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Abstract

In clinical treatment, a variety of data is collected to assess a patient’s condition and
determine necessary interventions. The common practice is to periodically observe a se-
lection of features and compare these measurements to defined thresholds. The question
arose, if there is a benefit in considering not only the newest updates of features, but
taking prior observations into account as well. To examine possible advantages, a dataset
at the Lorenz Böhler intensive care unit was collected, where the progression over time
of biomarker levels of trauma patients were documented. Motivated by a patient moni-
toring, this work deals with the problem of classification for this longitudinal data. The
dataset demands a classification based on knowledge of a positive class only, hence it was
approached by a one class classification. Further, the classifier has to deal with both, the
unbalanced data as well as its updating nature. Based on a linear mixed effects regres-
sion model, characteristics of the class of survival patients are estimated. Deviations of
observation from this estimations are penalized and evoke a negative classification. The
mixed model approach allows not only for estimating class characteristics, but further
features, e.g. it can expand the classification by a visual support. The gold standard
method of brain injury assessment for trauma patients is used to benchmark the pro-
posed longitudinal classifiers. Different views on evaluation show slight improvements to
the benchmark, which however are in conflict with additional effort.

Zusammenfassung

Bei der klinischen Überwachung wird eine Vielzahl an Daten erhoben, anhand derer der
Zustand eines Patienten und notwendige Behandlungen bestimmt werden. Ausgewählte
Biosignale werden in periodischen Abständen gemessen und mit kritischen Werten ver-
glichen. Es stellt sich die Frage, ob eine Berücksichtigung vorangegangener Messun-
gen einen Informationsgewinn gegenüber einer Bewertung, welche ausschließlich auf den
neusten Beobachtungen basiert, darstellt. Zu diesem Zweck wurde ein Datensatz in der
Lorenz Böhler Intensivstation erfasst, welcher die zeitliche Entwicklung von Biomarker-
Werten von Trauma-Patienten enthält. Die vorliegende Arbeit beschäftigt sich mit der
Klassifikation dieser Longitudinaldaten. Der Datensatz erfordert eine Klassifikation, die
auf Kenntnis von nur einer der auftretenden Klassen basiert, einer sogenannten One Class
Classification. Diese muss sowohl mit den unterschiedlichen Beobachtungszeiträumen der
Patienten, als auch mit der periodischen Neuerhebung der Merkmale umgehen können.
Anhand eines gemischten linearen Regressionsmodells werden die Charakteristika der
überlebenden Patienten geschätzt. Abweichung von diesen zu gemessenen Werten können
- in Abhängigkeit ihres Ausmaßes - zu einer negativen Klassifikation führen. Neben der
Schätzung der Klassen-Charakteristika dient das gemischte Modell weiteren Vorteilen,
wie z.B. einer visuellen Hilfestellung zur Bewertung eines Patienten. Zur Auswertung
der vorgeschlagenen Klassifikation dient die derzeitige Standardmethode zur Bewertung
von Schädel-Hirn-Traumata, welche auf der jeweils aktuellsten Messung eines bestimmten
Biomarkes basiert. Die longitudinale Datenauswertung konnte die Ergebnisse der (sehr
einfachen) Standardmethode teilweise übertreffen, jedoch zum Preis eines erheblich grö-
ßeren Aufwands.
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1 Introduction

Monitoring of patients in clinical treatment involves a variety of different kinds of data.
Features such as sex, weight, blood pressure, heart rate, oxygen saturation etc. are widely
understood and contribute to the physician’s assessment of a patient’s health status. An
educated and experienced physician takes all this information as well as their influences
on each other into account and bases his/her further actions on them. This applies to
every stage of treatment spanning from first aid over emergency treatment to intensive
care. In the latter anyhow, a patient’s monitoring contains a much broader sampling of
body signs besides the already mentioned. Additional informations such as continuous
EKG observations, blood analyses, injury scales etc. are collected. The hope behind
this broad collection of data is to sharpen the physician’s knowledge about the patient’s
health status and deliver fast and reliable alarming systems for necessary interventions.
Considering the raw data in form of numbers, charts and tables tends to be an unpleasant
task and implies the dangers of missing non-obvious phenomena and correlations between
different features. This is why it is important to develop methods to analyze and sum-
marize all available data to support physicians in their decisions.

The following thesis deals with the task to classify intensive care patients during clinical
monitoring, based on the analysis of a combination of categorical and periodically mea-
sured data. To do this, a data set at the Lorenz Böhler intensive care unit was collected,
where 103 patients under intensive care were observed. The data consist of clinical in-
formation as well as levels of biomarkers, which were observed every 24 hours since the
beginning of treatment and until release of intensive care or decease. This mixture of a
cross sectional sample (i.e. the patients) with a time series for each individual (i.e. each
patient’s biomarker levels over time) is referred to as longitudinal data. The goal is to
assess the health status trough

• a combination of the most useful features

• the exploitation of an individual’s ’history’, meaning the use not only of the newest,
updated observations of biomarker levels but also of the prior ones

The gold standard in clinical practice to screen trauma patients for traumatic brain in-
juries (TBI) is to measure the s100 level (a biomarker sensitive to brain injuries) and
compare the observations to a critical threshold. This neglects the prior observations as
well as other features sensitive to brain injuries (e.g. other biomarkers). Further it uses
one threshold for every patient, independent of age, sex, weight, length of treatment etc.
Considering the longitudinal data trends of features enables us to analyse the changes over
time in a patient’s condition. Incorporating individual specific data allows us to tailor
the thresholds/cutoffs to the current situation rather than declaring a universal reference
value. With a constant monitoring of a combination of thoroughly selected features it
is possible to deliver an automatized decision support system that can be extended by
graphical visualizations of a patient’s condition.
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To get there, we will at first take a closer look at the dataset (chapter 2). We will highlight
its important features and explain the crucial observations with respect to the classifi-
cation process. In chapter 3 we will explain all the important parts of the classification
in detail. We aim for an assessment of a patient’s health status by assigning him/her to
either a positive or a negative class, i.e. the survivors/non-survivors. A common practice
to do this is to estimate the distributions of occurring classes and check each patient for
resemblance. But as we will see, our situation requires a slightly different approach called
one class classification (OCC). Our dataset makes it impossible (or at least inaccurate)
to estimate the negative class’ distribution, so the strategy will be to estimate the char-
acteristics of the positive class only and check every patient for deviations.
The longitudinal nature of the data has to be taken into account when estimating class
characteristics as well as in the interpretation and evaluation of the models and results.
Chapter 4 explains the choice of parameters, the selection of the optimal features and
ways to evaluate the predictions. The consecutive observations of biomarker levels lead
to consecutive classifications and since we imagine a clinical monitoring during intensive
care treatment, early predictions should be as reliable as possible. Further we are dealing
with asymmetric misclassification costs, meaning a positively classified negative case is
more severe than a negatively classified positive. Chapter 5 illuminates different views
on the results of various models and interprets them. In chapter 6 we will conclude the
results.

All graphs and numerical data analyses were computed with R 3.1.1. The implemented
codes as well as a list of used R packages can be found in the appendix.
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2 The Dataset

In the following chapter we will give a detailed view at the dataset collected at the Lorenz
Böhler intensive care unit (ICU). It consists of 103 patients which have been in treatment
due to multiple traumata and/or traumatic brain injuries. Six biomarkers where recorded
subsequently every 24 hours after the first measurement:

• s100 (µ/l), gfap (µg/l), nse are TBI specific biomarkers; s100 is currently the gold
standard to assess brain damage of emergency patients

• il (pg/ml), crea (mmol/l) are specific to inflammatory symptoms of an organism

• pct (ng/ml) is a biomarker sensitive to infections of bacterial origin.

So the data consists of injury and inflammatory/infection specific biomarkers. An ideal
classifier should incorporate both symptoms in its decision.
For roughly a quarter of patients nse measurements are absent, for a few patients single
observations of different markers are missing at random. For 73 patients the data con-
tains a positive or negative diagnose of a septic shock. Further every patient is assigned
to a TBI injury scale reaching from 1 to 3 with decreasing severity.
The outcome of every patient’s treatment was recorded as well, we separate them into
two classes. The positive class, the survivors, denotes the patients which were released of
intensive care when considered fit. These amount to approximately three quarters of all
recorded patients. The remaining quarter passed away during treatment and form the
negative class or the non-survivors.

What makes this dataset particularly interesting are the consecutive observations of
biomarker levels. In contrary to a sample of a feature at one point in time on a
number of individuals (i.e. cross sectional data) or observations of one individual over
some time (i.e. time series data) the data consists of the mixture of theses two types,
called longitudinal data. Further the data is unbalanced, i.e. the observation times differ
from individual to individual.
As [Diggle et al., 1994] point out in their introduction, the advantage of longitudinal data
lies in the ability to analyse changes over time. If there are correlations of changes of fea-
tures over time and the change of a patient’s condition, longitudinal data lets us examine
theses changes - which then can serve as indicators for complications.

2.1 Graphic Exploration

Every patient was observed at least 3 times, the longest time span is 22 days. Figure
2.1 shows boxplots of days under observation separated for the two classes. As we would
expect, the mean length of ICU stay of a deceased patient is significantly less than a sur-
vivor’s, but still the boxes overlap to a great extent. This is important, since a dataset
were a patient’s outcome strongly depends on the length of stay alone would bias our
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results. Also we conclude that it will be of great interest to predict a patient’s condition
as early as possible - while keeping the predictions reliable.

Figure 2.2 depicts the progression of the six biomarkers against days post trauma (dpt).
Every trajectory represents one patient, the curves are separated into the two classes
survival and non-survival. Here one can already examine the trajectories for noticeable
trends and promising biomarkers. The first three, pct, s100 and gfap for instance show a
clear distinctive behaviour in the different classes. The survival curves are decreasing in
spite of high first measurements, while some of the non-survival curves increase after a
while. This is especially striking for s100 and gfap. For survivors a strong reciprocal trend
similar to an exponential decay can be observed. Some non-survivors show quadratic and
other non-linear time-trends. Not every marker appears to be as promising as s100 or
gfap, such as il, where differences between the positive and negative class are less obvious.

A subdivision not only into positive and negative class with respect to survival, but a
further separation into subclasses with positive and negative diagnose on septic shock,
reveals another interesting and important property of the data. Patients without sepsis
diagnose are neglected for these plots. Figure 2.3 shows the additional subdivision. The
graphs for s100 and gfap are of special interest. Here we can obtain idiosyncrasies in the
non-survival subclasses ’septic’ and ’non-septic’. s100 levels of non-survivors without a
septic shock appear to be very similar to the s100 levels of those who survived. But for
septic non-survivors one can observe a strong increase. A similar phenomenon can be seen
in gfap concentrations. As mentioned above, these markers are brain-injury specific. We
obtain deceased patients with high s100 /gfap levels (bottom right in the corresponding
graphs), those are the ones who probably died of TBI. The top right trajectories of
s100 /gfap - the septic non-survivors - are inconspicuous, those patients most likely died
of a septic shock.
This leads to two insights. First, a classifier that should determine the health status of a
patient has to incorporate markers which are specific to different symptoms. It is desirable
to not only detect brain injuries but other potential complications as well. Second, while
we can expect a normal behaviour of different biomarkers for a healthy human, reasons
for complications or decease can be diverse. This diversity transfers to the characteristics
of biomarker curves as it can be observed in s100 /gfap non-survival curves. This is
strong evidence that the non-survivors are to be subdivided in two or more subclasses.
Estimating the characteristics of these subclasses would require a much broader sample
and is likely to be rather inaccurate. This is a key factor for a classification in terms of
a one class classification, as discussed in section 3.2.

Figure 2.4 helps to examine the value of the TBI injury scale, which is recorded for each
patient. With group 1 - 3 we denote patients with injury scales of 1 - 3, correspond-
ingly. The graphs show a separation of survivor curves with respect to the TBI injury
scale. We are looking for differences in the subclasses that have to be incorporated in
the classifier later on. In order to get a clearer view, the limits of the y-axes are chosen
manually, large values which skew the picture lie outside of the frames. For s100, gfap,
il and crea, no significant differences can be observed. However, pct levels of group 1
and group 2 patients seem to be slightly increased compared to group 3. In group 2, il
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Figure 2.1: Boxplots of days of observation for positive and negative class.

levels tend to be higher than in the other two groups. Of course one has to be careful
with observations like that. Roughly 50% of the recorded patients belong to group 1,
40% to group 2 and the remaining 10% form group 3. So the sample size of group 3
is significantly smaller that the others, which makes it problematic to determine typical
phenomena. Furthermore, often one is tempted to detect patterns where there aren’t any.

As mentioned, it is clinical practice to consider only the current observations of biomarker
levels. Figure 2.5 depicts boxplots of the measurements over the first 15 days post trauma
for the two classes and should show the discriminatory power of current observations. To
get a clearer picture, the marker values were transformed via log(marker + 1). The
graphs confirm some of the prior observations. gfap and s100, especially at the beginning
of observation, are significantly higher in the negative class. Also pct and nse levels show
this trend, but in a lesser extent. What is remarkable is that il levels - which didn’t show
striking differences in the prior considerations - develop a rising distinctive behaviour
after about 5 days. Again we will see later, if this helps to improve classifications. The
less promising marker in this view is crea, where nearly all boxes overlap to a great extent.
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Figure 2.5: Boxplots of biomarker concentrations over time, separated for survivors and non-survivors.
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3 Methods

The classification process and its evaluation consists of various elements. In the following
section these elements and their theoretical background will be explained. We will give
a brief overview about the procedure and then discuss all the parts in detail.

