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Kurzfassung der Dissertation

Im Fokus der Dissertation steht die Anwendung und Implementierung von Modellen mit
unvollständiger Information im Bereich der dynamischen Kreditrisikomodellierung. ”Un-
vollständige” Information bezeichnet hier den Umstand, dass Faktoren, welche das Modell
maßgeblich beeinflussen, nicht vollständig beobachtbar sind. In dieser Dissertation stellen
wir jeweils ein Modell mit unvollständiger Information aus der Klasse der Intensitätsmodelle
und der strukturellen Kreditrisikomodelle vor und diskutieren jeweils eine Anwendung.

Im ersten Teil der Dissertation wird auf ein in [44] vorgestelltes multivariates Inten-
sitäts-Modell zurückgegriffen. Bei diesem werden die Ausfallintensitäten als Funktion einer
nicht direkt beobachtbaren Markovkette modelliert. Insbesondere führt die Annahme der
Nicht-Beobachtbarkeit zum Vorhandensein von Ansteckungseffekten. Im Setup von [44] un-
tersuchen wir Kontrahentenausfallrisiken bei Credit Default Swaps, welche over-the-counter
gehandelt werden. Darüber hinaus werden auch Absicherungsstrategien (Collateralization)
gegen Kontrahentenausfallrisiken untersucht. Insbesondere gehen wir auf den Einfluss der
Ansteckungseffekte auf die Kontrahentenrisiken und die Effektivität der Collateralization-
Strategien ein.

Der zweite Teil nutzt das univariate strukturelle Kreditrisikomodell aus [41] und wir
stellen dieses mitsamt der wichtigsten Resultate in Kapitel 3 vor. Im Gegensatz zu klassis-
chen Arbeiten wird dort angenommen, dass der Wert der Assets V nicht direkt beobachtbar
ist; Marktteilnehmer und auch die Firma selbst haben nur eingeschränkte Informationen
über V . Im Kapitel 4 gehen wir näher auf die numerischen Implementierung des Modells
ein und beschreiben Algorithmen zur Simulation von Pfaden der wichtigsten beteiligten
Prozesse. Insbesondere führen wir eine Simulationsstudie durch, bei der wir diese in Punkto
Stabilität und Genauigkeit vergleichen. Letztlich nutzen wir in Kapitel 5 das strukturelle
Kreditrisikomodell für die Bewertung von Contingent Capital Notes. Contingent Capital
Notes sind Unternehmensanleihen, welche mit einem Umwandlungsmechanismus ausges-
tattet sind, welcher dafür sorgen soll, dass das Eigenkapital der Bank gestärkt wird, falls
sie in finanziellen Nöten ist. Wir bewerten unterschiedliche Typen von Contingent Capital
Notes und diskutieren die Effektivität verschiedener Umwandlungsmechanismen in Hinblick
auf die Stärkung des Eigenkapitals. Insbesondere gehen wir auf die Konsequenzen der un-
vollständigen Information über V auf die Effektivität der Umwandlungsmechanismen ein.
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Abstract

The focus of the thesis is on the application and implementation of models with incomplete
information in the context of dynamic credit risk modelling. ‘Incomplete information’ means
that factors which influence the model significantly are not fully observable by the financial
market participants. We present a reduced-form-model and a structural credit risk model
with incomplete information and discuss for each an application.

In the first part of the thesis we use the multivariate reduced-form model from [44] as
vehicle for our analysis. Here, the default intensities are modelled as a function of a finite
state Markov chain, which is not fully observable. As a consequence of this, the model
framework can incorporate contagion effects. In this set-up we investigate counterparty
credit risk for OTC-credit default swaps. Moreover, the effectiveness of different collater-
alization strategies is discussed in this framework. In particular, we discuss the impact of
the contagion effects on counterparty credit risk and on the effectiveness of collateralization
strategy and derive a collateralization strategy which explicitly takes contagion effects into
account.

The second part uses the univariate structural credit risk model from [41], which we
will discuss in Chapter 3. In contrast to classical approaches, in [41] it is assumed that
the value of the assets V is not directly observable; market participants only observe noisy
observations of the asset process. In Chapter 4 we discuss the numerical aspects, including
methods for the simulation of trajectories of the most important processes. In a numerical
simulation study we also compare different simulation algorithm in terms of stability and
convergence speed. Finally, in Chapter 5 we use the model for the pricing of Contingent
Capital Notes. Contingent Capital Notes are corporate bonds which are equipped with a
conversion feature. The conversion is designed with the aim at strengthening the equity
capital of the bank if it enters into financial distress. We will price different types of
Contingent Capital Notes and discuss the effectiveness of the conversion mechanisms. In
particular the impact of the assumption of incomplete information on the asset value is
discussed.
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Chapter 1

Introduction

This thesis is devoted to the application and implementation of (dynamic) credit risk models
with incomplete information. The term incomplete information addresses situations in
which the market participants only partially observe quantities which are relevant for the
pricing of securities and contingent claims. In the following we will give a short introduction
to dynamic credit risk models and explain where incomplete information effects can arise.
For a detailed exposition of incomplete information modelling in credit risk see also the
survey [39] and the references within. The two main classes of dynamic credit risk models
in mathematical finance are reduced form models and structural credit risk models. Note
that the first part of the thesis is based on a reduced form model and the second part on a
structural credit risk model.

We begin with the description of the class of reduced form models. For a more detailed
exposition on this topic we refer to the Chapter 10 of [63]. The term reduced-form model
refers to models where the default mechanism is not modelled explicitly, but only the default
times respectively their distribution is specified. Within the class of reduced form models
the most common way of specifying the default times τ1, . . . , τn consists of specifying their
default intensities λ1, . . . , λn. These are non-negative processes with the following property:
For i = 1, . . . , n let Ni denote the survival indicator process, that is Ni,t = 1{τi≤t} for
t ∈ [0,∞). Hence, it indicates whether the company i has defaulted yet or not. λi is called
default intensity of the default time τi if the process

Ni,t −
∫ t∧τi

0
λi,s ds, t ∈ [0,∞)

is a martingale. In general not every default time exhibits an intensity, however for some
classes of default times the existence of an intensity has been established, for example doubly
stochastic default times (see Definition 10.10 of [63]). Moreover, for this class it is possible to
construct the default time from their intensity by using exponential thresholds (see Lemma
10.11 in [63]). Frequently, one assumes that the intensities λ1, . . . , λn are functions of a
stochastic process X, that is there exist functions f1, . . . , fn such that λi,t = fi(Xt). Since
the intensities determine the distribution of the default times including their dependence
structure, in this case the process X determines the prices of defaultable securities (see
Section 10.5 of [63]); the pricing leads to the computation of conditional expectations of
the following form:

EQ
(
f(Xt)

∣∣∣FM
t

)
, t ∈ (0,∞) (1.1)

1



Chapter 1. Introduction

where FM = (FM
t )t∈[0,∞) denotes the investor information filtration and Q the risk-neutral

measure. Incomplete information effects arise if the process X is not perfectly observable by
market participants, that is X is not adapted to the information filtration FM (FX 6⊂ FM).
In this case the computation of (1.1) for different functions f is called stochastic filtering.
Herefore, it suffices to find the conditional distribution of X given the available information
FM
t . Unfortunately, this is only possible in a few cases and hence quite often one has to

rely on numerical methods. Intensity models respectively reduced-form credit risk models
with incomplete information have been considered previously by [27, 34, 38, 72]. In the first
part of the thesis we will use set-up from [38] and assume that X is a finite state Markov
chain with state space SX = {1, . . . , k}. This model framework has several advantages
and also improves the hypothetical model where X is observable in some points. Usually
this hypothetical model is referred to as complete information model in order to stress
out the difference to the original model. Firstly, computations can be mostly done in the
context of the complete information model. For this well-established pricing formulas and
techniques (see [63]) can be used. The benefits are that the model reflects spread risk
(random fluctuations of credit spreads between defaults) and default contagion. Default
contagion refers to the fact that the default of a firm leads to a sudden increase in the
credit spread of surviving firms. A prime example for contagion effects is the rise in credit
spreads after the default of Lehman Brothers in 2008. The contagion effects in this model
are generated by the updating of the conditional distribution of the unobservable factor X
in reaction to the incoming default observation.

In Chapter 2 we use the framework described above to study counterparty credit risk
for over-the-counter (OTC) Credit Default Swaps (CDS). Counterparty credit risk refers
to the risk to each party of a bilateral contract that the counterparty will not live up to its
contractual obligations. In this case the surviving party usually will replace the contract
and suffers a loss, because the proceeds from the recovery payment are not enough to cover
the costs of entering into the new contract. Note that the presence of contagion effects
has a significant effect on the size of the price of the new CDS contract and hence also
on the replacement costs. Therefore, contagion effects should be taken into account when
studying counterparty credit risk. One way to mitigate the involved counterparty credit
risk consists of collateralization. Collateralization refers to the practice of posting securities
(the so-called collateral) that serve as a pledge for the collateral taker. These securities are
liquidated if one of the contracting parties defaults, and the proceeds can be used to cover
to the replacement costs of the contract. In order to ensure that the proceeds are sufficient
one has to take into account contagion effects. We will discuss different collateralization
strategies and also suggest one which takes into account collateralization effects.

The second large class of dynamic credit risk models are structural credit risk models.
Structural credit risk models like [9] or [59] are widely used in the analysis of defaultable
corporate securities. In these models a firm defaults if a random process V representing
the firm’s asset value hits some barrier K that is often interpreted as the value of the firm’s
liabilities. In contrast to reduced form models, where the default is modelled completely
exogenously, firm value models offer an intuitive economic interpretation of the default
event. Moreover, if the asset value process V is modelled as a diffusion process, then the
corresponding default time does not exhibit a default intensity. Additionally, this leads to
unrealistically low short-term credit spreads. Another difficulty which arises frequently in
the application of structural credit risk models consists of problems in the precise assessment
of the asset value for investors in secondary markets. To put it differently, investors in
secondary markets only have incomplete information on the asset value V . For example

2



[35] proposed a model where the market obtains at discrete time points tn a noisy accounting
information of the form Zn = log(Vtn) + εn. In [41] the noisy asset information is modelled
by a continuous time process of the form

Zt =

∫ t

0
a(Vs) ds+Wt for t ∈ [0,∞).

for some Brownian motion W independent of V . Interestingly, [35] and [41] establish a
relationship between intensity and structural credit risk models by showing the existence
of a default intensity of the default time τ in their framework. Moreover, structural models
with incomplete information were considered in [23, 26, 41, 58, 64]. Note that [42] represents
an updated version of [41] where a slightly different model is considered. The second part
of thesis is based on [41] and is organized as follows. In Chapter 3 we present the set-up
from [41] and give all the results which are important for the following next chapters. In
particular, we show that the pricing of derivative securities naturally leads to stochastic
filtering problems of the form

EQ
(
f(Vt)

∣∣∣FM
t

)
, t ∈ (0,∞).

Moreover, a SPDE for the densities of the conditional distributions of Vt given the available
market information FM

t will be shown.
In Chapter 4 the numerical implementation of the model is discussed. Different al-

gorithms for the simulation of trajectories of all important process are discussed. This
includes an Galerkin approximation of the SPDE to obtain a finite dimensional SDE Sys-
tem. Moreover, we study different algorithms for the simulation of this SDE system. We
cover the well-known Euler-Maruyama and Milstein method, but also some more advanced
methods like the splitting-up method introduced in [48] or the matrix exponential method
from [69]. In a simulation study we compare them against each other in terms of stability
of the algorithm and convergence speed.

Finally, in Chapter 5 the pricing of Contingent Capital Notes is considered. Contin-
gent capital notes, also known as CoCos, are corporate bonds which are equipped with an
conversion mechanism which aims at strengthening the equity capital of the issuer when
he enters into financial distress. The conversion trigger is linked to economic measures of
the financial strength of the company, for example the share price or some capital ade-
quacy ratio and the conversion takes place as soon as the measure indicates that bank is
in financial distress. The modelling and pricing of CoCos has proven to be an interesting
and challenging task, because of the various possible definitions of the conversion. The
structural credit risk model from [41] is very suitable for these tasks, because all of the
different features can be embedded into the model. Moreover, the usage of incomplete
information for the pricing offers very special possibilities. This includes the possibility
that the used economic measure of the financial strength is subject to observation noise
and hence may not correctly reflect the current financial condition of the company. As a
result the conversion may be activated too late, such that the company already defaulted.
This distinguishes our approach from many other pricing approaches (for example [17]),
which implicitly assume that the underlying economic measure always reflects the current
condition of the bank correctly. In Chapter 5 we also include a numerical case study of the
effectiveness of different conversion mechanisms.

3





Part I

An Intensity Model with
Incomplete Information
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Chapter 2

Contagion Effects and
Collateralized Credit Value
Adjustments for Credit Default
Swaps

Apart from small modifications, the following chapter is taken from from [37], which was
published in the International Journal of Theoretical and Applied Finance.

2.1 Introduction

The distress of many financial firms in recent years has made counterparty risk manage-
ment for over-the-counter (OTC) derivatives such as credit default swaps (CDS) an issue
of high concern. Crucial tasks in this context are the computation of credit value adjust-
ments, which account for the possibility that one of the contracting parties defaults before
the maturity of the OTC contract, and the mitigation of counterparty risk by collateraliza-
tion. Collateralization refers to the practice of posting securities (the so-called collateral)
that serve as a pledge for the collateral taker. These securities are liquidated if one of the
contracting parties defaults before maturity, and the proceeds are used to cover the re-
placement cost of the contract. In order to ensure that the funds generated in this way are
sufficient, the collateral position needs to be adjusted dynamically in reaction to changes
in the value of the underlying derivative security. The price dynamics of the collateral thus
play a crucial role for the performance of a given collateralization strategy.

In the present paper we study the impact of different price dynamics on the size of
value adjustments and on the performance of collateralization strategies for CDSs. We are
particularly interested in the influence of contagion. Contagion effects - the fact that the
default of a firm leads to a sudden increase in the credit spread of surviving firms - are
frequently observed in financial markets; a prime example are the events that surrounded
the default of Lehman Brothers in 2008. To see that contagion might be relevant for
the performance of collateralization strategies consider the scenario where the protection
seller defaults during the runtime of the CDS. In such a case contagion might lead to a
substantial increase in the credit spread of the reference entity (the firm on which the CDS
is written) and hence in turn to a much higher replacement value for the CDS. In standard
collateralization strategies this is taken into account at most in a very crude way, and the
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Chapter 2. Contagion Effects and Collateralized Credit Value Adjustments for
Credit Default Swaps

amount of collateral posted before the default might be insufficient for replacing the CDS.
In our view this issue merits a detailed analysis in the context of dynamic portfolio credit
risk models.

We use the reduced-form credit risk model proposed by [44] as vehicle for our analysis. In
that model the default times of the reference entity, the protection seller and the protection
buyer are conditionally independent given some finite state Markov chain X that models
the economic environment. We consider two versions of the model which differ with respect
to the amount of information that is available for investors. In the full-information model
it is assumed that X is observable so that there are no contagion effects. In the incomplete-
information version of the model on the other hand investors observe X in additive Gaussian
noise as well as the default history. In that case there is default contagion that is caused
by the updating of the conditional distribution of X at the time of default events. An
advantage of the set-up of [44] for our purposes is the fact that the the joint distribution of
the default times is the same in the two versions of the model. Hence differences in the size
of value adjustments or in the performance of collateralization strategies can be attributed
purely to the different dynamics of credit spreads (contagion or no contagion) in the two
model variants.

In order to compute value adjustments and to measure the performance of collater-
alization strategies we use the bilateral collateralized credit value adjustment (BCCVA)
proposed by [14]. This credit value adjustment accounts for the form of collateralization
strategies and for the credit quality of the contracting parties. Our analysis reveals that the
impact of contagion on the size of the BCCVA depends strongly on the relative credit qual-
ity of the three parties involved and is hard to predict up front. Results on the performance
of different collateralization strategies are more clear-cut: we show that while standard
market-value based collateralization strategies provide a good protection against losses due
to counterparty risk in the full-information setup, they have problems to deal with the
contagious jump in credit spreads at a default of the protection seller. Motivated by these
findings, we go on and develop improved collateralization strategies that perform well in
the presence of contagion. For our analysis we need to compute the BCCVA in both model
variants. Using Markov chain theory we derive explicit formulas for the BCCVA under full
information; in the incomplete-information setup we rely on simulation arguments.

There is by now a large literature on counterparty risk for CDSs. Existing contributions
focus mostly on the computation of value adjustments (with and without collateralization)
in various credit risk models. Counterparty credit risk and valuation adjustments for un-
collateralized CDS are studied by [3, 10, 16, 54, 60], among others. Counterparty credit
risk for collateralized CDS is discussed among others in [5] and [14]. However, none of these
contributions covers the issues discussed in this paper in full. [5] analyze the impact of col-
lateralization on counterparty risk in CDS contracts using the Markov copula model which
does not exhibit contagion effects. [14] is closest to our contribution: these authors study
the impact of contagion on credit value adjustments and on the effectiveness of market-
value based collateralization strategies in a Gaussian copula model with stochastic credit
spreads. In that model default or event correlation and contagion effects are both driven
by the choice of the correlation parameter of the copula. Consequently, it is not possible to
disentangle the impact of event correlation and of default contagion on credit value adjust-
ments and on the performance of collateralization strategies. This might be an advantage
of our setup. Moreover, [14] do not address the issue of designing collateralization strategies
that take default contagion into account.

The remainder of the paper is organized in the following way. In Section 2.2 we discuss

8



2.2. Bilateral Collateralized Credit Value Adjustment

the BCCVA of [14]. In Section 2.3 we introduce the credit risk model of [44] that provides the
framework for the analysis of the present paper. Section 2.4 is devoted to the computation
of the BCCVA in both model variants. In Section 2.5 we discuss different collateralization
strategies, and in Section 2.6 we present results from numerical experiments.

2.2 Bilateral Collateralized Credit Value Adjustment (BCCVA)

In this section we discuss the bilateral collateralized credit value adjustment (BCCVA)
proposed in [14].

We begin with some notation. Throughout the entire paper we work on a probability
space (Ω,F ,Q) equipped with a filtration F := (Ft)t∈[0,T ] that fulfills the usual hypotheses.
Q denotes the risk-neutral measure used for pricing, and all expectations are taken with
respect to Q. F is a generic filtration that models the information available to the market
participants; we will specify F when we introduce the credit risk model for our analysis in
Section 2.3. We assume throughout that the short rate r(u) is deterministic and we denote
the discount factor from time t to time s by D(t, s) = e−

∫ s
t r(u) du. The following parties

are involved in the CDS contract: the protection buyer, labeled B; the reference identity,
labeled R; the protection seller, labeled S. The default times of these entities are denoted
by τB, τR and τS . We introduce the survival indicators HB

t := 1{τB>t}, H
R
t := 1{τR>t} and

HS
t := 1{τS>t} and we put H := (HB, HR, HS). Defaults are observable by assumption

so that H is F adapted and τB, τR and τS are F stopping times. The first default time
is denoted by τ , that is τ := τB ∧ τR ∧ τS . The random variable ξ with values in the set
{B,R, S} represents the identity of the firm defaulting at τ . Furthermore RecB, RecR,
RecS denote the recovery rate and LGDB, LGDR, LGDS the loss given default of of B, R
and S, respectively. We assume that recovery rates are constants.

All valuations and cash flows are defined from the perspective of the protection buyer.
Therefore positive numbers indicate that a cash flow is received by the protection buyer
and negative numbers indicate that a cash flow is received by the protection seller.

Payments of a risk-free CDS. In our context a CDS without counterparty risk, which
we call (counterparty-) risk-free CDS, is a CDS where neither the protection seller nor the
protection buyer are subject to default risk. For simplicity, we assume that the premium
payments are paid continuously. Therefore the sum of all payments in a risk-free CDS from
time t to time s discounted to t, is given by:

Π(t, s) := 1{t<τR≤s} LGDRD(t, τR)−
∫ s

t
SRD(t, u)1{τR>u} du, (2.1)

where SR represents the spread of the CDS. In addition we define the time t price of a
risk-free CDS with maturity date T > t as the risk-neutral expectation of Π(t, T ), that is

Pt := EQ(Π(t, T )|Ft).

Risky CDS and collateralization. In a CDS with counterparty risk, called risky CDS
below, the protection buyer or the protection seller might default before the maturity of
the CDS. Collateralization is a way to limit the potential loss for the surviving party. To
keep things simple we assume that the collateral is posted in form of cash and that the
collateral earns the risk-free rate of interest r(s). Many collateralization arrangements are
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in fact of this form, and the additional valuation adjustments that need to be made if the
interest rate paid on the collateral differs from the risk-free rate (see for instance [56]) are
not central to the issues studied in this paper. Details of the collateralization procedure
are stipulated in the credit support annex (CSA) of the contract. Roughly speaking the
procedure works as follows. At t0 = 0 a collateral account is opened. Let Ct denote the
cash balance in the account at time t. Here Ct > 0 means that S has posted the collateral
and that B is the collateral taker, whereas Ct < 0 means that B has posted the collateral
and that S is the collateral taker. The collateral position is updated at discrete time points
t1, . . . , tN ≤ T , for instance daily. At t1 the collateral taker pays interest on the collateral
and the cash balance Ct1 is adjusted in reaction to changes in the price of the underlying
CDS over (t0, t1]. This procedure continues up to the maturity of the CDS or until the
first default occurs. If τ > T or if τ < T and ξ1 = R, the collateral account is closed at
the “natural end” of the contract so that Ct ≡ 0 for t ≥ τ ∧ T . If there is an early default
of B or S, that is τ ≤ T and ξ1 ∈ {B,S}, the collateral is used to reduce the loss of the
collateral taker and any remaining collateral is returned; details are specified below.

