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Kurzfassung

Ein Teilgebiet der mathematischen Logik ist die Beweistheorie, welche Beweise als forma-
le Objekte betrachtet und deren Eigenschaften untersucht. Einer der wichtigsten Sätze
der Beweistheorie ist der Satz der Schnittelimination. Dieser wurde von Gerhard Gentzen
bewiesen und besagt, dass die sogenannte Schnittregel aus einem formalen Beweissystem
(in der Art des Sequentialkalküls LK) immer enfernt werden kann. Die Schnittelimina-
tion kann in konkreten mathematischen Beweisen als eine Methode zum Entfernen von
Hilfssätzen (Lemmata) angesehen werden.

Eine Eigenschaft schnittfreier Beweise ist, dass sie nur Teilformeln der Formeln im
zu beweisenden Satz enthalten, d.h. dass sie die Teilformel-Eigenschaft besitzen.

Gentzen’s Methode zur Schnittelimination wird als reduktive Schnittelimination be-
trachtet. Hier betrachtet man nicht den gesamten Beweis, sondern führt lokale Be-
weistransformationen an einem Teil des gesamten Beweises durch.

CERES (cut-elimination by resolution) stellt einen alternativen Ansatz dar. Hier wer-
den alle Schnitte gleichzeitig analysiert und somit wird die globale Struktur des Beweises
berücksichtigt. Grob gesagt wird eine widerlegbare Klauselmenge extrahiert, welche die
Struktur eines Beweises mit Schnitten repräsentiert. Die Resolutionswiderlegung dieser
Klauselmenge dient als Skelett für einen Beweis, der höchstens atomare Schnitte enthält.

CERESω wurde als CERES-Methode für Logik höherer Ordnung entwickelt und ar-
beitet, im Gegensatz zu CERES, mit skolemfreien End-Sequenten. Für die Schnittelimi-
nation wird ein neuer Sequentialkalkül, LKsk, eingeführt, der keine Schnittregel enthält.

Im Zuge dieser Arbeit wurde die Idee von skolemfreien Beweisen auf Logik erster
Ordnung überführt, um eine CERES-Methode zu entwickeln, welche auch mit starken
Quantoren im End-Sequent arbeiten kann. Wir konzentrieren uns auf die Extraktion
von Herbrand Sequenten und nicht auf das Erzeugen der ACNF, welche ein Beweis
mit höchstens atomaren Schnitten ist. Herbrand Sequente wurden in der ursprüngli-
chen CERES-Methode aus der ACNF erzeugt. Wir zeigen, dass man für die Extraktion
die ACNF nicht benötigt und dass man die Herbrand Sequente bereits aus der Reso-
lutionswiderlegung und den zugehörigen Projektionen gewinnen kann. Unsere Methode
zur Extraktion von Herbrand Sequenten ist exponentiell schneller als die ursprüngliche
skolemfreie Methode.
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Abstract

A branch of mathematical logic is proof theory, which considers proofs as formal objects
and is concerned with the analysis of their properties. One of the main theorems in proof
theory is the cut-elimination theorem. It was proved by Gerhard Gentzen and states
that the so-called cut-rule can always be eliminated from a formal proof system in the
style of the sequent calculus LK. In real mathematical proofs, cut-elimination can be
regarded as a method for eliminating lemmas.

One property of cut-free proofs is that they only use subformulas of the formulas
that are already present in the statement which has to be proved, i.e. they have the
subformula-property.

Gentzen’s cut-elimination method is regarded as reductive cut-elimination. This
method does not analyse the whole proof, but performs local proof rewriting steps on
small parts of the proof.

Another approach to cut-elimination is the method CERES (cut-elimination by res-
olution). In this method all cuts are analysed simultaneously and hence the global
structure of the proof is taken into account. Roughly speaking, CERES extracts an
unsatisfiable set of clauses, that encodes the structure of a proof containing cuts. A
resolution refutation of this set of clauses serves as a skeleton for a proof containing at
most atomic cuts.

CERESω was developed as CERES-method for higher-order logic and works, in con-
trast to CERES, with Skolem-free end-sequents. For the cut-elimination a new sequent
calculus, LKsk, is introduced which does not contain the cut-rule.

In the course of this work the idea of Skolem-free proofs was transferred to first-order
logic, to gain a CERES-method which works in the presence of strong quantifiers in
the end-sequent. We concentrate on the extraction of Herbrand sequents instead of the
construction of the ACNF, a proof with at most atomic cuts. In the original CERES-
method Herbrand sequents were extracted from the ACNF. We show, that the ACNF is
not needed for the extraction and that the Herbrand sequents can be extracted from the
resolution refutation and the corresponding projections. Our method for the extraction
of Herbrand sequents is exponentially faster than the original, Skolem-free method.
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CHAPTER 1
Introduction

One of the main objectives in mathematics is to show that mathematical statements
are valid. The subfield of mathematical logic, proof theory, is devoted to the study of
proofs as mathematical objects. Since proofs can be regarded as finite objects, i.e. finite
strings of symbols, in the beginning of proof theory it was believed that showing the
consistency of logical theories using purely finitistic methods could be achieved by using
proof-theoretic methods. However, Gödel proved in his seminal papers that it is not
possible to prove the consistency of mathematical theories using purely finitistic means.

Gentzen invented the sequent calculi LK and LJ for classical and intuitionistic logic,
respectively, in [9] which have a great variety of use. His calculi contain the cut-rule,
which allows the use of lemmas (i.e. intermediary statements) in proofs. The main result
of the paper was the cut-elimination theorem, which basically states that any theorem
of first-order logic can be proved without detours, i.e. without the use of instances of the
cut rule [9]. Cut-free proofs have the subformula property, which means that all formulas
used in the proof are (instances of) subformulas of the statement to be proved [5], [15].
What follows directly from the subformula property is the consistency of both, LK and
LJ. Indeed, if there was a proof of the empty sequent, it would be provable without
using the cut-rule and this is impossible by the subformula property [20].

Cut-elimination can also be applied to real mathematical proofs. One example is
Girard’s analysis (see in [11]) of Fürstenberg and Weiss’ topological proof [8] of Van der
Waerden’s theorem [21] on partitions. After cut-elimination was applied on the proof of
Fürstenberg and Weiss, the result was Van der Waerden’s original elementary proof [15].

There exist different methods to prove the cut-elimination theorem. The original
idea by Gentzen can be regarded as a rewrite system on proofs that is applied according
to a specific strategy. It is called reductive cut-elimination.

Baaz and Leitsch introduced an alternative cut-elimination method based on resolu-
tion called CERES (cut elimination by resolution) [3]. The technique is novel since it
relies on the resolution method from automated-theorem proving. The method CERES
takes the global structure of an LK-proof into account, in contrast to reductive cut-
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1. Introduction

elimination which operates on small parts of the proof. The general procedure of CERES
can be described as follows. First extract the characteristic clause set (an unsatisfiable
set of clauses encoding the structure of a proof that contains cuts) from the input proof.
Then obtain a resolution refutation γ of the characteristic clause set, which serves as a
skeleton for a proof ϕ containing at most atomic cuts. Finally transform the resolution
refutation γ into ϕ by replacing its leaves by so-called projections (i.e. cut-free parts of
the original proof) [6].

The CERES method was originally defined as a cut-elimination method for first-
order logic. For higher-order logic a different method, CERESω, was defined [13], [22].
In first-order logic, the CERES method is restricted to work on Skolemized proofs, i.e.
proofs of theorems which do not contain strong quantifiers. Skolemized proofs have the
property that they do not contain strong quantifier inferences operating on end-sequent
ancestors. The strong quantifier rules are the only rules in LK that impose restrictions
on the context of the rule. Without these restrictions, proof transformations can be
performed in a more flexible way. In higher-order logic, the usual notion of a Skolemized
proof has not the same consequence as in first-order logic, hence eigenvariable conditions
may be violated. Therefore the method CERESω was defined, which works on a new
cut-free sequent calculus LKsk which introduces quantifiers from Skolem terms. It is
shown in [13] and [22] that LKsk is sound and can be translated into LK, yielding a
cut-elimination method for proofs in higher-order logic.

We use the idea of CERESω to define a new CERES-method which works with
proofs that are not Skolemized, i.e. proofs of theorems which contain strong quantifiers.
Therefore we will also use the sequent calculus LKsk.

We will focus on Herbrand sequent extraction instead on generating the ACNF (a
proof with at most atomic cuts). In the ordinary CERES-method, the Herbrand se-
quents can be extracted out of the ACNF. Since in the Skolem-free CERES-method, the
generation of the ACNF from projections and the resolution refutation is very compli-
cated and expensive, we will skip this transformation and extract the Herbrand sequents
from the projections and the resolution refutation.

We will also show that the extraction of Herbrand sequents can be sped-up expo-
nentially by omitting some transformations (i.e. by omitting the transformation of an
LKsk-proof into an LK-proof, this transformation was needed to show the soundness
of LKsk). Hence, our method for CERES is Skolem-free and Herbrand sequents are
extracted directly from LKsk-proofs.

To sum up, the novel contribution of this thesis consists in the development of a more
efficient CERESω-method for first-order logic. As the key information in a proof (of a
prenex end-sequent) is stored in its Herbrand sequent, producing an ACNF first (and
then extracting the Herbrand sequent) is actually a detour; this detour can be avoided
in the CERES-method (using the resolution refutation an projections only) and leads to
an exponential improvement.

The result is an efficient Skolemization-free CERES-method for first-order logic.
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1.1. Structure of the Thesis

1.1 Structure of the Thesis
To fix notation and terminology we present the basic notions and definitions in Chapter
2.

In Chapter 3 a general overview on cut-elimination and its important consequences
is given. We conclude this chapter with the definition of a proof rewriting system for
cut-elimination based on Gentzen’s proof of the cut-elimination theorem.

In Chapter 4 we will introduce CERES (cut-elimination by resolution) and prove
some of its most important properties.

The definition of the CERES-method for higher-order logic (CERESω) will follow in
Chapter 5. We will state and prove some of the most important properties.

In Chapter 6 we will give a brief complexity analysis of the method CERES.
Chapter 7 is devoted to the proof of the main result of this thesis, namely that Her-

brand sequents can be constructed from the resolution refutation and the corresponding
projections and that our method for the extraction of Herbrand sequents outperforms
the old one. To show this, we will introduce a Skolem-free CERES-method for first-
order logic and prove that the Herbrand sequents can be extracted from the resolution
refutation and the corresponding projections, instead of the ACNF. Then we will show
that we can speed-up the extraction of Herbrand sequents by omitting some superfluous
proof-transformations.

This thesis is then concluded in Chapter 8 where we summarize the main results.
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CHAPTER 2
Preliminaries

To fix notion and terminology the following chapter will give a short overview on the
logical notions used in this thesis. First of all, in Section 2.1 the syntax and semantics
of classical first-order logic will be introduced. Then, in Section 2.2 the sequent calculus
LK will be defined and finally, in Section 2.3 we will introduce the resolution calculus.

2.1 First-Order Logic
Syntax
The following definitions are based on and taken from [14].

Definition 2.1.1. Language. The language L of classical first-order logic consists of
the following elements:

• a countably infinite set of individual variables V ,

• a countably infinite set of constant symbols CS,

• a countably infinite set of function symbols FS =
∪∞

i=1 FSi, where all sets FSi,
for i > 1, are countably infinite (FSi is the set of i−ary function symbols),

• a countably infinite set of predicate symbols PS =
∪∞

i=1 PSi, where all sets PSi,
for i > 1, are countably infinite (PSi is the set of i−ary predicate symbols),

• the logical connectives ∧, ∨, ¬ and →,

• the quantifiers ∀ and ∃,

• ⊤ (verum) and ⊥ (falsum).

Unless stated otherwise, we will use the following notational conventions [14]:

5



2. Preliminaries

• Variables: x, y, z, u, v, w, x1, y1, ...

• Constant symbols: a, b, c, d, e, a1, b1, ...

• Function symbols: f, g, h, f1, g1, ...

• Predicate symbols: P, Q, R, P1, Q1, ...

Definition 2.1.2. Term. The set of terms T is inductively defined as follows:

• V ⊆ T (variables are terms),

• CS ⊆ T (constant symbols are terms),

• If t1, ..., tn ∈ T and f ∈ FSn with n > 1, then f(t1, ...tn) ∈ T .

• No other objects are terms.

Statements like "No other objects are..." will henceforth be omitted and will be con-
sidered as included in the concept of "definition" [14].

If t = f(t1, ..., tn), for an f ∈ FSn and terms t1, ..., tn, then t is called a functional
term. The terms ti are called the arguments of t. Variables and constant symbols have
no arguments.

The occurrence of terms can be defined inductively: A term s occurs in a term t if
either s = t holds or s occurs in an argument of t.

The set of all variables occurring in a term t is denoted by V (t). A term t with
V (t) = ∅ is called a ground term.

Definition 2.1.3. Formula. The set of first-order logic formulas PL is inductively
defined as follows:

1. If P ∈ PSn, where n > 1 and t1, ..., tn ∈ T , then P (t1, ..., tn) ∈ PL,

2. ⊤ ∈ PL and ⊥ ∈ PL,

3. If A ∈ PL, then also ¬A ∈ PL,

4. If A, B ∈ PL, then also A ∧B ∈ PL, A ∨B ∈ PL and A→ B ∈ PL,

5. If A ∈ PL and x ∈ V , then (∀x)A ∈ PL,

6. If A ∈ PL and x ∈ V , then (∃x)A ∈ PL.

Formulas obtained by Definition 2.1.3, 1. are called atomic formulas or atoms, and
the t1,..., tn are called the arguments of P (t1,..., tn). Let A be a formula such that
A = A1 ⊙ A2, A = ¬B or A = (Qx)B for ⊙ ∈ {∧,∨,→} and Q ∈ {∀, ∃}. Then A1, A2
and B are called immediate subformulas of A.

A formula A occurs in a formula B if either A = B or A occurs in an immediate
subformula of B. A is called a subformula of B if A occurs in B. In 5. and 6. A

6



2.1. First-Order Logic

and all terms occurring in A and all its subformulas are in the scope of (∀x) and (∃x),
respectively.

Let s be a term and A be an atomic formula. If s occurs in an argument of A, then
s occurs in A. If A is an arbitrary formula, then s occurs in A if it occurs in some
subformula of A.

Definition 2.1.4. Free and Bounded Occurrences of Variables. Let A be an atomic
formula and x be a variable occurring in A, then x occurs free in A. If x occurs free in A
and B is of the form A⊙C, C ⊙A, ¬A or (Qy)A for ⊙ ∈ {∧,∨,→}, y ̸= x, Q ∈ {∀, ∃},
then x occurs free in B.

x occurs bounded in A if there is a subformula of A of the form (Qx)B such that x
occurs free in B.

A closed formula or a sentence is a formula where all variables are bounded. If a
formula does not contain bounded variables, it is called open.

Definition 2.1.5. Universal Closure. If A is an open formula containing the free vari-
ables x1, ..., xn, then (∀x1), ..., (∀xn)A is called the universal closure of A.

The universal closure of a formula A is not unique, since the order of the variables is
not fixed. But all closures are semantically equivalent [14].

The following definition is based on [6] Definition 3.1.2.

Definition 2.1.6. Position. We inductively define positions within terms as follows:

1. If t ∈ V or t ∈ CS then ϵ is a position in t and t.ϵ = t.

2. If t = f(t1, ..., tn) where f ∈ FSn and t1, ..., tn ∈ T , then ϵ is a position in t and
t.ϵ = t. Let µ be a position in a tj for 1 ≤ j ≤ n, µ = (k1, ..., kl) and tj .µ = s, then
ν for ν = (j, k1, ..., kl) is a position in t and t.ν = s.

The following definitions are taken from [6].
Positions are used to locate subterms in a term and to perform replacements on

subterms. A subterm s of t is just a term with t.ν = s for some position ν in t. Let
t.ν = s, then t[r]ν is the term t after replacement of s on position ν by r, in particular
t[r]ν .ν = r. Let P be a set of position on t, then t[r]P is defined from t by replacing all
t.ν with ν ∈ P by r.

The following example illustrates the definition of a position and is taken from [6]
Example 3.1.2.

Example 2.1.1. Let t = f(f(α, β), α) be a term. Then

t.ϵ = t

t.(1) = f(α, β)

t.(2) = α

7



2. Preliminaries

t.(1, 1) = α

t.(1, 2) = β

t[g(a)].(1, 1) = f(f(g(a), β), α)

Positions within formulas can be defined in the same way, just consider all formulas
as terms.

The following definition is taken from [6] Definition 3.1.3.

Definition 2.1.7. Substitution. A substitution is a mapping from Vf ∪ Vb to the set of
terms such that σ(v) ̸= v for only finitely many v ∈ Vf ∪ Vb. If σ is a substitution with
σ(xi) = ti for xi ̸= ti (1 ≤ i ≤ n) and σ(v) = v for v ̸∈ {x1, ..., xn} then we denote σ
by {x1 ← t1, ..., xn ← tn}. We call the set {x1, ..., xn} the domain of σ and denote it by
dom(σ). Substitutions are written in postfix, i.e. we write Fσ instead of σ(F ).

Substitutions can be extended to terms, atoms and formulas in a similar way.

Definition 2.1.8. [6] Definition 3.1.4 A substitution σ is called more general than a
substitution η (σ ≤s η) if there exists a substitution µ such that η = σµ.

The next definition is based on [6] Definition 3.1.6.

Definition 2.1.9. Logical complexity of formulas. If F is a formula in PL then the
complexity comp(F ) is the number of logical symbols occurring in F . We define

• If F is an atomic formula then comp(F ) = 0,

• If F = A⊙B for ⊙ ∈ {∧,∨,→} then comp(F ) = 1 + comp(A) + comp(B),

• If F = ¬A or F = (Qx)A for Q ∈ {∀, ∃} and x ∈ V then comp(F ) = 1 + comp(A).

Semantics
The following definition is based on [14] Definition 2.1.6.

Definition 2.1.10. Interpretation. An interpretation of a formula F ∈ PL is a triple
M = (D, Φ, I) with the following properties

1. the domain D of M is a nonempty set.

2. Φ is a mapping defined on CS(F ) ∪ FS(F ) ∪ PS(F ) such that

a) Φ(c) ∈ D for c ∈ CS(F ),
b) Φ(f) : Dn → D for f ∈ FSn(F ),
c) Φ(P ) ⊆ Dn for P ∈ PSn(F )

3. the environment or variable assignment I : V → D.

Interpretations are the basis for the interpretation functions uM for terms and vM

for formulas. The next definition is based on [14].

8



2.1. First-Order Logic

Definition 2.1.11. Interpretation function. Let F ∈ PL and M be an interpretation
of F , we define the interpretation function uM : T (F )→ D

1. If x ∈ V then uM (x) = I(x),

2. if c ∈ CS(F ) then uM (c) = Φ(c),

3. if f(t1, ..., tn) ∈ T (F ) then uM (f(t1, ..., tn)) = Φ(f)(uM (t1), ..., uM (tn)),

where T (F ) denotes the set of terms occurring in F .

The next definition is based on [14] Definition 2.1.17.

Definition 2.1.12. Equivalence of interpretations. Let M and M ′ be two interpre-
tations of a formula F . M and M ′ are called equivalent modulo x1, ..., xn if there
are D, ϕ, I, J such that M = (D, Φ, I), M ′ = (D, Φ, J) and I(v) = J(v) for v ∈
V \{x1, ..., xn}. If M and M ′ are equivalent modulo x, we write M ∼x M ′.

Now we are able to define the evaluation of formulas in PL(F ) via an interpretation
M , where PL(F ) is the set of formulas over the language of F [14]. The following
definition is based on [14].

Definition 2.1.13. Evaluation of formulas. Let F ∈ PL and M = (D, Φ, I) be an
interpretation of F . Then vM : PL(F ) → {true, false} is defined inductively over the
structure of formulas in PL(F ).

1. If A is an atomic formula in PL(F ) and A = P (t1, ..., tn) then vM (A) = true if
and only if (uM (t1), ..., uM (tn)) ∈ Φ(P ),

2. vM (⊤) = true and vM (⊥) = false,

3. vM (¬A) = true if and only if vM (A) = false,

4. vM (A ∧B) = true if and only if vM (A) = true and vM (B) = true,

5. vM (A ∨B) = true if and only if vM (A) = true or vM (B) = true,

6. vM (A→ B) = true if and only if vM (A) = false or vM (B) = true,

7. vM ((∀x)A) = true if and only if for all M ′ such that M ∼x M ′ we have vM ′(A)
= true,

8. vM ((∃x)A) = true if and only if for some M ′ such that M ∼x M ′ we have vM ′(A)
= true,

where A, B ∈ PL(F ).

An interpretation M of A verifies A if vM (A) = true, if vM (A) = false we say that
M falsifies A [14].

The following definition is based on [14] Definition 2.1.8.

9
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Definition 2.1.14. Model. Let A be a formula containing the free variables x1, ..., xn

and M be an interpretation of A. M is a model of A if all M ′ such that M ∼x1,...,xn M ′

verify A. If A is a closed formula M is a model of A if and only if M verifies A. We
denote that M is a model of A by M |= A.

The next definition is an extension of [14] Definition 2.1.9 that contains the definition
of unsatisfiability.

Definition 2.1.15. (Un)satisfiability and validity. Let F, G ∈ PL be arbitrary. Then

• F is called satisfiable if F has a model.

• F is called unsatisfiable if F is not satisfiable.

• F is called valid if every interpretation of F is a model of F .

• F and G are logically equivalent (F ≡ G) if F and G have exactly the same models.

• F and G are satisfiability-equivalent if F is satisfiable if and only if G is satisfiable
(F ≡sat G).

Having defined the syntax and semantics of classical first-order logic, we are able to
introduce a formal proof system.

2.2 Sequent Calculus

Gentzen’s famous sequent calculi LK (logischer klassischer Kalkül) and LJ (logischer
intuitionistischer Kalkül) for classical first-order and intuitionistic logic, respectively, are
based on so called sequents. Gentzen’s motivation for his sequent calculi was the fact
that they allowed him to investigate properties of the calculi of natural deduction in an
easier and more elegant way. An important result of his work was the Hauptsatz (or
cut-elimination theorem) [9].

A sequent calculus consists of sets of axioms and inference rules that are applied
to sequents. Sequents are structures with sequences of formulas on the left and on the
right hand side of a symbol (the sequent sign ⊢), which does not belong to the syntax
of formulas. The definition of sequents is based on [6] Definition 3.1.7.

Definition 2.2.1. Sequent. Let Γ and ∆ be finite (possibly empty) multisets of formulas.
Then the expression S : Γ ⊢ ∆ is called a sequent. Γ is called the antecedent of S and
∆ the consequent of S. ⊢ is also a sequent and is called the empty sequent.

Two sequents Γ1 ⊢ ∆1 and Γ2 ⊢ ∆2 are equal if Γ1 = Γ2 and ∆1 = ∆2 [5]. Multiset
union within sequents is denoted by comma. If S : Γ ⊢ ∆ and Γ is the multiset union of
Γ1 and Γ2 and ∆ is the multiset union of ∆1 and ∆2, then we write S : Γ1, Γ2 ⊢ ∆1, ∆2.

The next definition is based on [6] Definition 3.1.8.

10



2.2. Sequent Calculus

Definition 2.2.2. Semantics of sequents. Consider a sequent

S : A1, ..., An ⊢ B1, ..., Bm

Then the semantics of S can be expressed by the following PL-formula

F (S) :
n∧

i=1
Ai →

m∨
j=1

Bj .

M is an interpretation of S if M is an interpretation of F (S). If there are no formulas
in the antecedent of S (i.e. n = 0) we assign ⊤ to

∧n
i=1 Ai. If m = 0 we assign ⊥ to∨m

j=1 Bj . The empty sequent is represented by ⊤ → ⊥ which is equivalent to ⊥, hence
it represents falsum. S is true in M if F (S) is true in M and S is called valid if F (S)
is valid.

Example 2.2.1. [6] Example 3.1.5. Let

S : P (a), (∀x)(P (x)→ P (f(x))) ⊢ P (f(a))

be a sequent. The corresponding formula

F (S) : (P (a) ∧ (∀x)(P (x)→ P (f(x))))→ P (f(a))

is valid, so S is a valid sequent.

The following definitions are taken from [6].

Definition 2.2.3. Atomic sequent. A sequent A1, ..., An ⊢ B1, ..., Bm is called atomic if
the Ai, Bj for 1 ≤ i ≤ n and 1 ≤ j ≤ m are atomic formulas.

Definition 2.2.4. Composition of sequents. If S = Γ ⊢ ∆ and S′ = Π ⊢ Λ we define
the composition of S and S′ by S ◦ S′, where S ◦ S′ = Γ, Π ⊢ ∆, Λ.

The following definition is based on [5] Definition 2.5.

Definition 2.2.5. Subsequent. Let S, S′ be sequents. We define S′ ⊑ S if there exists
a sequent S′′ such that S′ ◦ S′′ = S and call S′ a subsequent of S.

By definition of the semantics of sequents, every sequent is implied by all of its
subsequents. The empty sequent (which stands for falsum) implies every sequent [6].