3.1 Classification Process

When a trauma patient is delivered to intensive care, various body signs are collected
and analysed to check the patient’s health status. The goal is to improve this analysis
and provide a reliable decision support for the physicians. In the following, we imagine
an optimal selection of features such as patient specific data, e.g. sex, age, weight, injury
scales etc., and periodical observations of various biomarkers.
Unfortunately, our dataset consists besides of ’continuous’ biomarker levels only of a
traumatic brain injury (TBI) scale and an inaccurate sepsis diagnosis. So due to the lack
of better patient specific data, we focus on the biomarker concentrations and the TBI
scales. Any other information can easily be included in the model, compare section 3.3.
The classification process can be summarized as follows:

• Every patient’s biomarker levels are surveyed in given intervals and the data is
updated periodically.

• The measured progressions of marker levels over time are compared to expected
biomarker curves, which are computed for every patient.

• Deviations from measured to expected curves are penalized with respect to their
intensities; thus not only current observations are compared to a critical value, but
also a patient’s marker history is taken into account; also there doesn’t have to be
a ’global’ critical value but an expected curve for each patient given he/she belongs
to the positive class.

• With every update a probability of membership for the positive class is assigned
to the patient. A cutoff determines if the patient is to be classified as a positive or
negative case.

• This classification serves as a monitoring of the patient’s health status and supports
the physician’s further actions.

• Observed marker levels and expected survival curves can serve for additional visual
support.

The expected survival curve, mean trajectory or the population mean, meaning the trajec-
tory of biomarker levels to be expected, given the patient belongs to the positive class,
is crucial. Deviations from this mean curve determine a patient’s classification. It is
estimated through a mixed effects regression model (section 3.3). The response variable
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is the biomarker level, explanatory variables can be functional expressions of time and
patient specific data. The regression model then delivers the expected survival curve and
variance in terms of a multivariate random variable. This allows to calculate a weighted
distance between observed marker levels and expectation, which can be linked to a proba-
bility of the observation under the assumption of normal distribution with the calculated
mean vector and covariance matrix (section 3.5).

As explained in chapter 2, we are dealing with two classes - the negative and the positive
class. We can estimate the positive class’ characteristics, but with the negative class we
have to deal in another way. A better knowledge about the non-survivor class would allow
an estimation of an expected non-survival curve as in the case of survivors. However this
would require a much broader sample of negative cases, which we do not have. This is
why we define a negative case as every case that is not positive and apply a one class
classification, see section 3.2.

The same data set is used for both fitting the mixed model and testing the classifier’s
performance. It is not desirable to classify a patient based on a fitting where the patients
data was included. To avoid this overfitting, we divide the dataset into ten folds of ap-
proximately same size with a similar survivor/non-survivor ratio in each fold. To classify
one fold we use the remaining nine as data to fit the model. This process is repeated
for each fold. This so called cross validation (section 3.6) avoids an advantage for the
classifier which it would not have in reality, hence would bias the results.

Some data points are missing at random, for a bunch of patients the data lacks of nse
observations. The mixed model approach to estimate the survival mean delivers a con-
venient way to impute these missing biomarker levels. With the mixed model fit we can
declare the most probable values for missing biomarker levels (section 3.7)

To assess the different classifiers’ performances we use the receiver operator characteristic
(ROC) curve and its area under curve (AUC) as described in section 3.8. An AUC of 0.5
denotes a classification at random, while a value of 1 would describe the perfect classifier.
This calculation can be done with every update to check the benefits of a longitudinal
analysis. Further considerations on evaluation are discussed in chapter 4.

A visual support can be delivered through confidence intervals, which are not trivial
for longitudinal data. Through conditional expectation it is possible to draw confidence
intervals in longitudinal graphs, but one has to be careful with their interpretation (section
3.9).

3.2 One Class Classification

We will briefly point out the difference of a multi class and a one class classification
as discussed in detail in [Pimentel et al., 2014]. Classification describes the problem of
assigning data to pre-defined groups. Given a new object, a classifier has to decide to
which group (or class) it belongs. This decision is based on the characteristics of the
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occurring classes, where new data is assigned to the class with the most resemblance.
The probabilistic approach to determine these characteristics is to assume an underlying
probability distribution for each class and estimate these distributions with a training set,
i.e. sampled data with known class labels. In a multi class classification, new data is then
assigned to the class with the highest probability with respect to the class distributions.
A problem occurs when (1) one class is sampled well but others are under-sampled or
(2) there is evidence that a class consists of subclasses with discriminative distributions.
A popular example of the first problem is the survey of a machine, where faults should
be detected. While it is rather easy to observe the normal operating conditions, reasons
for machine fault are diverse. To get representative data, one would have to destroy the
machine in every possible way, an impossible or at least infeasible task (a scenario which
can easily be adopted for a human body). The second problem we observed in chapter 2,
figure 2.3, where we found idiosyncrasies in the non-survival patients. Estimates which
rely on underrepresented or mixed training data will be inaccurate or biased.
In our dataset we oppose both of the mentioned problems, an under-sampling and id-
iosyncratic subclasses of the negative class. So we can’t rely on estimates of the negative
class based on our training data, which is why we approach the task of classification
via a one class classification (OCC). In spite of better knowledge, all non-survivors are
grouped into one negative class and every negative case is defined by being non-positive.
Now instead of both characteristics, only the positive class’ distribution is estimated.
The classifier checks the deviation of this distribution for every new data and a threshold
determines which samples are considered as outliers, i.e. negative cases.

3.3 Linear Mixed Effects Models

The estimation of class distributions can be achieved through a mixed effects regression
model. For a good understanding of the linear mixed effects model (MEM), we will start
with an easy example of a linear regression model and build the MEM out of it. The
following definitions and notations are based on [Verbeke and Molenberghs, 2000], chap-
ter 3, the incorporation of multiple response variables in a MEM follows the approach of
[Morrell et al., 2012].

In ordinary linear regression, an entity is assumed to be dependent on one or more quan-
tities. The entity is called response variable, or just response, and emerges trough some
relation with the so called explanatory variable(s). Another terminology for response and
explanatory would be dependent and independent variable, as known from real functions.
They both describe the dependence of one variable upon others. A simple example of a
linear regression model would be

y = β0 + β1x+ ε (3.1)

where the regression coefficients β0 and β1 are real numbers and ε is a normally dis-
tributed random variable with mean 0 and variance σ2, ε ∼ N(0, σ2). With ŷ = β0 + β1x
we denote the estimated value for the data x. Thus the residual unfolds to ε = y − ŷ.
Given a training data xi and yi, i = 1 . . . N , one can calculate the optimal values for β0
and β1 under certain conditions, e.g. such that the sum of squared residuals

∑N
i=1 ε

2
i with
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εi = yi − ŷi reaches a minimum.
In our situation y could for example be a patient’s s100 level upon arrival and x the
elapsed days since a trauma occurred. β0, the intercept, could then be interpreted as a
baseline for s100, β1 would describe the increase or decrease of s100 level per day post
trauma. Given a training data we could calculate the optimal βi and simulate s100 levels
with the model.

This linear regression can be expanded to a multiple regression in terms of multiple
explanatory variables. Considering the shapes of the marker curves in figure 2.2 this
seems necessary, since a model of the form (3.1) can only explain linear phenomena. So
it will be inevitable to include non-linear expressions of time into the model. E.g., the
model

y = β0 + β1t+ β2e
−t + ε (3.2)

defines a linear model that is able to account for a baseline, i.e. the intercept β0, linear
effects described by β1 and an exponential decay determined by β2, dependent on the
time t. So the model (3.2) is far more flexible than model (3.1).

If y = (y1, y2, . . . yn)T is a vector of observed response variables at times t1, t2, . . . tn, model
(3.2) can be written in matrix notation

y = Xβ + e (3.3)

where β = (β0, β1, β2)
T is a 3 - dimensional vector of the 3 regression coefficients. X is a

n× 3 matrix containing the explanatory variables

X =


1 t1 e−t1

1 t2 e−t2
...

...
...

1 tn e−tn

 (3.4)

and e is an n - dimensional vector of residuals. Further on, we will consider the matrix
form of the regression model and allow for an arbitrary number of explanatory variables.

Every data contains unobserved phenomena such as individual specific effects, measure-
ment uncertainties, laboratory specific effects etc. To account for these unobservable
effects we can extend the model (3.3) to a mixed effects model. We assume dependencies
besides the ones explained by the explanatory variables in X, so we add another matrix
of explanatory variables Z and multiply it with a random vector b = (b1, b2, . . . , bq)

T .
The univariate mixed model is then written as

y = Xβ + Zb+ e (3.5)

In this context the columns of X are called the fixed effects explanatory variables while
the columns of Z are called random effects explanatory variables, hence the name mixed
effects model. The regression parameters β are named fixed effects parameters, b are the
random effects parameters or simply fixed / random effects.
Z is a n × q matrix which can be a submatrix of X, equal to X or contain additional
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terms not included in X. The random effects are treated as a multivariate normal random
variable b ∼ MVN(0, D̃) with mean 0 and an unstructured covariance matrix D̃. They
allow for varying effects for each individual. e is also multivariate normal with mean 0
and covariance matrix Σ, e ∼MVN(0,Σ).

The mixed effects model (3.5) is univariate with respect to its response variable. In our
context it only allows us to estimate a single biomarker per model. Since we want to
incorporate multiple markers into the model, we have to transfer it into a multivariate
setting.
Consider a patient i with ni observations, so for each biomarker we have ni measurements.
Let Yi = [yi1, yi2, . . . , yim] denote the response matrix for a patient i, where each column
yik contains the measurements for the biomarker k, k = 1, . . . ,m (when we consider m
markers). Correspondingly let Ei = [ei1, ei2, . . . , eim] be the error matrix defined in the
same manner. In the following, yi and ei are the stacked ni ·m vectors of the columns of
Yi and Ei, respectively.
For every marker k there are two matrices X̃ik ∈ Rni×p∗ and Z̃ik ∈ Rni×q∗ with explanatory
variables for fixed and random effects, given there are p∗ fixed and q∗ random effects
for this marker. Let Xi = diag(X̃i1, . . . , X̃im) and Zi = diag(Z̃i1, . . . , Z̃im) denote block
diagonal matrices for each patient i. Then we can formulate a ’multivariate’ mixed model
as

yi = Xiβ + Zibi + ei i = 1, . . . , N, (3.6)

where N is the number of recorded patients. The real vector β contains the fixed effects
for all markers, the random vector b contains the random effects correspondingly.
For a better understanding we will take a brief look at a small model in detail. Consider
a patient i with ni observations of the two biomarkers s100 and gfap (m = 2). Then
model (3.6) can be written as

s100it1
...

s100itni

gfapit1
...

gfapitni


=


X̃i1 0

0 X̃i2





β1
...
β p

2

β p
2
+1

...
βp


+ (3.7)


Z̃i1 0

0 Z̃i2





bi1
...
bi q

2

bi q
2
+1

...
biq


+



ei1
...
eini

eini+1
...

eini·2


(3.8)

when we assume the same number of fixed and random effects for s100 and gfap. The
parameters p and q denote the overall number of fixed/random effects.
This representation shows how the model works. Through the block structure of the
model matrices X and Z, the corresponding β and bi entries only act on the submatrices
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responsible for the different markers. We still deal with a univariate model in the sense
that the response is a vector as in (3.5), but with the block diagonal structure of the
model matrices we incorporated the multivariate nature fo the data. The residual vector
divides into residual subvectors for each marker.

The model matrices X and Z contain the explanatory variables. A submatrix X̃ik con-
sists of ni rows corresponding to the ni measurements of marker k. The columns declare
the explanatory variables. These can be continuous values such as days post trauma dpt
and functional expressions of dpt. An intercept as in model (3.1) is achieved by adding a
column of ones to X̃ik ((3.4) is an example for such a submatrix). Any other explanatory
variables could be added as well, such es sex, age, injury scales etc. Metric or ordinal
data can be implemented directly. Group memberships are realized through dummy vari-
ables, where memberships are coded with zero or one. E.g. if we would have information
about the patients’ gender, every submatrix of Xi would include two columns represent-
ing ’male’ and ’female’. For male patients the ’male’ column would consist of ones and
the ’female’ column of zeros, for women vice versa. The same holds for the matrices Z̃ik.

The fixed effects β are the same for every patient and account for effects which are
shared by the whole population. As we will see they describe the population mean of the
response. In contrary, the random effects bi are patient specific and carry unobservable
phenomena. That is why we have to treat them mathematically different, which is why
they are defined as a random vector. In summary we deal with the random vectors

bi ∼MVN(0, D) and ei ∼MVN(0,Σi). (3.9)

D is an unstructured covariance matrix that allows for correlations between the random
effects. For simplicity we assume the residual covariance Σi = σ2Ini·m to be a diagonal
matrix with a single parameter. This implies that Σi depends on the patient i just by its
dimension. Under this assumption, errors are uncorrelated for every observation.

If we assume a mixed model (3.6), we infer a distribution of the response variable yi.
From the linearity of the expected value and E(Xiβ) = Xiβ, E(Zibi) = ZiE(bi) = 0 and
E(ei) = 0 it follows that

µi := E(yi) = E(Xiβ + Zibi + ei) = Xiβ. (3.10)

Similarly, for the variance of yi it holds that

Vi := var(yi) = var(Xiβ + Zibi + ei) = ZT
i DZi + Σi (3.11)

since var(Xiβ) = 0, var(Zibi) = ZT
i DZi and var(Ei) = Σi. Thus, yi can be interpreted

as a multivariate normal vector

yi ∼MVN(Xiβ, Z
T
i DZi + Σ) =: MVN(µi, Vi). (3.12)

This is the so called marginal distribution of the model. Note that some parts contain an
index i to emphasise the dependence on the patient’s data. Xi and Zi are the matrices
of explanatory variables, i.e. observed objects such as days post trauma and group mem-
berships. D is the covariance matrix of the random effects and allows for correlations
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Figure 3.1: s100 trajectories of survivors (grey) and estimated population mean (black).

between the markers and points in time. With (3.12) it is possible to calculate the ex-
pected survival curve and its variance for every patient at any time, given the assumption
that he/she belongs to the positive class. If (3.6) is fitted with a training data, we can
estimate the expected survival curves through the population mean (3.10), hence Xiβ.
An example is given in figure 3.1. It shows the s100 trajectories of the survival patients
in grey, the black thick line depicts the estimated mean survival curve gained form a
model of the form (3.6) with model submatrices as in (3.4). Here one can obtain how the
fixed effects β contribute to the population mean.

