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Abstract

In this master thesis we want to identify outliers in time series concerning sales
data by a two-step procedure. In the first step we extract the signal of the underly-
ing series with the methods ARIMA modeling and Kalman filtering. In the second
step we want to explain the remaining structure within the residuals of step one. For
this purpose we compress the underlying information of financial indicators into a
few latent components. For identification of the latent variables we apply Principal
Component Regression, Partial Least Squares Regression and Sparse Partial Least
Squares Regression. Concerning the last two methods we will also present robust
approaches using Robust M-Regression. The optimal number of components is de-
termined by Cross Validation (CV) and repeated CV. Within a regression model
the scaled residuals of step two are regressed on the latent variables of step two.
For outlier detection the scaled regression residuals are monitored by means of
tolerance bands, calculated with prediction errors from the Cross Validation. Ob-
servations beyond these bands are identified as outliers.



Zusammenfassung

In dieser Master Arbeit stellen wir ein zweistufiges Verfahren zur Ausreißer-
erkennung in Absatzzeitreihen vor. Im ersten Schritt extrahieren wir das Signal
der Zeitreihe mit Hilfe von ARIMA Modellen und Kalman Filter. Die verbleibende
Struktur in den Residuen analysieren wir im zweiten Schritt mit Hilfe von Finanzindi-
katoren. Dazu schätzen wir latente Variablen, welche die komprimierte Informa-
tion aus den Finanzindikatoren enthalten. Die dafür verwendeten Verfahren sind
Haupt-komponentenregression, Partial Least Squares Regression und Sparse Partial
Least Squares Regression, wobei bei für die letzten beiden auch robuste Varianten,
basie-rend auf Robuster M-Regression, verwendet werden. Die optimale Anzahl an
Komponenten wird mittels Cross Validation (CV) beziehungsweise wiederholter CV
ermittelt. In einem Regressionsmodell werden die skalierten Residuen aus Schritt
eins auf die latenten Variablen regressiert.
Zur Erkennung von Ausreißern werden die skalierten Residuen der Regression mit
ihren entsprechenden Toleranzbändern dargestellt. Beobachtungen, die außerhalb
dieser Toleranzbänder liegen, werden als Ausreißer klassifiziert.
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1 Introduction

The investigations of this master thesis are motivated by the problem of a company that
is globally conducting its business in the industry. Time series describing sales data of cer-
tain products should be analysed on structural breaks or rather structural irregularities.
The aim is to provide a model that is capable of classifying incoming sales observations
as regular points or outliers.

The main idea is to find a model that extracts the signal of the underlying time se-
ries as accurate as possible. If we have a model that is able to capture the structure
correctly, it can be applied for predictive purposes and outliers would then indicate ab-
normalities. Within the scope of finding an accurate model we follow a stepwise approach.

First we give a short overview in Chapter 2 of the data that is used for the analysis.
The time series we analyse describes the sales of advance good producers in Germany
and is provided by the German Central Bank. Furthermore, we will make use of eco-
nomic indicators that are mostly provided by national banks or private institutions.

Chapter 3 deals with the first step, where we try to extract a signal from the time series by
means of its own history. For this purpose we consider two different models, the ARIMA
model from the Box Jenkins framework and a state space model. ARIMA models are
regarded as standard models for time series modeling due to their simple structure. Their
major weakness are the strong assumptions that are made. More precisely, stationarity is
required, or at least stationarity of differenced time series, which is hardly ever given from
an empirical point of view. An assumption violation could affect the results considerably.
In contrast thereto we also take the approach of state space modeling, where we work
with Kalman filtering. State space models have the advantage of being very general, and
a wide class of problems, including ARIMA models, can be formulated as special cases.

Considering the residuals of both approaches will show that they still contain some struc-
ture, and only performing the methods of Chapter 3 is not sufficient. For this reason, we
induce a second modeling step in Chapter 4 and try to explain the remaining structure
by means of exogenous variables. For this purpose, it seems reasonable to use financial
indices, as we assume that business figures are among others influenced by movements of
the global market. These movements are displayed by means of financial indicators, for
this analysis overall 232 indices are used. We will face the issue that they poorly contain
information, as they are more or less linear combination of each other. For this reason, we
try to compress the underlying information into a couple of latent variables that supply
the most relevant information. For identification of the latent variables we will make use
of Principal Components Regression (PCR), Partial Least Squares Regression (PLSR)
and Sparse Partial Least Squares Regression (SPLSR). Concerning PLSR and SPLSR
we will also present robust approaches. The optimal number of latent variables is deter-
mined by Cross Validation (CV) and repeated Double Cross Validation (rDCV). Then
the identified latent variables are used as exogenous variables for the regression, where
the structure of the residuals from step 1 is tried to be explained.
The residuals of the regression are then monitored by means of confidence bands, com-
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puted with the standard error obtained from the CV training data.

Within the practical part in Chapter 5 we apply the methods presented in Chapter 4
in R. We provide plots of the fitted values coming from these models and a monitoring
plot, with the appropriate residuals and confidence levels of ±2σ or ±3σ, which enable
outlier detection. Values that are beyond these bands are classified as outliers.
Chapter 6 provides some summarizing conclusions.

In the Appendix we list a summary of the R code used in Chapter 5 for implement-
ing the routines of Chapter 4, but also the routines for Chapter 4 are presented.
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2 Description of Variables

Within the scope of this thesis we analyze a time series provided at the homepage of the
German Central Bank. It is an index which describes sales of advance good producers
in Germany. The values are listed monthly from January 2001 till August 2014 and are
neither trend nor seasonally adjusted. We work with the demeaned and by its sample
standard deviation scaled series.
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The demeaned and scaled series shows an upwards trend till 2008 and seasonal slumps.
The impact of the subprime crisis Shiller (2008) becomes obviously remarkable at the end
of 2008, 2009 appears as year of a great recession, from 2010 the sales start rising again.
Beginning from 2007, we see very distinctive peaks each year.
Besides the subprime crisis, the dot-com bubble Kindleberger and Aliber (2005) can be
taken as benchmark to proof whether the methods recognise these years as outliers.

With regards to the used economic indicators, we use 232 indicator variables overall.
Among others we have the Economic Sentiment Indicator, several confidence indicators,
producer price indizes, stocks, volatility indices and gross domestic product figures. Many
of them are provided by central banks, while other can be bought from different private
providers.
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3 Signal Extraction

Given an economic time series, we want to extract its signal as accurate as possible.
The choice of the model depends on the properties of the underlying series, for example
stationarity.Furthermore, we have to distinguish between methods that are capable of
modeling exogenous information or not.

As we are following a step-wise approch in signal extraction, we want to focus in this
step on extracting the signal from the time series own history. In the next step we will
proceed with extracting remaining structure in the residuals by means of exogenous vari-
ables.

In this chapter we want to present two widely used methods for modeling univariate
time series in terms of past realizations.

3.1 Autoregressive Integrated Moving Average Processes (ARIMA)

The notation and definitions of this chapter are manly based on Box and Jenkins (1976),
Madsen (2007) and Scherrer (2014). Many empirical time series do not meet the station-
arity property. They either have a local level, trend or seasonalities. Within the scope of
ARIMA modeling we consider time series that, except for a trend or local level, behave
homogenously over time.
A crucial property is that the dth difference is a stationary mixed auto regressive moving
average. In this way Box and Jenkins created a generalization of ARMA models, so that
after taking differences we obtain a stationary ARMA process.

For better understanding we want to introduce some concepts that are required for dis-
cussing further models:

� Stationary processes: A univariate stochastic process {Yt} is weakly stationary,
if ∀t, s ∈ Z holds

– EY T
t Yt <∞

– EYt = EXs ∀t, s ∈ Z
– EYtY T

s = EYt+kY T
s+k (or equivalently Cov(Yt, Ys) = Cov(Yt+k, Ys+k))

∀t, s, k ∈ Z

In the further formulation we will use just ”stationary” meaning weakly stationary

� White noise: A process {εt} is called white noise, if

– µt = E[εt] = 0

– σ2
t = Var[εt] = σ2

ε

– γε(k) = Cov[εt, εt+k] = 0 for k 6= 0

where σ2
ε is a constant value.
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� Backshift operator: the backshift operator B is defined by

B(Yt) = Yt−1 ∀t > 1

� z-Transform: for a sequence {Yt} the z-transform is defined as

Z({Yt}) =
∞∑

t=−∞

Ytz
−t

and defined for all z ∈ C for which this series is convergent.

In the following we want to introduce the basic models on which ARIMA models are
based on.

3.1.1 MA(q)

The process {Yt} given by

Yt = εt + θ1εt−1 + ...+ θqεt−q (1)

where {εt} is white noise, is called moving average process of order q denoted by MA(q)
and θ1, ..., θq are parameters which determine the model.

3.1.2 AR(p)

The process {Yt} given by

Yt + φ1Yt−1 + ...+ φpYt−p = εt (2)

where {εt} is white noise, is called autoregressive process of order p denoted by AR(p)
and φ1, ..., φp are parameters which determine the model.

3.1.3 ARMA(p,q)

The solution {Yt} of the ARMA(p,q) system given by

Yt + φ1Yt−1 + ...+ φpYt−p = εt + θ1εt−1 + ...+ θqεt−q (3)

with {εt} white noise, is called ARMA(p,q) process.

By means of using the backshift operatorB we can use polynomials to write the ARMA(p,q)
system in the following form

φ(B)Yt = θ(B)εt,

where φ and θ are polynomials of order p and q, respectively. Applying the z-transformation
we obtain the notation

φ(z) = 1− φ1z − ...− φpzp
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and
θ(z) = 1 + θ1z + ...+ θqz

q.

Now we can define following properties for ARMA(p,q) systems:

� Stationarity condition:

φ(z) 6= 0 ∀|z| = 1

The ARMA system has a unique, stationary solution if the stationarity condition
is fulfilled. The solution is a regular MA(∞) process

Yt = φ−1(B)θ(B)εt =
∞∑

j=−∞

θ̃jεt−j

where θ̃(B) = φ−1(B)θ(B) denotes a filter polynomial with coefficients θ̃j.