Definition 2.2.6. [6] Definition 3.1.14. Substitutions can be extended to sequents in
an obvious way. If S = A1, ..., An ⊢ B1, ..., Bm and σ is a substitution then

Sσ = A1σ, ..., Anσ ⊢ B1σ, ..., Bmσ

The calculus LK

The next definition is taken from [6] Definition 3.2.1.

11
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Definition 2.2.7. Axiom set. Let A be a (possibly infinite) set of sequents. A is called
an axiom set if it is closed under substitution, i.e., for all S ∈ A and for all substitutions
σ it holds that Sσ ∈ A . If A consists only of atomic sequents we have an atomic axiom
set.

The closure under substitution is required for proof transformations, in particular for
cut-elimination [6].

The following definition is taken from [6] Definition 3.2.2.

Definition 2.2.8. Standard axiom set. Let AT be the smallest axiom set containing all
sequents of the form A ⊢ A for arbitrary atomic formulas A. AT is called the standard
axiom set.

Definition 2.2.9. LK. Basically we use Gentzen’s version of LK [9]. Since we consider
multisets of formulas, we do not explicitly include exchange or permutation rules. There
are two groups of rules, the logical and the structural ones. All rules except the cut have
left and right versions, denoted by l and r, respectively. Every logical rule introduces a
logical operator on the left or on the right side of a sequent. Structural rules are used
to make logical inferences possible or to put proofs together. In the following, A and
B denote formulas whereas Γ, ∆, Π, Λ denote sequences of formulas. Every rule, except
weakening and the cut rule, has auxiliary formulas (the formulas in the premises used for
the inference) and principal formula (the inferred formula in the conclusion). Weakening
has no auxiliary formula and the cut rule has no principal formula.
The logical rules:

• ∧-introduction

A, Γ ⊢ ∆ ∧l1
A ∧B, Γ ⊢ ∆

B, Γ ⊢ ∆ ∧l2
A ∧B, Γ ⊢ ∆

Γ ⊢ ∆, A Γ ⊢ ∆, B ∧rΓ ⊢ ∆, A ∧B

• ∨-introduction

A, Γ ⊢ ∆ B, Γ ⊢ ∆ ∨l
A ∨B, Γ ⊢ ∆

Γ ⊢ ∆, A ∨r1Γ ⊢ ∆, A ∨B

Γ ⊢ ∆, B ∨r2Γ ⊢ ∆, A ∨B

• →-introduction

Γ ⊢ ∆, A B, Π ⊢ Λ →l
A→ B, Γ, Π ⊢ ∆, Λ

A, Γ ⊢ ∆, B →rΓ ⊢ ∆, A→ B

• ¬-introduction

Γ ⊢ ∆, A ¬l¬A, Γ ⊢ ∆
A, Γ ⊢ ∆ ¬rΓ ⊢ ∆,¬A

• ∀-introduction

A{x← t}, Γ ⊢ ∆
∀l(∀x)A(x), Γ ⊢ ∆

Γ ⊢ ∆, A{x← α}
∀rΓ ⊢ ∆, (∀x)A

12



2.2. Sequent Calculus

where t is an arbitrary term that does not contain any variables which are bound
in A and α is a free variable which may not occur in Γ, ∆, A. α is called an
eigenvariable.

• ∃-introduction

A{x← α}, Γ ⊢ ∆
∃l(∃x)A(x), Γ ⊢ ∆

Γ ⊢ ∆, A{x← t}
∃rΓ ⊢ ∆, (∃x)A

where the variable conditions for ∃l are the same as those for ∀r and similarly
for ∃r and ∀l.

The structural rules:

• weakening

Γ ⊢ ∆ wl
A, Γ ⊢ ∆

Γ ⊢ ∆ wrΓ ⊢ ∆, A

• contraction

A, A, Γ ⊢ ∆
cl

A, Γ ⊢ ∆
Γ ⊢ ∆, A, A

crΓ ⊢ ∆, A

• cut
Assume that A occurs in ∆ and in Π. Then we define

Γ ⊢ ∆ Π ⊢ Λ cut(A)Γ, Π∗ ⊢ ∆∗, Λ

where Π∗ is Π after deletion of at least one occurrence of A and ∆∗ is ∆ after
deletion of at least one occurrence of A. A is the auxiliary formula of cut(A) and
there is no principal one. A is also called the cut-formula. If the formula A does
not occur in Π∗ and ∆∗ we speak about a mix instead of a cut. If A is not an
atomic formula the cut is called essential, and inessential if A is an atom.

Definition 2.2.10. [6] Definition 3.2.4. Let

S1 S2 ξ
S

be a binary rule of LK and let S′, S′
1, S′

2 be instantiations of the schema variables in
S, S1, S2. Then (S′

1, S′
2, S′) is called an instance of ξ. The instance of a unary rule is

defined analogously.

The following definition is based on [6] Definition 3.2.5.

Definition 2.2.11. LK-derivation. An LK-derivation is defined by a finite labelled
tree with nodes labelled by sequents (via Seq function) and edges labelled by the corre-
sponding rule applications. By end-sequent we mean the label of the root and by initial
sequents or axioms we mean sequents occurring at the leaves. A formal definition is the
following:

13



2. Preliminaries

• Consider a node ν and an arbitrary sequent S and let Seq(ν) = S. Then ν is an
LK-derivation and ν is the root node (and also a leaf).

• Let φ be a derivation tree and ν be a leaf in φ and Seq(ν) = S. Let (S1, S2, S)
be an instance of the binary LK-rule ξ. By appending the edges e1 : (ν, µ1),
e2 : (ν, µ2) to ν such that Seq(µ1) = S1 and Seq(µ2) = S2 and the label of e1, e2
is ξ we extend φ to φ′. φ′ is an LK-derivation with the same root as φ. µ1 and
µ2 are leaves in φ′ and ν is not, it is called a ξ-node in φ′.

• Let φ be a derivation tree and ν be a leaf in φ s.t. Seq(ν) = S. Let (S′, S) be
an instance of a unary LK-rule ξ. By appending the edge e : (ν, µ) to ν such that
Seq(µ) = S′ and the label of e is ξ we extend φ to φ′. φ′ is an LK-derivation with
the same root as φ.µ is a leaf in φ′ and ν is not, it is called a ξ-node in φ′.

We write

(ϕ)
S

To express that ϕ is an LK-derivation with end sequent S.

The following definition is based on [6] Definition 3.2.9.

Definition 2.2.12. Path. Let φ be an LK-derivation and π : µ1, ..., µn be a sequence
of nodes in φ such that for all i ∈ {1, ..., n − 1} (µi, µi+1) is an edge in φ. Then π is
called a path in φ from µ1 to µn of length n − 1. We denote the length of a path π by
lp(π). π is called a trivial path if n = 1 and π = µ1. π is called a branch if µ1 is the
root of φ and µn is a leaf in φ. The terms predecessor and successor are used contrary
to the direction of edges in the tree, if there exists a path from µ1 to µ2 then µ2 is the
predecessor of µ1. The successor relation is defined analogously and every initial sequent
is a predecessor of the end sequent.

We follow [6] Definition 3.2.10 by defining a subderivation.

Definition 2.2.13. Subderivation. Let φ′ be the subtree of an LK-derivation φ with
root node ν, where ν is a node in φ. Then φ′ is called a subderivation of φ and we write
φ′ = φ.ν. Let ρ be an arbitrary LK-derivation of Seq(ν). Then we write φ[ρ]ν for the
deduction φ after the replacement of the subderivation φ.ν by ρ on the node ν in φ,
under the restriction that φ.ν and ρ have the same end-sequent.

The following two definitions are taken from [6] Definition 3.2.11 and Definition
3.2.12.

Definition 2.2.14. Depth. Let φ be an LK-derivation and ν be a node in φ. Then the
depth of ν (denoted by depth(ν)) is defined by the maximal length of a path from ν to
a leaf of φ.ν. The depth of any leaf in φ is zero.

Definition 2.2.15. Regularity. An LK-derivation φ is called regular if

14
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• all eigenvariables of quantifier introductions ∀r and ∃l in φ are mutually different.

• If an eigenvariable α occurs as an eigenvariable in a proof node ν then α occurs
only above ν in the proof tree.

There exists a straightforward transformation from LK-derivations into regular ones,
by just renaming the eigenvariables in different subderivations [6]. From now on we
assume, without mentioning the fact explicitly, that all LK-derivations are regular.

The formulas in sequents on the branch of a deduction tree are connected by a so-
called ancestor relation [6]. If A occurs in a sequent S and A is the principal formula
of a binary inference on the sequents S1, S2, then the auxiliary formulas in S1, S2 are
immediate ancestors of A. If A occurs in S1 and is not an auxiliary formula of an
inference, then A occurs also in S. In this case S in S1 is an immediate ancestor of A in
S, too. The case of unary rules is analogous. General ancestors are defined via reflexive
and transitive closure of the relation.

Definition 2.2.16. [6] Definition 3.2.14. Let Ω be a set of formula occurrences in
an LK-derivation φ and ν be a node in φ. Then S(ν, Ω) is the subsequent of Seq(ν)
obtained by deleting all formula occurrences which are not ancestors of occurrences on
Ω.

If Ω consists just of the occurrences of all cut formulas which occur below ν then
S(ν, Ω) is the subsequent of Seq(ν) consisting of all formulas which are ancestors of a
cut. These subsequents are crucial for the definition of the characteristic set of clauses
and of the method CERES [6].

Definition 2.2.17. Proof length. The length of a proof φ is defined by the number of
nodes in φ. We denote the proof length of a proof φ by l(φ).

The following two definitions are based on [6] Definition 3.2.16 and Definition 3.2.17.

Definition 2.2.18. Cut-derivation. Let φ be an LK-derivation of the following form

(φ1)
Γ1 ⊢ ∆1, A

(φ2)
A, Γ2 ⊢ ∆2 cut(A)Γ1, Γ2 ⊢ ∆1, ∆2

Then φ is called a cut-derivation. φ1 and φ2 may contain cuts, too. If the cut is a mix
we speak about a mix-derivation. φ is called essential if the cut is essential.

Definition 2.2.19. Rank, grade. Let φ be an LK-derivation of the following form

(φ1)
Γ1 ⊢ ∆1, A

(φ2)
A, Γ2 ⊢ ∆2 cut(A)Γ1, Γ2 ⊢ ∆1, ∆2
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Then the grade of φ is comp(A).
Let µ and ν be the root nodes of φ1 and φ2, respectively. An A-right path in φ1 is a
path in φ1 of the form µ, µ1, ..., µn such that A occurs in the consequents of all Seq(µi).
Similarly an A-left path in φ2 is a path in φ2 of the form ν, ν1, ..., νm such that A occurs
in the antecedents of all Seq(νj). Let P1 be the set of all A-right paths in φ1 and P2
the set of all A-left paths in φ2. Then we define the left-rank of φ (rankl(φ)) and the
right-rank (rankr(φ)) as

rankl(φ) = max{lp(π)∥π ∈ P1}+ 1,

rankr(φ) = max{lp(π)∥π ∈ P2}+ 1.

The rank if φ is defined as rank(φ) = rankl(φ) + rankr(φ).

2.3 Resolution Calculus

The resolution calculus was introduced by Robinson in 1965 [17]. It was specifically
designed as a theoretical basis to be used in automated theorem proving. Robinson’s
principle lead to enormous improvements in performance compared to prior methods [14].
The resolution calculus is a so-called refutation calculus, the goal is to refute a statement
instead of proving that it is a theorem.

Our formulation of the resolution calculus is based on sets of specific sequents and
uses most general unification as well as the rules of resolution.

The following definition is taken from [5] Definition 2.12.

Definition 2.3.1. Clause. A clause is an atomic sequent, i.e. a sequent of the form
Γ ⊢ ∆ where Γ and ∆ are mutlisets of atomic formulas.

Clauses are usually defined as disjunctions of literals. A literal is either an atom or
a negated atom. We follow [6] Definition 3.3.1 by defining a unifier and a most general
unifier. Most general unification was the key novel feature of the resolution principle by
Robinson [17] where he proved that for all unifiable sets there exists also a most general
unifier, which makes the computation of other unifiers superfluous.

Definition 2.3.2. Unifier. Let A be a nonempty set of atoms and σ be a substitution.
σ is called a unifier of A if the set A σ contains only one element. σ is called a most
general unifier (or m.g.u.) of A if σ is a unifier of A and for all unifiers λ of A it holds
that σ ≤s λ.

The following theorem correspond to [14] Theorem 2.6.1.

Theorem 2.3.1. Unification Theorem. There exists a decision procedure UAL for the
unifiability of two terms. In particular, the following two properties hold:

• If {t1, t2} is not unifiable, then UAL stops with failure.
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• If {t1, t2} is unifiable, then UAL stops and σ (the final substitution constructed by
UAL) is a most general unifier of {t1, t2}.

Proof. See proof of Theorem 2.6.1 in [14].

The following definitions are based on [6] Definition 3.3.10, Definition 3.3.11 and
Definition 3.3.12.

Definition 2.3.3. Resolvent. Let C and D be clauses of the form

C = Γ ⊢ ∆1, A1, ..., ∆n, An, ∆n+1,

D = Π1, B1, ..., Πm, Bm, Πm+1 ⊢ Λ

such that C and D do not share variables and the set {A1, ..., An, B1, ..., Bm} is unifiable
by a most general unifier σ. Then the clause

R : Γσ, Π1σ, ...., Πm+1σ ⊢ ∆1σ, ..., ∆n+1σ, Λσ

is called a resolvent of C and D.

Definition 2.3.4. P-resolvent. Let C = Σ ⊢ ∆, Am and D = An, Π ⊢ Λ with n, m ≥ 1.
Then the clause Γ, Π ⊢ ∆, Λ is called a p-resolvent of C and D.

The p-resolvents of C and D are the sequents obtained by applying the cut rule to C
and D. Therefore resolution of clauses is a cut combined with most general unification.

When we want to resolve two clauses C1, C2 we have to ensure that C1 and C2
are variable disjoint. This can be achieved by renaming variables by permutation of
variables.

Definition 2.3.5. Variant. Let C be a clause and σ a permutation substitution (i.e. π
is a binary function V → V ). Then Cσ is called a variant of C.

The following definition is based on [6] Definition 3.3.13.

Definition 2.3.6. Resolution deduction. Consider a labelled tree γ like an LK-derivation
with the exception that it is binary and all edges are labelled by the resolution rule.
Then γ is a resolution deduction. If we replace the resolutions by p-resolutions we speak
about a p-resolution deduction. A ground resolution deduction is a p-resolution deduc-
tion, where all clauses are variable-free. Let C be a set of clauses. If all initial sequents
in γ are variants of clauses in C and D is the clause labelling the root, then γ is called
a resolution derivation of D from C . If D = ⊢ then γ is called a resolution refutation of
C .

The next definition is taken from [6] Definition 3.3.14.

Definition 2.3.7. Ground projection. Let γ′ be a ground resolution deduction which
is an instance of a resolution deduction γ. Then γ′ is called a ground projection of γ.
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Theorem 2.3.2. Completeness of resolution deduction. If C is an unsatisfiable set of
clauses, then there exists a resolution refutation of C .

Proof. By Theorem 2.7.2 in [14].
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CHAPTER 3
The Problem of Cut-Elimination

This chapter is intended to give an overview on cut-elimination as introduced by Gentzen
in his seminal papers [9]. In Section 3.1 we will give a motivation on cut-elimination,
in Section 3.2 we will deal with cut-elimination and its consequences in a more formal
way and in Section 3.3 we will conclude this chapter by defining a rewriting system
for cut-elimination based on the rules obtained from Gentzen’s original proof of the
cut-elimination theorem.

3.1 Motivation

Cut-Elimination is a constructive method for proving the so-called Hauptsatz (or cut-
elimination theorem) for LK and LJ [6], [9] and was introduced by Gentzen. It states
that any theorem of first-order logic can be proved without detours, i.e. without the use
of cuts.

Basically, cut-elimination is concerned with the elimination of all cuts from a proof.
Since cuts correspond to the use of lemmas (i.e. intermediary statements) in mathemat-
ical proofs, the elimination of cuts corresponds to the elimination of lemmas. Therefore
the cut-elimination theorem implies that any statement can be proved without the use
of lemmas [5].

Cut-free proofs have the property that all formulas used in the proof are (instances
of) subformulas of the end-sequent, i.e. they have the subformula property [5]. This
leads to one of the most important consequences of the cut-elimination theorem, the
consistency of both LK and LJ. Indeed, if there was a proof of the empty sequent, then
it would be provable without cuts, which is impossible due to the subformula property
of cut-free proofs.

It was shown in Gentzen’s sharpened Hauptsatz (or midsequent theorem) that in a
cut-free proof of a sequent, which contains only formulas in prenex form, there exists a
so-called midsequent. The midsequent splits the proof into an upper part, containing
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the propositional inferences and into a lower part, containing the quantifier inferences [9].
This allows the extraction of Herbrand sequents.

The cut-elimination theorem can also be used as a method of proof mining in the
sense that hidden mathematical information can be extracted by eliminating lemmas
from proofs [15]. The extraction of functionals from proofs, which is another approach
for proof mining, is based on Gödel’s dialectica interpretation [12]. It allows the con-
struction of programs from proofs [15]. Functional interpretation can also be used for
the extraction of Herbrand disjunctions from proofs [10].

Cut-elimination can be applied to proofs in real mathematics as well. By applying
cut-elimination to Fürstenberg and Weiss’ topological proof [8] of van der Waerdens’
theorem [21] and eliminating all lemmas contained in the proof, Girard was able to
obtain van der Waerden’s original proof as a result [11].

3.2 Cut-Elimination Theorem
Theorem 3.2.1. [9], Gentzen 1934. If a sequent is LK-provable, then it is LK-provable
without a cut.

Proof. We will only give an outline of the proof, for the full proof we refer to [9]. Consider
an LK-proof φ of some arbitrary end-sequent S. The proof is by double induction on
grade(φ) and rank(φ). The uppermost cut (in fact the uppermost mix) is eliminated by
permuting the cut upwards and thus reducing the rank until no longer possible. This is
the case when the cut occurs immediately below the inferences that introduced its cut-
formula in both premises. Then the grade of the cut-formula A is reduced by replacing
this cut by cuts, where the cut-formulas are subformulas of A. Cuts that have axioms
as premises can be eliminated completely. Iterating this procedure eventually yields a
cut-free proof of he same end-sequent S.

Corollary. [20], Theorem 6.3 In a cut-free proof in LK (or LJ) all the formulas which
occur in it are subformulas of the formulas in the end-sequent.

Proof. By mathematical induction on the number of inferences in the cut-free proof.

The following corollary corresponds to [20], Theorem 6.2.

Corollary. Consistency. LK and LJ are consistent.

Proof. Assume ⊢ was provable in LK (or LJ). Then by Theorem 3.1 it is provable in
LK (or LJ) without a cut. But this is impossible by the subformula property of cut-free
proofs.

The following theorem is a formulation of Gentzen’s midsequent theorem.

Theorem 3.2.2. [20], Theorem 6.4. Let S be a sequent which consists of prenex
formulas only and is provable in LK. Then there is a cut-free proof of S which contains
a sequent called midsequent S′, which satisfies the following properties:
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• S′ is quantifier-free,

• every inference above S′ is either structural or propositional and

• every inference below S′ is either structural or a quantifier inference.

Proof. See [20].

3.3 Reductive Cut-Elimination
Gentzen’s proof of the Hauptsatz [9] already contains an algorithm for removing all cuts
from an LK-proof. This method is often referred to as reductive cut-elimination, because
it is based on proof-rewriting rules that reduce the complexity of the cut-formula one by
one until atomic cuts are reached which can be removed completely. The transformation
steps from an LK-proof of some sequent S with cuts into an LK-proof without cuts of
the same sequent can be used to define a proof rewriting system whose normal forms
are cut-free proofs [5]. Such a rewrite system (or also called a reduction system) will be
described in more detail in the following section.

Another method for cut-elimination which is closely related to Gentzen’s procedure
is the method of Schütte [18] and Tait [19]. This method eliminates an uppermost
cut in a proof whose cut-formula has maximal complexity, i.e. if the cut-formula of
the uppermost cut is A then comp(B) ≤ comp(A) for all other cut-formulas B in the
proof [5].

The following definition is based on [5].

Definition 3.3.1. Cut-reduction system. Let Φ be the set of all LK-derivations. The
pair R = ⟨Φ, >R⟩ is called a cut-reduction system where >R⊆ Φ×Φ is a binary relation
over LK-derivations. Assume φ, ϕ ∈ Φ, then φ >R ϕ if and only if φ reduces to ϕ
according to the cut-reduction rules specified in Definition 3.3.7.

Definition 3.3.2. [5] Definition 3.1. Let >⊆ Φ × Φ. We say that > is based on
R = ⟨Φ, >R⟩ if >⊆>R and write ϕ > φ for (ϕ, φ) ∈>. Analogous for Rax.

Definition 3.3.3. [5] Definition 3.2. Let ϕ, φ ∈ Φ with ϕ >R φ and let π ∈ Φ such
that π.ν = ϕ for a node ν in π. Then we define π >R π[φ]ν , i.e. >R is closed under
contexts. Analogous for Rax.

The following definitions are taken from [5] Definition 3.3 and Definition 3.4, respec-
tively.

Definition 3.3.4. Gentzen reduction. We define ϕ >G π if ϕ >R π and ϕ is a cut-
derivation with a single non-atomic cut, which is the last inference. >G is extended like
>R : φ >G φ′ if φ′ = φ[π]ν and φ.ν >G π.

Definition 3.3.5. Tait reduction. We define φ >T φ′ if the following conditions are
fulfilled:
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• There exists a node ν in φ such that φ.ν is a cut-derivation with a maximal cut-
formula, i.e. if the cut-formula of the last cut in φ.ν is A then comp(B) ≤ comp(A)
for all other cut-formulas B in φ.

• φ.ν is strict, i.e. for all other cut-formulas B in φ.ν we have comp(B) < comp(A).

• φ′ = φ[π]ν for an LK-derivation π with φ.ν >R π.

The definition of an atomic cut normal form is based on [5] Definition 3.5.

Definition 3.3.6. ACNF. Let > be a cut-reduction relation based on R. Then an
LK-derivation ϕ is in atomic cut normal form (ACNF) w.r.t. > if there exists no π such
that ϕ > π.

Consider >∗, the reflexive and transitive closure of >. We say that ϕ is an ACNF of
φ if ϕ is in ACNF and φ >∗ ϕ.

Cut-reduction rules Now we will define the cut-reduction rules. They can be
divided into cut-elimination, grade reduction and rank reduction rules. With grade
reductions a cut with non-atomic cut-formulas is replaced by a new cut whose cut-
formulas are subformulas of the non-atomic cut-formulas. Rank reductions are used to
permute a cut over unary or binary rules upwards in the proof. Cut-eliminaiton rules
are used to transform a proof ϕ into a proof ϕ′ s.t. ϕ′ is the result of eliminating a cut
in ϕ, i.e. for Gentzen’s method this means that the uppermost cut is eliminated.

The following definition is based on [5], [23] and [16].

