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Kurzfassung

Großrechner sind weiterhin im Betrieb, um das tägliche Geschäft von Organisationen
mit Hilfe von bestehenden Softwarelösungen zu bewältigen. Sobald sie allerdings abgelöst
werden sollen, muss eine Möglichkeit gefunden werden, die bestehenden Geschäftsanwen-
dungen auf eine neue Plattform zu migrieren. Eine Neuentwicklung erlaubt den Einsatz
von modernen Programmiersprachen, Frameworks und Techniken, ist allerdings in der
Praxis oftmals nur schwer durchführbar bedingt durch das mögliche Fehlen von Doku-
mentation der Programme und Spezifikationen der Anforderungen sowie die enormen
notwendigen Ressourcen zum Entwickeln und Testen der Anwendungen.

Diese Arbeit beschäftigt sich mit der Migration von Geschäftsanwendungen, die für
IBM Großrechner in Assembler geschrieben wurden (HLASM), durch automatisierte
Übersetzung in portablen C/C++ Code. Es wird gezeigt, wie verschiedene Compiler-
und Analysetechniken eingesetzt werden können, um aus linearem Assemblercode eine
strukturierte Darstellung der Programmlogik zu erreichen. Dadurch ist es nicht nur
möglich, den Großrechner zu verlassen, sondern auch die Lesbarkeit der Programme und
daraus folgend die Wartbarkeit eben dieser zu verbessern.

Die beschriebene Implementierung wurde mit Hilfe von produktiven Assembler-
Programmen von einer größeren Organisation evaluiert.
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Abstract

Mainframe computers are still running legacy applications to handle day-to-day business
for organizations. At the time when the mainframe should be replaced, it has to be dis-
cussed how business applications could be transferred to the new platform. Redeveloping
from scratch allows the usage of modern languages, frameworks and techniques but is
difficult due to the possible lack of documentation and requirement specifications and
the vast efforts required for developing, testing and integrating the application.

This work will discuss the migration of business applications written in assembler
for IBM mainframes (HLASM) using automatic translation to portable C/C++ code.
We will show the benefit of different compiler and analysis techniques transforming the
linear assembler code to a structured representation that will not only help us leaving the
mainframe but also increasing readability and thus maintainability of the applications.

The implementation has been evaluated using a set of legacy assembler programs
used in production from a larger organization.
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CHAPTER 1
Introduction

1.1 Background

1.1.1 IBM System/390

IBM’s Enterprise System Architecture/390 (ESA/390)[IBM03] has been introduced in
1997 with the the announcement of the S/390 G4 system which has been updated by
S/390 G5 less than a year later[SAIC+99]. S/390 is a CISC architecture based on and
still compatible with S/360 introduced in 1964.

Application programers can make use of instructions including arithmetic operations,
tests and comparisons, different branches, string operations and which is especially
notable compared to architectures wide-spread nowadays - decimal operations.

Instructions are 2, 4 or 6 bytes long depending on the operand types the instruction
requires. Operands are mostly registers or memory addresses. For the latter, indirect
addressing in the form D(X,B)1 is applied. Index and base require four bits each (there are
16 registers that have to be addressable) and displacement consumes 12 bits, resulting in
a maximum offset of 4095 bytes. The index field is not available for all instructions taking
address parameters, either because the field is not available at all or it is interpreted as
length (e.g. for string operations).

Some instructions also require immediate values as operands, which are passed as
plain 8-bit immediate number or in indirect addressing format where only few bits are
relevant and the rest is ignored. E.g. SLA (Shift Left Single) takes the number of bits
to shift as immediate parameter. SLA has the following memory layout (in half-bytes):
8BRXBDDD which means that the instruction is identified by 8B, R defines the register
which value should be shifted, X/B define index and base of the address parameter

1Displacement, Index and Base are three addends resulting in a memory address. While displacement
is an immediate value assembled to the application binary, both index and base are read from a register
whose number gets assembled to the binary.
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(both will just be ignored) and DDD is the displacement factor. Only bits 26-31 of the
displacement factor will be considered as immediate value, the others will be dismissed.

In general, using immediate values is restricted to small values (8 bit). To use larger
values, they have to be assembled separately and referenced by their address.

1.1.2 IBM High Level Assembler for z/OS, z/VM and z/VSE

HLASM stands for High Level Assembler which is available for z/OS, z/VM and z/VSE.
Beside encoding instructions of the architecture, HLASM supports definitions of constants,
typed structs and most notably macros. Structure definitions are a list of fields with
incrementing offsets relative to a section the structure belongs to. It is then possible to
link a register with that structure which results in the assembler translating subsequent
field accesses to memory addresses using the register as base and the relative offset of
the field as displacement. This is accomplished by the USING directive which is passed
the base register and the section name to be linked. Figure 1.1 shows a sample usage of
structures. In this example, both last and first name consume 20 characters and the year

PERSON DSECT
LSTNAME DS CL20
FSTNAME DS CL20
BORN DS PL2

Figure 1.1: Sample usage of struct definitions

of birth is stored in packed (decimal) format consuming two bytes.
Macros allow definitions of code blocks to be inserted at different positions in the

program including textual replacements adapting the code for specific applications. As
they are replaced completely before the resulting assembler code is processed, they form
an independent meta-language. Macros are outside the scope of this thesis and therefore
will not be discussed further.

1.2 Problem Definition
This work concentrates on applications written in the assembler language implementing
business processes. Concerned code has evolved over the last decades and would not
be written in assembler nowadays. But although it is technically superseded, it still
contains lots of internal knowledge that is very valuable to an organization. Writing
those applications from scratch would require enormous efforts to define specifications,
implement them and assure the quality of the new hand-written code to prohibit even
minimal deviations from the existing implementation. Therefore, one is seeking for
automated transformation processes that transfer a long-term grown infrastructure to a
newer, sustainable platform fit for the future.

There are a number of solutions for replatforming such software, e.g.:
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• rewriting the code manually for the new platform

• keeping the code and use an interpreter, simulator or emulator

• translating the code automatically

As already mentioned, the first solution might not always be feasible. Additionally,
the transformation process should be completed as fast as possible as it will interfere
with day-to-day business. While the code is rewritten from scratch, there will be lots of
changes to the legacy code, too. This makes it hard to keep track of all the modifications
and keep a consistent view.

The last two choices have different strengths. While the former facilitates to reproduce
all characteristics of the legacy system, the latter gives the chance to transform the
system to the new platform and leave behind all legacies, resulting in a more modern
environment which most probably will be strived for.

In the domain of emulation, there are a few solutions targeting S/390 like Hercules[her]
(which is specific for S/390) or qemu[Bel05] (which is a multi-guest-platform emulator
supporting S/390). In the domain of translation, there are no well-established solutions
available we know of. Translation is rather proposed as consulting service than provided
as (commercially) available software.

It is required that the new system is sustainable which implies maintainability. This
requirement is best solved with code that is state-of-the-art of software development,
thus, (as far as possible) sophisticated generated code is favored over keeping legacy
assembler sources. Therefore, an (at least mostly) automated transformation for legacy
IBM HLASM code has to be implemented.

1.3 Expected Outcome

The goal is to implement a source-to-source compiler that is able to translate all given
HLASM code to the desired target language on the future platform. The desired target
language is C, a compromise between near-to-the-system programming typical of assembler
and higher-level programming facilitating maintainability, which is available on a huge
range of different platforms among which x86_64 has been chosen.

Realistically, we are expecting some restrictions concerning the generated code and
therefore lower our expectations. The actual aim is to automatically translate almost
the entire amount of sources and only skip few problematic cases. These cases mostly
concern dynamic code, i.e. dynamically computed branches or self-modifying code.

The implementation is still valuable in case automatic translation is not successful
for all input sources provided that detailed information about the complications is given
in the case of abnormal situations. The translator should not only be able to translate
the sources but also to give detailed information about how much of the source code
could be translated and which kind of problems have to be expected within the rest of
the input sources.
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Summarized, the goal is to implement an automatic translation process from HLASM
programs to C and to evaluate its benefit in practice. The proposed work should help
making the decision on how to handle legacy assembler sources and estimate the inevitable
amount of manual intervention needed. The evaluation should also include information
about how the implementation could be improved and how further work on the project
could bring forward the transformation process for future utilization.

1.4 Outline
Chapter 2 will present previous work, both specific for migrating assembler code for IBM
S/390 and general techniques approved for source-to-source translation and decompilers
(or reverse engineering in general).

The implementation of the actual work will be discussed in detail in the following
chapter 3.

Subsequently, chapter 4 will evaluate the outcome of the work. It will be discussed
whether we benefit from the implemented code generation yet and whether our expecta-
tions have been satisfied.

Finally, chapter 5 will conclude this work and point out how development could
proceed.

Sample program conversions can be found in appendix A
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CHAPTER 2
Foundations

There are two main parts that shall be discussed in this chapter:

• General techniques in the domain of compiler engineering, reverse engineering,
interpreters, etc. that could be of avail for implementing the proposed project.

• Previous work that has been done in the domain of translating HLASM code from
IBM mainframes and translating (reverse engineer) ASM code in general. This
part should focus only on comparable projects.

2.1 Compiler Techniques of Avail
Very basic technologies used in different kinds of compilers (including source-to-source
and reverse compilers) are described in detail in the literature, cf. [AP02][LSUA06].
Hence, aspects being relevant for this work will only be mentioned in brief in this section.

First of all, a parser is needed as frontend to read the assembler source files and
present the program as abstract syntax tree (AST) suitable for further processing. For
developing the parser, one can make use of a parser generator like ANTLR [PQ95].
Depending on the syntax, it might be preferred to write the parser by hand (especially if
it is rather simple and context-sensitive) using regular expressions.

Different analyses are used for various purposes in different kinds of compilers. A
liveness analysis is used for register allocation in compilers to determine the extent of a
register’s liveness (i.e. to determine when the register is freely available again to be used
for a different purpose). But this analysis is also valuable for reverse engineering as it is
able to locate dead-stores (stores to fields which values will never be read) or the liveness
range can be used to determine the intention of a variable and that information can be
used to identify the type of a field or even find meaningful names (e.g. some generated
variable name could contain ’ptr’ or ’idx’ if it is used as pointer to a field or index to
some array).
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Control and dataflow analyses allow to depicture the program flow (i.e. all possible
edges between instructions) including the possible values of fields or registers. This is
useful for restructuring the program while keeping the semantics. In many (or even most)
cases, an instruction will not assign a constant value known at compile-time but some value
that is calculated at runtime and thus might also change between repeating executions of
the instruction. Therefore, it is not sufficient for the dataflow analysis to store a single
value but it has to keep track of multiple possible values. This is accomplished by storing
a value-set [BJSW13][BR04][BR10] or a value-range [BML+13][Pry07].

2.2 Previous Work

2.2.1 Bogart

Feldman and Friedman present Bogart [FF99], a tool for automatic translation of as-
sembler programs written for S/390 to C using tools and techniques in the domain of
Artificial Intelligence. Bogart has been used to translate a database system and an
application generator, both being parts of a real existing, large commercial application.

Bogart succeeds a previously developed brute-force approach implemented for trans-
lating the same application and shows many improvements. Both approaches require
manual code changes prior to automatic translation necessitated by untranslatable con-
structs like self-modifying code. The authors claim that manual code preparation has
advanced at about 3600 lines of code per person-month and this amount of work has been
decreased drastically (no explicit figures available) by switching to the more sophisticated
translation provided by Bogart.

