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Abstract

Answer set programming (Asp) is an increasingly popular framework for declarative
programming that admits the description of problems by means of atoms, rules, and
constraints that form a logic program. The solutions of an answer set program are called
answer sets. Many problems in artificial intelligence such as non-monotonic reasoning
can be directly formulated in Asp. Reasoning problems for propositional disjunctive
programs, which is the focus of this thesis, are of high computational complexity. For
instance, the problems of deciding whether a program has at least one answer set or
whether a given atom is contained in at least one answer set, are complete for the second
level of the Polynomial Hierarchy.

In this thesis we tackle these hard problems using backdoors in problem instances,
which are sets of atoms that can be used as clever reasoning shortcuts through the search
space. The concept of backdoors has widely been used in theoretical investigations in the
areas of propositional satisfiability and constraint satisfaction, we show that backdoors
can be fruitfully adapted to Asp.

We develop a rigorous theory of backdoors for Asp and carry out a fine-grained
asymptotic computational complexity analysis that takes backdoors into account. We
establish new algorithms that can detect and take advantage of small backdoors to solve
or to significantly simplify problem instances. More precisely, certain backdoors allow
us to solve Asp reasoning problems efficiently for instances with small backdoors (fixed-
parameter tractability), other backdoors allow us to significantly simplify the problem
instance (complexity barrier breaking reduction), and some backdoors cannot even be
used to simplify the problem instance (intractability). Particularly, our simplifications
break the complexity barrier between the second level of the Polynomial Hierarchy and the
first level by means of reductions that work efficiently for instances with small backdoors.
Further, we elaborate upon a detailed comparison where we compare the size of certain
types of backdoors with each other. We show that backdoors can serve as a unifying
framework for restrictions that have been identified in the literature under which Asp
problems significantly simplify and become tractable or NP-complete.
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Kurzfassung

Antwortmengen-Programmierung (Asp) ist ein zunehmend populäres deklarative Pro-
grammierkonzept, welches die Modellierung von Problemen mit Hilfe logischer Programme
erlaubt. Logische Programme bestehen aus Atomen, Regeln und Bedingungen, ihre Lö-
sungen werden Antwortmengen genannt. Viele Probleme der künstlichen Intelligenz, wie
beispielsweise nicht-monotones Schließen, können direkt in Asp formuliert werden. In
dieser Arbeit beschäftigen wir uns vorrangig mit Schlussfolgerungsproblemen von Asp,
beispielsweise die Fragestellung ob ein Programm mindestens eine Antwortmenge besitzt
oder ob ein vorgegebenes Atom in mindestens einer Antwortmenge enthalten ist. Zentraler
Gegenstand der gesamten Dissertation sind sogenannte aussagenlogische, disjunktive
Programme.

Die meisten Asp-Probleme sind schwer zu lösen, in der Komplexitätstheorie sind
diese Probleme bekannt als vollständig für die zweite Stufe der polynomiellen Hierarchie.
In dieser Arbeit lösen wir diese schweren Probleme mit Hilfe von sogenannten Hintertü-
ren (Backdoors), die sich in Probleminstanzen finden lassen. Dabei kann eine günstige
Hintertür für das Schlussfolgern als eine geschickte Abkürzung durch den Lösungsraum
angesehen werden, die es ermöglicht das Problem in der Praxis schnell zu lösen. Die
Größe der kleinsten Hintertür liefert uns darüber hinaus ein theoretisches Maß für die
Schwierigkeit oder Einfachheit einer Probleminstanz. Das Grundprinzip einer Hinter-
tür wurde bereits vielfältig in theoretischen Untersuchungen für das aussagenlogischen
Erfüllbarkeitsproblem und das Bedingungserfüllungsproblem verwendet.

In dieser Arbeit zeigen wir, dass das Prinzip einer Hintertür erfolgreich auf Asp über-
tragen werden kann. Wir entwickeln eine umfassende Theorie für Asp-Hintertüren. Wir
führen eine detaillierte asymptotische Komplexitätsanalyse durch, die Asp-Hintertüren
mit einbezieht. Wir stellen neue Algorithmen vor, mit denen man kleine Hintertüren
in Probleminstanzen erkennen und ausnutzen kann. Unsere Algorithmen erlauben es
Probleminstanzen, die eine kleiner Hintertür besitzen, schnell zu lösen oder signifikant zu
vereinfachen. Genauer, gewisse Hintertüren erlauben es uns Schlussfolgerungsprobleme
von Asp effizient für Probleminstanzen, die eine kleine Hintertür besitzen, zu lösen
(Parametrisierbarkeit); andere Hintertüren erlauben es uns dagegen Probleminstanzen,
die eine kleine Hintertür besitzen, signifikant zu vereinfachen (komplexitätsbarrierebre-
chende Reduktionen); wiederum andere Hintertüren können aus theoretischer Sicht nicht
genutzt werden, um Probleminstanzen effizient zu lösen oder zu vereinfachen (Schwie-
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rigkeit). Unsere komplexitätsbarrierebrechende Reduktionen liefern insbesondere für
Probleminstanzen, die eine kleiner Hintertür besitzen, einen Ansatz die Grenze zwischen
der zweiten Stufe der polynomiellen Hierarchy und der ersten Stufe zu durchbrechen und
die betrachteten Probleme mit etablierten Methoden effektiver zu lösen. Darüber hinaus
erarbeiten wir einen detaillierten Vergleich, in dem wir die Größe verschiedener Arten
von Hintertüren miteinander in Beziehung setzen. Wir zeigen, dass das Prinzip einer
Hintertür als vereinheitlichendes System für aus der Literatur bekannte Restriktionen,
unter denen Asp-Probleme signifikant vereinfacht werden können, dienen kann.
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CHAPTER 1
Preface

1.1 Motivation

Answer set programming (Asp) is an increasingly popular framework for declarative
programming [MT99; Nie99; Geb+12]. Asp admits the description of problems by means
of rules and constraints that form a logic program. Solutions to the program are so-called
stable models or answer sets. Many important problems in artificial intelligence and
reasoning can be represented in terms of Asp, i.e., the search for answer sets of logic
programs. Throughout the thesis we consider so-called disjunctive programs. Various
Asp solvers (see e.g., [Geb+11c; Leo+06]) have been designed and used to solve large
industrial applications, e.g., social networks [JSS12], match making [Geb+13b], planning
at a seaport [Ric+12], optimization of packaging of Linux distributions [Geb+11b].
Moreover, recent Asp competitions [Den+09; CIR14; Alv+13] have demonstrated that
modern solvers work efficiently on a wide variety of instances.

However, computational problems for disjunctive propositional Asp (such as deciding
whether a program has a solution, or whether a certain atom is contained in at least one
or in all solutions) are complete for the second level of the Polynomial Hierarchy [EG95];
thus, propositional Asp problems are “harder than NP” and have a higher worst-case
complexity than Csp and Sat. In the literature, several restrictions have been identified
that make Asp tractable, most prominently the Horn fragment and the stratified
fragment [GL88; ABW88; BD94].

Unfortunately, there is little theoretical knowledge why modern solvers work efficiently
on many real-world instances (see e.g., [Var14] for Sat), but it is widely believed that
they exploit the presence of a “hidden structure” (see e.g., [Bie+09]) which is usually
accomplished by means of various solving techniques including decision heuristics. A vari-
ety of research results have been established to improve on the theoretical understanding
of the effectiveness of modern Sat solvers, e.g., [WGS03a; WGS03b; Ans+08; Gom+08;
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1. Preface

Bie+09; PD11; AFT11; GS12b]. However, in the field of Asp only a few theoretical
results, in particular in computational complexity [JPW09; GPW10; Pic+14], have been
carried out to diminish the huge gap between efficiency in practical solving and worst
case bounds of classical complexity theory.

1.2 Methodology and Research Questions

In this thesis we exploit hidden structure in terms of backdoors in problem instances,
to establish a more fine granted analysis of the main reasoning problems of disjunctive
propositional Asp in dependency of the existing structure. The notion of a backdoor
makes the vague notion of a hidden structure theoretically more precise. The idea is
the following: Quite often we can solve a computationally hard problem efficiently when
we restrict the input to a certain subclass of the originally allowed input. If we can
identify a backdoor into such a subclass (target class) and exploit the backdoor, we
can solve the computational problem faster. We usually take a small part of the input
as a backdoor, in the context of Asp, a small set of atoms, which then represents a
“clever reasoning shortcut” through the search space. The size of the backdoor can
be seen as a distance measure that indicates how far the instance is from the target
class. Backdoors were originally introduced by Williams, Gomes, and Selman [WGS03a;
WGS03b] as a method for the theoretical analysis of decision heuristics in propositional
satisfiability (cf. for a recent survey [GS12b]). Since then, backdoors have also been used
in theoretical investigations in constraint satisfaction [GS08], abductive reasoning [PRS13],
argumentation [DOS12], and quantified Boolean formulas [SS09a].

Exemplarily, we consider the propositional satisfiability problem (Sat). The problem
is to decide whether a (propositional) formula is satisfiable. For a class C of formulas and
a formula F , membership refers to the check whether F belongs to C. We take a class C of
formulas where membership and satisfiability are decidable in polynomial time, e.g., Horn
formulas. Then, a set X of variables of a formula F is a backdoor into C if all formulas,
that can be obtained from F by assigning the truth values 0 and 1 to the variables in X,
yield simplified formulas which belong to the class C. Once we have found a backdoor X,
the formula F can be evaluated by considering all 2|X| truth assignments to the variables
in X. A main research interest in this thesis is to adapt the backdoor approach to the
domain of Asp which seems most reasonable as backdoors have successfully been used to
theoretically analyze the performance of Sat algorithms [WGS03a] and Asp and Sat
are closely related (see e.g., [BD94; Fag94; LZ04a; LZ03; Jan06]). Backdoors allow us
to develop exact algorithms which work efficiently for real-world instances with small
backdoors. Since the backdoor approach is only useful on instances that have small
backdoors and where we can find the backdoors significantly faster than by brute force
search, we are also interested in potential target classes and the problem of determining
backdoors efficiently. Another main research interest of this thesis is to exploit backdoors
for problems in answer set programming beyond NP without making the problem itself
tractable.

2



1.3. Contribution

Unfortunately, classical complexity theory is not very useful to formally analyze
Asp reasoning problems depending on certain backdoors of problem instances. A main
reason is that classical complexity considers only the amount of a resource (e.g., time or
space) in a function of the size of the input instance and does not distinguish whether
an instance has a certain (hidden) structure. Therefore, we use for our asymptotic
complexity analysis the framework of Parameterized Complexity [DF13], which takes
the input size of an instance along with the structural properties (the parameter) of
the input instance into account. A main concept of parameterized complexity theory is
fixed-parameter tractability, which relaxes classical polynomial-time tractability in such a
way that all non-polynomial parts depend only on the size of the parameter and not on
the size of the input. It offers a framework for a more detailed theoretical analysis of the
worst-case complexity of algorithms on real-world instances including hard algorithmic
performance guarantees. Moreover, it explains gaps between classical theory and practice
if the parameter is comparatively small.

1.3 Contribution

Our main contributions can be summarized as follows:

1. We develop a rigorous theory of backdoors for answer set programming (Theo-
rem 3.12). We show that the concept of backdoors can be fruitfully adapted for this
setting and that backdoors can serve as a unifying framework that accommodates
several tractable restrictions of propositional Asp known from the literature.

2. We apply parameterized complexity theory for reasoning problems beyond NP and
establish a fixed-parameter tractable reduction that reduces disjunctive Asp to
normal Asp (Theorem 9.1); in other words, a reduction from the second level of
the Polynomial Hierarchy to the first level (complexity barrier breaking reductions),
using the size of a smallest backdoor into a normal program as the parameter.

More specifically, we provide the following novel contributions (after each chapter outline,
we indicate where the results have been published):

1. In Chapter 3 we develop definitions and concepts for answer set programming
backdoors. We point out major differences to propositional satisfiability. We
introduce a backdoor approach for answer set programming, which consists of the
steps backdoor detection and backdoor evaluation. We show that the most important
computational problems of propositional answer set programming, including brave
and skeptical reasoning, and even counting all answer sets, are fixed-parameter
tractable when parameterized by the size of the backdoor into a tractable target
class (where we can enumerate the set of all answer sets in polynomial time). [FS11;
FS15b]

3



1. Preface

2. In Chapter 4 we show that detecting backdoors is fixed-parameter tractable for
various target classes, including the class of all Horn programs and classes based on
various notions of acyclicity. This way we make recent results of fixed-parameter
algorithmics accessible to the field of answer set programming. [FS11; Fic12; FS15b]

3. In Chapter 5 we introduce a general method for lifting parameters, which are
defined for disjunction-free (i.e., normal) programs only, to disjunctive programs.
We apply our method to various parameters considered in the literature and obtain
also fixed-parameter tractability under certain conditions. [FS15b]

4. In Chapter 6 we establish preprocessing methods in terms of kernelization for
backdoor detection and establish kernel lower bounds for backdoor evaluation. These
bounds provide worst case guarantees and limits for polynomial-time preprocessing
for the considered problems. [FS15b]

5. In Chapter 7 we provide a more refined view on backdoors by means of search trees
(backdoor trees) which allows us to significantly reduce the exponential blowup in
the parameter in certain cases.

6. In Chapter 8 we compare the backdoor size with respect to various target classes
with each other and with recently studied parameters, and we demonstrate that
several structural restrictions considered in the literature can be stated in terms of
backdoors. [FS15b]

7. In Chapter 9 we consider target classes where the problem of determining an answer
set is already NP-hard. We establish a fixed-parameter tractable (fpt) reduction
that reduces disjunctive Asp to Qbf-Sat where the universally quantified variables
are bounded by the size of the backdoor which in turn can be fpt-reduced to Sat.
In other words, we take advantage of the distance of a disjunctive program from
being normal and we develop a reduction from the second level of the Polynomial
Hierarchy to the first level (complexity barrier breaking reductions). This however,
does not provide a reduction of the Asp reasoning problems for disjunctive logic
programs into normal Asp in polynomial time, unless the (unlikely) collapse of the
Polynomial Hierarchy. [FS13; FS15a]

8. In Chapter 10 we present some first experimental results where we consider the
size of backdoors into Horn programs, normal programs, or acyclic programs based
on acyclicity for typical benchmark instances (including structured and random
programs of varied density). We also sketch ideas how backdoors could be used
within a practical setting, in particular heuristics of an Asp solver. [FS11; FS13;
FS15b; FS15a]

We conclude each chapter with a background on concepts, references, related work,
insights and conclusions. The remaining chapters are organized as follows: In Chapter 2
we provide basic definitions, notations, and basic concepts used throughout this thesis.

4



1.4. Publications

We briefly introduce the reader to parameterized complexity, propositional satisfiability,
answer set programming, and quantified Boolean formulas which are the main frameworks
and problems of interest. In Chapter 11 we summarize the results, contextualize our
contribution more broadly, and outline future research topics.

1.4 Publications

The following publications provide the basis for this thesis:

[FS15b] Johannes K. Fichte and Stefan Szeider. Backdoors to tractable answer-set program-
ming. Artificial Intelligence, 220(0):64–103, 2015. ISSN 0004-3702.
Extended and updated version of a paper that appeared in Proceedings of the 22nd
International Conference on Artificial Intelligence (IJCAI’11).

[FS15a] Johannes K. Fichte and Stefan Szeider. Backdoors to normality for disjunctive
logic programs. 2015. Submitted.
Extended and updated version of a paper that appeared in Proceedings of the 27th
AAAI Conference on Artificial Intelligence (AAAI’13).

These publications combine and extend earlier work presented at conferences.

[FS11] Johannes K. Fichte and Stefan Szeider. Backdoors to tractable answer-set program-
ming. In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI’11), pages 863—868, Barcelona, Catalonia, Spain,
July 2011. AAAI Press/IJCAI.

[Fic12] Johannes K. Fichte. The good, the bad, and the odd: Cycles in answer-set
programs. In Daniel Lassiter and Marija Slavkovik, editors, Proceedings of the
23rd European Summer School in Logic, Language and Information (ESSLLI’11)
and in New Directions in Logic, Language and Computation (ESSLLI’10 and
ESSLLI’11 Student Sessions, Selected Papers Series), volume 7415 of Lecture Notes
in Computer Science, pages 78–90. Springer Verlag, 2012. ISBN 978-3-642-31466-7.

[FS12] Johannes K. Fichte and Stefan Szeider. Backdoors to normality for disjunctive logic
programs. Proceedings of the 5th International Workshop Answer Set Programming
and Other Computing Paradigms (ASPOCP’12), CoRR:abs/cs/1301.1391v2:99–114,
September 2012. Preliminary version of the AAAI’13 paper below.

[FS13] Johannes K. Fichte and Stefan Szeider. Backdoors to normality for disjunctive
logic programs. In Marie des Jardins and Michael Littman, editors, Proceedings
of the 27th AAAI Conference on Artificial Intelligence (AAAI’13), pages 320–327,
Bellevue, WA, USA, July 2013. The AAAI Press. ISBN 978-1-57735-615-8.
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The author has also presented summaries of is research at the following doctoral consor-
tiums:

[Fic13a] Johannes K. Fichte. Backdoors to tractability of answer-set programming. In Peter
McBurney and Ayanna Howard, editors, Proceedings of the 27th AAAI Confer-
ence on Artificial Intelligence (Proceedings of the 18th AAAI-SIGART Doctoral
Consortium) (AAAI DC’13), pages 1662—1663, 2013.

[Fic13b] Johannes K. Fichte. Backdoors to tractability of answer-set programming. In
Martin Gebser and Marco Gavanelli, editors, 9th ICLP Doctoral Consortium (ICLP
DC) — ICLP Technical Communications online supplement of Theory and Practice
of Logic Programming (TPLP), volume 13, pages 1–10, 2013.

The author is a coauthor of the following publications which are not part of this thesis:

[AFT11] Albert Atserias, Johannes K. Fichte, and Marc Thurley. Clause-learning algorithms
with many restarts and bounded-width resolution. J. Artif. Intell. Res., 40:353–373,
2011. Extended and updated version of a paper that appeared in the Proceedings
of the 12th International Conference on Theory and Applications of Satisfiability
Testing (SAT’09).

[FTW15] Johannes K. Fichte, Mirosław Truszczyński, Stefan Woltran. Dual-normal programs
– The forgotten class. Theory Pract. Log. Program.. 2015. Proceedings of the 31st
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CHAPTER 2
Preliminaries

In this chapter we give definitions and abbreviations that are used throughout the thesis.
At the end of each section we provide some background on concepts, references, and
related work. We start with an introduction to answer set programming in Section 2.1,
followed by an introduction to classical complexity theory in Section 2.3 and parameterized
complexity theory in Section 2.4. Finally, we present in Section 2.5 basic graph theoretical
terminology including some subtle points that are important for the thesis.

2.1 Answer Set Programming
We consider a universe U of propositional atoms. A literal is an atom a ∈ U or its
negation ¬a. A disjunctive logic program (or simply a program) P is a set of rules of the
form

a1 ∨ . . . ∨ al ← b1, . . . , bn,¬c1, . . . ,¬cm

where a1, . . . , al, b1, . . . , bn, c1, . . . , cm are atoms and l, n,m are non-negative integers. We
write H(r) = {a1, . . . , al} (the head of r), B+(r) = {b1, . . . , bn} (the positive body of r),
and B−(r) = {c1, . . . , cm} (the negative body of r). We denote the sets of atoms occurring
in a rule r or in a program P by at(r) = H(r) ∪B+(r) ∪B−(r) and at(P ) =

⋃
r∈P at(r),

respectively. We denote the number of rules of P by |P | = |{ r : r ∈ P }|. The size ‖P‖
of a program P is defined as

∑
r∈P |H(r)|+ |B+(r)|+ |B−(r)|.

A rule r is positive (basic/negation-free) if B−(r) = ∅, r is normal if |H(r)| ≤ 1,
r is a constraint (integrity rule) if |H(r)| = 0, r is constraint-free if |H(r)| > 0, r is
Horn if it is positive and normal or a constraint, r is definite Horn if it is Horn and
constraint-free, and r is tautological if B+(r) ∩ (H(r) ∪B−(r)) 6= ∅, and non-tautological
if it is not tautological. We say that a program has a certain property if all its rules
have the property. Horn refers to the class of all Horn programs. We denote the class

7



2. Preliminaries

of all normal programs by Normal. Let P and P ′ be programs. We say that P ′ is a
subprogram of P (in symbols P ′ ⊆ P ) if for each rule r′ ∈ P ′ there is some rule r ∈ P with
H(r′) ⊆ H(r), B+(r′) ⊆ B+(r), B−(r′) ⊆ B−(r). Let P ∈ Horn, we write Constr(P )
for the set of constrains of P and DH(P ) = P \ Constr(P ).

A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩ M 6= ∅ or B+(r) \M 6= ∅.
M is a model of P if it satisfies all rules of P . The Gelfond-Lifschitz (GL) reduct of a
program P under a setM of atoms is the program PM obtained from P by first removing
all rules r with B−(r) ∩M 6= ∅ and then removing all ¬z where z ∈ B−(r) from the
remaining rules r [GL91]. M is an answer set (or stable model) of a program P if M is
a minimal model of PM . In other words, we consider a subset M of atoms of P as a
“candidate” for an answer set. By default we interpret all atoms inM as “positive literals”
and all others as “negative literals”. The GL reduct establishes a semantics which threats
the negative body of a rule in such a way that the positive literals naturally behave
as exceptions for the implication, e.g., the rule a ← b,¬c reads as b implies a unless c
belongs to M . The negative literals that occur in negative bodies of a rule have no effect
on the rule (negative atoms are simply removed to construct PM ). The positive literals
that occur in a literal of the negative body of a rule, however, effect the entire rule as an
occurring exception (the entire rule is removed to construct PM ). M is an answer set if
M is a minimal model after considering exceptions. We denote by AS(P ) the set of all
answer sets of P .

Example 2.1. Consider the disjunctive program

P =


d ← a, e; a ← d,¬b,¬c; e ∨ c ← f ;
f ← d, c; c ← f, e,¬b; c ← d;
b ← c; f

 .
The set M = {b, c, f} is an answer set of P , since

PM =


d ← a, e; e ∨ c ← f ;
f ← d, c; c ← d;
b ← c; f


and the minimal models of PM are {b, c, f} and {e, f}. a

Example 2.2. Consider another disjunctive program

R =


a ∨ c ← b; b ← c,¬g; c ← a;
b ∨ c ← e; h ∨ i ← g,¬c; a ∨ b ;
g ← ¬i; c

 .
The set N = {b, c, g} is an answer set of R since

RN =


a ∨ c ← b; c ← a;
b ∨ c ← e; a ∨ b ;
g; c


and the minimal models of RN are {b, c, g} and {a, c, g}. a

8



2.1. Answer Set Programming

In the following, we restrict ourselves for simplicity of exposition to programs that
do not contain any tautological rules. This restriction is not significant as tautological
rules can be omitted from a program without changing its answer sets [BD98], i.e.,
AS(P ) = AS(P ′) where P ′ is a program obtained from P ′ by removing all tautological
rules [BD98; Eit+04]. In one case we allow for tautological rules and state that explicitly
(Proposition 4.15). Moreover, we generally assume that programs do not contain any
rules r where H(r) ∩B−(r) 6= ∅ since one can simply remove from such rules the head
atoms in H(r) ∩ B−(r) without effecting the answer sets. That is, AS(P ) = AS(P ′)
where P ′ is a program obtained from P ′ by setting H(r) := H(r) \B−(r) for every rule r
where H(r) ∩B−(r) 6= ∅ [Eit+04].

It is well known that normal Horn programs have a unique answer set or no answer
set and that this set can be found in linear time. Van Emden and Kowalski [VK76]
have shown that every constraint-free Horn program has a unique minimal model.
The Emden-Kowalski operator of a program P and a subset A of atoms of P is the
set TP (A) = { a : a ∈ H(r), B+(r) ⊆ A, r ∈ P }. The least model LM(P ) is the least
fixed point of TP (A) [VK76]. Note that every definite Horn program P has a unique
minimal model which equals the least model LM(P ) [GL88]. Dowling and Gallier [DG84]
have established a linear-time algorithm for testing the satisfiability of propositional
Horn formulas which easily extends to Horn programs. In the following, we state the
well-known linear-time result.

Lemma 2.1. Every Horn program has at most one minimal model which can be found
in linear time.

Asp Problems

We consider the following fundamental Asp problems.

Checking
Given: A program P and a set M ⊆ at(P ).
Task: Decide whether M is an answer set of P .

Consistency
Given: A program P .
Task: Decide whether P has an answer set.

Brave Reasoning
Given: A program P and an atom a ∈ at(P ).
Task: Decide whether a belongs to some answer set of P .

Skeptical Reasoning
Given: A program P and an atom a ∈ at(P ).
Task: Decide whether a belongs to all answer sets of P .

9



2. Preliminaries

Counting
Given: A program P .
Task: Compute the number of answer sets of P .

Enum
Given: A program P .
Task: List all answer sets of P .

We denote by AspReason the family of the reasoning problems Checking, Consis-
tency, Brave Reasoning, and Skeptical Reasoning. We denote by AspFull the
family of all the problems defined above. AspReason consists of decision problems, and
AspFull adds to it a counting and an enumeration problem.

Background and Related Work

For an extensive introduction to answer set programming we refer to other
sources [Geb+12; BET11; EIK09; Bar03; MT99]. Various definitions of answer set
programming have been considered by Lifschitz [Lif10].

Answer set programming has its roots in logic programming such as Prolog [CR93],
which attempts to develop a programming language where human knowledge is declara-
tively expressed by means of mathematical logic. There questions are posed in terms
of queries to a system that executes the given program. A succeeding query yields an
instantiation of the variables from which the solution of the query is extracted. Apt, Blair,
and Walker [ABW88] and Gelder [Gel89] have established concepts for logic programs to
handle exceptions and incomplete information in form of negations in the rule bodies
without certain types of cycles in the graph representation of the program (see stratified
programs in Section 4.2). Gelfond and Lifschitz [GL88] have proposed the stable model
semantics for logic programming with negation and extended negation to non-stratified
programs. The seemingly natural but, at the time, fundamentally novel condition of a
stable model is minimality with respect to the GL reduct (see above) that is obtained
from a given program by applying the current “knowledge” to negations. Since the
stable model semantics is based on models and additional properties, a common solver
obtains a solution by computing stable models that satisfy the program, in contrast
to Prolog where the programming system interprets the program and extracts a so-
lution from a successful run of the program. The stable model semantics forms the
basis of answer set programming. The term answer set has originally been established
by Gelfond and Lifschitz [GL91] to distinguish stable model semantics extended by
classical negation from stable model semantics. Note that a program which additionally
contains classical negation can be transformed into a program without classical negation
(see, e.g., [EIK09; Geb+12]). The term answer set programming itself was coined by
Marek and Truszczyński [MT99], Lifschitz [Lif99], and Niemelä [Nie99].
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An aspect of answer set programming, which has contributed to its popularity as
a declarative problem solving language, is the rich modelling language which includes
extended and first-order programs. Extended programs contain extensions to propositional
programs such as choice rules, cardinality rules, and weighted constraints [NSS99]. First-
order answer set programs (also known as non-ground programs) allow the use of a
restricted form of first-order variables. We would like to point out that we restrict ourselves
in this thesis strictly to propositional answer set programming. However, extended rules
(choice, cardinality, weighted constraints) can be transformed into normal rules [NSS99;
JN11; BGJ14] and first-order variables are usually systematically instantiated by means
of grounding techniques within common Asp solvers and hence a program that contains
first-order variables is usually transformed into a program that contains only propositional
variables [AHV95; GST07; Syr09]. Hence, the techniques presented in this thesis also
apply when solving extended and first-order programs after transforming a given program
into a propositional program.

Over the last years, various Asp solvers have been developed and tremendous gains
have been made in the efficiency of solvers crucially conducted by making various
techniques from Sat [SNS02; LZ04b; Leo+06; GKS12b] and Csp [Lie14] available to
Asp solving. Many solvers utilize Sat solvers as black boxes or search techniques from
Sat. There are solvers that deal with one or more fragments of disjunctive programs
(normal, tight, or head-cycle-free), e.g., Smodels [SNS02; Sim08], Assat [LZ04b; Zha04],
Cmodels2 [GLM06], and the original version of Clasp [Geb+11c; Kau+15]. There are also
solvers that deal with the full set of disjunctive programs, e.g., Clasp [Dre+08a; GKS12b;
GKS13; Kau+15], Cmodels3 [Lie05; Lie11], DLV [Leo+06; DLV12], GnT [Jan+06; Jan13b],
and WASP [Alv+13]. Compilations to other problem domains and respective solvers have
been considered for normal programs, e.g., propositional satisfiability [JN11; Jan13d],
mixed integer programming [LJN12; Jan13a], and satisfiability modulo theories [JNS09;
Jan13c; GJR14; Jan14].

Asp solvers and solving procedures have been considered from an abstract perspective.
Lierler and Truszczyński [LT11] have characterized the core techniques of the Asp solvers
Cmodels and Clasp (when restricted to normal programs) by means of transition systems
and compared them to a representation of a solver for another declarative programming
and knowledge representation approach, more specifically, the solver MiniSAT(ID)1. Fur-
ther, they have established that the abstract representations of Clasp and MiniSAT(ID)
are identical. Brochenin, Lierler, and Maratea [BLM14] have extended the transition
system based approach to characterize Asp solvers that deal with the full set of dis-
junctive programs. Gebser and Schaub [GS13] have used tableaux-based proof systems
to characterize solving techniques and strategies of Asp solvers by means of tableaux
systems, compared the tableaux systems with each other, and established best-case proof
complexity results. However, backjumping and learning schemes are not considered. Still,
the effectiveness of the solvers is theoretically not well understood. Common solvers

1MiniSAT(ID) [Mar+08] is a solver for the logic PC(ID) logic [Den00], which extends propositional
satisfiability by concepts of generalized inductive definitions.
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use heuristics without non-trivial worst-case performance guarantees. We provide for
the problems in AspFull and AspReason , respectively, theoretical worst-case time bounds
that take certain hidden structures in disjunctive programs into account.

Many important problems of AI and reasoning can be succinctly represented and
have successfully been solved within the Asp framework. Asp has been applied to
several large industrial applications, e.g., match making [Geb+13b], planning [Ric+12;
GKS12a; Pon+12], optimization of packaging of Linux distributions [Geb+11b], optimiza-
tion [And+12; Geb+11b], robotics [APE12], scheduling [Ric+12], semantic web [Eit+12],
social networks [JSS12], verification [Fal+12], and several other fields.

2.2 Propositional Logic and Quantified Boolean Formulas
We provide some notions from propositional logic and give basic background on quantified
Boolean formulas. We consider a universe U of propositional variables. Note that we
usually say variable instead of atom in the context of formulas. A literal is a variable x or
its negation ¬x. A clause is a finite set of literals, interpreted as the disjunction of these
literals. A propositional formula in conjunctive normal form (CNF) is a finite set of clauses,
interpreted as the conjunction of its clauses. A truth assignment (or simply an assignment)
is a mapping τ : X → {0, 1} defined for a set X ⊆ U of variables (atoms). For x ∈ X, we
define τ(¬x) = 1− τ(x). By 2X we denote the set of all truth assignments τ : X → {0, 1}.
By τ−1(b) we denote the preimage τ−1(b) := { a : a ∈ X, τ(a) = b } of the truth
assignment τ for some truth value b ∈ {0, 1}. The truth assignment reduct of a CNF
formula F with respect to τ ∈ 2X is the CNF formula Fτ obtained from F by first
removing all clauses c that contain a literal set to 1 by τ , and then removing from the
remaining clauses all literals set to 0 by τ . A truth assignment τ satisfies a given CNF
formula F if Fτ = ∅. Moreover, F is satisfiable if it is satisfied by some truth assignment τ .
The definitions lead to the following fundamental problems of propositional logic:

Sat (propositional satisfiability)
Given: A propositional formula F .
Task: Decide whether F is satisfiable.

UnSat (propositional unsatisfiability)
Given: A propositional formula F .
Task: Decide whether F is unsatisfiable.

A (prenex) quantified Boolean formula Q is a formula of the form

Q1V1.Q2V2. . . . QmVm.F

where Qi ∈ {∀, ∃}, Vi are disjoint sets of propositional variables, and F is a propositional
formula that contains only the variables in

⋃m
i=1 Vi. We call the set Vi of variables a
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quantifier block and the quantifier-free part F the matrix of Q. We say that Q is in
(prenex) conjunctive normal form if its matrix is in conjunctive normal form (PCNF). The
truth (evaluation) of quantified Boolean formulas is defined in the standard way [KL99].
These definitions lead to the following problem:

Qbf-Sat (Evaluation Problem of Quantified Boolean Formulas)
Given: A quantified Boolean formula Q.
Task: Decide whether Q evaluates to true.

Well known fragments of Qbf-Sat are ∀∃-Qbf-Sat and ∃∀-Qbf-Sat where the
input is restricted to quantified Boolean formulas of the form ∀V1.∃V2.F and ∃V1.∀V2.F ,
respectively, where F is a propositional formula that contains only the variables in V1∪V2.

Background and Related Work

For a comprehensive introduction and more detailed information we refer to other
sources [KL99; Bie+09]. Sat and Qbf-Sat have been intensively studied as theoretical
problems [DP60; DLL62; Coo71; Sav70] and have been of strong practical interest since
solving techniques significantly improved [MS99; ZM02; Mar99; LEV13] the effectiveness
of modern Sat and Qbf-Sat solvers. There has been wide research on the theoretical
understanding of the effectiveness of modern Sat solving, e.g., from the perspective
of computational and proof complexity [WGS03a; WGS03b; Nor06; Ans+08; BN08;
Gom+08; Bie+09; PD11; AFT11; GS12b; Jär+12; BS14; Nor14; Fil+14], to understand
the effectiveness of solving techniques [KSM11], and to understand correlations between
characteristics of formulas and solving time [Hut+14; Ans+14; New+14]. However, there
is still no clear understanding regarding the connection between theory and practice, in
particular, why heuristics in modern solvers are so effective in practice [Var14].

Propositional Asp and propositional satisfiability are closely related. As mentioned in
the previous section, a wide variety of problem solving techniques from Sat are utilized
in Asp solving. However, the techniques have additionally been enhanced to handle the
specific semantics of Asp. A key difference from the semantic point of view is that an
atom in an Asp model needs a justification according to the definition of a stable model
or, in other words, an atom is considered to be false unless otherwise proved.

Transformations of fragments of disjunctive programs into Sat have been considered
by Ben-Eliyahu and Dechter [BD94] and Fages [Fag94]. Ben-Eliyahu and Dechter [BD94]
have introduced head-cycle-free programs where the problems in AspReason are NP-
complete and co-NP-complete, respectively. Fages [Fag94] has shown that the answer
sets of a tight program (programs where certain cycles on a graph representation of the
given program are forbidden) are exactly the models of Clark’s completion [Cla78]. The
definition of tight programs has been generalized to disjunctive programs by means of
the concept of loop formulas by Lee and Lifschitz [LL03]. Gebser and Schaub [GS05]
have introduced elementary loops, which improve loop formulas for normal programs.
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Gebser, Lee, and Lierler [GLL11] have extended elementary loops to disjunctive programs,
considered connections between maximal elementary loops and minimal unfounded sets,
and introduced head-elementary-loop-free programs and a transformation of these pro-
grams into normal programs. Ji et al. [Ji+14] have established for normal programs
an alternative formulation for elementary loops and the concept of proper loops, which
improves the concept of elementary loops. Then, Ji, Wan, and Xiao [JWX15] have
presented a relaxed notion for elementary and proper loops for disjunctive programs. Lin
and Zhao [LZ03] have established a transformation of normal programs into propositional
formulas that is based on the characterization of inherent tightness2 and may produce
additional new variables. Janhunen [Jan06] has suggested a transformation from normal
programs into propositional formulas. Janhunen et al. [Jan+06] have given a transfor-
mation from disjunctive programs into propositional formulas for programs where the
number of disjunctions in the heads of rules is bounded. The transformation provides a
Sat encoding that consists of a guess and check approach. Transformations into related
problem domains have consequently been designed, e.g., Sat modulo theories [JNS09;
JLN11; GJR14] and mixed integer linear programming [LJN12].

The transformations mentioned in the previous paragraph have also been considered
under the aspect of compactness and modularity, in particular, to analyze the expres-
siveness of answer set programming from the modelling perspective. A transformation t
is called modular if t(F ) = P and t(F ′) = P ′, then t(F ∪ F ′) = P ∪ P ′ where F and F ′
are propositional CNF formulas (programs) and P and P ′ are the resulting programs
(formulas). Niemelä [Nie99] has presented a modular transformation which transforms
propositional formulas into normal programs and introduces a linear number of fresh
atoms and rules. The transformation by Ben-Eliyahu and Dechter [BD94], which trans-
forms normal programs into propositional formulas, produces a quadratic number of fresh
atoms and a cubic number of fresh rules. The transformation by Lin and Zhao [LZ04a]
introduces no fresh atom but in worst case an exponential number of new rules. Another
transformation by Lin and Zhao [LZ03] is modular and introduces a quadratic number of
fresh atoms and rules. The transformation by Janhunen [Jan06] produces a sub-quadratic
number of fresh atoms. However, it is currently an open question whether there is
also a linear transformation of normal programs into propositional formulas. Further,
Lifschitz and Razborov [LR06] have established that under the widely believed complexity
theoretical assumption P * NC1/poly [Pap94; AB09] either the transformation needs to
introduce new atoms or the size of the resulting propositional formula will be significantly
larger than the input program. We will discuss the computational complexity of the
main Asp reasoning problems in the following Sections 2.3 and 2.4.

2A set X of atoms is inherent tight in a program P if there is a tight subprogram P ′ of P where the
set X is supported by P ′.
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2.3 Classical Computational Complexity

We assume that the reader is familiar with the main concepts of computational complexity
theory, in particular, algorithms, (decision) problems, and complexity classes [Pap94;
AB09]. In the following, we briefly recall some notations and definitions.

We use the asymptotic notation O(·) and the big omega notation Ω(·) in the standard
way. Let Σ and Σ′ be some finite alphabets. We call I ∈ Σ∗ an instance and ‖I‖ denotes
the size of I. Let L ⊆ Σ∗ and L′ ⊆ Σ′∗ be problems. We sometimes call an instance I ∈ L
a yes-instance and an instance I /∈ L a no-instance. A (non-deterministic) polynomial-
time Turing reduction from L to L′ is an (non-deterministic) algorithm that decides in
time O(‖I‖c) for some constant c whether I ∈ L using L′ as an oracle. Polynomial-time
Turing reductions are also known as Cook reductions. Let L ⊆ Σ∗ and L′ ⊆ Σ′∗ be
decision problems. A polynomial-time many-to-one reduction (or simply polynomial-time
reduction) from L to L′ is a function r : Σ∗ → Σ′∗ such that for all I ∈ Σ∗ we have I ∈ L
if and only if r(I) ∈ L′ and r is computable in time O(‖I‖c) for some constant c. In
other words, a polynomial-time many-to-one reduction transforms instances of decision
problem L into instances of decision problem L′ in polynomial time. Polynomial-time
many-to-one reductions are also known as Karp reductions. Note that such reductions
are in fact stronger than polynomial-time Turing reductions since an oracle can be used
only once considering L′ as an oracle.

A problem L is (non-deterministically) polynomial-time solvable if there exists a
constant c such that we can decide by an (non-deterministic) algorithm whether I ∈ L
in time O(‖I‖c). Such an algorithm is called a (non-deterministic) polynomial-time
algorithm. If L is a decision problem, we identify L with the set of all yes-instances I.

• P is the class of all polynomial-time solvable decision problems.

• NP is the class of all non-deterministically polynomial-time solvable
decision problems.

Let C be a complexity class, e.g., NP. Then co-C denotes the class of all decision
problems whose complement (the same problem with yes and no answers swapped) is
in C. We say that a problem L is C-hard if there is a polynomial-time reduction for
every problem L′ ∈ C to L. If in addition L ∈ C, then L is C-complete. For instance, a
problem is NP-complete if it belongs to NP and all problems in NP have polynomial-
time reductions to it. We are also interested in the Polynomial Hierarchy [SM73;
Sto76; Wra76; Pap94] up to the second level. The Polynomial Hierarchy consists of
complexity classes Σp

i for i ≥ 0 based on the following definitions: Σp
0 := P and

Σp
i+1 = NPΣpi for all i ≥ 0 where NPC denotes the class of all decision problems such

that there is a polynomial-time Turing reduction to any decision problem L ∈ C, i.e., a
decision problem L′ ∈ NPC is non-deterministically polynomial-time solvable using any
problem L ∈ C as an oracle. Moreover, Πp

k := co-Σp
k. Note that NP = Σp

1, co-NP = Πp
1,
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Figure 2.1: Illustration of the Polynomial Hierarchy.

Σp
2 = NPNP, and Πp

2 = co-NPNP. Figure 2.1 illustrates the relationship between the
complexity classes of the Polynomial Hierarchy.

