
Simulating The Effects of
Migration Policies on Digital

Repositories
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

eingereicht von

Christian Weihs
Matrikelnummer 9825447

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, 20.11.2015
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Simulating The Effects of
Migration Policies on Digital

Repositories
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Christian Weihs
Registration Number 9825447

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Vienna, 20.11.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Weihs
Fernkorngasse 23

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Abstract

Planning and operating a digital repository is a laborious and complex project. Especially the
estimation of system resources (storage space and processing power) is difficult. The stability of
file formats (limited by the support period of software vendors) enforces multiple migrations to
newer file formats over time, which leads to an increased need for storage space and processing
power depending on the migration tools used.

In this thesis a simulator is presented that helps to estimate the longterm development of
digital repositories. It is possible to describe the content of the repository and the rules for the
migration processes and simulate the scenario over an arbitrary time span. After the simulation
statistics and diagrams can get generated for analysis and comparison of the result.

The goal is to provide a tool that can evaluate different scenarios containing rules and tools
for migrations based on a given repository configuration. It should be possible to analyze how
different rules and tools impact the resource requirements of the archive, in particular whether
there are unexpected resource peeks during the lifetime of the repository.

The usage of the simulator is shown on a sample configuration build upon an existing repos-
itory. Therefore the structure of the repository is analyzed using the format registry PRONOM
to build a configuration that matches the archive closely. With this sample configuration several
migration scenarios are tested and evaluated using the generated diagrams.

iii

Kurzfassung

Die Planung und der Betrieb eines digitalen Repositories ist ein aufwändiges und komplexes
Vorhaben. Insbesondere die Abschätzung der langfristig benötigten Systemressourcen (Spei-
cherkapazität und Rechenleistung) ist ein schwieriges Unterfangen. Die Haltbarkeit der verwen-
deten Dateiformate erzwingt über den Jahrzehnte langen Betrieb immer wieder Migrationen in
neuere Dateiformate, was abhängig von den verwendeten Werkzeugen einerseits entsprechend
Rechenleistung benötigt, andererseits steigt damit auch der Speicherverbrauch, weil nach der
Migration die Datei sowohl in der alten als auch in der neuen Version vorhanden ist.

In dieser Arbeit wird ein Simulator vorgestellt, der dabei hilft diese langfristigen Entwick-
lungen abzuschätzen. Es ist damit möglich den Archivinhalt und die notwendigen Migrations-
vorgänge zu beschreiben und darauf aufbauend eine Simulation über einen beliebig langen Zeit-
raum durchzuführen. Im Anschluss werden Statistiken und Diagramme erzeugt um die Ergeb-
nisse zu analysieren und mit ähnlichen Simulationen vergleichen zu können.

Das Ziel ist ein Werkzeug bereitzustellen, mit dem ausgehend von einem bestimmten Archi-
vinhalt verschiedene Szenarien mit unterschiedlichen Migrationsregeln und den dazugehörigen
Migrationstools evaluiert werden können. Dabei soll analysiert werden wie sich unterschiedliche
Regeln und Tools auf den Ressourcenbedarf des Archivs auswirken, speziell ob zu bestimmten
Zeitpunkten unerwartet hohe Zuwächse entstehen.

Die Verwendbarkeit wird anhand von Beispielsimulationen gezeigt. Dabei wird eine Kon-
figuration aufgebaut, die auf einem real existierenden Archiv basiert und mittels Zuhilfenahme
der Formatregistry PRONOM erzeugt wird. Auf der Beispielkonfiguration wird die Verwendung
von unterschiedlichen Regeln gezeigt und das Ergebnis der Simulation besprochen.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 2
1.4 Methodological Approach . 3
1.5 Structure of the Work . 3

2 State of the Art 5
2.1 Digital Preservation . 5
2.2 Simulation . 6
2.3 Preservation Planning . 6
2.4 Format identification tools . 7
2.5 Registries . 7
2.6 Comparison and Summary of Existing Approaches 8

3 Implementation 9
3.1 General Description . 9
3.2 Setup and Execution . 14
3.3 Configuration . 14
3.4 Gathering type information . 21
3.5 Output . 23
3.6 Generating Configurations . 26
3.7 Performance . 27
3.8 Summary . 27

4 Tool Evaluation 31
4.1 General Issues . 31
4.2 Doc2doc . 32
4.3 Pdf2pdf . 32
4.4 Jpeg2tiff . 33
4.5 Summary . 34

5 Case Study: EDW 35

vii

5.1 General Issues . 35
5.2 Sources of Sample Data . 35
5.3 Sample Configuration . 36
5.4 Experiments . 37
5.5 Summary . 41

6 Case Study: Danish Web Archive 43
6.1 General Issues . 43
6.2 Basic simulation setup . 44
6.3 Migration experiments . 47
6.4 Summary . 50

7 Summary and Future Work 51
7.1 Summary . 51
7.2 Future Work . 51

A Appendix 53
A.1 EDW Ingests . 53

List of Figures 59

Bibliography 61

viii

CHAPTER 1
Introduction

1.1 Motivation

We live in a digital world today. The amount of digital data grows with every day, as does the
size of storage devices, which already store terabytes of data in a standard home computer. Only
some decades ago the main media for storing information was paper. The big advantage of paper
is that it is proven that it can carry the written information for hundreds of years. On the opposite
digital storage devices are very transient. Today there is no known way for storing digital data
for several decades on a single media. You always have to keep several copies, verify them and
replace them from time to time.

The situation gets even more complex if you do not just want to preserve the information
bit by bit, but keep the knowledge behind it accessible for future use. Historic paper documents
are often difficult to read because over the centuries the languages changed and often you need
the right cultural context to understand the text you are reading. The same applies to digital
data, except that it does not take centuries but maybe only some years until there is no suitable
software to open a certain document or no hardware to access the physical media.

So if you want to keep information accessible for a long period of time, you constantly have
to monitor the file format it is stored in. Over the time the format can get unreadable for several
reasons. The most common cause is that the software support is discontinued in favour for newer
formats. This is specially a problem of proprietary binary formats, where you are bound to the
software vendor. To circumvent problems with format readability it is necessary to migrate the
files in time. Migration means to convert a file to another format using a conversion tool. The
destination format can be a newer version of the same format family, for example a conversion
from PDF 1.6 to PDF 1.7, or another format of another family, for example a conversion from
Word Document to Open Document. The transition to another format family is usually done if
another family has better preservation characteristics eg. longer release cycles or better format
documentation. In some cases it might also be reasonable to migrate to several formats, for
example a Word Document could be migrated to a newer Word version so that it is still editable,
and in parallel it gets migrated to PDF for exactly preserving the layout.

1

For long term storage of data it is important to develop a good strategy, especially if the
amount of data is big and ever-growing. You have to choose the moment migrations should take
place, the destination format, the used tools and so on. This work should help to plan migrations
and compare different policies. This is done by simulating a digital archive on which one can
test different setups and compare the result.

1.2 Problem Statement

Setting up a digital repository is a very complex scenario. It is not enough to just physically store
the elements and keep them save. Equally important is to keep the content accessible by doing
migrations on a regular basis and schedule them for the future. This part is called preservation
planning and is equally important to the physical preservation of the commissioned data.

Planning migrations for a digital repository is not a trivial task, as there are a lot of decisions
that need to be made. At first the moment of time the migration should take place needs to
get pinpointed. It can take place shortly before the software support for the file format ends,
or as soon as a newer format is available, or even in the moment the file gets committed to the
repository in case the used format is not suitable for long term storage.

The next decision is the destination format. Files can be stored in very different ways and not
all ways are equally suitable for long time storage. Good file formats should be well documented
and free from software patents. They also should be stable, so that new software will support
them for a long time, and they should robust to withstand a partial damage of the file in case of
a hardware failure.

Another decision is which tool should be used to perform the migration. Usually there are
several tools available for the task and they differ in accuracy, speed and the size of the produced
result, so you have to choose carefully which tool should get used. Also it is important to decide
whether to keep the original file after the migration or remove it to save storage.

All decisions have a huge impact on the repository, especially on the needs for storage sizes
and processing power. This work should help to plan and compare different migration policies
and show how a repository evolves when certain migration rules are applied. This is accom-
plished by simulating different scenarios and present the result in statistics and graphs so the
user can easily compare the results of different simulations. At the end of the process there
should be a clear view on what impact the different parameters have on the repository and the
operator should be able to set up a good strategy for the probed archive.

It is important to mention that the accuracy of the used tools is not an issue here, as the
migration processes are just simulated and not actually executed. Whether a tool is accurate
enough or not has to be decided ahead, and only the impact that the tool has on needed storage
and process time can get compared after the simulation. The same applies to the adequacy of
existing file formats for digital preservation.

1.3 Aim of the Work

The aim of the work is to support maintainers of digital repositories in respect to preservation
planning. This is done by providing a tool for comparing different migration policies and show-

2

ing the impact on digital archives. The tool (in the following called RepoSimulator) can be
configured with different strategies in form of rule sets, which are then tested on a simulated
archive. Of course the archive content itself can be configured in various ways to reflect the
structure of the target system. After the simulation several statistics are created to show how
well the set of rules performed and how the simulated archive will evolve in the tested scenario.
If the statistics miss some special information the database itself can be used to gather more
details. The archive metadata is stored in a standard SQL database in an easy to understand data
model so it should be possible to collect as much details as needed. So in the end the maintainer
of a repository should have a clear picture of how certain migration plans work with the data of
his or her archive and be able to decide the best way to go.

1.4 Methodological Approach

The goal of this work is to get an insight on the changes a set of migration policies has on a
digital archive. To predict the possible impact of migration strategies the configured archive gets
simulated on a per file basis, which means that there is an entry in the simulation database for
every file in the archive that represents the current state (size, filetype. . .), and if a rule applies
for a certain file, the entry in the database gets modified to match the new situation. This can
be performance expensive on large archives, but it simulates the archive very close to the real
situation.

It was a conscious decision to do the simulation on a per file basis and not on groups of files,
although this decreases the overall performance. The reason is that the real situation of a digital
repository should get modeled as closely as possible.

The simulator is designed upon standard techniques to guarant that it can be easily adopted
and developed further. It is written in Java using standard libraries wherever possible. The
database is accessed using Hibernate, so although I tested only on a MySQL database, it should
be no additional afford to use any SQL compatible database engine. The database model is kept
as simple as possible to make it easy to analyze the data after the simulation run.

In the database every simulated file is represented as a database entry along with ingest date,
file size and the used file type. The file type consists of a type family name and a subtype name
specifying the current version of that family and the time frame in which this format is available.
The usual approach on discontinuation of a subtype is to either migrate to a newer subtype in the
same family or to switch to another family with better preservation characteristics (for example
longer support time).

For presentation of the simulation results the chart engine JFreeChart was used to generate
several diagrams and make the result visual accessible.

1.5 Structure of the Work

Chapter 2 describes the current state of the art and what similar approaches are currently avail-
able. It contains references about the difficulties of long term storage of data and preservation
planning.

3

Chapter 3 shows how the RepoSimulator is built up and configured. The data model is
described in detail and there are configuration examples. In the end the output of the simulator
is documented with some sample diagrams and the way how they can get interpreted is describes.

In Chapter 4 the simulator is evaluated with several sample scenarios. It describes the way
the sample data is gathered from an existing archive and how the simulator is configured. On the
gathered real life data several different migration strategies are tested and the resulting statistics
are compared.

Chapter 5 sums up the current state of the simulator and the usefulness of the results for
preservation planning. It shows the constraints of the current implementation and ways the
simulator can be extended in the future.

