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Abstract

Generating rosters for nurses in a hospital involves the assignment of nurses to

shifts, taking into account their skills, preferences and contract types. This task

is typically a very complex problem, not least because of the many restrictions

that need to be taken into account. These constraints generally include hard

constraints, such as forbidden shift successions and providing a minimum number

of nurses for each shift. In addition, several soft constraints, representing a well-

balanced schedule, should also be satisfied as far as possible.

The actual real-world problem might deviate from hospital to hospital. How-

ever, the international nurse rostering competitions in 2010 and 2015 generated

a common basis for research. They enhanced academic interchange by stating

problem formulations and benchmark instances, that have been widely accepted

and used by the research community since then. While for the first international

nurse rostering competition, a formulation with many constraints was proposed,

the second competition used a smaller number of constraints but extended the

problem to a sequence of periods for which a roster has to be created successively.

The first contribution of this thesis refers to the development of a mixed integer

programming model for the problem formulation of the second competition.

Due to the inherent complexity of the problem, heuristic approaches appear

to be appropriate, if the problem has to be solved in reasonable time. Hence, I

propose a metaheuristic based on large neighborhood search for the nurse rostering

problem in this thesis. The algorithm repetitively destroys and re-builds relatively

large parts of the incumbent solution by making use of several destroy and repair

operators. Well-performing selection rates are precomputed by applying a modified

version of the algorithm, in which selection probabilities are adjusted dynamically

depending on the performance of the operators. These selection rates are then

passed to the original algorithm. Within the proposed approach, a simulated

annealing acceptance scheme is employed for deciding whether a generated solution

is accepted as new incumbent.

The algorithm is applied to the benchmark instances of the second international

nurse rostering competition. The generated results are then compared with those

of the finalists of the competition.
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1 Introduction

Staff scheduling and rostering are highly relevant issues in practice for several rea-

sons. In the context of healthcare institutions, Petrovic and Vanden Berghe [2012]

point out the benefits of optimized personnel schedules, including positive effects

on the quality of care and the well-being of the workers. In general, personnel ros-

tering seeks to construct a timetable for employees to meet particular requirements

with regard to production or service levels, as described by Ernst et al. [2004].

Staff scheduling may be categorized in different ways. In the early survey by

Baker [1976], the author distinguishes between two types of workforce allocation

problems considering cyclic demand for staff, including shift scheduling and day-

off scheduling. The former involves the allocation of a number of employees to

work periods on a day, while the latter consists of scheduling the working days of

the staff. Shift scheduling problems are typically encountered in situations when

the personnel demand fluctuates over the day, for example in case of telephone

operators. Day-off scheduling arises for instance, when the production goes on

for seven days per week, but employees work for only five days per week. The

combination of these two problem types is usually called tour scheduling.

Ernst et al. [2004] divides the process of personnel scheduling into modules,

including demand modelling, day-off scheduling, shift scheduling, line of work con-

struction, task assignment, and staff assignment. Demand modelling involves de-

termining the number of workers required for each point in time in the planning

horizon. In the context of nurse rostering, the authors refer to shift based demand

that is directly derived from specifications of the required number of nurses for

different shifts based on service measures like nurse-patient ratios. The line of

work construction depends on the type of the basic building blocks, i.e., shifts,

duties, or stints. In case of shifts, a working day of an employee may consist of

any shift, as long as the shift patterns are feasible. Task assignment consists of

the actual scheduling of tasks to lines of work, while the scheduling of individual

employees to lines of work is done in the last module. Ernst et al. [2004] note,

that for generating a roster only a subset of these modules may be required in

some cases. Moreover, the solution processes might solve several modules at once,

rather than in a step by step manner.
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In the review by Ernst et al. [2004], several fields of applications of staff schedul-

ing problems are described. These areas include transportation systems, call cen-

ters, protection and emergency services, civic services and utilities, venue manage-

ment, financial services, hospitality and tourism, retail, manufacturing, and health

care systems. Within the latter field, nurse rostering is the most prevalent problem,

which is also the focus of this thesis.

In a hospital, Warner [1976] distinguishes between three nursing manpower

decisions, including staffing, scheduling, and allocation. The staffing decision is

made every year and determines the number of nurses for each skill. Every four to

six weeks a schedule has to be generated, where each nurse is assigned to shifts and

skills, while some coverage constraints have to hold. The allocation process refers

to short term shifting of nurses from to different units to overcome unforeseen

events, e.g., demand fluctuations and absentees. Warner [1976] note that the task

assignment may also be considered as a fourth short term decision step.

Regarding the scheduling phase, Warner [1976] notes that different stakeholders

may have conflicting interests. While hospitals have to provide a certain service

level, nurses demand continuity, overtime minimization and the consideration of

their preferences. Moreover, the author lists six criteria that may play a role in

identifying high quality scheduling systems:

Coverage Number of nurses compared to the minimum number of required nurses,

for each shift and each skill.

Quality A measure from the perspective of the nurses, to which extent are week-

ends off, preferences, etc. respected.

Flexibility How flexible is the scheduling system, when it comes to changes like

vacations, different contracts, day off requests, etc.

Stability A measure of the consistency of the schedules.

Fairness A measure of an evenly balanced schedule between nurses.

Cost The costs for generating the schedule.

Administrative modes of operation are described by Burke et al. [2004]. In

centralised scheduling, the personnel scheduling for the whole hospital is executed

by one administrative department. Thereby, resources are utilized well and costs
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are saved. However, there might be limitations regarding the consideration of

local ward requirements, or unfair rosters may be generated. In case the schedul-

ing is done by head nurses or unit managers, Burke et al. [2004] name this type

unit scheduling. Finally, in self-scheduling the roster is generated by the nurses

themselves. This process is very time-consuming. Silvestro and Silvestro [2000]

highlight the risk of over- or under-staffing, as the nurses are focused on the staff

convenience. On the other hand, this method may lead to a high staff satisfaction.

A similar differentiation of administrative modes is stated by Silvestro and Silve-

stro [2000]. In addition to departmental rostering and self-rostering, they mention

team rostering, where the rostering process is performed by a nominated member

of a team of nurses.

The practical relevance of nurse rostering can particularly be seen from the

fact, that several authors deal with practical nurse rostering cases, e.g., Bellanti

et al. [2004], Hadwan et al. [2013]. Even benchmark instances are often based

on real date, e.g., Brucker et al. [2010], Burke et al. [2008], Smet et al. [2014].

This practical aspect also motivates approaches based on case based reasoning,

where previous decisions of the personnel manager may be used for solving future

problems, e.g., Beddoe et al. [2009], Petrovic and Vanden Berghe [2012].

Petrovic and Vanden Berghe [2012] argue, that many hospitals still employ

manual solution approaches. However, Burke et al. [2004] point out that auto-

mated approaches may improve the quality of the rosters and save time for the

administrative staff. One reason for these prevalent manual approaches might be

that the approaches are typically hard to transfer from one problem to a differ-

ent one, as noted by Petrovic and Vanden Berghe [2012]. The problems faced by

the hospitals often deviate significantly from each other. Objectives and restric-

tions of the institutions are based on legal issues, management perspectives, and

staff requirements. As a consequence of the different focuses of the stakeholders,

diverse objective functions and distinct sets of constraints are employed. Accord-

ing to Petrovic and Vanden Berghe [2012] these variations include different shift

types, rules for substituting skills and qualifications, and quality measures for a

well-balanced schedule.

Petrovic and Vanden Berghe [2012] criticize that complex real world problems

are still not completely covered in the research papers. Moreover, these papers typi-
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cally formulate their own objective function and set of constraints, making compar-

isons between existing approaches almost impossible. However, recently there is a

trend to close these shortcomings. A collection of staff scheduling problems is pro-

vided by the Automated Scheduling, Optimisation and Planning research group at

The University of Nottingham1 derived from real world data. A nurse scheduling

problem library, called NSPLib, is described by Vanhoucke and Maenhout [2007].

The library as well as a problem generator for nurse rostering problems (NRPs)

are provided on the website by the Operations Research & Scheduling Research

Group at the Ghent University2.

Similarly, Smet et al. [2014] argue, that typically academic NRP models do not

incorporate all the features of a complex real-world NRP. Therefore the authors

propose a rich, generic model. Other trends to close the gap between research and

practice include the two nurse rostering competitions. Within these competitions,

new benchmark instances were released, that enable comparisons between differ-

ent approaches. Among others, the First Nurse Rostering Competition (INRC-I)

aimed at stimulating the debate within the scheduling community and bridging

the gap between theory and practice, as stated by Haspeslagh et al. [2014]. The

INRC-II, described by Ceschia et al. [2015b], basically differs from the first com-

petition with regard to considered problem, as it used a multi-stage formulation.

This thesis focuses on the INRC-II problem formulation.

Typically, NRPs incorporate many constraints, as noted by Burke et al. [2010].

For a review of staff scheduling papers with regard to personnel characteristics, flex-

ibility measures, different constraints and other features I refer to Van den Bergh

et al. [2013]. A categorization of NRPs analogue to the α|β|γ notation for schedul-

ing is proposed by De Causmaecker and Vanden Berghe [2011]. The classification

is based on several criteria, including general problem characteristics, objectives,

constraints and problem dimensions. In the proposed α|β|γ notation, α refers to

the personnel environment, β to work characteristics, and γ to the optimization

objective. Besides classifying the diverse problems in this field, this work underlines

the broad spectrum of NRP characteristics.

1www.cs.nott.ac.uk/~tec/NRP/index.html
2www.projectmanagement.ugent.be/?q=research/personnel_scheduling/nsp
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De Causmaecker and Vanden Berghe [2011] referring to Osogami and Imai

[2000] state that the NRP is NP-hard. The proof is based on a reduction of the NP-

complete timetabling problem to a decision version of the NRP. For that purpose,

only a subset of the constraints of a typical NRP is needed. However, according

to De Causmaecker and Vanden Berghe [2011] it is still unclear in which way par-

ticular objectives or sets of constraints affect the complexity. Brucker et al. [2011]

discuss polynomially solvable and NP-hard special cases of personnel scheduling

problems. Complexity indicators, including measures regarding the problem size,

the preference distribution, the coverage distribution, and time related constraints

are analyzed by Vanhoucke and Maenhout [2009]. Other complexity indicators,

such as the ward size, the predictability of demand (ratio of planned and emer-

gency operations), the demand variability (based on the length of a patient stay)

and the complexity of the skill mix, are discussed by Silvestro and Silvestro [2000].