#P is the complexity class consisting of all counting problems associated with decision
problems in NP [Val79]. The (non-uniform) complexity class NP/poly consists of all
problems for which there exists a problem L′ ∈ NP and a function a : N → Σ∗ with
|a(n)| ∈ O(nc) for some constant c such that for all I ∈ Σ∗, I ∈ L if and only if
(I, a(‖I‖)) ∈ L′. In other words, the complexity class NP/poly consists of all problems
that can be solved non-deterministically in non-uniform polynomial time, i.e., by a non-
deterministic polynomial-time algorithm with an additional polynomial-bounded input
that depends only on the length of the input but not on the input itself (advice function).
Note that NP/poly consists of the problems that can be decided by non-deterministic
Boolean circuits of polynomial size. For details on the non-uniform complexity classes,
we refer to other sources [KL80].

Answer Set Programming

The computational complexity of various problems arising in answer set programming
has been the subject of extensive studies. Eiter and Gottlob [EG95] have established
that the main decision problems of disjunctive answer set programming are complete
for the second level of the Polynomial Hierarchy, i.e., Consistency and Brave Rea-
soning are Σp

2-complete and Skeptical Reasoning is Πp
2-complete [EG95]. Checking

is co-NP-complete in general [EG95]. Counting is easily seen to be #P -hard. Several
fragments of programs where Asp problems are non-deterministically polynomial-time
solvable or even polynomial-time solvable have been identified. When the input is re-
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stricted to normal programs Consistency and Brave Reasoning are NP-complete,
Skeptical Reasoning is co-NP-complete [BF91; MT91a], and Checking is polynomial-
time solvable [CL94]. Several fragments of programs where problems in AspFull are
polynomial-time tractable have been identified, e.g., Horn programs [GL88], stratified pro-
grams [ABW88] and programs without even cycles [Zha02]. Lonc and Truszczyński [LT06]
have introduced algorithms and complexity results for finding all stable models of dis-
junctive programs.

Dantsin et al. [Dan+01] have provided a survey for classical complexity of the main
reasoning problems for various semantics of logic programming, including fragments of
propositional answer set programs and first-order answer set programs. Minker [Min93]
has provided an overview on various semantics of non-monotonic logic programming
and its computational complexity including stable models. Truszczyński [Tru11] has
classified the computational complexity of the main Asp reasoning problems, when the
input is restricted to certain classes of programs, in a trichotomy (P, first level, and
second level of PH) similar to dichotomy results in propositional satisfiability (see results
by Schaefer [Sch78]).

Sat and Qbf-Sat

Cook [Coo71] and Levin [Lev73] have established that the Sat problem is NP-complete.
The problem Qbf-Sat is PSPACE3-complete and is therefore believed to be computa-
tionally harder than Sat [KL99; Pap94; SM73; Wra76]. The problem ∃∀-Qbf-Sat is
Σp

2-complete and the complement ∀∃-Qbf-Sat is ΠP
2 -complete [Pap94].

2.4 Parameterized Complexity
Problem instances that originate in practical applications are often structured in a way
that facilitates obtaining a solution relatively fast. Such instances seem to be harder in
theory than they are in practice, in particular, since classical complexity theory mainly
considers worst-case bounds as a function of the size of the input instance. Downey and
Fellows [DF99] introduced in a series of papers parameterized complexity, which also
takes structural properties of problem instances in form of a parameter into account. In
consequence, parameterized complexity offers a framework for a more detailed theoretical
analysis that can be closer to the practical hardness of problems. Since there are many
ways of defining and capturing structure in a problem instance, there are also various
ways to parameterize a problem. A main concept of parameterized complexity theory is
fixed-parameter tractability, which relaxes classical polynomial-time tractability in such a
way that all non-polynomial parts depend only on the size of the parameter and not on
the size of the input.

We briefly give some background on parameterized complexity. Figure 2.2 (right
side) illustrates the Hierarchy of the parameterized complexity classes as defined in the

3PSPACE contains all polynomial-space solvable decision problems. Note that
⋃∞
i=0 Πp

i ⊆ PSPACE.
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Figure 2.2: Illustration of the relationship of parameterized complexity classes. para-C
complexity classes based on the Polynomial Hierarchy (left), which are interesting for
problems that are located beyond NP, and complexity classes up to para-NP and XP
(right), which are interesting for NP-complete problems. n refers to the size of the input
and k to the parameter.

following. For more detailed information we refer to other sources [DF99; DF13; FG06;
GS08; Nie06]. An instance of a parameterized problem L is a pair (I, k) ∈ Σ∗ × N for
some finite alphabet Σ. For an instance (I, k) ∈ Σ∗ × N we call I the main part and k
the parameter . ‖I‖ denotes the size of I. L is fixed-parameter tractable if there exist a
computable function f and a constant c such that we can decide by an algorithm whether
(I, k) ∈ L in time O(f(k)‖I‖c). Such an algorithm is called an fpt-algorithm. If L is a
decision problem, then we identify L with the set of all yes-instances (I, k). FPT is the
class of all fixed-parameter tractable decision problems.

Let L ⊆ Σ∗ × N and L′ ⊆ Σ′∗ × N be two parameterized decision problems for some
finite alphabets Σ and Σ′. An fpt-reduction r from L to L′ is a many-to-one reduction
from Σ∗ × N to Σ′∗ × N such that for all I ∈ Σ∗ we have (I, k) ∈ L if and only if
r(I, k) = (I ′, k′) ∈ L′ such that k′ ≤ g(k) for a fixed computable function g : N→ N and
there is a computable function f and a constant c such that r is computable in time
O(f(k)‖I‖c) [FG06]. Thus, an fpt-reduction is, in particular, an fpt-algorithm. It is easy
to see that the class FPT is closed under fpt-reductions. It is clear for parameterized
problems L1, and L2 that if L1 ∈ FPT and there is an fpt-reduction from L2 to L1, then
L2 ∈ FPT. We would like to note that the theory of fixed-parameter intractability is
based on fpt-reductions [DF99; DF13; FG06].
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The Weft Hierarchy consists of parameterized complexity classes W[1] ⊆W[2] ⊆ · · ·
which are defined as the closure of certain parameterized problems under parameterized
reductions. There is strong theoretical evidence that parameterized problems that are
hard for classes W[i] are not fixed-parameter tractable. A prominent W [2]-complete
problem is Hitting Set [DF99; DF13] defined as follows:

Hitting Set
Given: A family of sets (S, k) where S = {S1, . . . , Sm} and an integer k.
Parameter: The integer k.
Task: Decide whether there exists a set H of size at most k

which intersects with all the Si (H is a hitting set of S).

The class XP of non-uniform polynomial-time tractable problems consists of all param-
eterized decision problems that can be solved in polynomial time if the parameter is
considered constant. That is, (I, k) ∈ L can be decided in time O(‖I‖f(k)) for some
computable function f .

Parameterized complexity theory also offers complexity classes for problems that
lie higher in the polynomial hierarchy. Let C be a classical complexity class, e.g., NP.
The parameterized complexity class para-C is then defined as the class of all param-
eterized problems L ⊆ Σ∗ × N, for some finite alphabet Σ, for which there exist an
alphabet Π, a computable function f : N → Π∗, and a problem P ⊆ Σ∗ × Π∗ such
that P ∈ C and for all instances (x, k) ∈ Σ∗ × N of L we have that (x, k) ∈ L if and
only if (x, f(k)) ∈ P . Intuitively, the class para-C consists of all problems that are in C
after a precomputation that only involves the parameter [FG03]. The class para-NP can
also be defined via non-deterministic fpt-algorithms, i.e., para-NP contains all parame-
terized decision problems L such that (I, k) ∈ L can be decided non-deterministically
in time O(f(k)‖I‖c) for some computable function f and constant c [FG06]. A param-
eterized decision problem is para-NP-complete if it is in NP and NP-complete when
restricted to finitely many parameter values [FG06]. co-para-NP denotes the class of all
parameterized decision problems whose complement (the same problem with yes and
no answers swapped) is in para-NP. Using the concepts and terminology of Flum and
Grohe [FG06], co-para-NP = para-co-NP. Figure 2.2 (left side) illustrates the relationship
between the para-C complexity classes for classes C in the Polynomial Hierarchy.

An example for a para-NP-complete problem is the satisfiability problem, where the
parameter value is ignored (or simply associating with every formula the parameter 0).

Sat
Given: A propositional formula F and an integer k.
Parameter: The integer k.
Task: Is F satisfiable?

Similarly we get a co-para-NP-complete problem.
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UnSat
Given: A propositional formula F and an integer k.
Parameter: The integer k.
Task: Is F unsatisfiable?

Another para-NP-complete problem is the satisfiability problem, where the parameter
is the maximum number of literals in a clause [FG06].

Max-Lits-Sat
Given: A propositional formula F .
Parameter: The maximum number of literals in a clause of F .
Task: Is F satisfiable?

We observe hardness from the fact that the propositional satisfiability problem is
already NP-complete for input formulas that contain at most 3 literals in each clause
(3-CNFs), and hence Max-Lits-Sat is hard for the parameter value 3.

The complexity class para-NP can be seen as an analogue of NP in parameterized
complexity. Since a parameterized decision problem is para-NP-complete if it is in NP
and NP-complete when restricted to finitely many parameter values, the complexity class
para-NP is not very interesting for parameterizations of NP-complete problems [FG06].
However, for parameterizations of problems that are harder than NP (like the main
reasoning problems of propositional disjunctive Asp) para-NP-completeness is a desirable
property as it allows us to exploit the parameter to solve the problem for small parameter
values more efficiently.

An example of a para-ΣP
2 -complete problem is the consistency problem of answer set

programming, which is to decide whether a given disjunctive program P has an answer
set, where the parameter is the maximum number of occurrences of an atom in the
program P [DS14b].

Max-Occurrence-Consistency
Given: A disjunctive program P .
Parameter: The maximum number of occurrences of an atom P .
Task: Does P have an answer set?

Given a parameterized problem L on some finite alphabet Σ. The unparameterized
version of L is the classical problem { I#uk : (I, k) ∈ L } where u denotes an arbitrary
symbol from Σ and # is a new symbol not in Σ.

Background and Related Work

Research on parameterized complexity theory has been initiated by Downey et al. [DFS99;
DF99; DF13] and extended, among others, by Flum and Grohe [FG06], Nieder-
meier [Nie06], and Cygan et al. [Cyg+15]. Various parameters have been suggested, e.g.,
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treewidth [RS84; Bod93], size of the solution, cliquewidth [CO00], size of a smallest back-
door [WGS03a; WGS03b], Boolean width [Adl+10]. Gottlob, Scarcello, and Sideri [GSS02]
have provided fixed-parameter tractability results of several problems in artificial intelli-
gence and non-monotonic reasoning. Gottlob and Szeider [GS08] presented a survey on
parameterized complexity of problems in artificial intelligence, database theory and auto-
mated reasoning. Gaspers and Szeider [GS14] have established results on polynomial-time
preprocessing in terms of kernelization lower bounds for problems in artificial intelligence.
Tools to establish lower bounds for kernel size have been developed by Fortnow and
Santhanam [FS11]. A general theoretical framework to classify parameterized problems on
whether they admit an fpt-reduction to Sat or not has lately been introduced by DeHaan
and Szeider [DS14b].

So far there has been no rigorous study of disjunctive Asp within the framework
of parameterized complexity. However, several results known from the literature can
be stated in terms of parameterized complexity. Some of these results already provide
fixed-parameter tractability. The considered parameters include the number of atoms of
a normal program that occur in negative rule bodies [Ben96], the number of non-Horn
rules of a normal program [Ben96], the size of a smallest feedback vertex set in the
dependency digraph of a normal program [GSS02], the number of cycles of even length
in the dependency digraph of a normal program [LZ04a], the treewidth of the incidence
graph of a normal program [JPW09; Mor+10], and a combination of two parameters: the
length of the longest cycle in the dependency digraph and the treewidth of the interaction
graph of a head-cycle-free program [BD94].

2.5 Graphs

We recall some graph theoretical notations. We consider undirected and directed graphs.
An undirected graph or simply a graph is a pair G = (V,E) where V 6= ∅ is a set of
vertices and E ⊆ {{u, v} ⊆ V : u 6= v } is a set of edges. We denote an edge {u, v} by uv
or vu. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E and an induced
subgraph if additionally for any u, v ∈ V ′ and uv ∈ E also uv ∈ E′. A path of length k
is a graph with k + 1 pairwise distinct vertices v1, . . . , vk+1, and k distinct edges vivi+1
where 1 ≤ i ≤ k (possibly k = 0). A cycle of length k is a graph that consists of k distinct
vertices v1, v2, . . . , vk and k distinct edges v1v2, . . . , vk−1vk, vkv1. Let G = (V,E) be a
graph. G is bipartite if the set V of vertices can be divided into two disjoint sets U and
W such that there is no edge uv ∈ E with u, v ∈ U or u, v ∈ W . G is complete if for
any two vertices u, v ∈ V there is an edge uv ∈ E. G contains a clique on V ′ ⊆ V if the
induced subgraph (V ′, E′) of G is a complete graph. A connected component C of G is an
inclusion-maximal subgraph C = (VC , EC) of G such that for any two vertices u, v ∈ VC
there is a path in C from u to v. We say G is a tree if it is a connected component C = G
and G contains no cycles. We usually call the vertices of a tree nodes.

A directed graph or simply a digraph is a pairG = (V,E) where V 6= ∅ is a set of vertices
and E ⊆ { (u, v) ∈ V × V : u 6= v } is a set of directed edges. A digraph G′ = (V ′, E′)

21



2. Preliminaries

is a subdigraph of G if V ′ ⊆ V and E′ ⊆ E and an induced subdigraph if additionally
for any u, v ∈ V ′ and (u, v) ∈ E also (u, v) ∈ E′. For a vertex v ∈ V we call a
vertex v ∈ {w : (w, u) ∈ E } a predecessor of u and a vertex u ∈ {w : (v, w) ∈ E }
a successor of v. A directed path of length k is a digraph with k + 1 pairwise distinct
vertices v1, . . . , vk+1, and k distinct edges (vi, vi+1) where 1 ≤ i ≤ k (possibly k = 0). A
directed cycle of length k is a digraph that consists of k distinct vertices v1, v2, . . . , vk
and k distinct edges (v1, v2), . . . , (vk−1, vk), (vk, v1).

We sometimes denote a (directed) path or (directed) cycle as a sequence of vertices.
We would like to point out that according to the above definitions, the length of an
undirected cycle is at least 3, whereas the length of a directed cycle is at least 2.

A strongly connected component C of a digraph G = (V,E) is an inclusion-maximal
directed subgraph C = (VC , EC) of G such that for any two vertices u, v ∈ VC there are
paths in C from u to v and from v to u. The strongly connected components of G form
a partition of the set V of vertices, we denote this partition by SCC(G).

An underlying graph of a digraph G = (V,E) is the graph G′ that is obtained by
replacing each edge (u, v) ∈ E with an edge uv. A binary tree T = (V,E, r) consists of
(i) a digraph (V,E) whose underlying graph is a tree, (ii) a designated vertex r which
has no predecessor, and (iii) each vertex v ∈ V has either no or two successors. We call a
vertex v ∈ V node of T , a successor of a node child, the vertex r the root of T , and a
vertex v that has no child a leaf of T .

Background and Related Work

For further basic terminology on graphs and digraphs, we refer to standard texts [Die12;
BM08; BG09].

22



CHAPTER 3
Backdoors

An interesting “hidden structure” in answer set programs are certain atoms that provide
a backdoor into some fixed target class of programs for which the computational problem
under consideration is computationally easier, mostly polynomial-time tractable in
previous work. In this chapter we develop definitions and concepts for answer set
programming backdoors. We show that the most important computational problems of
propositional answer set programming are fixed-parameter tractable when parameterized
by the size of the backdoor into a fixed tractable target class. Sometimes target classes
are also referred to as “islands of tractability” within the classes where problems are
intractable [GS12b]. By means of a backdoor one tries to identify structural hard parts
of a problem instance to reach an island of tractability. Hence, the size of the backdoor
can be seen as a distance measure that indicates how far the instance is from the target
class. When we exploit backdoors to solve a problem we have to find a backdoor of the
given instance (backdoor detection) and then apply the found backdoor to the instance
and determine the solution (backdoor evaluation).

In Section 3.1 we exemplarily consider backdoors for the propositional satisfiability
problem where backdoors originate from [WGS03a; WGS03b]. In Section 3.2 we present
basic concepts like truth assignment reduct, strong backdoors, and deletion backdoors for
answer set programs. Subsequently, we develop a method to solve the main Asp reasoning
problems using backdoors (backdoor evaluation for Asp) in Section 3.3. It turns out
that the evaluation problem is more complicated than for propositional satisfiability.
We show, however, that the most important computational problems of propositional
Asp, including brave and skeptical reasoning, and even counting all answer sets, are
fixed-parameter tractable when parameterized by the size of the backdoor with respect
to various target classes. In Section 3.4 we introduce basic terminology for Asp backdoor
detection. We conclude the chapter with background and related work, a summary of
our contribution, and a discussion. This chapter is based on published work [FS15b].
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3.1 Satisfiability Backdoors

In this section we provide an introduction to the concept of backdoors based on the
propositional satisfiability problem (see e.g., [GS12b]).

The following is obvious from the definitions:

Observation 3.1. Let F be a CNF formula and X a set of atoms. F is satisfiable if
and only if Fτ is satisfiable for at least one truth assignment τ ∈ 2X .

This leads to the definition of a strong backdoor relative to a class C of polynomially
solvable CNF formulas: a set X of atoms is a strong C-backdoor of a CNF formula F if
Fτ ∈ C for all truth assignments τ ∈ 2X . Assume that the satisfiability of formulas F ∈ C
of size ‖F‖ = n can be decided in time O(nc) for some constant c. Then we can decide
the satisfiability of an arbitrary formula F for which we know a strong C-backdoor of
size k in time O(2knc) for some constant c, which is efficient as long as k remains small.

A further variant of backdoors are deletion backdoors defined by removing literals
from a CNF formula. F − X denotes the formula obtained from F by removing all
literals x,¬x for x ∈ X from the clauses of F . Then a set X of atoms is a deletion
C-backdoor of F if F −X ∈ C. In general, deletion C-backdoors are not necessarily strong
C-backdoors. If all subsets of a formula in C also belong to C (C is clause-induced), then
deletion C-backdoors are strong C-backdoors.

Before we can use a backdoor we need to find it first. What we call the backdoor
approach is a process consisting of the following two phases:

• finding a backdoor (backdoor detection) and

• using the backdoor to solve the problem (backdoor evaluation).

For most reasonable target classes C the detection of a strong C-backdoor of size at
most k is NP-hard if k is part of the input. However, as we are interested in finding
small backdoors, it makes sense to parameterize the backdoor search by k and consider
the parameterized complexity of backdoor detection. Indeed, with respect to the classes
of Horn CNF formulas and 2-CNF formulas, the detection of strong backdoors of size at
most k is fixed-parameter tractable [NRS04]. The parameterized complexity of backdoor
detection for many further target classes has been investigated [GS12b].

The purpose of the following sections is to develop a backdoor approach for answer
set programming. It turns out that the evaluation problem is more complicated than for
propositional satisfiability (see Section 3.3). Later in Chapters 4 and 9 we will see that
various target classes for answer set programming require new algorithms for backdoor
detection (see in particular Section 4.2).
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3.2 Backdoors of Answer Set Programs

In order to translate the notion of backdoors to the domain of answer set programming,
we first need to come up with a suitable concept of a reduction with respect to a truth
assignment. The following is a natural definition which generalizes a concept of Gottlob,
Scarcello, and Sideri [GSS02].

Definition 3.2. Let P be a program, X a set of atoms, and τ ∈ 2X . The truth
assignment reduct of P under τ is the logic program Pτ obtained from P by

1. removing all rules r with H(r) ∩ τ−1(1) 6= ∅ or H(r) ⊆ X;

2. removing all rules r with B+(r) ∩ τ−1(0) 6= ∅;

3. removing all rules r with B−(r) ∩ τ−1(1) 6= ∅;

4. removing from the heads and bodies of the remaining rules all literals a,¬a with
a ∈ X.

Definition 3.3. Let C be a class of programs. A set X of atoms is a strong C-backdoor
of a program P if Pτ ∈ C for all truth assignments τ ∈ 2X .

By a minimal strong C-backdoor of a program P we mean a strong C-backdoor of P
that does not properly contain a smaller strong C-backdoor of P ; a smallest strong
C-backdoor of P is one of smallest cardinality.

Example 3.1. Consider program P from Example 2.1. The set {b, c} is a strongHorn-back-
door since all four truth assignment reducts P¬b¬c = Pb=0,c=0 = {d ← a, e; a ←
d; e ← f ; f}, P¬bc = {d ← a, e; f ← d; f}, Pb¬c = {d ← a, e; e ← f ; f}, and
Pbc = {d← a, e; f ← d; f} are in the class Horn. a

Example 3.2. Consider the program R from Example 2.2. The set {b, c, h} is a strong
Normal-backdoor since the truth assignment reducts R¬b¬c¬h = Rb=0,c=0,h=0 = { i←
g; a; g ← ¬i }, R¬b¬ch = R¬bc¬h = R¬bch = Rb¬ch = { a; g ← ¬i }, Rb¬c¬h = { a; i ←
g; g ← ¬i }, and Rbc¬h = Pbch = { g ← ¬i } are in the class Normal. a

Next we define a variant of answer set backdoors similar to satisfiability deletion
backdoors.

Definition 3.4. For a program P and a set X of atoms we define P −X as the program
obtained from P by deleting a,¬a for a ∈ X from the rules of P .

The definition gives rise to deletion backdoors. We will see that finding deletion
backdoors is in some cases easier than finding strong backdoors.
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Definition 3.5. Let C be a class of programs. A set X of atoms is a deletion C-backdoor
of a program P if P −X ∈ C.

In general, not every strong C-backdoor is a deletion C-backdoor, and not every deletion
C-backdoor is a strong C-backdoor. But we can strengthen one direction requiring the
target class to satisfy the very mild condition of being hereditary.

Definition 3.6. Let C be a class of programs. We call a class C of programs hereditary
if for each P ∈ C all subprograms of P are in C as well (see Section 2.1 for definition of
subprograms).

Remark. Note that many natural classes of programs (and all classes considered in this
paper) are hereditary.

Lemma 3.7. If C is hereditary, then every deletion C-backdoor is a strong C-backdoor.

Proof. Let P be a program, X ⊆ at(P ), and τ ∈ 2X . Let r′ ∈ Pτ . It follows from
Definition 3.2 that r′ is obtained from some r ∈ P by deleting a,¬a for all a ∈ X from
the head and body of r. Consequently r′ ∈ P −X. Hence Pτ ⊆ P −X which establishes
the proposition.

3.3 Backdoor Evaluation

An analogue to Observation 3.1 does not hold for answer set programming, even if we
consider the most basic problem Consistency. Take for example the program P =
{x ← y; y ← x; ← ¬x; z ← ¬x } and the set X = {x}. Both reducts Px=0 = { z }
and Px=1 = { y } have answer sets, but P has no answer set. However, we can show
a somewhat weaker asymmetric variant of Observation 3.1, where we can map each
answer set of P to an answer set of Pτ for some τ ∈ 2X . This is made precise by the
following definition and lemma (which are key for a backdoor approach to answer set
programming).

Definition 3.8. Let P be a program and X a set of atoms. We define

AS(P,X) = {M ∪ τ−1(1) : τ ∈ 2X∩ at(P ),M ∈ AS(Pτ ) }.

In other words, the sets in AS(P,X) are answer sets of Pτ for truth assignments τ to
X ∩ at(P ) extended by those atoms which are set to true by τ . In the following lemma
we will see that the elements in AS(P,X) are “answer set candidates” of the original
program P .

Lemma 3.9. AS(P ) ⊆ AS(P,X) holds for every program P and every set X of atoms.
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Proof. Let M ∈ AS(P ) be chosen arbitrarily. We put X0 = (X \ M) ∩ at(P ) and
X1 = X ∩M and define a truth assignment τ ∈ 2X∩at(P ) by setting τ−1(i) = Xi for
i ∈ {0, 1}. Let M ′ = M \X1. Observe that M ′ ∈ AS(Pτ ) implies M ∈ AS(P,X) since
M = M ′ ∪ τ−1(1) by definition. Hence, to establish the lemma, it suffices to show that
M ′ ∈ AS(Pτ ). We have to show that M ′ is a model of PM ′τ , and that no proper subset
of M ′ is a model of PM ′τ .

In order to show that M ′ is a model of PM ′τ , choose r′ ∈ PM
′

τ arbitrarily. By
construction of PM ′τ there is a corresponding rule r ∈ P with H(r′) = H(r) \X0 and
B+(r′) = B+(r) \ X1 which gives rise to a rule r′′ ∈ Pτ , and in turn, r′′ gives rise to
r′ ∈ PM ′τ . Since B−(r) ∩ X1 = ∅ (otherwise r would have been deleted forming Pτ )
and B−(r) ∩M ′ = ∅ (otherwise r′′ would have been deleted forming PM ′τ ), it follows
that B−(r) ∩M = ∅. Thus, r gives rise to a rule r∗ ∈ PM with H(r) = H(r∗) and
B+(r) = B+(r∗). Since M ∈ AS(P ), M satisfies r∗, i.e., H(r)∩M 6= ∅ or B+(r)\M 6= ∅.
However, H(r) ∩M = H(r′) ∩M ′ and B+(r) \M = B+(r′) \M ′; thus, M ′ satisfies r′.
Since r′ ∈ PM ′τ was chosen arbitrarily, we conclude that M ′ is a model of PM ′τ .

In order to show that no proper subset of M ′ is a model of PM ′τ choose arbitrarily
a proper subset N ′ ( M ′. Let N = N ′ ∪ X1. Since M ′ = M \ X1 and X1 ⊆ M it
follows that N (M . Since M is a minimal model of PM , N cannot be a model of PM .
Consequently, there must be a rule r ∈ P such that B−(r)∩M = ∅ (i.e., r is not deleted
by forming PM ), B+(r) ⊆ N and H(r) ∩ N = ∅. However, since M satisfies PM and
since B+(r) ⊆ N ⊆ M , H(r) ∩M 6= ∅. Thus, r is not a constraint. Moreover, since
H(r)∩M 6= ∅ and M ∩X0 = ∅, it follows that H(r)\X0 6= ∅. Thus, since H(r)∩X1 = ∅,
H(r) \X 6= ∅. We conclude that r is not deleted when forming Pτ and giving rise to a
rule r′ ∈ Pτ , which in turn is not deleted when forming PM ′τ , giving rise to a rule r′′,
with H(r′′) = H(r) \X0, B+(r′′) = B+(r) \X1, and B−(r′′) = ∅. Since B+(r′′) ⊆ N ′

and H(r′′) ∩N = ∅, N ′ is not a model of PM ′τ .

Thus, we have established that M ′ is a stable model of Pτ , and so the lemma
follows.

In view of Lemma 3.9 we shall refer to the elements in AS(P,X) as “answer set
candidates.”

Example 3.3. We consider program P of Example 2.1 and the strong Horn-backdoor
X = {b, c} of Example 3.1. The answer sets of Pτ are AS(P¬b¬c) = {{e, f}}, AS(P¬bc) =
{{f}}, AS(Pb¬c) = {{e, f}}, and AS(Pbc) = {{f}} for τ ∈ 2{b,c}. We obtain the
set AS(P,X) = {{e, f}, {c, f}, {b, e, f}, {b, c, f}}. a

In view of Lemma 3.9, we can compute AS(P ) by (i) computing AS(Pτ ) for all τ ∈ 2X
(this produces the set AS(P,X) of candidates for AS(P )), and (ii) checking for each
M ∈ AS(P,X) whether it is an answer set of P . The check (ii) entails (ii.a) checking
whether M ∈ AS(P,X) is a model of P and (ii.b) whether M ∈ AS(P,X) is a minimal
model of PM . We would like to note that in particular any constraint contained in P
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is removed in the truth assignment reduct Pτ but considered in check (ii.a). Clearly
check (ii.a) can be carried out in polynomial time for each M . Check (ii.b), however, is
co-NP-complete in general [MT91a], but polynomial for normal programs [CL94].

Fortunately, for our considerations it suffices to perform check (ii.b) for programs
that are “close to Normal” (or close to a subset), and so the check is fixed-parameter
tractable in the size of the given backdoor. More precisely, we consider the following
parameterized problem and establish its fixed-parameter tractability in the next lemma.

Strong C-Backdoor Asp Check
Given: A program P , a strong C-backdoor X of P and a set M ⊆ at(P ).
Parameter: The size |X| of the backdoor.
Task: Decide whether M is an answer set of P .

By deciding the status of the atoms in the backdoor, we can reduce a given program
to several tractable programs belonging to a target class of programs. Consequently,
the evaluation of the given program is polynomial for fixed backdoor size k where the
order of the polynomial is independent of k, i.e., fixed-parameter tractable in the size of
the backdoor [DF13]. By allowing backdoors of increasing size k = 1, 2, 3, . . . , we can
gradually augment a known tractable class of programs.

Lemma 3.10. Let C be a class of normal programs. The problem Strong C-Backdoor
Asp Check is fixed-parameter tractable. More specifically, given a program P of input
size n, a strong C-backdoor X of P of size k, and a set M ⊆ at(P ) of atoms, we can
check in time O(2kn) whether M is an answer set of P .

Proof. Let C be a class of normal programs, P a program, and X a strong C-backdoor X
of P with |X| = k. We can check in polynomial time whether M is a model of P and
whether M is a model of PM . If it is not, we can reject M , and we are done. Hence
assume that M is a model of PM . In order to check whether M ∈ AS(P ) we still need
to decide whether M is a minimal model of PM . Recall that P contains no tautological
rules.

Let X1 ⊆ M ∩ X. We construct from PM a program PMX1⊆X by (i) removing all
rules r for which H(r)∩X1 6= ∅, and (ii) replacing for all remaining rules r the head H(r)
with H(r) \X, and the positive body B+(r) with B+(r) \X1.

Claim: PMX1⊆X is Horn.

To show the claim, consider some rule r′ ∈ PMX1⊆X . By construction, there must be a
rule r ∈ P that gives raise to a rule in PM , which in turn gives raise to r′. Let τ ∈ 2X
be the assignment that sets all atoms in X ∩H(r) to 0, and all atoms in X \H(r) to 1.
Since r is not tautological, it follows that r is not deleted when we obtain Pτ , and it gives
rise to a rule r∗ ∈ Pτ , where H(r∗) = H(r) \X. However, since C is a class of normal
programs, r∗ is normal. Hence 1 ≥ |H(r∗)| = |H(r) \X| = |H(r′)|, and the claim follows.
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3.3. Backdoor Evaluation

To test whether M is a minimal model of PM , we run the following procedure for
every set X1 ⊆M ∩X.

If PMX1⊆X has no model, then stop and return True.

Otherwise, compute the unique minimal model L of the Horn program PMX1⊆X .
If L ⊆M \X, L∪X1 (M , and L∪X1 is a model of PM , then return False.
Otherwise return True.

For each set X1 ⊆M ∩X the above procedure runs in linear time by Lemma 2.1. As
there are O(2k) sets X1 to consider, we have a total running time of O(2kn) where n
denotes the input size of P and k = |X|. It remains to establish the correctness of the
above procedure in terms of the following claim.

Claim: M is a minimal model of PM if and only if the algorithm returns True for
each X1 ⊆M ∩X.

(⇒). Assume that M is a minimal model of PM , and suppose to the contrary that
there is some X1 ⊆M ∩X for which the algorithm returns False. Consequently, PMX1⊆X
has a unique minimal model L with L ⊆ M \X, L ∪X1 ( M , and where L ∪X1 is a
model of PM . This contradicts the assumption that M is a minimal model of PM . Hence
the only-if direction of the claim is shown.

(⇐). Assume that the algorithm returns True for each X1 ⊆M ∩X. We show that
M is a minimal model of PM . Suppose to the contrary that PM has a model M ′ (M .

We run the algorithm for X1 := M ′ ∩X. By assumption, the algorithm returns True.
There are two possibilities: (i) PMX1⊆X has no model, or (ii) PMX1⊆X has a model, and for
its unique minimal model L the following holds: (iia) L is not a subset of M \ X, or
(iib) L ∪X1 is not a proper subset of M , or (iic) L ∪X1 is not a model of PM .

We show that case (i) is not possible by showing that M ′ \X is a model of PMX1⊆X .

To see this, consider a rule r′ ∈ PMX1⊆X , and let r ∈ PM such that r′ is obtained
from r by removing X from H(r) and by removing X1 from B+(r). Since M ′ is a
model of PM , we have (a) B+(r) \M ′ 6= ∅ or (b) H(r) ∩M ′ 6= ∅. Moreover, since
B+(r′) = B+(r)\X1 and X1 = M ′∩X, (a) implies ∅ 6= B+(r)\M ′ = B+(r)\X1 \M ′ =
B+(r′) \M ′ ⊆ B+(r′) \ (M ′ \X), and since H(r)∩X1 = ∅, (b) implies ∅ 6= H(r)∩M ′ =
H(r)∩ (M ′ \X1) = H(r)∩ (M ′ \X) = (H(r) \X)∩ (M ′ \X) = H(r′)∩ (M ′ \X). Hence
M ′ \X satisfies r′. Since r′ ∈ PMX1⊆X was chosen arbitrarily, we conclude that M ′ \X is
a model of PMX1⊆X .

Case (ii) is not possible either, as we can see as follows. Assume PMX1⊆X has a model,
and let L be its unique minimal model. Since M ′ \X is a model of PMX1⊆X , as shown
above, we have L ⊆ M ′ \ X. Case (iia): We have L ⊆ M \ X since L ⊆ M ′ \ X and
M ′\X ⊆M \X. Case (iib): Further we have L∪X1 (M since L∪X1 ⊆ (M ′\X)∪X1 =
(M ′ \ X) ∪ (M ′ ∩ X) = M ′ ( M . Case (iic): And finally L ∪ X1 is a model of PM ,
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Figure 3.1: Exploit pattern of Asp backdoors if the target class C is normal and
enumerable where n denotes the input size of P .

as can be seen as follows. Consider a rule r ∈ PM . If X1 ∩ H(r) 6= ∅, then L ∪ X1
satisfies r; thus, it remains to consider the case X1 ∩ H(r) = ∅. In this case there is
a rule r′ ∈ PMX1⊆X with H(r′) = H(r) \ X and B+(r′) = B+(r) \ X1. Since L is a
model of PMX1⊆X , L satisfies r′. Hence (a) B+(r′) \ L 6= ∅ or (b) H(r′) ∩ L 6= ∅. Since
B+(r′) = B+(r) \X1, (a) implies that B+(r) \ (L ∪X1) 6= ∅; and since H(r′) ⊆ H(r),
(b) implies that H(r)∩ (L∪X1) 6= ∅. Thus, L∪X1 satisfies r. Since r ∈ PM was chosen
arbitrarily, we conclude that L ∪X1 is a model of PM .

Since neither Case (i) nor Case (ii) is possible, we have a contradiction, and we
conclude that M is a minimal model of PM . Hence the second direction of the claim is
established.

In order to complete the proof, it remains to bound the running time. The check
whether M is a model of PM can clearly be carried out in linear time. For each
set X1 ⊆M ∩X the algorithm runs in linear time. This follows directly from the fact
that we can compute the least model of a Horn program in linear time [DG84]. As
there are at most 2k sets X1 to consider, the total running time is O(2k‖P‖). Thus, in
particular, the decision is fixed-parameter tractable for parameter k.

Figure 3.1 illustrates how we can exploit a strong C-backdoor to find answer sets.
For a given program P and a strong C-backdoor X of P we have to consider |2X | truth
assignments to the atoms in the backdoor X. For each truth assignment τ ∈ 2X we
reduce the program P to a program Pτ and compute the set AS(Pτ ). Finally, we obtain
the set AS(P ) by checking for each M ∈ AS(Pτ ) whether it gives rise to an answer set
of P .
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Example 3.4. Consider the set AS(P,X) = {{e, f}, {c, f}, {b, e, f}, {b, c, f}} of answer
set candidates from Example 3.3 and check for each candidate L = {e, f}, M = {c, f},
N = {b, e, f}, and O = {b, c, f} whether it is an answer set of P . Therefore we solve the
problem Strong Horn-Backdoor Asp Check by means of Lemma 3.10.

First we test whether the sets L, M , N and O are models of P . We easily observe that
N and O are models of P . But L and M are not models of P since they do not satisfy
the rule c← e, f,¬b and b← c respectively, and we can drop them as candidates. Then
we positively answer the question whether N and O are models of its GL reducts PN
and PO, respectively.

Next we consider the minimality and apply the algorithm of the proof of Lemma 3.10
for each subset of the backdoor X = {b, c}. We have the GL reduct PN = {d ←
a, e; e ∨ c ← f ; f ← d, c; c ← d; b ← c; f}. For X1 = ∅ we obtain PNX1⊆X = {d ←
a, e; e← f ; f ← d, c; ← d; ← c; f}. The set L = {e, f} is the unique minimal model
of PNX1⊆X . Since L ⊆ N \X, L ∪X1 ( N , and L ∪X1 is a model of PN , the algorithm
returns False. We conclude that N is not a minimal model of PN and thus N is not an
answer set of P .

We obtain the GL reduct PO = {d ← a, e; e ∨ c ← f ; f ← d, c; c ← d; b ← c; f}.
For X1 = ∅ we have POX1⊆X = {d ← a, e; e ← f ; f ← d, e; ← d; ← c; f}. The
set L = {e, f} is the unique minimal model of POX1⊆X . Since L ∪X1 ( O, the algorithm
returns True. For X2 = {b} we get POX2⊆X = {d← a, e; e← f ; f ← d, e; ← d; f} and
the unique minimal model L = {e, f}. Since L ⊆ O \X, the algorithm returns True. For
X3 = {c} we obtain POX3⊆X = {d← a, e; f ← d; ←; f} and no minimal model. Thus,
the algorithm returns True. For X4 = {b, c} we have POX4⊆X = {d ← a, e; f ← d; f}
and the unique minimal model L = {f}. Since L ∪X1 ( O, the algorithm returns True.
Since only {b, c, f} ∈ AS(P,X) is an answer set of P , we obtain AS(P ) = {{b, c, f}}. a

In view of Lemmas 3.9 and 3.10, the computation of AS(P ) is fixed-parameter
tractable for parameter k if we know a strong C-backdoor X of size at most k for P , and
each program in C is normal and its stable sets can be computed in polynomial time.
This consideration leads to the following definition and result.

Definition 3.11. A class C of programs is enumerable if for each P ∈ C we can
compute AS(P ) in polynomial time. If AS(P ) can be computed in linear time, then the
class C is linear-time enumerable.

We would like to note that this is a stronger property than being enumerable with
polynomial-time delay; the latter is usually used in the context of enumeration problems
and also mentioned in Section 8.5 for a certain parameter.

Theorem 3.12. Let C be an enumerable class of normal programs. The problems in
AspFull are all fixed-parameter tractable when parameterized by the size of a strong
C-backdoor, assuming that the backdoor is given as input.
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Proof. Let X be the given backdoor, k = |X| and n the input size of P . Since Pτ ∈ C
and C is enumerable, we can compute AS(Pτ ) in polynomial time for each τ ∈ 2X , say in
time O(nc) for some constant c. Observe that therefore |AS(Pτ )| ≤ O(nc) for each τ ∈ 2X .
Thus, we obtain AS(P,X) in time O(2knc), and |AS(P,X)| ≤ O(2knc). By Lemma 3.9,
AS(P ) ⊆ AS(P,X). By means of Lemma 3.10 we can decide whether M ∈ AS(P ) in
time O(2kn) for each M ∈ AS(P,X). Thus, we determine from AS(P,X) the set of all
answer sets of P in time O(2k · nc · 2k · n+ 2k · nc) = O(22knc+1). Once we know AS(P ),
then we can also solve all problems in AspFull within polynomial time.

Theorem 3.12 identifies conditions under which a small backdoor indeed reduces the
search space for the main Asp reasoning problems, that is, to be exponential only in the
backdoor size and not in the size of the entire instance. Hence under these conditions a
small backdoor can be considered as a “clever reasoning shortcut” through the search
space.
Remark. If we know that each program in C has at most one answer set, and P has a
strong C-backdoor of size k, then we can conclude that P has at most 2k answer sets.
Thus, we obtain an upper bound on the number of answer sets of P by computing a
small strong C-backdoor of P .

3.4 Backdoor Detection
Theorem 3.12 draws our attention to enumerable classes of normal programs. Given such
a class C, is the detection of C-backdoors fixed-parameter tractable? If the answer is
affirmative, we can drop in Theorem 3.12 the assumption that the backdoor is given as
an input for this class.

Each class C of programs gives rise to the following two parameterized decision
problems:

Strong C-Backdoor Detection
Given: A program P and an integer k.
Parameter: The integer k.
Task: Decide whether P has a strong C-backdoor X of size at most k.

Deletion C-Backdoor Detection
Given: A program P and an integer k.
Parameter: The integer k.
Task: Decide whether P has a deletion C-backdoor X of size at most k.

By a standard construction, known as self-reduction or self-transformation [Sch81;
DF99; DF13], one can use a decision algorithm for Strong (Deletion) C-Backdoor
Detection to actually find the backdoor. We only require the target class to be
hereditary.
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Lemma 3.13. Let C be a hereditary class of programs. If Strong (Deletion) C-Back-
door Detection is fixed-parameter tractable, then also finding a strong (deletion)
C-backdoor of a given program P of size at most k is fixed-parameter tractable (for
parameter k).