Definition 3.3.7. Cut-reduction Rules
Cut-elimination rules:

• over axioms

A ⊢ A

(σ)
A, Γ ⊢ ∆

cut(A)
A, Γ ⊢ ∆

⇓

(ρ)
Γ ⊢ ∆, A A ⊢ A

cut(A)Γ ⊢ ∆, A

⇓

(σ)
A, Γ ⊢ ∆

(ρ)
Γ ⊢ ∆, A

• over weakening

(ρ′)
Γ ⊢ ∆ wrΓ ⊢ ∆, A

(σ)
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ)
Γ ⊢ ∆, A

(σ′)
Π ⊢ Λ wl

A, Π ⊢ Λ
cut(A)Γ, Π ⊢ ∆, Λ

⇓
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(ρ′)
Γ ⊢ ∆ w∗

r , w∗
lΓ, Π ⊢ ∆, Λ

(σ′)
Π ⊢ Λ w∗

r , w∗
lΓ, Π ⊢ ∆, Λ

Grade reduction rules:

• cut-formula has a ¬ as top-level connective

(ρ′)
A, Γ ⊢ ∆ ¬rΓ ⊢ ∆,¬A

(σ′)
Π ⊢ Λ, A ¬l¬A, Π ⊢ Λ

cut(¬A)Γ, Π ⊢ ∆, Λ

⇓

(σ′)
Π ⊢ Λ, A

(ρ′)
A, Γ ⊢ ∆

cut(A)Γ, Π ⊢ ∆, Λ

• cut-formula has a ∧ as top-level connective

(ρ1)
Γ ⊢ ∆, A1

(ρ2)
Γ ⊢ ∆, A2 ∧rΓ ⊢ ∆, A1 ∧A2

(σ′)
Ai, Π ⊢ Λ ∧li

A1 ∧A2, Π ⊢ Λ
cut(A1 ∧A2)Γ, Π ⊢ ∆, Λ

⇓

(ρ1)
Γ ⊢ ∆, A1

(ρ2)
Γ ⊢ ∆, A2

(σ′)
Ai, Π ⊢ Λ

wl
A1, A2Π ⊢ Λ

cut(A2)
A1, Γ, Π ⊢ ∆, Λ

cut(A1)Γ, Γ, Π ⊢ ∆, ∆, Λ
c∗

l , c∗
rΓ, Π ⊢ ∆, Λ

• cut-formula has a ∨ as top-level connective

(ρ)
Γ ⊢ ∆, Ai ∨riΓ ⊢ ∆, A1 ∨A2

(σ1)
A1, Π ⊢ Λ

(σ2)
A2, Π ⊢ Λ ∨l

A1 ∨A2, Π ⊢ Λ
cut(A1 ∨A2)Γ, Π ⊢ ∆, Λ
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⇓

(ρ)
Γ ⊢ ∆, Ai wrΓ ⊢ ∆, A1, A2

(σ2)
A2, Π ⊢ Λ

cut(A2)Γ, Π ⊢ ∆, Λ, A1

(σ1)
A1, Π ⊢ Λ

cut(A1)Γ, Π, Π ⊢ ∆, Λ, Λ
c∗

l , c∗
rΓ, Π ⊢ ∆, Λ

• cut-formula has a ∃ as top-level connective

(ρ′)
Γ ⊢ ∆, A(x/t)

∃rΓ ⊢ ∆, (∃x)A(x)

(σ′(x/y))
A(x/y), Π ⊢ Λ

∃l(∃x)A(x), Π ⊢ Λ
cut((∃x)A)Γ, Π ⊢ ∆, Λ

⇓

(ρ′)
Γ ⊢ ∆, A(x/t)

(σ′(x/t))
A(x/t), Π ⊢ Λ

cut(a(x/t))Γ, Π ⊢ ∆, Λ

• cut-formula has a ∀ as top-level connective

(ρ′(x/y))
Γ ⊢ ∆, A(x/y)

∀rΓ ⊢ ∆, (∀x)A(x)

(σ′)
A(x/t), Π ⊢ Λ

∀l(∀x)A(x), Π ⊢ Λ
cut((∀x)A)Γ, Π ⊢ ∆, Λ

⇓

(ρ′(x/t))
Γ ⊢ ∆, A(x/t)

(σ′)
A(x/t), Π ⊢ Λ

cut(a(x/t))Γ, Π ⊢ ∆, Λ

Rank reduction rules:
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• over a unary rule Ξ

(ρ′)
Γ′ ⊢ ∆′, A

ΞΓ ⊢ ∆, A

(σ)
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ)
Γ ⊢ ∆, A

(σ′)
A, Π′ ⊢ Λ′

Ξ
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ′)
Γ′ ⊢ ∆′, A

(σ)
A, Π ⊢ Λ

cut(A)
Γ′, Π ⊢ ∆′, Λ

ΞΓ, Π ⊢ ∆, Λ

(ρ)
Γ ⊢ ∆, A

(σ′)
A, Π′ ⊢ Λ′

cut(A)
Γ, Π′ ⊢ ∆, Λ′

ΞΓ, Π ⊢ ∆, Λ

• over a binary rule Ξ

(ρ1)
Γ1 ⊢ ∆1, A

(ρ2)
Γ2 ⊢ ∆2 ΞΓ ⊢ ∆, A

(σ)
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ1)
Γ1 ⊢ ∆1, A

(σ)
A, Π ⊢ Λ

cut(A)Γ1, Π ⊢ ∆1, Λ

(ρ2)
Γ2 ⊢ ∆2 wrΓ2 ⊢ ∆2, A

(σ′)
A, Π ⊢ Λ

cut(A)Γ2, Π ⊢ ∆2, Λ
ΞΓ, Π, Π ⊢ ∆, Λ, Λ

c∗
l , c∗

rΓ, Π ⊢ ∆, Λ

(ρ1)
Γ1 ⊢ ∆1

(ρ2)
Γ2 ⊢ ∆2, A

ΞΓ ⊢ ∆, A

(σ)
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ1)
Γ1 ⊢ ∆1 wrΓ1 ⊢ ∆1, A

(σ)
A, Π ⊢ Λ

cut(A)Γ1, Π ⊢ ∆1, Λ

(ρ2)
Γ2 ⊢ ∆2, A

(σ′)
A, Π ⊢ Λ

cut(A)Γ2, Π ⊢ ∆2, Λ
ΞΓ, Π, Π ⊢ ∆, Λ, Λ

c∗
l , c∗

rΓ, Π ⊢ ∆, Λ
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where in the above two reductions σ′ is obtained from σ by renaming of the eigen-
variables such that the regularity of ϕ′ is ensured.

(ρ)
Γ ⊢ ∆, A

(σ1)
A, Π1 ⊢ Λ1

(σ2)
A, Π2 ⊢ Λ2 Ξ

A, Π ⊢ Λ
cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ)
Γ ⊢ ∆, A

(σ1)
A, Π1 ⊢ Λ1 cut(A)Γ, Π1 ⊢ ∆, Λ1

(ρ′)
Γ ⊢ ∆, A

(σ2)
Π2 ⊢ Λ2 wl

A, Π2 ⊢ Λ2 cut(A)Γ, Π2 ⊢ ∆, Λ2 ΞΓ, Γ, Π ⊢ ∆, ∆, Λ
c∗

l , c∗
rΓ, Π ⊢ ∆, Λ

(ρ)
Γ ⊢ ∆, A

(σ1)
Π1 ⊢ Λ1

(σ2)
A, Π2 ⊢ Λ2 Ξ

A, Π ⊢ Λ
cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ)
Γ ⊢ ∆, A

(σ1)
Π1 ⊢ Λ1 wl

A, Π1 ⊢ Λ1 cut(A)Γ, Π1 ⊢ ∆, Λ1

(ρ′)
Γ ⊢ ∆, A

(σ2)
A, Π2 ⊢ Λ2 cut(A)Γ, Π2 ⊢ ∆, Λ2 ΞΓ, Γ, Π ⊢ ∆, ∆, Λ

c∗
l , c∗

rΓ, Π ⊢ ∆, Λ

where in the above two reductions ρ′ is obtained from ρ by renaming the eigenvari-
ables such that the regularity of ϕ′ is ensured.

• over a contraction rule (contraction right)

(ρ′)
Γ ⊢ ∆, A, A

crΓ ⊢ ∆, A

(σ)
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ

⇓
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(ρ′)
Γ ⊢ ∆, A, A

(σ)
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ, A

(σ′)
A, Π ⊢ Λ

cut(A)Γ, Π, Π ⊢ ∆, Λ, Λ
c∗

r , c∗
lΓ, Π ⊢ ∆, Λ

where σ′ is obtained from σ by renaming the eigenvariables such that the regularity
of ϕ′ is ensured.

• over a contraction rule (contraction left)

(ρ)
Γ ⊢ ∆, A

(σ′)
A, A, Π ⊢ Λ

cl
A, Π ⊢ Λ

cut(A)Γ, Π ⊢ ∆, Λ

⇓

(ρ′)
Γ ⊢ ∆, A

(ρ)
Γ ⊢ ∆, A

(σ′)
A, A, Π ⊢ Λ

cut(A)
A, Γ, Π ⊢ ∆, Λ

cut(A)Γ, Γ, Π ⊢ ∆, ∆, Λ
c∗

r, c∗
lΓ, Π ⊢ ∆, Λ

where ρ′ is obtained from ρ by renaming the eigenvariables such that the regularity
of ϕ′ is ensured.

Example 3.3.1. Let φ be the derivation

(φ1)
P (a) ∨Q(b) ⊢ (∃y)(P (y) ∨Q(y))

(φ2)
(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ⊢ (∃z)Q(z)

cut
P (a) ∨Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

where φ1 is the LK-derivation:

P (a) ⊢ P (a) ∨r1
P (a) ⊢ P (a) ∨Q(a)

∃r
P (a) ⊢ (∃y)(P (y) ∨Q(y))

Q(b) ⊢ Q(b) ∨r2
Q(b) ⊢ P (b) ∨Q(b)

∃r
Q(b) ⊢ (∃y)(P (y) ∨Q(y)) ∨l

P (a) ∨Q(b) ⊢ (∃y)(P (y) ∨Q(y))

and φ2 is the LK-derivation:
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P (u) ⊢ P (u) ¬l
P (u),¬P (u) ⊢

wr
P (u),¬P (u) ⊢ Q(u)

Q(u) ⊢ Q(u)
wl

Q(u),¬P (u) ⊢ Q(u) ∨l
P (u) ∨Q(u),¬P (u) ⊢ Q(u)

∃r
P (u) ∨Q(u),¬P (u) ⊢ (∃z)Q(z)

∀l
P (u) ∨Q(u), (∀x)¬P (x) ⊢ (∃z)Q(z)

∃l(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ⊢ (∃z)Q(z)

For φ we obtain the following cut-reduction sequence:

P (a) ⊢ P (a) ∨r1
P (a) ⊢ P (a) ∨Q(a)

∃r
P (a) ⊢ (∃y)(P (y) ∨Q(y))

Q(b) ⊢ Q(b) ∨r2
Q(b) ⊢ P (b) ∨Q(b)

∃r
Q(b) ⊢ (∃y)(P (y) ∨Q(y)) ∨l

P (a) ∨Q(b) ⊢ (∃y)(P (y) ∨Q(y)) (φ2)
cut

P (a) ∨Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

via rank-reduction over ∨l we get

(φ′
1)

P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)
(φ′

2)
Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z) ∨l

P (a) ∨Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

where φ′
1 is the LK-derivation

P (a) ⊢ P (a) ∨r1
P (a) ⊢ P (a) ∨Q(a)

∃r
P (a) ⊢ (∃y)(P (y) ∨Q(y)) (φ2)

cut
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

and φ′
2 is the LK-derivation

Q(b) ⊢ Q(b) ∨r2
Q(b) ⊢ P (b) ∨Q(b)

∃r
Q(b) ⊢ (∃y)(P (y) ∨Q(y)) (φ′′

2)
cut

Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

where ϕ′′
2 is the LK-derivation obtained from φ2 by replacing the eigenvariable u by the

eigenvariable v.
First the cut occurring in φ′

1 will be eliminated:

P (a) ⊢ P (a) ∨r1
P (a) ⊢ P (a) ∨Q(a)

∃r
P (a) ⊢ (∃y)(P (y) ∨Q(y)) (φ2)

cut
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)
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via grade-reduction of (∃y)(P (y) ∨Q(y)) we get

P (a) ⊢ P (a) ∨r1
P (a) ⊢ P (a) ∨Q(a)

P (a) ⊢ P (a) ¬l
P (a),¬P (a) ⊢

wr
P (a),¬P (a) ⊢ Q(a)

Q(a) ⊢ Q(a)
wl

Q(a),¬P (a) ⊢ Q(a) ∨l
P (a) ∨Q(a),¬P (a) ⊢ Q(a)

∃r
P (a) ∨Q(a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a) ∨Q(a), (∀x)¬P (x) ⊢ (∃z)Q(z)

cut
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

via rank-reduction over ∀l we get

P (a) ⊢ P (a) ∨r1
P (a) ⊢ P (a) ∨Q(a)

P (a) ⊢ P (a) ¬l
P (a),¬P (a) ⊢

wr
P (a),¬P (a) ⊢ Q(a)

Q(a) ⊢ Q(a)
wl

Q(a),¬P (a) ⊢ Q(a) ∨l
P (a) ∨Q(a),¬P (a) ⊢ Q(a)

∃r
P (a) ∨Q(a),¬P (a) ⊢ (∃z)Q(z)

cut
P (a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

via rank-reduction over ∃r we get

P (a) ⊢ P (a) ∨r1
P (a) ⊢ P (a) ∨Q(a)

P (a) ⊢ P (a) ¬l
P (a),¬P (a) ⊢

wr
P (a),¬P (a) ⊢ Q(a)

Q(a) ⊢ Q(a)
wl

Q(a),¬P (a) ⊢ Q(a) ∨l
P (a) ∨Q(a),¬P (a) ⊢ Q(a)

cut
P (a),¬P (a) ⊢ Q(a)

∃r
P (a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

via grade-reduction of P (a) ∨Q(a) we get

P (a) ⊢ P (a)
wr

P (a) ⊢ P (a), Q(a)
Q(a) ⊢ Q(a)

wl
Q(a),¬P (a) ⊢ Q(a)

cut
P (a),¬P (a) ⊢ P (a), Q(a)

P (a) ⊢ P (a) ¬l
P (a),¬P (a) ⊢

wr
P (a),¬P (a) ⊢ Q(a)

cut
P (a),¬P (a),¬P (a) ⊢ Q(a), Q(a)

cl
P (a),¬P (a) ⊢ Q(a), Q(a)

cr
P (a),¬P (a) ⊢ Q(a)

∃r
P (a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

via cut-elimination over wr we get
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P (a) ⊢ P (a)
wr

P (a) ⊢ P (a), Q(a)
wl

P (a),¬P (a) ⊢ P (a), Q(a)

P (a) ⊢ P (a) ¬l
P (a),¬P (a) ⊢

wr
P (a),¬P (a) ⊢ Q(a)

cut
P (a),¬P (a),¬P (a) ⊢ Q(a), Q(a)

cl
P (a),¬P (a) ⊢ Q(a), Q(a)

cr
P (a),¬P (a) ⊢ Q(a)

∃r
P (a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

via rank-reduction over wr we get

P (a) ⊢ P (a)
wr

P (a) ⊢ P (a), Q(a)
wl

P (a),¬P (a) ⊢ P (a), Q(a)
P (a) ⊢ P (a) ¬l

P (a),¬P (a) ⊢
cut

P (a),¬P (a),¬P (a) ⊢ Q(a)
wr

P (a),¬P (a),¬P (a) ⊢ Q(a), Q(a)
cl

P (a),¬P (a) ⊢ Q(a), Q(a)
cr

P (a),¬P (a) ⊢ Q(a)
∃r

P (a),¬P (a) ⊢ (∃z)Q(z)
∀l

P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

via rank-reduction over ¬l we get

P (a) ⊢ P (a)
wr

P (a) ⊢ P (a), Q(a)
wl

P (a),¬P (a) ⊢ P (a), Q(a) P (a) ⊢ P (a)
cut

P (a),¬P (a) ⊢ P (a), Q(a) ¬l
P (a),¬P (a),¬P (a) ⊢ Q(a)

wr
P (a),¬P (a),¬P (a) ⊢ Q(a), Q(a)

cl
P (a),¬P (a) ⊢ Q(a), Q(a)

cr
P (a),¬P (a) ⊢ Q(a)

∃r
P (a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

via cut-elimination over axioms we get
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P (a) ⊢ P (a)
wr

P (a) ⊢ P (a), Q(a)
wl

P (a),¬P (a) ⊢ P (a), Q(a) ¬l
P (a),¬P (a),¬P (a) ⊢ Q(a)

wr
P (a),¬P (a),¬P (a) ⊢ Q(a), Q(a)

cl
P (a),¬P (a) ⊢ Q(a), Q(a)

cr
P (a),¬P (a) ⊢ Q(a)

∃r
P (a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

Now we will eliminate the cut occurring in φ′
2:

Q(b) ⊢ Q(b) ∨r2
Q(b) ⊢ P (b) ∨Q(b)

∃r
Q(b) ⊢ (∃y)(P (y) ∨Q(y))

P (v) ⊢ P (v) ¬l
P (v),¬P (v) ⊢

wr
P (v),¬P (v) ⊢ Q(v)

Q(v) ⊢ Q(v)
wl

Q(v),¬P (v) ⊢ Q(v) ∨l
P (v) ∨Q(v),¬P (v) ⊢ Q(v)

∃r
P (v) ∨Q(v),¬P (v) ⊢ (∃z)Q(z)

∀l
P (v) ∨Q(v), (∀x)¬P (x) ⊢ (∃z)Q(z)

∃l(∃y)(P (y) ∨Q(y)), (∀x)¬P (x) ⊢ (∃z)Q(z)
cut

Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

applying the same intermediate reduction steps as for φ′
1, we get

Q(b) ⊢ Q(b)
wr

Q(b) ⊢ P (b), Q(b)
Q(b) ⊢ Q(b)

wl
Q(b),¬P (b) ⊢ Q(b)

cut
Q(b),¬P (b) ⊢ P (b), Q(b)

P (b) ⊢ P (b) ¬l
P (b),¬P (b) ⊢

wr
P (b),¬P (b) ⊢ Q(b)

cut
Q(b),¬P (b),¬P (b) ⊢ Q(b), Q(b)

cl
Q(b),¬P (b) ⊢ Q(b), Q(b)

cr
Q(b),¬P (b) ⊢ Q(b)

∃r
Q(b),¬P (b) ⊢ (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

via rank-reduction over wl we get:

Q(b) ⊢ Q(b)
wr

Q(b) ⊢ P (b), Q(b) Q(b) ⊢ Q(b)
cut

Q(b) ⊢ P (b), Q(b)
wl

Q(b),¬P (b) ⊢ P (b), Q(b)

P (b) ⊢ P (b) ¬l
P (b),¬P (b) ⊢

wr
P (b),¬P (b) ⊢ Q(b)

cut
Q(b),¬P (b),¬P (b) ⊢ Q(b), Q(b)

cl
Q(b),¬P (b) ⊢ Q(b), Q(b)

cr
Q(b),¬P (b) ⊢ Q(b)

∃r
Q(b),¬P (b) ⊢ (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)
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via cut-elimination over axioms we get:

Q(b) ⊢ Q(b)
wr

Q(b) ⊢ P (b), Q(b)
wl

Q(b),¬P (b) ⊢ P (b), Q(b)

P (b) ⊢ P (b) ¬l
P (b),¬P (b) ⊢

wr
P (b),¬P (b) ⊢ Q(b)

cut
Q(b),¬P (b),¬P (b) ⊢ Q(b), Q(b)

cl
Q(b),¬P (b) ⊢ Q(b), Q(b)

cr
Q(b),¬P (b) ⊢ Q(b)

∃r
Q(b),¬P (b) ⊢ (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

applying the same intermediate reduction steps as for φ′
1 we get:

Q(b) ⊢ Q(b)
wr

Q(b) ⊢ P (b), Q(b)
wl

Q(b),¬P (b) ⊢ P (b), Q(b) ¬l
Q(b),¬P (b),¬P (b) ⊢ Q(b)

wr
Q(b),¬P (b),¬P (b) ⊢ Q(b), Q(b)

cl
Q(b),¬P (b) ⊢ Q(b), Q(b)

cr
Q(b),¬P (b) ⊢ Q(b)

∃r
Q(b),¬P (b) ⊢ (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)

Finally we obtain the following cut-free LK-proof φ′ with the same end-sequent as φ:

P (a) ⊢ P (a)
wr

P (a) ⊢ P (a), Q(a)
wl

P (a),¬P (a) ⊢ P (a), Q(a) ¬l
P (a),¬P (a),¬P (a) ⊢ Q(a)

wr
P (a),¬P (a),¬P (a) ⊢ Q(a), Q(a)

cl
P (a),¬P (a) ⊢ Q(a), Q(a)

cr
P (a),¬P (a) ⊢ Q(a)

∃r
P (a),¬P (a) ⊢ (∃z)Q(z)

∀l
P (a), (∀x)¬P (x) ⊢ (∃z)Q(z)

Q(b) ⊢ Q(b)
wr

Q(b) ⊢ P (b), Q(b)
wl

Q(b),¬P (b) ⊢ P (b), Q(b) ¬l
Q(b),¬P (b),¬P (b) ⊢ Q(b)

wr
Q(b),¬P (b),¬P (b) ⊢ Q(b), Q(b)

cl
Q(b),¬P (b) ⊢ Q(b), Q(b)

cr
Q(b),¬P (b) ⊢ Q(b)

∃r
Q(b),¬P (b) ⊢ (∃z)Q(z)

∀l
Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z) ∨l

P (a) ∨Q(b), (∀x)¬P (x) ⊢ (∃z)Q(z)
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CHAPTER 4
Cut-Elimination by Resolution

We will introduce the cut-elimination method CERES (cut-elimination by resolution)
which, in contrast to the reductive methods, uses the resolution principle. First we will
give a motivation for the development of CERES and then give a definition of clause
terms. Finally we will give a formal definition of the method CERES.

4.1 Motivation

In Chapter 3 we have seen methods which eliminate cuts by stepwise reduction of cut-
complexity. These methods identify the uppermost logical operator in the cut-formula
and then either eliminate it directly via grade reduction or indirectly via rank reduction.
Only a small part of the proof is analysed, namely the derivation corresponding to the
introduction of the uppermost logical operator [6]. The drawback of these methods is
that they do not take the general structure of the proof into account. Hence, many types
of redundancy in proofs are left undetected which leads to bad computational behaviour.

The method CERES was introduced by Baaz and Leitsch [3] and it analyses the
global structure of an LK-proof φ and therefore all cut-derivations in φ are analysed
simultaneously [6]. One important part of CERES is the characteristic clause set, which
is extracted from an LK-proof and depends on the interplay between binary rules that
produce ancestors of cut-formulas and those that do not [6].

It is shown that CERES can achieve a nonelementary speed-up over reductive meth-
ods [5], [6]. It is also shown in [5], that for every characteristic clause set CL(φ) there
exists a resolution refutation γ.

CERES can also be used to prove negative results about cut-elimination. For example
one can show that a certain cut-free proof is not obtainable by a given one [6].

Originally CERES was developed for classical logic, but it has also been successfully
extended to finitely valued logics [4], Gödel logic [2] and higher order logic [13], [22].
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4. Cut-Elimination by Resolution

We will give an outline of CERES by briefly explaining its main steps. A more
detailed explanation can be found in [6]. Let φ be an LK-derivation with end-sequent
S. Then CERES consists of the following steps:

1. Skolemization of φ
The end-sequent S is required to be Skolemized for the method CERES, i.e. there
are no strong quantifier inferences operating on end-sequent ancestors. Therefore
φ is Skolemized, where the eigenvariables are replaced by so-called Skolem terms.
After the LK-proof is transformed into ACNF, the final derivation is transformed
into a derivation of the original (un-Skolemized) end-sequent [5]. Note here, in our
method for CERES, we do not need the Skolemization of input proofs. So this
part is skipped.

2. Construction of the characteristic clause set CL(φ)
Every instance of the cut-rule introduces two copies of a potentially new formula
into φ. Then these two formulas are gradually decomposed into their atomic
subformulas. Some of these atoms may end up in initial sequents of the form
C = Ci◦C ′

i, where Ci denotes the part of C consisting of atomic cut-ancestors, and
C ′

i denotes the part of C consisting of ancestors of formulas occurring in the end-
sequent. Starting from the initial sequents, a set of clauses CL(φ) is constructed,
which consists only of clauses composed of Ci.

3. Construction of a projection φ(Ci) for each Ci ∈ CL(φ)
Each Ci ∈ CL(φ) is a subsequent of some initial sequent in φ, therefore we can
obtain a cut-free derivation of a sequent S ◦ Ci, where S is the end-sequent of
φ, for every Ci ∈ CL(φ). To obtain this, we skip all inferences that operate
on cut-ancestors and introduce some additional weakenings in order to obtain all
formulas of S, if necessary. As a consequence, the atoms of Ci remain unchanged
throughout φ. The projection φ(Ci) of Ci is then given by the derivation of the
sequent S ◦ Ci [5].

4. Construction of a resolution refutation γ of CL(φ)
It is shown that the characteristic clause set CL(φ) is always unsatisfiable [6].
Hence, there always exists a resolution refutation γ of CL(φ) by the completeness
of the resolution calculus [14]. Such a refutation corresponds to the empty sequent
⊢ from the clauses in CL(φ). By applying a ground projection to γ, a ground
resolution refutation γ′ of CL(φ) is obtained [5].

5. Merging the projections φ(Ci) and the ground resolution refutation γ′

Now we need to combine the projections φ(Ci) and the ground resolution refutation
γ′ of CL(φ). This is done by applying the ground substitution σ, which defines γ′,
to each projection φ(Ci) and placing φ(Ci)σ immediately above the initial sequents
in γ′ that correspond to the same Ci ∈ CL(φ). After combining the projections
and γ′ we obtain an LK-derivation of S that contains only atomic cuts, since the
resolution steps in γ′ can be considered as atomic cuts in LK. Some contractions
might be necessary here, in order to obtain an LK-derivation of S [5].
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4.2. Clause Terms

4.2 Clause Terms
The information present in the axioms refuted by the cuts will be represented by a set
of clauses. Every proof φ with cuts can be transformed into a proof φ′ of the empty
sequent by skipping inferences going into the end-sequent. The axioms of this refutation
can be represented by clause terms [6].

The following two definitions are taken from [6] Definition 6.3.1 and Definition 6.3.2.

Definition 4.2.1. Clause term. Clause terms are {⊕,⊗}-terms over clause sets. More
formally:

• (Finite) sets of clauses are clause terms.

• if X, Y are clause terms then X ⊕ Y is a clause term.

• if X, Y are clause terms then X ⊗ Y is a clause term.

Definition 4.2.2. Semantics of clause terms. We define a mapping |.| from clause terms
to sets of clauses in the following way:

|C | = C for a set of clauses C

|X ⊕ Y | = |X| ∪ |Y |

|X ⊗ Y | = |X| × |Y |

where C ×D = {C ◦D|C ∈ C , D ∈ D}.

Clause terms are equivalent if the corresponding sets of clauses are equal, i.e. X ∼ Y
iff |X| = |Y |.