In case of very complex problems, one has to resort to heuristic approaches.

Therefore, a metaheuristic based on Adaptive Large Neighborhood Search (ALNS)

is developed for this theses. ALNS has been proposed by Ropke and Pisinger [2006]

for tackling vehicle routing problems. Its basic idea is to repetitively destroy

and subsequently repair parts of the incumbent solution. It extends the Large

Neighborhood Search (LNS) proposed by Shaw [1998] and is related to the Ruin

and Recreate approach by Schrimpf et al. [2000]. The adaptive part refers to the

dynamic adjustment mechanism for the operator selection during the search. The

selection rates resulting from ALNS are then passed to a version of the algorithm

without the adjustment scheme, which in turn is used to generate the final results.

In the following, the version without the adjustment scheme will be referred to LNS.

Ahuja and Orlin [2002] survey Very Large-Scale Neighborhood Search techniques,

including approaches that employ neighborhoods that either grow exponentially

in problem size or are too large to be searched explicitly in practice. With respect

to the latter characteristic, LNS belongs to that class.

The outline of this thesis is as follows. A literature review about solution

approaches for NRPs with a focus on recent methods is given in Section 2. Ap-

proaches that have been applied to the benchmark instances of the INRC-I are

particularly highlighted. Background information about the nurse rostering com-

petitions and a detailed problem formulation of the INRC-II are provided in Sec-
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tion 3. A Mixed Integer Programming model (MIP) for this problem is stated in

Section 4. The proposed solution approach is described in Section 5, while compu-

tational results and a sensitivity analysis are provided in Section 6. A conclusion

is given in Section 7.

2 Literature review

The nurse scheduling literature reaches back to the 1970s, as shown by the bibli-

ography by Fries [1976]. Early papers in this field include the mathematical pro-

gramming approaches, by Warner and Prawda [1972], Warner [1976] and Miller

et al. [1976].

A review about personnel scheduling problems in general has been conducted by

Ernst et al. [2004]. They describe various application areas and different solution

methods. Another review dealing with personnel scheduling by Van den Bergh

et al. [2013] gives references to previous surveys in this field. Furthermore, the

authors categorize papers with respect to their considered problem characteris-

tics. Surveys that are dedicated solely to NRPs are those by Cheang et al. [2003]

and Burke et al. [2004], which are essentially structured with regard to solution

methods. Burke et al. [2004] classify nurse rostering approaches into mathematical

programming, goal programming/multi-criteria approaches, artificial intelligence

methods, heuristics and metaheuristic scheduling.

Recently, MIP-based methods for the NRP have been proposed by Burke et al.

[2010], He and Qu [2012], Valouxis et al. [2012], Santos et al. [2014] and Della Croce

and Salassa [2014], which are often hybrid approaches, though. Burke et al. [2010]

resort to MIP in order to solve a subproblem consisting of all the hard constraints

but only a subset of the soft constraints. In a post-processing stage, a variable

neighborhood search (VNS) method is employed to improve the solution of the

MIP, particularly with regard to the previously excluded constraints.

Valouxis et al. [2012] propose a two phase MIP approach. In the first stage,

the workload for each nurse and each day is determined. The daily shifts are

then assigned in the second stage. Each phase is solved by a MIP. Additionally,

the algorithm is enhanced by local search techniques. The approach is used to
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solve the INRC-I benchmark instances. In particular, the authors submitted their

algorithm to the competition and reached the first place in all tracks.

He and Qu [2012] propose a hybrid constraint programming based column gen-

eration method. Constraint programming is used to solve the pricing subproblem,

while the master problem is modelled as a MIP. Two strategies are presented in

order to produce high-quality diverse columns.

Santos et al. [2014] present a MIP formulation for the NRP of the INRC-I. In

addition, the authors propose improved cut generation strategies. Furthermore,

they present a two-stage approach, where an initial schedule is generated in a

greedy way first. In the second phase a mathematical programming heuristic based

on VNS is applied. For this purpose, sets of variables are fixed and the resulting

neighborhoods are explored by the MIP. The authors apply their approach to the

benchmark instances of the INRC-I.

A VNS-based matheuristic is proposed by Della Croce and Salassa [2014], where

the neighborhoods are iteratively explored by a MIP solver. Among others, the

authors apply their approach to the INRC-I benchmark instances.

Burke and Curtois [2014] present a branch and price algorithm and an ejec-

tion chain based method. Their approaches incorporate a dynamic programming

method. The approaches have been applied to several benchmark instances, in-

cluding those of the INRC-I. The algorithms performed well at the competition.

However, for the final ranking the organizers used hidden instances, where the

start date was different compared to the released instances. As a consequence,

Burke and Curtois [2014] were not ranked first in end.

A hyperheuristic approach is suggested by Smet et al. [2014], where in each

iteration a heuristic is selected from a set of various heuristics. The heuristic is

then applied to the incumbent solution. The new candidate solution may be either

accepted or rejected. The authors underline the advantage of hyperheuristics, as

they are able to cope with a wide spectrum of problem characteristics, which is

particularly relevant for the generic NRP model proposed by them.

Brucker et al. [2010] propose an adaptive decomposition approach. The first

stage focuses on the generation of sequences of shifts for nurses by considering

only a subset of the constraints, while complete rosters are produced in the second

stage. Greedy local search is then employed to improve the solutions.
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Methods based on case based reasoning have been proposed by Beddoe et al.

[2009] and Petrovic and Vanden Berghe [2012]. In case based reasoning, knowledge

about previous solutions, eventually reflecting managerial behaviour, is stored and

used to solve future problems. Beddoe et al. [2009] employ a memetic algorithm

to identify high quality sequences of reparations of constraint violations, while

the case based reasoning system contains possible reparations. Petrovic and Van-

den Berghe [2012] additionally propose a tabu search metaheuristic, which is then

compared against the case based reasoning approach.

In the remainder of this section, recent metaheuristic approaches applied to the

NRP are described. Bilgin et al. [2012] propose a VNS and an ALNS approach.

Their algorithms seek to improve an initial solution, which fulfills the minimum

coverage constraints. VNS makes use of a tabu list of performed moves and a token-

ring-search to switch between neighborhoods, while ALNS uses a tabu list too.

An adaptive neighborhood search is described by Lü and Hao [2012]. For

that purpose, two neighborhood moves and three intensification and diversification

strategies are employed. The algorithm switches adaptively between these search

strategies. The approach is applied to the INRC-I instances.

Hadwan et al. [2013] propose a harmony search algorithm. It is inspired by

musical improvisation and belongs to the class of population-based metaheuristics.

Chiaramonte et al. [2015] employ an iterative local search method within an

agent-based rostering system in order to improve rosters with regard to the prefer-

ences of the nurses. Therefore, the NRP is split into a cost minimization problem

and a nurse preference rostering problem.

Tassopoulos et al. [2015] propose a two-phase VNS, where nurses are assigned

to working days first and the shift assignment is done in the second stage. The al-

gorithm is applied to several benchmark instances, including those of the INRC-I.

3 Problem description

Within this section, the nurse rostering competitions are described (Subsection 3.1)

and the problem formulation of the INRC-II is explained in detail in Subsection 3.2.

Finally, the constraints of the problem are illustrated in Subsection 3.3.
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3.1 Nurse rostering competitions

Referring to Haspeslagh et al. [2010b], the INRC-I built upon the success of two

timetabling competitions, that took place in 2002 and 2007. Similarly to nurse

rostering, timetabling problems arise in practice at many different institution, par-

ticularly at universities, which frequently have distinct requirements regarding the

schedule to generate. Hence, early research within this field focused on institution-

specific problem variants, as pointed out by Schaerf [1999]. As a consequence,

published results have often been only compared with previous - not seldom man-

ually generated - solutions at the respective institution, but are rarely compared

with different scientific approaches. Therefore, there was a need for a common def-

inition and widely accepted benchmark instances in order to conclusively compare

algorithms. The first international timetabling competition has generated this re-

quested basis for the scientific community, as stated by McCollum et al. [2010].

The second timetabling competition considered three different problems that arise

at universities and intended to close the gap between theory and practice. For a

description of the second competition, I refer to McCollum et al. [2010]. Mean-

while, even a third timetabling competition with a focus on highschool timetabling

was held, as reported by Post et al. [2013].

Similarly, the INRC-I provided a problem formulation and benchmark instances

and wanted to stimulate interest in the field of rostering. Details about the com-

petition, including its rules, instances and rankings, can be found on its website1.

As stated by Haspeslagh et al. [2014], several goals were followed, including gen-

erating a common ground for comparing approaches, attracting researchers from

different fields to develop new and eventually multi-disciplinary methods, bridging

the gap between practice and academic approaches and promoting a debate within

the community.

The competition itself consisted of three different tracks, i.e., sprint, middle

distance, and long distance, differing in the maximum run times and the size of

the instances. For the sprint track, a solution has to be found within seconds,

which corresponds to an interactive use in practice. The middle distance track has

the most practical relevance, as therefor a solution should be generated within a

1http://www.kuleuven-kulak.be/nrpcompetition
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few minutes, referring to the case where a problem has to be solved a few times.

Finally, for the long distance track, the solver is allowed to run for hours. The

actual time granted for each track was determined by a benchmarking tool in order

to balance different computational powers of the hardware of the participants. For

each track, three types of benchmark instances were released, i.e., early, late, and

hidden ones. While the early instances were available from the very beginning of

the competition, the late ones were released shortly before the end, and the hidden

ones were used solely by the organisers to rank the submitted algorithms. This

scheme has been adopted from the second timetabling competition, as well as most

of its rules.