4

CHAPTER 2
State of the Art

2.1 Digital Preservation

The preservation of information is a topic that mankind deals with since the beginning of its
existence, yet it has drastically changed since we started to store information on digital media.
In [11] it is explained that the main dangers for the accessibility of digital data is that it is very
closely tied to the used technology. As long as the right technology exists it is no problem to
access the data, but as technology evolves it may get inaccessible du to the lack of hard- and
software support. [11] proposes three ways for facing this problem. One way is to preserve
the technology, which means to keep old hardware running as long as there is information that
need that designated hardware. This can be a very expensive task. The second way is to emulate
the old system on newer hardware, and the third way is to migrate the information to a current
format. This work focuses on the third way and tries to support the planning/scheduling of
migrations by running simulations.

Preserving digital content is a large field of knowledge. The proceedings in [20] gives
an overview about the personnel requirements organisations have to fulfill to be able to start
preserving digital content.

There is an other article about the general topic on preserving digital data in [16] focusing
on the threats digital material is exposed to. According to [16] the main threat digital content
is endangered by is that either the storage media or the accessing software becomes obsolete.
In the first case it is necessary to transfer the data to a new media, in the second case the data
needs to be migrated to a newer file format as long as there is software available that supports
the current format.

Although it is common sense that longterm storage of digital data is a very important topic,
there is not much literature about simulating digital repository systems. Most papers about
repository systems deal with theoretical lifetimes of the used hardware and how to physically
keep the storage intact.

A very important part of digital preservation is choosing appropriate file formats for archiv-
ing. Different formats can bear very different risks for the data they carry. A significant aspect

5

of the usefulness of a file format is the tool support for that particular file format. Unfortunately
that information is included only rudimentary in existing knowledge bases. The article in [?]
tries to improve the current available information by clustering file formats to groups of simi-
lar formats in the hope of identifying additional software compatibilities, because usually tools
support several similar formats for better information exchange.

2.2 Simulation

One of the few systems simulating aspects of a repository is ArchSim [5], which has a similar
approach to the simulator presented in this work. Both try to simulate an archive instead of cal-
culating the result, although it is theoretically possible to calculate it. In both cases the situation
looks trivial in a small sample setup, but grows very complex when trying to set up a real life
scenario and so it is easier to simulate the situation than doing theoretical calculations. Both
simulators have a similar design, as they are based on an event driven algorithm.

Archsim is focusing on storage technology and the probability for the involved components
to fail. Each component is modeled by a java object containing the failure probability of that
component, and can therefore fire a failure event. The failure probabilities can follow different
functions. The probability of not being able to interpret a format as it ages and becomes obsolete,
for example, is modeled by a Weibull distribution. Different failure models can be assumed for
different storage technologies. The failure of one component may lead to data loss, but it does
not imply that. Eg. in case of a hard drive error the situation is recoverable as long as the data
is stored on multiple drives, therefore a data loss can only happen if all storage devices fail
before the can be replaced. Using a complex architecture of triggers allows efficient modelling
of failure probabilities over long periods of time. The goal of the simulation is to determine
the overall probability of the system that data loss happens. Therefore, the simulation has to be
executed several times to see the distribution of the result.

ArchSim/C [6] explicitly models costs associated with operating archival storage, including
costs for creating, operating, monitoring and repairing a complex storage system.

This way ArchSim and ArchSim/C give a good insight on how to set up a library system
and where the most probable failure points are. The RepoSimulator on the opposite focuses on
planning preservation policies, ie. when and how stored files have to get converted to other file
formats. So it provides another part of the puzzle that is not captured by ArchSim.

An other related work that deals with modeling repository systems is presented in [4] and
has a focus on analyzing the reliability of system configurations for digital preservation. Again,
the focus is on understanding the effect of component failures within a storage system.

2.3 Preservation Planning

Testing and evaluating the effect of preservation action has been more intensively addressed
from a planning perspective [1, 2]. Specifying the requirements for a specific preservation chal-
lenge (also referred to as objectives) and measuring how well different tools perform on selected
sample data provide solid evidence for decisions on which preservation action component to
deploy, and that component’s effect on the object (in terms of significant properties retained),

6

the storage space required, as well the the complexity of the deployment with respect to system
and human resources that need to be provided.

During the process of migration, quality assurance is an important aspect. The work in [10]
tries to automate this progress specialized on digital images by rendering the raw image data and
comparing the resulting images.

Preservation planning thus, on the one hand, provides valuable input to the simulator, con-
cerning information on the processing requirements of certain types of preservation action tools
as well as the resulting changes in object storage size. On the other hand, the repository simulator
presented in this paper provides valuable input to a preservation planning process by providing a
basis to estimate the costs associated with a certain preservation action, thus effectively closing
the loop between planning and evaluation in these criteria.

2.4 Format identification tools

A very important topic for planning migrations on the on hand, and gathering sample data on the
other hand, is file type detection. The exact file type is needed to interpret the contens of the file
the right way and select the right tools to process the file. The detection of the right file format is
a complex task, because there is no standard in how the structure of digital data is stored. Usually
the file extension gives a rough insight on the file type, but in many cases the information there
is not sufficient as usually a whole format family shares the same extension, and if the source
data is created by inexperienced users it can happen that the extension is wrong. In [8] there is
a methodology proposed for the process of extracting the file type from the content. It is based
on interpretation of several file characteristics, especially the beginning and the end of the data,
as most file formats tend to store some versioning information there. A practical example of this
approach is the format registry PRONOM [3]. In PRONOM the patterns for many important file
type versions is stored and a tool (called DROID [14]) is provided to extract the type information
from files. This information can then be used in the RepoSimulator as a basis for simulations.

2.5 Registries

The file type is also needed to detect the lifetime/support time, which is important for planning
a digital repository, and to set up a realistic initial configuration by using collection profiling
services. Format registries such as PRONOM [3], which provide consolidated information on the
lifetime/support time for selected formats, as well as offering a basis for analyzing the evolution
of formats are very helpful for this task, yet the information there is far from complete. There
are several other attempts to create registries for file information, but as the task is a rather big
one, none of them can be considered even close to complete. A good insight on the current stage
of development and the different existing approaches gives [13].

After determining the correct file type, the next step is to choose the best tool for migration.
Usually there are several tools available to choose from, which differ in quality, performance and
destination file type, so it is often challenging to find the right one. In [12] a testing framework,
called the PLANETS testbed, is introduced that helps to compare the quality of different tools

7

by testing them on a sample library. The tools are encapsulated in a standardized interface, so it
is easy to add new tools to the system.

For RepoSim two characteristics of a tool are needed: The way the size of a file changes
during the conversion, and how long the process will take.

2.6 Comparison and Summary of Existing Approaches

The existing approaches to archive simulation are mainly focused on failure prediction. That
means on the one hand to calculate the costs that accumulate due to hardware failures estimated
from statistical data on average hardware lifetime, and on the other hand to predict the proba-
bility of data loss because of exceeded software support for the used file formats, which renders
the stored data inaccessible.

While the studies in [5] focuses on understanding system failure characteristics and associ-
ated costs, the simulator presented in this work focuses on understanding the evolution of indi-
vidual files across a series of migrations into multiple branches, and the associated requirements
in terms of storage and computational resources. So the approach to the topic of maintaining a
digital repository system in this work is from the pure software view and excludes the subject
matter on hardware details except for predicting the physical storage size and processor power
needed for long term maintenance of repository systems.

The main task of the simulation is to calculate the changes in the archive after a migration
takes place. Migration means to transform a source file according to certain migration rules to
one ore more destination files. Each migration step is followed by a change of the repository size.
Usually the needed amount of additional storage space increases on each migration, especially if
the source file is kept or if the file is migrated to multiple destination formats, for example to one
format that preserves the layout of a text document closely and one that keeps the file search-
and editable.

To sum up the current state of the art we already have several important fractions that support
the planning of a digital archive. We have ArchSim [5] to help us calculate the costs of an
digital archive. We can use PRONOM [3] to gather information about the used file types, and
the PLANETS testbed [12] gives us an insight on the quality of different migration tools. These
parts give a good support for planning a repository, what is missing is a tool that helps to schedule
the migrations and to predict the impact of different tools on the whole archive.

This gap should be closed with this work. By simulating different scenarios the user will get
an insight on the processes in his repository and be able to judge which strategy will work best
in his situation.

8

CHAPTER 3
Implementation

3.1 General Description

The RepoSimulator is realized in Java. For the storage of the simulated archive a MySQL
database is used, but because it is accessed using the Hibernate Database Library any compatible
database implementation can be used. The simulation is based on an event driven model. There
are three main events that are processed during the simulation run:

• ingest events: That is where new files get stored in the archive.

• migration events: During these events a file gets migrated according to the rules defined
in the configuration. Migration means that the file gets converted to another file type
version and this converted file gets ingested into the repository. The old version of the file
still remains in the repository but gets marked as a migrated version.

• deletion events: A set of rules can be defined to remove old versions of files left behind
by the migration events to free up storage space. Of course the files are not deleted from
the database but only marked as deleted, as we need the information about the file for later
statistics.

Analogical to this events, stored files can reach three different states during their life cycle.
For all states the timestamp when the file reaches it is stored for later statistics.

• ACTIVE: Active is the state when a file got newly ingested to the repository and belongs
to the working area. This are the files the migration rules can trigger on.

• MIGRATED: When a file gets migrated, the new version(s) of the file get ingested as
active files, meanwhile the remaining version is marked as migrated, and therefore does
not trigger any migration rules anymore. In case the file should get migrated multiple
times (for example a Word Document that gets migrated to PDF on ingest, and to a new

9

MigrationTool
name String
duration String
size String

MigrationDestination
id long
rule_id long
destinationType String
destinationVersion String
executeCondition String
migrationSource String
tool_name String

MigrationRule
id long
executeCondition String
keepOriginal boolean
sourceType String
sourceVersion String
term String

StoredFile
id long
type_id String
size long
status String
generation int
ingestDate Date
ingestYear int
migrationDate Date
migrationYear int
deletionDate Date
deletionYear int
migrationSource_Id long
rootFile_id long
migrationRule_id long
createdBy String

FileType
id String
type String
version String
created Date
expired Date

DeletionRule
id long
executeCondition String
type string
interval int
keepOriginal String

Figure 3.1: the structure of the database

Word version when the currently used version expires) then state of the file will not change
to migrated until the last migration took place.

• DELETED: After the file is marked deleted the file is only ever accessed for statistical
purposes, as it “officially” does not exist anymore.

At the end of the simulation statistical data gets collected from the database and rendered
to some diagrams and csv files that can get processed further. If the generated statistics are
insufficient the database can get analyzed for a better insight on the quality of the result.

Figure 3.1 shows the structure of the database. In the following the objects of the data model
are described in detail:

• FileType: Describes the available file types. Every file type consists of a type family
name (ie. “Word Document”) and a version name, which specifies the exact type version
(ie. “Word 6.0”), as well as the average duration of validity and the periodicity with which
new versions are released. It has the following attributes:

– id: the id of the file type

– type: the name of the type family

10

– version: the name of the type version

– created: the begin of the validity period

– expired: the end of the validity period

• StoredFile: Each ingested object is stored as a file stub (i.e. a file’s profile) in the database.
If a file gets migrated, a new file instance’s profile is stored to the archive. Each file has
the following attributes:

– id: the id of the file

– type_id: the file type version this file belongs to

– size: the size of the file

– status: the current status of the file

– generation: a counter for how often this file was migrated. When a file gets added
to the repository this field is set to 0 and gets increased by 1 on each migration.

– ingestDate: the date the file was ingested

– ingestYear: the year portion of the ingest date. This is a convenient attribute (as
migrationYear and deletionYear) to keep database selects simple, because it is a
common case to group certain files by year.