Definition 4.2.3. [6] Definition 6.3.3. Let σ be a substitution. We define the applica-
tion of σ to clause terms as follows:

Xσ = C σ if X = C for a set of clauses C

(X ⊕ Y )σ = Xσ ⊕ Y σ

(X ⊗ Y )σ = Xσ ⊗ Y σ

Definition 4.2.4. [6] Definition 6.3.4. Let X, Y be clause terms. We define

• X ⊆ Y iff |X| ⊆ |Y | (i.e. iff |X| is a subclause of |Y |

• X ⊑ Y iff for all C ∈ |Y | there exists a D ∈ |X| s.t. D ⊑ C

• X ≤s Y iff there exists a substitution σ with Xσ = Y

The operators ⊕ and ⊗ are compatible with the relations ⊂ and ⊂. This is formally
proved in [6]. We will just state the lemmas here, for the proof we refer to [6].
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4. Cut-Elimination by Resolution

Lemma 4.2.1. [6], Lemma 6.3.1. Let X, Y, Z be clause terms and X ⊆ Y . Then

1. X ⊕ Z ⊆ Y ⊕ Z,

2. Z ⊕X ⊆ Z ⊕ Y ,

3. X ⊗ Z ⊆ Y ⊗ Z,

4. Z ⊗X ⊆ Z ⊗ Y .

Lemma 4.2.2. [6], Lemma 6.3.2. Let X, Y, Z be clause terms and X ⊑ Y . Then

1. X ⊕ Z ⊑ Y ⊕ Z,

2. Z ⊕X ⊑ Z ⊕ Y ,

3. X ⊗ Z ⊑ Y ⊗ Z,

4. Z ⊗X ⊑ Z ⊗ Y .

Replacing subterms in a clause term preserves the relations ⊆ and ⊑. The following
lemma is taken from [6] and for the proof we refer to [6].

Lemma 4.2.3. [6] Lemma 6.3.3. Let λ be an occurrence in a clause term X and
Y ≼ X.λ for ≼∈ { ⊆,⊑}. Then X[Y ]λ ≼ X.

4.3 The Method CERES
The method CERES is a method of cut-elimination which essentially uses the semantic
information of the refutability of the cuts after the rest of the proof has been deleted.

The following two definitions are based on [6] Definition 3.1.15 and Definition 3.1.16.

Definition 4.3.1. Polarity. Let λ be an occurrence of a formula A in B.

• If A = B then λ is a positive occurrence in B.

• If B = (C ⊙D) for ⊙ ∈ {∧,∨} and λ is a positive (negative) occurrence of A in C
(or in D, respectively) then the corresponding occurrence λ′ of A in B is positive
(negative).

• If B = (Qx)C for Q ∈ {∀, ∃} and λ is a positive (negative) occurrence of A in C
then the corresponding occurrence λ′ of A in B is positive (negative).

• If B = ¬C and λ is a positive (negative) occurrence of A in C then the correspond-
ing occurrence λ′ of A in B is negative (positive).

If there exists a positive (negative) occurrence of a formula A in B we say that A is of
positive (negative) polarity in B.
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4.3. The Method CERES

Definition 4.3.2. Strong and weak quantifiers. If (∀x) occurs positively (negatively) in
B then (∀x) is called a strong (weak) quantifier. If (∃x) occurs positively (negatively)
in B then (∃x) is called a weak (strong) quantifier.

Now we define Skolemization, the definition is taken from [6] Definition 6.2.1.

Definition 4.3.3. Skolemization. sk is a function which maps closed formulas into
closed formulas; it is defined in the following way:

sk(F ) = F if F does not contain strong quantifiers.

Otherwise assume that (Qx) is the first strong quantifier in F (in a tree ordering) which
is in the scope of the weak quantifiers (Q1x1), ..., (Qnxn) (appearing in this order). Let
f be an n-ary function symbol not occurring in F (f is a constant symbol for n = 0).
Then sk(F ) is defined inductively as

sk(F ) = sk(FQy{y ← f(x1, ..., xn)}).

where FQy is F after omission if (Qy). sk(F ) is called the (structural) Skolemization of
F .

The definition of Skolemization in model theory and automated deduction mostly is
dual to the definition above, i.e. in case of prenex forms the existential quantifiers are
eliminated instead of the universal ones. This kind of Skolemization is called refutational
Skolemization [6]. The dual kind of Skolemization (elimination of universal quantifiers)
is called Herbrandization. Skolemization of sequents yields a more general framework
covering both concepts [6]. The following definition is taken from [6] Definition 6.2.2.

Definition 4.3.4. Skolemization of sequents. Let S be the sequent A1, ..., An ⊢ B1, ..., Bm

consisting of closed formulas only and

sk((A1 ∧ ... ∧An)→ (B1 ∨ ... ∨Bm)) = (A′
1 ∧ ... ∧A′

n)→ (B′
1 ∨ ... ∨B′

m).

Then the sequent
S′ : A′

1, ..., A′
n ⊢ B′

1, ..., B′
m

is called the Skolemization of S.

Example 4.3.1. [6] Example 6.2.1. Let S be the sequent (∀x)(∃y)P (x, y) ⊢ (∀x)(∃y)P (x, y).
Then the Skolemization of S is S′ : (∀x)P (x, f(x)) ⊢ (∃x)P (c, y) for a one-place function
symbol f and a constant symbol c.

We follow [6]:
By a Skolemized proof we mean a proof of the Skolemized end sequent. Proofs with cuts
can be Skolemized as well, but the cut formulas themselves cannot. Only the strong
quantifiers which are ancestors of the end sequent are eliminated. Skolemization does
not increase the length of proofs.
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Definition 4.3.5. [6] Definition 6.2.3. Let φ be an arbitrary LK-proof. By ∥φ∥l we
denote the number of logical inferences and cuts in φ. Unary structural rules are not
counted.

Proposition 4.3.1. [6] Proposition 6.2.1. Let φ be an LK-proof of S from an atomic
axiom set A . Then there exists a proof sk(φ) of sk(S) (the structural Skolemization of
S) from A s.t. ∥sk(φ)∥l ≤ ∥φ∥l.

Proof. See [6] Proposition 6.2.1.

Definition 4.3.6. [6] Definition 6.2.4. Let Φs be the set of all LK-derivations with
Skolemized end sequents. Φs

∅ is the set of all cut-free proofs in Φs and for all i ≥ 0 Φs
i is

the set of all proofs in Φs with cut-complexity ≤ i.

Hence, on Skolemized proofs cut-elimination means to transform a derivation in Φs

into a derivation in Φs
0 [6].

The following two definitions are based on [6] Definition 6.4.1 and 6.4.2.

Definition 4.3.7. Characteristic term. Consider an LK-derivation φ of S and let Ω
be the set of all occurrences of cut formulas in φ. Then the characteristic (clause) term
Φ(φ) is defined inductively via Φ(φ)/ν for occurrences of sequents ν in φ: Let ν be the
occurrence of an initial sequent in φ. Then Φ(φ)/ν = {S(ν, Ω)} (see Definition 3.2.14
in [6]).

Now assume that all the clause terms Φ(φ)/ν are constructed for sequent occurrences
ν in φ with depth(ν) ≤ k. Now consider an occurrence ν with depth(ν) = k + 1. We
distinguish the following cases:

1. ν is the conclusion of µ, i.e. a unary rule applied to µ gives ν. Here we simply
define Φ(φ)/ν = Φ(φ)/µ.

2. ν is the conclusion of µ1 and µ2, i.e. a binary rule ξ applied to µ1 and µ2 gives ν.

a) The occurrences of the auxiliary formulas of ξ are ancestors of Ω, thus the
formulas occur on S(µ1, Ω), S(µ2, Ω). Then Φ(φ)/ν = Φ(φ)/µ1 ⊕ Φ(φ)/µ2.

b) The occurrences of the auxiliary formulas of ξ are not ancestors of Ω. Here
we define Φ(φ)/ν = Φ(φ)/µ1 ⊗ Φ(φ)/µ2.

In binary inferences, either the occurrences of both auxiliary formulas are ancestors of
Ω or none of them.

Finally the characteristic term Φ(φ) is defined as Φ(φ)/ν where ν is the end-sequent
occurrence.

Definition 4.3.8. Characteristic clause set. Let φ be an LK-derivation and Φ(φ) be
the characteristic term of φ. Then CL(φ) = |Φ(φ)| is called the characteristic clause set
of φ.
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It is shown in [6] that the set of characteristic clauses CL(φ) for a proof φ is unsat-
isfiable.

Proposition 4.3.2. [6] Proposition 6.4.1. Let φ be regular LK-proof of a closed sequent
and φ ∈ Φs. Then CL(φ) is unsatisfiable.

Proof. See [6] Proposition 6.4.1.

We follow [6]:
Let φ ∈ Φs be a deduction of S : Γ ⊢ ∆ and CL(φ) be the characteristic clause set
of φ. Then CL(φ) is unsatisfiable and by the completeness of resolution there exists a
resolution refutation γ of CL(φ) [14]. By applying a ground projection to γ we obtain
a ground resolution refutation of CL(φ), we call it γ′. γ′ is also an LK-deduction of ⊢
from ground instances of CL(φ). Hence γ′ may serve a s a skeleton of an Φs

0-proof ϕ
of Γ ⊢ ∆ itself. To construct ϕ from γ′ we need projections that replace φ by cut-free
deductions φ(C) of P , Γ ⊢ ∆, Q for clauses C : P ⊢ Q in CL(φ). Roughly speaking,
the projections of the proof φ are obtained by skipping all the inferences leading to a
cut. Note that we obtain a characteristic clause set in the end sequent as a residue.
Thus a projection is a cut-free derivation of the end sequent S + some atomic formulas.
For the application of projections we need to have Skolemized end-sequents, otherwise
eigenvariable conditions could be violated.

The following definition is taken from [6].

Definition 4.3.9. [6] Definition 6.4.4. Let φ be an LK-proof, ν a node in φ and Ω a
set of formula occurrences in φ. Then we define S(ν, Ω) by

Seq(ν) = S(ν, Ω) ◦ S(ν, Ω).

S(ν, Ω) is the subsequent of Seq(ν) consisting of the non-ancestors of Ω, i.e. of the
ancestors of the end-sequent.

Lemma 4.3.3. [6] Lemma 6.4.1. Let φ be a deduction in Φs of a sequent S from an
axiom set A and let C be a clause in CL(φ). Then there exists a deduction φ[C] ∈ Φs

∅
of C ◦ S from A and

∥φ[C]∥l ≤ ∥φ∥l

Proof. See [6] Lemma 6.4.1.

The following definition is taken from [6].

Definition 4.3.10. Projection. Let φ ∈ Φs be a proof and C ∈ CL(φ). Then the
LK-proof φ[C] is called the projection of φ w.r.t. C. Let σ be an arbitrary substitution,
then φ[Cσ] is defined as φ[C]σ and is also called the projection of φ w.r.t. Cσ, i.e.
instances of projections are also projections.
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4. Cut-Elimination by Resolution

Definition 4.3.11. [6] Definition 6.4.6. Let φ be a proof of a closed sequent S and
φ ∈ Φs. We define a set

PES(φ) = {S ◦ Cσ | C ∈ CL(φ), σ a substitution}

which contains all end sequents of projections w.r.t. φ.

Now we state the main result of this section.

Theorem 4.3.4. [6] Theorem 6.4.1. CERES is a cut-elimination method, i.e. for every
proof φ of a sequent S in Φs CERES produces a proof ϕ of S s.t. ϕ ∈ Φs

0.

Proof. See [6] Theorem 6.4.1.

The context product allows to extend a proof on all nodes by a clause. The definition
is taken from [6] Definition 4.6.3.

Definition 4.3.12. Context product. Let C be a sequent and φ be an LK-derivation
such that no free variable in C occurs as eigenvariable in φ. We define the left context
product C ⋆ φ of C and φ (which gives a proof of C ◦ S) inductively:

• If φ consists only of the root node ν and Seq(ν) = S then C ⋆φ is a proof consisting
only of a node µ such that Seq(µ) = C ◦ S.

• Assume that φ is of the form

(φ′)
S′

ξ
S

where ξ is a unary rule. Assume also that C ⋆ φ′ is already defined and is an
LK-derivation of C ◦ S′. Then we define C ⋆ φ as:

(C ⋆ φ′)
C ◦ S′

ξ
C ◦ S

C ⋆φ is well defined also for the rules ∀r and ∀l as C does not contain free variables
which are eigenvariables in φ.

• Assume that φ is of the form

(φ1)
S1

(φ2)
S2 ξ

S

and C ⋆ φ1 is a proof of C ◦ S1, C ⋆ φ2 is a proof of C ◦ S2. Then we define the
proof C ⋆ φ as
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4.3. The Method CERES

(C ⋆ φ1)
C ◦ S1

(C ⋆ φ2)
C ◦ S2 ξ

S′
s∗

C ◦ S

Note that, if ξ is the cut rule, restoring the context after application of ξ might
require weakening; otherwise s∗ stands for applications of contractions.

The right context product φ ⋆ C is defined in the same way.

The proof constructed by the CERES-method is a specific type of proof in Φs which
contains parts of the original proof in the form of projections and this type of proof is
called a CERES normal form. The following definition is based on [6] Definition 6.4.7.

Definition 4.3.13. CERES normal form. Let φ ∈ Φs be a proof of S and γ a ground
resolution refutation of the unsatisfiable set of clauses CL(φ). γ is also a proof in Φs

from CL(φ). First γ′ : S ⋆ γ is constructed, where γ′ is an LK-derivation of S from
PES(φ). Then define φ(γ′) by replacing all initial clauses C ◦S in γ′ by the projections
φ[C]. By definition φ(γ′) is an LK-proof of S in Φs

0 and is called the CERES-normal
form of φ w.r.t. γ.
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CHAPTER 5
CERES in Higher-Order Logic

The CERES-method was originally defined as a cut-elimination method for first-order
logic, where it is not quite clear how to handle induction. It is represented by an axiom
scheme and first-order logic does not have any object-level tools to handle schemes. Since
induction can be represented by a single axiom in second-order logic, it became of major
interest to move CERES to higher-order logic. This was established in [13] and [22]
where CERESω was introduced. In first-order logic, proof Skolemization is used since
the CERES-method performs a transformation which is not sound in the presence of
eigenvariables [13]. Proof Skolemization removes inferences which obey eigenvariable
conditions, hence this transformation can be performed. In higher-order logic, proof
Skolemization is not compatible with the quantifier rules. As a solution to this problem
a new calculus, LKsk, is defined in [13] and [22], where eigenvariables are replaced
by Skolem terms. The proof projections are then proofs that may be locally unsound,
due to the violations of eigenvariable conditions, but they fulfil some global soundness
properties. The transformation into an LK-proof is possible [13] and [22] which proves
soundness of LKsk.

5.1 Types, languages and Skolem terms
For CERESω a version of Church’s simple theory of types is used [7].

Definition 5.1.1. Base types. Base types are defined as the set BT = {ι, o} of the
types of individuals ι and booleans o.

The following definition is taken from [22] Definition 2.1.1.

Definition 5.1.2. Types. We define the set T of types along with their order o induc-
tively:

1. BT ⊆ T , for all t ∈ BT o(t) = 1.
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2. If T1, t2 ∈ T then t = t1 → t2 ∈ T and o(t) = max(o(t1), o(t2)) + 1.

Note that → associates to the right. The following definition is taken from [22]
Definition 2.1.9.

Definition 5.1.3. Skolem symbols. Let α, β1, ..., βn be types. Then the list σ =
β1, ..., βn, α is called a signature (for a Skolem symbol). For each signature σ let
σT = β1 → ... → βn → α and let Kσ ⊆ CσT be a denumerable set of constant symbols
of type σT s.t. if σ1 and σ2 are different signatures, then Kσ1 and Kσ2 are disjoint.
C ∈ Kσ is called a Skolem symbol of signature σ with arity n. Then define the Her-
brand Universe as the set of all T ∈ E (where E denotes the Herbrand Universe, i.e.
only expressions contained in the Herbrand Universe) s.t. whenever a Skolem symbol of
arity n has an occurrence in T it is applied to at least n arguments. Furthermore, if a
variable has a free occurrence in any of these arguments, that occurrence is also free in
T .

5.2 The calculus LKsk

The following definition is taken from [13] Definition 2.

Definition 5.2.1. Labelled Sequents. A label is a finite multiset of terms. A labelled
sequent is a sequent F1, ..., Fn ⊢ Fn+1, ..., Fm together with labels li for 1 ≤ i ≤ m and
we write ⟨F1⟩l1 , ..., ⟨Fn⟩ln ⊢ ⟨Fn+1⟩ln+1 , ..., ⟨Fm⟩lm . We identify labelled formulas with
empty labels with the respective unlabelled formulas. If S is a labelled sequent, then
the reduct of S is S where all labels are empty. If C is a set of labelled sequents, then
the reduct of C is {S | S is a reduct of some S′ ∈ C }.

Substitution is extended to labelled sequents [13]. Let σ be a substitution and

S = ⟨F1⟩l1 , ..., ⟨Fn⟩ln ⊢ ⟨Fn+1⟩ln+1 , ..., ⟨Fm⟩lm

then
Sσ = ⟨F1σ⟩l1σ, ..., ⟨Fnσ⟩lnσ ⊢ ⟨Fn+1σ⟩ln+1σ, ..., ⟨Fmσ⟩lmσ

The purpose of the labels is that they will track quantifier instantiation information
throughout prooftrees and that they enable to combine resolution refutations and sequent
calculus proofs in a certain way [13]. The following definition is taken from [13] Definition
3.

Definition 5.2.2. LKsk rules.
Labelled quantifier rules:

Γ ⊢ ∆, ⟨F (fS1...Sn)⟩l
∀sk

rΓ ⊢ ∆, ⟨∀αF ⟩l
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where l = S1, ..., Sn and if τ(Si) = αi for 1 ≤ i ≤ n then f ∈ Kα1,...,αn,α is a Skolem
symbol. An application of this rule is called source inference of fS1...Sm and fS1...Sm

is called the Skolem term of this inference. Note that we do not impose an eigenvariable
or eigenterm restriction on this rule.

⟨FT ⟩l,T , Γ ⊢ ∆
∀sk

l⟨∀αF ⟩l, Γ ⊢ ∆

T is called the substitution term of this inference. The ∃sk
l and ∃sk

r rules are defined
analogously. The ∀sk

r and ∃sk
l rules will be called strong labelled quantifier rules and

the ∀sk
l and ∃sk

r will be called weak labelled quantifier rules. The other rules of LK are
transferred directly to LKsk:
Propositional rules:

⟨F ⟩l, Γ ⊢ ∆ ⟨G⟩l, Π ⊢ Λ ∨l
⟨F ∨G⟩l, Γ, Π ⊢ ∆, Λ

Γ ⊢ ∆, ⟨F ⟩l ∨r1Γ ⊢ ∆, ⟨F ∨G⟩l

The rest of the propositional rules of LK are adapted analogously.
Structural rules:

Γ ⊢ ∆, ⟨F ⟩l, ⟨F ⟩l
cr

Γ ⊢ ∆, ⟨F ⟩l

Γ ⊢ ∆ wr
Γ ⊢ ∆, ⟨F ⟩l

and analogously for cl and wl. An LKsk-tree is a tree formed according to the rules of
LKsk, such that all leaves are of the form ⟨F ⟩l1 ⊢ ⟨F ⟩l2 for some formula F and some
labels l1, l2. The axiom partner of ⟨F ⟩l1 is defined to be ⟨F ⟩l2 , and vice versa. Let π be
an LKsk-tree with end-sequent S. If S does not contain Skolem terms or free variables,
and all labels in S are empty, then S is called proper. If the end-sequent of π is proper,
we say that π is proper. Note that LKsk is a cut free calculus.

Example 5.2.1. [13], Example 1. The following figure shows a proper LKsk-tree of a
valid sequent:

⟨S(f(λx.¬S(x)))⟩λx.¬S(x) ⊢ ⟨S(f(λx.¬S(x)))⟩λx.¬S(x)
¬l

⟨¬S(f(λx.¬S(x)))⟩λx.¬S(x), ⟨S(f(λx.¬S(x)))⟩λx.¬S(x) ⊢ ¬r
⟨S(f(λx.¬S(x)))⟩λx.¬S(x) ⊢ ⟨¬¬S(f(λx.¬S(x)))⟩λx.¬S(x)

→r
⊢ ⟨S(f(λx.¬S(x)))→ ¬¬S(f(λx.¬S(x)))⟩λx.¬S(x)

∀sk
r⊢ ⟨(∀z)(S(z)→ ¬¬S(z))⟩λx.¬S(x)

∃sk
r⊢ ⟨(∃Y )(∀z)(S(z)→ ¬Y (z))⟩
∀sk

r⊢ ⟨(∀X)(∃Y )(∀z)(X(z)→ ¬Y (z))⟩
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where S ∈ Kι→o, f ∈ Kι→o,ι, and the substitution term of the ∃sk
r is λx.¬S(x). Note

that although the labels in the axiom coincide, this is not required in general.

LKsk-trees are unsound without some restrictions. Consider the following example:

Example 5.2.2. [13], Example 2. Consider the following LKsk-tree of (∃x)P (x) ⊢
(∀x)P (x):

P (s) ⊢ P (s)
∃sk

l(∃x)P (x) ⊢ P (s)
∀sk

r(∃x)P (x) ⊢ (∀x)P (x)

where s ∈ Kι. The reason of unsoundness in this example is that we are allowed to use
the same Skolem term for distinct and unrelated strong quantifier inferences in LKsk-
trees. Note that there are no labels in the example above.

In the following some definitions and facts about occurrences in LKsk-trees will be
introduced.

Proposition 5.2.1. [13] Proposition 4. Let ω be a formula occurrence in a proper
LKsk-tree π with label {T1, ..., Tn}. Then T1, ..., Tn are exactly the substitution terms of
the weak labelled quantifier inferences operating on descendants of ω.

Proof. By induction in the number of sequents between ω and the end-sequent of π. For
details see [13] Proposition 4.

Definition 5.2.3. Paths. Let µ be a sequence of formula occurrences µ1, ..., µn in an
LKsk-tree. If it holds that for all 1 ≤ i ≤ n µi is an immediate ancestor (immediate
descendant) of µi+1, then µ is called a downwards (upwards) path. If µ is a downwards
(upwards) path ending in an occurrence in the end-sequent (a leaf), then µ is called
maximal.

Definition 5.2.4. Homomorphic paths. If ω is a formula occurrence, then we denote
the formula at ω by F (ω). If µ is a sequence of formula occurrences, we define F (µ) to
be µ where every formula occurrence ω is replaced by F (ω) and repetitions are omitted.
Two sequences of formula occurrences µ, ν are called homomorphic, if F (µ) = F (ν).

Proposition 5.2.2. [13] Proposition 5. Let π be a proper LKsk-tree and ρ be a strong
labelled quantifier inference in π with Skolem term S and auxiliary formula α. Let µ be
a maximal downwards path starting at α. Then FV (S) = FV (µ), where FV (S) denotes
the set of free variables in S.

Proof. As π is proper, its end-sequent does not contain free variables. Hence all free
variables in µ are contained in substitution terms of weak labelled quantifier inferences,
and they are exactly the free variables of S by [13] Proposition 4.

Proposition 5.2.3. [13] Proposition 6. Let α1, α2 be formula occurrences. If there
exists a downwards path from α1 to α2, then it is unique.
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Proof. Every formula occurrence has at most one direct descendant.

Corollary. [13] Corollary 1. If α is a formula occurrence, then there exists a unique
maximal downwards path starting at α.

The investigation of paths allows to define a relation between inferences in a tree that
are connected in a strong sense through paths. The following definition is based on [13]
Definition 6.

Definition 5.2.5. Homomorphic Inferences. Let α1 and α2 be formula occurrences
in an LKsk-tree π. Let c be a contraction inference below α1 and α2 with auxiliary
occurrences γ1 and γ2. Then α1 and α2 are homomorphic in c if the downwards paths
α1, ..., γ1 and α2, ..., γ2 exist and are homomorphic. α1 and α2 are homomorphic if there
exists a c s.t. they are homomorphic in c.

Let ρ1 and ρ2 be inferences of the same type and let α1
1 (α2

1) and α1
2 (α2

2) be their
auxiliary formula occurrences. Then ρ1 and ρ2 are called homomorphic if there exists
a contraction inference c s.t. α1

1 and α1
2 are homomorphic in c and α12

1 and α2
2 are

homomorphic in c. Call this contraction inference the uniting contraction of ρ1 and ρ2.

Example 5.2.3. [13], Example 4. Consider the following LKsk-tree π:

⟨P (s)⟩s ⊢ P (s)
∀sk

l(∀x)P (x) ⊢ P (s)
∀sk

r (1)(∀x)P (x) ⊢ (∀x)P (x)

⟨P (s)⟩s ⊢ P (s)
∀sk

r (3)⟨P (s)⟩s ⊢ (∀x)P (x)
∀sk

l(∀x)P (x) ⊢ (∀x)P (x) ∨l(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x), (∀x)P (x)
cr(2)

(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x)

The inferences (1) and (3) in π are homomorphic and (2) is their uniting contraction.
More concretely, let µ be the path from the auxiliary formula of (1) to the auxiliary
formula of (2). Let ν be the path from the auxiliary formula of (3) to the auxiliary
formula of (2). Then F (µ) = P (s), (∀x)P (x) = F (ν).