The INRC-II described by Ceschia et al. [2015b] retained most of the frame-

work of the INRC-I, including the provision of a benchmarking tool, the three

different release dates of the benchmark instances, and basically the rules of the

first competition. The two competitions manly differ with regard to the proposed

problem formulation, i.e., a multi-stage formulation is considered for the INRC-II,

compared to the single-stage problem of the INRC-I.

3.2 Problem formulation

The description of the INRC-II is based on the technical report by Ceschia et al.

[2015b]. In general, the objective is to generate a roster for a number of days for

which all stated hard constraints hold and soft constraint violations are minimized.

The term hard constraint refers to a type of constraints that represent features

of the roster that have to hold under any circumstances, while soft constraints

indicate convenient characteristics. Hard constraints include a minimum coverage

of all requested shifts, such as day and night shifts, and each nurse can only be

assigned to one shift per day at most. Soft constraints are mainly based on the

contracts of the nurses corresponding to work regulations and preferences by the

nurses such as requesting a day off.

While the first competition, described by Haspeslagh et al. [2010b, 2014], con-

sidered a fixed planning horizon, where the requested coverage requirements for

each day and each shift are known from the very beginning, a multi-stage for-

mulation was proposed for the second competition. Moreover, a smaller set of

10



constraints is used for the INRC-II. In the considered problem, the planning hori-

zon is fixed, as opposed to a rolling horizon, and is split into weeks. Not all of the

coverage requirements are known in advance, but are rather revealed later week

by week. The solver is then supposed to generate a weekly roster. Some history

information is passed from each week to the next, as there are also constraints that

refer to the whole planning horizon. These global constraints basically reflect the

regulations specified by the contracts. The requested number of nurses per day

and shift and the nurse preferences are given in the weekly data.

The data consists of a fixed number of nurses, with known skills, e.g., head

nurse, regular nurse and trainee, where a nurse may have multiple skills. Moreover,

the contract of each nurse is given, specifying

• the minimum and maximum number of shifts

• the minimum and maximum number of consecutive working days

• the minimum and maximum number of consecutive days off

• the minimum and maximum number of consecutive assignments per shift

• the maximum number of consecutive working weekends

• the request for complete weekends, i.e., work either both days or none

Forbidden shift successions such as no early shift after a night shift are valid inde-

pendently of the contract. Weekly data includes the daily coverage requirements

for each shift and each skill, consisting of a minimum number and an optimal

number of nurses. In addition, each nurse may have requests for having a day off

or not having a particular shift assigned on a day.

For each week, the solver is called and takes the scenario file, specifying work

regulations and other settings regarding the whole planning horizon, the history

file, containing data about previous assignments, and the requirements of the con-

sidered week as an input. The solution consists of the daily assignments of each

nurse, specifying the shift and the skill. After a solver call, the new history file is

computed on the basis of the old history file and the generated assignment of the

week. Moreover, the solver may also pass another file to the next call, eventually

containing information to ease the search in the next step.
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In the INRC-II problem formulation, hard constraints include that the mini-

mum requirements for each day, each shift and each skill have to be satisfied, each

nurse has at most one assignment per day, feasible shift type successions have to

hold, and the nurses need to have the skill required for the slot they are assigned to.

The soft constraints are based on the contracts and the preferences of the nurses.

The constraints are listed below in detail (hard constraints H, soft constraints S),

while a formal description of the problem is provided in Section 4.

H1 Single assignment per day - for each nurse at most one assignment per day

H2 Under-staffing - minimum requirement for each day, each shift, and each skill

H3 Shift type successions - only feasible shift successions

H4 Missing required skill - nurses need the required skill for their assigned duty

S1 Insufficient staffing for optimal coverage - optimal requirement for each day,

each shift and each skill; each nurse less than the optimal number is penalized

by 30, additional nurses are not penalized

S2 Consecutive assignments - minimum and maximum assignments per day and

per shift should be met; each day below the minimum and each day beyond

the maximum is penalized by 15 for consecutive shift requirements and by

30 for consecutive day requirements

S3 Consecutive days off - minimum and maximum consecutive days off; each

excess or missing day is penalized by 30

S4 Preferences - assignments to unwanted shifts are penalized by 10

S5 Complete weekend - nurses requesting complete weekends have either work

on both days at the weekend or none; each violation is penalized by 10

S6 Total assignments - the minimum and maximum number of assignments

within the planning horizon have to be respected; each assignment below the

minimum and beyond the maximum is penalized by 20 for each nurse
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S7 Total working weekends - the maximum number of weekends with a working

day must not be exceeded within the planning horizon; for each nurse the

excess number of working weekends is penalized by 30

3.3 Illustration of the constraints

In this subsection, the constraints are illustrated, based on a partial weekly sched-

ule given in Table 1. For this example, three days are considered, i.e., Monday,

Tuesday and Wednesday, five nurses, i.e., A, B, C, D and E, three shift types, i.e.,

early, day and night, and a single skill. The schedule for Monday is represented

in a different way in Table 2. In Table 1, the dark gray shaded cells indicate the

minimum required number of assignments of the respective shifts. The optimal

number of scheduled nurses might exceed the minimum requirement, indicated by

the light gray shaded cells. Bold symbols refer to assignments where penalties

might occur. In table 2, the total number of assigned nurses to a shift is given in

column Σ, while the minimum number and the optimal number is shown in the

columns min and opt, respectively. In this example, the hard constraints hold, as

each nurse is assigned to one shift per day at most (H1 ), the minimum number of

assignments is reached for each shift and each day (H2 ), only feasible shift succes-

sions occur (H3 ), e.g. an early shift after a night shift is typically forbidden, and

the nurses are assumed to have the required skill (H4 ).

On Monday, the number of assigned nurses falls short of the optimal number.

Consequently, the represented schedule is penalized by 30 with regard to constraint

S1 - insufficient staffing. Note, that the optimal number of assignments might be

exceeded without being penalized. Neglecting the history and following days, and

given that the maximum number of consecutive working days of nurse A is two,

the assignment of nurse A on Wednesday causes a penalty of 30 with regard to

S2 - consecutive working days, as the maximum number of consecutive working

days is exceeded by one day. If the maximum number of consecutive shifts of type

early is two, then the assignment of nurse A on Wednesday causes an additional

penalty of 15 with regard to S2 - consecutive shifts. In case, the contract of nurse

D states, that the minimum number of consecutive days off is two, the assignment

of nurse D on Tuesday violates this soft constraints as the concatenation of days
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off falls short of the minimum number by one day, resulting in a penalty of 30 with

regard to S3. If nurse E prefers not being assigned to the day shift on Wednesday,

the assignment of E on Wednesday causes a penalty of 10 with regard to S4. The

other constraints can hardly be illustrated within this example, as constraint S5

refers to weekends, while S6 and S7 refer to the whole planning horizon. A more

detailed explanation of the constraints is given by Ceschia et al. [2015b].

shift/day Monday Tuesday Wednesday

early A A C A

day B E B C E D

night D E B

off C D C

Table 1: Partial weekly schedule

Monday

nurse A B C D E Σ min opt

early x 1 1 2

day x x 2 1 2

night x 1 1 1

off x 1 - -

Table 2: Schedule on Monday

4 Model

In this section, a MIP model for the NRP of the INRC-II will be described. The

presented model shares a few similarities with the MIP model proposed by Santos

et al. [2014] for the INRC-I formulation, as some features of the problems coincide.

Most of the constraints are modelled differently, though. The presented model

refers to the complete planning horizon. Hence, it is not directly applicable to the

weekly planning process, as therefor one would have to take into account, in which

way the current stage would affect future weeks. Therefore, the model is mainly

used to give a precise description of the considered problem. It might also be used
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for evaluating the overall solution, when the data of the whole planning horizon

has been revealed.

4.1 Notation

The notation used for modelling the NRP is shown in Table 3. The problem con-

sists of a set of nurses N and a subset of nurses that request complete weekends N∗,

i.e., working either on both days or none. Other sets needed in the model are a set

of days D in the planning horizon, a set of Saturdays D∗ being a subset of D, a

set of shifts S for each day and a set of skills K. Whether nurse n posses skill k is

indicated by σnk. For each day d, each shift s and each skill k, a minimum number

of assigned nurses mdsk is given, as well as an optimal level odsk, that is favored

for a high quality service. For each shift type the forbidden successions are known.

For example, a nurse being assigned to a night shift typically must not work in the

morning of the next day. The preferences of nurse n are represented by the set Pn

containing day-shift-pairs that are unwanted by the nurse.

There are several restrictions regarding consecutive assignments and assign-

ments in total. The minimum and maximum number of consecutive working days

of nurse n are denoted by amin
n and amax

n , respectively. The minimum and maximum

number of consecutive shifts of type s is denoted by cmin
s and cmax

s , respectively.

The minimum and maximum number of consecutive days off and the minimum

and maximum number of total assignments of nurse n are denoted bmin
n , bmax

n , gmin
n

and gmax
n , respectively. The maximum number of working weekends of nurse n is

denoted by hmax
n .

4.2 Decision variables

The binary four-indexed decision variable xndsk indicates, whether nurse n is as-

signed to shift s on day d making use of skill k. Moreover, several auxiliary

variables and slack variables are needed. The variables qdsk count the number of

nurses less than optimal number for each day d, each shift s, and each skill k.

