
New Model Checking Techniques for
Software Systems Modeled with Graphs

and Graph Transformations

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht von

Sebastian Gabmeyer
Matrikelnummer 0301025

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O. Univ. Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Betreuung: Assist.-Prof. Dipl.-Ing. Dr.techn. Martina Seidl

Diese Dissertation haben begutachtet:

(Prof. Dr. Gerti Kappel) (Prof. Dr. Martin Gogolla)

Wien, 15.06.2015
(Sebastian Gabmeyer)

Technische Universität Wien
A-1040 Wien ‚ Karlsplatz 13 ‚ Tel. +43-1-58801-0 ‚ www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

New Model Checking Techniques for
Software Systems Modeled with Graphs

and Graph Transformations

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Sebastian Gabmeyer
Registration Number 0301025

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O. Univ. Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Advisor: Assist.-Prof. Dipl.-Ing. Dr.techn. Martina Seidl

The dissertation has been reviewed by:

(Prof. Dr. Gerti Kappel) (Prof. Dr. Martin Gogolla)

Wien, 15.06.2015
(Sebastian Gabmeyer)

Technische Universität Wien
A-1040 Wien ‚ Karlsplatz 13 ‚ Tel. +43-1-58801-0 ‚ www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Sebastian Gabmeyer
Eduard Meder Gasse 29/3, 2514 Wienersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgments

This thesis had not come into existence without the help of many whom I would like
to thank in the following. I would like to offer my deep gratitude to my supervisor
Prof. Dr. Gerti Kappel for her continuing support, professional guidance, and her
thought-provoking questions that challenged me towards a deeper understanding of the
problems I intended to solve. In the same spirit, I would like to express my very great
appreciation to Dr. Martina Seidl for her invaluable and constructive suggestions, and
the insightful discussions that formed the foundations of this thesis. My grateful thanks
are also extended to Prof. Dr. Martin Gogolla for sharing his deep knowledge on
OCL and his helpful suggestions during the finalization of this thesis. I would like to
thank my colleagues at the Business Informatics Group for their supportive feedback
and stimulating discussions on all matters of model-driven software development. I am
particularly grateful for the assistance given by Dr. Petra Brosch who provided me with
valuable feedback and suggestions at all times. I would also like to extend my thanks to
Robert Bill whose tireless work on the implementation of the MocOCL model checker
enabled us to evaluate our research on an entirely new level. I also wish to acknowledge
the help of Dr. Manuel Wimmer for the advice he provided, his support in all teaching
related matters, and his interest in my work in all the years we have worked together.
Moreover, I would like to offer my special thanks to Katja Hildebrandt and Michael
Schadler, who continuously assisted me with all administrative and technical issues.

Finally, I wish to thank my wife, Denise, and my children, Tabea and Theo, for being
a constant source of motivation and for their patience. My special thanks extend to my
parents for their unrelenting and generous support.

iii

Abstract

In today’s software, no matter how security and safety critical it may be, defects and fail-
ures are common. With the rising complexity of software and our growing dependency
on its correct functioning as it permeates our every day life the software development
process requires new approaches to integrate formal verification techniques. This thesis
presents approaches on efficiently verifying software systems described by model-driven
software development artifacts. These artifacts comprise the implementation of the
system and consist of both structural and behavioral models. We present two model
checking approaches, MocOCL and Gryphon, to verify the temporal specification of a
system against its model-based implementation. Central to our approach is the twofold
use of graphs to describe the system under verification. First, we describe the admis-
sible static structure of an instance of the system by means of attributed type graphs
with inheritance and containment relations, often referred to as metamodel. Second, we
represent a state of the system as an object graph that enumerates a system’s active
objects, the references among them, and their attribute values. A change in the sys-
tem, e.g., the deletion of an object or the modification of an attribute value, triggers
a state change. The behavior of the system is thus described by actions that modify
the state of the system. In this thesis we employ graph transformations to model such
state-changing actions as they provide suitable means to formally describe modifications
on graphs. The specification of the system, on the other hand, is written in our temporal
extension of the Object Constraint Language (OCL) that is based on Computation Tree
Logic (CTL). A specification written in our CTL extension for OCL, called cOCL, can
be verified against a model-based implementation of the system with our explicit-state
model checker MocOCL. Gryphon aims to increase the efficiency and scalability of the
verification process and implements a symbolic model checking approach, that focuses
the verification on safety specifications.

The work presented in this thesis also encompasses a survey and a feature-based clas-
sification of verification approaches that can be used to verify artifacts of model-driven
software development. Methodologically, it provides the motivation for our work on Mo-
cOCL and Gryphon. Both our approaches are novel in their own respect; MocOCL
for its capability to verify CTL-extended OCL expressions and Gryphon for its use of
relational logic to build a symbolic representation of the system that can be verified with
any model checker participating in the Hardware Model Checking Competition. Finally,
MocOCL and Gryphon are evaluated performance-wise on a set of three representative

v

benchmarks that demonstrate the model checkers’ preferred fields of application and its
limitations.

Kurzfassung

Die steigende Komplexität von Software und der gleichzeitig wachsenden Abhängigkeit
unserer Gesellschaft von ihrer korrekten Funktionsweise erfordert die Integration von
formalen Methoden in den Softwareentwicklungsprozess. In dieser Disseration werden
daher Ansätze und Techniken vorgestellt um Softwareartefakte zu verifizieren, die im
Zuge eines modellgetriebenen Entwicklungsprozess erstellt werden. Im Konkreten unter-
sucht die Arbeit Ansätze zur Verifikation von Struktur- und Verhaltensmodellen. Damit
einhergehend werden zwei Model Checker, nämlich MocOCL und Gryphon—vor-
gestellt, die die modellbasierte Implementierung eines System gegen deren temporale
Spezifikation verifizieren. Graphen nehmen in diesen beiden Ansätzen eine zentrale Rolle
ein, da sie sowohl zur Beschreibung der Struktur des Systems als auch zur Beschreibung
des Verhaltens des Systems verwendet werden. Während mit Hilfe von attributierten
Typgraphen, oft auch als Metamodelle bezeichnet, welche Vererbungs- und Kompositions-
beziehungen enthalten, die zulässige Struktur des Systems erfasst wird, dienen Objekt-
graphen zur Beschreibung des Zustandes des System und listen zu diesem Zweck alle
aktiven Objekte, die Beziehungen zwischen diesen und deren aktuelle Attributwerte auf.
Eine Veränderung des Systems, welche beispielsweise durch das Löschen eines aktiven
Objekts oder die Modifikation eines Attributs hervorgerufen wird, hat einen Zustands-
wechsel zur Folge, der sich in der Struktur des Objektgraphens widerspiegelt. In dieser
Dissertation wird das Verhalten eines Systems mit Graphtransformationen modelliert,
die es ermöglichen Modifikationen an Graphen formal zu beschreiben. Für die Spezifika-
tion des Systems wurde cOCL im Rahmen dieser Dissertation entwickelt. Dabei handelt
es sich um eine temporale Erweiterung der Object Constraint Language (OCL), die
Operatoren der Computation Tree Logic (CTL) in OCL integriert. In weitere Folge kann
nun die Richtigkeit eines Systems, dessen Struktur mit Hilfe von attributierten, getypten
Graphen mit Vererbungs- und Kompisitionseziehungen beschrieben wird und dessen
Verhalten mit Graphtransformationen modelliert wird, in Hinblick auf seine in cOCL
formulierte Spezifikation mit dem Model Checker MocOCL verifiziert werden. Mit
Gryphon wurde ein auf Performance und Skalierbarkeit ausgerichteter Model Checker
entworfen, mit dem Safety-Spezifikationen effizient verifiziert werden können.

Zusätzlich werden in dieser Dissertation eine Studie und eine merkmalbasierte Klas-
sifikation von Verifikationsansätzen vorgestellt, die die Verifikation von modellbasierte
Softwareimplementierungen ermöglichen. Diese Studie und die daraus resultierende Klas-
sifikation bildeten aus methodischer Sicht die Motivation für die Arbeiten an MocOCL
und Gryphon, die in dieser Hinsicht beide einen neuartigen Ansatz beisteuern. Außerdem

vii

beinhaltet die Arbeit eine umfassende Performance-Evaluierung von MocOCL und
Gryphon, die anhand von drei repräsentativen Benchmarks Stärken und Einschränk-
ungen der Model Checker aufzeigt.

Contents

1 Introduction 1

2 Background 7

2.1 Model-Driven Development . 7

2.2 Formal Methods in Software Engineering 15

2.3 Summary . 20

3 Verification Approaches for Behavioral and Temporal Aspects in MDD 21

3.1 Description of Verification Approaches . 23

Theorem Proving . 23

Model Checking of Rewriting-Based Systems 27

Model Checking of OCL Specifications . 35

Model Checking of UML Diagrams . 39

3.2 A Feature-Based Classification . 43

3.3 Summary . 49

4 Model Checking CTL-extended OCL Specifications 51

4.1 Preliminaries . 54

4.2 The CTL-extended Object Constraint Language 64

4.3 MocOCL — A model checker for cOCL specifications 67

4.4 MocOCL in Action . 71

4.5 Summary . 74

5 Symbolic Model Checking of Safety Properties with Gryphon 77

5.1 Preliminaries . 78

5.2 Translating EMF Models and Graph Transformations to Sequential Circuits 84

5.3 Summary . 99

6 Evaluation 101

6.1 The Pacman Game . 102

6.2 The Dining Philosophers Problem . 108

6.3 Verification of Interlocking Railway Systems 114

6.4 Summary . 123

ix

7 Conclusion 125

Bibliography 127

x

CHAPTER 1
Introduction

In model-driven software development (MDSD) developers employ models and model
transformations to implement a software system. This dissertation is concerned with
techniques to assert the quality and correctness of model based software implementations.
The main contributions of this dissertation are as follows:

(i) an in-depth survey of verification approaches for behavioral aspects of models and
model transformations,

(ii) a novel temporal extension for the Object Constraint Language (OCL) to specify
behavioral properties of model based software and a model checker, called Mo-
cOCL, to verify these temporal OCL expressions, and

(iii) a new symbolic model checker, named Gryphon, that encodes models and descrip-
tions of their behavior into bounded, first-order relational logic [95].

Motivation. During the last decades the importance of software in everyday life has
grown apace [125]. With the increasing demand on more sophisticated functionality,
however, the complexity of software rises considerably [8,53,141]. As a direct consequence
of this increasing complexity, developers make mistakes and “introduce” defects into
the software/system1 [201]. A defect causes malfunctions and errors in the running
program, ultimately leading to its failure in the worst case [201]. Failures in software
may have far reaching consequences and can result in high fixing costs, devastating
physical damage, and even loss of life. The list of severe failures caused by software
defects ranges from a failed spacecraft launch [123] over an erroneous floating-point unit
in an Intel processor [142], a state-wide electrical blackout [163], and a“bleeding”security
protocol [49] to the death of at least five people by an improperly calibrated radiation

1We will most often use the terms software and system synonymous throughout this dissertation.

1

therapy machine [120], to name a few examples. Thus, a software’s correct functioning
is vital and a matter of utmost importance.

To counter the ever growing complexity of nowadays software, graphical and textual
modeling languages, like the Unified Modeling Language (UML) [152], began to perme-
ate the modern development process. The reason for this development is twofold; first,
models abstract away irrelevant details and, second, they express ideas and solutions in
the language of the problem domain. In the context of model-driven software develop-
ment model transformations take a pivotal role. Their use and shape are manifold [50]
and their field of application includes, among others, model-to-text transformation, that
may be used, e.g., to generate executable code from models, and model-to-model trans-
formations. The latter group can be divided into endogenous and exogenous model-to-
model transformations. Exogenous model transformations describe translations between
two types of models, where the so-called source model is converted into a target model
of a different type. An example of an exogenous model transformation is the well-known
and often portrayed object/relational transformation that maps a class diagram to an
entity relationship diagram.

While exogenous model transformations perform a conversion between two types of
models, endogenous model-to-model transformations modify or refine models, that is,
source and target model of an endogenous transformation are of identical type. In this
respect, endogenous model transformations are used to define computations on models,
where the source model represents the current state and the target model the next state
of the system. Hence, endogenous model transformations can capture the behavior
of a system. The case of endogenous model transformations will be the focus of this
dissertation.

Among the multitude of available model transformation languages, the theory of
graph transformations [62,173] offers a formal, concise, and mathematically well-studied
language to describe modifications on graphs. In the following we will thus assume
that models are expressed in terms of attributed, typed graphs with inheritance and
containment relations [24] and model transformations in terms of double-pushout (DPO)
graph transformations [47]. In the context of model-driven software development a
system may thus be formally described by graphs that define its static structure and
graph transformations that capture the system’s behavior.

Problem Statement. Graph transformations offer a Turing complete model of com-
putation [128] and are as such as expressive as any other conventional programming
language. Consequently, verification techniques that assert the functional quality of
model based software are required to trace and eliminate defects in modeling artifacts,
i.e., models and model transformations or, likewise, graphs and graph transformations.
To increase the acceptance of such a verification technique it should

(i) allow users to formulate their verification tasks in the language of the problem
domain they are familiar with,

(ii) present the result of the verification in the language of the problem domain, and

2

(iii) operate as automatic and efficient as possible.

Solution. The verification techniques presented in this dissertation are kept trans-
parent to the user. This is achieved by allowing the user to formulate the verification
problem, which consists of a formal representation of the system and its temporal speci-
fication, directly in the language of the models. Based on an extensive survey of existing
verification techniques for model based software and a classification thereof we focus
on model checking based verification techniques that provide a viable trade-off between
automatic executability, expressivity of the supported specification languages, and ver-
ification efficiency. In brief, a model checker explores all or relevant parts of a system’s
finite state space, which encompasses all the states a system might be in during its exe-
cution, and checks whether a system’s specification holds in each state. The scalability of
a model checking based verification approach thus crucially depends on the representa-
tion of the states in memory. Originally, states were represented explicitly and stored in
tables, but more recently symbolic approaches have been proposed that represent states
and transitions between states by means of first-order or propositional logic formulas.
While the latter can verify larger state spaces more efficiently, the former provides a
faithful representation of the system that might not be preserved in every detail by a
symbolic encoding. The specification against which the model checker verifies the system
is usually formulated in temporal logic, most commonly, in either linear temporal logic
(LTL) [158] or computation tree logic (CTL) [42], the latter of which is computationally
easier to verify. To allow the users to express the specification in the language of the
models and domain they are working with we

(i) extend the Object Constraints Language (OCL), which enjoys broad acceptance
among MDSD users, with temporal operators to verify properties that are more
complex than those already expressible in OCL, i.e., invariants and pre- and post-
conditions of operations, and

(ii) use graph constraints to model desired and undesired states of the system.

Based on these considerations the presented solution encompasses an explicit and a
symbolic model checker that verify specifications formulated either as CTL extended
OCL expression or as graph constraints, respectively.

Contributions. The contributions of this dissertation are threefold and I present
henceforward

(i) a survey and a feature based classification of existing, state-of-the-art verification
techniques that assert the correctness of behavioral MDSD artifacts,

(ii) a branching time extension of the Object Constraint Language based on CTL and
an explicit state model checker, called MocOCL, that verifies a system against a
specification of CTL extended OCL expressions, and

3

(iii) a novel symbolic model checker, called Gryphon, that asserts the unreachability
of bad states modeled as graph constraints.

Before we embarked work on the presented model checkers, MocOCL and Gryphon,
we conducted an in-depth survey of existing verification approaches that analyzed and
verified the behavior of systems represented by models and model transformations. This
survey was condensed into a feature based classification of the different approaches that,
on the one hand, allows to select suitable verification approaches given a set of require-
ments like supported input artifacts or the specification language and, on the other hand,
allows to pin point verification approaches that have not been studied extensively yet.
In this respect, the classification revealed that, although several approaches promote
the use of rich temporal OCL specifications, none of these can be integrated into the
formal semantics of OCL without modification and, moreover, none of them provides
an accompanying model checker. With our CTL based extension of OCL, called cOCL
and our model checker MocOCL that verifies cOCL expressions we intend to close this
gap. Further, the classification shows that currently only a few symbolic approaches
have been proposed and implemented. None of these few approaches, however, is capa-
ble to exploit the power of existing, industrial grade hardware model checkers. We thus
present our model checker Gryphon that uses bounded, first-order relational logic to
derive a symbolic, propositional logic representation of the system that can be verified by
any model checker participating in the Hardware Model Checking Competition [21]. Fi-
nally, we perform a thorough performance evaluation, where we compare MocOCL and
Gryphon with the state-of-the-art model checker integrated into the Groove tool [106].

Structure of the Dissertation. The next chapter presents the prerequisites and
background material for the remainder of this dissertation. It introduces, in the first
part, the model-driven software development paradigm, the Unified Modeling Language
(UML), the Meta Object Facility (MOF), and the Object Constraint Language (OCL).
The second part of the Chapter discusses formal system representations and formal ver-
ification techniques, and introduces, among others, the theory of graph transformations
and model checking. Then, Chapter 3 presents our survey and classification of existing
approaches that solve verification problems concerned with behavioral aspects encoun-
tered in the context of MDSD. The Chapter starts with a detailed discussion of the
existing verification approaches followed by the presentation of our classification and the
resulting feature model. The Chapter closes with a short discussion on the insights that
we gain from our survey and classification. The next two chapters are devoted to our
model checkers, MocOCL and Gryphon. Chapter 4 presents syntax and semantics of
our CTL extension for OCL, called cOCL, and introduce the model checker MocOCL.
Then, Chapter 5 develops the necessary translations to encode a type graph and a set
of behavior describing graph transformations into a symbolic representation and dis-
cusses the internals of Gryphon. Finally, an evaluation of MocOCL, Gryphon, and
Groove against three benchmarks is presented in Chapter 6. Chapter 7 concludes this
dissertation and presents an outlook on possible future directions.

4

Remarks. The enumerative, explicit-state model checker MocOCL was implemented
by Robert Bill in the course of his master’s thesis [25] that I co-supervised.

5

CHAPTER 2
Background

In the following, we introduce the common terminology used in subsequent sections.
First, we discuss the notion of models and modeling, position them in the context of soft-
ware development, and highlight their importance to model-driven development. Then
we shortly review the formal verification techniques relevant for this work.

At this point we want to emphasis that the term model is heavily overloaded in
computer science. For example, in software engineering, models are design artifacts
for describing the structure and behavior of software, whereas a model in logic usually
provides a set of variable assignments for some formula f such that f evaluates to true,
i.e., it is satisfied under this assignment. As we use both kinds of models in this thesis,
we distinguish between software models and logical models and use these terms explicitly
whenever ambiguities might arise.

2.1 Model-Driven Development

The development of software is an intricate task that requires mechanisms of abstraction
to decrease its complexity [53,102,108]. The introduction of models to the development
process, whose primary purpose is undoubtedly their ability to simplify complex concepts
by abstraction, allows the developers to focus on a distinct subset of the problem by
representing the system1 under development with multiple, overlapping views. This
in turn distributes the complexity involved in the development of the system among
multiple, overlapping models, each of which represents a distinct view onto the system.

In model-driven development (MDD), models become the center of all development
efforts. This contrasts code centric development methods where models are usually used
only in the initial requirement gathering and design phases and later as a documenta-
tion of the implemented system. Most often, however, the models lag behind the actual

1A system may be anything that was built, designed, or developed for a specific purpose ranging from
hardware components and software as atomic building blocks to composite structures and installations
as the ventilation system in a factory or the factory itself.

7

status quo of their implementation, effectively rendering their documentation purposes
obsolete. In MDD, on the other hand, an initial model of a system under development is
refined in multiple iterations and eventually translated into the final executable program
and other deliverables by so-called model transformations. The lifting of models to first
class development artifacts thus goes hand in hand with the pivotal role of model trans-
formations [180]. Model transformations have various fields of application in MDSD
and may not only be used in the process of generating deliverables but also to describe
computations on models or, similarly, to implement the behavior of a model by making
explicit the effects on the model of an operation call of the system [50].

An important concept in MDSD is that of a metamodel that defines the language, or
visually speaking, the building blocks that are allowed to be used in building a so-called
instance model of the metamodel. A model conforms to the metamodel if it adheres to
the structure prescribed by the metamodel. Similar to the relation between metamodel
and instance model, a meta-metamodel defines the necessary conformity constraints for a
metamodel. Each additional meta-level simplifies the set of available language features,
or building blocks, until a core of concepts remains that is able to recursively define
itself. Thus, the model at some meta-level conforms to itself, effectively bootstrapping
the conformance relation. Note that we will follow the common convention that refers
to an instance model simply as the model of some metamodel. In this way, a model
of a meta-metamodel is a metamodel or, strictly speaking, an instance model of the
meta-metamodel.

Generally, we distinguish between descriptive and prescriptive models, where the
former describe an existing system and the latter specify what a system should look like;
hence, it is also referred to as a specification model. This distinction leads to different
notions of correctness. A descriptive model is correct if all the reified concepts correspond
to actual observation of the existing system. In contrast, the system is deemed correct
if it implements all the concepts found in the prescriptive model. Stated differently, the
system is correct if it satisfies the specification defined by the prescriptive model. In the
remainder of this dissertation, we will assume that all models are prescriptive models.

Model-Driven Architecture

In 2001, the Object Management Group2 (OMG) proposed the Model-Driven Architec-
ture (MDA) as a standardized architecture for MDD. Central to the MDA perspective
is the separation of the model based implementation into a platform independent and a
platform specific model. The ratio behind this separation is that platform independent
models (PIM) is platform agnostic and does not change if the underlying, anticipated
platform that provides the run-time environment for the system under development is
exchanged in favor of another. Instead, the PIM is parameterized and translated into
platform specific model (PSM) with a set of model transformations. The executable
system is then generated from the PSM [154].

2http://www.omg.org

8

http://www.omg.org

The realization of the MDA depends on various other standards issued by the OMG,
most notably the Meta Object Facility [150] (MOF), the Unified Modeling Language [153]
(UML), the Object Constraint Language [148] (OCL), and the XML Metadata Inter-
change [151] (XMI) standards.

The Meta Object Facility

The Meta Object Facility (MOF) [150] forms the basis for OMG’s model driven architec-
ture (MDA) initiative. The MOF 2 standard defines a common interchange format and
interoperability layer for the modeling and exchange of metadata about models. In an
MDA context, the MOF Model, that is defined by the standard, is intended to form the
basis for all platform independent models, for which it provides a common metamodeling
framework. For this purpose, MOF provides a reduced set of class modeling constructs,
in essence a subset of UML’s modeling constructs as MOF re-uses essential parts of the
UML 2 infrastructure library, and a reflection mechanism that allows dynamic access to
the components and features of a MOF based model. A MOF based model denotes any
instance model that conforms to MOF Model, which is defined recursively by itself [150].

The MOF standard is split into two sub-standards, Essential MOF (EMOF) and
Complete MOF (CMOF), of which we only discuss the former in the following.

EMOF provides a simplistic set of class modeling constructs offering classes that
are composed of properties and operations. A property is either an attribute or an
association, which are by default uni-directional. To model bidirectional association two
opposite properties are required. As a property is a structural feature, it is further possible
to specify whether a property is single or multi-valued by specifying lower and upper
bounds. A class can be part of multiple inheritance hierarchy through generalizations.
An operation is parameterized and may raise exceptions. The structure of EMOF is
aligned to XMI to allow a straightforward serialization of MOF based metamodels [150].

The Unified Modeling Language

The Unified Modeling Language (UML) [153] standard defines a general purpose, object-
oriented modeling language together with a set of diagrams that provide different views
on the described system. These views are overlapping in the sense that a view contains
information that may, in some parts, be derived from another view. UML was designed
to be platform, programming language, and tool agnostic which emphasizes its universal
character. The UML standard consists of two parts, the UML infrastructure [152] that
specifies the metamodel of UML and the UML superstructure [153] that defines the
user level modeling constructs atop of the infrastructure. In the following we present a
subset of the available diagrams available in UML that are relevant for the subsequent
chapters.

Class and Object Diagrams. A class diagram describes the static structure of the
system under development, and defines the kind of objects and the relations, called links,
among them. The common characteristics of an object are captures by a class. A class

9

encapsulates structural features, which can be, among others, attributes and associations
ends, and behavioral features, i.e., operations. A feature may only be accessed by objects
that are within the scope defined by the feature’s visibility. A feature’s visibility can
be set to either public, package, protected, or private. A structural feature is typed over
either a classifier, e.g., a class or an interface, a primitive data type, or an enumera-
tion. Further, a structural feature may carry multiplicities, which allow, for example,
the specification of multi-valued attributes that describe arrays or lists of values [178].
An operation defines the behavior of the class and its specification consists of a set of
typed parameters, a typed return value, and a set of exceptions it may raise. A class
can be connected to other classes by associations that describe a relation or interaction
between the participating classes [178]. An association may also express part-of rela-
tions, so-called composite aggregations, which demand that each part belongs to exactly
one composite and all parts, which may be composites themselves and host other parts,
are deleted in a cascading manner if their composite is deleted. If a part can be part of
more than one composite, a shared aggregation may be used to model this relation [178].
Moreover, an is-a relation, referred to as a generalization, expresses that a class refines
its more general superclass. Hereby, the subclass inherits all non-private features and
associations of its superclass and may add additional attributes, operations, and associa-
tions. Classes are marked abstract if they capture common features but are not intended
to be instantiated. Similarly, a non-instantiable class that describes common behavioral
features, called a contract, may be marked as an interface. The UML standard does not
prescribe whether a class with multiple generalizations is implemented using multiple
inheritance relations as in C++ or multiple interfaces as in Java.

An object instantiates a class by assigning values to attributes and by establishing
links, which are instantiations of associations, to other objects. The object diagrams
captures such an instantiation of the system, which is also referred to as a specific state
of the system.

Sequence Diagrams. The Sequence Diagram captures inter-object interactions based
on the exchange of messages between the interaction partners of a system [153]. An
interaction partner may be any participant or component of a system, for example, a
user, an agent, a sensor, or an object in a software system, to name but a few possibilities.
Each interaction partner is represented by a lifeline. A lifeline represents a sequence of
events like send and receive events of messages, and time events. The primary purpose
of a sequence diagrams is the study of the sequence of the exchanged messages, called a
trace, that represents a specific behavior of the system under development. Even though
data flow may be modeled explicitly it is not the primary goal of the sequence diagram
to describe how data is used and altered along a trace [178].

The UML standard distinguishes between synchronous messages that wait for a re-
ceive message before the interaction continues, asynchronous messages, and create and
termination messages that start or end of an interaction partner [153]. Further, com-
bined fragments allow a concise specification of the control flow of an interaction. The
standard offers, among others, loop and alt fragments, which loop or branch an interac-

10

tion on a certain condition, strict and par fragments, which enforce a strict ordering on
the messages or allow an interleaved ordering, and fragments that forbid or assert the
occurrence of certain interactions.

State Machine Diagrams. The different states that an object may visit during its
lifetime are captured by a behavioral state machine diagram, which are based on David
Harel’s state charts [85]. A state machine consists of a finite number of named states
that an object of a class may be in and transitions among these states that describe
order and occurrence of a state change. A state may specify a number of activities that
must be executed on entry, while the state is active, on exit, or any combination thereof.
The UML standard defines a number pseudo states, among these, the initial state that
defines the entry point of the state machine diagram, decision nodes that branch to
either one of set of successor states depending on the evaluation of a guard condition,
terminate nodes that indicate abortion. In contrast to the initial state, the final state
is not a pseudo state as the object may reside indefinitely in the final state [178]. A
transition can be labeled with an event, a guard, and a list of activities that are executed
if (i) the specified event occurs and (ii) the guard is satisfied at the time the event occurs.
If no event is specified, the transition is triggered once all activities specified for a state
are completed, which fires a completion event [178].

Activity Diagrams. The activity diagram models processes, functions, and opera-
tions, or, more generally, behavior, at different levels of granularity; it offers modeling
constructs to describe accurately the sequence of computations that an operation of a
class preforms and, at the same time, to capture the high-level description of a business
process [178]. The main building blocks of an activity diagram are the activities and the
directed edges that model the control and data flow between these activities. Similar
to the operations that they can describe, activities may have several input and several
output parameters. Moreover, their execution may be restricted to start in states that
satisfy a certain precondition and end in states that fulfill the specified postcondition.
An activity may in turn consist of a sequence of atomic actions. Similar to state ma-
chine diagrams, the UML standard provides a set of predefined elements to describe the
control flow. Among these are the initial node, that marks the beginning of the control
flow, the decision node, whose outgoing edges are guarded to model different branches
of execution, the merge nodes, that join two or more branches, parallelization and syn-
chronization nodes, that model the parallel and sequential execution of activities, and
the final node, that marks the end of all, possibly parallel, control flows.

The control and data flow between actions and activities of an Activity diagram
follow the token semantics introduced for Petri nets [139, 157]. Hereby, an activity may
only be executed if (i) the activities of all incoming edges possess a token, and (ii) if the
guards on these incoming edges are satisfied. If an activity has multiple outgoing edges,
it splits the token and places one token on each outgoing edge. In addition to controlling
the flow of activities, a token may also carry data. The data flow between activities is

11

modeled implicitly through input and output parameters and modeled explicitly with
object nodes inside an activity.

Object Constraint Language

Often, modelers wish to incorporate fine-grained details of a domain into a model that
cannot be expressed with standard modeling constructs provided by the OMG’s UML
and MOF specifications. The Object Constraint Language (OCL) [148] aims to fill this
gap. It is a formal, declarative, typed, and side-effect free specification language to de-
fine invariants and queries on MOF-compliant models as well as pre- and postconditions
of operations. An OCL constraint is defined within a context, i.e., the element of the
model to which it applies, and consists of a constraint stereotype, either inv, pre, or
post to declare an invariant, a pre- or a postcondition, that is followed by the OCL
expression, which defines the property that should be satisfied/refuted in the context
of the constraint. For this purpose, the OCL specification defines a rich library of pre-
defined types and functions. In contrast to many other formal specification languages
it has been designed to be user-friendly with regard to readability and intuitive com-
prehensibility. OCL is heavily used to dissolve ambiguities that arise easily in natural
language descriptions of technical details. Thus, it plays an important role in many
MDSD projects and OMG standards.

In section 4.1 we will discuss formal syntax and semantics of OCL, which we extend
in section 4.3 by a set of temporal operators.

Eclipse Modeling Framework

The Eclipse Modeling Framework is a reference implementation of EMOF and enjoys
broad industry acceptance. In EMF the language used to define (meta-)models is
called Ecore and the framework provides sophisticated Java code generation facilities
for Ecore based models and serialization support based on the XML Metadata Inter-
change (XMI) standard [151]. In this respect, EMF provides a bridge between Java,
XML, and UML [190]. Similar to the MOF Model, Ecore recursively defines itself. Fig-
ure 2.1 depicts the class diagram of the Ecore language. An Ecore model consists of an
EPackage that contains a set of EClassifiers. A classifier is either an EClass or an
EDataType. A class may be abstract or an interface and setting either of the two flags to
true has the same effect as annotating a Java class with the equivalently named keyword.
A class may have an arbitrary number of superclasses and hosts a set of EStrucutu-

ralFeatures and a set of EOperations, both of which are typed. A structural feature
is instantiated either as an EReference or an EAttribute. A reference denotes an uni-
directional association between two classes, its type is given by the class that it points
to. Bidirectional associations are modeled with two (unidirectional) references pointing
in the opposite direction where the containing class of the first reference corresponds
to the referenced class of the second reference and vice versa. To indicated that two
unidirectional references constitute a bidirectional reference the eOpposite association
is set to point to the reference that runs into the opposite direction. If a reference acts

12

Figure 2.1: Ecore class diagram [60]

as a composition, its containment property is set to true. A model that instantiates the
containment reference is required to ensure that every contained object (i) has exactly
one container and (ii) is not transitively contained by itself, i.e., there does not exist
a containment cycle. In contrast to references, attributes are typed over EDataTypes,
which correspond to primitive data types, e.g., EBoolean, EInt, and EString, or to
enumerations (EEnums). Each of the primitive data types is mapped to its corresponding
Java type, i.e., EBoolean is mapped to Boolean, EInt is mapped to Integer and so on.
Further, if a structural feature is many valued, i.e., its lower bound is less than its upper
bound, it is implemented as a list. A class’s operations may be parameterized and have
a return type, which is either a class, a primitive data type, or an enumeration. Similar
to Java, Ecore defines a single super class for all other classes, namely the EObject class.
Moreover, each of the above mentioned modeling constructs may be annotated by an

13

(a) File-system

<xmi:XMI xmi:version="2.0"

...>

<fs:Root>

<dirs name="home">

<subdirs

name="user1">

<files

name="thesis.tex"/>

</files>

(b) XMI serialization

Figure 2.2: A file-system structure modeled in Ecore and the XMI serialization of an
instance model

EAnnotation.

Note that each Ecore model has a single root element that transitively contains all
other elements; for example, for the Ecore model itself the EPacakage class acts as
the root container. By introducing such a root node the translation to XMI becomes
straightforward because the root tag of the XMI file maps directly to the root node of the
Ecore model. Figure 2.2a displays a file-system structure modeled with Ecore where Root
is the root container of files and dirs (directories). A File may link to other files
and a Directory may have subdirs (subdirectories). In Fig. 2.2b, the XMI serialization
of a file-system instantiation is depicted. The depicted file-system instance has one top-
level directory beneath Root, namely home, which contains the user1 directory. The file
thesis.tex is contained in the user1 directory.

Model Transformations

Model transformations can express arbitrary computations over models and, thus, take
on a pivotal role in MDSD [180]. They are classified, among other characteristics, by
their specification language, the relationship between the input model of the transfor-
mation and its output model, or whether the transformation is unidirectional or bidirec-
tional [50]. In the subsequent sections we will use the term source model to refer to the
input model of a transformation and the term target model to refer to the transforma-
tion’s output or resulting model. A trace model establishes links between elements of the
source and the target model to indicate the effect of the transformation on the respective
element. A transformation is endogenous if source and target model conform to the same
metamodel, it is exogenous otherwise. A transformation can be in-place meaning that
source and target model coincide or out-place if source and target model are separate. A
transformation that is in-place and exogenous is called in-situ transformation and mixes
source and target model elements during intermediate steps.

14

Numerous languages have been proposed to develop model transformations. Two
popular choice among these are the Atlas Transformation Languages (ATL) [101] and
the Query/View/Transformation (QVT) standard issued by the OMG [149]. ATL is
a rule based, primarily declarative transformation language for Ecore models that also
allows to mix in imperative code sections. An ATL transformation rule thus consists of
(a) a guarded from block that matches a pattern in the source model; (b) a to block
that creates the desired elements in the target model once a match for the from block
is found; and (c) an optional do block that executes the imperative code. It supports
exogenous and endogenous model-to-model transformations. The Query/View/Trans-
formations (QVT) specification is a standard issued by the OMG [149] that embraces
the definition of model queries, the creation of views on models, and, in its most gen-
eral form, the specification of model transformations. It defines three transformation
languages for MOF 2.0 models, namely the QVT Relations, the QVT Core, and the
Operational Mappings language. Both the QVT Relations and the QVT Core language
are declarative transformation language that are equally expressive. QVT Relations
supports complex pattern matching and template creation constructs, and it implicitly
generates tracing links between the source and the target model elements. While the
QVT Relations is designed to be a user-friendly transformation language, QVT Core
provides a minimal set of model transformation operations that lead to simpler language
semantics without loosing the expressiveness of the QVT Relations language; yet, QVT
Core’s reduced set operations increases the verbosity of its transformation definition.
Further, QVT Core requires an explicit definition of traces between source and target
model elements. The QVT standard defines a RelationsToCore transformation that can
be used either to define the formal semantics of QVT Relations or to execute QVT
Relations transformations on a QVT Core transformation engine. The third transfor-
mation language, Operational Mappings, is imperative and uni-directional. It extends
OCL by side-effecting operations to allow for a more procedural-style programming ex-
perience. Operational Mappings are called from a Relations specification that establishes
the tracing links.

In the presentation of our verification approach (see chapter 4 and 5) we will use
neither ATL nor QVT, but so-called graph transformations, which we introduce briefly
in the next section and in more detail in section 4.1. Algebraic graph transformations
are a particular suitable model transformation framework for our purpose because they
offer a formal language for expressing graph modifications. The extension of algebraic
graph transformation that can be used to transform MOF-compliant models like Ecore
has been presented by Biermann et al. [24].

2.2 Formal Methods in Software Engineering

In this section, we introduce formal representations for software models and discuss veri-
fication techniques based on theorem proving and on model checking. In the first part we
discuss different types of graphs that are commonly employed as formal representations
for software models, while the second part discuss formal verification techniques. The

15

section is intended to give an overview and some of the concepts mentioned will be elab-
orated in greater detail in subsequent chapters. In particular, we describe the theory of
algebraic graph transformations and model checking in more depth in chapters 4 and 5.

Formal Representations for Software Models

Due to a lack of formality in OMG standards, which often describe the semantics of
modeling languages in prose rather than with formal, mathematical statements, many
approaches choose graphs, hypergraphs, Petri nets, or combinations thereof that come
with the desired mathematical foundation to represent software models and their seman-
tics formally and unambiguously.

Graphs

Graphs and graph transformations are a popular choice to formally describe models and
model transformations. For this purpose the theory of graph transformations has been
extended to support rewriting of attributed, typed graphs with inheritance and part-of
relations [24]. In the following, we summarize the concepts relevant for this work. A
graph G “ pV,Eq consists of a set V of vertices (also: nodes), a set E of edges. Further,
we define a source and a target function, src : E Ñ V and tgt : E Ñ V , that map
edges to their source and target vertices. A morphism (also: function, map) m : GÑ H
is a structure preserving mapping between graphs G and H. A graph transformation
p : LÑ R describes how the left-hand side (LHS) graph L is transformed into the right-
hand side (RHS) graph R. Technically, a graph rule p “ pvG, eG is a pair of morphisms
that maps all those vertices and edges from the LHS graph to the RHS graph that are
preserved by the graph transformation, while all nodes and edges that are not mapped
to the RHS by p are deleted, and all nodes and edges in the RHS graph for which
there exists no mapping from the LHS to the RHS are newly created. A graph rule
p : L Ñ R is applied to a host graph G if there exists a morphism m : L Ñ G, called
a match, that maps the LHS graph L into the host graph G. The application of rule p
at match m rewrites graph G to the result graph H. Numerous theoretical frameworks
exist that determine how graph H is derived from G. In Section 4.1 we provide an
introduction to an algebraic framework called the double pushout (DPO) approach.
Other frameworks, for example, based on monadic second-order logic are explained in
detail in the handbook [173]. For an in-depth treatment of the DPO approach and some
of its extensions we refer the interested reader to the more recent monograph on this
topic [62].

Hypergraphs

A hypergraph is a graph G “ pVG, EG, lG, cGq with an edge-labeling functions lG and
a connection function cG that assigns to each edge one or more target vertices, i.e.,
an edge in a hypergraph may connect to multiple vertices. Similar to rewriting rules

16

on graphs, graph transformations on hypergraphs consist of a LHS and RHS and an
injective mapping α between the nodes of the LHS and those of the RHS.

Petri Nets

Petri nets are bipartite graphs that are often used to model concurrent systems and
parallel processes [139]. Again, we summarize relevant concepts. A Petri net [157] is a
place/transition graph N “ pS, T,m0q where places s P S are connected via transitions
t P T . Each transition has zero or more incoming edges and zero or more outgoing edges.
A place is an in-place (out-place) of a transition t if it connects to t over an incoming
(outgoing) edge. Petri nets have a token based semantics. A marking m assigns tokens
to places, and defines the current state of the represented system. The initial state is
given by the initial marking m0. We denote with mpsq the number of tokens assigned
to place s. A transition is enabled if all its in-places carry a token. Given a marking
mi, an enabled transitions fires by removing a token from each in-place and assigning a
token to each out-place resulting in a new marking mi`1. If more than one transition is
enabled, one is non-nondeterministically chosen to fire. A transition with no in-places
(out-places) is always enabled (never enabled). A marking mj is reachable from mi

if there exists a sequence of firing transitions that, starting with mi result in mj . A
marking m is coverable if there exists a reachable marking m1 such that m1psq ě mpsq
for every place s in the Petri net. This second property is useful to determine whether
the Petri net deadlocks.

Formal Verification Techniques

Even before the first program was run on a computer techniques were developed to
ensure that a program executes as intended. Starting with the lambda calculus and Tur-
ing machines, research in this field continues along numerous branches bringing forth,
among others, Hoare Logic [91] and Dijkstra’s guarded commands [54], abstract in-
terpretation [48] as a formal framework to reason over compiler optimizations, model
checking [67, 164], and, finally, automated theorem proving for first-order logic and de-
cidable subsets thereof [172]. In the following, we present briefly the two branches most
relevant for subsequent chapters, namely model checking and (semi-)automatic theorem
proving.

