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Abstract

Having exact 3D reconstructions and measures of indoor scenes is useful for numerous applica-
tions e.g. augmented reality furniture placement. Recent 3D reconstruction approaches obtain
complex and highly detailed 3D models, which are difficult to handle, since the computational
cost of manipulating models is directly related to its complexity. Consequently, it is also chal-
lenging to display and manipulate such detailed models on a mobile device because of limited
resources. In order to keep the processing time low, simplified approximations of highly detailed
models are desirable for mobile applications. Therefore, in this thesis we present a framework
for simplifying indoor scenes using multi-modal RGBD video sequences. The framework con-
sists of two parts – a 3D layout estimation pipeline as well as an object detection and pose esti-
mation approach. Layout segments (ground plane, walls, ceiling) are represented by 3D planes
and merged over time. After determining the 2D floor plan of the fused point cloud obtained
from registered shots, a compact representation of the scene is generated by extruding the floor
plan. In order to create semantically meaningful 3D layouts, objects are detected and further
replaced by synthetic CAD models using state-of-the-art 2D object detection methods and 3D
point cloud descriptors. In each frame semantic types and poses are determined. A Markov
Random Field (MRF) is introduced over time, which exploits temporal coherence between con-
secutive frames in order to refine the pose results. The framework is trained in an offline stage
with synthetically rendered point clouds obtained from CAD models downloaded from a pub-
lic database. Qualitative and quantitative experiments on various indoor video sequences show
that the resulting spatial layout results outperform monocular state-of-the-art algorithms when
comparing with a variety of semantically labeled ground truth scenes. The MRF optimization as
well as the temporal fusion of multiple 3D layouts yield to improvements concerning the pose
results and the accuracy of the scene dimensions. Moreover, in terms of the storage demand, we
achieve a data reduction rate of over 99% compared to the raw point-based representations.
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Kurzfassung

3D Rekonstruktionsanwendungen sind hilfreich um exakte Modelle von dreidimensionalen Sze-
nen zu errechnen. Bezüglich Augemted Reality Lösungen, wie beispielsweise Smart Phone Ap-
plikationen mit denen Möbeltücke in einer Szene platziert werden können, ist es hilfreich die
genauen Dimensionen einer Szene zu kennen. Die Berechnung von hochauflösenden Details ist
dabei zweitrangig. Aufgrund limitierter Ressourcen sind besonders für mobile Applikationen
vereinfachte 3D Modelle essentiell. Die vorliegende Arbeit beschäftigt sich mit der Erstellung
von vereinfachten und semantischen 3D Modellen von Innenräumen. Als Datenbasis dienen
multimodale RGBD Videosequenzen welche mit einem Microsoft Kinect Sensor aufgenommen
werden. Die Modell-Simplifizierung besteht im wesentlichen aus zwei Teilen – einer Pipeline
für die Erstellung von vereinfachten 3D Modellen sowie einer Methode um Objekte in der Szene
zu detektieren und deren Pose zu erkennen. Architektonische Elemente wie Wände, der Boden
und die Decke werden mit Hilfe von dreidimensionalen Ebenen modelliert. Um geometrisch
erweiterte Modelle zu berechnen, werden 3D Punktwolken iterativ über die Zeit fusioniert. Ba-
sierend auf diesen Registrierungen wird eine erweiterte Grundfläche berechnet. Kompakte 3D
Szenen werden erstellt indem Wandelemente und die Decke durch geometrische Extrusion simu-
liert werden. Um semantische 3D Modelle zu erstellen, werden Objekte in der Szene detektiert
und durch CAD Modelle ersetzt. Für die multimodale Ojekterkennung wird ein State-of-the-Art
2D Bilddetektor sowie Geometrie-Deskriptoren für 3D Punktwolken verwendet. In einem initia-
len Detektionsschritt werden dabei in jedem Frame Objektkandidaten und deren Orientierungen
ermittelt. Die berechneten Posen werden mit einem Markov Random Field (MRF) optimiert in-
dem die Orientierungsänderung von aufeinander folgenden Objekten berücksichtigt wird. Die
Klassifikationsmethode wird offline mittels synthetisch gerenderten 2.5D Punktwolken trainiert.
Qualitative und quantitative Experimente basierend auf 10 Videosequenzen zeigen, dass vergli-
chen mit photometrischen Ansätzen, die zeitlich Fusionierung zu exakteren Repräsentationen
führt. Mit Hilfe der MRF-Optimierung lassen sich robustere Objektposen berechnen indem feh-
lerhafte Posen aussortiert werden. Bezüglich der Speicherbelastung lässt dich durch den Simpli-
fizierungsansatz eine Datenreduktion von über 99% erreichen.
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CHAPTER 1
Introduction

Humans are able to immediately conceive the spatial layout of indoor scenes and to recognize
all objects visible in the setting [31]. The human visual system is able to rapidly understand and
classify even complex setups [20]. Understanding the scene and reconstructing the geometry of
indoor scenes are well-studied areas of research and useful for a numerous of applications e.g.
indoor navigation [32], Simultaneous Localization And Mapping (SLAM) [1], room organisa-
tion [10] or augmented reality [11]. In general, scene understanding in terms of indoor scenarios
attempts to automatically determine the extents of the floor, the walls, and the ceiling. Objects
visible in the scenes provide semantic cues which help to classify the scenes [10, 20]. Visual
recognition is an active field of research, and numerous applications have been developed based
on photometric images, range images or multimodal color/depth data [35].

In the past few years depth cameras have gained large attention from computer science re-
searchers. One reason is the availability of low budget 3D cameras like the Microsoft Kinect
sensor which is a cheap alternative to expensive structured light scanners. Recent developments
like Google’s project Tango1 capture depth information and enable to obtain a human-scale
understanding of indoor scenes even on a mobile device. In the field of computer vision the
objective is to make the applications more robust by using the additional depth information.
Examples can be found in the area of room layout estimation [60, 66], three-dimensional recon-
struction [24, 39, 72] and object classification [2, 3, 57].

In contrast to applications like Microsoft’s KinectFusion2 [39] or Google’s project Tango,
where millions of 3D measurements are stored in order to create exact 3D reconstructions, for
augmented reality applications a detailed reconstruction implies to provide precise scene di-
mensions [51]. Sample questions in terms of augmented reality approaches could be “Does this
couch fit into the scene?“ or “What is the maximum permissible dimension of the couch?“ To
answer such questions, it is important to have a rough but exact and metric 3D layout of the
underlying environment. Besides exact 3D models, it is also necessary to include semantic in-
formation into the estimated 3D layouts. Possible use cases are scene compositions in which

1https://www.google.com/atap/projecttango/ (last access: 17.04.2015)
2research.microsoft.com/projects/surfacerecon/ (last access: 17.04.2015)
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objects visible in the scene are removed, modified or exchanged by virtual objects. For an effi-
cient manipulation of such 3D representations in real-time, e.g. on a mobile device, it is essential
to provide simplified 3D models which consist of a minimum number of faces and vertices in or-
der to keep the computational power and the the memory demand to a minimum. Simplification
methods are used to create aesthetically pleasing 3D models which allow operators to capture
and navigate through environments [66].

1.1 Problem Statement

The goal of this thesis is to obtain compact and semantically meaningful 3D layouts of indoor
scenes captured using a Red Green Blue Depth (RGBD) sensor. Therefore we propose a simpli-
fication framework which consists of two parts – a 3D layout estimation method and an object
detection and pose estimation approach. The simplified 3D layouts consist of 3D planes describ-
ing the ground plane, wall segments and the ceiling. Apart from using geometric information,
semantic 3D maps are created by detecting objects in the scene and replacing them by using ex-
isting Computer-Aided Design (CAD) models gathered from a web-based 3D object database.
For both, the 3D layout estimation as well as the object detection approach, the multimodal
characteristics of RGBD data (color and intensity images) are used.

As an input we are faced with RGBD video sequences captured using a Kinect sensor (Kinect
ifor Xbox 360). A typical depth sensor returns noisy point based data because of missing depth
information. This results in point cloud representations with holes. Reasons for these artefacts
are occlusions, specular surfaces or direct illumination. A further problem of 3D reconstructions
obtained by using structured light techniques is that the 3D models consist of a high number of
points, especially if multiple models are fused into a global model. Since the computational cost
of processing a 3D model is directly related to its complexity [25], simplified models are useful
for post-processing tasks or the manipulation of the models on mobile devices. To overcome the
mentioned problems, we create compact mesh representations of indoor scenes with a minimum
number of vertices and faces. In addition to the surface reconstruction, environmental objects are
detected and replaced by complete CAD models. The simplified 3D layouts should be exported
into a common 3D files. The objective is to load and manipulate these outcomes on a mobile
device in real-time or to modify the 3D models using a third-party CAD software.

Image-based layout estimation methods describe the spatial layout of indoor scene by fitting
a 3D box into the scene [10,29,71]. Hence, such frameworks are limited on convex geometries.
We therefore present a method which is able to process concave ground plans as well. Our
object classification method is trained offline, which is an improvement over approaches which
are trained online with real-data captured by a sensor (e.g. [34, 56, 57]).

The aforementioned goals of this thesis are illustrated in Figure 1.1. Several RGBD input
shots are fused in order to obtain a dense point-based representation of the input scene. Layout
segments (ground plane, walls, ceiling) are used to describe the scene in a highly simplified
manner. Objects are detected and further replaced by complete CAD models in order to ob-
tain semantically meaningful scene layouts. The data reduction allows the manipulation of the
simplified models on a mobile device in real-time.
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Figure 1.1: A simplicifaction framework is used to describe fused point clouds with 3D planes.
Objects visible in the scene are detected (type and pose) and replaced by full 3D models from
a synthetic CAD model dataset. From top left to bottom right: Fused point cloud coming from
multiple shots, wire-frame representation of the simplified 3D layout and real-time manipulation
on a mobile device.

1.2 Contribution

Previous work shows that monocular Red Green Blue (RGB) images allow the estimation of
scene layouts using edges, color features and vanishing points [30, 36, 59]. Additional depth
information helps to reconstruct the scenes in an accurate way [4, 39, 75]. Moreover, object
recognition methods allow the estimation of additional semantic labels which help to classify
the scenes [5, 10, 66]. Thus, state-of-the-art object classification algorithms are available for
both – 3D point clouds [2, 3, 57] as well as 2D image data [21]. The contribution of our work
concentrates on three areas:

1. The strengths of the aforementioned research areas are combined – (Depth, RGB, Object
detection). Single 3D layouts are estimated and object candidates are determined in each
frame. The results are expanded and refined using a temporal fusion method, while still
keeping the complexity and the memory demand low, which allows the real-time manip-
ulation on mobile devices.

2. The entire 3D model (ground plane, walls, ceiling) is described by multiple 3D planes.
The corresponding 3D layouts are merged over the time using the transformations ob-
tained from the camera pose problem between consecutive input frames.

3



3. Different to related work, objects are not represented using bounding boxes [10,21,27] or
labeling-based inference [29, 30, 37]. Instead we use a pre-defined database of synthetic
CAD models downloaded from the web to describe the type of the detected objects as well
as the corresponding orientation within the 3D layout.

1.3 Thesis Organization

This thesis is divided into four chapters:

1. Chapter 2 investigates existing approaches in the field of object recognition and scene
understanding. In Section 2.1 we discuss methods for 3D reconstruction and layout esti-
mation. Section 2.2 presents object detection and pose estimation approaches. The chap-
ter concludes with a brief discussion and suggestions for the methodological approach in
Section2.3.

2. Chapter 3 introduces a simplification framework for 3D layout estimation and object
classification and presents the underlying methodology. First, implementation details are
described in Section 3.1. Second, the pipeline for the estimation of 3D layouts is presented
in Section 3.2. Third, in Section 3.3 we outline the object detection and pose estimation
pipeline. A brief summary is presented in 3.4.

3. Chapter 4 presents qualitative and quantitative experiments for evaluating the presented
methodology. First, Section 4.1 outlines the data sets used to train and evaluate the pre-
sented methods. Second, in Section 4.2 we present the evaluation of the 3D layout estima-
tion framework. Therefore, in Subsection 4.2.1 we present 3D layout results by processing
single RGBD shots. Optimized 3D layout results and improvements obtained from mul-
tiple RGBD frames are presented in Subsection 4.2.2. Third, In Section 4.3 we conduct
with possible use cases and results of the data reduction experiments and show the abil-
ity to process the simplified models in real-time on mobile devices. Fourth, Section 4.4
discusses the object detection and pose estimation results based on single frames (see Sub-
section 4.4.1) as well as video sequences and highlights the improvements achieved by the
presented MRF optimization approach (see Subsection 4.4.2). In Section 4.5 the overall
results are summarized.

4. Chapter 5 concludes with an overall summary of the thesis and gives suggestions for
further research.

4



CHAPTER 2
Related Work

Since the objective of this thesis is the estimation of semantically meaningful 3D layouts, in
this chapter we summarize relevant methods of the two research areas – 3D layout estimation
and object classification. Thus, we discuss strengths and weaknesses of 3D reconstruction and
layout estimation methods, which focus on indoor environments. In order to estimate semantic
attributes, object recognition methods are useful. Therefore, we summarize object detection
and pose estimation approaches. For both – 3D layout estimation approaches as well as object
recognition methods – we present works which are based on photometric images, depth (range)
images / point clouds as well as multimodal RGBD data.

2.1 3D Layout Estimation

Humans have a great ability to recognize and understand the structure of indoor scenes from
monocular images [31]. Even clutter present in the scene (e.g. objects) does not restrict the hu-
man spatial understanding. Finding the underlying 3D structure of a scene means to identify the
ground plane, the walls, the ceiling and the objects visible in the environment [29]. In terms of
computer vision research, this is known as scene understanding, where the goal is to assign each
pixel of an image with an additional semantic information. Finding the 3D structure from an
image is important for developing autonomous systems where the goal is to navigate in the en-
vironment and interact with it [72]. Besides the spatial understanding of the geometric structure
of indoor scenes, humans are also able to immediately recognize objects in the environment and
understand the geometric configuration between the 3D layout and these objects [10]. While ob-
jects are described as clutter (e.g. [29, 30]), it is also common to apply separate object detection
techniques [21, 61].

Finding the 3D layout of an indoor scene from monocular imagery is extremely difficult [72].
Therefore, depth sensors can be employed in order to overcome the ambiguities of photometric
images. In the following we discuss 3D layout estimation methods based on photometric images
[10, 29, 46], depth images [39, 66, 68] as well as multimodal RGBD data [24, 60, 72]. Moreover,

5



we briefly discuss the differences between layout estimation methods and 3D reconstruction
approaches [39]. The latter ones (in general) do not focus on the semantic understanding of the
scenes [1]. The goal of such applications is to estimate highly detailed 3D scene reconstructions.

2.1.1 3D Layout Estimation from Photometric Images

In Figure 2.1a an image of a typical indoor scene is shown. Numerous methods exist which
estimate the spatial layout of such monocular images [30]. Hoiem et al. [36] present a learning
based method which uses geometric classes in order to assign each pixel of an input image
with an additional semantic label. The label information for each pixel is added by using local
surface orientations. Different to labeling-based methods, in [10, 29, 36] the problem of scene
understanding is solved using 3D-to-2D mapping techniques. Such approaches model the layout
of a scene by fitting a parametrized 3D cuboid (also known as 3D box layout) into the scene (cf.
Figure 2.1b). Since indoor environments are man-made, the Manhattan world assumption is
used to estimate 3D box layouts [10, 29–31].

(a) (b)

Figure 2.1: Spatial layout understanding from single images. (a) RGB sample image in which
objects (clutter) covers parts of the underlying 3D layout. The scene is described by a 3D
box layout (black lines) and surface labels (pink areas) which represent objects. (Image taken
from [29])

Manhattan World Assumption The Manhattan world assumption starts from the premise that
three dominant vanishing points are available in the scene [12]. Therefore, under perspective
projection typically parallel lines are extracted which intersect in the image plane at the vanish-
ing points [29]. In terms of indoor environments, the Manhattan world assumption satisfies that
visible surfaces are along one of the three orthogonal directions [60]. Thus, in a monocular set-
ting the objective is to find a cuboid which aligns with these three orthogonal orientations [72]
(cf. Figure 2.2). The bottleneck of the Manhattan world assumption is that the method assumes
that the room is supported by a 3D box. Thus, it is difficult to model more complex geometries
(e.g. a scenes with a convex floor plan or rooms in which more then 4 walls are visible).
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Figure 2.2: A 3D layout defined by a cuboid using a 3 point perspective. (Images taken from
[24])

Hedau et al. [29,30] present a framework which describes 3D layouts using a 3D box layout
and surface labels (cf. Figure 2.1b). The 3D box layout models the empty room. The surface
labels provide information about objects visible in the scene as well as more precise surface
information (walls, floor and ceiling). The overall framework is shown in Figure 2.3.

(a) (b) (c) (d) (e)

Figure 2.3: Spatial layout estimation. (a) Edge segments are extracted from the RGB image.
(b) Based on these edges, vanishing points are calculated. (c) Multiple layout hypothesis are
estimated an sorted using a structure learning method. (d) Surface labels (wall, floor, ceiling,
and clutter) are calculated based on confidence maps which are generated from edge, color and
texture features. (d) <Surface labels allow a feature re-estimation which results in more robust
3D box layouts. (Image taken from [29]

The approach first estimates edges and groups these edges into three mutually orthogonal
vanishing points. Second, multiple 3D box candidates are created by sampling rays from the
vanishing points. The box layouts are ranked using edge features and learned models. Therefore,
it is examined how well the layouts matches with ground truth layouts. In general, it is difficult
to align a box layout with a general setting because of clutter (e.g. furnitures) which leads to
inaccurate alignments. Thus, in a third step surface labels (segments) are estimated using a
modified version of the superpixel algorithm presented by Hoiem et al. [36]. A confidence map
is calculated over the segments and based on this map, the features which have been used to
rank the raw box layouts are re-estimated. Finally, the box layouts are re-ranked based on these
optimized features. The basic idea of the approach is that a more representative 3D layout can
be estimated if the clutter in the scene is known in advance (e.g. a wall can not intersect with an
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object). The workflow is shown in Figure 2.3.
The disadvantages of the method are that the 3D box layouts are not suitable to represent

more complex scenes (e.g. concave floor plans) and that scenes which show only a small portion
of a room are nor represented accurately. Moreover, the approach calculates clutter but does not
incorporate semantic information about the clutter.

Choi et al. [10] introduce an improved version of the layout estimator presented by Hedau et
al. [29]. Therefore, a scene-object interaction method provides information about how the scene
type influences the object detection results. Furthermore, an object-layout interaction method
examines how objects are placed in the 3D layouts, and vice versa. The scene understanding
framework is threefold: A scene classifier [45] is used to estimate the scene type (e.g. dining
room). An object detector [21] is applied in order to detect objects visible in the scene and a
layout estimator [29] generates 3D box layouts which represent the underlying room geometry.
The object detector is trained with data from the PASCAL dataset [18]. The semantic 3D layouts
are estimated by an image parsing method in which a parse graph is used to specify relations
between the components. The root node defines the 3D layout as well as the scene type. Leave
nodes represent the objects detected in the scene. The core of the framework consists of 3D
Geometric Phrases which encode relations between several objects and object groups. The graph
which best fits with the scene configuration is calculate by applying an energy maximization
method (see [10] Section 3 for details). Figure 2.4 shows the overall worklow of the approach.