Proof. We proceed by induction on k. If k = 0 the statement is clearly true. Let k > 0.
Given (P, k) we check for all a ∈ at(P ) whether Pτ and Pτ ′ have a strong C-backdoor of
size at most k− 1 where τ(a) = 1 and τ ′(a) = 0. If the answer is No for all a, then P has
no strong C-backdoor of size k. If the answer is Yes for a, then by induction hypothesis
we can compute a strong C-backdoor X of size at most k−1 of Pτ and Pτ ′ , and X∪{a} is
a strong C-backdoor of P . Similarly, we proceed for deletion C-backdoor. Given (P, k) we
check for all a ∈ at(P ) whether P − {a} has a deletion C-backdoor of size at most k − 1.
If the answer is No for all a, then P has no deletion C-backdoor of size k. If the answer
is Yes for a, then by induction hypothesis we can compute a deletion C-backdoor X of
size at most k − 1 of P − {a}, and X ∪ {a} is a deletion C-backdoor of P .

Remark. One could consider also target classes where empty rules are detected (an
analogy to “empty clause detection” [DGS07; DGS14] in the Sat setting) which would
yield smaller backdoors. However, backdoor detection is already W[1]-hard for almost
all base classes, including Horn, in the Sat setting when empty clause detection is
added [Sze08]. These W[1]-hardness results carry over to the Asp setting if empty rule
detection is added.

We will investigate in detail on the computational complexity of the backdoor detection
problem for various target classes in the following Chapter 4.

Background and Related Work
Backdoors were originally introduced by Williams, Gomes, and Selman [WGS03a;
WGS03b] as a tool to analyze the behavior of DPLL-based Sat solvers. Since then, back-
doors have been frequently used in the literature for theoretical investigations [RKH04;
SS09b; KKS08]. The study of the parameterized complexity of backdoor detection was
initiated by Nishimura, Ragde, and Szeider [NRS04] who considered satisfiability back-
doors for the target classes Horn and 2CNF. Since then, the study has been extended
to various other target classes, including clustering formulas [NRS07], renamable Horn
formulas [RO09], QHorn formulas [Gas+13], Nested formulas [GS12c], acyclic formu-
las [GS12a], and formulas of bounded incidence treewidth [GS13]; we also refer to a recent
survey [GS12b]. Moreover, it has been empirically determined that backdoors can be
small, see e.g., [LB11; Gar12; WGS03a; DGS09].

Several results extend the concept of backdoors to other problems, e.g., backdoors for
constraint satisfaction problems [WGS03a], quantified Boolean formulas [SS09a], abstract
argumentation [DOS12], and abductive reasoning [PRS13]. Samer and Szeider [SS08] have
introduced backdoor trees for propositional satisfiability which provide a more refined
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concept of backdoor evaluation and take the interaction of variables that form a backdoor
into account.

Dilkina, Gomes, and Sabharwal [DGS07; DGS14] have considered strong backdoors
with “empty clause detection” (empty clauses trivially yield satisfiability). Empty clause
detection is present in many modern Sat solvers and often leads to much smaller
backdoors in practice. However, Dilkina, Gomes, and Sabharwal have also established
that backdoor detection for the target classes Horn and 2CNF is already harder than NP
when empty clause detection is added. Moreover, Szeider [Sze08] has shown that (strong)
backdoor detection is W[1]-hard for almost all target class when empty clause detection
is added and thus unlikely to be fixed-parameter tractable.

Contribution and Discussion

In this chapter we have introduced backdoors to the domain of answer set programming.
Similar to truth reducts of formulas we have defined truth assignment reducts of disjunctive
answer set programs which in particular generalize a concept of Gottlob, Scarcello, and
Sideri [GSS02] (see Section 8.4). Moreover, we have introduced strong and deletion
backdoors for disjunctive answer set programs.

When we exploit backdoors to solve propositional satisfiability or constraint sat-
isfaction we have a two step approach which consists of (i) backdoor detection and
(ii) backdoor evaluation. Similarly, we have a two step approach to solve problems in
AspFull (consistency, brave and skeptical reasoning, answer set counting and enumeration
of all answer sets) by means of backdoors; again (i) backdoor detection and (ii) evaluating
the backdoor for the respective reasoning task.

In this chapter we have specified the problems strong and deletion backdoor detection
which are quite similar to Sat backdoors. We are interested in backdoors into a target
class where the considered problem is tractable and backdoors can be found easily. Since
in many cases we cannot find a strong backdoor efficiently, one relaxes the notion of strong
backdoors to deletion backdoors. Therefore, a target class needs a certain property which
ensures that deletion backdoors are also strong backdoors. In propositional satisfiability
this property is clause induced and similar we have the property hereditary in answer set
programming.

While Sat target classes are usually polynomial-time tractable, target classes for
answer set programming backdoors have to be enumerable for fixed-parameter-tractability
of backdoor evaluation. However, it turns out that backdoor evaluation is much more
sophisticated for answer set programming. This seems to be not too surprising from the
perspective of computational complexity as the propositional satisfiability problem is
NP-complete whereas the problems in AspReason for disjunctive programs are located on
the second level of the Polynomial Hierarchy. In particular, for propositional satisfiability
or constraint satisfaction we require the solution (if it exists) to be a model of the formula
whereas answer sets have in addition to be minimal with respect to the GF reduct. The
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minimality check is co-NP-complete in general. However, we establish in Lemma 3.10 the
new result that the minimality check is fixed parameter tractable when parameterized by
the size of a strong backdoor into a subclass of normal programs. The main and new
result of this chapter is Theorem 3.12 which states that the problems in AspFull are
fixed-parameter tractable when parameterized by the size of a given strong backdoor.
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CHAPTER 4
Tractability Backdoors

In this chapter we study the complexity of backdoor detection when parameterized by
the size of a backdoor into some fixed target class. Before we can use a backdoor to solve
reasoning problems of answer set programming, we have to find it first, which is mostly
computationally hard. We usually consider small backdoors whereas the instance itself
might be large, since the backdoor approach is only reasonable on instances that allow
small backdoors. We restrict the considered target classes to enumerable target classes,
where we can compute for each program in the class all answer sets in polynomial time.
When we can find such a backdoor significantly faster than by brute force search, in
other words backdoor detection is fixed-parameter tractable, the target class is suitable
for the backdoor approach (according to Theorem 3.12).

In Section 4.1 we consider the target class Horn. We establish that deletion
Horn-backdoors and strong Horn-backdoors coincide. We provide an approach to
detect such backdoors by means of a reduction to the vertex cover problem of a certain
graph representation of the given program. In Section 4.2 we consider acyclicity-based
target classes among them stratified programs and beyond which we define by the absence
of certain types of cycles in graph representations of the given program, more precisely
no cycles (no-C), no directed cycles (no-DC), no bad cycles (no-BC), no even cycles
(no-EC), and their combinations. We show that detecting strong backdoors into the
acyclicity-based target classes is unlikely to be fixed-parameter tractable. Figure 4.4 (see
p. 45) illustrates the established complexity results. We show by means of reductions
to certain feedback vertex set problems that detecting deletion backdoors into most
of the acyclicity-based target classes is fixed-parameter tractable. For the remaining
target classes (based on directed even acyclicity) we provide hardness results for deletion
backdoor detection. Figure 4.5 (see p. 46) illustrates the established complexity results.
Finally, we provide background and related work, a summary of our contribution, and a
discussion of the results. This chapter is based on published work [FS15b].
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Figure 4.1: Negation dependency graph Np of the program P from Example 2.1.

4.1 Target Class Horn

In this section we consider the important case Horn as the target class for backdoors.
As a consequence of Lemma 2.1, Horn is linear-time enumerable. The following lemma
shows that strong and deletion Horn-backdoors coincide.

Lemma 4.1. A set X is a strong Horn-backdoor of a program P if and only it is a
deletion Horn-backdoor of P .

Proof. Since Horn is hereditary, Lemma 3.7 establishes the if-direction. For the only-if
direction, we assume for the sake of a contradiction that X is a strong Horn-backdoor
of P but not a deletion Horn-backdoor of P . Hence there is a rule r′ ∈ P −X that is
neither tautological nor Horn. Let r ∈ P be a rule from which r′ was obtained in forming
P −X. We define τ ∈ 2X by setting all atoms in X ∩ (H(r) ∪B−(r)) to 0, all atoms in
X ∩ B+(r) to 1, and all remaining atoms in X \ at(r) arbitrarily to 0 or 1. Since r is
not tautological, this definition of τ is sound. It follows that r′ ∈ Pτ , contradicting the
assumption that X is a strong Horn-backdoor of P .

Remark. Recall that we assume that programs do not contain any tautological rules
(see Section 3.2). Consider the program a ∨ b ← a,¬c; the set X = {a} is a strong
Horn-backdoor, however X not a deletion Horn-backdoor. Hence, it is important that
tautologies are excluded for Lemma 4.1.

Definition 4.2. Let P be a program. The negation dependency graph Np is the graph
defined on the set of atoms of the given program P , where two distinct atoms x, y are
joined by an edge xy if there is a rule r ∈ P with x ∈ H(r) and y ∈ H(r) ∪B−(r).

Example 4.1. Figure 4.1 visualizes the negation dependency graph Np of program P from
Example 2.1. a

The following lemma states how we can use recent results on the vertex cover problem
to find deletion backdoors for the target classHorn. A vertex cover of a graph G = (V,E)
is a set S ⊆ V such that for every edge uv ∈ E we have {u, v} ∩ S 6= ∅.
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Lemma 4.3. Let P be a program. A set X ⊆ at(P ) is a deletion Horn-backdoor of P
if and only if X is a vertex cover of the negation dependency graph Np.

Proof. Let X ⊆ at(P ) be a deletion Horn-backdoor of P . Consider an edge uv of Np.
By construction of Np there is a corresponding rule r ∈ P with (i) u, v ∈ H(r) and u 6= v
or (ii) u ∈ H(r) and v ∈ B−(r). Since X is a deletion Horn-backdoor, |H(r)−X| ≤ 1
and B−(r)−X = ∅. Thus, if Case (i) applies, {u, v} ∩X 6= ∅. If Case (ii) applies, again
{u, v} ∩X 6= ∅. We conclude that X is a vertex cover of Np.

Conversely, assume that X is a vertex cover of Np. Consider a rule r ∈ P −X for
proof by contradiction assume that r is not Horn (in particular r is not a constraint).
If |H(r)| ≥ 2 then there are two variables u, v ∈ H(r) and an edge uv of Np such that
{u, v} ∩ X = ∅, contradicting the assumption that X is a vertex cover. Similarly, if
B−(r) 6= ∅ then we take a variable u ∈ B−(r) and a variable v ∈ H(r); such v exists since
r is not a constraint. Thus, Np contains the edge uv with {u, v} ∩X = ∅, contradicting
the assumption that X is a vertex cover. Hence the claim holds.

Example 4.2. For instance, the negation dependency graph Np of program P from
Example 2.1 consists of the triangle {a, b, c} and a path (c, e). Then {b, c} is a vertex
cover of Np. We observe easily that there exists no vertex cover of size 1. Thus, {b, c} is
a smallest strong Horn-backdoor of P . a

Remark. Note that the unparameterized version (see Section 2.4) of Strong Horn-Back-
door Detection is NP-hard. Since the reduction presented in the proof of Lemma 4.3
can be used straightforward as a reduction of the unparameterized version of the vertex
cover problem to Strong Horn-Backdoor Detection.

Theorem 4.4. Strong Horn-Backdoor Detection is fixed-parameter tractable. In
fact, given a program with n atoms we can find a strong Horn-backdoor of size at most k
in time O(1.2738k + kn) or decide that no such backdoor exists.

Proof. Let P be a given program. Let Np be the negation dependency graph of P .
According to Lemma 4.3, a set X ⊆ at(P ) is a vertex cover of Np if and only if X is a
deletion Horn-backdoor of P . Then a vertex cover of size at most k, if it exists, can be
found in time O(1.2738k + kn) by Chen, Kanj, and Xia [CKX10]. By Lemma 4.1 this
vertex cover is also a strong Horn-backdoor of P .

Now we can use Theorem 4.4 to strengthen the fixed-parameter tractability result of
Theorem 3.12 by dropping the assumption that the backdoor is given.

Corollary 4.5. All the problems in AspFull are fixed-parameter tractable when parame-
terized by the size of a smallest strong Horn-backdoor of the given program.
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4.2 Target Classes Based on Acyclicity
There are two causes for a program to have a large number of answer sets: (i) disjunctions
in the heads of rules, and (ii) certain cyclic dependencies between rules. Disallowing both
yields enumerable classes.

In order to define acyclicity we associate with each disjunctive program P its depen-
dency digraph Dp and its (undirected) dependency graph Up. The dependency digraph
was defined by Apt, Blair, and Walker [ABW88] which slight differs from our notion as
no additional edges on head atoms are introduced. The following definition is closely
related to the notion suggested by Gottlob, Scarcello, and Sideri [GSS02].

Definition 4.6. Let P be a program. The dependency digraph is the digraph Dp which
has as vertices the atoms of P and a directed edge (x, y) between any two distinct
atoms x, y for which there is a rule r ∈ P with x ∈ H(r) and y ∈ B+(r) ∪ B−(r) or
x, y ∈ H(r). We call the edge (x, y) negative if there is a rule r ∈ P with x ∈ H(r) and
y ∈ B−(r) or x, y ∈ H(r).

Definition 4.7. Let P be a program. The (undirected) dependency graph is the graph Up
obtained from the dependency digraph Dp

1. by replacing each negative edge e = (x, y) with two edges xve, vey where ve is a new
negative vertex, and

2. by replacing each remaining directed edge (u, v) with an edge uv.

Example 4.3. Figure 4.2 visualizes the dependency digraph Dp and the dependency graph
Up of program P from Example 2.1. a

cb
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¬

¬

¬ ¬
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va,b va,c
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f

e

ve,cvc,e
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Figure 4.2: Dependency digraph Dp (left) and dependency graph Up (right) of program P
from Example 2.1.

Definition 4.8. Let P be a program.

1. A directed cycle of P is a directed cycle in the dependency digraph Dp.
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2. A directed cycle is bad if it contains a negative edge, otherwise it is good.

3. A directed cycle is even if it contains an even number of negative edges, otherwise
it is odd.

4. A cycle of P is a cycle in the dependency graph Up.

5. A cycle is bad if it contains a negative vertex, otherwise it is good.

6. A cycle is even if it contains an even number of negative vertices, otherwise it is
odd.

Definition 4.9. The following classes of programs are defined in terms of the absence
of certain kinds of cycles:

• no-C contains all programs that have no cycles,

• no-BC contains all programs that have no bad cycles,

• no-DC contains all programs that have no directed cycles,

• no-DC2 contains all programs that have no directed cycles of length at least 3 and
no directed bad cycles,

• no-DBC contains all programs that have no directed bad cycles,

• no-EC contains all programs that have no even cycles,

• no-BEC contains all programs that have no bad even cycles,

• no-DEC contains all programs that have no directed even cycles, and

• no-DBEC contains all programs that have no directed bad even cycles.

We let Acyc denote the family of all the nine classes defined above. We also write D-Acyc
to denote the subfamily {no-DC, no-DC2, no-DBC, no-DEC, no-DBEC} ⊆ Acyc.

Example 4.4. Consider the dependency graphs of program P from Example 2.1 as depicted
in Figure 4.2. For instance the sequence (d, e, f) is a cycle, (d, a) is a directed cycle (of
length 2), (d, e, f) and (c, e, f) are directed cycles (of length 3), (a, v(a,c), c, d) is a bad
cycle, (b, c) is a directed bad cycle. The sequence (d, e, f) is an even cycle and a directed
even cycle, (c, e) is a directed bad even cycle.

The set X = {c} is a strong no-DBEC-backdoor since the truth assignment
reducts P¬c = Pc=0 = {d← a, e; a← d,¬b; e← f ; f} and Pc = Pc=1 = {d← a, e; f ←
d; b; f} are in the target class no-DBEC. X is also a strong no-BEC-backdoor, since
P¬c ∈ no-BEC and Pc ∈ no-BEC. The answer sets of Pτ are AS(P¬c) = {{e, f}} and
AS(Pc) = {{b, f}}. Thus, AS(P,X) = {{e, f}, {b, c, f}}, and since only {b, c, f} is an
answer set of P , we obtain AS(P ) = {{b, c, f}}. a
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no-DBEC

no-DEC

no-DC2

no-DC

no-DBC

no-BC

no-C

no-BEC

no-EC

Horn

Figure 4.3: Relationship between classes of programs with respect to their generality.
A directed path from a class C to a class C′ indicates that C ⊆ C′. If there is no path
between two classes C and C′, then neither C ⊆ C′ nor C′ ⊆ C and we say C and C′ are
incomparable.

The dependency and dependency digraphs contain bad even cycles through head
atoms for non-singleton heads. This has the following consequence.

Observation 4.10. C ⊆ Normal holds for all C ∈ Acyc.

If we have two programs P ⊆ P ′, then clearly the dependency (di)graph of P is a
sub(di)graph of the dependency (di)graph of P ′. This has the following consequence.

Observation 4.11. All C ∈ Acyc are hereditary.

The following is a direct consequence of the definitions of the various classes in Acyc.

Observation 4.12. If C, C′ ∈ Acyc∪{Horn} such that the digraph in Figure 4.3 contains
a directed path from the class C to the class C′, then C ⊆ C′. If no inclusion between two
classes is indicated, then the classes are in fact incomparable.

Proof. We first consider the acyclicity-based target classes. By definition we have
no-DC ( no-DBC and no-C ( no-BC ( no-DBC; it is easy to see that the inclusions
are proper. However, contrary to what one expects, no-C 6⊆ no-DC, which can be
seen by considering the program P1 = {x← y, y ← x}. But the class no-DC2 which
requires that a program has no directed cycles but may have directed good cycles of
length 2 (as in P1) generalizes both classes no-C and no-DC. By definition we have
no-DBC ( no-DBEC, no-DEC ( no-DBEC, no-EC ( no-BEC, no-C ( no-EC,
and no-DC ( no-DEC.
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Next we consider the target class Horn. Let C ∈ {no-C,no-DC,no-DC2,no-EC}.
We easily observe that Horn 6⊆ C by considering the program P2 = {a ← b; b ←
c; c← a} which is obviously Horn but does not belong to C. Conversely, we observe that
C 6⊆ Horn by considering the program P3 = {a← ¬b} which belongs to C but is obviously
not Horn. Thus, C and Horn are incomparable. We observe that Horn ( no-BC by
again considering the program P3 which belongs to no-BC, but is obviously not Horn,
and by considering the fact that all rules r in a Horn program P satisfy |H(r)| ≤ 1 and
B−(r) = ∅ which yields that the dependency graph Up contains no bad vertices and
hence gives us that Up contains no bad cycles.

The class no-DBC coincides with the well-known class of stratified programs [ABW88;
Gel89; CH85]. A normal program P is stratified if there is a mapping str : at(P )→ N,
called stratification, such that for each rule r in P the following holds: (i) if x ∈ H(r) and
y ∈ B+(r), then str(x) ≤ str(y) and (ii) if x ∈ H(r) and y ∈ B−(r), then str(x) < str(y).

Lemma 4.13 (Apt, Blair, and Walker, 1988). Strat = no-DBC.

The class no-DBEC, the largest class in Acyc, has already been studied by Zhao
and Lin [Zha02; LZ04a], who showed that every program in no-DBEC has at most one
answer set, and this answer set can be found in polynomial time. For no-DBC the
unique answer set can even be found in linear time [NR94].

In our context this has the following important consequence.

Proposition 4.14. All classes in Acyc are enumerable, the classes C ∈ Acyc with
C ⊆ no-DBC are even linear-time enumerable.

In view of Observation 4.10 and Proposition 4.14, all classes in Acyc satisfy the
requirement of Theorem 3.12 and are therefore in principle suitable target classes of a
backdoor approach. Therefore, we will study the parameterized complexity of Strong
C-Backdoor Detection and Deletion C-Backdoor Detection for C ∈ Acyc.
As we shall see in the next two subsections, the results for Strong C-Backdoor
Detection are throughout negative, however for Deletion C-Backdoor Detection
there are several (fixed-parameter) tractable cases.

4.2.1 Strong Backdoor Detection

Proposition 4.15. Assume that the input program may contain tautological rules. Then,
for every target class C ∈ Acyc, the problem Strong C-Backdoor Detection is
W[2]-hard, and hence unlikely to be fixed-parameter tractable.

Proof. We give an fpt-reduction from the W[2]-complete problem Hitting Set (see
Section 2.4) to Strong C-Backdoor Detection. Let (S, k) be an instance of this
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problem with S = {S1, . . . , Sm}. We construct a program P as follows. As atoms we
take the elements of U =

⋃m
i=1 Si and new atoms aji and b

j
i for 1 ≤ i ≤ m, 1 ≤ j ≤ k + 1.

For each 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1 we take two rules rji , s
j
i where H(rji ) = {aji},

B−(rji ) = Si ∪ {bji}, B+(rji ) = Si (which is a tautological rule); H(sji ) = {bji}, B−(sji ) =
{aji}, B+(sji ) = ∅.

We show that S has a hitting set of size at most k if and only if P has a strong
C-backdoor of size at most k.

(⇒). Let H an hitting set of S of size at most k. We choose an arbitrary truth
assignment τ ∈ 2H and show that Pτ ∈ C. Since H is a hitting set, each rule rji will
be removed when forming Pτ . Hence the only rules left in Pτ are the rules sji , and so
Pτ ∈ no-DC ∩ no-C ⊆ C. Thus, H is a strong C-backdoor of P .

(⇐). Let X be a strong C-backdoor of P of size at most k. We show that H = X ∩U
is a hitting set of S. Choose 1 ≤ i ≤ m and consider Si. We first consider the
case no-DC ⊆ C. For each 1 ≤ j ≤ k + 1 the program P contains a bad even directed
cycle (aji , b

j
i ). In order to destroy these cycles, X must contain an atom from Si, since

otherwise, X would need to contain for each 1 ≤ j ≤ k+ 1 at least one of the atoms from
each cycle, but then |X| ≥ k + 1, contradicting the assumption on the size of X. Hence
H is a hitting set of S. Now we consider the case no-C ⊆ C. For each 1 ≤ j ≤ k + 1
the program P contains a bad even cycle (aji , vaji ,bji , b

j
i , vbji ,a

j
i
). In order to destroy these

cycles, X must contain an atom from Si, since otherwise, X would need to contain an
atom from each cycle, again a contradiction. Hence H is a hitting set of S. Consequently,
the W[2]-hardness of Strong C-Backdoor Detection follows.

For the target classes in D-Acyc we can avoid the use of tautological rules in the
reduction and so strengthen Proposition 4.15 as follows (it would be interesting to know
if this is also possible for the remaining classes mentioned in Proposition 4.15).

Theorem 4.16. For every target class C ∈ D-Acyc, the problem Strong C-Backdoor
Detection is W[2]-hard, and hence unlikely to be fixed-parameter tractable.

Proof. In order to show that Strong C-Backdoor Detection is W[2]-hard for C ∈
D-Acyc when we forbid tautological rules in the input, we modify the reduction used
in the proof of Proposition 4.15 from Hitting Set by redefining the rules rji , s

j
i . We

put H(rji ) = {aji}, B−(rji ) = Si ∪ {bji}, B+(rji ) = ∅; H(sji ) = {bji}, B−(sji ) = {aji},
B+(sji ) = U . By the very same argument as in the proof of Proposition 4.15 we can
show that S has a hitting set of size at most k if and only if P has a strong C-backdoor
of size at most k. We would like to mention that this reduction does not work for the
undirected cases as it yields undirected cycles (bji , u, b

j′

i′ , u
′) for any u, u′ ∈ U .

For the class no-DBEC we can again strengthen the result and show that detecting a
strong no-DBEC-backdoor is already co-NP-hard for backdoor size 0; hence the problem
is co-para-NP-hard (see Section 2.4).
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no-DBEC

no-DEC

no-DC2

no-DC

no-DBC

no-BC

no-C

no-BEC

no-EC

Horn

in XP
W[2]-hard

in XP
W[2]-hard†

co-para-NP-hard

in FPT

Figure 4.4: Known complexity of the problem Strong C-Backdoor Detection.
†: When we allow tautologies in the input program, see Theorem 4.16.

Theorem 4.17. The problem Strong no-DBEC-Backdoor Detection is
co-para-NP-hard, and hence not fixed-parameter tractable unless P = co-NP.

Proof. Recall that a path does not visit the same vertex twice. We reduce from the
following problem, which is NP-complete [FHW80; LP84],

Directed Path via a Node
Given: A digraph G and s,m, t ∈ V distinct vertices.
Task: Decide whether G contains a directed path from s to t via m.

Let G = (V,E) be a digraph and s,m, t ∈ V distinct vertices. We define a program P as
follows: For each edge e = (v, w) ∈ E where w 6= m we take a rule re: w ← v. For each
edge e = (v,m) we take a rule re: m ← ¬v. Finally we add the rule rs,t: s ← ¬t. We
observe that the dependency digraph of P is exactly the digraph we obtain from G by
adding the “reverse” edge (t, s) (if not already present), and by marking (t, s) and all
incoming edges of m as negative.

We show that G has a path from s to t via m if and only if P /∈ no-DBEC. Assume
G has such a path. Then this path must contain exactly one incoming edge of m,
and hence it contains exactly one negative edge. The path, together with the negative
edge (t, s), forms a directed bad even cycle of P , hence P /∈ no-DBEC. Conversely,
assume P /∈ no-DBEC. Hence the dependency digraph of P contains a directed bad even
cycle, i.e., a cycle that contains at least two negative edges. As it can contain at most one
incoming edge of m, the cycle contains exactly one incoming edge of m and the reverse
edge (t, s). Consequently, the cycle induces in G a directed path from s to t via m.

Figure 4.4 illustrates the known complexity results of the problem Strong C-Back-
door Detection. An arrow from C to C′ indicates that C′ is a proper subset of C and
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no-DBEC

no-DEC

no-DC2

no-DC

no-DBC

no-BC

no-C

no-BEC

no-EC

Horn

in XP
(FPT open)

co-para-NP-hard

FPT

Figure 4.5: Relationship between classes of programs and known complexity of the
problem Deletion C-Backdoor Detection. An arrow from C to C′ indicates that
deletion C-backdoors are smaller than deletion C′-backdoors. The FPT-results are
established in Theorems 4.4 and 4.18. The XP-result is established in Theorem 4.20.
The co-para-NP-hardness result is established in Theorem 4.21.

hence the size of a smallest strong C′-backdoor is at most the size of a smallest strong
C-backdoor.

Remark. Note that the unparameterized version of Strong C-Backdoor Detection for
the acyclicity-based target classes C is NP-hard since W[2]-hardness implies NP-hardness
and co-para-NP-hardness also implies co-NP-hardness. Moreover, the reduction presented
in the proof of Proposition 4.15 and Theorems 4.16, 4.17 can be used straightforward as
a reduction of the unparameterized version of Hitting Set, Directed Path via a
Node respectively, to Strong C-Backdoor Detection.

4.2.2 Deletion Backdoor Detection

The W[2]-hardness results of Theorems 4.16 and 4.17 suggest to relax the problem and
to look for deletion backdoors instead of strong backdoors. In view of Lemma 3.7 and
Observation 4.11, every deletion backdoor into one of the considered acyclicity-based
target classes is also a strong backdoor into that target class, hence the backdoor approach
of Theorem 3.12 works.

Fortunately, the results of this section show that the relaxation indeed gives us
fixed-parameter tractability of backdoor detection for most considered classes. Figure 4.5
illustrates these results that we obtain by making use of very recent progress in fixed-
parameter algorithmics on various variants of feedback vertex set and cycle transversal
problems.
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Consider a graph G = (V,E) and a set W ⊆ V . A cycle in G is a W -cycle if it
contains at least one vertex from W . A set T ⊆ V is a W -cycle transversal of G if every
W -cycle of G is also a T -cycle. A set T ⊆ V is an even-length W -cycle transversal of
G if every W -cycle of G of even length is also a T -cycle. A V -cycle transversal is also
called a feedback vertex set.

We give analog definitions for a digraph G = (V,E) and W ⊆ V . A directed cycle in
G is a directedW -cycle if it contains at least on vertex from W . A set T ⊆ V is a directed
W -cycle transversal of G if every directed W -cycle of G is also a directed T -cycle. A
set T ⊆ V is an directed even-length W -cycle transversal of G if every directed W -cycle
of G of even length is also a directed T -cycle. A directed V -cycle transversal is also called
a directed feedback vertex set.

Theorem 4.18. The problem Deletion C-Backdoor Detection is fixed-parameter
tractable for all C ∈ Acyc \ {no-DEC,no-DBEC}.

Proof. Let P be a program and k ≥ 0. Let Up be the dependency graph and Dp the
dependency digraph of P , respectively. Next we consider the various target classes C
mentioned in the statement of the theorem, one by one, and show how we can decide
whether P has a deletion C-backdoor of size at most k.

First we consider “undirected” target classes. Downey and Fellows [DF99; DF13] have
shown that finding a feedback vertex set of size at most k is fixed-parameter tractable.
We apply their algorithm to the dependency graph Up. If the algorithm produces a
feedback vertex set S of size at most k, then we can form a deletion no-C-backdoor of P
of size at most k by replacing each negative vertex in S by one of its two neighbors, which
always gives rise to an atom of P . If Up has no feedback vertex set of size at most k, then
P has no deletion no-C-backdoor of size at most k. Hence Deletion no-C-Backdoor
Detection is fixed-parameter tractable. Similarly, Deletion no-BC-Backdoor
Detection is fixed-parameter tractable by finding a W -feedback vertex set of Up,
taking as W the set of bad vertices of Up. Cygan et al. [Cyg+13] and Kawarabayashi
and Kobayashi [KK12] showed that finding a W -feedback vertex set is fixed-parameter
tractable, hence so is Deletion no-BC-Backdoor Detection.

In order to extend this approach to Deletion no-EC-Backdoor Detection, we
would like to use fixed-parameter tractability of finding an evenW -cycle transversal, which
was established by Misra et al. [Mis+12] for W = V , and by Kakimura, Kawarabayashi,
and Kobayashi [KKK12] for general W . In order to do this, we use the following trick of
Aracena, Gajardo, and Montalva [MAG08] that turns cycles containing an even number
of bad vertices into cycles of even length. From Dp we obtain a graph U ′p by replacing
each negative edge e = (x, y) with three edges xue, ueve, and vey where ue and ve are
new negative vertices, and by replacing each remaining directed edge (u, v) with two
edges uwe and wev where we is a new (non-negative) vertex. We observe that U ′p can
be seen as being obtained from Dp by subdividing edges. Hence there is a natural
1-to-1 correspondence between cycles in Up and cycles in U ′p. Moreover, a cycle of Up
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containing an even number of negative vertices corresponds to a cycle of U ′p of even
length, and a bad cycle of Up corresponds to a bad cycle of U ′p. Thus, when we have an
even cycle transversal S of U ′p, we obtain a deletion no-EC-backdoor by replacing each
negative vertex v ∈ S by its non-negative neighbor. Hence Deletion no-EC-Back-
door Detection is fixed-parameter tractable. For Deletion no-BEC-Backdoor
Detection we proceed similarly, using an even W -cycle transversal of U ′p, letting W be
the set of negative vertices of U ′p.

We now proceed with the remaining “directed” target classes no-DC, no-DC2, and
no-DBC.

Let G = (V,E) be a digraph. Evidently, the directed feedback vertex sets of Dp

are exactly the deletion no-DC-backdoors of P . Hence, by using the fixed-parameter
algorithm of Chen et al. [Che+08] for finding directed feedback vertex sets we obtain
fixed-parameter tractability of Deletion no-DC-Backdoor Detection.

To make this work for Deletion no-DC2-Backdoor Detection we consider
instead of Dp the digraph D′p obtained from Dp by replacing each negative edge e = (u, v)
by two (non-negative) edges (u,we), (we, v), where we is a new vertex. The directed
cycles of Dp and D′p are in a 1-to-1 correspondence. However, directed cycles of length 2
in D′p correspond to good cycles of length 2 in Dp. Bonsma and Lokshtanov [BL11]
showed that finding a directed feedback vertex set that only needs to cut cycles of length
at least 3 is fixed-parameter tractable. Applying this algorithm to D′p (and replacing
each vertex we in a solution with one of its neighbors) yields fixed-parameter tractability
of Deletion no-DC2-Backdoor Detection.

The approach for Deletion no-DC-Backdoor Detection extends to Deletion
no-DBC-Backdoor Detection by considering directed W -feedback vertex sets of the
digraph D′p obtained from Dp using a simple construction already mentioned by Cygan
et al. [Cyg+13] where we replace each negative edge e = (u, v) by two (non-negative)
edges (u,we), (we, v) and W = {we : e is a negative edge }. The directed W -cycles of D′p
and the directed bad cycles of Dp are obviously in a 1-to-1 correspondence. Thus, when we
have a directed W -feedback vertex set S of D′p, we obtain a deletion no-DBC-backdoor
by replacing each vertex v ∈ S ∩W by its neighbor. The fixed-parameter tractability of
finding a directed W -feedback vertex set was shown by Chitnis et al. [Chi+12].

According to Observation 4.11, the classes mentioned in Theorem 4.18 are hereditary.
Hence using Theorem 4.18 we can drop the assumption in Theorem 3.12 that the backdoor
is given. We obtain directly the following results:

Theorem 4.19. For all C ∈ Acyc \ {no-DEC,no-DBEC} all problems in AspFull are
fixed-parameter tractable when parameterized by the size of a smallest deletion C-backdoor.

Let us now turn to the two classes no-DEC, no-DBEC excluded in Theorem 4.18.
We cannot establish that Deletion no-DEC-Backdoor Detection is fixed-parameter
tractable, as the underlying even cycle transversal problem seems to be currently out of
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reach to be solved. However, in Theorem 4.20 below, we can at least show that for every
constant k, we can decide in polynomial time whether a strong no-DEC-backdoor of
size at most k exists; thus, the problem is in XP. For Deletion no-DBEC-Backdoor
Detection the situation is different: here we can rule out fixed-parameter tractability
under the complexity theoretical assumption P 6= co-NP (Theorem 4.21).

Theorem 4.20. The problem Deletion no-DEC-Backdoor Detection is in XP.

Proof. Let P be a program, n the input size of P , and k be a constant. We are interested
in a deletion no-DEC-backdoor of P of size at most k. We loop over all possible
setsX ⊆ at(P ) of size at most k. Since k is a constant, there is a polynomial numberO(nk)
of such sets X. To decide whether X is a deletion no-DEC-backdoor of P , we need to
check whether P −X ∈ no-DEC. For the membership check P −X ∈ no-DEC we have
to decide whether DP−X contains a bad even cycle. We use a directed variant of the trick
in the proof of Theorem 4.18 (in fact, the directed version is slightly simpler). Let DP−X
be the dependency digraph of P −X. From DP−X we obtain a new digraph D′P−X by
subdividing every non-negative edge, i.e., we replace each non-negative edge e = (x, y)
by two (non-negative) edges (x, ue), (ue, y) where ue is a new vertex. Obviously, directed
even cycles in DP−X are in 1-to-1 correspondence with directed cycles of even length
in D′P−X . Whether a digraph contains a directed cycle of even length can be checked
in polynomial time by means of the following results: Vazirani and Yannakakis [VY88]
have shown that finding a cycle of even length in a digraph is equivalent to finding a
so-called Pfaffian orientation of a graph. Robertson, Seymour, and Thomas [RST99]
have shown that a Pfaffian orientation can be found in polynomial time, hence the test
works in polynomial time.

Theorem 4.21. The problem Deletion no-DBEC-Backdoor Detection is
co-para-NP-hard, and hence not fixed-parameter tractable unless P = co-NP

Proof. The theorem follows from the reduction in the proof of Theorem 4.17.

Remark. We note that the unparameterized version of Deletion C-Backdoor Detec-
tion for the acyclicity-based target classes C is NP-hard and co-NP-hard respectively,
since the reduction presented in the proof of Theorems 4.18 and 4.20 can be used straight-
forward as a reduction of the unparameterized version of the variants of the minimal
feedback vertex set problem, Directed Path via a Node respectively, to Deletion
C-Backdoor Detection.

Background and Related Work
The parameterized complexity of backdoor detection has been widely investigated in the
context of propositional satisfiability. Nishimura, Ragde, and Szeider [NRS04] have first
considered the target classes Horn and 2CNF and since then various classes have been
investigated. Gaspers and Szeider [GS12b] have provided an overview on the Schaefer
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target classes [Sch78] (including Horn), the base class renamable Horn, acyclicity-based
and subsolver-based classes. Subsolver-based classes are closely related to variants of the
well-known DPLL (Davis-Putnam-Logeman-Loveland) algorithm which forms the basis for
DPLL-based Sat solvers. A subsolver is a variant of the DPLL-algorithm where certain
solving techniques have been removed. Very recently Oikarinen and Järvisalo [OJ14]
have introduced similar subsolver-based classes that are closely related to modern Asp
algorithms. However, certain Asp techniques do not have a direct counterpart in Sat
solving.

Ben-Eliyahu [Ben96] has proposed algorithms to determine answer sets of normal
programs. The algorithms run faster on instances that have a small number of non-Horn
rules or a small number of atoms in negative bodies which can be seen as exploiting
Horn fragments. Gottlob, Scarcello, and Sideri [GSS02] have proposed fixed-parameter
tractable algorithms to solve the main Asp reasoning problems when parameterized by
the feedback width of a certain graph representation of a given normal program. Lin and
Zhao [LZ04a] have established fixed-parameter tractable algorithms to determine answer
sets of normal programs when parameterized in the size of directed bad even cycles.

Contribution and Discussion
In this chapter we have investigated the problem backdoor detection for backdoors into
various enumerable target classes, in detail Horn, no-C (no cycles), no-DC (no directed
cycles), no-BC (no bad cycles), no-EC (no even cycles), and their combinations. We
would like to mention that some of the combinations (no-DC2, no-EC, no-BEC, and no-
DEC) yield new-found target classes. We have established fixed-parameter tractability
of backdoor detection for backdoors into the target class Horn by means of a reduction
to the vertex cover problem. The technique is quite similar to backdoor detection for
backdoors into the target class Horn in the propositional setting [NRS04]. The backdoor
approach for Horn backdoors generalizes algorithms proposed by Ben-Eliyahu [Ben96] to
determine answer sets of normal programs; later we provide a comprehensive comparison
in Section 8.3. We have also provided strong evidence that strong backdoor detection for
backdoors into the various acyclicity-based target classes is unlikely to be fixed-parameter
tractable. However, we have established fixed-parameter tractability of deletion backdoor
detection for backdoors into the considered classes C where C is a subclass of no-DBC
or no-BEC. The results require new algorithms and deploy very recent algorithmic
results from parameterized complexity theory on various versions of feedback vertex
set problems to the domain of answer set programming. Our acyclicity-based target
classes have no direct counterpart in the propositional setting, even so very recently
discovered classes relate in a wider sense to acyclicity [GS12a; GS13]. The fixed-parameter
tractable algorithms introduced by Gottlob, Scarcello, and Sideri [GSS02] to solve the
problems in AspReason are based on deleting atoms from a dependency graph which is in
fact a parameterization by deletion backdoors into the target class no-C. Our results
are more general than the results by Gottlob, Scarcello, and Sideri [GSS02]; while the
results by Gottlob, Scarcello, and Sideri [GSS02] are restricted to normal programs our
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results apply to the full set of disjunctive programs. The results in earlier work [GSS02]
deal with the target class no-C including improvements based on strongly connected
components in contrast we establish fixed-parameter tractability even for the class of
stratified programs (no-DBC) (see Section 8.4 for a detailed comparison). Moreover, we
provide a comprehensive view on the parameterized complexity of strong and deletion
backdoor detection for backdoors into combinations of the classes based on no cycles, no
directed cycles, no bad cycles, and no even cycles. The notion of even cycle introduced
by Lin and Zhao [LZ04a] relates to our notion of deletion backdoors into no-DEC and
no-DBEC.
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CHAPTER 5
Lifting Parameters

In this chapter we introduce a general method to lift Asp parameters that are defined
for normal programs to disjunctive programs. Thereby we extend several algorithms that
have been suggested for normal programs to disjunctive programs. The lifting method
also gives us an alternative approach to obtain some results of Section 4.2.

In Section 5.1 we provide some general notation to speak about parameters of answer
set programming. In Section 5.2 we introduce our novel lifting technique and prove that
the size of a smallest deletion backdoor is not effected by lifting, due to the fact that lifting
is based on deletion Normal-backdoors. In Section 5.3 we show that our lifting method
extends fixed-parameter tractability of problems in AspReason when parameterized by an
Asp parameter under the condition that both problems (i) deciding whether the paramter
is of size at most k (parameter detection) and (ii) computing all answer sets (problem
enumeration) are fixed-parameter tractable for normal programs when parameterized by
the size of the parameter. This chapter is based on published work [FS15b].

5.1 ASP Parameters

The following definition allows us to speak about parameters for programs in a more
abstract way.

Definition 5.1. An Asp parameter is a function p that assigns to every program P
some non-negative integer p(P ) such that p(P ′) ≤ p(P ) holds whenever P ′ is obtained
from P by deleting rules or deleting atoms from rules. If p is only defined for normal
programs, we call it a normal Asp parameter. For an Asp parameter p we write p↓ to
denote the Asp parameter obtained by restricting p to normal programs.
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5. Lifting Parameters

We impose the condition p(P ′) ≤ p(P ) for technical reasons. This is not a limitation,
as most reasonable parameters and all parameters considered in this paper satisfy this
condition.