Since, as explained in the prior chapter, we deal with an under represented negative class,
it is not feasible to estimate the negative class’s marginal distribution. That is why our
training data will only consist of the positive cases. What we gain is an estimation of
biomarker curves under the assumption that the patient belongs to the positive class,
thus is a survivor. We can then compare measured observations with expected biomarker
levels on the basis of the assumed distribution (3.12). We need to define a degree of
deviation of expectation and set a critical value for this degree as explained in section
3.5. Based on this threshold we classify a patient as survivor or non-survivor.

3.4 Parameter Estimation

The estimation of the marginal model (3.12) is based on fitting observed data to a lin-
ear mixed model of the form (3.6). To do this, we use the R - routine lmer contained
in the lme4 package. The (very technical) documentation of this routine can be ob-
tained in [Bates et al., 2014], this section will focus on the essential ideas as discussed in
[Verbeke and Molenberghs, 2000], chapter 5.
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Recall that the marginal mean and covariance of yi are µi = Xiβ and Vi = ZT
i DZi + Σi.

Let α denote the covariance parameters and θ = (β, α) the vector of all parameters to be
estimated. Estimation of θ is based on the maximum likelihood (ML) approach

LML(θ) =
N∏
i=1

[
(2π)−

ni
2 |Vi(α)|−

1
2 × exp

(
−1

2
(yi −Xiβ)TV −1i (α)(yi −Xiβ)

)]
(3.13)

Observed data is plugged into this function, which is then maximized with respect to the
parameter vector θ to gain the maximum likelihood estimator, denoted by θ̂.
Note the dependency of Vi on α. If α is assumed to be known, the maximum likelihood
estimator β̂ of β conditional on α is gained by maximizing (3.13) and unfolds to

β̂(α) =

(
N∑
i=1

XT
i V

−1
i (α)Xi

)−1 N∑
i=1

XT
i V

−1
i (α)yobs (3.14)

Plugging (3.14) into (3.13) and maximizing with respect to θ yields the ML estimate θ̂
of the parameter vector.

As Verbeke and Molenberghs (2000) point out, an estimation of the covariance based on
an estimation of the mean (in this case the estimation of β) is biased. This bias can be
avoided as follows: Let

y = Xβ + Zb+ ε (3.15)

be the model gained when stacking all vectors yi, bi, εi as well as the matrices Xi. Z then
is the block diagonal matrix of all Zi. The marginal distribution of y can be obtained
as in (3.12), with mean Xβ and a covariance V (α). Now let A be an arbitrary full-rank
(n × (n − p)) matrix (p is the total number of fixed effects) where the columns of A
are orthogonal to the columns of X. Then the transformation u = ATy follows a normal
distribution with mean zero and covariance ATV (α)A. By the transformation, the impact
of β on the estimation of V (α) is eliminated. It can be shown, that the likelihood function
of u is equal to

L(α) = C

∣∣∣∣∣
N∑
i=1

XT
i V

−1
i (α)Xi

∣∣∣∣∣
− 1

2

LML(β̂(α), α) (3.16)

where LML on the right hand side corresponds to the likelihood function (3.13). The
constant C does not depend on α, further note how the first term in (3.16) is independent
of β. These results are used to define the restricted maximum likelihood (REML) function

LREML(θ) :=

∣∣∣∣∣
N∑
i=1

XT
i V

−1
i (α)Xi

∣∣∣∣∣
− 1

2

LML(θ) (3.17)

which is maximized to estimate the parameter vector θ = (β, α). The parameter vec-
tor θ̂REML, which maximizes this function, is called the restricted maximum likelihood
estimator.
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3.5 Mahalanobis Distance

The key idea of section 3.3 was to find a way to estimate the mean survival curve. Now we
need a method to compare measured data with that estimation, which we will accomplish
with the Mahalanobis distance (MD). The Mahalanobis distance is a weighted distance
which can be used for an assessment, if measured data occurs under a given normal
distribution. It is defined through

MD2(y) = (y − µ)TΣ−1(y − µ) (3.18)

with given mean µ and covariance Σ.

To show how this distance works it is useful to consider a bivariate normal distributed
example. Let the two-dimensional random vector y be distributed as

y ∼MVN

([
0
0

]
,

[
1 0.8

0.8 1

])
(3.19)

In figure 3.2, this distribution is illustrated by drawing contour lines of its density in the
y1−y2 plane. The mean (0, 0)T obviously has a MD of zero. Moving away from the center,
the MD ascends, where every ellipse represents a set of points with equal Mahalanobis
distances. Although the point A is closer to the center than B in terms of Euclidean
distance, its MD is larger, which we know since B lies within and A outside the 95%
tolerance region. This definition of distance takes the elliptical shape of the distribution
into account. When the covariance matrix is the identity I2, the Mahalanobis distance
degrades to the common Euclidean distance.
An important feature of the Mahalanobis distance is its distribution. When an n -
dimensional random vector is normally distributed, then MD2 follows a χ2

n distribution
with n degrees of freedom,

y ∼MVN(µ,Σ)⇒MD2(y) ∼ χ2
n (3.20)

(a proof of this result can be obtained in [Bilodeau and Brenner, 1999], chapter 4). Ex-
amining a sample under the assumption of an n-dimensional normal distribution, we can
thus define a quantile q of χ2

n as cutoff and consider samples with a squared MD greater
than q as outliers. Going back to our example, the left side of figure 3.3 shows a random
sample under (3.19) with a 90% tolerance ellipse. Points with MD2 > χ2

2;0.9 ,where χ2
2;0.9

denotes the 90% percentile of the χ2
2 distribution, are depicted by ’◦’ and defined as out-

liers. The right hand side shows the samples’ squared Mahalanobis distances compared
with the χ2

2 distribution. As we can observe, samples with MD2 > q0.9 coincide with
samples outside of the ellipse.

Recalling the aim of this section, given an expected survival curve, deviations of mea-
sured biomarker data should be assessed and penalized, depending on their intensities.
The Mahalanobis distance delivers exactly that. Assuming a normal distribution of the
biomarker curves - with known (estimated) mean and variance - , measured data that
lies far away from expectation corresponds to a high MD2. But we oppose some difficul-
ties. An MD is a distance measure in an n-dimensional space. In our case this can be
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Figure 3.2: Contour lines of density of (3.19) of a two-dimensional normal distribution;
points A and B with different Mahalanobis distances where MD(A) > MD(B).

interpreted as follows: given n measurements, the MD declares a ’skew’ distance in the
n-dimensional space of all possible biomarker concentrations, where higher distances cor-
respond to lower probabilities that the observations occur under the assumption (3.12).
But there is a problem. Since we deal with an unbalanced dataset with respect to ob-
servation times per patient, we are confronted with different lengths of marker vectors
reaching from 3 to 22. Additionally, we want to update a patient’s data with every
’new’ observation, meaning for n observations we deal with vectors of lengths 1, 2, . . . , n.
Further the length of the marker vectors multiply with the number of markers used for
the model (consider the left hand side of (3.7)). Up to six marker vector with lengths
form 1 to 22 leaves us with a span of 1 to 22× 6 = 132 different dimensions. Note that
the varying dimensions - which origin from varying observation times - are reflected in
the distribution (3.20) in the degrees of freedom. What we need is a reasonable way to
compare Mahalanobis distances that originate from spaces of different dimensions.
Consider a patient i with observed marker levels yi for a marker k at the times t1, t2, . . . , tni

.
Let X(t1, t2, . . . , tni

) be the model matrix of (3.6) with the patient’s data at the time
points plugged in. Further let β be the fixed effects regression parameters and Vi the
covariance matrix as in (3.11). To classify this patient we calculate the expected marker
level through µi = X(t1, t2, . . . , tni

)β. We then determine the consecutive squared Maha-
lanobis distances

MD2
t1

:= (yt1 − µ1)
TV −111 (yt1 − µ1) (3.21)

MD2
t2

:=

([
yt1
yt2

]
−
[
µ1

µ2

])T [
V11 V12
V21 V22

]−1([
yt1
yt2

]
−
[
µ1

µ2

])
(3.22)

...
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and so on. The theoretical distributions of the squared Mahalanobis distances are
MD2

tn ∼ χ2
n, where n denotes the length of the observation vector. Let fn be the proba-

bility density function of the χ2 distribution with n degrees of freedom. Then for every
observation vector yt1 , yt2 , . . . , ytn the probabilities of the Mahalanobis distances MD2

t1
,

MD2
t2

, . . . , MD2
tn can be calculated through f1(MD2

t1
), f2(MD2

t2
), . . . , fn(MD2

tn), in
short

ytn ⇒MD2
tn ⇒ fn(MD2

tn) (3.23)

These probabilities can be compared regardless of the dimension of their corresponding
biomarker vectors. Mahalanobis distances with a probability below some cutoff are as-
sumed to origin from outliers. Theses outliers are considered as data that doesn’t belong
to the underlying distribution but rather to an unknown distribution denoting the nega-
tive class.

Before we move on, we want to give a brief summary of the process so far. Based on
a training set of positive cases - a sample of survival curves - a distribution (3.12) for
expected biomarker levels is estimated. Individual specific and cohort effects can be
incorporated in this distribution via the model matrices of the mixed model (3.6). Ob-
servations of new patients are compared to the estimated population mean by computing
their MD2 and corresponding probabilities under χ2. They are assumed to behave similar
to the training data, given the patient belongs to the positive class. High MDs correspond
to low probabilities that the patient’s data occurs under these assumptions, hence the
patient is to be classified as a negative case.
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3.6 Cross Validation

Since we have limited amount of data, we would like to use a maximum of patients to
contribute to the training data. We want to estimate the parameters of the positive class
only, so a nearby choice are all positive cases - the survivors - as training data. To classify
the negative cases this is the legitimate approach. To classify survivors anyhow we have
to be careful. Using a patient to estimate a population mean and then checking the
patient’s deviation from this mean gives the classifier an unfair advantage which would
bias the results. To avoid this overfitting we need to cross validate our results. In a
k-fold cross validation the data is divided into k folds. The model is then fitted with
k − 1 folds as training data and the remaining fold - the so called test data - is classified
based on this fitting. This procedure avoids overfitting, so the results are more reliable.
A typical choice for k is 10. Detailed considerations of cross validation can be obtained
in [Hastie et al., 2009].

In summary, for every classifier there are k + 1 mixed model fits. One for every fold
to classify the survivors and one to classify the negative cases. The choice of k = 10 is
common, however other values are possible. The approach where a maximum of data is
used is a leave− one− out cross validation where there are as many folds as individuals.
For 75 survivors this would mean there are 76 model fittings to be calculated. Since
computation costs can be quite intense this is no feasible solution during model selection.
This favours a k-fold cross validation.

3.7 Imputation

Some observations of the data are missing at random, for a quarter of patients there are
no nse observations. The few randomly missing samples are less severe, but if the absent
nse levels are not dealt with, all models which incorporate this marker lack of a big part
of training data. If these patients are neglected, also all their other marker curves are
neglected, thus a lot of information is thrown away. The mixed model can deal with
missing data with the use of the estimated distribution (3.12). If a model is fitted using
all available data - survivors as well as non-survivors - as training set, absent marker
levels can be predicted by Xβ, were X contains the available information (dpt, injury
scales or other patient specific data).

The missing values of the dataset at hand were imputed in such a manner. The explana-
tory matrix of the imputation model is the same as for model 5 described in chapter 4,
section 4.1.

3.8 ROC and AUC

A summary of a classifier’s performance is given with the receiver operator characteristic
(ROC) curve and its area under curve (AUC). To explain these in detail we need the
terms sensitivity and specificity for a predictor.
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Consider a set of patients to be classified as either survivors or non-survivors. Let TP
(true positives) denote the true positive cases, meaning patients who survived and are
classified as such. TN (true negatives) are the true predicted negative cases, i.e. non-
survivors with a negative prediction. FP (false positives) are non-survivors predicted as
survivors and FN (false negatives) vice versa. Then the sensitivity of a predictor - also
called the true positive rate - is defined as TP

TP+FN
. It can be interpreted as the proba-

bility that a positive case is recognized as such. The specificity - the true negative rate
- calculates as TN

TN+FP
and is the percentage of true predicted non-survivors. A perfect

test has 100% sensitivity and 100% specificity, in practice anyhow an increase of one will
lead to decrease of the other.

