
An Actor Constraint Prototype

Verifying Event Order

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Rudolf Mildner
Matrikelnummer 0426776

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Wien, 21. August 2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

An Actor Constraint Prototype

Verifying Event Order

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Rudolf Mildner
Registration Number 0426776

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Vienna, August 21, 2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Rudolf Mildner
Tigergasse 6/21 A1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

Meiner Mutter und meiner Großmutter. Danke für Liebe,
Geduld und Weisheit. Ich habe viel von Euch gelernt.

Der kleinen Anna Michaela Margaretha Alles Gute zur
Geburt und für Ihren Lebensweg.

Professor Puntigam vielen herzlichen Dank für die
großartige Betreuung.

iii

Abstract

This thesis describes design, implementation and evaluation of a prototype that allows us to
define synchronisation protocols for the verification of message orders between actors. The
prototype extends AKKA [66], an existing actor concurrency implementation, provides a verifi-
cation layer on top of it and a domain-specific language to write synchronization rules. Rules
can be defined on a per-actor basis. The prototype makes sure the actor system complies with
them and detects unwanted message orders. Two verification algorithms were implemented for
the prototype. Both use the same basic verification logic, but differ in how they log interactions
between actors and how they check firing of rules. History logging verification keeps a log of
interactions for each actor and uses it to check if a rule fires. Because this approach proved to
be memory intensive and not performant enough, a second algorithm was implemented which
circumvents these issues. Automaton verification creates an automaton for each rule. Interac-
tions with the actor are logged by changing the automaton’s active state and the active state of
an automaton is used to determine if a rule fires.

Evaluation of the prototype consisted of worst-case runtime determination, tests with real
world applications and benchmarking. For both implemented verifiction algorithms the worst-
case runtime of the verification itself was determined. For the automaton verification also the
worst-case runtime of automaton creation and -optimization was determined. To test the proto-
type under real world conditions, two sample applications were written: One which implements
the Chameneos Concurrency Game [45] and another one which implements a token ring. The
latter also was used to perform benchmark tests, by running the application in different con-
figurations without the prototype, with the history logging verification and with the automaton
verification and the resulting overall runtimes were measured and graphically evaluated.

v

Kurzfassung

Diese Diplomarbeit beschreibt Design, Umsetzung und Analyse eines Prototyps, welcher die
Definition eines Synchronisations-Protokolls zur Verifizierung der Reihenfolge von Nachrichten
zwischen Aktoren erlaubt. Der Prototyp erweitert AKKA [66], ein etabliertes Aktoren-System
und erlaubt uns, mittels einer Domain-Specific-Language Regeln zu definieren. Der Prototyp
stellt sicher, dass das das Aktoren-System diese Regeln einhält, indem er alle Nachrichten fin-
det, die eine Regel verletzen. Zwei Versionen der Verifikation wurden implementiert. Beide
verwenden dieselbe Verifikationslogik, unterscheiden sich aber in der Art und Weise, in der sie
Interaktionen loggen und überprüfen, ob eine Regel feuert. Die History Logging Verification
hält ein Log aller bisherigen Interaktionen mit einem Aktor und verwendet diese History, um zu
überprüfen, ob eine Regel feuert. Dieser Ansatz stellte sich als speicher- und zeitintensiv her-
aus, weswegen eine zweite Variante implementiert wurde. Die Automaton Verification erzeugt
für jede Regel einen Automaten. Interaktionen mit einem Aktor werden als State-Changes in
diesem Automaten abgebildet, und der aktuelle Zustand des Automaten wird verwendet um zu
überprüfen, ob eine Regel feuert.

Zur Evaluation des Prototyps wurde die Worst-Case Laufzeit der Verifikations-Algorithmen
bestimmt, es wurden Tests mit Real-World Applikationen durchgeführt und ein Benchmark wur-
de durchgeführt. Für beide Verifikations-Algorithmen wurde die Worst-Case Laufzeit der Veri-
fikation bestimmt. Für die Automaton Verification wurden zusätzlich die Worst-Case Laufzeiten
für das Erzeugen sowie das Optimieren eines Automaten für eine Regel bestimmt. Um den Pro-
totyp unter realen Bedingungen zu testen wurden zwei Applikationen implementiert: Die Erste
realisiert das Chameneos Concurrency Game [45], die Zweite simuliert einen Token-Ring. Diese
zweite Applikation wurde auch verwendet, um Benchmark-Tests mit dem Prototyp durchzufüh-
ren. Dazu wurde die Token-Ring-Applikation in verschiedenen Konfigurationen ohne Prototyp,
mit der History Logging Verification und mit der Automaton Verification ausgeführt und die
ermittelten Laufzeiten zusammengefasst sowie grafisch aufbereitet.

vii

Contents

1 Introduction 1
1.1 Motivation, Objective and Methodology . 1
1.2 Thesis Structure . 2

2 Concurrency 3
2.1 Motivation . 3
2.2 Definition . 7
2.3 Challenges . 9
2.4 Solution Approaches . 11
2.5 Exchange of Information . 16
2.6 Concurrency and Object-Orientation . 17
2.7 Theoretical Models . 18

3 Actor Systems 33
3.1 Overview . 33
3.2 Event Orders and Laws . 35
3.3 Concurrency Model . 41
3.4 Benefits and Limitations . 44
3.5 Comparison . 47
3.6 AKKA . 48

4 Prototype 51
4.1 Concept and Overview . 51
4.2 Architecture . 56
4.3 Optimizations . 77
4.4 Benefits and Limitations . 78
4.5 Comparison . 80
4.6 Development Process . 83
4.7 Iterations . 87

5 Evaluation 95
5.1 Algorithm Runtime . 95
5.2 Sample Applications . 98

ix

5.3 Benchmark . 107
5.4 Future Research . 110

6 Conclusion 113

Bibliography 117

x

CHAPTER 1
Introduction

Actor concurrency [40] is a concurrency model introduced by Carl Hewitt. It was heavily in-
fluenced by advances in modern physics, especially by special relativity. Currently this concur-
rency model is regaining much interest, because it elegantly brings together concurrency and
object orientation.

This thesis describes design, implementation and analysis of a prototype which extends the
AKKA [66] actor system. The prototype provides a mechanism for establishing synchronisation
protocols between actors for the detection of unexpected or unwanted message orders. Devel-
opers build the synchronization protocol for each actor by defining rules in a domain-specific
language. The prototype verifies communication between actors and makes sure, that message
orders comply with the established synchronzation protocol.

1.1 Motivation, Objective and Methodology

Actor concurrency is a very powerful concurrency mechanism. Actors are self-contained entities
similar to objects in the object-oriented programming paradigm. Different actors can be executed
concurrently and multiple instances of an actor can be executed concurrently as well [40]. Actors
run completely independent of each other [46] and do not share any state. If used correctly, no
mechanism for dealing with mutual exclusion is therefore required.

Actors may receive messages in orders not compatible with their behavior. These messages
may influence the actor’s behavior and also the interactions of multiple actors in unexpected
ways. Unwanted and possibly faulty behavior can be the result.

The goal of this thesis is to provide developers with an easy-to-use framework that can be
used to establish a synchronisation protocol between actors, so that they never receive messages
in unexpected or unwanted orders. The prototype proposed in this thesis uses the AKKA actor
system [66] as underlying actor implementation and extends it with a verification layer to check
the actors’ message orders and a domain-specific language for easy creation of synchronization
protocol rules. AspectJ [26] aspects tie the verification layer into AKKA: Whenever an actor

1

sends or receives a message, the operation gets intercepted. As the code gets weaved into the
actor, runs in the actor’s execution context, and only requires local data stored directly at the
actor, the verification can be seen as a local operation of the actor itself, that enhances the actor’s
behavior.

The approach taken for this thesis is as follows. First, several concurrency models were
examined, to bring actor concurrency into context. After that, actor concurrency was analyzed
in detail and also was compared to the aforementioned other concurrency models. As a next
step, a prototype was implemented. The prototype allows developers to define synchronisation
protocols on actors with the help of a domain-specific language and then subsequently verifies
the message orders between actors based on these protocols through AspectJ aspects. As the first
implementation of the verification algorithm, which is based on logging the actor’s interaction
history, proved to be not ideal, another improved one was implemented, which creates automa-
tons to store and verify the interaction history. To test the prototype under real-world conditions,
an implementation of the chameneos concurrency game and a token ring application were im-
plmenented as example applications. Finally, important properties of the prototype, such as the
worst-case runtime of the implemented verification algorithms were analyzed and benchmarks
were performed to examine the prototype’s runtime.

1.2 Thesis Structure

The rest of this thesis is structured as follows:

Chapter Concurrency first gives a motivation for why concurrency is becoming more and
more important with the increasing advent of multi-core processors. Then the term con-
currency is defined and challenges associated with concurrency as well as mechanisms to
deal with them are discussed. This chapter also introduces some well-known theoretical
models for describing concurrency, in order to bring the actor concurrency model into
context.

Chapter Actor Systems describes the actor concurrency model and its approach at concur-
rency in detail. Benefits and limitations of the model are discussed and a comparison of
actor concurrency to the theoretical concurrency models introduced in the previous chap-
ter is performed.

Chapter Prototype introduces the proposed prototype and is therefore the core of this thesis.
The prototype’s basic concepts and its architecture in overview and in detail are described,
as well as performed improvements and optimizations. Benefits and limitations are dis-
cussed and the prototype is compared to similar approaches that can be found in literature.
The last part of the chapter describes the development process and the prototype’s devel-
opment history in iterations.

Chapter Evaluation first gives the worst-case runtime of the implemented verification algo-
rithms. Next, the example applications implemented are introduced in detail. After that,
the benchmarks used to measure the prototype’s performance are discussed. The chapter
closes with proposed topics for future research.

2

CHAPTER 2
Concurrency

This chapter describes fundamental concurrency basics and helps bringing actor concurrency
and the prototype described in this thesis into context to other existing approaches to concur-
rency. The requirement for concurrency is motivated and a basic description of concurrency is
given, an overview over challenges and basic mechanisms for dealing with them is provided and
selected theoretical concurrency models are introduced.

When describing concurrency mechanisms and theories, concurrently running portions of a
program are often called "‘parts of a program"’ in this chapter. This term was chosen, because
there are various terms for concurrently running program parts (thread, actor, process, . . .) and
which one of them is used in literature often depends on the described mechanism or theory.
Because we want to approach the topic concurrency in a consistent fashion, a neutral term was
chosen.

2.1 Motivation

So what is concurrency and why do we need it? In order to increase the execution speed of a
program we can basically do two things: We can either speed up each instruction or run several
instructions in parallel. While for sequential execution there is one possible order in which to ex-
ecute a program’s instructions, concurrent execution leaves some details of the instruction order
unspecified [7], allowing instructions to be executed interleaved or in parallel. In uniprocessor
systems, interleaving can be used to run programs seemingly in parallel. Interleaving also allows
processing to be continued when one program is waiting for the results of operations currently
performed, for example disk IO. In systems with multiple processing units concurrent program
parts can run at the same time, thus being executed really in parallel.

One of the reasons why concurrency has received so much attention in the last years is that
the end of performance increase for instructions in conventional processing units seems to be
in sight [54]. While processor performance for decades was improved by increasing the speed
of instructions and transistor density, nowadays the trend points toward improving processor
performance by introduction of processors with multiple cores and multiprocessor systems [39].

3

1965
1967

1969
1971

1973
1975

1977
1979

1981
1983

1985
1987

1989
1991

1993
1995

1997
1999

2001
2003

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

100.000.000

1.000.000.000

Year

T
ra

ns
is

to
rs

Figure 2.1: Transistor density according to Moore’s Law (density in logarithmic scale, Source:
[43])

2.1.1 Instruction Speedup

Speeding up instruction processing is one way of increasing the overall speed of a program.
Instruction speed has increased since the very beginning of integrated circuit development.
Moore’s Law states that the density of transistors on processing units doubles every two years,
increasing available computing power [51]. Being more an observation than a real law, Gordon
E. Moore reviewed the progression of the semiconductor industry in 1965, coming to the conclu-
sion that the number of transistors in chips grows exponentially [51]. Since then, more than 50
years long, transistor density more or less has continued to grow as predicted in Moore’s initial
observation.

It remains to be seen if and how long the exponential growth of processing power can be up-
held. However, because of physical factors, it is unlikely that exponential growth of computing
power for conventional processors will continue much longer. Because Moore’s Law states that
the density of transistors grows, transistors shrink in size. Since transistor size begins to become
small enough and transistor density high enough for quantum effects to occur [49], the question
remains how long until very fundamental physical limits are reached; educated guesses predict
one or two more decades of exponential growth or less [49] [51]. Thermal management prob-
lems, leakage current and thermal noise might put a hold on exponential growth of processing
power even earlier [49].

2.1.1.1 Physical Limits

In the following section the most important physical limits which could put a hold on growth
of processing power are presented in order of their fundamentality. While the speed of light

4

and Heisenberg uncertainty are fundamental physical limits to any classical computing, heat
dissipation, leakage current and thermal noise are limits specific to semiconductor technology.

Speed of Light The most serious physical limitation is for sure the finite speed of light. During
the duration of a 1.8 GHz clock period, light can travel approximately an 8cm round trip, for
a 5GHz clock period it even drops to about 3 centimeters [54]. Unfortunately, electrons in
silicon move from 3 to 30 times slower than light does in vacuum [54] which effectively limits
processing speeds for conventional semiconductor devices considerably.

Heisenberg Uncertainty Another severe limiting factor is the Heisenberg uncertainty prin-
ciple. It states a fundamental limit on the precision of measuring an electron’s position and
spin [49]. An electron’s characteristic dimension for Heisenberg uncertainty is the Compton
wavelength [49] [56] that describes the fundamental limit of measuring an electron’s position
and spin based on quantum mechanics and special relativity [49].

Heat Dissipation An issue that may put an end to increase of instruction speedup much earlier
than the aforementioned very fundamental physical limitations is heat dissipation. When current
flows through a processing unit, it radiates heat [28]. This is the reason why CPUs and GPUs
have to be cooled with heat sinks passively or with air or water actively. If the number of
transistors in chips continues to grow at the current rate, cooling down processors might soon
reach practical limits [28].

Leakage Current Leakage current is spontaneous movement of electrons between emitter
and collector of a transistor [28]. Such leakage current does nothing than to consume power.
With smaller transistor sizes more leakage current occurs because electrons can more easily
pass small distances, resulting in higher energy consumption and more heat dissipation without
providing any benefit [28].

Thermal Noise Thermal noise is the result of heat dissipation of the elements of an integrated
circuit [28]. The thermal noise level is proportional to the resistance and bandwidth of a tran-
sistor [28]. Thermal noise can influence tiny integrated circuits so considerably, that they stop
working stable and predictably, rendering them completely useless for computing.

2.1.1.2 New Approaches

The aforementioned issues have led to active research on very promising technologies that could
provide much more efficient computing and may replace current integrated circuit technology in
the future. Two especially interesting technologies are optical computing and quantum comput-
ers.

Optical Computing Because electrons move only 3 to 30 percent of the vacuum speed of
light in conventional semiconductor materials [54], there is ongoing effort to use optical materi-
als inside processing units as in such materials 60 percent of the vacuum speed of light could be

5

reached [54]. Optical computing uses tiny optical fibers as connections within and between pro-
cessing units. Such a transphasor could improve processing speed over conventional transistors
considerably. While in optical materials heat dissipation is considerably less of a problem, the
inefficiency of the conversion between electricity and light results in power-consumption and
heat dissipation problems [54] hindering practical applicability of the technology. Also optical
computing is still bound by the speed of light and heisenberg uncertainty as fundamental limits
for the increase of instruction speed.

Quantum Computing Richard Feynman observed in the 1980’s that quantum mechanical ef-
fects are hard to simulate on conventional computer systems which led to the theory that quantum
effects could be utilized for more effective computing [64]. However it proved to be difficult to
build computer systems using quantum effects and to develop algorithms for them. In 1994,
Peter Shor described what is now known as the first quantum algorithm. Shor’s algorithm can
factor integers in polynomial time [64].

In quantum computing systems computational space increases exponentially with the quan-
tum system’s size [64]. Because this observation enables exponential parallelism, quantum com-
puting does not suffer from the physical limits of conventional computer systems. A quantum
bit in quantum computing is the equivalent to a bit in classical computing. Quantum bits are in
a superposition of the states 0 and 1 and a register of quantum bits is in superposition of all 2n

possible values, which supports computation with all 2n possible values at once.
One of the big issues holding back quantum computing to become effectively usable is that

the access to results of a quantum computation is restricted as accessing a result requires mea-
surement which disturbs the quantum state the system is in [64]. Moreover measured results are
probabilistic, so they have to be interpreted to be of any use. In the past few years progress was
made and non-traditional programming techniques were developed to exploit the parallelism
provided by quantum computing. One such technique is to manipulate the state of a quantum
program so that a property common to all output values can be read, another important one is
based on the transformation of a program’s quantum state to increase the likelihood of reading
the wanted output [64].

2.1.2 Parallelization

The other way of speeding up program execution is to run instructions in parallel. This requires
the program to be written in a way such that its instructions can be run concurrently and that
the underlying system provides multiple processing units where instructions can be executed in
parallel. As we have already seen, speeding up program instructions becomes harder and harder,
so executing program instructions in parallel will become increasingly important if we want to
improve performance of programs further. As everything does, parallelization has its challenges
and limitations. Writing concurrent programs that retain the wanted semantics can be tricky
as we will see in more detail later in this chapter. Running as much of a program in parallel
is also important as the overall performance gain obtained depends on the degree of possible
parallelization as described by Amadahl’s law.

6

Concurrency Being able to execute a program in parallel requires it to be specified in a way
that at least some of its instructions can be executed concurrently. Introduction of concurrency
into complex programs requires considerable effort by the developer, so that the semantic of
the program does not get changed by accident. The rest of this chapter describes what concur-
rency and parallelity are (2.2), goes into detail regarding challenges (2.3) and common solution
approaches (2.4) as well as describing theoretical models of concurrency (2.7).

2.2 Definition

This section introduces informal definitions of concurrency as used throughout this thesis. In
order to define what concurrency means, we first have to define what a program is and what
executing the program means.

2.2.1 Program

A program consists of a list of atomic instructions, a current state and a set of initial states.
The program’s instructions together and in total order describe the semantics of the program. A
program state is defined as the values of all memory addresses associated with the program. The
program starts in one of the states from the initial state set. The program then is executed by
feeding its instructions into one or multiple processing units, where the atomic instructions are
executed with the given parameters and change the program’s current state.

Sequential Execution When executed sequentially, one instruction of a program gets executed
at a time on one processing unit. Sequential execution specifies the order in which to execute
instructions as a total order [7]. So for a program running sequentially, there is exactly one order
in which the program’s instructions will be executed.

Concurrent Execution In contrast to sequential execution, concurrent execution leaves some
details of the instruction order unspecified, so that instructions can be executed in multiple se-
quential orders or truly simultaneous. Only if parts of a concurrent program are being executed
at the same time, we say that the program is executed in parallel. Concurrent execution does
not necessarily imply that instructions get executed in parallel at the same time. Concurrent
programs can be executed

• preemtively and time-shared on a single processor

• on multiple cores at the same processor

• on physically separated processors

• on physically separated machines

7

2.2.2 Concurrency Definitions

The two most common definitions of concurrency are interleaved concurrency and true concur-
rency [14] [63] [20]. Concurrency is said to be interleaved, if only one atomic instruction can
take place at each computation step. Concurrency is said to be true, if multiple atomic instruc-
tions can take place at each computation step. For both definitions, it has to be ensured, that the
program’s semantic meaning does not change.

So interleaved concurrency basically reduces concurrency to nondeterminism by modeling
parallel actions as choice between their possible sequentializations [14] [20]. True concurrency
is more powerful than interleaved concurrency, because with true concurrency, behavior can
be expressed, that cannot be expressed with interleaved concurrency [63]. Therefore true con-
currency cannot be reduced to interleaved concurrency. Because interleaved concurrency is
however easier to handle in proofs, some theoretical models of concurrency use it over true
concurrency [67].

The following example demonstrates the difference between interleaved and true concur-
rency: Take the computing actions i = j + 1; and j = i + 1;. For simplicity we assume here,
that these computing actions are executed atomically (this might not always be the case, but for
example on very long instruction word architectures [29] it is). With interleaved concurrency
these computing actions take place one at a time, so either

i = j + 1;

j = i+ 1;
(2.1)

or

j = i+ 1;

i = j + 1;
(2.2)

gets executed. With true concurrency these computing actions (may) get executed at the same
time:

i = j + 1; j = i+ 1; (2.3)

Let us assume as an example that i = 2; j = 5; before the aforementioned statements get
executed. With interleaved concurrency there are two possible outcomes: For the instruction
order 2.1 the result is i == 6; j == 7;, with the instruction order 2.2 the result i == 4; j ==
3;. With true concurrency however the outcome i == 6; j == 3 is also possible.

2.2.3 Performance Gain

When a program’s atomic instructions are executed in parallel, the execution is sped up. Usu-
ally there however exist parts of a program, which have to be executed sequentially, because
atomic instructions depend on each other. Given the amount of instructions that have to be run
sequentially, Amadahl’s law determines the overall increase of speed when executing a program
in parallel. Gustavson’s law argues against Amadahl’s law with the argument that the law uses
wrong assumptions.

8

2.2.3.1 Amadahl’s Law

Amadahl’s law [41] [11] describes the overall performance gain achievable by executing parts of
a program in parallel. Amadahl’s Law states, that if we speed up part of a program by a certain
factor, the overall speed up is

Speedupreal(f, S) =
1

(1− f) + f
S

(2.4)

with f being the fraction of the program sped up and S being the amount of speedup [11] [41].

Implications Amadahl’s Law has important implications [41]. The overall speedup of a pro-
gram running on multiple processing units in parallel is limited by the fraction of the program
that can be executed only sequentially. This makes clear how important it is to make as much
of a program concurrently executable if we want to improve processing speed through paral-
lelization. Another implication of the law is that when the fraction f sped up is small, even
big optimizations of that fraction will have little effect on the overall program’s performance.
Moreover, the fractions we ignore also limit performance, as the speedup is bound by

1

1− f
(2.5)

when the amount of speedup S approaches infinity [41].

Gustafson’s Law John L. Gustafson argued against Amadahl’s Law [37] [41]. His arguments
were that Amadahl’s Law assumes the parallelizable fraction of a program to be a fixed value
and that the law does not consider the machine the program runs on. Gustafson stated in what is
now known as Gustafson’s Law [37] [41] that machines with greater parallel computation power
allow instructions to operate on larger data sets in the same amount of time than machines with
smaller parallel computation power, thus increasing performance gain through parallelization.

2.3 Challenges

In the following, challenges associated with concurrency are described. Finding solutions for
these challenges leads the way as to why and how the actor concurrency model and the thesis
prototype came into being and where they fit in. On the lowest abstraction level, finding the
semantically valid partial orders for a program’s instructions is the ultimate challenge regarding
concurrency. Seen on a higher abstraction level, issues regarding concurrency can be described
more specifically: A race condition leads to unpredictable results when multiple concurrent pro-
gram parts work in an uncoordinated way. Deadlock, livelock and starvation hinder concurrent
program parts to progress.

2.3.1 Finding Valid Partial Orders

The existence of multiple possible instruction orders for a concurrent program introduces issues
about correctness which are not present when executing the same program in a predefined order.

9

The overall goal when writing concurrent programs is to find and separate wanted, correct orders
from unwanted, incorrect ones. This means finding the ones that can be run concurrently, but
do not change the program’s meaning, which can be done on different abstraction levels. As
we will see, there exists a variety of different mechanisms for introducing concurrency while
asserting program correctness (see sections 2.4 and 2.7).

A program’s instructions have relationships called program dependencies defined between
them which are relevant for their semantic meaning. Program dependencies imply that the af-
fected instructions have to be executed in a certain order to behave as expected [19]. Program
dependencies come in two forms: control dependencies and data dependencies.

Control Dependencies Control dependencies [15] are caused by control statements. An in-
struction x2 that depends on another instruction x1 through a control dependency has to be
executed after x1 because the result of x1 determines if x2 will be executed. An example for
this form of order restriction is a simple if statement: The condition evaluation has to be evalu-
ated before the then statement because the condition determines whether the then statement gets
executed at all.

Data Dependencies Data dependencies [15] [19] are caused by instructions that refer to data
of previous instructions. If an instruction x1 writes into a variable and x2 reads from the very
same variable, the statement x2 is data dependent on statement x1 and has to be executed before
it.

Program Dependencies versus Concurrency Making a program as concurrent as possible
and satisfying its program dependencies are somewhat antagonistic to each other. On the one
hand we want instructions to be able to run in as many orderings as possible, but on the other
hand, control- and data dependencies limit the amount of allowed instruction orderings. In
conclusion, what we want is to support many orderings semantically equal to the original one
and to prevent all orderings changing the program’s meaning.

2.3.2 Race Conditions

A race condition occurs when two concurrent parts of a program share some resource and in-
consistently read and write on it dependent on the timing and in the order their instructions get
executed [59]. Such a shared resource could for example be a variable which both concurrent
program parts hold and can write and read on. As consequence of a race condition, the same
program can behave differently and non-deterministically for different executions with the same
input.

As an example of a race condition, suppose two concurrent parts of a program t1 and t2.
t1 and t2 both read data from the same memory address. Then t1 and t2 both perform some
operations and write to that memory address. Depending on which of the two program parts
writes as last one, the memory address contains a different value. This can lead to unwanted
behavior as the result highly depends on the timing of the instructions executed. So the time the

10

processing of each instruction requires and the order the instructions are executed in determines
the value of the memory address.

2.3.3 Deadlock and Livelock

Deadlock and livelock can occur if two or more concurrent parts of a program share some re-
sources and the program’s parts can request exclusive access to a memory location [58] [54].

Suppose again two concurrent parts of a program t1 and t2. t1 wants to write memory
addresses a1 and a2 and therefore requests exclusive access to both. t2 also wants to write to
a1 and a2 and so also requests exclusive access to them. Unfortunately the instructions get
interleaved so that t1 gains exclusive access to a1 and t2 gains exclusive access to a2. Now
both t1 and t2 wait for the other’s resource to continue processing, but neither can acquire it,
effectively waiting for each other to continue.

A livelock is similar to a deadlock. In a livelock, however, the involved concurrent program
parts continually change their states and in contrast to a deadlock do seem to progress. However,
they only change their states, again waiting for all required shared resources to be exclusively
available to them without ever getting them.

2.3.4 Starvation

Starvation can occur when multiple parts of a program try to gain access to the same resource,
but one or some parts never get it [58].

Suppose three concurrent program parts t1, t2 and t3. All three require the shared memory
address a1 exclusively and periodically. t1, t2 and t3 all request exclusive access to a1. t1
receives exclusive access to the resource, performs operations on it and returns the exclusive
access. Suppose, t3 receives exclusive access as the next one. In the meantime, t1 again requests
exclusive access to the resource. Now the operating system decides to grant exclusive access
again to t1. While t1 is using a1, t3 again requests exclusive access. After t1 gives back exclusive
access to a1, the operating system again grants t3 exclusive access. This goes on and on. t2 never
gets exclusive access to a1 and therefore never can continue in its instruction flow.

