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Kurzfassung
Aktuelle Trends in Richtung allgegenwärtiger Elektronik und dem Internet of Things (IoT) ver-
langen eine geringe Leistungsaufnahme der Komponenten, zum Beispiel der Knoten eines Funk-
sensornetzwerks. Ein Ansatz zur Reduktion des Energieverbrauchs ist die CPU durch autonome
Module zu entlasten. Diese übernehmen einfache Aufgaben, z. B. periodische Sensormessungen.
Dadurch kann die CPU länger in einem inaktiven Low-Power Modus verbleiben. Sie wird nur
aktiviert, wenn komplexere Aufgaben ausgeführt werden müssen, z. B. um einen neuen Wert
über das Funknetzwerk zu übertragen. Solche autonomen Module müssen rekonfigurierbar sein
um unterschiedliche Ansprüche zu erfüllen, um an neue Umgebungen angepasst zu werden und
um Fehler zu korrigieren. In dieser Dissertation wird eine neue Methodik zur Entwicklung solcher
rekonfigurierbarer Module vorgestellt.
Im Gegensatz zur Entwicklung mit FPGAs, bei der Chips mit einer vordefinierten Architektur
konfiguriert werden, beinhaltet die vorgestellte Methodik die Entwicklung der Halbleiterschal-
tung. Die rekonfigurierbaren Module müssen sowohl digitale Steuerungslogik als auch Daten-
verarbeitung unterstützten. Um die Chipfläche und Leistungsaufnahme zu verringern wird eine
gemischt-granulare Logikarchitektur eingesetzt. Neben feingranularen Funktionseinheiten und Si-
gnalen beinhaltet diese auch grobgranulare Funktionseinheiten mit komplexerer Funktionalität,
die Signalvektoren mit mehreren Bits verarbeiten. Das erfordert, dass heterogene, also mehrere
verschiedene Arten von Funktionseinheiten integriert werden. Daraus folgt, dass jedes rekonfigu-
rierbare Modul spezifisch für den gegebenen Anwendungsbereich entwickelt werden muss.
Aktuelle Entwicklungsmethoden für rekonfigurierbare Logikarchitekturen sind auf den Anwen-
dungsbereich Datenverarbeitung limitiert und unterstützen keine digitale Steuerungslogik. Diese
Ansätze verwenden entweder grobgranulare oder feingranulare, aber unterstützen keine gemischt-
granularen Architekturen. Die Funktionseinheiten der rekonfigurierbaren Logik müssen entweder
explizit instanziiert oder manuell zugeordnet werden. Aktuelle Architekturen für rekonfigurier-
bare Zustandsautomaten benötigen viel Chipfläche oder verursachen hohen Stromverbrauch.
Die Entwicklungsmethodik, die in dieser Dissertation vorgestellt wird, ist die erste, die beides,
digitale Steuerungslogik als auch Datenverarbeitung, unterstützt. Sie ist universell und unabhän-
gig vom Anwendungsbereich des rekonfigurierbaren Moduls. Die zugrundeliegende Architektur
ist eine Sammlung von rekonfigurierbaren Funktionseinheiten, die mit einem rekonfigurierbaren
Interconnect verbunden sind, und unterstützt ausdrücklich gemischt-granulare Logik.
Die Funktionalität eines rekonfigurierbaren Moduls wird mit einem Satz von Beispielapplikatio-
nen als VHDL oder Verilog Logikdesigns angegeben. Das ermöglicht die Definition von digitaler
Steuerungslogik und Datenverarbeitung gemeinsam mit allen Signalen und Zyklus-genauem Ti-
ming. Von diesen Beispielapplikationen werden die Funktionseinheiten und das Interconnect in
einem neuen semi-automatischen Verfahren optimiert. Das so entstandene rekonfigurierbare Mo-
dul kann jede Beispielapplikationen implementieren und stellt zusätzlich Flexibilität für neue
Applikationen bereit. Um diese Flexibilität zu erhöhen können bei der Optimierung des Moduls
zusätzliche Funktionseinheiten und Verbindungen hinzugefügt werden. Das rekonfigurierbare
Modul wird für die Integration in einem Chip als IP Core erstellt.
Die Entwicklungsmethodik ist die erste, die die Verifikation der Beispielapplikationen, aller Zwi-
schenschritte und des generierten rekonfigurierbaren Moduls einbezieht. Dazu werden Simulation
und Logical Equivalence Checking verwendet, um die Übereinstimmung mit der Spezifikation si-
cherzustellen. Zusätzlich zu den Beispielapplikationen, die für die Entwicklung verwendet wurden,
können mit dem rekonfigurierbaren Modul auch neue Applikationen implementiert werden.
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Neben der Entwicklungsmethodik wird in dieser Dissertation eine neue rekonfigurierbare Architek-
tur für Zustandsautomaten eingeführt, um digitale Steuerungslogik effizient zu implementieren.