Bogart implements different methods for improving the generated code. Gotos are
replaced by loops and conditionals whenever possible. Instructions which results are
not used are removed from the generated code; redundant code is only generated once
when detected. Several instructions can be consolidated to one single C statement when
possible, e.g. subsequent arithmetic instructions writing to the same register could be
translated as one single assignment having a longer arithmetic expression on the right
side.

The performance is mainly discussed compared to the precedent brute-force approach
claiming a performance gain of factor 1.74. The performance hit compared to hand-
crafted C is only 10%. However, compared to the original program the execution time
has tripled.

2.2.2 Relogix

MicroAPL Ltd. has developed the Relogix Assembler to C Translator [Mic09][Mar10] and
made it available in different versions for different architectures, among which one has
been designed for translating IBM mainframe assembler, called Relogix/MF. Conversion
of code is provided as service, thus the translator is only used internally and rather
presented as black-box, i.e. features are discussed rather than internals.
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Relogix demands manual code rewrites prior to generation for some constructs that
cannot be translated automatically „because of fundamental architectural differences
between assembler and C“. Most probably, this addresses common problems like self-
modifying code and dynamically computed branch targets.

Relogix tries to generate code that is as readable and maintainable as possible.
Therefore, apart from replacing gotos, more higher-level reverse engineering techniques
are used. Multiple instructions can be merged to one single statement, e.g. combinations
of compare/branch instructions consolidated to one single loop or if -condition.

The liveness of registers is evaluated to find distinct (temporary) variables, i.e. if
a function uses a register at two (or more) different locations and the register is never
live at each other location, the register has two different purposes and therefore can be
translated using two different variables. The usage of a register is analyzed further and
heuristics are used to guess the type of variable it represents, e.g. using it in arithmetic
operations like multiplications might be a hint it is an integer field whereas using it to
access data could lead to the assumption that it represents a pointer variable. Based
on these observations, variables of different types are generated to replace the register.
Even meaningful variable names can be discovered in many cases, e.g. if a variable is
used as loop iterator, it could be called i, if a variable is used as pointer to access a field
it could be named like that field with a suffix like _ptr appended.

2.2.3 FermaT

Martin Ward presents the FermaT Transformation System[War99], a code transformation
framework for assembler and Cobol programs developed at Durham University and
Software Migrations Ltd. It is based on multiple transformation rules that are guaranteed
to be correct by formal methods and applied subsequently on the code. Therefore,
the original source code’s listing files1 are transfered to the Wide Spectrum Language
(WSL), an intermediate representation combining low-level and high-level code constructs.
Using this language, it is possible to depicture both the input program as well as the
(functionally equivalent) transformed program which will be written to C from the WSL
representation.

The Transformation Engine is the heart of the FermaT workbench. It contains a
library of transformation rules that can be applied. A single rule can be implemented to
solve specific problems, e.g. restructure a particular code construct. But rules cannot
only be written for translating ASM code to another programming language, they can
also be used to analyze or modify anything else: as example, the Year 2000-problem is
given.

The implementation seems to be fully developed as shown by an evaluation translating
1,925 assembler listing files containing nearly 6 million lines, among them about 3 millions
of source lines (dismissing headers, etc.). The author claims that all files could be

1The listing files contain additional information that facilitates further processing, like instruction
addresses. Therefore, the listing files are favored over plain source files. Indeed, there is no information
in listing files that could not be extracted from source files. So the approach in general should not be
dependent on listing files but using them is the more convenient way.
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translated and the generated code is compilable. Although, the code has to be checked
for FIXME-comments generated in case the code could contain errors, e.g. when branch
addresses or EX target instructions cannot be determined statically. Unfortunately, there
are no figures available indicating which percentage of programs is affected by such issues,
but they rather seem to be the exception.

2.2.4 dcc

Cifuentes presents the decompiler dcc [CG95] for the DOS operating system on the
Intel 80286 architecture as part of her work on reverse compilation techniques [Cif94].
Although it is not handling IBM HLASM, this compiler shares many techniques with a
source-to-source compiler translating assembler code. The project consists of three main
parts: a machine-dependent front-end reading the input source code, a machine- and
language-independent analyzing module, the universal decompiling machine (UDM) and
finally a back-end dependent on the target language. Thinking of our proposed project,
we would only have to replace the front-end to read assembler source code instead of
binary code. As assembler code is very low-level and assembler statements represent single
machine instructions, it should be possible to replace the front-end without difficulty.
One huge advantage of translating assembler code is the availability of symbolic names
which can be used to deduce variable or procedure names. On the other hand, there is
nothing missing compared to binary code, thus, everything described for binary analyses
is likewise true for analysing assembler code.

The UDM provides the ability to restructure code, i.e. replace goto statements and
partition code into multiple procedures. This is accomplished by detailed dissections
(mostly in the domain of graph analyzes targeting the control flow graph) described in
detail in different works from the author [Cif93][Cif96].

An example shows a program in binary representation (as hexdump) together with
the automatically generated C code from the decompiler. As expected, the code is well
structured and well readable.

Indeed, it has to be mentioned that dcc has been designed as decompiler for programs
that have been compiled beforehand, i.e. programs that are not written in the assembler
language but have been compiled to binary from a higher-level language. Therefore,
handling of unstructured code is not the key issue as structured code will compile to
binary code that can be structured easily. Throughout the different works of the author,
it is mentioned that algorithms and techniques described can be used for all kind of
programs, even those not possible to restructure. If restructuring fails, it could still
replace at least some of the gotos or find some procedures to extract and stick to goto
statements otherwise. Of course, there is again no solution available for dynamic code
constructs like self-modifying code or dynamically calculated branch targets.

2.2.5 Mimic

Mimic, titled fast System/370 simulator by the author[May87], is a simulator running
S/370 applications on IBM’s RT PC (RISC Technology Personal Computer). It is based on
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the assumption that performance can be improved compared to established simulators by
grouping instructions and translating them as semantic units, e.g. associated comparison
and branch instructions can often be translated together.

If such instructions were not handled together, it would be necessary to store condition
codes (which is done differently on S/370 and RT PC and arises new problems) that
occupy additional memory. In general, processing only single instructions could lead to
the necessity of additional registers or memory allocations. Especially registers are a very
limited resource. If there are no more free registers available (which is rather probable),
register values have to be moved to main memory which again introduces additional
instructions and overhead.

Mimic uses control- and dataflow analyses to retrieve the program flow. Self-modifying
code is not allowed. The binary program code is partitioned into multiple code blocks,
more or less a set of instructions allocated consecutively in memory. Code is translated
at runtime once a code block is executed for the first time. The generated code is then
stored for the case it is executed again.

It has been shown that this approach significantly decreases the amount of host
instructions needed to implement a given program. Thus, it might be worthwhile to
analyze a program not only instruction-by-instruction but from a more distant view to
respect the context.

2.2.6 BAP: A Binary Analysis Platform

BAP[BJSW13], abbreviated for Binary Analysis Platform is a publicly available infras-
tructure for program analysis and verification operating on binary executable code. It has
been developed by Carnegie Mellon University in Pittsburgh, PA, USA and is available
for x86 and ARM, although only a subset of each instruction set is supported.

BAP is built up by three main parts: a frontend reading the binary program code, an
intermediate representation and a backend for implementing analyses and verifications.

Side effects are preserved by explicit statements, e.g. condition codes set by instruc-
tions are explicitly assigned to a special variable. The code is later transformed to SSA
form and code optimizations are performed: dead stores are eliminated.

BAP also provides the ability to present a program in different forms, e.g. as control
flow graph.

As it is publicly available in source form, it is a valuable resource to gain an impression
on the whole process of reverse engineering a program in compiled binary form.

2.2.7 Dynamic Liveness Analysis

Probst et al.[PKS02] researched on liveness analysis for dynamic translators. The analysis
is used to eliminate dead stores, i.e. stores to registers which values will never be read
because the register will be overwritten before it is read again.

The optimal solution to this problem is to find all occurrences of stores that are not
necessary. Having said that, any other solution that reduces the amount of such stores is
an improvement to the translated program as well. Finding the optimal solution is very
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expensive, thus it might be more efficient to eliminate only some of the dead stores and
keep those hard to detect. At some point, gaining speed by not executing dead stores
will not pay off time needed for detailed analysis.

The solution presented is to use dynamic liveness analysis which is improved by every
run of a code block. The results are stored on program termination and might get reused
and even improved on future runs of the program. It has been shown that the results of
the cheaper dynamic liveness analysis get very close to the optimal solution after only
few program runs.

2.2.8 Compiled Simulation

Brandner et al.[BHK13] discuss different approaches for instruction set simulators. While
they focus on digital signal processors (DSPs), their work is just as well valueable for
all kinds of instruction set simulators. The comparison covers simple to optimized
interpreters, compiled simulation and simulations using dedicated hardware (both FPGA
and ASIC) for peripheral devices as well as the simulated processor itself.

Most interesting in the scope of this thesis is the topic compiled simulation. There are
two main ways to go: static and dynamic compiled simulation. While the first requires
the program to be translated before it is executed, the latter compiles the program
on-the-fly when it is about being ran. Compiled simulation is said to generate a simulator
of a target architecture for one specific application program. This approach is very close
to reverse engineering and source-to-source translation from assembler to higher-level
language code as the application-specific simulator is generated as higher-level code
(e.g. C or C++), too. Optimizations are then applied by an established compiler that
translates the generated C or C++ to binary code.

Comparing static and dynamic compiled simulation, some possible problems with
static code translations are addressed, mainly in the domain of dynamic branch targets and
self-modifying code. These issues can be solved using the dynamic approach but pursueing
the static approach, there is no other solution than switching back to interpretation or
some dynamic translation model.

Choices for various aspects of the design of code generation are discussed, e.g. how
to handle status registers and flags or how to represent program flow. One option for the
latter is to generate one single function with a large select-statement in a loop and use
select’s fall-through to execute instructions sequentially. If a branch should occur, one
sets the address of the branch target to the field tested by select and break out of the
select statement. As enclosed by a loop, select will just be executed again and continue
program flow at the desired branch target address.

Farfeleder et al.[FKH07] have implemented a compiled emulator for inorder pipelined
architectures. They focus on VLIW processors for digital signal processing but again,
many aspects of their work are likewise valid for general-purpose processors or processors
in general.

Each basic block of the program is generated as separate function in C, returning the
index of the next basic block to be executed. Basic blocks are organized in an array storing
their addresses. Performance metrics presented by the authors show that programs built
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of larger basic blocks are simulated more efficiently. This implies that handling branches
or control flow in general is rather expensive and summarizing instructions to blocks
rather than processing them one-by-one leads to significant speed-up.

Again, branch targets not statically determinable as well as self-modifying code are
an unpassable problem for compiled emulation. In such cases, it is necessary to switch
back to interpretation which is much slower but can handle all dynamic situations. As
soon as possible, in the best case at the end of the current basic block, otherwise at the
end of some following basic block, execution switches back to compiled emulation.
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CHAPTER 3
Implementation

3.1 Preview
The code translation consists of three main stages, executed consecutively:

• parser

• analyses and restructuring

• code generation

It is assumed that the code provided as input is already precompiled, i.e. there is no
macro code left as a macro processor is not part of this project.

The input assembler code has to be parsed first to be available in memory in an
intermediate representation suitable for further processing.

Program semantics are then examined in the analysis step to determine control and
data flow. After that, instructions are reordered to achieve clean program structures (i.e.
loops and conditionals will replace gotos and labels where possible).