There are natural Asp parameters associated with backdoors:

Definition 5.2. For a class C of programs and a program P let sbC(P ) denote the size of
a smallest strong C-backdoor and dbC(P ) denote the size of a smallest deletion C-backdoor
of P .

5.2 Lifting
We will “lift” normal Asp parameters to general disjunctive programs as follows.

Definition 5.3. For a normal Asp parameter p we define the Asp parameter p↑ by
setting, for each disjunctive program P , p↑(P ) as the minimum of |X|+ p(P −X) over
all inclusion-minimal deletion Normal-backdoors X of P .

The next lemma shows that this definition is compatible with deletion C-backdoors
if C ⊆ Normal. In other words, if C is a class of normal programs, then we can divide
the task of finding a deletion C-backdoor for a program P into two parts: (i) to find a
deletion Normal-backdoor X, and (ii) to find a deletion C-backdoor of P −X.

Lemma 5.4 (Self-Lifting). Let C be a class of normal programs. Then dbC(P ) =
(db↓C)↑(P ) for every program P .

Proof. Let C be a class of normal programs, and P a program. Let X be a deletion
C-backdoor of P of size dbC(P ). Thus, P −X ∈ C ⊆ Normal. Hence X is a deletion
Normal-backdoor of P . We select an inclusion-minimal subset X ′ of X that is still a
deletion Normal-backdoor of P (say, by starting with X ′ = X, and then looping over
all the elements x of X, and if X ′ \ {x} is still a deletion C-backdoor, then setting X ′ :=
X ′ \ {x}). What we end up with is an inclusion-minimal deletion Normal-backdoor X ′
of P of size at most dbC(P ). Let P ′ = P −X ′ and X ′′ = X \X ′. P ′ is a normal program.
Since P ′ −X ′′ = P −X, it follows that P ′ −X ′′ ∈ C. Hence X ′′ is a deletion C-backdoor
of P . Thus, by the definition of db↑C , we have that db↑C(P ) ≤ |X ′|+ |X ′′| = dbC(P ).

Conversely, let db↑C(P ) = k. Hence there is a deletion Normal-backdoor X ′ of P
such that |X ′| + dbC(P − X ′) = k. Let P ′ = P − X ′. Since dbC(P ′) ≤ k − |X ′|, it
follows that P ′ has a deletion C-backdoor X ′′ of size k − |X ′|. We put X = X ′ ∪ X ′′
and observe that P −X = P ′ −X ′′ ∈ C. Hence X is a deletion C-backdoor of P . Since
dbC(P ) ≤ |X| ≤ |X ′|+ |X ′′| ≤ db↑C(P ) ≤ k, the lemma follows.

Example 5.1. Consider program P from Example 2.1 and let #neg(P ) denote the number
of distinct atoms that occur in negative rule bodies of a normal program (we will discuss
this parameter in more detail in Section 8.3).

54



5.3. Lifting Theorem

We determine #neg↑(P ) = 2 by the following observations: The set X1 = {c} is a
deletion Normal-backdoor of P since P − X1 = { d ← a, e; a ← d,¬b; e ← f ; f ←
d; ← f, e,¬b; ← d; b; f } belongs to the class Normal. The set X2 = {e} is a
deletion Normal-backdoor of P since P −X2 = { d ← a; a ← d,¬b,¬c; c ← f ; f ←
d, c; c ← f,¬b; c ← d; b ← c; f } belongs to the class Normal. Observe that X1 and
X2 are the only inclusion-minimal deletion Normal-backdoors of the program P . We
obtain #neg↑(P,X1) = 2 since #neg(P − X1) = 1. We have #neg↑(P,X2) = 3 since
#neg(P −X2) = 2. Thus, #neg↑(P ) = 2. a

For every Asp parameter p we consider the following problem.

Bound[p]
Given: A program P and an integer k.
Parameter: The integer k.
Task: Decide whether p(P ) ≤ k holds.

For a problem L ∈ AspFull and an Asp parameter p we write L[p] to denote the
problem L parameterized by p. That is, the instance of the problem is augmented with an
integer k, the parameter, and for the input program P it holds that p(P ) ≤ k. Moreover,
we write L[p]N to denote the restriction of L[p] where instances are restricted to normal
programs P . Similarly, Bound[p]N is the restriction of Bound[p] to normal programs.
For all the problems L[p]N, p only needs to be a normal Asp parameter.

5.3 Lifting Theorem
Next we state the main result of this chapter.

Theorem 5.5 (Lifting). Let p be a normal Asp parameter such that Bound[p]N and
Enum[p]N are fixed-parameter tractable. Then for all L ∈ AspFull the problem L[p↑] is
fixed-parameter tractable.

We need some definitions and auxiliary results to establish the theorem.

Definition 5.6. Let P be a disjunctive program. The head dependency graph Hp of the
program P is the graph which has as vertices the atoms of P and an edge between any
two distinct atoms if they occur together in the head of a rule of P .

Lemma 5.7. Let P be a disjunctive program. A set X ⊆ at(P ) is a deletion
Normal-backdoor of P if and only if X is a vertex cover of the head dependency
graph Hp.

Proof. Let X be a deletion Normal-backdoor of P . Consider an edge uv of Hp, then
there is a rule r ∈ P with u, v ∈ H(r) and u 6= v. Since X is a deletion Normal-backdoor
of P , we have {u, v} ∩X 6= ∅. We conclude that X is a vertex cover of Hp.
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Conversely, assume that X is a vertex cover of Hp. We show that X is a deletion
Normal-backdoor of P . Assume to the contrary, that P −X contains a rule r whose
head contains two variables u, v. Consequently, there is an edge uv in Hp such that
{u, v} ∩X = ∅, contradicting the assumption that X is a vertex cover.

Lemma 5.8. Let G = (V,E) be a graph, n = |E|, and let k be a non-negative integer.
G has at most 2k inclusion-minimal vertex covers of size at most k, and we can list all
such vertex covers in time O(2kn).

Proof. We build a binary search tree T of depth at most k where each node t of T
is labeled with a set St. We build the tree recursively, starting with the root r with
label Sr = ∅. If St is a vertex cover of G we stop the current branch, and t becomes a
“success” leaf of T . If t is of distance k from the root and St is not a vertex cover of G,
then we also stop the current branch, and t becomes a “failure” leaf of T . It remains to
consider the case where St is not a vertex cover and t is of distance smaller than k from
the root. We pick an edge uv ∈ E such that u, v /∈ St (such edge exists, otherwise St
would be a vertex cover) and add two children t′, t′′ to t with labels St′ = St ∪ {u} and
St′′ = St ∪ {v}. It is easy to see that for every inclusion-minimal vertex cover S of G of
size at most k there is a success leaf t with St = S. Since T has O(2k) nodes, the lemma
follows.

From Lemmas 5.7 and 5.8 we immediately obtain the next result.

Proposition 5.9. Every disjunctive program of input size n has at most 2k inclusion-
minimal deletion Normal-backdoors of size at most k, and all these backdoors can be
enumerated in time O(2kn).

Proof of Theorem 5.5. Let p be a normal Asp parameter such that Enum[p]N and
Bound[p]N are fixed-parameter tractable. Let P be a given disjunctive program of
input size n and k an integer such that p↑(P ) ≤ k. In the following, when we say some
task is solvable in “fpt-time”, we mean that it can be solved in time O(f(k)nc) for some
computable function f and a constant c.

By Proposition 5.9 we can enumerate all inclusion-minimal deletion Normal-back-
doors of size at most k in time O(2kn). We can check whether p(P − X) ≤ k − |X|
for each such backdoor X in fpt-time since Bound[p]N is fixed-parameter tractable by
assumption. Since p↑(P ) ≤ k, there is at least one such set X where the check succeeds.

We pick such set X and compute AS(P,X) in fpt-time. That this is possible can be
seen as follows. Obviously, for each truth assignment τ ∈ 2X the program Pτ is normal
since P −X is normal, and clearly p(Pτ ) ≤ p(P −X) ≤ k by Definition 5.1. We can
compute AS(Pτ ) in fpt-time since Enum[p]N is fixed-parameter tractable by assumption.
Since there are at most 2k such programs Pτ , we can indeed compute the set AS(P,X)
in fpt-time.
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By Lemma 3.9 we have AS(P ) ⊆ AS(P,X), hence it remains to check for each M ∈
AS(P,X) whether it gives rise to an answer set of P . Since X is a deletion Normal-back-
door of P , and since one easily observes that Normal is hereditary, it follows by
Lemma 3.7 that X is a strong Normal-backdoor of P . Hence Lemma 3.10 applies, and
we can decide whetherM ∈ AS(P ) in time O(2kn). Hence we can determine the set AS(P )
in fpt-time. Once we know the set AS(P ), we obtain for every problem L ∈ AspFull
that L[p↑] is fixed-parameter tractable.

Example 5.2. Consider program P from Example 2.1 with the the deletion Normal-back-
door X1 = {c} from Example 5.1. We want to enumerate all answer sets of P . We obtain
with Ben-Eliyahu’s algorithm [Ben96] the sets AS(Pc̄) = {{e, f}} and AS(Pc) = {{b, f}},
and so we get the set AS(P,X) = {{e, f}, {b, c, f}} of answer set candidates. By means
of the algorithm that solves the problem Strong C-Backdoor Asp Check (see
Lemma 3.10) we observe that {b, c, f} is the only answer set of P . a

Remark. Note that Definitions 4.2 and 4.6 introduce additional edges or certain cycles,
respectively, on head atoms for non-singleton heads in the constructed graphs. This
construction has the same effect on the size of smallest deletion backdoors into Horn or
acyclicity-based target classes as the lifting of corresponding parameters from normal to
disjunctive programs.

Background and Related Work
Parameterized complexity theory does not provide a general tool to lift parameters that
are defined for a complexity class to a larger complexity class. Methods used in Asp
to extend semantics or transformation from one class of programs into another class
might be considered as a lifting technique. Results by Gelfond and Lifschitz [GL91] lift
the stable model semantics to disjunctive programs which was defined only for normal
programs [GL88]. Fages [Fag94] has shown that Clark’s completion [Cla78] allows a
transformation of tight programs into Sat. Lin and Zhao [LZ04a] have lifted Clark’s
completion from tight to normal programs by means of loop formulas. Later the results
by Lee and Lifschitz [LL03] lifted loop formulas from normal to disjunctive programs.

Contribution and Discussion
We have established a lifting theorem that allows us to lift all parameters that are based
on deleting rules or atoms from rules from normal programs to disjunctive programs. To
our knowledge this is the first such framework for answer set programming. A similar
technique might be useful for other problems from domains in artificial intelligence where
the problem complexity lies beyond NP however when the input is restricted such that
complexity is NP-complete the problem fixed-parameter tractable for a certain parameter.
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CHAPTER 6
Polynomial-Time Preprocessing

In this chapter we consider kernelizations for backdoor detection and backdoor evaluation
in the context of Asp. We establish that for some target classes, backdoor detection
admits a polynomial kernel. We further provide strong theoretical evidence that for all
target classes considered, backdoor evaluation does not admit a polynomial kernel.

If we want to solve a hard problem, then in many settings, it is beneficial to first apply
a polynomial preprocessing to a given problem instance. In particular, polynomial-time
preprocessing techniques have been developed in Asp solving (see e.g., [Fab+99; Geb+08;
Geb+11a]). However, polynomial-time preprocessing for NP-hard problems has mainly
been subject of empirical studies where provable performance guarantees are missing,
mainly due to the fact, that if we can show that we can reduce in polynomial-time
a problem instance by just one bit, then by iterating this reduction we can solve the
instances in polynomial time. In contrast, the framework of parameterized complexity
offers with the notion of kernelization a useful mathematical framework that admits the
rigorous theoretical analysis of polynomial-time preprocessing for NP-hard problems.

In Section 6.1 we briefly provide some background and notation on kernelization. In
Section 6.2 we investigate whether the deletion backdoor detection problems of The-
orems 3.12, 4.4, and 4.18 also admit a polynomial kernel. Subsequently, we study in
Section 6.3 polynomial preprocessing of the problems in AspReason when parameterized
by the size of a strong backdoor into the considered target class and answer the question
whether the problems admit a polynomial kernel. We conclude the chapter with back-
ground and related work, a summary of our contribution, and a discussion of the results.
This chapter is based on published work [FS15b].
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6.1 Kernelization

A kernelization is a polynomial-time reduction that replaces the input by a smaller input,
called a “kernel”, whose size is bounded by some computable function of the parameter
only. A well known result of parameterized complexity theory is that a decidable problem
is fixed-parameter tractable if and only if it admits a kernelization [DFS99]. The result
leads us to the question of whether a problem also has a kernelization that reduces
instances to a size which is polynomially bounded by the parameter, so-called polynomial
kernels. Indeed, many NP-hard optimization problems admit polynomial kernels when
parameterized by the size of the solution [Ros10].

We will later use the following problem:

Vertex Cover
Given: A graph G = (V,E) and an integer k.
Parameter: The integer k.
Task: Decide whether there is a vertex cover S ⊆ V

(see Section 4.1) of size at most k.

Next we give a more formal definition of kernelization. Let L,L′ ⊆ Σ∗ × N be
parameterized problems. A bi-kernelization is a polynomial-time many-to-one reduction
from the problem L to problem L′ where the size of the output is bounded by a computable
function of the parameter. That is, a bi-kernelization is an algorithm that, given an
instance (I, k) ∈ Σ∗ × N outputs for a constant c in time O((‖I‖+ k)c) a pair (I ′, k′) ∈
Σ∗ ×N, such that (i) (I, k) ∈ L if and only if (I ′, k′) ∈ L′ and (ii) ‖I ′‖+ k′ ≤ g(k) where
g is an arbitrary computable function, called the size of the kernel. If L′ = L then the
reduction is called a kernelization, the reduced instance a kernel. If g is a polynomial
then we say that L admits a polynomial bi-kernel, or polynomial kernel if in addition
L = L′. For instance, the problem Vertex Cover has a kernel of at most 2k vertices
and thus admits a polynomial kernel [CKX10]. L is called compressible if it admits a
polynomial bi-kernel.

A kernelization of a decidable parameterized problem L immediately yields a fixed-
parameter tractable algorithm for L since we can apply the kernelization and then use
any brute force method and we still have a fixed-parameter tractable algorithm. On the
other hand a fixed-parameter tractable algorithm gives a kernelization. Suppose that
an algorithm A is fixed-parameter tractable, i.e., the algorithm A solves instances (I, k)
in time O(f(k)‖I‖c) for a computable function f and a constant c. Let (I, k) be an
instance. If ‖I‖ ≤ f(k) then we output (I, k). If ‖I‖ ≥ f(k) then we apply the
algorithm A which decides in time O(‖I‖c+1) whether (I, k) ∈ L. If (I, k) ∈ L we output
an arbitrary instance (I ′, 1) ∈ L ; if (I, k) 6∈ L we output an arbitrary instance (I ′, 1) 6∈ L
of the problem. In total the algorithm runs in time at most O(‖I‖c+1) which is in fact
polynomial. The connection was observed by Downey, Fellows, and Stege [DFS99] and is
stated in the following proposition:
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The following proposition states the connection between fixed-parameter tractable
problems and kernels, as observed by Downey, Fellows, and Stege [DFS99]:

Proposition 6.1 (Downey, Fellows, and Stege, 1999, Flum and Grohe, 2006). A pa-
rameterized problem is fixed-parameter tractable if and only if it is decidable and has a
kernelization.

Thus, our fixed-parameter tractability results of Theorems 3.12, 4.4, and 4.18 imme-
diately provide that the mentioned problems admit a kernelization.

6.2 Backdoor Detection

In the following, we investigate whether the deletion backdoor detection problems for
backdoors into the target class Horn (Section 4.1), the target class Normal (Section 5.3)
or the acyclicity-based target classes (Section 4.2.2) admit polynomial kernels.

The first result of this section is quite positive.

Theorem 6.2. For C ∈ {Horn, Normal, no-C} the problem Deletion C-Backdoor
Detection admits a polynomial kernel. For C ∈ {Horn,Normal} the kernel has a
linear number of atoms, for C = no-C the kernel has a quadratic number of atoms.

Proof. First consider the case C ∈ {Horn,Normal}. Let (P, k) be an instance of
Deletion C-Backdoor Detection. We obtain in polynomial time the negation
dependency graph Np of P (see Definition 4.2) and consider (Np, k) as an instance of
Vertex Cover. Similar we obtain in polynomial time the head dependency graph Hp

of P (see Definition 5.6) and consider (Hp, k), respectively, as an instance of Vertex
Cover. We use the kernelization algorithm of Chen, Kanj, and Xia [CKX10] for Vertex
Cover and reduce in polynomial time (Np, k) to a Vertex Cover instance (G, k′) where
G = (V,E) with at most 2k many vertices. It remains to translate G into a program P ′

where Np′ = G by taking for every edge xy ∈ E a rule x ← ¬y. Similar we use the
kernelization algorithm of Chen, Kanj, and Xia [CKX10] for Vertex Cover and reduce
in polynomial time (Hp, k) to a Vertex Cover instance (G, k′) where G = (V,E) with
at most 2k many vertices. It remains to translate G into a program P ′ where Hp′ = G
by taking for every edge xy ∈ E a rule x ∨ y. Now (P ′, k′) is a polynomial kernel with
a linear number of atoms. Now (P ′, k′) is a polynomial kernel with a linear number of
atoms.

Second consider the case C = no-C. Let (P, k) be an instance of Deletion
no-C-Backdoor Detection. We obtain in polynomial time the dependency graph Up
of P and consider (Up, k) as an instance of Feedback Vertex Set (see Section 4.2.2).
We use the kernelization algorithm of Thomassé [Tho09] for Feedback Vertex Set
and reduce in polynomial time (Up, k) to a Feedback Vertex Set instance (G′, k′)
with at most 4k2 vertices. As above we translate G = (V,E) into a program P ′ where
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Up′ = G by taking for every edge xy ∈ E a rule x ← ¬y. Now (P ′, k′) is a polynomial
kernel with a quadratic number of atoms.

Similar to the construction in the proof of Theorem 4.18 we can reduce for the
remaining classes the backdoor detection problem to variants of feedback vertex set.
However, for the other variants of feedback vertex set no polynomial kernels are known.

We would like to point out that the kernels obtained in the proof of Theorem 6.2 are
equivalent to the input program with respect to the existence of a backdoor, hence the
kernels can be used to find a backdoor. However the obtained kernels are not equivalent
with respect to the decision of the problems in AspReason , in consequence the kernel
cannot be used for backdoor evaluation. In the next subsection we consider kernels with
respect to problems in AspReason .

6.3 Backdoor Evaluation
Next we consider the problems in AspReason . We will see that neither of them admits
a polynomial kernel when parameterized by the size of a strong C-backdoor into the
considered target classes, subject to standard complexity theoretical assumptions.

Our superpolynomial lower bounds for kernel size are based on a result by Fortnow
and Santhanam [FS11] regarding satisfiability parameterized by the number of variables.

Sat[Vars]
Given: A CNF formula F .
Parameter: The number k of variables of F .
Task: Decide whether F is satisfiable.

Proposition 6.3 (Fortnow and Santhanam, 2011). If Sat[Vars] is compressible, then
NP ⊆ co-NP/poly.

Recall that the complexity class NP/poly consists of all problems that can be solved
non-deterministically in non-uniform polynomial time (for a definition see Section 2.3). It
is well-known from Yap’s Theorem [Yap83] that if NP ⊆ co-NP/poly then the Polynomial
Hierarchy collapses to its third level (Σp

3 = Πp
3), which is considered unlikely by standard

complexity theoretical assumptions.

The following theorem extends a result for normal programs [GS14]. We need a
different line of argument, as the technique used by Gaspers and Szeider [GS14] only
applies to problems in NP or co-NP.

Theorem 6.4. Let C ∈ Acyc ∪ {Horn}. Then no problem in AspReason admits a
polynomial kernel when parameterized by the size of a smallest strong C-backdoor or
deletion C-backdoor, unless NP ⊆ co-NP/poly.
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Proof. We show that the existence of a polynomial kernel for any of the above problems
implies that Sat[Vars] is compressible, and hence by Proposition 6.3 the collapse would
follow.

First consider the problem Consistency. From a CNF formula F with k variables
we use a reduction of Niemelä [Nie99] and construct a program P1 as follows: Among
the atoms of our program P1 will be two atoms ax and ax̄ for each variable x ∈ var(F ),
an atom bC for each clause C ∈ F . We add the rules ax̄ ← ¬ax and ax ← ¬ax̄ for each
variable x ∈ var(F ). For each clause C ∈ F we add for each x ∈ C the rule bC ← ax
and for each ¬x ∈ C the rule bC ← ax̄. Additionally, for each clause C ∈ F we
add the rule ← ¬bC . Now it is easy to see that the formula F is satisfiable if and
only if the program P1 has an answer set. We observe that X = { ax : x ∈ var(F ) }
(X = { ax, ax̄ : x ∈ var(F ) }) is a smallest deletion (and smallest strong) C-backdoor
of P1 for each C ∈ Acyc (C = Horn). Hence (P1, k), (P1, 2k) respectively, is an instance
of Consistency, parameterized by the size of a smallest strong C-backdoor or deletion
C-backdoor, and if this problem would admit a polynomial kernel, this would imply that
Sat[Vars] is compressible.

For the problem Brave Reasoning we modify the reduction from above. We create
a program P2 that consists of all atoms and rules from P1. Additionally, the program P2
contains an atom t and a rule r with H(r) = {t}, B+(r) = ∅, and B−(r) = ∅. We observe
that the formula F is satisfiable if and only if the atom t is contained in some answer
set of P2. Since X is still a backdoor of size k (2k), and a polynomial kernel for Brave
Reasoning, again it would yield that Sat[Vars] is compressible.

Let UnSat[Vars] denote the problem defined exactly like Sat[Vars], just with yes
and no answers swapped. A bi-kernelization for UnSat[Vars] is also a bi-kernelization
for Sat[Vars] (with yes and no answers swapped). Hence Sat[Vars] is compressible
if and only if UnSat[Vars] is compressible. An argument dual to the previous one
for Brave Reasoning shows that a polynomial kernel for Skeptical Reasoning,
parameterized by backdoor size, would yield that UnSat[Vars] is compressible, which,
as argued above, would yield that Sat[Vars] is compressible.

6.4 Background and Related Work
Kernelizations have been widely investigated in parameterized complexity. Standard
notations are due to Downey, Fellows, and Stege [DFS99] and Flum and Grohe [FG06].
For a proof of the well-known connection between a fixed-parameter tractable problem
and a parameterized problem we refer to other sources [DFS99; FG06]. Buss and Gold-
smith [BG93] have discovered a quadratic kernel for the problem Vertex Cover. Chen,
Kanj, and Jia [CKJ01] have observed that the kernel can be improved to at most 2k ver-
tices and O(k2) edges using Ilp methods to solve vertex cover [NL75] and later improved
the results [CKX10]. Abu-Khzam et al. [Abu+07] have carried out an experimental
evaluation of kernelizations for Vertex Cover. Lampis [Lam11] has established that
Vertex Cover has a kernel of at most 2k − c log k vertices for some fixed constant c.
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Papadimitriou and Yannakakis [PY96] have observed that Vertex Cover does not have
a kernel of size O(log k) unless P = NP. Dell and Melkebeek [DM14] have improved the
lower bounds by showing that there are no kernels with O(k2−ε) edges for every ε > 0
unless co-NP ⊆ NP/poly.

Bodlaender, Thomassé, and Yeo [BTY11] have provided a way to transform kernel
lower bounds from one parameterized problem to another. Fortnow and Santhanam [FS11]
have established that Sat is not compressible unless NP ⊆ co-NP/poly. Yap’s The-
orem [Yap83] establishes that the Polynomial Hierarchy collapses to its third level if
NP ⊆ co-NP/poly, which is considered unlikely by standard complexity theoretical
assumptions. The result by Fortnow and Santhanam [FS11] provides the basis for our
kernel lower bounds. Gaspers and Szeider [GS14] have considered kernelizations for
various problems in artificial intelligence.

Several preprocessing techniques have been developed in Asp solving. Gebser et
al. [Geb+08] have introduced an approach to simplify a program by identifying equiva-
lences among its important parts and using them to build a compact representation of
the program. Faber et al. [Fab+99] have suggested database optimization techniques for
non-ground answer set programming. Morak and Woltran [MW12] have established a
method based on kernelizations for preprocessing non-ground Asp. Bomanson, Gebser,
and Janhunen [BGJ14] have determined an improved transformation of cardinality or
weight rules into normal rules.

Even so the problems in AspReason do not not admit a polynomial kernel when
parameterized by the size of a strong backdoor into the considered target classes under
standard complexity theoretical assumptions, it might still be possible that the problems
admit polynomially sized Turing kernels when parameterized by the size of a strong
backdoor. In the area of optimization problems such Turing kernels, which consist of
polynomial disjunction of polynomial kernels, have been discovered as an alternative
approach. For example, Binkele-Raible et al. [Bin+12] have established that there is a
polynomial-time reduction from the problem finding a rooted oriented spanning tree of
at least k leaves to a disjunction of n independent kernels of size O(k3) for a digraph of n
vertices; although the problem does not admit a polynomial kernel unless the polynomial
hierarchy collapses. Hence disjunctive kernelizations are stronger than the reduction to a
single kernel.

6.5 Contribution and Discussion
In this chapter we analyzed preprocessing for backdoor detection and backdoor evaluation
by means of kernelizations. We have obtained both positive and negative results. We have
established that backdoor detection into the target classes Horn, Normal, and no-C
admit a polynomial kernel; for Deletion no-C-Backdoor Detection the kernel has
a quadratic number of atoms and for Deletion Horn-Backdoor Detection and
Deletion Normal-Backdoor Detection the kernel has even a linear number of atoms.
We obtain the results by standard methods from parameterized complexity theory, more
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specifically reductions to Vertex Cover, which provide the linear kernels [CKX10], and
feedback vertex set, which provides the quadratic kernel [Tho09]. We state that one would
similarly obtain kernels for backdoor detection into the target classes, where backdoor
detection is fixed-parameter tractable, by reductions to various feedback vertex set
problems. However, it is currently an open question in parameterized complexity theory
whether the various feedback vertex set problems admit polynomial kernels [Ros10]. We
have established super-polynomial kernel lower bounds for backdoor evaluation by showing
that a polynomial kernel for backdoor evaluation implies NP ⊆ co-NP/poly, which then
implies the collapse of the Polynomial Hierarchy to its third level according to Yap’s
theorem [Yap83], however the collapse is considered highly unlikely in standard complexity
theory. In that way we obtain a strict theoretical bound for potential polynomial-time
preprocessing methods for backdoor evaluation. Our kernel lower bounds are not limited
to a particular preprocessing technique, they apply to any technique using backdoor
evaluation.

We think an interesting future research topic, both from theoretical as well as from
practical perspective, is to study whether backdoor evaluation admits a polynomially
sized Turing kernel, i.e., a reduction for preprocessing that produces a disjunction of
several independent polynomially sized kernels instead of a single kernel similar to results
in the area of optimization [Bin+12]. A positive result on polynomial sized Turing kernels
would motivate to consider disjunctive preprocessing also for practical solvers.
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CHAPTER 7
Backdoor Trees

In this chapter we consider backdoor trees, which provide a more precise approach to the
evaluation of strong backdoors where we take the interaction of the assignments in the
evaluation into account. So far we considered only the size k of a backdoor as a parameter.
Evaluating a given backdoor results in 2k truth assignment reducts. However, a truth
assignment to fewer than k atoms can already yield a truth assignment reduct that
belongs to the considered target class. Therefore, we consider binary decision trees which
make gradually assigning truth values to backdoor atoms in a program precise and lead
us to the notion of backdoor trees, originally defined for Sat [SS08]. We investigate under
which conditions (i) we need to consider significantly fewer than 2k truth assignment
reducts and (ii) we can significantly improve the minimality check from Lemma 3.10 if
those truth assignments set only a small number of atoms to true.

In Section 7.1 we provide motivating examples and introduce basic notions and con-
cepts to define backdoor trees for answer set programming. We state general observations
of backdoor trees for answer set programming and connections between strong backdoors
and backdoor trees. In Section 7.2 we extend the results on backdoor evaluation from
Section 3.3 to backdoor trees. We establish that not all truth assignment reducts are
necessary to find all answer sets of a given program instead the truth assignment reducts
that we obtain from a backdoor tree are sufficient. We establish that the minimality
check is fixed-parameter tractable when parameterized by a composed parameter which
incorporates considerations of (i) and (ii) from above of a given backdoor tree and adapt
our method to solve the problems in AspReason when parameterized by the composed pa-
rameter of a given backdoor tree. In Section 7.3 we state connections between backdoors
and backdoor trees. We compare the parameter size of a backdoor and our composed
parameter of a backdoor tree. In Section 7.4 we consider backdoor tree detection. We
conclude the chapter with background and related work, a summary of our contribution,
and a discussion. This chapter contains unpublished work.
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7.1 Backdoor Trees of Answer Set Programs
In this section we introduce backdoor trees for answer set programming. Backdoor trees
have been first introduced by Samer and Szeider [SS08] in the context of propositional
satisfiability.

When we exploit a backdoor X of a program P to find answer sets according to
Theorem 3.12, we determine for each τ ∈ 2X the answer sets of the simplified programs Pτ
and then check whether these answer sets give rise to an answer set of P . Consequently,
we have to consider all the 2|X| truth assignments. Since the exponential blowup of the
running time of the algorithms in the proofs of Theorem 3.12 depends only on the size of
the backdoor X, we were so far only interested in efficient algorithms to find smallest
backdoors into certain target classes. However, there are answer set programs where we
can find a backdoor X for which we do not need all 2|X| truth assignments, as “shorter”
truth assignments already yield a simplified program that belongs to the considered
target class. More formally, there is a truth assignment τ ′ such that τ ′−1 ( τ−1 for some
τ ∈ 2X and the truth assignment reduct Pτ ′ already belongs to the target class C. Hence,
when we gradually assign truth values to atoms (similar to binary search) instead of
taking a truth assignment τ ∈ 2X , some atoms in τ can be irrelevant for the question
whether the simplified program belongs to C.

Interestingly, in some cases it is more effective to use a backdoor that is not a smallest
backdoor into the target class C. We show this in the following example.

Example 7.1. Let n be some integer. Consider the following program:

P := { y0 ∨ x0 ← x1, . . . , x2n }∪
{ yj ∨ xi ← x0 . . . , xi−1, xi+1, . . . , x2n−1 : j = (i mod n), 1 ≤ i < 2n }∪
{x0 ← x1, . . . , x2n−1,¬yj }
{xi ← x0, xi−1, xi+1, x2n−1,¬yj : j = (i mod n), 0 ≤ i < 2n }.

We observe that Y = {y0, . . . , yn−1} is a smallest strong Horn-backdoor. Figure 7.1 (a)
visualizes the truth assignments that we obtain when gradually constructing the truth
assignment reducts τ ∈ 2Y . Obviously, we need all 2|Y | truth assignment reducts
since “removing” any atom from a truth assignment τ results in Pτ /∈ Horn. The
set X = {x0, . . . , x2n−1} is also a strong backdoor into Horn. The set X is larger than
the set Y , but already for “shorter” truth assignments τ ′ than the truth assignment
reducts τ ∈ 2X we obtain that the truth assignment reduct belongs to Horn. For
instance, the truth assignment τ ′ = {¬x1} yields the truth assignment reduct P¬x1 =
{ y1 ← x0, x2, . . . , x2n−1 } which belongs to Horn. Hence, we obtain only 2n+ 1 truth
assignment reducts, see Figure 7.1 (b). a

Example 7.1 shows that gradually assigning backdoors (similar to binary search) can
“earlier” yield truth assignment reducts that belong to the considered target class and
that larger backdoors can yield an exponentially smaller number of such truth assignment
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P

Py1

Py1y2

Py1y2y3 Py1y2¬y3

Py1¬y2

Py1¬y2y3 Py1¬y2¬y3

P¬y1

P¬y1y2

P¬y1y2y3 P¬y1y2¬y3

P¬y1¬y2

P¬y1¬y2y3 P¬y1¬y2¬y3

. . . . . . . . . . . . . . . . . . . . . . . .

(a) Constructed from the strong Horn-backdoor Y

P

Px1

Px1,x2

Px1x2x3 Px1¬x2x3

Px1¬x2

P¬x1

. . .

(b) Constructed from the strong Horn-backdoor X

Figure 7.1: Illustration of truth assignment reducts of the program P and the strong
Horn-backdoors X and Y from Example 7.2. A gray colored note indicates that the
respective program does not belong to Horn. A white colored note indicates that the
respective program does belong to Horn.

reducts. In Section 3.3 we observed that the most important part for backdoor evaluation
is to check whether a model is a minimal model (see proof of Lemma 3.10). The task is
co-NP-complete in general, but fixed-parameter tractable when parameterized by the size
of a smallest backdoor into a subclass of normal programs. For the minimality check we
have to consider all backdoor atoms that have been set to true by any truth assignment.
Hence the backdoor Y from Example 7.1 yields a significantly smaller number of truth
assignment reducts, however for the minimality check we still have to consider all subsets
of Y . Conversely, we construct subsequently in Example 7.2 a program where the number
of truth assignments that we obtain from a smallest strong backdoor can be arbitrarily
larger than the maximum number of atoms in a backdoor that have been set to true by
any truth assignment on a much larger number of atoms.
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Pn

Pnx1 Pn¬x1

Pn¬x1x2 Pnx1¬x2

Pn¬x1¬x2x3
. . .

Pn¬x1...¬x2n−1

Pn¬x1...¬x2n−1x2n Pn¬x1...¬x2n−1¬x2n

Figure 7.2: A Horn-backdoor tree BT = (T, χ) of program Pn from Example 7.2.

Example 7.2. Let n be some large integer. We define the following program:

P := { y0 ∨ ¬x0 ← ¬x1, . . . ,¬x2n−1 }∪
{ yj ∨ xi ← ¬x0 . . . ,¬xi−1,¬xi+1, . . . ,¬x2n−1 : j = (i mod n), 1 ≤ i < 2n }∪
{x0 ← x1, . . . , x2n−1,¬yj }
{xi ← ¬x0,¬xi−1,¬xi+1,¬x2n−1,¬yj : j = (i mod n), 0 ≤ i < 2n }.

We observe that Y = {y0, . . . , yn−1} is a smallest strong Horn-backdoor. Gradually
constructing the truth assignment reducts as carried out above yields a complete tree
with 2n leaves and a maximum number n of atoms that might be set to true. Obviously,
we need all 2|Y | truth assignment reducts since “removing” any atom from a truth
assignment τ results in Pτ /∈ Horn. Further, we easily observe that X = {y1, . . . , yn} is
a smallest strong Horn-backdoor. Figure 7.2 visualizes the truth assignments that we
obtain when gradually constructing the truth assignment reducts τ ∈ 2X . There we have
only 2n+ 1 truth assignment reducts where at most one atom is set to true. a

Before we can make the observations from the previous examples precise, we provide
some basic definitions. Let X be a set of atoms, T = (N,E, r) a binary tree, and χ a
labeling that maps any node t ∈ N to a set χ(t) ⊆ { a,¬a : a ∈ X }. We denote by
X1(t) the positive literals of the labeling χ(t), i.e., X1(t) := χ(t) ∩X. The corresponding
truth assignment τχ(t) of t is the truth assignment τχ(t) where τχ(t)(a) = 1 if a ∈ χ(t)
and τχ(t)(a) = 0 if ¬a ∈ χ(t). The pair BT = (T, χ) is a binary decision tree of P if the
following conditions hold:

1. for the root r we have χ(r) = ∅,

2. for any two nodes t, t′ ∈ N , if t′ is a child of t, then either χ(t′) = χ(t) ∪ {¬a} or
χ(t′) = χ(t) ∪ {a} for some atom a ∈ X \ τ−1

χ(t), and

3. for any three nodes t, t1, t2 ∈ N , if t1 and t2 are children of t, then χ(t1) 6= χ(t2).
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We denote by at(BT ) the atoms occurring in truth assignments of BT , i.e.,

at(BT ) :=
⋃
t∈N

τ−1
χ(t).

Next, we give a definition for backdoor trees of answer set programs.

Definition 7.1. Let P be a program, X = at(P ), and BT = (T, χ) be a binary decision
tree and T = (N,E). The pair BT = (T, χ) is a C-backdoor tree of P if Pτ ∈ C for every
leaf t ∈ N and τ = τχ(t). We denote by #leaves(BT) the number of leaves of T , i.e.,

#leaves(BT ) := |{ t : t is a leaf of T }|.

We denote by gs(BT ) the maximum number of atoms that have been set to true by a
corresponding truth assignment of any leaf of T , more specifically,

gs(BT ) := max{ |X1(t)| : t is a leaf of T }.

For reasons explained below, we call gs(BT ) the Gallo-Scutellà parameter of BT .

In other words, a backdoor tree of a program P is a binary decision tree where the
nodes of the tree are labeled by truth assignments τ ∈ 2X on subsets X ⊆ at(P ), the
corresponding partial assignment τ of an inner node yields a simplified program Pτ that
does not belong to the considered target class, and the corresponding truth assignment τ
of a leaf yields a simplified program Pτ that belongs to the considered target class.

Relationship to a Parameter by Gallo and Scutellà

The maximal number of positive variables in a propositional formula has been considered
as parameter by Gallo and Scutellà [GS88] to measure in a certain sense the distance
from being Horn. Recall that a formula is Horn if each clause has at most one positive
literal. Gallo and Scutellà have also established an XP-algorithm (see Section 2.4) to
determine the parameter of a propositional formula.

We consider the parameter in its original context and definition as nested classes
of families of sets on a family to generalize Horn formulas. Let S be a family of
sets S1, . . . , Sm, SX = S \ {Y ∈ S : X ⊆ Y }, and S −X := {S \X : S ∈ S } for some
set X. Moreover, (i) S ∈ Σ0 if and only if |S| ≤ 1 for each S ∈ S and (ii) S ∈ Σk if and
only if there is some v ∈

⋃
1≤i≤m Si such that S{v} ∈ Σk−1 and S− {v} ∈ Σk. Then, the

class Γk consists of all propositional formulas F such that F ′ ∈ Σk where F ′ is obtained
from F by removing all negative literals (note that we consider F ′ as a set of clauses and
a clause is a set of variables). Observe that Γ0 consists of all Horn formulas.

A backdoor tree of F into Horn formulas is a binary decision tree where the formula Fτ
is Horn for each leaf t and its corresponding truth assignment τ .
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Proposition 7.2. A propositional formula F belongs to Γk if and only if there is a
backdoor tree BT = (T, χ) into Horn formulas of F such that gs(BT ) ≤ k.

Proof. Let F be a propositional formula and BT = (T, χ) be a backdoor tree BT into
Horn formulas of F of Gallo-Scutellà parameter k. Observe that the labelings χ of the
paths in T from the root to a leaf provide witnesses for Conditions (i) and (ii). Hence,
F ∈ Γk. Conversely, we construct a C-backdoor tree from the fact that F ∈ Γk. Take the
binary decision tree (T, χ) where T = (N,E, r) and E = ∅. Since F ∈ Γk, the formula
F ′ ∈ Σk where F ′ is obtained from F by removing all negative literals. By Condition (ii)
there is a variable v such that F ′{v} ∈ Σk−1 and F ′ − {v} ∈ Σk. We add two fresh
nodes n1 and n2 to N , edges (r, n1) and (r, n2) to E, and extend the mapping χ by
labelings χ(n1) := χ(r) ∪ {v} and χ(n2) := χ(r) ∪ {¬v}. We proceed inductively with
F ′{v} and Σk−1 for the leaf n1 of T and F ′ − {v} and Σk for the leaf n2 of T . We easily
observe that by construction BT is a C-backdoor tree and since at most k variables are
set to true gs(BT ) ≤ k.

7.2 Backdoor Tree Evaluation
In this section we establish for binary decision trees an analogue to Lemma 3.9. Again
we consider the truth assignment reducts Pτ together with the atoms that are set to true
and extend this notion to the corresponding truth assignments of the leaves for binary
decision trees.

Definition 7.3. Let P be a program, X = at(P ), and BT = (T, χ) a binary decision
tree.

AS(P, τ) :={M ∪ τ−1(1) : M ∈ AS(Pτ ) } and
AS(P,BT ) :={M : t is a leaf of T, τ = χ(t),M ∈ AS(P, τ) }.

Similarly, to a subset of the atoms of a program and the resulting partial truth
assignments (cf. Lemma 3.9), we obtain “answer set candidates” by evaluating the
corresponding truth assignments of the leaves of a binary decision tree.

Lemma 7.4. Let P be a program, BT = (T, χ) a binary decision tree of P , and
X := at(BT ). Then AS(P ) ⊆ AS(P,BT ) ⊆ AS(P,X).