The number of consecutive working days, consecutive shifts of type s and consec-

utive days off are counted by the variables rnd, unds and vnd, respectively, for each

nurse n and each day d. The binary variables ξnd, µnds and φnd indicate, whether
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N set of nurses

N∗ set of nurses that want complete weekends, N∗ ⊆ N

D set of days

D∗ set of Saturdays, D∗ = {d ∈ D : d is Saturday}

S set of shifts

K set of skills

σnk indicator, if nurse n has skill k

mdsk minimum number of nurses on day d, shift s, skill k

odsk optimal coverage on day d, shift s, skill k

Fs set of forbidden successions after shift s

Pn set of pairs (day, shift), when nurse n prefers not to work

amin
n minimum number of consecutive working days, nurse n

amax
n maximum number of consecutive working days, nurse n

bmin
n minimum number of consecutive days off, nurse n

bmax
n maximum number of consecutive days off, nurse n

cmin
s minimum number of consecutive shifts of type s

cmax
s maximum number of consecutive shifts of type s

gmin
n minimum number of assignments of nurse n

gmax
n maximum number of assignments of nurse n

hmax
n maximum number of working weekends of nurse n

Table 3: Notation

the assignment of nurse n on day d exceeds the maximum number of consecutive

working days, consecutive working shifts and consecutive days off, respectively. In

either case, the concatenation of assignments refers to the consecutive events until

the considered day. For each concatenation of assignments corresponding to day

d and nurse n, the shortage with regard to the minimum number of consecutive

working days, consecutive working shifts and consecutive days off is measured by

the variables ζnd, νnds and ψnd, respectively. The gap may only be positive on

a day d, where the concatenation of assignments of the same kind ends on the

previous day. Thereby, there is at most one positive variable per concatenation.

Variable cnd indicates, if nurse n has only one working day on the weekend

specified by Saturday d. Note, that cnd is only defined for Saturdays and nurses
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requesting complete weekends. For each nurse n, the deviation of the actual num-

ber of assignments from the allowed number of assignments within the planning

horizon is counted by the variable yn. Thereby, yn either represents the shortage

compared to the minimum number of assignments or the excess number of assign-

ments with respect to the upper bound. Variable wnd indicates, whether nurse n

works on the weekend with Saturday d and is only defined for Saturdays. Finally,

the number of working weekends of nurse n exceeding the maximum number is

counted by variable zn. The variables of the model are listed as follows.

xndsk =







1 if nurse n does shift s with skill k on day d

0 otherwise

qdsk nurses less than optimal coverage on day d, shift s, skill k

rnd number of consecutive working days until day d, nurse n

unds number of consecutive shifts of type s until day d, nurse n

vnd number of consecutive days off until day d, nurse n

ξnd =







1 if max. number of consecutive working days is exceeded

0 otherwise

µnds =







1 if max. number of consecutive shifts is exceeded

0 otherwise

φnd =







1 if max. number of consecutive days off is exceeded

0 otherwise

ζnd days less than min. number of consecutive working days at day d,

given that the considered concatenation ends on the previous day

νnds days less than min. number of consecutive working shifts at day d

given that the considered concatenation ends on the previous day

ψnd days less than min. number of consecutive days off at day d

given that the considered concatenation ends on the previous day
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cnd =







1 if nurse n has incomplete weekend, Saturday d

0 otherwise

yn distance to the allowed total number of assignments, nurse n

wnd =







1 if nurse n works on weekend with Saturday d

0 otherwise

zn working weekends exceeding the maximum number, nurse n

xndsk, ξnd, µnds, φnd, cnd, wnd ∈ B qdsk, rnd, unds, vnd, ζnd, νnds, ψnd, yn, zn ∈ N0

One has to note, that for the decision variables qdsk, rnd, ζnd, unds, νnd, vnd, ψnd,

yn and zn the integrality property hold automatically in the model, while the binary

constraints have to be stated explicitly for all mentioned binary variables but cnd.

Note further, that alternatively one may define the decision variables xndsk only

for skills possessed by the respective nurse. Consequently constraint H4, stating

that only a nurse with the required skill can be assigned to a shift, would hold

automatically. Moreover, as the penalty for deviating from the requested bounds

of the consecutive working shifts may occur on a day only with regard to one shift

type, the shift index may be omitted for the variables νnds and µnds. However, for

the sake of readability, this more straightforward model is presented.

4.3 Objective function

Function (1) describes the weighted-sum objective function. The comments under-

neath the penalty terms indicate the respective soft constraints. The penalty terms

referring to the constraints S1, S6, and S7 are modelled by using the corresponding

slack variables. Violations of the constraint S4 can be derived directly from the

roster. Violations of the different requirements regarding consecutive assignments

are either identified by binary variables, indicating whether the assignment on the

corresponding day exceeds the upper bound, or integer variables measuring the

gap to the lower bound per concatenation.
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min
∑

d∈D,s∈S,k∈K

30 · qdsk

︸ ︷︷ ︸

S1: Insufficient staffing

+
∑

n∈N

20 · yn

︸ ︷︷ ︸

S6: Total assignments

+
∑

n∈N,d∈D

30 · (ξnd + ζnd)

︸ ︷︷ ︸

S2: Consecutive working days

+

∑

n∈N,d∈D,s∈S

15 · (µnds + νnds)

︸ ︷︷ ︸

S2: Consecutive shifts

+
∑

n∈N,d∈D

30 · (φnd + ψnd)

︸ ︷︷ ︸

S3: Consecutive days off

+

∑

n∈N,p∈Pn,k∈K

10 · xnp1p2k

︸ ︷︷ ︸

S4: Preferences

+
∑

n∈N∗,d∈D∗

30 · cnd

︸ ︷︷ ︸

S5: Complete weekend

+
∑

n∈N

30 · zn

︸ ︷︷ ︸

S7: Working weekends

(1)

4.4 Hard constraints

H1: Single assignment per day

∑

s∈S,k∈K

xndsk ≤ 1 ∀ n ∈ N, d ∈ D (2)

H2: Under-staffing

∑

n∈N

xndsk ≥ mdsk ∀d ∈ D, s ∈ S, k ∈ K (3)

H3: Shift type successions

∑

k∈K

xndsk +
∑

k∈K,f∈Fs

xn,d+1,f,k ≤ 1 ∀ n ∈ N, d ∈ D, s ∈ S (4)

H4: Missing required skill

xndsk ≤ σnk ∀ n ∈ N, d ∈ D, s ∈ S, k ∈ K (5)

The four hard constraints (2-5) are modelled straightforward. With regard to

Constraints (4) one has to note, that on the first day of the planning horizon the

history has to be taken into account. Moreover, the last day can be omitted as

there is no following day that needs to be considered.

19



4.5 Soft constraints

S1: Insufficient staffing for optimal coverage

∑

n∈N

xndsk + qdsk ≥ odsk ∀ d ∈ D, s ∈ S, k ∈ K (6)

Constraints (6) link the decision variables representing the roster with the slack

variables. In case the optimal coverage is not reached, the respective slack variable

takes the value of the difference to the actual number of assignments.

S2: Consecutive assignments

rnd ≥ rn,d−1 −M + (1 +M) ·
∑

s∈S,k∈K

xndsk ∀ n ∈ N, d ∈ D (7)

rnd ≤ rn,d−1 + 1 ∀ n ∈ N, d ∈ D (8)

rnd ≤M ·
∑

s∈S,k∈K

xndsk ∀ n ∈ N, d ∈ D (9)

rnd −M · ξnd ≤ amax
n ∀ n ∈ N, d ∈ D (10)

ζnd ≥ amin
n − rn,d−1 − M ·

(

1 +
∑

s∈S,k∈K

xndsk −
∑

s∈S,k∈K

xn,d−1,s,k

)

︸ ︷︷ ︸

≥M if
∑

s∈S,k∈K xn,d−1,s,k ≤
∑

s∈S,k∈K xndsk

= 0 if
∑

s∈S,k∈K xn,d−1,s,k >
∑

s∈S,k∈K xndsk

∀ n ∈ N, d ∈ D (11)

The number of consecutive working days of nurse n until day d is first deter-

mined by making use of the Constraints (7)-(9), whereby the variable rnd takes

the respective value. Therein, M refers to a large number. According to Con-

straints (7), the number of consecutive assignments is incremented by 1 with re-

spect to the previous day, if the nurse works on the considered day. The increment

must not exceed one, as stated by Constraints (8). As soon as nurse n has a

day off, the respective counter is set to 0, guaranteed by Constraints (9). The
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variables rnd are then linked by Constraints (10) to the binary variables ξnd, in a

way that ξnd will take the value 1, if the upper bound of consecutive working days

is exceeded by the actual number. Constraints (11) are used to identify the gap

between the consecutive working days and the lower bound. The slack value ζnd

takes the value of the distance to the lower bound, in case the actual number of

consecutive assignments is less the the requirement. However, the constraints are

relaxed, except for the case when the considered nurse has to work on the previous

day but not on the actual day. Thereby, ζnd takes the value 0 in all other cases,

due to the penalty in the objective function.

Note, that the initial number of consecutive working days rn0 has to be set

according to the history data. Hence, the inequalities of the Constraints (7), (8)

and (11) that correspond to the first day of the planning horizon have to be

adjusted accordingly. Moreover, for the first day the term
∑

s∈S,k∈K xn,d−1,s,k of

the Constraints (11) has to be substituted by the respective history data.

Also note, that when it comes to the evaluation of a roster, violations regard-

ing the maximum number of consecutive assignments that happened in the past,

should not be taken into account. For example, if the history data shows that the

number of assignments of a nurse has exceeded the upper bound by two in the

end of the previously planned period and the same nurse has another assignment

on the first day of the considered period, this assignment counts only as one vio-

lation. In turn, possible violations regarding not reaching the minimum number

of consecutive assignments in the end of the considered period are also ignored,

since one cannot predict assignments of the next planning period. For instance,

if the consecutive assignments of the last days of the considered period fall short

of one assignment, this will not be counted as a violation, as there could be an

assignment on the first day of the next period.

unds ≥ un,d−1,s −M + (1 +M) ·
∑

k∈K

xndsk ∀ n ∈ N, d ∈ D, s ∈ S (12)

unds ≤ un,d−1,s + 1 ∀ n ∈ N, d ∈ D, s ∈ S (13)

unds ≤M ·
∑

k∈K

xndsk ∀ n ∈ N, d ∈ D, s ∈ S (14)
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unds −M · µnds ≤ cmax
s ∀ n ∈ N, d ∈ D, s ∈ S (15)

νnds ≥ cmin
s − un,d−1,s −M ·

(

1 +
∑

k∈K

xndsk −
∑

k∈K

xn,d−1,s,k

)

∀ n ∈ N, d ∈ D, s ∈ S (16)

The Constraints (12)-(16) referring to the minimum and maximum number of

consecutive working shifts are modelled analogously to the constraints for consec-

utive working days. The main difference is that these constraints have to hold for

each shift type, while all adjustments are done straightforward.