Now consider π′:

⟨P (s1)⟩s1 ⊢ P (s1)
∀sk

l(∀x)P (x) ⊢ P (s1)
∀sk

r (1)(∀x)P (x) ⊢ (∀x)P (x)

⟨P (s2)⟩s2 ⊢ P (s2)
∀sk

r (3)⟨P (s2)⟩s2 ⊢ (∀x)P (x)
∀sk

l(∀x)P (x) ⊢ (∀x)P (x) ∨l(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x), (∀x)P (x)
cr(2)

(∀x)P (x) ∨ (∀x)P (x) ⊢ (∀x)P (x)

In π′ there are no homomorphic inferences. The reason is that the auxiliary formulas of
the ∀sk

r applications differ. Define µ and ν as above, then F (µ) = P (s1), (∀x)P (x) and
F (ν) = P (s2), (∀x)P (x), hence F (µ) ̸= F (ν).

Proposition 5.2.4. [13] Proposition 7. If two strong labelled quantifier inferences are
homomorphic, they have identical Skolem terms.
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Proof. See [13] Proposition 7.

Now we can define the notion of an LKsk-proof. The following definition is based
on [13] Definition 7.

Definition 5.2.6. Weak regularity and LKsk-proofs. Let π be an LKsk-tree with end-
sequent S. π is weakly regular if for all distinct strong labelled quantifier inferences ρ1
and ρ2 in π it holds that if ρ1 and ρ2 have identical Skolem terms, then ρ1 and ρ2 are
homomorphic. π is an LKsk-proof if it is weakly regular and proper.

Particularly the LKsk-tree in Example 5.2 is not weakly regular. Note that in ordi-
nary LK, it follows directly from the definition of regularity that all strong quantifier
inferences in a regular LK-tree π fulfil the eigenvariable condition and hence, that LK-
trees are LK-proofs. Here, inferences are allowed to use the same eingenterm, provided
they are homomorphic.

Since LKsk is cut-free, ordinary LK is connected with the rules of LKsk. The
following definition is taken from [13] Definition 8.

Definition 5.2.7. LKskc-trees. An LKskc-tree is a tree formed according to the rules
of LKsk and LK s.t.

1. rules of LK operate only on cut-ancestors, and

2. rules of LKsk operate only on end-sequent ancestors.

Hence the cut-ancestors in an LKskc-tree have empty labels.

5.3 The resolution calculus Ral

Since CERESω is a CERES-method for higher-order logic, it needs a different resolution
calculus than the one defined for the ordinary CERES-method. In particular, in [13]
and [22] the resolution calculus Ral is introduced. It is quite close to Andrews’ resolution
calculus R [1], since this one can be regarded as the most simple formulation of a
resolution calculus for higher-order logic.

We will not give a list of the rules and deductions of this resolution calculus here,
instead we refer to [13] and [22] and just state a definition and the main result as a
theorem.

Definition 5.3.1. Relative completeness of Ral. Let S be a set of labelled sequents.
Ral is relatively complete if the following holds: If there exists an R-refutation of the
reduct of S , then there exists an Ral-refutation of S .

Theorem 5.3.1. [1] Theorem 5.3. Let S be a set of sentences. If there exists a τ -
refutation of S then there exists an R-refutation of S (where τ is the system defined
in [1]).
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5.4 Cut-elimination for LKsk

LK-proofs can be translated to LKsk-proofs. The notions of paths, homomorphic infer-
ences and weak regularity are extended to LKskc-trees. Let π be an LKskc-tree with
end-sequent S. Then π is called an LKskc-proof if π is weakly regular and proper. The
next definition is based on [13] Definition 10.

Definition 5.4.1. LKskc regularity. Let π be an LKskc-tree. π is called regular if

1. each strong labelled quantifier inference has a unique Skolem symbol and

2. the eigenvariable of each strong quantifier inference ρ only occurs above ρ in π.

Proposition 5.4.1. [13] Proposition 9. Let π be an LKskc-tree. If π is regular, then
π is weakly regular.

Lemma 5.4.2. [13] Lemma 1, Skolemization. Let π be a regular LK-proof of S. Then
there exists a regular LKskc-proof ϕ of S.

Proof. By induction on the height of ρ, where ρ is an inference in π with conclusion
F1, ..., Fn ⊢ Fn+1, ..., Fm. For a detailed proof we refer to [13] Lemma 1.

We follow [13]:
Let π be an LKskc-tree and let S be a sequent in π. Then cutanc(S) is the subsequent
of S consisting of the cut-ancestors of S and esanc(S) is the subsequent of S consisting
of the end-sequent ancestors of S. For any sequent S = cutanc(S) ◦ esanc(S). Let ρ be
a unary inference, σ a binary inference, ϕ1 and ϕ2 LKsk-trees, then ρ(ϕ1) is the LKsk-
tree obtained by applying ρ to the end-sequent of φ1, and σ(ϕ1, ϕ2) is the LKsk-tree
obtained from the LKsk-trees ϕ1 and ϕ2 by applying σ. Let P, Q be sets of LKsk-trees.
Then P Γ⊢∆ = {ϕΓ⊢∆|ϕ ∈ P}, where ϕΓ⊢∆ is ϕ followed by weakenings adding Γ ⊢ ∆,
and P ×σ Q = {σ(ϕ1, ϕ2)|ϕ1 ∈ P, ϕ2 ∈ Q}. The following definition is taken from [13]
Definition 11.

Definition 5.4.2. Characteristic Sequent Set and Projections. Let π be a regular LKskc-
proof. For each inference ρ in π, we define a set of LKsk-trees, the set of projections
Pρ(π), and a set of labelled sequents, the characteristic sequent set CSρ(π).

• If ρ is an axiom with conclusion S = ⟨A⟩l1 ⊢ ⟨A⟩l2 , distinguish:

– cutanc(S) = S, then CSρ(π) = Pρ(π) = ∅.
– cutanc(S) ̸= S, distinguish:
∗ If cutanc(S) =⊢ ⟨A⟩l2 then CSρ(π) = {⊢ ⟨A⟩l1} and Pρ(π) = {⟨A⟩l1 ⊢
⟨A⟩l1},

∗ if cutanc(S) = ⟨A⟩l1 ⊢ then CSρ(π) = {⟨A⟩l2 ⊢} and Pρ(π) = {⟨A⟩l2 ⊢
⟨A⟩l2},

∗ if cutanc(S) =⊢ then CSρ(π) = {⊢} and Pρ(π) = {S}.
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• If ρ is a unary inference with immediate predecessor ρ′ with Pρ(π) = ϕ1, ..., ϕn,
distinguish:

– ρ operates in ancestors of cut-formulas, then

Pρ(π) = Pρ′(π)

– ρ operates in ancestors of the end-sequent, then

Pρ(π) = {ρ(ϕ1), ..., ρ(ϕn)}

In any case, CSρ(π) = CSρ′(π).

• Let ρ be a binary inference with immediate predecessors ρ1 and ρ2.

– If ρ operates on ancestors of cut-formulas, let Γi ⊢ ∆i be the ancestors of the
end-sequent in the conclusion sequent of ρi and define

Pρ(π) = Pρ1(π)Γ2⊢∆2 ∪Pρ2(π)Γ1⊢∆1

For the characteristic sequent set, define

CSρ(π) = CSρ1(π) ∪ CSρ2(π)

– if ρ operates on ancestors of the end-sequent, then

Pρ(π) = Pρ1(π)×ρ Pρ2(π)

For the characteristic sequent set, define

CSρ(π) = CSρ1(π)× CSρ2(π)

The set of projections of π, P(π) is defined as Pρ0(π), and the characteristic sequent
set of π, CS(π) is defined as CSρ0(π), where ρ0 is the last inference in π.

Note that for LKskc-proofs π containing only atomic axioms, CS(π) consists of se-
quents containing only atomic formulas [13].

Proposition 5.4.3. [13] Proposition 10. Let π be a regular LKskc-proof. Then there
exists an LK-refutation of the reduct of CS(π).

Proof. For each inference ρ with conclusion S in π, an LK-tree γρ of the reduct of
cutanc(S) from the reduct of CSρ(π) is defined inductively. Then for the last inference
ρ in π, γρ is the desired LK-refutation. For a detailed proof we refer to [13].

The next definition is based on [13] Definition 12.

50



5.4. Cut-elimination for LKsk

Definition 5.4.3. Restrictedness. Let S be a set of formula occurrences in an LKskc-
tree π. π is S -linear if no inferences operate on ancestors of occurrences in S . If no
inferences except contraction operate on ancestors of occurrences in S , then π is S -
restricted. If S is the set of occurrences of cut-formulas of π and π is S -restricted, we
say that π is restricted.

Proposition 5.4.4. [13] Proposition 11. Let π be an LKskc-tree and S a set of formula
occurrences in π that is closed under descendants, and let π be S -linear. If π′ is obtained
from π by replacing all labels of ancestors of occurrences in S by the empty label, then
π′ is an LKskc-tree.

Proof. As π is S -linear, no inferences operates on the respective occurrences. No in-
ference has restrictions on labels of context formulas, except that direct descendants
have the same label as their direct ancestors, an no axioms pose restrictions on labels,
therefore the proposition holds.

The next definition is based on [13] Definition 13.

Definition 5.4.4. Skolem Parallel. Let π1 and π2 be LKskc-trees and let ρ1 and ρ2
be strong labelled quantifier inferences in π1 and π2 with Skolem terms S1 and S2,
respectively. ρ1 and ρ2 are Skolem parallel if for all substitutions σ1 and σ2 it holds that
if S1σ1 = S2σ2 then µ1σ1 and µ2σ2 are homomorphic, where µ1 and µ2 are the maximal
downwards paths starting at S1 and S2, respectively. π1 and π2 are Skolem parallel if for
all strong labelled quantifier inferences ρ1, ρ2 in π1, π2 respectively, ρ1 and ρ2 are Skolem
parallel.

With this definition, we are able to state the following proposition.

Proposition 5.4.5. [13] Proposition 12. Let π1 and π2 be LKskc-trees and σ a substi-
tution. If π1, π2 are Skolem parallel, then π1σ, π2σ are.

Proof. See [13] Proposition 12.

The following definitions are taken from [13] Definition 14 and Definition 15.

Definition 5.4.5. Axiom Labels. Let π be an LKskc-tree and let ω be a formula
occurrence in π. Let µ be an ancestor of ω that occurs in an axiom A. Then A is called
a source axiom for ω. Let S be a set of formula occurrences in π. π has suitable axiom
labels w.r.t. S if for all formula occurrences ω in S , the source axioms of ω are of the
form ⟨F ⟩l ⊢ ⟨F ⟩l.

Definition 5.4.6. Balancedness. Let π be an LKskc-tree and let S be a set of formula
occurrences in π. π is called S -balanced if for every axiom ⟨F ⟩l1 ⊢ ⟨F ⟩l2 in π at least
one occurrence of F is an ancestor of a formula occurrence in S . π is called balanced if
π is S -balanced where S is the set of end-sequent occurrences of π.

Now the projections can be defined. The following definition is based on [13] Defini-
tion 16.
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Definition 5.4.7. CERES-projections. Let S be a proper sequent and C be a sequent.
An LKskc-tree π is called a CERES-projection for (S, C) if the end-sequent of π is
S ◦C and π is weakly regular, OC-linear, OS-balanced, restricted and has suitable axiom
labels w.r.t. OC , where OC and OS are the set of formula occurrences of C and S in the
end-sequent of π, respectively.

Let C be a set of sequents. A set of LKskc-trees P is called a set of CERES-
projections for (S, C ) if for all C ∈ C there exists a π(C) ∈ P s.t. π(C) is a CERES-
projection for (S, C) and for all π1, π2 ∈P, π1 and π2 are Skolem parallel.

Lemma 5.4.6. [13] Lemma 2. Let π be a regular LKskc-proof of S. Then P(π) is a
set of CERES-projections for (S, CS(π)). Furthermore, for all ϕ ∈P(π), |ϕ| ≤ |π|.

Proof. See [13] Lemma 2.

It is shown in [13] Lemma 3 that if we have a set of sequents C and a proper sequent
S, together with a CERES-projection for (S, C ), if there exists an Ral-refutation of C ,
there exists a restricted, weakly regular, balanced LKskc-tree of S. The following lemma
is taken from [13] Lemma 4.

Lemma 5.4.7. Let π be a restricted LKskc-proof of S. Then there exists an LKsk-proof
of S.

Proof. By induction on the number of cut inferences in π. For a detailed proof we refer
to [13] Lemma 4.

Finally one of the main theorems of CERESω can be stated.

Theorem 5.4.8. [13] Theorem 2. Let π be a regular, proper LKskc-proof of S s.t. there
exists an Ral-refutation of CS(π). Then there exists an LKsk-proof of S.

Proof. By [13] Lemma 2 and Lemma 3 there exists a restricted LKskc-proof of S. By
Lemma 5.4.7 there exists an LKsk-proof of S.

Since CERESω is a cut-elimination method for LK, it can be shown that LKsk-proofs
can be translated to cut-free LK-proofs.

5.5 Soundness of LKsk

It is shown in [13] and [22] that weak regularity suffices for soundness of LKsk-proofs.
To show the soundness of LKsk, LKsk-proofs are transformed into LK-proofs. This is
accomplished by permuting inferences and substituting eigenvariables for Skolem terms.
Since in LKsk-proofs it may be the case that two strong labelled inferences in a common
branch use the same Skolem term, a kind of redundancy may be present [13]. This
prevents an eigenterm condition form holding and therefore we cannot substitute an
eigenvariable for the Skolem term. This redundancy can be eliminated by sequential
pruning. The following definition is based on [13] Definition 18.
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Definition 5.5.1. Sequential pruning. Consider an LKsk-tree π and let ρ and ρ′ be
inferences in π. If ρ and ρ′ are on a common branch in π, they are called sequential.
The set of sequential homomorphic pairs is defined as follows:

SHP (π) = {⟨ρ, ρ′⟩ | ρ, ρ′ homomorphic in π and ρ, ρ′ sequential}

π is sequentially pruned if SHP (π) = ∅.

For pruning sequential homomorphic pairs, we will analyse the permutation of con-
traction inferences over independent inferences. Independent inferences are defined as
follows (the definition is based on [13] Definition 19):

Definition 5.5.2. Independent inferences. Let ρ and σ be two inferences s.t. ρ is above
σ. Then ρ and σ are independent if the auxiliary formula of σ is not a descendant of the
main formula of ρ.

The following definition is taken from [13] Definition 20.

Definition 5.5.3. The relation ◃c. We will now define the rewrite relation ◃c for
LKsk-trees π and π′, where we assume the inferences c∗ and σ to be independent:

1. If π is

Π, Π, Γ ⊢ ∆, Λ, Λ
c∗Π, Γ ⊢ ∆, Λ

σ
Π, Γ′ ⊢ ∆′, Λ

and π′ is

Π, Π, Γ ⊢ ∆, Λ, Λ
σ

Π, Π, Γ′ ⊢ ∆′, Λ, Λ
c∗Π, Γ′ ⊢ ∆′, Λ

then π ◃1
c π′.

2. If π is

Π, Π, Γ ⊢ ∆, Λ, Λ
c∗Π, Γ ⊢ ∆, Λ Σ ⊢ Θ

σ
Π, Γ′ ⊢ ∆′, Λ

and π′ is

Π, Π, Γ ⊢ ∆, Λ, Λ Σ ⊢ Θ
σ

Π, Π, Γ′ ⊢ ∆′, Λ, Λ
c∗Π, Γ′ ⊢ ∆′, Λ
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then π ◃1
c π′.

3. If π is

Σ ⊢ Θ
Π, Π, Γ ⊢ ∆, Λ, Λ

c∗Π, Γ ⊢ ∆, Λ
σ

Π, Γ′ ⊢ ∆′, Λ

and π′ is

Σ ⊢ Θ Π, Π, Γ ⊢ ∆, Λ, Λ
σ

Π, Π, Γ′ ⊢ ∆′, Λ, Λ
c∗Π, Γ′ ⊢ ∆′, Λ

then π ◃1
c π′.

The ◃c relation is then defined as the transitive and reflexive closure of the compatible
closure of the ◃1

c relation.

Lemma 5.5.1. [13] Lemma 7. Let π be a weakly regular LKsk-tree of S. If π◃c ϕ then
ϕ is a weakly regular LKsk-tree of S.

Proof. By induction on the length of the ◃c-rewrite sequence. The case of π = ϕ is
trivial, so assume there exists a subtree φ of π s.t. φ ◃1

c φ′ and ϕ is obtained from π by
replacing φ by φ′. Then the end-sequent of ϕ is the same as that of π. Weak regularity
is preserved, the paths in ϕ and π are the same modulo some repetitions.

Lemma 5.5.2. [13] Lemma 8. Let π be an LKsk-tree with end-sequent S s.t. π is not
sequentially pruned. Then there exists an LKsk-tree π′ of the same end-sequent s.t.

|SHP (π′)| < |SHP (π)|.

Furthermore, if π is weakly regular, then so is π′.

Proof. See [13] Lemma 8.

Hence we are able to state the following lemma:

Lemma 5.5.3. [13] Lemma 9, Sequential pruning. Let π be an LKsk-tree of S, then
there exists an LKsk-tree π′ of S s.t. π′ is sequentially pruned. Furthermore, if π is
weakly regular, then so is π′.

Proof. Repeated application of the Lemma 5.16.
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Now we need to show that LKsk-proofs can be translated into LK-proofs. The
proof will be effective and based on permuting inferences and pruning. First we need a
notational convention.

Γ, A1 = Γ, A

Γ, A0 = Γ

and let i, i1, ...., i4 ∈ {0, 1}, x = |x − 1|. In the following transformations, the labels of
the labelled formula occurrences will not be displayed. The reason is that we always
leave them unchanged. The following definition is taken from [22] Definition 4.1.29.

Definition 5.5.4. The relation ◃u This relation is used to permute down a unary logical
inference ρ over an inference σ, assuming that ρ and σ are independent. We do not write
down the cases involving ∧r, →l, →r inferences, since they are analogous. In case 1, σ
is a unary logical inference, in case 2, σ is a weakening inference, in case 3, σ is a
contraction inference and in cases 4 − 5, σ is an ∨l inference. We define a relation ◃1

u

between LKsk-trees π and π′:

1. If π is

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
ρ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3
σ

M i3 , N i4 , Γ ⊢ ∆, N i4 , M i3

and π′ is

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
σ

F i1 , N i4 , Γ ⊢ ∆, N i4 , F i1
ρ

M i3 , N i4 , Γ ⊢ ∆, N i4 , M i3

then π ◃1
u π′.

2. If π is

F i1 , Γ ⊢ ∆, F i1
ρ

M i2 , Γ ⊢ ∆, M i2
σ

N i3 , M i2 , Γ ⊢ ∆, M i2 , N i3

and π′ is

F i1 , Γ ⊢ ∆, F i1
σ

N i3 , F i1 , Γ ⊢ ∆, F i1 , N i3
ρ

N i3 , M i2 , Γ ⊢ ∆, M i2 , N i3
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then π ◃1
u π′.

3. If π is

F i1 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , F i1
ρ

M i3 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , M i3
σ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3

and π′ is

F i1 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , F i1
σ

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
ρ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3

then π ◃1
u π′.

4. If π is

F i1 , G1, Γ ⊢ ∆, F i1
ρ

M i2 , G1, Γ ⊢ ∆, M i2 G2, Π ⊢ Λ
σ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

and π′ is

F i1 , G1, Γ ⊢ ∆, F i1 G2, Π ⊢ Λ
σ

G1 ∨G2, F i1 , Γ, Π ⊢ ∆, Λ, F i1
ρ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

then π ◃1
u π′.

5. If π is

G1, Γ ⊢ ∆
F i1 , G2, Π ⊢ Λ, F i1

ρ
M i2 , G2, Π ⊢ Λ, M i2

σ
G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

and π′ is

G1, Γ ⊢ ∆ F i1 , G2, Π ⊢ Λ, F i1
σ

G1 ∨G2, F i1 , Γ, Π ⊢ ∆, Λ, F i1
ρ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2
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then π ◃1
u π′.

Finally, we define the ◃u relation as the transitive and reflexive closure of the compatible
closure of the ◃1

u relation.

Lemma 5.5.4. [13] Lemma 10. Let π be a weakly regular LKsk-tree of S. If π ◃u ϕ
then ϕ is a weakly regular LKsk-tree of S.

Proof. By induction on the length of the ◃u-rewrite sequence. The case of π = ϕ is
trivial, so assume there exists a subtree φ of π s.t. φ ◃1

u φ′ and ϕ is obtained from π by
replacing φ by φ′. Then the end-sequent of ϕ is the same as that of π. Weak regularity
is preserved since the paths in ϕ and π are the same modulo some repetitions.

The following definition is based on [22] Definition 4.1.31 and [13] Definition 22.

Definition 5.5.5. The relation ◃b This relation is used to permute down a ∨l inference
ρ (the cases for ∧r, →l are analogous) together with some contractions. In the proof
trees, the indicated occurrences of F1 and F2 will be the auxiliary occurrences of ρ. We
will now define the rewrite relation ◃b on LKsk-tree, where we assume ρ and σ to be
independent. Cases 1− 3 treat the case of σ being a unary logical inference, in case 4 σ
is a weakening inference, in cases 5− 6 σ is a contraction inference and in cases 7− 9 σ
is ∨l.

1. π is

F1, Π, Γ1, Gi1 ⊢ ∆1, Gi1 , Λ F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi1 ⊢ ∆1, Gi1 , ∆2, Λ, Λ
c∗

Gi1 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1
σ

M i2 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

and π′ is

Gi1 , F1, Π, Γ1 ⊢ ∆1, Λ, Gi1
σ

M i2 , F1, Π, Γ1 ⊢ ∆1, Λ, M i2 F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, M i2 , Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i2
c∗

F1 ∨ F2, M i2 , Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

then π ◃1
b π′.

2. π is

F1, Π, Γ1 ⊢ ∆1, Λ F2, Π, Γ2, Gi1 ⊢ ∆2, Λ, Gi1
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi1 ⊢ ∆1, ∆2, Λ, Λ, Gi1
c∗

Gi1 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1
σ

M i2 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2
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and π′ is

F1, Π, Γ1 ⊢ ∆1, Λ
Gi1 , F2, Π, Γ2 ⊢ ∆2, Λ, Gi1

σ
M i2 , F2, Π, Γ2 ⊢ ∆2, Λ, M i2

ρ
F1 ∨ F2, M i2 , Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i2

c∗
F1 ∨ F2, M i2 , Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

then π ◃1
b π′.

3. π is

F1, Π, Gi1 , Γ1 ⊢ ∆1, Λ, Gi1 F2, Π, Gi1 , Γ2 ⊢ ∆2, Λ, Gi1
ρ

F1 ∨ F2, Π, Gi1 , Π, Gi1 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1 , Λ, Gi1
c∗

Gi1 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1
σ

M i2 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

and π′ is

Gi1 , F1, Π, Γ1 ⊢ ∆1, Λ, Gi1
σ

M i2 , F1, Π, Γ1 ⊢ ∆1, Λ, M i2

Gi1 , F2, Π, Γ2 ⊢ ∆2, Λ, Gi1
σ

M i2 , F2, Π, Γ2 ⊢ ∆2, Λ, M i2
ρ

F1 ∨ F2, Π, M i2 , Π, M i2 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2 , Λ, M i2
c∗

F1 ∨ F2, Π, M i2 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

then π ◃1
b π′.

4. π is

F1, Π, Γ1 ⊢ ∆1, Λ F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ
c∗

F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ
w∗

M i, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i

and π′ is

F1, Π, Γ1 ⊢ ∆1, Λ
w∗

M i, F1, Π, Γ1 ⊢ ∆1, Λ, M i F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, M i, Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i
c∗

F1 ∨ F2, M i, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i

then π ◃1
b π′.
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5. π is

F1, Π, Γ1, Gi, Gi ⊢ ∆1, Λ, Gi, Gi F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi, Gi
c∗

Gi, Gi, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi, Gi

σ
Gi, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi

and π′ is

F1, Π, Γ1, Gi, Gi ⊢ ∆1, Λ, Gi, Gi

σ
F1, Π, Γ1, Gi ⊢ ∆1, Λ, Gi F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, Π, Γ1, Γ2, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi

c∗
Gi, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi

then π ◃1
b π′.

6. π is

F1, Π, Γ1 ⊢ ∆1, Λ F2, Π, Γ2, Gi, Gi ⊢ ∆2, Λ, Gi, Gi
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi, Gi
c∗

Gi, Gi, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi, Gi

σ
Gi, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi

and π′ is

F1, Π, Γ1 ⊢ ∆1, Λ
F2, Π, Γ2, Gi, Gi ⊢ ∆2, Λ, Gi, Gi

σ
F2, Π, Γ2, Gi ⊢ ∆2, Λ, Gi

ρ
F1 ∨ F2, Π, Π, Γ1, Γ2, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi

c∗
Gi, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi

then π ◃1
b π′.