Proof. We first show that AS(P,BT ) ⊆ AS(P,X). By Definitions 3.8 and 7.3 we have
AS(P,X) =

⋃
τ∈2X AS(P, τ). Let Uτ := { τ ′ : τ ′ ∈ 2X , τ ′(a) = τ(a) for every a ∈

τ−1 }, in other words, Uτ contains all truth assignments τ ′ ∈ 2X such that τ−1 ⊆ τ ′−1

for a possible truth assignment τ ′ ∈ 2X . It remains to observe that AS(P, τ) ⊆⋃
τ ′∈Uτ AS(P, τ ′). We define l := |τ−1 \ τ ′−1| for some truth assignments τ and τ ′ where

τ−1 ⊆ τ ′−1 and proceed an induction proof on l. The case l = 0 is obvious. The
case l = 1 follows simply from Lemma 3.9 since AS(P, τ) = AS(P, τ0) ∪AS(P, τ1) where
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τ0(a) = 0 and τ1(a) = 1 for the atom a ∈ τ−1 \ τ ′−1. Consider the case l > 1. Let
τ ′′ be a truth assignment such that τ ′−1 = τ ′′−1 \ {a}. Then by Lemma 3.9 we obtain
AS(P, τ ′′) ⊆ AS(P, τ ′0) ∪ AS(P, τ ′1) where τ ′0(a) = τ ′1(a) = τ ′′(a) for each a ∈ τ ′′−1,
τ ′0(b) = 0 and τ ′1(b) = 1 for some b /∈ τ−1. Since, AS(P, τ) ⊆ AS(P, τ ′′) by induction, we
conclude AS(P, τ) ⊆

⋃
τ ′∈Uτ AS(P, τ ′).

The proof of AS(P ) ⊆ AS(P,BT ) is quite similar to the proof of Lemma 3.9. Let
M ∈ AS(P ) be chosen arbitrarily. We consider the truth assignments τ = χ(t) for each
leaf t of T . Let M ′ = M \ τ−1(1). Observe that M ′ ∈ AS(Pτ ) implies M ∈ AS(P,BT )
since M = M ′ ∪ τ−1(1) by definition. Hence, to establish the lemma, it suffices to show
that M ′ ∈ AS(Pτ ). We have to show that M ′ is a model of PM ′τ , and that no proper
subset of M ′ is a model of PM ′τ (which we already carried out in the proof of Lemma 3.9).
Consequently, AS(P ) ⊆ AS(P,BT ) and the Lemma is established.

Theorem 7.5. Let C ⊆ Normal be an enumerable class. The problems in AspFull
are all fixed-parameter tractable when parameterized by gs(BT ) + #leaves(BT ) of a
C-backdoor tree BT , assuming that the backdoor tree is given as input.

Before proving this Theorem we need to make some observations. In view of Lemma 7.4
we have to consider the corresponding truth assignment reducts of the leaves in the
backdoor tree. For each truth assignment τ ∈ ta(T ) we reduce the program P to a
program Pτ and compute the set AS(Pτ ). Then, we obtain the set AS(P ) by checking for
each M ∈ AS(Pτ ) whether it gives rise to an answer set of P . The crucial part is again to
consider minimality with respect to the Gelfond-Lifschitz reduct. A similar construction
as in Lemma 3.9 can be used. For the leaf t and its corresponding truth assignment τ we
can guarantee minimality with respect to the reduct (Pτ )M . Setting atoms to true by
the truth assignment τ does apparently not guarantee minimality with respect to PM
(cf. Lemma 7.4). Hence, we have to check for each atom in τ−1(1) whether there is a
“justification” to set the atom to true. We consider the following parameterized problem.

C-Backdoor Tree Asp Check(GS)
Given: A program P , a C-backdoor tree BT = (T, χ) of P , a leaf t of T ,

and a set M ⊆ at(P ).
Parameter: The Gallo-Scutellà parameter k = gs(BT ).
Task: Decide whether M is an answer set of P .

We establish the following result.

Proposition 7.6. Let C ⊆ Normal. The problem C-Backdoor Tree Asp Check(GS)
is fixed-parameter tractable. More specifically, given a program P of input size n, a
C-backdoor tree BT = (T, χ) of P of Gallo-Scutellà parameter k = gs(BT ), a leaf t of T ,
and a set M ⊆ AS(P, τχ(t)) of atoms, we can check in time O(2k · n) whether M is an
answer set of P .
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Proof. We would like to use the same construction as in Lemma 3.10 and therefore need
slightly stronger arguments.

Let BT = (T, χ) be a C-backdoor tree of P . We first check whether M is a model
of PM . If M is not a model of PM , then M cannot be an answer set of P . Hence, assume
that M is a model of PM .

We follow the construction in the proof of Lemma 3.10 and construct from PM a
program PMY⊆X1(t) by (i) removing all rules r for which H(r) ∩ Y 6= ∅, and (ii) replacing
for all remaining rules r the head H(r) with H(r) \X1(t), and the positive body B+(r)
with B+(r) \ Y .

Claim: PMY⊆X1(t) is Horn.

We first establish that PY⊆X1(t) is normal. Since BT = (T, χ) is a backdoor tree, the
partial truth assignment reduct Pτ is normal for each leaf t of T and χ := τχ(t). Let
r′ be an arbitrarily chosen rule in Pτ . Then there is a corresponding rule r ∈ P and a
corresponding rule r′′ ∈ PY⊆X1(t). Since we remove in both constructions exactly the
same literals from the head of every rule, H(r′) = H(r′′) holds. Consequently, PY⊆X1(τ)
is normal and PMY⊆X1(τ) is Horn.

We use the same procedure as in the proof of Lemma 2.1.

If PMY⊆X1(t) has no model, then stop and return True.

Otherwise, compute the unique minimal model L of the Horn pro-
gram PMY⊆X1(t). If L ⊆ M \ X, L ∪ Y ( M , and L ∪ Y is a model of
PM , then return False. Otherwise return True.

Again for each set Y ⊆ M ∩ X1(t) the above procedure runs in linear time by
Lemma 2.1. By Lemma 7.4 we consider only the atoms that have been set to true in M ,
i.e., Y ⊆ X1(t) and run the algorithm from above for each X1 ⊆ X ∩M and M is a
minimal model of PM if and only if the algorithm returns True for each Y ⊆ X1(t).
Consequently, we have to consider at most 2|X1(t)| many subsets of X1(t). Since k =
max{ |X| : X ∈ X1(T ) }, we obtain a running time of O(2k‖P‖).

Claim: M is a minimal model of PM if and only if the algorithm returns True for
each Y ⊆M ∩X1(t).

The claim follows directly from the proof of Lemma 3.10 and establishes the correctness
of the above procedure.

Consequently the problem is fixed-parameter tractable when parameterized by k.

We are now in position to establish Theorem 7.5.
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Proof of Theorem 7.5. The proof is similar to the proof of Theorem 3.12. Let BT =
(T, r, χ) be the given C-backdoor tree, g = gs(BT ), l = #leaves(BT ), T = (N,E, r), and
n the input size of P . According to Lemma 7.4, AS(P ) ⊆ AS(P,BT ). Since Pτ ∈ C
and C is enumerable, we can compute AS(Pτ ) in polynomial time for each leaf t ∈ N
and τ = τχ(t), say in time O(nc) for some constant c. Hence |AS(Pτ )| ≤ O(nc) for
each leaf t ∈ N and τ = τχ(t). By Proposition 7.5 we can decide whether M ∈ AS(P )
in time O(2g · nc) and |AS(P, τ)| ≤ O(2g · nc) for each M ∈ AS(P, τ) where τ = τχ(t)
and t is a leaf of T . Since there are at most l many leaves, we can compute AS(P, T )
and check whether for M ∈ AS(P, T ) also M ∈ AS(P ) holds in time O(l · 2g · nc) and
|AS(P, T )| ≤ O(l · 2g · nc). Then we can also solve all problems in AspFull from AS(P )
within polynomial time. Consequently, the problem is fixed-parameter tractable when
parameterized by g + l.

There are two factors for hardness of Asp problems when parameterized by the
Gallo-Scutellà parameter plus the size a backdoor tree (i) atoms that are set to true
which yield potential candidates and are hence important for the minimality check in
each leaf; and (ii) leaves in a backdoor tree which yield the truth assignment reducts
we have to consider. Both factors of hardness are “used” in the proof of Theorem 7.5.
Hence, in contrast to Sat backdoor trees we do not simply parameterize the reasoning
problems in AspReason by #leaves(BT ) of a given backdoor tree BT = (T, χ) of P to
obtain a more refined view on backdoors. Instead we also consider gs(BT ) which is the
maximum number of atoms that are set to true in a leaf of T . This is attributed to the
minimality check where we have to consider the number of atoms that are set to true.

7.3 Relation to Backdoors

In this section we investigate on connections between backdoors and backdoor trees. We
show that our composed parameter based on backdoor trees is more general than the
size of a backdoor.

Lemma 7.7. Let P be a program and C be an hereditary class of programs. If BT is a
C-backdoor tree of P , then at(BT ) is a strong C-backdoor of P .

Proof. Let X = at(BT ). For every leaf t ∈ T we have Pτ ∈ C where τ = τχ(t) according
to Definition 7.1. Then, we observe that one obtains all truth assignments 2|X| simply by
extending the truth assignments τ = τχ(t) by truth assignments τ ′ on the atoms at(BT ) \
τ−1. Since C is hereditary and already Pτ ∈ C, also Pτ∪τ ′ ∈ C. Hence, for all possible
truth assignments τ ∈ 2X we have Pτ ∈ C. Consequently, X is a strong C-backdoor of P
and the lemma holds.

We make the following observations about binary decision trees.
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Observation 7.8. Let BT be a binary decision tree. Then,

gs(BT ) ≤ |at(BT )| ≤ #leaves(BT )− 1.

Proof. We observe the inequalities from the fact that we add in every level exactly one
atom to the labeling.

Observation 7.9. Let BT be a binary decision tree, n = |at(BT )|, g = gs(BT ), and
l = #leaves(BT ). Then, l ≤ (1 + n)g.

Proof. Let BT = (T, χ) a binary decision tree, T = (N,E, r), n = |at(BT )|, g = gs(BT ),
and l = #leaves(BT ). According to Definition 7.1, for every leaf t of T we have |χ(t)| ≤ n
and at most g atoms are set to true in the corresponding truth assignment τχ(t). Hence,
we have at most

∑g
i=0

(n
i

)
possible combinations of truth assignments. Thus, l ≤

∑g
i=0

(n
i

)
.

By binomial expansion we obtain
∑g
i=0

(n
i

)
≤
∑g
i=0(ni · 1g−i) ≤ (1 + n)g.

We establish that every strong backdoor of size k yields a backdoor tree consisting of
at least k + 1 leaves and at most 2k leaves.

Lemma 7.10. Let P be a program, C an hereditary class of programs, X a strong
C-backdoor of smallest size of P , and BT = (T, χ) a C-backdoor tree of smallest number
of leaves of P . Then,

|X|+ 1 ≤ #leaves(BT ) ≤ 2|X|.

Proof. Let P be a program, X a strong C-backdoor of smallest size of P , and BT = (T, χ)
a C-backdoor tree of smallest number of leaves of P . According to Lemma 7.7 the
set at(BT ) is also a strong C-backdoor of P . By Observation 7.8 and the definition a
backdoor tree we have |at(BT )| ≤ #leaves(BT )− 1. It remains to observe that we can
construct from X a complete binary decision tree (T ′, χ) of P with 2|X| leaves by labeling
the root of T ′ by ∅, and for each level the nodes by an a or ¬a (which did not occur in a
lower level) for a ∈ X in an arbitrary fixed order. We obtain for a leaf t that χ(t) = τ
if and only if τ ∈ 2X . Hence, Pτ ∈ C for every τ = χ(t) and leaf t. Then (T ′, χ) is a
C-backdoor tree of P where T has 2|X| many leaves. Since the number of leaves of T is
less or equal the number of leaves of T ′, we conclude #leaves(BT ) ≤ 2|X|. Consequently,
the lemma holds.

Lemma 7.11. Let P be a program, C a hereditary class of programs, X a strong
C-backdoor of smallest size of P , and BT = (T, χ) a C-backdoor tree of smallest Gallo-
Scutellà parameter gs(BT ) of P . Then, gs(BT ) ≤ |X|.

Proof. Let P be a program, X a strong C-backdoor of smallest size of P , and BT =
(T, χ) a C-backdoor tree of smallest Gallo-Scutellà parameter gs(BT ) of P . Again we
can construct from X a C-backdoor tree (T ′, χ) of P which is a complete binary tree
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(cf. proof of Lemma 7.10). Since χ(t) = τ if and only if τ ∈ 2X for every leaf t,
|{X1(t) : t is a leaf of T }| = 2|X|. Hence, max{ |X1(t)| : t is a leaf of T } = |X| and we
conclude gs(BT ) ≤ |X|. Consequently, the proposition holds.

7.4 Backdoor Tree Detection
In this section we pay attention to the detection of backdoor trees. We first define the
following decision problem:

C-Backdoor-Tree Detection(GS,Leaves)
Given: A program P , an integer g ≥ 0, and an integer l ≥ 0.
Parameter: The integer g + l.
Task: Decide whether P has a C-backdoor tree BT of Gallo-Scutellà

parameter gs(BT ) ≤ g and #leaves(BT ) ≤ l.

Similar to the other backdoor detection problems, by self-reduction or self-
transformation [Sch81; DF99; DF13], we can use a decision algorithm for C-Back-
door-Tree Detection(GS,Leaves) to actually find the backdoor. Again we only
require the target class to be hereditary.

Lemma 7.12. Let C be a hereditary class of programs. If C-Backdoor-Tree De-
tection(GS,Leaves) is fixed-parameter tractable, then also finding a C-backdoor tree
of a given program P of Gallo-Scutellà parameter at most g and at most l leaves is
fixed-parameter tractable (when parameterized by g + l).

Proof. Given a program P of input size n and integers g ≥ 0 and l ≥ 0. We check
whether P has a C-backdoor tree of Gallo-Scutellà parameter at most g and at most l
leaves by means of Algorithm 7.1. Assume that the decision problem C-Backdoor-Tree
Detection(GS,Leaves) is fixed-parameter tractable and runs in time O(f(g + l) · nc)
for some constant c and some computable function f .

Steps 1 and 2 of Algorithm 7.1 are trivial. In Step 3 we use the decision problem
C-Backdoor-Tree Detection(GS,Leaves) to find an atom a ∈ at(P ) where (i) for
the truth assignment τ1 that assigns τ1(a) = 1 the program Pτ1 has a C-backdoor
tree BT1 of gs(BT1) ≤ g − 1 and #leaves(BT1) ≤ l1 and (ii) for the truth assignment τ0
that assigns τ0(a) = 0 the program Pτ0 has a C-backdoor tree BT0 of gs(BT0) ≤ g
and #leaves(BT0) ≤ l0, and 2 ≤ l1 + l0 ≤ l for some integers l1 and l0. Such an
atom a and a C-backdoor tree BT = (T, χ) of gs(BT ) ≤ g and #leaves(BT ) ≤ l exist
since C-Backdoor-Tree Detection(GS,Leaves) returns Yes in Step 1. Then, by
definition of a binary decision tree there are also trees BT1 and BT0 where #leaves(BT1)+
#leaves(BT0) ≤ l. There are only linear many combinations l1 + l0 ≤ l and we determine
the integers l1 and l0 simply by means of binary search in Steps 3a–3g. We ensure that
C-Backdoor-Tree Detection(GS,Leaves) yields No for every value of i and Yes for
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ALGORITHM 7.1: C-BdTreeComp(P, g, l)
Input: A disjunctive program P , an integer g, an integer l, and a truth assignment τ .
Output: A C-backdoor tree of Gallo-Scutellà parameter at most g and at most l leaves or

None if no such C-backdoor tree exists.
1. Return None

if C-Backdoor-Tree Detection(GS,Leaves) returns No for input P , g, and l.
2. Return the backdoor tree (T, χ) where T = ({r}, ∅, r) and χ(r) = ∅ if P ∈ C.
3. For each atom a ∈ at(P ) carry out the following steps:

a) Let i := 0, j := l − 1, and τ1 be the truth assignment that assigns τ1(a) = 1
b) Decide C-Backdoor-Tree Detection(GS,Leaves) for Pτ1 and integers g − 1 and j

i. Proceed with Step 3c if the answer is Yes.
ii. Proceed with the next atom in Step 3 if the answer is No.

c) Let m := b i+j2 c
d) Let l1 := j and proceed with Step 3g if i = m or j = m

e) Decide C-Backdoor-Tree Detection(GS,Leaves) for Pτ1 and integers g − 1 and m
i. Let j := m if the answer is Yes.
ii. Let i := m if the answer is No.
iii. Proceed with Step 3c

f) Let τ0 be the truth assignment that assigns τ0(a) = 0.
g) Decide C-Backdoor-Tree Detection(GS,Leaves) for Pτ0 , and integers g and l − l1.

i. Proceed with Step 4 if the answer is Yes.
ii. Proceed with the next atom in Step 3 if the answer is No.

4. Compute BT1 using C-BdTreeComp(Pτ1 , g − 1,m) and compute BT0 using
C-BdTreeComp(Pτ0 , g, l −m)

5. Return BT = (T, χ) from BT1 = (T1, χ1) where T1 = (N1, E1, r1) and BT0 = (T0, χ0) where
T0 = (N0, E0, r0) as follows:

• let r be a fresh node, i.e., r /∈ (N1 ∪N0),
• N := N1 ∪N0 ∪ {r}, E := E1 ∪ E0 ∪ {(r, r1), (r, r0)}, T := (N,E, r), and

• χ(t) :=
{
χ1(t) ∪ {a}, if t ∈ N1,

χ0(t) ∪ {¬a}, if t ∈ N0,

every value of j; by setting i initially to 0 (Step 3a), checking whether C-Backdoor-
Tree Detection(GS,Leaves) yields Yes for the initial values (Step 3b), and assigning
i and j accordingly in Step 3e. In Step 4 we compute the backdoor trees BT1 and BT0 for
Pτ1 and Pτ0 . Finally, in Step 5 we merge BT1 and BT0 into a solution BT for the input
program. Obviously, BT is a C-backdoor tree of P of gs(BT ) ≤ g and #leaves(BT ) ≤ l.
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By assumption Step 1 runs in time O(f(g + l) · nc) for some constant c, Step 2
runs in time O(nd) for some constant d, since we can check in polynomial time whether
P ∈ C. Step 3 runs in time O(n · (dlog2 le+ 2) · f(g + l) · nc). Hence, Steps 1–3 run in
time O(f(g+ l) ·nc+nd+f(g+ l) ·(dlog2 le+2) ·nc+1) = O(ne ·(f(g+ l)+f(g+ l)dlog2 le))
for some constant e. Since a binary search tree with l leaves has exactly l − 1 inner nodes,
we have to run the recursion in Step 4 for at most l − 2 times. Thus, the algorithm runs
in time O(ne · l · (f(g + l) + f(g + l)dlog2 le)) = O(ne · f ′(g + l)) for some computable
function f ′.

In the following, we consider backdoor tree detection when parameterized by the
Gallo-Scutellà parameter and the number of leaves of a backdoor tree. Therefore, we
consider notions coined by Samer and Szeider [SS08] in the setting of propositional
satisfiability and apply it to answer set programming.

Theorem 7.13. The problem Horn-Backdoor-Tree Detection(GS,Leaves) is
fixed-parameter tractable.

Before we can establish the result we introduce the notion of a loss-free kernelization
for answer set programming and establish how we can use loss-free kernelizations to solve
the backdoor tree detection problem.

Definition 7.14. Let C be a class of programs. A loss-free kernelization of the prob-
lem Strong C-Backdoor Detection is a polynomial-time algorithm that given an
instance (I, k), either correctly decides that I does not have a strong C-backdoor of size
at most k, or computes a set K ⊆ at(P ) such that the following conditions hold:

1. X ⊆ K for every minimal strong C-backdoor X of size at most k and

2. there is a computable function f such that |K| ≤ f(k).

A loss-free kernelization is a many-to-one reduction that requires in contrast to a
kernelization from Chapter 6 strictly stronger conditions. We establish the following
proposition about target classes C that admit loss-free kernelizations.

Proposition 7.15. Let C be a class of programs. If the problem Strong C-Back-
door Detection has a loss-free kernelization, then the problem C-Backdoor-Tree
Detection(GS,Leaves) is fixed-parameter tractable.

Proof. Let C be a class of programs, P a program, and g, l > 0 integers. We consider g as
bound for the Gallo-Scutellà parameter and l for the maximum number of leaves. If l ≤ 2
we can check in polynomial time by definition of a loss-free kernelization whether P ∈ C.
Assume l ≥ 2. We compute by means of the loss-free kernelization in polynomial-time a
set K ⊆ at(P ) (if it exists). If P has a C-backdoor tree BT = (T, χ) of Gallo-Scutellà
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parameter g and at most l leaves, then at(BT ) is a strong C-backdoor, g ≤ at(BT ),
and #leaves(BT ) ≤ l − 1. Since the problem Strong C-Backdoor Detection has a
loss-free kernelization, the size of K is bounded by l and the number of binary decision
trees T where at(BT ) ⊆ K is bounded by some computable function of l. Finally, we
check for at most f(l) · |K| times by testing at most f(l) times whether Pτ ∈ C and
|τ−1| ≤ g for the leaves in T and hence determine whether BT is a C-backdoor tree of P
of Gallo-Scutellà parameter g and of at most l leaves. Hence the proposition follows.

The following is a direct consequence of results presented by Samer and Szeider [SS08].

Lemma 7.16. The problem Strong Horn-Backdoor Detection has a loss-free
kernelization with loss-free kernels of size k2 + k.

Proof. Let P be a program and k an integer. According to Lemmas 4.1 and 4.3 the
set X ⊆ at(P ) is a strong Horn-backdoor of P if and only if X is a vertex cover of the
negation dependency graph Np. Thus, we consider kernelizations of Vertex Cover for
the input graph Np. In fact the well-known algorithm by Buss and Goldsmith [BG93]
provides a kernelization with kernels of size k2 + k. Buss’ kernelization works as follows:
Consider instance (Np, k). Let X ⊆ V be the set of vertices with more than k neighbors.
If X > k then output an arbitrary instance (I ′, 1) /∈Vertex Cover (as (I, k) /∈Vertex
Cover). Otherwise, consider the instance (N ′p, k′) where N ′p is obtained from Np by
removing the vertices in X and all isolated vertices, and k′ = k − |X|. Since each vertex
in V has at most k neighbors, a vertex cover of N ′p of size k′ can cover at most k · k′
edges. Hence, there can be at most k′(k + 1) ≤ k2 + k vertices. Then if N ′p contains
more than k2 + k vertices return (I ′, 1) /∈Vertex Cover (as (I, k) /∈Vertex Cover).
Otherwise, return (N ′p, k′) and the set X. It remains to observe that the algorithm runs
in time O(k+ ‖Np‖), and yields a loss-free kernel of size at most k2 + k as X ′ ⊆ N ′P ∪X
for every minimal strong C-backdoor X ′ of size at most k. Consequently, the algorithm
is a loss-free kernelization and the lemma sustains.

We are now in position to establish Theorem 7.13.

Proof of Theorem 7.13. It follows directly from Proposition 7.15 and Lemma 7.16.

Then we can drop the assumption in Theorem 7.5 that the backdoor is given.

Corollary 7.17. Let C ⊆ Normal be an enumerable class. The problems in AspFull are
all fixed-parameter tractable when parameterized by gs(BT ) + #leaves(BT ) of a smallest
gs(BT ) + #leaves(BT ) C-backdoor tree BT .

Proof. Let P be a program and k an integer. Since there are only linear many combi-
nations for k = g + l, we can use Lemma 7.12 to find a C-backdoor tree BT of smallest
gs(BT ) + #leaves(BT ) where gs(BT ) ≤ g and #leaves(BT ) ≤ l or to decide that no
such backdoor tree exists. The remainder follows from Theorem 7.5.

80



7.4. Backdoor Tree Detection

Background and Related Work

Backdoor trees have been introduced by Samer and Szeider [SS08] in the context of
propositional satisfiability. Backdoor trees provide a more refined concept of backdoor
evaluation and take the interaction of variables that form a backdoor into account. The
propositional satisfiability problem can be solved by means of a backdoor trees and is fixed
parameter tractable when parameterized by the number of leaves in a backdoor tree. The
problems of detecting backdoor trees into 2CNF and Horn formulas are fixed parameter
tractable. Gallo and Scutellà [GS88] have considered generalized classes (Γ1,Γ2, . . .) of
propositional Horn formulas by investigating the maximal number of positive literals
that have be set to true to obtain a propositional Horn formula. The notion provides
a parameter that measures in a certain sense the distance of a propositional formula
from being Horn. The problem to decide whether a propositional formula belongs to
a class Γk (parameter detection) has been shown to be in XP, however it is an open
research question whether it is also in FPT.

Contribution and Discussion

We have introduced backdoor trees to answer set programming. The general concepts are
similar to the propositional setting. We also take the number of leaves of a backdoor tree
into account. However, the minimality check, which is necessary to verify minimality of
potential answer set candidates with respect to the Gelfond-Lifschitz reduct, yields again
(cf. Section 3.3) an additional hardness factor. Therefore, we parameterize the problem of
backdoor tree evaluation by the composed parameter number of leaves of a backdoor tree
and maximum number of atoms that are set to true by a corresponding truth assignment
in a leaf. The former parameter is crucial to bound the number of potential truth
assignment reducts and hence to bound the number of answer set candidates. The latter
parameter is crucial to bound the number of atoms in any truth assignment, which we
additionally have to consider for the minimality check. Our parameterization raises the
question of whether we can drop one parameter from the composed parameter. On the
one hand, one could parameterize the evaluation problem just by the number of leaves
of the backdoor tree, which yields fixed-parameter tractability, but then the evaluation
algorithm does not necessarily yield any speedup in the algorithm since we still have to
consider the minimality check where a bound on the number of leaves does not pay off
when using our minimality check approach. In other words, the evaluation problem is
fixed-parameter tractable when parameterized by the number of leaves of backdoor tree.
We obtain a parameter which might be significantly smaller, but the running time of the
evaluation algorithm can be significantly worse (exponentially). On the other hand, one
could parameterize the evaluation problem just by the Gallo-Scutellà parameter (the
maximal number of atoms that we have to set to true in any leaf) of the backdoor tree.
Since the Gallo-Scutellà parameter of a backdoor tree can be arbitrarily small compared
to the number of leaves of a backdoor tree (and hence the size of a smallest backdoor), we
obtain an arbitrarily smaller parameter. However, since our upper bound from Section 7.3
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for the number of truth assignment reducts is (1 +n)g, where n is the number of atoms of
the given program and g the Gallo-Scutellà parameter of the backdoor tree, the number
of truth assignment reducts remains non-uniformly bounded. Hence, it remains open
whether we obtain fixed-parameter tractability. Moreover, the problem backdoor tree
detection when parameterized by the Gallo-Scutellà parameter is only known to be in
XP and the question of whether it can be carried out in fixed-parameter tractable time is
currently an open research question. Finally, we would like to note that it is unlikely that
the problem backdoor tree detection is fixed-parameter tractable for the remaining target
classes since we already established W[2]-hardness and co-para-NP-hardness, respectively,
for strong backdoor detection in Chapter 4.
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CHAPTER 8
Theoretical Comparison of Asp

Parameters

In this chapter we compare the size of backdoors into various target class with each other,
with recently studied Asp parameters, and with several structural restrictions considered
in the literature. Parameterized complexity allows to compare those parameters in
terms of their generality among each other. Figure 8.1 illustrates the results in terms
of a lattice. In the previous chapters we defined and investigated the computational
complexity of strong or deletion backdoor detection for backdoors into various target
classes. We already mentioned that various related parameters occurred in the literature,
even so most parameters have not been considered within the framework of parameterized
complexity.

In Section 8.1 we provide some general notation to compare Asp parameters. Since we
need various examples to illustrate the definitions of various parameters and to separate
parameters from each other, we also define auxiliary programs in the first section. In
Section 8.2 we consider Asp parameters that are based on the size of deletion or strong
backdoors and establish basic properties. Some parameters that measure in a certain
sense the distance of a program from being Horn have been proposed in the literature.
We consider those parameters in Section 8.3 and compare them with the size of deletion
backdoors into Horn. In Section 8.4 we compare Asp parameters that measure in a way
the distance of a program from being stratified with deletion and strong backdoors and the
Horn-related parameters. In Section 8.5 we investigate how a parameter that measures
in a sense the tree-likeness (treewidth) of a certain graph representation (incidence graph)
of a program relates to the other parameters. Subsequently, we consider the treewidth of
a more general graph representation (dependency graph) as a parameter in Section 8.6.
Following this, we review in Section 8.7 two composed parameters where the length of
the longest cycle in a graph representation (positive dependency graph) is considered
together with (i) the treewidth of a graph that represents interactions between head

83



8. Theoretical Comparison of Asp Parameters

atoms and related body atoms or (ii) the distance of the graph from being acyclic. In
Section 8.8 we consider a parameter that measures the distance of a program from being
acyclic with respect to bad even cycles. In Section 8.9 we compare the number of loop
formulas, which measures in a certain sense the distance of a program from being tight,
with the other parameters. Note that loop formulas are a key practical concept of some
disjunctive Asp solvers, but the reasoning problems are not fixed-parameter tractable
when parameterized in this parameter. In Section 8.10 we finally consider in a way the
distance to head-cycle-free programs, which generalize disjunctive tight programs, as an
Asp parameter and study its relationship to other Asp parameters.

The domination lattice in Figure 8.1 (see p. 88) provides an overview on the relation-
ship between Asp parameters when restricted to normal programs. This chapter is based
on published work [FS15b].

8.1 Parameter Comparison
Let p and q be Asp parameters. We say that p dominates q (in symbols p � q) if there is
a function f such that p(P ) ≤ f(q(P )) holds for all programs P . The parameters p and
q are similar (in symbols p ∼ q) if p � q and q � p. The parameter p strictly dominates
q (in symbols p ≺ q) if p � q but not q � p, and p and q are incomparable (in symbols
p ./ q) if neither p � q nor q � p.

Observation 8.1. Let p and q be Asp parameters and L ∈ AspFull . If p dominates q
and L[p] ∈ FPT, then also L[q] ∈ FPT.

Observation 8.2. Let p and q be normal Asp parameters and ◦ ∈ {�,≺, ./}. Then
p ◦ q if and only if p↑ ◦ q↑.

Proof. Let p and q be normal Asp parameters. We will show that p↑ � q↑ iff p � q.
Since ≺ and ./ can be defined in terms of �, this shows the claimed observation.

Assume p↑ � q↑. Hence there is a function f such that for all programs P we
have p↑(P ) ≤ f(q↑(P )). In particular, if P is normal we have by Definition 5.3 that
p(P ) = p↑(P ) and q(P ) = q↑(P ), hence p(P ) ≤ q(P ), and so p � q.

Now assume p � q. Hence there is a function f such that for all normal programs P
we have p(P ) ≤ f(q(P )). Let f ′, f ′′ be the monotonic functions on non-negative integers
defined by f ′(n) = max0≤i≤n f(n) and f ′′(n) = f ′(n) + n. Let P be a program and X a
minimal deletionNormal-backdoor of P . We have |X|+p(P−X) ≤ |X|+f(q(P−X)) ≤
|X|+q(P−X)+f ′(q(P−X)) ≤ |X|+q(P−X)+f ′(|X|+q(P−X)) ≤ f ′′(|X|+q(P−X)).
Hence p↑ � q↑ follows by Definition 5.3.

Let C be a class of programs. In the following, we omit ·↓ (see Definition 5.1) for the
parameters dbC and sbC whenever it is clear from the context that we compare dbC or
sbC with a normal Asp parameter.
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In the following, we define various auxiliary programs which we will use as examples,
to separate the parameters from each other and establish incomparability or strictness
results.

Example 8.1. Let m and n be some large integers. We define the following programs:

Pn1 := { a← ¬b1, . . . ,¬bn },
Pn2 := { ai ← ¬b : 1 ≤ i ≤ n },
Pn31 := { bi ← ¬a; a← ¬bi : 1 ≤ i ≤ n },
Pn32 := { bi ← a; a← bi : 1 ≤ i ≤ n },
Pn33 := Pn31 ∪ { a← d1; di ← di+1 : 1 ≤ i < n } ∪ { ci ← bi; di ← ci; di ← bi : 1 ≤ i ≤ n },
Pn34 := Pn33 ∪ { di ← ¬bi : 1 ≤ i ≤ n },
Pn35 := Pn33 \ { a← ¬bi; bi ← ¬a : 1 ≤ i ≤ n } ∪ { a0 ← ¬a } ∪ { bi ← a0 : 1 ≤ i ≤ n },
Pn4 := { ci ← ¬ai; ci ← bi; bi ← ¬ai; ai ← ei; ei ← di; di ← ai : 1 ≤ i ≤ n },
Pn51 := { bi ← ¬ai; ai ← ¬bi : 1 ≤ i ≤ n },
Pn52 := { bi ← ai; ai ← ¬bi : 1 ≤ i ≤ n },
Pn53 := { bi ← ai; ai ← bi : 1 ≤ i ≤ n },
Pn54 := { bi ← ai; ci ← bi; ai ← ci : 1 ≤ i ≤ n },
Pn6 := { a← b1, . . . , bn, ci : 1 ≤ i ≤ n },
Pn7 := { aj ← ai : 1 ≤ i < j ≤ n },

Pm,n8 := { b← a1, . . . , am } ∪ { ci ← ci+1 : 1 ≤ i ≤ n } ∪ { cn+1 ← c1 },
Pn9 := { a2 ← ¬a1; a3 ← ¬a2 } ∪ { bi ← a3; a1 ← bi : 1 ≤ i ≤ n }, and
Pn11 := { ai ∨ b← c; c← b; b← ai : 1 ≤ i ≤ n }.

a

8.2 Asp Parameters Based on Backdoor Size

Backdoor-based Asp parameters can be related to each other in terms of their underlying
target classes. We just need a very weak assumption stated in the following which holds
for all target classes considered in the paper. Therefore, we need the following definition:
A class C of programs is closed under the union of disjoint copies if for every P ∈ C
and disjoint copies P1, . . . , Pi of P also P ∪ P1 ∪ . . . ∪ Pi ∈ C. We say a program P ′ is a
disjoint copy of P if P ′ is isomorphic to P and at(P ) ∩ at(P ′) = ∅.

Proposition 8.3. Let C, C′ be classes of programs that are closed under the union of
disjoint copies. If C ⊆ C′, then dbC′ � dbC and sbC′ � sbC, even dbC′(P ) ≤ dbC(P ) and
sbC′(P ) ≤ sbC(P ) for every program P . If C′ \ C contains a program with at least one
atom, then C ⊆ C′ implies dbC′ ≺ dbC and sbC′ ≺ sbC.
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Proof. The first statement is obvious. For the second statement, let P ∈ C′ \ C with
|at(P )| ≥ 1. We construct the program Pn consisting of n disjoint copies of P and
observe that Pn ∈ C′ but dbC(Pn), sbC(Pn) ≥ n.

Hence the relationships between target classes as stated in Observation 4.12 carry
over to the corresponding backdoor-based Asp parameters that is, if C ⊆ C′ then a
smallest strong (deletion) C′-backdoor is at most the size of a smallest strong (deletion)
C-backdoor.

According to Lemma 3.7 every deletion C-backdoor is a strong C-backdoor if C is
hereditary, hence it also holds for smallest backdoors and we immediately get from the
definitions:

Observation 8.4. If C is hereditary, then sbC dominates dbC.

According to Lemma 4.1, every strong Horn-backdoor of a program is a deletion
Horn-backdoor and vice versa. Hence we obtain the following statement:

Observation 8.5. sbHorn ∼ dbHorn.

According to Lemma 9.9, every strong Normal-backdoor of a program is a deletion
Normal-backdoor and vice versa. Hence we obtain the following statement:

Observation 8.6. sbNormal ∼ dbNormal.

Observation 8.7. We make the following observations about programs from Example 8.1.

1. Consider program Pn31 and Pn32 and let P ∈ {Pn31, P
n
32}. Since P − {a} is Horn and

contains no cycle and no directed cycle, we obtain dbHorn(P ) ≤ 1, dbno-C(P ) ≤ 1,
and dbno-DC(P ) ≤ 1. According to Observation 8.3, we have dbC(Pn31) ≤ 1 and
dbC(Pn32) ≤ 1 where C ∈ {Horn} ∪ Acyc.

2. Consider program Pn33. Since Pn33 − {a} is Horn and contains no directed cy-
cle and no bad cycle, we obtain dbHorn(Pn33) = 0, dbno-DC(Pn33) ≤ 1, and
dbno-BC(Pn33) ≤ 1. According to Observation 8.3, we have dbC(Pn33) ≤ 1 where
C ∈ {Horn,no-BC,no-BEC} ∪D-Acyc.

3. Consider program Pn34. Since Pn34−{a} contains no even cycle, dbno-EC(Pn34) ≤ 1.

4. Consider program Pn4 . The negation dependency graph of Pn4 contains 2n disjoint
paths aibi and aici. Thus smallest deletion Horn-backdoor are of size at least n.
Pn4 contains n disjoint bad cycles, n directed cycles of length at least 3, and n
directed even cycles. Hence smallest deletion C-backdoors are of size at least n and
thus dbC(Pn4 ) ≥ n where C ∈ {Horn, no-C, no-BC, no-DC, no-DC2, no-EC,
no-BEC, no-DEC}.
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5. Consider program Pn51. The negation dependency graph of Pn51 contains n disjoint
paths and thus dbHorn(Pn51) = n. Pn51 contains n disjoint directed bad even cycles and
thus dbno-DBEC(Pn51) = n. According to Observation 8.3, we obtain dbC(Pn51) ≥ n
where C ∈ {Horn} ∪ Acyc.

6. Consider program Pn52. Since Pn52 contains n disjoint directed bad cycles,
dbno-DBC(Pn52) = n.

7. Consider program Pn54. Since Pn54 contains n disjoint even cycles, n disjoint di-
rected cycles of length at least 3, and n disjoint directed even cycles, we obtain
by Observation 8.3 dbC(Pn54) ≥ n where C ∈ {no-C, no-DC, no-DC2, no-EC,
no-DEC}.

8. Consider program Pn6 . Since Pn6 is Horn and contains no cycle and no directed cycle,
dbHorn(Pn6 ) = dbno-C(Pn6 ) = dbno-DC(Pn6 ) = 0. According to Observation 8.3, we
have dbC(Pn6 ) = 0 where C ∈ {Horn} ∪ Acyc.

9. Consider program Pn7 . Since Pn7 is Horn and contains no bad cycle and no directed
cycle, dbHorn(Pn7 ) = dbno-BC(Pn7 ) = dbno-DC(Pn7 ) = 0. According to Observa-
tion 8.3, we have dbC(Pn7 ) = 0 where C ∈ {Horn,no-BC,no-BEC} ∪ D-Acyc.

10. Consider program Pm,n8 . Since Pm,n8 is Horn and Pm,n8 − {c1} contains no cy-
cle and no directed cycle, we obtain dbHorn(Pm,n8 ) = 0, dbno-C(Pm,n8 ) ≤ 1,
dbno-DC(Pm,n8 ) ≤ 1. According to Observation 8.3, we have dbC(Pm,n8 ) ≤ 1 where
C ∈ {Horn} ∪ Acyc.

11. Consider program Pn9 . Since Pn9 −{a2} is Horn and Pn9 −{a1} contains no cycle and
no directed cycle, we have dbHorn(Pn9 ) ≤ 1, dbno-C(Pn9 ) ≤ 1, and dbno-DC(Pn9 ) ≤ 1.
According to Observation 8.3, we have dbC(Pn9 ) ≤ 1 where C ∈ {Horn} ∪ Acyc.

12. Consider program Pn11 and let X = {b}. Since Pn11 −X is normal, X is a deletion
Normal-backdoor of Pn11. Since Pn11 −X is Horn, X is a deletion Horn-backdoor
of Pn11 and dbHorn(Pn11 −X) = 1. Since Pn11 −X contains no cycle, no even cycle,
and no directed cycle, we have dbC(Pn11 −X) = 1 where C ∈ Acyc. Consequently,
dbC(Pn11 −X) = 1 where C ∈ {Horn,Normal} ∪ Acyc.

8.3 Asp Parameters Based on the Distance from Horn
Our backdoor-based Asp parameter dbHorn can be considered as a parameter that
measures the distance of a program from being a Horn program. In the literature some
normal Asp parameters have been proposed, that also can be considered as distance
measures from Horn. In this section we compare them with dbHorn. Since the Asp
parameters considered in the literature are normal, we compare the parameters for normal
programs only. However, in view of Observation 8.2 the results also hold for the lifted
parameters to disjunctive programs.
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Figure 8.1: Domination Lattice (relationship between Asp parameters when restricted
to normal programs). An arrow from p to p′ indicates that p′ strictly dominates p.
Recall that deptw does not yield tractability (Proposition 8.37). When we do not
restrict the parameters to normal programs and apply lifting (Observation 8.61) the
parameter #headCycles is not strictly more general. A label i of an edge indicates that
Proposition i establishes the result.

Definition 8.8 (Ben-Eliyahu [Ben96]). Let P be a normal program. Then

#neg(P ) := |{ a ∈ at(P ) : a ∈ B−(r) for some rule r ∈ P }|,
#non-Horn(P ) := |{ r ∈ P : r is not Horn }|.

Proposition 8.9 (Ben-Eliyahu [Ben96]). For each L ∈ AspFull , L[#neg]N ∈ FPT and
L[#non-Horn]N ∈ FPT.

Since Bound[p]N for p ∈ {#neg,#non-Horn} is clearly solvable in polynomial time
and thus fixed-parameter tractable, we can use the Lifting Theorem (Theorem 5.5) to
obtain the following result.
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Corollary 8.10. For each L ∈ AspFull , L[#neg↑] ∈ FPT and L[#non-Horn↑] ∈ FPT.