S3: Consecutive days off

vnd ≥ vn,d−1 + 1−M ·
∑

s∈S,k∈K

xndsk ∀ n ∈ N, d ∈ D (17)

vnd ≤ vn,d−1 + 1 ∀ n ∈ N, d ∈ D (18)

vnd ≤M ·

(

1−
∑

s∈S,k∈K

xndsk

)

∀ n ∈ N, d ∈ D (19)

vnd −M · φnd ≤ bmax
n ∀ n ∈ N, d ∈ D (20)

ψnd ≥ bmin
n − vn,d−1 −M ·

(

1−
∑

s∈S,k∈K

xndsk +
∑

s∈S,k∈K

xn,d−1,s,k

)

∀ n ∈ N, d ∈ D (21)

The Constraints (17)-(21) identify violations of the minimum and maximum

numbers of consecutive days off and are very similar to those regarding consecutive

working days. Again, all adjustments are done straightforward. Basically, when-

ever terms of scheduled duties were used, they are replaced by one minus the term

in order to identify a day off. Note, that alternatively one could also introduce an

artificial shift type referring to a day off and use the same formulation as for the

Constraints (12)-(16) for the new shift type.
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S4: Preferences

This group of soft constraints is incorporated into the model solely by extending

the objective function.

S5: Complete weekend

∑

s∈S,k∈K

(xndsk − xn,d+1,s,k) ≤ cnd ∀ n ∈ N∗, d ∈ D∗ (22)

∑

s∈S,k∈K

(xn,d+1,s,k − xndsk) ≤ cnd ∀ n ∈ N∗, d ∈ D∗ (23)

Incomplete weekends are identified by the Constraints (22) and (23). The

variable cnd is to 1 either if the nurse works on Saturday but not on Sunday

(Constraints 22) or vice versa (Constraints 23).

S6: Total assignments

∑

d∈D,s∈S,k∈K

xndsk + yn ≥ gmin
n ∀ n ∈ N (24)

∑

d∈D,s∈S,k∈K

xndsk − yn ≤ gmax
n ∀ n ∈ N (25)

Whenever the total number of assignments of a nurse deviates from the required

level, the slack variable yn is set to the respective difference. If the actual number

of assignments is below the lower bound, the slack variable takes the value of the

distance to the lower bound, ensured by Constraints (24), while in case the actual

number is beyond the upper bound the distance to the upper bound is used, as

guaranteed by Constraints (25).

Note, that only one type of variables is used to measure the deviation from

the requested total number of assignments, instead of representing the number of

assignments less than the minimum level and the number exceeding the maximum

level by individual variables. Hence, as a prerequisite, it is necessary that the

minimum number of assignments is less that the maximum number.
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S7: Total working weekends

∑

s∈S,k∈K

(xndsk + xn,d+1,s,k) ≤ 2 · wnd ∀ n ∈ N, d ∈ D∗ (26)

∑

d∈D∗

wnd − zn ≤ hmax
n ∀ n ∈ N (27)

A weekend is identified as a working weekend, if the nurse has to work either on

Saturday, Sunday or both days, as stated by Constraints (26). Then, in case the

actual number of working weekends exceeds the allowed level, the slack variable

zn takes the value of the difference, ensured by Constraints (27).

5 Solution approach

The complexity results for the NRP suggest, that exact approaches might be inap-

propriate to tackle the NRP, particularly in case a good solution is needed within

a decent amount of time. Hence, I decided to develop a metaheuristic approach to

solve the NRP of the INRC-II. More precisely, an ALNS approach based on the

papers by Ropke and Pisinger [2006] and Pisinger and Ropke [2007] is applied. Ba-

sically, the method extends LNS proposed by Shaw [1998] and seeks to gradually

improve a solution by repetitively destroying and repairing relatively large parts

of the incumbent solution. ALNS is used to generate well-performing operator

selection probabilities, which are then passed to LNS to produce the final results.

Details about the approach and how it is tailored to the NRP will be explained in

this section. In the following, the term assignment refers to a nurse-day-shift-skill

quadruplet, i.e., a nurse that is assigned to a shift on a day making use of a skill.

A day off is also considered as an assignment.

5.1 Adaptive large neighborhood search

Basic elements of the algorithm will be described in Subsection 5.1.1. The other

subsections deal with the destroy limit (Subsection 5.1.2), the operator selection

scheme (Subsection 5.1.3), the acceptance scheme of new incumbent solutions (Sub-

section 5.1.4) and the treatment of infeasible solutions (Subsection 5.1.5).
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5.1.1 General description

Referring to Pisinger and Ropke [2010], for LNS an initial solution has to be

generated first, which is then passed to the algorithm as an input. Next, typically

large fractions of the incumbent solution are destroyed and subsequently repaired,

as long as the iteration limit is not reached. Generated solutions are accepted

according to a particular acceptance criterion to become the new incumbent. The

overall best solution found is tracked and returned, when the algorithm terminates.

ALNS, depicted in Algorithm 1, extends LNS by an adjustment scheme for the

operator selection. Initially, each destroy and repair operator is selected with equal

probability. However, as the search proceeds, the operators gain scores depending

on their performance in previous calls. Whenever a number of iterations has been

executed, the scores are used to update the weights of the operators, which affect

their selection probabilities in future iterations. More precisely, in each iteration

a roulette wheel mechanism is used to independently select a destroy and a repair

operator based on their weights for being applied to the incumbent solution in the

current iteration.

Algorithm 1 Adaptive Large Neighborhood Search

1: input: solution x
2: evaluation function f
3: segment size s
4: maximum # removals nmax

5: best solution xb = x
6: operator weights w = 1

7: operator scores π = 0

8: iteration i = 0
9: while time limit not reached do

10: roulette wheel selection of destroy
and repair operators d and r by
making use of w

11: draw # removals n ∈ [1, nmax]
12: x′ = r(d(x, n))

13: if x′ accepted then

14: x = x′

15: end if

16: if f(x′) < f(xb) then
17: xb = x′

18: end if

19: i = i+ 1
20: update πd, πr
21: if i mod s = 0 then

22: update w w.r.t. π
23: π = 0

24: end if

25: end while

26: return xb

Several destroy and repair operators are implemented into the ALNS frame-

work. In this setting, the destroy operators release certain regions of the search

25



space which are then explored by the repair operators. According to Pisinger

and Ropke [2010], different combinations of destroy and repair operators result in

different neighborhoods of the incumbent solution. These neighborhoods Ni may

have different structures and do not necessarily overlap, as depicted in Figure 1.

The entire neighborhood of solution x is denoted by N ∗.

x

N1

N2

N4

N3

N5

N ∗

Figure 1: Structurally different neighborhoods (Pisinger and Ropke [2010], p. 412)

Referring to Ahuja and Orlin [2002], considering larger neighborhoods typically

results in better local optima. However, the drawback of exploring larger neigh-

borhoods is the probable increase in computation time. Thereby, fewer iterations

may be executed within the given time limit.

5.1.2 Destroy limit

In each iteration, a number of assignments is removed from the schedule. This

number n ∈ N is drawn randomly from [1, nmax], where nmax denotes the destroy

limit. The destroy limit is controlled by the parameter d, specifying the limit as

a percentage of the total number of assignments. The schedule is then repaired,

while those assignments that have not been removed are fixed.
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5.1.3 Operator selection

The adaptive element of ALNS refers to the operator selection mechanism, that

alters the selection probabilities of the operators dynamically. Operators are se-

lected based on a roulette wheel principle, as suggested by Ropke and Pisinger

[2006]. Thereby, the selection probability φj of operator j is computed as

φj =
wj

∑k
i=1wi

where k denotes the number of operators and wi denotes the weight of operator i.

The selection is done independently for destroy and repair operators.

Following Ropke and Pisinger [2006], in the end of each iteration the score πj

of the operator j that has been used is adjusted by adding σ. The actual value of

σ depends on the quality of the generated solution.

σ =







σ1 if the solution is a new global best

σ2 if the solution is better than the incumbent and not accepted before

σ3 if accepted, worse than the incumbent and not accepted before

Obviously, operators that generate solution that have not been accepted before

are encouraged. The rationale behind this is to try to direct the search towards

yet unexplored regions of the search space.

As shown in Algorithm 1, the search is split into segments of size s = 100.

Whenever s iterations have been executed, weights are updated based on the scores

obtained within these iterations. The new weight wnew
j of operator j is computed

as

wnew
j = wold

j · (1− r) + r ·
πj
ξj

where wold
j denotes the old weight of the operator, r ∈ [0, 1] denotes a parameter

controlling to what extent the weights are adapted and ξj denotes the number of

calls of operator j in the segment.
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5.1.4 Acceptance scheme

The criterion, whether a roster is accepted as new incumbent solution, is based on

Simulated Annealing, proposed by Kirkpatrick et al. [1983]. The same acceptance

scheme has been applied by Ropke and Pisinger [2006]. The probability of accept-

ing a new solution x′ is computed as min
{
1, e−(f(x′)−f(x))/Ti

}
, where f denotes an

evaluation function, x the incumbent solution and Ti the temperature in iteration

i. Consequently, a roster with a smaller objective value is always accepted, while

deteriorating solutions might be discarded.

The starting temperature is defined implicitly, in a way that a solution that

is ψ-percent worse than the initial one is accepted with a probability of 50%,

where ψ is a parameter. Hence, the starting temperature Tstart is computed as

Tstart = −(ψ · f(x0))/ln(0.5), where x0 denotes the initial solution. In the end

of each iteration i, the temperature is cooled down by being multiplied with a

factor ρi < 1, i.e. the temperature for the subsequent iteration is calculated as

Ti+1 = Ti · ρi. Following Lewis and Thompson [2015], ρi is computed for each

iteration individually, in a way that in the end of the search a target temperature

Tend is reached, which is passed to the algorithm as a parameter. The formula

to compute the cooling factor is given as ρi = (Tend/Ti)
1/ti , where ti denotes the

remaining computation time at iteration i before the time limit will be reached.