2.4 Solution Approaches

There are various approaches for mitigating and solving the aforementioned issues associated
with concurrency. In some way or another, all these mechanisms provide means for synchroni-
sation. We first informally define the term as used in this thesis and then go into more detail.

2.4.1 Synchronisation

Synchronisation is the coordination of actions and events in a program divided into multiple, con-
currently executed parts. Synchronisation has the goal to constrain the execution to wanted in-
struction orders and avoid undesired ones that would change the program’s semantics and would
lead to incorrect or undefined behavior [59]. Synchronisation can be blocking or non-blocking
and consists of two separate aspects: Instruction ordering and mutual exclusion. Mechanisms

11

for synchronisation can also be categorized depending on their abstraction level into hardware
synchronisation mechanisms and synchronisation primitives.

Blocking and Non-Blocking Synchronisation Synchronisation can be performed in blocking
or non-blocking fashion [54]. Blocking synchronisation lets concurrent program parts hold when
reaching a certain point in execution, waiting until some condition is met or some resource is
available. This can unfortunately lead to deadlock or livelock. Non-blocking synchronisation
in contrast permit execution without blocking, so concurrent program parts run wait-free and
neither deadlock nor livelock issues can arise [54]. In theory, any parallel algorithm can be
expressed in non-blocking form [54] and depending on how strong the guarantees provided
are [54], an algorithm can be wait-free where every program part makes progress in finite time,
starvation-free so program parts make progress in finite time in absence of failures or deadlock-
free where at least one program part progresses in finite time in absence of failures.

Instruction Ordering Regardless of the concurrency abstraction used, we always want to
coordinate program parts so that their instructions execute in a semantically correct order. In-
struction ordering is the task of forcing one of possibly multiple existing semantically valid
instructions orders. Ideally this means to [59]

• preclude instruction orders that change the program’s semantic and would lead to incorrect
or undesired behavior

• on the other hand supports as many orders as possible that keep the same semantic mean-
ing as the originally given sequential order

The first directive assures correctness of the program, while the second one permits a change of
the instruction order for optimizing performance and, even more important, to run instructions
in parallel.

Mutual Exclusion Concurrency concepts that supports shared resources between concurrent
program parts also require a mechanism for providing mutual exclusion [34] [58]. A shared re-
source is a resource to which multiple program parts have simultaneous access to. The existence
of shared resources requires ways to coordinate access to them, otherwise their data may become
corrupted [34]. Concurrently running program parts want to work with shared resources without
any external interference, executing multiple instructions in direct succession. This is called a
critical section [58] and mechanisms that provide mutual exclusion make sure only one program
part can be in a critical section for a specific resource at a time [58].

While in a critical section, the program part has exclusive access to the shared resource and
can use it in an atomic and consistent way. After leaving the critical section, other program parts
may again enter a critical section on their own. Failing to provide mutual exclusion can leave
shared resources in an inconsistent state. Unfortunately mutual exclusion itself can become a
source for concurrency issues as it may lead to deadlock, livelock or starvation.

12

2.4.2 Hardware Synchronisation Mechanisms

Usually hardware provides built-in synchronisation mechanisms. While it is possible to imple-
ment low level synchronisation mechanisms in software, providing them in hardware is usually
much more efficient. High level synchronisation primitives build upon these low level hardware
synchronisation mechanisms, providing more comfort and safety. Common hardware synchro-
nisation mechanisms include:

• Disabling interrupts

• Atomic operations

• Memory barriers

Disabling Interrupts For single core processing units, the simplest way of providing hardware
synchronisation is to disable interrupts [58]. Disabling interrupts prevents context switches of
any kind and until interrupts are turned on again, the executed sequence of instructions runs
atomically. Disabling interrupts unfortunately has various limitations. First, one cannot differ-
entiate between processes that can influence each other and processes that are irrelevant to each
other, which can lower efficiency considerably, but more importantly disabling interrupts does
not work for providing synchronisation in multicore or multiprocessor environments at all.

Atomic Operations An atomic operation is a special machine instruction that performs mul-
tiple actions atomically without interruption [58] [54]. Since concurrency emanates at the in-
struction level, such an instruction is atomic and other parts of a program cannot interfere with
its substeps. Advantages are that the concept is simple and applicable for multicore or mul-
tiprocessor environments. Disadvantages are that busy waiting and deadlock might occur with
some instructions and atomic operations can only be used with single data elements and not with
multiple ones. Which instructions are available depends on the specific chipset. Common ones
provided include: [54] [58] [44]:

• Test-and-set

• Compare-and-swap

• Load-link and conditional-store

Test-and-set atomically loads and writes a variable. Only if the given variable is 0 the running
concurrent program part is allowed to pass and the variable gets set to 1, other concurrent pro-
gram parts have to wait until the variable is 0 again. Compare-and-swap first compares the
content of a variable with a value given as parameter, changing the variable’s content to another
given value depending on the outcome. Load-link and Conditional-store are used together. Load
link loads a variable from memory. The variable’s content can be changed arbitrarily. For writ-
ing it back, the conditional-store operation is used. It guarantees that storing only succeeds if
the variable has not been written by any code other than the one corresponding to the previous
load-link operation.

13

Memory Barriers Modern processors can perform a variety of performance optimizations on
instruction sequences. These optimizations include [54] changing order of instructions, defer-
ring or combining them, providing branch prediction and various types of caching and have the
goal to improve instruction throughput as well as to minimize the time spent waiting for mem-
ory access. When the program is executed sequentially, these optimizations leave the program’s
semantic meaning program intact, however when the program runs concurrently, they can cause
inconsistencies and may lead to unexpected or unpredictable behavior [54].

Memory barriers [54] are special instructions guaranteeing that other instructions will not be
moved over them when optimizations are performed, imposing a partial order over instructions
on both sides of the barrier [54]. The memory barrier functions as a wall and the processor has
to guarantee that it does not reorder or optimize instructions when this results in moving instruc-
tions over the barrier. Memory barriers exist in different varieties and the most appropriate one
for a specific situation can be chosen to allow the processor to perform as many optimizations
as possible. Four basic types of memory barriers can be found [54]:

• Write memory barriers

• Read memory barriers

• Data dependency barriers

• General memory barriers

Write memory barriers and read memory barriers give guarantees about memory write and
memory read instructions respectively. Data dependency barriers give guarantees about inter-
dependent read instructions only and general memory barriers give guarantees about both read
and write instructions.

2.4.3 Synchronisation Primitives

Synchronisation primitives provide synchronisation and mutual exclusion on a higher abstrac-
tion level. Synchronisation primitives are provided by the operating system, the programming
language, or associated libraries and use the hardware synchronisation mechanisms mentioned
earlier for providing functionality. Synchronisation primitives are more robust and stride to be
easier and more straightforward to use than their hardware counterparts. Common synchronisa-
tion primitives are:

• Locking

• Semaphores

• Mutices (mutex)

• Monitors

• Condition variables

14

Locking Locking means to wait until a certain event happens before execution can proceed.
Locking can be implemented either blocking or spinning [70] [12]. A blocking lock tries to
acquire the lock and when failing suspends the current process adding it to a queue of waiting
processes, waking it up if the lock is released. A spin lock continually checks if the lock is
available. The best choice between blocking and spinning depends on the ratio between expected
spin time and time required for a context switch [70] as both operations add overhead. Most
operating systems use a hybrid locking mechanism [59] polling first like a spin lock and after a
timeout suspending the currently running program part like a blocking lock.

Semaphore The concept of a semaphore was first proposed by Edgar W. Dijkstra [25] [34].
A semaphore supports process synchronisation without busy waiting. It has a value, a queue of
blocked processes and two operations P() and V(). P() decreases the value, V() increases it. A
process that calls P() can proceed only if the semaphore’s value is >0 and gets blocked and added
to the process queue otherwise. If the semaphore’s value is <0, the next call of V() increases the
value by 1, which allows the next blocked process listed in the semaphore’s queue to continue.
In contrast to a lock, a semaphore can be increased by a different concurrent program part than
the one that performed the last decrease operation. Semaphore implementations can be binary
semaphores with a boolean value or counting semaphores with an integer value.

Mutices (Mutex) A mutex is an instruction that locks a shared resource in a concurrent pro-
gram part. The shared resurce then can be used by a single program part uninfluenced. After
that, the concurrent program part releases the mutex, signalling that it has finished working with
the shared resource. In contrast to a semaphore, a mutex has an owner and only the concurrent
program part which owns the mutex can release it. So while semaphores provide a solution to
the instruction-ordering part of the synchronisation problem and are used for communication,
mutices provide a solution to the mutual exclusion problem and should be used when a shared
resource is to be protected for a critical section [16].

Monitors A monitor is a synchronisation mechanism found in object-oriented languages. The
monitor concept was introduced by Hansen [38]. Monitors [34] are objects that give safe access
to their methods and variables by more than one thread, using low-level synchronisation mech-
anisms. A monitor supports entry methods that guarantee mutual exclusion when executed [34].

Condition Variables Monitors also provide condition variables [34]. A condition variable is
a construct that allows one to signal a specific condition to a process. It provides two operations
wait() and notify() [34]. When a process calls wait() on the condition variable, the process gets
blocked and written into a queue. Whenever notify() gets called, the next process in the queue is
allowed to continue. Hoare monitors [34] [48] hand the control immediately to the first process
in the queue, while Mesa monitors [48] let the thread that called notify() continue until it gets
suspended.

15

2.5 Exchange of Information

In order to write useful concurrent programs, the concurrent parts of a program have to exchange
information between each other. There are two ways how this can be accomplished:

• By shared memory

• By message passing

Depending on the underlying concurrency mechanism, programs either use one or the other,
or a hybrid combination of both. Multicore processors and multiprocessor machines usually
provide either shared memory or message passing in hardware [59] and both can be emulated
in software if the hardware does not support it directly [59]. The two paradigms differ in how
synchronisation is employed. While for shared memory systems synchronisation has to provided
explicitly most of the time, message passing systems usually incorporate synchronisation in the
message passing mechanism [59]. In any case, the mechanisms previously described can be
used for accomplishing synchronisation.

2.5.1 Shared Memory

With shared memory, data communication is performed implicitly when data shared between
concurrent program parts is accessed. Developers must assert that processes using the same
memory do coordinate. Issues to consider include race conditions, deadlock, livelock and star-
vation. In contrast to message passing, shared memory models hide the need for explicit data
communication. In order to work correctly, shared memory models require consistency on the
operations performed by concurrent program parts.

Different consistency models have been described. Stronger consistency models are more
restrictive, but also give us more guarantees over the instruction order while weaker ones are
much less restrictive, but provide weaker guarantees [34], giving us more possible instruction
orderings for performing optimizations and improving execution speed.

In a sequential consistency model [59] [34], memory accesses seem to appear in a total or-
der. A read instruction to a memory address therefore always returns the last written value [59].
Linearizability describes an even stronger consistency model [34]. Linearizability looks for an
external observer as if each operation on shared resources performed by the parts of a concur-
rent program take effect immediately at some point between beginning and end of its execution.
Causal consistency is a common weaker consistency model [34]. With causal consistency con-
current program parts do not have to agree on the same ordering for write operations. However,
each program part sees read operations that can affect it correctly. More common relaxations in-
clude allowing arbitrary reordering of reads and writes to different memory locations or allowing
writes from multiple processes to become visible in inconsistent orders for different observing
processes, as long as they are consistent for every single process [2].

2.5.2 Message Passing

In a message passing model, concurrent processes communicate by explicitly sending messages
to each other [59]. This is a two-sided process: The sending process describes the data which

16

should be sent and the receiving process describes how to receive the data and what to do with
them. Both together have to describe at least what data are sent, by whom were they sent and to
whom.

In the purest form, every part of the program has its own memory, not sharing memory re-
sources with other parts. Note, that messages sent between concurrent program parts are not
shared resources as long as these messages do not contain addresses of resource of the send-
ing program part which the receiving program part could access [46]. The actor concurrency
model leverages this form of communicating information in that it defines actors as completely
independent, not sharing any memory resources.

Message passing can happen either synchronously or asynchronously. Blocking, or syn-
chronous message passing, also called request-reply messaging means that the sender blocks
and waits until the receiver either sends a receipt that it received the message or an answer [58].
Conceptually, most programmers are used to synchronous message passing as function calls in
most programming languages work that way. Non-blocking, or asynchronous message pass-
ing means that the sender sends a message to the receiver and immediately continues without
waiting [58]. Asynchronous message passing has the advantage that sender and receiver are
decoupled from each other and that sender and receiver do not even have to be active at the
same time. When required, synchronisation can be provided for asynchronous message pass-
ing through a synchronizer, which is an algorithm simulating synchronicity on asynchronous
architectures [13].

2.6 Concurrency and Object-Orientation

2.6.1 Requirements

While many object-oriented languages incorporate mechanisms for dealing with concurrency,
the availability of both object-orientation and support for concurrency as separate concepts is not
enough to efficiently develop concurrent, object-oriented applications [53], and so paradigms
or programming languages providing both concurrency and object orientation have additional
requirements [53].

Active and Passive Objects Developers should have the possibility to define active and pas-
sive objects. Active objects are running concurrently while passive objects run sequentially and
developers should be able to select from both depending on whether the current part of the
system requires concurrency or not. The system then can provide optimizations for passive ob-
jects and remove code and checks required for concurrency so reducing overhead and greatly
increasing performance.

Dynamic Allocation and Scheduling Objects should be dynamically allocated to processing
units in order to leverage the underlying platforms’ parallel processing capabilities as good as
possible. Load balancing mechanisms have to be implemented as well. Moreover, a scheduling
mechanism usable by objects should be available. Objects can use this scheduling mechanism

17

for deferring the processing of messages based on their internal state and the content of the
message.

Location Transparency Object instances should provide location transparency. Each object
has an unique address and objects communicate with each other by calling upon that address. If
an object gets relocated in memory or is allocated to another processing unit, it ideally should
still be reachable through the same address as before, which provides flexibility in relocating
object instances without worrying about updating all references to them.

Temporal Consistency Temporal consistency must be adhered for events and requires a syn-
chronisation mechanism. The implementation of such a mechanism must not require the avail-
ability of a global clock as hardware and memory configuration should be abstracted away.
Moreover, the synchronisation mechanism should support inheritance. Ideally, the synchronisa-
tion constraints should be separated from the application logic to help developers to concentrate
on the currently important aspect when developing applications.

Maintaining Object-Orientation Developers used to object-oriented programming don’t want
to violate their principles when concurrency is required. Object-orientation helps structuring
problems and reduces the complexity of tough problems by dividing them into more manageable
sub-problems. Best-practices for object-orientation are well-known and a considerable amount
of research has been provided to make object-orientation efficient. A concurrent object-oriented
system must provide inheritance, but also must maintain encapsulation. Systems that require
synchronisation constraints to be considered separately and do not allow us to inherit or require
changing them when creating subclasses, do not satisfy this.

2.7 Theoretical Models

Actor concurrency is a theoretical mathematical model for describing concurrent computation.
This section introduces actor concurrency and describes theoretical models competing with it.
Actor concurrency itself is described in much more detail in Chapter 3, where it also gets com-
pared to the concurrency approaches introduced here. There exists a wide variety of models
formally describing concurrency and they differ in their goals as well as in their approaches.
This section describes only important ones that can be compared to actor concurrency and is not
intended as a complete enumeration.

The following theoretical models of concurrency will be introduced in this section:

• Actor concurrency

• Communicating sequential processes

• Calculus of communicating processes

• Pi calculus

• Petri nets

18

...
select

beverage

coin2

inserted

replaces
behavior

behavior
select

replaces
behavior

replaces
behavior

replaces
behavior

replaces
behaviorreplaces

behavior

mail queue
coin1

inserted

behavior
tee

behavior
coffee

behavior
coin2

behavior
coin1

Figure 2.2: Example of an actor system composed of one actor describing a simple vending
machine, changing its behavior (Example source: [24], notation source: [5])

Because communicating sequential processes, calculus of communicating processes and the pi
calculus are all process calculi and share common concepts, these commonalities get discussed
in a separate section before introducing each specific process calculus.

2.7.1 Actor Concurrency

Actors are self-contained entities, not unlike objects in the object-oriented paradigm [46]. Actors
hold no shared information whatsoever and exchange information only through messages. Every
actor has its own message box for buffering received messages [40]. An actor can send messages,
replace its behavior and create new actors. An actor can only communicate with another actor if
it knows the other actor’s address. Because of the fact that actors do not hold shared information,
actors are completely independent of each other and can be executed concurrently; different
actors as well as multiple instances of the same actor can run concurrently. For determining the
behavior of the whole system each actor can be viewed independently which simplifies analysis
considerably. Figure 2.2 shows an exemplary actor system. For a much more detailed view on
actor concurrency see Chapter 3.

2.7.2 Process Calculus: Common Concepts

A process calculus provides a formal mechanism for modelling various aspects of reactive sys-
tems [1], as for example concurrency. A process calculus can be used to compose a system
out of processes and in the following allows one to reason about the system’s properties with
the help of mathematical techniques. A fundamental characteristic of the process calculus for-
malism is that processes communicate exclusively via communication channels. This property
contrasts to actor concurrency and petri nets, where the communication medium is not explicitly
represented [3] in the formalism.

19

Process Algebra Robin Milner first noticed that sequential and concurrent processes can be
expressed in an algebraic structure and complex processes can constructively be built out of
simpler ones [1]. Later, the term process algebra was introduced by Jan Bergstra and Jan Willem
Klop [30]. Today, the notion of a process algebra is used in general for algebraic approaches of
studying and formally describing systems composed out of processes. Existing process algebras
differ in their terminology, purpose, approach and power of expression [27]. The algebraic
approach helps to formally verify properties of concurrent systems as well as to avoid unwanted
properties. Process algebra also can be used as the theoretical foundation for implementation of
concurrent systems [42].

Atomic Actions In order to describe a system composed of processes, one starts by selecting
a set of atomic actions. An action is an indivisible behavior which can be executed atomically
and on its own [30]. These actions can be choosen freely as no further assumptions are made
about an action and nothing except its identity is known about it [27].

Process Terms A process term consists of atomic actions linked by process operators. The
simplest possible process term is a single atomic action. Process terms can be composed by
combining existing process terms through process operators to express complex behavior by
iterative composition.

Process Operators Process operators allow to iteratively combine simple atomic actions into
more complex process terms. Process operators manipulate process terms in a well-defined way
and obey algebraic laws, which makes stepwise formal reasoning possible [27]. Every process
algebra provides a set of such well-defined process operators. Typical operators include [30]:

• Building operators for building finite processes

• Recursion operators for expressing possibly infinite behavior

• Communication operators for modeling communication

• Special constants, for example null, terminate, or deadlock

• Silent steps for abstracting away internal computations

• Concurrency operators for expressing concurrency

For expressing concurrent behavior with process algebras which we are especially interested
in, the last kind of operator is important. Concurrent process algebras provide one or multiple
concurrency operators which can be used to divide the system into multiple parts that may be
executed concurrently [30].

20

tee

coffee

coin2

s5s3

s4s2

coin2

coin1
s1s0

Figure 2.3: Example of a labelled transition system describing a simple vending machine (Ex-
ample source: [24], notation source: [24])

Labelled Transition System As a starting point for describing systems with a process calculus
often a labeled transition system (LTS) is used. Formally, a labeled transition system is a triple
[1]

(Proc,Act,
a→ |a ⊂ Act) (2.6)

where [24]

• Proc is a set of states

• Act is a set of transition labels or actions

• a ⊂ Act with a→⊆ Proc× Proc is a transition relation

Figure 2.3 depicts an exemplary labelled transition system describing a simple vending ma-
chine. Its states describe the conditions a process can be in [30]. Transitions between states
allow a process to change from one state into the other. The annotated label at a transition is
the action or event that leads to the change of state. The possible transitions between states
are determined by the transition relation. A labelled transition system can be represented as a
graph [30]. In such a graph, the system’s states are represented by nodes, the possible transitions
between states are the edges between nodes and the possible actions or events on those edges
are represented by labels on those edges. One special state is called the initial state. The system
starts its operation in this state.

Transformation to Process Terms In order to formally express a process graph in the form
of a labelled transition system, it has to be transformed into process algebra terms in a well-
defined way. To link parts of a labelled transition system to process algebra terms in a well-
defined way, formal transition rules are used. Transition rules are inductive proof rules providing

21

process algebra terms that equal parts of a labelled transition systems [30]. Complex labelled
transition systems can so be inductively transformed into process algebra terms. Extensions to
transformation rules have to be conservative, which means, that whenever a new operator is
introduced, it has to be formally proved that transition rules added for the new operator do not
change the behavior of already existing operators [30].

Behavioral Equivalence It is very useful to have methods for finding out if two processes have
equivalent behavior. Operational semantics is one of the most successful ways of examining
such equivalences in process algebra [24]. The approach of operational semantics is to describe
processes with labelled transition systems and to examine these graphs for possible equivalence
[24]. The literature describes different useful equivalences. Two processes are traces equivalent
[24] if and only if they can perform exactly the same sequences of actions. Two processes are
bisimulation equivalent [24] if they can simulate each other step by step, the basic idea being,
that two states are considered equivalent if we are able to reach equivalent states from them
by performing the same sequences of actions. Testing equivalence [24] was proposed as an
alternative to bisimulation equivalence. Two processes are testing equivalent if they both behave
the same seen from the outside.

2.7.3 Communicating Sequential Processes

Tony Hoare introduced and described communicating sequential processes (CSP) in the late
70’s [42] [30]. Originally, communicating sequential processes were introduced as an impera-
tive parallel programming language [17]. In the paradigm, imperative processes are executed
concurrently and these processes communicate with each other by synchronized input and out-
put. Communicating sequential processes takes a black box approach [17] and so a process can
be completely described by the communication with its environment.

Processes In communicating sequential processes, a process [42] is defined as the overall be-
havior pattern of an object. A process has an alphabet describing the events the process can
handle. Such an event is atomic and can be arbitrarily chosen by the modeler; events should be
granular enough to model the system’s behavior, but not too fine-grained for the sake of abstrac-
tion and simplification. A process can only engage in events which are contained in its alphabet.
There are two special processes defined called SKIP and STOP [42]. The SKIP process
represents successful termination, while the STOP process represents a deadlock situation.

Channels and Communications Processes communicate with each other by communications
over communication channels. A communication is an event

c.v (2.7)

where c is the name of the channel on which the communication is taking place and v is the
communicated message’s content, or value [42]. A channel can only be used for communication
between two specific processes and only unidirectional. This means that a single channel can
be used for input or for output, but not for both at once [42], and for modeling bidirectional
communication two channels are required.

22

Operators The following basic operators have been introduced for communicating sequential
processes [42] [27]:

• Prefixing: a → P

• General Choice: P | Q

• Non-deterministic Or: P u Q

• Parallel: P || Q

• Interleaving: P ||| Q

Prefixing If P is a process and a is an event in its alphabet, then

a → P (2.8)

describes a process in which a is offered until it is accepted and that afterwards behaves like
P . This is called prefixing [42]. When used with recursion, the prefixing operator can create
processes that communicate forever. For example

CLOCK = tick → CLOCK (2.9)

describes a clock that never stops ticking.

Choice Operators In contrast to for example calculus of communicating processes, there are
two operators available for expressing choice in communicating sequential processes [42].

The first one is general choice [42]. With the general choice operator deterministic choice
can be modeled. If a and b are distinct events and P and Q are processes then

a → P | b → Q (2.10)

describes a process that participates in either event a or event b. When participating in event a,
the subsequent behavior of the process is the one described by P , when participating in event b
its behavior is described by Q.

The second choice operator is non-deterministic or [42]. If P and Q are processes, then

P u Q (2.11)

describes a process that either behaves like P or like Q. The selection between P and Q is made
arbitrarily and cannot be influenced by the external environment, which makes it impossible to
determine in advance which choice will be made. The non-deterministic or-operator also does
not provide any guarantee of fairness [27]; so for example P could always be selected in favor
of Q.

23

Concurrency Operators In communicating sequential processes there are two operators for
describing concurrency [42]. The first operator is the parallel operator [42]. If P and Q are
processes and their alphabets share some events, then

P || Q (2.12)

describes a process that behaves like a system composed of P and Q interacting in lock-step
synchronisation. For events that are in P ′s and Q′s alphabets, both P and Q have to process the
event in order for the overall composed process to continue.

The second concurrency operator is the interleaving operator [42]. If P andQ are processes,
then

P ||| Q (2.13)

describes a process where P and Q run in parallel without any interaction or synchronisation
between them. Each event is processed exactly by one of the two processes. If P or respectively
Q cannot process an event, the other one processes it on occurrence; if there are events that could
have been processed by either P or Q, the processor is non-deterministically chosen.

2.7.4 Calculus of Communicating Processes

Calculus of communicating processes (CCS) was introduced by Robin Milner in the late 70’s
[30]. As in other process calculi, processes are the basic building blocks for modeling system
behavior in calculus of communicating processes [1].

Processes and Actions The most basic process in calculus of communicating processes is the
0 process [1]. It does nothing at all and is used as starting point for constructing other processes.
The actions a process can perform are written as labels. For example a label eat denotes the
action of eating. Labels are atomic and can arbitrarily be chosen by the modeler to fit the
system’s capabilities. Processes can be given names for easier modeling. For example

Philosopher
def
= eat (2.14)

depicts a philosopher that eats. Naming also allows us to model recursive behavior.
In calculus of communicating processes, processes are described through process interfaces

[1]. A process interface is a collection of channels or communication ports which a process can
use to interact with other processes. A communication port has a name for identification and
addressing and it is either used for input or for output [1].

Operators The following operators are defined for calculus of communicating processes [1]:

• Action Prefixing: a.P

• Choice: P1 + P2

• Parallel Composition: P1 | P2

• Restriction: P1 L1

• Relabeling: P1[label1/label2]

24

Action Prefixing With action prefixing [1] a process can be prefixed with a label which can
be used to iteratively construct complex processes. The operator also can be used with the 0
process, acting as inductive start for process construction. If P is a process and a is a label, the
expression

a.P (2.15)

prefixes the process P with the label a. When the action the label represents occurs, the process
is said to be stricken. When a process becomes the 0 process after being struck, it is said to be a
match. For example

a.0 (2.16)

is a process that executes action a and then dies.

Choice The choice operator [1] is used for describing processes that may follow different
behavior depending on the system’s state. For example if P1 and P2 are processes, then

P1 + P2 (2.17)

creates a process which can either execute the behavior of P1 or P2. Once however an ac-
tion from either P1 or P2 was performed, it will preempt the further execution of the process
that was not chosen. While communicating sequential processes models deterministic and non-
deterministic choice with separate operators, the choice operator in calculus of communicating
processes can express both deterministic and non-deterministic behavior [27].

Parallel Composition The parallel composition operator [1] is used to describe processes
running concurrently and possibly interacting with each other. For example

P1 | P2 (2.18)

describes a process in which the sub-processes P1 and P2 can proceed independently of each
other. P1 and P2 may choose to communicate with each other through their communication
ports if they wish to at each time.

