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Abstract

The thesis starts in chapter 1 with basic observations and a survey of statistical methods commonly
used to express the performance of communication network components and other systems based on
stochastic processes. Multi Protocol Label Switching (MPLS) is introduced and further on used as
example toward a modern multi-flow based network performance assessment.

In chapter 2 we first introduce some basic distributions to model the inter-arrival and holding time
distributions, and second, we present methods to construct or approximate more complex processes
by mathematically tractable Markov chains.

Based thereon we then exemplify basic queueing models in chapter 3, as they can be found
in most text-books on queueing theory, though hardly in a similar synopsis. Starting with infinite
multi-server systems we continue to the more practical finite and queue-less systems, and learn about
different approaches to analyse these systems based on the Markov chains that result from the state
transition diagrams representing these systems in a comprehensible manner, besides other methods
applied where Markov chains are not an option.

Finally, in chapter 4 we use the introduced concepts and methods to evaluate the principal
mechanisms of multi-service communication network components. Form resource sharing and flow
prioritisation we proceed to congestion mitigation and finally chains and networks of queueing
systems.

In the end, in section 4.4, we outline a subjective vision of future network management concepts
based on the observation that the main cause for service degradation is overload, and the intuitive
conclusion that this obstacle cannot be mitigated without proper network management. The basic
instantaneous connectivity demand problem is assumed to be solved by connection advertisement
based on pre-configured intra section paths and pre-calculated expectable service quality for the
advertised end-to-end paths.

The load balancing issue is not solved in detail because a reasonable discussion of the routing
topic, required to achieve load balancing, would add at least one more lengthy chapter. Instead,
based on previous work, it is assumed that the introduction of a common virtual network level in
the management hierarchy solves the scalability problem and that per autonomous network section
capable algorithms alike the Residual Network and Link Capacity algorithm can be applied with
reasonable computation effort.

Chapter 5 concludes the thesis, reflecting on the course of preparing the thesis and the findings
and obstacles identified. The addenda provide examples of the Octave programs used to calculate
the many figures on system performance metrics, in particular the event based system simulation
routine and an example on the matrix oriented design of multidimensional state transition diagrams.



Zusammenfassung
Die Doktorarbeit beginnt in Kapitel 1 mit grundlegenden Beobachtungen und einer Zusammenfassung
der statistischen Methoden die üblicherweise zur Bestimmung der Leistungsfähigkeit eines
Kommunikationsnetzes Verwendung finden. Vielfachprotokollmarkierungsumschaltung (MPLS)
wird vorgestellt und im weiteren als Beispiel für die Effizienzbewertung von Netzkomponenten unter
Berücksichtigung mehrerer Datenflüsse verwendet.

In Kapitel 2 werden erst grundlegende Wahrscheinlichkeitsverteilungsfunktionen vorgestellt
welche zur Modellierung der Zwischenankunftszeiten und Bedienzeiten Verwendung finden. Im
weiteren werden Methoden zur Modellierung komplexerer Prozesse durch die Verknüpfung einzelner
negaitv exponentieller Phasen zu mathematisch handhabbaren Markovketten gezeigt.

Darauf basierend werden in Kapitel 3 grundlegende Warteschlangensysteme vorgestellt, wie sie
auch in den meisten Lehrbüchern zu finden sind, wohl aber kaum in einer identischen Zusammenstel-
lung. Beginnend mit unendlichen Warteschlangensystemen mit mehreren Verarbeitungsinstanzen
werden im weiteren praxisgerechte endliche und warteschlangenlose Systems behandelt. In diesem
Zusammenhang lernen wir verschiedene Möglichkeiten kennen wie derartige Systeme mithilfe von
Markovketten analysiert werden können, also auch andere Methoden für Systeme die sich mittels
Markovketten nicht modellieren lassen.

Schließlich, in Kapitel 4, werden die vorgestellten Konzepte und Methoden dazu verwendet
die primären Mechanismen von Kommunikationsnetzknoten mit Dienstklassendifferenzierung zu
untersuchen. Angefangen bei der gemeinsamen Nutzung der zur Verfügung stehenden Trans-
portkapazitäten und der Flusspriorisierung kommen wir im weiteren zur Datenstauabarbeitung
und schließlich zu verketteten und vernetzten Warteschlangensystemen.

Zu guter letzt, in Kapitel 4.4, wird eine subjektive Vision zukünftiger Netzverwaltungskonzepte
umrissen, basierend auf der Beobachtung, dass Überlast der Hauptgrund für eine Dienstver-
schlechterung darstellt sowie der intuitiven Erkenntnis, dass dieses Hindernis nicht ohne eine
gute Netzverwaltung ausgemerzt werden kann. Es wird davon ausgegangen, dass das grundle-
gende Problem der zeitnahen Bereitstellung von Datenverbindungen mittels vor-konfektionierter
Verbindungsstücke und der Anpreisung der damit bereitstellbaren Ende-zu-Ende Dienstqualitäten
gelöst werden kann.

Das Lastausbalanzierungsproblem wird hier nicht bis ins Detail gelöst da eine seriöse Darstellung
des Wegefindungsproblemes, wie es nötig ist um Lastgleichverteilung zu erreichen, zumindest
ein weiteres umfangreiches Kapitel bedürfen würde. Basierend auf früheren Arbeiten wird davon
ausgegangen, dass die Einführung einer virtuellen Netzebene das Skalierungsproblem löst, und
dass die Verwendung fähiger Algorithmen, wie zum Beispiel dem Verbleibende Netz- und Link-
Kapazität basierten Algorithmus (RNLC), innerhalb der begrenzten Netzbereiche mit vertretbarem
Rechenaufwand möglich ist.

Kapitel 5 beschließt die Dissertation und wirft einen Blick zurück auf die Vorbereitung sowie die
identifizierten Erkenntnisse und Hindernisse. In den Ergänzungen finden sich Beispiele der Octave
Programme die im Verlauf der Arbeit entstanden und Verwendung fanden zur Berechnung der vielen
Systemqualitätskurven. Insbesondere sind das die ereignisgesteuerte Simulation und ein Beispiel für
den Matrizen basierten Entwurf von mehrdimensionalen Zustandsübergangsdiagrammen.



Preface

Looking for a challenge, as I usually tend to do when I should not, I choose for my Ph.D. thesis a
topic quite new to me. Having finishing my master thesis on on-demand wavelength routing, I found
it coherent to switch to flow transmission performance. The courses given by Prof. van As presented
the queueing systems topic well and it was clear that the approach is a key issue. A first attempt to
extend the precise theory of tandem systems to chained systems I gave up the moment I realised that
this is based on assuming independent service times at subsequent systems, which is never the case
with chained communication channels. Queueing networks are also not very appealing because these
demand random routing in addition to independent service times at subsequent nodes, which both
contradicts with communication systems practice.

After leaving the university for a job in the private industry for several years, still continuing
scientific work in the course of ongoing research projects, I returned and delved into the topic
more broadly, backing off to a hop-by-hop, feature-by-feature approach. Initially, network calculus
appeared utile to combine the results. However, the deterministic version that provides upper and
lower performance bounds appears stigmatised as too restrictive. The true issue is that the mean
performance cannot be calculated using this method. The stochastic network calculus promised to
substitute that. However, the mathematics applied is very sophisticated, and the development of
methods applicable in general still in progress.

In the end, I returned to the historic approaches and found them very useful because these reveal
the reasons for some effects more vividly than sophisticated methods based on abstract analytic
theorems and lemmas. Besides, a non-mathematician alike me rarely knows the names and the
thereto related implications of the applied lemmas, rendering methods based thereon a cause for
applied mathematics experts.

Concluding, I dare to say that with the help of quite short Markov chains and the matrix geometric
and matrix analytic approach most queueing problems can be sufficiently accurate analysed if the
initial assumptions and simplifications are wisely chosen. Rubbish results if dull chosen, and without
proper care the state transition diagrams may grow huge, too huge to be handled by standard computer
systems. Realistically, effective systems are prevalently small, at least if the time basis is correctly
chosen and background flows are merged into aggregates as much as possible. Rarely need the
involved processes be modelled by Markov chains composed of more than two phases because two
are sufficient to precisely match the first three moments for any coefficient of variation cX ≥ 0.5.
Thus, in most cases we can reduce the problem to two processes with two phases each, and four
flows: the flow under test, its peers, the more privileged, and the less privileged. A queueing system
based thereon and providing space to hold load equivalent ten times the serving capacity can thus
be modelled by a finite state transition diagram, connected by a commonly rather sparse transition
matrix, which Octave can effectively handle.
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1 Introduction

Πάντα ρ,ει̃ (panta rhei) "everything flows"

You cannot step twice into the same river,
for other waters and yet others go ever flowing on.1,2

Everything flows and nothing abides. Everything gives way and nothing stays fixed.2,3

1.1 Communication networks

Telecommunication has become an integral part of modern life. We rely on the availability of means
to communicate over any distance not only in business. Also in our private life we more and more
use electronic communication means to inform and organise ourselves. The provided communication
services become more and more integrated in daily life, and the variety of information technology (IT)
services provided and regularly used increases continuously.

Telecommunication, meaning communication over a distance that human voice cannot travel by
its own, is not new. First systems that realise telecommunication were signal fires. Today, we literally
have access to information from all around the world at our fingertips (figure 1.1). The signal fires

Figure 1.1: From local signal fires to worldwide information sevices

were replaced by antenna masts, and people actively select the source of the information they receive.
To realise latter, we need a joint global network that connects all the sources and destinations of
information flows. The end-points of this global information exchange system we call terminals.

In between these terminals exists an ever-growing, rather invisible, communication infrastructure,
which we usually call the Internet. This is so complex, that it commonly is sketch as a cloud. Services
that cannot be realised without it are accordingly called cloud services. Technically, this invisible
communication infrastructure comprises a heterogeneous, continually changing conglomerate of
mechanisms that enable, control, and manage the access to, and the delivery of, the information
requested by the people via their terminal devices.
1http://en.wikipedia.org/wiki/Heraclitus: DK22B12, in Arius Didymus apud Eusebius, Praeparatio Evangelica, 15.20.2
2http://community.middlebury.edu/~harris/Philosophy/Heraclitus.html
3http://www.wisdomlib.org/buddhism/book/the-buddhist-philosophy-of-universal-flux/
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2 Gerald Franzl

Connection oriented networks

A first electronic communication system was telegraphy, using for example the Morse code (1836) to
transport the information. The telegraphy system relied on point-to-point transportation of intensity
modulated analogous signals and relay stations (nodes) to route and re-amplify the signals as long as
the destination was not reached. The telephony networks used the same principle, modulating the
carrier signal by the sound intensity of the spoken words, until the migration to digital transmission.
For digital transmission the voice signal has to be sampled, and in between the samples of one
communication, now referred to as call, the samples of other calls could be transmitted. This method
is called time division multiplexing (TDM). Thereby the capacity of the medium is split into so called
transmission channels. However, to establish the required end-to-end connections the switches now
also need to de-multiplex the different channels in order to connect them individually. Broadcast
networks are a different category. They distribute one signal to all receivers within their coverage
area, alike signal fires. In contrast to telephony, broadcast radio prevailingly uses frequency division
multiplexing (FDM) to transmit different channels over the same medium. In optics FDM is called
wavelength division multiplexing (WDM). Think of fires that shine in different colours, and the
principle should be clear.

Modern communication networks support point-to-point, broadcast and services in between,
so called multicast services that connect any group of terminals. Also the medium changed, today
most communication networks rely on silica fibre based optical transmission, independent of the
last mile technology. Within core networks, sometimes called backbones, the synchronous digital
hierarchy (SDH) or its descendant, the optical digital hierarchy (OTH), is used to transmit information
between physical locations. OTH is part of the optical transport network (OTN) standard, which also
integrates WDM for a smart utilization of the silica fibres’ tremendous usable capacity in the area of
Tbit/s, way too much for a single application, and also too much for today’s digital processing. To
increase the number of multiplexed channels even further, code division multiplexing (CDM) and
combinations of multiplexing schemes are today in use to achieve any convenient channel granularity.

Connection less networks

The invention of the Internet protocol (IP, 1974) split the world of communication networks into
physical and virtual connectivity (figure 1.2). IP uses datagram transmission, being the connection-

Packet-switching

forward incomming packets
one after the other

in

out

Circuit-switching

connect a line 
as the signalling requests it

in

out

Figure 1.2: Circuit switching and packet switching paradigm

less transport of data by individual packets. Each packet is independently switched at every
intermediate node based on some information provided by the packet itself. The key advantage is
that the payload of different communications, being the flow of packets each creates, autonomously
share the available capacity without the need to specify the demand in advance. This capacity sharing
scheme is called statistical multiplexing.

The switching paradigm is comparable to the common postal service: sort the packets that
arrived in ingress-bins to the available egress-bins based on the information shown on the packet’s
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address-label. Evidently, the packets need to be stored at nodes while the header information, the
label, is processed. In addition, if at any time more packets arrive than can be forwarded, the excess
packets become buffered. Therefore, the general paradigm is called store-and-forward switching,
which clearly separates it from cut-through switching, the paradigm realised by traditional telephony
networks. These two are as different as day and night, cat and dog, or telephony and postal service.
Still, they serve the same demand: transportation of information from one location to some other.

Packet routing

Every packet switching node needs a so called routing table to determine where a packet shall be
forward to. It specifies an output port for every destination address. A routing protocol fills and
maintains these tables. Commonly, the routing protocol implements in a distributed way Dijkstra’s
algorithm for finding the shortest paths tree from any node to a destination. The routing tables are
constantly maintained in order to respond to resource changes, mainly failure or addition of resources.
Persistently defined end-to-end connections do not exist. Particularly not, if load balancing across
parallel paths is performed. This traffic engineering feature is for example provided by the open
shortest path first (OSPF) routing protocol, which relies on the k-shortest paths Dijkstra algorithm to
find up to k parallel paths between any two network nodes.

IP itself does not specify how packets are transmitted, it presumes networks underneath capable
to perform this task. This adds essential freedom because it allows IP connections to utilize different
transmission systems on a hop-by-hop fashion. The point-to-point connections in between IP nodes
can be realised by any transmission system. In the core network this is traditionally a circuit-switched
connection provided by a telephony network, but new approaches are emerging. Using Ethernet to
connect IP nodes adds another statistical-multiplexing layer. However, the network layer of Ethernet
is commonly circumvented by static switch configuration: switching tables and port bindings are set
by a management system rather than autonomously learned from the traffic, as Ethernet invented it.
Such confined, Ethernet offers steady connections between IP nodes. Note, static links are mandatory
for reliable IP routing, and therefore no performance advantages can be gained from the added
complexity, at least not concerning the end-to-end achievable transport performance.

Distributed control

IP is a fully distributed communication system that operates as long as two nodes are somehow
connected, similar to signal fires. It completely separates point-to-point transmission from end-to-end
transport, as shown in figure 1.3. Jointly these features cause that IP is very robust, widely applicable,
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Figure 1.3: Store-and-forward based virtual connection

and extremely simple, basically because no coordination or central management is present. Simple
systems nearly always squeeze out less simple, but they may be operationally complex. While with
telephony networks the connection set-up mechanism assigns resources to be exclusively used by the
requesting connection, IP networks assign the resources packet-by-packet hop-by-hop. Packets are
greedy, they want to be forwarded to their destination as fast as possible. Nodes do not coordinate
their current routing decisions with downstream nodes. Consequently, fully comparable with car
traffic, congestion occurs from time to time. Rarely if the load is low, but with increasing frequency
the more utilized the resources are.
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The essential companion of IP that takes care of congestion is the transport control protocol (TCP)
[RFC675, RFC1122]. Initially, IP and TCP are inseparable because TCP was designed to take over
all network reliability issues: TCP limits the amount of traffic a source may insert within a certain
time-window and dynamically adjusts this limit depending on the success of previous packets.
Besides, TCP also assures that every packet is successfully received by re-sending packets that
are not acknowledged by the destination. This introduces a tremendous variability of the transport
delays, called jitter. Therefore, time critical services do not like TCP. They prefer the user datagram
protocol (UDP) [RFC768], which is very greedy, because it has no mechanism to adjust the inserted
load to the current performance of the connection. Alternative protocols that serve time critical
transport services more resource friendly have been proposed but seem rarely implemented or used,
for example the Datagram Congestion Control Protocol [RFC4340]. Most widely used today should
be the Stream Control Transport Protocol [RFC3286, RFC4960] as it is tailored to streaming services.

Service provisioning

Today, nearly all communication services have been realised over IP. This was triggered by the
omnipresence of IP, which results from the flexibility to use any transmission system. Also the
simplicity of its management and the continuous speed increase of modern processors supported
this move. Merging all networks into one saves operational costs, but if overstretched, the simple
workhorse kicks back. Different services cause different loads, as shown in figure 1.4, and demand
different transport qualities. If the networks switching paradigm does not support this, either all
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Figure 1.4: Packet flows that services may cause if transported over IP

connection must fulfil every service’s quality demand, or add-on mechanisms need to be implemented
in order to protect critical services from the effects of congestion. Latter contradicts the network
neutrality, being that all packets are handled equally. It also violates the layering defined by the
famous Open Systems Interconnection (OSI) model for digital communication systems [1], if the
transport of a packet is considered to be the only service provided by the network layer. This violation
can be removed, if we allow the transport to be parametrised, for example by adding a label that
refers to a policy according to which the packet shall be handled at intermediate network nodes,
ans shown in figure 1.5. The introduction of the service layer enables the separation of services
from their technical realisation. This next important step in the abstraction of network operation is
standardised as the so called next generation network (NGN) architecture [2]. It postulates that the
application characterises the service it requires. These services, and the features thereof, constitute
the openly defined service stratum. For each service the network shall autonomously selects the
means to enable its transport by providing the required resources and mechanisms, which constitute
the so called transport stratum.
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Figure 1.5: Virtual connection using policy based forwarding

End-to-end service quality

Independent of how a service is defined and realised, the performance of an end-to-end connection
depends on the current state of the resources that establish the connection. For packet switched
connections the primary reason for insufficient performance is temporary congestion. A completely
idle network would offer perfect service quality. In practice, congestion deteriorates the performance
from time to time and at changing nodes, if the network is well designed and configured, being the
core tasks of network engineering. However, even the temporary problems along paths minder the
average performance, which determines if a connection is useful for a service or not.

Even though all contention related issues and procedures are effective only while there is
congestion, they determine the transport quality, called quality of service (QoS). The QoS provided
by a chain of rather independent network components that constantly change their state, is not easy
to determine. Figure 1.6 intends to express this mathematically. Traffic arrivals are modelled by an

s1(t)
a2(t)
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s2(t) sn(t)

an(t) dmax(t)

dmin(t)dn-1(t)
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a(t)

dmin(t)

dmax(t)

Figure 1.6: Connection quality being a component performance cascade

arrival functions ai(t), departures from components by departure functions di(t). We note that not all
departures of the component ahead di−1(t) need to enter the next component, and vice versa, that
also traffic along connections not entirely part of this chain may pass involved components, adding
locally the traffic ai, j(t). Thus, di−1(t) will have some influence on ai(t), but does not fully define it:
ai(t) = f (di−1(t),ai, j(t)). The influence of a component on the traffic passing it is represented by
the service function si(t), and the connection’s global service function by schain(t). Note that the time
dependence of the service functions follows from their load dependence si(t) = f (ai(t)), and that
the operator ’⊗⊗⊗’, which relates the global service function with the chained service functions, does
not identify a defined operation, it is a place-holder only.

Methods to derive or approximate the connection performance schain(t) from the chained
component performances si(t) are presented in chapter 4.3.4. For now we just list basic relations:

• Increasing the performance of a component will not decrease the QoS of a connection passing
it; and increasing the performance of all components will improve the QoS of all connections.

• Privileging the packets of one connection likely deteriorates the performance of all connections
that share a resource with the privileged one.

• If all connections are equally privileged they achieve the same performance as without
privileging any⇒ the average performance cannot be improved by privileging.
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1.2 Multi Protocol Label Switching (MPLS)

Based on the restrictions of plain IP we show what multi protocol label switching (MPLS) adds to
IP and outline the mechanisms that are required for performance oriented load management and
service differentiation. MPLS by itself does not offer QoS provisioning. In the previous section
we recognised how a connection’s performance depends on the components passed by the flow
of packets that belong to a service. We noted that the performance is determined by temporary
congestion, which occurs more frequent if resources are more utilized. The relation between the two
is progressive, and therefore, the average performance of a network can be improved if peak loads
are reduced. This is the core task of traffic engineering. In short it means: put the traffic where the
resources are and you get the best possible network performance.

remaining capacity

constant bit-rate

variable bit-rate
(big/small stream)

Figure 1.7: IP network with default minimum hop routing

Shortest path routing, being the default IP routing scheme, does not support load balancing or
other traffic engineering attempts well. As shown in figure 1.7, the traffic flows may concentrate
on links while leaving others underutilized. To increase the performance of an IP network we can
adjust the resources or do manual reconfiguring. The first approach follows a rule of thumb: double
the capacity when the utilization reaches a critical level, for example 50%. This adjustment scheme
realises an adaptive one-way optimisation – the demand driven long term evolution of networks. The
other method tries to redirect the load by adjusting the link weights used by the routing (minimum
cost), as shown in figure 1.8.

remaining capacity
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1

1

22

1
2

variable bit-rate
(small stream)

constant bit-rate

Figure 1.8: IP network with minimum cost routing

Calculating the link weights that provide the best distribution requires good knowledge about
traffic flows, not about link loads, and is commonly performed off-line [3]. In addition, once flows
toward a destination merged, they cannot be split over different paths any more. The connection less
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IP routing can only assign one output port per destination address. Open shortest path first (OSPF)
routing offers in its traffic engineering (TE) extension among others the feature to split the load over
parallel sections [3, 4]. Commonly it performs this on the aggregated traffic, and this may cause
out-of-order packet reception possibly unsuitable for some services.

Both network engineering solutions have network wide side-effects and only indirectly achieve
the traffic engineering goal. Let us note here that balanced utilization also can be achieved by routing
the traffic over excessive detours. This cannot be the solution. We always should try to minimise
the peak utilization and the total resource occupation jointly. Form the connections point of view
we want to find a balance between the effectiveness of a longer path consisting of low loaded hops
compared to that of a shorter path containing higher loaded hops.

Connection oriented data flows

To enable load management on a per flow basis, and to migrate the proven load balancing schemes
from circuit switching, the traffic needs to follow end-to-end defined routes. This is the primary
feature that multi protocol label switching provides. It separates the transport of payloads form the
routing, and makes routing an exchangeable control plane task [5, 6].

The name MPLS consists of two parts: the label switching refers to the long known label swapping
scheme that scalable implements forwarding relations, and the multi protocol term, which expresses
that different routing protocols can be used independently, interchangeably, and concurrently to
determine the route of a label switched path (LSP). The LSPs are set-up and torn-down by signalling
comparable with circuit switching. An important difference to other label swapping implementations
is: MPLS allows to stack labels, meaning to use existing LSPs alike links and to tunnel new LSPs
inside existing ones.

Label swapping is performed to keep the size of labels small and at the same time allow huge
numbers of LSPs. Latter is achieved, because lables can be freely reused hop by hop. The label
switching is performed based on the (port,label)-tuple: for every ingress-tuple the switching table
provides an egress-tuple that specifies the output port and the label to be used on the next hop, as
shown in figure 1.9. This mechanism works as good as labels per LSP would, but it reduces the

[2]
[5]
[2]

A

(1,2) 7→ (3,4)

(2,5) 7→ (1,3)

(3,2) 7→ (1,2)

B

(1,4) 7→ (1,5)

C

(2,3) 7→ (1,5)

(2,2) 7→ (3,1)

(3,5) 7→ (2,1)

[5]
[1]
[1][2], [3]

[4]

[5]

Figure 1.9: Label swapping scheme

number of bits required in the packet header, and, it makes the scheme scalable to any network size.
The lable swapping has no effect on the LSP’s performance, and therefore we assume this to work
and use in the following LSP-IDs to identify different LSPs and not the always changing real labels.

For completeness: nodes that perform label switching are called label switching router (LSR),
and edge nodes that assign loads to LSPs are called label edge router (LER) – this naming is used in
the IETF RFC3031 that specifies MPLS [5]. For consistency and ease of reading we hereinafter stick
to the general term node and presume that the nodes are configured to perform whatever is required
at their site.
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Traffic load distribution

Load management, meaning advertising the expected load with LSP signalling, keeping track of the
load currently occupied on resources, and reserving capacity shares to LSPs, is not part of MPLS.
However, to route LSPs that fulfil certain QoS demands, it is essential. For example, OSPF-TE
uses this information to route LSPs. Therefore, we assume it, and note that for a signalling based
connection set-up and tear-down mechanism it is no challenge to implement load advertisement.
A widely used signalling protocol providing the required means is for example RSVP-TE [7]. We
thus assume that the expected load per LSP, particularly its mean volume and its distribution, is
roughly known at every network node the LSP passes, independent of the signalling protocol used.
Form this information we will calculate the congestion potential per outgoing link. We note that
not assigned IP traffic either needs to be guessed well or an influence on the LSP’s performance
technically prevented, to enable trustworthy performance prediction.

Where required we assume in addition to load management a QoS table per node that tells for
every ingress tuple the policy to be applied to packets travelling within the according LSP. Thereby we
add differentiated QoS to MPLS. Again, being technically no challenge for the signalling, we assume
it available as required for the installed service differentiation options. The MPLS header already
provides three bits to identify a forwarding equivalence class (FEC), comparable to what we know
from asynchronous transport mode (ATM) and frame relay (FR), to support service differentiation
among LSPs.

Figure 1.10 shows a small network example that illustrates how link resources may be shared
using MPLS in conjunction with resource management. If capacity shares are strictly reserved to

Figure 1.10: Multi protocol label switched (MPLS) network

an LSP, we get a virtual connection (VC), because the availability of the demanded capacity share
(bLSPi) is assured to it on every resource along its path. Virtual connections do not need to compete
for resources, if overbooking is strictly prevented and no source can insert more than the advertised
load bLSPi at any time.

∑
i

bLSPi∃link ≤Clink,∀links

More common are LSPs that realise virtual paths. A virtual path (VP) has no capacity share
reserved to it. Packets flowing along VPs share the currently available resources hop-by-hop. The
access to resources can be controlled locally by resource sharing mechanisms, which may implement
different policies, called per hop behaviour (PHB) in Diff-Serv nomenclature [8]. The difference to
IP traffic not enclosed in LSPs is that all packets assigned to a virtual path travel connection oriented
along the route of the LSP. The LSP routes may deviate from the shortest path that the not assigned
IP packets follow, and LSPs toward the same destination can tunnel the assigned traffic over different,
parallel routes to their destination.
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We note that the individual packets make use of the currently not used transmission units
independent of their belonging to switched or routed LSPs, or no LSP at all. The resource
management can realise pre-booking of capacity shares only, not a strict assignment of particular
transmission units (timeslots or alike). Therefore, no transmission units remain idle when they may
be utilized, and the advantage of statistical multiplexing is fully preserved.

That transmission units are not strictly assigned to virtual circuits introduces some minor jitter,
because any packet may need to wait for the next transmission unit in case all are occupied in
the moment the packet arrives. Still, it never needs to wait more than the time required for one
packet transmission. This jitter component can therefore be neglected. Consequently, hereinafter
we concentrate on virtual paths, and assume that the capacity used by virtual connections is never
available. The subtraction of the strictly assigned capacity (CVC = ∑i bVCi∃link) from the link’s raw
capacity (Clink) assures that we are on the save side: in average the actual performance along virtual
paths cannot be worse than the predicted, if we use

C =Clink−CVC

as the shareable link capacity for our calculations. Consequently, our results will be far too pessimistic
if many unused virtual connections exist. In practice, schemes are required to dynamically release and
re-establish virtual connections in order to facilitate best operation of a self-optimising autonomous
MPLS regime.

Label distribution

An interesting aspect of MPLS is, at least if the label distribution protocol (LDP) [9] is used, that
LSPs are set-up from the destination toward the source. Consequently, LSP routes may be changed
seamlessly while in operation. The traffic is switched to sections of a new path not before the entire
stretch to the destination is ready, as shown in figure 1.11. To set-up a new path or section, first
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LSP set-up steps:
(i) get path-vector for a new connection
(ii) run backward recursive table set-up
(iii) remove obsolete routing table entries

LDP routing-table set-up steps:
(i) get egress tuple ( j,b) and ingress port i
(ii) choose a label a available on port i
(iii) set routing table entry (i,a) 7→ ( j,b)
(iv) send a to the node connected at port i

Figure 1.11: Label distribution scheme

a routing protocol needs to be invoked. In case it is successful, the routing returns a path-vector,
which contains an ordered list of nodes that uniquely determines the found route. Starting at the
destination node the LDP traverses node by node to the source of the new route, and creates new
routing-table entries at each passed node. Note that routing-tables must not contain two entries for
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the same ingress-tuple. Actually, if this happens, we reached the source and immediately initiate the
tear-down of the replaced LSP to remove the obsoleted table entries.

Note that multiple entries with the same egress-tuple are no problem, they just indicate that
two LSPs merge in this node. This has to occur while a replacement is set-up in order to assure
seamless switch-over (make-before-break), and may be used to define ingress trees that connect many
sources with a single destination (e.g., a shared up-link). The destination to source operation enables
sectional path restoration, and the seamlessness allows for dynamic load redistribution (in-service
optimisation). Both essentially required for autonomous self-organising network control options,
including protection strategies and continuous re-optimisation in a dynamic operation regime.

MPLS exemplifying any multi-flow network

Summarising, we see that MPLS enables planned load distribution and supports different per hop
behaviours for individual flows. Both introduce the potential for improved end-to-end performance –
one on a global scale, the other locally at node sites. This opens a plethora of possibilities, and caused
some uncertainties upon its analysis. Today, MPLS is used widely and has proven in practice that it
can provide the features required to effectively operate multi-service communication infrastructures.
Thus, it would be vain to study the precise protocols that MPLS relies on. To analyse all possible
combinations (realisation options) on their QoS delivery potential, is a different story, but excessive.
We decided to let aside all implementation details, and thus, skip the analysis of the protocols used
by MPLS to realise its features, and in succession, any more detailed presentation and discussion.
The interested reader is kindly referred to the IETF RFCs defining MPLS details, extensions and so
on, and the many studies on different aspects of MPLS published over the last decade.

We look at the performance MPLS offers from the service side only, and consider the principle
functionality, not that of an actual implementation. On one hand, this causes that field experiments
would not show the precisely same results. On the other hand, this decision makes the results in a
broader sense useful, because MPLS is referred to as example technology only. The functionality
required to make our studies applicable solely comprise:

• store-and-forward switching,
• transportation along pre-routed paths,
• expected load advertisement, and
• differentiated load handling options at nodes.

Recently, the enabling principles haven been realised similarly by some Ethernet extensions,
and revolutionary network operation scheme that might implement even lower layer switching, for
example optical burst switching (OBS) and flow transfer mode (FTM) [10–13], may appear some
time. For all these the principal results shall be applicable accordingly.

Summary of features with particular power and related open issues to be addressed:
• traffic engineering: put the traffic where the resources are to globally minimise the peak

link utilization. How can this be achieved if traffic appears randomly?
• service differentiation: use the LSP identification to assign different per hop behaviours.

What are the potentials and merits of different traffic handling strategies?
• load balancing: sources may distribute the traffic across parallel LSPs. Can we design a

transport control scheme that actively utilizes this option to fulfil QoS targets?
• distributed optimisation: LSP routes may be changed while in use. Is a fully distributed

management of LSP paths feasible, and how may it perform?
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1.3 Performance evaluation, analysis, and prediction

Performance is a very wide and imprecise term if its aspect is not stated. Hereinafter, if not otherwise
noted, the term performance refers to the quality of the traffic load transportation, commonly called
quality of service (QoS). Note that we use the term QoS generally, meaning not bound to any of the
different definitions that can be found in the literature. Generally, QoS includes

• the availability stating the probability that the service is accessible,
• the reliability expressing the likelihood of being flawlessly served,
• the throughput being the rate at which load units can be transported,
• the loss rate at which load units do not reach their destination, and
• the transport delay that the load units experience on their way.

The jitter, which is often listed as separate quality metric, relates mathematically to the transport
delay, being its first derivative. Because we assume all metrics to be time dependent, it is not listed.

Let us mention instantly, that the momentary throughput equals the rate at which bits are
transmitted, and commonly this is a state independent constant rate (line-speed). Evidently, this does
have a strong impact on the throughput. However, for shared media it cannot serve as performance
metric. We have to calculate the throughput as n

τ(n) , where n is the transmitted load volume in bit,
and τ(n) is the time in seconds needed to transmit this volume. Note that n must be big enough to
cover a representative set of load units in order to get the throughput and not the line-rate. When
throughput is measured, the opposite approach is often used: the volume n(t)[bit] transported in a
fixed time span τ[s], the averaging window, is recorded and the current throughput is calculated as
n(t)

τ , as sketched in figure 1.12. This yields results for the recent past only, and τ has to be sufficiently

service
τw(t)τs(t)

offered load

na(ta,τ)=
ta∫

ta−τ

a(t)dt

carried load

nb(tb,τ)=
tb∫

tb−τ

b(t)dt

ta1ta2ta3

ta ta− τ

tb1tb2tb3

tb tb− τ

Figure 1.12: Parameters to measure transport delay, throughput, and loss rate

long to get a representative throughput rate. Because the physical unit of a bit is [1], bit-per-second
equal Hertz=[1

s ], and therefore is the maximum throughput ϑmax sometimes called bandwidth, not
to be mistaken with the bandwidth that modulated radio frequencies (RF-channels) or wavelengths
(WDM-channels) occupy in the electro-magnetic spectrum.

Figure 1.12 sketches the ingress and egress parameters required to define the transport related
performance metrics. With store-and-forward switching experience different load units different
serving latencies, waiting times τw(t), because of the rapidly changing temporary buffer (queue)
utilization. Also the service time τs(t) may change over time. In particular, it does so, if the system
responds to the current load situation when it is autonomously or feedback controlled. In that case,
the currently provided capacity Cs(t) becomes time dependent. The transport delay, also called flow
time and therefore abbreviated as τ f here, is defined as the time in between sending the first bit at tai

and receiving the last bit at tbi . We can calculate the current transport delay τ f (t,ni) by

τ f (t,ni) = tbi− tai = τw(t)+ τs(ni, t) (1.1)

where τw(t) is the time the current load unit has to wait prior its serving starts, and τs(ni, t) = ni
Cs(t)

is the current length, also called holding time, of the load unit i with the size ni [bit]. We try to
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consistently use length and size accordingly. However, if Cs(t) is actually time dependent, than the
length of a load unit with size ni is time dependent as well, which challenges common notion.

To get the loss-rate nloss(t) we need to synchronise ta= tb→ t and normalise na(t,τ) and nb(t,τ)
by the current server capacity ns(t,τ) = τCs(t). This yields the normalised rates na(t) and nb(t), and
that ns(t)=1.

nloss(t) = na(t)−nb(t) (1.2)

The unit commonly used with na(t) is the [Erlang], expressing na(t)× E[τs(t)]. Notably, its unit
[1×time

time ] = [1] is independent of the time unit required to determine its components.

Depending on the scope, the same metrics can be defined locally per hop as well as globally per
connection. To cover any area, we use the term network entity. An entity can be a single component,
for example a buffer, or a group of components that jointly realise a functional network element, for
example a link between two nodes, or a chain of components and elements that build a functional
group, for example a connection. What characterises an entity is a clearly definable functionality.

To validate the usability of a component or connection, being the suitability to serve some
application, the mean values of QoS metrics, including E[τ f (t)] and E[nloss(t)], are usually sufficient.
Thus, mean values are commonly committed to state the provided QoS. However, to validate the
usability for critical applications that cannot compensate variable transport performance, we either
need to constantly validate the momentary performance, or more practicably, consider the variance
or standard deviation of relevant metrics in the validation process. For example, the jitter may be
stated as extra metric to include the second moment of the flow time τ f (t).

Modelling the system behaviour

We recognise that performance is not something static. In conjunction with communication services
realised by shared resources that transport dynamic traffic loads, this is evident. To state the
performance we need to find a method to describe the system behaviour time invariantly. In particular
are we interested in a mathematical representation that enables us to calculate the expectable
performance for different situations. In other words, we want to model the arrival and system
behaviour A(τ) and S(τ) by mathematical means, such that we can mathematically describe the
departure behaviour B(τ) as a function of the two.

S(τ)
A(τ)

B(τ) = f
(
A(τ),S(τ)

)
(1.3)

Distribution functions, discussed next in section 1.5, statistically characterise the outcomes of
infinite processes, but they do not determine any precise outcome. Thus, a single finite sequence
cannot be exactly described by a distribution. However, the characteristics of similar finite sequences,
meaning a group that contains potentially infinitely many finite sequence samples, can be precisely
characterised by a distribution function. This applies to arrival as well as service functions. In
particular, loads can be generally described by an arrival distribution function A(τ), if the underlying
process’s solution space covers all possible real arrival sequences a(t). And different realisations
of a particular network element can be descriptively modelled, meaning generally specified, by a
characteristic service function S(τ), if the characteristics of possible realisations s(t) fit those of the
process we model the behaviour with.

We try to strictly distinguish between times t and durations τ as far as possible because this is an
important issue in practice. Arrivals and departures happen at time instants ta, tb, while inter-arrival
and service times are durations τa,τs (time differences). Further on we use τx= E[Tx] to refer to the
mean of the random variable Tx, which stands for the distribution of the duration τx(t).
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It are the durations that determine the transport related performance metrics. For the average
service time τs this is evident, the smaller τs is, the faster is the carried load in average served
(system speed ς – to be replaced by the service rate shortly).

ς[1
s ] =

1
E[Ts]

=
1
τs

(1.4)

The inter-arrival time determines, in conjunction with the system speed ς, the average load ρ,

ρ[1] =
E[Ts]

E[Ta]
=

τs

τa
(1.5)

where we recognise that for τs > τa, when in average the serving takes more time than passes in
between two successive arrivals, we get ρ > 1, which indicates an overload situation. Finally, the
inverse of the flow time τ f determines the average throughput ϑ,

ϑ[1
s ] =

1
E[Tf ]

=
1
τ f

(1.6)

where we notice that service and flow times of lost load units are undefined, τs, f (lost) = no number 6= 0.

Resource utilisation and loss probability

In data networks temporary load peaks exceed the average load considerably. Consequently, we
observe the well-known exponential performance decrease when the average offered load approaches
the provided capacity [14]. A properly planned data network provides considerably more resources
than average load would suggest. The characteristic parameters are:

loss factor pl = 1− carried load
offered load

= 1− E[nb(t)]
E[na(t)]

=
E[na(t)−nb(t)]

E[na(t)]
=

E[nloss(t)]
E[na(t)]

=
δ
λ

(1.7)

utilisation factor u =
carried load

provided capacity

=
E[nb(t)]

Cs
= E[nb(t)] · E[τs(t)] =

λ−δ
µ

= ρ(1− pl) (1.8)

over-provisioning factor o =
provided capacity

offered load

=
Cs

E[na(t)]
=

1
E[na(t)] · E[τs(t)]

=
µ
λ
=

1
ρ

(1.9)

On the far right side we introduce the common mean variables λ, µ, δ, and ρ = λ
µ for mean

arrival-, service-, loss-rate, and load, respectively. Note that µ = ς
E[ni]

is the system speed normalised
by the average size of a load unit, and that we henceforth will use µ instead of ς. If we normalise λ
by the average length of a load unit, than becomes µ = 1 and ρ = λ. However, this is only possible
where unique average lengths can be specified. Not used is here the resultant throughput ϑ because it
simply results from subtracting the losses δ from the arrivals, ϑ = λ−δ.

On the other side, pl , u, and o are factors — normalised unit-less metrics. The loss- and the
utilisation-factor are bound to [0..1]. The over-provisioning-factor needs to be greater one to actually
represent over-provisioning. For persistent overload (ρ>1) it falls below one, which indicates fatal
under-provisioning causing persistent congestion, and thus, disastrous network performance.
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For practical reasons the dynamics of the performance metrics are commonly not explicitly
stated, as we did in the above equtions. First, because it is cumbersome and excessive to specify
distribution functions when mean values are sufficient. Secondly, because only for mean values such
simple relations among metrics can be stated. And most restrictively, the precise service distribution
provided by network entities cannot be generally defined because the layer abstraction makes the
hardware exchangeable. The precise performance in terms of a service function is indeterminable if
a specific hardware cannot be presumed.

1.3.1 Performance evaluation methods

The performance of a network entity depends on the traffic a(t) it needs to handle, in particular the
present load and its distribution over time. To evaluate the performance of a network entity we have
to use statistics, analysis, or numerics, to get results that are generally valid. We use mathematical
models (a) to consider the randomness of communication, (b) to avoid singular results, and (c) to
derive the typical performance. Thereby, the actual technical realisation is replaced by a more general
mathematical characterisation. However, when interpreting evaluation results we need to be aware of
the merits of the approach and the mathematics we apply in order to avoid misinterpretations.

Table 1.1 summarise the strengths (+) and weaknesses (−) of different approaches. The rating
depends on their realisation and execution, in particular the availability of the required equipment
and skilled personnel to effectively use the available means. For the stated ratings we assumed that
both is not a limiting issue. The medium rating (◦) applies where the answer depends on the problem

experiment pure analysis numeric evaluation simulation
accuracy + − ◦ +
reproducibility + + + −
generality − + + ◦
scalability − + ◦ ◦
complexity ◦ − + ◦

Table 1.1: Performance evaluation methods

size, for example where with unlimited resources the issue would vanish. Reproducibility refers to
the likelihood that a different expert team can reproduce the results with their tools.

• The straight approach are experiments: Measure the performance observed when the system under
test is loaded by different precisely known loads (different traffic traces), and calculate statistics
from the outcomes of the performed experiments. An advantage is perfect reproducibility, a core
disadvantage is the restriction to statistics over few singular examples. If the outcomes of different
experiments vary considerably it is rather impossible to derive generally valid results.

• The most appealing approach is pure analysis: Attempt to describe all behaviours by distribution
functions: the ingress load by A(τ), the processing by B(τ), the time spent in the system by the
sojourn time S(τ), and the departures of the system by D(τ), and find the analytic relations among
them. The problem with this approach is mathematical complexity: only for special distribution
functions and systems we get closed form representations for S(τ) and D(τ). The more A(τ) and S(τ)
are simplified, the less accurate is D(τ). However, if we do not know the actual distributions A(τ)
and S(τ) any reasonable assumption is equally valid and yields reasonably accurate results.

• The most efficient approach is numerical evaluation: Model all input and processing by assumed
distributions A(τ) and B(τ), and asses the characteristics of S(τ) and D(τ) via statistically evaluating
a numerically calculate set of sufficiently many samples {si,di}. Note, the timing of results is
for steady state analysis irrelevant. This approach merges the strengths and weaknesses of the
previous: it removes the restriction to singular examples by analytically describing the input and
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system behaviours A(τ) and S(τ) via numerically traceable distributions, and the results are statistics,
meaning descriptions of the results’ distribution, not the distribution itself.

• The always applicable approach is simulation: Model all input and system behaviours by software
procedures, and get statistical results describing D(τ) from sufficiently many collected samples {di}.
Here, confidence intervals are essential to draw trustworthy conclusions because the entire evaluation
is hidden in the software code. As behaviour models we can now use every possible process that
can be coded in software. If the procedures for A(τ), B(τ) and S(τ) are accurate, we get perfectly
valid results. However, the effort to implement and run a simulation study may be excessive, and an
inevitable challenge are seemingly correct results from buggy or inappropriately used software tools.

1.3.2 Performance analysis

We stated above that pure analysis is the most appealing approach. This is driven by the elegance of
its result. An equation provides the fastest and maximally precise option to state the input-output
relation, all other approaches yield statistical input-output relations only.

Departure distribution via Laplace transforms

The Laplace and Z-transform are well-established mathematical tools in electrical engineering,
especially in signal processing and control theory. Solving stochastic and performance related
problems in the transform domain enables closed-form solutions for statistical characteristics
and distributions of interest. For example, the convolution (∗) in the time-domain translates to
a multiplication (×) in the transformed domain, while the summation remains the same.

X1(t)+X2(t)+ · · ·+Xn(t) X1(s)+X2(s)+ · · ·+Xn(s) (1.10)

Y1(t)∗Y2(t)∗ · · · ∗Yn(t) Y1(s)×Y2(s)×·· ·×Yn(s) (1.11)

Thus, if a random process is applied in series upon the results of another, we can replace the unhandy
convolution in the time domain by a multiplication in the transformed domain. Thereby the inter-
departure time distribution D(τ) can for example be calculated from the given inter-arrival time
function A(τ) and the sojourn time function S(τ) describing the system behaviour.

D(τ) =L
−1{
L {A(τ)} ×L {S(τ)}

}
(1.12)

However, distribution functions are one sided non symmetric functions. The service time cannot
be negative, nor the inter-arrival time. Thus, the use of transforms for distribution functions may differ
a little from how we use it with signal processing and control loop evaluation. Anyhow, in [15–17]
numerous methodological approaches are presented. The authors moan in [18] that “probabilistic
transform methods have been disfavoured by practitioners”. They argument that poor knowledge of
transform inversions and the daunting complexity of transforms are the reasons. Obviously, working
in the transform domain eliminates the relation to reality, and, if we cannot inversely transform the
result, there is no reason for doing it. However, recent mathematical publications [19–21] promote
practice oriented engineering by mathematical analysis.

Obviously, this is a vibrant research field of applied mathematics. However, engineers should
invite mathematicians to their research in order to utilize state of the art analytic methods effectively.
Presenting real systems in a way that enables a mathematician to recognise the abstract problem he
can solve, will still be a challenge, in particular for the hands-on characters involved in creative
development tasks.
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System evaluation via state analysis

The representation of dynamic systems by state diagrams provides a utile and practice oriented
analysis approach. If we can tell the performance of a system while it is in a dedicated state, than we
can tell something about the system in general, if we know how likely the different states occur. The
primary issue is to identify all the N different system states and to calculate their relevance, the so
called state probabilities p(i).

For clocked systems we can look at the system just prior or immediately after the tick of the
clock. In between ticks the system state is undetermined. With some probability the state changes
in between two successive clock ticks to some other state. This probability defines the transition
probability υij for the transition from state i to state j. If we include the transition to itself, υii, than
in steady state ∑N

j=0 υij = 1 and ṗ(i) = 0 must hold ∀i. The first equality tells that the system either
changes its state or remains in the current state, the other that the system probabilities do not change
over time (system states are steady). The probabilities for transitions υij from one to some other state
are determined by external parameters alike arrival-rate and service-rate, such that we commonly can
calculate them. These given, we can set up all equilibrium equations,

N

∑
j=0

υji p(j) = p(i)
N

∑
j=0

υij ∀i (1.13)

stating that in the steady state the probability to enter a state must equal the probability to leave that
state, and can solve the cyclic dependent equation system, replacing one equation by the evident
condition

N

∑
i=0

p(i) = 1 (1.14)

that the sum over all state probabilities must be one, stating that the system has to be in a defined state
at any time. However, if we calculated all υii, than we can as well calculate the state probabilities
directly,

p(i) =
υii

∑N
i=0 υii

∀i (1.15)

stating that the normalised probability to remain in state i equals the probability to be in that state.
For time continuous systems we replace the transition probabilities υ by transition rates r, which

reflect the transition probabilities per time unit. The system is now observed whenever something
changes, an event occurs, just prior the change or immediately after it. Thereby we assure that every
possible change is observed, combined events do practically not exist on a continuous, infinitely
dense, time axis. Only the steady state equilibrium equations look a little different because the rates
replace now the probabilities.

N

∑
j=0

rji p(j) = p(i)
N

∑
j=0

rij ∀i (1.16)

As before, the equilibrium equations defined by equation 1.16 state that in the steady state the
total rate at which a state is reached must equal the total rate at which it is left. Again, the state
probabilities p(i) equal the times that the system in average remains in a state, and thus, the state
probabilities p(i) tell the fraction of time that the system is in average in a certain state, and thereby
its likelihood and relevance.

The state probabilities p(i) provide the weighting factors with which we need to consider the
state dependent performance metrics when summing them up to get general, state independent,
performance metrics.

metric =
N

∑
i=0

p(i)×metric(i) (1.17)
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From system models to state transition diagrams

The states that we need to identify depend on the modelled system. In buffer-less systems the states
commonly refer to the number of channels (servers) currently occupied. For systems with buffers
(queues) also the number of currently queued customers separates states. And if there are m queues,
than every m-dimensional tuple defines a state. Models with n servers and m queues can be designed
similarly. Single and multi-queue examples are discussed in chapter 3 and section 4.1, respectively.

The two basic systems, the single queue single server queueing system and the n-server loss
system shown in figure 1.13, are briefly sketched and discussed to introduce the basic modelling
issues. How to solve these follows in section 1.4. This system sketch needs to be extended to state

λ µ µ

µ

µ

...

µ

λ

Figure 1.13: Single server queueing system and n-server loss system

transition diagrams, where we assume for the queueing system an infinite queue size, and for the
parallel server system a finite number of servers. Latter arises for example with circuit switched
communication services (plain old telephony), the former we know from queues in front of a cashier’s
desk and applies likewise for store-and-forward based packet switches. The according state transition
diagrams are shown in figure 1.14, where we marked the states by their probability p(i). Later on

p(0) p(1) p(2) · · · p(i) · · · (single server queueing system)
λ

µ

λ

µ

λ

µ

λ

µ

λ

µ

p(0) p(1) p(2) p(3) · · · p(n) (n-server loss system)
λ

1µ

λ

2µ

λ

3µ

λ

4µ

λ

nµ

Figure 1.14: Basic state transition diagrams

we will commonly index states by the m-dimensional tuple 〈i, j,k, . . .〉[m] that identifies the state.
How the states are positioned in the state transition diagram is mathematically irrelevant, only the
transitions among them need to be correct. However, a clear and self-explanatory system state
ordering supports the usability.

1.3.3 Performance bounds

Network calculus [22, 23] provides the means to handle complex end-to-end performance metrics
using cumulative envelopes. There exist two theory strands, deterministic and stochastic [24,
25]. The former yields reliable performance bounds, the latter likely performance regions. Thus,
network calculus would provide the means needed to asses the expactable performance by minima or
likelihoods, respectively. However, latter is still under development, solutions for some special cases
have been found, but no general theory yet.
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Network calculus is based on cumulative distribution envelopes a(τ) and s(τ) for the arrival and
service process. These envelopes state upper/lower limits on the load that may arrive/pass in any
time interval of length τ. To use these, network calculus applies the min-plus algebra,

a(τ)⊗ s(τ) = inf
0≤t≤τ
{a(τ− t)+ s(t)} (1.18)

a(τ)� s(τ) = sup
t≥0
{a(τ+ t)− s(t)} (1.19)

where the infimum and the supremum functions are the point-wise min and max operations,

d−(τ) = inf
0≤t≤τ
{a(τ− t)+ s(t)}= min

0≤t≤τ
{a(τ− t)+ s(t)} performed ∀τ (1.20)

d+(τ) = sup
t≥0
{a(τ+ t)− s(t)}= max

t≥0
{a(τ+ t)− s(t)} performed ∀τ (1.21)

which yield cumulative min/max departure envelopes. Obviously, these can be calculated only
numerically. The t in these equations is no time instant, it is the internal running offset from τ only.

Applied for network elements, the lower and upper departure envelopes of d(τ) can be calculated
via the infimum and the supremum of the arrival envelope a(τ) and the service envelope s(τ).

a(τ)⊗ s(τ) ≤ d(τ) ≤ a(τ)� s(τ) (1.22)

The calculated envelopes given at the left and right side of equation 1.22 bind the maximum and
minimum throughput. They specify the worst case load a destination terminal needs to handle and
the least end-to-end performance, respectively. Latter is essential to grant that a certain service can
be supported reliably.

Super-positioning of arrival envelopes becomes a rather simple summation and cascades of
service envelopes can be replaced by the chain’s infimum of the individual service envelopes.

a(τ) = ∑ai(τ) (1.23)

s(τ) = s1(τ)⊗ s2(τ)⊗ s3(τ)⊗ ·· · (1.24)

The subtraction of an arrival envelope from a service envelope yields the leftover service envelope
for other arrivals as it for example occurs with strict prioritisation of signalling traffic.

d1(τ)≥ a1(τ)⊗ (s(τ)−a2(τ))+ (1.25)

Finally, we get for the delay envelope τf (τ) and the backlog envelope x(τ)

τf (τ) = inf{t ≥ 0 | a(τ− t)≤ d(τ)} (1.26)

x(τ) = a(τ)−d(τ)≤ a(τ)� s(0) (1.27)

where a(τ− t) = d(τ) specifies the horizontal distance in between the envelopes, and a(τ)−d(τ)
the vertical distance. The calculation of equation 1.26 is to find ∀τ the smallest t ≥ 0 for which the
condition a(τ− t)≤ d(τ) is fulfilled. The s(0) in equation 1.27 refers to the minimum instantaneous
service rate, which commonly is zero, such that a(τ)� s(0) becomes the maximum of a(τ) over τ.
The maxima of these envelopes can be used to dimension network elements to guarantee bounded
delay and no losses. However, in general they are too conservative to be economic.

In contrast to the state space based analysis methods, network calculus cannot be used with
unbounded distributions because for these no envelopes exist. In theory a restriction it fits real systems:
practical needs commonly cause bounded characteristics. Still, it complicates the combination of
methods because unbounded distributions alike the negative exponential distribution are commonly
used to model the customers’ behaviour.
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1.4 Markov-chain models

Markov chains are widely used to model dynamic systems with state dependent performance. These
states need to be identified, and transition-rates or -probabilities assigned for all the transitions that
may occur. The time the system remains in a certain state has to be negative exponentially distributed
and thus Markovian, meaning memoryless. Being memoryless yields that transitions out of a state
do not depend on how the state has been reached, and this is a mandatory prerequisite for the solving
methods discussed.

Depending on the modelled system we identify different states that need to be considered. Buffer-
less systems provide no queues and thus we need to model the server occupation only. With buffers
(queues) the number of currently queued customers is an important system state parameter. If there
are m logically separated queues, than every m-dimensional queue filling tuple defines a dedicated
state. If the service times of customers is not unique, meaning if different traffic classes show
individual service times, than also the type of client currently served needs to be modelled, and every
server occupation possibility (n-dimensional tuple in case of n servers) defines a separately required
state. The two basic systems, single queue queueing system and n-server loss system have been
sketched in the previous section 1.3, repeated here in figure 1.15 for convenience. The representation
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(single server queueing system)

(n-server loss system)

Figure 1.15: M/M/1 queueing system and M/M/n/n loss system

of these systems by state transition diagrams has been introduced in section 1.3, figure 1.14. In the
following we show how these systems are mathematically solved and how we can derive performance
metrics from state probabilities, being the steady state solution of state transition diagrams. If we are
interested in the transient behaviour of such systems we similarly can set up a system of differential
equations and solve that to get the state transients ṗ(i).

1.4.1 Steady state analysis

Solving the system in steady state yields the performance metrics that identify the in average
expectable performance. To be steady, the probability to enter a state needs to equal the probability
to leave the state. This simple condition yields the state related equilibrium equations. The condition
can be extended to any boundary in between two groups of states that in total contain all states, as
shown in figures 1.16 and 1.17. Together with the condition that the system needs to be in a defined
state at any time (equations 1.30 and 1.41), an equation system results that can be solved [14, 26] to
get all the state probabilities, as shown in the following for the exemplary systems.
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Single server queueing system
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Figure 1.16: Steady state equilibria for the M/M/1 queueing system

To solve the M/M/1 queuing system we get according to figure 1.16

p(i−1)λ+ p(i+1)µ = p(i)λ+ p(i)µ (1.28)

p(i−1)λ = p(i)µ (1.29)

∑
i

p(i) = 1 (1.30)

where equations 1.28 and 1.29 result for the two sketched options, state equilibria and boundary
equilibria, respectively. For this simple system equation 1.29 readily yields the known recursive
equation

p(i) = λ
µ p(i−1) = ρp(i−1) = ρi p(0) (1.31)

that defines the infinite many state probabilities based on p(0), the probability that the system is idle.
Inserting equation 1.31 in 1.30 we get

p(0)
∞

∑
i=0

ρi = p(0) 1
1−ρ = 1 ⇒ p(0) = 1−ρ (1.32)

and finally,
p(i) = ρi(1−ρ) (1.33)

the geometrically distributed state probabilities of the infinite M/M/1 queueing system. Note that the
infinite system must not be overloaded, the equations demand a load ρ<1.

Using the state probabilities we can calculate the average system filling E[X ] and queue
filling E[Q].4 Applying Little’s law N=λT , the mean flow time τ f and waiting time τw follow.

E[X ] = x̄ =
∞

∑
i=0

i p(i) = (1−ρ)
∞

∑
i=1

iρi =
ρ

1−ρ
(1.34)

E[Q] = q̄ =
∞

∑
i=2

(i−1)p(i) = ρ(1−ρ)
∞

∑
i=1

iρi =
ρ2

1−ρ
(1.35)

E[TF ] = τ f =
E[X ]

λ
=

1
µ(1−ρ)

(1.36)

E[TW ] = τw =
E[Q]

λ
=

ρ
µ(1−ρ)

(1.37)

Being an infinite system no losses can occur. Consequently is the departure rate (the throughput)
equal the arrival rate ϑ = λ. Only the distribution over time and therefore the higher moments change.
The utilization is the proportion the server is not idle, and thus it can be directly calculated from p(0).

u = 1− p(0) = ρ (1.38)



1.4 Markov-chain models 21

p(0) p(1) p(2) p(3) · · · p(i) · · · p(n)
λ

1µ

λ

2µ

λ

3µ

λ

4µ

λ

iµ

λ

(i+1)µ

λ

nµ

(state equilibria)(boundary equilibria)

Figure 1.17: Steady state equilibria for the M/M/n/n loss system

Multi server loss system

To solve the M/M/n/n loss system we get according to figure 1.17

p(i−1)λ+ p(i+1)(i+1)µ = p(i)λ+ p(i) iµ (1.39)

p(i−1)λ = p(i) iµ (1.40)

∑
i

p(i) = 1 (1.41)

where from equation 1.40 we find

p(i−1)λ = p(i) iµ ⇒ p(i) = ρ
i p(i−1) = ρi

i! p(0) (1.42)

and when inserting this in equation 1.41

p(0)
n

∑
i=0

ρi

i! = 1 ⇒ p(0) =
1

∑n
i=0

ρi

i!

(1.43)

we finally get the state probabilities p(i).

p(i) =
ρi

i!

∑n
i=0

ρi

i!

(1.44)

Therefrom we can again calculate the average system filling E[X ]. Not having a queue, the
mean flow time must be the inverse service rate 1

µ , independent of n. Queue filling E[Q] and waiting
time τw do not exist.

E[X ] = x̄ =
n

∑
i=0

ip(i) =
∑n

i=1
ρi

(i−1)!

∑n
i=0

ρi

i!

=
ρ∑n−1

i=0
ρi

i!

∑n
i=0

ρi

i!

= ρ(1− p(n)) (1.45)

E[TF ] = τ f =
1
µ

(1.46)

Being finite, this system is stable for any load ρ because what it cannot handle is simply
blocked away. The probability that this happens is called blocking probability Pb, and it equals the
probability that the system is full when an arrival occurs. For Poisson arrivals this equals the state
probability p(n).

p(n) = Pb =
ρn

n!

∑n
i=0

ρi

i!

(1.47)

This equation is widely known under the name Erlang B formula, sometimes without the B, for its
importance. The blocking rate, being the average number of blocked arrivals, is δ = λPb, and the
throughput ϑ is the arriving minus the blocked load

ϑ = λ−δ = λ(1−Pb) (1.48)
4Repeatedly we use ∑∞

i=0 xi= 1
1−x , ∑∞

i=1 xi= x
1−x , and ∑∞

i=0|1 i xi= x
(1−x)2 , ∀x<1, here and henceforth.
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where we notice the evident relation between throughput and system filling ϑ = x̄ µ. This results
from the property that the average amount served, which occupies a server processing it with µ, must
in average also leave the system for stability reasons, at least in the steady state. The utilization is the
proportion at which the servers are busy

u =
E[X ]

n
=

λ(1−Pb)

nµ
=

ϑ
nµ

(1.49)

where nµ is the total serving capacity Cs provided by the M/M/n/n-system.

Without prove let us mention here that the above stated equations hold for any service distribution,
meaning for any M/G/n/n loss system. Actually, the method to model dynamic systems by state
transition diagram and to solve these in steady state using state and boundary equilibrium equations
is not bound to negative exponentially distributed arrival and service times. However, the system
needs to be memoryless, meaning that the transition rates out of a state may not depend on how the
current state has been reached. And therefore, only the sojourn times of the individual system states
need to be negative exponentially distributed.

1.4.2 Flow time distribution

To assess the jitter, being the variance of the flow time, we need to know at least the second moment
of the flow time distribution FTf . The steady state solution of the state transition diagram shown above
yields only mean values. To get higher moments we either need to set up the differential equations
for states and boundaries and solve the resulting system of differential equations, or use a different
approach. Closely related to the state transition diagram are the flow diagrams. Figure 1.18 depicts
the flow diagram of the M/M/1 queueing system. Such a state flow graph enable the direct calculation

0 1 2 3 · · · i · · ·
µµµ µ µ µ µ µ µ

p(0) p(1) p(2) p(3) p(i)

Figure 1.18: Flow diagram for the M/M/1 queueing system with FIFO queueing discipline

of the flow-times that different customers in average experience, given the probabilities at which
arriving customers enter the system in a given state are known, for example form solving the state
transition diagram. For Poisson arrivals these entry probabilities equal the steady state probabilities.
From its entry point the test customer than pass several states until ultimately he is served and leaves
the system, entering a so called absorbing state .

The number of states that need to be passed in between arriving and departing depends on the
queueing discipline. Here, we stick to the common first in first out FIFO queueing discipline, which
is also known as first come first served FCFS serving discipline. Other notable queueing disciplines
include last in first out LIFO and random queueing (RAND), and are detailed in chapter 3.

Here, with FIFO queueing, a test customer that arrives while the system is in state 2 becomes
the third customer in the system and has to wait until the two in front of him have been served. The
customer leaves the system after three service times5. We will see in section 1.5 that three equal
negative exponentially distributed phases in series cause an Erlang[3] distribution. How to model
such is shown in chapter 2. Similarly, Erlang[i+1] distributions result for arrivals to states i. This
observation lets us already assume that the departure distribution during busy intervals, meaning
while customers are in the system, is never more peaked (less smooth) than the service distribution.
5Being memoryless the time passed since serving started does not influence the residual time till service completion.
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To get the general flow time distribution’s pdf and its mean we need to calculate the sum over all
entry possibilities, weighted by their occurrence probability

τ f (τ) =
∞

∑
i=1

p(i)τ f (i,τ) ∀τ ∈ R+ (1.50)

τ f =

∞∫

0

τ
∞

∑
i=1

p(i)τ f (i,τ) dτ =
∞

∑
i=1

p(i)τ f (i) = τs

∞

∑
i=1

i p(i) = τs E[X ] (1.51)

where τ f (τ) is the pdf of the general flow time, τ f its mean, and τ f (i,τ) the pdf of the flow time for
customers that arrive to the system while it is in the state i, with mean τ f (i) =

∫
ττ f (i,τ)dτ = iτs,

where τs is the mean serving time (holding time of the server).
The summation of the different distribution functions τ f (i,τ) in equation 1.50 is not trivial. Either

we transform all into the Laplace domain, where summation is no problem, or we use point-wise
summation of the pdf ’s to get the resultant pdf curve, which visually describes τ f (τ), and allows to
numerically calculate its approximate mean τ f . For an infinite system both is a challenge. In any
case, although the individual τ f (i,τ) depend on the service rate µ only, the mean τ f as well as the
gross distribution of the flow time τ f (τ) are load dependent. This is because of the load dependence
of the entry probabilities p(i). We can depict the pdf or cdf in two dimensions only for chosen loads,
as shown in figure 1.19.
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Figure 1.19: Weighted flow time sub-pdf s and dotted the calculated total pdf (Tf )

Intuitively we can say that for very low loads the flow time distribution will approach the service
time distribution, as long as the influence of the waiting time is negligible. For very high loads the
mean number of phases to pass approaches infinity, and because Erlang[∞](µ) = D(∞), the flow time
distribution FTf (τ) becomes approximately deterministic, though at the same time approximating
infinite mean, τf → ∞.

1.4.3 Solving equilibrium equations in matrix form

We have to solve an equation system with n+1 variables, here state probabilities pi with i = 0..n,
defined by n+1 equations and (n+1)2 associated parameters qi j. If we move all state probabilities to
the left side, the right sides of the equilibrium equations become zero. We thus can represent the
equation system in matrix form by

Q · p = b ⇔




q00 q10 . . . qn0
q01 q11 . . . qn1

...
...

. . .
...

q0n q1n . . . qnn







p0
p1
...

pn


=




0
0
...
0


 (1.52)

where ∀i 6=j qij is the inbound transition rate from state-i to state-j, and because negative rates do
not exist, these are all positive. The qjj we find from the condition that ∑i qij = 0 ∀j to be negative,
because for equilibrium qjj must equal the negative sum of all outbound rates.

qjj =−∑
i 6= j

qij ∀j (1.53)
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This equation system cannot be solved directly because the equations system is cyclic dependent.
We need to replace one equation by ∑i pi = 1 (equation 1.30). Commonly we replace the last equation,
which means that we set all qi,n = 1 and also bn = 1:

Q∗· p = b∗ ⇔




q00 q10 . . . qn0
q01 q11 . . . qn1

...
...

. . .
...

1 1 . . . 1







p0
p1
...

pn


=




0
0
...
1


 (1.54)

This linear system of equations now can be solved methodically, for example using optimised
computation algorithms.

Often the matrix form is specified using row-vectors pT and bT . In this case we get

pT·QT = bT and qii =−∑
i 6= j

qij ∀i (1.55)

which is more convenient for programming when the first index indicates the row. Consequently, we
have to replace the last column in QT by ones to integrate ∑ pi = 1:

pT·Q∗T= b∗T ⇔
(

p0 p1 . . . pn
)




q00 q01 . . . 1
q10 q11 . . . 1

...
...

. . .
...

qn0 qn1 . . . 1


=

(
0 0 . . . 1

)
(1.56)

This form is solved equally, and yields the same results for the state probabilities pi.

Later on we show how the Q-matrix can be constructed from sub-matrices that represent adjacent
regions of the state transition diagram. This method is of particular interest for solving systems
that are modelled by phase type distributions because these are themselves specified by matrices, as
shown in chapter 2.

To exemplify the numeric method we discuss a small M/M/1/s example with finite queue and a
server that is not always available, as depicted in figure 1.20. Arrivals occur according to a Poisson
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Figure 1.20: State diagram representing a queueing system with vacation

process, negative exponentially distributed with the mean arrival rate λ (mean inter-arrival time
τa =

1
λ ). The time required to serve a client is also negative exponentially distributed with an average

serving time being τs =
1
µ . After finishing a job the server stops serving the queue for an negative

exponentially distributed time period with a mean vacation duration of τv =
1
ε .

To represent this system in matrix form we grouped the states with the same number of waiting
customers, as indicated in figure 1.20, and see that similar groups of two states each result. The
most left and right group define the boundary levels B(0) and B(s). Those in between have identical
relations internally A(internal) and in between each other A(up) and A(down), thus they define
repeating levels. The relations per level can be describe by small sub-matrices. For matrices B the
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indices refer to the related levels, meaning that at the left border B00 refers to internal, B01 refers
to out=up, and B10 refers to in=down. For the levels in between we use the somewhat different
indexation where A1 refers to internal, A0 refers to up, and A2 refers to down [27].

internal up down

B00 =

[
0 ε
ε 0

]
, B01 =

[
λ 0
0 λ

]
, B10 =

[
0 µ
0 0

]

A1 =

[
0 0
ε 0

]
, A0 =

[
λ 0
0 λ

]
, A2 =

[
0 µ
0 0

]

Bs,s =

[
0 0
ε 0

]
, Bs−1,s =

[
λ 0
0 λ

]
, Bs,s−1 =

[
0 µ
0 0

]

(1.57)

We recognise that several sub-matrices are actually identical. For the scheme to become apparent,
we keep them separate because with the sub-matrices given, we can construct the Q-matrix: first
combining the sub-matrices according to

Q =




B00 B01 0 0 . . . 0
B10 A1 A0 0 . . . 0
0 A2 A1 A0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 A2 A1 Bs−1,s
0 . . . 0 0 Bs,s−1 Bs,s




(1.58)

and than applying equation 1.53 to get the correct qii elements. For system size s = 5 (the example
precisely shown in figure 1.20) we get

Q =




−ε−λ ε λ 0 0 0 0 0 0 0 0 0
ε −ε−λ 0 λ 0 0 0 0 0 0 0 0
0 µ −µ−λ 0 λ 0 0 0 0 0 0 0
0 0 ε −ε−λ 0 λ 0 0 0 0 0 0
0 0 0 µ −µ−λ 0 λ 0 0 0 0 0
0 0 0 0 ε −ε−λ 0 λ 0 0 0 0
0 0 0 0 0 µ −µ−λ 0 λ 0 0 0
0 0 0 0 0 0 ε −ε−λ 0 λ 0 0
0 0 0 0 0 0 0 µ −µ−λ 0 λ 0
0 0 0 0 0 0 0 0 ε −ε−λ 0 λ
0 0 0 0 0 0 0 0 0 µ −µ 0
0 0 0 0 0 0 0 0 0 0 ε −ε




(1.59)

being a typical Q-matrix with its characteristic diagonal shape. The only exception is the circle ε
in the first row, the idle level, which causes the server to be equally likely available or away for the
customers that happen to arrive when the system has been idle for some time. If the server would go
on vacation faster in case no customer is there to serve, we would have to replace this rate by one
over the time required to check if there is a customer or not. In case this time is zero, the state 0 ,
the one without the ∗, and all connected transitions would vanish.

Having filled the Q-matrix we can calculate the state probabilities vector as described above for
any given rates λ, µ, and ε, as shown for example in figure 1.21. Because we commonly solve such
problems with the help of a computer for given rates only, as for example shown in algorithm 1.1,
lets us call this the numeric approach. In theory the matrix equation can also be solved analytically
with the according tools. However, the analytic equations generated by tools are often quite bulky,
and challenging simplification is commonly out of the scope when tools are applied in the first place.
Once coded in software every representation of the same equation yields the same results.
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Figure 1.21: Vacation system state probabilities for different loads and vacation times
serving (dot), on vacation (circle), total (filled circle)

Alternatives and usability notes

Solving the equation system manually is no problem for systems with few states, and for systems with
infinite states closed form solutions may be found if series equivalents can be found to mathematically
formulate all transition rates without infinite sums. However, if the number of states is huge but
not infinite, solving can become computationally intractable because of numeric issues with state
probabilities becoming so small that they cannot be separated from numeric zero. In that case the
solution must fail because zero probabilities may not occur for existing states. In that case we need
to retreat to approximation. For example, an analytically solved infinite system of the same kind can
be solved and truncated using the approximation proposed by Allen [28], or the behaviour of smaller
systems may be extrapolated, if a clear system size related direction can be identified.

An alternative approach that should not be forgotten is finding a recursive definition for the state
probabilities p(i). Also that fits numeric calculation nicely:

→ select and assume one initial state probability, e.g., p̂x = 1
→ calculate all others based thereon one-by-one, p̂i = f (p̂x)

→ scale all p̂i by a common factor (∑ p̂i)
−1 to get ∑ pi =1.

Performing this analytically may be a hassle, because recursively inserting equations leads to
increasingly lengthy expressions that only for special (simple) cases can be simplified conveniently.
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Numerically, using some computer to do the repeated calculations, this approach features the option
to choose an initially assumed probability high enough to not face numeric zeros in the course of the
state-by-state calculations.

We use the Markov-chain approach to solve many, actually most of the systems discussed later on.
Practically, we set up the matrix representation and let the freely available Octave software [29] solve
the equation system repeatedly for changed rates, in order to get point-wise calculated curves. In
this context we should also note that the mathematically undefined matrix division pT= b∗T/Q∗T as
specified in the procedure shown in algorithm 1.1, actually performs an optimised Gauss elimination.
This is more efficient than calculating the solution by matrix inversion p = Q∗(−1)·b∗, as it is
mathematically defined and would be performed if the division is not specified.

Algorithm 1.1 Vacation system state probabilities calculation procedure
function p=MM1s_pVac(lambda,mu,epsilon)

filename1=sprintf(’MM1s_pVac_%3.3d_%3.3d_%3.3d_serving.dat’,lambda*100,mu*100,epsilon*100);
filename2=sprintf(’MM1s_pVac_%3.3d_%3.3d_%3.3d_vacation.dat’,lambda*100,mu*100,epsilon*100);
filename3=sprintf(’MM1s_pVac_%3.3d_%3.3d_%3.3d_total.dat’,lambda*100,mu*100,epsilon*100);

systemsize=5; Qsize=2*(systemsize+1);
p=zeros(Qsize,1); Q=zeros(Qsize,Qsize); b=zeros(Qsize,1);

i=1; %fill the Q-matrix
Q(i,i+1)=epsilon; Q(i,i+2)=lambda; Q(i,i)=-sum(Q(i,:)); i++;
Q(i,i-1)=epsilon; Q(i,i+2)=lambda; Q(i,i)=-sum(Q(i,:)); i++;
while i<=Qsize-2

Q(i,i-1)=mu; Q(i,i+2)=lambda; Q(i,i)=-sum(Q(i,:)); i++;
Q(i,i-1)=epsilon; Q(i,i+2)=lambda; Q(i,i)=-sum(Q(i,:)); i++;

endwhile
Q(i,i-1)=mu; Q(i,i)=-sum(Q(i,:)); i++;
Q(i,i-1)=epsilon; Q(i,i)=-sum(Q(i,:));

Q(:,Qsize)=1; b(Qsize)=1; %insert sum(p)=1 condition
pt=transpose(b)/Q; %solve the equation system
p=transpose(pt) %get a vector again

p0=linspace(0,systemsize,systemsize+1); p0=transpose(p0);
p1=zeros(systemsize+1,1); p2=zeros(systemsize+1,1);
res1=fopen(filename1,"wt"); res2=fopen(filename2,"wt"); res3=fopen(filename3,"wt");
for i=1:Qsize/2

p1(i)=p(2*i-1); p2(i)=p(2*i);
fprintf(res1,’%3.0f %1.9f \n’,p0(i),log10(p1(i)));
fprintf(res2,’%3.0f %1.9f \n’,p0(i),log10(p2(i)));
fprintf(res3,’%3.0f %1.9f \n’,p0(i),log10(p1(i)+p2(i)));

endfor
fclose(res1); fclose(res2); fclose(res3);
fprintf("Results saved in %s, %s, %s \n",myfilename1,myfilename2,myfilename3);

semilogy(p0,[p1 p2 p1+p2]); %plot the results
xlabel("number of customers i");
ylabel("state probability p(i)");
axis("labelxy");
thetitle=sprintf(’M/M/1/s/vacation (%3.2f/%3.2f/%3.2f)’,lambda,mu,epsilon);
title(thetitle);

endfunction



28 Gerald Franzl

1.5 Distributions and statistical evaluation

Distributions describe the outcome of processes, meaning they are used to analytically approximate
the true but in detail often imprecisely known process behaviour. In theory we want perfect models,
in practice we commonly focus on how to identify the most simple distribution that models a process
sufficiently well. First we introduce the most prominent distributions, and briefly repeat the basic
theory and introduce the nomenclature used henceforth in this context. More distributions and their
relevance to communication networks are presented and discussed in chapter 2. Next, the differences
to statistical evaluation of sample sets are discussed and we introduce the calculation rules and
schemes required to perform the calculation of sample characteristics, and show how these relate
to the moments of distributions. Finally, we address the limits of statistical evaluation, and how the
quality of statistical evaluation can be quantitatively expressed by confidence intervals.

1.5.1 Basic distributions

Distributions assign occurrence probabilities to the outcomes (events) of processes that commonly
imply some randomness. They mathematically define the likelihood of any possible event. In
engineering, distributions are commonly used where problems lead to differential equations whose
solutions or initial conditions are somehow distributed. They enable us to derive the characteristics
of technical processes without the need to evaluate it for every possible initial condition and possible
sequence of events, which may be too excessive in practice (would not be scalable).

The simplest to understand distribution is the uniform distribution U(a,b). All outcomes of a
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Figure 1.22: Uniform distribution U(a,b): pdf and cdf

uniformly distributed random process are equally likely, and bound to the interval (a .. b), as shown
in figure 1.22. Consequently is the probability of each possible event one over the width of the
interval, because one of the possible outcomes needs to happen, ∑ pi(x) = 1→ ∫ b

a fU(x) = 1.

pdf : fU(x) =





0 x≤a
1

b−a
a<x≤b

0 x>b

cdf : FU(x) =





0 x≤a
x−a
b−a

a<x≤b

1 x>b

mean: µU =
a+b

2

variance: σU =
(b−a)2

12

matching:
a = µU −

√
3σU

b = µU +
√

3σU

Mathematically is the uniform distribution not very handsome because of its discontinuous pdf .
However, there exist many very good pseudo-random number generators and therefore it is commonly
used to compute samples of a certain distribution X by inverse transform sampling

X = F−1
X

(
U(0,1)

)
(1.60)
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where F−1
X (u) is the inverse cdf , also called the quantile function. For somehow generated u values,

uniformly distributed in (0.. 1), the x-value for which FX(x) = u are distributed according to FX .
However, note that pseudo-random number generators may generate a true zero or one, which might
cause numeric problems here. Luckily, the boundaries of U(0,1) are here not relevant and without
loss of generality we may adjust the boundaries to 0 < u < 1 by skipping any u outside that region.

The Poisson process

To introduce the most convenient distributions we discuss the Poisson process. This is a very special
process, which can be used to model continuous random processes with strictly positive valued,
identically and independently distributed, outcomes. Note that the Poisson distribution is a discrete
distribution, which results from the time continuous Poisson process shown in figure 1.23. The
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τ τ τ τ 
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N(τ) 

Figure 1.23: The Poisson process

Poisson process generates a Poisson distributed number of events N(τ) within each time interval τ

P[N(τ) = n] = (λτ)n

n! e−λτ [Poisson distribution] (1.61)

where the events have negative exponentially distributed inter arrival times τi,i+1 = ti+1− ti

P[Ti,i+1 > τ] = e−λτ [negative exponential distribution] (1.62)

and uniformly distributed occurrence times ti within any time interval τ.
Therefore, the events are identically and independently distributed (i.i.d.), and the inter arrival

times τi,i+1 neither depend on the events’ index i nor on an already passed time t

P[Ti,i+1 > t + τ|Ti,i+1 > t] = P[Ti,i+1 > τ] = P[N(τ) = 0] = e−λτ (1.63)

because P[Ti,i+1 > τ] equals P[N(τ) = 0], the probability that no events occur during τ. This special
property expresses that the process is memoryless, and qualifies the Poisson process to be the
principal time continuous Markovian process. The negative exponential distribution and its discrete
counterpart, the geometric distribution, are the only memoryless distributions, and asymptotically
result from superposing many bursty i.i.d. random variables with probability mass concentrated at
zero, although these are by themselves not memoryless, see [30, 7.4] and extreme value theory.

The negative exponential distribution

Above we already encountered the negative exponential distribution, sketched in figure 1.24. Actually,
it is the only memoryless continuous distribution and thus, it is commonly assumed when we refer to
a Markovian distribution. Therefore, we use the index M to indicate it.

pmf : fM(x) = λe−λx cdf : FM(x) = 1− e−λx

mean: µM =
1
λ

variance: σM =
1
λ2

matching: λ =
1

µM
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Figure 1.24: Negative exponential distribution M(λ): pdf and cdf

As there is only one parameter to match with, the matching might be poor if the distribution type
does not fit. However, being the only memoryless continuous distribution there is no alternative if we
need to model a memoryless continuous random process.

Note that a continuous probability distribution is fully defined by its cumulative distribution
function (cdf ) or its probability density function (pdf ). Latter is easier to interpret and shows the
characteristics more clearly. The cdf is more handy for calculations and matching error evaluation.
If we are particularly interested in a distributions tail, being the rarely occurring part to the far right,
than we sometimes use the complementary cdf Fc

X (ccdf ).

Fc
X = 1−FX

The geometric distribution

The discrete pendant to the negative exponential distribution is the geometric distribution shown in
figure 1.25. It often occurs for discrete variables of an ergodic time continuous system driven by
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Figure 1.25: Geometric distribution Geo(p): pmf and cdf

negative exponentially distributed arrivals. In the previous section 1.4 we derived for the M/M/1
queueing system that the probability for i customers in the system is p(i) = ρi(1−ρ), and thus, it is
geometrically distributed with Geo(p = 1−ρ).

pmf : fGeo(k) = p(1− p)k, k ∈ N0 cdf : FGeo(k) = 1− (1− p)k+1, k ∈ N0

mean: µGeo =
1− p

p

variance: σGeo =
1− p

p2

matching: p =
µGeo

1+µGeo

Here, N0 is the set of all natural numbers including zero. Again, we only have one parameter to
match with, and thus, matching may be poor if the distribution type does not fit.
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The geometric distribution is memoryless, alike its continuous analogue, the negative exponential
distribution. This means that if an experiment is repeated until the first success, then the conditional
probability distribution of the number of additional trials required until the first success, does not
depend on how many failures have been observed. In easy terms: the die thrown or the coin tosses
does not have a memory upon the failures that have occurred, the experiment proceeds independent
of its past. Being the only memoryless discrete distribution, assuming it is a good guess if we need to
model a memoryless discrete random process.

In the discrete domain, a probability distribution is fully defined by its cumulative distribution
function (cdf ) or its probability mass function (pmf ). The discrete cdf is a discontinuous step function,
though defined for all x; the pmf is a non-continuous comb function and only defined at discrete
points. Mathematically not perfectly correct, we will refer to both by the acronyms cdf and pdf ,
respectively. When we henceforth talk about a discrete distribution’s pdf , we notionally convert the
discrete pmf into a continuous step-function and restrict evaluation to the positions just after the
steps. Doing so we achieve identity.

b

∑
a

fX(k) =
b∫

a

fX(x) ∀a,b∈N0

Formally, we use the Dirac delta function δ(k) to time continuously present a pmf, and its integral,
the unit step function u(k) to convert the discrete cdf into a function over continuous time.

1.5.2 Statistical values versus moments of distributions

The relations among statistical values and the moments and parameters of distribution functions are
summarised in the following. First, we sketch the basic law that enables us to relate empiric statistics
with analytic distributions.

The law of large numbers

lim
n→∞

P
[
|Xn−µ|> ε

]
= 0 ∀ε>0 [weak law of large numbers]

P
[

lim
n→∞

Xn = µ
]
= 1 [strong law of large numbers]

The strong law of large numbers tells that for n→ ∞ repetitions of the same random experiment (X),
the average over all collected results xi=1 .. n, the sample mean Xn, will converge to the actual
mean µ = E[X ]. The law of large numbers tells also that the empirical probability p̂x of outcomes x
in a series of independent and identically distributed experiments will converge to the result
probabilities px. This interpretation promises that we can approximate the pdf over x, and thereby
identify a distribution fX that approximately describes the random experiment analytically.

For a sequence of random experiment outcomes {x1,x2, . . . ,xn}, the strong law of large numbers
assures us that the empirical sample mean µ̂ = Xn will almost surely converge to the theoretic
mean µ. Consequently, to perfect calculate the expectation value E[X ] an infinite sample set would
be required, which is not possible in practice. The statistical uncertainty intrinsic to the evaluation
of finite sample sets is expressed by confidence intervals [µ−ζ .. µ+ζ ], discussed in section 1.5.3.
Only for sufficiently large sample sets we may assume that the difference between the calculated
average and the true expectation value is negligible, as it is stated by the weak law of large numbers.
Vice versa, we conclude that a single experiment, tells us nearly nothing about the random process,
only that the found sample is in the sample space ΩX .

Next we briefly summarise some concepts of statistics useful for the distributions and sample
sets we commonly encounter. For in depth information please refer to the rich literature on statistics
and stochastic, for example [28,31–33], and note that hereinafter the term mean will most commonly
refer to the true E[X ] = µ, and average to the sample mean Xn = E[Xn].
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The mean and the average

mean of continuous distribution E[X ] =

∞∫

−∞

P[X≥x] dx =
∞∫

−∞

x fX(x)dx
fX (x<0)=0

=

∞∫

0

(1−F(x)) dx

mean of discrete distribution E[X ] =
∞

∑
x=−∞

P[X≥x] =
∞

∑
x=0

xP[X=x]
P[X<0]=0

=
∞

∑
x=0

xpx

average of sample set E[Xn] = Xn =
1
n

n

∑
i=1

xi ∈ Xn

(1.64)
In all cases we use the expectation operator E[ ], but note that quite different operations define it
for the different cases. If the sample set Xn = {xi}n is the outcome of an analytic defined process X ,
meaning defined by its cdf FX(x) or pdf fX(x), than we get: µX = lim

n→∞
E[Xn] = E[X ].

Note that the further right parts of equation 1.64 are applicable for positive valued normalised
probability distributions only, when FX(x<0)=0, fX(x<0)=0, and also FX(∞)=1, and

∫
fX(x)=1.

The expectation operator E[ ] is linear in the sense that

we can extract factors E[aX ] = aE[X ]

we can extract constants E[X+c] = E[X ]+ c

we can sum expectations E[X+Y ] = E[X ]+ E[Y ]

and we thus can simplify E[aX−bY+c] = aE[X ]−bE[Y ]+ c

(1.65)

and note that the summing of expectations is valid even if X is not statistically independent of Y.
However, the expectation operator is in general not multiplicative E[XY ] 6= E[X ] E[Y ].

To calculate the joint expectation E[XY ] we need the joint probability density function fX ,Y (x,y).

the joint expectation E[XY ] =
∫ ∫

xy f (x,y)dxdy

and the covariance Cov(X ,Y ) = E[XY ]− E[X ] E[Y ]
(1.66)

If Cov(X ,Y )=0 than X and Y are said to be uncorrelated, and fX ,Y (x,y) = fX(x) fY (y), using the
marginal pdf s. For independent random variables this is generally the case, and we can calculate the
joint expectation from the individual expectations: E[XY ] = E[X ] E[Y ]. However, being uncorrelated
is not a sufficient condition for being independent.

The conditional pdf fX(x|Y=y) and the conditional expectation E[X |Y=y] are calculated as

the conditional pdf fX(x|Y=y) =
fX ,Y (x,y)

fY (y)
= fY (y|X=x)

fX(x)
fY (y)

and

the conditional expectation E[X |Y=y] = ∑xP[X=x|Y=y] = ∑ xP[X=x,Y=y]
P[Y=y]

(1.67)

and we recognise that they both depend on the joint probability, fX ,Y (x,y) and P[X=x,Y=y],
respectively. If and only if the conditional pdf or expectation equal the non-conditional, than
the two random variables X ,Y are independent.

Bayes’ law relates conditional probabilities by

P[X |Y ] = P[Y |X ] P[X ]

P[Y ]
(1.68)

and this is often essentially helpful. Also note that joint distributions and probabilities are independent
of the joining direction: fX ,Y (x,y)≡ fY,X(y,x), and more evidently P[X=x,Y=y]≡ P[Y=y,X=x].
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The variance and the standard deviation

Var[X ] = E
[
(X−µ)2] (1.69)

=Cov(X ,X) = E
[
X2]− E[X ]2 (1.70)

The variance indicates how far the outcomes of a random process are spread out, being a metric for
the mean divergence from the mean. The variance of a real-valued random variable is its second
central moment, and thus the first characteristic that can be used to distinguish between different
probability distributions. It can be calculated either directly via the squared divergence of each sample
from the true mean (X−µ)2 (equation 1.69), or using the properties of the covariance, meaning
Cov(X ,X), by subtracting the squared mean E[X ]2 from the mean of squares E

[
X2
]

(equation 1.70).

Depending on the type of random variable, we can calculate the variance by

variance of continuous distribution Var[X ] =
∫
(x−µ)2 fX(x)dx

= 2
∞∫

0

xFc
X(x)dx−




∞∫

0

Fc
X(x)dx




2

variance of discrete distribution Var[X ] =
n

∑
i=1

pi (xi−µ)2

variance of sample set Var[Xn] =
1
n

n

∑
i=1

x2
i − µ̂2 =

(
∑n

i=1 x2
i
)

n
− (∑n

i=1 xi)
2

n2

(1.71)

The variance Var[ ] is non-negative, zero if the samples are not distributed, and may be infinite
for very heavy tailed distributions. However, we can

extract factors Var[aX ] = a2Var[X ]

ignore constants Var[X+c] =Var[X ]

solve weighted sums Var[aX+bY ] = a2Var[X ]+b2Var[Y ]+2abCov(X ,Y )

do multiple summation Var

[
n

∑
i=1

Xi

]
=

n

∑
i, j=1

Cov(Xi,X j) =
n

∑
i=1

Var[Xi]+∑
i 6= j

Cov(Xi,X j)

(1.72)

and consequently is the variance of a finite weighted sum of uncorrelated random variables, for
which Cov(X ,Y ) = 0, equal to the square weighted sum of their variances.

Var

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

a2
i Var[Xi] (1.73)

If two distributions are independent, than we can directly calculate the joint variance of their product.

Var[XY ] = E[X ]2Var[Y ]+ E[Y ]2Var[X ]+Var[X ]Var[Y ] (1.74)

The variance of a group of random outcomes comprising X is equal to the mean of the variances
of equally sized subgroups plus the variance of the means of the subgroups. This property is known
as variance decomposition or the law of total variance and plays an important role in analysis. So if
X and Y are two random variables and the variance of X exists, then Var[X ] can be calculated by

Var[X ] = E[Var[X |Z]]+Var [E[X |Z]] (1.75)
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where E[X |Z] and Var[X |Z] are conditional expectation and conditional variance of X given Z,
respectively. More generally states the law of total covariance that we can calculate the Cov(X ,Y ) by

Cov(X ,Y ) = E[Cov(X ,Y |Z)]+Cov(E[X |Z] , E[Y |Z]) (1.76)

where again Z states the conditions by which the subsets are created.

Because the variance is a square metric, also its unit is squared. In practice it is often more
intuitive to specify the standard deviation σX (equation 1.77), also called root mean square deviation,
expressing its origin. Being the square root of the variance, it has the same unit as the mean. The
sample deviation ς[Xn] (equation 1.78), being the root average square deviation from the sample
average µ̂=1

n ∑xi, is defined as the square root of the sample variance ς2. Only similar in its unit is
the average absolute deviation ∂a[X ] (equation 1.79).

standard deviation σX =
√

Var[X ] =

√
E[X2]− E[X ]2 (1.77)

sample deviation ς[Xn] =
√

ς[Xn]2 =
√

1
n−1 ∑(xi− µ̂)2 (1.78)

average absolute deviation ∂a[X ] = E[|X−µ|]≤ σX (1.79)

Higher moments and characteristics

Commonly we are satisfied if the first and the second moment match, and the consideration of higher
moments is rarely required. However, if we have a sample set and want to characterise the underlying
distribution, than the higher moments can tell us some details about the distribution, which cannot be
derived from the first two moments alone. Therefore, we introduce them briefly.

Several times we mentioned that mean and variance are moments of the distribution. Actually is
the mean the first raw moment, and the variance is the second central moment. Raw moments result
from

µ(n) =
∞∫

−∞

xn f (x)dx,

while central moments are calculates in respect to the mean value by

µ(n) =
∞∫

−∞

(x−µ)n f (x)dx,

and evidently is µ(0) =
∫

f (x)dx = 1, because the area below the pdf f (x) is always one. For higher
moments we prefer to use the standardized moments, more precisely called normalized nth central
moment

µ(n) =
1

σn

∞∫

−∞

(x−µ)n f (x)dx,

because these are dimensionless quantities that characterise the distribution independent of any linear
scale change. In other words, they tell us something about the distributions shape.

The normalized third central moment is called skewness γ, and is a measure of the lopsidedness
of the distribution. For a symmetric distribution is γ = 0, if it exists. A distribution skewed to the
right, meaning that its tail is heavier on the right side, has a positive skewness. Vice versa has a left
skewed distribution a negative skewness. If two distributions are independnet, than the skewness
is additive: γ(X+Y ) = γ(X)+ γ(Y ). The fourth central moment indicates whether the distribution
is tall and skinny or short and compact, compared to the normal distribution with same variance.
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This moment minus 3 is called kurtosis κ. If a distribution has a peak at the mean and long tails,
the fourth moment will be high and the kurtosis positive. Conversely, bounded distributions, having
short tails, tend to have low kurtosis. Independent of how it is defined, if the nth moment exists, all
lower moments exist, and if the nth moment does not exists, than no higher moment exists. The larger
the higher moments are, the harder it is to estimate the characteristics from a finite sample set.

The moment generating function

MX(t) = E
[
e−tX]=

∞∫

−∞

e−tx fX(x)dx, t ∈ R (1.80)

offers an alternative specification for a random variables probability distribution in addition to the pdf
or the cdf . However, the moment-generating function does not always exist, unlike the characteristic
function sketched next.

The prime reason for using this function is that by it we can find all moments of a distribution.
Using the series expansion etX = ∑∞

0
t iX i

i! we get for n being the rank of the highest existing moment

MX(−t) = E
[
etX]= 1+ tµ(1)+

t2µ(2)

2!
+ · · ·+ tnµ(n)

n!
=

n

∑
0

t iµ(i)

i!

where µ(i) is the ith moment, which can be calculated by i-times differentiating diMX(−t)/dt i and
setting t=0 in the result.

For the weighted sum of independent random variables X = ∑aiXi, for which the pdf fX(x) is
the consecutive convolution of the pdf s fXi(x) of each Xi, we get for the joint moments generating
function.

MX(t) = ∏MXi(ai t)

The characteristic function

ϕX(t) = E
[
eitX]=

∞∫

−∞

eitX dFX(x) =
∞∫

−∞

eitx fX(x)dx, i =
√

-1, t ∈ R (1.81)

is defined as the expected value of eitX , where i is the imaginary unit, and t ∈R is the argument of the
characteristic function. It also completely determines the behaviour and properties of any real-valued
probability distribution. The dFX(x) integral is of the Riemann-Stieltjes kind, and thus, for a scalar
random variable X with existing pdf , the characteristic function is the inverse Fourier transform of it,
such that the rightmost part in equation equation 1.81 is valid, and we can derive the pdf therefrom.
The properties of characteristic functions include

it always exists for real valued random variables

is uniformly continuous on the entire space

is bounded ϕX(t)≤ 1

it defines all moments if µ(k) exists:

µ(k) = E
[
Xk
]
= (−i)kϕ(k)

X (0) = (−i)k dkϕX(t)
dtk

∣∣∣∣
t=0

is invertible if ϕX is integrable:

fX(x) =
dFX(x)

dx
=

1
2π

∞∫

−∞

e−itxϕX(t)dt
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and again is the characteristic function of the weighted sum of independent random variables the
product of the scaled individual characteristic functions ϕXi(ait)

ϕX(t) = ∏ϕXi(ait), if X = ∑aiXi, Cov(Xi,X j) = 0 ∀i 6= j

and for the sample mean Xn =
1
n

n
∑

i=1
xi we get as its characteristic function.

ϕXn
(t) =

(
ϕX(

1
n t)
)n

We note that the constants appearing in equation 1.81 differ from the usual used with the Fourier
transform. Consequently, some authors use ϕX(t) = E

[
e−2πitX

]
, where t is changed to −2π t. Other,

similarly altered notations and accordingly adjusted properties may be encountered in the literature.

1.5.3 Confidence intervals

Statistical values are in general calculated from many individual samples forming a sample set, called
trace if time instances are bundled with the individual samples. Evaluating independent repetitions
of the same random experiments yields different results for each, as for example shown in figure 1.26
for the sample mean E[Xn] of small sample sets (X[10]) drawn from the uniformly distributed sample

1
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4
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e 
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sample set index

Confidence intervals for the mean of 10 samples uniformly distributed between 1 and 4

Figure 1.26: 95% confidence intervals of repeated experiments

space ΩX of U(1,4). The x-axis refers to the experiment index, on the y-axis the × are the samples,
the � the sample means, and the bars I depict the calculated 95% confidence intervals. Experiments
number 1, 27, 31 and 35 happen to show confidence intervals that actually do not enclose the true
mean E[X ]=2.5. That 4 out of 50 intervals do not enclose the true E[X ] is pure chance, in average it
should be 5% only.

Confidence intervals need to be shown to express the systematic uncertainty inherent to finite
sample sets. Even though the statistical estimates approach the characterising parameters of the
true distribution with increasing sample size, in respect to the law of large numbers (see 1.5.2),
we cannot exclude the probability that an outcome, in particular the current sample set used for
statistical evaluation, poorly represents the whole sample space ΩX . Therefore, confidence intervals
[ (Xn−ζ−),(Xn+ζ+)] are commonly reported in tables or graphs along with the point estimates Xn
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of calculated parameters in order to provide an indication for the systemic reliability of the calculated
estimates.

P
[
Xn−ζ− < E[X ]< Xn +ζ+

]
= LC

We note that these are easily misinterpreted: to be mathematically correct we may not say that the
true value E[X ] is with the probability LC within a calculated confidence interval. We can only say
that with the chosen confidence level LC, commonly 95%, a calculated interval will enclose the true
value E[X ]. The difference is subtle, but note that a particular confidence interval may be offset by a
biased Xn, such that the true value E[X ] is likely not enclosed. Thus, for any particular confidence
interval IC is P

[
E[X ] ∈ IC

]
6= LC. Actually, we cannot say anything about the P

[
E[X ] ∈ IC

]
, because

we have no information on how good the available samples xi ∈ Xn represent the sample space ΩX .
The correct explanation for LC is: if we repeat an experiment many times, than a proportion

approximately equal to the chosen confidence level LC of the different confidence intervals IC
i , which

we get for the individual experiments, will actually enclose the true value E[X ]

P
[(

IC
i |E[X ] ∈ IC

i
)]

= LC i = 1,2,3, . . . ,

where IC
i is one out of many independently calculated confidence intervals, and LC is the chosen

confidence level.

lim
N→∞

(
1
N

N

∑
i=1

ξi

)
= LC, ξi =

{
1 if E[X ] ∈ IC

i

0 if E[X ] /∈ IC
i

Confidence interval calculation

While the theory of confidence intervals, more generally on interval estimates, is apparent, the
calculation of confidence intervals is a little ambiguous and the topic commonly appears in the far
end of text books. The key problems are:

(a) independence among samples, Cov(Xi,Xi+k)=0 ∀k, is presumed but cannot be guaranteed,
(b) direct calculation requires the true Var[X ]=σ2 but we only know the sample variance ς2,
(c) engineering science is anxious about correctness and the aspired high confidence in calculations

seems toppled by low confidence levels LC or wide confidence intervals IC.
These problems are systemic and cannot be resolved. Problems (a) and (b) result from the core
assumption that the sample estimates Xn are normal distributed around the true estimate µ = E[X ],
by applying the central limit theorem on the contribution of each sample on the estimate. This forces
independent and identically distributed samples. Without assuming a distribution, a direct calculation
is not possible. Shortly, in 1.5.4, we sketch methods to improve the calculation in cases where the
direct approach yields too poor results.

The latter problem (c) results from the fiction that statistical results could be 100% correct.
Actually, even if the calculations are 100% correct, the correctness of calculated expectations is
always limited by the available data. How poor the available data is, we express by showing
confidence intervals. Thus, wide confidence intervals improve the quality of calculations, because
they add valuable information to the corresponding point estimates.

For means of comparability we calculate confidence intervals with the common confidence
level LC = 95%, if not stated differently. In any case, for a reliable statistical evaluation the sample
size n needs to be sufficiently large, and for efficiency not larger than required.

The direct calculation [34] is based on Chebychev’s equation

P
[
|Xn−µ| ≥ ε

]
≤ σ2/n

ε2 , (1.82)

which can be rewritten as

P
[
−ε < Xn−µ < ε

]
= P

[
|Xn−µ|< ε

]
≥ 1− σ2

nε2 (1.83)



38 Gerald Franzl

to show its relevance for confidence intervals. If we assume that the samples xi ∈ ΩX are normal
distributed with N(µ,σ2), than we know that the sample means Xn of different sample sets holding
the same number of samples n each, are normal distributed with N(µ, σ2

n ). If we substitute Z = Xn−µX
σ/
√

n ,
which is distributed with N(0,1), we get

P[|Z|< z] = P
[ |Xn−µ|

σ/
√

n
< z
]
= P

[
|Xn−µ|< zσ√

n

]
= P

[
µ− zσ√

n
< Xn < µ+

zσ√
n

]
= LC

and we get for the two half widths that

P[Z <−z] = P[Z > z] =
1−LC

2
.

Consequently, we can calculate the bounds of the intended confidence interval by selecting the z that
fits to the chosen LC (table 1.2), and inserting it in

(
Xn−

zσ√
n
, Xn +

zσ√
n

)
. (1.84)

Table 1.2: z values for Xn>100 holding normal distributed samples xi [33–35]

LC 80% 90% 95% 99% 99.5% 99.9% 99.99% 99.999% 99.9999%
z 1.282 1.645 1.960 2.576 2.807 3.291 3.891 4.417 4.892

The half-width of confidence intervals, being zσ/
√

n, is determined by the number of samples
within the available sample set n, the standard deviation σ, and z, which is determined by the chosen
confidence level LC. To halve the width of the confidence interval for a given LC we either need
a fourfold sample size n, or need to reduce the variance by 50% [34]. Thus, variance reduction
techniques are more scalable, but being unpredictably effective, we do not consider them henceforth.

We note that for the confidence interval calculation in equation 1.84 the true standard deviation
σ is used, which cannot be derived from the sample set Xn. In practice we use the unbiased
sample variance ς2 = 1

n−1 ∑(xi−Xn)
2 and hope that the introduced error is� 1−LC. It is apparent,

that for high LC this assumption is hardly justified. Only for large n the law of large numbers,
and for independent and identically distributed samples the central limit theorem, assures that ς
approximates σ.

For small n we have to use Z = Xn−µX
ς/
√

n , and utilize the property that this random variable is known
to be Student t-distributed with ν = n−1 degrees of freedom. For large n this distribution approaches
the normal distribution, and for trustworthy results n ≥ 10 is strongly recommended. Tables for
the Student t-distribution are available, an excerpt is shown in table 1.3. This replaces table 1.2
whenever we need to calculate confidence intervals from small sample sets composed of samples
that are potentially not independent and identically distributed.