Model Checking

Model checking is an automatic verification technique that asserts the correctness of
a system w.r.t. its specification by exhaustively exploring the set of all possible but
finitely many system states. Model checking has been successfully applied to some hard-
ware verification problems and, recently, with increasing success also to some software
verification problems [99]. In hardware model checking a system is represented by a
circuit and a state of the system is denoted by the valuations of a circuit’s latches. In
software model checking, on the other hand, the system is represented a program, i.e.,

17

data and operation on the data, and a distinct valuation of the system’s variables iden-
tifies a state. Given an initial state of the system, the set of all possible latch or variable
valuations that are reachable from the this initial state is referred to as the state space of
the system. The state space is traditionally represented by a Kripke structure, but also
by finite automata and linear transition systems (LTS). A Kripke structure is a finite,
directed graph whose nodes represent the states of the system. The nodes are labeled
with those atomic propositions that are true in that state. The edges of a Kripke struc-
ture represent transitions between their source and their target node and are (usually)
unlabeled. In contrast, automata and linear transition systems label transitions with the
system’s operations that trigger the state change. All of them have in common that they
describe execution paths of the system, which are defined as, possibly infinite, sequences
π “ s1s2s3 . . . of states σi, i ě 0. We say that a state σn is reachable from the initial
state σ0 if there exists a finite path π “ σ0 . . . σn.

The specification is usually formulated in a temporal logic and expresses desired
properties of the system. It is most commonly formulated either in Computation Tree
Logic (CTL) [42] or in Linear Temporal Logic (LTL) [158]. Both share the same set of
temporal operators, namely X (next), F (finally, also: eventually), G (globally), and U
(until). In case of CTL, each occurrence of a temporal operator must be preceded by
a path quantifier, either A (on all paths) or E (on some paths), whereas LTL formulas
are implicitly all-quantified. Intuitively, the formulas AXϕ, AFϕ, AGϕ, and AϕUψ are
satisfied if, along all paths that start in the current state, ϕ holds in the next state, in
some future state (including the current state), in all future states (including the current
state), and in all states until ψ holds eventually. It follows that a CTL formula may
explore multiple branches due to the requirement that every temporal operator is path-
quantified, while an LTL formula branches only once in the state where the evaluation
starts.

Temporal formulas describe properties that the system should satisfy and can be
categorized into safety, and liveness properties.3 Safety properties are characteristically
specified by AGϕ and describe invariants of the system [126] that hold in every state
on all paths. They assert that “nothing bad” ever happens. Liveness properties test if
“something good” happens eventually or repeatedly and are either of the form Fϕ or
GFϕ [15]. Moreover, reachability properties are used to test if there exists a path to a
state that eventually satisfies some condition ϕ. They are of the form EFϕ [15].

To algorithmically verify a system with a model checker the user supplies both a
representation of the system and its specification as input. In its simplest form, the model
checker first builds the state space of the system and then evaluates the specification.
If the specification is violated, the model checker returns a counterexample trace that
describes paths to states that falsify the specification. Otherwise, it informs the user
that the specification holds.

Model checking is applicable only to finite state representations of systems. The
state space may, however, become exorbitantly large, because it grows exponentially

3Note that there exist two classification schemes, namely the safety-liveness [2] and the safety-progress
classification [41].

18

with every additional system variable. This phenomenon is known as the state explo-
sion problem. Reducing the number of states and improving the efficiency of the state
space’s traversal has been the subject of active research for that past 30 years and still
is. This line of research has brought forth several techniques that pushed the number
of feasibly analyzable states from 105 to 1020 and beyond. McMillan [130] proposed
the first symbolic model checking technique in an effort to reduce the space required to
store an explicit enumeration of all states, and represented states and transitions with
Boolean formulas, which he encoded into (Reduced Ordered) Binary Decision Diagrams
(BDD) [37]. Later, Biere et al. [20] presented bounded model checking (BMC), a sym-
bolic approach that does not require BDDs. It analyzes execution paths of bounded
length, thus, offering an efficient technique that is sound, yet not necessarily complete.
In a different line of research, the framework of abstract interpretation [48] is employed
to represent a set of concrete states by a single abstract state. This overapproximation
is conservative, i.e., if a property holds in the abstract system, it holds in the concrete
system, too. If, however, the property fails in the abstract system, the returned coun-
terexample trace need not describe a realizable trace in the concrete system. This is due
to the overapproximation of the abstract system that may permit execution paths that
do not exist in the concrete system. If this is the case, the counterexample that is not
realizable in the concrete system is identified as being spurious. To eliminate a spuri-
ous counterexample it is necessary to refine the abstraction. This refinement procedure
may be guided by the returned counterexample and thus performed automatically. This
procedure is now known as counterexample-guided abstraction refinement (CEGAR) [43].

Theorem Proving

Theorem proving is the task of deriving a conclusion, i.e., the theorem, from a set of
premises using a set of inference rules. Traditionally performed manually, nowadays,
interactive proof assistants like Isabelle/HOL [145], Coq [46], or PVS [156] are often
used to aid the trained user in producing machine checked proofs. These proofs are de-
veloped interactively. Given a set of premises and a goal, i.e., the desired conclusion, the
proof assistant attempts to prove intermediate steps automatically and, if unable to con-
tinue, it resorts to the user. The user then guides the proof search by adding new lemmas
such that the assistant is finally able to complete the proof. Due to the undecidability
of many logics beyond the propositional level, interactive proving strategies are neces-
sary. Sometimes, user guided proof search is considered a limitation. Thus, there exist
a number of approaches that (i) either accept non-terminating proof searches or (ii) re-
duce the expressivity of the logic to a decidable subset and thus achieve full automatism
that requires no user guidance. Automatic theorem provers like Vampire [113] prove
the satisfiability/validity of many hard classical first-order formulas. The proof search,
however, may not terminate in all cases. A number of first-order theories exists that
are both decidable and expressive enough to formulate non-trivial system properties,
examples of which include, among others, Presburger and bit vector arithmetic, or the
theory of arrays. The satisfiability modulo theories, for example, decidable first-order

19

theories is established by SMT solvers like Z3 [51], Yices [58], and CVC4 [13], to name
but a few.

2.3 Summary

In this chapter we presented the background material required in subsequent chapters.
We gave, however, only a brief and far from complete overview of many different top-
ics, but refer the interested reader to explore the provided references to obtain a more
thorough overview on selected topics. In later chapters, we will extend on the material
of this chapter where necessary.

20

CHAPTER 3
Verification Approaches for

Behavioral and Temporal Aspects
in MDD

This chapter reviews the state-of-the-art in verification approaches for model-based soft-
ware development. The focus lies on approaches that establish a behavioral equivalence
relation which assert that either the modeled behavior of a system satisfies its spec-
ification, i.e., the system behaves as prescribed by, e.g., the functional requirements,
or that two representations of a system describe the same behavior. We classify these
approaches according to their distinguishing characteristics. These characteristics en-
compass (i) the verification scenarios which the verification approach is able to solve,
(ii) the types of models the approach accepts as input, (iii) the internal, formal represen-
tation of these input models, (iv) the specification language usable with the approach,
and (v) the underlying verification technique employed by the approach. The classi-
fication of the reviewed verification approaches is supported by a feature model that
succinctly summarizes the characteristics of each approach.

The importance of verification approaches that assert the behavioral equivalence
of modeling artifacts becomes apparent from the different steps involved in developing
software following an MDSD approach which is exemplarily sketched in the following.

Example. The development team of an MDSD project typically starts with the defini-
tion of a set of platform independent models (PIM) that focus on architectural concepts
as well as functional and non-functional requirements but exclude details on the specific
implementation technologies [189]. The set of functional requirements gives rise to what
we will refer to as the specification in the following.

In the initial stage of the project, a combination of different types of models are
used to describe the behavior of a system. Each of these models focuses on a specific

21

aspect of the system. Because these models overlap, the information presented in one of
them will be used in another model with a different viewpoint onto the system. Thus,
the developers need to ensure that the behavior presented in one of these models is
consistent with or equivalent to all other models.

At some point in the development process, model transformations will be used to
derive other models from a set of input models. For example, from a set of platform
independent models and a configuration model, a platform specific model might be
derived. In this case, the behavior described by the input models needs to be accurately
reflected by the resulting output models.

The behavior of a system can also be expressed by means of model transformations.
In this case, a set of model transformations describes an algorithm that operates on
instances of a model that represents the system. Instead of changing values of, e.g.,
variables, the model transformations rewrite the structure of the instance. The sequence
of instance models that result from continuously applying a set of model transforma-
tions to an instance model is an execution trace of the system. Dedicated verification
techniques, for example, model checking [42,164], assert that the set of execution traces,
which describe the behavior of the system, satisfy the specification. In other words, these
verification techniques check whether the behavior of the system given by its execution
traces is equivalent to the behavior described by the specification.

Related Work. Previous surveys focus solely on the verification of model transfor-
mations. To the best of our knowledge, Amrani et al. [4] were the first to propose
a tri-dimensional categorization of verification approaches for model transformations.
They categorize approaches according to (i) the type of the model transformations that
can be verified, (ii) the properties of the transformations that can be analyzed including
termination as well as syntactic and semantic relations, and (iii) the employed verifi-
cation technique. Recently, they presented a generalization of their categorization and
introduce a catalog of intents that allows them to classify model transformations accord-
ing to their intended applications, which includes, but is not limited to, verification [3].
Calegari and Szasz [40] re-use Amrani et al.’s tri-dimensional categorization and suggest
further subcategories for each dimension. Rahim and Whittle [1] classify formal and
informal approaches according to the technique employed to assert the correctness of
model transformations. In contrast, we consider model transformations as one of many
possibilities to specify the behavior of a system and, more generally, concentrate on ver-
ification approaches that assert if a model behaves as prescribed by another model or its
specification.

Bibliographic Note. The classification and the resulting feature model described
in this chapter where first presented at the VOLT2013 workshop [72]. The original
classification of five different verification approaches was later extended to more than 40
different approaches and published as a technical report [73].

22

3.1 Description of Verification Approaches

Theorem Proving

In the following, we review the diverse field of theorem proving-based approaches. It is
characterized by the use of rich and highly expressive specification languages. Since all
of the approaches propose either a manual or an interactive proving process, their main
area of application is that of security critical systems, for which the significant increase
in time, effort, and expertise required to perform the verification is justified.

Model Transformations from Proofs

Poernomo and Terrell [159] synthesize transformations from its specification and thus
ensure the translation correctness of the transformations. The synthesis is performed in
the interactive theorem prover Coq [46]. In essence, their approach derives a correct-by-
construction transformation from a proof of the transformation’s specification using the
Curry-Howard isomorphism. They encode OCL-constrained, MOF-based (meta)models
into co-inductive types in Coq, which allows them to model bi-directional associations.
The specifications are formulated as OCL constraints and are encoded in Coq into
@D formulas, i.e., @x P A. Prepxq Ñ Dy P B. Postpx, yq. This specification schema
demands that for all source models x, which conform to metamodel A and satisfy the
pre-condition Prepxq, there exists a target model y conforming to metamodel B such
that the postcondition Postpx, yq holds. According to the Curry-Howard isomorphism, a
transformation can be extracted from a proof of this specification that converts a source
model x satisfying Prepxq into a target model y such that Postpx, yq holds. The Curry-
Howard isomorphism establishes a mapping between logic and programming languages,
where propositions correspond to types and their proofs correspond to programs. It
essentially states that a function f can be extracted from a proof of a proposition AÑ
B such that f applied to an element of type A returns an element of type B [188].
Then, the extracted function f corresponds to the transformation that satisfies the
specification. Further, Poernomo and Terrell propose to partition the transformation
specification into a series of sub-specifications, which allows the users to express more
complex transformations and to reason modularly over the sub-specifications.

Correctness of Graph Programs

Poskitt and Plump [161,162] present a Hoare calculus for graph transformations, which
are specified with graph programs [127]. The calculus consists of a set of axioms and
proof rules to assert the partial [161] and the total correctness [162] of graph programs.
Graph programs operate on untyped, labeled graphs. Labels can be attached to nodes
and edges, and may represent identifiers and attributes. Multiple attributes can be
assigned to a node as an underscore-separated list of values. For example, the string
“TheSimpsons MattGroening” identifies the node of a movie database that represents
Matt Groening’s sitcom “The Simpsons.”

23

A graph program consists of a set of conditional rule schemata and a sequence of
commands that controls the execution order of the rule schemata. A conditional rule
schemata, in the following just rule, is a parameterized function, whose instruction block
consists of a labeled left-hand and a labeled right-hand side graph. A label is an integer
or a string expressions over the function’s parameters and can be attached to a node or
an edge. An instruction block can contain an optional where-clause that restricts the
applicability of the rule. The rewriting is performed according to the double pushout
approach with relabeling [83]. The sequence of commands that controls the execution
of a graph program is a semicolon-separated list of rules that are either executed once
or as long as applicable.

Poskitt and Plump represent (software) systems by labeled graphs and transforma-
tions with graph programs. They can verify both the translation correctness and the
behavioral correctness. In the latter case, the graph program describes the behavior of
the system; in the former, it describes the transformation that needs to be verified. The
specification of a graph program is formulated as a Hoare-triple tcuP tdu that consists
of a precondition c, a postcondition d, and the graph program P . Pre- and postcon-
ditions are defined by so-called E-conditions, which are either true or have the form
e “ DpG | γ, e1q. An E-condition consists of a premise G | γ, where G is a graph and γ
is an assignment constraint that restricts the values assignable to labels in G, and a
conclusion e1, which is again a (nested) E-condition. Intuitively, a graph H satisfies an
E-condition e “ DpG | γ, e1q if G, whose variables are assigned to values that satisfy the
assignment constraint γ, is a subgraph of H and the nested E-condition e1 holds.

A graph program P is partially correct if postcondition d holds in all graphs H that
result from a terminating run of P on any source graph G that satisfies precondition c.
Similarly, total correctness is achieved if P terminates on every graph G that satisfies
precondition c and postcondition d holds in all resulting graphs H. The actual verifica-
tion process is performed manually and results in a proof tree, which derives, i.e., proves,
the specification tcuP tdu (cf. Hoare logic [91]).

Verifying QVT Transformations

Stenzel et al. [191] verify properties of operational QVT (QVTO) transformations with
the interactive theorem prover KIV [107]. They implement a sequent calculus based on
dynamic logic [84] in KIV. A dynamic logic extends a base logic, for example, proposi-
tional or first-order logic, with a modality x.y, called the diamond operator. A dynamic
logic formula xpyϕ is satisfied if ϕ holds in all successor states of the current state after
the execution of program p, which is required to terminate. Note that ϕ is either again a
dynamic logic formula or a formula of the base logic. In case of Stenzel et al.’s approach,
programs p are of the form pεqα, where α is a QVTO expression and ε “ pin, out , traceq
is the environment, which consists of an input model in, an output model out , and a
trace model trace. Their calculus defines proof rules for a subset of the commands offered
by QVTO. The proof rules are of the form Γ $ ∆ and consist of a set Γ of premises
and a set ∆ of conclusions. Premises and conclusions are dynamic logic formulas of
the form xpεqαyϕ. The specification can now be expressed, analogous to a Hoare-triple

24

tϕuα tψu, with a sequent ϕ $ xαyψ, where α is the QVTO expression that triggers
the execution of the transformation provided that ϕ is satisfied. For example, we can
express that a transformation CDtoER, which converts a UML class diagram (CD) into
an entity relation (ER) diagram, produces for every class a table carrying the name of
the corresponding class with the dynamic logic formula

conformsTopin,CDq $ xpin, out , traceq CDtoER :: mainpqy
p@c P in. Dt P out . isClasspcq ^ isTableptq Ñ Jc.nameKCD “ Jt.nameKERq,

where conformsTopm,Mq tests conformance of modelm to metamodelM and JexprKtMu
evaluates expression expr according to the semantics associated with M .

The authors use their calculus in a framework to prove semantic properties of a code
generator that produces an intermediate model, called the Java Abstract Syntax Tree
(JAST) model, from a set of Ecore models. The JAST model is mapped to a formal Java
semantics defined in KIV. The JAST model acts as the source model for the model-to-
text transformation that generates the actual Java code. They set up a transformation
chain that translates several Ecore models into a JAST model and the JAST model to
Java code. The authors verify the type correctness of the Ecore-to-JAST transformation
and check that the transformation satisfies a set of user-defined, semantic properties.

Behavior Preserving Transformations

Hülsbusch et al. [93] present two strategies to manually prove that a model transforma-
tion between a source and a target model preserves the behavior. One strategy is based
on triple graph grammars (TGG) [177] and the other on in-situ graph transformations
and borrowed contexts [66]. The source and the target models of the transformation
are represented as graphs, which may be typed over different type graphs, and the
operational semantics of the source and the target graphs are defined with graph trans-
formations. They declare a model transformation, either a TGG transformation or an
in-situ graph transformation, behavior preserving if there exists a weak bisimulation1

between the source and the resulting target graph with respect to their operational be-
havior. In case of TGG, the bisimulation can be derived from the correspondence graph
that relates the source and the target graph and vice versa. The second proof technique
uses in-situ transformations that perform the rewriting directly in the source model
(in-place) thereby mixing source and target model elements. The bisimulation relation
is established via borrowed contexts [88, 94]. A third technique to assert that a model
transformation preserves the behavior is presented by Ehrig and Ermel [64]. Similar to
Hülsbusch et al. they define the operational behavior with graph transformations, called
the simulation rules, and another set of graph transformations that convert the source
to the target model. They then apply the latter to the simulation rules, that is, they
rewrite the simulation rules, and check if the transformed simulation rules of the source
model match the simulation rules of the target model.

1Weak bisimulation allows internal steps for which no corresponding step in the opposite system
may exist.

25

Giese and Lambers [77] sketch a technique to prove automatically that a TGG-based
model transformation is behavior preserving. They show that the problem of asserting
bisimilarity between the graph transition systems for the source and target model can
be reduced to checking if a constraint over the graph transition systems, the bisimilarity
constraint, is inductive.2

Verification of OCL Specifications

Starting with version 2.3 of the OCL standard Brucker and Wolff formalize a core of
OCL in Isabelle/HOL, called Featherweight OCL [35, 36]; most notably they imple-
ment OCL’s now four-valued logic consistently, which already led to corrections that
were incorporated into version 2.4 of the OCL standard. They suggest to replace the
current “Annex A” of the OCL standard [148] by an automatically derived formal proof
document generated directly from their formalization with the document generation fa-
cilities provided by Isabelle/HOL. Although Featherweight OCL provides a consistent
formalization of OCL, its primary is to act as a reference implementation for OCL tool
developers. In this line of work, they propose an Isabelle/HOL-based compiler that
generates for a given UML/OCL model, i.e., a UML class model with OCL constraints,
a corresponding object-oriented data type theory in Isabelle/HOL [124]. This gener-
ated data type theory includes proofs for lemmas of type casts, type tests, constructors,
and attribute accessors, which provide the basis for more involved proofs on, e.g., the
behavior of the system represented by the UML/OCL model.

Kyas et al. [116] present a prototype that verifies OCL invariants over simplified
UML class diagrams, whose behavior is described by state machines. They assert the
behavioral correctness of a system and translate its class diagrams, state machines, and
OCL specifications into the input format of the interactive theorem prover PVS [156].
Similar to other theorem proving-based approaches, they are able to prove OCL prop-
erties of infinite state systems; for example, they demonstrate how to verify a system
that grows indefinitely, i.e., has an unbounded number of objects.

Verification with Isabelle/HOL

Strecker [192] formalizes the theory of graph transformations in higher-order logic with
the intention to prove behavioral properties of systems interactively with the Isabelle/HOL
theorem prover [145]. With this formalization it is possible to reason about the effect
of a transformation and to derive assertions on the shape of the graph that results from
the application of a transformation. Thus, the reasoning is not limited to the behav-
ioral correctness properties, but also admits the verification of translation correctness.
Software models are encoded into untyped or typed graphs, where nodes are indexed
by and mapped to natural numbers and edges are represented as a binary relation over

2In general, a constraint or assertion c over a transition system is said to be inductive if G0 ñ c (base
case) and c ^ T ñ c1 (induction step) holds where G0 is the initial state, T is the transition relation,
e.g., a graph rewriting rule r : GÑ G1 transforming a graph G into G1, and c1 denotes the constraint in
the next state.

26

natural numbers. A typing function assigns types to nodes and the type correctness of
a graph is enforced by a well-formedness constraint. Note that attributes and inheri-
tance hierarchies are not supported natively. Hence, a graph consists of a set of natural
numbers to represent the graph’s nodes, a binary relation over the natural numbers to
represent edges, and a typing function to assign types to nodes. The LHS and the RHS
of a transformation are encoded separately into an application condition and an action,
respectively. An application condition is specified as a path formula that describes the
structure of the graph required to apply the transformation. The action then describes
the effects of the transformation by adding or removing indices to or from the set of
nodes and updating the edge relation accordingly.

The formalization provides a Hoare-style calculus that verifies the partial correctness
of a higher-order logic specification. A specification w $ tcuP tdu, intuitively, demands
that, given some graph G, which satisfies the well-formedness constraint w and the
precondition c, the postcondition d holds in graph H that results from the application
of the transformation P to graph G.

Strecker [193] proposes two reduction techniques3 to simplify the interactive prov-
ing procedure for reachability properties. The first decomposes a graph into smaller
subgraphs such that properties proven for a subgraph hold in the original graph. The
second technique aims to restrict the reasoning to the shape of the graph transformation
itself and is applicable only if the matching morphism is assumed to be injective and the
application condition is a conjunction of relations over edges.

Model Checking of Rewriting-Based Systems

When software systems are modeled with graphs and their behavior is described by
graph transformations, temporal properties can be verified with model checking-based
techniques. Here, states are represented by graphs and state transitions correspond to
the application of a graph transformations to a source state, which results in (or leads
to) a target state [87]. More formally, given a graph grammar G “ pR, ιq with a set
of graph transformations R and an initial graph ι, a graph transition system (GTS) is
constructed by recursively applying the graph transformations to the initial graph and
all resulting graphs. The graphs generated by the graph grammar constitute the states of
the GTS and the transitions between two states G and G1 correspond to the application
of a graph transformation p : GÑ G1.

The same technique is also employed by term rewriting-based approaches and tools,
e.g., Moment2 [30], where states are represented by terms and transitions correspond
to (term) rewrite rules that are applicable to these terms.

Model Checking of Graph Transition Systems

One of the first model checkers for graph transition systems was
CheckVML [176, 200]. It targets the behavioral verification of systems defined by

3The source files for Isabelle/HOL are available from http://www.irit.fr/~Martin.Strecker/

Publications/proofs_graph_transformations.tgz

27

http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.tgz
http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.tgz

UML-like class diagrams. CheckVML receives a metamodel that describes the struc-
ture of the system, a set of graph transformations that define the system’s behavior, and
a model instance that describes the system’s initial state to produce a graph transition
system. Internally, the metamodel is represented as an attributed type graph with inher-
itance relations and the initial model is an instance graph conforming to the type graph
derived from the metamodel. CheckVML uses the model checker spin as its verification
back-end. It thus encodes the GTS into Promela code, the input language of spin. For
each class the encoding uses a one-dimensional Boolean array, whose index corresponds
to the objects’ IDs, and the value stored for each object indicates whether the object
is active or not. Since arrays are of fixed size CheckVML requires from the user an
a priori upper bound on the number of objects for each class. Further, for each associ-
ation CheckVML allocates a two-dimensional Boolean array that stores whether there
exists an association between two objects. To construct a finite encoding of the system
the domain of each attribute is required to be finite such that it can be represented by
an enumeration of possible values in Promela. Further, since spin has no knowledge of
graph transformations all possible applications for each transformation are pre-computed
and transitions are added to the Promela model accordingly. To reduce the size of the
state space CheckVML tries to identify static model elements that are not changed
by any transformation and omits them from the encoding. The state space, however,
still grows fast as symmetry reductions for the encoding are possible only to a very
limited extent in spin. For example, a direct comparison [167] with Groove [165] (see
below) showed that the encoding of the dining philosophers problem with ten philoso-
phers produces 328 503 states but only 32 903 are actually necessary. Interestingly, even
though the state space is an order of magnitude larger, the performance of the veri-
fication does not degrade as anticipated. CheckVML with its spin back-end verifies
the dining philosophers instance 12x faster (16.6 seconds including pre-processing) than
Groove (199.5 seconds) [167].4 CheckVML supports the specifications of safety and
reachability properties by means of property graphs that are automatically translated
into LTL formulas for spin. Unfortunately, counter-example traces from spin are not
translated back automatically.

A similar approach is proposed by Baresi et al. [11], whose encoding produces BIR
(Bandera Intermediate Representation) code for the model checker Bogor [171]. They
translate typed, attributed graphs into sets of records. They, too, bound the number of
admissible objects per class. Again, associations are encoded into arrays of predefined,
fixed size. This approach supports class inheritance, i.e., in a preprocessing step all inher-
itance hierarchies are flattened such that attributes of the supertypes are propagated to
the most concrete type. Like CheckVML, containment relations are not supported na-
tively. Further, they distinguish between static and dynamic references and keep track of

4With version 4.5.2 of Groove (build: 20120606174037) the verification requires 13413.8ms on
an Intel Core i5 2.67Ghz with 8GB of RAM running Gentoo Linux with OpenJDK 1.6. Taking into
consideration that Groove was in its infancy when the comparison was performed in 2004, this improved
result reflects the development efforts of past years. In contrast, spin, the verification back-end of
CheckVML, has been under active development since the 1980s [14]. However, we cannot provide
up-to-date runtimes for CheckVML as it is currently not available to the public.

28

the set of currently active objects. For each transformation two distinct BIR fragments
are generated. The transformation’s LHS is encoded into a matching fragment, while
the RHS is encoded into a thread that executes the effects of the transformation once
a match has been detected. Since Bogor is not aware of graph transformation theory
either and does not provide constructs to match graph structures, the matching fragment
queries attribute values and existence of associations from every possible combination
of active objects that could possibly be matched. The user can specify safety properties
that should hold in the system, just like in CheckVML, with property graphs. These
are converted into LTL formulas and encoded into BIR property functions.

Previously to the above described approach, Baresi and Spoletini [12] presented an
encoding that allows to analyze graph transformations specified in Agg [174] with the
Alloy analyzer [96]. The authors model a (software) system by means of a type graph,
which captures the static components of the system, and a set of graph transformations
that specify the system’s behavior. Instance graphs that conform to the type graph
represent the possible states of the system. The execution of a system is modeled with
finite paths, which are sequences of instance graphs. The encoding creates Alloy sig-
natures for the type graph and predicates for the graph transformations. Each predicate
represents the effect of a transformation, i.e., the addition, removal, and preservation of
vertices and edges, with relational logic formulas. The resulting transformation predi-
cates are used to define the possible state transitions of the system and restrict the exe-
cution paths to valid system behaviors, i.e., a transitions between two instance graphs is
only possible if the effect of the transition satisfies a transformation predicate. Alloy
supports reachability and safety analysis of system properties, which are specified as
first-order formulas. The authors use this feature to show that either (a) a certain state
is reachable or (b) a counter-example exists that violates a safety property.

Kastenberg and Rensink [106] propose Groove,5 an enumerative state model check-
ing approach to verify the behavioral correctness of object-oriented (OO) systems. The
static structure of an OO-system is described by an attributed type graph with inheri-
tance relations, while the system’s behavior is, again, defined through graph transforma-
tions. Hence, states are represented by (instance) graphs conforming to the type graph.
The Groove Simulator [165] generates the state space on the basis of a graph gram-
mar G “ pR, ιq, which consists of an initial graph ι and a set R of graph productions.
Between two states s and s1 there exists a transition if a graph transformation can be
applied to the graph of s such that the result is isomorphic to the graph of s1. The re-
sulting state-transition structure is a graph transition system (GTS) and converted into
a Kripke structure, where states and transitions of the GTS correspond directly to those
of the Kripke structure. The Kripke structure’s labeling function assigns to each state
the names of the applicable graph productions. In Groove, similar to CheckVML’s
property graphs, system properties are defined with graph constraints, i.e., named graph
productions, whose LHS and RHS are equivalent. The names of these graph constraints
define the alphabet of the propositions that can be used in the specification of the sys-
tem. Groove is able to verify CTL and LTL formulas that express either reachability,

5Available from http://groove.sourceforge.com

29

http://groove.sourceforge.com

safety, or liveness properties. To reduce the size of the state space Groove checks if
a graph is isomorphic to any existing graph before adding it to the state space. The
isomorphism check is, however, computationally costly and, thus, Rensink and Zambon
investigated alternative state space reduction methods that use neighborhood [168] and
pattern-based abstraction techniques [169], of which the former has been implemented
in Groove. Neighborhood abstraction partitions a graph into equivalence classes and
folds two nodes into the same equivalence class if (a) they have equivalent incoming
and outgoing edges, and (b) the target nodes of these edges are comparable [168]. For
each equivalence class, neighborhood abstraction records the precise number of folded
nodes up to some bound k and beyond that simply ω for many. Pattern-based ab-
stractions capture the properties of interest in layered pattern graphs, which are, similar
to neighborhood abstraction, folded into pattern shapes. The abstraction of the sys-
tem’s transformations is then directed by these pattern shapes. The resulting pattern
shape transition system (PSTS) is an over-approximation of the original GTS and the
authors show that properties that hold in the PSTS also hold in the GTS. However,
an implementation cannot be derived straightforwardly and its efficiency, compared to
neighborhood abstraction, is subject of future evaluations.

Henshin6 [6] is a model transformation tool for Ecore models. Internally, it rep-
resents Ecore models as typed, attributed graphs with inheritance and containment
relations [24]. Henshin is thus the only graph-based tool that natively supports con-
tainment relations. Similar to Groove [165], Henshin provides an enumerative state
space explorer for graph transition systems and provides an interface to communicate
with external model checkers. Currently, it supports the model checker CADP [75] out-
of-the-box, which is able to verify µ-calculus [114] specifications. Moreover, invariant
properties specified with OCL constraints can be checked over the entire state space.

In contrast to the above described approaches that target the verification of a system’s
behavioral correctness, Narayanan and Karsai [140] use a bisimulation-based approach
to assert the translation correctness of a set of exogenous graph transformations that
transform a source model conforming to type graph A into a target model conforming to
type graph B. More specifically, they check if the graph transformations preserve certain,
user-imposed reachability properties of the source model. The approach does not require
that the actual behavior of the source and target model be defined explicitly. Instead it
verifies the transformations by establishing a structural correspondence between source
and target type graph, which consists of a set of cross-links that trace source model ele-
ments to target model elements and a set of correspondence rules that define conditions
on the target model to enforce the reachability properties across the transformation.
Then, the structural correspondence defines the bisimilarity relation between the source
and the target model. The approach assumes that the correspondence rules are de-
veloped (a) independently from the transformation and (b) with fewer or zero errors
because they are less complex as compared to the actual graph productions. Further,
the cross-links need to be established whenever a graph production generates traceable
target model elements. The verification of the reachability properties is performed for

6Available from https://www.eclipse.org/henshin/downloads.php

30

https://www.eclipse.org/henshin/downloads.php

each source instance that is translated into a target instance. The verification engine
uses the source instance, the cross-links, and target instance and checks if the corre-
spondence rules are satisfied. If the verification succeeds the target instance is certified
correct.

Verification of Infinite State Graph Grammars

Besides the recent abstraction mechanisms introduced into Groove, the approach by
Baldan et al. [10] and by König and Kozioura [110], who extend the former, are the only
model checking approaches that use abstraction techniques to verify infinite state spaces.
Given a graph grammar G “ pR, ιq they construct a Petri graph. A Petri graph is a
finite, over-approximate unfolding of G that overlays a hypergraph with an R-labeled
Petri net such that the places of the Petri net are the edges of the hypergraph. Each
transition of the Petri net is labeled with a rule r P R, and the in- and out-places of a
transition are the hypergraph’s edges matched by the LHS and the RHS of rule r. From
a G “ pR, ιq a pair pP,m0q is constructed that consists of the Petri graph P and an
initial marking m0 that assigns a token to every place with a corresponding edge in ι.
That is, a marking of the Petri net assigns tokens to the edges of the hypergraph. Each
marking defines, in this manner, a distinct state of the system, which is obtained by
instantiating an edge for each token it contains and gluing together the edges’ common
nodes to build the resulting hypergraph. The firing of a transition then corresponds to
the application of the rule r that labels the transition and triggers a state change, i.e.,
the marking resulting from the firing defines the next system state.

The approximated unfolding constructs a Petri graph that, in the beginning, consists
of the initial hypergraph ι and a Petri net without transitions where the places are the
edges of ι. An unfolding step selects an applicable rule r from R, extends the current
graph by the rule’s RHS, creates a Petri net transition labeled with r, whose in- and out-
places are the edges matched by the rule’s LHS and RHS, respectively. A folding step
is applied if, for a given rule, two matches in the hypergraph exist such that their edges
(i.e., places) are coverable in the Petri net and if the unfolding of the sub-hypergraph
identified by one of the matches depends on the existence of the sub-hypergraph identi-
fied by the second match. The folding step then merges the two matches. The procedure
stops if neither folding nor unfolding steps can be applied. Baldan et al. [10] show that
the unfolding and folding steps are confluent and are guaranteed to terminate returning
a unique Petri graph for each graph grammar G. Moreover, the Petri graph overapproxi-
mates the underlying graph grammar conservatively, that is, every hypergraph reachable
from ι through applications of R is also reachable in the resulting Petri graph.

Since the Petri graph over-approximates the unfolding of G, there exist, however,
runs that reach a hypergraph unreachable in G. Such a run is classified as spurious.
If such a spurious run violates the specification, that is, there exists a spurious coun-
terexample trace to an error that is due to the over-approximation and not realizable
in the original system. Inspired by the work on counterexample-guided abstraction re-
finement (CEGAR) [43], König and Kozioura [110] present an abstraction refinement
technique for Petri graphs. They show that spurious counterexamples result from the

31

folding operation that merges nodes. Thus, their technique identifies nodes that must
not be merged in order to prevent a spurious counterexample. Their CEGAR techniques
for hypergraphs is implemented in Augur 2.7

Recently, König and Kozioura extended their CEGAR-based verification approach
to attributed graph grammars [112]. The Petri graph then consists of an attributed
or colored Petri net and an overlaid, non-attributed hypergraph structure. The over-
approximated unfolding proceeds as above, but without taking the attributes into ac-
count, which, intuitively, leads to the coarsest possible abstraction. Only when the
over-approximation has been constructed are the attribute values of the initial graph ι
assigned to the corresponding places of the Petri graph. As the domains of the attribute
values are usually infinite, abstract attribute values are computed [48]. A spurious
counterexample may now be either due to the structural over-approximation of the hy-
pergraph or due to the attribute abstraction. In the first case, the abstraction is refined
as described above; in the second case, the abstract domain is refined semi-automatically
with the help of the user or according to a predefined scheme that runs a certain number
of iterations and aborts if the spurious counterexample is not eliminated.

The technique admits the verification of specifications formulated either over the
(attributed) Petri net or the hypergraph structure of the over-approximated Petri graph.
That is, the user needs to decide whether the specification is expressed over the marking
of the (attributed) Petri net or if it is best captured by a graph morphism over the
hypergraph [10]. In both cases, the specification is described with graphs, either by
means of a discrete graph that represents a marking of the Petri net, or by means of
a graph morphism with equivalent LHS and RHS graphs (cf. with property graphs
in CheckVML and Groove). If the specification can be verified over the Petri net,
it is possible to verify reachability, boundedness, and liveness properties, while graph
morphisms can express reachability properties.

Verification of QVT and ATL Transformations

Boronat et al. describe systems with OCL-constrained, MOF-based metamodels and
their behavior with QVT-like model transformations. They present algebraic seman-
tics for (a) MOF [32]; (b) model conformance with respect to OCL-constraints [31];
and (c) QVT-like model transformations [30] based on membership equational logic
(MEL) [132] and rewriting logic (RWL) [131]. This formalization allows them to ex-
press OCL-constrained Ecore models and QVT-like model transformations as theories
in MEL and RWL, respectively. A MEL theory pΣ, Eq consists of a signature Σ and a
set E of Σ-sentences. The signature defines a set of function symbols and a set of kinds,
where each kind is associated with a set of (ordered) sorts. Given a set X of variables,
every variable in X and every function symbol applied to a variable or another function
symbol defines a Σ-term. If a term t is a member of just a kind but not of a sort it
represents an undefined or an error value. For example, the constant term NaN (Not a
Number) is member of kind Number but neither member of sort Real nor Integer. A

7Available from http://www.ti.inf.uni-due.de/research/tools/augur2/

32

http://www.ti.inf.uni-due.de/research/tools/augur2/

division-by-zero error can thus be expressed, for example, by returning the term NaN.
Sentences in E are conditional equations of the form t“ t1 if

Ź

iPI vi“wi ^
Ź

iPI ti : si,
which consist of an atomic equation t“ t1 and a condition, i.e., a conjunction of atomic
equations vi “ wi and membership assertions ti : si that assign a term ti to some sort
si. A rewriting logic theory pΣ, E,Rq consists of a MEL theory and a set R of rewrite
rules that are of the form t Ñ t1 if C where condition C is a conjunction of atomic
rewrite rules, atomic equations, and membership assertions. A RWL theory can be
used to represent a concurrent system, where the system’s states and transitions are
defined by a deterministic MEL theory8 and a set of rewrite rules, respectively. Each
term, rewritten to its unique normal form9 by the MEL’s equations (interpreted from
left to right), defines a state of the concurrent system. A rewrite rule in R applied to
a term defines a transition in the concurrent system. An RWL theory can be executed
as a system module in Maude [45].10 The Moment2 tool11 automatizes the process of
translating Ecore models and corresponding model transformations into system modules
such that Maude’s reachability analysis and LTL model checker can be used to verify
the system’s specification [30]. Maude builds the state space as a derivation tree for
both analyses and proceeds as follows. Given an initial term that represents the system’s
initial state, Maude applies all rewriting rules in R recursively to each resulting term,
thus, building a derivation tree rooted in the initial term. In both cases, Maude explores
the state space of the system enumeratively. For a reachability property, which is spec-
ified by a term that should be shown reachable in the derivation tree, Maude searches
breadth-first trough the derivation tree starting from the given initial term. The search
stops if (a) the term is found; (b) the entire state space has been explored and the term
is not found; (c) the user-provided search-depth is reached without encountering the
term, or (d) Maude runs out of memory while searching for the term. If the term that
Maude searches for in the derivation tree expresses an error state, safety properties
can be verified by asserting that such a term is not reachable. LTL specifications are
formulated over a set of propositions that are defined as equations where the right-hand
side defines the name of the proposition and the left-hand side defines the pattern or
conditions required for the proposition to hold. Then, if the proposition-defining equa-
tion is interpreted as a rewrite rule and a state can be rewritten in this manner, i.e.,
a state’s sub-term matches the left-hand side of the proposition-defining equation and
is thus labeled with the name of the proposition, then the state is said to satisfy the
proposition. Moment2 does not support the specification of LTL formulas; they have
to be written and executed directly in Maude.

Gagnon et al. [74] have proposed a similar model checking based approach based on
Maude. They, too, target the behavioral verification of systems but represent these
systems and their behavior by means of UML class diagrams as well as state and com-
munication diagrams, respectively. They describe how simplified class, state, and com-

8A MEL theory is deterministic if its equations, interpreted from left to right, are confluent and
terminating such that every term can be rewritten into a unique normal form.

9For an introduction to term rewriting refer to [7] and [17].
10For an RWL theory to be executable as a system module has to be coherent [45].
11Available from ftp://moment.dsic.upv.es/releases/20070727/

33

ftp://moment.dsic.upv.es/releases/20070727/

munication diagrams can be (manually) encoded into RWL theories and show how LTL
specifications can be verified within Maude.

Troya and Vallecillo [199] present for ATL transformations a formal semantics based
on rewriting logic. They formalize ATL’s default and refining execution mode such that
both translation and behavioral correctness can be asserted. Further, their formalization
makes it possible to automatically translate ATL into Maude system modules. In par-
ticular, they translate matched rules, (unique) lazy rules, called rules, helper functions,
and imperative rule blocks into RWL theories. They, too, propose to use Maude’s
reachability analysis to verify safety properties of systems that are described by Ecore
models and whose behavior is specified by ATL transformations. However, they do not
integrate the verification into their ATL-to-Maude translation and only sketch the pos-
sibility that their approach admits the verification of behavioral properties and do not
consider the possibility to assert the translation correctness of the ATL transformation
at all.

