oil Wood GDP
MAD 0.013 0.041 0.016 0.003
RMSE 0.017 0.046 0.015 0.004

relative error 0.672 0.850 0.790 0.785

Table 18: Statistics for the errors in the gasless model.

Finally, we also attempt a one-step forecast for time values T + m with m =
1, . . . 6. Therefore, just like in the general model we introduce the extended time
series X∗ (in this model obviously without gas), which is the the original time
series X extended by six data points and process it for the purpose of comparing
to our forecast.
For the prediction errors we derive the same statistics as for the modelled data
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Pellets Oil Wood GDP
MAD 0.006 0.021 0.007 0.003
RMSE 0.005 0.099 0.010 0.006

relative error 0.055 1.435 0.111 0.725

.

Table 19: Statistics for the prediction errors in the gasless model.

Figure 34: The real pellet sprice growth rates, the modelled ones and the forecast extending
the data period in the gasless model.

Figure 35: The real oil price growth rates, the modelled ones and the forecast extending the
data period in the gasless model.
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Figure 36: The real wood price growth rates, the modelled ones and the forecast extending
the data period in the gasless model.

Figure 37: The real GDP growth rates, the modelled ones and the forecast extending the data
period in the gasless model.
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4.4 Conclusions

The investigated time series seem to be indeed integrated without a deterministic
trend. The results from the various investigated models show us that we can find
multiple steady-state relations according to our strongest criterion, the TRACE
test, from the data. Their actual stationarity is however of questionable nature
according to the performed KPSS and ADF tests. Also a graphical investigation
showcases that often characteristic phases within the data can be hard to elim-
inate. The characteristic up and downswings – particulary of oil and pellets –
seem to be reproduced in some of our cointegration relations. However, a certain
degree of cointegration seems to be present in the time series.
In the derived relations we see a clear trend that the parameter for GDP often
greatly overshadows other parameters, sometimes even by a factor of 100. At
this point it must be noted that the work was done with indices for the prices
and their movements that were derived by dividing the research data through the
respective average for the investigated time period. Therefore, as can be seen in
figure 14, the actual levels of the used time series are close to each other in size.
This means we can safely say from the observation on the parameter for the GDP
that in basically all models it seems to be by far the most influential factor. On
the other hand, the connection between gas and the other parameters has been
proven to be so weak that removing it from the information set used can actually
improve the results in one way or another.
The derived statistics in both models, the general one and the one without gas,
seem to be pretty similar for the residuals as well as for the prediction errors.
Significant price swings, for example the price drop of oil beginning in July 2014
(and ongoing to this day), cannot be properly predicted (see figure 23 and figure
35), otherwise the statistics let us conclude that both models produce reasonable
forecasts and models. We can conclude that the inclusion of gas does not grant
significant advantages for the prediction of pellets prices, while we have found
significant relations with oil and wood prices, as well as GDP.
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B Program Codes for R

B.1 R Libraries

#Package used f o r v e c t o r a u t o r e g r e s s i v e mode l l ing
l ibrary ( vars )
#Package t h a t con ta ins matrix o p e r a t i o n s
l ibrary ( Matrix )
#Package f o r c o i n t e g r a t i o n p r o c e s s i n g such as the Johanson

Approach
l ibrary ( urca )
#Package f o r c a l c u l a t i o n o f g e n e r a l i z e d E i g e n v e c t o r s and −

v a l u e s
l ibrary ( ge igen )
#Package t h a t con ta ins the ADF and KPSS Tests
l ibrary ( t s e r i e s )
#Package t h a t con ta ins the LjungBox Test
l ibrary ( po r t e s )
# Package t h a t i n c l u d e s the c a l c u l a t i o n o f RMSE
l ibrary (hydroGOF)
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B.2 Functions

Quarterly to Monthly

q2m <− function (data , rand ) {
Q=length (data )
T = Q∗3
Sx=data
s i g=var ( d i f f (data , 1 ) ) [ 1 ]

S=matrix (0 , ncol=T, nrow=Q)
for ( i in 1 :Q) {

S [ i ,(1+3∗( i −1) ) ]=1
}

Var = matrix (0 , ncol=T, nrow=T)
for ( i in 1 :T) {

Var [ i , i :T]=Var [ i , i :T]+ i
Var [ i :T, i ]=t ( Var [ i , i :T] )

}
Var=Var
VarS = Var
for ( i in T: 1 ) {

i f ( ( i%%3) != 1) {
VarS=VarS[− i , ]
VarS=VarS[ ,− i ]

}
}
c=Var%∗%t (S)%∗%solve ( VarS )
monthly=vector ( length=Q)
monthly=c%∗%data
i f ( rand==TRUE) {

monthly=monthly+rnorm(T, 0 , 3∗ s i g )
}
return ( monthly )

}
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Triple Exponential Smoothing

t r ipexp <− function (data , L , alpha =0.05 , beta=0.05 , gamma
=0.05) {

T=length (data )
N=f loor (T/L)
A=numeric (N)
for ( j in 1 :N) {

sum=0
for ( i in 1 :L) {

sum=sum+data [ L∗( j−1)+i ]
}
A[ j ]=sum/L

}
s=numeric (T)
b=numeric (T)
c=numeric (T)
s [ 1 : ( 2 ∗L) ]=data [ 1 : ( 2 ∗L) ]

sum=0
for ( i in 1 :L) {

sum=sum+(data [ L+i ]−data [ i ] ) /L
}
b [1 ]=1/L∗sum
for ( i in 1 :L) {

sum=0
for ( j in 1 :N) {

sum=sum+data [ L∗( j−1)+i ] /A[ j ]
}
c [ i ]=1/N∗sum

}
for ( t in 2 :L) {

b [ t ]=beta∗( s [ t ]− s [ t−1])+(1−beta )∗b [ t−1]
}
for ( t in (L+1) : ( 2∗L) ) {

b [ t ]=beta∗( s [ t ]− s [ t−1])+(1−beta )∗b [ t−1]
c [ t ]=gamma∗data [ t ] /s [ t ]+(1−gamma)∗c [ t−L ]

}
for ( t in (2∗L+1) :T) {

s [ t ]= alpha∗(data [ t ] /c [ t−L ] ) +(1−alpha )∗( s [ t−1]+b [ t−1])
b [ t ]=beta∗( s [ t ]− s [ t−1])+(1−beta )∗b [ t−1]
c [ t ]=gamma∗data [ t ] /s [ t ]+(1−gamma)∗c [ t−L ]

}
return ( c )

}
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VECM Estimation and Information Criteria

myVARJ <− function (data , k , const=c (TRUE, FALSE) , trend=c (
TRUE, FALSE) , rva lue=c ( ” In f o ” , ” eps ” ) ) {

