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“We can only see a short distance ahead, but we can see plenty there that needs to be

done.”

Alan Turing
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Coherent coupling of distant NV − spin ensembles via a cavity bus

by Thomas Astner

Hybrid quantum systems - the combination of different quantum systems - serve as an

ideal basis for realizing quantum information technologies. Characteristics such as long

coherence times and robust control raise interest in these systems.

The thesis at hand deals with the coherent coupling of two spin ensembles spatially

separated by a macroscopic distance. Electron spins of nitrogen vacancy defects in

diamond are employed as spin ensemble. The coupling is mediated via a microwave

coplanar waveguide resonator acting as a high quality cavity.

The device allows strong coupling of each ensemble to the cavity mode. By bringing

both ensembles simultaneously in resonance with the cavity, the two ensembles behave

like a single giant ensemble. The coupling strength to the cavity mode is increased

by a factor
√

2, which indicates that there is a coherent energy transfer between the

two ensembles and the cavity mode. This results in a spin wave, which is delocalized

throughout the two spin ensembles and the cavity mode. The two ensembles are no

longer distinguishable.

Furthermore, a transversal coupling between the two ensembles is proven by utilizing the

dispersive cavity shift. While the spin transitions of the two ensembles are in resonance,

they are far detuned from the cavity mode. The coupling between the ensembles is

mediated by virtual photons. These photons do not populate the cavity. Therefore,

all cavity associated loss channels can be suppressed, which allows fast probing of the

system.

Additionally, the system shows excellent spin lattice relaxation times (T1) around 100 s

at 50 mK. This is several orders of magnitude longer than the transversal spin-spin

dephasing time (T2). Provided the T2 time scale can be extended, this architecture

bears the potential for implementing a quantum memory.
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Kurzfassung

Coherent coupling of distant NV − spin ensembles via a cavity bus

Hybride Quantensysteme - die Kombination verschiedener Quantensysteme - bilden eine

ideale Grundlage für die Realisierung von Quanteninformationstechnologien. Eigenschaf-

ten wie lange Kohärenzzeiten verbunden mit stabiler und schneller Kontrolle steigern

das Interesse an diesen Systemen.

In der vorliegenden Arbeit wird die kohärente Kopplung zwischen zwei räumlich ge-

trennten Spin-Ensembles bearbeitet. Ein Spin-Ensemble wird dabei durch die Elektro-

nenspins von Stickstoff-Defektzentren in Diamant realisiert. Die Kopplung zwischen den

Ensembles erfolgt über einen supraleitenden Mikrowellenresonator. Dieser fungiert als

Bussystem um Quanteninformationen kohärent zwischen den Ensembles auszutauschen.

Im Transmissionsspektrum des Resonators kann der kohärente Energietransfer zwischen

den Ensembles und dem Resonator direkt beobachtet werden. Die Kopplungsstärke zur

Resonatormode wird um einem Faktor
√

2 größer aufgrund der doppelten Anzahl von

Spins. Das System verhält sich wie ein großes Ensemble, welches stark an die quantisier-

te Resonatormode koppelt – eine Unterscheidung zwischen den zwei Ensembles ist nicht

mehr möglich.

Darüber hinaus wird eine transversale Kopplung zwischen den räumlich getrennten

Ensembles über die dispersive Frequenzverschiebung des Resonators gezeigt. Die Zu-

standsübergänge der Spin Ensembles befinden sich zwar in Resonanz, aber sind gegen

die Resonatormode verstimmt. Die Kopplung erfolgt über virtuelle Photonen, wodurch

Verluste im Zusammenhang mit dem Resonator vollkommen eliminiert werden können.

Dies erlaubt das schnelle Auslesen des Systems.

Das System zeigt zudem exzellente Spin-Gitter Relaxationszeiten (T1) in der Größen-

ordnung von 100 s bei Temperaturen um 50 mK. Dabei liegt die Relaxationzeit einige

Größenordnungen über der Spin-Spin-Dephasierungszeit (T2). Sofern die Zeitskala der

T2 Zeit verlängert werden kann, birgt diese Architektur großes Potential für die Ver-

wendung als Quantenspeicher.
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Chapter 1

Introduction

The goal of hybrid quantum systems is to combine the main advantages of different

physical systems in order to explore new phenomena of quantum mechanics. These

artificially created atom like systems bare a huge potential for future applications in

quantum technology, quantum information processing and quantum metrology. The key

ingredients are atoms, spins and solid state devices. They present an alliance consisting

of many fields of physics such as quantum optics, condensed matter physics, atomic

physics and nanosciences [XAYN13].

In 2004 Blais et. al. [BHW+04] proposed an architecture based on transmission line

resonators and artificial atom-like circuits to reach the strong coupling regime of cavity

quantum electrodynamics. This idea was further developed by Rabl et. al. [RDD+06],

who showed how such a resonator can act as high fidelity quantum bus to mediate

interaction between (ensemble) qubits. Moreover, they showed that strong coupling

between such a cavity bus and a qubit allows a coherent quantum state transfer between

the two systems.

The hybrid quantum device

The electron spin of the negatively charged nitrogen vacancy color center in diamond

(NV −) can interact via magnetic dipole interaction with the oscillating magnetic field

in a cavity. In [VZK+09], [Ima09] and [WAB+09] they show that the coupling strength

can be enhance by a factor
√
N (with N being the number of spins/atoms) with an

ensemble of spins. This feature allows entering the strong coupling regime even if the

magnetic dipole coupling of a single spin is weak. This has been shown experimentally

by Amsuess et al. [AKN+11] in 2011 and Kubo et. al in 2010 [KOB+10].

The thesis at hand addresses a hybrid quantum system based on a coplanar waveguide

transmission line resonator acting as quantum bus. Two ensembles of negatively charged

1



Chapter 1. Introduction 2

Figure 1.1: The hybrid quantum device under test. In the center the su-
perconducting resonator is visible (grey rectangle). Aluminium wedge bonds
connect the ground plane of the resonator with the surrounding PCB (copper).
Two diamond samples containing the spin ensemble are placed on top of the

resonator (black cubes).

nitrogen vacancy (NV −) color centers in diamond are strongly coupled to the single

cavity mode. The coherent energy transfer between the two ensembles and the cavity is

shown in the cavity transmission spectrum. Compared to a single ensemble the coupling

strength is enhanced by a factor
√
2.

Another aspect is the investigation of a transversal coupling between the two ensembles

when they are far detuned from the cavity mode.

The quantum system, which is described in this thesis can be seen in fig. 1.1. It shows

the experimental realization of two ensembles on a quantum bus.



Chapter 2

Microwave Resonators

2.1 Parallel Resonant Circuit

The superconducting resonator used in this thesis is a key element for the discussed

quantum device. It can be modeled as a parallel resonant circuit. In this section the

basic concept behind resonant circuits shall be discussed briefly.

Resonance has an effect on the oscillation amplitude of electrical/mechanical systems,

when a periodic stimulus at or close to the eigenfrequency (natural undamped frequency)

of the system is applied. The oscillation amplitude for this stimulus frequency reaches a

relative maximum [Gha09]. The system is able to store the excitation energy in different

modes and transfers the energy between them. Therefore, the amplitude increases.

The energy in the system would permanently increase without the presence of losses,

leading to a resonance disaster [Kat04]. In the transfer from one energy storage mode

to another, a certain amount of the energy is dissipated and consequently lost for the

system (dampening). The focus shall be lain on an electric parallel resonant circuit of

the RLC type (fig. 2.1). Resistor, inductor and capacitor are connected in parallel.

V

I

R L C

Figure 2.1: Lumped element RLC resonator - Schematics of an lumped ele-
ment parallel RLC resonator with stimulus V.

The two modes of energy storage in this system consist of an inductor (energy of the

magnetic field) and a capacitor (energy of the electric field). Assuming ideal inductor and

3
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capacitor (no energy dissipation), the system’s loss channel consists only of the resistor.

Furthermore, conductance (G), inductive (BL) and capacitive (BC) admittance can be

defined for this circuit. The input impedance is subsequently given by

G =
1

R
, BL =

1

ωL
, BC = ωC

Zin =
1

G+BL +BC
=

(
1

R
+

1

jωL
+ jωC

)−1

. (2.1)

Equation (2.1) can be approximated close to the resonant frequency ω0, ω = ω0 +∆ω by

using a Taylor series expansion in the form of 1
1+x ' 1−x+... . The following expression

for the input impedance can be obtained (for detailed calculation see Appendix A):

Zin =

[
1

R
+

1

jωL
+ jωC

]−1

=

[
1

R
+

1

j(ω0 + ∆ω)L
+ j(ω0 + ∆ω)C

]−1

≈ R

1 + j2Q0
∆ω
ω0

. (2.2)

Figure 2.2 shows that on resonance ω0 = 1√
LC

, capacitive and inductive susceptance

are equal (the imaginary part of eq. (2.1) becomes 0). Under this condition the current

running through capacitor and inductor are equal. Therefore, the impedance becomes

real and is purely defined by the resistance R. The power (Ploss) dissipated by the resistor

B

B
C

B
L

B
C
=

B
L

ω
r

ω

R

ω
r ω

|)ω(|Z

Figure 2.2: Graphical representation of inductive XL and capacitive XC re-
actance (left). In low (high) frequency limit the inductive (capacitive) reactance
vanishes. At ωr both reactances are the same and the impedance is defined by

the resistance. In the right figure he magnitude of the impedance is shown.

R and the average storage of electrical energy (We) in the capacitor and magnetic energy

(Wm) in the inductor is given by

Ploss =
1

2

|V |2
R

Wm =
1

4
|V |2 1

ω2L
We =

1

4
|V |2C. (2.3)
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These definitions can be used to give a relation between the input power, the losses and

the energy stored in the system

Pin =
1

2
Zin|I|2 = Ploss + 2jω(Wm −We). (2.4)

2.1.1 Quality Factor Q

An important characteristic of a resonant circuit is the quality factor Q. It gives in-

formation about the power dissipation in the circuit and is defined by eq. (2.5). In the

resonant case, magnetic (Wm) and electric (We) energy are equal and the internal Q

factor becomes a simple expression.

Qi = ω
average energy stored

energy loss/second
= ω

Wm +We

Ploss
= ω0

2Wm

Ploss
=

R

ω0L
= ω0RC (2.5)

High Q values indicate that the resonator is underdamped and many conversion cycles

of energy, from the magnetic field energy to electric field energy, can be achieved before

the oscillations decay. The frequency bandwidth in which resonance occurs is narrow for

high Q resonant circuits. By coupling the resonator to an external circuit, the quality

factor of the overall circuit is lowered. This is described by the so-called loaded QL. If

a parallel resonator is loaded by an external load resistor RL, the effective resistance

is given by a parallel combination of load and resonator resistance. In [Poz11] the

definition of the qualify factor of the external load resistance RL
ω0L

is shown. Hence the

loaded quality factor is given by

1

QL
=

1

Qe
+

1

Qi
. (2.6)

2.2 Transmission Line Resonator

A segment of transmission line can be used to build a microwave resonator. The type

of resonator (series or parallel) and its fundamental resonance frequency ω0 is given by

the length and termination of the transmission line element. In [Poz11] the general form

of the input impedance Zin of a line segment (shown in fig. 2.3) at distance l from the

source as is given by

Zin = Z0
ZL + Z0 tanh γl

Z0 + ZL tanh γl
(2.7)

Depending on the termination of the line segment it can act as serial (when short

circuited) or parallel (when open circuited) resonator.
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+
-

0

Figure 2.3: Transmission line segment: A piece of transmission line which is
terminated with load impedance ZL

Parallel circuit resonator

The open circuited transmission line shall be analyzed briefly. In that case the load

impedance can be considered being of infinite size. Therefore, the input impedance

becomes

Zin = Z0
1 + jtan βl tanh αl

tanh αl + jtan βl
. (2.8)

The length shall be considered to be l = λ/2 (or any multiple). The resonance frequency

is given by ω0 and the driving frequency ω (close to the resonance): ω = ω0 +∆ω. From

[Poz11] the previous equation for the input impedance subsequently simplifies to

Zin =
Z0

αl + j(∆ωπ/ω0)
. (2.9)

By comparing this result with eq. (2.2), the parameters of an equivalent lumped element

RLC circuit can be identified in the following way

R =
Z0

αl
, C =

π

2ω0Z0
, L =

1

ω2
0C

. (2.10)

The unloaded Q of the resonator can be found by using eq. (2.5):

Q0 = ω0RC =
π

2αl
=

β

2α
. (2.11)

2.3 Coupling of a Resonator - Coupling Coefficient

The resonator itself is coupled to an external circuit which leads to the important quant-

ity called coupling coefficient g. This coefficient describes the interaction of a resonator
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with the external circuit to which it is connected to. From [Poz11], the coupling coeffi-

cient is given by the ratio of internal to external Q:

g =
Qi
Qe

. (2.12)