Confidence interval calculation from measurement and simulation results

Sample sets collected during an entire measurement or simulation run are in case of traces a sequence
of transient phases and steady phases. Good steady state estimates can only be calculated from
samples collected during steady phases, and therefore, samples collected during transient phases
should be sorted out. Either this is performed a priori during the sample collection, or we need to
perform this a posteriori on the sample set. Latter can be quite challenging, and, it may lead to overly
smoothed sample sets if excessively applied. Typically we only need to sort out the transient phase
prior reaching the steady state and the typically rather short fade out phase in the end of a trace.
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Table 1.3: z values based on Student’s t-distribution [33, 35, 36]

ν\LC 80% 90% 95% 99% 99.5% 99.9% 99.99% 99.999%
∞ 1.282 1.645 1.960 2.576 2.807 3.291 3.891 4.417

100 1.290 1.660 1.984 2.626 2.871 3.390 4.053 4.654
80 1.292 1.664 1.990 2.639 2.887 3.416 4.096 4.717
60 1.296 1.671 2.000 2.660 2.915 3.460 4.169 4.825
40 1.303 1.684 2.021 2.704 2.971 3.551 4.321 5.053
20 1.325 1.725 2.086 2.845 3.153 3.850 4.837 5.854
10 1.372 1.812 2.228 3.169 3.581 4.587 6.211 8.150
8 1.397 1.860 2.306 3.355 3.833 5.041 7.120 9.783
6 1.440 1.943 2.447 3.707 4.317 5.959 9.082 13.56
4 1.533 2.132 2.776 4.604 5.598 8.610 15.54 27.77
2 1.886 2.920 4.303 9.925 14.09 31.60 99.99 316.2

The common approach is to split the entire trace into several intervals, each containing the
same number of samples ni=n, except the last, for which ni ≤ n is sufficient. To discard systematic
transient phases we commonly calculating estimates not considering the first and the last interval.
Thus, we need to choose n such that we can be sure that all transient start-up effects fade within one
interval, assuring that after the first interval the steady state is reached. In figure 1.27 we actually
show generated samples and the windowed mean as the example trace. At the begin there is a

Uniform(0..2) µ =1 Erlang2(1) µ = 0.5 Lomax(2,1) µ =1
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Figure 1.27: Example traces (—) generated from Uniform/Erlang/Lomax distributed samples (×)
showing batch means (�) and variances (I) of the windowed mean calculation (—)

transient phase but due to the very short averaging window of 20 samples the mean does not stabilise
much, in particular not when the variance is high. However, assuming independent and identically
distributed mean values per interval (batch) allows use to directly calculate the total point estimate
and its confidence interval

batch means X i =
1
n

n

∑
j=1

S [(i−1)n+ j ]

total mean XN =
1

bN/nc−1

bN/nc
∑
i=2

X i

variance of batch means ς2
X i
=

1
bN/nc−2

bN/nc
∑
i=2

(
X i−XN

)2

confidence interval

(
XN−

z ςX i√
bN/nc

, XN +
z ςX i√
bN/nc

)

where N is the size of the entire trace and bN/nc is the number of intervals except the last, and thus
is bN/nc−1 the number of batches. To calculate confidence intervals (using the equation above)
we insert for z the figures given in table 1.2, if we may assume normal distributed batch means,
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meaning independent and identically distributed samples throughout all considered intervals. If
we cannot assume that the samples of all batches are independent and identically distributed, we
insert the figures given in table 1.3 for the according number of batch means we average over, only
assuming that the batch means are independent and identically distributed. Latter precondition is
fulfilled if any autocorrelation fades to negligible well within n, the size of the batches. The common
recommendation is n≥ 5 · `, where `= min

(
k|Cov(Xi,Xi+ j)≤ ε,∀ j≥k

)
[34], in order to be sure that

each batch contains a sufficient number of uncorrelated samples.

Generally, we need sufficiently large batch sizes n to calculate good estimates. Here we might
reduce n without loosing precision because what actually counts is the total number of samples
n·bN/nc that we actually use to calculate XN . The more batches, the better can the batch mean
variance be estimated and thereby the confidence interval calculation improved. Consequently, the
optimal batch size n is sufficiently large to let autocorrelations fade, and small enough to grant a
sufficient number of batches for the confidence interval calculation. For batches holding by design
independent and identically distributed samples we can presume that the distribution of the batch
means X i is approximately normal distributed as a consequence of the central limit theorem. In that
case equation equation 1.84 and table 1.2 may be used to calculate correct confidence intervals, as
we did to create figure 1.26.

To better handle cases with potential transient phases anywhere within a trace, we may exclude
all intervals that do not conform with the majority of intervals. To minimise the number of thereby
lost samples we should optimise n such that the number of samples contained in not considered
outlier intervals is minimised. Anyhow, we have to be sure that we may exclude any outlier intervals
determined because else we unduly refurbish the result.

1.5.4 Statistical inference techniques

Statistical inference is used to draw conclusions from finite sample sets challenged by inevitable
random variation. The target is to identify observation errors and to mitigate sampling variation.
Based on the derived characteristics of the sample set, its quality is validated, and this provides us a
statistical proposition on how useful the available sample set likely is.

A key problem to be solved is the finiteness of the available sample set. Assuming that samples
are independent and identically distributed, we can create alternate sample sets from the available
samples. The jackknife and the bootstrap scheme are popular resampling methods used in statistical
analysis, whereas Monte Carlo sampling is popular with statistical software tools. Besides the
theoretical differences in their mathematical fundamentals, a practical difference is that the bootstrap
produces different results when repeated on the same data, whereas the jackknife yields exactly the
same result each time.

Jackknifing
is used in statistical inference to estimate the estimation bias and standard error, when only one

random sample set of observations is available. The method of subsequent sample-sets outlined in
section 1.5.3 is a very simple version of jackknifing. Independent on how ingenious it is realised,
the core idea of the jackknife variance estimator relies in systematic recomputing of the estimate
while leaving out different observations. Systematic, because we assures that in the end all available
samples have been used equally often. For example once only, as in 1.5.3 or the here sketched
algorithm 1.2. The more the subsets overlap the more jackknife estimates we get. To consider all
possible permutations will in general be too excessive.

Note that N
M needs to be integer, meaning that the number of jackknife samples M that we create

needs to be a divisor of the full sample set’s size N, and the number of samples within each jackknife
sample Ji is a fraction of the total number of samples available. Consequently, this method is best
applicable for huge original sample sets SN . Using the jackknife estimates we get for the sub-sets Ji
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Algorithm 1.2 jackknife(sample set SN , confidence level LC, M)
sorted set J = {}
for i = 1.. M do

m = 0
for j = 1.. N

M do
x = i+( j−1)M
m = m+S[x]

end for
Ji = m/ N

M
insert Ji→ J

end for
return J

and the estimate from the entire sample set Xn we can estimate the bias and the variance

mean µJ =
1
M ∑

i
Ji

variance σ2
J =

1
M−1 ∑

i

(
Ji−Xn

)2

bias ∆J = J−Xn

and can calculate confidence intervals as before, where we have split the entire samples set into
subsequent sample sets for evaluation. The offsetting of samples considered per jackknife sample
Ji, as performed in the algorithm 1.2, intends to eliminate a possible estimation degradation due to
correlation. If correlation among long sample sequences exists, jackknifing yields tighter confidence
intervals compared to the method of subsequent sample sets discussed earlier.

Bootstrapping
is a computer based method of statistical inference. It gives direct appreciation of variance, bias,

coverage and other probabilistic phenomena related to the evaluation of sample sets [37]. The key
principle of the bootstrap is to provide a way to simulate repeated observations from an unknown
population using a single sample as basis. Bootstrapping provides a way to account for the distortions
caused by the specific sample that may not be a good representative of the population. It also provides
some sense on the variability of the estimate that we have computed, and this is precisely what we
present using confidence intervals.

The bootstrap provides a conceptually simple computer algorithm to construct confidence
intervals from real sample sets. In contrast to the abstract mathematical muddles of direct confidence
interval construction using table 1.3, we need nothing more than the sample set and some computation
power to get comparably accurate confidence interval bounds. The random draws S[x] from the real
samples in SN are performed with replacement, and that the bootstrap sample sets used to calculate
the bootstrap estimates Bi have the same size N as the real sample set SN . Because we allow to draw
the same sample more than once, the bootstrap sample sets are different form the real and other
bootstrap sample sets, even though they all have the same size.

However, bootstrap sample sets cannot provide more information on the process that caused
the real sample set than there is information contained in the original sample set. The bootstrap
only reveals likely contained information presuming that samples are independent and identically
distributed. The achieved set B of bootstrap estimates Bi provides an estimate of the shape of the
distribution of the sample mean Xn, from which we can answer questions about how much the sample



42 Gerald Franzl

Algorithm 1.3 bootstrap(sample set SN , confidence level LC, M)
sorted set B = {}
for i = 1.. M do

m = 0
for j = 1.. N do

x = random[1.. N]
m = m+S[x]

end for
Bi = m/N
insert Bi→ B

end for
with k(−) = 1

2 (1−LC)M and k(+) = M− k(−) we get

X (−)
LC = B[k(−)] as lower confidence interval bound

X (+)

LC = B[k(+)] as upper confidence interval bound

return
{

X (−)
LC , X (+)

LC

}

mean varies.

mean µB =
1
M ∑

i
Bi

variance σ2
B =

1
M−1 ∑

i

(
Bi−Xn

)2

bias ∆B = B−Xn

However, a sufficiently large number M of bootstrap samples is required to achieve trustworthy confi-
dence interval bounds Bk− and Bk+ . M ≥ 100

(1−LC)
is advised, and commonly M = 1000,10000,100000

is used for LC = 0.9,0.99,0.999, respectively. Effectively, this can be done only using a computer.

Monte Carlo sampling
represents a compromise between approximate randomization and a complete evaluation of

all permutations of the available samples within a samples set. The Monte Carlo approach uses a
specified number of randomly drawn permutations of the samples comprising a trace or samples
set. If the number of drawn permutations is sufficiently large, the Monte Carlo approach tends to
outperform approximate randomization based on intuitively selected sub-sets.

Monte Carlo methods follow a pattern:
(a) define the domain of possible scenarios (limits, constraints)
(b) generate random scenarios using a probability distribution over the defined domain
(c) evaluate the generated scenarios (one-by-one, iteratively, recursively)
(d) aggregate the individual results per scenario into general statistical results

In the context of communication system evaluation, the Monte Carlo methods are often used
to generate random user populations and user states. The network performance is then evaluated
for a given number of randomly selected scenarios. If unsatisfactory results are found the network
design is adjusted to better serve the critical scenarios found, and the process is repeated, until a
sufficient number of randomly selected scenarios shows no flaws. It is than assumed that for all
possible scenarios the performance will be similar to that found for the evaluated scenarios, mean
and variance thereof. For more details please refer to the specific literature on the general method.
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1.6 Outline and hypothesis

Having sketched the history of communication networks, the basic principle of the exemplarily
studied network technology, the problem of performance evaluation, and the basic theory on Markov
chains and distribution functions, we now introduce the targets and concepts that cling together the
somewhat diverging topics and studies presented in the chapters of this thesis. In the end, we hope
that the bigger picture, the hypothesis and the objectives, become apparent.

1.6.1 Traffic and system models

In the second chapter we continue what has been introduced in section 1.5, the modelling of arrival
and system behaviour by distribution functions. Chapter 2 comprises a survey on popular distribution
function families, listing and discussing their definition and specific properties.

Chapter 3 continues what has been introduced in section 1.4, the modelling and analysis of
subsystem performance by means of Markov-chain models and other techniques. We review and
explain different analysis options with different queueing model examples, introducing both, the
different models and the different options to analyse them.

Arrival and system behaviour models
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Figure 1.28: Continuous distribution function types: pdf and cdf examples

Starting with the most popular distributions family based on the negative exponential distribution,
we show how the well known and also quite complex distributions can be defined as phase type
distributions. It is said that the phase type distributions are dense in the field of all positive-valued
distributions and thus, it can be used to approximate any positive-valued distribution. However, the
number of required phases may approach infinity, which may be infeasible in practice. Completing
the family, we present the Markov arrival process (MAP) and show how this can be designed
according to system characteristics. The simplest non trivial variants thereof are the interrupted
Poisson process (IPP) and the Markov modulated Poisson process (MMPP).

Because there is evidence that in practice some systems are characterised by behaviours that
do not well fit into the negative exponential distribution family, we present also the somewhat
artificial deterministic process on one side and on the other, some power law based distributions, in
particular the Pareto family and the Beta distribution. Such distributions are commonly difficult to
handle analytically, but for simulation studies they can be implemented with negligible extra effort.
Practically, the deterministic process results from any distribution function when we let the variance
become zero. For analytic, function based evaluation, we can use the Dirac and the step function to
represent the deterministic pdf and cdf , respectively.
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Queueing system models
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Figure 1.29: M/M/1/s and Ph/Ph/1/s queueing systems

We start with explaining the Kendall notation and how we extend it. Than we present the analytic
approach to infinite, finite, and queue-less systems. As far as possible also non-Markovian arrival
and service processes are exemplary considered, as well as the Engset model for finite customer
populations. In particular we present the numeric calculation options based on state transition
matrices, being the Matrix Geometric Method (MGM) and the Matrix Analytic Method (MAM),
which are particularly handsome to numerically analyse Ph/Ph/. . . queueing systems.

The core intention of chapter 3 is to show and to delve into the plurality of models, their elegance,
and the related solving options. This shall prepare the grounds for the multi-queue multi-flow models,
in particular the methods to handle these in a similar and efficient way, which are the core topic of
chapter 4 exemplifying the usage of these systems to model real network components on their own
and meshed into networks.

Chapter 3 concludes with a step-by-step discussion of the simulation routines applied to generate
the simulation results used to validate the analytic results. Options and limitations of the used method
are in detail presented. The complete simulation core, excluding the random number generation and
other not directly relevant parts, is presented in addendum A.I.2.

1.6.2 Traffic handling network elements

In section 4.1 we extend and apply the models presented in chapter 3 to study different scheduling
mechanisms, particularly addressing the introduced delay, whereas section 4.2 puts the focus on the
loss rates of the mechanisms used to resolve or avoid congestion. With both also fairness issues are
addressed and the evaluated methods are compared in that respect.

Network element models for shared resources
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Figure 1.30: Single-queue and multi-queue resource sharing

First we address the prioritisation schemes commonly used to protect some flows from the effects
of contention. We show that prioritisation cannot speed up the network resources, and that every
advantage we achieve for one flow is a disadvantage for the less prioritised flows. This problem is
addressed next, where we evaluate the fair queueing mechanism and its weighted sibling, the weighted
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fair queueing WFQ mechanism. This mechanism is today most widely used, and therefore we
intensely analyse it by approximating it via a random queue selection scheme that shows comparable
performance.

Network element models for congestion management
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Figure 1.31: Insertion binding (TB) and congestion avoidance (RED)

Hop-by-hop routing allows immediate insertion of the traffic at the source without any delay. This
send-and-forget paradigm causes that there is no systematic coordination of the load insertion.
This implies an inevitable potential for temporary congestion here and then at changing locations
throughout the network. The simple method to keep the thereby caused losses low, is over-
dimensioning the resources and statically limiting the access, meaning the insertion rate per source.
Latter is commonly performed by a so called token bucket (TB) mechanism, which allows a certain
peak load that may be inserted for a short duration and a much lower average rate that is allowed in
the long term.

To better utilize the resources without causing excessive loss rates we need to actively manage
the insertion rate at sources. This is performed by a transport control protocol (TCP). Note that
initially IP has been proposed with this mechanism integrated [38]. Today, we use IP with a variety
of transport control schemes. Most respond to lost packets by a quick reduction of the insertion
rate, and slowly increase the insertion rate while no losses occur. However, not all flows respond
to losses, and those that do respond may be served unfairly poor. In this context we evaluate the
random early detection (RED) method and its weighted relative (WRED), which are essential for
TCP to perform well. We develop Markov chain models, calculate their performance, and highlight
their impact on passing traffic flows. Of particular interest to us is WRED, where in theory we could
autonomously adjust the weighting factors in a way that provides the features required to realise
the network components outlined in chapter 4.4 for a distributed, self managed, QoS provisioning
network architecture.

1.6.3 Operating networks of individual elements

A difficult to respond to critic is that we need to simplify many things in order to analyse the
network performance. Practically, the plurality of elements causes that the number of possible
network architectures, meaning compositions of these elements to build functional networks, is
nearly unlimited. Thus, we concentrate on chains of queueing systems because these can be modelled
by a joint system state matrix. The other approach is to model an entire path across a network
as single server queueing system with a rather guessed service distribution. This simplification
allows us to use elementary queueing models to evaluate the mechanisms present at terminals in
a stand alone fashion. Studies of entire network topologies have not been performed, primarily
because of the lack of relevance if the topology is too heavily simplified. In addition, a transparent
simulation environment based on the queueing models covered in this thesis could not be developed
in reasonable time.6
6see addendum A.II for details on the envisaged simulation environment.
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Figure 1.32: Chain of queueing systems with local background traffic

Cascades of different network elements along paths are potentially influenced by all traffic flows
present in the network. Studying them individually, assuming independent and identically distributed
background traffic is an option, but clearly a simplification. Figure 1.33 shows a short end-to-end
connection for three traffic classes passing one core network node only. Still, this connection contains

Figure 1.33: Chain of queueing systems contributing to a connection

twenty six queues and thus causes a 26-dimensional queueing model. Every additional core node
adds four more queues, and every additional traffic class scales up the dimensionality. Evidently,
this hardly can be solved efficiently by Markov chains: for queues of size ten we would get more
than 1126 states and an accordingly huge equation system to solve. Most software tools are for today
not capable thereof or it would last ages to get results.

End-to-end traffic management
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Figure 1.34: End-to-end transport control based on destination’s feedback

In section 4.2 we introduce the random early detection (RED) queue control mechanism and
mentioned that this achieves congestion avoidance when combined with a loss responsive transport
control protocol (TCP). The feedback to sources is delayed by one round trip time (RTT) and
therefore the response needs to be pessimistic. The few but randomly distributed early drops caused
by RED are essential to avoid augmented reaction of many sources at the same time. First we evaluate
the effect of RED and weighted RED on the performance per node, and later discuss how the known
pumping issue is mitigated by RED. Finally, we evaluate ingress binding and flow shaping options,
to see exemplarily to which extent these can further improve the network throughput.
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Figure 1.35: QoS sensible support of dynamic connectivity based on technology independently
provided pre-reserved capacity across autonomous network sections

Network operation hierarchy
Finally, concluding the thesis, we address network management and propose the operation approach
sketch in figure 1.35, which combines resource provisioning and QoS delivery in a technology
agnostic fashion. Resources commonly provide static bit-rates, which are either used or not. More
flexible approaches have been proposed recently, for example flexible grid WDM [39] and flexibly
utilised GMPLS in the context of polymorphous agile transparent optical networks (PATON) [40].
However, to be scalable, we need an intermediate system that on demand combines the provided
capacities between nodes to end-to-end connections. Today, this is performed perfectly neutral by IP,
and across IP-domains by the border gateway protocol (BGP) [RFC4271]. These work solely on the
packet layer. If the qualities of other switching technologies shall be integrated, a less technology
centric resource broker is required in order to trade the provided QoS fittingly to all the dynamically
risen transmission demands of customer driven IT-services.

We therefore introduce in section 4.4.4 a virtual network management that technology
independently selects from the connectivity advertised by autonomous network sections, being
domains and technologies, a route that fits the requesting service. The autonomous network sections
are assumed to heavily overlap and to always advertise to the virtual network management instantly
accessible connectivity at different QoS levels. Thereby, a lean and solely demand driven management
is envisaged.

1.6.4 An outlook beyond the covered issues

Once we have models for all common network elements it is possible to create a hybrid simulation
environment where the load is simulated but the network elements’ performance is calculated
analytically using queueing system models. The instances of such a simulation environment as well
as the communication among these is sketched in figure 1.36. Basically, the simulation replaces the

events queue
network elements

state collectors performance monitors

parameter sets parameter controllers
load generators

traffic flows traffic monitors
demand awareness

distributed control

end-to-end transport control

global network control

Figure 1.36: Simulation architecture for networks of queueing systems

cloud in figure 1.34 by meshed network element models. A more detailed sketch of the different
simulation objects can be found in the addenda, A.II.
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Meshed control strategy

Based on the studies presented in this thesis the long term target is to enable novel network operation
schemes alike what had been intended for the next generation network (NGN) [2]. First and essential
to realise an NGN compliant network architecture is the ability to deliver guaranteed quality of
service (QoS) to the demanding services.7

In figure 1.36 we sketched the common control loops that may be utilised jointly to deliver a
requested QoS. First there is the demand awareness loop that allows to set-up resources for a specific
flow. This is for example realised by setting-up or re-assuring the current per hop behaviours for
certain traffic classes along label switched paths (on demand signalling). To its right we find the
end-to-end control loop that for example TCP implements. Based on the destination’s feedback the
source’s parameters can be changed. This may include a change of the insertion rate, the used path,
the traffic class, the priority level, and so on. Below that we have the global network control loop
commonly implemented by some network management system. It commonly relies on an assumed
complete knowledge about all resources it controls, and uses off-line optimisation tools to calculate
better resource parametrisation (long term optimisation). Finally, we find on its left the distributed
control loop. This is for example realised by RED, though not adaptive to per flow quality demands.

Localised flow management

To our understanding a decentralised scheme is more scalable and sustainable than any centralised
approach. However, the decentralisation needs not be put to the extreme, network processors may be
used in a decentralised fashion to quickly estimate the locally required adjustments for entire groups
of network elements. The target remains to granted end-to-end QoS per flow, independent of the
network elements passed and the competition for resources locally present.

The in our view natural approach to local management is shown in figure 1.37. First the flows

Figure 1.37: Locally available control options include load-, delay-, and loss-control

need to be identified and their demands extracted. Than the load they cause should be monitored and
in case necessary adjusted. Only after the individual loads have been determined the scheduling can
be decided. Finally, if all the previous steps did not prevent congestion right away, some means to
discard excessive load need to be provided for stability reasons.

However, to perform the above in an end-to-end perspective, the nodes need to communicate
with their peers, at least the neighbouring peers. The therefore required distributed local control
loops are to our knowledge least exploited in practice.

The interactions are critical and therefore is controlling a network with hundreds of interdependent
local control loops a seemingly far too complex problem. We fully agree that a deterministic approach
leading to a precise and perfectly predictable control scheme is not an option. However, novel rather
fuzzy and strictly conservative although imprecise schemes promise robust and at the same time
sufficiently simple control strategies.
7Anything not yet realised is of interest for science. Thus, we look on NGN rather open minded. Things change and what
today may seem unrealistic can become state-of-the-art some time if it does not vanishes into thin air.
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Distributed routing control

Actually, resource competition is the reason for most QoS degradation. Therefore, smart load
balancing is the most effective approach to QoS delivery. We envisage a distributed routing control
scheme, which heavily utilizes inter-node signalling. For example, the ants principle could be used to
introducing dynamic adjusting of the routing tables based on locally accumulated information from
passing ants that collected the relevant information along their individual journeys.

Ant types and their rules

three types
• worker: follow the path used by the most –> follow the masses
• explorer: choose the least popular routing –> find new paths
• individualist: randomly choose from known paths –> preserve alternatives

three rules
• searching: choose path according to the ant’s type –> operate the system
• returning: add pheromones if successful –> update path information
• blocked: convert into explorer to circumvent blockage –> become creative

Note, ants never report about a blockage because that does not solve the problem and thus moaning
would be counterproductive. If they return, they have survived and thus must have found a path
around the problem, which the other ants now follow.

Future-proof network paradigms

Because electronic packet switching is not energy efficient if the packet size becomes very small
compared to the transported loads, we need to consider alternative network technologies to be
sustainable. Potential candidates are for example optical burst switching (OBS), if we rigorously
ignore what has been proposed thereon since the exaggerated popularity of [41] has torpedoed the
creative process, or more generally the flow transfer mode (FTM), introduced in [11] and roughly
sketched in figure 1.38. In order to correctly position these, we should compare them with both,
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Figure 1.38: Alternative all-optical realisable network technology – FTM

optical time division multiplexed (OTDM) circuit switching and optical packet switching (OPS).
OBS based on [41] fails the effectiveness check [42].

In figure 1.39 an OBS connection from an ingress edge node across two core nodes to an egress
edge node is depicted as chain of queueing and loss systems. The node at the end with the service
rate µd is the burst de-assembly processor, not a burst handling switch or alike. The egress node
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Figure 1.39: Burst switched connection across two core nodes

reduces in the model to a single server, being the switching matrix port connected to the optics-to-
electronics (OE) converter available for bursts destined to this node. This port needs to be modelled,
because two concurrently arriving burst cannot be received if only one OE converter is foreseen. For
more OE converters the number of egress servers increases accordingly. The mixture of queueing
and loss systems results from the in principle buffer less operation, and the fact that at ingress and
egress nodes we evidently need to handle bursts in electronics and thus can store bursts as long as
required.

Smart channels – the long term vision

The core feature to end-to-end QoS is in our view decentralised control and quality driven hop-by-hop
routing. Local adjustments provide the option to responsively change the per hop behaviour when
necessary, but demands the option to influence the traffic treatment along the remaining downstream
path in order to compensate the local change. In the end, this reveals an alternative development path
toward autonomous, quality controlled packet switched networks: smart communication channels
based on dynamically adjusted, autonomously operated, flow aware, inter-communicating network
elements that establish swarm behaviour in order to jointly provision all the dynamically required
channels in parallel.

However, this is a long path to go. A single thesis can hardly cover all issues to be solved along
this path. The provided survey and models of key elements represents a first step only. Recently, the
development seems to focus on rather static options to reach end-to-end QoS. However, the author of
this thesis is convinced that in the long term these recent approaches will dissolve beneficially into
fully decentralised schemes.



2 Traffic and system models

In this chapter we introduce stochastic processes and concepts to join these in order to get
mathematical models with characteristics that conform to realistic assumptions on data traffic arrival
and propagation hop-by-hop as well as end-to-end. The traffic arrival and propagation end-to-end
refers to the load arriving to the resources that establish a communication connection. We refer to it
as the arrival process Ai(τ), because it defines the incoming load that the systems that control the
local resources need to handle hop-by-hop. The hop-by-hop serving we refer to as the service process
Si(τ), because it is determined by the protocols locally applied to handle the passing traffic load. The
output of each such system we refer to as departure process Di(τ). For chained systems the input of

S1(τ) S2(τ) · · · Si(τ) · · · Sn(τ)
A1(τ)

D1(τ)

A2(τ)

D2(τ)

A3(τ)

Di−1(τ)

Ai(τ)

Di(τ)

Ai+1(τ)

Dn−1(τ)

An(τ)

Dn(τ)

the following system equals the output of the previous system. For meshed systems the input to a
system is the aggregation of the outputs of all connected systems that can forward traffic load to it.

Technically controlled systems are in practice rather not stochastic. However, the variability of
the possible input parameters and the cascaded control mechanism typically involved in modern
processor controlled mechanisms, cause a degree of freedom that hardly can be considered in its
entirety. Only for specific situations we can state exemplary responses precisely. Therefore, if we
can define a stochastic process that yields approximately the same response for any specific situation,
it can be used to model the technical system without loss.

To be mathematically traceable we intend to model the characteristic with a maximally simple
distribution function. We will see in the subsequent chapters that even for negative exponentially
distributed traffic end-to-end connection models cannot be solved analytically, without additional
simplifications. Therefore, the more precise we model the traffic the more we will need to simplify
the model, which deteriorates the precision of the model. A good balance between the accuracy of
the traffic model and the system simplification needs to be achieved.

Process models are based on the combination of well known random processes. Most famouse
and commonly used with communications are the Poisson, the Pareto, and the Markov arrival
process. These show specific properties and may be combined to model more complex behaviours.
In the following we first introduce these and some more well know processes and their specific
properties, before we proceed to the adjusting of these processes to match design specific system
behaviours or recorded traces thereof. Later on we split the local serving into a waiting phase and
a decoupled service process. This adds the option to explicitly analyse the queueing of incoming
load and reduces the complexity of the service process to the serving of individual load chunks. It
leads us directly to the well known queueing systems and their analysis. With queueing systems we
strictly use λ for arrival rates and µ for service rates. Until then, we look at singular processes only,
and defining special meanings for λ and µ is not possible, because the presented process may be used
to model an arrival process or a service process likewise. Thus, in the following we may use λ and µ
interchangeably.
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2.1 Markovian processes

The term Markov process stands for all processes that fulfil the Markov property of being memoryless:
for a defined current state the future outcome is independent from whatever happened in the past.
More particular, the future evolution of the process is independent of how that current state has been
reached. Only the current state may, and commonly does, influence the near future. This property
is fulfilled by the negative exponential distribution, and therefore any uncorrelated combination of
negative exponential distributions fulfils the Markov property as well.

With Markov chains such renewal processes can be modelled. Each phase in such a chain adds a
single negative exponential component that itself can be modelled by a Poisson process. The linkage
of the intermediate phases defines the resultant properties, and for many regular combinations known
random processes result.

Markovian distributions and their abbreviations

• M Markovian: results from a single Poisson process – memoryless
• Geo Geometrical: discrete pendant to M – memoryless
• Ek Erlangian: series of k equal M’s – smoother than M

• H−k Hypo-exponential: series of k M’s – generalised Erlang Ek(~λ)
• H+

k Hyper-exponential: k M’s in parallel – more bursty than M

• Coxk Coxian: tapped series of k M’s – mixed generalised Erlang Ek(~p,~λ)
• Phk Phase-type: k M’s in a mesh – most general renewal process
• MAP Markov arrival process – generalised Poisson process

Note that renewal processes are memoryless only in respect to subsequent departure events. The
internal transitions in between departure events commonly depends on the recent past, meaning the
random walk that determines the chain of intermediate states passed to reach the current state since
the last event occurred. The MAP is memoryless only in respect to subsequent departures related
to the same transition among the phases, the Markov chain, that defines the process. The departure
events within a chain of events that occur in between two subsequent departures related to the same
transition are not independent.

2.1.1 The Poisson process

The Poisson process is one of the most common, at the same time most special random processes. We
briefly introduced it in section 1.5.1 for its importance, and repeat it here for completeness of chapters.
The Poisson process generates negative exponentially distributed inter-event times τi,i+1 = ti+1− ti,

τ 0,1 

t 1 t 2 t 3 t 4 ... t i t i+1 

τ 1,2 τ 2,3 τ 3,4 ... τ i,i+1 

t 0 

τ τ τ τ 

N(τ) N(τ) N(τ) N(τ) 

time 

τ 

N(τ) 

with uniformly distributed event occurrence times ti, and Poisson distributed number of events N(τ)
per time interval τ.

P[N(τ)=n] =
(λτ)n

n!
e−λτ (2.1)
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All events are independent and identically distributed (i.i.d.), the inter arrival time τi,i+1 neither
depends on the event’s-index i nor the time since the last arrival τi,now.

P[τi,i+1 > τi,now + τ|τi,i+1 > τi,now] = P[τi,i+1 > τ] = P[N(τ) = 0] = e−λτ (2.2)

Obviously, the probability that the inter-event-time τi,i+1 exceeds a certain duration τ must equal
the probability that in an interval with length τ no events occur.

P[τi,i+1 > τ] = P[N(τ) = 0] (2.3)

This property provides an important relation, which is frequently used to swap between probabilities
of event numbers and event times. It also relates to the important property that, due to the uniform
distribution of occurrences within any time interval, the proportion of occurrences at different system
states equals the probabilities of these states. This property is known as the PASTA law (Poisson
arrivals see time averages).

n

pmf of N(τ)

τ= 1
4

τ=1
τ=4

0.0

0.2

0.4
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0.8

1
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τ

pdf of τi,i+1
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0.8

1
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Figure 2.1: Event-count and inter-event-time distribution for λ = 1

Note that the Poisson distribution is a discrete distribution that depends on both, λ and τ. The
dotted lines in figure 2.1 are shown for better visualisation only; N(τ) is not existent for n /∈ N0. The
negative exponentially distributed inter-event-time distribution shown on the right is continuous and
depends on λ only. The negative exponentially distributed inter-event times alone are not sufficient
to constitute that a Poisson process generated them. However, we may use the Poisson process
whenever we want to generate negative exponentially distributed events.

2.1.2 Phase-type distributions

Phase-type distributions result if we combine individual phases, where each intermediate phase
is described by a negative exponential holding time distribution. Any number of intermediate
phases may be combined in any structure. Only the holding time distributions of phases have to be
independent.

Phase-type distributions
• result from k interrelated Poisson processes, k ≥ 1 represented by

– a subgenerator matrix T [k×k],
– an entry-vector α[k], and
– a resultant exit-vector t0 =−T 1,

• which together specify the

◦ pdf : fPh(x) = αeT xt0, (2.4)

◦ cdf : FPh(x) = 1−αeT x1, (2.5)
◦ moments: E[XPh

n] = (−1)nn!αT−n1. (2.6)
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• The generator matrix is defined by

Q =

[
T t0
0T 0

]
=




t11 t12 · · · t1k t0,1 =−∑ t1 j

t21 t22 · · · t2k t0,2 =−∑ t2 j
...

...
. . .

...
...

tk1 tk2 · · · tkk t0,k =−∑ tk j

0 0 · · · 0 0



[k+1×k+1]

(2.7)

where ∑
j| j 6=i

tij ≤ 1 ∀i is required to assure valid exit rates t0,i = p0,iλi.

The phase-type distributions are in theory dense in the field of all positive-valued distributions.
Thus, they can represent any such distribution. However, they are light-tailed and although heavy-
tailed can be approximated with increasing number of phases, it remains in practice always an
approximation, because for perfect heavy-tail fitting an infinite number of phases would be required.

Special phase-type examples

Being defined as combination of several phases it is evident that if we only specify one phase we
get the negative exponential distribution. Similarly, for special combinations we get the well known
distributions listed here.

• M (Markovian)

λ
M(λ)

Figure 2.2: Poisson generator

T =
[
−λ

]
[1×1] , α =

(
1
)
[1] ⇒ Q =

[ −λ λ
0 0

]
(2.8)

Negative exponential distribution
– pdf :

fM(x) = λe−λx, x≥ 0

– cdf :
FM(x) = 1− e−λx, x≥ 0

– moments: E[Xn
M] = n!λ−n

E[XM] =
1
λ

Var(XM) =
1
λ2

– coefficient of variation:

cXM =

√
Var(XM)

E[XM]
= 1

• Ek (Erlangian)

... ...λ λ λ λ Ek(λ)

Figure 2.3: Erlang distribution generator
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T =




−λ λ 0 · · · 0

0 −λ λ . . .
...

...
. . . . . . . . . 0

0 · · · 0 −λ λ
0 · · · 0 0 −λ



[k×k]

,α =




1
0
...
0
0




[k]

(2.9)

Erlang-k distribution
– pdf :

fEk(x) = λ
(λx)k−1

(k−1)!
e−λx, x≥ 0

– cdf :

FEk(x) = 1−
k

∑
i=1

(λx)i−1

(i−1)!
e−λx, x≥ 0

– moments:
E[XEk ] =

k
λ

Var(XEk) =
k
λ2

– coefficient of variation:

cXE =
1√
k
≤ 1

• Hk (Hyperexponential)

...
...

λ1

λ2

λi

λk

α1

α2

αi

αk

Hk(~α,~λ)

Figure 2.4: Hyperexponential distribution generator

T =




−λ1 0 0 · · · 0

0 −λ2 0
. . .

...
...

. . . . . . . . . 0
0 · · · 0 −λk−1 0
0 · · · 0 0 −λk



[k×k]

,α =




α1
α2
...

αk−1
αk




∑αi=1

(2.10)

Hyper-exponential distribution
– pdf :

fHk(x) =
k

∑
j=1

αjλje−λjx, x≥ 0

– cdf :

FHk(x) =
k

∑
j=1

αj

(
1− e−λjx

)
, x≥ 0
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– moments:

E[XHk ] =
k

∑
j=1

αj

λj
Var(XHk) = 2

k

∑
j=1

αj

λ2
j
−
(

k

∑
j=1

αj

λj

)2

– coefficient of variation:

cXH =

√√√√√
2 ∑ αj

λ2
j(

∑ αj
λj

)2 −1≥ 1

For λi = λ ∀i ⇒ degenerated case of a simple Markov distribution M(λ).

• Coxk (Coxian or mixed generalised Erlang)

...

...

...

...λ1 λ2 λi λk
p1 p2 pi pk(= 0)

Cox(~p,~λ)

Figure 2.5: Cox distribution generator

T =




−λ1 p1λ1 0 · · · 0

0 −λ2 p2λ2
. . .

...
...

. . . . . . . . . 0
0 · · · 0 −λk−1 pk−1λk−1
0 · · · 0 0 −λk



[k×k]

,α =




1
0
...
0
0




[k]

(2.11)

E
[
XCox(~p,~λ)

]
=

1
λ1

+ p1

( 1
λ2

+ p2
( 1

λ3
+ p3( . . . )

))

For pi = 1 ∀i<k ⇒ hypoexponential distribution H−k (~λ),
also known as generalised Erlang distribution Ek(~λ).

... ...λ1 λ2 λi λk
Ek(~λ)

Figure 2.6: Generalised Erlang distribution generator

E
[
XEk(λ̃)

]
=

1
λ1

+
1
λ2

+ · · ·=
k

∑
j=1

1
λj

For λi = λ ∀i ⇒ mixed Erlang distribution Ek(~p∗) results,
where p∗j = (1− pj)∏ j−1

i=1 pi for j = 1.. k.
The definition of mixed Erlang and mixed generalised Erlang as parallel-serial combination
of phases shown in figure 2.7 is self explanatory and useful for Laplace transformation and
calculations in general. Due to the many more states required, it is not efficient to use this to
define the sub-generator matrix T . The Cox form uses the least number of phases required to
define the same distribution and yields the non-reducible sub-generator matrix T directly.
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... ...

...

...... ...

p∗1

p∗2

p∗k

λ

λ λ

λ λ λ

Ek(~p∗)

Figure 2.7: Mixed Erlang distribution generator
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Figure 2.8: pdf and cdf of M[λ=1] (dotted), E3[λ=3] (dash-dotted), H2[λ=
(0.75

1.5

)
,α=

(0.5
0.5

)
] (dashed), and

homogeneous Cox4[λi=1.875, pi=0.5] (solid)

Examples for the above sketched special cases of phase-type distributions are shown in figure
2.8. The distributions parametrisation has been chosen to yield unit mean. For the Cox4 this has been
iteratively achieved up to 4 digits by adjusting its λi.

The first five raw moments of the special phase-type examples shown in figure 2.8 are

E[XE3 ] = 1.00, E
[
XE3

2]= 1.33, E
[
XE3

3]= 2.22, E
[
XE3

4]= 4.44, E
[
XE3

5]= 10.37

E[XCox4 ] = 1.00, E
[
XCox4

2]= 1.85, E
[
XCox4

3]= 4.78, E
[
XCox4

4]= 15.53, E
[
XCox4

5]= 60.20

E[XM] = 1.00, E
[
XM

2]= 2.00, E
[
XM

3]= 6.00, E
[
XM

4]= 24.00, E
[
XM

5]= 120.00

E[XH2 ] = 1.00, E
[
XH2

2]= 2.22, E
[
XH2

3]= 8.00, E
[
XH2

4]= 40.30, E
[
XH2

5]= 260.74

from which we can directly calculate their coefficient of variation cX .

cX =

√
Var(X)

E[X ]
=

√
E[X2]− E[X ]2

E[X ]
⇒ cXE3

= 0.57, cXCox4
= 0.92, cXM = 1.00, cXH2

= 1.10

The homogeneous Cox distribution introduced in figure 2.8 is commonly used to model hypo-
exponential distributions, because it allows to generate distributions with cX ≤ 1. It belongs to the
mixed Erlang family (same λ∀i), and is further constraint to geometrically decreasing p∗i = pi. These
restrictions effectively reduce the degrees of freedom to three, being the number of phases k, the rate
of these phases λ, and the branching probability p. To match a certain mean value we can choose
two, to match mean and variation we may still choose one freely. How λ and p are adjusted to match
the intended distribution is presented in section 2.3.
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General phase-type definition

The above presented special cases show very sparsely populated generator matrices. In general all
transitions between phases may be defined. A possibly completely filled transition matrix defines
most generally any phase-type distribution.

• Phk (Phase-type)

T =




−λ1 p12λ1 · · · p1kλ1

p21λ2 −λ2
. . . p2kλ2

...
. . . . . .

...
pk1λk pk2λk · · · −λk




∑j pij≤1

, α =




α1
α2
...

αk




∑i αi=1

(2.12)

∑
j| j 6=i

pij ≤ 1 assures exit probabilities p0,i = 1− ∑
j| j 6=i

pij ≥ 0 and thus exit rates t0,i = p0,iλi ≥ 0

generator matrix

Q =

[
T t0
0T 0

]
=




−λ1 p12λ1 · · · p1kλ1 p0,1λ1
p21λ2 −λ2 · · · p2kλ2 p0,2λ2

...
...

. . .
...

...
pk1λk pk2λk · · · −λk p0,kλk

0 0 · · · 0 0



[k+1×k+1]

(2.13)

• Ph5 (Meshed phase-type example)

λ2

λ1

λ3

λ5

λ4

α1
α2
α3

α4
α5

p12

p13
p23

p34p35

p45

p51

Ph5(~α, p,~λ)

Figure 2.9: Phase type generator example

T =




−λ1 p12λ1 p13λ1 0 0
0 −λ2 p23λ2 0 0
0 0 −λ3 p34λ3 p35λ3
0 0 0 −λ4 p45λ4

p51λ5 0 0 0 −λ5



, α =




α1
α2
α3
α4
α5




∑αi=1

(2.14)

We note that there are quite many zeros in the T matrix, however, this is only for presentation
simplicity. The matrix of a fully meshed generator would be completely filled. The diagonal elements
show the inverse of the mean holding time (τh(i) = 1

λi
). A zero holding time would indicate transient

states, and an infinite holding time can result for absorption states only. For steady-state state
probability analysis the former can be neglected and the latter may not exist.
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To exemplify how the equations 2.4, 2.5, 2.6 for phase type processes can be applied, we need
concrete figures. We set

α =




0.10
0.15
0.20
0.25
0.30




p =




− 0.4 0.4 0.0 0.0
0.0 − 0.8 0.0 0.0
0.0 0.0 − 0.4 0.4
0.0 0.0 0.0 − 0.8
0.8 0.0 0.0 0.0 −




λ =




3
4
5
6
7




and get

T =




−3 1.2 1.2 0 0
0 −4 3.2 0 0
0 0 −5 2.0 2.0
0 0 0 −6 4.8

5.6 0 0 0 −7




and t0 =




0.6
0.8
1.0
1.2
1.4



.

Now we can numerically calculate the pdf and cdf depicted in figure 2.10, using the expm(T)

function provided by Octave to calculate the matrix exponential eT x in equation 2.4 and 2.5.
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Figure 2.10: pdf and cdf of Ph5 example (solid), H2[λ=
(0.75

1.5

)
,α=

(0.5
0.5

)
] (dashed) and M[λ=1] (dotted)

How to interpret the very similar curves shown in figure 2.10, methods to present them more
separated, and conclusions that may be derived from curve shapes, are discussed later on in
section 2.3.1. The moments of the example phase-type distribution, calculated using equation
2.6, compared to the moments of the hyperexponential H2 and the negative exponential distribution,
are:

E[XPh5 ] = 1.09, E
[
XPh5

2]= 2.43, E
[
XPh5

3]= 8.18, E
[
XPh5

4]= 36.68, E
[
XPh5

5]= 205.69

E[XH2 ] = 1.00, E
[
XH2

2]= 2.22, E
[
XH2

3]= 8.00, E
[
XH2

4]= 40.30, E
[
XH2

5]= 260.74

E[XM] = 1.00, E
[
XM

2]= 2.00, E
[
XM

3]= 6.00, E
[
XM

4]= 24.00, E
[
XM

5]= 120.00

Calculating the coefficient of variation cX we recognise that the above analysed phase-type
example is more bursty than the negative exponential distribution (cM = 1), but less bursty than the
hyper-exponential process with λ = (0.75,1.5) and α = (0.5,0.5).

cX =

√
Var(X)

E[X ]
=

√
E[X2]− E[X ]2

E[X ]
⇒ cPh5 = 1.0256 cH2 = 1.1055

Due to the slightly too high mean value of the assumed phase-type process we cannot conclude
on its characteristic by comparing the second raw moments directly. That the Ph5 example is so
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close was pure chance, its parameters were intuitively chosen toward achieving unit mean. The more
phases we allow, the more degrees of freedom we have in selecting different parameters and the
more difficult it becomes to define a process that meets certain characteristics. Commonly, H2 and
homogeneous Cox (mixed Erlang Ek(λ, p)) with equal λi ∀i and pi ∀i<k are used [34]. These two are
sufficient to perfectly match the first two moments for cX > 1 and cX < 1, respectively. How this is
performed is outlined in section 2.3.

2.1.3 Markov Arrival Process – MAP

In 1979 M. F. Neuts introduced a versatile Poisson process [43] that later became known and referred
to as the Markov arrival process (MAP). It is a quite general tool to model point processes, which still
enables analytic treatment. Evidently, complex processes cause complex formulas. However, using
the MAP to describe them, their structure is regular and can be handled by computers. Therefore, a
MAP based definition of a process is well suited to be used with simulation studies, because it is a
maximally flexible approach to process specification.

Please note that the term arrival in its name does not at all restrict this tool to arrival processes.
For consistency in understanding we follow the community in the tradition to refer to this tool by its
most widely known name, stressing that in general, and here very explicitly, a name may have no
inherent meaning.

To explain the MAP and how a process can be defined using a MAP we reconsider the phase
type generator (equation 2.13). We identify two types of transitions: internal ones that do not cause
events, and exiting transitions that do cause events. In case of phase type renewal processes the
generator is restarted after an event occurred, and the re-entry is independent of the event causing
transition. If we include the event causing re-entry transitions in the generator phases mesh, we get
the MAP definition. The transition rates for the MAP definition of a Ph(~α,T )-distribution are

non-event causing r∗ij = πitij = πi pijλi

event causing rij = πi(1−∑
j

tij)αj = πi(1−∑
j

pij)λiαj

where πi is the phase’s probability, being in steady state the time proportion that the generator is
in phase i. Note that this is not equal to the holding time 1

λi
, it also depends on the likelihood with

which the generator passes the individual phase.

We now relax the renewal condition that re-entries must be independent of the current event, and
obtain the general MAP definition. Figure 2.11 shows an example for a 5-phase MAP definition.

λ1 λ2 λ3 λ4 λ5
r12

r∗15
r∗24 r35

r31

r∗31

r43

r∗52

r55

Figure 2.11: MAP definition example

In figure 2.11 the dashed transitions show non-event causing internal transitions, and the solid
transitions show the event causing transitions. Note that we need self-loops to consider the case that
the process remains in a generator phase after an event occurred (r55). And there also may exist
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ij-transitions that may or may not be related with an event (r31,r∗31). Latter demands to split the
transitions into two sets, and thus we need two matrices to explicitly define the process’s generator.

D0 =




−λ1 0 0 0 r∗15
0 −λ2 0 r∗24 0

r∗31 0 −λ3 0 0
0 0 0 −λ4 0
0 r∗52 0 0 −λ5




D1 =




0 r12 0 0 0
0 0 0 0 0

r31 0 0 0 r35
0 0 r43 0 0
0 0 0 0 r55




(2.15)

In matrix D0 we gather all non-event causing transitions r∗ij and the phase’s inverse holding times,
comprising the negative diagonal entries −λi. In matrix D1 we gather all event causing transitions rij,
which evidently all need to be positive, if unequal zero. Both matrices are k× k matrices, where k is
the number of generator phases, and the generator matrix Q results from simple matrix addition

QMAP = D0 +D1. (2.16)

Compared to the phase-type generator there is no explicit exit option from the MAP generator,
and thus we do not need an extra column to define the generator matrix. Still, to achieve a stationary
generator every row in Q needs to sum to zero, ∑j qij = 0.

The matrices D0 and D1 completely specify the MAP, and solving the equation system given by

πQ = 0, ∑πi = 1, πi ∈ [0.. 1]

provides the invariant probability vector π of the continuous time Markov chain that underlies the
process. The total arrival rate λ∗ of the MAP is given by

λ∗ = πD11. (2.17)

Returning to the phase-type generator we can now specify the Ph-process generator using the
MAP approach:

D0 = T D1 =~t0×~α. (2.18)

For the Ph-example given in 2.1.2 equation 2.14 we get:

D0 =




−λ1 p12λ1 p13λ1 0 0
0 −λ2 p23λ2 0 0
0 0 −λ3 p34λ3 p35λ3
0 0 0 −λ4 p45λ4

p51λ5 0 0 0 −λ5



, D1 =




t0,1α1 t0,1α2 t0,1α3 t0,1α4 t0,1α5
t0,2α1 t0,2α2 t0,2α3 t0,2α4 t0,2α5
t0,3α1 t0,3α2 t0,3α3 t0,3α4 t0,3α5
t0,4α1 t0,4α2 t0,4α3 t0,4α4 t0,4α5
t0,5α1 t0,5α2 t0,5α3 t0,5α4 t0,5α5



,

where we note that D1 is completely filled. High filling is typical due to the per event renewal
property of phase-type distributions: every possible exit state has to be connected with every possible
entry state. The event causing transition rates rij of the corresponding MAP representation result as
exit-rate t0,i times the entry probability αj. In case we may exit from any state and may re-enter to
any state, than D1 has to be completely filled. For the numeric example in 2.1.2 we get

Q =




−3 1.2 1.2 0 0
0 −4 3.2 0 0
0 0 −5 2.0 2.0
0 0 0 −6 4.8

5.6 0 0 0 −7



+




0.6
0.8
1.0
1.2
1.4



×




0.10
0.15
0.20
0.25
0.30




=




−2.94 1.29 1.32 0.15 0.18
0.08 −3.88 3.36 0.20 0.24
0.10 0.15 −4.80 2.25 2.30
0.12 0.18 0.24 −5.70 5.16
5.74 0.21 0.28 0.35 −6.58




where evidently every row sums to zero.
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For completeness we need to note that the MAP definition can be used to specify transient
processes as well. These result if the topology of the phases contains transient parts and absorbing
parts, being areas that cannot be reached again after a transition out of the area occurred, and areas
that cannot be left any more once entered, respectively. Considering such expresses the utility of
the MAP tool. However, to model distribution functions we need steady processes and thus we
consider henceforth structures that neglect transient areas, and exclude absorbing phases. Transient
areas have no influence on the steady state behaviour, and absorbing phases would stop the generator
prior reaching the steady state. Each absorbing area defines the steady state of a stable generator. If
more than one absorbing area is possible we need to consider them independently. They actually are
independent, they do not influence each other, and therefore, we can join the individual results by
considering the likelihood to enter either absorbing area as weighting factor.

2.1.4 Composed MAP processes and the extension to batch arrivals

Having outlined the versatile MAP tool we briefly introduce two process examples very useful
for practical problems, being the Interrupted Poisson Process (IPP) and the more general Markov
Modulated Poisson Process (MMPP). We use these special cases to highlight some features of the
MAP as well as potential inconsistencies that result from different definition approaches. Next we
outline composed processes, where the MAP approach is used to join phase diagrams of particular
processes in order to design processes that incorporate different characteristics.

Concluding the MAP, we sketch its extension to consider batched arrivals. Actually this is an
extension of the MAP approach. However, it is quite straightforward, and therefore we present the
Batch Markovian Arrival Process (BMAP) here in line.

Interrupted Poisson process – IPP

Consider the system shown on the left side of figure 2.12. The switch causes negative exponentially
distributed events only during randomly occurring time intervals, where the duration of the intervals
during which events may or may not occur are themselves negative exponentially distributed.

λ

M M

εon|off

off on

εon

εoff

λ

Figure 2.12: Interrupted Poisson process (IPP) and its definition as MAP

If the on-off intervals are given by the switching rates εon and εoff, than the average on-duration
τon =

1
εoff

and the average off-duration τoff =
1

εon
, because the rates define how fast the current state

is left toward the state that is shown as index with the according ε. We can thereby immediately
calculate the average event rate

λ∗ = λ
τon

τon + τoff
= λ

1
εoff

1
εoff

+ 1
εon

= λ
εon

εon + εoff
,

where this on-off mismatch between τ- and ε-indices is nicely hidden.

Using the MAP approach we get

QIPP = D0 +D1 =

[
−εon εon

εoff −(εoff +λ)

]
+

[
0 0
0 λ

]
=

[
−εon εon

εoff −εoff

]
. (2.19)

Quite interestingly equals the IPP stochastically a two-phase hyper-exponential process. To prove
this, we define the H2 process as MAP (figure 2.13) and compare the two MAP structures.
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π1

π2

p2λ1p1λ2

p1λ1

p2λ2

D0 =

[
−λ1 0

0 −λ2

]
, D1 =

[
p1λ1 p2λ1
p1λ2 p2λ2

]

Q =

[
−(1−p1)λ1 p2λ1

p1λ2 −(1−p2)λ2

]
=

[
−p2λ1 p2λ1

p1λ2 −p1λ2

]

Figure 2.13: MAP representation of a H2 generator

For εon = p2λ1 and εoff = p1λ2 the two generator matrices become identical, which proves that
the two processes are stochastically equivalent.

Markov modulated Poisson process – MMPP

Extending the above introduced Poisson process to provide multiple phases during which events
occur at different rates λi we get the so called Markov modulated Poisson process (MMPP). The
most commonly used model is the two phases MMPP where the event generator toggles negative
exponentially distributed between two event generation rates. This is very similar the the IPP example
above, and using the MAP approach we get

QMMPP2 = D0 +D1 =

[
−(ε12 +λ1) ε12

ε21 −(ε21 +λ2)

]
+

[
λ1 0
0 λ2

]
=

[
−ε12 ε12

ε21 −ε21

]
, (2.20)

which becomes the IPP if we set λ1 = 0.

If we consider more rates, meaning phases, different switch-over policies can be define. Consider
the system shown on the left side of figure 2.14, where the different rates are cycled through in
round-robin order with the individual switch-over rates ε12, ε23, ε31.

λ1

λ2

λ3

M M

ε12|23|31

λ1 λ2 λ3ε12 ε23

ε31

λ1 λ2 λ3

Figure 2.14: Markov modulated Poisson process (MMPP) and its definition as MAP

The duration of the time intervals during which events are generated at rate λi are still negative
exponentially distributed, and their average durations are given by τ1 =

1
ε12

, τ2 =
1

ε23
, τ3 =

1
ε31

. We
can thereby immediately calculate the average event rate of the generator

λ∗ =
τ1λ1 + τ2λ2 + τ3λ3

τ1 + τ2 + τ3
=

λ1
ε12

+ λ2
ε23

+ λ3
ε31

1
ε12

+ 1
ε23

+ 1
ε31

=
ε23ε31λ1 + ε12ε31λ2 + ε12ε23λ3

ε12ε23 + ε12ε31 + ε23ε31
.

Using the MAP approach we get

Q =



−(ε12 +λ1) ε12 0

0 −(ε23 +λ2) ε23
ε31 0 −(ε31 +λ3)


+




λ1 0 0
0 λ2 0
0 0 λ3


=



−ε12 ε12 0

0 −ε23 ε23
ε31 0 −ε31


 . (2.21)
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If we now define a different switch-over policy we get a different generator. Consider the system
shown on the left side of figure 2.15, where the different generation rates are switched among
neighbouring phases only, with the switch-over rates ε12, ε21, ε23, ε32.

λ1

λ2

λ3

M M

ε12|21

ε23|32

λ1 λ2 λ3

ε12

ε21

ε23

ε32

λ1 λ2 λ3

Figure 2.15: Alternate Markov modulated Poisson process (MMPP) and its definition as MAP

The duration of the time intervals during which events are generated at rate λi are still negative
exponentially distributed, and their average durations are given by τ1 =

1
ε12

, τ2 =
1

ε21+ε23
, τ3 =

1
ε32

.
Here we cannot immediately calculate the average event rate of the generator, because the number of
phase visits is not equal. Intuitively we might think that the middle state would be visited twice as
often; however, if we set one outgoing ε to zero, we recognise that the phase probabilities depend on
the actual switch-over rates. We need to solve the equilibrium equations for the phase probabilities
πi first.

−π1ε12 + π2ε21 + 0 = 0
π1ε12 − π2(ε21+ε23) + π3ε32 = 0
0 + π2ε23 − π3ε32 = 0
π1 + π2 + π3 = 1

⇒ π =




ε21ε32
ε12ε23+ε12ε32+ε21ε32ε12ε32
ε12ε23+ε12ε32+ε21ε32ε12ε23
ε12ε23+ε12ε32+ε21ε32


 (2.22)

Having the phase probabilities, the average event generation rate can be immediately calculated by

λ∗ = π1λ1 +π2λ2 +π3λ3 =
ε21ε32λ1 + ε12ε32λ2 + ε12ε23λ3

ε12ε23 + ε12ε32 + ε21ε32
.

Using the MAP approach we get

Q =



−(ε12+λ1) ε12 0

ε21 −(ε21+ε23+λ2) ε23
0 ε32 −(ε32+λ3)


+




λ1 0 0
0 λ2 0
0 0 λ3


=



−ε12 ε12 0

ε21 −(ε21+ε23) ε23
0 ε32 −ε32


 (2.23)

and recognise that the generator matrix Q states the equilibrium equations required to calculate the
phase probabilities vector~π.

Qπ = 0 ⇒ π = Q−1 0 (2.24)

As common with equilibrium equations, the matrix is singular and the above stated equation cannot
be solved because the right equation corresponds to a division of Q by the zero vector~0. We have to
replace one row by the side condition that assures that the generator is in some phase at any time,
being ∑i πi=1. See equation 2.22, where this step has been applied explicitly.

The simple examples shown above indicate how useful the MMPP approach is. Whenever it is
possible to identify negative exponentially distributed phases with stable mean event rates, and we
know how long these phases in average last until a next phase is entered, and finally also know the
transition probabilities among phases, being the switch-over policy, than we can immediately define
the MMPP that models the process in total.
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Composing of a MAP processes by joining different processes

The MMPP presented above enables us to design processes composed of individual event generating
Markov phases. Using the MAP approach, we can extend this to the composition of processes by
combining different basic processes, which themselves are compositions of not necessarily event
generating Markov phases. For example, an Erlang distributed interruption period can be integrated
within a hyper-exponential generator, as shown in figure 2.16.

h1

h2

e1 e2 p2λ1p1λ2

p1λ1

p2λ2

p0λ3

p0λ3

λ3
p1λ3

p2λ3

Figure 2.16: H2 generator with E3 distributed interruptions

D0 =




−λ3 λ3 0 0
0 −λ3 p1λ3 p2λ3

p0λ3 0 −(λ1+p0λ3) 0
p0λ3 0 0 −(λ2+p0λ3)


 , D1 =




0 0 0 0
0 0 0 0
0 0 p1λ1 p2λ1
0 0 p1λ2 p2λ2




Q =




−λ3 λ3 0 0
0 −λ3 p1λ3 p2λ3

p0λ3 0 p2λ1−p0λ3 p2λ1
p0λ3 0 p1λ2 p1λ2−p0λ3




In this example we use p0 for the interruption probability and p1, p2 for the conditional generation
rate probabilities, given that the generation is currently not interrupted. Thus, p1 + p2 = 1 and
p0 ∈ [0.. 1] can be independently chosen. Still, the sum of all phase probabilities πi needs to be one
(∑πi=1). We can derive them step by step; first we solve the equilibrium equations for πe and πh,
the probability to be interrupted or not, respectively

πe2︸︷︷︸
=πe/2

(p1+p2︸ ︷︷ ︸
=1

)λ3 = (πh1+πh2︸ ︷︷ ︸
=πh

)p0 λ3 ⇒ πe

2
= πh p0 =⇒

πe+πh=1
πe =

2p0

1+2p0
, πh =

1
1+2p0

,

and secondly, we split these according to the rules of the internal processes, to get

πe1 = πe2 =
p0

1+2p0
, πh1 =

p1

1+2p0
, πh2 =

p2

1+2p0
,

entirely expressed by the pi only, which corresponds with the known rate independence of the basic
processes (πi(E) = 1

k , πi(H) = pi).

The here applied solving approach is an example for the de-compositioning of a complex process
into encapsulated less complex processes. Here it is evident, because we composed the process by
joining less complex ones. The application of this method where it is not so apparent, is discussed in
detail where it has been used to study particular systems throughout upcoming chapters.

The example roughly indicates the multitude of combination options. Whenever we expect
certain distributions during different time intervals, we can try to model the process by combining
their MAP representation into a bigger MAP. However, if we need to fit the model parameters to
measured statistical figures, than the least complex, meaning the model with the smallest number
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of phases, is the best choice. The models typically provide more parameters than there are figures
to match them to. Consequently we need to choose several and fit the remaining. However we do
this, the designed model’s behaviour will fit the figures, but it may behave strange in other aspects,
depending on the choices we made. Statistical matching yields at least similar processes, but not
necessarily identical ones.

Batch Markovian arrival process – BMAP

A restriction of all the above models is that at a certain time only a single event may occur. For
time continuous systems this can always be assumed. However, if events occur in groups, meaning
that many events occur in a very short time interval followed by a comparably long time interval
during which no events occur, and, in addition, we do not need to care for the order of events within
these groups and the group size is independent and identically distributed over group arrivals, than,
it is straightforward to model the group arrival distribution and the group size distribution by two
independent processes. The groups we call batches, and we now consider events that correspond to a
batch-arrival together with the size of the arrived batch, being the number of events the current batch
is composed of.

If we look at the definition of the MAP (equation 2.16), we see that it is composed of two
matrices, D0 holding the transitions that do not relate to event occurrences, and D1 holding the
transitions that are related with the occurrence of an event. If we extend this by matrices Dn holding
transitions related to the occurrence of n events, meaning related to the event that an events-batch of
size n occurs, than we get the definition of the Batch Markovian Arrival Process (BMAP).

QBMAP = D0 +D1 +D2 +D3 + . . . =
∞

∑
i=0

Di (2.25)

The matrices Di completely specify the BMAP, and solving the equation system given by

πQ = 0, ∑πi = 1, πi ∈ [0.. 1]

provides the invariant probability vector π of the continuous time Markov chain that underlies the
process. The batch arrival rate λ(batch) is given by

λ(batch) =−πD01 (2.26)

and the total event rate λ∗ of the BMAP is given by

λ∗ = π

(
∞

∑
i=1

i Di

)
1. (2.27)

As an example for the definition of a BMAP let us consider phase-type distributed batch
occurrences, given by Ph(~α,T ), with Poisson distributed batch size Xbatch, where pi = P[x=i]
and x = E[Xbatch] = ∑ i pi are given. The sub-matrices specifying this BMAP are

D0 = T , Di = pi
(
~t0×~α

)
where ~t0 =−T 1 and pi =

xi

i!
e−x

such that

Q = T +
∞

∑
i=1

pi
(
~t0×~α

)

we see that this is not very handy due to the infinite sum. However, if the batch size Xbatch is upper
bounded, which likely is the case with real systems, the method becomes practically utile.
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2.2 Non-Markovian processes

The Markovian processes discussed in section 2.1 can in theory be used to model any characteristic.
However, some specific processes with special properties require an infinite number of phases. Thus,
the complexity to sufficiently approximate these may be intractable. Here we discuss some well
known processes that can be used instead.

Two extremes sometimes required to model real world processes are the deterministic process
(D) and the uniform distribution (U). Extending the double bounded uniform distribution we present
later on the Beta distribution (B), which can be used to model a wide range of bounded distributions,
including distributions with poles (peaks) at boundaries. Prior that, we introduce the family of
power-law distributions (P), in particular three related Pareto distribution types, because of their
heavy tails. For particular parameters these distributions can model ’chaotic’ behaviour. Note,
commonly we assume a stable and finite mean, which may not be in line with other definitions of
chaotic systems. However, in a finite world random variables with an infinite variance may appear as
if having unstable mean, because infinite variance causes an estimation problem: we need infinitely
many samples to reliably estimate the mean.

Some non-Markovian distributions and their abbreviations used hereinafter

• D Deterministic: constant distributed events – infinite memory
• U Uniform: flat distributed events – equally likely bounded area [a .. b]
• P Pareto: power-law distributed events – heavy tailed, infinite variance possible
• B Beta: double bounded event distributions – may peak at boundaries
• GI general independent: events caused by any renewal process (commonly i.i.d. arrivals)
• G general: any event distribution, potentially correlated and state dependent

2.2.1 Deterministic distribution

For deterministic distributed events the entire future is perfectly known once two occurrences have
been monitored, because the variance is zero. Strictly speaking one may argument that the outcomes
of a deterministic distributed process are not distributed at all, because they are perfectly correlated.
However, in case of asynchronouse systems and time continuouse approaches, the central limit
theorem is applicable for deterministic processes as well, and thus, D(µ) does represent an include-
able extreme case. Only for synchronised systems and transient analysis this is not possible, because
for these the initial conditions influence on the result does not decrease over time.
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Figure 2.17: pdf and cdf of the deterministic distribution D(µ) for µ=1

Figure 2.17 shows on the left the probability density function (pdf ) of D(µ), being the Dirac
delta function δ(x−µ) with intensity one positioned at the (mean) value x=µ, and on the right its
cumulative distribution function (cdf ), being the Heaviside unit-step function 1(x−µ), where the unit
step occurs at x=µ.
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Deterministic distribution

pdf : fD(x) = δ(x−µ) =

{
∞, x = µ
0, x 6= µ

(2.28)

cdf : FD(x) = 1(x−µ) =

{
0, x < µ
1, x≥ µ

(2.29)

mean: E[XD] = µ (2.30)

variance: Var(XD) = 0 (2.31)

coefficient of variation: cX = 0 (2.32)

These generalised functions are very useful for analytic analysis, because they have Laplace
transforms, δ(x−µ) ↪→ e−sµ and 1(x−µ) ↪→ e−sµ

s . They are commonly used as indicator functions
when it is necessary to integrate conditions into functions. The delta function can be used to integrate
an equality condition, and the unit-step to integrate an inequality based condition. Evidently is
1(x−µ) =

∫ x
−∞ δ(x−µ)dx and vice versa δ(x−µ) = d1(x−µ)

dx .

Concerning distributions, the Dirac delta function is commonly defined as the extreme case of
the normal distribution N(µ,σ2), because D(µ)≡ N(µ,0), the limit distribution for σ2→ 0. For here
it is worth to note that according to the theory of great numbers the deterministic distribution may be
defined as the limiting case of the Erlang distribution as well, D(µ)≡ Ek(kλ) for k→ ∞.

δ(x−µ) = lim
σ2→0

{
fN(µ,σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2

}
δ(x−1

λ
) = lim

k→∞

{
fEk(kλ) = kλ

(kλx)k−1

(k−1)!
e−kλx

}

Note, when convenient we use µ to represent mean values (durations) and λ to represent mean
rates, and that the former resemble the inverse of the latter (µ ./ 1

λ ). The mathematical prove of the
equations above is left to the experts. For now and further on, it is sufficient to recognise the equality
graphically, remembering that the pdf or cdf specify any distribution definitely. Obviously causes
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Figure 2.18: For k→ ∞ approximates Ek(λ) the deterministic D(µ) if we set λ=kµ

λ = kµ a practical problem because it forces λ→ ∞. In particular, the (k−1)! in the denominator of
the distribution function causes numeric problems for large k. The example presented in figure 2.18
for µ=1 shows that for 100 phases Ek the variance, being the width of the pdf(x), is far from
negligible, and E300 could no more be calculated by Octave [29].
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2.2.2 Uniform distribution

If all possible outcomes of a random process are equally likely, than they are uniformly distributed.
This is only possible if the sample space is restricted, meaning bounded to a certain interval on
the x-axis. If the range would not be restricted to a defined interval the probability density would
become zero for all values and a mean value would not exist. Consequently, the uniform distribution
stresses that the outcomes of a uniform distributed event generation process are definitely restricted
to a certain interval. The uniform distribution is commonly specified by the two bounds as U(a,b),
and the mean value results as µ = a+b

2 . Alternatively we might specify it also by U(a,µ), the lower
bound and the mean value, because the upper bound results as b = 2µ−a. This form is convenient
for uniform event generation process with 0 being the lower bound, which for any causal event
distribution always holds. For this case we get the interval [0<u(i)<2µ], and stipulate this interval
if only a single parameter is given U(µ)≡U(0,2µ). Anyhow, we need to note that in practice the
bounds determine the mean value of the distribution, not vice versa.

x

pdf of U(a,b)

1
b−a

a+b
2

0.0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
x

cdf of U(a,b)

1

1
b−a

0.0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Figure 2.19: pdf and cdf of the uniform distribution U(a,b) for a=1, b=4 (→ µ=a+b
2 =2.5)

Figure 2.19 shows on the left the probability density function (pdf ) of U(a,b), being a bandpass
filter function with bounds a and b and the filter gain 1

b−a , and on the right its cumulative distribution
function (cdf ), being a slope function, where between a and b the value rises linearly from 0 to 1
with the gradient 1

b−a .

Uniform distribution

pdf : fU(x) =





0, x < a
1

b−a , a≤ x < b
0, x≥ b

(2.33)

cdf : FU(x) =





0, x < a
x−a
b−a , a≤ x < b
1, x≥ b

(2.34)

mean: E[XU ] =
a+b

2
(2.35)

variance: Var(XU) =
(b−a)2

12
(2.36)

coefficient of variation: cX =
1√
3

b−a
a+b

(2.37)

The uniform distribution U(a,b) is very useful to model bounded processes. Its maximal
coefficient of variation occurs for a = 0 as cX max =

1√
3
< 1, which expresses that the uniform

distribution is less bursty than the negative exponential distribution.

A special role plays U(0,1), because it is commonly provided by random number generators
and is widely used to generate somehow distributed random numbers, using the inversion method
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to convert uniformly distributed numbers in [0.. 1] into the desired distribution X = F−1
X (U(0,1)),

which not necessarily is bounded. F−1
X (y) is the inverse of the cdf , which is also called the quantile

function because it returns the quantiles for y. Graphically this method relates uniformly distributed
y-axis values of the cdf with the corresponding x-axis values, which than are distributed according
to FX . For example can negative exponentially distributed numbers be generated via the natural
logarithm of a uniform distributed variable u = XU(0,1) by

XM(λ) =
−ln(1−u)

λ
=
−ln(u)

λ
, (2.38)

where we use the uniformity property that P[y=1−u] = P[y=u]. Power law distributed random
variables can be generated via the inverse root of a uniformly distributed variable, in particular can
Lomax distributed numbers be generated by

XPL(µ,α) = µ
(

u−
1
α −1

)
= µ

1− α
√

u
α
√

u
, (2.39)

where E[XPL ] =
µ

α−1 is defined ∀α>1 only.

2.2.3 Heavy tailed distributions

The above presented examples of non-Markovian distributions are all less bursty than the negative
exponential distribution. In certain cases, particularly if events are positively correlated, we need
so-called heavy-tailed distributions to model their behaviour. Heavy-tailed refers to a significant pdf
part above the 90%-percentile. The impact (weight) of these not very likely events on the mean and
the variance is significant, because of the diminishing gradient of the pdf for increasing x.

The quite simple power function does have this property. Even though the function itself is simple,
analytic derivations are out of the scope here, because its Laplace transform is not very handsome.
Quite interestingly, for certain parameter ranges these distribution functions model chaotic processes
behaviour; where ’chaotic’ is experienced as infinite variance Var(X)=∞, simply.

Pareto distributions

The Pareto distribution follows a power law (cx−a), in contrast to the Markovian distributions, which
are based on the exponential function (ca−x). For a certain parameter range Pareto yields a well
defined distribution with finite mean and infinite variance. This can be used to model heavy tailed
processes with positively correlated events.

The pdf fX(x) = cx−a for x ≥ min, and equal 0 for x < min, with constant c chosen to get∫ ∞
−∞ fX(x) = 1. This constraint is implicitly fulfilled if we substitute a = α+1 and c = αβα, where

α defines the shape and β is the lower boundary (β = min). Together they are the distribution’s
parameters to choose. In this basic form, the Pareto type-1 distribution, it can be used to model
processes where a lower bound exists and the probabilities decay according to a power law above
this limit.
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Figure 2.20: pdf and cdf of the Pareto type-1 distribution (α=1.125, β=1)
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Figure 2.20 shows on the left the probability density function (pdf ) of P(α,β) and on the right
its cumulative distribution function (cdf ). Note that for the chosen parameters the cdf does not
come close to 1 quickly. This indicates that the tail of the distribution, being the pdf part above
x = F−1

P (0.9), is heavy, meaning that its contribution to the characteristic is significant.

Pareto distribution – Pareto type-1

pdf : fP(x) =

{
αβα x−(α+1) x≥ β
0 x < β

(2.40)

cdf : FP(x) =

{
1−βα x−α x≥ β
0 x < β

(2.41)

mean: E[XP] =

{
αβ

α−1 α > 1
∞ α≤ 1

(2.42)

variance: Var(XP) =

{
αβ2

(α−2)(α−1)2 α > 2

∞ α≤ 2
(2.43)

coefficient of variation: cX =

{√
1

α(α−2) α > 2

∞ α≤ 2
(2.44)

For stability α>1 is required, else the mean becomes infinite. However, the pdf and cdf can be
calculated for any positive α and β. For [1<α≤2] the Pareto distribution is characterised by a finite
mean value and infinite variance. This is the α-region of especial interest, commonly used to model
really heavy tailed characteristics. For µ→ β the distribution approximates the Dirac delta function
δ(µ).

To generate Pareto distributed numbers by cdf inversion we might use

XP =
β

α
√

1−u
= βu−

1
α ,

where u = XU(0,1) are uniformly distributed random numbers in [0..1], and 1−u can be replaced by u
due to uniformity. However, to generate a Pareto distributed random number with a certain mean
value µ we need to either substitute α = µ

µ−β or β = µ
(α−1

α
)
, in order to get a distribution with the

intended mean µ = αβ
α−1 .

XP(µ) = βu−
µ−β

µ = µ
(α−1

α
)

u−
1
α (2.45)

Adopting α causes a rate dependent distribution shape, comparable to the rate dependent decline of
the negative exponential distribution. The second option provides a generation with constant power
law exponent α. This is compliant with the characterisation by the coefficient of variation or the
Hurst parameter, which both depend on α only. A drawback is the mean dependent lower bound.

To compare Pareto with other distributions and to validate the unsteadiness within the unsteady
α-region where cXP = ∞, the Hurst parameter can be used.

Hurst parameter: H(XP) =
3−α

2

For the region [1<α≤2] we get H = [1.. 0.5], which indicates that the increments of an unsteady
Pareto process are positively correlated.

This Pareto variant, strictly called Pareto type-1, is well suited to model packet traffic. The lower
bound β is given by the minimum packet size, covering at least the header-size. The variable payload
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length is than modelled by the shape parameter α. This is straight forward, and evidently works to
model processing-, transmission-, and holding-times in general. Similarly, arrival processes with
a minimum offset in between subsequent arrival events may be modelled, though such seem to be
not very common. In that case it does make sense to assume a mean determined lower bound and a
persistent shape for the distribution decline above the bound.

Shifted Pareto distribution – the Lomax distribution

To get a power law distribution with no lower bound β we substitute x by x+σ and get the Lomax
distribution, also known as shifted Pareto or Pareto2. We indicate it by PL to express that it belongs
to the power law distributions. It resembles a standard Pareto distribution shifted along the x-axis
so to start at x = 0. The Lomax distribution PL is again characterised by two parameters, the shape
parameter α, which we already know, and a new scale parameter σ, instead of the lower boundary.
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Figure 2.21: pdf and cdf of the Lomax distribution (α=1.125, σ=1)

Figure 2.21 shows on the left the probability density function (pdf ) of PL(α,σ) and on the right
its cumulative distribution function (cdf ). Again, for the chosen parameters the cdf does not come
close to 1 quickly, indicating that the tail of the distribution (pdf part above x = F−1

P (0.9)) is heavy
and thus, significant for the process’s characteristic.

Lomax distribution (PL)

pdf : fPL(x) = ασα (x+σ)−(α+1) (2.46)

cdf : FPL(x) = 1−σα (x+σ)−α (2.47)

mean: E[XPL ] =

{
σ

α−1 α > 1
undefined α≤ 1

(2.48)

variance: Var(XPL) =





α2σ
(α−2)(α−1)2 α > 2

∞ 1 < α≤ 2
undefined α≤ 1

(2.49)

coefficient of variation: cX =





√
α2

σ(α−2) α > 2

∞ 1 < α≤ 2
undefined α≤ 1

(2.50)

For stability α>1 is required, else the mean becomes infinite. However, the pdf and cdf can be
calculated for any positive α and σ. For [1<α≤2] also the Lomax distribution is characterised by a
finite mean value and infinite variance, and this α-region offers really heavy tailed characteristics.
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In contrast to the Pareto type-1 distribution discussed before, here the coefficient of variation
depends on both parameters. Lomax distributed numbers can be generated by cdf inversion via

XPL = σ
(

u−
1
α −1

)
, (2.51)

where u = XU(0,1) are uniformly distributed random numbers in [0..1]. To generate Lomax distributed

numbers with a certain mean value we need to solve XPL(µ) = µ XPL
E[XPL ]

and get

XPL(µ) = µ(α−1)
(

u−
1
α −1

)
, (2.52)

where the dependence on the parameter σ is replaced by µ(α− 1), which achieves that σ is
automatically chosen such that the intended mean value is achieved. In practice we use the generator
for the generalised Pareto distribution presented next. The Lomax distribution is the special case
that results for β=0 in equation 2.59. Figures 2.22 shows histograms of Lomax distributed example
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Figure 2.22: Histograms of different Lomax distributed samples for varying E[XP] and α respectively.

sets (stepped) together with the according pdf (dashed). The close match proves that the generator
actually generates samples with the intended distribution. That the PL(2,1) histograms shown in
both figures differ in details results from different random sample sets (generation runs).

The histogram generation automatically chooses the bin size based on the sample variance ς2,
which evidently depends on the distribution’s parameters, but also on the actual samples of the
set. For infinite variance (α ≤ 2) the sample variance ς2 becomes very changing, and thus, the
bin sizes differ from set to set, even for huge sample-set sizes. The limited number of bins (here
100) cause in conjunction with the ς2 dependent width of bins that the x-areas evaluated differ for
different distributions. The x-axis has been chosen to show at least all bins of PL(2,1), the limit
distribution for Var(X) = ∞ with E[X ]=1. Therefore, for PL(1.125,0.125) and PL(2,8) many bins
(93 and 82 respectively) are outside the visible area. This expresses how heavy the tails actually
become. Another divergence occurs for the first bin; its width is halve the size of the other bins, and
therefore is its population not accurate.

We note that with the logarithmic scaled y-axis the negative exponential distribution’s pdf would
become a straight line. The concave curves visually prove that all Lomax distributions do have heavy
tails. From Figure 2.22 we may assume that for α→ ∞ the Lomax distribution approximates the
negative exponential distribution M(µ), and for σ→ 0 the Lomax distribution approximates the Dirac
delta function δ(0), as does the negative exponential distribution for µ→ 0.

Generalised Pareto distribution

The generalised Pareto distribution (GPD) covers a wide range of power law distributions, and is
also called Pareto type-2, why we indicate it as PII . It results from shifting the Lomax distribution,
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which starts at zero, up on the x-axis to re-introduce a lower bound β. Consequently, PII is specified
by three parameters; a shape parameter ξ= 1

α , a scale parameter ς=σ
α , and a location parameter µ′=β,

not to be mistaken with the distribution’s mean value µ. The triple [ξ,ς,µ′] is used in the literature
and with some statistical software tools that provide a GPD generator. For consistency with the
preceding Pareto variants, we redefine the triple as [α,σ,β], and note the formal interchangeability.
For comparability we show here the basics in both nomenclatures. Elsewhere we use the [α,σ,β]-
triple only, and presume that when using calculation tools all parameters are converted according to
the nomenclature the used functions and procedures are defined in. If the nomenclature is not known,
applying such a tool is inappropriate.

GPD – Pareto type-2 (PII)

pdf : fPII (x) =
1
ς

(
1+ ξ(x−µ′)

ς

)−( 1
ξ+1)

= ασα (x+σ−β)−(α+1) (2.53)

cdf : FPII (x) = 1−
(

1+ ξ(x−µ′)
ς

)− 1
ξ
= 1−σα (x+σ−β)−α (2.54)

mean: E[XPII ] =

{
µ′+ ς

1−ξ = β+ σ
α−1 α > 1

undefined α≤ 1
(2.55)

variance: Var(XPII ) =





ς2

(1−ξ)2(1−2ξ) =
ασ2

(α−2)(α−1)2 α > 2

∞ 1 < α≤ 2
undefined α≤ 1

(2.56)

coefficient of variation: cX =





σ
β(α−1)+σ

√
α

α−2 α > 2

∞ 1 < α≤ 2
undefined α≤ 1

(2.57)

Again, for stability α>1 is required, and for [1<α≤2] we get a finite mean value and infinite
variance, which causes really heavy tailed, lets say ’chaotic’, behaviour. The coefficient of
variation cX of PII depends on all three parameters.

Again, PII distributed numbers can be generated by cdf inversion, here via

XPII = β+σ
(

u−
1
α −1

)
, (2.58)

where as usual u = XU(0,1) are uniformly distributed random numbers in [0..1]. To generate numbers

with a certain mean value µ we need to solve XPII (µ) = µ XPII
E[XPII ]

and get

XPII (µ) =
µ(α−1)

β(α−1)+σ

(
β+σ

(
u−

1
α −1

))
. (2.59)

Octave does not provide a precoded function to generate GPD samples, therefore we programmed
the GPD generator outlined in algorithm 2.1 implementing equation 2.59. The GPD sample generator
stated in algorithm 2.1 is called by

gPrnd(α,σ,β,µ) ,

which may be overdetermined if all parameters are given, and commentlessly ignores parameters
given although not required. Parameters inserted as zero are automatically replaced by default values:
the default α = 2 yields the chaos limiting case, the default σ = α−1 yields unity shape (µ=β+1),
the default β = 0 yields no lower boundary, and the default µ = β+ σ

α−1 yields the mean defined by
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Algorithm 2.1 Octave GPD generator code

function x=gPrnd(a,s,b,m)
do u=rand(1); until (u>0 & u<1); %exclude numeric zeros, assure symmetry
if !a a=2; endif %set default alpha=2 (the chaos limiting case)
if !b b=0; endif %set default beta=0 (no lower bound = Lomax distribution)
if !s s=abs(a-1); endif %set default sigma value that yields m-b=1
if !m m=b+s/(a-1); endif %calculate if not given (if m<=b mean is not definable)
if (a<=1) x=b+s*(u^(-1/a)-1); %use the generic form if no definable mean exists
elseif (b==0) x=m*(a-1)*(u^(-1/a)-1); %use Lomax with m adjusted s (ignores given s)
else x=m*(a-1)/(b*(a-1)+s)*(b+s*(u^(-1/a)-1)); %scale all parameters to meet given m
endif
endfunction

α, σ, β, which avoids any auto-scaling. The default settings allow to generate the chaos limiting
case calling gPrnd(0,0,0,0), being a call without concrete parameters given. In order to be sure what
is actually generated, the user is encouraged to always provide all intended parameters and to set
only the unspecific to zero. The default setting lines in algorithm 2.1 may be out-commented to
speed-up the performance, at the cost of potential numeric crashes in case of inconsistent parameter
combinations.

In practice we might prefer to use precoded generators that are based on the even more general
Beta or Gamma functions, for which highly optimized generation procedures are assumed. Using a
precoded procedure we likely get unscaled samples and need to do the mean adjustment ourselves:

XPII (µ) = µ (α−1)
β(α−1)+σ︸ ︷︷ ︸
const. factor

·gprnd
( 1

α=ξ, σ
α=ς,β=µ′

)
,

where we assume that the provided generator function gprnd is defined in [ξ,ς,µ′].

To generate special cases of Pareto distributions we need to apply the specific parameter selections
stated in table 2.1. For Pareto type-1 we have to set σ = β, and for Lomax we need β = 0. Because the

Table 2.1: GPD generator calls for different Pareto distribution types

type selection rule [α,σ,β]-based [ξ,ς,µ′]-based

Pareto type-1: σ = β gPrnd(α,β,β,µ) gprnd( 1
α ,µ

α−1
α2 ,µ α−1

α )

Lomax: β = 0 gPrnd(α,σ,0,µ) gprnd( 1
α ,µ

α−1
α ,0)

Pareto type-2: – – – gPrnd(α,σ,β,µ) gprnd( 1
α , (µ−β)α−1

α ,β)

M(µ): α=∞ & β=0 – – – gprnd(0,µ,0)

generalised Pareto distribution approximates the negative exponential distribution for β = 0 and α→
∞, we could use a [ξ,ς,µ′]-based procedure to generate negative exponentially distributed M(µ), as
shown by the last line in table 2.1. In Octave ∞ = inf is in principle supported, but not with the
gPrnd() generator shown in algorithm 2.1. Inserting α = inf causes x = NaN, meaning "not a
number".

Figure 2.23 shows histograms and pdf ’s of different Pareto distribution variants for equal shape
α and mean E[X ] . The three parameters of the generalised Pareto distribution (PII) allow us to
preselect up to two parameters, and adjust the remaining only in order to achieve a certain mean
value. If we fix the mean value, as done to produce figure 2.23, we may preselect one parameter
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Figure 2.23: Histograms and pdf of different Pareto distributed sample sets comparing different
Pareto types for same α = 2 and E[X ] = 10

and still can use the other two to create different distributions that all have the same intended mean
value. We chose the shape parameter α = 2 because it is the chaos limiting case, and the mean value
E[X ] = 10 to enable integer numbers for all example parameters. The influence of α on the curvature
of the pdf ’s decline has been shown by the left curves in figure 2.22, and the curves on the right show
the influence of σ on the decline and consequently on the mean E[X ] in case we keep α constant.
From figure 2.23 we now can see the added pdf fitting freedom, but also that this comes at the price
of changing lower bounds. Keeping the boundary β constant results in curves alike those shown in
figure 2.22, only shifted along the x-axis by the value of β.

Considering that PI(2,5) = PII(2,5,5) = gPrnd(2,5,5,10) and PL(2,10) = PII(2,10,0) =
gPrnd(2,10,0,10), we recognise in figure 2.23 how σ and β influence together the curvature of the
pdf . We can derive, that for given shape α and mean E[X ], the Lomax distribution is the heaviest,
and that the tail weight decreases with decreasing σ and increasing β. Extrapolating this we may
conclude that PII(α,σ→0,β→µ) becomes the Dirac pdf δ(µ), representing the deterministic case.
The opposite limit for PII(α,σ→∞,β=0) is the non-existent infinite uniform distribution U(0,∞)
with its degenerated pdf fU(0,∞) =

1
∞ , equalling also the negative exponential distribution with infinite

mean, M(∞).

More Pareto types and other power-law distributions

Concluding the Pareto distributions we note that also Pareto type-3 and type-4 exist,

FPIV (x) = 1−
(

1+
(

x−β
σ

)1
γ
)−α

,

where Pareto type-3 results from type-4 for α=1, and type-2 for γ=1.

We also note that various other distributions based on the power-law exist and that these might be
used to model heavy tailed, potentially fractal, processes as well. A continuous power-law distribution
is for example the Student’s t-distribution and its special case, the Cauchy distribution with its peak
at the median but undefined mean value. These distributions are rarely used with queueing systems,
and thus not discussed in detail. The interested reader is referred to the respective literature on the
topic. However, in the next subsection we present the Beta distribution. It is not useful for heavy
tails, simply because it is double bounded, but its definition reveals that it is defined via two opposing
power functions, which puts it in line here.
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2.2.4 Beta distribution

If the probability is lower and upper bounded, we can use the Beta distribution B to model it. This
distribution is quite versatile, in particular can it be used to model processes with a single maximum
anywhere in between the boundaries as well as such with maxima at one or at both boundaries.
Commonly it is defined for the interval [0..1] by two shape parameters α,β > 0.

Beta distribution (B)

pdf : fB(x) =
xα−1(1− x)β−1

∫ 1
0 yα−1(1− y)β−1 dy

=
xα−1(1− x)β−1

B(α,β)
0≤ x≤ 1 (2.60)

cdf : FB(x) =
∫ x

0 yα−1(1− y)β−1 dy
∫ 1

0 yα−1(1− y)β−1 dy
=

B(x;α,β)
B(α,β)

0≤ x≤ 1 (2.61)

mean: E[XB ] =
α

α+β
(2.62)

moments : E
[
Xm+1

B
]
=

m

∏
k=0

α+ k
α+β+ k

=
α+m

α+β+m
E[Xm

B ] (2.63)

variance: Var(XB) =
αβ

(α+β)2(α+β+1)
(2.64)

coefficient of variation: cX =
1√

α
β (α+β+1)

(2.65)

Figure 2.24 shows different probability density functions of characteristic Beta distribution
examples, and on the right the corresponding cumulative distribution functions. For α = β the
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Figure 2.24: pdf and cdf of characteristic Beta distribution examples: B(2,5),B(5,2) (solid), B(9,9)
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distribution is symmetric with mean E
[
XB(α=β)

]
= 1

2 . If we swap α↔ β the pdf becomes mirrored
within the interval, identified in figure 2.24 by thick versus fine lines of same style. For α,β≤ 1 the
distribution peaks at the according boundary, while for α,β > 1 no peak at the according boundary
occurs. A special case results for α=β=1 (not shown); in that case the Beta distribution equals the
standard uniform distribution, B(1,1)≡U(0,1).

Characteristically different pdf shapes occur for B(>1,>1), B(≤1,>1), B(>1,≤1), and
B(≤1,≤1). Particularly different to the common declining distribution functions are those with
B(>1,≤1), because for these the probability steadily increases toward the upper bound. Such a
behaviour can hardly be approximated using unbound distributions. The bathtub shape (dot-dot-
dashed) found for B(≤1,≤1) is a good model for product failures, either they fail quickly due to a
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manufacturing fault, or last very long until ageing effects cause their failure. The shape we show for
α=1, β≤1 (dot-dashed) can be used to approximate the packet-size distribution that results from
splitting data-files into IP-packets, if 1

β equals the average number of IP-packets required per file.

The pdf and cdf in equation 2.60 and 2.61 use the Beta function B(α,β) to achieve
∫

pdf(x)dx = 1
and FB(∞) = 1. For the cdf also the incomplete Beta function B(x;α,β) is used. These functions are
defined as

B(α,β) =
1∫

0

yα−1(1− y)β−1 dy, and B(x;α,β) =
x∫

0

yα−1(1− y)β−1 dy.

Octave provides the function beta(α,β) to calculate the complete beta function B(α,β), and the
function betainc(x,α,β) to calculate the cdf value FB(x). The incomplete Beta function B(x;α,β)
results if we multiply the two results, which we commonly do not required. Note again that names,
here function names, may be irritating. For the betainc(...) function the integrated help on this
function erroneously states that it calculates the incomplete Beta function. Analysing the function’s
calculation results we recognise that it actually calculates the regularized beta function Ix(α,β),
which equals the cdf of the Beta distribution.

To generate such distributed numbers we use its relation to the Gamma distribution Γ(k,θ),
because the generation of Gamma distributed samples is widely provided by software tools. It is
known that Γ(α,θ)

Γ(α,θ)+Γ(β,θ) ∼ B(α,β), independent of the scaling factor θ, because its influence is
cancelled by the division. Consequently, if we generate independent samples for X ∼ Γ(α,1) and
Y ∼ Γ(β,1), we get Beta distributed samples by calculating

XB(α,β) =
XΓ(α,1)

XΓ(α,1)+YΓ(β,1)
. (2.66)

Alternative parametrisation

The Beta distribution may also be parametrised by its mean µ and a single shape parameter ν, which
with some applications is called sample size:

µ =
α

α+β
, ν = α+β ↔ α = µν, β = (1−µ)ν.

Such defined we get quite simple equations,

E[XB ] = µ, Var(XB) =
µ(1−µ)

ν+1
cX =

1√
µ

1−µ(ν+1)
. (2.67)

This is useful if we model arrival intervals or service times bound to a normalised interval [0.. 1].
Using this parametrisation, the original α and β parameters are contrarily adjusted, such that different
normalized mean values 0≤ µ≤ 1 are achieved, without changing ν = α+β.

Extension to general interval [a .. b]

In practice, where the lower and upper bounds a, b likely are not zero and one, we need to shift and
stretch the Beta distribution by substituting

xB =
x−a
b−a

.
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Inserting this substitution in the equations above we get the four parameter version B4, with

pdf : fB4(x) = fB

(
x−a
b−a

)
=

(x−a)α−1(b− x)β−1

(b−a)α+β−1B(α,β)
, (2.68)

mean : E[XB4 ] = a+(b−a)E[XB ] =
αb+βa
α+β

, (2.69)

variance : Var(XB4) = (b−a)2 Var(XB) =
(b−a)2 αβ

(α+β)2 (α+β+1)
. (2.70)

Evidently can this shifting and stretching be equally applied on generated samples. Therefore, it
is sufficient to generate samples for B(α,β) and subsequently calculate

XB4(a,b,α,β) = a+(b−a)XB(α,β), (2.71)

to get Beta distributed samples for any interval [a .. b].

2.2.5 General distribution

Evidently, a general distribution is nowhere defined. However, to express that properties are valid
for any distribution, the place-holder abbreviations G and GI have become common. Still, to get
numeric results it may be necessary to insert an actual distribution function.

General independent (GI)

The general independent abbreviation GI expresses that the events have to be independent and
identically distributed. This constraint prohibits correlation of events as well as any time dependent
distribution. Events are independent if no correlation among events exists. Concerning the random
process this demands

P[A(i) = x ∩ A( j) = y] !
= P[A(i) = x] · P[A( j) = y] . (2.72)

That the events occurrences need to be identical forces that the distribution must not change over
time. This time-invariance implies that the process is independent of system changes, meaning in
consequence that the modelled arrival or service process must not depend on the current system state.
For priority based scheduling systems and congestion controlled flows this condition is never ever
fulfilled. Also, the Engset model does not fulfil this condition because of its state dependent arrival
rates caused by the finite population.

Luckily, for the service process the restriction forcing independent and identically distributed
events is mostly not required in the course of analytic evaluations. Consequently, we can use the
more general results found for ./G/. . . , which evidently cover the corresponding ./GI/. . . scenario.
An extreme example for state dependent service times is processor sharing, discussed later on for
example with multi-queue systems (section 4.1) and processor sharing in general (section 3.3.3).

General (G)

The general abbreviation G expresses that absolutely any distribution function may be inserted. Also
distribution functions that include dependences on the past and the current system state are allowed.
Absolutely no restrictions apply, and thus, no more can be said about this place-holder.

The place-holders G and GI are widely used to express the generality of distribution independent
properties of systems, which of course are of prime interest if the actual distribution is not known, as
it is often the case with random systems in practice. To assure their universality such properties need
to be mathematically derived without inserting any distribution function.
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2.3 Fitting a distribution to match a sample sequence

In the previous two sections we introduced some distributions. Commonly, traffic occurring in
practice is not generated by a determined stochastic processes that implements a specific distribution
function; such only applies for modelling and testing purposes. Real traffic characteristics are
determined by user actions and the design of the technical processes, being the designed response
of systems to different events. Concerning data transmission it is common practice to assume
Poisson distributed user actions. The responses of the technical components invoked to perform data
transmission is usually state and application dependent. In general many processes work together
in order to perform the action demanded by a user, and a cascade of components and interfering
demands influence the resultant data traffic’s characteristic.

The huge number and heterogeneity of systems and processes involved, makes it intractable to
precisely state the properties of traffic flows based on the component’s individual responses. Still,
different applications cause typical traffic characteristics. These are not precisely determined, they
comprise a certain level of uncertainty. Therefore, a suitable approach to identify these characteristics
is to record representative sample sequences (traces) and to find (match) distribution functions, which
resemble the characteristics not precisely but in a maximally general sense.
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In principle any distribution function can be mapped to any trace, as shown by the example
depicted in figure 2.25. The example distribution in 2.25.a is a composite of four Beta distributions,
B4(0.4,1,1,4) +B4(8,2,1,2) +B4(4,6,2,3) +B4(4,1,3,4), yielding four peaks. To match the
distribution functions inserted in 2.25.b and .c we use the sample mean E[Xn] = µ = 2.45395, the
bounds a = 1, b = 4, and the sample’s standard deviation ς = 0.92284; in this order, as far as
parameters can be chosen to fit the particular distribution. Evidently, a perfect match cannot be
achieved using a single distribution with one peak only. Also, when matched by differently bounded
distributions an inevitable divergence occurs. Commonly, if several peaks exist we should decompose
the example into a composition of matched distributions (one per peak) in order to achieve a good fit.
This approach is out of the scope here, where we intend to find a representative distribution, which
fits such that the analysis yields feasible results, no more.

The number of relevant parameters is commonly rather small, in particular if we only need to
identify the typical behaviour. Thus, we need to ask if using a closely matching, potentially complex,
distribution function is worth the effort. Particularly, if we cannot say for sure that the available traces
are representative. Commonly, few estimated parameters from limited observations are sufficient
to identify the mean system properties with a reasonable effort to accuracy balance. These typical
properties can than be used to select a stochastic process that appropriately models the in its details
hidden system causing the observed trace, with marginal loss of accuracy if the observed trace is a
possible outcome of the chosen process.
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Experience with typical pdf shapes is in this context very advantageous to visually identify the
distribution type from histograms, independent of the actual numeric values. If we manage to select
the correct distribution type for the matching, it is likely that even though we achieve no perfect
matching also the atypical properties can be studied with sufficient significance.

Considering that (i) a finite sample set, which any recorded trace evidently is, cannot perfectly
characterise the process it results from, and (ii) that complex distribution functions raise the effort
dramatically, we focus on methods to identify the most simple distribution function that sufficiently
approximates the available estimates on distribution characteristics. For analytic studies we
commonly assume that ingress traffic and service time characteristics match the negative exponential
distribution. The other widely used simplification, the independence assumption, we try to avoid by
modelling chained network elements as one entity. Via simulation studies we can than analyse how
sensitive the studied systems (network entities) respond to diverging distribution characteristics.

2.3.1 Comparing of distributions

To assess the above mentioned matching errors we need some method to compare distributions
independent of their origin. Here in particular, to identify how sever a models distribution function
diverges from the distribution of the samples (traces) that we match the model to.

Moments comparing

Any distribution is precisely defined by all its moments. This fact can be used to compare distributions.
The more moments match, starting with the first and ascending to higher moments without omissions,
the better is the analogy. However, all may not be considerable, for example due to the potentially
infinite number of moments that finite traces can define.

Of particular interest is the highest moment-order considered for matching, the so called matching
order. Typically, second order matching is sufficient to achieve adequately useful models for most
analyses. Methods to achieve this are presented in section 2.3.4. Three moments matching is
likely excessive, while a simple first order matching is rather sufficient for mean value analysis of
independent systems only.

Table 2.2: First two moments of the examples shown in Figure 2.25

trace M PI B

mean: 2.45395 2.45395 2.45395 2.45395

variance: 0.85163 6.02187 ∞ 0.85163

Looking at the second moment divergences shown in table 2.2 for the examples depicted in figure
2.25, we recognise that the matched negative exponential distribution shows a too high variance. The
matched Pareto distribution considers the lower bound; however, the infinite variance is excessive
and will heavily hamper any analysis based on this model. The best match results for the Beta
distribution, which is evident, because here we achieve a match not only in both moments but also in
both boundaries. A potential distribution for a better match by an unbounded distribution should be
the Erlang distribution. A method to perform this is discussed later on in section 2.3.4.

How severe a divergence in moments actually is, is difficult to assess because that depends on
the circumstances, meaning the intended analysis focus. An interesting method is for example the
effective bandwidth approach: the process is approximated by a negative exponential distribution with
minimal mean square deviation of all moments, i.e., min

(
∑(µ[k]− µ̂[k])2

)
. In that case lower and

higher moments diverge individually, and commonly no moment will be matched exactly, including
the means. The utility of such an approximation needs to be validated case by case.
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Graphical comparing

The pdf or cdf precisely define a distribution. Therefore, comparing these functions with those
defined by the trace yields an option to graphically assess the analogy. The empirical distribution
functions fn(x) and Fn(x) we get from the trace Xn via its histogram

νi(Xn) =
n

∑
j=1

(
1
∣∣ (xi−∆x

2 )< x j ≤ (xi+
∆x
2 )
)

i = 1.. m (2.73)

as

fn(xi) =
∆x

xmax−xmin
νi(Xn) (2.74)

Fn(xi) =
i

∑
j=0

∆x fn(x j) (2.75)

where ∆x is the bin-width, xi are the bin-centres, and m = xmax−xmin
∆x

is the number of bins. The
histogram νi(Xn) states the number of samples from Xn that fall into the i th bin. The scaling factor

∆x
xmax−xmin

normalises the histogram νi(Xn) such that it becomes the empirical pdf with ∑m
i=1 fn(xi) = 1,

where fn(xi) are the bin probabilities. The empirical cdf we get from Fn(xi) =
∫ x

0 fn(xi)dx, which
reduces to the accumulation of bins, being their width weighted by their probability.
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Figure 2.26: Empirical and matched distribution functions: (a) pdf s, (b) cdf s

Figure 2.26 repeats figure 2.25.b and 2.25.c in reasonable scale to discuss what actually can
be visually seen and how divergences may be calculated. First, we recognise that no mapping fits
well. This has been intended to highlight that precise mapping is often not essential for a useful
model. The primary problem cause the multiple peaks, the secondary the boundedness. Particularly,
the pdf lobe at the upper boundary becomes badly neglected. Divergences are commonly more
visible comparing pdf s, while the severity of divergences can be better assessed from comparing
cdf s. Therefore, we prefer to use pdf comparing for visual similarity assessing, and cdf comparing
for the numeric goodness of fit analysis presented shortly.