– migrationDate: the date the file was migrated

– migrationYear: the year portion of the migration date.

– deletionDate: the date the file was deleted

– deletionYear: the year portion of the deletion date.

– migrationRule: the rule this file was migrated by

– migrationSource: If the file was generated through migrating an other file, this
attribute contains the id of the predecessor

– rootFile: If a file gets migrated multiple times, this attribute stores the file as it was
ingested to the repository.

– createdBy: the tool which created this file. If this field is null it means that the file
was ingested from outside and not created by any migration tool.

• MigrationTool: The main properties of a migration tool are the duration of the process
and how the file size is altered during the migration.

– name: the name of the tool

– duration: how long the migration will take time (Can be calculated for example as
a fraction of the file size.)

– size: how the size of the file will change during the use of this tool

11

• MigrationRule: A migration rule defines when and how a migration should take place.
This includes conditions which need to be met for the rule to be triggered (e.g a rule should
only trigger for files smaller/larger than a certain size) and the scheduled moment of the
migration

– id: the id of the tool

– executeCondition: the condition which must be fulfilled for the rule to trigger

– keepOriginal: Defines whether the source file should be kept active so that further
rules could trigger on them.

– sourceType: the source type this rule should trigger for

– sourceVersion: the version this rule should trigger for; can be set to “[all]” if it
should trigger for every version of this type family.

– term: the term when this rule should trigger

• MigrationDestination: Each rule can have a set of destinations to which the source file
should get migrated to when the rule gets executed. Each destination has the following
attributes:

– id: the id of this destination

– rule_id: the id of the rule to which this destination belongs to

– destinationType: the type family to which the source file should get migrated to.

– destinationVersion: the type version to which the source file should get migrated
to. This can either be an exact version name, or “[minimal_step]” for a migration to
the next available version, or “[maximal_step]” for a migration to the version with
the longest expire time available.

– executeCondition: the condition which must be fulfilled for this destination to trig-
ger. This is for the case one wants to migrate to different file formats, but generate
only certain destination files depending on e.g. the file size.

– migrationSource: whether to use the CURRENT file version for the migration or
to use the ROOT file for the migration, that is the file as it was ingested.

– tool_name: the name of the tool used for the migration

• DeletionRule: A deletion rule defines when old versions of a file should be removed from
the repository. This includes a condition which need to be met for the rule to be triggered
(eg. a rule should only trigger for files smaller/larger than a certain size). The deletion
rules are triggered once a year to do periodic cleanup.

– id: the id of the rule

– executeCondition: the condition which must be fulfilled for the rule to trigger

– sourceType: the source type this rule should trigger for

12

– keepOriginal: Defines whether the root file should be kept even if the specified
interval would include it.

– interval: Specifies which generations of a file should get deleted. Eg. interval=3
would select every third generation (0, 3, 6 . . .) for deletion.

To make the configuration flexible, many fields in the configuration are parsed with an ex-
pression language library, which means that any mathematical term can be used. Those fields
are: the quantity and file size in the ingest configuration, the term and condition fields of the
migration rule, and resulting change in file size and the computational cost of the migration pro-
cess for each tool. Besides the usual mathematical operations there are several special keywords
available that help adjust the expression to the aspired scenario. These keywords are:

• currentsize: the size of the currently processed file

• generation: the current generation number of the file, ie. how often this file was already
migrated

• version_expired: the date the version of this file expires

• version_created: the date the version of this file was created

• file_ingest: the date the file was ingested

• elapsedYears: the number of years since beginning of the simulation

• elapsedDays: the number of days since beginning of the simulation

• month: the timespan of a month

• year: the timespan of a year

• Dist:normal(mean,deviation): calls a function for generating a normal distribution

• Dist:weibull(alpha,beta): calls a function for generating a Weibull distribution

• Math:methodName(param): With the prefix “Math:” every method of the Java class
java.lang.Math is accessible providing a lot of mathematical functions which is useful in
many cases.

These keywords help to make the configuration very flexible and dynamic. In the following
section there are several examples how to use this feature in practice.

13

3.2 Setup and Execution

For using the simulator the following prerequisites are needed:

• A computer with a working java installation. The software is tested with JDK 1.7.0 but it
should work with any current Java version.

• A database server. I used a MySQL server, but any database compatible to the hibernate
framework should be usable.

Before starting with the first simulation, the database has to be configured in the file hiber-
nate.properties. If you use a database other than MySQL you will also have to add the appropri-
ate driver class to the classpath. The tables are created automatically, so you just need to provide
an empty database.

For execution the following main classes are needed:

• com.wec.reposimulator.RepoSimulator: The simulator itself, which takes the directory
with the configuration as parameter.

• com.wec.reposimulator.gui.ConfigEditor: The graphical configuration editor.

• com.wec.reposimulator.StatisticsGenerator: For generating the statistics.

If you rerun the simulation several times the database gets recreated every time, so you do
not have to worry about cleaning up the previous runs.

3.3 Configuration

The configuration of a repository is done in plain text ini-files. There are basically four types of
configuration files needed to specify all aspects of the simulation. For easier configuration there
is a configuration editor shown in figure 3.2 which provides an easier access to the configuration
files than just a text editor, although everything done in the configuration editor can easily be
done by hand directly in the ini-files. In the following the core configuration possibilities are
discussed showing sample listings of ini-files. The structure shown in the configuration editor is
presented in the same way as in the ini-files, so everything discussed for the ini-files applies to
the configuration editor the same way. The property names in the ini-files are case insensitive.
To make them apear consistent they are converted to lowercase when saved through the config-
uration editor. It is important to mention that the shown configuration is intentionally kept as
simple as possible because its only purpose is to show all configuration properties. See chapter
5 for more advanced samples.

Note that file sizes in the configuration have no special magnitude (bytes, kilobytes etc.)
associated with them. They can be specified in any magnitude, as long as it is consistent in all
configuration files. If not stated different I assume megabytes as the magnitude in the examples
in this work.

14

Figure 3.2: configuration editor with simple sample configuration

• Repository: In this file the start and the end of the simulation is configured, as well as (the
sequence of) all ingest events. It basically describes the characteristics of the repository
to be simulated.

The base configuration can be done by specifying groups of objects and their ingest char-
acteristics by listing the number of objects, the mean and standard deviation in file size.
This will create the according set of objects following eg. a Gaussian or Weibull distri-
bution. Similarly, the timeline of the ingest process can be modelled, so not all files are
ingested at the beginning of the simulation, but the repository can grow step by step via
ingest of original objects (in addition to the migrated ones) during the simulation pro-
cess. Furthermore, parameters allow the specification of the growth characteristics of an
archive, both in terms of number of objects and the average file size. These can be speci-
fied via almost arbitrary complexity, ranging from simple linear growth to more complex
functions fitting real-life growth curves. Additionally, in combination with the type fam-
ily configuration described in more detail below, the ingested objects will be of a specific
version of the given file type families according to the timstamp within the simulation
progress. Starting the simulation then creates the respective “files” as simulated entities
with the respective ingest timestamps in the database.

Listing 3.1 shows a sample repository configuration. In this case the simulation runs over
24 years starting in 2011/01/01 and ending 2035/01/01. Two types of files are ingested
during the simulation. During the whole simulation files of the type doc are inserted with
the quantity formula “100 + 100 * elapsedYears”, which means 200 in the first year, 300 in
the second year and so on. This ingest is repeated 25 times (successive_count = 25). In the
simulation year 2020 ingests of type jpg starts with quantity of “10 * (elapsedYears+20)”.

15

These are inserted only every second year (successive_intervall=2) and repeated 8 times
(successive_count=8). The file sizes are distributed following a normal (Gaussian) distri-
bution. For both ingest definitions there is no type version specified, but with the keyword
“[best]” it is defined that the best available version should be used, which will change
over time during the simulation. Table 3.1 shows the number of ingests generated by this
configuration.

Listing 3.1: Repository Configuration

[r e p o s i t o r y]
s i m u l a t i o n _ s t a r t = 2 0 1 1 / 0 1 / 0 1
s i m u l a t i o n _ e n d = 2 0 3 5 / 0 1 / 0 1
o u t p u t _ d i r = o u t p u t
name = 2 0 1 1 / 0 1 / 0 1

[i n g e s t 1]
t y p e = doc
q u a n t i t y = 100 + 90 ∗ e l a p s e d Y e a r s
f i l e s i z e = D i s t : normal (1 0 0 0 0 , 5 0 0)
i n g e s t _ d a t e = 2 0 1 1 / 0 1 / 0 1
s u c c e s s i v e _ i n t e r v a l l = 1
s u c c e s s i v e _ c o u n t = 25
name = docs
v e r s i o n = [b e s t]

[i n g e s t 2]
t y p e = j p g
q u a n t i t y = 200 ∗ (e l a p s e d Y e a r s +20)
f i l e s i z e = D i s t : normal (3 0 0 0 0 , 7 0 0)
i n g e s t _ d a t e = 2 0 2 0 / 0 1 / 0 1
s u c c e s s i v e _ i n t e r v a l l = 2
s u c c e s s i v e _ c o u n t = 8
name = j p g s
v e r s i o n = [b e s t]

• Filetype: This describes a file type family. Each file type family consists of a family name
and several type versions with a specified time frame of how long they are supported, as
well as how frequently new subtypes are generated. This results in a set of available file
types at each point during the simulation, with objects being ingested as new originals
usually being created in the most recent version of a file format family available. Setting
up realistic type information is a quite difficult task. See section 3.4 for more information
on this problem set.

Listing 3.2 provides the configuration for the three filetypes doc, pdf and jpg. doc is valid
for 3 years, every 2 years (successive_intervall=2) there is a new version, pdf is valid for

16

year number of doc files number of jpg files
2011 100
2012 190
2013 280
2014 370
2015 460
2016 550
2017 640
2018 730
2019 820
2020 910 5800
2021 1000
2022 1090 6200
2023 1180
2024 1270 6600
2025 1360
2026 1450 7000
2027 1540
2028 1630 7400
2029 1720
2030 1810 7800
2031 1900
2032 1990 8200
2033 2080
2034 2170 8600

Table 3.1: number of ingests created by listing 3.1

16 years and every 8 years a new version is available, and for jpg it is 11 years and a
new version every 7 years. The attribute successive_count specifies how many following
versions are generated. To give each generated version a unique name, a sequence number
is appended to the specified version name. You can also specify several different versions
for one format family, for example to simulate a container format like avi with different
encodings inside. Table 3.2 shows the generated versions by this configuration.

Listing 3.2: file type configuration
[f i l e t y p e]
name = doc

[v e r s i o n 1]
name = doc
c r e a t e d = 1999

17

e x p i r e d = 2002
s u c c e s s i v e _ i n t e r v a l l = 2
s u c c e s s i v e _ c o u n t = 19

[f i l e t y p e]
name = pdf

[v e r s i o n 1]
name = pdf
c r e a t e d = 1990
e x p i r e d = 2006
s u c c e s s i v e _ i n t e r v a l l = 7
s u c c e s s i v e _ c o u n t = 7

[f i l e t y p e]
name = j p g

[v e r s i o n 1]
name = j p g
c r e a t e d = 2000
e x p i r e d = 2011
s u c c e s s i v e _ i n t e r v a l l = 7
s u c c e s s i v e _ c o u n t = 6

• Migration rule: The migration rule is the most important part of the configuration. Each
rule has an effective date, a source type for which the rule should be triggered, and a
condition (for example: current file size is smaller than 5000) that determines for which
files the rule should be executed. This allows for a rather fine-grained specification of
migration policies, eg. migrating smaller objects to multiple formats, whereas very large
files might be migrated only within a single format family strand. Furthermore, migrations
can either be based always on the most recent format version of each object, or always be
based on the originally ingested object, ie. the root object, by setting the source parameter
of the migration rule.