Restriction Operator The restriction operator [1] hides a communication port of a process
from the outside, restricting the ports use to a well-defined set of processes. For example if P1
is a process and L1 is a communication port, then

P1 L1 (2.19)

means that only process P1 can access communication port L1.

Relabelling Operator The relabelling operator [1] replaces one label with another one. It can
be used to provide abstractions and allows one to define a process with basic general behavior
patterns, whose generic actions can then be exchanged to specific ones later. For example if P1
is a process and label1 and label2 are labels, then

P1[label1/label2] (2.20)

means that where label2 is present, it will be replaced recursively with label1.

25

2.7.5 Pi Calculus

The pi calculus is a relatively young offspring of the process calculus family. It was developed
by Robin Milner, Joachim Parrow and David Walker in 1992 [55]. One of the main motivations
for developing pi calculus was to support easier modeling of dynamically changing systems. The
pi calculus is especially interesting here as it was influenced by how actor concurrency models
dynamic systems and tries to combine the benefits of actor concurrency with the ones of process
calculus.

Agents and Names Processes are called agents in pi Calculus [60]. The empty agent, written
as 0 does not perform any actions and acts as the iterative starting block for constructing more
complex agents. A set of arbitrarily chosen names functions as all of communication ports,
variables and data values. As usual in a process calculus, communication between agents is
performed over communication channels. A speciality of the pi Calculus however is that an
agent can dynamically change with whom it communicates during its lifetime.

Identifiers The pi calculus provides identifiers [60] for agents. These identifiers are defined as
a set of functions with fixed non-negative arities. Each identifier must have a definition, which
can be seen as a process declaration. An identifier

A(y1, . . . , yn) (2.21)

where n is the arity of the identifier A and a definition

A(x1, . . . , xn)
def
= P (2.22)

together behave as an agent P with yi in the identifier replaced by xi for each i and can be
thought of as an invocation of the identifier with the actual parameters y1 . . . yn.

Links The pi calculus also provides links [60]. A link is a reference to a communication
channel and can be shared between agents over other communication channels. An agent holding
a link can use it for communication over the communication channel referenced by the link as it
would do with any other communication channel it already has access to. The link mechanism
makes modeling agents with dynamically changing interactions possible [60]. Almost all of the
increased complexity of pi calculus in comparison to other process models originates from links
and the fact that they can be communicated between agents.

Operators Most of the operators in pi calculus have the same semantic meaning as in other
process calculi. The basic variant of pi calculus has the following operators [60]:

• Input-, output- and silent prefix: a(x).P and āx.P and τ.P

• Sum and parallel composition: P + Q and P | Q

• Restriction: (vx)P

26

• Match and mismatch: if x = y then P and if x 6= y then P

A relabelling operator does not exist in pi calculus, as the primary use of relabelling is the defi-
nition of new agents from existing ones, and agents in pi calculus are defined through identifiers
and the parameters given to them instead.

Prefixing Prefixing comes in three variations in pi calculus. Input prefix and output prefix are
for sending and receiving names, silent prefix evolves an agent’s behavior.

The input prefix operator allows an agent to receive and store input over a communication
channel. For example

a(x).P (2.23)

means that a name is received as a value along the input port named a and will be stored in the
placeholder x. After the input value has been received, the agent continues with the behavior
described by P , but with the value received replacing the content of x.

The output prefix operator allows an agent to send away data over an output port. For exam-
ple

āx.P (2.24)

means that value x is sent along the port named a. After the send operation, the agent continues
with the behavior described by P .

Silent prefix can be used to construct an agent that evolves and changes its behavior without
any interaction with the environment. For example

τ.P (2.25)

means that the agent P changes its behavior.

Sum and Parallel Composition Sum and parallel composition have the same meaning as the
corresponding operators in other process calculi.

With the sum operator
P + Q (2.26)

an agent is constructed which either behaves like P or Q.
Parallel composition

P | Q (2.27)

describes an agent behaving as P and Q executed in parallel. P and Q can choose to communi-
cate with each other if required.

Restriction The restriction operator hides names from the outside world. For example,

(νx)P (2.28)

hides name x, which allows agent P to access it exclusively. The operator works mostly equiv-
alent to the ones described for other process calculi. Remember however, that in pi calculus
communication ports can be transmitted between agents. So while the communication port x
mentioned in the example can so far only be used by P , P can choose to transmit it to other
agents which then subsequently also can make use of it.

27

Match and Mismatch The match operator and the mismatch operator are used to compare
names.

The match operator checks names for equality. For example

if x = y then P (2.29)

states that if names x and y are equal, the agent will behave like P and otherwise will do nothing.
The mismatch operator checks for inequality. For example

if x 6= y then P (2.30)

states that if names x and y are not equal, the agent will behave like P and otherwise will do
nothing.

At first glance it seems to be restrictive to only provide match and mismatch as test opera-
tions, but actually those are the only meaningful ones that can be performed on names in the pi
calculus, as transmitted names do not have any internal structure and can be arbitrarily chosen.

2.7.6 Petri Nets

Petri nets have been introduced by Dr. Carl Adam Petri in 1962 [68]. Petri nets are a flexible
mathematical formalism and can be represented graphically for easier analysis. They can be used
to model a varied assortment of aspects of static and dynamic systems and many applications for
petri nets exist in computer sciences [68]. With petri nets, all important aspects of concurrency
such as synchronisation and mutual exclusion can be modeled. While classical petri nets have
no mechanism for representing priorities, the theory can be expanded to model priority aspects
as well.

Petri Net Graphs A petri net is a bipartite directed graph with four kinds of objects in it [68]:

• Places

• Transitions

• Directed arcs

• Tokens

Places and transitions are connected through directed arcs labeled with a weight. Every
place can hold null or a positive number of tokens. A directed arc always connects a place
and a transition; it never can connect two places or two transitions directly without a place or
respectively a transition in between. A transition that is not connected to an input place is called
a source transition. It is always and unconditionally enabled for firing. A transition that is not
connected to an output place is called a sink transition. When firing, a source produces new
tokens without consuming any and a sink consumes tokens without producing any. A place and
a transition are called a self-loop if they are connected in a loop through directed arcs. A petri
net is called pure if there are no self-loops in it.

28

tee

coffee

2

2

coin1+2

s5s3

s4s2

2
s0

Figure 2.4: Graphical representation of a petri net describing a simple vending machine (Exam-
ple source: [24], notation source: [59])

Graphical Representation For graphical representation petri nets can be drawn as a diagram.
Figure 2.4 shows the graphical representation of an exemplary petri net. The usual convention
is, that circles represent places, boxes or black bars represent transitions and edges with a weight
represent directed arcs connecting them. Arcs can only be drawn between a circle and a box,
respectively between a place and a transition, and vice versa.

Formal Definition A petri net can be represented formally as a 5-tuple [68]:

N = (P, T, I, O,M0) (2.31)

where P and T are finite sets of places and transitions defined as

P = {p1, . . . , pm} (2.32)

and
T = {t1, . . . , tn} (2.33)

with the additional conditions that P ∪ T 6= ∅ and P ∩ T = ∅. I and O are an input and an
output function, defined as

I : P × T → N (2.34)

and
O : T × P → N (2.35)

where the input function defines arcs from places to transitions and the output function defines
arcs from transitions to places, with N being a set of non-negative integer values. Finally, an
initial marking

M0 : P ×N (2.36)

of tokens is required, assigning tokens to places.

29

Execution of Petri Nets A petri net is executed through changing the location and number of
tokens associated to its places [68]. Firing transitions defines how that happens, and two rules
determine the flow of tokens through the net.

The enabling rule models which transitions can fire. A transition is enabled if each of
its input places contains at least the number of tokens equal to the weight of the directed arc.
Formally, this is defined as

M(p) ≥ I(t, p) (2.37)

The firing rule models the flow of tokens from input place(s) through directed arc(s) to
output place(s). Only enabled transitions can fire. Firing removes the number of tokens written
as weight at the directed arc from place to transition from the input place and deposits the number
of tokens written as the weight at the directed arc from transition to place at the output place.
Formally, this is defined as

M ′(p) = M(p)− I(t, p) +O(t, p) (2.38)

Modeling Dynamic and Non-Dynamic Behavior For modeling non-dynamic behavior, the
triple of places, transitions and directed arcs is sufficient and can be used to represent different
non-dynamic aspects of the modeled system. For modeling dynamic behavior tokens are used
as they can represent a system’s state and state change over time. Every place can hold null or
a positive number of tokens and presence or absence of tokens on a place indicate a condition
previously associated with it to hold or not to hold at the current time. The specific meaning of
a token is not predefined and it depends on the dynamic system and the properties the modeler
wants to represent. For example, tokens can reflect events or the execution of operations. An
assignment of tokens to the places of a petri net is called a marking. When executing a petri net,
the tokens get moved from place to place representing the modeled system’s dynamic behavior.

Modeling Examples With petri nets, various aspects of dynamic systems can be modeled. For
this thesis, the following aspects are the most interesting ones [68]:

• Sequential execution

• Concurrency

• Synchronisation

• Mutual exclusiveness

• Priorities

For modeling sequential execution, transitions and places can be connected in series (Figure
2.5 a). For the second transition to be able to fire, the first one already must have fired. With this
approach, precedence constraints and causal relationships can be modeled.

For modeling concurrent execution a forking transition is required (Figure 2.5 b). When
firing, the forking transition plants tokens in multiple output places. From the forking on the
execution happens concurrently.

30

c)

a)

d)

b)

t1

t1

s3

s2

s1

s0

s2s1

t2 t4

t3t1

s0

s3

t1
t1

s2

s1

s0

t2t1

s2s1s0

Figure 2.5: Modeling aspects of dynamic systems with petri net graphs. a) Sequential Execution,
b) Concurrency and Synchronisation, c) Mutual Exclusion and d) Priorities (Source: [68])

The synchronisation process after concurrent execution can be represented by two or more
places connected with a joining transition (Figure 2.5 b). The joining transition can only fire if
it gets tokens from all connected input places.

Mutual exclusiveness can be modeled through places and transitions connected in a pattern
that does not allow transitions between the two paths (Figure 2.5 c).

Modeling priority constraints requires introduction of inhibitor arcs (Figure 2.5 d), as stan-
dard petri nets have no mechanism for modeling such constraints. An inhibitor arc connects a
place to a transition. The presence of an inhibitor arc changes the transition’s firing conditions
and the transition is enabled only if all input places have the necessary amount of tokens and no
tokens are available at places connected through inhibitors arcs.

31

CHAPTER 3
Actor Systems

Actor systems are a powerful formalism built on the actor concurrency model, allowing us to de-
scribe and implement concurrent systems. Actor systems consist of self-contained, autonomous
entities called actors [46]. The concurrency model was introduced by Carl Hewitt in the late
70ies [40] and is heavily influenced by advances of modern physics, especially special rela-
tivity. Actor concurrency provides true concurrency by nature and integrates concurrency very
well with object-oriented programming. Actors provide abstraction from low-level concurrency
issues, allow dynamically changing topologies, and make it easy to reason about each actor
independently.

3.1 Overview

Actors are self-contained, autonomous entities [40] [46] similar to objects in the object-oriented
paradigm. Figure 3.1 shows a graphical representation of an actor, its components and capa-
bilities. Actor instances run completely independent of each other and so different actors can
run concurrently as well as one actor can have multiple instances running concurrently [40]. As
actors do not share any state among them, mechanisms for dealing with mutual exclusion are
not required in the paradigm.

Exchanging Information Actors exclusively exchange information by sending and receiving
asynchronous messages. Every actor has an uniquely identifiable mailbox, or address [40],
which decouples sending and receiving of a message from each other. At its creation, an actor
has an initial set of addresses of other actors it knows of. Through its lifetime, an actor can gain
knowledge of further addresses by either creating actors or receiving messages containing actor
addresses.

Operations An actor can perform the following four operations [40]:

1. Create: Create a new actor

33

change behavior

actor instances

create

send msg_1

gets
executed

Mailbox

Methods

State

gets
executed

Mailbox

Methods

State

gets
executed

Mailbox

Methods

State

Figure 3.1: Graphical representation of actors. Actors can create new actors, send and receive
messages and replace their own behavior (Source: [46])

2. Send message: Send a message to another actor

3. Receive message: Receive a message

4. Become: Replace the own behavior

Creating New Actors An actor can create a new actor. After creation, the creator immediately
continues processing and the created actor concurrently starts waiting for messages. When an
actor creates another actor, the creator gains knowledge of the new actor’s address and can send
messages to it.

Sending Messages Actors communicate exclusively over messages. As communication in the
actor paradigm is asynchronous, the sender sends the message away and immediately continues
processing. If an actor wants to send another actor a message, it requires the other actor’s
mailbox address, often simply called the actor’s address. There are three ways an actor can
gain knowledge of another actor’s address: The address is contained in the actor’s initial set of
known actors, the actor is the other actor’s creator and therefore knows its address, or the actor
has received the address in a message.

Receiving Messages Every actor has its own mailbox and a received message gets stored in
that mailbox until the actor chooses to process it. The mailbox mechanism decouples sender
and receiver from each other. It allows the sender to immediately proceed after a send operation
and the receiver to continue its current processing when receiving a message, processing it later

34

when it has time to do so in a coordinated manner. Actors can run completely independent of
each other, because receiving messages is the only way an actor can be influenced from the
outside.

Changing Behavior Finally, an actor can decide to change its behavior, allowing actors to
dynamically evolve over time depending on their message history. For example the actor can
decide that its behavior is not appropriate any more after having received a certain message and
can replace its current behavior with a different one. Every message the actor receives from now
on gets processed with the actor’s new behavior.

3.2 Event Orders and Laws

When Hewitt introduced actor concurrency, he noticed different event orders influencing the
behavior of an actor system [40] and that the analysis of the order of events stands at the very
foundation of the actor concurrency model. The following subchapter illustrates the topic in as
much detail as necessary for this thesis.

Events An event is a discrete step in the history of computations in an actor system. Every
event e consists of the receipt of a message by a recipient and both recipient and message are ac-
tors themselves in the theory (however, some implementations of the actor model do not require
messages to be actors).

Event Order Relations There are three important order relations for events [40]:

• Activation Order: Causality between events

• Arrival Order: Order of message arrival at actors

• General Precedes Relation: Combination of activation and arrival order

3.2.1 Activation Order

The activation order [40] is derived from how events cause or activate one another. Intuitively
the activation order can be seen as relation describing causality between two events. It is written
as

E0 ++> E1 (3.1)

which means that E0 precedes E1.

Example Figure 3.2 shows an example. If actor X receives a message M0 as event E0 and as
a result of this sends a message M1 which actor Y receives as event E1 then the event E1 is said
to be activated by E0 and E0 is called the activator of E1. In other words, event E0 caused event
E1. Every event can have one activator at most. The activation order is a partial order, because
one event might activate several other ones.

35

E0 ++> E1

Event E0

receive:Message M0

Event E1

receive:Message M1
send

:Actor Y:Actor X

Figure 3.2: Exemplary activation order of two events E0 and E1. Actor X receives message
M0 in event E0 and as a result sends message M1 which actor Y receives in event E1. Event
E1 is said to be activated by event E0.

Laws The following laws were defined by Hewitt for activation order:

• Discreteness

• Events have at most one predecessor

• Events are successor to a finite set of events

First of all, activation order must be discrete. What this formally means is, that if E1 ++> E2

then the set
{E | E1 ++> e ++> E2} (3.2)

of events between E1 and E2 has to be finite. Discreteness makes sure that the immediate
successor and the immediate predecessor of an event are well-defined and that computing models
which assume infinitely fast machines are eliminated from actor concurrency.

An event can be caused by only one event at most, which is called the immediate predecessor
of the event; an event that has no predecessor is called an initial event. This means that two
distinct events cannot be both the immediate cause of another event. Formally defined, for all
events E the set of immediate predecessors

{E | P1 ++> E ∧ ¬∃P2 : P1 ++> P2 ++> E} (3.3)

can have at most one element.
Finally, an event can only be successor to a finite set of other events. Formally this means,

that for all events E the immediate successor set

{E | E ++> S} (3.4)

36

is finite.

3.2.2 Arrival Order

Activation order alone is not enough to describe actors with side effects. If the state of an actor
changes when it receives a message, the order in which messages arrive is important. Arrival
order [40] specifies the order of message arrival for an actor. It is important to note, that while
the activation order is unambiguously and globally the same for the whole system, the arrival
order is specific to each actor and is heavily affected by influences from the environment such
as scheduling, message transmission and other factors. The arrival order is written as

E1 =>Y E2 (3.5)

meaning that event E1 has arrived before event E2 at actor Y .

Example Figures 3.3 and 3.4 show two possible arrival orders which could occur for an ex-
emplary actor system. In both cases actor X receives a message M0 in event E0 and as resulting
action sends two messages M1 and M2 in the order M1 M2 to actor Y . Actor Y receives these
messages in the events E1 and E2. In one instance (Figure 3.3) actor Y receives the events in
the order E1 E2. In the other one (Figure 3.4) actor Y receives the events in the order E2 E1.

Consequences The consequences of this observation are immense. For actor Y message M1

arrives before message M2 in the first case, while message M2 arrives before message M1 in
the second case. This means, that while actor X always sends the messages in the same order,
actor Y may receive it in a different one and the actors cannot agree on the order in which the
messages M1 and M2 happened.

Laws Hewitt specified the following laws for the arrival order:

• An event has finitely many predecessors

• The arrival order is a total order

Only a finite number of events precede an event. So for all actors X and all events E, the set

{E′ | E′ =>X E} (3.6)

has to be a finite set. As a corollary to this law, the arrival order is discrete.
The arrival order for each actor also has to be a total order. If E1 and E2 are distinct events

and both events are received by actor X , then either

E1 =>X E2 (3.7)

or
E2 =>X E1 (3.8)

This means that the order of events has to be well-defined and one of the events has to precede
the other one, so either E1 arrives before E2 or E2 arrives before E1 at actor X . The process of
enforcing the order in which an actor receives events is called arbitration.

37

 E0 ++> E1

 E0 ++> E2

send

send
Event E0

receive:Message M0

:Actor X

 E1 => E2

Event E1

receive:Message M2

Event E2

receive:Message M1

:Actor Y

Figure 3.3: Example of a possible activation order. In this case, actor Y receives the messages
M1 and M2 in the order M1 M2.

 E0 ++> E2

 E0 ++> E1

send

send
Event E0

receive:Message M0

:Actor X

 E2 => E1

Event E2

receive:Message M2

Event E1

receive

:Message M1

:Actor Y

Figure 3.4: Example of another possible activation order. In this case, actor Y receives the
messages M1 and M2 in the order M2 M1.

38

 E0 --> E1

 E0 --> E2

send

send
Event E0

receive:Message M0

:Actor X

 E1 --> E2

Event E1

receive:Message M2

Event E2

receive:Message M1

:Actor Y

Figure 3.5: Example of the general precedes relation. In this specific example eventE0 generally
precedes events E1 and E2 and event E1 generally precedes event E2.

3.2.3 General Precedes Relation

In order to relate activation order and arrival order to a notion of time, Hewitt defined another
event order relation called the general precedes relation [40]. It is defined as the transitive
closure of the union of activation order and arrival order for every actor. It is written as

E1 −−> E2 (3.9)

which means that event E1 generally precedes event E2. In the general precedes relation an
event E can have at most two immediate predecessors: One that is the event’s activator in the
activation order relation and another one that is the event’s immediate predecessor in the arrival
order relation.

Example Figure 3.5 shows an example for how the general precedes relation works. Here
actorX receives messageM0 in eventE0 and as a result sends two messagesM1 andM2 to actor
Y , which actor Y receives in the events E1 and E2. In the given example event E0 generally
precedes the events E1 and E2 because E0 is the activator for E1 and E2 in the activation order,
and event E1 generally precedes event E2 because E1 is the direct predecessor of E2 in the
arrival order.

Laws For the general precedes relation Hewitt specified the following laws:

• Discreteness

39

• Law of causality

The general precedes relation is a discrete relation. While activation order relation and arrival
order relation are discrete, this unfortunately does not imply that the general precedes relation is
discrete as well. This is the reason that discreteness has to be formally stated as

−−> is a discrete relation (3.10)

for the general precedes relation.
In order for the general precedes relation to correctly express event precedence, the activation

and arrival of events have to be consistent. This is guaranteed by the law of causality which states
that for no event E the statement

E −−> E (3.11)

holds, meaning that no cycles are allowed in the causal chain of an event, because an event
cannot cause itself directly or indirectly.

3.2.4 More Actor Laws

Hewitt also specified two more important laws on actors that are not related to the aforemen-
tioned relations: The law of creation and the law of locality.

3.2.4.1 Law of Creation

The law of creation [40] specifies that an actor cannot be used before it has been created. While
this seems trivial, it is nonetheless an important statement. In order to be able to formally express
this statement, a unique special event birth(X) is introduced for each actor X and for which

birth(X) −−> E (3.12)

holds for every event E in which actor X participates in. This formally states the notion that an
actor X can only be used after its creation.

3.2.4.2 Law of Locality

The law of locality [40] states, that an actor can acquire an other actor’s address only by either
directly meeting the actor or by indirectly meeting an acquaintance of that actor which knows the
actor’s address. The law for general actor systems is quite subtle and here gets only presented
for actor systems that do not change over time and with actors that have a fixed set of extended
acquaintances. In order to formulate the law correctly, a few definitions are required.

Conception Event First, the birth of an actor during a computation has to be formalized as a
conception event. If an actor X is conceived as result of a computation, then the conception can
be formulated as

conception(X) = activator(birth(X)) (3.13)

stating that the conception causes the birth event of actor X .

40

Acquaintances Every actor X has a set of immediate acquaintances defined as

acquaintances(X) (3.14)

The acquaintances of actor X represent the set of actors it knows and can send messages to. An
actor’s set of acquaintances can change over time when the actor receives messages containing
actor addresses which subsequently get included in the set. The extended acquaintances of actor
X are defined as

acquaintances∗(X) = (X) ∪ acquaintances(X) ∪ acquaintances2(X)) ∪ . . . (ad infinitu)
(3.15)

So the set of extended acquaintances for an actor is the actor itself, its acquaintances, the ac-
quaintances of its acquaintances and so on.

Event Participants If target(E) is the actor targeted by an event E, messenger(E) is the
associated message and conceived(E) is the possibly empty set of actors conceived during the
event, then the extended participants participant∗(E) of event E are defined as

participants∗(E) = acquaintances∗(target(E)) ∪ acquaintances∗(messenger(E))
(3.16)

So the extended participants of event E are the extended acquaintances of the actor that receives
the event combined with the extended acquaintances of the message belonging to the event.

Law of Locality The law of locality itself is formulated in two parts. First, for all actors X ,
the statement

aquaintances(X) ⊆ participants∗(conception(X) ∪ conceived(X)) (3.17)

is required to hold. The equation states that an actor can only know about actors which were
known when it was conceived (the actors are extended participants of its conception event).

Secondly, for all events E, the statement

participants(E) ⊆ participants∗(activator(E) ∪ conceived(activator(E)) (3.18)

is required to hold. This means, that the receiving actor and the message belonging to event E
must have been known to the participants of its cause (the activator event).

3.3 Concurrency Model

Actor concurrency has wide-reaching consequences which hold for concurrent and distributed
systems in general. The model shows, that it is impossible to define a global event order on
which all components of a concurrent system can agree upon [40]. It also makes clear, that the
arrival order of events in a realistic distributed concurrent system is undefined [4].

41

3.3.1 Impossibility of a Global Event Order

One of the central statements of the actor concurrency model is, that a single unique global
clock cannot be defined for concurrent systems [4] [40] [21]. It is impossible to establish a
single global order of events on which all components of the system can agree upon, because
each component has a local understanding of the order in which events arrive. In the actor
concurrency model this is expressed by the fact that the arrival order relation is local for each
actor [40]. While all actors can agree on the causal relationships between events defined by their
activation order, they cannot agree on the order in which events occur and events occurring at
different components are inherently unordered unless they are connected by causality. Formally
this means that the global ordering of events is a partial order [4].

The idea behind this statement is analogous to special relativity by Albert Einstein [4]. Spe-
cial relativity states, that there can not exist a global clock every viewer can agree upon, because
there is a fundamental upper limit on how quick information can travel from one viewer to the
other (light speed), which in consequence dictates that different viewers may notice the same
event at different times.

For components of a distributed concurrent system the same is true: Each component holds
information in the form of its current state. If one assumes, that there is a limit to how fast
information can be transmitted between components, the state as it is seen by the component
itself can be different from the state seen by components watching it [4].

3.3.2 Arrival order indeterminacy

Another important statement of actor concurrency is, that because of the inevitable nondeter-
minism in any concurrent, distributed environment, the order in which events are regarded by
components of such a system is not strictly defined [4]. In any such system it is therefore not
possible to precisely predict when a sent message will arrive at one of its components. The order
in which a component regards arriving messages or events is determined by their local arrival
order, and a realistic model of concurrent systems must assume that the arrival order of mes-
sages or events is arbitrary and unknown [4]. Constructing synchronously functioning systems
requires to define protocols for arbiting the arrival order [4] and the prototype described in this
thesis is one example of how to do just that.

To make the issue clearer, here is an example (Figures 3.6 and 3.7). Suppose we have three
actors A, B and C. Actor A sends a message to actor B and another one to actor C requesting
a computation from both actors. Actors B and C receive the messages and do the processing.
Actor B finishes before actor C and returns the result to actor A. Later actor C finishes as
well and returns the result to actor A. Now from actor A’s perspective two things can happen:
Either it receives the result from actor B before the one of actor C (Figure 3.6) or it receives the
result from actor C before that of actorB (Figure 3.7). Unfortunately in a distributed concurrent
system, there is no guarantee on the order of events so both outcomes of the scenario are equally
possible.

42

Actor BActor A

result from b

result from c

process something an return result

process something an return result

Actor C

Figure 3.6: Local event order for actor A with the result message from actor B arriving before
the one from actor C

Actor BActor A

result from b
result from c

process something an return result

process something an return result

Actor C

Figure 3.7: Local event order for actor A with the result message from actor C arriving before
the one from actor B

43

3.4 Benefits and Limitations

3.4.1 Benefits

It is no wonder that actor concurrency is gaining interest recently, as it provides a very elegant
and hassle-free view of concurrent programming on a high abstraction level. The actor concur-
rency model has the following benefits [46] [61] [4] [8] [66] [52] [53] [6]:

• No shared state

• Asynchronous communication and lack of interruption

• Inherent concurrency and actor distribution

• Abstraction from low-level concurrency issues

• Support for object-orientation

No Shared State The actor concurrency model requires actors to avoid sharing of internal
state [46]. Actors that adhere to that principle run completely separated and are influenced
only by messages sent to them [8]. Actors can be examined separately, which makes analyzing
such systems much easier. However sending messages containing internal state, for example
references or pointers to an actor’s variables, obliterates the actor concurrency model’s benefits
regarding the independence of actors. Messages sent between actors should therefore always
be immutable or have at least call-by value semantics which requires making a copy of the
message’s content [46].