T=dim(data ) [ 1 ]
p=dim(data ) [ 2 ]
ddata=rbind (0 , d i f f (data , 1 ) )
Y=t ( ddata [ ( k+1) :T , ] )
Z=matrix ( ncol=(T−k ) ,nrow=const+trend+(p∗k ) )
Z [ 1 : p , ]= t (data [ k : (T−1) , ] )
for ( i in 1 : ( k−1) ) {

Z [ ( i∗p+1) : ( ( i +1)∗p) ,]= t ( ddata [ ( k+1− i ) : (T−i ) , ] )
}
i f ( const==TRUE) {

Z [ k∗p+1,]=1
}
i f ( trend==TRUE) {

Z [ k∗p+2 ,]=(k+1) :T
}
B=Y%∗%t (Z)%∗%solve ( (Z%∗%t (Z) ) )
est im = matrix (0 ,nrow=p , ncol=T)
est im [ , 1 : k]=t ( ddata [ 1 : k , ] )
est im [ , ( k+1) :T]=B%∗%Z
eps=matrix (nrow=p , ncol=T)
eps [ , 1 : k]=0
eps [ , ( k+1) :T]=t ( ddata [ ( k+1) :T , ] )−est im [ , ( k+1) :T]
sum = 0
for ( i in ( k+1) :T) {

sum = sum + ( eps [ , i ] )%∗%t ( eps [ , i ] )
}
Sigk = 1/ (T−k )∗sum
AIC = log ( det ( Sigk ) ) + 2/T∗( k∗p+const+trend )∗p
BIC = log ( det ( Sigk ) ) + log (T)/T∗( k∗p+const+trend )∗p
HQ = log ( det ( Sigk ) ) + (2∗log ( log (T) ) )/T∗( k∗p+const+trend

)∗p
i f ( rva lue==” In fo ” ) {

return (cbind (k , AIC , BIC , HQ) )
} else {

return ( eps )
}

}

62



Alternative Cointegration Program and TRACE

TRACE <− function ( r , vect , T) {
n=length ( vect )
sum=0
for ( i in ( r+1) : n) {

sum=sum−T∗log(1−vect [ i ] )
}
return (sum)

}

c o i n t e g r a t e <− function (x , k , const=c (TRUE, FALSE) , trend=c (
TRUE,FALSE) , cconst=c (TRUE,FALSE) , ctrend=c (TRUE,FALSE)
) {

T = dim( x ) [ 1 ]
p = dim( x ) [ 2 ]

Z0=d i f f (x , l ag =1) [ k : (T−1) , ]

Z1=x [ k : (T−1) , ]
####################################
LaggedL=l i s t ( )
for ( i in 1 : ( k−1) ) {

LaggedL [ [ i ] ]= x [ ( k−i ) : (T−i ) , ]
}
Z2=d i f f ( LaggedL [ [ 1 ] ] , 1 )
i f (k>2) {

for ( i in 2 : ( k−1) ) {
Z2 = cbind (Z2 , d i f f ( LaggedL [ [ i ] ] , 1 ) )

}
}
i f ( trend == TRUE) {

Z2 = cbind ( k : (T−1) , Z2 )
}
i f ( const==TRUE) {

Z2 = cbind (numeric (T−k ) +1,Z2 )
}
i f ( cconst == TRUE) {

Z1 = cbind (Z1 , numeric (T−k )+1)
}
i f ( ctrend==TRUE) {

Z1 = cbind (Z1 , k : (T−1) )
}

T1=T−k
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M00=Z0 [ 1 , ]%∗%t (Z0 [ 1 , ] )
M01=Z0 [ 1 , ]%∗%t (Z1 [ 1 , ] )
M11=Z1 [ 1 , ]%∗%t (Z1 [ 1 , ] )
M02=Z0 [ 1 , ]%∗%t (Z2 [ 1 , ] )
M12=Z1 [ 1 , ]%∗%t (Z2 [ 1 , ] )
M22=Z2 [ 1 , ]%∗%t (Z2 [ 1 , ] )
for ( i in 2 : ( T1) ) {

M00 = M00 + Z0 [ i , ]%∗%t (Z0 [ i , ] )
M01 = M01 + Z0 [ i , ]%∗%t (Z1 [ i , ] )
M11 = M11 + Z1 [ i , ]%∗%t (Z1 [ i , ] )
M02 = M02 + Z0 [ i , ]%∗%t (Z2 [ i , ] )
M12 = M12 + Z1 [ i , ]%∗%t (Z2 [ i , ] )
M22 = M22 + Z2 [ i , ]%∗%t (Z2 [ i , ] )

}
M00=(1/ (T1) )∗M00
M01=(1/ (T1) )∗M01
M11=(1/ (T1) )∗M11
M02=(1/ (T1) )∗M02
M12=(1/ (T1) )∗M12
M22=(1/ (T1) )∗M22

R0 = matrix ( ncol=p , nrow=(T1) )
R1 = matrix ( ncol=p+cconst+ctrend , nrow=(T1) )
for ( i in 1 : ( T1) ) {

R0 [ i , ]= Z0 [ i , ]−(M02%∗%solve (M22)%∗%Z2 [ i , ] )
R1 [ i , ]= Z1 [ i , ]−(M12%∗%solve (M22)%∗%Z2 [ i , ] )

}

S00=R0 [ 1 , ]%∗%t (R0 [ 1 , ] )
S01=R0 [ 1 , ]%∗%t (R1 [ 1 , ] )
S10=R1 [ 1 , ]%∗%t (R0 [ 1 , ] )
S11=R1 [ 1 , ]%∗%t (R1 [ 1 , ] )
for ( i in 2 : ( T1) ) {

S00 = S00 + R0 [ i , ]%∗%t (R0 [ i , ] )
S01 = S01 + R0 [ i , ]%∗%t (R1 [ i , ] )
S10 = S10 + R1 [ i , ]%∗%t (R0 [ i , ] )
S11 = S11 + R1 [ i , ]%∗%t (R1 [ i , ] )

}
S00=(1/ (T1) )∗S00
S01=(1/ (T1) )∗S01
S10=(1/ (T1) )∗S10
S11=(1/ (T1) )∗S11
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e i g=ge igen ( S10%∗%solve ( S00 )%∗%S01 , S11 )
e i g $va lue s=e i g $va lue s [ ( p+cconst+ctrend ) : 1 ]
e i g $ vec to r s [ , 1 : ( p+cconst+ctrend ) ]= e i g $ vec to r s [ , ( p+cconst

+ctrend ) : 1 ]