5.1.5 Infeasible solutions

Violations of the hard constraints H1, H3 and H4 are prohibited by the algorithm.

However, the actual number of scheduled nurses might be below the minimum

required number, which will be penalized by the evaluation function, though. The

rationale behind allowing infeasible solutions is that thereby shortcuts through

infeasible regions of the search space are possible, which might enhance the perfor-

mance of the algorithm. In the context of the closely related timetabling problem,

advantages and drawbacks of allowing infeasible solutions have been discussed by

Lewis [2008].

When it comes to the evaluation of potential assignments or an entire ros-

ter, the penalty p for under-staffing is taken into account. Each nurse less than

the minimum required number is penalized by p. Initially, p set to pmax, refer-
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ring to the upper bound of the hard constraint penalty. During the search, p

is adjusted dynamically, as suggested by Gendreau et al. [1994]. In particular,

whenever an infeasible solution is accepted, p is set to min(pold · α, pmax), where α

denotes a parameter and pold denotes the previous value of p. Conversely, p is set

to max(pmin, p
old/α), whenever a feasible solution is accepted, where pmin denotes

the lower bound of the penalty p.

5.2 Destroy operators

The algorithm incorporates several destroy operators. Various other destroy op-

erators have been tested but later excluded, as they were not able to improve

the solution quality. Those operators, that are finally used, are described in the

following subsections.

5.2.1 Related

The related destroy operator, originally proposed by Shaw [1998] and adopted

by Ropke and Pisinger [2006], aims at removing similar assignments. Here, the

relatedness between two assignments depends on the number of common skills

of the two nurses and whether the two assignments are either on the same day

or conflicting with regard to the forbidden shift successions. More precisely, the

relatedness measure between two assignments i and j is computed as vij + β · δij ·

|K|+γ ·ζij · |K| where vij denotes the number skills that the nurses that correspond

to assignment i and assignment j have in common, δij indicates whether the two

assignments are on the same day, while ζij indicates whether assignment j is on

an adjacent day of assignment i and would violate the shift succession constraint

with respect to the shift of assignment i, |K| denotes the total number of skills

and β and γ are parameters. The rationale behind considering assignments of the

same day and nurses with similar skills, is that these assignments might be easily

swapped. However, as swapping them may requires to reschedule assignments

of the same nurses on adjacent days as well, forbidden shift successions are also

considered.

The related destroy operator is described in Algorithm 2. At first, an as-

signment is selected at random and added to the set B, representing the set of
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assignments to remove from the roster. The set of assignments that are not in

B is denoted by A. As long as the cardinality of B is less than the requested

number of removals, an assignment b is randomly drawn from B and A is sorted in

descending order with respect to the relatedness to b. An assignment is randomly

drawn from A and added to B by computing its index ⌊|A| ·υκ1⌋, where υ denotes

a random number in [0, 1) and the parameter κ1 ∈ R controls the selection bias

towards closely related assignments. If κ1 = 1, assignments are selected with an

uniform probability, while a large κ1 results in a high probability of picking closely

related assignments.

Algorithm 2 Related removal

1: input: roster R, parameter κ1,
number of requested removals n

2: set A of assignments in R
3: set of assignments to remove B
4: select random assignment a ∈ A
5: B = {a}
6: A = A \ {a}
7: while |B| < n do

8: select random assignment b ∈ B

9: sort A in descending order w.r.t.
relatedness to b

10: draw random number υ ∈ [0, 1)
11: a = A[⌊|A| · υκ1⌋]
12: B = B ∪ {a}
13: A = A \ {a}
14: end while

15: remove all assignments in A from R

5.2.2 Penalty

Following Ropke and Pisinger [2006], the penalty destroy operator aims at remov-

ing penalized assignments. As most of the soft constraints refer to the rosters of

nurses rather than being associated with single assignments, the penalties of the

schedule are assigned to nurses. The list of nurses is then sorted in descending

order with respect to these penalties. For that, all soft constraints are considered,

except S1 - insufficient staffing for optimal coverage. While the requested number

of removals is not reached, nurses are selected at random from the list with a

bias towards those with the highest penalties. All the assignments of the selected

nurses are then removed from the roster. The operator is depicted in Algorithm 3.
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Algorithm 3 Penalty removal

1: input: roster R, parameter κ2,
number of requested removals n

2: list of all nurses C
3: sort C by descending penalty
4: while n > 0 do

5: draw random number υ ∈ [0, 1)

6: c = C[⌊|C| · υκ2⌋]
7: C = C \ {c}
8: remove all x assignments of c from

R
9: n = n− x
10: end while

5.2.3 Understaffing

The understaffing destroy operator seeks to improve the objective with regard to

the soft constraint S1. For each day-skill pair, the penalties for insufficient staffing

regarding the optimal coverage that are associated to shifts on the considered day

are determined. The list of the day-skill pairs A is then sorted according to the

penalties in descending order. A day-skill pair is selected by computing its index

⌊|A| · υκ3⌋, where υ ∈ [0, 1) again denotes a random number and κ3 ∈ R denotes

a parameter. All assignments on the selected day of nurses with the required skill

are removed from the schedule. The process is proceeded as long as the number

of removals is less than the requested number.

5.3 Repair operators

Various repair operators are implemented. These operators are variants of a basic

greedy operator, that essentially seeks to roster the currently best possible as-

signment without considering its consequences regarding subsequent assignments.

Moreover, a regret operator has been tested but discarded, as it did not improve

the solution quality. The finally employed repair operators are described in the

following subsections.

5.3.1 Greedy

The basic greedy repair operator is described in Algorithm 4. A list of nurse-day

pairs, indicating for which nurses a daily assignment has to be found, is passed

to the operator, as well as a partial roster and a function for evaluating possible

assignments. First, for each nurse-day pair in the list, possible assignments are
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identified. The algorithm then evaluates each possible assignment for each entry

in the list, and schedules the best assignment, i.e., the assignment that causes the

least penalties or improves the partial roster the most. The process is repeated

until an assignment has been found for each nurse-day pair in the list.

Algorithm 4 Greedy repair operator

1: input: list L of nurse-day pairs,
roster R, evaluation function f

2: ∀l ∈ L: compute potential
assignments Al

3: while L 6= ∅ do

4: best assignment abest
5: penalty pbest = ∞
6: nurse-day pair lbest
7: for all l ∈ L do

8: for all a ∈ Al do

9: if f(a) < pbest then

10: abest = a
11: pbest = f(a)
12: lbest = l
13: end if

14: end for

15: end for

16: R = R ∪ {abest}
17: L = L \ {lbest}
18: update Albest

19: end while

20: return R

The evaluation of potential assignments with regard to the soft constraints is

straightforward. If the optimal number of assigned nurses on a day, for a shift and

a skill is not yet covered, assigning the considered nurse would improve the object

value. Hence, the soft penalty of S1 is subtracted. With regard to the constraints

S2 and S3, referring to consecutive assignments, the effect of the potential assign-

ment on the respective concatenation is evaluated. If the minimum number of

consecutive assignments is not reached on the adjacent days, performing the con-

sidered potential assignment would help to improve the objective value and the

respective soft constraint penalty is subtracted accordingly. However, if there is no

adjacent assignment of the same type, or if the maximum number of consecutive

assignments would be exceeded, the respective penalty is added. If the considered

assignment is one of those when the nurse prefers not to work, the penalty corre-

sponding to S4 is added. Finally, if a duty on the weekend is considered and the

nurse does not work on the other day, the penalty of S5 is added, given that the

nurse prefers complete weekends. In turn, if the nurse already works on the other

day of the weekend, an assignment to a working shift would improve the objective

value with regard to S5 and therefore the penalty is subtracted.
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The soft constraints referring to the whole planning horizon are only estimated,

in a way that the threshold of the minimum and maximum number of working

days and weekends is divided by the number of already planned weeks, including

the one the is currently under consideration. If the adjusted maximum level has

already been exceeded or would be exceeded by performing the considered working

assignment, the respective penalty is added. In turn, if the adjusted minimum level

is not reached, rostering a working shift would improve the objective value and

the penalty is subtracted.

The schedule may violate the hard constraint H2 - under-staffing, however,

the penalty for falling short of the minimum level is incorporated in the evalua-

tion function. If the minimum level is not covered and a working assignment is

considered, the under-staffing penalty of the current iteration is subtracted.

Following Ropke and Pisinger [2006], a random variable in [−µ, µ] is added to

the cost corresponding to a potential assignment, where µ denotes a parameter.

This feature proved to be beneficial and is therefore added to all repair operators.

5.3.2 Adjusted

The basic greedy operator considers solely the assignment cost of the nurse on the

respective day, while possible opportunity costs on adjacent days are neglected.

Due to the hard constraint H3 - shift type successions some shifts on adjacent

days might become infeasible. If an assignment has to be found for the same nurse

on adjacent days and the respective best assignment would become infeasible, the

distance to the best remaining feasible assignment is considered as opportunity

costs. For the adjusted repair operator the evaluation function is extended by

taking these opportunity costs into account, while all other parts of the algorithm

coincide with the greedy algorithm.

5.3.3 Staffing

The staffing repair operator also builds upon the basic greedy repair operator, but

tries to satisfy the hard constraint H3 first. Therefore, the day-shift-skill triple g

with the highest priority value is selected according to the formula ∆g/Ag + η,

where ∆g denotes the difference of the minimum number of assigned nurses to the
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actual number of the considered slot g, Ag denotes the number of available nurses

of slot g, and η denotes a random number in [−ν, ν] controlled by the parameter ν.