Figure 2.4: The entire scene is defined by a scene classification, detected objects and a 3D box
layout. (a) A single input scene is represented by creating (b) a parse scene graph. (c) 3D
geometric phrases are used to describe the relations among several objects. (d)-(e) The final 3D
model consists of object groups and a 3D box layout which interacts in a physically valid way.
The box layout in (d) is represented by the colored lines. (Image taken from [10])

Compared to Hedau et al. [29], the 3D layouts provide additional semantic information by
including object detection results as well as information obtained from a scene classification
method. Moreover, the 3D box layout hypotheses are modified because the method satisfies
that objects and layouts interact in a physically correct way. A further advantage is that objects
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are represented in the 3D space. Thus, relations between objects as well as constraints between
objects and the box layouts are formulated (e.g. a wall can not intersect with an object’s 3D
bounding box). Since the scene geometries are defined by box layouts, it is still a problem that
the representation of more complex layouts (e.g. concave floor plan) is inaccurate.

Lee et al. [46] present a layout estimation approach which is similar to Choi et al. [10].
The method formulates relations between 3D layouts and objects using volumetric constraints.
Different to [29], the objects are described by parameterized 3D volumes instead of projections
onto the 2D image. The volumetric representations are used to formulate configuration hypothe-
sis. The idea is to create configurations in which all objects are defined by exclusive 3D volumes
which are correctly placed (e.g. do not intersect with walls) inside the volume of the correspond-
ing 3D layout. Therefore, volumetric concepts i.e. spatial exclusion or containment are applied.
Figure 2.5 illustrates the idea of examining physical validity. Beside the limitation that 3D boxes
are used to describe the layouts, the approach does not incorporate semantic information [10].

Figure 2.5: The usage of 3D volumetric reasoning results in more accurate 3D layouts. (left)
Sample images. (middle) Spatial layouts estimated using geometric cues. (Right) Improved 3D
layout results using physical valid configurations. (Image taken from [46])

2.1.2 3D Layout Reconstruction from Range Images

Different to approaches which are based on photometric images, methods which rely on range
images are helpful to create more detailed layout models and exact 3D reconstructions of indoor
scenes [66]. In this subsection we want to present methods ( [39,66,68], Google’s Project Tango)
which focus on the usage of pure depth information.

The KinectFusion approach presented by Izadi et al. [39] generates detailed 3D reconstruc-
tions of indoor scenes in real-time. The approach uses 3D data coming from a Microsoft Kinect
camera. (Please note that only the depth information is used from the RGBD input images.)
The dense reconstructions are generated by moving a Kincet camera within a room. In the fol-
lowing we briefly summarize the reconstruction pipeline. Since the approach is based on point
clouds, in an initial step the range images provided by the Kinect are converted into 3D point-
based representations. The approach continually tracks the 6 Degrees Of Freedom (DOF) pose
of the Kinect sensor and fuses the point clouds into a global model. Therefore, a fast Graphics
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Processing Unit (GPU) implementation of the Iterative Closest Point (ICP) algorithm is used
to estimate the rigid transformations which aligns multiple point clouds. A volumetric surface
representation which is based on a Truncated Signed Distance Function (TSDF) volume [39] is
used to represent the global model. New point clouds are integrated into the global model by up-
dating the voxel grid of the corresponding volume. For the volume visualization from a specific
camera pose, a raycasting algorithm is used. Moreover, it is possible to generate a point cloud
or a mesh representation of the entire volume. Figure 2.6a shows an rendered scene obtained by
the KinectFusion software.

(a) (b)

Figure 2.6: Highly detailed 3D reconstructions. (a) Rendered volume generated with the Kinect-
Fusion approach. (b) Extended 3D reconstruction based on a spatially extended KinectFusion
algorithm. (Images taken from [64] and [68])

The KinectFusion approach has a couple of advantages compared to image-based layout
estimation methods. Since the method relies on dense depth information, highly detailed 3D
reconstructions are generated [64]. Furthermore, the framework is not limited on static images
and no assumptions about the structure (e.g. Manhattan world assumption) are required. The
bottleneck of the approach is that the models get large in terms of storage demand and that the
scenes are limited to a maximum room size [68]. With the lowest resolution, the maximum vol-
ume size that can be scanned is up to around 8m3. Compared to scene understanding approaches
like [10,29,36], the KinectFusion approach does not incorporate semantic information about the
scene layout or the objects visible in the environment.

Whelan et al. [68] propose an extension of the KinectFusion approach by using a mesh-
based mapping technique. The algorithm incrementally adds new point clouds into a global
mesh model. Thus, the method creates 3D models over extended areas which is not possible
with the KinectFusion application [68]. The usage of multi-threaded components enables the
generation of the spatial extended 3D models in real-time. The high number of vertices/points
(e.g. 2.3 × 106 faces for a sample model) as well as the lack of missing semantic information
are still challenging problems. Figure 2.6b shows an sample output created with the spatially
extend KinectFusion application.

Recent projects like Google’s Project Tango create detailed and colored 3D reconstructions

10



of indoor environment in real-time even on a mobile device. Similar to the Microsoft Kinect sen-
sor, an Android smartphone device uses a RGBD sensor to capture multimodal data. Different
to the KinectFusion approach and [68], the 3D point cloud representations hold additional color
information. (Please note that although the application uses RGB images for color mapping, the
focus is on estimating point-based models.) Figure 2.7a shows a demo project which shows the
3D-sensing abilities of Project Tango.

(a) (b)

Figure 2.7: Project Tango. (a) 3D Reconstructions are obtained in real-time by a mobile device.
(b) Colored 3D reconstruction of an indoor environment created with Project Tango. (Images
taken from the web)

Turner et al. [66] introduce a real-time approach which generates simplified and aesthetically
pleasing 3D reconstructions from dense 3D point clouds which are captured by a mobile map-
ping systems. The algorithm completely ignores objects visible in the scene. The focuses lies on
the estimation of exact 3D layouts which can be used in simulation approaches or for navigation
in SLAM applications. First, the approach generates a set of 2D wall samples. Therefore, the 3D
points of a scene are projected onto the floor. A Delaunay triangulation method [62] is used to
create a 2D mesh of the corresponding floor plan. The scene is divided into interior and exterior
triangles and redundant triangles are removed. Finally, 3D models are estimated by extruding
the 2D floor plan using a heigh information. In order to reduce the number of faces, the entire
3D model is simplified using the simplification algorithm proposed in [25]. Since the approach
creates smooth 3D meshes, it is possible to add texture information. Figure 2.8 shows a sample
output of a reconstructed indoor model. The simplified models created by Turner et al. [66] are
more usable (in terms of storage demand) compared to the detailed 3D reconstructions proposed
in [64, 68]. The bottleneck of the simplification approach is that the approach does not create
semantic maps.

Compared to image-based methods which use a cuboid to describe the underlying geometry
of a scene, an advantage of the point-based methods presented is that it is possible to process
complex scenes. Since the point-based methods we have discussed are not based on the Man-
hattan world assumption, concave layouts are no limitation for the frameworks (cf. floor plan of
the scene in Figure 2.8). Moreover, the depth-based methods we have presented create extended
3D layouts over time using multiple frames/video data. This is an further advantage compared
to image-based layout estimation approaches which are generally limited on single images (e.g.
Hedau et al. [29]).
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(a) (b)

Figure 2.8: (a) Watertight 3D models are created by extruding the 2D floor plan into a 3D model.
(b) A simplification method creates smooth 3D layouts with a reduced number of faces. (Images
taken from [66])

2.1.3 3D Layout Estimation from RGBD Images

Depth-based 3D reconstruction approaches (e.g. [39, 68]) generate highly detailed 3D recon-
struction. Different to those, Furlan et al. [24] introduce a probabilistic framework for 3D layout
estimation which estimates simplified 3D models based on a combination of structural reason-
ing and motion estimation. Figure 2.9 shows a pictorial representation of the workflow. First,

(a) (b) (c)

Figure 2.9: 3D reconstruction using multiple 3D planes. (a) Based on a sparse 3D point cloud
model, (b) multiple layout candidates are estimated using a plane-fitting method. (c) The final
layout consists of randomly combined layout candidates. (Images taken from [24])

the framework estimates sparse 3D point clouds and the camera motion from an input image
sequence. Second, these 3D point are used to generate a higher level representation based on 3D
planes. Therefore, several planes are fitted into the 3D points in order to obtain a large number
of (potentially inaccurate) layout components i.e. walls and floor. The 3D planes are estimated
by a RANdom SAmple Consensus (RANSAC) plane fitting approach. Third, a 3D layout is gen-
erated by randomly combining the layout components. An inference is calculated by measuring
(1) the compatibility of each frame using visual observations in the images (e.g. edges, lines and
regions) and (2) the geometrical constraints over adjacent frames. Thus, the layout components
at each time step are locally adjusted, merged or stitched and finally the resulting 3D layout is
evaluated using a probabilistic scoring method. The objective is to find a configuration which
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accurately describes the underlying scene. Figure 2.10 shows sample 3D layouts created with
the probabilistic layout estimation framework. Compared to detailed 3D reconstructions, the
layouts consist of multiple 3D planes instead of dense point clouds.

Figure 2.10: The simplified 3D reconstructions consist of a set of 3D planes which are arranged
over time. (Image taken from [24])

A major advantage of the probabilistic simplification method proposes in [24] is that no
assumptions about the scene geometry (e.g. Manhattan world assumption, known camera height)
are claimed. Moreover, the multiple plane representation consists of a reduced number of points
and is generated in real-time using a multi-threading technique. A bottleneck of the approach is
that semantic information (e.g. object detection or scene classification) is completely missing.

Zhang et al. [72] propose a semantic parsing approach to jointly estimate (1) the 3D layout
of indoor scenes and (2) clutter present in the environments using appearance and depth fea-
tures. Different to the previous presented method [24], the layout estimation method satisfies
the Manhattan World assumption concerning color and depth cues. Figure 2.11 shows an 3D
layout created with the framework. In the following we briefly summarize the approach.

(a) (b) (c) (d)

Figure 2.11: Jointly 3D layout estimation. (a) RGB input image with the proposed d 3D layout
(blue) and the ground truth layout (red). (b) Corresponding depth image. (c) Pixel-wise labeling
inference and (d) scene classification. (Images taken from [72])

First, the superpixel algorithm of [36] is used in order to partition the color/depth image into
planar surfaces. The problem is solved my minimizing a term obtained from shape, appearance
and depth energies. The idea is to estimate superpixels which (1) are piecewise planer, (2) con-
sist of pixels with a similar appearance and (3) provide regular shapes. Second, a Conditional
Random Field (CRF) is applied to formulate an energy which encodes both – layout and label
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(clutter) information. In particular, the energy used consists of a labling term, a layout term
and a terms which describes the relation between the two energies. (For more detailed informa-
tion about the formulation of the energies, please see Section 3.2 in [72]). Third, a pixel-wise
inference is calculated using an iterative minimization algorithm.

One benefit of the semantic parsing approach is that different to [24, 39, 72], the method
estimates clutter. Moreover, an method is introduced which segments and classifies this clutter.
Therefore, the pixel-wise classification algorithm proposed in [70] is used. An disadvantage of
the approach is that it is not possible to exploit RGBD video data. Furthermore, objects are clas-
sified using labeling-based inference which is a limitation compared to methods which provide
detected objects in the form of 3D cuboids.

Similar to [72], Silberman et al. [60] propose a approach which estimates semantic 3D lay-
outs from RGBD images by using surfaces and object labels. The approach introduces an addi-
tional technique to create relations between layout segments and objects. The overall worflow is
illustrated in Figure 2.12.

(a) (b) (c)

(d) (e) (f)

Figure 2.12: From top left to bottom right. (a)-(b) Multimodal RGBD input images are used
to estimated surface normals. (c) These normals are aligned with the tree orthogonal scene
directions. (d) 3D planes are estimated using a RANSAC plane-fitting method. (e) The scene
is segmented into multiple regions based on color and depth cues. (f) Physical support relations
are defined on these regions. (Image taken from [60])

In a first step, surface normals are calculated from the depth images. Taking into account
the Manhattan world assumption, the 3D measures are aligned with the orthogonal scene coor-
dinates. The goal is to obtain 3D floor points/vectors which point upwards. Second, potential
floor, wall, ceiling and support planes are estimated using a RANSAC plane-fitting algorithm.
Each pixel of the color image is assigned to a 3D plane using a graph cat optimization algorithm
combined with an alpha expansion method. Therefore, information coming from the RGB im-
age, the normals and the 3D points is used. Third, the image is segmented into surface and object
instances. A watershed algorithm which is consist within the depth planes is used to create an
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oversegmentation. These superpixels are then iteratively merged based on learned similarities.
Therefore, the method proposed in [36] is adapted. In a finale stage, and different to all pre-
vious presented frameworks, the approach models relationships between the estimated regions
(layout and objects). These relations represent physical interactions between several regions.
Such relations are important in more complex robotic applications in which objects interact with
each other (e.g. if a book is placed on a cup, first the book has to be lifted in order to grab the
cup). The support relations are estimated using an energy minimization method over the support
regions, the support types and the structure classes (see [60] Section 5 for more details). The
major disadvantage of the approach is that only static imaged are processed.

While semantic information is missing in depth-based frameworks like KinectFusion [39], in
a number of monocular applications (e.g. [29]) objects are represented as clutter. More advanced
approaches (e.g. [10]) use separate object detectors to detect and classify objects visible in the
scene.

2.2 2D/3D Object Detection, Recognition and Pose Estimation

The automatic and semantic understanding of a scene as well as the detection and recognition of
all visible objects is a challenging task. Objects detected in indoor environments make it possible
to estimate semantic meaningful 3D layout [1, 60, 72]. Humans are able to detect objects from
different viewpoints, despite large variation in shape, changing illuminations and hight intra-
class variabilities [34]. Hence, object class recognition and pose estimation are fundamental
challenges and well-studied in computer vision [64]. The recognition problem can be divided
along several axes (as proposed in [64]):

• Object detection: Describes the problem of detecting areas in an image where matches
may occur. An example is the build-in function of a digital camera to detect faces or
persons in photometric images (e.g. [67]).

• Instance Recognition: Describes the challenge of re-recognizing a known object in a
rigid form. Typical applications deal with the detection of objects which are viewed
from different viewpoints in highly cluttered scenes with the additional problem of partial
occlusion. Such problems are solved by matching extracted contours, lines or surfaces
against an pre-defined object database (e.g. [48]).

• Category Recognition: Deals with the recognition of instances of a certain class (e.g.
furnitures) and is therefore the most challenging recognition task because of the high
number of possible variations within a certain class. Feature-based algorithms are used to
solve the category recognition problem. Possible approaches rely on pure features (e.g.
Bag of Words approach [13]) or the relative position between features belonging to a
detected object (e.g. part-based models [22]).

Figure 2.13 illustrates the difference between the three mentioned recognition tasks.
In this thesis we focus on the problem of category recognition (in the following also called

object detection/classification). Typical object recognition applications can be found in the field
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(a) (b) (c)

Figure 2.13: Different object recognition tasks. (a) Object detection methods are used to de-
tect faces. (b) Instance (known object) recognition based on contour matching techniques. (c)
Feature-based recognition is used to search for a specific class within a scene. (Image taken
from [64])

of robotics [3], where the problem can be described as a manipulation task: In order to manipu-
late a segmented object, first a robot has to identify object candidates. Secondly, the 6 DOF pose
has to be estimated, in order to manipulate (e.g. to grab) an object. The 6 DOF describe the pos-
sible movement of a rigid object in the three-dimensional space. These movements are defined
by three translations along the axis of a coordinate system (up/down, left/right, forward/back)
and the rotations around the axis. The rotations are also known as yaw, roll and pitch. Figure
2.14 shows a typical scenario from the area of robotics.

(a) (b) (c)

Figure 2.14: Robotic Object Detection. (a) Objects placed on a table should be grabbed. (b)
Segmented object candidates are classified and the 6 DOF poses are determined. (c) The 6 DOF
pose is defined by translations along and rotations around the coordinate system. (Images taken
from [3])

Object recognition methods have been introduced based on photometric images, depth (range)
images and recently on RGBD images [35]. In the following subsections we briefly summarize
relevant works and methods.
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2.2.1 2D Object Detection from Photometric Images

Image-based object detection methods can be divided into two categories — learning-based and
template-based approaches [34]. Template-based methods try to describe a model (e.g. a face)
as a function. The advantage of template-based methods is that they do not require an expensive
training stage. Moreover, new models can be trained online. Learning-based methods describe
a model based on a huge amount of pre-defined data. Such methods are also known as feature-
based recognition. Models are describes using a set of features which are used to train a classifier.
Object are detected by extracting features and matching those features against a pre-defined
database. Such methods work well for objects of a particular class (e.g. cars or pedestrians) [21,
34]. A disadvantage is that learning-based methods lead to large training datasets and therefore
high computation times. A simple and well-known feature-based recognition method is the Bag
Of Words (BOW) approach [13].

Bag of Words Model The bag of words approach [13] (bag of key points or bag of features)
is a basic method to solve the class recognition problem [64]. The processing steps of the BOW
approach can be summarized as follows:

• Keypoint detection and feature extraction: In a first step features (e.g. SIFT [49]) are
extracted at keypoints in the image. Such features should be invariant against transforma-
tions like translation, scale, rotation and changing illuminations. The extracted features
are also called visual words.

• Visual vocabulary construction: The extracted features are quantized in order to get a
distribution (histogram) over the visual words. Therefore, clusters of the visual words
(codewords) are calculated which are representative for several features. The resulting
clusters (codewords) are used to describe the entire image with visual words.

• Classification: Based on the feature histogram distribution, a classification algorithm (e.g.
a support vector machine) is used to create a decision surface. Images are recognized by
classifying the feature distribution of the query image.

The idea of the BOW approach is shown in Figure 2.15. A more detailed study can be found in
[73], where the BOW model is compared based on different feature descriptors and classification
algorithms.

The BOW approach does not incorporate the spatial relation between the estimated features.
Hence, part-based models are introduced which take spatial relations into account.

Part-based Models The idea of describing objects by their geometric parts, and the relations
between those parts, goes back to the idea of the pictorial structures presented in [22]. Pictorial
structures consider an object as an deformable version of a template [64]. The major idea of
the pictorial structure approach is to represent a model as a collection of parts with connections
between pairs of parts. Each part encodes local visual properties of the object. The deformable
configuration is characterized by so called springs. Figure 2.16a illustrates the idea of pictorial
structures. A typical way to describe such a model is the usage of an undirected graph G =
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Figure 2.15: Bag of Words approach. Features are extracted at keypoints and the quantized
features are used to create a histogram of visual words. Classification algorithms are used to
train and classify feature histograms. (Image taken from [64])

(V,E). The vertices V = {v1, ..., vn} represent the n parts of the query object. Each edge
(vi, vj) ∈ E defines a connected part of the model. The problem of matching a pictorial structure
to an image can be described using energy functions and optimization methods [22].

(a) (b)

Figure 2.16: Object recognition using part-based models. (a) Pictorial structures decompose
objects into parts and the spatial relations between those parts. (b) Deformable filters define rel-
evant parts of a model using gradient features and the position of the features inside a bounding
box. (Images taken from [22] and [21])

Recent state-of-the-art object recognition algorithms are based on the previous mentioned
ideas of feature-based recognition and part-based model. The Deformable Part Model (DPM)
object detector presented by Felzenszwalb et al. [21] is based on Histogram of Oriented Gra-
dients (HOG) features and spatial models between these HOG features (cf. Figure 2.16a). The
DPM algorithm provides the bounding box of the object in question. The algorithm achieves
state-of-the-art result in the PASCAL Visual Object Challenge (VOC)1. For more details on the
DPM detector compare Section 3.3 in the methodology chapter.