� Stability condition:

det(φ(z)) 6= 0 ∀|z| ≤ 1

If the stability condition is fulfilled, {Yt} is a causal MA(∞) process given by

Yt = φ−1(B)θ(B)εt =
∑
j≥0

θ̃jεt−j.

� Minimum phase condition:

θ(z) 6= 0 ∀|z| < 1

� Strict minimum phase assumption:

θ(z) 6= 0 ∀|z| ≤ 1

Under the strict minimum phase condition we obtain the AR(∞) representation of
the process:

εt =
∑
j≥0

φ̃jYt−j = θ−1(B)φ(B)Yt

where φ̃(B) = θ−1(B)φ(B) denotes a filter polynomial with coefficients φ̃j.
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� Co-primeness condition: φ(z), θ(z) are co-prime if and only if they have no
common roots.

For every regular ARMA process exists an ARMA system, which fulfills the stability,
minimum phase and co-primeness condition. In the scalar case, these conditions are
sufficient to define the system uniquely. In the multivariate case further assumptions are
required for uniqueness.

3.1.4 ARIMA(p,d,q)

The integrated form of an ARMA process is called ARIMA(p,d,q) process with p repre-
senting the order of the AR proccess, q the order of the MA process and d how many
differences need to be taken to obtain a stationarity ARMA process.

The process {Yt} is called an integrated autoregressive moving average or ARIMA(p,d,q)
process, if it can be written in the form

φ(B)∆dYt = θ(B)εt, (d ∈ N) (4)

where {εt} denotes a white noise process, φ(z−1) a polynomial of order p and θ(z−1)
a polynomial of order q. Both polynomials have all roots inside the unit circle. ∆d

is the dth difference of a process, where ∆ denotes the difference operator, defined as
∆Yt = Yt+1 − Yt.

From definition (4) we see that the process defined by

Wt = ∆dYt

is a stationary and invertible ARMA (p,q) process, where invertibility means that the
roots of θ(z−1) lie within the unit circle. Hence we see that Yt is obtained only by d
summations of the stationary and invertible process Wt.This is why we use the notation
”integrated”. Once we have the differenced stationary process Wt we can proceed with
ARMA(p,q) modeling methods.

3.1.5 Parameter Estimation

Here we want to present the maximum likelihood approach for parameter estimation.
Concerning the required distributional assumption we take (εt) as white noise, meaning
they are normally distributed with zero mean and Var[εt] = σ2

ε . For the ARMA(p,q)
system in (3) we introduce the parameter vectors

ΘT = (φ1, ..., φp, θ1, ..., θq)

and
Y T
t = (Yt, Yt−1, ..., Y1).
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The general formula for the likelihood function for time series data is then given by the
joint distribution of all observations given the parameters Θ and σ2

ε :

L(YN ; Θ, σ2
ε ) = f(YN |Θ, σ2

ε ) (5)

= f(YN |YN−1,Θ, σ
2
ε )f(YN−1|Θ, σ2

ε ) (6)

=

(
N∏

t=p+1

f(Yt|Yt−1,Θ, σ
2
ε )

)
f(Yp|Θ, σ2

ε ) (7)

Here N denotes the number of observations utilized and f the density function of Yt (see
Madsen (2007)). From this expression we can derive the conditional likelihood function,
conditioned on Yp:

L(YN ; Θ, σ2
ε ) =

N∏
t=p+1

f(Yt|Yt−1,Θ, σ
2
ε ) (8)

= (σ2
ε2π)−

N−p
2 exp

(
− 1

2σ2
ε

N∑
t=p+1

ε2t (Θ)

)
(9)

Taking the logarithms, differentiating the log-likelihood with respect to σ2
ε , and putting

it equal to zero we see that the ML estimate θ̂ for Θ is obtained by minimizing

S(Θ) =
N∑

t=p+1

ε2t (Θ), (10)

and the ML estimate for σ2
ε is obtained by

σ̂2
ε =

S(Θ̂)

N − p
. (11)

3.1.6 Order Estimation

The order p and q (and d) has to be estimated in a way that makes the model fit the data
as accurate as possible but avoiding overfit. Most commonly used tools for determining
the order are:

� Akaike’s Information Criteria (AIC): The usual form is

AIC = −2log (max. likelihood) + 2n

with n determining the number of estimated parameters. For ARMA(p,q) models
this results in

AIC = N logσ̂2
ε + 2(p+ q) (12)

where N denotes the number of used observations and σ̂2
ε = S(Θ̂)

N
, see (11). p and

q are chosen in a way to minimize (12), but AIC basically tends to allow for too
many parameters.
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� Bayesian Information Criterion (BIC): This criterion is more restrictive with
the number of parameters:

BIC = N logσ̂2
ε + (p+ q)logN (13)

The order d for ARIMA (p,d,q) models is taken as the smallest number of differences
required for obtaining a stationary time series. This means that after each differencing a
test on stationarity is applied, e.g. KPSS test Maddala and Kim (1998).

3.1.7 Plots of ARIMA Fitted Values and Residuals

The R function auto.arima from package forecast Hyndman et al. (2015) gives an
ARIMA (2,1,2) model

Coefficients AR1 AR2 MA1 MA2
Estimate −0.6656 0.3325 0.2219 −0.7383

Standard Error 0.1192 0.1199 0.0768 0.0793

with σ̂2
ε = 0.2783 and Log Likelihood= −132.51, AIC= 276.28 and BIC = 291.96
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Figure 1: ARIMA fitted values and confidence levels for industrial revenues.

with LCL and UCL denoting the lower and upper confidence level respecitvely of the
estimated values, see Figure 1. We see that the estimated values are generally following
the trend, but with a slight shift. Furthermore, the confidence bands are quite wide, due
to a big standard error. This means the model is not very precise.

The scaled residuals r̃i = ri
σ̂ε

, where ri are the residuals of the ARIMA(2,1,2) model,
get small due to the big standard error. Therefore only very extreme outliers will appear
as such, see Figure 2. As a result, we will recognize only very large outliers, which ought
to display a potential crisis. But still we clearly see that the subprime crisis reaches the
German industry in 2009.
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Figure 2: Scaled ARIMA residuals with 2- or 3- σ̃ε confidence levels

The sigma in Figure 2 denotes σ̃ε which is the standard deviation of r̃i. As r̃i is scaled
we have σ̃ε = 1. The confidence levels are constructed as the intervals [−2σ̃ε, 2σ̃ε] and
[−3σ̃ε, 3σ̃ε] respectively. Values of r̃i that are beyond these intervals, significantly distin-
guish from 0 and can be considered as outliers.

3.2 State Space Models

The structure and notation in this chapter refer to Shumway and Stoffer (2011), Kalman
(1960) and Durbin and Koopman (2001). State space models go back to the ground-
breaking results of Kalman’s paper in 1960, where he formulates the Wiener problem, a
special case of a Gaussian process, from a state point of view. This enables a very general
treatment of a wide class of problems. Therefore many known models, like ARIMA for
instance, can be considered as special cases of state space models and be put into this
form.

3.2.1 Model Formulation

State space models or dynamic linear models (DLM) consist of two equations

� State equation:
Basically, the state equation characterizes the underlying process the examined time
series is following. This means it determines the way the value today depends on
its past. In its basic form we assume a vector autoregressive process of order one.

xt = Φxt−1 + wt (14)

xt and xt−1 ∈ Rpx1 represent the state vectors with time points t ∈ {1, ..., n}. Φ ∈
Rpxp is the coefficient matrix determined by the underlying stochastic process. We
assume wt ∈ Rpx1 to be independant and identically distributed noise components

with zero mean and covariance Q ∈ Rpxp, meaning wt
i.i.d∼ N(0, Q). As starting

values we take
x0

i.i.d∼ N(µ0,Σ0)
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� Observation equation:
The introduction of an observation equation contains a new modeling aspect: as
measurements are mostly afflected with errors, we cannot observe the process di-
rectly. Therefore we take the approach of observing a linear transformation of it
with an additional noise component:

yt = Atxt + νt (15)

Here the observed data is denoted with yt ∈ Rqx1, where q can either be smaller,
equal to or larger than p, depending on the problem. At ∈ Rqxp denotes the mea-
surement or observation matrix and the error term νt is white noise (see Chapter
3.1) with covariance R ∈ Rqxq.

For simplicity we assume vt and wt to be uncorrelated, but this assumption is not neces-
sary. Furthermore we can also include exogenous information into modeling the equations,
resulting in

xt = Φxt−1 + Υut + wt (16)

and

yt = Atxt + Γut + νt (17)

for input vectors ut ∈ Rrx1 and appropriate coefficient matrices Υ ∈ Rpxr and Γ ∈ Rqxr.
Here we will proceed with the formulation (14) and (15), as exogenous variables will be
modelled as part of Chapter 4.

3.2.2 Filtering

From a practical point of view our aim is to find estimates for the unobserved signal xt
given the data Ys = {y1, ..., ys}. Depending on s we can distuingish between the following
cases:

� s < t: prediction

� s = t: filtering

� s > t: smoothing

Within the scope of our analysis we want to focus on filtering. In this case all measure-
ments till time point t are provided by the information set Ys and we have to reconstruct
the signal xt at this point. For this purpose we want to introduce the following notations

xst = E[xt|Ys] (18)

and

P s
t1,t2

= E[(xt1 − xst1)(xt2 − x
s
t2

)T ]. (19)

As we assume the noise to be Gaussian, we get very nice properties for the expressions
above. The expectation in (18) can be considered as the projection operator rather than
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an expectation and (19) as the corresponding mean-squared error, see Shumway and
Stoffer (2011). We also see that the conditional error covariance

P s
t1,t2

= E[(xt1 − xst1)(xt2 − x
s
t2

)T |Ys]

equals (19). This is due to the orthogonal projection in (18) that causes the difference
(xt− xst) to be orthogonal on the Ys plane and therefore independent (due to normality).
In the same way we obtain that the conditional distribution of (xt − xst) given Ys equals
the unconditional distribution of (xt − xst), see Shumway and Stoffer (2011).