The nurse with the lowest penalty, computed in the same way as for the greedy

operator, is then assigned to the selected slot. This procedure is repeated either as

long as there are day-shift-skill triples that fall short of the minimum number of

assigned nurses, or no nurses are available for these slots any more. The remainder

of the roster is scheduled by applying the greedy operator.

The initial solution is generated by the staffing repair operator. Thereby, the

initial solution is typically feasible.

6 Computational results

In this section the computational results are presented. The algorithm is tested on

the late benchmark instances of the INRC-II that will be described in Subsection

6.1. In Subsection 6.2 the parameter setting is provided. The comparison of

the proposed algorithm with the algorithms of the finalists of the competition is

presented in Subsection 6.3. A sensitivity analysis of the employed operators is

shown in Subsection 6.4.

6.1 Benchmark instances

For the INRC-II, various instance sets have been released. Referring to the website

of the INRC-II1, the organizers provided test datasets for debugging and testing

purposes, competition datasets, which include the late instances for an initial rank-

ing of the participants, and the hidden datasets to rank the finalists. In general,

the competition datasets have been released in the beginning of the competition,

while the late instances, i.e., the precise composition of scenarios, history files and

week data, has been released shortly before the deadline of the competition. The

comparison of the proposed algorithm to those of the competition finalists is based

on the late instances. Their characteristics are presented in Table 4.

The first column of the table refers to the number of the instance, that will

also be used in the tables of Subsection 6.3. The column Name states the name

1http://mobiz.vives.be/inrc2/[accessed 2015-09-23]
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# Name Nurses Weeks Skills Shifts Forb. Contr.

1 n030w4 1 6-2-9-1 30 4 4 4 3 3

2 n030w4 1 6-7-5-3 30 4 4 4 3 3

3 n030w8 1 2-7-0-9-3-6-0-6 30 8 4 4 3 3

4 n030w8 1 6-7-5-3-5-6-2-9 30 8 4 4 3 3

5 n040w4 0 2-0-6-1 40 4 4 4 2.5 3

6 n040w4 2 6-1-0-6 40 4 4 4 2.5 3

7 n040w8 0 0-6-8-9-2-6-6-4 40 8 4 4 2.5 3

8 n040w8 2 5-0-4-8-7-1-7-2 40 8 4 4 2.5 3

9 n050w4 0 0-4-8-7 50 4 4 4 2.5 3

10 n050w4 0 7-2-7-2 50 4 4 4 2.5 3

11 n050w8 1 1-7-8-5-7-4-1-8 50 8 4 4 2.5 3

12 n050w8 1 9-7-5-3-8-8-3-1 50 8 4 4 2.5 3

13 n060w4 1 6-1-1-5 60 4 4 4 3 4

14 n060w4 1 9-6-3-8 60 4 4 4 3 4

15 n060w8 0 6-2-9-9-0-8-1-3 60 8 4 4 2.5 3

16 n060w8 2 1-0-3-4-0-3-9-1 60 8 4 4 2.5 3

17 n080w4 2 4-3-3-3 80 4 4 4 2.5 4

18 n080w4 2 6-0-4-8 80 4 4 4 2.5 4

19 n080w8 1 4-4-9-9-3-6-0-5 80 8 4 4 2.5 4

20 n080w8 2 0-4-0-9-1-9-6-2 80 8 4 4 2.5 4

21 n100w4 0 1-1-0-8 100 4 4 4 2.5 4

22 n100w4 2 0-6-4-6 100 4 4 4 2.5 4

23 n100w8 0 0-1-7-8-9-1-5-4 100 8 4 4 2.5 4

24 n100w8 1 2-4-7-9-3-9-2-8 100 8 4 4 2.5 4

25 n120w4 1 4-6-2-6 120 4 4 4 2.5 3

26 n120w4 1 5-6-9-8 120 4 4 4 2.5 3

27 n120w8 0 0-9-9-4-5-1-0-3 120 8 4 4 2.5 3

28 n120w8 1 7-2-6-4-5-2-0-2 120 8 4 4 2.5 3

Table 4: Characteristics of the late instances
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of the instance used at the competition indicating the composition of the files.

The columns Nurses, Weeks, Skills and Shifts show the number of nurses, weeks,

skills and shifts, respectively. Forb. refers to the average number forbidden shift

successions per shift type, e.g., scheduling a late shift typically prohibits a night

shift on the previous day as well as an early and a day shift on the next day

resulting in three forbidden shifts in total. Finally, Contr. refers to the number of

different contracts.

6.2 Parameter setting

Several parameters are used to control the algorithm. Their tuning is based on

the average soft penalties of the solutions of the late instances with one run per

instance. As the competition participants also had the possibility of tuning their

algorithms on these instances, building decisions upon the late instances allows a

fair comparison.

Initial parameter values of the adaptive mechanism are borrowed from Ropke

and Pisinger [2006], while the others have been found during the implementation

phase. The tuning is then performed by altering one parameter at a time, while

keeping the other parameter values fixed. For each parameter, two different values

are tested. After each parameter has been altered, their best setting is chosen,

building the basis for another run. After the second run the procedure is stopped,

as there are no significant deviations in quality observable. In general, the algo-

rithm does not react very sensitive to slight changes of most of the parameters. A

proper tuning seems to be important for the parameters controlling the temper-

ature of the acceptance scheme and the destroy limit. The latter is particularly

relevant, as the algorithm benefits from additional iteration granted by a smaller

destroy limit. The final parameter setting is shown in Table 5.

6.3 Results

The organizers of the competition provide a benchmarking tool in order to de-

termine the allowed runtime for generating a weekly roster for the competition

dataset, particularly for the late instances, on a single core machine. The time

limit is set according to this tool. The generated results for the late instances are
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Parameter Value Description

ψ 70% SA: Initially accept ψ-percent worse solution with 50%

Tend 6 SA: Target temperature

σ1 30 ALNS: Score for new global best

σ2 12 ALNS: Score for new, accepted, better than current

σ3 13 ALNS: Score for new, accepted, worse than current

r 0.12 ALNS: Reaction factor for weight adjustment

α 1.01 Hard penalty: Adjustment factor

pmin 20 Hard penalty: Lower bound

pmax 400 Hard penalty: Upper bound

d 6% Destroy limit: Maximum percentage of assignments

β 0.9 Relatedness measure: Influence of the same day

γ 0.25 Relatedness measure: Influence of adjacent day

κ1 5 Related removal: Selection probability

κ2 3 Worst removal: Selection probability

κ3 7 Understaffing removal: Selection probability

µ 25 Noise: Scheduling cost, noise ∈ [−µ, µ]

ν 0.1 Noise: Priority for staffing, noise ∈ [−ν, ν]

Table 5: Parameter setting

then compared to those of the competition participants. The results are generated

on a computer with 16 GB memory and an Intel Core i7-4770 CPU running at 3.4

GHz, where only one core is used, and an Ubuntu 14.04 operating system.

Among fifteen participants of the competition, seven have been selected as

finalists. At the time, this thesis has been written, no details about their algo-

rithms have been published. Starting with the best performing algorithms, the

finalists are:

1. NurseOptimizers : Michael Römer, Taieb Mellouli, Institute of Business Infor-

mation Systems and Operations Research, Martin Luther University Halle-

Wittenberg

2. Polytechnique Montreal : Legrain Antoine, Omer Jérémy, Rosat Samuel

3. SSHH : Ahmed Kheiri, UK
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4. Hust.Smart : Zhouxing Su, Zhuo Wang, Zhipeng Lü, Laboratory of Smart

Computing and Optimization, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, P.R. China.

5. ORTEC : Hujin Jin, Gerhard Post, Egbert van der Veen, ORTEC

6. LabGOL: Federica Picca Nicolino, Francesco Bagattini, Luca Bravi, Nic-

colò Bulgarini, Alessandro Galligari, Fabio Schoen, Università degli Studi

di Firenze, Italy

7. ThreeJohns : Tassopoulos X. Ioannis, Solos P. Ioannis, Beligiannis N. Grigo-

rios, University of Patras, Greece

The final results are generated by determining well-performing selection rates

by employing ALNS first, which are averages over all late instances. These rates

are then used as an input for a variant of the algorithm (LNS), where the adaptive

operator selection scheme is omitted. Thereby, additional iterations are performed

within the same time limit, while eventually not the best instance-specific selection

rates are used, though. The results of the proposed algorithm presented in Table

6 are averages over five runs with random seeds, while those of the competition

finalists are based on single runs, taken from the website of the INRC-II1. The

first column indicates the number of the instance. The column LNS avg refers

to the average results of the proposed algorithm over five runs, while the best

result out of these runs is reported in column LNS best. Best shows to the best

known solution for the instances. Finally, in the remaining columns the results

of the competition participants are stated, where the following abbreviations are

used: NO (NurseOptimizers), PM (Polytechnique Montreal), SH (SSHH), HS

(Hust.Smart), OR (ORTEC), LG (LabGOL), TJ (Three Johns). Bold numbers

indicate the best result of the respective instance.

Compared to the finalists of the competition, the proposed algorithm performs

worse. However, when looking at the submitted and validated results of all partic-

ipants, available on the website1, LNS outperforms six participants and performs

approximately equally well as the ninth ranked participant.