Asynchronous Communication and Lack of Interruption Communication between actors
is asynchronous [46]. Each actor’s message box buffers incoming messages and so decouples the
send operation from the receive operation. Arriving messages get buffered in the actor’s mailbox
and the actor itself freely chooses when to process a message. This makes actors interruption-
free [61]. Consequentially this means, that the computation time is a deterministic function
of the incoming message [61], and the time the computation of a processed message requires
depends only on the behavior of the invoked actor.

Inherent Concurrency and Actor Distribution Actors inherently support concurrency [4].
The only constraints on concurrent execution and execution speed are the logical dependencies
between computations and the hardware’s limits [8]. Different actors can be executed in parallel
as well as an individual actor can have multiple instances of itself running in parallel if the sys-
tem’s current work load and resources permit it. Actors can take advantage of multiple threads
and, even more important, of multiple cores and processors. In many actor concurrency imple-
mentations threads get pooled and actor instances are executed on these pooled threads [66] [46].
Some implementations also utilize light-weight threads building on operating system or host
programming language threads, but requiring less overhead.

44

Because the actor concurrency operates with asynchronous communication [4], actors also
very naturally support distribution. Actors can easily be distributed on different cores, pro-
cessors or machines, which also makes them interesting for systems distributed over network.
Some modern actor concurrency implementations, for example AKKA [66], provide support for
distributing actors over common network protocols out-of-the box.

Abstraction from Low-Level Concurrency Issues Developers should not constantly have to
think about where and how to synchronize shared data, how to design their application to prevent
deadlocks and how to avoid inconsistencies and other problems occurring in concurrent systems.
Actor concurrency reduces the details to consider as it raises the abstraction level programmers
can use for writing concurrent programs and also allows them to separate scheduling aspects
from logical aspects [61]. Actor concurrency only requires specification of the logical order
of events, detailed scheduling aspects can be specified separately. Mutual exclusion issues do
not arise in actor concurrency, because actors do not share any state and can be influenced only
by sending them messages which get buffered if an actor is not able to process the message
immediately [4].

Another important issue in concurrent systems is deadlock prevention [4]. In paradigms
with synchronous communication, a deadlock is defined as a condition where no process can
communicate with another. From a syntactical point of view, an actor system cannot deadlock,
because communication between actors is always asynchronous, messages get buffered and ac-
tors never wait for a reply. Semantically, however, an actor system can be seen as deadlocked
if its actors keep trying to send the same message over and over again without progressing, a
condition similar to a livelock.

An actor has only two side effects [52]. An actor sends messages to other actors and it can
change its internal behavior. As actors also are encapsulated and do not share state [46] it is
easy to reason about the behavior of actor systems. To examine the behavior of a single actor,
we only have to know which messages it can receive and how and when it changes its behavior.
From there on we only have to take the behavior of the actor itself into consideration.

Support for Object-Orientation As previously discussed (see Section 2.6.1), any program-
ming paradigms supporting concurrency and object-orientation in an integrated and consistent
fashion has specific requirements [53]. Actor concurrency supports most of these requirements
quite well. As actors are implemented as objects, provide encapsulation by design and most im-
plementations provide inheritance, actors support an object-oriented development approach [6].
Actor concurrency naturally provides active objects in the form of actors running inherently
concurrent and most implementations allow for the use of the host language’s objects as passive
objects avoiding most of the overhead for concurrency. Because actors run separately from each
other and do not share internal state, scheduling and dynamic allocation to processing units can
be implemented easily. Location transparency is also provided, as actors have an unique address
which does not change on relocation.

In actor concurrency, temporal consistency has to be achieved through division into actors
and through their behavior. In the purest form, the model does not provide a separate mecha-
nism for specifying synchronisation constraints. Some implementations, as for example Actor-

45

Foundry, provide such a mechanism in the form of local synchronisation constraints [46] which
allows us to defer processing of messages dependent on the message’s content and the receiver’s
internal state. The prototype described in this thesis provides similar capabilities, but differs in
some important aspects. In contrast to local synchronisation constraints, the prototype provides
a domain specific language, and supports an application to discard messages as early as at the
send operation and discards messages instead of disabling it. All these aspects are discussed in
more detail in Section 4.5.2.

3.4.2 Limitations

In practice, actor concurrency has some limitations. The following issues are of the most impor-
tance [52] [46]:

• Ensuring valid message orders

• Performance

• Integration into existing languages

Ensuring Valid Message Orders Because actors run concurrently and communicate asyn-
chronously with each other, there is no guarantee for the order in which messages arrive at an
actor, and multiple actors can have a different perception on the order of messages not related
by causality [46]. This becomes a problem when an actor requires synchronisation and wants to
support or forbid specific message orders. An actor may for example want to support messages
that lead to a change in the actor’s internal state only in a well-defined way, because it would
otherwise function incorrectly.

What we want is a mechanism that allows for some message orders and forbid other ones.
The prototype proposed in this thesis provides a framework for defining and enforcing allowed
message orders for actors depending on an actor’s history of received messages. As there are
various other approaches for synchronisation in actor concurrency, some important approaches
are described and compared to the prototype in Section 4.5.

Performance Benchmarks performed on modern actor concurrency implementations show
that actors are ready for use in real-world applications [46]. Nonetheless, performance was a
problematic aspect of actor concurrency implementations for a long time, and it certainly will
be an important future topic for research.

There are many factors influencing the performance of an actor system. If the actor model
is used consequently, there may be many actors [52], which can affect the system’s overall per-
formance through the overhead required for creation and management of actors. In order to
improve performance, many actor concurrency implementations relax one or multiple seman-
tic properties of the actor concurrency model [46]. For example, messages may internally be
passed by reference instead of copying them, thus sharing state between actors, or they may be
scheduled through an unfair scheduling algorithm.

46

Integration into Existing Languages Many actor concurrency implementations expand on
an already existing programming language, and to provide a consistent and well integrated im-
plementation for actor concurrency can be tricky. When programming with actors in an object-
oriented language, we want to be able to use inheritance for factoring out common base function-
ality and extending on it. Actors in their purest form do not have a direct notion of inheritance
or hierarchy [52]. Also, behavior replacement for actors is hard to accomplish in statically typed
languages, as they are by nature not well suited for behavior replacement, static analysis is not
good at supporting it [52] and behavior replacement also makes optimisations more difficult. In
dynamically typed languages, behavior replacement is of course easy to implement.

3.5 Comparison

Actor concurrency, process calculi and petri nets all provide different theoretical approaches for
modeling concurrency, differing greatly in their properties. In the following we will compare
actor concurrency with the other mentioned theoretical models by examining different proper-
ties:

• Concurrency model

• Communication model

• Channels

• Dynamic topologies

Concurrency Model Concurrency models can be distinguished by whether they represent
concurrency as true concurrency or as interleaved concurrency [20]. Actor concurrency and
petri nets model concurrency as true concurrency, treating concurrency as a primitive. With true
concurrency, a system’s behavior is determined by the causal relations between events happen-
ing at different places in the system. Process calculus variants model concurrency as interleaved
concurrency. Interleaved concurrency reduces concurrency to nondeterminism by modeling par-
allel actions as choice between their possible sequentializations.

Communication Model Another distinguishing aspect is whether synchronous communica-
tion or asynchronous communication is considered to be the fundamental communication model
[3]. While both can be modeled with each other, the one that is considered to be the fundamental
one is a distinguishing factor characterizing a concurrency paradigm. Actor concurrency sees
asynchronous communication as the fundamental communication primitive. The model requires
communication between actors to guarantee eventual delivery of messages [3] [4], but does not
make any other assumptions about the order of messages arriving at an actor. Petri nets also
consider asynchronous communication as the fundamental communication model. In contrast,
process calculus based models regard synchronous communication as the fundamental commu-
nication primitive, although there are variants of the pi calculus that provide a direct notion of
asynchronous communication as well.

47

Channels Channels explicitly capture and represent the underlying communication medium
required for exchanging information between distributed components. Neither actor concur-
rency nor petri nets have a channel concept. Actors have unique addresses over which they
communicate directly with each other and addresses can be communicated between actors, but
the communication medium over which this happens is not explicitly represented in the for-
malism [3]. Process calculus explicitly models the channels over which information can be
exchanged and communication is performed exclusively over channels in process calculus [3].
Multiple processes can share and use the same communication channel which can lead to inter-
ference in unwanted or unanticipated ways.

Dynamic Topologies In actor concurrency, actors can be dynamically created and an actor
system’s topology can change dynamically through the exchange of actor addresses between
actors [9]. While classical petri nets do not allow dynamically changing topologies, Reconfig-
urable petri nets allow us to model such systems [50]. While in older process calculus vari-
ants the topology is static and processes can not acquire knowledge of communication channels
over their lifetime, in newer variants, as for example in pi calculus processes can exchange
communication channels by sending them as values over other already known communication
channels [60] [3].

3.6 AKKA

3.6.1 Capabilities

AKKA [66] is an actor concurrency implementation written in Scala. It provides lightweight
actors, location transparency and fault tolerance, and has APIs for Scala and for Java. An actor
system in AKKA can consist of millions of actors running concurrently without any problem.
AKKA was chosen as basis for the prototype because it can comfortably be used with Java, is
open source and has good documentation.

AKKA runs actors on its own lightweight threads for improving performance, under the
hood lightweight threads get mapped onto a configurable pool of java threads. Interactions
between actors use pure message passing for communication and actors are location transparent
and can be distributed over networks. Actors can model behavior changes either through their
state variables or by swapping their receive function with become and unbecome operations.
Fault tolerance and self-healing are provided in the form of supervisor hierarchies. AKKA also
provides different mailbox implementations which can be freely chosen from. The default one
is FIFO, where the order of messages processed by an actor is the same as the order in which
the messages have arrived. Another commonly used mailbox implementation queues messages
by priority.

3.6.2 Java API

In the following, a very short overview of AKKA’s Java API, the most important classes in it
and their functionality is given. Table 3.1 shows the most important operations for these classes.
ActorSystem represents a system composed of actors. This class allows us to create actors and

48

also provides a method to shut down the actor system. Every actor in Java AKKA has to extend
the class UntypedActor and has to provide an implementation of its onReceive method which is
called whenever the actor receives a message. ActorPath represents an endpoint at which one
or several instances of an actor listen for incoming messages. As usual for actor concurrency,
an actor endpoint can have multiple instances of the same actor running concurrently. ActorRef
represents the address of an actor and can be used to communicate with it.

Class Operation Description
ActorSystem void actorOf(Props props) Creates a new actor. At least the actor’s

class is required in the properties.
ActorSystem void shutdown() Shuts down the actor system.
UntypedActor ActorRef getSelf() Returns the ActorRef identifying the

current actor itself.
UntypedActor void onReceive(Object msg) Called whenever the actor receives a

message.
ActorRef void tell(Object msg, ActorRef s) Sends a message to the actor identified

by this ActorRef.

Table 3.1: Important Operations in Java AKKA

49

CHAPTER 4
Prototype

The prototype developed in the course of this thesis enables developers to specify synchroniza-
tion protocols and then makes sure actors comply with them. This chapter first gives an overview
over the prototype and then describes the its architecture. After that the prototype is analyzed
for benefits and limitations and gets compared to similar approaches found in literature. The
chapter closes with a description of the development process.

4.1 Concept and Overview

Concept Actor concurrency is very powerful when it comes to divide concurrent applications
into manageable pieces, and reasoning about an actor system can be done on a per-actor basis
even in the presence of concurrency, so lowering the overall complexity of the resoning process.
Because actors can influence each other exclusively through sending messages, the only way for
unwanted behavior to be introduced is through the receipt of unanticipated messages or messages
in an unexpected order. The prototype described in this thesis allows one to define rules for the
message order on a per-actor basis and subsequently makes sure the actor system complies with
them. The prototype asserts that an actor only processes specified, wanted messages in a wanted
order and that unspecified, unwanted messages and message orders will be detected and that
such messages will be filtered out.

Overview The thesis prototype uses AKKA [66] as underlying actor implementation and pro-
vides a layer for verification of the order of sent and received messages. Whenever an actor
sends or receives a message, an AspectJ [26] aspect intercepts the call and checks the message
against a protocol established by a set of configurable rules. The interception runs in the context
of the sender or the receiver, thus making it a local operation of the actor. A verification context
object gets built which contains all information necessary for the verification and subsequently
the verification is performed. The outcome of the verification decides whether the message is
allowed to be sent or received, or gets discarded.

51

It is important to note, that every actor has its own rule set and verification data and actors
extending the class PrototypeActor store them locally. As the verification can be performed in
the execution context of the actor and all data required for verification is locally available, the
verification can be seen as a part of the actor’s send or receive operation. In accordance with one
of the central statements of actor concurrency, the prototype therefore does not assume a global
clock between actors to be available.

4.1.1 Rules

A synchronisation protocol for an actor is described by a number of rules. Every rule has the
following form:

condition→ action (4.1)

When condition is met, the rule fires and action has to be considered in the validation process.
Conditions are built from atomic conditions, complex conditions can be created by connecting
atomic conditions with composite conditions. Rules always have to be interpreted in the context
of the current actor and the performed operation. A rule can be used to enable or forbid both send
or receive operations of actors. Table 4.1 gives an overview over currently available conditions
and actions and their meaning. To make the syntax and semantics clear, here are three exemplary
rules. The rule

when always() then allow(a, b)

means, that actor a always is permitted to send a message to actor b. The rule

when messageExists(a, b) then forbid(a, c)

states, that actor a is permitted to send a message to actor c if it previously has received a
message from actor b. The rule

when messageExists(a, b) and messageExists(a, c) then allow(a, d)

determines, that actor a is permitted to send actor d a message if it previously has received
messages from actors b and c.

Grammar Figure 4.1 shows the grammar of rules in EBNF. A rule, also called a constraint
can have one or several atomic conditions and exactly one action. If more than one atomic
condition is given, the conditions have to be connected by the composite conditions and or or.
A composite condition not can only be placed directly before an atomic condition.

4.1.1.1 Atomic Conditions

Atomic conditions can be seen as the atomic pieces of information about the actor’s former local
message history that can be specified in rules. An atomic condition states that the actor has
sent or received a certain message in the past. At the moment, there are two important ones
implemented: messageExists and always

52

Name Parameters Description
Atomic Conditions

MessageExists sender, receiver a message between sender and receiver exists in
the current actor’s message history

Always - always holds
Composite Conditions

Not condition negates the atomic condition given as parameter
And condition1, condition2 holds, if condition1 and condition2 hold
Or condition1, condition2 holds, if either condition1 or condition2 holds

Actions
AllowAction sender, receiver rule allows an actor to perform the current action
ForbidAction sender, receiver rule forbids an actor to perform the current action

Table 4.1: Overview over Conditions and Actions for Rules

〈CONSTRAINT〉 |= when 〈CONDITIONS〉 then 〈ACTION〉
〈CONDITIONS〉 |= 〈CONDITION〉〈COMPOSITE〉
〈COMPOSITE〉 |= ε | and 〈CONDITION〉〈COMPOSITE〉 | or 〈CONDITION〉〈COMPOSITE〉
〈CONDITION〉 |= always() | messageExists(actor_id, actor_id) | not 〈CONDITION〉
〈ACTION〉 |= allow(actor_id, actor_id) | forbid(actor_id, actor_id)

Figure 4.1: EBNF grammar of rules

Message Exists MessageExists holds, if and only if the actor has sent or received a message
as described by the condition. Note that one of the two parameters of this conditon has to be the
current actor, because every actor has its own local understanding of time and message order,
and also because of the law of locality [40]. As a consequence, the prototype can only validate
communication directly performed with an actor itself. Constraints like “Actor A can send actor
B a message only if actor C has sent another message to actor B before“ cannot be expressed
locally at actor A, but only if one assumes a clock synchronisation between these actors; as an
example for such an approach, see RTsynchronizer in Chapter 4.5.

Always The always condition simply always holds. It was necessary to introduce such a con-
dition because of the whitelist-approach the verification algorithm takes. Always tells the veri-
fication system that the rule always fires and the rule’s action always has to be considered in the
verification.

Not The condition Not simply negates its subcondition. It therefore holds, whenever the sub-
condition does not hold and vice versa.

53

4.1.1.2 Composite Conditions

Composite conditions help building more complex conditions constructively through combining
atomic conditions with logical expressions. The following composite conditions exist: and and
or. They have the usual meaning. And holds if both its sub-conditions hold. Or holds if one of
its sub-conditions holds.

4.1.1.3 Actions

When the conditions of a rule holds, the rule fires and the specified action gets considered as
outcome in the validation. There are two possible actions: allow and forbid. The semantic
meaning of allow and forbid depends on the operation in which the current verification is taking
place.

Allow Allow states, that the rule allows the actor to perform the operation currently under
verification. If the current operation is a send operation, the rule allows the actor to send the
message; if the current operation is a receive operation, the rule allows the actor to receive
the message. Note that one rule that enables an operation does not mean the operation can be
performed, as another rule might also fire and forbid the operation, thus overruling the allow
action.

Forbid Forbid states, that the rule forbids the operation currently under verification to be per-
formed. If the current operation is a send operation, the rule forbids to send the message; if the
current operation is a receive operation, the rule forbids to receive the message. In contrast to
allow, a rule that forbids an action means that the current operation will not be performed, as
forbid has precedence over allow.

4.1.2 Verification Algorithm

The verification algorithm works by running over all rules in the current actor’s rule set, check-
ing for each one if the rule’s conditions hold and whether the rule enables an actor to perform
the current operation. Two verification algorithms were implemented for the prototype. Both
use the same basic algorithm for the verification itself (see below), but they differ heavily in
how they log interactions between actors and how they check if a rule fires. The history logging
verification implementation logs interactions for each actor and uses this history to check if a
rule fires. Because this proved to be problematic, a second algorithm was implemented, which
circumvents the issues of this verification algorithm implementation. The automaton verifica-
tion implementation creates an automaton for each rule and logs interactions with the actor by
changing the automaton’s active state, which is used to check wether a rule fires.

4.1.2.1 Basic Verification Algorithm

Listing 4.1 shows the verification algorithm. It enables or forbids an actor to perform an opera-
tion in the following way:

54

1. If no rule exists whose conditions hold and which enables or forbids the operation: Forbid
the operation

2. If a rule exists, its conditions hold and it forbids the operation: Forbid the operation

3. If a rule exists, its conditions hold, it enables the operation and no other rule forbids it:
Enable the operation

Listing 4.1: Verification Algorithm

allowed = false;
for(constraint: constraints){

if(constraint forbids interaction)
forbid action;

if(constraint allows interaction)
allowed = true;

}
if(!allowed)

forbid action;

So for an operation to be enabled, no rule that fires forbids it and at least one rule that
fires enables it. If the operation was forbidden by at least one rule, the operation is considered
forbidden. If a rule specifically enables an actor to perform an operation, this gets noted, but
the operation is considered enabled only if no other rule later on forbids it. Therefore all rules
containing at least one condition or action involving the current operation’s sender-receiver com-
bination have to be checked before making a call about enabling or forbidding an operation. If
the operation is enabled, the verification lets the actor send or receive the message in question,
if not, an InteractionNotAllowedException is thrown.

When the algorithm has decided on an overall action, it will be performed for the currently
verified operation. It has to be noted, that the outcome of the verification does not state anything
about the action taken for an equivalent future send or receive operation. So for example a rule
can fire and forbid an actor to send a message at first. But later the rule does not fire because its
conditions are not met any more or it has been removed from the actor’s rule set, so the actor is
enabled to send such a message.

Send versus Receive The verification always uses the rule set and message history of the actor
that performs the currently examined operation. When verifying a send operation, rule set and
message history of the sender are used. When verifying a receive operation, rule set and message
history of the receiver are used. Except that, the algorithm works the same for send and receive
operations.

Whitelist-Approach The algorithm is written with a whitelist-approach in mind: Operations
that are not explicitly enabled are treated as forbidden. This is generally considered the safer
approach [65]. However this means, that an actor with no rules can neither send nor receive any
messages because the verification algorithm forbids all operations, thus the need of the always
condition.

55

4.1.2.2 History Logging Verification Implementation

The history logging verification algorithm keeps a log of interactions already performed for each
actor. When checking rules to determine whether the actor may perform the current operation,
this implementation of the verification algorithm does it by checking the rule’s conditions against
the stored history of interactions; if the message history contains interactions as described by the
conditions, the rule fires and the action of firing rules is considered in the overall outcome of the
verification, rules that do not fire have no influence.

Memory Overhead Problem This algorithm requires memory to store an actor’s message his-
tory. The size of an actor’s message history grows linearly with the amount of messages sent and
received, which can become a serious problem for long-running applications because memory
is of course limited, and as memory consumption goes up, the verification’s performance de-
grades considerably. Because of this issues a second algorithm was implemented which works
by creating automatons for rules and does not suffer from memory and performance degradation
issues.

4.1.2.3 Automaton Verification Implementation

This implementation of the verification algorithm creates an automaton for each rule and logs
interactions with the actor by changing the automaton’s active state, which is used to check
whether a rule fires.

Verification Algorithm The automaton verification algorithm creates an autmaton for each
rule that gets added. The autmaton represents the rule and consists of multiple states. Whenever
a message is about to be sent or received, the prototype relays it to each automaton for the
current actor. The automaton decides based on its current state if an actor may process a specific
message or not. If all automatons allow the message to be processed, the actor can process the
message.

Automaton Creation Creation of an automaton as representation for a rule is done recursively
by composition of state patterns which are available for each atomic condition and through
a composition pattern wich is used for the composite conditions. Creation of automatons is
explained in detail in Section 4.2.3.

4.2 Architecture

In this section, the prototype’s architecture is described. First a short overview is given and then
each component gets examined in detail, including excerpts from the prototype’s source code.
Used software patterns are described as well.

56

intercept receive operation

PrototypeActor's Context

AKKA

algorithm specific (check/log)

log interactions

contains

allow or forbid
operation

check operation

calls

ActorRef.tell(...)

intercept send operation

ProtocolVerifier

Behavior

VerificationData

AspectJ Aspect

PrototypeActor

Figure 4.2: Architecture of the prototype.

4.2.1 Overview

Figure 4.2 gives an overview over the prototype’s architecture. The prototype provides a frame-
work for specifying a synchronisation protocol to decide if a send or receive operation should
take place. AspectJ aspects hook into actors, intercepting send and receive operations. The pro-
totype provides a class PrototypeActor, which is a subclass of AKKA’s UntypedActor and locally
holds VerificationData required by the specific verification algorithm for the actor. Whenever an
actor performs a send or receive operation, the aspect calls a Behavior object which subsequently
calls a ProtocolVerifier object. The ProtocolVerifier uses the actor’s VerificationData object to
decide if the current operation can be enabled. If it is, the operation is performed, if not the pro-
totype dismisses the operation and it simply does not happen. As already mentioned, the whole
verification takes place in the context of the actor and no external communication is required, so
seen from the outside the prototype’s verification looks like the actor’s local behavior.

4.2.2 Components

The simplified class diagram in Figure 4.3 shows the prototype’s components and the relations
between them. Table 4.2 gives an overview about the components, including a short description.
For better overview and readability, the components are classified in three categories in the table:
Base components, automaton verification algorithm and history verification algorithm.

57

2..n

0..n

contains

4. logs interaction

index values

get automatons

creates
from Condition

1

holds

0..n

2

connected by

AutomatonVerificationDataHistoryLoggingVerificationData AutomatonProtocolVerifier

Automaton

AutomatonBuilder

Edge JoinedState

LeafState

State

VerificationData

History logging implementation

HistoryLoggingVerifier

core

2. call event method

creates

5. enable/forbid operation

ReceivingActorAspect

beforeReceiveMessage(joinPoint: ProceedingJoinPoint): void

get rules
get history

1. called on send/receive message

3. calls for verification

Behavior

onActorReceiveMessage(...): void
onActorSendMessage(...): void
onRuleAdded(...): void
onRuleRemoved(...): void

ConstraintStore

VerificationContext

sender: ActorId
receiver: ActorId
message: Actor
data: VerificationData

Indexer<VALUE>

index(value: VALUE): void
find(key: Object): List<VALUE>

IndexedDataStore<VALUE>

index(value: VALUE): void
findValues(key: KEY,
 indexerName: String): List<VALUE>

creates

ConstraintBuilder

ProtocolVerifier

verify(VerificationContext context)
throws InteractionNotAllowedException

indexes

Interaction

sender: ActorId
receiver: ActorId
message: Object

Constraint

InteractionLogger

6. lets actor proceed
or not proceed

SendingActorAspect

beforeSendingMessage(joinPoint: ProceedingJoinPoint): void

Automaton Implementation

PrototypeActor: UntypedActor

onReceive(message: Object): void

Figure 4.3: Simplified class diagram showing the prototype’s components and relations between
them.

58

Component Short Description
Base Components

Prototype Facade as API for easy usage of the prototype
PrototypeActor Base class for actors using the prototype
SendingActorAspect Aspect triggered by send operations
ReceivingActorAspect Aspect triggered by receive operations
Behavior Prototype’s behavior encapsulated
ProtocolVerifier Verification algorithm
VerificationContext Holder for passing around verification information
Constraint A rule with conditions and an action
ConstraintBuilder Provides a fluent API for rule creation
NoActor and AnyActor Special Actor Identifiers

Automaton Verification Algorithm
AutomatonProtocolVerifier Implementation of the verification algorithm
Automaton Automaton describing the possible history for a rule
AutomatonBuilder Creates an automaton of a given rule
ConditionBuilderContext Holder to pass around information when building an automaton

History Verification Algorithm
HistoryProtocolVerifier Implementation of the verification algorithm
IndexedDataStore Stores and indexes objects
InteractionLogger Logs an actor’s message history
ConstraintStore Holds an actor’s rule set

Table 4.2: Overview over the prototype’s components with a short description

Prototype For better usability, a Prototype class was introduced as facade, which provides a
simple interface for using all of the prototype’s capabilities that are divided over various sub-
components. The Prototype class provides developers with easy access to rule creation, addition
and removal of rules to an actor and to an actor’s rules set and message history.

PrototypeActor The class PrototypeActor (Listing 4.2) extends AKKA’s UntypedActor class.
In order to allow implementations of the verification algorithm to store custom data at an actor,
every PrototypeActor can hold a VerificationData object. Implementations of the verification
algorithm can extend this class and fill it with data during verification and logging to perform
the verification.

The History Verification Algorithm stores the actor’s rule set in the form of a ConstraintStore
instance and the actor’s message history in the form of an InteractionLogger instance into the
VerificationData of an actor. The Automaton Verification Algorithm stores a map of automatons
keyed by Constraint it belongs to into the VerificationData.

Rules should only be added and removed locally by the actor if possible, but for convenience
reasons the PrototypeActor class also provides methods for configuring and reconfiguring the
actor with the help of ConfigMessage messages from the outside if required.