Observation 8.11. We make the following observations about programs from
Example 8.1.

1. Consider program Pn1 which contains n atoms that occur in B−(r) for some rule r ∈
P and exactly one non-Horn rule. Thus, #neg(Pn1 ) = n and #non-Horn(Pn1 ) = 1.

2. Consider program Pn2 which contains only the atom b that occurs in B−(r) for some
rule r ∈ Pn2 and n non-Horn rules. Thus, #neg(Pn2 ) = 1 and #non-Horn(Pn2 ) = n.

3. Consider program Pn31 which contains for 1 ≤ i ≤ n the atoms a and bi that occur
in B−(r) for some rule r ∈ Pn31 and the non-Horn rules bi ← ¬a and a ← ¬bi.
Hence, #neg(Pn31) = n+ 1 and #non-Horn(Pn31) = 2n.

4. Consider program Pn32 which is Horn. Thus, #neg(Pn32) = #non-Horn(Pn32) = 0.

5. Consider program Pn35 which contains only the atom a that occurs in B−(r) for some
rule r ∈ Pn35 and exactly one non-Horn rule. So #neg(Pn35) = #non-Horn(Pn35) = 1.

6. Consider program Pn4 which contains for 1 ≤ i ≤ n the atoms ai that occur in
B−(r) for some rule r ∈ Pn4 and the non-Horn rules bi ← ¬ai and ci ← ¬ai. Thus,
#neg(Pn4 ) = n and #non-Horn(Pn4 ) = 2n.

7. Consider program Pn51 which contains for 1 ≤ i ≤ n the atoms ai and bi that occur
in B−(r) for some rule r ∈ P and the non-Horn rules bi ← ¬ai and ai ← ¬bi.
Hence, #neg(Pn51) = #non-Horn(Pn51) = 2n.

8. Consider the program Pn52 which contains the atoms bi that occur in B−(r) for
some rule r ∈ Pn52 and the non-Horn rules ai ← ¬bi. Hence, #neg(Pn52) =
#non-Horn(Pn52) = n.

9. Consider programs Pn54, Pn6 , Pn7 , and Pm,n8 which are Horn. Thus,
#neg(Pn54) = #non-Horn(Pn54) = #neg(Pn6 ) = #non-Horn(Pn6 ) = #neg(Pn7 ) =
#non-Horn(Pn7 ) = #neg(Pm,n8 ) = #non-Horn(Pm,n8 ) = 0.

10. Consider the program Pn9 which contains only the atoms a1 and a2 that occur in
B−(r) for some rule r ∈ Pn9 and only the non-Horn rules a2 ← ¬a1 and a3 ← ¬a2.
Hence, #neg(Pn9 ) = #non-Horn(Pn9 ) = 2.

11. Consider the program Pn11. The set X = {b} is a deletion Normal-backdoor of
Pn11. Since Pn11 −X is Horn, we have #neg(Pn11 −X) = #non-Horn(Pn11 −X) = 0.
Thus, #neg↑(Pn11) = |X| + #neg(Pn11 − X) = 1 and #non-Horn↑(Pn11) = |X| +
#non-Horn(Pn11 −X) = 1.

Proposition 8.12. #neg and #non-Horn are incomparable.
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Proof. The proposition directly follows from considering Pn1 and Pn2 where #neg(Pn1 ) = n
and #non-Horn(Pn1 ) = 1; and #neg(Pn2 ) = 1 and #non-Horn(Pn2 ) = n by Observa-
tion 8.11.

However, it is easy to see that dbHorn dominates both parameters.

Proposition 8.13. dbHorn strictly dominates #neg and #non-Horn. dbC and #neg;
and dbC and #non-Horn are incomparable where C ∈ {no-C, no-DC, no-DC2, no-EC,
no-DEC}.

Proof. For a normal program P define the sets B−(P ) = { a ∈ at(P ) : a ∈
B−(r) for some rule r ∈ P } and H(P ) = { a ∈ H(r) : r ∈ P, r is not Horn }. We
observe that B−(P ) and H(P ) are deletion Horn-backdoors of P , hence dbHorn(P ) ≤
#neg(P ) and dbHorn(P ) ≤ #non-Horn(P ). To show that dbHorn strictly dominates
the two parameters, consider Pn31 where dbHorn(Pn31) ≤ 1, but #neg(Pn31) = n+ 1 and
#non-Horn(Pn31) = 2n by Observations 8.7 and 8.11.

The second statement follows from considering the programs Pn31 and Pn54 where
dbC(Pn31) ≤ 1 and p(Pn31) ≥ n + 1; and dbC(Pn54) ≥ n and p(Pn54) = 0 for C ∈ {no-C,
no-DC, no-DC2, no-EC, no-DEC} and p ∈ {#neg,#non-Horn} by Observations 8.7
and 8.11. Hence dbC ./ #neg and dbC ./ #non-Horn for C ∈ {no-C, no-DC, no-DC2,
no-EC, no-DEC}.

8.4 Asp Parameters Based on the Distance from Being
Stratified

Ben-Eliyahu [Ben96] and Gottlob, Scarcello, and Sideri [GSS02] have considered Asp
parameters that measure in a certain sense how far away a program is from being stratified.
In this section we will investigate how these parameters fit into our landscape of Asp
parameters. Similar to the last section the parameters have been considered for normal
programs only, hence we compare the parameters for normal programs only. Again, in
view of Observation 8.2 the results also hold for the lifted parameters to disjunctive
programs.

Recall from Section 2.5 that SCC(G) denotes the partition of the vertex set of a
digraph into strongly connected components.

Definition 8.14 (Ben-Eliyahu [Ben96]). Let P be a normal program, Dp its dependency
digraph, and A ⊆ at(P ). P/A denotes the program obtained from P by (i) deleting all
rules r in the program P where H(r) ∩A = ∅ and (ii) removing from the bodies of the
remaining rules all literals ¬a with a /∈ A (this corresponds to the well-known concept of
a reduct). Then

lstr(P ) :=
∑

C∈SCC(Dp)
min{#neg(P/C),#non-Horn(P/C)}.
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lstr(P ) is called the level of stratifiability of P .

Proposition 8.15 (Ben-Eliyahu [Ben96]). For each L ∈ AspFull , L[lstr]N ∈ FPT.

Since Bound[lstr]N is clearly solvable in polynomial time and thus fixed-parameter
tractable, we can use the Lifting Theorem (Theorem 5.5) to obtain the following result.

Corollary 8.16. For each L ∈ AspFull , L[lstr↑] ∈ FPT.

Observation 8.17. We make the following observations about programs from
Example 8.1.

1. Consider program Pn31 and let P = Pn31. The partition SCC(Dp) contains only the
set C = at(P ) and thus P/C = P . By Observation 8.11 #neg(P ) = n + 1 and
#non-Horn(P ) = 2n and hence lstr(Pn31) = n+ 1.

2. Consider program Pn32 and let P = Pn32. The partition SCC(Dp) contains only the
set C = at(P ) and P/C = P . Since #neg(P ) = 0 by Observation 8.11, we have
lstr(Pn32) = 0.

3. Consider program Pn35 and let P = Pn35. The partition SCC(Dp) contains only the
set C = at(P ). Thus, P = P/C . Since #neg(Pn35) = 1 by Observation 8.11, we
conclude lstr(Pn35) ≤ 1.

4. Consider program Pn4 and let P = Pn4 . We have SCC(DP ) contains exactly
the sets Ai = {ai, ei, di}, Bi = {bi}, and Ci = {ci} where 1 ≤ i ≤ n. Hence
P/Ai = { ai ← ei; ei ← di; di ← ai } and P/Bi = { bi } and P/Ci = { ci; ci ← bi }.
Since #neg(P/C) = 0 for every C ∈ SCC(DP ), we have lstr(Pn4 ) = 0.

5. Consider program Pn51 and Pn52 and let P ∈ {Pn51, P
n
52}. The partition SCC(DP )

contains exactly the sets Ci = {ai, bi} where 1 ≤ i ≤ n and hence P/Ci =
{ bi ← ¬ai; ai ← ¬bi } and P/Ci = {bi ← ai; ai ← ¬bi : 1 ≤ i ≤ n}, respec-
tively. Since #neg(P/Ci) = #non-Horn(P/Ci) = 2, respectively #neg(P/Ci) =
#non-Horn(P/Ci) = 1, and there are n components we obtain lstr(Pn51) = 2n and
lstr(Pn52) = n.

6. Consider program Pn6 and let P = Pn6 . The partition SCC(Dp) contains exactly
the sets A = {a}, Bi = {bi}, and Ci = {ci} where 1 ≤ i ≤ n. Hence P/A =
{ a ← b1, . . . , bn, ci : 1 ≤ i ≤ n } and P/Bi = P/Ci = ∅ where 1 ≤ i ≤ n. Since
#neg(P/C) = 0 for every C ∈ SCC(DP ), we have lstr(Pn6 ) = 0.

7. Consider program Pn7 and let P = Pn7 . The partition SCC(Dp) contains exactly
the sets Ci = {ai} where 1 ≤ i ≤ n. Thus, P/Ci = { ai ← aj : 1 ≤ j < i }. Hence
#neg(P/Ci) = 0 for every C ∈ SCC(DP ). We obtain lstr(Pn7 ) = 0.
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8. Consider program Pm,n8 and let P = Pm,n8 . The partition SCC(DP ) contains exactly
the sets Ai = {ai} where 1 ≤ i ≤ m, B = {b}, and C = { ci : 1 ≤ i ≤ n }. Hence
P/Ai = ∅ where 1 ≤ i ≤ m, P/B = {b← a1, . . . , am}, and P/C = { ci ← ci+1 : 1 ≤
i ≤ n } ∪ { cn+1 ← c1 }. Since #neg(P/Ai) = 0 where 1 ≤ i ≤ m, #neg(P/B) = 0,
and #neg(P/C) = 0, we obtain lstr(Pm,n8 ) = 0.

9. Consider program Pn9 and let P = Pn9 . The partition SCC(DP ) contains only the
set C = at(P ). Hence P/C = P . Since #neg(P ) = #non-Horn(P ) = 2, we have
lstr(Pn9 ) = 2.

10. Consider program Pn11. The set X = {b} is a deletion Normal-backdoor of Pn11
by Observation 8.7. We have P = Pn11 − X = { ai ← c; c; ← ai : 1 ≤ i ≤ n }.
The partition SCC(DP ) contains the sets Ai = {ai}, where 1 ≤ i ≤ n, and
C = {c}. Hence P/Ai = { ai ← c }, where 1 ≤ i ≤ n, and P/C = { c }. Since
#neg(P/C) = 0 for every C ∈ SCC(DP ), we obtain lstr(P ) = 0. Consequently,
lstr↑(Pn11) = |X|+ lstr(Pn11 −X) = 1.

Observation 8.18. lstr strictly dominates #neg and #non-Horn.

Proof. Let P be a normal program. We first show that
∑
C∈SCC(Dp) #neg(P/C) ≤

#neg(P ). Define the set B−(P ) = { a ∈ at(P ) : a ∈ B−(r) for some rule r ∈ P }. By
definition B−(P/A) ⊆ B−(P ) for some A ⊆ at(P ); thus,

⋃
C∈SCC(Dp)B

−(P/C) ⊆ B−(P ).
Let C,C ′ ∈ SCC(Dp) and C 6= C ′. By definition of a strongly connected component
we have C ∩ C ′ = ∅ and by definition we have that B−(P/C) ⊆ C and B−(P/C′) ⊆ C ′.
Hence B−(P/C) ∩B−(P/C′) = ∅. Consequently

∑
C∈SCC(Dp) #neg(P/C) ≤ #neg(P ). A

similar argument shows that
∑
C∈SCC(Dp) #non-Horn(P/C) ≤ #non-Horn (P ). Since

lstr(P ) =
∑
C∈SCC(Dp) min{#neg(P/C),#non-Horn(P/C)}, we have lstr(P ) ≤ #neg(P )

and lstr(P ) ≤ #non-Horn(P ). To show that lstr strictly dominates the two parameters,
consider program Pn4 where lstr(Pn4 ) = 0, but #neg(Pn4 ) ≥ n and #non-Horn (Pn4 ) ≥ 2n
by Observations 8.11 and 8.17. Hence the observation is true.

Proposition 8.19. dbno-DBC strictly dominates lstr. Moreover, dbC and lstr are in-
comparable for the remaining target classes namely C ∈ Acyc \ {no-DBC,no-DBEC} ∪
{Horn}.

Proof. We first show that dbno-DBC dominates lstr. For a normal program P define
the sets B−(P ) = { a ∈ at(P ) : a ∈ B−(r) for some rule r ∈ P } and H(P ) = { a ∈
H(r) : r ∈ P, r is not Horn }. Let C ∈ SCC(Dp), we define

XC =
{
B−(P/C), if |B−(P/C)| ≤ |H(P/C)|;
H(P/C), otherwise.

and X = {XC : C ∈ SCC(Dp) }. We show that X is a deletion no-DBC-backdoor of P .
By definition for every directed bad cycle c = (x1, . . . , xl) of Dp the atom xi ∈ C ′ where
1 ≤ i ≤ l and C ′ ∈ SCC(Dp) (all vertices of c belong to the same strongly connected
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component). Moreover, by definition we have for every negative edge (xi, xj) ∈ Dp of the
dependency digraph Dp a corresponding rule r ∈ P such that xj ∈ H(r) and xi ∈ B−(r).
Since XC consists of either B−(P/C) or H(P/C), at least one of the atoms xi, xj belongs
to XC . Thus, for every directed bad cycle c of the program P at least one atom of the
cycle belongs to X. Hence P −X ∈ no-DBC and X is a deletion no-DBC-backdoor
of P . We obtain dbno-DBC(P ) ≤ lstr(P ). To show that dbno-DBC strictly dominates lstr,
consider program Pn31 where dbno-DBC(Pn31) ≤ 1 and lstr(Pn31) = n+1 by Observations 8.7
and 8.17. Hence dbno-DBC ≺ lstr.

Then we show that the parameters dbC and lstr are incomparable. Consider the
programs Pn3 and Pn4 where dbC(Pn31) ≤ 1 and lstr(Pn31) = n + 1; and lstr(Pn4 ) = 0
and dbC(Pn4 ) ≥ n for C ∈ {Horn, no-C, no-BC, no-DC, no-DC2, no-EC, no-BEC,
no-DEC} by Observations 8.7 and 8.17.We conclude dbC ./ lstr.

Definition 8.20 (Gottlob, Scarcello, and Sideri [GSS02]). Let P be a normal program,
Dp its dependency digraph, Up its dependency graph, and A ⊆ at(P ). P̂/A denotes the
program obtained from P/A by removing from the bodies of every rule all literals a with
a /∈ A. at+(P ) denotes the maximal set W ⊆ at(P ) such that there is no bad W -cycle in
the dependency graph Up, in other words the set of all atoms that do not lie on a bad
cycle of P . Then

fw(P ) := min{ |S| : S is a feedback vertex set of Up } and
wfw(P ) := fw({ r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC }).

fw(P ) is called the feedback-width of P , and wfw(P ) is called the weak-feedback-width
of P .

Observation 8.21. Let P be a normal program and Dp its dependency digraph. Then
fw(P) = dbno-C(P ) and hence

wfw(P) = dbno-C({ r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC }).

Proposition 8.22 (Gottlob, Scarcello, and Sideri [GSS02]). For each L ∈ AspFull ,
L[fw]N ∈ FPT and L[wfw]N ∈ FPT.

Since Bound[fw]N and Bound[wfw]N is fixed-parameter tractable, we can use the
Lifting Theorem (Theorem 5.5) to obtain the following result.

Corollary 8.23. For each L ∈ AspFull , L[fw↑] ∈ FPT and L[wfw↑] ∈ FPT.

Observation 8.24. We make the following observations about programs from
Example 8.1.

1. Consider the program Pn31 and let P = Pn31. The partition SCC(DP ) contains
only the set C = at(P ). For every atom a ∈ C the program P contains a bad
{a}-cycle and thus at+(P̂/C) = ∅. Consequently, P̂/C − at+(P̂/C) = P̂/C = P . As
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P /∈ no-DBC, { r ∈ P̂/C − at+(P̂/C), C ∈ SCC(Dp), P̂/C /∈ no-DBC } = P . We
have dbno-C(P ) = 1 by Observation 8.7 and according to Observation 8.21, we
obtain wfw(Pn31) = 1.

2. Consider program Pn32 and let P = Pn32. The partition SCC(DP ) contains only the
set C = at(P ), P̂/C = P . For every atom a ∈ C we have P̂/C ∈ no-DBC and
thus { r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC } = ∅. Consequently,
wfw(Pn32) = 0.

3. Consider the programs Pn33, Pn34, and Pn35 and let P ∈ {Pn33, P
n
34, P

n
35}. We first

observe that the dependency digraph of P contains only one strongly connected
component. Hence the partition SCC(DP ) contains only the set C = at(P ). For
every atom a ∈ C program P contains a bad {a}-cycle and thus at+(P̂/C) = ∅.
Consequently, P̂/C − at+(P̂/C) = P̂/C = P . Since P /∈ no-DBC, we obtain { r ∈
P̂/C − at+(P̂/C), C ∈ SCC(Dp), P̂/C /∈ no-DBC } = P . We have dbno-C(P ) = n
since P contains n disjoint {bi}-cycles. According to Observation 8.21, we conclude
wfw(Pn33) = wfw(Pn34) = wfw(Pn35) = n.

4. Consider program Pn4 and let P = Pn4 . The partition SCC(DP ) contains exactly
the sets Ai = {ai, di, ei}, Bi = {bi}, and Ci = {ci}, for 1 ≤ i ≤ n. Hence
P̂/Ai = { ai ← ei; ei ← di; di ← ai }, P̂/Bi = { bi } and P̂/Ci = { ci }. For
every C ∈ SCC(Dp) the program P̂/C ∈ no-DBC. Consequently, { r ∈ P̂/C −
at+(P̂/C), C ∈ SCC(Dp), P̂/C /∈ no-DBC } = ∅ and we obtain wfw(Pn4 ) = 0.

5. Consider program Pn51 and let P = Pn51. The partition SCC(DP ) contains exactly
the sets Ci = {ai, bi}, for 1 ≤ i ≤ n, and thus P̂/Ci = { ai ← ¬bi; bi ← ¬ai }. Since
dbno-C(P̂/Ci) = 1 and there are n components we obtain wfw(Pn51) = n.

6. Consider program Pn52 and let P = Pn52. We observe that the partition SCC(DP )
contains exactly the sets Ci = {ai, bi}. For every atom a ∈ Ci where 1 ≤ i ≤ n
there is a bad {a}-cycle in the dependency graph of P̂/Ci and thus at+(P̂/Ci) = ∅.
Consequently, P̂/Ci − at+(P̂/Ci) = P̂/Ci. Since P̂/Ci /∈ no-DBC, { r ∈ P̂/C −
at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC } = P . We observe that dbno-C(P ) = n
and according to Observation 8.21, we obtain wfw(Pn52) = n.

7. Consider program Pn6 and let P = Pn6 . The partition SCC(Dp) contains exactly the
sets A = {a}, Bi = {bi}, and Ci = {ci} where 1 ≤ i ≤ n. Hence P̂/A = { a } and
P̂/Bi = P̂/Ci = ∅ where 1 ≤ i ≤ n. Since dbno-C(P̂/C) = 0 for every C ∈ SCC(DP ),
we obtain wfw(Pn6 ) = 0.

8. Consider program Pn7 and let P = Pn7 . Since the partition SCC(Dp) contains
exactly the sets {ai} where 1 ≤ i ≤ n, P̂/{ai} = { ai } and thus wfw(P̂/{ai}) = 0.
We obtain wfw(Pn7 ) = 0.
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9. Consider program Pm,n8 and let P = Pm,n8 . The partition SCC(DP ) contains exactly
the sets Ai = {ai} for 1 ≤ i ≤ m, B = {b}, and C = { ci : 1 ≤ i ≤ n }. Hence
P̂/Ai = ∅ for 1 ≤ i ≤ m, P̂/B = ∅, and P̂/C = { ci ← ci+1 : 1 ≤ i ≤ n } ∪ { cn+1 ←
c1 }. The programs P̂/Ai , P̂/B, and P̂/C belong to the class no-DBC for 1 ≤ i ≤ m.
Consequently { r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC } = ∅. Hence
we conclude that wfw(Pm,n8 ) = 0.

10. Consider program Pn9 and let P = Pn9 . The partition SCC(DP ) contains only the
set C = at(P ). For every atom a ∈ C there is a bad {a}-cycle in the dependency
graph of P and thus at+(P̂/C) = ∅. Consequently, P̂/C − at+(P̂/C) = P̂/C = P .
Since P /∈ no-DBC, { r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC } = P .
By Observation 8.7 dbno-C(P ) ≤ 1 and according to Observation 8.21, we obtain
wfw(Pn9 ) ≤ 1.

11. Consider program Pn11 and let P = Pn11. The set X = {b} is a deletionNormal-back-
door of Pn11 by Observation 8.7 and P = Pn11 −X = { ai ← c; c; ← ai : 1 ≤ i ≤ n }.
The partition SCC(DP ) contains exactly the sets {ai} for 1 ≤ i ≤ n and {c}. Hence
P̂/{ai} = { ai } for 1 ≤ i ≤ n and P̂/{c} = { c }. We observe that dbno-C(P̂/C) = 0
for every C ∈ SCC(DP ) and according to Observation 8.21, we obtain wfw(P ) = 0.
Consequently, wfw↑(Pn11) = |X|+ wfw(Pn11 −X) = 1.

In the following proposition we state the relationship between the parameter wfw and
our backdoor-based Asp parameters. The first result (dbno-DBC strictly dominates wfw)
was anticipated by Gottlob, Scarcello, and Sideri [GSS02].

Proposition 8.25. wfw strictly dominates dbno-C and dbno-DBC strictly dominates wfw.
Moreover, dbC and wfw are incomparable for the remaining target classes namely C ∈
{Horn, no-BC, no-DC, no-DC2, no-EC, no-BEC, no-DEC}.

Proof. We first show that wfw strictly dominates dbno-C. Let P be a normal program and
X be a deletion no-C-backdoor of P . Define P̂ = { P̂/C−at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈
no-DBC }. Since P̂ ⊆ P and no-C is hereditary (Observation 4.11), P̂ −X ∈ no-C
and hence X is a deletion no-C-backdoor of P̂ . Consequently, wfw(P ) ≤ dbno-C(P̂ ).
To show that wfw is strictly more general than dbno-C, consider the program Pn4 where
wfw(Pn4 ) = 0 and dbno-C(Pn4 ) = n. Hence wfw ≺ dbno-C by Observations 8.3 and 8.24.

Next, we show that dbno-DBC strictly dominates wfw. Let P be a normal pro-
gram and P̂ = { P̂/C − at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC }. According
to Observation 8.21, wfw(P ) = dbno-C(P̂ ) and thus it is sufficient to show that
dbno-DBC(P ) < dbno-C(P̂ ). Let X be an arbitrary deletion no-C-backdoor of P̂ . Since
no-C ⊆ no-DBC Observation 8.3 yields that X is also a deletion no-DBC-back-
door of P̂ . Let c be an arbitrary directed bad cycle of Dp. As all vertices of c
belong to the same partition C ∈ SCC(Dp), at(P̂/C) ⊆ C, and Dp̂/C is an induced
subdigraph of Dp on at(P̂/C), we obtain c is a directed bad cycle in Dp̂/C . Since

95



8. Theoretical Comparison of Asp Parameters

P̂ = { P̂/C − at+(P̂/C) : C ∈ SCC(Dp), P̂/C /∈ no-DBC } and by definition there is
no at+(P̂/C)-cycle in Up, there is no directed bad at+(P̂/C)-cycle in Dp and hence c is
also a directed bad cycle in Dp̂/C . Since X is a deletion no-DBC-backdoor of Dp̂/C

and c is a directed bad X-cycle in Dp̂/C , X is also a deletion no-DBC-backdoor of
the program P . Consequently, dbno-DBC(P ) ≤ dbno-C(P̂ ) = wfw(P ). To show that
dbno-DBC is strictly more general than the parameter wfw, consider the program Pn33
where dbno-DBC(Pn33) ≤ 1 and wfw(Pn33) = n by Observations 8.7 and 8.24. Hence
dbno-DBC ≺ lstr.

The third statement follows from considering the programs Pn33, Pn34, and Pn4 where
dbC(Pn33) ≤ 1 for C ∈ {Horn, no-BC, no-DC, no-DC2, no-BEC, no-DEC} and
dbno-EC(Pn34) ≤ 1 and wfw(Pn33) = wfw(Pn34) = n; and wfw(Pn4 ) = 0 and dbC(Pn4 ) = n by
Observations 8.7 and 8.24. Hence dbC ./ wfw for C ∈ {Horn, no-BC, no-DC, no-DC2,
no-EC, no-BEC, no-DEC}.

Observation 8.26. If p ∈ {#neg,#non-Horn, lstr}, then p and wfw are incomparable.

Proof. To show that p and wfw are incomparable consider the programs Pn31 and Pn35 where
p(Pn31) ≥ n+1 and wfw(Pn31) = 1; and p(Pn35) ≤ 1 and wfw(Pn35) = n by Observations 8.11,
8.17 and 8.24.

8.5 Incidence Treewidth
Treewidth is graph parameter introduced by Robertson and Seymour [RS84; RS85; RS86]
that measures in a certain sense the tree-likeness of a graph. For further background
and examples on treewidth we refer to other sources [Bod93; Bod97; Bod05; GPW10].
Treewidth has been widely applied in knowledge representation, reasoning, and artificial
intelligence [Dun07; GPW10; JPW09; MW12; PRW09].

Definition 8.27. Let G = (V,E) be a graph, T = (N,ET ) a tree, and χ a labeling that
maps any node t of T to a subset χ(t) ⊆ V . We call the sets χ(·) bags and denote the
vertices of T as nodes. The pair (T, χ) is a tree decomposition of G if the following
conditions hold:

1. for every vertex v ∈ V there is a node t ∈ N such that v ∈ χ(t) (“vertices covered”);

2. for every edge vw ∈ E there is a node t ∈ N such that v, w ∈ χ(t) (“edges covered”);
and

3. for any three nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3, then
χ(t1) ∩ χ(t3) ⊆ χ(t2) (“connectivity”).

The width of the tree decomposition (T, χ) is max{ |χ(t)| − 1 : t ∈ V (T ) }. The treewidth
of G, denoted by tw(G), is the minimum taken over the widths of all possible tree
decompositions of G.
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Figure 8.2: Incidence graph IP of program P from Example 2.1.

We will use the following basic properties of treewidth.

Lemma 8.28 (Folklore, e.g., [RS86]). Let G be a graph and C1, . . . , Cl its connected
components, then tw(G) = max{ tw(Cj) : 1 ≤ i ≤ l }.

Lemma 8.29 (Folklore, e.g., [BK08]). Let G be a graph. If G has a feedback vertex set
size at most k, then tw(G) ≤ k + 1.

Treewidth can be applied to programs by means of various graph representations.

Definition 8.30 (Jakl, Pichler, and Woltran [JPW09]). Let P be a normal program.
The incidence graph IP of P is the bipartite graph which has as vertices the atoms and
rules of P and where a rule and an atom are joined by an edge if and only if the atom
occurs in the rule. Then inctw(P ) := tw(IP ). The parameter inctw(P ) is called the
incidence treewidth of P .

Figure 8.2 illustrates the incidence graph IP of program P from Example 2.1.

Proposition 8.31 (Jakl, Pichler, and Woltran [JPW09]). For each L ∈ AspFull \
{Enum}, L[inctw]N ∈ FPT and for Enum[inctw]N the solutions can be enumerated with
fixed-parameter linear delay between any two consecutive solutions.

Observation 8.32. We make the following observations about programs from
Example 8.1.

1. Consider the programs Pn32 and Pn51. We observe that incidence graph of Pn32 consists
of the cycles a, ri, bi, r2i for 1 ≤ i ≤ n and the incidence graph of Pn51 consists of the
cycles ai, ri, bi, r2i for 1 ≤ i ≤ n. According to Lemma 8.29, a cycle has treewidth at
most 2 and according to Lemma 8.28, we have inctw(Pn32) ≤ 2 and inctw(Pn51) ≤ 2.

2. Consider the programs Pn6 and Pn7 . Its incidence graph contains a clique on n
vertices. Thus, by definition inctw(Pn6 ) ≥ n− 1 and inctw(Pn7 ) ≥ n− 1.
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3. Consider program Pm,n8 . The incidence graph consists of a tree on the ver-
tices r0, b, a1, . . . , am and a cycle r1, c1, . . . , rn, cn, rn+1, cn+1, rn+2. By definition a
tree has treewidth 1, according to Lemma 8.29, a cycle has treewidth at most 2, and
according to Lemma 8.28, we obtain inctw(Pm,n8 ) ≤ 2.

The following observation states why we cannot apply our lifting theorem and extend
the parameter treewidth from normal to disjunctive programs.

Observation 8.33. Enum[inctw]N 6∈ FPT.

Proof. Consider the program Pn51 where inctw(Pn51) ≤ 2. Let M ⊆ at(P ) such that
either ai ∈M or bi ∈M . According to the definitions, we obtain the GL-reduct PM =
{ ai : ai ∈M } ∪ { bi : bi ∈M }. Since M is a minimal model of PM , M is also an answer
set of P . Thus, the program P has 2n many answer sets. Consequently, enumerating the
answer sets of P takes time Ω(2n).

Proposition 8.34. If C ∈ {Horn} ∪ Acyc and p ∈ {dbC ,#neg,#non-Horn, lstr,wfw},
then p and inctw are incomparable.

Proof. We observe incomparability from the programs Pn51 and Pn6 where p(Pn51) ≥ n and
inctw(Pn51) = 2; and p(Pn6 ) ≤ 1 and inctw(Pn6 ) ≥ n− 1 by Observations 8.7, 8.11, 8.17,
8.24, and 8.32.

8.6 Dependency Treewidth

One might ask whether it makes sense to consider restrictions on the treewidth of the
dependency graph. In this section we show that the dependency treewidth strictly domi-
nates the incidence treewidth and backdoors into the target class no-C, but unfortunately
parameterizing the main Asp problems by the dependency treewidth does not yield
fixed-parameter tractability.

Definition 8.35. Let P be a program and Up its dependency graph, then deptw(P ) :=
tw(Up). We call deptw(P ) the dependency treewidth of P .

Observation 8.36. We make the following observations about programs from
Example 8.1.

1. Consider programs Pn32 and Pn6 where the dependency graph is a tree. Thus,
deptw(Pn32) = deptw(Pn6 ) = 1.

2. Consider program Pn51. We observe that its dependency graph consists of n disjoint
cycles bi, vbi,ai , ai, vai,bi for 1 ≤ i ≤ n. According to Lemma 8.29, a cycle has
treewidth at most 2 and according to Lemma 8.28, we obtain deptw(Pn51) ≤ 2.
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3. Consider program Pn7 . Its dependency graph contains a clique on n vertices as a
subgraph. Hence deptw(Pn7 ) ≥ n− 1.

Proposition 8.37. deptw strictly dominates inctw and dbno-C. Let C ∈ {Horn} ∪
Acyc \{no-C,no-EC} and p ∈ {dbC ,#neg,#non-Horn, lstr,wfw}, then p and deptw are
incomparable.

Proof. Let P be a normal program, and IP its incidence graph. Let (T, χ) be an arbitrary
tree decomposition of IP . We create a tree decomposition (T, χ′) for Up as follows: For
every r ∈ P let vr be the corresponding vertex in IP . We replace the occurrence of a
vr ∈ χ(t) by H(r) for all nodes t ∈ V (T ). Then the pair (T, χ′) satisfies Conditions 1 and
2 of a tree decomposition of Up. Since all edges of IP are covered in (T, χ) for every r ∈ P
there is a t ∈ V (T ) such that vr ∈ χ(T ) and h ∈ χ(T ) where H(r) = {h }. Because
all vr are connected in the bags of the tree decomposition (T, χ) and all corresponding
elements h are connected in (T, χ), Condition 3 holds for (T, χ′). Thus, (T, χ′) is a tree
decomposition of the dependency graph Up. Since the width of (T, χ′) is less or equal
to the width of (T, χ) it follows tw(Up) ≤ tw(IP ) for a normal program P . To show
that deptw strictly dominates inctw, consider the program Pn6 where deptw(Pn6 ) ≤ 1 and
inctw(Pn6 ) ≥ n. Hence deptw ≺ inctw.

Let P be a normal program and X a deletion no-C-backdoor of P . Thus, X is a
feedback vertex set of the dependency graph Up. According to Lemma 8.29, tw(Up) ≤ k+1.
Hence deptw � dbno-C. To show that deptw strictly dominates dbno-C consider the
program Pn51 where deptw(Pn51) ≤ 2 and dbno-C(Pn51) ≥ n. Consequently, deptw ≺ dbno-C
and the proposition sustains.

To show the last statement, consider again the programs Pn51 and Pn7 where
deptw(Pn51) ≤ 2 and p(Pn51) ≥ n; and deptw(Pn7 ) ≥ n − 1 and p(Pn7 ) = 0 by Obser-
vations 8.7, 8.17, 8.24, and 8.36.

Proposition 8.38. For each L ∈ AspReason, LN is NP-hard, even for programs that
have dependency treewidth 2.

Proof. First consider the problem Consistency. From a 3-CNF formula F with k
variables we construct a program P as follows: Among the atoms of our program P will
be two atoms ax and ax̄ for each variable x ∈ var(F ) and a new atom f . We add the
rules ax̄ ← ¬ax and ax ← ¬ax̄ for each variable x ∈ var(F ). For each clause {l1, l2, l3} ∈ F
we add the rule f ← h(l1), h(l2), h(l3),¬f where h(¬x) = ax and h(x) = ax̄. Now it is
easy to see that the formula F is satisfiable if and only if the program P has an answer
set. Let Up be the undirected dependency graph of P . We construct the following tree
decomposition (T, χ) for Up: the tree T consists of the node tf and for each x ∈ var(F )
of the nodes tfx, txx̄, and tx̄x along with the edges tf tfx, tfxtxx̄, and txx̄tx̄x. We
label the nodes by χ(tf ) := {f, vf} and for each x ∈ var(F ) by χ(tfx) := {ax, ax̄, f},
χ(txx̄) := {ax, ax̄, vaxāx}, and χ(tx̄x) := {ax, ax̄, vāxax}. We observe that the pair (T, χ)
satisfies Condition 1. The rules ax̄ ← ¬ax and ax ← ¬ax̄ yield the edges axvaxāx , vaxāx āx,

99



8. Theoretical Comparison of Asp Parameters

axvāxax , and vāxax āx in Up which are all “covered” by χ(txx̄) and χ(tx̄x). The rule f ←
h(l1), h(l2), h(l3),¬f yields the edge fvf which is covered by χ(tf ) and yields the edges fax
or fax̄ which are covered by χ(tfx). Thus, Condition 2 is satisfied. We easily observe that
Condition 3 also holds for the pair (T, χ). Hence (T, χ) is a tree decomposition of the
dependency graph Up. Since max{ |χ(t)|−1 : t ∈ V (T ) } = 2, the tree decomposition (T, χ)
is of width 2 and deptw(P ) = 2. Hence the problem Consistency[deptw]N is NP-hard,
even for programs that have dependency treewidth 2. We observe hardness for the
problems Brave Reasoning and Skeptical Reasoning by the very same argument
as in the proof of Theorem 6.4 and the proposition holds.

8.7 Interaction Treewidth

In this section we consider two parameters investigated by Ben-Eliyahu and
Dechter [BD94]: the interaction treewidth introduced under the term “clique width”1,
and the feedback width of the interaction graph introduced under the term “cycle-cutset
size”. The interaction graph represents “interactions” between head atoms and related
body atoms (similar to the Gaifman graph). The interaction treewidth measures in
a certain sense the tree-likeness of the interaction graph and the feedback width the
distance of the interaction graph from being acyclic. Both parameters are considered
together with the length of the longest cycle in the positive dependency digraph (which
states dependencies between atoms in the head and atoms in the positive body).

Definition 8.39 (Ben-Eliyahu and Dechter [BD94]). Let P be a normal program. The
interaction graph is the graph AP which has as vertices the atoms of P and an edge xy
between any two distinct atoms x and y for which there are rules r, r′ ∈ P such that
x ∈ at(r), y ∈ at(r′), and H(r) ∩H(r′) 6= ∅.2

Definition 8.40 (Kanchanasut and Stuckey [KS92], Ben-Eliyahu and Dechter [BD94]).
Let P be a program. The positive dependency digraph D+

P of P has as vertices the
atoms at(P ) and a directed edge (x, y) between any two atoms x, y ∈ at(P ) for which
there is a rule r ∈ P with x ∈ H(r) and y ∈ B+(r).3

Let G = (V,E) be a graph and c = (v1, . . . , vl) a cycle of length l in G. A chord of c
is an edge vivj ∈ E where vi and vj are not connected by an edge in c (non-consecutive
vertices). G is chordal (triangulated) if every cycle in G of length at least 4 has a chord.

1Today the term “clique-width” is predominately used to refer to a different graph parame-
ter, see, e.g., [GP04].

2This definition is equivalent to the original definition in earlier work by Ben-Eliyahu and
Dechter [BD94] which is given in terms of cliques: the interaction graph is the graph where each
atom is associated with a vertex and for every atom a the set of all literals that appear in rules that
have a in their heads are connected as a clique.

3Ben-Eliyahu and Dechter [BD94] used the term dependency graph while the term positive depen-
dency graph was first used by Kanchanasut and Stuckey [KS92] and became popular by Erdem and
Lifschitz [EL03].
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Definition 8.41 (Ben-Eliyahu and Dechter [BD94]). Let G be a digraph and G′ a graph.
Then

lc(G) := max{{2} ∪ { |c| : c is a cycle in G }},
cs(G′) := {w : G′ is a subgraph of a chordal graph with all cliques of size at most w },
fw(G′) := min{ |S| : S is a feedback vertex set of G′ }.

lc(G) is the length of the longest cycle of G. cs(G) is called the clique size.4 Let P be a
normal program, AP its interaction graph, and D+

p its positive dependency digraph. Then

cluster(P ) := cs(AP ) · log lc(D+
p ) and

cyclecut(P ) := fw(AP ) · log lc(D+
p ).

cluster(P ) is called the size of the tree clustering. cyclecut(P ) is called the size of the
cycle cutset decomposition.

In fact the definition of cs(G) is related to the treewidth:

Lemma 8.42 (Robertson and Seymour, 1986). Let G be a graph. Then

tw(G) = cs(G) + 1.

Corollary 8.43. Let P be a normal program, AP its interaction graph, and D+
p its

dependency digraph. Then

cluster(P ) = (tw(AP )− 1) · log lc(D+
p ).

Proposition 8.44 (Ben-Eliyahu and Dechter [BD94]). For each L ∈ AspFull ,
L[cluster]N ∈ FPT and L[cyclecut]N ∈ FPT.

Observation 8.45. We make the following observations about programs from
Example 8.1.

1. Consider programs Pn51 and Pn53 and let P ∈ {Pn51, P
n
53}. The interaction graph Ap

contains n disjoint paths ai, bi, for 1 ≤ i ≤ m. Hence AP contains no cycles and
fw(AP ) = 0 and according to Lemma 8.29, we obtain tw(AP ) ≤ 1. Moreover,
the positive dependency digraph D+

P contains no edges, n disjoint cycles of length
exactly 2, respectively. Thus, lc(D+

P ) = 2. Consequently, cluster(Pn51) ≤ 1 and
cyclecut(Pn51) ≤ 1; and cluster(Pn53) ≤ 1 and cyclecut(Pn53) ≤ 1.

2. Consider program Pm,n8 and let P = Pm,n8 . The interaction graph AP contains a
clique on m vertices and thus tw(AP ) ≥ m−1. According to Lemma 8.42, we obtain
cs(AP ) ≥ m− 2. According to Lemma 8.29, we have fw(AP ) ≥ m− 2. Moreover,
the positive dependency digraph D+

P contains the cycle c1, c2, . . . , cn, cn+1. Thus,
lc(D+

P ) = n. Consequently, cluster(Pm,n8 ) ≥ (m− 2) · logn and cyclecut(Pm,n8 ) ≥
(m− 2) · logn.

4The original definition is based on the length of the longest acyclic path in any component of G
instead of the length of the longest cycle and the term clique width is used instead of clique size.

101



8. Theoretical Comparison of Asp Parameters

Observation 8.46. cluster strictly dominates cyclecut.

Proof. Let P be a normal program and AP its interaction graph. According to
Lemma 8.29, we obtain tw(AP ) ≤ fw(AP ) + 1. Hence cluster(P ) ≺ cyclecut(P ).

Proposition 8.47. inctw strictly dominates cluster. If C ∈ {Horn}∪Acyc and p ∈ {dbC,
#neg, #non-Horn, lstr, wfw}, then p and cluster are incomparable; and p and cyclecut
are incomparable.