#### normal ize the E i g e n v e c t o r s
for ( i in 1 : ( p+cconst+ctrend ) ) {

e i g $ vec to r s [ , i ]= e i g $ vec to r s [ , i ] / e i g $ vec to r s [ 1 , i ]
}

beta = e i g $ vec to r s
alpha = S01%∗%beta%∗%solve ( t ( beta )%∗%S11%∗%beta )
Omega = S00−alpha%∗%( t ( beta )%∗%S11%∗%beta )%∗%t ( alpha )
Psi = M02%∗%solve (M22)−alpha%∗%t ( beta )%∗%M12%∗%solve (M22

)

ReturnList=l i s t ( )
ReturnList [ [ 1 ] ] = beta
ReturnList [ [ 2 ] ] = alpha
ReturnList [ [ 3 ] ] = Omega
ReturnList [ [ 4 ] ] = Psi

print ( ”TRACE S t a t i s t i c ” )
for ( r in 0 : ( p−1) ) {

print (TRACE( r , e i g $values , T1) )
}
return ( ReturnList )

}
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B.3 Data Reading and Basic Data Processing

#Reading Data from sources
BIPRead = read . csv2 ( ” . . . PATH/BIP . csv ” , header=TRUE)
BIP = numeric (dim(BIPRead) [ 1 ] ∗3)
for ( i in 1 :dim(BIPRead) [ 1 ] )
{

for ( j in ( ( i −1)∗3+1) : ( i∗3) )
{

BIP [ j ]=BIPRead [ i , 3 ] /3
}

}
HolzRead = read . csv2 ( ” . . . PATH/Rohholz . csv ” , header=TRUE)
Pe l l e t sRead = read . csv2 ( ” . . . PATH/Daten Brenns to f f e 02−14.

csv ” , header=TRUE) #Contains P e l l e t s , Oi l and Gas Data
VPIRead = read . csv2 ( ” . . . PATH/VPI . csv ” , header=FALSE)
VPIRead [ , 3 ]= VPIRead [ , 3 ]

# C a l i b r a t i o n o f v a r i a b l e s
T = 150 #Datalength , s t a r t s Jan 2002 and goes to Jun 2014
p=5 #Dimension o f Data
per = 12 #P e r i o d i c i t y

BIPmonthly=q2m(BIPRead [ , 3 ] ,FALSE) #Data Est imat ion from
q u a r t e r l y BIP to monthly BIP

#Data/mean f a c t o r i n g out i n f l a t i o n
#Monthly Data
InfRate = VPIRead [ 1 : T, 3 ] /100
data = matrix (nrow=T, ncol=p)
data [ , 1 ] = ( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T]∗(1/ InfRate ) )/mean

( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T] )
data [ , 2 ] = ( Pe l l e t sRead$Heizo l [ 1 :T]∗(1/ InfRate ) )/mean(

Pe l l e t sRead$Heizo l [ 1 :T] )
data [ , 3 ] = ( Pe l l e t sRead$Erdgas [ 1 :T]∗(1/ InfRate ) )/mean(

Pe l l e t sRead$Erdgas [ 1 :T] )
data [ , 4 ] = ( HolzRead [ 1 : T, 6 ] ∗(1/ InfRate ) )/mean( HolzRead [ 1 : T

, 6 ] )
#Quarter ly Data
data [ , 5 ] = ( BIPmonthly [ 1 :T]∗(1/ InfRate ) )/mean( BIPmonthly

[ 1 :T] )
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# O r i g i n a l P l o t s
plot ( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T] , type=” l ” , xlab=”” , ylab=”

” , xaxt=”n” , col=” green ” )
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

plot ( Pe l l e t sRead$Heizo l [ 1 :T] , type=” l ” , xlab=”” , ylab=”” ,
xaxt=”n” , col=”brown” )

axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”
Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

plot ( Pe l l e t sRead$Erdgas [ 1 :T] , type=” l ” , xlab=”” , ylab=”” ,
xaxt=”n” , col=” orange ” )

axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”
Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

plot ( HolzRead [ 1 : T, 6 ] , type=” l ” , xlab=”” , ylab=”” , xaxt=”n” ,
col=” blue ” )

axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”
Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

plot (BIPRead [ 1 : 5 0 , 3 ] , type=” l ” , xlab=”” , ylab=”” , xaxt=”n” ,
col=” red ” )

axis (1 , at=seq (1 ,50 , 4) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”Jan
04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”Jan

09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”Jan
14 ’ ” ) )

plot (VPIRead [ 1 : T, 3 ] /100 , type=” l ” , xlab=”” , ylab=”” , xaxt=”n
” )

axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”
Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

#p l o t s o f the data/mean wi thou t i n f l a t i o n
plot (data [ , 1 ] , type=” l ” , col=” green ” , ylim=c (min(data ) ,max(

data ) ) , x lab=”Year” , ylab=”” , xaxt=”n” )
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )
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legend ( ” bottomright ” , legend=c ( ” P e l l e t s ” , ” Oi l ” , ”Gas” , ”Wood
” , ”GDP” ) , lwd=2, col=c ( ” green ” , ”brown” , ” orange ” , ” blue ”
, ” red ” ) , ncol=2)

l ines (data [ , 2 ] , col=”brown” )
l ines (data [ , 3 ] , col=” orange ” )
l ines (data [ , 4 ] , col=” blue ” )
l ines (data [ , 5 ] , col=” red ” )

# c r e a t i o n o f d e s e a s o n a l i z e d data ; renaming o f data
necessary f o r l a t e r use o f the urca−f u n c t i o n ca . jo

data [ , 1 ]= data [ , 1 ] ∗1/ t r ipexp (data [ , 1 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 )
data [ , 2 ]= data [ , 2 ] ∗1/ t r ipexp (data [ , 2 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 )
data [ , 3 ]= data [ , 3 ] ∗1/ t r ipexp (data [ , 3 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 )
data [ , 4 ]= data [ , 4 ] ∗1/ t r ipexp (data [ , 4 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 )
data [ , 5 ]= data [ , 5 ] ∗1/ t r ipexp (data [ , 5 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 )
a=data [ , 1 ]
b=data [ , 2 ]
c=data [ , 3 ]
d=data [ , 4 ]
e=data [ , 5 ]

# time s e r i e s o f f i r s t d i f f e r e n c e s
ad=d i f f ( a , 1 )
bd=d i f f (b , 1 )
cd=d i f f (c , 1 )
dd=d i f f (d , 1 )
ed=d i f f ( e , 1 )