Büttner et al. [38] verify with Alloy [96] if an exogenous ATL transformation
that is defined for an OCL constrained Ecore model preserves the target model’s in-
variants. From metamodels MI, MO, where MI “MO, and an ATL transformation
t : MI Ñ MO that transforms a source model conforming to MI into a target model
conforming to MO Büettner et al. build a transformation model that captures MI,
MO, and the ATL transformation t in a single model. Basically, a transformation
model traces which elements of the source model are translated to what elements of the
target model. Further, they define a conversion from transformation models to Alloy
using the UML2Alloy tool [5]. The verification is performed in three steps. First, an
OCL constraint defined for the target model is selected and negated, while all other
constraints are disabled. Observe that all instance models of the target metamodel that
satisfy the negated constraint are invalid. In the second step, the transformation model is
constructed from the source metamodel, the ATL transformation, and the target meta-
model, where the selected OCL constraint has been negated. Finally, Alloy is used
to check if there exists a model that satisfies the modified, but invalid transformation
model. Otherwise, if it finds no counterexample that satisfies the negated constraint of
the target model, a counterexample is found to the validity of the original transformation
model and we conclude that the ATL transformation does not preserve the invariants
of the target model. If it finds no such model, we can, however, only conclude that
the ATL transformation is correct up to a certain number of instance objects in the
source model. This restriction is due to Alloy that demands a bound on the number of
investigated objects such that its search space of possible logical models remains finite.
In contrast to the approach presented by Troya and Vallecillo [199], this approach can
only handle ATL’s matched rules and no recursive helper functions are allowed. The
strength of the approach, however, lies in its lightweight methodology that builds on
the small scope hypothesis [97] and its ability to translate counterexamples from Alloy
back into Ecore.

34

Model Checking of OCL Specifications

When MOF or UML models are used to describe systems, OCL is often the language
of choice to phrase the specification of the system. However, the language is limited to
express properties over a single snapshot of the system and cannot reason over sequences
of system snapshots, i.e., execution traces. Thus, numerous temporal extensions to
OCL have been proposed to overcome this limitation. In this section, we review model
checking-based verification approaches that use either existing or custom-built temporal
OCL extensions to formulate a system’s specification.

Language Extensions & Mappings

Distefano et al. [55] propose a CTL-based logic, called BOTL, to specify static and
temporal properties of object-oriented systems, but they do not support inheritance nor
subtyping. Instead of extending OCL, they map OCL onto BOTL, thus providing a
formal semantics for a large part of OCL. With BOTL they are able to express OCL
invariants and pre- as well as postconditions. BOTL does not assume that methods are
executed atomically and allows intermediate states during the execution of a method.
Consequently, invariance properties specified with BOTL need to ensure explicitly that
no method is executed that alters a value associated with an invariant while the invariant
is being checked.

Ziemann and Gogolla [203] propose TOCL (Temporal OCL) that extends syntax and
semantics of OCL with past and future temporal operators like next, until, and before.
These operators are evaluated over linear, infinite traces of the system. Moreover, they
introduce constructs that allow them to express that a function is executed in the next
or the previous state. TOCL was the first temporal extension, whose semantics and
evaluation were aligned with the formal semantic of OCL [170]. For this purpose, they
introduce an additional index into the evaluation environment of an OCL expression
that points to the current state.

Soden and Eichler [185] present an LTL-based extension for OCL and suggest four
additional keywords, next, always, eventually, and until. They, too, align the semantics of
their extension with those of OCL and, like Ziemann et al., they introduce an additional
index into the evaluation environment that captures the current time instant. They
suggest to define the operational semantics of MOF-conforming models with the Model
Execution Framework for Eclipse (MXF) (formerly called M3Actions) [186]. This allows
them to define a finite execution trace by a sequence of changes, from which the actual
states are derived by applying the changes in succession to the initial model up to the
current state.

Flake and Müller [70] aim at a tight integration of UML class diagrams, state ma-
chines, and OCL, where the state machines describe the behavior of the class diagrams.
They formalize a subset of the UML 2.0 standard covering attributed classes with in-
heritance, associations, methods, signals, events, sequential and orthogonal composite
states, guarded transitions, and pseudo states. The system state is captured by the set
of currently active objects, their attribute values, connections among them, the current

35

state machine configuration that contains the tree of active states, and the set of active
operations and their parameter values. This definition allows them to specify the formal
semantics of the oclInStateps : OclStateq function. They use time-annotated traces to
capture the evolution of the system and propose a UML profile to specify state-oriented,
real-time invariants, whose semantics are defined by a mapping to clocked CTL formulas.

In regard to expressiveness, Bradfield et al. [33] propose the richest extension by
embedding OCL into the observational µ-calculus [34]. As noted by the authors this
expressiveness comes at the price of complexity that is inherent to specifications using
the µ-calculus. They thus suggest the use of predefined templates, from which the
actual µ-calculus are automatically synthesized. The templates are designed with the
purpose of conveying their semantics in an intuitive manner. As an initial example, they
introduce the after/eventually template that is used to assert that, after an event has
occurred, an action is eventually executed. They also propose after/immediately and
provided/infinitely often templates with their obvious interpretation.

Similar to Bradfield et al.’s proposed templates, Kanso and Taha [105] introduce a
temporal extension based on Dwyer et al.’s patterns [59] for the specification of prop-
erties for finite state systems. Although these patterns are not as expressive as their
CTL, LTL, or µ-calculus counterparts, they greatly simplify the property specifica-
tion process. Kanso and Taha define a scenario-based semantics for their extension,
where each scenario is a finite sequence of events. They distinguish between opera-
tion call, start, and end events as well as state change events that are triggered upon
a change of an attribute value. The occurrence of an event is queried (a) by the
isCalledpop, pre, postq function, which test if an operation op is called in a state sat-
isfying pre with the effect that post holds immediately after the atomic execution of
op; and (b) by the becomesTruepPq function, which test if a predicate P that was false
in the immediately preceding state turned true in the current state. For example, the
LTL formula Gpreq ñ F ackq (“every request is eventually acknowledged”) is expressed
as globally becomesTruepackq responds to isCalledpreq , true, trueq. Kanso and Taha im-
plement a test case generator that uses the temporal OCL specification to derive test
cases that are useful to examine the correctness of the implementation w.r.t. to the
specification. They provide an implementation on their website.12

Language Extensions & Implementations

Mullins and Oarga [138] present an extension to OCL, called EOCL, that augments
OCL with CTL operators. It is strongly influenced by BOTL but, in addition, supports
inheritance. They define EOCL’s operational semantics over object-oriented transition
systems that in each state keep track of the active objects, active methods, and the
active objects’ attribute valuations. Their SOCLe tool13 is able to assert the behavioral
correctness of a system that is defined by a class diagram, a set of state machines for
each class in the class diagram, and an object diagram that defines the initial state. For

12http://wwwdi.supelec.fr/~taha_saf/temporalocl/
13Unfortunately, SOCLe does not seem to be available to the public anymore.

36

http://wwwdi.supelec.fr/~taha_saf/temporalocl/

the verification, SOCLe translates the class, state machine, and object diagrams into
an abstract state machine. Then, it checks enumeratively and on-the-fly if the system
satisfies its EOCL specification, which expresses either reachability, safety, or liveness
properties.

Gogolla et al. present USE, the UML-based Specification Environment, that is aims
to assist developers in validating their model-driven software artifacts. In particular,
the USE tool allows to execute UML models and analyze OCL invariants and pre- and
postconditions; hence, USE admits checking of both structural and behavioral proper-
ties. Although originally not intended as a verification environment recent extensions
enabled work on at least two verification approaches, namely the filmstripping based and
the snapshot based verification approaches, both of which are discussed below.

Gogolla et al. [81,89] verify the behavioral correctness of a system whose description
consists of a static structure, defined by a UML class diagram, its behavior, provided
by a set of OCL operation contracts, and a set of invariants that the system must sat-
isfy. Their approach transforms the system’s description into a so-called filmstrip model
that explicitly represents sequences of system states and operation calls. The filmstrip
model consists of a set of system states, referred to as snapshots, connected by operation
calls. A snapshot comprises the active objects, the links between these objects, and the
attribute values of these objects. An operation call represents an operation of system,
whose functionality is described by an operation contract. Two snapshots are then as-
sociated by an operation call if the pre- and postconditions of the operation contract
are satisfied by the first and the second snapshot, respectively. Since the sequence of
states are thus made explicit in the filmstrip model, OCL pre- and postconditions of
an operation contract for the original UML class diagram may now be translated into
an OCL invariant for the filmstrip model. This is achieved by replacing the reference
to a previous system state (@pre) by backward navigating the association between two
snapshots established by an operation call. Thus, the problem of checking pre- and
postconditions is reduced to checking an invariant over two snapshots. The verification
procedure [90] is implemented in the USE (see above) and proceeds as follows. After
the filmstrip model is generated, additional frame conditions [129,137] are added manu-
ally. Next, the verification condition and the conditions characterizing the initial states
are formulated on top of the filmstrip model. Finally, global bounds on the number
of objects and associations in the snapshots as well as the number of operation calls
need to be defined. Subsequently, the verification problem defined in the previous steps
is translated into bounded, relational, first-order logic and solved by the model finder
Kodkod [198]. If Kodkod finds a model for the verification problem, an instance of
the filmstrip model that violates the verification condition has been found. This coun-
terexample is visualized as a sequence diagram. Recently, the authors have applied their
approach to the verification of transformation models, that describe mappings between a
source and target model [80]. To show that a transformation preserves a property of the
source model in the target model, an invariant for the transformation model is defined
and verified.

Similarly, Al-Lail et al. [117] verify the behavioral correctness of systems, too. They

37

describe systems with class diagrams, where the operations’ contracts, which are spec-
ified by OCL pre- and postconditions, capture the behavior of the system. They use
TOCL [203], an LTL-inspired extension of OCL supporting past and future temporal
operators, to specify reachability and safety properties of the system. The user initiates
the verification process by providing the class diagram that includes a contract for each
operation and the TOCL specification. Then, the model checker builds the so-called
Snapshot Transition Model (STM) that is similar in nature to the filmstrip model dis-
cussed above as it describes the state space of the system in terms of snapshots. A
snapshot, i.e., a single state of the system, contains all active objects, their associations,
and their current attribute values. The application of an operation defined by its con-
tracts to a source snapshot yields a transition to a target snapshot. The USE Model
Validator [79, 187] verifies the TOCL specification over the STM and searches for se-
quences of snapshots, i.e., a scenario, that violate the specification. If a counterexample
is found, the violating execution trace is visualized as a UML sequence diagram and pre-
sented to the user. Note that the search space is bounded by a user-defined scope that
defines an upper bound on the length of the scenario and an upper bound on the number
of objects that the scenario may contain. Thus, this verification approach implements
a (symbolic) bounded model checking algorithm that uses the USE Model Validator
to translate the problem into a bounded, relational problem description, which is subse-
quently converted into a Boolean formula by Kodkod [198]. This Boolean formula can
be solved with any off-the-shelf SAT-solver like MiniSAT [61].

With MocOCL,14 Bill et al. [27] present an enumerative model checker for their
CTL-based OCL extension, called cOCL. cOCL is thus far the only temporal extension
for OCL that integrates the CTL operators and their semantics seamlessly into the ex-
isting formal semantics of OCL and requires no changes to the existing definitions. Their
extension introduces six keywords, next, eventually, globally, until, and unless (equivalent
to weak until), each of which is preceded by a mandatory path quantifier, either always or
sometimes. These keywords implement the standard CTL semantics of their correspond-
ing temporal operators [42]. To assert the behavioral correctness of a system, MocOCL
expects as input an Ecore model that captures the static structure of the system, a set of
graph transformations that describe the system’s behavior, an initial model that repre-
sents the initial state, and a specification formulated in cOCL. MocOCL constructs the
state space using Henshin [6]; thus, internally MocOCL uses graphs to represent states.
The evaluation of a cOCL specification is performed incrementally. Starting with the
initial state, the state space is expanded step-wise by applying the behavior-describing
transformations to the most recently expanded states. Then, the cOCL specification is
evaluated in the single-step expanded state space. If the specification is violated, Mo-
cOCL informs the user of the failure and returns a cause to the user that contains a
counterexample to the specification. Otherwise, the state space is expanded once more
and the specification is evaluated again. This loop continues until the state space cannot
be expanded further, i.e., all states have been visited. If the specification still holds,
MocOCL reports back the success of the evaluation and, again, returns a cause that

14Available from http://www.modelevolution.org/prototypes/mococl

38

http://www.modelevolution.org/prototypes/mococl

explains why the evaluation was successful.

Model Checking of UML Diagrams

Finally, we survey approaches that employ model checking in the context of verifying the
correctness of UML models. Because size and structure of UML leave much room for the
application of model checking, much effort has been devoted to the adoption of model
checking techniques to UML. Due to the large number of papers falling into this category,
we list them separately in Table 3.2 that, in essence, captures all features of the feature
model presented above, however, re-arranged to provide for a better overview. Due to
the many similarities between the approaches in this category, we refrain from discussing
each approach individually, but highlight only their distinguishing contributions. In
this section we will often give precedence to the term diagram over software model in
accordance with the UML standard’s preference of the former, but in general use the
two synonymous.

Verification Goals and Scenarios

In general, model checking of UML models either aims to (a) ensure correct behavior of
one diagram, i.e., behavioral correctness, or (b) assert two different diagrams consistent.
In Table 3.2, we group the different approaches according to their pursued verification
goal and list them in alphabetical order. In general, consistency asserting approaches an-
alyze whether a set of different diagrams describes the overall system in a consistent way,
that is, they verify that the information presented in one diagram does not contradict
the information of another diagram. Note that we also assign approaches to this cate-
gory, that use one diagram to define the specification and another diagram to represent
the implementation that is required to satisfy the specification, i.e., is consistent with
the specification diagram. In contrast, behavioral correctness is usually asserted with
respect to a single diagram and its specification that defines the desired or forbidden
behavior of the system. These specifications are usually formulated in temporal logic
and demand, for example, that the system is free of dead- and livelocks.

Domain Representation

UML as general purpose modeling language is too large as to be supported by any verifi-
cation approach in its entirety. Therefore, all reviewed works focus on a subset of UML
that is essential for the intended application areas. The UML metamodel [152] precisely
defines the syntax of the modeling language, i.e., it describes the available language
concepts. Further, some semantic aspects are documented, but especially the execution
behavior is only informally described. As a precise definition of the meaning of a dia-
gram is essential for the verification, works on model checking UML models often spend
a lot of emphasis on describing the semantics of the models under consideration. For
example, communication mechanisms, concurrency models, timing specification features
etc. have to be introduced concisely. The differences arising from incompatible semantic

39

T
a
b
le

3
.1:

T
h

e
S

o
ftw

a
re

M
od

el
V

erifi
ca

tio
n

A
p
p
roa

ch
featu

re
m

o
d
el.

Poernomo, Terrell [159]

Poskitt, Plump [161]

Stenzel et al. [191]

Hülsbusch et al. [93]

Ehrig, Ermel [64]

Giese, Lambers [77]

Kyas et al. [116]

Strecker [192]a

Schmidt, Varró [176]

Baresi et al. [11]

Baresi, Spoletini [12]

Kastenberg, Rensink [106]b

Arendt et al. [6]c

Narayanan, Karsai [140]

König, Kozioura [111]d

Boronat et al. [30]e

Gagnon et al. [74]

Troya, Vallecillo [199]

Büttner et al. [38]f

Mullins, Oarga [138]

Gogolla et al. [80, 81]f

Al-Lail et al. [117]

Bill et al. [27]g

Legend:
Behavior: A. . . ATL, G. . . Graph Transformation, O. . . OCL, Q. . . QVT, S. . . State Machine
Logic: C. . . CTL, D. . . Dynamic L., F. . . FOL, H. . . HOL, L. . . LTL, R. . . Relational L., W. . . Rewriting L., µ. . .µ-calculus
Trans. Systems: A. . . ASM, G. . . GTS, L. . . LTS

aIsabelle/HOL source files available from http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.tgz
bAvailable from http://groove.sourceforge.com
cAvailable from https://www.eclipse.org/henshin/downloads.php
dAvailable from http://www.ti.inf.uni-due.de/research/tools/augur2/
eAvailable from ftp://moment.dsic.upv.es/releases/20070727/
fAvailable as plugin in USE: http://sourceforge.net/projects/useocl
gWeb interface available at http://www.modelevolution.org/prototypes/mococl

Software Model Verification Approach

V
e
rifi

ca
tio

n
G

o
a
l

(o
r)

C
o
n

sisten
cy

T
ra
n
sla

tio
n
C
o
rrectn

ess

(x
o
r)

S
o
u

rce-T
a
rg

et
A

n
a
ly

sis
X

X
X

X
T

ra
n

sfo
rm

a
tio

n
A

n
a
ly

sis
X

X
X

X
X

X
B
eh

a
vio

ra
l
C
o
rrectn

ess

(o
r)

b
y

tra
n

sfo
rm

a
tio

n
G

G
G

G
G

G
G

G
Q

A
G

b
y

o
p

era
tio

n
S

S
O

O
O

D
o
m

a
in

R
e
p
re

se
n

ta
tio

n

(x
o
r)

G
ra

p
h
s

X
X

X
X

X
X

X
X

X
X

X
X

O
M
G

S
ta
n
d
a
rd
s

(o
r)

U
M

L
X

X
X

X
X

X
M

O
F

X
X

X
X

X
O

C
L

X
X

X
X

X
X

Q
V

T
X

V
e
rifi

ca
tio

n
R

e
p
re

se
n

ta
tio

n

(x
o
r)

L
ogic

H
D

H
H

R
W

W
W

R
R

R

T
ra
n
sitio

n
S
y
stem

L
L

G
G

A
G

G
ra

p
h

s
X

X
X

X
X

X
S

p
ec

ifi
ca

tio
n

L
a
n

g
u

a
g
e

(o
r)

L
ogic

H
F

D
H

R
C

µ
L
W

L
W

C
L

C

B
isim

u
la

tio
n

R
ela

tio
n

X
X

X
X

G
ra

p
h

s
X

X
X

X
X

O
C

L
X

X
X

X
X

X
V

e
rifi

ca
tio

n
T

ec
h
n

iq
u

e

(x
o
r)

T
h
eo
rem

P
ro
vin

g

(x
o
r)

A
u

to
m

a
tic

M
a
n
u

a
l/

In
tera

ctiv
e

X
X

X
X

X
X

X
X

M
od

el
C
h
eckin

g

(a
n

d
)

S
ta
te

spa
ce

rep
resen

ta
tio

n

(x
o
r)

en
u

m
era

tiv
e

X
X

X
X

X
X

X
X

X
X

X
X

sy
m

b
o
lic/

a
b

stra
ct

X
X

X
X

P
ro
perty

ty
pe

(o
r)

R
ea

ch
a
b

ility
X

X
X

X
X

X
X

X
X

X
X

X
X

S
a
fety

X
X

X
X

X
X

X
X

X
X

X
X

X
X

L
iv

en
ess

X
X

X
X

X
X

40

http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.tgz
http://groove.sourceforge.com
https://www.eclipse.org/henshin/downloads.php
http://www.ti.inf.uni-due.de/research/tools/augur2/
ftp://moment.dsic.upv.es/releases/20070727/
http://sourceforge.net/projects/useocl
http://www.modelevolution.org/prototypes/mococl

interpretations are one reason why the approaches are hard to compare. In the follow-
ing, we shortly review which diagrams and concepts of UML have been subject to model
checking.

Because UML state machines are very close to finite automata, it has soon been
realized that model checking is a suitable technique to verify their correctness. The
basic language concepts supported by most approaches are (a) states, including initial
and final states; (b) transitions, which can be labeled with an event, a guard and a set of
effects that represent actions triggering other effects; and (c) choices. Hierarchical states
(e.g., [78]) and orthogonal states (e.g., [103]) as well as fork and join states (e.g., [78])
are only supported by a few approaches. Zhang and Liu’s [202] model checking approach
for state machines, for example, integrates all of these language elements.

Apart from number and type of supported language concepts, the various systems
differ in their behavioral semantics, which describes in what order events are triggered
and dispatched. Usually, concurrent completion events, i.e., events which are automat-
ically triggered when some activity is completed, are forbidden and each event triggers
exactly one transition. Further, data processing is not considered, and timing issues
are also neglected. Some approaches are based on asynchronous communication [103],
while others assume synchronous communication [134]. In case of state machines, the
above mentioned incompatible semantic interpretation can be circumvented with Poly-
glot [9], a tool that translates the different state machine semantics to a common
intermediate representation based on the programming language Java prior to perform-
ing the verification. The intended semantics, however, have to be implemented in form
of pluggable modules. The separation of a model’s structure and its semantics allows
the combination of state machines from different sources and different tools.

Class diagrams are used to describe the static structure of a system by offering
many concepts that are also found in object-oriented programming languages. On their
own class diagrams contribute only little to the verification process if not paired with a
description of the system’s behavior. For example, Ober et al. [147] use classes to de-
scribe processes whose behavior is specified by state machines. Likewise, the Rhapsody
VE [175] specifies a system in terms of class diagrams and state machines. While the
classes provide the structure of and the relationship among the elements contained in the
systems, the state machines describe the system’s behavior. The classes are annotated
with the maximal number of its instances allowed during the model checking process. On
this basis, the required memory usage is restricted. Ji et al. [100] check whether for the
scenarios shown in a collaboration diagram all required associations are available in the
class diagram. Jussila et al. [103] use class diagrams without inheritance relations and
operation declarations to model the active objects occurring in a system. They specify
the initial configuration, i.e., the initial state of the system, by means of a deployment
diagram at the object level.

Interaction diagrams, similar to sequence diagrams, are used to illustrate communi-
cation scenarios, i.e., they represent snapshots of interactions. Hugo supports model
checking of sequence diagrams against state machines [109]. For this purpose, the se-
quence diagrams are translated into finite automata. They support a wide range of con-

41

cepts available in sequence diagrams, among others, partially ordered event occurrences,
state invariants, weak and strict sequencing, parallel and alternative composition, loops,
as well as the neg operator. The content of neg fragments is restricted in such a manner
that the resulting automaton is deterministic and, hence, can be negated directly. The
vUML tool [160] uses sequence diagrams to report counterexamples back to the user, i.e.,
displays an error trace that allows the reproduction of the error. Lima et al. [122] focus
on the verification and validation of sequence diagrams containing combined fragments
which allow for a compact representation of sets of traces.

Only a few works deal with model checking for activity diagrams. The reason for this
is probably that prior to UML 2.0 activity diagrams and state machines shared more
commonalities than there were distinguishing features. Now, activity diagrams are close
in semantics to Petri nets, for which a wealth of literature exists [139]. Eshuis [68] present
a symbolic model checking approach for activity diagrams, where activity diagrams are
mapped to finite state machines.

Target Representation, Specification Language, and Properties

Almost all approaches use existing verification back-ends in order to achieve their ver-
ification goals. Very popular model checkers are spin and NuSMV (refer to Table 3.2
for the details). Grumberg et al. [82] translate the state machines, for the purpose of
verification, to C code, which is than handed to software model checker CBMC [44].
Bounded model checking is applied, but they point out how unbounded model checking
might be realized. The UMC framework [195] implements an on-the-fly model checker,
i.e., the representation of a state machine as doubly labeled transition system is created
on demand in order to deal with the state explosion problem. They use the specification
language UCTL [195], a state and event based temporal logic that is tailored towards
the verification of UML models. While Mozaffari and Haounabadi [136] propose to
translate sequence diagrams to executable, colored Petri nets, on which they perform
the verification of the given properties, Shen et al. [181] take advantage of verification
tools available for abstract state machines [29]. Some approaches translate the UML
models to formal languages for which dedicated model checkers are available. In con-
trast to most other approaches that use high-level intermediate languages of verification
systems, Niewiadomski et al. [143, 144] directly encode their model checking problem
in propositional logic. In a first case study, the authors show that the direct encoding
outperforms the approaches that rely on high-level verification systems.

In principal, the specification language of the verification back-end could be used
directly to formulate the properties that are checked on the given diagrams. This is,
however, often problematic due to the disparity between the UML diagrams, i.e., the
domain representation, and the verification representation, i.e., the encoding of the UML
diagrams into the input language of the verification back-end. Thus, several concepts
for expressing properties in a notation close to the domain representation have been
explored. Siveroni et al. [183] propose an LTL-based language that introduces additional
predicates to ease reasoning on UML class diagrams and state machines with temporal
expressions. Ober et al. [146] suggest observer objects based on UML stereotypes and

42

state machines for specifying properties that should hold. Therefore, they use UML
components together with temporal extensions. Also Porres [160] introduces stereotypes
into the UML models in order to annotate them with constraints. The specification
language column (Spec. Lang.) in Table 3.2 shows whether an approach provides a
custom textual or graphical language or if it uses the specification language by the
verification back-end.

Summary

Over the last 15 years, many approaches have been presented that aim to increase the
quality and specification adherence of UML models by applying model checking tech-
niques. Because the UML standard contains numerous semantic ambiguities, many
works show how to resolve these inconsistencies and propose different encodings based
on their semantic interpretation. The large number of different semantic interpretations
and the non-availability of tools impede a direct comparison of the different approaches.
Because most works focus on resolving semantic issues and the efficiency of their encod-
ing, little is said about the practical application scenarios of the proposed verification
approaches. It thus comes without surprise that hardly any of the available solutions
can be used out-of-the-box in arbitrary application scenarios.

3.2 A Feature-Based Classification

We propose a feature-based view to make different verification approaches comparable.
We classify verification approaches by (a) the pursued verification goal that captures
the intention of the verification; (b) the domain representation that defines the expected
input format of the verification approach; (c) the verification representation that the
underlying verification engine uses to perform the actual verification; (d) the specifica-
tion language used to describe the relevant properties that the system should satisfy;
(e) and the verification technique that is applied to achieve the verification goal. Some
aspects of the classification we use have been captured by previously published surveys,
all of which focus solely on the verification of model transformations. For example,
Amrani et al. [4] propose a tri-dimensional categorization for model transformation ver-
ification approaches. They categorize approaches according to (a) the type of the model
transformations that can be verified, (b) the properties of the transformations that can
be analyzed including termination as well as syntactic and semantic relations, and (c) the
employed verification technique. Recently, they presented a generalization of their cate-
gorization and introduce a catalog of intents that allows to classify model transformations
according to their intended applications, which includes, but is not limited to, verifica-
tion [3]. Calegari and Szasz [40] re-use Amrani et al.’s tri-dimensional categorization and
suggest further subcategories for each dimension. Rahim and Whittle [1] classify formal
and informal approaches according to the technique employed to assert the correctness
of model transformations. In contrast, we consider model transformations as one of

43

Table 3.2: Model Checking Approaches for UML

Domain Representation Spec. Lang. ∗ Prop.

Authors C
la

ss
D

ia
g
ra

m

S
ta

te
M

a
ch

in
e

S
eq

u
en

ce
D

ia
g
ra

m

A
ct

iv
it

y
D

ia
g
ra

m

C
o
ll
a
b
.

D
ia

g
ra

m

G
ra

p
h
.

L
a
n
g
u
a
g
e

T
ex

t.
L

a
n
g
u
a
g
e

T
em

p
o
ra

l
L

o
g
ic

M
o
d
el

C
h
ec

k
er

L
iv

en
es

s

S
a
fe

ty

b
eh

av
io

ra
l

co
rr

ec
tn

es
s

Balasubramanian et al. [9]a X L F X
ter Beek et al. [195]b X X C O X
Del Bianco et al. [18] X C K X
Dong et al. [56] X L S X
Dubrovin, Junttila [57]c X B N X X
Eshuis [68] X X L N X
Gnesi et al. [78] X C J X X
Grumberg et al. [82] X L C X X
Jussila et al. [103]d X X L S X
Lam, Padget [118] X C N X
Lilius, Porres [121]; Porres [160] X X X X S X
Lima et al. [122] X X S X
Mikk et al. [134] X L S X
Mozaffari, Haounabadi [136] X X O X
Niewiadomski et al. [143]e X X O X
Oubelli et al. [155] X L S X X
Shen et al. [181] X X X A X X
Siveroni et al. [183] X X X S

Zhang, Liu [202]f X L P X X

co
n
si

st
. Ji et al. [100] X X X X S X

Knapp, Wutke [109]g X X X S X
Ober et al. [146]h X X X I X
Schinz et al. [175] X X X V X X

Temporal Logics: C. . . CTL, L. . . LTL, B. . . CTL and LTL
Model Checker: A. . . ASM, C. . . CBMC, F. . . Java Path Finder, I. . . IF-tool-suite, J. . . Jack,

K. . . Kronos, N. . . NuSMV, O. . . own, P. . . Pat, S. . . spin, V. . . VIS
Note: The column titled ∗ corresponds to the Verification Representation of our classification.
aAvailable from https://wiki.isis.vanderbilt.edu/MICTES/index.php/Publications
bWeb interface available at http://fmt.isti.cnr.it/umc/V4.1/umc.html
cAvailable from http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
dAvailable from http://www.tcs.hut.fi/SMUML/
eAvailable from http://artur.ii.uph.edu.pl/zimplit/bmc4uml.html
fAvailable from http://www.comp.nus.edu.sg/~pat/
gAvailable from http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
hAvailable from http://www.irit.fr/ifx/

44

https://wiki.isis.vanderbilt.edu/MICTES/index.php/Publications
http://fmt.isti.cnr.it/umc/V4.1/umc.html
http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
http://www.tcs.hut.fi/SMUML/
http://artur.ii.uph.edu.pl/zimplit/bmc4uml.html
http://www.comp.nus.edu.sg/~pat/
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://www.irit.fr/ifx/

many possibilities to specify the behavior of a system and, more generally concentrate
on verification approaches that assert if a software model adheres to its specification.

Verification Goal

The verification goal describes the purpose or the intent of the verification. We distin-
guish between three types of goals: consistency, translation correctness, and behavioral
correctness. In the following, we explain and compare the different verification goals.
For each goal we provide an example scenario that describes the verification goal in the
context of a fictional development process.

Consistency. Approaches that verify the consistency of a set of models, each of which
describing a different part of one and the same system, aim to ensure that their intersec-
tion, i.e., the parts where the models overlap, does not contain contradicting information.
In a multi-view modeling language like UML, where diagrams provide distinct views
onto the system under development, developers need tools to assert that the different
diagrams are not inconsistent.
Example Scenario: The development team defines the behavior of the system with a
set of sequence diagrams. Next, they define the structure of the system and devise
corresponding state machines for each class. In such a setting, the system is deemed
consistent w.r.t. the sequence diagrams if the message sequences described by each of
the sequence diagrams correspond to execution paths in the state machines.

Translation Correctness. When performing model-to-model or model-to-code trans-
formations, the correctness of the translation becomes the subject of the verification. The
primary correctness criterion among the approaches in this category deems a translation
correct w.r.t. the source model, if the target model preserves the semantics of the source
model. This requires that both the semantics of the source model and the target model
are formally defined.
Example Scenario: The development team generates from a UML activity diagram a
Petri net that is used to perform additional verification tasks. Before the analysis with
the Petri net can be performed they need to assert the correctness of the activity-diagram-
to-Petri-net transformation to ensure that all states that are reachable in the activity
diagram are reachable in the Petri net, too.

Although the term “translation correctness” suggests that source and target model
conform to different metamodels, we also assign approaches to this category that assert
the correctness of endogenous transformations.
Example Scenario: When performing model refactorings that alter the structure of the
system but not its behavior, developers assert the refinement correctness of the performed
changes to ensure, for example, that the target model behaves like the source model in
every possible run of the system.

45

Behavioral Correctness. The behavior of a system is governed by a set of rules. In
our classification and the approaches we analyze, these rules are either provided as a set
of model or graph transformations, or as a set of operation contracts. Each operation
contract is associated with an operation or function provided by the system. It describes
the necessary conditions to execute the operation and its effects. Thus, an operation
contract consists of a set of preconditions that define in which state of the system the
operation can be executed and a set of postconditions that define the state of the sys-
tem after the operation has terminated. Similarly, a transformation defines application
conditions, which control when the transformation can be applied to the source model,
and a set of instructions that define the structure of the target model after it has been
executed. Hence, under the assumption that a contract’s conditions are formulated in
first-order logic and a transformation rewrites graph-based structures, transformations
and operation contracts are equally expressive and interchangeable. The sequence of
states, called a trace, resulting from the execution or application of an operation or
transformation yield the behavior of the system. Hence, a specification describes the
necessary and forbidden traces of a system, often by means of a temporal logic formula.
The algorithmic procedure performing the verification compares the system’s behavioral
description, i.e., the all possible traces resulting from execution, application of the oper-
ation contracts, or transformations, with the specification.
Example Scenario: The development team designs a new security protocol and models
the behavior of the two communicating agents and the behavior of the attacker with
graph transformations. They want to ensures that no attacker can hijack a secured
channel and formulate the specification accordingly as an LTL formula. The number of
interactions between the agents and the attacker is finite, however, large. Thus, they
use a model checker to assert that the transition system, which captures the interaction
of the agents and the attacker, satisfies the protocol’s specification.

Discussion. To clarify the classification we highlight the discriminating features be-
tween translation and behavioral correctness in the following. Approaches that target
the behavioral correctness always analyze endogenous transformations that may not ter-
minate. Translation correctness approaches analyze both exogenous and endogenous
transformations, but demand that these transformations terminate. Obviously, a trans-
lation of a source to a target model requires a result and thus a definite end; otherwise,
we would have identified an error in the translation, i.e., a source model, on which the
translation diverges. A system, whose behavioral correctness we want to verify, may,
in contrast, continue to expose its behavior indefinitely; and hence, some of the trans-
formations that describe the system’s behavior may be applicable over and over again.
Further, we observe differences in the way specifications are phrased. Translation cor-
rectness aims to assert that the semantics of the source model are preserved by the target
model, that is, the properties that hold in the source model should still hold in the target
model after the execution of the transformation. On the contrary, the specifications for
behavioral correctness express system properties over traces, i.e., sequences of states,
and often use temporal logics to formally describe these properties.

46

Domain Representation

The input or domain representation defines type and format of the source model(s)
that the verification approach is able to analyze. We distinguish between graph-based
representations and representations that use notations and visualizations defined in an
OMG standard. Simple graphs can be enhanced with different constructs to raise their
expressivity. They can be labeled [83], typed, or attributed and may support inheritance
relations or compositions (also: part-of relations) [24]. Approaches that use the notation
of an OMG standard may use elements or combinations of UML [153], MOF [150],
QVT [149], or OCL [148].

Verification Representation

The verification representation classifies the approaches according to the formal repre-
sentation that is used to perform the verification. We distinguish between logical, state-
transition, and graph-based representations. As most approaches do not implement their
own verification back-end, this representation correlates with the input language of the
underlying verification tool. For example, approaches that employ Maude [45] represent
models as algebraic data types such that Maude’s search and model checking capabil-
ities may be used to verify the system. Approaches based on Alloy analyzer [96] or
Kodkod [198] convert models and transformations into relational declarations and pred-
icates.

Logical verification representations can be partitioned into approaches using higher-
order logic (HOL) [119], first-order logic [184], dynamic logic [84], rewriting logic [133],
relational logic [95], or temporal logics, e.g., CTL [42], LTL [158], or µ-calculus [114].
Likewise, different kinds of state-transition systems are in use and the classification of
approaches can be further refined according to their use of either labeled transition
systems (LTS), graph transition systems (GTS), or abstract state machines (ASM).
The approaches that use a graph-based representation usually use a combination of
extensions, e.g., types, attributes, and inheritance relations, to increase the precision of
the verification.

Specification Language

Different specification languages for expressing the properties to be checked are in use
with varying degrees of expressivity. We distinguish between logical, bisimulation-based,
and graph-based specifications. In addition, we list OCL explicitly due to its relevance as
a specification language in MDSD. The sub-category of logical specification languages
is further divided into approaches that specify system properties with higher-order logic,
first-order logic, dynamic logic, rewriting logic, relational logic, or temporal logics (CTL,
LTL, µ-calculus). A bisimulation is an equivalence relation that asserts whether two
automata can simulate each others moves on the same input. Basically, two automata
are declared bisimilar if there exists a bisimulation relation R, where a pair pa, bq of
states from automaton A and B is in R if automaton B can replicate every move aÑ a1

47

by automaton A, for some state a1, and automaton A can replicate every move b Ñ b1

by automaton B, for some state b1, and the pair pa1, b1q is again in R [135]. In general,
this relation is stronger than language equivalence, i.e., whether two automata accept
the same language [135]. Graph-based specification languages define system properties
by means of graph constraints, which are, essentially, graph transformations whose LHS
and RHS are identical. Thus, they do not alter the system and, if their applicability is
asserted, the system is declared correct w.r.t. to the constraint.

Verification Technique

Finally, we categorize approaches according to the verification technique they employ
and assign them either to the category of theorem proving-based techniques or to the
category of model checking-based techniques. Once assigned to either of the two veri-
fication techniques the capabilities and limitations of the different approaches become
comparable with regard to the logical models and properties they can verify. In particu-
lar, theorem proving-based approaches can verify systems with infinitely many different
states, but they usually require manual guidance by an expert user. Model checking-
based approaches, on the contrary, are fully automatic, but can only verify finite state
system descriptions. There exist, however, automatic theorem provers that either check
the satisfiability of logical propositions modulo decidable first-order theories or the satisfi-
ability of classical first-order logic, in which case the search of a proof may not terminate.
Hence, we classify theorem proving-based approaches into automatic and manual/inter-
active approaches.

We refine the classification of model checking-based approaches by their state space
representation and by the type of properties that can be verified. If the state space
is explored enumeratively, every possible combination of different valuations for the
state-defining properties is analyzed. Contrary, symbolic state space representations
use (propositional) logic to represent states and transitions. Likewise, abstract state
space representations use the theory of abstract interpretation [48] to conservatively
over-approximate the set of possible system states. Concerning the supported types of
properties, we record for each model checking-based approach whether it supports the
verification of reachability, safety, or liveness properties.

The Feature Model

The classification described above is reflected in the feature model [104] depicted in the
left half of Table 3.1. In the following presentation we use a tabular representation
for our feature model, that compactly mirrors the commonly used tree-based repre-
sentation (cf. [50]). The root feature, named Software Model Verification Approach, is
decomposed into five main features named verification goal, domain representation, ver-
ification representation, and so on. These main features are further refined according to
our classification described in the previous section. Note that all features in the table are
mandatory. Names written in italic denote abstract features that are further refined by
either and, or, or xor decompositions. An and (or, xor) decomposition mandates that

48

each (at least one, exactly one) of the child features is present, used, or implemented in
the verification approach in order to be classified successfully. For example, the Verifi-
cation Goal feature is or -decomposed into the Consistency, the Translation Correctness,
and the Behavioral Correctness feature. The latter is in turn xor -decomposed into the
Behavior by Transformation and the Behavior by Operation features. Hence, an ap-
proach that asserts the behavioral correctness encodes the behavior into transformations
or operation contracts. Moreover, we introduce multi-valued features to increase read-
ability of the feature model. A multi-valued feature is equivalent to an abstract feature
containing a child feature for each of its possible values. Thus, a multi-valued feature is
always abstract and written in italic. For example, the multi-valued feature Transition
System listed under the main feature Verification Representation has three different val-
ues: Labeled Transition System (LTS), Graph Transition System (GTS), and Abstract
State Machine (ASM). Each of the possible values of a multi-valued feature is listed in
the “Legend”.

The right of Table 3.1 shows the classification presented in Section 3.2. This part of
the table is read as follows. A check-mark in the table indicates that the feature is sup-
ported and, in case of multi-valued features, the actual value is displayed in parentheses.
Approaches providing an implementation are underlined.

We purposefully deviated from the restriction governing the xor -decomposition in
the case of Groove [106], which supports both an enumerative traversal and, since
recently, an abstraction-based traversal of the state space. Although the techniques
employed by Groove to implement enumerative and abstraction-based model checking
are conceptually different, we decided to merge the two verification approaches into
one entry because they coincide on every feature but the state space representation.
Further, due to the many similarities among the model checking-based approaches for
UML models, we decided to only list a representative assignment of features in the
last column of Table 3.1 for all with model checking-based verification approaches that
verify the consistency and behavioral correctness of UML models. In Section 3.1 we
provide a more fine-grained comparison of these approaches, which are then summarized
in Table 3.2.

3.3 Summary

Progress and success of formal verification techniques in hardware design and software
engineering has motivated the MDSD community to adopt and apply such techniques
for the verification of software models. To this end, much research efforts have been
spent on lifting verification techniques from hard- and software to MDSD.

In this chapter, we surveyed the efforts made to apply formal verification techniques
in the MDSD development process. We established a feature model that relates the
characteristic properties of different verification approaches. By this means, we are able
to categorize the different approaches in a concise manner. Overall, formal verification
techniques have been used extensively in all areas of MDSD. Compared to works on
formal verification in hardware and software systems, the works in MDSD are often in

49

a very early stage and work in progress. Therefore, it is hard to give general recom-
mendations which techniques and tools to apply for a given verification problem beyond
those of the provided features. Also there is no established evaluation methodology to
judge on the effectiveness of the different approaches. Nevertheless, already at this early
stage the vast literature on formal verification techniques in MDSD illustrates their huge
potential.

Based on the insights gained from the literature review and the subsequent classifi-
cation we draw the following conclusions:

• formal verification techniques of semantic properties based on model checking and
interactive theorem proving have been applied extensively to all areas of MDSD;

• compared to formal verification methods developed for hard- and software, the
majority of the proposed approaches for the verification of software models is still
in its infancy and (prototypical) implementations are pending;

• a large scale evaluation of the effectiveness of the proposed approaches is, at its
current state, impossible due to incompatible semantic interpretations of, e.g., the
UML standard [69,182], and further hindered by the lack of a common benchmarks;

• the large amount of literature on formal verification techniques in MDSD illus-
trates, however, their huge potential.