1http://mobiz.vives.be/inrc2/[accessed 2015-09-23]
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# NO PM SH HS OR LG TJ
LNS

Best
avg best

1 1755 1790 1940 2010 2190 2065 2270 2378 2335 1755

2 1935 2040 2200 2135 2295 2230 2160 2512 2460 1935

3 2340 2365 2990 3135 3090 3125 3080 3479 3385 2340

4 1900 1990 2655 2725 2700 2630 2640 3097 2995 1900

5 1730 1765 1895 1910 2415 2275 2290 2601 2535 1730

6 1880 2010 2165 2080 2430 2365 2340 2872 2700 1880

7 3310 3375 3975 3855 4770 4505 4630 5883 5725 3310

8 3080 3025 3695 3625 4345 4140 4470 5483 5265 3025

9 1490 1630 1845 1775 2135 2135 2255 2344 2265 1490

10 1480 1645 1875 1790 2375 2185 2560 2449 2365 1480

11 5410 5790 6080 7135 7075 7225 7420 8095 7915 5410

12 5435 5710 5985 6775 7230 7105 7340 8233 8065 5435

13 2815 2830 3105 3140 3960 3440 3330 3889 3855 2815

14 3005 2950 3290 3425 4090 3715 3670 4112 4060 2950

15 2765 2925 3825 3970 4470 4725 4280 6015 5575 2765

16 3065 3800 3955 4550 5330 5230 4925 6113 6045 3065

17 3535 3615 3830 4210 4575 4485 4735 5351 5310 3535

18 3570 3840 3955 4015 4420 4530 4440 5057 4805 3570

19 4995 5200 5755 5665 7180 6840 6830 9723 9465 4995

20 5030 5645 6360 6390 7590 7480 7845 10275 9890 5030

21 1530 1445 1770 2000 2865 2550 2400 4192 4010 1445

22 2155 2100 2365 2520 3335 3090 2955 4708 4510 2100

23 3195 3080 3640 4145 5735 5290 4915 10331 9850 3080

24 3055 3630 4215 4345 6105 5595 5865 10537 10150 3055

25 2435 2515 2635 3100 4005 3650 3625 5012 4785 2435

26 2485 2575 2875 3345 3830 3700 3910 4975 4780 2485

27 3615 4145 4065 5295 6590 6315 6530 8884 8725 3615

28 3510 4385 4110 5460 7275 6040 7160 8433 8055 3510

avg 2947 3136 3466 3733 4443 4238 4317 5608 5424 2934

Table 6: Results for the late instances
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Table 7 presents statistics of the generated results, where all numbers are av-

erages over five runs. The column Limit shows the average number of iterations

that have been executed within the given time limit. Acc. shows the percentage

of solutions that have been accepted as new incumbent. In the column Found, the

iteration, in which the best solution has been found, is given as a percentage of

the total number of iterations. Inf. refers to the percentage of generated infeasible

solutions with respect to the total number of iterations, while InfAcc shows the ac-

cepted infeasible solutions as a percentage of the total number infeasible solutions.

The columns Greedy, Staff, and Adjust show the percentages of infeasible solutions

generated by the greedy, staffing, and adjusted repair operators, respectively.

On average, the best solution is found after two thirds of the iterations. The

greedy and the adjusted repair operators tend to produce infeasible solutions regu-

larly, while the staffing operator generates mainly feasible solutions. In Subsection

6.4, it will be seen that the staffing operator is called most often. Hence, the total

portion of infeasible solutions is relatively small. Infeasible solutions are barely

accepted, though.

Figure 2 shows the convergence of the incumbent solution to the best solution

for each week of instance 17. The gray line represents the best solution so far,

while the black line shows the incumbent solution. In the beginning of the search,

the best solution is gradually improved. However, as the search proceeds, the

improvement stagnates, even though the gap to the best known solution is quite

large. This comes despite the fact, that the temperature of the acceptance scheme

is high enough to occasionally accept deteriorating solutions even in the end of the

search, as indicated by the fluctuations of the black line.

6.4 Sensitivity analysis

Table 8 shows the importance of the different destroy and repair operators. The

results presented in the table are based on averages over two runs of the late

instances and are generated with the ALNS algorithm. Column Selection shows

the average selection rate, while Deter. refers to the deterioration in solution

quality, when the operator is excluded. Effects of removing two operators at once

have not been analyzed.
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# Limit Acc. Found Inf. InfAcc Greedy Staff Adjust

1 329387 30.82% 67.65% 12.85% 6.33% 66.70% 5.28% 68.00%

2 360958 31.31% 51.22% 21.55% 13.39% 71.01% 14.58% 72.54%

3 270868 28.21% 67.51% 17.91% 10.50% 70.71% 10.50% 71.73%

4 220897 27.84% 59.06% 10.90% 3.41% 63.48% 3.51% 64.76%

5 293366 24.25% 60.70% 8.87% 0.87% 55.41% 2.30% 57.01%

6 362381 23.10% 69.46% 9.42% 0.31% 59.24% 2.43% 60.33%

7 513767 26.19% 67.60% 9.55% 1.85% 59.88% 2.49% 60.71%

8 513441 25.83% 68.51% 7.87% 0.63% 52.77% 1.58% 53.50%

9 665451 16.99% 68.72% 8.99% 0.15% 59.82% 1.83% 61.27%

10 661609 16.96% 62.54% 9.52% 1.12% 59.22% 2.52% 60.78%

11 664221 17.26% 61.03% 9.82% 0.45% 63.02% 2.37% 63.77%

12 434815 17.48% 61.58% 9.51% 0.45% 62.66% 2.05% 63.67%

13 401058 17.82% 69.20% 8.25% 0.60% 55.55% 1.46% 59.00%

14 533597 18.34% 70.77% 8.80% 1.58% 57.16% 1.87% 60.48%

15 449215 15.93% 69.84% 10.37% 0.36% 66.60% 2.46% 68.05%

16 546585 13.56% 62.89% 10.65% 0.30% 69.26% 2.46% 69.90%

17 654381 14.23% 77.82% 9.89% 0.34% 61.04% 2.45% 66.43%

18 493429 14.07% 73.96% 8.54% 0.28% 53.23% 1.94% 59.50%

19 719413 11.57% 79.90% 7.25% 0.16% 51.30% 0.87% 55.36%

20 573635 12.01% 81.21% 7.61% 0.21% 53.99% 0.92% 57.85%

21 790693 8.33% 79.87% 5.58% 0.14% 40.16% 0.67% 41.81%

22 821426 7.51% 78.43% 6.26% 0.07% 45.07% 0.77% 46.54%

23 824519 8.17% 80.03% 4.92% 0.15% 35.90% 0.55% 36.88%

24 822719 7.27% 85.03% 5.15% 0.09% 38.07% 0.51% 39.09%

25 568848 6.50% 83.06% 10.65% 0.11% 69.05% 2.45% 70.23%

26 716209 6.29% 80.29% 9.91% 0.10% 63.22% 2.42% 64.38%

27 840920 5.94% 79.61% 9.74% 0.08% 62.64% 2.33% 63.58%

28 848081 5.52% 78.67% 9.82% 0.07% 63.13% 2.34% 64.22%

avg 567710 16.40% 71.29% 9.65% 1.57% 58.19% 2.78% 60.05%

Table 7: Statistics of the intermediate solutions
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(d) Week 4

Figure 2: Solution convergence, instance 17

Operator Selection Deter.

Related 1.57% 0.02%

Penalty 96.58% 143.14%

Underst. 1.85% 0.4 %

Operator Selection Deter.

Greedy 8.03% 0.74%

Staffing 85.72% 33.96%

Adjusted 6.25% 0.79%

Table 8: Operator statistics

42



As the results are based on only two runs per instance, one may not derive

meaningful propositions from small deviations. However, the staffing repair oper-

ator and the penalty destroy operator are clearly the most essential ones within

their respective groups. An explanation for the good performance of the penalty

destroy operator might be, that it removes all assignments of the selected nurses

at once. Thereby the forbidden shift successions and concatenation constraints are

less restrictive as for the other repair operators.

As pointed out by Ropke and Pisinger [2006], adding a noise term to the

evaluation function of potential assignments is highly beneficial. Omitting this

feature would lead to a deterioration of 34.94%, which is again based on two runs

over each instance by applying the ALNS algorithm.

The development of the weights of the operators over iterations is depicted in

Figure 3. The data is obtained by performing a single run of ALNS on instance 17

considering week 1. The series show that the weights of some operators converge to

zero relatively fast, which coincides with the small selection rates of these operators

stated in Table 8.

7 Conclusion

The thesis dealt with the nurse rostering problem with a special focus on the

particular problem of the second nurse rostering competition. The competition

was described in detail and background information about related competitions

was provided. Moreover, several approaches that tackle nurse rostering problems

were briefly surveyed. The main contributions of this thesis are the developed

mixed integer programming model for the nurse rostering problem of the second

competition and the metaheuristic solution approach.

The proposed approach is based on Adaptive Large Neighborhood Search by

Ropke and Pisinger [2006], which is characterized by repetitive destructions and

subsequent reparations of large parts of the roster. Furthermore, it incorporates

an adaptive operator selection mechanism that encourages well-performing destroy

and repair operators. Infeasible solutions with respect to one hard constraint are

generally allowed but penalized in the objective function, whereby the penalty is

adjusted dynamically. Generated solutions are accepted to become the new in-

43



0 100000 200000 300000 400000 500000
0

0.2

0.4

0.6

0.8

1

iterations

w
ei

gh
ts

penalty
related
understaffing

(a) Destroy operators

0 100000 200000 300000 400000 500000
0

0.2

0.4

0.6

0.8

1

iterations

w
ei

gh
ts

staffing
greedy
adjusted

(b) Repair operators

Figure 3: Progression of the weights, instance 17, week 1
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cumbent solution according to a Simulated Annealing acceptance scheme. The

penalty of potential assignments is perturbed by a noise term in the objective

function, which proved to be an important feature. The final results were gener-

ated by a version of the algorithm that omits the adaptive mechanism but takes

precomputed well-performing operator selection rates as an input.

Several destroy and repair operators were tailored to the considered problem.

The most effective destroy operator focuses on removing the rosters of those nurses,

whose assignments are responsible for most of the penalties of the incumbent solu-

tion. The best performing repair operator tries to reach a certain level of assign-

ments for each day, each shift and each skill, first. Then, the operator schedules

nurses by giving priority to those assignments that cause the least penalties.

The solution approach was compared to those of the 15 participants of the

competition and performs approximately equally well as the ninth ranked method.

With regard to an implementation in practice one has to note, that the proposed

method incorporates several parameters that might be unattractive for practition-

ers. However, the algorithm seems to be very robust with respect to most of the

parameters. Moreover, some operators may be removed without a substantial loss

in performance, leading to a simpler and practically applicable approach.
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