Finally, appropriate statements in the C programming language have to be found to
implement the semantics described by the intermediate representation. This code will be
inherently structured as restructuring has already taken place in the preceding step.

The composition is shown in figure 3.1.

3.2 Intermediate Representation
As the input assembler sources are not constructed by structured code but single instruc-
tions, the intermediate representation (IR) is nothing more than a depiction of that list
of instructions.

Every single instruction of the IR consists of a mnemonic, represented by an enum
value, and a list of parameters, represented by objects of different classes according
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ASM sources

Parser

IR

Analyses / Restructuring

IR (structured)

Code generator

C sources

Figure 3.1: Compiler architecture - an overview

to the different types of possible parameters. E.g. the parameter “4” could depict
the intermediate integer value 4, the register R4 or the address 4. Correspondingly,
the parameter for the instruction would be of type ImmediateNumeric, Register or
AddressLiteral. All those types have in common their parent class Expression. An
expression can be evaluated to get the scalar value it is representing. This is definitely
possible at runtime, constant expressions like immediates are allowed to be evaluated at
compile-time, too.

There are two main types of instructions which will be described following: HLASM
directives and S390 instructions.

S390 instructions represent the instruction set of the processor. They form the
program logic and have an offset and length which is defined by the instruction set
architecture (ISA) of the S390 architecture. Therefore, they are MemoryConsumingIn-
structions which means that they are adressable and written to the assembled code in
binary form.

There are two main types of S390 instructions: arithmetic/logic operations and
branches. The former include calculations that produce results and comparisons which
set condition codes. Some instructions might also do both, performing calculations
and setting condition codes. The latter transfer control flow, either unconditionally or
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conditionally, commonly evaluating condition codes set previously. Those two classes
are adequate to model the behaviour of most instructions, i.e. it is not necessary to
have any more subclasses but it is sufficient to distinguish them using the mnemonic set.
Instructions not fitting this scheme have to be implemented separately, which is the case
for SupervisorCall.

HLASM instructions provide additional means for application developers and do not
correspond to instructions of the processor. They might be assembled as part of the
compiled program, i.e. they are MemoryConsumingInstructions in our model, or they
might just change the behaviour of the assembler itself. Likewise they are not part of the
assembled program on the host, the latter will not be translated to generated C code
themselves but might change the generation of code in general.

There are two HLASM instructions that consume memory, both for declaring data
structures: DC and DS. Instructions not consuming memory1 include DSECT, US-
ING,. . . (cf. [IBM08]).

The hierarchy of instruction types used for the IR is shown in figure 3.2.

Instruction

MemoryConsumingInstruction . . .

S390Instruction DcInstruction DsInstruction

ArithLogicInstruction BranchInstruction SupervisorCall

. . . . . . . . . . . . . . . . . .

Figure 3.2: Class hierarchy of instruction types

Analyzing steps and code generation rely on additional information that is not
yet depictured by the core intermediate representation. Section 3.4 will describe how
instructions are wrapped to nodes suitable for analyzing the control- and data-flow.
For describing program behaviour and even target language code generation, this core
intermediate representation is satisfactory.

1More exactly: not being adressable as DC/DS instructions are allowed to consume 0 bytes.
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3.3 Parser

As the assembler code is not structured but consists of nothing more than a list of
individual instructions, it lends itself to be processed line-by-line. The only possible
relationship between two instructions is one referencing the other. Therefore, the
referencing instruction has to know the offset of the referenced one. Forward references
are allowed, hence it is necessary to process the input sources in two passes:

• First pass processes all instructions to get their offsets (by summarizing their
operation code sizes on the host).

• Second pass processes the instruction operands which includes references to other
instructions (by label names).

Figure 3.3 gives a first basic sample of ASM code as it is read by the parser. The

SR R1 ,R1 subt rac t R1 from R1 ( s e t R1 to 0)
CR R1 ,R2 compare R1 ,R2
BE TC1_TRU i f equal , branch to TC1_TRU
A R15 ,DUMMY add DUMMY to R15
B TC1_END branch to TC1_END

TC1_TRU S R15 ,DUMMY subt rac t DUMMY from R15
TC1_END SR R15 , R15 subt rac t R15 from R15

Figure 3.3: first code sample

presented code comprises conditional code execution, known as if-else-construct in
structured programming languages. There are two separate code paths among which
only one is chosen to be executed. This is accomplished by branches to labels below2

the branch instruction itself. Therefore, it is necessary to know all labels including their
instructions before any operands can be resolved.

As already mentioned, the code is processed line-by-line. This is accomplished by
simple string operations only, it is not necessary to implement a complex parser using a
grammar. Parsing is even facilitated by the fact it is possible to respect the actual context
of the program or one single instruction that is instantly processed. E.g., if an instruction
requires a register as parameter, the parser can look for a register and interpret “R1” or
“1” as register. Without context information it would not be clear whether “1” was a
register or something else, like an immediate number or memory address.

Contextual parsing of expressions is handled by an expression parser. It is fed by
single expressions (i.e. instructions are split before and the expression parser is called

2Typically, one can distinguish between branches forming conditional code execution and branches
forming loops simply by regarding the direction of the branch: if it is going downwards, code execution is
conditional, if it is going upwards, code is executed repeatedly.
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with every single parameter expression) and called depending on which type of expression
is expected.

The expressions returned might be absolute or relocatable. A field address (including
labeled instructions) is always relocatable as its relative offset within the program
section can be determined at compile-time but its final location will be determined by
the operating system when the program is loaded into main memory before execution.
Relocatable expressions are always handled with a reference to the section they belong
to. Sections are introduced in the program by the CSECT or DSECT command. The
difference between two relocatable expressions within the same section is absolute: the
relocation-offset will be added to both expression values so it will be distinguished when
calculating the difference. Examples for absolute expressions are constant values or
lengths, which are not manipulated when the program is copied to main memory.

An example for parsing an Add-instruction is given in figure 3.4.

A R1,FIELD

@0x100 len=4 ADD . . .

@0x100 len=4 ADD Register: 1 FieldReference: FIELD

Parser

Expressionparser

Figure 3.4: Parser processing a sample instruction

3.4 Analyses

The main purpose of the analyses described below is restructuring the program. The
intermediate representation returned by the parser is completely unstructured. In order
to find control structures (conditionals and loops), it is necessary to collect information
about the program flow. The program is then restructured in several steps that will be
discussed now.

3.4.1 Control- and Dataflow

The first step of restructuring an unstructured program is to determine the control flow.
At this stage, a list of all subsequent instructions (including their addresses and their
operands) is available. All instructions are wrapped to CFGNodes which may have paths
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to to- and from-nodes wrapping instructions the control flow goes to or comes from.
These nodes are stored to a table that enables lookups using the memory location (i.e.
section and relative offset) to retrieve them. Once this table is complete, the actual
control flow detection is started.

Beginning with the first (entry) node, all reachable nodes are linked and the analyses
continues recursively with those nodes. There are several different cases which nodes
have to be considered as reachable:

• For non-branching instructions, only the next instruction in memory is reachable.

• For unconditional branches, only the instruction at the target address is reachable.

• For conditional branches, both the next instruction in memory and the instruction
at the target address are reachable.

While it is trivial to determine the next instruction in memory, it might be challenging
to evaluate the target address. In case the target is a label, it is obvious which instruction
is reached by the branch. But what happens if the target is determined by the value of a
register or memory location? In this case, the target is depending on a value available
only at runtime. In principle, it might get impossible to solve the problem of translating
such branches to proper structures. In practice, there are good chances to success, though.
In some situations, the address of a label might get loaded to a register just before a
branch to that register. That means that it is possible to determine the control flow path
at compile time if we trace the register’s values. This is where data flow analyses comes
in.

As described, it might be necessary to know register or memory values to determine the
control flow. Therefore, it is needed to trace values as they get set. Of course, not all values
are available at compile time resulting in undefined values. This analysis concentrates
on values defined at compile time and acts on the assumption that undefined values
mostly come from data processed by the application and values needed for determining
the control flow are defined predominantly.

In some situations, it might be desirable to track more than one single value. An
example is given in figure 3.5. In this case it is still possible to generate useful C code.

L R3 ,FOO R3 po in t s to FOO
CR R1 ,R2 compare some r e g i s t e r s
BE LBLA sk ip next i n s t r u c t i o n i f equal
L R3 ,BAR R3 po in t s to BAR

LBLA BR R3 R3 po in t s to FOO or BAR

Figure 3.5: Branch with two different branch targets

Although it might not be possible to generate structured code, the possible targets of
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goto statements are known at compile time, thus it is possible to generate labels for these
statements.

Branches to arbitrary addresses not known at compile time cannot be translated to
valid C code. When the translated C program is compiled to binary code, instructions
will reside at different memory locations than their corresponding counterparts on the
host.

The only chance to solve that problem would be to maintain a mapping from addresses
of assembler instructions to addresses of C statements. Obviously, that is not appropriate
with respect to maintainability. Application programmers would have to adapt this
mapping whenever they modify an application which obviously is very error-prone.

Summarized, this implementation does not support the translation of branches whose
targets cannot be determined statically. In such cases, the translation fails and manual
intervention is required. Application programmers would have to rewrite the concerned
source code to allow all branch targets to be resolved statically.

The evaluation of branch targets is done by the value-set-analysis used for determining
the program- and data-flow described below. Branch targets are identified by values
stored in registers or memory locations and therefore do not need to be handled differently
than any other value.

CFGNodes have two sets of values, representing the set of incoming values which is
taken over by the incoming nodes and the set of outgoing values which is calculated by
applying the node’s instruction on the incoming value set and then passed to subsequent
instruction nodes. Whenever a value cannot be determined, it is said to be undefined
which is represented by an empty value set. The set of values is limited because too
comprehensive value sets are of no more use than handling a value as undefined in terms
of detecting the program control flow.

Control- and dataflow-analysis are performed iteratively. Backward branches (loops)
might extend the value set of a previously visited node. Keeping in mind that branch
targets are depending on data sets, enlarged value sets can introduce new code paths.
Additional code paths, on the other hand, might lead to additional possible values. Both
analyses influence each other. Therefore, the algorithm has to be applied until no more
changes occur.

Every time the data set for a node is (re)calculated, it is compared with the previously
set values. As long as changes are observed, the algorithm continues to process all
successor nodes. As already mentioned, the size of the value sets is limited, this will
prohibit too long evaluation times that would only lead to huge value sets that are of no
use.