Die Entwicklungsmethodik wurde als Entwicklungsumgebung implementiert, die speziell ange-
fertigte, Open-Source und kommerzielle Programme integriert. Alle Tätigkeiten, die nicht not-
wendigerweise manuell sind, sind automatisiert, um den Entwickler zu entlasten und um hohe
Produktivität sicherzustellen. Mit der Entwicklungsumgebung wurde ein exemplarischer Funk-
sensornetzwerkknoten als SoC mit einem rekonfigurierbaren Modul entwickelt. Der WSN SoC
wurde in einem 350 nm CMOS Prozess hergestellt. Er implementiert alle Beispielapplikationen
und alle neuen Applikationen korrekt. Damit wurde die Tauglichkeit der Entwicklungsmethodik
belegt. Das rekonfigurierbare Modul erzielt eine 180-fache Reduktion des Energieverbrauchs für
Sensormessungen im Vergleich zur integrierten CPU. Die Chipfläche ist 2.2 mal größer als die
gleichzeitige Integration aller Beispielapplikationen und neuen Applikationen, aber 4.0–4.3 mal
kleiner als embedded FPGAs. Das rekonfigurierbare Modul benötigt 9.1–23.4 mal weniger Kon-
figurationsdaten als embedded FPGAs. Weiters stellt es genug Flexibilität zur Verfügung um
verschiedene neue Applikationen zu implementieren und um Probleme von Beispielapplikationen
zu korrigieren.
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Abstract
In current trends towards ubiquitous computing and the Internet of Things (IoT), low power
consumption is of increasing concern, for example in wireless sensor network (WSN) nodes. One
approach to reduce power consumption is to off-load the CPU by autonomous modules. These
relieve the CPU from simple tasks, e.g., performing periodic sensor measurements. The CPU
in turn stays in an inactive low-power mode for extended periods. It is only activated if more
complex tasks have to be accomplished, such as communicating a new value via the wireless
network. Such autonomous CPU supplement modules must be reconfigurable to suffice different
requirements, to adapt to new environments, and to fix design issues. In this thesis a new design
methodology for the development of such reconfigurable CPU supplement modules is introduced.

Contrary to FPGA design, where chips with a predefined reconfigurable architecture are con-
figured, the proposed methodology includes the development of the silicon circuitry itself. The
reconfigurable modules have to support both, control-dominated tasks as well as data processing.
To reduce silicon area and power consumption, the approach utilizes a mixed-granularity logic
architecture. Besides fine-grained functional units and signals, this adds coarse-grained functional
units with more complex functionality and operating on multi-bit vectors. This requires that het-
erogeneous, i.e., multiple different kinds of functional units, are integrated. This further requires,
that each reconfigurable module is specifically developed for its given application domain. The
design methodology proposed in this thesis addresses this task.

State of the art design methodologies for reconfigurable logic architectures are limited to applica-
tion domains for data processing but do not support control-dominated tasks. These approaches
either use coarse-grained or fine-grained architectures, but do not provide mixed granularity re-
configurable logic. The functional units of the reconfigurable logic either have to be instantiated
explicitly or are mapped manually. State of the art architectures for reconfigurable finite state
machines (FSMs) require large chip area or cause high power consumption.