Beyond that one or more destination types along with the tools to be used for the simulated
migration can be listed. For each destination type one can again specify a condition, so
complex migration policies can be mapped into the simulation model.

Listing 3.3 provides two migration rules. The first one defines the migration of all files
of the type family doc to the format family pdf and/or new versions of doc. The property
term describes when the rule has to trigger, in this case two months before the respective
sub-version of the file format expires. Two destination types are specified. The first one
is a type of the family pdf. The subtype is not specified directly, but with the keyword
maximal step it is indicated that we want to migrate to a type from that format family
which is available at migration time and has the longest expiration time. The destination

18

subtype for doc is specified as minimal step, which means that the subtype with the next
higher expiration date should be taken. This rule is also shown in figure 3.2 loaded into
the configuration editor.

Both destinations have a condition specified. The migration to each destination is only ex-
ecuted if it evaluates to true. In this example files smaller than 15000 are migrated only to
new doc versions and files larger than 10000 only to pdf. Files with a size between 10000
and 15000 are migrated to both destination formats. (This example is only supposed to
demonstrate the flexibility of configurations, allowing to address space considerations that
may appear in real preservation planning scenarios, when certain objects types that may
be in demand by different user communities should be made available in different formats,
whereas other, potentially very large files, should not be kept in duplicate versions. It is
not supposed to represent a recommended preservation plan within the scope of this work.
The same applies to the timing settings provided, ie. whether a migration should happen
2 months prior to the expiry date.)

The second rule in listing 3.3 takes care of the jpg type family. All jpg should get migrated
to newer versions of jpg at term “version_expired - (version_expired - version_created) /
4”, which means when the last quarter of the format version lifetime is reached.

Listing 3.3: migration rule configuration

[m i g r a t i o n r u l e]
d e s c r i p t i o n = m i g r a t i o n f o r doc f i l e s
te rm = v e r s i o n _ e x p i r e d −2∗month
s o u r c e _ t y p e = doc
t y p e = doc
name = doc on e x p i r e
c o n d i t i o n =
k e e p o r i g i n a l = f a l s e
v e r s i o n = [a l l]

[d e s t i n a t i o n f o r m a t 1]
d e s t i n a t i o n _ t y p e = pdf
d e s t i n a t i o n _ v e r s i o n = [m i n i m a l _ s t e p]
c o n d i t i o n = c u r r e n t s i z e > 10000
t o o l = doc2pdf
s o u r c e = c u r r e n t
name = t o pdf

[d e s t i n a t i o n f o r m a t 2]
d e s t i n a t i o n _ t y p e = doc
d e s t i n a t i o n _ v e r s i o n = [max ima l_s t ep]
c o n d i t i o n = c u r r e n t s i z e < 15000
t o o l = doc2doc
s o u r c e = r o o t

19

name = t o doc

[m i g r a t i o n r u l e]
name = j p g s on e x p i r e
t y p e = j p g
te rm = v e r s i o n _ e x p i r e d − (v e r s i o n _ e x p i r e d − v e r s i o n _ c r e a t e d) / 4
c o n d i t i o n =
k e e p o r i g i n a l = f a l s e
v e r s i o n = [a l l]

[d e s t i n a t i o n 0]
name = t o j p g
d e s t i n a t i o n _ t y p e = j p g
d e s t i n a t i o n _ v e r s i o n = [m i n i m a l _ s t e p]
t o o l = j p g 2 j p g
c o n d i t i o n =
s o u r c e = c u r r e n t

• Deletion rule: The deletion rules specify when old generations of files should get deleted
from the repository to save space. Deletion is a very important part of an archive as storage
space is limited. Though storage devices grow bigger and bigger over time, in the same
way does the amount of new data generated by people. So it is necessary to free space if
possible.

The deletion rules are executed once a year to find matching files in the repository. Each
rule can be restricted to a certain file type family. If no type is specified the rule applies to
files of all types. With the property interval one can specify which generations should be
deleted and must be a positive integer. If the generation number is the same or a multiple
of the specified number the file gets deleted. You can also specify independently if the first
generation should be kept or not (keepOriginal). Note that the newest (active) generation
is never touched by the deletion process, only files with the migrated state are affected by
these rules.

Listing 3.4 shows a deletion rule for the type family jpg. The interval is specified as “1”,
so every generation is affected. A condition is set to “(current_date - file_ingest) > 5 *
year”, which means that the file ingest date must be older than 5 years. The property
keepOriginal is set to false, so the first generation will also get deleted.

Listing 3.4: deletion rule configuration

[d e l e t i o n r u l e]
name = d e l e t e
t y p e = j p g
i n t e r v a l = 1
c o n d i t i o n = (c u r r e n t _ d a t e − f i l e _ i n g e s t) > 5 ∗ y e a r
k e e p o r i g i n a l = f a l s e

20

• Migration tool: For each virtual migration tool one can specify how the size of the file
is changed during the migration process and how long the migration will take. Both the
file size and migration duration are specified using mathematical expressions. Thus, one
is not bound to simple linear changes but more complex effects can be simulated. Both
units are dimensionless, ie. as for the specification of the file sizes, these can be given in
Bytes, Kilobytes, etc. More importantly, for the simulation of computational resources,
either computation time or eg. processor cycles may be specified. The latter may prove
useful when more realistic estimates of the computational requirements are required. By
mapping operation cycles in a virtual unit, normalization factors may be applied to account
for improvements in processing power over time. Still, in first experiments, specifying
actual processing time, and then applying a normalization factor to account for improved
computational facilities, seemed to be more easily accepted. Note, that the primary use of
the effort simulation is not a precise determination of the HW requirements at a specific
point in time in the future, but to capture the potential of cumulative effects resulting
from certain preservation policies. These may stem, for example, from the difference of
migrating on-ingest (usually leading to a more even spread of subsequent migrations) or
on-expiry - resulting in strong peaks if all objects of a specific format version need to be
migrated to, e.g. the subsequent version.

Two examples:

– size=currentsize * Math:log(currentsize): This specifies a logarithmic growth of
the file. (The keyword “Math” in this string references the Java class java.lang.Math,
which has methods for many mathematical operations, all accessible through this
keyword.)

– duration=Math:max(currentsize * 3, 18000): The migration is estimated to take
three times as long as the file is big, but at least 18000ms.

From this set of configurations the simulation of a repository’s evolution is started. For each
(set of) files specified in the repository configuration, the according sets of files are “created”
as database entries with the respective timestamps. For each of these the respective migra-
tions based on the preservation planning triggers as specified in the migration rules setting are
executed consecutively. Thus, for each file specification in the database meeting a migration
condition the respective new file(s) are generated with new ingest timestamps and file sizes con-
sidering the migration time needed and the file size change incurred as specified in the respective
migration tool specification. From these, the resulting hypothetical computational load (i.e. the
number of files to be migrated at any specific point in time) and the required storage space for
the accumulated archive can be calculated.

3.4 Gathering type information

The most important information for a reasonable simulation is about the used file types. Un-
fortunately that is the most difficult task. For setting up a good simulation configuration one

21

need to know the exact type version of each file in the repository, the family to which the format
versions belongs, and the validity period of each version.

Determining the format version of a file is not trivial. The first place a user looks for this
information is the file extension, but that gives only a very rough estimation. The first problem
is that you cannot trust the extension. In most cases the extension is correct, but again and
again there are cases where files have a wrong extension. That might happen by mistake when
the creator stores the file, it can happen intentionally to bypass extension restraints ie. when
mailing/uploading the file or it can be the result of error-prone software. Even if the extension
is correct its expressiveness is rather weak. Usually all versions of one file type have the same
extension, so you cannot derive the version from this attribute, but only the type family, but there
are cases where versions belonging to the same family have different extensions, so not even the
family is derivable.

So the only way of determining the version of a file is to look into it. The problem is that
there is no standardized way to store the type information inside a file. So for detecting the
file type of a file one needs a registry that stores the characteristics of as much file types as
possible, and a tool that extracts this information from the file. The largest registry available
at the moment is the registry of the National Archives of the United Kingdom and is called
PRONOM [15] [3]. The PRONOM database currently contains over 800 entries and should
cover most of the common file types. The entries are identified by the “PRONOM Persistent
Unique Identifier” (PUID), which provides a good tagging for the file type versions.

For extracting the information from a file the National Archives of the United Kingdom
provides a tool called DROID [14], which uses the PRONOM registry and delivers the PUID of
a file.

Beside the exact file type version the date when the file was ingested to the repository and
the size is needed. For this task I used the combination of the tools FITS [9] and C3PO [17].
FITS stands for “File Information Tool Set” and is a meta data collection utility that uses several
third party tools, among them DROID, for gathering all sorts of meta data, ig. the EXIF header
information of picture files. These information is then stored in an unified XML structure for
further processing. C3PO (“Clever, Crafty Content Profiling of Objects”) then uses this XML
files and stores the information in a database for easy access, and it can export the collected
information as character separated values (csv).

The csv files produced by C3PO can be used to build up a configuration using the import
function of the configuration editor. Figure 3.3 shows the editor with an imported configuration.
For grouping the file type versions to file type families I used the mime type field of the C3PO
output as it has been the only field that modeled this information correct in all my test sets.

A bit of a problem is the validity period of the file type versions. This information is available
in the PRONOM registry, but it is difficult to obtain it automatically and is incomplete in many
cases. For this reasons I decided to use the fist and the last ingest of a file belonging to that file
type version to derive the validity period of that version, as this closely shows in which time
frame compatible software was in use.

During the import of the csv data, file types, versions and ingests get configured following
the structure of the initial scanned repository. After that migration rules and tools must be added
manually to complete the configuration. After storing the configuration the simulation can be

22

Figure 3.3: Configuration Editor with a configuration imported from csv data

started.

3.5 Output

After the simulation the result of the simulation must be analyzed, as it is the main goal of
the simulator to show how well a certain configuration performed. The result is presented in 3
different ways:

• Diagrams: There are several diagrams produced by the simulator that show the main
information about the simulation process.

• csv Data: For the case that the result of the simulation needs to get processed further the
main data is exported in form of a csv file that can be imported into various tools.

• the database: If special information is needed that is not covered by the diagrams and
the csv data the database itself can get investigated. It contains all information of the
simulation process as on every ingest and every migration the simulated timestamp and
used tools/rules are stored.

The diagrams and the csv file are generated by a separate tool that can analyze the database
after the simulation and collect the needed data. In the following the diagrams produced by this
statistics collector are shown. The diagrams are based on the sample configuration shown in the
previous section.

Figure 3.4 shows how many migrations took place every year. This way it is easy to see
whether the are well distributed over the years or if there are hot spots with extremely many

23

Figure 3.4: diagram of the number of simulations grouped by year

Figure 3.5: diagram of the accumulated storage volume and needed processing time generated
by the used tools in comparison to the ingests in percent

migrations, which can lead to resource bottlenecks. In this case we see regular migrations every
two years. These are the doc files that expire every two years. Besides that we have two irregular
spikes - a smaller one in the year 2022 and a larger one in the year 2029. These are the years the
jpg files get migrated. The first one is very small because at this moment we do not have many
jpg files in the archive, as ingest of this type start only in 2020. In the year 2029 we already have
a lot of jpg files in the archive, so the spike is very big. Additionally this overlaps with a doc
migration point, leading to a big burst of migrations.