The Kalman filter is used for filtering and forecasting purposes. It is called filter, as
xt can be written as filter of the observations y1, ..., yt, namely

xt =
t∑

s=1

Bsys

with adequate filter coefficient matrices Bs ∈ Rpxq. The filter is considered as very pow-
erful, as it shows how the filter xt−1

t−1 has to be updated to xtt when the new observation yt
is obtained, without reprocessing the whole data {y1, ...yt}. This recursive nature enables
simple implementation of the Kalman filter on a computer.

Properties of the Kalman filter
For the state space model with equations (14) and (15) and initial conditions x0

0 = µ0

and P 0
0 = Σ0 for t = 1, ..., n we have the following prediction equations,

xt−1
t = Φt−1

t−1 + Υut (20)

and

P t−1
t = Φt−1

t−1ΦT +Q (21)

with the required filtering equations

xtt = xt−1
t +Kt(yt − Atxt−1

t − Γut) (22)

and

P t
t = [I −KtAt]P

t−1
t (23)

where

Kt = P t−1
t ATt [AtP

t−1
t ATt +R]−1 (24)

denotes the Kalman gain, which determines how much information is provided by the
new observation yt.

12



3.2.3 Maximum Likelihood Estimation

As the parameters specifying the state space model (14) and (15) are unknown, they
have to be estimated given the observations y1, ..., ys. We collect the unknown param-
eters, namely the initial mean and covariance µ0 and Σ0, the transition matrix Φ, the
covariance matrices Q and R, and the coefficient matrices Υ and Γ, into the parameter
vector Θ = {µ0,Σ0,Φ, Q,R,Υ,Γ}. The coefficient matrix At in (15) has to be determined
by the user, as we are specifying the observation system. A simple choice would be taking
the identity.

Under the normality assumption of the initial state vector x0 ∼ N(µ0,Σ0) and the errors
{w1, ..., wn} and {ν1, ..., νn} to be uncorrelated we use maximum likelihood for parameter
estimation. Therefore we define the innovations of the process {ε1, ..., εn} as follows,

εt = yt − Atxt−1
t − Γut,

which are independent Gaussian vectors with zero mean and covariances denoted by
Σt = AtP

t−1
t ATt + R. Except for a scaling constant we obtain the maximum likelihood

function depending on the parameter vector Θ:

−lnLY (Θ) =
1

2

n∑
t=1

log|Σt(Θ)|+ 1

2

n∑
t=1

εt(Θ)TΣt(Θ)−1εt(Θ) (25)

As this equation is non-linear and a complicated function of the unknown parameters,
minimizing the negative log-likelihood can be very challenging. The common procedure
for solving the problem would be to initialize x0 and develop a set of recursions for
the likelihood function. Then the parameters can be updated successively by using a
Newton-Raphson algorithm. For further details we refer to Shumway and Stoffer (2011).

3.2.4 Plots of Kalman Fitted Values and Residuals

The Kalman filter can be computed in R with the package dlm Petris (2014). We assumed
the model to follow a random walk model, this means setting Φ and At constantly equal
to 1 in equations (14) and (15). We get following estimates:

Parameter Φ A Q R x0 Σ0

Estimate 1 1 0.0481 0.1938 0 10000000

Application of the Kalman filter on our data leads to the following result presented in
Figure 3.
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Figure 3: Kalman filter and confidence levels for industrial revenues

with LCL and UCL denoting the lower and upper confidence level, respecitvely, of the
filter values. We see that the filter nicely captures the trend of the series, but still having
difficulties with large outliers. in contrast to the ARIMA approach the confidence bands
are narrower now, meaning we have a smaller standard error. Fur this purpose we have
a look again at the scaled residuals in Figure 4.
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Figure 4: scaled residuals of the Kalman filter with 2- or 3- σ confidence levels

The standard deviation taken for scaling the Kalman residuals is derived from (19). As
σ is the standard deviation of the scaled residuals it is equal to 1. We clearly recognise
the effects of the subprime crisis in the German industry in 2009. Although our model
in Figure 3 recognises the downwards swing, it is not capable of capturing its effects
entirely, which leads to an overproportional outlier after all. Furthermore we see extreme
outliers in 2010, 2011 and 2013 which might result from the subprime crisis. In constrast
to Figure 2 we seem to have more extreme values, but this is due to the smaller standard
error. This fact makes the plot more ”sensitive” towards outliers.
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3.3 Comparison between ARIMA and State Space Models

The motivation for state space models was actually out of research concerning aerospace.
Later on it found wide application in other fields like economics and soil sciences. Main
contributions in application of state space methods in economics came from Durbin and
Koopman Durbin and Koopman (2001). They saw huge advantages in the state space
model: This approach is based on a structural analysis of the problem, which distinguishes
between the dynamics of the process, which is determined by trend, seasonal components
and exogenous information, on the one side and on the other side, side effects and features
of the process in particular situations, which have to be determined by the investigator.
In contrast thereto Box Jenkins methods appear not to capture the deeper structure of
the data generating process.

Furthermore, state space models are very flexible. Due to their Markovian property
problems can be solved recursively, which facilitates the implementation on a computer
and makes them very flexible towards structural changes over time. This enables han-
dling of very large problems. They capture a wide class of problems, including ARIMA
models, due to their generality. Furthermore, state space models are capable of handling
missing values and forecasting does not require a seperate theory, in contrast to Box
Jenkins models. On the contrary, Box Jenkins models are homogenous over time, due to
the stationarity assumption (for the differenced time series). But exactly the stationarity
assumption is the weakness of the Box Jenkins framework. With regards to economic
and social time series, empirically observed, hardly any series meets this assumption, no
matter how many differences are taken.

In 2001, Durbin and Koopman stated: ”In our opinion, the only disadvantages are the
relative lack in the statistical and econometric communities of information, knowledge,
and software regarding these models.”
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4 Residual Analysis

This chapter features the second step of our precedure. As the residuals of the ARIMA
and State Space approach still contain some structure, we try to explain or rather elim-
inate it by means of a second modeling step. The hypothesis is, that this structure is
driven by some exogenous variables that were not modeled in the first step, as the first
step only makes use of the time series own history. More precisely, we assume that fluc-
tuations of the financial market have significant influence on our sales variables. The
movement of the market can be described via financial market indicators, among others
macroeconomic key figures. We will face the issue, that these indicators are highly corre-
latet as they are mostly linear combinations of each other. For this reason, even a wealth
of indicators still contains very little information. Therefore we firstly have to compress
the information of all provided financial indicators and then regress the scaled residuals of
the sales variables on these latent variables in order to explain their influence on the sales.

In the next sections we will discuss some multivariate techniques that are typical repre-
sentatives for solving these issues. In case of principal component regression and (robust)
partial least squares we refer to Varmuza and Filzmoser (2009) and Serneels et al. (2005).

4.1 Principal Component Regression

Principal Component Regression (PCR) is a method which enables reducing the number
of regressor variables and removing multicollinearity Varmuza and Filzmoser (2009). In
contrast to variable selection, we no more have the original regressor variables but linear
combinations thereof. These linear combinations are obtained via Principal Components
Analysis (PCA), therefore PCR can be considered as a combination of PCA and multiple
linear regression.

4.1.1 Principal Component Analysis

PCA is a frequently used tool for dimension reduction by computation of latent variables.
Basically, it is a method that computes a new orthogonal coordinate system, which con-
sists of these latent variables. The transformation is done with the requests that the new
axes represent the directions with highest variance, therefore the first principal compo-
nent represent the direction with the largest variance contained in the original data.

As we are interested to find these directions with highest variance explained, PCA can be
formulated as a maximization problem with constraints. Since the principal components
can then be written as linear combinations of the variables (x1, ..., xk) we have

ti = x1γ1i + . . .+ xkγki, (26)

where the unknown coefficients correspond to the loadings vector γi = (γ1i, ..., γki)
T , and

the ti’s represent the so called scores. At this point we also want to mention that PCA
is typically applied to centered and scaled data.
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As ti should have maximum variance, we can formulate the following maximization prob-
lem:

max V ar(ti) s.t. γTi γi = 1 (27)

Rearranging the variance expression of the scores leads to

V ar(ti) = V ar(x1γ1i + . . .+ xkγki) = γTi Cov(x1, ..., xk)γi = γTi Σγi. (28)

In this way we obtain for the Langrangian form for the maximization problem in (27):

L(γi, λi) = γTi Σγi − λi(γTi γi − 1) for i = 1, ..., k (29)

The solution for the Langrangian problem is obtained by taking the first derivative with
respect to γi and setting it equal to zero. This leads to an equation also known as the
eigenvalue problem

Σγi = λiγi for i = 1, ...,m (30)

The γi’s are the eigenvectors of Σ, representing the loadings, and the λi’s are the cor-
responding eigenvalues, which represent the variances of the principal components. As
the eigenvalues are ordered decreasingly, the corresponding variances of the principal
components are decreasing

V ar(ti) = γTi Σγi = γTi λiγi = λi (31)

In this way we obtain the solution of the Langrangian problem by computing the eigen-
vectors and the corresponding eigenvalues.

PCA Sample Version
For a concrete sample we have the data matrix X ∈ Rnxk with the sample mean vector
µ̂ and sample covariance Σ̂. The principal components are obtained with

T = (X − 1µ̂T )Γ,

where 1 denotes a vector of one’s, Γ denotes the loadings matrix, which contains the
eigenvectors of Σ̂, and T is the scores matrix, which contains the principal components.

4.1.2 Multiple Linear Regression

We have seen that PCA decomposes any centered data matrix X into scores T and
loadings Γ, taking only a certain number of components, usually less than rk(X), where
rk(·) denotes the rank of the matrix. Thus we have

T = XΓ + E (32)

where the scores represent the l latent variables with most important information (l < k).
As we want to do regression with the principal components, we first consider a standard
linear regression model

y = Xb+ u, (33)
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where y is the endogenous variable, in our case the scaled ARIMA/Kalman residuals, b
denotes the regression coefficient and u the error term. According to the decomposition
in (32) we can replace X with the first PCA scores and therefore only take the most
relevant information for regression

y = Xb+ u = (TΓT )b̃+ uT = Tα + uT (34)

where α represents the new regression coefficients and uT a new error term. Now we can
apply OLS regression in order to obtain estimators for these coefficients,

α̂ = (T TT )−1T Ty, (35)

and the final regression coefficients for model (33) are

b̂PCR = Γα. (36)

This procedure solves the issue of high collinearity as the major information of the data is
compressed to a few orthogonal scores. This makes the OLS estimator in (35) numerically
stable.