50

CHAPTER 4
Model Checking CTL-extended

OCL Specifications

The first part of this chapter presents a temporal extension for OCL based on the
Computation Tree Logic (CTL) [42]. This extension for OCL, called cOCL (short for
CTL-extended OCL)), allows reasoning over sequences of states instead of just a pre-
state and a post-state as OCL is capable of. The verification approach presented in
the second part of this chapter implements an explicit-state model checker for cOCL
specifications, called MocOCL (short for Model Checking CTL-extended OCL), that
iteratively enumerates the set of all reachable states. These states are represented ex-
plicitly, that is, internally each state is stored as an object diagram and contains the
actual values used to describe the real-world system.

Overview. In MBD, the Object Constraint Language (OCL) [148] is a popular spec-
ification language. It allows to constrain MOF based models with invariants and op-
eration contracts, which specify pre- and postconditions for operations defined in these
models. The OCL thus provides means to specify functional behavior properties [86] of
at most two consecutive system states, i.e., the pre- and the post-state. Yet, temporal
operators are necessary to observe and verify the behavior over a sequence of states. As
OCL does not support the specification of temporal aspects beyond the post-state, we
present the CTL-extended Object Constraint Language, or cOCL for short. This ex-
tension introduces the branching time operators from CTL to OCL, which allows us to
capture the desired behavior of a system over sequences of system states. Specifications
that use our extension can be verified with our explicit-state model checker.

The verification of a system against its specification with our model checker for CTL-
extended OCL (MocOCL for short) proceeds in seven steps. First, the modeler defines
a model of the system that captures its static structure. Then, a set of model transfor-
mations is developed that specifies the behavior of the system. Next, the specification

51

is formulated and an initial state is defined in terms of an object diagram. All of these
artifacts comprise the input to the model checker that constructs the so-called state
space by applying the model transformations to the initial state and successively to all
models resulting from previous applications of the model transformation. For reasons of
efficiency, the model checker will avoid the generation of the entire state space, which
might grow huge even for small verification tasks. Thus, the model checker evaluates the
specification on-the-fly while constructing the state space. The model checker may then
stop as soon as the specification is found to hold or abort if the specification is violated.
In the latter case, the model checker will extract a counter-example that demonstrates
an execution trace of the system that violates the specification.

Running example. To illustrate the concrete syntax of cOCL (see Sec. 4.3 of this
chapter) and to demonstrate a verification scenario with MocOCL (see Sec. 4.4) we
present in the following a variation of the well-known Pacman game1 that we will re-
use during the evaluation discussed in Chapter 6. Our variation of the Pacman game
is played on a board consisting of fields, each of which has at most four neighboring
fields. Each field has a unique identification number. Some fields contain a treasure as
indicated by a Boolean flag. Pacman plays against one or more ghosts. Each player,
Pacman or the ghosts, is placed on one field of the board. The static structure of the
game’s implementation is shown in Figure 4.1a. The root element Game contains exactly
one Pacman element, one or more Field elements, and zero or more Ghost elements.
Each player, i.e., the Pacman and each ghost, is placed on exactly one field. A field
is identified uniquely by its id attribute and has at most four neighboring fields. The
Boolean treasure attribute indicates whether the field contains a treasure. Figure 4.1b
uses the graphical, concrete syntax and shows a Pacman game instance with four fields,
a treasure on field 4, Pacman on field 1, and a ghost on field 3. Note that an instance of
the Pacman game, as just described, defines a particular state while playing the game,
which is done as follows. The players move turn-wise in no fixed order. Pacman has to
find a treasure, which is placed somewhere on the board. If Pacman finds one, he wins
the game. If, however, Pacman moves onto a field with a ghost or if a ghost moves onto
Pacman’s field, Pacman looses the game. The game ends, i.e., no more moves may be
made by the players, if either Pacman wins or looses the game.

Related Work. We briefly summarize two lines of related works; first, those that
extend OCL with temporal operators and, second, those that suggest a model checking
based verification approach to verify temporal extensions of OCL.

Distefano et al. [55] present a CTL based logic, called BOTL, to specify static and
dynamic properties of object-oriented systems. But instead of extending OCL, they
map OCL onto BOTL; thus, they provide formal semantics for a large part of OCL
based on BOTL. Ziemann and Gogolla [203] formalize an extension based on linear time
logic, which is similar in nature to our CTL based solution. Bradfield et al. [33] embed
OCL into the observational µ-calculus. They suggest the use of predefined templates

1http://en.wikipedia.org/wiki/Pac-Man

52

http://en.wikipedia.org/wiki/Pac-Man

Field
+id:
+treasure:

Integer
Boolean

neighbors

0..4

Pacman

GhostGame

1

1..*

1

1

pacman
fields

ghosts

on

on

0..4

*

(a) Static structure of the Pac-
man game

(b) Instance of a Pacman
game

Figure 4.1: Abstract and concrete syntax of the Pacman game

with intuitive semantics, from which the underlying µ-calculus formula is automatically
generated.

Mullins and Oarga [138] present EOCL, an extension inspired by BOTL, that aug-
ments OCL with CTL operators. The operational semantics of EOCL are defined over
object-oriented transition systems. They implement SOCLe, a tool that translates class,
state chart, and object diagrams into an abstract state machine and checks on-the-fly
if the system satisfies a given EOCL specification. Al-Lail et al. [117] describe systems
with class diagrams and the operations’ contracts, given by OCL pre- and postcondi-
tions, capture the behavior of the system. They implement a bounded model checking
approach. Given an initial instance of the class diagram their tool generates sequences
of instances up to a predefined depth with the USE Model Validator [187]. They use
TOCL [203] to specify reachability and safety properties. Similarly, Hilken et al. [89]
employ the USE tool to generate a depth-bounded filmstrip model from a UML class
diagram and a set of OCL operation contracts. The filmstrip model describes a finite
sequence of instances, each of which conforms to the given UML class diagram. Except
for the last instance in the sequence, each instance that satisfies a precondition of an
operation contract has a successor instance that satisfies the postcondition of the opera-
tion contract. The filmstrip model allows to check temporal properties of the system up
to a certain bound, but the authors neither define nor restrict themselves to a temporal
language for this task. The Groove framework [106] verifies object-oriented systems
modeled as attributed, type graphs with inheritance relations. It is similar to MocOCL
in that it represents system states as graphs and the system’s behavior by graph trans-
formations. But, in contrast, it uses standard CTL and LTL to formulate the system’s
specification.

Bibliographic Note. The OCL extension cOCL and the model checker MocOCL
were first presented in [27]. A revised and extended version reflecting the current state of
cOCL and MocOCL was later published in [28]. The implementation of MocOCL and
the usability evaluation were first presented in [25]. Further, a demonstration of Mo-

53

cOCL was given at the VOLT2014 workshop [26] and at the TAP2014 conference [71].

4.1 Preliminaries

Model checking based techniques require a formal representation of the system and its
behavior. Because both the UML standard [153] and the MOF standard [150] provide
formal semantics only to a limited extent we use the algebraic theory of graph trans-
formations to describe formally the system’s structure with graphs and the system’s
behavior with graph transformations. In the following we extend the graph transfor-
mation theory presented in Section 2.2 and introduce attributed, typed graphs with
inheritance and composition relations. We use the formalization of EMF models pre-
sented by Biermann et al. [24] to present formal syntax and semantics of OCL. This
presentation is based on the work of Richters and Gogolla [170].

Algebraic Graph Transformations

Recall from Section 2.2 that a graph is quadruple G “ pVG, EG, srcG, tgtGq with a set of
vertices VG, a set of edges EG, and a source and a target function, srcG : EG Ñ VG and
tgtG : EG Ñ VG, respectively. A graph morphism f : G Ñ H between graphs G and
H is a pair pfV , fEq of mappings fV : VG Ñ VH and fE : EG Ñ EH that preserve the
source and target mapping [62] such that for all edges e P EG

fV ˝ srcGpeq “ srcG ˝ fEpeq

fV ˝ tgtGpeq “ tgtG ˝ fEpeq.

A node (or edge) is an image h “ fpgq P VH Y EH of a node (or edge) g P VG Y EG if
there exists a mapping from g to h, i.e., pg, hq P f . We also write mpGq to denote all
images of G. A morphism is injective if every node in H is the image of at most one node
in G, otherwise it is surjective. We write f : G ãÑ H to emphasize that a morphism is
injective; otherwise, if the mapping is irrelevant, we simply write f : G Ñ H as before.
A double pushout (DPO) graph transformation (also: rewriting rule, graph production)

p : L
l
Ð K

r
Ñ R describes declaratively how a graph L, the left-hand side (LHS), is

rewritten into a graph R, the right-hand side (RHS) over a common interface graph K.
The interface graph K defines the nodes that are preserved by transformation p, whereas
all nodes in L that are not in the image of lpKq are deleted by p and, reciprocally, all
nodes present in R that are not an image of rpKq are created by p. A pushout of a pair
of morphisms f : A Ñ B and g : A Ñ C is a pushout graph G together with a pair
of morphisms f 1 : C Ñ G and g1 : B Ñ G with f 1 ˝ g “ g1 ˝ f and, for all graphs X,
if f2 : C Ñ X and g2 : B Ñ X such that f2 ˝ g “ g2 ˝ f , then there exists a unique
morphism x : GÑ X such that x ˝ f 1 “ f2 and x ˝ g1 “ g2 (see Fig. 4.2a).

We say that a DPO graph transformation p is applicable to a graph G, called the
host graph, if there exists (i) a morphism m : LÑ G, called the match, that maps graph

L of p : L
l
Ð K

r
Ñ R to G, (ii) a graph D and a pair of morphisms k : K Ñ D and

54

A f //

g

��
“

B

g1

��
g2

��

“C f 1 //

f2
//

G

x

“

X

(a) Pushout construction

L

m

��

Kloo

k

��

r // R

n

��

p1 q p2 q

G Dfoo g // H

(b) Application of a graph transformation

L
ac //

m
��
“

AC

|
c

}}
G

(c) NAC

f : D Ñ G with m ˝ l “ f ˝ k such that p1 q in Fig. 4.2b is a pushout with pushout
graph G together with morphisms m and f . Further, the transformation p may only be
applied if both the dangling edge condition and the identification condition are satisfied.
The dangling edge condition states that, after deleting a node, all edges adjacent to the
deleted node must be deleted as well by the transformation such that no edge is left in
a dangling state. The identification condition demands that, for any two distinct nodes
(or edges) v, w of the LHS graph L of p, if a surjective match m maps both v and w
to the same node (or edge) in host graph G, i.e., mpvq “ mpwq, then either both are
deleted or both are preserved. A graph transformation is applied to a graph G, thereby
producing graph H, the so-called result graph, by removing those images mpLq from G
that are not preserved, that is, all nodes in L that are not an image of lpKq, and by
adding all images of npRq to H that are created by the transformation.

In the following, we will assume that a graph transformation is a applied following the
DPO approach outlined above, but we will drop the interface graph K and use the more
intuitive notation p : L Ñ R when we refer to a DPO graph transformation provided
that the presentation remains unambiguous.

A graph transformation p : L Ñ R can be further restricted by negative application
conditions (NAC) or positive application conditions (PAC). An application condition
consists of a graph AC and a morphism ac : L Ñ AC , i.e., a mapping of nodes and
edges from the transformation’s LHS to the application graph. A NAC is satisfied if
its graph AC cannot be mapped injectively into the host graph G. This is the case if
there exists no morphism c : AC ãÑ G such that c ˝ ac “ m (see Fig. 4.2c). A PAC, in
contrast, demands that such a morphism c does exist.

Finally, an amalgamated graph transformation matches and transforms with a single
application multiple occurrences of a recurring graph pattern. An amalgamated graph
transformation consists of a kernel rule and multiple multi rules. A kernel rule defines
the common structure shared by all multi rules and is used to synchronize the application
of the multi rules. Thus, the kernel rule matches a host graph exactly once, while the
multi rules may be applied to the host graph zero or more times. An amalgamated
graph transformation is defined by a triple ppK , Pmulti , emq with kernel rule pK , multi
rules Pmulti “ tpi | 1 ď i ď nu, and a set of embeddings em : pkernel ãÑ pi that embed
the kernel rule into the multi rules such that the intersection of the left-hand sides of
two multi rules overlap only on elements found in the LHS of the kernel rule [23]. An

55

application of an amalgamated rule applies the kernel rule pK at a match mK and the
multi rules tpi | 1 ď i ď nu as often as there exists match mi : Li Ñ G that overlaps
with any other multi rule match mj only at the kernel match mK [23].

Operationally, a graph transformation DPO is applied to a host graph G as follows.
First, search in G for an occurrence of L. If such an occurrence exists and all application
conditions are satisfied, remove all nodes of G that are in L but not in R. This yields
graph D (see Fig. 4.2b). Next, for every node in R that is not in L, create a node in
D and attach these newly created nodes to the preserved nodes in D accordingly. This
yields the resulting graph H.

Various extensions for the above presented theory of graph transformations have been
developed. In the following, we briefly discuss those relevant for subsequent chapters.

Type graph. A graph may be typed over type graph TG “ pVTG , ETG , srcTG , tgtTGq

that defines a set of well-formedness constraints. A graph that satisfies these constraints
is said to be typed over TG and is called an instance graphs of TG or simply a typed
graph. A type graph defines the static structure of nodes and edges that its instance
graphs must conform to. This conformance relation is expressed by a type morphism
tG : G Ñ TG . A typed graph morphism f : G Ñ H between typed graphs G and H
must be type compatible, i.e., tH ˝ f “ tG where tH : H Ñ TG .

Inheritance graph. To express subtype relations between nodes of a type graph TG “

pVTG , ETG , srcTG , tgtTGq, we introduce the inheritance graph I “ pVI , EI ,Aq with VI “
VTG and A Ď VTG being the set of abstract nodes. The set EI of inheritance edges,
EI Ď VI ˆ VI , defines a subtyping relation subtypesI that is defined as the smallest set
subtypesI “

Ť

iě0 subtypes i with

subtypes0 “ EI

subtypes i`1 “ EI Y tpv, wq | pv, xq, px,wq P subtypes iu.

On the basis of this subtyping relation we define for each node v P VI the inheritance
clan as the set of all sub-nodes of v, i.e., clanIpvq “ tw|pv, wq P subtypesIu Y tvu. The
typing morphism ctm : G Ñ TGI between an instance graphs G and a type graph
TGI with inheritance assigns each node and edged in G to a type in TGI such that the
inheritance clan is preserved, e.g., ctm ˝ srcGpeq “ clanIpsrcTG ˝ ctmpeqq for all e P EG.
If we flatten the inheritance graph we obtain either the abstract or the concrete closure
of the type graph with inheritance depending on whether abstract nodes are included or
excluded from the flattened graph. We may reuse all of the established theory on the
closure of type graph with inheritance. Moreover, it can be shown that there exists a
bijective correspondence between the type morphism type : G Ñ TGI defined on the
closure TGI of the type graph with inheritance and the clan type morphism ctm [62].

Attributes. The combination of a type graph and a data algebra allows us to define
attributes for nodes v P VG. We refer to typed graphs with data or attribute nodes

56

as attributed type graph. An algebra A consists of a data signature A, which defines
data sorts and a set of function symbols, and an interpretation of the function symbols.
Thus, an algebra A defines the set of values that may be assigned to the data or attribute
nodes VA, where A Ď VA. We introduce additional attribute edges EA that associate
a node with a value node a P VA. An attributed graph morphism f : G Ñ H between
two attributed graphs G, H must be type compatible and attribute compatible, i.e.,
@a P VAG

: f paq ãÑ VAH
.

Containment. Containment edges model part-of relations and are are defined as a
distinct set of containment edges CG Ď EG such that (i) every node v P VG has at most
one container and (ii) no node is transitively contained by itself. A graph with contain-
ment edges that satisfies these constraints is said to be consistent. These constraint do
not, however, apply to type graphs. For example, a type graph with inheritance edges
may specify a containment edge to the top most node of an inheritance hierarchy, which
obviously achieves the effect of propagating the containment edge down the hierarchy if
the graph is flatten (as described above). Moreover, the type graph may define a contain-
ment loop between one or more nodes. Since these edges might result in a containment
cycle in the instance graph, they are called cycle capable [24]. For example, in a type
graph that represents a relational database schema we may nest tables such that a table
may contain a sub-table, which in turn may contain another sub-table. To model this
scenario we add a containment edge whose source and target are the Table node. To
maintain the consistency of instance graphs with containments all graph transformations
are required to satisfy the following constraints:

• A contained node is always deleted with its containment edge.

• The deletion of a containment edge requires the deletion of its contained node.

• Every created node is immediately connected to its container.

• The creation of a containment edge requires either the creation of a new node or
the connection to an existing node whose container is changed.

• For cycle capable containment edges, the contained node may only change its
container if the current and the new container are already transitively connected
by containment edges.

We will in the following assume that all graphs with containment edges (not type graphs)
are rooted, i.e., there exists root node that transitively contains all other nodes.

The combination of these extensions formalize EMF models as attributed, typed
graphs with inheritance and containment relations [24]. To complete the picture we add
the set E Ď pS ˆ S ˆ Zq of enumerations, where each enumeration is identified by a
string valued name n P S that is associated with a set of key-value pairs l P pS ˆ Zq,
called enumeration literals. We define the terms metamodel, model, and instance model
as follows and define a three-layered hierarchy, where the instance of a metamodel is a
model, and an instance of a model is an instance model.

57

Definition 1 (Metamodel and model) A (meta)model M is defined by the tuple
pT, I,A, E , typeM, rootMq with (type) graph T “ pVT , ET , srcT , tgtT q, inheritance graph
I “ pVI , EIq where VI “ VT and EI Ď VI ˆ VI , algebra A, enumerations E, root node
rootM P VT , and type morphism typeM : T Ñ T , which states that graph T is typed over
itself. For graph T we further define attribute nodes VA Ď VT , attribute edges EA Ď ET
s.t. @e P EA : srcT peq P VT zVA and tgtT peq P VA, and containment edges C Ď ET . ˝

Definition 2 (Instance model) An instance model M of M “ pT, I,A, E , typeM, rootMq
is a tuple pG, typeM , rootM q with instance graph G “ tVG, EG, srcG, tgtGu, root node
rootM P VG, and type morphism typeM : GÑ T s.t. typeM prootM q “ rootM. ˝

In the following, we denote by M the set of instance models M of M and we write
M P M if M is an instance of model M and say that M conforms to model M. In
general, we refer to elements of M or M by M|X or M |X with X “ tT, I,A, E , rootMu
or X “ tG, rootMu, respectively. Moreover, for convenience, we denote by M|VT and
M|ET

the set VT of vertices and the ET of edges of the (type) graph T underlying model
M “ pT, I,A, typeM , rootM q, respectively, and likewise for models M P M, i.e., M |VG
and M |EG

denote the set VG of vertices and the EG of edges of the graph G underlying
model M “ pG, typeM , rootM q, respectively. We write v PM|VT if v is a node in graph T
of M, i.e., v P VT , and, similarly, we write v PM |VG if v is a node in graph G of M , i.e.,
v P VG. Likewise for edges, we abbreviate e P ET or e P EG to e P M|ET

or e P M |EG
,

respectively.

Syntax and Semantics of OCL

On the basis of the above defined EMF (meta-)model M “ pT, I,A, E , typeM, rootMq we
introduce the core features of OCL required for the rest of this thesis. We base our
presentation of OCL syntax, semantics, and typing rules on the work of Richters and
Gogolla [170].

OCL expressions are always defined w.r.t. a model consisting of classes and associ-
ations between classes. Each class contains a set of attributes and operations. Such a
model provides the basis for a signature ΣM over which the set of valid OCL expressions
is defined. In the following, we first define the set of types induced by a model M before
we formally introduce the notion of an OCL signature ΣM.

Definition 3 (OCL types, type closure) The set of types TM induced by a model
M “ pT, I,A, E , typeM, rootMq with type graph T “ pVT , ET , srcT , tgtT q is defined as the
smallest set

TM “ VT Y ET

Y tBool , Int ,Real ,Stringu Y K

Y Enum Y CollectionptqtPTMzK where

• the primitive types Bool, Int, Real, and String denote Boolean, integer, real, and
string values,

58

• the void type K denotes an undefined value,

• the enumeration type Enum denotes the set of enumerations, which are sets of
key-value pairs identified by the name of the enumeration,

• and the collection type Collectionptq denotes the set of all subsets containing objects
of type t P TM; thus, a collection type over t is equivalent to the power set Pptq.

The closure T˚M of TM is defined as the smallest set
Ť

iě0 Ti where

T0 “TM

Ti`1 “TM Y tαÑ β | α P Ti, β P Tu

˝

In the style of functional programming languages we use curried function types instead
of the tuple based types usually found in mathematical notations. We thus treat the
function type α1 Ñ ¨ ¨ ¨ Ñ αn Ñ β as notationally and functionally equivalent to α1 ˆ

¨ ¨ ¨ˆαn Ñ β. Note that we may use αÑ Collectionpβq, which is equivalent to αÑ Ppβq,
to express a relation type αˆ β.

Definition 4 (OCL Signature w.r.t. a model) An OCL signature ΣM with respect
to a model M “ pT, I,A, rootM, typeMq is a tuple ΣM “ pTM,O, FM,Vq where TM is the
set of types as defined in Def. 3, O is a set of predefined operation symbols with a given
arity, FM is the set of binary relations called the features of M, and V is the set of
countable-infinite, typed variables. ˝

The set O of predefined operation symbols contains, among others, the arithmetic
operators for integers and reals, i.e., addition p`q, subtraction p´q, multiplication p˚q,
and division p{q, Boolean operators for conjunction and negation, ^ and , and the
collection operator get that returns from a collection xs the pair px, xs1q consisting an
element x P xs and a collection xs1 “ xszx. The set of features FM represents the set of
attribute and reference relations; thus, it is equal to set ET of M. In the following, we
will omit the reference to model M in TM and FM and only write T and F, respectively,
if the reference to M is unambiguously deducible from the context.

On the basis of an OCL signature ΣM, we define in the following, first, the abstract
syntax, then a set of typing rules, and finally the semantics of the set of OCL expressions
w.r.t. an instance model M P M, denoted by OclExpr. We start with the definition of
the set of numeric OCL expressions, which are a subset of OclExpr.

Definition 5 (Numerical OCL expressions) Let ΣM “ pT,O,F,Vq be an OCL sig-
nature over model M and let opNum P t`,´, ˚, {u Ď O. Then, the set NumOclExpr over
ΣM is inductively defined as follows.

i. NumOclExpr Ď ZZ R

59

ii. If e1, e2 P NumOclExpr, then e1 opNum e2 P NumOclExpr. ˝

In the definition above, the set NumOclExpr is a subset of the disjoint union of the
set of integers Z and the set of reals R. This construction allows us to distinguish integer
values from real values in the set of numerical OCL expressions, which will be necessary
once we define the typing function for NumOclExpr (see Def. 8). Further, numerical
OCL expressions may be combined by the standard set of arithmetic operators to form
complex expressions.

Definition 6 (OCL expressions) Let ΣM “ pT,O,F,Vq be the OCL signature over
model M as described above. Then the set OclExpr of OCL expressions over ΣM is
inductively defined as follows.

i. undef P p (undefined).

ii. self P OclExpr (self reference).

iii. If e P NumOclExpr, then e P OclExpr (numerical expression).

iv. If e P OclExpr, f P F, then nav(e, f) P OclExpr (navigation).

v. If v P V, e1, e2 P OclExpr then (let v “ e1 in e2) P OclExpr (let-expression).

vi. If op P O with arity n, e1, . . . , en P OclExpr, then op(e1, . . . , en) P OclExpr (operation
call).

vii. If e1, e2, e3 P OclExpr then (if e1 then e2 else e3 endif) P OclExpr (if-then-else).

viii. If v1, v2 P V, e1, e2, e3 P OclExpr, then (e1 Ñ iterate(v1; v2 = e2 | e3)) P OclExpr
(iterate expression). ˝

In the above definition, we omit type casts and type membership tests because we use
the language in a statically typed manner only. Note, moreover, that parenthesis around
OCL expressions may be omitted as long as the resulting expression is unambiguous.

Finally, we define the set BoolOclExpr of Boolean OCL expressions, which are a
subset of OclExpr, just like the set NumOclExpr of numeric OCL constraints.

Definition 7 (Boolean OCL expressions) Let ΣM “ pT,O,F,Vq be the OCL signa-
ture over model M, and let NumOclExpr be the numerical expressions over ΣM as defined
above. Then, the set BoolOclExpr Ď OclExpr over ΣM is inductively defined as follows.

i. false P BoolOclExpr.

ii. If e P BoolOclExpr, then e P BoolOclExpr.

iii. If e1, e2 P BoolOclExpr, then e1 ^ e2 P BoolOclExpr where ^ P O.

iv. If e1, e2 P NumOclExpr, then e1 opRel e2 P BoolOclExpr, opRel P tă,ąu Ď O.

v. If e1, e2 P OclExpr, then e1 “ e2 P BoolOclExpr. ˝

60

The Boolean OCL expressions consist of one primitive value, namely false, nega-
tion p q, and conjunction p^q. Moreover, we define equality expressions p“q and strict
inequality comparisons, less than păq and greater than pąq. Since negation and con-
junction comprise a functionally complete set of Boolean operators, we add to the set of
the Boolean OCL expressions true and _ as syntactic sugar, i.e., true abbreviates false
and e1 _ e2 stands for p e1 ^ e2q, respectively.

In the following, we define the typing function type : OclExpr Ñ T˚ that statically
assigns a type t P T˚ to every OCL expression e P OclExpr. We denote by Vt Ď V the
set of variables of type t P T. We first define the typing function for numerical OCL
expressions, then, we extend the typing function to the set OclExpr of OCL expressions,
and finally, define the typing function for equality expressions.

Definition 8 (Typing of numerical OCL expressions) Let ΣM “ pT,O,F,Vq be
the OCL signature over model M, and let opNum P t`,´, ˚, {u Ď O. The typing func-
tion type : NumOclExpr Ñ T˚ for numerical OCL expressions NumOclExpr Ď OclExpr
is defined inductively as follows.

i. Let x P NumOclExpr. If x P Z, then typepxq “ Int.

ii. Let x P NumOclExpr. If x P R, then typepxq “ Real.

iii. typepe1 opNum e2q “ Int, if typepe1q “ Int , typepe2q “ Int.

iv. typepe1 opNum e2q “ Real, if typepe1q “ Real , typepe2q “ Real. ˝

Note that the typing function for numerical operations opNum is only defined for
numeric arguments that agree on their type, i.e., their type is undefined if called with
one argument of type Int and the other of type Real . In the following definition, we
provide the typing rules for OCL expressions OclExpr, where we omitted the treatment
of inheritance and dropped support for OclAny for the sake of simplicity.

Definition 9 (Typing of OCL expressions) Let ΣM “ pT,O,F,Vq be the OCL sig-
nature over model M “ pT, I,A, rootM, typeMq, let Vt Ď V be the set of variables of type
t P T, and let α, β P T˚ be types. The typing function type : OclExpr Ñ T˚ for OCL
expressions is defined inductively as follows.

i. typepundefq “ K.

ii. typepselfq “ rootM.

iii. typepnavpe, fqq “ β, if typepeq “ α, typepfq “ αÑ β, and e P OclExpr.

iv. typeplet v “ e1 in e2q “ β, if typepe1q “ α, typepe2q “ β, v P V, and e1, e2 P

OclExpr.

v. typepoppe1, . . . , enqq “ β, if typepopq “ α1 Ñ ¨ ¨ ¨ Ñ αn Ñ β, op P O,
typepe1q “ α1, . . . , typepenq “ αn, and e1, . . . , en P OclExpr.

61

vi. typepif e1 then e2 else e3 endifq “ α, if typepe1q “ Bool, typepe2q “ α and
typepe3q “ α, and e1, e2, e3 P OclExpr.

vii. typepe1 Ñ iterate(v1; v2 : t “ e2 | e3)q “ β, if typepe1q “ Collectionpαq, typepe2q “

typepe3q “ β, t P T, t “ β, v1, v2 P V, and e1, e2, e3 P OclExpr. ˝

Definition 10 (Typing of Boolean OCL expressions) Let ΣM “ pT,O,F,Vq be the
OCL signature over model M, let t ,^,“u Ď O, and let
opRel P tă,ąu Ď O. The typing function type : BoolOclExpr Ñ T˚ for Boolean OCL
expressions BoolOclExpr Ď OclExpr is defined inductively as follows.

i. typepfalseq “ Bool.

ii. typep eq “ Bool, if typepeq “ Bool.

iii. typepe1 ^ e2q “ Bool, if typepe1q “ Bool , typepe2q “ Bool.

iv. typepe1 opRel e2q “ Bool, if typepe1q “ Int , typepe2q “ Int.

v. typepe1 opRel e2q “ Bool, if typepe1q “ Real , typepe2q “ Real.

vi. typepe1 “ e2q “ Bool, if typepe1q “ typepe2q. ˝

Note again that the typing functions for expressions with inequality operations opRel

are only defined if the types of their arguments are the same. Finally, we informally
introduce — for the sake of completeness — the types of the collection operation, get,
which is defined as typepgetq “ Collectionpαq Ñ αÑ Collectionpαq.

An OCL expression is defined w.r.t. to a model M and evaluated over an instantiation
of M, referred to as an instance model M of M. An instance model represents a state
(also: snapshot) of a system and contains all currently active objects, the links among
these objects, and the values for each attribute of an object. For the definition of the
semantics of an OCL expression we fix a domain of values that an expression may
evaluate to. The domain D consists of all objects of an instance model M , the sets
of Boolean, integer, real, and string values, enumeration literals, and collection values.
Recall that we denote by M |VG and M |EG

the set VG of vertices and the set EG of edges
of the graph G underlying model M “ pG, typeM , rootM q, respectively. In the following,
Z,R,S denote the sets of integers, reals, and strings. Note that the set S is the set of
string literal expressions as defined in the OCL standard [148, p. 77].

Definition 11 (Domain w.r.t. an instance model) Let ΣM “ pT,O,F,Vq be the
OCL signature over model M and let M PM be an instance model of M. Moreover, let
Z,R,S be the set of integer, real, and string values, respectively. We define the domain
D w.r.t. an instance model M “ pG, typeM , rootM q as the union D “

Ť

tPTDt, that is,

D “ DVT YDET
YDBool YDInt YDReal YDString YDEnum YDCollection YDK

62

where

DVT “M |VG DET
“M |EG

DBool “ ttrue, falseu DInt “ Z
DReal “ R DString “ S
DEnum Ď pSˆ Sˆ Zq DK “ K

and DCollection Ď C˚ where C˚ is the smallest set
Ť

iě0Ci with

C0 “
ď

DPDzDK

PpDq

Ci`1 “ PpCiq.

˝

The semantics of OCL expressions may now be defined by the interpretation function

IJ.K : OclExpr ÑMÑ D

that evaluates an OCL expression e P OclExpr w.r.t. to a model σ P M, called a state,
and maps it to a value in D. In the following definition, we denote by expr re1{xs the
replacement of all occurrences of x in expr by e1.

Since a state σ is a model M PM, we write σ|VG and σ|EG
to denote the vertices VG

and EG of graph G of M “ pG, typeM , rootM q, respectively.

Definition 12 (Semantics of OCL expressions) Let ΣM “ pT,O,F,Vq be the OCL
signature over model M “ pT, I,A, rootM, typeMq with T “ pVT , ET , srcT , tgtT q, let M “

pG, typeM , rootM q P M be an instance model of M with graph G “ pVG, EG, srcG, tgtGq
and typing function typeM : GÑ T on which the OCL expression is evaluated, and let
σ “ M P S be a state. Further, get : Collectionptq Ñ t Ñ Collectionptq is the function
that returns a pair consisting of (i) an element from the collection, (ii) the collection
resulting from the removal of the element. Note that get returns the elements of two
equal collections c1, c2 in identical order, i.e., @c1, c2 P Collectionptq,@n P N, n ă |c1| :
c1 “ c2 ñ getnpc1q “ getnpc2q. Then, the semantics of OCL expressions are defined
inductively as follows.

i. IJundefKpσq “ K.

ii. IJselfKpσq “ rootM .

iii. IJnav(e, f)Kpσq “

$

’

’

’

&

’

’

’

%

ttgtGpedgeq | edge P σ|EG
,

typeM pedgeq “ f,

srcGpedgeq P IJeKpσqu if srcT pfq “ typeM pIJeKpσqq,
K otherwise

iv. IJoppe1, . . . , enqKpσq “ IJopKpσqpIJe1Kpσq, . . . , IJenKpσqq, op P O.

63

v. IJlet v “ e1 in e2Kpσq “ IJe12Kpσq where e12 “ e2re1{vs.

vi. IJ if e1 then e2 else e3 endifKpσq “

$

’

&

’

%

IJe2Kpσq if IJe1Kpσq “ true

IJe3Kpσq if IJe1Kpσq “ false

K otherwise.

vii. IJxs Ñ iteratepv1; v2 “ e2|e3qKpσq “ IJxs Ñ iterate1pIJe2Kpσq, e3qKpσq where iterate1

is defined as follows:

IJxsÑ iterate1pacc, e3qKpσq “

#

acc if IJxsKpσ1q “ ∅
IJxs1 Ñ iterate1pacc1, e3qKpσq otherwise

where px, xs1q “ getpxsq, acc1 “ e3rx{v1, acc{v2s. ˝

In the above definition, self P OclExpr always evaluates to the root node rootM P VG of
graph G that underlies the instance model M . The evaluation of navigation expressions
returns a set of objects, i.e., vertices obj P VG. The vertices are obtained as the target
endpoints of an edge edge P EG, which is an instance of a feature edge f P F whose
source vertex denotes the type of an object obj P VG. The object obj is obtained as
a result of evaluating expression e whose type is equal to the source of feature f . In
this way, navigation can start from either a single vertex or a set of vertices all of which
need to be of equal type. An operation call is evaluated to an interpreted function
which is applied to the set of evaluated arguments. The evaluation of a let-expression
first evaluates expression e1. Then all occurrences of variable v are replaced by the thus
obtained result yielding expression e12. The evaluation then continues with expression e12.
The evaluation of an if-then-else expression tests whether e1 is true or false and returns
either the result of evaluating e2 or e3. Finally, the iterate expression takes a collection
e1, initializes the accumulator variable acc to the result of IJe2Kpσq and calls iterate1.
The iterate1 expression takes three arguments, the collection e1, the evaluation of the
accumulator acc and an expression e3. Upon execution the iterate1 expression returns
current value of the accumulator acc if the collection e1 is empty. Otherwise, it removes
the first element of e1 and replaces all occurrences of both v1 and v2 with the head of e1

and the current accumulator value, respectively, in e3 which is subsequently evaluated
and stored in the updated accumulator acc1. Then, iterate1 is recursively called on the
tail of e1, the updated accumulator acc1, and the expression e3.

4.2 The CTL-extended Object Constraint Language

In this section, we formally introduce the syntax and semantics of the CTL-extended Ob-
ject Constraint Language, cOCL for short, which enriches OCL with standard CTL [42]
operators. For this purpose, we integrate our extension into the formal semantics of OCL
as presented in Section 4.1.

We define the set cOclExpr of cOCL expressions as a superset of the OCL expressions
as defined in Def. 6 and 7. In particular, the set of cOCL expressions contains all OCL

64

expressions induced by the OCL signature ΣM over a model M and extends the set of
Boolean OCL expressions by temporal expressions resulting in the set BoolcOclExpr of
Boolean cOCL expressions as follows.

Definition 13 (Syntax of cOCL) Let ΣM be the OCL signature over model M and
let OclExpr be the set of OCL expressions induced by ΣM. Then, the set cOclExpr of
cOCL expression is defined inductively as follows.

i. If e P OclExpr, then e P cOclExpr.

ii. Let BoolOclExpr Ď OclExpr be the set of Boolean OCL expressions as defined in
Def. 7. Then, let BoolcOclExpr Ď cOclExpr be the smallest set of Boolean cOCL
expressions such that

• BoolOclExpr Ď BoolcOclExpr,

• if e P BoolcOclExpr, then e,AX e,EX e P BoolcOclExpr, and

• if e1, e2 P BoolcOclExpr, then e1^ e2, A e1 W e2, E e1 W e2, A e1 U e2, E e1 U e2 P

BoolcOclExpr.

Our extension introduces three temporal operators, next (X), weak until (W), and
(strong) until (U), which are quantified either existentially (E) or universally (A). We
define two additional operators, eventually (F) and globally (G), by the following equiv-
alences: EFϕ ” E true Uϕ and AFϕ ” A true Uϕ, and EGϕ ” EϕW false and AGϕ ”
AϕW false. Note that next, eventually, and globally have a single subformula as argu-
ment, whereas the weak until and until operators have two subformulas. Before we define
the semantics of the temporal operators, we formally introduce the term transition sys-
tem which describes all possible executions of a system. A transition system is defined
over a model M (see Def. 1) and it consists of a set of states and transitions between
these states. The transitions are labeled with model transformations and a morphism
that identifies the subgraph, to which the transformation is applied. A distinguished
state is marked initial.

Definition 14 (Transition System) The transition system KM of a model M is a
tuple pS,R,M, T , ιq consisting of a finite set S of states, a finite set R of model trans-
formations, a set M of morphisms with domain and co-domain M, a transition relation
T Ď S ˆRˆMˆ S, and an initial state ι P S.

A state σ P S is a model that conforms to M, i.e., S Ď M. A transformation

p : L
l
Ð K

r
Ñ R, p P R defines a transformation for a model M P M and a morphism

m : LÑ G defines a mapping of the LHS graph L of p into graph G of an instance model
M “ pG, typeM , rootM q P M. Because a state σ is an instance model M , we define that
an action α “ pp,mq rewrites a state σs P S into a state σt P S at match m and we write

σs
p,m
ùñ σt. For a sequence of transitions, so-called execution traces, we define the term

path as follows.

65

Definition 15 (Path) Let KM “ pS,R,M, T , ιq be the transition system of a model
M. A path π is a finite or infinite sequence of states pσ0σ1σ2 . . .q with σi P S and

pσi, p,m, σi`1q P T and σi
p,m
ùñ σi`1 for all i ě 0. For a path π “ pσ0σ1σ2 . . .q, we define

the projection function πpiq “ σi. The length of a path |π| “ n P N for finite paths
π “ pσ0 . . . σnq, and |π| “ 8 for infinite paths π “ pσ0σ1σ2 . . .q. By ΠKM we denote the
set of all paths of KM.

We are now able to define the semantics of cOCL as follows.

Definition 16 (Semantics) Let KM “ pS,R,M, T , ιq be the transition system associ-
ated with model M as defined above. The semantics of a cOCL expression w.r.t. a state
σ P S is defined by the rules i.–vii. originating from Definition 12 and six additional
rules viii.–xiii. for the temporal extension as follow.

viii. IJA e1 U e2Kpσq “ tπ | π P ΠKM , πp0q “ σ, En P N, n ď |π| :
pIJe2Kpπpnqq “ true ^ @ 0 ď i ă n : IJe1Kpπpiqq “ truequ “ H

ix. IJE e1 U e2Kpσq “ tπ | π P ΠKM , πp0q “ σ, Dn P N, n ď |π| :
pIJe2Kpπpnqq “ true ^ @ 0 ď i ă n : IJe1Kpπpiqq “ truequ ‰ H

x. IJA e1 W e2Kpσq “ tπ | π P ΠKM , πp0q “ σ, En P N, n ď |π| :
pIJe1Kpπpnqq “ false Ñ Di P N, i ď n : IJe2Kpπpiqq “ truequ “ H

xi. IJEφWψKpσq “ tπ | π P ΠKM , πp0q “ σ, Dn P N, n ď |π| :
pIJe1Kpπpnqq “ false Ñ Di P N, i ď n : IJe2Kpπpiqq “ truequ ‰ H

xii. IJE X eKpσq“tπ | π P ΠKM , πp0q “ σ ^ |π| ě 1^ IJeKpπp1qq “ trueu ‰ H

xiii. IJA X eKpσq“tπ | π P ΠKM , πp0q “ σ ^ |π| ě 1^ IJeKpπp1qq “ falseu “ H

The above definitions for formulas with allquantified path operators A may be read
as follows: first, search in the set ΠKM of all paths of KM for a counterexample, i.e., a
path that does not satisfy the desired condition, e.g., condition for A e1 U e2. If no such
path exists, the formula evaluates to true; otherwise, the set of counterexamples is not
empty and hence the formula evaluates to false. For example, in case of A e1 U e2Kpσq
we find a counterexample if for all states σi, i ď |π| either e2 never evaluates to true
or there exists a state σj , j ď i where e1 does not hold. In case of a formula with an
existential path operator, we search for a path that satisfies the desired condition, i.e.,
the set of paths that satisfy the condition is not empty. Note that the semantics of the
eventually and globally operators follow directly from the above definitions. We define
the satisfiability of cOCL expressions as follows.