Depending on the value of the coupling coefficient, three different regimes can be iden-

tified [FWS+05]:

• g < 1 Undercoupled, weak link to the external circuit, quality factor is limited by

internal losses

• g = 1 Critical coupled, highest achievable power transfer between resonator and

external circuit

• g > 1 Overcoupled, strong link to the external circuit, limitation of quality factor

is dominated by external losses

2.4 Coplanar waveguide (CPW) transmission line

A coplanar waveguide is a planar type of transmission line. The conductors are in

one plane, which makes manufacturing rather simple [Sim01]. Additionally, the CPW

has some other advantages: isolation against crosstalk (up to 60 dB), since there are

ground planes between different transmission lines. Easily accessible ground plane (no

via holes/wrap-arounds necessary) which keeps the ground inductance of shunt elements

low. In its simplest form a CPW transmission line consists of a center conductor, sep-

arated from ground planes by gaps. Figure 2.4 shows the basic geometry of a CPW

transmission line with center conductor, ground planes and dielectric. The size of the

CPW can be scaled with the ratio between a/b without changing its characteristic imped-

ance [Sim01],[wPa]. Furthermore, a CPW transmission line supports quasi TEM-modes

of the electromagnetic field. Since the dielectric constant below (substrate) and above

(mostly air) the center conductor is different, a full TEM-mode support is not possible

(the phase velocity in air and substrate is different). Usually the substrate is electric-

ally thin compared to the wave length of the conveyed wave. A good approximation

for the fields is the static TEM (DC, no frequency) solution [Poz11],[wPb]. With that

approximation the following expressions for phase velocity vph, propagation constant β
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Figure 2.4: Schematics of a coplanar waveguide (CPW) transmission line seg-
ment on a dielectric substrate. The characteristic impedance of the transmission
line is given by the dielectric constant of the substrate and the geometry relation

between center conductor and gap width.

and characteristic impedance Z0 can be obtained

εeff =
C

C0
, (2.13)

vph =
c

εeff
, (2.14)

β = k0

√
εeeff, (2.15)

Z0 =
1

Cvph
. (2.16)

With εe denoting the dielectric constant and C0 as the line capacitance without any

dielectric material present [Poz11],[CC97]. The dielectric constant of the system is geo-

metry and material dependent. A detailed analysis to calculate the dielectric constant

can be made with conformal mapping techniques for which the reader is referred to

[CC97] and [Sim01]. As a rule of thumb, the resulting εeff can be approximated as

mean value between εsubstrate and εair [wPa].

In this work the coplanar waveguide is made out of superconducting niobium (TC ≈
9.2 K) thin film on a sapphire substrate.

2.4.1 CPW λ resonator

The discussion of a transmission line resonator was not limited to a special type of

transmission line. In nearly all experiments throughout this thesis this resonator is

realized as a piece of coplanar waveguide transmission line which is coupled via coupling

capacitances to a coplanar waveguide feed line. Since the focus of this work is not on

the design and fabrication of these resonators, the reader is referred to the PhD thesis

of Christian Koller [Kol12] who is referred to as ’master of fabrication’. In fig. 2.5 the

general design of a λ resonator is shown. The ratio of quality factor Q and effective mode

volume Veff acts as a benchmark value for the quality of cavities. Compared to cavities

working in the visible spectral range, coplanar waveguide microwave resonators have a

typical Q
Veff

ratio in the order 1013 λ−3. In table 2.1 the general design parameters like

resonance frequency (fr) and coupling capacitances (Cin, Cout) are given.
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rf in rf out

Figure 2.5: Schematics of a coplanar waveguide (CPW) transmission line seg-
ment on a dielectric substrate. The characteristic impedance of the transmission
line is given by the dielectric constant of the substrate and the geometry relation
between center conductor and gap width.(Note: The illustration is not on scale,

gap and center conductor width has been adjusted for illustration purpose).

Resonator No. 270

fres 2.913 GHz
l 43.083 mm
Cin 0.72 fF
Cout 5.7 fF

chip size 12 mm× 4 mm
g 8.3 µm
w 20 µm

Table 2.1: Design parameters of resonator no. 270.





Chapter 3

Cavity QED

This chapter gives a brief overview of the theoretical principles which are essential for the

description of the coupling of a single spin ensemble with a single mode of electromagnetic

field in a cavity. The description starts with the coupling of a single two level system

to the cavity mode in the Jaynes-Cummings model. This model will be extended and

adapted to describe two ensembles of N spins coupled to the cavity mode in the Tavis-

Cummings model. Figure 3.1 illustrates the used Tavis-Cummings model which allows

an adequate description of the investigated system.

Figure 3.1: The figure illustrates a cavity which confines a single mode of the
electromagnetic field with angular frequency ωc. Two ensembles of two level
systems are exposed to this common radiation field in the cavity. The two level
systems have a transition energy ωs. The coupling of the two ensembles to the
cavity mode is given by g1 and g2. Two main loss channels of the system are

shown: cavity losses (κ) and losses of the two ensembles (γ1/γ2).

11
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Figure 3.2: Illustration of the Jaynes-Cummings model: A two level system
coherently interacts with a single mode of radiation in a cavity. The energy of
the photons in the cavity correspond to the transition energy from the ground
state to the excited state of the two level system. Losses of the cavity are
given by the parameter κ. Two level system associated losses are given by the

parameter γ.

3.1 Jaynes-Cummings Model: Two level system cavity coup-

ling

The following section describes an atom-like system interacting with a single quantized

mode of electromagnetic field in a microwave cavity. The energy of the microwave

photons coincide with transition energy of the system (ground state to first excited

state transition). All other energy levels are not accessible with these microwave photons

and, therefore, a description of the system as an effective two-level system is applicable

[Fox10]. An analysis of this problem has been first been given by Janes and Cummings

[JC63], after whom this model is named, in 1963.

3.1.1 The Jaynes-Cummings Hamiltonian

ĤJC = Ĥfield + Ĥspin + Ĥint = ~ωca†a+
1

2
~ω0σz + ~g0(σ+a+ σ−a

†) (3.1)

The first term describes the energy of the free electromagnetic field in the cavity, the

second the energy of the two level system transition and the third the interaction between

the two level system and the field. Figure 3.2 illustrates the basic concept of the Jaynes

Cummings model Hamiltonian.

The derivation of the Hamiltonian shall be outlined and the solution briefly discussed. In

[Ors07] and [Fox10] an excellent description of atoms interacting with cavities is given.

All following derivations are taken from there.
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3.1.1.1 The free field Hamiltonian

The free field Hamiltonian - Ĥfield = ~ωa†a can be derived from quantizing the electro-

magnetic field in the cavity.

Electric (E) and magnetic (B) fields satisfy the following relations to the vector (A) and

scalar (V) potential functions,

B = ∇×A, (3.2)

E = −∂A

∂t
−∇V. (3.3)

By making use of the Maxwell’s equations in vacuum and the Coulomb gauge, a wave

equation for the vector potential is obtained,

∇2A =
1

c2

∂2A

∂t2
. (3.4)

A wave solution for the vector potential and fields can be found by performing separation

of variables and constructing periodic boundary conditions for allowed wave vectors k.

The following wave solutions for vector potential and fields are found,

A(r, t) =
∑
m

√
~

2ωmε0Vmode
em{am exp[i(kmr− ωmt)] + a†m exp[−i(kmr− ωmt)]}

(3.5)

B(r, t) = −i
∑
m

√
µ0~ωm
2Vmode

em × km{am exp[i(kmr− ωmt)] + a†m exp[−i(kmr− ωmt)]}

(3.6)

E(r, t) = i
∑
m

√
~ωm

2ε0Vmode
em × km{am exp[i(kmr− ωmt)] + a†m exp[−i(kmr− ωmt)]}

(3.7)

The summation index m includes the sum over all possible modes and polarization

directions. In the case of Coulomb gauge a transversality condition for the modes is

implied by em · km = 0, which results in two orthogonal polarization directions in the

plane perpendicular to km.
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From that solutions the total energy of the multi mode radiation field is obtained by

H =
1

2

∫
Vmode

(ε0E
2 +

1

µ0
B2)dv

=
∑
m

~ωm(ama
†
m + a†mam)

(3.8)

It is possible to identify am and a†m as anhilation and creation operators, since they

obey the differential equation of a harmonic oscillator. The relation to the generalized

coordinate q and generalized momentum p is given by

a =
1√
2~ω

(ωq + ip), (3.9)

a† =
1√
2~ω

(ωq − ip). (3.10)

The bosonic commutation relations for the operators are

[am, a
†
n] = δnm,

[am, an] = 0,

[a†m, a
†
n] = 0.

(3.11)

The summation over all modes and the zero point energy can be dropped because a

single cavity mode1 is used. Thus, the field part of the Janes Cummings model can be

written in the following form:

Ĥfield = ~ωca†a. (3.12)

3.1.1.2 The two level system Hamiltonian

The limitation to two accessible energy levels implies a two dimensional basis, which can

be written in the form |↑〉 = (1 0) and |↓〉 = (0 1) with eigenergies E±. The Hamiltonian

can be written as the sum over all accessible energies

Ĥspin = E+ |↑〉+ E− |↓〉 =

[
E+ 0

0 E−

]
. (3.13)

1The used full wave λ resonator in principle supports two modes but the discussion here is limited
to one.
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The Hamiltonian can be brought in the simple form

Ĥspin =
1

2

[
E+ + E− 0

0 E+ + E−

]
+

1

2

[
E+ − E− 0

0 E− − E+

]

=
1

2
(E+ + E−)I +

1

2
∆Eσz

(3.14)

with I being the two dimensional identity matrix, ∆E = E+ − E− = ~ω0 the energy

difference between the two levels and σz the third Pauli matrix. Note that the zero

energy is taken to be half way between the |↓〉 and |↑〉 state, implying E± = ±~ωs
2 . By

neglecting the constant term 1/2(E+ + E−), the two level system Hamiltonian can be

written in the following form

Ĥspin ≈
1

2
~ω0σz. (3.15)

With the Pauli matrices the raising and lowering operators for the two level system are

defined,

σ+ =
1

2
(σx + iσy)

σ− =
1

2
(σx − iσy).

(3.16)

3.1.1.3 The interaction Hamiltonian

The transition of the employed two level system is in the microwave regime, correspond-

ing to photon wavelengths in the order of a few cm. The size of the two level system is

several orders of magnitude smaller than the wavelength. This condition allows one to

write the Hamiltonian in the dipole approximation:

Hint = −µsB(r, t). (3.17)

In the case of an electron spin, the magnetic dipole moment is given by

µs = −geµb
S

~
(3.18)

with electronic gyromagnetic factor ge, Bohr magneton µB and angular momentum S of

the electron. The cavity only supports stationary waves, and therefore, the single mode

can be written in the form

B(z, t) = ε(a+ a†) sin(kz), (3.19)
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with ε =
√

µ0~ω
2Vmode

being the field per photon. The Hamiltonian then becomes

Ĥint = ~g0(σ+ + σ−)(a+ a†) (3.20)

with coupling constant g0 = − εM
~ sin(kz) and M as the matrix elements of the magnetic

dipole operator. If eq. (3.20) is expanded, the four appearing terms can be interpreted

the following way:

• aσ+: absorption of a photon and excitation of the two level system, |↓〉 → |↑〉

• a†σ−: emission of a photon, de-excitation of the two level system, |↑〉 → |↓〉

• a†σ+: emission of a photon and excitation of the two level system

• aσ−: photon absorption and de-excitation of the two level system

The first two processes are energy conserving and vary slowly in time. In the case of

g0 � ω0, the latter two processes do not conserve energy and vary fast in time. By

applying the rotating wave approximation, all rapidly oscillating parts of the system are

neglected. Then the interaction part of the Janes-Cummings Hamiltonian in the dipole

and rotating wave approximation has the following form:

Ĥint = ~g0(aσ+ + σ−a
†). (3.21)

3.1.2 Solution of the Jaynes-Cummings model

A state of the complete system is described by number states of photons in the mode

and by the state of the two level system. These states have the form |↑, n〉 and |↓, n+ 1〉,
which are eigenstates of Ĥ0 = Ĥfield + Ĥspin. These so-called ’bare’ states of the

unperturbed Hamiltonian have the following form:

Ĥ0 |↑, n〉 = ~
(ωs

2
+ nωc

)
|↑, n〉 (3.22)

Ĥ0 |↓, n+ 1〉 = ~
[
−ωs

2
+ (n+ 1)ωc

]
|↓, n+ 1〉 . (3.23)

The ground state |0, ↓〉 can be understood as no photon in the cavity and the two level

system in the ground state. The energy is 1/2~ωc, which corresponds to the ground state

energy of the vacuum field in the cavity. All excited states show a two-fold degeneracy.