1http://pascallin.ecs.soton.ac.uk/challenges/VOC (last access: 17.04.2015)
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2.2.2 3D Object Detection from Range Images

The detection of 3D models using depth/range images is a well-studied area in computer vision.
An introduction and an extensive overview can be found in [50]. In this thesis we introduce a de-
tection approach which (1) recognizes the type/class of an object in question and (2) determines
the pose (orientation) of the corresponding object. Hence, in the following we briefly discuss 3D
object detection methods based on point clouds which are used for both – object classification
as well as pose estimation.

The challenge of 3D object detection and recognition in point clouds (range images) can be
described as aligning single point cloud views into a global point cloud [50]. This task is also
known as (3D-) registration, where the goal is to find the relative position and orientation of a
partial point cloud in a global model. 3D object detection is applied in fields like robotics, med-
ical imaging, computer graphics or virtual augmented reality [50]. In the following subsections
we describe approaches based on (1) points cloud registration using the ICP algorithm and (2)
shape based retrieval using point cloud descriptors. It is also possible to combine these methods.
In [3] a point cloud descriptor is used to recognize the type and the pose of object candidates and
in a post-processing step the ICP algorithm is applied in order to refine the 6 DOF pose results.

3D Object Detection using ICP Registration

The ICP algorithm [74] looks for the transformation (rotation and translation) between corre-
sponding 3D points of two point clouds by minimizing the mean squared error between there
points.

Objects are typically detected by matching a source point cloud against a trained database
using the ICP algorithm. The source model which delivers the lowest registration error is then
returned. Methods in which variants of the ICP algorithm are used to detect objects in points
clouds are presented in [26] and [1]. The latter deals with the generation of semantic maps
for mobile navigation. In [26] cars are detected in outdoor scenes using a high resolution laser
scanner. Both methods are based on synthetically created point clouds which are generated in an
offline training stage. Therefore, all faces of the trained CAD models are uniformly filled with
points. Since point clouds in real worlds scenarios are seen from a single viewpoint, partial 2.5D
point clouds are more suitable [56].

A bottleneck of ICP registration methods is that similar target and source point clouds (shape
and size) are required [26,43]. Consequently, large training databases are a challenging problem.
The method of [26] requires approximately 90 model to detect one specific object lass (e.g. BMW
Z3).

ICP approaches theoretically solve the full 6 DOF problem [2]. Nevertheless, the most ICP
approaches require an initial pose estimation [35], or have the restriction that objects need to be
placed perpendicular on the ground plane. In order to detect objects of unknown size, in [26] an
additional scale factor is introduced. This problem can also be solved by using different scaled
versions of the 3D models during the training, which results in time-consuming training stages.
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3D Object Detection using Point Cloud Descriptors

In contrast to ICP registration methods, it is also possible to use shape analysis methods to
recognize objects and determine their poses. The general idea behind shape-based retrieval is
to compare objects by measuring the similarity between their shape signatures (also known as
point clouds descriptors) [56]. Signatures are computational representations of objects, which
should be fast to compute and easy to compare, while still discriminating between similar and
dissimilar point clouds. Shape-based retrieval is introduces in [53].

Widely used methods for describing full 3D models are spin-images [40] or spherical har-
monics [41]. Spin-images and spherical harmonics are useful for full 3D models and densely
sampled point-based representations. Therefore, such descriptors are not designed to handle par-
tial and cluttered point clouds [69]. Between those two extrema (2D image / 3D point clouds),
a numerous of methods (e.g. [3,57,69]) which are based on partial 2.5D point clouds have been
introduced.

Partial 2.5D Point Clouds Descriptors Point cloud descriptors are widely used in computer
vision applications for tasks like point clouds registration, object recognition, categorization and
shape retrieval. An extensive review and an comparison of point clouds descriptors can be found
in [2].

In order to use global 2.5D point cloud descriptors, point cloud candidates (pre-detected ob-
jects) are required. Therefore, clustering approaches and plane detection methods are used in
several works (e.g. [3, 26, 56]). Plane-fitting methods are required in order to detect and remove
points which belong to the ground plane. This helps to extract object candidates. In [2, 3, 56]
objects are supposed to be placed on a table. Consequently, in those works a simple plane-fitting
methods is used. In more complex scenarios, an additional layout estimation approach is desir-
able. After object candidates have been extracted from the entire point cloud, the recognition
task is solved by determining a global descriptors for each object candidate.

The Point Feature Histogram (PFH) descriptor presented by Rusu et al. [55] is one of the
most used point cloud descriptors [2]. The idea of the PFH descriptor is to analyse the geometric
relations between a point and all neighbouring points within a sphere. The PFH descriptor
works as follows. First, normal vectors are estimated at each surface point. Second, based on
this normal vectors, a Cartesian coordinate system is created at each surface point (cf. Figure
2.17). Third, the descriptor calculates all point pairs and estimates angular features between
the coordinate systems. These values and the Euclidean distance between the query points are
binned into a multidimensional histogram in order to create a comparable shape signature.

The bottleneck of the method is the computational complexity. For a point cloud with n
points, the computational complexity is O(nk2) where k defines the neighbouring points off a
query point. The influence diagram of the PFH descriptor for one query point is shown in Figure
2.18a. Because of the computational complexity of the FPH descriptor, the Fast Point Feature
Histograms (FPFH) is introduced in [56]. By removing redundant links between point pairs, the
computational complexity is reduced to O(nk2). The influence diagram of the FPFH descriptor
is illustrated in 2.18b.

The PFH and the FPFH descriptor are successfully used for classification tasks, but both
descriptors are invariant against rotations and thus invariant to the object’s pose [57]. Therefore,
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Figure 2.17: A Darboux coordinate frame (u,v,w) located at a query point ps. (Image taken
from [56])

(a) (b)

Figure 2.18: Influence diagram. (a) The FPH descriptor calculates angular features between all
possible points pairs referenced by a query point pq. (b) The FPFH descriptor first estimates
angular features for a query point pq and its direct neighbours (red lines). Secondly, the direct
neighbours (points inside the grey circle) are linked to their own neighbours (black lines) and a
re-weighting schema is used to determine the final signature (Images taken from [2] and [56])

based on the real-time ability of the FPFH descriptor, the Viewpoint Feature Histogram (VFH)
descriptor is introduced by Rusu et al. [57]. This descriptor provides an additional viewpoint-
dependent component using statistics between the viewpoint of the sensor and the surface nor-
mals. Moreover, the descriptor is invariant to scale transformations. Since the descriptor is
invariant to rotations around the camera axis, the approach does not solve the full 6 DOF prob-
lem [3]. An further limitation of the original presented VFH approach is that the descriptors are
trained online. Therefore, training objects are spun on a turntable, and partial views are captured
with a stereo sensor. Such an online training is time-consuming and costly, especially if all pos-
sible poses are captured. A more detail introduction to the VFH descriptor can be found in the
methodology of this thesis (see Section 3.3).

The VFH descriptor has problems dealing with missing parts, caused by specular surfaces,
segmentation artefacts or occlusion [3]. Because of missing parts, the estimated centroid of a
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cluster differs from the original centroid. Thus, the descriptor does not match correctly (i.e. a
wrong model is found) with the corresponding descriptor of a trained model. To overcome this
limitation, Aldoma et al. [3] introduce the Clustered Viewpoint Feature Histogram (CVFH) de-
scriptor. The idea is to estimateN VFH descriptors for all stable regions of a point cloud instead
of one global descriptor for the entire cloud. Figure 2.19 shows stable regions of two sample
point clouds. After calculating the VFH descriptors for all regions, the entire signature is given
by concatenating all histograms. Stable regions of a point cloud are estimated using a region
growing algorithm which clusters neighbouring normal vectors by examining their positions
and directions. (see [3] for details).

(a) (b)

Figure 2.19: Clustered Viewpoint Feature Histogram descriptor. (a) Three stable regions are
estimated from a sample point cloud. (b) Similar point cloud model found in a trained database.
(Images taken from [57])

Furthermore, the CVFH descriptor introduces a pose estimation method which solves the full
6 DOF pose problem by calculating an additional histogram – the camera roll histogram. The
camera roll histogram projects all normal vectors on a plane which is normal to the camera [2].
Next, the angles between the up-vector of the camera and the projected normal vectors are
calculated and binned into a new histogram with a resolution of four degrees. Compared to
the VFH descriptor, the additional roll histogram solves the last degree of freedom (rotation
around the camera axis). Since the full 6 DOF problem is solved, the CVFH method can be
used in robotic applications to detect and grab objects (cf. Figure 2.14). The CVFH descriptor
is not scale-invariant, which makes it possible to distinguish between objects of different size
but identical shape. Moreover, the CVFH approach is successfully tested with an offline training
approach which is based on the usage of synthetically CAD models downloaded from the a web
database.

While in [2, 3, 57] point cloud descriptors are used to classify objects which are placed on
a table (e.g. mugs, bottles, toys), the method proposed by Wohlkinger et al. [69] introduces a
point clouds descriptor – the Spherical Harmonics (SH) descriptor – to classify objects which
are found in a home environment (e.g. chairs). The SH descriptors is invariant to affine trans-
formations and is calculated using a voxel representation of the input point cloud. Since shape
histograms are used to represent the descriptor, it is possible to apply standard classification
methods.

The major problem of all presented point cloud descriptors is that the methods have problems
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to handle missing parts in the point clouds [2]. The VFH and the CVFH descriptor are robust to
noise and clutter. Nevertheless, a considerable amount of missing points and holes in the clouds
(e.g. caused by occlusion) are still a challenging problem.

We have presented two types of 3D object detection techniques – ICP-based registration
methods and detection approaches which rely on point cloud descriptors. In [3] the strengths of
both approaches is combined. First, a descriptor is used to recognize objects (shape and type)
placed on a table. Second, a ICP algorithm is applied in a post-processing step in order to refine
the 6 DOF pose. Another common method is to re-rank the results obtained from the nearest
neighbour search (classification of the point clouds descriptor), using the error metric provided
by the ICP algorithm [2].

2.2.3 3D Object Detection from RGBD Images

In the last years several works have been presented which use multimodal RGBD data to solve
the object recognition task [35, 44, 63]. Feature-based methods (e.g. DPM detector) are based
on extracted keypoints and therefore have problems to handle texture-less objects where the
appearance is mainly given by the object contour. Hence, methods which combine depth and
images cues are introduced.

The template-based recognition method proposed by Hinterstoißer et al. [34, 35] uses com-
bined image and depth cues to handle texture-less objects. First, discriminative image gradients
are calculated using the contours found in the color image. Second, a depth sensor is used to
create surface normals. Normals are mainly found on the object interior. Third, the 2D image
gradients and the 3D surface normals are quantized and binned into a histogram in order to create
robust model representations. Finally, models are detected and classified using a similarity mea-
sure in combination with a classification algorithm. Figure 2.20 illustrates the idea of describing
an object by combining 2D image gradient and 3D surface normals.

Figure 2.20: Model with different modalities. (a) Discriminative image gradients are extracted
using contours. (b) Surface normals are calculated from intensity images. (c) A model is de-
scribed by combining the color and depth cues. (Image taken from [35])

The approach allows the detection of objects in cluttered scenes in real-time. In [35] the
framework is improved by introducing a offline training method which is based on synthetic
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CAD data. Furthermore, a method to estimate the 6 DOF pose is presented. For the detections
of the objects and also for the training of the templates a low-budget sensor (Microsoft Kinect)
is used.

Song et al. [61] propose the Sliding Shapes Detector which is used to detect objects (fur-
nitures) based on RGBD data. The view-dependent descriptor is created from 3D point clouds
and is based on several features. In a first step, the entire point cloud is devided into cubic cells.
Second, multidimensional features which encode shape, orientation and the distance to the cam-
era are extracted from each cell. Third, a Support Vector Machine (SVM) is used to classify
the features. In detail, the feature descriptor consists of density information, 3D normals, shape
information and TSDF features. For the training stage the approach uses depth images which
show training objects from hundreds of different view angles, locations and scales (cf. Figure
2.21b). Therefore, for each object an Exemplar-SVM is created. Objects are detected by ap-
plying a sliding window approach (cf. Figure 2.21a). Each possible bounding box is classified
using an ensemble of the Exemplar-SVMs.

(a) (b)

Figure 2.21: Sliding Shapes Detector. (a) A SVM is trained showing sample objects (in range
images) from hundreds of viewpoints. (b) Objects are detected by shifting a sliding window in
the 3D space. Each possible bounding box is classified using an ensemble of SVMs. (Images
taken from [61])

The average precision of the sliding shape detector achieves an improvement of about 1.7
times compared to the DPM detector [21]. An disadvantage of the original proposed approach is
that objects are supposed to be placed perpendicular on the ground plane. Although the thereby
reduced number of viewpoints, the training of one model is still time-consuming. In [61] the
training of one class take about 4-8 hours. Furthermore, compared to descriptors like VFH and
CVFH, real-time object detection is more challenging because of the high number of possible
sliding windows.

2.3 Discussion & Implications for the Proposed Methodology

In the following we give a brief discussion of the proposed related work and give suggestions
for the methodology used in this work.
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2.3.1 3D Layout Estimation

We have presented frameworks for 3D layout estimation and reconstruction. While the objective
of the former is to estimate geometric classes (walls, floor, ceiling and clutter) from photometric
images, reconstruction methods focus on the generation of highly detailed representations using
structured light sensors. Recently, multimodal RGBD data is used to combine the strengths of
image-based and depth-based approaches.

The major advantage of monocular methods is that the entire scene can be represented with
a parameterized 3D box. Consequently, scenes in which more than four walls are visible, or
the underlying floor plan has a concave structure, are not represented accurately. The advantage
of representing a scene by a single 3D box is that it is possible to easily estimate semantic
attributes. Point-based reconstruction methods on the other side are able to handle random
scene geometries. The bottleneck of such approaches is the complex computation of the models
in terms of processing time and storage demands and that the models do not provide semantic
attributes.

Implications for the 3D Layout Estimation Pipeline In this thesis we use a RGBD layout
parsing method [65] (see Section 3.3) in order to estimate initial scene layouts. Based on this
labeling, we detect 3D planes using a RANSAC plane-fitting method. We borrow ideas from [39]
to fuse several frames over the time. Since we are interested in simplified 3D models, we adapt
the simplification method used in [66]. Similar to [24], our 3D layouts consist of a combination
of multiple 3D planes. Moreover, we include semantic information using a multimodal object
detection an pose estimation approach which is an improvement compared to pixel-wise labeling
methods.

2.3.2 2D/3D Object Detection and Pose Estimation

For both – 2D as well as 3D object detection and recognition – a broad spectrum of methods is
available. Multimodal RGBD data enable the combination of the advantages of color and depth
approaches.

Part-based methods (e.g. DPM object detector) are able to handle the instance recognition
problem which is the most challenging recognition task. Therefore, annotated images are re-
quired in order to train a classification algorithm. Hence, a bottleneck of such methods is that
the training is costly. Commonly, instance recognition methods return 2D or 3D bounding boxes
of the object in question.

3D object detection can be solved using registration algorithms (e.g. ICP) or shape-based
retrieval methods. The bottleneck of registration methods is that similar point clouds (source and
target model) are required. The goal of 3D retrieval is to find similar point clouds in a trained
database. Therefore, similarity measures are used to compare point cloud signatures. Since a
numerous of different descriptors are available (e.g. VFH, CVFH, PFH, SH), it is important to
define the requirements of the recognition framework in advance (e.g. scale invariance, degrees
of freedom).

Objects in real world scenarios are 2.5 dimensional because they are seen from a specific
viewpoint. Thus, it is necessary to train viewpoint-dependent point clouds in order to apply
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shape descriptors. A bottleneck of recent methods is that the frameworks are trained online with
real objects captured using a depth sensor / structured light sensor. The major problem of 3D
shape retrieval is that missing points directly lead to inaccurate detection and pose results.

Implications for the 3D Object Recognition Pipeline Since in this thesis RGBD video se-
quences are available, we introduce a multimodal object detection and pose estimation method.
In an initial step we apply the DPM object detector [21] in order to find object candidates for
the classification and pose estimation task. Since the 2D detector searches for objects visible
in the scene (e.g. a couch), we are able to reduce the 3D classification problem to one specific
class. The 2D detector provides bounding boxes which help us to extract the relevant object
points from the entire scene point cloud. For the point cloud classification and pose estimation
approach we apply the VFH descriptor [57] because (1) the descriptor is scale-invariant and we
do not know the scaling of our object in advance, (2) the VFH signature distinguishes between
different viewpoints and (3) the descriptor encodes the shape of the objects which allows us to
handle the high intra-class variability of furnitures. Furthermore, we borrow ideas from [57] to
train our classification method offline with synthetic CAD models from the web.
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CHAPTER 3
Methodology

This chapter outlines the methodology used in this thesis. We present how 3D layouts are esti-
mated from multimodal RGBD videos. Since the objective of this thesis is to estimate seman-
tically meaningful 3D layouts, we present an object recognition pipeline which detects objects
in the fused point clouds and replaces them by synthetic CAD models. We introduce temporal
optimization methods for both – the 3D layout estimation as well as the object classification
pipeline.

The whole workflow for the generation of a 3D layout from a 3D point cloud as well as the
object detection and the pose estimation results for the objects visible in the scene is displayed
in Figure 3.1.

3.1 Implementation Details

The proposed framework relies on RGBD video sequences which are captured using a Microsoft
Kinect1 sensor. The Kinect sensor provides synchronized color and intensity images (RGB

1http://www.microsoft.com/en-us/kinectforwindows/ (last access: 17.04.2015)

Figure 3.1: Workflow of the proposed simplification algorithm. (a) Fused input point cloud
coming from multiple RGBD frames. (b) Merged 3D plane candidates (wall, ground plane). (c)
Floor plan estimation: Projection of 3D points on the floor and triangulation of the 3D points
within the groud plane segments. (d) Extrusion of wall and ceiling. (e) Object detection, pose
estimation and optimization. (f) Final 3D layout. See text for details.
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image / depth image) at the same time. The information of both images can be combined in order
to generate colored 3D point clouds [43]. The necessary depth information is captured by an
infrared sensor. Both images have a resolution of 640x480 pixels. The RGBD video sequences,
which are processed by our framework, are created by manually storing a synchronized RGB
and depth image pair from the data streams every second.

Since this thesis deals which 3D and point-based data, we use the Point Cloud Library2

(PCL) which is an open source and standalone library for 2D/3D image processing. The Point
Cloud Library (PCL) library contains basic functions for processing point clouds and therefore
provides algorithms for e.g. plane fitting, filters, model fitting, registration, feature descriptors,
segmentation and normal vector estimation. The functions are implemented in C++.

To capture images from the Kinect we use the OpenNI Grabber3 interface which is also
provided by the PCL library. This interface requests data streams from OpenNI compatible
cameras like the Microsoft Kinect, and returns synchronized color and intensity images. Since
the two images captured by the Kinect sensor do not overlap perfectly due to slightly different
viewpoints, the two images are registered by OpenNI in a first step [43].

Moreover, the PCL library provides a Visualization Toolkit (VTK) for the visualization of
point clouds. The 3D layouts and the corresponding mesh representations are illustrated with
matVTK4, which is a VTK based 3D visualization extension for MATLAB.

All experiments have been performed on a standard MacBook Pro with a 2.5 GHz Intel i5
CPU, 4 GB RAM and a Intel HD Graphics Card 4000 with 512 MB. The whole framework is
implemented in MATLAB (R2013a). The core functions are implemented in C++.