59

Listing 4.2: Class PrototypeActor

public abstract class PrototypeActor extends UntypedActor {
public <T extends VerificationData> T getData();
public <T extends VerificationData> void setData(T data);
public ActorRef getActorId();
public boolean isFirstConfigure();
public void configuredOnce();
public void configure(ConfigMessage message)

throws ConfigurationException{};
public void reconfigure(ConfigMessage message)

throws ConfigurationException{};
}

SendingActorAspect and ReceivingActorAspect The classes SendingActorAspect and Re-
ceivingActorAspect (Listing 4.3) are AspectJ aspects which are configured to intercept the send
or respectively the receive operations of all actors. The aspects interject the actor’s operation at
the moment it gets started and then call upon the prototype’s behavior as defined in the currently
used implementation of the Behavior class. Behavior is then responsible to verify the operation
and log it in the actor’s local message history. The outcome of the verification specifies if the
actor will proceed with the operation or not. Interception of receive operations is necessary for
verifying the synchronisation protocol defined by an actor’s rule set. While the interception of
send operations is technically not required for the verification, it is still convenient to provide it
as this allows developers to allow or forbid send operations as well.

SendingActorAspect defines a method with a pointcut intercepting any calls to the method

ActorRef.tell(Object message, ActorRef sender)

of ActorRef objects as well as calls to the same method of objects sub-classing ActorRef. So
the aspect gets called whenever an ActorRef object is used to initiate a send operation. Mes-
sages of type ConfigMessage are excluded by the pointcut definition, because they will always
be accepted for delivery. Note, that the pointcut definition as seen in Listing 4.3 uses the call
directive which means that the pointcut intercepts the method invocation when the call to Actor-
Ref.tell(. . .) is made and the this reference given to the pointcut points to the method’s caller.
SendingActorAspect then finds out if the call was made from inside an actor. If it was, the ac-
tor instance is located through the ProceedingJoinPoint instance given as join point parameter.
Then SendingActorAspect calls the method

void onActorSendMessage(
UntypedActor contextActor,
ActorRef sender,
ActorRef receiver)

throws InteractionNotAllowedException;

on the prototype’s current Behavior with the actor instance, the sender’s ActorRef and the re-
ceiver’s ActorRef as parameters.

60

ReceivingActorAspect defines two methods with pointcuts. The first one intercepts all config
messages arriving at an actor and then calls the method

boolean processConfigurationMessage(
UntypedActor actor,
ConfigMessage message)

throws ConfigurationException;

on the prototype’s current Behavior which is responsible to correctly inform actors of configu-
ration messages. The second method intercepts all other messages arriving at an actor and then
calls the method

void onActorReceiveMessage(
UntypedActor contextActor,
ActorRef sender,
ActorRef receiver)

throws InteractionNotAllowedException;

on the prototype’s current Behavior with the actor instance receiving the message, the sender’s
ActorRef and the receiver’s ActorRef as parameters. Note, that the pointcut definitions in Re-
ceivingActorAspect use the execution directive, which means that the method invocation gets
intercepted at the callee, which is the actor receiving the message.

ConfigMessage messages can be send to an actor allowing it to react to them and change
its rule set, adding or removing rules. The first message of type ConfigMessage is directed to
the configure(ConfigMessage message) method of a PrototypeActor, all following ones are di-
rected to the reconfigure(ConfigMessage message) method. ReceivingActorAspect differentiates
between instances of ConfigMessage and any other kinds of messages an actor receives because
configuration messages are not subject to the verification as they should always reach the actor.

61

Listing 4.3: Classes SendingActorAspect and ReceivingActorAspect

@Aspect
public class SendingActorAspect {

@Around(
"call(void ActorRef+.tell(Object, ActorRef+))
&& !args(ConfigMessage, ActorRef+)"

)
public void beforeSendingMessage(

ProceedingJoinPoint joinPoint)
throws Throwable { ... }

}

@Aspect
public class ReceivingActorAspect {

@Around(
"execution(void UntypedActor+.onReceive(Object))
&& args(configMessage)"

)
public void beforeReceiveConfigMessage(

ProceedingJoinPoint joinPoint,
ConfigMessage configMessage)

throws ConfigurationException{ ... }

@Around(
"execution(void UntypedActor+.onReceive(Object))
&& !args(ConfigMessage)"

)
public void beforeReceiveMessage(

ProceedingJoinPoint joinPoint)
throws Throwable { ... }

}

Behavior Behavior (Listing 4.4) is an interface describing all situations the prototype has to
provide behavior for. So far this includes

• sending a message

• receiving a message

• processing ConfigMessage messages

• Adding and Removing rules

By encapsulating the prototype’s behavior into an interface and implementing classes it is possi-
ble to easily exchange the prototype’s current behavior if required later. The behavior currently

62

used by the prototype is implemented in the class DefaultBehavior. In the following, the be-
havior as provided by DefaultBehavior is described, but any implementation of the Behavior
interface should provide similar functionality.

In order to monitor sending and receiving messages, Behavior gets called by an aspect when-
ever it intercepts an actor operation. When processing send or receive operations, DefaultBehav-
ior creates a VerificationContext holder object that contains all information required for further
verification so the information can be passed around easily. Information included contains the
kind of operation (send or receive), sender’s and receiver’s addresses and the verification data
to use for the verification, which are taken locally from the actor if it is an instance of Prototy-
peActor; as a fallback there exists a global holder which is used for storing and verifying data
for actors not extending the prototype’s PrototypeActor class. Note however, that the use of
this global holder requires conventional synchronisation and therefore its use is discouraged and
instead all actors used with the prototype should extend the class PrototypeActor.

Next, DefaultBehavior triggers the validation process by calling ProtocolVerifier. Proto-
colVerifier uses the information passed in the VerificationContext parameter to determine if the
current operation is allowed or not. The verification algorithm already has been described in
detail in Section 4.1.2. If the verification determines that the current operation is forbidden, an
InteractionNotAllowed exception is thrown by ProtocolVerifier which is passed along to De-
faultBehavior that returns the thread of execution back to the calling aspect which then cancels
the actor’s send or receive operation. If the current operation is enabled, DefaultBehavior calls
the actor’s InteractionLogger to log the operation as interaction between sender and receiver and
then returns back to the aspect which at this point lets the actor proceed with the operation. As
every actor has its local message history and the moment of sending a message does not provide
any information if and when the message arrives at the receiver, sending and receiving of each
message is logged separately at the sender and at the receiver.

For processing a ConfigMessage message, DefaultBehavior simply forwards the message to
the configure() or the reconfigure() method of the actor receiving the message, depending on
whether this is the first ConfigMessage the actor receives.

When a rule is added or removed the Behavior informs the actor’s VerificationData object,
so that it can perform operations if necessary. The history logger verification adds or removes
the given rule to the rule set of the actor which is saved in the corresponding VerificationData
object, the automaton verification creates an automaton whenever a rule gets added and adds it
to the set of automatons wich is also saved in VerificationData.

63

Listing 4.4: Interface Behavior

public interface Behavior {
void onActorReceiveMessage(

UntypedActor contextActor,
ActorRef sender,
ActorRef receiver)

throws InteractionNotAllowedException;

void onActorSendMessage(
UntypedActor contextActor,
ActorRef sender,
ActorRef receiver)

throws InteractionNotAllowedException;

boolean processConfigurationMessage(
UntypedActor actor,
ConfigMessage message)

throws ConfigurationException;
}

64

ProtocolVerifier The ProtocolVerifier (Listing 4.5) interface has only one method

void verify(VerificationContext context)
throws InteractionNotAllowedException;

The method describes the operation of verifying an actor’s send or receive operation to deter-
mine if it is enabled or forbidden. The VerificationContext instance passed as parameter holds
all information required for the verification. By contract, the method is supposed to throw an
InteractionNotAllowed exception if the verification algorithm detects the current operation to
be forbidden to make sure the normal operation is interrupted. The prototype provides two im-
plementations: HistoryProtocolVerifier and AutomatonProtocolVerifier; future versions of the
prototype could provide more verification algorithms by implementing the ProtocolVerifier in-
terface. The verification algorithm is described in section 4.1.2.

Listing 4.5: Interface ProtocolVerifier

void verify(VerificationContext context)
throws InteractionNotAllowedException;

}

VerificationContext Behavior constructs a VerificationContext object which holds all infor-
mation about the actor operation currently analyzed. The approach of encapsulating this in-
formation into a holder object makes it easy to pass it around between the prototype’s internal
components. A VerificationContext object contains the following information:

• Type of verification (send or receive)

• Message sender

• Message receiver

• The local actor’s rule set

• The local actor’s message history

Constraint Constraint objects (Listing 4.6) represent the rules of an actor’s synchronisation
protocol as described before. A Constraint consists of conditions in the form of a Condition-
Constraint object and an action in the form of an ActionConstraint object. ConditionConstraint
can either be an atomic condition expressing a simple condition or a composite condition ex-
pressing a complex condition containing sub-conditions. Table 4.3 lists all ConditionConstraint
and ActionConstraint subclasses implemented for the prototype so far.

Most of the methods provided in Constraint are simple getter and setter methods for access-
ing and changing the rule’s content. The method

AllowInteraction allowsInteraction(VerificationContext
context)

65

however is different. When given a VerificationContext object as parameter, the method checks
whether the rule holds for the operation described by the parameter. First the method tests if the
Constraint’s condition holds by using ConditionConstraint’s method

boolean hold(InteractionLogger logger)

and subsequently it determines the Constraint’s action and if the operation between sender and
receiver may be performed with the help of ActionConstraint’s method

AllowInteraction allow(ActorRef sender, ActorRef receiver)

The value returned describes the outcome and is either AllowInteraction.ALLOW or AllowIn-
teraction.FORBID, stating whether this rule allows or forbids an actor to perform the current
operation.

Constraint Class Required Informations Short Description
ConditionConstraint

AlwaysCondition - Always holds
MessageExistsCondition sender, receiver Holds if ∃msg between sender, receiver
ConditionNegation condition Holds if negation of condition holds
ConditionAnd condition1, condition2 Holds if condition1 and condition2 hold
ConditionOr condition1, condition2 Holds if condition1 or condition2 holds

ActionConstraint
AllowAction sender, receiver Allows current action
ForbidAction sender, receiver Forbids current action

Table 4.3: ConditionConstraint and ActionConstraint subclasses implemented for the prototype

66

Listing 4.6: Class Constraint and interfaces ConditionConstraint and ActionConstraint

public class Constraint {
private ConditionConstraint conditions;
private ActionConstraint actions;

public Set<ActorRef> getParticipatingSenders();
public Set<ActorRef> getParticipatingReceivers();
public ConditionConstraint getConditions();
public void setConditions(

ConditionConstraint conditions);
public ActionConstraint getActions();
public void setActions(ActionConstraint actions);
public AllowInteraction allowsInteraction(

VerificationContext context)
throws InteractionNotAllowedException;

@Override
public String toString();

}

public interface ConditionConstraint extends ConstraintItem
{

boolean hold(InteractionLogger logger);
}

public interface ActionConstraint extends ConstraintItem {
AllowInteraction allow(

ActorRef sender,
ActorRef receiver);

}

ConstraintBuilder In order to make the creation of synchronisation rules in the form of Con-
straint objects more straightforward and comfortable, a ConstraintBuilder component was in-
troduced. With the ConstraintBuilder only semantically correct rules can be created. This is
accomplished by utilizing the Builder pattern [33] in conjunction with the Fluent interface pat-
tern [31]. The ConstraintBuilder component consists of multiple interfaces and classes imple-
menting one or multiple of these interfaces which together form a Domain-Specific Language
(DSL) for creating Constraint objects.

Figure 4.4 shows the allowed workflows which lead to semantically correct rules. The in-
terface ConstraintBuilder and its implementation ConstraintBuilderImpl are the entry point at
which creation of a new Constraint begins. The ConstraintBuilder interface provides the method

When when() throws ConstraintBuilderException;

67

Build

Action

allow | forbid

then

When (Start)

Then

and | or

messageExists

messageExists

not

Condition or ThenNot

not

messageExists

Concatenation

Figure 4.4: Workflow allowed by the ConstraintBuilder for creating semantically valid rules.

which starts the building process by returning an object implementing the builder interfaces
that describe valid operations at this point, which are the creation of atomic conditions or the
composite condition not. By calling one of the provided methods with the required parameters,
the condition is added to the new rule and another builder object is returned. This new object
again only allows one to choose from semantically valid options. This process continues until
a state is reached in which the build() method can be called, which creates and returns the fully
configured Constraint object. In the background, the classes forming ConstraintBuilder pass an
instance of BuilderContext around, which holds the Condition’s state so far. Listing 4.7 shows
an example of how the ConstraintBuilder is used.

68

Listing 4.7: Example of how the ConstraintBuilder can be used to create Constraints

Constraint actorNoneToA
= builder.when().always()

.then().allow(
Actors.noActor(),
actorA)

.build();
Constraint actorAtoB

= builder.when().always()
.then().allow(

actorA,
actorB)

.build();
Constraint sendBtoC

= builder.when().messageExists(
actorA,
actorB)

.then().allow(
actorB,
actorC)

.build();

NoActor and AnyActor An ActorRef can be used to uniquely identify an actor and interact
with it. An ActorRef contains a path representing the actor’s address. Unfortunately the use
of AKKA’s implementation of ActorRef alone proofed to be insufficient for the prototype’s re-
quirements, as it could not cope with two special situations. First, the DeadLetterbox actor is
represented by an ActorRef with the path attribute set to null which is problematic when trying
to compare the DeadLetterbox actor’s ActorRef to other ActorRef instances, because ActorRef’s
equals(. . .) method tries to call the method compareTo(. . .) of the ActorRef’s path attribute
which fails with a NullPointerException. Second, in order to express rules that enable send or
receive operations to or from any actor, an ActorRef instance that represents any possible actor
is required.

For these use cases a NoActor class containing a path attribute of type NoActorPath and
an AnyActor class containing a path attribute of type AnyActorPath were created for internal
use in the prototype. NoActor represents the DeadLetterbox actor and AnyActor represents any
actor possible. Instances of both classes can be compared to other ActorRef objects and also
can be identified by the prototype through an instanceof check if required. Both NoActor and
AnyActor are used in Constraint objects as sender or receiver in conditions and actions. NoActor
objects are also used in Interaction objects when logging messages sent or received to or from
the DeadLetterbox actor.

69

4.2.3 Automaton Verification Algorithm

AutomatonProtocolVerifier This implementation of the verification algorithm creates an au-
tomaton for each rule that is added to an actor and uses this automatons to verify interactions and
to log sent and received messages. The automaton verification implementation of the algorithm
circumvents the problems of the History Logging Verification Algorithm as each automaton re-
quires finite space and performance does not degrade. Checking a rule works in O(1) which
is also a considerable improvement. However, for each rule added to an actor, an automaton
has to be created, which is a more expensive operation. The implementation uses a component
AutomatonBuilder to create Automaton (Listing 4.8) objects which contain States.

Automaton and State An automaton represents a rule. It holds

• sender/receiver pair of the corresponding rules action

• the current state the automaton is in.

Each State contains an action (ALLOW or FORBID), and edges leading to other states. Leaf-
States express the occurrence or non-occurrence of a specific message. JoinedStates express a
complex state in which some messages have occurred while others have not. Besides the afore-
mentioned attributes all states have, JoinedStates contain LeafStates as substates. Edges repre-
sent a message from sender to receiver. They lead from one state to another and are annotated
with a sender/receiver pair.

The automaton provides methods to check if a message is enabled in the current state and
to log the occurrence of messages. The states of an automaton are connected by edges which
represent possible state changes.

Listing 4.8: class Automaton

public class Automaton {
public void logMessage(ActorRef sender, ActorRef receiver

);
public AllowInteraction allows(ActorRef sender, ActorRef

receiver);
}

AutomatonBuilder AutomatonBuilder creates automatons from rules. As previously men-
tioned, the creation of an automaton is done recursively by composition. Each condition is
represented by a distinct graph of states. State graphs for atomic conditions get connected by
the state graphs for composite conditions. In the following, first the state graphs for atomic con-
ditions and then the ones for compositions are described. For the latter the creation algorithm is
also presented in detail. In the figures (4.5 and 4.6) + means the action is allowed and - means
the action is forbidden.

Figure 4.5 depicts the state patterns used for the atomic conditions. For Always (1a.), the
automaton simply consists of one state with the action of the rule. For MessageExists (1b.), two

70

1a. Always
always() → allow(a,b)

s0
+

1c. Not
not(msgExists(a,b) → allow(c,d)

1b. MessageExists
msgExists(a,b) → allow(c,d)

a,b a,b s1
not(+)=-

s0
not(-)=+

s1
+

s0
-

Figure 4.5: State patterns for MessageExists, Always and Not

1b. And, optimized
msgExists(a,b) ˄ msgExists(c,d) → allow(e,f)

1a. And, unoptimized
msgExists(a,b) ˄ msgExists(c,d) → allow(e,f)

a,b c,d
and(++) = +a,b

c,d

-a,b c,d
and(-+) = -

a,b -c,d
and(+-) = -

c,d

a,b

-a,b -c,d
and(--) = -

a,b c,d
and(++) = +

a,b c,d
and(++) = +

a,b

c,d

-a,b c,d
and(-+) = -

a,b -c,d
and(+-) = -

c,d

a,b
-a,b -c,d
and(--) = -

2a. Or, optimized
msgExists(a,b) ˅ msgExists(c,d) → allow(e,f)

2a. Or, unoptimized
msgExists(a,b) ˅ msgExists(c,d) → allow(e,f)

a,b c,d
or(+-) = +c,d

a,b
-a,b -c,d
or(--) = -

a,b c,d
or(++) = +

a,b c,d
or(++) = +

a,b

c,d

-a,b c,d
or(-+) = +

a,b -c,d
or(+-) = +

c,d

a,b
-a,b -c,d
or(--) = -

Figure 4.6: State patterns for And and Or

states are created. The first one contains the negated action of the rule. The second one contains
the action of the rule. Both states are connected by an edge annotated with sender and receiver
from the atomic condition. A Not (1c.) simply negates the actions of all given states.

Figure 4.6 depicts the state patterns for And (1a., 1b.) and Or (1a., 1b.) first in unoptimized
and then in optimized form. Both, And and Or can be handled with the same algorithm. Listing
4.9 shows a simplified version (pseudo-code, for shortness and readability) of the algorithm.

Listing 4.9: Creation of state graph for composite conditions

public State build(condition, action) {
if(isAtomicCondition(condition))

return statesForConditionType(condition);

leftState = build(condition.left(), action);
rightState = build(condition.right(), action);
startState = leftState.join(rightState);
unprocessed_states = { startState };
graph = {};
//follow edges, create state graph
while (unprocessed_states.hasMoreStates()) {

state = unprocessed_states.next();
for(edge in state) {

if (edge is outgoing) {

71

newState = state.followEdge(edge);
graph.updateState(newState);
unprocessed_states.add(newState);

}
}
unprocessed_states.remove(state);

}
//simplify graph, join states where possible
while(simplifieableStatesExist(graph.nodes)) {

newState = join(simplifieableStates);
graph.update(newState);

}
}

As first step, the state graphs for the left and the right subconditions are recursively created.
After that, a new start state for the composite condition is created by joining the start states of
both subcondition graphs into a new state, which contains all the substates and edges of both
states. The action of the new start state is determined by a boolean combination of the actions
of the two joined substates. For an And they are joined with a boolean and, for an Or with a
boolean or.

As the next step, as long as there exist states with unprocessed outgoing edges, a new state
is created by following one of these edges, starting with the new start state. Following an edge
means copying the current state and then changing the substate that represents the state change
of following the edge. After this step, the state graph for the composite condition is complete.

In order to minimize the state graph, two optimizations are performed. The first one happens
during state creation; as states with the same substates are equal, only one state gets created. The
second time a state is referenced, the new edges are added to the already existing state. This is
implemented by defining equals() and hashCode() accordingly for states and putting them into
a map which gets checked whenever a state should be created.

The second optimization joins groups of states with the same action if they have no outgoing
edges to states with a different action. To do this, the graph is taken and searched for such state
groups. When one is found, the states get joined into one new state.

ConditionBuilderContext AutomatonBuilder constructs a ConditionBuilderContext object which
holds information during automaton creation. Again, this is done to make passing around of in-
formation easy. The context holds the following information:

• Type of composite condition (And or Or)

• Graph

• Unprocessed States

72

4.2.4 History Verification Algorithm

HistoryProtocolVerifier This implementation of the verification algorithm verifies interac-
tions by analyzing the previously stored message history of an actor, thus determining wether
an interaction should be enabled or not. This implementation of the algorithm was the first one
implemented. As described earlier, its performance degrades considerably with time and long-
running applications can also run out of memory. The implementation uses an InteractionLogger
component to record interactions with an actor and a ConstraintStore component to store rules
at the actor, both of which extend a basic IndexedDataStore component.

IndexedDataStore Both InteractionLogger and ConstraintStore require functionality for in-
dexing and efficiently querying objects by different attributes. The interface IndexedDataStore
(Listing 4.10) and the implementation IndexedDataStoreImpl were designed as a common base
providing these capabilities. IndexedDataStore uses generics to support type-safe usage. The
component provides the capability to store objects of a certain type and to retrieve a subset of
them by filtering out the ones that have certain attributes. Listings 4.10, 4.11 and 4.12 show the
interfaces describing IndexedDataStore and the associated interfaces Filter and Indexer.

The component supports custom indexers and filters. An Indexer decides on which attribute
to index objects passed to the IndexedDataStore and later can be used to query for objects con-
taining a certain value of that attribute. A Filter decides which objects passed to an Indexed-
DataStore it will add to the collection of filtered objects based on each object’s attributes. Filters
were later removed because indexers proofed to be sufficient for implementation of the currently
existing conditions and removal of them improved performance. Indexer and Filter instances get
registered as listeners at an IndexedDataStore instance. Registered ones are notified whenever
an object is put into the store and later can be used to query for objects.

Listing 4.10: Interface IndexedDataStore

public interface IndexedDataStore<VALUE> {
void registerIndexer(Indexer<?, VALUE> indexer);
void registerFilter(AbstractFilter storage);
void index(VALUE value);
<KEY> List<VALUE> findValues(

KEY key,
String indexerName);

List<VALUE> findFilteredValues(String filterName);
<KEY> List<VALUE> findValues(KEY key);

}

Listing 4.11: Interface Filter

public interface Filter<VALUE> {
String name();
void store(VALUE value);
List<VALUE> getValues();

}

73

Listing 4.12: Interface Indexer

public interface Indexer<KEY, VALUE> {
String name();
Class<KEY> type();
void index(VALUE value);
boolean contains(Object key);
List<VALUE> find(KEY key);
List<VALUE> findByKey(Object key);

}

InteractionLogger The InteractionLogger interface (Listing 4.13) describes a component ca-
pable of recording sent and received messages for an actor. Interactions can then be looked up by
sender, receiver or a combination of both. Information about an actor’s interactions with other
actors is required by the HistoryProtocolVerifier component when checking which rules hold for
the actor’s current operation. Each send or receive operation is represented with an Interaction
containing

• a unique UUID (Universally Unique Identifier)

• the sender’s address

• the receiver’s address

The InteractionLogger (Listing 4.13) instance associated with an actor gets informed whenever
the actor sends or receives a message and then is responsible to log the interaction. All Inter-
action objects stored in the InteractionLogger instance of an actor listed in the arrival order and
together accurately depict the actor’s message history.

The default implementation of InteractionLogger is InteractionLoggerImpl. It implements
the InteractionLogger interface and extends IndexedDataStoreImpl, using its capabilities. Three
indexers index Interaction objects for sender, receiver and the combination of both.

Listing 4.13: Interface InteractionLogger

void logMessage(ActorRef sender, ActorRef receiver);
List<Interaction> findInteractions(

ActorRef sender,
ActorRef receiver);

List<Interaction> findAllInteractions(
ActorRef senderOrReceiver);

List<Interaction> findInteractionsForSender(
ActorRef sender);

List<Interaction> findInteractionsForReceiver(
ActorRef receiver);

}

74

ConstraintStore The ConstraintStore interface (Listing 4.14) describes a component for stor-
ing synchronisation rules for an actor. The component is used to manage an actor’s synchronisa-
tion protocol. Synchronisation rules can be added, removed and queried. The actor itself can add
and remove rules at will to the ConstraintStore instance it owns to change its synchronisation
protocol. From the outside, ConfigMessage messages can be used to influence an actor’s syn-
chronisation protocol, triggering the actor’s configure or reconfigure method where the actor can
handle the message and may decide to adapt its synchronisation protocol. Each synchronisation
rule is represented with a Constraint object, which contains

• the rule’s conditions

• the rule’s action

Together the rules stored in an actor’s ConstraintStore instance build the synchronisation proto-
col the actor adheres to when performing send and receive operations.

The default implementation of ConstraintStore is provided in the class ConstraintStoreImpl.
ConstraintStoreImpl implements the ConstraintStore interface and extends IndexedDataStor-
eImpl, using its capabilities. Three indexers index Constraint objects for sender, receiver and
the combination of both.

Listing 4.14: Interface ConstraintStore

void add(Constraint constraint);
void remove(Constraint constraint);
Collection<Constraint> getForSender(ActorRef sender);
Collection<Constraint> getForReceiver(ActorRef receiver);
Collection<Constraint> getForSenderReceiver(

ActorRef sender,
ActorRef receiver);

}

4.2.5 Software Design Patterns

The following software design patterns were used for design and implementation of the proto-
type. For each pattern a short description is given and its use in the prototype is explained.

Observer Pattern The IndexedDataStore component provides the capability to register In-
dexer and Filter objects which get notified whenever a new value gets added to the data store, as
described by the Observer Pattern [33]. The pattern allows one to define a many-to-one depen-
dency between objects, so that the many objects get notified whenever the one object changes
its state. The notified objects, or listeners, can use the information about the object’s new state
to react to the state change.

75

Builder and Fluent Interface To make creation of rules safe and comfortable, the Constraint-
Builder component uses the Builder Pattern [33] in combination with the Fluent Interface Pat-
tern [31]. The Builder Pattern separates construction of a complex object from its representation,
so that both can be adapted independently. This considerably eased adaptation of the building
process during development and also supported changes of the internal representation of Con-
straint objects as necessary. The Fluent Interface Pattern introduced by Martin Fowler makes
sure, that only semantically correct Constraint objects can be built with the ConstraintBuilder.
ConstraintBuilder returns an object with methods that represent all semantically valid next op-
erations for creating a Constraint object. When called, these methods return a new object with
methods that represent the semantically valid operations after the last operation. This goes on,
until a call to the method build() constructs the Constraint object.

Domain-Specific Language The ConstraintBuilder in combination with Constraint-, Condi-
tionConstraint- and ActionConstraint objects form a Domain-Specific Language [32]. While
maybe not a software pattern in the strictest form, the approach of defining a Domain-Specific
Language can be seen as a method of designing systems and architecting software. The im-
plemented Domain-Specific Language allows developers to express an actor’s synchronisation
protocol as rules in a natural and concise way.