Figure 3.5 shows the usage of the tools used for the migrations. The left bar (red) shows
how much data was generated by this tool, the middle bar (blue) shows how often the tool was
called and the right bar (green) shows the needed processing time by this tool. For comparison
the ingest operations are also shown in the diagram. In this case the diagram shows that the most
data was produced by the tool doc2doc, but the difference to doc2pdf and jpg2jpg is not very
high. In contrast, the processing time needed by doc2pdf is far more than doc2doc, so it may be
recommended to search for a more efficient tool as replacement for doc2pdf if processing time

24

Figure 3.6: diagram of the number of files in the repository over the simulation time

reaches a critical amount.
In figure 3.6 the number of files in the archive is shown. The line with the blue circles shows

the number of files that are still in use at that point of time, the line with the red squares shows
the files that are left over after the migrations and the third line shows the sum of both. The
black line with the diamonds shows the number of deleted files. In this example we see that the
number of active files grows slowly but rather constantly, as we have only periodically ingest in
this simple sample configuration. The old files grow nearly the same way in the beginning, but
then the curve flattens around the year 2025. This is the time when the deletion rule kicks in for
the first time, deleting the first jpg files from the repository. Then there is the most visible peak
in 2029. We already discussed in the migration diagram that there are many jpg migrations and
some doc migrations in this year, which leads to a massive growth of the old files left behind
after the migrations. After this peak the graph goes down again. This shows the second wave
of deletions triggered by the deletion rule. The graph of the total file number follows both the
active file number and the old file number, as it is just the sum of both.

Note that this is just the number of the files and not the needed storage space. This num-
ber can be of interest if there are periodical tasks on the files independent from their size, eg.
reviewing meta data or querying for files with certain attributes.

Figure 3.7 is similar to figure 3.6 but shows the sum of size of the files instead of the number.
Again blue circles shows the files that are still in use, the line with the red squares the files that are
left over after the migrations and the third line the sum of both. In this case the both diagrams are
very similar because we do not have many rules defined in the configuration. Usually there are
well visible spikes where important file format versions get migrated to other formats, especially
if several migration waves overlay each other, showing hotspots with abruptly growing resource
needs like in year 2029 in this case.

The generated diagrams give good oversight on what happened during the simulation and
where the main problems can occur. Yet, in some cases it might be desirable to take a closer
look into the processes inside the repository. In this cases the simulation result can be analyzed
using SQL. The structure of the database was already discussed in section 3.1. A possible sample
select is shown in figure 3.8. In this example the processing time for the tool doc2pdf was asked,

25

Figure 3.7: diagram of the total size of the repository over the simulation time

Figure 3.8: Gathering simulation results from the database using SQL

Figure 3.9: Using SQL to analyze the deletions in the year 2030

summed up for every year to get an impression on how far it increases over time.
A second example for deeper analysis is shown in figure 3.9. I used the shown select when

writing the description for figure 3.6 (the number of files in the repository). I wanted to see which
files where deleted in the year 2030, especially when they where ingested/migrated, because the
increase of deletions in this year was more than I had expected.

3.6 Generating Configurations

A usual scenario is that there is an existing archive which should be the base of the simulation
setup. How to reprocess existing data strongly depends on the type of information and how it
is stored and usually is not possible without manual intervention. However there are tools that

26

support this process.
If the files are available through the file system and there is no information about the content

of the files (as it was the case in the example in chapter 5), the tools FITS and C3PO can help to
automate the operating sequence.

FITS (File Information Tool Set) is specialized in collecting metadata on large file collec-
tions. It does this by including several tools that extract information about the files and brings
the output of the tools in a uniform xml structure.

The result of a FITS scan is one xml per file with all the metadata in it. As it is difficult to
handle such an amount of separate files it is necessary to bring them into a more handy form.
For this part I used the tool C3PO (Clever, Crafty Content Profiling of Objects). C3PO can read
the xmls and store them in a database in a consolidated form, which means that the output of the
distinct tools is combined to a single data record. This database can then be exported to a csv
file with one line per input file, which is good for further processing.

For processing this csv file I have assembled a helping class that processes this file and
produces the ini files needed for the simulation (com.wec.reposimulator.util.C3poReader). This
class reads the file and generates ingest events and file type descriptions matching the described
files. Usually the types have to be manually reworked as it just takes the first and the last usage
of a type version for the validity period, which may match quite good for old versions that are
not in use anymore, but it will not match for current versions, as there is no information on how
long they will be usable in the future. (An approach how to predict the future behavior of file
types based on the past development is discussed in chapter 6.)

The class C3poReader should work with the output of C3PO in most cases but will need
some fine tuning occasionally. Beyond that it should provide a good guideline for processing
the output of various tools.

3.7 Performance

The duration of a simulation depends on the configuration and the used hardware. On the con-
figuration side the main factor is the number of ingests and migrations that are processed during
the simulation. Both events have nearly the same processing time as they are very similar. With
the current implementation the simulator can process on average 1500 events per second on a
current multicore system. For simulations with several millions of ingests/migrations you have
to expect a runtime in the range of an hour. If you are preparing a simulation bigger than that it
is reasonable to reduce the ingest by a constant factor (10 or 100 for example) until you verified
that the configuration is valid, and do only the final run with the full number.

3.8 Summary

The repository simulator provides flexible configuration possibilities that empowers the user
to specify many different scenarios fitting closely to real world scenarios. The configuration
is done in plain ini-files, so that it is human readable and comprehensible. For convenience a
configuration editor helps to set up a valid configuration and import data gathered from existing
archives.

27

The output is presented in several diagrams that show the main processes in the repository.
They focus on size and number of the files and the number of migrations done every year. If the
output does not show the wanted information the database itself can be consulted to reveal more
special details on the process.

After inspecting the results one should have a good prospect on the outcome of the simulation
and it should be easily comparable to similar simulations leading to good decisions for further
preservation planning.

28

type version created expired
doc doc1 1999 2002
doc doc2 2001 2004
doc doc3 2003 2006
doc doc4 2005 2008
doc doc5 2007 2010
doc doc6 2009 2012
doc doc7 2011 2014
doc doc8 2013 2016
doc doc9 2015 2018
doc doc10 2017 2020
doc doc11 2019 2022
doc doc12 2021 2024
doc doc13 2023 2026
doc doc14 2025 2028
doc doc15 2027 2030
doc doc16 2029 2032
doc doc17 2031 2034
doc doc18 2033 2036
doc doc19 2035 2038
jpg jpg1 2000 2011
jpg jpg2 2007 2018
jpg jpg3 2014 2025
jpg jpg4 2021 2032
jpg jpg5 2028 2039
jpg jpg6 2035 2046
pdf pdf1 1990 2006
pdf pdf2 1997 2013
pdf pdf3 2004 2020
pdf pdf4 2011 2027
pdf pdf5 2018 2034
pdf pdf6 2025 2041
pdf pdf7 2032 2048

Table 3.2: types and versions generated by listing 3.2

29

CHAPTER 4
Tool Evaluation

4.1 General Issues

For simulating migration events it is very important to evaluate migration tools in order to set
up the parameters as close as possible to the real migrations. In the following chapters 5 and 6
there are two case studies that show the simulator in possible use cases, and for this simulations
several tools are needed. In this chapter I will try to evaluate possible tools and set up good
configurations for the following simulations.

For all tools the process is usually the same and consists of the following steps:

• Finding a tool that meets the needed criteria.

• Create a sample set of files to test the tool on.

• Execute the test.

• Analyze the result.

After this steps it is possible to set up an appropriate configuration for this tool. In the
simulation configuration the tools can be named freely. I usually use the name convention
“<source>2<destination>” instead of naming it after the used program so it is easier to see the
usage.

A very important point during analyzing the result is to evaluate whether the resulting files
have the appropriate quality for the storage process, which means that the it must contain all
information that should be preserved. This aspect usually depends on the storage goals of the
repository. In my examples I did a limited test on a random subset of files and compared the
result visually.

31

Figure 4.1: Regression Analysis of file growth when converting between Word97 to Word2003

4.2 Doc2doc

For the conversion between versions of the Microsoft Word format family I selected LibreOffice
as conversion tool, as it supports many different versions and has a headless mode for batch
conversion processes.

As sample set I collected 370 random files using Google and filtering to “filetype:doc”. The
files are wide spread in different size and content. The size varies from about 11Kb to 5Mb with
a total size of 76Mb.

In a first attempt I tried to convert all files back to “Word 95”, and then run several conver-
sions to “Word 97”, “Word 2003” and “Word 2007”, and then average the result. Unfortunate
that was not possible, as the conversion backend of LibreOffice proved to have problems with
many files, resulting in program crashes or unreadable files. The only conversion step that
worked on all input files was from “Word 97” to “Word 2003”, so I took that for my scenario.

The conversion took 59 minutes and 40 seconds, resulting in a total file size of 107Mb.
A regression analysis of the file size growth (see 4.1) showed that the growth rate is linear
(coefficient of correlation: 0.79) with a gradient of 40%. The resulting configuration is shown
in listing 4.2

Listing 4.1: tool doc2doc

[t o o l]
name = doc2doc
s i z e = c u r r e n t s i z e ∗ 1 . 4 0
d u r a t i o n = c u r r e n t s i z e ∗ 47

4.3 Pdf2pdf

For converting PDF files to the next higher version I used GhostScript. As input files I took the
Word documents from the previous section and converted them to PDF 1.4 using LibreOffice.
From there, I did consecutive conversions to version 1.5 and 1.6 using GhostScript.

32

Figure 4.2: Regression Analysis of file growth when converting between jpg to tiff

In all three versions the file size stayed almost the same, only varying a few bytes. The
reason therefore is that PDF is a very stable format, and new versions mainly add new features
without changing existing file structures. (On the opposite to Word documents, where the file
format was totally reworked between several version steps.) The conversion was very fast with
3,7 seconds per Mb.

Listing 4.2: tool pdf2pdf

[t o o l]
name = p d f 2 p d f
s i z e = c u r r e n t s i z e
d u r a t i o n = c u r r e n t s i z e ∗ 3 ,7

4.4 Jpeg2tiff

To set up a tool for the conversion of jpg files to tiff, I did an experiment on my private photo
archive. To ensure that I have a good diversification over different image sources and over time,
I only took a fraction of the archive which consists of pictures collected from various cameras
on a yearly event over 9 years. The input for my experiment contained an amount of 13834 jpg
files with a total size of 11.5GB. For converting the files to tiff I used IrfanView [19] in batch
mode. The resulting images had a total size of 133GB. The regression analysis (4.2) shows again
a linear growth rate (coefficient of correlation: 0.87) with a growth rate of the factor 10.09. The
conversion took 67 minutes, which results in an average conversion time of 0,43 seconds per
Mb.

Listing 4.3: tool pdf2pdf

[t o o l]
name = j p e g 2 t i f f
s i z e = c u r r e n t s i z e ∗ 10 .09
d u r a t i o n = c u r r e n t s i z e ∗ 0 . 4 3

33

4.5 Summary

The examples above show how tool configurations can be created based upon the behaviour of
real tools. Good tool configuration plays an important role during the simulation and can have a
significant influence on the simulation.

34

CHAPTER 5
Case Study: EDW

5.1 General Issues

The evaluation of the result is a rather difficult task. The main problem is that digital archives are
usually very different in respect to their content. It is impossible to find one or more data sets that
are representative for all archives, as every archive has a different preservation goal and different
content sources. And depending on the duty of an archive there are different requirements in
what is needed to preserve. In some cases the highest priority may be preserving the exact
layout of the stored documents, in other cases maybe keeping the documents editable is most
important. Those requirements lead to very different migration policies.

Another problem is that there are not many archives that are available in public, so it is
difficult to find a source for sample data which is freely accessible and is big enough to collect
enough data for a meaningful sample configuration.

In the following, I will show a configuration based on an existing archive to which I had been
granted access for this work. I will add several rules and show the according output diagrams
documenting the changes in the repository so one can get an insight how to work with the
simulator and interpret the output.