An issue arising in this context is re-hypothecation. The collateral taker has unrestricted
access to the posted collateral and he may in particular pledge the funds as collateral in
other OTC derivative transaction. Hence a part of the collateral is lost at a default of
the collateral taker. We denote by Rec′B and Rec′S the recovery rate for the return of
collateral and by LGD′B and LGD′S the corresponding loss given default (assumed constant).
Usually the return of collateral is favored to the settlement of other claims in bankruptcy
procedures, so that RecB ≤ Rec′B and RecS ≤ Rec′S . Contracts without re-hypothecation
are characterized by Rec′B = Rec′S = 1.

We describe the cash balance in the collateral account by some F-adapted semimartin-
gale C = (Ct)0≤t≤T with RCLL paths, the so-called collateralization strategy. For simplicity
we assume that interest on the collateral is paid continuously. Since we have assumed that
the collateral earns the risk-free rate r(s), from the perspective of the protection buyer
collateralization leads to a cumulative cash flow stream given by Ct −

∫ t
0 r(s)Cs ds, t ≤ T .

The discounted value of that cash-flow stream at t = 0 equals

C0 +

∫ T

0
D(0, s) dCs −

∫ T

0
D(0, s)r(s)Cs ds = D(0, T )CT ,

where the second equality follows by applying partial integration to D(0, t)Ct. Now CT = 0
on {τ > T} and on {τ ≤ T}∩{ξ = R}. Hence scenarios where neither S nor B default before
the end of the underlying CDS can be ignored in the computation of value adjustments for
counterparty risk, and it suffices to consider the collateral payments for the case where
there is an early default of R or S, that is for τ ≤ T and ξ ∈ {B,S}.

Payments at an early default. In order to complete the description of the cash flow
stream of a risky CDS we need to specify the payments at an early default of B or S. In that
case the surviving party is allowed to charge a close-out amount from the defaulting one.
According to the ISDA Master Agreement the close-out amount is defined as reasonable
estimate of the funds needed to close the position. In this paper we assume that the close-
out amount is given by Pτ , the value of the risk-free CDS at the first default time. Note
that this choice means that the credit quality of the surviving party is completely neglected
in the computation of the close-out amount, which is in line with current market practice.
However, there are alternative suggestions in the literature; see for instance [12].
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We continue with the description of the payments at an early default. To shorten the
exposition we concentrate on the payments in the case where the protection seller defaults
first. Note that no additional collateral is posted after the first default. Hence we assume
that the amount of collateral available during the bankruptcy process is given by Cτ−, the
amount of collateral that has been posted immediately prior to τ . This distinction matters
if the close-out amount Pt jumps at t = τ , for instance due to contagion effects.

In describing the payments at τ we have to consider four scenarios that differ with
respect to the sign of Pτ and of Cτ−.

1. Suppose that Pτ > 0 and that the protection buyer is the collateral taker, that is
Cτ− > 0. The collateral is used to reduce the loss of the protection buyer. If Cτ− is
smaller than Pτ , the protection buyer claims the difference Pτ−Cτ− from S. However,
B will receive only a recovery payment of size RecS(Pτ − Cτ−) in that case. If Cτ−
exceeds Pτ , the excess collateral is returned to the protection seller. With the notation
X+ := max(X, 0) and X− := −min(X, 0),1 in this scenario the overall payment at τ
is given by RecS(Pτ − Cτ−)+ − (Pτ − Cτ−)− .

2. Suppose next that Pτ > 0 and Cτ− < 0, so that the protection seller is the collateral
taker. In this situation B is entitled to the repayment of the collateral and to the
close-out amount Pτ . However, only a fraction of Pτ and, due to re-hypothecation,
of Cτ− will be paid to B. Hence in this scenario the overall payment at τ is given by
RecS Pτ − Rec′S Cτ−.

3. Suppose now that Pτ < 0 and that the protection buyer is the collateral taker, that
is Cτ− > 0. In that case B pays S the close-out amount Pτ and he returns the
collateral. Hence from the viewpoint of B, in this scenario the overall payment at τ
equals Pτ − Cτ−.

4. Suppose that Pτ < 0 and that B posted some collateral so that Cτ− < 0. If −Cτ− ≤
−Pτ S keeps the collateral and he moreover receives the difference −(Pτ − Cτ ).
Otherwise the excess collateral has to be returned to B, and there might be losses
due to re-hypothecation. Hence in this scenario the overall payment at τ equals
Rec′S(Pτ − Cτ−)+ − (Pτ − Cτ−)− .

The payments that arise if the protection buyer defaults first, that is if ξ = B, can be
described in an analogous manner.

The BCCVA. Given a collateralization strategy C, the bilateral collateralized credit value
adjustment (BCCVA) is defined as difference of the discounted cash-flow stream of the risk-
free and the risky CDS. Following [14], we denote the latter cash-flow stream by ΠD(t, T, C),
where D stands for ‘defaultable’. We thus have

BCCVA(t, T, C) := EQ(Π(t, T )|Ft)− EQ(ΠD(t, T, C)
∣∣Ft). (2.2)

Using the above description of the payments at an early default it is straightforward to give
an explicit formula for ΠD(t, T, C). However, in this paper we use an expression for the
BCCVA that does not involve ΠD explicitly (see Proposition 2.3 below) so that we omit
the formula and refer to [14] instead.

1Note that the convention X− := min(X, 0) is used in [14].
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By definition the BCCVA measures the difference in value of the cash-flows of a risk-free
CDS and a risky CDS. Note that the BCCVA takes the default risk of of S and of B into
account. The BCCVA thus leads to symmetrical prices in the sense that the adjustment
computed from the point of view of the protection buyer equals (with the opposite sign)
the adjustment computed from the point of view of the protection seller.

In the sequel we work with the following representation of the BCCVA that is established
in [14].

Proposition 2.3. The BCCVA can be decomposed as follows

BCCVA(t, T, C) = CCVA(t, T, C)− CDVA(t, T, C), (2.4)

where the collateralized credit value adjustment (CCVA) and the collateralized debt value
adjustment (CDVA) are given by:

CCVA(t, T, C) := E
(
1{τ<T}1{ξ=S}D(t, τ) (LGDS(P+

τ − C+
τ−)+

+ LGD′S(C−τ− − P−τ )+)|Ft
)
,

CDVA(t, T, C) := E
(
1{τ<T}1{ξ=B}D(t, τ) (LGDB(C−τ− − P−τ )−

+ LGD′B(P+
τ − C+

τ−)−)|Ft
)
.

Comments. 1. The CCVA reflects the possible loss for B due to an early default of S,
whereas the CDVA reflects the loss of S due to an early default of B. Consider for instance
the case where ξ = S. If Pτ > 0, there are two reasons why B might incur a loss: first,
the collateral posted by S might be insufficient to cover the close-out amount of the CDS,
which leads to a loss of size LGDS(Pτ − C+

τ−)+; if Cτ− < 0 there is moreover a loss due to
re-hypothecation given by LGD′S C

−
τ−. If Pτ < 0, B incurs a loss of size LGD′S(C−τ− − P−τ )

(the loss of the excess collateral caused by re-hypothecation). The overall discounted loss
incurred by B is thus given by

1{τ<T}1{ξ=S}D(t, τ)
{

1{Pτ>0}
(

LGDS(Pτ − C+
τ−)+ + LGD′S C

−
τ−
)

+ 1{Pτ<0} LGD′S(C−τ− − P−τ )
}

= 1{τ<T}1{ξ=S}D(t, τ)
{

LGDS(P+
τ − C+

τ−)+ + LGD′S(C−τ− − P−τ )+
}
,

which corresponds to the argument of the CCVA-formula above. In a similar way the CDVA
can be interpreted as loss of S on {ξ = B}.

2. Without collateralization, that is if Ct ≡ 0, the value adjustments take the form of
options on the risk-free CDS price P with strike price K = 0 and random maturity date τ .
In that case the terms in (2.4) are labelled BCVA (bilateral credit value adjustment), CVA
and DVA.

3. Markets often use a simplified value adjustment formula which implicitly assumes that
the survival indicators HB, HS and the counterparty-risk free CDS price P are independent
stochastic processes, an assumption that is known in the counterparty risk literature as no
wrong-way risk. For Ct ≡ 0 the simplified bilateral credit value adjustment at t = 0 is given
by

BCVAindep = LGDS

∫ T

0
F̄B(s)D(0, s)E(P+

s )fS(s) ds

− LGDB

∫ T

0
F̄S(s)D(0, s)E(P−s )fB(s) ds.

(2.5)
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Here F̄S(s) = Q(τS > s) and fS(s) = −F̄ ′(s) represent the survival function and the density
of τS and F̄B and fB represent the survival function and the density of τB. A derivation
of (2.5) is given in [51]. The independence assumptions underlying the derivation of (2.5)
are clearly unrealistic - just think of the case where B, S and R are financial institutions.
In Section 2.6 we therefore study the relation between the “correct” value adjustment (2.4)
and the simplified adjustment (2.5). It will turn out that formula (2.5) underestimates the
correct value adjustment by a sizeable amount.

2.3 The Model

Next we give the mathematical description of the model framework that is used in the
remainder of this paper. We consider a reduced-form model where τR, τB and τS are
conditionally independent, doubly-stochastic random times whose default intensity is driven
by a finite-state Markov chain X = (Xt)t≥0 with state space SX = {1, 2, . . . ,K}, generator
matrix W = (wij)1≤i,j≤K and initial distribution described by the probability vector π0

with πk0 = Q(X0 = k). Denote by FXt := σ(Xs : s ≤ t) the filtration generated by X. We
assume that for all time points tB, tR, tS > 0 one has

Q(τR > tR, τB > tB, τS > tS | FX∞) =
∏

i∈{B,R,S}

exp
(
−
∫ ti

0
λi(Xs) ds

)
, (2.6)

where λi : SX → R+, i ∈ {B,R, S}, are deterministic functions. This definition implies
that the default times are independent given the realization of the background process X.
In our simulation study we consider the case where λB(·), λR(·) and λS(·) are increasing in
x. In that case X can be viewed as an abstract representation of the state of the economy,
1 being the best state (low default probability of all firms) and K the worst state (high
default probability of all firms).

For technical reasons we moreover assume that the underlying probability space (Ω,F ,Q)
supports a d-dimensional standard Brownian motion W which is independent of X and of
the survival indicator process H; W is used to model investor information under imperfect
observation of X (see below). In the sequel we will consider two variants of the model that
differ with respect to the assumptions made on investor information.

The full-information case. Here it is assumed that X is observable for investors and
we take F = FO with

FO = FH ∨ FX ∨ FW ,

where FH is the filtration generated by the survival indicators. (The inclusion of FW is
purely technical and has no impact on the prices of credit derivatives under full information.)
It is well-known that for time points tR, tS , tB > t the conditional survival function of
(τR, τS , τB) given FOt satisfies

Q(τR > tR, τS > tS , τB > tB | FOt ) =
∏

i∈{R,S,B}

H i
t E
(

exp
(
−
∫ ti

t
λi(Xs) ds

)
| Xt

)
. (2.7)

Moreover, the process λi(Xt), i ∈ {R.S,B}, is the FO default intensity of τi, and the pair
process (X,H) is Markov. A derivation of these results can be found in Chapter 10 of [63],
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among others. Formula (2.7) implies in particular that prior to the default of R the price
of the risk-free CDS is a function of t and Xt,

POt = EQ(Π(t, T )
∣∣FOt ) = HR

t p
O(t,Xt). (2.8)

An explicit formula for the function pO(t, k) is given in Corollary 2.13 below.

The incomplete-information case. This variant of the model has been studied in detail
in [44]. In that paper it is assumed that X is unobservable and that investors are confined
to a noisy signal of X of the form

Zt :=

∫ t

0
a(Xs) ds+Wt,

where a : SX → Rd is a deterministic function. Hence in this model variant we put F = FU
(‘unobservable’) with

FU = FH ∨ FZ .

Note that FU ⊆ FO by definition.
Under incomplete information the risk-free CDS-price is given by PUt := EQ(Π(t, T )

∣∣FUt ).
PUt can be computed by projecting the full-information price HB

t p
O(t,Xt) (see (2.8)) on

FO. We get, as FU ⊆ FO,

PUt = EQ(Π(t, T )
∣∣FUt ) = EQ

(
EQ(Π(t, T )

∣∣FOt )∣∣∣FUt ) = HR
t EQ(pO(t,Xt)

∣∣FUt ). (2.9)

Define the conditional probabilities

πkt := Q(Xt = k | FUt ), 1 ≤ k ≤ K, and let πt := (π1
t , . . . , π

K
t )>. (2.10)

With this notation (2.9) can be written more succinctly as

PUt = HR
t

∑
k∈SX

πkt p
O(t, k). (2.11)

Comments. Note that relation (2.11) involves conditional probabilities with respect to
the pricing measure Q.

In Proposition 2.16 below we will show that the Q-dynamics of πt can be described by
a K-dimensional SDE system. From this system we may in particular derive an explicit
representation for the contagion effects under incomplete information.

In the practical application of the model the process Z is considered as abstract source
of information and the current value of π is calibrated from observed prices of traded credit
derivatives; see Section 2.6.1 below.

In both model variants the unconditional joint survival function of τR, τB and τS is
given by

Q(τR > tR, τB > tB, τS > tS) = E
( ∏
i∈{B,R,S}

exp
(
−
∫ ti

0
λi(Xs) ds

))
,

so that the distributions of (τB, τR, τS) coincides in both versions of the model. Therefore
any differences in the BCCVA or in the performance of collateralization strategies can be
attributed to the different dynamics of CDS spreads. For illustrative purposes we plot
typical trajectories of CDS spreads in both model variants in Figure 2.1.
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Figure 2.1: Trajectories of the fair CDS spread in the complete and incomplete information
model.
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2.4 Computation of the BCCVA

2.4.1 The case of the full-information model

In order to evaluate the BCCVA-formula ((2.4)) we need to determine the joint distribution
of τ , ξ and Xτ . This is done in Proposition 2.12 below. The proof of this result relies on
the observation that the distribution of the triple (τ, ξ,Xτ ) can be expressed as first entry
time of the processes (X,HR) and (X,H) into specific sets. Since in our setting these
processes form a finite-state Markov chain one can use Markov-chain theory to derive their
distribution. In order to give precise results, we need to specify the generator matrix of
these Markov chains.

For this we assume that the states are ordered in the inverse lexicographic order. Ac-
cording to this order a vector (x1, . . . , xn) is smaller than (y1, . . . , yn) if xn < yn or if there
is some k < n with xl+1 = yl+1 for l ∈ {k, . . . , n − 1} and with xk < yk. For example, in
the case K = 2 the states of the process (X,HR) are ordered in the following way:

(1, 0) < (2, 0) < (1, 1) < (2, 1).

The transition rate qy,z of (X,HR) from a state y = (y1, y2) to the state z = (z1, z2) is
given by:

qy,z =


wy1 z1 if y1 6= z1 and y2 = z2,

λR(y1) if y1 = z1, y2 = 0 and z2 = 1,

0 otherwise.

Hence the generator of the process (X,HR) can be represented by the matrix

Q :=

(
W − ΛR ΛR

0 W

)
.

Here ΛR = diag(λR(1), . . . , λR(K)) denotes a diagonal matrix with entries on the main
diagonal given by the elements of the vector λR. The transition rates and the generator of
(X,H) can be determined by analogous considerations.
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Proposition 2.12. Let t < s and k ∈ SX . Then the following statements hold:

(a) The distribution of τi with i ∈ {B,R, S} satisfies

Q
(
τi ≤ s

∣∣Xt = k,H i
t = 0

)
= 1− e>k eQi(s−t)1K .

Here Qi := W − Λi where Λi = diag(λi(1), . . . , λi(K)), 1K = (1, . . . , 1)> is a column
vector of dimension K and ek denotes the kth unit vector in RK .

(b) The distribution of the first-to-default time τ can be computed as:

Q(τ ≤ s|Xt = k,Ht = 0) = 1− e>k eQ(1)(s−t)1K ,

where we defined Q(1) := W −
∑

j∈{B,R,S} Λj.

(c) The probability that obliger i ∈ {B,R, S} defaults first and before time s is:

Q(τi ≤ s, ξ = i|Xt = k,Ht = 0) = e>k Q
−1
(1)

(
eQ(1)(s−t) − I

)
Λi1K .

Here Q−1
(1) is the inverse of Q(1).

(d) The probability that obliger i ∈ {B,R, S} defaults first and that at default the Markov
chain is in the state l equals

Q(Xτ = l, τi ≤ s, ξ = i|Xt = k,Ht = 0) = e>k Q
−1
(1)

(
eQ(1)(s−t) − I

)
Λiel.

The proof of this result can be found in 2.7. The first two claims are well-known and
have been derived among others by [50], see also [52]. However we include their proof for
the convenience of the reader. Statements c) and d) on the other hand have to the best of
our knowledge not appeared previously in the literature.

Using Proposition 2.12 the following well-known formula for the price of a risk-free CDS
can be deduced.

Corollary 2.13 (Risk-free CDS price under full-information). The price POt of a risk-
free CDS with generic swap spread S on R given that Xt = k and τR > t is equal to
1{τR>t}p

O(t, k), where the function pO : [0, T ]× SX → R is given by

pO(t, k) =
(
−LGDR e

>
k QR − Se>k

)∫ T

t
D(t, s)e(QR(s−t) ds1K .

Here QR = W − diag(λR(1), . . . , λR(K)), see Proposition 2.12 (a). Moreover, the price of
a CDS at t = 0 is

PO0 =
(
−LGDR π

>
0 QR − Sπ>0

)∫ T

t
D(t, s)e(QR(s−t) ds1K .

Below we will see that for a suitable function g : [0, T ] × SX → R, collateralization
strategies of the form Ct = g(t,Xt) are optimal in the full-information model. For a
generic strategy of this form, Theorem 2.12(d) gives the following semi-closed formula for
the BCCVA.
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Corollary 2.14 (BCCVA formula under full information). Assume that for t < τ the
collateralization strategy is of the form Ct = g(t,Xt). Then, given Xt = j, the CCVA and
CDVA are given by:

CCVAt =
∑

k∈{1,...,K}

∫ T

t
D(t, s)

(
LGDS

(
pO(s, k)+ − g(s, k)+

)+
+ LGD′S

(
g(s, k)− − pO(s, k)−

)+)
fSj,k(s) ds,

CDVAt =
∑

k∈{1,...,K}

∫ T

t
D(t, s)

(
LGDB

(
g(s, k)− − p(s, k)−

)−
,

+ LGD′B
(
p(s, k)+ − g(s, k)+

)−)
fBj,k(s) ds.

Here the functions f ij,k, i ∈ {B,S}, are given by

f ij,k(s) :=
d

ds
Q(τ ≤ s, ξ = i,Xτ = k | Xt = j,Ht = 0) = 1{τi>t}e

>
j e

Q(1)(s−t)Λiek.

2.4.2 The BCCVA in the incomplete-information model

In this section we discuss the computation of the BCCVA under incomplete information.
We begin with a formula for the risk-free CDS price. By combining (2.11) and Corollary 2.13
we obtain

Corollary 2.15 (risk-free CDS prices under incomplete information). Given that {τR > t}
the value PUt of a risk-free CDS at time t equals

PUt = pU (t, πt) :=
(
−LGDR π

>
t QR − Sπ>t

)
(QR − rI)−1

(
e(QR−rI)(T−t) − I

)
1K .

Note that for t = 0 one has PO0 = PU0 ; this equality reflects of course the fact that the
unconditional distributions of the default times coincide in the two model variants.

Under incomplete information the BCCVA is essentially the value of a portfolio of
options on the price PU of the risk-free CDS. Since PUt is a function of πt, in order to
compute the BCCVA one thus needs the form of the dynamics of the process π, and
we now recall the relevant results from [44]. We begin with some notation. We denote
the Q-optional projection of a process G = (Gt)t∈[0,T ] with respect to FU by Ĝ, that is

Ĝt = EQ(Gt∣∣FUt ). In particular,

(λ̂i)t = EQ(λi(Xt)
∣∣FUt ) =

K∑
k=1

λi(k)πkt , i ∈ {B,R, S},

ât = EQ(a(Xt)
∣∣FUt ) =

K∑
k=1

a(k)πkt .

Using the Levy-characterization of Brownian motion it is easily seen that

µt = (µ1
t , . . . , µ

d
t ) with µit = Zit −

∫ t

0
(âi)s ds
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is a FU -Brownian motion. In the literature on stochastic filtering such as [1], (µt)0≤t≤T is

known as innovations process. Moreover, it is well-known that λ̂i is the FU default intensity
of firm i, that is for i ∈ {B,R, S},

M i
t := 1{τi≤t} −

∫ t

0
H i
s (λ̂i)s ds

is an FU martingale, see for instance Chapter 2 of [11].