Sensitivity and specificity of a test depend on the classifier’s cutoff. If we set a high
threshold for a positive prediction we enhance the chances to correctly predict negative
cases, but we risk to assign a high number of positives to the negative class. Thus we get
high specificity and low sensitivity. If we lower the cutoff, chances to catch survivors rise,
while more non-survivors will be classified as positives as well, leading to lower specificity
and higher sensitivity. Typically there is a trade-off between these two parameters which
can be visualised as follows. Let the false positive rate (fpr) be 1 minus false negative
rate, so 1− specificity. Since we classify in terms of probabilities of memberships to the
positive class, every number between 0 and 1 represents a cutoff. For every cutoff the
sensitivity and the fpr = 1−specificity can be calculated. A cutoff of 1 (all patients are
classified as negatives) leads to sensitivity 0 and specificity 1, thus fpr is 0. A cutoff of
0 (only positive classifications) implies sensitivity 1 and specificity 0, fpr then is 1. If we
plot sensitivity against the false positive rates, the resulting graph is a path leading form
0 = (0, 0) to 1 = (1, 1) with every point corresponding to a cutoff. The rise of fpr (thus
the descend of specificity) causes a rise of sensitivity.
Such a plot is called the receiver operator characteristic (ROC) and can be used to asses
the quality of classifiers. A straight line from 0 to 1 determines a classification at random,
the closer the path is to the upper left corner of the unit square, the better is the classifier’s
performance.
To compare different classifiers we generate their ROCs and calculate the areas under
the curves, the AUCs. Since a straight line from the lower left to the upper right corner
denotes a random prediction, the AUC will be 0.5 while the perfect classifier has an AUC
of 1. A classifier with an AUC close to 0.5 is considered to be near to random, while
higher AUCs correspond to classifiers of higher prediction success. Figure 3.4 shows an
example of a ROC. The AUC, the area under the black curve, is 0.902. The grey, straight
line denotes a random classifier.

3.9 Conditional Confidence Interval

Our objective is to support physicians in their decisions in clinical practice. A classi-
fication as explained above can monitor a patient’s health status and induce necessary
interventions. But besides a strict classification, the model also enables us to deliver a
visual monitoring for a patient’s condition. The knowledge of mean survival curves and
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Figure 3.4: ROC curve of a classifier with an AUC of 0.902; the grey line denotes a classi-
fication at random, ever mark of the ROC corresponds to a cutoff.

variances for the biomarkers allows for a graphical display of desired marker concentra-
tions and anomalies. This comes down to drawing confidence regions for the biomarker
levels. Confidence regions for longitudinal data are somewhat troublesome. Note that
the marker vectors correspond to multivariate normal random vectors of different dimen-
sions. Also the updating nature of the problem - the constant patient monitoring - calls
for a special treatment of confidence bounds.

A possibility to depict confidence regions is what we call a conditional confidence interval
(CI). That is a CI that takes the updating nature of the monitoring into account, meaning
that we aim for a clinical monitoring system where the data is updated periodically. The
conditional CI uses the prior observations to deliver a prognosis of the marker levels for
the upcoming time period.

Consider the estimated distribution of a biomarker vector yi (which can include multiple
biomarkers)

yi ∼MVN(Xiβ, Z
T
i DZi + Σ) = MVN(µi, Vi). (3.24)

We remember that the matrices Xi and Zi are block diagonal matrices with submatrices
X̃ik and Z̃ik, k = 1, . . . ,m, where m denotes the number of biomarkers used in the model.
Every row of X̃ik corresponds to an observation time tj, j = 1, . . . , ni, the columns denote
the fixed effects explanatory variables. For every subset j1, j2, . . . , jh of 1, 2, . . . , ni, let
X(tj1 , tj2 , . . . , tjh) be the rows of the matrix Xi corresponding to the observation times
tj1 , tj2 , . . . , tjh . The same notation applies to Zi.

In general, if the normally distributed random vector y is partitioned as y = (y1, y2)
T and
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[
y1
y2

]
∼MVN(µ, V ) µ =

[
µ1

µ2

]
, V =

[
V11 V12
V21 V22

]
(3.25)

then the distribution of y1 conditional on y2 is also a multivariate normal distribution

y1|y2 ∼MVN(µ1 + V12V
−1
22 (y2 − µ2), V11 − V12V −122 V21) (3.26)

([Bilodeau and Brenner, 1999], chapter 5). Assume we have n measurements of different
biomarkers stacked in the vector y = y(t1, . . . , tn). We know the distribution of the sur-
vival curve (3.24), not only for n dimensions but for an arbitrary number of observations.
Thus we can calculate the mean and variance

µ = Xi(tn+1, t1, . . . , tn)β, Vi = Zi(tn+1, t1, . . . , tn)TDZi(tn+1, t1, . . . , tn) + Σ (3.27)

for the marker levels until tn+1. Through (3.26) we know the conditional distribution
y(tn+1)|y(t1, . . . , tn) of marker levels at time tn+1 given the observations y(t1, . . . , tn).

y(tn+1)︸ ︷︷ ︸
yet unobserved

|(y(t1, . . . , tn)︸ ︷︷ ︸
observed

) ∼MVN(µcond, Vcond) (3.28)

The conditional mean µcond of this distribution represents the expected marker levels at
tn+1 based on the prior n observations, the conditional covariance matrix Vcond contains
their variances as diagonal elements.

Based on these results it is possible to declare conditional confidence regions for the
(n+ 1)th observation of each marker. Considering the first n observations of all markers,
a 95% conditional confidence region for a specific marker at tn+1 is given as

(µcond − 1.96σcond, µcond − 1.96σcond) (3.29)

where σcond is the square root of Vcond (note that Vcond is not a matrix, but a scalar; for each
of the markers an individual conditional mean and variance (3.28) is calculated, so these
are univariate distributions). Such a conditional confidence interval can be obtained in
figure 3.5. The grey error bars represent the conditional mean and the confidence bounds
(3.29). Again, these are confidence regions in one dimension, one for each marker, based
on all the prior observations.

It has to be mentioned that one has to be careful with the interpretation of these confi-
dence bounds because of two reasons. First, since we assume a normal distribution, the
CIs are symmetric around the mean, which leads to negative lower confidence bounds of
marker levels. In figure 3.5, the lower bound is set to zero if it is indeed negative. Sec-
ond, these confidence regions determine the area where we would expect the curves to be,
given the prior observations and the assumption that the patient belongs to the positive
class. The left graph shows a desirable behaviour. Single measurements are outside of
the confidence region, the curves then descend to ’normality’. The right hand side shows
odd confidence bounds for the gfap trajectory. High observations at the beginning lead
to high conditional expectation. At the second measurement, the observed curve is below
the lower confidence bound, but that of course is not a bad sign, since it converges to the
desired survival mean. The upper confidence bounds are of more interest and relevance
than the lower ones.
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Figure 3.5: Patient trajectories (black), expected survival curve (green), conditional confi-
dence intervals (grey); error bars represent conditional means and 95% confi-
dence bounds.
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4 Model Selection

So far we introduced the process of longitudinal classification with updating data. In
the following, we will show how specific models are chosen and compared. A variety of
possible classifiers based on the upper approach emerge out of following considerations:

• best subset of features
The biomarker trajectories endorse the hope to distinguish potential non-survivors
form survival patients. Although some markers are more promising than others, it
is unclear which combinations of features lead to the best results.

• explanatory variables
The purpose of the mixed model is to find a functional explanation of the survival
curves for each biomarker. The power of the model to explain the observed curves
depends on the explanatory variables of the model matrices. These will be mainly
functional expressions of time, depending on which trends can be observed in the
trajectories.

• the classifier’s memory
The classifiers are designed to look ’into the past’, meaning to exploit prior obser-
vations as well as current. But should the classifier be able to ’forget’ after a while?
As we will see, classification quality improves when the classifier only considers a
few of the old observations instead of all available data.

These are model parameters which have different impacts on the classification results.
Further, when evaluating and comparing different models, we have to consider different
aspects:

• evaluation
One way to assess the performance of a classifier is to use the ROC/AUC as ex-
plained earlier. The longitudinal nature of the biomarker levels in clinical mon-
itoring leads to updated classifications with every new measurement, thus it is
important to consider the development of AUCs with progressing observation time.
Moreover, this can only be considered as one aspect of classification quality. Some
important information can’t be read out of these figures. How are the misclassifica-
tion rates? Are there more false negative or false positive predicted cases? We deal
with asymmetric misclassification costs, meaning false positives should be consid-
ered worse than false negatives.
How early does the classifier react? Predictions on the last day of clinical treatment
are of less use than earlier assessments.
How helpful are the classifications in forecasting health conditions? Can they serve
as a reliable warning system?

• cutoff
AUCs are calculated without the choice of a specific cutoff. Other aspects need to
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define a threshold which influences the upper criteria. The choice of a cutoff should
incorporate the asymmetric misclassification costs.

Considerations on feature selection are discussed in the upcoming section, different angles
on evaluation are shown in section 4.2.

4.1 Feature Selection

One of the main ’screws to adjust’ a classifier are the model matrices of the mixed model.
They are block-diagonal-matrices (recall section 3.3, especially example (3.7)), where the
number of submatrices corresponds to the number of markers used. Every submatrix
contains the explanatory variables of the respective marker. In the following we will use
the terms ’classifier’ and ’model’ interchangeably.
The selection of the best models starts with the determination of the explanatory vari-
ables. For each marker, these should capture the behaviour of the trajectories of figures
2.2 to 2.4. A possible approach would be to try various functional expressions of the
days post trauma (dpt), such as a linear, a quadratic, a logarithmic etc. and determine
the best models. If this is done, the number of models to be calculated increases very
fast. Computation times grow exponentially with a growing number of explanatory vari-
ables, especially for the mixed effects model fitting, computation can be quite intense.
This is why we have to try to keep the number of explanatory variables to a minimum.
Trails showed that the impact of complex submatrices is negligible, thus the selection of
explanatory variables was done by examining the marker trajectories and picking reason-
able components:

• s100 and gfap both show a behaviour similar to an exponential decay, their explana-
tory variables will be set to an intercept, a linear time trend and an exponential
decay (e−t)

• For pct and il, no characteristic time trend can be observed, but a separation of
TBI groups could be advantageous; hence the model submatrices of these markers
will contain only intercepts, one for each TBI group.

• The explanatory variables of crea are an intercept and a linear time trend.

• nse will be modelled by an intercept and an exponential decay (it showed that a
linear time trend doesn’t enhance prediction results).

The submatrices for the markers will thus be:

s100, gfap :


1 t1 e−t1

1 t2 e−t2
...

...
...

1 tn e−tn

 pct, il :


1i∈GR1 1i∈GR2 1i∈GR3

1i∈GR1 1i∈GR2 1i∈GR3
...

...
...

1i∈GR1 1i∈GR2 1i∈GR3

 nse :


1 e−t1

1 e−t2
...

...
1 e−tn

 (4.1)

1i∈GRj denotes a one if the patient i belongs to TBI group GRj, j ∈ 1, 2, 3 and zero oth-
erwise. The fixed effects of these explanatory variables represent baselines of the markers
pct and il for each TBI group. Depending on the markers used for the classifier, the
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upper matrices are combined to a block-diagonal-matrix forming the model matrix X of
the fixed effects. The random effects matrix Z will be identical to X, although other
choices are possible.

High first measurements influence a classification of a patient, even if the marker lev-
els descend to a desired level very early. It should be considered to clear a classifier’s
’memory’ after a while. By that we mean, the classifier should only take a certain time
span into account and forget prior observations to that span. This ’short term mem-
ory’ is realized through the Mahalanobis distance. If all available data is used, then the
consecutive MD2 are calculated by adding every updated measurement to the already
observed biomarker vector. By ’cutting’ the vector to the last e.g. 5 observations, the
Mahalanobis distance neglects all values prior to the newest 5. In the following, the pa-
rameter span will denote the length of a classifier’s short term memory. Since the longest
ICU treatment in the data is 22 days, this span can take on values between 1 and 22,
where span = 22 corresponds to the case where all available data is used.

For each classifier, a subset of the six available markers has to be chosen. The total
number of combinations is 63. Further, for every choice there are 22 different classifiers
corresponding to 22 different time spans. Thus the total amount of models to be com-
pared and evaluated would sum up to 63 × 22 = 1386. To compare all these model is
infeasible, especially since evaluation consists of various factors. WE reduced the number
of considered models by (1) choosing only reasonable and promising feature subsets (e.g.
a model which incorporates only crea and il will be of limited power) and (2) limiting
the spans to a reasonable length (for span greater than ∼ 15 the results mostly don’t
show significant differences). The best models - under different point of views - will be
selected and discussed in detail in chapter 5.

4.2 Evaluation Aspects

The ROC and its AUC as discussed in section 3.8 deliver a convenient way to compare
different classifiers. The ROC’/AUC is a good way to narrow down the number of possi-
ble models, for a detailed comparison however, more considerations - as mentioned briefly
above - should be taken into account. To introduce different aspects of evaluation, we
consider the model with all available features and varying spans to point out crucial ob-
servations.

The top of figure 4.1 depicts ROC curves with AUCs of two models. These refer to the
last predictions of each patient. For both models, all features are used, but the spans
differ. Top left depicts the model with span = 2 while top right shows results with
span = 5. We obtain that AUCs of the left classifier are larger, hence one could con-
clude, that the smaller span is superior to the larger one. But since these ROCs refer
to predictions on the last day of ICU treatment, they assess the classification quality at
a time where it is too late for physicians to react. Due to the longitudinal nature of
the data, we have to consider the progression of this assessment over time. In a clinical
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Figure 4.1: ROCs of two models (upper) and corresponding development of AUC over time
(lower)

monitoring setting, every patient is classified with every new observation, which yields
a progression of classifications over time, hence also a progression of AUCs. This pro-
gression can be obtained in the bottom of figure 4.1. We obtain that while the curves
corresponding to the smaller span reach higher peaks, the other AUCs appear more stable.

4.2.1 Progression of AUC

Such progressing AUC curves demands further explanation. For a fixed day post trauma
d0, a way to depict classification performance on that day is to calculate the AUC using
all predictions of patients with an observation time greater or equal to d0. The question
is, how to deal with patients with less observations? If these are ignored, results at later
sample times will be rather meaningless, since AUCs that rely on a small number of
samples do not bear useful insights. That is why we want to incorporate all patients to
the AUC evaluation. This is achieved by setting predictions at higher times than there
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are samples to the last available prediction. E.g. for a patient with a treatment length
of 10 days, predictions after the 10th day are equal to the one on day 10.
While this enables to calculate AUCs incorporating all patients at any time, one has to be
careful in interpretation. Late AUCs (with respect to days post trauma) correspond not
only to late classifications but to prior classifications of patients with shorter treatment
lengths. Good AUCs in a late point in time thus not necessarily mean good classification
in late observation phase but a good mixture in early and late prediction.
Considering figure 2.1, we obtain that only 9 patients were observed longer than 16 days,
7 of those 9 survived. The last non-survivor deceased on day 18, after that the data
consists only of three survivors. For completeness, we depict AUC curves over 22 days
post trauma, but the focus should be on the results of the first ∼ 16 days. After that,
the sparsity of data doesn’t allow for meaningful interpretation.