A simple cdf comparing that can be performed manually is quantiles comparing. Actually,
we compare the quantiles of the complementary cdf , F(x) = 1−F(X) (x-axis) with the quantiles
calculated from the available sample (y-axis), as shown in figure 2.27.a. A point at (x,y) states the
quantile of the sample plotted against the same quantile of the distribution function. This results in
a parametric curve with the parameter being the index of the quantiles interval compared point by
point. If the two distributions are similar, the points in the quantiles-quantiles plot will approximately
lie on the line y=x. If the distributions are linearly related, the points will approximately lie on a
diverging line. Thereby the shapes of distributions can be graphically compared, allowing a graphical
assessment on whether the distribution’s tails are comparably heavy for increasing quantiles.
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Figure 2.27: Derived graphs (a) quantiles-quantiles plot, (b) the failure function h(x)= f (x)
1−F(x)

Another property that can be compared graphically is the function h(x) = f (x)
1−F(x) shown in

figure 2.27.b, which represents a conditioned probability and is well known in reliability theory
and survival analysis as failure function. Simply speaking, an increasing h(x) states that the failure
probability rises over the time waiting for a failure to occur, whereas a decreasing h(x) indicates a
system that likely fails early but rarely if for long time no failure occurred. Obviously, a good match
demands similar tendency. However, the example chosen shows that for multi-modal distributions
the tendency is no unique. However, the tendency is positive, which is actually a necessity for any
bounded process. If the time till the next failure cannot approach infinity, the probability that it
occurs must rise with the time awaiting it.

Numeric match validation

The goodness of fit criterion is used for judging the matching quality, here between the fitted
cumulative distribution function FX(x) and the empirical distribution function Fn(x) derived from
the available sample. The underlying assumption is the null hypothesis, meaning the hypothesis
that the existing sample can be an outcome of the matched distribution [44]. Tests for the equality
of continuous one-dimensional probability distributions provide a numeric goodness of fit criterion
based on comparing empirical and analytic distribution functions.

The Kolmogorov-Smirnov test [45] quantifies the maximum distance between Fn(x) and FX(x).
It is a general, non-parametric method for comparing, applicable for any continuous distribution,
sensitive to differences in both, location and shape of the cdf s compared.

d = sup
x
|Fn(x)−FX(x)| (2.76)

The metric d is the maximum vertical distance between the empirical cdf Fn(x) derived from the
sample and the fitted cdf FX(x), calculated as supx {. . .}= the supremum over all x. However, it does
not tell how good a fitting in average is.

The Cramér-von Mises criterion is named after Harald Cramér and Richard Edler von Mises
who first proposed it in 1928/1930, reviewed in [46], and evaluates the area between Fn(x) and FX(x).

ω2 =

∞∫

−∞

[Fn(x)−FX(x)]
2 dFX(x) (2.77)

The bigger ω2 is, the less accurately fits FX(x) the sample. Based on tables the hypothesis that the
sample may have resulted from a distribution equal the fitted one is accepted or rejected. Evidently is
ω2 ≥ 0, and because of the square any potential compensation of positive and negative divergences is
neglected. Thus, it is quite conservative in validating the matching quality.



84 Gerald Franzl

Pearson’s chi-squared test [47] is similar, but based on quantized sample frequencies, and seems
to be the best suited metric for a simple matching quality validation.

χ2 =
k

∑
i=1

(Oi−Ei)
2

Ei
(2.78)

It directly uses the histogram, where Oi is the number of samples that fall into bin i, i ∈ [1.. k ], which
is comparable to the pdf scaled by n

k . The number of samples Ei that the bin should contain if the fitted
distribution X equals the empirical distribution Xn is best calculated by Ei = n [FX(xi)−FX(xi−1)]
from the fitted cdf , where the xi are the bin boundaries (x0 = 0, xk+1 = ∞). The test may fail if the
expected frequency per bin is too small (<10). This can be avoided by adjusting the bin sizes such
that Ei>10 ∀i. If this is not possible, Yates’s correction for continuity

χ2
Yates =

k

∑
i=1

(|Oi−Ei|−0.5)2

Ei

may be used to improve the quality of the test criterion. This correction prevents an overestimation
of statistical significance for small data. Unfortunately, Yates’ correction tends to over-correct the
criterion and thus should be used with particular care.

The Anderson-Darling test [48], in its basic form, is distribution independent and can be
generally applied. To calculate the criterion A2 (equation 2.79) we first have to sort the outcome yi of
the sample in ascending order, such that yi≤yi+1 ∀i.

A2 =−n−
n

∑
i=1

2i−1
n [ln(FX(yi))− ln(1−FX(yn−i+1))] (2.79)

Proving that this criterion establishes a goodness of fit validation is left to the experts, as are the
modifications to the test statistic and the critical values required to test if a sample may be fitted by a
normal distribution, a negative exponential distribution, or some other distribution family. See for
example Pearson and Hartley (1972) [49] and Scholz and Stephens (1987) [50]. When applied to test
if a set of data (sample) is normal distributed, the Anderson-Darling test is said to be one of the most
powerful statistical tools to detect outliers (departures from normality).

These methods provide a scalar value that reflects in some way to which extent the fitted
distribution diverges. Comparing the achieved goodness of fit criterion with the critical values
derived for different significance levels we may assess whether the available sample may have
resulted from the fitted distribution or not. No test is capable to suggest potential improvement,
and thus, in their basic form they cannot replace a visual validation. The generalisation mentioned
above upon testing if a distribution family can be fitted to a sample by adjusting some parameters, is
possible. However, the required adoption of the criterion or the critical values, are out of the scope.
Please refer to the rich literature on test modifications that achieve this generalisation for particular
distribution families, for example in [51–53].

2.3.2 Fitting a negative exponential distribution

The negative exponential distribution defines mathematically the boundary between smooth and
bursty one sided distributions. Therefore, it is the obvious candidate for matching, in particular if
we have no information on the distribution’s shape. The negative exponential distribution is fully
defined by its mean value, and thus, to perform the matching, we only need to set the first moment µ
equal the sample mean E[Xn].

µ = E[Xn] =
1
n

n

∑
i=1

xi (2.80)

X̃ = M(µ) = µ · ln(U[0,1]) ⇒ fX̃(µ) =
1
µ e

x
µ , FX̃(µ) = 1− e

x
µ
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The most important advantage of negative exponential distribution mapping is the mathematical
practicability. No equivalently applicable and handsome modelling approach exists for the analytic
evaluation of systems. It reduces system analysis to the analysis of Markov chains. However, the
difference between modelled and realistic system properties can become huge if the properties
heavily depend on the variance. Therefore, different methods have been proposed to adjust the
negative exponential distribution modelling in a way that enables better prediction of variance
dependent properties. One of them being the effective bandwidth approach extensively studied with
the asynchronous transfer mode (ATM) technology.

2.3.3 Moments matching

To achieve a model that fits an empirical distribution more precisely we need to fit more moments.
The simplest method to achieve a two moments matching degree, is to directly find the parameters
that satisfy the moments equations presented in sections 2.1 and 2.2, repeated here for convenience.

E[XEk ] =
k
λ

Var(XEk) =
k
λ2

E[XHk ] =
k

∑
j=1

α j

λ j
Var(XHk) = 2

k

∑
j=1

α j

λ2
j
−
(

k

∑
j=1

α j

λ j

)2

E[XU ] =
a+b

2
Var(XU) =

(b−a)2

12

E[XP] =
αβ

α−1
Var(XP) =

αβ2

(α−2)(α−1)2

E[XPL ] =
σ

α−1
Var(XPL) =

α2σ
(α−2)(α−1)2

E[XPII ] = β+
σ

α−1
Var(XPII ) =

ασ2

(α−2)(α−1)2

Most of them have their moments defined by two parameters, and therefore the matching of two
moments is precisely defined. Actually, if a distribution is defined by two parameters only, precise
matching is restricted to two moments, because else the equation system to solve is overdetermined.
Still, an approximate higher order matching can be achieved, for example by minimising the mean
square moments divergences. However, in that case no moment is matched precisely.

Let us for example fit the Erlang distribution Ek (figure 2.28) to the example we already know,
depicted in figure 2.25.a.

... ...λ λ λ λ Ek(λ)
fEk(x) = λ (λx)k−1

(k−1)! e−λx

FEk(x) = 1−∑k
i=1

(λx)i−1

(i−1)! e−λx

Figure 2.28: The Erlang-k model

µn =
k
λ
⇒ k = µnλ

ς2
n =

k
λ2 =

µn

λ
⇒ λ =

µn

ς2
n
, k =

µ2
n

ς2
n

(2.81)

Solving the equations for the example’s empirical first two moments, µn=2.45395, ς2
n=0.85163,

yields λ=2.88147, k=7.07099. By intuition we first select the closest integer for k, here k̂ = 7,
and adjust λ̂ = k̂

µn
= 2.85254 to compensate the mismatch. The result is an imperfect fit; while

µn =
k̂
λ̂
= 2.45395 perfectly fits, ς2

n(k̂=7) = 0.86027 slightly diverges from the prospected value. If



86 Gerald Franzl

10 -1

10 0

0 1 2 3 4 5

sam
ple

pdf

E7

E8

10 -1

10 0

0 1 2 3 4 5

E7 E8

sam
ple cdf

(a) (b)

Figure 2.29: Fitted Ek distribution functions: (a) pdf s, (b) cdf s; k=7 (dashed), k=8 (dotted)

we choose k̂ = 8 and adjusted λ̂ = 3.26005 we get a worse second order fit ς2
n(k̂=8) = 0.75273,

which indicates that |k− k̂| should be minimised to achieve the best possible Ek fitting. Figure 2.29
depicts how good the two Ek models fit the empirical example distribution. Particularly the cdf -match
looks better than for any model considered before (figure 2.25 and 2.26). Evidently, the different
peaks and the boundaries of the example are not modelled. Still, also the pdf -fitting appears to be in
average a closer match, where the parts outside the boundaries compensate the missed peaks of the
example at its boundaries.

The moments mapping method is applicable for any distribution, as long as an according number
of moments is defined. However, if the available parameters are restricted, for example to being
integer, we cannot always achieve a perfect mapping.Anyhow, before we can fit a distribution to a
sample, we need to decide upon the distribution that we want to use for the model. A look on the
empirical pdf and other useful graphs (see section 2.3.1 for details) unveils the typical properties
of the commonly hidden process, far more revealing than few moments alone. These properties
are useful for a clever identification of the distribution family that yields a model with comparable
behaviour. Beyond the thereby achievable degree of fitting goodness, we need to retard to distributions
that provide a potentially unlimited number of parameters.

2.3.4 Fitting the Hk and Coxk model to extreme distributions

Out of the examples listed in the previous section 2.3.3, only the hyper-exponential distribution Hk
provides a selectable degree of fitting freedom. With every additional phase we get two additional
parameters, a new λi and a new splitting factor αi, as shown in figure 2.30. Using a Hk with as many

...
...

λ1

λ2

λi

λk

α1

α2

αi

αk

Hk(~α,~λ)

fHk(x) = ∑k
j=1 α jλ je−λ jx

FHk(x) = ∑k
j=1 α j

(
1− e−λ jx

)

Figure 2.30: The hyper-exponential model

phases as there are moments we want to match, yields an under-determined system of equations.
This allows perfect fitting for integer k, but offers an infinite number of equally perfect models.
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Commonly the balancing condition αi
λi
=const is added to solve the under-determination problem.

However, to minimise the complexity we desire the smallest possible model, meaning the smallest
k that provides a sufficient fit. Because ∑αi=1 must be fulfilled, only k−1 out of all αi may be
adjusted. The number of adjustable parameters for any Hk is thus 2k−1. Therefore, H2 is sufficient
for three moments matching because H2 readily provides three parameters: two phase-rates λ1, λ2,
and the splitting ratios α, 1−α. In general, a Hk model with k = dn+1

2 e phases is needed to match
the first n moments, where for even n one parameter is freely chosen.

Hk fitting scheme

Let us consider now the case where the hyper-exponential Hk model is used to approximate a heavy-
tailed distribution, for example a Lomax distribution PL(α,σ), where only for k→ ∞ a perfect match
is in theory possible. The moments matching method cannot be applied because for small α the
higher moments of the Lomax distribution are infinite or not defined at all.

The approach presented in [54], which we here outline, is applicable for any distribution with
monotonous decreasing pdf . The complementary cdf Fc = 1−FPL is step by step adjusted by
subsequent adding of phases that reduces the remaining difference. We start with the weighted
negative exponential distribution that fits the tail as accurate as intended by selecting a sufficiently
large matching point c1 because the tail of the negative exponential distribution is heavier for bigger
λ. Step-by-step we than chose geometrically declining matching points ci =

ci−1
d , where d>1 is

required and d=10 is used in [54], such that the subsequently added phases adjust step-by-step lower
parts of the power law distribution (right to left). The process terminates at an a priori chosen i = k,
which causes that the goodness of fit is not implicitly granted (has to be checked independently).

The first phase of the Hk, defined by λ1 and α1, we get from solving

α1 e−λ1c1 = Fc(c1) and α1 e−λ1bc1 = Fc(bc1)

⇒ λ1 =
ln(Fc(c1))− ln(Fc(bc1))

c1(b−1)
, α1 = Fc(c1) eλ1c1 , (2.82)

where 1 < b < d= ci−1
ci

needs to be fulfilled. Having an intermediate model ccdf, we calculate the
remaining ccdf divergence Fc

i (ci) at the next matching points

Fc
i (ci) = Fc

i−1(ci)−
i−1

∑
j=1

αj e−λ jci and Fc
i (bci) = Fc

i−1(bci)−
i−1

∑
j=1

αj e−λ jbci , (2.83)

where Fc
1 = Fc, to get the next parameters pair, λi,αi, from

αi e−λici = Fc
i (ci) and αi e−λibci = Fc

i (bci)

⇒ λi =
ln(Fc

i (ci))− ln(Fc
i (bci))

ci(b−1)
, αi = Fc

i (ci)eλici . (2.84)

This procedure is repeated until i = k−1. The last phase k we get from

αk = 1−
k−1

∑
j=1

α j ⇒ λk =
ln(αk)− ln(Fc

k (ck))

ck
, (2.85)

because ∑αi=1 needs to be achieved. If all weights are positive, αi>0, and the λi are well separated,
than we should have a good fit. Note that across the matched area the cdf of the Hk needs to be
above the cdf of PL, at least at all matching points, due to the heaviness of the power law tail. The
remaining error is

∆(x) = |Fc
Hk
(x)−Fc

PL
(x)|= |FHk(x)−FPL(x)|, (2.86)
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which approaches zero for c1,k → ∞ due to the log-convexity of both ccdf s. Actually, a H∞
can precisely model any heavy-tailed distribution with monotonous decreasing pdf because latter
condition causes the therefore required log-convexity. Any such distribution can be split into
Markovian phases. However, the infinite number of phases limits the applicability to finite
approximations. Any goodness of fit can in theory be achieved, comparable to the splitting of
functions into a potentially infinite number of spectral components.

Figure 2.31 depicts the above mentioned example. We fit a hyper-exponential distribution with
four phases (k = 4) to the empirical cdf calculated from a rather small sample (n = 2500) drawn
from the Lomax distribution with α = 2 and σ = 1, for which E

[
PL(2,1)(x)

]
= 1. The first matching
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Figure 2.31: H4 distribution step-by-step fitted to fractal PL(2,1): (a) pdf s, (b) cdf s

point has been set to c1 = 6 (outside the depicted area), the declining factor to d = 8, and the fitting
factor to b = 2 (as recommended in [54]). Some experimenting with initial parameters was necessary
to determine a useful selection for d. Too small as well as too big d cause less phases and thus, a less
good fit. For the finally chosen initial values the algorithm yields the phases specified in table 2.3.
We note the increasing rate, which is obvious, because we fit the phases starting with the slowest.

Table 2.3: H4 phases fitted to a sample drawn from the power law distribution PL(2,1)

phase 1st 2nd 3rd 4th

αi 0.05400 0.30988 0.49589 0.14023
λi 0.18310 1.14088 2.65827 10.1389

Helpful in deciding the initial values are the splitting factors: If the first is high, we likely have
chosen a too small starting point and should increase c1. If the last is high, the matching points
decline too slowly such that the procedure does not reach the lower part of the distribution. In that
case we either should increase d or use more phases, meaning to choose a bigger k.

Finally, note that for b→ 1 the λi in equation 2.84 becomes

λi =−
d
dt

ln(Fc(t))|t=ci
=

f (ci)

Fc(ci)
= r(ci), (2.87)

the so called hazard rate function known from failure distributions (survival theory), which we use in
section 2.3.1 figure 2.27.b to graphically compare distributions.

Coxk fitting scheme

Using Hk we cannot achieve models for smooth processes. For these we need chains of Markovian
phases, which the Cox model Coxk(~λ,~p) (figure 2.32) provides most flexibly. Actually, the Cox
model can be used for both, smooth and bursty processes. The fitting approaches presented in [34,
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chapter 7.6.7] are different for the two cases and briefly outlined here presenting condensed equations
using the herein consistently chosen nomenclature (different from sources).

...

...

...

...λ1 λ2 λi λk
p1 p2 pi

Cox(~p,~λ)

fCoxk(x) = αCox eTCoxx t0

FCoxk(x) = 1−αCox eTCoxx 1

Figure 2.32: The Cox model

To model a process with a coefficient of variation cX ≤ 1 we reduce the number of parameters by
setting λi = λ and pi = p. This converts the Cox into the simpler geometric mixed Erlang process
Ek,p,λ, which still is sufficient to precisely match the first two moments for integer k. A feature that
cannot be achieved using the plain Erlang-k process. Contrary to the general Cox distribution the
pdf and cdf of Ek,p,λ can be stated based on the geometrically weighted summation of the different
Erlang-k distributions it is composed of.

fEk,p,λ(x) = (1− p)
k−1

∑
i=1

pi−1 fEi(x)+ pk−1 fEk(x)

FEk,p,λ(x) = (1− p)
k−1

∑
i=1

pi−1FEi(x)+ pk−1FEk(x)

The equations for the mean value and the variance of Ek,p,λ have been derived in [34] using Laplace
transformation based on FEk,p,λ(s) = (1− p) λ

s+λ + p∏k
i=1

λ
s+λ

E
[
Ek,p,λ

]
=

1+ p(k−1)
λ

, Var(Ek,p,λ) =
1+ p(k−1)+ p(1− p)(k−1)2

λ2 (2.88)

from which the equation for the square coefficient of variation results.

c2
Ek,p,λ

=
Var(Ek,p,λ)

E
[
Ek,p,λ

]2 =
1+ p(k−1)+ p(1− p)(k−1)2

(1+ p(k−1))2 (2.89)

Choosing k=d 1
c2

X
e this equation is used to calculate the tapping factor p, for example as recommended

in [55], to finally get the rate λ for the k phases.

p =
k−2c2

X +
√

k2−4kc2
X +4

2(c2
X +1)(k−1)

, λ =
1+ p(k−1)

E[X ]
(2.90)

If we use the above equations to fit the Ek,p,λ distribution to the repeatedly used example, we get
k = 8, p = 0.9815, and λ = 3.2073. This result is depicted in figure 2.33. The solution is very close
to the result we achieved when fitting the Erlang-7 distribution. Primarily due to the high p, which
causes that the entire phases-chain dominates the output process. However, while with Ek the curves
become steeper with increasing k, here the tapping causes that for small x the Ek,p,λ is above E7
although it uses more phases. For large x the two become identical, despite the different number of
phases. If we use the above equations to fit the Ek,p,λ distribution to the uniform distribution U(1,4),
we get k = 9, p = 0.9901, and λ = 3.5683. The result is depicted in figure 2.34. Clearly, this is not a
perfect fit. However, looking at the cdf s we recognise that the matching is not too bad.

To model a process with a coefficient of variation cX > 1 the number of parameters is reduced by
pre-selecting k = 2, restricting the model to two phases. This leaves three open parameters, λ1, λ2,
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Figure 2.33: Ek,p,λ (slash-dotted) fitted to the example, (a) pdf s, (b) cdf
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Figure 2.34: Ek,p,λ (slash-dotted) fitted to the uniform distribution U(1,4), (a) pdf s, (b) cdf s

and the piping factor p1 in between the two phases. Again, three parameters are more than sufficient
to perfectly match the first two moments.

The same procedure as before, given in [34], is used to get matching parameters.

E[Cox2] =
k

∑
i=1

∏i−1
j=1 p j

λi
=

1
λ1

+
p1

λ2
(2.91)

Var(Cox2) =
1
λ2

1
+

p1(2− p1)

λ2
2

(2.92)λ1 λ2
p1

1−p1

Cox2

c2
Cox2

=
λ2

2 +λ2
1 p1(2− p1)

(λ2 + p1λ1)2 (2.93)

Out of the infinitely many possible solutions, a very convenient one is recommended in [55],

p1 =
1

2c2
X
, λ1 =

2
E[X ]

, λ2 =
1

c2
X E[X ]

= p1λ1 (2.94)

which actually can be used for any c2
X ≥ 0.5, not only for cX > 1.

Given that cX≥1 latter can be achieved similarly by a H2 model. In particular, we get

λ1

λ2

α1

α2

H2 α1 =
1
2

(
1+

√
c2

X −1
c2

X +1

)
, λ1 =

2α1

E[X ]
, α2 = 1−α1, λ2 =

2α2

E[X ]
(2.95)

if we apply the balancing condition αi
λi
= const common with Hk models.
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2.4 Traffic flows and network load composition

Data exchanged over some time span is called traffic flow. The network entities that may exchange
data (communicate with each other) have to be peers in the OSI-model, detailed in table 2.4 as
standardised in ITU-T X.200 [1]. Peers reside on the same layer. Thus, any interface between

Table 2.4: The OSI-model — functional layering enables integration of different implementations

:layer : name prime task implementation examples1

7 : application layer provide service http, smtp, ftp, nfs, ntp, snmp, sip

6 : presentation layer adjust data formats MIME, SSL, TLS, encrypt, compress

5 : session layer coordinate flows RTP, CoS, scheduling, streaming

4 : transport layer control data flow UDP, TCP, SCTP, DCCP

3 : network layer establish connectivity IP, OSPF, IS-IS, CONS

2 : link layer transfer data units LLC, HDLC, SDLC, PPP, MAC

1 : physical layer maintain bit-streams TX/RX, CRC, encoding, interleaving

0 : physical medium propagate analogue signals OOK, PSK, QAM, OFDM, FHSS

two layers can be used to identify a traffic flow. Commonly, it is defined among layer 7 entities,
layer 4/3 interfaces, or layer 3/2 interfaces. Below layer 2 we usually call it a bit-stream on layer 1
and symbol-sequence on layer 0 because here it is no more recognised as identifiable data. The
information has become a digital, and finally analogous signal that can actually propagate across a
physical medium and thereby leave its current location.

The duration (lifetime) of the virtual communication links (connections) used to exchange data
may be unknown until it actually ends. The load distribution across the lifetime of a connection,
meaning within a flow, is commonly assumed to be independent and identically distributed over the
entire lifetime of a connection, but it is not necessarily the same for both directions. Summarised this
means that

• the demand to communicate defines the connection that enables peers to exchange data,
• the communication reason and content cause the flows lifetime distribution and volume,
• the data exchange mechanism applied determines the flows internal load distribution,

and, that load and flows can be specified per layer of the OSI-model. Flows and loads on lower layers
are in general the result of flows and loads on the layers above. Layer specific transport mechanisms
may howsoever change the internal properties, being the size- and time-distribution of load units.

Short-lived flows are sometimes called bursts, and only long-lasting communication sessions
are referred to as flows. The lifetime is a fundamental parameter, which may be distributed in any
form. Thus, it does per se not qualify for separating bursts from flows. We use a different criterion: a
burst is defined as traffic load that occupies the available bandwidth without gaps for a certain time
period. Consequently is a burst an atomic load unit, comparable with a packet or frame. However,
load units may be split or combined when they pass through different layers. Thus, the definition
of load units is layer specific. Because flows and queueing systems can be found on any layer, we
do not distinguish the terms used to name different load units, but use them interchangeably, if not
otherwise mentioned.

In addition to the data exchanged by applications (the payload) also network components
exchange data for control and management issues (the overhead), which also contributes to traffic
flows. This internal communication is either performed by independently transported signalling
messages, or is encapsulated in data unit headers, which anyhow may become attached when data
units pass layer interfaces.
1Intentionally protocol acronyms are here not explained, please see the literature if not readily known.
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2.4.1 Network load definition

A network is a macro entity: it provides the connectivity among the resources required to transport
traffic flows from one interface (the source) to the intended other interface (the destination). The
network elements from all OSI-layers (table 2.4) build together a network; no part or layer is a
network, only together they become a network. The layer 3, called network layer, manages the
connectivity. It does not transfer data units, that is performed by layer 2 components. Nor does it
prepare, manage, or control the data exchange, these tasks are carried out on layers 6, 5, and 4.

To visualise what network load may be we use the stock-flow model depicted in figure 2.35. The

network/componentload stock

ingress flow

egress flow

overspill

draining

Figure 2.35: The stock-flow model used to explain the term network load

model abstractly relates the factors that are of importance. First, the ingress load, being the load
that flows into the model. Second, the amount of load stored within the model, which defines the
amount of load received but not yet delivered, the stock, which we call backload. Third, the egress
load, being the load flow that leaves the model, also called throughput, although this term may also
refer to its maximum. Finally, overspill and draining identifying load shares that enter the model but
never become delivered, which we call loss in its total.

What is network load? This question cannot be answered in general, the stock-flow model would
suggest it is the backload. From the literature we recognise that this term is used ambivalently for:

1. the sum over all offered ingress load flows across all ingress points,
2. the ingress load vector containing the current load at every ingress point,
3. the load vector containing the current load flow into every network resource, or
4. some artificial metric that provides an average resource loading factor.

In this view, network load may be specified en gross or in detail, absolute or averaged. All these
definitions apply to the stock-flow model, but none refers to the backload. The ambiguous definitions
result from different views. The first two are top down, and define the network load as seen from the
layer above, being layer 4, the transport layer. This view is very handy, but it lacks information on
the distribution of the load across resources. The latter two are bottom up, and state the network load
via the loading of the resources, being the basic components any network is constructed of: nodes
and links. The network in total, as well as the individual resources, can be understood as stock-flow
model: the network as dubious cloud that somehow delivers the inserted load to where it is destined
for, the nodes as the layer 3 components that direct the load, and the links as the layer 2 components
that transfer the directed load among neighbouring nodes.

Which definition shall we use? To identify the implications of the above listed definitions we
define ρ=1 as the boundary between normal operation and overload. In this respect we recognise that
the first definition makes sense if we can state the network’s transport capacity. This is possible for
some regular topologies with a unique bottleneck capacity, for example a ring, torus, or hypercube
topology with static, ingress related routing. We do not use this definition because we do not intend to
restrict our studies to specific network designs. The second definition is more general and comprises
sufficient information to derive the next definition if the routing of the contained ingress loads is
known. Thus, this definition will be used to state examples. However, we call it ingress load, because
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for a precise performance evaluation the distribution across resources is commonly required, which
is the meaning of network load as specified by the third definition.

The third definition is the most accurate and it is always applicable, even for distributed dynamic
routing. This is the meaning of the term network load we henceforth refer to, if not otherwise
mentioned. Note, the~ρ vector contains the load offered to network resources, not the transported
(carried) loads, which constitute the utilization vector ~u. These vectors are related: the sum over the
transported loads of preceding resources directed to a resource, plus the ingress load entering the
network at a resource, is the load offered to succeeding resources

ρ(t+) = α+R ·u(t−), (2.96)

where R, the routing matrix, and α, the ingress load vector, are assumed to be time invariant. The
time index t is used to express the time lag, meaning that t− is an infinitesimal moment prior t+.
If no losses can occur, the offered and the transported loads are identical in their mean values,
E[ρ(t)] = E[u(t)]. Else, a difference is caused by the loss vector δ (u = ρ−δ). The mean loss vector
and utilization components result from

δ( j) = pl( j) ·ρ( j), u( j) =
(
1− pl( j)

)
·ρ( j), (2.97)

where pl( j) is the loss probability at network element j, which we also assume to be time invariant.
Considering how these vectors cross-determine their change over infinitesimal time-steps, we
recognise the common iterative approach to solving queueing networks. Figure 2.36 depicts a
small network of five nodes. Every node handles the flow aggregate that enters it, and every link
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Figure 2.36: Flow exchange and resultant load distribution among network resources

forwards the composite of all the flows that use it. Consequently depends the load of any node
somehow on the utilization of every node. To solve the interdependences an equation system is set
up. An essential part therein is the correct merging of the traffic flows that enter a resource. The
analytic flow aggregation by distribution composition is discussed in the next subsection.

The forth network load definition ρ̄=E[ρj] is useful to assess the performance of network
management and control. We extend it by max{ρj} and Var(ρj), at and across resources, to study
the performance with a scope exceeding the plain mean-of-means analysis. Specific implications are
discussed with the examples presented in later chapters, where these metrics are used to evaluate the
qualities of traffic management and control mechanisms.
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2.4.2 Summation of flows toward traffic aggregates

Given the rules of mean values presented in section 1.5 we can calculate the mean of the sum of
different distributed flows quite simply by weighted summation: E[XΣ] = ∑ui E[Xi]. If we know the
individual distributions pdf fi(x) or cdf Fi(x), and may assume that all flows are independent, than
we can directly calculate their weighted sums likewise.

pdf : fXΣ(x) =
n

∑
i=1

ui fi(x), cdf : FXΣ(x) =
n

∑
i=1

uiFi(x) (2.98)

Apparently simple, the result can be a very unhandy distribution function, in particular if the flows
individual peak probabilities are differently located. The resultant distribution may become a so
called multi-modal distribution, which is characterised by having several peaks at different x values.
This problem does not occur if we model all flows by strictly declining distributions with their only
peak at zero, for example by modelling all using a negative exponential or Lomax distribution.

Until here there was no need to separately discuss service time distribution and inter-arrival time
distribution. To merge traffic flows, which are jointly defined by a service time distribution and an
inter-arrival time distribution, we have to consider some implicit differences. Thus, we split the
merging topic, and show separately how to get the according aggregate distributions.

Service time distribution

The service time is the duration that a load unit occupies a resource. It is therefore also called holding
time Th. Considering the stock-flow model, it is the time some amount of load requires to pass the
exit port. In terms of queueing systems it is the time the server needs to serve a customer, where the
load unit is the customer and the network resource is the server.

Most physical layer resources provide bit-transfer at constant bit-rates. However, the service times
Th are not deterministic due to variable sized load units (packet-/frame-lengths Xi), and the commonly
applied link control protocol, which may trigger re-transmissions in case of failed transmissions. The
transfer on layer 0 happens at the speed of light. The holding time per bit on layer 1, being the time
required to transmit a single bit, is a resource specific constant equal the inverse line-rate. This is
not the speed of the signal carrying the bits, it is the speed at which the resource can modulate the
carrier signal, being the speed at which bits can be put on the line. The layer 2 speed, considering the
reduction caused by the link control mechanisms, is the resource’s capacity cj, where j identifies
the resource. Actually, this is not a constant. However, the common control mechanisms roughly
preserve continuity, and thus cj may be considered constant in average. Therefore, we can calculate
the holding time Tij and the mean service rate µij for flow i at resource j by

Th,ij [s] =
Xi [bit]

cj [bit/s]
=

Xi

cj
[s], µij =

1
E
[
Th,ij
] = cj

E[Xi]
[unit/s]. (2.99)

If the capacity cannot be assumed to be constant, we either need to replace cj by cj(t) or model it
distributed as random variable Cj. For queueing systems it is common to define the time unit such
that µ=1 is achieved. This simplifies equations, but cannot be performed where different Th,j occur.

If the traffic that passes a resource is the aggregate of different flows, we need to merge the
different service time distributions into one in order to achieve a joint model. For a server that serves
load units randomly one after the other we can assume independence and apply equations 2.98 to
calculate the service time distribution of the aggregate. If only the first two moments are defined, we
get the moments of the aggregate from

E
[
Th,j
]
=

1
cj

n

∑
i=1

ui E[Xi], µ j =
1

n

∑
i=1

ui

µij

, Var(Th,j) =
1
c2

j

n

∑
i=1

u2
i Var(Xi). (2.100)
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Equations 2.98 and 2.100 are commonly applicable if all arriving load units become served. If
losses occur independent and identically distributed these only affect the ui and the equations are still
applicable. However, losses are commonly load dependent, which causes that this simple calculus
does not yield precise results. In case of controlled transmission the entire load unit may become
re-transmitted if it has not been successfully transmitted in the first attempt. This adds a fraction
composed of the response time lag and the repeated transmission time, weighted by the transmission
failure probability, to the average time the server is occupied by a load unit. Evidently, this increases
the transmission time variance heavily. Similarly, on error prune radio links, the layer 2 transmission
control causes high variability, which should be considered in a similar way.

Inter-arrival time distribution

The inter-arrival time Ta is the time-span in between the arrivals of two subsequently arriving load
units. Along a serial transmission link, no load unit can arrive prior the previous has completely
arrived, meaning that before the next can arrive, the last bit of the previous must have been received.
This fact is widely neglected because at low load levels the probability for overlapping arrivals is
marginal. For negative exponentially distributed arrivals it can be shown that the special properties
of the negative exponential distribution equalise the effect. However, real world traffic is not negative
exponentially distributed, and in the literature this has been discussed vividly. The term related to this
issue is streamlining effect [56]. The issue is mentioned for awareness only, in general we comply
with the common practice to ignore it, accepting that all calculations become approximations.

To describe the aggregate of individual flows it is more convenient to use the inverse of the
inter-arrival time, the arrival rate λj =

1
E[Ta,j]

. Merging represents a summation in terms of mean
arrival rates,

λj = αj +
n

∑
i=1,i 6=j

ui( j−), E[Ta, j] = E[Ta,0j]+
1

n

∑
i=1,i 6=j

ui( j−)
E[Ta,i]

, (2.101)

where the ui( j−) state the remaining offered intensities of the contributing flows at resource j, being
the carried intensity ui at the previous resource j−. This simple approach is only applicable for mean
values, because the arrival distribution becomes a departure distribution fD,ij(x) whenever passing a
resource, which is load dependent, contrary to a flow’s service time distribution, which generally
does not change hop by hop.

To determine an aggregate’s arrival distribution shape it is necessary to calculate all contributing
departure distributions fD,ij−(x) of preceding resources. If this is possible, we can use equation 2.98
to merge the contributing rate distributions

1
fA,j(x)

=
1

fA,0j(x)
+

n

∑
i=1,i 6=j

ui( j−)
fD,ij−(x)

or
1

FA,j(x)
=

1
FA,0j(x)

+
n

∑
i=1,i 6=j

ui( j−)
FD,ij−i(x)

, (2.102)

where fA,0j(x) and FA,0j(x) are the distribution of the flow entering the network at resource j with
intensity αj. However, deriving the fD,ij−(x) or FD,ij−(x) is commonly intractable due to the non-
linear influence of the queueing process. Particularly, the cyclic dependences are hard to solve in
case of meshed networks. More practical are rough assumptions based on the central limit theorem,
solid guessing, and experience. After few iterations a feasible guess should in general be achieved.
Alternatively, measured shapes may be tuned to fit the calculated first moments. Both approaches
demand cognitive decisions upon the applied simplification and yield approximates only.

A more methodical approach is shown in [57]. For assumed renewal property an equation to
calculate the squared coefficient of arrival variation c2

A(j) can be derived based on [58]

c2
A(j) =

n

∑
i=1

ui( j−)
λj

c2
D(i)( j−) =

α j

λj
c2

A( j)+
n

∑
i=1, i6= j

ui( j−)
λj

c2
D(i)( j−), (2.103)



96 Gerald Franzl

where c2
D(i)( j−) is the squared coefficient of departure variation of flow i when leaving the preceding

resource j−. The latter equation separately states the ingress flow entering the network at resource j,
as it is in the end required to define the system of equations. Assuming that the per flow departure
characteristic is related to the aggregate characteristic only, we may continue with the approach
outlined in [57] and use the splitting proposed under the assumption that the departure process would
be of renewal type to get an equation for the departure characteristics

c2
D(i)( j−) = ui( j−) c2

D(j
−)+(1−ui( j−)). (2.104)

For the aggregate departure characteristic c2
D(j
−) a nice approximation is derived in [57]

c2
D(j
−) = u( j−)2 c2

B(j
−)+(1−u( j−)2) c2

A(j
−), (2.105)

where u( j−) is the utilization of the resource j−, and c2
B(j
−) is the aggregate coefficient of service

time variation. It depends on the aggregate arrival characteristic c2
A(j
−) entering the preceding

resource j−, which needs to be calculated likewise based on the flows entering it. This proceeds
across the entire network of resources, defining a system of equations that is linear in terms of
squared coefficients of arrival and service variations c2

A and c2
B,

c2
A(j) =

α j

λj
c2

A( j)+
n

∑
i=1, i6= j

ui( j−)
λj

(
ui( j−)

(
u( j−)2 c2

B(j
−)+(1−u( j−)2) c2

A(j
−)
)
+(1−ui( j−))

)

that can be solved rather easily, once we solved 2.101 to get the load aggregates ui( j) at each
resource j for every flow i present. To do so, we need given ingress flow intensities αi, flow routing
across resources, being j sequences per flow i, and the service time characteristics c2

B(j), which may
be composed from the present flows according to 2.100, adding one more dimension.

In general equations 2.103, 2.104, and 2.105 are approximations only because all contributing
flows have to be independent and of renewal type to make this approach precise. The first is not
necessarily true, for example if two flows pass a common preceding resource, and the second can be
assured only if all initial flows result from Poisson processes and all service times across all resources
are negative exponentially distributed. This is the case for Jackson networks only [59], but not in
general. Consequently, the proposed approach approximates the second moment solution only.

Finally note, in general the results calculated for a traffic aggregate cannot be decomposed into
performance metrics per contributing flow. To evaluate systems on a per flow level, it is possible to
use vacation models, where the serving process becomes split among different traffic flows. Per flow
a sub-model is designed, where the serving is interrupted while load units from other flows are served.
This is a contrary approach because the individual service time distribution is preserved, which is
possible because with non-preemptive serving only the waiting time prior service depends on the
properties of the other flows currently present. Vacation models are widely discussed in [60], it was
used exemplarily in section 1.4.3 (figure 1.20), and its application is briefly discussed in section 4.1.2
on strict prioritisation systems.

2.4.3 Typical traffic flows

The characteristics of traffic flows are determined the specifics of the used applications. However,
several mechanisms in and between layers influence the distribution of load units on different layers.
Due to the plurality of applications and mechanisms, their implementation diversity, and the ever
continuing modification of the immanent protocols and mechanisms, we only define basic types
here. Real traffic flows will in general differ from the here defined archetypes. To study particular
applications and mechanisms considering implementation specifics the traffic flows should be defined
more precisely. For example, via recorded traces applying the tools presented in section 2.3.
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Figure 2.37: Hierarchic traffic load aggregation

Different layer specific load archetypes are sketched from deductive reasoning based on
application archetypes, typical layer mechanisms, and the aggregation hierarchy depicted in
figure 2.37. It is based on [61], extended by application and physical layer as well as the aggregation
of competing flows. For clarity only we show constant packet size and no interleaving at the physical
layer.

Application layer related load generation archetypes

A priori we state that the actions of human beings are in average random and uncorrelated. Correlation
of human actions, particularly of cognitive decisions including the popularity of applications, is
the core topic of the game theory and only relevant on time intervals much longer than what we
consider here. Thus, on the here relevant time scale the average application usage by humans can
be assumed independent and identically distributed concerning the usage profile. Therefore, the
use of applications by humans, layer 8 in the OSI-model, can be modelled by a Poisson process,
parametrised by the usage intensity only. Note, this assumption relates to the duration an application
is used and the time in between subsequent usage of the same as well as different applications. This
does not necessarily cause the traffic to be negative exponentially distributed.

• Markovian profile: If per application negative exponentially distributed loads are caused, a
Poissonian traffic flow results. Typical example applications are file transfer, e-mail exchange,
Internet surfing, and video on demand, because the initiation times and the transmitted load
can be assumed to be negative exponentially distributed.

• Modulated profile: If an application constantly causes usage independent low traffic load
and load peaks occur on user demand, than it is best modelled as Markov modulated Poisson
process (MMPP). Typical examples are sensor controlled surveillance and monitoring services,
including automated e-mails in case certain events occur. The load size caused by these
applications is typically quite smooth, if not constant.

• Persistent profile: Persistent services with no user interaction cause machine driven data
flows. These are rather deterministically in both, timing (clocked) and data amount (message
size). Still, to cover some variability in both, we model the traffic caused either by a narrow
Beta distributed or a high order Erlang distribution. This type covers machine-to-machine
applications as well as broadcasting services.

In their primary property these three archetypes represent Markovian, bursty, and smoothly distributed
load generation intervals, in the order they are defined above.
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Transport layer related flow composites

On the transport layer the load generated by applications is present in the form of transportable
load units, for example IP-packets. The load caused is therefore defined as (average) packets per
second. The normalisation to an average load unit size makes the approach more generally applicable.
Still, we have to consider the properties of the load units that can be transported. Evidently, their
size can neither be zero nor infinite. Considering IP, the IP-header states a lower bound, and the
maximum IP-packet size of 1.5 kByte an upper bound. Normalising to an average size of 250 Byte
an approximate size range from 0.1 to 6 results. The ingress rate for IP-packet arrivals is limited by
the processing power at both terminals, which we assume infinite. The maximum egress rate refers
to the packet reception and is limited by the bottleneck capacity, which should be part of the model.

Many applications do not occupy the entire provided capacity all the time they are active. Thus
the application related transport layer load results from modulating the load generation defined above
with the packet distribution caused during use. The resultant distribution could be mathematically
derived, but for modelling less complex distributions are advantageous.

• Bursty loads: Every file transfer defines a burst load because files are in general much bigger
then a single transport unit. The arrival of a file to be transported causes a burst of packets to
be sent as soon as possible. In case of UDP each file causes a correlated load burst, where
the inter-arrival time equals the packet size until all fragments of the file have been put on the
go. Considering the influence of the sending rate control of TCP, we get smoothly distributed
load bursts, where the times between bursts and the size of bursts are determined by the
round-trip-time and the current transport-window-size.

• Heavy tailed loads: The idle intervals in between bursts shrink exponentially if bursty traffic
flows become merged. In general the resultant aggregate load is not Markovian. Today,
this traffic type is assumed to be heavy tailed, and modelled by a power law distribution,
for example Pareto or Lomax. However, as explained in subsection 2.4.2, the service time
distribution of the composite is the weighted sum over those contributing, and this is more
smooth than that of a single user flow because each is itself bounded by [0.1.. 6.0 ].

• Smooth loads: Live communication lasts long compared to average file transfers, and
commonly causes low average loads compared to the transport capacity. On layer 4 we
can assume such services as infinitely lasting. The amount of data required to maintain a
lasting communication is in the long term rather constant. In case of simplex communication,
for example web-radio and live streaming, the resultant flow can be modelled by a narrow Beta
or a high order Erlang distribution in both, inter-arrival times and packet size.

• Markovian loads: In case of halve-duplex communication, where one side is idle while the
other transmits a constant flow of information, for example idealised VoIP, the inter-arrival
time becomes a Markovian interrupted process. The interruptions increase the variance of
the primarily smooth process. If idle and busy durations are per se negative exponentially
distributed and in average equal long, we may assume the resultant inter-arrival times to be
negative exponentially distributed. If variable data reduction and compression mechanisms are
applied, also the size distribution may approach the negative exponential distribution.

In addition to the application driven loads we have to consider also the network internal traffic
load required to perform the signalling among upper layer protocols and mechanisms.

• Signalling loads: Signalling traffic is commonly not negative exponentially distributed in
either aspect because protocols commonly use deterministically sized signalling messages.
These messages typically cause a chain of messages. Consequently is the inter-arrival time of
signalling traffic best modelled by a Markov modulated Poisson process (MMPP) with rare
high load intervals and long lasting low load intervals. The packet size can be modelled as
before by a narrow Beta or a high order Erlang distribution.
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Link layer related traffic aggregates

The load units on the link layer are the same as on layer 4, and we assume the same load size
normalisation. If a unique, time invariant mean size exists we may also normalise the time to 1 time
unit, because the link defines a constant capacity (Byte/s) and thereby the mean holding time, being
the mean unit size divided by the link capacity.

Relating the traffic on this layer to the applications that may contribute to an aggregate is
cumbersome: too many variables and mechanisms interfere. Traffic aggregates composed in that
detail would never be general because hardly ever will all components be identically present in
practice. Therefore, we sketch archetypes based on the link’s location in the network.

• Access traffic: Access traffic results directly from the transported loads defined above because
the few devices commonly connected to a modem cause traffic alike application in parallel.
This generally applies for most local area networks (LANs). Considering that most arrivals
appear in smoothly distributed bursts, we either get a smooth inter-arrival time process with
negative exponentially distributed load batches, or harmonise it into a frequently interrupted
negative exponential distribution, being the Interrupted Poisson process (IPP). To consider
long lasting no-use intervals, which heavily depend on day-time and week-day, we need to add
another interruption process. A H3 should be sufficient to model the access inter-arrival time
distribution for any long term load fluctuation. Concerning the size distribution we may use a
rather flat Beta distribution or a low order Erlang distribution. This yields a H3/E2/1 queueing
system. If we incorporate signalling and control traffic with independent and identically
distributed small load units, a H2/M/1 queueing system may be sufficient.

• Metro traffic: Metro traffic comprises load distribution in the down-link (service provider to
user) and load concentration in the up-link (user to service provider). It can be modelled as
merge of access traffic flows. If we assume all access traffic to be independent and identically
distributed, the merged inter-arrival time distribution will show exponentially less lasting idle
times, depending on the number of access traffic flows routed over a link. If also the size
distribution is independent and identically distributed, the size distribution of the aggregate is
the same. Consequently, the inter-arrival time becomes less bursty the more access flows are
merged, and thus, a H2/E2/1 model should be sufficient. If we again incorporate signalling
and control, an M/M/1 queueing system may be sufficient.

• Core traffic: Finally, interruptions are hardly identifiable if thousands of flows are merged.
Only the mean traffic intensity depends on the day-time and week-day, but hardly its
distribution. The literature on these aggregates is ambiguous: some sources propose that
it is smooth while others stress that it is fractal. To our understanding it should be rather
smooth due to the many effects that balance the different characteristics of the contributing
load types. However, a prove of this argument is missing.

In addition to the application driven traffic loads there is prioritized signalling traffic present as
well. The packet size used for signalling is protocol specific, close to the minimum packet size, and
best modelled by a narrow Beta or high order Erlang distribution.

• Signalling traffic: On this layer the signalling traffic occurrences directly with the traffic it
relates to. Thus, the inter-arrival time of signalling messages is best modelled by a Markov
modulated Poisson process (MMPP) with short high load intervals. However, we have to add
layer 3 signalling as well, which splits in on-demand messages to be incorporated here, and
background processes that cause control traffic.

• Control traffic: Control traffic represents the persistent information exchange among network
entities that is required to keep a network operational. This comprises information polling
as well as scheduled information exchange, for example autonomous neighbour detection.
Several protocols operate in parallel, and we can assume that the traffic caused is independent
and identically distributed. Consequently, we can assume negative exponentially distributed
inter-arrival times if the number of background processes is sufficiently high.
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Note, header fields used for signalling cause no traffic contribution. These are readily considered
by the overhead factor that increases the average load layer by layer. Only messaging that is
transported alike regular traffic flows needs to be modelled by a specific flow type.

Physical layer loading

Finally, all way down we find the loading of the transmission medium, being in principle a pure on-off
pattern with complex, load origin and aggregation dependent, autocorrelation among on-intervals.
Of particular interest are the different resource sharing approaches, because these primarily define
the behaviour and performance of the physical medium, which substantially influences the network
performance in terms of worst case end-to-end delay and reliably achievable throughput.

• Wired transmission: Wired point-to-point transmission commonly relies on persistent
transmission, where idle patterns are transmitted when nothing from the layer above can
be transmitted. The physical layer never becomes idle, and no queueing occurs. Multiplexing
schemes split the physical capacity into useful shares (channels), where each represents an
independent resource. With time division multiplexing (TDM) the medium is not always
instantly available. However, in average it is because a TDM channel is a D/D/1 queueing
system, where the backload (queue filling) is always <1 because it depends on the phase
difference between arrivals and departures only as long as λ≤µ. Such queues we call buffers
because they never queue customers. They only solve timing issues by inserting delays less
than a single slot duration. If we presume buffers, the physical medium can be modelled as
GI/G/n/n loss system, where the inter-arrival and holding time distributions are the merge of
all contributions from the layer above, scaled to the capacity of the provided physical channels.

• Shared transmission: Wireless and other shared medium technologies transmit data on
demand only. With uncoordinated sharing instantly upon arrival, lacking a joint control
instance. This requires some collision detection and consequential re-transmission option,
together with a back-off strategy that prevents repeated collisions. Physical layer transmission
managed this way performs similar to the controlled transportation implemented in layer 4,
although at a different time scale. They can be modelled as queueing systems with server
vacations, or approximated as presented in section 4.1.

• Slotted transmission: The third option is distributed control, for example by a token scheme.
In that case the access to the medium is persistently structured into slots, and the medium
usage is advertised to all participating devices, such that no collisions may occur. A such
shared medium can be modelled as multi server queueing system with server vacations. The
structuring of the medium in (equally sized) shares defines n, the number of servers. The
physical layer load distribution results from the distribution of the loads on the layer above: the
upper layer inter-arrival time defines the inter-arrival times in between load batches, and the
upper layer holding time defines the batch size distribution M because to transmit a load chunk
we need m blocks that fit into one resource share, a single slot, each. The holding time on the
slotted physical layer is commonly deterministic and equal the slot size. For access and local
area networks, where such sharing is quite common, we get a HE2

3 /D/nvac queueing model.
Modelling the physical resources yields their utilization. However, maximising that causes a

conflict with the demand for quality. For performance reasons the medium utilization needs to be
kept sufficiently below saturation. Actually, the utilization of physical resources tells nothing about
efficiency: the less efficient the load is transported, the higher is the resource utilization. Only the
relation of network load to network utilization assesses efficiency.



3 Queueing systems

Queueing systems consist of some queueing space, where load can be temporarily stored, and at
least one device that sooner or later serves the arrived load. Such a system is primarily defined by an
arrival process A(t), a service process S(t), the system size s (space to hold load), and the order in
which load passes the system, comprising the queueing-/scheduling-/serving-discipline. To identify

A(t)
S(t)

s
D(t)

A/B/n/s/c/discipline(s)

queueing systems in a uniform way we use the extended Kendall notation, where A refers to the
distribution family of the arrival process A(t), B to the distribution of the service process S(t), n states
the number of servers, s the system size, c the available load (if bounded), and the discipline states
how the load is queued and how serving is scheduled. If not explicitly stated, s and c are infinite, and
FIFO (first-in first-out) queueing also called FCFS (first come first served) is assumed.

These models are perfectly suited to evaluate the performance of systems that handle traffic flows
characterised by an inter-arrival and a service time distribution. Because performance metrics should
be time invariant, we are primarily interested in the steady state, particularly

the steady state-probabilities πi = p(i) = P[X=i]

expressing the probability that i load units are currently in the system, either waiting in the queue
or currently being served. X is called the system process, and Q the queueing process, being a part
of X . To complete it, Tf is the flow-time process, and Tw the waiting-time process. Transient analyses
are necessary to evaluate how quickly a system returns to its steady performance once it left steady
operation conditions, but this property commonly depends on the actual cause.

If we can calculate all state probabilities πi, many properties of the queueing system become
instantly apparent. For simplicity we use an index-triple that explains the states they refer to: i shall
always be the number of customers in the system, j the number of customers currently queued, and k
shall be used to further separate states where required. This definition of i and j indices yields that
the relevant equations can be system independently expressed by

mean system filling x = E[X ] = ∑ iπijk (3.1)

mean queue filling q = E[Q] = ∑ jπijk (3.2)

mean flow time f = E[Tf ] =
1
λ E[X ] = x

λ (3.3)

mean waiting time w = E[Tw] =
1
λ E[Q] = q

λ (3.4)

where we apply

Little’s law L = λF x = E[X ] =
E[Tf ]

E[A]
= λ f (3.5)

which is generally applicable for any queueing system. Note that no summation restrictions are
required for the defined i and j only, and that the mean arrival rate is expressed by λ = 1

E[A] . The bars
over variables highlighting that these refer to mean values are henceforth not explicitly shown.
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3.1 Infinite queueing systems

Infinite queues are commonly assumed where a saturation state πijk(i=s) does not exist, s=∞, or its
probability is negligible, πsjk≈0. In case of non-negligible πsjk the performance of a finite system can
be approximately assessed by truncation, meaning adjustment of the infinite system’s performance by
a posteriori considering the non-existing state probabilities πijk for i>s. We start with these somewhat
unhandy queueing systems because they are the basis of the entire queueing theory [14, 62], and
highlight that such systems can be solved analytically. The derivation of analytic solutions comprises
the prime content of many textbooks on queueing systems, see for example [14, 34, 57, 62–64]. Here,
selected approaches are sketch and discuss for the sake of completeness, consistent notation, and to
introduce solving strategies.

The general birth-and-death process

Commonly we presume that the inter-arrival and service times do not depend on the system state,
are independent and identically distributed over time, and uncorrelated. Allowing system state
dependent mean rates for both, arrivals and service times, we relax this proposition and get the so
called birth-and-death process. It describes a realisation independent continuous time system of one
dimensionally connected Markov sates, depicted in figure 3.1, where the inter-arrival and service rate
may in any way depend on the current system state, but not on how it has been reached (memoryless).

0 1 2 · · · i-1 i i+1 · · ·
λ0

µ1

λ1

µ2

λ2

µ3

λi−2

µi−1

λi−1

µi

λi

µi+1

λi+1

µi+2

Figure 3.1: State transition diagram of a birth-and-death system

The state transition diagram models the system state process by the number of clients in the
system i at any time, and its potential changes by transition rates, which equal the inverse transition
times rij=

1
τij

. Independent of the actual rates, an arriving load increases the system state by one, a
served load leaves the system decreasing the system state by one. Due to time continuity two events
never occur at the precise same time instance and thus, no probabilistic splitting or state bypassing
can occur. These are the properties that define a birth-and-death process.

In the steady state the probability of each state represents the probability that at a certain time
the system is in that state, being πi=p(i)=P[X(t)=i], while the duration that the system remains in
a state once it is reached, called state sojourn or transit time τi, is determined by the exiting rates,
including the exit of a currently served client but also the arrival of a new client, not to be mistaken
with the holding time h, being the time required to serve a client (h=1

µ ). The fraction of time the
system is in a state, which equals πi, is determined by the frequency a state is reached times the
duration the system remains in that state.

The birth-and-death process still represents a homogeneous Markov chain, where only transitions
among neighbouring states exist and all the distributions are time invariant. The system is memoryless,
and can be solved if we manage to include the precise rate dependences. However, even without
specified rate dependences we can readily identify some generic properties.

The differential-difference equations of states are

dpi(t)
dt = λi−1 pi−1(t)− (λi +µi)pi(t)+µi+1 pi+1(t) ∀i>0, and dp0(t)

dt = µ1 p1(t)−λ0 p0(t), (3.6)

and for the steady state, where dpi(t)
dt = 0 needs to be fulfilled such that pi(t) = πi ∀t , we get

πi+1 =
λi +µi

µi+1
πi−

λi−1

µi+1
πi−1 ∀i>0, and π1 =

λ0

µ1
π0

by induction⇒ πi+1 = π0

i

∏
j=0

λj

µj+1
. (3.7)
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If π0 = 0 all states become 0, which is not possible. Consequently is a non zero probability π0 a
necessity. In words, the system must from time to time become idle. For the existence of the steady
state must ∑πi=1 be fulfilled, which is the case if and only if ∑∞

i=0 ∏i
j=0

λj
µj+1

is finite. This is the case
if µi>0 ∀i>0 and for some k all λk+j

µk+j+1
<1 ∀j is true. In words, for stability no service rate µi may be

zero (except µ0), and the arrival rate λi needs to become and remain smaller than the service rate µi+1
for some state k and all states above. Given stability we can calculate π0

1 =
∞

∑
i=0

πi = π0 +π0

∞

∑
i=1

i−1

∏
j=0

λj
µj+1

⇒ π0 =
1

1+∑∞
i=1 ∏i−1

j=0
λj

µj+1

(3.8)

and thereby all steady state probabilities πi are defined via equation 3.7.

Rearranging 3.7 we get λi pi−µi+1 pi+1 = λi−1 pi−1−µi pi = · · ·= λ0 p0−µ1 p1 = 0, the recursion
of all the global steady state equilibrium equations λi−1 pi−1 = µi pi, which result from splitting all
states into any two closed sets of adjacent states. Here, for the one dimensional case, these are the
boundary equations among any two adjacent states.

In matrix form the general birth-and-death process is defined by

Q =




−λ0 λ0
µ1 −(λ1+µ1) λ1

µ2 −(λ2+µ2) λ2
. . . . . . . . .




~πQ=~0⇒ πi+1 = π0

i

∏
j=0

λj

µj+1
. (3.9)

All M/M/x-systems are special cases of the birth-and-death family. If the Ms are generalised to
MAPs we get the quasi-birth-and-death (QBD) family, where memoryless is restricted to renewal
instances. Note also, that the birth-and-death as well as the QBD theory is not restricted to infinite
systems. If at any state i the arrival rate becomes zero the states above cannot be reached and thus,
also finite sets of connected Markov states define QBD processes.

3.1.1 M/M/n queueing systems

How an M/M/1 system is solved has already been shown in section 1.4, where Markov chain models
for queueing systems were introduced. The extension to n servers is straightforward and depicted
in figure 3.2, which evidently yields the M/M/1 system for n=1. The M/M/n queueing system is a

0 1 2 · · · n n+1 · · · i · · ·
λ

1µ
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2µ
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3µ

λ

nµ
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nµ

λ

nµ

λ

nµ

Figure 3.2: State transition diagram of an M/M/n queueing system

birth-and-death system where the rates λi=λ ∀i and µi=nµ ∀i≥n become state independent for i≥n.
Consequently is this system stable for any λ<nµ. With multiple servers the sojourn time versus
holding time divergence is also reflected by the different load definitions to be found in the literature:
the offered load in Erlang, ρ = λh = λ

µ , versus the system load, %= λ
nµ = ρ

n .

The steady state equilibrium equations to be solved in order to get the state probabilities are

p(i−1)λ = p(i) iµ ⇒ p(i) = ρ
i p(i−1) = ρi

i! p(0), p(n) = ρn

n! p(0) i≤ n (3.10)

p(i−1)λ = p(i)nµ ⇒ p(i) = ρ
n p(i−1) = ρi

n!n(i−n) p(0) =
(ρ

n

)j p(n) i≥ n, j = i−n (3.11)
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if we use the boundaries between adjacent states to define the global equilibrium equations, and the
offered load in Erlang ρ = λ

µ to state the load. Using ∑ p(i) = 1 and ∑∞
0 ai = 1

1−a we get p0.

1 =
n−1

∑
i=0

ρi

i! p(0)+
∞

∑
i=n

ρi

n!n(i−n) p(0) = p(0)

(
n−1

∑
i=0

ρi

i! +
ρn

n!

∞

∑
j=0

(ρ
n

)j

)
= p(0)

(
n−1

∑
i=0

ρi

i! +
ρn

n!

1− ρ
n

)

⇒ p(0) =
1

ρn

n!
1−ρ

n
+

n−1

∑
i=0

ρi

i!

=
1− ρ

n

ρn

n! +(1− ρ
n )

n−1

∑
i=0

ρi

i!

ρ→n%
=

1

(n%)n

n!(1−%) +
n−1

∑
i=0

(n%)i

i!

(3.12)

Another important property is the probability for all servers being busy

p(i≥ n) =
∞

∑
i=n

ρi

n!n(i−n) p(0) =
p(n)
1− ρ

n
=

ρn

n!

ρn

n! +(1− ρ
n )

n−1

∑
i=0

ρi

i!

ρ→n%
=

1

1+ n!(1−%)
(n%)n

n−1

∑
i=0

(n%)i

i!

(3.13)

known as the Erlang_C formula, expressing the probability that an arriving customer has to wait for
being served. Note, this neither expresses how long an arriving customer will wait in average E[Tw],
nor how many customers in average are waiting in the queue E[Q].

This all servers busy probability can be used to define a macro state p(i<n) = 1− p(i≥n) that
joins all states where at least one server is idle. Multiplied with the mean service duration τh=

1
µ

this yields the flow time portion of the customers that do not need to wait for being served. With
this macro state we can draw the state flow diagram as shown in figure 3.3. This simplified flow

λ ∞

1
nµ1 2 · · · n i<n n n+1 · · · n+ j · · ·

p(i<
n)λ

π
n λ

π
(n+

1
) λ

π
(n
+

j) λ

µ nµ nµ nµ nµ nµ
the encapsulated queueing process

Figure 3.3: State flow diagram of the M/M/n-FIFO queueing system’s queue

diagram equals that of an M/M/1-FIFO queueing system with service rate nµ, except for the serving
of the test customer itself into the absorbing state, which evidently happens with rate µ. Note that
with multiple serves FIFO-queueing does not yield a FIFO system: due to varying service times the
output order may differ from the arrival order. First come first serve (FCFS) better indicates such a
system. However, the mean flow time E[Tf ] results from

f = E[Tf ] = E[Tw] + E[Th] = w
︸ ︷︷ ︸

waiting time

+ 1
µ︸ ︷︷ ︸

serving time

(3.14)

and the enclosed mean waiting time w can be calculated via equation 3.11, using ∑∞
1 iai = a

(1−a)2 ,

w = E[Tw] =
1
λ E[Q] = 1

λ

∞

∑
j=1

j π j =
p(n)

λ

∞

∑
j=1

j%j = p(n)
λ

%

(1−%)2

%→ ρ
n=

p(n)
nµ(1− ρ

n )
2

(3.15)

or using the similarity with M/M/1 via the conditional mean waiting time w∗, being the flow time
E
[
T ∗f
]

of the encapsulated queueing process marked in figure 3.3

w∗ = E
[
T ∗f
]
= E[X∗]

λ = 1
λ

∞

∑
j=1

j π∗j =
π∗0
λ

∞

∑
i=1

i%i = 1−%
λ

%

(1−%)2 =
1

nµ−λ
(3.16)
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independent of how the load was defined in the first place. Comparing the results we recognise that
the required scaling factor

w
w∗

=
p(n)
1− ρ

n
= p(i≥ n) ⇒ w = p(i≥ n)w∗ =

p(i≥ n)
nµ−λ

(3.17)

is precisely the probability that an arriving client has to wait for service, p(i ≥ n). Consequently
is the decomposing of the system in a serving and a queueing part possible, at least for the FIFO
queueing discipline. Note that for the encapsulated queueing process there exists no server that takes
a client from the queue, and consequently is Q∗ ≡ X∗ and thus w∗ ≡ f ∗. This case appears whenever
the departure from the queue occurs at service completion and not at service initiation.

Finally, we get the mean flow time f=E[Tf ] by adding one mean holding time h=1
µ to the above

achieved mean waiting time w in order to include the time required to serve the test load.

f = E[Tf ] =
p(i≥ n)
nµ−λ

+
1
µ

=
1
λ

(
E[Q]︷ ︸︸ ︷

ρ
n p(n)

(1− ρ
n )

2
+ ρ

︸ ︷︷ ︸
E[X ]

)

This equivalently results if we apply Little’s law on E[X ] calculated directly via the equilibrium
equations 3.10 and 3.11 as

E[X ] =
∞

∑
i=1

i p(i) = p(0)
[ n

∑
i=1

i ρi

i! +
∞

∑
i=n+1

i(ρ
n )

(i−n) ρn

n!

]

= p(0)
[
ρ

n

∑
i=1

ρ(i−1)

(i−1)! + ρn

n!

∞

∑
j=1

(n+ j)(ρ
n )

j
]

= p(0)
[
ρ

n−1

∑
i=0

ρi

i! + ρn

n!

(
n

∞

∑
j=1

(ρ
n )

j +
∞

∑
j=1

j (ρ
n )

j
)]

= p(0)
[
ρ

n−1

∑
i=0

ρi

i! + ρn

n!

( n ρ
n

1− ρ
n

+
ρ
n

(1− ρ
n )

2

)]

= p(0)ρn

n!︸ ︷︷ ︸
p(n)

ρ
n

(1− ρ
n )

2
+ p(0)ρ

( ρn

n!

1− ρ
n

+
n−1

∑
i=0

ρi

i!

︸ ︷︷ ︸
=

1
p(0) as shown in 3.12

)

=
ρ
n p(n)

(1− ρ
n )

2
+ ρ

= E[Q] + ρ (3.18)

where we again used ∑∞
0 ai = 1

1−a , in particular ∑∞
1 ai = ∑∞

0 ai − 1 = a
1−a and ∑∞

1 iai = a
(1−a)2 , to

solve the infinite sums in the third line.

The last equation in equation 3.18 results generally from Little’s law: x = λ f = λw+ λ
µ = q+ρ.

Because Little’s law is always applicable, this holds for any arrival and service time distribution. In
other words, because the mean system filling E[X ] has to equal the mean queue filling E[Q] plus the
mean number of occupied servers, the latter must equal the load measured in Erlang. Because %= ρ

n
is the average loading of the system, it is also the average utilization of the system if % ≤ 1, and
also expresses the average utilization of each server if the server assignment is performed unbiased.
Decomposing the system in a processing and a queueing part is not the most straightforward approach.
Still, it is elegant and a common method to approximate complex systems exploiting the general
applicability of Little’s law.
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Figure 3.4 shows how the system performance changes if the number of servers is increased
while the entire system capacity nµ is kept constant. Latter is achieved by scaling down the service
rate µ, dividing it by n, such that %= 1

nµ=λ becomes independent of n. Obviously, at low loads the
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Figure 3.4: Mean system filling E[X ] and flow time E[Tf ] of M/M/n first-come-first-serve (FCFS)
queueing systems shown for increasing number of servers n={1,2,5,10,20} in combination with
simulation results (×) all normalised to equal system load %=λ by setting µ=1

n

mean flow time f=E[Tf ] shown on the right is dominated by the increased holding time, µ=1
n , which

results from decreasing the service rate for increased server numbers in order to keep the system
capacity constant. At high loads they diverge less because the waiting time component w=E[Tw]
becomes dominant. In case of ten or more servers the mean flow time is nearly constant up to
80% load. This increased holding time also causes the increased system filling E[X ] shown on the
left. However, this only results from the longer serving interval required per server and not from
an increased mean waiting time. Vice versa, as figure 3.5 shows, the mean waiting time w actually
decreases dramatically with increasing server numbers n. In a pragmatic view, and in an operator’s
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Figure 3.5: Mean waiting time E[Tw] of M/M/n queueing systems shown for increasing number of
servers n={1,2,5,10,20} over load and vice versa, for increasing load %={0.1,0.3,0.5,0.7,0.9}
over number of servers, again normalised to equal system load % by setting µ=1

n

perspective, the best service is provided for the least number of servers possible, being a single
server system where the sole server offers a service rate equal to the joint service rate (capacity)
of a multi-server system. Consequently, if the costs of using a faster server rise less than linear
with its serving rate, the faster server is the more efficient choice. However, less servers cause a
less homogeneous service in case of dynamic loads. If the mean waiting time w is more relevant
than the holding time h, for example where long queues cause a bad reputation due to discouraged
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customers or when high jitter has to be avoided because consistent timing is demanded, a system
with an adequately chosen number of servers is the better choice.

In general, multi-server systems allow a trade off among mean flow time f and mean waiting
time w. If power consumption is relevant, multi-server systems offer a simple or even implicit saving
option: surplus server capacity can be switched off when the average load is low. In section 3.2 on
finite queueing systems we will see that the blocking probability, a quality degradation commonly
assumed more sever than jitter, also decreases for increased number of servers.

3.1.2 Queueing disciplines

The first come first serve (FCFS) policy results from first in first out (FIFO) queueing. Note that
FCFS refers to the system, whereas FIFO refers to the queue within the system. In case of multiple
servers and random service times, FIFO-queueing does not grant a FIFO-system because it does not
assure that the loads depart in the order they arrived. FIFO is the most natural queueing discipline,
and therefore it is the scheme by default assumed and discussed. In practice other schemes may occur
as well. The most general queueing disciplines are sketched in figure 3.6. A priory, we note that the
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Figure 3.6: Different queueing disciplines: FIFO, LIFO, and random queueing

processing order, which is jointly determined by the queueing, scheduling, and serving/processing
discipline, cannot affect the average system performance of loss-less systems. Only the higher
moments of the waiting and flow time as well as the inter-departure process may depend on the
departures ordering.

Concerning processing disciplines we broadly restrict the discussion to the non-preemptive
discipline. Particularly because with multiple servers a preemption policy would be required to define
which server, out of the n being busy, actually becomes preempted at an arrival instant. In case of
non-preemptive disciplines only the currently queued customers are affected by later arrivals, and
because the queueing discipline applies per queue, no additional information is required to define
these systems. In addition, fractions of data-loads can commonly not be processed well due to the
widely used transmission coding and error detection mechanisms. Thus, only the resource wasting
and therefore congestion prone pre-empt and re-start mechanism would be a feasible pre-emption
policy for data transmission systems. The pre-empt and resume policy is efficiently feasible only
prior packeting and framing of data loads, which occurs in the transmit stack of traffic sources.

M/M/n/FIFO

The first in first out (FIFO) queueing state flow diagram shown in figure 3.3 reveals that for FIFO
queueing the waiting process is a pure dying process, where only transitions toward the absorbing
state exist. The number of negative exponentially distributed service phases contributing to the flow
time component T ∗f (j) is given by j, the number of clients waiting when the test load enters the
queue plus one. Latter considering the residual service time till the next service completion, which is
negative exponentially distributed with mean 1

nµ because n identical memoryless service phases with
mean µ each, equal one with mean nµ as long as no server becomes idle. Thus, the conditional flow
time components T ∗f (j) contributing to Tw are Erlang[j+1](nµ) distributed.
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To get rid of the conditioning these flow time components need to be summed over all conditions,
each contributing fT ∗f (j)(τ) scaled by the according entry probability pa

j . Poisson arrivals see time
averages (PASTA), thus pa

j ≡ p(n+j) given by equation 3.11.

pa
j = p(n+j) = p(n)%j fT ∗f (j)(τ) =

nµ(nµτ)j

j!
e−nµτ

The waiting time density conditioned to Tw>0 results as1

fT ∗w (τ) =
∞

∑
j=0

pa
j fT ∗f (j)(τ) =

∞

∑
j=0

p(n)%j nµ(nµτ)j

j!
e−nµτ = p(n)nµ e−nµτ

∞

∑
j=0

(λτ)j

j!

= p(i≥n)(nµ−λ) e−(nµ−λ)τ (3.19)

where we use equation 3.13: p(n) = (1−%) p(i≥n) and ∑ αj

j! = eα. Entries to states not comprising
a waiting time were implicitly considered because ∑ pj does not sum to one, but to p(i≥n), being
the probability that an arrival needs to wait as given by the Erlang_C formula. The thereby missing
part constitutes a Dirac delta impulse at t=0 in the waiting time pdf and a step at t=0 in the cdf ,
both with magnitude p(i<n) = 1− p(i≥n).

In figure 3.7 and figure 3.8 we show simulation results (histograms) to depict the load dependent
pdf and cdf of the waiting time TW , and recognise that the pdf is composed of a Dirac impulse
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Figure 3.7: M/M/n/FIFO waiting time TW pdf and cdf histograms for n = 3, %= [0.5,0.8,0.95].
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Figure 3.8: M/M/n/FIFO waiting time TW pdf and cdf histograms for %= 0.8, n = [1,3,10].

at tW=0 with intensity p(i<n) and a seemingly hypo-exponential component (zero at tW=0) that
widens (changes its shape) with the system load. The cdf on the right shows that the waiting time
1the derivation is based on [34, page 410/411] on M/M/1 flow time distribution, substituting n→ j, µ→ nµ
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TW is not negative exponentially distributed: there exists a non-zero probability for P[TW=0] =
p(i<n) = 1− p(i≥n) that decreases with rising system load, approaching zero for %→ 1. The pdf
shown in figure 3.8 indicates that the conditional waiting time narrows for increasing server numbers.
This is evident because for n→ ∞ we must get TW → 0. The cdf on the right shows that for the same
system load % the probability for no waiting FTW (0) increases with the number of servers n, but also
that even for n=1 the unconditioned waiting time TW is not negative exponentially distributed.

M/M/n/LIFO

In case of last in first out (LIFO) queueing, which causes a non-preemptive last come first serve
(np-LCFS) system, an arrival becomes immediately served if X(t)< n at the arrival instant t, or it
enters the queue at its head, pushing back all the already waiting loads by one place. Such a queue
is commonly called a stack because it resembles a stack of documents where every new arriving
document is put on the stack’s top and for processing the documents are also taken from the top, one
at a time, independent on how many documents have been added since the last document has been
taken away for processing. The resultant flow diagram is shown in figure 3.9, and we note that here
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∞

1
nµ
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n

i≤n n+1 · · · n+ j · · ·
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nµµ

Figure 3.9: The M/M/n-LIFO state flow process

we consider the state of the queue after the arrival, in contrast to figure 3.3 where we considered
the state of the queue prior arrival. With LIFO the number of customers in the queue at the arrival
instance t is irrelevant, only those arriving while the test customer is waiting in the queue determine
its waiting time, not those the test customer pushed back.

The common approach to solve this is to calculate the mean number of arrivals in between
arriving to the queue and being served times the mean inter-departure time td . Evidently, X(t)>n is
given for the entire waiting epoch and thus, td(i≥ n) = 1

nµ as long as a load is waiting in the queue.
Consequently is the mean number of arrivals in between adjacent departures ad(i ≥ n) equal the
arrival rate λ times td , and this actually defines the system load %.

ad(i≥ n) = E[A(TD, i≥ n)] =
λ
nµ

= %

With LIFO queueing every such arrival needs to be served prior the test load, and thus each adds
another inter-departure interval during which more loads may arrive. This circumstance yields the
mean number of arrivals aw that occur during the waiting time of a test load.

aW =
∞

∑
i=0

ad(i≥ n)i =
1

1−%
(3.20)

Multiplied with the applicable mean inter-departure time td(i≥ n) = 1
nµ we get the conditional mean

waiting time E[TW (i≥ n)] for test loads that need to wait. Further multiplied with the probability
that loads arrive at times when they need to wait, given by p(i≥ n), we finally get the unconditional
mean waiting time E[TW ].

E[TW (i≥ n)] =
1

nµ−λ
⇒ E[TW ] =

p(i≥ n)
nµ(1−%)
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The result equals equation 3.17 derived for FIFO queuing. This analytic identity indicates that the
mean waiting time E[TW ] does not depend on the queueing discipline. And likewise, also the state
probabilities pi will not depend on the queueing discipline, only the positioning of different clients
within the queue is affected.

To get the distribution of the waiting time TW we again start with the conditional T ∗W (i)>0. The
arrival of the client being the first to become queued also starts the busy period, if we define it as
the period during which arrivals become queued or the time span while all servers are persistently
busy, correspondingly. Due to LIFO queueing the busy period equals the waiting time T ∗W of that
client, and because clients in the queue at the arrival instant have no influence on the waiting time
of the arriving client, this needs to apply for all clients that become queued. Thus, the conditional
waiting time distribution equals the distribution of the busy period, FT ∗W ≡ FTB . Next we recognise
that the busy period TB of any M/M/n system is the same, and that it equals that of M/M/1 if we set
µ[M/M/1]= ∑µ[M/M/n]

k = nµ, if µk=µ∀k, because during a busy period no server-idle intervals interfere
with the negative exponentially distributed holding times at every server.

This can be utilized to get the waiting time distribution FTW (τ) via the Kendall’s functional
equation, applicable for any M/G/1 system. Here, inserting the Laplace transform of the negative
exponentially distributed virtual holding times Th(s) =

nµ
s+nµ provided by the n servers in parallel.

TB(s) = Th
(
s+λ−λTB(s)

)
−→ TB(s) = 1

2λ(s+λ+nµ−
√
(s+λ+nµ)2−4λnµ)

However, there exist an alternative combinatorial path toward the solution not based on transforms,
which is briefly sketched here.2

Let j state the random number of arrivals pushing back the test client while it is waiting. Than the
number of inter-departure times until the test client becomes served is j+1, each equalling a service
time of the M/M/1 system with mean service rate nµ because no idle-server intervals exist during a
busy period and all holding times are negative exponentially distributed. The probability for the busy
period TB to be within [τ .. τ+∆τ] can be expressed probabilistically as

P[TB ∈ (τ,τ+∆τ)] =
∞

∑
j=0

P
[

j arrivals ∩ (j+1) departures in [0.. τ+∆τ]
∣∣ ia(t)> id(t)∀t<τ

]

where ia(t)> id(t)∀t<τ expresses the condition that the M/M/1 system may never becomes empty
during the busy period, requiring more arrival events ia(t) than departure events id(t) at any time t
prior τ has passed.

During the busy period occur state changing events negative exponentially distributed with
mean rate λ+nµ, and we have 2j+1 events in total, but only 2j inter-event intervals. Among
these events, arrivals and departures occur with probabilities λ

λ+nµ and nµ
λ+nµ . For ∆τ→ 0 we get

P[TB ∈ (τ,τ+∆τ)]→ busy period pdf fTB(τ) as

fTB(τ) =
∞

∑
j=0

τ2j(λ+nµ)2j+1

(2j)!
e−(λ+nµ)τ

︸ ︷︷ ︸
probability of 2j+1 events
at rate λ+nµ in τ time units,
including both boundary
events

(
λ

λ+nµ

)j( nµ
λ+nµ

)j+1

︸ ︷︷ ︸
probability of j arrivals
and j+1 departures
among the 2j+1 events

((
2j
j

)
−
(

2j
j+1

))

︸ ︷︷ ︸
number of random walks with
2j steps not reaching an idle
server prior the (2j+1)th step
(non-conforming subtracted)

= e−(λ+nµ)τ
∞

∑
j=0

λj(nµ)j+1τ2j
(

1
j! j!
− 1

(j−1)!(j+1)!

)
= e−(λ+nµ)τnµ

∞

∑
j=0

(
√

λnµ τ)2j

j!(j+1)!

2Thanks to the lucid explanations of my co-advisor Prof. Karl Grill, compare [65, p.39] referring to N.U. Prabhu, 1960.
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where we use the mirroring theorem for random walks to get rid of the non-conforming walks. Using
the first modified Bessel function I1(x) = ∑∞

k=0
1

k!(k+1)!(
x
2)

2k+1 we can replace the infinite sum.

fTB(τ) = e−(λ+nµ) τ nµ√
λnµ τ

I1(2
√

λnµ τ) =
I1(2
√

λnµ τ)√
% τ

e−(λ+nµ) τ (3.21)

The unconstrained waiting time distribution fTW (τ) results from combining the above result with
a Dirac impulse at τ = 0 with magnitude p(i< n) to include the zero waiting contributed by arrivals
served immediately.

fTW (τ) = p(i<n)δ(0)+ p(i≥n) fTB(τ)

M/M/n/RAND

Finally, we sketch random queueing (RAND). Customers that arrive and need to be queued enter the
queue at any place. Two policies are likely: (a) to choose any place in the entire queue, and serve
the queue in a round robin fashion, skipping idle places, or (b) to choose the place depending on
how many loads are currently in the queue. With infinite space only the latter is applicable. In that
case all entry probabilities depend on the current state via the entry probability ej = p(i≥n) j

E[Q]π(i−1).
Figure 3.10 sketches the system and shows the state flow diagram for this random queueing system.

λ

∞ 1
nµ

1
2

...

n

i≤n n+1 · · · n+ j · · ·

p(i<
n
)λ

µ

e1 λ

1
2 λ

nµ

j−1
j λ

nµ

e
j λ

j
j+1 λ

nµ nµ

Figure 3.10: The M/M/n-RAND state flow process – random queueing

Again, we enumerate the states by the number after the arrival of the test load because it may
be pushed back. Here both, loads already queued and those arriving while a test load is waiting,
influence the waiting time.

Noting that unbiased random picking eliminates any initial queuing order, the above discussed
random queueing equals random serving where a waiting load is picked randomly from the queue to
enter service. This is sketched in figure 3.11, depicting the M/M/n-RAND state flow diagram for
the random serving approach. The state flow diagram for random serving shows no splitting for the
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Figure 3.11: Alternative M/M/n-RAND state flow process – random serving

up-transitions because the queueing order is irrelevant. Without loss of generality, we may assume
that arrivals push back the test load. This assumption allows us to use as entry probabilities ej = π(i−n)
because the test load can be assumed to define the end of the queue, and it also allows us to split
the downward transitions by the selection probability s( j) = 1

j for the test load, and s(<j) = j−1
j for

some other load being served, causing the queue to shrink by one place.

The mean waiting time E[Tw] is evidently again not affected, only the higher moments change.
Intuitively, random queueing is somewhere midway in between FIFO and LIFO, and the derivation
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of the waiting time distribution similar for both cases, random queueing and random serving. Again,
the waiting time distribution is composed of a Dirac impulse for no waiting plus weighted Erlang
distributions that cover the different numbers of loads served while a test load is waiting. The formal
approach is skipped, we directly proceed to simulated results.

In figure 3.12 the pdf s and cdf s of the waiting time TW for M/M/3/FIFO, M/M/3/LIFO, and
M/M/3/RAND are depicted by histograms achieved from simulation at system load % = 0.8. As
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M/M/n/ [FIFO | RAND | LIFO]

n = 3 %= 0.8
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Figure 3.12: M/M/n/ [FIFO|LIFO|RAND] waiting time TW pdf and cdf for n = 3, %= 0.8.

expected, the M/M/3/RAND queueing system shows a waiting time distribution that is somehow in
between that of M/M/3/FIFO and M/M/3/LIFO depicted in figure 3.12. However, because for LIFO
queueing short waiting times are far more likely than for FIFO queueing, its pdf does not show the
ditch in between the Dirac impulse and some hypo-exponential component, and for random queueing
the ditch reduces to an unsteadiness.

The distribution of the waiting time TW depends on the number of servers n and the current
system load %, as already shown for M/M/n/FIFO in figure 3.7 and figure 3.8. Figure 3.13 now shows
by simulation results that the mean waiting time E[TW ] actually does not depend on the queueing
discipline (left side), and how the waiting time variation coefficient cTW changes over the system
load (right side). That E[TW ] is independent of the queueing scheme has been argued and shown
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Figure 3.13: M/M/n/ [FIFO|LIFO|RAND] E[TW ] and variation coefficient cTW over load.

analytically for FIFO and LIFO. Each of the visible traces for n = [1,3,10] is composed of simulation
results we got for FIFO, LIFO, and RAND queueing. That they are not separable proves that these
queueing disciplines do not affect the mean waiting time. The right sub-figure in 3.13 is more
interesting. First, the curves represent simulation results, here the calculated coefficient of variation
of the waiting time cTW , and this is actually calculated from the same samples used on the left side
to calculate E[TW ]. Second, for clarity we do not show ×-es here, and thus, every bent represents a
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sample result, the straight lines in between are irrelevant and are shown for the better appeal only.
We recognise that the coefficient of variation depends on the number of servers n and the current
system load %, as expected.

At low loads the waiting time distribution is dominated by the idle times and rather independent
of the queueing discipline. Vice versa, at high loads the waiting time distribution depends mostly on
the queueing discipline and the number of servers becomes less relevant. Clearly visible, the waiting
time variance for LIFO queueing approaches infinity for %→ 1. This is the case because the duration
of the busy period approaches infinity and thus the waiting time for loads that happen to arrive at
the begin of the busy period becomes much longer than that of loads that arrive near the end of a
busy period. In contrast, the coefficient of variation for FIFO queueing approaches one for %→ 1.
This is also clear because at %= 1 the idle time would be zero and thus the waiting time composed
of negative exponentially distributed service times only. As before exemplarily shown for %= 0.8,
the waiting time variance for RAND queueing is always in between that of the extremes, FIFO and
LIFO. Based on the shown simulation results we can expect cTW (RAND)→ const for %→ 1, where
const appears to be again independent of the number of servers. At system loads %<1 we see that
the waiting time’s coefficient of variation increases quite heavily with the number of servers n.

M/D/n/FIFO waiting time distribution

In case the service times are identical (deterministic) for all clients arriving to a multi-server system
with FIFO queuing, the distribution of the waiting time can be derived. This system was readily
introduced by A.K. Erlang [66, 1909] and formally solved by F. Pollaczek and C.D. Crommelin
based on transforms and complex theory, about 15 years later [67].

The expression for the waiting time distribution of the M/D/n/FIFO system presented by
A.K. Erlang

FTw(τ) =
∞∫

0

FTw(t + τ− 1
µ)

λntn−1

(n−1)!
e−λt dt (3.22)

is obtained by comparing the waiting times of every nth customer, which arrive λntn−1

(n−1)! e
−λt dx time

units apart of each other. If such an arrival needs to wait, meaning all servers are busy when it arrives,
it is served exactly n

µ time units after its nth predecessor because in this time span the n servers
complete exactly n clients, due to the constant holding time Th =

1
µ . Thus, for any sequence of nth

arrivals the system performs alike a single server system with Erlang[n] distributed arrivals, i.e., an
En/D/1 system.

However, equation 3.22 is hard to solve for n>1. The solutions presented by F. Pollaczek and
C.D. Crommelin cause numeric difficulties (rounding errors) for large n and close to %=1, though
approximations presented by A.K. Erlang can be used very well in these cases [68]. More recently a
purely probabilistic approach has been presented by Franx [69, 2001], which promises less numeric
difficulties.

P[Tw < τ] = e
−λ( k

µ−τ) kn−1

∑
j=0

Qkn−j−1
λj( k

µ − τ)j

j!
for (k−1)< µτ≤ k (3.23)

The parameter Qm therein is the cumulative queue filling probability, Qm = P[Q≤m] = ∑m
j=0 qj. The

queue filling probabilities qi can be calculated by solving the linear equation system given by

q0 =
n

∑
j=0

qj

n−j

∑
m=0

ρm

m!
e−ρ and qi =

i+n

∑
j=0

qj
ρi+n−j

(i+n− j)!
e−ρ for i>0 (3.24)

where ρ= λ
µ is the load in Erlang (arrival rate × holding time), in contrast to the system load

%= λ
nµ =

ρ
n . Whether solving this infinite system of equations, i ∈ N0, is less bothersome than the
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complexity and numeric issues of Crommeline’s approach [68, 70] may be queried. If only P[Tw=0]
and E[Tw] are required, the equations presented by F. Pollaczek can be used [68].

P[Tw=0] = exp
{
−

∞

∑
i=1

1
i
e−iρ

∞

∑
j=ni

(iρ)j

j!

}
(3.25)

E[Tw] =
∞

∑
i=1

e−iρ
( ∞

∑
j=ni

(iρ)j

j!
− n

ρ

∞

∑
j=ni+1

(iρ)j

j!

)
(3.26)

The M/D/n/FIFO example reveals the difficulties that multi server systems cause. Henceforth we
consider systems with a single server for the general analysis. The impact of more servers may be
assumed to be in principle similar to what we have shown above for the M/M/n queueing system.

3.1.3 M/G/1 queueing systems

Assuming a non Markovian service time distribution we need to consider the time a client is already
in service because the residual service time Sr is in general not independent of the time the client
already has been served. To manage this we restrict the observation of the system to renewal
instants tn, where n indicates the chronological instant number (index). With M/G/1 such renewals
occur whenever the residual service time equals the entire service time, thus at the instants where
serving starts. For these times instants we can draw the state transition diagram shown in figure 3.14.
Actually, it is show for illustration and to present the duality with GI/M/1 presented in section 3.1.4,
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Figure 3.14: M/G/1 state transition diagram

where the diagram is explained in more detail. For the here presented scheme to derive the system
properties based on the probability generating function P(z), it is not essentially required. However,
a similar approach to that presented with GI/M/1 would as well be applicable, though it requires a
simple analysis of the idle process to cover the time the system remains idle in order to calculate the
p0i transitions. This idle process is not implicitly reflected in figure 3.14.

If the system is idle (Nn=0) an renewal instant occurs with the arrival of a client that instantly
enters service. If the queue is not idle (Nn>1) these instants occur with client departures, when
serving of the next client from the queue starts. During a service time any number of clients may
arrive. Their random number is given by the distribution An(τS(n)), which we will derive shortly.
If at the nth service begin Nn>1 clients were waiting these remain in the system except one, which
is the one being served that leaves the system prior the next renewal instant. Thus, the number of
clients at the next renewal instant n+1 result as

Nn+1 = (Nn−1)++ An (3.27)



3.1 Infinite queueing systems 115

where ( .. )+ = max{0, .. } indicates that the term is non-negative. The probability that Nn=k clients
are in the system is pk = P[Nn=k], which for the stationary system is independent of n. The
generating function for the state probabilities is P(z) = ∑ pkzk, and for (Nn−1)+ we get

P(Nn−1)+(z) = p0 +
P(z)− p0

z
=

P(z)− p0(1− z)
z

. (3.28)

The generating function for the arrivals during a service interval GA(z) is the Laplace transform
of the service time distribution S(s) evaluated at s = λ(1− z). From P(z) = P(Nn−1)+(z)GA(z) we get

P(z) =
P(z)− p0(1− z)

z
S
(
s=λ(1−z)

)

P(z)
[

S
(
s=λ(1−z)

)
− z
]
= p0(1− z)S

(
s=λ(1−z)

)

P(z) =
p0(1− z)S

(
s=λ(1−z)

)

S
(
s=λ(1−z)

)
− z

.

Inserting p0 = 1−ρ, which results from GA(1) = 1, we get the Pollaczek-Kintchin formula.

P(z) =
(1−ρ)(1− z)S

(
s=λ(1−z)

)

S
(
s=λ(1−z)

)
− z

(3.29)

Due to serving in the order clients arrive, the average number of clients that are in the system
when any client n departs (Nn+1) must equal the average number of clients that arrive in the time that
a client n spent in the system, being the flow time τF(n). Consequently, we get the Laplace transform
of the flow time distribution from TF(s) = P

(
z=λ−s

λ
)

as

TF(s) =
(1−ρ) s S(s)

s+λ (S(s)−1)
, (3.30)

which is also a Pollaczek-Kintchin formula. And finally, the Laplace transform of the waiting time
distribution TW (s) results from TF(s) = TW (s)S(s) as

TW (s) =
(1−ρ) s

s+λ (S(s)−1)
. (3.31)

The means of these distributions are given by the so called Pollaczek-Kintchin mean value formulas:3

E[N] = ρ+
λ2 E

[
S2
]

2(1−ρ)
(3.32)

E[TF ] =
E[N]

λ
=

1
µ
+

λE
[
S2
]

2(1−ρ)
(3.33)

E[TW ] = E[TF ]−
1
µ
=

λE
[
S2
]

2(1−ρ)
(3.34)

We note that these performance relevant metrics depend on the system load ρ=λ
µ=

E[S]
E[A] , which

comprises the first moments of the arrival and service distribution, and the second raw moment
E[S2]=Var[S]+E[S]2 of the service time distribution. Higher moments have no influence on these
mean value metrics and thus any service time distribution with the same first two moments yields
the same results and thus can be used interchangeably to model the service process if above metrics
comprise all what is required. Finally, the variance of the waiting time σ2

W is defined by the mean
system load % and the second and third raw moments of the service process [65, page 88].

σ2
W = Var(TW ) =

λ E
[
S3
]

3(1−ρ)
+

λ2 E
[
S2
]2

4(1−ρ)2 (3.35)

3A derivation from scratch is for example shown by W. J. Stewart in [34].
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For deterministic service times with rate µ and deviation σD=0 we have E[S2]=(1
µ)

2 and get

E[NM/D/1] = ρ+
ρ2

2(1−ρ)
=

ρ
1−ρ

(
1− ρ

2

)
. (3.36)

Comparing this with E[NM/M/1]=
ρ

1−ρ we recognise that for the smoothest possible service time
distribution the system occupation is decreased by the factor (1−ρ

2 ), with increasing improvement
from none at ρ=0 to halve the occupation at ρ=1. Accordingly is also the flow and waiting time
improved. In the next subsection we will see that ’the smoother the better’ evidently applies for
the inter-arrival time distribution as well. For a D/D/1 system we get E[ND/D/1]<1 ∀ρ<1. As the
mean occupation is strictly reduced, we can expect that in case of finite systems also the blocking
probability is less with smoother processes.

Figure 3.15 shows the mean system filling and flow time of M/G/1 queueing systems with
increasing service time variation. Curves for a coefficient of variation from cx=0, being deterministic
serving, up to cx=10, being quite unsteady serving with variation Var(S)=c2

x=100, if we set µ=1.
The Markov case (M/M/1) is represented by cx=1. The included simulation results basically approve
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Figure 3.15: Mean system filling and flow time for and M/G/1 queueing system with coefficient of
service time variance in cx = [0,1,2,5,10].

the analytic curves. Only for high loads and a coefficient of variation cx>2 the 50.000 samples used
to derive simulation results are insufficient to achieve a close match. The simulation routine used is
presented and discussed in section 3.4.

We note that the difference between negative exponentially distributed serving (Markovian) and
deterministic serving is rather small compared to the performance degradation that results from the
service time variances we get for cx>2. In particular, the more than exponential increase of the
flow time at low loads expresses the fatal impact of highly varying service rates. No linear increase
of the mean service rate can compensate this steep rise. Thus, we may conclude that: (a) smooth
service rates are essential to achieve good performance at reasonable loads (system utilization), and
(b) mean loads above 90% cause extreme queue filling and thereby huge flow times, which rarely are
beneficial.

3.1.4 GI/M/1 queueing systems

Assuming non Markovian but independent and identically distributed inter-arrival times we need
to consider that the residual inter-arrival time is not independent of the time that passed since the
last arrival. Again, we observe the system at renewal instants, which for GI/M/1 occur at arrival
instants tn, when the residual inter-arrival time equals the entire inter-arrival time.
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In between successive arrivals, clients depart distributed with Sn(τA(n)), depending on the current
inter-arrival time τA(n). However, never can more depart than the number of clients Nn−1 that were
present at the last renewal instant. The number of clients in the system at the next renewal instant
at tn, just prior the client n arrives, results as

Nn = (Nn−1 +1− Sn)+ (3.37)

where ( .. )+ = max{0, .. } again indicates that the term cannot be negative. The state transition
diagram depicting this is shown in figure 3.16. The transition probabilities pij ∀j>0 are given by

0 1 2 · · · i · · · j · · · · · ·

r0 r0 r0 r0 r0 r0 r0 r0

p10

p20

r2

pi0

ri

ri−1

pj0

rj

rj−1

rj+1−i

pm0

rm

rm−1

rm+1−i

rm+1−j

Figure 3.16: GI/M/1 state transition diagram

the according departure rates rk expressing the probability that in between two successive arrivals
exactly k clients depart. If no departure occurs, which happens with rate r0, the state increases by
one due to the arrival that defines the observation instant. Never can the state increase by more
within a single observation interval. In case exactly one departure occurs, which happens with rate
r1, the system stays in the same state because the single departure is compensated by the arrival. The
remaining transition probabilities pm0 = 1−∑m

i=0 ri apply when all present clients become served
and the system remains idle for some unknown duration until the next arrival occurs. This includes
remaining in state 0 with the probability p00 = 1− r0.

The required rates rk for k departures in between subsequent arrival instants, given that the
queueing system does not become idle, can be calculated using

rn =

∞∫

t=0

(µt)n

n!
e−µt fA(t)dt (3.38)

where fA(t) is the pdf of the general arrival process.
Note that the arrivals are no more Markovian and thus, the PASTA criterion (Poisson arrivals

see time averages) no more applies. Consequently are the state probabilities πk = P[Nn=k| t= tn] at
arrival instants not equal the global state probabilities pk = P[Nn=k], even though in the steady state
both are independent of n. If and only if the arrivals are Markovian is πk = pk. However, assuming
ρ <1, using the πk states and the transition probabilities pij shown in figure 3.16 we can state the
limiting state distribution by

π0 =
∞

∑
i=0

πi pi0 =
∞

∑
i=0

πi

(
1−

i

∑
j=0

rj

)
= 1−

∞

∑
i=0

i

∑
j=0

πi rj

πn =
∞

∑
i=0

πn−1+i ri
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where we inserted pi0 = 1−∑i
j=0 rj and considered ∑∞

i=0 πi = 1 to get the expression for π0. The
solution for πn>0 is known to have the form πn>0 = cβn, and substituting this assumption we get

cβn = c
∞

∑
i=0

βn−1+i ri ⇒
n=1

β =
∞

∑
i=0

βi ri.

Inserting equation 3.38 for ri we can derive

β =
∞

∑
i=0

βi
∞∫

t=0

(µt)i

i!
e−µt fA(t)dt =

∞∫

t=0

(
∞

∑
i=0

(µ β t)i

i!

)
e−µt fA(t)dt

=

∞∫

t=0

eµ β t e−µt fA(t)dt =
∞∫

t=0

e−µ(1−β) t fA(t)dt = A
(
s=µ(1−β)

)
(3.39)

where A
(
s=µ(1−β)

)
is the Laplace transform of the arrival distribution evaluated at s = µ(1−β).

The trivial solution for β=1 is useless. Luckily, for ρ < 1 there always exists another solution to
equation 3.39 that falls in the interval 0 < β < 1, which fits to our problem.

The constant c and thereby all πn we get from ∑πn = 1

1 =
∞

∑
i=0

πi = c
∞

∑
i=0

βi =
c

1−β
→ c = 1−β ⇒ πn = (1−β)βn (3.40)

and recognise that the state probabilities πn at arrival instants are geometrically distributed, similar to
the state probabilities we find for the M/M/1 queue, pn = (1−ρ)ρn. The global state probabilities
of GI/M/1 are:4

p0 = 1−ρ and pn =
ρ
β(1−β)βn (3.41)

The similarity holds for all system parameters and we could get the relevant performance metrics by
substituting some ρ with β in the equations found for M/M/1. However, not all ρ are to be replaced,
and some ρ may be hidden as λ

µ . Thus, dull replacement easily leads to faulty equations.

The flow time TF of a client arriving when n clients are already waiting equals n+1 service
times S, such that for the Laplace transforms we have TF(s|n) =

(
S(s)

)n+1. Summing over all n, each
weighted with πn, we get

TF(s) =
∞

∑
n=0

πn
(
S(s)

)n+1
=

∞

∑
n=0

(1−β)βn
(

µ
s+µ

)n+1

=
µ(1−β)

s+µ

∞

∑
n=0

(
µ β

s+µ

)n

=
µ(1−β)

s+µ(1−β)
(3.42)

where we used ∑∞
i=0 ai = 1

1−a ∀a<1. The similarity with M/M/1 is obviouse: replacing β by ρ we get
the known flow time distribution.

The flow and waiting time distributions found for GI/M/1 are:

TF(t) = 1− e−µ(1−β)t tF(t) = µ(1−β) e−µ(1−β)t (3.43)

TW (t) = 1−β e−µ(1−β)t tW (t) = β µ(1−β) e−µ(1−β)t (3.44)

These are negative exponentially distributed with a step of 1−β at t=0, which confirms that the
geometric sum of negative exponentially distributed random times, here serving times, is itself
negative exponentially distributed. The system filling N(t) is not given for its dependence on
4a more general derivation of equation 3.41 can be found in [71, section II.3.2 toward equation 3.24]
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observation instants. For arrival instants it results from the state probabilities at arrival instants πi,
and for a random observer it results from the global state probabilities pi.

The mean characteristics of GI/M/1 result as:5

E[N] =
ρ

1−β
E[TF ] =

E[N]

λ
=

1
µ (1−β)

E[TW ] = E[TF ]− 1
µ =

β
µ (1−β)

(3.45)

The parameter β depends on the Laplace transform of the arrival distribution, which implicitly
comprises all moments. Therefore, we cannot conclude that the mean characteristics depend on few
moments only alike it was possible for M/G/1. Actually, the systems are in detail quite different.

Using the Laplace transform AD(s)=e−
s
λ of deterministic inter-arrival times at rate λ, we get

from equation 3.39

βD = e
1−βD

ρ

which cannot be solved generic. However, for given ρ it can be numerically approximated.
In figure 3.17 we shows the β that result from equation 3.39 across the feasible load range 0<ρ<1

for deterministic, phase-type, and Lomax distributed arrivals discussed subsequently. Considering
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Figure 3.17: Load dependence of the parameter β, required to analyse GI/M/1, for increasing
coefficient of arrival variation cx = [0,1,2,5,10, and ∞∗].

the β(cx=0) shown in figure 3.17 (the solid line) and the relation to the mean system filling E[NM/M/1]

E
[
NGI/M/1

]
=

ρ
1−ρ

1−ρ
1−β

= E
[
NM/M/1

] 1−ρ
1−β

(3.46)

we can conclude that for deterministic arrivals the system filling, and thus the system performance,
cannot be worse than that for negative exponentially distributed arrivals (straight line cx=1) at equal
system load ρ because for β≤ ρ⇒ 1−ρ

1−β ≤ 1 ∀ρ<1. This intuitively proves that assuming Markovian
inter-arrival times provides an upper bound (worst case) for any smooth and uncorrelated arrival
distribution with a standard deviation σA≤ 1

λ .
The opposite applies for bursty arrivals. For the hyper exponential distribution (Hn), introduced in

section 2.1.2, we achieve a certain coefficient of variation cx via the H2 fitting given by equation 2.95
in section 2.3.4 to get the corresponding αi and λi. The Laplace transform of H2 arrivals is AH2(s) =
α1λ1
s+λ1

+ α2λ2
s+λ2

, and proceeding as before, inserting s = µ (1−βH2), we get

βH2 =
α1 λ1

µ (1−βH2)+λ1
+

α2 λ2

µ (1−βH2)+λ2

5also to be found in [71, page 210] together with their variances
6,∗ infinite variance is achieved with Lomax distributed arrivals by choosing 1<α≤2, here α=2, the boundary to finite
variance. That this causes a less diverging β than H2 with cx>2 reveals how insufficient cx characterises a distribution.
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a cubic equation in βH2 that can be solved analytically. The root at β=1 is useless and thus we can
divide the cubic equation by (β−1) to get a quadratic equation. From the remaining two roots the
one in 0<β<1 is the only feasible solution for βH2 . Likewise, we can find the root via the iterative
approach used before. If we would not stop the iteration prior machine precision is reached, this is
numerically equivalent in terms of achievable calculation precision. To calculate βH2 based on the
system load ρ=λ

µ we may set µ=1, such that ρ=λ=(α1
λ1
+α2

λ2
)−1, without loss of generality.