#KPSS and ADF t e s t r e s u l t s
kpss . t e s t ( a , ” Leve l ” )
kpss . t e s t (b , ” Leve l ” )
kpss . t e s t (c , ” Leve l ” )
kpss . t e s t (d , ” Leve l ” )
kpss . t e s t ( e , ” Leve l ” )
kpss . t e s t ( a , ”Trend” )
kpss . t e s t (b , ”Trend” )
kpss . t e s t (c , ”Trend” )
kpss . t e s t (d , ”Trend” )
kpss . t e s t ( e , ”Trend” )
adf . t e s t ( a )
adf . t e s t (b)
adf . t e s t ( c )
adf . t e s t (d)
adf . t e s t ( e )
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#D e s c r i p t i v e S t a t i s t i c s f o r the data
mean( a )
mean(b)
mean( c )
mean(d)
mean( e )
sd ( a )
sd (b)
sd ( c )
sd (d)
sd ( e )
min( a )
min(b)
min( c )
min(d)
min( e )
max( a )
max(b)
max( c )
max(d)
max( e )
#D e s c r i p t i v e S t a t i s t i c s f o r the f i r s t d i f f e r e n c e s
mean( ad )
mean(bd )
mean( cd )
mean(dd )
mean( ed )
sd ( ad )
sd (bd )
sd ( cd )
sd (dd )
sd ( ed )
min( ad )
min(bd )
min( cd )
min(dd )
min( ed )
max( ad )
max(bd )
max( cd )
max(dd )
max( ed )
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B.4 Estimations for the General Model

#cho ice o f in format ion s e t f o r g e n e r a l model
x=cbind ( a , b , c , d , e )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

without cons tant or trend
for ( k in 2 : 12 ) {

print (myVARJ(x , k ,FALSE,FALSE, ” In f o ” ) )
}
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant
for ( k in 2 : 12 ) {

print (myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) )
}
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with trend
for ( k in 2 : 12 ) {

print (myVARJ(x , k ,TRUE,TRUE, ” In f o ” ) )
}

# cho ice o f l a g k
k=2

#LjungBox t e s t s f o r the r e s i d u u e s o f the model w i thou t
cons tant or trend

LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 1 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 2 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 3 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 4 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 5 , ] , l a g s =1:20)

#LjungBox t e s t s f o r the r e s i d u u e s o f the model wi th
cons tant

LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 1 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 2 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 3 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 4 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 5 , ] , l a g s =1:20)

#LjungBox t e s t s f o r the r e s i d u u e s o f the model wi th trend
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 1 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 2 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 3 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 4 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 5 , ] , l a g s =1:20)
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#p r o c e s s i n g o f Johanson wi th a cons tant in c o i n t e g r a t i o n
space

coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”
, season = NULL, dumvar = NULL,K=k )

summary( coco )

#a l t e r n a t i v e programm f o r Johanson wi th a cons tant in
c o i n t e g r a t i o n space

mycoco=c o i n t e g r a t e (x , k ,FALSE, FALSE, TRUE, FALSE)
mycoco [ [ 1 ] ]
mycoco [ [ 2 ] ]

# cho ice o f number o f c o i n t e g r a t i o n r e l a t i o n s r
r=2

#c a l c u l a t i o n and p l o t t i n g o f the c o i n t e g r a t i o n r e l a t i o n s
co in t=matrix ( ncol=r , nrow=T)
beta=s l o t ( coco , ”V” ) [ , 1 : r ]
for ( i in 1 :T) {

co in t [ i , ]= t ( beta )%∗%c ( x [ i , ] , 1 )
}
plot ( c o i n t [ , 1 ] , type=” l ” , ylab=”” , xlab=”” )
plot ( c o i n t [ , 2 ] , type=” l ” , ylab=”” , xlab=”” )

#KPSS and ADF Tests f o r the c o i n t e g r a t i o n r e l a t i o n s
kpss . t e s t ( c o i n t [ , 1 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 1 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 1 ] )
kpss . t e s t ( c o i n t [ , 2 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 2 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 2 ] )

#Varimax trans format ion o f the c o i n t e g r a t i o n r e l a t i o n s
beta=varimax ( s l o t ( coco , ”V” ) [ , 1 : r ] , normal ize=TRUE)$

l o ad ing s
beta

#c a l c u l a t i o n and p l o t t i n g o f the varimax processed
c o i n t e g r a t i o n r e l a t i o n s

for ( i in 1 :T) {
co in t [ i , ]= t ( beta )%∗%c ( x [ i , ] , 1 )

}
plot ( c o i n t [ , 1 ] , type=” l ” , ylab=”” , xlab=”” )
plot ( c o i n t [ , 2 ] , type=” l ” , ylab=”” , xlab=”” )
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#KPSS and ADF Tests f o r the varimax processed
c o i n t e g r a t i o n r e l a t i o n s

kpss . t e s t ( c o i n t [ , 1 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 1 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 1 ] )
kpss . t e s t ( c o i n t [ , 2 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 2 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 2 ] )

#AR model and p r e d i c t i o n s
ddata=rbind (0 , d i f f (x , 1 ) )

alpha=s l o t ( coco , ”W” ) [ , 1 : r ]
beta=s l o t ( coco , ”V” ) [ , 1 : r ]
gamma=s l o t ( coco , ”GAMMA” )

ARdata=matrix (nrow=150 ,ncol=5)
ARdata [ 1 : 3 , ] = ddata [ 1 : 3 , ]
for ( i in 0 : 146 ) {ARdata[3+1+i , ]= alpha%∗%t ( beta )%∗%c ( x[3+ i

, ] , 1 )+gamma%∗%ddata [3+ i , ] }

e r r o r = matrix (nrow=T−1, ncol=p)
e r r o r [ , 1 ]= ddata [2 :150 ,1 ] −ARdata [ 2 : 1 5 0 , 1 ]
e r r o r [ , 2 ]= ddata [2 :150 ,2 ] −ARdata [ 2 : 1 5 0 , 2 ]
e r r o r [ , 3 ]= ddata [2 :150 ,3 ] −ARdata [ 2 : 1 5 0 , 3 ]
e r r o r [ , 4 ]= ddata [2 :150 ,4 ] −ARdata [ 2 : 1 5 0 , 4 ]
e r r o r [ , 5 ]= ddata [2 :150 ,5 ] −ARdata [ 2 : 1 5 0 , 5 ]

sum = 0
for ( i in ( k ) : (T−1) ) {

sum = sum + ( e r r o r [ i , ] )%∗%t ( e r r o r [ i , ] )
}
Sigk = 1/ (T−k )∗sum