4.2 Partial Least Squares Regression

While principal component regression only considers information of the X variables, par-
tial least squares (PLS) regression includes information about the response variables Y in
the course of computing the scores T that should be related to the scores of Y Varmuza
and Filzmoser (2009). This means that the mostly applied criterion for computing the
latent variables of PLS is to maximize the covariance between the scores in the X and
Y -space. Thereby we combine high variance of the scores in the x-space, which leads to
stability of the model, and high correlation with the response variable of interest, which
enhances its modeling. Therefore PLS can be considered as a compromise between PCR
and OLS. This means that PLS basically summarizes highly correlated predictor vari-
ables to a set of latent variables, which are uncorrelated, contain maximal variance in the
x-space and have maximal covariance to the dependent variables. Then the dependent
variable is regressed on these latent variables Serneels et al. (2005).

In this way, PLS can also be written as maximization problem, where the objective
function is the covariance between the X and Y -scores subject to the constraint that the
scores have to be orthogonal. We consider the data matrix X ∈ Rnxk and the response
matrix Y ∈ Rnxq, both are mean centered.
Actually we are interested in finding a linear relation between X and Y , using regression
coefficients B (in the case of univariate y this simplyfies to (33)). But instead of finding
this relation directly, we take the approach of modeling X via latent variables,

X = TΓT + EX , (37)

respectively

Y = UΘT + EY . (38)
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The scores of X and Y are then connected via the following relationship,

U = T∆ +H, (39)

where T and U are the score matrices which give good information summaries of X
and Y , respectively. Γ and Θ are the loadings matrices, which have l colums where
l ≤ min(k, q, n). The number of colums represents the number of considered PLS com-
ponents. ∆ is a diagonal matrix with elements δ1, ..., δl, and H is the residual matrix
with colums hj, where j = 1, ..., l. In the case we have a univariate response, no scores
can be computed in the y-space, therefore Equation (39) reduces to

y = Td+ h, (40)

with the coefficients d and the error term h. The goal of PLS is to maximize the covari-
ance between X and Y scores.

Hence we can formulate following maximization problem

max
a,c

Cov(Xa, Y c) (41)

under the constraints

‖t‖ = ‖Xa‖ = 1 and ‖u‖ = ‖Y c‖ = 1. (42)

The solution gives us the wanted loading vectors a and c. Concerning the estimation
of the covariance there are multiple approaches possible. In the classical case, we take
the sample covariance 1

n−1
tTu but also robust estimators can be used. This would lead

to a robust PLS, which will be discussed later. The constraints are required in order to
provide a unique solution. Within the scope of solving the maximization problem, we
consider the covariance of the scores. As we use the sample covariance we can write

tTu = (Xa)TY c = aTXTY c → max (43)

under the constraints in (42). The vectors a and c can be computed via multiple al-
gorithms. One possible approach is using singular value decomposition for finding the
optimal a and c. In that case the solutions correspond to the largest singular values of
XTY . Other widely used algorithms are the Kernel Algorithm, NIPALS, SIMPLS, O-PLS
which also provide orthogonal scores, while the eigenvector method results in orthogonal
loadings. For further details we refer to Varmuza and Filzmoser (2009).

The solution of (41) delivers the first scores t1 and u1 of the x-space and y-space, re-
spectively. For computing further scores we have to introduce further constraints with
regard to the scores to provide orthogonality,

tTi tj = 0 and uTi uj = 0 for 1 ≤ i ≤ j ≤ l. (44)

In this way each additional score covers new variability of the data and improves explana-
tory power of the model.
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4.3 Robust Methods

Working with empirical data, we often face data points that do not follow the main
structure of the data, so called outliers. With regard to our problem, where we try to
model structure in economic time series by means of financial indices and thereby find
time points whith anomalous structure, we actually assume the existence of outliers and
try to model them. Therefore it might appear obvious to work with robust methods.
In this chapter we want to give a short overview about robust regression methods and
apply them in the respective robustified versions of PCR and PLS, based on the results
of Hastie et al. (2008), Varmuza and Filzmoser (2009), Serneels et al. (2005), Li et al.
(2004) and Scherrer (2012).

4.3.1 Robust Regression

We have the following standard assumptions for the classical linear regression model

y = Xβ + u.

1. X ∈ Rnxk is deterministic

2. rk(X)=k

3. E[u] = 0 ∈ Rn

4. Var[u] = σ2In, σ
2 ≥ 0

5. every β ∈ Rk is a priori feasible

If these assumptions hold, the OLS estimator

β̂OLS = argmin
β

n∑
i=1

(yi − xTi β)2 (45)

is the best linear unbiased estimator according to Gauss Markov Theorem. This means
that β̂OLS has the least variance under all linear, unbiased estimators. Here,
y = (y1, ..., yn)T , and xi ∈ Rk form the rows of X.

Outliers in the data set are a typical issue that leads to assumption violation. We can
distinguish between the following types of outliers:

� x-outliers : data points that are outliers in the x-space

� or y-outliers : data points that are within the range of the x-variables, but are
outliers in the y-space
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We see that a single outlier can have such a strong effect on OLS estimation, that it be-
comes more or less useless. In this case even diagostic plots are unreliable. In particular
we face this issue with x-outliers, so called leverage points.

In other words, outliers lead to violations of the classical assumptions and therefore β̂OLS
loses its optimality property. In this case robust estimators will outperform OLS esti-
mators. Examples for robust estimators are regression MM-estimators or least trimmed
sum of squares (LTS) regression, see Rousseeuw and Leroy (1987). Here we want to give
a short overwiev over regression M-estimators.

Regression M-estimators
Instead of minimizing the sum of squared residuals like in (45) we introduce a more
general loss function

β̂M = argmin
β

n∑
i=1

ρ(yi − xTi β). (46)

Assumptions on the loss function ρ are that it has to be symmetric and non-decreasing.
For higher robustness towards outliers we also require a bounded loss function. If we set
ρ(u) = u2, we obtain the OLS estimator as a special case. Furthermore, we can express
the robust estimator in (46) as weighted least squares estimator with weights depending
on β. Therefore we define the following weights for the i-th observation,

wri =
ρ(ri)

r2
i

, (47)

where ri = yi − xTi β is defined as the residual in (46). Plugging then (47) into (46) gives

β̂M = argmin
β

n∑
i=1

wri (yi − xTi β)2. (48)
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With the aid of this formulation, the estimator β̂M can be computed by means of an
iteratively reweighted least squares algorithm.

In the formulation of (47), β̂M would only be robust with regard to vertical outliers. In
order to be capable of covering also x-outliers, we have to introduce additional weights
wxi , which leads to

β̂RM = argmin
β

n∑
i=1

wriw
x
i (yi − xTi β)2. (49)

The weights wxi will be close to 1 if the i-th observation is following the majority of the
data in the x-space, while outliers in the x-space, more precisely leverage points, will have
weights zero. This formulation covers both horizontal and vertical outliers now, therefore
we talk about robust M-estimators (RM).

4.3.2 Partial Robust M-regression

As mentioned in the previous chapter, a possible way of robustifying the PLS method is
to use a robust estimator for the covariance in (41) rather than the sample covariance.
Here we want to refer to the partial robust M-regression method proposed by Serneels
et al. (2005), which is following the partial least squares approach, but uses robust M-
regression instead of OLS.

Again we start with the idea of a latent variable regression model. In the case we have a
high number of exogenous variables compared to the sample size, we want to compress the
contained information to a couple of latent variables and regress the dependent variable
on them. For a matrix X ∈ Rnxk this means that its l latent variables tj with j ∈ 1, ..., l,
are put together in a scores matrix T ∈ Rnxl and the latent regression model can be
written as

yi = tTi α + εi (50)

where ti is the ith row of Ti and α are the regression coefficients. Now we can make use
of the robust M-estimator to estimate α, but here we define the residuals required for
the computation of the weights wri as ri = yi − tTi α. If we only use these weights for
downweighting large residuals, that is setting wi = wri , we would obtain the Partial M-
estimator (PM). But as mentioned previously, we also want to consider leverage points.
Therefore we compute appropriate weights wxi . Instead of using the original x-variables
for computing them, we take the scores tj. In this way we obtain weights for both vertical
and horizontal outliers,

wi = wriw
x
i . (51)

At this point the scores ti are still unknown. In order to obtain them we take an approch
mainly following the one in Section 4.2. For getting the scores tj we have to compute the
appropriate loadings vectors aj with j ∈ {1, ..., l} sequentially:

aj = argmax
a

Covw(y,Xa) (52)
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subject to the constraints

‖a‖ = 1 and Covw(Xa,Xah) = 0 for 1 ≤ h < l. (53)

In contrast to contraints (42) in Section 4.2, we here require the loadings to have length
one and their orthogonality. Note that Covw stands for the weighted covariance, meaning
for any vectors x, y ∈ Rn we have

Covw(x, y) =
1

n

n∑
i=1

wixiyi. (54)

After computation of all loadings aj we can put them togheter in a loadings matrix
A ∈ Rkxl and write the scores matrix as T = XA. Now we can go back to (50) and finally
compute α̂ by means of robust M-estimation. The final estimate for β is given by

β̂ = Aα̂ (55)

We see that PLS can be considered as a special case of this formulation if we take equal
weights wi for all observations, leading to a non-robust estimator.

Algorithm
The PRM algorithm is based on the iteratively reweighted partial least squares (IRPLS)
algorithm, see Serneels et al. (2005). The IRPLS basically takes some appropriate start-
ing values for the weights wi, to obtain a first approximation of α̂. Afterwards, the weights
can be recomputed by using the previously obtained estimator. This enables a second
approximation step, where α̂ is obtained by applying weighted PLS again.

In contrast to IRPLS, PRM makes following significant extensions:

� robust staring values: Prevent the risk of converging to a local minimum, as the
objective function used for the partial (robust) M-estimator may have local minima.
A local minimum would correspond to a non-robust estimate.