Put to the extreme, heavy tailed power law distributed inter-arrival times should cause the worst
performance. Here, Lomax distributed arrivals, see section 2.2.3 for details on PL(α,σ), with no
lower bound and just infinite variance (α=2) should comprise a good counterpart to the deterministic
arrivals with zero variance. For PL(2,λ) we get the Laplace transform AL(s) = 2e

s
λ E3(

s
λ), where

En(x)=
∫ ∞

1
e−xt

tn dt is the generalized exponential integral. Inserting s = µ (1−βPL) in equation 3.39
we get

βPL = 1−ξ− eξ ξ2

(
ln(ξ)+

ln(−1
ξ)− ln(−ξ)

2
+Ei(−ξ)

)

where ξ = s
λ =

1−βPL
ρ , and Ei(x) =

∫ x
−∞

et

t dt is the basic exponential integral.7 This equation has been
solved iteratively to get the β(∞) shown in figure 3.17. Obviously, PL(2,λ) is not the worst despite its
σ = ∞, and this reminds us that the coefficient of variation is insufficient to characterise a distribution.
Actually, the mathematics in behind these special integral equations are way beyond skills. Still, the
simulation results shown in figure 3.18 support the derived analytic result. Anyhow, we will restrain
from further analytic treatment of the Lomax and other non-Markovian distributions and use them
with simulation studies only.

Figure 3.18 shows the mean system filling E[N] and flow time E[TF ] of a G/M/1 queueing
system for arrivals distributed with increasing coefficient of variation cx = [0,1,2,5,10, and ∞∗].
The performance degradation caused by increasing arrival variance differs from what we found for
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Figure 3.18: Mean system filling E[X ] and flow time E[TF ] for a GI/M/1 queueing system with
increasing coefficient of arrival distribution cx = [0,1,2,5,10, and ∞∗].

increasing service time variance with the M/G/1 queueing system, shown in figure 3.15. At low loads
(i.e., ρ<0.5) the degradation is considerably less severe. Only at high loads and for variances above
cx=2 we observe an extremely steep rise. The curves for cx=[5,10] show some unsteadiness, which
7The rewriting from the generalized to the basic form of the exponential integral, i.e., En(x)→ Ei(−x), was essential for
its calculation with Octave and is to be acknowledged to the also freely available computer algebra system Maxima. E3(x)
is in Octave not available, and an approach via the incomplete Gamma function En(x) = xn−1Γ(1−n,x) failed because its
calculation is in Octave not supported for the negative half of the Gamma function. In addition, only the normalized
version is available and a conversion to the non-normalized by multiplication with Γ(1−n) not possible because latter
is not defined for negative integer values. Given all these troubles, possible failure could be expected. However, the
simulation study approved the analytic result.



3.1 Infinite queueing systems 121

results from the increasingly sharp bend that we observe for βH2 in the load range 0.5<ρ<0.6. It
expresses a kind of burst equalising effect that becomes effective when a previous burst of arrivals is
with some likelihood not cleared from the queue prior the next burst of arrivals occurs. Above 90%
load the system filling reaches infeasible extents.

The simulation results approve the analytic curves in principle; only at high loads and for a
coefficient of variation cx>2 the 50.000 samples used to derive simulation results are insufficient to
achieve a close match. The simulation routine used here and elsewhere to evaluate queueing systems
is presented and discussed in the end of this chapter, section 3.4. The actually used software code
can be found in the addenda, section A.I. However, the distribution generators are indirectly called
and refer to those presented in chapter 2.

We may conclude that at low mean loads bursty arrivals are a less severe performance killer than
bursty service times are. Consequently, measures to smooth arrivals are more important at high loads,
while the service time distribution should be kept smooth across the entire load range. Concerning the
infinite variance of the Loamx distribution that occurs for 1<α≤2 we recognise that the coefficient
of variation is insufficient to explain the performance achieved in case of heavy distributed arrivals,
when Var(A) = ∞. A detailed discussion of the theory is well beyond the scope. Still, it might
explain why in practice queueing systems commonly perform better than what is predicted based on
statistical measurements and traditional models.

3.1.5 GI/G/1 queueing systems

The most general and versatile approach is to assume nothing upon the distributions that determine
a queueing system. However, for compliance we need to assume that arrivals are independent and
identically distributed (GI not G). This most general approach reflects a kind of birth-and-death
process where the birth rate is the arrival rate and the death rate is the departure rate. Although not
specified, they commonly are correlated via the service process. Even though we do not assume
anything we can utilise this correlation to find equations that specify system properties based on the
characteristics (moments) of the inter-arrival and service time process.

To analyse GI/G/1 we need to specify some derived random variables. First the idle period, being
the random time that the system is idle, and second the random difference between the inter-arrival
time and the service time of a customer. The former can be explained graphically, the latter has only
procedural meaning and cannot be explained chronologically. Figure 3.19 sketches the time-relation
among the different random durations used in queueing theory. The inter-arrival times TA(i) result

0 t/ / / /0
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/ /
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T[X=0](1)

Figure 3.19: Chronology of random durations used in GI/G/1 queueing system analysis

from an external process and are assumed to be independent and identically distributed, meaning
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time invariant and independent of the system state X(t) and the service times TS(i). The show
TS(i) intervals specify not only the duration a customer occupies the server, but also when which
customer is served (the current server occupation). The waiting times TW (i) are introduced by the
queueing system and result from the given inter-arrival time TA and service time TS distribution.
The inter-departure time TD describes the distribution of the leaving customers, and thus the arrival
process to a downstream system in case of processing cascades.

Let us briefly explain the relations depicted in figure 3.19 based on two adjacent customers: First
we consider the case where the first arrives to a non idle system and the second arrives prior the
first enters service. Referring to figure 3.19 let us call them customer 3 and 4. The time in between
their arrivals is TA(3). As assumed, customer 4 arrives while the server is busy such that it must be
queued, which initialises TW (4). Waiting ends when serving customer 3 finishes. Finally, TS(4) tells
how long customer 4 occupies the server before it leaves the system. The key is the time overlap
of the two adjacent waiting times; it equals TW (3)−TA(3) and reveals the recursive relation among
waiting times:

TW (4) = TW (3)+TS(3)−TA(3)

In case the second customer arrives after serving the first has started but before it leaves, the
second again needs to wait for service. In figure 3.19 this case is shown by customers 4 and 5. Their
waiting times do not overlap; still, the recursive relation derived for the previous case holds. Here
TW (4)−TA(4) is negative and expresses the gap between the waiting times of adjacent customers.
This equals the time that the first customer has already been served prior the second arrived and thus
precisely the amount that needs to be subtracted from its entire service time TS(4).

Next we consider the case that the second customer arrives after serving of the previous has
finished, for example customers 1 and 2 in figure 3.19. Because the second now arrives to an idle
system, it does not become queued. Its waiting time TW (2) is zero. The recursive relation from above
would now yield a negative waiting time, which is impossible. However, this negative time enables
us to specify the strictly positive idle period T[X=0], which only here we call TX(1) for short, by the
relation:

0 = TW (1)−TA(1)+TS(1)+TX(1)

This relation holds as well when the first customer also arrives to an idle system: in this case its
waiting time is zero and needs to be inserted accordingly (TW (1)=0).

Finally refer customers 2 and 3 in figure 3.19 to the case where the first arrives to an idle system
(TW (2) = 0) and the second arrives before the first has left. This case equals the second discussed
case where the second customer also arrived while the former is served (customers 4 and 5). The
only difference is that in this case the waiting time of the first customer is zero, TW (2)=0, which
satisfies the above found relations if inserted accordingly.

Most notably, the above revealed relations do not depend on the properties of the involved
processes (A,S). They apply generally, for any arrival and service distribution and for all rates.
Consequently, they contribute the basement for the discussion and the derivation of general properties
of queueing systems, here and elsewhere.

Waiting time properties of GI/G/1 systems

For the waiting time TW (n) we generally find the recursive property that the waiting time of the next
arriving client can be expressed by

TW (n+1) =
(
TW (n)+TS(n)−TA(n)

)
+
=
(
TW (n)+TU(n)

)
+

(3.47)

where commonly a new random variable TU(n) = TS(n)−TA(n) is introduced for convenience, TA(n)
is the inter-arrival time in between client n and its successor n+1, and TS(n) is the service time of
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client n. Note that even though TU(n) is in average negative (for λ<µ), it is not strictly negative
because it may be positive for some arrival instants.

Introducing another now strictly positive random variable TX(n) =−
(
TW (n)+TU(n)

)
−, express-

ing the potential time in between the departure of client n and the service begin of client n+1, which
only occurs if the system becomes idle prior the arrival of client n+1, we get rid of the non-negativity
condition ( .. )+.

TW (n+1)−TX(n) = TW (n)+TU(n) (3.48)

In steady state is E[TW (n+1)] = E[TW (n)] and taking the expectations in equation 3.48 we get:

E[TX ] =−E[TU ] =
1
λ
− 1

µ
=

µ−λ
λ µ

=
1−ρ

λ

Considering that E[TX ] can as well be calculated from the probability π0, that system is idle at an
arrival instant, times the mean duration it remained idle E[TI] until the arrival that found the system
idle has occurred, we can calculate latter

E[TX ] = π0 E[TI] ⇒ E[TI] =
µ−λ
π0 λ µ

=
1−ρ
π0 λ

(3.49)

henceforth called mean idle time τI = E[TI]. It expresses the mean duration the system remains
idle once it became idle, and is not constraint to arrival instants because it is necessarily terminated
by any arrival instant and without clients present in the system no departures can occur and thus
the system state cannot change during an idle period. Note that from 0≤ρ<1↔ λ<µ follows that
E[TX ]> 0 ∀ρ<1 and thus is E[TU ]< 0 ∀ρ<1.

Taking the squares of both sides of equation 3.48 and taking the expectations of the resultant
factors we get

E
[
T 2

X
]
= 2 E[TW ] E[TU ]+ E

[
T 2

U
]

where we used TW (n+1)TX(n)= 0 due to their one-sided definitions, independence of TW (n) and TU(n),
and E[TW (n+1)] = E[TW (n)] in steady state. Rearranging and inserting E

[
T 2

X
]
= π0 E

[
T 2

I
]

we get a
general applicable equation for the mean waiting time

E[TW ] =
π0 E

[
T 2

I
]
− E

[
T 2

U
]

2 E[TU ]
=− E

[
T 2

I
]

2 E[TI]
− E

[
T 2

U
]

2 E[TU ]
=

Var(TU)+ E[TU ]
2

−2 E[TU ]
− E

[
T 2

I
]

2 E[TI]
(3.50)

using that E[TX ] =−E[TU ] and thus E[TU ] =−π0 E[TI], and finally E[T 2
U ] = Var(TU)+ E[TU ]

2. We
presume independence of TS and TA and because TU = TS−TA we have −E[TU ] =

1
λ − 1

µ = 1−ρ
λ and

Var(TU) = σ2
A +σ2

B. Inserting these we get after some rearrangements:

E[TW ] =
λ(σ2

A +σ2
B)

2(1−ρ)
+

1−ρ
2λ
− E

[
T 2

I
]

2 E[TI]
(3.51)

The result comprises the first and second moments of the arrival and the service distribution and
halve the relation of the second and first raw moment of the idle time. Latter needs to be derived for
the actual distributions involved, which in some cases may be intractable.

Upper and lower bounds for the mean waiting time can be derived considering signs and relations
of the components involved in equation 3.50 such that we finally get

λ2σ2
B−2ρ+ρ2

2λ(1−ρ)
≤ E[TW ]≤ λ

(
σ2

A +σ2
B
)

2(1−ρ)(
c2

x,B

2
− 2−ρ

ρ

)

+

ρ
1−ρ

1
µ
≤ E[TW ]≤

(
cx,A
λ )2 +(

cx,B
µ )2

2
ρ

1−ρ
1
µ

(3.52)
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where the terms appearing on both sides state the mean waiting time of the M/M/1 queueing
system (equation 1.37). To state the bounds such that the coefficient of variation cx replaces the
standard deviation σ we use cx,A = λσA and cx,B = µσB such that σ2

A +σ2
B = (

cx,A
λ )2 +(

cx,B
µ )2. Also

noteworthy, the lower bound does not depend on the second moment of the arrival distribution while
the upper bound considers both. This again indicates that the service variance has more impact on
the performance than the arrival variance, comparable to the conclusions we have drawn previously
comparing the performance of M/G/1 and GI/M/1 for increasing variation indices.

It would be nice to present the bounds, particularly the gap in between them, for increasing
variation indices and load in a single figure. However, having three variables we would need to
present the gap in between two four dimensional surfaces, which is impossible in two dimensions.
Therefore, figure 3.20 shows a set of four sub-figures, each presenting a different cut through the
bounding surfaces. Also shown is the approximation presented and discussed shortly.
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Figure 3.20: Simulated GI/G/1 waiting time Tw=E[Tw] samples (×) combined with its calculated
approximation T̂w (---) and lower/upper bounds bTwe (···,-·-) all normalised to µ=1↔ λ=ρ.

We use 100.000 samples per point to achieve a sufficient match. Still, some fluctuation of the
statistical reaults remains visible, particularly for high cx at high loads. For low service variances
the lower bound is zero, thus not visible with logarithmic scaling. The gap between upper and
lower bound can be huge, and the bounds therefore rather wide apart from the actual performance.
The simulated samples Tw approach the upper bound at high loads only, which enables simplified
mathematical treatment of high load situations. The opposite can be said about low load regions.
Still, these regions comprise the common load situations of well managed packet switching systems,
including MPLS architectures. The divergence of samples from the approximation is discussed after
latter has been formally introduce by equation 3.53.

Finally, using the above stated bounds for GI/G/1 and comparing these with the results found
for M/G/1 and GI/M/1 a utile approximation for the mean waiting time has been defined by John
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Kingman in [72], today known as Kingman’s equation

T̂W (GI/G/1) =
ρ
(
σ2

A λ2 +σ2
B µ2
)

2µ(1−ρ)
(3.53)

=
c2

x,A + c2
x,B

2
ρ

1−ρ
1
µ
=

c2
x,A + c2

x,B

2
E[TW (M/M/1)]

where cx,A, cx,B are the coefficient of variation of the inter-arrival time and service time distribution,
respectively (cx,i=σi µi). The approximation is exact for M/M/1, where c2

x,A=c2
x,B=1, as well as for

M/G/1, where c2
x,A=1.

Returning to figure 3.20 we recognise that, evident from the equation above, the approximation
is exact if the arrival process is Markovian, and that the approximation is the same for swapped
variances, presented side by side in left and right sub-figures. This results from the symmetry of the
approximation (equation 3.53), where the arrival and service variance is equally considered. In real,
as shown by the simulated examples Tw, there is no symmetry and the actual performance differs
depending on the relation cx,A to cx,B. However, all sub-figures show Tw≤T̂w, indicating that the
approximation tends to overestimate the actual waiting time and thus, T̂w seems to provide a weak
(likely) upper bound. Here, we have to note that for the simulation we applied Erlangk and Cox
fitting for c2

x < 0.5 and c2
x ≥ 0.5 respectively. The thereby implicitly chosen higher moments may

influence the simulation results, such that Tw ≤ T̂w needs to be approved case by case if distributions
are explicitly specified. However, the bounds and approximations comprise first and second moments
only, indicating that higher moments should impact the performance rather weakly.

GI/G/n queueing systems

Completing the infinite queueing systems where actually queueing occurs, see section 3.3 for other
infinite systems, we briefly sketch the results for GI/G/n systems where multiple servers are available.
Note that the systems considered here are restricted to identical servers, meaning servers that do not
differ in their performance. Many communication systems rely physically on paralleled resources,
which could be modelled as multi-server system. However, some autonomic and to the traffic load
fully transparent mechanism typically joins these parallel resources in a way that yields the combined
capacity so efficiently that for analysing the layer above we can assume a single server providing the
joint capacity. For example, a 16-bit wide bus that transports a continuous bit-streams in parallel
causes a latency that is identical to that of a 16-times faster serial connection. Both can be modelled
by a single server queueing system, even though its structure only matches the latter. Therefore, we
do not put much emphasis on the GI/G/n theory and skip any mathematical derivation. In particular
because the available bounds and approximations for the waiting time, bTwe and T̂w, are anyhow
developed based on the results found for GI/G/1.8

(
λ2
(σB

n

)2−2%+%2

2λ(1−%)
− n−1

2
(µ

n σ2
B +%

)
)

+

≤ E[TW ]≤
λ
(

σ2
A +
(σB

n

)2)

2(1−%)
(3.54)

Similar to the GI/G/1 approximation for the waiting time T̂w, which can be based on the precisely
known E[Tw(M/M/1)], an approximation for T̂w(GI/G/n) can be stated based on the exact result

8The derivation is presented in [57] and refers to the works of Kingman, Brumelle, and De Smit.
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known for E[Tw(M/M/n)], given in equation 3.15. Doing so, we get

T̂W (GI/G/n) =
c2

x,A + c2
x,B

2
E[TW (M/M/n)]

=
c2

x,A + c2
x,B

2
ρn p(0)

n!(1−%)2
1
nµ

(3.55)

=
c2

x,A + c2
x,B

2
p(i≥n)

λ
%

1−%

where p(0) is the probability that the system is idle given by equation 3.12, and p(i≥n) is the
probability that all n servers are busy, given by equation 3.13. Note that %= λ

n µ is the system
load, whereas ρ = λ

µ states the service time to inter-arrival time relation, where only for latter the
Erlang unit is commonly used. This utile approximation (equation 3.55) is commonly refereed to
as the Allen-Cunneen approximation widely used for its immanent simplicity. Several improved
approximations based on this one can be found in the literature, see for example the ones noted
in [26, p.266]. These mostly introduce some case dependent correction factor in order to achieve a
better approximation, but no fundamentally different approach.

E/E/n

E/H/n

H/E/n

H/H/n

n = {1,3,10}

n = {1,3,10}

n = {1,3,10}

n = {1,3,10}

0.1

1

10

100

1000

0.0 0.2 0.4 0.6 0.8 %= 1.0

0.1

1

10

100

1000

0.0 0.2 0.4 0.6 0.8 %= 1.0

0.1

1

10

100

1000

0.0 0.2 0.4 0.6 0.8 %= 1.0

0.1

1

10

100

1000

0.0 0.2 0.4 0.6 0.8 %= 1.0

Figure 3.21: Waiting time of GI/G/n systems for increasing number of servers n={1,3,10} over
load for different combinations of inter-arrival and service time variances (cx,i=[0.5,5]), including
TW bounds (lower dotted, upper dash-dotted), approximation T̂W (dashed), and simulation results.

The simulation results shown in figure 3.21 prove that for one server and hyper-exponential
service times the approximation fits. Quite surprisingly it does not so for smooth service times. For
smooth arrivals and smooth service it seems to be rather pessimistic, but for bursty arrivals and
smooth service it fails to provide guidance. However, the bounds hold. Still, for smooth service the
lower bound is zero, and the upper bound is in any case independent of the number of servers, such
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that the bounds rarely define a tight region. In addition we recognise that the gap between upper and
lower bound increases with the number of servers. For many servers only the approximation provides
a useful hint on the expectable performance. Latter fits considerably better for bursty service times,
and seems not very appropriate for smooth distributed processes; it could be an upper bound in case
of smooth inter-arrival times, but for smooth holding times the approximation yields results above as
well as below the true value.

3.1.6 The matrix geometric approach to infinite queues

This method has been introduced by Marcel F. Neuts [73, 1981] and utilises the strengths of numeric
matrix computation by automated calculation machines (computers). It applies the matrix analytic
method applicable for finite queueing systems introduced in chapter 1 section 1.4 and presented in
detail in the following section 3.2.3, to infinite systems. To use it, phase-type distributed inter-arrival
and service processes are required, at least an approximate model based on Markov phases. The key
is to find a repetitive state transition structure of the form shown in figure 3.22, which else cannot
be achieved. The structure comprises a single border level including the idle state, and identical

B1

(B00)

A1 A1 A1 · · ·

state transition diagram structure

boundary level repeating levels

B2

(B01)

A2 A2 A2

B0

(B10)

A0 A0 A0

Figure 3.22: State transition structure required for the matrix geometric approach

repeating levels to its right. Transitions have to be restricted to adjacent levels, such that there
are only boundary transitions between the border level and the first repeating level, and identical
transitions between any two adjacent repeating levels.

Given this structure, we can specify six matrices that hold the level internal, upward and
downward transitions such that all possible transitions are covered. Commonly the matrices related to
the border level are referred to by B00,B01,B10, where the indices tell the transitions orientation. The
matrices related to repeating levels are differently indexed; here A1 refers to internal, A2 to upward,
and A0 to downward. In the following we remain with the letters but use the A indexing also for Bs,
as shown in figure 3.22.

The resultant block transition rate matrix Q has the form

Q =




B1 B2 0 0 0 0 · · ·
B0 A1 A2 0 0 0 · · ·
0 A0 A1 A2 0 0 · · ·
0 0 A0 A1 A2 0 · · ·
...

...
. . . . . . . . .




(3.56)

and to get the state probability vector π we need to solve

πQ = 0 (3.57)
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which is quite a challenge given the infinite number of dimensions. However, due to the repetitive
structure relate all level-wise sub-vectors πi>1 to π1:

πi = π1Ri−1 (3.58)

The matrix R therein is Neuts’ rate-matrix, which can be calculated numerically only, using the
quadratic relation A2 +RA1 +R2A0 = 0. For example, by successive substitution

R(k+1) =−A2A−1
1 −R2

kA0A−1
1 (3.59)

as proposed by Neuts, or more efficiently by the logarithmic reduction algorithm proposed by
Latouche and Ramaswami in [74]. Latter shows quadratic convergence (doubled precision per
iteration) and is thus the state-of-the-art method commonly used.

Using π2 = Rπ1 we can reduce equation 3.57 to:

(
π0 π1

)[ B1 B2
B0 A1 +RA0

]
=
(

0 0
)

(3.60)

Solving this to get π0 and π1, using the method presented in chapter 1 section 1.4.3, we can recursively
calculate πi ∀i>1 via equation 3.58. Finally, the achieved state vector elements need to be normalised
to ∑π = 1, which is achieved by the scaling

πi ←
πi

∑π0 +∑
(
π1(I−R)−1

) (3.61)

where ∑x refers to the scalar sum over the dimensional elements xi of the vector~x, mathematically
being the multiplication of the vector~x with the dimensions-vector~e (ones vector), i.e., ∑x =~x~e,
and I is the identity matrix (ones diagonal).

To calculate the common performance metrics it is not necessary to calculate the infinitely
many state probability vectors πi per level. The mean system filling E[X ] can be calculated directly
from Neuts’ rate matrix R and the first two state probability vectors π0 and π1, which we get from
equation 3.60. However, the often referenced equation 3.62

E[X ] =
∞

∑
i=0

∑
j

i pj(x=i) = · · ·=
∥∥π1(I−R)−2∥∥

1 (3.62)

is applicable only for true QBDs; meaning that the level index i has to equal the number of clients
in the system, which is possible only if the levels can be defined accordingly and implies that the
boundary level comprises idle states only. This restriction limits the usability of this equation, but
not the applicability of the matrix geometric method per se. If a QBD compliant level definition is
not possible, the calculation of E[X ] has to consider the actual level design such that the calculation
actually implements the summation on the left side of the ellipsis in equation 3.62.

Once E[X ] is calculated the other mean metrics follow from Little’s law N=λT and Tf=Tw+TS.

E[Tf ] =
E[X ]

λg
E[Tw] = E[Tf ]−

1
µS

=
E[X ]−n%

λg
E[Q] = λg E[TW ] = E[X ]−n% (3.63)

Here, µS is the rate provided by a single server, which may be composed by several phases with a
particular µi each. To clearly separate gross and individual rates we use the index g to expresses the
gross system relation. This is essentially required for multi server systems with their total service
rate µg = nµS, but as well for arrival processes that are composed from several phases with rates λi.

The matrix geometric approach is very powerful, particularly when it comes to approximate
solutions comprising spectral components that substitute a distribution by a combination of negative
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exponentially distributed components, resulting in phase-type process models. Using phase-type
distributions any distribution can be approximated as accurate as wished, though that may require
many or even infinitely many phases. In this context we should note that there also exist solutions to
problems where the transition matrix structure is of upper or lower Hessenberg type [34, 73]. Their
solution is mathematically more strenuous but also more efficient because the matrix size remains
considerably smaller if the transition matrix can be reduced to such a structure.

Example H2/E2/2-system analysis using the Matrix geometric method

To sketch how this method is applied, we briefly go through an example where the inter-arrival times
are hyper-exponential H2 distributed, the service times are hypo-exponential with E2 (Erlang-2) and
where we have two indentical servers wotking in parallel. To correctly draw the state transition
diagram we need to consider the contributing phase-type processes first. In figure 3.23 we sketch how
the structure is composed based on the structures of the two processes. The state indices comprise
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Figure 3.23: The H2 arrival and 2×E2 service process phases

three digits, the first tells the number of customers in the system (X), the second the phase of the
arrival process (λ1 or λ2), and the third tells the phase of the departure process (1st or 2nd step). An x
is used in the index if it is undetermined. In the idle state the arrival rate is the global arrival rate
of the H2 process λg = (α1

λ1
+ α2

λ2
)−1. If the process is too complex to calculate the gross rate λg we

can model it by multiple idle phases. The transitions among these idle phases than are the phase
probabilities αi and the upward transitions are αiλi alike those between levels. For details and many
more examples on how to compose and solve state transition diagrams for phase type distributions
please refer to the doctoral thesis of Markus Sommereder and his book [75, 76].

The combined state transition diagram on the right in figure 3.23 shows only the service transitions
to highlight how the two parallel servers are considered. Servers working in parallel contribute
each its share to the service rate and only because phases contribute negative exponential and thus
memoryless holding times, we do not need to consider which servers is in which phase. In a time
continuous regime the one that finishes first triggers the transition, thus there can be only a single
state change at a time. However, we have to consider all possible mixes of server phases that may
occur at any time. Therefore, we need in our example one additional state in the service chain, where
one server is in phase-1 and the other in phase-2. Here we index this by an x to express that the server
group is not in the same phase. For more servers we would need accordingly more additional phases,
and for higher order Phk-process models also accordingly more phases exist, causing a binomial
rising number of possible mixtures to be considered as dedicated states each, mS =

(n+k−1
n

)
, where n
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is the number of parallel identical servers and k the number or service phases per server. The number
of arrival related sub-states per level in case of parallel arriving flows could be calculated similarly if
the arrivals are identically distributed. However, if arrival flows are individually distributed, than the
phases need to be considered per flow and we get mA = ∏n

i=1 ki as the number of arrival sub-states,
where n is the number of arrival flows and ki the number of arrival phases of flow i. The total number
of sub-states per system level is the multiplication of the arrival and server sub-spaces:

m = mA mS with mA =
nA

∏
i=1

kA(i) and mS =

(
nS + kS−1

nS

)
=

(nS + kS−1)!
nS! (kS−1)!

(3.64)

In figure 3.23 we notice that grouping the phases in columns where per column the number of
customers is the same, we get a QBD like structure where transitions among distant columns do not
exist. All transitions are within a column or among adjacent columns. Next we recognise that for
columns to the right of the shown level (X=2), including itself, the phases and the transition rates
are the same, independent of the number of customers in the system. This is exactly what we need to
apply the matrix geometric method. Figure 3.24 shows the complete transition diagram with the level
assignment. For clarity the transition rates are only sparsely stated; please refer to figure 3.23 and
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Figure 3.24: H2/E2/2 state transition diagram with level assignment

figure 3.25 for those not shown. The transitions are drawn in different line styles: full, dash-dotted,
and dashed; because we need to consider downward, internal, and upward transitions separately.

The boundary level covers the idle state and all states where the applied service rate is state
dependently less than the maximum, here 2µ. The border transitions between the boundary and the
first repeating level fit to the different numbers of sub-states contained in boundary and repeating
levels. For the boundary related B-matrices we have

B0 =




0 0 0 0 0
0 µ 0 0 0
0 0 2µ 0 0
0 0 0 0 0
0 0 0 µ 0
0 0 0 0 2µ




B1 =




∗ α1λg 0 α2λg 0
0 ∗ µ 0 0
µ 0 ∗ 0 0
0 0 0 ∗ µ
µ 0 0 0 ∗




B2 =




0 0 0 0 0 0
α1λ1 0 0 α2λ1 0 0

0 α1λ1 0 0 α2λ1 0
α1λ2 0 0 α2λ2 0 0

0 α1λ2 0 0 α2λ2 0




(3.65)
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where λg = (α1
λ1
+ α2

λ2
)−1. The diagonal elements [∗] in B1 can be calculated from the others:

Bg×1 = 0 where Bg = B1 +B2 and 1 is the unit vector

such that −bi,i(B1) = ∑
j 6=i

bi, j(B1)+∑
j

bi, j(B2) → bi,i =




−λg
−λ1−µ
−λ1−µ
−λ2−µ
−λ2−µ


 (3.66)

The inter-level transitions in between repeating levels are a little too crowded in figure 3.24 to
state all rates. Therefore, figure 3.25 shows a single repeating level with its downward, internal,
and upward transitions together with the corresponding matrices A0, A1, and A2. The diagonal
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Figure 3.25: H2/E2/2 repeating level with transitions and A-matrices thereof

elements [∗] in A1 can be calculated from the others:

Ag×1 = 0 where Ag = A0 +A1 +A2 and 1 is the unit vector

such that −ai,i(A1) = ∑
j

ai, j(A0)+∑
j 6=i

ai, j(A1)+∑
j

ai, j(A2) → ai,i =




−λ1−2µ
−λ1−2µ
−λ1−2µ
−λ2−2µ
−λ2−2µ
−λ2−2µ




(3.67)

With the manually filled matrices we can calculate the rate matrix R using equation 3.59 and
solve the queueing system by calculating the state probabilities using equation 3.60 and 3.61 or
directly the performance metrics using equation 3.63 once the mean system filling E[X ] is known.

However, defining these matrices by evaluating a drawn state transition diagram can be
cumbersome and error-prone. Luckily, the matrices that define the system can be systematically
achieved directly from the matrices defining the involved phase-type processes. For A and S we have

QA[H2] =

[
−λ1 0

0 −λ2

]
+

[
α1λ1 α2λ1
α1λ2 α2λ2

]
=

[
−α2λ1 α2λ1

α1λ2 −α1λ2

]
(3.68)

QS[2×E2] =



−2µ 2µ 0

0 −2µ µ
0 0 −2µ


+




0 0 0
µ 0 0
0 2µ 0


=



−2µ 2µ 0

µ −2µ µ
0 2µ −2µ


 (3.69)
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where we use the MAP approach, Q = D0 +D1 as presented in section 2.1.3, with D0 consisting of
the non-event-generating transitions and D1 covering all event-generating transitions of the processes
shown in figure 3.23. For the hyper-exponential process Hn we get the event generating sub-matrix D1
from D1[Hn] = λ×α , and D0[Hn] = diag(−λ) is a diagonal matrix comprising the negative rate
vector elements λi in its diagonal. We note that for a precise phase-type definition the rates of phases
need to be specified individually. The gross rates λg or µg result uniquely from the rates of phases
and the transitions among phases; vice versa the relation is under-determined and thus indefinite.

Given the matrices of the arrival and service process, particularly the splitting in D0 and D1, we
can calculate the sub-matrices required to solve the system using the matrix geometric approach
according to

A0 = ImA⊗D1(S) =
[

1 0
0 1

]
⊗




0 0 0
µ 0 0
0 2µ 0


=




0 0 0 0 0 0
µ 0 0 0 0 0
0 2µ 0 0 0 0
0 0 0 0 0 0
0 0 0 µ 0 0
0 0 0 0 2µ 0




(3.70)

A1 = D0(A)⊗ ImS + ImA⊗D0(S) =




−λ1−2µ 2µ 0 0 0 0
0 −λ1−2µ µ 0 0 0
0 0 −λ1−2µ 0 0 0
0 0 0 −λ2−2µ 2µ 0
0 0 0 0 −λ2−2µ µ
0 0 0 0 0 −λ2−2µ




(3.71)

A2 = D1(A)⊗ ImS =

[
α1λ1 α2λ1
α1λ2 α2λ2

]
⊗




1 0 0
0 1 0
0 0 1


=




α1λ1 0 0 α2λ1 0 0
0 α1λ1 0 0 α2λ1 0
0 0 α1λ1 0 0 α2λ1

α1λ2 0 0 α2λ2 0 0
0 α1λ2 0 0 α2λ2 0
0 0 α1λ2 0 0 α2λ2




(3.72)

where ⊗ refers to the Kronecker (tensor) multiplication, explicitly shown in equation 3.70 and 3.72.
The ImX is the identity matrix, also called ones diagonal or eye-matrix, of size mX , as also explicitly
shown in 3.70 and 3.72. The size mX equals the order of the other process, also called rank and
related to the number of process phases, as for example calculated in equation 3.64. The negative
diagonal elements of the intra-level transition matrix A1 result straight from applying the generator
matrices, and need not be calculated separately, as shown in equation 3.71.

The border transitions B0,B2 and the boundary-level internal transitions B1 are usually easy to
identify in the state transition diagram. However, for true QBDs with absolutely identical levels
except the idle state, these also can be calculated from the generator matrices of the involved
processes [34,76]. Here, for the multi server example, we constructed a phase-type service process to
replace the two individual servers. This constructed service process is valid for repeating levels only
because it postulates two busy servers. Consequently, QS[2×E2] is not applicable in the boundary
level and thus, it cannot be used to calculate the transition matrices B0,B1,B2.

Numeric results

The recursive calculation of the rate matrix requires numeric values. To calculate it we have to know
λ1, λ2, α1, α2, and µ. To complete the example we assume for a start the following values:

λ =

(
0.5
2.0

)
α =

(
0.75
0.25

)
µ =

(
1
1

)
(3.73)
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Note that in this example setting the Erlang phase’s µ=1 results in a normalized system with capacity
µg=1. Due to the sequential phases of the Ek-process each server contributes a capacity of µS =

µ
k

only. If the number of servers equals the order of the Erlang process (n=k), as in our example, than
they achieve in total the intended normalised capacity µg = nµS = 1 for µ=1. Else, µ needs to be
chosen accordingly in order to achieve normalised queueing systems that can be compared. For the
above chosen values the resultant system load %= 1

µg
(α1

λ1
+ α2

λ2
)−1 < 1 grants stability and we get

R =




0.2269727 0.2583543 0.1033417 0.0369539 0.0233078 0.0058270
0.0499852 0.2463287 0.0985315 0.0043595 0.0377387 0.0094347
0.0211675 0.0710474 0.1784190 0.0015686 0.0064096 0.0328524
0.9078909 1.0334172 0.4133669 0.1478156 0.0932312 0.0233078
0.1999407 0.9853148 0.3941259 0.0174379 0.1509548 0.0377387
0.0846700 0.2841897 0.7136759 0.0062743 0.0256386 0.1314096




(3.74)

after 45 recursions using the simple iteration given in equation 3.59 and a demanded precision of
‖R(k)−R(k−1)‖∞ < 10−6. Using this we get the state probability distribution shown in figure 3.26;
where also the state probabilities for less loaded situations (halfe- and quarter-load) are shown,
together with the mean metrics table. The figure shows the state probabilities by bold lines, the phase

H2/E2/2 state probabilities

p(x)

for %= 0.6154,0.3077,0.1538
10−6

10−5

10−4

10−3

10−2

10−1

10 0

0 1 2 3 4 5 6 x

Figure 3.26: State probabilities pi of the H2/E2/2 queueing system example

probabilities by dotted ’+’ symbols, and the simulation result by solid ’*’ symbols. Note that state
and phase probabilities are discrete; for better visibility the phase probabilities that contribute to the
same level are connected by a dotted line. The shape of these connecting lines show similarities
toward higher states more distant from the boundary level, but also depend on the actual load if we
compare them vertically.

To actually calculate the mean metrics shown in table 3.1, we need a fitting equation to correctly
calculate E[X ]. The common equation 3.62 cannot be applied straight because the boundary level
comprises phases where the system state is not zero. Actually equation 3.62 yields the population
of the system less the one that is already in the system prior entering and post exiting the repeating
levels covered by πi = π1Ri−1 ∀i>0. This customer is present in all states except the true idle state
and thus, we can add it with probability 1−p00 and get

E[X ] = 1(1−p00)+
∥∥π1(I−R)−2∥∥

1 (3.75)

where p00 is the probability of the idle state, here p00 = π0(1), the first element of the boundary
phase probabilities π0, which result from equation 3.60 and 3.61.

The performance metrics shown in table 3.1 and figure 3.27 do not match well. While the
confidence intervals for the by simulation measured E[X ] shrink for decreasing loads, the calculated



134 Gerald Franzl

Table 3.1: Calculated mean performance metrics of the H2/E2/2 queueing system example

λg E[X ] E[Tf ] E[TW ] E[Q]calc sim calc sim calc sim calc sim
0.6154 2.0661 1.9614 3.3574 3.1873 1.3574 1.1873 0.8354 0.7306
0.3077 0.7405 0.6971 2.4067 2.2657 0.4067 0.2657 0.1251 0.0818
0.1538 0.3389 0.3178 2.2027 2.0655 0.2027 0.0655 0.0312 0.0101
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Figure 3.27: Mean system filling E[X ] and waiting time E[TW ] of the H2/E2/2 queueing system

results, particularly for the mean waiting time E[TW ], diverge more and more toward low loads. This
questions if the matrix geometric method can be applied to analyse the example H2/E2/2 queueing
system and systems alike where the boundary level comprises a phase structure different from that
of repeating levels. Actually, the boundary level influences the system performance the more the less
the system is loaded. A formal prove is via the mathematics involved is out of the scope, and as well
might equation 3.75 be inappropriate. However, as stated in [34] and others, the matrix geometric
method is at least applicable for the single server Ph/Ph/1 case where true QBD structures occur with
solely idle phases in the boundary level. Changing the model to a single server system with the same
gross capacity we get the results shown in figure 3.28. For the H2/E2/1 system the calculated and

H2/E2/1
E[X ]

0.1

1

10

100

1000

0.0 0.2 0.4 0.6 0.8 %= 1.0

H2/E2/1
E[TW ]

0.1

1

10

100

1000

0.0 0.2 0.4 0.6 0.8 %= 1.0

Figure 3.28: Mean system filling E[X ] and waiting time E[TW ] of the H2/E2/1 queueing system

measured results fit better, and assuming that the remaining error is due to numeric calculation issues
we may agree that the matrix geometric method can be used to analyse single server phase-type
queueing systems. However, the reason for the divergence is not identified yet and the fault may
reside somewhere hidden in the simulation. In that case the matrix geometric method as outlined
above may have yielded the correct results for the H2/E2/2-system. Still, a proper scientific prove is
missing. But how to apply the method in principle should be clear from the provided example.
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3.2 Finite queueing systems

In practice all systems are finite if we agree that accessible space is finite. If pijk(i=s) is negligible,
infinite queues approximate finite queues. However, as shown in figure 3.29 remain finite systems
stable for %≥1, and yield rising steady state probabilities, p(i)< p(i+1), in overload. The steady
state probabilities pijk of infinite systems need to decrease, at least in average, for stability reasons.

µs

s
`o(t)

`c(t)

`b(t) M/M/1/∞ M/M/1/10
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Figure 3.29: Steady state probabilities p(i) for M/M/1/∞ and M/M/1/10 at different loads ρ=λ
µ

With infinite queuing systems the system filling X and the waiting time Tw constitute the main
system characteristics, besides the server utilization U , the related queue filling Q = X −U , and
the flow time Tf = Tw +Ts. To characterise finite queueing systems with their bounded number of
waiting customers we recognise another primary performance metric, the blocking probability Pb

Pb = ∑ λ−∑rijk,(i+1)jk
λ pijk (3.76)

where we actually sum over states that do not have outbound state transitions that cover all
arrival events, precisely states where ∑rijk,(i+1)jk< λ . Commonly this occurs when i=s and
with ∑rijk,(i+1)jk=0, whereas for all other states ∑rijk,(i+1)jk=λ , such that their probabilities are not
considered in equation 3.76. Pb expresses the percentage of time during which the system may not
accommodate new customers. Multiplied with λ it yields the blocking rate δ, being the mean number
of rejected customers, also known as overflow when the process is evaluated.

With blocked arrivals the correct notation of flow volumes (rates) becomes critical. The two
terms offerd load `o(t) and carried load `c(t) identify the load that tries to enter the system and the
load that is allowed to pass the system respectively, as shown by the system sketch in figure 3.29.
Their difference is called blocked load `b(t) = `o(t)− `c(t). In average the carried load equals the
departure rate ϑ = E[`c(t)], if all clients that are allowed to enter actually become served (no exit
without service). The relation mean carried over offered load is given by (1−Pb), such that

ϑ = E[`c(t)] = (1−Pb) E[`o(t)] = (1−Pb)λ (3.77)

and its divergence from the arrival rate defines the mean blocking rate δ = E[`b(t)]:

δ = E[`b(t)] = E[`o(t)− `c(t)] = λ−ϑ = λ− (1−Pb)λ = Pb λ (3.78)

The load related mean rates, λ,ϑ,δ, can be stated in Erlang, being the average number of arrivals,
departures, or losses, per mean holding time h=1

µ , respectively. Commonly, the Erlang unit is
initially stated with the offered load λ to express that in consequence every time related metric is
based on the predefinition h=1, meaning that the average holding time h defines the applied time
unit, such that ρ=λ

µ=λ because µ=1
h=1. For multiple servers the system capacity is than µs=nµ=n.

Interchangeably the carried load `c(t) and the mean departure rate ϑ will be termed throughput.
In some literature the term ’throughput’ specifies the maximum carried load, which we call system
capacity or µs (system service rate) for consistency.
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State transition diagrams

A state transition diagram depicts all possible system states as nodes together with all possible state
changes, represented by the edges in the diagram, which refer to some event that occurs. The edges
define the possible change directions, being the neighbour states that can become the next system
state when the current state is left due to the occurrence of an arrival, departure, or any other event.

In the time continuous regime every event, arrival or departure, causes a dedicated up or down
transition because two events cannot occur at the same infinitesimal small time instant. The rate rij

given with the edges in the state transition diagram is the rate at which transition causing events
occur, conditional to the system being in the transition’s originating state. To express the nature
of this parameter the diagram is sometimes called state transition rate diagram to separate it from
the state transition probability diagram common with time discrete systems. Anyhow, if transition
options exist for an event, their selection probabilities, here αij,βji, need to sum up to one per state
and event, ∑ j αij = 1, ∀i and ∑ i βji = 1, ∀j. The state transition probabilities pij = P[i→j] over
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Figure 3.30: Arbitrary state transition rate diagram

time result from multiplying the state probability pi of the source node at the origin of a transition
with the conditional event occurrence rate (λi,µi,εi, .. ) stated in the diagram next to edges, possibly
decreased by some splitting factors (αij,βji,γij, .. ) where with certain proportionality different state
changes occur in response to an event. The state probabilities pi, being the probabilities that the
system is in state i over time, result from solving the equation system that reflects the state transition
diagram mathematically. Evidently, the system needs to be in some state at all times, and thus,
∑ pi = 1 is a mandatory condition that has to be fulfilled at any time.

To calculate the state probabilities pi for the steady state we need to solve:

the linear equation system Q p = 0 (3.79)

constrained to ∑
i

pi = 1 (3.80)

This applies for any state transition diagram, however complex it my be, and for finite systems this
yields a finite set of linear equations that always can be solved. The methods proposed to perform
this more efficiently are sometimes restricted to special topologies, for example diagonal Q matrices
as they occur with QBD systems.

To perform transient analysis in order to evaluate the response of the system to an environmental
change, we need to solve the differential equation system, i.e.:

the differential matrix equation ṗ(t) = Q p(t) (3.81)

constrained to ∑
i

pi(t) = 1 ∀t (3.82)

In the context of finite queueing systems this has been intensely studied by Markus Sommereder
in [76]. For the assessment of a queueing system’s performance are transient effects negligible only
if they decay in a sufficiently short time without causing problems, such that the system operates in
the steady state most of the time.
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Steady state analysis

Steady state does not mean that the system is in single state all the time. What actually does become
steady is the probability that the system is in a certain state, and therefore the average proportion of
time that the system spends in each state while the system continues to change its state.

Stable probabilities can only occur when the total transition probability at which the system
enters a certain state equals the total transition probability at which it leaves this state. This is known
as the balance condition, and mathematically expressed by the so called equilibrium equations.

i rij

out

rji

in

∑
j

pj rji = ∑
j

pi rij ∀i (3.83)

If we specify equation 3.83 ∀i, we get i equations for the i unknown state probabilities pi. However,
these are linearly dependent, so we need one more equation to solve the equation system. Actually,
the condition stated in equation 3.80 yields this additional equation required to calculate all state
probabilities pi. It can be integrated in the calculation as outlined in section 1.4.3.

Note that equilibrium equations can be stated likewise for state groups if the grouping separates
the entire state space into two groups that contain in total all states. If one group contains a single
state only, we get the equations state in equation 3.83. Complexity and calculation effort can be
effectively saved by using macro-states to jointly represent state groups whenever this is applicable.

Commonly, stable dynamic systems propagate toward a steady distribution of state probabilities as
long as the external conditions (environmental parameters) do not change. Exceptions are multivalent
and chaotic/fractal systems, which may show strange and possibly misleading system behaviour. If
measured performance metrics of a stable system do not stabilise with extended observation time,
than this is likely due to unstable environmental conditions. Only if latter can be reliably excluded,
we may conclude that the system is multivalent or chaotic.

Approximation by truncation

The challenge of finite state transition systems is the potential size of the equation system and the
transition matrix in particular. If low load analysis % < 1 is sufficient and an analytic result for the
same but infinite queueing system is available, than the approximation by truncation can be used to
achieve approximate results, as sketched in figure 3.31.

0 1 2 · · · s-1 s s+1 s+2 · · ·
λ λ λ λ λ λ λ λ

µ µ µ µ µ µ µ µ

Figure 3.31: Truncation of M/M/1 state transition diagram to get M/M/1/s

Skipping the states for i> s without adjusting the state probabilities p∗i calculated via the equation
for the infinite M/M/1 system, p∗i = (1−ρ)ρi, would violate ∑ pi = 1. Therefore, the remaining state
probabilities p∗i ∀i≤s need to be increased such that the condition is fulfilled. This is achieved by
re-normalisation:

pi =
p∗i

∑s
k=0 p∗k

=
p∗i

(1−ρ) ∑s
k=0 ρk =

p∗i
1−ρs+1 =

1−ρ
1−ρs+1 ρi (3.84)

For M/M/1/s this approach yields the precise result. Generally speaking the negative exponential
distribution approximates any unknown distribution, and thus, the truncation and re-normalisation
approach can be applied generally to achieve approximate results at least.
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3.2.1 M/M/n/s queueing systems

To get the M/M/n/s system’s state transition diagram we only need to drop all states with i > s from
the infinite system’s state transition diagram shown in figure 3.2 in order to consider the size bound s.
The resulting state transition diagram is shown in figure 3.32. As before, for i ≥ n all servers are

0 1 2 · · · n n+1 · · · s-1 s

λ λ λ λ λ λ λ λ

µ 2µ 3µ nµ nµ nµ nµ nµ

Figure 3.32: M/M/n/s state transition diagram

busy and the current service rate µi equals the system capacity µs, µi = nµ ∀i≥n, whereas for i < n it
relates state dependently to the number of currently busy servers, µi = iµ < µs ∀i<n.

For finite queueing system the state space does not extend infinitely to the right. It is bounded by
the blocking state, i = s, and while the system remains in this state s, all customers that may arrive
become blocked, such that they do not enter the system and thus cause no state transition.

The state transition diagram is finite, thus we can set up a finite system of equilibrium equations

p0λ = p1µ i = 0

pi(λ+ iµ) = pi−1λ+ pi+1(i+1)µ 0 < i < n

pi(λ+nµ) = pi−1λ+ pi+1nµ n≤ i < s

psnµ = ps−1λ i = s

that again can be rewritten in matrix form as Q p = 0 and solved by including the condition ∑ pi = 1
as outlined in section 1.4.3. The transition matrix has the tri-diagonal QBD form

Q =




−λ λ
µ −(λ+µ) λ 0

2µ −(λ+2µ) λ
. . . . . . . . .

nµ −(λ+nµ) λ
nµ −(λ+nµ) λ

. . . . . . . . .
0 nµ −(λ+nµ) λ

nµ −nµ




and as required are all row-sums zero. Alternatively, we can rewrite the equilibrium equations into a
recursive calculation procedure

p1 =
λ
µ p0 i = 0

pi+1 =
i

i+1 pi− λ
(i+1)µ(pi−1− pi) 0 < i < n

pi+1 = pi− λ
nµ(pi−1− pi) n≤ i < s

ps =
λ
nµ ps−1 i+1 = s

that allows to relate all state probabilities p∗i to an assumed one p∗a. Using the condition ∑ pi = 1 we
finally find the correction term required to get the absolute state probabilities

pi =
p∗i p∗a
∑ p∗i

where we commonly assume p∗a=p∗0=1 for calculation simplicity.
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With recursive equation insertion the known analytic equations for all pi can be derived from
the recursive equilibrium equations. This yields for example the geometrically distributed state
probabilities pi = ρi( 1−ρ

1−ρs+1 ) for the M/M/1/s queueing system with ρ=%=λ
µ shown in figure 3.29.

The recursive approach is straightforward for one-dimensional state transition diagrams. In principle
it works for any state transition diagram, but may require more assumed state probabilities and
accordingly more corrective relations, which can become cumbersome. Commonly, we use the
matrix form Q~p =~0 and let a computer solve the equation system for some given λ, µ, n, and s.

If mean values are required to assess a given system’s performance only, we can apply straight
calculation from state probabilities,

E[X ] =
s

∑
i=0

i pijk (3.85)

E[Q] =
s

∑
i=n+1

(i−n) pijk =
s

∑
i=n+1

j pijk (3.86)

E[Uabs] = n E[Urel] =
n

∑
i=0

i pijk +
s

∑
i=n+1

n pijk = E[X ]− E[Q] (3.87)

Pb = ∑
i=s

pijk → `b = Pb λ → `c = (1−Pb)λ (3.88)

E[Tw] =
E[Q]

`c
=

E[Q]

(1−Pb)λ
(3.89)

E[Tf ] =
E[X ]

`c
=

E[Q]+ E[U ]

(1−Pb)λ
= E[Tw]+

E[U ]

(1−Pb)λ
= E[Tw]+

1
µ (3.90)

E[Urel] = (1−Pb)
λ
nµ = (1−Pb)% (3.91)

because with finite systems it is actually possible to calculate all state probabilities and thereby the
system metrics, a numerical impossibility with infinite systems.

♦ Note that for Little’s law to be correct we have to use the carried load `c=(1−Pb)λ to specify
the relevant ingress rate ’λ’, and not the offered load `o=λ. A peculiarity indiscernible with infinite
systems where `c=`o=λ. Correctly, we should write N=λinT when stating Little’s law.

♦ The server utilization E[U ] implicitly states the throughput ϑ:

ϑM/M/n/s = nµ E[Urel] = µ E[Uabs] = (1−Pb)λ (3.92)

If the system utilization is given relative, meaning E[U ]∈ [0,1] as for example in figure 3.33 and 3.34,
it implicitly depicts the throughput ϑ relative to the system capacity nµ. The absolute E[U ] ∈ [0,n],
as it for example results from equation 3.87, states the throughput ϑ in relation to the service time
h=1

µ , as implied with the Erlang unit definition. For n=1 the two E[U ] metric variants coincide.

♦ Of particular relevance is equation 3.91 because it expresses analytically the relation among
load %, blocking Pb, and server utilization. Evidently causes low load poor utilization, but also high
blocking probability limits the achievable server utilization.

To illustrate how the performance depends on the system size s, figure 3.33 depicts the mean
system filling E[X ], the mean waiting time E[Tw], the mean server utilisation E[U ], and the blocking
probability Pb over increasing system load % of M/M/n/s queueing systems with three servers, n = 3,
and increasing size s = [3,9,30,90]. The mean system filling E[X ] and waiting time E[Tw] saturate
according to the system size limit. The more space is provided by the queueing system, the more
load can be buffered and may thus wait for being served. This heavily decreases the blocking
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Figure 3.33: M/M/3/s queueing system performance (calculated curves and simulation results ×)
over the system load % for different system size s = [3,9,30,90] and nµ = 1, showing the mean
system filling E[X ], waiting time E[Tw], server utilisation E[U ], and blocking probability Pb

probability Pb, and the traces for the server utilization E[U ] show that with Markovian arrivals a
system size ten times the system capacity, s = 10nµ, approximates the optimum quite well. We also
recognise that only for very small system sizes s < 3nµ, meaning a queue size less than twice the
system capacity, degrades the system utilization notably outside a rather narrow range around %=1.
For the special case s = n no queue exists, and therefore, no loads can wait for service, such that
Tw = 0 ∀%. In this case, all loads that cannot be served immediately become blocked, and therefore,
these systems are commonly called loss systems. Such systems will be discussed more detailed in
section 3.3.1, along with other queue-less systems of practical relevance.

At mean loads common with telecommunication infrastructures %<0.3 we notice that Pb is far
below 10−6 for s≥10n, and all other performance metrics shown in figure 3.33 are also very close to
those found for the corresponding infinite systems with s→ ∞.

To study the influence of the number of servers, figure 3.34 shows the performance of M/M/n/s
systems over the number of provided servers n at high load %= 0.8 and equal system capacity nµ =1.
To compare similarly scaled M/M/n/s systems with n≤s, the system size s is set to be a multiple of
the server count n, particularly s/n = 1,3,10,30. Again, for s=n no waiting space exists, and thus,
no curve for the waiting time in case of s/n =1 exists. The system filling E[X ] rises with the number
of servers n because the mean service time h=1

µ must increase for constant system capacity nµ. The
mean waiting time E[Tw] is influenced by two factors: on one side the number of servers n that
causes decreasing Tw for increased n, and on the other side by the finiteness of the queue, sq = s−n,
which upper binds Tw. Because of defining the queue size s as multiple of the server count n we
get partially increasing mean waiting times E[Tw] over n when the increased carried load λ(1−Pb)
outperforms the advantage gained from more servers. At overload, % > 1, this factor dominates
and for all s/n-ratios Tw increases with n. However, if we would keep s constant and the system
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Figure 3.34: M/M/n/s queueing system performance (◦ - calculated, × - simulated results) over the
number of servers n for related system size, s/n = [1,3,10,30], at high load %= 0.8 and nµ =1

load below overload, % < 1, we get decreasing Tw for increasing n, as found with the corresponding
infinite systems presented in section 3.1.1 figure 3.5.

In accordance with the conclusions drawn from figure 3.33, we again recognise that a system size
10-times the system capacity µs = nµ performs quite close to optimum, at least for Markovian arrival
and service processes. Form figure 3.34 we can conclude in addition that the load splitting across
more but accordingly less powerful servers has a rather low influence on the system performance.
The strong reduction of the blocking probability Pb is gained from the implicit queue size increase,
sq = s−n = (s/n−1)×n, and not from the increased work-load splitting among more servers. The
shown E[X ] over n indicates that without the queue size scaling the blocking probability Pb should
slightly rise with increasing n when keeping the system capacity µs=nµ constant.

For completeness we briefly cite the analytic results for M/M/1/s, which likely are to be found in
every textbook on queueing systems, and refer to Kleinrock’s chapter 3.6 on finite storage in [14].

p(0) =
1−ρ

1−ρs+1 → p(i) =

{
p(0)ρi, ρ 6= 1

1
s+1 , ρ = 1

→ Pb =

{
p(0)ρs, ρ 6= 1

1
s+1 , ρ = 1

E[X ] =

{
ρ

1−ρ −
(s+1)ρs+1

1−ρs+1 , ρ 6= 1
s
2 , ρ = 1

→ E[Tf ] =
E[X ]

(1−Pb)λ
→ E[Tw] = E[Tf ]− 1

µ

Calculating the queue filling E[Q] from the waiting time E[Tw] we recognise the factor (1−Pb)ρ,
which is the server utilization E[U ] = E[X ]− E[Q] that states the system throughput ϑ = E[U ] µ.

E[Q] = (1−Pb)λ E[Tw] = E[X ]− (1−Pb)ρ → ϑ = (E[X ]− E[Q])µ = (1−Pb)λ
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3.2.2 Queueing disciplines

The common discipline is first in first out (FIFO) queueing, which corresponds to pipelined operation.
The opposite is last in first out (LIFO) queueing, which corresponds to stacked operation. Another
special case sketched in figure 3.35 is random queueing (RAND). The mean system performance

FIFO:
λ

s−n
δ

1
nµ1 2 · · · n

ϑ

LIFO:

λ

s−n
δ

1
nµ

1

2

...

n

ϑ

RAND:

λ

s−n

δ

1
nµ

1

2
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n

ϑ

Figure 3.35: Different queueing disciplines: FIFO, LIFO, and random queueing

metrics stated by equation 3.85 to 3.91 do not depend on the queueing discipline because the state
probabilities pi themselves do not depend on the applied discipline. Therefore, these metrics can be
calculated directly from the state probabilities pi, as given by the above stated equations. However,
the variation of the waiting time Var(Tw), constituting the forwarding jitter, does depend on the
discipline. Intuitively causes LIFO queueing most jitter, whereas least jitter results from FIFO
queueing. Therefore, these two disciplines are required to assess the upper and lower bounds in case
the actual discipline cannot be modelled. Somewhere in between resides random queueing (RAND),
which may be of interest to state an expectable jitter for system implementing complex, possibly
flow aware queueing disciplines that cannot be modelled in detail.

The waiting process

To evaluate the waiting process Tw we use the so called state flow diagram. It results from the
state-transition-diagram when we assume that the system is with probability pi in some state when
a test-client arrives, and depict all possible paths via intermediate states feasible to reach some
absorbing state that terminates the waiting process. Obviously, there may exist many paths to transit
from one state to an absorbing state, particularly if forward-backward loops are possible as for
example with LIFO queueing. However, solving the system of differential equations for all possible
arrival states yields results that consider all path alternatives to any absorbing state without the need
to explicitly analyse every possible path variant. The waiting process Tw is than the sum of all the
different distributions found from solving the state flow diagram, each weighted by pi, the probability
for an arrival to occur in state i, which we know from solving Qp=0.

Clients that arrive while at least one server is idle, when i<n, do not wait at all. These are served
immediately, and add a Dirac impulse with intensity pi<n at tw=0 to the waiting time distribution,
independent of the queueing discipline applied. And in any case, we cannot consider the theoretically
infinite waiting time of blocked clients.

The state flow diagram for FIFO queuing, shown in figure 3.36, is rather simple. For the waiting

i<n n n+1 · · · n+j · · · s-1 s

p(i<n) p(n) p(n+1) p(n+j) p(s−1) p(s)

nµ nµ nµ nµ nµ nµ

Figure 3.36: M/M/n/s/FIFO state-flow-diagram of the waiting time process Tw

time evaluation are all states i<n irrelevant and therefore can be summarised in a single macro state,
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such that only the homogenouse queueing part with service rate nµ remains. Once the test client
entered the system with i clients in front, which occurs with probability p(i), it moves forward to
being served with every service completion of a client in front of it, at rate nµ, because later arrivals
have no influence on it.

This changes completely for non-preemptive LIFO queueing, shown in figure 3.37, where the

i<n n n+1 · · · n+j · · · s-1 s

p(i<n) p(n≤ i<s) p(s)

(1−Pb)λ (1−Pb)λ (1−Pb)λ (1−Pb)λ (1−Pb)λ

nµ nµ nµ nµ nµ nµ

Figure 3.37: M/M/n/s/LIFO state-flow-diagram of the waiting time process Tw

test client enters the queue at the queue’s head, with probability p(n≤ i<s), if accepted and not
served immediately. Once queued, it becomes pushed back whenever another client is accepted.

For finite queues we need to state a strategy that defines which client is dropped if an arrival
occurs when the queue is full. For consistency with the other queueing disciplines and in accordance
with no pre-emption, we assume that no arriving client may push out an already queued client. This
implies that we need to reduce the arrival rate (load) to the carried load (1−Pb)λ (throughput ϑ),
which covers accepted clients only.

The state flow diagram for RAND queueing shown in figure 3.38 is a little more complex than
the extremes presented above. Here all clients that happen to be queued in front of the test client,
independent when these arrived, need to be served prior the test client can enter a server. It is possible
to represent this by a state flow diagram based on those depicted above for FIFO and LIFO, but it is
easier if we assume random serving, meaning that a client is selected randomly from all currently
waiting in the queue, such that the queuing order is irrelevant. However, this causes that the state
index in figure 3.38 no more indicates the number of clients in front of the test client. The index now
states the total number of competing clients currently in the system, not including the test client.

i<n n n+1 · · · n+j · · · s-1 s

p(i<n) p(n) p(n+1) p(n+j) p(s-1) p(s)

λ λ λ λ λ
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1
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Figure 3.38: M/M/n/s/RAND state-flow-diagram of the waiting time process Tw

With probability p(n+j) the test client enters the system with j waiting clients, although at an
arbitrary position in the queue. With likelihood 1

j+1 the test client is the next to be served. This
likelihood remains 1

j+1 when later arriving clients increase the number of competing clients j, which
occurs with rate λ, as long as the queue is not full. As before, clients that arrive when the queue is
full are blocked, such that no client once queued becomes pushed out. As the state indices do not
including the test client itself, flow state s cannot be reached while the test client is in the system.

The flow process

The flow process is the waiting process plus the service time of the client itself. Here we need to
consider the non-zero contribution from the clients that are served immediately on arrival. To get
the state flow diagram of the flow time we need to add the test client’s service phase, as shown
for example in figure 3.39 for random queueing. To be a memoryless process, the future cannot
depend on how the current state has been reached. Actually, for non-preemptive serving we may
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Figure 3.39: State-flow-diagram of Tf for a non-preemptive M/M/n/s/RAND queueing system

forget all competing clients once the test client is served. Thus, we indicate the serving state by an x
because we do not remember how many clients were left behind. As before, the resultant system of
differential equations can be solved to get the flow time distribution Tf (t).

Note: if an author prefers to identify the states with the number of clients in the system including
the observed test client, than all transitions need to be shifted to the right by one state. Note that in
that cases the weighting of the flow- and waiting-paths that start in state i is pi-1.

Pre-emptive serving

In case a client may be pre-empted from being served, although for random queuing this is a rather
academic assumption, we need to ad transitions back from the serving to a queueing state, which in
total occur with rate λp, the fraction of privileged arrivals that cause pre-emption. The resultant state
flow diagram is shown in figure 3.40, where the dashed transitions to the blocking state s exist only
if we also skip the policy that no arrival pushes out an already accepted client. In figure 3.40 it is
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system exit
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1
i µ

1
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Figure 3.40: MMnsRANDpFlow: State-flow-diagram of the flow time process Tf for an
M/M/n/s/RAND queueing system with server pre-emption

actually shown for the single server case in order to present the faint differences that occur when we
calculate the selection factors using i, the number in the system, instead of the number in the queue j,
where i = j+1 for n=1 server.

With this model we forget how many competing clients remain in the system once the test client is
selected for serving. Thus, the pre-emption related transitions are weighted with the probability that
there are i competing clients in the system at any time. This works as long as the system is Markovian,
meaning that the transition to a next state may depend on the current state only. According to that,
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where the pre-empted test client returns to does not need to be the state it came from. Obviously, this
does not model reality one-by-one but should not have any influence on the results.

To draw a pre-emption state flow diagram for multiple servers we go back to the state flow
diagram shown in figure 3.38 for the waiting process of the M/M/n/s/RAND system, and extend
that by the individual serving phases and the adjacent transitions including the pre-emption option,
as shown in figure 3.41. We get a state flow diagram that explicitly considers all possible paths to
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Figure 3.41: MMnsRANDpeFflow: Detailed state-flow-diagram of the flow time process Tf for an
M/M/n/s/RAND queueing system with pre-emption

the actual state a test client becomes pre-empted to. In addition, we need to consider the applied
pre-emption policy, meaning which out of the n clients currently served becomes pre-empted. This
reduces the pre-emption rate λp by the likelihood for selecting the test client. In case of random
selection it becomes λp

n , as assumed here.

We recognise that representing the state flow process can become quite complex, even for purely
Markovian systems with a single queue and a single traffic flow. If process phases are introduced, as
discussed next in section 3.2.3, or multiple queues and different service time distributions need to
be considered for traffic from different flows, the definition of the state flow diagram can hardly be
sketched, simply because of the many dimensions required. Still, if we can identify regions of states
with similar incoming and outgoing transitions, we can define equilibrium equations that cover an
entire region each. These can be sketched one-by-one, depicting a single state with all incoming and
outgoing transitions per region only.

Numerical solving ~̇p(t) = Q~p(t)

To calculate the waiting and flow time distributions presented above we need to solve the system of
linear equations stated in equation 3.81. This can be done numerically by applying some capable
algorithm, for example the Runge-Kutta methods [77]. Working with Octave we use the lsode
procedure, being the "Livermore Solver for Ordinary Differential Equations" [78], specified in the
GNU Octave manual as "reliable ODE routines written in Fortran" [29].

This procedure requires a defined function that calculates the right side of the matrix differential
equation. For the M/M/n/s/LIFO waiting time, and its state flow diagram shown in figure 3.37, this
function can for example be defined as outlined here. The function parameters handed over to the
Qp-function are the initial state probabilities p0, and the array of times t for which we intend to get
results (curve points). For the initial flow state probabilities p0 we use the entry probabilities given
by the prior calculated state probabilities p(i), as shown in the state flow diagram in figure 3.37. The
times t are typically a linear array that can be defined by t = linspace(0, tmax,nsteps).

Next we construct row-by-row the Qf -matrix representing the state flow process, starting with
the absorbing state that has no outbound transitions and thus is represented by a zeros row. The
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Qp-function for M/M/n/s/LIFO waiting time Tw
1: function ṗ = Qp(p0, t); . parametrised as required for lsode procedure
2: global n, s, ra, rs, p; . variables defined globally outside the function
3: re = ra (1− p(i=s)); . calculate the entry rate (carried load)
4: Qf = []; sQ = s−n+1; . initialise empty Qf -matrix, and calculate its final size
5: rowi = zeros(1,sQ);
6: Qf = [Qf ; rowi]; . add flow absorbing state (the system exit)
7: for i = 2 : sQ−1 do
8: rowi = zeros(1,sQ);
9: rowi(i−1) = nrs; rowi(i) =−re−nrs; rowi(i+1) = re;

10: Qf = [Qf ; rowi]; . add repeating flow states
11: end for
12: rowi = zeros(1,sQ);
13: rowi(sQ−1) = nrs; rowi(sQ) =−nrs;
14: Qf = [Qf ; rowi]; . add boundary flow state
15: ṗ = QT

f p0; . differential equation system to solve
16: endfunction

following rows add one-by-one every state to Qf , left-to-right in figure 3.37. The blocking state i=s
is not added because it does not contribute to the waiting time distribution. Note that the Qf -matrix
cannot be handed over as function parameter, lsode cannot handle any variables other than the
stated function parameters. Hence, the Qf -matrix can be defined outside the Qp-function only if it is
defined global. Here we kept it inside for clarity, although we use global variables for the number
of servers n, the system size s, the arrival rate ra, the service rate rs per server, and the steady state
probabilities p, to achieve at least some flexibility.

To solve the system of differential equations defined by the Qp-function we execute lsode and
subsequently calculate and plot the waiting time distribution FTw(t) together with the components
that lead to it. First we create the times array t and set the initial flow state probabilities p0 to the

solve ~̇p(t) = Q~p(t) as defined by the Qp-function
1: t = linspace(0, tmax,nsteps); . time-steps for resultant curves
2: p0 = zeros(s−n+1,1);
3: p0(1) = p(i<n); p0(2) = p(n≤i<s); . set initial flow state probabilities
4: ṗ = lsode("Qp", p0, t); . execute lsode procedure
5: ṗ = ṗ(:,2:end); . remove absorbing state’s ṗ
6: ccdf = sum(ṗ,2); . sum-up the conditional components
7: cdf = 1− ccdf/(1− p(s)); . calculate the unconditional cdf FTw(t)
8: plot(t, [ccdf/(1−p(i<n)−p(s)), ṗ,cdf]); . plot Fc

w>0(t), its components ϕi(t), and final FTw(t)

entry probabilities, as defined in the state flow diagram. Next is lsode executed, where the first
parameter is a text string that names the function to be solved, here the Qp-function’s name. When
lsode finished, we find in the ṗ-matrix for each flow state i the component ϕi(t) that it contributes.
The first column is to be ignored, it refers to the absorbing state. The remaining are the components
that summed-up and such rescaled that the non-contributing arrivals, those that do not wait and those
blocked, are taken out, yield the conditional complementary cumulative distribution function, being
the cccdf Fc

w>0(t) with Fc
w>0(0)=1. The cdf FTw(t) results from 1−Fc

Tw
(t), where latter results from

scaling, Fc
Tw
(t) = Fc

w>0(t)(1−p(s)), here only considering the blocked part because else the step
at t=0 contributed by the non-waiting clients would not appear.

The results of the shown routines are depicted in figure 3.42. We notice that due to the sole queue
entry state in case of LIFO, only its cccdf component ϕ2 starts with non-zero probability at t=0. The
others are no entry states and therefore their cccdf contributions are zero at t=0. The less likely a
flow state is, the smaller is the area beneath the cccdf component it contributes, and the more clients
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Figure 3.42: Waiting time component’s cccdf s ϕi(t), their normalised sum, the cccdf Fc
w>0(t), and

the resultant cdf FTw(t), as calculated and plotted by the sketched routines for the M/M/2/6/LIFO
example at load ra=1, rs=

1
2 , n=2→ %=1.

in front of the test client a flow state represents, the further right occurs the peak of the according
cccdf component. The shown total cccdf Fc

w>0(t) is more than the sum of the components because
of the scaling applied. Finally, the resultant cdf FTw(t) shows a step at t=0; meaning it does not
start from zero. This expresses the probability that carried clients entered service instantly on arrival.
For large t we recognise that the cdf approaches one rather slowly, which indicates a heavy tailed
distribution, which for overload is quite evident.

3.2.3 The matrix analytic approach to Ph/Ph/1/s queueing systems

In practice are the involved processes rarely perfect Poisson processes. Still, as already mentioned
with infinite systems in section 3.1, these provide an analytically handy approximation and define
the boundary between smooth and bursty processes. If an approximation by negative exponentially
distributed events is insufficient we can approximate the true distributions of events by meshed
negative exponentially distributed phases, the so called phase type distributions introduced in
section 2.1 using the methods sketched in section 2.3, or the process itself by defining an according
Markov Arrival Processes (MAP), introduced in section 2.1.3 and detailed in section 2.1.4.

Finite queueing systems composed of processes that can be expressed as Markov Arrival
Processes (MAP), see section 2.1, can be numerically solved using the Matrix Analytic Method
(MAM) similar to Neuts’ Matrix Geometric Method presented in [73] and sketched in section 3.1.6.
The Q-matrix of Ph/Ph/1/s queueing systems has block-diagonal form:

Q =




B1 B2 0 · · · 0 0

B0 A1 A2
. . . . . . 0

0 A0 A1 A2
. . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . A0 A1 A2

0 0 · · · 0 A0 Bs




The major differences to MGM is that there exists a far end of the state transition diagram, an upper
boundary-level Bs, here called the blocking level. This causes that we need not iteratively derive
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the rates-matrix R because finite systems can always be represented by a finite Q-matrix, such that
numerically Q p = 0 can be directly solved, applying the scheme presented in section 1.4.3.

To get the repeating level sub-matrices A0, A1, A2 the same calculation as presented in
section 3.1.6 is applicable,

A0 = IA⊗D1(S)

A1 = D0(A)⊗ IS + IA⊗D0(S)

A2 = D1(A)⊗ IS

where Di(X) are the matrices defining the MAP processes, IX are identity matrices of size according
to the size of the indexed MAP process, and ⊗ indicates the Kronecker multiplication of matrices.

The lower boundary sub-matrices B0, B1, B2 are composed of the transitions to, among, and
from, idle states. When no customer is present the service process is interrupted, and therefore
we only need to consider the parts that can be reached from levels above. In consequence are the
B-matrices smaller than the A-matrices. In case of Ph/Ph/. . . we can calculate these from the involved
process’s Di(X) according to

B0 =~αA⊗D1(S)

B1 = D0(A)

B2 =~αT
S ⊗D1(A)

where~αX represents the entry-vector of the according MAP, and~αT transposes the vector into a row.
If blocked arrivals cause the same transitions as not blocked, just without increasing the number of
customers present, than the upper boundary sub-matrix results as:

Bs = A1 +A2

In many cases it is easier to state the Ph-type definition~µ,~α,q and calculate the MAP definitions.
This can be done according to

D0 = T = (IX×~µ)× (q− IX)

D1 =~t0×~α = (−T×1)×~α

where T represents the transition-rate matrix, which results from the phase-rates vector~µ and the
transition-probability matrix q, actually by multiplying each row i of q with the according phase-
rate µi and inserting the negative phase-rate µi as diagonal elements. The exit-rate-vector~t0 equals
the positive row-sums of the transition-rate matrix T , which results from~t0 =−T×1 whith 1 being
a fittingly sized ones-matrix, and × indicating common matrix or vector multiplication as applicable.

This works out very nicely because all Q-matrix entries result directly from the Ph-type definitions
(or the MAP definitions) of the involved processes. It is not necessary to explicitly set up the
state transition diagram in order to find the boundary matrices. However, note that this is only
possible if both processes defining the queueing system, being the arrival and the service process,
are state independent. If one or both change in case the system is idle or completely filled, the
boundary matrices Bx need to be composed according to the precise state transition diagram, correctly
considering the process dependencies on the current state.

The following example illustrates the simplicity in case of state independent processes. We
assume an arrival process that comprises an interrupted 2-phases Cox-generator, as depicted on
the left in figure 3.43, and a 2-phases generalised-Erlang service process with for example a slow
error recovery phase that partly causes a loop-back (re-transmission→ infinite impulse response),
depicted on the right in figure 3.43. The figure explicitly shows the Ph-type relevant, process internal,
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Figure 3.43: Example Ph-type arrival and service processes

transition probabilities qij and the entry probabilities αi. These are rather few parameters, but they
still define the assumed processes completely, i.e.,

~µA =




λ1
λ2
ε


 ~αA =




1
2
0
1
2


 ~µS =




µ1
µ2
ν


 ~αS =




1
0
0




q(A) =




0 1
3 0

0 0 0
1 0 0


 q(S) =




0 1 0
0 0 1

10
1
5 0 0




from which we get the rate based definitions

T (A) =



−λ1

1
3 λ1 0

0 −λ2 0
ε 0 −ε


 T (S) =



−µ1 µ1 0

0 −µ2
1

10 µ2
1
5 ν 0 −ν




~t0(A) =




2
3 λ1
λ2
0


 ~t0(S) =




0
9
10 µ2

4
5 ν




and finally the MAP definitions

D0(A) =



−λ1

1
3 λ1 0

0 −λ2 0
ε 0 −ε


 D0(S) =



−µ1 µ1 0

0 −µ2
1
10 µ2

1
5 ν 0 −ν




D1(A) =




1
3 λ1 0 1

3 λ1
1
2 λ2 0 1

2 λ2
0 0 0


 D1(S) =




0 0 0
9

10 µ2 0 0
4
5 ν 0 0




Q(A) =



−2

3 λ1
1
3 λ1

1
3 λ1

1
2 λ2 −λ2

1
2 λ2

ε 0 −ε


 Q(S) =



−µ1 µ1 0

9
10 µ2 −µ2

1
10 µ2

ν 0 −ν




required to construct the Q-matrix of the queueing system composed by these two processes.
Here both processes are defined by transition-matrices of size 3×3, and thus we get Ai matrices

of size 9× 9 and Bi matrices of size 9× 3, 3× 3, and 3× 9, respectively. The blocking level’s
Bs matrix has the same size as Ai, which is evident as it results from A1 +A2.

Solving Q p = 0 with the condition ∑ pij = 1, we get the state probabilities pij for all states.
Summing over all state-probabilities multiplied with the number of present customers i we get the
mean system filling, E[X ] = ∑ i pij, and similarly the queue filling, E[Q] = ∑(i−1) pij. Using Little’s
law N=λT , considering that it is based on the arrivals actually entering the system λin = (1−Pb)λ,
we get the mean flow time E[Tf ] and mean waiting time E[Tw], respectively. As the mean service
time is the difference of the former two, E[Th] = E[Tf ]− E[Tw], we can use this to derive the effective
service time of the Ph-type service process.
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The blocking probability Pb results as the sum over all state probabilities in the blocking-level,
Pb = ∑i=s pij, and the throughput ϑ is the sum over all non-idle state probabilities times the mean
service rate, ϑ = µ̄ ∑i>0 pij. Latter is not explicitly given in the Ph-type definition. However, we get
µ̄ = E[S] from the moments equation 2.6 stated in section 2.1.2.

Commonly, studies should be normalise to µ̄ =1. To achieve this the rates-vector of the service
process needs to be scaled to~µ(1) = E[S]~µ. In the same way we scale the arrival process’s rates-
vector to achieve different system loads ρ, i.e.,~λ(ρ) = ρ E[A]~λ. Note that here we switch from the
general meanX → µX notation to the queueing system notation where we have µA→ λ, µS→ µ.

To show calculated results and to compare these with simulation results, we need to select a
system size, here s=9, and state processes’ phase-rates. For the results shown in figure 3.44 we
assumed

~λ = ξ




3
1
1
2


 and ~µ = ζ




1
2
1
2




as relations among phase rates. The actual service rates are normalised by a constant ζ to achieve µ̄=1,
and the arrival rates are scaled by ξ to yield the mean arrival rates shown on the x-axis in figure 3.44.
We show several calculated metrics, and recognise that these look quite similar to those we already
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Figure 3.44: Ph/Ph/1/9 example calculations (solid lines) and simulation results (×)

know from M/M/1/s. Given the coefficient of variation of the arrival and service process used, this is
no big surprise. However, looking more closely we notice that some curves are not as symmetric
and smooth as usual, in particular the waiting time E[Tw] shows a quite steep bend toward zero load.
Anyhow, this example shall express that this method yields precise results, not only an approximation,
if the involved processes actually are Ph-type or MAP processes. It is up to the engineer to design
and adjust system parameters in order to achieve a suitable system that balances loss-probability,
response-time, server-utilization and waiting-time to the convenience of the client.

3.2.4 Finite population – the M/M/n/s/c model

Tore Olaus Engset presented in [79, 1918] an alternative queueing system where the number of
potential clients c is not assumed to be infinite. In practice most client groups are finite, but
often much bigger than the provided waiting space, such that they can be approximated as infinite.
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However, if this is not the case, than the population bound c likely has some influence on the system
performance. For example, if the system size s equals or exceeds the population size c, than no
blocking can occur, Pb(s≥ c) = 0, even though the system is finite.

In this model the total arrival and service rates are both state dependent, at least for some states.
If we assume c≥ s≥ n, the birth-death rates of the queueing system are

λi =

{
(c− i) λ̂ 0≤ i < s
0 i≥ s

µi =

{
iµ 0≤ i≤ n
nµ i≥ n

(3.93)

where λ̂ represents the arrival rate per idle client and µ the service rate per server. The according
state transition diagram is depicted in figure 3.45.
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Figure 3.45: M/M/n/s/c state transition diagram

The steady state probabilities pi for this system can be analytically calculated as presented by
Kleinrock in [14, section 3.10.], briefly repeated here.

pi =





p0

i−1

∏
j=0

(c− j)λ̂
( j+1)µ

= p0

(
c
i

)(
λ̂
µ

)i

0≤ i≤ n

p0
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∏
j=0

(c− j)λ̂
( j+1)µ

i−1

∏
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(c− j)λ̂
nµ

= p0

(
c
i

)(
λ̂
µ

)i
i!
n!

nn−i n≤ i≤ s

(3.94)

The analytic expression for p0 is rather bulky. However, for a given example we can numerically
calculate all pi even without an explicit equation for p0.

Two steps pi calculation

• initially assume p∗0 = 1 apply 3.94 ∀i to get all p∗i
(3.95)

• for ∑ pi=1 set p0 =
1

∑ p∗i
and finally get pi = p0 p∗i

Based on this calculation scheme we can numerically calculate the mean system filling E[X ] = ∑ ipi

and queue filling E[Q] = ∑(i−n)+pi. Using Little’s law N=λT we get from these the mean flow
time E[Tf ] and waiting time E[Tw]. However, to do this we first need to find the ingress rate λin,
which equals the throughput ϑ because all customers that enter the system become served some
time. This and the global arrival rate λs can as well be calculated numerically from the steady state
probabilities pi based on the state transition diagram depicted in figure 3.45.

λs = λ̂
s

∑
i=0

(c− i) pi = c λ̂− λ̂
s

∑
i=0

ipi = λ̂(c− E[X ])

λin = λ̂
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∑
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(c− i) pi = λs− λ̂(c− s)ps = λ̂
(
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)

ϑ = µ
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ipi +nµ
s

∑
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( n

∑
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(
1−

n

∑
i=0

pi
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= nµ
(

1−
n
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i=0

n− i
n
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Using the results for λs and λin with the relation λin = ϑ = λs (1−Pb) we get an equation for Pb.

Pb =
(c− s)ps

c− E[X ]
(3.96)

Equation 3.96 is applicable for M/M/n/s/c only, as figure 3.48 shows. Still, it requires the numerical
calculation of all steady state probabilities pi using for examples the scheme 3.95 to get the mean
system filling E[X ] =∑ ipi, and explicitly the probability ps for the system being full. For the general
case n < s < c there exists to our best knowledge no analytic equation to calculate Pb, E[X ], E[Q],
E[Tf ] or E[Tw] that does not require calculating the steady state probabilities pi first. However,
analytic equations applicable for special cases exist, and are presented shortly.

Different arrival generation process

The different arrival rate λ̂ definition needs to be considered when comparing the Engset setting with
the conventional setting assuming infinite customer populations (Erlang setting). With finite customer
populations the arrival generation rate λ̂ is commonly stated per customer, and is conditioned to not
being in the system, meaning that it applies for idle customers only (idle time distribution). This is
straightforward because the finite customer population model assumes that customers being in the
system, currently busy, do not generate new arrivals until they left the system, become idle again. In
figure 3.46 we sketch this arrival process over time per customer, the customers state model in total,
and the state flow diagram that results per customer. Note that in latter the state index j refers to the

tidle

busy

state

0

ta

[s]

th
ta

[b]

ta

[w]

tw + th
ta

c−i

idle

j

waiting

i−j

served

(pi≥n−Pb)λs

pi<n λs

nµ(i−j)µ

idle 0 1 2 · · · j+1 · · · s−npi<n λ̂
pn λ̂

pn+1 λ̂

pn+j λ̂

ps−1 λ̂

µ nµ nµ nµ nµ nµ nµ

Figure 3.46: Arrival generation process commonly assumed with finite population queueing models

customer’s position in the queue, not considering any customers queued in behind. The core problem
with this model is that the arrival process depends on the steady state probabilities of the queueing
system and that these themselves depend on the arrival process. Every accepted arrival reduces the
momentary arrival rate because the entering customer does not generate new arrivals while in the
system. In consequence is the global arrival process not memoryless.

The mean arrival rate is upper bounded by c λ̂, the rate at which arrivals occur when no arrival is
accepted (s=0). A lower bound for the mean rate results vice versa for the case where all arrivals
are accepted, Pb=0. In that case is λs=ϑ, and we can state for the actual mean arrival rate and load

ϑ≤ λs ≤ c λ̂ ρcarried ≤ ρoffered ≤ c ρ̂idle

where ρ̂= λ̂
µ states the load that every customer would generate if no arrival is accepted. Interesting

to note, the more arrivals are rejected, the more load is generated by the finite customer population.
This models many practical cases better than the Erlang setting does.
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A problem occurs if we only know the actual arrival rate to the system λs, and the population
size c that caused this, for example from measurement. In this case we need to find the hidden λ̂ by
iteration:

1. initially assume E[X ]∗=0
2. calculate approximate arrival generation rate λ̂∗ =

λs

c− E[X ]∗
3. solve 3.94 using algorithm 3.95 to get all p∗i
4. calculate new E[X ]∗=∑ ip∗i
5. if (∆E[X ]>∆max) return to 2nd step until E[X ] is sufficiently stable
6. use the just calculated p∗s and E[X ]∗ with equation 3.96 to get the blocking probability Pb

Using this iterative approach we find the load dependent relation between the arrival rate to the
system λs and the arrival generation rate λ̂ depicted in figure 3.47. The iteration converges quite
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Figure 3.47: Arrival generation rate λ̂ over offered load λs (µ=1)

well, typically in less than 25 steps for ∆max=10−9. The most steps occur around λs=nµ. Overload,
λs≥nµ, cannot occur with the loss-less M/M/n/c/c system. Here grows λ̂→ ∞ for λs→ nµ. The
system properties E[X ] and Pb over ρ̂ are shown in figure 3.48, together with simulation results.

Special cases

• M/M/n/n/c: In case the system has no queue, s=n, it becomes a pure loss system. This is the finite
customer population sibling to the Erlang loss system.

Pb =

(c−1
n

)
ρ̂n

n

∑
j=0

(c−1
j

)
ρ̂j

pi =

(c
i

)
ρ̂i

∑n
j=0
(c

j

)
ρ̂j

in case s = n≤ c

Queue-less systems alike are discussed later on in section 3.3. The Engset loss formula for Pb and
Engset distribution for pi are stated here for completeness only.

• M/M/n/c/c: In case the system size equals (or exceeds) the customer population size, s ≥ c, the
system becomes a loss-less queueing system. Every customer can be accommodated at any time.

Pb = 0 pi = use 3.95 to solve 3.94 in case c≤ s

The steady state probabilities pi and the system performance can be calculated as in the general case.
System states with an index i > c have zero probability and thus no relevance.

• M/M/c/c/c: In case the number of servers equals (or exceeds) the population size, n ≥ c, no
queueing occurs and only the first part of equation 3.94 applies.

Pb = 0 pi =

(c
i

)
ρ̂i

(1+ ρ̂)c in case c≤ n≤ s
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This system represents the finite sibling to the infinite server model (M/M/∞), a system with no queue,
s=n , and Pb=0. It is discussed in more detail in section 3.3.2.

In figure 3.48 we show simulation results together with calculated results (continuous lines). The
system capacity nµ and the population size c is the same for all. The only changing parameter is
the queue size s−n. The properties and insensitivities of such systems are revealed by assuming
different idle time and holding time distributions. First we notice that the mean system filling E[X ]

E[X ]
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Figure 3.48: G/G/n/s/c E[X ] and Pb for different idle and holding time distributions
(M=Markovian(cv=1), D=deterministic(cv=0), H=hyper-exp.(cv=5), µ=1, samples/point=200.000)

hardly differs for different arrival and service time distributions. For the loss system G/G/3/3/9 it
is least and perfectly identical for all studied examples. The blocking probability Pb(G/G/3/3/9)
is also identical for all process pairings, and worst compared to other queue sizes. For a system
size equal the population size, G/G/3/9/9, no blocking occurs, Pb=0, and the system filling E[X ] is
maximal. In the general case G/G/3/6/9 the system filling E[X ] and the blocking probability Pb are
both in between the extremes defined by the other systems. The blocking probability Pb calculated
via equation 3.96 matches the simulation results we get for the M/M/3/6/9 system. In the other
simulation results we recognise that the blocking probability Pb is less for deterministic service
times (G/D/3/6/9) and considerably worse for hyper-exponential service times (G/H/3/6/9). With
deterministic service times we recognise also a slight dependence on the idle time distribution. The
blocking probability Pb is slightly higher with hyper-exponential idle times (H/D/3/3/9) compared to
negative exponentially distributed idle times (M/D/3/3/9).

The special case c≤n causing the M/M/c/c/c case is not shown in figure 3.48. It resembles the
bounded version of the M/M/∞-system presented in section 3.3.2. See figure 3.56 and figure 3.59 for
the comparison of M/M/∞ with M/M/c/c/c.

That with the Engset setting a client’s load share does not contribute to the arrival rate while
the client is in the system allows us to use M/M/n/s/c models to more accurately model the load that
enters a network node when analysing the transmission related queueing process (line buffers). For
serial packet reception the maximum number of simultaneous arrivals is upper bound by the number
of ingress ports. While a packet is received the according port is effectively blocked from causing
more arrivals to the node. The more load enters a node via a particular port, the more influences
this effect the distribution of the load contributed by that port. This commonly improves the node’s
performance; thus it is called the streamlining effect, discussed for example in [56, 80]. This property
explains the negligible influence of ingress line buffers when used for local re-clocking. Due to
c=1 equals the buffer’s egress distribution its ingress distribution, only some in average negligible
time-lag is caused.
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3.3 Queue-less systems

This section covers some system models that on a first glance apply to other fields rather than packet
based data communication. For packet switching the queue is essentially needed to realise statistical
multiplexing, being the core mechanism that makes packet switching simple and sufficiently efficient.
Still, many links connecting packet switched nodes are provided by circuit switched technologies,
mainly SDH and OTN, particularly where Ethernet fails to span the geographic distance between
nodes. Circuit switching is commonly modelled by loss systems. On the other side, above the layer 4
connection, we commonly find logical connections that belong to different sessions but share the
available end-to-end capacity. Their interplay can be modelled by processor sharing models, where
the server represents the abstracted layer 4 connection between two end-systems (client-to-server,
server-to-server, or even peer-to-peer).

In between these two we discuss rather academic systems that either assume an infinite number
of servers or are quite over-dimensioned. These are useful to approximate loss-less systems with
many servers, to integrate stochastic delays in queueing network analysis, and they provide upper
bounds and benchmarks for realistic systems.

3.3.1 Loss systems – M/G/n/n

The functional contribution of the generalised multi protocol switching (GMPLS) control hierarchy
is the option to change the circuit switched lower layer connectivity on demand. Traditionally,
transmission resources are not provided dynamically to the network layer. Thus, a capable lower
layer network technology is required to smartly, meaning efficiently and demand specific, utilise the
available network resources. However, temporarily a requested connectivity may be unachievable.
Loss models can be used to assess the likelihood that packet nodes can be connected on demand,
based on the request-arrival distribution and the life-time distribution of these connections, which
finally contribute the fundamental data transmission among neighbouring nodes.

In case of regular topologies it is sometimes possible to model an entire data transmission network
by a single loss system. For example, a symmetric bidirectional 1:1-protected double ring topology
can be represented by a single multi-server system, as shown in figure 3.49. This is possible here
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Figure 3.49: Add-drop-multiplexing ring node (ADM) with adjacent links of a circuit switched
double ring network (left) and the M/M/n/n-model that results for 1:1-protected connections and
symmetric, bidirectional capacity assignment (right)

because every connection occupies the demanded capacity on every single link along the entire ring:
in one orientation to establish the working path, in the other to establish/provide the protection path.
Thus, the number of servers equals the capacity units available on the links connecting the ring-nodes,
precisely their bottleneck if capacities vary. The example shows that quite complex structures may
be reducible into rather simple models if system symmetries enable it or may be assumed.
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The state transition diagram for the M/M/n/n loss system is shown in figure 3.50, where we
assume negative exponentially distributed times in between connection requests (ta = 1/λ) as well as
for the connection holding times (th = 1/µ).

0 1 2 · · · i · · · n-1 n

λ λ λ λ λ λ λ

µ 2µ 3µ iµ (i+1)µ (n−1)µ nµ

Figure 3.50: M/M/n/n state transition diagram

The analytic solution of this queueing system goes back to A.K. Erlang [66, 1917], and yields
the Erlang_B equation, or simply Erlang loss formula EB(ρ,n).

pi =
ρi

i!

∑n
j=0

ρj

j!

Pb = EB(ρ,n) =
ρn

n!

∑n
j=0

ρj

j!

1
EB(ρ,k)

= 1+
k

ρ EB(ρ,k−1)
(3.97)

Erlang_B yields the blocking probability Pb from the offered load ρ defined in Erlang (ρ=λ
µ ) and the

provided number of equally performing resources n. Numerically, this is best calculated iteratively,
starting with EB(ρ,0)=1 and using the inverse 1

EB
for stability, as shown on the right in 3.97.

The solution relates the performance and resource demand of systems where a finite pool of
identical resources defines the system capacity nµ, and where requests cannot wait, meaning that on
arrival they need to be served or rejected instantly, such that no queue may build up (s = n).
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Figure 3.51: Blocking probability Pb over load for different G/G/n/n systems
(M=Markovian, D=deterministic, L=Lomax(ρ,2), n=3,9, µ=1, samples/point=50.000)

The blocking probability Pb calculated using equation 3.97 is shown in figure 3.51 (continuous
line) together with simulation results for different G/G/n/n models. Due to PASTA, Poisson arrivals
see time averages, is for Markovian arrivals the Pb of loss systems independent of the actual service
time distribution Th. Accordingly, simulation results for different service processes superpose each
other for A = M, and thus, the Erlang_B formula (3.97) is applicable for any M/G/n/n loss-system.

For smooth arrivals Pb is less, and for heavy tailed arrivals it is worse. In figure 3.51 we actually
show the cases where one is deterministic and the other Lomax(ρ,2) distributed, with coefficient
of variation 0 and ∞, respectively. As PASTA is not applicable in these cases, the results are not
independent of the service process and thus represent the best and worst results for the worse and
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better case. Evidently, for D/D/n/n we would get zero blocking for λ<nµ, and for L/L/n/n we would
get worse mean blocking than for the L/D/n/n case shown.

Finally we note that here Pb is the prime performance metric because for any G/G/n/n system
the flow time equals the service time, Tf = Th, and is thus independent of the only adjustable system
parameter n. However, if we would keep the system capacity µs=nµ constant we would introduce
system size dependent mean holding times E[Th]=

n
µs

, and thus mean flow times E[Tf ] that increase
linearly with n. The mean system filling E[X ] depends primarily on the mean load ρ=λ

µ , and is
rather independent of the involved service process.

Evident but still notable, the blocking probability PG/G/n/n
b improves (decreases) with increased

system size n, even if we keep the system capacity nµ constant. This is based on the simple, time
and load invariant phenomenon that the more servers are available the less probable are all these
occupied at the same time. Thus, to minimise the loss rate λPb it is always best to split the required
system capacity nµ to as many servers as possible.

Loss system design

Without a queue, the mean service rate µ per server defines the mean flow time, and thus, to design a
system that provides a certain mean flow time E[Tf ] with a given blocking probability Pb, we need to
first calculate µ and than the number of servers n that is required to handle a targeted arrival rate λ.

µ =
1

E[Tf ]
→ ρ =

λ
µ

→ n = min
n
(n|EB(ρ,n)≤ Pb)

Latter is easily achieved using the recursive calculation of EB(ρ,n) stated in equation 3.97. Applying
better serves with higher rate can reduce the number of required servers, but demands a higher system
capacity nµ, which commonly causes higher implementation and operation expenses.

Finite customer population – M/G/n/n/c

In section 3.2.4 we first introduced finite customer populations c. In practice all populations are
finite, in particular the number of ingress ports at network nodes. However, models assuming an
infinite population fit well if the mean service rate is far below the maximum ingress rate. This is
commonly the case for packet transmit queues at egress ports if the ingress port count is sufficiently
high. Still, at switches that perform cut-through switching no new switching requests can origin from
a currently occupied ingress port. Cut-through switches, where queues are inexpedient, are therefore
a technology where the M/G/n/n/c model has to be applied in order to achieve accurate modelling.
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Figure 3.52: M/M/n/n/c state transition diagram

Figure 3.52 depicts the state transition diagram of the loss system with finite customer population.
The difference to the infinite population case, depicted in figure 3.50, is the system state dependently
decreasing arrival rate. Sometimes this system is called truncated binomial model, in reference to the
binomial coefficients in its steady state distribution. We use the Kendall notation to be consistent.

As already stated in section 3.2.4 is with finite customer population models the offered load
defined per customer, using λ̂ and ρ̂= λ̂

µ . The parameters state the arrival generation rate (mean
idle period distribution) and a kind of maximum Erlang load per customer. Both refer to the load
that a customer would only generate if all arrivals are rejected. Every accepted arrival interrupts
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this arrival generation because the customer is assumed to not generate new arrivals while he is in
the system. This reduces the effective arrival rate and also causes that the global arrival process is
not memoryless, even if the processes used to model the arrival generation and holding time are
Markovian. Please refer to section 3.2.4 for a detailed discussion of the peculiarities of the different
arrival generation process that results from the Engset setting.

For loss system with finite customer populations T.O. Engset published in [79, 1918] the steady
state probability pi distribution, called the Engset distribution, and the equation to calculate the
blocking probability Pb, called Engset loss formula EngB in analogy to Erlang’s loss formula [81].
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)
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)
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)
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(3.98)

1
EngB(ρ̂,k,c)

= 1+
k

ρ̂(c−k)EngB(ρ̂,k−1,c)
(3.99)

We notice that Pb 6= pn. This is evident because if a customer is not in the system, and here this is
necessary to cause an arrival, the probability that the system is full when the arrival occurs is that of
the system being full without that customer in its population. PASTA is not applicable because due
to the finite population the arrival process to the system is not memoryless, even if per customer both
the idle and the service time distribution are negative exponentially distributed.

There again exists a recursive calculation option that looks quite similar to that in the Erlang
setting. It simply replaces the factor ρ by ρ̂(c− k) in the multiplication with the previous result for
k−1 servers. As common, the recursion starts with EngB(ρ̂,0,c)=1, and is perfectly suited to find
the number of servers n required to reach a certain blocking probability Pb target.

Deriving an analytic equation for the system filling from E[X ] =∑ ipi using equation 3.98 would
be straightforward, but requires some mathematical tricks [14]. Here we can actually find it much
easier exploiting the specifics of the loss system. No queue exists, and accordingly equals the system
filling, expressed by the system state index i, the number of currently busy servers. Using the state
transition diagram shown in figure 3.52 we get

ϑ =
n

∑
i=0

iµpi = µ E[X ] λs = λ̂
n

∑
i=0

(c− i) pi = c λ̂− λ̂
n

∑
i=0

ipi = λ̂(c− E[X ])

where ϑ is the system throughput, and λs the effective arrival rate to the system. By ϑ = λs(1−Pb)
the two calculations become joined and we get:

E[X ] =
c λ̂(1−Pb)

µ+ λ̂(1−Pb)
=

c ρ̂(1−Pb)

1+ ρ̂(1−Pb)
λs =

c λ̂
1+ ρ̂(1−Pb)

ϑ =
c λ̂(1−Pb)

1+ ρ̂(1−Pb)
(3.100)

The idea in behind the Engset setting can be explained by the so called intended load ρ̃: per
customer exactly one arrival occurs per arrival-service cycle if Pb=0. The mean length of this cycle
is ta+ th, where ta= 1

λ̂
and th=1

µ . Its inverse is the intended arrival rate λ̃ per customer, and divided
by the mean service rate µ we get the indented load ρ̃ per customer:

λ̃ =
1

ta+ th
=

λ̂
1+ ρ̂

ρ̃ =
ρ̂

1+ ρ̂
ϑ≤ c λ̃≤ λs ≤ c λ̂

Assuming constant intended system load c ρ̃ we recognise that the higher the blocking probability Pb
is, the less load can pass the system, but also the more load is generated by the finite number of
sources. This increase is the response of the traffic sources to a system failing to serve all arriving
loads.



3.3 Queue-less systems 159

In case we only know the effective arriving rate λs, for example from measurements, but not
the intended load per source ρ̃ = λ̃

µ or the mean idle time 1
λ̂

, than we need to find the hidden λ̂ by
successive iteration in order to calculate the system properties [81].

1. initially assume P∗b = 1

2. calculate approximate arrival generation rate λ̂∗ =
λs

c− λs
µ (1−P∗b )3. solve EngB(

λ̂∗
µ ,n,c) using 3.99 to get new P∗b

4. if (∆Pb>∆max) return to 2nd step until Pb is sufficiently stable

Using this iterative approach we find the load dependent relation between the arrival rate to the
system λs and the arrival generation rate λ̂ depicted in figure 3.53. The iteration converges quite well,

0
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3
λ̂

0 1 2 3 4 5 6 7 8 λs=9
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M/M/3/3/6
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Figure 3.53: Arrival generation rate λ̂ over offered load λs (µ=1)

typically in less than 20 steps for ∆max=10−9. Overload, λs≥nµ, cannot occur with the loss-less
M/M/c/c/c system, here grows λ̂→ ∞ for λs → nµ. The more customers exist, in relation to the
number of servers, the less exceeds c λ̂ the actual arrival rate λs.

The upper two graphs in figure 3.54 show the system properties E[X ] and Pb over ρ̂, calculated
via equation 3.100 and 3.98 respectively (solid lines), together with simulation results for M/M/.. ,
M/D/.. , M/H/.. , H/D/.. , D/H/.. finite source loss systems. The system filling E[X ] confirms that
the less customers exist, the slower rises the system filling. This is not that visible if we look at the
lower graph showing E[X ] over the actually offered load λs (µ=1→ρ≡λ). Here we see that for the
loss-less G/G/3/3/3 system the system filling equals the load, E[X ]=λs

µ , up to the system being filled
up at E[X ]=3. Seemingly, and quite practically, provides the system filling we get for the infinite
customer population E

[
XM/G/3/3

]
a lower bound (dashed line).

For the loss-less G/G/3/3/3 system we get Pb=0, and thus we have in the graphs on the right only
results for population size c>n. In the upper graph we find the simulation results sitting perfectly on
the calculated curves (solid lines), actually for any process pairing. The thin densely dashed lines
refer to equation 3.101 and belong to a different setting, sketched shortly. The lower right graph
shows Pb over λs, and again are the differences for c=6 and c=9 marginal in this representation.
Here, the dashed line showing PM/G/3/3

b provides now an upper bound. Thus, if the traffic actually
offered to the system λs is known, we can savely use the Erlang setting, but schould consider that in
case the number of sources is very small, the Erlang model yields somewhat conservative results.

That the blocking probability Pb does not depend on the holding time process Th might have
been expected from the infinite Erlang case. That for the Engset setting both distributions have no
influence on the mean system filling E[X ] nor on the blocking probability Pb is quite an astonishing
result. From this finding we conclude without proove that the Engset loss model is insensitive to both,
the arrival generation and holding time distribution. The equations and procedures found assuming
M/M/n/n/c are thus good for the general G/G/n/n/c model [30, 8.3].
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Figure 3.54: E[X ] and Pb over ρ̂ and λs for different G/G/n/n/c systems and population sizes c
(M=Markovian(cv=1), D=deterministic(cv=0), H=Hyper-exp.(cv=5), n=3, µ=1, samples/point=200.000)

In the literature we find another formula that somehow relates to this system, the so called
Binomial finite source loss formula [82]:

Pb =
c−1

∑
i=n

(
c−1

i

)
ρ̃i(1− ρ̃)c−1−i (3.101)

This other Pb calculation assumes that the arrival generation process does not depend on the
acceptance of arrivals. It demands that all customers behave as if being served, which natively
occurs when load is blocked without telling the source. Seemingly unrealistic, this is perfectly
common with optical burst switching (OBS) and datagram services alike UDP. With this setting the
actually offered load equals the intended load, ρs = c ρ̃.