Proof. We first show that inctw dominates cluster. Let P be a normal program, IP
its incidence graph, and AP its interaction graph. Let (T, χ) be an arbitrary tree
decomposition of AP . We create a tree decomposition (T, χ′) for IP as follows: For
every r ∈ P let vr be the corresponding vertex in IP . By definition for every r ∈ P
there is a bag χ(t) where t ∈ V (T ) such that at(r) ⊂ χ(t). We set χ′(t) = χ(t) ∪ {vr}.
Then the pair (T, χ′) clearly satisfies Conditions 1 and 2 of a tree decomposition of IP by
definition. Since every vr occurs in exactly one bag Condition 3 holds for (T, χ′). Thus,
(T, χ′) is a tree decomposition of the interaction graph AP . Since the width of (T, χ′) is
less or equal to the width of (T, χ) plus one it follows tw(IP ) ≤ tw(AP ) + 1. To show
that inctw strictly dominates cluster, consider the program Pm,n8 where inctw(Pm,n8 ) ≤ 2
and cluster(Pm,n8 ) = (m− 2) logn by Observations 8.32 and 8.45. Hence inctw ≺ cluster.

Let p ∈ {dbC , #neg, #non-Horn, lstr, wfw} and C ∈ {Horn}∪Acyc. We show the in-
comparability of the parameter p and cyclecut. In fact we show something stronger, there
are programs P where p is of constant size, but both tw(D+

P ) and fw(D+
P ), respectively,

and lc(IP ) can be arbitrarily large, and there are programs where the converse sustains.
Therefore we consider the programs Pn51 and Pm,n8 where p(Pn51) ≥ n and cluster(Pn51) ≤ 1
and cyclecut(Pn51) ≤ 1; and p(Pm,n8 ) ≤ 1 and cyclecut(Pm,n8 ) ≥ (m − 2) · logn and
cluster(Pm,n8 ) ≥ (m − 2) · logn by Observations 8.7, 8.11, 8.17, 8.24, and 8.45. Conse-
quently, the second statement holds.

8.8 Number of Bad Even Cycles
Lin and Zhao [LZ04a] have considered the number of directed bad even cycles of a given
program as a parameter which measures in a certain sense the distance of a program
from being acyclic with respect to bad even cycles. This parameter relates to our notion
of deletion no-DEC-backdoors and deletion no-DBEC-backdoors.

Definition 8.48 (Lin and Zhao, 2004). Let P be a normal program. Then

#badEvenCycles(P ) := |{ c : c is a directed bad even cycle of P }|

Proposition 8.49. For each L ∈ AspFull , L[#badEvenCycles]N ∈ FPT.

Observation 8.50. We make the following observations about programs from
Example 8.1.
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1. Consider program Pn4 which contains no directed bad even cycle. Hence
#badEvenCycles(Pn4 ) = 0.

2. Consider program Pn51 which contains n disjoint directed bad even cycles. Thus,
#badEvenCycles(Pn51) = n.

3. Consider programs Pn52, Pn7 , and Pm,n8 which contain no directed bad even cy-
cle. Consequently we obtain #badEvenCycles(Pn52) = #badEvenCycles(Pn7 ) =
#badEvenCycles(Pm,n8 ) = 0.

4. Consider program Pn9 which contains the directed bad even cycles a1, a2, a3, bi
for 1 ≤ i ≤ n. Since there are n of those directed bad even cycles we obtain
#badEvenCycles(Pn9 ) = n.

Proposition 8.51. dbno-DBEC strictly dominates #badEvenCycles. Moreover, dbC
and #badEvenCycles are incomparable for the remaining target classes C ∈ Acyc \
{no-DBEC} ∪ {Horn}. If p ∈ {#neg, #non-Horn, lstr, wfw, inctw, deptw, cluster,
cyclecut}, then p and #badEvenCycles are incomparable.

Proof. To see that dbno-DBEC strictly dominates #badEvenCycles. Let P be a normal
program. If P has at most k directed bad even cycles, we can construct a deletion
no-DBEC-backdoor X for P by taking one element from each directed bad even
cycle into X. Thus, dbno-DBEC(P ) ≤ #badEvenCycles(P ). If a program P has a
deletion no-DBEC-backdoor of size 1, it can have arbitrarily many even cycles that
run through the atom in the backdoor, e.g. program Pn9 where dbno-DBEC(Pn9 ) ≤ 1 and
#badEvenCycles(Pn9 ) = n by Observations 8.7 and 8.50. It follows that dbno-DBEC ≺
#badEvenCycles and the proposition holds.

To show the second statement, consider the programs Pn4 , Pn52, and Pn9 where
dbC(Pn9 ) = 1 for C ∈ Acyc ∪ {Horn} and #badEvenCycles(Pn9 ) = n; conversely
dbC(Pn4 ) ≥ n for C ∈ {Horn, no-C, no-BC, no-DC, no-DC2, no-EC, no-DEC,
no-BEC}, dbno-DBC(Pn52) ≥ n, and #badEvenCycles(Pn4 ) = #badEvenCycles(Pn52) =
0. Hence dbC ./ #badEvenCycles for C ∈ Acyc \ {no-DBEC} ∪ {Horn} by
Observations 8.7 and 8.50.

To show the third statement, consider the programs Pn51, Pn52, Pn7 , and Pm,n8 , Pn9
where inctw(Pn7 ) ≥ n − 1 and deptw(Pn7 ) ≥ n − 1, p(Pn52) ≥ n for p ∈ {#neg, #non-
Horn, lstr, wfw}, cyclecut(Pm,n8 ) ≥ (m − 2) logn, cluster(Pm,n8 ) ≥ (m − 2) logn, and
#badEvenCycles(Pn7 ) = #badEvenCycles(Pm,n8 ) = #badEvenCycles(Pn52) = 0; con-
versely p(Pn51) ≤ 2 for p ∈ {inctw, deptw, cluster, cyclecut}, p(Pn9 ) ≤ 2 for p ∈ {#neg,
#non-Horn, lstr, wfw}, and #badEvenCycles(Pn51) = #badEvenCycles(Pn9 ) = n by
Observations 8.7, 8.11, 8.17, 8.24, 8.32, 8.36, 8.45, and 8.50. Hence p ./ #badEvenCycles
for p ∈ {#neg, #non-Horn, lstr, wfw, inctw, deptw, cluster, cyclecut}.
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8.9 Number of Positive Cycles (Loop Formulas)
Fages [Fag94], Lin and Zhao [LZ04a], and Lee and Lifschitz [LL03] have introduced
transformations of normal programs and disjunctive programs into Sat, respectively.
Fages [Fag94] has established the notion of being acyclic with respect to the positive
dependency digraph of a given program, so-called tight programs. Lin and Zhao [LZ04a]
have extended this to non-tight programs by adding additional formulas that prevent
cycles in the positive dependency graph, so-called loop formulas. We would like to
mention that loop formulas are used in some Asp solvers, e.g., ClaspD [Dre+08a] and
Cmodels3 [Lie05]. The concept of loop formulas is based on the observation that cycles
in the positive dependency digraph yield additional models in the Sat formula which
are in fact not answer sets and can be eliminated by forbidding a “circular justification”
of atoms without having a “justification from outside”. The number of loop formulas
depends on the number of cycles of the positive dependency digraph and yields the
following parameter that measures in a certain sense the distance of a program from
being tight.

Definition 8.52 (Fages, 1994). Let P be a normal program and D+
P its positive depen-

dency digraph. Then

#posCycles := |{ c : c is a directed cycle in D+
P }|

The program P is called tight if #posCycles = 0.5

The parameter has been generalized to disjunctive programs by Lee and Lifs-
chitz [LL03].

Proposition 8.53 (Fages, 1994). For L ∈ AspReason, L[#posCycles]N is NP-hard or
co-NP-hard, even for tight programs.

Observation 8.54. We make the following observations about programs from
Example 8.1.

1. Consider programs Pn32 and Pn53 where the positive dependency digraphs contain n
directed cycles. Hence #posCycles(Pn32) = #posCycles(Pn53) = n.

2. Consider program Pn51 and Pn7 where the positive dependency digraphs contain no
cycle. Hence #posCycles(Pn51) = #posCycles(Pn7 ) = 0.

3. Consider program Pm,n8 . Its positive dependency digraph contains only the cycle c1,
c2, . . ., cn, cn+1; thus, #posCycles(Pm,n8 ) = 1.

Proposition 8.55. If C ∈ {Horn} ∪ Acyc and p ∈ {dbC, #neg, #non-Horn, lstr,
wfw, inctw, deptw, cluster, cyclecut, #badEvenCycles}, then p and #posCycles are
incomparable.

5Fages [Fag94] used the term positive-order consistent instead of tight.
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Proof. We observe incomparability from the programs Pn32, Pn51, Pn53, Pn7 , and Pm,n8 .
We have p(Pn51) ≥ n for p ∈ {dbC #neg, #non-Horn, lstr, wfw, #badEvenCycles},
inctw(Pn7 ) ≥ n − 1, deptw(Pn7 ) ≥ n − 1, cyclecut(Pm,n8 ) ≥ (m − 2) · logn,
cluster(Pm,n8 ) ≥ (m − 2) · logn, and #posCycles(Pn51) = #posCycles(Pn7 ) = 0 as well
as #posCycles(Pm,n8 ) = 1; conversely for p ∈ {dbC, #neg, #non-Horn, lstr, wfw,
inctw, deptw} we have p(Pn32) ≤ 2, for p ∈ {cluster, cyclecut} we have p(Pn53) ≤ 2
and #posCycles(Pn32) = #posCycles(Pn53) = n by Observations 8.7, 8.11, 8.17, 8.24, 8.32,
8.36, 8.45, 8.50, and 8.54. Consequently, the proposition holds.

8.10 Head-Cycles

Ben-Eliyahu and Dechter [BD94] have considered programs that do not contain certain
cycles in their positive dependency digraph, so-called head-cycle-free programs. Head-
cycle-free programs can be transformed into normal programs in polynomial time. We
would like to mention that connections to head-cycle-free programs are exploited in the
implementation of Asp solvers (see e.g., work by Leone, Rullo, and Scarcello [LRS97]). In
the following, we consider the number of head cycles as a parameter which then measures
in a certain sense the distance of a program from being head-cycle-free.

Definition 8.56 (Ben-Eliyahu and Dechter [BD94]). Let P be a program and D+
p its

positive dependency digraph. A head-cycle of D+
p is an {x, y}-cycle6 where x, y ∈ H(r)

for some rule r ∈ P . The program P is head-cycle-free if D+
P contains no head-cycle.

One might consider the number of head-cycles as a parameter to tractability.

Definition 8.57. Let P be a program and D+
p its positive dependency digraph. Then

#headCycles := |{ c : c is a head-cycle of D+
p }|.

But as the following proposition states that the Asp reasoning problems are already
NP-complete for head-cycle-free programs.

Proposition 8.58 (Ben-Eliyahu and Dechter [BD94]). Each L ∈ AspReason is NP-hard
or co-NP-hard, even for head-cycle-free programs.

6See Section 4.2.2 for the definition of a W -cycle.
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Observation 8.59. We make the following observations about programs from
Example 8.1.

1. Consider program Pn51. Since the positive dependency digraph of Pn51 contains no
cycle, #headCycles(Pn51) = 0.

2. Consider program Pn11. The positive dependency digraph of Pn11 contains the head
cycles aibc for 1 ≤ i ≤ n. Thus, #headCycles(Pn11) = n.

Even though the parameter #headCycles does not yield tractability for the Asp
reasoning problems we are interested in the relationship between our lifted parameters
and the parameter #headCycles. We will first restrict the input programs to normal
programs in Observation 8.60 and then consider disjunctive programs Observation 8.61.

Observation 8.60. If C ∈ {Horn} ∪ Acyc and p ∈ {dbC, #neg, #non-Horn, lstr,
wfw, inctw, deptw, cluster, cyclecut, #badEvenCycles, #posCycles}, then #headCycles
strictly dominates p↓.

Proof. By definition every normal program is head-cycle-free, hence #headCycles strictly
dominates p.

Observation 8.61. If C ∈ {Horn} ∪ Acyc, then dbC and #headCycles are incompa-
rable. Moreover, if p ∈ {#neg, #non-Horn, lstr, wfw}, then p↑ and #headCycles are
incomparable.

Proof. To see that the parameters are incomparable consider the programs Pn51 and Pn11
where dbC ≥ n as well as p(Pn51) ≥ n and #headCycles(Pn51) = 0; and p(Pn11) = 1 and
#headCycles(Pn11) = n by Observations 8.7, 8.11, 8.17, 8.24, and 8.59.

Contribution and Discussion
We have studied the size of smallest strong and deletion backdoors into various tractable
target classes as Asp parameters and compared them with each other. In that way
we obtain certain distance measures from tractable target classes of a program. We
have demonstrated that several structural restrictions considered in the literature can
be stated in terms of backdoors. As a result we have obtained a unifying approach
that accommodates several known restrictions. Moreover, we have studied known Asp
parameters like incidence treewidth and fundamental concepts to Asp solving like loop
formulas which yield the natural way an Asp parameter. The main contribution of this
chapter is a detailed theoretical comparison of the various parameters in terms of their
generality and the domination lattice in Figure 8.1 which illustrates the relationship
between the various Asp parameters.

106



CHAPTER 9
Complexity Barrier Breaking

Reductions

In this chapter we propose a new exact method for solving the Asp reasoning problems
for propositional disjunctive logic programs. Our method exploits the small distance of a
disjunctive programs from being normal by means of deletion Normal-backdoors. The
distance is measured in terms of the size of a smallest “backdoor to normality” which is
the smallest number of atoms whose deletion makes the program normal.

Our method proceeds in three phases.

1. We compute a smallest backdoor to normality of the given program. We show that
this is fixed-parameter tractable when parameterized by an upper bound k on the
backdoor size, using an efficient algorithm for computing a smallest vertex cover of
a graph [CKX06].

2. Next we use the backdoor to transform the logic program into a quantified Boolean
formula (QBF) where the number of universally quantified variables equals the
number k of atoms in the backdoor and the size of the QBF is quasilinear in the
size of the given logic program, more precisely, the size is O(m · logn) where m is
the size of the program and n is the total number of atoms. The quasilinearity is
achieved by means of the characterization of the least model of a Horn program in
terms of level numberings [Jan06].

3. Finally, we eliminate the universal variables using universal expansion [AB02; Bie04],
which results in a propositional formula whose size is at most by a factor of 2k
larger than the QBF.

In consequence, the combinatorial explosion, which is expected when transforming
a problem from the second level of the Polynomial Hierarchy to the first level, can be

107



9. Complexity Barrier Breaking Reductions

confined to a function of the parameter k and thus utilizes closeness to normality. In
that way we provide an fpt-reduction that reduces disjunctive Asp to normal Asp. Our
reductions break complexity barriers as they move problems form the second to the first
level of the Polynomial Hierarchy.

In Chapter 3 we used deletion backdoors into enumerable target classes to make
the problem fixed-parameter tractable. In Chapter 5 we used deletion backdoors into
Normal to lift Asp parameters that are defined for normal programs to disjunctive
programs which also yields fixed-parameter tractability. In contrast, the results in this
chapter do not provide fixed-parameter tractability of the main Asp reasoning problems,
and hence are not directly comparable to the previous results.

In Section 9.1 we provide a special QBF encoding and a Sat encoding for brave
and skeptical reasoning. The basis are the concepts and methods of Section 3.3 where
we have shown that Strong C-Backdoor Asp Check is fixed-parameter tractable.
In Section 9.1.3 we study strong backdoor detection into the target class Normal. In
Section 9.2 we investigate whether deletion backdoors to tightness allow a similar QBF
encoding and Sat encoding for brave and skeptical reasoning. We conclude the chapter
with background and related work, a summary of our contribution, and a discussion of
the results. This chapter is based on published work [FS13; FS15a].1

9.1 Backdoors to Normality
In this section we present a special quasilinear-time algorithm that, given a program P a
strong Normal-backdoor X of P , and an atom a ∈ at(P ), produces two QBFs that are
quasilinear in the input size, whose satisfiability answers brave or skeptical acceptance of a,
respectively. Special about this QBF encoding is that the number of universally quantified
variables of the produced QBFs is exactly the size of a strong Normal-backdoor X
in contrast to the straightforward encoding to QBF (used, e.g., in work by Egly et
al. [Egl+00]) where the numbers of universally and existentially quantified variables are
exactly the number of input atoms. The number k of universally quantified variables of a
QBF is a measure of its hardness: if k is small, then the we can use universal expansion
to eliminate these variables and produce an equivalent propositional formula that is by a
factor of 2k larger than the given QBF. A QBF with few universally quantified variables
is “easier” than one with an arbitrary number [DS14b].

Theorem 9.1. Given a disjunctive logic program P , a strong Normal-backdoor X of
P , and an atom a ∈ at(P ), let k = |X| and t = ‖P‖ log |at(P )|. We can produce in
time O(t) quantified Boolean formulas QBrave(a) and QSkept(a) of size O(t) with exactly
k many universally quantified variables such that

1. QBrave(a) evaluates to true if and only if a is in some answer set of P and
1The fpt-reduction to Sat as proposed in the conference paper [FS13] does not use Qbf-Sat as an

intermediate step and does therefore not support the more succinct Qbf-Sat encoding as presented in
this thesis and in the new version [FS15a].
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2. QSkept(a) evaluates to false if and only if a is in all answer sets of P .

Before we give a proof of this result, we state some direct consequences.

Corollary 9.2. The following statements are true:

1. The problem Brave Reasoning is para-NP-complete when parameterized by the
size of a strong Normal-backdoor, assuming that the backdoor is given as input.

2. The problem Skeptical Reasoning is co-para-NP-complete when parameterized
by the size of a strong Normal-backdoor, assuming that the backdoor is given as
input.

Proof. We generate the quantified Boolean formulas QBrave and QSkept according to
Theorem 9.1 and then eliminate universal quantifiers one after the other by universal
quantifier expansion [AB02; Bie04]. Eliminating k many universally quantified variables in
this manner leads to an existentially quantified formula (i.e., a propositional formula) that
is at most by a factor of 2k larger than the original formula. This provides fpt-reductions
from Brave Reasoning to Sat and from Skeptical Reasoning to UnSat, respectively,
hence Brave Reasoning is in para-NP when parameterized by the size of a strong
Normal-backdoor and Skeptical Reasoning is in co-para-NP when parameterized
by the size of a strong Normal-backdoor. If a parameterized problem is NP-hard when
we fix the parameter to a constant, then it is para-NP-hard [FG06, Theorem 2.14].
Now Brave Reasoning when parameterized by the size of a strong Normal-backdoor
for backdoor size 0 is exactly the Brave Reasoning problem for normal programs,
which is NP-complete [BF91; MT91b], hence we conclude that Brave Reasoning
is para-NP-complete when parameterized by the size of a strong Normal-backdoor.
A similar argument shows that Skeptical Reasoning is co-para-NP-complete when
parameterized by the size of a strong Normal-backdoor.

9.1.1 Deterministic Approach

An important part of our QBF encoding is a non-deterministic implementation of an
fpt-algorithm for checking whether a model M of the given program P is also a minimal
model of PM and hence an answer set of P . The special attention to the minimality check
is attributed to the fact that using backdoors to solve the reasoning problems ensures
minimality with respect to the partial truth assignment reduct but not with respect to
the additional backdoor atoms (cf. Definition 3.2 and the following property). In other
words, only backdoor atoms may “destroy” minimality. The partial truth assignment
reduct in Definition 3.2 makes the evaluation of a partial truth assignment to a program
explicit, but is not useful for checking whether a backdoor atom has a justification in a
model. Therefore, we need a relaxed notion of Definition 3.2 which is implicitly in the
proof of Theorem 3.10.

109



9. Complexity Barrier Breaking Reductions

Definition 9.3 (Backdoor Reduct). Let P be a disjunctive program and M,X ⊆ at(P ).
For a set X1 ⊆M ∩X we construct a program PX1⊆X as follows:

1. Remove all rules r for which H(r) ∩X1 6= ∅ and

2. Replace for all remaining rules r

a) the head H(r) with H(r) \X and
b) the positive body B+(r) with B+(r) \X1.

The underlying idea of Definition 9.3 is to consider backdoor atoms X1 that have
been set to true by a model candidate M and remove only rules if a backdoor atom in X1
occurs in the head and remove only literals from the rules that do not effect minimality.
In that way we can still use the reduct to verify minimality later on.

Recall that by definition we exclude programs with tautological rules. Since X
is a strong Normal-backdoor of P , it is also a deletion Normal-backdoor of P by
Lemma 9.9. Hence P −X is normal. Let r be an arbitrarily chosen rule in P . Then
there is a corresponding rule r′ ∈ P −X and a corresponding rule r′′ ∈ PX1⊆X . Since
we remove in both constructions exactly the same literals from the head of every rule,
H(r′) = H(r′′) holds. Consequently, PX1⊆X is normal and PMX1⊆X is Horn (here PMX1⊆X
denotes the GL reduct of PX1⊆X under M).

For any program P ′ let Constr(P ′) denote the set of constrains of P ′ and DH(P ′) =
P ′ \ Constr(P ′). If P ′ is Horn, DH(P ′) has a least model L and P ′ has a model if and
only if L is a model of Constr(P ′) [DG84].

We will use Definition 9.3 and the observations above to construct Algorithm 9.1
for verifying minimality of a model M with respect to a subset X1 ⊆ X ∩M for a
backdoor X. The underlying idea is that we can check minimality effectively for a normal
program (since its GL reduct is a Horn program and we can carry out the minimality
check in linear time), however the atoms of the backdoor that are set to true by M need
special attention. Hence, we check for a subset X1 of the backdoor X whether there is a
least model L ∪X1 (M of PMX1⊆X . If yes, M cannot be a minimal model of PM . If not,
M is minimal with respect to X1. The individual conditions of (4) from Algorithm 1 are
obtained by systematically excluding the potential causes of M not being minimal. The
following lemma states that running the algorithm successfully for each subset of the
backdoor X ensures minimality.

Lemma 9.4. Let X be a strong Normal-backdoor. A model M ⊆ at(P ) of PM is a
minimal model of PM if and only if the algorithm MinCheck(P,X1,M) returns True
for each set X1 ⊆ X.

Proof. The proof follows from the proof of the second claim of Lemma 3.10. The algorithm
there is stated slightly differently to Algorithm 9.1 (MinCheck). Hence, it remains to
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ALGORITHM 9.1: MinCheck(P,X1,M)
Input: A disjunctive program P , a strong Normal-backdoor X of P ,

sets X1 ⊆ X and M ⊆ at(P )
Output: {True, False}
Result: Is there no L ∪X1 (M such that L ∪X1 is a model of PM?
1. Return True if X1 is not a subset of M .
2. Compute the Horn program PMX1⊆X .
3. Compute the least model L of DH(PMX1⊆X).
4. Return True if at least one of the following conditions holds:

(a) L is not a model of Constr(PMX1⊆X).
(b) L is not a subset of M \X,
(c) L ∪X1 is not a proper subset of M ,
(d) L ∪X1 is not a model of PM .

5. Otherwise return False.

observe that both algorithms are equivalent. Condition (1) of Algorithm 9.1 is there
stated as part of the second claim. Condition (4a) of Algorithm 9.1 is stated there as
“PMX1⊆X has no model”. This is equivalent since L is not a model of Constr(PMX1⊆X) if
and only if PMX1⊆X no model. Hence, the lemma is established.

Example 9.1. Again, consider the program R from Example 2.2 and the backdoor X =
{b, c, h} from Example 3.2. Let M = {b, c, g} ⊆ at(R). Since M satisfies all rules in
R, the set M is a model of R. We apply the Algorithm MinCheck for each subset
of {b, c, h}. For X1 = ∅ we obtain RMX1⊆X = { a ← b; ← a; ← e; a; g; ←}. The
set L = {a, g} is the least model of DH(RMX1⊆X). Since Condition (4a) holds, the
algorithm returns True for X1. For X2 = {b} we have RMX2⊆X = { a; ← a; g; ←} and the
least model L = {a, g} of DH(RMX2⊆X). Since Condition (4a) holds, MinCheck returns
True for X2. For X3 = {c} we obtain RMX3⊆X = { a; g } and the least model L = {a, g}
of DH(RMX3⊆X). Since Condition (4c) holds, the algorithm returns True for X3. For
X4 = {b, c} we have RMX4⊆X = {g}. The set L = {g} is the least model of DH(RMX4⊆X).
Since Condition (4c) holds, the algorithm returns True for X4. For all remaining subsets
of X the Algorithm MinCheck returns True according to Condition (1). Consequently,
M is a minimal model of RM and thus an answer set of R. a

In our QBF encoding we will implement Algorithm 9.1 non-deterministically in
contrast to a previous approach in Section 3.2 where a slightly different version of
Algorithm 9.1 is used deterministically. The approach there is based on the property
stated below Definition 1. By means of the truth assignments τ which we obtain from
a strong backdoor X we can construct 2|X| simplified programs Pτ . We know that the
answer sets of the partial truth assignment reducts Pτ provide “answer set candidates”
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Figure 9.1: Illustration of the Polynomial Hierarchy and the location of the problem
Brave Reasoning when disjunctive programs are allowed as input, when the input is
restricted to normal programs and when the input is restricted to Horn programs (left).
Illustration of the reductions (right) from Brave Reasoning to a computationally easier
problem, when we apply backdoor evaluation as introduced in Section 3.3 by means of
a backdoor into a tractable target class (backdoor to tractability) and by means of a
backdoor into a normal program (backdoor to normality).

of the original program and we can check these candidates in time O(f(|X|)nc) for some
computable function f and a constant c. Such an approach works deterministically:
(i) find a backdoor X (ii) apply X to P and obtain 2|X| many partial truth assignment
reducts Pτ1 , . . . , Pτ2|X|

(iii) find the answer sets in polynomial-time (by assumption we can
find all answer sets for each truth assignment reduct Pτ in polynomial time) (iv) check
whether a candidate is also an answer set of the original program.

9.1.2 Non-deterministic Approach

Unfortunately, the assumption for (iii) does not hold for the class of normal programs,
since a normal program can have exponentially many answer sets. Hence, we cannot
simply check the answer sets of Pτ one by one using Algorithm 9.1 deterministically.
Furthermore, M is part of the input of Algorithm 9.1 so we need to know it in advance.
Therefore, we need a “non-deterministic” construction that does not require to fix M in
advance.
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In view of Theorem 9.1, the fixed-parameter tractable reduction to Qbf-Sat, and
experience in modern Sat and Qbf-Sat solving techniques we obtain a much more
optimistic perspective on Asp reasoning problems located on the second level of the
Polynomial Hierarchy. Figure 9.1 illustrates this perspective and the difference between
the deterministic approach (as established in Chapter 3) and the non-deterministic
approach (as established in this chapter) for the problem Brave Reasoning.

We will show that it is possible to implement MinCheck(P,X1,M) for each set
X1 ⊆ X non-deterministically by means of k universal quantified variables in such a way
that we do not need to know M in advance. Possible sets M will be represented by the
truth values of certain variables, and since the truth values do not need to be known in
advance this will allow us to consider all possible sets M without enumerating them.

To achieve a quasilinear encoding of the computation of the least model of a definite
Horn program, we make use of the technique of level numberings, which is due to
Janhunen [Jan06]. This improves our previous quadratic encoding [FS13], which is based
on Dowling and Gallier’s algorithm.

Definition 9.5 (Fages [Fag94]). Let P be a program and M a set of atoms. Then M is
a supported model of P if (i) M is a model of P and (ii) for every a ∈ M there is a
rule r ∈ P such that a ∈ H(r) and B+(r) ⊆M .

Definition 9.6 (Janhunen [Jan06]). Let P be a definite Horn program and M ⊆ at(P )
a supported model of P . Let SR(P,M) = { r ∈ P : B+(r) ⊆ M }. A mapping # :
M ∪ SR(P,M)→ N0 is a level numbering with respect to M if

1. For every r ∈ P with B+(r) = ∅ we have #(r) = 0;

2. For every r ∈ SR(P,M) with B+(r) 6= ∅ we have #(r) = maxb∈B+(r) #(b) + 1;

3. For every a ∈M we have #(a) = minr∈SR(P,M),H(r)={a}#(r);

The following is a direct consequence of an earlier result by Janhunen [Jan06, The. 55],

Lemma 9.7 (Janhunen [Jan06]). Let P be a definite Horn program and M ⊆ at(P ) a
supported model of P . Then M is the least model of P if and only if there exists a level
numbering with respect to M .

Next, we describe the construction of the formulas in detail by defining several
formulas which are then put together. To that aim, let us fix a given program P and a
strong Normal-backdoor X of P .
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Among the variables of our formulas will be disjoint sets

Vm := {m[a] : a ∈ at(P ) },
V` := { `[a] : a ∈ at(P ) },
Vx := {x[a] : a ∈ at(P ) }, and
Vs := { s[r] : r ∈ P }.

For a subset M ⊆ at(P ) we let τM : Vm → {0, 1} be the truth assignment that sets m[a]
to 1 if and only if a ∈M . Similarly, for a subset X1 ⊆ X we let τX1 : Vx → {0, 1} be the
truth assignment that sets x[a] to 1 if and only if a ∈ X1.

Now we can state the main lemma for the proof of Theorem 9.1.

Lemma 9.8. Given a disjunctive logic program P , a strong Normal-backdoor
X of P , we can construct in polynomial time a propositional formula FMinCheck

of size O(‖P‖ log |at(P )|) such that for each model M of P and each subset
X1 ⊆ X it holds that the formula FMinCheck[τM ∪ τX1 ] is satisfiable if and only if
Algorithm MinCheck(P,X1,M) returns True.

Proof. To simplify the notation, we put

P ′ := PMX1⊆X .

We define the formula FMinCheck as the conjunction of five formulas

FMinCheck := ¬F subset ∨
(
F stays ∧ F supp ∧ F level ∧ F cond),

where F subset enforces Condition (1) of MinCheck; F stays enforces a certain truth
assignment to the variables in Vs; F supp enforces that for every satisfying assignment τ
of FMinCheck[τM ∪ τX1 ], the set L := { a ∈ at(P ) : `[a] ∈ τ−1(1) } is a supported model of
DH(P ′); F level enforces that DH(P ′) admits a level numbering with respect to L; and
F cond enforces that L satisfies Conditions (4a)–(4d) of MinCheck.

We will use propositional constants T condition that are true if and only if the specified
condition holds for the input P and X.

First we define the formula F subset which expresses that “X1 ⊆ X ∩M”.

F subset :=
∧
a∈X

x[a]→ m[a]

Then, we define the formula F stays which expresses that for each r ∈ P the variable
s[r] is true if and only if there is some r′ ∈ P ′ which has been obtained from r, i.e., r
“stays” in P ′.

F stays :=
∧
r∈P

(
s[r]↔

[ ∧
a∈H(r)∩X

¬x[a] ∧
∧

a∈B−(r)
¬m[a]

])
(“s[r] is true if and only if H(r) ∩X1 = ∅ and M ∩B−(r) = ∅”).
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We note that r′ ∈ P ′ is a constraint if and only if H(r) \X = ∅.

For convenience, we also define the formulas

F stays-pos
r := s[r] ∧ TH(r)\X 6=∅ (“r′ ∈ DH(P ′)”),

F stays-const
r := s[r] ∧ TH(r)\X=∅ (“r′ ∈ Constr(P ′)”).
F stays-head
r,a := s[r] ∧ T a∈H(r)\X (“a ∈ H(r′)”),

F stays-body
r,b := s[r] ∧ T b∈B+(r) ∧ ¬x[b] (“b ∈ B+(r′)”),

F SR
r := s[r] ∧

∧
b∈B+(r)

(F stays-body
r,b → `[b]) (“r′ ∈ DH(P ′), B+(r′) ⊆ L”).

We observe that ‖F stays‖ ∈ O(‖P‖), ‖F stays-pos
r ‖, ‖F stays-const

r ‖, ‖F stays-head
r,a ‖,

‖F stays-body
r,b ‖ ∈ O(1), and ‖F SR

r ‖ ∈ O(‖r‖), and that all these formulas can be con-
structed in a time that is linear in their respective size.

Next we define the formula F supp which expresses that L is a supported model of
DH(P ′). A straightforward encoding would yield the following term

∧
r∈P

[(
F SR
r →

∨
a∈H(r)

[
F stays-head
r,a ∧ `[a]

])
∧

∧
a∈at(P )

(
`[a]→

∨
r∈P,a∈H(r)

[
F stays-head
r,a ∧

∧
b∈B+(r)

F stays-body
r,b ∧ `[b]

])]
,

which is not linear in the size of the program. However, it is easy to observe that the
second conjunctive term is logically equivalent to

∧
a∈at(P )

(
`[a]→

∨
r∈P,a∈H(r)\X

[
F stays-head
r,a ∧

∧
b∈B+(r)

F stays-body
r,b ∧ `[b]

])
.

Thus, we define

F supp :=
∧
r∈P

[(
F SR
r →

∨
a∈H(r)

[
F stays-head
r,a ∧ `[a]

])
∧

∧
a∈at(P )

(
`[a]→

∨
r∈P,a∈H(r)\X

[
s[r] ∧

∧
b∈B+(r)

F stays-body
r,b ∧ `[b]

])]
.

The first conjunctive term of F supp is clearly of size O(‖P‖). Since P −X is normal,
it follows that for each r ∈ P there is at most one atom a ∈ at(P ) such that a ∈ H(r)\X.
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Hence, the size of the second conjunctive term of F supp is O(‖P‖) as well, and so
‖F supp‖ ∈ O(‖P‖). This is also an upper bound for the time required to construct F supp.

Next we define

F level := F+ ∧ F level
1 ∧ F level

2 ∧ F level
3 ,

we will specify F+ and F level
i below.

We denote a sequence of l := dlog2 |at(P )|e variables x1, . . . , xl by ~x. The truth values
of the variables ~x encode in binary the numbers between 0 and |at(P )| − 1. For a truth
assignment τ to ~x let nτ (~x)) denote the corresponding number. One can now define the
following auxiliary formulas of size O(log |at(P )|) (see, e.g., [EF99]).

F+1(~x, ~y) (“nτ (~x) = nτ (~y) + 1”)
F≤(~x, ~y) (“nτ (~x) ≤ nτ (~y)”)
F=0(~x) (“nτ (~x) = 0).

In the construction of these formulas we can use some auxiliary variables that do not
occur outside these formulas.

In addition to the variables in Vl ∪ Vm ∪ Vx, the following formulas will contain for
every atom a ∈ at(P ) the variables ~a and for every rule r ∈ P the variables ~r and ~r+.

The first formula ensures that nτ (~r+) = nτ (~r) + 1 holds for all r′ ∈ SR(DH(P ′), L).

F+ :=
∧
r∈P

(
F SR
r → F+1(~r+, ~r)

)
.

The next three formulas correspond to the respective parts of Definition 9.6 and
ensure that setting #(r′) = nτ (r) and #(a) = nτ (a) defines a level numbering of DH(P ′)
with respect to L.

F level
1 :=

∧
r∈P

[(
F stays-pos
r ∧

∧
b∈B+(r)

¬F stays-body
r,b

)
→ F=

0 (~r)
]
,

“For every r′ ∈ DH(P ′) with B+(r′) = ∅ we have #(r′) = 0;”

F level
2 :=

∧
r∈P

[(
F SR
r ∧

∨
b∈B+(r)

F stays-body
r,b

)
→

[( ∧
b∈B+(r)

F stays-body
r,b → F≤(~b, ~r+)

)
∧

( ∨
b∈B+(r)

F stays-body
r,b ∧ F≤(~r+,~b)

)]]
,
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“For every r′ ∈ SR(DH(P ′), L) with B+(r′) 6= ∅ we have
#(r′) = max

b∈B+(r′)
#(b) + 1;”

F level
3 :=

∧
a∈at(P )

`[a]→
[( ∧

r∈P
F stays-pos
r ∧ F stays-head

r,a → F≤(~a,~r)
)
∧

( ∨
r∈P

F stays-pos
r ∧ F stays-head

r,a ∧ F≤(~r,~a)
)]

“For every a ∈ L we have #(a) = min
r′∈SR(DH(P ′),L),H(r′)={a}

#(r′);”

Finally we define

F cond := F (a) ∨ F (b) ∨ F (c) ∨ F (d)

where the auxiliary formulas check whether at least one of the respective Condition (4a)–
(4d) of Algorithm MinCheck(P,X1,M) holds for L:

F (a) :=
∨
r∈P

[
F stays-constr
r ∧

∨
b∈B+(r)

(
F stays-body
r,b ∧ ¬`[b]

)]
,

“there is a rule in Constr(PMX1⊆X) that is not satisfied by L”;

F (b) :=
∨

a∈at(P )

[
`[a] ∧

(
¬m[a] ∨ T a∈X

)]
,

“L contains an atom that belongs to X or does not belong to M ;”

F (c) :=
[ ∧
a∈at(P )

m[a]↔
(
`[a] ∨ x[a]

)]
∨
[ ∨
a∈at(P )

(
`[a] ∨ x[a]

)
∧ ¬m[a]

]
,

“L ∪X1 equals M or L ∪X1 contains an atom that is not in M ;”

F (d) :=
∨
r∈P

 ∧
a∈B−(r)

¬m[a] ∧
∧

a∈H(r)

(
¬`[a] ∧ ¬x[a]

)
∧

∧
b∈B+(r)

(
`[b] ∨ x[b]

) ,
“PM contains a rule that is not satisfied by L ∪X1.”

By definition of F supp and F level, and by Lemma 9.7, it follows that L is the least
model of DH(P ′). Furthermore, by Lemma 9.4 it follows that FMinCheck[τM ∪ τX1 ] is
satisfiable if and only if Algorithm MinCheck(P,X1,M) returns True.

By construction, ‖F supp‖ = O(‖P‖), ‖F level‖ = O(‖P‖ log |at(P )|), and ‖F cond‖ =
O(‖P‖). Hence ‖FMinCheck‖ = O(‖P‖ log |at(P )|) as claimed. Clearly FMinCheck can be
obtained in polynomial time.
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Proof of Theorem 9.1. It is now easy to define the required QBFs by setting

QBrave(a) := ∃Vm.∀Vx.∃(V` ∪A). Fmod ∧ FMinCheck ∧m[a] and

QSkept(a) := ∃Vm.∀Vx.∃(V` ∪A). Fmod ∧ FMinCheck ∧ ¬m[a],

where A = var(FMinCheck \ (Vm ∪ V` ∪ Vx)) contains the auxiliary variables of FMinCheck

such as vectors and auxiliary variables in F+1(~x, ~y). It only remains to define Fmod, a
propositional formula on the variables in Vm such that Fmod[τM ] is satisfiable if and only
if M is a model of P ,

Fmod :=
∧
r∈P

[ ∧
b∈B−(r)

¬m[b]→
( ∨
b∈B+(r)

¬m[b] ∨
∨

b∈H(r)
m[b]

)]
.

By Lemmas 9.4 and 9.8 it follows that QBrave(a) evaluates to true if and only if a is in
some answer set of P ; and QSkept(a) evaluates to false if and only if a is in all answer sets
of P . The formulas QBrave(a) and QSkept(a) can clearly be constructed in polynomial
time. Since ‖Fmod‖ = ‖P‖, it follows from Lemma 9.8 that ‖QBrave(a)‖ = ‖QSkept(a)‖ =
O(‖P‖ log |at(P )|). Hence the theorem is shown true.

We would like to note that Theorem 9.1 remains true if we require that the
formulas QSkept(a) and QBrave(a) are in prenex CNF form, i.e., of the form ∃Vm.∀Vx.∃V`∪
A. Fcnf where the matrix Fcnf is a propositional formula in conjunctive normal form
(CNF). This is a direct consequence of the fact that one can transform in linear time any
propositional formula F into a satisfiability-equivalent formula Fcnf in CNF using the
well-known transformation due to Tseitin [Tse68], see also [KL99]. The transformation
produces new variables, called extension variables, and we have var(F ) ⊆ var(Fcnf). The
transformation clearly works also for QBF formulas, where the extension variables are
existentially quantified in the innermost quantifier block.

Our approach could be of practical use, at least for certain classes of instances, and
hence might fit into a portfolio-based solver. This is certainly an interesting future research
topic, since it requires additional considerations, e.g., preprocessing techniques to reduce
the size of Normal-backdoors like shifting [Jan+09]; more sophisticated encodings of
our formulas QBrave and QSkept like improvements carried out in [Jan06]; or compilations
to Smt like Sat(Dl) [JNS09] and Sat(Acyclicity) [GJR14].

We would like to point out that our approach directly extends to more general
problems, when we look for answer sets that satisfy a certain global property which can
be expressed by a propositional formula F prop on the variables in Vm. We just check the
satisfiability of Fmod ∧ FMinCheck ∧ F prop.

9.1.3 Normality Backdoor Detection

In this section we study the problem of finding strong Normal-backdoors. We exploit
a connection between strong Normal-backdoors of a program and vertex covers of a

118



9.1. Backdoors to Normality

certain graph representation associated with the program. We first observe the following
connection between deletion Normal-backdoors and strong Normal-backdoors.

Lemma 9.9. A set X is a strong Normal-backdoor of a program P if and only if it is
a deletion Normal-backdoor of P .

Proof. We observe that the class Normal is hereditary. Thus the if direction holds
by Proposition 3.7. We proceed to show the only-if direction. Assume X is a strong
Normal-backdoor of P . Consider a rule r′ ∈ P −X which is not tautological. Let r ∈ P
be a rule from which r′ was obtained in forming P −X. We define τ ∈ 2X by setting
all atoms in X ∩ (H(r) ∪ B−(r)) to 0, all atoms in X ∩ B+(r) to 1, and all remaining
atoms in X \ at(r) arbitrarily to 0 or 1. Since r is not tautological, this definition of τ is
sound. It remains to observe that r′ ∈ Pτ . Since X is a strong Normal-backdoor of P ,
the rule r′ is normal. Hence, the lemma follows.