This described behaviour is also presented in brief in algorithms 1 (detecting control
flow paths and handling instruction side-effects) and 2 (merging data values from incoming
instruction nodes).
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Algorithm 1 Control- and Dataflow Analysis using Value-Sets
1: nodesToProcess← {entryNode}
2: while nodesToProcess 6= ∅ do
3: n = pop next from nodesToProcess
4: reprocessNeeded← n.mergeState()
5: if reprocessNeeded then
6: copy all values from the incoming value-set to the outgoing value-set
7:
8: . handle data manipulation first
9: switch n’s instruction’s mnemonic do

10: case AR . Add Register
11: use R1, R2 as instruction’s operands
12: V Sout(R1)← {r1 + r2 | r1 ∈ V Sin(R1), r2 ∈ V Sin(R2)}
13: case SR . Subtract Register
14: use R1, R2 as instruction’s operands
15: V Sout(R1)← {r1− r2 | r1 ∈ V Sin(R1), r2 ∈ V Sin(R2)}
16: case BR . Branch Register
17: . do nothing, only affects control flow
18: [. . . ]
19: end switch
20:
21: . prevent exorbitant value set sizes
22: for all vs← V Sout do
23: if |vs| > max_vs_size
24: vs← ∅
25: end for
26:
27: . handle control flow
28: switch n’s instruction type do
29: case branch instruction
30: if branch instruction 6= NOP
31: n.to← n.to ∪ {branch target(s)}
32: if branch is not unconditional . conditional branch or NOP
33: n.to← n.to ∪ {n’s successor in memory}
34: case arithmetic/logic instruction
35: n.to← {n’s successor in memory}
36: end switch
37:
38: nodesToProcess← nodesToProcess ∪ n.to . process successor nodes
39: end if
40: end while

Whenever a node is handled, new program paths can be detected or its instruction’s
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semantics can lead to updated value sets. If this is the case, subsequent nodes have
to be reprocessed. Therefore, the function mergeState is called for every succeeding
node. It will recalculate the value sets for both registers and memory locations and
determine whether this recalculation has led to different results and thus nodes have to
be reprocessed further to detect possible new program paths.

To diagnose whether a value set has been updated, it is not necessary to compare all
values but sufficient to compare the size of the value set only. Values are not appended
to the set before it has been shown that they are possible values for a register or memory
location. Therefore, they will not be removed under any circumstances later. In case
the value set grows too large or it turns out that it is not possible to reasonably delimit
the set of possible values, the set will be set to undefined which means that any value is
considered as possible. Summarized, we have to check whether the value set has grown
or been set to undefined, otherwise, we can assume that it has not been altered.

Memory locations are handled like registers. Instead of an array of registers, they are
organized by a map using memory addresses as keys. Unaligned memory accesses are
supported but in case overlapping value sets are detected, they are set to undefined.

Algorithm 2 Control- and Dataflow Analysis using Value-Sets (cntd.)
1: static revision = 0 . use node revision to track iteration information
2:

Require: node’s revision has been initialized to 0 prior to first run
3: procedure mergeState(node)
4: needMerge← false . required to merge incoming nodes
5: triggersUpdate← false . successor nodes will have to be reprocessed
6: if this.revision = 0 then
7: needMerge← true
8: triggersUpdate← true
9: end if

10:
11: if needMerge then
12: for all reg ← registers do
13: numV alues← vs_inreg

14: for all from← node.from do
15: vs_inreg ← vs_inreg ∪ node.from.vs_outreg

16: end for
17: if |vs_inreg| 6= numV alues then
18: triggersUpdate← true
19: end if
20: end for
21: end if
22: end procedure

. handle memory locations likewise registers
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In favor of clarity, the presented algorithm describes only the basic behaviour of the
processes. Many details that have been implemented – mostly concerning error handling
– are hidden. Some more details have to be handled carefully, e.g handling values is a bit
more complicated because values can be absolute but also relative to some section.

Of course, whenever an operation is executed for different value sets, those values
have to be checked whether they are both absolute or part of the same section. Binary
operations have different restrictions on absoluteness or code section membership of
operands.

E.g., it is not possible to evaluate an addition of two values part of the same or
different sections. As the section offset will be determined not before the program is run,
adding those offsets will lead to senseless values. On the other hand, adding an absolute
value to a relative makes perfect sense as it will point to some field relative to the section
independent of the actual location the section will be placed at runtime. Of course, the
rules are not the same for different instructions: e.g. subtracting a relative value from
some other relative value, both referring to the same section, is useful as it will return
the offset of some field relative to some other field (or calculate the length of a field / set
of fields).

3.4.2 Elimination of Condition Codes

While it seems to be trivial to translate machine instructions to corresponding C state-
ments at first glance, it is a bit more complicated to imitate the exact behaviour including
side-effects. This involves condition codes that are set by the processor. E.g. a simple
Compare instruction sets flags to indicate whether the result is equal, the first operand
is lower or the first operand is higher than the second. Arithmetic instructions might
set whether a result is zero, positive, negative or an overflow has occurred. Depending
on the branch instruction following, a different set of those condition codes is evaluated
while the others might not get used at all. In many situations, even none of the flags
will be read. While comparisons are often executed to determine further control flow (i.e.
they are followed by branch instructions), arithmetic operations will often be executed
and their condition codes ignored.

Calculating these condition codes is not a complex task - but comparing with the
processor doing that calculation in the same cycle as side-effect while executing the
instruction, there will not be any comparable C code without performace hits. This step
concentrates on finding condition codes that are actually read and marking all others
to be hidden. This will reduce the size of generated code (assignments to the condition
code field will just be removed) with the positive side-effect of improving performance.

Finding condition codes is a liveness analysis[AP02] and therefore executed backwards.
The four condition codes available on S/390 are handled as separate variables whose
liveness will be determined. If an instruction reads one or more of those flags, they will
be marked as used. On the other hand, when an instruction sets condition codes, the
whole set will be marked as defined which means that previously set values are not live
anymore and if not yet read previously, those values will never be needed. Thus, wherever
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those condition codes have been set, the code for calculating the codes has not to be
generated.

Even if a condition code is used, it will only rarely be necessary to generate it’s
assignment. The code in figure 3.6 shall be given as example.

CR R1 ,R2 compare some r e g i s t e r s
BE LBLA branch to LBLA in case they are equal

Figure 3.6: Sample usage of condition codes

Obviously, the condition code indicating whether the operands of the comparison are
equal or not is needed. It is read by the subsequent instruction to evaluate whether the
operands have been equal. But in this case, instead of storing the comparison results to
flags and evaluating those, the comparison can be evaluated as needed resulting in code
as the following (figure 3.7; pseudo code for demonstration purposes).

i f r1 == r2 :
// code from LBLA

Figure 3.7: Sample generated code hiding condition code fields

The condition can be generated together with the branch instruction whenever there
is only one possible comparison instruction that might set the condition codes read by
the branch instruction. If all branch instructions that read a comparison’s condition
code results can only read those condition codes set by this single comparison, the
comparison’s condition codes are not used at all as all comparisons are generated as
part of the branch instruction. This is the general case as most comparison/branch
instructions occur pairwise.

3.4.3 Restructuring Control Flow

At the time the control flow graph has been determined, the program can be restructured
to gain an intermediate representation suitable for generating structured code. This is
done in three main phases: at first, basic blocks are derived from the control flow graph.
Basic blocks lead directly to loops. Secondly, dominator and follow nodes are determined
to find conditionals (if/else). At last, as the concerned nodes are marked as forming the
beginning or end of a loop or conditional structure, the nodes are assigned to a structured
graph.

Intervals

Intervals form partitions of the control flow graph. In graph theory, an interval is the
maximum subgraph that has only one single entry node. The algorithm starts with the

23



entry node of the program which forms the header node of the first interval. Directly
reachable nodes are added to this interval as long as all their predecessors are already
part of the interval. This assures that the whole interval has only one entry node. When
no more nodes can be added to the interval, the next reachable node forms the header of
the next interval.

As some nodes are linked with nodes of other intervals, those intervals are connected
and form a graph themselves. Hence, the algorithm can be applied on the graph of
intervals again, resulting in a derived graph. This procedure can be repeated as long as a
derived graph differs from the graph it is derived from and the graph consists of more
than one single node.

As a loop header always has a predecessor (the latching node) pointing “back” to the
header, this header node has a predecessor that is not yet part of the interval. Therefore,
loop header nodes always form the header of a new interval. The sequence of derived
graphs depictures the nesting depth of loops in the program analyzed. A sample is given
in figure 3.8.

The algorithm used is described in [Cif96] as part of the dcc decompiler[Cif94].

Dominators and Follow Nodes

Node A dominates node B when all paths to B include A. If we refer to the previous
example given in figure 3.8: node 1 dominates all other nodes as it is not possible to
reach any other node not passing node 1. As there are no forward jumps for the first few
nodes (until node 9), all these nodes dominate their subsequent nodes. Nodes 11/12 do
not dominate any other node as their successor is node 13 which can be reached by both
of them, thus, no single node is required to be passed. The last dominator node for 11/12
but also 13 is node 9, which has to be passed in any case, no matter which path is taken.

A node has a list of dominators which is the set of all nodes that have to be traversed
to reach it. The last node traversed to reach the node is called immediate dominator. The
set of dominators always consists of the union of the immediate dominator’s dominators
and the immediate dominator itself.

A common follow node is the next node that will be reached by two different branches
of the control flow. Again refering to figure 3.8: node 9 has edges to both 10 and 12 but
in any case node 13 will be reached and merge the control flow branches. Node 13 is
therefore the common follow node for 10/12.

Algorithms for determining dominators and follow nodes are again taken from [Cif96]
where more detailed information can be obtained.

Building a Structured Representation

As soon as basic blocks, dominators and follow nodes have been identified, it is possible
to build a structured representation of the program. As mentioned, loops can be detected
by using (derived) interval graphs. Conditionals are detected by branches merging
in common follow nodes but it is not obvious whether a branch forms a loop or not.
Therefore, structuring starts with loops and continues to detect conditionals afterwards.
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1 SR R1 ,R1

2 LOOP1 SR R2 ,R2

3 LOOP2 LA R2 , 1 (R2)

4 CR R2 ,R4

5 BL LOOP2

6 CR R1 ,R3

7 BL LOOP1

8 CR R1 ,R5

9 BL COND

10 SR R1 ,R5

11 B END

12 COND AR R1 ,R5

13 [ . . . ]

control flow graph
derived graph G’
derived graph G”
derived graph G”’

Figure 3.8: Sample code with basic blocks
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Apart from simple control flow constructs, there might also exist code forming
functions, i.e. code that is only called by branch-and-link (BAL/BALR) instructions
and always returns to the code where it has been called from. Therefore, the control
flow graph is searched for code that can be extracted to separate functions. Detection of
possible entries to separate functions is described in algorithm 3.

Algorithm 3 Detecting potential entries of separate functions
1: functionEntries← n ∈ nodes
2: | |n.from| > 0∧
3: ∀f = n.from : f encapsulates a BAL-instruction

Those possible entries are then inspected whether all code paths from the entry lead
to some branch back to the callee and the resulting code section has no other entries
than the one entry node itself. The complete algorithm for these checks is shown in
algorithm 4.

If it is not possible to prove that a designated entry forms a sound function, branch-
and-link instructions will not be replaced by function calls but will remain. Thus, it
will be necessary to generate labels and corresponding goto statements as part of the
translated program.