The first excited state can be described as either the two level system being in the

excited state and no photon in the cavity mode (|↑, 0〉), or the two level system being in

the ground state and one photon in the cavity mode (|↓, 1〉). The corresponding energy
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of the first excited state is 3/2~ωc (see fig. 3.3). All other excited states have a similar

form.

3.1.2.1 Cavity - two level system interaction

The interaction part of the Hamiltonian only couples the |↑, n〉 state to the |↓, n+ 1〉
state. In that case a subspace of the form εn = {|↑, n〉 , |↓, n+ 1〉} can be considered.

The total Hamiltonian then becomes a sum of Hamiltonians acting on such subspaces:

Ĥ =
∑
n

Ĥn (3.24)

By introducing a detuning between cavity (ωc) and two level system transition (ωs) of

the form

∆ = ωs − ωc, (3.25)

the Hamiltonian Hn can be written in the form

Ĥn = ~ωc
(
n+

1

2

)[
1 0

0 1

]
+

~
2

[
∆ 2g0

√
n+ 1

2g0

√
n+ 1 −∆

]
. (3.26)

Through magnetic dipole interaction the two fold degeneracy is lifted and after diagon-

alization, the following two eigenvalues are obtained:

E± = ~ωc
(
n+

1

2

)
± ~

2

√
∆2 + 4g2

0(n+ 1). (3.27)

The eigenstates of the full Hamiltonian can be written as a linear combination of the

bare states and are the so-called ’dressed’ states:

|+〉 = sin(ϑ) |↓, n+ 1〉+ cos(ϑ) |↑, n〉 (3.28)

|−〉 = cos(ϑ) |↓, n+ 1〉 − sin(ϑ) |↑, n〉 . (3.29)

The eigenvectors in eq. (3.28) can be parametrized with a mixing angle of the form

cos(ϑ) =
2g0

√
n+ 1√

(
√

∆2 + 4g2
0(n+ 1)−∆)2 + 4g2

0(n+ 1)
(3.30)

The splitting of the doublets can be defined as the energy differences between E+ and

E−. The phenomenon is referred to as avoided level crossing or normal mode splitting
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with generalized Rabi frequency

Ω̃ =
√

∆2 + 4g2
0(n+ 1), (3.31)

which can be interpreted as the exchange rate of excitation between cavity and two level

system.

Considering large detuning (ϑ → 0), the coupling of the two level cavity system is

suppressed and one finds the ’bare’ states as eigenstates of the system.

In the resonant case ωc = ωs, eq. (3.30) reduces to cos(ϑ) = sin(ϑ) = 1/
√

2 and the

eigenvectors and eigenenergies become

|±〉 =
1√
2

(|↓, n+ 1〉 ± |↑, n〉), (3.32)

E± = ~ωc
(
n+

1

2

)
± ~g0

√
n+ 1. (3.33)

The normal mode splitting in the resonant case is given by the Rabi frequency

Ω = 2g0

√
n+ 1. (3.34)

The case of n = 0 is referred to as vacuum Rabi oscillation. The excited two level system

emits a photon into the cavity and reabsorbs it. Therefore, the magnitude of the vacuum

Rabi splitting is 2~g0.

Figure 3.3 shows the Jaynes-Cummings ladder with the splitting of the two fold degen-

eracy of the doublets.

3.2 Tavis-Cummings Model: N two level systems

In 1954 Dicke showed the coherency in spontaneous radiation processes in a gas of ra-

diating molecules. The molecules are exposed to a common radiation field. Since all

molecules are interacting with the radiation field, the system should be considered as

a single quantum system, rather than a system containing several independent emit-

ters [Dic54], [TC68]. In [Gar11] details of the recent developments and mathematical

description of the Dicke model can be found.

In the case described here, an ensemble of NV − defect centers in diamond is used. They

can be seen as N spins coherently interacting with a single mode of electromagnetic field

in a cavity. The coupling of a single spin with the cavity mode is rather weak. Through
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Figure 3.3: This energy ladder gives a description of a two level atom like
system coupled to the radiation field of cavity photons. The uncoupled states
of the two two level system are labeled with |↓〉 and |↑〉. The uncoupled photon

states are labeled by the photon numbers n in the mode.

coherent collective enhancement the coupling strength of an ensemble scales with
√
N

[RTB+89], [FBB+09], [KGG+83].

To approach the description some assumptions are made:

• The spacing between the spins is large enough so that dipole-dipole interaction

between the spins can be neglected.

• The radiation wavelength is in the order of cm and therefore much larger than the

spin containing volume.

• Considering a large number of spins (1012), the photon number in the cavity can

be set to n ≈ 0.

The previously introduced Jaynes-Cummings Hamiltonian can be extended with a sum

over all independent two level systems to deduce the so-called Tavis-Cummings Hamilto-

nian:

ĤTC = ĤF + ĤS + Ĥint (3.35)

= ~ωca†a+
~ωs
2

N∑
j=1

σzj + ~
N∑
j=1

g0,j(σ
+
j a+ σ−j a

†) (3.36)

The interaction part of the Hamiltonian indicates that a single excitation in the cav-

ity is coupled to a coherent superposition of spin excitations (spin wave) [KOB+10],
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[WAB+09]. The ground state of the spin ensemble is given by

|Ψ↓〉 = |↓, ↓, ↓, ...〉 . (3.37)

The first excited state is the fully symmetric Dicke state [Dic54], with a single excitation

in the system:

|Ψ↑〉 =
1√
N

N∑
i=1

|..., ↓, ↑i, ↓, ..〉 (3.38)

As in the Jaynes-Cummings case, the interaction Hamiltonian only couples the state

|Ψ↑〉 |0〉 with |Ψ↓〉 |1〉. All other states with a single excitation in the spin system do not

couple to the cavity and are referred to as subradiant.

The transition matrix element (eq. (3.39)) shows the characteristic
√
N scaling of the

coupling strength2.

〈1| 〈ψ↓| ĤTC |Ψ↑〉 |0〉 = ~
√
Ng (3.39)

It is possible to define a collective coupling strength gcol and eigenergies E± for a spin

ensemble consisting of N spins as follows

gcol = g
√
N (3.40)

E± =
~ωc
2
±
√

∆2 + 4gcol. (3.41)

3.2.1 Holstein-Primakoff approximation

Kurucz [KWMl11] states that an ensemble of N spins at low temperatures (high polar-

ization) behaves like a collection of identical harmonic oscillators. The number of spins

in the ensemble is orders of magnitude larger than the number of excitations. There-

fore, they consider de-localized spin waves which act as independent quasi particles. A

general solution is provided by the dynamics of a single excitation. This is also valid

in the case of many excitations, as long as the number of excitations is much smaller

than N. Thus, the Holstein-Primakoff approximation [HP40] allows a bosonisation of

the problem [KM91]. The Tavis-Cummings Hamiltonian can be written in the following

form

H̃TC = ~ωc + ~ωsb†b+ ~geff (ab† + a†b) (3.42)

2In that case the coupling strength is taken to be the same for every spin in the ensemble.
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with b† = 1
geff

N∑
j=1

gjb
†
j as the bosonic creation operator of a single excitation of the

system (delocalized spin wave). The effective coupling strength geff is defined as geff =√
N∑
j=1
|gj |2. By assuming a homogeneous coupling strength for all spins in the ensemble

(gj = g), the collective coupling strength is given by geff =
√
Ng. This characteristic

behavior of the ensemble makes it possible to reach the strong coupling regime of cavity

quantum electrodynamics.

3.2.2 Solution of the Tavis-Cummings Model

In the discussion of this cavity two level (spin) quantum system, it was assumed that

the system is fully isolated from its environment. To probe the system in the experiment

it is necessary to interact with it. This is done by measuring the cavity transmission

spectrum. Consequently, the system has to be treated as an open quantum system. For

that, two major loss channels are introduced.

Cavity losses

In order to probe the cavity transmission spectrum, microwave photons have to be

transmitted through the cavity. The cavity has to be designed in such a way that the

photons have a certain life time in the cavity to interact with the two level system. To

detect the photons from the cavity they have to be coupled out of the cavity by a semi

transparent mirror. Due to this fact, cavity losses are mainly associated with mirror

losses and through absorption processes. These losses are further characterized by the

parameter κ.

Spin system losses

The second loss channel has its origin in the spin system itself. Not all photons which

result from de-excitation of the spin system are efficiently emitted into the cavity mode

and therefore are lost. All these losses, together with the spin-dephasing and spin-

diffusion will be treated via the parameter γ.

3.2.3 Cavity transmission spectrum

A coherent driving field with frequency ω and amplitude η is used to probe the cavity

transmission spectrum. With the help of the quantum Langevin equations for the oper-

ators a and b it is possible to derive the cavity transmission as a function of the driving
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field ω in the form

|t(ω)|2 =
〈
a†a
〉

=
(η
κ

)2
∣∣∣∣∣ κ(i∆s − γ/2)

(i∆s − γ/2)(i∆c − κ/2) + g2
eff

∣∣∣∣∣
2

. (3.43)

∆s = (ω − ωs) and ∆c = (ω − ωc) as detuning of drive and cavity/spin transition.

[KWMl11]

Detailed analysis of the underlying problem to derive the cavity transmission can be

found in [ABGP08], [CG84] and [Lax66].

If the denominator becomes zero, eq. (3.43) shows two pole type singularities. The real

part corresponds to the peak position and the imaginary part contains the information of

peak width of a cavity transmission spectrum with normal mode splitting (see fig. 3.4).

The eigenenergies can be written in the following form with ∆ = ωc − ωs.

E± = ~
ωc + ωs

2
− i~κ+ γ

4
± ~

√
4g2
eff −

(
γ − κ

2
− i∆

)2

(3.44)

From relations between the effective coupling strength and the losses, different regimes

of the interaction between the spin ensemble and the cavity mode can be defined.

3.2.4 Resonant Regime

3.2.4.1 Strong coupling regime

As shown in [KWMl11], oscillating solutions for Heisenberg equations of motions in

a frame rotating with the driving field are obtained, if the condition 2geff > |γ/2 −
κ/2| is met [HGHR98]. Strong coupling is defined as the regime where the condition

geff � κ/2, γ/2 is additionally valid. In this regime the cavity transmission shows a

characteristic avoided level crossing. The two arising peaks refer to the normal mode

splitting of the coupled oscillator system. The distance between the two peaks in the

transmission spectrum is Ω =
√

4g2
eff −

(γ/2−κ/2)2

4 . In the case of geff � (κ/2, γ/2),

Ω ≈ 2geff is a valid approximation.

From the cavity transmission at the avoided level crossing the essential describing para-

meters of the systems can be obtained from the peak full width half maximum (FWHM)

of the of the two normal modes. Figure 3.4 shows a normal mode splitting in the cavity

transmission spectrum. In the experiment the FWHM of a single peak of the normal

mode splitting can be seen as the average between cavity losses and spin losses: Γ = γ+κ
2 .

Experimentally it turned out that the cavity losses κ are usually one magnitude lower
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Figure 3.4: Transmission spectrum of the cavity spin system at resonance. The
transmission shows the characteristic avoided level crossing. From the FWHM
parameter Γ

2π of a single peak, the spin loss parameter γ can be determined.
From the peak distance Ω

2π the coupling strength between cavity mode an spin
system can be calculated.

than the spin losses 3. Hence, γ = 2Γ − κ ≈ 2Γ is a valid approximation for the spin

associated losses in most cases.