7. π is

F1, Π, Γ1, G1 ⊢ ∆1, Λ F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, Π, Γ1, G1, Γ2 ⊢ ∆1, ∆2, Λ, Λ
c∗

G1, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ G2, Σ ⊢ Θ
σ

G1 ∨G2, F1 ∨ F2, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ

and π′ is
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G1, F1, Π, Γ1 ⊢ ∆1, Λ G2, Σ ⊢ Θ
σ

G1 ∨G2, F1, Π, Γ1, Σ ⊢ Θ, ∆1, Λ F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, G1 ∨G2, Π, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ
c∗

F1 ∨ F2, G1 ∨G2, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ

then π ◃1
b π′.

8. π is

F1, Π, Γ1 ⊢ ∆1, Λ F2, Π, Γ2, G1 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, G1 ⊢ ∆1, ∆2, Λ, Λ
c∗

G1, F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ G2, Σ ⊢ Θ
σ

G1 ∨G2, F1 ∨ F2, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ

and π′ is

F1, Π, Γ1 ⊢ ∆1, Λ
G1, F2, Π, Γ2 ⊢ ∆2, Λ G2, Σ ⊢ Θ

σ
G1 ∨G2, F2, Π, Γ2, Σ ⊢ Θ, ∆2, Λ

ρ
F1 ∨ F2, G1 ∨G2, Π, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, G1 ∨G2, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ

then π ◃1
b π′.

9. π is

F1, Π, G1, Γ1 ⊢ ∆1, Λ F2, Π, , G1Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, G1, Π, G1, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ
c∗

F1 ∨ F2, Π, G1, Γ1, Γ2 ⊢ ∆1, ∆2, Λ G2, Σ ⊢ Θ
σ

G1 ∨G2, F1 ∨ F2, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ

and π′ is

G1, F1, Π, Γ1 ⊢ ∆1, Λ G2, Σ ⊢ Θ
σ

G1 ∨G2, F1, Π, Γ1, Σ ⊢ Θ, ∆1, Λ (ϕ)
ρ

F1 ∨ F2, Π, G1 ∨G2, Π, G1 ∨G2, Γ1, Γ2, Σ, Σ ⊢ Θ, Θ, ∆1, ∆2, Λ, Λ
c∗

F1 ∨ F2, G1 ∨G2, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ

where ϕ is

G1, F2, Π, Γ2 ⊢ ∆2, Λ G2, Σ ⊢ Θ
σ

G1 ∨G2, F2, Π, Γ2, Σ ⊢ Θ, ∆2, Λ

then π ◃1
b π′.
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The ◃b relation is defined as the transitive and reflexive closure of the compatible closure
of the ◃1

b relation.
Note that in the transformations above the contraction c∗ contracts Π, Π to Π, but

this is just one special case. The application of c∗ could also mean that Π, Π are left
unchanged. In particular, c∗ contracts Π, Π to Π, Π′ where Π′ can be either Π or empty.

Lemma 5.5.5. [13] Lemma 11. Let π be a weakly regular LKsk-tree of S. If π ◃b ϕ
then ϕ is a weakly regular LKsk-tree of S.

Proof. By induction on the length of the ◃b-rewrite sequence. For details we refer to [13]
Lemma 11.

Now we will introduce some definitions that are used in the the translation of an
LKsk-proof into an LKsk-proof which fulfils an eigenterm condition. The definitions are
taken from [13].

Definition 5.5.6. Parallel trees. Let π be an LKsk-tree and let ξ be a branch in π. Let
σ and ρ be inferences on ξ and w.l.o.g. let σ be above ρ. Let ξ1, ..., ξn be the binary
inferences between σ and ρ. For 1 ≤ i ≤ n let λi be the subproofs ending in a premise
sequent of ξi s.t. λi do not contain σ. Then λ1, ..., λn are called the parallel trees between
σ and ρ.

Definition 5.5.7. Blocking and correctly placed inferences. Let σ be a strong labelled
quantifier inference in π with Skolem term S and let ρ be a weak labelled quantifier
inference in π with substitution term T . ρ blocks σ if ρ is below σ and T contains S. σ
is correctly placed if no weak labelled quantifier inference in π blocks σ.

Quantifier inferences in an LKsk-proof π will be rearranged in such a way that there
are no eigenterm violations. Hence, it is possible to convert the LKsk-proof into an
LK-proof [13].

Lemma 5.5.6. [13] Lemma 13. Let π be an LKsk-proof of S. Then there exists an
LKsk-proof π′ of S s.t. all strong labelled quantifier inferences in π′ are correctly placed.

Proof. For the proof of this lemma we refer to [13] Lemma 13.

Finally, we are able to state one main result of this section. We will just state the
theorem and refer for the proof to [13] Theorem 3.

Theorem 5.5.7. Soundness. Let π be an LKsk-proof of S. Then there exists a cut-free
LK-proof of S.

The main theorem on CERESω can now be stated, again we just state the Theorem
and refer for the proof to [13] Theorem 4.

Theorem 5.5.8. [13] Theorem 4. Let π be a regular, proper LKskc-proof of S s.t. there
exists an Ral-refutation of CS(π). Then there exists a cut-free LK-proof of S.
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Completeness of Ral implies completeness of the cut-elimination method [13]:

Theorem 5.5.9. [13] Theorem 5. Assume completeness of Ral. Let π be an LK-proof
of a proper sequent S. Then there exists a cut-free LK-proof of S.

Proof. We refer to [13] Theorem 5.

Note: Ral is complete for CERES1!

Theorem 5.5.10. Completeness of Ral. Ral is complete for CERES1.

Proof. The source of potential incompleteness of CERESω (problem still unsolved) lies
in the "dynamic" Skolemization of higher-order resolution.
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CHAPTER 6
Complexity Analysis of CERES

It is shown in [6] that cut-elimination is intrinsically nonelementary. This means that
also CERES, applied to Statman’s sequence, produces a nonelementary blowup w.r.t.
the size of the input proof. In this section we will briefly explain the main source of
complexity in CERES and state which CERES parts behave nonelementary on a worst-
case sequence. First we need some definitions, which are taken from [6] Definition 4.2.8
and Definition 4.3.1.

Definition 6.0.8. Proof complexity. Let S be an arbitrary sequent and A be an axiom
set. We define

PCA (S) = min{∥φ∥ | φ ∈ ΦA and φ proves S}.

PCA (S) is called the proof complexity of S w.r.t. A .

Definition 6.0.9. [6] Definition 4.3.1. Let e : N2 → N be the following function

e(0, m) = m

e(n + 1, m) = 2e(n,m).

A function f : Nk → Nm for k, m ≥ 1 is called elementary if there exists an n ∈ N and a
Turing machine T computing f s.t. the computing time of T on input (l1, ..., lk) is less
than or equal to e(n, |(l1, ..., lk)|) where | | denotes the maximum norm on Nk.

The function s : N → N is defined as s(n) = e(n, 1) for n ∈ N. A function which is
not elementary is called nonelementary.

It can be shown that the size of the characteristic clause set is exponential in the
size of the input proof. We will state the lemma here and for the proof we refer to [6]
Lemma 6.5.1.
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Lemma 6.0.11. [6] Lemma 6.5.1. Let t be a clause term, then

∥|t|∥ ≤ 2∥t∥

(the symbolic size of the set of clauses defined by a clause term is at most exponential in
that of the term).

Proposition 6.0.12. [6] Proposition 6.5.1. For every φ ∈ Φs |CL(φ)| ≤ 2∥φ∥.

Proof. CL(φ) = Θ(φ). So, by the previously stated lemma,

|CL(φ)| ≤ 2∥Θ(φ)∥.

Obviously ∥Θ(φ)∥ ≤ ∥φ∥ and therefore

|CL(φ)| ≤ 2∥φ∥.

The length of the resolution refutation γ of CL(φ) has a bigger impact on the source
of complexity in the CERES-method [6].

Lemma 6.0.13. [6] Lemma 6.5.2. Let γ be a resolution refutation of a set of clauses C .
Then there exists a ground resolution refutation γ′ of C with the following properties:

• l(γ) = l(γ′),

• ∥γ∥ ≤ ∥γ′∥,

• ∥γ′∥ ≤ 5 ∗ l(γ)2 ∗ ∥C ∥ ∗ 25∗l(γ)2∗∥C ∥.

Proof. See [6] Lemma 6.5.2.

We can show that any sequence of resolution refutations of the characteristic clause
sets of the Statman sequence (γn)n∈N is of nonelementary size w.r.t. the proof complexity
of the end sequents of γn. More formally we have

Proposition 6.0.14. [6] Proposition 6.5.3. Let (φn)n∈N be a sequence of proofs in
Φs. Assume that there exists an elementary function f and a sequence of resolution
refutations (γn)n∈N of (CL(φn))n∈N s.t.

l(γn) ≤ f(∥φn∥)

for n ∈ N. Then there exists an elementary function g and a sequence of CERES normal
forms φ∗

n of φn s.t.
∥φ∗

n∥ ≤ g(∥φn∥).

Proof. For the proof we refer to [6] Proposition 6.5.3.

64



The following proposition shows that in the Statman proof sequence the lengths of
resolution refutations of the characteristic clause sets are the main source of complexity
in the CERES method.

Proposition 6.0.15. [6] Proposition 6.5.4. Let (γn)n∈N be the sequence of proofs of
(Sn)n∈N defined in [6] Section 4.3 and let (ρn)n∈N be a sequence of resolution refuta-
tions of the sequence of clause sets (CL(γn))n∈N. Then (l(ρn))n∈N is nonelementary in
(PCAe(Sn))n∈N.

Proof. For the proof we refer to [6] Proposition 6.5.4.
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CHAPTER 7
Skolem-free CERES-Method and

Herbrand Sequent Extraction

In this chapter we will state the main results of this thesis, which are on the one hand to
gain a Skolem-free CERES method for first-order logic and on the other hand speeding-up
the process of Herbrand sequent extraction. In the original CERES-method, Herbrand
sequents are extracted out of the ACNF. This however we want to overcome, since in
the Skolem-free CERES-method, it becomes complicated and expensive to compute the
CERES-normal form out of the resolution refutation and the corresponding projections.
This lead to a novel method, in the sense, that we extract the Herbrand sequents out of
the resolution refutation and the corresponding projections. This makes the construction
of the ACNF obsolete for us.

In Section 7.1 we will introduce a Skolem-free CERES method for first-order logic.
In Section 7.2 we will show how Herbrand sequents can be extracted and how to extract
Herbrand sequents out of the resolution refutation and the corresponding projections,
instead of the CERES-normal form. We will also show that we can speed-up the process
of Herbrand sequent extraction in Section 7.3. Finally in Section 7.4 we will give a
complexity analysis of our new method.

7.1 Skolem-free CERES-method in first-order logic

Since CERES in first-order logic is restricted to Skolemized proofs, the aim of this thesis
is to generalize the method such that the new method also works in the presence of strong
quantifiers in the end-sequent, yielding a Skolem-free CERES method for first-order logic.
In the original CERES-method for first-order logic, the derivation we get as result after
cut-elimination can be transformed into another of the original un-Skolemized sequent.
The replacement of the Skolem functions by the original quantifiers in the resulting
CERES-normal form may lead to an exponential increase in terms of the symbolic com-
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plexity of the original end-sequent and of the CERES-normal form. Hence, the benefit
of a Skolem-free CERES-method is that we do not need a de-Skolemization.

Our CERES-method is a mix of the original CERES-method and CERESω. In par-
ticular, from the ordinary CERES-method we need:

• the resolution Calculus R

and from CERESω we need:

• the calculus LKsk,

• the definition of LKskc-trees,

• cut-elimination for LKsk.

Hence, the CERES-method we use is very similar to CERESω, except that we introduce
a method for first-order logic and therefore skip in CERESω everything related to higher-
order logic. We also do not need the resolution calculus Ral introduced for CERESω

(since this is a resolution calculus for higher-order logic), but restrict our method to the
resolution calculus for first-order logic, used in the original CERES-method.

All the definitions, propositions, lemmas and theorems that hold for the resolution
calculus, as explained in Section 2.3, and for CERESω, as explained in Chapter 5, also
hold for our CERES-method.

We will not state the definitions of the resolution calculus, the calculus LKsk, of
LKskc-trees and cut-elimination for LKsk here again, instead we refer to the definitions
in previous sections. We give a rough outline on the main steps of our method:

1. let π be a regular LK-proof of S containing cuts

2. transform π into a regular LKskc-proof φ of S, this can be done as explained in
Lemma 5.4.2

3. construct the characteristic sequent set CSρ(φ) and the projections Pρ(φ), where
ρ denotes the last inference in φ, as defined in Definition 5.4.2

4. construct an LK-refutation of the reduct of the characteristic sequent set CSρ(φ),
as explained in Proposition 5.4.3

5. transform the restricted LKskc-proof φ of S into an LKsk-proof φ′ of S, as ex-
plained in Theorem 5.4.8

6. extract the Herbrand sequents from the LKsk-proof φ′ of S, instead of generating
the ACNF

Note, that we do not generate the ACNF in our CERES-method. The reason is that
we do not need it for the extraction of Herbrand sequents. Also, in the Skolem-free
CERES-method, it becomes complicated to compute the CERES-normal form out of
the resolution refutation and the corresponding projections.
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In the next section, we will show how Herbrand sequents are extracted. Furthermore,
we will define a method on how to extract them out of the resolution refutation and the
projections.

7.2 Extracting Herbrand Sequents
Cut-free proofs are not the only important result of the CERES method, because a
long proof without cuts is not always useful. Instead we focus on the extraction of
Herbrand sequents. Indeed, in many applications (in particular in the interpretation
of mathematical proofs) you do not even need a cut-free proof, but the extraction of
Herbrand sequents is of major importance.

The second main result of this thesis is the analysis of the Skolem-free CERES method
and speeding-up the process of Herbrand sequent extraction. Since in the new method we
will not generate a CERES-normal form for the extraction, but will extract the Herbrand
sequents out of the resolution refutation and the corresponding projections, the Herbrand
sequent extraction will result in a much faster method compared to the extraction in
the original CERES method, because in the Skolem-free method the generation of the
CERES-normal form is very complicated and expensive. The following definitions are
taken from [6].

Definition 7.2.1. Instantiation sequent. Let S : A1, ..., An ⊢ B1, ..., Bm be a weakly
quantified sequent. Let A−

i , B−
j be the formulas Ai, Bj after omission of the quantifier

occurrences. For every i, j let A⃗i, B⃗j be sequences of instances of A−
i and B−

j , respectively.
Then any permutation of the sequent

S′ : A⃗1, ..., A⃗n ⊢ B⃗1, ..., B⃗m

is called an instantiation sequent of S.

Definition 7.2.2. A -validity. Let A be an axiom set. A sequent S is called A -valid if
A |= S.

Definition 7.2.3. Herbrand sequent. Let A be an axiom set and let S be an A -valid
sequent. An instantiation sequent S′ of S is called an A -Herbrand sequent of S if S′ is
A -valid. If A is the standard axiom set then S′ is called a Herbrand sequent of S.

The following example is taken from [6] Example 4.2.2.

Example 7.2.1. Let S = P (a), (∀x)(P (x)→ P (f(x))) ⊢ (∃y)P (f(f(y))). Then

S′ : P (a), P (a)→ P (f(a)) ⊢ P (f(f(x))), P (f(f(a)))

is an instantiation sequent of S, but not a Herbrand sequent of S.

S′ : P (a), P (a)→ P (f(a)), P (f(a))→ P (f(f(a))) ⊢ P (f(f(a)))

is a Herbrand sequent of S.
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The method for Herbrand sequent extraction used in the following is a constructive
one, which obtains Herbrand sequents S′ from LK-proofs φ of S. These Herbrand
sequents can be directly obtained from proofs of arbitrary weakly quantified sequents.
To simplify the construction of the Herbrand sequents, it is restricted here to prenex
sequents only. The method is described in [6] Chapter 4.2.

The method in [6] describes the extraction of Herbrand sequents from the ACNF.
However, it is possible to obtain them without constructing the ACNF. A Herbrand
sequent of an ACNF can also be composed out of the Herbrand sequents of the projec-
tions, after deleting clause parts. This means that a resolution refutation of the clause
set and the projections are sufficient for the extraction of Herbrand sequents and the
construction of an ACNF is no longer needed.

The method in [6] analyses a proof φ of a sequent S and checks for each formula A
occurring at a position µ in S if it is quantifier free. If it is, then q(φ, µ) = A, otherwise
q(φ, µ) is defined as a multi-set of all ancestors B of A in φ s.t. B is quantifier-free and
is the auxiliary formula of a quantifier inference. If such an ancestor B does not exists,
q(φ, µ) is defined as the empty sequence. Then the Herbrand sequent can be obtained
by constructing H(φ) = q(φ, µ1), ..., q(φ, µn) ⊢ q(φ, ν1), ..., q(φ, νm) for an end-sequent
S = A1, ..., An ⊢ B1, ..., Bm and µi being the occurrence of Ai and νi of Bi, respectively.
Double occurrences of formulas in H(φ) are omitted.

7.2.1 Extracting Herbrand sequents from projections

Given a proof φ of a prenex sequent S, the resolution refutation R of the characteristic
clause set CL(φ) and the projections φ[C1] ... φ[Cn] for clauses C1 ... Cn ∈ CL(φ) the
Herbrand sequents H(φ[Ci]), for 1 ≤ i ≤ n, can be composed in the following way:
First, analyse the original proof φ of S and highlight all ancestors of the cut-formula.
Then for each projection φ[Ci] do the following:

• the highlighting of ancestors of the cut-formula remains in the projection, if nec-
essary highlight new ancestors of the cut-formula (the set of all ancestors of cut
formulas in φ is C(φ))

• remove all formulas in the end-sequent Sφ[Ci] of φ[Ci] that are contained in C(φ)

• compute H(φ[Ci]σ) out of the remaining formulas in Sφ[Ci] in the usual way, where
σ is the substitution used in the ground resolution refutation. In general there
are many ground substitutions φ[Ci]σ necessary. The number of these instances
depends on the number of instantiations of Ci in the resolution proof R. In fact
there is a unique σ but several copies of φ[Ci].

Note that the only difference between this method and the original one is, that for the
computation of the Herbrand sequent we only consider formulas in the end-sequents of
the projections that are no ancestors of cut-formulas. To clarify the method, have a look
on the examples below.
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Now the final Herbrand sequent H∗(φ) can be composed out of the Herbrand sequents
of the projections.

H∗(φ) = H(φ[C1])⊗H(φ[C2])⊗ ... ⊗H(φ[Cn])

for n projections. Finally, remove double occurrences of formulas in H∗(φ). The com-
posed H∗(φ) is a Herbrand sequent of the ACNF of φ and equal to the Herbrand sequent
constructed directly from the ACNF with the same method.

7.2.2 Examples

Example 1.
Consider the following proof φ of the sequent A,¬A ∨ B ⊢ B, C (the cut formula is
orange):

A ⊢ A ¬l¬A, A ⊢ B ⊢ B ∨l
A,¬A ∨B ⊢ B ∨r

A,¬A ∨B ⊢ B ∨ C
B ⊢ B C ⊢ C ∨l

B ∨ C ⊢ B, C
cut

A,¬A ∨B ⊢ B, C

CL(φ) = {⊢ B ; B ⊢ ; C ⊢}.
The resolution refutation is:

⊢ B B ⊢
R⊢

Hence, we need to consider the projections of ⊢ B and B ⊢:
φ[⊢ B]:

A ⊢ A ¬l¬A, A ⊢ B ⊢ B ∨l
A,¬A ∨B ⊢ B

wr
A,¬A ∨B ⊢ B, C

wr
A,¬A ∨B ⊢ B, C, B

φ[B ⊢]:

B ⊢ B wr
B ⊢ B, C

wl¬A ∨B, B ⊢ B, C
wl

A,¬A ∨B, B ⊢ B, C

Now consider the ACNF:

φ[⊢ B]
A,¬A ∨B ⊢ B, C, B

φ[B ⊢]
A,¬A ∨B, B ⊢ B, C

cut
A,¬A ∨B, A,¬A ∨B ⊢ B, C, B, C

c∗
l , c∗

rA,¬A ∨B ⊢ B, C

71



7. Skolem-free CERES-Method and Herbrand Sequent Extraction

Now compute the Herbrand sequents:

H(ACNF ) = A,¬A ∨B ⊢ B, C

H(φ[⊢ B]) = A,¬A ∨B ⊢ C, B

H(φ[B ⊢]) = A,¬A ∨B ⊢ B, C

If you now compute
H∗(φ) = H(φ[⊢ B])×H(φ[B ⊢])

and remove double occurrences of formulas you get

H∗(φ) = A,¬A ∨B, A,¬A ∨B ⊢ C, B, B, C = A,¬A ∨B ⊢ B, C

and this is equal to H(ACNF ).
Obviously, the Herbrand sequent is identical to the end-sequent of the proof.

Example 2.
Now consider a more complicated proof φ of the sequent Pa, ∀x(Px→ Pfx) ⊢ ∃zPf4z.

P α ⊢ P α

P fα ⊢ P fα P f2α ⊢ P f2α →l

P fα, P fα → P f2α ⊢ P f2α →l

P α, P α → P fα, P fα → P f2α ⊢ P f2α
∀l, ∀l

P α, ∀x(P x → P fx), ∀x(P x → P fx) ⊢ P f2α →r

∀x(P x → P fx), ∀x(P x → P fx) ⊢ P α → P f2α
cl

∀x(P x → P fx) ⊢ P α → P f2α
∀r

∀x(P x → P fx) ⊢ ∀x(P x → P f2x)

P a ⊢ P a

P f2a ⊢ P f2a P f4a ⊢ P f4a →l

P f2a, P f2a → P f4a ⊢ P f4a →l

P a, P a → P f2a, P f2a → P f4a ⊢ P f4a
∀l, ∀l

P a, ∀x(P x → P f2x), ∀x(P x → P f2x) ⊢ P f4a
cl

P a, ∀x(P x → P f2x) ⊢ P f4a
∃r

P a, ∀x(P x → P f2x) ⊢ ∃zP f4z
cut

P a, ∀x(P x → P fx) ⊢ ∃zP f4z

CL(φ) = {Pα ⊢ Pf2α; Pf4a ⊢ ; ⊢ Pa; Pf2a ⊢ Pf2a}.
The resolution refutation is:

Pα ⊢ Pf2α ⊢ Pa
R{α← a}

⊢ Pf2a

Pf4a ⊢ Pα ⊢ Pf2α
R{α← f2a}

Pf2a ⊢
R⊢

Hence, we need to consider the projections of Pα ⊢ Pf2α, ⊢ Pa and Pf4a ⊢:
φ[Pα ⊢ Pf2α]:

Pα ⊢ Pα

Pfα ⊢ Pfα Pf2α ⊢ Pf2α →l
Pfα, Pfα→ Pf2α ⊢ Pf2α →l

Pα, Pα→ Pfα, Pfα→ Pf2α ⊢ Pf2α ∀l, ∀l
Pα, ∀x(Px→ Pfx),∀x(Px→ Pfx) ⊢ Pf2α

cl
Pα,∀x(Px→ Pfx) ⊢ Pf2α

wl, wr
Pα, Pa, ∀x(Px→ Pfx) ⊢ Pf2α,∃zPf4z
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φ[⊢ Pa]:

Pa ⊢ Pa wl, wr
Pa, ∀x(Px→ Pfx) ⊢ Pa, ∃zPf4z

φ[Pf4a ⊢]:

Pf4a ⊢ Pf4a ∃r
Pf4a ⊢ ∃zPf4z

wl
Pf4a, Pa, ∀x(Px→ Pfx) ⊢ ∃zPf4z

Now consider the ACNF:

φ1

P a, ∀x(P x → P fx), ∀x(P x → P fx), ⊢ ∃zP f4z, ∃zP f4z, P f2α

φ2

P a, P a, P f2a, ∀x(P x → P fx), ∀x(P x → P fx), ⊢ ∃zP f4z, ∃zP f4z
cut

P a, P a, P a, ∀x(P x → P fx), ∀x(P x → P fx), ∀x(P x → P fx), ∀x(P x → P fx), ⊢ ∃zP f4z, ∃zP f4z, ∃zP f4z, ∃zP f4z
c∗

l , c∗
r

P a, ∀x(P x → P fx), ⊢ ∃zP f4z

φ1 :

φ[Pα ⊢ Pf2α](α← a)
Pa, Pa, ∀x(Px→ Pfx),⊢ ∃zPf4z, Pf2α

φ[⊢ Pa)
Pa, ∀x(Px→ Pfx),⊢ ∃zPf4z, Pa

cut
Pa, ∀x(Px→ Pfx), ∀x(Px→ Pfx),⊢ ∃zPf4z, ∃zPf4z, Pf2α

φ2 :

φ[Pf4a ⊢]
Pf4a, Pa, ∀x(Px→ Pfx),⊢ ∃zPf4z

φ[Pα ⊢ Pf2α](α← f2a)
Pf2a, Pa, ∀x(Px→ Pfx),⊢ ∃zPf4z, Pf4a

cut
Pa, Pa, Pf2a, ∀x(Px→ Pfx), ∀x(Px→ Pfx),⊢ ∃zPf4z, ∃zPf4z

Now compute the Herbrand sequents:

H(ACNF ) = Pa, Pa→ Pfa, Pfa→ Pf2a, Pf2a→ Pf3a, Pf3a→ Pf4a ⊢ Pf4a

H(φ[Pα ⊢ Pf2α](α← a)) = Pa, Pa→ Pfa, Pfa→ Pf2a ⊢

H(φ[Pα ⊢ Pf2α](α← f2a)) = Pa, Pf2a→ Pf3a, Pf3a→ Pf4a ⊢

H(φ[⊢ Pa]) = Pa ⊢

H(φ[Pf4a ⊢]) = Pa ⊢ Pf4a

If you now compute

H∗(φ) = H(φ[Pα ⊢ Pf2α](α← a))⊗H(φ[Pα ⊢ Pf2α](α← f2a))⊗H(φ[⊢ Pa])⊗H(φ[Pf4a ⊢])

and remove double occurrences of formulas you get

H∗(φ) = Pa, Pa→ Pfa, Pfa→ Pf2a, Pf2a→ Pf3a, Pf3a→ Pf4a ⊢ Pf4a

.
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7.2.3 Herbrand sequents can be constructed from projections and
resolution refutations

Theorem 7.2.1. Herbrand sequent from projections and resolution refutations. Let φ
be a proof of a prenex sequent S, CL(φ) the characteristic clause set of φ, H(ACNF )
the Herbrand sequent extracted out of the ACNF of φ and H∗(φ) the Herbrand sequent
constructed out of the projections φ[Ci] for Ci ∈ CL(φ) for 1 ≤ i ≤ n and n the number
of clauses. Then H(ACNF ) contains all formulas that are contained in H∗(φ) and vice
versa, i.e. H∗(φ) = H(ACNF )

Proof. By induction on the number of nodes in the resolution tree.
Let o(R) be the number of nodes in the resolution tree R.