Hence, the control flow graph will be transformed to a structured representation.
This is a recursive approach starting with the entry node of the program. Whenever a
control structure (e.g. loop or conditional) is detected, it will be handled until its end.
The basic procedure to do so is shown in algorithm 5.
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Algorithm 4 Checking separate function validity
Require: List of preselected possible entries: they all have one or more incoming edges
pointing to no other than encapsulated BAL instructions, i.e. they might not be
accessed other than by BAL.

for all possible entries e do
returnRegister ← return register from BAL instruction e.from0

. All calls have to use same return register
if ¬∀rr = return reg from BAL instruction e.from : rr == returnRegister then

break . no valid function entry
end if

processNodes← {e}
memberNodes← ∅
unresolvedFrom← ∅

repeat
n← pop next (any) node from processNodes
memberNodes← memberNodes ∪ {n}
unresolvedFrom← unresolvedFrom ∪ {f ∈ n.from | f /∈ memberNodes}
processNodes← processNodes∪
{t ∈ n.to | t /∈ memberNodes ∧ t does not branch to returnRegister}

until processNodes == ∅

. By now, all previously unresolved nodes of incoming edges should have been
added as members to the function. If so, a valid function has been detected that can
be generated separately.

if ∀u = unresolvedFrom : u ∈ memberNodes then
e is a valid entry of a separate function

end if

end for

27



Algorithm 5 Restructuring of Intermediate Representation
1: scopes← empty stack
2:
3: procedure restruct(entry)
4: unprocessed← {entry}
5: while ¬(unprocessed == ∅) do
6: restructCodeBlock(unprocessed0)
7: unprocessed← unprocessed \ unprocessed0
8: end while
9: end procedure

10:
11: procedure restructCodeBlock(node)
12: repeat
13: node← restructNode(node)
14: until node == null ∨ node.to == null ∨ node.to == ∅
15: end procedure
16:
17: procedure restructNode(node)
18: if node already visited then return null
19: end if
20: visited← visited ∪ {node}
21: if node is BAL/BALR ∧ branch target is valid function entry then
22: create call statement to branch target return next node in memory
23: else if node is loop header then
24: restructLoop(node) return node following loop
25: else if node is branch to register then
26: if |node.to| == 1 then
27: create goto statement to referenced target instruction
28: mark label of referenced target instruction used
29: else
30: create goto statement to register value
31: end if
32: else if |node.to| == 1 then
33: if node represents branch then
34: if ∃loop : node ∈ {loop.header, loop.latch} ∨ ∃f : (f == follow(node)∧
|f.size| == 1) then . Branch implicitly handled by control structure, no explicit
code generation needed

35: end if
36: else
37: if node represents BAL/BALR then
38: add LA to store next instruction address to return register
39: end if
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Algorithm 5 Restructuring of Intermediate Representation (ctnd.)

40: create goto statement to referenced target instruction
41: mark label of referenced target instruction used
42: unprocessed ← unprocessed ∪ node.to
43: end if
44: else if |node.to| == 2 then
45: if node has follow node then
46: ifStmt← newIfStmt
47: for all to← node.to do
48: if to is follow node then
49: . do not process here
50: else
51: if to is subsequent node in memory after node then
52: handle code block as if-branch
53: else
54: handle code block as else-branch
55: end if
56: end if
57: end for
58: else
59: assert(node has to represent a branch instruction)
60: if ∃node.to : node.to is succeeding node in memory then
61: conditional branch
62: create If-Stmt
63: get branch target, create goto statement, add to if-block
64: else
65: create goto statement
66: end if
67: end if
68: else
69: error handling
70: end if
71: end procedure
72:
73: procedure restructLoop(node)
74: . similar to restructCodeBlock, abort processing nodes as soon as latching node

of loop is detected
75: end procedure
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3.5 Code generation

By now, the assembler program to be translated has been parsed and analyzed completely
and is present in a structured intermediate representation that is perfectly suited to be
processed using the visitor pattern[GHJV94].

There are two main parts for writing a C(++) program: writing the header file with
all field definitions and function prototypes and writing the actual program code to the
program file. Before those two parts will be discussed following, we will have a look
on design desicions regarding the code generation process in general and which further
prerequisites are necessary to write the final code.

3.5.1 General C(++) Code Generation

Beside processor instructions, HLASM programs consist of data declarations. Fields
are of different types, e.g. binary numbers, decimal numbers, character strings, etc.
While some types, like binary numbers, are supported in both C(++) and our target
platform x86_64, others, like decimal floating points, are not available. There are two
main approaches to solve this problem:

• Fields could be generated untyped, e.g. as char[]-fields and used by functions of a
runtime-library implementing specific operations that will then interpret the values
as the desired data types.

• The runtime-library could implement the needed types and support needed oper-
ations to be executed on fields of those types, e.g. fields could support the basic
arithmetic operators (+, -, . . . ).

The second solution is not possible using plain C as operator overloading is possible
in C++ only. Further, some of those types require parameters. It is possible to have
numbers with specific lengths in packed decimal format. It therefore has to be possible
to have types that can have varying dimensions. This is perfectly possible using C++
templates. Concerning the first approach, this is no issue at all: lengths of data types
could just be passed to the operations together with a pointer to the untyped field. Of
course, it then was necessary to pass this length information every time a field is used.

This implementation uses a runtime-library implementing native S390 types not
available on the target platform. Using those types in the generated code even does not
really interfere with the requirement that the target code should mostly be in plain C,
not C++. The library implementation, involving details making intensive usage of C++
template techniques is hidden in the runtime-library that will not be visible to application
programmers (as long as they focus on application programming as on the host and do
not intend to touch the underlying base). Using the operators and templated types in the
program code is of course C++-specific but this usage does not differ from the usage of
native types, like integers. From the application programmer’s view, this generated code
should be easy to maintain even without any knowledge of C++ (template) programming.
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The library used has been made available from preceding projects and is not publicly
available. It will therefore not be discussed as part of this thesis. Few examples of its
usage should be given in figure 3.9 to get a first impression:

1 fixed_decimal<7> fd = 0;
2 pic<PIC_9<5>> pic = 10;
3 fd += 100;
4 while (pic < fd) {
5 pic = pic + 3;
6 }

Figure 3.9: sample usage of runtime library

As mentioned, parameters like length information for types can be passed as template
parameters. E.g., the field fd stores a signed decimal value with 7 digits and therefore
occupies 4 bytes3. Operators (assignments, arithmetic operations, comparisons) are
overloaded to provide the exact same behaviour as the corresponding types on the host
architecture.

If fields are passed as operands to instructions that require different types than those
provided, appropriate casts are added.

3.5.2 Generation of Header Files

As discussed in previous section 3.5.1, a runtime-library provides implementations for the
host types. Hence, fields used in assembler programs will be generated as typed fields in
the translated program. Fields part of the assembler program are unstructured, i.e. they
are all directly part of the program and not subordinated to some structure, function or
even tighter scope.

However, fields are organized in sections introduced by the DSECT instruction. A
section is a contiguous, relocatable area of memory where instructions or data can be
placed to. On execution, sections will be established in main memory and thus implicitly
receive their addresses. The offsets of fields or instructions inside a section will not be
touched as a section will always be handled at once. Certainly, different sections might
get arbitrary memory locations assigned and might or might not be aligned consecutively.
Those sections are translated as separate C-structs.

It is common to use a sequence of fields like a structure or object of a class in an
object-oriented language. This is accomplished by a field of 0-byte length just before the
associated fields. The header field will then not occupy any storage to hold data but
share the address with the first field being part of the “structure”. Technically, there is
no necessity to have this field but it is a common convention to express that a sequence
of fields belonging together is addressed.

3The length of decimal fields is calculated by the formula (<number of digits> + 1) / 2 as every
digit and the sign occupy a half-byte each
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There even have been considerations to use those constructs to partition sections to
even finer-grained blocks and generate separate structures for every sequence of fields
introduced by one 0-byte-field. However, it turned out that while it is easy to find the
beginning of a designated structure, it is nearly impossible to find its end. Most structures
are not followed by the next clearly separated structure but often single fields are in
between. It might also occur that structures consist of a set of fields but depending on
the current usage the whole structure or only part of it is used. After all, it seemed to be
more appropriate to generate a list of fields on the same level and translate 0-byte-fields
as additional pointers pointing to the first memory-consuming field of the ’structure’.

Figure 3.10 gives a small example of definitions for few fields forming a logical record
collecting some person data. The automatically4 generated code is shown in figure 3.11.

1 SECT1 DSECT
2 ID DS AL4
3 NAME DS 0C
4 FNAME DS CL20
5 LNAME DS CL20
6 BORN DS PL5
7 BALANCE DS AL4
8 VALUES DS 4AL2

Figure 3.10: Sample field definitions in HLASM

1 struct _ASM_T_SECT1 {
2 int32_t ID;
3 fstring<20> FNAME;
4 fstring<20> LNAME;
5 fixed_decimal<9> BORN;
6 int32_t BALANCE;
7 int16_t VALUES;
8 } *SECT1;
9 fstring<0> *NAME = (fstring<0>*) ((char*) SECT1 + 4);

Figure 3.11: Sample field definitions in C++

While it seems obvious for the reader that the field NAME will be used to address the
two name fields FNAME and LNAME belonging together, it is hard to find an algorithm
capable of recognizing this relationship.

4In general, samples of generated code are produced automatically and do not contain any manual
changes with few exceptions: in favor of clarity, namespaces of the runtime-library as well as comments
containing the original assembler source-code are omitted.
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3.5.3 Generation of Source Files

The most challenging part of generating program sources has already been accomplished
by restructuring the program. We now have a structured intermediate representation
that can be processed by a visitor.

Most instructions are translated individually, i.e. there is one C-statement replacing
the original instruction.

Arithmetic operations are implemented by operators that are overloaded for all host-
types provided by the runtime library. Therefore, there are no different operations for
different operand types but different operand types passed to the same operator symbol.
This is happening implicitly in case typed fields are passed to the operations. In case
memory locations or field of divergent types are passed, casts are inserted to obtain the
desired behaviour.

Branch instructions are not generated at all in the optimal case - when their semantics
are preserved implicitly by control structures introduced. In case this has not been
possible, they are replaced by goto statements.

Most control structures rely on conditions determining under which circumstances (if
at all or how long) their encapsulated code is executed. Generally, condition code flags
are not necessary and have already been removed. Conditions of control structures are
generated by regarding a pair consisting of a comparison and a branch instruction.

E.g., having conditional code (i.e. a simple if -block in a structured language): a
comparison instructions is used to receive a condition code by comparing two registers.
A branch instruction is then used to conditionally skip some lines of code if the last
comparison has shown that the both registers are equal. The branch condition is inversed
for generating C-code. While the branch instruction in assembler determines whether to
skip some lines of code, in C the condition determines whether the code containing this
some lines of code should be executed or not. This behaviour is demonstrated in a very
simple first example by figures 3.12 and 3.13.

1 SR R1,R1
2 CR R1,R2
3 BE TC0_TRU
4 A R15,DUMMY
5 TC0_TRU S R15,DUMMY

Figure 3.12: Conditional code in HLASM

The instruction BE (branch-if-equal) evolved to a comparison whether two registers
are not equal.