� consideration of leverage points: The weights used by IRPLS are only dependent
on the residuals after each iteration step. Here we introduce additional weights
depending on the values of the scores, in this way capturing leverage points in the
x-space.

For defining the additionally required weights wri in Equation 47, several weight fuctions
can be used. The ones provided in the appropriate R package sprm, see Serneels and
Hoffman (2013), are:

� Fair:

wri = f(ν, c) =
1(

1 + |ν
c
|
)2 , (56)

where c is a tuning constant and ν = ri
σ̂

, and σ̂ is a robust estimate of the residual
scale. According to the results in Serneels et al. (2005), taking c = 4 leads to a good
compromise between robustness and statistical efficiency. Letting c go to infinity
makes f(ν, c) flatter and the PRM estimator becomes more alike PLS.
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� Hampel:

wri = f(ν) =


1, |ν| ≤ a
a
|ν| , a < |ν| ≤ b

a c−|ν|
(c−b)|ν| , b < |ν| ≤ c

0, |ν| > c,

where ν = ri
σ̂

and for the parameters a, b and c it holds that 0 < a < b < c <∞.

� Huber:

wri = f(ν) =

{
1, |ν| ≤ c
c
|ν| , |ν| > c,

where c > 0, ν = ri
s

and the scale parameter s is defined as

s =

{
σ̂c, |ν| ≤ c

σ̂, |ν| > c,

where σ̂c denotes the empirical standard deviation and σ̂ a robust scale estimator.

For all these weight functions σ̂ is taken as a robust estimate, more precisely the median
absolute deviation,

σ̂ = MAD(x) = MAD(r1, ..., rn) = 1.4826 ·median
i
|ri −median

j
(rj)|

We will stick to the Fair function for weights definition to be consistent with Serneels
et al. (2005).

Weights referring to leverage points concerning the scores tj are then computed as

wxi = f

(
‖ti −medL1(T )‖

mediani‖ti −medL1(T )‖

)
(57)

In this expression we consider the distance between each score vector ti and the center
of the data cloud of the score vectors, which are collected in the matrix T . As we want
to estimate the center robustly, we take the L1-median estimator as multivariate version
of the sample median, see Serneels et al. (2005). Another way of getting a multivariate
robust estimate would be computing the median component-wisely.

Now we can sum up the procedure for computing the partial robust M-estimator to
a few points

1. Computation of robust starting values for wi = wriw
x
i :

� for the residual weights wri we take ri = yi −medianjyj
� for the leverage weights wxi we take (57) and insert the xi’s instead of the

scores, as we have not computed any at that point

2. Perform PLS on the weighted variables:
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� weighted observations X̃ and ỹ are obtained by multiplying the rows of X and
the cells of y with

√
wi

� PLS is performed with X̃ and ỹ, giving an update for the scores matrix T and
thus also for α̂. The scores also have to be weighted.

3. Update weights wi = wriw
x
i :

We use Equations (56) and (57) again, residuals for (56) are ri = yi − tiα̂.

4. Redo step (2) and (3) until convergence of α̂:
Convergence is achieved if in the kth iteration step we have ‖α̂k − α̂k−1‖ < ε for an
arbitrarily small ε, where α̂k is the value of the estimate α̂ in the kth iteration step.

5. Compute β̂PRM :
The limit of α̂ is taken for computation of β̂PRM according to PLS.

4.4 Sparse Partial Least Squares Regression

The results of this section are mainly based on Chun and Keles (2010). The idea behind
sparse partial least squares (SPLS) is to impose an L1 constraint on the loadings vector
and putting the contribution of certain directions equal to zero. This approach often
makes sense for problems with a large number of exogenous variables, where estimates
often have many components close to zero. These variables have hardy impact on the
endogenous variable but still require estimation, which increases prediction uncertainty.
SPLS avoids this and leads to dimension reduction and variable selection.

4.4.1 SPLS Model

The actual PLS problem would be modified in this way:

max
a

aTMa s.t. aTa = 1, |a| ≤ λ, (58)

where M = XTY Y TX, a denotes the loadings vector and λ determines the amount of
sparsity. This formulation tends not to be sparse enough. Therefore we introduce a
surrogate direction vector c that is close to a and impose the L1 penalty on it. In a
Lagrangian formulation we get the general form for multivariate Y

min
a,c
− κaTMa+ (1− κ)(c− a)TM(c− a) + λ1|c|1 + λ2|c|2 s.t aTa = 1, (59)

where the L1 penalty covers the issue of sparsity and the L2 constraint is introduced due
to potential singularity in M when solving for the direction vector. κ controls the effect
of the concave part of the equation as there might be issues with local solutions. The
rescaled direction vector c of length one is then used as estimated direction vector.

The solution of (59) is obtained by alternatively iterating between solving a for a fixed c
or vice versa, which gives us these objective functions:

min
a
− κaTMa+ (1− κ)(c− a)TM(c− a) s.t aTa = 1, (60)
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and for 0 < κ < 1
2

(this choice avoids local solution issues) Equation (60) rearranges to

min
a

(ZTa− κ′ZT c)TM(ZTa− κ′ZT c) s.t aTa = 1, (61)

where Z = XTY and κ′ = (1 − κ)/(1 − 2κ). (61) can then be solved via the Lagrange
method, with the solution given by a = κ′(M + λ∗I)−1Mc. The multiplier λ∗ is the
solution of cTM(M +MI)−2Mc = (κ′)2, see Chun and Keles (2010). Solving for c results
in

min
c

(ZT c− ZTa)TM(ZT c− ZTa) + λ1|c|1 + λ2|c|2. (62)

Especially in the univariate case of Y , a large λ2 is required for solving (62). In this
case we take λ2 to be ∞ which yields in a solution with a soft penalty. Furthermore, for
univariate Y no iteration betweed a and c is required. Instead, we threshold the original
PLS direction vector, and get the solution of (59) with ĉ = (Z̃ − λ1/2) + sign(Z̃), where
Z̃ = XTy/‖XTY ‖ is the first direction vector of PLS, see Chun and Keles (2010).

4.4.2 SPLS Algorithm

Basically we optimize (59) which gives us relevant variables, so called active variables.
These variables are used for PLS then. We can sum the algorithm up to a couple of
points, concerning the notation we have A as index set of active variables, l denotes the
number of components and XA the matrix with the variables defined in A.

1. As starting values we take β̂PLS = 0,A = {}, h = 1 and Y1 = Y .

2. Until we reach the maximum number of components l we do:

� Find the direction â by solving equation (59) with setting M = XTY1Y
T

1 X.

� The set of active variables A is taken as {i : âi 6= 0} ∪ {i : β̂PLSi 6= 0}, where
âi are the components of â and β̂PLSi are the components of β̂PLS.

� Fit PLS (or robust PLS for robust SPLS) by means of XA using k latent
components.

� Update the estimate β̂PLS through the PLS estimates, Y1 ← (Y −Xβ̂PLS) and
h← h+ 1

4.4.3 Choosing the tuning parameters

According to Equation (59) we would assume to have 4 tuning parameters, namely
λ1, λ2, κ and l. As we have univariate Y , the problem is independent of κ and as dis-
cussed, λ2 is set to ∞, yielding our problem only to depend on λ1 and l.

For determining the penalty λ1 a soft and a hard thresholding approach can be taken.
Here we want to stick to the soft approach, where we define a soft thresholded direction
vector

ã =

(
|â| − ηmax

1≤i≤p
|âi|
)
I

(
|â| ≥ ηmax

1≤i≤p
|âi|
)
, sign(â)
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where p denotes the number of predictors and η plays the role of the sparsity parameter
λ1 with 0 ≤ η ≤ 1. The single tuning parameter η can now be determined via cross
validation (CV). Tuning η for each direction separately is avoided due to very high com-
putational effort.

The number of components l is also tuned by CV. For this reason, CV becomes a function
of two parameters in the case of soft thresholding.

4.5 Sparse Partial Robust M-Regression

This section is mainly based on the results of Hoffman et al. (2015). They state that, up
to their knowledge, the sparse partial robust M-regression (SPRM) estimate is the first
one to combine these three characteristics:

� it is based on projection onto latent structures

� it is integrally sparse concerning both regression coefficients and direction vectors

� it is robust with respect to both vertical outliers and leverage points

4.5.1 SPRMS Model

We want to introduce the SPRM estimate as a sparse version of the PRM estimate.
Going back to the PRM regression approach in section 4.3.2 we introduced the weighted
variables X̃ = ΩX and ỹ = Ωy, where Ω is a diagonal matrix with diagional elements√
wi. The weigths wi were defined as wi = wriw

x
i , where wri and wxi take care of vertical

outiers and leverage points, respectively. Now we can take these weighted variables X̃
and ỹ and plug them into the SPLS formulation (58), yielding:

max
a

aTM̃a s.t. aTa = 1, |a| ≤ λ (63)

where M̃ = X̃T ỹỹT X̃. Again we have to impose sparseness on a surrogate direction
vector c to achieve sufficiently sparse estimates, resulting in

min
a,c
− κaTM̃a+ (1− κ)(c− a)TM̃(c− a) + λ1|c|1 s.t aTa = 1 (64)

(see equation (59)) and the final estimate of a is given by a = ĉ
‖c‖ , where ĉ is the surrogate

vector that minimizes (64).

Now we have to find the solution of this SPLS problem. According to Hoffman et al.
(2015) it is given by

wh =
(
|zh| − ηmax

i
|zih|

)
� I

(
|zh| − ηmax

i
|zih| > 0

)
� sign(zh) (65)

where wh denotes the hth computed sparse PLS direction vector, zh the nonsparse PLS
direction vector of the deflated X matrix, see Hoffman et al. (2015), zih the corresponding
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components of zh and the index i runs within the given number of components, η ∈ [0, 1)
the sparsity parameter, I(·) the indicator function, giving a vector whose components
are equal to 1 if the corresponding argument is true, otherwise zero and � denotes the
componentwise product.
The computation of the robust M estimator in (49) is then done by iteratively reweighting
the least squares estimator.