plot ( e r r o r [ , 1 ] , type=” l ” , xlab=”” , ylab=”” )
plot ( e r r o r [ , 2 ] , type=” l ” , xlab=”” , ylab=”” )
plot ( e r r o r [ , 3 ] , type=” l ” , xlab=”” , ylab=”” )
plot ( e r r o r [ , 4 ] , type=” l ” , xlab=”” , ylab=”” )
plot ( e r r o r [ , 5 ] , type=” l ” , xlab=”” , ylab=”” )
ac f ( e r r o r [ , 1 ] , x lab=”” , ylab=”” , main=”” )
ac f ( e r r o r [ , 2 ] , x lab=”” , ylab=”” , main=”” )
ac f ( e r r o r [ , 3 ] , x lab=”” , ylab=”” , main=”” )
ac f ( e r r o r [ , 4 ] , x lab=”” , ylab=”” , main=”” )
ac f ( e r r o r [ , 5 ] , x lab=”” , ylab=”” , main=”” )
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mad( e r r o r [ , 1 ] )
mad( e r r o r [ , 2 ] )
mad( e r r o r [ , 3 ] )
mad( e r r o r [ , 4 ] )
mad( e r r o r [ , 5 ] )
rmse (ARdata [ 4 : 1 5 0 , 1 ] , ddata [ 4 : 1 5 0 , 1 ] )
rmse (ARdata [ 4 : 1 5 0 , 2 ] , ddata [ 4 : 1 5 0 , 2 ] )
rmse (ARdata [ 4 : 1 5 0 , 3 ] , ddata [ 4 : 1 5 0 , 3 ] )
rmse (ARdata [ 4 : 1 5 0 , 4 ] , ddata [ 4 : 1 5 0 , 4 ] )
rmse (ARdata [ 4 : 1 5 0 , 5 ] , ddata [ 4 : 1 5 0 , 5 ] )
var ( e r r o r [ , 1 ] ) /var ( ddata [ 2 : 1 5 0 , 1 ] )
var ( e r r o r [ , 2 ] ) /var ( ddata [ 2 : 1 5 0 , 2 ] )
var ( e r r o r [ , 3 ] ) /var ( ddata [ 2 : 1 5 0 , 3 ] )
var ( e r r o r [ , 4 ] ) /var ( ddata [ 2 : 1 5 0 , 4 ] )
var ( e r r o r [ , 5 ] ) /var ( ddata [ 2 : 1 5 0 , 5 ] )

#Remaking data wi thout s e a s o n a l i z a t i o n to remake the
s e a s o n a l i z a t i o n i n d i c e s

#Monthly Data
InfRate = VPIRead [ 1 : T, 3 ] /100
noseasondata = matrix (nrow=T, ncol=p)
noseasondata [ , 1 ] = ( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T]∗(1/

InfRate ) )/mean( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T] )
noseasondata [ , 2 ] = ( Pe l l e t sRead$Heizo l [ 1 :T]∗(1/ InfRate ) )/

mean( Pe l l e t sRead$Heizo l [ 1 :T] )
noseasondata [ , 3 ] = ( Pe l l e t sRead$Erdgas [ 1 :T]∗(1/ InfRate ) )/

mean( Pe l l e t sRead$Erdgas [ 1 :T] )
noseasondata [ , 4 ] = ( HolzRead [ 1 : T, 6 ] ∗(1/ InfRate ) )/mean(

HolzRead [ 1 : T, 6 ] )
#Quarter ly Data
noseasondata [ , 5 ] = ( BIPmonthly [ 1 :T]∗(1/ InfRate ) )/mean(

BIPmonthly [ 1 :T] )

predccho i ce=T−per +1+(1:6−1)%%12
predcs=matrix (nrow=6, ncol=p)
predcs [ , 1 ]= t r ipexp ( noseasondata [ , 1 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]
predcs [ , 2 ]= t r ipexp ( noseasondata [ , 2 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]
predcs [ , 3 ]= t r ipexp ( noseasondata [ , 3 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]
predcs [ , 4 ]= t r ipexp ( noseasondata [ , 4 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]

73



predcs [ , 5 ]= t r ipexp ( noseasondata [ , 5 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [
p redccho i ce ]

#Data f o r p r e d i c t i o n purposes
#Monthly Data
f u tu r e In fRate = VPIRead [ (T+1) : (T+6) , 3 ] /100
fu tu r e = matrix (nrow=6, ncol=p)
fu tu r e [ , 1 ] = ( Pe l l e t sRead$ H o l z p e l l e t s [ (T+1) : (T+6) ]∗(1/

f u tu r e In fRate ) )/mean( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T] )
f u tu r e [ , 2 ] = ( Pe l l e t sRead$Heizo l [ (T+1) : (T+6) ]∗(1/

f u tu r e In fRate ) )/mean( Pe l l e t sRead$Heizo l [ 1 :T] )
f u tu r e [ , 3 ] = ( Pe l l e t sRead$Erdgas [ (T+1) : (T+6) ]∗(1/

f u tu r e In fRate ) )/mean( Pe l l e t sRead$Erdgas [ 1 :T] )
f u tu r e [ , 4 ] = ( HolzRead [ (T+1) : (T+6) , 6 ]∗(1/ f u tu r e In fRate ) )/

mean( HolzRead [ 1 : T, 6 ] )
#Quarter ly Data
f u tu r e [ , 5 ] = ( BIPmonthly [ (T+1) : (T+6) ]∗(1/ f u tu r e In fRate ) )/

mean( BIPmonthly [ 1 :T] )

# c r e a t i o n o f d e s e a s o n a l i z e d f u t u r e data
f u tu r e [ , 1 ]= fu tu r e [ , 1 ] ∗1/predcs [ , 1 ]
f u tu r e [ , 2 ]= fu tu r e [ , 2 ] ∗1/predcs [ , 2 ]
f u tu r e [ , 3 ]= fu tu r e [ , 3 ] ∗1/predcs [ , 3 ]
f u tu r e [ , 4 ]= fu tu r e [ , 4 ] ∗1/predcs [ , 4 ]
f u tu r e [ , 5 ]= fu tu r e [ , 5 ] ∗1/predcs [ , 5 ]

extended=rbind (x , f u tu r e )

f o r e c a s t=matrix (nrow=6,ncol=5)
for ( i in 1 : 6 ) { f o r e c a s t [ i , ]= alpha%∗%t ( beta )%∗%c ( extended