3.2 3D Layout Estimation and Scene Simplification

Figure 3.2 illustrates all processing steps for the 3D layout estimation which can be summarized
as follows:

1. 3D Point Cloud Estimation: Point clouds coming from multiple shots are fused in order
to estimate a dense point cloud representation of the entire video sequence. Transforma-
tion matrices between overlapping frames are estimated and stored for further use.

2. Plane Fitting / Wall Detection: Layout segments (walls and ground plane) are estimated
in the RGBD frames using a labeling algorithm. The detected segments are refined using
a plane-fitting algorithm which removes redundant points. Each initial detected wall is
further represented as a straight 2D line.

3. Floor Plan Estimation: A rough floor plan is generated by applying an alpha shape
approach on the scene points projected onto the floor. An exact floor plan is obtained by
trimming the rough floor plane with the 2D lines obtained from the corresponding wall
segments.

2http://pointclouds.org (last access: 17.04.2015)
3http://pointclouds.org/documentation/tutorials/openni_grabber.php (last access:

17.04.2015)
4http://www.cir.meduniwien.ac.at/team/birngruber/matvtk/ (last access: 17.04.2015)
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4. Triangulation / Extrusion: The boundary points of the floor plan are traced and triangu-
lated. The resulting vertices are used for extruding the wall segments and the ceiling.

5. Temporal Fusion: The simplified layouts coming from single frames are fused in order
to expand the floor plan. Consequently, a fused 3D layout is generated by extruding the
updated floor plan.

RGB-D Video

Point Cloud
Estimation RGB-D 

Video

Plane Fitting / 
Wall Detection

Floor Plan
Estimation

Triangulation /
Extrusion

3D 
Layout

RGB-D Frame

Layout 
Fusion

Figure 3.2: Layout estimation pipeline. Single 3D layouts are estimated by processing RGBD
frames. The fused layout is obtained by merging multiple 3D layouts over the time. (See text
for details.)

The whole framework is presented by processing a running example (RGBD video se-
quence). Sample frames of the captured video used are illustrated in Figure 3.3.

Figure 3.3: A RGBD video forms the basis for the layout estimation and object classification
framework.
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(a) (b)

Figure 3.4: Sample frame of the video sequence. (a) Raw RGB image. (b) Depth image.

3.2.1 Preprocessing

A sample RGB and the corresponding intensity image is illustrated in Figure 3.4. Pixels in
the intensity image which are close to the sensor are colored with dark values. Consequently,
bright pixels denote points which are further away. Black colored pixels indicate missing depth
values. The Microsoft Kinect depth sensor ranges approximately from 80cm up to a maximum
of 4m [43].

For the estimation of the 3D point cloud, the camera’s intrinsic parameters are required [33].
The parameters are obtained from a MATLAB based Calibration Toolbox5 (see [33] for more
details). According to the pinhole model the camera matrix Kc, describing the intrinsics, is
defined by

Kc =

f 0 cx
0 f cy
0 0 1

 , (3.1)

where f is the focal length and cx/cy is the principal point.

The depth data obtained from the Kinect sensor (using the OpenNI framework) is a 2D
image which specifies a disparity unit in in meters for each pixel of the depth image. Based on
the pinhole camera model, the transformation of a depth point to a 3D point and the estimation
of the entire 3D point cloud is described by Algorithm 3.1. Since organized point clouds are
captured, for each pixel point of the image, an additional 3D point is available. In order to add
a color information to each 3D point, the 3D points are transformed to the coordinate frame of
the color image using a rigid transformation (rotation and translation) obtained from external
calibration parameters.

Figure 3.5 shows the estimated point cloud of the sample scene from three different view-
points. The position of the sensor is located at the coordinate system’s origin. The visualization
shows the already mentioned problems of the point-based representation:

5http://www.ee.oulu.fi/~dherrera/kinect/ (last access: 17.04.2015)
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Input : Depth image Idepth of size H ×W , Camera parameters fx, fy, cx, cy
Output: 3D point cloud Cxyz

1 for j ← 1 to H do
2 for k ← 1 to W do

// z in meters
3 z← getDepthValue(Idepth[j, k]) ;

// X,Y,Z coordinates

4 Cxyz[i].x← z ∗ (j − cx)

fx
;

5 Cxyz[i].y← z ∗ (k − cy)

fy
;

6 Cxyz[i].z← z;

7 i+ +;
8 end
9 end

Algorithm 3.1: Transformation of a 3D image points to a 3D points.

• Missing depth values lead to clutter and holes in the point cloud.

• Even a single shot consists of a high number of points (187 961 valid points in the sample
scene).

Figure 3.5: Cluttered 3D point cloud of the running example viewed from three viewpoints.

3.2.2 Point Cloud Registration

Having a sequence of N overlapping RGBD frames, the proposed framework estimates a global
point cloud model by fusing multiple point clouds. For the registration we combine information
coming from the RGB and the depth images. In a first step, SIFT keypoints [49] are extracted
from the RGB frames. Secondly, the SIFT features of consecutive frames are matched using
a nearest neighbour distance. Therefore, we use the ratio-test [49] which calculates the ratio
between the closest-distance to second-closest feature distance. The ratio-test excludes matches
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with a ratio bigger than a given threshold Tratio (in our experiments Tratio = 0.36). The distance
between two features is calculated using the Euclidean metric.

After poor matches have been removed, the remaining features with valid depth values are
used to obtain the relative transformation between the point clouds of consecutive frames. There-
fore, a three-point algorithm [23] is applied on the 3D points in order to estimate a rigid trans-
formation. Having a set of at least three point pairs (f , f ′) of the overlapping point clouds, the
rigid transformation is obtained from the rotation matrix R and the translation vector t, which
maps the points f onto the points f ′ by f ′ = Rf + t. The matrices are calculated by minimizing
the error function

E =

M∑
k=1

|f ′k − Rfk + t|2, (3.2)

where M denotes the number of matching points.

For a video sequence of N frames the global point cloud is estimated by incrementally
stitching the overlapping point clouds together. A sample for a fused point cloud is shown in
Figure 3.6. The fused point cloud consist of 3 543 200 points and requires 163.60 MB of storage
on the hard disk. Consequently, it is time-consuming to load (∼ 55 seconds) and process the
point cloud, even on a desktop PC.

Figure 3.6: Multiple point clouds are stitched together to generate a dense point cloud of the
RGBD video.

After the estimation of a global point cloud model and the transformation matrices between
consecutive frames, the next step of the pipeline (cf. Figure 3.2) deals with the generation of a
simplified 3D layout for the fused point cloud.
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3.2.3 Wall Detection and Plane Fitting

Having a 3D point cloud of the input scene, the objective of the following step is the detection
of planar regions in the RGBD frames. Therefore, a wall detection algorithm followed by a
plane-fitting approach is applied.

Initial Wall Detection Following the idea of [38] segments are found by clustering 3D point
normals. The algorithm shows limitations concerning the runtime and it is also difficult to distin-
guish between wall segments and dominant objects in the scene (e.g. a cupboard). The sample
scenes in this thesis are assumed to be taken in indoor scenes (e.g. living room, hotel apartment,
dining room), where man-made geometries and rectilinear structures are available. Therefore
we adapt the algorithm proposed in [65], which is summarized in the following paragraph.

• Segmentation: In a first step the color image is segmented by using a superpixel seg-
mentation method. Edges in the RGB image are detected with a Canny edge detection
approach. Next, a triangulation method is used to obtain a tessellation of the color image
(edgels). HSV color features are then used to merge adjacent edgels.

• Planar Segment Estimation: The RGB image segmentation is used as a prior to suggest
planar patches within each segment. Therefore, the corresponding depth values are taken
into account. The estimated planar segments are further merged using a greedy algorithm
which combines coplanar segments.

• Rectilinear Structure Generation: Under the assumption that the gravity vector is aligned
with the vertical axis of the scene, the floor is detected by searching for a planar region
near the bottom of the image with a normal vector which is approximately vertical. Wall
candidate segments are obtained by searching for segments with a normal vector perpen-
dicular to the normal vector of the floor. Based on the floor’s normal vector, the dominant
rectilinear structure (scene coordinate system) is defined for the entire scene.

• Wall Candidate Identification: Having the rectilinear structure of the scene enables the
estimation of extended planar segments (called wall candidates). Wall candidates are de-
termined by examining the angle between the normal vector of the wall segments and the
horizontal/vertical vector of the scene coordinate system. Segments which are approxi-
mately parallel to the floor of the scene, and further have a horizontal or vertical extent,
are fused.

• Divide Image into Intervals: The algorithm divides the RGB image into a sequence of
intervals. Therefore, the extends (endpoints) of the extracted wall segments and the inter-
section points between perpendicular walls are calculated. Image intervals are obtained
by sorting those endpoints.

• Layout Extraction: The final layout of the scene is obtained by a labeling procedure
which labels each interval concerning the underlying wall segment. First, for each pixel
in the RGB image the optimal wall label is calculated. The calculated walls are projected
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onto the RGBD frame and each pixel gets the label information of the closest wall seg-
ment. A quadrilateral which describes the visible walls in the scene is defined from the
endpoints of the intervals and the floor. All pixels within the rectangle are considered to
estimate the number of inlier pixels, in which a high number denotes good choices. Since
this labeling approach is not sufficient, a global optimization method which enforces depth
continuity is used to get smooth and rectilinear layouts.

Figure 3.7 shows the resulting output of the initial labeling algorithm in which each pixel is
assigned with an additional label information.

(a) (b)

Figure 3.7: Initial labeling. (a) RGB input image. (b) Detected ground plane and wall segments
obtained by the labeling algorithm.

Plane Fitting First, single point clouds are extracted for each detected wall candidate and
the ground plane. The layout candidates are estimated with the previous presented superpixel
labeling algorithm. A statistical outlier removal filter [55] is applied on the point clouds in order
to remove noise and clutter. Secondly, a plane is fitted into each point cloud in order to remove
outliers and objects (e.g. a couch). A plane in the 3D space can be defined by the Cartesian
equation

ax + by + cz + d = 0. (3.3)

The iterative RANSAC plane fitting approach [64] is applied on the points to find the parameters
of the plane equation. The RANSAC algorithm selects three random points and estimates the
plane equation. The remaining points are used to calculate the number of hypothetical inliers
using a distance threshold. Inliers are points which lie on the estimated plane or are situated in
the immediate vicinity. We use a threshold of 3cm to check whether a point lies on the plane.
The final plane is described by the configuration delivering the highest number of inliers. The
algorithm determines after the maximum number of iterations is reached.

After this step, each correctly detected wall and the floor is defined by a plane equation and
the corresponding normal vector. Planes with less than 1000 points are considered as incorrect
segments and are therefore excluded from the further layout estimation tasks. Figure 3.8 shows
the detected planes for our running example. In the example four planes (three walls and the
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ground plane) are detected. The example shows that objects (e.g. the couch) are filtered out by
the plane-fitting algorithm.

(a) (b)

Figure 3.8: (a) Raw 3D point cloud. (b) Walls detected by the super-pixel labeling / plane-fitting
algorithm.

3.2.4 Floor Plan Estimation

The following summarizes the tasks to estimate the mesh-based floor plan:

• Alpha Shape: All scene points are projected on the floor and triangulated using an Alpha
shape approach. The Alpha shape forms a rough floor plan triangulation.

• Line Fitting: Each wall is represented by a single line onto the ground plane using a line
fitting approach.

• Binarization: A binary mask of the floor plan is estimated by combining the information
coming from the Alpha shape and the line fitting method.

Alpha Shape In a first step a triangle mesh of the scene points is required which delivers a
rough floor plan. Thus, all point of the scene are projected on the ground plane. In order to
reduce the computational complexity of the following triangulation, the point cloud is down-
sampled with a voxelized grid approach. A voxelgrid filter approximates all points within a
voxel with the centroid of the voxel. We use the voxelgrid filter provided by the PCL library
with a leaf size (voxel size) of 3cm. The resulting 2D point cloud for our example is illustrated
in Figure 3.9a.

Next, the downsampled points are triangulated. Our first idea was to create the convex hull
of all points. The problem of a convex hull method is that concave structures are not considered
and outlier points (e.g. noise) directly lead to incorrect structures. Hence, we use an Alpha shape
approach [17] to generate a rough floor plan. In a first step all 2D points are triangulated using a
Delaunay triangulation approach [62]. Since such a triangulation disregards concave structures,
all triangles with a circumradius greater than a certain radius are removed. In our experiments
we use a radius of 6cm. Consequently, this approach handles concave structures, but ignores
outliers (e.g. missing points which lead to holes) at the same time. The resulting rough floor
plan is shown in 3.9b.
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(a) (b)

Figure 3.9: Rough floor plan estimation. (a) Projected points of the entire scene. (b) The Alpha
shape method takes the underlying shape into account and closes holes at the same time.

Line Fitting The estimated mesh-based floor plan does not provide a rectilinear structure.
Hence, we want to include the results from the 3D plane fitting method. The points of each
detected plane are first filtered. After line fitting (see Figure 3.10), the points are projected on
the ground plane and a line is fitted into the projected points.

Figure 3.10: Line fitting. Points of the initial detected wall segment (left) which belong to the
fitted plane (middle) are projected on the ground plane (right). Each wall is represented by a
straight line.

Optimization In order to obtain a rectilinear floor map, we combine the two outcomes from
the Alpha shape and the fitted lines. Each triangle of the Alpha shape is transformed into a
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closed polygon by filling all polygons. Morphological operations [15] are used to fill holes in
the resulting floor plan (e.g. caused by occlusions). The projected wall segments are used for
trimming the floor map. Figure 3.11 shows an example for obtaining the map. The 2D lines are
created with an Bresenham Line-Drawing algorithm [6].

(a) (b) (c)

Figure 3.11: Floor plan estimation. (a) Rough floor plan obtained by filling each triangle of the
Alpha shape. (b) Each detected wall segment is transformed to a binary image (red lines). (c)
The trimmed floor plan supports the underlying rectilinear geometry of the scene.

3.2.5 Floor Plan Triangulation and Wall Extrusion

Having an exact binary mask of the floor plan enables the generation of a 3D layout. We estimate
the 3D layout for the scene by performing the following three steps:

• Floor Plan Triangulation: The binary mask of the floor plan is converted into a 2D mesh.

• Floor Plan Simplification: The 2D mesh of the floor plan is simplified.

• Wall Extrusion: Walls are created by extruding boundary wall segments.

Floor Plane Triangulation The exterior boundary of the binary mask obtained in the previous
step describes the dimensions of the underlying scene. The boundary is traced by applying the
Moor-Neighbour tracing algorithm [54]. The coordinates of the resulting polygon course are
transform back into a 3D point cloud (z = 0). Having the 3D coordinates and a clockwise
polygon describing the exterior boundary of the floor plan, enables the usage of a Constrained
Delaney Triangulation (CDT) [9]. A CDT is a generalized triangulation of a set of vertices with
the following properties:

• Edges which are pre-defined are part of the triangulation.

• Triangles of the triangulation do not cross the pre-defined polygon.

• The triangulation is as close as possible to the Delaunay triangulation.

The advantage of the CDT is that the triangulation of concave polygons is possible and it is
feasible to exclude all triangles which are located outside of the polygon.

The boundary of the binary mask is now used to specify the constraints for the Constrained
Delaunay triangulation. The resulting triangulation supports the traced boundary and further
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the concavities. Figure 3.12a displays the result of the CDT algorithm. All polygons which lie
outside the specified polygon are removed (cf. Figure 3.12b). Figure 3.12 clearly shows the
difference between the convex hull of the polygon and the CDT.

(a) (b) (c)

Figure 3.12: Floor plan triangulation and simplification. (a) Constrained Delaunay triangulation
of the binary mask. (b) Triangles outside the polygon are removed. (c) Simplified version of the
mesh-based representation.

Floor Plan Simplification In order to reduce the number of vertices in the final model, the
triangulation of the floor plan is further simplified. Therefore, we use the approach described
in [25], which simplifies meshes by iteratively contracting edges. The simplification algorithm
works as follows: Two vertices v1 and v2 which define a random edge of the mesh are collapsed
to a new vertex v̄ and all incident edges are connected with the vertex v̄. Figure 3.13 illustrates
the idea of the edge contraction method.

Figure 3.13: Edge contraction. The edge (v1,v2) of the triangulation is contracted to a new
vertex v̄. (Figure taken from [25])

Valid pairs for the contraction as well as the position of the new vertex v̄ are estimated by
using a quadric error matrix for each vertex, based on the intersections of neighbouring planes.
The so called fundamental error matrix Kp which describes the squared distance between the
plane of a triangle and any point (vertex) in the space is defined by

Kp =


a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

 , (3.4)

where the variables are defined by a plane equation. The error matrices Kp are formulated for
all planes referenced by a vertex and further accumulated in order to get a single error matrix Q
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for each vertex of the mesh. The simplification algorithm estimates (1) a error matrix for each
vertex of the mesh and (2) iteratively contracts the edges which deliver the lowest contraction
costs given by Q̄ = Q1 + Q2.

The simplified 2D mesh of our running example is illustrated in Figure 3.12c. We reduce
the vertices to 15% of the initial number of triangles. This value preserves the overall shape of
the floor plan and results in a simplified version of the mesh at the same time (for validation
compare our experiment section).

Wall Extrusion The proposed layout estimation framework describes walls by extruding rel-
evant boundary edges of the 2D floor plan. Thus, in a first step the boundary edges of the
triangulation are required. The boundary edges are determined by detecting edges which are
referenced by one triangle only. Secondly, we have to find all segments which belong to walls in
the scene. A straightforward way to find those edges is to check the Euclidean distance between
the edge segments and the points of the plane-fitting approach which have been projected on
the ground plane. Since missing points would lead to missing walls, we decide to estimate the
convex hull of the projected wall points. Thus, every edge located inside the convex hull is used
for the further extrusion approach. Figure 3.14 shows the boundary edges of the sample scene
and the idea of the convex hull method.

(a) (b)

Figure 3.14: (a) Edge segments located inside the convex hull of the projected wall points. (b)
The edges which are colored red indicate wall segments which are used for the wall extrusion
approach.

After the edge segment of the floor plan which belong to walls have been estimated, the
corresponding vertices are used for extruding wall segments and the ceiling. Thus, the roof and
the walls are estimated by extruding the relevant vertices until they intersect with the ceiling, or
if no ceiling is available, up to a pre-defined height of 2.5 meters. For simplification, we assume
that the ceiling has the same shape as the floor plan. A compact and watertight 3D representation
of the scene is then obtained by triangulating the extruded segments. The algorithm used for the
extrusion and the generation of the finale triangulation is listed in Algorithm 3.2. The algorithm
requires the vertices and the faces of the floor plan triangulation as well as a list of the edges
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which are referenced by wall segment. The final 3D layout obtained by the extrusion algorithm
is visualized in Figure3.15.

Figure 3.15: Input point cloud of the sample scene (left) and the corresponding 3D layout (right).

3.2.6 Window Detection

In order to obtain semantically meaningful 3D layouts, the objective of this step is to detect
windows in the scene and further integrate the detected windows into the 3D model. Windows
are detected in the intensity image of the scene. The following three steps are conducted to
localize and visualize images:

• Window candidates are estimated in the depth image.

• The shape of the windows and an the position in the 3D space are examined in order to
remove wrong candidates.

• The detected windows are projected onto the walls.