5.2 Sources of Sample Data

In search for good sample data to test the repository simulator I got the permission to use the
office archive of the Austrian childcare organisation “Katholische Jungschar der Erzdiözese
Wien” [7] (in the following referred as “EDW”) for indexing the stored data and building up
a sample configuration. The EDW archive has a size of about 40000 files, mainly consisting of
text documents, but also including some images and other files.

The data was collected during the organisation of educational events. The archive consists of
meeting protocols, preparation documents, information material for the participants, feedback
discussions and some press photos. Since the year 2000 the archive also contains the preparation

35

materials for a magazin appearing four times a year. (The magazine also appeared before the
year 2000, but there it was produced only with analog devices and so there was no data to
collect.)

The archive is not very big, but it is interesting for several reasons: It is built not by computer
trained personal but people using the software they are used to. The personal in the office
consists of many people working at home voluntary, so they are not tied to use the software
available in the office but usually use what is available on a standard home computer. And finally
the events for that the data is collected are very similar over the years. To sum up, the reasons
for data collection stays rather constant, but the technological background is constantly adapting,
which should give us a clear picture of the technological change in the small office/home office
area.

For gathering the type information and building up my sample configuration I used the tools
FITS and C3PO. FITS is a tool that combines multiple meta data extraction tools and brings the
output in a unified XML based structure. C3PO parses the output of FITS and normalizes it and
stores it in a searchable database. The metadata can then be exported to a csv file, which is good
for further processing.

5.3 Sample Configuration

The EDW archive contains 39440 files with a total size of 40.7 GB. FITS and C3PO are able to
identify the exact file format version of 15145 of them. For the other files it was not possible to
determine the matching PUID and therefore they cannot be used for this example. The identified
files where distributed over several file type families. The four families “jpeg”, “msword”, “pdf”
and “tiff” contain the most part of the files; there are only 527 files belonging to other families.
To keep this example concise I filtered out those 527 files and focused on just the four main
families, leaving 14618 files in the simulation. Table A.1 in the appendix shows the complete
list of ingests generated from the remaining files along with the average size of the files.

A very important part of the configuration is the validity period of the file types and versions.
It is difficult to predict how long a version will be supported, even the information about passed
versions is only limited. PRONOM tries to collect that information for known file type families,
but the information there is far from complete. This makes the estimation of the validity periods
a very complex and broad topic, which is not covered by this work. In this simulation I tried to
manually estimate the life cycle of the used types to get plausible values. The main assumption
is that when a version is not used anymore, then the support for this version will expire soon
after that. In this case the result much more reflects the real world than official support periods,
because people in private areas usually do not adapt to new software very fast, and they often
continue to use the same version as long as it fulfills their needs, even if there is no official
support anymore.

Figure 5.1 shows the configuration editor with the types imported from the EDW archive
and in table 5.1 you can see the types and versions listed in detail.

The clearest sequence arrangement of versions is observable within the msword family.
Probably this is because msword files are tied to the Office Suite by Microsoft and so the usage

36

type version created expired
jpeg fmt/43 1997 —
jpeg fmt/44 1997 —
jpeg x-fmt/390 1997 2007
jpeg x-fmt/391 2000 2012
jpeg fmt/42 2002 2011

msword fmt/37 1990 1993
msword fmt/38 1991 2006
msword fmt/39 1993 2008
msword fmt/40 1997 —

pdf fmt/16 1999 2006
pdf fmt/17 1999 —
pdf fmt/18 2001 —
pdf fmt/19 2003 —
pdf fmt/20 2003 —
tiff fmt/10 1994 —

Table 5.1: types and versions in the EDW repository

of these formats depends strongly on Microsofts release cycle. The other formats are used by
multiple software vendors so the picture is not that clear in that cases.

5.4 Experiments

To get a first insight of how my files are distributed in this archive, I ran the simulation once
without any rules so I can see just the ingest events in the diagrams. In figure 5.2 the distribution
of the files over the file types is shown: In the first years mainly files of the type msword are in
the archive. Since the turn of the millennium also ingests of pdfs happen and increase over time
while the msword documents stagnate in the end. Also the jpgs start around the year 2000 and
climb up very fast.

As we see in table 5.1 there are several versions that run out during the simulation, we have
to add some rules to the repository configuration, as this means that the files stored in this format
versions will no longer be accessible because the software does not support them anymore. As a
first scenario I defined a rule for each type family to migrate the files to the next higher version
(ie. the version with the next higher expire date) some months before the current version expires
(“minimal step size”) to keep all files accessible and up to date and we do not risk to loose the
information inside the files.

In 5.3 we see the migrations caused by this rule set. One can see that the biggest fraction
of migrations take place in the years 2005, 2006, 2008 and 2010. This is because around these
dates format versions with many files expire and need to get translated to the next higher version.
Especially in the year 2008 there are many migrations. In 5.5 we can see that these migrations

37

Figure 5.1: Configuration Editor with sample configuration

Figure 5.2: number of files per type

are mainly caused by the files of the type msword, as there is a big increase of files in the year
2008. The graph in figure 5.4 shows the total size of the archive. One can see that the total size
increases drastically especially in the later years of the simulation where the most migrations
take place and it is noticeable that there is already an amount of obsolete files in the repository.
The total size of the archive reaches 10GB in the end of the simulation and the obsolete files
have a portion of about 10%.

To reduce the needed storage size one possible approach is to reduce the number of migra-
tions, in the case we want to keep all old versions. So I ran the next simulation with migrations to
the version with the longest expire time available (“maximal step size”). This should reduce the
overall number of migrations and lead to less old versions in the repository and thereby reducing

38

Figure 5.3: migrations with minimal step size

Figure 5.4: total size after simulation with minimal step size

the needed space of the archive.
Figures 5.6 and 5.7 show the result of this approach. In figure 5.6 we see that the number

of migrations dropped as a result of this change. Note that we still have the migration peaks at
nearly the same years as in the simulation with minimal steps. This is because the expire dates
are still the same and the ingested files are distributed over all versions, so the peaks are the
same. Figure 5.6 shows that the overall size of the archive dropped from about 10GB as shown
in 5.4 to about 8.5GB. How much impact the change from “minimal step size” to “maximal step
size” depends on how many overlapping versions there are in the repository. In this case it is a
small but noticeable gain.

The next important step is to think about the reasonability of the used rules. In the last exper-
iments the files belonging to the jpg family get more or less often migrated to newer versions of
that family. That is probably not a wise choice, as jpg uses usually a lossy compression method
and by migrating to a new version one risks that the picture is decompressed and recompressed,
leading to information loss. It is considerable to migrate those files to the tiff format, as this
format is lossless. An other argument for tiff over jpg is that it is much more stable, as we have

39

Figure 5.5: number of files after simulation with minimal step size

Figure 5.6: migrations with maximal step size

5 different versions of jpg in the EDW archive, but only one of tiff.
So the next step is to set up a rule for migrating jpg files to tiff. There are two possibilities

when to do that: Either when the jpg version expires or strait after the ingest of the file. For the
next experiment I ran both variants to compare the results.

Figure 5.8 shows the growth of the archive in case of migrating the jpg files on expire and
5.9 shows the result for migration on ingest. Of course, the size in the end of both simulations is
virtually identical, yet the characteristics differ. In the first case we have the biggest increment in
the overall size in the year 2006, where the size increases drastically over 100% of its previous
size, whereas the rest of the characteristics are rather flat. When migrating on ingest, the size
increases continuously over the time. This is because we have constant ingest of new pictures,
but a huge amount of pictures expiring on the same date.

So, comparing the two results one can decide whether it is more important to postpone the
increase of size by migrating the files on expire, or to distribute the increase over time to avoid
peaks in the hardware requirements.

40

Figure 5.7: total size after simulation with maximal step size

Figure 5.8: migrating jpg to TIFF on expire

5.5 Summary

These experiments show how one can work with the simulator and interpret the results. The
graphs should give a clear look on the changes happening in the repository and give good advice
on the decisions that have to be made when maintaining a repository. Note that this sample
simulations are based on a very particular configuration and that the results with the same rule
sets will differ on each repository, so it is important to set up the simulation matching the target
archive as close as possible.

41

Figure 5.9: migrating jpg to TIFF on ingest

42

CHAPTER 6
Case Study: Danish Web Archive

6.1 General Issues

For a second case study I got access to the Danish Web Archive. This archive is the result of a
yearly web crawl, executed by the StatsBiblioteket (The State and University Library) in Aarhus,
Denmark1. It represents the yearly state of the Danish part of the World Wide Web. As this is a
very large amount of data I only got a fixed subset of one million files per year, starting in the
year 2005 and ending 2012. And I did not get the data files itself but they where preprocessed
by FITS and I got the resulting xml files to work with.

The characteristics of the data set imply several limitations:

• As the data does not give an insight on the total size of the archive it is not possible to
make predictions about the absolute development of the archive.

• Because of the short time frame predictions about the development of version usages are
difficult.

The second limitation is especially problematic since the usage and life-cycle of each version
is the basic configuration for the simulator. To solve this problem there is an interesting work
written by Stefan Schindler [18], who analyzed this dataset and was able to extract the life-cycle
of the type families HTML, PDF and FLASH by doing statistical analysis. His theory is based
on the expectation that different type versions in each family show similar usage behaviour over
time. And because every version has a different release date the 8 years represented in the dataset
show different parts of the life-cycle of each version. Based on this theory he could expand the
observation time frame and calculate the average usage for each type family. The result of his
regression analysis is the description of the usage by the following polynomial functions2:

1http://www.statsbiblioteket.dk/
2These functions where included in Schindlers paper only in form of plotted graphs, so I contacted the author to

get them in textual form.

43

Figure 6.1: Basic setup: Ingests per file type

PDF:
y = 2.912− 1.038e+ 01 ∗ x+ 5.310e+ 00 ∗ x2 − 7.522e− 01 ∗ x3 + 4.149e− 02 ∗ x4 − 7.965e− 04 ∗ x5

HTML:
y = 1.9385275− 8.2927686 ∗ x+ 3.7782122 ∗ x2 − 0.4214922 ∗ x3 + 0.0165867 ∗ x4 − 0.0001897 ∗ x5

FLASH:
y = −2.990e−01−1.299e−01∗x+1.060e+00∗x2−1.338e−01∗x3+4.444e−03∗x4−1.363e−05∗x5

6.2 Basic simulation setup

In this section I tried to set up a basic simulation based on Schindlers results. Fortunately his
formulas can be used only with syntactical changes directly in the simulation. So for the first
run I set up three file types and a repetitive ingest for each with the following file quantities:

PDF:
quantity = 2.912−1.038e+01∗ typeY ear+5.310e+00∗Math : pow(typeY ear, 2)−7.522e−01∗Math :

pow(typeY ear, 3) + 4.149e− 02 ∗Math : pow(typeY ear, 4)− 7.965e− 04 ∗Math : pow(typeY ear, 5)

HTML:
quantity = 1.9385275−8.2927686∗typeY ear+3.7782122∗Math : pow(typeY ear, 2)−0.4214922∗Math :

pow(typeY ear, 3) + 0.0165867 ∗Math : pow(typeY ear, 4)− 0.0001897 ∗Math : pow(typeY ear, 5)

FLASH:
quantity = −2.990e−01−1.299e−01∗ typeY ear+1.060e+00∗Math : pow(typeY ear, 2)−1.338e−01∗
Math : pow(typeY ear, 3)+4.444e−03∗Math : pow(typeY ear, 4)−1.363e−05∗Math : pow(typeY ear, 5)

Figure 6.1 shows the ingests of this configuration. This is not a reasonable simulation at the
moment, but just a check whether the formulas work as expected. And as one can see the graphs
match the ones in Schindlers paper exactly.