The higher Pb in figure 3.54 results from carelessly setting ρ̂ = ρ̃. If we consider ρ̂= ρ̃
1−ρ̃ the

blocking probability Pb occurring with this setting cannot be higher than that found for the Engset
setting, simply because in general less load is offered, c ρ̃≤ ρs ≤ c ρ̂.

3.3.2 Infinite capacity – M/G/∞

The M/G/∞-system is the infinite version of the M/G/n/n-system discussed above. Practically this
cannot be realised because an infinite number of servers, each providing a finite capacity, results in
a system offering infinite capacity. In the real world this is impossible, but mathematically we can
assume and solve such a system. The results yield some interesting insight and can at least be used
to analyse systems with seemingly infinite service capacity.

The state transition diagram for the M/M/∞ models is shown in figure 3.55. Solving this, we find
that the steady state probabilities pi are Poisson distributed with mean E[X ] = ρ = λ

µ .

pi =
ρi

i! e−ρ (3.102)
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Figure 3.55: M/M/∞ state transition diagram

Again, the steady state probabilities do not depend on the actual service time distribution FTh , only
on its mean rate µ. Thus, all performance metrics that can be directly calculated from the steady state
probabilities pi are generally applicable for any M/G/∞ system.

Applying Little’s law N=λT we get E[Tf ] =
1
µ = E[Th], which is evident because with infinitely

many servers no client ever needs to wait for service. Being an infinite system, blocking cannot occur
(Pb=0 ∀ρ). Properties of particular interest are the response to non Markovian arrival processes and
the relation among arrival, service and departure process. The mean system filling E[X ] for different
inter-arrival and service time distributions is depicted in figure 3.56 together with the variation
coefficient of departures cD over increasing load. We recognise that the mean system filling E[X ],
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Figure 3.56: Mean system filling E[X ] and departure coefficient of variation of G/G/∞ systems
(M=Markovian(cv=1), D=deterministic(cv=0), H=hyper-exp.(cv=5), µ=1, samples/point=200.000)

shown in the left sub-figure, is independent of the process characteristics, actually of both, the arrival
and the service process. Only higher moments are affected by the involved distributions.

The departure variation coefficient cD, shown on the right, indicates that for Markovian inter-
arrival times the departure distribution remains Markovian. Independent of the service distribution
FTh(t) we find cD=1 for M/M/∞, M/D/∞, and M/H/∞. In case of deterministic arrivals, here D/H/∞,
the departure distribution asymptotically approaches a coefficient of variation cD=1 from below, even
for hyper-exponential service time distribution, whereas for hyper-exponential distributed arrivals
and Markovian service, H/M/∞, it approaches cD=1 from above.

This effect is more clearly visible in figure 3.57, where we show the inter-departure time
histograms of the same G/G/∞ examples. At load ρ=1 only one server is in average busy and the
arrival distribution dominates the departure distribution. Only for deterministic arrivals causes the
holding time distribution FTh a clearly visible change, but the peak at TD=1 is still dominant (D/H/∞).
At an increased load of ρ=9 we recognise that most departure distributions approach the negative
exponential distribution. The peak from deterministic arrivals entirely vanishes, the correlation
among arrivals is nearly entirely removed by the parallel service processes with uncorrelated and
rather bursty holding times (cB=5). Contrary thereto, for deterministic holding times the departure
distribution equals the arrival distribution (H/D/∞), independent of the number of involved servers,
because all departures occur just time shifted by a constant factor.
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Figure 3.57: Inter-departure time histograms P[Td ] for the examples shown in figure 3.56
(at load ρ = 1 and ρ = 9, with µ=1 and samples/load=200.000 as before)

Note, the different scales in figure 3.57 result from keeping µ=1 constant. The load is increased
by increasing the arrival rate, which reduces the mean inter-arrival time E[TA]=

1
λ . This causes

equally reduced inter-departure times E[TD]=
1
ϑ because ϑ=λ with loss-less systems.

The M/G/∞ model is commonly used in queuing network analysis to model components that
cause a stochastic delay (a random holding time). For example, to model the transmission delay
cause by end-to-end IP connections when analysing some overlaid control mechanism implemented
across end-systems (application servers and clients), where the queueing devices of interest are the
message processing instances rather than the message transmission systems.

Square-root stuffing in dimensioning multi server systems

An interesting approach toward the dimensioning of multi-server systems, which is based on the
M/G/∞ model, is the square-root stuffing rule [83],

n̂ M/M/n
α = dρ+ c

√
ρe (3.103)

where ρ is the mean load given in Erlang, and c is a constant factor that results for the intended service
property. This simple rule enables us to dimension the number of servers n of an M/M/n system, such
that a given percentage α of the served customers happens to be served without delay. This is based
on the equal progression of the steady state probabilities pi ∀i≤n of M/M/∞ and M/M/n systems; see
section 3.1.1 and substitute the constant e−ρ by p0 in equation 3.102 to unveil the similarity.

The constant c is the solution to c FN(c)
fN(c)

= α
1−α , where FN and fN are the cdf and pdf of the

standard normal distribution. This approximation via the normal distribution is mathematically
validated for large ρ only. However, in practice the square-root stuffing rule works well even for
small values down to ρ=1 Erlang (λ=µ) [83]. In case of finite M/M/n/s systems this applies likewise
if we substitute the offered load λ by the carried load ϑ = λ(1−Pb).

Further simplifying the rule, we find c≈1 for the common rule of thumb in business, which states
that 80% of the customers need to be fully satisfied in order to compensate the damage caused by the
remaining not so satisfied customers. In case the service rate is given, no waiting is the best possible,
and thus, qualifies toward a fully satisfactory QoS.

Virtually infinite number of servers for finite populations – G/G/c/c/c

If the customer population is bounded, then a system appears to be infinite if it provides at least
one server per potential customer, such that at least one server is available whenever a customer
arrives. In this case we again find Tf = Th and Pb = 0 as with M/G/∞. For clarity we identify such a
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system by M/G/c/c/c, as already introduced in section 3.2.4. The state transition diagram depicted in
figure 3.58 clearly shows the boundedness of this system. Note that state c is not a blocking state

0 1 2 · · · i · · · c

c λ̂ (c−1) λ̂ (c−2) λ̂ (c−i+1) λ̂ (c− i) λ̂ 1 λ̂

µ 2µ 3µ iµ (i+1)µ cµ

Figure 3.58: M/M/c/c/c state transition diagram

because in this state the arrival rate becomes zero. Actually, all QBD systems for which at any level
the arrival rate, more generally the upward transition probability, becomes zero, are bounded. States
from levels above the level with zero upwards transition rate have zero probability in the steady state
and do not contribute to the system performance.

Note that for finite populations the offered load is for convenience defined per customer, with
λ̂ and ρ̂= λ̂

µ being the arrival generation rate and a kind of maximum Erlang load per customer,
respectively. These refer to the load that a customer only would generate if all arrivals are rejected.
Every accepted arrival reduces this rate because the customer does not generate new arrivals while he
is in the system. In consequence is the global arrival process not memoryless. As already sketched in
section 3.2.4 published T.O. Engset in [79, 1918] also the steady state probabilities pi for this system.

pi = p0
(c

i

)
ρ̂i =

(c
i

)
ρ̂i

(1+ ρ̂)c (3.104)

In the recent literature this model is sometimes referred to as the Binomial model because the
steady state probabilities pi are binomially distributed with

(c
i

)
ρ̂i. Anyhow, being a loss-less, thus

blocking-free (Pb=0), still finite and queue-less system, makes it quite special.

The effective mean arrival rate per customer, considering the interruption of the arrival generating
process by the service interval, can for this system be deduced directly. Being loss-less, the effective
arrival rate equals the intended rate λ̃. An idle customer generates a next arrival with rate λ̂, starting
instantly after having been served. Once that arrival occurs, in average after one inter-arrival
time ta= 1

λ̂
, the customer stops generating new arrivals for the duration of the service time th=1

µ .
Thus, for every cycle from one service completion to the next, we observe exactly one arrival because
no arrivals are ever blocked. The mean length of these cycles is ta+ th, and thus is its inverse the
arrival rate λ̃ we are looking for. Multiplied with the holding time this yields the load generated per
customer ρ̃, and further multiplied by the customer population we get the load effectively offered
to the system ρs=c ρ̃. For any loss-less system, the offered load equals the carried load, and due to
being in principle a pure loss system, latter equals the mean system filling E[X ]. In equation 3.105
these relations are briefly summarised.

ρ̂ =
λ̂
µ

λ̃ =
1

ta + th
=

λ̂
1+ ρ̂

ρs = c ρ̃ =
c ρ̂

1+ ρ̂
= E[X ] (3.105)

We notice that the relation between the arrival generation rate λ̂ and the service rate µ defines a
kind of maximum Erlang load ρ̂, which is not equal to the load ρ̃ that a customer in average causes.
The larger this virtual load ρ̂ is, the more is the load effectively offered to the system ρs reduced in
comparison to models assuming an infinite customer population, where ρs=

λ
µ .

That the effectively offered load equals the system filling results from the fact that for any loss
less system the mean throughput ϑ must equal the mean system arrival rate λs. Being a queue less
multi server system, where each server can serve one client at a time only, we also know that the mean
number of busy servers must equal the mean system filling E[X ]. And thus, we have λs = ϑ = µ E[X ],
from which we get the mean system filling E[X ] as stated in equation 3.105. This would as well
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result from E[X ] = ∑ ipi. However, deducing it not considering states and state transitions, we get
a hint on the rather special property of this system: the mean system filling E[X ] is independent
of both, the arrival and the service distribution, as approved in figure 3.59. In consequence are the
equations stated in equation 3.105 generally applicable for any G/G/c/c/c system with finite mean
arrival and service rates, λ̂ and µ.

As already done with the unbound G/G/∞ system we evaluate the system filling E[X ] and the
variation coefficient of inter-departure times cD for different combinations of arrival and service time
distributions (figure 3.59). As expressed in equation 3.105 does the system filling E[X ] not rise linear
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Figure 3.59: Mean system filling E[X ] and departure coefficient of variation cD of G/G/9/9/9
(M=Markovian(cv=1), D=deterministic(cv=0), H=hyper-exp.(cv=5), µ=1, samples/point=200.000)

with the virtual system load c ρ̂, and is independent of both, the service and the arrival distribution.
The simulation results fit perfectly to the curve calculated using equation 3.105. Would we rescale
the x-axis to reflect the effectively offered load ρs, we would again see a linear increase. Without
losses all arrivals are served, and thus is the mean number in the system E[X ] equal the effective
arrival rate λs times the mean holding time th (Little’s law N=λT ).

The results showing the departure coefficient of variation cD in figure 3.59 comprise a bigger
surprise. The departure coefficient of variation is seemingly also independent of the arrival and service
process. Only at very low system loads we notice that smooth arrivals cause slightly lower variation
and bursty arrivals slightly higher. Besides some outliers, which occur with hyper-exponential arrivals
only, we get a departure coefficient of variation cD≈1. Three effects contribute to this: first, the fact
that with finite sources the arrival process is defined per source and these are assumed independent,
causing the ingress load to be the aggregate of many independent processes. Accordingly we get for
the superposition a distribution that approaches cv=1 for c→∞. The second effect is the interruption
of the arrival process by the flow process, and the third is the presence of multiple independent server
instances.

Figure 3.60 shows the inter-departure time histograms at different system loads. Even at a rather
low load of c ρ̂=1, note that there are 9 servers to handle this (ρs=

c ρ̂
1+ρ̂=10%), we see quite equal

departure distributions for all process pairings. Only a slight divergence is visible at Td=1, which
results from deterministic service time th=1 in case of M/D/9/9/9 and H/D/9/9/9.

At 50% load (right graph in figure 3.60) we observe that the departure variation is quite
independent of the process selection. We again conclude that this results from the many independent
servers working in parallel. To see any differences we choose a logarithmic scale on the y-axis and
added some more process pairings, particularly H/H/.. , E/E/.. , and U/D/.. . Down to probability
density P[Td ] < 0.05 the departure distributions are rather indistinguishable. Below they splits,
showing a rather heavy tail for the bursty service process, except if combined with deterministic
arrivals. With smooth service processes the tails are below that of M/M/.. . A divergence at Td=1 for
deterministic serving is at this load level no more discernible.
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Figure 3.60: Inter-departure time histograms P[Td ] for the examples shown in figure 3.59, c=9
(M=Markovian, D=deterministic, E=Erlang5, U=Uniform(0,2λ), H=hyper-exp.(cv=5), µ=1, 200k samples)

3.3.3 Processor sharing – M/G/PS

In case of processor sharing, where the server serves all present customers in parallel, the experienced
service time increases the more customers are currently served. The momentary, per customer
assigned service share σ(t) depends on the current system filling X(t), σ(t)= 1

X(t) . Consequently,
the achieved service rate σ(t)µ is not constant and may even change while a customer is served.
However, in any state i(t)=X(t) there are exactly i clients served in parallel, such that the server
always contributes its full capacity, i(t) ·σ(t) =1∀i>0, as shown with the M/M/PS system’s state
transition diagram, depicted in figure 3.61. The state transition diagram is identical with that for

0 1 2 · · · i i+1 · · ·
λ λ λ λ λ λ

µ 2 1
2 µ 3 1

3 µ i 1
i µ (i+1) 1

i+1 µ (i+2) 1
i+2 µ

Figure 3.61: M/M/ps state transition diagram

M/M/1, and so are the steady state probabilities pi and all the thereon based performance metrics.

pi = ρi(1−ρ) E[X ] =
ρ

1−ρ
E[Tf ] =

1
µ (1−ρ)

(3.106)

That all states are serving states makes no difference for the continuous time Markov chain
analysis, and here the infinite serving states do not cause impractical infinite capacity. In this
sense processor sharing represent an infinite server systems, which partly explains the insensitivity
concerning the service process [83, 84]. Actually, this is a very interesting feature of the M/M/PS
model because it allows us to use the results in equation 3.106 for any M/G/PS system.

For an exemplary proof of the service time insensitivity see for example [83, section 22.4], where
it is based on Coxian service time distribution and solving the balance equations thereof. Please note
that for perfect processor sharing (PS) with zero overhead, it makes no difference how many server
units are employed to provide the system capacity µ. Therefore, in theory there exists no multi-server
case; and thus, we replace the number of servers n in the Kendall notation by "PS" to highlight this
peculiarity. In literature the systems are commonly identified as M/G/1/PS.

If we restrict the sharing to practically feasible mechanisms we get a plethora of sharing options;
way too many and too specific to discuss them in this general context. Please refer to the rich
literature on different server assignment schemes, also known as load and/or server scheduling in that
context, for models specifically applicable with an implemented sharing mechanism. Here, for this
section, we assume the traffic to be like a fluid, infinitely dividable, and multiple servers to jointly
perform like a single unit.
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A generally quite important property of processor sharing systems is that the head of the line
blocking cannot occur. With regular queueing systems all jobs in behind a very long one need to wait
until that long job is finished before they can proceed in the queue. With processor sharing all the
present jobs are served in parallel, and the long job only occupies its share of the system capacity,
which only fractionally increases the flow time of the other jobs that happen to arrive while the very
long job is processed.

Mean flow time discrimination – egalitarian processor sharing

As usual we call the time span in between the arrival and departure of a job the flow time Tf , and the
time the server needs to finish a job on its own, when no other jobs are served in parallel, the holding
time Th. Note that for consistency the term ’holding’ is here irritatingly used – actually the server
holds a job for its entire flow time. Furthermore, we call the difference among these two the waiting
time, Tw = Tf −Th, knowing that no queue and thus no waiting exists. This naming convention results
from approximating the processor sharing system by time sharing with infinitesimally short time
slices ∆t→0. With time sharing every job returns to the queue after if received service for the time
∆t, until it is finished, when ∑i ∆t ≥ Th(i).

This approximation is also used by L. Kleinrock in [85, chapter 4] when deriving the flow time
distribution of different scheduling systems. For plain processor sharing the conditional mean flow
time tf (th) and conditional mean waiting time tw(th) are:

tf (th) = th
1

1−ρ
tw(th) = th

ρ
1−ρ

(3.107)

This result reviles that the mean flow time and the mean waiting time of processor sharing increases
linearly with the holding time, being the effort/load that a job demands/causes. If we assume the flow
time to be the primary performance measure, than an M/G/PS system discriminates longer jobs, at
least compared to a common FIFO queueing systems. However, if we calculate the penalty function

tw(th)
th

=
ρ

1−ρ

we recognise that the penalty is solely system load dependent, and thus, M/G/PS is perfectly fair
because the penalty any job experiences does not depend on its size. A job twice as long as some other
experiences also twice the flow time of the other, no more no less. From this we may conclude that
M/G/1/FIFO systems unfairly privilege long jobs due to the head of line problem. The unconditional
mean waiting time tw =

∫
tw(t) fh(t)dt = ρ

µ(1−ρ) is the same as for M/M/1, as is the mean flow time tf .
Only the variance and potential higher moments of the flow and waiting time distributions Tf ,Tw are
likely worse.

Quite interestingly shows the preemptive, work conserving M/G/1/LIFO system the precisely
same conditional flow time, and also the service process insensitivity property. This can be roughly
explained if we mimic the M/G/1/LIFO system by a time sharing system where after some ∆t the
currently served job returns to the head of the queue, from where it is picked for service again and
again until it is finished. For ∆t→0 the queueing discipline makes no difference, and thus this equals
the approximation used above to derive the conditional mean flow and waiting times for M/G/PS.

In addition thereto assert the authors of [86] equivalence between the flow time distribution
of processor sharing FG/M/PS

Tf
and the waiting time distribution of random queueing FG/M/1/RAND

Tw
.

Besides a scaling factor, being the probability for arrivals entering a non-empty G/M/1/RAND
system, the two distributions are probabilistically argued to be identical. However, a complementary
evaluation of the theoretic result is not provided.

In figure 3.62 we show simulation results for the mean system filling E[X ] and flow time E[Tf ]
for different arrival processes and holding time distributions, together with the analytic results gained
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Figure 3.62: Mean system filling E[X ] and flow time E[Tf ] of G/G/PS systems
(M=Markovian, D=deterministic, E=Erlang5, U=Uniform(0,2λ), H=hyper-exp.(cv=5), µ=1, 200k samples)

from equation 3.106 and equation 3.107. The simulation results for the three cases with Markovian
arrivals, being M/M/PS, M/D/PS, and M/H/PS, summarised in the figure as M/G/PS, fit perfectly the
analytically calculated curve. Only for non Markovian arrival distributions we get diverging results.
As can be expected, for bursty arrival distribution the performance is worse, for smooth arrivals it is
better. Particularly poor is the combination of bursty arrivals with deterministic service. In this case
the processing of a present burst cannot speed up toward its end due to some shorter than average
holding times of clients within the burst. This is also visible if we look at the inter-departure time’s

G/G/PS: cv of inter-departure times G/G/PS: histogram of inter-departure times
at load ρ=0.5
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Figure 3.63: Departure variation coefficient cD and inter-departure time histogram of G/G/PS
simulated for the same arrival/departure pairings as in figure 3.62

coefficient of variation shown in the left of figure 3.63, where except for deterministic serving we
again find cD→1 for ρ→1.

As before with infinite number of servers, a deterministic service process preserves the arrival
characteristic, such that it is well discernible in the histogram of the inter-departure times. From
our examples we see this in the right graph of figure 3.63 for M/D/PS, H/D/PS and U/D/PS. The
peak from deterministic arrivals, shown for D/H/PS, as well as the characteristics of other arrival
processes vanish with increasing load the more quickly, the more variable the service process is. That
the peak occurs at Td=2, and not at Td=1 as in figure 3.57 results from the lower load ρ=0.5 used
here because at ρ=1 this system becomes instable as its capacity limit would be reached.

Processor sharing is not order preserving. Thus, the inter-departure time, which by definition
must be positive, partly results from late departures of clients with long holding times that have
arrived prior clients that departed earlier, meaning after clients that overtook them in the time domain
while they are served. The higher the system load is, the more often this occurs, and this partly
contributes to equalise the arrival variance. In addition, the momentary service rate varies during the
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service of a client, and thus the effective holding time is a random process even for deterministic
service times. This explains the cD-drop for H/D/PS and slight cD-rise for U/D/PS, where overtaking
cannot occur. Latter applies as well for M/D/PS, though here we have cD=cA=1 straight away.
However, this randomisation also explains the tail above Td=4 in the inter-departure time histogram
of U/D/PS.

Networks of M/G/PS systems

As proven by F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios in [84, 1975] yield networks
of M/G/PS systems product form results,

P[i1, i2, .. , ij, .. , im] =
m

∏
j=1

P[Xj(t)=ij] =
m

∏
j=1

ρij
j (1−ρj)

where ij and ρj=
λ j
µ j

are the current system filling and the mean local load at the involved M/G/PS
systems j, respectively. The product form property enables us to calculate the end-to-end flow time
across a chain of queueing systems. Please refer to the literature on BCMP networks for more details.

Discriminatory processor sharing – M/G/PS/PRIO

Even distribution of the server capacity to all present jobs is maximally fair. However, jobs are
commonly not evenly important/demanding. To assign more capacity to a more important job, and
less to a less demanding one, we introduce a set of priority classes P = {p1, p2, .. }. The priority of
each class is expressed by a weighting factor gp. This is used to distribute the serving capacity such
that the momentary serving share σp, being the percentage that a job of class p gets, is distributed
according to the weights for all currently present jobs. The serving share σp per job results as

σp(t) =
gp

∑
P

gi xi(t)
(3.108)

where xi(t) is the number of currently present jobs from priority class pi. The momentary service
rate at which a job is processed is µp(t)=σp(t)µp. Anyway, note that 1

µp
is the mean service time

of jobs from class p, meaning the time the server in average needs to finish such a job when no
other jobs are processed in parallel. Not to be mistaken with σp(t), which is the achieved service
share at some time t, where other jobs may be present, such that 1

σp(t)µp
≥ 1

µp
∀t . We note that σp(t)

is not a constant. It depends on which and how many jobs are currently in service, and may thus
change while a job is processed. Actually, no service guarantees are assured, only relational service
differentiation is ensured.

Today this priority based sharing scheme is commonly called discriminatory processor sharing
(DPS), in contrast to the egalitarian processor sharing (PS) where no differentiation among flows is
foreseen, and the generalised processor sharing (GPS), where either the sharing is defined by some
positive function based on the current total server population [87], or a guaranteed, load independent
share per class and aliquot distribution of not used shares to the classes currently present [88, 89].
Note that the two GPS definitions are mutually contradictory. See for example [90,91] for reasonably
recent surveys on the processor sharing topic.

In 1967 L. Kleinrock published in [92] an analytic solution for DPS, which he called priority
processor sharing, and compared it with round robin time-sharing (finite constant slot size) and
common M/M/1/FIFO queueing. The derivation is based on discrete queueing with round robin
serving, where the service unit Q (quantum), which a client achieves per visit, defines the fixed clock
interval. Via limit evaluation Q→0 he found

xp =
ρp

1−ρ

(
1+∑

P

gi−gp

gp
ρi

)
and tf (p, th) = th

(
1+∑

P

gi

gp
xi

)
= th

(
1+

1
1−ρ ∑

P

gi

gp
ρi

)
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where xp= E[Xp], tf (p, th) is the service time th conditional mean flow time, ρp=
λp
µp

and ρ=∑P ρp.
However, these equations are faulty [93]. Based on a correction done by O’Donovan, who first also
published an incorrect solution equalling the results published by Keinrock, the correct results for
DPS, briefly sketched shortly based on the summary published in [91], was originally presented by
Fayolle, Mitrani, and Iasnogorodski in [93].

To get the correct solution it is necessary to solve the following system of integro-differential
equations:

t ′f (p, th) = 1+∑
P

gi

gp
xi

= 1+∑
P

∞∫

0

gi

gp
λi

(
1−FTh(i)

(
τ+

gi

gp
th
))

dτ

+

th∫

0

t ′f (p,τ)∑
P

gi

gp
λi

(
1−FTh(i)

( gi

gp
(th− τ)

))
dτ

Assuming ∑ρi<1 this system of integro-differential equations has a unique solution

tf (p, th) = gp

th
gp∫

0

a(τ)dτ+

th
gp∫

0

b(τ)dτ

where a(τ) is the unique solution of the defective renewal equation

a(τ) = 1+
τ∫

0

a(t)Ψ(τ− t)dt with Ψ(τ) = ∑
P

giλi
(
1−FTh(i)(giτ)

)

and b(τ) results from

b(τ) = ∑
P

g2
i λi

∞∫

0

a(t)
(

1−FTh(i)
(
gi(τ+ t)

))
dt +

∞∫

0

b(t)Ψ(τ+ t)dt +
τ∫

0

b(t)Ψ(τ− t)dt

Solving this solution exceeds the skills of many engineers and to our best knowledge it has been
solved for certain limiting regimes (time-scale decomposition, overload, etc.) and few service time
distributions (e.g., deterministic and negative exponentially distributed) only. However, based on the
above stated solution some properties and asymptotic bounds of DPS have been proven analytically.
Among them the important property that for every possible system state the conditional flow time of
some higher prioritised (weighted) class never falls below that of a less weighted class

tf (pi, th)≤ tf (pj, th) ∀gi>gj (3.109)

and that the mean system filling xp is upper bounded by

xp ≤
ρp

1−ρ

(
1+

∑P giρi

gp(1−ρ)

)
(3.110)

both independent of the service time distribution [91, theorem 2 and 6]. In addition, we notice that
for discriminatory processor sharing the conditional flow time is not insensitive to the service time
distribution. Here tf (pi, th) does depend on FTh , in contrast to egalitarian PS. Thus, the composition
of the load matters, particularly if different classes contribute differently distributed service times.
The flow time penalty of any class depends on the holding time distribution of all classes. Still,
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relative prioritisation and no starvation are overall granted by equation 3.109 and 3.110, independent
of the holding time composition.

The solution for M/M/DPS is also presented in [91, 93] and here sketched as well:

tf (p, th)M/M/DPS =
th

1−ρ
+

m

∑
i=1

gpciαi +di

α2
i

(
1− e−αi

th
gp
)

where m is the length of the vector containing all different giµi-products, −αi are the m distinct
negative roots of

∑
P

giλi

giµi + s
= 1

and ci, di are given by:

ci =

m

∏
j=1

(gjµj−αi)

−αi

m

∏
j=1|j 6=i

(αj−αi)

di =

m

∏
j=1

(g2
j µ2

j −α2
i )

m

∏
j=1|j 6=i

(α2
j −α2

i )

|P|
∑
j=1

g2
jλj

g2
j µ2

j −α2
i

This solution can be solved numerically, although in case roots of higher order occur the components
need to be adjusted accordingly. Evidently, quite some calculations are required, in particular finding
all the roots may be challenging.

However, to directly achieve the unconditioned mean flow time tf (p) of M/M/PS/Prio (DPS)
the set of linear equations resulting from tf (p) =

∫
tf (p,τ)µpe−µpτ dτ =

∫
t ′f (p,τ)e−µpτ dτ) needs to

be solved [93, lemma 3].

tf (p)
(

1−∑
P

λigi

µigi +µpgp

)
−∑

P

λigi tf (i)
µigi +µpgp

=
1
µp

Rewriting this to

(
1−ρp−∑

i6=p

λigi

µigi +µpgp

)
tf (p) −∑

i 6=p

λigi

µigi +µpgp
tf (i) = th(p)

we get the matrix equation:

A · tf = th with aij =





− λjgj

µjgj +µigi
i 6= j

1−ρi−∑
k 6=i

λkgk

µkgk +µigi
i = j

(3.111)

Numerically this set of linear equations is easily solved. The initial equation can, without prove, be
rewritten to yield the weights gi required to achieve an intended mean flow time discrimination at a
certain intended system load [93]. For two classes, P={1,2} with g1,g2, the closed form result

tf (1) =
1

µ1(1−ρ)

(
1+

µ1ρ2(g2−g1)

µ1g1(1−ρ1)+µ2g2(1−ρ2)

)

tf (2) =
1

µ2(1−ρ)

(
1+

µ2ρ1(g1−g2)

µ1g1(1−ρ1)+µ2g2(1−ρ2)

)

is available [91, 93], and setting g1=g2 we get the mean flow time of egalitarian processor sharing,
tf (p) = th(p)

1−ρ . These analytic results show how complex the path for a mathematical analysis of
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queueing systems can be. And thus, sometimes, simulation can be the more practical approach to
empirically evaluate specific DPS settings of interest.

The simulation results shown in figure 3.64 to 3.67 try to cover the general behaviour of DPS. A
comprehensive evaluation by simulation is out of reach, given the many options to variate system
parameters. In figure 3.64 we show per flow and in total the mean system filling E[Xi] and the

M/M/PS/Prio system filling E[Xi] M/M/PS/Prio mean flow time E[Tf (i)]
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Figure 3.64: Mean system filling E[Xi] and flow times E[Tf (i)] of the M/M/PS/Prio system
(equal load shares ρi=

%
|P| , increasing system load %= 0..1, µ =1, 200k samples per load point)

different mean flow times E[Tf (i)] per flow i and its average across all flows for negative exponentially
distributed holding times and equal load shares per service, together with analytic results. In the left
graph we see the different system filling E[Xi] that results from the different assignment of service
capacity only. The total system filling ∑ E[Xi] equals the system filling of the simple M/M/1 model
(dashed line), as we expected given the identical state transition diagram (figure 3.61). Note in this
respect that for the total system filling, and the average flow time, the service order is irrelevant.
The graph on the right shows the discrimination of the mean flow time E[Tf (i)]. The simulation
results perfectly reside on the analytic curves (solid lines), which we get from solving equation 3.111
numerically, point by point.

Next we change the holding time distribution FTh and analyse how this effects the intended mean
flow time discrimination. In figure 3.65 we present the impact of bursty versus smooth high priority
traffic, left and right graph, respectively. To keep the aggregate traffic distribution the same, we only
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Figure 3.65: Impact of prioritised flow’s FTh on the individual mean flow times E[Tf (i)]
(equal load shares ρi=
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|P| , increasing system load %= 0..1, µ =1, 200k samples per load point)

reverse the order in which we assign the different holding time distributions to flows with increasing
priority. The load shares per flow are identical, ρi=

%
|P| , and thus we have the same holding time

distribution of the traffic aggregate. Still, the results presented in figure 3.65 differ considerably. The
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flow time discrimination for purely Markovian holding times is shown as reference (solid lines). In
case of highly prioritised flows with highly varying holding times Th (left graph) all flows suffer
and experience an unsatisfactory increase of their mean flow times. Vice versa, high priority load
with smoothly distributed Th (right graph) improves the performance, such that all flows experience
mean flow times that fall below those of M/M/PS/Prio, even though the same amount of bursty
load is actually present in both cases. This clearly shows that with discrimination the service time
insensitivity of egalitarian PS vanishes. However, that all curves rise to infinity not prior approaching
overload proves that no starvation occurs, as promised by equation 3.110. For examples with non
Markovian arrival distributions please refer to section 4.1.3 on weighted fair queueing (WFQ).

Next we evaluate how different load shares influence the performance. Here, in figure 3.66 and
3.67, we keep the total load constant, %=0.8 and continually increase the most prioritised load while
we decrease the least prioritised load by exactly the same amount. In figure 3.66 we evaluate the
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Figure 3.66: Dependence of E[Xi] and E[Tf (i)] on load contributions for the M/M/PS/Prio system
(increasing prioritised share ρmax +ρmin= 2 %

|P| , system load %= 0.8, µ =1, 200k samples per load point)

case of equal Markovian holding time distribution. The mean system filling E[Xi] is not symmetric
because the actual time spent in the server depends on both, the own weight and the shares occupied
by other traffic classes. The more higher prioritised load is present, the higher becomes the flow
time, as clearly visible in the left graph. Again, the simulation results approve the analytic corves
and vice versa. The total system filling and the average flow time across all classes remain constant,
in accordance with Little’s law N=λT .

Finally, we try to test equation 3.109, stating that a higher prioritised load is always served better
than a less prioritised. Therefore, we restrict us to two classes and two rather extreme holding time
distributions, being deterministic (D) with zero variance, cB= 0, and hyper-exponential (H) with a
coefficient of variation cB= 5. The results for opposing weight assignment, where a client from the
prioritised class gets twice the service capacity of a less prioritised client are shown side-by-side in
figure 3.67. As before we recognise that high prioritised bursty load causes a general degradation
of the system performance. It causes higher system filling and in strict consequence worse flow
times (Little’s law N=λT ). This cannot be compensated by more prioritisation, in contrary, it
worsens the higher bursty flows are prioritised. However, for every evaluated load composition we
see better performance for the higher prioritised flow, holding time independently, as promised by
equation 3.109.

We also recognise that the simulation results are quite unsteady, even though the same number
of samples has been generated as before. This results from the special mixture and the absence
of any negative exponentially distributed service times. However, the here not shown simulation
results for the departure coefficient of variation reveals a quite stable cD =1 for all flows and in total.
This shows the equalisation caused by the service rate variance introduced by parallel serving and
affecting all classes similarly.
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Finite customer population – M/G/PS/c

To complete the discussion of processor sharing systems we finally address the finite customer
population case, assuming the Engset setting, where customers do not generate new arrivals while
being served. The Markov chain for negative exponentially distributed arrival and service times is
shown in figure 3.68. We recognise that the state transition diagram is identical with that for the

0 1 2 · · · i · · · c

c λ̂ (c−1)λ̂ (c−2)λ̂ (c−i+1)λ̂ (c−i)λ̂ 1 λ̂

µ 2 1
2 µ 3 1

3 µ i 1
i µ (i+1) 1

i+1 µ c 1
c µ

Figure 3.68: M/M/ps/c/c state transition diagram

single server queueing system where the system size equals or exceeds the customer population,
which we identify as M/M/1/c/c model and briefly sketched in section 3.2.4. Thus, we could apply
the procedure outlined in section 3.2.4 to get the steady state probabilities pi and all the thereon based
performance metrics. However, instantly applicable analytic results for the state probabilities pi of
the single server M/M/1/c/c model are readily presented in [14, section 3.8], and thus here repeated.

pi = ρ̂i c!
(c− i)!

p0 p0 =
1

c

∑
i=0

ρ̂i c!
(c− i)!

(3.112)

We notice that this system is virtually infinite, there exists no blocking state, and thus it is
loss-less. Accordingly equals the throughput the offered load, ϑ = λs. However, due to the varying
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holding times caused by the resource sharing, the effectively offered load diverges from the indented
load, λs ≤ c λ̃ = c λ̂

1+ρ̂ , in contrast to the also loss-less virtually infinite multi server case M/M/c/c/c
presented in the end of section 3.3.2.

Setting up the λs calculation via the state transition diagram shown in figure 3.68, we find the
quite evident relation with the mean system filling, λs = λ̂(c− E[X ]).

λs =
c

∑
i=0

pi(c− i) λ̂ = λ̂
( c

∑
i=0

c pi−
c

∑
i=0

i pi

)
= λ̂

(
c− E[X ]

)
(3.113)

A comparison of the M/M/PS/c model with the M/M/1/c/c/LIFO model is here skipped. The
considerations based on the time-sharing mechanism sketched in [14] for the Erlang setting can
probably be applied in a similar way.

In figure 3.69 we show simulation results for the mean system filling E[X ] and flow time E[Tf ] for
different arrival processes and holding time distributions, together with the analytic results gained via
calculating all system states using equation 3.112. The simulation results for all process combinations

system filling E[X ] of G/G/ps/9 systems flow time Tf of G/G/ps/9 systems
E[X ]

0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 c ρ̃

M/M/..
M/D/..
M/H/..
D/H/..
H/D/..

H/H/..
E/E/..
U/D/..

E
[
Tf
]

1

10

100

0.0 0.5 1.0 1.5 2.0 c ρ̃

M/M/..
M/D/..
M/H/..
D/H/..
H/D/..

H/H/..
E/E/..
U/D/..

Figure 3.69: Mean system filling E[X ] and flow time E[Tf ] of G/G/PS/c with c=9 customers
(M=Markovian, D=deterministic, E=Erlang5, U=Uniform(0,2λ), H=hyper-exp.(cv=5), µ=1, 200k samples)

studied fit perfectly on the analytically calculated curves. This again shows the influence of the
arrival process interruption while a customer is in the system. Actually, this system is a little ill
conditioned because the longer it takes to serve a customer, the less load is generated. In case of
processor sharing this causes an effective ingress load ρs below the intended load c ρ̃ over which we
show the results here.

Generally, for processor sharing with Engset setting we get λs≤c λ̃≤c λ̂ due to the in average
extended time customers remain in the system. Overload is thus also not possible with these systems:
if the flow time approaches infinity because of too many customers being served in parallel, the
effective ingress rate drops to zero. This has a stabilising effect in this setting, which might contribute
to the rather complete process insensitivity found here and also shown in figure 3.70. Besides some
outliers, mostly for the effective arrival rate, the coefficient of variation for both, the arrival and the
departure process is very close to cX=1. Note that due to the interruption of the arrival process the
effective arrival coefficient of variation is not that of the process we specify with the Engset setting to
model the arrival generation, which here starts at service completion (the departure event) and not at
the latest arrival event.

Also the histogram of the inter-departure times shows no remains of the processes involved.
The dependence of the effective arrival process on the service process and the current system state
eliminates them quite effectively. In consequence, we may assume that the analytic calculation of the
state probabilities pi stated in equation 3.112, which actually was derived for M/M/ps/c, is at least
approximately applicable for many process pairings.
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Figure 3.70: Effective arrival and departure coefficient of variation cA,D and inter-departure time
histogram of G/G/PS/c with c=9 simulated for the same arrival/departure pairings as in figure 3.69

Although finite, this system is again insensitive to the holding time distribution. This property we
commonly find when serving starts immediately with the arrival to the system, independent of how
the processing proceeds [83, page 257]. For example, repeatedly interrupted, served at a constant
rate, or with a dynamically slowed down rate. In consequence, this virtually infinite system should
yield product form results as well. That the M/M/ps/c model seems to be insensitive concerning the
arrival generation process as well, is here not proven analytically. That the simulation results fit the
analytic curves for all the eight combinations evaluated, could be by chance or may have resulted
from a faulty implementation – neither reason can be entirely excluded with finite simulation effort.

Processor sharing variants

Generally, the processor sharing paradigm presumes the traffic to be like a fluid, infinitely dividable.
This represents an optimum that practical resource sharing may intend to approach. Some common
scheduling policies come quite close; for example weighted fair queuing (WFQ), which preforms the
sharing packet-by-packet. See section 4.1.3 for details on WFQ and related policies.

In practice the processor sharing mechanism may be upper bounded, such that only a limited
number of customers can become served in parallel [94, 95]. This upper binds the penalty on the
effective holding time, but in consequence this introduces blocking if an insufficiently huge waiting
queue is added. The blocking probability that results in case no waiting queue is added, we show
as an example in figure 3.71 for the Engset setting. Adding a waiting queue opens up a plethora of
options for controlled processor sharing. Please refer to the rich literature on combined queueing and
sharing concepts, among others focusing on parallel computing, process optimisation and production
line management. Note that mathematicians prefer the term sojourn time over the more technical
term flow time. Thus, more mathematical literature can be found by adding the keyword sojourn
time, whereas using the term flow time tends to yield the more implementation centric, engineering
literature on the same issues. However, less specific more generally used terms apply as well, for
example system delay and forwarding latency.

In figure 3.71 we show simulation results for limited processor sharing with Engset setting,
where the number of parallel processed customers is upper bound. This represents a loss system, and
therefore we show for different arrival process and holding time pairings the mean system filling E[X ]
and flow time E[Tf ] together with the blocking probability Pb. Again we see no differentiation in the
gained simulation results among any of the arrival/service process-pairings studied. The analytic
curves included (dash-dotted) are those found without the bound, using equation 3.112 as before
in figure 3.69. Comparing these with the simulation results we recognise that the unbound system
provides zero blocking at the price of increased mean flow times. This is rather evident. However, at
low intended loads c ρ̃<1.0 the time advantage is negligible, whereas the blocking remains above
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Figure 3.71: Mean system filling E[X ], flow time E[Tf ], and blocking probability Pb of G/G/PS≤6/9
(M=Markovian, D=deterministic, E=Erlang5, U=Uniform(0,2λ), H=hyper-exp.(cv=5), µ=1, 200k samples)

acceptable rates of <10−3 down till c ρ̃<0.5. Thus, a bound on the number of customers that may
share a processor is on its own rather useless, at least in terms of system performance.

Another extension of processor sharing results if we assume several servers, each performing
processor sharing. Here the core topics are load balancing strategies and the overhead associated
with the migration of jobs among servers. The target is optimally efficient joint performance. A
multi-core processor, computer clusters, cloud services, and distributed data centres are among other
less data processing centric systems, typical examples thereof.

Parallel network trunks jointly shared by individual flows comprise a similar situation. With label
switching the migration is rather free of overhead and in case of packet-switched parallel trunks these
can be virtually merged into a single trunk with minor implications (on a packet-by-packet basis).
For lower layer date transport this is commonly not that easily possible. For example, heterogeneous
wireless radio cells where different radio and base-station technologies regionally overlap each other
(e.g., Bluetooth, WLAN, or UMTS-LTE). In this case seamless switching from one radio interface to
some other is commonly not possible without considerable extra effort. The mandatory make before
break strategy, meaning to establish the new connection prior tearing down the existing one, may
cause prohibitive overhead when the shared transmission capacities are scarce.

Finally, the insensitivity in respect to the holding time distribution FTh(t) renders egalitarian
processor sharing models particularly appealing for problems where the service process characteris-
tics are unpredictable, persistently changing, or too complex to be modelled in detail. For example,
M/G/PS can be used to approximately analyse multiplexing systems, even if the aggregate flow is
composed of an unpredictable mixture of different holding time characteristics, representing different
applications’ load contribution each. However, the inter-arrivals times need to be Markovian, and the
service sharing process per se needs to be time invariant, such that at any time a customer always gets
the same share σi(t) if also the current system filling X(t) is the same. Latter does per se not exclude
prioritisation, we could extend equal system filling to equal momentary load composition, meaning
equal Xp(t) ∀p. However, prioritisation eliminates the holding time insensitivity, and therefore, as of
today, systems based discriminatory processor sharing need to be analysed case-by-case.

We also should not forget that all the processor sharing models presented in this section yield
rather optimistic performance predictions compared to what real resource sharing systems can achieve
in practice, where the load is commonly not infinitely dividable. For dimensioning purposes these
models are thus not the safest choice, but serve very well as target benchmark when it comes to the
optimisation of practical resource sharing mechanisms.
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3.4 Queueing system simulation

In the preceding sections we presented the analytic treatment of queueing systems and proved the
presented characteristics by simulation results. We did so because this is the simplest way to verify
analytic derivations. However, these result are not new, they all can be found in the relevant literature
in the presented or some related form, and thus, they do not require any further approval. Vice versa,
we included simulation results to approve the developed simulation procedure. In this section the
used simulation procedure is outlined together with the underlying concepts, step by step, topic
by topic. The here introduced scheme will be maintained and extended in the upcoming chapters
in order to evaluate the practical traffic engineering approaches and systems discussed. Only the
specific extensions will be presented in detail henceforth.

3.4.1 Event based simulation and the elimination of absolute time

Event based simulation is a technique well suited to evaluate processes where changes occur randomly
distributed over time rather than continuously. In such an environment it is perfectly sufficient to
restrict the treatment of the system to the instants when changes happen. Potential changes we call
events, noting that not every event treated must inevitably cause a true change, and the time instants
at which these happen and are consequently treated, we call event times, being the actual system
observation instants. It is not necessary to monitor the system in between subsequent observation
instants because we can postulate that during this time span the system is, and remains, in the state it
entered after the latest event has been handled. The time that passes in between events we call inter
event time, and note that in case of simultaneous events this can be zero. Figure 3.72 sketches the
basic elements and the execution flow.

event at tn

event at tn+1

event at tn+2

...

events queue

initial events

ti← tn
state monitor

event handler

next event

get next

add newly generated events component role
events queue chronological

sorted list of events
event holds type and

execution time
event handler performs event-

type specific tasks
state monitor records whatever is

of interest

Figure 3.72: Event based simulation – core components and execution flow

The central element of event based simulation is the events queue; it holds all upcoming events
for which the event time is already known in order of their event times. The basic elements are the
events; these comprise of an event type and the time at which they occur. The functional element is
the event handler; depending on the event type it performs a sequence of predefined tasks, which
may or may not result in the addition of new events to the events queue. Whenever handling an event
finishes the next event is taken from the events queue. A monitor instance is required to record the
system state or any other attribute required. Event specific monitors need to be part of the according
event handling procedure, whereas general system monitors are best placed as shown. The simulation
starts with initialising the events queue with one or more events. This triggers the execution until
the events queue becomes empty again, which ultimately terminates the simulation. Actually, as the
name already expresses, time plays no role for the execution; it is the currently handled event’s time
tag, nothing more. Only for debugging and normalising it may be required.

For a G/G/1 queueing system with a single arrival process and a single server the events queue
holds at maximum two values only, the next arrival time and the next departure time, latter only if
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the server is currently busy. Therefore, we do not need a sorted queue, we store these two values in
the variables in and out, as shown in algorithm 3.1. Event by event we select the one closer to the

Algorithm 3.1 Basic G/G/1 simulation core
1: function GG1SIM(a,A,b,B,sr,st )
2: in = 0; out = Inf ; ti = tn = 0; X = 0; Xm = [ ]; simT = 0; . initialise variables
3: i = j = 0; m = false;
4: repeat
5: if (i = st +1) then m← true; . start state recording phase
6: else if (length(Xm) = sr) then m← false; . stop if record size is reached
7: end if
8: tn← min(in,out) . get time of next event to handle
9: if (m = true) then

10: Xm← [Xm,(tn− ti)X ]; . add time weighted system state X to states record Xm
11: simT← simT + tn− ti; . sum up simulation time simT
12: end if
13: ti← tn; . set simulation time to next events time
14: if (in = ti) then
15: if (m = true‖ i≤ st) then . if more events are required
16: in← ti +feval (’distrGen’,A,num2cell(a(1, :)){:}); . generate next arrival time
17: else in← Inf ; . else stop generating arrivals
18: end if
19: X ← X +1; i← i+1; . handle current arrival
20: if (out = Inf ) then . if server is idle
21: out← ti +feval (’distrGen’,B,num2cell(b(1, :)){:}); . generate next departure time
22: end if
23: else if (out = ti) then
24: X ← X−1; j← j+1; . handle current departure
25: if (X > 0) then . if customers remain
26: out← ti +feval (’distrGen’,B,num2cell(b(1, :)){:}); . generate next departure time
27: else out← Inf ; . else not, reset it to infinite = idle
28: end if
29: end if
30: until (in = Inf & out = Inf ) . until no events remain = event queue becomes empty
31: return Xm/

(
simT/ length(Xm)

)
; . return the time normalised customer in system record

32: end function

recently handled event’s time ti in order to determine the next event type (arrival or departure) and
the time tn it will occur. The difference tn− ti expresses the duration of time during which nothing
happens and thus, the time the system remains in state X . Accordingly, in order to correctly record
the system filling, we record the current state X weighted by the time tn− ti it persists (line 10). After
doing so we step from the current time ti to the time of the just determined next event (line 13) and
handle the event depending on its type; lines 15-22 and 24-28 for arrivals and departures, respectively.
In the end (line 31) we normalize the time weighted states recoded in Xm by the average duration
( simT

length(Xm)
), being the total time that passed while we are monitoring states divided by the number

of states recorded. This assures that the returned sample is independent of the actual durations and
can be statistically evaluated to get the mean system filling E[X ], the confidence interval thereof and
other statistical properties as required.

The state variable X tells the number of customers currently in the system, either in service
or waiting. Every time an arrival occurs we increment it by one, and with every departure it is
decremented by one (lines 19 and 24 in algorithm 3.1 respectively). Note that in a time continuous
regime nothing happens at the absolutely same time instance; only numerically this may happen,
causing tn− ti = 0. Consequently, the intermediate infinitely short state has zero weight and thus the
order we handle such virtually simultaneous events has no impact on the result.
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Basically the above outlines the entire simulation procedure; however, to keep it running we have
to generate a next arrival whenever an arrival event is handled (line 16). Evidently, when an arrival
occurs while the server is idle this arrival triggers a new departure event that needs to be generated
instantly (line 21). Likewise, every departure triggers a new departure event if there are customers in
the system awaiting service (line 26).

To initiate the simulation, the next arrival time in is initialised with zero, triggering the first
arrival scheduled at time zero. The next departure time out is initialised as infinite, expressing that
the server is initially idle. The state monitor X is initialised with zero, representing an idle system
awaiting the first arrival at time zero. The simulation should not terminate prior the requested state
record size sr is reached. Up front, a transient phase of st arrivals is added; during this the queueing
system shall equalise any initial conditions while nothing is recorded. If the system state is recorded
or not is determined by the monitoring flag m. It is initialised as false and set to true when the
transient phase has passed. Finally, when the requested number of states has been recorded the
flag is reset to false again, in order to not record the clear-out phase when remaining events are
processed. The simulation terminates implicitly; due to stopping the arrival generation (line 17) the
events queue becomes empty when all remaining customers were served and have departed, which
stops the execution loop (line 30).

Figure 3.73 depicts the assignment of event times ti. The simulation starts with the first event
scheduled at time t1, being the left most arrival on the time axis. Its occurrence time can be chosen
arbitrarily, but commonly it is set to zero as depicted and coded. Some time into the simulation
execution, indicated by the interrupted time axis, we index event times relative to the current event
that occurs at time ti for clarity. Actually the indices count from one, assigned to the first event, to
whatever number required. Just before handling the ith event we record the current system state X
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Figure 3.73: Absolute time assignment

weighted by the time it persisted, being TX(i) = ti− ti−1 (line 10). Than we handle the event that
occurs at time ti, which may generate new events in the future. In case of an arrival event, ti = ta,
a next arrival event at time ta+1 = ti +Ta(ti) is generated and its occurrence time stored, in← ta+1
(line 16), as long as the simulation has not reached a predefined termination condition (line 15).
If the server was idle, meaning that currently no departure is scheduled (line 20), also a departure
event scheduled to occur at time td+1 = ti +Th(ti) is generated and stored in out← td+1 (line 21).
In case the current event is a departure event, ti = td , only a departure event scheduled at time
td+1 = ti +Th(ti) may be generated and stored, out← td+1 (line 26), given there are customers still
waiting after the current departure happened, meaning Xti+>0 (line 25).

Particularly note that for the events scheduled in the future the actual event index cannot be
determined until it becomes the current event. Any event that occurs prior a scheduled one, including
the currently handled, can generate events that occur prior an already scheduled event; meaning that
any time new events may enter the events queue in front of an already scheduled. Therefore, we use
the ta and td notation to identify current and future arrivals and departures respectively. Recording
the td in addition to the system state X enables us to statistically determine the departure process (see
section 3.4.2).
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While the random numbers TX(i) result from the difference among the actual timing of subsequent
events, the inter-arrival times Ta(ti) and the service times Th(ti) (holding times) result from the rates
and distributions (random processes) that define the simulation scenario. The arrival and service
process rates a and b as well as their distributions A and B are defined by the parameters handed over
to the simulation core. These are nowhere required within the simulation routine, they are passed
over to the generation function ’distrGen’, executed via the function evaluation command feval.
The ’distrGen’ procedure comprises a switch to select a particular random number generator based
on the string A or B indicating the requested distribution and a parser that transforms the distribution
parameters array, a or b, into the format that the actual random number generation function requires.
Many distributions can be generated by functions natively provided by Octave, others have been
written on demand. See chapter 2 for details on distributions. If the distributions A and B are a
priory given, the according random number generation could be inserted directly, instead of calling
’distrGen’ via feval, to save some execution overhead.

In contrast to the basic event indexing introduced above, we count the arrivals and departures
separately in i and j, such that the event index actually is i+ j. We use the individual indices to
find out when the transient phase has passed and whether in the end all arrivals also departed (i=j).
Note that according to common practice the pseudo-code presented does not include parameter
checking and other non essential runtime monitoring, including the mentioned check if all arrivals
are accompanied by a departure when the simulation terminates, among many other checks alike.

Queueing system optimised time unit

The time unit is not relevant for the precise execution of an event based simulation, it is only required
for the correct normalisation of the recorded sample. Thus, any time unit is as good as any other.
For queueing systems, and communication systems in general if seen from the layer above, the
commonly applied time unit is the mean holding time

1 time-unit = mean-holding-time =
1
µ

(3.114)

which is also the basis of the traffic unit Erlang

1 Erlang = mean-arrival-rate×mean-holding-time =
λ
µ

(3.115)

traditionally used to express the mean ingress load to the system analysed.

The time unit selection expressed by equation 3.114 implicitly reduces the potential for numeric
errors and at the same time makes results comparable straight away, meaning load unit transparent
because thereby the utile Erlang unit is implied. If high numeric precision is not required for other
reasons, for example vanishingly small state probabilities, this a priori time normalisation reduces
the computational effort. In consequence, the time required to run simulation studies may be reduced
by this smart time unit choice. Calculators have no means of units, anyhow.

Present time as global time reference

Numeric overflows are another problem that should be systematically avoided because simulation
runs can be very long, or a priori unbounded in case of on-line on-demand transient analysis. In
particular, the simulation time shall never exceed the numerically representable range. Either we
apply a time reset routine that catches and mitigates a potential overflow by deducing a certain
amount form all time variables once a critical range has been reached, or we avoid these critical
numeric areas entirely. Latter is achieved if we eliminate the absolute time issue by referring all time
variables to the current instant in time, the present time, similar to our daily life where we preferably
refer to the past and the future, rather than absolute times.



3.4 Queueing system simulation 181

In order to make this reference shift we need to reformulate some variables and calculations.
Figure 3.74 depeicts the new time assignment. Events are now only counted, indexed with i, but
have no static assigned occurrence times. The currently handled event ei defines the time reference
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Figure 3.74: Relative time assignment and its maintenance

t(ei) = 0. Based on this instant only three times, precisely durations, are specified and maintained.

ti = min
(
ta+1, td+1

)

ta+1← ta+1− ti (3.116)

td+1← td+1− ti

The state persistence time ti = TX(i) is the duration since the last event has been handled, and it
expresses the duration while nothing changed prior the current event. It equals the time that passes in
between the last handled and the current event. Accordingly, it needs to be calculated prior the times
contained in the minimum calculation on the right side are updated as specified in the following two
lines. The latter durations ta+1 and td+1 specify the current time lag till the next arrival and departure
event respectively. Whenever the current time is reset to zero, such that t(ei)= 0 these two need to be
decremented by ti in order to subtract the time that has passed, such that the remaining value equals
the remaining time to the event’s occurrence.

♦ This sequential updating has to be performed for all monitors likewise and commonly requires
to increment them by ti in order to reflect the time that has passed since a certain event occurred.

Evidently, the time lag to the current event becomes zero, and this indicates the event type that is to
be handled. While handling the current event, new events may be generated and scheduled. The time
lag for a newly scheduled event equals the value calculated for the distribution A or B and the rates
and parameters contained in a or b, which specify the simulation scenario. At the time generated
ta+1= Ta(ei) = A(a) and td+1= Th(ei) = B(b).

The event by event required minimum operation and the two subtractions presented in
equation 3.116 are rather simple numeric operations, even though real numbered. As only three
variables are involved, these reside in registers of the processor once the first is executed, such that no
additional data loading from memory is required to perform the other two. The added computational
effort is in practice marginal, far less than what one might expect from the complex equations
required to express ta+1 and td+1 in general, as shown in figure 3.74. In practice these summations
contain only one term as the updates are performed sequentially event by event.

Finally we note, the elimination of absolute time is not a necessity for event based simulation; it
is a naturally supported feature that provides solid advantages. The computational effort to achieve it
is minimal and potentially compensated by efforts saved where relative times are anyhow required.
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Changes for present time based operation
1: — initialise variables —
2: . . . remove tn . . . . absolute time no more required: tn→ ti
3: — handle any next event —
4: . . . ti←min(in,out); . replace tn→ ti
5: in← in− ti; . decrement time till next arrival
6: out← out− ti; . . . . decrement time till next departure
7: . . . Xm← [Xm, ti X ]; . replace (tn− ti)→ ti
8: simT← simT + ti; . . . . replace (tn− ti)→ ti
9: . . . replace former ti by eps . . . . current time (now) is (numerically) zero

10: — handle an arrival event —
11: if (in≤ eps) . . . . if now an arrival event occurs
12: . . . in|out← feval( .. ); . . .
13: . time till new scheduled arrival | departure = inter-arrival | service time TA(i)|TB(i)
14: — handle a departure event —
15: else if (out ≤ eps) . . . . if now a departure event occurs
16: . . . out← feval( .. ); . . .
17: . time till newly scheduled departure = service time TB(i) (if scheduled)
18: — normalise and return recorded samples —
19: . . . no changes . . .

3.4.2 Single server queueing system evaluation by simulation

The simulation procedure explained above and basically expressed by algorithm 3.1 returns the
system states recorded Xn = {xi}. This chronological list of states can be statistically evaluated to
derive the mean number of customers in the system E[X ], the confidence interval E[X ]±∆X thereof,
the standard deviation σX , as well as higher moments. The Octave shell provides commands to
directly extract these, i.e.:

E[X ] =
1
n

n

∑
i=1

xi = mean(Xm) ∆X = confid(Xm,95)

σX =

√
1
n

n

∑
i=1

(
x2

i−E[X ]2
)
=

√
E[X2]− E[X ]2 = std(Xm) cX =

σX

E[X ]
=

std(Xm)

mean(Xm)

Higher moment can be extracted by the moment(Xn, i) commend, where i indicates the moment order.
Please refer to the online help of Octave to learn more on these commands, and to section 1.5 for the
theoretic treatment of statistical properties.

Based on the mean system filling E[X ] the other mean characteristics of the queueing system can
be calculated. Figure 3.75 shows the sequence in that this is best performed. First we use Little’s
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[
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]
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× 1
λ

− 1
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×λ

+ρ
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1
λ E[X ]

E[Tw] = E[Tf ]− 1
µ
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Figure 3.75: Calculating E[Tf ], E[Tw] and E[Q] based on E[X ]

equation E[X ]=λ E[Tf ] to get the mean flow time E[Tf ]=E[X ]/λ. From Tf=Tw+Ts we get the mean
waiting time E[Tw]=E[Tf ]− 1

µ , by simple subtraction of the known mean serving time E[S=Th]=
1
µ

also known as mean holding time h. Finally, applying Little’s equation for the queueing process
alone, we get the mean queue filling E[Q]=λ E[Tw].
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According to Little’s equation is the flow time process Tf the multiplication of the arrival process A
with the system filling process X . Thus, if the arrival process A does not depend on the system filling X ,
we can calculate the flow time variance Var(Tf ) from the system filling variance Var(X)=σ2

X , using
the rules for independent distributions presented in section 1.5.2:

Var(Tf ) =
1
λ2 Var(X)+ E[X ]2 Var(A)+ Var(A)Var(X) if A⊥X

If the service process S is independent of the flow time Tf and thus also independent of the system
filling X , we can further calculate the variance of the waiting time process Tw as well as that of the
queue filling as

Var(Tw) = Var(Tf )+ Var(Th)−2Cov(Tf ,Th) if Th⊥Tf

Var(Q) = 1
λ2 Var(Tw)+ E[Tw]

2 Var(A)+ Var(A)Var(Tw) if A⊥Tw

where Cov(Tf ,Th)=0 because independent distributions are in general also uncorrelated.

If the arrival process or service process is not independent of the system filling or queue filling,
we cannot use this simple variance calculation. In such cases we have to add according monitors
to the simulation procedure in order to get second moment statistics. How and where to add such a
monitor is shown next, exemplarily for the waiting time Tw.

Departure process variance

We notice that the statistics that can be derived from the system state X do not include information
about the departure process D. The mean departure rate E[D] is evidently equal the mean arrival
rate, E[D] = E[A], given that we have an infinite queueing system that cannot loose any customer
that once arrives. However, to tell something about the moments of the departure process using
simulations we need to monitor it separately.

While customers are present in the queueing system, the output distribution equals that of the
service process. When there are no customers present, the output process is zero. Consequently is the
output process an interrupted version of the service process. The interruption probability equals 1−ρ,
and thus also the mean interruption interval is that long. However, the distribution of the interruption
interval is unknown. Based on this reasoning we may conclude that the interrupted service process
model should perfectly represent the output process, if we manage to match the second moment. To
get the load dependent second moment for a given arrival and service distribution pair at a certain
load, we can use analysis or simple simulation, if the former is too bulky.

Inter-departure time monitor extension
1: — initialise —
2: . . . D = 0; Dm = [ ]; . . . . initialise monitor and sample array
3: — next event —
4: . . . D← D+ ti; . . . . increment inter-departure time
5: — arrival —
6: . . . no change . . .
7: — departure —
8: . . . Dm← [Dm,D]; . add accumulated inter-departure time to sample
9: D← 0; . . . . reset inter-departure time monitor

10: — normalise and return —
11: return . . . Dm . . . . return recorded sample

The sample Dm required to statistically evaluate the output process needs to contain the inter-
departure times TD(i). Therefore a dedicated inter-departure time monitor D and a departure time
sample array Dm needs to be added and initialised (line 2). The monitor variable D accumulates the
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inter-event times ti that occur in between two subsequent departures. Every time the simulation jumps
to the next event we increment the monitor, D← D+ ti (line 4), such that it always tells the time that
passed since the latest departure occurred. Every time a departure occurs, we add the accumulated
value to the recorded sample, Dm← [Dm,D] (line 8), and reset the monitor D← 0 (line 9). Finally
the recorded sample is returned (line 11) for statistical evaluation.

Based on the recorded sample Dm the waiting time statistics can be extracted independent of any
other process, and therefore independent of the system filling. The statistical metrics can be extracted
as before. The required variance Var(TD) is than simply the square of the standard deviation revealed
by std(Dm), and the coefficient of variation cD results from dividing σD by its mean E[D]:

Var(TD) = σ2
D =

(
std(Dm)

)2 cD =
σD

E[D]
=

std(Dm)

mean(Dm)

3.4.3 Different queueing disciplines

Commonly we assume first-in first-out (FIFO) queueing. At first glance anything different seems
awkward. However, there exist mechanisms that implement last-in first-out (LIFO) queueing, for
example a procedure stack, or some other discipline that schedules customers according to their
needs rather than in order of arrival. Latter is best modelled by random (RAND) queueing, for
example to predict the waiting time distribution of an emergency handling unit where unpredictable
ad hoc decisions govern the scheduling.

Reviewing the simulation procedure we recognise that there is nothing present that indicates a
certain queueing discipline. For the evaluation of mean properties this is irrelevant; only the higher
order moments of the waiting time are affected. To cover these, dedicated waiting time monitors
are essentially required because different queueing disciplines are considered by different customer
selection strategies applied when a waiting customer becomes scheduled for departure. To realise
FIFO the customer that spent most time in the queue is selected, being the one with the waiting time
max(W ). For LIFO it is the customer which spent the least time in the queue, being min(W ), and
for RAND selection it is any one, being W (rand(length(W ))).

Dedicated waiting time monitoring

The waiting time process Tw is the most interesting characteristic of infinite queueing systems.
Queueing space is assumedly of no concern with infinite systems, and at reasonable loads the mean
flow time is predominated by the known mean holding time E[Th] =

1
µ .

To monitor and statistically evaluate the process we need to record all actually occurring waiting
times Tw(i). To do so, we initiate a waiting time monitor variable whenever a client arrives and joins
the queue of waiting customers. The simulation realises the queue implicitly, it requires a single
counter only, and this is provided by the system state variable X . The number of waiting customers
is X−1. If an arriving customer happens to initially enter service, when an idle server is available at
its arrival event (X = 0), the waiting time to be recorded is zero. These zero records are essentially
required, else the waiting process would not be correctly reflected by the recorded sample.

A particular complexity arises because there can be more than one customer waiting at a certain
instant of time. Therefore, it is required to set up and maintain a set of waiting time monitors W = [ ]
in addition to the sample recorded Wm = [ ]. For both we define arrays, which can be dynamically
extended and shrunken as required, and are initialised as empty sets (line 2).

Every time we handle an arrival event we check if a server is available or not. If one is available,
we add a ”0” entry to the waiting time record, Wm← [Wm,0], else we add a new monitor W ← [W,0],
initially being zero because up to now, the instant at that the customer arrives, no waiting time has
accumulated (lines 7,8). Whenever we jump to the next event the monitors are updated by adding
ti to all monitors, W ←W + ti (line 4). If after a departure a customer is taken from the queue by
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Waiting time monitor extension
1: — initialise —
2: . . . W = [ ]; Wm = [ ]; . . . . initialise monitors and sample arrays
3: — next event —
4: . . . W ←W + ti; . . . . increment current waiting times
5: — arrival —
6: if (out = Inf ) then . . .
7: Wm← [Wm,0]; . . . . if immediately served add ”0” waiting time to sample
8: else W ← [W,0]; . . . . else initialise a new waiting-time monitor
9: end if . . .

10: — departure —
11: if (X > 0) then . . .
12: Wm← [Wm,max(W )]; . add accumulated waiting time to sample (assuming FIFO queue)
13: W ← [W \{max(W )}]; . . . . and remove the finished monitor
14: end if . . .
15: — normalise and return —
16: return . . . Wm . . . . return recorded sample

scheduling its departure time, we push the content of the according waiting time monitor to the
waiting time sample Wm← [Wm,max(W )] and remove this monitor instance, W ← [W \{max(W )}]
(lines 12,13). Removing the correct waiting time monitor is not straightforward, particularly if other
then the FIFO queueing discipline are applied. See section 3.4.3 for details on how to locate the
monitor to be recorded and subsequently removed.

When the simulation terminates, the waiting time sample has a size n equal to the number of
clients that entered and left the system while the monitoring flag m was set to true, and note that
this is not equal i or j. The former may contain times from customers served after m became false,
the latter customers that entered prior m became true. We only record the waiting times of events
which entirely falls within the monitoring interval. The mean and other statistical properties can be
extracted from the recorded sample as already described for the system state record Xm:

E[Tw] =
1
n

n

∑
i=1

wi = mean(Wm) ∆w = confid(Wm,95)

σw =

√
E[T 2

w ]− E[Tw]
2 = std(Wm) cw =

σw

E[Tw]
=

std(Wm)

mean(Wm)

All queueing system related mean values can again be calculated according to the cyclic dependence
depicted in figure 3.75, using the same equations depicted therein, now starting with E[Tw]. Likewise,
though only for FIFO queueing and only if the arrival and service processes are independent of
the queueing processes, latter jointly referring to the closely related system filling X , flow time Tf ,
waiting time Tw and queue filling Q, the variances can be calculated accordingly.

Choosing a queueing discipline

To implement the option to select a queueing discipline we add a policy string to the parameters
handed over to the simulation procedure. We use a string variable for its intuitiveness. A switch
command structure chooses the customer selection based on this policy string (line 6). Practically
we do not need to search the maximum or minimum. The waiting time monitor array W is maintained
in a strict order; arrivals are always attached to its end. Consequently, the longest waiting customer is
the first in the array (line 8), and the least waiting is the last one (line 11). The random selection does
not simplify (line 14). Note that the code snipped presenting this, also shows how we remove the
monitor of the scheduled customer from the monitors array (lines 9,12,16).
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Implementation of different queueing disciplines
1: — initialise —
2: — next event —
3: — arrival —
4: — departure —
5: if (X > 0) then . . .
6: switch(policy) . choose a queueing discipline
7: case("FIFO")
8: Wm← [Wm,W (1)]; . add first monitored to waiting time sample
9: W ←W (2 : end); . remove first waiting time monitor

10: case("LIFO")
11: Wm← [Wm,W (end)]; . add last monitored to waiting time sample
12: W ←W (1 : end−1); . remove last waiting time monitor
13: case("RAND")
14: index← ceil(rand(1) length(W )); . choose a waiting monitor index
15: Wm← [Wm,W (index)]; . add chosen one to waiting time sample
16: W ←W (1 : index−1 , index+1 : end); . remove chosen waiting time monitor
17: end switch
18: out← feval( .. ); . . .
19: end if . . .
20: — normalise and return —

By the way, two independent but in certain cases redundant monitors are very useful to check
their implementation. For scenarios where the monitored processes are in theory related as depicted
in figure 3.75, the resultant statistical characteristics should approximate each other if extracted and
calculated via one or the other recorded sample.

3.4.4 Finite system size introducing blocking

Already simulating virtually infinite queues the introduction of an upper bound on the system size
is no challenge. All what is essentially required to reject customers in case the queue is full, is to
verify if the current system state X is less than the bound s specifying the finite system size (line 6).
The system size s is to be provided as another input parameter. If an arriving customer cannot be
accepted, meaning added to the queue because it is full, the event passes without a change in the
current system state X as if the event has not occurred.

Finite system size and blocking process extension
1: — initialise —
2: . . . B = 0; Bm = [ ]; . . . . initialise monitor and sample array
3: — next event —
4: . . . B← B+ ti; . . . . increment current inter-blocking time
5: — arrival —
6: if (X < s) then . if space is available
7: . . . . handle arrival as usual (accepted→ increment X)
8: else . else reject arrival
9: Bm← [Bm,B]; . add accumulated inter-blocking time to sample

10: B← 0; . reset inter-blocking time monitor
11: end if . . . . generate next arrival event etc.
12: — departure —
13: . . . no change . . .
14: — normalise and return —
15: return . . . Bm . . . . return recorded sample
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In addition to realising the correct behaviour, we also need to consider the blocking probability Pb,
which is the most important property of finite systems together with the mean waiting time. Already
counting the arrivals and departures (in i and j respectively) this simply would result from the relative
difference, Pb =

i− j
i . However, for a complete simulation study it is expedient to also record the

process in order to have access to the higher moments as well. Particularly, if blocked customers
become handed over to some other system, the blocking process defines the arrival characteristics to
the other system, and thus is often referred to as overflow process To.

To gather the process we collect the inter-blocking times To in the blocking sample Bm, and
monitor the inter-blocking times via B, initialised, empty and zero respectively (line 2). Every
time blocking occurs, causing an arriving customer to become rejected, we add to the blocking
sample the inter-blocking time that has accumulated since the last time a customer became blocked,
Bm← [Bm,B], (line 9) and reset the inter-blocking time monitor, B← 0, (line 10). Identical to the
departure and waiting time monitors, the blocking monitor is incremented by the inter-event time,
B← B+ ti, whenever the simulation proceeds to the next event (line 4).

The returned sample Bm can be statistically evaluated in the same way as the others before:

Pb = E[To] =
1
n

n

∑
i=1

bi = mean(Bm) ∆Pb = confid(Bm,95)

σo =

√
E[T 2

o ]− E[To]
2 = std(Bm) co =

σo

E[To]
=

std(Bm)

mean(Bm)

Note, blocking occurs rarely if the load is not approaching the system capacity. Consequently, is the
size of the sample Bm commonly quite small and the confidence intervals become huge, particularly
at low loads where the blocking probability Pb approaches zero. If a reliable characterisation of the
overflow process To is required, the simulation should not be terminated prior a sufficient sample
size for Bm is reached. But be careful, smooth arrival and service distributions, in combination with
sufficiently sized queues, can actually result in no blocking at all.

3.4.5 Finite customer population - the Engset setting

The up to here presented and commonly assumed simulation generates a next arrival whenever an
arrival event occurs. This represents the so called Erlang setting, and assures that there always is a
next arrival scheduled. For finite customer populations this approach cannot be used. To simulate
latter correctly, we need to define a source per potential customer, and schedule arrivals customer
by customer. For the Engset setting, where customers cannot generate arrivals while being in the
system, the instant to generate the next arrival are the blocking and the departure events.

To implement finite populations we first extend the arrivals variable into an array that offers
a dedicated time till next arrival for every single source (line 2). When updating all times before
handling the current event in the next event section, the time passed has to be subtracted from all
next arrival times in in (line 4). Obviously, the arrival rate has to be specified per customer, and not
for the system as common with the Erlang setting. Please refer to section 3.2.4 for details on the
resultant issues concerning the system load definition.

In case of an arrival event we need to know which source it refers to (line 6). Note that for the
Erlang setting the index is always ’1’, which equals the index of a scalar value if represented as
vector or matrix. With the Engset setting we must not generate a next arrival if the current arrival is
accepted (line 9), whereas in case the arrival is blocked, we have to schedule a next arrival in any
case (line 12). For sources that are currently in the system (busy), the next arrival is scheduled after
their departure (line 18). Here we may use the index of any currently busy source (line 17) because
all sources are assumed to behave identically, such that their actual index is irrelevant. Finally, note
that for the Erlang setting an in(1) = Inf indicates the end of the simulation loop. With the Engset
setting the simulation loop ends with all(in(:) = Inf ).
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Finite customer population – the Engset setting
1: — initialise —
2: . . . in = [0,0, .. ,0] . . . . initialise customer sources array of size c
3: — next event —
4: . . . mathitini← mathitini− t ∀i . . . . update by t as usual, now for all sources
5: — arrival —
6: . . . cid ← find(in≤ eps) . . . . get index of current arrival’s source
7: if (X < s) then . . . . handle arrival as usual (accepted→ increment X)
8: if not Engset then in(cid)← feval( .. ) . Erlang setting: schedule the next arrival
9: else in(cid)← Inf . Engset setting: schedule no next arrival

10: end if . . .
11: else . . . . handle blocking as usual (rejected→ X unchanged)
12: in(cid)← feval( .. ) . . . . schedule next arrival (here also as usual)
13: end if . . .
14: — departure —
15: . . . . handle departure as usual (finished→ decrement X)
16: if Engset then
17: cid ← find(in = Inf ) . get index of a currently busy source
18: in(cid)← feval( .. ) . schedule next arrival from source cid
19: end if . . .
20: — normalise and return —
21: return . . . . return and evaluate recorded samples as usual

3.4.6 Multi servers systems G/G/n /..

The extension from G/G/1/.. to G/G/n/.. is a little more complex than the integration of a limited
system size. Besides another input parameter, being the number of servers n, we need to change the
server-is-idle condition to if(X<n) (line 8). Most challenging, we need to extend the out variable to
hold the time-till-departure td for each currently busy server. Not necessarily need the servers be
individually treated, they are assumed to be identical in their capacity such that the holding time Th
does not depend on the used server. Therefore, and particularly to cover the infinite server case
G/G/∞, we define a dynamic out array that holds the scheduled departure times only.

Multi server extension
1: — initialise —
2: . . . out = [Inf ]; . . . . initialise departures array with no departure (Inf )
3: — next event —
4: . . . ti←min(in,min(out)); . . . . get current inter-event time
5: . . . out(2 : end)← out(2 : end)− ti . . . . decrement times till departure (not Inf )
6: — arrival —
7: . . .
8: if (X < n) then . if a server is available
9: out← [out,Th(i)] . . . . add time till departure for the just arrived customer

10: else . . . . else add arrived customer to waiting or block it
11: end if . . . . generate next arrival event etc.
12: — departure —
13: . . . index← out ≤ eps . get the index of the current departure
14: out← [out \out(index)] . . . . remove currently occurred departure from out-array
15: if (X > n) then . if a customer is still waiting for service
16: . . . out← [out,Th(i)] . . . . add time till departure of next scheduled customer
17: end if . . .
18: — normalise and return —

The currently closest departure event is min(out) (line 4). Every time the simulation proceeds to
a next event all the times till departure present in out have to be decremented by the current inter-event
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time ti, as done before for the scalar out variable, now applied on all elements currently contained in
the out-array except the first, being Inf indicating no scheduled departure (line 5). Whenever a new
departure is scheduled, meaning a customer enters service, its holding time Th = feval( .. ) is added
to the array, out← [out,Th(i)] (lines 9, 16). When a departure occurs, the according element in out
becomes zero (outk≤eps) and needs to be removed (lines 13, 14).

Note, contrary to the waiting time array introduced earlier, the out-array does not necessarily
comprise monotonic increasing entries. Holding times can vary heavily, such that a later added time
till departure can be smaller than a previously added. Therefore, the index determination (line 13)
cannot be omitted. To use a sorted list is an alternative, but may be excessive given the limited list
size ≤ n. Finally, if two departures happen to occur numerically at the same time, we do not need to
care for which of them is handled first; any is as present as the other.

Server utilisation

The varying size of the out-array tells the server state, being the number of currently occupied
servers, which represents the system utilisation. To statistically evaluate it we need another sample
array Um, and as monitor we use the existing system filling X . Every time the system state X changes
we add the inter-event time weighted server utilisation to Um. For (X<n) we add ti X to the sample,
and for (X≥n) we add ti n. The implementation is accordingly simple.

Server utilisation
1: — initialise —
2: . . . Um = [ ]; . . . . initialise utilisation sample array
3: — next event —
4: . . .
5: if (X < n) then Um← [Um, ti X ]; . not all servers are busy
6: else Um← [Um, ti n]; . all servers are busy
7: end if . . .
8: — arrival —
9: — departure —

10: — normalise and return —
11: return . . . Um/simT . . . . return recorded sample

For infinite queueing systems the ∑Um/n approximates %, the system load. For finite systems the
utilisation never becomes 100%, it can only approach one if the system is sufficiently overloaded,
meaning % > 1, causing many blocked arrivals. To avoid very small numbers, the normalisation by
simT is best done after the summation and not before.

Idle period evaluation

An interesting property not mentioned till now is the distribution of the idle period. The analytic
approach to queueing systems has shown that it is the idle period that challenges us most. To some
extend it is the counterpart to the over-flow process, because the idle process refers to the state at the
other end of the state transition diagram. However, for a multi server system we need to separate two
cases: (a) the true idle state, meaning X=0, and (b) the union of all states where at least on server is
idle, X<n, when no arriving customer needs to wait for being served.

Note that the true idle time TX=0, meaning that the queueing system in total was idle, cannot
persist longer than one inter-event time. Once the system became idle, the next event must be an
arrival. The idle period starts with a departure event that empties the system, and ends with the arrival
of the next customer, which immediately becomes served causing a busy server. In between no other
event can occur and consequently can an idle period never comprise more then a single inter-event
time ti. If in the end we normalise the sample by the accumulated simulation time simT we get the
idle probability, which equals 1−ρ for infinite systems only.
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Idle period (a: the system is idle)
1: — initialise —
2: . . . Im = [ ]; . . . . initialise idle time sample array
3: — next event —
4: . . .
5: if (X = 0) then Im← [Im, ti]; . the system was idle during the current inter-event time
6: else Im← [Im,0]; . at least one servers was busy during the current inter-event time
7: end if . . .
8: — arrival —
9: — departure —

10: — normalise and return —
11: return . . . Im . . . . return recorded sample

In the other case, where we are interested in the distribution of the periods TX<n, during which
an arriving customer becomes served immediately such that it experiences zero waiting time, the
condition may and often will persist across several inter-event times. Therefore, we need a monitor I
to accumulate the times during which this idle condition X<n persists. The implementation seems
similar; however, we now add a sample only when the condition changes, which can occurs only
when X=n. Thus, the accumulated idle-period time is recorded, Im← [Im, I], and reset, I← 0, only
if it is non-zero, I > 0 (lines 7, 8, 9). Evidently, the monitor I again needs to be incremented by ti
alike the others whenever the simulation proceeds to the next event, but only if X < n (line 5). In the
end the recorded sample needs to be normalised by the accumulated simulation time simT (line 14)
in order to consider the not recorded times where all servers were busy.

Idle period (b: at least one server is idle)
1: — initialise —
2: . . . I = 0; Im = [ ]; . initialise monitor and sample array
3: — next event —
4: . . .
5: if (X < n) then I← I + ti; . increment current idle-period time
6: end if . . .
7: if (X = n) & (I > 0) then . some idle-time has accumulated and all servers are now busy
8: Im← [Im, I]; . add accumulated idle-period to sample
9: I← 0; . reset idle-period monitor

10: end if . . .
11: — arrival —
12: — departure —
13: — normalise and return —
14: return . . . Im/simT . . . . return recorded sample

The opposite of this Im is Cm, the server saturation statistic, expressing the likelihood distribution
for all servers being busy. Usually we monitor this, because in case of negative exponentially
distributed arrivals its mean value equals the probability that an arriving customer has to wait for
service p(i≥n), which resembles the Erlang_C formula known from equation 3.13. Practically, we
achieve this by adjusting the conditions in line 5 and 7 to X ≥ n and X = n−1 respectively, and use
C to monitor TX≥n and Cm to record the sample thereof.

3.4.7 Processor sharing - egalitarian and discriminatory PS

We directly proceed to implementing discriminatory processor sharing (DPS) as sketched below and
presented in the end of section 3.3.3. Egalitarian PS is a special case of DPS, which evidently may
be implemented differently, with less complexity. Please see addendum A.I.2 for the actual code
used to perform simulation studies, including streamlined egalitarian PS.
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First, we need to handle different flows, which are identified by the assigned weights gi. Therefore,
we extend the next arrival variable in into a vector that holds the time-till-next-arrival per flow. In
an Engset setting in becomes a matrix. In case all flows have Markovian inter-arrival times this is
not necessary, we could as well assign arrivals to different flows at the arrival instances according to
the flow’s arrival probabilities λi

λ . However, that approach restricts the utility because it excludes
different arrival processes per flow. Second, to do the discriminatory processor sharing we need to
monitor the number of present clients per flow. This is achieved by extending the state variable X
into a vector as well (line 2). Third, we need to initialise the service sharing factors σi. Assuming the
system to be idle at the simulation start, prior the transient phase, we initially have σi = 1 ∀i (line 3)
because the first arrival will initially get the full service rate 1

µi
.

Processor sharing – discriminatory PS
1: — initialise —
2: . . . in = [0;0; .. ;0]; X = [0;0; .. ;0]; . initialise per flow – same size as weights vector g
3: σ = [1;1; .. ;1]; . . . . initial sharing factors – same size as weights vector g
4: — next event —
5: . . . outj← outj− t ∀j . . . . update as usual, consider all out-times
6: — arrival —
7: if (Xi < si) then . if space is available, for unbound PS is si = Inf
8: . . . . handle arrival as usual (accepted→ increment Xi)
9: if PS or (∑Xi < n) then . if processor sharing or idle server available

10: if PS then h← 1
σi µi

. calculate scaled holding time
11: else h← 1

µi
. regular holding time

12: end if
13: out← [out,feval( 1

λi
, .. ,h, .. , . . .)] . provisionally schedule the departure

14: end if
15: else . . . . blocking does not occur with PS, can remain as usual
16: end if . . . . proceed as usual
17: — departure —
18: . . . . handle departure as usual (→ decrement Xi, remove from out-array)
19: if (∑Xi > n) then . . . . no waiting customers exist for PS, can remain as usual
20: end if . . .
21: — post event adjustments — . new section!
22: if PS and (∑Xi > 0) then . if there are processor sharing clients present

23: σnew
i ← gi

∑j gjXj
∀i . calculate new sharing factors

24: outj← outj
σi

σnew
i

∀ (∗)j . re-adjust all times-till-departure considering current state change

25: σ← σnew . update all σi to current scaling factors (∀i)
26: else if PS then σ← [1;1; .. ;1] . reset σ to initial when server become idle
27: end if
28: — normalise and return —
29: return . . . . return recorded samples as usual

Next the departure time scheduling needs to be adopted. This is not straight forward because
with processor sharing the service rate varies and depends on arrivals prior and during the time
spent in the system. Thus, independent of weighted or fair sharing, the actual time-till-departure
cannot be determined until the departure occurs. Therefore, we split the departure scheduling into a
provisionally set time-till-departure calculated when handling the arrival instance (line 13) and the
adjustment of all scheduled departures performed after handling arrivals and departures, meaning
after the system state changed (line 24). Because the adjustment is performed on all clients, we need
to set a provisional time-till-departure as if the current arrival had not arrived yet. This happens
implicitly because we calculate new scaling factors after event occurrences only (line 23). Scaling all
current times-till-departure by the relation previous-to-new (line 24) yields the adjustment required.
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In line 25 the new sharing factors become the current sharing factors, and in line 26, which might be
negligible, we reset the sharing factors to the initial values whenever the server become idle.

(∗) Note that in line 24 we need to re-scale the times-till-departure for all scheduled departures
depending on the flow i these belong to. How this index j↔ i relation is achieved is not included
here in the pseudo code. In the real code we use an out-matrix, where the row number indicates the
flow and only one value per column can be set. This utilises already the extension for multiple flows
required for the examples of the next chapter. Here, any other j↔ i relating would work just as well,
for example a second row holding the flow index of the departure scheduled in the same column, but
henceforth we imply the matrix implementation.

Service time monitoring

Commonly the service time is a given parameter. Also for processor sharing a service process is
required as input parameter. However, with PS it specifies the serving in case of no other clients
present. The actual time a client spends in service is effectively its flow time Tf . Monitoring this
correctly demands us to consider that PS is not order conserving. Therefore, we need to monitor the
time a client remains in service client-by-client, meaning in parallel for all currently present clients.

To do so we initialise a service time monitor S and a cell-array Sm to collect the occurred service
times per flow (line 2). Both are dynamically extended, the first entry of S accumulates the entire
simulation time, with flow index 0 indicating that it refers to no particular flow. For Sm a cell-array
is used because this allows differently long records per flow.

Time spent in service
1: — initialise —
2: . . . S = [0;0]; Sm = {}; . . . . initialise serving monitor and record for it
3: — next event —
4: . . . S(2, :)← S(2, :)+ t; . . . . add inter-event time to all service time monitors
5: — arrival —
6: . . .
7: if PS or (∑Xi < n) then . arrival can immediately be served
8: . . . S← [S, [iflow;0]]; . . . . add a time-in-service monitor entry
9: else . . . . waiting, blocking (does not occur with PS)

10: end if
11: . . .
12: — departure —
13: . . .
14: index← out ≤ eps . get the index of the current departure
15: Sm(S(1; index))← [Sm(S(1; index)),S(2, index)] . record monitored time S(2, index) in Sm(iflow)
16: S← [S\S(index)] . remove obsolete monitor from S-array
17: . . .
18: — post event adjustments —
19: — normalise and return —
20: return . . . Sm . . . . return all the recorded per flow samples arrays

As with all monitors we add the times t that pass in between events to the entries of the monitor S,
here all entries in the second row because the first row holds flow indices (line 4). With every arrival
we initialise a new monitor by adding the (flow-index, flow-time)-pair (iflow,0) to the monitor (line 8).
If a departure occurs we first get its index j from the out array (line 14), which here equals the
corresponding index of the S monitor. Having this, we record the monitored time-in-service in the
according Sm record (line 15), before we remove the now finished monitor column from S (line 15).

The returned cell-array Sm contains per flow an array holding all recorded times that clients from
the same flow spent in service. These arrays are commonly not equally long, particularly not if
the load shares λi

µi
are not the same for all flows. However, every Sm(iflow)-array can be statistically
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evaluated and yields the individual flow time Tf (iflow) characteristics. This is exactly what we need to
evaluate the influence of flows on each other, and the dependence thereof on the assigned weights gi in
case of discriminatory processor sharing. For common queueing models, being FIFO, LIFO, RAND
queueing systems, which per server serve one client after the other, the monitored time-in-service
characteristics need to equal those of the given service processes.

3.4.8 Implemented G/G/n/s/X simulation core and its application

First we show in algorithm 3.2 the m-style code of the present time based simulation core realised as
an Octave function. Such functions are stored as text files, for best compatibility one file per function.
The function can be called on demand from the command line as well as other Octave functions and
routines, if the set search path contains the directory it is filed to. We note, the real plain m-code

Algorithm 3.2 Present time based G/G/n/s/FIFO simulation core

function Xm=presentGGnsSim(a,A,b,B,n,s,sr,st)
in=0; out=[Inf]; ti=0; X=0; Xm=[]; simT=0; i=0; j=0; k=0; m=false; di=[];
do

if (i==st) m=true; elseif (length(Xm)==sr) m=false; endif
ti=min(in,min(out)); in-=ti; if (length(out)>1) out(2:end)-=ti; endif
if m Xm=[Xm,ti*X]; simT+=ti; endif
if (in<=eps) i++; di=[]; %arrival

if (m || i<=st) in=feval(’distrGen’,A,1/a(1,1),num2cell(a(1,2:end)){:}); else in=Inf; endif
if (X<s) X++;

if (length(out)<=n) out=[out,feval(’distrGen’,B,1/b(1,1),num2cell(b(1,2:end)){:})]; endif
else k++; %blocking
endif

elseif (length(di=find(out<=eps)(1))) j++; %departure
out=[out(1:di-1),out(di+1:end)]; X--;
if (X>=n) out=[out,feval(’distrGen’,B,1/b(1,1),num2cell(b(1,2:end)){:})]; endif

else error(’GGnSim: a not scheduled event occurred.’); break;
endif
if (!length(di) && rem(i-st,5000)==0) % show simulation progress and snapshot

printf(’\n%3.1f %% done: i=%d, j=%d, k=%d; \n’,(i-st)/(sr/2)*100,i,j,k);
printf(’ %d: \t %5.4f \t %d \t’,fci,in,X); printf(’ %5.4f’,out(:)); printf(’\n’);
printf(’ Server occupation: ’); printf(’%2d ’,length(out)-1); printf(’\n’);

endif
until (in==Inf && out==Inf)
Xm=Xm./(simT/length(Xm));

endfunction

actually needs less lines than the according pseudo code, which would result from integrating all
changes in algorithm 3.1. We use this form whenever the presentation as pseudo code would be
excessive because to our experience the m-code is well readable if simple variable names are used.
However, common Octace programming is based on the functional programming paradigm, which
somewhat contradicts object oriented programming.

The function presented as algorithm 3.2 actually contains all changes to model common single
stage queueing systems with any queue size and server count, including infinite for both as it is
required to simulate G/G/∞. Having a dedicated representation for infinite (Inf ) is a very utile feature
here. However, for conciseness the code does not contain the finite customer population (Engset
setting) or processor sharing extensions. Generally note, a simulation core including all options
will never proceed faster than a core that is cut down to the needed features. In case of Matlab
and Octave, for-loops and recursive functions shall be maximally avoided in order to minimise the
required computation time, particularly within the simulation loop.

However, in the last if-endif clause the code includes a brief progress monitoring not mentioned
so far. This helps to monitor the simulation progress and to estimate the remaining time till completion.
Observing this, a computation time issue with huge recorded samples has been detected. To eliminate
this marginal problem we may calculate and record mean values per reporting loop instead of the
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detailed sample. Doing so has no impact on the mean of the final sample, but the standard deviation
and confidence interval calculation can no more be applied. To still have access to former, we can
calculate and return a square means sample in addition to a means sample. The standard deviation
and coefficient of variation follow from

σ =

√
E[X2

m]− E[Xm]
2 and cX =

√
E[X2

m]

E[Xm]
2 −1

where the two variables required, E[Xm] and E[X2
m], are the mean values of the two returned samples

Xm and X2
m, which themselves containing mean values of the actually monitored values and their

squares respectively, such that E[Xm] = E[{E[X ]}] and E[X2
m] = E[{E[X2]}]. Due to the reduced

number of elements contained per returned sample the confidence interval for the mean values
exceeds that of the complete sample, such that it seems save to use confid( .. ) still. However,
mathematically this is questionable, and any information on higher moments is ultimately lost.

The programming language independent presentation and its detailed discussion comprise the
essence of this section. The integration thereof should not be an issue requiring an explicit example
here. However, the Octace m-code including all monitors and samples lastly used is provided in
addendum A.I.2. The extension to cover multiple arrival flows, as it is required for the studies
presented in the next chapter, is primarily achieved by extending the relevant variables into vectors
or matrices, where required. Please see the code example presented in addendum A.I.2. Actually, the
majority of the program lines are caused by these and related extensions. However, if an individual
treatment of different arrival flows is not required, multiple ingress flows can be merged into one flow
prior entering the queueing system: either using weighted convolution of different distributions, sums
of identical distributions applying the according calculation rules, or an approximately specify a
single aggregate ingress flow using appropriate summing of the individual mean rates and coefficients
of variation. If the contributing flows were defined by their first two moments, an approximation
considering these two moments is equally accurate as any other aggregation method.

Simulation environment used to calculate curves

The simulation core presented above provides results for a single setting only, meaning for a particular
set of input variables. Commonly we are interested in the behaviour and performance for some
parameter range. Therefore, we need to calculate curves. To approximately achieve a curve we need
to simulate a set of input parameters, where only the value shown of the x-axis changes. The bigger
the set is, meaning the more points along the curve are simulated, the more confident we can be
upon the system behaviour in between simulated points; still, we may not exclude missed outliers.
A smart choice upon detail versus effort is inevitable and should consider the limited confidence
already introduced by the finiteness of simulation.

How to effectively use the Octave simulation core presented in algorithm 3.2 to get curves is
presented by the example shown in algorithm 3.3. This is a living routine, meaning that is has to be
adapted manually to perform different studies. Contrary to the previous we use the script approach
instead of the function definition. If the ".m"-type-ending is attached to the script name it can be
executed by simply typing its name (without ".m") in the Octave command line, else an execution
command needs to precede the file name.

To include several curves in one figure we can repeat the curve calculation for a second parameter
range, which for presentation clarity should be restricted to just enough curves depicting the influence
of the second parameter. This is achieved by be adding in the for-loop the according GGnSim( .. )
calls and the addition of more curves (mean(samplej),confid (samplej)-pairs) to the curves matrix
plotted in the end. Similarly can more parameters be evaluated and plotted if the simulation core
provides them, requiring the addition of the according parameters mean/confid-pairs only. Because
different parameters cause different sized samples they cannot be returned as a matrix; instead a
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Algorithm 3.3 Calculating and plotting curves using the G/G/n/s/FIFO simulation core

%plot GGnsSim results (presentGGnsCurves)
steps=0.95:0.001:1.00; log=1;
curves=NaN(length(steps),3);
curves(:,1)=steps; %x-axis values
printf(’satarting the loop \n’);
for i=1:length(steps) rho=steps(i); %load points

printf(’\n load: %3.2f \n’,rho);
sample=presentGGnsSim([rho,0.5],’nExp’,[1/10,5],’nExp’,10,Inf,2000000,500000);
curves(i,2)=mean(sample(:));
curves(i,3)=confid(sample(:),95);

endfor
printf(’ended the loop now saving and plotting \n’);
save([’GGnsCurves’,datestr(date,’yymmdd’),’.dat’],"curves");
%plot the simulated vaules
errorPlot(curves(:,:));
h=ishold; if !h hold; endif
if log semilogy([]); axis([0.95,1,9.99,5000]); else axis([0,1,0,10]); endif
if !h hold; endif

cell-array of samples ({Xm,Dm,Bm, . . .}) is returned, accessible as sample(k)(:), where k is the index
of the parameter sample according to the return value order defined in the function definition line
within the simulation core, and (:) selects all values contained therein.

To plot the created curves matrix at once the first column needs to hold the x-axis values followed
by the columns holding the according y-axis values per curve, column by column. However, the
errorbar plot command does not support this; the errorPlot routine has been written to provide the
functionality known from the regular plot command.

In cases where more variable parameters need to be evaluated, adjacent figures that show different
angles can be used. The above presented routine does not provide this, it produces curves and figures
for several given parameters in parallel. To do adjacent figure sets an according number of Octave
instances can be run in parallel to better utilize an available multi-core processor. Octave per se
is strictly single threaded such that a sole simulation run cannot utilize multiple processing cores,
leaving a multi-core desktop PC or server fully responsible. It is possible, though not recommended,
to run more instances of Octave in parallel than there are processing cores. A three-dimensional
plane could as well be calculated and drawn, but calculation effort and depicting complexity typically
exceed the benefit.

Remarks on system behaviour and performance prediction using simulation techniques

Concluding the introduction of the simulation environment used shortly to evaluate stand alone traffic
management concepts and mechanism, we should note that simulating a technical mechanism is much
easier than its analytic treatment. Firstly, if we know a mechanisms realisation we can always and
without doubt imitate it in software. Secondly, strict bounds and rules can be incorporated without
restrictions, whereas for an analytic treatment we commonly need to either drastically simplify or
entirely ignore any non-linearities.

That simulation is not always the best approach becomes evident if the events that cause an entry
in the sample record are very rare. If this is the case, either the sample becomes too small for a
reliable statistical treatment or the time required to collect a sufficient sample becomes ridiculously
long. Manifold countermeasures to overcome this problem exist, statistical as well as procedural. To
be effective they tend to utilise a priory knowledge, which makes them problem specific and cause
sensitive. However, we also recognise problems if the system approaches instability. In this case
we get sufficiently sized samples, narrow confidence intervals, and no precision issues arise. Still,
the simulation results achieved become quite unreliable. This is shown in figure 3.76 together with
the plot of a generated system filling sample at %=1. These results were achieved using the precise
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Figure 3.76: Simulating M/M/10 at loads approaching %=1 and an Xm sample record at %=1

code presented above. Calculating the 51 samples across the evaluated load region in order to get
the E[Xm] shown lasted approximately 52 hours. Evidently we might split it up and do different
sections in parallel to better utilise the multiple cores of the processor. If merging of split results
is repeatedly required, a script to merge and draw the saved curves is definitely worth the effort.
However, correctly done the result is the same.

Obviously, the simulation core has no problems to simulate %= 1 with infinite systems. At this
borderline load the simulated system filling X seems to become chaotic, meaning that any statistical
mean value may result, as for example the encircled results in figure 3.76 show. From some trials
performed prior getting the depicted results we got the impression that E[X ] (%=1) increases with
the generated sample size. The shown examples contradict this impression whereas form analysis we
perfectly know that it should be infinite.

This discussion may be assumed academic because we know that infinite systems demand % < 1.
However, this effect also challenges simulation studies at loads close to % = 1. For sample sizes
which are perfectly sufficient at loads % < 0.95, as shown in figure 3.76, the results achieved at
higher loads fluctuate notably while the calculated confidence intervals do not correctly indicate that
appropriately, they remain closed. For our preferred sample sizes of 100k some of the simulated
results above 95% load appear quite off the analytic curve. The situation improves if samples of
means and mean squares are used, but only because withthese the confidence intervals open up.

However, it is the transient phase that actually becomes insufficient; for %= 1 it would need to be
infinite to actually reach the steady state. For the results shown on the left in figure 3.76 a transient
phase of 100k arrivals was chosen in any case. This shows that simple simulation studies may not
reveal extremes reliably.

A common approach to optimise (minimise) the simulation effort is to repeatedly calculate the
confidence interval of the gathered sample and to finish the simulation once it falls below a given
threshold, commonly ∆X < 1%. However, close to ’chaotic’ behaviour this condition may not be
met within reasonable time. Consequently, this option should be implemented as short-cut only,
never as the sole termination condition. Given the progress reporting loop, its implementation is
straightforward. In conjunction with returning mean values only, the condition is to be applied on the
confidence interval across the already gathered means and not for the currently gathered values.

Finally, it has to be noted that the routines presented here simulate the model and not a technical
mechanism or some realisation. These are provided to analyse models for which a closed form
analytic result is not at hand, and to validate the accuracy of approximations proposed in the literature
for such unsolved cases. Please proceed to the following chapters for examples on how to model
particular traffic management mechanism.



4 Traffic management

Modern communication networks are using different scheduling policies and congestion prevention
mechanisms to realise a variety of service classes within the packet switching layer. The intention is
to provide reliable quality of service (QoS) for traffic flows that demand a certain performance level.
Commonly, the applied mechanisms shall not degrade the mean performance of any flow, at least not
while ρ(t)< 1. Only during intervals with overload, when temporarily ρ(t)> 1, they become active
and privilege some flows over others. The privileging persists until the backlog from the overload
has been cleared. Overly differentiation can be disastrous. It is therefore mandatory to study the
impact of these mechanisms on any traffic flow, considering the mean impact on the individual traffic
flows as well as cross-effects that may relate specific flows. In particular, the mean and variance of
the end-to-end flow-times are to be carefully maintained in order to achieve the intended QoS levels
without jeopardising the service reliability.
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Figure 4.1: Different scopes and locations of traffic management mechanisms

Figure 4.1 depicts the different approaches to traffic management and their location along a flow’s
path across a network. Transport control and the scheduling of different flows at source nodes are
exterior mechanisms, whereas ingress control and quality of service realisation are interior functions
of the data transmission network controlled by an operator.

Payload re-assembly at the destination is mentioned because it generates the feedback required
for end-to-end transport control. The external service rate to process received data packets µout we
commonly model as infinite, as of today the processing speed of end-systems exceeds by magnitudes
the capacity of today’s access network data channels, defining the line rate µk. Assuming so, the
payload re-assembly process depends on the inter-arrival time to the destination queue only.

On the other side, µin states the speed of the up-link from the customer equipment to the edge
node. This link may contain a chain of access providing devices, even an entire company LAN if
present. Still, common LAN speeds exceed the capacity of today’s access network data channels
by magnitudes, such that practically the access network’s data channel determines the effectively
available data transmission rate µ1.

Egress nodes, being the network’s edge node next to the flow receiving destination, typically do
not influence the data flow in a way different from that of core nodes. However, if the destination
side access network capacity λout is the least along the path, the egress node will contribute most to
the end-to-end delay.
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At the ingress side, among the traffic source and the edge node it connects to, we commonly
find some means to perform active access control. Primarily to avoid collisions but also to distribute
the access capacity in a fair way. If the traffic patterns vary heavily or the number of sources is
rather unbounded and a jointly accessed shared medium is used, we commonly find demand driven
control strategies. The traffic sources communicate their demand to a central control instance, which
than assigns the resources to the requesting terminals, such that all are served and no collisions
occur (access scheduling). This approach is widely used to control wireless as well as wired access
networks operated in a collision free shared medium regime. If the traffic pattern is more stable or the
number of traffic sources rather small, this two-tier mechanism is better replaced by a one-tier polling
mechanism, where in principle all terminals are granted access one after the other. Only if a source
has nothing left to transmit, it returns or forwards the access granting token to the control instance
or the next source, respectively. To implement differentiation with polling, an optional scheduling
like policy can control (custom) how often and for how long the shared resource may be used by the
different traffic sources. In the literature we find many strategies to optimise fairness and at the same

Table 4.1: Sharing control strategies

approach features

demand scheduling two-tier
global demand awareness→ calculated temporary optimal serving
schedule← differentiation by schedule adjustment (privileging)

source polling one-tier
simple, very responsive, inefficient at low loads→ implicitly fair
resource sharing← differentiation by min/max-bounds (customs)

time assure service quality. Basically, perfect fairness and assured service quality for all sources state
opposing demands. Therefore, a universal optimum does not exist. The best per-hop sharing strategy
is always a compromise that depends on the assumed relevance of the opposing demands. Anyhow,
service quality cannot be granted by a single hop, but considerably hampered.