Definition 17 (Satisfiability) A cOCL expression φ is satisfiable w.r.t. a transition
system KM with initial state ι iff it holds in the initial state ι, i.e., IJφKpιq “ true.

In the remainder of this chapter, we discuss how the enumerative, explicit-state model
checker MocOCL verifies cOCL specifications. We discuss its model checking algorithm
and present its web based user interface.

66

natural language cOCL expression

Initially, there is a field con-
taining a treasure.

self.fields->exists(field | field.treasure)

The game is over/not over. Always Next false/Exists Next true

The game will surely be over
sometimes.

Always Eventually (Always Next false)

Pacman will find the treasure
in all cases.

Always Eventually self.pacman.on.treasure

If the treasure is next to Pac-
man, he can always find it in
the next turn.

Always Globally

self.pacman.on.neighbor->

exists(field.treasure) implies

(Exists Next self.pacman.on.treasure)

As long as not all fields next
to Pacman are occupied by
ghosts, there is a possibility
that the game is not over after
the next turn.

Always Globally

self.pacman.on.neighbor->

exists(field | self.ghosts->

forAll(g | field <> g.on) implies

(Exists Next (Exists Next true)))

As long as the game is not over,
every ghost may move to at
least two different positions.

Always self.ghosts->

forAll(g | g.on.neighbor->select(field |

Exists Next g.on = field)->size() >= 2)

Unless (Always Next false)

Table 4.1: Examples of cOCL expressions in the concrete syntax of MocOCL.

4.3 MocOCL — A model checker for cOCL specifications

The implementation of MocOCL consists of three parts, (i) a concrete syntax for cOCL
expressions, (ii) a backend that implements the enumerative, explicit-state model check-
ing algorithm, and (iii) a frontend realized as a web based user interface that allows the
user to interact with the backend.

67

Concrete Syntax

The concrete syntax enhances the readability of cOCL expressions. It allows us to write
the temporal operators in their familiar long forms, i.e., Xϕ, Fϕ, Gϕ, ϕWψ, and ϕUψ
become Nextϕ, Eventuallyϕ, Globallyϕ, ϕUnlessψ, and ϕUntilψ. The universal
and existential path quantifiers preceding the temporal operators become Always and
Exists or, alternatively, Sometimes. In our implementation, we extend the Xtext2

grammar of the concrete syntax of OCL, which provides us with a Java API and an editor
that performs syntax highlighting for cOCL expressions. Table 4.1 shows examples of
MocOCL expressions in the concrete syntax. The first expression in this table is an
ordinary OCL expression without any temporal operators; it is thus evaluated only in
the current state. Note that the exits keyword does not refer to the temporal (path)
operator but to the set operator of OCL. In comparison, the existential path operator
Exists is capitalized—just like all the other temporal operators that the concrete syntax
of cOCL introduces. The expressions Always Next false and Exists Next true can
be used to test for termination and non-termination, respectively. Here, Always Next

false evaluates to false whenever there exists a next state along some path π, because
false evaluates to false in every expression. But it evaluates to true whenever there
exists no next state. This is due to the evaluation of a AXϕ expression that checks,
among others, whether all path π starting in the current state are of length greater than
zero. If this condition is not satisfied the entire expression evaluates to true regardless
of the evaluation of ϕ. Hence, the expression Always Next false is suitable to test for
a terminating path. In contrast, the expression Exists Next true evaluates to true if
there exists a path π (starting in the current state) whose length is greater than zero.
Expression 5–7 showcase how cOCL expressions can be nested to form more complicated
properties. In particular, expression 5 and 6 specify invariants that have to be satisfied
in every state, while expression 7 specifies an Always-Until formula, i.e., Aϕ1 Wϕ2, that
demands that either ϕ1 holds invariantly unless the game ends (ϕ2).

Backend

The backend consists of a parser for the textual concrete syntax of cOCL and the model
checker MocOCL that verifies cOCL specifications. Details on the implementation,
which is based on the Eclipse Modeling Framework [190], are presented in the following.

The prototypical, EMF based3 implementation of the MocOCL model checker per-
forms the actual verification task as follows. Given an Ecore-conformant model, an
instance model that represents the system’s initial state, a set of model transformations,
and a cOCL specification, MocOCL generates the state space, verifies the cOCL speci-
fication, and finally reports to the modeler information on the reason of the verification
result. Although the actual implementation of our model checker generates the state
space iteratively and verifies the specification on-the-fly the explanation of the imple-

2http://www.eclipse.org/Xtext/
3http://www.eclipse.org/modeling/emf/

68

http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/emf/

mentation in this section is more formal and omits these optimizations in favor of a
comprehensible presentation.

In MocOCL, the state space consists of a set of instance models that conform to
some model M. Each instance model is represented internally as an attribute, typed
graph with inheritance and composition edges (see Sec. 4.1. Consequently, each state in
the state space is a model M “ pG, typeM , rootM q with graph G “ pVG, EG, srcG, tgtGq.
Given a set R of graph transformations, a set M of morphisms, and a state σ P M, we
use the successor function succ : S Ñ PpSq to perform a step-wise exploration of the
state space. The successor function returns the set of successor states reachable from

state σ and is defined as succpσsq :“
Ť

pPRtσt | σs
p,m
ùñ σt,m PMu. The set of states

S can now be defined as the closure of the successor function applied to the designated
initial state ι; it is defined as the smallest set S “

Ť

ią0 Si where

S0 “ ι

Si`1 “ ιY tsuccpσq | σ P Siu.

The transition relation T is then defined as the set tpσs, p,m, σtq | σs
p,m
ùñ σt, p P R,m P

Mu. Thus, the set R of graph transformations together with the successor function
applied to the initial state ι give rise to a transition system KM “ pS,R,M, T , ιq. We
evaluate a cOCL expression on the paths induced by this transition system.

The algorithm for evaluating cOCL expressions of the form pA|Eqφ pU|Wqψ is shown
in Figure 4.2. To ease the presentation we drop intermediate checks that allow the
algorithm to stop the evaluation once enough states have been explored to conclude
whether the formula holds. The algorithm assigns each state to one of three sets. If
IJϕKpσq evaluates to true, then ϕ is assigned to Φ. Similarly, if IJψKpσq holds, then state
σ is assigned to Ψ. If a state σ is reachable from a ϕ-state, i.e., a state where ϕ holds,
but neither ϕ nor ψ hold in σ, then state σ is assigned to η. All states that have not
been processed yet are stored in the worklist ω. The algorithm proceeds as follows. The
algorithm initializes the worklist with the start state σstart and uses the succ function
to iteratively expand the set of reachable states. It evaluates ϕ and ψ in each state σ
and assigns σ to the corresponding sets Φ or Ψ, or to η if neither ϕ or ψ hold. Once
every reachable state is assigned to either Φ, Ψ, or η, the algorithm constructs the set
∆, which contains all states from Φ whose successor states lie on a path that leads to a
state outside of Φ. That is, ∆ contains all states that are not part of a circular sequence
of ϕ-states. Then, IJAφUψKpσq holds if η is empty, and Φ contains neither cycle nor
deadlock; IJEφUψKpσq holds if Ψ is not empty; IJAφWψKpσq holds if η is empty; and
IJEφWψKpσq holds if Ψ is not empty or Φ contains a cycle. Expressions pA|EqXφ are
implemented as IJpA|EqXφKpσq :“ p@|Dqτ P succpσq : IJφKpτq “ true, where we check if
all (at least one) successor of the current state satisfies ϕ.

The evaluation of a cOCL expression yields a report that, besides returning the result
of the evaluation, contains a cause or explanation for the result. A cause is associated
with a cOCL expression. It stores the result of the evaluation of the associated expression
and, for each relevant sub-expression, a sub-cause. A sub-expression is relevant if it
influences the result of its super-expression. For example, if the sub-expression ϕ in

69

function evaluatepσstart , pP φ T ψq : Bool
Description: Evaluates the cOCL expression pP φ T ψq in state σstart .
Parameters: σstart : the start state; P : Path operator, Always or Exists; T : Tem-

poral operator, Until or Unless;
Returns: true iff pP φ T ψq holds in σstart

1 ω :“ tσstartu;
2 Φ :“ H;
3 Ψ :“ H;
4 η :“ H;
5 while ω ‰ H
6 pick σ P ω;
7 ω :“ ωztσu;
8 if IJφKpσq then
9 Φ :“ ΦY tσu;
10 ω :“ ω Y succpσqzpΦYΨY ηq;
11 else if IJψKpσq then
12 Ψ :“ ΨY tσu;
13 else
14 η :“ η Y tσu
15 end if
16 end while
17 ∆ :“ H;

18 ∆l :“ H;
19 repeat
20 ∆l :“ ∆;
21 ∆ :“ tσ P Φ | succpσq ‰ H and

succpσq X pΦz∆lq “ Hu

;

22 until ∆ “ ∆l

23

24 switch (P ,T)
25 case (Always,Until):
26 return Φ “ ∆ and η “ H;
27 case (Always,Unless):
28 return η “ H
29 case (Exists,Until):
30 return Φ ‰ H;
31 case (Exists,Unless):
32 return Φ ‰ H or Φ ‰ ∆;
33 end switch

Figure 4.2: Until/Unless Algorithm Pseudo Code.

ϕorψ evaluates to true then no sub-cause is generated for ψ as the evaluation of ϕ
uniquely determines the result of ϕorψ. If, however, both ϕ and ψ evaluate to false,
then a sub-cause for each of the two sub-expressions is generated and stored in the cause
of ϕorψ. Note that the cause generation is not necessarily deterministic, as is the case,
for example, if both ϕ and ψ evaluate to true in ϕorψ.

Frontend

The MocOCL frontend provides (i) an interface for the parametrization of the verifica-
tion engine, i.e., the backend described in the previous section, and (ii) visualization and
report generation support that provides useful information for the modeler on the reason
of a specific verification result. The MocOCL user interface consists of the following
parts: (1) an input field for the cOCL specification, (2) the result of the verification, i.e.,
whether the cOCL specification is satisfied or not, (3) the cause that textually describes
(4) the trace of the evaluation, which is embedded in (5) the partial state space. Fur-
ther, upon clicking on a state or transition from (3) the cause, (4) the trace, or (5) the
partial state space, the selected state or transition is visualized in (6) the object diagram
pane. The changes caused by a transition are highlighted in red and green indicating

70

Partial statespace Trace

State 7 to state 12 by moveGhost

CTL checker

Display subexpressions in state space: Yes

Expression: Always Globally (self.pacman.on.treasure) implies (Always Next false)

Evaluate Property not fulfilled

+

.

+

+

root: AlwaysGlobally cond
returns false

Show

:part: State7
returns EXIT

Show

cond: source implies it1
returns false

Show

source: source . treasure
returns true

Show

it1: AlwaysNext cond
returns false

Show

:part: State12
returns EXIT

Show

range: boolean : false
returns false

Show

:predecessor: State7 from
moveGhost
returns CONTINUE

Show

:predecessor: State4 from
movePacman
returns CONTINUE

Show

2

m
ov

eP
ac

m
an

m
ov

eP
ac

m
an

4
m

oveP
acm

an

m
oveP

acm
an

m
ov

eP
ac

m
an

m
ov

eP
ac

m
an

7

m
ov

eG
ho

st

m
ov

eG
ho

st

12

7 ε

4

m
oveP

acm
an

2

m
oveP

acm
an

12

7

m
oveG

host

on

n
e
ig

h
b
o
r

neighbor

neighbor

n
e
ig

h
b
o
r

neighbor

n
e
ig

h
b
o
r

neighbor

n
e
ig

h
b
o
r

on

on

:Pacman

id:
treasure:

:Field
4
true

id:
treasure:

:Field
2
false

id:
treasure:

:Field
1
false

id:
treasure:

:Field
3
false

:Ghost

1

2

3
5 4

6

Figure 4.3: Visualization of a cause in the MocOCL tool

the deletion and creation of an association, respectively.

4.4 MocOCL in Action

In this section we implement the Pacman game as described in the beginning of this
chapter. In our initial implementation we deliberately introduced a bug for the purpose
of demonstrating how MocOCL can be used to debug an erroneous implementation.

71

Pacman Field

>
neighb

orsGhost

>
>

«forbid»

on
«create»

on
«delete»

on«forbid»

Field

>

treasure = false

>
(a) Move Pacman rule

Ghost Field
>

neighbors

Pacman
>

>«forbid»

on
«create»

on
«delete»

on
«forbid»

Field

>

(b) Move Ghost rule

Figure 4.4: Implementation of the behavior of the Pacman game.

Figure 4.5: Example for Transformations.

Implementation. We outlined the static structure of our implementation of the Pac-
man game depicted in Fig. 4.1a in the beginning of this chapter already. To implement
the described behavior we define two graph transformations. The first transformation,
Move Pacman, is depicted in Fig. 4.4a and describes a single move of Pacman. The
second transformation, Move Ghost (see Fig. 4.4b), describes a single move of a ghost.
Pacman and the ghosts are only allowed to move if the game is not over yet, that is,
a player must not move if Pacman is on a treasure field or if one of the ghosts caught
Pacman. Note, however, that the first restriction is not enforced by the Move Ghost
rule; hence, ghosts may still move if Pacman already found the treasure.

In Figure 4.5 we exemplarily illustrate two applications of the Move Pacman graph
transformation and the subsequent changes to the current state. First, Pacman moves
from Field 1 to Field 2 and in the next round Pacman moves from Field 2 to Field 4,
which contains the treasure. In this scenario, Pacman wins the game. The lower part
of Fig. 4.5 displays the states resulting from applying the Move Pacman rule to the
current state, which is shown leftmost, and we witness that the on reference of Pacman

is updated accordingly, while the Ghost remains stationary.

72

Figure 4.6: State Space of the Pacman Game.

Verification Task. To verify whether the game stops whenever Pacman wins or
looses we formulate two cOCL expressions. The first expression, Always Globally

(self.pacman.on.treasure) implies (Always Next false), states that the game
terminates if Pacman moves onto a treasure field, while the second expression, Always
Globally ghosts->exists(on=pacman.on) implies (Always Next false), checks if
the game terminates whenever there exists a ghost who resides on the same field as Pac-
man. We may now supply MocOCL with the static structure of the Pacman game
(Fig.4.1a), an initial state (e.g. Fig. 4.1b), the behavior of the players as graph trans-
formations (see Fig. 4.4), and one of the two cOCL specifications to initiate the verifi-
cation. MocOCL then constructs the state space of the Pacman game iteratively. In
our implementation, we use the graph transformation tool Henshin [6] that explores the
state space by recursively applying all matching graph transformation rules to the user-
provided initial model. The full state space resulting from recursively applying the rules
Move Pacman and Move Ghost to the initial model (Fig. 4.1b) is depicted in Figure 4.6.
The initial state in the bottom-left corner of the figure is highlighted in green with a
bold border and the end states are marked red with a dashed border. The transitions
between the states show possible moves of Pacman and the ghost. Overall there are
4 ˚ 4 “ 16 different states (the ghost has to be placed on each field and Pacman has to
be placed on each field).

Figure 4.3 depicts a screenshot of MocOCL that displays the verification result for
the first cOCL expression, Always Globally (self.pacman.on.treasure) implies

73

(Always Next false). Note that out of the 16 states only four needed to be explored to
conclude that the expression does not hold, i.e., the game does not end if Pacman finds
a treasure. The cause shows a scenario where Pacman finds the treasure in two moves
starting from the initial state (state 2) and moving first to state 4 and then to state 7.
There exists, however, a transition moveGhost leading from state 7 to state 12. If we
select this transition in (4) the trace pane, it is highlighted in blue. The changes associ-
ated with the transition are then displayed in (6) the object diagram pane. The deletion
and creation of the on relation between the ghost and two adjacent fields describes the
ghost’s move. Consequently, the ghost may perform moves after Pacman already resides
on the treasure field, in this case, field 4. Thus, the implementation does not satisfy the
specification of the game and needs to be fixed by introducing an additional Negative
Application Condition for the Move Ghost rule such that a ghost may no longer move
once Pacman found the treasure. A corrected version of the Move Ghost transformation
is shown in Section 6.1 in Fig. 6.2c.

A demo version of MocOCL is available as a browser version at

http://www.modelevolution.org/mococl/

and can be used without any installation efforts. In the demo version the initial model
is fixed to the 2ˆ 2 board shown in Fig. 4.1b due to memory limitations on the server.
A browser based version for custom installations, which is not restricted to the Pacman
model, is available for download at

http://www.modelevolution.org/prototypes/mococl.

4.5 Summary

In this chapter we presented a novel approach to verify rich, temporal specifications
directly at the level of models. For this purpose we extend the Object Constraint Lan-
guage (OCL) by temporal operators from the Computation Tree Logic (CTL). This
extensions, called cOCL, allows us to formulate temporal OCL specification and we pre-
sented its formal syntax and semantics. Moreover, we described the implementation of
a state-of-the-art model checker, called MocOCL, that verifies a system w.r.t. its cOCL
specification. The static structure of the system is hereby defined as Ecore model, which
is the de facto reference implementation of the MOF standard developed within the
Eclipse Modeling Framework (EMF). The behavior of the system is defined by algebraic
graph transformations. The state space of the system is computed by applying the set
of graph transformation to a given graph that represents the initial state of the system
and subsequently to all graphs resulting from these applications of the graph transfor-
mations. MocOCL performs the state space exploration iteratively and evaluates the
cOCL specification on-the-fly. It comes with a web based graphical user interface that
reports the results of a verification run back to the user.

In the next chapter, we will present and elaborate on a complementary approach that
uses a symbolic representation of the state space based on the relational calculus [95,194]

74

http://www.modelevolution.org/mococl/
http://www.modelevolution.org/prototypes/mococl

that we developed to improve the performance of the verification of safety properties.
Finally, in chapter 6 we compare both of these approaches in an evaluation consisting of
four benchmarks.

75

CHAPTER 5
Symbolic Model Checking of

Safety Properties with Gryphon

In this chapter we present our symbolic model checker Gryphon that verifies safety
properties of the form AG φ, where φ is denotes a bad state, or reachability properties
of the form EFφ, where φ denotes a good state. In contrast to model checkers like
MocOCL, that store states explicitly in memory, a symbolic model checker represents
states and transitions symbolically by means of (propositional) formulas that allow an
efficient representation of large state spaces.

Overview. Similar to MocOCL, our symbolic model checker Gryphon expects as
input an EMF (meta-)model M, a set R of graph transformations, an initial state Mι,
and a set Φ of safety properties. These safety properties are expressed by means of
graph constraints, which can be thought of as degenerate graph transformations with
identical left-hand and right-hand sides. Thus, graph constraints may only match a
(sub-)graph but do not change it; hence, we use graph constraints to describe desired
and undesired states of a system under verification. Moreover, Gryphon requires a map
Γ : M|VT Ñ N that bounds the maximal number of objects per class; this is necessary
to obtain a finite representation of the system. For the purpose of verifying a set of
safety constraints, the EMF (meta-)model M, the set R of graph transformations, the
initial state Mι, the graph constraints Φ, and the upper bound map Γ are translated
into a sequential circuit. The steps required to translate the inputs into a sequential
circuit are depicted in Figure 5.1. The translation starts by converting M, R, and Φ
into a problem of first-order, relational logic consisting of a finite universe bounded by
Γ, a set Rel of relations derived from elements in M, and relational formulas that encode
the behavior of the system. These formulas are subsequently translated into Boolean
functions and, extracted therefrom, we obtain a sequential circuit, whose initial state is
defined by Mι. We represent the generated sequential circuit as an And-Inverter Graph
(AIG) that can be compactly stored in the AIGER format [19,22]. The AIGER format is

77

Figure 5.1: Gryphon workflow. Labeled arrows represent data flows between the com-
ponents of Gryphon. Those components that are highlighted in red are contributions
of this thesis.

the standardized input format used for the Hardware Model Checking Competition [21]
and is thus supported by many well-known model checkers. By using a standardized
representation we decouple our encoding from the verification procedure and can thus
apply any of the existing, highly-specialized model checking algorithms.

Chapter Structure. We again start with a section on preliminaries where we intro-
duce bounded, first-order relational logic and sequential circuits. We then discuss the
translation of models and graph transformations into sequential circuits in detail; the
workflow of this translation is depicted in Figure 5.1. Finally, we briefly discuss the
implementation of Gryphon and outline future extensions and optimizations.

5.1 Preliminaries

In the following we provide a summary of the concepts employed to perform the transla-
tion from EMF models and graph transformations to and-inverter graphs (AIG). That is,
we explain syntax and semantics of bounded, first-order relational logic, and sequential
circuits and their representation as and-inverter graphs in the AIGER format as used in
the Hardware Model Checking Competition [21]. Note that this section builds in parts
on the preliminaries presented in Section 4.1 that are not repeated here. In particular,
we will make use of Definitions 1 and 2 that define the notion of (meta-)models and
instance models, denoted by M and M , respectively.

First-Order Relational Logic

Relational logic1 is an extension of propositional logic that introduces relations and
relational variables of a given arity, a universe of atoms (or objects), and quantifiers.
If the universe is finite, the relational logic is said to be bounded. In the following,
we will focus our treatment on bounded, first-order relational logic. In this restricted

1 Our presentation of the logic follows the one presented for Alloy [95] and Kodkod [198] that in
turn are based on Tarski’s exposition of the relational calculus [194].

78

problem := univ relation* formula

univ := {obj[, obj]*}
relation := rel:arity[lower[, upper]?]

varDecl := var : expr

lower := constant

upper := constant

constant := {tuple*}
tuple := xobj[, obj]*y

arity := N
obj := ID

rel := ID

var := ID

expr := rel | var | unary | binary | comprehension

unary := expr unop

unop := ` | ´1

binary := expr binop expr

binop := Y | X | z | . | ˆ
comprehension := {varDecl ~ formula}

formula := atomic | composite | quantified

atomic := expr Ď expr

composite := formula | formula logop formula

logop := ^ | _
quantified := quantifier varDecl ~ formula

quantifier := @ | D

(a) Syntax

P: problem Ñ binding Ñ boolean

R: relation Ñ binding Ñ boolean

M: formula Ñ binding Ñ boolean

E: expr Ñ binding Ñ constant

binding: (var Y rel) Ñ constant

PJ U r1 . . . rn F Kb “ RJr1Kb^ ¨ ¨ ¨ ^ RJrnKb^MJFKb

RJr : rLsKb “ RJr : rL,LsKb
RJr : rL,UsKb “ L Ď bprq Ď U

MJp Ď qKb “ EJpKb Ď EJqKb
MJ FKb “ MJFKb
MJF op GKb “ MJFKb op MJGKb where op “ t^,_u

MJ@ v : p ~ FKb “
Ź

xPEJpKb MJFKpb‘rv ÞÑ xsq

MJD v : p ~ FKb “
Ž

xPEJpKb MJFKpb‘rv ÞÑ xsq

EJp op qKb “ EJpKb op EJqKb where op “ tY,X, zu

EJp . qKb “ txp1, . . . ,pn´1, q2, . . . , qmy |

xp1, . . . ,pny P EJpKb^ xq1, . . . , qmy P EJqKb
^pn “ q1u

EJpˆ qKb “ txp1, . . . ,pn, q1, . . . , qny |

xp1, . . . ,pny P EJpKb^ xq1, . . . , qny P EJqKbu
EJp´1Kb “ txp2, p1y | xp1, p2y P EJpKbu
EJp`Kb “ txx, yy | Dp1, . . . , pn|

xx, p1y, xp1, p2y, . . . , xpn, yy P EJpKbu
EJtv : p ~ FuKb “ tx P EJpKb | MJFKpb‘rv ÞÑ xsqu

EJrKb “ bprq

EJxKb “ bpxq

(b) Semantics

Figure 5.2: Syntax and semantics of relational logic [198]

logic, each relation is assigned an upper bound and, optionally, a lower bound. Syntax
and semantics of this bounded, first-order relational logic is provided in Figure 5.2 and
follows closely the presentation of [196]. A relational problem P in bounded, first-order
relational logic is a tuple pU ,Rel ,Φ,

Ű

,
Ů

, arq that consists of

(i) a universe of discourse U , which is a sequence of uninterpreted atoms,

(ii) a set Rel of relations,

(iii) a relational formula Φ,

(iv) a map ar : Rel Ñ N that assigns an arity to each relation r P Rel , and

(v) maps
Ű

: Rel Ñ PpU nq and
Ů

: Rel Ñ PpU nq that define lower and upper bounds
for relations. Lower and upper bounds of a relation r P Rel are defined as tuples
over the set of atoms from the universe, with n being the arity arprq of relation r.

We further define a relational constant as a set of tuples of a given arity including
the empty set. The set of relational expressions is recursively defined as the smallest set
consisting of the empty set and the set of all atoms, i.e., the universe U , the relations r P

79

Rel , and all expressions resulting from applying either (i) a unary operator like transitive
closure (`) or transposition (´1) to another expression or (ii) a binary operator, union
(Y), intersection (X), join (.), difference (z), or product (ˆ), to the former and another
expression. The evaluation of an expression yields a relational constant. An atomic
relational formula is a sentence constructed over two relational expressions connected
by the subset Ď operator. Formulas can be quantified and composed into composite
formulas using the usual logical connectives, and (^), or (_), and not (). A solution,
or model, of a relational problem is an assignment, i.e., a binding, of tuples to relations
such that (1) the assigned tuples lie within the lower and upper bounds of the relations
such that (2) the formula evaluates to true. Note that our treatment of relational logic
is untyped; admissible bindings to relations are solely defined by their lower and their
upper bounds. Further note that we treat relations and relational variables as mentioned
in Figure 5.2 as varDecls alike because relational variables are bound from above by a
relational expression, which evaluates to a tuple, upon declaration. That is, relational
variables can be thought of as relations with an empty lower bound.

The logic also supports reasoning over integer values. The range of supported integers
can be conveniently specified by providing a bitwidth, i.e., the upper bound on the number
of bits used to represent integers in the universe. Using, for example, a two’s complement
binary number representation and N bits, the numbers in the range ´2N´1 to 2N´1´ 1
can be represented in the universe. In this case, the bounds for the predefined Int relation,
which represents integer values, are defined as

ę

pIntq “
ğ

pIntq “ tx´2N´1y, . . . , x2N´1 ´ 1yu.

Example. In the following we formulate a simple relational problem to determine
whether every woman’s husband has the woman as his wife and vice versa. We define
two binary relations, Husband:2 and Wife:2, and the universe U of discourse is populated
with atoms tadam, eve, john, marry , larryu. The upper bounds are set as follows,

ğ

pWifeq “ txadam, evey, xadam,marryy, xlarry , evey,

xlarry ,marryy, xjohn, evey, xjohn,marryyu

and
ğ

pHusbandq “ txeve, adamy, xeve, larryy, xeve, johny,

xmarry , adamy, xmarry , larryy, xmarry , johnyu.

In addition we set the lower bound on Husband to
Ű

pHusbandq “ txeve, adamyu, that is,
a solution to the relational problem is required to contain at least the tuple xeve, adamy
in the Husband relation. The requirement that “X is Y’s husband if and only if Y is X’s
wife.” may now be written in relational logic as shown in Eq. 5.1.

Φ :“ Wife “ Husband´1 (5.1)

Here, we essential define that the Husband be symmetric to Wife. Alternatively, we may
use the predefined binary identity relation id, which contains tuples xadam, adamy,

80

xeve, evey, xjohn, johny, . . . , i.e., for each atom a in the universe a tuple xa, ay, and first-
order quantifiers to formulate the requirement as

@x P Husband, Dy P Wife | x.y Ď id^

@y P Wife, Dx P Husband | y.x Ď id

Note that we use equality (“) in formula x “ y as a short-hand notation for x Ď y^y Ď x
and, similarly, implication (ñ) in formula x ñ y as a short-hand notation for x_ y.

The relational problem PJ U Husband:2,Wife:2 Φ Kb evaluates to true under bind-
ing b “ tWife “ txadam, eveyu,Husband “ txeve, adamyuu such that EJHusband´1Kb
evaluates to tadam:2eveu which is equal to the binding of the Wife relation. Thus
the formula Wife “ Husband´1 evaluates to true, i.e., formevalWife “ Husband´1 “

true, and formula Φ is satisfied. Note that other bindings may also satisfy this for-
mula. For example, binding b1 “ tWife “ txadam, evey, xadam,marryyu,Husband “
txeve, adamy, xmarry , adamyuu, although legally prohibited, satisfies Φ, too, as we did
specify that a marriage may only bind exactly two people. To forbid such models addi-
tional constraints are necessary.

Kodkod

Kodkod provides a sophisticated API and model finder to formulate and solve formulas
of bounded first-order logic. In Kodkod, a relational problem consists of a universe,
a set of relational variable declarations, and a formula. It translates such a relational
problem into Boolean functions represented in Conjunctive Normal Form (cnf), which
can be solved by off-the-shelf SAT solvers like MiniSAT or lingeling. For this pur-
pose, Kodkod provides an interface to SAT solvers that feeds the Boolean circuit in
conjunction normal form to the desired SAT solver. The SAT solver then searches for
a satisfying assignment of truth values to the variables of the cnf formula. If it fails to
find such an assignment and Kodkod was configured to request a proof of unsatisfia-
bility, Kodkod maps the minimal unsatisfiable subset of the clauses in the cnf formula
back to the corresponding fragments of the relational formula. In this way, contradicting
elements of a specification may be identified. If the solver, however, finds a satisfying as-
signment, Kodkod produces an instance that assigns to the declared relational variable
proper bounds, i.e., relational constants, such that the (relational) formula is satisfied.

The Kodkod API was developed to overcome the deficiencies of its predecessor, the
Alloy analyzer [197]. In particular, Kodkod now supports the specification of partial
solutions that had to be encoded directly into the relational formulas. Moreover, relations
in Kodkod are untyped and require explicit bounds in form of relational constants,
whose tuples are drawn from the explicitly defined universe of discourse. In contrast,
Alloy only demands integer bounds on the maximum number of instances per signature,
and these upper bounds implicitly define the universe. While Alloy provides libraries to
support Boolean values, integers, lists, etc., Kodkod only supports signed, fixed-width
integers, which are represented in two’s complement notation. Similar to other relational
variables, integers need to be bounded as well, that is, a maximum bit-width needs to

81

aag 7 2 1 2 4

2 input 0 ’enable’

4 input 1 ’reset’

6 8 latch 0 Q next(Q)

6 output 0 Q

7 output 1 !Q

8 4 10 AND gate 0 reset & (enable ^ Q)

10 13 15 AND gate 1 enable ^ Q

12 2 6 AND gate 2 enable & Q

14 3 7 AND gate 3 !enable & !Q

(a) AIGER file (taken from [19])

Q

!Q

Enable

Reset
(b) Logic diagram

Figure 5.3: A flip-flop in AIGER format and its logic diagram. Note that the explana-
tions to the right of the circuit elements are not part of the AIGER file.

be provided. The reasoning over integers is than bit-precise, and operations on integers,
like addition, multiplication, and subtraction, are translated into their corresponding
binary circuit operations, implemented as, e.g., adders and binary multipliers. Clearly,
the use of integers in Kodkod impose penalties on solving time quickly as the generated
Boolean formulas grow larger with increasing bit-widths.

Combinational Circuits, Sequential Circuits, and the AIGER Format

Combinational circuits consist of a set of primitive logical gates having one or more inputs
and at least one output. The outputs of a combinational circuit depend solely on the
current input values, that is, the gates define a direct mapping from the input values to
the output values of the circuit. A Boolean function is a special case of a combinational
circuit with only a single output. In contrast to memoryless combinational circuits,
sequential circuits are stateful as their output may depend on previous input values that
reflect the state of the circuit. In the following we will use the simplest form of memory
to represent the state of a circuit, namely latches. Latches store a single bit, 0 or 1, true
or false. Usually, the initial state of each latch is set to 0. Each latch is associated with a
Boolean function that determines the next state of the latch as a function of the current
inputs and the current state of the circuit. In a synchronous sequential circuit a clock
sends out signals at discrete times that trigger a state change.

The AIGER format provides a standardized textual and binary representation for
combinational and sequential circuits, of which only the textual, ASCII format will be
discussed in the following. The AIGER format is published as a draft in version 1.9.4 [22]

82

(

{ ’0’ | ’1’ | ’2’ } <newline> # status

({ ’b’ | ’c’ } <index>)+ <newline> # properties

{ ’0’ | ’1’ | ’x’ }* <newline> # initial state

({ ’0’ | ’1’ | ’x’ }* <newline>)+ # input vector(s)

’.’

)*

Figure 5.4: Witness format

and available from http://fmv.jku.at/hwmcc11/beyond1.pdf. The AIGER format
represents circuits compactly by And-Inverter Graphs (AIG), that is, circuits are formed
as acyclic, directed graphs whose nodes are either NOT or AND gates with one or two
inputs, respectively, and a single output. The format defines four mandatory and four
optional sections. The mandatory sections encompass the inputs, the latches, one or
more outputs, and a set of AND gates. Figure 5.3 displays an AIGER file of a simple
flip-flop and its schematic circuit layout. An AIGER file in ASCII format starts with a
header aag M I L O A where M defines the number of variables in the circuit, I defines
the number of inputs, L the number of latches, O the number of outputs, and A the
number of AND gates with M “ I ` L ` A. The mandatory sections may be extended
by four optional sections, which are declared by the quadruple B C J F in the header
with B defining the number of bad state properties and C, J, and F defining the number
of invariant constraints, justice, and fairness properties, respectively [22]. The header
is followed by the literals that identify the circuit’s inputs. For each input a variable
is allocated. A variable is converted into a literal by multiplying it by two which is
written into the AIGER file; an even literal identifies a positive variable, while an odd
literal represents a negated variable. Here, literal 0 represents false and 1 represents
true. The inputs are followed by latch definitions that consist of a triple lit nxt ini

where lit identifies a latch’s current state, nxt references the root gate of a latch’s next
state function, and ini defines a latch’s initial state, either 0, 1, or undefined if left
blank. The latch definitions are followed by the outputs, if any, which reference the gate
whose output define an output of the circuit. If any of the optional sections are used,
they follow right after the outputs. The definitions of the AND gates appears last. An
AND gate is defined by the triple LHS RHS1 RHS2 where LHS is the (even) literal that
identifies the gate, and RHS1 and RHS2 are the inputs of the AND gate. Valid inputs to
an AND gate are (i) an input declared in the input section, (ii) a latch declared in the
latch section, (iii) another AND gate, (iv) 0 or 1.

In Gryphon we use bad state properties in the formulation of the safety specification.
A bad state property b ” ϕ is essentially obtained by negating the good property ϕ of
AGφ. If a bad state is reachable, the AIGER format defines the result of the verification
as satisfied and requires the solver to return a witness. A witness describes a trace
from the initial state to the bad state as a sequence of latch and input valuations. The
format of a witness is reproduced from [22] in Figure 5.4. A status of 1 or 0 indicates
satisfiability or unsatisfiability, while 2 indicates unknown. If the status is 1 a witness

83

http://fmv.jku.at/hwmcc11/beyond1.pdf

has been found for property identified in the next line of the output; in case a witness
has been found for a bad property the line contains a b followed by the index of the
property. The following lines then describe the trace to the bad state, starting with the
valuation of the latches followed the valuations of the inputs. Here, an x indicates a
“don’t care” value.

5.2 Translating EMF Models and Graph Transformations
to Sequential Circuits

A model based implementation of the system under verification, which consists of

• an EMF (meta-)model M that describes the static structure of the system,

• an instance model Mι that defines the initial state of the system,

• a set R of graph transformations that describes the system’s behavior,

• the specification Φ of graph constraints, and

• a set Γ of upper bounds that define the maximal number of objects per class

is translated into a sequential circuit in three steps. First, the provided inputs are trans-
lated into bounded, first-order relational logic: the upper bounds define the elements of
the universe; classes, references, and attributes of model M are translated into relations
whose bounds are derived from Γ; and the graph transformations and the graph con-
straints are translated into relational formulas. Viewed logically, a graph transformation
is an if-then-else expression, where the nodes of the LHS correspond to existentially
quantified variables: “If there exists a match of the LHS in host graph G, then rewrite
G to match the RHS else perform no changes.” These if-then-else expressions are then
translated into a set of Boolean functions of the form

f1pa1, b1, . . . , x1, . . . , xn, x
1
1, . . . , x

1
nq^

f2pa2, b2, . . . , x1, . . . , xn, x
1
1, . . . , x

1
nq^

...

fmpam, bm, . . . , x1, . . . , xn, x
1
1, . . . , x

1
nq,

where each function f1, . . . , fm corresponds to one graph transformation p P R and the
Boolean variables x1, . . . , xn and x11, . . . , x

1
n reflect the current and the next state of the

system, respectively. These current and next state variables can be mapped back to the
bounds of a relation, which in turn can be mapped back to the objects, references, and
attributes of a class. Further, the Boolean variables a, b, . . . are allocated to represent
the nodes in the LHS, the RHS, the PACs, and the NACs of the graph transformation.
In the final step, next state functions f̂1, . . . , f̂m are extracted from functions f1, . . . , fm.
In contrast to functions f1, . . . , fm, the next state functions receive the current state

84

px1, . . . , xnq and the node variables a, b, . . . for rule p P R as their input and produce
the next state px11, . . . , x

1
nq as their output:

px11, . . . , x
1
nq “ f̂1px1, . . . , xnq,

px11, . . . , x
1
nq “ f̂2px1, . . . , xnq,

...

px11, . . . , x
1
nq “ f̂mpx1, . . . , xnq.

From functions f̂1, . . . , f̂m we build the sequential circuit, that is, the pairs of current
and next state variables correspond to the latches of the circuit and the union of all
node variables ai, bi, . . . , i ą 0 corresponds to the input of the circuit. Finally, we store
the constructed sequential circuit in the AIGER format for further processing through
the external model checker. Depending on the result of the verification the witness is
translated back to a sequence of relational bindings that correspond to a sequence of
graphs that starts with the initial state Mι and ends at the desired or undesired final
state.

Each step of this translation is explained in detail in the following exposition, for
which we informally define that a class C is an element of the set of type nodes in
(meta-)model M, i.e., C P M|VT , and the notion of the object space Obj, i.e., the set of
all objects, as the set of all pairs pC, iq PM|VT ˆN. Moreover, we define Γ : M|VT YZÑ N
as the upper bound map that defines for each class C P M|VT the maximal number of
objects and for the set of integers the maximal bitwidth.

The following notation will be used throughout the section; upper case letters C,D
refer to classes and C,D denote (corresponding) relations; enumerations are denoted by
E and E; relational variables range over a, b, c, . . . and are sometimes numbered, e.g.,
a1, a2, to indicate that they are bound by the same (relational) expression.

From Models and Graph Transformations to Relational Logic

The translation of models and graph transformation into relational logic is performed
in two steps. First, from a consistent EMF (meta-)model M a set Rel of relations is
generated, which includes the relation Int of integers. Further, the universe U is derived
from the upper bound map Γ, and for each relation r P Rel generated from a class
C PM|VT the upper bound

Ů

prq is deduced from the upper bound map Γ and, likewise,
the range of integer values that bound relation Int is calculated from the bitwidth as
given by ΓpZq. Moreover, for each relation r P Rel with arity n, a function ι : Rel Ñ U n

is derived from the initial state Mι. This function maps a relation to a set of n-ary
tuples that define the relation’s lower bounds in the initial state. In the second step,
the symbolic transition relation is derived from the set R of graph transformation. The
transition relation is a conjunction of relational formulas of the form LHS ñ RHS
where LHS and RHS are relational formulas that resemble that matching conditions
and the effects of a graph transformation.

85

Relations, Universe, and Bounds. The translation generates for each class C in
M|VT a unary relation C and likewise for each enumeration E in M|E a unary relation
E. For each attribute attr in C the translation generates a binary relation C attr and,
for each reference ref of (source) class C to some (target) class D, it creates a binary
relation C ref.

The universe consists of a sequence of uninterpreted atoms and its content, which
is derived from the upper bound map Γ, is defined as U “

Ť

CPM|VT

Ť

0ăiďΓpCqpC, iq,

that is, the universe consists of a number of objects for each class from the object space
Obj; hence, U Ď Obj. Moreover, if bitwidth N returned by ΓpZq is greater than zero, a
range x´2N´1y, . . . , x2N´1 ´ 1y of integer representative is added to the universe given
that a two’s complement binary number representation is used, which we assume in the
following.