More sample code, including loops, is provided by figures 3.14 and 3.15.
In case the generation of a goto-statement is necessary, the target is always tried to

be expressed as literal label name. This is also true for branches to register values in case
those value could have been determined beforehand. If this value is the address of an
instruction with a label, this label name is used as goto target. Otherwise, a label name
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1 R[0] = 0;
2 if (R[0] != R[1]) {
3 R[14] += *(DUMMY);
4 }
5 R[14] -= *(DUMMY);

Figure 3.13: Conditional code in C

has to be generated: therefore, the name of the previous label in memory is suffixed by
the offset of the target to this previous label. In case there is no previous label, a label
name using the hash value of the instruction is generated. Of course, this name is not
meaningful then.
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1 * test case 1: if/else
2 SR R1,R1
3 CR R1,R2
4 BE TC1_TRU
5 A R15,DUMMY
6 B TC1_END
7 TC1_TRU S R15,DUMMY
8 TC1_END SR R15,R15
9

10 * test case 10: pre-conditional loop
11 SR R1,R1
12 TC10_H CR R1,R2
13 BNL TC10_A
14 LA R1,1(R1)
15 B TC10_H
16 TC10_A SR R15,R15
17
18 * test case 12: post-conditional with branch at header
19 SR R1,R1
20 TC12_H CR R1,R1
21 BE TC12_A
22 A R1,10(R15)
23 TC12_A A R1,14(R15)
24 CR R1,R5
25 BL TC12_H
26 SR R15,R15
27
28 A R15,DUMMY
29 FOO DS 0H
30 A R15,DUMMY
31 CR R15,R1
32 BL FOO

Figure 3.14: Sample code to be structured in HLASM
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1 /* test case 1: if/else */
2 R[0] = 0;
3 if (R[0] == R[1]) {
4 // TC1_TRU
5 R[14] -= *(DUMMY);
6 } else {
7 R[14] += *(DUMMY);
8 }
9 // TC1_END:

10 R[14] = 0;
11
12 /* test case 10: pre-conditional loop */
13 R[0] = 0;
14 while (R[0] < R[1]) {
15 R[0] = (ptrdiff_t) (ptrdiff_t) (1) + (ptrdiff_t)

(R[0]);
16 }
17 // TC10_A
18 R[14] = 0;
19
20 /* test case 12: post-conditional with branch at header */
21 R[0] = 0;
22 do {
23 if (R[0] != R[0]) {
24 R[0] += *((int32_t*) ((ptrdiff_t) (10) +

(ptrdiff_t) (R[14])));
25 }
26 // TC12_A
27 R[0] += *((int32_t*) ((ptrdiff_t) (14) + (ptrdiff_t)

(R[14])));
28 } while (R[0] < R[4]);
29 R[14] = 0;

Figure 3.15: Structured code in C
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CHAPTER 4
Evaluation

4.1 Current State of Implementation

The implementation has been tested by translating an enterprise real-life application
consisting of 542 assembler programs containing about 270.000 lines of code (including
comments, empty lines, etc.). The source has been made available as-is, i.e., there are
no guarantees that there are no deprecated programs, dead code or on the other hand
missing code. As the implementation advanced, it turned out that the provided code is
rather incomplete.

Most notably, lots of macros used by the programs are not available. Even though
a macro processor is outside the scope of this work, a primitive processor has been
implemented that can handle simple code replacements and ignore missing macros. Of
course, if macros are just skipped the generated code is of no use for the application user.
But still, the code is valuable as test case for code generation.

E.g., input/output operations or user interactions are often handled by macros. While
these are inevitable for the program logic, they only play a minor role for code translation.
IO operations only read or write data strings and do not interfere with program control
flow. They would be generated as simple function calls to a runtime-library. Hence, the
implementation will ignore macros not provided (or too complex). It will still be possible
to evaluate whether it is possible to parse, analyze and generate those programs. It is
not expected that generation fails because of missing macros. Likewise, it is assumed
that programs will not fail caused by macros that could have been translated without
them as long they have been missing.

Apart from simple macros for e.g. IO, there are others including field definitions. While
the first are just skipped, the latter are causing troubles with the current implementation.
Many programs rely on fields that are missing their definitions. While it would be
possible to implicitly declare those fields as necessary, it has been chosen to interpret
these situations as errors.
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Table 4.1 summarizes the state of translation for all programs of the test case. Less
than half of the programs is considered therefore as the other part does not contain any
instructions apart from field definitions at all. After ignoring programs that even could
not have been parsed, there remain 119 programs of interest.

Total programs 542
Programs failed (missing fields) 134
Empty programs 289
Remaining programs 119
CFG ok 100
Generation ok 74

Table 4.1: Status of program conversion

There are 19 programs whose control flow could not have been deduced. Some
programs receive a function address as parameter and call this function. As the address
is passed from outside at runtime, its value cannot be determined by the static control
flow analysis. Therefore, those calls will never be possible to be resolved. The same holds
for dynamic address calculations which cause that branch targets cannot be detected.

Few other cases can be deduced to missing implementation, e.g. handling of EQU -
instructions as operands might fail in some situations. Those problems are supposed to
be fixed in the near future.

Generation is working for 74 out of 100 programs. Errors are mainly caused by
instructions that are not yet implemented. This concerns the EX -instruction which has
not yet been implemented as it is part of the domain of self-modifying code which has
been left open completely. Some other instructions, e.g. for text processing, are still
lacking their implementation. In general, those are rarely-used instructions that do not
have an influence on program control flow and therefore have not been rated as really
important for a first evaluation implementation. They are expected to be provided soon,
although.

It has to be noted that the current implementation is at a very early stage and has to
evolve further to be really useful. Smaller generated programs have been tested and the
behaviour seemed to be right. But in general, code generation is not to be considered
as tested carefully and generated code might contain bugs or even not be able to be
compiled.

The aim of this project is to build a tool that is able to translate code automatically
to C(++) under the constraint that the generated code should be as readable and
maintainable as possible. It has yet been shown that the tool, despite the fact it is a first
draft only that has to evolve further, is capable of translating most of the valid source
code yet. But what about code quality and maintainability?

A sample has been provided previously (cf. figure 3.14, 3.15). The generated code
does not require great knowledge in C or C++ to be read by an application programmer.
By reason of limited space, comments have been omitted in this sample. Figure 4.1 shows

38



1 R[0] = 0; // xx:8: SR R1,R1
2 if (R[0] != R[1]) { // xx:9: CR R1,R2
3 R[14] += *(DUMMY); // xx:11: A R15,DUMMY
4 }

Figure 4.1: HLASM code as comments

how assembler code can remain adjacent to the generated code1.
The relationship between assembler and generated C statement should be obvious to

the reader.
One important requirement has been to restructure the source code. While it is

possible to have goto-statements in C(++), they are considered as harmful and should
be avoided. But primarily, code is expected to be better readable and maintainable if
gotos are replaced by control structures.

The current implementation is yet able to replace about 81 %2 of all goto statements.
Of course, this is extremely depending on the actual assembler sources. If application
programmers back off from using disordered branches but try to write structured code
that is readable, the percentage of replaceded gotos is approaching 100. Otherwise, the
results might get disappointing.

Table 4.2 lists the portion of branches in analyzed programs. Nearly one third of the

Total reachable instructions 7836 100%
Branch instructions 2434 31.06%
Unresolved branch targets 3 0.04%
Branches to 3+ possible targets 128 1.63%

Table 4.2: Branch instructions in programs

assembler instructions are different kind of branches. Only three targets of a total number
of 2434 branch instructions could not have been resolved. 1.63% of branch instructions
seem to have three or more distinct possible targets. Those instructions are translated
using goto statements.

Although it might not be clear which control structures are replacing branch in-
structions, it should be simple to understand the semantics of the generated program.
Application programmers should be able to work on the generated program sources and
identify their control flow without the need of understanding the exact link between the
generated and the original sources.

Of course, there are still some other traces indicating that the program has not been
written in C but has been generated from some assembler sources. The registers have
been translated as a simple array of binary values. Hence, they are used as raw, untyped

1Generated code, spaces and file names in comments removed.
2Altogether, the programs that could have been analyzed contained 4824 goto statements. 893 (19 %)

have not been able to be replaced by control structures.
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buffer frequently. Actually, register accesses should be replaced by local variables that
are typed respectively their usage and are residing in a local scope with limited validity
and only one single purpose, i.e. a variable should hold a specific value and not be
reused to hold some completely different data in case it is not needed anymore for the
old purpose inside some function or other local scope. Nevertheless, readability is not
limited compared to the original sources which suffer the same problem.

The use as untyped buffer also results in massive usage of casts. Especially the
very common use-case of registers used for indirect addressing requires multiple casts to
ptrdiff_t to use the declared integer value as pointer supporting arithmetic operations. It
has to be admitted that not all casts generated are really needed. Removal of redundant
casts is to be considered as enhancement to be implemented in the future.

It has been expected that in most cases explicit storage of condition codes is not
required and flags therefore can be hidden. The evaluation showed that 3158 times a
condition code has been set - but in no single case it has been necessary to explicitly
generate code for setting it.

I.e., in every single case it has been possible to identify the comparison or arith-
metic instruction that sets the condition code used by a branch and therefore generate
conditional code including a comparison expression without querying condition flags.

Performance of the translator has not been an issue during the implementation of
this work. The requirements in this regard are very low, thus easy to meet: it should be
possible to finish a migration project within few days, usually a weekend. The conversion
of assembler projects should only take a reasonable amount of time within the whole
project.

While there have not been any regular detailed measurements, performance always
seemed promising. A complete conversion of the mentioned applications used for evalua-
tion takes 33 s on the test machine (Microsoft Windows 7 (64 bit) on Intel Core i7-3960X
@3.30 GHz, Java 1.8 b123 (64 bit) with default VM settings, single-threaded run).

On one hand, future more detailed and sophisticated analyses are expected to lower
the performance of the translation process. On the other hand, there is still room for
performance improvements by utilizing multiple processor cores but probably also by
optimizing the implementation (profiling has not been needful and therefore not been
done at all so far).

Summarized, it cannot be hidden that the generated code has its origins in assembler
programming but it is qualified to be read and maintained by application programmers.

4.2 Rating of Implementation State

While only 74 out of 542 programs have been translated successfully, the evaluation can
be seen as successful. Most problems are caused by empty programs or missing include
files or macros. It has been shown that most idioms of HLASM can be processed by the
translator. Unfortunately, there remain some exceptions as not all problems could have
been solved. However, no new problems could have been found by the evaluation as all
remaining issues have been expected from the very first. Particularly to be mentioned:
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• Dynamic calculated addresses used as branch targets that could not have been
resolved.

• Self-modifying code.

• ASCII/EBCDIC conversion issues: these problems still remain but have not been
addressed by this evaluation at all so far.

It is hard to determine whether the implementation is of any use for migrating a
real-life application yet. Needless to say, it would require many adaptions for the actual
assembler source code that has to be processed.

A macro processor is not absolutely required as it was likewise possible to use an
existing compiler on the host to resolve macros and get a precompiled representation of
the concerned source code. Another option would be to use listing files written by the
compiler on the host at compile time as input for code translation. This would require
changes in the front end but the amount of work required should remain arguable.

Usefulness is considerably depending on the programming style of the assembler
program sources. If dynamic branch target calculations and self-modifying code are not
used at all, there are good chances that the translator will produce valuable results. The
application used for evaluation only slightly made usage of such constructs. At some
point, it would require less work to manually adapt those few spots in the program and
then translate it automatically than to manually rewrite the whole program. Additionally,
it seems that automatic restructuring is doing a fairly good job yet and it might not be
certain whether programmers would achieve comparable results without excessive efforts.

To give a final recommendation in brief: the implementation has evolved over the
last few months and while it is in an early stage, the results produced for programs of
the application used for evaluation look promising. Depending on the size of a potential
project, usage of automatic translation using this implementation could be reasonable.

If a manual translation would require more than half a year, it should be more efficient
to put resources into advancing the compiler than rewriting the code manually. Of course,
the translator could also be valuable for possible future projects which would make it
interesting for even smaller projects. It has to be mentioned that this estimation is only
very rough. As said before, it all depends on different aspects of the actual source code.
So while some constructs might be easy to translate manually, they could be a pain for
automatic processing and vice versa. In-depth assessment of the objective assembler
sources is the key to success.
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CHAPTER 5
Conclusion and Outlook

This work has described the implementation of a tool for automatic code translation from
HLASM code written for IBM hosts to platform-independant C++ code for evaluation
purposes. Although the state of development is still far from production quality, the
project can be seen as success.