Base case: o(R) = 3. Then the resolution refutation has the following structure

C1 C2 R(σ)⊢
where C1, C2 and ⊢ are the three nodes and C1 and C2 have an appropriate structure
(for example C1 = ⊢ C and C2 = C ⊢), where C1, C2 ∈ CL(φ) and σ is a possible
substitution. The ACNF has the following structure

φ[C1]σ
...

φ[C2]σ
...

cut
S′

c∗ : l, r
S

Now it is easy to see that the Herbrand sequent computed out of the ACNF ,
H(ACNF ), and the one constructed out of the projections, H∗(φ), are equal. For
the construction of H(ACNF ) we only consider formulas in the end-sequent S. Let A
be such a formula. Then there are three cases:

1. A is quantifier-free. Since all inferences between the projections and S are either
cut-inferences or contractions, A is either contained in the end-sequent of φ[C1]σ
or φ[C2]σ or is duplicated via c : l or c : r and contained in the end-sequents of
both projections. Therefore A is considered in the construction of H(ACNF ) and
of H(φ[C1]σ) or H(φ[C1]σ) or both of them. Hence A is considered in H(φ[C1]σ)⊗
H(φ[C1]σ) = H∗(φ).

2. A is not quantifier-free and the sequence of ancestors B of A, s.t. B is quantifier-
free and the auxiliary formula of some quantifier-inference, is empty. Then there is
no such ancestor B of A in the ACNF , but then it trivially follows that there is no
such ancestor B of A in φ[C1]σ and φ[C2]σ, hence A is neither considered in the
construction of H(ACNF ), nor in the construction of H(φ[C1]σ) and H(φ[C2]σ).
Therefore A is also not considered in H(φ[C1]σ)⊗H(φ[C1]σ) = H∗(φ).

3. A is not quantifier-free and H(ACNF ) contains a sequence of ancestors B of A, s.t.
B is quantifier-free and the auxiliary formula of some quantifier-inference. Each
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such ancestor B has to be the auxiliary formula of a quantifier-inference in one of
the two projections, since φ[C1]σ and φ[C2]σ are the only subproofs of the ACNF
that could contain quantifier-inferences. Therefore, all ancestors B of A that are
contained in H(ACNF ) are also contained in H(φ[C1]σ) or H(φ[C2]σ) or both,
and hence also contained in H(φ[C1]σ)⊗H(φ[C1]σ) = H∗(φ).

Now we only need to prove, that there are no additional formulas in the end-sequents
of φ[C1]σ and φ[C2]σ, that are considered in the construction of H(φ[C1]σ) and H(φ[C2]σ)
and therefore are contained in H∗(φ), that are not formulas of the end-sequent S. If this
is shown, H(φ[C1]σ) and H(φ[C2]σ) consider the same formulas for their construction
as H(ACNF ) and therefore H∗(φ) = H(ACNF ). But this is trivial, since all formulas
in the end-sequents of φ[C1]σ and φ[C2]σ are either contained in the end-sequent S or
ancestors of cut-formulas. So the only formulas in the end-sequents of the projections
that are not contained in S are ancestors of cut-formulas, but these formulas are not used
in the construction of H(φ[C1]σ) or H(φ[C2]σ), by the very definition of the method for
the Herbrand sequent extraction. Hence, H∗(φ) = H(ACNF ).

(IH): Assume that for o(R) ≤ n it holds that H∗(φ) = H(ACNF ).

Note that we always have to add 2 nodes to the tree, in order to get a larger resolution
tree, since adding just one node to the tree would not make any sense in a resolution
refutation. Now consider o(R) = n + 2. We want to show that for n + 2 nodes in the
resolution tree it also holds that H∗(φn+2) = H(ACNFn+2).
The uppermost part of the resolution refutation has the following structure

Cn+2 Cn+1
R(σ)

Cn Cn−1
R(σ′)...

⊢

where Cn+1 and Cn+2 are the new nodes and σ, σ1, ... are possible substitutions (note
that they can be different to each other). The ACNFn+2 has the following structure

φ[Cn+2]σ
...

φ[Cn+1]σ
...

cut
S′ φ[Cn−1]σ′

...
cut...

S

Note that the lower part of the resolution tree (below the uppermost R) contains n
nodes and we know that for this part H∗(φ) = H(ACNF ) holds.

Therefore we have to show that we can consider Cn in the resolution tree as last node
and show that the Herbrand sequent of S′ is equal to H(φ[Cn+1]σ)⊗H(φ[Cn+2]σ). The
last node of the resolution tree is then

Cn+2 Cn+1
R(σ)

Cn
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and for the resulting resolution tree we have that o(R) = n. The resolution tree now has
the following structure

Cn Cn−1
R(σ′)...

⊢
The only difference in the ACNF is, that we do not look at the projections of φ[Cn+2]
and φ[Cn+1] but at the proof-tree of S′ as an own node, containing φ[Cn+2] and φ[Cn+1]
as subproofs with a cut-inference combining them.

S′ φ[Cn−1]σ′
...

cut...
S

Since for the modified resolution tree R we have o(R) = n, we can use the induc-
tion hypothesis and conclude that H∗(φ) = H(ACNF ). It remains to prove that
H(φ[Cn+2]σ) × H(φ[Cn+1]σ) actually is the Herbrand sequent of S′. Again, for the
construction of the Herbrand sequent of S′, call it H(S′), we only consider formulas
in the end-sequent S′ that are not ancestors of cut-formulas. Then the proof is trivial,
since this is just the base case. All formulas considered in the construction of H(S′) are
also considered in the construction of H(φ[Cn+2]σ)×H(φ[Cn+1]σ). The proof proceeds
analogously to the proof of the base case. Hence we conclude for the resolution tree with
n nodes

H(ACNF ) = H(S′)⊗H(φ[Cn−1]σ′)⊗ ... = H∗(φ)

and for the resolution tree with n+2 nodes we replace H(S′) by H(φ[Cn+2])⊗H(φ[Cn+1]),
resulting in

H(ACNFn+2) = H(φ[Cn+2]σ)⊗H(φ[Cn+1]σ)⊗H(φ[Cn−1]σ′)⊗ ... = H∗(φn+2)

7.3 Herbrand sequent extraction with LKsk-proofs
In [22] and [13] it is shown that all LKsk-proofs can be translated into LK-proofs,
which are needed for the construction of an ACNF. The proof is effective and based on
permutations of inferences in LKsk-trees. Since we are not interested in the ACNF, but
in Herbrand sequents, it would be of great interest to skip the transformation into a
LK-proof and extract the Herbrand sequent out of the LKsk-proof. This would speed
up the Herbrand sequents extraction by omitting superfluous proof-transformations.

In order to show that Herbrand sequents can be extracted out of an LKsk-proof, we
first need to analyse the transformations described in [22] and [13]. To show how to
permute unary and binary inferences the two rewrite relations ◃u and ◃b on LKsk-trees
are introduced. In this section we will show that ◃u and ◃b do not influence the formulas
that are used in the construction of the Herbrand sequent, i.e. that for the Herbrand
sequent extraction the transformation into LK-proofs can be omitted. First we need a
definition:
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Definition 7.3.1. The relation ◃u/b. Let ◃u/b be defined as the transitive and reflexive
closure of the relations ◃1

u ∪ ◃1
b relation. Therefore, ◃u/b comprises both, the ◃u and

the ◃b relation.

Now consider a LKsk-proof φ and a LK-proof φ′ of an end-sequent S s.t. φ′ is
constructed out of φ by permutations of inferences. Therefore φ ◃u/b φ′ holds. Note
that we only have to consider permutations that involve quantifier inferences. The reason
is simple, for the extraction of the Herbrand sequent, we have to consider each formula
A in the end-sequent S of φ′ and analyse its structure. Three cases can arise:

1. A is quantifier-free and we do not analyse the proof any further. Since for each
rewrite step φ ◃1

u φ′ and φ ◃1
b φ′ it holds that the end-sequent does not change

(i.e. the end-sequent of φ is the same as the end-sequent of φ′), we conclude that
if A is a quantifier-free formula in the end-sequent of φ′, it is also a quantifier-free
formula in the end-sequent of φ. Therefore we can extract A out of the end-sequent
of φ and do not need a transformation into φ′.

2. A is not quantifier-free and there is no ancestor B of A s.t. B is quantifier-free and
the auxiliary formula of a quantifier inference. Then there is no such ancestor B of
A in φ neither, since inferences are only permuted but there are no new inferences
introduced. So it is impossible to find a quantifier inference in φ with auxiliary
formula B that is quantifier-free and an ancestor of A. We conclude that if there
are no ancestors B of A in φ′ that are quantifier-free and the auxiliary formula of
a quantifier inference, then there are also no such ancestors in φ and again we can
skip the transformation into φ′ and only consider φ.

3. A is not quantifier-free and there is some ancestor B of A s.t. B is quantifier-
free and the auxiliary formula of a quantifier inference. In this case we have
quantifier-inferences in the proof-tree operating on ancestors of quantified end-
sequent formulas and therefore we have to analyse permutations that involve these
inferences, since they could affect formulas that are used in the construction of the
Herbrand sequent.

Hence, we state the following:

Theorem 7.3.1. If for some LK-proof π and LKsk-proof φ it holds that φ ◃u/b π in
o(φ) rewrite steps, then the Herbrand sequent of π can already be extracted out of φ.

Proof. By induction on the number of rewrite steps o(φ) in ◃u/b.

Base case: o(φ) = 1 and either φ ◃1
u π or φ ◃1

b π holds.
Here we consider every possible rewrite step and show that it can be omitted.

For ◃u we have to consider:
This relation is used to permute down a unary logical inference ρ over an inference σ,
assuming that ρ and σ are independent. Assume ρ is a quantifier inference. This means
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that it could be the case, that its auxiliary formula is a formula B which is an ancestor
of an end-sequent formula A, s.t. B is quantifier-free. Let φ′ be the subproof of φ
that contains the inferences that are permuted, and π′ the respective subproof of π. If
φ′ ◃1

u π′ and ρ is a quantifier inference we have five cases:

1. σ is an unary logical inference and φ′ is

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
ρ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3
σ

M i3 , N i4 , Γ ⊢ ∆, N i4 , M i3

and π′ is

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
σ

F i1 , N i4 , Γ ⊢ ∆, N i4 , F i1
ρ

M i3 , N i4 , Γ ⊢ ∆, N i4 , M i3

If σ is no quantifier inference, we just need to look at ρ. Therefore, M i3 and M i3

are quantified formulas and we assume that they are either end-sequent formulas
or ancestors of quantified end-sequent formulas. We know that F i1 and F i1 are
the ancestors of M i3 and M i3 , that are auxiliary formulas of a quantifier inference.
If F i1 and F i1 are quantifier-free, i.e. M i3 or M i3 contain only one quantifier, then
they are used in the construction of the Herbrand sequent of π, otherwise not.

But we see that the same formulas are also used in φ in the construction of the
Herbrand sequent. Here we also assume M i3 and M i3 to be quantified formulas
either in the end-sequent of φ (which is the same end-sequent as in π) or ancestors
of quantified end-sequent formulas. In φ′ first the unary inference σ is applied, but
this has no influence on M i3 and M i3 . With the inference ρ we get F i1 and F i1 ,
which are the auxiliary formulas of a quantifier inference. If they are quantifier-
free, and since they are ancestors of quantified formulas in the end-sequent, they
are used for the construction of the Herbrand sequent, just like in the Herbrand
sequent of π. We also note here that no new quantifier inference is introduced,
such that the Herbrand sequent could change.

Now assume σ is a quantifier inference, too. In this case we also have to con-
sider the auxiliary and main formulas of σ. We proceed in a similar way. In π′ we
assume N i4 and N i4 to be quantified formulas either in the end-sequent of π or
ancestors of quantified end-sequent formulas. ρ has no influence on N i4 and N i4

and σ is a quantifier-inference with main formula N i4 or N i4 s.t. Gi2 or Gi2 is
the auxiliary formula. If Gi2 or Gi2 , respectively is quantifier-free, it is used in the
construction of the Herbrand sequent.
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But here again we see that the same formulas Gi2 and Gi2 are used in the con-
struction of the Herbrand sequent of φ. N i4 and N i4 are quantified formulas and
either contained in the end-sequent of φ or ancestors of quantified end-sequent
formulas. σ is a quantifier-inference with auxiliary formula Gi2 or Gi2 which are
ancestors of N i4 and N i4 , hence if Gi2 or Gi2 are quantifier-free, they are used in
the construction of the Herbrand sequent.

2. σ is a weakening inference and φ′ is

F i1 , Γ ⊢ ∆, F i1
ρ

M i2 , Γ ⊢ ∆, M i2
σ

N i3 , M i2 , Γ ⊢ ∆, M i2 , N i3

and π′ is

F i1 , Γ ⊢ ∆, F i1
σ

N i3 , F i1 , Γ ⊢ ∆, F i1 , N i3
ρ

N i3 , M i2 , Γ ⊢ ∆, M i2 , N i3

Assume M i2 and M i2 are quantified formulas and either they are formulas of the
end-sequent of π or ancestors of quantified end-sequent formulas. ρ is a quantifier
inference with auxiliary formula F i1 or F i1 and they are ancestors of M i2 and M i2 .
If the auxiliary formula F i1 or F i1 is quantifier-free, it is used in the construction
of the Herbrand sequent.
Now consider φ′. Here again M i2 and M i2 are quantifier formulas and either they
are formulas of the end-sequent of φ or ancestors of quantified end-sequent formulas.
σ has no influence on M i2 and M i2 and ρ is a quantifier inference with auxiliary
formula F i1 or F i1 . If the auxiliary formula F i1 or F i1 is quantifier-free and since it
is ancestor of either M i2 or M i2 and therefore ancestor of an end-sequent formula,
we have that it is used in the construction of the Herbrand sequent of φ.

3. σ is a contraction inference and φ′ is

F i1 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , F i1
ρ

M i3 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , M i3
σ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3

and π′ is

F i1 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , F i1
σ

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
ρ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3
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Assuming that M i3 and M i3 are quantified formulas and either are in the end-
sequent of π or ancestors of quantified end-sequent formulas, and ρ is a quantifier-
inference with auxiliary formula F i1 or F i1 , we have that F i1 and F i1 are ancestors
of M i3 and M i3 . If the auxiliary formula F i1 or F i1 is quantifier-free, it is used in
the construction of the Herbrand sequent.
But the same formula is used in the construction of the Herbrand sequent of φ.
Here we also assume that M i3 and M i3 are quantified formulas and either in
the end-sequent of φ or ancestors of quantified end-sequent formulas. σ has no
influence on M i3 and M i3 and ρ is a quantifier inference with auxiliary formula
F i1 or F i1 , which are ancestors of M i3 and M i3 . If the auxiliary formula F i1 or
F i1 is quantifier-free, it is used in the construction of the Herbrand sequent.

4. σ is a ∨ : l inference and φ′ is

F i1 , G1, Γ ⊢ ∆, F i1
ρ

M i2 , G1, Γ ⊢ ∆, M i2 G2, Π ⊢ Λ
σ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

and π′ is

F i1 , G1, Γ ⊢ ∆, F i1 G2, Π ⊢ Λ
σ

G1 ∨G2, F i1 , Γ, Π ⊢ ∆, Λ, F i1
ρ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

If we assume M i2 and M i2 to be quantified formulas and contained in the end-
sequent of π or ancestors of quantified end-sequent formulas, then F i1 and F i1 are
their ancestors and one of them is the auxiliary formula of a quantifier inference.
If the auxiliary formula F i1 or F i1 is quantifier-free, it is used in the construction
of the Herbrand sequent of π.
If we now consider φ′, it is easy to see that the same formula F i1 or F i1 is used in
the construction of the Herbrand sequent of φ, if it is quantifier-free. Here we also
assume M i2 and M i2 to be quantified formulas and either be end-sequent formulas
or ancestors of quantifier end-sequent formulas. The ∨ : l inference does not change
M i2 and M i2 but one of them is the main formula of ρ. F i1 or F i1 is the auxiliary
formula and therefore ancestor of a quantifier formula in the end-sequent. Hence,
if the auxiliary formula F i1 or F i1 is quantifier-free, it is used in the construction
of the Herbrand sequent.

5. σ is again a ∨ : l inference and φ′ is

G1, Γ ⊢ ∆
F i1 , G2, Π ⊢ Λ, F i1

ρ
M i2 , G2, Π ⊢ Λ, M i2

σ
G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2
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and π′ is

G1, Γ ⊢ ∆ F i1 , G2, Π ⊢ Λ, F i1
σ

G1 ∨G2, F i1 , Γ, Π ⊢ ∆, Λ, F i1
ρ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

In π′ F i1 or F i1 is the auxiliary formula of a quantifier inference. If M i2 and M i2

are quantified formulas in the end-sequent of π or quantified ancestors of quantified
end-sequent formulas and F i1 or F i1 is quantifier-free, then the auxiliary formula
F i1 or F i1 is used in the construction of the Herbrand sequent.
But in φ the same formula F i1 or F i1 is used for the construction of the Herbrand
sequent. Again, M i2 and M i2 are quantified formulas in the end-sequent of φ or
quantified ancestors of quantified end-sequent formulas and since ∨ : l does not
chance M i2 and M i2 we only need to look at the quantifier inference. Its auxiliary
formula is either F i1 or F i1 and if it is quantifier-free, it is used in the construction
of the Herbrand sequent.

For ◃b we consider the following:
This relation is used to permute ∨ : l inferences downwards. In LKsk there are also
binary inferences→: l and ∧ : r but the analysis is similar, so we skip the proof for them.
Also, we could get rid of →: l, of course. In the following ρ is a ∨ : l inference and we
only consider those cases, where σ is a quantifier inference.

1. φ′ is

F1, Π, Γ1, Gi1 ⊢ ∆1, Gi1 , Λ F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi1 ⊢ ∆1, Gi1 , ∆2, Λ, Λ
contr : ∗

Gi1 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1
σ

M i2 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

and π′ is

Gi1 , F1, Π, Γ1 ⊢ ∆1, Λ, Gi1
σ

M i2 , F1, Π, Γ1 ⊢ ∆1, Λ, M i2 F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, M i2 , Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i2

contr : ∗
F1 ∨ F2, M i2 , Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

Assume M i2 and M i2 to be quantified formulas either in the end-sequent of π
or ancestors of quantified formulas in the end-sequent. Since σ is a quantifier-
inference with auxiliary formula Gi1 or Gi1 that are ancestors of M i2 and M i2 we

81



7. Skolem-free CERES-Method and Herbrand Sequent Extraction

have that if the auxiliary formula Gi1 or Gi1 is quantifier-free, then it is considered
in the construction of the Herbrand sequent.
In φ the same formula is considered in the construction of the Herbrand sequent.
Here, M i2 and M i2 again are assumed to be quantified formulas either in the end-
sequent of φ or ancestors of quantified formulas in the end-sequent. On of them is
the main formula of σ, which is a quantifier inference with auxiliary formula Gi1

or Gi1 . So if the auxiliary formula Gi1 or Gi1 is quantifier-free, then it is used in
the construction of the Herbrand sequent.

2. φ′ is

F1, Π, Γ1 ⊢ ∆1, Λ F2, Π, Γ2, Gi1 ⊢ ∆2, Λ, Gi1
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi1 ⊢ ∆1, ∆2, Λ, Λ, Gi1

contr : ∗
Gi1 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1

σ
M i2 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

and π′ is

F1, Π, Γ1 ⊢ ∆1, Λ
Gi1 , F2, Π, Γ2 ⊢ ∆2, Λ, Gi1

σ
M i2 , F2, Π, Γ2 ⊢ ∆2, Λ, M i2

ρ
F1 ∨ F2, M i2 , Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i2

contr : ∗
F1 ∨ F2, M i2 , Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

Assume in π′ M i2 and M i2 are quantified formulas that are either in the end-
sequent of π or ancestors of quantified end-sequent formulas. We see that σ is a
quantifier inference with main formula M i2 or M i2 . The auxiliary formula of σ is
then either Gi1 or Gi1 . If the auxiliary formula Gi1 or Gi1 is quantifier-free, then
ot is considered in the construction of the Herbrand sequent.
In φ we have the same formula considered in the construction of the Herbrand
sequent. Here again M i2 and M i2 are assumed to be quantified formulas that are
either in the end-sequent of φ or ancestors of quantified end-sequent formulas. σ
has auxiliary formula Gi1 or Gi1 and if it is quantifier-free, it is an auxiliary formula
of a quantifier-inference and ancestor of a quantified formula in the end-sequent,
and therefore it is used in the construction of the Herbrand sequent.

3. φ′ is

F1, Π, Gi1 , Γ1 ⊢ ∆1, Λ, Gi1 F2, Π, Gi1 , Γ2 ⊢ ∆2, Λ, Gi1
ρ

F1 ∨ F2, Π, Gi1 , Π, Gi1 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1 , Λ, Gi1

contr : ∗
Gi1 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1

σ
M i2 , F1 ∨ F2, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2
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and π′ is

Gi1 , F1, Π, Γ1 ⊢ ∆1, Λ, Gi1
σ

M i2 , F1, Π, Γ1 ⊢ ∆1, Λ, M i2

Gi1 , F2, Π, Γ2 ⊢ ∆2, Λ, Gi1
σ

M i2 , F2, Π, Γ2 ⊢ ∆2, Λ, M i2
ρ

F1 ∨ F2, Π, M i2 , Π, M i2 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2 , Λ, M i2

contr : ∗
F1 ∨ F2, Π, M i2 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2

Consider π′ and assume M i2 and M i2 to be quantified formulas that either are
end-sequent formulas of π or ancestors of quantified end-sequent formulas. If we
now search for ancestors of M i2 and M i2 that are auxiliary formulas of quanti-
fier inferences and quantifier-free, then we see that we find Gi1 and Gi1 or Gi1

and Gi1 as auxiliary formulas of quantifier inferences. If the auxiliary formulas
are quantifier-free, then they are considered in the construction of the Herbrand
sequent.

In φ′ we also assume M i2 and M i2 to be quantified formulas that either are end-
sequent formulas or ancestors of quantified end-sequent formulas. If their ancestors
Gi1 and Gi1 are quantifier-free and since one of them is the auxiliary formula of a
quantifier inference, we have that we consider the auxiliary formula Gi1 or Gi1 in
the construction of the Herbrand sequent. Since in the Herbrand sequent we omit
double occurrences of formulas, we have that the two extracted Herbrand sequents
are equal.

Induction hypothesis: Assume that for o(φ) = n rewrite steps it holds that for φ ◃n
u/b π

the Herbrand sequent of π can already be extracted out of φ and the transformation can
be omitted.

Induction step: Show that (IH) holds for o(φ) = n + 1 rewrite steps.
Now the proof is simple. Consider the n + 1 rewrite steps in φ ◃n+1

u/b π. The last rewrite
step is a permutation of inferences in a subproof φ′ of φ leading to a supbroof π′ of π.
For this last rewrite step we have φ′ ◃1

u/b π′ and there are again the same cases as for
the base case, which need to be considered. We have shown that every single rewrite
step φ′ ◃1

u/b π′ can be omitted. Hence we conclude that the last rewrite step φ′ ◃1
u/b π′

can be omitted.
Therefore we have n rewrite steps left. But for φ ◃n

u/b π we know by (IH) that the
assumption holds.