Next, upper bounds for each relation are derived. Again, the number of objects per
class are extracted from the upper bound map Γ; these define the upper bounds

Ů

pCq “
tpC, iq | 0 ă i ď ΓpCqu of a relation C:1 generated for class C P M|VT . The relation Int
representing integers is bound by the bitwidth N “ ΓpZq and is assigned tuples ranging
from x´2N´1y to x2N´1 ´ 1y. Boolean values and enumeration literals are mapped to
integers as well. The relation Bool is bound by tx´1y, x0yu that represents true and
false, respectively. An enumeration relation E:1 that was generated for an enumeration
ε “ pe, l, iq P pSˆ Sˆ Zq “ E , where e denotes the name of the enumeration and l and i
range over the key-value pairs of the enumeration, is bound by the (integer) values of its
keys, i.e.,

Ű

pεq “
Ů

pεq “ txiy | pe, l, iq P pSˆ Sˆ Zqu. The upper bound of an attribute
relation C attr is constructed from the product of the upper bounds of the class C that
contains the attribute and the domain of the attribute, i.e.,

Ů

pC attrq “
Ů

pCq ˆ
Ů

pDq
where domain D “ tInt,Bool,Eu with E being an enumeration relation. Likewise, the
upper bound of a reference relation is constructed from the product of the source and
the target class’s upper bounds, i.e.,

Ů

pC refq “
Ů

pCq ˆ
Ů

pDq with source class C
and target class D. Finally, we implement the inheritance hierarchy at the level of the
relation’s bounds. For this purpose denote by SpCq the set of subclasses of class C.
Then, the upper bound of C is defined as the union of all upper bounds of its subclasses,
i.e.,

Ů

pCq “
Ť

sPSpCq

Ů

psq. Since lower bounds provide partial solutions for a relational
problem, we omit their declaration for all relations except for the integer relation Int,
the Boolean relation Bool, which are not expected to change.

Finally, the initial state map ι is constructed from the initial model Mι and returns

(a) for every unary relation in Rel that was generated for a class C, all objects pC, iq in
the initial model or the empty set if no such object is present;

(b) for every binary relation that was generated for a reference between classes C and
D, all tuples xpC , iq, pD , j qy if there exists a reference between objects pC, iq and
pD, jq with i, j ą 0; and

(c) for every binary relation that was generated for an attribute attr of class C, all
tuples xpC , iq, valpattrqy if attr is set to the value returned by valpattrq.

86

Class Relation Upper Bound

Game Game:1 txGame1 yu
pacman Game pacman:2 txGame1 ,Pacman1 yu
ghosts Game ghosts:2 txGame1 ,Ghost1 yu
fields Game fields:2 txGame1 ,Field1 y, . . . , xGame1 ,Field4 yu

Pacman Pacman:1 txPacman1 yu
on Pacman on:2 txPacman1 ,Field1 y, . . . , xPacman1 ,Field4 yu

Ghost Ghost:1 txGhost1 yu
on Ghost on:2 txGhost1 ,Field1 y, . . . , xGhost1 ,Field4 yu

Field Field:1 txField1 y, . . . , xField4 yu
neighbors Field neighbors:2 txField1 ,Field1 y, . . . , xField2 ,Field3 y, . . . ,

xField3 ,Field2 y, . . . , xField4 ,Field4 yu
treasure Field treasure:2 txField1 ,´1 y, xField1 , 0 y, . . . ,

xField4 ,´1 y, xField4 , 0 yu

Table 5.1: Generated relations and bounds for the Pacman game

Example. The translation of the Pacman game, introduced in Section 6.1, pro-
ceeds as follows. For the classes in the model of the Pacman game, i.e., Game, Pacman,
Ghost, and Field, unary relations Game, Pacman, Ghost, and Field are generated. For
each attribute and reference of these classes binary relation are generated, e.g., for the
neighbors reference of the Field class a binary relation Field neighbors is generated. Ta-
ble 5.1 lists all generated relations together with their upper bounds, whose derivation
is outlined in the following.

Given an upper bound map Γ “ tpGame, 1q, pPacman, 1q, pGhost, 1q, pField, 4qu we
derive first the universe U “ tGame1 ,Pacman1 ,Ghost1 ,Field1 , . . . ,Field4 u. Next,
upper bounds for each of the above generated relations are derived accordingly. For ex-
ample, for the Field relation we derive upper bounds

Ů

pFieldq “ txField1 y, . . . , xField4 yu.
The upper bound of the Field neighbors relation is defined as

ğ

pField neighborsq “
ğ

pFieldq ˆ
ğ

pFieldq

“txField1 ,Field1 y, xField1 ,Field2 y, . . . , xField2 ,Field4 y, . . . ,

xField3 ,Field2 y, . . . , xField4 ,Field4 yu.

The initial state map for the Pacman game, which is depicted in Figure 4.1b, is
defined by the graph

ι “ tpGame, txGame1 yuq, pPacman, txPacman1 yuq, pGhost, txGhost1 yuq,

pField, txField1 y, . . . , xField4 yuq, pGame pacman, txGame1 ,Pacman1 yuq,

pPacman on, txPacman1 ,Field2 yuq, pGhost on, txGhost1 ,Field1 yuq,

pField treasure, txField4 ,´1 yuq, . . . u

87

Graph Transformations. Graph transformations describe conditional modifications
on graphs, that is, if the LHS and all of its application conditions are satisfied, the RHS
deletes and/or creates nodes, edges, and attributes. As we use graphs to model states
of our system under verification, graph transformations describe how the system transi-
tions from the current to the next state. It is thus necessary to capture these conditional
modifications and express them over relations when translating graph transformations
into relational logic. In essence, we translate graph modifying instructions into relation
modifying formulas. In contrast to graph modifying instructions that update the struc-
ture of the graph in-place, relations and relational variables are immutable. For example,
observe that the relational formula D a : A | a.n “ 1 ñ A “ A´ a yields a contradiction
under every binding where a.n “ 1 evaluates to true. Thus, for each relation r P Rel
we introduce a primed relation, r1 P Rel 1, that reflects the next state of the system after
the relation modifying actions have been performed. Then, the relational formula above
becomes D a : A | a.n “ 1 ñ A1 “ A ´ a, where the upper bound of relation A1 is set to
the upper bound of relation A.

Example. The MovePacman transformation (see Fig. 4.4a) alters Pacman’s on
reference, which is represented by the Pacman on relation. The transformation rewrites
the on reference to point to a field other than the one Pacman currently resides on. Pro-
vided that the Pacman on relation is currently bound to the tuple xPacman1 ,Field2 y
and Field3 is a neighboring field, the effect of applying the MovePacman transformation
can be described by removing the tuple xPacman1 ,Field2 y from the Pacman on rela-
tion and adding the updated tuple xPacman1 ,Field3 y, i.e., Pacman on1 “ Pacman on´
txPacman1 ,Field2 yu ` txPacman1 ,Field3 yu.

Formally, we translate a graph transformation into a first-order, relational formula
as follows. Given sets Rel and Rel 1 of current and next state relations generated for a
(meta-)model M as described above, from each (double pushout) graph transformation
p : Cond Ð Lhs Ñ Rhs, where the application condition Cond can consist of positive
application conditions (Pac) and/or negative application conditions (Nac), a formula

Fp :“ PrepLhs,Pac,Nac,Rhsq ùñ PostpLhs,Rhsq (5.2)

is derived where Pre : GˆGˆGˆGÑ F is a function that generates from a quadruple
of graphs a conjunction of relational formulas f P F that mimic the match conditions of
the transformation’s LHS. Function Post : G ˆ G Ñ F, on the other hand, generates a
conjunction of relational formulas from a pair of graphs, i.e., the LHS and RHS, that
mimic the effects of the transformation’s RHS. Here, the set G of graphs is typed by
T PM.

Function Pre generates the following conjuncts from the transformation’s LHS. For
each node objC of class C in the LHS we allocate a fresh, existentially quantified node
variable c whose domain is bound by relation C:1 that was generated for class C. This
yields the relational formula D c : C. If objC of class C has a reference ref to a target
object objD of D and under the assumption that (relational) node variables c, d have

88

been allocated for objC and objD, and relation C ref :2 was generated for reference ref ,
then the condition pcÑdq Ď C ref is generated where pcÑdq denotes the product of the
tuples bound to c and d.

If an attribute attr of objC is assigned an expression e, then Pre generates formula
pcÑexprpeqq P C attr where function expr : Z Y B Y pS ˆ S ˆ Nq Ñ Rexpr converts an
integer, Boolean, or enumeration expression into a relational expression. This expression
describes an additional constraint that a matching subgraph must satisfy. Thus, we
generate a condition that requires the attribute value of the object that is bound to c to
evaluate to the same value as exprpeq. For an overview of the conditions generated by
Pre see Table 5.2.

If the graph transformation contains PAC patterns, they are translated into formulas
of relational logic like the LHS pattern because they, too, demand the existence of nodes,
edges, or matching attribute expressions. Thus, the translation of LHS and PAC patterns
follow the same procedure as described above.

Negative application conditions, in contrast to LHS and PAC patterns, describe
forbidden patterns that must not be satisfied by any matching subgraph. As such we
generate equivalent relational formulas as for the LHS, but negate them such that the
formula D n : N is generated assuming that node variable n was allocated for a NAC
object objN . Note that none of the conditions generated for references and attributes in
the NAC graph need to be negated and are thus equivalent to those generated for the
LHS graph.

Finally, the injectivity and the dangling edge conditions, generated by Pre, are nec-
essary to faithfully translate the graph modifying instructions into relational logic. The
injectivity condition ensures that all elements of the LHS, the NACs, and the PACs
are mapped to exactly one element in a matching host graph and each variable must be
bound to a distinct object of the universe. The generated injectivity condition performs a
pairwise test of inequality on all variables bound by the same expression or relation. For
example, given variables c1, c2, both of which are bound by C:1, the condition pc1 “ c2q
is generated to ensure that c1 and c2 are assigned to two different objects. The second
condition ensures that no dangling edges are left behind after deleting nodes from the
graph. This implies that all possible references to and from a node that is scheduled
for deletion need to be deleted explicitly. We translate this requirement into a condi-
tion that checks whether the set of all possible references from and to an object that is
scheduled for deletion coincides with the set of actually deleted references. For example,
in Figure 5.5b object objD, an instance of class D, is deleted together with references
coming from two objects, objC,1 and objC,2, and one reference to object objE . Class D
may have references coming from objects of class C and references to object of class E.
In the following we assume that the translation generates unary relations C:1, D:1, and
E:1 for classes C, D, and E, binary relations C toD:2 and D toE:2, and allocates existen-
tially quantified variables c1, c2, d, and e (see Fig. 5.5 for a simplified object diagram).
The formula C toD.d´tc1, c2u “ H resembles the dangling edge condition for reference
between objects of class C and class D. It consists of the following components:

• The relation C toD is bound to the set of all tuples xobj c , obj dy with obj c P
Ů

pCq

89

LHS/RHS element Formula

P
re

se
rv

e
/
D

e
le

te

Object c P C Dc : C

Reference ref
with srcpref q “ c P C,

tgtpref q “ d P D

pcÑdq Ď C ref

Attribute attr
with srcpattrq “ c P C,

expression e

pcÑexprpeqq Ď C attr

F
o
rb

id

Object c P C Dc : C

Reference ref same as above

Attribute attr same as above

C
re

a
te

Object c P C Dc : C1 ^ c Ę C

Reference ref —

Attribute attr —

Table 5.2: Relational formulas generated by function Pre

and obj d P
Ů

pDq having a toD reference;

• the expression C toD.d represents the set of all possible objects of class C that have
a toD reference to the object bound to d;

• the set tc1, c2u represents the actually deleted objects.

Thus, the formula above checks whether the set of all actually deleted objects tc1, c2u
is equal to the set of all actual objects of class C that have a reference to the object
bound to d. If, however, a third reference had pointed from c3 to d, the expression
C toD.d´ tc1, c2u would evaluate to tc3u and thus violate tc3u ‰ H. In the latter case
the graph transformation must not be applied.

The RHS describes the effects of the graph transformation; once a matching subgraph
of the LHS is found it is rewritten according to the RHS that specifies which nodes,
edges, and attributes are created and/or deleted. The function Post generates relational
formulas over Rel and Rel 1 that mimic the modifications of the transformation’s RHS
as follows. If the transformation creates an object objC of class C, two conditions are
created, one by Pre and one by Post . First, function Pre checks for the non-existence of
an object bound to relational variable c in the current state with i.e., Dc : C1^c Ę C, i.e.,
the formula asserts that the object bound to c is inactive in the current state relation C.
Second, function Post generates a condition that adds the new object (bound to c) to
relation C such that the next state relation is set to C1 “ C ` c. The procedure for the

90

d:D
c1:C

c2:C

e:E

c3:C
(a) Object diagram

:E
«preserve»

:C
«preserve»

:C
«preserve»

:D
«delete»

«delete»

«delete»

«delete»

(b) A graph transformation

Figure 5.5: Dangling edge example

LHS/RHS element Formula

D
e
le

te

Object c P C C1 “ C´ c

Reference ref
with srcpref q “ c P C,

tgtpref q “ d P D

C ref 1 “ C ref ´ pcÑdq

Attribute attr
with srcpattrq “ c P C,

expression e

C attr1 “ C attr ´ pcÑexprpeqq

C
re

a
te

Object c P C C1 “ C` c

Reference ref
with srcpref q “ c P C,

tgtpref q “ d P D

C ref 1 “ C ref ` pcÑdq

Attribute attr
with srcpattrq “ c P C,

expression e

C attr1 “ C attr ` pcÑexprpeqq

Table 5.3: Relational formulas generated by function Post

deletion of an object bound to c is similar except that (i) Pre checks for the existence of
an object that is scheduled for deletion, i.e. Dc : C and (ii) Post updates the next state
relation to reflect the removal of the object (bound to c), i.e., C1 “ C´ c. Addition and
deletion of (multiple) objects to and from a relation can be combined, i.e., the condition
C1 “ C ` tc1, . . . , cmu ´ tcm`1, . . . , cnu states that C1 is equivalent to C except that all
objects bound to variables c1, . . . , cm are added to C1, while objects bound to variables
cm`1, . . . , cn are removed from C. Note that the addition and deletion of references and
attributes proceed analogous to the addition and deletion of objects. For example, Post
generates for the deletion of a reference ref from an object bound to c pointing to an
object bound to d the formula C ref 1 “ C ref ´ pcÑdq. The formulas generated by Post

91

are summarized in Table 5.3. In addition, the Post function also generates conditions
for those relations that do not change, as otherwise arbitrary tuples could be bound to
these relations.

The encodings outlined in Tables 5.2 and 5.3 translate a graph transformation p P
R over relations Rel , which is fixed w.l.o.g to Rel “ tA,B,C,D,Eu for the following
explanations, into a relational formula following the scheme outlined in Figure 5.6. Here,
function match returns constraints that mimic the transformation’s LHS and control the
creation of new nodes, while functions inj and dec generate injectivity constraints over
nodes of the transformation’s LHS and PACs/NACs and dangling edge conditions over
LHS nodes, respectively.

Da1 : A, Da2 : A1, Db : B, Dc : C
loooooooooooooooooomoooooooooooooooooon

LHS,RHS, and PAC nodes

, Dd : D
looomooon

NAC

|

matchpa1, a2, b, c, dq
loooooooooooomoooooooooooon

match constraints

^ inj pa1, b, c, dq
looooooomooooooon

injectivity
constraints

^ decpa1, b, cq
looooomooooon

dangling edge
constraints

ùñ

A1 “ A´ a1` a2^ B1 “ B´ b
looooooooooooooooooomooooooooooooooooooon

modification constraints

^C1 “ C^ D1 “ D^ E1 “ E
loooooooooooooooomoooooooooooooooon

non-modification constraints

Figure 5.6: Scheme of a relational formula produced from a graph transformation

Example. For the MovePacman transformation as shown in Figure 4.4a the Pre
and the Post functions generate the following set of conditions that reproduce the match-
ing and the application of the transformation:

D p : Pacman, D f1, f2 : Field, D g : Ghost |
ppÑf1q Ď Pacman on^ pf1Ñf2q Ď Field neighbors^
pf1Ñ0q Ď Field treasure^ pgÑf1q Ď Ghost on^ f1 ‰ f2

ùñ

Pacman on1 “ Pacman on` ppÑf2q ´ ppÑf1q ^ Game1 “ Game^
Pacman1 “ Pacman^ Ghost1 “ Ghost^ Field1 “ Field^
Ghost on1 “ Ghost on^ Game pacman1 “ Game pacman^
Game ghosts1 “ Game ghosts^ Game fields1 “ Game fields^
Field neighbors1 “ Field neighbors^ Field treasure1 “ Field treasure.

Graph Constraints. In contrast to graph transformations, a graph constraint does
not alter a matching host graph; it may thus be used to describe a desired or an undesired
pattern in a graph, i.e., a good or a bad state of the system. Thus, graph constraints are
graph transformations with identical left-hand and right-hand sides. Formally, a graph
constraint c : Cond Ð Lhs, c P Φ is translated into a relational formula

Fc :“ PrecpLhs,Pac,Nacq, (5.3)

92

where function Prec : G ˆ G ˆ G Ñ F translates the triple LHS, PAC, and NAC into
a conjunction of relational formulas f P F. For this purpose, the encodings presented
in Table 5.2 are re-used to translate a graph constraint into a relational formula. The
scheme of the relational formula generated from graph constraint c P Φ is depicted in
Figure 5.7. It coincides with that of a graph transformation (see Fig. 5.6) in all but
two aspects, the absence of the implication, i.e., there is no RHS, and the dangling edge
condition, which is omitted because a graph constraint may not delete elements.

Da : A, Db : B, Dc : C
looooooooooomooooooooooon

LHS and PAC nodes

, Dd : D
looomooon

NAC

|

matchpa, b, c, dq
loooooooomoooooooon

match constraints

^ inj pa1, b, c, dq
looooooomooooooon

injectivity
constraints

Figure 5.7: Scheme of a relational formula produced from a graph constraint

From Relational Logic to Boolean Functions

The translation from bounded, first-order logic to propositional logic is well-known and
discussed extensively in [196]. For the sake of completeness we summarize the main ideas
of this relational to propositional translation briefly. The translation procedure receives
as input a relational problem, consisting of a universe, a set of bounded relations, and a
relational formula. It produces thereof a Boolean function in three steps, encompassing
a relation-to-matrix translation, symmetry detection, and circuit transformation [196].
In the following we focus on the first step of the translation procedure as the latter two
are not used by our approach.

The overarching idea of the translation is that relations over a finite universe can
be expressed as matrices over Boolean values [95, 196]. That is, the translation of a
relation of arity n allocates a matrix with n-dimensions, where the size or length of each
dimension is equal to the number of elements in the universe. For example, given a
universe U “ tobj 1, . . . , objmu with m entries and a relation of arity n the translation
produces an

mˆmˆ ¨ ¨ ¨ ˆm
looooooooomooooooooon

n-times

“ mn matrix.

In fact, all relational expressions are represented by matrices, that is, the application of a
relational operator like union, product, or transitive closure to its arguments is translated
into the application of a corresponding matrix operation to the matrix representations
of its arguments. In this regard, relational variables are represented by matrices, too.
That is, the evaluation of the expression that the relational variable is bound to upon
declaration is translated into a matrix, too. Consequently, all operations on relations
and relational expression are translated into operations on matrices and their application
yields a Boolean matrix. Moreover, formulas over relational expressions become formulas
of propositional logic over the entries of the matrices.

93

The entries in the matrix are determined by the lower and upper bounds of the
relation. If an entry in matrix mr generated for relation r is identified by mrri1i2 . . . ins
with ij P r1..ms, 0 ă j ď n then

mri1i2 . . . ins “

$

’

&

’

%

1 if xobj i1 , . . . , obj in y P
Ű

prq

varpr, i1i2 . . . inq if xobj i1 , . . . , obj in y P
Ů

prqz
Ű

prq

0 otherwise

where function varpr, i1 . . . inq returns a Boolean variable for relation r at index i1 . . . in.
In the following, we denote by mr the matrix generated for relation r. Further, the set
of all indices in matrix mr is given by Idx prq and a Boolean variable in matrix mr is
identified as xr,i1...in “ varpr, i1 . . . inq P Idx prq or, alternatively, ri if index i is clear from
the context. Due to the absence of lower bounds the number of Boolean variables xi
allocated for a relation X and relational variable, that is bound by relation X, is equal
to the number of elements in the upper bound

Ů

pXq, that is, 0 ă i ď cardp
Ů

pXqq.

Recall from Figure 5.6 the schematic structure of a relational formula generated from
a graph transformation. Each existentially quantified node variable, i.e., Da : A, is bound
by matrix ma, which differs from matrix mA only at indices set to 1 or for which Boolean
variables have been allocated, i.e.,

mari1i2 . . . ins “

$

’

&

’

%

varpa, i1i2 . . . inq if mAri1i2 . . . ins “ 1 or

mAri1i2 . . . ins “ varpA, i1i2 . . . inq

0 otherwise.

Note that varpa, i1i2 . . . inq ‰ varpA, i1i2 . . . inq. Moreover, for each existentially quanti-
fied node variable a condition is generated that tests whether one of the Boolean variables
is active, i.e., set to true. Essentially, this test is realized by an exclusive-or operation
over all Boolean variables allocated for the existentially quantified node variable. The
match constraints (see Fig. 5.6) consist of conjunctions of conditions that test for the
existence of a reference between two objects. These tests are of the form paÑbq Ď A toB
with a, b being two existentially quantified relational variables whose bounds are defined
by relations A and B. The product of two relations paÑbq is translated into a matrix mul-
tiplication ma ˆmb that forms the conjunction of the multiplied elements. The subset-
inclusion test a Ď A is translated into a propositional formula

Ź

iPIdxpAq maris_mAris,
i.e., the existence of element maris, that is, maris is set to true, implies the existence of
mAris. Note that the subset-inclusion test is only defined on relations of equal arities,
as only relations of equal arity are translated into matrices of equal dimensions. Finally,
the modification constraints A1 “ A` a1´ a2 are translated into propositional formulas
Ź

iPIdxpAqmA1ris ðñ mAris _ma1ris ^ ma2ris.

Example. Given the universe U “ tGame1,Pacman1,Ghost1,Field1, . . . ,Field4 u
the relations Game:1, Pacman:1, Ghost:1, and Field:1 are translated into the following

94

matrices:

Game:1 “

»

—

—

—

—

—

—

–

G1

0
0
0
0
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Pacman:1 “

»

—

—

—

—

—

—

–

0
P1

0
0
0
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ghost:1 “

»

—

—

—

—

—

—

–

0
0
H1

0
0
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Field:1 “

»

—

—

—

—

—

—

–

0
0
0
F1

F2

F3

F4

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We test with Df1 : Field, Df2 : Field whether there exist two fields in the current state of
the system. The translation of the condition produces, first, the matrix representations
of the variables f1 and f2 and, second, an exclusive-or constraint that activates one
Boolean variable from each matrix.

f1:1 “r0 0 0 f11 f12 f13 f14s
T f2:1 “r0 0 0 f21 f22 f23 f24s

T

pf1 1 ^ f1 2 ^ f1 3 ^ f1 4q_ pf2 1 ^ f2 2 ^ f2 3 ^ f2 4q_

p f1 1 ^ f1 2 ^ f1 3 ^ f1 4q_ p f2 1 ^ f2 2 ^ f2 3 ^ f2 4q_

p f1 1 ^ f1 2 ^ f1 3 ^ f1 4q_ p f2 1 ^ f2 2 ^ f2 3 ^ f2 4q_

p f1 1 ^ f1 2 ^ f1 3 ^ f1 4q p f2 1 ^ f2 2 ^ f2 3 ^ f2 4q

The relational product pÑf1 between relational variables p and f1 is translated into
a product operation on matrices, that is:

r0 p1 0 0 0 0 0s ˆ

»

—

—

—

—

–

0
0
0

f11
f12
f13
f14

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0 0 0 0 0 0 0
0 0 0 p1 ^ f11 p1 ^ f12 p1 ^ f13 p1 ^ f14
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

Finally, the relational formula ppÑf1q Ď Pacman on is translated into a conjunction of
implications that logically reflect the subset-inclusion relation.

ľ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
0 0 0 p1 ^ f1 1 p1 ^ f1 2 p1 ^ f1 3 p1 ^ f1 4

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

_

»

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
0 0 0 Po1 Po2 Po3 Po4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

p pp1 ^ f1 1q _ Po1q ^ p pp1 ^ f1 2q _ Po2q ^ p pp1 ^ f1 3q _ Po3 ^ p pp1 ^ f1 4q _ Po4q

The modification condition Pacman on1 “ Pacman on ` ppÑf2q ´ ppÑf1q is translated
into a conjunction of logical equivalences between the (Boolean) next and the current
state variables with conditions for addition and deletion of on references.

95

ľ

»

—

—

—

—

—

—

–

0 0 0 0 0 0 0
0 0 0 Po11 Po12 Po13 Po14
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ðñ

»

—

—

—

—

—

—

–

0 0 0 0 0 0 0
0 0 0 Po1 Po2 Po3 Po4

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

_

»

—

—

—

—

—

—

–

0 0 0 0 0 0 0
0 0 0 pf 1 pf 2 pf 3 pf 4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

^

»

—

—

—

—

—

—

–

0 0 0 0 0 0 0

0 0 0 p̂f 1 p̂f 2 p̂f 3 p̂f 4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

Po11 ðñ pPo1 _ pf 1 ^ p̂f 1q ^ . . .^ Po14 ðñ pPo4 _ pf 4 ^ p̂f 4q

For an in-depth treatment of the translations and the rules that govern it we refer
the interested reader to [196] which also explains techniques to store sparse matrices
compactly. Moreover, the remaining translation steps, symmetry detection and circuit
transformation, are discussed there.

From Boolean Functions to Sequential Circuits

The translation steps outlined above produce a Boolean function fppvp,x,x
1q from a

relational formula Fp (see Eq. 5.2), which encodes the matching behavior and the effects
of a graph transformation p P R, and, similarly, a Boolean function fcpvc,xq from a
relational formula Fc, which describes a desired or undesired state expressed by a graph
constraint c P Φ. Here, the inputs vtp,cu “ pva,1, . . . , va,k, vb,k`1, . . . q of fp and fc range
over Boolean variables allocated for the existentially quantified node variables a, b, . . .
as in Da : A, b : B, . . . , while inputs x “ pÝÑxr,ÝÑxs, . . . q and x1 “ pÝÑxr

1,ÝÑxs
1, . . . q, with

ÝÑxr
1 “ txr,i “ varpr, iq | i P Idx prqu, r P Rel , are Boolean variables allocated for all

current and all next state relations r, s, . . . P Rel and r1, s1, . . . P Rel 1, respectively.

The structure of function fp is depicted in Figure 5.8. Note that function fc contains
no modifying conditions, i.e., fc “ precpvc,xq with vc being the existentially quantified
node variables in graph constraint c P Φ. The function pretp,cupvtp,cu,xq returns the
conjunction of constraints that, on the one hand, mimic the match conditions of the
transformation’s LHS, and, on the other hand, include the supplementary constraints to
enforce injective matching of nodes and consistent deletion of nodes to prevent dangling
edges. In essence, function pretp,cupvtp,cu,xq returns the propositional constraints gen-
erated from the relational formulas of the Pre function in the previous translation step

96

fppvp,x,x
1q “ preppvp,xq ùñ

ľ

xr,iPx

¨

˚

˚

˝

x1r,i ô xr,i _ createpvp, iq ^ deletepvp, iq
loooooooooooooooooooooomoooooooooooooooooooooon

postppvp,xr,iq

˛

‹

‹

‚

^

 preppvp,xq ùñ
ľ

xr,iPx

x1r,i ô xr,i

Figure 5.8: Structure of fp

(see Table 5.2). The right-hand side of the implication consists of conjunctions of condi-
tions that define the next state as it results from applying the transformation. Functions
createpvp, iq and deletepvp, iq look-up node variables and are defined as follows:

createpvp, iq “

#

va,j if Dva,j P vp: j “ i,

false otherwise.
deletepvp, iq “

#

va,j if Dva,j P vp: j “ i,

false otherwise.

These functions return a Boolean variable with index i from vp that is allocated for an
existentially quantified node variable and is either created or deleted by transformation
p, If no such variable exists in vp, false is returned. As there must not be an object
that is both created and deleted the condition @i P Idx prq: createpvp, iq ‰ deletepvp, iq
holds for all relations r P Rel . Finally, note that the satisfiability of fp indicates whether
transformation p can be applied with the current assignments to vp, x, x1 or not, i.e.,
the assignments are inconsistent. In the following, we extract from fppvp,x,x

1q the next

state function x1 “ f̂ppvp,xq that returns as its output the next state x1 that results
from applying the transformation p. The extraction is based on the observation that
function fp be can be rewritten into a logically equivalent formula by distributing the
condition preppvp,xq over the conjunction of xr,i P x, which is subsequently expanded
to yield conjunctions of formulas preppvp,xq ñ px1r,i ô postppvp, xr,iqq^ preppvp,xq ñ
px1r,i ô xr,iq. Finally, the next state variable x1r,i is factored out yielding formula

fppvp,x,x
1q “

ľ

xr,iPx

x1r,i ðñ
`

ppreppvp,xq ñ postppvp, xr,iqq ^ p preppvp,xq ñ xr,iq
˘

As a consequence of the equality in the above equation the next state function f̂p

returns an n-ary tuple of next state formulas, i.e., for each of the n “
řcardpRelq
i“1,rPRel

Ů

prq

state variables the right-hand side of the above equation is returned. Then, f̂p takes on
the structure depicted in Figure 5.9, where r, s, t P Rel and i, k, j P Idx pxqxPtr,s,tu.

In all but the most trivial systems the behavior is described by multiple graph trans-
formations. To build the latch function `xr,ipV,xq, that determines the next state value
of each Boolean variable xr,i based on the inputs V “

Ť

pPR vp and the current state x,

97

f̂ppvp,xq “ pppreppvp,xq ñ postppvp, xr,iqq ^ p preppvp,xq ñ xr,iq,
...

ppreppvp,xq ñ postppvp, xs,jqq ^ p preppvp,xq ñ xs,jq,
...

ppreppvp,xq ñ postppvp, xt,kqq ^ p preppvp,xq ñ xt,kqq

Figure 5.9: Structure of the next state function f̂p.

the outputs from the next state functions fp1 , . . . , fpn need to be conjoined accordingly.
That is, the conjunction of all pre-post implications preppvp,xq ñ postppvp, xr,iq, p P R
and the conjunction of all negated preconditions, preppvp,xq, p P R, that effect no
modification on the state variable xr,i are formed to yield the following formula, where
n “ cardpRq:

`xr,ipV,xq “ pre1pv1,xq ùñ post1pv1, xr,iq ^ ¨ ¨ ¨ ^ prenpvn,xq ùñ postnpvp, xr,iq^

p pre1pv1,xq ^ pre2pv1,xq ^ ¨ ¨ ¨ ^ prenpvn,xqq ùñ xr,i

From Sequential Circuits to AIGER Specifications

The construction of the AIGER specification is straightforward; first, initialize for each
variable vr,i P V an input variable in the AIGER specification and, second, declare a
latch variable for each current state variable in x. Then, translate each latch function
`xr,ipV,xq into an AIG by iteratively applying DeMorgan’s laws to convert implications
into combinations of conjunctions and their negations. Likewise, the graph constraints
are converted into AIGs and registered in the AIGER specification as a bad property. In
general, a graph constraint c P Φ may describe a reachable state of the system, which
may not necessarily be a bad state; but for the purpose of analyzing the correctness of a
system the latter will most often be of more interest because if c is proven unreachable
it follows that AG c holds. Finally, the verification problem in the AIGER specification
can be analyzed with a model checker. For each bad property in the AIGER specification
the model checker verifies whether the described state is reachable. If the bad state is
reachable, the model checker returns a witness. A witness lists the sequences of input
values that, if inserted into the sequential circuit, can be used to reconstruct the execution
trace starting in the initial state and leading to the bad state as follows. By inserting
and evaluating each set of input values on sequence of their appearance in the reported
witness, the states, i.e., the latch values, can be recorded to construct a counter example
trace. For this purpose, each set latch variable is mapped to its corresponding upper
bound element of a relation, which in turn is mapped to an object, a reference, or an
attribute of a class from model M. Thus, the sequence of recorded states from the
sequential circuit can be mapped back to the relational representation and eventually
to the EMF model and the applications of graph transformations. In case the state

98

described by c P Φ is found unreachable, the model checker reports the satisfiability of
AG c.

5.3 Summary

In this chapter, we introduced our symbolic model checking approach that proves a
system safe from reaching some bad state. Our approach takes as input an EMF model
that describes the structure of the system, a set of graph transformations that defines the
behavior of the system, an initial state of the system, and a specification that consists of a
set of graph constraints that describe desired and undesired states to be proven reachable
or unreachable, respectively. Moreover, a set of upper bounds needs to be provided in
order to construct finite representations of the system. The inputs are translated into
relation logic formulas, which are subsequently converted into Boolean functions. A
final translation step extracts a sequential circuit from the Boolean functions that is
then stored in the AIGER format. The AIGER format, being the input format of the
Hardware Model Checking Competition, allows us to take advantage of the some of
the fastest model checkers currently available. Once the verification is completed by the
externally invoked model checker, the result is analyzed. In case a bad state was reached,
the model checker returns a witness that is translated back into a counterexample trace
of instance models, i.e., system states. The above described procedure is implemented
in Gryphon that is evaluated in the next chapter and compared to Groove [106] and
MocOCL.

99

CHAPTER 6
Evaluation

In this chapter we compare and evaluate MocOCL, Gryphon, and Groove on a set of
three benchmarks: the Pacman game presented in Section 6.1, the Dining Philosophers
problem [52], and the verification of real-world railway interlockings inspired by [98].
We present first the Pacman game benchmark that, in contrast to the version in Sec-
tion 6.1, terminates correctly. Then, we discuss the Dining Philosophers benchmark,
and finally introduce the benchmark for the verification of railway interlockings. For
each benchmark, we describe its implementation in terms of EMF models and Henshin
transformations as well as in terms of attributed, typed graphs and corresponding graph
transformations as used by Groove. For the evaluation we use two groups of specifica-
tions. The first group contains safety specifications of the form AG φ, where φ denotes
a bad state. Thus, all three tools participate in this comparison. The second group
contains arbitrary safety and liveness properties formulated in CTL. Because Gryphon
supports currently neither arbitrary safety specifications nor liveness properties, only
MocOCL and Groove are compared on this second set. Finally, we record the results
from running the benchmarks and briefly discuss them.

Benchmark setup. The benchmarks were run on an IntelTMCore i5 M580 2.67GHz
CPU with 8GB of RAM running Gentoo 2.2 (Linux kernel 3.14.14). For the bench-
marks we use the OracleTMJavaTMSE 7 Runtime Environment (build 1.7.0 71-b14), the
Henshin API in version 0.0.1, and Groove in version 5.5.2 (build: 20150324114640).
The heap size for each benchmark run was set to at most 6GB and the timeout was
set to 720 seconds. The runtimes of each benchmark were averaged over 10 consecu-
tive runs. Each run of Groove is executed separately and executed from the command
line with java -jar Generator.jar -a formula graphgrammar startgraph. In contrast,
MocOCL and Gryphon are executed in batch mode, which allows to execute multiple
runs with a single call to java -jar mococl.jar benchmark.config and java -jar

gryphon.jar benchmark.cfg, respectively. Note that due to the small number of execu-
tions the just-in-time compilation provided by the Java Virtual Machine is negligible in

101

(a) EMF Model (b) Groove Model

Figure 6.1: The Pacman Game model

the comparison of the three tools. Further, note that MocOCL supports enumerations
only on the back-end, while the web front-end will terminate with an exception. Due to
this restriction, all EMF models and the corresponding Henshin implementation of their
behavior presented in the following sections use integer values instead of enumeration
literals.

6.1 The Pacman Game

The Pacman Game is played on a board consisting of an arbitrary number of fields. A
field has at most four neighboring fields and may host a treasure. The game is played
turn wise, but players may choose not to move. The game is over if either of the following
termination conditions are satisfied. Pacman wins the game, if he finds a treasure, and
he looses the game, if a ghost meets him on the same field.

Modeling the Pacman Game

The static structure of the game’s implementation follows the above description closely.
The Game class acts as the container for the fields, the ghosts, and Pacman. Each Field

instance is identified by an id attribute. A Boolean flag indicates whether the field
contains a treasure. The neighbors reference points to at most four adjacent fields.
Both Pacman and an arbitrary number of Ghosts are assigned to a field through their on
reference. The static structure of the Pacman Game is depicted in Fig. 6.1 presenting
both the implementation in EMF (Fig. 6.1a) and in Groove (Fig. 6.1b). In contrast
to the EMF based implementation, the implementation in Groove does not require a
root container; hence, the Game class was removed for Groove.

The behavior of Pacman and the ghosts is modeled by two graph transformations,
MovePacman and MoveGhost, which are shown in Figure 6.2. The MovePacman trans-
formation moves Pacman from its currently occupied field to an arbitrary, i.e., nonde-
terministically chosen, neighboring fields if he resides neither on a treasure field nor on

102

(a) MovePacman (b) Non-Injective MoveGhost

(c) MoveGhost

Figure 6.2: MovePacman and MoveGhost transformations implemented with Henshin

the same field as a ghost. Similarly, the MoveGhost transformation moves an arbitrarily
chosen ghost to a neighboring field if neither of the termination conditions is satisfied.
In contrast to the previously presented erroneous implementation, the transformation
shown in Figure 6.2c has been corrected such that a ghost may no longer move if either
Pacman found a treasure or if Pacman and some ghost reside on the same field. This
requires five negative application conditions, i.e., forbid#1 through forbid#5, each of
which prevents the movement of the ghost (#1) if the ghost has already found Pacman,
(#2) if another ghost found Pacman on the neighboring field, (#3) if another ghost found
Pacman on a field other than the current field of the ghost or its neighboring field, (#4) if
Pacman found the treasure on the neighboring field, (#5) if Pacman found the treasure
on a field other than the neighboring field. By disabling injective matching of rule ele-
ments the MoveGhost transformation can be simplified as displayed in Figure 6.2b. In
this later implementation of the MoveGhost transformation all case distinction necessary
to determine whether a ghost and Pacman share the same field collapse into one negative
application condition. Further, the match is extended to ensure that Pacman resides on
a non-treasure field.

The Groove implementation closely follows the implementation of the Henshin
implementation as depicted in Figure 6.3 with the notable difference that Groove uses a
non-injective matching algorithm by default. That is, two nodes of equal type in the LHS
of a transformation may be mapped to the same node in the host graph. Further, note

103

(a) MovePacman (b) MoveGhost

Figure 6.3: MovePacman and MoveGhost transformations implemented with Groove

that Groove uses a slightly different notation than Henshin: nodes and edges marked
for deletion are colored in blue, while elements of negative application conditions are are
indicated by thick, dashed red lines. Moreover, Groove by default uses a non-injective
matching engine.

Specification

We define the following invariants for the Pacman Game, which we derive from the rules
of the game:

• No ghost may be assigned to two different fields at any point in time.

• Pacman and each ghost are always assigned to one field.

• A field has no more than four different neighbors.

In Table 6.1, we list the formulation of the above properties for MocOCL, Gry-
phon, and Groove. For each property, we provide an identifying keyword and the
natural language formulation followed by the implementation of the property either as
cOCL expression for MocOCL, as a graph constraint expressing either an invariant or
a bad property for Gryphon, or a combination of CTL operators and graph constraints
in case of Groove. We compare the different implementations in the following.

The implementation of the TWO_FIELDS property as a graph constraint is arguably
the simplest to implement as we define a bad state pattern of a ghost that maintains two
on references to two different fields. Note that this pattern also encompasses bad states
where a ghost maintains more than two on references to different fields. In Gryphon, we
then test for unreachability of this bad state pattern. In Groove we negate the graph
constraint, which is equivalent to the one implemented for Gryphon, in the formula.
Note the inequality edge labeled with != between the two Field nodes. As Groove
uses a non-injective matching algorithm that may map two or more nodes of the same
type to a single node (of matching type) in the host graph, we need to either explicitly
state with inequality edges that the two (or more) nodes must be mapped to different
nodes in the host graph or, alternatively, enable the match injective property for a

104

TWO_FIELDS: No ghost may be assigned to two different fields at any point in time.

cOCL Always Globally ghosts->forAll(on->size()=1)

Gryphon

Groove AG !ghostOnTwoFields with ghostOnTwoFields =

ON_FIELD: Pacman and each ghost are always assigned to one field.

cOCL
Always Globally not pacman.on.oclIsUndefined() and

ghosts->forAll(on->size()=1)

Gryphon

Groove

AG ((pacmanOnField) & (ghostOnField)), where graph con-

straint pacmanOnField is defined as and graph

constraint ghostOnField is defined as
.

NEIGHBORS: A field has no more than four different neighbors.

cOCL fields->forAll(neighbors->size()<5)

Gryphon

Groove

AG !moreThanFourNeighbors, where moreThanFourNeighbors is de-

fined as

.
Note that we enable rule property match injective as this constraint
requires the matching algorithm to map nodes injectively.

Table 6.1: Invariant properties formulated for use in MocOCL, Gryphon, and Groove

105

GAME_OVER: The game ends if either Pacman found the treasure or if Pacman and a
ghost move to the same field.

cOCL
Always Globally (pacman.on.treasure or

ghosts->exists(g|g.on=pacman.on)) implies

Always Next false

Groove

AG !(pacmanOnTreasure | ghostOnPacman) | AX false, where graph
constraints pacmanOnTreasure and ghostOnPacman denote graphs

and
.