4.2.2 Progression of Confusion

AUC evaluation bears to disadvantage of not being rather inaccessible. It is hard to
tell how actual classifications differ, when the AUCs of two classifiers differ about a few
decimals. That is why we look for a more descriptive way to depict model differences.
A typical way to summarize a classifier’s results is a confusion table, where the number
of true positives/negatives and false positives/negatives are summarized in a matrix:

TP FN
FP TN

This is a summary for one point in time only. For a longitudinal data classification,
a time dependent pendant of the confusion table is needed. But before that, another
factor has to be mentioned. Evaluation with the ROC curves doesn’t rely on a specific
cutoff, since all possible thresholds are considered. In the current and upcoming section,
this changes. A confusion table depends on the cutoff since it determines the number of
TP/TN/FP/FN. It has to be chosen in a manner which maximizes TP and TN while
keeping FP and FN to an acceptable minimum. Further, false positives aren’t equally
bad to false negatives. The first denote deceased patients, which were classified as pos-
itives, the latter vice versa. These asymmetric misclassification costs have to be taken
into account. The choice of an optimal cutoff is described in detail in section 4.2.4, for
now we consider it as known.

A time dependent confusion development can be obtained in figure 4.2. The x-axis
depicts the days of observation, the y-axis corresponds to the number of patients. At
every point in time, absolute numbers of TP/FN/TN/FP are stacked and connected over
time. Different observation lengths were treated in the same way as for progressing AUC
curves. The gained areas deliver an impression for the change of confusion over time,
the false positive area is coloured in red to emphasize the asymmetry in misclassification
costs.
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Figure 4.2: Time dependent confusion of model with s100 and gfap (left) and full model
(right), both with span = 7.

4.2.3 Forecasting - An Early Warning System

Besides a good overall classification performance and acceptable confusion results, we
want to add another criterion to the model evaluation. Predictions in clinical monitoring
need to be reliable, but if they should contribute to a patient’s treatment, they have to be
available early enough. A model which assigns a patient to the negative class on the very
same day as he/she dies, will get good results for this point in time, but can’t actually
support physicians in their interventions. It is important, how early a model truly detects
patients in the negative/positive class. By that we mean, how many days prior to the
endpoint of a patient (i.e. decease/release) the model detects the true class without
changing its decision meanwhile. For every observation vector, the classifier produces a
vector of squared Mahalanobis distances and further a vector of probabilities. These are
linked to prediction vectors which contain the class memberships. The count of ’tails’ of
these prediction vectors, where the prediction was correct, tells us how early the model
recognized the patients’ class. If the model changes the assignment from one to the other
class, but gets it right at the end, we are interested in how long before the endpoint the
model was right.
Figure 4.3 shows true prediction rates in dependence of days before last observations,
which from now on I will call the ’forecasting rates’. Note that in contrary to the former
plots, the time axis is reversed. Early values correspond to late observations. t = 1
denotes the day before the last observation for each patient, t = 2 two days before end of
treatment and so on. The y-axis shows the percentage of truly detected patients. Circled
marks, ’◦’, correspond to the overall positive predicted rate, dotted marks ’·’ denote to
percentage of recognized survivors. The line marked with ’×’ is the one of special interest,
since it shows the model’s ability to correctly detect non-survivors early enough.
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Figure 4.3: Forecasting rates for true positives (TP), true negatives (TN) and the sum
TP+TN before last observation.

4.2.4 Choice of Cutoff

AUCs enable us to compare classifiers without the need to specify a fixed cutoff. Anyhow
they neglect important and interesting aspects in assessing a model’s quality. For a
detailed consideration, it is necessary to define a (reasonable) cutoff. As explained in
section 3.8, high cutoffs will lead to high specificity and low sensitivity, thus a large
number of true negatives but also a large number of false negatives. A low cutoff on the
other hand delivers low specificity and high sensitivity, i.e. more true positives but
also increased false positives. There is a tradeoff between specificity and sensitivity
which basically comes down to a trade-off between false positives and false negatives.
An optimal cutoff should lead to a minimum of both FP and FN, FP however is the
worse misclassification. Assigning an unhealthy patient who might die to the class of
survivors is the worst case, thus it should be treated different to a negative prediction of
a survivor. We deal with asymmetric misclassification-costs.
A way to find an optimal cutoff that incorporates these asymmetric costs is to define a
cost function and look out for its minimum. That is a function which counts the number
of FN and FP for each cutoff but weights the number of FP by a factor c:

Costscutoff :=
∑

FN + c ·
∑

FP (4.2)

The factor c can be interpreted as follows: every falsely predicted non-survivor weights
c times more than every falsely predicts survivor. A screening for non-survivors would
demand a high c, c = 1 corresponds to weighting FN and FP equally. The optimal cutoff
is the one where Costscutoff reaches a minimum. If there are multiple cutoffs which min-
imize the cost function, the maximum is chosen. Other options such as the minimum or
mean are possible, in this very case anyhow the maximum makes sense since in the case
of doubt higher levels will decrease the number of false positives.
Figure 4.4 demonstrates the effect of the costs parameter c on a classifier (the notation
m4/s2 is explained in chapter 5). c ascends from 5 to 9 and as we can observe, lower
costs correspond to higher true positive and higher false positive rates.
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Figure 4.4: Confusion progress with varying costs parameter c.

Including the dataset to determine the optimal cutoff bears the same problem as in fitting
the mixed model. To avoid a bias, cutoffs for patients shouldn’t be based on their own
data, the cutoffs have to be cross validated. Considering patient i, a threshold which
minimizes the costs has to be calculated with a dataset excluding the patient’s data.
Thus in fact we gain a different cutoff for each patient.
For every of the following models as well as for the plots above, cutoffs where determined
by a leave-out-one cross validation. We gain an individual cutoff for every patient, based
on the misclassification costs of all other patients. It turned out that the variance of
the cutoffs is very small, which is why for the results we used the maximum of all cross
validated cutoffs. This leads to pessimistic values, but then again, a higher cutoff leads
to lesser false positive cases, which is the mistake that should be avoided as much as
possible.
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5 Results

Section 4.2 introduced different points of view in assessing a classifier’s performance. The
examples were chosen in a way to depict the different aspects. In the following chapter,
we will discuss various classification results in detail. We are mainly interested in three
things: (1) how do the models change when different feature sets are used, (2) how does
the span parameter influence the models and (3) how good is the longitudinal classifica-
tion compared to the current clinical practice?

Since, as mentioned, it is infeasible to examine all possible marker combinations, we will
focus on the most promising. Figures 2.2 to 2.5 help to decide which models - i.e. which
feature sets - should be considered. The most striking differences can be observed in s100
and gfap trajectories, we conclude that every model should at least incorporate these
markers. Also pct curves seem promising, further pct is an infection specific marker,
while the other two are TBI specific, so we can hope to benefit from pct because we take
other symptoms into account as well. Further we want to incorporate nse, il and crea
to see if the classifiers benefit from a broader feature set. All in all we will take a look
at five models, which we denote with model 1 to model 5, with an increasing number of
markers as can be obtained in table 5.1.

classifier features
model 1 s100, gfap
model 2 s100, gfap, pct
model 3 s100, gfap, pct, il
model 4 s100, gfap, pct, il, crea
model 5 s100, gfap, pct, il, crea, nse

Table 5.1: model 1 to 5 with incorporated markers

The current clinical practice to assess TBI for trauma patients is to consider s100 levels,
where a concentration of 0.1 µg/l and above is considered critical. We chose the current
s100 level as a benchmark for the longitudinal classification, although it has to be men-
tioned that the purposes of these two classifications differ. As TBI-specific marker, s100
is used to assess brain damage in trauma patients, especially upon arrival in intensive
care. The classifiers introduced in this work examine the patient’s data with interest
in longitudinal observations - especially regarding the possibility of patient monitoring.
Despite that, current s100 levels still can be used as an appropriate benchmark for the
model, see section 5.4.

A classification summary of the benchmark can be obtained in figure 5.1. The upper
left figure depicts the progression of AUCs over observation time. As we will see, the
increase in classification quality over time is typical for our problem. The number of
correct classifications will improve with time, since a large part of patients stabilize after
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Figure 5.1: Classification summary of benchmark with a cutoff of 0.1 µg/l; AUC pro-
gression (upper left); confusion progress (upper right); true rates before last
observations (lower).

a while and are thus correctly classified as positive cases.
Bad classification rates at the beginning do not necessarily mean that the classifiers work
bad in early prediction. The data lacks of information about the patients’ treatments
and change of health condition. It is possible (and likely) for patients to belong to the
negative class at the beginning of observation - i.e. their condition is critical - but after
proper treatment they switch to the positive class since they are considered fit again.
That means we deal with labelled training data, but the labels refer to the endpoint of
observation time. It is unknown if and how these labels changed over time. This further
complicates interpretations of confusion progressions and forecasting rates.
The confusion progression (upper right) and the forecasting rates rely on a cutoff, which
was set to 0.1 in accordance to the clinical threshold. This cutoff is designed to be very
specific, but rather insensitive. That’s why in the first five days, nearly all patients are
classified as negatives (and most of them probably are indeed at that time negative cases),
but even at the end some 40% of survivors are assigned to the negatives.
The forecasting rates show a similar behaviour. The classifier’s capability of recognizing
negatives is very high - with the price of low true positive and overall rates. This of course
is a sensitivity/specificity trade-off. A higher cutoff would lead to worse true negative
rates but increase true positives.
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Below, different models with different spans will be compared. For confusion progressions
and forecast rates, cutoffs have to be defined. In all following figures, we will denote the
model x with a span y and a cutoff based on the costs parameter c=z with mx/sy/cz.
In order to compare the results with the benchmarks, the benchmark curves can be seen
in the plots as a grey shade in the background.

5.1 AUC Over Time

The AUC over time can be considered as an ’overall’ measure of the goodness of classi-
fication. This section will examine the differences of AUC progressions with respect to
both, different feature sets and different span lengths.

Let us consider the five models of table 5.1. First we examine the change in classification
performance when different time spans are used. Figure 5.2 shows the comparison of
AUC progressions. Each sub-figure contains AUC curves of model 1 to 5 with coinciding
spans. To get an overall impression, we consider spans of 2,3,5,7,10 and 15.
The first interesting observation is the decline in differences of model performances with
increasing spans. For small spans of 2 or 3 (upper graphs), variations in AUC curves are
stronger than for large spans of e.g. 10 and 15 (lower graphs).
The best values are reached by models with small spans, but using larger ones stabilizes
the performances. In early prediction, AUCs of models with spans ≥ 5 show the best
results, thus we conclude, that in the first ∼ 5 days, all available information should be
taken into account. Overall we observe an improvement in classification when smaller
spans are used.
Models 4 and 5 are the largest in terms of incorporated features. Except for spans 10 and
15, they are superior to the others. These models benefit from their ’short term memory’,
especially for final AUCs for dpt ≥ 15. On the first day of observation, model 5 receives
the best predictions.
Models 1, 2 and 3 perform equal or below the others, we conclude that there is a benefit
in using larger feature sets.

With this first impression in mind, we take a closer look at each of the models with
different spans, as is done in figure 5.3. Here every graph contains AUC curves of one
model with varying spans, which slightly differ for each model to depict the best results.
For a prediction at a certain point in time, any model can only use as much information
as is available at that time. This means that for each model, results with larger spans
are equal to smaller ones at the beginning. Considering two spans a, b where a > b, the
results coincide for predictions on observation times dpt < b.
The focus on the plots should lie on the question, how high spans (marked with ’+’ and
’×’) perform compared to low spans (’◦’ and ’4’).
AUCs of model 1 - the one with the smallest feature set - improve with increasing span,
but this represents the exception. All other models show an interesting phenomenon: for
short observation times, larger time spans are superior; but for the final AUCs at times
& 12, shorter memory delivers better performances.
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Models 1, 2 and appear mediocre, the top values are reached by models 4 and 5. Although
peak AUCs are achieved by m4/s2 and m5/s2, longer spans ∼ 5 deliver more stable
results.
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Figure 5.2: AUC progressions of model 1 to model 5 with different spans; sub-figures with
varying models and equal spans.
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Figure 5.3: AUC progressions of model 1 to model 5 with different spans; sub-figures with
equal models and varying spans.

41



5.2 Confusion Progression

A clearer impression of actual prediction success yields the confusion over time as intro-
duced in section 4.2. Such a progression of confusion contributes to a more differentiated
evaluation. Instead of interpreting a single figure, we can obtain the number of correctly
and incorrectly classified patients directly and examine the change of prediction success
over time.
To compare all patients at all times, the various sample lengths have to be treated in the
same manner as for AUCs. If a patient’s sample length is smaller then the considered
day post trauma, his/her latest available prediction is used. Thus again, confusion results
at late points in time not only correspond to late predictions but also to predictions of
patients with earlier endpoints.
Confusion rates don’t change significantly after the 18th day post trauma, which is why
in the following we only consider the progress up to that time.

The drawback of confusion tables/progressions is the need for a specific cutoff. Earlier
we described the possibility to define a cutoff based on misclassification rates via a cost-
function. In the following, for each model and span, such a cutoff was calculated, where
the costs parameter in (4.2) was set to c = 6. This value was chosen to meet the rather
high misclassification cost of the benchmark classification, while still being able to spot
differences in the upcoming plots.