By setting ωc−ωs = 0 in eq. (3.44) the energy (peak position) of the eigenstates can be

calculated,

Re

(
E±

~

)
= ωc ±

1

2

√
4g2
eff −

(
γ − κ

2

)2

, (3.45)

Im

(
E±

~

)
= −κ+ γ

4
. (3.46)

3The bare cavity loss parameter κ can be obtained from the bare cavity transmission if the spin
transitions are fully saturated. This can be achieved by applying a strong drive signal. This mechanism
is referred to as bleaching the spin ensemble. For more information see [Dru81].
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3.2.4.2 Weak coupling regime

In this regime losses dominate over coupling strength. No normal mode splitting can be

observed since 2geff < |γ−κ2 |. This results in the following eigenvalues,

Re

(
E±

~

)
= ωc, (3.47)

Im

(
E±

~

)
= −κ+ γ

4
± 1

2

√(
γ − κ

2

)2

− 4g2
eff . (3.48)

3.2.5 Dispersive regime

The condition ∆det = |ωc − ωs| � (geff , κ/2, γ/2) refers to a regime where no energy

exchange between the spin ensemble and the cavity is possible. In first order approx-

imation, the system can be seen as uncoupled. Though spin ensemble and cavity mode

are far detuned from each other, there is an interaction between them. The correction

for this effect is the so-called dispersive shift given by ∆disp = ± g2eff
∆det

< Sz > and arises

from a series expansion of eq. (3.44) in the form
√

1 + x ≈ 1 + x
2 − x2

8 + O(x3) for the

previously obtained eigenvalues,

E+/~ =
ωs + ωc

2
+
ωc − ωs

2
+

g2
eff

ωc − ωs
− iκ

2
= ωc +

g2
eff

ωc − ωs
− iκ

2
, (3.49)

E−/~ =
ωs + ωc

2
− ωc − ωs

2
−

g2
eff

ωc − ωs
− iκ

2
= ωc −

g2
eff

ωc − ωs
− iκ

2
. (3.50)

3.3 Tavis-Cummings model: 2 spin ensembles

So far, the discussion was limited to the interaction of a single ensemble containing N

spins with the cavity mode. In the next step a second spin ensemble, also containing

N spins, will be introduced. Thus the Tavis-Cummings Hamiltonian has do be slightly

modified. An effective Hamiltonian in the following form can be defined:

Ĥeff =~ωca†a+
1

2
~ωs1σz1 +

1

2
~ωs2σz2+

+ ~geff1(a†σ−1 + aσ+
1 ) + ~geff2(a†σ−2 + aσ2

2)

(3.51)

The index {1, 2} refers two the two spin ensembles. Assuming a single photon in the cav-

ity, a suitable basis for the system in that subspace is given by |photon, ensemble1, ensemble2〉:
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|1, ↓, ↓〉, |0, ↑, ↓〉 and |0, ↓, ↑〉. In matrix representation the Hamiltonian for this subspace

has the following form:

Ĥ = ~


ωc geff1 geff2

geff1 ωs1 0

geff2 0 ωs2

 , (3.52)

with cavity frequency ωc, transition energies ωs1/ωs2 and coupling strengths geff1/geff2

respectively. This Hamiltonian directly indicates that each ensemble couples to the

cavity mode (off diagonal elements). Interesting features of this Hamiltonian can be

found by looking at its eigensystem.

3.3.1 Eigenvalue spectrum of the coupled system

Resonant regime

The transition energies of the two ensembles are in resonance with the cavity and res-

onant with each other, hence ωc = ωs1 = ωs1 ≡ ω. The collective coupling strength

geff1 = geff2 ≡ g to the cavity mode is supposed to be equal for both ensembles. The

Hamiltonian can be brought in the following form,

Ĥ = ~


ω g g

g ω 0

g 0 ω

 . (3.53)

The degeneracy, arising from all energies being the same, will be lifted through the

coupling of each ensemble to te cavity mode. The Hamiltonian can easily be diagonalized

and the following eigensystem is found with

E+/~ = ω +
√

2g, (3.54)

E0/~ = ω, (3.55)

E−/~ = ω −
√

2g, (3.56)

as eigenenergies and

|+〉 =
1

2
(−
√

2 |1, ↓, ↓〉+ 1 |0, ↑, ↓〉+ 1 |0, ↓, ↑〉), (3.57)

|0〉 =
1√
2

(0 |1, ↓, ↑〉 − 1 |0, ↑, ↓〉+ 1 |0, ↓, ↑〉), (3.58)

|−〉 =
1

2
(
√

2 |1, ↓, ↓〉+ 1 |0, ↑, ↓〉+ 1 |0, ↓, ↑〉), (3.59)
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as normed eigenvectors of the system. The |0〉 state does not include the basis vector of

a single photon in the cavity mode, and therefore, this state is experimentally referred to

as dark resonance. The other two states form two normal modes (super radiant states).

The two normal modes can be directly observed in the cavity transmission spectrum. An

interesting aspect of this configuration is that the energy splitting between the normal

modes (|+〉 and |−〉) is enhanced by a factor
√

2 compared to a single ensemble in the

cavity. This indicates that the system behaves like a single giant ensemble with 2N

spins. The excitation of the system is a superposition of a spin wave either in the first

ensemble or in the second ensemble.

3.3.1.1 Dispersive Regime

In this regime the spin transitions of the two ensembles are in resonance with each

other but far detuned from the cavity. The detuning of the two spin ensembles can be

parametrized with ∆ = |ωc − ωs1,s2| as the detuning from the cavity frequency. As a

result, the Hamiltonian has the following form,

Ĥ = ~


ω g g

g ω + ∆ 0

g 0 ω + ∆

 . (3.60)

By further assuming ∆� g, a power series expansion up to the second order correction

for the eigensystem can be made. The eigenenergies become

E+/~ = ωc + ∆ +
2g2

∆
, (3.61)

E−/~ = ωc + ∆, (3.62)

E0/~ = ωc −
2g2

∆
, (3.63)

with

|+〉 =
1√
2

(|0, ↑, ↓〉+ |0, ↓, ↑〉) , (3.64)

|−〉 =
1√
2

(|0, ↑, ↓〉 − |0, ↓, ↑〉) , (3.65)

|0〉 = |1, ↓, ↓〉 , (3.66)

as normed eigenvectors of the system. From the eigensystem it is observed, that there

is a coupling between the two spin ensembles even if they are far detuned from the

cavity resonance frequency but in resonance with each other. Two normal modes are
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formed, indicating a coherent energy transfer between the two spin ensembles. The

energy splitting of the normal modes is 2g2

∆ .

Within the field of classical physics an energy transfer between the two ensembles is

forbidden because of the energy mismatch between cavity photons and spin transitions.

However, in quantum mechanics the energy conservations can be broken for a short

time (limited by the Heisenberg uncertainty relation). A photon can then be transfered

from one spin ensemble to the cavity and to the other spin ensemble without populating

the cavity. This virtual photon mediates the interaction between the two ensembles.

Compared to an interaction with real photons, virtual photons are not lost in the cavity

and it is possible to get rid of any processes of energy leaking out of the cavity. In

the paper by Majer et. al [MCG+07] a similar system is shown. They couple two

superconducting qubits via a cavity bus. The coupling is also mediated via virtual

photons.

A detailed discussion of the transversal coupling is made in the experimental results.

There also an effective Hamiltonian by eliminating all cavity parts is constructed. This

alternative description reduces the problem two an interaction between two two-level

systems. See section 6.3.2.

3.3.1.2 Losses

The previous discussion of an effective Tavis-Cummings model with two spin ensembles

did not include any losses. As in the case of a single ensemble, different loss channels

have to be considered. The two spin ensemble used in the experimental setup are not

identical, resulting in different spin loss parameter (γ1, γ2) and coupling strengths to

the cavity mode (geff1, geff2). Experimentally, these parameters are accessible if the

two ensemble are separately tuned into resonance with the cavity. Accordingly, the

extraction of the parameters is done in the same way as in the single ensemble case.

In the case of different coupling strengths, one has to rely on numerical methods to diag-

onalize the system Hamiltonian in order to derive the transition energies and eigenvalues

of the coupled system.





Chapter 4

The Nitrogen Vacancy defect

center in diamond

In the previous section the coupling of a spin ensemble to a cavity in the Tavis-Cummings

model was discussed. The spin ensemble employed in this architecture is formed by a

defect center in diamond. Carbon crystallizes in a face-centered cubic lattice during

diamond growth. This perfect lattice can have imperfections such as lattice irregularities,

substitutional atoms or interstitial impurities. In [JW06] a review about different point

defects in diamond can be found. The defect discussed here is the nitrogen vacancy defect

(NV −) color center in diamond. It consists of a nitrogen atom substituting a carbon

atom and an adjacent vacancy (see fig. 4.1). The four valance electrons of carbon are

covalently bond to four adjacent carbon atoms. In contrast to that, the substitutional

nitrogen atom provides five electrons, which forms the neutral NV 0 together with the

vacancy. By capturing an additional electron from the lattice, the negatively charged

NV − is formed. It forms a trapped spin S = 1 system in the diamond lattice. This

spin is isolated from its environment. These unique properties and their wide spectrum

of applications made the NV − very popular in the quantum community in the last

years. Long spin coherence times (≈ 2 ms) even at room temperature makes this spin

species an excellent candidate for quantum computing [BNT+09]. A good review paper

of the NV centers capabilities as versatile sensor at nanoscale dimensions can be found

in [SCLD14].

4.1 Spin physics of the NV − center

The NV − possesses a paramagnetic ground state which forms a S = 1 triplet. Spin-spin

interactions of the two unpaired electron spins lift the degeneracy of the ground state.

29
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E = 6.59 MHz
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Figure 4.1: (left) The NV − center as a defect in the diamond lattice. The
defect is formed by an substitutional nitrogen atom and an adjacent vacancy in
the lattice. (right) Simplified level structure of the NV − center. The transition
from the ground state ms = 0 to the excited spin states ms = ±1 is in the

microwave regime.

This fine structure is the so-called zero field split (ZFS) since it is also prominent in

the absence of any external magnetic or electric fields. The zero field splitting tensor is

usually a rank three tensor. Due to dipolar interactions, 2 parameters are sufficient to

describe the zero field splitting effects of the NV − ground state [WJ06]. A Hamiltonian

describing the ground state of the NV − center has the following form:

Ĥzfs

h
= D(S2

z −
1

3
S2) + E(S2

x − S2
y). (4.1)

D and E are fine structure constants of the zero field splitting. D is a measure for

the deviation of the electron wave function from spherical symmetry. The E parameter

describes the deviation of the extension of the wave function in x and y directions. The

effect of a local strain field is comparable to the Stark effect of an external electric field

on the crystal. However, the Stark effect on the NV − ground state is rather small.

What makes the NV − especially interesting for the coupling to a microwave cavity is

the fact that its electron spin resonance (ESR) is in the microwave regime (GHz). The

basic level structure of the NV − center is shown in fig. 4.1 (left). This level scheme

also includes the optical transition to an excited state. This transition allows efficient

initialization of the system in the ground state (since it is not used in the thesis at hand,

no detailed discussion is given here).

In contrast to the weak Stark effect, the ground state spin transitions can be efficiently

tuned with the Zeeman effect. The Zeeman term in the Hamiltonian has the following
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form,

ĤZ

h
= −µ ·Bext = −geβS ·Bext. (4.2)

The factor geβ ≈ 28 MHz/mT is a measure for the energy shift of the spin transitions.

ge, mostly called g factor, is a dimensionless number which quantifies the reaction of

the magnetic moment in a magnetic field. In eq. (4.2) µ relates magnetic moments with

angular momentum and has the the following form

µ = αgeβS, (4.3)

where α is a dimensionless number of ±1, indicating the sign of the charge. The Bohr

magneton β is defined as

β =
~|e|
2me

(4.4)

with e as electron charge and electron mass me. Basis vectors for the NV − center

ground state triplet can be defined with the magnetic spin quantum number ms, which

can have the values ms = 0,±1. The resulting basis vectors are denoted as |0〉, |1〉 and

|−1〉. In eq. (4.5) the full form of the Hamiltonian is given below in matrix form and in

standard notation (see eq. (4.6)).

Ĥspin

h
=


|1〉 |0〉 |−1〉

〈1| D + geβBz geβ
Bx−iBy√

2
E

〈0| geβ
Bx+iBy√

2
0 geβ

Bx−iBy√
2

〈−1| E geβ
Bx+iBy√

2
D − geβBz

 (4.5)

Ĥ

h
= DSz

2 + E(Sx
2 − Sy2) + geβBS (4.6)

In the matrix notation (eq. (4.5)), a constant matrix 2D
3 1 has been added. It shifts the

ground state energy to zero. In the PhD thesis of Robert Amsuess the derivation and the

relations used to derive the matrix in this form can be found [Ams13]. Though the NV −

electron spin is well isolated from the environment in the diamond lattice, it can couple

to other impurities present in the diamond lattice. One of the most prominent species are

the two isotopes 14N and 13C. From [WRHK99] it is known that the natural occurrence

of the 13C is approximately 1.1 %. The coupling to the nuclear spin can directly be
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observed in the cavity transmission spectrum [AKN+11]. The 14N hyperfine interaction

is omnipresent since nitrogen is a constituent of the NV −. However, the interaction

is too weak to be observed in the cavity transmission spectrum. The Hamiltonian for

hyperfine interactions has the following form:

Ĥhf/h = ST · Ā · I (4.7)

where I denotes the nuclear spin and Ā as coupling tensor. From ([FEN+09] and

[SCG11]) the most cited value is the Azz component, which has the value Azz ≈ 130 MHz.

4.1.1 Spin transitions: single ensemble

In the previous part a basis for the spin transitions was defined. From dipole transition

selection rules the possible transitions are from |0〉 → |±1〉. The transitions between

the different spin states with and without an external magnetic field will be discussed

in this part.