Proposition 2.16 (Kushner-Stratonovich-equation). The process π is the unique solution
of the K-dimensional SDE system

dπkt =
K∑
i=1

wikπ
i
tdt+

∑
j∈{R,B,S}

(
γkj (πt−)

)>
dM j

t +
(
αk(πt)

)>
dµt , k = 1, . . . ,K,

where

γkj (πt) = πkt

(
λj(k)∑K

i=1 λj(i)π
i
t

− 1

)
for 1 ≤ j ≤ K and

αk(πt) = πkt

a(k)−
K∑
j=1

πjta(j)

.
The proposition shows that the process π exhibits jump-diffusion dynamics. In partic-

ular, π jumps at default times and the jump height of πkt at the default of firm j is equal to
γkj (πτj−). Furthermore using the proposition we can compute the size of the information-

induced contagion effects: the jump in the FU -default intensity of firm i at the default of
firm j, j 6= i equals

(λ̂i)τj − (λ̂i)τj− =
K∑
k=1

λi(k)πkτj−

(
λj(k)∑K

l=1 λj(l)π
l
τj−
− 1

)
=

covπτj−(λi, λj)

Eπτj−(λj)
. (2.17)

An inspection of the formula (2.17) shows the following.

• Contagion effects are inversely proportional to the instantaneous default risk of the
defaulting entity (firm j): a default of an entity with a better credit quality comes as
a bigger surprise and the market impact is larger.

• Contagion effects are proportional to the covariance of the default intensities λi(·)
and λj(·) under the ‘a-priori distribution’ πτj−. In particular, contagion effects are
relatively high if the firms have similar characteristics in the sense that the functions
λi(·) and λj(·) are (almost) linearly dependent.

Proposition 2.16 indicates a method to simulate a trajectory of π. The following general
approach is suggested in [44].

(1) Generate a trajectory of the Markov chain X.

(2) Generate for the trajectory of X constructed in (i) a trajectory of the default indicator
H and the noisy information Z.
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(3) Solve the system of SDEs numerically, for instance via a Euler-Maruyama type
method.

We close this section with a theoretical result on the relationship between the un-
collateralized value adjustments in the two versions of the model.

Proposition 2.18. Assume that the CDS contract is un-collateralized, i.e. Ct ≡ 0. Then
the following relationships hold:

CVAO
0 ≥ CVAU

0 and DVAO
0 ≥ DVAU

0 .

Proof. We begin with the CVA. Using the definition of the CVA, Jensen’s inequality and
the relation PUτ = E(POτ | FUτ ), we get

CVAO
0 = LGDS EQ

(
1{t<τ≤T}1{ξ=S}

(
POτ
)+)

= LGDS EQ
(

1{t<τ≤T}1{ξ=S}EQ
((
POτ
)+∣∣∣FUτ ))

≥ LGDS EQ
(

1{t<τ≤T}1{ξ=S}

(
EQ(POτ ∣∣FUτ ))+

)
= LGDS EQ(1{t<τ≤T}1{ξ=S}(PUτ )+

)
,

and the last line is obviously equal to CVAU
0 . A similar reasoning applies to the DVA.

The overall relation of the BCVA in the two model variants is in general unclear, since
the BCVA is the difference of the CVA and DVA. If B is of a much higher credit quality
than S, the DVA is almost zero and we have the relation BCVAO ≥ BCVAU . Similarly, if
S is of a much higher credit quality than B, one has BCVAO ≤ BCVAU .

The intuition underlying (the proof of) the result is as follows: First, the CVA is the
price of an option on the risk-free CDS price with exercise price K = 0. Moreover, since
PUτ = E(POτ | FUτ ) the variance of PUτ is smaller than the variance of POτ . Since the price
of an option increases with increasing variance of the distribution of the underlying asset
value, we get that CVAO ≥ CVAU .

2.5 Collateralization strategies

Standard collateralization strategies. We consider among others the following col-
lateralization strategies. No collateralization corresponds to the strategy Ct ≡ 0. The
threshold-collateralization strategy with initial margin γ and thresholds M1, M2 ≥ 0, la-
beled Cγ,M1,M2 , is given by

Cγ,M1,M2
t := γ + (Pt −M1)1{Pt>M1} + (Pt +M2)1{Pt<−M2} ∀t ∈ [0, T ∧ τ).

This strategy is used if B and S want to protect themselves against severe losses, while
accepting the possibility of small losses in order to simplify the collateralization process.
At the beginning of the contract an initial payment of collateral of size γ takes place, which
is a crude device to account for contagion effects. Additional collateral is only posted if
the exposure of one entity exceeds some threshold (M1 in case of B and M2 in case of S).
Threshold collateralization is quite popular in practice, see [51]. However, the choice of γ
in practice is often based on rules of thumb (compare [29] for Repos), possibly reducing
the effectiveness of this strategy. For γ = M1 = M2 = 0 we obtain the special case of
market-value collateralization Cmarket with Cmarket

t = Pt.
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Improved collateralization strategies. In the following we study collateralization
strategies that attempt to reduce the overall counterparty-risk exposure of the contract-
ing parties. We use the CCVA to measure the exposure to counterparty risk of B and
the CDVA to measure the exposure of S. B and S have obviously conflicting interests: B
prefers a collateralization strategy where S posts a large amount of collateral and B posts
no collateral and vice versa for B. In order to balance these conflicting interests we con-
sider an F adapted collateralization strategy C to be optimal if it minimizes the following
functional

m(C) := CCVA0 + CDVA0 (2.19)

= EQ(1{τ<T}1{ξ=S}D(0, τ)(LGDS(P+
τ − C+

τ−)+ + LGD′S(C−τ− − P−τ )+)
)

(2.20)

+ EQ(1{τ<T}1{ξ=B}D(0, τ)(LGDB(C−τ− − P−τ )− + LGD′B(P+
τ − C+

τ−)−)
)
. (2.21)

In the full-information case we let F = FO and Pτ = POτ ; in the incomplete-information
case we let F = FU and Pτ = PUτ .

The analysis of the full-information model is straightforward. In that case the market
value (POt )t≥0 is continuous at τB respectively at τS . Therefore counterparty risk can be
eliminated completely by choosing the market-value strategy Cmarket

t = POt = pO(t,Xt),
t < τ , that is m(Cmarket) = 0. Note that this result holds in all credit risk models where
the risk-free CDS price does not jump at τS or τR, that is for ∆PτS = ∆PτR = 0, and thus
in particular in all models with conditionally independent defaults.

Optimal strategies under incomplete information. The situation is more involved
in the incomplete-information model. In that case the jump of π at τ leads to a jump in
the market value PUt of the CDS at t = τ and the collateral position cannot be adjusted
at that point. Hence for the market value strategy Cmarket

t = PUt = pU (t, πt), t < τ holds
that m(Cmarket) > 0.

We therefore need to work a bit more in order to find an optimal strategy under incom-
plete information. As a first step we simplify the functional m by conditioning on Fτ−. It
is well-known that τ is Fτ− measurable and that for any predictable process L the random
variable Lτ is Fτ− measurable; see [70], Sec III.2. Moreover, for j ∈ {R,B, S} it holds that

Q(ξ = j|Fτ−) =
(λ̂j)τ−∑

i∈{B,R,S}(λ̂i)τ−
=: dj(πτ−). (2.22)

We begin with the CCVA component of m. By conditioning on Fτ− we get that (2.20)
equals

EQ
(

1{τ≤T}D(t, τ)EQ(1{ξ=S}(LGDS(P+
τ − C+

τ−)+ + LGD ′S(C−τ− − P−τ )+
)∣∣Fτ−)) (2.23)

In the sequel we use the notation

xS := xS(τ, πτ−) = pU
(
τ, πτ− + diag

(
γ1
S(πτ−), . . . , γKS (πτ−)

))
(2.24)

to denote the price of the CDS immediately after the default of S; similarly, xB :=
xB(τ, πτ−) denotes the price of the CDS immediately after the default of B. Now note
that 1{ξ=S}P

+
τ = x+

S . Hence, using (2.22), the inner conditional expectation in (2.23) is

given by dS
(

LGDS(x+
S − C

+
τ−)+ + LGD′S(C−τ− − x−S )+

)
, and (2.23) equals

EQ(1{τ≤T}D(t, τ)dS
(
LGDS(x+

S − C
+
τ−)+ + LGD′S(C−τ− − x−S )+

))
.
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Similarly we get that (2.21), the CDVA component of m, is equal to

EQ(1{τ≤T}D(t, τ)dB
(
LGDB(C−τ− − x−B)− + LGD′B(x+

B − C
+
τ−)−

))
.

Define now the ‘infinitesimal loss function’ by

l(t, π, c) = dS(π)
(
(LGDS(xS(t, π)+ − c+)+) + LGD′S(c− − xS(t, π)−)+

)
+ dB(π)

(
(LGDB(c− − xB(t, π)−)− + LGD′B(xB(t, π)+ − c+)−

)
.

The above computations show that m(C) can be written in the form

m(C) = EQ(D(t, τ)l(τ, πτ−, Cτ−)).

Now suppose that we find an FU -adapted RCLL-process C∗ such that a.s.

C∗t (ω) ∈ argmin{l(t, πt(ω), c) : c ∈ R}.

Then C∗ is an optimal collateralization strategy - a minimizer of m(·) - in the incomplete-
information model. This leads to the following proposition.

Proposition 2.25. Denote by xS = xS(t, πt) and xB = xB(t, πt) the risk-free CDS price
at time t given τ = t, ξ = S respectively τ = t, ξ = B (see (2.24)) and let

dS = dS(πt) =
(λ̂S)t∑

i∈{B,R,S}(λ̂i)t
and dB = dB(πt) =

(λ̂B)t∑
i∈{B,R,S}(λ̂i)t

.

Then an FU -adapted RCLL process C∗ is an optimal collateralization strategy under incom-
plete information if and only if the following relations hold Q-a.s. for t < τ :

C∗t =



xS if 0 ≤ xB ≤ xS ,LGD′B dB < LGDS dS ,

xB if 0 ≤ xB ≤ xS ,LGD′B dB > LGDS dS ,

xS if xB ≤ xS ≤ 0,LGDB dB < LGD′S dS ,

xB if xB ≤ xS ≤ 0,LGDB dB > LGD′S dS ,

argmin{l(τ, πt, c) : c = xB, 0, xS} if xB < 0 < xS .

C∗t ∈


[xB, xS ] if 0 ≤ xB ≤ xS ,LGD′B dB = LGDS dS ,

[xB, xS ] if xB ≤ xS ≤ 0,LGDB dB = LGD′S dS ,

[xS , xB] if xS ≤ xB.

In particular for any such strategy it holds that C∗t ∈ [min{xS , xB},max{xS , xB}] ∀t and
that l(t, π, C∗t ) = 0 for xS ≤ xB.

Proof. The proof relies on the preceding arguments. In order to find an optimal strategy
we have to find the minimizers of the function c 7→ l(τ, π, c). This is a piecewise linear
function, which converges to ∞ for c → ±∞ and fixed t, π. Therefore a minimum exists;
it can be found by a case-by-case analysis. Consider for instance the case 0 < xB < xS . In
that case l takes the form

l(t, π, c) = (LGDS(xS − c+)+ + LGD′S c
−)dS + (LGD′B(xB − c+)−)dB,
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and l is decreasing in the interval (−∞, xB] and increasing in [xS ,∞). Therefore the optimal
c lies in [xB, xS ]. For c ∈ [xB, xS ], l is given by:

l(τ, πτ−, c) = c(LGD′B dB − LGDS dS) + LGDS xSdS − LGD′B xBdB.

Therefore the result follows. The other cases can be handled in a similar way.

We will see below that this optimal collateralization strategy reduces counterparty
risk by a large amount compared to standard market-value collateralization. However,
if Q

(
xB(t, πt) > xS(t, πt)

)
> 0 there remains some risk, that is m(C∗) > 0. This remaining

risk is due to the fact that in an inhomogeneous portfolio the size of the contagion effects
at τ depends on the identity of the defaulting firm which cannot be predicted upfront given
the information contained in Fτ−.

Model-independent strategies. The optimal strategy derived in Proposition 2.25 de-
pends on dB, dS , and, most importantly, on the market value xS and xB of the risk-free
CDS after the default of S or B and hence on the size of contagion effects. While these
quantities can be computed within a specific reduced-form credit risk model with contagion
such as the model of [44] or the model considered by [12], they do depend on the structure
of the model and on the parameter values used. It is therefore of interest to develop a
‘model-independent’ version of C∗.

For this one needs to estimate dB, dS , xB and xS in a ‘model-independent way’. Given
the well-known rule of thumb that the CDS spread of a firm is roughly equal to the product
of its default intensity and loss given default, in view of the definition of dB and dS in (2.22)
it is natural to estimate dB and dS by

d̂S =

SS
LGDS

SB
LGDB

+ SS
LGDS

+ SR
LGDR

and d̂B =

SS
LGDS

SB
LGDB

+ SB
LGDB

+ SR
LGDR

, (2.26)

where SB, SR and SS represent the fair CDS spread for B, R and S observed in the market.
Estimating xS and xB is less straightforward. Here one could use ad-hoc assumptions, based
on the analysis of historical contagious events. Alternatively we propose to use our results
on contagion effects in the [44]-model. Fix some t ∈ [0, T ]. First we use the approximations

xB ≈ pconst
(

(λ̂R) |t=τB
)

and xS ≈ pconst
(

(λ̂R) |t=τS
)

(2.27)

where P const(λ) denotes the price of the risk-free CDS on R in a model with constant

intensity λ. Now (λ̂R)t ≈ SR/LGDR. Hence we get from (2.17)

(λ̂R) |t=τB≈
SR

LGDR
+ (∆λ̂R) |t=τB=

SR
LGDR

+
covπt(λR, λB)

(λ̂R)t
.

Now we suggest to proxy covπt(λR, λB) by (LGDR LGDB)−1ĉovt(SR, SB) where ĉovt(SR, SB)
is an estimate of the time series covariance of the observed CDS spreads at time t obtained
for instance by some exponentially weighted historical average. Plugging this into (2.27)
gives the estimators

(x̂B)t = pconst

(
SR

LGDR
+

ĉovt(SR, SB)

LGDR LGDB

)
and similarly

(x̂S)t = pconst

(
SR

LGDR
+

ĉovt(SR, SS)

LGDR LGDS

)
.

(2.28)
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Note that the proposed estimators for dB, dS , xB and xS can be computed directly from a
time series of observed CDS spreads without making reference to a particular model. In the
next section we compare the performance of the model-independent refined strategy with
the performance of market-value collateralization on the one hand and with the optimal
strategy on the other.

2.6 Numerical Experiments

In this section we discuss results from a number of numerical experiments.

2.6.1 Setup and Calibration

We considered a Markov chain X with K = 8 states. It was assumed that X exhibits
next-neighbor dynamics (Xt jumps only to Xt ± 1), so that only the values on the main
diagonal and on the first off-diagonal of the generator matrix W differ from zero. During
the simulation analysis we set the entries on the off-diagonal equal to 0.25, meaning that
the Markov chain jumps on average every second year. We have put the short-rate equal
to r = 0.015. Throughout the study it was assumed that RecB = RecS = RecR = 0.5 and
Rec′B = Rec′S = 0.75. 2 We calibrated the model to the risk-free CDS spreads and default
correlations for R, B and S given in Table 2.1. We considered five different scenarios,
labeled Base; Base 2; Symmetric; Risky protection buyer; Risky protection seller. These
scenarios differ mainly with respect to the relative riskiness of the firms involved in the
CDS contract; their choice serves to illustrate the impact of the relative riskiness of the
different firms on credit value adjustments. The fair CDS spreads (in basis points) and
default correlations (in percentage points) corresponding to these scenarios can be found in
Table 2.1.

Table 2.1: Risk scenarios: CDS-spreads in base points, default correlations in percentage
points.

Name of scenario B R S ρBR ρBS ρRS
Base 50 1000 500 2.0 1.5 5.0
Base2 500 1000 50 5.0 1.5 2.0
Symmetric 500 1000 500 5.0 3.0 5.0
Risky PB 1000 500 50 5.0 2.0 1.5
Risky PS 50 500 1000 1.5 2.0 5.0

Table 2.2: Results of model calibration for the base scenario
state x1 x2 x3 x4 x5 x6 x7 x8

π0 0.0810 0.0000 0.2831 0.0548 0.0000 0.0000 0.0000 0.5811
λB 0.0000 0.0010 0.0027 0.0040 0.0050 0.0059 0.0091 0.0195
λR 0.0031 0.0669 0.1187 0.1482 0.1687 0.1855 0.2393 0.3668
λS 0.0007 0.0245 0.0482 0.0627 0.0732 0.0818 0.1108 0.1840

2Following a suggestion of the referee who was rightly concerned with the robustness of our findings we
ran our simulations also with different forms of the generator matrix W . This led to qualitatively similar
results. We do not report these results here as we do not want to overload the paper with numbers.
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In this context model model calibration amounts to finding the initial distribution of
the Markov chain π0 and the parameters λB, λR, λS . For calibration purposes we used a
modification of the algorithm presented in [44]; since the focus of this paper is not on model
calibration we omit the details. All in all the calibration procedure performed well, with
very small errors for CDS spreads (absolute errors are less than 0.5 bp) and acceptable
results for default correlations (relative errors are around 3%). The calibrated values of π0

and of λB, λR and λS can be found at the end of the chapter, Table 2.2. Note in particular
that the calibrated functions λB(·), λS(·) and λR(·) are increasing in x. In the incomplete-
information model we moreover need to choose the parameters a(1), . . . , a(K). We took
a = c ∗ b, where b = [−1.75,−1.25,−0.75,−0.25, 0.25, 0.75, 1.25, 1.75] and where c ≥ 0 If
not mentioned otherwise, c was taken equal to one.

2.6.2 Results for the un-collateralized case

The main findings regarding the qualitative behavior of the CVA and the DVA in the
un-collateralized case can be summarized as follows.

a) The size of the credit value adjustments depends largely on the relative riskiness of the
firms. In particular, the CVA is comparatively high if the first-to-default probability Q(τ ≤
T, ξ = S) is relatively large; similarly, the DVA is comparatively high if Q(τ ≤ T, ξ = B)
is relatively large. This can be seen by comparing the size of the value adjustments for the
Base and Base2 scenarios or the RiskyPB and the RiskyPS scenarios in Table 2.3: as shown
in Table 2.4, Q(τ ≤ T, ξ = S) is relatively large in the Base and the RiskyPS scenarios,
leading to a high CVA; similarly, Q(τ ≤ T, ξ = B) is relatively large in the Base2 and the
RiskyPB scenarios, leading to a high DVA. Note that the first-to-default probabilities are
identical in both versions of the model. They are largely driven by the (relative) riskiness
of the three firms as given by the risk-free CDS spread in the three scenarios.

Table 2.3: Value adjustments in different scenarios for the complete-information model
(left) and for the incomplete information model (right), both for the uncollateralized case.

full information incomplete information
scenario CVA DVA BCVA CVA DVA BCVA

Base 94 1 92 83 1 82
Base2 10 26 -16 9 15 -6
Symmetric 74 5 68 72 4 68
RiskyPB 6 45 -39 6 27 -21
RiskyPS 115 1 114 97 1 96

Table 2.4: The first-to-default probabilities for different scenarios
scenario B R S

Base 0.0293 0.4238 0.2463
Base2 0.2463 0.4238 0.0293
Symmetric 0.1851 0.3972 0.1851
RiskyPB 0.4238 0.2463 0.0293
RiskyPS 0.0293 0.2463 0.4263

b) We have CVAU < CVAO and DVAU < CVAO, as predicted by Proposition 2.18. The
differences between the model variants decreases with decreasing observation noise, that is
for higher values of the parameter c in the definition of the function a, as can be seen by
inspection of Table 2.5.
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Table 2.5: Un-collateralized value adjustments under incomplete information for different
values of the parameter c (low values of c correspond to a high observation noise) in the
base scenario

noise parameter CVA DVA BCVA

c = 0 68 0 68
c = 1 83 1 82
c = 2 89 1 88
c = 5 92 1 90

c) The conditional default probability of the reference entity given an early default of
the protection seller is much higher than the unconditional default probability of R (so-
called wrong-way risk). In the full-information case this can be seen from Table 2.6 which
gives the distribution of Xτ for the case ξ = B and ξ = S. Clearly, Xt tends to be in a
higher state (compare the high probabilities for x8) at a default. Hence we expect that the
simplified value adjustments given in (2.5) underestimate the true value adjustments by a
sizeable amount. This is indeed true, see the numbers reported in the last row of Table 2.7.