[150−1+ i , ] , 1 )+gamma%∗%di f f ( extended , 1 ) [150−1+ i , ] }

plot (149 : 155 , c (ARdata [T, 1 ] , f o r e c a s t [ , 1 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 1 ] , d i f f ( extended , 1 ) [ , 1 ] ) ,max( f o r e c a s t
[ , 1 ] , d i f f ( extended , 1 ) [ , 1 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 1 ] )
l ines (ARdata [ 2 : T, 1 ] , col=” green ” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended P e l l e t s ” , ”
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Modelled Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ”
green ” , ” pink ” ) , ncol=1)

plot (149 : 155 , c (ARdata [T, 2 ] , f o r e c a s t [ , 2 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 2 ] , d i f f ( extended , 1 ) [ , 2 ] ) ,max( f o r e c a s t
[ , 2 ] , d i f f ( extended , 1 ) [ , 2 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 2 ] )
l ines (ARdata [ 2 : T, 2 ] , col=”brown” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended Oi l ” , ” Modelled
Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ”brown” , ” pink
” ) , ncol=1)

plot (149 : 155 , c (ARdata [T, 3 ] , f o r e c a s t [ , 3 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 3 ] , d i f f ( extended , 1 ) [ , 3 ] ) ,max( f o r e c a s t
[ , 3 ] , d i f f ( extended , 1 ) [ , 3 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 3 ] )
l ines (ARdata [ 2 : T, 3 ] , col=” orange ” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended Gas” , ” Modelled
Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ” orange ” , ”
pink ” ) , ncol=1)

plot (149 : 155 , c (ARdata [T, 4 ] , f o r e c a s t [ , 4 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 4 ] , d i f f ( extended , 1 ) [ , 4 ] ) ,max( f o r e c a s t
[ , 4 ] , d i f f ( extended , 1 ) [ , 4 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 4 ] )
l ines (ARdata [ 2 : T, 4 ] , col=” blue ” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended Wood” , ” Modelled
Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ” blue ” , ” pink ”
) , ncol=1)
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plot (149 : 155 , c (ARdata [T, 5 ] , f o r e c a s t [ , 5 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 5 ] , d i f f ( extended , 1 ) [ , 5 ] ) ,max( f o r e c a s t
[ , 5 ] , d i f f ( extended , 1 ) [ , 5 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 5 ] )
l ines (ARdata [ 2 : T, 5 ] , col=” red ” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended GDP” , ” Modelled
Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ” red ” , ” pink ” )
, ncol=1)

prede r ro r=d i f f ( extended , 1 ) [150 :155 , ] − f o r e c a s t
mad( p r ede r ro r [ , 1 ] )
mad( p r ede r ro r [ , 2 ] )
mad( p r ede r ro r [ , 3 ] )
mad( p r ede r ro r [ , 4 ] )
mad( p r ede r ro r [ , 5 ] )
rmse ( f o r e c a s t [ , 1 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 1 ] )
rmse ( f o r e c a s t [ , 2 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 2 ] )
rmse ( f o r e c a s t [ , 3 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 3 ] )
rmse ( f o r e c a s t [ , 4 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 4 ] )
rmse ( f o r e c a s t [ , 5 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 5 ] )
var ( p r ede r ro r [ , 1 ] ) /var ( ddata [ 2 : 1 5 0 , 1 ] )
var ( p r ede r ro r [ , 2 ] ) /var ( ddata [ 2 : 1 5 0 , 2 ] )
var ( p r ede r ro r [ , 3 ] ) /var ( ddata [ 2 : 1 5 0 , 3 ] )
var ( p r ede r ro r [ , 4 ] ) /var ( ddata [ 2 : 1 5 0 , 4 ] )
var ( p r ede r ro r [ , 5 ] ) /var ( ddata [ 2 : 1 5 0 , 5 ] )
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B.5 Calculations Performed to Further Discuss the Infor-
mation Set

x=cbind ( a , b )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )

x=cbind ( a , c )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )

77



x=cbind ( a , d )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )

x=cbind ( a , e )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )
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x=cbind (b , c )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )

x=cbind (b , d)
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )
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x=cbind (b , e )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )

x=cbind (c , d )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )
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x=cbind (c , e )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )

x=cbind (d , e )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant ; a u t o m a t i c a l l y determine b e s t k by
s m a l l e s t AIC

k0=2
Cr i t0 = myVARJ(x , k0 ,TRUE,FALSE, ” In f o ” ) [ 2 ]
for ( k in 3 : 12 ) {

Cri t = myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) [ 2 ]
i f ( Crit<Crit0 ) {

Crit0=Cr i t
k0=k

}
}
k=k0
coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”

, season = NULL, dumvar = NULL,K=k )
summary( coco )
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B.6 Estimations for the Model without Gas

#cho ice o f in format ion s e t f o r model w i thou t gas
x=cbind ( a , b , d , e )
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

without cons tant or trend
for ( k in 2 : 12 ) {

print (myVARJ(x , k ,FALSE,FALSE, ” In f o ” ) )
}
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with cons tant
for ( k in 2 : 12 ) {

print (myVARJ(x , k ,TRUE,FALSE, ” In f o ” ) )
}
#determining AIC , BIC and HQ f o r l a g k =2. . .12 in an VECM

with trend
for ( k in 2 : 12 ) {

print (myVARJ(x , k ,TRUE,TRUE, ” In f o ” ) )
}

# cho ice o f l a g k
k=2

#LjungBox t e s t s f o r the r e s i d u u e s o f the model w i thou t
cons tant or trend

LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 1 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 2 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 3 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,FALSE,FALSE, ” eps ” ) [ 4 , ] , l a g s =1:20)

#LjungBox t e s t s f o r the r e s i d u u e s o f the model wi th
cons tant

LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 1 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 2 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 3 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,FALSE, ” eps ” ) [ 4 , ] , l a g s =1:20)

#LjungBox t e s t s f o r the r e s i d u u e s o f the model wi th trend
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 1 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 2 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 3 , ] , l a g s =1:20)
LjungBox (myVARJ(x , k ,TRUE,TRUE, ” eps ” ) [ 4 , ] , l a g s =1:20)
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#p r o c e s s i n g o f Johanson wi th a cons tant in c o i n t e g r a t i o n
space

coco=ca . j o (x , type=” t ra c e ” , spec=” t r a n s i t o r y ” , ecdet=” const ”
, season = NULL, dumvar = NULL,K=k )

summary( coco )

#a l t e r n a t i v e programm f o r Johanson wi th a cons tant in
c o i n t e g r a t i o n space

mycoco=c o i n t e g r a t e (x , k ,FALSE, FALSE, TRUE, FALSE)
mycoco [ [ 1 ] ]
mycoco [ [ 2 ] ]

# cho ice o f number o f c o i n t e g r a t i o n r e l a t i o n s r
r=3

#c a l c u l a t i o n and p l o t t i n g o f the c o i n t e g r a t i o n r e l a t i o n s
co in t=matrix ( ncol=r , nrow=T)
beta=s l o t ( coco , ”V” ) [ , 1 : r ]
for ( i in 1 :T) {

co in t [ i , ]= t ( beta )%∗%c ( x [ i , ] , 1 )
}
plot ( c o i n t [ , 1 ] , type=” l ” , ylab=”” , xlab=”” )
plot ( c o i n t [ , 2 ] , type=” l ” , ylab=”” , xlab=”” )
plot ( c o i n t [ , 3 ] , type=” l ” , ylab=”” , xlab=”” )

#KPSS and ADF Tests f o r the c o i n t e g r a t i o n r e l a t i o n s
kpss . t e s t ( c o i n t [ , 1 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 1 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 1 ] )
kpss . t e s t ( c o i n t [ , 2 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 2 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 2 ] )
kpss . t e s t ( c o i n t [ , 3 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 3 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 3 ] )