Each trajectory in the graphs of figure 5.4 represents a model/marker combination. Since
we already know that the best AUCs are obtained when a small number of past obser-
vations is used, we focus on the spans 2, 3, 5 and 7. The benchmark curves should
serve as reference points, though one has to be careful with a direct comparison to it.
Misclassification is a trade-off between true positives and true negatives. As can be ob-
tained, models with less false positive predictions are poorer in correctly identifying true
positives. If we either set c higher than 6 or increase the benchmark cutoff, confusion
progressions that now seem different can then be the same (recall figure 4.4). A detailed
comparison to the benchmark follows in section 5.1, for now we are interested in the
differences of the models with varying spans.
The graphs show that longer spans evoke a smaller number of false positive cases with
the costs of decreasing the number of true positives. Imagine patients with high first
measurements that decrease early, but worsen after a while. Models with short spans
treat these as positives rather soon and take a while to assign the patient to the nega-
tives again. Longer spans on the other hand cause the classifier to remember the high
measurements upon arrival for a longer time, thus patients who’s condition deteriorates
are classified as negatives earlier. A monitoring system should probably favour the latter,
in the case of doubt it should be pessimistic.
For spans ≥ 3, models 3 to 5 deliver better classification success than 1 and 2, they keep
the number of false positives rather low while having acceptable (with respect to the
benchmark) true positive rates. m5/s5 in the lower left graph delivers approximately the
same number of false positives as the benchmark, while it identifies a larger number of
true positives.
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Figure 5.4: Confusion progressions of model 1 to model 5 with different spans; sub-figures with varying models and equal spans.
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Figure 5.5: Confusion progressions of model 4 and model 5 with different spans.

Figure 5.5 shows the comparison of confusion progressions of four models which are chosen
with respect to findings in section 5.3. Note that the combination model4/span7 probably
yields the best balance between a low number of false positives and a reduction of false
negatives.

5.3 Forecasting Rates

The results so far showed, that the best performances of the longitudinal classification are
accomplished by the more sophisticated models 4 and 5, which is why in the following we
will focus on these two. While the AUC curves summarize the overall performance and
the confusion progressions helped to sharpen those impressions, we now take a look at the
classifiers’ reliabilities in forecasting a patient’s condition. This is especially interesting
when we imagine an ICU monitoring system which should alert physicians.
Instead of examining classifications in dependence of days under observation, we com-
pare how early the classifiers are able to determine a patient’s condition correctly. The
following plots depict, how many days before a patient’s endpoint - decease or release -
the model correctly classified the patient without changing its decision meanwhile.

The forecasting rates of models 4 and 5 with varying spans can be obtained in figure
5.6. The left column depicts the rates of successful classified patients, the columns in
the middle and right separate for truly predicted positives and negatives, respectively.
The time axis denotes the remaining days before the last observation of each patient. we
choose a maximum of 10 days, although it should be expected, that predictions 10 days
before a patients endpoint are rather inaccurate. The rates of correct classifications x
days before the last observation refer only to patients which are observed at least for x
days. As for confusion progression, the benchmark curves should act as reference, but a
direct comparison requires an adjustment of the cutoffs, which is done in the next section.
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The graphs confirm that forecast rates decline with days before last observation, some
more than others. With respect to a monitoring system, we want the trajectories of true
negatives (right column) to be as high as possible while gaining reasonable true positive
and overall forecasting rates. The top row of figure 5.6 shows forecast rates of model 4
with spans 2, 3, 5 and 7. Recall that AUCs for a span=7 were unremarkable while for
spans 2 and 5 they were among the top levels. We obtain something interesting: forecast
rates of true negative cases are superior with span=7 to the other three models, while
true positive rates are about the same. The second row shows that model 5 delivers the
most promising results with spans 5, 7 and 8.
As for AUC curves, the results converge for greater time spans, which can be observed
in the last row, where the models with spans of 10 and 15 are compared. The different
curves are almost identical.

To summarize, the best forecast rates for non-survivors with an acceptable amount of
misclassified survivors are reached through the model/marker combinations m4/s7, m5/s5
and m5/s8. Other models were considered as well but couldn’t perform that good, hence
they are left out of this evaluation to keep the amount of figures feasible. Note that those
models didn’t show remarkable AUC or confusion results. We see that an assessment
based on AUCs can be misleading, depending on the purpose of the classifier.
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Figure 5.6: Forecasting rates for all patients (left), true positives (center), true negative
(right) for models 4 and 5 with varying spans.
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5.4 Benchmark Comparison

We now want to examine, if the longitudinal classification bears advantages compared to
the rather easy classification via current s100 levels. Considering the AUC progressions
in figures 5.2 and 5.3, we can only obtain slight improvements compared to the bench-
mark. Model5/span3, model5/span5 and model4/span3 are among the most promising
model/span combinations. These models trump the benchmark either at the beginning
or in late AUCs, or deliver an overall better classification.
As we saw, confusion progressions are a more accessible way to depict classification per-
formances, but they rely on specific cutoffs. The cutoffs of the longitudinal classifiers are
determined by the parameter c in the cost function (4.2). For a comparison with the
benchmark, the costs were set to a level where the numbers of false positives in the con-
fusion progression approximately match the confusion of the benchmark. If the model’s
true positive predictions are superior to the benchmark, we conclude a benefit in the
longitudinal classification.

The top of figure 5.7 compares the confusion progression of the models m4/s3, m5/s3
and m5/s5. The costs were set to 6.5, 6 and 7 respectively. Then all models are able to
identify almost all non-survivors correctly. But while the positive predictions of m5/s5
are below the benchmark results, the other two, m4/s3 and m5/s3, are above. The best
predictions in the positive class are achieved by m4/s3.
The lower graph in figure 5.7 contains confusion curves for the models with good forecast-
ing rates, m4/s7 and m5/s8, compare section 5.3. Here no improvement (with respect
to confusion progression) can be observed, recall that also AUCs of that models were
unremarkable.

When we consider forecasting rates anyhow, the situation changes. Figure 5.8 shows
forecasting results of the upper models. Since it was harder to match true negative rates
of the models to the benchmark, I did the opposite and adjusted the costs such that
true positive rates are similar. Again the upper graph contains the models with the best
AUC curves. The one with the most disappointing confusion curve, m5/s5, scores best
when forecasting performance is considered. Starting from 100% of correctly classified
non-survivors, rates stay at over some 80% even 10 days before the last observation. The
true positive and overall rates are slightly below the benchmark results though. The
other two represent no improvement to the benchmark.
The bottom of figure 5.8 depicts forecast results of m4/s7 and m5/s8. Theses are the
models with the strongest forecasting rates. While delivering approximately the same or
slightly better overall and true positive forecasts, the true negative rates are more stable.

In forecasting, the considered models with a longer span are superior. Also the best
forecasting models are not the ones with the best AUC/confusion results. The reason
for that was discussed earlier in a slightly different context. Patients with bad first
measurements and a fast decrease of to high marker levels are classified as positives by
models with short spans rather soon. If conditions worsen, the classifier takes longer
to shift the patient to the negative class. Longer spans cause more negative predictions
for such cases. On the other hand, the idea of short term memory originated in the
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Figure 5.7: Confusion progression of the most promising models with varying costs.

observation, that classifiers should have the property to forget high first measurements.
Once more we obtain a trade-off, short memory will decrease true negative forecast rates,
long memory will be too pessimistic and evoke a large number of false negatives.
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Figure 5.8: Forecasting rates of different model/marker combinations.
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5.5 Visual Support

An individual’s condition is not a matter of black and white. A ’non-survival’ classifica-
tion doesn’t mean, that a patient’s fate is decided, but rather that his biosignals show
deviations from behaviours of ’typical survivors’ and that he/she should receive special
attention. Further, it is of interest what caused the classifier’s decisions, especially the
negative assignments. A feedback, which observation lead to a negative prediction, can
help to find appropriate treatment measures.
Thus besides a binary assessment of health condition, physicians can benefit from a visual
support. To achieve this, we described a conditional confidence interval (section 3.5), a
confidence bound for each biomarker conditional on the prior observations.

Such conditional CIs can be obtained in figure 5.9. Each subfigure contains observed
marker levels of a patient, together with expected survival curves and conditional confi-
dence bounds. Above the marker curves, one can observe the classification progression
of the patient. The higher the p-value, the better the resemblance of the data to expec-
tation. The dashed line denotes the cutoff based on costs c = 6, a p-value above this line
corresponds to a positive classification. For subfigures (a) and (b), model 5 with span 2
was used, (c) and(d) depict model 5 with span 5.

Figure 5.9 (a) and (b) show the fast reaction of low spans. In (a), at day 4 il increases
and causes a fall of the health assessment. The next day, the il concentration drop to
normal and after another day, p is back to its prior level. In figure 5.9 (b), the model
makes a positive prediction after marker curves settle, changes its decision when il in-
creases and then goes back to the positive prediction. In the end, an even larger increase
in il -concentration causes a (correct) negative classification, but at a rather late point in
time.
Subfigures (c) and (d) show slower assessment changes because of the longer memory of
the models. The patient in subfigure (c) early shows desirable marker levels, still it takes
half of the observation time for the model, to assign him/her to the positive class. In (d)
we observe a negative classification after six days, 9 days before the actual outcome of
the patient.

This visual support mainly serves two purposes. First, it gives physicians a feedback,
which marker levels (or other biosignals) are out of bound and cause a bad prediction
of health condition. Second, the assessment can be observed continuously rather than
binary. Instead of considering only a positive/negative classification, one can obtain its
severity and furthermore its progression over time.
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Figure 5.9: Conditional confidence intervals for four patient trajectories, based on
model5/span2 (upper) and model5/span5 (lower).
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6 Conclusion

This work discussed an approach of longitudinal data classification with updating data
samples. The motivation of that approach originated from the idea of a patient mon-
itoring in intensive care treatment. It is clinical practice, to consider only the newest
observations of biosignals, disregarding a possible benefit in taking a patient’s history
into account. In order to explore this, a dataset of trauma patients containing longitudi-
nal biomarker levels was considered.
For classification, characteristics of the occurring classes have to be known or estimated.
The graphical exploration revealed, that the data at hand makes it impossible or at least
very inaccurate, to estimate the negative class’s traits. That is why a one class classifica-
tion was chosen, a classification based only on knowledge about one class - the survivors.
The mixed model approach to estimate the survivors’ distribution delivers a lot of advan-
tages. The fitting of the mixed model represent one time costs only, once the regression
coefficients are estimated, classification is rather simple. The multiple regression allows
for imputation of missing data as well as the handling of the unbalanced dataset, further
it enabled an incorporation of both, multiple features and multivariate response variables.
By assessing deviations of expectation using the squared Mahalanobis distance, the longi-
tudinal classifiers are flexible when a different number of prior observations are considered,
as well as when different misclassification costs are examined.
Further, the described approach allowed for a visual support which can improve a physi-
cians impression on a patient’s condition. In addition, the visual support explains how
the classification works and thus contributes to the transparency of the process.
Evaluation represented a challenge. Treatment outcomes of the patients are labelled, but
those labels can’t be considered as fixed upon arrival in intensive care. Besides an assess-
ment of prediction performance using ROC curves and their AUCs, progressing confusion
results and forecasting rates were introduced. By these we gained deeper insights of var-
ious models and their differences.
The results showed that longitudinal classification benefits from the use of a broader fea-
ture set. Also short term memories showed significant improvements. To benchmark the
results, current levels of one marker only were used, as it is done to assess brain injury
for trauma patients. Most classifiers presented in this work were at least able to match
the benchmark results. Depending on the evaluation aspect, some models were able to
trump them, but not to a great extent.
The most significant improvements were obtained in forecasting the patients’ condition.
Here longitudinal classifiers were able to correctly predict the same amount of survivors
as the benchmark, while stabilizing non-survivor predictions. With regard to a patient
monitoring, this represents an important improvement.
Overall, when considering the additional effort, longitudinal classification was not able
to convincingly improve the easier assessment by current marker levels. Nevertheless, it
does bear advantages, maybe larger sample sizes as well as a broader patient specific data
could further improve and justify the more sophisticated longitudinal approach.
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7 Appendix: R Codes

The following R libraries were are used in the R scripts and functions below:

• lme4: fitting the linear mixed model

• mvtnorm: handling multivariate normal random variables

• reshape2: handling data to gain the block-diagonal form necessary for the MEM

• parallel, foreach, doParallel: enables parallel computing to reduce compu-
tation time

7.1 Data and Model Structure

1 structure_data <- function(data){

#structure data to diagonal form and generate necessary matrix

for the MEM

marker <- c("s100", "gfap", "pct", "il", "crea", "nse")

data <- melt(data , id.vars = c("fold","id","dpt","group","

sepsis","survival"), measure.vars = marker)