To implement MPLS the scheduling policies controlling the local sharing of resources are of
primary relevance, at edge and core nodes likewise. The resource sharing among MPLS flows is
solely controlled by the local scheduling policies. Every single resource along the entire transmission
path needs to contribute its share in a constructive way, such that in the end the intended service
quality is achieved – a chain of individual per-hop contributions that breaks if one link fails to
provide its share. Thus, the local QoS enforcement at every involved node is central to achieving an
intended end-to-end service differentiation.

Extending the focus from single links to networks, the distribution of traffic across the links
and nodes of the network becomes relevant. This is controlled by the routing algorithm and the
protocols implementing it. Several approaches to achieve efficient load balancing are available
and in practice used. The topic is huge and rarely studied in relation to queueing models, and thus
also not covered. Instead, we assume the aggregate traffic flows transported in between nodes are
given (set). A mechanisms to improve the transport performance without changing the present mean
load (smoothing) is evaluated by means of queueing models in section 4.2.3.

Finally, ingress control and ingress limiting represent mechanisms applied on the surface of data
networks to control the traffic inserted. The former is based on feedback provided by the network
and demands a feedback controlled queueing model, whereas latter is commonly applied rather
statically, reflecting the paid for service level agreement (SLA). In contrast thereto is admission
control a mechanism to grant or reject access, intended to protect the infrastructure and commonly
specified in terms and conditions. Concerning network feedback we note that due to the inevitable
time lags a detailed but outdated knowledge is inferior to a smartly approximated, problem oriented,
location specific, and timely received feedback. Smart data networks better rely on autonomous,
locally maintained, globally cooperating traffic management architectures.
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4.1 Resource sharing

In this section we discuss three concepts widely used with communication networks to smartly handle
concurrent resource demands. In contrast to the comparably static multiplexing techniques used on
the physical layer, which for example provide space-, time-, frequency-, or code-division-multiplexed
channels, the techniques discussed here apply for a shared usage of theses physical channels (in
particular their capacity) to either transport potentially more data flows in parallel than channels are
available, or to utilize the physical channels in parallel to transport the present flows most efficiently
over the joint capacity available. Both scenarios yield a finite multi-server queueing system, where
the channels are represented by the n servers and the backload of each flow defines its own queue,
as shown in figure 4.2. The dynamic assignment of resources, per load unit, is possible because
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Figure 4.2: Resource sharing: m flows transported over n channels composing a link.

packet switching commonly implies the store-and-forward principle. This is technically less efficient
than cut-through switching, but essential to realise statistical multiplexing of dynamic data flows.
Today, most traffic flows show a varying momentary load; even voice and video signals became
varying due to the content sensitive compression mechanisms now used. Thus, the disadvantage
of store-and-forward switching is widely compensated by the efficiency gained from statistical
multiplexing.

4.1.1 Egalitarian resource sharing

If the available capacity is equally assigned to populated queues, we achieve egalitarian sharing,
which approximates egalitarian processor sharing (section 3.3.3). The major difference is that the
load is not served in parallel but one-by-one. This has the important drawback that the head-of-line
blocking caused by huge packets persists. To achieve a better match, which at least partly evades the
head-of-line issue, we need a multi-server approach, where the servers, representing the physical
transmission channels available, are assigned to queues flexibly. Table 4.2 highlights the two cases to
consider, where j(t) states the number of currently populated queues, and k(t) the number of servers

Table 4.2: Assigning n servers to m queues

scenario serving policy

j(t)≤ n → k(t) = n
j(t) ≥ 1 serve all populated queues in parallel, in average

assigning an equal number of servers k(t) to each

j(t)> n → k(t) = n
j(t) < 1 serve n queues in parallel with one server each,

rotate served queues packet-by-packet (round-robin)

assigned to each of the currently non-idle queues.
The number of servers k(t) assigned depends on the number of populated queues only, k(t) = n

j(t) ,
and needs adjustment whenever a formerly idle queue becomes populated or a currently served
queue becomes idle. Hardly this can be achieved instantly. But more seriously, the calculated k(t) is
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rarely an integer number. However, with some engineering this can be approximated by assigning
k̃(t) = (dk(t)e,bk(t)c) to queues and toggling these numbers among queues packet-by-packet, such
that in average the calculated k(t) service share is assigned to each populated queue. This costs some
performance and is in general not perfect because the re-assignment of more or less servers can only
be performed in between packet transmissions. However, it at least approximates the fairness required
to achieve egalitarian resource sharing. On the other hand, any k(t)> 1 causes another engineering
problem, namely the re-assembly of packets at the destination side, particularly challenging if packets
are transported bit- or byte-wise spread across parallel channels while the channels used change
packet-by-packet. This necessitates buffers and the transmission of some control information along
with the packets, which causes even more overhead that again costs some performance.

Transmission overheads and timing issues are commonly not considered on the network layer
of packet switched networks. Commonly, they are seen as lower layer costs not related to the
problems handled within the network layer. Thus, we no further investigate egalitarian resource
sharing and assume henceforth that any real numbered resource share can be assigned to any queue.
The performance loss caused by lower layer issues is presumed a priory subtracted in the capacity
provided to the network layer. That it may depend on the current load is for simplicity ignored.

In figure 4.3 simulation results for M/M/9/es are compared with the performance of perfect
egalitarian sharing (processor sharing – PS), which for the evaluated metrics equals M/M/1 (see
section 3.3.3). Evidently, the queue filling depends on the load shares contributed, and therefore
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Figure 4.3: Packet based egalitarian sharing M/M/9/es simulation results (×) compared to
same capacity M/M/1 system (solid lines), assuming Poisson distributed packet arrivals, negative
exponentially distributed holding times (packet lengths), and a load split ρi
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are the mean queue fillings E[Xi] not identical. The mean system filling E[Xg] is slightly above the
reference curve, which we get for M/M/1 and M/M/PS. Consequently, also the mean flow time E[Tf ]
is slightly above the reference curve. However, in contrast to the queue filling, up to quite high load
(>0.75) we observe nearly no differentiation of the individual mean flow times E[Tf (i)]. This equals
the behaviour of processor sharing M/M/PS and a single infinite queue M/M/1. Above, for %>0.75,
the observed mean flow times E[Tf (i)] diverge from the ideal case, showing the influence of the
head-of-line blocking, and that less filled queues are privileged at high system loads. This behaviour
causes a penalty on heavy flows, which effectively occurs when the system is in a critical load state
only. Thus, in case the ingress load is controlled by a round-trip-time dependent mechanism, for
example TCP, the flows responsible for the high load (ρi>

%
|i| ) are affected earlier than flows that

cause less than the average load per flow. Commonly, such a behaviour is welcomed because it
assures that no flows starve.

For a given number of flows the egalitarian serving strategy can be modelled by a continuous
time Markov chain. For presentation clarity we restrict the model depicted in figure 4.4 to two
servers and two flows. In theory this can be extended to any number of servers and flows. However,
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Figure 4.4: M/M/2/es continuous time Markov chain model for two flows and infinite queues
(arrival transitions are shown in light grey, negative bent for λ1 and positive bent for λ2, as for departures)

for increasing numbers of either, the continuous time Markov chain quickly becomes hard to grasp
because all server occupation variants need to be modelled as individual subsets, each itself with
dimension equal the number of flows. The number of such subsets required is defined by the number
of possible variations with repetitions, which is given by

(
nf +ns−1

ns

)
=

(nf +ns−1)!
ns! (nf −1)!

where nf is the number of flows, and ns the number of servers n. For twelve flows and eight servers
we get 75582 twelve dimensional subsets. In addition, also the edges are rather tricky. At the edges
we need to separate states where the same server occupation pattern occurs but packets are served by
different number of servers. For example, one packet of a flow may be served by one servers, another
by three, depending on the number of servers assigned to the packet that last departed. These different
states cannot be merged into a state where two packets are served by four servers because the paths
to the idle system are different – as shown in figure 4.4. Thus, for practical system assumptions it
may be intractable to state the continuous time Markov chain. The mechanism per se is evidently not
burdened by this state explosion; it comprises nf (t) queues and one selection mechanism managing
all the servers. Thus, the real system’s complexity grows linear with the number of flows nf , and is
independent of the number of servers.
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Returning to the two-flows case we realise that it is not possible to define repeating levels such
that we could use the matrix geometric method to solve this infinite system. If we group states such
that the total number of customers rises by one per level we get an increasing number of states, level
by level, and thus, there exist no repeating levels. Grouping into levels where only the number of
clients of one flow increases, results in repeating still infeasible levels because of the infinite number
of states per level.

To approximately evaluate such a system analytically, we may try to decompose the state diagram
into tractable subsystems. We identify four regions: the idle system (0), two edge regions where
only one queue is occupied and served (1), and the remaining region where all queues are served
in parallel (2). Assuming equal holding times µi = µ, we can approximate the round-robin service
in region (2) by an M/M/1 system with a virtual service rate µ(nf )= nµ

nf
, according to the egalitarian

service policy specified in table 4.2. The edge regions (1) can be approximated by an M/M/1 system
with service rates µ(1) = nµ, where we marginalise the special states with different server assignment
per packet served. Note that for now the super-positioned indices (j) stated with service rates indicate
the number of flows served rather than the index i of the flow served or the j-th moment. In the idle
state (0) the service rate µ(0) is undefined and irrelevant.

Based on this decomposition the M/M/2/es system performance might be approximate by
weighted sums of the performance metrics we get from the simple M/M/1 systems identified, at
according loads. The weighting factors w(j)

i are the normalised probabilities for the system being in a
region. Assuming independent and identically distributed arrivals and µ=1, we get

p[0,0] = p(X1= 0∩X2= 0) = (1− ρ1
1−ρ2

)(1− ρ2
1−ρ1

)

p[1,0] = p(X1> 0∩X2= 0) = ρ1
1−ρ2

(1− ρ2
1−ρ1

) → w(1)
1 =

p[1,0]
p[1,0]+p[1,1]

p[0,1] = p(X1= 0∩X2> 0) = (1− ρ1
1−ρ2

) ρ2
1−ρ1

→ w(1)
2 =

p[0,1]
p[0,1]+p[1,1]

p[1,1] = p(X1> 0∩X2> 0) = ρ1
1−ρ2

ρ2
1−ρ1

→ w(2)
1 =

p[1,1]
p[1,0]+p[1,1]

, w(2)
2 =

p[1,1]
p[0,1]+p[1,1]

⇒ E[Xi]M/M/2/es ≈ w(1)
i E[Xi]

(1)
M/M/1 +

ρi
ρ1+ρ2

w(2)
i E[Xi]

(2)
M/M/1 = ρi

(
w(1)

i
1−ρi

+
w(2)

i
1−ρ1−ρ2

)

E[Tfi ]M/M/2/es ≈ w(1)
i E[Tfi ]

(1)
M/M/1 +w(2)

i E[Tfi ]
(2)
M/M/1 =

w(1)
i

1−ρi
+

w(2)
i

1−ρ1−ρ2
=

x̂i

ρi

where the last relation complies with Little’s law N=λT . However, figure 4.5 reveals that this is no
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Figure 4.5: M/M/n/es system approximation by independent M/M/1 models

viable approach to an effectual approximation. The result heavily overestimates the true performance,
indicating that the interaction among flows is not sufficiently covered by the M/M/1 sub-models that
result per queue-occupation-pattern~x.
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Alternatively, we can assume a service process that integrates different service rates µ(j) with
according probabilities, being the normalised weights w(j)

i , with ∑nf
j=1w(j)

i =1 ∀i, as shown in figure 4.6.
This model resembles a hyper-exponential service process, which is likely, given the sharing approach,
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...

µ(j)

...

µ(nf)

λi

Xi

si

w(1)
i

w(2)
i

w(j)
i

w
(nf )
i

Figure 4.6: Approximate per flow model resulting from decomposing an M/M/n/es system

but also reveals a critical shortcoming of the model: the model assigns service rates randomly to
adjacent packets, which the true system never does. Thus, higher moments derived via this model
will most likely not approximate those of the true system.

To get the required parameters we extend the decomposition to more flows and servers by adding
regions for every possible queue-busy-or-idle vector~x = [〈1,0〉|Xk>0]. Their probabilities p~x yield
the weights w(j)

i , and the number of busy queues j gives their virtual service rates µ(j)

p~x = ∏
Xk>0

ρk

1−∑
i 6=k

ρi
∏

Xk=0

(
1− ρk

1−∑
i 6=k

ρi

)
→ w(j)

i =

∑
|~x|=j
Xi>0

p~x

∑
Xi>0

p~x
and µ(j) =

nµ
j

(4.1)

where to achieve the weights per flow i, the sum in the nominator covers all regions where the number
of busy queues equals j, |~x|= j, and where the flow’s queue is not idle, Xi > 0. The denominator
provides the normalisation to ∑nf

j=1w(j)
i =1. The idle state p~0 is a unique region, where w(0)

i =0∀i as
required. Also unique is the fully busy region p~1, where Xk>0∀k. However, for latter we get finite
weights w(n f)

i , which are not equal due to the flow dependent normalisation by p(Xi>0) = ∑Xi>0 p~x.
If we assume equal µi, as in equation 4.1, the service rates µ(j) do not depend on the present flows,
only on their number j. With unequal service rates µi this does not hold, and for each possible region
(queue-busy pattern~x) an individual service rate µ(j)~x and weight w(j)

~x|Xi>0 needs to be calculated, and
individually included in the model as dedicated service phase.

To calculate the approximate performance metrics we either apply the M/G/1 results (Pollaczek-
Kintchin mean value formulas) presented in section 3.1.3, together with the known formula for the
first two raw moments of the hyper-exponential service time, E[Th]Hk

= ∑ αj
µj

and E[T 2
h ]Hk

= 2∑ αj

µ2
j
,

each summed over all service-time options, as outlined in section 2.1.2, or use the Matrix geometric
method presented in section 3.1.6. For finite queues the Matrix analytic method presented in
section 3.2.3 is applicable. However, note that the approximate analytic models are to be solved for
the load ρHk(i) = λi E[Th]Hk(i), where both, the mean holding time E[Th]Hk(i) and the arrival rate λi, are
model specific: E[Th]Hk(i) ≥

1
nµ according to the hyper-exponential service process, and λi =

1−p0(i)
E[Th]Hk(i)with p0(i) = p(Xi=0) being the probability that the queue of flow i is idle, such that in the end

we have ρHk(i) = 1− p0(i) = p(Xi>0). The different results for different flows, E[Xi] and E[Tfi ],
result from the different models analysed per flow given the different weights w(j)

i found per flow i
(equation 4.1).

How well this approximate model predicts the true performance metrics, in particular the mean
system filling E[Xi] and the mean flow time E[Tfi ], is shown in figure 4.7. The approximate model’s
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mean metrics (solid lines) are achieved using the Pollaczek-Kintchin mean value formulas together
with the known moments of the hyper-exponential service process sketched above. Doing so, we get

E[Xi]≈ λi E[Th]Hk(i)+
λ2

i E[T 2
h ]Hk(i)

2(1−λi E[Th]Hk(i))
= λi


∑ w(j)

i
µ(j)

+
∑ w(j)

i

µ(j)2

1
λi
−∑ w(j)

i
µ(j)


 (4.2)

E[Tfi ]≈ E[Th]Hk(i)+
λi E[T 2

h ]Hk(i)

2(1−λi E[Th]Hk(i))
= ∑ w(j)

i
µ(j)

+
∑ w(j)

i

µ(j)2

1
λi
−∑ w(j)

i
µ(j)

=
x̂i

λi
(4.3)

where all summations are taken over all flow counts, j = 1.. nf .
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Figure 4.7: M/M/n/es system approximation by flow specific M/Hk/1 models

Comparing the approximate analytic results (solid curves) with the simulations results (×), we
recognise that the model fits quite well at low loads, whereas at medium loads it underestimates
the true metrics, and finally at very high loads it overestimates the true metrics. Thus, it neither
provides an upper nor a lower bound. We conclude, that here decomposition is a viable but in its
utility problematic approach to analysis simplification.

Actually, the required calculation of all p~x implies a permutation, which rises a scalability issue.
However, the complete continuous time Markov chain representing an M/M/9/es system serving
three flows comprises 55 three dimensional subsets, which for a finite system with queue size si = 10
results in around 55×310 = 3247695 states. Numerically this can be solved; however, the effort
to set-up, cross-check, and finally solve such huge equation systems may not be appreciated if
sufficiently accurate results can be achieved more efficiently. The decomposition outlined yields
2nf queue filling patterns, each representing a potential serving performance, defining a phase of the
Hk model. In case of flow independent holding times this number reduce to nf phases only. The
number of servers n has no impact on the complexity of the decomposed models because the n
servers are replaced by a single virtual server with load dependently varying holding time.

Hereinafter we generally assume that a link’s capacity is available in total, meaning the aggregate
capacity of the link is not split into individual physical channels. This simplification allows us to
restrain the system modelling to the more convenient GI/G/1 queueing models, and in addition,
maybe even more importantly, it renders the models and evaluations based thereon independent of
the physical layer implementation. Thus, the models developed henceforth do not dependent on how
the data transmission among nodes is actually realised. Figure 3.5 in section 3.1.1 and figure 3.21 in
section 3.1.5, comparing single server and multi server systems with identical total capacity, give an
idea on the expectable deviation from reality.
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4.1.2 Traffic prioritisation

The most common and straightforward discipline to implement differentiation is prioritising the
packets of one flow over those of other flows. Typically, more than two levels are required, and while
the highest priority does achieve guaranteed performance, the performance of intermediate levels is
difficult to predict if the load of higher privileged loads is not static.

Concerning traffic prioritisation we note three basic issues, which are summarised in table 4.3.
First, the global equilibrium law states that the average performance cannot be improved. This implies

Table 4.3: Implicit issues of prioritisation

issue consequence

global equilibrium law improved average performance is not possible
state dependent µi(t) load dependent correlation among departing flows
flow discrimination neutrality and best effort concepts are violated

that nodes always offer their full capacity to serve all demands as good as possible. Consequently,
if the current load is entirely comprised of loads belonging to the same priority class, the achieved
performance must equal the average system performance, irrespective of the chosen priority level. If
differently prioritised loads are processed, the improvement experienced by higher prioritised loads
causes less prioritised loads to experience worse than average performance.

Second, an improvement comes at some price. First, the overhead required to implement
prioritisation will slightly deteriorate the average system performance. The other price to be paid is
the introduced correlation among differently prioritised flows. An initially smooth low priority flow
departs as a bursty flow because its serving is stochastically interrupted by the highly prioritised load
batches that randomly build up in the high priority queue, being the respective queue filling xi(t).
These batches cause temporary starvation, which in case of overload becomes persistent.

Finally, prioritisation contradicts the neutrality concept, which enforces the egalitarian golden
rule to serve all demands as good as possible, also known as the best effort scheme. This may be
considered optional. However, simple network planning and quality assessment strategies may be
based on fairness and equality assumptions. In consequence, the achieved performance my diverge
considerably from the expected performance, if a discrimination mechanism is not considered in
sufficient detail by the applied planning and quality assessment tools.

Concerning lower layer packet transmission, we should note that the integrity of a transmitted
packet is essential for its processing at the receiving node, in particular for error detection and
correction mechanisms, being prime features of digital communication. Thus, simple pre-emption
demands service restart, causing increased network load and less efficiency. A scheme to resume
service, meaning to receive packets in timely displaced data chunks, might be implemented. However,
specific signalling and a sufficient guard time seem inevitable to separate the data belonging to the
pre-empted packet from that of the pre-empting packet. The introduced time lag likely corrupts the
marginal benefit of pre-empting a comparably short service interval. Pre-emption, as commonly
applied, seems primarily an option for long holding times, where signalling is effective more or less
instantaneously.

Strict priority systems with infinite queueing space

Practical queue sizes can be very large, causing an intractable number of states, particularly if also
many priority levels (classes) exist. In this case we can approximate the performance by infinite
queues, assuming that losses due to queue saturation are negligible. This approximation is feasible
for a total load ρ<1 only, where ρ = ∑m

i=1 ρi, ρi =
λi
µ , and m is the number of priority classes,

assuming independent and identically distributed service times Th. For ρ<1 the probability of n
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waiting customers decreases exponentially with increasing n, such that for very large queues the
blocking probability for ρ�1 is negligibly small.

We thus can approximate a strict priority queueing (SPQ) system by an M/G/1 queueing system.
The distribution of arrivals among different service classes i, i = 1,2, .. ,m, is given by pi =

λi
λ ,

where λ = ∑m
i=1 λi, and we assume here increasing indices for ascending priority levels. To derive

the performance per service class i we use the remaining work approach and note that for the
chosen queue leaving discipline the number of clients in the system equals the current queue filling
X(t)=Q(t). The average waiting time tW = E[TW ] is independent of the scheduling discipline and
comprises two factors: the mean remaining service time tr of the currently served client plus the
service times E[Th] =

1
µ of the waiting clients n(i), which per service class contributed n(i)

µ to the
waiting time. We may thus write

tW = tr +
m

∑
i=1

n(i)
µ

= tr +
m

∑
i=1

λi tW (i)
µ

= tr +
m

∑
i=1

ρi tW (i) (4.4)

where tW (i) is the mean waiting time of class i clients until serving starts, and n(i) = λi tW (i) applies
Little’s formula to get the number of waiting clients excluding the currently served. For M/G/1 we
derived in section 3.1.3 E[TW ] = λ

2(1−ρ) E[T 2
h ] (equation 3.34) and using this with equation 4.4 we get

tW − tr =
m

∑
i=1

ρi tW (i) = ρ tW =
ρλE[T 2

h ]

2(1−ρ)
(4.5)

which is independent of the scheduling discipline and mathematically expresses that whenever
by prioritisation the mean waiting time tW (i) of some classes is in average reduced, this must be
compensated by increased mean waiting times tW ( j) for other less privileged classes.

To calculate the mean residual server occupation time tr, being the time until the next client can
be served, we use the remaining service time E[Tr] =

E[T 2
h ]

2E[Th]
= µ

2 E[T 2
h ], which applies when a client

is actually served, and multiply it with the probability that a client is served pi>0 = 1−p0 = ρ:

tr = ρ
µ
2

E
[
T 2

h
]
=

λ
2

E
[
T 2

h
]

(4.6)

To calculate the mean waiting times tW (i) = E[TW (i)] for different service classes we need to
consider that lower prioritised classes are never served prior the one we investigate, while higher
prioritised clients are served prior the observed until all their queues are idle. Latter can be split in
two groups: those that in average are already waiting when the test client arrives, nj = λj tW (j), and
those that arrive while the test client is waiting, mji = λj tW (i). The mean waiting time for class i can
thus be composed as

tW (i) = tr +
m

∑
j=i

nj

µ
+

m

∑
j=i+1

mji

µ
=

= tr +
m

∑
j=i

λ j tW (j)
µ

+
m

∑
j=i+1

λ jtW (i)
µ

= tr +
m

∑
j=i

ρj tW (j)+ tW (i)
m

∑
j=i+1

ρj (4.7)

where j≥ i occurs because we assume ascending class indices for increasing priority and FIFO for
clients of the same class. To cover other ordering conventions, the summation bounds need to be
adjusted accordingly. Finally we rewrite equation 4.7 sucht that the mean waiting time tW (i) can be
calculated recursively, starting with the highest level tW (m):

tW (i)− tW (i+1) = ρi tW (i)+ tW (i)
m

∑
j=i+1

ρj + tW (i+1)
m

∑
j=i+2

ρj

tW (i)
(

1−
m

∑
j=i

ρj

)
= tW (i+1)

(
1−

m

∑
j=i+2

ρj

)
⇒ tW (i) = tW (i+1)

1−
m

∑
j=i+2

ρj

1−
m

∑
j=i

ρj

(4.8)
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With i=m we get from 4.7 tW (m) = tr +ρm tW (m) ⇒ tW (m) =
tr

1−ρmand applying 4.8 can recursively calculate all tW :

tW (m−1) = tW (m)
1−∑m

j=i+2 ρ j

1−∑m
j=i ρ j

=
tr

1−ρm
· 1

1−ρm−ρm−1
=

tr
(1−ρm)(1−ρm−ρm−1)

tW (m−2) = tW (m−1)
1−ρm

1−ρm−ρm−1−ρm−2
=

tr
(1−ρm−ρm−1)(1−ρm−ρm−1−ρm−2)

tW (m−3) = tW (m−2)
1−ρm−ρm−1

1−ρm−ρm−1−ρm−2−ρm−3
=

tr
(

1−
m

∑
j=m−2

ρj

)(
1−

m

∑
j=m−3

ρj

)

Generalised, the mean waiting time per class i, tW (i), results:

tW (i) =
tr

(
1−

m

∑
j=i+1

ρj

)
+

(
1−

m

∑
j=i

ρj

)
+

=
λ
2 E[T 2

h ](
1−

m

∑
j=i+1

ρj

)
+

(
1−

m

∑
j=i

ρj

)
+

(4.9)

With some care equation 4.9 may be applied even for ρ>1 when we replace a negative multiplier
in the denominator by zero, indicated by ( ..)+, such that positive infinite waiting times result for all
classes for which ∑m

j=i ρj>1 occurs. These classes are in average never served, which is known as
starvation, and constitutes a major drawback of SPQ systems.

Finite SPQ systems

The strict priority discipline prefers higher prioritised flows over less prioritised traffic flows, unaware
of the current load level. In case all queues are finite, the system remains stable even for overload,
and theoretically, complete starvation never occurs. However, in case ∑m

j=i ρ j>1 most packets from
flows with priority ≤ i will be lost due to saturated queues, causing an effective service starvation. A
serious data transmission service cannot be maintained in such a situation.

To model finite SPQ we assume that the packets of different flows enter individual priority queues
according to some per flow control information provided in-line (header field) or a priori (signalling
plane). Thus, different priorities are not assumed to be assembled into a single flow. Per queue the
applied discipline is first-in first-out, such that all packets within a queue are peers. This is briefly
sketched in figure 4.8 and the processing of packets follows a rather simple rules set:

Figure 4.8: Strict priority queueing – SPQ

• serve the highest populated priority queue until it becomes empty,
• serve next lower queue until empty or higher priority queue become populated,
• finish packet transmission before switching to higher priority queues.

The processing of a packet is commonly not interrupted because with communication networks it
does not make sense to interrupt the transmission of a packet once it has been started. Thus, the
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server is not preempted, and conseuently becomes the serving of the higher priority packet delayed
by the recurrence-time required to finish the transmission of the packet currently served.

To achieve a utile SPQ model we need to assume at least three priority levels. Two levels
would be sufficient to study the performance of the highest and the lowest priority, because from
the viewpoint of either, the other may be approximated as the aggregation of many levels. However,
the most interesting levels are the intermediate ones. In addition, due to assuming non-preemptive
service, the lower priority traffic cannot be neglected as in the preemptive case assumed widely and
the literature [96, 97].

Covering three priority levels (queues) results in a three-dimensional state transition diagram. In
addition, we need to consider which queue is currently served, splitting the states representing equal
queue filling into three potential sub-states. In consequence becomes the state transition diagram
quite complex and the resultant Q-matrix grows cubic. Figure 4.9 shows the smallest possible state
transition diagram, where the queues provide space for a single client per priority level only, waiting
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Figure 4.9: Minimal SPQ: state transition diagram and Q-matrix for one packet per queue

or in service, due to the leave-after-service regime assumed. The Q-matrix of this minimal system has
size 13×13, which is huge compared to the 2×2 matrix of a single queue with s=1 (M/M/1/1). As
before with egalitarian sharing, there exist no repeating levels of equal size and internal transitions,
as it would be required to apply the matrix analytic method (section 3.2.3).

To evade the scaling issue we decompose the system into sub-models that approximately cover
the behaviour. We recognise that the server is not available to a queue whenever a higher priority
queue is populated. The server goes on vacation until all higher priority queues are again emptied.
Thus, the approximate model of choice is the vacation model.

A core problem is the vacation period. It is composed of a varying number of service phases,
its duration is mixed Erlang distributed, if we assume priority independent holding times µi = µ, or
generalised mixed Erlang else. However, in [97] it is shown that with high accuracy this vacation
period can be approximated by a Cox-2 model.

Here, we approximate it with a single negative exponentially distributed phase, for simplicity and
to outline the principle. An extension to Cox-distributed vacation times is straightforward, integrating
the parameter fitting presented in [97] instead of the rather simple probabilistic approach we use with
the vacation model depicted in figure 4.10. Anyhow, this sub-model does show repeating levels, and
thus, it can be solved using the Matrix Analytic Method introduced in section 3.2.3.

The arrival process in our example comprises a single Markov phase, which can be replaced by
any phase type distributed process.

rAi =
(

λi
)

αA =
(

1
)

qA =
[

0
]

D0(Ai) =
[
−λi

]
D1(Ai) =

[
λi
]
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Figure 4.10: A first vacation based approximate sub-model, state indices (Xi|iserved)

The service process is defined by the used vacation model,

rSi =

(
µj

µi

)
αSi =

(
pj

1−pj

)
qSi =

[
0 1−pj

0 0

]

D0(Si) =

[
−(1−pj)µj (1−pj)µj

0 −µi

]
D1(Si) =

[
0 0

pjµi (1−pj)µi

]

where µj =∑j<i
xj

∑j<i xj
µj is the presence weighted mean service rate of present higher priorities, and

pj =∑j<i P(xj>0) is the probability that higher priority queues are populated (at any time).

Based on this general per-priority model we can set up individual sub-models per priority queue
and recursively calculate the probability pj, for each sub-model representing queue i, and required
to solve the next lower priority queue’s model. Starting with the highest priority queue, for which
pj =0, and repeating this until the least priority’s sub-model is solved, yields the results shown in
figure 4.11. Comparing the analytic results (curves) with the simulation results (×) we recognise
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Figure 4.11: First M/M/1/9/sp approximation results, calculated (solid lines), simulation results (×),
equal holding times (µi=µ), load split ρi

% = {0.5|0.3|0.2} for decreasing priorities

that the approximate models tend to over-estimates the performance. For lower priorities the over-
estimation is followed by an under-estimation, causing the approximation to yield neither an upper
nor a lower bound.

The divergence is likely caused by missing the non-preemption related time-lag of one recurrence
time in case a lower priority queue is served when a customer of priority i arrives to an empty queue i.
To cover this we have to add a delayed service row (i|∗), as shown in figure 4.12. In addition to
the previous model we now also need the conditional probability that the other queues are idle
p∗0= ∏j 6=i p0(j), the net arrival rate of load entering higher priority queues λ∗j = ∑j>i (1−Pb( j))λj,
and the presence weighted mean service rate of lower priorities µ∗j̄ = ∑j>i

xj

∑xj>i
µj. Also note, this

per-queue model no more resembles a pure M/Ph/1/s system. Still, we have the level structure and



210 Gerald Franzl

0|0

1|0 2|0 s|0

1|1 2|1 s|1

1|∗ 2|∗ s|∗

λi λi λi λi

λi λi λi λi

λi λi λi λi

pjλi

p∗0λi

(1−p∗0−pj)λi

(1−pj)µj (1−pj)µj (1−pj)µj (1−pj)µj (1−pj)µj

µ∗j̄ µ∗j̄ µ∗j̄ µ∗j̄ µ∗j̄λ∗j λ∗j λ∗j λ∗j λ∗j

(1−pj)µi (1−pj)µi (1−pj)µi (1−pj)µi

pjµi pjµi pjµi pjµi

µi

Figure 4.12: Approximate sub-model considering non-preemption, state indices (Xi|iserved)

can define the sub-matrices A0,1,2 and Bs using adjusted D0,1(Si) matrices. The boundary transitions
differ, and the level sub-states include now a transient state (Xi|∗) that is not reached from repeating
states, only from the idle state.

D0(Si) =



−(1−pj)µj (1−pj)µj 0

0 −µi 0
λ∗j µ∗j̄ −λ∗j −µ∗j̄


 D1(Si) =




0 0 0
pjµi (1−pj)µi 0
0 0 0




For negative exponentially distributed arrivals with mean λi we get

A1(i) =



−λi− (1−pj)µj (1−pj)µj 0

0 −λi−µi 0
λ∗j µ∗j̄ −λi−λ∗j −µ∗j̄


 A2(i) =




λi 0 0
0 λi 0
0 0 λi




A0(i) =




0 0 0
pjµi (1−pj)µi 0
0 0 0


 Bs(i) =



−(1−pj)µj (1−pj)µj 0

0 −µi 0
λ∗j µ∗j̄ −λ∗j −µ∗j̄




and the lower boundary sub-matrices B0,1,2, all in accordance to figure 4.12.

B0(i) =




0
µi

0


 B1(i) =

[
−λi

]
B2(i) =

[
pjλi p∗0λi (1−p∗0−pj)λi

]

As before, using the derived sub-matrices we can set up individual models per priority level
and solve these. However, the newly introduced probability p∗0 and rate µ∗j̄ result from all the other
models, including lower priority’s sub-models. Therefore, we need to assume initial values for
pj, p∗0 ∈ [0..1], µ∗j̄ ∼ µ̄, and solve the system-of-models iteratively. We tried different initial values,
including the extremes, and they all lead to the same results. In the end we use pj = 0, p∗0 =1 as
starting point for the lowest load evaluated, and the values reached at the previous load point as initial
values for the next load point. We stop iterating when for all flows the system fillings xi, the blocking
rates δi and the throughputs ϑi stabilised sufficiently, meaning ∆xi,δi,ϑi <10−12 ∀i.

The results of the iterative calculation match the simulations results nicely up to a total system
load of ∼ 75% (%≤ 0.75), as shown in figure 4.13. Up to this load level the convergence constantly
worsens, meaning that the number of iterations per load point increases from 10− to 50+. This is
observed nearly independent of initial values chosen and the requested precision. However, above
this load, convergence is no more achieved if we set the precision to ∆ <10−15. Obviously, for
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Figure 4.13: Extended M/M/1/9/sp/np approximation, calculated (solid lines), simulation results (×),
equal holding times (µi=µ), load split ρi

% = {0.5|0.3|0.2} for decreasing priorities

these loads the iteratively calculated state probabilities of the sub-models fluctuate in behind the
12th decimal place. Above %=1 the convergence problem vanishes and convergence is very quickly
reached, as shown in figure 4.14. Although numerical calculation precision issues were not entirely
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Figure 4.14: Iteration loops required for second M/M/1/9/sp approximation example (figure 4.13)

excluded, it is unlikely that these are responsible here. More likely is in this load region the system
of sub-models not perfectly stable, meaning the joint solution space is not entirely concave. The
iteration than may get stuck, toggling in between two close local minima. The fluctuation in the
12th decimal place alone cannot deteriorate the results as considerably as shown in figure 4.13. The
sharp bend on the throughput trace also indicates that here some systemic/methodic issue snaps in.

Comparing the divergence among analytic results (curves) and simulation results (×) with that of
the previous approximation we recognise that the approximation quality is in average worse than that
of the previous, less complex approach. However, taking a closer look on the divergence caused by
this approach, we recognise that it yields a conservative performance prediction, particularly visible
for the flow times shonw in figure 4.15. The approximate results calculated with this model never
promise better performance than what the true (simulated) system actually offers. In that sense, this
model appears to be applicable as a performance predictor for QoS provisioning.

Figure 4.15 shows the flow time of SPQ for two different load-splits. For the same system
load very different mean flow times Tf result for the different priority levels, and the simple model
assuming pre-emption underestimates in particular the mean flow time of the highest priority,
E[Tf,high]. As intended by SPQ, the medium priority service experiences considerably less delay at
the same system load, when less higher prioritised load is present. If we compare Tf,med for different
load splits but at the same high priority load, for example at %=1 on the left and at %=2.5 on the
right, than the much heavier system load causes a slightly increased mean flow time.
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Figure 4.15: M/M/1/sp mean flow time E[Tf ], simple (dashed lines) and conservative (solid lines)
approximation, simulation results (×), equal holding times (µi=µ), different load splits.

Many more evaluations of this resource sharing scheme are possible, we could for example
analyse the departure characteristics. The amount of freely selectable parameters makes a qualified
selection of system parameter yielding expressive results relevant for most parameter settings difficult.
The experienced problems with approximating the true behaviour show that the behaviour of such
internally entangled systems is no breeze. Here we end the analysis of strict priority systems and
draw some conclusions. Please refer to the rich literature on the topic, which spans decades of
research, for example [96–101] on more sophisticated methods to approximately analyse M/G/n/SP
queueing systems.

Noteworthy, prioritisation causes flow-times that approach infinity, even though the system
may be finite. This starvation potential, analytically expressed by equation 4.9 and clearly visible
from the vanishing throughput shown in figures 4.11 and 4.13, causes that for a communication
centric application, where a minimal performance is required for service survival, SPQ is rather
poor and should be used only when the total load from prioritised flows never exceeds the available
capacity. For a decentralised implementation this means that excessive prioritised arrivals need to
be discarded, for example by implementing a policy that guarantees some minimum capacity share
for lower prioritised traffic, the opposite of the policy presented in [101]. It can be anticipated that
in conjunction with smart transport control, for example TCP, such a policy is beneficial for both,
the privileged and the non privileged traffic flows, because it assures decreasing upper flow-time
bounds for increasing priority levels. Economically, strict prioritisation is a purblind approach to
QoS provisioning if the business models foresee a steady growth of high priority load shares. Only if
the relation among priority levels is well maintained, SPQ performs as intended.

The systems discussed next are based on weights rather than hierarchic priority levels and can
be adjusted more flexibly to changing situations, centrally via a network operation centre (NOC)
or distributed and flow centric, granting local privileges to demanding services. They manage the
resource shares accessible per flow as foreseen in the so called software defined networks (SDN)
operation paradigm. Accordingly, the mechanisms discussed in the following widely replaced most
other resource sharing mechanisms and represent the current state-of-the-art technique deployed.

4.1.3 Weighted scheduling

A traffic classification based resource sharing system is always bound to an a priori defined number
of classes and a rather static configuration of the per-hop-behaviour per traffic class. A valid approach
to overcome some shortcomings of this approach is class swapping, meaning to enable different
class assignments hop-by-hop. However, to achieve a perfectly flexible resource sharing scheme it is
necessary to switch from static traffic classes to traffic stream related weighting factors, extending the
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principle of class based queueing to a per flow level. A higher weight shall grant better service, and
all flows shall be handled in parallel, such that they influence each other no more than inevitable.

We already evaluated a model that achieves this. In section 3.3.3 we present discriminatory
processor sharing (DPS) and mentioned its sibling, generalised processor sharing (GPS). However,
right from the start we had to commit that processor sharing models presume infinitely dividable
fluid like traffic. We thus surmised that the models represent optima, which practical resource sharing
systems may intend to approach. In this section we introduce and analyse packet scheduling systems
that intend to approximate processor sharing on a packet-by-packet basis.

Weighted fair queueing (WFQ)

The basic scheme has been presented as early as 1989 by Alan Demers, Srinivasant Keshav, and
Scott Shenke in [102]. A very similar approach based on virtual clocks is presented in [103] by Lixia
Zhang. Since than several more variants evolved.

Weighted fair queueing (WFQ) offers upper-bound waiting times and has been proven to grant
upper bound end-to-end delay, if combined with leaky bucket based ingress flow limitation, as noted
in [104] and elsewhere. WFQ achieves a weighted distribution of the available serving capacity
considering the variable packet size when these arrive, and thereby it approximates generalized
processor sharing (GPS) very well. While GPS requires infinitely dividable loads, packets commonly
need to be transmitted one-by-one to maintain their integrity, at least logically, on a per-hop
perspective. WFQ eliminates the thereby risen head-of-line blocking issue quite effectively by
a scheduling policy that smartly considers different packet sizes.

�
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transmit packet

arriving packet store

∑
j

gj xj(t)
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+
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get next (min{t̂d})

−gj

a(j,kd)

Figure 4.16: Block diagram for weighted fair queueing (WFQ)

To approximately achieve this fluid like sharing performance the scheme depicted in figure 4.16
is commonly applied: When packet ka with weight gi arrives, an expected flow time τ̂ f (i, t) is
calculated, based on the current service share σi(t) (equation 3.108) and the arriving packet’s
length `ka = µτh(ka)

τ̂ f (i, t) =
τh(ka)

σi(t)µ
= τh(ka)

∑j gj xj(t)
gi µ

where gi and τh(ka) are the assigned weight and the holding time of the current arrival ka from flow i,
and gj and xj(t) are the weights and the number of scheduled packets of all currently present flows.

The required weighted sum ∑j gj xj(t) results simply from successive adding and subtracting of gj

as arrivals and departures occur, respectively. It does not depend on the current arrival, and can thus
be maintained independently in control memory, such that it is not re-calculated arrival-by-arrival.
Adding the calculated flow time expectation τ̂ f (i, t) to the packet’s arrival time ta(i,ka) we get the
expected departure time:

t̂d(i,ka) = ta(i,ka)+ τ̂ f (i, t)
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This t̂d(i,ka) is than used to schedule the packet’s processing by inserting the address of the memory
block buffering the arrived packet in a td-sorted transmission list. Whenever ready to handle the next
packet (kd), the transmitter of the according out-port picks the first address from this list and transmits
the thereby addressed packet, freeing the used memory blocks once transmission is accomplished.

Note, a small packet arriving shortly after a huge one will be scheduled prior the huge one.
This anomaly mitigates the head-of-line blocking issue at the price of out-of-order transmission.
In general, transmitting packets of different flows not in the order they arrived rises no problem.
Only for packets of the same flow this may be an issue. Per flow in-order transmission is granted
for equally sized as well as sufficiently spaced packets. Thus, flows with bursty inter-arrival and
holding time distribution will be severely affected. However, means to efficiently handle out-of-order
transmission should be available at any destination’s network terminal in order to support simple
services that presume ordered packet reception.

To analyse the performance of WFQ we may either refer to the generalised processor sharing
(GPS) model [105], or the discriminatory processor sharing (DPS) presented in section 3.3.3. Both
are fluid policies, where the flow specific resource assignment is achieved by introducing weighting
factors gi that cause an uneven assignment of the total processing capacity µ to the individual present
flows i. The service share σi(t)=

µi(t)
µ is according to [105] lower bounded by

σi(t) =
gi xi(t)

∑j gj xj(t)
≥ gi

∑j gj
(4.10)

where gj is the weight of flow j, and xj(t) indicates a flow’s presence (1 if present, 0 if not). With
DPS xj(t) states the number of customers of class j currently present (in service). Note that this is the
same as if we would open multiple queues for flows with the same weight gj. However, the bound
does not hold for DPS, where j relates to the number of weights and not the number of flows, and as
’bound’ it is quite useless because it drops to zero if the number of flows rises to infinity. The true
value of equation 4.10 is that it mathematically proves that the relation among granted shares equals
that of the weights. Thus, a flow with a smaller weight never gets more shares than one with higher
weight, while the full capacity is always provided (best effort).

This guaranteed minimum service share allows us to state an upper bound for the mean flow
time E[Tf,i] per flow. To do so let us assume a virtual, decomposed single queue M/G/1 system with
service rate µ′i = σi µi based on the minimally granted service share σi = mint σi(t) =

gi
∑j gj

, as for
example shown in [106]. According to equation 4.10 this service rate is guaranteed to be less than
the service share with which the queue is actually served. Applying the results known for M/G/1 we
can thus immediately state an upper bound

E[Tf,i]M/G/WFQ ≤ E[T ′h,i]+
λi E[T ′2h,i]

2(1−λi E[T ′h,i])
=

1+ λi
µi σi

c2
S,i−1

2

µi σi−λi
(4.11)

where E[T ′h,i] =
1
µ′i

and ρ′i = λi E[T ′h,i] are the mean holding time and the mean presented load of the
decomposed M/G/1 system, respectively. The final bound based on parameters defined in respect
to the WFQ system we get from E[X2]= (1+ c2

X)E[X ]2= (1+ c2
X)/µ2

X , where the coefficient of
variation cS,i of the holding time is evidently the same with both systems. For negative exponentially
distributed holding times, cS,i=1, we get E[Tf,i]M/M/WFQ ≤ (µi σi−λi)

−1.
Noteworthy, the stated upper bound depends on the flows own load contribution only, and not on

the loads presented by other flows. This feature is commonly referred to as flow isolation. However,
for λi ≥ µi σi the bound becomes infinite because the decomposed system becomes overloaded. This
is shown in figure 4.17 for different load splits and weight assignments. Therefore, the bounds
yielded by equation 4.11 are in general not sufficient to prove that WFQ outperforms SPQ by granting
TDM alike minimum service rates per flow. The tightest bounds, those that prove granted shares, are
found for the special case where the load split equals the relative weighting, ρi

% = gi
∑ j g j

.
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Figure 4.17: Simple WFQ flow time bounds according to equation 4.11 for different load splits and
same weights setting, gi={1,2,4,8}, µi=1∀i, and E[T ′h,i] of decomposed M/M/1 systems (dashed)

Variants and other evaluations of WFQ can be found for example in [88, 102–108]. In
[105, lemma 4.1 ff] it is proven that the departure order of the presented WFQ implementation

equals that of GPS, as well as the boundedness of the flow time divergence T GPS
f −TWFQ

f ≤maxi Th,i
[105, theorem 4.3] and likewise that of the achieved service shares at any time [105, theorem 4.4].

The integration of a prioritised flow in WFQ, for example to excessively privilege signalling, is
presented in [104].

Weighted random queue (WRQ)

A more queueing centric approach to weighted processor sharing on a packet-by-packet basis is
load aware weighted random queue (WRQ+) serving. The switch maintains FIFO queues per flow
and serves queues packet-by-packet in a random order that in average achieves the same service
sharing as WFQ. In hardware this cannot be realised using shift-registers because the number of
required queues is unknown. However, modern switches avoid excessive payload shifting, as shown
in figure 4.16 for WFQ. Only the pointers to the memory blocks storing a received payload get
queued and exchanged among processing instances. Thus, queues exist in the control memory only,
and as required here they can be established dynamically.

To achieve the service shares stated in the left side of equation 4.10, the WRQ+ scheduler needs
to serve the first packet of queue i with the state dependent probability:

qi(t) =
gi xi(t)

∑j gj xj(t)
(4.12)

The weighted sum results again quite simply from monitoring arrivals and departures over time, as
shown in figure 4.16, and needs not be entirely re-calculated queue-by-queue round-by-round. The
major difference to the WFQ scheme is the negligence of the individual packet’s size `ka , defining its
holding time τh(i,ka) =

`ka
µ . However, the mean τh is assumed to be constant and thus in average we

should get the same sharing quotas of WFQ if in average all queues are served with probability qi.
Thus, we want to know if and to which accuracy does weighted random queue (WRQ+) serving

approximate discriminatory processor sharing (DPS). Simulation results for infinte WRQ+ are shown
in figure 4.18 together with the analytic curves we got for DPS assuming the same weighting factors
(see section 3.3.3). The approximation is good but not perfect because with WRQ+ the head-of-line
blocking issue per queue is not resolved. On the other side, the FIFO queueing per flow grants
in-order transmission of flows, a design feature of WRQ that comes without add-on effort. Another
feature is that the information how to configure a flow’s queue may be derived from a freely definable
combination of local parameters, the traffic class identifier within the packet header, deep inspection
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Figure 4.18: WRQ+ performance (simulation results ×) compared to DPS (dashed lines) for Poisson
arrivals, negative exponentially distributed holding times, and flow weights gi = {1,2,4,8}

revealing the service a flow belongs to, and even the current state of the node. However performed, a
new flow not necessarily needs to get its own queue. Schemes that integrate class based and flow
based queueing can be dynamically configured. Any share assignment and isolation from other flows
can be realised and maintained according to current changes of the node’s state. As always, the
mean performance across all flows cannot be improved, it is dictated by the total load offered. The
available mean performance is weight dependently distributed, such that some flows achieve better
than average service and others worse.

Turning our attention to more practical finite queueing systems, we first consider a simpler WRQ
scheme that implements the lower bound stated on the right in equation 4.10. The queue to serve
next is determined by the random selection shown in figure 4.19, based on the presence of flows
rather than the number of waiting packets. Normalising the weights gi of all currently present flows
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Figure 4.19: WRQ selection based on uniform u(t) and gi
∑j gj

wide intervals per present flow

to ∑gi=1 yields the intervals required to select any non-idle queue with probability qi based on a
uniform distributed random number u(t) ∈ [0..1]. The more flows are present, the more steps, and
all selection intervals change whenever a new flow appears or a present flow vanishes. However,
to evaluate the sharing performance we assume a fixed, non-changing number of flows. Only then
we can model the WRQ system by a continuous time Markov chain, as shown in figure 4.20. For
presentation clarity the depicted model shows only two flows. Evidently, this can be extended to
any number of flows nf present. However, for rising nf the continuous time Markov chain quickly
becomes intractable. With two flows we get two connected two dimensional plains, with three
flows three connected three dimensional spaces, with four flows four connected four dimensional
hyper-spaces, and so on. The mechanism is not burdened by this dimensional explosion, it comprises
nf (t) queues and one selection mechanism, its complexity grows linear with nf (t).
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Figure 4.20: WRQ continuous time Markov chain model (two flows, infinite queues)

Already with the two-flows we cannot identify repeating levels such that we could apply the
matrix geometric method to solve this infinite system. If we group states such that the total number
of customers rises by one per level we get an increasing number of states, level by level, and thus,
there exist no repeating levels. Grouping into levels where only the number of clients of one flow
increases, results in repeating still infeasible levels because of the infinite number of states per level
(for which a specific solution approach may exist).

Even for finite queues or a finite common queueing space, which better matches reality where
the buffering space for payload units is generally upper bounded by the finite memory available, we
cannot identify repeating levels with identical internal structure: level by level the number of states
increases with the number of waiting clients. Thus, the matrix analytic method cannot be applied. In
consequence, we need to use brute force and solve the potentially huge system of state’s equilibrium
equations. For a realistically chosen queueing space, for example nine times the serving capacity, we
get the finite state transition diagram shown in figure 4.21, again drawn for two flows only. This
is used to grasp the general transition rules for states in the centre of any multi-dimensional state
transition diagram and how these change close to the edges, stated in the top right of figure 4.21.

Assuming four flows i, j,k, `, we find in the centre of figure 4.22 the state quadruple for identical
i|j|k|`-filling. These states differ only in the currently served queue index. Based on the arbitrarily
selected state (i|j|k|`|2) all outgoing transitions are shown. Finishing the currently served client
causes the departure of it (j→ j−1) and serving the next queue with probability qf . Therefore, we
get probability split departure rates qf µ2 to the according quadruple with j−1 waiting clients of
flow 2. These transitions may cause a change in the serving plane. In case of an arrival, the serving
plane does not change (. . . |2→ . . . |2), only one of the state indices increases (+1) with the according
arrival rate λf . The only exception are arrivals to the idle state, where the arrival causes the server to
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generalised transition rules:
• In case of an arrival the serving plane k does not change.

An arrival transition occurs only if the index has not
reached the queue size, i.e., j<sj, meaning that there is
space left to enter the system. In case of a common queue,
as in the example, this refers to the index-sum rather than
individual indices.

• In case of a departure the serving plane changes with the
selection probabilities qf . In case an index becomes zero
the according selection probability is aliquot distributed
among the remaining queue selection probabilities with
non-zero index, such that the splitting always sums to one,
∑qf =1, and the source state is in total left with the full
departure rate µj.

Figure 4.21: WRQ continuous time Markov chain model (two flows, finite queues, sg=9)
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Figure 4.22: WRQ state transitions (four flows, apart from any boundary)

instantly start serving the arriving customer (. . . |0→ . . . |j). Note that no transition out of any other
state within the quadruple shown in figure 4.22 leads to a state shown in the figure.

Using the per state departure transitions depicted in figure 4.22 and the rules stated with figure 4.21
we can numerically fill the state transition matrix Q and solve the equilibrium equations system to
get all state probabilities pi|j|k|`|s.

Having calculated the state probabilities p by solving Q p = 0 for ∑ p = 1 we get the system
fillings E[Xi], the blocking probabilities Pb,i, and other mean system properties, either directly
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create, fill, and solve state equilibrium equations Q p = 0
1. create a list of all state-index permutations
2. remove all impossible state-index combinations
3. initialise a square Q-matrix with size = length of state-index list
4. use the indices of the state-index list as Q-matrix indices
5. for every possible state-index combination in the reduced list (Q-matrix row)

(a) get the Q-matrix column of possible successive states (according to figure 4.22)
(b) insert according transition rates in Q-matrix (following the rules stated in figure 4.21)

6. if ∃ empty rows remove them and their associate columns
7. insert the negative Q-matrix row sums as diagonal elements
8. replace the last column of the Q-matrix by a ones-vector
9. create a zeros-vector b and replace the last entry by one

10. solve the linear equation system Q p = b to get the state probabilities p

or indirectly from each other, using the common obvious calculation rules, and applying Little’s
law N=λT to get sojourn times from presence numbers.

calculate mean system properties
1. Q p = 0, ∑ pij...q=1 → pij...q solve equation system→ state probabilities
2. E[Xi] = ∑ i pij...q, E[X ] = ∑ E[Xi] presence weighted sums→ system fillings
3. E[Qi] = ∑(i−ξi) pij...q, E[Q] = ∑ E[Qi] waiting weighted sums→ waiting clients

4. Pb,i = ∑ pij...q(i=si), Pb = ∑ λi
λ Pb,i qi full =̂@λi-exit→ blocking probabilities

5. ϑi = µi,M ∑ pij...q(q=i), ϑ = ∑ϑi µi,M× serving states sum→ throughputs

6. E[Tf,i] = E[Xi]/ϑi, E[Tf ] = ∑ ϑi
ϑ E[Tf,i] use Little’s law N=λT → flow times

7. E[Tw,i] = E[Qi]/ϑi, E[Tw] = ∑ ϑi
ϑ E[Tw,i] use Little’s law N=λT → waiting times

The octave code performing all this, for any number of flows and shared as well as individual
queues of any size, is presented in addendum A.I.3. However, we need to admit that even though
we use a sparse Q-matrix, octave fails to solve the equation system if the number of existing states
reaches several thousands. The example studied, with four flows and a shared queue of size s=9,
causes 1981 existing states, for which octave showed no infirmity.

The continuous time Markov chain precisely models the finite queueing system, and thus, solving
the equilibrium equations that result from the state transition diagram yields results that exactly match
the simulation results, as shown in figure 4.23. On a first glance, the identical, weight independent
throughput ϑ is a surprise. This is not the behaviour we expect from a discriminatory scheduling
discipline. However, if we reconsider the continuous time Markov chain representing this shared
queue system and look at the blocking states, being the diagonal that binds the system filling, we
recognise that the states along this line constitute the blocking states for all flows. Thus, the blocking
probability is the same for all flows, and in consequence are in case of equal load shares also
the throughputs ϑi identical. Looking at the system filling E[Xi] and the waiting times E[Tw,i] we
recognise that these are not weighting proportionally spaced, and that they diverge in heavy overload.
This indicates that the highly weighted flows are quicker served than they arrive, whereas the lowest
weighted flow is served so rarely that in overload the queue is heavily occupied by rarely served low
priority packets. This is not comparable with discriminatory processor sharing (DPS).

To better approximate the beneficial DPS features we change back to the original queue selection
stated in equation 4.12, where the number of present clients is considered. Precisely, we select the
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Figure 4.23: WRQ performance (simulation: ×, calculation: solid lines), shared queue with size
s=9, Poisson arrivals, negative exponential Th, equal load shares ρi=

%
4 , and weights gi={1,2,4,8}

next queue to serve with the probabilities

qi =
wi gi

∑j wj gj
(4.13)

where wj is the number of waiting clients, which equals the present clients xj after the currently served
has departed. Using the new splitting factors in figure 4.22 and the continuous time Markov chain
depicted in figure 4.21 we get the model for the WRQ+ scheme. The results shown in figure 4.24
indicate a slightly lesser discrimination of flows. At overload the shared queue is less occupied by
low priority packets and the negative slope for increasing system load also vanished, here shown for
the flow time E[Tf]. The blocking probability and the throughputs remain flow independent. The
absence of any starvation tendency and the nearly even separation of the E[Tf] curves conforms the
native expectation on a fair weighting scheme.

Next we want to see what happens if we provide individual queues per flow. These will be less
effectively utilised, so for an approximately comparable system we set the queue sizes si=3 per flow.
The analytic results from solving the state transition diagram, set up as before just without cutting
off the upper right triangle, and simulation results are shown in figure 4.25. As could be expected,
with individual queues the equal Pb,i vanishes and also the throughput becomes quite different. We
actually recognise a throughput drop, even for the WRQ+ where we consider the number of waiting
customers as stated in equation 4.13. This occurs because here the throughput reduction results
from the increased blocking probability Pb,low, which is a result of the higher queue filling E[Xlow].
However, the throughout ϑlow does not drop to zero, with WRQ+ less than with plain WRQ. The
weight distribution conform spacing among both, the waiting times E[Tw,i] and the throughputs ϑi,
is consistent with the expected behaviour. Thus, WRQ+ with individual queues is a weighted fair
queueing policy that shares the resources such that both prime metrics, the sojourn times and the loss
rates, are distributed according to the weights assigned. In consequence are also the throughputs
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Figure 4.24: WRQ (left) WRQ+ (right) performance (simulation: ×, calculation: solid lines) shared
queue s=9, Poisson arrivals, negative exponential Th, equal load shares ρi=

%
4 , weights gi={1,2,4,8}
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Figure 4.25: WRQ+ performance for individual queues per flow (simulation: ×, calculation: solid
lines) Poisson arrivals, negative exponential Th, equal load shares ρi=
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distributed, though not exactly as the weights are (nearly linear distributed although logarithmic
weights were assigned).

An interesting side effect of WRQ with individula queues, and even more with WRQ+, is a
slight smoothing experienced by the departure flows of higher weighted flows. In figure 4.26 the
monitored coefficient of variation of arriving (+) and departing (×) flows are shown for the different
WRQ variants evaluated. That the departure flow of the least privileged flow shows a little burstiness
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Figure 4.26: Effect of WRQ variants on the departure flow’s coefficient of variation, Poisson arrivals,
negative exponential holding times Th, equal load shares ρi=

%
4 , weights gi={1,2,4,8}

is expectable, it is less frequently served than the others, and also that this effect vanishes the more
the system is overloaded (equalisation by randomisation). But that in case of individual queues
(lower two figures) the higher privileged flows show a departure process that is less variant than
both, the arrival and the service process, is not so evident. The finite queue and the non-preemptive
serving of less prioritised flows seems to cause this positive effect. However, to prove this we would
need to solve the differential equations representing the continuous time Markov chain, which for
such a huge state transition diagram is likely not possible, given that solving the linear equations
system in order to get the steady state probabilities already challenges octave. That the means fit is
not sufficient to prove that the simulation is correct as well concerning higher moments. Likely it is,
and therefore the results are shown without proof, concluding the WRQ discussion.

Weighted round robin (WRR)

In figure 4.27 flow based weighted round robin (WRR) queue serving is depicted. As with WRQ a
dedicated queue is maintained in the control logic for every flow present. The ellipsis indicates that
this causes a varying number of queues that dynamically changes as flows arrive and depart.

Achieving the service probability qi bound stated in equation 4.12 by a round robin approach
rises some practical challenges. Firstly, the number of queues required and visited per round is
dynamic because a queue exists only while a packet from the according flow i is awaiting service.
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Figure 4.27: Weighted round robin – WRR

Secondly, as with customs based queueing, either cqi(t) packets need to be served per visit, or the
queue has to be visited cqi(t) times per round, serving one packet per visit. The multiplier c is to be
chosen such that for all present qi(t) the product cqi(t) yields integer numbers ∀i at any time t. This
value c can be huge and may change during a round, and is therefore hardly manageable. A scheme
that considers the number of waiting packets per queue is therefore rather utopian.

To evaluate WRR we implement a rather simple algorithm that achieves a serving schedule per
round that is somewhere in between serving cqi(t) packets per visit and cqi(t) visits per round:
assuming that all weights gi are defined as integer numbers, we schedule one queue after the other,
every time decrementing the weight by one, gi--, and skipping queues with zero weight. When all gi

have become zero a round is finished and the next starts with updated weights vector~g(t). In octave
this scheme is implemented by

simple weighted round robin schedule
for r = 0 : maxi(g)−1

gr = find(g.−r > 0); get indices i of weights gi > r
rrs = [rrs ;gr]; append indices to previously found

endfor

where we actually do not decrement the weights, still achieve the same resultant schedule rrs per
round. Note that this scheme defines the visits assuming that one packet is served per visit. However,
in general we get blocks in the sequence where the same queue is repeatedly visited, such that
gi−gj packets are served before some other queue is served. These repeated visits are not optimally
distributed across a round. However, this has no impact on the mean performance because only the
higher moments depend on the visit distribution within rounds.

For a given snapshot, assuming a fixed number of flows present, we might try to represent WRR
by a continuous time Markov chain model. To do so we would need to add one more dimension
per flow to the continuous time Markov chain shown in figure 4.21 in order to consider repeatedly
serving the same queue. Concerning mathematical treatment we need to note that the WRR serving
cycle introduces auto-correlation. The number of queues served in between one visit and the next
is precisely defined, and if no new queue is invoked or an idle queue removed, the perfectly same
serving order is repeated round by round.

Simulation is the straightforward tool of choice to evaluate how good this simple WRR scheme
approximates DPS. In figure 4.28 we show simulation results for WRR and analytic results for DPS
(dashed lines) using the same weighting factors gi = {1,2,4,8} for the four flows assumed present.
The total system filling ∑ E[Xi] and the average flow time ∑λi E[Tfi ] are the same as for M/M/1. This
is evident, and shows that the simulation is not completely faulty. Comparing the mean flow time
E[Tfi ] per flow, the samples shown in the right graph of figure 4.28, with the analytic results for DPS,
the dashed lines in the same graph, calculated using equation 3.111 presented in section 3.3.3, we
recognise that this WRR realisation does not approximate DPS well. At low loads the differentiation
achieved with WRR is less than with DPS, and at high loads WRR is too aggressive.
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Figure 4.28: WRR performance (simulation results) compared to DPS (dashed lines) for Poisson
arrivals, negative exponentially distributed holding times Th, and weights gi = {1,2,4,8}

The reason resides in the implementation of equation 4.10, which actually implements the lower
bound, as already used with plain WRQ and depicted in figure 4.19. The clear divergence that results
from this seemingly minor change highlights the importance of state awareness. If we consider the
weights gi but not the number of present clients per weight xi, than we do not achieve a differentiation
comparable to the ideal, fluid presuming, discriminatory processor sharing.

Figure 4.29 presents simulation results for a finite WRR system using the algorithm presented
above and numeric results for plain WRQ with individual queues (s = 3). The numeric results
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Figure 4.29: Finite individual queues WRR (simulation results) compared to plain WRQ (solid lines),
individual queue, si = 3, Poisson arrivals, negative exponential Th, and weights gi = {1,2,4,8}

approximately match the first moments, as could be expected because in average they do not depend
on the service cycle, if both schemes serve the individual queues equally often. However, we do
recognise slight deviation for less weighted flows. Thus, even if higher moments are not of interest,
the plain WRQ state transition diagram only approxiamtely reflects the behaviour of WRR. How the
cycles are defined may differ. In [109] we find for example a deficit counter, which is incremented
by a weight dependent quantum whenever a server visits a non-idle queue, and decremented by the
packet size for each packet served during the visit. If this counter would become negative or the
queue became idle, the server moves to the next queue. An unused deficit is carried over to the next
visit. This implementation considers the packet size. In average this should be equal to a bounded
number of packets per round. However, the results presented in figure 4.29 show that such minor
differences in the cycle definition can influence the performance.

Next we change to shared spaces, and compare in figure 4.30 the numeric results for a somewhat
artificial WRR system with common queuing space, s = 9, approximated by plain WRQ, with
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simulation results for a bounded DPS where we add a corresponding upper-bound on the number
of clients that can be served in parallel, nmax = 9. As could be expected, the performance of WRR,
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Figure 4.30: Bound DPS (simulation results) compared to plain WRQ (solid lines), sharing bound
s,nmax = 9, Poisson arrivals, negative exponential Th, and weights gi = {1,2,4,8}

here approximated by plain WRQ, is worse than that of the ideal upper bounded DPS system, which
shows no decline. The blocking probabilities Pb,i and throughputs ϑi match, but these are determined
by the shared space and not separated by the flow weighting. That a bound on the shared queue and a
bound on the server sharing yield comparable performance proves the equivalence of these systems.
The bounded variant of DPS, which we mentioned but not analysed in the end of section 3.3.3,
could be used as benchmark for any finite weighting system that employs a shared queueing space.
However, benchmarks that rely on simulation are not the most efficient option.

Class based queueing (CBQ)

To conclude this section on weighting based scheduling we finally consider different queue sizes.
This causes a queueing and scheduling scheme that resembles the so called class based queueing
(CBQ), sketched in figure 4.31 and sometimes referred to as customs based queueing to separate it
from other classification based mechanisms. In contrast to WFQ and its derivatives WRQ and WRR,

Figure 4.31: Customs based queueing – CBQ

is CBQ commonly used with traffic classification, meaning that queues are provided and maintained
per traffic class, not per flow, and all flows assigned to the same traffic class share the same queue.
This reduces the control complexity and enables hardware implementation via shift registers because
the number of queues is given by design, independent of present traffic flows.

The queues are usually served in round robin fashion, and in addition to the different queue
sizes provided, differentiation is achieved by upper bounds on the number of packets served per visit
(weights). This introduces memory into the serving process, such that we cannot model it precisely
by the simple continuous time Markov chain shown in figure 4.21. We again would need to add one
more dimension per flow to cover this, making the state transition diagram quite complex and due to
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the excessive number of states numerically problematic due to the consequentially many more close
to zero state probabilities.

For an approximate numeric evaluation we therefore assume random queue selection as with plain
WRQ. This should perform similarly, at least concerning the first moments, and because presence
awareness is for CBQ not applicable. To disclose this difference we hence use the abbreviation
CBRQ, inserting the term ’random’. The performance of this scheme is shown in figure 4.32.
Evidently, model and simulation fit each other because we use the same CBRQ scheme for both:
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Figure 4.32: CBRQ performance (simulation: ×, calculation: solid lines) for si={3,9,3,9} per traffic
class, Poisson arrivals, negative exponential Th, equal load shares ρi=

%
4 , and weights gi={1,1,4,4}

with simulation the queue selection according to figure 4.19, and the model is an adjusted state
transition diagram according to figure 4.21. Comparing CBRQ with WRQ+ and WRR, where the
individual queues were equally sized, we recognise that with CBRQ the flow-time E[Tf ] and the
loss performance Pb can be individually addressed. Expectedly, a bigger queue reduces the loss
probability at the price of higher flow times. Higher prioritisation achieves a similar differentiation
as before, but only for flows with equally sized queues. With CBRQ the losses and flow-times are
not necessarily distributed according to the weights, only the ordering of the throughputs follows the
weights order (for equal ingress load shares).

Response to non-Markovian arrival and service processes

The real world inter-arrival times of packets tend to be more bursty than negative exponentially
distributed, and on the other side are the holding times in general lower bounded by the minimal
packet size (essentially the header size) and upper bound by some standardised limit, necessary to
suitably dimension processing buffers. In section 2.2 we introduced random processes capable to
stochastically represent such traffic characteristics. The Lomax distribution, also known as Pareto
type II, can be used to model an inter-arrival time distribution with infinite variance. To reveal the
effect of unpredictable arrivals we choose this, in particular L(2,1), the boundary to infinite variance.



4.1 Resource sharing 227

For the service process we choose the Beta distribution, and from the many possible shapes a
tilted bath-tube shape with peaks at the lower and upper bound B (1

3 ,
2
3 ,

1
2 ,2). This covers many

short messages (ping) and more huge packets (pong) than medium sized. The mean holding time
remains one, E[Th] =

1
2 +

3
2

1
3/(

1
3 +

2
3) =1. The upper bound is four times the lower bound, narrow

if we compare it with IP-packets where the relation is in the thousands. However, if packet-size
independent latencies exist, for example a 10 ms sync-time, than the holding time variance shrinks
drastically. If the latency exceeds the maximal packet size, the relation among lower and upper bound
drops below two, and the service process becomes more and more deterministic.
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Figure 4.33: Arrival and service process histograms of evaluated L /B /1/si /. . . systems

Using these arrival and service processes, shown in figure 4.33, we repeat the simulations for
the different weighting realisations discussed so far, and show the results together with the analytic
results we get for negative exponentially distributed arrival and service times.

Figure 4.34 shows the results we get for CBRQ. We recognise that the high variability of the
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Figure 4.34: L /B /1/si /CBRQ simulation (×) compared to M/M/1/si /CBRQ calculation (solid lines)

arrivals causes a less effective queueing system (lower total queue filling). Actually, in overload the
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longer queues are in average considerably less filled, and more arrivals are blocked. This heavily
affects the service differentiation introduced by different queue sizes: the flow time discrimination
shrinks, whereas the throughput discrimination increases. The discrimination caused by different
weights remains approximately the same.

Figure 4.35 shows the mean flow time E[Tf ] and the throughput ϑ for WRR with equally sized
queues of size si = 3 = 12 λi

%µ . We recognise that the less effective queue filling results in decreased
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Figure 4.35: L /B /1/si /WRR simulation (×) compared to M/M/1/si /WRQ calculation (solid lines)

flow times, now for all flows, and reduced flow discrimination in terms of throughput shares. Thus, to
compensate bursty arrivals the weights need to be adjusted. However, this is a complex task because
every change of any gi affects the performance of all flows.

Switching to a shared queue, and applying the initially developed WRQ+ scheme, figure 4.36
shows the system filling E[X ] and the flow time E[Tf ] we get for s = 9 = 9 1

µ . We recognise that the
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Figure 4.36: L /B /1/s/WRQ+ simulation (×) compared to M/M/1/s/WRQ+ calculation (solid lines)

impact of the heavy arrival process nearly vanished. The deviation of the simulation results (×) for
L /B /1/9c/WRQ+ from the analytic results (solid lines) representing M/M/1/9c/WRQ+ is marginal.
Only for the least weighted service we recognise a slight reduction of the queue filling and in
consequence slightly shorter flow times.

This changes completely when we consider infinite queues. With infinite queues the excessive
load peaks caused by bursts are not repelled via blocking them off due being full. Figure 4.37 shows
the results for WRQ+ with infinite queues. If the queue is shared or not, makes no difference. The
bursty arrivals cause that the mean queue filling is increased, and thus, also the mean flow times are
increased. Such bursty arrivals have a very negative effect on the mean response time of infinite
systems, compared to finite systems with a total queueing space s∼ 10 1

µ , where the opposite occurs
at the price of increased blocking.
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Figure 4.37: L /B /1/∞ /WRQ+ simulation (×) compared to M/M/1/∞ /DPS calculation (solid lines)

Studying non-Markovian processes we evidently are also interested in the effect the queueing
system has on the departure characteristics. In figure 4.38 we compare the monitored arrival and
departure coefficient of variation, one by one, and among different weighting schemes. As reference
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Figure 4.38: Monitored coefficient of variation of arrivals (+) and departures (×)

we choose bounded discriminatory processor sharing (DPS), as introduced above with WRR. At
low loads equals the departure coefficient of variation that of the arrivals. In heavy overload the
departures are considerably smoothed, but the chaos introduced by the arrival process with its infinite
variance in not removed. The monitored departure coefficient of variation fluctuates as it does for the
arrivals. Weights related smoothing is only recognisable for WRR and CBRQ, the more the less a
flow is weighted. If we reconsider the coefficient of variation results found for their M/M/1/s /XXX
counterparts, we may conclude that latter again results form the averaging by randomisation. That
for DPS and WRQ+ no weights dependence is visible supports the assumption that WRQ+ truly
approximates DPS independent of the involved random processes.
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Some final remarks on weighted scheduling

The lower bound stated in equation 4.10 is rather weak because the number of flows summed in the
denominator is not limited. Thus, the granted service shares can approach zero, σi→ 0, at least in
principle, if the accepted load approaches the server capacity, ∑i λin

i /µ→ 1. Theoretically, the least
weighted traffic could cause saturation for all service classes. Luckily, infinite packet queues are
not feasible and practical overload is restrictively bounded by the finite capacity of communication
network node’s ingress ports.

A node with n symmetric ports, as sketched in figure 4.39, where per port the ingress load is
limited by the line-rate, λin

max=µ, can at maximum cause a persistent ingress load of n times the
line-rate µ. Accordingly is the sum in the denominator of equation 4.10 upper bounded by ngi,max.
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Figure 4.39: Symmetric network node, λin
max=µ⇒ ∑λin(t)≤ nµ

Thus, in practice weighted queueing that implements equation 4.10 does grant finite minimum
performance per flow, and the minima strictly reflect the weights assigned to all present flows. If in
addition the mean traffic volumes per class are limited across all ingress ports to less than the egress
capacity, ∑k λink

i (t)≤ µ, prior being routed to an egress port, this lower bound can be considerably
improved, even though the worst case sum over all classes still exceeds the egress capacity. This
clearly shows how superior weighted scheduling is compared to crude prioritisation, where no least
performance bound exist if the total load from all higher prioritised flows exceeds the egress capacity,
∑j>i λin

j (t)≥ µ, and not that of a single flow.

In order to maximally utilise statistical multiplexing current packet switched networks per se do
not restrict the traffic inserted by sources. This is left to the intelligence of the traffic sources. Long
time, the access bottleneck served as effective ingress limiter. Today, the contractually agreed to
and paid for maximum access bandwidth may be enforced by the service providers. However, static
ingress limiting cannot prevent local overload at individual network nodes, at least not for realistic
scenarios with reasonable resource utilization.

To achieve satisfactory transport performance, persistent overload at any node has to be avoided
by ingress control mechanisms, for example TCP. These mechanism respond to the current network
state and thereby assure that in the long term the mean ingress load at no node exceeds its capacity. If
all flows are controlled in such a way, the sharing mechanisms presented in this section are effective
only temporarily, and the end-to-end performance is in average satisfactory. But, there exist dull
transport mechanism (protocols) that do not adjust their insertion rate to the current network state.
Also protocols that should adjust their rate may malfunction and flood the network. To cope with the
greedy flows thereby caused, mechanisms alike those presented in section 4.2 are required to locally
handle congestion. This is not the task of sharing mechanisms.

The sharing schemes discussed represent symptomatic approaches, and these were evaluated
one-by-one to reveal their strengths and weaknesses. In practice, these schemes may be combined
into a hierarchic queueing stack (HQS), as it may be provided by carrier grade network nodes.
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In [109], a white paper of a renown vendor, we found the following remark: "The very nature of
large IP production networks requires that router vendors offer a combination of these approaches if
they are to provide a solution that allows you to accurately arbitrate service-class access to output
port bandwidth during periods of congestion. Each vendor’s implementation seeks to find the correct
balance between performance, accuracy, and simplicity." Figure 4.40 sketches a basic, exemplary

departuresarrivals

CoS 1

prio

nC f1

CoS 2

nC f2

nC fn

...

classify TX

Figure 4.40: A queueing stack integrates basic schemes hierarchically

queueing hierarchy. On top we find strict priority queueing, usually only one instance, exclusively
used for network internal signalling messages, which for efficiency and performance reasons should
anyhow contribute a marginal traffic load only. Below we have some queues that provide customs
based queueing for accordingly marked packets using the class of service (CoS) field in their packet
header, followed by a dynamic set of queues used for weighted fair queueing of all the remaining
flows. While the strict priority queue is served whenever a packet is waiting, and until it becomes
idle again, all other queues are served in a weighted round robin (WRR) or weighted random queue
(WRQ) fashion, such that no flow suffers starvation. Thus, if the signalling traffic is well behaved,
all flows are served such that the end-to-end communications is never interrupted for unacceptable
long periods of time.

Such a stack of schemes enables widely configurable behaviours, too many to evaluate all, and due
to the configuring complexity – the configuration of each node influences the optimal configuration
of all other nodes – often manufacturer recommendations are implemented in the field. The simplest
approach to finding a feasible configuration is assuming that a unique setting for all nodes can be
found, and that it can be found iteratively via off-line trail and error based simulation experiments
based on 1:1 models of the operational network infrastructures. More sophisticated approaches
include simulated annealing, genetic algorithms, integer linear programming and methods alike.
They all are not applicable on-line due to their unpredictable run-time. A potential alternative,
applicable for on-line optimisation, may be self-organisation based on swarm intelligence. Maybe
this can be realised utilising the current research trend toward software defined networks [110].

4.2 Congestion management

Congestion results from contention, and identifies a system state where the queue filling considerably
exceeds the mean queue filling, causing unsatisfactory performance. It occurs when the instantaneous
arrival rate ∑λi(t) exceeds the service rate µ(t) for a longer than usual period of time, such that a
considerable backlog of buffered load builds up in the queue, as shown in figure 4.41. To clear a
congestion, the arrival rate needs to fall below the service rate for an adequately long time. Literally,
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every true queueing system is a congestion based contention management system that implicitly
performs statistical multiplexing.

µ

serverbacklog xi(t)

scheduler
→ → → →λ1
→ → →λ2
→ → → →λm

→ϑ

Figure 4.41: Increased backlog of halted load units (packets) during congestion periods

Contention refers to competing resource demands, independent of rates and capacities. The
resource sharing schemes outlined in section 4.1 determine the serving in case of contention, when
more then one client requests access to the same resource. Thus, more generally, congestion identifies
situations where the sharing mechanisms no more provide the intended performance. In the worst
case, when due to congestion load becomes relaunched while still waiting in the queue, a cataclysmic
break down1 results. Generally, network resources have to be prepared to face congestion every now
and than, on the data- or control-plane, if they are not ruled by an almighty central instance that
controls every single resource request. Robustness against load peaks is no option, it is a necessary
requirement to be fulfilled locally, system by system. Finite queueing systems are per se stable, here
congestion management commonly intends to minimise the time required to clear the backlog and
to differentiate the negative effects among different flows in a way that protects sensitive flows and
appreciates friendly flows2.

In this section we discuss mechanisms that cope with peak loads, irrespective of being temporary
(congestion) or persistent (overload), and implicitly assume that the systems studied are finite.
Therefore, we analyse the mean behaviour in overload, and notice that this also constitutes the
average behaviour during temporary congestion periods.

First we evaluate queue-filling thresholds in case of shared queues, and how these support
differentiated flow serving. Next, we replace the strict blocking above thresholds by increasing drop-
probabilities, which introduces random early detection (RED), and with weights related thresholds
and drop-probabilities weighted random early detection (WRED). These local mechanisms interact
with the transport control mechanisms implemented at the traffic sources. However, a solid discussion
of different transport control protocol (TCP) variants is out of the scope here. Still, basic knowledge of
the operation principles of ingress control schemes is a prerequisite to understand the interaction with
congestion management schemes. Together, smart mechanisms offer considerably more functionality
than they can individually. Therefore, a brief introduction to different ingress control mechanisms
is included next to the congestion detection mechanisms including a brief statement on how these
could as well be implemented distributed toward a scalable and autonomous network control plane.

4.2.1 Queue filling based thresholds

There are two possible approaches. First, thresholds on the individual queue filling per flow xmax
i ,

second, thresholds on the total queue filling xi
max. The first equals individual queues, if the size of

the shared queue is sufficiently large, ∑xmax
i ≤ s, such that all queue filling thresholds xmax

i can be
satisfied at any time. Else the state transition diagram corner opposing the idle state is cut away, in
addition to the individual bounds that limit the state transition diagram dimensions. In that case we
get an intermix of shared and individual queues. This difference in queue organisation was already
discussed in section 4.1.3. To get the xmax

i based threshold model we set different queue sizes but
equal weights. For the mixed system we do not expect very different results. Here we are interested
1Looped process that recursively worsens the situation leading to an unresolvable deadlock.
2Friendly flows reduce their rate by themselves in case of congestion.
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in thresholds on the total queue filling, xi
max. To clearly separate these from the others we refer to

them as queue admission thresholds in order to implicitly express their function.

If we assume no other differentiation mechanism, the admission threshold controlled system can
be modelled by the one-dimensional state transition diagram shown in figure 4.42. This is possible

0 1 2 · · · x1
max · · · xm-1

max xm
max

∑λi ∑λi ∑λi ∑λi ∑λi−λ1 λm-1+λm λm

µ µ µ µ µ µ µ

Figure 4.42: Threshold based queue admission control – state transition diagram

because the queue admission threshold controlled blocking does not depend on the mixture of packets
present in the shared queue, only on their sum. Composing the Q-matrix representing this system
according to figure 4.42 and solving Q p = 0 with ∑ pk=1, we get the state probabilities pk.

For each flow, all states above and including the threshold state xi
max contribute to the blocking

probability Pb,i, from which we can directly calculate the throughputs ϑi.

Pb,i = ∑
k≥xi

max

pk ⇒ ϑi = (1−Pb,i)λi (4.14)

Due to not differentiating the load mixtures that contribute to a state, we cannot calculate the
individual queue fillings E[Xi] straight away, the state transition diagram only provides the total
queue filling E[X ]= ∑k pk. To achieve the individual queue fillings and all metrics related thereon,
we need to reverse the calculation and start with the waiting times E[Tw,i], which we get from the
state flow diagram depicted in figure 4.43. The states represent the system at the arrival instant,
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max
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Figure 4.43: Threshold based queue admission control – state flow diagram

prior entry, and thus is the threshold state xi
max the first blocking state at which an arrival from flow i

becomes rejected. Assuming FIFO queueing, a test customer that entered the queue only moves
toward the termination state 0, where no others remain in front, and itself is in service. The time that
elapses between the entry and reaching state 0 is the random waiting time Tw,i.

To calculate the mean waiting time E[Tw,i] via the state flow diagram we need to consider that only
the arrivals that enter the system contribute, including the arrivals to the idle state, which contribute
zero waiting time. Thus, we need to re-normalise the entry probabilities by pi

k = pk/∑j<xi
max

pj before
we can use them to proportionately sum the different mean waiting time components tk

w = k th = k
µ

that result for entering the queue in state k.

E[Tw,i] = ∑
k<xi

max

pi
k tk

w = ∑
k<xi

max

pk

∑j<xi
max

pj
· k

µ
=

1
µ
· ∑k<xi

max
k pk

∑k<xi
max

pk
(4.15)

The flow times E[Tf,i] than result by adding one holding time th = 1
µ , and therefrom, using Little’s

law N=λT with the already calculated throughputs ϑi instead of the arrival rates λi, as usual for
systems with blocking, we finally get the mean system fillings E[Xi].

E[Tf,i] = E[Tw,i]+
1
µ

⇒ E[Xi] = ϑi E[Tf,i] (4.16)
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The right side of equation 4.14, and therefore also the right side of equation 4.20, is only correct
for Poisson arrivals, where the blocking probability at arrival instances equals the blocking probability
at any time Pb,i, as expressed by the PASTA convention, such that λi−ϑi = δi = λi Pb,i. For other
arrival distributions we need to replace each state by an according group of states that reflect the
phase-type or MAP approximation of the arrival process. In case of multiple flows with different
arrival distributions each, this may become excessively complex, though possible. In case of different
service rates per flow, µi, this approach cannot be used. To cover the influence of the different
holding times, we need to consider the composition of the queue filling, which demands the full
multi-dimensional state transition diagram as it already has been developed to analyse the different
sharing strategies presented in section 4.1.

However, if we know the individual throughputs ϑi and system fillings E[Xi], for example from
measurements or by solving the multi-dimensional state transition diagram that considers every
possible population mix, we can directly calculate the corresponding mean flow times E[Tf,i] and
other metrics in the usual order.

E[Tf,i] =
E[Xi]

ϑi
→ E[Tw,i] = E[Tf,i]−

1
µ
→ E[Qi] = ϑi E[Tw,i]

Note that for multi-flow systems we do not get E[Qi] = E[Xi]− 1 because the server is occupied
by customers from different flows at different times. However, in average the server is occupied
aliquot to the throughputs ϑi, such that we may calculate E[Qi] = E[Xi]− ϑi

∑ϑj
. Inserting this leads

to µ = ∑ϑi, which is only true when the system is never empty. Thus, this we can use to get the
system’s mean idle time E[Tidle] = 1/(µ−∑ϑi), which obviously corresponds to the probability of
the idle state p0 = 1−%. Latter is independent of the mix of currently present flows, and as % can be
calculated for any µi, this also holds for flow specific holding times.

Reconsidering the state transition diagram shown in figure 4.42 we recognise that the total arrival
rate to the states above any threshold state is reduced by the arrival rates of the blocked flows. This
reduces the probabilities of these states, and due to ∑ pi=1 the states below become more probable
than with no thresholds xi

max=s. And in contrast to individual queues opens in congestion every
departure a place for an arrival of a privileged flow, irrespective of the flow the departure belongs
to. In consequence, the queue gets more and more populated by privileged load. Therefore, small
differences in the queue admission thresholds xi

max cause considerably different blocking probabilities
per flow and a considerable reduction of the number of loads from less privileged flows waiting in
the queue, as shown in figure 4.44.

Comparing the results with those we get for WRQ+ and individual queues (section 4.1.3,
figure 4.25) we recognise increased blocking differences and consequential throughput divergences,
at less and also reversed flow time divergences. Therefore, the queue admission thresholds are utile
if we intend to achieve throughput divergence at comparably similar sojourn times (flow and waiting
times representing system and queue sojourn times, respectively). In particular, the sojourn times
here are upper bounded by the threshold levels, in that respect privileging flows with lower thresholds,
whereas with WRQ+ the sojourn times of less weighted flows can exceed the queue size related
benchmarks due to the more frequent serving of higher weighted flows.

Note, to correctly simulate this shared queue system it was necessary to define a queue selection
mechanism that strictly enforces the first come first serve (FCFS) policy in order to correctly model
the operation of the shared FIFO queue. Why was this necessary, because to measure the individual
queue filling and sojourn times we choose to use virtually independent queues, i.e., X-, W -records
per flow. Any other selection policy causes diverging results if it does not perfectly reflect FCFS.

The new selection option is specified as SQ and replaces round robin RR as the default policy
for shared queues. However, for a single queue RR remains the least performance wasting selection
algorithm when no selection is actually performed.
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Figure 4.44: Threshold controlled queue admission (simulation: ×, calculation: solid lines), shared
queue with size s=9, Poisson arrivals, equal negative exponentially distributed holding times Th,
equal load shares ρi=

%
4 , and thresholds xi

max={6,7,8,9} for flows i = {1,2,3,4} respectively

SQ selection enforcing strict FCFS (across multiple queues)
for i = 1 : n do . compose a list of current maximum waiting time per flow 1 : n

if isempty(W (i){:}) then
wlist(i)←−1 . insert negative value (−1) if no client of flow i is waiting

else
wlist(i)←W (i){:}(1) . or the maximum from the waiting times record W (i)

end if . first (1) is maximum because later arrivals are appended to the end
end for
nextQueue←find(wlist =max(wlist))(1) . index of maximum specifies the queue to serve next

To see how the admission threshold based system responds to non-Markovian arrival and service
processes we repeat the simulation with the distributions already used to evaluate the different
sharing mechanisms in section 4.1.3. Please refer thereto for details on the here used Lomax and
Beta distribution and see section 2.2 for these distribution’s specific features. The performance
results are shown in figure 4.45. Again, the simulation results of the non-Markovian system are
compared with the numeric results of the equivalent Markovian system. The results do not diverge
much. Expectedly, the Pb,i are higher for bursty arrivals, and thus the mean ϑi, E[Xi] and E[Tw,i] are
lower.

The arrival and departure coefficient of variation cA, cD for both, M/M/1/xi
max and L /B /1/xi

max,
are shown in figure 4.46. For the Markovian system we again recognise a slight increase of the
departure coefficient of variation once the system is overloaded. Interestingly, we find cD,3 ∼ 1
and not cD,4 ∼ 1. The reason therefore is unknown, potentially it is only a result of the specific
example settings. With L(2,1) arrivals the monitored cX ,i are not stable, as can be expected for
infinite variance. However, in overload we recognise a tendency toward cD,i < cA,i.
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Figure 4.45: L /B /1/xi
max simulation (×) compared to M/M/1/xi

max calculation (solid lines), shared
queue with size s=9, Lomax (Pareto-II) arrivals L(2,1), BetaB (1

3 ,
2
3 ,

1
2 ,2) distributed holding

times Th, equal load shares ρi=
%
4 , and thresholds xi

max={6,7,8,9} for flows i = {1,2,3,4}
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Figure 4.46: Arrival (+) and departure (×) coefficient of variation of the M/M/1/xi
max and L /B /1/xi

max
system shown in figure 4.44 and figure 4.45 respectively

Combined flow weighting with queue admission thresholds

In section 4.1.3 we recognised the near to optimal behaviour of weighted random queue scheduling
(WRQ+) and that shared queues are more efficient than individual queues. However, WRQ+ with
a shared queue yields only sojourn time differences. The blocking probabilities and the resultant
throughputs are identical for all flows, independent of the assigned weights (figure 4.23).

Above we have seen that for a shared queue a differentiation in blocking probability Pb,i
and throughput ϑi can be achieved nicely by queue admission thresholds xi

max. If we add these
to the WRQ+ scheduler, we get the results shown in figure 4.47. To highlight the features of
this combination we choose weight and threshold settings comparable to those used for CBQ in
section 4.1.3, figure 4.32. Only the queue thresholds are adjusted to consider the strong effect of the
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Figure 4.47: WRQ+ with threshold controlled queue admission (simulation: ×, calculation: solid
lines), shared queue with size s=9, Poisson arrivals, equal negative exponential Th, equal load
shares ρi=

%
4 , weights gi={1,1,4,4} and thresholds xi

max={8,9,8,9} for flows i = {1,2,3,4}

admission thresholds xi
max compared to the individual filling thresholds xmax

i used with CBQ.
The mean queue filling E[Xi] looks a little strange. However, the results for the blocking Pb,i

and waiting time E[Tw], gained for the example’s settings, show perfect separation of the two
differentiation mechanisms. The flows with equal admission thresholds face equal blocking, and thus
achieve equal throughput shares, independent of the assigned weights. On the other side, the different
weights cause a sojourn time differentiation with equal delaying for equal weights, independent
of the admission thresholds assigned. Concluding, this is a scheme that enables quite independent
differentiation in blocking and delaying. In addition, it is also efficient in terms memory demand
because only a shared queue is required, which is better utilized than individual queues would be.

The example case yielding the performance shown in figure 4.47 assumes equal ingress load
shares ρi per flow, and evaluates the four primary service types, which may be called best-effort,
low-loss, low-latency, and lets say majestic service. In figure 4.48 we show results for different load
splits and different threshold assignments. In the first case, shown on top, the load split follows
the recommended convention to always keep a higher privileged traffic volume below that of the
next lower prioritised. The overload is than in average caused by the less prioritised flows. This is
effectively mitigated by the lower queue admission thresholds xi

max assigned to less prioritised flows.
Higher privileged flows are hardly affected by the overload, meaning their throughput still rises quite
linear with increasing individual load and also their flow times are only marginally risen.

If we reverse the load split, such that more load arrives from privileged services than from less
privileged, than we get the worst case. This is shown by the two graphs in the middle of figure 4.48.
For all flows we achieve worse overload performance, being increased blocking (deviation from the
initial linear throughput increase) and nearly doubled flow times. To compensate this, we reverse the
threshold assignment. This solves the sojourn times issue at the cost of high blocking rates for high
weighted flows, as shown in the lower two graphs of figure 4.48. It may seem wrong, but privileged
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Figure 4.48: M/M/1/xi
max/WRQ+ flow times E[Tf,i] and throughputs ϑi, different load splits ρi

% and
xi

max assignments (top: recommended case, middle: worst case, bottom: mitigated worst case)

flows that do not behave have to be confined to their limits in order to keep the system as a whole
reliable. For the less privileged flows this confinement is implicitly enforced by the lower weights.
Notably, the mitigated worst case yields the smallest maximum delays. However, they are reached
earlier, such that below overload the Tw,i are higher than in the common recommended case.

To see how one flow changes the situation, we show in figure 4.49 how the performance changes
if we increase one flow, ρi = [0..1], while keeping the system load constant, %=1, and all other flows
contributing an equal share each. At the same time we also introduce the already repeatedly used
Lomax(2,1) distributed inter-arrival times TA andB eta(1

3 ,
2
3 ,

1
2 ,2) distributed holding times Th to

the simulation results, in order to assess the sensibility to non-Markovian processes. In figure 4.49
we only show the results for the extremes, changing the least and most privileged flow i= 1,4
respectively. The depicted curves may seem unspectacular, but the nearly linear changes show that
the combination of queue admission thresholds and WRQ+ is neither very sensitive to the actual load
split nor to the arrival or service process. Evidently, the blocking is raised by the infinitely variant
arrivals and thereby the queue filling and total throughput ∑ϑi reduced. Notably, the waiting time
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Figure 4.49: L /B /1/xi
max/WRQ+ simulation (×) compared to M/M/1/xi

max/WRQ+ calculation (lines),
Lomax (Pareto-II) arrivals L(2,1), BetaB (1

3 ,
2
3 ,

1
2 ,2) distributed Th, thresholds xi

max={8,9,8,9},
weights gi={1,1,4,4}, one increasing load share, ρi = [0..1], remaining load shares ρj 6=i = (1−ρi)/3

deviation from M/M/1/xi
max/WRQ+ depends on the load split. The E[Tw] of higher weighted flows

and in particular that of the flow rising from [0..1] diverge most. However, the service differentiation
among flows is rather robust and reliable, recommending this combination for class based service
differentiation providing low-loss and low-delay traffic transportation.

The combination of queue admission thresholds and weighted fair queueing opens a plethora
of options. All the viable loads, weights, and threshold assignment variants open a wide space for
evaluations. From the depicted selection the core features of the threshold/WRQ+ combination
should be expectable. In particular, we recognise in figure 4.48 that the assigned thresholds should
inversely match the expected load share, and that assigning high thresholds to highly weighted flows
can be counterproductive if such a majestic flow occupies the server too much. In that case all flows
suffer, and neither low-latency nor low-loss serving can be granted. This confirms the well known
suggestion to restrict majestically privileged flows to a really tiny share of the entire traffic volume,
or avoid them entirely.

4.2.2 Early congestion detection

Congestion at a core packet router (gateway) affects all flows instantly and in parallel. In combination
with ingress control mechanisms, for example TCP, the timely aligned dropping of packets leads to
the synchronisation of the protocol specific ingress load pumping. In consequence, the load on the
bottleneck oscillates and causes a feedback loop that makes the oscillation persistent. The possibly
huge variation per flow causes that the aggregate load across all links used by the affected flows
varies periodically, which synchronises the flows passing a different bottleneck. In the end, the entire
network is bothered by load oscillations (global synchronisation). This macroscopic behaviour of
TCP and methods to target it are for example presented in [111, 112].
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In 1989 E. S. Hashem discussed in [113] a first random drop policy and early random dropping,
targeting the basic synchronisation issue. In 1993 Sally Floyd and Van Jacobson presented an
implementation [114], called random early detection (RED), which became very popular and is
widely available nowadays. A reworked version targeting some flaws of RED never became published,
reputedly due to a disliked illustration. A draft of this paper can be found on line [115].

Random early detection (RED)

The name random early detection refers to an important feature, being the detection of potential
congestion prior becoming critical. In cooperation with sensitive flow-control mechanisms at all
traffic sources, RED can effectively avoid serious congestion. However, to perform congestion
notification based ingress management the traffic flows need to be acknowledged (bidirectional)
flows, else the sources never become aware of anything.

The local congestion detection is based on monitoring the local queue filling. To allow short load
peaks to pass, RED uses an exponential weighted moving average

x̄(t+) = x̄(t−)+ωq
(
x(t)− x̄(t−)

)
(4.17)

adjusted whenever a packet enters the queue, where the weight ωq≤1 determines the time constant
of the averaging [114]. If ωq is chosen too small, the average does not respond sufficient quickly to
load changes. If ωq is chosen too large, short load peaks cannot pass unharmed, causing overreaction.
Thus, ωq needs to be chosen according to the volatility of the traffic and the peak size that may pass
without marking. For an efficient implementation a negative power of two is recommended, typically
in the area of ωq= 2−8 and below.

The dropping probability δ(x̄) evolution over the averaged queue filling x̄(t) is shown in
figure 4.50. We notice that up to a lower threshold x̄low no dropping is performed. This reflects the

0
x̄(t)0

δ(x̄)

RED

sx̄low x̄high

1

δmax
RED

Figure 4.50: Drop probability over averaged queue filling as used with RED

region where no congestion is anticipated. Above this limit the initial dropping probability δ(x̄)
slowly increases, until at the upper threshold level x̄high it abruptly increases to 100%. The low
dropping probabilities up to δmax

RED, reached at the upper threshold x̄high, are sufficient because sensitive
sources commonly respond to a packet loss by a drastic (exponential) cut-back of the ingress rate, for
example halving it in case of common TCP [RFC793]. That the upper threshold x̄high needs to be
well below the available queue size s is necessary because the averaged queue filling x̄(t) does not
specify the actual queue size s required to reach this maximum average filling.

The decision to drop a packer or not can be implemented by a decremented counter, which is
reset to the inverse of the current dropping probability δ(x̄) whenever a packet has been dropped.

In case of non-responsive or malfunctioning sources the queue will be operated in average at the
upper limit x̄high. Thus, this needs to be set to a level enough low to grant satisfyingly small delays.
The lower threshold than needs to be set to a level sufficiently below that, such that the ingress rate
cut-back of the sources takes effect prior the average queue filling reaches the upper bound.

Thus, the exact thresholds and the width of the interval [x̄low .. x̄high], where RED randomly drops
packets, depend on the characteristics of the local traffic aggregate, and the macroscopic round-trip-
time (RTT). Latter specifies the time that passes in between launching a packet and receiving the
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counter based dropping decision
if c && --c then . counter c exists and decremented c > 0

enqueue the arrived packet
else . counter c = 0 or decremented c = 0

drop the arrived packet
c = (int)1/δ(x̄) . reset counter c

end if

acknowledgement thereof, and equals the time between a congestion detection at some node and the
reduction of the ingress load becoming effective at the according node, as sketched in figure 4.51. In

src 1 . . . n destTc,s

Tw,s
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Tc,n

Tw,n

Tc,d

Tw,d

round-trip-time

source edge core nodes edge destination
τp,1 τp,2 τp,n-1 τp,n

Figure 4.51: Congestion notification and response cycle-time equals the round-trip-time

a store-and-forward based packet switching environment the RTT is a random variable, composed
of a minimum duration defined by the propagation delays τp,i, a typically dominating component
reflecting the various synchronisation and computing delays Tc,i, and a rather negative exponentially
distributed component introduced by the waiting times Tw,i spent in buffers (queues). In [114] it is
recommended to assume RTT=100 ms and the thereto related RED thresholds are proposed. In the
subsequent literature many approaches intended to solve the unfairness problem of RED related to
differing RTT per flow were proposed, for examples see [116–118].

Note, if packet marking is supported by the transport technology, packets need not be dropped,
they get marked only. Either using a dedicated congestion notification flag, or the excess flag.
Both are used at downstream nodes to keep the node in a comfortable operation region: above a
defined queue filling threshold marked packets are simply dropped. The message upon the potential
congestion somewhere along the path reaches the destination in any case. Either the destination does
not receive all packets sent, missing sequence numbers in case packets actually became dropped, or
via the flag. Depending thereon the destination informs the source either by not acknowledging all
sent packets, or by notifying it upon the reception of flagged packets.

Anyhow, flows that are not controlled by the source, for example user datagram protocol (UDP)
flows [RFC768], do not cut-back their ingress rate. In the worst case the applications using such
greedy transportation re-send the lost packets, causing the opposite of the intended ingress reduction.
Many nowadays popular services predestined to use UDP may not be designed to cut-back the ingress
rate on demand (e.g., audio and video services).

Discriminatory loss distribution among flows

To evaluate here the complex interaction of RED and different transport protocols exceeds the scope,
but without, an analysis of RED would be incomplete. Instead, we evaluate a simple random early
drop policy not being designed to a special kind of transport control. This scheme distributes the
packet losses of overfilled queues differently among flows, with the intention to assure the demanded
QoS per flow. It is based on the current queue filling x(t) and does not let pass ugly traffic bursts. Be
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reminded that this scheme should not be used with per node traffic aggregates because that can lead
to globally synchronized TCP pumping.

To evaluate the impact of randomised dropping in respect to the performance of a single node
handling different flows in parallel, we use system filling dependent drop probabilities δi

x per flow, as
for example depicted in figure 4.52. The lower threshold xi

low assigned to a flow defines the lower

0
x(t)0

δi(x)

δ1

x1,4
high

x1
low

δ2

x2
high

δ3

x3,4
low

x3
high

δ4

1

Figure 4.52: Drop probability progression over queue filling

boundary, up to which all arrivals are accepted, non is dropped, and the upper threshold xi
high defines

the level from which on no load from the flow is accepted, 100% dropped. If (xi
high− xi

low) ≤1 a
hard blocking bound results. The example curves shown in figure 4.52 result for the threshold pairs
(xi

low,x
i
high) = {(4,9)|(7,7)|(6,8)|(6,9)} for the flows i = {1,2,3,4} respectively. The length of the

shared queue is implicitly given by s = max(xi
high).

This random early dropping scheme, implementing any dropping probability progression δi
x that

is based on the current queue filling x(t) only, such that no memory is introduced, can be modelled
by the state transition diagram depicted in figure 4.53, where εi

x = 1− δi
x is the fraction at which

0 1 2 · · · x1
l · · · x · · · xm

h

∑λi ∑λi ∑λi ∑λi ∑εi
x1

l
λi ∑εi

x-1λi ∑εi
xλi εm

xm
h -1λm

µ µ µ µ µ µ µ µ

Figure 4.53: Randomised dropping state transition diagram

load from flow i is allowed to enter the shared queue at filling state x(t), for example the linear
progressions εi

x = (xi
high− x)/(xi

high− xi
low) shown in figure 4.52. Evidently, this fraction is bound

to 0≤ εi
x ≤ 1. If the value calculated per flow per state falls outside this interval it is to be replaced

by the nearest bound, zero or one. Note that for the example definition of εi
x no arrivals from flow i

are blocked up to and including the lower threshold state xi
low, whereas above and including xi

high all
arrivals from flow i are blocked. Accordingly are the blocking probabilities Pb,i the sums over the
loss probability δi(x) weighted state probabilities px.