No external magnetic field

The |0〉 → |±1〉 transition in the absence of an external magnetic field is defined by

the zero field splitting parameters D and E. The D parameter lifts the degeneracy

between the |0〉 and the |±1〉 states. Additionally the E parameter splits the |+1〉 and

|−1〉 states by 2E. Diagonalization of the spin Hamiltonian leads to the eigensytem

with eigenenergies ε = 0, D ± E and respective eigenvectors |0〉 = (0, 1, 0)T and |±〉 =
1√
2
(±1, 0, 1)T . The eigenstates are a linear combination of the |±1〉 states. This level

mixing decreases, when an external magnetic field is applied.

Magnetic field in arbitrary direction

As indicated by the Hamiltonian, an external magnetic field can be used to efficiently

tune the transition energies of the |0〉 → |±1〉 transition. Figure 4.2 (ensemble 1) shows

that there are four possible neighboring lattice sites to the vacancy where the nitrogen

atom can sit. If a projection of the NV − axis is made onto the (001) plane of the crystal

is made, two sub ensembles (see color code in fig. 4.2) can be identified. Depending on

the angle of the magnetic field, the projection of the field amplitude on the NV − axis

is different. Hence, the two sub ensembles can be tuned collectively or independently1.

Numerical methods are used to diagonalize the Hamiltonian with an arbitrary direc-

tion of magnetic field. If the Zeeman term becomes sufficiently large, ms becomes a

1In the experiment a 3D Helmholtz coil set-up is realized. In principle this allows also to project on
any other plane than on the (001). In the experiment this degree of freedom is used to align the lab
frame of reference perfectly with the (001) plane of the NV − frame of reference.
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Figure 4.2: Two ensembles with a different twist each. The left ensemble
has a twist of −9.1◦ and the other 15.2◦. Magnetic fields can be applied in
any arbitrary direction of the (001) plane. The color code represents the two
sub-ensembles that can be identified by projecting into the (001) crystal plane.

good quantum number. It is possible to determine the eigensystem and accordingly

the transition energies for any arbitrary amplitude and direction of magnetic field for

all possible NV − directions. In connection with the experimental implementation, the

magnetic field of the lab frame of reference has to be transformed to the crystal frame

of reference.

4.1.2 Spin transitions: two ensembles

If an indistinguishable second ensemble is placed into a magnetic field next to the previ-

ously discussed single ensemble, the transition energies of both ensembles are equivalent.

In order to distinguish between the two ensembles and be able to tune them independ-

ently, the two ensembles are twisted relative to each other. This twist allows different

magnetic field amplitudes on the resulting 4 sub ensembles. In fig. 4.2 the two separated

ensembles are represented in a simplified form. The color code labels the resulting sub

ensembles for each ensemble.

Zeeman tuning - transition energies - ϕ = 22◦

The first ensemble has a twist of ≈ 15.1◦ and the other ensemble of ≈ −9.1◦ (see fig. 4.2).

A magnetic field is applied in the (001) plane of both crystals under an angle of ϕ = 22◦.

In fig. 4.3 the Zeeman shift for the sub ensembles is shown. The magnetic field is applied

under a constant angle (ϕ = 20◦) relative so a global frame of reference.

Zeeman tuning - transition energies - ϕ = 48.1◦
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Figure 4.3: Spin transitions of the two NV − ensembles. (a) Spin transition
|0〉 → |−〉 (solid lines) and |0〉 → |+〉 (dashed line) versus the magnetic field
amplitude. The angle was kept constant at ϕ = 22◦ (vertical line in (b)).
(b) Transition energies of the two ensembles for different orientations of the
magnetic field in the (001) plane. The used amplitude is indicated by the
vertical line in (a). (c) Colors indicate the different sub-ensembles which arise
from applying the field in the (001) plane. Colors correspond to the colors in

(a) and (b).

If a magnetic field is applied under an angle of ϕ = 48.1◦, the projection of the field

amplitude on the sub ensembles are the same for both ensembles. Hence, the transition

energies for the sub ensembles is the same - the system is degenerate. Due to the different

twist of the two crystals, a degree of freedom is added to the system. This allows tuning

of the transition energies of the sub ensembles in the two crystals with respect to each

other. With a rotation of the magnetic field the transition energies can be brought into

resonance (degenerate) or out of resonance. With this degrees of freedom, a wide range

of configurations for the spin transitions can be realized.
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Experimental set-up

The underlying theoretical concepts of this quantum system was outlined and discussed

in the previous chapters. Here, the experimental environment and the measurement

set-up shall be introduced and explained, followed by a presentation of the obtained

results.

5.1 NV − ensembles on a superconducting resonator

With respect to the Jaynes-Cummings model, a description of a cavity quantum system

has been given. This model has been extended to the Tavis-Cummings model for two

spin ensembles. The spin ensemble was realized as NV − defect centers in diamond. A

superconducting λ resonator was presented, acting as high Q cavity. With these parts

it is now possible to assemble the quantum system discussed in this work. Figure 5.1

shows the built quantum device which is used in most experiments. The copper sample

box which houses the device is closed by a lid with spring loaded pogo pins, holding

the two diamonds in place. The box itself establishes boundary conditions for the

electromagnetic field in a way that no standing waves (box resonances) can occur in

the frequency domain of interest.

5.2 Spectroscopic set-up

In all measurements the cavity transmission spectrum is probed with a vector network

analyzer (VNA). The VNA provides phase coherent continuous wave microwave signals

from 4 kHz up to 8.5 GHz. From the VNA the forward voltage gain S21 scattering

35



Chapter 5. Experimental set-up 36

Figure 5.1: Experimental realization of the quantum device. Two diamonds
with NV − spin ensembles are placed on a superconducting λ resonator (grey
part in the center). The superconducting chip is connected via aluminum bond
wires to the ground plane of the surrounding PCB (copper). The PCB supports

mini SNP connectors.

parameter is obtained. It is defined the ratio between the wave amplitude coming out

of port 2 and the amplitude of the incident wave on port 1: S21 = V −
2 /V +

1 [Poz11].

The sample itself is mounted at the lowest stage of a adiabatic demagnetization cryostat

(ADR). The input line, which goes down from room temperature to the sample, has

several microwave attenuators and DC blocks. On the one hand, the attenuators avoid

thermal noise from stages at higher temperature leaking to the sample. On the other

hand, they thermally couple the inner conductor of the coaxial lines to the different

thermal stages of the fridge. This avoids heating of the device.

For single photon experiments it is advisable to equip the up line after the device with

micrwoave circulators. Unlike as in the down line, it is not possible to use attenuators

because they would counteract the amplification of the microwave signal. Circulators

act like a one way valve for microwaves and therefore shield the device from thermal

noise entering from the up line side. In this set-up and for the experiments carried out

throughout this thesis, no circulators were necessary. Another important part is the

amplifier for cryogenic environment. In this set-up an amplifier from the company Low

Noise Factory was used. The amplifier has a gain of +39 dB in a frequency domain of

4-8 GHz (also properly operates around 3 GHz). The typical noise temperature is in

the order of 2.1 K. At room temperature an additional ultra low noise amplifier from

MITEQ is used. The gain of this amplifier is +30 dB at 3 GHz with a noise temperature

of 50 K. The signal is then fed to port 2 of the network analyzer.

To use the full ability of tuning transition energies for both spin ensembles, 3D Helmholtz

coil pairs are mounted around the device at the lowest stage (FAA). It gives the freedom

to align the magnetic field perfectly with the resonator and the diamond (001) plane.

Further magnetic fields up to 15 mT in all directions can be applied. The mounted coil

set-up can be seen in fig. 5.3.
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Figure 5.2: (a) The used fridge with its different temperature stages. (b)
Schematics of the used measurement set-up with its main components. The

microwave generator (MG) is not used in all experiments.

Figure 5.2 gives an overview of the used spectroscopic measurement set-up in the ADR.

5.3 Cryogenic Environment - Adiabatic Demagnetization

Refrigerator

In order to provide a high polarization of the spin system in the ground the state and

keep thermal excitations low, a cryogenic environment is needed. For the experiment

discussed here an adiabatic demagnetization refrigerator (ADR) is used to carry out

measurements below 100 mK. The ADR is based on the magnetocaloric effect (MCE),

first discovered by E. Warburg [E.81]. Since this technology is also a promising candidate

for entering conventional markets for substitution of vapor compression refrigeration

[RFDR13], a brief discussion concerning the magnetocaloric effect used in a cooling
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Figure 5.3: 3D Helmholtz coil mounted at the FAA stage of the ADR. Semi
rigid copper coaxial lines are connected to a CPW transmission line.

cycle shall be given here. The MCE is the thermal response of a material when exposed

to a change of external magnetic field. The effect can be either cooling or heating of

the material. To understand this property of magnetic materials, one has to take a look

at the total entropy of the material. Pecharsky [PGPT01] states that the entropy of a

magnetic material is given by

ST (H,T ) = Sm(H,T ) + Sl(T ) + Se(T ) (5.1)

where the total entropy (ST ) is the sum of three individual entropies of the material: Sm

(magnetic entropy of the magnetization), Sl (entropy of the lattice) and Se (entropy of

the electrons). The field dependence of lattice and electron entropy has been neglected

in first order approximation. In general, all three parts have a dependence on magnetic

field [TS03]. By applying a magnetic field on such a material, an adiabatic change of

temperature can be induced. The spins align in the magnetic field. Therefore, magnetic

entropy is reduced, electron and lattice entropy has to compensate for that decrease in

entropy to maintain adiabaticity. Consequently, the temperature of the material rises.

By turning off the magnetic field, the spin system is able to return to its initial configur-

ation by draining energy from the lattice, bringing the system back to its temperature

before magnetization. The process is fully reversible. To use this physical property for

cooling in the mK regime, the heat which originates from applying a magnetic field has

to be removed. In the ADR this is done by a pulse tube cooler.

In the next step the external magnetic field is gradually ramped down. The system

has maintained its initial temperature (isothermal process). The increase in magnetic
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entropy has to be compensated by the lattice and therefore the temperature is reduced.

As mentioned before, an isothermal process is needed to remove the heat that is produced

while aligning the spins in the magnetic field. The used pulse tube cooler works according

to the Stirling engine principle. The advantage of the pulse tube cooler is that it can be

built without any moving parts and has low maintenance.

Experimental relevance

The cooling capability of a cryogenic device is usually quantified with its cooling power.

In the case of an ADR it is important to notice that this is not applicable. The ADR

has a finite cooling energy because of the used principle. With installed equipment

(coils, microwave cabling, sample stage) the energy is sufficient to reach a base tem-

perature around 50 mK. The temperature then gradually starts to rise. After a full

demagnetization of the magnetic material, another cycle of magnetization followed by

demagnetization must be carried out. Instead of a full demagnetization, the ADR of-

fers the possibility to dose the applied cooling energy. This is usually done by linearly

ramping down the magnetic field of the fridge and, therefore, continuously spending the

energy to maintain a certain temperature. The fridge can remain at 70 mK for approx-

imately 12 hours, which is a sufficient amount of time for the experiments carried out

in the thesis at hand.

Necessity of a cryogenic environment

To enter the quantum mechanical regime of an integrated circuit, all dissipation losses

have to be eliminated. This can be achieved by using low temperature superconducting

materials such as niobium (TC ≈ 9.25 K) or aluminum (TC ≈ 1.2 K) [DWM04]. This

guarantees that no energy is lost, hence quantum coherence can be maintained.

Furthermore it is important to embed the quantum system in a low thermal noise en-

vironment. Temperatures at which the energy of thermal fluctuations (kBT ) are much

smaller than the transition energy ~ω↓→↑ of the two level system have to be reached.

Since the spin transitions are in the regime of 2 - 3 GHz, a temperature below 100

mK is indispensable (2 GHz corresponds to approximately 95 mK) [DWM04]. At these

temperatures the polarization of the spin system in its ground state is high enough to

carry out experiments.





Chapter 6

Results

The aim of this chapter is to present the obtained measurement data in combination

with calculations based on the theoretical concepts derived previously. The first meas-

urement series concerns the coupling of the two spin ensembles to the cavity mode. The

coherent collective coupling of two spatially separated spin ensembles is shown through

the characteristic
√

2 scaling of the coupling strength.

In the second part a direct ensemble-ensemble coupling of the two macroscopically sep-

arated NV − ensembles is shown. This coupling is achieved via virtual photons, which

do not populate the cavity.

The final part deals with determination of the spin lattice relaxation time (T1) of a

single NV − ensemble and with a NV − −13 C ensemble. Both types show very long T1

times which demonstrate the performance of these spin-cavity systems for applications

in quantum information technology.

6.1 Strong coupling - two ensembles

6.1.1 Two ensembles on resonator no. 270

Figure 6.2 shows an illustration of the presented device. The generally used λ/2 resonator

design was modified, from which the design of a full wave λ transmission line resonator

derived. The design suggests resonance peaks at 1.4 GHz and 2.8 GHz. The unloaded

frequency is slightly above the |0〉 → |−1〉 transition of the spin ensemble. After loading

the resonator with the two diamond samples, the resonance shifts to lower frequencies.