4.5.2 Choosing the tuning parameters

As we have a univariate Y we only have 2 parameters left to optimize, namely the optimal
number of latent variables hopt and the sparsity parameter λ1. Therefore a grid of values
for η and components and hopt = 1, ..., H is sampled and a robust CV searches the best
parameter combination. We use a robust criterion, where the mean squared error of the
fraction 1 − α of the smallest validation residuals is used, the remaining part α of the
residuals are assumed to be outliers.
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5 Implementation in R

In this chapter we apply the methods discussed in Chapter 4 on residuals obtained in
Chapter 3 by using R. We will apply the methods on both the ARIMA and the Kalman
residuals and afterwards compare the results. For the implementation in R we use the
functions provided by the packages pls Mevik et al. (2013), spls Chung et al. (2013),
chemometrics Filzmoser and Varmuza (2014) and sprm Serneels and Hoffman (2013),
when necessary functions of the packages were modified to make them applicable to our
problem (e.g. in terms of cross validation for time series data) and provide specific output.

5.1 Cross Validation (CV)

A crucial issue in the modeling step is the choice of a ”fair” model. This means we do
not only want to reconstruct the given data as accurate as possible, the model should be
capable of fitting new incoming data well. As mostly only one data set is provided in the
modeling step, we can make use of resampling methods. Here we present cross validation
(CV) Filzmoser (2013). We use it for determining the number of used latent variables in
each model and for determining the amount of sparsity for SPLS models.

For CV the given data set is split up into k segments. As we have time series data,
the segments cannot be arranged randomly because this would lead to too pessimistic
results. We rather choose consecutive segments in order to retain time behavior within
a segment. As some R functions do not have preimplemented consecutive segments for
CV, we had to construct them properly.

For j = 1, ..., k we omit the jth segment, which becomes the test set, and fit the model,
denoted with f̂−j, for the remaining k− 1 segments, which become the training set. This
is done k times, so that each segment is treated as test data once. Therefore f̂−j is
different, depending on which segment is treated as test data. We see that each xji , the
ith observation contained in the jthsegment, will be part of the test data once and we can
define the prediction for this value with ŷji = f̂−j(xji ). Hence we get n predictions ŷji for
i = 1, ...n.

In this way we can define a mean squared prediction error:

ÊRRCV =
1

n

n∑
i=1

L(yi, ŷ
j
i ) (66)

where L(y, f̂(x)) denotes a loss function, taken as the squared residuals: L(y, f̂(x)) =
(y − f̂(x))2. We choose the model, respectively the number of hidden latent variables,
which minimizes (66).

The choice of the number of segments k also plays an important role. An extreme case
called ”leave one out CV” is taking k = n, meaning that each observation is a segment
itself. This is computationally expensive and leads to high variance due to the similarity
of the training data sets. A popular choice is k = 10, but we chose to split the segments
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in a way that each segments covers the period of 2 years. In this way each segments
covers a trend within and over some years.

5.1.1 Double Cross Validation (DCV)

Double Cross Validation (DCV) Filzmoser et al. (2009) basically works like a multistage
CV. It works in 2 loops, where the outer loop performs CV as described above. The
inner loop then runs CV again but on the test set of the outer loop. In this way we get
”test data from the test data”. An extension would be repeated DCV (rDCV) where DCV
is repeatet a couple of times. In the additional loop the data is then split in a different way.

The aim of (r)DCV is to obtain more predicted values from test sets. This leads to
a more realistic evaluation of the prediction performance.

5.2 Explanation and Notation

Now we apply the methods presented in Chapter 4 on the ARIMA residuals and Kalman
residuals, respectively. In the next sections one will find two plots and a short summary
for each method. This should help capturing the main features of the applied methods.
Following, there will be an overall summary of the models, where we will compare them
according to some indicators. First we give a short overview over the setup of the plots
and the summaries.

5.2.1 Model Abbreviations

We shortly want to present the abbreviations used for denoting the methods of
Chapter 4 in the plots:

� PCR: principal components regression

� PCR.DCV: principal components regression with rDCV

� PLS: partial least squares regression

� PLS.DCV: partial least squares regression with rDCV

� RPLS: partial robust M-regression

� PRMS: partial robust M-regression (but with another CV criterion, see details
below)

� SPLS: sparse partial least squares regression

� SPRMS: sparse partial robust M-regression
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5.2.2 Plot of Fitted Values

The first plot features the residuals from the first modeling step (ARIMA and Kalman
filtering, respectively) and the fitted values from the corresponding methods of Chapter
4. A vertical line in the middle of the year 2012 divides the plot into training data on the
left side and test data on the right side. In our procedure we took 15% of all available
observations as test data.

5.2.3 Plot of Residuals

The second plot shows the residuals from the upper plot, namely the differnce between
the ARIMA or Kalman residuals and the fitted values of the appropriate model. Within
the area of the training residuals we will see two curves. One is displaying the CV resid-
uals, more precisely the prediction errors for the observations in the test segments of the
cross validation. The other curve shows the simple training residuals, these are the values
we obtain, if we apply the optimal model from the cross validation on all training data
points and take the residuals. In the right segment we see the prediction errors for the
test data.

Furthermore, all residuals are scaled with an estimated standard deviation σ̂CV . For
its estimation we take the CV residuals as they already display prediction errors of the
test segments of the CV. For this reason, taking them tends to be more realistic than
taking the simple train residuals. Hence in all plots it will be observable that the CV
residuals tend to be bigger than the train residuals.

Furthermore, the ±2 and ±3σ̃ tolerance bands are marked horizontally. σ̃ denotes the
standard deviation of the ARIMA/Kalman residuals which are scaled with σ̂CV , for this
reason σ̃ is equal to 1 and the values of the tolerance bands are exactly ±2 and ±3 re-
spectively. In the case of normally distributed residuals, the ±3σ̃ tolerance bands should
contain 99.7% of the distribution. For this reason they help us indicating outliers. If
the value of the residuals is placed between the bands, the value could be classified as
regular point, if it is placed outside the ±3σ̃ we could give a warning. This value is
neither following the model, based on the times series’ own history, nor any information
provided by financial indicators. Therefore we see that something irregular is happening
there, maybe a crisis.

5.2.4 Summary

The summary contains indicators, which should enable the comparison of the models.

� mse.te: indicates the estimated mean squared error of the test residuals

� mse.tr : indicates the estimated mean squared error of the training residuals, but
based on the CV residuals. The square root of this value is taken as σ̂CV for scaling.

� mse.rat : this value is the ratio between mse.tr and mse.te, namely mse.tr
mse.te

. It gives
an idea of the models’ ability to handle new data. This would be the case if the
value is close to one. If the prediction performance is much worse than the training
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performance, the value gets closer to zero. In some exceptional cases it is also
possible that the value is bigger than one, this means that the prediction errer is
lower than the training error.

� alpha: within the scope of the used robust methods the optimal model is determined
by fitting the best (1 − α) values. In oder to make the robust models comparable
with other non-robust methods, we compute all indicators on both, all values and
the trimmed values. For the robust models the trimming facotor α = 0.15 is used.
For directly comparing the robust with the non-robust methods we consider the
values with α = 0.15.

� e.var : stands for explained variance. This value can be considered as an R2 for the
data, which shows the goodness of fit. We applied a weighted version, namely

R2
w =

∑n
i=1wi(yi − ȳw)2 −

∑n
i=1wi(yi − ŷw)2∑n

i=1wi(yi − ȳw)2

where ȳw denotes the weighted mean of the observations yi, ŷw the weighted fitted
values and wi some appropriate weigths; we used a 0/1 encoding for wi. E.g., if
α = 0.15 we take the 15% biggest absolute residuals and assign their observations a
weight of 0 and their complement a weight of 1. If α = 0 there is no cut-off and all
observations are weighted with 1. As these weights do not match the actual weights
computed by the robust procedures, we do not obtain an ”exact” R2, therefore its
value no longer needs to be ∈ [0, 1] necessarily.

� ncomp: denotes the optimal number of components determined by the CV. We
applied different criteria for different methods for chosing the number of compo-
nents. For PCR and PLS we applied the minimum rule, which takes the number of
components that minimizes the mean squared prediction error (MSPE).

For PCR.DCV and PLS.DCV we applied the Hastie rule. This rule basically takes
the number of components with minimal MSPE and adds one standard error of
this component number. The optimal number of components is then determined
by taking a smaller number of components whose MSPE is below this bound, see
Filzmoser and Varmuza (2014).

SPLS and SPRMS work in the way described in Section 4.4.3 and 4.5.2, respec-
tively. Basically, they choose the parameter combination of components number
and η that minimizes MSPE.

RPLS and PRMS are both methods based on partial robust M-regression, but
distinguish concerning the used CV criterion. For RPLS the mean of the trimmed
standard error of prediction (SEP) ẽ is computed for each number of components,
as well as their standard errors ê. To the minimum of ẽ a factor c · ê is added,
where c is set equal to 2 in our case. The optimal number of components is the
most parsimonious model that is below this bound, see Filzmoser and Varmuza
(2014). This matches the Hastie rule, but the Hastie rule does not use trimmed
SEP but includes all errors. In contrast thereto PRMS uses the α trimmed MSEP

32



over all observations as robust criterion to choose the optimal model, see Serneels
and Hoffman (2013).

� eta: for sparse methods we also consider η giving the degree of sparsity. η = 0
denotes a model where all variables are used, the other extreme with η = 1 denotes
an empty model.
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5.3 ARIMA Residuals

5.3.1 PCR
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mse.te mse.tr mse.rat e.var alpha ncomp

0.282 0.189 0.671 0.388 0 15
0.136 0.101 0.741 0.562 0.15 15

Applying PCR results in a high number of components. Within the procedure one can
determine the maximal number of components to be considered for CV. Here the given
maximum of 15 components is attained. Therefore we also see that the model is fitting
the data quite well.
We can clearly observe the effects of the subprime crisis, starting in 2007 we see that
the residuals in the first plot get bigger each year, reaching a peak in 2009. Only the
peak in 2009 can be recognized with the aid of financial indices. Therefore the years
2007 and 2008 are stated as outliers in the second plot. Furthermore, the irregularity
in 2013 and 2014 is recognised and we have a bigger outlier in 2002, perhaps the after-
effect of the dot-com bubble in 2000. The value of the explained variance is not bad and
obviously increases by considering the best 85% of the data. The mse.rat values indicate
a performance decline for the test data, but less extreme for the trimmed data. This
could indicate the presence of more extreme outliers in the test data than in the training
data.
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PCR with rDCV
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0.337 0.241 0.714 0.116 0 1
0.147 0.121 0.819 0.085 0.15 1

Applying the repeated CV ( here with 20 replications) gives a completely different result,
using only 1 component for the model. The curve of the fitted values is obviously much
smoother than before, also having a clear downturn in 2009. The residual in 2002 is
within the normal range now, but 2008, 2009, 2013 and 2014 still indicate outliers.