Table 2.6: Distribution of X at τ in the base scenario for ξ = B and ξ = S.
state x1 x2 x3 x4 x5 x6 x7 x8
ξ = B 0.0001 0.0144 0.0740 0.0500 0.0208 0.0221 0.0982 0.7203
ξ = S 0.0011 0.0309 0.1188 0.0713 0.0277 0.0279 0.1074 0.6149

2.6.3 Results for the case with collateralization

We go on with the analysis of various collateralization strategies. Since collateralization is
only relevant on paths where τ < T and where ξ ∈ {B,S}, we illustrate the performance of
collateralization strategies by plotting the conditional distribution function of the random
variables

LB(C) := 1{ξ=S}
(

LGDS(P+
τ − C+

τ−)+ + LGD′S(C−τ− − P−τ )+
)

LS(C) := D(t, τ)1{ξ=B}
(

LGDB(C−τ− − P−τ )− + LGD′B(P+
τ )− − C+

τ−
)
,

given that {τ ≤ T, ξ ∈ {B,S}}. Note that for a given collateralization strategy C, LB(C)
gives discounted loss to B that arises from an early default of S, whereas LS(C) gives the
discounted loss to S that arises from an early default of B. We analyzed strategies of the
following type:

• Threshold-collateralization with initial margin γ and thresholds M1 = M2 := M ,
denoted Cγ,M ;

• Market collateralization Cmarket = C0,0;

• The strategy C∗ derived in Proposition 2.25 and the “model-independent optimal
strategy” based on the estimators (2.26) and (2.28) for the incomplete-information
model.

Our findings can be summarized as follows:
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Table 2.7: Value adjustments in the complete-information model (left) and in the
incomplete-information model (right) with threshold-collateralization and market value col-
lateralization (M1 = M2 = 0) for γ = 0 in the Base scenario. In the last row we report the
value adjustment corresponding to the simplified value adjustment formula (2.5).

full information incomplete information
threshold CCVA CDVA BCCVA CCVA CDVA BCCVA

M1 = M2 = 0 0 0 0 35 0 35
M1 = M2 = 0.02 16 0 15 45 0 45
M1 = M2 = 0.05 38 1 37 60 0 60
no collateralization with

(i) correct formula 93 1 92 83 1 82
(ii) simplified formula 68 6 62 54 4 49

a) Threshold collateralization with γ = 0 is very effective in the complete-information
model. For a threshold M > 0 counterparty risk is largely reduced as can be seen from
Table 2.7. Counterparty credit risk even vanishes completely for M = 0. Moreover, losses
are bounded when threshold-collateralization is used. This can be seen from Figure 2.2
which displays the empirical cdf of LB given τ ≤ T and ξ ∈ {B,S} in the complete
information model for different scenarios.

b) Under incomplete information the performance of threshold collateralization with
γ = 0 and threshold M is not fully satisfactory. The main reason is the fact that because of
the contagion effects threshold collateralization systematically underestimates the market
value of the CDS at τ which leads to losses for the protection buyer in case that ξ = S.
As a consequence we observe high values for the CCVA in scenarios such as the Base
scenario where Q(τ ≤ T, ξ = S) is comparatively high, compare Table 2.7. The losses of
the protection seller on the other hand are always smaller than the threshold M . This
behavior can be seen from Figures 2.3 and 2.4 where the conditional cdf of LB and LS is
plotted in various scenarios.

A nonzero initial margin γ can improve the performance of threshold collateralization
in scenarios where the credit quality of B is much better than the credit quality of S as
in the Base scenario. In that case Q(ξ = S | τ ≤ T, ξ ∈ {B,S}) is close to one and one
essentially knows that ξ = S in case of an early default. Consequently it is possible to
hedge a large part of the contagion effects by choosing a positive initial margin γ. This can
be seen from Figure 2.5 where m(Cγ,M ) is plotted in the Base scenario for various values of
γ and M . In a symmetric scenario where B and S have similar credit quality on the other
hand, the identity of the first defaulting firm cannot be predicted and choosing a nonzero
initial margin does not help much to improve the effectiveness of threshold collateralization,
as can be seen from Figure 2.6. This is clear intuitively: a large initial margin γ > 0 will
lead to a loss for S in case that ξ = B because of re-hypothecation; on the other hand for
γ ≤ 0 there will be a loss for B in case that ξ = S because of contagion effects, and neither
of the two cases can be ruled out a-priori because B and S have similar credit quality.

c) The optimal strategy C∗ from Proposition 2.25 on the other hand performs well
under incomplete information and reduces counterparty risk substantially as can be seen
from Table 2.8 where various credit value adjustments and the value of m(C) are given. The
strategy is particularly effective in scenarios where the credit quality of B is higher than the
credit quality of S so that xS ≤ xB such as the Base scenario and the Risky-PS scenario. On
the other hand C∗ does not fully eliminate counterparty risk in scenarios where the credit
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Figure 2.2: Empirical cdf of LB for different threshold-collateralization strategies with γ = 0
in the Base scenario in the complete-information model given τ ≤ T and ξ ∈ {B,S}. Note
that without collateralization the probability that LB is large is quite high since in the base
scenario Q(ξ = S | τ ≤ T, ξ ∈ {B,S}) = 0.245/(0.245 + 0.029) ≈ 1 (see Table 2.4). We can
see that threshold collateralization reduces counterparty credit risk very effectively in that
case.
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Table 2.8: Performance of different collateralizion strategies in the incomplete-information
model as measured by m(C) = CCVA + CDVA. Note that m(C∗) is small in all scenarios
and that m(C∗) = 0 in the Base- and RiskyPS scenarios where xS ≤ xB. Moreover,
the strategy based on the model-independent estimators (2.26) and (2.28) performs much
better than market-value collateralization in all scenarios where there is a non-negligible
probability that S defaults first.

scenario C∗ Cmarket C∗ based on (2.26) and (2.28)

Base 2 36 24
Base2 5 7 7
Symmetric 2 32 22
RiskyPB 8 8 8
RiskyPS 0 41 27
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Figure 2.3: Empirical cdf of LB for different threshold-collateralization strategies with γ = 0
in the Base scenario in the incomplete-information model given τ ≤ T and ξ ∈ {B,S}. In
that case threshold collateralization with γ = 0 is not very effective: even for M = 0 there
is roughly a 20% probability that LB exceeds 300bp.
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2.6. Numerical Experiments

Figure 2.4: Empirical cdf of LS using threshold-collateralization for the Base2
scenario in the incomplete-information model given τ ≤ T and ξ ∈ {B,S}. In
this scenario Q(ξ = B | τ ≤ T, ξ ∈ {B,S}) is close to one so that threshold
collateralization is quite effective even under incomplete information.
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quality of S is worse than the credit quality of B such as the Base2 and the Risky-PB
scenario, as is evident from Table 2.8. However, even in these scenarios the probability that
some party suffers a large loss is fairly small. Of course, the superior performance of the
refined collateralization strategy is related to the fact that within our model the quantities
xB and xS can be computed exactly. We therefore compared the performance of C∗ to the
performance of the “model-independent optimal strategy” based on (2.26) and (2.28) on
the one hand and to the performance of market-value collateralization on the other (see
Table 2.8. Of course the model-independent version of our strategy performs worse than
C∗. However, in scenarios where there is a non-negligible probability that the protection
seller defaults first it performs significantly better than market-value collateralization, This
shows that refined collateralization strategies that account for contagion effects have the
potential to reduce counterparty credit risk significantly.

2.7 Proof of Proposition 2.12

By symmetry, it suffices to consider the case i = B.
a) The default time τB is the time, at which the Markov chain (X,HB) first enters the
absorbing set A = {(1, 1), . . . , (K, 1)} and leaves the set Ac := {(1, 0), . . . , (K, 0)}. Hence
we get:

Q
(
τB > s

∣∣Xt = k,HB
t = 0

)
= Q

(
(Xs, H

B
s ) ∈ Ac

∣∣Xt = k,HB
t = 0

)
= 1{τB>t}(e

>
k , 0)eQ(s−t)(1>K , 0)>

Here Q denotes the generator of (X,HB). Qn is of the form:

Qn =

(
W − ΛB ΛB

0 W

)n
=

(
(W − ΛB)n ∗

0 ∗

)
=

(
QnB ∗
0 ∗

)
.

Therefore the entries in the upper left part of the matrix exponential eQ(s−t) are given by
eQB(t−s) and we can conclude:

Q
(
τB > s

∣∣Xt = k,HB
t = 0

)
= 1{τB>t}e

>
k e

QB(s−t)1K .

b) The default times are conditionally independent doubly stochastic random times, and
hence the first-to-default time exhibits an intensity which is given by the sum of the indi-
vidual intensities (see [63], Lemma 17.6), and the result follows from a).

c) We consider the Markov chain Ψt = (X,HB, HR, HS)τ∧t (the chain stopped at the
first default time.) Ignoring the states where more than one company defaults (and which
can therefore never be reached by Ψ), the infinitesimal generator of Ψ is given by:

Q̄ =

(
W −

∑
j∈{B,R,S} Λj ΛB ΛR ΛS

0 0 0 0

)
.

The protection buyer B defaults first and before time s if and only if the stopped Markov
chain Ψ is in the set Ã := {(1, 1, 0, 0), . . . , (K, 1, 0, 0)} at time s. Therefore:

Q(τ ≤ s, ξ = B|Xt = k,Ht = (0, 0, 0)) = Q
(

Ψs ∈ Ã
∣∣∣Ψt = (k, 0, 0, 0)

)
= 1{τ>t}(e

>
k , 0)eQ̄(s−t)(0,1>K , 0, 0)>.
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Figure 2.5: Graph of m(Cγ,M ) (sum of CCVA and CDVA) under incomplete
information for the threshold strategy Cγ,M for varying values of the initial margin
γ and the threshold M in the Base scenario. The function m(Cγ,M ) is minimal
for M = 0 and a positive initial threshold γ∗ ≈ 0.12 leading to an optimal value
m(Cγ

∗,0) = 3bp, so that counterparty risk can in effect be mitigated by a proper
choice of the initial margin.

Figure 2.6: Graph of m(Cγ,M ) (sum of CCVA and CDVA) under incomplete informa-
tion for the threshold strategy Cγ,M for varying values of the initial margin γ and the
threshold M in the symmetric scenario. The function m(Cγ,M ) is minimal for M = 0
and a small initial threshold γ∗ ≈ 0.01. Note that m(Cγ

∗,0) = 15bp whereas for the
optimal strategy from Proposition 2.25 one has m(C∗) = 0.
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So we have to compute the entries of a submatrix of the matrix exponential eQ̄(s−t). Since
the n-th power of the matrix Q̄(s− t) is given by (n > 0):

(Q̄(s− t))n = (s− t)n
(
Qn(1) Qn−1

(1) ΛB Qn−1
(1) ΛR Qn−1

(1) ΛS

0 0 0 0

)

the relevant submatrix is given by

∞∑
n=1

Qn−1
B

n!
(s− t)nΛB = Q−1

(1)

( ∞∑
n=0

Qn−1
(1)

n!
(s− t)n − I

)
ΛB

= Q−1
(1)

(
eQ(1)(s−t) − I

)
ΛB,

and the claim follows.
d) The result follows from similar considerations as in c).
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Chapter 3

A Structural Credit Risk Model
with Incomplete Information

3.1 Introduction

The second part of the thesis deals with a structural credit risk model which was considered
in [41]. In the framework of [41] a default of the company occurs as soon as the asset value
process V of the company drops below a critical threshold K, which can be interpreted as
the value of the liabilities of the company. In contrast to many classical structural credit
risk models like [9] or [59] the asset value process will not be perfectly observable to market
participants. In this chapter we will present the model framework from [41] in detail and
discuss the pricing of derivative securities. We will show that the pricing of derivative
securities naturally leads to stochastic filtering problems with respect to the asset value
process and show how to solve the arising filter problems. At this, the material covered
in this chapter is mostly taken from [41]. However, only results which are relevant for the
sampling of trajectories of processes (see Chapter 4) and the pricing of derivative securities
will be presented. In particular, we refer to [41] for proofs and for results on the dynamics
of securities. Note that there exists an updated version of [41], where a slightly different
model is considered, see [42].

This chapter is structured in the following way: in Section 3.2 we introduce the model
framework; the pricing of basic corporate securities is discussed in Section 3.3; Section 3.4
is concerned with the solution of the stochastic filtering problem; Section 3.5 is devoted to
derivative pricing. Note that the calibration of the model will de discussed later in Chapter
5.

3.2 Model framework

We work on a filtered probability space (Ω,G,G = (Gt)t∈[0,∞),P) and we assume that all
processes introduced below are G-adapted. We consider a company with asset value process
V = (Vt)t∈[0,∞). The company is subject to default risk and the default time is given by

τ = {t ∈ [0,∞) : Vt ≤ K} for some K > 0. (3.1)

In practice the default barrier might represent debt covenants as in [9] or, in the case of
financial institutions, solvency capital requirements imposed by regulators. It is well known
that absence of arbitrage implies the existence of a probability measure Q ∼ P such that
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for any traded security the corresponding discounted gains from trade are Q-martingales.
Since we are mainly interested in pricing, it is thus sufficient to specify the Q-dynamics of
all economic variables introduced.

Assumption 3.2. (Dividends and asset value process)

(i) The risk free rate of interest is constant and equal to r ≥ 0.

(ii) The company is about to pay dividends of size (dn)n∈N at time points (Tn)n∈N. We
assume that (Tn)n∈N are the jump times of a Poisson process with intensity λD > 0.
The size dn of the n-th dividend is given by:

dn = δnVTn (3.3)

for an i.i.d. sequence of noise variables (δn)n∈N, independent of V , taking values in
(0, 1), with density function fδ and mean δ̄ = EQ(δ1). We denote the cumulative
dividend process by Dt =

∑
n:Tn≤t dn. The conditional distribution of dn given the

history of the asset value process is thus of the form

ϕ(y, VTn−)dy where ϕ(y, v) = v−1fδ(y/v).

We assume that for all y ∈ R+ the map v 7→ ϕ(y, v) is bounded and twice continuously
differentiable on [K,∞).

(iii) The asset value process V solves the following SDE

dVt = (r − λD δ̄)Vtdt+ σV VtdBt, V0 = V (3.4)

for a constant σV > 0 and a standard Q-Brownian motion B. Moreover, V has
Lebesgue density π0(v) for a continuously differentiable function π0 : [K,∞) → R+

with π0(K) = 0.

For notational convenience the denote the random measure associated with the marked
point process (Tn, dn)n∈N by µD(dy, dt). The G-compensator of µD is given by γD(dy, dt) =
ϕ(y, Vt)dyλdt.

Remarks 3.5. The insertion of the term λD δ̄Vtdt in the drift of the geometric Brownian
motion means, that money is continuously extracted from the company, which is used to
finance the dividend payments. Since δ̄ = EQ(δ1) and λD is the average number of dividend
payments per year, the extracted amount of money is on average sufficient to cover the
dividend payments.

Assumption 3.6. (Investor information) The following pieces of information are used by
the market in the pricing of corporate securities.

(i) Default information: The market observes the default state Nt = 1{τ≤t} of the firm.

We denote the default history by FN = (FNt )t∈[0,∞).

(ii) Dividend information: Information about dividend payments or equivalently the cu-
mulative dividend process D with Dt :=

∑
n:Tn≤t dn is available to the market; the

corresponding filtration is denoted by FD = (FDt )t∈[0,∞). Note that the dividends
carry information on Vt as the distribution of the dividend size depends on the asset
value at the dividend date.
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(iii) Noisy asset observation: The market observes functions of V in additive Gaussian
noise. Formally, this bit of information is modelled via some process Z of the form

Zt =

∫ t

0
a(Vs) ds+Wt. (3.7)

Here, W is an l-dimensional standard G-Brownian motion independent of B, and
we assume that a is a smooth function from R+ to Rl with a(K) = 01. Finally,
FZ = (FZt )t∈[0,∞) represents the filtration generated by Z. We view the process Z as
an abstract representation of all economic information on V that is used by the market
in addition to the publicly observed dividend payments.

Summarizing, the information set of the market at time t is given by the σ-field FMt =
FNt ∨ FZt ∨ FDt ; the corresponding filtration is denoted by FM. Note that FM ⊂ G and
that V is not adapted to FM. There are many possibilities for the form of the function a.
A frequent choice is a(v) = c(log(v) − log(K)); Here the parameter c ∈ [0,∞) models the
information contained in Z; for c large the asset value can be observed with high precision
whereas for c close to zero the process Z conveys almost no information.

3.3 Pricing of Basic Corporate Securities and Nonlinear Fil-
tering

For many reasons the availability of tractable pricing methods for basic corporate securities
is important. For example, the calibration method we will suggest in Section 5.5 relies on
tractable methods for the pricing of CDS and equity. Moreover, the cash flows of some
complex types of securities (like contingent convertible notes from Chapter 5) will depend
on basic corporate security. Thus, Monte-Carlo methods which are frequently used for the
pricing of these derivatives also require tractable pricing methods for basic securities. In the
following we will discuss the pricing of basic corporate securities whose associated cash flow
stream depends on future dividend payments and on the occurrence of default and is thus
FN ∨ FD-adapted. In particular, we will see that the pricing of these leads to a nonlinear
filtering problem in a straightforward way. The ex-dividend price of a generic security with
FM-adapted cash flow stream (Ht)t∈[0,T ] and maturity date T is given by

pHt := EQ
(∫ T

t
e−r(s−t) dHs

∣∣∣∣FM
t

)
, t ∈ [0, T ]. (3.8)

Note that pHt is defined as the conditional expectation2 with respect to the σ-field FM
t

that describes the information available to the market at time t. In the sequel we mostly
consider the pre-default value of the security given by 1{τ>t}p

H
t (pricing for τ ≤ t is largely

related to the modelling of recovery rates which is of no concern to us here). Using iterated
conditional expectations we get that

1{τ>t}p
H
t = EQ

(
EQ
(

1{τ>t}

∫ T

t
e−r(s−t) dHs

∣∣∣∣Gt)∣∣∣∣FM
t

)
.

1The assumption a(K) = 0 is no real restriction as the function a can be replaced by a− a(K) without
altering the information content of FM .

2The prices of contingent convertible notes in Section 5.4 will also be defined via formula (3.8).
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By the Markov property of V , for typical basic corporate securities with FN ∨ FD-adapted
cash flow stream the inner conditional expectation can be expressed as a function of time
of the current asset value, that is

EQ
(

1{τ>t}

∫ T

t
e−r(s−t) dHs

∣∣∣∣Gt) = 1{τ>t}h(t, Vt). (3.9)

The function h will be called full-information value of the claim. Below we compute this
function for several important examples. We thus get from (3.9) that

1{τ>t}p
H
t = 1{τ>t}EQ

(
h(t, Vt)

∣∣∣FM
t

)
.

Since V is not FM adapted, the valuation of this conditional expectation is a nonlinear fil-
tering problem that is discussed is Section 3.4. Note that martingale pricing generally leads
to nonlinear filtering problems under the martingale measure Q rather than the physical
measure P. In the remainder of this section we explain how the full information value h
can be computed for debt-related securities such as CDSs and for the equity of the firm.

3.3.1 Full-information value of debt securities

It is well-known that the valuation of debt securities of the firm can be reduced to the pricing
of two building blocks, namely a so-called survival claim and a so-called payment-at-default
claim. A survival claim pays one unit of account at the maturity date T provided that
τ > T . A payment-at-default claim with maturity T pays one unit directly at τ , provided
that τ ≤ T . The corresponding full information values will be denoted by hsurv respectively
hdef . Since V is modelled as a geometric Brownian motion, log Vt satisfies log Vt = µt+σBt
with µ := r − λD δ̄ − 1

2σ
2. Hence hsurv and hdef can be computed using results for the first

passage time of Brownian motion with drift. Denote by

f(t; b) :=
|b|√

2πt3σ
exp

(
−(b− µt)2

2σ2t

)
the density function of the first passage time of the process σBt + µt to the level b, see for
instance [57], Section 3.5.C. Then we have for v > K:

hsurv(t, v) = e−r(T−t)
(

1−
∫ T−t

0
f(s, log

(
K

v

)
ds

)
and hdef(t, v) =

∫ T−t

0
e−rsf(s, log

(
K

v

)
ds.

3.3.2 Full-information value of equity

In our setup the value of the firm’s equity is given by the expected discounted value of
future dividend payments up to the default time τ , that is

1{τ>t}h
eq(t, v) = EQ

(∫ ∞
t

1{τ>s}e
−r(s−t) dDs

∣∣∣∣Vt = v

)
.

In the case of Poissonian dividends [43] show that the pre-default value 1{τ>t}h
eq(t, Vt) does

not explicitly depend on the time t. Thus, we have

heq(v) = EQ
(∫ ∞

0
1{τ>s}e

−rs dDs

∣∣∣∣V0 = v

)
,
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where we dropped the time t in the notation of heq. Moreover, [43] show that heq = v if it
holds that K = 0 and that for K > 0 it holds that

heq(v) = v −
( v
K

)α∗
, (3.10)

where α∗ is the negative root of the equation (r − λD δ̄)α+ 0.5σ2α(α− 1)− r = 0.

Remarks 3.11. The value of the equity can also be considered as the market capitalization
of the bank, which is the product of the number of shares of the company and the share
price. Given this relationship, we sometimes call heq the share price of the company and
exploit this relationship on several occasions.