The change in the dielectric constant above the resonator is noticeable in the resonance

frequency and quality factor. In fig. 6.1 the obtained line profile of the resonator is shown.

41
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(b) unloaded (a) loaded1 ∆
ωc
2π 2.910 GHz 2.747 GHz −163 MHz

Q 63 200 23 500 −39 500
κ
2π 46 kHz 420 kHz 374 kHz

Table 6.1: Measured parameters of unloaded and diamond loaded cavity no.
270.
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Figure 6.1: (a) Resonator with diamond samples on top. Parameters like
amplitude, resonance frequency and quality factor decrease because of dielectric
loading. (b) Trace of the empty resonator no. 270. A Lorentzian line shape has
been fitted to the traces. Note: The frequency span has to be chosen different
in both plots, since the full width half maximum bandwidth is different between

the two traces.

To extract the parameters resonance frequency ωc, loss parameter κ and quality factor

Q, a Lorentzian line shape was fitted to the measured profile. Table 6.1 summarizes the

measured parameters for the unloaded and diamond loaded cavity. A brief introduction

on fitting resonances and which functions are used can be found in appendix C.

6.1.1.1 Schematics of the set-up

Each diamond sample is placed on the resonator with a different twist (see fig. 6.2).

The magnetic field (indicated as the red arrow in the illustration) allows tuning of

the transition energies of both ensembles. Due to the different twist of each diamond,

the projection of the magnetic field is different for each ensemble. At 48.1◦ the field

amplitude is the same for both ensembles and transitions of both ensembles can be tuned

into degeneracy. For the calculations of the transition energies of the two ensembles, one

1The value was obtained at a temperature of 950 mK. The spin polarization is low enough to measure
the pure cavity resonance. In section 6.4 it will be shown, that at this temperatures, the influence of
the spin system is negligible.
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Figure 6.2: Superconducting resonator with two diamond samples on top.
Magnetic fields are applied in the (001) plane of both crystals. The transmission

through the device is probed with a VNA.

has to keep in mind that a conversion from the lab frame of reference (Helmholtz coil

set up) to the individual crystal frame of reference is necessary (also see section 4.1.2).

6.1.2 Coherent coupling - collective enhancement

With the help of the introduced theory it is possible to calculate the eigenenergies for

the two ensemble cavity system as a function of amplitude and angle of the magnetic

field. In fig. 6.4 (a) the transition energy (|↓〉 → |↑〉) spectrum of the two ensembles and

the cavity is shown2. In plot (a) all coupling terms are neglected (g is set to zero in the

Hamiltonian). The pure transition energies (green and red) and the cavity mode (blue)

are degenerate at certain field angles (crossings of green, red and blue). In subplot (b)

the coupling of a single ensemble to the cavity mode is taken into account. The two

blue lines (cavity mode) originate from single ensemble coupling Hamiltonians. The

transition energies and resonator eigenvalue are plotted in one figure. The uncoupled

eigenvalues are plotted in grey. At 48.1◦ the transition energies of the two ensembles are

still degenerate (red line crosses green).

In fig. 6.4 (c) the transition energies of the total system, taking into account all couplings,

are plotted. The degeneracy between the two ensembles at 48.1◦ is lifted. The system

shows 3 distinguishable states. By referring to the theory discussed in section 3.3.1, the

three states at an field angle of ϕ = 48.1◦ can be mapped to the following eigenstates of

2In the experiment the interestingNV − transition is from thems = 0 toms = −1 state. Subsequently
this transition is represented as |↓〉 → |↑〉.
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Figure 6.3: Resonant coupling scheme: ensemble 1 and ensemble 2 can be
independently tuned in resonance with the cavity mode. Each ensemble couples
with its coupling strength geff1,2 to the cavity mode. By setting the detuning

∆ of each ensemble to zero, they collectively couple to the cavity mode.

the system,

|+〉 = 1

2
(|0 ↑↓〉+ |0 ↓↑〉+

√
2 |1 ↓↓〉)

|0〉 = 1√
2
(|0 ↓↑〉 − |0 ↑↓〉)

|−〉 = 1

2
(|0 ↑↓〉+ |0 ↓↑〉 −

√
2 |1 ↓↓〉).

(6.1)

where |0〉 belongs to the purple line at 48.1◦.

The coupling scheme in which each ensemble couples to the cavity mode on resonance is

also graphically represented in fig. 6.3. The scheme elucidates the possibility of coupling

each ensemble independently to the cavity mode or both simultaneously.

6.1.2.1 Measurement results

Figure 6.6 (a) shows the magnitude of the S21 scattering parameter versus the angle

of the magnetic field in the (001) crystal plane. Around 10◦ and 90◦ the dominating

amplitude is given by the resonance peak of the resonator (≈ 2.745GHz). In this angle

span, the spin transitions are far off resonant with the cavity. Still the NV − spin

transitions are visible in the transmission spectrum.

By rotating the magnetic field the |↓〉 → |↑〉 transition of the first ensemble crosses the

resonator at approx. 20◦. An avoided level crossing is observed in the cavity transmission
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Figure 6.4: (a) Transition energies of the uncoupled system. (b) each ensemble
couples individually to the cavity mode (c) Full coupling Hamiltonian. The
two ensembles are coupling cooperatively to the cavity mode. The coupling
strength is enhanced by a factor

√
2. The gray lines correspond to the uncoupled
eigenvalues.

spectrum. Due to high losses in this ensemble, the avoided crossing looks blurry and is

smeared out. Concerning the second ensemble the strong coupling regime to the cavity

mode is found to be between 60◦-80◦ resulting in another avoided level crossing.

At a magnetic field angle of 48.1◦, the two ensembles are in resonance with each other

and resonant with the cavity mode. The avoided crossing observed corresponds to the

eigenstates |+〉 and |−〉 (see eq. (6.1)). In reference to the theory, the third state |0〉 is

an antisymmetric Dicke state. This state is invisible in the transmission spectrum since

it does not couple to the resonator (dark state). Only a fully symmetric Dicke state

couples coherently to the cavity mode. The new fully symmetric Dicke state is formed

by an superposition of an excitation in both ensembles. In fig. 6.5 this coupling scheme

is graphically represented, and the hybridization of the states is shown.

Figure 6.7 shows several cuts through fig. 6.6 (a) at different field angles (indicated

as grey vertical dashed lines in the surface plot). The cavity transmission derived in

eq. (3.43) was fitted to the data. The deviations between fit and data have their origin

in a Fano resonance of the device. This Fano was not included into the fit. In the

frequency domain of interest (avoided crossing), the fit is sufficient to derive the necessary

parameters.
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Figure 6.5: If all energies are in resonance with each other, a new fully sym-
metric Dicke state emerges. This Dicke state couples to the cavity mode with
an
√

2 enhanced coupling strength. The antisymmetric Dicke state does not
couple to the cavity mode and remains as dark state. The resulting spin wave

is de-localized throughout the two separated ensembles.

The collective coupling strength of the two ensembles to the cavity mode can be de-

termined from the cavity transmission at 48.1◦ . It scales with
√

2 of the mean coupling

strength of the two ensembles (
√

2 · geff1+geff2
2 ) to the cavity mode.

In this scheme it is possible to consider the system as an effective giant spin ensemble

that coherently interacts with the cavity mode in the strong coupling regime. All single

ensemble-cavity calculations therefore become valid for this configuration of the system.

In the measurement results shown in fig. 6.8 (a) the degeneracy point of the two spin

transitions was tuned below the cavity resonance. By using a wider probe span than in

fig. 6.6 (a) it is possible to directly observe the tuning of the two spin transitions (faint

features in the frequency domain 2.765 GHz to 2.79 GHz).

The system offers a huge advantage. The two ensembles can be individually coupled

to the cavity mode. By means of the rotational degree of freedom the two ensembles

can also be tuned into degeneracy. They merge to a single giant ensemble, which makes

a distinction between the spatially separated ensembles impossible and the coupling

strength increases by a factor
√

2. This directly shows the coherency of the coupling to

the cavity mode. Another interesting feature can be observed when taking a look at the

different loss parameters in table 6.2. The loss parameter of the giant coupled ensemble

is given by the loss parameter of ensemble 2. The cavity exhibits a protection effect on

the giant ensemble which has its origin in the stronger coupling strength to the cavity

mode. Information about this effect can be found in a paper by Putz et. al. [PKA+14].
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Figure 6.6: Measurement result of the direct coupling of two ensembles to the
cavity mode. The cavity transmission spectrum was probed with a VNA. The
plot shows the S21 scattering parameter. Colors correspond to the transmission
in dB. The magnitude of the magnetic field is kept constant B=6.1 mT and
rotated in the (001) crystal plane from about 10◦ to 90◦ Dashed lines in (a)

correspond to fig. 6.7. T=70 mK.

ensemble 1 ensemble 2 collective
16◦ 79◦ 48.1◦

[MHz] [MHz] [MHz]
g

2π 6.25 7.65 9.66
γ
2π 11.5 6 6

Table 6.2: Coupling strength and loss parameter of the two different ensembles
used in the experiment.

6.1.2.2 Parameters of the two ensembles

The parameters of the individual diamonds can be determined separately via a spectro-

scopy of the cavity transmission versus the magnetic field under a constant field angle.

At this point the reader is referred to appendix B, where these measurements of how to

obtain the following parameters are shown.

The loss parameter and the coupling strength of the collective ensemble and of the

individual ensembles are of special interest since they are used in the simulations of the

system. Therefore, they are listed in table 6.2 together with the constant magnetic field

angle.
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Figure 6.7: Spectroscopy signal for different field angles at a constant field
magnitude of 6.1 mT. The transition energies of both ensembles are perfectly
aligned with the cavity frequency. The data was fit with the calculated cavity
transmission, see eq. (3.43). The solid blue line corresponds to the magnitude
of the S21 parameter. The red line is the fit to the data. The dashed blue lines
indicate the 95% prediction bounds of the fit. All data points are within these

bounds.

6.1.2.3 Simulation

In fig. 6.6 (b) The cavity transmission data in fig. 6.6 (a) and fig. 6.8 (a) has been

simulated by scattering matrix theory [Dys49]. To derive the transmission spectrum,

the inverse of the systems Green function is computed. Necessary parameters are losses

(cavity and spin), the cavity transmission frequency and an additional Fano resonance

of the device. With this simple model it is possible to give a valid description of the

basic physics of the system. The simulations are shown in fig. 6.6 (b) and fig. 6.8 (b).

A simulation of the system in case of an incoherent coupling of the two ensembles with

the cavity is shown in fig. 6.6 and fig. 6.8 (c). In this term ’incoherent’ refers to a coherent

coupling of a single ensemble to the cavity mode, but no enhancement of the coupling
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Figure 6.8: (a) Cavity transmission spectroscopy for a constant magnetic field
amplitude of 6.2 mT. From (b) it can be seen that the two spin transitions are in
resonance slightly below the cavity frequency (48.1◦). Furthermore, (b) shows
the uncoupled transition energies and cavity frequency (solid grey lines). The
coupled system is indicated by red solid lines. The blue solid line represents
the cavity frequency. (c) Incoherent sum of the transmission spectra for each

ensemble (simulation).

strength by a factor
√

2. The plot arises from the incoherent sum of the transmission

spectra of each ensemble simulated independently.

6.2 Dispersive regime

The regime in which the spin transitions are far detuned from the cavity is called dis-

persive regime (∆det = |ωc−ωs| � (geff , κ/2, γ/2)). From the theory it is known that in

the dispersive regime the spin system has an influence on the cavity resonance frequency.

The cavity resonance frequency is shifted to lower/higher frequencies, depending on the

relative position of the ESR transition. The first order correction of the cavity resonance

is given by ∆disp = ± g2eff
∆det
〈Sz〉. This frequency shift can be undone by pumping spin

population from the |↓〉 ground state to the excited |↑〉 state. A strong microwave con-

tinuous wave signal is applied to the system in order to drive the transition. If the pump

tone is close to or hits the transition, population is pumped. By doing a spectroscopy

with the pump signal over a defined frequency region, the transition energies can be

mapped to the measured data.
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Figure 6.9: (a) Schematic of the experimental set-up for experiments in the
dispersive regime. A microwave source provides a strong pump signal to pump
spins into the excited state. (b) Energy levels versus magnetic field. The green
arrow indicates the pump signal which drives the transition. The pump signal is
scanned through a certain frequency region. The cavity can still be probed with
a signal from the VNA (red arrow). (c) Enlarged view of the cavity response to
the presence of the spin transitions. The closer a transition is to the cavity, the

more the cavity gets pushed to lower frequencies.