It has been proven that automatic translation is possible for the majority of programs
used for evaluating. Still, there remain some topics that can not be seen as completely
solved, most notably handling of dynamic calculated branch targets and self-modifying
code. But those topics have been addressed and turned out to restrain only a small part
of source code from being translated completely automatically.

Code readability and maintainability is given with comments containing the original
assembler sources beside the generated code. Semantics of converted instructions are
clear and easy to understand even for programmers not familiar with C, C++ or this
type of syntax in general. Program flow and structure is even more obvious as structured
programming and code indentation are a huge improvement compared to massive usage
of branch instructions.

5.1 Future Work

While this first version can be seen as success evaluating the possibility of automatic code
translation of HLASM programs, there is still much room for improvements. Foremost,
it should be mentioned that this is a proof-of-concept implementation leading to the
opinion that it might be worthwhile to pursue this work. Therefore, there are still some
cases not yet implemented, not well-tested or not tested at all. Efforts should be put
into hardening the implementation.

Having said that, there are some more specific improvements as well that will be
discussed in the following.
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5.1.1 General Code Style Discussions

There have been some discussions regarding the style of the generated code. Some of the
aspects thereof shall be named below.

Replace Operator Overloads by Library Method Calls

Operator overloads hide details of arithmetic operations from the application programmer.
This might be strived for when the produced code should be easy to read and understand.
On the other hand, assembler programmers are already used to selecting instructions
depending on the type of data that should be processed. Even for advanced C++-
programmers, it might not always be obvious at first sight which semantic details are
hidden behind a specific overload. If different operand types are mixed in an operation,
the rules for casting and method dispatching might get even more complicated.

Additionally, it might not be desired to get C++ code but rather stay with plain
C. The solution was to replace assignments having arithmetic operations on the right
side in generated code by method calls to functions that have to be implemented in a
runtime library. Those functions would have to be provided for all possible operand types
and used accordingly to the corresponding assembler instruction (there would be a 1:1
mapping between assembler instructions and library routines).

The amount of work for the proposed changes is manageable. The current implemen-
tation is already situated in a runtime library. We would need to implement wrapper
functions in plain C-style that use the current implementation in the background. We
assume for now that there are no objections against using a C++-library in the back-
ground. Adaption of code generation was performed straightforward, too. Only local
changes of a very limited dimension of code were necessary.

Replacement of operator overloads has been discussed but is not scheduled at the
moment. It is just an option that should be kept in mind in case it is favored by customers.

Method Calls to hide generated Code Constructs

At the moment, some assembler instructions are not mapped as one single corresponding
C(++)-instruction. As an example, this is the case for MVO (move with offset): it
requires the generation of a loop. Instructions requiring more than one single statement to
be translated could be implemented in a runtime library and referenced by the generated
code. The generated code would then be less redundant and thus more readable.

This change is strongly recommended as soon as readability and maintainability is of
importance – especially, as it should be without difficulty to implement.

5.1.2 Improvements for Control- and Dataflow-Analyses

The implementation has always been constructed to be safe, i.e. identified value sets
might contain more values than there can be at runtime but not the other way round. If
we find too many possible values, we might also find to many branch targets or program
paths and the generation might fail. On the other hand, if we omit possible values, we
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might also omit program paths and the generation might not fail while it better should.
This way, generated code might run but skip code parts as they are considered to be
dead by the control flow analyses.

Of course, generation should not fail at all. There are some rare cases that have
not been implemented properly. Dataflow analysis is mainly used for determining the
control flow, thus it is mostly useful for operations handling addresses. Usually, string
operations are not used to transfer a code address and therefore value sets assigned by
such operations are not calculated at all but just set to be undefined.

Adresses might also be part of larger memory blocks that are transferred at once by
operations like MVC. In case overlapping memory regions are detected, both are set to
be undefined. A more fine-grained solution was possible here, possible code addresses
part of one region would not be overwritten and therefore could be preserved.

In general, there is only one value set for each instruction node. Figure 5.1 gives a
small sample where this approach might not be sufficient.

The sample code starts with a comparison instruction followed by a related conditional
branch. In case the condition is met, instruction LA in line 3 is skipped. Otherwise, the
address of label FOO is loaded to R12. Line 5 (LBLA) represents some arbitrary code
not relevant for this sample except that it will not modify the contents of R12.

The same combination of comparison/branch is used again to conditionally skip a line
of code (line 8, BR). If the instruction loading the address has been skipped, the branch
instruction will also be skipped as their execution is depending on the same condition.
This situation is not handled by the analyses so far. Control flow graphs are global and
exist in only one version: it is not possible to define different paths in the control flow
depending on various conditions.

1 CR R1,R2
2 BC <COND>,LBLA
3 LA R12,FOO
4 * instructions at LBLA will not modify R12
5 LBLA [...]
6 CR R1,R2
7 BC <COND>,LBLB
8 BR R12
9 LBLB [...]

10
11 FOO [...]

Figure 5.1: Limitations of control flow analysis

It is still too early to discuss the impact of this limitation. Nevertheless, there have
been observations that the problem discussed appears multiple times. It will be necessary
to discuss whether different paths in the control flow analysis should be supported (i.e.
whether it is necessary to support it and the amount of time required to implement this
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improved technique pays off). The above sample indicates that the generation will fail in
case it does not recognize that the branch will only be executed when the address has
been loaded before. Potentially, the register is used for handling code addresses in general
and does not contain anything other than program addresses during the entire program
run. This way, the generation would not fail although it is not clear that the branch will
only target this single address. Of course, these assumptions are highly speculative and
rely on the code style of the applications.

5.1.3 Removal of Goto-Statements

The implemented algorithm is beneficial and the reduction of unstructured branches
a significant advance towards a maintainable code base. Nevertheless, there are still
remaining gotos and options for improvements.

At the moment, gotos are only replaced when the control flow is structured. Erosa
et al.[EH94] present an algorithm for eliminating goto statements that eliminates all of
them.

First, both break and continue statements are still allowed. The translation of
more complex control flow graphs requires transformation processes, that move the goto
instruction inside the graph. Therefore, additional flag variables have to be generated
that forward control flow information between different levels of the scope.

Algorithm 6 gives an example for a goto statement leaving two loops and skipping
some additional code afterwards. The goto statement itself is replaced by an assignment
to the flag variable flag_foo which indicates whether the referred label should be accessed
or code should continue normal operation. In case the label should be targeted, every
underlying scope has to query the flag variable and handle it appropriately, i.e. forward
it by breaking out of the current scope or transferring control to the right address if the
label is on the same scope.

A complete removal of all goto statements is reachable using the described algorithms.
Whether this is a goal that has to be strived for, still has to be discussed. The introduction
of flag variables, that have to be queried along different levels, is a drawback that cannot
be neglected.

5.1.4 Type-inference Techniques

Alan Mycroft presents Type-Based Decompilation[Myc99], an approach to infer a field’s
or register’s type by analyzing its usage.

Starting basis as described is the compiled program which is first translated to SSA
form. Doing so, live ranges for assigned values can be found and appropriate type
information for the variables in SSA-form can be deduced. This is accomplished by
defining type constraints to each assigned SSA variable. Assignment chains are then
evaluated to determine the final types (single assignments could lead to ambiguous results,
e.g. assigning 0 to a field is equally legitimate for pointers and integer values, further
usage could resolve that issue).

46



Algorithm 6 Replacing gotos
1: for i← 1→ 10 do
2: for j ← 1→ 5 do
3: . . .
4: if some condition then
5: flag_foo← true
6: break
7: end if
8: . . .
9: end for

10: if flag_foo then
11: break
12: end if
13: . . .
14: end for
15: if ¬flag_foo then
16: [. . . ]
17: end if
18: // foo:
19: . . .

Even the generation of arrays and structures is discussed. Loops processing linked
lists are detected and appropriate structures can be generated to depicture the linked list
that is implicitly used by the type of loop implementation in assembler code.

The fact that HLASM allows typed field definitions saves already a significant part of
the work. If memory is not addressed by raw addresses but the code makes use of such
field definitions, types of fields are available already. The algorithms presented are still
valuable for register accesses. Splitting the live ranges of registers to multiple variables
that are even typed correctly would significantly increase program readability. Using
local variables instead of global registers enables application programmers to ascertain
the impact of local changes and overlook the global impact.

5.1.5 Handling of Self-Modifying Code

At the moment, self-modifying code is not handled at all. In case an instruction is writing
to a memory location storing executable instructions, code translation just fails.

In theory, it is possible to write whole programs dynamically at runtime without any
restrictions compared to hand-written assembler code that has to be compiled. From the
translator’s view, we would have to dynamically interpret, analyze and translate the code
whenever it changes. That means, we cannot only translate code statically and ship the
generated code but have to incorporate an interpreter to be shipped with the application.
Whenever code is generated that obsoletes the generated version, dynamic retranslation
is needed. From today’s perspective, this functionality is not projected. But, there are
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some cases that might be possible to be solved by less substantial means that shall be
dicussed in the following.

As an example, let us have a look on the code provided by figure 5.2. To understand

1 AAA BC 0,AUFRUF
2 [...]
3 MVI AAA+1,X’F0’
4 [...]

Figure 5.2: Sample: self-modifying code

the intention of the move operation, we have to explain the binary representation of the
branch instruction in memory. The instruction is four bytes long and encoded using the
following scheme: 47MXBDDD. The first byte, which is always set to the hexadecimal
value ’47’ identifies the instruction as branch. The third half-byte, ’M’ defines the mask
for querying condition codes. The last five halfbytes address the target using indirect
addressing (index register, base register, displacement immediate value).

The move instruction changes the mask of the branch instruction (we ignore the fact
that it modifies the index used for branch target calculation, too1). In case the values ’0’
and ’F’ are written as mask, it is possible to toggle between a NOP (no operation) and
an unconditional branch.

Generation of the provided code would not require much more than a flag variable
in C++. The move instruction would than be translated to modify its value and the
branch instruction to query it before branching.

First analyzes have shown that such idioms are covering by far most of the cases of
self-modifying code. Hence, limited support for self-modifying code seems reasonable and
is projected for the near future.

5.1.6 Macro Processing

Still, macro processing is out of the scope of this work. Nevertheless, it should be
mentioned as possible future extension.

HLASM macros are written in a meta-language that incorporates assembler code.
Macro processing has to take place before parsing the assembler code using the present
parser.

It is not only possible to define simple code substitutions but also to define small
pieces of even structured code generating assembler code. Therefore, it is not sufficient
to simply replace pieces of code but necessary to interpret the macro code. Figure 5.3
gives a small sample of macro source including conditional code production. A macro is

1Of course, we have to check automatically whether the branch target changes. Regarding this sample,
we assume that the value will not be altered. In general, this pattern is only used to modify the mask
of the branch instruction, not anything else. But this is nothing more than a convention and therefore
cannot be expected without being checked.
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1 MACRO
2 MACRO1 &PARAM
3 LCLA &CNT
4 &CNT SETA 0
5 .LOOP A R5,&PARAM
6 &CNT SETA &CNT+1
7 AIF (’&CNT’ NE ’9’).LOOP
8 MEND
9 [...]

10 MACRO1 10(R1)

Figure 5.3: Sample HLASM macro code

introduced by the MACRO keyword, followed by a line containing its name (MACRO1 )
and parameters({PARAM}). LCLA introduces a local adress macro variable - the
address is just a binary value and can be used for whatever purpose. The variable defined
in line 3 is then initialized to 0. Labels are defined similar as in plain assembler code - but
having a dot at the beginning. Code starting at the macro label .LOOP adds an address,
passed as parameter PARAM to the macro, to register R5. Thereafter, the loop counter
variable CNT is incremented by 1. AIF tests a macro condition and conditionally jumps
to the named label. In this case, a jump to .LOOP is executed until CNT reaches the
value 9. MEND marks the end of the macro. Line 10 shows the usage of the macro.