6 names(data)<-c("fold","id","dpt","group","sepsis","survival","

biomarker","value")

data <- data[with(data , order(id)),]

data <- cbind(data ,

"interc_s100" = rep(1,length(data$id)) * as.numeric(data$

biomarker =="s100"),

11 "dpt_s100" = data$dpt * as.numeric(data$biomarker =="s100"),

"dptinv_s100" = exp(-data$dpt) * as.numeric(data$biomarker

=="s100"),

"interc_gfap" = rep(1,length(data$id)) * as.numeric(data$

biomarker =="gfap"),

"dpt_gfap" = data$dpt * as.numeric(data$biomarker =="gfap"),

"dptinv_gfap" = exp(-data$dpt) * as.numeric(data$biomarker

=="gfap"),

16 "interc_pct_gr1" = rep(1,length(data$id)) * as.numeric(data

$biomarker =="pct") * as.numeric(data$group ==1),

"interc_pct_gr2" = rep(1,length(data$id)) * as.numeric(data

$biomarker =="pct") * as.numeric(data$group ==2),

"interc_pct_gr3" = rep(1,length(data$id)) * as.numeric(data

$biomarker =="pct") * as.numeric(data$group ==3),

"interc_il_gr1" = rep(1,length(data$id)) * as.numeric(data$

biomarker =="il") * as.numeric(data$group ==1),
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"interc_il_gr2" = rep(1,length(data$id)) * as.numeric(data$

biomarker =="il") * as.numeric(data$group ==2),

21 "interc_il_gr3" = rep(1,length(data$id)) * as.numeric(data$

biomarker =="il") * as.numeric(data$group ==3),

"interc_crea" = rep(1,length(data$id)) * as.numeric(data$

biomarker =="crea"),

"dpt_crea" = data$dpt * as.numeric(data$biomarker =="crea"),

"interc_nse" = rep(1,length(data$id)) * as.numeric(data$

biomarker =="nse"),

"dpt_nse" = data$dpt * as.numeric(data$biomarker =="nse"),

26 "dptinv_nse" = exp(-data$dpt) * as.numeric(data$biomarker ==

"nse")

)

return(data)

}

1 impute <- function(data , covariates.fix , covariates.ran){

form.imp <- as.formula( paste("value ~ ", paste(covariates.fix ,

collapse="+"), "- 1 + (", paste(covariates.ran , collapse="+

"), " -1 | id)") )

na.sel <- which(is.na(data$value))

if( length(na.sel)>0 ){

6 fm.impute <- lmer(form.imp , data = data[-na.sel ,])

data$value[na.sel]<-predict(fm.impute ,newdata=data[na.sel ,],

allow.new.levels=T,re.form=NA)

}

return(data)

}

7.2 Model Fit

model_fit <- function(data , covariates.fix , covariates.ran){

# cross -validated mixed model fit with given fixed and random

effects to data; fits are computed parallel

# input: data ... allready structured dataframe in ’long fomat ’

(block -matrices) & with assigned fold to each patient

5 # covariates.fix , covariates.ran ... character vectors with

corresponding random/fixed effects , matching with colums of ’

data ’

# output: list containing: - "id": patient id

# - "fold": fold of patient (to connect patient with

corresponding fit)

# - "true": true outcome (1= survival , 0= nonsurvival)

# - "cv.fits": 11 fits (lmer -outputs), for survivors one

for each fold , one for the non -survivors
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10

# SCAN FEATURES IN USE & GENERATE FORMULA FOR MODEL FIT

15 features <- unique(data$biomarker)[unlist(lapply(unique(data$

biomarker), function(x) TRUE %in% grepl(x, covariates.fix)))

]

form <- as.formula( paste("value ~ ", paste(covariates.fix ,

collapse="+"), "- 1 + (", paste(covariates.ran , collapse="+"

), " -1 | id)") )

# PARALLEL CLUSTER

20 cl <- makeCluster(detectCores () -1)

registerDoParallel(cl, cores = detectCores () -1)

# CV: FIT FOR POSITIVE CLASS; IN EACH FIT ONE FOLD IS EXCLUDED

25 cv.fits <- foreach(fold = unique(data$fold), .packages=c("lme4"

, "nlme")) %dopar% {

fold_sel <- (data$fold == fold)

fm1 <- lmer(form , data=data[!fold_sel & data$survival == 1 &

data$biomarker %in% features ,], REML = TRUE)

return(fm1)

30 }

stopCluster(cl)

# FIT WITH ALL POSITIVE UNITS TO CLASSIFY NEGATIVE CASES

35

fm1.allpositive <- lmer(form , data=data[data$survival == 1 &

data$biomarker %in% features ,], REML = TRUE)

# PREPARE OUTPUT: CONTAINS ID, FOLD , TRUE OUTCOME & FITS

40 true.outcome <- tapply(data$survival , data$id , function(x) as.

numeric (1 %in% x) )

id.fold <- tapply(data$fold , data$id , function(x) unique(x) )

return(list("id" = unique(data$id), "fold" = id.fold , "true" =

true.outcome , "cv.fit" = list(cv.fits , fm1.allpositive)))

}
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7.3 Mahalanobis Distances and Probabilities

1 cmd <- function(data , mem.fits , span){

# mahalanobis distance for data with fits gained from mem.fits;

only a maximum of ’span ’ observations are used

# input: data ... same as in model_fit

# mem.fits ... output object of model_fit

6 # span

# output: CMD ... list of consecutive mahalanobis distances for

each patient

# READ PARAMETERS

11 covariates.fix <- intersect(strsplit(as.character(formula(mem.

fits$cv.fit [[2]])), split= " " )[[3]], names(data))

covariates.ran <- covariates.fix

features <- unique(data$biomarker)[unlist(lapply(unique(data$

biomarker), function(x) TRUE %in% grepl(x, covariates.fix)))

]

nfeat <- length(features)

16 # CONSECUTIVE MAHALANOBIS DISTANCES FOR EACH PATIENT; MEAN AND

VARIANCE ARE COMPUTED RELYING ON FITS

CMD <- list()

for(id in unique(data$id)){

data.pat <- data[(data$id==id) & (data$biomarker %in%

features) ,]

21 if( unique(data.pat$survival) == 1 ) { fit <- mem.fits$cv.fit

[[1]][[ mem.fits$fold[id]]] } else { fit <- mem.fits$cv.fit

[[2]] }

n <- length(data.pat$id)

Z <- as.matrix(data.pat[covariates.ran])

X <- as.matrix(data.pat[covariates.fix])

mu1 <- X %*% fixef(fit)

26 Y <- as.numeric(as.matrix(data.pat$value))

distance.progress <- vector(length=n/nfeat)

for(step in 1:(n/nfeat)){

sel <- c(sapply (1:nfeat ,function(k) max(1, step - span +1):

step+(n/nfeat*(k-1))))

if(length(sel) == 1){

31 sigma1 <- sum((Z[sel ,] %*% VarCorr(fit)$id) * t(Z[sel ,])

) + sigma(fit)^2

} else {

sigma1 <- (Z[sel ,] %*% VarCorr(fit)$id) %*% t(Z[sel ,]) +

sigma(fit)^2*diag(dim(Z[sel ,]) [1])

}
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distance.progress[step] <- sqrt( t(Y[sel] - mu1[sel]) %*%

solve(sigma1) %*% (Y[sel] - mu1[sel]) )

36 }

CMD <- c(CMD , tapply(distance.progress , factor(data.pat$id)

[1: length(distance.progress)], function(x) x ))

}

CMD <- CMD[unique(data$id)]

41 return(CMD)

}

assign_pval <- function(CMD , span){

3 # assign probability to the vector CMD of Mahalanobis Distances

# input: CMD ... output object of ’cmd ’

# span

# output: pval ... p values for patients at different points in

time

8 pval <- lapply(CMD , function(x) pchisq(x,c(1: min(span , length(x

)) ,rep(span ,max(0,length(x)-span))),lower.tail=F))

max.length <- max(unlist(lapply(CMD , length)))

pval.matrix <- matrix(NA , ncol=length(pval), nrow=max.length)

colnames(pval.matrix) <- names(pval)

for(id in names(CMD)){ pval.matrix [1: length(pval[[id]]),id] <-

pval[[id]]

13 pval.matrix[-c(1: length(pval[[id]])),id] <- tail(

pval[[id]],1) }

return( list("list"=pval , "matrix"=pval.matrix) )

}

7.4 Benchmark Evaluation

ids <- data$id[data$biomarker =="s100"]

4 trues <- tapply(data$survival[data$biomarker =="s100"] , ids ,

unique)

Cutoff <- 0.1

#AUC PROGRESSION

9 auc <- function(pval , true){

cutoff <- sort(data$value[data$biomarker =="s100"])

sens <- vector(length=length(cutoff))
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fpr <- vector(length=length(cutoff))

14

for(i in 1: length(cutoff)){

pred.class <- as.numeric(pval < cutoff[i])

TP <- sum(true ==1 & pred.class ==1)

TN <- sum(true ==0 & pred.class ==0)

19 FN <- sum(true ==1 & pred.class ==0)

FP <- sum(true ==0 & pred.class ==1)

sens[i] <- TP/(TP+FN)

fpr[i] <- 1 - TN/(TN+FP)

24

}

return( c("AUC"=trapz((fpr),(sens))) )

}

29 s100.list <- tapply(data$value[data$biomarker =="s100"], ids ,

function(x) x)

max.length <- max(unlist(lapply(s100.list , length)))

s100.matrix <- matrix(NA , ncol=length(s100.list), nrow=max.

length)

colnames(s100.matrix) <- names(s100.list)

for(id in names(s100.list)){ s100.matrix [1: length(s100.list[[id

]]),id] <- s100.list[[id]]

34 s100.matrix[-c(1: length(s100.list[[id]])),id] <- tail

(s100.list[[id]],1) }

s100.auc <- apply(s100.matrix , 1, function(x) mahal_auc(x,trues

))[1,]

#CONFUSION PROGRESS

39

TP=TN=FP=FN<- vector(length = dim(s100.matrix)[1])

for(i in 1:dim(s100.matrix)[1]){

pred.class <- as.numeric(s100.matrix[i,] < Cutoff)

44 TP[i] <- sum(trues ==1 & pred.class ==1)

TN[i] <- sum(trues ==0 & pred.class ==0)

FN[i] <- sum(trues ==1 & pred.class ==0)

FP[i] <- sum(trues ==0 & pred.class ==1)

}

49

#FORECAST RATES

tail_count <- function(x){

x <- unlist(x)

54 count <- 0

index <- length(x)
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while( (tail(x,1) == x[index ]) && (index > 0) ){ count <-

count + 1; index <- index -1 }

return(count)

}

59

detect <- lapply(s100.list , function(x) x < Cutoff)

final.predictions <- lapply(detect , function(x) tail(x,1))

sel <- names(final.predictions[unlist(final.predictions) ==

unlist(trues)]) # TP & TN Patients

64 trues.before.end <- unlist(lapply(detect[sel], tail_count))

length.obs <- unlist(lapply(s100.list , function(x) length(x)))

max.length <- 10

# TRUE PREDICTION BEFORE ENDPOINT: ALL PATIENTS

69 rates.all <- (sapply (1:max.length , function(x) length(which(

trues.before.end >=x))) / unlist(lapply( 1:max.length ,

function(x) length(which(length.obs >=x)))) )*100

# TRUE NEGATIVE PREDICTIONS BEFORE ENDPOINT

TN.sel <- names(which(trues == 0))

detect <- lapply(s100.list[TN.sel], function(x) x < Cutoff)

74 final.predictions <- lapply(detect , function(x) tail(x,1))

sel <- names(final.predictions[unlist(final.predictions) ==

unlist(trues[TN.sel])]) # TN Patients

trues.before.end <- unlist(lapply(detect[sel], tail_count))

length.obs <- unlist(lapply(s100.list[TN.sel], function(x)

length(x)))

rates.tn <- ( sapply (1:max.length , function(x) length(which(

trues.before.end >=x))) / unlist(lapply( 1:max.length ,

function(x) length(which(length.obs >=x)))) )*100

79

# TRUE POSITIVE PREDICTIONS BEFORE ENDPOINT

TP.sel <- names(which(trues == 1))

detect <- lapply(s100.list[TP.sel], function(x) x < Cutoff)

final.predictions <- lapply(detect , function(x) tail(x,1))

84 sel <- names(final.predictions[unlist(final.predictions) ==

unlist(trues[TP.sel])]) # TP Patients

trues.before.end <- unlist(lapply(detect[sel], tail_count))

length.obs <- unlist(lapply(s100.list[TP.sel], function(x)

length(x)))

rates.tp <- ( sapply (1:max.length , function(x) length(which(

trues.before.end >=x))) / unlist(lapply( 1:max.length ,

function(x) length(which(length.obs >=x)))) )*100

89 s100.rates.all <- rates.all

s100.rates.tp <- rates.tp

s100.rates.tn <- rates.tn
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save(file="s100.benchmarks.RData",s100.auc ,s100.pauc ,s100.rates

.all , s100.rates.tp, s100.rates.tn, s100.sens , s100.spec ,

s100.matrix)

7.5 Cutoff

#CROSS VALIDATED SINGLE VALUE CUTOFF

#---------------------------------------------------

5 opt_cutoff <- function(pval , true){

cutoff <- c(0, unlist(lapply(seq (0 ,1 ,0.01), function(x)

quantile(pval[true ==1], x, na.rm=T))) , 1)

loss <- vector(length=length(cutoff))

for(i in 1: length(cutoff)){

10 pred.class <- as.numeric(pval > cutoff[i])

TP <- sum(true ==1 & pred.class ==1)

TN <- sum(true ==0 & pred.class ==0)

FN <- sum(true ==1 & pred.class ==0)

FP <- sum(true ==0 & pred.class ==1)

15

loss[i] <- FN + costs*FP

}

#plot(cutoff ,loss)

Cutoff <- max(cutoff[which(loss==min(loss))]) #optimal

cutoff based on costs

20 return(Cutoff)

}

#---------------------------------------------------

for(costs in seq (5 ,10 ,0.5)){

25 cutoff.opt <- matrix(ncol=15, nrow =5)

for(model.number in 1:5){

load(paste0("model_fits/model",model.number ,".RData"))

for(span in 1:15){

30

CMD <- cmd(data , mem.fits , span)

pval <- unlist(lapply(CMD , function(x) pchisq(x,c(1: min(

span , length(x)) ,rep(span ,max(0,length(x)-span))),

lower.tail=F)))

trues <- unlist(data$survival[data$biomarker == "s100"])

id <- data$id[data$biomarker == "s100"]

35

cutoff.cv <- lapply(unique(id), function(x) opt_cutoff(

pval[-which(id == x)], trues[-which(id == x)]))
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cutoff.opt[model.number , span] <- max(unlist(cutoff.cv))

}

}

40

save(file = paste0("cutoffs/optimal.cutoff.costs",costs ,".