The cavity acts as a very narrow bandwidth filter, so most part of the microwave signal

is reflected and only part of it is coupled into the device. To have enough energy in the

device, an output power of 15 dBm at the source was used. This power turned out to

be a compromise between being high enough for population pumping but low enough to

avoid any heating of the system. Figure 6.9 shows the basic measurement set-up to do

experiments in the dispersive regime.
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6.2.1 Initial relaxation

Empirically, 70 mK was found to be an optimal temperature for dispersive two tone

experiments. The polarization of the spins in the ground state is still high enough3

and the ADR cooling energy can be dosed in a way that it is possible to stabilize the

temperature up to 12 hours, depending on probe tone power and microwave power

applied to the system.

In the first attempts of dispersive measurement sequences it was not possible to get a

valid signal. It turned out that the system shows a slow relaxation process after being

cooled down from 2.7 K to 70 mK. So far, it is not possible to determine the origin of

this relaxation process.

6.2.1.1 Measurement result

The transmission spectrum of the cavity was taken every 7 seconds over a few hours.

The data was fitted with a Lorentzian line shape to determine the describing parameters

and their behavior over time. One can speculate if this relaxation is related to the spin

ensemble, that is relaxing into the ground state, or if the lattice itself is responsible.

The other speculation is that the ADR FAA material still relaxes and produces this

effect on the cavity. Figure 6.10 shows the behavior of the cavity resonance frequency

and quality factor over time. After approx. 5000 s after temperature stabilization,

the resonance frequency can be considered constant in terms of stability needed for

dispersive experiments. This waiting time, however, reduces the time frame available

for measurements significantly.

6.2.2 Dispersive shift background correction

To find the transition energies for the coupled system and an arbitrary magnetic field

amplitude and angle, it is necessary to numerically diagonalize the full Hamiltonian.

Figure 6.11 shows an angle resolved plot of the transition energies. The field amplitude

has been chosen so low, that the system is in the dispersive limit (B=5.4 mT). As seen

in fig. 6.11, the dispersive cavity shift changes for all angles ϕ (and amplitudes) of the

magnetic field.

To define a zero line for dispersive experiments, the cavity resonance frequency has to

be determined for all angles of interest at a certain field amplitude. In fig. 6.12 the

3Calculations were made by Robert Amsuess in his PhD thesis. He states a relative magnetization
of 84% at 50 mK and 51% at 100 mK [Ams13].
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Figure 6.12: Background correction for a magnetic field amplitude of 5.4 mT
(a) Measured cavity shift for different field angles (blue line). The measurement
is compared to the first order correction (orange) of the cavity frequency and to
a numerical diagonalization of the Hamiltonian (blue). (b) Difference between

the numerical cavity frequency and measured cavity frequency.

measured and calculated cavity shift for two field amplitudes is shown. The obtained

data is compared to the calculated cavity frequency from the Hamiltonian and to the

first order approximation of the cavity shift (ωshifted = ωc−
g2eff
∆det

). In the lower subplots

the difference between measurement and numerical diagonalization of the Hamiltonian

is plotted.

Neither the value obtained from the Hamiltonian nor the first order approximation gives

a sufficient description of the measured cavity shift. A third order polynomial was fitted

to the data, which allowed an adequate correction of the background for all further

measurements. The inaccuracy of the calculated background may have its origin in the

incompleteness of the model (coupling to nearby 13C) and the uncertainty of several

parameters (coupling strength, losses, etc.).
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6.3 Transversal coupling - J coupling

Using two superconducting qubits, several groups have shown that it is possible to

coherently couple them with each other and even perform quantum gate operations

[YPA+06], [HRP+06], [QQ03]. In the paper by Majer et. al., a transversal coupling of

two transmon qubits coupled to a transmission line resonator was successfully realized.

They present fast control of the qubits and coherent quantum state transfer between

them.

Furthermore, it has been shown that an ensemble qubit can successfully be used to store

and retrieve quantum information [SZA+13]. The superior T1 times of the system,

which will be presented in the next section, indicate the suitability of cavity-ensemble

systems as quantum memory.

The transversal coupling of two macroscopically ensemble qubits has not yet been demon-

strated. It allows a coupling of the two ensembles even without populating the cavity

bus with real photons. The architecture can easily be expanded to more than a two

ensemble qubit device, maintaining control of the coupling of two individual ensemble

qubits. Consequently, a transversal coupling of the two ensemble qubits offers huge

potential for further applications in quantum information technologies.

6.3.1 Measurement

In this measurement sequence the pump tone frequency is swept through the region of

interest and the relative cavity shift is recorded. Whenever the pump tone matches the

ESR transition of the NV − sub ensemble, population is pumped from the ground state

|↓〉 to the |↑〉 state. The cavity then shifts to higher frequencies. By rotating the mag-

netic field and repeating the pump sequence, the NV − transitions can be identified and

mapped to the calculated transition energies. In all these measurements the transition

energies are far detuned from the cavity.

Difficulties regarding this measurement scheme arise in the data acquisition, which is

very time consuming due to the long spin lattice relaxation time. To ensure that both

ensembles are in the ground state before applying the pump tone again, the system was

given several hundred seconds to relax.

In the experiment the |↓〉 → |↑〉 transition of both ensembles was tracked over a wide

range of different magnetic field angles (amplitude constant). As mentioned in previous

sections, the transition energies of both ensembles match at 48.1◦ and an avoided level

crossing even in the dispersive regime is expected. However, the calculated coupling
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Figure 6.13: The figure shows an angle resolved spectroscopy in the dispersive
regime. The z direction is given by the dispersive cavity shift. Between 40◦ and

50◦ the lower branch (lower black line) shows the discussed dark states.

between the two ensembles is just in the order of 2 MHz. The line widths of the two

ensembles are in the order of 10 MHz and 6 MHz. Consequently, it is not possible to re-

solve the avoided crossing in the dispersive regime. Inhomogeneous broadening (further

discussed in section 6.3.4) is one of the main source for decoherence in this system. It

limits the possibilities of coherently transferring and storing quantum information. In

a paper by S. Putz et. al. [PKA+14], it is shown how inhomogeneous broadening can

be efficiently suppressed in the strong coupling regime - an effect that is called ’cavity

protection’.

Figure 6.13 shows a surface plot of the obtained data. The measured angle span has

been divided into 86 slices. The data in between has been interpolated and smoothed,

using a tool by Garcia. He provides a fully automated smoothing procedure for gridded

data in one and higher dimensions with missing values [Gar10].

6.3.2 Transversal coupling mechanism

For the transversal coupling a slightly different Hamiltonian than the already discussed

Tavis-Cummings Hamiltonian shall be introduced. In [BGW+07] it is shown how a
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direct qubit-resonator coupling can be eliminated in the dispersive regime with a trans-

formation. Subsequently, a similar Hamiltonian for this system can be built [FGF+11a]:

HJ =~
(
ωc + χ(1)σ(1)

z + χ(2)σ(2)
z

)
a†a+

+~
∑
i=1,2

ω↓↑ + χ(i)

2
σ(i)
z + ~J

(
σ

(1)
+ σ

(2)
− + σ

(2)
+ σ

(1)
−

) (6.2)

The underlying method behind is the adiabatically elimination of the direct ensemble

resonator coupling. The first term in eq. (6.2) describes the cavity mode ωc, together

with the dispersive cavity shift χ(i) = (g(i))2/∆det for each ensemble 4. The second term

comprises the Lamb shift χ(i), which modifies the transition energy of each ensemble.

In the paper by Fragner et. al. [FGF+08], it is reported that the lamb shift is in the

order of up to 1.4 % of their qubit transition frequency.

The third term mediates the effective ensemble-ensemble coupling (flip-flop interaction)

in this regime via virtual photon exchange. It describes the transversal coupling, which

is often referred to as J coupling. The coupling strength J is given by

J =
1

2
g(1)g(2)

(
1

∆
(1)
det

+
1

∆
(2)
det

)
(6.3)

.

The previously discussed Hamiltonian leads to an avoided level crossing of the excited

NV − states of the system. By looking at the eigenstates of the system, one finds the new

eigenstates as the symmetric dublett states |↓↓〉 and |+〉s = 1/
√

2(|↓↑〉+ |↑↓〉), as well as

the antisymmetric singlet state |−〉a = 1/
√

2(|↓↑〉 − |↑↓〉). The system shows maximal

entanglement in the |±〉s/a state, which can be seen as a single excitation shared by both

ensembles. These states do not incorporate any population of the cavity. Therefore, it

is possible to suppress all cavity related loss channels.

In fig. 6.14 a graphical representation of the J coupling scheme is given (a). In (b) the

hybridization of the resulting states is shown.

6.3.3 Dark states

A characteristic of the avoided crossing is the appearance of a dark resonance. A trans-

ition from the ground state to this state is forbidden. In the measurement the pump

signal does not affect the system. Consequently, no cavity shift can be observed. In

4Here the index i corresponds to the two ensembles separated from each other, including their sub-
ensembles.
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(a) (b)

Figure 6.14: (a) Dispersive ensemble-ensemble coupling scheme. The two
ensembles are in resonance with each other but far detuned from the cavity.
The excited states of the two ensembles interact via a virtual cavity photon.

(b) Hybridization of the states in the dispersive limit.

a paper from S. Filipp [FGF+11b] as well as J.Majer [MCG+07], they state that the

origin of this dark state lies in a selection rule which arises from the symmetry of the

dispersive pump drive. At the avoided crossing, the eigenstates are a superposition of

the two excited ensemble states. The external drive applied to the system is not able to

drive any transitions to the antisymmetric state. Therefore, it is observed to be a dark

state in the spectroscopy. For further information on this topic, the reader is referred to

[FGF+11b], [BGW+07] and [MCG+07].

Figure 6.13 presents the dispersive spectroscopy spectrum of the coupled NV − system.

The figure shows the dispersive cavity shift in z direction with respect to the pump

signal and angle of the magnetic field. Between 40◦ and 48◦ the spectroscopy signal

(cavity shift) of the lower branch vanishes, which gives rise to the discussed dark state.

Unfortunately, it is not possible to directly observe the avoided level crossing in the

dispersive regime since the spin losses are higher than the coupling strength J between

the two ensembles. However, the coherence of te coupling of the two ensembles manifests

itself in the observed dark state, which proofs the transversal coupling between the

ensembles.

6.3.4 Effects of inhomogeneous broadening

The discussed system can be seen as an ensemble of independent spin-one particles.

The creation process of NV − from the existing P1 centers 5 has only an efficiency in

the order of 1% to 10%. The remaining P1 centers contribute to the line-width of the

spin transition via dipole-dipole interaction [TCC+08]. Moreover, the natural presence

of 13C also contributes to the line broadening of the spin transition. In the paper by

5The P1 center describes a dominating defect of the diamond crystal. It consists of a single substi-
tutional nitrogen atom. The nitrogen forms four hybrid bonds with the nearest carbon atom.
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K. Sandner [SRA+12], an analysis of the inhomogeneous frequency distribution can be

found. They further state that the spin distribution can be described with a q-Gaussian

line shape. The q-Gaussian distribution arises from a generalization of the Gaussian

distribution and is given by

f(x) = A

[
1− (1− q)(x− x0)2

w

] 1
1−q

, (6.4)

with the parameters amplitude (A), peak position (x0), peak width (w) and the q para-

meter.

In the dispersive level spectroscopy this q-Gaussian function was used to fit the data and

determine the position of the transition and its width. The q parameter has been set to

the value q = 1.38 which as been determined in the paper by K. Sandner. Figure 6.15

shows several cuts through the surface plot of fig. 6.13. The position of q-Gaussians is

plotted in fig. 6.13 (marker with error crosses). The obtained data points are in good

agreement with the theory predictions (black lines in fig. 6.13). It is not possible to fit

two peaks in the range between 40◦ and 60◦ due to the dark state.

6.4 Spin lattice relaxation

The T1 relaxation time is a measure for the longitudinal relaxation process of the sys-

tem. It is a limiting factor of coherence in the system. Excited spins have a certain

probability of relaxing to their ground state. Underlying processes are spontaneous emis-

sion, spin-phonon interaction and other spin-flip interactions. These processes appear

stochastically and perturb the wave function, which ultimately leads to decoherence.

T1 times that are several orders of magnitude longer than with transmon qubits have

been already shown by Amsuess et. all [AKN+11] in an NV − ensemble. Together

with the characteristic scaling of the coupling strength of an ensemble with
√
N , these

qubits are promising and attractive candidates for quantum information processing on

integrated circuits.