It has to be mentioned that this code is executed at compile-time by an interpreter
that has to be part of the compiler. This simple code forms a loop that is repeatedly
executed eight times by the compiler - each time it produces one single line of assembler
code – the ADD-instruction of line 5. The assembler parser will later receive the product
of the macro parser, which will include those eight ADD-instructions instead of a call to
the macro.

5.1.7 Supervisor-Calls

SVC -instructions allow to access system functions like input/output operations or hard-
ware timers, the clock, etc. Different supervisor calls are identified by an 8-bit number
which is passed as immediate parameter to the instruction.

The realization is depending on the target architecture and operating system. From
today’s perspective, supervisor calls will be implemented as library functions using system
facilities. It has not been evaluated yet, whether all system calls are needed or can be
presented on any arbitrary target operating system.

Implementation is not accurately scheduled so far, but it is expected that frequently
used operations (e.g. for IO) are provided in the near future.
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5.1.8 Pattern Recognition

Recurring patterns (i.e. common sequences of instructions) are often implemented using
macros that allow to copy a piece of source code wherever needed. In some situations,
there might be recurring sequences of code in the program code itself, that are not
swapped out to library functions or macros. Such code patterns could be described in a
machine-readable form to be detected when translating source code. It then was possible
to generate manually prepared code for a specific pattern that is assumed to be more
readable and maintainable as normal generated code which ignores its meaning.

At the moment, there are no plans to implement pattern recognition. Defining
patterns requires manual work and there is no evidence yet that this approach will lead
to better results. This topic will not be addressed before the implementation has reached
a very advanced state.
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APPENDIX A
Sample Program Conversions

A.1 Arithmetic Operations

Figure A.1: Sample arithmetic operations: ASM code

1 * sample arithmetic operations
2
3 SAMPLE CSECT
4 USING SAMPLE,R13
5
6 LM R1,R3,10(R6)
7 LM R10,R2,DEC1
8
9 LPR R1,R2

10 LNR R1,R2
11
12 ST R1,BIN1
13 ST R1,DEC1
14 ST R1,5(10,R2)
15 STC R1,BIN1
16 STC R1,5(10,R2)
17 STM R1,R3,10(R5,R6)
18 STM R10,R2,DEC1
19
20 AR R1,R2
21 A R1,BIN1
22 A R1,DEC1
23 A R1,10(R2)
24 AH R1,BIN1
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25 AH R1,BIN2
26 AH R1,10(R2)
27 AP DEC1,DEC2
28 AP DEC1,10(5,R2)
29 AP 5(8,R2),DEC2
30 ZAP 5(8,R2),DEC2
31
32
33 DEC1 DC P’0’
34 DEC2 DC P’100’
35 BIN1 DC F’100’
36 BIN2 DC H’10’
37 BIN3 DC F’42’

Figure A.2: Sample arithmetic operations: generated header file

1 #ifndef __sample_arith_H
2 #define __sample_arith_H
3 #pragma pack(push)
4 #pragma pack(1)
5
6 #include "hlasm_types.h"
7 #include <cstdint>
8
9 unsigned char asm_data[] = {0x0C, 0x10, 0x0C, 0x64, 0x00,

0x00, 0x00, 0x0A, 0x00, 0x2A, 0x00, 0x00, 0x00};
10
11 ptrdiff_t R[16];
12
13 hlasm::fixed_decimal<1> *DEC1 = (hlasm::fixed_decimal<1>*)

((char*) asm_data + 0);
14 hlasm::fixed_decimal<3> *DEC2 = (hlasm::fixed_decimal<3>*)

((char*) asm_data + 1);
15 int32_t *BIN1 = (int32_t*) ((char*) asm_data + 3);
16 int16_t *BIN2 = (int16_t*) ((char*) asm_data + 7);
17 int32_t *BIN3 = (int32_t*) ((char*) asm_data + 9);
18 #pragma pack(pop)
19 #endif /* __sample_arith_H */

Figure A.3: Sample arithmetic operations: generated code file

1 #include "sample_arith.asm.h"
2
3 int cc = 0;

52



4
5 int main() {
6 memcpy(R + sizeof(*R) * 0, (void*) ((ptrdiff_t) (10) +

(ptrdiff_t) (R[5])), sizeof(*R) * 3);
7 memcpy(R + sizeof(*R) * 9, (void*) (DEC1), sizeof(*R) * 7);
8 memcpy(R, (void*) ((ptrdiff_t) ((DEC1)) + sizeof(*R) * 7),

sizeof(*R) * 2);
9 R[0] = abs(R[1]);

10 R[0] = - abs(R[1]);
11
12 *(BIN1) = R[0];
13 *((int32_t*) (DEC1)) = R[0];
14 *((int32_t*) ((ptrdiff_t) (5) + (ptrdiff_t) ((ptrdiff_t)

(R[9]) + (ptrdiff_t) (
15 R[1])))) = R[0];
16 R[0] = *((int8_t*) (BIN1));
17 R[0] = *((int8_t*) ((ptrdiff_t) (5) + (ptrdiff_t)

((ptrdiff_t) (R[9]) + (ptrdiff_t) (
18 R[1]))));
19 memcpy((void*) ((ptrdiff_t) (10) + (ptrdiff_t)

((ptrdiff_t) (R[4]) + (ptrdiff_t) (
20 R[5]))), R + sizeof(*R) * 0, sizeof(*R) * 3);
21 memcpy((void*) (DEC1), R + sizeof(*R) * 9, sizeof(*R) * 7);
22 memcpy((void*) ((ptrdiff_t) ((DEC1)) + sizeof(*R) * 7), R,

sizeof(*R) * 2);
23
24 R[0] += R[1];
25 R[0] += *(BIN1);
26 R[0] += *((int32_t*) (DEC1));
27 R[0] += *((int32_t*) ((ptrdiff_t) (10) + (ptrdiff_t)

(R[1])));
28 R[0] += *((int16_t*) (BIN1));
29 R[0] += *(BIN2);
30 R[0] += *((int16_t*) ((ptrdiff_t) (10) + (ptrdiff_t)

(R[1])));
31 *(DEC1) += *(DEC2);
32 *(DEC1) += *((fixed_decimal<(5 + 1) / 2>*) ((ptrdiff_t)

(10) + (ptrdiff_t) (R[1]
33 )));
34 *((fixed_decimal<(8 + 1) / 2>*) ((ptrdiff_t) (5) +

(ptrdiff_t) (R[1]))) += *(
35 DEC2);
36 *((fixed_decimal<(8 + 1) / 2>*) ((ptrdiff_t) (5) +
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(ptrdiff_t) (R[1]))) = 0;
37 *((fixed_decimal<(8 + 1) / 2>*) ((ptrdiff_t) (5) +

(ptrdiff_t) (R[1]))) += *(
38 DEC2);
39 }

A.2 Restructuring

Figure A.4: Restructuring: ASM code

1 SAMPLE CSECT
2 USING SAMPLE,R13
3
4 * test case 0: simple if
5 SR R1,R1
6 CR R1,R2
7 BE TC0_TRU
8 A R15,DUMMY
9 TC0_TRU S R15,DUMMY

10
11 * test case 1: if/else
12 SR R1,R1
13 CR R1,R2
14 BE TC1_TRU
15 A R15,DUMMY
16 B TC1_END
17 TC1_TRU S R15,DUMMY
18 TC1_END SR R15,R15
19
20 * test case 10: pre-conditional loop
21 SR R1,R1
22 TC10_H CR R1,R2
23 BNL TC10_A
24 LA R1,1(R1)
25 B TC10_H
26 TC10_A SR R15,R15
27
28 * test case 11: post-conditional loop
29 SR R1,R1
30 TC11_H A R15,DUMMY
31 LA R1,1(R1)
32 CR R1,R2
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33 BL TC11_H
34 SR R15,R15
35
36 * test case 12: post-conditional with branch at header
37 SR R1,R1
38 TC12_H CR R1,R1
39 BE TC12_A
40 A R1,10(R15)
41 TC12_A A R1,14(R15)
42 CR R1,R5
43 BL TC12_H
44 SR R15,R15
45
46 A R15,DUMMY
47 FOO DS 0H
48 A R15,DUMMY
49 CR R15,R1
50 BL FOO
51
52 * test case 30: function call
53 B TC30
54
55 FUNCA AR R5,R6
56 BR R13
57
58 TC30 BAL R13,FUNCA
59 SR R15,R15
60
61 PGM_END A R15,DUMMY
62
63 DUMMY DC F’100’ * used as operand for dummy instructions

Figure A.5: Restructuring: generated header file
1 #ifndef __sample_asm_H
2 #define __sample_asm_H
3 #pragma pack(push)
4 #pragma pack(1)
5
6 #include "hlasm_types.h"
7 #include <cstdint>
8
9 unsigned char asm_data[] = {0x64, 0x00, 0x00, 0x00};

10
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11 ptrdiff_t R[16];
12
13 int32_t *DUMMY = (int32_t*) ((char*) asm_data + 0);
14 #pragma pack(pop)
15 #endif /* __sample_asm_H */

Figure A.6: Restructuring: generated code file

1 #include "sample_asm.asm.h"
2
3 int cc = 0;
4
5 int main() {
6 R[0] = 0;
7 if (R[0] != R[1]) {
8 R[14] += *(DUMMY);
9 }

10 // TC0_TRU
11 R[14] -= *(DUMMY);
12
13 /* test case 1: if/else */
14 R[0] = 0;
15 if (R[0] == R[1]) {
16 // TC1_TRU
17 R[14] -= *(DUMMY);
18 } else {
19 R[14] += *(DUMMY);
20 }
21 // TC1_END
22 R[14] = 0;
23
24 /* test case 10: pre-conditional loop */
25 R[0] = 0;
26 while (R[0] < R[1]) {
27 R[0] = (ptrdiff_t) (ptrdiff_t) (1) + (ptrdiff_t)

(R[0]);
28 }
29 // TC10_A
30 R[14] = 0;
31
32 /* test case 11: post-conditional loop */
33 R[0] = 0;
34 do {
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35 R[0] = (ptrdiff_t) (ptrdiff_t) (1) + (ptrdiff_t)
(R[0]);

36 } while (R[0] < R[1]);
37 R[14] = 0;
38
39 /* test case 12: post-conditional with branch at header */
40 R[0] = 0;
41 do {
42 if (R[0] != R[0]) {
43 R[0] += *((int32_t*) ((ptrdiff_t) (10) +

(ptrdiff_t) (R[14])));
44 }
45 // TC12_A
46 R[0] += *((int32_t*) ((ptrdiff_t) (14) + (ptrdiff_t)

(R[14])));
47 } while (R[0] < R[4]);
48 R[14] = 0;
49
50 R[14] += *(DUMMY);
51 do {
52 } while (R[14] < R[0]);
53 goto TC30;
54 TC30:
55 R[13] = (ptrdiff_t) (&&FUNCA);
56 FUNCA();
57 R[14] = 0;
58
59 // PGM_END
60 R[14] += *(DUMMY);
61
62 }
63
64 int FUNCA() {
65 // FUNCA
66 R[4] += R[5];
67 }
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