Window candidate estimation Windows are localized by seeking for rectangular blobs in the
intensity image. For simplification we assume that windows are areas where the Kinect sensor
does not return a valid depth measure. Thus, we first create a binary image where missing
values are colored white and the remaining pixels are colored black. Figure 3.16a shows the
resulting binary image. Since the image is noisy, morphological opening [15] (erosion followed
by dilatation) is performed on the image in order to remove noise. Secondly, the closing operator
(dilatation followed by erosion) is used to fill gaps and to connect labels which are located near
each other. Blobs which are too large (regarding the number of pixels) are sorted out. The
resulting blobs for our sample scene are illustrated in Figure 3.16b.

Rectangle detection Each previous calculated blob is a candidate for the following shape
detection procedure. Since windows are supposed to be rectangular, we first estimate straight
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Input : Vertices Vxyz , Faces of floor plan TRIfloor, Boundary edges edges, Height of
scene hscene

Output: Vertices of the 3D layout V ′xyz and the corresponding faces TRImodel

1 // Length of the triangulation and the final triangulation
2 nVertices← getLenght(Vxyz.X);
3 nVertices’← nVertices ∗ 2;

4 // Create vertices for floor and ceiling
5 Vxyz [1, .., nVertices’]← 0;
6 for iV ertex← 1 to nVertices do
7 V ′xyz[iV ertex].X ← Vxyz[iV ertex].X;
8 V ′xyz[iV ertex].Y ← Vxyz[iV ertex].Y ;
9 V ′xyz[iV ertex].Z ← Vxyz[iV ertex].Z;

10 end

11 for iV ertex← nVertices + 1 to nVertices’ do
12 V ′xyz[iV ertex].X ← Vxyz[iV ertex].X;
13 V ′xyz[iV ertex].Y ← Vxyz[iV ertex].Y ;
14 V ′xyz[iV ertex].Z ← Vxyz[iV ertex].Z + hscene;
15 end

16 // Create faces for floor and ceiling
17 TRImodel.F loor← TRIfloor;
18 TRImodel.Ceiling← TRIfloor + nVertices;

19 // Create faces for the walls;
20 index← 0;
21 for iEdge← 1 to edges.size do
22 // Get indices of edge and create two new triangles for each edge
23 // Indices point to positions in the coordinates list Vxyz
24 tmpEdge← edge[iEdge].Indices;
25 triangle1 = [edge(1), edge(2), edge(2) + nVertices];
26 triangle2 = [edge(1) + nVertices, edge(2) + nVertices, edge(2) + edge(1)];

27 index+ +;
28 TRIwalls[index]← triangle1;
29 index+ +;
30 TRIwalls[index]← triangle2;
31 end
32 TRImodel.Walls← TRIwalls;

Algorithm 3.2: 3D layout estimation. A 3D model is obtained by extruding the faces and the
corresponding vertices of the floor plan triangulation.
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(a) (b) (c)

Figure 3.16: Window detection. (a) A binary image indicates missing depth values. (b) Morpho-
logical operations are used to remove noise and to detect window candidates. (c) Rectangular
blobs are estimated and incorrect shapes are sorted out.

lines using a Hough transformation method [16]. The detected lines are sorted by their length
and the four longest lines are stored. A line-line intersection method is now used to find the
intersections between all lines. Equation 3.5 depicts the calculation of the intersection point
(Px, Py) between two lines L1 and L2 where the distinct points (x1, y1) and (x2, y2) lie on L1,
and correspondingly (x3, y3) and (x4, y4) on L2.

Px =

∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 y1
x2 y2

∣∣∣∣ ∣∣∣∣x1 1
x2 1

∣∣∣∣∣∣∣∣x3 y3
x4 y4

∣∣∣∣ ∣∣∣∣x3 1
x4 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
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, Py =
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. (3.5)

The estimated intersection points are sorted in a clockwise order and further paired in order to
get the four sides of the rectangle. If the sides satisfy certain geometric constraints, the blob
is supposed to be of a rectangular shape. Figure 3.16c shows the resulting rectangular blobs
projected onto the RGB image. In addition, the position of the detected window in the 3D space
is considered. Therefore, the mean distance of the neighbouring points to the nearest wall (3D
plane) is examined. Window candidates with a distance > 20cm are sorted out.

Wall projection The last stage in the window detection process is the projection of the window
onto the corresponding wall. Therefore, we determine the edge segment in the 2D floor plan
triangulation to which the window belongs to. Having this information allows the projection
of the the windows’ corner points onto the corresponding edge segment. The final window is
estimated by extruding the points by the dimensions (height and position on the plane) of the
detected blob.
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In our sample scene two windows are detected as illustrated in Figure 3.15. The two blobs
on the right side (cf. Figure 3.16c) are sorted out because the position of the blobs in the layout
is incorrect or no valid 3D points are available in the neighbourhood.

3.2.7 Temporal Fusion

According to our proposed layout estimation pipeline (cf. Figure 3.2) in the previous sections
we have presented how 3D layouts are estimated based on single RGBD frames. In Section
3.2.2 we have seen how a transformation matrix is estimated which aligns overlapping point
clouds. In this section we present how fused 3D layouts are obtained in order to get a global 3D
model for an entire video sequence. Our proposed layout estimation pipeline intuitively allows
the fusion of several single layouts and the extension of scenes by updating the floor plan over
the time. Therefore, the following steps are performed:

• 1. The 2D floor plan of the fused point clouds is estimated.

• 2. The 3D layout is obtained by simplifying and extruding the 2D mesh of the floor plan.

For the generation of the whole 3D layout, only the updated floor plan of of the underlying
fused scene (point cloud)is required. The remaining steps of the pipeline – namely the trimming
of the rough floor plan concerning the detected walls, the triangulation of the floor plan, the
simplification of the mesh and the layout extrusion – are analogue to the workflow of processing
a single RGBD frame. In the next section we show how multiple floor plans are fused.

2D Floor Plan Estimation

The objective of this step is the estimation of a 2D mesh of the floor plan for the entire scene.
Having two consequence input shots framei and framej where j = i+1, and the correspond-
ing point clouds, we have estimated a rotation matrix R and a translation vector t which registers
the two clouds. Since the single 3D layouts obtained by our pipeline are perpendicular to the
ground plane, we are only interested in the rotation around the z-axis. Given a 3x3 rotation
matrix

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , (3.6)

the decomposition of the matrix returns the three Euler angles θx, θy and θz . The angles are
estimated by

θx = atan2(r32, r32) (3.7)

θy = atan2(−r31,
√
r232 + r233)

θz = atan2(r21, r33),
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where atan2 describes the four-quadrant inverse tangent function. Consequently, the rigid trans-
formation matrix T which aligns two layouts is expressed as a combination of the rotation matrix
Rz and the translation vector t and calculated as depicted in Equation 3.8.

T =


cos(θz) −sin(θz) 0 tx
sin(θz) cos(θz) 0 ty

0 0 0 tz
0 0 0 1

 . (3.8)

For a video sequence with N frames, the fused floor plan is now obtained by incrementally
stitching together the adjacent 2D floor plans (meshes) of the corresponding input frames. Since
we have a transformation matrix for each frame pair available, the accumulated transformation
matrix T′ at a certain position k (1 ≤ k ≤ N ) is determined by

T′ =
k∏

i=1

Ti, (3.9)

where T1 = I4 (identity matrix). After the floor plan for each input frame has been estimated, the
vertices of the triangulations are transformed with the corresponding transformations matrices.
The resulting overlapping mesh is converted into a binary image in the same way as for a single
layout. Figure 3.17a shows the binary mask of the conducted floor plan for our sample video.

(a) (b) (c)

Figure 3.17: Fused floor plan. (a) Alignment of consecutive floor plans coming from multiple
shots. (b) Overlapping wall segments (red lines) are used to trim the rough floor plan . (c) Final
floor plan of the fused scene.

Because of missing points and clutter walls coming from the single layouts are may detected
inaccurate, which leads to incorrect RANSAC planes and consequently the corresponding floor
plan is not rectilinear. This artefacts lead to wall segments in the 3D layout which are not running
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smooth. For that reason, we transform the fitted line segments of each RANSAC wall with the
same transformation matrix which had already been used to align the layouts. The line segments
are extended in both directions in order to obtain better intersections. Figure 3.17b illustrates
the idea of overlapping line segments. In Figure 3.17c the trimmed floor plan is shown.

3D Layout Estimation and Simplification

The last step of the pipeline involves the estimation of the whole 3D layout for the fused floor
plan. These processing steps are analogue to the single case (cf. Section 3.2.5). The triangulated
floor plan as well as the simplified 2D mesh is shown in Figure 3.18a and Figure 3.18b.

(a) (b)

Figure 3.18: Updated floor plan triangulation. (a) Constrained Delaunay Triangulation. (b)
Simplified mesh representation.

When fusing multiple frames, we do not use the convex hull approach to estimate the edge
segments of the triangulation which are extruded. Since the fusion of several point clouds re-
duces the problem of clutter and missing points, valid edge segments are obtained by examining
the minimum distance of the edge candidates to the 2D points of the projected RANSAC wall
points. Each edge of the floor plan mesh with a distance smaller than a threshold Tdist is con-
sidered as a valid edge. In our experiments we use a threshold of Tdist = 4cm. In addition, the
resulting edges are sorted in clockwise order and small holes (Euclidean distance smaller than
3 · Tdist) are closed using a traversal algorithm.

Figure 3.19 shows the finale 3D layout of our running example. It is noticeable that the
simplified model consist of a reduced number of points. The simplified 3D model consist only
of 360 vertices, while the raw point cloud is composed of 3 543 200 points. (Please see our
experiment section for more details.)

3.3 3D Object Detection and Pose Estimation

This section outlines how objects are detected and the corresponding poses are estimated by the
proposed recognition framework. The main idea is to extract 3D points belonging to a specific
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Figure 3.19: Fused point cloud of the sample video (left) and the corresponding 3D layout
obtained by the simplification framework (right).

object detected in the image space, and further search for similar 3D objects in a pre-defined
database. Therefore, a point cloud descriptor which encodes shape and viewpoint – the View-
point Feature Histogram (VFH) descriptor – is used. The detection pipeline for a single RGBD
frame is shown in Figure 3.20. The classification schema is further optimized by combining the
detection and classification results coming from multiple consecutive frames (cf. Section 3.3.6).

Initial Object 
Detection 
(2D/3D)

RGB-D 
Video

Feature
Description

Feature
Classification

PCA
Optimization

3D 
Model

RGB-D Frame

Figure 3.20: Object detection pipeline. For each frame an initial detection and pose estimation
hypothesis is estimated.

Since the proposed framework is trained with synthetic models from the Googles’ 3D Ware-
house6, Section 3.3.1 first presents how synthetic point clouds are generated. The resulting
partial point clouds are further used to train a classifier.

3.3.1 Synthetic CAD Model Training

In this thesis we use shape retrieval techniques in order to detect objects visible in the scenes.
Therefore, we present a 3D point cloud descriptor (VFH descriptor), which is used to search for
similar point clouds in a trained database. This database consists of synthetically generated point
clouds. Thus, we present how synthetic point clouds are rendered from CAD models. Since the
point cloud descriptor used in this work is build from normal vectors, we outline how normal
vectors are obtained from single point clouds. The whole rendering of the partial views, the

6http://sketchup.google.com/3dwarehouse/ (last access: 17.04.2015)
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calculation of the descriptors and the generation of a search space is done in an offline training
stage.

Partial Point Cloud Generation

The point cloud descriptor presented by Rusu et al. [57] is trained online with point clouds
captured from a stereo camera at different angles and offsets. Since such a training is time-
consuming and inefficient [2, 3], we train our framework offline with CAD models downloaded
from the web. Our framework is limited to four object classes – namely couch, chair, table and
potted-plant. The CAD models are downloaded from a public database, centered in a single
coordinate system and the meshes are exported as PLY files which define the vertices and faces.
A sample CAD model used to train our system is shown in Figure 3.21a.

(a) (b)

Figure 3.21: (a) Sample CAD model downloaded from a web database. (b) Virtual cameras are
uniformly placed around a bounding sphere and partial point clouds are rendered, showing the
model from the different camera positions.

Since objects in real world scenarios are viewed from a single viewpoint, parts of the point
clouds are missing because of self-occlusion. Such representations are called 2.5D point clouds
[50]. Consequently, a set of distinguishable views for each CAD model is required, simulating
the input given by a depth sensor. For this purpose we place a virtual camera uniformly around
the CAD model. We use a icosahedron to approximate a sphere and further refine the mesh
of the icosahedron using a surface subdivision algorithm [8] which generates four equilateral
triangles for each face. The resulting mesh is a tessellated sphere which consists of 80 faces (cf.
Figure 3.21b).

A CAD model is now placed at the center of the sphere and the barycenters of the faces
are used to place virtual cameras, looking at the CAD model. The mesh-based model is next
rendered from each viewpoint using a uniform sampling technique and partial point clouds are
generated by reading the depth buffer of the graphics card. Consequently, 80 synthetic points
clouds are obtained, showing the CAD model from all possible sides. For each partial view an
additional pose information (transformation matrix) is available which describes the transforma-
tion between the model and the view coordinates. This view depicts a partial point cloud of the
original CAD model as seen from the virtual camera.
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We assume that the objects in our real world scenarios are sitting perpendicular on the
ground plane visible in the scene. Thus, each partial point cloud is transformed on the ground
plane using the Euler angles obtained from the transformation matrix. Infeasible poses, i.e. the
model rendered from below, are sorted out, and the remaining partial point clouds are stored in a
database for further use. Figure 3.21b) shows the partial point clouds of an sample CAD model.
Please note that we use a rendering framework provided by the PCL library to render the partial
point clouds.

Surface Normal Estimation

The normal vector to each point is required in order to calculate the VFH descriptor for a point
cloud [57]. We estimate normal vectors for the generated partial point clouds with the approach
provided by the PCL library (for details see [55]). First, the point clouds are downsampled using
a voxel grid filter with a leaf size of 3cm. The normal vector to a point on the surface is inferred
by approximating the normal vector of the plane tangent to the surface. Thus, the normal vector
at a specific point is determined by fitting a plane into the k-neighborhood of the query point.
Neighbouring points are those points within a sphere of a given radius r which is centered at
the query point. (In our experiments r = 30cm.) Figure 3.22a visualizes the idea of the least
square plane fitting approach. Since the viewpoints V of the sensor is known, the direction of the

(a) (b)

Figure 3.22: Surface normal estimation. (a) The normal vector at a query point is given by the
normal vector of a plane which is fitted into the neighbouring points. (b) Normals vectors at the
surface pointing towards the viewpoint.

normal vectors is calculated by orienting the normals towards the viewpoint. A normal vector
ni at a query point pi points towards the viewpoint V if Equation 3.10 is satisfied.

ni · (V − pi) > 0. (3.10)

A fast way to determine the normal vector of the planes is the calculation of the eigenvectors
and eigenvalues of a covariance matrix of the points in the k-neighbourhood. (See [55] for more
details). The obtained normal vectors for a point cloud of our database, pointing towards the
viewpoint, is shown in Figure 3.22b (not all normal vectors are displayed).
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Point Cloud Descriptor (VFH)

Having partial point clouds and the normal vectors at each point of the surface, we estimate
shape-based features in order to represent the point clouds in a more comparable way. There-
fore, we calculate a VFH descriptor for each point cloud. The general idea behind shape-based
retrieval is to compare objects by measuring the similarity between their signatures [53]. Thus,
two point clouds are compared by measuring the distance between their histograms (the VFH
descriptors), using a distance metric (e.g. L1 distance). The VFH descriptor is an extension of
the FPFH descriptor [56], which represents the relative orientation of normal vectors and the dis-
tance between point pairs. Moreover, the VFH descriptor is invariant to scale transformations,
which is a desirable feature because we do not know the dimensions of the objects in the scenes
in advance.

Shape Component In an initial step the centroid c of the entire point cloud and the corre-
sponding normal vector nc is determined. (The normal vector of the centroid is given by the
arithmetic mean of the surface normals.) Secondly, the three orthonormal vectors 〈uj ,vj ,wj〉
which form a Darboux coordinate system [57], are estimated at each surface point pj. The unit
vector uj , the unit tangent vector vj and the tangent normal vector wj are determined by

uj = nc (3.11)

vj = uj ×
pj − c

‖pj − c‖
(3.12)

wj = uj × vj . (3.13)

The VFH descriptor calculates the angular deviations pan (α), tilt (φ) and yaw (θ) between
the point’s normal vector nj and the normal vector at the centroid nc (cf. Figure 3.23) as depicted
in the following equations:

α = arccos (vj · nj) (3.14)

φ = arccos

(
uj ·

pj − c

‖pj − c‖

)
(3.15)

θ = arctan (wj · nj ,uj · nj) . (3.16)

The values 〈α, φ, θ〉 are calculated for all possible pairings and further binned into a histogram
to create a VFH signature. This component of the signature describes the shape of the point
clouds.

Viewpoint Component In addition, the VFH descriptor computes a viewpoint component
between the central viewpoint direction and each point’s normal vector nj as shown in Figure
3.23. Therefore the angle β which depends on the viewpoint V is determined as depicted in
Equation 3.17.

β = arccos

(
nj ·

V − c

‖V − c‖

)
. (3.17)
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Figure 3.23: Viewpoint Feature Histogram. (a) The relative angles 〈α, φ, θ〉 are calculated
between the normal vector nc of the centroid and and each surface normal ni. The vectors
〈u,v,w〉 form a Darboux coordinate frame at each surface point. (b) A viewpoint component
is estimated based on the relative angles between the surface normals ni and a central viewpoint
direction. direction.

The final descriptor is given by the concatenation of both histograms. The signature has a pre-
defined length of 308 bins [57]. A sample signature is illustrated in Figure 3.24. Please note
that the VFH descriptor is invariant against rotations around the camera axis. Since our mod-
els are supposed to be placed perpendicular to the ground plane, that is no limitation four our
framework.

Figure 3.24: A resulting VFH signature for an partial point clouds of our database.

For each partial point cloud obtained from the CAD models a VFH descriptor is estimated
in the offline training stage. The descriptors and the pose information (transformation matrix)
for each trained model are stored in a database.

3.3.2 From 2D to 3D - Initial RGB Object Detection

Since multimodal data is available, first a trained RGB detector is applied on the color image in
order to obtain initial object detection results for the further 3D classification. Therefore we use
the DPM7 object detector presented by Felzenszwalb et al. [21].

7http://www.cs.berkeley.edu/~rbg/latent/ (last access: 17.04.2015)
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Deformable Part Model Detection The DPM detector is based on a sliding window approach.
Objects are represented with an root filter and additional flexible part filters. The idea is to
represent an object at different scale levels. The DPM algorithm is based on the HOG feature
descriptor [14]. The image is therefore divided into non-overlapping cells, and the gradient
orientations within the cells are accumulated. The resulting 1D histogram captures local shape
properties of the image.

First, a feature map (HOG features) is created at different scale levels of a standard pyramid.
A coarse root filter covers the entire object at a low resolution in the pyramid. The root filter
describes a detection window. Part filters are covering smaller parts of the object at higher
resolutions, several levels down in the pyramid, e.g. the models of a face – The root filter could
capture the face boundaries, while the part filters would correspond to details like the nose or
the mouth. Thus, the root template and the part templates capture local properties of the entire
object.

A spatial model defines spring-like connections between the parts within the global detection
window. Those connections represent the possible placements of the part filters. Deformation
costs are used to vote each placement. Having a spatial model, the filters and the deformation
costs, enables the usage of dynamic programming and generalized distance transform methods
(see [21] for more details) in order to solve the detection problem. Similar objects are detected
by solving the so called matching problem. As mentioned, objects are represented as spatial
models – In other words a model is described as a graphs G = (V, E) where:

• V describes the parts and

• E defines the connection between parts.