Recall the definition of a head dependency graph from Definition 5.6 (see p. 55). The
following is an immediate consequence from Lemmas 9.9 and 5.7.

Lemma 9.10. Let P be a program. A set X ⊆ at(P ) is a strong Normal-backdoor of P
if and only if X is a vertex cover of Hp.

Proof. Let X be a strong Normal-backdoor of P which is also a deletion Normal-back-
door according to Lemma 9.9. Consider an edge uv of Hp, then there is a rule r ∈ P
with u, v ∈ H(r) and u 6= v. Since X is a deletion Normal-backdoor of P , we have
{u, v} ∩X 6= ∅. We conclude that X is a vertex cover of Hp.

Conversely, assume that X is a vertex cover of Hp. We proceed indirectly and
assume that X is not a strong Normal-backdoor of P . By Lemma 9.9, X is neither
a deletion Normal-backdoor of P . It follows that there is a rule r ∈ P −X with two
atoms u, v ∈ H(r); clearly u, v /∈ X. Consequently there is an edge uv of Hp such that
{u, v} ∩X = ∅, contradicting the assumption that X is a vertex cover. Hence the lemma
prevails.

Theorem 9.11. Given a program P and an integer k, we can find in time O(1.2738k +
k‖P‖) a strong Normal-backdoor of P with a size ≤ k or decide that no such backdoor
exists.

Proof. In order to find a strong Normal-backdoor of a given program P , we use
Lemma 9.10 and find a vertex cover of size at most k in the head dependency graph
(which has n = |at(P )| ≤ ‖P‖ many vertices). A vertex cover of size k, if it exists, can
be found in time O(1.2738k + kn) [CKX06]. Thus, the theorem holds.

In Theorem 9.1 we assume that a strong Normal-backdoor of size at most k is
given when solving the problems Strong Normal-Backdoor-Brave-Reasoning and
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Skeptical-Reasoning. As a direct consequence of Theorem 4.4, this assumption can
be dropped, and we obtain the following corollary.

Corollary 9.12. The results of Theorem 9.1 and Corollary 9.2 still hold if the backdoor
is not given as part of the input.

9.2 Backdoors to Tightness
In the previous section, we established an fpt-transformation from Asp into Sat that takes
advantage of small backdoors to normal programs. The main Asp reasoning problems
and the problem of determining an answer set are NP-complete and co-NP-complete,
respectively. Another class of programs where these problems are also NP-complete and
co-NP-complete, respectively, are programs where certain cyclic dependencies between
atoms in the head and the positive body are forbidden, so-called tight programs [Fag94;
BEL00]. Further, tight programs allow for a compact transformation into SAT [Fag94;
Cla78]. Hence, the class of tight programs is a natural candidate for a target class, similar
to the class of normal programs. In this section, we investigate whether small backdoors
into tight programs also admit an fpt-transformation from Asp into Sat.

We first give a definition for tightness. We associate with each program P its positive
dependency digraph D+

P . Recall the definition of a positive dependency digraph (see also
Definition 8.40), which has the atoms of P as vertices and a directed edge (x, y) between
any two distinct atoms x, y ∈ at(P ) for which there is a rule r ∈ P with x ∈ H(r) and
y ∈ B+(r). A program is called tight if D+

P is acyclic [LL03]. We denote the class of all
tight programs by Tight.

It is well known that the main Asp reasoning problems are in NP and co-NP for tight
programs; in fact, a reduction to Sat based on the concept of loop formulas has been
proposed by Lin and Zhao [LZ04b]. This was then generalized by Lee and Lifschitz [LL03]
with a reduction that takes as input a disjunctive program P together with the set S of all
directed cycles in the positive dependency digraph of P , and produces a CNF formula F
such that answer sets of P correspond to the satisfying assignments of F . This provides
an fpt-reduction from the problems Brave Reasoning and Skeptical Reasoning to
Sat, when parameterized by the number of all cycles in the positive dependency digraph
of a given program P , assuming that these cycles are given as part of the input.

The number of cycles does not seem to be a very practical parameter, as this
number can quickly become very large even for very simple programs. Lifschitz and
Razborov [LR06] have shown that already for normal programs an exponential blowup
may occur, since the number of cycles in a normal program can be arbitrarily large.
Hence, it would be interesting to generalize the result of Lee and Lifschitz [LL03] to a
more powerful parameter. In fact, the size k of a deletion Tight-backdoor would be a
candidate for such a parameter, as it is easy to see, it is at most as large as the number
of cycles, but can be exponentially smaller. This is a direct consequence of the following
two observations:
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Observation 9.13. If a program P has exactly k cycles in D+
P , we can construct a

deletion Tight-backdoor X of P by taking one element from each cycle into X.

Observation 9.14. If a program P has a deletion Tight-backdoor of size 1, it can have
arbitrarily many cycles that run through the atom in the backdoor.

In the following, we show that this parameter k is of little use, as the reasoning
problems already reach their full complexity for programs with a deletion Tight-backdoor
of size 1.

Theorem 9.15. The problems Brave Reasoning and Skeptical Reasoning when
parameterized by the size of a strong Tight-backdoor are Σp

2-hard and Πp
2-hard, respec-

tively, even for programs that admit a strong Tight-backdoor of size 1, and the backdoor
is provided with the input. The problems remain hard when we consider a deletion
Tight-backdoor instead of a strong Tight-backdoor.

Proof. Consider the reduction from Eiter and Gottlob [EG95] which reduces the Σp
2-hard

problem ∃∀-QBF Model Checking to the problem Consistency (which decides
whether given a program P has an answer set). A ∃∀ quantified Boolean formula
(QBF) has the form ∃x1 · · · ∃xn∀y1 · · · ∀ymD1 ∨ . . . ∨Dr where each Di = li,1 ∧ li,2 ∧ li,3
and li,j is either an atom x1, . . . , xn, y1, . . . , ym or its negation. Their construction
yields a program P := {xi ∨ vi; yi ∨ zj ; yj ← w; zj ← w; w ← yj , zj ; w ←
g(lk,1), g(lk,2), g(lk,3); w ← ¬w} for each i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , r},
and g maps as follows g(¬xi) = vi, g(¬yj) = zj , and otherwise g(l) = l. Since
Pw=0 = {xi ∨ vi; yj ∨ zj} and Pw=1 = {xi ∨ vi; yj ∨ zj ; yj ; zj} are both in Tight,
the set X = {w} is a strong Tight-backdoor of P of size 1. Thus the restriction does
not yield tractability. The intractability of Skeptical Reasoning follows directly by
the reduction of Eiter and Gottlob [EG95] from the problem Consistency. Hardness of
the other problems can be observed easily. Since P − {w} := {xi ∨ vi; yi ∨ zj ; yj ; zj ; ←
yj , zj ; ← g(lk,1), g(lk,2), g(lk,3)} for each i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , r} is
tight, we obtain a deletion Tight-backdoor of size 1. In consequence we established the
theorem.

Recall Definition 8.56 which states that a program is head-cycle-free if its positive
dependency graph contains no cycles where atoms on the cycle occur together in the head
of a rule. We denote the class of all head-cycle-free programs by HCF. As an immediate
consequence of Theorem 9.15 we obtain the following result.

Corollary 9.16. The problems Brave Reasoning and Skeptical Reasoning when
parameterized by the size of a strong HCF-backdoor are Σp

2-hard and Πp
2-hard, respec-

tively, even for programs that admit a strong HCF-backdoor of size 1, and the backdoor
is provided with the input. The problems remain hard when we consider a deletion
HCF-backdoor instead of a strong HCF-backdoor.
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Proof. The proof is easy and follows from the fact that every tight program is also
head-cycle-free.

Background and Related Work

Transformations from Asp problems into Sat have been explored by several authors;
existing research mainly focuses on transforming programs for which the reasoning
problems already belong to NP or co-NP. In particular, transformations have been
considered for head-cycle-free programs [BD94], tight programs [Fag94], and normal
programs [LZ04b; Jan06].

Some authors have generalized the above transformations to capture programs for
which the reasoning problems are outside NP and co-NP. Janhunen et al. [Jan+06]
considered programs where the number of disjunctions in the heads of rules is bounded.
They provided a transformation that allows a Sat encoding of the test whether a candidate
set of atoms is indeed an answer set of the input program. Lee and Lifschitz [LL03]
considered programs with a bounded number of cycles in the positive dependency graph.
They suggested a transformation that, similar to ours, transforms the input program into
an exponentially larger propositional formula whose satisfying assignments correspond
to answer sets of the program. As pointed out by Lifschitz and Razborov [LR06], this
transformation produces an exponential blowup already for normal programs (we note
that by way of contrast, our transformation is in fact quasilinear for normal programs).

A general theoretical framework to classify parameterized problems on whether
they admit an fpt-reduction to Sat or not has lately been introduced by DeHaan and
Szeider [DS14b]. Our approach has recently been applied to abduction by Pfandler,
Rümmele, and Szeider [PRS13].

Over the last years several transformations have been implemented into various Asp
solvers. Disjunctive solvers that are mainly based on compilations into Sat and use the
logical characterizations of loop formulas [LL03; Lee05] are for example Cmodels3 [Lie05;
Lie11], ClaspD [Dre+08a; GKS12b], and ClaspD-2 [GKS13]. ClaspD and ClaspD-2 are
also Sat-solvers while Cmodels3 uses other Sat-solvers (e.g., Zchaff [MFM05; Mal07]) as
blackbox. In contrast to ClaspD the solver ClaspD-2 does not explicitly generate loop
formulas, instead it uses certain encodings of unfounded sets where variables to represent
relevant parts of candidate assignments to check and allows to reuse constraints that
characterize unfounded sets. The solver GnT [Jan+06; Jan13b] uses a guess and check
approach where a candidate is guessed by an instance and checked by another instance.
DLV [Leo+06; DLV12] is a native Asp solver that also uses a guess and check approach,
the main algorithm is DPLL-based, however it uses a four-valued interpretation for the
intermediate truth assignments of atoms [GLM06]. Reductions to Qbf-Sat have so far
been only of prototypical interest [Egl+00; Egl+01]. To our knowledge recent solving
techniques in Qbf-Sat [LB10; BLS11; Lon12; LEV13] have not been applied to Asp
solving.
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Contribution and Discussion

In this chapter we have established a method to utilize certain structural aspects of
disjunctive logic programs to transform the Asp reasoning problems brave and skeptical
reasoning into Qbf-Sat. It is known that the two reasoning problems, when restricted to
so-called normal programs, drop to NP and co-NP [BF91; MT91b; MT91a], respectively.
Our method exploits a small distance of a given program from being normal by means of
a structural parameter k which seems quite natural and has to our knowledge not been
considered in the literature before. We measure the distance in terms of smallest strong
backdoors into normal programs. Note that we already used deletion backdoors into
normal programs in Chapter 5 to lift parameters that are based on the deletion of atoms
and have been defined for normal programs only to disjunctive programs. However, in
contrast to previous chapters and previous work on backdoors, where the considered
reasoning problems are in fact tractable when parameterized by the size of a smallest
strong backdoor into a fixed “tractable” target class, the problems remain intractable
when parameterized by the size of a smallest strong backdoor into normal programs.
Hence, we can see the class Normal as an “intractable target class” where the backdoor
approach still pays off as the reduction is fixed-parameter tractable and gives rise to
a computationally easier class of programs. The parameter size of a smallest strong
Normal-backdoor is less restrictive and more general than the parameters that yield
tractability of the considered reasoning problems.

The backdoor approach used in this chapter is in fact similar to Chapter 3. We first
detect a backdoor (find a backdoor of size at most k of the given program P , or decide
that a backdoor of size k does not exist) and then evaluate the backdoor (apply the
found backdoor to the instance and determine the solution). However in the second step
we transform the given program P in time O(‖P‖ log |at(P )|) into quantified Boolean
formulas QBrave(a∗) and QSkept(a∗), respectively, and solve the formulas using a Qbf-
Sat-solver. Note that the Qbf-Sat encoding is more succinct than a Sat encoding (as
presented in our earlier version [FS13] of the transformation). The formula QBrave(a∗)
evaluates to true if and only if the given atom a∗ belongs to some answer set of P . The
formula QSkept(a∗) evaluates to false if and only if the given atom a∗ belongs to all answer
sets of P . Both formulas are of size O(‖P‖ log |at(P )|) and contain exactly k many
universally quantified variables where k is the size of the given strong Normal-backdoor
of P . As a result the combinatorial explosion, which is expected when transforming
problems from the second level of the Polynomial Hierarchy to the first level, is confined
to the parameter k, while the running time is polynomial in the input size n and the order
of the polynomial is independent of k. In that way we provide an alternative approach to
the concept loop formulas [LL03; Lee05] which allows us to process classes of programs
that are larger than normal or head-cycle-free programs. We would like to note that loop
formulas can be seen as an fpt-reduction to Sat, where the parameter is the number
of loops. Generally, we call such fixed-parameter tractable transformations complexity
barrier breaking reductions which is to our knowledge the first positive result from the
perspective of parameterized complexity theory beyond NP. While our transformation
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is fixed-parameter tractable we can neither expect it to be polynomial-time tractable
nor that the problems brave and skeptical reasoning are fixed-parameter tractable when
parameterized by strong Normal-backdoors, since it would simply imply the collapse
of the Polynomial Hierarchy which is considered highly unlikely in standard complexity
theory. Interestingly, our para-NP-completeness or co-para-NP-completeness, respectively,
results for Brave Reasoning and Skeptical Reasoning when parameterized by the
size of a strong Normal-backdoor are then still positive results. Moreover, we have
established limits of such fixed-parameter tractable reductions by considering backdoors to
tightness. We have shown that the reasoning problems already reach their full complexities
(i.e., completeness for the second level of the Polynomial Hierarchy) with programs of
distance one from being tight. Hence, a fixed-parameter tractable transformation into
Sat for programs of distance k > 0 from being tight is not possible unless the Polynomial
Hierarchy collapses.

Finally, we would like to point out that out approach could be of practical use, at least
for certain classes of instances, and hence might fit into a portfolio-based solver. This is cer-
tainly an interesting future research topic, since it requires additional considerations, e.g.,
preprocessing techniques to reduce the size of Normal-backdoors like shifting [Jan+09];
or compilations to Smt like Sat(Dl) [JNS09] and Sat(Acyclicity) [GJR14].
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CHAPTER 10
Practical Considerations

In this chapter we discuss some practical considerations and present first empirical
data, although our main focus is theoretical. The underlying idea for fixed-parameter
tractability is that problem instances for which the parameter is small can be solved
efficiently. It is therefore natural to ask how the values of a parameter are distributed in
various problem instances. Hence, we investigate in Section 10.1 the size of backdoors
for various benchmark programs, focusing on the target classes Horn, no-DC, and
Normal. As expected, structured programs, originating from application domains, have
smaller backdoors than random instances. In Section 10.2 we sketch some ideas on how
backdoors into tractable target classes could be used within a heuristic of an Asp solver.
A conclusive evaluation of these ideas requires a rigorous experimental setup, which is
way beyond the scope of this thesis.

10.1 Backdoor Detection

10.1.1 Encodings and Setup

We have determined strong Horn-backdoors and strong Normal-backdoors for various
benchmark programs by means of encodings into answer set programming, integer linear
programming (Ilp), local search (LS), and propositional satisfiability (Sat). We use the
connection stated in Lemma 4.3 and compile the problem of finding a minimum vertex
cover (k-vertex cover) into the respective domain. The encodings are straightforward:
Let P be a program (without constraints or tautological rules) and let Np = (V,E) be
its negation dependency graph. For the Asp encoding we proceed as follows: Among the
atoms of our Asp program will be atoms { euw : uw ∈ E } and atoms C = { cv : v ∈ V }.
The truth values of the atoms in C represent a subset S ⊆ at(P ) such that cv is
true if and only if v ∈ S (a vertex cover). We introduce for every edge vw ∈ E a
constraint ← evw,¬cv,¬cw and a choice rule {cu, cv} ← eu,v. Moreover, we add a
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statement to minimize the number of atoms in C that belong to an answer set (see
[SNS02; Geb+12] for choice rules and minimize statements). For the Ilp encoding we
proceed as follows: We introduce for every vertex v ∈ V a binary variable bv, we add
for every edge vw ∈ E a constraint bv + bw ≥ 1, and minimize the sum

∑
v∈V bv. For

LS we ran designated local search based vertex cover solvers [CSC10; CSS11; Cai+13]
on the graph Np. For the Sat encoding we used an encoding similar to the encoding
presented in [Gar12]. We introduce for every edge uv ∈ E a binary clause and add a
sequential unary counter [Sin05] to express that at most k vertices belong to a vertex
cover. Moreover, we used an incremental encoding into integer linear programming (Ilp)
of SageMath [Wil12] to compute small deletion no-DC-backdoors.

The answer set program that solves backdoor detection was generated by means
of Asp meta programming [GKS11] and solved using Clasp [Geb+11c; GKS12b] ver-
sion 3.0.5 with an unsatisfiable-core based optimization strategy (the command line
parameter “–opt-strategy=5” yields the behavior) [And+12]. The integer linear program
was generated using the open source mathematics framework SageMath [Wil12] with
Python [Ros95], solved using ILOG CPLEX 12 [ILO11] and Gurobi [Gur14].

The results obtained with Ilp methods using modern solvers like CPLEX and Gurobi
come along with a certain inaccuracy (see e.g., [Coo+13; Chv83; Sch98]). Therefore, we
ran Clasp on the structured instances for backdoors into Horn and Normal using the
encoding of k-vertex cover problem described above to obtain optimality.

10.1.2 Instances

We mainly used benchmark sets from the first three Asp competitions [CIR14; Den+09;
Geb+07], because most of the instances contain only normal and/or disjunctive rules and
no extended rules (cardinality/weight-constraints). We are aware that one can preprocess
extended rules and compile them into normal rules. Even though recent versions of the
solver Clasp provide such an option [Geb+10] and more sophisticated implementations
like lp2normal [BJ13; BGJ14] are available, those compilations blow up the instances
significantly. Hence we omitted it for pragmatic reasons.

• ConformantPlanning: secure planning under incomplete initial states [TPS09];
instances provided by Gebser and Kaminski [GK12].

• Factoring: factorization of a number where an efficient algorithm would yield a
cryptographic attack by Gebser [Dre+08b]; for instances see [GS09].

• HanoiTower: classic Towers of Hanoi puzzle by Truszczynski, Smith and Westlund;
for instances see [CIR14].

• GraphColoring: classic graph coloring problem by Lierler and Balduccini; for
instances see [CIR14].
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• KnightTour: finding a tour for the knight piece traveling any square following
the rules of chess by Zhou, Calimeri, and Santoro; for instances see [CIR14].

• Labyrinth: classical Ravensburger’s Labyrinth puzzle by Gebser; for instances
see [CIR14].

• MinimalDiagnosis: an application in systems biology [Geb+11d]; for instances
see [CIR14].

• MSS/MUS: problem whether a clause belongs to some minimal unsatisfiable sub-
set [JM11]; instances provided by Gebser and Kaminski [GK12].

• Solitaire: classical Peg Solitaire puzzle by Lierler and Balduccini; for instances
see [CIR14].

• StrategicCompanies: encoding the Σp
2-complete problem of producing and

owning companies and strategic sets between the companies [Geb+07].

• RandomQBF: transformations of randomly generated 2-QBF instances using the
method by Chen and Interian [CI05]; for instances see [Geb+07].

• RLP: Randomly generated normal programs, of various density (number of rules
divided by the number of atoms) [ZL03]; for instances see [Geb+07].

• RandomNonTight: Randomly generated normal programs in [GS09] with n = 40,
50, and 60 variables, respectively with 40 instances per step instances.
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domain instance set (#instances) disj. #atoms horn bd(%) stdev

AI HanoiTower (60) – 32956.7 4.28 0.08
StrategicCompanies (15) + 2002.0 6.03 0.04
MinimalDiagnosis (551) + 111856.5 10.74 1.71

Graph GraphColoring (60) – 3544.4 19.47 0.79
Planning MSS/MUS (38) + 49402.3 3.80 0.70

ConformantPlanning (24) + 1378.2 8.43 2.12
Cryptography Factoring (10) – 3336.8 25.76 1.30
Puzzle Labyrinth (261) – 55604.9 3.42 0.82

KnightTour (10) – 23156.9 33.08 0.20
Solitaire (25) – 11486.8 38.88 0.20

Random RandomQBF (15) + 160.1 49.69 0.00
RLP (572) – 174.7 68.89 5.18
RandomNonTight (220) – 200.0 89.85 0.24

Table 10.1: Size of smallest strong Horn-backdoors (bd) for various benchmark sets,
given as % of the total number of atoms (#atoms) by the mean over the instances.

10.1.3 Backdoors to Tractability

Table 10.1 illustrates our results on the size of small strong Horn-backdoors of the
considered benchmark instances. The structured instances have, as expected, significantly
smaller strong Horn-backdoors than the random instances. We would like to mention
that the random programs from the Asp competitions contain a rather small number of
atoms. So far we have no good evidence why in particular the sets KnightTour and
Solitaire have rather large strong Horn-backdoors compared to other structured
instances.

For the acyclicity based target classes C ∈ Acyc we have computed small dele-
tion C-backdoors only for instances from the sets HanoiTower, MinimalDiagnosis,
GraphColoring, MSS/MUS, ConformantPlanning, Factoring, Labyrinth
KnightTour, and Solitaire since the currently available algorithms did not scale on
the other sets. In fact, we set a quite permissive timeout of one day. However, we were
able to compute a backdoor for instances from the sets HanoiTower, GraphColoring,
and ConformantPlanning mostly within 600 seconds. We have obtained similar
sized small deletion Horn-backdoors and deletion no-DC-backdoors for instances from
the sets HanoiTower and GraphColoring, respectively. The size of small deletion
no-DC-backdoors of instances of MinimalDiagnosis was almost twice the size of
small strong Horn-backdoors. The size of small deletion no-DC-backdoors of instances
of the sets MSS/MUS, Labyrinth, and Solitaire was about half of the size of small
strong Horn-backdoors. The size of small deletion no-DC-backdoors of instances of the
set Factoring was significantly smaller, more precisely, about 6% of the size of small
strong Horn-backdoors. The size of small deletion no-DC-backdoors of instances of the
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domain instance set (#instances) #atoms normal bd (%) stdev

AI MinimalDiagnosis (551) 111856.5 10.74 1.71
StrategicCompanies (15) 2002.0 6.03 0.04

Planning MSS/MUS (38) 49402.3 1.90 0.35
ConformantPlanning (24) 1378.2 0.69 0.39

Random RandomQBF (15) 160.1 49.69 0.00

Table 10.2: Size of smallest strong Normal-backdoor (bd) for various benchmark sets,
given as % of the total number of atoms by the mean over the instances.

set KnightTour was about 80% and of the set ConformantPlanning about 88% of
the size of small strong Horn-backdoors.

10.1.4 Backdoors to Normality

Table 10.2 illustrates our results on the size of small strong Normal-backdoors of
the considered benchmark instances (note that we skipped programs that are already
normal). Similar to Table 10.1 in the previous section structured instances have smaller
backdoors than random instances. When we compare the size of a smallest strong
Normal-backdoor with the size of a smallest strong Horn-backdoor for selected sets
it seems at first surprising that for MinimalDiagnosis, StrategicCompanies,
and RandomQBF small backdoors into Horn and into Normal are of the same size.
However, instances from both sets contain various disjunctions in the head but only a few
constraints with non-negative bodies. Hence, a strong Horn-backdoor is also a strong
Normal-backdoor and vice versa. When we consider the set ConformantPlanning
it turns out that smallest strong Normal-backdoors are significantly smaller (0.7% vs.
8.8% of the total number of atoms). As instances from ConformantPlanning have
rather small backdoors our transformation into Qbf-Sat (see Section 9) seems to be
feasible for these instances.

10.2 Backdoor Evaluation

Instead of applying the algorithm from Section 3.3 directly, one can possibly use backdoors
to improve modern heuristics in Asp solvers to obtain a speed-up. Most modern solver
heuristics work independently from the current truth assignment. They assign to each
atom in the program a score and incorporate into the score the learned knowledge based
on derived conflicts (history of the truth assignments). Various studies on the effect
of restricting decision heuristics to a subset of variables based on structural properties
have been carried out in the context of Sat, where both positive [GMS98; GMT02;
Str00] and negative effects [JN08] have been observed depending on the domain of the
instances. Järvisalo and Junttila [JJ09] proved that branching only on the input variables
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of an underlying problem (before translating it into CNF) can imply a super-polynomial
increase in the length of optimal proofs for learning-based heuristics. However, very
recent results by Gebser et al. [Geb+13a] suggest that modern Asp solvers with a clause
learning heuristic can benefit from additional structural information when a relaxed
form of restricted branching is used, namely increasing the score of atoms if a certain
structural property prevails. Those properties have to be manually identified. Since
backdoor atoms are of structural importance for the problem it seems reasonable to
initially increase the score of the atoms if the atom is contained in the considered backdoor.
As strong Horn-backdoors are relatively easy to compute and very easy to approximate
one could occasionally update the heuristic based on a newly computation of a backdoor.
So a solver could benefit from backdoors in both the initial state and while learning
new atoms. [Geb+13a]. However, we do not expect a practically competitive heuristic
that is purely based on backdoors and does not take other aspects of Asp solving into
account. Therefore, a conclusive evaluation requires a rigorous experimental setup that
takes the interaction of various heuristic methods into account (e.g., interaction of solver
techniques [KSM11] and tuning of parameter values [Hoo12], modifying the branching
heuristic by caching truth values of atoms and reusing them [PD07], modifying the atom
score initially, or while learning conflict clauses, or at a certain depth of the search).

Contribution and Future Work

In this chapter we gave an idea about the size of small deletion backdoors into Horn,
no-DC, and Normal in realistic instances. The backdoor approach as established in
Chapters 3 and 4 is only effective when we can detect a backdoor within a reasonable
amount of time and the size of the backdoor is small enough. However, it turns out that
backdoors into Horn or no-DC are still orders of magnitudes to large to exploit them
without further improvements by means of the backdoor approach. We observed that
one can detect small (not necessarily optimal) backdoors into Horn relatively fast using
an Ilp solver. Our results revealed that the discovered small backdoors were almost
always optimal, but detecting optimality requires significantly more computation time.
Unfortunately, our incremental approach to compute small backdoors into no-DC seems
to be rather ineffective. Moreover, we cannot effectively detect small backdoors into one
of the other acyclicity-based target classes, since the currently available algorithms can
only deal with rather small instances within a reasonable computation time. Hence, our
backdoor approach seems currently without further improvements only of theoretical
interest. However, we have discovered that there are practical instances where small
deletion backdoors into Normal are relatively small. Similar to backdoors into Horn
we can find small (not necessarily optimal) backdoors into Normal relatively fast.
Hence, our transformation into Qbf-Sat seems feasible for these instances and could
provide an alternative approach to loop formulas. Therefore, we think that a practical
implementation is an interesting subject for further investigations. Further, we have
provided generic ideas of how one can possibly use backdoors into target classes where
the reasoning problems are tractable to improve certain aspects of modern heuristics.

130



10.2. Backdoor Evaluation

A conclusive evaluation seems to be a quite interesting topic for further research, in
particular since also positive effects on speeding up solvers have been observed when
structural information has been made available to solvers by means of restrictions on the
decision heuristic [Geb+13a].
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CHAPTER 11
Summary

We hope that this thesis has made contribution towards a better theoretical understanding
of answer set programming and its computational complexity. We used parameterized
complexity theory and mainly the notion of backdoors to carry out a detailed theoretical
worst-case complexity analysis, which takes also certain structural properties (e.g., size
of a backdoor) of the input instance into account and is hence closer to the practical
hardness of problems on real-world instances.

11.1 Technical Results

We have introduced the backdoor approach (backdoor detection and backdoor evaluation),
which has mainly been used in Sat and Csp for theoretical analysis, to the domain of
propositional answer set programming. In a certain sense, the backdoor approach allows
us to augment known tractable classes and makes efficient solving methods for tractable
classes generally applicable. We have studied various target classes and have established
tractability results for backdoor detection as well as hardness results depending on the
considered target class and the kind of the backdoor (Chapters 3–4). We have considered
approaches to extend known parameters using backdoors and more precise approaches to
the evaluation of strong and deletion backdoors (Chapters 5–7). We have established
a detailed theoretical comparison of the various Asp parameters, which are based on
backdoors and parameters that are known from the literature, in terms of their generality
(Chapter 8). We have introduced the notion of a complexity barrier breaking reduction,
which is a fixed-parameter tractable complexity reduction from a problem that is located
on the second level (or higher) of the Polynomial Hierarchy to itself when the input
is restricted (or another problem) such that the complexity drops (e.g., NP-complete)
without making the problem itself fixed-parameter tractable. We have established a
complexity barrier breaking reduction for the main reasoning problems of disjunctive
Asp using backdoors into a normal programs resulting in a reduction of the problem
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complexity. A backdoor into normal programs of small size hence captures structural
properties of disjunctive Asp instances. We have also shown that we cannot establish
a complexity barrier breaking reduction using backdoors into tightness under standard
assumptions (Chapter 9). Finally, we have discussed some practical considerations and
presented some empirical data on how the size of a backdoor is distributed in various
benchmark instances (Chapter 10).

11.2 Overall Results

We have introduced backdoors to the domain of answer set programming and have estab-
lished a detailed theoretical worst-case complexity analysis (including polynomial-time
preprocessing and more detailed approaches to the evaluation of backdoors) considering
the size of a backdoor as a parameter. The analysis yields positive results for the problem
backdoor evaluation as well as both positive and negative results for the backdoor detec-
tion problems. Some results reveal connections to and provide interesting applications of
very recent combinatorial results in parameterized complexity theory.

Structure has been studied earlier in answer set programming from various perspectives.
However, we have provided a detailed theoretical comparison of various Asp parameters
in terms of their generality and the relationship between the parameters. Furthermore,
our framework of answer set backdoors also generalizes several structural parameters
known from the literature.

We have proposed a novel method to solve Asp reasoning problems on disjunctive
programs. The main part is a transformation which takes advantage of a small backdoor
into normal programs and is fixed-parameter tractable (whereas the problems themselves
are not fixed-parameter tractable). Our method provides an alternative approach to the
concept of loop formulas. We have shown that backdoors into tight programs, which
provide the basis to solve programs using succinct compilations into a Sat formulas, can
not be used to establish a similar method, since the reasoning problems remain complete
for the second level of the Polynomial Hierarchy when parameterized by a backdoor into
tight programs.

Finally, our complexity barrier breaking reductions provide a new way of using fixed-
parameter tractability and enlarges its applicability. In fact, our approach as exemplified
above for a method to solve Asp reasoning problems is very general and applicable to a
wide range of other hard combinatorial problems that lie beyond NP or co-NP which has
actually already been shown in subsequent results [PRS13; DS14a; DS14b; HS15].

11.3 Future Research

The results and concepts of this thesis give rise to several interesting research questions.
For instance, it would be interesting to lift Theorem 3.12 to target classes that contain
programs with an exponential number of answer sets and are not enumerable, but where
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the set of all answer sets can be succinctly represented. A simple example is the class of
programs that consist of (in)dependent components of bounded size. Our investigations
on the various target classes could be extended to further classes of programs to obtain a
wider picture similar to the target classes for satisfiability backdoors based on Schaefer’s
classes [GS12b]. In particular, it would be interesting to investigate on the classes
considered by Truszczyński [Tru11] where the reasoning problems are tractable or the
complexity drops at least to NP (e.g., dual-normal programs). Moreover, an interesting
research question is whether the notion of a strong backdoor can be extended by allowing
unions of classes as a heterogeneous target class [Gas+14], in other words, different
partial truth assignment reducts may belong to different target classes. An obvious
research direction is to extend our backdoor approach to extended rules and investigate
on the effect of normalizations [BGJ14] on the size of a backdoor. An interesting question
regarding preprocessing is whether backdoor detection into the various acyclicity-based
target classes admits a polynomial kernel. Since backdoor evaluation does not admit a
polynomial kernel, it would be interesting to investigate whether there is a kernel that
consists of several polynomially sized kernels instead of a single polynomial kernel. A
direction for future work is to consider the parameterized complexity of the co-NP check
for disjunctive answer set programs when parameterized by various different parameters.

From the practical perspective it would be interesting to study whether and how
backdoors can be used to control modern heuristics in Asp solvers to obtain a speed-
up. Even so we expect that a practically competitive heuristic is not purely based on
backdoors, one might use backdoors to improve heuristics when taking other aspects of
Asp solving into account. An empirical study following these considerations is subject of
current research.

Our complexity barrier breaking reduction provides an alternative approach to effi-
ciently solve reasoning problems on disjunctive answer set programs if the instance has a
small backdoor to normality. Thus another interesting research direction is to consider
whether the approach can be of practical use, at least for certain classes of instances.

We think that it would also be interesting to rigorously determine various parameters
of known benchmark instances. Finally, an interesting research task would be to invent
new structural parameters that correlate with practical hardness of known benchmark
instances.
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W -feedback vertex set, 47

feedback width, see Asp parameter
fixed-parameter tractable, 17, 28, 31, 33,

39, 47, 55, 61, 73, 79, 80, 84, 88,
89, 91, 93, 97, 101, 102

∀∃-Qbf-Sat, 13, 17
formula

CNF, 12
conjunctive normal form, 12
Horn, 71
matrix, 13
prenex normal form, 13
QBF, 12
quantified Boolean formula, 12
quantifier block, 13
satisfiable, 12

fpt, 56, see also fixed-parameter tractable

graph
induced subgraph, 21
bipartite, 21
chordal, 100
clique, 21
complete, 21
connected component, 21
dependency, 40, see also

dependency graph
directed, see digraph
head dependency, 55, see also

dependency graph
incidence graph, 97
interaction, 100, see also

dependency graph
negation dependency, 38, see also

dependency graph
subdigraph
induced, 22

subgraph, 21
tree, 21
triangulated, see chordal
undirected, 21

undirected dependency, 40, see also
dependency graph

vertex cover, 38, see also
vertex cover

GraphColoring, 127
Gurobi, 126

HanoiTower, 127
head dependency graph, 55, see also

dependency graph
Hierarchy

Polynomial, 15
Weft, 19

Hitting Set, 19, 44

Ilp, 125
incidence graph, 97, see also graph
instance, 15

main part, 18
no-instance, 15
parameter, 18
yes-instance, 15

integer linear programming, 125
interaction graph, 100, see also

dependency graph
interaction treewidth, 101, see also

Asp parameter

kernel, 60, 61
bi, 60
linear, 61
polynomial, 60–62
quadratic, 61

kernelization, 60, 61
bi, 60
Buss, 80
loss-free, 79, 80

KnightTour, 127

Labyrinth, 127
leaf, 22
length

of a cycle, 21, 47
of a path, 21
of the longest cycle, 101
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level numbering, 113
lift, see self-lifting
literal

of a formula, 12
of a program, 7

local search, 125
loop formulas, 120
lp2normal, 126
LS, 125

Max-Lits-Sat, 20
Max-Occurrence-Consistency, 20
MinCheck(P,X1,M), 110, 111
minimal

strong C-backdoor, 25
deletion Normal-backdoor, 54
vertex cover, 56

MinimalDiagnosis, 127
model, 8

answer set, 8
least model, 9
minimal, 110
stable model, 8
supported, 113

modular, 14
MSS/MUS, 127

negation dependency graph, 38, see also
dependency graph

node, 21, 22
number

of answer sets, 10
of atoms, 61
of bad even cycles, see

Asp parameter
of distinct negative literals, see

Asp parameter
of head cycles, see Asp parameter
of leaves, 71
of non-Horn rules, see Asp parame-

ter
of positive cycles, see Asp parameter
of rules, 7
of variables, 62

parameterized by, 39
Asp parameter p, 55
feedback width, 93, see also

Asp parameter
Gallo-Scutellà parameter, 73
Gallo-Scutellà parameter +

size of C-backdoor tree, 73, 77,
80

incidence treewidth, 97, see also
Asp parameter

level of stratifiability, 91, see also
Asp parameter

maximum number of literals, 20
maximum number of occurrences, 20
number of bad even cycles, 102
number of distinct negative literals,

88, see also Asp parameter, 89
number of non-Horn rules, 88, see

also Asp parameter, 89
number of positive cycle, 104
number of variables, 62
size of strong C-backdoor, 28, 31
size of cycle cutset decomposition,

101, see also Asp parameter
size of tree clustering, 101, see also

Asp parameter
solution size, 32, 60
weak feedback width, 93, see also

Asp parameter
parameterized complexity, 17
path

directed, 22
length, 21

predecessor, 22
preprocessing, 60
problem

admits polynomial kernel, 60
C-complete, 15
C-hard, 15
compressible, 60, 62
co-NP-hard, 104, 105
co-para-NP-complete, 19, 109
co-para-NP-hard, 45
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decidable, 61
decision, 15
fixed-parameter tractable, 18
NP-hard, 104, 105
parameterized, 18
para-NP-complete, 19, 109
para-ΣP

2 -complete, 20
Πp

2-hard, 121
Σp

2-hard, 121
solvable
non-deterministically, 15
polynomial-time, 15

unparameterized version, 20
W[2]-hard, 43, 44

program, 7
constraint-free, 7
cycle, 41
definite Horn, 7, 113
disjoint copy, 85
disjunctive, 7
head-cycle-free, 105
Horn, 7
logic, 7
normal, 7
positive, 7
stratified, 43
subprogram, 8
tight, 104, 120

Qbf-Sat, 13

RandomNonTight, 127
RandomQBF, 127
reduct

backdoor, 110
Gelfond-Lifschitz (GL), 8
truth assignment reduct, 25

reduction
complexity barrier breaking, 108
Cook, 15
fpt, 18
Karp, 15
many-to-one, 15, 18
polynomial-time, 15, 60

quasilinear-time, 108
self-reduction, 32
Turing, 15

RLP, 127
root, 22
rule, 7

body
negative, 7
positive, 7

constraint, 7
constraint-free, 7
definite Horn, 7
head, 7
Horn, 7
integrity, 7
normal, 7
tautological, 7

SageMath, 126
Sat, 12, 19, 109, 125
Sat[Vars], 62
satisfies

set of atoms, 8
truth assignment, 12

self-lifting, 54, 89, 91, 93, 106
self-transformation, see reduction
separating example

Pn11, 85, 87, 89, 92, 95, 106
Pn1 , 85, 89, 90
Pn2 , 85, 89, 90
Pn31, 85, 86, 89–91, 93, 94, 96
Pn32, 85, 86, 89, 91, 94, 97, 98, 104,

105
Pn33, 85, 86, 94, 96
Pn34, 85, 86, 94, 96
Pn35, 85, 89, 91, 94, 96
Pn3 , 93
Pn4 , 85, 86, 89, 91–96, 103
Pn51, 85, 87, 89, 91, 94, 97–99, 101–

106
Pn52, 85, 89, 91, 94, 103
Pn53, 85, 101, 104, 105
Pn54, 85, 87, 89, 90
Pn6 , 85, 87, 89, 91, 94, 97–99
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Pn7 , 85, 89, 91, 94, 97, 99, 103–105
Pm,n8 , 85, 87, 89, 92, 95, 98, 101–105
Pn9 , 85, 87, 89, 92, 95, 103
Pn, 87

shifting, 118
size

of an instance, 18
of a strong C-backdoor, 76
of a C-backdoor tree, 76
of a clique, 101
of a cycle cutset decomposition, 101
of a deletion C-backdoor, 54
of a parameterized instance, 15
of a program, 7
of a strong C-backdoor, 54, 76
of a tree clustering, 101

Skeptical Reasoning, 10, 48, 62, 73,
80

Solitaire, 127
StrategicCompanies, 127
stratification, 43

level of stratifiability, see
Asp parameter

strong C-backdoor, 25, 75, 76, 119, 121
minimal, 79
smallest, 25, 76

Strong C-Backdoor Asp Check, 28
Strong C-Backdoor Detection, 32

Horn, 39, 45
no-BC, 43, 45, 47
no-BEC, 43, 45, 47
no-C, 43, 45, 47
no-DBC, 43–45, 47
no-DBEC, 43–45
no-DC, 43–45, 47
no-DEC, 43–45
no-EC, 43, 45, 47

strong backdoor
of a CNF formula, 24
of a program, 25, see also

strong C-backdoor
successor, 22

transversal, see cycle

tree, 21
backdoor, 71, see also
C-backdoor tree

binary, 22, 70
binary decision, 70, 72

treewidth, 96, see also Asp parameter
True, 29, 74, 111
truth assignment, 12

corresponding, 70

undirected dependency graph, 40, see
also
dependency graph

UnSat, 12, 20, 109

variable, 12
propositional, 12

Vertex Cover, 60, 61, 80
vertex, 21

negative, 40
vertex cover, 38, 55, 60, 61, 80, 119, 125

W -cycle transversal, see cycle
weak feedback width, see

Asp parameter
width

clique, 100
dependency treewidth, 98, see also

Asp parameter
feedback width, 93, see also

Asp parameter
incidence treewidth, 97, see also

Asp parameter
interaction treewidth, 101, see also

Asp parameter
weak feedback width, 93, see also

Asp parameter
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