This section deals with the determination of the spin lattice relaxation time T1 of two

different spin ensembles with no external magnetic field present. The underlying decay

type of the T1 relaxation process and an overall temperature dependence of T1 will be

investigated.
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Figure 6.15: Different cuts through the dispersive level spectroscopy (see
fig. 6.13) at different angles. (a) ϕ = 23◦: The transition energies of the two
ensembles are clearly distinguishable and can be fitted with two q-Guassian
functions to determine peak position and width. (b) ϕ = 45◦: Because of the
coupling of the two ensembles and the resulting dark state, only one peak re-
mains. A single q-Gaussian function was fitted to the data. (c) ϕ = 48.1◦: The
transition energies of both ensembles are resonant and only the symmetric state
1/
√

2(|↑↓〉 + |↓↑〉) can be seen in the spectroscopy. (d) ϕ = 70◦. Again two
distinguishable spin transitions corresponding to the two ensembles are clearly

visible in the spectroscopy signal.
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6.4.1 Dispersive measurement - NV − |0〉 → |±1〉

From a dispersive spectroscopy (B = 0), the frequency of the |0〉 → |±1〉 transition of a

single ensemble was determined. In the T1 measurement sequence, a strong drive signal

is applied on this transition 6 for 150 s. It sufficiently pumps population from the ground

state to the excited state. The effect caused by this pumping can be detected through

the cavity shift. The cavity is probed continuously with a probe signal. The power of

the probe signal is weak compared to the drive signal in order to avoid any influences on

the system by the probe field. After the pump procedure, the pump signal is switched

off and the cavity is probed continuously for 450 s.

In the dispersive measurement the diamond sample H1 on a λ/2 resonator no. 121 was

used. The sample contains NV − centers, which were created by neutron irradiation.

6.4.1.1 Stretched exponential decay

In the paper by Amsuess et. al. [AKN+11] a the spin relaxation was found to be a

single exponential decay process with a relaxation constant τ ≈ 45 s, which is in good

agreement with other values found by Harrison et. al. [HSM06].

In contrast to all expectations, the decay mechanism showed a stretched exponential

behavior. The stretched exponential is known and used in many different relaxation

processes, such as disordered and quenched electronic and molecular systems [Phi99]. In

a paper by Johnston et. al. [JBZ+05], it is shown that small concentration of magnetic

defects in the structure of 7Li drastically changes the nuclear magnetization relaxation

from a pure exponential to a stretched exponential. Moreover, it is stated that this

stretched exponential originates from a distribution of nuclear spin-lattice relaxation

rates in 7Li.

The function itself emerges from a generalization of the exponential function by inserting

a fractional power law into the exponent. In the standard notation the function has the

following form

fβ(t) = e−(t/τ)β , (6.5)

with β being the stretching exponent. By setting β = 1, one obtains the basic expo-

nential function. Setting β = 2, the normal distribution is found. Consequently, the

characteristic stretching appears with β between 0 and 1.

6Note that the spin transition is far detuned from the cavity



Chapter 6. Results 61

T [mK] T1 [s] σ [s]

70 80 5.9
80 76 3.5
90 74 3.5
100 71 4.8
110 75 9.9

Table 6.3: Measured T1 relaxation time for different temperatures. The tem-
perature was stabilized at the temperatures given in the table.

The origin of this stretched exponential behavior is still part of ongoing research. Im-

purities in the lattice may result in a distribution of relaxation rates, or a phonon-spin

interaction related processes may contribute to this process but at this point only spec-

ulations are made.

In another paper by Johnston a detailed discussion on the case of a system containing

independently, exponentially relaxing species with a distribution of relaxation rates can

be found [Joh06].

6.4.1.2 Temperature dependence

The relaxation process was analyzed in a temperature region from 60 mK up to 1.2 K.

Around 350 mK the T1 time already approached zero and above this temperature, nearly

no cavity shift was found. With β ≈ 0.6 for all measured relaxation curves the stretch-

ing parameter was determined to be fairly constant within this temperature range. Fig-

ure 6.16 shows the obtained result from a measurement run. It is important to note that

the temperature evolved during the measurement. The ADR was stabilized at 60 mK

base temperature. After a three hour waiting time the T1 measurement procedure was

carried out continuously. After a certain time the cooling energy of the ADR was used

up and the base temperature began to rise slowly. In fig. 6.18 the temperature curve

during the measurement is shown. During the data acquisition of one decay process

(250 s), the temperature drift (and cavity resonance drift) of the system is negligible.

To make sure the temperature drift is not an issue, the ADR has been stabilized at

certain temperatures, and after the 3 hour waiting time, the T1 time has been measured

until the cooling energy was used up. In table 6.3 the results of these measurements is

summarized. In fig. 6.17 a statistical evaluation of the data is presented.
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Figure 6.16: (a) Temperature dependence of the spin lattice relaxation time
T1. Measurement of a bare NV − transition. The characteristic temperature
of 200 mK is marked with a vertical grey line. (b) Sample decay traces taken
at two different temperatures. Temperatures correspond to the vertical dashed

lines in (a).
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Figure 6.17: The figure shows a box plot of the measured T1 relaxation
times. The temperature was stabilized for all measured decay times. A jitter in
x direction was added to the data in order to vividly present the data. The black
line indicates the mean T1 decay time of the data points for each temperature.
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Figure 6.18: After a 3 hour waiting time, the temperature can still be main-
tained at 60 mK for another 3 hours. After that time, the cooling energy is used

up and the fridge gradually begins to warm-up.

6.4.2 Resonant measurement - NV − −13 C transition

Part of the NV − defect centers in diamond are coupled to the naturally occurring

13C. Compared to the number bare NV − defect centers, the NV − −13 C coupled spins

are only a few percent. This hyperfine interaction was already measured by Amsuess

[AKN+11]. This NV − −13 C sub-ensemble is of particular interest since it offers the

first step towards a nuclear ensemble quantum memory. For a more detailed discussion

concerning the fine structure of the NV − center the reader is referred to [Ams13].

Sample and set-up

For this measurement set a transmission lumped element resonator was used. Compared

to a λ/2 resonator with its distributed elements, the lumped element resonator consists

of inter digit fingers acting as capacitor, and meander lines, acting as inductance.

The used diamond sample has electron implanted NV − defect centers. The sample

itself was received from Berkeley University to investigate differences between T1 of

NV − diamond samples, which were created by neutron irradiation.

6.4.2.1 Wide range two tone spectroscopy

In order to correctly identify the NV − −13 C transitions, a dispersive two tone spec-

troscopy was carried out. The cavity shift in the resonant regime can even be used to
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Figure 6.19: Wide range two tone spectroscopy to identify to different trans-
ition energies. The dispersive cavity shift is recorded versus the frequency of the
pump signal. The zero field splitting of the NV − is weak in this sample. The
VNA probe span is shown as the green area. The pump tone strongly affects

the cavity in the resonant regime.

identify the different transition energies. Figure 6.19 shows the obtained data from the

two tone spectroscopy with several features. The zero field split parameter D can be

found at 2.87GHz. A NV − −13 C transition can be found around 2.82GHz. Slightly

below 2.8GHz a second NV − −13 C transition can be identified. This transition is

already in resonance with the cavity without any external magnetic field. The coupling

to this sub ensemble is very weak and no normal mode splitting is visible. However, this

presents an experimental advantage.

Measurement sequence

With the system being in the weak coupling limit, the probe power itself can be employed

to pump population from the ground state to the excited state. To measure the T1

time, the probe tone must be set to very low power in order to avoid any pumping of

population.

6.4.2.2 Temperature dependence

The measurement sequence was repeated continuously, starting slightly below 50mK up

to 1.2K. Cavity shifts in this regime are in the order of almost 250 kHz. Due to this

strong signal, no waiting time after cool down was used.
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Figure 6.20: (a) Temperature dependence of the T1 spin lattice relaxation
time. Measured for the NV − −13 C sub ensemble. The T1 time indicates the
same characteristics as in the case of a bare NV − transition. Around 200 mK
the T1 time approaches 40 s. Error bars are all within the marker size. (b)
Sample decay traces taken at different temperatures with stretched exponential

fit. Temperatures correspond to the vertical dashed lines in (a).

In fig. 6.20 the measured T1 versus temperature curve is shown. This curve shows some

similar characteristics as the curve of the bare NV − transition discussed in the previous

section. Around 200 mK the T1 time suddenly becomes constant over a wide range of

temperatures. This behavior is rather unexpected since in the case of the bare NV −

transition the T1 time starts to become too small to measure after the characteristic

temperature of 200 mK.

As the case of measuring T1 times on resonant in a weak coupling regime is rather

unconventional, it cannot be ruled out that this type of measurement has an influence

on the behavior of the T1 times, or that is possibly alters the data.





Chapter 7

Conclusion and outlook

In this thesis a hybrid quantum system with great potential has been presented. The

system was built by using a superconducting transmission line resonator, which acts

as a high quality quantum bus to transfer and distribute quantum information. Two

dense spin ensembles were realized as nitrogen vacancy defect centers in diamond. The

coherence of the coupling between the two macroscopically separated ensembles was

shown directly in the cavity transmission spectrum with the characteristic
√

2 scaling of

the coupling strength. The two ensembles behave like a giant single ensemble which is

strongly coupled to the cavity mode.

Moreover, the transversal J coupling between two ensembles in the dispersive regime

was investigated. The appearance of a dark resonance provided proof of the trans-

verse coupling and entanglement of the two ensemble qubits. This coupling mechanism

through virtual photons bears the advantage of being able to engineer entangled states

of excitations in the two ensembles without populating the cavity.

The evidence of the transversal ensemble coupling opens the possibility to build bigger,

coupled ensemble networks on a single chip with the advantage of not introducing addi-

tional losses of the cavity bus. External magnetic fields allow the control and switching

of the coupling between the ensembles. This hybrid system offers the possibility of

adding additional ensemble qubits with the ability of controlling the coupling between

them. This shows the excellent scalability of this architecture for further applications

in quantum information technology.

As another significant aspect of this quantum system, the spin lattice relaxation time T1

of a NV − − 13C ensemble versus temperature, was investigated. The system showed

excellent relaxation times over a wide range of temperatures. These T1 times support

the robustness of this system for further experiments in cavity quantum electrodynamics.
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Input impedance calculation

Zin =

[
1

R
+

1

jωL
+ jωC

]−1

=
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1

R
+

1

j(ω0 + ∆ω)L
+ j(ω0 + ∆ω)C

]−1

=

 1
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(
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ω0

)−1

jω0L
+ jω0C + j∆ωC
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(A.1)
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Appendix B

Individual and collective

ensemble parameters

Parameters obtained in a cavity transmission spectroscopy versus magnetic field amp-

litude for different magnetic field angles.

ensemble 1 ensemble 2 collective
· 1
2π 16◦ 79◦ 48.1◦

Ω 11.2 MHz 14.8 MHz 19.12 MHz

Γ 6 MHz 13.4 MHz 3.2 MHz

geff 6.25 MHz 7.65 MHz 9.66 MHz

γ 11.5 MHz 6.4 MHz 6 MHz

Table B.1: Measured data of resonance frequency and quality factor for the
unloaded and diamond loaded cavity no. 270.
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Figure B.1: Cavity transmission spectroscopy versus magnetic field amplitude
for different field angles. (a)-(c) show the obtained transmission spectrum with a
cut through the surface plot. The parameters were determined from the avoided

crossing.



Appendix C

Lorentzian fit

The frequency response of the used cavity is represented by a Lorentzian line shape.

The describing parameters such as transmission amplitude (A), quality factor (Q) and

resonance frequency (fres) can be extracted from a fit to the obtained scattering para-

meters S21(f). The VNA measures both transmitted amplitude and phase properties of

the probe signal. From eq. (2.2) it is known how to approximate the transmission close

to resonance (f ≈ f0) with

S21 =
A

1 + 2jQf−f0
f0

. (C.1)

It is not advisable to fit the square magnitude |S21(f)|2. The VNA provides vector

network data. Both signals transmitted amplitude and phase properties have normal

distributed noise on the signal. The resulting noise of |S21(f)|2 does not follow the nor-

mal distribution. Therefore, it is important to fit the Lorentzian function as a complex

function in the following form,

S21(f) = Ae−iϕeifdt
−iΓ

2

f − f0 − iΓ
2

. (C.2)

In eq. (C.2) A is the transmitted amplitude, f0 the cavity resonance frequency, FWHM

parameter Γ, ϕ a global phase, f the probe signal frequency and a phase parameter dt.

The fit was implemented in a MATLAB script, using nonlinear least square method.

The function tries to find the minimum of the function χ =
∑
i

(|S21(f
(i)
meas)−S21(f

(i)
fit)|2.

χ is dependent on the number of parameters in the used fit function. The algorithm

used has to find the minimum in a multidimensional space, which is only possible if good

start parameters are set. Parameters like resonance frequency and FWHM can be easily

determined from the data and can be fed to the algorithm. It is important to watch out

for correlations between the parameters, which may also result in undesired fit results.
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