Interpreter ConditionConstraint uses the Interpreter Pattern [33] to evaluate whether a con-
straint holds. The pattern is used to define a grammar for a given language and an interpreter
that can interpret sentences in that language. The interpreter was implemented with recursive
descent parsing [10], a top-down approach for syntax analysis, and consists of recursive proce-
dures which are used to process the incoming input. The sequence of procedure calls defines
a parse tree that evaluates whether the condition holds. Recursive descent parsing was chosen,
because it is easy to implement and is efficient enough, as ConditionConstraints are usually not
nested very deeply.

Facade In order to provide a simple, central API for accessing the prototype’s capabilities, the
Facade pattern [33] was used and the Prototype class was implemented. A Facade provides
a consistent interface to functionality divided over a number of sub-components of an object-
oriented system. The Prototype facade class simplifies the use of the prototype’s functionality
and provides central access to it.

Strategy In order to encapsulate the verification algorithm so it can be easily adapted or ex-
changed in the future, the Strategy pattern [33] was used. The interface ProtocolVerifier de-
scribes the verification operation and the class HistoryProtocolVerifier provides the default im-
plementation. Whenever an operation has to be verified, the ProtocolVerifier instance registered
in the system gets called, receives contextual information and verifies the operation.

76

4.3 Optimizations

This section summarizes optimizations performed in the course of development. Optimization
targets were identified by visual code inspection and by profiling the application’s code. As
profiler VisualVM was used, which comes with the Java SDK.

4.3.1 General Prototype Optimizations

Replacing joinPoint.getArgs() with Pointcut SendingActorAspect as well as ReceivingAc-
torAspect used joinPoint.getArgs() for finding out if a given message has the type ConfigMes-
sage. Those messages are for configuring actors, have to pass verification in any case and are
routed to the method configure() or reconfigure() of the PrototypeActor instance. The call to
joinPoint.getArgs() proved to be very expensive, but fortunately it could be avoided by dividing
the one pointcut defined for SendingActorAspect and respective ReceivingActorAspect into two
more specific pointcuts. The first one only intercepts ConfigMessages and pipes them through
to the PrototypeActor’s configure() or reconfigure() method. The second pointcut intercepts any
other messages, calling verifier and interaction logging.

Optimizing SendingActorAspect.findActor() The method SendingActorAspect.findActor()
could also be improved. For once, reflection was used for finding the correct actor through
getClass().isAssignableFrom() which could be avoided. Also finding the actor calling a send op-
eration for actors defined as inner classes was removed. The costs for checking this are high and
the restriction not to declare PrototypeActors as inner classes is a relatively moderate one. When
no actor could be found around a send operation, the method now simply returns. Moreover,
calls to joinPoint.getThis() were minimized to a minimum, as they are expensive.

Removing ActorId In the course of development, the wrapper ActorId introduced for Actor-
Ref addresses could be removed from the prototype in favor of the classes NoActor and NoAc-
torPath. The wrapper class was developed because ActorRef objects representing the DeadLet-
terbox actor contain a Path property defined as null which prohibits the use of the equals()
method to compare ActorRef objects identifying the DeadLetterbox actor with other ActorRef
objects. Now messages coming from the DeadLetterBox actor are recognized by the prototype
and get stored with an instance of NoActor in the InteractionLogger which can be compared
with equals(). The ActorId could be removed completely from the prototype which avoids the
overhead object creation and indirect access.

4.3.2 Automaton Verification

AutomatonBuilder: Join Duplicate States Whenever following an Edge from one State to
another during automaton creation, a new State object representing this new automaton state is
created. Two automaton states which contain the same substates are equal to each other: in both
states the same messages have occurred/not occurred. Such states can be joined to minimize the
automaton’s state count. To implement this optimization it is checked if an equal State object
already exists in the automaton’s state graph whenever a new State object should be created.

77

If this is the case, the Edges – which represent the change to the new state – are added to the
already existing State object and Edge.to is updated on each Edge to point to the State object.

AutomatonBuilder: Join States with Same Action After the automaton has been created,
the state graph of the autmaton can be optimized further without changing its semantics; Groups
of State objects which only lead to the same action can be joined. Such State objects contain
only edges that lead to State objects with the same AllowInteraction. As the outcome of all
future checks clearly always has to be the same AllowInteraction even after following an Edge,
the group of State objects can be joined into a single State. To find all such state groups, the
graph is traversed and whenever a group is found which can be joined it immediately gets joined.

4.3.3 History Logging Verification

Optimizing IndexedDataStore’s findValues() IndexedDataStore’s findValues(. . .) method
gets called very often. This method could be improved so that indexers do not have to be iterated
if the Indexer’s name is given and the key only gets looked up in this one. If no Indexer name
is given, then we of course do have to iterate over all Indexers, aggregating the values found by
each Indexer for the given key. Because most of the time we’re only interested in values from
one Indexer, this optimization will cut the costs of the operation most of the time it is called.

Removing Filters Filters for IndexedDataStore were removed. The feature was not used in
production code besides for debugging output. Because registered Filters had to be called every
time a value is to be indexed, this feature was deemed too expensive and was removed.

4.4 Benefits and Limitations

Most of the prototype’s characteristics were already discussed in one or the other form while
describing its design and implementation. This section summarizes these characteristics and
describes them as benefits and limitations.

4.4.1 Benefits

Ensuring Message Order The order in which messages arrive at participants of an actor sys-
tem is generally arbitrary and unknown [4] and has to be limited through synchronisation to pre-
vent unwanted behavior. The prototype described in this thesis provides a rule-based approach
to actor synchronisation. For each actor, developers can state rules which limit the arrival order
of messages allowed in a certain situation. The prototype ensures, that the protocol built by these
rules is maintained and that any other message order gets rejected, preventing the actor to enter
an invalid or undefined state.

Local Verification Verification of the synchronisation protocol is performed locally at the ac-
tor. Rule set and message history are stored at the actor and the verification runs in the actor’s

78

context, as send and receive operations are intercepted with AspectJ. The actor’s behavior ef-
fectively gets interrupted until the outcome of the verification is determined and the current
operation is allowed to continue or gets canceled. From the outside, verification seems to be
behavior of the actor itself and it is performed with the same message order and message history
that the actor sees when it performs the verified operation.

No Assumption of Global Time The presented prototype does not assume the existence of a
global order of messages for actors and so also does not assume the existence of a global time
between them. This complies with the actor concurrency model’s insight, that for a system with
real concurrency neither a global message order nor a global time could be defined in a way
that all actors could agree upon them [4] [40] [21]. The prototype’s approach stays in contrast
to for example the approach taken with RTSynchronizers [61], which assumes that at least for
nearby actors times are sufficiently synchronized to support meaningful interpretation of timing
constraints.

Support for Behavior Change An actor can replace its current behavior dynamically, chang-
ing how it reacts to arriving messages. The prototype’s rule mechanism is flexible enough to
support the synchronisation protocol to be adapted when the actor performs a behavior change
operation. Rules can be added and removed at runtime to change the actor’s synchronisation
protocol in accordance with the new behavior.

4.4.2 Limitations

Only Conditions over Direct Interactions Rules for the synchronisation protocol of an actor
can only be formulated over actors and messages directly affecting the actor in question. It is for
example impossible to state the following rule for actor C:

when messageExists(A,B) then allow(B,C) (4.2)

The condition part of this rule cannot be expressed, because the information required to verify
the statement is not available at actor C and never can be, as the prototype does not assume
existence of a unique global message order. To eliminate this limitation, (part of) the message
history of actor A could be sent to actor C, however this operation would also be term to the
arrival order and it would not be clear when the information arrives and is processed, which may
lead to synchronisation issues.

Limited Expressiveness So far only basic conditions were defined and implemented for the
prototype. In order to be able to use more details about events and properties of the message
history of an actor to define the actor’s synchronisation protocol, new conditions will have to be
implemented. More advanced conditions could for example limit the firing of a rule depending
on whether a message was sent to one actor of a group of actors, whether another rule has fired
in the past, or whether a certain number of messages was sent or received to or from an actor.

79

Discarding of Messages The prototype discards messages violating an actor’s synchronisation
protocol. This behavior was chosen on purpose, because if an actor would process messages not
allowed in the current state, it might enter an invalid or undefined state. Discarding of messages
however can lead to situations where a message gets sent to an actor, but is discarded and thus
is never processed, if the sender does not retransmit the message. The behavior of the prototype
stands in contrast to the one of other approaches. ActorFoundry for example disables messages
which an actor is not allowed to process in the current state, storing them in a queue with the
possibility to be re-enabled later if the actor’s state changes.

No Selective Verification It is currently not possible to selectively use the prototype for a sub-
set of actors in an actor system, as the prototype injects itself into the system and gets called for
every actor. Some applications might require the prototype’s capabilities only for a small set of
critical actors that require consistent state, while the overhead introduced by the prototype could
be spared out for all other actors in the system. Selective verification could be implemented by
providing an annotation that can be used to inform the prototype of actors requiring verification.

4.5 Comparison

This section describes approaches for actor synchronisation found while researching the topic.
Each approach is first described and then compared to the prototype.

4.5.1 Set-Constraint-based Analysis

4.5.1.1 Description

Colaço et al propose in [23] and [22] a way to detect orphan messages in actor-based languages,
which is compareable to the approach taken in this thesis, especially for the automaton verifi-
cation algorithm; the paper however was unknown during design and implementation phases of
the prototype and was found much later when writing this thesis.

In the paper, an orphan message is defined as a message which in an execution path cannot
be handled by the receiving actor. There are safety orphans, which occur when no behavior of
the receiver does know how to handle a message, and there are liveness orphans which occur if
a behavior in the execution path knows how to handle a message but the receiver is deadlocked
and never changes its behavior to the aforementioned one. The proposed type system associates
each of an actor’s behaviors with an interface; for a specific program execution the actor then
can be described by a sequence of said interfaces. All possible executions of an actor can be
described with a regular tree, where the nodes represent the behavior interfaces and the edges
represent behavior changes.

The first approach taken by the authors was to calculate the intersection of all possible be-
havior interfaces [23]. As it turns out, this is too restrictive and forbids use of messages which
could be enabled in some behaviors. The improved approach proposes to use multi-union of all
behavior interfaces along a given tree branch and multi-intersection of these [22]. A message
can be sent to an actor if in each future execution path from this moment on there exists a behav-

80

ior which accepts the message, otherwise the message should not be allowed to be sent to the
actor.

4.5.1.2 Comparison

Rule Creation While the basic approach is very similar to the one proposed for this thesis,
nontheless there exist some differences. For the approach taken in [23] and [22] rules are in-
ferred by a type inference system. In contrast to that, the prototype proposed in this thesis lets
the programmer manually define and change the rules at runtime. Each rule is also treated as
separate part of the verification protocol of the current actor’s behavior, which makes it possible
to dynamically add and remove rules at runtime in order to adapt the verification.

Static versus Runtime Checking The approach proposed in [22] tries to detect orphan mes-
sages statically if possible. Although another goal of the proposed inference system is, according
to the authors, to produce information that helps to dynamically detect orphan messages as well,
the main focus is on static checking. The prototype of this thesis on the other hand focuses
on runtime verification, as it checks at runtime if an actor is enabled or forbidden to receive a
message.

4.5.2 ActorFoundry: Local Synchronisation Constraints

4.5.2.1 Description

Messages between actors are sent and received asynchronously in ActorFoundry [46], an actor
concurrency implementation. In order to deal with the nondeterminism of the order of messages
arriving at actors, ActorFoundry provides the concept of local synchronisation constraints [46].
Local synchronisation constraints are special methods defined at actors. They allow the devel-
oper to restrict the order in which messages get processed by disabling them based on the actor’s
state and the messages previously received. A disabled message will not be processed, but in-
stead gets stored in a queue. Local synchronisation constraints are reevaluated continuously and
when the actor’s state and message history change and allow to re-enable a message, the message
gets removed from the queue and is delivered to the actor. This approach is similar to the one
taken with the prototype proposed in this thesis, but differs in some areas, as explained below.

4.5.2.2 Comparison

Domain Specific Language To define a local synchronisation constraint in ActorFoundry,
the programmer implements a method and manually has to specify the conditions which lead
to disabling of messages. In contrast, our prototype provides a domain specific language that
allows developers to construct rules which relate to the message history of an actor and against
which arriving messages can automatically be validated. This approach provides developers
with a structured approach for defining acceptance and denial criteria for messages in a well-
defined way. While the implemented domain specific language lacks the possibility to include
the actor’s current state so far, future iterations of the prototype could extend it to provide this
functionality.

81

Discard at Sending In contrast to local synchronisation constraints, our prototype also can
handle rules for sending of messages. While this is not required for correctness, as actors only
can be influenced by reception of messages, it allows the prototype to discard incorrect messages
as early as possible.

Disabling versus Discarding With synchronisation constraints, disabled messages get buffered
until the actor’s state and message history allow it to process the message. The synchronisation
constraint methods have to be run continuously in order to find out if a previously disabled
message has to be reenabled because the actor’s status has changed. The prototype described
in this thesis takes a different approach here and discards messages which fail the validation.
As explained before, this can lead to situations, where messages get discarded and never are
retransmitted.

Dynamic Rule Reconfiguration The prototype provides the possibility to reconfigure and
change the set of synchronisation rules for an actor at run-time. This capability makes it possible
to dynamically add and remove rules as required when an actor should change its behavior or
the state it is in.

4.5.3 RTSynchronizer and QoS Synchronizers

4.5.3.1 Description

RTSynchronizer and QoS Synchronizers extend the basic actor concurrency concept by sup-
porting the definition of certain aspects of synchronization between a group of actors. Because
both approaches have great similarities and QoS Synchronizers also rely on RTSynchronizers
for time related constraints, the models are evaluated together.

RTsynchronizer RTSynchronizer [61] is an actor concurrency implementation, that allows
developers to define timing constraints on groups of actors. Actors are provided with a local
clock, and it is further assumed, that local clocks of nearby actors are sufficiently synchronized
to support meaningful interpretation of timing constraints between them. In order to separate
functional concerns from synchronisation, such timing constraints are defined in special actors
called RTSynchronizers. Instead of sending and receiving messages, RTSynchronizers provide
a specification of the temporal order of messages over a given group of (nearby) actors.

QoS Synchronizers QoS Synchronizers [62] are a proposal on how to specify quality of ser-
vice aspects between actors for multimedia applications. A QoS Synchronizer is a special actor,
that allows developers to define quality of service constraints between a group of actors. For
time related quality of service constraints, QoS Synchronizers use RTSynchronizers.

4.5.3.2 Comparison

Definable Constraints As already explained, constraints in the presented prototype can only
be formulated over actors that directly interact with each other. As RTSynchronizers assume

82

equality of local clocks of nearby actors, they are more expressive and also support the definition
of constraints between actors interacting indirectly with each other.

Locality of Constraints In the proposed prototype, constraints are stored at each actor and
constraint verification is performed locally in the actor’s execution context. For an external
observer, the verification process seems to be behavior of the actor itself. In contrast, synchroni-
sation logic in RTSynchronizers and QoS Synchronizers is defined externally in a special actor,
which is responsible to perform coordination.

4.5.4 Actors with Temporal Constraints

4.5.4.1 Description

Actors with temporal constraints (ATC) [47], a model strongly influenced by temporal process
algebra, allows developers to introduce active and passive temporal constraints on events and
takes special emphasis on realtime systems. An active temporal constraint states, that certain
actions must be executed in a specified time interval, because otherwise the system reaches a
deadlock. A passive temporal constraint states, that if certain actions are not executed before
a specified time limit, an exception will be thrown. Actors with temporal constraints uses the
urgency-operator [57] to model active temporal constraints and the watchdog-operator [57] [69]
to model passive temporal constraints.

4.5.4.2 Comparison

Expressible Constraints The described prototype provides a mechanism to introduce syn-
chronization constraints on actors, whereas actors with temporal constraints provide a mecha-
nism to introduce timing constraints on actors. While synchronization constraints support the
expression of synchronisation protocols, timing constraints support the expression of timing
protocols.

Real-time Applications The prototype of this thesis is built around AKKA, an actor con-
currency implementation optimized for non-real-time applications. Actors with temporal con-
straints on the other hand was specifically proposed for use in real-time applications. While
non-real-time applications are optimized for data throughput, real-time applications are opti-
mized to fulfill their deadlines.

4.6 Development Process

4.6.1 Overview

For the development of the prototype, a software development process very similar to SCRUM
[35] was used. Development was performed in iterations, with an iteration being two to three
weeks long, depending on the chosen tasks and the author’s time table. A short analysis of
the current status was performed after each iteration, and the features to implement in the next

83

iteration were chosen. The development was performed in a test-centric way: Unit tests, bug
tests and integration tests were implemented and continuously executed over the span of the
development process. Development and evaluation of the prototype were split in two separate
phases: A design and development phase and an evaluation phase.

Design and Development Phase In the design and development phase, the prototype’s ar-
chitecture was planned and the prototype was realized. In Iteration 0, basic interception of
messages between actors was implemented, in Iteration 1 the history protocol verification was
implemented. In Iteration 2 and 3 the prototype was further improved, internal structures were
optimized and the usability was revisited. In Iteration 4, a new implementation of the verifica-
tion algorithm was implemented, as this proved to be necessary. For details on each iteration see
Section 4.7.

Evaluation Phase In the evaluation phase, the prototype was tested and analyzed. In Iteration
5, two example applications using the prototype were implemented. The first one is a version
of the Chameneos concurrency game [45], the second one a token ring application suitable for
testing. For analysis, special focus was directed at measuring the prototype’s performance. In It-
eration 6, the prototype’s performance was examined and evaluated. For details on each iteration
see Section 4.7, for details on the implemented applications and the results of the performance
evaluation see Chapter 5.

4.6.2 Technology

Programming Language The prototype was developed with Java 7 [36] and AspectJ 1.7.3
[26]. Besides Java, AspectJ is a key technology, as with it code can be executed in an actor’s
execution context whenever the actor sends or receives a message.

Underlying Actor System As the underlying actor concurrency implementation for the pro-
totype AKKA 2.10 [66] was chosen. Kilim, ActorFoundry and AKKA were considered. AKKA
was selected because of various reasons: It runs on java, is open source and has detailed doc-
umentation. Because the prototype has to hook into the actor system’s messaging algorithm,
availability of the source code and good documentation helped considerably during develop-
ment. AKKA is also actively maintained, has a solid developer base and is used for writing real
world applications.

Used Libraries and Frameworks Logging was performed with log4j 1.2.17. For writing tests
and for the actual testing jUnit 4.11 was used. When mocking was required in unit tests or for
the prototype in the early stages of development, Mockito 1.9.5 was used.

4.6.3 Tool-set

Development Tools Development itself was performed with the help of a variety of tools. As
integrated development environment Eclipse Kepler in the Java EE configuration was used. Ad-
ditional Eclipse plugins installed and used were AspectJ Development Tools 2.2.3, Scala IDE

84

for Eclipse 3.0.3 and m2e 1.4.1. For automation of the build process and for dependency man-
agement maven 3.0.5 was used. The profiler utilized for analysis and optimization in the later
iterations of development was VisualVM 1.7.0_45.

Organizational Tools Redmine 2.5.1 was employed not only as an issue tracker, but also as
an overall organizational tool. Git 1.7.9 was used for source control and an instance of Gitlab
6.5.1 provided a remote repository for backup purposes.

Testing Toolset For writing tests and for testing jUnit 4.11 and Mockito 1.9.5 were used.
Eclipse jUnit integration in combination with maven were used to continuously run tests during
the development process.

4.6.4 Testing

4.6.4.1 General Approach

Testing was performed continually throughout the whole development process. Quality and cor-
rectness of the prototype were asserted by creating jUnit tests, performance was evaluated with
a performance application. Tests were written before or immediately after production code and
were continuously adapted to structural and behavioral changes. In order to write cleanly sepa-
rated unit tests mocking was used. For reusing code required at multiple tests, jUnit TestRules
were factored out.

4.6.4.2 Tests

Table 4.4 lists implemented tests. Important test cases are shortly described below. For details
about the tested classes, see Section 4.2.

ConstraintTest This class implements tests which make sure that the Constraint class pro-
vides the expected grammar for constraints. Other tests verify that atomic conditions, negations
and composite conditions calculate and return the correct senders and receivers. More tests
assert that Constraint returns the correct outcome value as specified in the Action.

ConstraintBuilderTest and BuilderContextTest Test cases make sure that ConstraintBuilder
supports all features of the Domain Specific Language used to describe creation of verification
rules. Other test cases assert that the component creates constraints with the expected properties
when used.

IndexedDataStoreTest and IndexerTests Test cases for IndexedDataStore verify, that the
component uses registered indexers when it stores or queries values. Test cases for Indexer
make sure that the generic methods provided for subclasses work as expected. Test cases for
indexer implementations assert, that values are indexed and retrieved correctly.

85

Test Class Classes Tested
ConstraintTest Constraints

Conditions
Actions

ConstraintBuilderTest ConstraintBuilder
BuilderContextTest ConstraintBuilder
IndexedDataStoreTest IndexedDataStoreImpl
IndexerTests Indexed Data Store

AbstractIndexer
Indexer Implementations

InteractionLoggerImplTest Interactions
InteractionLoggerImpl

AutomatonBuilderTest AutomatonBuilder
ConstraintStoreImplTest ConstraintStore
BehaviorTest Behavior
HistoryProtocolVerifierTest HistoryProtocolVerifier
AutomatonProtocolVerifierTest AutomatonProtocolVerifier
SendingActorAspectTest SendingActorAspect
ReceivingActorAspectTest ReceivingActorAspect

Table 4.4: Implemented Tests

InteractionLoggerImplTest and ConstraintStoreImplTest Test cases for InteractionLogger
verify, that logging and querying for interactions works. Test cases for ConstraintStore check, if
constraints can be added, retrieved and removed.

AutomatonBuilderTest Test cases to make sure that the creation of automatons works as ex-
pected. Tests assert that each atomic condition is implemented correctly and that the algorithm
used for composition works as expected. Moreover there are tests for complexer combinations
of the conditions and tests that assert the implemented optimization of automatons works as
expected.

BehaviorTest Test cases for Behavior check, if the component triggers protocol verification
when a message is sent or received and also if it triggers logging after an operation was allowed.

HistoryProtocolVerifierTest and AutomatonProtocolVerifierTest Test cases for the two im-
plementations of the verification algorithm. They assert that the implementations implement the
verification algorithm as specified. The implemented tests assert, that the algorithm implemen-
tations are correct and forbids an interaction if no rule enables or forbids it, forbids an interaction
if a rule explicitly forbids it, and enables an interaction if a rule enables it and none forbids it.

86

SendingActorAspectTest and ReceivingActorAspectTest Test cases for the AspectJ aspects
check, if the pointcut definitions are correct and if the aspects get called when a send or receive
operation is performed by an actor. Other test cases make sure, that the prototype’s behavior,
verification and logging are called.

4.6.4.3 Performance Tests

For testing the prototype’s performance, the token ring application was instrumented with Visu-
alVM and executed with different parameter settings. In order to be able to execute performance
tests easier, a launcher was developed which can be configured to execute the token ring appli-
cation a number of times with specified actor and cycle count. For details about the performance
tests and the prototype’s performance, see Section 5.3.

4.7 Iterations

This section describes the evolution of the prototype during development. Each development
iteration is shortly described and the performed changes are documented.

4.7.1 Iteration 0: Proof-of-Concept

Iteration 0 was all about a proof-of-concept. The first parts implemented were an AspectJ aspect
for the interception of messages, classes to describe synchronization rules, a storage component
for storing constraints and an interaction logger. Verification was not implemented before Itera-
tion 1.

Intercepting Received Messages One of the first things implemented was an AspectJ aspect
to test if an aspect would be able to hook into the message reception process of an actor and if it
would run in the actor’s context. The first test aspect only logged out an information message to
assert that the pointcut intercepts the actor’s receive operation correctly.

Synchronization Rule Structure The next steps were to create classes to describe synchro-
nization protocol rules and interactions between actors, as well as components to store and
retrieve them. Constraint describes a synchronization rule with conditions and an action. All
interfaces and classes related to the description of synchronization protocol rules were created
in this iteration, with exception of the Always condition. Manual creation of Constraint objects
proved to be cumbersome – Listing 4.15 shows an example – this was however improved in the
next iteration.

Listing 4.15: Creation of a Constraint without ConstraintBuilder

// When not received message and not sent message
//then do not AllowSendMessage and
//do not ForbidSendMessage
Constraint constraint2 =

new Constraint();

87

ConditionNegation condition2_1_1 =
new ConditionNegation();

condition2_1_1.setCondition(
new MessageExistsCondition()

);
ConditionNegation condition2_1_2 =

new ConditionNegation();
condition2_1_2.setCondition(

new MessageExistsCondition()
);
ConditionConcatenation condition2_1 =

new ConditionAnd();
condition2_1.setLeft(condition2_1_1);
condition2_1.setRight(condition2_1_2);
ActionNegation action2_1_1 =

new ActionNegation();
action2_1_1.setAction(new AllowAction());
ActionNegation action2_1_2 =

new ActionNegation();
action2_1_2.setAction(new ForbidAction());
ActionConcatenation action2_1 =

new ActionAnd();
action2_1.setLeft(action2_1_1);
action2_1.setRight(action2_1_2);

constraint2.setConditions(condition2_1);
constraint2.setActions(action2_1);

Interaction Data Structure The data structure for storing interactions between actors was
also created in this iteration. An Interaction object consists of a unique UUID and the addresses
of the sender and the receiver. In the first draft, Interaction objects also contained the message
itself, but this was later discarded as storing all messages is memory intensive and not required
to analyze the currently available conditions.

Storing Synchronization Rules and Interactions The first implementation of ConstraintStore
simply held a list with all synchronization rules for an actor in the form of Constraint objects
and two maps containing lists with sender and receiver as map keys.

For logging of interactions between actors, the InteractionLogger component was devel-
oped. Early on it became clear, that indexing and filtering the message history efficiently would
be important, so the indexer concept described before was introduced. The first implementation
of InteractionLogger contained a list of the indexers, a map by name and another one by type.
To log an interaction the InteractionLogger creates an Interaction object and runs it through

88

registered indexers. Each Indexer indexes the Interaction on specific attributes and later can be
used to find the Interaction by these attributes.

4.7.2 Iteration 1: Implementing HistoryLoggingVerification

This iteration’s goal was to provide a first implementation of a synchronization verification al-
gorithm. The basic verification algorithm as described before was designed and the HistoryLog-
gingVerification implementation was created, as well as a simple example application.

Verification ProtocolVerifier and the HistoryProtocolVerifier implementation as described ear-
lier were developed in this iteration. The first version of the verification algorithm allowed mes-
sages from actors to be accepted if no rules for it were specified in an actor’s rule set. This
approach is not ideal and was later changed.

PrototypeActor Until now, InteractionLogger and ConstraintStore for each actor were stored
and received centrally. This was a major problem, because that required explicit synchronisation
and defies the fundamental idea of the prototype. In order to store rules and interactions locally
at actors, a class PrototypeActor that extends UntypedActor was created. It can hold the actor’s
InteractionLogger and ConstraintStore. For UntypedActor actors, which still can be used with
the prototype, InteractionLogger and ConstraintStore still have to be stored centrally though.