FAIR_MOVE: If the game is not over yet and Pacman resides on a field that has a neigh-
bor, he will move to this neighboring field at some point in the future.

cOCL

Always Globally not pacman.on.treasure and

ghosts->forAll(g|g.on<>pacman.on) implies

pacman.on.neighbors->

forAll(n|Exists Eventually pacman.on=n)

Groove —

Table 6.2: Safety and liveness properties formulated for use in MocOCL and Groove

transformation [166, p. 22] that switches the matching algorithm into injective node
mapping mode. The cOCL expression, in contrast, is arguably the more pragmatic
solution: we simply check whether the on reference points, at all times, to exactly one
field. For the implementation of the second property, named ON, in cOCL, we check
that Pacman is always placed on a field, i.e., its on reference is never undefined, and
reuse the cOCL expression of the first property to assert that all ghost’s on reference
points to exactly one field. In Gryphon, we implement the property with two bad
patterns and, similarly, we use two positively formulated graph constraints in Groove’s
implementation. The implementation in cOCL of the final property, named NEIGHBORS,
again exploits the size() function provided by OCL that all fields have no more than for
pointers to neighboring fields. In Gryphon and Groove, we explicitly model the bad
pattern that shall be unreachable, i.e., a field with five (or more) neighbors. Note that in
case of Groove we enable the injective matching algorithm via the match injective

property (see [166, p. 22]) instead of using ten inequality edges between the Field nodes.

Further, we analyze the following two properties that ensure that the game is rea-
sonably fair and that it terminates correctly.

• The game ends if either Pacman found the treasure or if Pacman and a ghost move
to the same field.

• If the game is not over yet and Pacman resides on a field that has a neighbor, he
will move to this neighboring field at some point in the future.

106

(a) pacmanOnFieldWithID(id) (b) pacmanOnNeighborOfFieldWithID(id)

Figure 6.4: Parameterized graph constraints for Groove’s FAIR_MOVE property

1 2

43

(a) 2x2 board

0 1

43

2

5

76 8

(b) 3x3 board (c) Large board

Figure 6.5: Game fields used in the performance evaluation

In Table 6.2, we list the implementation of these properties for MocOCL and
Groove. The implementations of the GAME_OVER property are similar in nature: first,
we check if Pacman found the treasure or a ghost found Pacman. Both of these con-
dition define a terminating state as they entail that Pacman either won or lost game,
respectively. Then, we ensure with AXfalse that there exists no follow-up state after
such a terminating state. For the cOCL implementation of the FAIR_MOVE property,
we first check whether the current state is a non-terminating state which implies that
Pacman should be able to move to one of his neighboring fields at some point in the fu-
ture. An implementation of this property in Groove was deemed impractical to realize
because Groove does not allow the direct passing of parameters to transformation or
graph constraints in CTL formulas yet. Otherwise, we could have formulated the prop-
erty as AG !(!pacmanOnTreasure & !ghostOnPacman) | (pacmanOnFieldX(id) & EF

pacmanOnNeighborOfFieldX(id)) where graph constraints pacmanOnTreasure and
ghostOnPacman are reused from the GAME_OVER implementation (see Table 6.2). More-
over, the implementation requires two parameterized graph constraints, pacmanOnField-
WithID(id) and pacmanOnNeigborOfFieldWithID(id). The first constraint matches
the field that Pacman currently occupies and stores its id value in the out-parameter
of the same name, while the second constraint checks whether Pacman occupies a field
which is a neighbor of the field whose id value is equal to the in-parameter of the same
name. Both of these constraints are depicted in Figure 6.4.

107

Groove MocOCL Gryphon
Total σ Total σ Total σ

T
W
O
_
F
I
E
L
D
S Large (0 ghosts)

2495 789.98 104 1.65 249 280.92
St: 36 Tr: 107

Large (1 ghosts)
4766 1507.69 5623 132.76 9232 191.72

St: 1269 Tr: 7381

Large (2 ghosts)
24564 7773.57 (TO) (TO) 86745 799.30

St: 25902 Tr: 209934

O
N
_
F
I
E
L
D

Large (0 ghosts)
2471 784.80 3142 23.97 558 286.91

St: 36 Tr: 107

Large (1 ghosts)
4760 1508.33 5603 222.87 8526 594.97

St: 1269 Tr: 7381

Large (2 ghosts)
24645 7800.45 (TO) (TO) 5648 150.01

St: 25902 Tr: 209934

N
E
I
G
H
B
O
R
S

Large (0 ghosts)
2512 797.44 3634 18.99 3877 24.83

St: 36 Tr: 107

Large (1 ghosts)
4817 1533.49 6270 294.26 3634 15.77

St: 1296 Tr: 7381

Large (2 ghosts)
24667 7805.50 (TO) (TO) 3651 24.89

St: 25902 Tr: 209934

G
A
M
E
_
O
V
E
R

Large (0 ghosts)
2483 788.67 116 0.82 — —

St: 36 Tr: 107

Large (1 ghosts)
4800 1519.17 149 0.96 — —

St: 1296 Tr: 7381

Large (2 ghosts)
24839 7868.44 772 124.02 — —

St: 25902 Tr: 209934

F
A
I
R
_
M
O
V
E

Large (0 ghosts)
— — 169 1.29 — —

St: 36 Tr: 107

Large (1 ghosts)
— — 12960 365.78 — —

St: 1296 Tr: 7381

Large (2 ghosts)
— — (TO) (TO) — —

St: 25902 Tr: 209934

Table 6.3: Pacman game benchmarks

Benchmark Results

For the performance evaluation we define three different initial states of varying board
sizes. These are depicted in Figure 6.5. The initial state depicted in Figure 6.5a is a
simple 2x2 game board with one ghost and one treasure field. Similarly, the initial state
shown in Figure 6.5b is a 3x3 game board with two ghosts, and barriers around the single
treasure field. The third board is a simplification of a real Pacman level with 32 fields,
seven treasure fields, and two ghosts. The runtime results are provided in Table 6.3.

6.2 The Dining Philosophers Problem

The Dining Philosophers problem was originally proposed by Dijkstra [52] and popu-
larized by Hoare [92] as a figurative example for mutual exclusion and synchronization
problems. In the problem’s setup a group of philosophers sits around a round table,
a plate in front of each of them, and a fork on each side of the plate. Each philoso-
pher requires two forks to commence eating. These forks, however, are shared with the
philosophers sitting to the left and to the right of each philosopher. In order to obtain

108

(a) EMF Model (b) Groove Model

Figure 6.6: Dining Philosophers Model

two forks, each philosopher transitions through a sequence of three states: thinking,
hungry, and eating. Once they finish eating they go back into thinking. The classical
specification proposed with the Dining Philosophers problem asserts whether the system
may run into a deadlock.

Modeling the Dining Philosophers Problem

The static structure of the Dining Philosophers Problem’s implementation follows the
described problem setup. A Table class acts as a container for forks and philosophers.
Each Philosopher is identified by an id and may be either in state thinking , hungry ,
or eating as defined by the PhilState enumeration. Further, each philosopher has a
left and right fork and the holds reference points to the fork(s) currently held by the
philosopher. Finally, each Fork is identified by an id. The resulting model implemented
in EMF and in Groove is shown in Figure 6.6. In contrast to the EMF model, the im-
plementation in Groove does not require a container object; hence, the Table has been
dropped from the Groove model. Further, since Groove does not support enumera-
tions, the state is realized as string-valued attribute. Although both the philosopher’s
and the fork’s id field do not provide immediate value in the construction of instance
models1 or graph transformations we retain the philosopher’s id field for the purpose
of simplifying the formulation of the specification (see below). Moreover, we introduce
two flags for the philosophers, hasLeft and hasRight, to indicate that left and the right
fork, respectively, have been picked up. The metamodel, i.e., the type graph, used for
the implementation of the graph transformation in Groove is depicted in Figure 6.6b.

The behavior of each philosopher is defined by four graph productions depicted in
Fig. 6.7. The transformation shown in Figure 6.7a rewrites the philosopher’s state

attribute to transition from the state thinking to state hungry . A hungry philosopher
needs to eat and attempts to acquire a left fork first; this is achieved by applying the
transformation displayed in Figure 6.7c that establishes hold reference between a hungry
philosopher and her left fork. If the philosopher already holds the left fork, the right
fork may be picked up and the state changes from hungry to eating . This transition is

1In case of the EMF model we employ the id to ease the construction of instance models.

109

(a) Get Hungry (b) Release Forks

(c) Get Left Fork (d) Get Right Fork & Eat

Figure 6.7: Graph Transformations for the Dining Philosophers implemented in Henshin

(a) Get Hungry (b) Get Left Fork

(c) Get Right Fork & Eat (d) Release Forks

Figure 6.8: Graph Transformations for the Dining Philosophers implemented in Groove

performed by the transformation depicted in Figure 6.7d that creates a holds reference
between a hungry philosopher and her right fork and changes her state from hungry to
eating provided that she already holds her left fork. Once the philosopher is done eat-
ing, the forks are put back on the table and the philosopher switches to state thinking
again; the corresponding transformation is shown in Figure 6.7b. This last transforma-
tion achieves the described effect by deleting all hold references between a philosopher
and her right and left forks and changes her state from eating to thinking .

110

SAME_FORK: No two philosophers hold the same fork.

cOCL
Always Globally philosophers->forAll(p1,p2|p1<>p2 implies

(not p1.holds->includes(p2.holds) and

not p2.holds->includes(p1.holds)))

Gryphon

Groove
AG !philsHoldSameFork where philsHoldSameFork is defined as

.

LEFT_RIGHT: If a philosopher holds a fork, its either her left or her right fork.

cOCL
Always Globally philosophers->

forAll(p|let left=p.left in let right=p.right in

p.holds->forAll(f|(f=left or f=right)))

Gryphon

Groove

AG !philHoldsWrongFork where philHoldsWrongFork is defined as

DEADLOCK: The philosophers do not deadlock.

cOCL
Always Globally not philosophers->

forAll(p|p.holds=Set{p.left})

Gryphon

Groove

AG !deadlock where deadlock is defined as

Table 6.4: Invariant properties formulated for use in MocOCL, Gryphon, and Groove

111

The non-injective implementation of the above described transformations in Groove
is shown in Figure 6.8. In Figure 6.8a, we observe that the implementation of the
GetHungry transformation in Groove visualizes updates to attributes destructively, i.e.,
the old attribute value “thinking” is deleted before the new attribute value “hungry” is
created. The implementation of the GetLeftFork transformation (Fig. 6.8b) establishes
a holds edge between the philosopher and her right fork and sets the hasLeft flag.
In contrast to the implementation in Henshin, the transformation in Groove requires
only one negative application condition as the forbidden pattern of a philosopher holding
the to-be-acquired fork may match any philosopher including the philosopher matched
by the LHS that tries to “acquire” the fork but might already hold it. In a similar
fashion, we exploit the non-injective matching of Groove in the GetRightForkAndEat
transformation (Fig. 6.8c), which also sets the hasRight flag on the philosopher. The
ReleaseForks transformation (Fig. 6.8d) clears the hasLeft and hasRight flags from the
philosopher but is otherwise equivalent to the implementation in Henshin (see Fig. 6.7b).

Specification

Similar to the Pacman game we identify the following invariants based on the rules that
define the Dining Philosophers Problem:

• The number of philosophers and the number of forks remain constant throughout
the game. Moreover, the number of forks placed on the tables is equal to number
of philosophers.

• No two philosophers hold the same fork.

• If a philosopher hold a fork, its either her left or her right fork.

• The philosophers do not deadlock.

In Table 6.4, we list the formulation of the above properties for MocOCL, Gry-
phon, and Groove. Again, we provide for each property an identifying keyword and
the natural language formulation followed by the implementation of the property either
as cOCL expression for MocOCL, as an invariant or bad property for Gryphon, or
a combination of CTL operators and graph constraints in case of Groove, which we
compare in the following.

While property SAME_FORK expressed in cOCL requires us to ensure that neither of
two philosophers holds a fork the other one has already acquired and vice versa, we
simply describe the undesired state as a graph constraint for Gryphon and Groove.
Note that due to Groove’s non-injective matching algorithm we need to ensure that
both philosophers in the graph constraint are mapped to two different philosophers
in the host graph. This is achieved by an inequality edge labeled with != between
the two philosophers. Similarly, for Groove’s implementation of property LEFT_RIGHT,
inequality edges are used to ensure that all three fork nodes are mapped to different forks
in the host graph. Finally, cOCL allows to formulate the DEADLOCK property succinctly

112

ACQUIRE_RIGHT: If a philosopher acquired a left fork, she will eventually acquire the
right fork, too.

cOCL
Always Globally philosophers->

forAll(p|(p.holds->includes(p.left) implies

Always Eventually p.holds=Set{p.left,p.right}))

Groove

AG (!p1HasLeft | AF p1HasLeftRight) & AG (!p2HasLeft

| AF p2HasLeftRight) & ... & AG (!pNHasLeft | AF

pNHasLeftRight) where N is the number of philosophers on
the table and pXHasLeft and pXHasLeftRight with X “ t1, . . . , Nu

are defined as and .

NO_STARVATION: Every philosopher will eventually eat.

cOCL
Always Globally philosophers->

forAll(p|Always Eventually p.status="eating")

Groove

AG AF p1Eating & AG AF p2Eating & ... & AG AF pNEating

where N is the number of philosophers on the table and pXEating

with X “ t1, . . . , Nu is defined as .

Table 6.5: Safety and liveness properties formulated for use in MocOCL and Groove

as it demands that the set of forks held by at least one philosopher is different from
the singleton set that contains only the left fork. By contrast, the implementation with
graph constraints hardly scales because the lack of a quantification operator requires to
model the deadlock state explicitly for five, seven, and nine philosophers.

In addition, we define the following properties that help us assess that every philoso-
pher will have a chance to eat:

• If a philosopher acquired a left fork, she will always acquire the right fork eventually,
too.

• Every philosopher will eat regularly.

The implementation of these properties in cOCL and Groove is given in Table 6.5.
Although both formulas check essentially for the same desired result state, i.e., either
whether a philosopher is eating or whether a philosopher has acquired her left and her
right fork, which entitles a philosopher to eat, the formulas are not equivalent. This
is because the first checks that all those philosophers, who acquired a left fork, will
eventually eat, i.e., hold their right fork, while it omits all those philosophers from the
starvation check that never even acquire a left fork. This is not the case with the second
formula. We further observe that the formulation in cOCL is more succinct than the

113

Groove MocOCL Gryphon
Total σ Total σ Total σ

S
A
M
E
_
F
O
R
K

5 Philosophers
3847 1224.65 1956 108.62 257 19.33

St: 573 Tr: 2365

7 Philosophers
14474 5186.04 41919 1232.53 526 35.00

St: 7269 Tr: 42007

9 Philosophers
49832 15793.60 (TO) (TO) 1004 75.98

St: 92205 Tr: 685089

W
R
O
N
G
_
F
O
R
K 5 Philosophers

3868 1233.49 934 6.51 242 7.68
St: 573 Tr: 2365

7 Philosophers
16233 5267.51 16747 254.55 467 9.37

St: 7269 Tr: 42007

9 Philosophers
50577 16011.30 (TO) (TO) 921 77.21

St: 92205 Tr: 685089

D
E
A
D
L
O
C
K

5 Philosophers
3816 1216.41 754 24.33 766 61.20

St: 573 Tr: 2365

7 Philosophers
15133 5129.01 13679 229.71 2621 231.79

St: 7269 Tr: 42007

9 Philosophers
49672 15758.90 (TO) (TO) 7401 2960.36

St: 92205 Tr: 685089

A
C
Q
U
I
R
E
_
R
I
G
H
T 5 Philosophers

3741 1193.87 353 2.98 — —
St: 573 Tr: 2365

7 Philosophers
14636 5463.19 12642 223.91 — —

St: 7269 Tr: 42007

9 Philosophers
49619 15775.10 64962 105.06 — —

St: 92205 Tr: 1112401

N
O
_
S
T
A
R
V
A
T
I
O
N 5 Philosophers

3840.2 1216.72 1366 54.61 — —
St: 573 Tr: 2365

7 Philosophers
14227 5463.19 1983 141.96 — —

St: 7269 Tr: 42007

9 Philosophers
49997 15853.70 35714 3346.73 — —

St: 92205 Tr: 685089

Table 6.6: Dining philosopher benchmarks

formulation with graph constraints, which require us to model each of desired conditions
of the formula explicitly.

Benchmark Results

For the benchmarks we use initial models with five, seven and nine thinking philosophers,
none of which holds a fork. Table 6.6 lists the results of the benchmarks. Cells that are
marked — indicate that the specific verification condition could not be executed by the
tool, while a timed out benchmark run is indicated by (TO).

6.3 Verification of Interlocking Railway Systems

The final benchmark targets the verification of interlocking railway systems and is in-
spired by the examples from [98]. A railway system is described by a scheme plan
that consists of a track plan, a control table, and a set of release tables as depicted in
Figure 6.9. The topology of the railway network is captured by the track plan, which
displays tracks and their lengths, e.g., AA (200m), entry and exit tracks, signals, e.g.,

114

ENTRY

S10

AA(200m)

P101

AB(50m)

BC(300m)

S112

BD(200m)

AC(300m)

S12

AD(200m)

P102

AE(50m) AF(500m) EXIT

Control Table

Route Normal Reverse Clear

R10A P101 AA, AB, AC, AD
R10B P101 AA, AB, BC, BD
R12 P102 AD, AE, AF
R112 P102 BD, AE, AF

Release tables
P101 Occupied P102 Occupied
R10A AC R12 AF
R10B BC R112 AF

Figure 6.9: Station scheme plan [98]

signal S12 on track AC, and points, e.g., P101. A route consists of a set of tracks, the
first of which may be entered if the guarding signal shows proceed. For example, route
R10A consists of tracks AA, AB, AC, and AD ; it may be entered if signal S10 on the
entry track shows green. The conditions that change the aspect of a signal from red to
green, thus allowing a train to pass and continue along the route, are provided by the
control table (see Fig. 6.9). Each row in the control table is associated with a route and
specifies the tracks that need to be cleared in order for a train to pass the signal guarding
the route. If the route passes a point, the control table specifies the required position of
the point. A point is locked either in normal position, leading the train straight ahead,
or in reverse position, in which case the train is routed to another line. For example,
route R10A is guarded by signal S10. In order for a train to travel along route R10A,
point P101 needs to be locked in normal position and tracks AA, AB, AC, and AD need
to be cleared. On the other hand, if a train intends to travel along route R10B, also
guarded by signal S10, point P101 needs to be locked in reverse position and tracks AA,
AB, BC, and BD need to be cleared.

A train is required to obtain a lock on a point prior to passing it and is required to
release it after traversing the point. The release table that is associated with a point
specifies the track, where a train must release the acquired lock. For example, a train
traveling along route R10A is required to release the lock obtained for point P101 upon
reaching track AC. Note that a release table for a point always contains two release
track entries, one for the route traveling over the point in normal position and one for
the route traveling over the point in reverse position.

Following this setup, the authors of [98] model a railway system consisting of at least

115

four components, the controller, the interlocking, the track equipment, and the trains.
The controller is tasked with requesting and releasing routes, the interlocking monitors
the track equipment and mediates between the controller and the trains, whose behavior
is defined by the actions of the driver [98]. The verification of the railway system then
centers around three safety properties:

• collision freedom prohibits two trains occupying the same track;

• no-derailment demands that a point does not change position while being occupied
by a train;

• run-through requires a point to be set in position as specified by the control table
for the specific route when a train is about to enter the point.

Modeling an Interlocking Railway System

In addition to the assumption that the train equipment operates correctly and reacts
instantly [98], we introduce the following simplifications:2

S1 Train lengths are assumed to be shorter than the track lengths.

S2 Consecutive routes are joined together on their overlapping tracks thus producing
routes that run from an entry to an exit track. For example, routes R10A and R12
are joined together to produce a single route AA, AB, AC, AD, AE, AF.

S3 A route is statically assigned to each train. This assignment does not change over
the lifetime of the train.

S4 Trains enter the railway network through entry tracks and leave through exit tracks.
Multiple trains are allowed on both entry and exit tracks.

S5 A train, or its driver, may decide to either pass or halt in front of a green signal
deliberately. A driver, however, may not overrun a stop signal onto the overlap
track.

S6 All trains move at the same speed and track lengths are omitted from the imple-
mentation and analysis.

Due to simplifications S2 and S3 we essentially omit the controller from our representa-
tion of the railway system. The structures of our EMF and Groove implementations
are shown in Figure 6.10. A RailwaySystem consists of set of routes, a set of trains, and
a set of track elements. A train may occupy a track element and is assigned a fixed route.
In case it must pass a point, a train can obtain a lock for that point. A TrackElement

is either an ordinary Track, an Entry or an Exit track, or a Point. A track element
may contain a signal and can have zero or more follow up tracks, given by the next

2Note that this simplifications are not due to limitations of our modeling approach and will be
gradually eliminated to obtain a more faithful representation of the real-world scenario in the future.

116

RailwaySystem

Train

TrackElement
id : EString

Track

Point
pos : Position

Entry

Exit

Signal
id : EString

Route

SignalControl
reqPos : Position

Lock

<<enumeration>>
Position

NORMAL
REVERSE

trains
0..*

tracks

0..*

routes
0..*route 1

occupies

0..1

holds
0..*

next 0..*

signal
0..1

lock1

tracks
0..*

controls
0..*signal

1

point0..1

clear
0..*

release1..*

id : EString

(a) EMF (b) Groove

Figure 6.10: Railway System

reference. More specifically, an Exit track has no follow-up tracks, and all other track
elements have exactly one follow-up track, except for points, which have two. Note that
these restrictions are neither enforced by the model nor by OCL constraints, but are
implemented as safety properties and verified with the model checker. As will become
apparent from the definition of the graph transformations that model the behavior of
the interlocking and the trains the validity of these constraints can be deduced statically
provided that the initial model was correct. A Route consists of a set of tracks and for
each signal along a route it contains a signal control. A SignalControl is thus associ-
ated with a signal and, if the signal guards a point, the signal links to this point and
stores the position required for a train to pass the point to continue its route. Note that
the implementation in Groove differs only in the type of the position (pos) attribute
of the Point class, which is string valued in Groove and enumeration based in EMF.

A RailwaySystem is deemed consistent if it satisfies the following consistency con-
straints:

• Every route starts at an entry track and leads to an exit track.

• A route has exactly one signal control for each signal that is positioned at one of
the route’s tracks.

• An exit track has no next track set, an entry track and a (normal) track have
exactly one next track set, and a point has exactly two next tracks set.

The behavior of the interlocking and the trains is implemented by the graph trans-
formations depicted in Figure 6.11 and in Figure 6.12. The EnterTrain transformation
places a train on an entry track if the train does not occupy a track element already.

117

Rule enterTrain

«preserve»
:Entry

«preserve»
:Train

«forbid»
:TrackElement

occupies
«forbid»

occupies
«create»

(a) EnterTrain

Rule exitTrain

«preserve»
:Train

«preserve»
:Exit

occupies
«delete»

(b) ExitTrain

Rule releaseLock

«preserve»
:Train

«preserve»
:Lock

«preserve»
:TrackElement

holds
«delete»

release
«preserve»

occupies
«preserve»

(c) ReleaseLock

Rule acquireLock(p1, p2)

«preserve»
:Train

«preserve»
:TrackElement

«preserve»
:Signal

«preserve»
:Route

«preserve»
:SignalControl

reqPos=p1

«preserve»
:Point

pos=p2->p1

«preserve»
:Lock

«forbid»
:Train

controls
«preserve»

lock
«preserve»

signal
«preserve»

point
«preserve»

route
«preserve»

holds

«forbid»

holds
«create»

sig«preserve»

occupies
«preserve»

(d) AcquireLock

Rule moveTrainPastSignal

«preserve»
:TrackElement

«preserve»
:Signal

«preserve»
:Train

«preserve»
:TrackElement

«preserve»
:Route «preserve»

:SignalControl

«forbid#1»
:Point

«forbid#2»
:TrackElement

«forbid#2»
:Train

«forbid#3»
:Lock

point
«forbid#1»

signal
«preserve»

controls

«preserve»

clear
«forbid#2»

tracks
«preserve»

release
«forbid#3»

route
«preserve»

next
«preserve»

sig«preserve»

occupies
«delete»

occupies
«create»

occupies
«forbid#2»

holds
«forbid#3»

tracks
«preserve»

(e) MoveTrainPastSignal

Rule moveTrain

«preserve»
:TrackElement

«preserve»
:TrackElement

«preserve»
:Train

«preserve»
:Route«forbid#1»

:Signal

«forbid#2»
:Lock

tracks
«preserve»

occupies
«create»

holds
«forbid#2»

route
«preserve»release

«forbid#2»

tracks
«preserve»

signal
«forbid#1»

occupies
«delete»

next
«preserve»

(f) MoveTrain

Rule moveTrainPastPointSignal

«preserve»
:Signal

«preserve»
:TrackElement

«preserve»
:TrackElement

«preserve»
:Train

«preserve»
:Route «preserve»

:SignalControl

«preserve»
:Point

«preserve»
:Lock

«forbid#1»
:TrackElement

«forbid#1»
:Train

«forbid#2»
:Lock

route
«preserve»

tracks
«preserve» point

«preserve»

clear
«forbid#1»

occupies
«create»

tracks
«preserve»

next
«preserve»

signal
«preserve»

holds
«preserve»

sig
«preserve»

lock
«preserve»

occupies
«delete»

controls

«preserve»

occupies
«forbid#1»

holds
«forbid#2»

release
«forbid#2»

(g) MoveTrainPastPointSignal

Figure 6.11: Behavior of the interlocking and train components modeled with Henshin

Similarly, the ExitTrain transformation removes a train from an exit track. If a train
occupies a track (element) that contains a signal guarding a point, the train is required
to acquire a lock on the point. In this case the AcquireLock transformations is applicable,
and, if not taken by any other train, assigns the lock to the requesting train. Moreover,
it changes the position of the point, for which the lock is to be acquired, according to

118

(a) EnterTrain (b) ExitTrain (c) ReleaseLock

(d) AcquireLock (e) MoveTrainPastSignal

(f) MoveTrain (g) MoveTrainPastPointSignal

Figure 6.12: Behavior of the interlocking and train components modeled with Groove

the position requirement of the route (as defined by the signal control). Note that the
Henshin implementation of the AcquireLock transformation (Fig. 6.11d) declares two
parameters, p1 and p2, which are bound to the values of the reqPos (required position)
attribute of the matched SignalControl object and the pos (position) attribute of the
matched Point object, respectively. The expression p1->p2 rewrites the pos attribute to
the value held by p2. Similarly, the Groove implementation of the AcquireLock trans-
formation (Fig. 6.12d) deletes the current value of the pos attribute and rewrites it to the
value held by the reqPos attribute by creating a reference to that value. Once the train
has acquired the lock, it may pass the point and, upon reaching the release track, the
lock is freed through the ReleaseLock transformation. The movement of trains through
the railway network is implemented by three transformations, MoveTrain, MoveTrain-
PastSignal, and MoveTrainPastPointSignal. A train may only move if it is not on a

119

release track of a lock that the train holds. In case, no signal guards the tracks ahead
of the train the train may move to the next track along the route. In all other cases, the
conditions of the transformations MoveTrainPastSignal and MoveTrainPastPointSignal
need to be satisfied. A train may move past a signal only if all guarded tracks are clear
of other trains. If, in addition, the signal guards a point the train may only move past
the signal if the required lock has been acquired. Note that all but the EnterTrain trans-
formation (Fig. 6.11a and Fig. 6.12a) and the AcquireLock transformation (Fig. 6.11d
and Fig. 6.12d) are matched injectively.

Finally, we define a safe initial state where every train is assigned a fixed route but
does not occupy any track, all signals are set to red, each point is in normal position,
and no locks are allocated [98]. The initial state as implemented in Groove is depicted
in Figure 6.13. For the sake of readability we have grayed out all tracks edges leading
from a route to its track elements.

Specification

Based on the three safety properties, collision freedom, no derailment, and run through,
introduced at the beginning of this section we formulate the following specification.

• No two trains occupy the same point or track at the same time.

• Whenever a train occupies a point, the point is set in position for the train to
continue its route accordingly.

• Whenever a point lies directly ahead of a train, the point is set in position for the
train to continue its route accordingly.

The implementation of this specification is provided in Tables 6.7 and 6.8. The
implementation of the first property, COLLISION_FREE, checks whether two different
trains are located on the same track or point. While the cOCL expression uses type
checks and casts to test for the type of the track element the train currently occupies, the
graph constraints use two different patterns that test for the presence of the undesired
state, i.e., a collision on a track or a point. For the NO_DERAILMENT property, the
implementation in cOCL is again formulated positively, that is, it checks, provided that
the train occupies a point, whether the position of the point coincides with the position
required by the route as given by the signal control. The graph constraints, on the
other hand, match the undesired state as their pattern searches for an instance of the
railway system, where a train occupies an oppositely positioned point than required by
the route. Finally, the RUN_THROUGH property checks whether a point is positioned such
that the approaching train that occupies the track element just ahead of the point can
pass, i.e., run through, and continue its route. Thus, the property’s implementations are
similar to those of the NO_DERAILMENT property with the only difference that the check
of whether the point is positioned correctly is performed just before the train enters the
point.

120

F
ig

u
re

6
.1

3:
In

itia
l

state
of

th
e

station
sch

em
e

p
lan

w
ith

fou
r

train
s

m
o
d

eled
w

ith
G
r
o
o
v
e

121

COLLISION_FREE: No two trains occupy the same point or track at the same time.

cOCL

Always Globally trains->forAll(t1,t2| t1<>t2 implies

((t1.occupies.oclIsTypeOf(Track) or

t1.occupies.oclIsTypeOf(Point)) implies

t1.occupies <> t2.occupies))

Gryphon

Rule bad_CollisionOnTrack

«preserve»
:Track

«preserve»
:Train

«preserve»
:Train

occupies
«preserve»

occupies
«preserve»

Rule bad_CollisionOnPoint

«preserve»
:Point

«preserve»
:Train

«preserve»
:Trainoccupies

«preserve»
occupies

«preserve»

Groove

AG !(collisionOnTrack | collisionOnPoint) where graph con-
straint collisionOnTrack and collisionOnPoint are defined as

and .

NO_DERAILMENT: Whenever a train occupies a point, the point is set in position for
the train to continue its route accordingly.

cOCL

Always Globally trains->forAll(t|

t.occupies.oclIsTypeOf(Point) implies

(let p=t.occupies.oclAsType(Point),

c=t.route.controls->select(c|c.point=p)->first() in

p.pos = c.reqPos))

Gryphon

Rule bad_Derailment(posVal, reqPosVal)

«preserve»
:Train

«preserve»
:Point

pos=posVal

«preserve»
:Route

«preserve»
:SignalControl

reqPos=reqPosVal

posVal!=reqPosVal point
«preserve»

controls

«preserve»

tracks

«preserve»
route
«preserve»

occupies

«preserve»

Groove

AG !derailment where graph constraint derailment is defined as

.

Table 6.7: The implementations of the COLLISION_FREE and the NO_DERAILMENT prop-
erties

122

RUN_THROUGH: Whenever a point lies directly ahead of a train, the point is set in
position for the train to continue its route accordingly.

cOCL

Always Globally trains->forAll(t|t.occupies<>null and

t.occupies.next->first().oclIsTypeOf(Point) implies

(let p=t.occupies.next->first().oclAsType(Point),

c=t.route.controls->select(c|c.point=p)->first() in

p.pos = c.reqPos))

Gryphon

Rule bad_PointBlocked(posVal, reqPosVal)

«preserve»
:Train

«preserve»
:Point

pos=posVal

«preserve»
:Route

«preserve»
:SignalControl

reqPos=reqPosVal

«preserve»
:TrackElement

posVal!=reqPosVal

next
«preserve»

point
«preserve»

tracks«preserve»

occupies
«preserve»

route
«preserve»

tracks
«preserve»

controls
«preserve»

Groove

AG !pointBlocked where graph constraint pointBlocked is defined

as .

Table 6.8: The implementation of the RUN_THROUGH property

Benchmark Results

For the performance evaluation we use the implementation of the station scheme plan
that is depicted in Figure 6.9. We define four different initial states that instantiate the
implementation with four, six, eight, and ten trains, and each route is assigned two, three,
four, or five trains, respectively. The track plan of the station with four trains is depicted
in Figure 6.13. Note that the benchmark did not complete correctly with MocOCL
which, at the moment, cannot handle OCL’s type checks (oclIsTypeOf(...)) and
type casts (oclAsType(...)).

6.4 Summary

In this chapter we presented three benchmarks of varying complexity and compared
the runtimes of our model checkers MocOCL and Gryphon against Groove [106], a
state-of-the-art modeling and verification tool for graph transformations. The intended
contribution of this chapter is thus twofold. First, we provide an initial yet extensible set
of benchmark problems that progress from structurally and behaviorally simple models
to more complex, real-world inspired setups. We thus hope that others will find this
initial set of benchmarks a useful starting point for their own comparisons and testing
purposes. Second, we implement and discuss the implementation of each of the three
benchmarks and compare the average runtimes of Groove, MocOCL, and Gryphon.

In summary, we point out that, although all of the compared tools target the verifi-

123

Groove MocOCL Gryphon
Total σ Total σ Total σ

N
O
_
C
O
L
L
I
S
I
O
N

4 Trains
7079 3084.97 — — 17280 1518.07

St: 2314 Tr: 7836

6 Trains
14282 4572.39 — — 44894 2638.09

St: 9642 Tr: 46770

8 Trains
39358 12581.90 — — 94725 7088.43

St: 27580 Tr: 174674

10 Trains
103639 32781.70 — — 186877 16257.54

St: 63352 Tr: 495854

N
O
_
D
E
R
A
I
L
M
E
N
T

4 Trains
7427 3559.91 — — 9778 507.26

St: 2314 Tr: 7836

6 Trains
14451 4623.55 — — 19116 2091.32

St: 9642 Tr: 46770

8 Trains
39710 12578.50 — — 33089 2959.80

St: 27580 Tr: 174674

10 Trains
103601 32788.70 — — 57593 5798.69

St: 63352 Tr: 495854

R
U
N
_
T
H
R
O
U
G
H

4 Trains
6254 2463.17 — — 11472 780.74

St: 2314 Tr: 7836

6 Trains
14323 4636.48 — — 21937 2562.94

St: 9642 Tr: 46770

8 Trains
39659 12667.40 — — 37871 3043.84

St: 27580 Tr: 174674

10 Trains
104260 33008.30 — — 68068 7207.89

St: 63352 Tr: 495854

Table 6.9: Railway system benchmarks

cation of graph transformation systems, each tool provides distinct features that might
lead a developer to choose one of the tools over the others despite its running times.
Clearly, Groove offers the most stable platform of the three tools and provides consis-
tent verification and runtime results. Although it explores the entire state space it does
not run into memory outages as MocOCL does. On the other hand, MocOCL was
not intended to perform efficiently and optimizations have yet to be integrated. Its fo-
cus, however, lies on the verification of an expressive specification language. In contrast,
Gryphon’s focus is scalability and speed at the expense of a reduced set of specifications
that it may verify.

124

CHAPTER 7
Conclusion

In this dissertation I present techniques to assert the behavioral correctness of model-
driven software development artifacts and introduce two novel model checkers, MocOCL
and Gryphon. As such the dissertation comprises three contributions:

(i) an in-depth survey and a classification of existing, state-of-the-art verification ap-
proaches that verify the behavior of a set of model-driven software development
artifacts against its specification,

(ii) an explicit state model checker, called MocOCL, that verifies expression written
in cOCL, a novel CTL based extension of OCL, against an implementation whose
static structure is described by type graphs and whose behavior is defined by graph
transformations, and, third,

(iii) a new symbolic model checker, called Gryphon, that encodes a model based soft-
ware implementation consisting of a type graph and a set of graph transformations
into bounded, first-order relational logic to assert the unreachability of a bad state.

Our survey encompasses more than forty different verification approaches that we classify
along five dimensions: verification goal, domain representation, verification representa-
tion, specification language, and verification technique. With this classification we hope
to assist practitioner to select an adequate verification approach for their verification
problem and, on the other hand, identify viable inputs and directions for future research
by identifying white spots in the research landscape.

With MocOCL we presented a novel approach to verify rich, temporal specifications
directly at the level of models. For this purpose we present formal syntax and semantics
of cOCL, a CTL-extension for OCL, that allows to formulate temporal OCL specifica-
tions. These cOCL specifications can be verified with MocOCL against a system whose
static structure is defined attributed, type graphs with inheritance and containment re-
lations and whose behavior is captured by a set of graph transformations. It performs

125

an iterative exploration of the state space, that it stores explicitly, starting from the
user-provided initial state and verifies the cOCL specification on-the-fly; once the state
space has been explored up to the point that the specification is either found to hold or
not MocOCL reports the cause of the result on demand.

Finally, in an effort to raise the scalability of our verification technique work on a
symbolic model checker, called Gryphon, was initiated with the aim to efficiently verify
properties of the form AG φ where φ denotes a bad state of the system. Similar to
MocOCL, our symbolic model checker receives as input an attributed, type graph with
inheritance and containment relations and a set of graph transformations that describe
structure and behavior of the system, respectively. The verification requires, in addition,
an initial state and a set of upper bounds on the maximal number of objects per class
to ensure that the resulting state space is finite. The specification, i.e. the bad state
of the system, is defined in terms of graph constraint, i.e., a graph transformation with
identical left-hand and right-hand side. The inputs are first encoded into bounded,
first-order relational logic and subsequently in a series of three steps converted into the
AIGER format, which is the standardized input format of the Hardware Model Checking
Competition. Thus, Gryphon is able to directly exploit advances in industrial grade
model checkers.

Future Work

In the following I list exemplarily two possible future extensions for the above summa-
rized contributions.

Classification and Future Trends. The world of verification techniques is neither
black nor white and it is sometimes not readily apparent whether a verification approach
that incorporates an automatic verification engine like an SMT solver qualifies as model
checking based approach or a theorem proving based approach or both. Currently, the
classification presented in Chapter 3.2 cannot adequately categorize such verification
approaches. In the future we expect, however, that verification approaches for software,
and model-driven software development artifacts in particular, will integrate different
verification techniques, that were formerly developed in isolation of each other. In order
to reflect this change in the classification, we intend to adopt it to distinguish in the
future between automatic, semi-automatic, and interactive verification techniques.

Incremental Evaluation of OCL Expressions. Currently, MocOCL checks sub-
expression of a cOCL expression in every state of the system regardless whether parts
relevant to the checked expression have changed or not. Given that the information
on what has changed is readily derivable from the source graph and the applied graph
transformation the re-evaluation of a cOCL expression could be optimized in this respect.
Work on the incremental evaluation of OCL expression has been previously presented
in [16,39,76].

126

Bibliography

[1] Lukman Ab. Rahim and Jon Whittle. A survey of approaches for verifying model
transformations. Software and System Modeling, pages 1–26, 2013.

[2] Bowen Alpern and Fred B. Schneider. Recognizing Safety and Liveness. Distributed
Computing, 2(3):117–126, 1987.

[3] Moussa Amrani, Jürgen Dingel, Leen Lambers, Levi Lúcio, Rick Salay, Gehan
Selim, Eugene Syriani, and Manuel Wimmer. Towards a model transformation
intent catalog. In Proceedings of the First Workshop on the Analysis of Model
Transformations, AMT ’12, pages 3–8, New York, NY, USA, 2012. ACM.

[4] Moussa Amrani, Levi Lúcio, Gehan M. K. Selim, Benôıt Combemale, Jürgen Din-
gel, Hans Vangheluwe, Yves Le Traon, and James R. Cordy. A Tridimensional
Approach for Studying the Formal Verification of Model Transformations. In Giu-
liano Antoniol, Antonia Bertolino, and Yvan Labiche, editors, Proceedings of the
Fifth International Conference on Software Testing, Verification, and Validation,
pages 921–928, Washington, DC, USA, 2012. IEEE Computer Society.

[5] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray.
UML2Alloy: A Challenging Model Transformation. In Gregor Engels, Bill Opdyke,
Douglas C. Schmidt, and Frank Weil, editors, Model Driven Engineering Languages
and Systems, volume 4735 of LNCS, pages 436–450, Heidelberg, Germany, 2007.
Springer.

[6] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele
Taentzer. Henshin: Advanced Concepts and Tools for In-Place EMF Model Trans-
formations. In Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen, editors,
Model Driven Engineering Languages and Systems, volume 6394 of LNCS, pages
121–135, Heidelberg, Germany, 2010. Springer.

[7] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Uni-
versity Press, New York, NY, USA, 1998.

[8] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
Cambridge, MA, USA, 2008.

127

[9] Daniel Balasubramanian, Corina Pasareanu, Gabor Karsai, and Michael Lowry.
Polyglot: Systematic Analysis for Multiple Statechart Formalisms. In Nir Piter-
man and Scott A. Smolka, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 7795 of LNCS, pages 523–529, Heidelberg, Germany,
2013. Springer.