The matching problem is now solved by finding the optimal configuration L = {l1, l2, . . . ln}
for an object, which is determined by minimizing an error function

E(L) =
n∑

i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj). (3.18)

The date term mi(li) describes the costs for placing a filter (part) and the smoothness term
dij(li, lj) defines the deformation costs. Figure 3.25 visualizes the mentioned ideas of the DPM
detector.

The result of the DPM object detector is a 2D bounding box which specifies the location of
detected objects in the color image. Since we have the corresponding 3D points available for
the pixels within the bounding box in the image space, we are able to create a single point cloud
for each detected object. Figure 3.26 shows the 2D detection results for our running example.
Please note that more than one objects is detected.

A main advantage of the 2D pre-detection step is that it is possible to extract objects which
are placed close together e.g. in a man-made environment a shelf is placed close beside a couch.
Without the 2D detection approach it is more complicated to extract such object clusters which
are used for the further point cloud classification. Similar point clouds classification works
[57, 69] use only a clustering approach to determine point clouds candidates.
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Figure 3.25: (a) A model is defined by a root filter and several part filters. (b) Sample model
of a trained couch. HOG features describe the appearance of the root template (top) and higher
resolution part templates (middle). A spatial model is used to define possible placement, where
brighter values denote cheaper deformation costs (bottom).

Figure 3.26: 2D Object detection outcome. The DPM object detector returns bounding boxes
for all detected objects visible in the scene.

3.3.3 3D Object Cluster Estimation and Euclidean Clustering

After determining the 3D information for each detected object visible in the scene, the extracted
point clouds are used in order to search for similar objects in the trained database of the partial
point clouds. Since the 2D detector returns a bounding box, redundant points are eliminated by
performing an object cluster extraction method and Euclidean clustering.

Object Cluster Extraction All points belonging to a wall or the ground plane are removed.
Therefore, the Euclidean distance of the 3D points to all estimated RANSAC planes is deter-
mined. Having a 3D point p = (x, y, z)T , the coefficients of the plane equation (a, b, c, d)
and the plane’s normal vector n = (a, b, c)T , the distance d between a point and a plane is
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determined as depicted in Equation 3.19.

d =
a · x+ b · y + c · z + d√

a2 + b2 + c2
. (3.19)

All points with a distance abs(d) > 5cm are removed because they are supposed to be part of a
layout segment. The second image in Figure 3.27 shows the point cloud after all point belonging
to a wall and the ground plane are removed.

Figure 3.27: From left to right: Extracted point cloud resulting from the 2D object detection, 3D
cluster extraction and the final point cloud after Euclidean clustering.

Since we assume that the objects are placed on the floor, we ignore clusters which are found
above a certain height (50cm in our experiments). In addition, clusters which do not consist of
a meaningful number of points are also excluded from all further classifications. This approach
enables us to filter out false positives in an early step of the classification workflow.

Euclidean Clustering The remaining points of the estimated cluster may still consist of noise
and redundant points. Reasons are points located in front of the detected object, incorrect bound-
ing boxes or inaccurate fitted 3D planes. For example in our sample scene the extracted point
cloud still consists of points belonging to the window board (cf. Figure 3.27). We therefore first
apply a voxel grid filter on the point cluster. Secondly, the remaining points are clustered using
the Euclidean cluster extraction approach provided by he PCL library. A clustering approach di-
vides an unorganized point cloud into several non-overlapping point cloud clusters. For further
details about the clustering approach, please see [55].

The largest cluster is then taken as representative for the object in question and is used for
the following classification. The rightmost image in Figure 3.27 shows the extracted point cloud
after the Euclidean clustering for our running scene.

3.3.4 Feature Description and Classification

Since a coherent and dense point cloud for the detected object candidate is available, the goal
of the next step is to find similar objects – concerning pose and type – in the created train-
ing database. We first calculate a VFH descriptor for the extracted point cloud. Similar point
clouds are now determined using a K-Nearest Neighbours (KNN) search algorithm based on a K-
Dimensional (k-D) tree with a Chi-Square distance metric. The Chi-Square distance dchi(A,B)
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between two signatures A and B is defined as

dchi(A,B) =
1

2
·
∑
i

(Ai −Bi)
2

Ai + Bi
. (3.20)

In our framework we determine the 10 most similar point clouds for the object in question
(N = 10). As a result we get a first ranking of similar objects. The five best results for our
sample object are shown in Figure 3.28.

Figure 3.28: From upper left to bottom right: Most similar point clouds (concerning pose and
type) based on the comparison of VFH descriptors.

3.3.5 PCA Optimization

Please note that the best matching result in the example does not necessarily deliver the optimal
pose. The VFH descriptor has problems dealing with missing points, caused by occlusion, seg-
mentation artefacts, direct illumination or specular surfaces [3]. Figure 3.28 shows that the result
on position K = 3 or K = 5 does not describe the pose of the detected couch in an appropriate
way. Thus, we propose a combination of the VFH descriptor with a second descriptor, namely
a Principal Component Analysis (PCA) descriptor, in order to re-sort the VFH ranking. The
PCA descriptor provides more robust poses even if points of the objects are missing (compare
our experiments section for validation). The following paragraph shortly describes the Principal
Component Analysis procedure.

Principal Component Analysis The PCA is a statistical method which explores data by
analysing the covariance structure of a set of variables. In our case the PCA method is used
to obtain a coordinate system which defines the axis in which the point cloud varies a lot. In
case of a 2D point cloud, the result of the PCA analysis are orthonormal eigenvectors e1 and e2
(cf. Figure 3.29) in which:

• e1 defines the principal direction (dominant direction)

• e2 defines the second dominant direction
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The vectors are called principal components and are perpendicular to each other.
The goal of the PCA optimization is to determine those point clouds of the K = 10 VFH

results which provide similar poses regarding the point cloud in question. The orientation of a
point cloud is therefore described by calculating the eigenvectors. First, all points belonging to
the object cluster are projected on the ground plane. We then calculate the eigenvectors of the
2D point cloud’s covariance matrix using a PCA algorithm. The resulting two vectors represent
the orientation of the point cloud. Only the principal direction is used to describe the orientation
of the entire model.

In the same manner the eigenvectors for theK = 10 most similar VFH results are calculated.
Figure 3.29 shows the obtained eigenvectors for the couch of our sample scene and for a point
cloud of the database with a similar orientation.

(a) (b)

Figure 3.29: PCA eigenvectors (e1, e2) are used to describe the orientation of point clouds. (a)
Eigenvectors of the detected object’s point cloud. (b) Trained partial point cloud with a similar
orientation.

We assume that point clouds with similar orientations deliver similar eigenvectors. There-
fore, the angles between the principal eigenvectors of the object in question and all point clouds
provided by the VFH neighbour search are calculated. The angles are sorted in descending order
which results in a re-ranking of the VFH results. The re-ranking of the VFH point clouds for our
running example is visualized in Figure 3.30.
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Figure 3.30: From upper left to bottom right: Most similar point clouds (concerning pose and
type) provided by the PCA optimization. The obtained poses better describes the orientation of
the sample point cloud.

The PCA descriptor provides pose results which are used for the temporal optimization step.
Since we know the partial point cloud which describes the shape and the pose of the detected
object, any CAD model of the database can be places in the 3D layout.

3.3.6 Temporal Fusion and Pose Optimization

The main problem of the proposed approach is the sensibility regarding missing points and
occlusion. The PCA optimization method leads to incorrect eigenvectors if many points are
missing. Flipped normal vector directions are a further problem we are faced with (please see
our experiment section for validations). Since we have a sequence of RGBD frames available,
the objective of this section is to estimate more robust pose results by introducing a Markov
Random Field (MRF) over the time.

The objective of the MRF is to obtain temporal consistent results for the already estimated
poses over time. Therefore, the optimal pose at each node is determined and insufficient poses
are eliminated. The idea of the MRF is illustrated in Figure 3.31. A temporal inference, in other
words the most likely configuration, is calculated using a chain-structured MRF. The inference
problem is solved by finding the Maximum A Posteriori Probability (MAP) configuration of the
chain-structured graph [52].

An MRF G = (V, E) is described by a set of vertices V and edges E . In our case the
vertices V correspond to the N images of the video sequence, and the edges E represent the
transitions between subsequent frames. In the following we consider a set of random variables
X = {X1, X2, . . . XN} and a configuration of labels x = {x1, x2, . . . xN} from a discrete set
of labels L. The energy function of the chain structured model is expressed by

E(x) =
∑
i∈V

ψi(xi) +

N∑
i=2

ψi,i−1(xi, xi−1), (3.21)
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Figure 3.31: Temporal consistent poses are used to eliminate insufficient orientations. The
optimal pose at each position of the sequence is estimated using a chain-structured MRF.

where ψi defines the unary potentials. The smoothness term between adjacent frames is ex-
pressed by ψi,i−1 (also known as binary potentials). The optimization of the MRF is determined
by searching for the maximum joint probability in the graph [52]. This maximization is equal to
minimizing the energy function defined in Equation 3.21. Consequently, the MAP configuration
is calculated by

x̂ = argmin
x

E(x). (3.22)

Therefore, the estimated sequence delivers an optimized pose result at each time step in the
video sequence.

For the calculation of the MAP configuration we use a dynamic programming algorithm
(Viterbi algorithm [58]) provided by a MATLAB toolbox (Undirected Graphical Models Tool-
box8). The runtime of the Viterbi algorithm isO(nNodes ·nStates2) where nNodes describes
the number of vertices in the graph and nStates the number of possible states.

In the following paragraphs we present how the unary terms and the smoothness terms are
formulated.

Unary Potentials

Let us consider a partial point cloudm of the trained database and a point cloud p of the object in
question at a frame i. Moreover, the corresponding orientation vectors provided by the PCA op-
timization method are expresses as em and ep (cf. Figure 3.29). The unary potential at a certain
frame i is expressed by measuring the angle between the orientation vectors. Mathematically
the unary potentials are determined by

ψi =
arccos (ep,i · em)

π
. (3.23)

Since the range of the arccos function is defined by 0 ≤ ^(em, ep) ≤ π, the term results in
values between [0, 1], where low values denote similar orientation vectors. Orientation vectors
which point in opposite directions result in high values.

8http://www.cs.ubc.ca/~schmidtm/Software/UGM.html (last access: 17.04.2015)
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Binary Potentials and Model Type Estimation

In order to achieve global correct poses, we assume that the poses between consecutive frames
are not changing, because we are faced with overlapping frames and the camera’s pose is inverse
to the pose of the object. In other words, we try to find a configuration where the change between
object poses in subsequent frames is minimized. Moreover, we assume that only frames of the
same model type are considered as valid input. Frames in which no objects have been detected
are ignored. The binary potential between adjacent frames is then expressed as

ψi,i−1 =
arccos (em,i · em,i−1)

π
. (3.24)

For each pair of frames 10 · 10 = 100 combinations are possible in our experiments. The
proposed binary potential function returns low values for adjacent frames in which the objects’
orientations are similar, and high values otherwise (cf. Figure 3.32).

(a) (b)

Figure 3.32: (a) The pose of each detected object is defined with one orientation vector. (b) The
angles between the orientation vectors coming from subsequent frames are used to estimate the
binary potentials. Objects detected in adjacent frames are supposed to provide similar orientation
vectors.

Since the MRF returns an optimized model for each frame, we have to choose one model as
representative because the final 3D layout only holds one CAD model for each detected object.
An interesting possibility is the usage of the mean or the median pose over all estimated poses
(orientation vectors). This method would focus on the estimation of correct orientations and
shows promising results concerning this matter. Since we pay attention to the shape of the
optimized detection results as well, our proposed method uses the object which delivers the
highest similarity measure coming from the KNN classification of the VFH descriptor.

For placing the 3D model into the final 3D layout, we align the centroid of the partial point
cloud and the centroid of the input point cloud for each object using the transformation infor-
mation coming from the MRF. The point cloud of the object in question for our sample scene,
the final detection result after the MRF optimization and the corresponding partial point cloud
of the training stage are shown in Figure 3.33.

Since the VFH and the PCA descriptor are scale-invariant, in a final step a scaling between
the determined 3D model and the object visible in the scene is required. Therefore, the bounding
boxes of the detected object and the partial view are used. For the classes chair and couch the
horizontal length of the bounding boxes is used to determine a scaling factor. For the class
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Figure 3.33: Point cloud of the object in question (left), the partial point cloud of the most
similar model in the trained database (middle) and the corresponding CAD representation.

potted-plant we used the vertical directions of the bounding boxes. Tables are scaled based on
the distance between the table surface (average maximum points) and the ground plane.

The finale 3D layout of our running example, together with the detected objects visible in
the scene, is visualized in Figure 3.34.

Figure 3.34: Fused 3D layout with the detected objects (determined by the MRF optimization)
visible in the scene. The wire-frame model (right) of the 3D layout (left) clearly shows the date
reduction compared to the dense input point cloud.

3.4 Discussion

We present a simplification framework for estimating semantically meaningful 3D layouts in
which objects visible in the scene are detected and replaced by CAD models downloaded from
a public database.

3.4.1 3D Layout Estimation

The proposed layout estimation pipeline estimates simplified 3D layouts by fitting 3D planes into
the input point clouds. The layouts are extended by fusing multiple frames over time. Therefore,
we exploit the multimodal characteristics of RGBD images. The advantage of our approach is
that the complexity of the models is drastically reduced. Moreover, the framework can handle
concave ground planes, which is an improvement concerning image-based approaches.
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The main disadvantage of the proposed (frame-based) algorithm is that missing points lead
to inaccurate layouts, especially if static images are used as input. Our proposed optimization
method fuses layouts over time and leads to dense point-based representations. Hence, we are
able to reduce the artefacts which are caused by missing parts in single point clouds. Compared
to state-of-the-art 3D reconstruction approaches, we are still able to keep the storage demand on
a minimum.

3.4.2 3D Object Detection and Pose Estimation

The multimodal data obtained from the Kinect sensor is used to estimate the type and the pose of
the objects visible in a scene. In an initial step, object candidates are detected in the color image
using a state-of-the-art object detector. The depth information within each detected object’s
bounding box is used to create an initial point cloud which represents the object in question.
The advantage of using an additional 2D detector is that the detection results are not influenced
by missing points.

A clustering approach is applied on each initial estimated point cloud in order to remove
outliers and to get a dense and coherent point cloud of the detected object. Compared to recent
3D object detection frameworks, our approach is able to handle objects which are placed close
to each other by using the additional 2D detection step.

We classify point clouds by comparing the VFH signature with trained signatures using a
KNN search algorithm. Different to other works, this ranking is re-sorted using a PCA descrip-
tor. Since we are using an additional 2D detector, we are able to reduce the search to one specific
class.

A well-known problem of 3D detection approaches is their sensibility regarding missing
points in the point clouds. We therefore introduce a chain-structured MRF which estimates
temporal consistent results for the object’s type and pose over the time.

Since objects in real-world scenarios are shown from a single viewpoint, parts of the point
clouds are missing because of self occlusion. In order to be able to detect similar objects vis-
ible in certain frames, a database of viewpoint dependent point clouds is required. Therefore,
we present a rendering approach which creates the relevant 2.5D point clouds and stores an
additional pose information for each partial point cloud. Compared to recent recognition frame-
works, this scalable approach reduces the time-consuming online training.
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CHAPTER 4
Results and Experiments

The proposed framework supports the processing of single RGBD images as well as video se-
quences. Thus, the present chapter evaluates the framework based on single RGBD shots as
well as multimodal videos. For this purpose qualitative and quantitative experiments are pre-
sented and further evaluated. After presenting the data sets and the CAD models used to train
and evaluate the framework, we conduct with experimental results. The following issues are
addressed:

• We present 3D layout results by processing single RGBD shots and highlight strengths
and weaknesses. In order to overcome limitations caused by single shots, we outline the
fused 3D layout results obtained from multiple RGBD frames and discuss improvements.

• Since an major objective of this thesis is the simplification of the fused 3D models, we
show possible use cases and present results on the data reduction experiments.

• The object recognition and pose estimation experiments highlight the ability of our frame-
work to handle cluttered and noisy point clouds, by introducing a MRF optimization ap-
proach.

For both evaluations (single shots and video sequences) we first describe the experimental
setup. Secondly, qualitative and quantitative results are presented and discussed. All point
clouds are visualized with the PCL CloudViewer and the corresponding 3D layouts (meshes)
are illustrated with matVTK. To show the relevance of the data reduction, we further load and
process the 3D layouts on a mobile device (Samsung Galaxy S3) with the MeshLab1 3D model
viewer.

1https://itunes.apple.com/at/app/meshlab-for-ios/id451944013?mt=8 (last access:
17.04.2015)
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4.1 Data

The data set, which is used to train our framework, consists of partial 2.5D point clouds obtained
from synthetic CAD models. Therefore, the CAD models are sampled by uniformly placing
virtual cameras around the models. The data set for the evaluation of the recognition framework
is composed of RGBD video sequences, providing multiple viewpoint-dependent point clouds.
All point clouds are downsampled using a voxelized grid approach in order to provide a common
resolution.

4.1.1 RGBD Shots and Videos

The RGBD videos used for the experiments are captured with a Microsoft Kinect sensor. For the
evaluation of the single layout estimation method we use one frame pair (RGB and depth image)
for each sample scene. For the temporal optimization experiments we capture RGBD videos.
The sequences are first recorded and stored. Next, each RGBD image pair is incrementally
processed by the proposed pipeline and the optimization methods are applied. The videos were
taken in two different ways:

• Single position: The sensor is rotated around a fixed position (by hand) to grab a more
complete area of the scene.

• Multiple positions: The videos are taken by a person walking through the scene (e.g.
apartment).

All shots and videos are captured in typical indoor scenes (e.g. hotel room, living room, apart-
ment, dining room). We take 21 single shots to evaluate the image-based layout estimation
method. For the temporal optimization experiments we capture 10 video sequences which hold
up to 50 frames. Examples for the single shots used are shown in Figure 4.4, 4.5 and 4.6.

RGBD images vs. video sequences The RGBD video sequences used in our experiments
consist of consecutive and overlapping images. Our framework is able to estimate layout and
object detection result for each single frame of the sequence. Thus, the pipeline for processing
video sequences and single images is similar. The presented temporal optimization methods
combine the results coming from multiple shots. The difference between single RGBD shots
and multimodal videos is that the processing of single frames may lead to inaccurate results for
the 3D layouts as well as for the object detection results. The main problem we are faced with
are missing points caused by occlusion, illumination and specular surfaces. Missing points lead
to the following limitations:

• The 3D planes estimated by the RANSAC plane-fitting method do not represent the walls
in the scenes in a correct way. Thus, the corresponding lines in the 2D space are not cross-
ing and consequently the resulting 3D layouts do not show smooth transitions between
adjacent walls. Furthermore, if too much points of one wall segment are missing, the
framework ignores the entire segment which leads to incorrect floor plans.
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• Since the VFH descriptor is highly sensible to missing points, the signatures do not repre-
sent the shape and the viewpoint of the detected objects correctly. Consequently, the PCA
optimization method provides poses which are not representing the correct orientation of
the objects.

Both limitations are reduced by processing video sequences. Concerning the 3D layout esti-
mation method overlapping RGBD frames coming from multiple shots handle the problem of
non-crossing line segments. Even missing wall segments (in single frames) are no limitation
for the fusion pipeline. Since we are faced with overlapping point clouds, we assume that the
objects’ poses between consecutive frames are not changing. The object detection results are
optimized by combining the pose results coming from multiple frames.