Simple Example Application To assess if the verification implemented works as expected, a
simple example application was written. It consists of three actors sending each other messages
in various combinations and with different rule sets.

4.7.3 Iteration 2: Improving Concept and Usability

Iteration 2 had the goal to improve the prototype’s structure and usability.

Improve Protocol Verification While in Iteration 1 interactions between actors were allowed
by default, they became forbidden by default in Iteration 2. From a correctness and security
point of view, this whitelist-approach is by far the better one [65]. Unfortunately, this however
requires developers usually to define more rules to allow messages to be sent and received.

Creating an ActorId AKKA provides the possibility to send messages to an actor from Ac-
torRef.noActor() [66] without specifying a sender, which is represented by an ActorRef with the
path set to null. This dead letterbox actor can for example be used to tell an actor to start when
the system is initialized and no other actor has yet been created. Unfortunately when comparing
two ActorRef objects, AKKA tries to access their path variables without checking if they are set.
As the prototype logs interactions by creating an Interaction object and stores it in a map with
ActorRef as the key, this can result in a NullPointerException. In order to solve the issue, a
wrapper class ActorId was created, which treats dead letterbox actor references correctly. Luck-
ily it later could be removed in favor of a NoActor class that extends ActorRef and represents
the dead letterbox actor.

89

Factor out IndexedDataStore ConstraintStore and InteractionLogger both need to efficiently
store and retrieve objects of a certain type. This is a case, where factoring out a base component
with common functionality obviously made sense. The component IndexedDataStore is the
result of this consideration. IndexedDataStore provides functionality to efficiently store and
retrieve objects and to add custom indexers as required.

Intercepting Send Operations While intercepting the receipt of messages is sufficient from
a theoretical point of view to support synchronization validation, a developer might also want
to provide rules to tell an actor not to send a message away as well. To support this, another
AspectJ aspect was created, that hooks into the actor’s process of sending messages. As a
consequence, a rule now has to be added to the sender as well as to the receiver in order to allow
a message to be transmitted. As another consequence, the method ActorRef.tell(. . .) should only
be called from within an actor, as the prototype otherwise tries to retrieve ConstraintStore and
InteractionLogger from the current this object, fails, and subsequently creates and stores new
instances centrally.

Introduction of ConstraintBuilder Construction of synchronization rules by hand proved
quickly to become cumbersome. To improve the prototype’s usability, a Builder [33] using the
Fluent interface pattern [31] was introduced. The builder provides a domain specific language
for the construction of rules. With the aforementioned software patterns, the object creation
process can be implemented in a context sensitive way, and only provides meaningful options at
each step. Listing 4.16 shows creation of a rule with the new builder.

Listing 4.16: Creation of a Constraint with the ConstraintBuilder

final ConstraintBuilder builder =
new ConstraintBuilderImpl();

final Constraint constraint =
builder.when().messageExists(actors.a, actors.b)

.then().allow(actors.b, actors.c)

.build();

4.7.4 Iteration 3: Refactoring, Clean-Up and Improvements

Iteration 3 was mostly about refactoring and cleaning up existing code to improve object-
oriented design, maintainability and clarity as well as improvements.

Creation of a Behavior Class The interjection of send and receive operations, the gathering of
data and the verification were so far mangled together. To separate these concerns, an interface
Behavior and a default implementation DefaultBehavior were introduced. The AspectJ aspect’s
only responsibility now is to interject the actor operation, then calling Behavior, which builds
a VerificationContext object that contains all data required for verification and then triggers the
verification.

90

Creation of ProtocolVerifier The synchronization protocol verification itself was factored out
from the rest of the prototype’s behavior by creating an interface ProtocolVerifier. Encapsulating
the verification improves the code quality, but more importantly it also enables an easy exchange
of the verification algorithm implementation. In a later iteration this process was brought to
finish, so that as of now the verification implementation can be completely exchanged. There
are currently two implementations of the ProtocolVerifier interface: HistoryProtocolVerifier and
AutomatonProtocolVerifier.

Introduction of VerificationContext When separating message interception from behavior
and verification, a holder class VerificationContext was introduced. With it contextual informa-
tion about the currently intercepted operation can easily be passed around. It contains the type
of the examined operation as well as the current actor’s verification data.

Removal of Rules Because actors can dynamically change their behavior, and with it their
interaction profile, a necessary improvement was to provide functionality to remove rules at
runtime from an actor’s synchronization rule set. As ConstraintStoreImpl extends and uses In-
dexedDataStore, removal of rules was provided by enhancing that component. A remove(. . .)
method was added to the interfaces IndexedDataStore, Indexer and Filter, and then was imple-
mented in IndexedDataStoreImpl, AbstractIndexer and AbstractFilter. IndexedDataStoreImpl’s
remove(. . .) method iterates over all registered Filters and Indexers and calls their remove(. . .))
method, which removes the given object from the Indexer or the Filter.

Introduction of Configuration Messages Configuring actors from a central point at startup
proved to become a common use case, and so a special type of message called ConfigMessage
was introduced to easily allow it. A ConfigMessage contains a number of actor addresses, which
the actor in question requires to construct its synchronization rules. When such a message gets
sent to an actor, ReceivingActorAspect intercepts it as usual and Behavior processes it, but it
gets treated specially and is forwarded to the actor’s configure(. . .) or reconfigure(. . .) method
instead of to the onReceive(. . .) method. The first ConfigMessage is forwarded to configure(. . .),
all subsequent ones are forwarded to reconfigure(. . .), which allows developers to separate initial
configuration from later reconfigurations.

Introduction of AnyActor While experimenting with the prototype, a new actor wildcard
AnyActor for use in synchronization rules was created. Where it is used as a parameter, any
actor is allowed to occur. AnyActor was implemented like NoActor by creating a class that
extends ActorRef. The prototype specifically checks for instances of NoActor and AnyActor and
behaves accordingly in the verification process.

Creation of a Prototype Facade as API To improve usability, a Prototype class was intro-
duced. It was designed with the Facade Pattern [33] and provides a simple to use API for
accessing all the prototype’s capabilities. Prototype provides developers easy access to a Con-
straintBuilder instance for creating new rules, methods to add and remove rules to an actor,
and it allows developers to get an actor’s ConstraintStore and InteractionLogger. Introduction

91

of the Prototype class made it possible to remove significant amounts of boilerplate code in
applications that use the prototype.

4.7.5 Iteration 4: Implementation of Automaton Verification

In Iteration 4, the automaton verification implementation of the verification algorithm was cre-
ated. This proved to be necessary, because the History Logging Verification implementation
has conceptual issues with memory and long-running applications. In order to support easy
exchange of the verification algorithm implementation, the prototype was further refined.

Introduction of VerificationData In order to allow the different implementations of the veri-
fication algorithm to store custom data into actors, a VerificationData class was introduced. Each
PrototypeActor now stores such an object, which can be used by the verification algorithm. An
implementation of the verification algorithm has to provide a method which creates such a data
object; this method is used by the prototype when it is required to create a VerificationData
object for the currently used verification algorithm implementation.

Adapt Behavior and DefaultBehavior Because verification algorithms have to be informed
about adding and removing rules to an actor, Behavior and Verification interface and their im-
plementations were adapted to provide this kinds of events in the form of methods. This was
the last step to make the implementation of the verification algorithm completely exchangeable.
When a rule gets added, the History Logging Verification adds/removes the rules to/from its
ConstraintStore, the automaton verification creates and stores a new Automaton when a rule
gets added and removes it when the rule gets removed.

Implementation of AutomatonVerificationProtocol The AutomatonVerificationProtocol im-
plementation of the verification algorithm implemented here creates an automaton for each rule
that is added and logs interactions with the actor by changing the automaton’s active state, which
then is used to check the firing of rules.

4.7.6 Iteration 5: Creating Examples

In Iteration 5, example applications were created, which show and analyze the prototype’s ca-
pabilities and performance.

Chameneos Application The chameneos application implements the chameneos concurrency
game [45] with AKKA and the prototype. Chameneos was chosen as example application, be-
cause it provides a prototypical example of an application with concurrently running partici-
pants. Chameneos are creatures with red, blue or yellow skin. When two chameneos interact
with each other, both change their colors into the third possible one. Chameneos find each other
with the help of a meet-up service called the pall mall. The first implementation of the ap-
plication created only 2 chameneos actors interacting with each other a single time for testing

92

purposes. After asserting that the application behaved as expected, the chameneos count was in-
creased to 4 and the chameneos were changed to interact endlessly. Later the chameneos count
was increased to 100.

Token Ring Application The token ring application lets actors send a message in a circle from
actor to actor. Both the number of actors and the number of circles is configurable. The token
ring application was implemented in this iteration and was later used for performance tests and
to find optimization targets.

4.7.7 Iteration 6: Performance Evaluation

The goal of Iteration 6 was to examine the prototype’s performance. In order to do that, the
token ring application was used and a test-runner was implemented.

Test-runner To make performance testing easier, a test-runner was implemented, which can
be configured by parameters for different test profiles. Supported parameters are the algorithm
implementation used, the number of actors and the loop count. The test-runner uses the cartesian
product on these parameters and lets the token ring application run in all these configurations.
The test-runner also is able to (re-)compile the application with or without the prototype, depen-
dent on the currently used profile.

Performance Comparison In order to measure the performance without prototype, with His-
toryProtocolVerifier and with AutomatonProtocolVerifier, the test-runner with the token ring
application was run in different parameter configurations. Each configuration was executed 100
times on an idle test system in order to gain a relevant result. For details about the results, see
Section 5.3.

93

CHAPTER 5
Evaluation

This chapter describes how the developed prototype was evaluated. First, the worst-case run-
times of the implemented algorithms are examined. Then the sample applications which were
created during development for the purpose of evaluating the prototype are described. After
that, performed benchmarks and the results of them are discussed. Finally, some future topics of
research are given which would improve the prototype further.

5.1 Algorithm Runtime

This section examines the worst-case runtimes for both implemented verification algorithms as
well as the runtime of automaton creation for the automaton verification algorithm.

5.1.1 Runtime History Logging Verification

We split the algorithm into subtasks, look at each task’s runtime independently and then deter-
mine the overall runtime by combining the subresults. The history logging verification first finds
all applying rules and then checks for each found rule if it fires.

Find Applying Rules Finding the applying rules in the actor’s local ConstraintStore can be
performed in

O(stored_rules) (5.1)

where stored_rules is the number of rules stored in the ConstraintStore, as finding an indexed
value in a Java HashMap has linear worst-case runtime (while the average-case runtime is con-
stant if equals and hashCode are implemented correctly).

Checking Rules When checking the selected rules, the algorithm loops over them and for
each one checks if it fires. While the algorithm does break the loop if it finds a rule holding

95

and forbidding the current operation, in the worst-case the algorithm has to loop over all rules
selected.

To check if a rule fires it has to be determined wether the rule’s condition holds. Because con-
ditions are represented as a tree structure with composite conditions as inner nodes and atomic
conditions as leafes and because all subconditions have to be considered, the worst-case run-
time depends on the number of subconditions and the biggest worst-case runtime to check any
existing atomic condition.

Always and Not have runtime O(1) because the first one always holds and immediately
returns and the second one simply negates the outcome of its subcondition. For MessageExists
the runtime is O(interaction_count) where interaction_count is the number of Interactions
saved for that particular pair of sender and receiver, because the Indexer class also uses Java’s
HashMap. So regarding the runtime, the worst atomic condition to have is a MessageExists.

In conclusion, the worst-case runtime for checking one rule is

O(
∑

selected_rules

∑
conditions

interactions[condition])) (5.2)

where

• selected_rules are the selected rules

• conditions are the conditions in the condition tree

• interactions are the interactions for the sender/receiver pair of a specific condition

Overall Worst-Case Runtime In conclusion, the overall worst-case runtime for the history
verification algorithm is

O(|stored_rules|+ (
∑

selected_rules

∑
conditions

interactions[condition])) (5.3)

where

• stored_rules are the rules stored for the current actor

• selected_rules are the rules filtered out for the current sender/receiver pair

• conditions are the conditions per rule

• interactions are the interactions for the sender/receiver pair of a rule

5.1.2 Automaton Verification Runtime

The automaton verification algorithm has to loop over all found rules for the current actor and
then has to check if a rule fires, which can be performed inO(1). The overall worst-case runtime
of a verification with the automaton verification algorithm simply is

O(rules) (5.4)

96

where rules is the number of rules for an actor. Again, the overall average runtime might be
less, because the algorithm breaks the loop if it finds a rule that holds and forbids the current
operation.

5.1.3 Automaton Creation Runtime

Whenever a rule gets added to an actor, a corresponding automaton gets created. In order to
examine the overall runtime for automaton creation, we split the creation into two subtasks and
examine them separately, combining the results. In the following section n always references
the number of substates in the start state.

Creation In order to create all states of an automaton, the algorithm has to iteratively follow
each existing edge beginning from the start state and create a new node whenever following an
edge.

The runtime to create the corresponding states for an automaton that represents one of the
atomic conditions is O(1), because the pattern of states to create is fixed. For the composite
conditions And and Or the worst-case runtime depends on the number of states that have to be
created, which is equal to the number of overall edges to follow. This number can be determined
easily, as the start state of a composite condition is a JoinedState which contains a number of
LeafStates where each one represents the occurrence or non-occurrence of a message. As each
LeafState has at most one outgoing edge to another LeafState, the state graph of an automaton
with conditions basically becomes a decision tree where for each depth level the possible number
of decisions gets reduced by one. The overall worst-case runtime for automation creation is
therefore determined by the sum of nodes in each depth level which is

1 + (
n∑

m=1

n∏
k=m

k) (5.5)

Optimization After creation, the automaton gets optimized to reduce the number of states as
much as possible. Discounting duplicate states, the number of remaining states in the automaton
is

2n (5.6)

because this is the number of possible permutations of n binary decisions. The optimization
loops over all states in the automaton and outgoing from each state tries to find a group of join-
able states by following all edges (direct and indirect) of that state. For the worst-case runtime
we have to assume, that no groups of states can be found that can be joined. So the operation’s
overall runtime is determined by the sum of direct and indirect outgoing edges between states
for all states, which varies over each depth level and is in total

n∑
m=1

m∏
k=1

k (5.7)

If a group of states has been found, it can be joined to one state.

97

Overall Worst-Case Runtime The overall worst-case runtime of automaton creation depends
on the number of substates in the start state and is

O((1 + (

n∑
m=1

n∏
k=m

k)) + (2n ∗
n∑

m=1

m∏
k=0

k)) (5.8)

5.2 Sample Applications

For testing the prototype under real world conditions, two sample applications were imple-
mented. The first one is a token-ring of actors, the second one is an implementation of the
chameneos concurrency game.

5.2.1 Token-Ring

5.2.1.1 Overview

The token ring application lets a number of actors send messages in a circle from actor to actor.
Both the number of actors and the number of loops are configurable by parameters. The token
ring application was selected, because it can be quickly implemented and can easily be used
for performance testing and debugging purposes. The token ring application consists of a main
class, token ring actors, a special statistic token ring actor and message objects sent between
the actors.

5.2.1.2 Main Class

The main class creates the actor system and the actors in the token ring. As parameters it ex-
pects two long values. The first one specifies the amount n of actors to create, the second
one the number of loops l that should be performed. The main class creates and configures
n − 1 TokenRingActor objects and 1 special StatisticTokenRingActor object. Every actor re-
ceives the last actor’s address from which it will receive messages and the next actor’s address
which it will send messages to. Every actor locally creates and adds a rule which allows it to
receive messages from its predecessor and to send messages to its successor. The StatisticTo-
kenRingActor object also receives l as parameter. Then the main class sends a StartMessage to
the StatisticTokenRingActor object. Listing 5.1 shows the creation and initial configuration of
the StatisticTokenRingActor actor and the TokenRingActor actors.

Listing 5.1: Creation and Initial Configuration of Participating actors

public class TokenRingMainWith{
...
private static void createTokenActors() throws
ConstraintBuilderException {

statisticActor =
actorSystem.actorOf(

98

Props.create(StatisticTokenRingActor.class),
"StatisticTokenRingActor");

for (int i = 0; i < actorCount; i++) {
ActorRef current =

actorSystem.actorOf(
Props.create(TokenRingActor.class),
"TokenActor" + (i));

tokenActors.add(current);
}

tokenActors.get(0).tell(
new ConfigMessage(

new ConfigPair("lastActor", statisticActor),
new ConfigPair("nextActor", tokenActors.get(1)))

,
Prototype.noActor());

ActorRef last = tokenActors.get(0);
ActorRef current = tokenActors.get(1);
ActorRef next = tokenActors.get(2);

for (int i = 2; i < actorCount; i++) {
if (i > 2) {

last = current;
current = next;
next = tokenActors.get(i);

}
current.tell(

new ConfigMessage(
new ConfigPair("lastActor", last),
new ConfigPair("nextActor", next)),
new NoActor());

}

tokenActors.get(actorCount - 1).tell(
new ConfigMessage(

new ConfigPair(
"lastActor",
tokenActors.get(actorCount - 2)),

new ConfigPair(
"nextActor",
statisticActor)),

Prototype.noActor());

99

last = tokenActors.get(actorCount - 1);
next = tokenActors.get(0);
statisticActor.tell(

new ConfigMessage(
new ConfigPair("lastActor", last),
new ConfigPair("nextActor", next)),
Prototype.noActor());

Constraint noActorToStatisticActor =
Prototype.builder()

.when().always()

.then().allow(Prototype.noActor(),
statisticActor)

.build();
Prototype.addRule(new NoActor(),

noActorToStatisticActor);
}

5.2.1.3 StatisticTokenRingActor

When receiving the StartMessage, the StatisticTokenRingActor object logs the time of beginning
the execution and then sends a TokenMessage to its successor. The successing actor does the
same with its successor and so on. When the StatisticTokenRingActor object receives the next
TokenMessage, one loop has been performed. After the specified number of loops, it prints out
the time required for the execution and shuts down the Akka ActorSystem instance. Listing 5.2
shows the onReceive method of the StatisticTokenRingActor class.

Listing 5.2: onReceive method of StatisticTokenRingActor

public class StatisticTokenRingActor extends PrototypeActor{
...
@Override
public void onReceive(Object msg) throws Exception {

if (msg instanceof StartMessage) {
this.actorSystem = ((StartMessage) msg).actorSystem;
this.cycles = ((StartMessage) msg).cycles;
this.startTime = System.nanoTime();
nextActor.tell(new TokenMessage(), this.getSelf());

}
if (msg instanceof TokenMessage) {

long counter = times.incrementAndGet();
printOutStatistics(counter);
nextActor.tell(msg, this.getSelf());

}
}

100

}

5.2.1.4 TokenRingActor

Every TokenRingActor configures itself to be enabled to receive messages from its predecessor
and to send messages to its successor. Other than that, a TokenRingActor actor waits for in-
coming TokenMessages, sending them immediately along to its successor. Listing 5.3 shows the
onReceive method of the TokenRingActor actor class.

Listing 5.3: onReceive method of TokenRingActor

public class TokenRingActor extends PrototypeActor{
...
@Override
public void onReceive(Object msg) throws Exception {

if(msg instanceof TokenMessage){
nextActor.tell(msg, this.getSelf());

}
}

}

5.2.1.5 Messages

The token ring application requires two messages to be exchanged besides the prototype’s Con-
figMessage messages. The first one, StartMessage, tells the StatisticTokenRingActor object
when to start and send the first TokenMessage along. It contains the reference to the ActorSys-
tem object which is required for shutting down the actor system when the application finishes.
The TokenMessage fungates as the token passed along between the actors and does not contain
further information inside.

5.2.2 Chameneos

5.2.2.1 Overview

As an example on how to use the prototype under real world conditions, the Chameneos game
[45] was implemented with rules that only allow specified messages. The game was specifically
designed as an example for examining the properties of concurrent languages and frameworks.
It works as follows. Chameneos are little lizards, which may have red, blue or yellow skin. They
like to live doing all kinds of things like eating, sleeping and they really like playing pall mall —
an early precursor of croquet — with each other. Each chameneos lives it’s live doing random
stuff for a random period of time. At each moment it can decide that it now wants to play a game
of pall mall for company. In order to find a partner to play with, the chameneos have a meeting
place they go to, the pall hall. When a partner was found at the pall hall, the chameneos start
playing with each other. Whenever two chameneos play pall mall together, they change their
own and the other’s color into the third possible one.

101

Chameneos Behavior The behavior of a chameneos is as follows. Before a playdate, a chame-
neos does asynchroneous actions for a random period of time. When a chameneos chooses it
wants to play pall mall, it sends a message to the pall hall, afterwards waiting to be teamed
up. When receiving a message from the pall hall specifying a play partner, the two chameneos
directly interact with each other in order to play and change their colors.

Pall Hall Behavior The pall hall waits for playdate requests from chameneos. Whenever
two requests were received, the pall hall teams the two chameneos up and sends notification
messages to both of them. More than two chameneos might want to play at a given time so mul-
tiple rendez-vous requests can happen and all requests have to be registered for later processing.
Notifications for playdates have to be sent as soon as possible to the participating chameneos.

Implementation The performed implementation has three important classes which hold most
of the functionality. These are ChameneosMain, PallHall and Chameneos. Other classes in-
volved are either message objects or they encapsulate services and utilities used by the aforemen-
tioned three classes. The first implementation of the chameneos example only used 2 chameneos
actors for testing purposes, which also only tried to play pall mall one time. After the application
behaved as expected, the number of chameneos actors was increased to 4 and the chameneos ac-
tors were changed to play pall mall endlessly. Then the chameneos count was increased again to
100 and the application was run and monitored 20 minutes without interruption to make sure it
behaved as expected in the longer run.

5.2.2.2 ChameneosMain

ChameneosMain contains the main method. It creates the PallHall actor and a configurable
number of chameneos actors. Then it configures the chameneos actors allowing them to receive
messages from NoActor, sending the chameneos ConfigureMessage objects so they can locally
configure their rule sets accordingly. Listing 5.4 shows the creation of the chameneos actors.
After that, a StartMessage is sent to all chameneos actors, indicating they can start living, doing
their asynchroneous tasks and request partners for playing pall mall.

Listing 5.4: Creating the Chameneos actors

public class ChameneosMain {
...
private static void createChameneos()
throws ConstraintBuilderException {

final SecureRandom random = new SecureRandom();
for (int i = 0; i < chameneosCount; i++) {

final Color chameneosColor =
Color.fromValue(random.nextInt(3));

final String chameneosName =
"Chameneos_" + Integer.toString(i);

final ActorRef currentChameneos =
actorSystem.actorOf(

102

Props.create(
Chameneos.class,
chameneosName,
chameneosColor),

chameneosName);

currentChameneos.tell(
new ConfigMessage(pallHall),
Prototype.noActor());

chameneos.add(currentChameneos);

Constraint anonymeousToChameneos =
Prototype.builder()

.when().always()

.then().allow(
Prototype.noActor(),
currentChameneos)

.build();

Prototype.addRule(
new NoActor(),
anonymeousToChameneos);

}
}

}

5.2.2.3 PallHall Actor

PallHall is the actor that realizes the component teaming up chameneos actors for playdates.
It simply waits for WantToPlay messages from chameneos. Whenever two have arrived, the
PallHall sends the both sender chameneos a HereIsYourPartner message, teaming them up. The
chameneos actors then are responsible for playing and mutating their color on their own and
the PallHall again waits for incoming WantToPlay messages. Listing 5.5 show the onReceive()
method of the PallHall actor class.

Listing 5.5: onReceive method of PallHall

public class PallHall extends PrototypeActor{
...
@Override
public void onReceive(Object message) throws Exception {

if (message instanceof WantToPlay) {
WantToPlay playMessage =

(WantToPlay) message;
if (first == null) {

103

first = playMessage.getChameneos();
} else {

second = playMessage.getChameneos();
first.tell(

new HereIsYourPartner(second),
this.getSelf());

second.tell(
new HereIsYourPartner(first),
this.getSelf());

first = null;
second = null;

}
}

}
}

Rules The PallHall has a fixed set of rules that get added when the first and only Config-
ureMessage is received. These rules are to

• Always enable receipt of messages from any actor

• Always enable sending of messages to any actor

Listing 5.6 depicts the code used for building and adding the rules in the PallHall actor class.

Listing 5.6: Code for Adding Initial Rules for the PallHall Actor

Constraint receiveFromAny =
Prototype.builder()

.when().always()

.then().allow(new AnyActor(), this.getSelf())
.build();

Constraint sendToAny =
Prototype.builder()

.when().always()

.then().allow(this.getSelf(), new AnyActor())
.build();

Prototype.addRule(this, receiveFromAny);
Prototype.addRule(this, sendToAny);

5.2.2.4 Chameneos Actor

Chameneos is the class implementing Chameneos actors. A Chameneos waits for StartMessage
messages to arrive. When the message arrives the Chameneos waits for a random time. After

104

that it wants to play with another Chameneos and contacts the PallHall actor with a WantsToPlay
message. When receiving a HereIsYourPartner message in return, the Chameneos adds the
required rules so it can send messages to and receive messages from its partner. Then it sends a
ColorQuestion message to the partner Chameneos, requesting the partner’s color. Immediately
after the message has been sent, the rule allowing to send messages to the partner gets removed.
When a ColorAnswer message from the partner arrives, the Chameneos mutates its color with the
partner’s color and removes the rule allowing the actor the receipt of messages from the partner.
After that, the Chameneos again waits a random time, later again contacting the PallHall to play
pall mall. Listing 5.7 shows the onReceive() method of the Chameneos actor class.

Listing 5.7: onReceive method of Chameneos

public class Chameneos extends PrototypeActor{
...
@Override
public void onReceive(Object message) throws Exception {

if (message instanceof Start) {
doOtherStuff();
sendWantToPlay();

} else if (message instanceof HereIsYourPartner)
sendColorQuestion((HereIsYourPartner) message);

else if (message instanceof ColorQuestion)
sendColorAnswer((ColorQuestion) message);

else if (message instanceof ColorAnswer) {
processColorAnswer((ColorAnswer) message);
doOtherStuff();
sendWantToPlay();

}
}

}

Rules The following rules get added when the first ConfigureMessage arrives and in the rule
set for the time the Chameneos exists.

• Enable receiving of a messages from NoActor so the Start message can be received

• Always enable sending messages to the PallHall

• Always enable receiving messages from the PallHall

Listing 5.8 shows the code for adding those rules to the Chameneos actor.
When the Chameneos gets a partner for playing, it adds two more rules to its rule set.

• Enable sending messages to the partner Chameneos

• Enable receiving messages from the partner Chameneos

105

Those rules get removed after one message has been sent and received respectively. Listing 5.9
shows the code for adding those rules to the Chameneos actor.