The next step is to add new versions in each family in proper intervals. According to the
table of release years in Schindlers paper new versions appear virtually every year. Additionally
the quantity of the ingests must be adapted, as the result of the formulas is just a percentage and
not an absolute value. For this I summed up the usage of each version in the dataset. The tables
6.1, 6.2 and 6.3 show the collected data. As one can see in the data, the ingests of the different

44

Figure 6.2: total number of files per type family

families are not constant, but HTML keeps growing while PDF is dropping over the years and
FLASH nearly vanishes in the last years. I reflect that behavior in the quantity formulas and
ended up with the following configuration3:

PDF:
quantity = 81∗Math : pow(0.969, elapsedY ears)∗ (2.912−1.038e+01∗ typeY ear+5.310e+00∗Math :

pow(typeY ear, 2) − 7.522e − 01 ∗ Math : pow(typeY ear, 3) + 4.149e − 02 ∗ Math : pow(typeY ear, 4) −
7.965e− 04 ∗Math : pow(typeY ear, 5))

HTML:
quantity = 928 ∗ Math : pow(1.048, elapsedY ears) ∗ (1.9385275 − 8.2927686 ∗ typeY ear + 3.7782122 ∗
Math : pow(typeY ear, 2)−0.4214922∗Math : pow(typeY ear, 3)+0.0165867∗Math : pow(typeY ear, 4)−
0.0001897 ∗Math : pow(typeY ear, 5))

FLASH:
quantity = 3171 ∗ Math : pow(0.695, elapsedY ears) ∗ (−2.990e − 01 − 1.299e − 01 ∗ typeY ear +

1.060e+ 00 ∗Math : pow(typeY ear, 2)− 1.338e− 01 ∗Math : pow(typeY ear, 3) + 4.444e− 03 ∗Math :

pow(typeY ear, 4)− 1.363e− 05 ∗Math : pow(typeY ear, 5))

3Because this is a rather big simulation I reduced the number of ingests to 10% to speed up the simulation runs.

45

Figure 6.3: total size of files per type family

fmt/14 fmt/15 fmt/16 fmt/17 fmt/18 fmt/19 fmt/20 fmt/95
2005 9 44 1265 2863 2143 483 39
2006 11 24 1244 3401 3202 560 222
2007 3 37 1076 3183 2777 414 236
2008 3 22 621 3005 3769 507 421 2
2009 3 8 404 2009 2476 630 256 1
2010 3 12 64 1301 1168 1419 180 2
2011 5 36 691 515 1834 89 3
2012 7 42 605 652 1614 119 1

Table 6.1: number of ingests for the family PDF

fmt/96 fmt/97 fmt/98 fmt/99 fmt/100 fmt/102 fmt/103
2005 195682 607 5936 34568 64788
2006 162994 187 4436 28325 79281
2007 192776 154 5007 37177 95021 26811
2008 128732 127 4147 27164 70835 50322 1258
2009 106774 90 3964 25118 72247 60945 2053
2010 165105 164 7369 37459 110778 127039 4006
2011 182639 141 15349 34627 132945 184252 6739
2012 161491 190 10125 25981 114888 166795 5943

Table 6.2: number of ingests for the family HTML

fmt/104 fmt/105 fmt/106 fmt/107 fmt/108 fmt/109
2005 2 6 62 2396 2058 363
2006 1 76 936 1216 316
2007 2 46 759 820 206
2008 1 32 479 511 256
2009 5 22 281 308 164
2010 1 4 52 153 58
2011 4 15 187 16
2012 7 42 126 24

Table 6.3: number of ingests for the family FLASH

46

In figure 6.2 and 6.3 the result of this configuration is shown. Note that I started with an
empty archive and no version defined in the beginning, and then successive added new versions
and the corresponding ingests. After about 12 years the simulation reaches a fully established
set of versions and ingests, and from that moment it matches the original dataset as close as
possible. Of course the result looks very continuous and periodic as it is based on smoothed
curves.

It is interesting to see, that although FLASH and PDF have a very low fraction of files in
the repository compared to HTML (Which is not a big surprise, as it is a web archive.) but they
do have a considerable amount of storage size, because PDF and FLASH have a much higher
average file size.

6.3 Migration experiments

As usual the next step is to schedule migrations for the disappearing file versions. I have done
three different scenarios for comparison.

• Scenario 1: I assume that when the usage of a version drops under 10 percent, then this
version will expire soon and it is time to migrate to a newer version, and in this case to the
next higher version. The moment of migration is reached 11 years after version release
in case of PDF, 13 years after release in case of HTML and 12 years in case of FLASH.
Listing 6.1 shows the rule configuration for PDF as example.

• Scenario 2: In this case migration takes place in the same moment as in scenario 1, but
destination version is the best available version.

• Scenario 3: As a third option I tried to migrate every file on ingest strait to the best version
available. As this is not reasonable in the first years of a version, I postponed the migration
for the first 5 years. Because the maximum usage of each version lies several years after
the 5 year mark this should migrate the majority of files on ingest. Listing 6.2 shows a
sample rule. Additionally I kept the rules from scenario 3, as we still need to conserve the
files at the end of the version life-cycle, although this should happen clearly later.

In the figures 6.4, 6.5 and 6.6 the migrations of this scenarios are shown, and figures 6.7, 6.8
and 6.9 show the total size of the archive. It is easy to see that in scenario 1 there are very many
migrations and the overall size is growing very fast and high. Scenario 2 shows that there is a
big gain when migrating to the best possible version as the resulting migrations drop by nearly
90%. There is a notable boost of migrations in the year 24. This is where the oldest files in the
archive get migrated for the second time.

A bit surprising is scenario 3, as I would have expected to get a rather smooth resulting graph
containing only small irregularities. In this case the planned migrations pile up more than I had
expected. So in this scenario one has to be prepared to have unsteady resource needs over the
years.

47

Figure 6.4: scenario 1 - number of migrations

Figure 6.5: scenario 2 - number of migrations

Listing 6.1: scenario 1 - sample rule

[m i g r a t i o n r u l e]
name = pdf
t y p e = pdf
te rm = v e r s i o n _ c r e a t e d + 12∗ y e a r
k e e p o r i g i n a l = f a l s e

[d e s t i n a t i o n 0]
name = pdf
d e s t i n a t i o n _ t y p e = pdf
d e s t i n a t i o n _ v e r s i o n = [m i n i m a l _ s t e p]
t o o l = p d f 2 p d f
s o u r c e = c u r r e n t

48

Figure 6.6: scenario 3 - number of migrations

Figure 6.7: scenario 1 - sum of file size

Listing 6.2: scenario 3 - sample rule

[m i g r a t i o n r u l e]
name = pdf
t y p e = pdf
te rm = Math : max (f i l e _ i n g e s t , v e r s i o n _ c r e a t e d + y e a r ∗5)
c o n d i t i o n = g e n e r a t i o n == 0
k e e p o r i g i n a l = f a l s e

[d e s t i n a t i o n 0]
name = pdf
d e s t i n a t i o n _ t y p e = pdf
d e s t i n a t i o n _ v e r s i o n = [max ima l_s t ep]
t o o l = p d f 2 p d f
s o u r c e = c u r r e n t

49

Figure 6.8: scenario 2 - sum of file size

Figure 6.9: scenario 3 - sum of file size

6.4 Summary

This chapter shows how to set up simulation scenarios based on statistically analyzed data.
It demonstrates that the simulator can work with complex formulas resulting from regression
analysis or similar statistical tools. It also shows that in some cases the result is more chaotic as
expected.

50

CHAPTER 7
Summary and Future Work

7.1 Summary

The way how the growing amount of data produced every day gets preserved for future gen-
erations is one of the most important topics in the field of electronic data processing. Yet the
longterm storage of digital information is still an underestimated afford.

The simulation tool presented in this thesis is a helpful tool for planning migration policies
and maintaining a digital repository. The configuration offers flexible configuration possibilities
to model real world situations very close. File types, ingests and migrations can be defined
by easy understandable rules. It is possible to build up a configuration based on an existing
archive to facilitate the configuration process. There are detailed diagrams that document the
simulation result so that the simulator can be used to compare different scenarios and provide a
good reasoning base for future decisions. For deeper analysis the database can be used to clarify
details of the simulation results.

The configuration is very dynamic to give the user a big scope of development and allow to
build up very detailed settings. This provides the potential to explore the differences between
configuration changes and facilitates the decision between different strategies.

7.2 Future Work

The simulator is already a feature rich tool. Yet I am sure that there are many things that can
be developed further. The most important aspect is the system architecture of the simulated
repository. The current implementation reflects the repository as a single core system. As to-
day multicore systems and cloud computing are standard technologies, a possible enhancement
would be to reflect that in the simulation.

Also, switching to a multicore representation can possible open the way to performance gain
if the simulation process is also split up to multiple processes. The current structure does not
allow processing multiple migration events in parallel. Although the performance of the current

51

implementation is sufficiently optimized, execution time is something one should always keep
in mind, as faster execution facilitates a higher number of simulation runs and so refines the
information gained with the simulator.

Another way to gain performance is to base the simulation not on single files but on group
of files. This path gives a tradeoff between performance and level of detail.

52

APPENDIX A
Appendix

A.1 EDW Ingests

year type version number avg. size
1990 msword fmt/38 1 6198
1990 tiff fmt/10 1 60928
1991 msword fmt/37 2 28213
1992 msword fmt/37 6 5778
1992 msword fmt/38 49 5062
1993 msword fmt/38 156 6622
1994 msword fmt/38 164 7368
1994 msword fmt/39 154 14013
1995 msword fmt/38 5 7609
1995 msword fmt/39 247 17874
1995 tiff fmt/10 5 885366
1996 msword fmt/38 5 15092
1996 msword fmt/39 206 62745
1996 tiff fmt/10 52 312340
1997 msword fmt/38 6 20215
1997 msword fmt/39 139 51134
1997 tiff fmt/10 5 24452
1998 jpeg fmt/43 4 341375
1998 jpeg fmt/44 1 61664
1998 jpeg x-fmt/390 26 383247
1998 msword fmt/39 178 38766
1998 msword fmt/40 11 26951
1998 tiff fmt/10 28 248994

53

1999 jpeg fmt/43 2 22039
1999 jpeg fmt/44 2 212371
1999 jpeg x-fmt/390 22 427738
1999 msword fmt/38 2 5272
1999 msword fmt/39 318 169278
1999 msword fmt/40 133 359151
1999 pdf fmt/15 4 564213
1999 pdf fmt/16 3 457670
1999 pdf fmt/17 4 5010633
1999 tiff fmt/10 36 1628169
2000 jpeg fmt/43 33 80694
2000 jpeg fmt/44 22 163637
2000 jpeg x-fmt/390 28 420696
2000 msword fmt/39 122 46766
2000 msword fmt/40 552 56423
2000 pdf fmt/16 1 68608
2000 pdf fmt/17 3 3077858
2000 tiff fmt/10 170 1439781
2001 jpeg fmt/43 38 310011
2001 jpeg fmt/44 21 814293
2001 jpeg x-fmt/390 14 781386
2001 jpeg x-fmt/391 168 655768
2001 msword fmt/38 4 6039
2001 msword fmt/39 29 113561
2001 msword fmt/40 644 53314
2001 pdf fmt/16 8 406859
2001 pdf fmt/17 1 524640
2001 tiff fmt/10 59 1446516
2002 jpeg fmt/42 1 64048
2002 jpeg fmt/43 54 770857
2002 jpeg fmt/44 46 355685
2002 jpeg x-fmt/390 156 910074
2002 jpeg x-fmt/391 27 435577
2002 msword fmt/38 3 -2082
2002 msword fmt/39 22 110696
2002 msword fmt/40 677 65610
2002 pdf fmt/16 5 -6566
2002 pdf fmt/17 15 1486559
2002 pdf fmt/18 3 1955406
2002 tiff fmt/10 15 2197932
2003 jpeg fmt/42 5 -5664