4.1.2 CAD Models

As indoor scenes are most likely described by a few number of object classes, we limit our
classification framework to 4 classes. For each class we train the framework with a different
number of CAD models from Google’s 3D Warehouse. For classes with a higher intra-class
variability more models are trained. Table 4.1 lists the four object classes with the number of
trained models. Figure 4.1 shows examples for the corresponding CAD models, rendered with
Google SketchUp2. We use the method described in Section 3.3.1 to obtain point clouds and

Object class Number of trained models
Couch 12
Chair 8
Table 8

Potted plant 5

Table 4.1: The four object classes used and the number of trained models.

partial views from the CAD models, in order to train our classifier with synthetically generated
2.5D point clouds. Since the VFH descriptor is invariant to scaling, there is no need to use
different scale levels.

4.2 3D Layout Evaluation

This section outlines qualitative and quantitative layout results proposed by the presented layout
estimation pipeline. We present experimental results by processing single RGBD frames as well
as video sequences. Hence, we discuss advantages and disadvantages of the single layout esti-
mation method, and show that multiple input frames are useful to overcome limitations caused
by static images.

2http://www.sketchup.com (last access: 17.04.2015)
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Figure 4.1: Sample CAD models from Google’s 3D Warehouse which are used to train the
framework (rendered from two different viewpoints).

4.2.1 Single Shot 3D Layout Evaluation

The proposed 3D layout estimation method generates mesh representations of single RGBD
shots. The objective of such a representation is to create (1) a semantically meaningful and
(2) a simplified mesh approximation of the corresponding point cloud with a reduced number of
vertices and faces. Furthermore, missing areas and holes in the point clouds should be eliminated
by re-building the missing information.

Qualitative Experiments

We compare the reconstructed point clouds of the sample scenes with the corresponding 3D
layouts, provided by the proposed method. To show the relevance of our layout estimation
framework, the results are compared with ground truth results and noisy ground truth results
caused by missing parts in the point clouds/depth images. In addition we compare our method
with two state-of-the-art frameworks namely the methods of Hedau et al. [29], and Choi et
al. [10] which recover the spatial layout of indoor scenes from monocular RGB images. In [29]
the room layout is estimated by fitting a 3D box into the scene. The work of [10] extends the
framework of [29] by using additional geometric cues. In order to get ground truth data, we
manually label the 21 test scenes using different colors as shown in Table 4.2. To compare our
results with the labeled ground truth images, we project all triangles of the estimated 3D layout
onto the corresponding RGB image and fill them with the corresponding label. Figure 4.2 shows
an example of the layout projection and the resulting labeled image.

64



Color Label
green floor/ground points
red wall points
blue ceiling points
yellow/cyan objects (couch, chair, table, potted-plant)
white parts which are ignored (e.g. other objects)
black missing values (caused by missing points)

Table 4.2: Different colors are used to distinguish between the relevant labels.

(a) (b) (c)

Figure 4.2: Projection of the estimated 3D layout on the raw RGB image. (a) Raw RGB image.
(b) Proposed 3D layout. (c) Labeled image in which the white lines indicate the 3D layout.

Qualitative Results

Figures 4.4, 4.5 and 4.6 show the 21 test scenes used for the evaluations, the reconstructed point
clouds and the estimated 3D room layouts with the detected objects.

The qualitative results show that the calculated 3D layouts describe the dimensions of the
captured point clouds. Walls are represented by planar faces with smooth transitions. The
majority of the visible walls in the scenes are represented by one planar surface. Nevertheless,
displacements or uneven transitions between adjacent walls are possible (e.g. Figure 4.6 scene
16), which indicates that two or more walls are detected instead of one single wall (e.g. because
of texture and illumination changes). Figure 4.3 shows an example for the mentioned problem.
On the other hand the example also shows the ability of the proposed framework to reconstruct
walls although notable parts of the layout are occluded (for example the leftmost and rightmost
walls in the scene).

The qualitative results show the ability of the proposed framework to deal with cluttered
scenes in which parts of the room layout are missing or occluded by objects. Although a numer-
ous of scenes (e.g. scene 11, 13, 16, 17, 18, 19, 20) show a considerable amount of clutter, the
framework still estimates the ground floor and the walls in a correct way. An example is illus-
trated in Figure 4.7, where a reasonable amount of the points of the right wall are missing and a
notable part of the left wall is occluded. Nevertheless, the framework is still able to estimate a
correct room layout and rebuild the missing information.

In individual test scenes (e.g. scene 4) our algorithm is not able to replace the 3D points of
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(a) (b)

Figure 4.3: (a) The initially detected wall candidates in the RGB image. (b) The resulting 3D
layout shows unsmooth transitions between the adjacent walls. Although the walls are occluded
by objects, the framework still estimates useful layouts.

the initially detected wall candidate by a smooth surface because too much information is miss-
ing. The mentioned issue is illustrated in Figure 4.8, where parts of the wall are occluded by
the curtain and an object. Furthermore, the direct sunlight leads to additional clutter. The prob-
lem of missing walls could be reduced by applying the before mentioned temporal optimization
method, in which several scenes are fused in order to estimate a denser point cloud.

Figures 4.9, 4.10 and 4.11 show the labeled results for the 21 sample scenes (from left
to right: ground truth image, noisy ground truth image with missing values, two state-of-the art
frameworks – namely the algorithms of Hedau et al. [29] and Choi et al. [10] – and our proposed
3D layout. Please note that the images visualize the 3D layouts as well as the detected objects.
The empty layouts are indicated by the white lines (column 4, 5 and 6).

The results of Hedau. et at. [29] show limitations concerning the correct estimation of the
room layouts (compare Figure 4.9, 4.10,4.11 column 4). For example the scenes 1, 2, 3, 7,
8, 11, 12, 13, 15, 17 and 20 show insufficient results for the ground plane. In a numerous of
test samples parts of the wall are labeled as ground plane (e.g. scene 1, 8, 12, 15, 17, 20).
In the remaining scenes (scene 2, 3, 7, 11, 13) the walls hide parts of the ground plane. The
additional geometric cues introduced by Choi et al. [10] reduce the problem of incorrect labeled
wall segments. Nevertheless, scenes where only one wall is dominant are challenging (e.g. scene
7, 12, 15, 17). Concerning this fact, our proposed layouts provide more accurate results. The
two state-of-the-art methods fit a 3D box into the scene. Therefore, the algorithm works well for
scenes where three walls (left, middle, right) are visible (e.g. scene 2 and 10). Consequently,
the framework is not able to handle concave scenes. Scene 2 and scene 13 are examples for
rooms with concave ground planes. Hence, our proposed framework outperforms the two state-
of-the-art methods specially if non-convex scenes are present. This is a significant improvement
concerning monocular methods which are based on a three-point perspective.

The results also show that the state-of-the-art frameworks have problems to align the 3D box
exactly with the dominant scene orientations. The layouts provided by Hedau et al. [29]) show
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.4: Qualitative results for the sample scenes (1-7). Each column shows the RGB image
(left), the reconstructed point cloud (middle) and the proposed 3D layout (right).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.5: Qualitative results for the sample scenes (8-14). Each column shows the RGB image
(left), the reconstructed point cloud (middle) and the proposed 3D layout (right).
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(c)

(d)

(e)

(f)

(g)

Figure 4.6: Qualitative results for the sample scenes (15-21). Each column shows the RGB
image (left), the reconstructed point cloud (middle) and the proposed 3D layout (right).
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(a) (b)

Figure 4.7: Comparison between point cloud and 3D layout. (a) The scene shows a considerable
amount of clutter and missing values. (b) The proposed framework reconstructs the walls and
provides a correct 3D layout in which the two visible walls are represented by two smooth
planes.

(a) Cluttered point cloud caused by occlusions (b) Insufficient 3D layout

Figure 4.8: (a) Large parts of the point cloud are missing and occluded. (b) The leftmost wall in
the scene is reconstructed incorrectly.

that in numerous scenes the ceiling is missing (e.g. scene 1, 11, 17, 21) or labelled incorrect
(e.g. scene 7, 8, 18). In scenes where the ceiling is visible in the ground truth image (scene 4,
7, 17, 18), our proposed framework provides more accurate results compared to both monocular
methods.

A further goal of our framework is to interpolate missing parts in the point clouds. In the
labeled images the missing parts are highlighted with black regions. In numerous examples
(scene 5, 7, 8, 11, 14, 17, 18, 19, 20, 21) huge regions are missing because of the already
mentioned point cloud artefacts. Nevertheless, the proposed framework is able to handle noisy
scenes and restore the missing parts. Our final 3D models are watertight, as this is an required
attribute concerning further post-processing steps [39, 66] (e.g. loading the models into a third-
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(g)

Figure 4.9: (a-g) Comparison of the labeling results for the test scenes 1 - 7. From left to right:
Raw RGB image, ground truth image, noisy ground truth image, Hedau et al. [29], Choi et
al. [10], proposed 3D layout.
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(g)

Figure 4.10: (a-g) Comparison of the labeling results for the test scenes 8 - 14. From left to
right: Raw RGB image, ground truth image, noisy ground truth image, Hedau et al. [29], Choi
et al. [10], proposed 3D layout.
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(e)

(f)

(g)

Figure 4.11: (a-g) Comparison of the labeling results for the test scenes 15 - 21. From left to
right: Raw RGB image, ground truth image, noisy ground truth image, Hedau et al. [29], Choi
et al. [10], proposed 3D layout.
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party software or 3D printing).
The previously presented results also show that our framework is able to detect objects in

the scenes. Compared to the pixel-based results of the state-of-the-art frameworks, the proposed
results use 3D models. While most scenes show suitable pose estimation results, other scenes
(e.g. scene 1, 6, 7, 8, 12, 14) come along with insufficient pose results (deviation between
original and detected object is greater than 20 degrees). A more detailed evaluation is presented
in Section 4.4. In order to estimate semantically meaningful layouts, we described a simple
depth-based method to detect windows as well. In the result images the detected windows are
marked violet (cf. Figure 4.9, 4.10 and 4.11).

Limitations Although our framework provides visually sufficient results, we are faced with
problems concerning the geometric configuration. In numerous test scenes (e.g. scene 11, 13,
14) detected objects are overlapping each other, or multiple objects are detected at the same
position (e.g. scene 8 and 13). For example in scene 13 a chair is detected although a table
was already detected at the same place (cf. Figure 4.12b). Another problem occurs within the
relation of the detected objects and the 3D layouts. Our detection method scales objects along
one direction (horizontal direction for the class chair and couch, vertical direction for the class
table and potted-plant), to get proportionally correct results. Consequently, it may happen that
a object reaches beyond the 3D layout. An example (scene 13) is illustrated in Figure 4.12a).

(a) (b)

Figure 4.12: Incorrect geometric configuration. (a) A detected object reaches beyond the wall.
(b) Two (or more) objects are detected at the same position.

Quantitative Experiments

This section presents quantitative experiments. Having a ground truth image F and a result
image R enables the calculation of a pixel accuracy |Gl∩Rl|

|Gl∪Rl| for an given object class l ∈ L =

{groud plane, wall, ceiling} over all sample images. Equation 4.1 defines the calculation
of the pixel accuracy Acc, in which Nii determines the number of correct labeled pixels. Nij
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determines the number of pixels of label i labelled j.

Acc =
Nii∑
j
Nij

,∀i, j ∈ L. (4.1)

Furthermore, we calculate the average error and the global error over all object classes and test
images. In the following experiments we compare our result again with the ground truth image,
the noisy ground truth images (raw depth) and the results of [29] and [10]. Pleas note that the
method of [10] does not return object labels.

Quantitative Results

We perform two kinds of quantitative experiments. The result of the first experiment describes
the comparison of the empty 3D layouts. In the second experiment we compare the 3D layouts
taking into accounts the four object classes. Table 4.3 and Table 4.4 list the number of correctly
classified pixels for each object class and compares the addressed methods.

Raw depth Hedau et al. [29] Choi et al. [10] Proposed layout
ground plane 94.14 89.07 87.48 90.74
walls 88.58 84.82 91.65 96.44
ceiling 82.75 32.08 51.69 69.22
mean 90.03 84.91 86.70 95.03
global 91.25 81.65 90.62 91.38

Table 4.3: Percentage of correctly classified pixels for each label (empty 3D layouts).

Raw depth Hedau et al. [29] Choi et al. [10] Proposed layout
ground plane 94.74 64.14 / 80.39
walls 88.23 84.97 / 96.47
ceiling 82.75 32.03 / 75.89
mean 90.54 75.25 / 88.10
global 91.35 70.84 / 87.31

Table 4.4: Percentage of correctly classified pixels for each label (3D layouts and objects).

The pixel accuracies confirm the already presented qualitative results and statements pre-
sented in the previous section. Both experiments show that our framework outperforms the
monocular methods for all labels (ground plane, wall, ceiling). In both experiments the highest
accuracy rates (proposed by our method) are reached for the label wall. For the empty layouts
we achieve a mean classification rate of 95% which outperforms the noisy ground truth results
by approximately 5%. This indicates that our algorithm successfully reproduces missing areas
in the raw clouds.

In the second experiment we take into account the four object classes (couch, chair, table,
potted-plant). Again, the best classification rate is achieved for the label wall. This value is again
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greater than the noisy ground truth rate. Compared to the empty layouts, our pixel accuracies
have deteriorated slightly. We would like to mention that among others (i.e. classification error)
this is also caused by the formulation of our detection scheme. The detected objects in our
framework are only scaled along one direction. Thus, we get a higher error because regions of
the wall ore the ground plane may be labeled incorrect.

4.2.2 Multiple RGBD Shots Evaluation

This section outlines the 3D layout results provided by the proposed temporal fusion pipeline.
The objective is to create extended and more complete 3D layouts while still keeping the memory
load low. The following results show that the limitations caused by missing points are reduced.
The memory experiments are presented in Section 4.3.

Experimental Setup

In order to create geometrically exact and extended 3D models, we capture several shots from
different viewpoints and fuse them into a single model. The method described in Section 4.2.2
is used to create the extended 3D layouts. In the following, qualitative and quantitative results
as well as the improvements achieved by the presented optimization method are presented.

Qualitative Results

Figure 4.13 and 4.14 show the test scenes used (fused point clouds) and the fused 3D layouts.
The results show the ability of our framework to fuse several shots, while still providing simpli-
fied mesh-based models.

Our proposed framework provides simplified approximations of the fused point clouds. The
floor, the walls and the ceiling are represented by smooth planes. The framework is able to
rebuild all visible walls of the test scenes. Figure 4.15b shows the mentioned problem (single
case) that walls are not reconstructed correctly because too much information is missing. The
example shows that parts of the leftmost wall are occluded by the curtain and a box, which leads
to the missing wall in the final 3D layout. The direct sunlight at the left wall is an additional
problem. By using the proposed optimization method, the wall is reconstructed in a correct way,
because more information is available after the point cloud registration (cf. Figure 4.15c).

An further improvement of our framework compared to image-based methods is that non-
convex ground planes can be processed. This advantage is still available after several frames
have been fused to a final model. An example for a fused and concave scene is illustrated in
Figure 4.14 (video 6).

The 10 resulting 3D layouts also show that the fusion is geometrically exact because the
walls merge smoothly. Nevertheless, single scenes (e.g. video 4 and video 9) show limitations
concerning the transitions of the shots (cf. Figure4.16). One reason for this artefact is that too
much SIFT feature are missing which leads to an inaccurate transformation matrix. Neverthe-
less, the framework still provides closed 3D models.
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(a)

(b)

(c)

(d)

(e)

Figure 4.13: Optimized results for the sample videos (1-5). A RGBD video sequence is used
to create a dense point cloud (column 1). The proposed framework estimates a mesh-based,
smooth and simplified model of the scene with a limited number of vertices and faces (column
2 and 3). Each sample shows the MRF optimized object classification result.
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(a)

(b)

(c)

(d)

(e)

Figure 4.14: Optimized results for the sample videos (5-10). A RGBD video sequence is used
to create a dense point cloud (column 1). The proposed framework estimates a mesh-based and
simplified model of the scene with a limited number of vertices and faces (column 2 and 3).
Each sample shows the MRF optimized object classification result.
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(a) (b) (c)

Figure 4.15: Wall artefacts due to missing points caused by direct sunlight and specular surfaces.
(a) RGB input scene. (b) The processing of one single frame leads to an incomplete layout. (c)
The temporal optimization method provides a more complete and correct 3D model.

(a) (b)

Figure 4.16: The resulting 3D layouts (video 4 and 9) show an offset between adjacent shots.
The mesh model is still closed.

Comparison of Single Layouts and Fused Layouts When using single images missing points
lead to inaccurate plane-fitting results and consequently to inaccurate or even missing line seg-
ments. In the following we show that the optimized 3D layouts generated by the optimization
approach reduces these artefacts. Figure 4.17 shows single point clouds (column 1), the cor-
responding single 3D layouts (column 2) and the fused 3D layouts provided by processing the
entire video sequences (column 3).

As can be seen in the illustrations, the following improvements are achieved:

• Redundant wall segments (at the exterior edges) which are caused by the convex hull
approach are mostly eliminated.

• Unsmooth walls are replaced by planar segments.

• Inaccurate transitions between consecutive wall segments are corrected.

Quantitative Results

This sections demonstrates that the fused 3D layouts lead to an improvement concerning the
scene dimensions. Therefore, we first create ground truth wall segments by manually extracting
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(a)

(b)

(c)

(d)

Figure 4.17: 3D Layout improvements. Left: Raw point clouds. Middle: Corresponding single
3D layouts coming from one frame of the video sequence. Right: Fused 3D layouts provided by
multiple shots.
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all walls from the fused point clouds. Furthermore, we remove points which do not belong to
the walls (e.g. objects). The remaining point sets describe the ground truth wall. Next we
calculate the average distance of all these points to the closest underlying wall segment of our
proposed 3D layout coming from (1) the fused 3D layout and (2) single layouts coming form
the registration step.

Random frames are taken from every video sequence and the distances over all planes and
shots are estimated. Figure 4.18 shows (a) the mean distances in centimetres between the ground
truth points and the estimated RANSAC planes and (b) the mean distances of the ground truth
points to the RANSAC planes for the corresponding percentage of planes over all shots and
videos.
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Figure 4.18: Comparison of the estimated 3D layouts when using single layouts separately and
when using the fused and optimized layouts.

The comparison shows that for 92% of all wall segments (planes), the distance between the
ground truth points and the room layout is less than 5cm when using the optimized layouts.
When using the single 3D layouts instead, the same percentage of planes lead to an mean dis-
tance of 17cm. This indicates that an increasing amount of input frames leads to more exact 3D
layouts.

4.3 Memory Capacity, Data Reduction ans Use Cases

In the previous evaluation we have seen that our framework is able to fuse several RGBD shot
over the time. Similar works like the KinectFusion application [39] create a dense and more
detailed 3D reconstruction of indoor scenes. The problem of such solutions is that third-party
applications are unable to use the 3D models efficiently, because of their geometric complexity
and huge amount of data [39, 66]. When fusing our scenes using KinectFusion, the filesize may
increase up to 300 MB, which can not be manipulated (e.g. in a CAD software) in real-time
anymore.