3.4 Stochastic Filtering of the Asset Value

The last section showed that the pricing of basic corporate securities naturally leads to
filtering problems of the form

1{τ>t}EQ
(
g(Vt)

∣∣∣FM
t

)
, t ∈ [0, T ]. (3.12)

In the following we will present results from [41] on the solution of the filtering problem
(3.12). We will derive an unnormalized density of the conditional distribution of Vt given
FM
t , so that expressions like (3.12) can be essentially computed as integrals with respect to

the conditional distribution. In the derivation of the unnormalized density the inclusion of
the default information FN in the investor information creates problems, because the default
time τ does not exhibit an intensity under the full information and standard filtering theory
for point processes as in [11] can not be applied. This difficulty is addressed by the using
the following result:

Proposition 3.13. (Proposition 4.1 from [41]) Denote by V τ = (Vt∧τ )t∈[0,∞) the asset

value process stopped at the default boundary, by Z̃ =
∫ t

0 a(V τ
s ) ds + Wt the noisy asset

information corresponding to the signal process V τ and by D̃t :=
∑

n:Tn≤t δnV
τ
Tn

the cumu-
lative dividend process corresponding to V τ . Then, we have for g ∈ L∞([K,∞))

1{τ>t}EQ(g(V τ
t )
∣∣FMt ) = 1{τ>t}

EQ
(
g(V τ

t )1{V τt >K}

∣∣∣F Z̃t ∨ F D̃t )
Q
(
V τ
t > K

∣∣∣F Z̃t ∨ F D̃t ) . (3.14)

With the notation f(v) := g(v)1{v>K} Proposition 3.13 shows that in order to evalu-
ate the right side of (3.12) one has to compute for generic f ∈ L∞([K,∞)) conditional
expectations of the form

EQ
(
f(V τ

t )
∣∣∣F Z̃t ∨ F D̃t ). (3.15)

This is a stochastic filtering problem with signal process given by V τ and with standard
diffusion and point process information. [41] apply results from [66] to solve (3.15). The
framework from [66] only applies to the filtering of diffusions stopped at the first exit time
of some bounded domain, hence they introduce the stopping time σN = inf{t ∈ [0,∞) :
Vt ≥ N} for some large N and the process V N := (Vt∧σN )t∈[0,∞). Applying Proposition
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3.13 to the process V N leads to a filtering problem with signal process X := (V N )τ . More
precisely, one has to compute conditional expectations of the form

EQ(f(Xt)
∣∣FZt ∨ FDt ), (3.16)

where, with a slight abuse of notation, Zt =
∫ t

0 a(Xs) ds + Wt and Dt =
∑

n:Tn≤t δnXTn .
Note that τ ∧σN is the first exit time of V of the domain (K,N). Hence, the state space of
X is given by SX := [K,N ] and the analysis of [66] applies to the problem (3.16). In [41] it
is shown that replacing V by V N does not affect the financial implications of the analysis,
provided that N is sufficiently large. In fact they establish the convergence of the filtering
problem (3.16) to

EQ
(
f(V τ

t )
∣∣∣F Z̃t ∨ F D̃t ).

3.4.1 Reference Filtering Approach

In [41] the reference filtering approach is used to find the solution to the filtering problem
(3.16). Under this approach one considers the model under an equivalent measure Q∗ such
that Z, D and X are independent and reverts to the original dynamics via a change of mea-
sure. Recall that we denote the dividend dates by Tn, n ∈ N, that dn denotes the dividend
paid at Tn and that the conditional density of dn given XTn = x is denoted by ϕ(y, x). It
will be convenient to model the processes X, Z and D on a product space (Ω,G,G,Q∗).
Denote by (Ω2,G2,G2,Q∗2) some filtered probability space that supports an l-dimensional
Wiener process Z = (Zt(ω2))t∈[0,T ]. Moreover, fix some strictly positive reference density

ϕ∗(y) and suppose the space (Ω2,G2,G2,Q∗2) supports a random measure µD(dy, dt) with
compensating measure equal to γD,∗ := ϕ∗(y)dyλDdt and that µD is independent of the
Brownian motion Z. Given some probability space (Ω1,G1,G1,Q∗1) supporting the process
X we let Ω = Ω1 × Ω2, G = G1 ⊗ G2, G = G1 ⊗ G2 and Q∗ = Q1 ⊗ Q2. Note that this
construction implies that under Q∗, Z is an l-dimensional Brownian motion independent of
X. In order to revert to the original model dynamics we introduce the density martingale
Lt = L1

tL
2
t where L1 is given by

L1
t = exp

(∫ t

0
a(Xs)

> dZs −
1

2

∫ t

0
|a(Xs)|2 ds

)
and

L2
t = 1 +

∫ t

0

∫
R+

L2
s−

(
ϕ(y,Xs)

ϕ∗(y)
− 1

)
(µD − γD,∗)(dy, ds).

Since a is a continuous function and the state space SX is bounded, L is indeed a martingale.
Since ϕ(·, x) and ϕ∗ are densities we obtain that∫

R+

(
ϕ(y, x)

ϕ∗(y)
− 1

)
dy =

∫
R+

(ϕ(y, x)− ϕ∗(y)) dy = 0. (3.17)

Hence, we get that

L2
t = 1 +

∫ t

0

∫
R+

L2
s−

(
ϕ(y,Xs)

ϕ∗(y)
− 1

)
µD(dy, ds) =

∏
Tn≤T

ϕ(dn, XTn)

ϕ∗(dn)
. (3.18)
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Lemma 3.19. It holds that EQ∗(LT ) = 1. Define the measure Q by (dQ/dQ∗)|GT = LT .
Then under Q the random measure µD has G-compensator γD(dy, dt) = ϕ(y,Xt) dyλ

D dt.
Moreover, the triple (X,Z,D) with Dt =

∫ t
0 yµ

D(dy, ds) has the joint law postulated in
Assumption 3.2.

The filtering problem (3.16) with respect to Q can be transferred to the filtering problem
with respect to Q∗ by using the abstract Bayes formula. One has for f ∈ L∞

(
SX
)

that

EQ(f(Xt)
∣∣FZt ) =

EQ∗(f(Xt)Lt
∣∣FZt ∨ FDt )

EQ∗
(
Lt
∣∣FZt ∨ FDt ) . (3.20)

We concentrate on the numerator. Using the product structure of the underlying probability
space we get

EQ∗(f(Xt)Lt
∣∣FZt ∨ FDt ) = EQ1(f(Xt)Lt(·, ω2)) =: Σtf(ω). (3.21)

Remark 3.22. Neglect for the moment the dividend information in the definition of Σt,
that is for f ∈ L

(
SX
)

we define

Σtf(ω) = EQ∗(f(Xt)Lt
∣∣FZt ). (3.23)

Denote by (Tt)t∈[0,∞) the transition semigroup of the Markov process X, that is for x ∈ SX ,
Ttf(x) = Ex(f(Xt)). Then the following equation holds

Σtf = Σ0(Ttf) +
l∑

i=1

∫ t

0
Σs(aiTt−sf) dZis. (3.24)

Equation (3.24) can be viewed as mild form of the classical Zakai equation. Herefore, note
that if f is in the domain of the generator of LX , then (3.24) is equivalent to the so-called
(classical) Zakai-Equation

Σtf = Σ0(f) +

∫ t

0
Σs(LXf) ds+

l∑
i=1

∫ t

0
Σs(aif) dZis. (3.25)

3.4.2 SPDE for the Filter Density

Σt defined by (3.21) will be essentially described in terms of an integral with respect to
a filter density u. This filter density will be given as the unique solution of an SPDE.
Herefore, we introduce some necessary notation. First, we introduce the Sobolev spaces

Hk(SX) = {f ∈ L2
(
SX
)

:
dαf

dxα
∈ L2

(
SX
)

for α ∈ {1, . . . , k}}, (3.26)

where the derivatives are assumed to exist in the weak sense. Moreover, let H1(SX) =
{f ∈ H1

0 (SX) : f = 0 on ∂SX}. For an introduction to Sobolev spaces we refer to [36]. The
scalar product in L2

(
SX
)

is denoted by (·, ·)SX .
Consider for f ∈ H2(SX) the differential operator L∗ with

L∗f =
1

2

d2

dx2
(σ2x2f)(x)− d

dx
((r − λD δ̄)xf)(x), (3.27)
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Chapter 3. A Structural Credit Risk Model with Incomplete Information

hence L∗ is adjoint to LV : one has (f,LV g)SX = (L∗, g)SX for f, g ∈ H2(SX) ∩H1
0 (SX).

We define an extension of −L∗ to the entire space H1
0 (SX). For this, we denote by H1

0 (SX)′

the dual space of H1
0 (SX) and by 〈·, ·〉 the duality pairing between H1

0 (SX)′ and H1
0 (SX).

Then, we define a bounded operator A∗ from H1
0 (SX) to H1

0 (SX)′ by

〈A∗f, g〉 =
1

2

(
σ2x2 df

dx
,
dg

dx

)
SX

+

(
(σ2 − r + δ̄λD)xf,

dg

dx

)
SX
.

By using partial integration one can show that 〈A∗f, g〉 = −(L∗f, g)SX , so that A∗ is indeed
an extension.

In the following we introduce the filter density u : Ω× [0, T ]→ H1
0 (SX). From time to

time, we will consider u as a mapping from Ω × [0, T ] × SX to R+
0 . In this case, we will

drop the notation of the argument ω ∈ Ω of u. In [41] the filter density u is introduced as
the solution to the following SPDE:

du(t) = −A∗u(t)dt+ aTu(t)dZt +

∫
R+

u(t−)

(
ϕ(y, ·)
ϕ∗(y)

− 1

)
(µD − γD,∗)(dy, dt), (3.28)

with initial condition u(0) = π0. Note that this equation is to be understood as an equation
in the space H1

0 (SX)′, that is for every v ∈ H1
0 (SX) one has the relation

(u(t), v)SX = (u(0), v)SX −
∫ t

0
〈A∗u(s), v〉 ds+

(
aTu(s), v

)
SX

dZs

+

∫ t

0

∫
R+

(
u(s−)

ϕ(y, ·)
ϕ∗(y)

− 1, v

)
SX

(µD − γD,∗)(dy, ds).
(3.29)

Note that (3.17) shows that the integral wrt γD,∗ can be dropped in (3.28). Therefore, the
dynamics of u between two dividend dates, that is on (Tn−1, Tn) are

du(t) = −A∗u(t)dt+ aTu(t)dZt. (3.30)

with initial value u(Tn−1). At t = Tn one has:

u(Tn, x) = u(Tn−, x)
ϕ(dn, x)

ϕ∗(dn)
. (3.31)

Therefore, existence and uniqueness of a solution of the SPDE (3.28) can be established by
verifying the existence and uniqueness of the following SPDE

du(t) = −A∗u(t)dt+ aTu(t)dZt, u(0) = π0. (3.32)

Theorem 3.33. (Theorem 4.4 from [41])
There is a unique FZ-adapted solution u ∈ L2(Ω × [0, T ],Q∗ × dt;H1

0 (SX)) of equation
(3.32). Moreover, u(t) ∈ H2(SX) a.s. the trajectories belong to C([0, T ], H1

0 (SX)) and
u(t, ·) ≥ 0 Q∗ a.s.

Finally we give a representation of Σt, which shows that u essentially describes Σt:

Proposition 3.34. (Proposition 4.8 from [41])
Denote by u(t) the solution of the SPDE (3.28) and define

νK(t) =
1

2
σ2K2du

dx
(s,K)ds+

∫ t

0

∫
R+

νK(s−)

(
ϕ(y,K)

ϕ∗(y)
− 1

)
(µD − γD,∗)(dy, ds)

νN (t) = −
∫ t

0

1

2
σ2N2du

dx
(s,N)ds+

∫ t

0
aT (N)νN (s) dZs

+

∫ t

0

∫
R+

νN (s−)

(
ϕ(y,N)

ϕ∗(y)
− 1

)
(µD − γD,∗)(dy, dt).
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3.5. Derivative Pricing

Then, it holds that Σtf = (u(t), f)SX + νK(t)f(K) + νN (t)f(N).

The last proposition shows that the measure Σt has a Lebesgue density on the interior
of SX and a point mass on the boundary points K and N . Provided N is large, νN is
largely irrelevant for practical purposes.

Remark 3.35. For the filtering results it does not matter that the dn are dividend payments,
so that our analysis applies also to other types of noisy asset information arriving discretely
in time. In particular, this applies to the Core Tier One Ratio which we will introduce in
Chapter 5.

Finally we return to the filtering problem with respect to the market filtration FM.

Corollary 3.36. One has for f ∈ L∞
(
SX
)
:

1{τ>t}EQ
(
f(Xt)

∣∣∣FM
t

)
= 1{τ>t}((π(t, ·), f)SX + πN (t)f(N)),

with π(t, x) = u(t, x)/C(t) and πN (t, x) = νN (t, x)/C(t). Here, C(t) is given by C(t) =
(u(t), 1)SX + νN (t).

Remark 3.37. For practical purposes the νN -term that corresponds to the conditional
probability of reaching the upper boundary of SX prior to the horizon date can be dropped.
With this simplification we get for t ∈ [0, τ):

EQ(f(Vt)
∣∣FMt ) ≈ (π̃(t, ·), f) with π̃(t, x) = 1(K,N)(x)

u(t, x)

(u(t), 1)SX
. (3.38)

We close this section with an interesting result concerning the classification of the out-
lined structural credit risk model:

Theorem 3.39. (Theorem 5.1 from [41]) The FM-compensator of Nt is given by the process
(Λt∧τ )t∈[0,∞) where Λt =

∫ t
0 λsds and where the default intensity λt is given by

λt =
1

2
σ2K2∂π

∂x
(t,K). (3.40)

3.5 Derivative Pricing

In this section we discuss the pricing of derivative securities in our set-up. The pricing of
basic corporate securities with FN ∨ FD adapted payoff stream such as equity and debt
has been discussed in Section 3.3.1. Here, we will discuss the pricing of more complex
derivatives. In principle, the pricing of many derivatives can be done by using Monte-
Carlo methods. Therefore, we provide an algorithm for the simulation of trajectories of
all the relevant processes under the measure Q in Chapter 4. Note that the pricing of the
contingent convertible notes from Chapter 5 has been done in this way. In the following we
will additionally present some general results on the structure of prices of options on basic
securities, that is securities whose pay-off depends on the price of traded basic securities.
Examples for such products include equity options, bond options and contingent convertible
notes.

We begin with a general result on the pricing of a survival claim with pay-off 1{τ>T}H

for some FZT ∨FDT measurable random variable H. The result shows that the pricing of this
claim can be reduced to the problem of computing a conditional expectation with respect
to the reference measure Q∗ and the background filtration FZt ∨ FDt .
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Chapter 3. A Structural Credit Risk Model with Incomplete Information

Proposition 3.41. Consider some integrable, FZT ∨ FDT measurable random variable H.
Then it holds for t ≤ T that

EQ
(

1{τ>T}H
∣∣∣FM

t

)
= 1{τ>t}

EQ∗(H((u(T ), 1)SX + νN (T ))
∣∣FZt ∨ FDt )

(u(t), 1)SX + νN (t)
.

Next we specialize this general result to options on traded basic corporate securities.
From now on we ignore the point mass νN (t) at the upper boundary of SX . Consider
for concreteness an option on the stock price of the firm with maturity T and pay-off
H = g(ST ). We get for the price of this claim that

pHt = EQ∗
(
e−r(T−t)1{τ>T}g(ST )

∣∣∣FM
t

)
+ e−r(T−t)g(0)Q(τ ≤ T ).

The computation of the default probability Q(τ ≤ T ) has been discussed in detail in Section
3.3.1, so that we concentrate on the first term. Using Proposition 3.41. and the fact that
ST = (u(T ), heq)SX/(u(T ), 1)SX we get that this term equals

1{τ>t}
1

(u(t), 1)SX
EQ
(
g

(
(u(T ), heq)SX

(u(T ), 1)SX

)
(u(T ), 1)SX

∣∣∣∣FZt ∨ FDt ).
Now standard results on the Markov property of solutions of SPDEs such as Theorem 9.30
of [67] imply that under Q∗ the solution u(t) of the SPDE (3.28) is a Markov process. Hence

1

(u(t), 1)SX
EQ
(
g

(
(u(T ), heq)SX

(u(T ), 1)SX

)
(u(T ), 1)SX

∣∣∣∣FZt ∨ FDt ) = C̃(t, u(t))

for some function C̃(t, u(t)) of time and the current value of the unnormalized filter den-
sity. Moreover, since the SPDE (3.28) is linear C̃ is homogeneous of degree zero in
u. Hence we may without loss of generality replace u(t) by the current filter density
π(t) = u(t)/(u(t), 1)SX , and we get EQ(e−r(T−t)1{τ>T}g(ST )

∣∣FM
t

)
= 1{τ>t}C(t, π(t)) where

C(t, π) = EQ∗
(
g

(
(u(T ), heq)SX

(u(T ), 1)SX

)
(u(T ), 1)SX

∣∣∣∣u(t) = π(t)

)
. (3.42)

The actual computation of C is best done using Monte Carlo methods, using a numerical
method to solve the SPDE (3.30). The Galerkin approximation which will be described in
Chapter 4 is particularly well suited for this purpose. Note that (3.42) is an expectation
with respect to the reference measure Q∗ and not Q. Hence one needs to sample from the
SPDE (3.28) under Q∗, that is the driving process Z is a Brownian motion and the random
measure µD has compensator γD,∗.
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Chapter 4

Numerical Implementation of the
Structural Credit Risk Model

In this chapter we discuss several algorithms related to the numerical implementation of the
structural credit risk model from Chapter 3. Remember that the prices of basic corporate
securities can be represented in terms of their full-information value and the conditional
distribution π. Securities which belong to the class of options on basic corporate securities
can be priced by using Monte Carlo methods. Hence, one needs a good algorithm for the
simulation of trajectories of V , D, π and S. For this purpose, we propose the following
algorithm from [41]:

Algorithm 4.1. (Sampling trajectories for a given initial filter density π0)

1. Generate a random variable V0 ∼ π0, a trajectory (Vs)0≤s≤T of the asset value pro-
cess with inital value V0 = V and the associated trajectory (Ns)0≤s≤T of the default
indicator process.

2. Generate realizations (Ds)0≤s≤T and (Zs)0≤s≤T of the cumulative dividend process
and of the noisy asset information, using the trajectory of the asset value process
generated in Step 1 as input.

3. Compute for the observation generated in Step 2 a trajectory u(s)0≤s≤T of the un-
normalized filter density with initial value u(0) = π0 using a Galerkin approximation,
which we will describe in Section 4.1. Return π(t) = (1 − Nt)(u(t)/(u(t), 1)SX ) and
St = (1−Nt)(π(t), heq)SX for all t ∈ [0, T ].

In the following, we consider the algorithm in more detail. Since the simulation of tra-
jectories of V and Z in the Steps 1 and 2 can be done efficiently by using Euler-Maruyama
methods, we only consider the sampling from π0 in Section 4.2. A finite-dimensional ap-
proximation of the SPDE (3.30) for u is discussed in Section 4.1. This approximation leads
to a system of SDEs. In Section 4.3 we study different methods for solving this SDE sys-
tem. We will numerically test the different methods against a Kalman Filter in a simplified
setting. The simplified setting as well as the Kalman Filter will be described in Section
4.4. Afterwards, the results of the numerical case study are presented in Section 4.5. The
complete algorithm was implemented in Matlab and the corresponding code is available on
request.
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4.1 Finite-Dimensional Approximation of the Zakai Equa-
tion

Since u is the unique solution of the SPDE (3.3.1), it is a infinite dimensional object
and we have to approximate it by a finite dimensional object. The following method was
presented in [41]. At first we explain the method without dividend payments. Consider m
linearly independent basis functions e1, . . . , em ∈ H1

0 (SX)∩H2(SX) generating the subspace
Hm ⊂ H1

0 (SX) and denote by prm : H1
0 (SX) → Hm the projection on this subspace wrt

(·, ·)SX . Hence, for π ∈ H1
0 (SX) its projection is of the form prm(π) =

∑m
i=1 ψiei. Note

that the coefficients (ψ1, . . . , ψm)> of the projection are given by

(ψ1, . . . , ψm)> = A−1((π0, e1)SX , . . . , (π0, em)SX )>,

where the matrix A is defined by Aij = (ei, ej)SX for i, j = 1, . . . ,m. In the Galerkin
method the solution ũ of the equation

dũ(t) = prm ◦ L∗ ◦ prmũ(t)dt+ prm
(
aT prmũ(t)

)
dZt, ũ(0) = prmπ0. (4.2)

is used as an approximation of u. Since projections are self-adjoint, we get that for v ∈
H1

0 (SX)

d(ũ(t), v)SX = (L∗ ◦ prmũ(t), prmv)SXdt+
(
a>prmũ(t), prmv

)
dZt. (4.3)

Hence d(ũ, v) = 0 if v belongs to (Hm)⊥. Since moreover ũ(0) = prmπ0 ∈ Hm we conclude
that ũ(t) ∈ H(m) for all t. Therefore, ũ is of the form ũ(t) =

∑m
i=1 ψi(t)ei. In the following

we derive a system of SDEs for the m dimensional coefficient process Ψm = (ψ1, . . . , ψm)>.
Using v = ej in (4.3) we get for j ∈ {1, . . . ,m}

d(ũ(t), ej)SX =
m∑
i=1

ψi(t)(L∗ei, ej)SXdt+
l∑

k=1

m∑
i=1

(akei, ej)SXψi(t)dZ
k
t . (4.4)

On the other hand,

d(ũ(t), ej)SX =
m∑
i=1

(ei, ej)SX . (4.5)

Equating (4.4) and (4.5) gives the following system of SDEs for Ψm

dΨm
t = A−1B>Ψm

t dt+
l∑

k=1

A−1CkΨm
t dZ

k
t , (4.6)

where the matricesB and C1, . . . , C l are defined byBij = (L∗ei, ej)SX and Ckij = (akei, ej)SX .
The initial condition of (4.6) is given by

Ψ
(m)
0 = A−1((π0, e1), . . . , (π0, em))>. (4.7)

Conditions for convergence ũ → u can be found in [46]: The Galerkin approximation for
the filter density converges for m → ∞ if and only if the Galerkin approximation for the
deterministic forward PDE du

dt (t) = L∗u(t) converges.
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4.2. Sampling of the Initial Density of V

In the case with dividend information the Galerkin method is applied successively on
each interval [Tn−1, Tn), n = 1, 2, . . .. Let ũn denote the approximating density over the in-
terval [Tn−1, Tn). In line with relation (3.31), the initial condition for the interval (Tn, Tn+1)
is then given by

ũ(Tn) = prm
(
ũn(Tn−, .)