Pb,i = ∑
x

δi(x) px (4.18)

The mean system filling E[Xi] and flow times E[Tf,i] need to be calculated via the conditional mean
waiting time tx

w as before, here considering the entry probabilities εi
x = 1−δi(x).

E[Tw,i] = ∑ pi
x tx

w = ∑ εi
x px

∑j εi
j pj
· x

µ
=

1
µ
· ∑εi

x x px

∑εi
x px

(4.19)

E[Tf,i] = E[Tw,i]+
1
µ

⇒ E[Xi] = ϑi E[Tf,i] (4.20)

Introducing the entry probabilities εi
x simplified the presentation of the equations because we now

may sum over all states. Not reachable states contribute zero to the sums because of their εi
x = 0.
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Using the dropping probabilities sketched in figure 4.52 and equal load per flow we get the
results shown in figure 4.54, assuming independent Poisson distributed arrivals per flow and negative
exponentially distributed holding times. The different dropping probability progressions were
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Figure 4.54: Randomised dropping with lower and upper thresholds as shown in figure 4.52
(simulation: ×, calculation: solid lines), shared queue with size s=9, Poisson arrivals, equal
negative exponential Th, equal load shares ρi=

%
4

chosen to reveal some basic behaviours. First, we notice that the mean waiting time E[Tw] are quite
similar. This is due to the equal service shares (fair sharing) and the rather similar upper threshold.
The blocking probabilities Pb are also not very different. At loads % < 1 the lower threshold of
flow 1 causes increased blocking, whereas in heavy overload the upper threshold dominates the
differentiation. Concerning the queue filling and throughput we notice that a less than maximal
upper threshold causes decreasing curves. Flows that may use the entire queue never get shares that
decrease with increasing system load.

Comparing infinitely variant Lomax(2,1) arrivals and boundedB eta(1
3 ,

2
3 ,

1
2 ,2) distributed

holding times (× – simulation) with Poisson arrivals and negative exponentially distributed holding
times (solid lines – calculation) we get the results shown in figure 4.55, where we assume increasing
load shares ρi

%={0.1,0.2,0.3,0.4} for the flows i = {1,2,3,4} representing the non-recommended
case where more load is caused by more privileged services.

The highly variant arrivals cause increased blocking probabilities Pb,i, which evidently cause
reduced mean throughputs ϑi but also reduced mean system fillings E[Xi] that jointly cause slightly
reduced mean waiting times E[Tw,i]. For the chosen dropping progressions δi

x latter differ only
marginally. Anyhow, the mean metrics do not divert much from those found with Poisson arrivals
and negative exponentially distributed holding times (lines – M/M/1/δi

x), such that we may conclude
that the performance of this dropping system does not depend much on the characteristics of the
arrival and service process.

An interesting effect of random early dropping is revealed in figure 4.56: the increased departure
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Figure 4.55: Random dropping with the per flow drop progressions δi
x shown in figure 4.52,

comparing L/B /1/δi
x/SQ (×) with M/M/1/δi

x/SQ (lines), shared FIFO queue (s=9), increasing
load shares ρi

%={0.1,0.2,0.3,0.4} for flows i={1,2,3,4}

M/M/1/δi
x/SQ coefficient of variation L /B /1/δi

x/SQ coefficient of variation0.8

0.9

1.0

1.1

1.2

1.3

1.4

cA,D

0.0 0.5 1.0 1.5 2.0 2.5 %=3.0

cA,D,i

cD,2

cD,1,3,4

0

1

2

3

4

cA,D

0.0 0.5 1.0 1.5 2.0 2.5 %=3.0

Figure 4.56: Arrival (+) and departure (×) coefficient of variation ci
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x/SQ (right), as evaluated in figure 4.54 and 4.55 respectively

coefficient of variation visible for hard bounded M/M/1/xi
max in figure 4.46 vanishes for all the

evaluated dropping progressions δi
x that actually cause random drops prior reaching the upper bound.

Random early dropping combined with weighted sharing – A/B/1/δi
x /WRQ+

If we add weighted resource sharing, for example WRQ+ with gi={1,2,4,8} for flows i={1,2,3,4},
we get the results shown in figure 4.57, where we show increasing/decreasing load shares for the
flows i = {1,2,3,4} on the left/right side respectively. Comparing the case with increasing load
shares (left figures) with the calculation results (lines) shown in figure 4.55 we recognise that adding
WRQ+ primarily introduce a clear differentiation in terms of the mean waiting times E[Tw,i]. The
blocking probabilities Pb,i are determined by the loss progressions δi and so are the throughput shares
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Figure 4.57: M/M/1/δi
x/WRQ+ applying the per flow progressions shown in figure 4.52 and sharing

weights gi={1,2,4,8}, comparing increasing load shares ρi
%={0.1,0.2,0.3,0.4} (left) and decreasing

load shares ρi
%={0.4,0.3,0.2,0.1} (right) for flows i = {1,2,3,4} respectively

ϑi. Concerning the different load distributions we again recognise the effect of much load from highly
prioritised flows, primarily expressed by the considerably increased mean waiting times E[Tw,i],
which we find for all present flows.
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Note, to calculate numeric results, the lines in figure 4.57, we cannot use the state transition
diagram depicted in figure 4.53. We need to return to the multi-dimensional state transition diagram
developed in section 4.1.3 (figure 4.21 and 4.22) in order to get the different conditional mean
waiting times t~x,iw per flow i and state ~x in the waiting time calculation E[Tw,i] = ∑ pi

~x t~x,iw . The
upper thresholds equal the queue filling bounds used in section 4.2.1, xi

high� xi
max. Along the state

diagonals beneath the queue size boundary, in between xi
low and xi

high, we have to reduced the arrival
rates λi by the according dropping probabilities δi

x, yielding λi(x) = λi (1−δi
x). Also the calculation

of the individual blocking probabilities Pb,i and mean waiting times E[Tw,i] needs to be accordingly
adjusted to correctly consider all contributing system states~x.

If we weight the services with gi={1,1,4,4} for flows i = {1,2,3,4} and use δ1 for flows 1,3
and δ3 for flows 2,4, we get the results shown in figure 4.58, comparing infinitely variant Lomax(2,1)
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Figure 4.58: L/B /1/δi
x/WRQ+ simulation (×) compared to M/M/1/δi

x/WRQ+ calculation (lines),
with weights gi={1,1,4,4} and dropping progressions δi

x = {δ1,δ3,δ1,δ3} (figure 4.52) for flows
i = {1,2,3,4} respectively, and equal load shares ρi=

%
4

arrivals andB eta(1
3 ,

2
3 ,

1
2 ,2) distributed holding times (× – simulation) with Poisson arrivals and

negative exponentially distributed holding times (solid lines – calculation), assuming equal load
shares ρi=

%
4 for evaluation clarity.

We recognise a nearly perfect separation of the effects of the different discrimination mechanisms:
flows with the same dropping progression δx experience the same blocking Pb,i, whereas flows with
the same serving weights experience the same mean flow time E[Tw,i]. The divergence caused by the
infinitely variant arrivals and bounded service time does not change this separation of the impact
caused by the different mechanisms joined in the A/B/1/δi

x/WRQ+ queueing system. The results for
different load distributions shown in figure 4.57 let us to assume that this clear separation holds for
any load distribution.
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Concluding remarks on random early dropping

The individual definition of xi
low and xi

high, and the shape of the drop probability progression δi
x, in

between these thresholds, offers in theory infinite options. The upper thresholds work alike the
thresholds evaluated in section 4.2.1, whereas the δi

x introduce the randomisation and thereby the
option to respond to potential congestion before it becomes fatal. If perfectly configured for all flows,
the detection earliness, meaning the difference between xi

low and the saturated queue, provides the
flows’ terminals a chance to jointly react in a way that avoids unsatisfactory QoS due to excessively
high loss rates and huge latencies from 100% utilised queues.

Depending on the ingress control mechanism different δi
x shapes need to be applied. A single

shape that serves all control mechanisms contradicts the opposing responses of the different control
strategies commonly applied. The placing of the upper and lower thresholds should consider the
mean round-trip-time E[RT T ] of the flow this dropping progression is applied on, else the response
to a potential congestion may become effective too late to prevent the collapse, or so early that other
flows see no need to reduce their rates as well. In figure 4.59 these problems become apparent: if
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Figure 4.59: Threshold controlled ingress load over time for greedy applications: hard bounds x1,2
max

and deterministic RTT1,2={3|4} (left), and equal with δ4 randomised bounds and RTT1,2={2|8}
(right), assuming TCP alike transmit window size tw(t)=k(t) th, and deterministic holding times th=1

mean RTTi times the maximum load times the current window size exceeds the difference between
lower and upper threshold, RTTi ρi tw> (xi

high− xi
low), the buffer filling exceeds the upper threshold

prior the rate reduction becomes effective. Due to the time delay introduced by RTT, the rate is
reduced also after the current queue filling x(t)∼ρ(t) dropped below the lower threshold, causing
heavy fluctuations. If we observe the control process over longer time and with random dropping the
results get messy (right figure). However, the cumulatively calculated mean reveals that flows with
shorter RTT get in average a lower share, known as the TCP/RED unfairness issue.

Traditionally, core packet routers (gateways) are not aware of the flows the packets they forward
belong to. With MPLS this changes. If well configured, the random packet losses introduced by early
random dropping affects only one flow at a time, such that synchronisation among flows sharing
a label switched path (LSP) should not occur. For these also the unfairness issue does not apply
because their RTTs are identical. Thus, early random dropping applied with per flow thresholds and
a local flow based sharing policy, for example WFQ, should not cause global synchronisation. In
addition, any per flow enforced sharing policy will evidently annul any unfairness issues related to
different RTTs of different LSPs.

4.2.3 Ingress control

In section 4.1 we introduced resource sharing mechanisms, and in the subsections above, methods to
cope with overload (congestion). We evaluated these systems primarily under heavy overload because
that is the situation where these mechanisms massively influence the performance of a queueing
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system. We noted, that such overload situations occur temporarily also for mean loads below the
system capacity, meaning for ∑λi < µ, whenever random processes are involved. Actually, sharing
and congestion management mechanisms are primarily designed for these temporary occasions
only, and not to handle persistent overload. How to avoid persistent overload, is the task of ingress
control mechanisms, briefly presented in this section to complete the resource sharing topic. These
mechanisms operate at client side, above the transport layer, and control the ingress load prior it is
actual launched for transportation across the network.

Ingress control relies either on accurate knowledge of the entire network state, as for example
assumed with the reservation based approach utilising the request-check-grant control paradigm, or it
relies on feedback information provided either by network components, in particular its management
or control plane, or received from the remote destination entity receiving a transmitted data flow,
implementing the trial-and-adjust control paradigm.

Every feedback, irrespective what component provides it, has to travel back to the source across
the network, as shown in figure 4.60. The path does not need to be the reversed forward path, and in

src
load

1
load

. . .
load

n
load

dest

source edge core nodes edge destination

networkfeedback feedback

Figure 4.60: Control feedback provided either by network nodes or the remote destination

any case, the passed queues are others because in our model we model the transmit queues, which
evidently are not the same for i→ j and j→ i. Thus, feedback is in general randomly delayed, and
the control algorithm should take care of the thereby introduced uncertainty.

The common transport control protocol (TCP), invented in line with the internet protocol (IP) and
briefly introduced in section 4.2.2 in conjunction with the random early detection mechanism (RED),
is a sophisticated example of latter. Note that IP without TCP is in theory, assuming infinite queues,
not stable. In 1992, A.K.J. Parekh proved that for sessions that are shaped at the edges of the network
by token or leaky bucket rate control, weighted fair queueing (WFQ) can provide strong upper-
bound, end-to-end delay performance guarantees [109], rendering these ingress control mechanisms
particularly important for reliable QoS provisioning.

Commonly, admission control performs authentication and conformity with some service level
agreement (SLA). Latter commonly includes a maximum insertion rate besides the customer
privileges. But how can a maximum insertion rate be specified for packet based load, and what
happens if it is exceeded? The ingress rate is the first derivative of the ingress load, which happens to
be infinite at packet arrival instances. Actually, common SLAs specify a peak rate only, and that is
defined as a mean rate over some short times span, in the area of at least one maximum packet length.
Based thereon the leaky and token bucket ingress limiters can be designed, as shown shortly.

More recently admission control is envisaged to be used as well to adjust the characteristics of
data flows in order to provide at any time a service that smartly serves the application: low quality,
hopefully still acceptable, when the network is in trouble, and good quality, but not more than
necessary, else. This principle is known as application aware service provisioning, smart networking
and alike, and states a fundamental idea of the next generation network (NGN) stratum approach,
which separates the network operation form the service provisioning [2].
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Reservation based ingress control

Temporary congestion can be avoided only if the ingress flows are strictly limited such that the local
sum over all ingress flows never exceeds the capacity of the systems passed, such that

∑
i

ζij λi,max < µj ∀j (4.21)

where i is the flow index, j the resource index, and ζij a binary indicator: ζij = 1 if flow i uses
resource j, else ζij = 0. If the load distribution over time and per flow is far from deterministic,
meaning E[λi(t)]� λi,max, such a restriction causes unsatisfactory underutilisation of resources. In
addition, to assure the condition, the limits of all flows need to be adjusted whenever a new flow
is routed, or flows need to be rejected if no route can be found for which the condition is fulfilled.
Latter is exactly the operation scheme of traditional circuit switching, where deterministic line-rates
are provisioned per channel, irrespective of the transported load’s distribution.

If temporary congestion is accepted in the favour of statistical multiplexing, equation 4.21 can
be relaxed to mean rates λi = E[λi(t)]. This exemplifies virtual circuit switching, as it is commonly
used with multi-protocol label switching (MPLS), where resources are not strictly assigned, only
their mean availability is granted.

A principal problem of any request – grant based approach is the a priory required knowledge
upon flow statistics and the signalling of the demand prior any traffic can be transmitted. For heavily
varying traffic loads, for example on-off modulated traffic streams, this is not very suitable: reserving
a capacity share sufficient to cover the on-rate causes unsatisfactory poor resource utilization during
off-periods, whereas reserving the mean rate will not yield the required transmission performance
during on-periods.

However, the reservation based approach is widely used to route label switched paths (LSPs) in
an off-line fashion. The capacity of LSPs is yielded by an utility maximisation algorithm, such that
the resources are best utilised but not overloaded.

max |~µ| constraint to (4.22)

∑
i

ζij µi ≤ cj ∀j (4.23)

µi ≥ di ∀i (4.24)

The equations 4.22, 4.23, and 4.24 express it mathematically as a linear programming problem,
where for clarity we replace the resource’s service rates µj by the capacities cj, and the load of LSPs
λi by the provided mean transmission rates µi, which represent the maximised values.

The problem with this approach are the binary ζij. They represent the LSP routing and if that is
part of the optimisation problem, it becomes a mixed integer linear programming (MILP) problem,
which is not as simple solvable. Note, multi-constraint routing is in general NP-hard [119]. Please see
the rich literature on both, MILP and constraints based routing, if interested in this topic. However,
if we exclude the routing from the optimisation, for example by recklessly routing all LSPs along
shortest paths irrespective of the capacities required/available or assuming the routing to be performed
on demand in between re-optimisation instances, the problem can be solved in polynomial time.
Latter represents a feasible compromise that anyhow results if we apply the never break a working
connection paradigm, widely being the default strategy of lower layer control and here commonly
implied.

The optimisation defined by equations 4.22 maximises the total capacity of all LSPs, being the
length of the LSP-rates vector ~µ. Alternative optimisation targets include but are not limited to:
max(~µ− ~d), max(~µ− ~d)2, max(minµi), max(min(µi−di)), where each has its particular pros and
cons. Primarily is the optimisation constraint by 4.23 to the capacities available per resource, the
resource vector ~c. The other constraint specified by 4.24, which assures minimal rates per LSP,
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the demand vector ~d, is actually optional. The resultant capacities per LSP, the~µ components, are
evidently not the capacities actually required to transport the current data flows. Instead, they state
the long-term mean rates at which these LSPs are capable to transport flows.

Each LSP itself becomes a queueing system where the service rate is now a random function
defined by the competition levels of the underlying resources. Thus, this approach yields a virtual
topology of label switched routers (LSRs) connected by the LSPs i that can handle each a certain
load, the optimal µi, without the risk to persistently overload any resource along the LSP. If per LSP
ingress limiting is implemented, the virtual queueing network operates in stable conditions and can
be analysed alike any other network of queueing systems (section 4.3).

However, to correctly consider the impact of prioritisation or discriminatory resource sharing,
individual LSPs need to routed for every possible QoS demand and source-destination pair. This
is neither scalable nor efficient, if we consider that rarely all service classes are required between
any two nodes, particularly not for all times. To cope with this, LSPs may be used to transport
different service classes jointly, and each LSR performs discriminatory resource sharing in order to
establish different service qualities along LSPs. We can imagine how predictable this approach is,
considering that we may not be able to predict the load mixture, neither in terms of the QoS demands
nor concerning the aggregate flow statistics. Anyhow, the design of virtual topologies is not covered
here, neither henceforth. Please refer to the rich literature thereon if interested in this approach to
network optimisation.
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try cut back
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Figure 4.61: Exemplary ingress rate λin(t) of greedy applications managed by opposing control
paradigms: a) reservation based request-check-grant, and b) feedback based trial-and-adjust

In figure 4.61 the principal drawback of the two control paradigms is depicted: reservation based
ingress control causes a delayed transmission start whereas feedback based ingress control cannot
grant constant transmission rates.

In practice, request-check-grant based resource assignment is natively applied for circuit
switching, and in different forms to establish more or less circuit like channels across per
se connection-less network technologies, for example using Ethernet’s Stream Reservation
Protocol [120]. The effective bandwidth approach has been widely used, in particular for the
asynchronous transfer mode (ATM) technology [121] because it is very utile to cover data flows that
we can sufficiently well assess, not only in terms of their mean traffic volume but also the statistics
of the data units transported, for example fitting a phase-type model as presented in section 2.1.4.
However, for varying traffic aggregates, as they commonly occur on inter-domain connections
and LSPs carrying different flows at different times, this is not possible. In these cases we can
only approximate the flows characteristics very roughly by a worst case assumption, meaning
calculating an effective bandwidth for the worst flow characteristics that may occur. Note, any
effective bandwidth calculation implicitly presumes time invariant traffic characteristics, which rarely
reflects temporary flow aggregates well.
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Polling based ingress control

For packet switched networks in general, the request-check-grant approach is rather awkward: it
contradicts the principal launch-and-forget approach and thus, limits the scalability drastically. A
viable alternative are polling systems, where the resource is temporarily assigned to serve a flow
exclusively. This approach is very similar to resource sharing as presented in section 4.1. Here the
focus is more on the switch-over policy and that we do not know prior polling a queue if load is
waiting or not. The resource serves a queue (load source) either one packet at a time, a restricted
amount of packets or time per visit, or until the ingress queue of the served flow becomes idle. Latter
is called exhaustive and is fallacious if λi > µ is not a priori prevented. In general, polling results in
on–off modulated serving per source, as shown in figure 4.62. The resource is effectively shared by a
self-managed random time division multiplexing strategy. We note that the total ingress rate is the

λin,i(t)

µ

0
0 tton toff ton toff ton toff

Figure 4.62: Exemplary ingress rate λi,in(t) of polled data streams (∑i λi < µ)

sum of interleaved curves (dashed), which themselves are similar to each other, separated by short
gaps caused by the switch-over delay where no source is served. In case an empty queue is polled the
gap increases by an additional switch over time. Longer, randomly distributed idle intervals result
when all ingress queues become empty. In consequence is the gross ingress process a randomly
interrupted deterministic process in term of the line-rate, and an interrupted Poisson process (IPP) in
terms of the packet-rate, if the packet lengths L are negative exponentially distributed.

This polling approach is very feasible for confined environments based on a single shared
medium, for example an access line, a radio cell, or the switching core inside a router. Multiple nodes
constituting a communication network linked by individual independent transmission capacities per
link, are a different beast to cover. If interested in shared medium networks, please refer to the rich
literature on polling systems, for example see [60] and the literature referred to.

Note, an LSP used by multiple flows also comprises a shared medium, although a virtual one
with random serving capacity distributed with F (R), where R is the residual LSP capacity. For
deterministic load unit sizes `, being constant packet-/frame-/cell-lengths, this yields random holding
times distributed by F (Th) = ` F (R). For randomly sized load units distributed with F (L), the
holding time distribution for the queueing model representing an LSP is the convolution of the
unit-size distribution with the service rate distribution, F (Th) = F (L) ∗ F (R). If F (Th) can be
specified, we can actually use any of the models presented in chapter 3 to analyse how well an LSP
can transport a flow or the models presented in section 4.1 for a group of flows sharing the LSP.
However, also the residual mean capacity E[R] of the underlying resources may changes over time,
background load dependently as well as due to re-routing of LSPs in order to adjust the virtual
topology to changed demands. Thus, evaluating LSPs as shared medium will commonly yield results
that are either only snapshots valid for a particular network state, not easily derivable into generally
valid results, or, rough means that are observable only over very long times, and thus, rather irrelevant
for flows with a much shorter life-time.
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Leaky bucket based rate limiting

Flow control based on the leaky bucket principle implements a strict upper bound on the ingress
rate [122]. This is given by the chosen egress rate µb of the bucket. While the arrival rate λ(t)
exceeds µb, arriving clients become buffered in the bucket. When the bucket is full, arriving clients
become discarded. Thus, the departure rate never exceeds the bucket rate, such that

ϑ(t)≤ µb ∀t . (4.25)

Evidently, if λ(t)> µb ∀t the departure rate equals the bucket rate, ϑ(t) = µb ∀t , because the bucket
never becomes empty. At practical loads with mean λ < µb clients are buffered temporarily only.
Short load peaks exceeding µb are replaced by intervals during which the output rate equals the
bucket rate. In between load peaks, once the bucket emptied, the output rate equals the arrival rate,
as we know it from common queueing systems. However, here the term rate commonly refers to a
constant bit-rate r, not a mean packet-rate µ, and the buffer size q to load volume stated in [bit/byte]
or [seconds], and not the number of clients s (loads count). Latter becomes irrelevant if the queue
can be assumed infinite, and can else be approximated by s≈ q

E[L] , where L is the random packet size.
The former translates as usual into a random holding time Th distributed alike the packet lengths
L, scaled by the constant line-rate: Th =

L
r . Assuming Poisson arrivals and negative exponentially

distributed holding times, the leaky bucket limiter can be modelled by a simple M/M/1/s queueing
system with service rate µb and queue size s, as presented in section 3.2.

To evaluate it a little more generally, let us assume batch arrivals, where a random number of
packets arrive simultaneously at randomly distributed arrival instances, as it for example occurs
with file transfers and web-page access. The state transition diagram representing this case is
that of GI/M/1/s, shown in figure 4.63. The splitting of the arrival transitions is determined by

0 1 2 · · · i · · · s-1 s

aij λ

µb µb µb µb µb µb µb

Figure 4.63: MM/M/1/s queueing model used to evaluate the leaky bucket ingress limiter

the probabilities an for n arrivals at an arrival instance, which here are Poisson distributed with
P[n] = (αn/n!) e−α (equation 2.1 for λbatch=α and τbatch=1). In case the batch size n exceeds the
available space, the bucket is filled to its limit s and only the excess part of the batch is blocked.
Thus, the arrival transition weights aij and blocking probabilities per state βi result as

aij =





α(j−i)

(j− i)!
e−α i≤ j < s

∞

∑
n=s−i

αn

n!
e−α = 1−

s−1

∑
k=i

aik j = s
(4.26)

βi =
∞

∑
n=s−i+1

αn

n!
e−α = 1−

s−i

∑
n=0

αn

n!
e−α. (4.27)

Note that zero batch size may occur (aii = e−α > 0) and thus, the sum over all arrival transition
probabilities exiting a state to a state above differs by that amount from one, ∑j>i aij = 1− aii =
1− e−α. However, using these equations we can fill the transition matrix Q as usual, yielding the
upper triangular Q-matrix typical for general arrival processes. Solving the linear equation system
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defined by Q p = 0 we get the state probabilities πi and therefrom the system properties (lines) shown
in figure 4.64 for different bucket sizes s = {3|9|15}. As usual, the blocking probability Pb decreases
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Figure 4.64: MM/M/1/s leaky bucket ingress limier performance, µb=1

with increased bucket size, whereas the mean waiting time E[Tw] increases. However, due to the
batch arrivals they are finite (>0) also for ρ→ 0. Changing the bucket rate µb causes a rescaling of
the x-axis, shown in figure 4.64 for µb=1, only. For the example arrival process we choose a mean
batch size α=1, such that the arrival rate of batches λ determines the mean system load ρ= λ

µb
. For

a different mean batch size α, the batch arrival rate λ needs to be accordingly adjusted to get the
same load, ρ= αλ

µb
. The perfect match with simulation results (×) proves that the MM/M/1/s queueing

system actually models the evaluated leaky bucket ingress rate limiter, and we may conclude that this
holds as well for any arrival and service processes, if we use GI/G/1/s to model it.

Token bucket based rate limiting

Flow control based on the token bucket principle implements a bound on the mean rate E[ϑ(t)]≤λb,
and not on the peak departure rate. This bound is given by the token rate λb at which tokens arrive
to a dedicated tokens-bucket of size sb, as sketched in figure 4.65. Every time some traffic unit

tokens bucket

sb

λb

clients queue

s

λ µ ϑ
≡

µ ϑ
(a+b)-parts

λa
a-parts

sa

b-parts
sb

λb

Figure 4.65: Token bucket ingress rate controller architecture (principle)

(client) is served, an according number of tokens is taken from that bucket (dashed line). When no
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token is available, or not sufficiently many to serve the next waiting load unit, the server pauses until
enough tokens are available (dotted line). This resembles a joining process along an assembly line,
where two individually delivered parts {a,b} become a single joint part (a+b) forwarded to the next
assembly station (the sketch on the right in 4.65). Thus, to analyse this system we need a model
that comprising two arrival processes and two individual queues: the common load arrivals and
buffering queue, and the name giving tokens-bucket, a queue that buffers the tokens. Note, in practice
this system is usually not implemented with two queues. As usual, there exist manifold effective
realisations that perform equal in respect to the control measures but with less implementation effort.

In practice the tokens are commonly configured to arrive deterministically at constant rate rb,
granting the transmission of a particular load volume [bits/bytes] each. As before, we can replace
these volume based tokens by tokens that arrive distributed according to the load volume distribution
per load unit, the holding time distribution, and grant the transmission of an entire load unit of
random size L per token. Thereby, we remain in the per packet regime commonly assumed with
packet queueing models. In case L is negative exponentially distributed, the arrival rate of these
virtual tokens becomes a Poisson process with λb=

rb
E[L] . In average, this yields the same limited

mean throughput E[ϑ].
As the process utilises two queues we need a two dimensional state transition diagram to model

token bucket ingress control. This is sketched in figure 4.66, for convenience considering per packet
tokens and assuming that tokens depart as the load unit that used it departs (departure after service
or late departure regime). Arriving loads cause transitions to the right with rate λ, arriving tokens
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Figure 4.66: Token bucket ingress control state transition diagram (late departure regime)

cause upward transitions with rate λb, and load departures cause diagonal down left transitions
with the service rate µ because they free one unit from both queues, the served load unit and the
token consumed. If no tokens are available no serving occurs. Therefore, state (1|0) is a waiting
state, whereas states (1|1:sb) do not contribute to the mean waiting time, alike all states with zero
clients in the system (left edge). On the other side, all states with i=s contribute to the blocking
probability (right edge). The boundary on tokens (upper edge) has no direct performance relation, it
only limits the number of load units that can be served in between two token arrivals, τb=

1
λb

, which
in consequence yields the burst duration and size bounds state shortly in equation 4.28.

Using the state transition diagram shown in figure 4.66 we can fill the Q-matrix and solve Qp = 0
to get all state probabilities pi and from these the system properties (lines) shown in figure 4.67
and 4.68 for different token arrival rates λb

µ = {0.2|0.5|1|2}, bucket size sb=6, and a load queue of
size s=9. In figure 4.67 both, tokens and loads arrive negative exponentially distributed because
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Figure 4.67: M/M/1/9[6] token bucket ingress controller, negative exponentially distributed inter-
arrival and holding times, token arrival rates ρb=

λb
µ = {0.2|0.5|1|2}, for s=9, sb=6, and µ=1
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for the model we assume that the tokens arrive distributed alike the holding times, which here are
assumed to be negative exponentially distributed. The perfect match approves the model and vice
versa the simulation, although not the assumption that deterministic load volume tokens can be
modelled by packet tokens distributed alike the holding time. However, we recognise that a token
rate to service rate relation ρb=

λb
µ >1 does not much but still visibly improve the performance. In

particular the reduced achievable throughput for λb=µ is conspicuous. It presumably results from
the stochastic dis-alignment of load and token arrivals. For mean rates considerably smaller, λb�µ,
the ingress controller effectively reaches the target rate, where ϑ=λb. The price are considerably
increased mean waiting times E[Tw], which may exceed the buffer size to service rate boundary, s

µ .
In figure 4.68 we compare simulation results for infinitely variant Lomax(2,1) distributed arrivals

and bimodalB eta(1
3 ,

2
3 ,

1
2 ,2) distributed holding times and token arrivals, assuming F(Ab) = F(Th),

with the numeric results from figure 4.67. The results show that the high variability of arrivals
degrades the performance considerably, basically as expected. Interesting is, that the performance
gain for λb > µ is reduced. This is presumably caused by the smoother holding times and thus
smoother token arrivals.

If a token bucket ingress controller is implemented within a customer system providing sufficient
buffering capacity (system memory), for example a personal computer or an embedded processor
providing several gigabyte of random access memory, enough for a queue length 106-times the mean
holding time and more, than an upper bound on the loads queue is practically not required. In case the
thereby caused potentially very high ingress delay obsoletes a load unit, the application can simply
withdraw it from the ingress queue because it is located within the same device, the traffic source as
seen from the network. Withdrawals may be included in the model, see for example [123–126] on
queueing of impatient/reneging customers. Here we do not consider load withdrawal and apply the
matrix geometric method (MGM) outlined in section 3.1.6 to solve the infinite token bucket controller.
According to the state transition diagram shown in figure 4.66, dropping the right boundary edge, we
get the sub-matrices

B1 =




−λ−λb λb 0 · · · 0 0
0 −λ−λb λb

. . . 0 0
0 0 −λ−λb

. . . 0 0...
. . . . . . . . . . . .

...
0 0 0

. . .−λ−λb λb
0 0 0 · · · 0 −λ




B2 = A2 =




λ 0 0 · · · 0 0
0 λ 0

. . . 0 0
0 0 λ

. . . 0 0...
...

. . . . . . . . .
...

0 0 0
. . . λ 0

0 0 0 · · · 0 λ




B0 = A0 =




0 0 0 · · · 0 0
µ 0 0

. . . 0 0
0 µ 0

. . . 0 0...
. . . . . . . . . . . .

...
0 0 0

. . . 0 0
0 0 0 · · · µ 0




A1 =




−µ−λ−λb λb 0 · · · 0 0
0 −µ−λ−λb λb

. . . 0 0
0 0 −µ−λ−λb

. . . 0 0...
. . . . . . . . . . . .

...
0 0 0
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required to apply the MGM equations as outlined in section 3.1.6: in particular, the iterative
calculation of the rate-matrix R, equation 3.59, the calculation of the state-probability vectors per
level πi, equation 3.60, and the mean system filling E[X ] calculation, equation 3.62. Using the usual
calculation chain E[X ]→ E[Tf ]→ E[Tw]→ E[Q] to get the different performance metrics, applying
Little’s law N=λT and E[Tf ] = E[Tw] +

1
µ , we get the results shown in figure 4.69, where we

compare negative exponentially distributed arrivals and holding times (on the left) with an assumedly
quite realistic arrival process composed of negative exponentially distributed arrival instances at
which bulks of packets with highly variable, Lomax(2,1) distributed, bulk-size arrive simultaneously,
A = ML, in conjunction with the already often used, upper and lower bounded, bimodal holding time
process, B =B eta(1

3 ,
2
3 ,

1
2 ,2) modelling mostly short or long packet holding times (on the right).

The results on the left show that simulation and model fit each other, at least for the Markovian
processes assumed. The mean throughput ϑ of an infinite system equals the arrival rate, here, for the
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Figure 4.69: A/B/1/∞[6] token bucket ingress controller, Markov arrival and holding times (left),
negative exponentially distributed bulk arrivals with Lomax(2,1) bulk size andB eta(1

3 ,
2
3 ,

1
2 ,2)

distributed holding time and token arrivals (right), infinite buffer s=∞, bucket size sb=6, µ=1

token bucket controller, upper bounded by the token arrival rate, such that ϑ = min{λ,λb}. This hard
boundary is perfectly approved by the simulation results, in both cases. Note also that we re-scaled
the x-axis from the usual λ

µ =[0..1] to λ
µ =[0..ρb], where ρb=

λb
µ is the virtual load from the token

arrivals, being the mean service rate granted. Due to that, the throughput ϑ reaches the token rate λb
at the right boundary of the diagram, if this is achievable. In case of λb ≥ µ this is not possible, and
thus the performance metrics approach infinity early.

Looking at the mean flow times E[Tf ] on the left, also known as sojourn time, we recognise that
we do not get the best performance for λb=µ. In particular, the comparison to M/M/1, the dash-dotted
curve, which represents the performance of a leaky bucket limiter with rate µ[LB]

b =λ[TB]
b , reveals that

for λb<µ the performance of the token bucket controller is considerably better at low loads, where
short load bursts experience less delay. At high loads, in respect to the token-rate, the achieved mean
flow time is inferior for both, low and high token-rates λb. Without prove, we conclude that the
system performs best for a token-rate at around λb =

µ
2 , and that this can be extended for multiple

flows into ∑λb =
µ
2 .
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If we now turn to the results on the right, we recognise that the assumed arrival process with the
negative exponentially distributed bulk arrivals with infinitely variant bulk sizes represents a really
difficult load. Both, the system filling E[X ] and the mean flow time E[Tf ] are heavily increased by
the simultaneous arrival of packets. In consequence, the performance is evidently inferior to that of
better distributed arrivals. In addition, that the by default calculated confidence intervals do not fit
any smooth curve reveals that the calculation of confidence intervals is based on the central limit
theorem, which fails in case of infinite variance. However, the core functionality of the token bucket
controller, the upper bound mean throughput, ϑ≤λb, is perfectly achieved. For bulk arrivals with
rather smooth service the bound is only reached later, meaning at higher load in respect to the token
rate. And again, the achievable maximum throughput in case of λb=µ is higher and here this token
rate appears to be the optimum also in terms of the mean flow time E[Tf ]. This reminds us that what
is best for Markovian processes may not be the best in case considerably different random processes
are involved.

Concerning the integration of different stochastic processes in the model used to get numeric
results, we note that the integration of any arrival or departure process that causes transitions to filling
levels other than neighbouring levels, cannot be solved using the MGM in general. Only if joining
filling levels into isolated and structurally identical super-levels is possible, such that no transitions
bypassing a neighbouring super-level exist, the MGM can be adapted to analyse such a system. For
example, we can integrate any phase-type arrival or service process where the filling level does not
change until an event generating phase is left, as depicted by the left state transition diagram in
figure 4.70. As well, we can level upper bounded bulk arrivals by joining as many states into a single
super-level as load units can at once arrive within a bulk, as depicted by the right state transition
diagram in figure 4.70. However, notice that the system filling is not unique within a super-level,
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Figure 4.70: MGM compatible state transition diagram (left) resulting from arrival and service
processes interrupted by a common reception (ε) phase, and (right) resulting from levelling upper
bounded bulk arrivals (shown for a deterministic bulk-size of two)

and that whenever from any state all other states can be reached, as for example with negative
exponentially distributed bulk sizes, no levels topology can be found. In consequence, such a state
transition diagram cannot be solved using the plain matrix geometric method. In contrast thereto,
all finite systems can be solved using the matrix analytic method (MAM) if the calculation effort
is tractable. Sophisticated methods to decompose the potentially huge multidimensional matrices
into tractably dimensioned sub-matrices increase the calculation complexity but do not change the
principal approach. These methods are exceptionally utile, but in general, applicable for very specific
cases only.

Returning to the here analysed ingress control mechanisms we recognise that in contrast to
leaky bucket limiting, the token bucket controller enables tokens to pile up in the tokens queue
(bucket). Thus, short load peaks can pass the system at maximum rate, ϑ(t)= µ, whenever there
are enough tokens in the bucket. This improves the response time for short messages commonly
used for signalling and other time critical demands. However, if the arrival rate λ(t) exceeds λb for a
sufficiently long time, such that the tokens-bucket becomes depleted (no token left in the bucket), than
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the mean departure rate equals the token rate, ϑ(t)= λb, and the token bucket controller performs
alike the leaky bucket limiter, until tokens accumulate in the bucket again.

Effectively, the finite bucket limits the maximum duration tburst of the load peak that can pass
the system at full rate µ, and thereby the maximum load volume `burst = tburst µ that may be served
consecutively at full rate µ.

tburst ≤
sb

µ−λb
→ `burst ≤

sb

1− λb
µ

(4.28)

For λb > µ the leaky bucket controller becomes ineffective in terms of burst limiting because in
that case tokens arrive more quickly than they are in average consumed. Thus, in that case the
tokens-bucket never empties in average and infinitely long bursts are possible. Latter also occurs for
the rather academic case with an infinite bucket sb=∞, here independent of λb but rather theoretically
because an infinite number of tokens needs to accumulate in the bucket first.

The ingress smoothing effect of the discussed control mechanisms is not visible from the usual
queueing system behaviour. To see the effect we show in figure 4.71 the arrival and departure
coefficient of variation for leaky bucket and token bucket controlled ingress flows. The compared
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Figure 4.71: ML/B /1/s leaky bucket and ML/B /1/∞[6] token bucket ingress controllers’ coefficient
of variation for arrivals cA (+) and departures cD (×), with µ[LB]

b =1 and µ[TB]=1, respectively

systems are very different: the leaky bucket is by definition finite and we show results for bucket sizes
s= {3|9|15}, whereas the token bucket controller has an infinite load queue and a finite tokens-bucket
with size sb=6 and is analysed for different token arrival rates λb

µ =ρb={1
5 |12 |1|2}. However, the

applied arrival and service processes are the same for both. Considering mean arrival rates exceeding
the set rate not practical, λ<µb,λb respectively, we restrict the comparison to the relevant x-axis
ranges. Doing so, we recognise that the departure process of the leaky bucket limiter (left) is less
varying than that of the token bucket controller (right). As already mentioned, the systems are quite
different and this observation might be owed to the finite/infinite buffer assumption. However, by
design the leaky bucket should be smoother because it lets no load pass at more than the set bucket
rate µb≤µ at any time, in contrast to the token bucket controller where the passing of short bursts at
full rate µ is a design feature.

Viewed from the customer (client/packet) perspective, such a token bucket based ingress control
scheme performs comparable to a queueing system with server vacation, where the vacation intervals
depend on the current load. This assumption is based on the fact that with token bucket control the
departure stream contains idle periods even if the clients queue did not become empty. These gaps
are caused by the the tokens-bucket, which empties with a likelihood that depends on the current
system load. However, to use this observation for an alternative modelling approach is burdened
by the complex relation between the system load and the tokens-bucket idle process, representing
interdependent stochastic processes. Still, at source side the token bucket principle can even be
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extended into a scheduling mechanism, as for example implemented in the Linux kernel since version
2.4.20, called hierarchical token bucket (HTB) mechanism [127]. In this study we are more interested
in the network intrinsic mechanisms, the achievable service quality and and the fairness issues that
may arise, as discussed individually with every presented scheme and more globally in section 4.3.4.

Ingress smoothing

An issue common to all queueing systems is the performance degradation due to the variance of
arrivals. Therefore, it would be best to reduce the arrival coefficient of variation cA to zero. In
general this is possible only if we a priori know the precise mean arrival rate λ. Only than, we can
design a G/D/1 ingress controller that releases load units into the network equally spaced in time,
where µ[D]=λ[A] needs to be set in advance in order to achieve the target. Not knowing the precise
mean arrival rate in advance, we sketch a dynamic mechanism that should achieve at least some
variance reduction also for loads with a priori unknown mean arrival rate. To achieve this, we use a
leaky bucket limiter with an i=X(t) dependent service rate µi, as shown in figure 4.72.

0 1 2 3 · · · i · · · s

λ λ λ λ λ λ λ

µ 2
3 µ 3

5 µ 4
7 µ i

2i−1 µ i+1
2i+1 µ s

2s−1 µ

Figure 4.72: A smoothing leaky bucket limiter with µi=
i

2i−1 µ, which limits the ingress rate and
i=X(t) dependently spreads the departures of successively served load units over time

Solving the system of differential equations, ṗ(t)=Q p(t), defined by the state transition diagram
shown in figure 4.72, using the algorithms introduced in section 3.2.1, we can calculate the distribution
of the flow time F(Tf) shown in figure 4.73. The smoothed flow time distribution F(Tf) at λ= µ
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Figure 4.73: Flow time distribution F(Tf) of the smoother sketched in figure 4.72 for system size
s=9, λ=0.5, µ=1 compared to M/M/1/9 flow time cdf s at same λ and µ={1|0.5} respectively

is quite curved and falls nicely in between the flow time cdf’s of a simple M/M/1/s-system with
service rates µ=1 and µ= 1

2 . Note, to correctly sum-up the Fc-components ϕi of different system
entry states, we need to consider both, the arrivals lost due to blocking λ(1−Pb) because these load
share does not contribute to the F(Tf) experienced by leaving clients, as well as the effective virtual
service rate µ∗= p0 µ+∑s

i=1 pi µi, which obviously depends on the system filling, and thus, decreases
with increasing system load.
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If all ingress limiters of all flows operate independently and unsynchronised, this should yield
smoothed packet arrivals at network nodes, independent if bundled into shared LSPs or not. Thereby,
the mean queue filling at downstream nodes is assumedly reduced and thus the accumulated waiting
time along paths as well. However, the waiting time in the ingress limiter (smoother) is increased,
and the maximum ingress rate supported drops to s

2s−1 µ. Also, the point by point calculated flow
time distribution shown in figure 4.73 does not provide much help toward the departure characteristic
gained, which would be required to assess any advantage on downstream nodes.

Basically, smoothing may as well be included at every egress port of network nodes in order
to smooth the ingress to the next node. However, any evaluation of possible benefits demands
the evaluation of queueing system chains, as outlined in section 4.3, because any change of the
traffic (flow) characteristic becomes effective at downstream nodes only.

Windowed ingress control

Another approach to ingress control is limiting the amount of traffic cw inserted within a certain
time-span τw, called windowing. Let us assume this is implemented with a τw-discrete clock: as long
as the load contingent cw allowed per clock cycle τw is not exhausted, traffic is served at full rate µ. If
cw is consumed before the clock cycle ended, no traffic is served, all arrivals become buffered in the
queue and no load is served until the next clock-cycle starts. For every cycle the traffic contingent
allowed to be transmitted is re-set to cw, unused contingents of a cycle are not carried over to the next
cycle. This assures that the maximum load per cycle is well bounded, such that ϑw≤ cw

τw
is assured.

To model this behaviour we assume a queueing system comprising two queues: an outer queue to
buffer any load that cannot be served in the current window and an inner queue buffering the load that
is served in the current window. In between these two queues is a switch controlled by a load-counter
that limits the amount of traffic ∑τw`in forwarded within each cycle of the τw-clock. This system
is sketched in figure 4.74. Note, if at the begin of a cycle less than cw load is waiting in the outer

outer queue

λ

∑
τw

`in
?
< cw

inner queue

window

µ ϑ

Figure 4.74: Windowed ingress controller that limits the mean ingress rate to ϑ≤ cw
τw

queue, the switch controlled by the counter remains closed until the contingent is consumed. The
arrival process to the inner queue is thus a composite of (i) τw interleaved batch arrivals, (ii) regular
individual packet arrivals, and (iii) no arrivals while the switch is opened. Due to the controlled
ingress to the inner queue its filling never exceeds cw. The outer queue can be assumed infinite or
finite, depending on whether losses shall be foreseen or not.

If windowing is implemented differentially, τw→ 0, it becomes the leaky bucket limiter with rate
µb=

cw
τw

. This is evidently more efficient than the time discrete mechanism. Therefore, we skip any
evaluation of the inferior system based on the two-dimensional state transition diagram that results
for the queueing system shown in figure 4.74. However, the windowing approach provides two
parameters to dynamically adjust the mean ingress load that a source may release into the network,
the window length in time τw and the window size in load units cw, which to some extend can be
used to control the variance of the inserted flow (high for large τw, low for small cw).

The most common ingress controller based on this paradigm is TCP. Its basic version limits
the number of packets released into the network still awaiting acknowledgement to less than the
currently set window size cw. Whenever acknowledgement for some packets is received the according
number of packets may again be transmitted. Therefore, the clock τw is replaced by a feedback
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mechanism intrinsic to the transport protocol. The length of the window is therefore determined by
the connection dependent and network load modulated round-trip-time, τw =RTT, a random variable,
and the re-adjustment of the transmission allowance is spread across the window duration, with grant
re-adjustment amounts dependent on the acknowledgement scheme used: single, sequence or group
of packets acknowledged by a single acknowledgement message, again potentially a random number.
Basically, this realisation represents an on-top approach that requires the cooperation of end systems,
being the source and destination of flows. In contrast to the mechanism presented until here, TCP
cannot be implemented within the network layer or stand-alone to control aggregate loads.

That the size of the window cw is in addition adjusted dynamically represents an extension that
enables the mechanism to adopt itself autonomously to changing network conditions. Actually, this
is the core feature of the TCP/IP bundle because as already mentioned, IP is not stable without TCP.
The ingress limiting is only a necessary side effect, and in general, all TCP sources are greedy in that
they always try to get the maximum transmission rate at any time, not considering any concerns on
actual demand, network sanity, or fairness.

The literature contains a plethora of proposals on how to assess and optimise the performance of
such systems due to TCPs huge popularity. Therefore, we sketch in figure 4.75 the main mechanism
only, not including the start-up phase or the time-out procedure, and refer the kind reader to the very
rich literature on the many TCP variants for a more detailed evaluation.
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Figure 4.75: Acknowledgement controlled windowing (TCP in regular operation)

Looking at figure 4.75 it becomes apparent that modelling such a feedback based ingress control
mechanism demands to solve a queueing network, precisely a cycle of queueing systems, with
commonly far from Markovian holding times per node. Thus, the performance of such an ingress
controller heavily depends on the current network condition.

First, note that the forward path of the load and the return path of the acknowledgement messages
(ACK) are independent paths, which may share the same nodes in reverse order, but need not and for
sure do not face the same resource utilisation. If the ACK-messages are transmitted as signalling
packets, they may be served privileged, if piggybacked in the header of regular load retuned to
the source (bidirectional path) than they are delayed at intermediate queues alike the load on the
forward path. Still, the utilization of buffers is likely different because commonly the load is not
equally heavy in both directions, and thus, the delays of forward and backward path may differ. Note,
the switch in front of the transmit buffer is initially closed until the allowed number of load units
awaiting acknowledgement cw has entered. After this phase the switch is operated by the received
ACK-messages, letting in exactly as many load units as currently being acknowledged.

Second, modelling the path across an IP-network is an open issue because to do this we need to
know also the amount of competing load at each node, which itself may be controlled by the same or
a similar ingress control mechanism. Sharing the same resources causes correlation of the control
mechanisms as discussed in the end of section 4.2.2.

Third, the model sketched does not consider packet losses; neither on the forward path nor on
the backward path. In practice these are essential because they are used to identify congestion and
trigger the consequential reduction of the ingress rate, cw→ cw(t).
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Even though the model does not consider all aspects of TCP, we my draw some conclusions from
the simplified model, leading to a further simplified model. Let us therefore assume that the ingress
rate per flow λin is far below the access and network capacity µtx, µnw, latter being the minimum
capacity along the used path, and also that some network management assures that the queues at
network nodes are only sparsely filled, meaning a QoS friendly low utilization ρnw�1 is maintained,
than we may postulate that the mean waiting time at network resources is only a fraction of the
holding time thereof, and thus that the main latency of packets belonging to a flow occur in the
ingress queue (IN-queue). In consequence, ignoring all latencies added by network resources, we
may simplify the model and approximate the entire send-ACK-loop by a single server with capacity

µTCP(t) =
cw(t)
RTT

. (4.29)

Based thereon we can model the entire TCP connection by a single GI/G/1 queueing system, given
that we can calculate the distribution function that results for the division of the two random variables
cw(t) and RTT. For the current load of a TCP connection we get

ρTCP(t)≈
λin

cw(t)
RTT

=
λin

cw(t)
RTT (4.30)

and notice the RTT-product: the longer the connection is in terms of time, the higher becomes its
virtual load ρTCP(t). Vice versa, the bigger the window cw is, the lower becomes the virtual load.

Having simplified the problem that far from reality, we see no reason not to ignore the influence
of different distributions as well, and thus assume Markovian arrival and service processes. Using the
known results for M/M/1 we can assess a rough estimate on the performance, in particular the sojourn
time representing the mean end-to-end flow time of a TCP connection at different cw and RTT,

E[Tf ,TCP] (t)≈
1

µTCP(t)−λin
=

RTT
cw(t)−λin RTT

(4.31)

where due to assuming an infinite IN-queue we need λin RTT < cw(t) for stability reasons. In practice
this is rather irrelevant because both, the maximum amount of data that may arrive as well as the
available memory provided to queue traffic, are always finite.

Concerning practice, neither Markovian arrivals nor Markovian holding times are realistic. To
correctly dimension the IN-queue, we need to assume batch arrivals to consider the presentation
layer where files are split into batches of packets. Also the files may be requested in batches, as it
for example occurs with framed web-pages, where each frame represents a file that is downloaded
individually. For a better model of the holding time we should on one side consider the deterministic
propagation delay component, which results from the finite speed of light and path dependently lower
binds the holding time of a connection across the network, and on the other side the maximum size of
packets, which upper binds the holding time component introduced by the least line rate rtx=

µtx
E[`packet]

at which the bits of a packet are put on the journey one by one. In contrast thereto, ignoring the
distribution of the RTT and assuming it to be constant seems less critical because for the simple
single server model we already had to assume negligible load at all network nodes. Thus, if we
assuming an RTT that only considers the constant propagation and processing delays along forward
and backward paths, and add a small fraction thereof to consider the queueing delays at intermediate
nodes, the introduced error should not be too big.

However, never should we assume that the absolute results gained from a such heavily simplified
model are reliable. Results gained form such simple models only serve well for the comparison of
variants, when the same inaccuracy can be assumed for all variants evaluated. Real measurement
and more realistic simulation of data transmission cannot be replaced by such a poor model when it
comes to service level agreements and other vital assets.
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4.3 End-to-end performance

In practice the mechanisms presented in the previous sections are not isolated. They perform their
individual tasks in conjunction with other systems that also alter the traffic streams’ characteristics.
Thus, in general these systems influence each other [128]. In consequence we would in general
require a global solution that considers all influence factors to asses the actual end-to-end quality of
load transportation across communication networks. According to the butterfly effect, a change in
one place may cause consequences on timely offset distant flows never passing the location where
the change actually occured.

A major problem in analysing meshes composed of per se already rather complex systems is also
the plurality of parameters: every mechanism can be individually parametrised, opening a plethora
of evaluation options. On the other side, results achieved for a particular setting cannot be used to
assess the quality of other settings. A brief survey of queueing network solution and approximation
approaches than convinced us that a joint analysis of entire networks of queueing systems is out of
reach. In the sense of leave expert problems to the relevant experts, we no further address the topic
and drop the intention to model chains of complex queueing systems carrying multiple flows of test
and background traffic, as sketched in figure 1.33.

However, to round up the topic we briefly introduce in section 4.3.2 the basic methods to solve
some queueing networks, and in section 4.3.3 how to approximate more general networks of queueing
systems. Finally, in section 4.3.4 the underlying issue validating all the effort to model/simulate
system behaviours, the quality of service (QoS) provisioning problem is formulated, laying the bridge
to the topic finally addressed in section 4.4.

4.3.1 Chained queueing systems

Systems comprising two simple queueing systems in series, so called tandem systems, have been
modelled and analysed for long. The results can be found in most textbooks, for example [34,
chapter 15], together with the later on outlined methods on solving different queueing networks.

A simple tandem system composed of two queues with different mean service rates µ1, µ2 is
sketched in figure 4.76 together with the state transition diagram representing it. Note, when we limit
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Figure 4.76: Two M/M/1 systems in tandem with back-pressure and state transition diagram, state
indices (i|j) indicating number of jobs present per system, s1 = ∞, s2 = 4

the size of the second system, as done for the depicted example, than we need to precisely define
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what blocking causes. Here we assume that a full queue at the second system hinders the client to
leave the first system, putting the serving there on halt, which is commonly called back-pressure.

The stand alone state transition diagram for a solitaire M/M/1 system is one dimensional. Two
such systems yield a two dimensional state transition diagram, and every additional M/M/1 system
in series adds another dimension. If the chained systems themselves need multiple dimensions to
be modelled by a state transition diagram, then the number of state transition diagram dimensions
of the chain of systems is the sum over the individual system’s dimensions. Drawing such complex
state transition diagrams can be cumbersome. It is better to define a conclusive rules-set and based
thereon compose the Q-matrix to represent the state transition diagram mathematically, instead of
attempting to depict a multi-dimensional graph by two dimensional views.

On the other side, if the arrival time or service time of a system can be modelled by a phase
type distribution, each state in figure 4.76 needs to be extended by the Markov phases the process
is composed of. In consequence, state transition diagrams of chained systems quickly become
hard to grasp and any errors therein, in particular incorrect or missed Q-matrix composition rules,
cause incorrect results. If the errors primarily cause incorrect transitions out of states with small
probabilities, then the divergence of analysis results may be subtle and easily missed.

However, if only one queue is infinite we recognise a repeating levels structure in the dimension of
the infinite queue and can apply the matrix geometric method (MGM) to get the state probabilities pi,j.
From these we can calculate both, the individual mean queue fillings

E[X1] = ∑ i pi,j E[X2] = ∑ j pi,j → E[X ] = ∑(i+j) pi,j = E[X1]+ E[X2] (4.32)

as well as the mean number of customers residing somewhere in the chain. Using Little’s law N=λT
we get the mean flow times per system

E[Tf1 ] =
E[X1]

λ
E[Tf2 ] =

E[X2]

λ−δ2
→ E[Tf ] = E[Tf1 ]+ E[Tf2 ] =

E[X ]

λ
(4.33)

and their sum states the sojourn time of the chain, which can as well be calculated applying Little’s
law N=λT on the total mean system filling E[X ]. However, latter only applies with back-pressure,
where losses δj in between the chained systems cannot occur.

In case all queues are finite we may even get the global flow time distribution. The basic
transitions cycle, the exit to exit sequence λ→ µ1→ µ2, is commonly best seen around the idle state.
This cycle applies for any customer that arrives to the idle system, if we assume FIFO queueing
or when no other customer arrived during the sojourn time of that customer. Its flow time is then
the sum of all service processes because it never needs to wait in any queue as there is never any
customer in front.

To get the flow time distribution we need the weighted sum over all possible conditional flow
time distributions along any possible entry to absorption path in the state flow diagram depicted in
figure 4.77. For FIFO queueing we just need to drop all arrival transitions to get the flow diagram
from the state transition diagram. The transitions of the state flow diagram define the flow matrix Qf ,
and solving ṗ = Qf p yields the conditional flow times from all possible entry state to absorbing state
transitions. If we multiply these with the according entry probabilities, where the sum over all entry
probabilities must be one as we only count served customers to get the flow time, and add-up the
resultant curves, we get the global flow time distribution.

The state transition diagram of the example tandem system is very similar to the state transition
diagram analysed in section 4.2.3. Thus it should be clear how to use the methods introduced in
section 1.4.3 to solve the system of linear equations to get the state probabilities pi,j, as well as the
methods presented in section 3.2.2 to solve the system of differential equations in order to get the
conditional flow time distribution functions ϕi,j for the different states.
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Figure 4.77: State flow diagram for two M/M/1 systems in tandem with back-pressure, state indices
(i|j) indicating number of customers present per system, s1 = ∞, s2 = 4

Combined multi-flow control

Concerning telecommunication network nodes we commonly find more complex queueing systems.
First we have the inevitable transmit queue of the output port, where packets become converted into
transportable units of the next lower layer. In front of that we can integrate different scheduling
policies and load limiting mechanisms, as for example sketched in figure 4.78. This queueing
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Figure 4.78: Ingress load management example as potentially implemented at an edge node

architecture tries to model the functionalities of an access node where the flows of different customers
enter the network. A selection by the source IP-address will hardly be feasible at core routers where
thousands of flows may be enclosed in the passing traffic aggregate. However, address masks and
LSP-label and class-of-service CoS header fields may still be used at core network nodes for load
separation, as for example sketched in figure 4.79. Here the prime task will be QoS differentiation.
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Figure 4.79: Trunk sharing and aggregate flow smoothing as it might be implemented at core nodes

However, the transmit queue at the interface to the lower layer may be configured as well. In the
example shown in figure 4.79 we assumed a queue-filling controlled processing speed, which for
example may be used to achieve distributed smoothing of the load distribution over time introduced
in section 4.2.3. Note, for implementation consistency we assumed all sub-systems to be token
bucket controlled queuing system, remembering that for bucket size zero it becomes a leaky bucket
controller and for infinite token rate a regular M/M/1/s queueing system.

Clearly, state transition diagrams representing such complex tandem systems are hard to depict as
two dimensional graphs. On the other hand, having shown in the previous sections how the individual
systems can be represented by state transition diagrams, and in figure 4.76 how to combine the state
transition diagrams of chained queues, it is also clear how these systems can be analysed using state
transition diagrams.

Without analysis we can roughly state some configuration rules [129]: (a) if ∑i ri < TX the
transmit queue cannot become persistently overloaded, and (b) if in addition ci < TX ∀i the departing
traffic aggregate cannot consist of an uninterrupted sequence of load units belonging to the same
traffic class. Concerning the operational tasks of the sketched examples we recognise that the
example shown in figure 4.78 is likely found at edge nodes. The first stage prunes all traffic that
exceeds the SLA a customer paid for, while the second stage implements flow differentiation based
on priorities assigned to conform to the requested QoS. Note, the second stage may as well use
custom based queueing (CBR) instead. The internal traffic bypassed refers here to fixed line VoIP
traffic, which typically is an add-on service with a capacity demand negligible compared to streaming
and download services. However, due to the stochastic occurrence of flows and their propagation
along different paths at different times, flow management at edge nodes alone cannot reliably prevent
critical network states at all times. This is the task of the tandem shown in figure 4.79, which
primarily implements QoS differentiation. The bypassed signalling messages should in general
constitute uncritical load volumes, and the self-maintained smoothing at the output provides an
option to manipulate the departure distribution. Alternative approaches to these tasks are presented
in [130].
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4.3.2 Networks of queueing systems

If the provided service comprises the passage through several queueing systems, then the quality of
service (QoS) is defined as the performance of the entire chain of systems passed, and not via the
individual systems’ performances. Evidently, a chain cannot be better then the weakest link, and
more challenging, if all links contribute the same performance, the chain will in general be less well
performing because the weaknesses of the individual systems can accumulate. In some situations
this is advantageous, for example provides a chain of identical frequency filters a steeper filtering
curve, but the losses, being the attenuation in case of frequency filters, accumulate unfavourably. For
queueing systems latter applies for both, the losses and the time spent in the chain.

To correctly predict the end-to-end performance of a chain of queuing systems we need to model
the entire chain because the departures from a system are in general not distributed alike the arrivals
to the system. The problem of queueing chains is not restricted to packet switched networks. For
example, it appears likewise with manufacturing lines, meshed transportation systems, and street
networks. It also applies to sub-systems of network nodes, for example the chain composed of the
line card receiving a packet, the router engine looking for the correct output port, and the transmit
queue of the output port.

In the following we will commonly assume a more abstract network definition, where each
node represents a single queueing system, not a network thereof as just exemplified. Only if the
receivers and the routing engines would not contribute any delays, meaning if they could operate at
infinite speed, this would equal the topology of a communication network as it is commonly shown.
For simplicity and without loss of methodical applicability we will commonly not consider which
task a queueing system performs. Considering latter would restrict the evaluation to specific node
architectures only. In figure 4.80 we sketch such an abstract queuing network with an exemplary
highlighted path, 1→ 2→ 4→ 7 (bold). Note that the backward path needs to pass either node 2

1

2

3

4

5
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7

λ1,7

ϑ1,7

Figure 4.80: Small network of queueing systems with path 1→ 2→ 4→ 7 highlighted.

or 4 and has to include either node 5 or 6, which are not part of the forward path. Actually, there exist
two alternative shortest paths, and for one of these a reverse path utilising the same nodes in reverse
order exists. However, if bidirectional paths exist or not is of no relevance here. The very special
and restricted scenario of solely bidirectional paths can always be extended to pairs of oppositely
oriented unidirectional paths, if at all required.
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Form the evaluation of individual queueing systems we know that the arrival distribution
influences the performance of a queueing system. For chained systems, where the departure
distributions form upstream systems define the arrival distribution to a downstream system, the
departure distribution is very relevant for the end-to-end performance.

In particular with packet switched networks, where cascades of queueing systems are almost
everywhere around to provide the essential data transmission functionality, we cannot neglect the
fact that the departure process characteristic, being the inter-departure time distribution, is in general
load dependent. Only for Poisson distributed arrivals (negative exponentially distributed inter-arrival
times), infinite queues, and negative exponentially distributed service times, and some other very
special infinite systems, is the departure process again a Poisson process with negative exponentially
distributed inter-departure times and load independent variance. In general are the characteristics of
the departure process, meaning its variance σ2

D and moments above, dependent on the arrival and
service process properties, A and S, as well as the current system load %.

D = f (A,S,%= λ
µ )

In [131, 1956] P. J. Burke first proved that the departures of an M/M/n queueing system is again
negative exponentially distributed (Poissonian). An alternative prove was provided by E. Reich in the
begin of following year [132], just before the thereon based paper of James R. Jackson [133] became
published. An intuitive prove is based on the reversibility of the M/M/1 queueing process [134].
Notably, Burke’s theorem is valid for few cases only, and it is assumed that Burke’s theorem does not
extend to queues with a Markovian arrival processes (MAP): the output process of a MAP/M/1 queue
is a MAP only if the queue is an M/M/1 queue [135].

Generally, we know the mean departure rate being the mean system throughput ϑ. Thus, we may
also calculate the mean inter-departure time

ϑ = λ−δ → E[TD] =
1

λ−δ
, (4.34)

where δ = λ Pb is the blocking rate. For loss-less systems is δ = 0, such that their average throughput
equals the average arrival rate. This property can be used to quickly assess the mean load present
at chained queueing systems. However, in general it does not provide any information about the
inter-arrival time distribution present at downstream systems and is thus not sufficient to assess the
performance of queueing system cascades.

In section 4.3.1 we assumed that all processed load form an upstream system is forwarded to
a downstream system. The smart feature of meshed networks is that this is not the case. The load
is distributed, meaning that it follows defined paths, commonly chosen such that it passes the least
number of intermediate systems to minimise the total processing effort. For the service quality this
may not be the best choice, to optimise the performance it may be advisable to intelligently distribute
the load among the available resources. Anyhow, if we may assuming that all flows are composed of
independent and identically distributed packets, being the network customers getting queued and
forwarded node by node, we may assume constant splitting factors to model the routing of flows.
Given the traffic matrix and the routing tables we can calculate the planned mean link loads and
thereby the splitting factors (probabilistic routing) that apply for each network node individually.
This probabilistic routing defines (a) how the ingress load to each node is randomly composed
of departures from neighbouring nodes and the outside, and (b) how the egress load is randomly
forwarded to subsequent nodes or leaves to the outside, as shown in figure 4.80.

Note, networks with no outside are called closed networks, and every open network can be closed
by adding infinite queueing systems per ingress-egress pair, which serves as ingress generator and
load unit buffer, accepting the according departing flows, as shown in figure 4.81. To model an
Erlang setting we assume an outside system that state independently generates arrivals to the open
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Figure 4.81: Closing an open queueing network by a queueing system that models the outside

network with the rate µ0=∑i λ0,i. To get an Engset setting, where the arrival rate λ is defined per
customer, we initially assume the outside queue to be filled with the finite number of customers
specified for the setting, and assume a state dependent arrival generation with rate µ0=x0(t)λ. In
any setting, the queue that models the outside collects all traffic departing the open network, being
egress and lost traffic.

Note that by closing the network the number of customers residing in the queues of the closed
network, including the outside node, must be constant. Based on that, we may define the network
load ρnw as the relation of the mean number of customers in the open network to the total number of
customers c=∑N

i=0 E[Xi] of the closed network.

ρnw =

N

∑
i=1

E[Xi]

N

∑
i=0

E[Xi]

=
c− E[X0]

c
= 1− 1

c E[X0] (4.35)

Randomly splitting the departure flow of a node using constant factors may not perfectly fit
reality, where commonly the traffic is forwarded according to per flow routing tables such that the
load units of each flow remain together. However, only with random splitting (Markovian routing)
we may assume that the distribution of the load forwarded to the neighbour node j, λj,i, equals the
distribution of the load aggregate leaving node i, ϑi, multiplied by the splitting factor ri,j, which
represents the routing probability, for which ∑i ri,j =1 is by definition fulfilled.

λj,i = ri,j ϑi and σ2
λj,i

= r2
i,jσ

2
ϑi

(4.36)

Having closed the network by a node 0 representing the outside and presuming infinite queueing
systems throughout the network, such that ϑi=λi ∀i, we can calculate the load at each node by
solving the linear equations system

~λin = R~λ+~λout (4.37)

where the matrix R holds the routing probabilities ri,j. The equality of this matrix equation is
governed by the flow conservation law: the mean flow entering a node must equal the mean flow
leaving the node. The arrivals from the outside are given, λin,i=λ0,j, and the departures to the outside
result from ri,0=1−∑N

j=1 ri,j and λout,i=ri,0 λi. The resultant vector components of~λ then yield the
steady state mean arrival rates λi per node, from which each node’s state probabilities pi,k can be
calculated individually. These constitute an ∞×N matrix P that precisely describes the network’s
detailed state according to a joint state transition diagram at the given load~λin.

Henceforth we use in this section network state probabilities defined as the probability that
each system hosts a particular number of customers xj= ij. To clearly separate system filling
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probabilities pi,k from these, we use π~x to identify these network state probabilities and refer to the
filling pattern~x as network state.

π~x = P[x1= i1,x2= i2,x3= i3, . . . ,xN= iN ] =
N

∏
j=1

pxj,j (4.38)

Feed-forward networks

The methods found for chained systems can be extended to so called feed-forward networks, where
all queues can be arranged such that all customer flows occur in one direction only. The open network
example shown in figure 4.81 is such a feed-forward network. Evidently, closed networks cannot be
feed-forward networks, whereas closing a feed-forward network might be used to analyse it.

In case of two M/M/1 queueing systems in tandem we get

π~x = P[X1(t)= i1,X2(t)= i2] = ρi1
1 (1−ρ1)ρi2

2 (1−ρ2) (4.39)

E[X1] = ∑
~x

i1 π~x → E[Tf,1] =
E[X1]

λ
(4.40)

E[X2] = ∑
~x

i2 π~x → E[Tf,2] =
E[X2]

λ
(4.41)

E[Tf,chain] = E[Tf,1]+ E[Tf,1] =
E[X1]+ E[X2]

λ
=

1
λ ∑

~x
(i1 + i2)π~x (4.42)

where the result for π~x is of product form. Evidently, this approach yields the same results as found
with the joint state transition diagram presented in section 4.3.1. The last equation also conforms that
in case of no losses Little’s law N=λT is applicable for networks of queues as well.

Please refer to the literature for more details, for example [34]. Broadcast networks are typical
examples of the feed-forward network type. Communication networks are in principle no feed-
forward networks because communication demands a return path. However, transmission channels,
in particular multicast channels, and entire lower layer or overlay networks with special topologies,
for example content distribution networks (CDN) and tree topologies in general, mostly fulfil the
requirements to be modelled as feed-forward network. Networks with feedback cannot be modelled
as feed-forward networks.

Jackson networks

Based on the surprisingly simple product form of the results found for chained M/M/n queues, where
customers visits each queue in order, James R. Jackson found that any network of M/M/n queueing
systems shows this property, if only the arrivals from the outside to the network are all negative
exponentially distributed, the servers have negative exponentially distributed holding times, and all
traffic loads are Markovian (probabilistic) routed according to a common static routing matrix R.

We note that routing loops and ri,i≥0 are not prohibited, and thus feedback is allowed with
Jackson networks [133]. This is the major extension compared to feed-forward networks and states
that M/M/n systems within Jackson networks perform as if all arrivals to every node of the network
would conform to a Poisson process and that the individual system fillings E[Xi] are thus independent
of each other.

The network state probabilities π~x of these networks then can be calculated from

π~x = P[i1, i2, .. , ij, .. , im] =
m

∏
j=1

P[Xj(t)=ij] =
m

∏
j=1

ρij
j (1−ρj) (4.43)
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where ij and ρj=
λj

njµj
are the individual system filling and the mean local load of the interconnected

queueing systems j = [1.. N] of the queueing network. If no overtaking by choosing a different
path across the network is possible, then the product form property also holds for the sojourn
time E[Tf,path], as shown in [136].

For Jackson networks we find:
• independent, possible queue filling dependent, Markovian service with rate µj(Xj(t)),
• all arrivals from the outside are modelled by a Poisson process with rate λ0,j,
• static routing matrix R with components ri,j that equally apply for all flows,
• no priority or other discriminatory sharing of resources,
• infinite FIFO queueing at all nodes (no losses),
• open queueing networks.

Little’s law N=λT is applicable for entire Jackson networks if global expectations are required, as
well as per node:

E[Tf,network] =
∑ E[Xi]

∑λ0,i
E[Xi] =

ρi

1−ρi
(4.44)

E[Tf,i] =
E[Xi]

λi
=

1
niµi(1−ρi)

(4.45)

However, note that for the global mean flow time E[Tf,network] ≤ ∑ E[Tf,i] the entire system filling
across all nodes ∑ E[Xi] is divided by the ingress load from the outside ∑λ0,i only. This apparent
imbalance incorporates the average path length that load units travel on their way through the
network.

Finally, Jackson networks are assumed to be open. However, closed Jackson networks with finite
population c also show product-form solutions, as described by the Gordon-Newell theorem [137].

BCMP networks

In [84, 1975] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios show that several more
queueing systems yield product form results. These are in particular:

• infinite M/M/1 systems, often applicable to model traffic sources (edge nodes),
• M/G/∞ systems, commonly used to integrate random (transmission) delays,
• M/G/PS systems, which approximately model multiplexed serving (shared links),
• and preemptive work conserving (resume) M/G/1/LIFO systems (stacked processing).

The gained plurality of systems enables a more accurate modelling of real networks by solvable
queueing networks. They are therefore called BCMP networks, in reference to the authors of [84]
who first found and published this extension. Note, besides the restriction to the specified infinite
queuing systems, the only requirement is that all traffic from the outside is Markovian. Ongoing
research is focused on further extensions, on one side to find more queueing systems that can be
used [63, 138], in particular how systems with losses may be integrated [139, 140], and on the other
side whether the Markovian ingress restriction can be relaxed [138, 141]. Anyhow, the queueing
network models can be composed of any combination of the above listed queueing systems. The
distribution of network internal arrivals from neighbouring queueing systems and the merging of
these is not explicitly required.

As already recognised with Jackson networks, the product form property provides a relation
among the network state probabilities and the local mean loads present. Once we have calculated both,
for example using one of the many algorithms presented in [142], we can apply Little’s law N=λT
to get the flow times per node and therefrom the performances of different paths (routes) across the
queueing network.
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The discussion of resource sharing systems in section 4.1 has revealed that the performance
of processor sharing states an optimally fair sharing target. If we may assume that this target is
sufficiently achieved, and that all queues are enough large to be modelled as infinite, then we can use
a BCMP network composed solely of M/G/PS nodes to model the network layer of a packet switched
network. In addition, we can include traffic sources that may be modelled by M/M/1 nodes as well
as random delays resulting from lower layer interconnects by M/G/∞ nodes. However, differently
distributed flows, as it is likely the case with MPLS for different traffic classes, can thereby not be
modelled. Also the source→ destination based routing, omnipresent in communication networks
and particularly essential for MPLS, cannot be realistically modelled.

Multi flow extensions

The two assumptions that significantly separate queueing networks from communication networks
are the probabilistic routing and the independent and identically distributed service time presumption
among different traffic flows across the network. Both can at least to some extent be mitigated if
we separate the traffic into different classes. Per class k we can then specify a fitting mean arrival
and service rate per node, λi,k and µi,k, and a dedicated, only within a class probabilistic routing
matrix Rk. For the example depicted in figure 4.82 we assume two traffic classes k=[a,b]. Note that
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Figure 4.82: Open queueing network with class based routing

the destination of a packet arriving is not a priori given if the routing matrices Ra,b contain rows with
more than one non-zero entry (splitting) or if any non-zero row-sum is <1, which indicate that a part
of the load departs the network at the node determined by the row index. The dashed links carry
solely class a traffic, the dotted links class b traffic, and the dash-dotted links carry both classes. The
arrival vectors and routing matrices for the example are

~λ0,a =




λ1,a
0

λ3,a
0
0




Ra =




0 1 0 0 0
0 0 r2,3 r2,4 0
0 0 0 r3,4 0
0 0 0 0 1
0 0 0 0 0




and ~λ0,b =




λ1,b
λ2,b
0
0
0




Rb =




0 0 0 0 1
0 0 0 1 0
0 0 0 1 0
0 0 0 0 r4,5
0 0 r5,3 0 0




where the nodes 3,4,5 form a loop for traffic of class b only. A zeros-row represents an absorption
node for that class because all traffic leaves to the outside. A zeros-column represents a node where
traffic of that class is never routed, but may still arrive there from the outside.

In the extreme, we might define an individual class per connection and data flow to most
accurately represent a communication network. The sub-networks than are always loop-free, if
source and destination node are different. Obviously, the computation complexity rises with every
added class and thus very detailed models are practical for rather small networks, or confined network
sections only. However, to do so we need to find a method to extend the usable queueing system
models to support different handling of multiple flows, each possibly having its own service time
distribution.
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In [83] it is shown that due to the service time insensitivity of M/G/PS it can quite easily be
extended into M/mG/PS such that a multi-flow network can be modelled using the BCMP theory
because the service time insensitivity renders the departure process independent of the flows the
served clients belong to. Only their mean service time and mean arrival rate are relevant because the
queues of the network perform as if all arrivals would be Markovian. Thus, the queue filling and
flow time can be determined individually, system by system, once the mean load composition per
queueing system~λ is known.

~λ = ∑
k

~λk getting~λk from solving ~λ0,k = Rk
~λk per class k (4.46)

Another approach is shown in [141], where the different classes’ arrival streams are modelled by a
decomposed Markov arrival process, called MMAP, and the analysis is based on an approximation of
the departure process.

If also prioritisation has to be considered more complex approaches are required, see for
example [143]. If in addition a feedback based autonomous load insertion control at every flow’s
source shall be considered, than a joint model considering all aspects is likely too huge and complex
to allow a tractable analytic treatment. This is where simulation exhibits its strengths, and where
analysis commonly retreats to coarse simplified models, for example assuming independence and
optimal sharing performance. However, networks of finite systems may in principle always be
modelled and solved. The problem that remains is the size of the state space, which quickly grows to
astronomic regions because of many Q-matrix dimensions.

Concluding, we note that the above presented queueing network theory is not capable to consider
finite queueing systems and non-Markovian arrivals from the outside. In the more recent literature
we find several promising approaches tackling both. These are mathematically challenging and as we
anyhow cannot precisely predict real traffic, we take next a look on simpler approximation methods
based on the second moments only.

4.3.3 Queueing network approximation

To approach the problem in a step-by-step manner let us assume that the systems of the queueing
network could be handled in isolation, considering the composition of the arrival and departure
process only, using the available results for the individual systems. The basic assumption for this
approach is independence, such that the random flow times Tf,j of the systems j involved along a path
across the network may simply be summed to get the end-to-end passage time Tf,path = ∑j∈path Tf,j.
In that case we can model the queueing network by a network of servers, each defined by its sojourn
time Tf,j, now used as the system’s holding time, as sketched in figure 4.83. This is the same network
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Figure 4.83: Open queueing network modelled by interconnected sojourn times

example as used before in section 4.3.2 (figure 4.82); please refer thereto for details on the assumed
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network and traffic flows. In brief, there are two traffic classes k=[1,2], probabilistically routed via
routing matrices Rk. In addition we allow now losses δj by integrating in the routing matrices a sink
(absorbing node) that collects all lost load. Note, the loss-rates δj,k may thereby be specified per flow,
allowing us to consider discriminatory queueing disciplines.

To apply the merging and splitting of flows presented in section 2.4.2 we need to assume that
all Tf,j are independent, meaning that there exists no correlation among the sojourn times of the
individual queueing systems forming the queueing network. This is in general not fulfilled, but to
approximately solve queueing networks by the two moments approach presented in [57] it needs to
be assumed.

Recursive departure approximation – sojourn times in series

The sojourn time is the duration that a load unit needs to pass a system. It is therefore also called
flow time Tf in accordance to the stock-flow model shown in section 2.4.1 figure 2.36. In terms of
queueing systems it is the time that passes in between the arrival of a load unit and its departure. How
this duration is composed, is on this abstraction level irrelevant. In practice, for a packet switched
node, it could simply be monitored using local time-stamping and statistical evaluation.

In case of discriminatory resource sharing the sojourn time is different for different traffic classes.
For the approximation we assume that discrimination works perfectly, such that the distribution of
the flow time FTf ,j is the same for all traffic classes, only the means tf,j(k) shall be class dependent,
such that

E[Tf,j] = ∑
k

uk,j tf,j(k) ∀nodes j, (4.47)

where uk,j is the mean percentage at which load form class k is present at node j, for which ∑k uk,j=1∀j

needs to be fulfilled at any time.
The load per system and traffic class we get from the solution to the linear system of equations

defined by

∑
k

~λ0,k−~δk = ∑
k

Rk

(
~λk−~δk

)
+∑

k

~ϑk (4.48)

constraint to

|~λ0,k|= |~ϑk|+ |~δk| ∀k (4.49)

where~λ0,k are the class-k arrival-rates from the outside,~δk the loss-rates and~ϑk the departure-rates
of class-k traffic to the outside. The constraint simply states that the load per class that enters the
network from the outside also to leaves it. Having found the individual load shares per queueing
system~λk we can state the utilisation factors uk,j per class per node, being the percentages at which
loads from different classes are present at node j,

~uk =
~λk−~δk

|~λk−~δk|
(4.50)

required to know the composition of the load leaving a node. Note, for the load shares entering
a node we need to normalise the arrival vector, ~ak =~λk/|~λk|, and evidently, the difference ~ak−~uk
states the loss shares per class.

Using the distribution merging presented in section 2.4.2 we can now node by node calculate
the arrival distribution and an approximate for the departure distribution. In case of a feed-forward
topology we start with nodes that face arrivals from the outside only, and move node by node
through the network, recursively calculating the departure distribution of nodes once all ingress
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distributions of that node are known. In case the network topology includes loops we retard to
iterative re-calculation until the changes per round become negligible. Anyhow, we also calculate
the mean sojourn times E[Tf,j], as these are finally required to calculate the end-to-end propagation
times E

[
Tf,k,path

]
along paths.

E
[
Tf,k,path

]
= ∑

j∈path
E
[
Tf,k,j

]
= ∑

j∈path
uk,jgk E[Tf,j] (4.51)

Besides the propagation time along paths also the losses that accumulate along paths δk,path state a
prime performance metric,

δk,path 6= ∑
j∈path

δk,j → Pb,k,path =
δk,path

λ0,k(path)
= 1−∏

j∈path

(
1− δk,j

λk,j

)
(4.52)

where we cannot by default use the summation because not all class-k load present at a node j
necessarily belongs to the same path. Instead, we get it via the loss probabilities Pb,j,k=

δk,j
λk,j

per
class and node, precisely the product of the success probabilities (1−Pb,j,k) over the path. Note
that λ0,k(path) states the ingress rate for class-k traffic that shall be transported along a precisely
identified path and that (a) the source node can be the source for many paths, and (b) different traffic
classes may be transported along the same path. Here we assume that paths are defined per traffic
class (flow) and that the ingress load per flow λk is given separately and not to be calculated from
Rk. Vice versa, Rk shall result from the given load volumes per flow because these state the capacity
demand as it is risen by applications (the OSI-layer above).

If we can calculate the sojourn time distributions FTf ,j(t) per node, than we can as well calculate
the sojourn time distributions of paths by successive convolution (~ = multiplication of the Laplace-
transforms) of the individual distributions,

FTf ,path(t) =~
j∈path

FTf ,j(t) FTf ,path(s) = ∏
j∈path

FTf ,j(s) (4.53)

if we only could assume that all these distributions are independent. Actually, they usually are not.
For example, the so called streamlining effect [56] leads to a better performance than predicted by
approximation methods that disregard the existence of correlation.

Coefficient of variation approximation – aggregate composition and decomposition

Calculating all the flow time distributions FTf ,j(t) per queueing system may be exhaustive, and only
considering the mean flow times ff,j likely yields results that diverge too much from reality. We
repeatedly encountered that for many queueing systems the mean performance metrics depend on the
first and second moments only. A methodical approach based on recursive coefficient of variation
calculation is shown in [57], and briefly repeated here. Figure 4.84 visualises the approximation
approach. First a traffic aggregate is composed that covers all ingress flows by an approximate square
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Figure 4.84: Approximation by arrival superposition –> aggregate queueing –> departure splitting
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arrival coefficient of variation c2
A,j. Then we assume a single queue single server queueing system

and approximate its effect on the aggregate square departure coefficient of variation c2
D,j. Finally, the

departure aggregate is split into subsequent arrival components’ square coefficient of variation c2
Ak,j+

according to the routing table Rk. At downstream nodes these become superpositioned with those
arriving from other upstream neighbours thereof, initiating the same procedure node by node. In the
end we get the system of equations stated in equation 4.57.

Note that in our perspective, in respect to communication networks, the queueing systems
constituting the queueing network represent the links of the communication network, and not the
nodes thereof. Thus, the topology of the queueing network is the dual topology of the communication
network: nodes become links, links become nodes. For star and ring topologies the two are
structurally identical, in general the topologies differ. However, due to that, the superposition refers
to the node internal merging of flows at egress ports, and the splitting refers to the routing of the
ingress load composites from all ingress ports to different egress ports.

Assuming renewal property for all processes an equation to calculate the squared arrival
coefficient of variation c2

A,j is derived in [57] based on [58]

c2
A,j =

λ0,j

λj
c2

A0,j +∑
k

λk uk,j−

λj
c2

Dk,j− , (4.54)

where c2
Dk,j−

is the squared departure coefficient of variation of flow k when leaving the preceding
resource j−, and c2

A0,j is the squared arrival coefficient of variation of all arrivals entering the network
at resource j. Thus, the first term refers to the ingress flow entering the network at resource j,
providing the given part of the system of equations that relate these to the second term contributing
the a priori unknown arrivals from neighbouring nodes j−, where the traffic leaves as departures.

Assuming that the per flow departure characteristic is related to the aggregate characteristic only,
the approach outlined in [57] continues by using the splitting proposed under the assumption that
the departure process is of renewal type, to get an equation for the squared departure coefficient of
variation per arriving flow k from node j−.

c2
Dk,j− = uk,j− c2

D,j−+(1−uk,j−) = 1+uk,j−
(
c2

D,j−−1
)

(4.55)

For the aggregate’s departure coefficient of variation c2
D of a node, a simple and rather common

approximation is used
c2

D = ρ2 c2
B +(1−ρ2) c2

A = c2
A +ρ2(c2

B− c2
A
)

(4.56)

where ρ=uj is the utilization of the resource j, and c2
B is its aggregate service time coefficient of

variation. It depends on the aggregate arrival characteristic c2
A entering the resource j, which needs

to be calculated likewise based on the flows entering it. This proceeds across the entire network of
resources, defining a system of equations that is linear in terms of squared coefficients of arrival and
service variations c2

A and c2
B

c2
A,j =

λ0,j

λj
c2

A0,j +∑
k

λk

λj

(
uk,j−+u2

k,j−
(
c2

A,j−−1+ρ2
j−(c

2
B,j−− c2

A,j−)
))

∀j (4.57)

that can be solved rather easily, once we solved 2.101 to get the load shares uk,j at each resource j
for every flow k present. To do so we need given ingress flow intensities λk and ingress coefficient
of variations cA0,k, all flow’s routing across resources, being node j sequences per flow k, and the
service time coefficient of variation c2

B per resource, which may be composed from the present flows
according to 2.100, adding one more dimension.

In general equations 4.54, 4.55 and 4.56 are approximations only, because all contributing flows
have to be independent and of renewal type to make this approach precise. Independence of ingress
flows is not necessarily preserved, for example if two flows pass a common preceding resource their
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arrivals to downstream nodes may be correlated. The renewal property can be assured only if all
initial flows result from Poisson processes and all service times across all resources are negative
exponentially distributed. This is the case for Jackson networks [133] but not in general.

Finally note that in general the results calculated for a traffic aggregate cannot be decomposed
into performance metrics per contributing flow. To evaluate systems accurately on a per flow level, it
is possible to use vacation models, where the serving process becomes split among different traffic
flows. Per flow a sub-model is designed, where the serving is interrupted to model the service of
load units from other flows. This is a contrary approach: the individual service time distribution is
preserved, which is possible because without preemption only the waiting time prior service depends
on the properties of the other flows currently present. However, the effects of a shared finite queue
can thereby not be covered. A variety of vacation models is for example discussed in [60] and in
most comprehensive text books on queueing systems.

Departure process approximation – the GI/G/1 queue

In section 3.1.5 we defined TX(n) to be the time lag between service completion of client n and
service start of client n+1. Thereby the inter-departure time may be stated as

TD(n) = TX(n)+TS(n+1).

Due to independence of TX and TS we get for the first two moments

E[TD] =
1−ρ

λ
+

1
µ
=

1
λ

Var(TD) = Var(TX)+ Var(TS)

where the result for E[TD] is evident for any infinite queueing system. Applying the calculation rules
for variance and covariance, the equation found for Var(TD) lets us express the departure variance
by first and second moments of the arrival and service distribution and the mean waiting time3.

Var(TD) = σ2
A +2σ2

B−2
1−ρ

λ
E[TW ] (4.58)

This is a nice finding: it tells us that once we know the mean waiting time we also know the first
two moments of the departure process, and thus the two moments required to at least approximately
characterise the outgoing flow in case we want to analyse a cascade of queuing system. In particular,
with flow based communication networks we may simply monitor the mean flow time and thereby
reveal locally some information upon the departing flow.

Inserting the bounds found for the waiting time in section 3.1.5 equation 3.52 we get upper and
lower bounds for the departure variance.

σ2
B ≤ Var(TD)≤ σ2

A +σ2
B +

1−ρ
λ2µ

(4.59)

On one side the departure process cannot be less variant than the service process, and on the
other side, the upper bound depends on the current load. Likely the actual variance of the output
process does so as well. Stating an output distribution that identifies the departure process based on
the variances of the contributing processes only, independent of the current load, is rarely possible.
Figure 4.85 shows the dependence of the inter-departure time coefficient of variation

cD =

√
Var(TD)

E[TD]
= λσD

on the load ρ. Only for cS=cA is cD load independent.
3 Var

(
T (n+1)

W −T (n)
X

)
=Var

(
T (n)

W

)
+Var(TS)+Var(TA)→ Var(TS)+Var(TA)=Var(TX )+2E[TW ] E[TX ]→ Var(TX )
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Figure 4.85: Departure coefficient of variation cD for GI/G/1 queueing systems with cA|B=[0.5,1,2,5]
respectively, upper bounds (- · -), lower bounds (· · · ), simulation results (×××)

The lower (dotted) and upper (dash-dotted) bounds depend not only on the load ρ = λ
µ but also

on the actual rates, λ and µ. Therefore, we show in figure 4.85 the upper bounds calculated for
λ = [0.. 1], µ = 1, and the lower bounds for λ = 1, µ = [∞ .. 1], to get the general bounds applicable
for all λ/µ-ratios yielding the same load ρ. Also the simulation has been performed for both cases,
and therefore there are actually two overlayed simulation results××× shown. However, except from
statistical fluctuation the simulation yields the same results for both cases.

Note that the lower bound is defined independent of the arrival process. Consequently, it is the
same in all sub-figures. That it approaches zero at zero load is evident because it needs to hold as
well for deterministic arrivals with cA = 0. As commonly the case with infinite queueing systems,
the impact of a bursty distribution can hardly be compensated by a smooth other process. Therefore,
in case of smooth arrivals and bursty service the departure variance rises quickly, and vice versa, for
bursty arrivals and smooth service it remains at a high level until more than 50% load is reached. If
the variance of the arrival and the service process are the same, we get a more or less horizontal line.
For M/M/1 it actually is, according to theory, a straight line. For the smooth-smooth combination it
shows a marginal bend upwards. At the extremes, ρ = 0 or 1, cD approaches the arrival and service
variance, cA or cS, as could be anticipated.

This non-linear dependence of the output variance on the system load challenges the calculation
of cascaded systems; particularly, if the load is unsteadily varying. An extreme example is pure
on/off-traffic, as it can be observed on access networks, comparable to busy streets controlled by
traffic lights: green = get some content, red = use received content. Such systems should be modelled
for selected load levels (for example high and low) because a mean distribution that results for the
average load ρ= ton

ton+toff
ρon will commonly not compare with the perceived performance [130].
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4.3.4 Quality of service

In the introduction to this chapter, figure 4.1, we recognised the different traffic management
approaches and their scope. All these cooperate in order to deliver the quality of service QoS required
to provide a data transmission based IT-service. These services are very different in their demands,
as listen in table 4.4 [130]. For the traditional data-centric applications the jitter is irrelevant because

Table 4.4: QoS requirements of different IT-services (applications)

application delay jitter loss probability

voice (telephony) 150ms→ good
400ms→ least

30 ms 1%

interactive video, video-conferencing 100 .. 400ms 50 ms 0.1%
video broadcast, video streaming 4 .. 5s — < 5%
interactive IT services, messaging, chat 150 .. 400ms — 1.. 5%
downloads, web-pages, e-mail unspecified — 1.. 5%

they were designed to operate with unreliable data transmission, foreseeing an inevitable buffer at
the destination to collect the correctly received packets until the entire content can be reconstruct,
independent of the timing and order of packet arrivals. In these cases, the delay constraint mainly
refers to the service’s response time to user interaction, shown in table 4.7, not to be mistaken with
the sojourn time.

In contrast to traditional unicast IT-services raise interactive services, where end systems
communicate seemingly in real time, not only stringent delay constraints. The jitter constraints of
traditional telephony services is basically risen by the signal processing performed at end systems, in
particular if these were designed for jitter free circuit switched lines. Even more restrictive is the
loss constraint because for many so called ’real time’ applications lost packets are a serious problem:
they trigger re-transmissions, which increases the delay and causes massive jitter, leading to short
but annoying service interruptions.

Continuous services alike multimedia streaming should therefore avoid any retransmissions and
encapsulate sufficient redundancy in the content compression and encoding (error correction bits)
to mitigate the quality degradation when skipping lost segments in the reproduction of the content,
utilising for example video frame buffers. In addition, the compression should be sensitively adjusted
to the transmission quality (QoT) in order to achieve maximally interruption free content delivery.

A completely different story is synchronisation, in particular lip-synchronism. Because packet
switched networks are by design asynchronous, synchronism either needs to be enforces by the
encoder, packing video and audio information in parallel into the same transport containers, for
example using the audio channels provided by SDI frames, or by the playback device. Latter demands
identical time-codes encapsulated in the first place in both signals, audio and video. However, any
off-line synchronisation as well as heavy compression cause processing effort prior final delivery,
causing additional latencies.

On the other side demand these services very different transport capacities, shown in
table 4.5 [130]. From this table it becomes very clear that the major capacity drivers of today
are the video services. Recent rumours tell that more than 50% of today’s Internet traffic is caused by
video services. Considering the high quality demand, it becomes evident that today the Internet has to
deliver a QoS unparalleled to what it has been designed for. Thus, all mechanism available to improve
the end-to-end QoS need to be maximally exploited. Still, the good performance we experience in
developed countries is mostly gained from massive over-provisioning. Premium network operators
run their core networks at an average utilization far below 30%, and they increase the capacity, for
example by adding/activating more line-cards, whenever the peak load reaches the 50% margin.
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Table 4.5: Transport capacity demand of different IT-services (applications)

application capacity demand

tele-text 0.3 kbit/s
web-pages, file-transfers, e-mails, etc. as much as it gets
digital music streams (web-radio, HD-audio) 32 .. 4800 kbit/s
video conferencing (per attendee) 0.384 .. 2 Mbit/s
MPEG-2 video streams (DVD, satellite) 2 .. 8 Mbit/s
MPEG-4 video streams (SDTV, HDTV) 1.5 .. 20 Mbit/s
uncompressed digital video (SDI) 0.3 .. 3 Gbit/s
digital cinema (2k, 4k, iMAX) 1.5 .. 20 Gbit/s

Over-provisioning is for sure the most effective approach, fundamentally supported by all
performance studies presented in chapters 3 and 4. However, to maximise the efficiency, network
engineers always seek for an optimal configuration of the many systems involved in the transmission
of information that achieves the best QoS possible form the available/added resources, including
capital expenditures and operational costs. Keeping an eye on economics and customer satisfaction,
it is clear that the efforts put in QoS maximisation will not exceed the gained returns and may not
spoil any service. Actually, QoS degradation in the context of packet switched networks is primarily
caused by load peaks, which becomes equally aware from all the performance studies presented in
chapters 3 and 4. Thus, the most efficient approach to QoS maximisation within packet switched
networks is the avoidance of load peaks.

Quality of Experience – the end-to-end view

Quality of Experience (QoE) assesses the customer’s satisfaction with a service. It focuses on a
vendor’s offering solely from the standpoint of the service customer. In this context we first need
to extend our view. The true chain of systems relevant for the perceived performance, sketched
in figure 4.86, includes not only the data transport, it also includes customer equipment out of
the control hemisphere of the service provider. Most delays caused by end systems are easy to
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Figure 4.86: Complete end-to-end path and scopes of QoS and QoE metrics

asses from equipment tests. However, variable delays as for example caused by the decompression
of variably compressed signals, need to be considered by their worst-case figures. The other
uncontrollable component is the inevitable propagation delay, which results from the finite speed of
signal propagation in different physical media. Table 4.6 lists exemplary figures for the propagation
delay of typical communication links to gather the ranges where these are relevant. Wired links
across free space are rather impossible and therefore not listed. For a technology that foresees for
example 10ms clocking at every node, are propagation delays of distances up to hundred kilometres
rather negligible. On the other side, the propagation delay may also prohibit some services. For
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Table 4.6: Approximate signal propagation times of common transmission media

distance free space copper cable silicon fibre

1km 3.34µs 4.45µs 5.34µs
300km 1.00ms 1.33ms 1.60ms
5.000km (transatlantic) 16.7ms 22.2ms 26.7ms
44.000km (around the world) 147ms 196ms 235ms
72.000km (geostationary satellite) 240ms — —
1au= 149.6∗106 km (inter-planetary link) 499s — —

example is video-conferencing with attendees distributed around the world difficult due to the limited
achievable performance, independent of the provided connection capacity.

Next we specify response time ranges based on personal observation and our interpretation of
rather vague recommendations found for different applications. Note, the ranges stated in the right
table 4.7 lack reference and approval because they are intrinsically subjective. The usability of

Table 4.7: User perception of system response latencies and MOS factors [144, 145]

response latency perceived as

< 10 ms seamless
10..100 ms instantaneous

0.1..1 s acceptable
1..10 s heavy delayed
> 10 s unresponsive

MOS factor MOS rating degradation is

5 excellent imperceptible
4 good perceptible
3 fair slightly annoying
2 poor annoying
1 bad very annoying

the here stated quality ranges depend on the provided service. However, they always respect all
subsystems involved according to figure 4.86: from the source of the signal remotely controlled by the
customer, till the end system at customer premises providing the interface to a human user. For other
user types, for example machine-to-machine communication, other, in a wide range tunable figures
need to be considered. Human users are rarely tunable and may respond irrational if manipulated.
Better not to be tampered.

The mean opinion score (MOS) shown on the right in table 4.7 refers to a test commonly used
with telephony networks to obtain the customer view of the perceived quality. It is based on averaged
subjective quality ratings by a comprehensive selection of test customers, individually scoring the
service quality as they perceived it in a ’quiet’ test environment according to ITU-T recommendation
P.800 [145]. For voice over IP (VoIP) ITU-T PESQ P.862 [146] states a method to calculate MOS
factors directly from IP network performance. However, this method skips many subsystems of the
processing chain. In consequence, the different reaction of these sub-systems on the loss or delay
of different parts of the content is missed. Thus, these calculated MOS factors can severely diverge
from the MOS ratings achieved using the original method defined in ITU-T P.800.

For multimedia services the MOS provides a numerical indication of the perceived quality from
the users’ perspective on received media services, including all mechanisms of the content processing
and transportation chain shown in figure 4.86. In addition, several aspects influence the quality rating,
not only the perceptibility. See for example the QoS categories introduced in ITU-T recommendation
G.1010 [144]. A clear drawback of MOS is the demand for a representative group of test persons.
This may be expensive, but more importantly it is very time consuming and difficult to implement in
parallel to system development and deployment.

Concluding, the end-to-end service quality is difficult to asses and depends on the sensibility
of the subsystems involved on the transmission quality. Thus, QoS specifies the performance of a
connection across some network, and QoE the performance of an IT-service. The relation among
QoS and QoE depends on the subsystems required outside the network to deliver the service.



4.3 End-to-end performance 283

Performance expectation – how to satisfy customers

Regular consumers of a service are commonly aware of the technically inevitable shortcomings and
accept these. Thus, the customers of queueing systems and chains thereof are primarily displeased by
the varying waiting time Tw because this part of the flow time Tf does not always occur and seemingly
comprises no necessity.

For the operators of packet switched networks the waiting times Tw at network nodes state the
price to be paid for an economically satisfying utilisation of the provided resources and is intrinsic
to statistical multiplexing. Thus, the target of network optimisation is to parametrise the involved
queueing systems j such that the maximal accumulated mean waiting time E[Tw,k] = ∑j E[Tw,j] along
paths k across the network is minimal and at the same time maximally constant, meaning that the
time derivatives Ṫw,k called jitter shall be minimal as well.

min
k

(
E[T [k]

w ]
)

AND min
k

(
Ṫ [k]

w

)
∀paths k

How to achieve this target in an effective and efficient manner, is an open research topic that can be
addressed from different sides.

• global: To achieve the best possible performance the load of all network nodes shall be
minimised. This is achieved by load balancing. For a reservation based end-to-end (source-)
routed network management this is achieved by a load sensitive routing algorithm. For
example based on the resource reservation protocol for traffic engineering (RSVP-TE), which
is commonly used with MPLS. However, using longer paths than the shortest possible always
increases the total network load because longer paths occupy more resources. For plain IP
networks this approach is impossible because there exists no reservation of resources. Such
can be integrated by add on protocols, for example MPLS, which add their own resource
management turning the network from connection-less into connection-oriented.

• sectional: With hop-by-hop routed networks a timely accurate view of the current network state
is hardly achievable, and anyhow excessive for thousands of nodes. For these deflection routing
can divert some load to alternative paths from a currently overloaded node if this information
is timely propagated to upstream nodes. However, path toggling should be avoided. It may
be necessary to re-route other flows/paths to free the resources required for flows/paths that
cannot be re-routed else. This demands so called autonomous systems (AS), representing a
manageable part of the entire network, using so called path computation elements (PCEs)
located at one node of the AS. PCEs combine the information from within the AS with that
exchanged among neighbouring ASs and can thereby decide to either re-route a flow within
their section or deflect it to an AS that advertised sufficient capacity.

• local: On a local scope the total load present at a node cannot be changed. Thus, the node
can only try to serve the load shares in a way that fits different demands best. With MPLS the
so called per hop behaviours are enforced. These can for example be achieved by weighted
fair queueing (WFQ) presented in section 4.1.3 in combination with weighted random early
detection (WRED) presented in section 4.2.2. However, as exemplified with the evaluation
of these discrimination schemes, any improvement for a flow compels degraded performance
of other flows. Still, this is today the most common approach. In combination with demand
advertisement, as it is for example communicated by RSVP-TE, the burden on less privileged
flows can be controlled. Without load advertisement any local approach is a rather blind and
unreliable attempt toward QoS provisioning.

• flow centric: A more advanced approach toward on demand privileging is the time-to-live
based prioritisation of arriving load units. Per hop the time-to-live is reduced by a constant or
an amount that reflects the time spent at the node. Privileging load units with a shorter time-to-
live shall assure that all load units reach their destination in time. This is particularly important
for continuous flows that transport for example a multimedia signal. Delayed delivery is for
these forbidden. Load units with expired time-to-live can be dropped without consequences.
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The time-to-live header parameter can for example be used as weighting factor with WFQ.
Actually, time-to-live based scheduling also reduces the resource waist on dropped packets
because loads closer to the destination are privileged and less likely dropped than those that
have not travelled a long distance already. However, today the time-to-live is widely used to
remove stray load that somehow lost its path and wanders around the network. Subtracting the
time spent per packet also causes processing effort and is thus not very economic.

• feedback based: A flow consists in general of many subsequently transported packets that
traverse the network from the same source to the same destination. If the nodes somehow learn
about the end-to-end performance per flow, and from time to time may try alternative paths
to see if these are better, then self-learning could maintain the privileging and routing tables.
However, packet acknowledgements do not necessarily propagate along the reversed forward
path and rarely contain a quality feedback. Thus, to tell the nodes about the final end-to-end
performance of a path this information needs to be propagated among nodes via signalling
messages, for example re-using the label distribution protocol (LDP).

• swarm controlled: Alternatively, nodes could justify their routing tables and weighting
factors solely based on those of their neighbouring nodes. If a terminal node is not satisfied
with the performance a flow achieved, it privileges that flow higher and thereby triggers its
neighbour nodes to do so as well. Neighbour by neighbour the change is communicated such
that in the end the flow gets better privileges from its source till the destination. Evidently,
nodes shall not blindly copy any changes. They need to adjust these to their current situation.
Thereby, the change’s magnitude is reduced neighbour by neighbour, individually considering
the capabilities of each node. In consequence also the routing may change, if for example
a neighbour can adjust better than a previously used node. Also heterogeneous network
architectures are no problem, every node performs as it can. Finally, a terminal should reduce
the weighting if the performance is better than necessary. This avoids run-away privileging.