54

2003 jpeg fmt/43 284 435754
2003 jpeg fmt/44 124 421888
2003 jpeg x-fmt/390 131 423441
2003 jpeg x-fmt/391 269 732423
2003 jpeg x-fmt/398 1 739795
2003 msword fmt/38 1 3072
2003 msword fmt/39 1 15360
2003 msword fmt/40 884 58423
2003 pdf fmt/16 2 712679
2003 pdf fmt/17 14 366180
2003 pdf fmt/18 3 132084
2003 tiff fmt/10 32 1639119
2004 jpeg fmt/42 1 23821
2004 jpeg fmt/43 160 761104
2004 jpeg fmt/44 94 888965
2004 jpeg x-fmt/390 67 480100
2004 jpeg x-fmt/391 186 814849
2004 msword fmt/39 1 32768
2004 msword fmt/40 874 134790
2004 pdf fmt/16 2 39409
2004 pdf fmt/17 15 776409
2004 pdf fmt/18 34 977140
2004 pdf fmt/19 1 307533
2004 pdf fmt/20 1 5173614
2004 tiff fmt/10 17 2829516
2005 jpeg fmt/42 29 845894
2005 jpeg fmt/43 173 1399597
2005 jpeg fmt/44 86 1424481
2005 jpeg x-fmt/390 4 503407
2005 jpeg x-fmt/391 317 845701
2005 jpeg x-fmt/398 1 175595
2005 msword fmt/38 2 10961
2005 msword fmt/40 796 124139
2005 pdf fmt/16 1 85312
2005 pdf fmt/17 12 938911
2005 pdf fmt/18 40 579620
2005 pdf fmt/19 1 254430
2005 tiff fmt/10 19 1364188
2006 jpeg fmt/42 1 62125
2006 jpeg fmt/43 140 752995
2006 jpeg fmt/44 182 465563

55

2006 jpeg x-fmt/390 4 288125
2006 jpeg x-fmt/391 213 973754
2006 msword fmt/39 1 94208
2006 msword fmt/40 53 385329
2006 pdf fmt/17 27 3343877
2006 pdf fmt/18 51 1619013
2006 pdf fmt/19 2 63369
2006 tiff fmt/10 3 4647554
2007 jpeg fmt/43 188 692688
2007 jpeg fmt/44 99 547809
2007 jpeg x-fmt/391 158 560165
2007 msword fmt/39 1 108032
2007 msword fmt/40 70 71292
2007 pdf fmt/17 30 678976
2007 pdf fmt/18 61 863198
2007 pdf fmt/19 1 213599
2007 tiff fmt/10 8 3295319
2008 jpeg fmt/42 1 1185408
2008 jpeg fmt/43 1004 223673
2008 jpeg fmt/44 83 760278
2008 jpeg x-fmt/391 195 962739
2008 jpeg x-fmt/398 3 144954
2008 msword fmt/39 1 233472
2008 msword fmt/40 55 78832
2008 pdf fmt/17 52 1683621
2008 pdf fmt/18 87 811600
2008 pdf fmt/19 8 587313
2008 pdf fmt/20 2 3877433
2008 tiff fmt/10 4 1162671
2009 jpeg fmt/42 5 199677
2009 jpeg fmt/43 414 988417
2009 jpeg fmt/44 72 450455
2009 jpeg x-fmt/391 142 2616863
2009 msword fmt/40 134 46374
2009 pdf fmt/17 66 961133
2009 pdf fmt/18 71 1094754
2009 pdf fmt/19 52 571789
2009 pdf fmt/20 1 520284
2009 tiff fmt/10 4 605538
2010 jpeg fmt/42 4 588862
2010 jpeg fmt/43 296 2271690

56

2010 jpeg fmt/44 125 1175749
2010 jpeg x-fmt/391 30 1109096
2010 msword fmt/40 13 81390
2010 pdf fmt/17 25 311271
2010 pdf fmt/18 28 1008762
2010 pdf fmt/19 41 741405
2010 pdf fmt/20 2 3654008
2010 tiff fmt/10 2 217495
2011 jpeg fmt/43 280 2209347
2011 jpeg fmt/44 54 879990
2011 jpeg x-fmt/391 20 1744173
2011 msword fmt/40 19 137143
2011 pdf fmt/17 19 3246043
2011 pdf fmt/18 16 1449189
2011 pdf fmt/19 52 783319
2011 pdf fmt/20 3 1300193
2011 tiff fmt/10 8 683133
2012 jpeg fmt/43 77 1532755
2012 jpeg fmt/44 76 1455911
2012 jpeg x-fmt/391 4 2442977
2012 msword fmt/40 11 33890
2012 pdf fmt/17 19 286390
2012 pdf fmt/18 10 539541
2012 pdf fmt/19 31 667525
2012 pdf fmt/20 1 4491089

Table A.1: ingests in the EDW repository

57

List of Figures

3.1 the structure of the database . 10
3.2 configuration editor with simple sample configuration 15
3.3 Configuration Editor with a configuration imported from csv data 23
3.4 diagram of the number of simulations grouped by year 24
3.5 diagram of the accumulated storage volume and needed processing time generated

by the used tools in comparison to the ingests in percent 24
3.6 diagram of the number of files in the repository over the simulation time 25
3.7 diagram of the total size of the repository over the simulation time 26
3.8 Gathering simulation results from the database using SQL 26
3.9 Using SQL to analyze the deletions in the year 2030 26

4.1 Regression Analysis of file growth when converting between Word97 to Word2003 32
4.2 Regression Analysis of file growth when converting between jpg to tiff 33

5.1 Configuration Editor with sample configuration 38
5.2 number of files per type . 38
5.3 migrations with minimal step size . 39
5.4 total size after simulation with minimal step size 39
5.5 number of files after simulation with minimal step size 40
5.6 migrations with maximal step size . 40
5.7 total size after simulation with maximal step size 41
5.8 migrating jpg to TIFF on expire . 41
5.9 migrating jpg to TIFF on ingest . 42

6.1 Basic setup: Ingests per file type . 44
6.2 total number of files per type family . 45
6.3 total size of files per type family . 46
6.4 scenario 1 - number of migrations . 48
6.5 scenario 2 - number of migrations . 48
6.6 scenario 3 - number of migrations . 49
6.7 scenario 1 - sum of file size . 49
6.8 scenario 2 - sum of file size . 50
6.9 scenario 3 - sum of file size . 50

59

Bibliography

[1] Christoph Becker, Hannes Kulovits, Michael Kraxner, Riccardo Gottardi, Andreas Rauber,
and Randolph Welte. Adding quality-awareness to evaluate migration web-services and
remote emulation for digital preservation. In Maristella Agosti, Jose Borbinha, Sarantos
Kapidakis, Christos Papatheodorou, and Giannis Tsakonas, editors, Proceedings of the
13th European Conference on Digital Libraries (ECDL 2009), volume 5714 of LNCS,
pages 39–50. Springer, September 2009.

[2] Christoph Becker and Andreas Rauber. Decision criteria in digital preservation: What to
measure and how. Journal of the American Society for Information Science and Technology
(JASIST), 2011.

[3] Tim Brody, Leslie Carr, Jessie Hey, Adrian Brown, and Steve Hitchcock. PRONOM-
ROAR: Adding format profiles to a repository registry to inform preservation services.
International Journal of Digital Curation, 2(2), November 2007.

[4] Panos Constantopoulos, Martin Doerr, and Meropi Petraki. Reliability modelling for long
term digital preservation. In Proceedings of the 9th DELOS Network of Excellence The-
matic Workshop on Digital Repositories: Interoperability and Common Services, Herak-
lion, Greece, May 11-13 2005.

[5] Arturo Crespo. Archival repositories for digital libraries. PhD thesis, Stanford University,
March 2003.

[6] Arturo Crespo and Hector Garcia-Molina. Cost-driven design for archival repositories.
In Proceedings of the First ACM/IEEE Joint Conference on Digital Libraries (JCDL’01,
pages 363–372, Roanoke, Virginia, USA, 2001. ACM Press.

[7] Katholische Jungschar der Erzdioezese Wien.
http://wien.jungschar.at/
visited on January 8th 2013.

[8] R. Dhanalakshmi and C. Chellappan. File format identification and information extraction.
In Proceedings of the World Congress on Nature Biologically Inspired Computing, 2009.
NaBIC 2009, pages 1497 –1501, Dec. 2009.

61

http://wien.jungschar.at/

[9] Office for Information Systems Harvard University Library. File information tool set (fits).
http://code.google.com/p/fits/
visited on January 8th 2013.

[10] Artur Kulmukhametov, Markus Plangg, and Christoph Becker. Automated quality assur-
ance for migration of born-digital images. In Archiving Conference, volume 2014, pages
73–78. Society for Imaging Science and Technology, 2014.

[11] Kyong-Ho Lee, Oliver Slattery, Richang Lu, Xiao Tang, and Victor Mccrary. The State of
the Art and Practice in Digital Preservation. Journal of Research of the National Institute
of Standards and Technology, 107(1):93–106, January 2002.

[12] A. Lindley, A.N. Jackson, and B. Aitken. A collaborative research environment for digital
preservation - the planets testbed. In Enabling Technologies: Infrastructures for Collab-
orative Enterprises (WETICE), 2010 19th IEEE International Workshop on, pages 197
–202, June 2010.

[13] Gary McGath. The format registry problem. code4lib, 2013.
http://journal.code4lib.org/articles/8029.

[14] National Archives of the United Kingdom. Digital record and object identification (droid).
http://digital-preservation.github.com/droid/
visited on January 8th 2013.

[15] National Archives of the United Kingdom. The technical registry pronom.
http://www.nationalarchives.gov.uk/PRONOM
visited on January 8th 2013.

[16] Linda Dailey Paulson. Libraries face the challenge of archiving digital material. Computer,
43(5):16 –19, May 2010.

[17] Petar Petrov. Clever, crafty content profiling of objects (c3po).
http://ifs.tuwien.ac.at/imp/c3po
visited on January 8th 2013.

[18] Stefan Schindler. File format analysis. Master’s thesis, Technical University of Vienna,
2014.

[19] Irfan Skiljan. Irfanview.
http://www.irfanview.net/
visited on January 23th 2013.

[20] Brent West. The digital dark ages: Preserving history in the era of electronic records. AIS
Electronic Library (AISeL), 2014.

62

http://code.google.com/p/fits/
http://journal.code4lib.org/articles/8029
http://digital-preservation.github.com/droid/
http://www.nationalarchives.gov.uk/PRONOM
http://ifs.tuwien.ac.at/imp/c3po
http://www.irfanview.net/

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	State of the Art
	Digital Preservation
	Simulation
	Preservation Planning
	Format identification tools
	Registries
	Comparison and Summary of Existing Approaches

	Implementation
	General Description
	Setup and Execution
	Configuration
	Gathering type information
	Output
	Generating Configurations
	Performance
	Summary

	Tool Evaluation
	General Issues
	Doc2doc
	Pdf2pdf
	Jpeg2tiff
	Summary

	Case Study: EDW
	General Issues
	Sources of Sample Data
	Sample Configuration
	Experiments
	Summary

	Case Study: Danish Web Archive
	General Issues
	Basic simulation setup
	Migration experiments
	Summary

	Summary and Future Work
	Summary
	Future Work

	Appendix
	EDW Ingests

	List of Figures
	Bibliography