ϕ(dn, .)

ϕ∗(dn)

)
,

that is by projecting the updated density ũn(Tn−, .)ϕ(dn,.)
ϕ∗(dn) ontoHm. If one is only interested

in finding π, one only needs to compute ũn up to proportionality. Since

ũ(Tn) = prm
(
ũn(Tn−, .)

ϕ(dn, .)

ϕ∗(dn)

)
∝ prm(ũn(Tn−, .)ϕ(dn, .)). (4.8)

it suffices to compute the right hand side of (4.8) in this case. Note that this shows that
the conditional density π does not depend on the specification of ϕ∗.

4.2 Simulation of the Initial Density of V

In the first step of the algorithm 4.1 we need to sample from π0, the distribution of V0. In
some cases the distribution of V0 is well known and good sampling algorithms are available.
For example, this holds true if the distribution of V0 is a displaced lognormal distribution,
which means that (V0 − K) ∼ LogN(a, b). On the other hand the initial density π0 is
often chosen as a convex combination of the basis functions, precisely π0 =

∑m
i=1 αiei

with coefficients α1, . . . , αm. Suppose that the basis functions are densities, which can
be attained by normalizing the original basis functions if necessary. The following steps
produce a sample from π0:

1. Generate a sample from the random variable L : Ω → {1, . . . ,m} with probability
density α1, . . . , αm wrt the uniform measure on {1, . . . ,m}.

2. Given L = i generate a sample from the distribution corresponding to the basis
function i. This sample is used as a sample of V0.

4.3 Simulation of the Galerkin Approximation Ψ̃m of the Un-
normalized Density

In the general the system of SDEs (4.6) of the Galerkin approximation Ψm has no explicit
solution. Therefore, we have to apply numerical methods which will give us an approxi-
mation Ψ̃m of the Galerkin approximation Ψm. At this, the numerical methods provide us
with an approximation at a finite set of time points 0 = t0 < t1 < . . . < tn−1 < tn = T . We
will use an equidistant time grid with an interval length ∆ = T/n such that ti = i∆.

All of the algorithms which will be presented in the following define Ψ̃m
t0 via the initial

condition (4.7) and compute the approximations
(

Ψ̃m
t

)
t=t1,...,tn

iteratively. That is, for

each algorithm there exists a function f such that

Ψ̃m
ti+1

= Ψ̃m
ti + f(∆, Ψ̃m

ti ,∆Zti) for i = 1, . . . , n− 1, (4.9)
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where ∆Zti denotes the vector of differences of the noisy asset information:

∆Zti := (Z1
ti+1
− Z1

ti , . . . , Z
l
ti+1
− Z lti)

T .

When calculating Ψ̃m
ti+1

from Ψ̃m
ti , the SDE system (4.6) restricted to the interval [ti, ti+1]

is used as the starting point for the derivation of an approximation. Remember that this
SDE system is equivalent to

Ψm
ti+1

= Ψm
ti +

∫ ti+1

ti

A−1BTΨm
s ds+

∫ ti+1

ti

l∑
k=1

A−1CkΨm
s dZ

k
s . (4.10)

In the following we will discuss the Euler-Maruyama method, the Milstein method, the
Splitting up method and the Matrix-exponential method.

4.3.1 Euler-Maruyama Method

The Euler-Maruyama scheme is probably the most used method for the simulation of SDEs.
It has been extensively studied and we refer to [68] for a thoroughly discussion of its
properties. The basic idea of this algorithm consists of approximating the integrals in
(4.10): ∫ ti+1

ti

A−1BTΨm
s ds ≈ A−1BTΨm

ti ∆∫ ti+1

ti

A−1CkΨm
s dZ

k
s ≈ A−1CkΨm

ti ∆Z
k
ti for k = 1, . . . , l,

Thus, for i = 0, . . . , n− 1 we can compute Ψ̃m
ti by the equation

Ψ̃m
ti+1

= Ψ̃m
ti +A−1BT Ψ̃m

ti ∆ +
l∑

k=1

A−1CkΨ̃ti ∆Zkti . (4.11)

4.3.2 Milstein Method

Apart from the Euler-Maruyama scheme the Milstein scheme is one of the most used algo-
rithms for the simulation of SDEs. Again [68] can be consulted for much more information
than we will give here. Compared to the Euler method one uses higher order terms to
approximate the stochastic integral and takes into account the quadratic variation of Z.
For l = 1 we have:∫ ti+1

ti

A−1C1Ψm
s dZ

1
s ≈

n−1∑
i=0

A−1C1Ψm
ti (∆Zti) +

1

2
(A−1C1)2Ψm

ti ((∆Zti)
2 −∆). (4.12)

The approximation of the Lebesgue-Integral is not changed:∫ ti+1

ti

A−1BTΨm
s ds ≈ A−1BTΨm

ti ∆ (4.13)

So for i = 0, . . . , n− 1 we set

Ψ̃m
ti+1

:= Ψ̃m
ti +A−1BT Ψ̃m

ti ∆ +A−1C1Ψ̃m
ti ∆Zti +

1

2

(
A−1Ck

)2
Ψ̃m
ti

(
(∆Zti)

2 −∆
)
. (4.14)
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For l > 1 the scheme becomes more complicated and also more time consuming, because
double Wiener-Integrals arise. These can’t be computed in closed form and have to be
approximated as well. This is the main reason why we only consider the case l = 1. We
refer to [68] for the case l > 1.

4.3.3 Splitting-Up Method

The splitting-up method was introduced in [48]. An application of this method in the
context of filtering can also be found in [40]. The idea of the algorithm is to split the
original SDE into a deterministic part ΨDet and a stochastic part ΨSto and to solve each
of them separately. Suppose we already have Ψ̃m

ti and want to find Ψ̃m
ti+1

. We define the

deterministic part ΨDet on the interval [ti, ti+1] as the solution of the following SDE

dΨDet
t := A−1BTΨDet

t dt, ΨDet
ti = Ψ̃m

ti (4.15)

and the stochastic part ΨSto by the solution of

dΨSto
t =

l∑
k=1

A−1CkΨSto
t dZkt , ΨSto

ti = ΨDet
ti+1

. (4.16)

Note that the solutions of the SDEs (4.15) and (4.16) can be represented in terms of matrix
exponentials:

ΨDet
ti+1

= expm
(
A−1BT∆

)
Ψ̃m
ti , (4.17)

ΨSto
ti+1

= expm

(
l∑

k=1

A−1Ck(∆Zkti)−
1

2

l∑
k=1

(A−1Ck)2∆

)
ΨDet
ti+1

. (4.18)

Finally we define Ψ̃m
ti+1

:= ΨSto
ti+1

. The computation of matrix exponentials in (4.17) and
(4.18) can be computationally intensive. Thus, it is reasonable to avoid repeated compu-
tations of these matrix exponentials. Provided A−1BT is diagonalizable it is possible to
compute its matrix exponential in the following way.

Precompute the eigenvalue decomposition of A−1BT . LetD be a corresponding diagonal
matrix of eigenvalues λ1, . . . , λn and V be an invertible matrix such that A−1BT = V DV −1.
Then (4.17) becomes

ΨDet
ti+1

= V expm(D∆)V −1Ψ̃m
ti .

Note that the matrix exponential expm(D∆) is again a diagonal matrix with entries on the
main diagonal given by eλ1∆, . . . , eλn∆. The matrix exponential in (4.18) factorizes if the
matrices A−1C1, . . . , A−1C l commute. If the matrices furthermore are diagonalizable, then
the we can proceed similarly as for (4.17).

4.3.4 Matrix-exponential Method

The matrix-exponential method was firstly studied in [69] and is motivated by the following
result. Let B be a n-dimensional Brownian motion and let M,M1, . . . ,Ml be n×n matrices.
If M,M1, . . . ,Ml commute, then the solution of the following SDE

dXt = MXtdt+

l∑
i=1

MiXtdB
i
t
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is given in terms of a matrix exponential:

Xt = expm

(∫ t

0

(
M −

l∑
i=1

1

2
M2
i

)
ds+

l∑
i=1

MiB
i
t

)
X0

= expm

((
M −

l∑
i=1

1

2
M2
i

)
t+

l∑
i=1

MiB
i
t

)
X0. (4.19)

The matrix-exponential method applies the relationship (4.19) on the SDE (4.6) for each
interval [ti, ti+1] although the involved matrices do not commute. Hence, for i = 0, . . . , n−1
we define Ψ̃m

ti+1
by

Ψ̃m
ti+1

= expm

((
A−1BT − 1

2

l∑
k=1

(A−1Ck)2

)
∆ +

l∑
k=1

A−1Ck∆Zkti

)
Ψ̃m
ti . (4.20)

If the matrices A−1BT , A−1C1, . . . , A−1C l commute, then (4.20) becomes

Ψ̃m
ti+1

= expm

(
l∑

k=1

A−1Ck(∆Zkti)−
1

2

l∑
k=1

(A−1Ck)2∆

)
expm

(
A−1BT∆

)
Ψ̃m
ti . (4.21)

Therefore, splitting-up method and matrix exponential method give the same results pro-
vided commutativity holds true.

It is also possible to derive an upper estimate for the error of the splitting of the matrix-
exponential in our setting. Let ‖·‖2 denote the matrix norm corresponding to the euclidean
norm and let L1 and L2 be two m × m matrices. Then, from Theorem 2.1 from [73] we
have

‖expm(L1 + L2)− expm(L1) expm(L2)‖2 ≤
1

2
‖[L1, L2]‖2e

‖L1‖2+‖L2‖2 , (4.22)

where [L1, L2] := L1 L2 − L2 L1 is the commutator of the matrices L1 and L2. Note that
[L1, L2] = 0 if L1 and L2 commute.

We apply (4.22) to the matrices L1 =
√

∆M1 and L2 = ∆M2, where

M1 =

l∑
k=1

A−1Ck
(∆Zkti)√

∆
− 1

2

l∑
k=1

(A−1Ck)2
√

∆, (4.23)

M2 = A−1BT . (4.24)

and obtain

‖expm(L1 + L2)− expm(L1) expm(L2)‖2 ≤
1

2
∆3/2‖[M1,M2]‖2e

‖L1‖2+‖L2‖2 . (4.25)

Note that
(∆Zkti

)
√

∆
∼ N(0, 1) under the measure Q∗ and hence1 ‖[M1,M2]‖2 = O(1) for

∆ → 0. Moreover, ‖L1‖2 = O(1) and ‖L2‖2 = O(1) for ∆ → 0. Therefore, the order of
convergence of the error (4.25) for ∆ → 0 is ∆3/2 and splitting-Up method and matrix-
exponential method will give very similar results provided ∆ is small.

1f = O(g) means that lim supx→0

∣∣∣ f(x)g(x)

∣∣∣ <∞
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4.4 Benchmark - Kalman Filter

The simulation algorithms from Section 4.3 will be tested in a more simple situation, where
we assume that

i) no dividends are paid, i.e. µ = 0,

ii) a is a one-dimensional function with a(x) = c log(x),

iii) no default takes place, i.e. we consider the limiting case K = 0,

iv) V0 ∼ LogN(a, b).

Under these assumptions the original filtering problem (3.12) consists of the computation
of

EQ(f(Vt)
∣∣FZt ) (4.26)

for functions f : R+ → R such that f(Vt) is integrable. Here, V and Z are the processes
defined in (3.4) and (3.7), so they solve the SDEs

dVt = rVtdt+ σVtdBt, V0 ∼ LogN(a, b), (4.27)

dZt = a(Vt)dt+ dWt, Z0 = 0. (4.28)

In order to test the simulation algorithms from Section 4.3 we solve the SPDE for u asso-
ciated to the filtering problem (4.26) numerically and compare the results with the correct
solution. The correct solution can be obtained from the following filtering problem:

EQ
(
f(Ṽt)

∣∣∣F Z̃t ), (4.29)

where Ṽ and Z̃ are defined by

dṼt = σdBt, Ṽt = log(V0),

dZ̃t = cṼtdt+ dWt, Z̃0 = 0.

Note that the conditional density of Ṽt given FZt , which provides a solution to (4.29), can
be obtained by using a Kalman filter, see for example [65]. In the following we show how
to recover the solution of (4.26) from the Kalman filter. Note that

dZ̃t = c log(V0)dt+ cσBtdt+ dWt.

On the other hand, by plugging the solution of (4.27) into (4.28) we have

dZ(t) = c

(
log(V0) +

(
r − 1

2
σ2

)
t+ σdBt

)
dt+ dWt

= c log(V0)dt+ c

(
r − 1

2
σ2

)
tdt+ cσBtdt+ dWt.
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Hence, Z and Z̃ only differ by a deterministic part and replacing Z by Z̃ does not change
the filtering problem. Therefore, for v ≥ 0 we get

Q
(
Vt ≤ v

∣∣FZt ) = Q
(
Vt ≤ v

∣∣∣F Z̃t ) = Q
(
V0e

(r− 1
2
σ2)t+σBt ≤ v

∣∣∣F Z̃t )
= Q

(
log(V0) + σBt ≤ −(r − 1

2
σ2)t+ log(v)

∣∣∣∣F Z̃t )
= Q

(
Ṽt ≤ −

(
r − 1

2
σ2

)
t+ log(v)

∣∣∣∣F Z̃t ). (4.30)

By differentiating (4.30) we obtain a relationship between the conditional densities of Vt
and Ṽt

fVt|Zt(v) = f
Ṽt|Z̃t

(
−
(
r − 1

2
σ2

)
t+ log(v)

)
1

v
. (4.31)

With the conditional density (4.31) the conditional expectation (4.26) can be computed
easily.

4.5 Numerical Case Study

Finally, we present a numerical case study, where we tested the different algorithms from
Section 4.3 against the Kalman filter from Section 4.4. At this, we work within the simplified
framework from Section 4.4. Moreover, we choose l = 1, r = 0.02, σ = 0.2 and T = 10 and
investigate the effectivity of the algorithms for ∆ ∈ {0.001, 0.005} and c ∈ {1, 2}.

4.5.1 Choice of the Basis Functions

For the Galerkin approximation we use 32 basis functions. The basis functions are plotted
in (4.1). The considerably hugh number of basis functions makes sure that the class of
functions f : [K,∞) → R which can be approximated well, is big enough. However, it is
possible to reduce the number of basis functions by using more sophisticated methods like
adapted schemes (see [40] fur further details).

In order to ensure that u can be approximated well in scenarios where V̂ is close to the
default boundary K, we define the first basis function e1 as a displaced density of a gamma
distribution with location and scale parameter 2 and 0.6, i.e

e1(x) := fΓ(2; 0.6)(x−K).

All other basis functions are truncated densities of displaced normal distributions, i.e. for
i = 2, . . . , 32 we define ei by

ei(x) := 1{K<x}C
−1
i fN(µi,σ2

i )(x−K),

where fN(µi,σ2
i ) represents the density of a normal distribution with mean µi and variance

σ2
i . Ci :=

∫∞
K fN(µi,σ2

i )(x−K) dx denotes a normalization constant to obtain a density. We
choose µi := K − 1.5 + 3.0 i for i = 2, . . . , 32 and σi := 1.8 for all i. Due to the truncation
the density are not differentiable at K. However, the choice of the means µi and variances
σ2
i implies that Ci ≈ 1 for i = 1, . . . , n. Hence, for practical purposes the densities (ei)

32
i=1

can be considered as H2(SX) functions.
In order to study the influence of the choice of the basis functions we will use a second

set of basis functions:
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• e1 is again Gamma distributed with location and scale parameters 2 and 0.6,

• ei is truncated normal for i = 2, .., 17 with µi := K + 4.5 + 6.0(i − 2) and σi :=
2 + 1

5

√
2(i− 2).

4.5.2 Results of the Numerical Case Study

Section 4.6 contains various graphics and results. The Figures 4.3(a) - 4.3(e) show Ψ̃m
T

for the simulation algorithms from 4.3. The Figures 4.4(a) - 4.7(d) show the paths of V
and V̂ different simulation of algorithms of Ψ̃m. Since ∆ was chosen relatively small, the
matrix exponential method and the splitting-up method nearly produced the same results,
what was already predicted by the error estimate (4.25). It turned out that the matrix-
exponential and the splitting-up method performed better than the Euler-Maruyama and
the Milstein method in terms of stability. While the matrix-exponential method and the
split-up method never showed numerical instabilities, Euler-Maruyama and the Milstein
method tend to produce these instabilities when ∆ and c are rather large (for example if
∆ = 0.005 and c = 2). To this regard, eye-catching are the Pictures 4.3(d) and 4.6(a),
which show an instability the Euler-Maruyama method. During our numerical analysis the
Milstein scheme also showed these instabilities. The results from [40] support our findings.
However, it remains unclear how to choose ∆ precisely to guarantee the stability of the
Euler and the Milstein method apriori. This is one of the main arguments for the use of
the advanced methods.

Additionally, our numerical analysis shows that matrix-exponential respectively the
splitting-up method provide lower differences between the density from the Galerkin ap-
proximation and the Kalman filter. While there are not much differences in the approx-
imation errors between the different algorithms for ∆ = 0.001 (see 4.3(a) - 4.3(b)) and
all methods provide good results, substantial differences arise for ∆ = 0.005 (see 4.3(c)
and 4.3(d)). Here, the matrix-exponential-method respectively the splitting-up method
performs better than Milstein-method. The good performance of the matrix-exponential-
method compared to Euler-Maruyama schemes is also found in [69]. This furthermore
underlines the usefulness of the matrix-exponential-method and the splitting-up method.

From the point of speed Euler-Maruyama, the Milstein and the splitting-up method
are fine. By far the slowest algorithm is the matrix-exponential method. In case of the
Euler-Maruyama and the Milstein method this is mainly due to their simplicity. In case
of the splitting-up method we precomputed the eigenvalue-decomposition of the matrices
A−1BT and A−1C1 and used the method in 4.3.3 to compute matrix exponentials in terms
of the eigenvalue decomposition.

Finally, we discuss the influence of the choice of basis functions. 4.7 gives the Galerkin
approximations for the second set of basis functions. It shows the superior performance
of the matrixexponential and the splitting-up method compared to the other methods.
However, in 4.7 the filter densities ’fluctuate’ around the Kalman filter. Basically this is
due to the smaller number of basis functions. Hence, depending on the desired level of
approximation one has to choose the number of basis functions.

All in all this shows that due to their stability the matrix-exponential method and
the splitting-up method are better suited than ordinary schemes like Euler-Maruyama or
Milstein schemes. In our case the splitting-up method outperforms the matrix-exponential
method in case of computation time.
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4.6 Pictures

Figure 4.1: Basis Functions
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Figure 4.2: Conditional Density of πT for different values of ∆ and c
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(a) ∆ = 0.001 and c = 1
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(b) ∆ = 0.001 and c = 2
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(c) ∆ = 0.005 and c = 1
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(d) ∆ = 0.005 and c = 2
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(e) ∆ = 0.005 and c = 2
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Figure 4.3: Comparison of differenent simulation techniques for ∆ = 0.001 and c = 1
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Figure 4.4: Comparison of differenent simulation techniques for ∆ = 0.001 and c = 2

0 1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

40

 

 
Path of V̂
Path of V

(a) Euler

0 1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

40

 

 
Path of V̂
Path of V

(b) Milstein

0 1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

40

 

 
Path of V̂
Path of V

(c) Splitting Up

0 1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

35

40

 

 
Path of V̂
Path of V

(d) Matrixexponential

57



Chapter 4. Numerical Implementation of the Structural Credit Risk Model

Figure 4.5: Comparison of different simulation techniques for ∆ = 0.005 and c = 1
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Figure 4.6: Comparison of different simulation techniques for ∆ = 0.005 and c = 2
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Figure 4.7: Impact of the choice of the
basis functions
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Chapter 5

Pricing of Contingent Convertibles
Notes

5.1 Introduction

The financial crises highlighted the too-big-too-fail problem for huge banks. The conse-
quences of a default of a large bank were considered as so severe for the financial system
that most of the governments decided to rescue endangered banks instead of letting them
default. At this, debt holders have not been involved in the rescue programs, e.g. by waiv-
ing the coupon payments, because their participation would have meant a default. So the
problem arose that debt holders profited from the financial aid without participating in the
rescue programs. The issuance of contingent capital notes by banks is often suggested to
weaken this problem. Contingent capital notes, also known as CoCos, are corporate bonds
which are equipped with a conversion mechanism. The conversion mechanism is designed
with the intention to strengthen the equity capital of the issuer when he enters into finan-
cial distress. In order to achieve this, the face value of the CoCo can be written down or
the CoCo can be converted to an amount of equity. The conversion gets triggered when
predetermined conditions are fulfilled1. Hence, depending on the specified conditions one
obtains different types of conversion triggers. The following types of conversion triggers are
usually considered:

• Accounting trigger: These triggers are based on capital adequacy ratios, e.g. the Core
Tier One Capital Ratio (short CT1R). Roughly speaking, the CT1R is the ratio of
the equity of the bank and its risk weighted assets. The conversion takes place as
soon as the ratio drops below a given threshold.