In general, the computational cost of processing a 3D model, respectively a point cloud,
relates directly to its complexity [25]. Thus, small 3D models with limited complexity are
required. The following evaluation shows the ability of our framework to provide fused 3D
models, while keeping the memory load low and constant.
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Experimental Setup

In the following we compare the number of vertices/faces of the proposed 3D layouts with the
number of raw points coming from the fused point clouds. In addition, the file size of the
raw point clouds and the stored mesh representations (PLY output) is compared. To show the
relevance of the data reduction, we further load the final 3D layouts on a mobile device (Samsung
Galaxy S3). Moreover, we show a possible use case in which our 3D layouts are useful – namely
a Google SketchUp Scene Composer.

Quantitative Results

Table 4.5 compares the test scenes concerning the file size and the number of points/vertices. The
values show that the proposed 3D layouts consist of a drastically reduced number of vertices.
While the saved point clouds are memory intense (up to 230 MB), the corresponding mesh
representations only require memory storage in the range of 10 - 300 kB. Hence, our proposed
method leads to a data reduction of over 99.9% concerning the number of points/vertices of the
models as well as for the corresponding memory demand.

Scene Size Number of Points
Input[MB] Ours [KB] Input Ours [Layout/Obj./Tot.]

1 137.98 465 3 379 200 260 7 412 7 672
2 113.46 59 2 764 800 270 756 1 026
3 75.14 100 1 843 200 205 1 337 1 542
4 228.89 331 5 529 600 520 4 776 5 296
5 174.78 29 4 300 800 380 220 600
6 88.18 104 2 150 400 320 1 355 1 675
7 164.34 58 3 993 600 295 732 1 017
8 62.74 171 1 536 000 260 253 2 513
9 163.50 196 3 543 200 360 2 565 2 925
10 74.85 41 1 843 200 265 440 705

Table 4.5: Comparison of the memory consumption and the number of 3D points/vertices for
the fused input cloud and the proposed 3D layout (number of points split up in layout, objects,
total) .

Qualitative Results

Since our simplified 3D models require only a limited amount of storage, we are able to visualize
the layouts on a mobile device. Figure 4.19 shows three models (video 1, 7 and 9) which are
displayed on a Samsung Galaxy S3. The resulting models are loaded from a web browser. It is
further possible to manipulate (i.e. drag, pan, rotate, zoom) the models in real-time.
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(a) (b) (c)

Figure 4.19: Three fused 3D models loaded and manipulated in real time on a mobile device
(iPhone 4s).

Use Case - Google SketchUp Scene Composer

Since the 3D layouts which are generated by our framework are stored in a standard three-
dimensional data format (PLY, OBJ), we are able to load the entire model into a third-party CAD
software. In the following we demonstrate a possible use case for the output of the framework:
The 3D layouts are visualized in Google SketchUp and new models (e.g. furnitures) are placed
into the 3D layout. The 3D layouts are perpendicular to the coordinate system of the software
which helps to place models straight on the ground plane. The new models are downloaded from
the Google 3D Warehouse database. Figure 4.20 shows images of the proposed use case.

Figure 4.20: Use case – Scene Composer. From top left to bottom right: (a) 3D layout is im-
ported into SketchUp. (b) New 3D model is downloaded from a web database. (c) Downloaded
model is rotated and shifted. (d) Finale composed 3D layout with the new model on the correct
position.
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4.4 3D Object Classification Evaluation

This section presents the evaluation of the presented object detection and pose estimation ap-
proach. First, the results obtained from processing single RGBD shots are discussed. Therefore,
we compare the detection results coming from the VFH descriptor and the optimized VFH+PCA
descriptor. Secondly, we evaluate the MRF-based optimization method and show that the usage
of video sequences and the temporal optimization lead to more robust pose results. Since the
results for the type of the detected objects are almost exclusively based on the state-of-the-art
2D object detector, in the following experiments we focus on the evaluation of the pose results.

4.4.1 Single 3D Object Classification Evaluation

A main advantage of the framework architecture is that for each detected object information
about the class type, the pose and the spatial position in the scene is available. This allows the
replacement of the detected object in the final 3D scene with a random CAD model of the trained
database. Such a scenario is a possible use case for augmented reality applications. Figure 4.21
illustrates the mentioned idea.

(a) (b)

Figure 4.21: 3D model replacement. (a) Input Scene. (b) Different CAD models from the trained
database are placed into the 3D layout.

The qualitative results of the single 3D layout estimation experiments have shown that the
proposed framework provides accurate poses for most of the test scenes. Nevertheless, inaccu-
rate poses are possible because of missing points which lead to VFH signatures [3,56,57] which
do not represent the entire shape and the correct viewpoint of the detected objects. Consequently,
the PCA orientation vectors do not correspond with the correct orientation vectors. We now take
a closer look on how occlusion affects on the detection and orientation results.

Experimental Setup

In this experiment we analyse the performance of the VHF descriptor and the combination of
VFH+PCA when the input point cloud is noisy or incomplete. Therefore, we place a chair in
a test setting. The chair is not occluded by other objects, the illumination is constant and not
changing and the the Kinect sensor is placed on a fixed position which means that the viewpoint
is not changing. Figure 4.22a illustrates the configuration and shows the object used for the
experiments. Next, the chair is uniformly rotated (0− 180◦) and for each orientation the classi-
fication is performed, using the VFH descriptor as well as the combined VFH+PCA descriptor.
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In this experiment only the most similar object from the trained database is used. For each ori-
entation we then simulate occlusion by randomly removing a defined percentage of connected
points from the object’s point cloud. Figure 4.22b shows the simulation of the occlusion for
different percentages of occlusion.

(a) (b)

Figure 4.22: (a) Sample input image and the 3D model used for the classification. (b) Simulation
of occlusion.

For each orientation and amount of occlusion the pose and an the resulting pose error are
determined. The pose error describes the angle between the ground truth orientation vector of
the detected object and the vector coming from the classification. Angles between (0 − 180◦)
are possible, in which 0◦ describes the optimal pose result. For each shot 30 occlusions are
simulated in order to handle different shape variations caused by the occlusion simulation, and
the median pose error is estimated for each orientation.

Quantitative Results

The classification results obtained from the previous presented occlusion experiment are pre-
sented in Figure 4.23(a-c). Each line in the plot represent an orientation (0 − 180◦). As can
be seen in the diagrams, the pose error decreases when the amount of occlusion decreases, for
the VFH descriptor as well as for the VFH+PCA descriptor. Nevertheless, the mean deviation
error over all shots shows that our proposed VFH+PCA descriptor outperforms the single VFH
descriptor. Since the experiments for the VFH+PCA descriptor show that an occlusion of 30%
results in an mean deviation error of over 35◦, the usage of a temporal MRF optimization is de-
sirable. Our assumption that missing points lead to inaccurate pose results is further highlighted
in Figure 4.23d. In the diagram we plot the deviation error (VFH+PCA) with the corresponding
missing point ratio. This value describes the ratio between the number of points of the synthetic
point cloud and the number of points of the input point cloud. A hight value (close to 1) denotes
that a lot of points are missing (e.g. because of clutter). Complete models deliver a value close
to 0. Please not that the two clouds have the same size, are not occluded and further are grid-
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(a) (b)

(c) (d)

Figure 4.23: Median pose error provided by (a) the VFH descriptor and (b) the combined
VFH+PCA descriptor. (c) Mean error of the descriptors over all shots. (d) Pose error concerning
the number of points.

filtered. As can be seen, the shots from the side (90◦) and from behind (180◦) deliver a highest
pose error in the experiments because of the self-occluded characteristics of the views.

4.4.2 MRF optimized 3D Object Classification Evaluation

In the previous section we have shown that our proposed classification method (VFH+PCA)
has problems to deal with missing points and clutter. Such artefacts deliver PCA eigenvectors
which are inaccurate or in the worst case shifted if a considerable amount of points (> 30% of
occlusion) is missing. In the following, we evaluate our MRF-based optimization method. The
objective of the temporal optimization method is to handle incorrect poses caused by missing
points.

Experimental Setup

In order to evaluate the pose results obtained from the MRF optimization method, we first calcu-
late the ground truth poses for all objects visible in the 10 video sequences. Secondly, in the same
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manner as for the occlusion experiment the deviation in degrees is determined for each detected
object. We compare the results provided by the VFH descriptor, the VFH+PCA descriptor and
the results obtained from the optimization method (in the following called VFH+PCA+MRF).

Quantitative Results

We accumulate the pose errors over all sequences and detected objects. In Figure 4.24 the error
curves for the three methods are visualized, in which the deviation is plotted depending on the
percentage of considered objects. As can bee seen, the proposed MRF optimization method

Figure 4.24: Poses estimation error over all sequences and detected objects using VFH,
VFH+PCA and VFH+PCA+MRF

outperforms the frame-based classification results. 80% of the all poses yield an error less than
20◦. For the same amount of poses the VFH+PCA descriptor delivers an error of 28◦ and
the raw VFH descriptor even an error of around 53◦. Nevertheless, the proposed VFH+PCA
optimization provides more accurate poses compared to the VFH descriptor.

Qualitative Results

Figure 4.25 show that incorrect pose results obtained from single shots are sorted out by the
proposed MRF optimization method. Since the MRF establishes a temporal inference between
consecutive objects, high deviations between adjacent orientation vectors indicate wrong poses.
For example Figure 4.25a shows that the VFH+PCA descriptor (column 2) delivers an inaccurate
pose for the chair in the third frame (row 3). The MRF optimizes the pose result (column 3 /
row 3) and returns a more exact orientation.
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4.5 Discussion

We evaluated our framework by processing single RGBD shots as well as video sequences. For
the experiments we evaluate 21 RGBD shots and 10 video sequences. The main issues of the
proposed layout estimation framework are:

• The proposed layout estimation framework is able to estimate the spatial layout of incom-
plete, cluttered and noisy scenes, by providing simplified and smooth 3D models which
consist of multiple 3D planes.

• While monocular methods (e.g. [29], [10]) fit 3D boxes into the images, our proposed
framework is able to handle convex as well as concave ground planes.

• The framework recovers the spatial layout of a single RGBD frame by detecting the
ground plane, the walls and the ceiling. Compared to monocular state-of-the-art methods,
the usage of additional depth information leads to more exact 3D layouts. The proposed
algorithm achieves a mean and global pixel accuracy over 90%.

• The pipeline restores missing parts which are caused by specular surfaces, direct illumi-
nations, occlusions or other point cloud artefacts.

• Several RGBD shots can be stitched together by moving the sensor through the scene (e.g.
rotating or walking). The fused 3D layouts consist of smooth transitions between adjacent
walls and shots.

• Compared to the static layouts obtained from single shots, the fused 3D layouts lead to
more accurate dimensions. The evaluation of the video sequences yield to an accuracy of
5cm for 92% of the evaluated wall segments, whereas the 3D layouts obtained from the
single shots result in a mean distance of more than 17cm.

• The final 3D layouts consist of triangulated meshes. Hence, the representations are sim-
plified and smooth. Furthermore, the resulting models are supported by common 3D file
formats like PLY or OBJ.

The fused 3D models consist of a reduced number of points/vertices compared to the raw
point clouds. The simplification method achieves the following results:

• A data reduction (concerning file size and number of points) of 99.9%.

• The final models require a memory storage of around 14 - 272 kB. (Requirement for the
raw point clouds: 76 - 229 MB.)

• The ability to load and manipulate the 3D models on a mobile device or in a third-party
software. We demonstrate an possible augmented reality use case where additional 3D
models are placed into the 3D layout.
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(a)

(b)

Figure 4.25: Detection results based on the three presented descriptors for (a) sample video 7
and (b) sample video 3. The arrow denotes the camera viewing direction.
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Concerning the object classification the following initially addressed problems are solved:

• The framework supports the usage of synthetically rendered points clouds (CAD models)
for the training stage.

• Our method is able to reject false positives in an early stage by using the additional infor-
mation about the position of the detected objects in the 3D space.

• Through the usage of the combined RGB and depth information, we are able to handle
objects which are placed close to other objects or the scene background.

• The PCA-based method provides an accurate (initial) pose for each single frame. More-
over, the proposed VFH+PCA descriptor outperforms the raw VFH descriptor.

• The MRF-based temporal optimization method provides more robust pose result over
time. The initially estimated pose guesses for each frame are re-ranked by exploiting
a temporal inference between consecutive frames. In our experiments we reach a devia-
tion error less than 20◦ for around 80% of the sample scenes. For the same percentage of
poses, the raw VFH descriptor results in an error of 53◦.
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CHAPTER 5
Conclusion and Future Work

This final chapter gives a summary of the entire work and suggestions for future research, for
both the layout estimation as well as the object classification framework.

5.1 Conclusion

Three-dimensional reconstruction using a depth sensor results in a massive amount of 3D mea-
sures and consequently in complex 3D files which do not allow the real-time manipulation on
mobile devices. Even the post-processing using a third-party software is a challenging task.
Therefore, the present thesis presents a framework for simplifying point clouds captured using
a Microsoft Kinect sensor. The framework processes multi-modal RGBD video sequences and
mainly consists of two pipelines: (1) a layout estimation approach which generates simplified
3D layouts on the basis of 3D point clouds and (2) an object detection and pose estimation
method which detects and further replaces objects visible in the scenes by complete CAD mod-
els. The main problem we are faced with is missing depth information caused by occlusion,
direct illumination or specular surfaces. Missing points lead to holes in the point cloud recon-
struction and to inaccurate pose results. Therefore, we present temporal optimization methods –
for both the layout estimation as well as the object detection approach – in order to reduce the
aforementioned problems.

3D Layout Estimation The layout estimation method calculates a floor plan for each frame of
the input video. The framework determines planar layout segments (ground plane, walls) using a
plane-fitting approach based on a labeling algorithm. For each frame a 2D mesh of the floor plan
is calculated using binary image operations, morphological operations and constrained triangu-
lation techniques. Consecutive floor plans are fused over the time and the wall segments and the
ceiling are generated by extruding exterior edges of the triangulated floor plan. The resulting
3D layout is compact and watertight and further consists of a dramatically reduced number of
vertices compared to the fused input point cloud. The proposed simplification allows the real-
time manipulations of the 3D layouts on mobile devices as well as the post-processing using a
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third-party CAD software. The temporal fusing method provides more accurate scene dimen-
sions compared to the layouts which are obtained from single shots. Moreover, the framework
detects windows using depth cues in combinations with a rectangular shape detection method.
Experiments on 10 video sequences show that the amount of data can be reduced by more than
99% in terms of both – number of points and memory consumption.

Object Detection and Pose Estimation In order to obtain semantically meaningful 3D lay-
outs, objects are detected in the scenes. The presented object and pose estimation approach
uses a state-of-the-art 2D object detector which provides bounding boxes of the detected ob-
ject candidates. All points within the bounding box of the detected object are extracted and
each generated point cloud is classified using point clouds descriptors. We search for similar
point clouds in a pre-defined database using the Viewpoint Feature Histogram which encodes
the shape and the viewpoint of the point cloud at the same time. In an occlusion experiment
we depict the high sensibility of the VFH descriptor concerning occlusion and missing depth
information. Therefore, we present an additional descriptor which is based on a PCA approach.
The objective of the VFH+PCA descriptor is to re-rank the VFH detection results by examining
the angle between the eigenvectors of the object in question and the point clouds coming from
the trained database. Since missing points are still a limitation, we introduce a Markov Random
Field over the time. The objective of the MRF is to determine the best matching configuration
(pose and type) over the entire video sequence. The unary potentials are calculated from the
PCA similarity measures coming form single frames. The binary potentials are obtained from
the camera movement between consecutive frames. The detection results obtained by the MRF
optimization outperform the VFH descriptor as well as the combined VFH+PCA descriptor.

The framework is trained offline with synthetically generated 2.5D point clouds. First, CAD
models are downloaded from a public database. Second, partial views are rendered by placing
virtual cameras uniformly placed at the vertices of a bounding sphere. Third, for each generated
partial point cloud a VFH descriptor is calculated and a K-Nearest Neighbour classifier is trained
using a fast k-d tree structure.

5.2 Future Work

In the experiment section we already have discussed limitations of the framework. In this section
we conduct with suggestions for future research.

3D Layout Estimation The presented layout estimation method fuses frames along the hor-
izontal direction. Future work could cover the integration of a method to fuse shots along the
horizontal direction as well. This would be useful to process scenes where the ground plane and
the ceiling are not visible simultaneously.

The results have shown limitations concerning the scene configuration. Since objects are
scaled along one direction only, it is possible that detected objects reach beyond a wall segment.
Thus, a method to establish a geometrically consistent configuration in the 3D space (e.g. [10,
46, 60, 75]) could be integrated into the framework.
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Selected scenes have shown a displacement between adjacent shots. To overcome this arte-
fact, a MRF-based optimization method could be incorporated in order to force smooth transi-
tions. This problem could also be reduced by the usage of additional plane-fitting techniques [42]
on the vertices of the final 3D model in an post-processing step.

A further improvement would be the usage of additional mapping techniques, with the goal
to provide visually more realistic room layouts.

Concerning our experiments, in future work we could evaluate our layout estimation frame-
work using the NYUD dataset presented in [60] which contains of RGBD video sequences of
indoor scenes.

The layout estimation pipeline presented in this thesis is independent of the object detection
approach. Therefore, future work could cover on the integration of a joint layout estimation and
object detection approach. Similar works (e.g. [60,72]) exploit depth and appearance features at
the same time in order to estimate 3D layouts and clutter present in the scene.

Object Detection and Pose Estimation Concerning the object classification framework, the
usage of more sophisticated object detection methods would be interesting. We use an image-
based state-of-the-art detector in order to pre-detect object candidates in the RGB image. Since
RGBD data is available, in future work we could apply a multimodal object detector instead
(e.g. [28, 47, 61]).

We have seen that incomplete point clouds are the major problem we are faced with. An
interesting future approach would be the usage of more complete 3D models instead of single
2.5 point clouds for the object classification. Several 2.5D point clouds could be fused together
in order to get a densely sampled representation of the object in question. The classification
could be performed on the fused point cloud using descriptors like spin-images [40] or spherical
harmonic invariants [7].

Another idea to handle incomplete point clouds is the usage of more sophisticated machine
learning methods. The pose estimation problem could be formulated as regression problem to
handle the problem of missing depth information. Thus, a random forest classifier could be
trained with the synthetic 2.5 point clouds (e.g. [19]).

We have seen that the proposed object detection method assumes that the objects are placed
perpendicular to the ground plane. Thus, a future task could cover the integration of a full 6
DOF point cloud descriptor [3] which allows the detection of 6 DOF poses.

The incorporation of additional object classes, and the opportunity to detect objects which
are placed on other objects [60] (e.g. a potted-plant placed on a table) are further limitations
which could be addressed in future research.
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Nomenclature

2D 2 Dimensional

2.5D (2-and-a-half-Dimensional

3D 3 Dimensional

BOW Bag Of Words

CAD Computer-Aided Design

CRF Conditional Random Field

CVFH Clustered Viewpoint Feature Histogram

DOF Degrees Of Freedom

DPM Deformable Part Model

FPFH Fast Point Feature Histograms

GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

ICP Iterative Closest Point

kB Kilobyte

k-D K-Dimensional

KNN K-Nearest Neighbours

MAP Maximum A Posteriori Probability

MB Megabyte

MRF Markov Random Field

OBJ Object File (3D Model Format)
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PCA Principal Component Analysis

PCL Point Cloud Library

PFH Point Feature Histogram

PLY Polygon File Format

RANSAC RANdom SAmple Consensus

RGB Red Green Blue

RGBD Red Green Blue Depth

SH Spherical Harmonics

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SVM Support Vector Machine

TSDF Truncated Signed Distance Function

VFH Viewpoint Feature Histogram

VOC Visual Object Challenge

VTK Visualization Toolkit
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