Due to the smaller number of components, the explained variance is much smaller now.
But the mse.rat improved in contrast to normal CV.
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5.3.2 PLS
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0.277 0.181 0.653 0.689 0 6
0.186 0.083 0.443 0.820 0.15 6

Here we clearly see the big advantage of PLS: Although it requires less components, the
explained variance is much higher than with PCR. Omitting the biggest residuals we have
a very good R2. Furthermore, the fitted values nicely follow the data.
Concerning the residuals we see that normal residuals and outliers are better distinguish-
able than in the PCR case, as the normal residuals are now much smaller. Here we see
that our model reacts quite early on a crisis: in the normal data plot we primaly see the
huge effect of the subprime crisis with the downswing in 2009. This is also the point,
where the financial indices are influenced and therefore the effect is also captured by the
model. Therefore, the residual in 2009 does not appear as an outlier. But in the early
years of the subprime crises 2007 and 2008, where there is less impact on the indices, our
model already displays the irregularities as outliers.
Similar behavior is observable for the dot-com bubble, where the time series shows an
effect in 2002, but the residuals of the model already indicate the outlier in 2001.
We graphically see some difficulties with handling the test data, this also manifests in
the mse.rat.
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PLS with rDCV
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0.338 0.181 0.537 0.141 0 1
0.143 0.086 0.601 0.196 0.15 1

Applying rDCV again results in less components, wherefore the fitted curve is again
smoother than with more components and the explained variance decreases, but is still
higher than with rDCV applied on PCR.

The downturn in 2009 is again captured with the fitted values and the residuals dis-
play again the outliers of 2007 and 2008. But in contrast to simple CV we no more
recognise the crisis in the early years of 2000. Nevertheless, the model indicates outliers
in 2013 in 2014.
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5.3.3 Robust PLS

RPLS
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0.388 0.198 0.510 0.218 0 2
0.113 0.101 0.892 0.266 0.15 2

The fitted values of the robustified PLS appear similar to the PLS with rDCV, but less
smooth and stronger following the peaks of each year. In contrast to normal PLS, less
components are required. This shows again, how much more information is required to
capture the effects of outliers.

The effects of the subprime crisis again manifest in the outliers, but we continuously
keep having very large residuals after 2007. This might show up some long term effects
of the crisis.

Due to robustness and using only 2 components, the model does not capture very much
of the overall variance. For the trimmed data the mse.rat value indicates a quite good
prediction performance.
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PRMS
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The CV criterion used for PRMS results in a higher number of components, which leads
to a better fit towards the data and therefore to higher e.var.
We can observe difficulties with modeling the test data, which manifests in the mse.rat
value. Cutting off big residuals even leads to a decrease of mse.rat. A possible expla-
nation is that we see in the upper plot that the fitted values capture the huge residual
in 2013, but has difficulties with ”normal” values. If the big residual is then cut off, the
moderate fit to the other data has a bad impact. On the other side this could even indi-
cate a crisis, as these values appear unexpected for the model.

Again we see in the lower plot that normal residuals and outliers are well distinguishable.
PRM is able to capture the effects of the dot-com bubble and the subprime crisis very
early. Furthermore, we have an outlier in 2014.
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5.3.4 SPLS
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0.250 0.144 0.574 0.723 0 7 0.5
0.159 0.069 0.432 0.858 0.15 7 0.5

Sparse PLS uses 7 components, hence we have a big e.var and the structure of the data
is fitted well, but again with deviations in the test data.
The lower plot shows big residuals in many years, but clear outliers in 2001, 2002, 2007,
2008 and 2014.
Furthermore, SPLS imposes sparsity on the parameters, namely an η = 0.5, which leads
to using 207 among 232 financial indices.
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5.3.5 Robust SPLS
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0.328 0.145 0.442 0.663 0 6 0
0.236 0.067 0.286 0.809 0.15 6 0

The robustified SPLS requires less components, but also shows a good value for e.var.
Again we see a deviation of the ARIMA residuals and the fitted values in the test data,
the big residuals are then displayed as outliers in the lower plot. Furthermore, the years
2001, 2007 and 2008 are obviously outliers. Again we recognize that the robust methods
makes normal and extreme residuals better distinguishable.
Furthermore, the robust SPLS imposes no sparsity in contrast to SPLS.

41



5.4 Summary

Here we want to provide a short summary and some conclusions on the previous methods
and plots

Method mse.te mse.tr mse.rat e.var alpha ncomp eta

PCR
0.282 0.189 0.671 0.388 0 15 -
0.136 0.101 0.741 0.562 0.15 15 -

PCR.DCV
0.337 0.241 0.714 0.116 0 1 -
0.147 0.121 0.819 0.085 0.15 1 -

PLS
0.277 0.181 0.653 0.689 0 6 -
0.186 0.083 0.443 0.820 0.15 6 -

PLS.DCV
0.338 0.181 0.537 0.141 0 1 -
0.143 0.086 0.601 0.196 0.15 1 -

RPLS
0.388 0.198 0.510 0.218 0 2 -
0.113 0.101 0.892 0.266 0.15 2 -

PRMS
0.320 0.146 0.456 0.669 0 6 -
0.227 0.067 0.297 0.808 0.15 6 -

SPLS
0.250 0.144 0.574 0.723 0 7 0.5
0.159 0.069 0.432 0.858 0.15 7 0.5

SPRMS
0.328 0.145 0.442 0.663 0 6 0
0.236 0.067 0.286 0.809 0.15 6 0

We clearly see that PCR is the model with most required components, but is outper-
formed by PLS methods, both robust and/or sparse. Methods with the least number of
components are those which make use of rCV.

Concerning mse.rat values, PCR shows the best performance, while SPLS performs best
concerning e.var.

Comparing the robust PLS methods, PRMS uses more components and has therefore
a higher e.var value and lower mean squared errors. Only the mse.rat lags a bit behind
RPLS. But all in all PLS, PRMS and SPRMS appear to have similar performance.

In contrast thereto SPLS imposes sparsity and outperforms SPRMS with regard to all
key figures. Furthermore, we see that the robust SPLS does not impose any sparsity,
meaning the results are almost the same as in PRMS. The minimal differences can be
due to different implementations of the algorithm in both functions.
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5.5 Kalman Residuals

5.5.1 PCR
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mse.te mse.tr mse.rat e.var alpha ncomp

0.126 0.081 0.648 0.369 0 15
0.052 0.027 0.526 0.462 0.15 15

In constrast to the ARIMA residuals, the Kalman residuals tend to have stronger peaks
each year, the one in 2009 is also well captured by the fitted values. The others result
in bigger residuals in the lower plot, which displays many years as outliers - the most
extreme are in 2008 and 2013. But we see that the subprime and dot-com crisis become
apparent through the plot.

Again PCR attains the maximum of allowed components, namely 15, but explains the
variance only moderately.
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PCR with rDCV
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0.1459 0.103 0.705 0.010 0 1
0.041 0.036 0.880 0.105 0.15 1

Applying repeated DCV results again in only 1 component, this reduces the values of
e.var, but the mse.rat value suggest a quite good prediction performance.

The curve of the fitted values is quite smooth, due to only using one component, but
captures the downswing in 2009.
Considering the residuals we see that the residuals increase within the course of the sub-
prime crisis, having an extreme outlier in 2009, but also later in 2013 and 2014. The
effect of the dot-com bubble is now less intense on the plot.

Using one component also diminishes the value of the variance explained by the model.
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5.5.2 PLS
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0.086 0.073 0.845 0.776 0 6
0.043 0.0309 0.726 0.868 0.15 6

PLS results as assumed in a higher number of components, which manifests in a very
good fit in the first plot and high ratio of explained variance. Furthermore, we have a
good mse.rat, which indicates good prediction preformance.

Considering the residuals we see that only the subprime crisis is captured and each year
equally intense. Furthermore, we have an outlier in 2014, while there is no visible impact
of the dot-com bubble. It is also observable, that the irregularities within the subprime
crisis are only captured by the CV residuals and not by the training residuals.
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PLS with rDCV
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0.065 0.093 1.422 0.674 0 5
0.0312 0.041 1.310 0.782 0.15 5

Application of repeated DCV does not diminish the number of components that dramat-
ically now. Using 5 components also leads to a good fit, the downswing in 2009 seems to
be captured entirely. Therefore, the explained variance is quite high.

As discussed it is also possible to have a mse.rat bigger than one, right here we ex-
actly have this case: the model seems to fit the test data better than the training data.

Considering the residuals plot we have very large residuals starting from 2007, while
the test data does not indicate extreme outliers, but 2013 and 2014 still having large
residuals. The first couple of years show a rather difference between rDCV and simple
training residuals.
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5.5.3 Robust PLS

RPLS
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0.165 0.090 0.548 0.194 0 2
0.025 0.024 0.981 0.399 0.15 2

The robustified version of PLS applies only 2 components, which reduces the e.var value
in comparison to its non-robust counterpart. Taking a 1-component model, the PCR with
rDCV, we see what a huge impact switching to PLS and applying robust procedures can
make. Adding one component and applying RPLS increases the e.var from 0.01 to 0.19.

Considering the trimmed values we also find a very good mse.rat for this model.