#Varimax trans format ion o f the c o i n t e g r a t i o n r e l a t i o n s
beta=varimax ( s l o t ( coco , ”V” ) [ , 1 : r ] , normal ize=TRUE)$

l o ad ing s
beta
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#c a l c u l a t i o n and p l o t t i n g o f the varmiax processed
c o i n t e g r a t i o n r e l a t i o n s

for ( i in 1 :T) {
co in t [ i , ]= t ( beta )%∗%c ( x [ i , ] , 1 )

}
plot ( c o i n t [ , 1 ] , type=” l ” , ylab=”” , xlab=”” )
plot ( c o i n t [ , 2 ] , type=” l ” , ylab=”” , xlab=”” )
plot ( c o i n t [ , 3 ] , type=” l ” , ylab=”” , xlab=”” )

#KPSS and ADF Tests f o r the varimax processed
c o i n t e g r a t i o n r e l a t i o n s

kpss . t e s t ( c o i n t [ , 1 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 1 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 1 ] )
kpss . t e s t ( c o i n t [ , 2 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 2 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 2 ] )
kpss . t e s t ( c o i n t [ , 3 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 3 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 3 ] )

#Reducing the c o i n t e g r a t i o n rank in t h i s model to r=2 f o r
a l t e r n a t i v e varimax r o t a t i o n s

r=2

#Varimax trans format ion o f the c o i n t e g r a t i o n r e l a t i o n s
beta=varimax ( s l o t ( coco , ”V” ) [ , 1 : r ] , normal ize=TRUE)$

l o ad ing s
beta

#c a l c u l a t i o n and p l o t t i n g o f the varmiax processed
c o i n t e g r a t i o n r e l a t i o n s

for ( i in 1 :T) {
co in t [ i , ]= t ( beta )%∗%c ( x [ i , ] , 1 )

}
plot ( c o i n t [ , 1 ] , type=” l ” , ylab=”” , xlab=”” )
plot ( c o i n t [ , 2 ] , type=” l ” , ylab=”” , xlab=”” )
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#KPSS and ADF Tests f o r the varimax processed
c o i n t e g r a t i o n r e l a t i o n s

kpss . t e s t ( c o i n t [ , 1 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 1 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 1 ] )
kpss . t e s t ( c o i n t [ , 2 ] , ” Leve l ” )
kpss . t e s t ( c o i n t [ , 2 ] , ”Trend” )
adf . t e s t ( c o i n t [ , 2 ] )

#AR model and p r e d i c t i o n in the g a s l e s s model
ddata=rbind (0 , d i f f (x , 1 ) )

alpha=s l o t ( coco , ”W” ) [ , 1 : r ]
beta=s l o t ( coco , ”V” ) [ , 1 : r ]
gamma=s l o t ( coco , ”GAMMA” )

ARdata=matrix (nrow=150 ,ncol=4)
ARdata [ 1 : 3 , ] = ddata [ 1 : 3 , ]
for ( i in 0 : 146 ) {ARdata[3+1+i , ]= alpha%∗%t ( beta )%∗%c ( x[3+ i

, ] , 1 )+gamma%∗%ddata [3+ i , ] }

e r r o r = matrix (nrow=T−1, ncol=4)
e r r o r [ , 1 ]= ddata [2 :150 ,1 ] −ARdata [ 2 : 1 5 0 , 1 ]
e r r o r [ , 2 ]= ddata [2 :150 ,2 ] −ARdata [ 2 : 1 5 0 , 2 ]
e r r o r [ , 3 ]= ddata [2 :150 ,3 ] −ARdata [ 2 : 1 5 0 , 3 ]
e r r o r [ , 4 ]= ddata [2 :150 ,4 ] −ARdata [ 2 : 1 5 0 , 4 ]

sum = 0
for ( i in ( k ) : (T−1) ) {

sum = sum + ( e r r o r [ i , ] )%∗%t ( e r r o r [ i , ] )
}
Sigk = 1/ (T−k )∗sum

plot ( e r r o r [ , 1 ] , type=” l ” , xlab=”” , ylab=”” )
plot ( e r r o r [ , 2 ] , type=” l ” , xlab=”” , ylab=”” )
plot ( e r r o r [ , 3 ] , type=” l ” , xlab=”” , ylab=”” )
plot ( e r r o r [ , 4 ] , type=” l ” , xlab=”” , ylab=”” )
ac f ( e r r o r [ , 1 ] , x lab=”” , ylab=”” , main=”” )
ac f ( e r r o r [ , 2 ] , x lab=”” , ylab=”” , main=”” )
ac f ( e r r o r [ , 3 ] , x lab=”” , ylab=”” , main=”” )
ac f ( e r r o r [ , 4 ] , x lab=”” , ylab=”” , main=”” )

mad( e r r o r [ , 1 ] )
mad( e r r o r [ , 2 ] )
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mad( e r r o r [ , 3 ] )
mad( e r r o r [ , 4 ] )
rmse (ARdata [ 4 : 1 5 0 , 1 ] , ddata [ 4 : 1 5 0 , 1 ] )
rmse (ARdata [ 4 : 1 5 0 , 2 ] , ddata [ 4 : 1 5 0 , 2 ] )
rmse (ARdata [ 4 : 1 5 0 , 3 ] , ddata [ 4 : 1 5 0 , 3 ] )
rmse (ARdata [ 4 : 1 5 0 , 4 ] , ddata [ 4 : 1 5 0 , 4 ] )
var ( e r r o r [ , 1 ] ) /var ( ddata [ 2 : 1 5 0 , 1 ] )
var ( e r r o r [ , 2 ] ) /var ( ddata [ 2 : 1 5 0 , 2 ] )
var ( e r r o r [ , 3 ] ) /var ( ddata [ 2 : 1 5 0 , 3 ] )
var ( e r r o r [ , 4 ] ) /var ( ddata [ 2 : 1 5 0 , 4 ] )

#Remaking data wi thout s e a s o n a l i z a t i o n to remake the
s e a s o n a l i z a t i o n i n d i c e s

#Monthly Data
InfRate = VPIRead [ 1 : T, 3 ] /100
noseasondata = matrix (nrow=T, ncol=p)
noseasondata [ , 1 ] = ( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T]∗(1/

InfRate ) )/mean( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T] )
noseasondata [ , 2 ] = ( Pe l l e t sRead$Heizo l [ 1 :T]∗(1/ InfRate ) )/

mean( Pe l l e t sRead$Heizo l [ 1 :T] )
noseasondata [ , 3 ] = ( HolzRead [ 1 : T, 6 ] ∗(1/ InfRate ) )/mean(