[10] Paolo Baldan, Andrea Corradini, and Barbara König. A Static Analysis Tech-
nique for Graph Transformation Systems. In Kim Guldstrand Larsen and Mogens
Nielsen, editors, CONCUR 2001 — Concurrency Theory, volume 2154 of LNCS,
pages 381–395, Heidelberg, Germany, 2001. Springer.

[11] Luciano Baresi, Vahid Rafe, Adel Torkaman Rahmani, and Paola Spoletini. An
efficient solution for model checking graph transformation systems. Electr. Notes
Theor. Comput. Sci., 213(1):3–21, 2008.

[12] Luciano Baresi and Paola Spoletini. On the Use of Alloy to Analyze Graph Trans-
formation Systems. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila
Ribeiro, and Grzegorz Rozenberg, editors, Graph Transformations, volume 4178
of LNCS, pages 306–320, Heidelberg, Germany, 2006. Springer.

[13] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification, volume
6806 of LNCS, pages 171–177, Heidelberg, Germany, 2011. Springer.

[14] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer, London, UK,
2008.

[15] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Pe-
tit, Laure Petrucci, and Philippe Schnoebelen. Systems and software verification:
model-checking techniques and tools. Springer, Heidelberg, Germany, 2001.

[16] Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán Ujhelyi, and
Dániel Varró. Integrating Efficient Model Queries in State-of-the-Art EMF Tools.
In Carlo A. Furia and Sebastian Nanz, editors, Objects, Models, Components,
Patterns - 50th International Conference, TOOLS 2012, Prague, Czech Republic,
May 29-31, 2012. Proceedings, volume 7304 of Lecture Notes in Computer Science,
pages 1–8. Springer, 2012.

[17] Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term rewriting sys-
tems, volume 55 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, New York, NY, USA, 2003.

[18] Vieri Del Bianco, Luigi Lavazza, and Marco Mauri. Model Checking UML Specifi-
cations of Real Time Software. In Proceedings of the Eighth International Confer-
ence on Engineering of Complex Computer Systems, pages 203–212, Washington,
DC, USA, 2002. IEEE Computer Society.

128

[19] Armin Biere. The AIGER And-Inverter Graph (AIG) Format Version 20071012.
http://fmv.jku.at/aiger/FORMAT, 2007.

[20] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In Rance Cleaveland, editor, Tools and Algorithms
for Construction and Analysis of Systems, volume 1579 of LNCS, pages 193–207,
Heidelberg, Germany, 1999. Springer.

[21] Armin Biere and Keijo Heljanko. Hardware Model Checking Competition 2014
CAV Edition. http://fmv.jku.at/hwmcc14cav/hwmcc14olympics.pdf, 2014.

[22] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and Beyond. http:
//fmv.jku.at/hwmcc11/beyond1.pdf, July 2011.

[23] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Lifting Parallel Graph
Transformation Concepts to Model Transformation based on the Eclipse Modeling
Framework. ECEASST, 26, 2010.

[24] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foundation of
consistent EMF model transformations by algebraic graph transformation. Soft-
ware and System Modeling, 11(2):227–250, 2012.

[25] Robert Bill. Towards Software Model Checking in the Context of Model-Driven
Engineering. Master’s thesis, E188 Institut für Softwaretechnik und Interaktive
Systeme, 2014. Supervisor: G. Kappel, P. Kaufmann, S. Gabmeyer.

[26] Robert Bill, Sebastian Gabmeyer, Petra Brosch, and Martina Seidl. MocOCL: A
Model Checker for CTL-Extended OCL Specifications. In Proceedings of the STAF
Workshop on Verification of Model Transformations (VOLT 2014), 2014. Available
at: http://volt2014.big.tuwien.ac.at/papers/volt2014_paper_4.pdf.

[27] Robert Bill, Sebastian Gabmeyer, Petra Kaufmann, and Martina Seidl. OCL
meets CTL: Towards CTL-Extended OCL Model Checking. In Jordi Cabot, Martin
Gogolla, István Ráth, and Edward D. Willink, editors, Proceedings of the MODELS
2013 OCL Workshop, volume 1092 of CEUR Workshop Proceedings, pages 13–22,
Aachen, Germany, 2013. CEUR-WS.org.

[28] Robert Bill, Sebastian Gabmeyer, Petra Kaufmann, and Martina Seidl. Model
checking of ctl-extended OCL specifications. In Benôıt Combemale, David J.
Pearce, Olivier Barais, and Jurgen J. Vinju, editors, Software Language Engi-
neering - 7th International Conference, SLE 2014, Väster̊as, Sweden, September
15-16, 2014. Proceedings, volume 8706 of LNCS, pages 221–240, Heidelberg, Ger-
many, 2014. Springer.

[29] Egon Börger and Robert F. Stärk. Abstract State Machines. A Method for High-
Level System Design and Analysis. Springer, Heidelberg, Germany, 2003.

129

http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/hwmcc14cav/hwmcc14olympics.pdf
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://volt2014.big.tuwien.ac.at/papers/volt2014_paper_4.pdf

[30] Artur Boronat, Reiko Heckel, and José Meseguer. Rewriting Logic Semantics and
Verification of Model Transformations. In Marsha Chechik and Martin Wirsing,
editors, Fundamental Approaches to Software Engineering, volume 5503 of LNCS,
pages 18–33, Heidelberg, Germany, 2009. Springer.

[31] Artur Boronat and José Meseguer. Algebraic Semantics of OCL-Constrained Meta-
model Specifications. In Manuel Oriol and Bertrand Meyer, editors, Objects, Com-
ponents, Models and Patterns, volume 33 of Lecture Notes in Business Information
Processing, pages 96–115, Heidelberg, Germany, 2009. Springer.

[32] Artur Boronat and José Meseguer. An algebraic semantics for MOF. Formal Asp.
Comput., 22(3-4):269–296, 2010.

[33] Julian C. Bradfield, Juliana Küster Filipe, and Perdita Stevens. Enriching OCL
Using Observational Mu-Calculus. In Ralf-Detlef Kutsche and Herbert Weber,
editors, Fundamental Approaches to Software Engineering, volume 2306 of LNCS,
pages 203–217, Heidelberg, Germany, 2002. Springer.

[34] Julian C. Bradfield and Perdita Stevens. Observational mu-calculus. BRICS Re-
port Series. BRICS, Department of Computer Science, Univ. of Aarhus, Aarhus,
Denmark, 1999.

[35] Achim D. Brucker, Frédéric Tuong, and Burkhart Wolff. Featherweight OCL: A
Proposal for a Machine-Checked Formal Semantics for OCL 2.5. Archive of Formal
Proofs, 2014, 2014.

[36] Achim D. Brucker and Burkhart Wolff. Featherweight OCL: a study for the consis-
tent semantics of OCL 2.3 in HOL. In Mira Balaban, Jordi Cabot, Martin Gogolla,
and Claas Wilke, editors, Proceedings of the 12th Workshop on OCL and Textual
Modelling, Innsbruck, Austria, September 30, 2012, pages 19–24. ACM, 2012.

[37] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[38] Fabian Büttner, Marina Egea, Jordi Cabot, and Martin Gogolla. Verification of
ATL Transformations Using Transformation Models and Model Finders. In Toshi-
aki Aoki and Kenji Taguchi, editors, Formal Methods and Software Engineering,
volume 7635 of LNCS, pages 198–213, Heidelberg, Germany, 2012. Springer.

[39] Jordi Cabot and Ernest Teniente. Incremental integrity checking of UML/OCL
conceptual schemas. Journal of Systems and Software, 82(9):1459–1478, 2009.

[40] Daniel Calegari and Nora Szasz. Verification of Model Transformations. Electr.
Notes Theor. Comput. Sci., 292:5–25, March 2013.

[41] Edward Chang, Zohar Manna, and Amir Pnueli. The Safety-Progress Classifica-
tion. In FriedrichL. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors,

130

Logic and Algebra of Specification, volume 94 of NATO ASI Series, pages 143–202.
Springer, Heidelberg, Germany, 1993.

[42] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchroniza-
tion Skeletons Using Branching-Time Temporal Logic. In Dexter Kozen, editor,
Logics of Programs, volume 131 of LNCS, pages 52–71, Heidelberg, Germany, 1981.
Springer.

[43] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM, 50(5):752–794, 2003.

[44] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking ANSI-
C Programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 2988 of LNCS, pages 168–
176, Heidelberg, Germany, 2004. Springer.

[45] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-
Performance Logical Framework: How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of LNCS, Heidelberg, Germany, 2007. Springer.

[46] The Coq Proof Assistant. http://coq.inria.fr/, 2012. Accessed 2015-05-20.

[47] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,
and Michael Löwe. Algebraic Approaches to Graph Transformation - Part I: Basic
Concepts and Double Pushout Approach. In Rozenberg [173], pages 163–246.

[48] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi, editors,
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 238–252, New York, NY, USA, 1977. ACM.

[49] Cve.mitre.org. CVE-2014-0160. https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2014-0160, April 2014.

[50] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[51] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for Con-
struction and Analysis of Systems, volume 4963 of LNCS, pages 337–340, Heidel-
berg, Germany, 2008. Springer.

[52] Edsger W. Dijkstra. Cooperating sequential processes, ewd 123. https://www.

cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html.

131

http://coq.inria.fr/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

[53] Edsger W. Dijkstra. The Humble Programmer. Commun. ACM, 15(10):859–866,
1972.

[54] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation
of Programs. Commun. ACM, 18(8):453–457, August 1975.

[55] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. On a Temporal Logic
for Object-Based Systems. In Scott F. Smith and Carolyn L. Talcott, editors,
Formal Methods for Open Object-Based Distributed Systems IV, volume 49 of IFIP
Advances in Information and Communication Technology, pages 305–325, New
York, NY, USA, 2000. Springer US.

[56] Wei Dong, Ji Wang, Xuan Qi, and Zhichang Qi. Model Checking UML Statecharts.
In Proceedings of the Eighth Asia-Pacific Software Engineering Conference, pages
363–370, Washington, DC, USA, 2001. IEEE Computer Society.

[57] Jori Dubrovin and Tommi A. Junttila. Symbolic model checking of hierarchical
uml state machines. In Jonathan Billington, Zhenhua Duan, and Maciej Koutny,
editors, Proceedings of the Eighth International Conference on Application of Con-
currency to System Design, pages 108–117, Washington, DC, USA, 2008. IEEE.

[58] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Com-
puter Aided Verification - 26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 737–744.
Springer, 2014.

[59] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Prop-
erty Specifications for Finite-State Verification. In Barry W. Boehm, David Gar-
lan, and Jeff Kramer, editors, Proceedings of the 21st International Conference on
Software Engineering, pages 411–420, New York, NY, USA, 1999. ACM.

[60] Eclipse.org. Package org.eclipse.emf.ecore JavaDoc. http://download.eclipse.

org/modeling/emf/emf/javadoc/2.9.0/index.html?org/eclipse/emf/ecore/

package-summary.html. Retrieved 2015-05-20.

[61] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing,
volume 2919 of LNCS, pages 502–518, Heidelberg, Germany, 2003. Springer.

[62] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation (Monographs in Theoretical Computer
Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[63] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, edi-
tors. Graph Transformations - 6th International Conference, ICGT 2012, Bremen,

132

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/index.html?org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/index.html?org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/index.html?org/eclipse/emf/ecore/package-summary.html

Germany, September 24-29, 2012. Proceedings, volume 7562 of LNCS, Heidelberg,
Germany, 2012. Springer.

[64] Hartmut Ehrig and Claudia Ermel. Semantical Correctness and Completeness of
Model Transformations Using Graph and Rule Transformation. In Ehrig et al. [65],
pages 194–210.

[65] Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, edi-
tors. Graph Transformations, 4th International Conference, ICGT 2008, Leices-
ter, United Kingdom, September 7-13, 2008. Proceedings, volume 5214 of LNCS,
Heidelberg, Germany, 2008. Springer.

[66] Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in the dpo
approach to graph rewriting with borrowed contexts. Mathematical Structures in
Computer Science, 16(6):1133–1163, 2006.

[67] E. Allen Emerson and Edmund M. Clarke. Characterizing Correctness Properties
of Parallel Programs Using Fixpoints. In J. W. de Bakker and Jan van Leeuwen,
editors, Automata, Languages and Programming, volume 85 of LNCS, pages 169–
181, Heidelberg, Germany, 1980. Springer.

[68] Rik Eshuis. Symbolic model checking of UML activity diagrams. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 15(1):1–38, 2006.

[69] Harald Fecher, Jens Schönborn, Marcel Kyas, and Willem P. de Roever. 29 new
unclarities in the semantics of UML 2.0 state machines. In Kung-Kiu Lau and
Richard Banach, editors, Formal Methods and Software Engineering, 7th Inter-
national Conference on Formal Engineering Methods, ICFEM 2005, Manchester,
UK, November 1-4, 2005, Proceedings, volume 3785 of Lecture Notes in Computer
Science, pages 52–65. Springer, 2005.

[70] Stephan Flake and Wolfgang Müller. Formal semantics of static and temporal
state-oriented OCL constraints. Software and System Modeling, 2(3):164–186,
2003.

[71] Sebastian Gabmeyer. Quality assurance in MBE back and forth. In Seidl and
Tillmann [179], pages 78–81.

[72] Sebastian Gabmeyer, Petra Brosch, and Martina Seidl. A Classification of Model
Checking-Based Verification Approaches for Software Models. In Proceedings of the
STAF Workshop on Verification of Model Transformations (VOLT 2013), pages
1–7, 2013.

[73] Sebastian Gabmeyer, Petra Kaufmann, and Martina Seidl. A feature-based clas-
sification of formal verification techniques for software models. Technical Report
BIG-TR-2014-1, Institut für Softwaretechnik und Interaktive Systeme; Technische
Universität Wien, 2014.

133

[74] Patrice Gagnon, Farid Mokhati, and Mourad Badri. Applying Model Checking to
Concurrent UML Models. Journal of Object Technology, 7(1):59–84, 2008.

[75] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP
2011: a toolbox for the construction and analysis of distributed processes. STTT,
15(2):89–107, 2013.

[76] Miguel Garćıa and Ralf Möller. Incremental Evaluation of OCL Invariants in the
Essential MOF Object Model. In Thomas Kühne, Wolfgang Reisig, and Friedrich
Steimann, editors, Modellierung 2008, 12.-14. März 2008, Berlin, volume 127 of
LNI, pages 11–26. GI, 2008.

[77] Holger Giese and Leen Lambers. Towards Automatic Verification of Behavior
Preservation for Model Transformation via Invariant Checking. In Ehrig et al. [63],
pages 249–263.

[78] Stefania Gnesi, Diego Latella, and Mieke Massink. Model Checking UML Stat-
echart Diagrams Using JACK. In Proceeding of the Fourth IEEE International
Symposium on High-Assurance Systems Engineering, pages 46–55, Washington,
DC, USA, 1999. IEEE Computer Society.

[79] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-based specifi-
cation environment for validating UML and OCL. Sci. Comput. Program., 69(1-
3):27–34, 2007.

[80] Martin Gogolla, Lars Hamann, and Frank Hilken. Checking Transformation Model
Properties with a UML and OCL Model Validator. In Moussa Amrani, Eugene
Syriani, and Manuel Wimmer, editors, Proceedings of the Third International
Workshop on Verification of Model Transformations co-located with Software Tech-
nologies: Applications and Foundations, VOLT@STAF 2014, York, UK, July 21,
2014., volume 1325 of CEUR Workshop Proceedings, pages 16–25. CEUR-WS.org,
2014.

[81] Martin Gogolla, Lars Hamann, Frank Hilken, Mirco Kuhlmann, and Robert B.
France. From application models to filmstrip models: An approach to automatic
validation of model dynamics. In Hans-Georg Fill, Dimitris Karagiannis, and Ulrich
Reimer, editors, Modellierung 2014, 19.-21. März 2014, Wien, Österreich, volume
225 of LNI, pages 273–288. GI, 2014.

[82] Orna Grumberg, Yael Meller, and Karen Yorav. Applying Software Model Check-
ing Techniques for Behavioral UML Models. In Dimitra Giannakopoulou and Do-
minique Méry, editors, FM 2012: Formal Methods, volume 7436 of LNCS, pages
277–292, Heidelberg, Germany, 2012. Springer.

[83] Annegret Habel and Detlef Plump. Relabelling in Graph Transformation. In
Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg,

134

editors, Graph Transformation, volume 2505 of LNCS, pages 135–147, Heidelberg,
Germany, 2002. Springer.

[84] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Cam-
bridge, MA, USA, 2000.

[85] David Harel, Amir Pnueli, Jeanette P. Schmidt, and Rivi Sherman. On the Formal
Semantics of Statecharts (Extended Abstract). In Proceedings of the Symposium
on Logic in Computer Science (LICS ’87), Ithaca, New York, USA, June 22-25,
1987, pages 54–64. IEEE Computer Society, 1987.

[86] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew J.
Parkinson. Behavioral interface specification languages. ACM Comput. Surv.,
44(3):16, 2012.

[87] Reiko Heckel. Compositional Verification of Reactive Systems Specified by Graph
Transformation. In Egidio Astesiano, editor, Fundamental Approaches to Software
Engineering, volume 1382 of LNCS, pages 138–153, Heidelberg, Germany, 1998.
Springer.

[88] Frank Hermann, Mathias Hülsbusch, and Barbara König. Specification and Veri-
fication of Model Transformations. ECEASST, 30:20, 2010.

[89] Frank Hilken, Lars Hamann, and Martin Gogolla. Transformation of UML and
OCL Models into Filmstrip Models. In Davide Di Ruscio and Dániel Varró, editors,
Theory and Practice of Model Transformations - 7th International Conference,
ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014. Proceedings,
volume 8568 of Lecture Notes in Computer Science, pages 170–185. Springer, 2014.

[90] Frank Hilken, Philipp Niemann, Martin Gogolla, and Robert Wille. Filmstrip-
ping and Unrolling: A comparison of Verification Approaches for UML and OCL
Behavioral Models. In Seidl and Tillmann [179], pages 99–116.

[91] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

[92] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
Upper Saddle River, NJ, USA, 1985.

[93] Mathias Hülsbusch, Barbara König, Arend Rensink, Maria Semenyak, Christian
Soltenborn, and Heike Wehrheim. Showing Full Semantics Preservation in Model
Transformation - A Comparison of Techniques. In Dominique Méry and Stephan
Merz, editors, Integrated Formal Methods, volume 6396 of LNCS, pages 183–198,
Heidelberg, Germany, 2010. Springer.

[94] Mathias Hülsbusch, Barbara König, Arend Rensink, Maria Semenyak, Christian
Soltenborn, and Heike Wehrheim. Showing Full Semantics Preservation in Model

135

Transformation - A Comparison of Techniques. Technical Report TR-CTIT-10-09,
Centre for Telematics and Information Technology, University of Twente, 2012.

[95] Daniel Jackson. Automating first-order relational logic. In Proceedings of the 8th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 130–139, New York, NY, USA, 2000. ACM.

[96] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, April 2002.

[97] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge, MA, USA, Rev. edition, 2012.

[98] Phillip James, Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve A.
Schneider, and Helen Treharne. On modelling and verifying railway interlockings:
Tracking train lengths. Sci. Comput. Program., 96:315–336, 2014.

[99] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput.
Surv., 41(4), 2009.

[100] Lixia Ji, Jianhong Ma, and Zhuowei Shan. Research on Model Checking Tech-
nology of UML. In 2012 International Conference on Computer Science Service
System (CSSS), pages 2337–2340, Washington, DC, USA, 2012. IEEE.

[101] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Jean-Michel
Bruel, editor, Satellite Events at the MoDELS 2005 Conference, volume 3844 of
LNCS, pages 128–138, Heidelberg, Germany, 2005. Springer.

[102] Frederick P. Brooks Jr. No Silver Bullet—Essence and Accidents of Software En-
gineering. IEEE Computer, 20(4):10–19, 1987.

[103] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala Latvala, and Ivan
Porres. Model Checking Dynamic and Hierarchical UML State Machines. In
Kühne [115], page 15.

[104] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-oriented domain analysis (FODA) feasibility study. Techni-
cal Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA, November 1990.

[105] Bilal Kanso and Safouan Taha. Temporal Constraint Support for OCL. In
Krzysztof Czarnecki and Görel Hedin, editors, Software Language Engineering,
volume 7745 of LNCS, pages 83–103, Heidelberg, Germany, 2012. Springer.

[106] Harmen Kastenberg and Arend Rensink. Model Checking Dynamic States in
GROOVE. In Antti Valmari, editor, Model Checking Software, volume 3925 of
LNCS, pages 299–305, Heidelberg, Germany, 2006. Springer.

136

[107] The KIV system, October 2012.

[108] Anneke Kleppe. Software Language Engineering. Addison-Wesley Professional, 1
edition, December 2008.

[109] Alexander Knapp and Jochen Wuttke. Model Checking of UML 2.0 Interactions.
In Kühne [115], pages 42–51.

[110] Barbara König and Vitali Kozioura. Counterexample-guided abstraction refine-
ment for the analysis of graph transformation systems. In Holger Hermanns and
Jens Palsberg, editors, Tools and Algorithms for Construction and Analysis of Sys-
tems, volume 3920 of LNCS, pages 197–211, Heidelberg, Germany, 2006. Springer.

[111] Barbara König and Vitali Kozioura. Augur 2 - A New Version of a Tool for the
Analysis of Graph Transformation Systems. Electr. Notes Theor. Comput. Sci.,
211:201–210, 2008.

[112] Barbara König and Vitali Kozioura. Towards the Verification of Attributed Graph
Transformation Systems. In Ehrig et al. [65], pages 305–320.

[113] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire.
In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification,
volume 8044 of LNCS, pages 1–35, Heidelberg, Germany, 2013. Springer.

[114] Dexter Kozen. Results on the Propositional mu-Calculus. Theor. Comput. Sci.,
27:333–354, 1983.

[115] Thomas Kühne, editor. Models in Software Engineering, Workshops and Symposia
at MoDELS 2006, Genoa, Italy, October 1-6, 2006, Reports and Revised Selected
Papers, volume 4364 of LNCS, Heidelberg, Germany, 2007. Springer.

[116] Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost Jacob, Jozef Hooman, Mark
van der Zwaag, Tamarah Arons, and Hillel Kugler. Formalizing UML Models and
OCL Constraints in PVS. Electr. Notes Theor. Comput. Sci., 115:39–47, 2005.

[117] Mustafa Al Lail, Ramadan Abdunabi, Robert France, and Indrakshi Ray. An
Approach to Analyzing Temporal Properties in UML Class Models. In Frédéric
Boulanger, Michalis Famelis, and Daniel Ratiu, editors, Proceedings of the 10th
International Workshop on Model Driven Engineering, Verification and Validation
(MoDeVVa 2013), volume 1069 of CEUR Workshop Proceedings, pages 77–86,
Aachen, Germany, 2013. CEUR-WS.org.

[118] Vitus S. W. Lam and Julian A. Padget. Symbolic Model Checking of UML Stat-
echart Diagrams with an Integrated Approach. In Proceedings of the 11th IEEE
International Conference on the Engineering of Computer-Based Systems, pages
337–347, Washington, DC, USA, 2004. IEEE Computer Society.

137

[119] Daniel Leivant. Higher order logic. In Dov M. Gabbay, Christopher J. Hogger,
J. A. Robinson, and Jörg H. Siekmann, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming (2), pages 229–322. Oxford University Press,
Oxford, UK, 1994.

[120] Nancy Leveson and Clark S. Turner. An investigation of the Therac-25 accidents.
Computer, 26(7):18–41, July 1993.

[121] Johan Lilius and Iván Porres Paltor. vUML: A Tool for Verifying UML Models. In
14th IEEE International Conference on Automated Software Engineering, pages
255–258, Washington, DC, USA, 1999. IEEE Computer Society.

[122] Vitor Lima, Chamseddine Talhi, Djedjiga Mouheb, Mourad Debbabi, Lingyu
Wang, and Makan Pourzandi. Formal Verification and Validation of UML 2.0 Se-
quence Diagrams using Source and Destination of Messages. Electr. Notes Theor.
Comput. Sci., 254:143–160, 2009.

[123] Jaques-Louis Lion, Lennart Lübeck, Jean-Luc Fauquembergue, Gilles Kahn, Wolf-
gang Kubbat, Stefan Levedagg, Leonardo Mazzini, Didier Merle, and Colin
O’Hallorn. Ariane 5 Flight 501 Failure, Report by the Inquiry Board. http:

//esamultimedia.esa.int/docs/esa-x-1819eng.pdf, July 1996.

[124] Delphine Longuet, Frédéric Tuong, and Burkhart Wolff. Towards a Tool for Feath-
erweight OCL: A Case Study On Semantic Reflection. In Achim D. Brucker, Car-
olina Dania, Geri Georg, and Martin Gogolla, editors, Proceedings of the 14th
International Workshop on OCL and Textual Modelling co-located with 17th Inter-
national Conference on Model Driven Engineering Languages and Systems (MOD-
ELS 2014), Valencia, Spain, September 30, 2014., volume 1285 of CEUR Workshop
Proceedings, pages 43–52. CEUR-WS.org, 2014.

[125] Tim A. Majchrzak. Improving Software Testing, Technical and Organizational
Developments. SpringerBriefs in Information Systems. Springer-Verlag Berlin Hei-
delberg, Heidelberg, Germany, 1 edition, 2012.

[126] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems - specification. Springer, Heidelberg, Germany, 1992.

[127] Greg Manning and Detlef Plump. The GP Programming System. ECEASST,
10:13, 2008.

[128] D. L. McBurney and M. Ronan Sleep. Graph Rewriting as a Computational
Model. In Akinori Yonezawa and Takayasu Ito, editors, Concurrency: Theory,
Language, And Architecture, UK/Japan Workshop, Oxford, UK, September 25-
27, 1989, Proceedings, volume 491 of Lecture Notes in Computer Science, pages
235–256. Springer, 1989.

138

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

[129] John McCarthy and Peter J. Hayes. Some Philosophical Problems from the Stand-
point of Artificial Intelligence. In Matthew L. Ginsberg, editor, Readings in Non-
monotonic Reasoning, pages 26–45. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1987.

[130] Kenneth L. McMillan. Symbolic model checking. Kluwer Academic Publishers,
Dordrecht, the Netherlands, 1993.

[131] José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theor. Comput. Sci., 96(1):73–155, 1992.

[132] José Meseguer. Membership algebra as a logical framework for equational specifi-
cation. In Francesco Parisi-Presicce, editor, Recent Trends in Algebraic Develop-
ment Techniques, volume 1376 of LNCS, pages 18–61, Heidelberg, Germany, 1997.
Springer.

[133] José Meseguer. Twenty years of rewriting logic. Formal Asp. Comput., 81(7–
8):721–781, 2012.

[134] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holzmann. Imple-
menting Statecharts in PROMELA/SPIN. In Proceedings of the Second IEEE
Workshop on Industrial Strength Formal Specification Techniques, pages 90–101,
Washington, DC, USA, 1998. IEEE Computer Society.

[135] Robin Milner. Communication and Concurrency. PHI Series in computer science.
Prentice Hall, Upper Saddle River, NJ, USA, 1989.

[136] Maryam Mozaffari and Ali Harounabadi. Verification and validation of UML 2.0
sequence diagrams using colored Petri nets. In 2011 IEEE 3rd International Con-
ference on Communication Software and Networks, pages 117–121, Washington,
DC, USA, 2011. IEEE.

[137] Peter Müller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of Lecture Notes in Computer Science. Springer, 2002.

[138] John Mullins and Raveca Oarga. Model Checking of Extended OCL Constraints
on UML Models in SOCLe. In Marcello M. Bonsangue and Einar Broch Johnsen,
editors, Formal Methods for Open Object-Based Distributed Systems, volume 4468
of LNCS, pages 59–75, Heidelberg, Germany, 2007. Springer.

[139] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, 1989.

[140] Anantha Narayanan and Gabor Karsai. Towards Verifying Model Transformations.
Electr. Notes Theor. Comput. Sci., 211:191–200, 2008.

139

[141] Peter Naur and Brian Randell, editors. Software Engineering: Report of a Confer-
ence Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs Division, NATO. NATO, 1969.

[142] Thomas R. Nicely. Pentium FDIV flaw. http://www.trnicely.net/pentbug/

pentbug.html, August 2011.

[143] Artur Niewiadomski, Wojciech Penczek, and Maciej Szreter. A New Approach
to Model Checking of UML State Machines. Fundam. Inform., 93(1-3):289–303,
2009.

[144] Artur Niewiadomski, Wojciech Penczek, and Maciej Szreter. Towards Checking
Parametric Reachability for UML State Machines. In Amir Pnueli, Irina Virbit-
skaite, and Andrei Voronkov, editors, Perspectives of Systems Informatics, volume
5947 of LNCS, pages 319–330, Heidelberg, Germany, 2009. Springer.

[145] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, Heidelberg,
Germany, 2002.

[146] Iulian Ober, Susanne Graf, and Ileana Ober. Validation of UML Models via a
Mapping to Communicating Extended Timed Automata. In Susanne Graf and
Laurent Mounier, editors, Model Checking Software, volume 2989 of LNCS, pages
127–145, Heidelberg, Germany, 2004. Springer.

[147] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed UML models by
simulation and verification. International Journal on Software Tools for Technology
Transfer, 8(2):128–145, 2006.

[148] Object Management Group OMG. Object Constraint Language (OCL) V2.2.
http://www.omg.org/spec/OCL/2.2/, February 2010.

[149] Object Management Group OMG. OMG Meta Object Facility (MOF) 2.0
Query/View/ Transformation Specification V1.1. http://www.omg.org/spec/

QVT/1.1/, January 2011.

[150] Object Management Group OMG. OMG Meta Object Facility (MOF) Core Spec-
ification V2.4.1. http://www.omg.org/spec/MOF/2.4.1/, August 2011.

[151] Object Management Group OMG. OMG MOF 2 XMI Mapping Specification
V2.4.1. http://www.omg.org/spec/XMI/2.4.1, August 2011.

[152] Object Management Group OMG. OMG Unified Modeling Language (OMG
UML), Infrastructure V2.4.1. http://www.omg.org/spec/UML/2.4.1/, August
2011.

140

http://www.trnicely.net/pentbug/pentbug.html
http://www.trnicely.net/pentbug/pentbug.html
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/XMI/2.4.1
http://www.omg.org/spec/UML/2.4.1/

[153] Object Management Group OMG. OMG Unified Modeling Language (OMG
UML), Superstructure V2.4.1. http://www.omg.org/spec/UML/2.4.1/, August
2011.

[154] Object Management Group OMG. Model Driven Architecture (MDA) Guide rev.
2.0. http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf, June 2014.

[155] Mouna Ait Oubelli, Nadia Younsi, Abdelkrim Amirat, and Ahcene Menasria. From
UML 2.0 Sequence Diagrams to PROMELA code by Graph Transformation using
AToM3. In Abdelmalek Amine, Otmane Aı̈t Mohamed, Boualem Benatallah, and
Zakaria Elberrichi, editors, Proceedings of the Third International Conference on
Computer Science and its Applications, volume 825 of CEUR Workshop Proceed-
ings, Aachen, Germany, 2011. CEUR-WS.org.

[156] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype Verifica-
tion System. In Deepak Kapur, editor, Automated Deduction—CADE-11, volume
607 of LNCS, pages 748–752, Heidelberg, Germany, 1992. Springer.

[157] Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.

[158] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57, Washington, DC,
USA, 1977. IEEE Computer Society.

[159] Iman Poernomo and Jeffrey Terrell. Correct-by-Construction Model Transforma-
tions from Partially Ordered Specifications in Coq. In Jin Song Dong and Huibiao
Zhu, editors, Formal Methods and Software Engineering, volume 6447 of LNCS,
pages 56–73, Heidelberg, Germany, 2010. Springer.

[160] Ivan Porres. Modeling and Analyzing Software Behavior in UML, 2001.

[161] Christopher M. Poskitt and Detlef Plump. Hoare-Style Verification of Graph Pro-
grams. Fundam. Inform., 118(1-2):135–175, 2012.

[162] Christopher M. Poskitt and Detlef Plump. Verifying Total Correctness of Graph
Programs. ECEASST, 61:20, 2013.

[163] Kevin Poulsen. Software Bug Contributed to Blackout. http://www.

securityfocus.com/news/8016, February 2004.

[164] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, edi-
tors, Symposium on Programming, volume 137 of LNCS, pages 337–351. Springer,
1982.

[165] Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In
John L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors, Applications of Graph
Transformations with Industrial Relevance, volume 3062 of LNCS, pages 479–485,
Heidelberg, Germany, 2003. Springer.

141

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016

[166] Arend Rensink, Iovka Boneva, Harmen Kastenberg, and Tom Staijen. User Man-
ual for the GROOVE Tool Set. Department of Computer Science, University of
Twente, P.O.Box 217, 7500 AE Enschede, The Netherlands, Nov 2012.

[167] Arend Rensink, Ákos Schmidt, and Dániel Varró. Model Checking Graph Trans-
formations: A Comparison of Two Approaches. In Hartmut Ehrig, Gregor Engels,
Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors, Graph Transforma-
tions, volume 3256 of LNCS, pages 226–241, Heidelberg, Germany, 2004. Springer.

[168] Arend Rensink and Eduardo Zambon. Neighbourhood Abstraction in GROOVE.
ECEASST, 32:13, 2010.

[169] Arend Rensink and Eduardo Zambon. Pattern-Based Graph Abstraction. In Ehrig
et al. [63], pages 66–80.

[170] Mark Richters and Martin Gogolla. OCL: Syntax, Semantics, and Tools. In Object
Modeling with the OCL, volume 2263 of LNCS, pages 42–68. Springer, Heidelberg,
Germany, 2002.

[171] Robby, Matthew B. Dwyer, and John Hatcliff. Bogor: an extensible and highly-
modular software model checking framework. In Proceedings of the 11th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 267–276,
New York, NY, USA, 2003. ACM.

[172] John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

[173] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

[174] Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 - New Features
for Specifying and Analyzing Algebraic Graph Transformations. In Andy Schürr,
Dániel Varró, and Gergely Varró, editors, Applications of Graph Transformations
with Industrial Relevance, volume 7233 of LNCS, pages 81–88, Heidelberg, Ger-
many, 2011. Springer.

[175] Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd Westphal. The Rhapsody
UML Verification Environment. In Proceedings of the Second Software Engineering
and Formal Methods, Second International Conference, pages 174–183, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[176] Ákos Schmidt and Dániel Varró. CheckVML: A Tool for Model Checking Visual
Modeling Languages. In Perdita Stevens, Jon Whittle, and Grady Booch, editors,
UML 2003 - The Unified Modeling Language and Applications, volume 2863 of
LNCS, pages 92–95, Heidelberg, Germany, 2003. Springer.

142

[177] Andy Schürr. Specification of graph translators with triple graph grammars. In
Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, WG, volume
903 of LNCS, pages 151–163, Heidelberg, Germany, 1994. Springer.

[178] Martina Seidl, Marion Scholz, Christian Huemer, and Gerti Kappel. UML @
Classroom - An Introduction to Object-Oriented Modeling. Undergraduate Topics
in Computer Science. Springer, 2015.

[179] Martina Seidl and Nikolai Tillmann, editors. Tests and Proofs - 8th International
Conference, TAP 2014, Held as Part of STAF 2014, York, UK, July 24-25, 2014.
Proceedings, volume 8570 of LNCS, Heidelberg, Germany, 2014. Springer.

[180] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Softw., 20(5):42–45, September
2003.

[181] Wuwei Shen, Kevin J. Compton, and James Huggins. A Toolset for Supporting
UML Static and Dynamic Model Checking. In Proceedings of the 26th International
Computer Software and Applications Conference, pages 147–152, Washington, DC,
USA, 2002. IEEE Computer Society.

[182] Anthony J.H. Simons and Ian Graham. 30 Things that Go Wrong in Object
Modelling with UML 1.3. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Specifications of Businesses and Systems, volume 523 of The
Springer International Series in Engineering and Computer Science, pages 237–
257. Springer US, 1999.

[183] Igor Siveroni, Andrea Zisman, and George Spanoudakis. Property Specification
and Static Verification of UML Models. In Proceedings of the Third International
Conference on Availability, Reliability and Security, pages 96–103, Washington,
DC, USA, 2008. IEEE Computer Society.

[184] Raymond M. Smullyan. First-Order Logic. Courier Dover Publications, New York,
NY, USA, 1995.

[185] Michael Soden and Hajo Eichler. Temporal Extensions of OCL Revisited. In
Richard F. Paige, Alan Hartman, and Arend Rensink, editors, Model Driven Ar-
chitecture - Foundations and Applications, volume 5562 of LNCS, pages 190–205,
Heidelberg, Germany, 2009. Springer.

[186] Michael Soden and Hajo Eichler. Towards a model execution framework for Eclipse.
In Proceedings of the 1st Workshop on Behaviour Modelling in Model-Driven Ar-
chitecture, pages 4:1–4:7, New York, NY, USA, 2009. ACM.

[187] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf Drech-
sler. Verifying UML/OCL models using Boolean satisfiability. In Design, Automa-
tion and Test in Europe, pages 1341–1344, Washington, DC, USA, 2010. IEEE.

143

[188] Morten Heine Sørensen and Pawe l Urzyczyin, editors. Lectures on the Curry-
Howard Isomorphism, volume 149 of Studies in Logic and the Foundations of
Mathematics. Elsevier, Amsterdam, the Netherlands, 2006.

[189] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, and Simon Helsen. Model-
driven Software Development - Technology, Engineering, Management. John Wiley
& Sons, Ltd., Chichester, UK, 2006.

[190] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework. the eclipse series. Pearson Eduction, Inc., Boston,
MA, USA, 2 edition, 2008.

[191] Kurt Stenzel, Nina Moebius, and Wolfgang Reif. Formal Verification of QVT
Transformations for Code Generation. In Jon Whittle, Tony Clark, and Thomas
Kühne, editors, Model Driven Engineering Languages and Systems, volume 6981
of LNCS, pages 533–547, Heidelberg, Germany, 2011. Springer.

[192] Martin Strecker. Modeling and Verifying Graph Transformations in Proof Assis-
tants. Electr. Notes Theor. Comput. Sci., 203(1):135–148, 2008.

[193] Martin Strecker. Interactive and automated proofs for graph transformations.
Available at: http://www.irit.fr/~Martin.Strecker/Publications/proofs_

graph_transformations.html, 2012.

[194] Alfred Tarski. On the calculus of relations. J. Symb. Log., 6(3):73–89, 1941.

[195] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti.
A state/event-based model-checking approach for the analysis of abstract system
properties. Sci. Comput. Program., 76(2):119–135, February 2011.

[196] Emina Torlak. A Constraint Solver for Software Engineering: Finding Models and
Cores of Large Relational Specifications. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2009. AAI0821754.

[197] Emina Torlak and Greg Dennis. Kodkod for Alloy Users. In First Alloy Workship,
Portland, Oregon, November 6, 2006, 2006.

[198] Emina Torlak and Daniel Jackson. Kodkod: A Relational Model Finder. In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for Construction and
Analysis of Systems, volume 4424 of LNCS, pages 632–647, Heidelberg, Germany,
2007. Springer.

[199] Javier Troya and Antonio Vallecillo. A Rewriting Logic Semantics for ATL. Journal
of Object Technology, 10:5: 1–29, 2011.

[200] Dániel Varró. Automated formal verification of visual modeling languages by model
checking. Software and System Modeling, 3(2):85–113, 2004.

144

http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.html
http://www.irit.fr/~Martin.Strecker/Publications/proofs_graph_transformations.html

[201] Andreas Zeller. Why Programs Fail, Second Edition: A Guide to Systematic De-
bugging. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition,
2009.

[202] Shao Jie Zhang and Yang Liu. An Automatic Approach to Model Checking UML
State Machines. In Proceedings of the Fourth International Conference on Secure
Software Integration and Reliability Improvement, pages 1–6, Washington, DC,
USA, 2010. IEEE Computer Society.

[203] Paul Ziemann and Martin Gogolla. OCL Extended with Temporal Logic. In Man-
fred Broy and Alexandre V. Zamulin, editors, Perspectives of Systems Informatics,
volume 2890 of LNCS, pages 351–357, Heidelberg, Germany, 2003. Springer.

145

	Introduction
	Background
	Model-Driven Development
	Formal Methods in Software Engineering
	Summary

	Verification Approaches for Behavioral and Temporal Aspects in MDD
	Description of Verification Approaches
	Theorem Proving
	Model Checking of Rewriting-Based Systems
	Model Checking of OCL Specifications
	Model Checking of UML Diagrams

	A Feature-Based Classification
	Summary

	Model Checking CTL-extended OCL Specifications
	Preliminaries
	The CTL-extended Object Constraint Language
	MocOCL — A model checker for cOCL specifications
	MocOCL in Action
	Summary

	Symbolic Model Checking of Safety Properties with Gryphon
	Preliminaries
	Translating EMF Models and Graph Transformations to Sequential Circuits
	Summary

	Evaluation
	The Pacman Game
	The Dining Philosophers Problem
	Verification of Interlocking Railway Systems
	Summary

	Conclusion
	Bibliography