• Market trigger: The bond is converted as soon as a quantity observable at a financial
market falls below a given threshold. Herefore, usually the share price of the issuing
company is used.

• Regulatory trigger: A regulatory authority like a central bank or a federal supervisory
authority decides when the conversion takes place.

• Combinations of the triggers mentioned above can be used.

1Therefore, convertible bonds and CoCos have to be distinguished.
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For an overview of recently issued CoCos and their triggers we refer to [47] and [28]. On
the basis of the list in [47] it can be seen that combinations of accounting and regulatory
triggers have prevailed. The main reason for the sparse use of market triggers lies in the fear
that the market quantity may not reflect the state of the bank correctly. In addition, there
is concern that the trigger is intentionally activated or that the activation is prevented
by market manipulations. On the other side, accounting triggers have the disadvantage
that they depend on complex accounting numbers like the CT1R, so that it is difficult to
accurately estimate the probabilities of conversion. Even more difficult is the determination
of the influence of a regulatory trigger. Therefore, most of the pricing approaches and also
the approach used here do not take into account regulatory trigger. On the other hand,
market triggers are much easier to handle from a valuation perspective.

Note that the pricing of CoCos has generated a lot of interest in the last years. For
an introduction and a discussion of some general approaches see [75]. Among others, the
equity approach for the pricing of CoCos is presented. In this approach the CoCo is priced
as an equity derivative, which requires that the cash flow stream of the CoCo is adapted
to the filtration generated by the share price of the company. This implies that the CoCo
is equipped with a market trigger. Moreover, papers using the equity approach usually
assume implicitly that the conversion always takes place before the default of the company.
The equity approach was used in [28, 62, 76]. Structural credit risk models are used for
instance in [17, 21, 49]. These papers use accounting trigger based on capital adequacy
ratios. [17] and [21] explicitly model the CT1R. However, they assume that the modelled
capital adequacy ratios can be observed continuously. This is in strong contrast to reality,
in which the capital adequacy ratios like the CT1R are published at most quarterly.

Another approach based on classical techniques from credit risk modelling can be found
in [25]. [25] use an intensity framework and model the conversion time respectively the
default time as the first respectively the second jump time of a Cox process. Worth men-
tioning is also [61], where theory from conic finance is used. In this chapter we want to
study the pricing of CoCos with different features in the structural credit risk from Chapter
3. In particular, the model distinguishes itself from other credit risk models which have
been used for the pricing of CoCos in two major points. Firstly, it incorporates incomplete
information effects: The asset value V is not perfectly observable, but only noisy observa-
tions are available. Secondly, our model differs from other pricing approaches, because we
allow for the possibility of a default before the conversion. As a consequence CoCos are
subject to credit risk in our model and the equity approach can not be used. In contrast
to many other approaches our model allows for the pricing of various types of CoCos: It is
capable of covering accounting and market triggers on the one hand and write-down and
conversion-to-shares features on the other hand. In contrast to [17] and [21] we present an
accounting trigger, which is based on discrete-time observations of the CT1R and discuss
the consequences of assuming discrete-time observations.

This chapter is structured in the following way. The cash flows of a CoCo are described
in detail in Section 5.2. Section 5.3 introduces different trigger definitions. Section 5.4
goes on by discussing the pricing and Section 5.5 by presenting the calibration of the
model. Finally, the chapter closes with a pricing and sensitivity study of a CoCo issued by
Deutsche Bank in 2014.

62



5.2. Cash Flows in a Contingent Capital Bond

5.2 Cash Flows in a Contingent Capital Bond

We denote the cumulative sum of the cash flows from time t up to its maturity T by Πt.
Since the cash flows depend on the trigger and the conversion type we will make use of
superscripts to distinguish them. Common to all CoCos considered here is the payment of
coupons c1, . . . , cl, due at the coupon dates t1, . . . , tl and the notional N at the maturity T ,
assuming a default or conversion did not occur. Since CoCos are subordinated bonds, we
assume that neither coupons nor the notional are paid after a default, regardless of whether
a conversion took place or not. Moreover, we assume that a conversion of the CoCo is not
possible after a default. Hence, in this case we set the conversion time θ equal to ∞. If the
trigger is activated before the default, then a conversion of the CoCo takes place. Two types
of conversion mechanisms are mainly used: a write-down conversion and a conversion of the
bond to an amount of shares. If a write-down conversion is used, then at the trigger event
the nominal of the CoCo is written down, possibly even written-off, and only a fraction
ω ∈ [0, 1) of the originally intended coupons and nominal will be paid. Hence, ω can be
considered as some type of recovery rate and accordingly 1− ω as a loss given conversion.
The cumulative cash flows of a CoCo with write-down feature are denoted by ΠW and for
t ∈ [0,∞) we define:

ΠW
t :=

l∑
i=1

1{ti≤t}1{ti<τ}ci
(
1{ti<θ} + ω 1{θ<ti}

)
+ 1{T≤t}1{T<τ}N

(
1{T<θ} + ω 1{θ<T}

)
.

(5.1)

The second mechanism is the conversion of the bond to shares. The number of shares Cr
which are obtained per bond is called conversion ratio and is usually defined in terms of
the conversion price Cp by the following relationship

Cr =
N

Cp
.

Cp can be interpreted as a price, which is paid by the holder of the bond per share. An
interpretation of this conversion as a recovery payment can be found in [75]. [75] present
a rule of thumb, where they neglect coupon payments as well as discounting effects. They
approximate the loss L to owners of the CoCo due to the conversion by the difference of
the nominal and the value of the received shares:

L ≈ N − CrSθ = N − N

Cp
Sθ = N

(
1− Sθ

Cp

)
.

Hence, Sθ/Cp can be considered as a recovery rate and 1−Sθ/Cp as a loss given conversion.
Therefore, a low conversion price is advantageous for the bond owner, whereas a high
conversion price is advantageous for the original share holders. The conversion price Cp
should only depend on information which is available up to time θ, which means that Cp
has to be a FM

θ -measurable random variable. Hence, the choice of Cp = S0 or Cp = Sθ
comes into consideration. As the share price at θ is rather low, CoCo owners would prefer
the second choice. It should be noted that the choice Cp = Sθ implies that the recovery rate
is equal to one respectively that the loss is equal to zero. Finally, we define the cumulative
cash flows ΠS of a CoCo with a conversion to shares for t ∈ [0,∞) by

ΠS
t =

l∑
i=1

ci1{ti≤t}1{ti<min(θ,τ)} + 1{T≤t}N1{T<min(θ,τ)} + 1{θ<t}1{θ<τ}CrSθ. (5.2)

63



Chapter 5. Pricing of Contingent Convertibles Notes

5.3 Trigger Mechanisms

In this section we give different definitions of the conversion time θ of the CoCo. We discuss
an accounting trigger and a market trigger. If θ is given by an accounting trigger, then we
use the notion θacc. If θ is given by a market trigger, then we use the notion θma.

5.3.1 The Accounting Trigger

The accounting trigger we consider is based on the Core Tier One Ratio, shortly CT1R,
which is used as the core measure of a bank’s financial strength from a regulator’s point of
view. It is defined as the quotient of the core tier one capital and the risk-weighted assetsDefinition
of the bank. The CT1R is usually announced quarterly and hence, we introduce the set
M := {0.25, 0.5, 0.75, 1, ...}. For t ∈ M let CT1R denote the CT1R announced at time
t2. For the modelling of the core tier one ratio we use various approximations. At first
we approximate the core tier one capital by the equity of the company, which is given by
Vt −K in our model. Moreover, the risk-weighted assets are modelled by a multiple βVt of
the asset value with a constant β > 0. We account for these approximations by defining the
CT1R in terms of a regression model for its logarithm. Accordingly, we use the logarithm
of the ratio of the equity and the risk weighted assets as the explanatory variable. Working
with logarithmic values ensures that the CT1R is always positive. Moreover, we assume
that the CT1R is zero after a default of the bank. Finally, for t < τ we obtain that

log(CT1Rt) := c̃+ d log

(
Vt −K
βVt

)
+ κt, (5.3)

with constants c̃ ∈ R, d > 0 and a sequence of i.i.d. noise variables (κt)t∈M with mean 0 and
variance σ2

κ. The restriction d > 0 is made to ensure that the CT1R is indeed a measure
of the financial strength of the bank in our model. By definition of the default time lower
asset values mean increasing default probabilities. It is therefore reasonable to make sure
that the CT1R is an increasing function in V . To see that the restriction d > 0 implies
this, note that Equation (5.3) can be simplified by using the variable c := c̃− d log(β):

log(CT1Rt) = c+ d log

(
1− K

Vt

)
+ κt, t < τ. (5.4)

From this formulation, it is also apparent that the CT1R depends only on the ratio of V and
K, which will play a role in the calibration of the underlying model. The parameters c and
d in the Definition (5.4) are usually estimated from balance sheet data. For this purpose,
least-squares respectively restricted least-squares methods are appropriate. In Section 5.6.1
we estimate the parameters c and d from balance sheet data from the Deutsche Bank.

Definition of the Accounting Trigger based on the CT1R.
As the CT1R is a measure for the financial strength of the bank, it is reasonable to

assume that the conversion gets triggered as soon as the CT1R drops below a threshold
Kacc > 0 and introduce a preliminary version of the conversion time:

θ̃acc := inf{t ∈M : CT1Rt ≤ Kacc}. (5.5)

2Note that most of the publications dealing with the pricing of CoCos with accounting trigger assume
that the CT1R is continuously observable.
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It is possible that a default of the bank occurs before the CT1R drops below the threshold
Kacc. For instance due to a strong decrease of the asset value between two observation
times of the CT1R. Therefore, we modify θ̃acc to ensure that a conversion never takes place
after a default.

θacc :=

{
θ̃acc if θ̃acc < τ,

∞ if θ̃acc ≥ τ.
(5.6)

If the trigger would have been based on continuous-time observations of the CT1R, then a
default without an activation of the trigger would not be possible. To see this, note that
the following relationship holds

CT1Rt ≤ Kacc ⇔ Vt ≤
(

1− exp

(
log(Kacc)− c− κt

d

))−1

K,

which implies that

Vt ≤ K ⇒ CT1Rt < Kacc.

5.3.2 The Market Trigger

The second class of trigger which we consider are market trigger. Basically, the market
trigger we will consider is defined as the first time the incomplete information stock price
S drops below a threshold Kma > 0. Hence, we introduce the stopping time θ̃ma:

θ̃ma := inf{t ∈ [0,∞) : St ≤ Kma}.

In contrast to the full information function heq there is no 1-to-1 relationship between the
stock price and the asset value in the incomplete information model. Therefore it is possible
that the bank defaults before the trigger gets activated. and introduce the market trigger
θma as a modification of θ̃ma, which ensures that a conversion never takes place after a
default:

θma :=

{
θ̃ma if θ̃ma < τ,

∞ if θ̃ma ≥ τ.
(5.7)

5.3.3 Comparison of Accounting and Market Trigger

In general it is difficult to compare the accounting trigger θacc and the market trigger θma,
because of the presence of the noise variables κt and the assumption that the CT1R is not
continuously observable. Therefore, we consider a slightly different definition of the original
accounting trigger (5.6), which we denote by θass. Here, we substitute the set M by R+

0

and assume that the noise variables κt are equal to zero:

θass := inf

{
t ∈ [0,∞) : exp

(
c+ d log

(
Vt −K
Vt

))
≤ Kacc

}
. (5.8)

Rearranging (5.8) leads to

θass = inf

{
t ∈ [0,∞) : Vt ≤

(
1− exp

(
log(Kacc)− c

d

))−1

K

}
. (5.9)
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Therefore, θass may be referred to as an asset trigger with threshold given by Kass :=(
1− exp

(
log(Kacc)−c

d

))−1
K. Moreover, Equation (5.9) shows that a default can not happen

before the asset trigger has been activated. The following proposition gives a relationship
between an asset trigger and a market trigger with threshold Kma := heq(Kass). Here, heq

denotes the full-information equity function from Section 3.3.2.

Proposition 5.10. Let T > 0 denote the maturity of the CoCo. On the set {θma ≤ T}
the market trigger is conservative in the sense that the average asset value at conversion is
higher than Kass, precisely we have

EQ(Vθma |θma ≤ T ) > Kass. (5.11)

Proof. Essentially the proof is based on the concavity of heq(·) and on Jensen’s inequality.
We now give the details. At first note that θma ≤ T implies that the conversion was
triggered before the default. As Sθma = Kma on {θma ≤ T}, we have

Kma =
EQ(Sθma1{θma≤T}

)
Q(θma ≤ T )

(∗)
=

EQ(heq(Vθma)1{θma≤T}
)

Q(θma ≤ T )
= EQ(heq(Vθma)|θma ≤ T ),

where the equality (∗) follows from the defining equation of optional projections. Since
heq(·) is strictly concave on [K,∞) and the rv Vθma takes values in that interval given that
θma ≤ T , Jensen’s inequality gives

EQ(heq(Vθma)|θma ≤ T ) < heq(EQ(Vθma |θma ≤ T )).

Since heq(·) is strictly increasing on [K,∞) we get

Kass = h−1
eq (Kma) < EQ(Vθma |θma ≤ T ).

5.4 Pricing of CoCos

We define the price pt of a CoCo at time t as the expected value of all future discounted
payments, namely

pt := EQ
(∫ T

t
e−r(s−t) dΠs

∣∣∣∣FM
t

)
, (5.12)

where we assume that for all t ∈ [0,∞) the expectation value of
∫ T
t e−r(s−t) dΠs exists.

Here, Π denotes one of the streams of cash flows considered in Section 5.2. The CoCo
may be equipped with the accounting trigger (5.6) or with the market trigger (5.7). The
conversion can take place in form of a write-down or a conversion to shares.

Remark 5.13. From a modelling perspective, it would be reasonable to account for the
conversion in the capital structure of the bank. For example, one could replace the default
threshold K by K−1{θ<t}ωN in case of the write-down conversion. However, the debt K of
a typical bank is much larger than the nominal N of the CoCo and therefore, the replacement
of K will not have a strong impact on the pricing of CoCo. Therefore, for simplicity we
neglect the effects of the write-down conversion. For a conversion to shares, we assume
that the number of new shares issued through the conversion to shares is relatively small,
so that it won’t have an impact on the pricing.
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By directly applying (5.12) to the cash flow stream of a CoCo with a write-down feature
given by (5.1), we obtain for pWt :

pWt =
l∑

i=1

1{t<ti}e
−r(ti−t)ci

(
Q
(
ti < min(θ, τ)

∣∣∣FM
t

)
+ ωQ

(
θ < ti < τ

∣∣∣FM
t

))
+ e−r(T−t)N

(
Q
(
T < min(θ, τ)

∣∣∣FM
t

)
+ ωQ

(
θ < T < τ

∣∣∣FM
t

))
.

(5.14)

On the other hand, the price of a CoCo with a conversion to shares with cash flows given
by formula (5.2), leads to:

pSt =

l∑
i=1

1{t<ti}e
−r(ti−t)ciQ

(
ti < min(θ, τ)

∣∣∣FM
t

)
+ e−r(T−t)NQ

(
T < min(θ, τ)

∣∣∣FM
t

)
+ EQ

(
1{t<θ<T∧τ}e

−r(θ−t)CrSθ

∣∣∣FM
t

)
.

(5.15)

Apart from the last term in Equation (5.15), the price of a CoCo can be expressed in terms
of conditional default and conversion probabilities. Unfortunately, we were not capable of
deducing tractable formulas for these conditional conversion probabilities. Hence, a direct
evaluation of pW or pS seems not to be possible. Hence, it is reasonable to use the pricing
approaches for basic corporate securities and options on basic corporate securities from
Chapter 3. For the pricing of the considered CoCos we will rely on Monte-Carlo pricing.
Herefore, we use the simulation algorithm 4.1 and the splitting-up method from (4.3.3).
Before we discuss the pricing of CoCos in more detail, we discuss some modifications of the
model framework, which are necessary if an accounting trigger is used.

5.4.1 Modification of the Filtering Problem due to an Accounting Trigger

When using an accounting trigger of the form (5.4) one has to acknowledge the fact that the
CT1R contains additional information about the asset value. Hence, one has to incorporate
the filtration FCT1R which is given by

FCT1R
t := σ(CT1Rs : s ∈ [0, t], s ∈M)

into the market filtration by setting FM = FZ ∨ FN ∨ FD ∨ FCT1R. The incorporation of
the CT1R requires an updating of the conditional density π. Because FCT1R consists of
discrete observations at fixed time points M , one can use a Bayesian updating procedure,
analogous to the updating due to dividend payments given by formula (3.31). At this, note
that for x > 0 and v > K the conditional density of CT1Rt given Vt = v is given by

Q(CT1R ≤ x|Vt = v) = Q
(
κt ≤ log(x)− c− d log

(
v −K
v

))
= Q

(
κt ≤ log(x)− c− d log

(
1− K

v

))
. (5.16)

Therefore, if κt exhibits the density fκt , differentiating (5.16) shows that the conditional
density of CT1Rt given Vt = v is given by

fCT1Rt|Vt=v(x) =
1

x
fκt

(
log(x)− c− d log

(
1− K

v

))
.
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5.4.2 Classification of CoCos

In Chapter 3 the pricing of two classes of securities was discussed, basic corporate securities
and options on basic corporate securities. In the following we want to classify the different
types of CoCos into these two classes. Remember that basic corporate securities are securi-
ties whose associated cash flow stream H depends on future dividend payments and on the
occurrence of a default. Finding the price pHt of typical corporate securities of this class is
equivalent to solving the filtering problem

1{τ>t}p
H
t = 1{τ>t}EQ

(
h(t, Vt)

∣∣∣FM
t

)
, (5.17)

where the full information value h fulfills

1{τ>t}h(t, Vt) = EQ
(

1{τ>t}

∫ T

t
e−r(s−t) dHs

∣∣∣∣Gt).
Hence, crucial for the validity of Equation (5.17) was that the pre-default value in the full
information model is a function of the current time t and the current asset value Vt. If we
consider a CoCo with an accounting trigger and write-down-feature, that is H = ΠW,acc,
then its cash flows ΠW,acc depend apart from the occurrence of a default also on the CT1Rs
via the conversion time θacc. Since the CT1R at time t does not depend on past realisations
of the noise variables (κs)s<t, conditional conversion probabilities wrt. G are functions of
time and the asset value only. Therefore, the pre-conversion price pW,acct of a CoCo with
an accounting trigger and a write-down-feature can be represented by

1{θacc>t}1{τ>t}p
W,acc
t = 1{θacc>t}1{τ>t}E

Q
(
hW,acc(t, Vt)

∣∣∣FM
t

)
,

where the full information value function hW,acc fulfils

1{θacc>t}1{τ>t}hW,acc(t, Vt) = EQ
(

1{τ>t}1{θacc>t}

∫ T

t
e−r(s−t) dΠW,acc

s

∣∣∣∣Gt). (5.18)

However, we don’t have a closed-formula for hW,acc such as in the case of the share price

heq. Therefore, we will use Monte Carlo pricing to find pW,acct . Since the cash flows ΠW,acc

only depend on the default time and the conversion time, there is no need to simulate
trajectories of the filter density πt or S. If the CoCo has been equipped with the market
trigger or a conversion to shares is used, then the cash flows depend on the stock price
S. Since the stock price S depends on the conditional distribution π, these CoCos can
not be considered as basic corporate securities, but as options on basic corporate securities.
Remember that the cash flows of options on basic corporate securities depend on traded
assets. As suggested at the end of Chapter 3 we use the simulation algorithm 4.1 to find
the price of the CoCo.

5.5 Calibration

The price of the CoCo depends on various parameters. This raises the inevitable question
of model calibration. In the following, we propose a calibration method which fits the
model parameters K, λ, σV and also the initial density π0 of V0. We assume that all other
parameters have already been chosen before the start of calibration procedure. Note that
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5.5. Calibration

the calibration method can be used for all types of CoCos. For calibration, we assume that
the share price of the bank and the fair CDS spreads of l liquidly traded CDS are available.
Since we work with the fair spreads of the CDS, we will assume that their corresponding
market prices are equal to zero.

For the model calibration we suggest the following two-stage procedure. The first step
consists of fitting V0, K, λ and σV under the full information model. Note that we assume
in this step that V0 is constant. We will account for the randomness later in the second step.
We find those values of the parameters such that model prices from the full information
model match market prices. At this, a calibration of V0 and K is necessary to make sure
that the share price is matched. In order to see this, note that the following inequality
holds

heq(V0) = V0 −K
(
V0

K

)α
≥ V0 −K. (5.19)

For most banks, the market capitalization is relatively small compared to the book equity
value V0 −K. Hence, if we choose V0 and K according to balance sheet data, for example
as the total value of assets and the debt of the bank, then inequality (5.19) is violated.