The residuals for this model generally scatter quite widely and starting from 2008 we
find almost every residual exceeding the -3 σ tolerance band.
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PRMS
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0.028 0.026 0.930 0.692 0.15 4

The CV criterion for PRMS results again in a higher number of components, which leads
to a more accurate fit of the model to the Kalman residuals and an increasing e.var value.
Furthermore, the mse.rat is quite good, especially for the trimmed values.

Here the residuals during the subprime crisis appear more than before.
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5.5.4 SPLS
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0.082 0.046 0.553 0.828 0 8 0.7
0.055 0.022 0.406 0.894 0.15 8 0.7

Applying SPLS requires more components than the previous model, but at the same time
it imposes high sparsity with η = 0.7. This means the model uses only 99 of overall 232
financial indices.

The model fits the data very good, leading to a good e.var value for both trimmed
and non trimmed residuals. Considering the residuals we see that besides the typical out-
liers during the subprime crisis and in 2013 and 2014, the SPLS model indicates outliers
in 2004 and 2005.
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5.5.5 Robust SPLS
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Robustifying SPLS requires less components, wherefrom the e.var value is suffering, but
the mse.rat remains good. Robust SPLS imposes sparsity with η = 0.1 leading to 217
used indices.

The residual plot also shows the usual outliers during the subprime crisis and in the
test data. In contrast to simple SPLS it captures the effects of the dot-com bubble.
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5.6 Summary

Method mse.te mse.tr mse.rat e.var alpha ncomp eta

PCR
0.126 0.081 0.648 0.369 0 15 -
0.052 0.027 0.526 0.462 0.15 15 -

PCR.DCV
0.1459 0.103 0.705 0.010 0 1 -
0.041 0.036 0.880 0.105 0.15 1 -

PLS
0.086 0.073 0.845 0.776 0 6 -
0.043 0.0309 0.726 0.868 0.15 6 -

PLS.DCV
0.065 0.093 1.422 0.674 0 5 -
0.0312 0.041 1.310 0.782 0.15 5 -

RPLS
0.165 0.090 0.548 0.194 0 2 -
0.025 0.024 0.981 0.399 0.15 2 -

PRMS
0.113 0.085 0.757 0.427 0 4 -
0.028 0.026 0.930 0.692 0.15 4 -

SPLS
0.082 0.046 0.553 0.828 0 8 0.7
0.055 0.022 0.406 0.894 0.15 8 0.7

SPRMS
0.112 0.085 0.757 0.443 0 4 0.1
0.026 0.025 0.948 0.677 0.15 4 0.1

We see like in the case of ARIMA residuals that the PCR method requires most com-
ponents and repeated DCV leads to a decrease of the component number, but now less
dramatically in the case of PLS.

Compared to all other models, PCR does not seem recommendable. PLS and PLS with
rDCV appear quite comparable, but PLS with rDCV having a better performance on
test data, which justifies the approach of rDCV.
The PRMS method slightly outperforms the RPLS. SPLS uses twice as many components
as SPRMS, but imposes high sparsity, while the SPRMS gets along with less components
and having a better mse.rat value and smaller mse.te for the trimmed values. Due to a
higher component number SPLS captures more variance.

Comparing the robust with the non-robust models we have to consider the trimmed
values. With regard to them, PLS (rDCV), PRMS and both sparse PLS methods appear
quite good.
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6 Conclusion

In Chapter 3 we extracted the signal of the underlying time series by means of ARIMA
and Kalman filtering. ARIMA suggests the process to be integrated and depending on
both past observations and past noise terms. The Kalman filter showed a smaller standard
error than the ARIMA model, which suggests a more precise fit to the data. Furthermore,
we stated the general applicability of state space models.

The implementation in R of the discussed methods of Chapter 4 was shown in Chap-
ter 5. A comparison of all methods did not reveal a method that clearly outperforms the
others concerning all discussed key figures, which were mean squared error of training and
test data, explained variance, or number of used latent variables; in the case of sparse
methods we added the sparsity parameter η. It appeared obvious that the performance of
PCR lagged behind all others. It required throughout the highest number of components
but still captured less variance than other methods with less components. Application of
double cross validation, which ought to improve prediction performance, led to a decrease
of required components in all cases. We also saw that the different implementations of
robust Partial M-Regression led to different numbers of components, as they apply dif-
ferent criteria for component selection (see Chapter 4). The PRMS criterion generally
results in a higher number of components.

Robust and non-robust sparse PLS methods result in different sparsity, robust methods
are either hardly or even not sparse. For non-robust SPLS the highest induced sparsity
of η = 0.7 only reduced the number of used financial indicators from 232 to 99. This
shows that the structure in the data is not driven by a few particular indicators. We also
recognized that the models to not impose a very high number of components, with ex-
ception of PCR, 8 components maximally. Therefore one could consider including other
exogenous variables into the models.

Concerning the outlier detection performance we saw that the subprime crisis was in-
dicated by all models already in 2007, although the dramatic slump in the original data
is firstly visible in 2009. Some models showed difficulties in recognizing the effects of the
dot-com bubble. In the case of ARIMA residuals those were PCR and PLS with rDCV
and robust PLS. In the case of Kalman residuals, PLS and SPLS could not recognize the
dot-com bubble effects. All models stated some irregularities in the test data around the
year 2014. Overall, the models appear to be capable of detecting outliers in the time
series.
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Appendix

R Code for Sections 4 and 5

#LOAD REQUIRED DATA

load("DataPz.Rdata") #standardized & demeaned financial indicators

load("salesz.Rdata") #standardized & demeaned time series

#ARIMA MODEL ESTIMATION

bj<-auto.arima(sales.z[which(!is.na(sales.z[,2])),2], max.p=10,

max.q=10) #fixed max p,q values

sales.bjr<-sales.z

sales.bjr[!is.na(sales.bjr[,2]),2]<-bj$residuals

#STATE SPACE MODEL ESTIMATION

sales.ssr<-sales.z

dat<-sales.z[which(!is.na(sales.z[,2])),2]

loclevel <- function(p)

{dlmModPoly(1, dV=exp(p[1]), dW=exp(p[2]))}

fit <- dlmMLE(dat, parm=c(0,0), build=loclevel)

dlm.mod <- loclevel(fit$par)

StructTS(dat, type="level")

filter <- dlmFilter(dat, mod=dlm.mod)

v <- sqrt(dropFirst(unlist(dlmSvd2var(filter$U.C,

filter$D.C))))

kuf <- dropFirst(filter$m) + 2*(v)

klf <- dropFirst(filter$m) - 2*(v)

f.res<-dat-dropFirst(filter$m)

sales.ssr[which(!is.na(sales.ssr[,prod])),prod]<-f.res

#MERGING THE ARIMA/STATE SPACE RESIDUALS

#WITH THE FINANCIAL INDICATORS

DatCombi<-merge(sales.bjr,DataP.z,by.x="Date",

by.y="Date", all.x=T) #or

DatCombi<-merge(sales.ssr,DataP.z,by.x="Date",

by.y="Date", all.x=T)

#APPLYING METHODS

# Principal Components Regression

##PCR

sales.pcr<-pcr(Response~ FinancialD, data=train.l,ncomp=15,

validation="CV",segments=floor(length(train.l$Date)/24),

segment.type="consecutive" ,center=T, scale=T)

rmsep.pcr<-RMSEP(sales.pcr, estimate="adjCV")
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ncomp.pcr<-which.min(rmsep.pcr$val)-1

##PCR.DCV

tmp.pcr.dcv<-my.mvr_dcv(Response~ FinancialD,data=train.l,scale=T,

center=T, ncomp=15,segments=floor(length(train.l$Date)/24),

segment.type="consecutive",segments0=4,

segment0.type="consecutive", method="svdpc", repl=20,

selstrat=c("hastie"))

ncomp.pcr.dcv<-tmp.pcr.dcv$afinal

# Partial Least Squares Regression

## PLS

sales.plsr<-plsr(Response~ FinancialD,data=train.l,validation="CV",

ncomp=15,segments=floor(length(train.l$Date)/24),

segment.type="consecutive", center=T, scale=T)

rmsep.plsr<-RMSEP(sales.plsr, estimate="adjCV")

ncomp.plsr<-ifelse(which.min(rmsep.plsr$val)==1,1,

which.min(rmsep.plsr$val)-1)

## PLS.DCV

tmp.plsr.dcv<-my.mvr_dcv(Response~ FinancialD,data=train.l,scale=T,

center=T, ncomp=15, segments=floor(length(train.l$Date)/24),

segment.type="consecutive",segments0=4,

segment0.type="consecutive",method="simpls", repl=20,

selstrat=c("hastie"))

ncomp.plsr.dcv<-tmp.plsr.dcv$afinal

## RPLS

sales.rplsr.dcv<-prm_cv(train.l$FinancialD,train.l$Response, a= 15,

segments=floor(length(train.l$Date)/24),

segment.type="consecutive", opt="median", plot=F )

ncomp.rplsr<-sales.rplsr.dcv$optcomp

sales.rplsr<-prm(train.l$FinancialD,train.l$Response,a=ncomp.rplsr,

opt="median", usesvd=T)

## PRMS

sales.prms<- my.prmsCV(V1~.,data=as.data.frame(cbind(

train.l$Response,

train.l$FinancialD)), as=seq(1,15,1), fun = "Fair",

probp1 = 0.95, hampelp2 = 0.975,hampelp3 = 0.999,

center = "median", scale = "qn", usesvd = FALSE,

numit = 100, prec = 0.01, plot=T)
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#Sparse Partial Least Squares

## SPLS

spls.par<-my.spls(x=train.l$FinancialD, y=train.l$Response,

fold=10,eta=seq(0,0.9,0.1), K=seq(1,15,1))

sales.spls<-spls(x=train.l$FinancialD, y=train.l$Response,

K=spls.par$K.opt, eta=spls.par$eta.opt)

## SPRMS

sales.sprms<-my.sprmsCV(V1~.,data=as.

data.frame(cbind(train.l$Response,train.l$FinancialD)),

as=seq(1,10,1), etas=seq(0,0.9,0.1),

nfold = 10, fun = "Fair", probp1 = 0.95, hampelp2 = 0.975,

hampelp3 = 0.999, center = "median", scale = "qn",

plot = TRUE, numit = 100, prec = 0.01, alpha = 0.15)
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