Listing 5.8: Code for Adding Initial Rules for the Chameneos Actor

Constraint receiveFromNoActor =
Prototype.builder()

.when().always()

.then().allow(Prototype.noActor(), this.getSelf())
.build();

Constraint receiveFromPallHall =
Prototype.builder()

.when().always()

.then().allow(pallHall, this.getSelf())
.build();

Constraint sendToPallHall =
Prototype.builder()

.when().always()

.then().allow(this.getSelf(), pallHall)
.build();

Prototype.addRule(this, receiveFromNoActor);
Prototype.addRule(this, receiveFromPallHall);
Prototype.addRule(this, sendToPallHall);

Listing 5.9: Rules Added to Chameneos actor when Partnered Up

Constraint sendToPartner =
Prototype.builder()

.when().always()

.then().allow(myself, partner)
.build();

Constraint receiveFromPartner =
Prototype.builder()

.when().always()

.then().allow(partner, myself)
.build();

Prototype.addRule(this, sendToPartner);
Prototype.addRule(this, receiveFromPartner);

5.2.2.5 Messages

The following messages were defined and are used in the chameneos application for communi-
cation.

106

StartMessage Message The StartMessage message is sent by ChameneosMain to every chame-
neos actor indicating that the configuration phase is finished and the chameneos should start its
live by waiting for a random period of time and then requesting a playdate at the PallHall actor.

WantToPlay Message The WantToPlay message is sent to the PallHall by a chameneos when
it wants a playdate and requires a partner. The WantToPlay message contains the address of the
chameneos actor making the request.

HereIsYourPartner Message The HereIsYourPartner message is sent to a chameneos by the
PallHall when partnered up two chameneos. The message contains the address of the chameneos
that was chosen as a playdate partner.

ColorQuestion Message A ColorQuestion is sent to chameneos by their partner chameneos
after they have been matched up to request each other’s color. The message contains the partner
chameneos’ address to allow checking the consistency of the conversation.

ColorAnswer Message A ColorAnswer message is sent to a chameneos by its current partner
chameneos after the partner has received a ColorQuestion message. The message only contains
the color of the chameneos. When received by the chameneos, it mutates its color determin-
ing the new color by using its own color and the color provided in the partner’s ColorAnswer
message.

5.3 Benchmark

This section describes how performance of the prototype was measured and shows the bench-
mark results.

5.3.1 Setup

Test Application For measuring the prototype’s performance, the token ring application was
used. It was chosen, because this kind of application provides meaningful benchmark results.
Moreover it also can be configured with the number of participating actors and the number of
ring cycles, which makes testing the prototype in different configurations easy. The chameneos
application was not used for benchmarks because the chameneos actors wait a random time in
between interactions with each other, so benchmarks would not be comparable.

Test Machine Testing was performed on a machine with the following specifications:

• Processor: Core i7 Q820 1.73 GHZ, QuadCore with HyperThreading

• RAM: 8 GB RAM

• Disk: 120GB System-SSD

• OS: Windows 7 x64

107

Test Configurations The token ring application was run

• without the prototype

• with the automaton verification algorithm

• with the history logging verification algorithm

Each of these configurations was run with 10 as well as with 100 actors and for 1.000, 10.000
and 100.000 token ring cycles to analyze the prototype’s performance under different conditions.
All configurations were run 100 times on the idle test machine and the performance comparison
was done against the mean value over the run times to compensate for possible scheduling or
performance inconsistencies of the test machine.

5.3.2 Result and Interpretion

5.3.2.1 Result Data

Results Table 5.1 lists the runtime for different benchmark configurations in seconds. Figure
5.1 and Figure 5.2 graphically depict the results for 10 and 100 actors. The x-axis shows the
amount of loops performed, the y-axis shows the runtime in seconds.

Actors 10 100
Loops 1.000 10.000 100.000 1.000 10.000 100.000
Without Verification 3.230 6.949 26.393 5.984 24.741 197.961
Automaton Verification 5.726 11.701 44.341 10.066 42.539 342.927
History Logging Verification 6.812 13.273 51.190 11.400 47.345 562.112

Table 5.1: Performance measurements, averaged and in seconds

Interpretation When compared to the overall runtime of the token ring application without
the prototype, the overall runtime for both verification algorithm implementations is similar for
small numbers of actors and ring cycles. In such configurations message interception, creation of
the verification context and calling the verification seem to contribute significantly to the overall
runtime.

For higher numbers of actors and ring cycles however, the automaton verification algorithm
obviously performs better than the history logging algorithm. This is to be expected, because
of two reasons: First of all the check whether a message is enabled or forbidden is for the
automaton verification algorithm – in contrast to the history logging algorithm – a constant
operation. Secondly, and even more important, memory requirement of the former does not
increase for longer interaction histories and therefore performance does not degrade over time.

Generally, the automaton verification algorithm provides significant improvements over the
history logging algorithm. The automaton verification algorithm can verify and log interactions
in O(1), because the information for both operations is hashed efficiently in an automaton’s
current state. Only addition and removal of rules to actors have a significant runtime overhead

108

R
un

tim
e

in
 s

ec
on

ds

Figure 5.1: Performance with 10 Actors

R
un

tim
e

in
 s

ec
on

ds

Figure 5.2: Performance with 100 Actors

109

in this verification implementation. The memory requirement only depends on the complexity
of a rule, so performance doesn’t degrade over time.

In contrast, the history logging algorithm has to check each condition from each rule against
the previously stored message history of the current actor, which is a much more expensive
operation. Moreover, an actor’s message history grows linearly with each message sent and
received, which can become a serious problem for long-running applications.

5.4 Future Research

This section describes topics for possible future areas of research which were identified but not
tackled or implemented in the scope of this thesis.

5.4.1 New Rule Conditions

In order to improve expressibility of the prototype’s rules, more rule conditions should be im-
plemented. It might for example be useful to be able to define conditions over the order in which
messages were sent or received, or to take a message’s content into consideration. The prototype
was designed to support easy extension. Implementation of a new condition only requires the
extension of logging, if information not recorded so far is required, and the implementation of
the condition itself.

5.4.2 Actor Wildcard Parameters

So far only addresses of specific actors or the ones of AnyActor and NoActor can be used as
parameters in rule conditions. Parameter wildcards that match multiple actors would provide a
comfortable way to define rules for a group of actors. For example, all actors that implement
a certain interface, extend a specific class, or have certain other properties could be selected by
such a wildcard.

5.4.3 Automatic Replacement of UntypedActor

For already existing AKKA applications, an automatic mechanism to exchange each occurrence
of UntypedActor with PrototypeActor could be provided. Such a mechanism could be imple-
mented either with a small pre-compiler application that changes the source-code, or with a
library like ASM [18] that operates on the byte-code level. Which approach is the more appro-
priate one will require careful consideration.

5.4.4 Actors Distributed over Network

Real-World applications that use the prototype might want to leverage AKKA’s ability to dis-
tribute actors over multiple devices. Networking aspects were not considered for the prototype
in this thesis in order to lower the complexity. While the prototype conceptually should work the
same when used with actors distributed over network, it was not tested in such environments.

110

Tests will have to be performed and based on the outcome, improvements and optimizations
should be designed and implemented.

111

CHAPTER 6
Conclusion

This thesis describes design, implementation and evaluation of a prototype that allows a user of
the prototype to define synchronisation protocols for the verification of message orders between
actors. The prototype extends AKKA [66], an existing actor concurrency implementation, pro-
vides a verification layer on top of it and a domain-specific language to write synchronization
rules. Rules can be defined on a per-actor basis and the prototype subsequently makes sure the
actor system complies with them and detects unwanted message orders. The thesis consists of
three parts: The first one examines concurrency and especially actor concurrency, the second
one details the proposed prototype and the third one describes performed evaluations and future
research.

Concurrency In order to bring the proposed prototype in context, the first part of this thesis
examines concurrency mechanisms and theoretical models and relates them to actor concur-
rency. On the lowest abstraction level concurrency means finding semantically valid partial
orders of instructions without changing a program’s meaning. On a higher abstraction level is-
sues can be described more specifically: Race condition, deadlock, livelock and starvation are
specific situations that arise in concurrent programs. Synchronisation and data exchange be-
tween concurrent program parts are other aspects of concurrency. Concurrent object-oriented
programming paradigms moreover have additional requirements [53].

Actor concurrency is one of various existing mathematical models to describe concurrency.
Important other ones are petri nets and process algebras; the pi calculus is especially interesting
here, as it was partly motivated by actor concurrency. An actor system consist of self-contained,
autonomous entities called actors [46], which can send and receive messages, create new actors
and replace their current behavior [40]. They provide inherent true concurrency, are independent
of each other, support dynamic topology changes [40] and have no shared state [8] [6] [46].
Communication is performed asynchronously and interruption-free [4] [46] [61]. One of the
central statements of actor concurrency is, that no single, unique global clock can be defined for
a concurrent system [4] [21] [40]; Actors can agree on the causal relationship between messages,

113

but they can not agree on the total order in which messages occur, because it is impossible to
predict when a sent message will arrive [4].

Prototype The second part of this thesis describes and evaluates the proposed prototype. The
prototype provides a layer for verification on top of AKKA [66], an implementation of actor
concurrency. It intercepts message commmunication between actors with AspectJ aspects [26]
and verifies them against rules which the application developer can define. Rules have the form
condition→ action. When condition is met, the rule fires and action influences the overall vali-
dation outcome. The verification runs in the actor’s own execution context with local verification
data, so no external communication is required and the whole verification is a local operation.
The actor’s behavior gets interrupted until the outcome of the verification is determined and so
from the outside verification looks like the actor’s own behavior. An actor’s synchronization
protocol can be adapted at runtime by adding or removing rules to adapt to an actor’s behavior
changes. Because actors can only have a local understanding of time and because of the law
of locality [40] only communication performed directly by an actor can be validated, so in all
conditions and actions either sender or the receiver has to be the current actor.

Two verification algorithms were implemented for the prototype. Both use the same basic
verification logic, but differ in how they log interactions between actors and how they check
firing of rules. History logging verification keeps a log of interactions for each actor and uses it
to check if a rule fires. Because this approach proved to be memory intensive and not performant
enough, a second algorithm was implemented which circumvents these issues. Automaton veri-
fication creates an automaton for each rule. Interactions with the actor are logged by changing
the automaton’s active state and the active state of an automaton is used to determine if a rule
fires.

In order to bring the prototype into context with existing work, other approaches for ac-
tor synchronisation in literature were examined. Colaço et al propose a way to detect orphan
messages in actor-based languages, which is compareable to the approach taken in this the-
sis [23] [22]. Local synchronisation constraints [46], RTSynchronizers [61] QoS constraints [62]
and actors with temporal constraints [47] are other proposed approaches for actor synchronisa-
tion.

Evaluation and Future Research Evaluation of the prototype consisted of worst-case run-
time determination, tests with real world applications and benchmarking. For both implemented
verifiction algorithms the worst-case runtime of the verification itself was determined. For the
automaton verification also the worst-case runtime of automaton creation and -optimization was
determined. To test the prototype under real world conditions, two sample applications were
written. The chameneos application implements the chameneos concurrency game [45], a proto-
typical example for test-driving concurrent systems. The token ring application sends messages
around in a circle, actor and loop counts are configurable. The latter application also was used to
perform benchmark tests with the prototype. For this, different configurations of the application
were run without the prototype, with the history logging verification and with the automaton
verification and the resulting overall runtimes were measured and graphically evaluated.

114

Proposed future research includes the addition of new, more powerful conditions for rules
and wildcard parameters to broaden the expressability of the rules, automatic conversion of plain
AKKA programs to the prototype and the evaluation of the prototype in environments distributed
over networks.

115

Bibliography

[1] L. Aceto, K. G. Larsen, and A. Ingolfsdottir, “An Introduction to Milner ’ s CCS,” 2005.

[2] S. V. Adve and M. D. Hill, “Weak Ordering - A New Definition,” SIGARCH Computer
Architecture News, vol. 18, no. June 1990, pp. 2–14, 1990.

[3] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A Foundation for Actor Computa-
tion,” Journal of Functional Programming, vol. 7, no. January 1997, pp. 1–72, 1997.

[4] G. Agha, A Model of Concurrent Computation in Distributed Systems. Cambridge, MA,
USA: MIT Press, 1986.

[5] ——, “Concurrent Object-Oriented Programming,” Communications of the ACM, vol. 33,
no. 9, pp. 125–141, 1990.

[6] G. Agha and C. J. Callsen, “ActorSpace : An Open Distributed Paradigm,” in PPoPP
’93: Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. New York, NY, USA: ACM, 1993, pp. 23–32.

[7] G. Agha, S. Frolund, W. Y. Kim, R. Panwar, A. Patterson, and D. Sturman, “Abstraction
and Modularity Mechanisms for Concurrent Computing,” in Research Directions in Con-
current Object-oriented Programming. Cambridge, MA, USA: MIT Press, 1993, no.
May, pp. 3–21.

[8] G. Agha and C. Hewitt, Concurrent Programming Using Actors: Exploiting Large-Scale
Parallelism. Cambridge, MA, USA: Massachusetts Institute of Technology, 1985.

[9] G. Agha, S. Smith, I. A. Mason, and C. Talcott, “Towards a Theory of Actor Computation,”
in CONCUR ’92: Proceedings of the Third International Conference on Concurrency The-
ory. London, UK, UK: Springer-Verlag, 1992, pp. 565–579.

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition), 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006. [Online]. Available: http://www.amazon.com/
Compilers-Principles-Techniques-Tools-2nd/dp/0321486811

[11] G. M. Amdahl, “Validity of the Single-Processor Approach to Achieving Large-Scale
Computing Capabilities,” in AFIPS ’67 (Spring): Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference. New York, NY, USA: ACM, 1967, pp. 483—-485.

117

http://www.amazon.com/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811
http://www.amazon.com/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811

[12] T. E. Anderson, E. D. Lazowska, and H. M. Levy, “The Performance Implications
of Thread Management Alternatives for Shared-Memory Multiprocessors,” IEEE
Transactions on Computers, vol. 38, no. 12, pp. 1631–1644, 1989. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=40843

[13] B. Awerbuch, “Complexity of Network Synchronization,” Journal of the ACM, vol. 32,
no. 4, pp. 804–823, 1985.

[14] J. C. M. Baeten and T. Basten, “Partial-Order Process Algebra (and its Relation to Petri
Nets),” pp. 1–79, 2001.

[15] A. K. Bansal, Introduction to Programming Languages, 1st ed. Chapman & Hall/CRC,
2013. [Online]. Available: http://books.google.at/books?id=531cAgAAQBAJ&pg=PA282

[16] M. Barr, “Mutexes and Semaphores Demystified,” pp. 1–6, 2008. [Online]. Available:
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore

[17] S. Brookes, “Retracing the Semantics of CSP,” in CSP’04: Proceedings of the 2004 Inter-
national Conference on Communicating Sequential Processes: The First 25 Years. Lon-
don, UK: Springer-Verlag, Berlin, Heidelberg, 2005, pp. 1–14.

[18] E. Bruneton, “ASM 4.0 - A Java bytecode engineering library.” [Online]. Available:
http://download.forge.objectweb.org/asm/asm4-guide.pdf

[19] J. Cheng, “Dependence Analysis of Parallel and Distributed Programs and Its
Applications,” in APDC ’97: Proceedings of the 1997 Advances in Parallel and
Distributed Computing Conference. Washington, DC, USA: IEEE Computer Society,
1997, pp. 370–377. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=574057

[20] R. Cleaveland and S. A. Smolka, “Strategic Directions in Concurrency Research,” ACM
Computing Surveys, vol. 28, no. 4, pp. 607–625, 1996.

[21] W. D. Clinger, Foundations of Actor Semantics. Cambridge, MA, USA: Massachusetts
Institute of Technology, 1981.

[22] J.-L. Colaco, M. Pantel, F. Dagnat, and P. Sallé, “Static safety analysis for non-uniform
service availability in Actors,” 1998.

[23] J.-L. Colaco, M. Pantel, and P. Sallé, “A Set-Constraint-based analysis of Actors,” no.
Proceedings FMOODS ’97, 1997.

[24] R. De Nicola, A Gentle Introduction to Process Algebras. Lucca, IT: IMT - Institute for
Advanced Studies Lucca, no. ii.

[25] E. W. Dijkstra, “Co-Operating Sequential Processes,” in Programming Languages: NATO
Advanced Study Institute, F. Genuys, Ed. Academic Press, 1968, pp. 43–112.

118

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=40843
http://books.google.at/books?id=531cAgAAQBAJ&pg=PA282
http://www.barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore
http://download.forge.objectweb.org/asm/asm4-guide.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=574057
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=574057

[26] Eclipse Foundation, “AspectJ,” 2014. [Online]. Available: http://eclipse.org/aspectj

[27] C. Fidge, A Comparative Introduction to CSP, CCS and LOTOS. Queensland, Australia:
Software Verification Research Centre, Department of Computer Science The University
of Queensland, 1994.

[28] A. Filatova, “Moore’s Law,” p. 3, 2003. [Online]. Available: http://www.xbitlabs.com/
articles/cpu/display/moore_2.html

[29] J. Fisher, “Retrospective: very long instruction word archtectures and the ELI-512,” Solid-
State Circuits Magazine, IEEE, vol. 1, no. 2, pp. 34–36, 2009.

[30] W. Fokkink, “Process Algebra: An Algebraic Theory of Concurrency,” in CAI ’09: Pro-
ceedings of the 3rd International Conference on Algebraic Informatics. Thessaloniki,
Greece: Springer-Verlag Berlin, Heidelberg, 2009, pp. 47–77.

[31] M. Fowler, “FluentInterface,” p. 1, 2005. [Online]. Available: http://martinfowler.com/
bliki/FluentInterface.html

[32] ——, Domain Specific Languages, 1st ed. Addison-Wesley Profes-
sional, 2010, vol. 5658. [Online]. Available: http://www.amazon.com/
Domain-Specific-Languages-Addison-Wesley-Signature-Fowler/dp/0321712943

[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Boston,
MA, USA: Addison-Wesley Longman Publishing, 1995, vol. 47. [Online]. Available:
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21

[34] V. K. Garg, Concurrent and Distributed Computing in Java, 1st ed. Hoboken, NJ, USA:
John Wiley & Sons, Jan. 2004, vol. 2, no. February 1984.

[35] B. Gloger, SCRUM: Produkte zuverlässig und schnell entwickeln, 4th ed. Carl Hanser
Verlag GmbH & Co. KG, 2013.

[36] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, The Java Language Specification
Java SE 7 Edition. Redwood City, California: Oracle America, Inc, 2011.

[37] J. L. Gustafson, “Reevaluating Amdahl’s Law,” Communications of the ACM, vol. 31,
no. 5, pp. 532–533, 1988.

[38] B. P. Hansen, “Structured Multiprogramming,” Communications of the ACM, vol. 15, no. 7,
pp. 574–578, 1972.

[39] M. Herlihy, “Taking Concurrency Seriously: the Multicore Challenge,” in IISWC
’07: Proceedings of the 2007 IEEE 10th International Symposium on Workload
Characterization. Washington, DC, USA: IEEE Computer Society, Sep. 2007, pp.
2–. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
4362175

119

http://eclipse.org/aspectj
http://www.xbitlabs.com/articles/cpu/display/moore_2.html
http://www.xbitlabs.com/articles/cpu/display/moore_2.html
http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://www.amazon.com/Domain-Specific-Languages-Addison-Wesley-Signature-Fowler/dp/0321712943
http://www.amazon.com/Domain-Specific-Languages-Addison-Wesley-Signature-Fowler/dp/0321712943
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4362175
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4362175

[40] C. Hewitt and H. G. Baker, “Laws for Communicating Parallel Processes,” in IFIP-77: In-
ternational Federation for Information Processing 1977, no. November, Toronto, Canada,
1977, pp. 987–992.

[41] M. D. Hill and M. R. Marty, “Amdahl’s Law in the Multicore Era,” Computer, vol. 41,
no. 7, pp. 33–38, 2008.

[42] C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM,
vol. 21, no. 8, pp. 666–677, 2004.

[43] Intel, “Moore’s Law Timeline,” p. 1, 2005. [Online]. Available: http://download.intel.
com/pressroom/kits/events/moores_law_40th/MLTimeline.pdf

[44] E. H. Jensen, G. W. Hagensen, and J. M. Broughton, “A New Approach to Exclusive Data
Access in Shared Memory Multiprocessors,” in Prepared for Submittal to the 15th Annual
International Symposium on Computer Architecture. Honolulu, Hawaii: UCRL-Preprint,
1987, p. 11.

[45] C. Kaiser and J.-F. Pradat-Peyre, “Chameneos , a Concurrency Game for Java , Ada and
Others,” in AICCSA’03: International Conference on Computer Systems and Applications,
2003. Book of Abstracts. Tunis, Tunisia: IEEE, 2003, p. 62ff.

[46] R. K. Karmani, A. Shali, and G. Agha, “Actor Frameworks for the JVM Platform : A
Comparative Analysis,” in PPPJ ’09: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java. Calgary, Alberta, Canada: ACM New
York, NY, USA, 2009, pp. 11–20.

[47] B. Laichi, “ATC: actors with temporal constraints,” in ISORC ’01: Proceedings of the
Fourth International Symposium on Object-Oriented Real-Time Distributed Computing.
Washington, DC, USA: IEEE Comput. Soc, 2001, pp. 306–313. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=922854

[48] B. W. Lampson and D. D. Redell, “Experience with Processes and Monitors in Mesa,”
Communications of the ACM, vol. 23, no. 2, pp. 105–117, 1980.

[49] M. Law, B. Y. J. R. Powell, and M. S. L. Aw, “The Quantum Limits to Moore’s Law,”
Proceedings of the IEEE, vol. 96, no. 8, pp. 1247–1248, 2008.

[50] M. Llorens and J. Oliver, “Structural and Dynamic Changes in Concurrent Systems:
Reconfigurable Petri Nets,” IEEE Transactions on Computers, vol. 53, no. 9, pp.
1147–1158, Sep. 2004. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1315608

[51] C. A. Mack, “Fifty Years of Moore’s Law,” IEEE Transactions on Semiconductor
Manufacturing, vol. 24, no. 2, pp. 202–207, May 2011. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5696765

120

http://download.intel.com/pressroom/kits/events/moores_law_40th/MLTimeline.pdf
http://download.intel.com/pressroom/kits/events/moores_law_40th/MLTimeline.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=922854
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1315608
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1315608
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5696765

[52] P. Mackay, “Why has the actor model not succeeded?” in SURPRISE 97: Surveys and
Presentations in Information Systems Engineering, vol. 2. London, UK: Department of
Computing, Imperial College of Science Technology and Medicine, 1997, pp. 2–4.

[53] D. M. Marsh and L. M. Ott, “Distributed Processing: Requirements for an Object-
Oriented Approach,” Proceedings of the Thirtieth Hawaii International Conference
on System Sciences 1997, vol. 1, no. January, pp. 73–80, 1997. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=667198

[54] P. E. Mckenney, Is Parallel Programming Hard, And, If So, What Can You Do About It?
Corvallis, OR, USA: Linux Technology Center BM Beaverton, 2014.

[55] R. Milner, The Polyadic π-Calculus: A Tutorial. Edinburgh, UK: Laboratory for Foun-
dations of Computer Science, University of Edinburgh, 1991.

[56] P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA recommended values of the
fundamental physical constants: 2006,” Rev. Mod. Phys., vol. 80, no. 2, pp. 633–730,
2008. [Online]. Available: http://physics.nist.gov/cuu/Constants/archive2006.html

[57] X. Nicollin, “ATP : Une algebre pour la specification et l’analyse des systemes temps reel,”
Ph.D. dissertation, Institut National Polytechnique de Grenoble, 1992.

[58] J. Niu, CSc33200-0460 Course: Operating Systems. Jinzhong Niu, 2003.

[59] D. A. Padua, Encyclopedia of Parallel Computing, 1st ed. Springer, 2011. [Online].
Available: http://link.springer.com/book/10.1007/978-0-387-09766-4

[60] J. Parrow, “An Introduction to the Pi Calculus,” in Handbook of Process Algebra, J. A.
Bergstra, A. Ponse, and S. A. Smolka, Eds. New York, NY, USA: Elsevier Science Inc,
2001.

[61] S. Ren and G. A. Agha, “RTsynchronizer : Language Support for Real-Time Specifica-
tions in Distributed Systems,” in LCT-RTS 1995: Proceedings of the ACM SIGPLAN 1995
Workshop on Languages, Compilers, & Tools for Real-Time Systems, R. Gerber and T. J.
Marlowe, Eds., no. June, 1995, pp. 50–59.

[62] S. Ren, N. Venkatasubramanian, and G. Agha, “Formalizing Multimedia QoS Constraints
Using Actors,” in IFIP 1997: Proceedings of the Second IFIP International Conference on
Formal Methods for Open, Object-Based Distributed Systems, no. Mm. Canterbury, UK:
Chapman & Hall, 1997, pp. 139–153.

[63] L. Ribeiro Korff and M. Korff, “True Concurrency = Interleaving Concurrency + Weak
Conflict,” Electronic Notes in Theoretical Computer Science, vol. 14, pp. 204–213, 1998.
[Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1571066105802373

[64] E. Rieffel and W. Polak, “An Introduction to Quantum Computing for Non-Physicists,”
ACM Computing Surveys, vol. 32, no. 3, pp. 300–335, 2000.

121

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=667198
http://physics.nist.gov/cuu/Constants/archive2006.html
http://link.springer.com/book/10.1007/978-0-387-09766-4
http://linkinghub.elsevier.com/retrieve/pii/S1571066105802373

[65] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in Computer Systems,”
Proceedings of the IEEE, vol. 63, pp. 1278–1308, 1975.

[66] Typesafe Inc., “Akka 2.2.3. Java Documentation,” p. 1, 2013. [Online]. Available:
http://doc.akka.io/docs/akka/2.2.3/java.html

[67] R. van Glabbeek and F. Vaandrager, “Petri Net Models for Algebraic Theories of Concur-
rency,” in PARLE Parallel Architectures and Languages Europe. Amsterdam: Springer
Berlin Heidelberg, 1987, pp. 224–242.

[68] J. Wang, “Petri Nets for Dynamic Event-Driven System Modeling,” in Handbook of Dy-
namic System Modeling, P. A. Fishwick, Ed. Boka Raton, FL: Chapman & Hall, 2007,
no. 4, pp. 24–1–24–16.

[69] S. Yovine, Méthodes et outils pour la vérification symbolique de systèmes temporisés.
Grenoble, FR: Institut National Polytechnique de Grenoble, 1993.

[70] J. Zahorjan, E. D. Lazowska, and D. L. Eager, Spinning Versus Blocking in Parallel Systems
with Uncertainty. University of Washington and University of Sasatchewan, 1988.

122

http://doc.akka.io/docs/akka/2.2.3/java.html

	Contents
	Introduction
	Motivation, Objective and Methodology
	Thesis Structure

	Concurrency
	Motivation
	Definition
	Challenges
	Solution Approaches
	Exchange of Information
	Concurrency and Object-Orientation
	Theoretical Models

	Actor Systems
	Overview
	Event Orders and Laws
	Concurrency Model
	Benefits and Limitations
	Comparison
	AKKA

	Prototype
	Concept and Overview
	Architecture
	Optimizations
	Benefits and Limitations
	Comparison
	Development Process
	Iterations

	Evaluation
	Algorithm Runtime
	Sample Applications
	Benchmark
	Future Research

	Conclusion
	Bibliography