5.5.1 Calibration of the full information model

The calibration of the full information model is divided into two parts. At first, we choose
initial values V init and Kinit for V0 and K and use λ and σ to fit the CDS prices. Here, it
is possible to choose the total assets and the debt of the bank as initial values. If there is
just one liquidly traded CDS available, then one can restrict the problem to fitting σV and
choose λ at the beginning. In this case, a perfect fit can be obtained. Then, we use the
obtained values of λ and σ and fit V0 and K so that the share price S0 is matched. Since
in this case we have a single nonlinear equation with two unknowns, we add the equation
V0 = (V init/Kinit)K. This ensures that the ratios V init/Kinit and V0/K coincide and
hence, the default probabilities and CDS prices which were obtained in the previous step
do not change. Note that this choice also implies that the probabilities that the accounting
trigger gets activated will not be influenced by the stock price. We obtain the following
two equations

S0 = V0 −K
(
V0

K

)α
and V0 =

V init

Kinit
K. (5.20)

The unique solution of (5.20) is given by

V0 =
S0

1−
(
V init

Kinit

)α−1 and K =
S0

V init

Kinit −
(
V init

Kinit

)α . (5.21)

In summary, we obtain the following algorithm:

1) Choose initial values for V init and Kinit of V0 and K.

2) Obtain values for λ and σ by solving the following optimization problem:

(λ, σV ) = argmin
λ̃,σ̃V

l∑
j=1

(
hj(V

init,Kinit, λ̃, σ̃V )
)2
. (5.22)
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Here, h1, . . . , hl denote the full information price functions of the CDS, which are given
as the difference of the corresponding default and the premium legs3. Moreover, the
parameter values which entered into the computation of the full information price
where given in brackets.

3) Set V0 and K as

V0 =
S0

1−
(
V init

Kinit

)α−1 and K =
S0

V init

Kinit −
(
V init

Kinit

)α .
5.5.2 Calibration of the incomplete information model

At first, based on V0 andK we choose appropriate density functions (ei)i=1,...,m ∈ H2
0 ([K,∞)),

which will serve as a basis for the Galerkin approximation, which was described in Section
4.1. We restrict the set of possible initial densities π0 to those which can be expressed as
convex combinations of the basis function, e.g. there is a non-negative vector ψ ∈ Rn with∑m

i=1 ψi = 1 and π0 =
∑m

i=1 ψiei. A crucial observation in this context is that the prices of
the securities are linear functions of π0. For example, the price of the first CDS is given by

(π0, h1) =

m∑
i=1

ψi(ei, h1).

Recall that (·, ·)SX denotes the L2(SX) scalar product. Therefore (ei, hk)SX is the price of
security k given that ei is used as initial density for V0. The following equations ensure
that observed market prices3 and model prices match

m∑
i=1

ψi(ei, h0) = S0

m∑
i=1

ψi(ei, hk) = 0 for k ∈ {1, 2, . . . , l},
(5.23)

where h0 = heq is the equity price function from equation (3.10). Moreover, we add the
following equality to ensure that

∫∞
K vπ0(dv) = V0:

m∑
i=1

ψi(ei, id) = V0. (5.24)

Here, id(v) = v denotes the identity function. Note that the system of equations (5.23)
together with (5.24) typically does not have a unique solution, because m < l. A unique
solution can be obtained if a suitable regularization procedure is applied. For instance, one
can try to find the solution ψ of (5.23) and (5.24) whose associated density π0 minimizes∫∞
K (π

′′
0 )2 dv. Note that∫ ∞

K
(π
′′
0 (v))2 dv =

∫ ∞
K

(
m∑
i=1

ψie
′′
i (v)

)2

dv =

m∑
i=1

m∑
j=1

∫ ∞
K

ψiψje
′′
i (v)e

′′
j (v) dv

=

m∑
i=1

m∑
j=1

ψiψj

(
e
′′
i (v), e

′′
j (v)

)
= ψTCψ,

3Recall that we assume that the CDSs are traded at the fair spread and hence its price is zero
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where C denotes an m ×m matrix with Ci,j =
(
e
′′
i , e

′′
j

)
. Hence, one obtains a quadratic

optimization problem for ψ.

5.6 Pricing of the CoCo of the Deutsche Bank

This section consists of a study of the CoCo with ISIN DE000DB7XHP3, which was issued
by Deutsche Bank in May 2014. This CoCo is equipped with an accounting trigger, which is
activated if the CT1R of the Deutsche Bank falls below 5.125 percent. At the trigger event
the notional of the CoCo will be written down. Since the dynamics of the share price do
not influence the pricing of this CoCo, we additionally consider a CoCo which is equipped
a conversion to shares. Since both types of CoCos are priced within the same model, we
only have to calibrate the model once.

CoCo of the Deutsche Bank
Table 5.1 gives some relevant information about the CoCo issued by the Deutsche Bank.

For more detailed information consult the term sheet [2]. On closer examination of the
term sheet, it is found that more features are included in the contract. However, in order
to reduce the complexity of the pricing we neglect these features. The specification we use
can be found in the ‘Features’-column of the Table 5.1. Moreover, we set ω equal to zero

Property Term Sheet Features used in Valua-
tion

Maturity no Maturity 30.04.2022
Call Dates for DB annually, from 30. April 2022 on no call dates
Coupon Rate up to the first call date 6 % annually,

afterwards 4.698 + 5-year swap-rate
6 % annually

Trigger Activation as soon as CT1R ≤ 5.125% as soon as CT1R ≤
5.125%

Write-Down amount the minimum amount so that
CT1R >= 5.125%

complete write-down

Table 5.1: Term Sheet Data and Features used in Valuation

and N = 1. Under this assumption the cash flow stream given by (5.1) simplifies to

ΠW,acc
t =

l∑
i=1

1{t≤ti}1{ti<min(θacc,τ)}ci + 1{t≤T}1{T<min(θacc,τ)}. (5.25)

Hence, its price at t = 0 is given by

pW,acc0 =
l∑

i=1

e−rticiQ(ti < min(θacc, τ)) + e−rTQ(T < min(θacc, τ)). (5.26)

In Section 5.6.2 we discuss the results of the pricing of this CoCo from the 1st of October
2014 to the 17th of December 2014. Moreover, we carry out a sensitivity analysis based on
the results of the 1st of December.
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Modified CoCo - Conversion to Shares
We also consider a CoCo with an accounting trigger which can convert to shares. Herefore,

we take over all the specifications from the ‘Features’-column of the Table 5.1 except the
conversion specifications. We replace the write-down feature by a conversion to shares with
conversion price Cp = 30.207, which is the price of a share of the Deutsche Bank at the
issuance of the CoCo. Hence, its cash flow stream is given by

ΠS,acc
t =

l∑
i=1

ci1{ti≤t}1{ti<min(θacc,τ)} + 1{T≤t}1{T<min(θacc,τ)} + 1{θacc<t}1{θacc<τ}
Sθacc
Cp

.

and its price at t = 0 is given by

pS,acc0 =

l∑
i=1

1{t<ti}e
−rticiQ(ti < min(θacc, τ)) + e−rTQ(T < min(θacc, τ))

+ EQ
(

1{θacc<min(T,τ)}e
−rθacc Sθacc

Cp

)
.

In Section 5.6.2 we also discuss the results of the sensitivity analysis for the modified CoCo
based on the data of the Deutsche Bank from the 1st of December.

5.6.1 Calibration

At first, we estimate the parameters c and d in the definition of the CT1R from balance
sheet data by using a least-squares estimation. Table 5.2 gives balance sheet data, which
was used for the regression. The table contains information about the value of the assets
(in trillion), the debt (in trillion) and the CT1R of Deutsche Bank from the forth quarter
2013 to the third quarter 2014. Due to the change of the regulatory framework from Basel
II to Basel III the definition of the CT1R drastically changed and all CT1Rs which were
computed before the forth quarter of 2013 can not be compared with the following ones.
Hence, we only take into account balance sheet data starting from forth quarter of 2013.
Afterwards, we calibrate the model for each valuation day. For this, we use 7-year OIS rate

Quarter 4Q2013 1Q 2014 2Q 2014 3Q 2014

V 1.611 1.637 1.665 1.709
V −K 0.0547 0.0558 0.0647 0.0664
K 1.5563 1.5812 1.6003 1.6426
(V −K)/V 0.0351 0.0353 0.0404 0.0404
log((V −K)/V ) -3.3827 -3.3788 -3.2478 -3.2480

CT1R 0.097 0.095 0.115 0.115
log(CT1R) -2.3330 -2.3539 -2.1628 -2.1628

Table 5.2: Regression Data: c = 1.3563, d = 2.2420

for the interest rate r, the stock price of the Deutsche Bank and the 5-year CDS spread.
From the stock price of the Deutsche Bank we compute the total market capitalization
of the Deutsche Bank by multiplying it with the number of outstanding shares. Figure
5.1 shows graphs of the input data. Moreover, Table 5.3 gives the parameters which have
been chosen at the beginning of the calibration. The results of the calibration for the 1st
December 2014 can be found in Table 5.4. Moreover, the Figures 5.3(a), 5.3(b) and 5.3(c)
show the graphs of V0, K and σV .
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LGD Distribution of κ µ λ Dividends

0.5 κ1 ∼ N(0, 0.01) 6.5 · 10−4 1 δ1 ∼ N(0.00065, 0.0002)

Table 5.3: Parameter

V K σV πl for l /∈ {7, 8} π7 π8

0.0473 0.0455 0.0121 0 0.86 0.14

Table 5.4: Results of the Calibration of the 1st December

5.6.2 Pricing and Sensitivity Analysis

In the following we discuss the results of the pricing of the CoCo issued by Deutsche Bank
and its modified version. Moreover, we present some results on the market trigger from
Section 5.3.2. Several figures can be found in Section 5.7. Among others, there are

• graphs of the stock price, the interest rate or the CDS spread (Figures 5.1) as the
main input data for the calibration,

• the results of the calibration (Figures 5.2),

• figures related to model and market prices of the CoCo of the Deutsche Bank (Figures
5.3),

• figures presenting the dependence of the prices and other different key quantities
(trigger probabilities) on different parameters (Figures 5.4 to 5.10) and

• figures related to the market trigger from Section 5.3.2.

For the Monte Carlo pricing of the CoCo of the Deutsche Bank we used 100000 trajectories,
for the modified one and the results for the market trigger 5000. Hence, figures related to
modified CoCo and the market trigger may not look like as smooth as the other ones. Note
that the underlying model has been recalibrated for each day from the 1st of October to
the 17th of December. In the following we will present the most interest findings.

Calibration and CoCo of the Deutsche Bank
Noticeable features of the calibration and the pricing of the CoCo of the Deutsche Bank

include the following points.

• The parallel assignment of V0 andK: This is caused by the relation V0 = V init/KinitK.

• A decrease of the volatility σV over the whole observation period: Since the interest
rate r decreased over the considered time period, the volatility σV has to decrease to
obtain little fluctuating CDS prices.

• Small differences of model and market prices: However, a perfect fit should not be
expected, because the price of the CoCo was not involved in the calibration.

• The market movements mainly driven by the conversion probability, compare Figure
5.4(d).
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Sensitivity Analysis of the Pricing of the CoCo of the Deutsche Bank
The Figures 5.4 to 5.7 present the results of the sensitivity analysis of the CoCo of the

Deutsche Bank for the 1st December. This includes the analysis of the impact of changing
r, S0, the CDS spread, σV , Kacc and the standard deviation of κ. It is important to keep
in mind that the model has been recalibrated after the interest rate, the stock price or the
CDS spread has been changed. On the other hand, the model has not been recalibrated
if the volatility of V , the threshold of the trigger or the standard deviation of κ has been
changed. In the following we list the most interesting observations of the sensitivity analysis
of the CoCo of the Deutsche Bank:

• Low sensitivity with respect to the initial share price: This CoCo can be considered
as a fixed income derivative.

• With a small increase in interest rates (up to 0.02) the price of the CoCo increases,
because the trigger probability decreases. For large increases of the short rate r the
effects of discounting outweigh this effect.

• Quite different influence of the interest rate r on the conversion probabilities for
different periods of time (see Figure 5.8(b)): While the probabilities for short periods
of time decreased, the probabilities for longer periods of time increased. This is mainly
caused by the recalibration of the model. If the interest rate is increased c.p., then
default probabilities and trigger probabilities decrease. To compensate for this, σV
is increased during the calibration of the model to account for the CDS spread. But
this increase of σV effects the trigger probabilities differently. The larger the period
of time the stronger is the effect of the increase of σV . For short periods the direct
effect of increasing r is stronger than the indirect effect of increasing σV . On the other
hand, for longer periods the indirect effect dominates.

Sensitivity Analysis of the Modified CoCo
We also discuss the dependence of the price of the modified CoCo on the different pa-

rameters, see 5.5. Note that this CoCo has been equipped with an accounting trigger and
a conversion to shares. Therefore, the trigger probabilities related to this CoCo and the
CoCo of the Deutsche Bank are the same. The difference between the considered CoCos
is the conversion; for the modified CoCo the distribution of the share price matters due to
the conversion payment CpSθ. It can be seen in Figure 5.11(c) that increasing the current
stock price increases the stock price at conversion. Hence, if the stock prices increases
ceteris paribus, the price of the CoCo increases, see Figure 5.6(c).

Effectiveness of Different Trigger
Of particular interest is the identification of scenarios where the used trigger is not

effective, e.g. where the conversion does not take place before the default. For this, we
study the dependence of the ratio Q(τ < min(θ, T ))/Q(θ < T ) and Q(τ < min(θ, T )) on
different parameters, which is presented in At this, we not only consider an accounting
trigger, but also an market trigger. the Figures 5.9. Additionally, the Figures 5.8 show the
dependence of Q(τ < min(θacc, T )) on different parameters. We find that:

• The effectiveness of the accounting trigger is influenced the most by σV .
Q(τ < min(θacc, T )) and Q(τ < min(θacc, T ))/Q(θacc < T ) increases strongly with σV .
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• Also the interest rate r and the CDS spread influence the effectiveness positively.
Here, σV acts as a transmission channel for the change of the interest rate and the
CDS spread.

• On the other hand, the share price, the threshold Kacc and the variance of κ have no
significant influence on the effectiveness of the trigger.

Finally, Figures 5.11 and 5.12 give some results for the market trigger from Section 5.3.2.
It appears that:

• The numerical results confirm the conservativeness of the market trigger from Propo-
sition 5.10.

• The effectiveness of the market trigger θma increases with the threshold Kma and
with increasing information content in the noisy observation process Z: The larger
parameter c in the function a(x) := c log(x) is, the higher the effectiveness.
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5.7 Pictures

Figure 5.1: Input Data from 1st October to 17th December
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Figure 5.2: Calibration Results from 1rd October to 17th December
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Figure 5.3: Prices and Trigger Probabilities from 1st October to 17th December

01−Oct 15−Oct 29−Oct 12−Nov 26−Nov 10−Dec
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

P
ric

e

Valuation Dates

 

 
Market Price
Model Price

(a) Model and Market Prices

01−Oct 15−Oct 29−Oct 12−Nov 26−Nov 10−Dec
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

Valuation Dates

D
iff

er
en

ce
 o

f M
od

el
 a

nd
 M

ar
ke

t P
ric

es

(b) Absolute Differences of Model and Market Prices

01−Oct 15−Oct 29−Oct 12−Nov 26−Nov 10−Dec
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Valuation Dates

R
el

at
iv

e 
E

rr
or

 o
f M

od
el

 P
ric

es

(c) Relative Differences of Model and Market Prices

01−Oct 15−Oct 29−Oct 12−Nov 26−Nov 10−Dec
0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

A
ct

iv
at

io
n 

of
 T

rig
ge

r

Valuation Dates

(d) Probability that Trigger is activated until T

78



5.7. Pictures

Figure 5.4: Dependence of the Price of the CoCo on different Parameters
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Figure 5.5: Dependence of the Price of the CoCo with Conversion to Shares on different
Parameters
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5.7. Pictures

Figure 5.6: Dependence of the Default Probability on different Parameters
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Figure 5.7: Dependence of the Probability Q(θacc < t) on different Parameters
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5.7. Pictures

Figure 5.8: Dependence of the Probability Q(τ < min(θacc, T )) on different parameters
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Figure 5.9: Dependence of the Ratio Q(τ < min(θacc, T ))/Q(θacc < T ) on different param-
eters
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Figure 5.10: Dependence of EQ(Sθ) on different Parameters
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Figure 5.11: Results for the Market Trigger: Conversion threshold is given by θma = xS0
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Figure 5.12: Results for the Market Trigger: Dependence on the Parameter c in a(x) =
c log(x)
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[6] Tomasz R. Bielecki, Stéphane Crépey, Monique Jeanblanc, and Behnaz Zargari. Valu-
ation and Hedging of CDS Counterparty Exposure in a Markov Copula Model. Inter-
national Journal of Theoretical and Applied Finance, 15, 2012.

[7] Tomasz R. Bielecki, Monique Jeanblanc, and Marek Rutkowski. Lecture Notes:
CREDIT RISK MODELING. available at http://spapaste.free.fr/MATH587/587-
LectureNotes.pdf, 2008.

[8] Tomasz R. Bielecki and Marek Rutkowski. Credit Risk: Modeling, Valuation and
Hedging. Springer, 2010.

[9] Fischer Black and John Carrington Cox. Valuing corporate securities: Liabilities:
Some effects of bond indenture provisions. Journal of Finance, 31:145–159, 1976.

[10] Christophe Blanchet-Scalliet and Frederic Patras. Structural Counterparty Risk Valu-
ation for CDS. in Credit Risk Frontiers: Subprime crisis, Pricing and Hedging, CVA,
MBS, Ratings and Liquidity, pages 437–455, 2011.

[11] Pierre Bremaud. Point processes and Queues: Martingale Dynamics. Springer Verlag,
1st edition, 1981.

[12] Damiano Brigo, Cristin Bueso, and Massimo Morini. Counterparty risk pricing: Impact
of closeout and first-to-default times. International Journal of Theoretical and Applied
Finance, 15, 2012.

87

https://www.db.com/ir/de/download/DB_ISIN_DE000DB7XHP3_and_ISIN_XS1071551474.pdf
https://www.db.com/ir/de/download/DB_ISIN_DE000DB7XHP3_and_ISIN_XS1071551474.pdf


BIBLIOGRAPHY

[13] Damiano Brigo and Agostino Capponi. Bilateral counterparty risk valuation with
stochastic dynamical models and application to Credit Default Swaps. arXiv.org, 2009.

[14] Damiano Brigo, Agostino Capponi, and Andrea Pallavicini. Arbitrage-free bilateral
counterparty risk valuation under collaterization and application to credit default
swaps. Mathematical Finance, 24:125–146, 2012.

[15] Damiano Brigo, Agostino Capponi, Andrea Pallavicini, and Vasileios Papatheororou.
Collateral margining in arbitrage-free counterparty valuation adjustment including re-
hypothecation and netting. arXiv.org, 2011.

[16] Damiano Brigo and Kyriakos Chourdakis. Counterparty Risk for Credit Default Swaps:
Impact of spread volatility and default correlation. International Journal of Theoretical
and Applied Finance, 12(07):1007–1026, 2009.

[17] Damiano Brigo, Joao Garcial, and Nicola Pede. CoCo Bonds Valuation with Equity-
and Credit-Calibrated First Passage Structural Models. Arxiv.org, 2013.

[18] Damiano Brigo and Massimo Masseti. A Formula for Interest Rate Swaps Valuation
under Counterparty Risk in presence of Netting Agreements. SSRN eLibrary, 2005.

[19] Damiano Brigo and Massimo Morini. Dangers of Bilateral Counterparty Risk: the
fundamental impact of closeout conventions. http://www.damianobrigo.it, 2010.

[20] Damiano Brigo, Andrea Pallavicini, and Daniele Perini. Funding Valuation Adjust-
ment: a consistent framework including CVA, DVA, collateral, netting rules and re-
hypothecation. Working paper, 2011.

[21] Markus P.H. Buergi. Pricing contingent convertibles: a general framework for appli-
cation in practice. Financial Markets and Portfolio Management, 27, 2013.

[22] Christoph Burgard and Mats Kjaer. Partial Differential Equation Representations of
Derivatives with Bilateral Counterparty Risk and Funding Costs. Journal of Credit
Risk, 7:75–93, 2011.

[23] Umut Cetin. On absolutely continuous compensators and nonlinear filtering equations
in default risk models. Stochastic Processes and their Applications, 122:3619–3647,
2012.

[24] Patrick Cheridito and Zhikai Xu. Pricing and Hedging CoCos. SSRN.com, 2013.

[25] Patrick Cheridito and Zhikai Xu. A Reduced Form CoCo Model with Deterministic
Conversion Intensity. Forthcoming in Journal of Credit Risk, 2014.
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[72] Philipp Schönbucher. Information-driven default contagion. Preprint, Department of
Mathematics, ETH Zürich, 2004.
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