RData"), cutoff.opt)

}

7.6 Conditional CI (with Plot)

# PATIENT PLOTS FOR CV MODEL

3 conditional_ci <- function(model.number , span , costs = 6, ids =

NA){

load(paste0("model_fits/model",model.number ,".RData"))

load(paste0("cutoffs/optimal.cutoff.costs",costs ,".RData"))

cutoff <- cutoff.opt[model.number ,span]

8

CMD <- cmd(data , mem.fits , span)

pval <- assign_pval(CMD , span)

true <- mem.fits$true

13 covariates.fix <- intersect(strsplit(as.character(formula(mem.

fits$cv.fit [[2]])), split= " " )[[3]], names(data))

covariates.ran <- covariates.fix

features <- unique(data$biomarker)[unlist(lapply(unique(data$

biomarker), function(x) TRUE %in% grepl(x, covariates.fix)))

]

nfeat <- length(features)

18 add.error.bars <- function(X,upper ,lower ,width ,col=col ,lwd=1,

lty =1){

segments(X,max(0,lower),X,max(0,upper),col=col ,lwd=lwd ,lend

=1,lty =1)

segments(X-width/2,max(0,lower),X+width/2,max(0,lower),col=

col ,lwd=lwd ,lend=1,lty =1)

segments(X-width/2,max(0,upper),X+width/2,max(0,upper),col=

col ,lwd=lwd ,lend=1,lty =1)

}

23

# PATIENT PLOTS

if(is.na(ids)){ ids <- unique(data$id) }

for(id in ids){

28

# PATIENT DATA
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data.pat <- data[which((data$id==id) \& (data$biomarker %in%

features)) ,]

33 if(unique(data.pat$survival) == 0) { fit <- mem.fits$cv.fit

[[2]]

} else { fit <- mem.fits$cv.fit [[1]][[ unique(data.pat$fold)]]

}

n <- length(data.pat$id)

Z <- as.matrix(data.pat[covariates.ran])

38 X <- as.matrix(data.pat[covariates.fix])

dpt <- data.pat$dpt [1:(n/nfeat)]

dpt <- dpt[dpt!=0]

beta <- fixef(fit)

mu.pat <- X %*% beta

43 Y <- as.numeric(as.matrix(data.pat$value))

# CONDITIONAL CONFIDENCE REGION

mu.marginal <- array(dim=c(nfeat ,1,(n/nfeat -1)))

48 sigma.marginal <- array(dim=c(1*nfeat ,1,(n/nfeat -1)))

for(step in 1:(n/nfeat -1)){

sel2 <- c(sapply (1:nfeat ,function(k) max(1, step - span +1)

:step+(n/nfeat*(k-1))))

53 sel1 <- c(sapply (1:nfeat ,function(k) (step +1):(step +1)+(n/

nfeat*(k-1))))

for(j in 1: length(sel1)){

mu.step <- mu.pat[c(sel1[j],sel2)]

58

sigma1.step <- (Z[c(sel1[j],sel2),] %*% VarCorr(fit)$id)

%*% t(Z[c(sel1[j],sel2) ,]) + sigma(fit)^2*diag(dim(Z[c

(sel1[j],sel2) ,])[1])

mu.marginal[j,,step] <- mu.pat[sel1[j]] +

63 sigma1.step [1: length(sel1[j]) ,(length(sel1[j])

+1):( length(sel1[j])+length(sel2))] %*%

solve(sigma1.step[( length(sel1[j])+1):( length(

sel1[j])+length(sel2)),(length(sel1[j])+1):(

length(sel1[j])+length(sel2))]) %*%

(Y[sel2] - mu.pat[sel2])

sigma.marginal[j,,step] <- sigma1.step [1: length(sel1[j])

,1:length(sel1[j])] +
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68 sigma1.step [1: length(sel1[j]) ,(length(sel1[j])

+1):( length(sel1[j])+length(sel2))] %*%

solve(sigma1.step[( length(sel1[j])+1):( length(

sel1[j])+length(sel2)),(length(sel1[j])+1):(

length(sel1[j])+length(sel2))]) %*%

t(t(sigma1.step [1: length(sel1[j]) ,(length(sel1[

j])+1):( length(sel1[j])+length(sel2))]))

}

}

73

# PLOT

mu.pat <- matrix(mu.pat , byrow=T, nrow=nfeat)

Y <- matrix(Y, byrow=T, nrow=nfeat)

78

nf <- layout(matrix(c(1,2,3:( length(features)+2)),ncol=1,

byrow=F), widths = 5, heights = c(0.65 ,0.5 , rep(1,length(

features))), TRUE)

par(oma = c(4,1,3,1), mgp = c(2, 1, 0))

par(mar = c(0.1 ,3 ,0.1 ,3),xpd=F)

83 plot(dpt , pval$list[[id]], ylim = c(0, 1), type = "n", xlab =

NA , xaxt = "n", ylab = NA , yaxt="n", xlim = c(0, tail(dpt

,1)))

mtext("p", side = 2, line= 2.5, cex = 0.8)

axis(2, at = c(0,0.5 ,1))

abline(h=cutoff , lty=2, col = "grey")

lines(dpt , pval$list[[id]], lty=1)

88

par(mar=c(0 ,4.5 ,0.8 ,3), xpd=T)

plot(dpt , dpt , type = "n", axes = F, xlab = NA , ylab = NA)

legend("bottom", lty=c(1,1), pch=c(20,NA), col=c("black","

green"), legend=c("observations", "mean"), horiz=T, bty =

"n")

93 for (i in 1: nfeat){

par(mar = c(0.2 ,3 ,0.2 ,3),xpd=F)

x.lab=NA

x.axt <- "n"

if(i == nfeat){ x.lab <- "dpt"; x.axt <- "l" }

98 plot(dpt , dpt , xlab=x.lab , xaxt=x.axt , ylab = NA , type = "n

", xlim = c(0, tail(dpt ,1)),

ylim=c(0, max( mu.pat[i,],

Y[i,],

max(sapply (1:dim(mu.marginal)[3], function(x) mu.

marginal[i,,x]+1.96*sqrt(sigma.marginal[i,,x])))

)))
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103 lines(dpt[2: length(dpt)], mu.marginal[i,,], pch=20, col = "

grey", type = "p")

sapply (1: dim(mu.marginal)[3], function(x) add.error.bars(

dpt[x+1], upper=mu.marginal[i,,x]+1.96*sqrt(sigma.

marginal[i,,x]), lower=mu.marginal[i,,x] -1.96*sqrt(sigma

.marginal[i,,x]), width =0.2, col="grey", lty=1))

lines(dpt , mu.pat[i,], col="green")

lines(dpt , Y[i,], type="o", pch=20, col = "black")

108 mtext( paste(features[i]), side = 2, line = 2.5, cex = 0.8)

}

mtext(paste0("Patient ", id, " ( Outcome: ", ifelse(unique(

data.pat$survival)==1,"survival","nonsurvival"),")"),

outer=T, line = 2, cex = 0.8)

mtext(paste0("m", model.number , "/s", span , "/c6"), outer=T,

line = 1, cex = 0.7)

113 mtext("dpt",outer=T,side=1, line=2, cex = 0.8)

}

}

7.7 Evaluation

roc_auc <- function(model.number , span , day = 22){

if(title==T){par(mar=c(5,5,5,5))}

5 load(paste0("model_fits/model",model.number ,".RData"))

CMD <- cmd(data , mem.fits , span)

pval <- assign_pval(CMD , span)

final.pval <- pval$matrix[day ,]

10 cutoff <- c(0,unlist(lapply(seq (0 ,1 ,0.01), function(x) quantile

(final.pval[mem.fits$true ==1], x))) , 1)

sens=fpr <- vector(length=length(cutoff))

for(i in 1: length(cutoff)){

pred.class <- as.numeric(final.pval > cutoff[i])

TP <- sum(mem.fits$true ==1 & pred.class ==1)

15 TN <- sum(mem.fits$true ==0 & pred.class ==0)

FN <- sum(mem.fits$true ==1 & pred.class ==0)

FP <- sum(mem.fits$true ==0 & pred.class ==1)

sens[i] <- TP/(TP+FN)

20 fpr[i] <- 1 - TN/(TN+FP)

}

return(trapz(rev(fpr), rev(sens)))
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}

1 auc_progress <- function(model.number , span){

load(paste0("model_fits/model",model.number ,".RData"))

CMD <- cmd(data , mem.fits , span)

6 #---------------------------------------------------

auc_fun <- function(pval , true){

cutoff <- c(0, unlist(lapply(seq (0 ,1 ,0.01), function(x)

quantile(pval[true ==1], x, na.rm=T))) , 1)

sens=fpr <- vector(length=length(cutoff))

11 for(i in 1: length(cutoff)){

pred.class <- as.numeric(pval > cutoff[i])

TP <- sum(true ==1 & pred.class ==1)

TN <- sum(true ==0 & pred.class ==0)

FN <- sum(true ==1 & pred.class ==0)

16 FP <- sum(true ==0 & pred.class ==1)

sens[i] <- TP/(TP+FN)

fpr[i] <- 1 - TN/(TN+FP)

}

21

return( c("AUC"=trapz(rev(fpr),rev(sens))) )

}

#---------------------------------------------------

26 pval <- assign_pval(CMD , span)

auc.progression <- apply(pval$matrix , 1, function(x) auc_fun(x,

mem.fits$true))

return(auc.progression)

}

confusion_progress <- function(model.number , span , costs){

load(paste0("model_fits/model",model.number ,".RData"))

load(paste0("cutoffs/optimal.cutoff.costs",costs ,".RData"))

5 cutoff <- cutoff.opt[model.number ,span]

CMD <- cmd(data , mem.fits , span)

pval <- assign_pval(CMD , span)

TP=TN=FP=FN <- vector(length = dim(pval$matrix)[1])

10 for(i in 1:dim(pval$matrix)[1]){

pred.class <- as.numeric(pval$matrix[i,] > cutoff)

TP[i] <- sum(mem.fits$true ==1 & pred.class ==1)

TN[i] <- sum(mem.fits$true ==0 & pred.class ==0)
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15 FN[i] <- sum(mem.fits$true ==1 & pred.class ==0)

FP[i] <- sum(mem.fits$true ==0 & pred.class ==1)

}

return( rbind("TP"=TP ,"TN"=TN ,"FN"=FN ,"FP"=FP)

20 }

forecast_rates <- function(model.number , span){

load(paste0("model_fits/model",model.number ,".RData"))

load(paste0("cutoffs/optimal.cutoff.costs",costs ,".RData"))

5 cutoff <- cutoff.opt[model.number ,span]

CMD <- cmd(data , mem.fits , span)

pval <- assign_pval(CMD , span)

# counts length of elements of tial equal to last entry until

first inequality

10 #----------------------------------------

tail_count <- function(x){

x <- unlist(x)

count <- 0

index <- length(x)

15 while( (tail(x,1) == x[index ]) && (index > 0) ){ count <-

count + 1; index <- index -1 }

return(count)

}

#----------------------------------------

20 max.length <- 10

#OVERALL TRUE PREDICTIONS BEFORE ENDPOINT

detect <- lapply(pval$list , function(x) x > cutoff)

final.predictions <- lapply(detect , function(x) tail(x,1))

25 sel <- names(final.predictions[unlist(final.predictions) ==

unlist(mem.fits$true)]) # TP & TN Patients

trues.before.end <- unlist(lapply(detect[sel], tail_count))

length.obs <- unlist(lapply(pval$list , function(x) length(x)))

overall.rate <- sapply (1: max.length , function(x) length(which(

trues.before.end >=x))) / unlist(lapply( 1:max.length ,

function(x) length(which(length.obs >=x)))) )*100

30

#TRUE NEGATIVE PREDICTIONS BEFORE ENDPOINT

TN.sel <- names(which(mem.fits$true == 0))

detect <- lapply(pval$list[TN.sel], function(x) x > cutoff)

final.predictions <- lapply(detect , function(x) tail(x,1))

35 sel <- names(final.predictions[unlist(final.predictions) ==

unlist(mem.fits$true[TN.sel])]) # TN Patients

trues.before.end <- unlist(lapply(detect[sel], tail_count))
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length.obs <- unlist(lapply(CMD[TN.sel], function(x) length(x))

)

tn.rate <- sapply (1: max.length , function(x) length(which(trues.

before.end >=x))) / unlist(lapply( 1:max.length , function(x)

length(which(length.obs >=x)))) )*100

40

#TRUE POSITIVE PREDICTIONS BEFORE ENDPOINT

TP.sel <- names(which(mem.fits$true == 1))

detect <- lapply(pval$list[TP.sel], function(x) x > cutoff)

final.predictions <- lapply(detect , function(x) tail(x,1))

45 sel <- names(final.predictions[unlist(final.predictions) ==

unlist(mem.fits$true[TP.sel])]) # TP Patients

trues.before.end <- unlist(lapply(detect[sel], tail_count))

length.obs <- unlist(lapply(CMD[TP.sel], function(x) length(x))

)

tp.rate <- sapply (1: max.length , function(x) length(which(trues.

before.end >=x))) / unlist(lapply( 1:max.length , function(x)

length(which(length.obs >=x)))) )*100, type = "o", pch = "o")

50 axis(2, at = c(0 ,25 ,50 ,75 ,100))

legend("bottomleft", legend=c("TP+TN ", "TN", "TP"), lty=c

(1,1,1), pch=c(20,4,1), cex=1, bg = "white", horiz = T)

return( rbind(overall.rate , tn.rate , tp.rate) )

}
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