The problem of network optimisation in terms of QoS provisioning is extended by one more
dimension because most carrier networks are composed of several network layers: typically a circuit
switched layer providing constant but potentially adjustable line rates (e.g., WDM, OTN, SDH/Sonet),
a virtually circuit switched layer providing resource reservation options and the utilisation of reserved
but not used resources for unpretentious flows (e.g., ATM, CGE), and the packet switched layer (e.g.,
IP) to interconnect the connections provided by the lower network layer. Actually, IP has no physical
layer and therefore depends on the existence of an underlying technology to complete it by providing
the necessary transmission capabilities.

If a packet switch is overloaded a viable solution to resolve the situation is to change the
underlying virtual topology provided by the next lower network layer such that some load gets
bypassed. Note, OTH, SDH/Sonet, Ethernet, ATM and siblings thereof, all have their own network
layers besides the lower layers that provide signal transmission. The IP-centric OSI models commonly
found for example in wikipedia are too simplified to be useful. The hierarchy defined with generalised
multi protocol label switching (GMPLS) addresses this issue and many options to perform multi-layer
routing and resource assignment have evolved and been published since its introduction. A very
interesting approach is for example presented in [147] based on convex optimisation.

The quality of service issue is best approached by an optimal balance between queue length
thresholds, to limit the worst case delay, and weighting factors, to achieve the required throughput
per flow. However, common queueing network theory is based on infinite queues, whereas good QoS
is achieved with minimal queues.
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4.4 Future network operation schemes

In recent years the approach to network organisation and maintenance changed several times.
The traditional bottom-up provisioning specified by the OSI model for digital communication
systems in [1] is depicted in figure 4.87. Note, layer 1 is here renamed to bit-layer because the
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Figure 4.87: The OSI reference model, ITU-T X.200, extended by control and management planes

original name physical layer is misleading: all layers of the X.200 reference model refere to
digital comminication, and that does not include physical resources alike bandwidths around carrier
frequencies or wavelengths, nor the modulation formats used to convert bits into analogous symbols
that are able to propagate along a physical medium. The layer 1 represents solely the binary channel
that can transport a certain number of bits per second, which yields the line-rate. Therefore, the layer 1
performs digital processing toward bit-error correction in order to compensate the impairments of
the physical signal propagation, but it does not per se specify the physical transmission, even though
it commonly is very specific to the physical medium used for the analogous physical transmission.

The extension by a control and a management plane is done in respect to the concepts presented
shortly in this section. The split in the control plane refers to the different locations: distributed in
the network or concentrated in a terminal. In the management plane the network layer is partly in
the scope of the resource management and partly in that of the virtual network in order to integrate
multiple network layers, explained in section 4.4.2.

Widely the basic model, meaning the strict transport layers, are identified as an obstacle, hindering
the development of efficient operation schemes that integrate multiple transport and transmission
layers. However, the X.200 model still defines the principal functionalities, and most technologies
orient their features on this model. In its principles this hierarchy has to be served, only the layering
can be modified such that the entire functions-stack becomes more flexible.

The currently favoured approach, the software defined networks (SDN) paradigm [148–150], is
intended to hide the seven layers of the OSI model by three organisational planes: a resources plane,
a control plane, and a communication plane. Latter provides an open plethora of message parsers
required to uniformly communicate with all the different network components that exist and may show
up in the future. Today, the OpenFlow software is assumed to best serve SDN implementations [151,
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152]. For the physical resources’ management we could use GMPLS [153]. Possibly not the
best candidate because GMPLS implements a strict packet over circuit over wavelength hierarchy,
re-integrating the restrictions novel network paradigms wish to overcome.

In [13] we analysed several options by evaluating how GMPLS fits the demands of optical
burst switched (OBS) networks. Basically, it does not. We therefore favour a flow centric approach,
called flow transfer mode (FTM) [10], over GMPLS and clearly specified the functionalities required
to become a multi-purpose network paradigm. Sloppily, FTM may be seen as generalised ATM,
enabling huge variably sized physical layer cells, called bursts, that can be transmitted over fibre,
coper, and radio likewise and interchangeably. A clear drawback of any burst switching technology is
the bursty transmission. Mostly because of the time it takes to fill-up a reasonably sized burst. Legacy
transport control protocols, designed for the transmission of packets over a sequence of switched
circuits, cannot handle the highly fluctuating round trip time (RTT) caused by burst transmission.
The RTT of packets should be replaced by the RTT of bursts, such that the burst transmission
is controlled by TCP, not the transmission of encapsulated packets. But that is a revolutionary
approach challenging the entire TCP/IP protocol suite, likely not integrable in a smooth migration
path. Considering the IPv6 success, such an approach hardly can succeed.

In the following we leave the popular path and define three functional blocks that in our
opinion best serve to allocate the restrictions, services, functionalities, and features provided by
communication networks. Later on we sketch a lean approach to network management and very
briefly how autonomous network sections (ASs) may be able to achieve this.

4.4.1 Physical network: resource management

The base of any communication network are the network components that provide the transmission
capability. Without these no network can exist. We refer to them as the resources when referring
to the features they offer to transport information encapsulated in some formatted date stream.
Physically, they offer a bandwidth, which is either a frequency band, a time-slot, a combination
thereof, or more abstractly a mean bit-rate. Note, a data packet has no physical meaning: it has to be
converted to a physical symbols-stream/-pattern before it can be physically processed.

In general the nature of the physical resources and symbols is not specific to the data transmission.
Only the limitations and impairments of the transmission and processing of the analogous physical
symbols needs to be considered. These are expressed rather abstractly by three basic metrics,

C(j) . . . . . . capacity (line-rate) [bit/s,bps]

tprop(j) . . . . . . propagation delay [µs/km]

P[bit]
err (j) . . . . . . bit error rate (BER) [1]

which define the quality of every physical resource j in terms of its data transmission capability. A
such specified resource we call channel, irrespective of how the transmission capability is physically
accomplished. In terms of resource management, the channel is the smallest assignable unit.

Physical resources can offer different and sometimes even adjustable channels. This is commonly
achieved by different multiplexing schemes that split the total available capacity into convenient
shares. Also the opposite is possible, resources may as well be bundled in order to offer channel
capacities that a single resource cannot provide. The configuration of resources in order to offer
different channels is the first resource management aspect.

The other resource management aspect is the provisioning of chained sequences of compatible
channels, providing a channel that spans across several resources. This is commonly referred to as
switching because it is similar to connecting wires by a physical switch. A clear drawback of the
channels concept and circuit switching in particular, is the fact that the configured channels provide
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a defined capacity irrespective whether it is used or not. Therefore, the channel capacities should
in theory be minimised in order to maximise the flexibility. This lead to the tiny cell-size of 48byte
plus 5byte headers used with ATM, which caused a header processing effort that did not scale well to
support high capacity connections in the Gbit/s range.

Today the trend fosters huge channels that are a posteriori used in parallel by software defined,
auto-adjusting sub-channels. MPLS with different per-hop behaviours for different encapsulated
flows is an example thereof. However, this option is not part of the physical resource management, it
belongs to the virtual network’s capacity management addressed in the next functional block.

An alternative to demand driven channel bundling (or splitting) is to use the available channels
only for demand defined time periods. This concept is commonly referred to as burst switching.
Here a resources capacity becomes assigned only for the period of time it is actually used. This
option implements statistical multiplexing of physical resources. This is in particular appealing if the
channels offer such huge capacities that a single data flow commonly cannot utilise it efficiently. A
native candidate are optical channels that offer capacities in the range of several Gbit/s.

Optical burst switching (OBS) as physical layer switching paradigm is appealing because of
its simplicity. However, studies comparing packet over OBS with packet over optical circuit
switching (OCS) show that for many scenarios OCS outperforms OBS [42]. A critical issue of
OBS is the amount of resources wasted in case a burst does not reach its destination, which for a
queue-less technology is quite likely if the load becomes too high. Many approaches to mitigate this
problem have been published. Technically excellent, they commonly cannot compete with OCS in
terms of quality of transmission and achievable resource utilisation. OBS demands huge numbers
of parallel available optical channels to become competitive. The solution thereto, as specified
in [13], is the support of the different connection types sketched in table 4.8. The signalling options

Table 4.8: FTM channel/service types and signaling options

channel/service type one-way two-way

continuous wavelength (λ service) hardly an option strongly advised
constant bit-rate (line service) possible advised
adjustable bit-rate (dynamic line) possible advised
assured variable bit-rate (assured mean) possible advised
available bit-rate (virtual channel) best choice limited
assured single burst (possibly huge) hardly an option strongly advised
plain single burst/packet (rather small) best choice limited

stated highlight that the commonly assumed just in time (JET) one-way signalling proposed for
OBS in [41] is not sufficient in practice. Two-way signaling is always an option, and some service
types recommend it. Services that grant assured delivery without loss monitoring and re-scheduling
of lost bursts demand the use of an acknowledged reservation scheme, and also those that grant
a certain channel capacity or enable capacity adjustments profit from acknowledged reservation.
A relational prioritisation, as outlined in [154, 155], can still be applied among the services using
one-way reservation, and thus, the relative service classes defined for IP are fully supported. Using
table 4.8 we can derive the resource reservation options (signalling message) required:

• infinite duration reservation and dedicated tear-down messages (wire lines),
• requesting the repetitive switching of identical bursts (time-slots),
• connection capacity adjustments (adjustable lines),
• explicitly routed single burst advertisement (timed bursts),
• single burst advertisement with acknowledgement (bursts to be polled),
• JET one-way signaling for best effort traffic (post-and-forget bursts).
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Not explicitly mentioned are the different acknowledgement demands and routing options. Especially
for routing in combination with two-way signaling either well known schemes need to be adopted or
new developed in order to maximize the likelihood of routing success.

The design of an FTM switch, as sketched in figure 4.88, is identical to that of a generic OBS
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Figure 4.88: Functional blocks (a) and services (b) of an FTM-node

switch. However, FTM adds the option to realize it in the electrical domain and therefore allows to
consider buffering options and rate-conversion options within the line cards of FTM nodes.

Basically, the connection types listed in table 4.8 are required for any physical resource sharing
technology that is capable to adjust established channels. However, as with IP, the most demanding
feature for any physical network plane is its exchangeability and interconnectability. Due to the vastly
different channel capacities of different technologies this is difficult to achieve. To cover this the OSI
model specifies the link layer (layer 2), where the capacities of the lower layer are structured into
timely segments that can be used individually. Basically, this specifies the interface to the network
layer where end-to-end routing is performed. But it also provides the features required to design
virtual networks, where the channel chains provided end-to-end, called connections, are dynamically
configured in a way that supports the demands of the flows they serve.

4.4.2 Virtual network: consistent capacity management

Primarily, the virtual network serves to join the resources provided by different technologies and
domains (operators) via so called gateway nodes. Real networks consist of many domains that
are independently realised with a variety of technologies. Each domain may be split or combined
into administrative sections, called autonomous systems (ASs) [RFC1930]. Paths across ASs are
achieved using the border gateway protocol (BGP) [RFC4271]. Note, ASs represent organisational
sub-networks of the entire virtual network. The sub-networks may overlap considerably, meaning
that nodes may be part of more then one AS. These multi-homed nodes are commonly used as border
gateway nodes (bgxyz), as shown in figure 4.89. Paths across AS borders commonly pass through
these border gateway nodes. Which AS shall be used to bridge the gap between two AS that are
not directly connected by a border gateway node can be configured by weights and policies. In
figure 4.89 AS1 to AS3 may for example represent international networks, AS4 and AS5 the national
networks of competing network operators, and AS7 to AS8 the access networks of different service
providers.

The exchange of information among ASs is minimised and independent of the methods and
technologies used within ASs. Thereby the heterogeneous networks, including wired and wireless
technologies, have been enabled. For the date packets transmitted, this is an easy task. In the simplest
case they only change the envelope consisting of packet/frame header and tail, in the worst case
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Figure 4.89: Autonomous network sections connected by gateway nodes

they need to be split and encoded into add-on envelopes. The real challenges reside in the control
plane. Most transmission technologies bring their own control concept with them, typically an
entire control protocol suite that is optimised to the key features and limits of the technology. To
become exchangeable among ASs the control information used within a specialised protocol suit is
reduced to a common minimal set of information, which is technology independently exchanged via
standardised messages.

In this respect we should also mention the outsourcing of the path computation, utilizing
specialised path computation element-(PCE) units located at central nodes reachable by all nodes
of an AS with minimal latency. These open a utile, technology independent way for inter-AS
communication, avoiding the need to translate control messages from one technology to the other at
every gateway. Information exchange via PCEs, now also serving as BGP-gateways, also isolates the
control planes form each other and implements information filtering as required for the privacy of
the individual operators.

For example, a PCE can offer a limited number of path variants, together with predicted
performance metrics for each, to a requesting neighbouring AS, which itself has a small set of
path options and can now select the best fitting pairings and communicate these back to the AS
it received the request from. Finally, the source AS picks the path that fulfils the quality requests
stated by the virtual network management plane when signalling the routing request. Thereby quality
sensitive load balancing can be realised, comparable to RSVP-TE [RFC3209], here entirely realised
using the state awareness of PCEs, which considerably reduces the routing effort and complexity.

In addition, the virtual network also serves to reduce the stress on the physical resource
management caused by fast changing traffic volumes and quality demands. The channels provided
by the physical resources are traditionally optimised off-line to meet expected traffic volumes
and quality demands. Because changing an optimised configuration always poses a high risk of
service interruption and QoS failures, the optimisation is commonly performed far on the save side,
intentionally overestimating the traffic volumes and service requirements, such that the solution can
be in operation for a maximally long time. This is evidently not a very responsive approach and
utilises the resource not maximally efficient. Anyhow, the connections configured according to this
strategy define the so called virtual network that is actually used to transport data flows, independent
if connection-less or connection-oriented. Thus, the links and connections of the virtual network are
finally responsible for the actually achieved service quality.

Putting aside any possible technology constraints, the services that an ideal virtual network
should today offer can be detailed for example as:
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• IP packet forwarding: Evidently, the transport of IP packets is a must have criterion. How
that is realised depends on the available features. In general, this basic IP forwarding service
is to be performed in best effort manner.

• Multi-service support: The world is not digital, and so are the demands on data transmission
quality not the same for all applications, even if these use digital data to perform their job.
Thus, an ideal virtual network offers any transmission quality at any time. Of course this is
not feasible. However, support and integration of multi-protocol label switching (MPLS) are
rational demands nowadays. If in addition different technologies’ ASs overlap each other, the
hierarchic multi-layer architecture could be finally obsoleted.

• Ethernet tunnelling: Connecting remote LANs requires the encapsulation of their data-frames
such that identical private IP-addresses do not cause problems when transported alongside
traffic from other LANs. In particular, the virtual private LAN service (VPLS) [RFC4761,
RFC4762] shall be supported. However, there exist many more protocols to perform similar
tasks differently, and all these should be supported as well in order to not exclude customers
that by chance own a device using a standard not considered.

• Pseudo wire services: Some applications need exclusive control over the timing of data
transmission, for example to synchronise remote equipment. Commonly these need a time
continuous connection that only poses constant propagation delays. To achieve mostly constant
delays across a network the resources need to be strictly assigned, not only reserved. A limited
jitter remains if physical resources are not assigned to exclusively serve the virtual line only.

• Multimedia broadcast: To efficiently transport identical data streams to many destinations
no network resource should transport more than one copy of the same stream. To realise this
the network nodes need to be able to effectively forward copies of a received data packet to
any number of ports. Vice versa, for surveillance applications the reverse should be possible as
well. If the same contents are to be transmitted with some time lag, distributed content caching
at network nodes can save a lot of transmission capacity.

• Self-scheduled connectivity: Many potentially huge data transfer requests do not demand
instant forwarding. For example, file transfers for backup purposes. These could be buffered
and forwarded when the competition on the network resources is low. If enabled section wise,
reusing the buffers provided for content caching, the network could most efficiently schedule
the transmission of such delay uncritical elephant loads.

• Impairment transparency: To effectively support end-to-end QoS a potential bottleneck
along a connection across the virtual network, which may occur dynamically, needs to be
disclosed. Either to trigger re-routing to a feasible route bypassing the bottleneck, or to inform
the application to cope with a temporarily reduced quality.

• Autonomous open control: When networks grow huge the control effort rises accordingly.
A single control centre is not only a security risk, it also faces sever response time issues if
multiple change requests arrive simultaneously. Therefore, a modern network control strategy
should distribute the control burden as much as possible. At the same time, control shall be
open to sensible overruling in order to serve special demands that exceed the capabilities of
the implemented control mechanisms.

Many more services and features could be stated, and more will appear with ever increasing
frequency as the applications plurality raises. A sustainable technology needs to be adoptable such
that in can comfort future demands without a change in its core components.

Finally, to assure reliable network performance utile load control mechanisms need to be enforced.
In particular, overload prevention. In that respect, the virtual network needs to have the capability
to reject connection requests, or at least to drop flows at the ingress port if it cannot transport them,
such that these flows never degrade other traffic flows.
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4.4.3 IT-services stratum: application management

The top most management plane is also the most abstract and at the same time the one the user is
most aware of. Its features directly influence the quality the user experiences. Therefore, this layer
is responsible for the QoS delivery. Obviously, it cannot achieve this without the help of the lower
layer management.

A problem is the distance form the network resources. Applications are managed by the users
and content providers, not the network operators. Because latter are a heterogeneous group with
individual interests and believes, commonly opposed to the demands and wishes of customers and
providers, they have no natural right to control the applications and features thereof on offer. They
have to serve them as good as they can and charge the costs caused.

To assure fair and persistent service provisioning and coverage, regulation bodies of several
modern countries around the world specified some basic rules and targets alike those stated in [156].
These address in particularly network operators but need to be considered by equipment vendors and
service providers likewise. Concerning network neutrality these were summarised in [130] to:

• no restrictions on the content accessed no content censure
• no restrictions on the sites visited no origin censure
• no restrictions on the platforms used no system binding
• no restrictions on the equipment used no product binding
• no restrictions on the communication mode used no protocol banning

The rules seem natural, but business rarely cares for morality and therefore necessitates regulative
intervention if a fair competition is missed. However, the quality that needs to be delivered is not
regulated, only that it may not be artificially reduced for specific contents, sites, platforms, equipment,
or protocols. Anyhow, the economic issues are not in the focus here, as is the persistent ignorance of
major software vendors, which does cause platform dependent service quality issues.

The question is, how can applications be managed in support of the achieved QoS. At customer
side this is primarily achieved by hierarchic scheduling within the TCP stack. Commonly the access
link is the bottleneck, and thus it makes much sense to schedule uploads in a way that supports the
required QoS per flow. At the customer side of a connection TCP and the layers above perform all
the application management required.

On the other end of a network connection, at the servers offering the content to be downloaded,
a similar approach can be implemented considering all customers currently running different
applications. Here the actual traffic volume inserted can be modified to fit the capacity provided by
the network, for example by applying different compression options. For example: video streams can
be more or less compressed, web-page contents are sent in order of importance, background music
last, it is likely suppressed anyhow, and the encoding of the data stream can include redundancy in
order to mitigate lossy connections. All this does have an effect on the QoS, but to obey the rules for
fairness, it needs to be applied equally for all customers and services.

To utilise the available options for application management it is necessary that the interface
between the applications and the virtual network supports the exchange of the thereto required
information:

• application –> virtual network: Advertise the requested service

– LOAD CHARACTERISTICS: Expected mean and variance of the load to be transported, for
both, inter-arrival times and sizes of load units (e.g.: min/max, on/off, Poisson, Pareto)

– REQUESTED QOS: Minimal throughput, maximal delay and jitter bounds to be met for
intended service delivery quality (QoE)
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– FAILURE STRATEGY: What to do if requested QoS cannot be achieved (e.g.: increase
throughput and/or QoS, deliver as it is, quit delivery)

• virtual network –> application: Report upon the delivered service

– SERVICE CHARACTERISTICS: achieved packet rate/loss/delay/jitter (statistics enabling the
application to sensibly adjust the load presentation toward better QoE)

– PERFORMED ADJUSTMENTS: session layer configuration changes (feedback allowing the
application to learn what in the moment is required to deliver the current QoS)

The information from the application to the network upon the requested service, and vice versa
from the network to the application concerning the fulfilment of the performance targets stated by
applications, needs to be tunnelled through layers 4 to 6 in order to reach the appropriate management
domain. This does not mean that these layers become obsolete. In contrary, they actually provide
the functionalities to change an applications ingress load in a way that fits the actually available
QoS or can be used to improve the delivered QoS. However, due to the plurality of applications,
these layers cannot decide on their own how to best change the presentation and scheduling of an
applications data load. Only the application and virtual network management can decide this. Thus,
the application needs to tell the layers 6 how to present the data flow, and thereto it needs the feedback
from the virtual network. The layer 5 can be used by the network to adjust the load insertion such that
it can deliver the QoS requested by the application. The best session layer adjustment depends on the
network’s current state and therefore the adjustment needs to be decided by the virtual network.

Thus, in addition to the interface between the application and the virtual network we also need
the following one-way interfaces to the presentation and session layer:

• application –> presentation layer: Configure/adjust the content encoding options

– ENCODING REDUNDANCY: increase/decrease the amount of redundancy
– COMPRESSION FACTOR: increase/decrease the content compression

• virtual network –> session layer: Adjust load insertion and reassembly options

– FLOW PRIORITISATION: Increase/decrease/switch the flow’s priority/traffic class
– SCHEDULING & BUFFER SIZE: How to adjust the load insertion and reassembly

(e.g.: session prioritisation, load fragmentation – packet size, reassembly buffer size)

Concerning the session layer adjustments it needs to be noted that the virtual network should not be
empowered to perform any adjustments. The range opened for network layer initiated adjustments
shall be pre-configured per application, primarily to mitigate the risk of runaway configuration in
case two applications compete for resources that are insufficient to serve both. On the receiver side,
the session layer is the instance that can measure the end-to-end QoS, which shall be reported to the
virtual network management in order to initiate adjustments where required. The same applies in
principle for the application layer at receiver side in respect to calculated QoE metrics.

The information flow among layers and management blocks is sketched in figure 4.90. The
terminals and layers above reside within customer equipment, and thus also the application
management. If coordination among the local application management blocks schall be provided
across the network, some networking instance needs to be provided, which evidently shall be realised
distributed, for example as overlay network. Noteably, the virtual network management is a network
service that cannot be located to customer premises. Still, it needs to communicate with the local
session layers to learn about the delivered QoS in order to sensibly adjust the prioritisation for best
possible QoS delivery.

In theory both, the application management as well as the virtual network management, could
initiate a re-routing in case the delivered QoS becomes insufficient. However, the virtual network
management does not know if the application actually demands this. Thus, re-routing shall only be
initiated by the application management. Actually, a make before break policy realising a mostly
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Figure 4.90: Network feedback to applications for content sensitive response

seamless hand over is possible. The decision sovereignty of the application layer upon the path
quality required and the coutermeasures to be taken in case of underfulfilment becomes self evident
if the customer can set a least performance limit. In case this cannot be reached, the customer
prefers not to use the application. For example, a video or audio stream that cannot be received with
sufficient continuity is likely not required at all. Therefore, any attempt to transport the stream is a
wast of resources only.

Finally, we note that the application control can reside in the terminal equipment, for example a
set-top-box, whereas the presentation layer functionality, being decoding & decompression, may be
outsourced to a video screen. Even the entire layer 4 to 6 stack may be outsourced if the monitor
is connected via a LAN. Such situations become increasingly popular with the rise of so called

’networked consumer equipment’.

4.4.4 Lean connectivity provisioning

In economics it is perfectly accepted that bureaucracy is an efficiency trap. To maximise efficiency
first the communication among systems needs to be minimised to the essentially needed. Never should
any entity be misused to only forward information, neither to process an issue twice. Optimally,
communication shall occur only among the entities that either generate or use the exchanged
information. More technically, we call the information exchange an interface, which typically is
specified independently for the two possible information exchange directions.

To realise lean management it is necessary that the demand interfaces are directed from the
customer toward the resource, such that step by step the request fulfilment happens in the opposite
direction without causing any delays. For a production line this means that the order of a customer is
served by the delivery department, which takes the finished product from the storage at the end of
the production line. The now empty slot in the storage triggers the end-production to finish a unit of
the now missing kind. To do so some parts from the storage in between them and the next upstream
production step on the line are used, leaving gaps there, which informs the next production unit and
so on, till the order of raw materials is reached.

The key elements controlling the entire process are the storages in between the production steps.
These need to be optimally designed, which is only possible based on demand predictions. Best
possible predictions are a joint task of the entire management team. Therefore, in terms of network
management, all units that perform decisions need to monitor the load and predict the demand. To
not fail in case the prediction happens to be below the actual demand, the units always need to reserve
some capacity. To be economic this reserve shall be kept minimal.
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Adjusted to our three layer network management hierarchy, this results in the process sketched in
figure 4.91. The service stratum takes an available connection from the virtual network and activates

resources

virtual network

IT services

provide pre-reserved
all-to-all path-meshes for

selected QoS classes based on
expected demand and availability

free unused resources when
path/tree from a paths-mesh
became occupied or has terminated

offer the currently possible
end-to-end connectivity

for different QoS classes

occupy the
best fitting connections to
deliver a service with required QoS

Figure 4.91: Network management based on QoS sensibly provisioned and advertised connectivity

it. In response the virtual network prepares a new connection of the kind just taken away to have one
in spare again. The preparation of the new connection assigns some links provided by the physical
network, which in response prepares new links by assigning the required resources.

If implemented well, this provisioning process is entirely self controlled and the entities are
entirely autonomous in respect to how they provide what the downstream entity demands. Vice versa
is the demand communicated from the application to the resources without disclosing more than the
necessary information.

The key elements to achieve this lean network management are maximally autonomous, smartly
distributed, management domains. The virtual network, being the glue in between the resources and
the applications, has in this respect the most important role: it fulfils the customer demands or rejects
them if the demands cannot be fulfilled. As already stated, to perform this task effectively, the virtual
network needs to have different connectivity options at hand.

An option to provide this plurality is MPLS, realised on both levels, inter-AS and intra-AS.
However, the configured paths within an AS need to report their quality in order to allow the
calculation of end-to-end QoS for the inter-AS LSPs. These are in principle required from any
node to any other, and especially in between all gateways. In addition, the paths need to provide a
plurality of qualities that fits to the expected traffic demand risen by the applications. To calculate
this explicitly may become exhaustive.

A simpler solution thereto are dummy loads used to assess the QoS per intra-AS connection
configured and not yet occupied. Note, we assume here an all-to-all routing algorithm that proposes a
paths-set that in itself may re-use resources. These paths are only an offer and once a path is activated,
the not used resource become freed and a new set of all-to-all paths is calculated. Evidently, the
amount of pre-configured intra-AS connections shall be minimised to keep the amount of reserved
but currently unused resources reasonable. However, an AS less loaded than neighbouring ASs shall
always offer more connectivity than an AS loaded more when its neighbours are (swarm control).

On the inter-AS level, travelling agents (ants) shall collect and recommend different combinations
of intra-AS connections in order to provide a maximally diversified variety of connections to the
virtual network management. Their number shall reflect the expected request arrival rate and control
domain diameter, such that in average the information is regained before another request for the same
terminal nodes occurs.



5 Conclusions

In the course of preparing the grounds for this PhD-thesis we submitted a project proposal on
modelling the control plane for actively switched transparent optical access networks. The proposal
was rejected three times till it was too late to run the project in due time. Assumedly the reasons
for rejection refer to what one and the same reviewer stated in his review: "The duration of the
project (30 months) could be too long with respect to the parallel technology evolution", referring
to the Carrier Ethernet evolution, and "The use of the analytic approach is a real challenge, it is
hard to foresee the real effectiveness of this approach", referring to the "unavoidable simplification
assumptions" and "computational complexity too high to study real network scenarios".

On an alternate project proposal targeting traffic conditioning in favour of improved transport
quality, twice rejected before giving up, we got the following reply: "The obvious problem is the size
of the chain and the fact that it is often not possible to compute by standard methods solutions for
systems as complex as the ones proposed. . . . Whether this is possible is an open question and . . . "

These replies raised some doubts on the grounds of the thesis: If a simple all optical access
network is by an expert assumed intractable for mathematical models, how should it be possible to
model paths across several network ranges? And may it be truly impossible to solve lengthy chains of
flow aware queueing systems? In the end, we admit: a too detailed model is rather useless in respect
to understanding and reliably tackling the true issues. Too many effects interfere and these are better
handled one-at-a-time, node-by-node, instead of designing an exaggerated model encompassing all
possibilities in a single state transition diagram.

When searching for new textbooks on queueing models at a global web-store we happened to
stumble over the following statements (excerpts) from a user commenting on the offered textbook:
"The statement ’The world does not look like an M/M/1 queue!’ possibly yields the best of all possible
answers to ’Why the dearth of books that approach computer performance from the standpoint
of queueing theory’. . . . One must resort to numerical methods . . . use stochastic discrete event
modelling and simulation." Again, not a very promising finding while writing a PhD thesis on the
use of queueing models to predict the performance of multi-service data networks.

Finally, we also found in a white paper presenting a multi-service network node of a major vendor,
not to be disclosed here, a recommendation proposing to optimise by trial and error, one feature/node
at a time only. Reading this in a paper affiliated to a major vendor expresses the complexity of the
problem and its potential to exceed tractability. In the configuration manual for a similar switch
we found: "Only certain classes of service of traffic can be flow controlled while other classes are
allowed to operate normally." This contradicts the common approach with queueing systems, where
specific flows become privileged. The potential discrepancy in equipment and queueing system
designs questions the utility of results achieved using queueing theoretic analysis.

Besides, the vast plurality of individual mechanisms and configuration options complicate a well
planned, cognitive, by queueing model approved parametrisation. This may explain the operator
attitude, widely advisable for systems exceeding human cognition: never change a running system.
Better set-up and excessively stress-test a new one before touching a satisfactorily operating one.
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End-to-end analysis

The initially intended solution of the entire end-to-end path sketched in figure 5.1 is found to be in
theory possible, at least for finite queues, but useless because of the many unknown parameters to be
individually evaluated or guessed. It is not feasible to analyse every variation of possible background

Figure 5.1: Chain of queueing systems contributing to a connection under test

traffic combinations and characteristics (distributions) in order to identify the worst case for the
connection evaluated. Also, for every connection not sharing the same resources an individual model
needs to be designed and evaluated, such that the effort to analyse an entire network section appears
rather intractable. Besides, if the queues are huge and the number of flows is high, we commonly run
into numeric calculation problems and excessive memory demand. Using the sparse matrix option,
provided for example by Octave [29], we experienced that the provided numeric algorithms quite
regularly give up prior reaching a solution when the state space is huge, even for rather simple, hardly
populated state transition matrices Q.

In the introduction we introduced the network calculus (section 1.3). Besides being incompatible
to the unbounded distributions commonly used with queueing models, the achieved bounds delivered
by this method are in general too far apart to enable reliable performance prediction. Truly, the lower
bounds can be used to specify service level minima and the upper bounds to highlight the potential
of a network architecture. However, the longer the paths are, the more apart become the bounds. In
general the mean performance is more important than the absolute bounds. This, the deterministic
network calculus cannot offer, and the stochastic network calculus has been found too complex to be
useful for non mathematicians.

Lessons learned

In retrospective we come to the conclusion that if we look at communication networks in a purely
bottom-up approach, analysing protocols, procedures, and mechanisms one after the other, we likely
become lost in the ingenious details and the unbound variety of the many involved mechanisms. If we
look at communication networks in a pure top-down fashion we always find the OSI layers, and the
implicit lower layer serves the layer above scheme. We clearly identify the layer internal mechanisms
that realise the layer by layer provisioning and understand their demand. However, the OSI model
does not yield answers to the question why a network behaves as it does in certain circumstances. To
understand these we need to understand the procedures realised by the involved mechanisms and,
most importantly, their side-effects. Consequently, we should be aware that whenever we change one
detail in order to change a certain behaviour, this will have effects on other behaviours, possible in
other circumstances we currently might not think of.

This complexity of interrelations recommends the use of control strategies that are known to
be insensitive to imprecise knowledge and particularly applicable for complex dynamic systems.
True, perfect knowledge of all network states is possible, theoretically. However, the traffic dynamics
and the plethora of mechanisms that respond to changes causes that absolute network states need to
be assumed outdated once gathered. Statistical measures are more persistent, but never reflect the
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current state precisely. Thus, using statistical measures for control decisions precludes perfect results.
Imprecision within the data-base renders precise system models exaggerated. The comparison of
queueing models shows that rather simple models yield results quite close to those of precise models,
closer than the deviation that results from imprecise state assumptions. Thus, simple models very
likely offer equally good but far less complex system approximations in practice.

Final approach

In the end, we discussed system models of the mechanisms used at different locations within
a network one-by-one. Intermediate nodes provide differentiated scheduling (section 4.1) and
congestion avoidance mechanisms (section 4.2), which possibly may be configured to a flow’s
needs. Edge nodes commonly implement some kind of ingress control that limits the instantaneous
ingress traffic (section 4.3). A shared medium in the access network commonly adds scattered
resource provisioning, controlled by some polling strategy. Terminals implement transport control
mechanisms that adjust the flow characteristics (arrival process) to maximise the throughput, or in
other words, that try to minimise the time needed to transport data from the source to the destination.

In case of loss-controlled transmission, load units may become re-transmitted in case they had
not been successfully transmitted in the first attempt. This principally adds delays. Firstly, we have to
consider the time-lag in between transmitting the last bit of a load and receiving information on the
transmission success. Secondly, the transmission channel may be occupied at the time we receive the
information that a load needs to be re-transmitted. The remaining service time needs to be added in
order to consider the time we have to wait until the channel becomes available for the re-transmission.
The correlation of arrivals thereby introduced is commonly not considered because we commonly
assume negligible loss-rates.

Identified challenges

Primarily the multitude and variability of the mechanisms that are actually involved along an end-to-
end data connection, causes an exact model to represent a special case only. In addition, such detailed
models would be very complex and in general not analytically solvable. Only for homogeneous cases
we know theories and approaches that yield close-form solutions. To derive general results from
special cases is in principle not possible. Therefore, we did not attempt to define analytic models
that join flow control, medium access, per hop behaviour, and feedback signalling mechanisms.
Instead, we modelled and analysed the different mechanisms individually and based thereon, made
an educated guess upon any interrelations, in order to derive recommendations for a potential future
network management architecture.

Besides, we glanced on autonomous network control. The primary problem of network control is
the absence of precise knowledge. This results from the stochastic traffic insertion, the distribution of
control mechanisms and transport resources, and the information propagation delays thereby caused.
We intuitively favour swarm intelligence to best mitigate this problem. However, a proof is out of
the scope here. Still, it is well known that precise knowledge is not necessarily required for local
decisions to suite global targets.

The prime challenge is to identify the information bits locally required and to find a rules-set that
dynamically serves the global targets. The methods to realise a smart Internet are readily available, but
a convincing concept is missing. Possibly because engineers tend to look for an everlasting solution,
whereas nature tells very clearly that only self-learning adaptive systems are truly sustainable. In that
respect we surmise that approaches alike the Residual Network and Link Capacity algorithm [157]
can be applied section wise, management free and with reasonable computation effort.





A Addenda

The addenda contain content, derivations, and proofs that are either too general or too specific to be
included in the main text, commonly. Here, the common derivations were briefly included in the
course of the thesis because they are intended to present approach variants that the reader may apply
with similar problems. More detailed proofs and discussions on the mathematical background of the
presented approaches can be found in the many textbooks well known, in particular [14,34,57,62,85].
Thus, chapters 2 and 3 could have been entirely placed in the addenda because they present well
established knowledge only.

Besides a nomenclature summary and the abbreviations list the addenda contains only a brief
introduction and presentation of some core program code examples used in preparing the thesis.
These here included routines comprise all the elements required to detail the approach, but they lack
supplementary routines not required to grasp the idea.

A.I Program code

Please note that in this section exemplary snapshots of living working codes are presented,
meaning non-professional pieces of program code that are not indented to be used without proper
understanding. The presented codes are neither fail-proof, nor can it be guaranteed that they still
deliver the results presented in the course of this theses. They should, but having been extended and
refined case by case, they were not checked against examples done prior the change, hence called a
living code. However, in case of major changes the routines were re-named, such that the routines
used for earlier examples remain available unchanged.

Most examples shown throughout the thesis rely on three specific parts. An m-script that sets
all parameters, controls the evaluation over different parameter ranges, and finally plots and saves
all gained results. This script commonly calls the other two key routines, the simulation core and
the calculation function, if latter is not coded directly within the script. Several more subroutines
(m-functions) are used in particular by the simulation core, for example to generate one-by-one the
required random numbers according to different distributions. This allows on-the-fly generation,
eliminating the need for recorded random number sample traces.

The entire collection of routines developed in the course of this thesis constitute a so called
university tool, which may be shared for non-commercial use only, and solely on own risk, without
any liability of the implicit copyright holders. Without written consent personally signed by the
author any commercial use of either, the entire collection of routines, subsets or individual routines,
or any code segment, is explicitly prohibited. Primarily because the author himself cannot guarantee
the code to be free of code segments owned by third parties. Only the routines outlined in the regular
text are made available for public use, constraint to being correctly cited and openly provided.

A.I.1 Example script (m-code) to generate plots

An exemplary script to generate the plots presented in the course of the thesis is presented rather
comments-less. The procedures included are rather simple, such that a detailed explanation is surplus
for a reader with some programming skills. A detailed presentation for a novice programmer is

299



300 Gerald Franzl

out of the scope here. Please refer to the octave help (help <command>) and documentation [29]
for common usage and details on the used octave commands. More information provided by the
open octave programmers community can be found on-line, for example searching for Octave
<command> and skipping the many copies of the help content, not providing any more information
than the built in octave help.

Some routines used in this script not being octave commands, for example setMyColors,
errorPlot, provide slight refinements of existing octave commands mostly for consistency and
a personalised appearance. They are not related to the topic of the thesis and thus not explained.
The code presented is a more or less a 1:1 copy of an actually used script, including rudimentary
comments intended as reminders to the author himself. Still, surplus commentary lines have been
deleted.

Perform a simulation study and generate plots of results

%DPS example - weights in second c-column
% function [Q, res, statis] = GGpscgSim(a, Arr, b, Serv, n, s, c, pol, loop, trans, histp)
% statis(1:fnum,2:10)=[mA(:),ebA(:),cvA(:),mD(:),ebD(:),cvD(:),mB(:),ebB(:),cvB(:)];
% statis(1:fnum,11:19)=[mX(:),ebX(:),mQ(:),ebQ(:),mF(:),ebF(:),mW(:),ebW(:),cvW(:)];
pageStdOut=page_screen_output; if pageStdOut more(’off’); endif
nh=!ishold;

loop=200000; trans=50000; ints=40; histp=0;
dists={[’nExp’;’Det’],[’nExp’;’Hyper’]}; %dists={[’nExp’;’nExp’],[’nExp’;’Det’],[’nExp’;’Hyper’]};
distn=length(dists); pol=[’RR’;’FIFO’];
mr=1; rho=linspace(mr/ints,mr-mr/ints,ints-1); myticks=[0:0.1*mr:0.9*mr];
mytitle=[’MGpspSamplesA’,datestr(date,’yymmdd’)];
ri=[0.25,0.25,0.25,0.25], fn=length(ri);
gi=[1,2,4,8], %gi=[1,2,4,8]; gi=[1, 1+1/2, 1+1/2+1/3, 1+1/2+1/3+1/4]; gi=[1,3/2,11/6,25/12];
ci=Inf(fn,1); %ci(:,1) has to be ’Inf’ for Erlang setting
n=’ps’; s=inf; c=[ci(:),gi(:)]; %weights are added to customers parameter

if length(ri)!=length(gi) error(’loadsplit and weights vectors do not match in size’); endif
samples1=NaN(length(rho),1+2*distn*(fn+1)); % (fn+1) -> results for sums
samples1(:,1)=rho;
samples2=NaN(size(samples1));
samples2(:,1)=rho;
samples3=NaN(size(samples1));
samples3(:,1)=rho;
for j=1:distn

arr=dists(j){}(1,:);
ser=dists(j){}(2,:);
jof=1+2*(j-1)*(fn+1);
for i=1:length(rho)

a=ri(:).*rho(i); a=[a,5*ones(size(a))]; %display(a); %a=ri(:);
b=1; b=[b,5*ones(size(b))]; %display(b); %b=1./rho(i);
[Q, res, statis] = GGpscgSim2(a, arr, b, ser, n, s, c, pol, loop, trans, histp);
samples1(i,jof+1:2:jof+2*(fn+1))=statis(:,11)’;
samples1(i,jof+2:2:jof+2*(fn+1))=statis(:,12)’; %system filling
samples2(i,jof+1:2:jof+2*(fn+1))=statis(:,15)’;
samples2(i,jof+2:2:jof+2*(fn+1))=statis(:,16)’; %mean flow time
samples3(i,jof+1:2:jof+2*(fn+1))=statis(:,4)’; %arrival cov
%samples3(i,1+jof)=statis(1,19); %waiting cov
samples3(i,jof+2:2:jof+2*(fn+1))=statis(:,7); %departure cov

endfor
endfor
if 1 samples={samples1,samples2,samples3}; save([mytitle,’.dat’],"samples"); endif
if 1 %plot simulation results

figure(1); errorPlot(samples1,0); axis([0,1,0.005,11]); title([mytitle,’ E[X]’]);
figure(2); errorPlot(samples2,0); axis([0,1,0.5,200]); title([mytitle,’ E[T_f]’]);
figure(3); setMyColors; plot(rho,samples3(:,3:2:end),’.x’);
axis([0,1,0.05,6.75]); title([mytitle,’ \cov \vartheta’]);

endif
if 1 %calculated E[X] and E[T_f] values
mr=min(1,mr);
steps=4*ints; rhos=linspace(mr/steps,mr-mr/steps,steps-1);
Tf=MMpspCalc(rhos,ri,gi); %call analytic equation
Xmm1=rhos./(1-rhos); %calculate it straight away
figure(1); hold(’on’);
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plot(rhos,Xmm1(:),’color’,getColor(’336699’),’linewidth’,1.5);
if nh hold("off"); endif

figure(2); hold(’on’);
semilogy(rhos,Tf(:,1:end-1),’color’,getColor(’009900’),’linewidth’,2);
semilogy(rhos,Tf(:,end),’color’,getColor(’00cc00’),’linewidth’,2);
if nh hold("off"); endif

endif
if 1 %save final figures to files
print(figure(1),[mytitle,’_X’],"-color","-dsvg");
print(figure(2),[mytitle,’_Tf’],"-color","-dsvg");
print(figure(3),[mytitle,’_cD’],"-color","-dsvg");

endif
fflush(stdout); if pageStdOut more(’on’); endif

Note, this is a working script intended to be adjusted run-by-run in order to variate the parameters
such that different studies are performed. The included [if 1 ... endif] clauses enable a simple
exclusion of segments during refinements. Code embraced by [if 0 ... endif] is never executed.

Being a script, the code does not return any variables, it calculates everything in the current scope,
such that after the script has been executed, all variables created and manipulated are still available.
Nice for debugging, this may cause problems if for example a variable definition is commented out
in the code but the variable remains defined in the current scope. Use the clear all command in
between running the script to be sure no obsolete variable and function assignments remain valid.

A.I.2 G/G/n/s/c/policy simulation procedure (m-code)

The simulation core routine (coded as a function) is presented without extensive textual explanations.
Please refer to section 3.4 for step-by-step details on the different parts and functionalities.
Rudimentary comments and thoughts of the author are included in the code, which represents
a slightly cleaned 1:1 copy of the code actually used toward the end of the studies presented in the
course of the thesis. Only surplus commentary lines and no more used code segments (dead code)
have been deleted.

G/G/n/s/c/policy

%simulate a G^G/G/n/st/cg/xxx-system - i.e. one load point
%note: ’a’ specifies load per customer if ’c’<Inf, else the total load per flow
%scalar [s,t]=RED, [s,t]+g-vec=WRED, s=t-array=thresholds, vector [s,t]=perFlow RED
%this version uses dynamic structure to record states

function [statis] = GGGnsdtbrdcgSim(a, Arr, b, Serv, n, s, c, pol, loop, trans, histp)

%set defaults if not all parameters are given
if (nargin<1) a=0.5*[0.2;0.3;0.5]; endif %three flows M/M/3 at load=0.5
if (nargin<2) Arr=[’nExp’;’nExp’]; endif %M^M/M/3 at load a
if (nargin<3) b=1/3; endif %G/M/3 at load a
if (nargin<4) Serv=’nExp’; endif %G/M/3 at load a./b
if (nargin<5) n=3; endif %G/G/3 at load a./b
if (nargin<6) s=9; endif %G/G/n at load a./b
if (nargin<7) c=Inf; endif %G/G/n/s at load a./b
if (nargin<8) pol=[’RR’;’FIFO’]; endif %G/G/n/s/c at load a./b

% if (nargin<8) pol=[’ES’;’FIFO’]; endif %G/G/n/s/c/ES at load a./b
if (nargin<9) loop=4000; endif %G/G/n/s/c/pol at load a./b - too short loop for good results
if (nargin<10) trans=ceil(loop/2); endif %G/G/n/s/c/pol at load a./b - sufficient for feasible loop
if (nargin<11 || ~histp || any(histp==0)) %do not plot histograms x=0-10 with 75 bins if not provided
histp=[10,75]; draw=false; else draw=true; endif

if (isscalar(histp) && histp==1) histp=[10,75]; %draw with default histplot parameters
elseif isscalar(histp) histp=[histp,75]; endif %draw with default bin number

%parameter adjustments
if ~isscalar(n) && (min(n(1:2)==’ps’) || min(n(1:2)==’PS’))
ps=true; n=1; %more processors, e.g. ’ps3’, ?useful? not implemented!

elseif ~isscalar(n) error(’restricted server occupation per flow not implemented yet!’);
else ps=false; endif
if (rows(Arr)==1 && rows(a)>1) sArr=Arr; %same Arrival process for all flows
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for i=2:rows(a) Arr=[Arr;sArr]; endfor
elseif (rows(Arr)==2 && rows(a)!=2) sBat=Arr(2,:); sArr=Arr(1,:); Arr=[]; Bat=[];
for i=1:rows(a) %same Arrival and Batch process for all flows
Arr=[Arr;sArr]; Bat=[Bat;sBat]; endfor

elseif (rows(Arr)==2*rows(a))
Bat=Arr(2:2:end,:); Arr=Arr(1:2:end,:); %split Batch and Arrival distributions

elseif (rows(Arr)!=rows(a)) error(’Arrival/Batch process definition problem.’); endif
if (rows(b)==1 && rows(a)>1) sb=b;
for i=2:rows(a) %extend unique service vector to flows number (set same for all flows)
b=[b;sb]; endfor endif

if (rows(Serv)==1 && rows(b)>1) sServ=Serv;
for i=2:rows(b) %extend unique Service process to flows number (set same for all flows)
Serv=[Serv;sServ]; endfor endif

if (rows(c)==1 && rows(a)>1) sc=c;
for i=2:rows(a) %extend scalar population to vector (same population per flow)
c=[c;sc]; endfor endif

if (columns(s)==3 && rows(a)!=3) tbs=s(:,3); tar=s(:,2); s=s(:,1); %token bucket parameters extracted
elseif (columns(s)==3 && rows(a)==3) ...
warning(’ambivalent parameters -> non token-bucket case is chosen!’); endif

if (columns(s)==rows(a) && rows(s)==1) comqu=true; s=s’; %array=>shared queue with thresholds
elseif (columns(s)==2*rows(a) && rows(s)==1) comqu=true; %random drop
thlow=s(1:2:end)’; s=s(2:2:end)’; thlow(find(thlow==s))--; %thlow=letin, s=block

elseif columns(s)>1 comqu=true; redths=s(:,2:end); s=s(:,1); %split size and threshold infos,
elseif rows(s)>1 comqu=flase; %usual multi queue system (s-vector)
else comqu=true; endif %scalar s (multiple flows rows(a)>1)=>usual shared queue
%if (columns(c)>1 && rows(c)==1)
c=c’; endif %convert single row into a vector, scalar=>joint population not realised!
if (columns(c)>1) g=c(:,2:end);
c=c(:,1); else g=[]; endif %extract weights etc. from number of customers vector

prevSigm=[];

%parameter checks
if (rows(a)!=rows(Arr))
error(’\n SORRY: different size for arrival (%d) and Arrival process (%d) vector is not possible.’,...
rows(a), rows(Arr)); return;

elseif rows(a)!=rows(b)
error(’\n SORRY: different size for arrival (%d) and service (%d) vector is not possible.’,...
rows(a), rows(b)); return;

elseif rows(b)!=rows(Serv)
error(’\n SORRY: different size for service (%d) and Service process (%d) vector is not possible.’,...
rows(b), rows(Serv)); return;

elseif(rows(s)>1 && rows(s)!=rows(a))
error(’\n SORRY: different size for arrival (%d) and queues (%d) vector is not possible.’,...
rows(a), rows(s)); return;

elseif(rows(c)>1 && rows(c)!=rows(a))
error(’\n SORRY: different size for arrival (%d) and population (%d) vector is not possible.’,...
rows(a), rows(c)); return;

elseif(min(a(:,1))<eps) error(’\n SORRY: a simulation with arrivals=%3.2f is not possible.’,a); return;
elseif (min(b(:,1))<eps) error(’\n SORRY: a simulation with service=%3.2f is not possible.’,b); return;
endif
fnum=rows(a); %number of flows
if (loop<trans)

fprintf(’\n WARNING: transient phase (%d) exceeds loop (%d) -> loop changed to %d.\n’,...
trans,loop,loop+trans); loop+=trans; endif

if(n<1) fprintf(’\n WARNING: %d servers cannot be simulated -> set to n=1.’,n); n=1; return; endif
if rows(pol)==1 %policy shortcuts
if isscalar(pol) switch pol
case 1; pol=[’RR’;’FIFO’]; case 2; pol=[’RR’;’LIFO’]; case 3; pol=[’RR’;’RAND’]; %round robin
case 11; pol=[’SP’;’FIFO’]; case 12; pol=[’SP’;’LIFO’]; case 13; pol=[’SP’;’RAND’]; %strict priority
case 21; pol=[’maxQ’;’FIFO’]; case 22; pol=[’maxQ’;’LIFO’]; case 23; pol=[’maxQ’;’RAND’];
case 31; pol=[’minQ’;’FIFO’]; case 32; pol=[’minQ’;’LIFO’]; case 33; pol=[’minQ’;’RAND’];
case 41; pol=[’ES’;’FIFO’]; case 42; pol=[’ES’;’LIFO’]; case 43; pol=[’ES’;’RAND’]; %egalitarian sharing
case 51; pol=[’PS’;’FIFO’]; case 52; pol=[’PS’;’LIFO’]; case 53; pol=[’PS’;’RAND’]; %egalitarian sharing
case 61; pol=[’WRQ+’;’FIFO’]; case 62; pol=[’WRQ+’;’LIFO’]; case 63; pol=[’WRQ+’;’RAND’]; %WFQ approx.
otherwise error(’a policy shortcut %d is not implemented,...
please specify policy explicitly ["RR";"FIFO"]’,pol); return

endswitch
elseif sum(all(pol==[’FIFO’;’LIFO’;’RAND’],2)) pol=[’RR’;pol];
%the all(..) may cause the "warning: mx_el_eq: automatic broadcasting operation applied"

else pol=[pol;’FIFO’]; endif; %add missing default
endif
switch deblank(pol(1,:))
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case ’ES’; es=true; pol=[’RR’;pol(2,:)]; ps=false; %egalitarian sharing
%case ’DES’; es=true; pol(1,1:4)=’RR ’; if ~any(g) g=ones(fnum,1); endif, ps=false; ...

% discrimatory sharing - not implemented?
case ’PS’; ps=true; pol=[’RR’;pol(2,:)]; if ~any(g) g=ones(fnum,1); endif, es=false; ...

% processor sharing (DPS if g_i !equal)
case ’DPS’; ps=true; pol=[’RR’;pol(2,:)]; if ~any(g) error(’DPS needs weights’); endif, es=false; ...

% discrimatory processor sharing
case ’WFQ’; pol=[’WRQ+’;pol(2,:)]; warning(’WFQ is not precisely implemented -> approximated by WRQ+’); ...

ps=false; es=false;
otherwise ps=false; es=false; %neither

endswitch
% for ES the serving order equals RR; but servers may be assigned in parallel, when available!
%if isscalar(s) display([a,b,c,g]); else display([a,b,s(:),c,g]); endif %display parameters

%const definitions and initialisation
mout=sum(a(:,1).*n.*b(:,1))/sum(a(:,1)); %calculated mean service rate (fair serving):
rhoi = a(:,1)./(n*b(:,1)); l=sum(rhoi); % mean load = sum(arrival/service-rate) over all flows
for i=1:fnum % correct for Engset case
if (c(i)<Inf) rhoi(i) = c(i)*a(i,1)/(a(i,1)+b(i,1)); l += rhoi(i) - a(i,1)/(n*b(i,1)); endif

endfor
fprintf(’ Load=%5.4f | Arr1: %s / Serv1: %s | Servers=%d | Size1=%d | Samples=%d \n’,...
l,Arr(1,:),Serv(1,:),n,s(1),loop);

loop+=trans; %add transient phase to loop
if isscalar(c) cm=c*ones(fnum,1);
else cm=c; endif %maxpopulation vector (to be deduced by sum(X), not X(fi)!)
darr=[]; %used in Engset case for delayed arrival generation due to no customers left
if length(histp)<2
fprintf(’\n Warning: histogram parameters were not provided as expected \n...

-> set to default tmax=10, bins=75’);
histp=[10,75]; endif

if any(c<inf) dispc=c; else dispc=[]; endif, %keyboard(); %dispc=zeros(length(g),0);
if ~exist(’redths’) || isempty(redths) redths=[]; endif
if exist(’thlow’) rdrop=zeros(fnum,max(s)+1);
for i=1:fnum rdrop(i,:)=([0:max(s)]-thlow(i))/(s(i)-thlow(i)); endfor %set drop rates per state per flow
rdrop(find(rdrop>1))=1; rdrop(find(rdrop<0))=0; %display([thlow,s,rdrop]);

endif
if exist(’thlow’) display([thlow,s,dispc,g]);
elseif rows(s)>1 display([s,redths,dispc,g]);
elseif rows(g)>1 display([redths,dispc,g]); endif
fflush(stdout); pageStdOut=page_screen_output;
if pageStdOut more(’off’); endif %set stdout to NOT wait when screen is full

%Local variables definitions and initialisation
Waiting=cell(fnum,1); %waiting time arrays for queued customers (required for FIFO,LIFO,...)
%inter-event times (in = till next arrivals, out = till next departure, t = since last event)
if (isscalar(c) && c==Inf) infci=1;

in=zeros(fnum,1); %initialise first arrivals at 0
else infci=max(c(find(c<Inf))); if any(infci) infci.+=1; else infci=1; endif

in=Inf(fnum,infci);
for i=1:fnum if c(i)==Inf in(i,infci)=0; else in(i,1:c(i))=1./([1:c(i)]*a(i,1)); endif endfor
%display(in);

endif
if exist(’tbs’) toin=zeros(fnum,1); tbcin=1; else tbcin=0; endif %initialise first token arrivals
out=[Inf(fnum,1)]; t=0;
%note: first arrival to each queue at t=0 (transient phase elliminates correlation)

%state and inter-event monitors
X=zeros(fnum,1); if tbcin Xt=zeros(fnum,1); endif
timeX=zeros(fnum,min(max(s),smax)+1);
S=[0;0;0]; %currently served flows / time in service / occupied servers - 0 required for min/max etc.
fi=0; fs=0; %current event’s flow fi and next served flow fs
ni=0; %ni = current server to accept/finish serving
%queue monitors (lastA = time since last arrival of flow, ...)
lastA=zeros(fnum,1); lastB=zeros(fnum,1); lastD=zeros(fnum,1);
simT=0;
%collectors for doing the statistics
sumX=zeros(fnum,1); sumQ=zeros(fnum,1);
sumA=zeros(fnum,1); sumB=zeros(fnum,1); sumD=zeros(fnum,1);
%counters for arrivals, departures, losses, ???, servings, ...
i=0; j=0; k=0; o=0; r=0; w=0; rrs=[]; sV=zeros(fnum,1);
%rows to collect inter-event/-departure/-arrival/-blocking/-waiting times
%xi=zeros(fnum, 2*loop);
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xi={[0]}; for fin=2:fnum xi={xi{},[0]}; endfor %initialise cell-array xi(fi) of num-arrays xi(fi){}
txi=zeros(fnum,1); %per flow time spent in state xi
di=zeros(fnum, loop); ai=zeros(size(di)); bi=zeros(size(di)); wi=zeros(size(di)); si=zeros(size(di));
xistartindex=0; xiendindex=Inf;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% main loop begin %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%event by event: update sim-time, generate next event, handle current event, loop until no events remain

monitor=0; %esbusy=0;
do
tinext=min(in(:)); tonext=min(out(:)); t=min(tinext,tonext);
if (t<0 || t==Inf) %error(’test error: next event time =%f’,t); endif
printf(’test error: next event time =%f \n’,t); keyboard; endif

%%%%%%%%%%%% do token arrivals %%%%%%%%%%%%%
while tbcin && min(toin(:))<t %do earlier arriving tokens first
toat=min(toin(:)); [fi,ci]=find(toin==toat); fi=fi(1); ci=ci(1); %get token time and indices
if Xt(fi)<tbs(fi) Xt(fi)++; endif %allow token to enter bucket (nothing to be done if not)
%schedule next token arrival
toin(fi,1)=toat+feval(’distrGen’,deblank(Serv(fi,:)),1/tar(fi),num2cell(b(fi,2:end)){:});
%schedule departure using the just arrived token
if (X(fi)-sV(fi)>0 && sum(sV)<n) %should never enter this for infinite servers or processor sharing
if (Xt(fi)>sV(fi)) %if token available
if (ps || n==inf) error(’sim runtime error: should not have entered this departure case’); endif
nfi=fi; %nfi: index of next flow to serve, initialised with index of arrived token
if (~es || n-sum(sV)==1) %enter here also with es if only one server is available
out=[out,Inf(fnum,1)]; ni=columns(out);
out(nfi,ni)=toat+feval(’distrGen’,deblank(Serv(nfi,:)),1/b(nfi,1),num2cell(b(nfi,2:end)){:});
S=[S,[nfi;-toat;1]]; twi=0; %add new client to server list
sV(nfi)+=1; %esbusy+=1;
%display([nfi,X(nfi),sV(nfi)]);
%out(nfi)=feval(Serv,num2cell(b(nfi,:)){:});
switch deblank(pol(2,:)) %-> here queueing comes in - remove scheduled client from Waiting

case ’FIFO’; twi=Waiting(nfi){:}(1); Waiting(nfi)=Waiting(nfi){:}(2:end);
case ’LIFO’; twi=Waiting(nfi){:}(end); Waiting(nfi)=Waiting(nfi){:}(1:end-1);
case ’RAND’; nci=ceil(length(Waiting(nfi){:})*rand(1));
twi=Waiting(nfi){:}(nci); Waiting(nfi)=[Waiting(nfi){:}(1:nci-1),Waiting(nfi){:}(nci+1:end)];

otherwise error(’\n ERROR: queueing policy \"%s\" is not known \n’,pol(2,:)); return;
endswitch
if monitor w++; wi(nfi,w)=twi+toat; endif %monitor waiting time (fi or nfi ???)

else esj=((X.-sV)>0); qix=sum(esj); %qix queues with X(i)-sV(i)>0 waiting customers each
warning(’THIS part on ES serving with Token Buckets is not finished yet!’);
while qix>0 % TO BE DONE - if poissible at all... serve all populated queues equally

if esj(nfi)>0 esk=floor((n-sum(sV))/qix+rand); while esk>(n-sum(sV)) esk--; endwhile
if esk>0

out=[out,Inf(fnum,1)]; ni=columns(out);
out(nfi,ni)=toat+feval(’distrGen’,deblank(Serv(nfi,:)),1/(esk*b(fi,1)),...
num2cell(b(nfi,2:end)){:});

S=[S,[nfi;0;esk]]; twi=0; %add new client to server list
sV(nfi)+=esk; %esbusy+=esk;
%printf(’\n’); display(S); display(sV’);
switch deblank(pol(2,:)) %-> here queueing comes in - remove scheduled client from Waiting
case ’FIFO’; twi=Waiting(nfi){:}(1); Waiting(nfi)=Waiting(nfi){:}(2:end);
case ’LIFO’; twi=Waiting(nfi){:}(end); Waiting(nfi)=Waiting(nfi){:}(1:end-1);
case ’RAND’; nci=ceil(length(Waiting(nfi){:})*rand(1));

twi=Waiting(nfi){:}(nci); Waiting(nfi)=[Waiting(nfi){:}(1:nci-1),...
Waiting(nfi){:}(nci+1:end)];

otherwise error(’\n ERROR: queueing policy \"%s\" is not known \n’,pol(2,:)); return;
endswitch
if monitor w++; wi(nfi,w)=twi+toat; endif %monitor waiting time

endif
qix--;

endif
r=mod(++r,fnum); nfi=r+1;

endwhile
endif
tonext=min(out(:)); t=min(tinext,tonext); %there may be a new, earlier departure scheduled now

endif
endif
%dotoarr=(min(toin(:))<=t); %check if more tokens arrive before the next arrival or departure occurs

endwhile
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%%%%%%%%%%%% end token arrival %%%%%%%%%%%%

if (t<0 || t==Inf) %error(’test error: next event time =%f’,t); endif
printf(’test error: next event time =%f \n’,t); keyboard; endif

if (min(in(:))<Inf) %get flow and customer index of next arrival
[fi,ci]=find(in==tinext); fi=fi(1); ci=ci(1);

else fi=0; ci=0;
endif
if (min(out(:))<Inf) %get flow and server index of next departure
[fs,ni]=find(out==tonext); fs=fs(1); ni=ni(1);

else fs=0; ni=0;
if find(S(1,:)) display(out); fprintf(’\n Currently served flows: ’);
fprintf(’%2d/%3.2f/%d ’,S(:,:));
%for sci=1:length(S(1,:)) fprintf(’%2d/%3.2f ’,S(1,sci),S(2,sci)); endfor
error(’runtime error -> no departures scheduled but Service-array is not emptied!’);

endif
endif
if (tinext<=tonext) %find index of a currently idle server, zero if non is idle
if max(S(1,:))==0 ni=1; elseif min(S(1,2:end))>0 ni=0; else ni=find(S(1,:)==0)(1); endif

else fi=fs; endif %in case of departure we use the server that becomes idle to server next waiting client
in.-= t; %subtract time since last event from scheduled arrival events
if tbcin toin.-= t; endif %subtract time since last event from scheduled token arrival events
out.-= t; %subtract time since last event from scheduled service completions
S(2,:).+=t; %add inter-event time to times in service (for service time monitor)
sV=zeros(fnum,1); %initialise vector indicating how often a queue(flow) is currently served
if ~es for sci=2:columns(S) sV(S(1,sci))+=1; endfor
else for sci=2:columns(S) sV(S(1,sci))+=S(3,sci); endfor
endif
%display([X’,sV’,S(1,:)]);
%fprintf(’\n t=%f, fi=%d ’,t,fi);

for fid=1:fnum
%xi{fid}(end)+=t*X(fid); %accumulate state holding period, for current fi new is added at end of loop
Waiting(fid)=Waiting(fid){:}+t; %add inter-event time to waiting times

endfor
if monitor %collect infos
simT+=t; %sum up simulation time (duration of simulation since monitoring start)
lastA.+=t; %add inter-event time to times since last arrival
lastD.+=t; %add inter-event time to times since last departure
lastB.+=t; %add inter-event time to times since last blocking
%collect system states wieghted by the time they last (sec) normalised to the service rate (1/sec)
%xi(:,i+j-trans)=t*X; %index is current arrivals+departures shifted up trans leaving trans till 2*loop
%accumulate state holding period, for current fi new is added post event handling
txi.+=t; xi{fi}(end)+=txi(fi)*X(fi); txi(fi)=0;
%Q(num2cell([X’+1 fs+1]){:})+=t; %add inter-event time to time spent in current state
timeX(:,min(X,smax)+1)+=t; %add inter-event time to time spent in current state
sumX(:)+=t*X(:); %sum time weighted system filling
sumQ(:)+=t*(X(:).-sV(:)); %sum queue filling (no difference for leave-after-service regime)

endif
if (t<0 || t==Inf) printf(’test error: next event time =%f \n’,t); keyboard; endif
prevX=sum(X); %remember the system filling prior event handling
prevS=columns(S)-1; %remember the server occupation prior event handling
if (~any(prevSigm) && any(g(:)) && any(X)) prevSigm=g(:,1)./sum(g(:,1).*X); %init first sharing factor
elseif (~any(prevSigm) && any(g(:))) prevSigm=ones(fnum,1); %init weighted fair sharing prevSigm
elseif (~any(prevSigm) && any(X)) prevSigm=ones(fnum,1)./prevS; %unweighted fair sharing
elseif (~any(prevSigm)) prevSigm=ones(fnum,1); %server is idle and no wieghting (factor=1)
endif
if (ps && prevS != prevX) error(’impossible error’); endif

if (tinext<=tonext)

%fprintf(’arrival%d ’,fi); % ********* ARRIVAL *********

if exist(’Bat’) bats=round(feval(’distrGen’,deblank(Bat(fi,:)),1,num2cell(a(fi,2:end)){:}));
if i<trans bats=min(bats,trans-i); elseif i==trans bats=1; else bats=min(bats,loop-i); endif
%required for monitoring control

else bats=1; endif
for ban=1:bats
if monitor ai(fi,i-trans)=max(lastA(fi),eps); sumA(fi)+=lastA(fi); endif %collect/sum inter-arrival times
lastA(fi)=0; %add new inter-arrival time and reset time since last arrival
if isscalar(s) letin=sum(X)<s;
elseif (exist(’rdrop’) && comqu) letin=1-rdrop(fi,sum(X)+1); %random drop
if letin<1 && letin>0 letin=rand()<letin; endif %letin=rand()>rdrop(fi,sum(X)+1);

elseif comqu letin=sum(X)<s(fi);
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else letin=X(fi)<s(fi); endif %entry allowed?
if rows(s)==1 && ~comqu error(’comqu test error’); endif
if ~isscalar(letin) error(’sim runtime error <- entry evaluation yields a non-scalar result’); endif
if letin %(comqu && sum(X(:))<s) || (~comqu && X(fi)<s(fi)) %check space in queue(s)
X(fi)++; %customer enters the system -> adjust system state
if (~tbcin || Xt(fi)>sum(sV)) && (sum(sV)<n || ps) % || sum(X)<=n)
%immediately schedule depature (at least one server is idle)
out=[out,Inf(fnum,1)]; ni=columns(out);
%set inital holding time mht
if prevSigm(fi)>1 error(’impossible service share %f for flow %d’,prevSigm(fi),fi); endif
if ps mht=1/(prevSigm(fi)*b(fi,1)); esk=1; % note: re-adjusted to current shares at the end!
elseif es esk=n-sum(sV); %esk
mht=1/(esk*b(fi,1)); %esbusy+=esk; %note: one served -> makes all servers busy

else mht=1/b(fi,1); esk=1; endif
if mht<b(fi,1) error(’impossible mean service time %f for flow %d’,mht,fi); endif
out(fi,ni)=feval(’distrGen’,deblank(Serv(fi,:)),mht,num2cell(b(fi,2:end)){:});
S=[S,[fi;0;esk]]; twi=0; %add new client to server list
sV(fi)=esk; %display(S); display(sV’);
%monitor zero waiting time
if monitor w++; wi(fi,w)=eps; endif %use eps so delZeros does not remove entries

else %add current arrival to waiting customers
if (ps || n==inf) error(’sim runtime error <- should not have entered waiting case’); endif
Waiting(fi)=[Waiting(fi){:},0];

endif
if (cm(fi)<Inf) %Engset case: arrival accepted -> generate next after service!
ci=find(in(fi,:)<=eps)(1);
if ci==infci error(’delayed scheduling for infinite population index not foreseen!’); endif
darr=[darr,fi]; in(fi,ci)=Inf;

endif
else %blocked arrival
if (s(min(rows(s),fi))==Inf) error(’sim runtime error: should not have entered blocking case’); endif
if monitor o++; bi(fi,o)=lastB(fi); sumB(fi)+=lastB(fi); endif %collect/sum inter-blocking times
lastB(fi)=0; %reset time since blocking monitor
if (i<loop-length(find(in<Inf)) && cm(fi)<Inf)
%Engset case: immediately schedule next arrival if current was blocked
if isscalar(c) cs=max(cm-sum(X),0); else cs=max(cm-X,0); endif
ci=find(in(fi,:)<=eps)(1);
if ci==infci error(’delayed scheduling for infinite population index not foreseen!’); endif
in(fi,ci) = feval(’distrGen’,deblank(Arr(fi,:)),1/a(fi,1),num2cell(a(fi,2:end)){:});
%if (ci && in(fi,ci)<=0) error(’next arrival -- negative time must not result!’); endif

else in(fi,ci)=Inf;
endif

endif
i++; % count the arrival (accepted or blocked)

endfor
if (i<=loop-length(find(in<Inf)) && cm(fi)==Inf)
%Erlang case: schedule next arrival after arrival of previouse
in(fi,infci)=feval(’distrGen’,deblank(Arr(fi,:)),1/a(fi,1),num2cell(a(fi,2:end)){:});
%if (in(fi,infci)<=0) error(’next arrival -- negative time must not result!’); endif

else in(fi,infci)=Inf; endif
else

%fprintf(’departure%d ’,fi); % ********* DEPARTURE *********

if tinext<=tonext error(’impossible error’); endif
if (X(fi)<=0)
error(’\n sim runtime error: departure from flow %d at X(%d)=%d occured! \n’,fi,fi,X(fi)); break; endif

j++; X(fi)--; %adjust system state
if tbcin Xt(fi)--; if Xt(fi)<0 keyboard();
error(’sim runtime error: token bucket depleted below zero Xt(%d)=%d’,fi,Xt(fi)); endif, endif

%display([X’,sV’]);
if (sV(fi)<0) error(’\n sim runtime error: service vector entry for flow %d became %d! \n’,{}
fi,sV(fi)); break; endif

ni=find(out(fi,:)<eps)(1); %index of departure in the out-matrix, first found if multiple departure
nsi=ni; %nsi=find(S(1,:)==fi); %indices of clients from same flow in server list - which finishes now?
sV(fi)-=S(3,nsi); %esbusy-=S(3,nsi);
lastS=S(2,nsi); %current departure’s time in service
out=[out(:,1:ni-1),out(:,ni+1:end)]; S=[S(:,1:nsi-1),S(:,nsi+1:end)]; % remove served customer
if monitor k++; di(fi,k)=lastD(fi); sumD(fi)+=lastD(fi); si(fi,k)=lastS; endif %monitors
lastD(fi)=0; %reset time since last departure monitor
if (max(X.-sV)>0) %should never enter this for infinite servers or processor sharing
if (~tbcin || Xt(fi)>sum(sV)) %if token required & available
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if (ps || n==inf) error(’sim runtime error: should not have entered this departure case’); endif
[xmax,nfi]=max(X); %nfi: index of next flow to serve, initialised with most filled queue (xmax)
switch deblank(pol(1,:)) %-> here scheduling comes in :-) %select flow to serve next
case ’SQ’; wlist=NaN(1,fnum);
%SingleQueue / FCFS (use only with multiple services, else maxQ or RR are best)
for r=1:fnum if isempty(Waiting(r){:}) wlist(r)=-1; else wlist(r)=Waiting(r){:}(1); endif, endfor,
[wmax,nfi]=max(wlist); %display([i,wlist,nfi]); %display(Waiting); % serve the longest waiting
if wlist(nfi)<0 error(’sim runtime error: queue with no waiting client should be served’); endif

case ’SP’;
if any(g) tempg=g(:); do nfi=find(g==max(tempg))(1); tempg(nfi)=NaN; until X(nfi)-sV(nfi)>0

%StrictPriority by weight
else nfi=1; while X(nfi)-sV(nfi)<=eps nfi++; endwhile endif %StrictPriority by lower index
%else for nfi=1:fnum if X(nfi)-sV(nfi)>0 break; endif endfor endif %StrictPriority by index

case ’RQ’; r=ceil(sum(X-sV>0)*rand()); nfi=find(X-sV>0)(r); %RandomQueue (seems ok, not approved)
case ’RR’; do r=mod(++r,fnum); nfi=r+1; until (X(nfi)-sV(nfi)>0) %RoundRobin
case ’WRQ’; gr=cumsum((g(:).*((X(:).-sV(:))>0))./(g(:)’*((X(:).-sV(:))>0))); %WeightedRandomQueue
r=rand(); nfi=1; while (X(nfi)-sV(nfi)<=eps || gr(nfi)<=r) nfi++; endwhile

case ’WRQ+’; gr=cumsum(g(:).*(X(:).-sV(:)))./(g(:)’*(X(:).-sV(:))); %WaitingWeightedRandomQueue
r=rand(); nfi=1; while (X(nfi)-sV(nfi)<=eps || gr(nfi)<=r) nfi++; endwhile

case ’WRR’; if ~any(rrs) for r=0:max(g)-1 gr=find(g.-r>0); rrs=[rrs;gr]; endfor, r=0; endif
do r=mod(++r,length(rrs)); nfi=rrs(r+1); until (X(nfi)-sV(nfi)>0) %WeightedRoundRobin

case ’maxQ’; [xmax,nfi]=max(X.-sV); %most filled queue without already served clients
case ’minQ’; for qix=1:fnum %least filled queue first
if (X(qix)-sV(qix)>0) && (X(qix)-sV(qix)<(X(nfi)-sV(nfi))) nfi=qix; endif endfor

otherwise error(’\n ERROR: scheduling policy \"%s\" is not known \n’,pol(1,:)); return;
endswitch
%schedule next departure
if (~es || n-sum(sV)==1) %enter here also with es if only one server is available
out=[out,Inf(fnum,1)]; ni=columns(out);
out(nfi,ni)=feval(’distrGen’,deblank(Serv(nfi,:)),1/b(nfi,1),num2cell(b(nfi,2:end)){:});
S=[S,[nfi;0;1]]; twi=0; %add new client to server list
sV(nfi)+=1; %esbusy+=1;
%display([nfi,X(nfi),sV(nfi)]);
%out(nfi)=feval(Serv,num2cell(b(nfi,:)){:});
switch deblank(pol(2,:)) %-> here queueing comes in - remove scheduled client from Waiting
case ’FIFO’; twi=Waiting(nfi){:}(1); Waiting(nfi)=Waiting(nfi){:}(2:end);
case ’LIFO’; twi=Waiting(nfi){:}(end); Waiting(nfi)=Waiting(nfi){:}(1:end-1);
case ’RAND’; nci=ceil(length(Waiting(nfi){:})*rand(1));

twi=Waiting(nfi){:}(nci); Waiting(nfi)=[Waiting(nfi){:}(1:nci-1),Waiting(nfi){:}(nci+1:end)];
otherwise error(’\n ERROR: queueing policy \"%s\" is not known \n’,pol(2,:)); return;

endswitch
if monitor w++; wi(nfi,w)=twi; endif %monitor waiting time (fi or nfi ???)

else esj=((X.-sV)>0); qix=sum(esj); %qix queues with X(i)-sV(i)>0 waiting customers each
%warning(’THIS part on ES serving is not finished yet!’);
while qix>0 % TO BE DONE - if poissible at all... serve all populated queues equally
if esj(nfi)>0 esk=floor((n-sum(sV))/qix+rand); while esk>(n-sum(sV)) esk--; endwhile

if esk>0
out=[out,Inf(fnum,1)]; ni=columns(out);
out(nfi,ni)=feval(’distrGen’,deblank(Serv(nfi,:)),1/(esk*b(fi,1)),num2cell(b(nfi,2:end)){:});
S=[S,[nfi;0;esk]]; twi=0; %add new client to server list
sV(nfi)+=esk; %esbusy+=esk;
%printf(’\n’); display(S); display(sV’);
switch deblank(pol(2,:)) %-> here queueing comes in - remove scheduled client from Waiting

case ’FIFO’; twi=Waiting(nfi){:}(1); Waiting(nfi)=Waiting(nfi){:}(2:end);
case ’LIFO’; twi=Waiting(nfi){:}(end); Waiting(nfi)=Waiting(nfi){:}(1:end-1);
case ’RAND’; nci=ceil(length(Waiting(nfi){:})*rand(1)); twi=Waiting(nfi){:}(nci);
Waiting(nfi)=[Waiting(nfi){:}(1:nci-1),Waiting(nfi){:}(nci+1:end)];

otherwise error(’\n ERROR: queueing policy \"%s\" is not known \n’,pol(2,:)); return;
endswitch
if monitor w++; wi(nfi,w)=twi; endif %monitor waiting time

endif
qix--;

endif
r=mod(++r,fnum); nfi=r+1;

endwhile
endif

endif
endif
if (i<loop-length(find(in<Inf)) && cm(fi)<Inf && any(darr==fi))
%Engset case: schedule next arrival after service of previouse
daind=find(darr==fi)(1);
if isscalar(c) cs=max(cm-sum(X),0); else cs=max(cm-X,0); endif
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ci=find(in(fi,:)==Inf)(1);
if ci==infci error(’delayed scheduling for infinite population not foreseen!’); endif
in(fi,ci)=feval(’distrGen’,deblank(Arr(fi,:)),1/a(fi,1),num2cell(a(fi,2:end)){:});
darr=[darr(1:daind-1),darr(daind+1:end)]; %remove the now scheduled flow

endif
if (ci && in(fi,ci)==0) error(’next arrival -- zero must not result!’); endif

endif
% ********* a posteriori event handling *********

%if sum(X)<=0 esbusy=0; endif %dirty patch to problem with esbusy
if (ps && sum(X)>0) %adjust out-times for processor sharing
%if any([prevX,sum(X)]<eps) error(’test error’); endif
if any(g(:)) savSigm=prevSigm; %priority weighted processor sharing
sigm=min(1,g(:,1)./sum(g(:,1).*X(:))); %calculate current server shares (<=1)
toscale=prevSigm./sigm; %to be checked! (1+sigm.^(-1))./(1+prevSigm.^(-1));
prevSigm=sigm;
%printf(’ -> contiune:dbcont, quit:dbquit <- \n’); fflush(stdout); keyboard();

elseif (prevX>0) toscale=sum(X)/prevX; %egalitarian processor sharing
prevSigm.*=toscale.^(-1); error(’test error’); %??? to be checked !!!

endif
if (any(toscale==Inf) || any(toscale<=0))
error(’sim runtime error: infinite or negative scaling may not happen!’); endif

% adjust out-times to consider service rate change in case of processor sharing
savOut=out;
for pfi=1:fnum if toscale(pfi)<Inf out(pfi,:).*=toscale(pfi); endif endfor %rescale departure times

elseif (ps && any(g(:))) savSigm=prevSigm; %reset <-- server became idle
prevSigm=ones(fnum,1); sigm=prevSigm; toscale=sigm;
if columns(out)>1 display(out);
error(’sim runtime error: system idle but [out] was not cleared!’); endif

endif
% monitoring control
if (i==trans) xistartindex=max(xistartindex,i+j-trans); %remember index prior monitoring start
elseif (i==trans+1) monitor=1; %start monitoring
elseif (i==loop) monitor=0; %end monitoring
xiendindex=min(xiendindex,i+j-trans); %remember index post monitoring end

endif
% ********* report simulation progress *********

if (i<loop && tinext<=tonext && rem(i-trans,1000)==0) % && tinext<=tonext (at arrivals only)
fprintf(’\n%3.1f%% at %5.4f done: i=%d, j=%d, k=%d, o=%d; \n’,(i-trans)/(loop-trans)*100,l,i,j,k,o);
fprintf(’ Flow \t nextArr \t [inQ] \t nextDep \n’);
for fci=1:fnum fprintf(’ %d: \t’,fci);
if (cm(fci)==Inf) fprintf(’ %5.2f ’,in(fci,end));
elseif length(in(fci,:))>5 fprintf(’ %5.2f(%d)’, min(in(fci,:)), length(find(in(fci,:)<Inf)));
else fprintf(’ %4.2f’,in(fci,1:end-1));
endif, fprintf(’\t [%d] \t’,X(fci));
if length(out(fci,:))>5 fprintf(’ %5.2f(%d)’, min(out(fci,:)), length(find(out(fci,:)<Inf)));
else fprintf(’ %4.2f’,out(fci,2:end));
endif, fprintf(’\n’);

endfor
fprintf(’ Server occupation:\t [%d] comp. of:’,length(S(1,2:end)));
if length(S(1,:))>5 for fci=1:fnum
fprintf(’ %d(%d)%3.2f/%d’,fci,length(find(S(1,2:end)==fci)),max(S(2,S(1,:)==fci)),sum(S(3,S(1,:)==fci)));
endfor

else fprintf(’%2d/%3.2f/%d ’,S(:,2:end));
endif, fprintf(’\n’);
if any(darr) fprintf(’ Pending arrivals: ’); fprintf(’%2d ’,length(darr)); fprintf(’\n’); endif
if (ps) printf(’ service shares: ’); printf(’%5.4f ’,X.*prevSigm); printf(’\n’); endif %&& prevX>0
%if (ps) printf(’ out-scaling {%d}: ’,fi); printf(’%5.4f ’,toscale(:)); printf(’\n’); endif %&& prevX>0
%if (any(sigm) && sum(X)>0) display([sigm’.^(-1);savSigm’.^(-1);(savSigm./sigm)’]); endif
%printf(’ / ’); printf(’%5.4f ’,savSigm(:)); printf(’ - ’); printf(’%5.4f ’,sigm(:)); endif
%display(prevOut);
fflush(stdout);
%keyboard(); %debugging -> continue: dbcont, quit: dbquit (=exit)

endif
if monitor xi(fi)=[xi(fi){},0]; endif %add new entry to flow’s state monitor

until (min(in)==Inf && min(out)==Inf)
%end loop if no arrivals or departures are left

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% main loop end %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%final progress report



A.I Program code 309

fprintf(’\n%3.1f%% at %5.4f done: i=%d, j=%d, k=%d, o=%d; \n’,i/loop*100,l,i,j,k,o);
display([in X out]); display([S(:)’ simT]);
if (i!=loop) warning(’\n generated arrival events (%d) != loop (%d) \n’,i,loop); endif

%evaluate results using recorded traces %%%
%shrink and normalise xi to actual number of monitored events and time passed
%[trs,tri]=min(sum(xi,2)); if trs==0 error(’empty xi trace for flow %d should not happen!’,tri); endif
for fid=1:fnum
xi{fid}.*=length(xi{fid})/simT; %normalise by total sim-time
trs=sum(xi{fid}); if trs==0 error(’empty xi trace for flow %d should not happen!’,fid); endif

endfor
if ~(o>0) bi=zeros(fnum,1); cvB=NaN(fnum,1); ebB=NaN(fnum,1); endif
for qfi=1:fnum
aq=delZeros(ai(qfi,:)); aq(find(aq==eps))=0;
mA(qfi)=1/mean(aq); cvA(qfi)=std(aq)*mA(qfi); ebA(qfi)=confid(aq,95);
el(qfi)=mA(qfi); %current load estimated from arrival trace
norml(qfi)=mA(qfi)/(loop-trans); %load dependent factor to normalise resuts if necessary
sq=delZeros(si(qfi,:)); %may be empty in case of starvation!
if any(sq) mS(qfi)=mean(sq); cvS(qfi)=std(sq)*mS(qfi); ebS(qfi)=confid(sq,95);
else mS(qfi)=NaN; cvS(qfi)=NaN; ebS(qfi)=NaN; endif %??? confid*mean NO !!!
%printf(’mean Ts=%f from %d samples \n’,mean(si(qfi,si(qfi,:)>0)),length(find(si(qfi,:)>0)));
dq=delZeros(di(qfi,:)); %may be empty in case of starvation!
if any(dq) mD(qfi)=1/mean(dq); cvD(qfi)=std(dq)*mD(qfi); ebD(qfi)=confid(dq,95);
else mD(qfi)=NaN; cvD(qfi)=NaN; ebD(qfi)=NaN; endif
%dnorml(qfi)=sum(dq)/k; %service dependent factor to normalise resuts to service time
bq=delZeros(bi(qfi,:));
if isempty(bq) mB(qfi)=0; cvB(qfi)=NaN; ebB(qfi)=NaN;
else mB(qfi)=1/mean(bq); cvB(qfi)=std(bq)*mB(qfi); ebB(qfi)=confid(bq,95); endif
xnorml(qfi)=length(xi{qfi})/(columns(aq)+columns(bq)+columns(dq)); %xi is recorded for every event
%xq=xi(qfi,:)*xnorml; %display(xnorml); %required for multi-queue SP sim ?????
xq=xi{qfi}.*xnorml(qfi); %display(xnorml(qfi));
mX(qfi)=mean(xq); cvX(qfi)=std(xq)/mX(qfi); ebX(qfi)=confid(xq,95);
wq=(delZeros(wi(qfi,:)).-eps); %display(wq’); %remove eps, assumed irrelevant for any tw>0
if isempty(wq) mW(qfi)=0; cvW(qfi)=NaN; ebW(qfi)=NaN;
else mW(qfi)=mean(wq); %is zero if zero waiting has been monitored
if mW(qfi)<eps cvW(qfi)=NaN; else cvW(qfi)=std(wq)/mW(qfi); endif
ebW(qfi)=confid(wq,95); endif

%flow time calculation
if ps mF(qfi)=mS(qfi); cvF(qfi)=cvS(qfi); ebF(qfi)=ebS(qfi);
else mF(qfi)=mX(qfi)/mD(qfi); cvF(qfi)=NaN; ebF(qfi)=NaN; %cv and eb calc?
%mF(qfi)=mX(qfi)/mA(qfi); if zero waiting for blocked load shall be included
%else mF(qfi)=mW(qfi)+mS(qfi);
% cvF(qfi)=2*(cvW(qfi)*mW(qfi)+cvS(qfi)*mS(qfi))/(mW(qfi)+mS(qfi)); %ok (if independent)
% ebF(qfi)=NaN; %calculate?
endif
fprintf(’queue%d: load=%5.4f, Pb=%5.4f, lin=%5.4f’, qfi, el(qfi), mB(qfi)/mA(qfi), mA(qfi)-mB(qfi));
fprintf(’, depnr=%d, corrf=%5.4f \n’, length(find(si(qfi,:)>0)), xnorml(qfi));
fprintf(’ mX=%5.4f, cvX=%5.4f, confX=%5.4f \n’, mX(qfi), cvX(qfi), ebX(qfi));
fprintf(’ mA=%5.4f, cvA=%5.4f, confA=%5.4f \n’, mA(qfi), cvA(qfi), ebA(qfi));
fprintf(’ mS=%5.4f, cvS=%5.4f, confS=%5.4f \n’, mS(qfi), cvS(qfi), ebS(qfi));
fprintf(’ mD=%5.4f, cvD=%5.4f, confD=%5.4f \n’, mD(qfi), cvD(qfi), ebD(qfi));
fprintf(’ mB=%5.4f, cvB=%5.4f, confB=%5.4f \n’, mB(qfi), cvB(qfi), ebB(qfi));
fprintf(’ mW=%5.4f, cvW=%5.4f, confW=%5.4f \n’, mW(qfi), cvW(qfi), ebW(qfi));
fprintf(’ mF=%5.4f, cvF=%5.4f, confF=%5.4f \n’, mF(qfi), cvF(qfi), ebF(qfi));
fflush(stdout);

endfor
fprintf(’\n’);
%keyboard(); %debugging: continue: dbcont, quit: dbquit (=exit)

%print histogram of some monitored distribution(s) -- adjust source on demand!
if draw
tmax=histp(1); bins=histp(2);
%%adjust record sizes - not required with current HistPlot
%slength=min(length(aq),length(dq)); aq=aq(1:slength); dq=dq(1:slength);
%figure(1); hold("on"); HistPlot(aq,tmax,bins,0); HistPlot(dq,tmax,bins,0); hold("off"); %plot pdfs
%figure(2); hold("on"); cHistPlot(aq,tmax,bins,0); cHistPlot(dq,tmax,bins,0); hold("off"); %plot cdfs
nh=~ishold; %samp,tail,bins,lplot,plcolor
figure(1); if nh hold("on"); endif; HistPlot(dq,tmax,bins,0); if nh hold("off"); endif %plot pdfs
figure(2); if nh hold("on"); endif; cHistPlot(dq,tmax,bins,0); if nh hold("off"); endif %plot cdfs
figure(1); %dummy command to actually plot figure 2
%%waiting time distribution
%wnorml=simT/(loop-trans);
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%cwq=delZeros(wq); %conditional waiting times: without zero-waiting
%figure(1); hold("on"); HistPlot(cwq,tmax,bins,0); hold("off"); %plot pdfs
%figure(2); hold("on"); cHistPlot(wq,tmax,bins,0); cHistPlot(cwq,tmax,bins,0,2); hold("off"); %plot cdfs

endif

%collect trace based performance results in return record (statis)
statis=NaN(fnum+1,19);
if (n<Inf && all(c<Inf)) statis(1:fnum,1)=(c(:).*a(:,1))./(1+a(:,1)./(n*b(:,1))); %effectively offered load
elseif (n<Inf && any(c<inf)) warning(’c=[c1,c2,inf,etc.]-case effective offered load calc. to be done’);
elseif (n<Inf) statis(1:fnum,1)=a(:,1)./(n*b(:,1)); %load per flow rho_i=a_i/(n*b_i)
else statis(1:fnum,1)=a(:,1)./b(:,1); endif
%display([a,b,statis(1:fnum,1)])
statis(fnum+1,1)=sum(statis(1:fnum,1)); %system load =sum_i{rho_i}
statis(1:fnum,2:10)=[mA(:),ebA(:),cvA(:),mD(:),ebD(:),cvD(:),mB(:),ebB(:),cvB(:)]; %flow statistics
%% the monitored mW is here overwritten by calculated value
if any(mW(:)==NaN) for fid=1:fnum
if (mW(fid)==NaN && mS(fid)!=NaN && mF(fid)!=NaN) mW(fid)=mF(fid)-mS(fid); endif endfor endif

mQ=mD(:).*mW(:); %using Little with carried load (not the offered load)
ebQ=abs(mD(:).*ebW(:)); %error-bar values change linearly with linear scaling???
statis(1:fnum,11:19)=[mX(:),ebX(:),mQ(:),ebQ(:),mF(:),ebF(:),mW(:),ebW(:),cvW(:)]; %performance statistics
%last line used for total system results
statis(fnum+1,2)=sum(statis(1:fnum,2)); %total arrival rate
statis(fnum+1,5)=sum(statis(~isnan(statis(1:fnum,5)),5)); %total departure rate
statis(fnum+1,8)=sum(statis(~isnan(statis(1:fnum,8)),8)); %total blocking rate
statis(fnum+1,11)=sum(statis(1:fnum,11)); %total system filling
statis(fnum+1,13)=sum(statis(1:fnum,13)); %total queues filling
dshares=statis(~isnan(statis(1:fnum,5)),5)./statis(fnum+1,5); %departure shares
statis(fnum+1,15)=statis(~isnan(statis(1:fnum,5)),15)’ * dshares; %averaged flow time
statis(fnum+1,17)=statis(~isnan(statis(1:fnum,5)),17)’ * dshares; %averaged waiting time

%point simulation finished
if pageStdOut more(’on’); endif %reset environment to previouse behaviour
endfunction

A.I.3 Filling and solving the Q-matrix for finite multi-flow systems

Here we briefly present how the Q-matrix for finite systems can be set-up in octave for any number of
flows. As example we choose the weighted random queue policy (WRQ) presented in section 4.1.3,
figure 4.21 and 4.22.

Setting up the finite Q-matrix for WRQ policy

if isscalar(s) coqu=true; sq=s*ones(1,fn); else coqu=false; sq=s; endif %queue-size(s) s, share=coqu
Qvec=cell2mat(nthargout([1:fn+1],@ind2sub,[(sq+1)(:)’,fn],(1:fn*prod(sq+1))’)); %fn+1 dim Q-indices
Qvec.-=1; Qvec(2:end,end).+=1; %convert matrix indices to state indices (i,j,k,q)
if coqu Qvec(find(sum(Qvec,2)-Qvec(:,end)>s),:)=[]; endif %remove upper triangle
for j=1:fn Qvec(find(Qvec(:,j)==0 & Qvec(:,end)==j),:)=[]; endfor %remove impossible serving states
Vsize=rows(Qvec); %number of actually required states

for r=1:steps %load level by load level
ar=ri.*rho(r); %arrival rates per share (ri=splitting vector, rho(r)=current load)
Q=sparse(Vsize,Vsize); %define sparse Q matrix

for i=1:Vsize %state by state
qfill=Qvec(i,1:end-1); servq=Qvec(i,end); %the state’s queue filling and served queue
if servq==0 %arrivals out of idle state

for j=1:fn
qfill2=qfill; qfill2(j)++; %destination queue filling
i2=find(prod(Qvec==ones(Vsize,1)*[qfill2,j],2)); %dest Q-index
Q(1,i2)=ar(j); %insert arrival transition rate

endfor,
else %insert all other transitions

if coqu && sum(qfill)<s %common queue case
for j=1:fn

qfill2=qfill; qfill2(j)++; %destination queue filling
i2=find(prod(Qvec==ones(Vsize,1)*[qfill2,servq],2)); %dest Q-index
Q(i,i2)=ar(j); %insert arrival transition rate

endfor
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elseif ~coqu %individual queues case
for j=1:fn

if qfill(j)>=sq(j) continue, endif
qfill2=qfill; qfill2(j)++; %destination queue filling
i2=find(prod(Qvec==ones(Vsize,1)*[qfill2,servq],2)); %dest Q-index
Q(i,i2)=ar(j); %insert arrival transition rate

endfor
endif
%do departures
qfill2=qfill; qfill2(servq)--; %queue filling after departure
if sum(qfill2)==0 Q(i,1)=br(servq); %departure to idle state (no split possible)
else

qi=gi.*(qfill2>0)./sum(gi.*(qfill2>0)); %state dependent departure split
qbr=qi.*br(servq); %aliquote split service rates
for j=1:fn

if qi(j)>0 %transition exists
i2=find(prod(Qvec==ones(Vsize,1)*[qfill2,j],2)); %dest Q-index
Q(i,i2)=qbr(j); %insert departure transition rate

endif
endfor

endif, %display([qfill,indics(end);qfill2,indic2(end)]);
endif,

endfor, %display(Q); %keyboard();

%identify empty rows -> reactivate if singular matrix occurs
%delrs=find(sum(Q,2)==0); %find all zero rows
%if ~isempty(delrs) display(Q(delrs,:)); warning(’empty rows happened!’);
%Q(delrs,:)=[]; Q(:,delrs)=[]; endif %remove idle rows and associated columns
Q+=diag(-sum(Q,2)); %insert diagonal elements (neg row sum)
if any(sum(Q,2)>10*eps) display([Q,sum(Q,2)]); error(’faulty system Q-matrix occurred’); endif
bvec=zeros(rows(Q),1); Q(:,end)=1; bvec(end)=1; %adjust to integrate normalization
p=Q’\bvec; %solve equilibrium equations
if any(p<10*eps || abs(sum(p)-1)>10*eps) p, error(’faulty probability vector resulted’); endif

for i=1:fn %calculate and record system properties at load rho(r)
x(r,i)=sum(Qvec(:,i).*p); %individual queue fillings
w(r,i)=sum((Qvec(:,i)-(Qvec(:,end)==i)).*p); %waiting packets numbers
if coqu bp(r,i)=sum(p(find(sum(Qvec,2)==s+Qvec(:,end)))); %blocking probabilities
else bp(r,i)=sum(p(find(Qvec(:,i)==sq(i)))); endif %Pb for individual queues
cr(r,i)=bp(r,i)*ar(i); %blocking rates
dr(r,i)=sum(p(find(Qvec(:,end)==i)))*br(i); %throughputs

endfor
tf(r,:)=x(r,:)/dr(r,:); %flow times (using Little’s law)
tw(r,:)=w(r,:)/dr(r,:); %waiting times (using Little’s law)

endfor

The input parameters required are: the number of flows fn, the queue size(s) s, where a scalar
identifies a shared queue, the weights vector gi, the system loads vector to evaluate rho, the load
split vector ri, and the service rates vector br. In return the code delivers: the mean values for
the individual queue fillings x, the number of waiting packets w, the blocking probabilities bp, the
blocking rates cr, and the throughputs, which equal the departure rates dr. From these the remaining
system properties, mean flow time and mean waiting time, can be calculated using Little’s law N=λT
if we consider that here λ refers to the accepted load, which due to no leaves without service equals
the departure rate.

A.II Event based network simulation

The concept presented next evolved over time and it was always a vision to realise it. Eventually,
it remains a vision. Some time it may be of interest, and therefore it is included here in figure A.1.
Please be aware that this is no more than a concept. If it can be realised and might be beneficial,
cannot be finally answered yet.
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Figure A.1: Objects assumedly required for generic network simulation



Nomenclature

The used nomenclature is introduced in the
course of the text where first needed. It has been
intended to maximally harmonise the various
nomenclatures found in the literature. However,
well established but here conflicting nomencla-
ture we did not change where advantageous
for better understanding. We also tried not to
introduce too many different alphabets (letter
styles) and thus, some variables expressed by
the same latter can have different meaning in
different contexts.

This addendum lists and explains the mostly
used variables and nomenclature issues applied.
Note that we do not attempt to present a complete
listing here. The hereafter stated definitions do
not replace or overrule the in-line definitions in
the course of the text, they are collected here to
support a better, maybe intuitive, understanding
of the mostly applied nomenclature rules.

Text styles

italic key word, statement
slanted product/command/item name
typewriter constant/variable name, m-code

Variables and operators

i, j,k,n,m, . . . natural numbers
a,b,c, . . . ,x,y,z real valued variables
t a time based variables
τ a duration of time
X ,Y random variable, matrix
[a .. b] the range of a variable
[a1,a2,a3, . . . ,an] an indexed array of a variable
{a,b,c, . . .} a set of independent results
~x,y vectors
x̄,X mean value

ẋ, f (x)
dx first derivation

x̂ some expectation
P[X >x] the probability operator
E[X ] the expectation operator (mean)
Var[X ] the variance of X
Cov(X ,Y ) the covariance of X and Y
F(x), f (x) a function of x, e.g., cdf and pdf
x∗,X∗ a variant, constraint set, or transform

Abbreviations

The provided list of abbreviations includes both
abbreviations of bulky names and commonly
used abbreviation like names. However, terms
not identified as being an abbreviation are not
included.

A
ACK acknowledgement
ADM add-drop multiplexing
AS autonomous system
ATM asynchronous transport mode

B
BCMP Baskett Chandy Muntz Palacios [84]
BER bit error rate
BGP boarder gateway protocol
BMAP batch Markov arrival process

C
CBQ class based queueing
CBRQ class based random queueing
ccdf complementary cdf
cdf cumulative density function
CDM code division multiplexing
CDN content distribution network
CGE carrier grade Ethernet
CoS class of service
Cov covariance

313
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cX coefficient of variation

D
Diff-Serv Differentiated services
DPS discriminatory PS
DVD digital versatile disk

E
EO electrical to optical conversion
EPS egalitarian PS
ES egalitarian sharing

F
FCFS first come first served
FDM frequency division multiplexing
FEC forward error correction
FEC forwarding equivalence class
FIFO first in first out
FR frame relay
FTM flow transfer mode

G
Geo geometric distribution
GMPLS generalised MPLS
GPD generalised Pareto distribution
GPS generalised PS

H
HD high definition
HDTV high definition television
HQS hierarchic queueing stack
HTB hierarchical token bucket

I
IETF internet engineering task force
ID identifier
iMAX image maximum (motion picture format)
IP internet protocol
IPP interrupted Poisson process
ISP internet service provider
IT information technology
ITU international telecommunication union
i.i.d. independent and identically distributed

J
JET just enough time

K

L
LAN local area network

LB leaky bucket
LCFS last come first served
LDP label distribution protocol
LER label edge router
LIFO last in first out
LSP label switched path
LTE long term evolution

M
MAM matrix analytic method
MAP Markov arrival process
MGM matrix geometric method
MILP mixed integer linear programming
MMAP decomposed MAP
MMPP Markov modulated Poisson process
MOS mean opinion score
MPLS multi protocol label switching
MRP Markov renewal process
m-code Matlab programming language

N
NGN next generation network
NOC network operation centre
NP non-deterministic polynomial-time
NP-hard NP computation complexity
np-LCFS non preemptive LCFS

O
OBS optical burst switching
OCS optical circuit switching
OE optical to electric conversion
OEO electrical processing of optical signals
ON optical network
OPS optical packet switching
OSI open systems interconnection
OSPF open shortest path first
OTDM optical TDM
OTH optical digital hierarchy
OTN optical transport network

P
PASTA Poisson arrivals see time averages
PATON polymorphous agile transparent ON
Pb probability of blocking
PCE path computation element
pdf probability density function
PESQ perceptual evaluation of speech quality
PHB per hop behaviour
pmf probability mass function
Prio prioritised
PS processor sharing
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Q
QBD quasi-birth-and-death
QoE quality of experience
QoS quality of service
QoT quality of transmission

R
RAND random queueing
RED random early detection
RF radio frequency
RFC request for comments
RR round robin
RSVP resource reservation protocol
RSVP-TE RSVP for traffic engineering
RTT round trip time
RX receiver, reception rate

S
SDH synchronous digital hierarchy
SDI serial digital (video) interface
SDN software defined networking
SDTV standard definition television
SLA service level agreement
Sonet synchronous optical networking
SP strict priority
SPQ strict priority queueing
SQ shared queue

T
TB token bucket
TCP transport control protocol
TDM time division multiplexing
TE traffic engineering
TX transmitter, transmission rate

U
UDP user datagram protocol
UMTS universal mobile telecom. system

V
Var variance
VC virtual connection
VoIP voice over IP
VP virtual path
VPLS virtual private LAN service

W
WDM wavelength division multiplexing
WFQ weighted fair queueing
WLAN wireless LAN
WRED weighted random early detection
WRQ weighted random queueing
WRQ+ a better WRQ realisation
WRR weighted round robin

X
Y
Z
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