HolzRead [ 1 : T, 6 ] )
#Quarter ly Data
noseasondata [ , 4 ] = ( BIPmonthly [ 1 :T]∗(1/ InfRate ) )/mean(

BIPmonthly [ 1 :T] )

predccho i ce=T−per +1+(1:6−1)%%12
predcs=matrix (nrow=6, ncol=4)
predcs [ , 1 ]= t r ipexp ( noseasondata [ , 1 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]
predcs [ , 2 ]= t r ipexp ( noseasondata [ , 2 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]
predcs [ , 3 ]= t r ipexp ( noseasondata [ , 3 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]
predcs [ , 4 ]= t r ipexp ( noseasondata [ , 4 ] , 1 2 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ) [

p redccho i ce ]

#Data f o r p r e d i c t i o n purposes
#Monthly Data
f u tu r e In fRate = VPIRead [ (T+1) : (T+6) , 3 ] /100
fu tu r e = matrix (nrow=6, ncol=4)
fu tu r e [ , 1 ] = ( Pe l l e t sRead$ H o l z p e l l e t s [ (T+1) : (T+6) ]∗(1/

f u tu r e In fRate ) )/mean( Pe l l e t sRead$ H o l z p e l l e t s [ 1 :T] )
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f u tu r e [ , 2 ] = ( Pe l l e t sRead$Heizo l [ (T+1) : (T+6) ]∗(1/
f u tu r e In fRate ) )/mean( Pe l l e t sRead$Heizo l [ 1 :T] )

f u tu r e [ , 3 ] = ( HolzRead [ (T+1) : (T+6) , 6 ]∗(1/ f u tu r e In fRate ) )/
mean( HolzRead [ 1 : T, 6 ] )

#Quarter ly Data
f u tu r e [ , 4 ] = ( BIPmonthly [ (T+1) : (T+6) ]∗(1/ f u tu r e In fRate ) )/

mean( BIPmonthly [ 1 :T] )

# c r e a t i o n o f d e s e a s o n a l i z e d f u t u r e data
f u tu r e [ , 1 ]= fu tu r e [ , 1 ] ∗1/predcs [ , 1 ]
f u tu r e [ , 2 ]= fu tu r e [ , 2 ] ∗1/predcs [ , 2 ]
f u tu r e [ , 3 ]= fu tu r e [ , 3 ] ∗1/predcs [ , 3 ]
f u tu r e [ , 4 ]= fu tu r e [ , 4 ] ∗1/predcs [ , 4 ]

extended=rbind (x , f u tu r e )

f o r e c a s t=matrix (nrow=6,ncol=4)
for ( i in 1 : 6 ) { f o r e c a s t [ i , ]= alpha%∗%t ( beta )%∗%c ( extended

[150−1+ i , ] , 1 )+gamma%∗%di f f ( extended , 1 ) [150−1+ i , ] }

plot (149 : 155 , c (ARdata [T, 1 ] , f o r e c a s t [ , 1 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 1 ] , d i f f ( extended , 1 ) [ , 1 ] ) ,max( f o r e c a s t
[ , 1 ] , d i f f ( extended , 1 ) [ , 1 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 1 ] )
l ines (ARdata [ 2 : T, 1 ] , col=” green ” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended P e l l e t s ” , ”
Modelled Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ”
green ” , ” pink ” ) , ncol=1)

plot (149 : 155 , c (ARdata [T, 2 ] , f o r e c a s t [ , 2 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 2 ] , d i f f ( extended , 1 ) [ , 2 ] ) ,max( f o r e c a s t
[ , 2 ] , d i f f ( extended , 1 ) [ , 2 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 2 ] )
l ines (ARdata [ 2 : T, 2 ] , col=”brown” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended Oi l ” , ” Modelled
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Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ”brown” , ” pink
” ) , ncol=1)

plot (149 : 155 , c (ARdata [T, 3 ] , f o r e c a s t [ , 3 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 3 ] , d i f f ( extended , 1 ) [ , 3 ] ) ,max( f o r e c a s t
[ , 3 ] , d i f f ( extended , 1 ) [ , 3 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 3 ] )
l ines (ARdata [ 2 : T, 3 ] , col=” blue ” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended Wood” , ” Modelled
Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ” blue ” , ” pink ”
) , ncol=1)

plot (149 : 155 , c (ARdata [T, 4 ] , f o r e c a s t [ , 4 ] ) , col=” pink ” , lwd=2,
type=” l ” , xlab=”” , ylab=”” , xaxt=”n” , xlim=c (0 ,155) , yl im=c
(min( f o r e c a s t [ , 4 ] , d i f f ( extended , 1 ) [ , 4 ] ) ,max( f o r e c a s t
[ , 4 ] , d i f f ( extended , 1 ) [ , 4 ] ) ) )

l ines ( d i f f ( extended , 1 ) [ , 4 ] )
l ines (ARdata [ 2 : T, 4 ] , col=” red ” , lwd=2)
axis (1 , at=seq (1 ,150 , 12) , labels=c ( ”Jan 02 ’ ” , ”Jan 03 ’ ” , ”

Jan 04 ’ ” , ”Jan 05 ’ ” , ”Jan 06 ’ ” , ”Jan 07 ’ ” , ”Jan 08 ’ ” , ”
Jan 09 ’ ” , ”Jan 10 ’ ” , ”Jan 11 ’ ” , ”Jan 12 ’ ” , ”Jan 13 ’ ” , ”
Jan 14 ’ ” ) )

legend ( ” bottomright ” , legend=c ( ”Extended GDP” , ” Modelled
Data” , ” Prognos i s ” ) , lwd=2, col=c ( ” black ” , ” red ” , ” pink ” )
, ncol=1)

prede r ro r=d i f f ( extended , 1 ) [150 :155 , ] − f o r e c a s t
mad( p r ede r ro r [ , 1 ] )
mad( p r ede r ro r [ , 2 ] )
mad( p r ede r ro r [ , 3 ] )
mad( p r ede r ro r [ , 4 ] )
rmse ( f o r e c a s t [ , 1 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 1 ] )
rmse ( f o r e c a s t [ , 2 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 2 ] )
rmse ( f o r e c a s t [ , 3 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 3 ] )
rmse ( f o r e c a s t [ , 4 ] , d i f f ( extended , 1 ) [ 1 5 0 : 1 5 5 , 4 ] )
var ( p r ede r ro r [ , 1 ] ) /var ( ddata [ 2 : 1 5 0 , 1 ] )
var ( p r ede r ro r [ , 2 ] ) /var ( ddata [ 2 : 1 5 0 , 2 ] )
var ( p r ede r ro r [ , 3 ] ) /var ( ddata [ 2 : 1 5 0 , 3 ] )
var ( p r ede r ro r [ , 4 ] ) /var ( ddata [ 2 : 1 5 0 , 4 ] )
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