7.4 Complexity of proof-transformations

The complexity of cut-elimination is nonelementary in the size of the input proof and
this holds for any cut-elimination method, therefore it holds for our CERES-method
too. Since we do not generate the ACNF but extract the Herbrand sequents out of
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the projections and the resolution refutation and skip the transformation of a LKsk-
proof into a LK-proof, we are interested in the speed-up gained by omitting unnecessary
transformations.

In this section we will analyse the complexity of the transformations from a LKsk-
proof into a LK-proof. Therefore we will analyse how the transformations ◃u and
◃b affect the proof-length of the proof. First we need some definitions. We will give
two definitions for the relations ◃u and ◃b, which are based on [13] Definition 21 and
Definition 22.

Definition 7.4.1. The relation ◃u:
We permute a unary logical inference ρ over an inference σ, where ρ and σ are indepen-
dent. In case 1, σ is an unary logical inference, in case 2 σ is a weakening inference, in
case 3 σ is a contraction inference and in cases 4 − 5 σ is an ∨ : l inference. Consider
the relation ◃1

u between LKsk-trees π and π′:

1. π is

(φ)

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
ρ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3
σ

M i3 , N i4 , Γ ⊢ ∆, N i4 , M i3

and π′ is

(φ)

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
σ

F i1 , N i4 , Γ ⊢ ∆, N i4 , F i1
ρ

M i3 , N i4 , Γ ⊢ ∆, N i4 , M i3

then π ◃1
u π′.

2. π is

(φ)

F i1 , Γ ⊢ ∆, F i1
ρ

M i2 , Γ ⊢ ∆, M i2
σ

N i3 , M i2 , Γ ⊢ ∆, M i2 , N i3

and π′ is
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(φ)

F i1 , Γ ⊢ ∆, F i1
σ

N i3 , F i1 , Γ ⊢ ∆, F i1 , N i3
ρ

N i3 , M i2 , Γ ⊢ ∆, M i2 , N i3

then π ◃1
u π′.

3. π is

(φ)

F i1 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , F i1
ρ

M i3 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , M i3
σ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3

and π′ is

(φ)

F i1 , Gi2 , Gi2 , Γ ⊢ ∆, Gi2 , Gi2 , F i1
σ

F i1 , Gi2 , Γ ⊢ ∆, Gi2 , F i1
ρ

M i3 , Gi2 , Γ ⊢ ∆, Gi2 , M i3

then π ◃1
u π′.

4. π is

(φ1)

F i1 , G1, Γ ⊢ ∆, F i1
ρ

M i2 , G1, Γ ⊢ ∆, M i2

(φ2)
G2, Π ⊢ Λ

σ
G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

and π′ is

(φ1)

F i1 , G1, Γ ⊢ ∆, F i1

(φ2)
G2, Π ⊢ Λ

σ
G1 ∨G2, F i1 , Γ, Π ⊢ ∆, Λ, F i1

ρ
G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

then π ◃1
u π′.

5. π is
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(φ1)
G1, Γ ⊢ ∆

(φ2)

F i1 , G2, Π ⊢ Λ, F i1
ρ

M i2 , G2, Π ⊢ Λ, M i2
σ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

and π′ is

(φ1)
G1, Γ ⊢ ∆

(φ2)

F i1 , G2, Π ⊢ Λ, F i1
σ

G1 ∨G2, F i1 , Γ, Π ⊢ ∆, Λ, F i1
ρ

G1 ∨G2, M i2 , Γ, Π ⊢ ∆, Λ, M i2

then π ◃1
u π′.

Note that in case 3 in the definition above σ is a contraction left and right inference.
Since such an inference is not defined in our calculus, we assume σ to be two inferences
σ1 and σ2 where σ1 is a cl inference an σ2 a cr inference. The consecutive application of
σ1 and σ2 yields σ.

The ◃u relation is defined as the transitive and reflexive closure of the compatible
closure of the ◃1

u relation.

Definition 7.4.2. The relation ◃b:
Here we permute down a ∨ : l inference ρ. In cases 1− 3 σ is a unary logical inference,
in case 4 σ is a weakening, in cases 5− 6 σ is a contraction inference and in cases 7− 9
σ is a ∨ : l inference.

1. π is

(φ1)

F1, Π, Γ1, Gi1 ⊢ ∆1, Gi1 , Λ
(φ2)

F2, Π, Γ2 ⊢ ∆2, Λ
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi1 ⊢ ∆1, Gi1 , ∆2, Λ, Λ
c∗

Gi1 , F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi1
σ

M i2 , F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i2

and π′ is

(φ1)

Gi1 , F1, Π, Γ1 ⊢ ∆1, Λ, Gi1
σ

M i2 , F1, Π, Γ1 ⊢ ∆1, Λ, M i2

(φ2)
F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, M i2 , Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i2

c∗
F1 ∨ F2, M i2 , Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i2
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then π ◃1
b π′.

2. π is

(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

(φ2)

F2, Π, Γ2, Gi1 ⊢ ∆2, Λ, Gi1
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi1 ⊢ ∆1, ∆2, Λ, Λ, Gi1
c∗

Gi1 , F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi1
σ

M i2 , F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i2

and π′ is

(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

(φ2)

Gi1 , F2, Π, Γ2 ⊢ ∆2, Λ, Gi1
σ

M i2 , F2, Π, Γ2 ⊢ ∆2, Λ, M i2
ρ

F1 ∨ F2, M i2 , Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i2
c∗

F1 ∨ F2, M i2 , Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i2

then π ◃1
b π′.

3. π is

(φ1)

F1, Π, Gi1 , Γ1 ⊢ ∆1, Λ, Gi1

(φ2)

F2, Π, Gi1 , Γ2 ⊢ ∆2, Λ, Gi1
ρ

F1 ∨ F2, Π, Gi1 , Π, Gi1 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Gi1 , Λ, Gi1
c∗

Gi1 , F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi1
σ

M i2 , F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i2

and π′ is

(φ1)

Gi1 , F1, Π, Γ1 ⊢ ∆1, Λ, Gi1
σ

M i2 , F1, Π, Γ1 ⊢ ∆1, Λ, M i2

(φ2)

Gi1 , F2, Π, Γ2 ⊢ ∆2, Λ, Gi1
σ

M i2 , F2, Π, Γ2 ⊢ ∆2, Λ, M i2
ρ

F1 ∨ F2, Π, M i2 , Π, M i2 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, M i2 , Λ, M i2
c∗

F1 ∨ F2, Π, Π′, M i2 , Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i2

then π ◃1
b π′.

4. π is
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(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

(φ2)
F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′

w∗
M i, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i

and π′ is

(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

w∗
M i, F1, Π, Γ1 ⊢ ∆1, Λ, M i

(φ2)
F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, M i, Π, Π, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ, M i

c∗
F1 ∨ F2, M i, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, M i

then π ◃1
b π′.

5. π is

(φ1)

F1, Π, Γ1, Gi, Gi ⊢ ∆1, Λ, Gi, Gi

(φ2)
F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, Π, Γ1, Γ2, Gi, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi, Gi

c∗
Gi, Gi, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi, Gi

σ
Gi, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi

and π′ is

(φ1)

F1, Π, Γ1, Gi, Gi ⊢ ∆1, Λ, Gi, Gi

σ
F1, Π, Γ1, Gi ⊢ ∆1, Λ, Gi

(φ2)
F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, Π, Γ1, Γ2, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi

c∗
Gi, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi

then π ◃1
b π′.

6. π is

(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

(φ2)

F2, Π, Γ2, Gi, Gi ⊢ ∆2, Λ, Gi, Gi
ρ

F1 ∨ F2, Π, Π, Γ1, Γ2, Gi, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi, Gi
c∗

Gi, Gi, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi, Gi

σ
Gi, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi
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and π′ is

(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

(φ2)

F2, Π, Γ2, Gi, Gi ⊢ ∆2, Λ, Gi, Gi

σ
F2, Π, Γ2, Gi ⊢ ∆2, Λ, Gi

ρ
F1 ∨ F2, Π, Π, Γ1, Γ2, Gi ⊢ ∆1, ∆2, Λ, Λ, Gi

c∗
Gi, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′, Gi

then π ◃1
b π′.

7. π is

(φ1)
F1, Π, Γ1, G1 ⊢ ∆1, Λ

(φ2)
F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, Π, Γ1, G1, Γ2 ⊢ ∆1, ∆2, Λ, Λ

c∗
G1, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′

(φ3)
G2, Σ ⊢ Θ

σ
G1 ∨G2, F1 ∨ F2, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ′

and π′ is

(φ1)
G1, F1, Π, Γ1 ⊢ ∆1, Λ

(φ3)
G2, Σ ⊢ Θ

σ
G1 ∨G2, F1, Π, Γ1, Σ ⊢ Θ, ∆1, Λ

(φ2)
F2, Π, Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, G1 ∨G2, Π, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, G1 ∨G2, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ′

then π ◃1
b π′.

8. π is

(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

(φ1)
F2, Π, Γ2, G1 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, Π, Γ1, Γ2, G1 ⊢ ∆1, ∆2, Λ, Λ

c∗
G1, F1 ∨ F2, Π, Π′, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′

(φ1)
G2, Σ ⊢ Θ

σ
G1 ∨G2, F1 ∨ F2, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ′

and π′ is

(φ1)
F1, Π, Γ1 ⊢ ∆1, Λ

(φ2)
G1, F2, Π, Γ2 ⊢ ∆2, Λ

(φ3)
G2, Σ ⊢ Θ

σ
G1 ∨G2, F2, Π, Γ2, Σ ⊢ Θ, ∆2, Λ

ρ
F1 ∨ F2, G1 ∨G2, Π, Π, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, G1 ∨G2, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ′
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then π ◃1
b π′.

9. π is

(φ1)
F1, Π, G1, Γ1 ⊢ ∆1, Λ

(φ2)
F2, Π, , G1Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, G1, Π, G1, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, Π, Π′, G1, G′

1, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′
(φ3)

G2, Σ ⊢ Θ
σ

G1 ∨G2, G′
1, F1 ∨ F2, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ′

and π′ is

(φ1)
G1, F1, Π, Γ1 ⊢ ∆1, Λ

(φ3)
G2, Σ ⊢ Θ

σ
G1 ∨G2, F1, Π, Γ1, Σ ⊢ Θ, ∆1, Λ (ϕ)

ρ
F1 ∨ F2, Π, G1 ∨G2, Π, G1 ∨G2, Γ1, Γ2, Σ, Σ ⊢ Θ, Θ, ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, G1 ∨G2, (G1 ∨G2)′, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, Θ′, ∆1, ∆2, Λ, Λ′

where ϕ is

(φ2)
G1, F2, Π, Γ2 ⊢ ∆2, Λ

(φ3)
G2, Σ ⊢ Θ

σ
G1 ∨G2, F2, Π, Γ2, Σ ⊢ Θ, ∆2, Λ

then π ◃1
b π′.

Note here that the inference c∗ is used as follows: If in a sequent Π, Π occurs, then
after the application of c∗ we get Π, Π′ with Π′ possibly empty or equal to Π. Hence, c∗
contracts either one of the occurrences of Π, or none of them.

The ◃b relation is defined as the transitive and reflexive closure of the compatible
closure of the ◃1

b relation.

7.4.1 Proof length

Consider an LKsk-proof π and the corresponding LK-proof φ where π ◃u/b φ holds. We
will analyse how the transformation ◃u/b influences the proof-length l(φ) (see Definition
2.32) of the LK-proof φ with respect to the proof-length l(π) of the LKsk-proof π.

Looking at the permutations of Definition 7.4.1 and Definition 7.4.2 we see that
l(π) = l(π′) for all permutations except for ◃b case 3 and case 9 in Definition 7.4.2. For
the sake of simplicity, we introduce two new definitions:

Definition 7.4.3. Π= is the set of permutations where the proof-length does not change,
i.e. where l(π) = l(π′) holds.
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Definition 7.4.4. Π< is the set of permutations where the proof-length differs, i.e.
where l(π) < l(π′) holds.

Note that case 3 and case 9 of Definition 7.4.2 are the only permutations ∈ Π< and
all other permutations of Definition 7.4.1 and Definition 7.4.2 belong to the set Π=, so
there is no single case where l(π) > l(π′) holds.

If the transformation of a LKsk-proof π into a LK-proof φ uses only permutations
∈ Π= we clearly have that l(π) = l(φ). However, if also permutations ∈ Π< occur in the
transformation, we observe the following:

Consider case 9 from Definition 7.4.2:
π is

φ1
F1, Π, G1, Γ1 ⊢ ∆1, Λ

φ2
F2, Π, , G1Γ2 ⊢ ∆2, Λ

ρ
F1 ∨ F2, Π, G1, Π, G1, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, Π, Π′, G1, G′

1, Γ1, Γ2 ⊢ ∆1, ∆2, Λ, Λ′
φ3

G2, Σ ⊢ Θ
σ

G1 ∨G2, G′
1, F1 ∨ F2, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, Λ, Λ′

and π′ is

φ1
G1, F1, Π, Γ1 ⊢ ∆1, Λ

φ3
G2, Σ ⊢ Θ

σ
G1 ∨G2, F1, Π, Γ1, Σ ⊢ Θ, ∆1, Λ (ϕ)

ρ
F1 ∨ F2, Π, G1 ∨G2, Π, G1 ∨G2, Γ1, Γ2, Σ, Σ ⊢ Θ, Θ, ∆1, ∆2, Λ, Λ

c∗
F1 ∨ F2, G1 ∨G2, (G1 ∨G2)′, Π, Π′, Γ1, Γ2, Σ ⊢ Θ, Θ′, ∆1, ∆2, Λ, Λ′

where ϕ is

φ2
G1, F2, Π, Γ2 ⊢ ∆2, Λ

φ3
G2, Σ ⊢ Θ

σ
G1 ∨G2, F2, Π, Γ2, Σ ⊢ Θ, ∆2, Λ

then π ◃1
b π′.

In the transformation from π to π′ the subproof φ3 is duplicated. This means, that if
the subproof φ3 contains sufficiently many subproofs of the same kind as in case 9, the
complexity of the transformation will be exponential in the size of the input proof. To
clarify the meaning of sufficiently many subproofs we introduce the next definition.

Definition 7.4.5. Sequence of proofs of same kind. We define a sequence of proofs
(φn)n∈N of proofs of the same kind as in Definition 7.4.2 case 9 as follows:

Let φ1 be the following proof:
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F1, G1(t), Γ1 ⊢ ∆1, F1, G1(t)
∀r

F1, G1(t), Γ1 ⊢ ∆1, F1, (∀x)G1(x)
F2, G1(t), Γ2 ⊢ ∆2, F2, G1(t)

∀r
F2, G1(t), Γ2 ⊢ ∆2, F2, (∀x)G1(x) ∨l

F1 ∨ F2, G1(t), G1(t), Γ1, Γ2 ⊢ ∆1, ∆2, F1, (∀x)G1(x), F2, (∀x)G1(x)
c∗

F1 ∨ F2, G1(t), Γ1, Γ2 ⊢ ∆1, ∆2, F1, (∀x)G1(x), F2 G2(t), Σ ⊢ Θ, G2(t) ∨l
G1(t) ∨G2(t), F1 ∨ F2, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, F1, (∀x)G1(x), F2, (∀x)G2(x)

∀l(∀x)(G1(x) ∨G2(x)), F1 ∨ F2, Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, F1, (∀x)G1(x), F2, (∀x)G2(x)

And let φn for n > 1 be

F1, G1(t), Γ1 ⊢ ∆1, F1, G1(t)
∀r

F1, G1(t), Γ1 ⊢ ∆1, F1, (∀x)G1(x)
F2, G1(t), Γ2 ⊢ ∆2, F2, G1(t)

∀r
F2, G1(t), Γ2 ⊢ ∆2, F2, (∀x)G1(x) ∨l

F1 ∨ F2, G1(t), G1(t), Γ1, Γ2 ⊢ ∆1, ∆2, F1, (∀x)G1(x), F2, (∀x)G1(x)
c∗

F1 ∨ F2, G1(t), Γ1, Γ2 ⊢ ∆1, ∆2, F1, (∀x)G1(x), F2

φn−1

G2(t), Σ′ ⊢ Θ′, G2(t) ∨l
G1(t) ∨G2(t), F1 ∨ F2, Γ1, Γ2, Σ′ ⊢ Θ′, ∆1, ∆2, F1, (∀x)G1(x), F2, (∀x)G2(x)

∀l(∀x)(G1(x) ∨G2(x)), F1 ∨ F2, Γ1, Γ2, Σ′ ⊢ Θ′, ∆1, ∆2, F1, (∀x)G1(x), F2, (∀x)G2(x)

where Σ′ in φn is defined to be the end-sequent of φn−1 except that the subformula Σ
in the end-sequent of φn−1 is replaced by Σ\{G2} and Θ′ in φn is defined to be the end-
sequent of φn−1 except that the subformula Θ′ in the end-sequent of φn−1 is replaced
by Θ\{G2}. Note that for simplicity we do not use labels in the proofs above.

Now consider a sequence of proofs (φn)n∈N as defined in Definition 7.4.5. We will
show that for this sequence, the complexity of the transformation (from LKsk-proofs
into LK-proofs) is exponential in the size of the input proofs.

Theorem 7.4.1. Complexity of transformations. There exists a sequence of LKsk-proofs
(φn)n∈N s.t.

l(φn) ≤ k ∗ n,

and after the transformation into a sequence of LK-proofs (φ∗
n)n∈N we get

l(φ∗
n) ≥ 2l∗n

Proof. Let (φ∗
n)n∈N be the sequence of proofs defined in Definition 7.4.5. Note, the

strong quantifiers ∀r are at the top of φn, the weak ones at the bottom. To establish the
validity of eigenvariable conditions in the final LK-proof the full transformation has to
be performed. First we show that l(φn) ≤ k ∗ n holds for k = 9. First note

l(φ1) = 9

l(φ2) = 9 + 8

l(φ3) = 9 + 8 + 8
...
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l(φn) = 9 + (n− 1) ∗ 8

The proof is by induction on n.
Base case n = 1:

l(φ1) = 9 ≤ 9 ∗ 1

Now assume as induction hypothesis (IH) that l(φm) ≤ 9 ∗m holds for for all m ≤ n.
Consider m = n + 1. Since l(φn) = l(φn−1) + 8 for all n we get

l(φn+1) = l(φn) + 8.

By (IH) we know that l(φn) ≤ 9 ∗ n, hence

l(φn) + 8 ≤ 9 ∗ n + 8

Since
9 ∗ n + 8 < 9 ∗ n + 9 = 9 ∗ (n + 1)

we conclude that
l(φn+1) ≤ 9 ∗ (n + 1).

Therefore we obtain l(φn) ≤ k ∗ n for k = 9.
Now we show that l(φ∗

n) ≥ 2l∗n for some l ∈ N. φ∗
1 is the transformed proof φ1:

F1, G1(t), Γ1 ⊢ ∆1, F 1, G1(t) G2(t), Σ ⊢ Θ, G2(t)
∨l

G1(t) ∨ G2(t), F1, Γ1, Σ ⊢ Θ, ∆1, F 1, G1(t), G2(t)
∀l(∀x)(G1(x) ∨ G2(x)), F1, Γ1, Σ ⊢ Θ, ∆1, F 1, G1(t), G2(t)

∀r
G1(t) ∨ G2(t), F1, Γ1, Σ ⊢ Θ, ∆1, F 1, (∀x)G1(x), (∀x)G2(x) ϕ

∨l
F1 ∨ F2, (∀x)(G1(x) ∨ G2(x)), G1 ∨ G2, Γ1, Γ2, Σ, Σ ⊢ Θ, Θ, ∆1, ∆2, F 1, (∀x)G1(x), (∀x)G2(x), (∀x)G1(x), F2, (∀x)G2(x)

c∗
F1 ∨ F2, (∀x)(G1(x) ∨ G2(x)), Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, F 1, (∀x)G1(x), (∀x)G2(x), F2

where ϕ is

G1(t), F2, Γ2 ⊢ ∆2, G1(t), F2 G2(t), Σ ⊢ Θ, G2(t) ∨l
G1(t) ∨G2(t), F2, Γ2, Σ ⊢ Θ, ∆2, G1(t), F2, G2(t)

∀l(∀x)(G1(x) ∨G2(x)), F2, Γ2, Σ ⊢ Θ, ∆2, G1(t), F2, G2(t)
∀r(∀x)(G1(x) ∨G2(x)), F2, Γ2, Σ ⊢ Θ, ∆2, (∀x)G1(x), F2, (∀x)G2(x)

and φ∗
n is

F1, G1(t), Γ1 ⊢ ∆1, F 1, G1(t)

(φ∗
n−1)

G2(t), Σ ⊢ Θ, G2(t)
∨l

G1(t) ∨ G2(t), F1, Γ1, Σ ⊢ Θ, ∆1, F 1, G1(t), G2(t)
∀l(∀x)(G1(x) ∨ G2(x)), F1, Γ1, Σ ⊢ Θ, ∆1, F 1, G1(t), G2(t)

∀r
G1(t) ∨ G2(t), F1, Γ1, Σ ⊢ Θ, ∆1, F 1, (∀x)G1(x), (∀x)G2(x) ϕ

∨l
F1 ∨ F2, (∀x)(G1(x) ∨ G2(x)), G1 ∨ G2, Γ1, Γ2, Σ, Σ ⊢ Θ, Θ, ∆1, ∆2, F 1, (∀x)G1(x), (∀x)G2(x), (∀x)G1(x), F2, (∀x)G2(x)

c∗
F1 ∨ F2, (∀x)(G1(x) ∨ G2(x)), Γ1, Γ2, Σ ⊢ Θ, ∆1, ∆2, F 1, (∀x)G1(x), (∀x)G2(x), F2

where ϕ is
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G1(t), F2, Γ2 ⊢ ∆2, G1(t), F2

(φ∗
n−1)

G2(t), Σ ⊢ Θ, G2(t) ∨l
G1(t) ∨G2(t), F2, Γ2, Σ ⊢ Θ, ∆2, G1(t), F2, G2(t)

∀l(∀x)(G1(x) ∨G2(x)), F2, Γ2, Σ ⊢ Θ, ∆2, G1(t), F2, G2(t)
∀r(∀x)(G1(x) ∨G2(x)), F2, Γ2, Σ ⊢ Θ, ∆2, (∀x)G1(x), F2, (∀x)G2(x)

First note
l(φ∗

1) = 12

l(φ∗
2) = 10 + 2 ∗ 12 = 34

l(φ∗
3) = 10 + 2 ∗ 34 = 78

...

A careful analysis of the structure of l(φ∗
n) shows that

l(φ∗
n) =

{
12 if n = 1
10 + 2 ∗ l(φ∗

n−1) otherwise

Note that for n = 1 we have
l(φ∗

1) = 12 ≥ 21.

It can be proved by induction that for n > 1 it holds that l(φ∗
n) = (2n−1 − 1) ∗ 10 +

2n−1 ∗ l(φ∗
1). Therefore

l(φ∗
n) = (2n−1 − 1) ∗ 10 + 2n−1 ∗ l(φ∗

1)

= 2n−1 ∗ 10− 10 + 2n−1 ∗ 12

= 2n−1 ∗ 22− 10

Since
2n−1 ∗ 22− 10 = 2n−1 ∗ 2 ∗ 11− 10 = 2n ∗ 11− 10

we finally obtain
l(φ∗

n) ≥ 2n.

Hence, we have proved that l(φ∗
n) ≥ 2l∗n holds for l = 1.

94



CHAPTER 8
Conclusion

The goal of this thesis was to define a Skolem-free CERES-method for first-order logic
and to speed-up the Herbrand sequent extraction.

In Section 7.1 we have defined a Skolem-free CERES-method, where we used the
cut-free calculus LKsk introduced in [13] and [22]. In this calculus we use Skolem
terms instead of the eigenvariables of LK and therefore do not have to take care of the
eigenvariable conditions.

We construct the characteristic sequent set and the projections, as described in [13]
and [22]. Using the resolution calculus for the original CERES-method, [6] and [3], we
construct an LK-refutation of the reduct of the characteristic sequent set.

The Herbrand sequents are usually extracted from the ACNF, which we get after
CERES was applied to a proof containing cuts. Therefore, our method would need a
transformation into LK. In [13] and [22] it was shown that LKsk-proofs can be trans-
formed to LK-proofs. However, we skip this transformation and show that Herband
sequents can be extracted in an earlier step in CERES. Indeed, it is possible to extract
Herbrand sequents from the resolution refutation and the corresponding projections,
which we showed in Section 7.2.

In Section 7.3 we proved that we do not need the transformation from LKsk-proofs
into LK-proofs to be able to extract Herbrand sequents, because the sequents relevant
for the extraction are not modified during the transformation, which was originally used
to show soundness of LKsk. Hence, the whole transformation is obsolete which lead us
to the investigation of the complexity of the transformation.

In Section 7.4 we proved that the complexity of the transformation can be exponential
in the size of the input proof, which means that we defined a new method for Herbrand
sequent extraction, which is faster than the one defined by the original Skolem-free
CERES-method.

Since we proved that with the Skolem-free CERES-method the Herbrand sequents
can be extracted more efficiently, an implementation of this method could follow in
future work.
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Moreover, a generalization to higher-order logic (resulting in an efficient computation
of expansion trees) would be of major importance in mathematical proof mining.
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