The design methodology introduced in this thesis is the first which supports both, control-
dominated and data processing tasks. It is universal and independent of the application domain
of the reconfigurable modules. The underlying architecture is defined as a collection of recon-
figurable functional units connected via a reconfigurable interconnect and specifically supports
mixed granularity logic.

The functionality of reconfigurable modules is specified with a set of example applications as
VHDL or Verilog logic designs. These enable the definition of control-dominated as well as
data processing tasks including all signals and cycle accurate timing. From these the functional
units and the interconnect are optimized in a novel semi-automatic procedure. The resulting
reconfigurable module can implement any of the example applications and provides flexibility for
future use cases. In order to further increase its flexibility, additional functional units and routing
resources can be included during the optimization. The reconfigurable module is delivered as an
IP core for the integration in a chip design.

The design methodology is the first to incorporate the verification of the example applications,
of all intermediate steps, and of the generated reconfigurable module. Simulation and logical
equivalence checking are used to ensure full compliance to the specification. Besides the example
applications used in the development, new applications can be implemented with the reconfig-
urable module.
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Additional to the design methodology, in this thesis a novel reconfigurable architecture for FSMs
is introduced, to improve the support of control-dominated tasks.

The design methodology was implemented as an EDA design flow incorporating custom, open-
source, and commercial tools. All tasks which are not essentially manual are automated to
assist the designer and to achieve high productivity. The design flow was used to develop an
exemplary WSN node SoC including a reconfigurable sensor interface module. The WSN SoC
was produced in a 350 nm CMOS process. It correctly implements all example applications and
new applications. This demonstrates the feasibility of the design methodology. The reconfigurable
module shows a 180-fold reduction in energy consumption for sensor measurements, compared
to the integrated CPU. Its chip area is 2.2 times larger than the parallel implementation of all
example and new applications but 4.0–4.3 times smaller than embedded FPGA implementations.
The reconfigurable module requires 9.1–23.4 times less configuration data than embedded FPGAs.
Additionally it provides enough flexibility to implement diverse new applications and to fix design
issues of example applications.
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1
Introduction

Many areas of modern life are surrounded with embedded systems. The guiding paper [Wei91]
coined the term “Ubiquitous Computing” back in 1991 for this trend. In the meantime, embed-
ded systems became an important economic factor. [Jos14] estimated the worldwide market for
embedded technology in 2013 with a total of $142.8 billion. For the next five years, he expected
an annual growth of 5.4%, which leads to $152.4 billion for 2014 and $198.5 billion for 2019.

On one hand, embedded systems enable the operation and development of ever more complex
and optimized systems, e.g., RFID in logistics, sensors and actors in building automation, com-
munication systems in networks, etc. On the other hand, embedded systems themselves have
become consumer products in a fast growing market, for example mobile phones, tablets, PDAs,
paddles, function watches, sports devices, heart rate monitors, and GPS trackers. Constraints
in size, energy efficiency and not at least cost, raise challenges to the development of embedded
systems.

With the increasing popularity of embedded systems, the demands on usability are increasing
too. One factor is the battery lifetime, which strongly depends on the power consumption of the
device. To reduce the power consumption, techniques can be applied at all levels of the design
process. At the physical level, techniques like voltage scaling or pass-transistor logic are applied.
At the logic and architecture level the methods include gate sizing and clock gating. Even at the
highest software and system level, approaches like compression of the code or energy aware task
scheduling provide energy reduction [BMM01].

One special example of embedded systems with a particularly low energy consumption are the
nodes of wireless sensor networks (WSNs) [Cal04, RSZ04]. A number of self-sufficient embedded
systems with a low duty cycle of operation and a typical power consumption in the range of micro-
Watts transmit data via radio communication. One approach to increase the energy efficiency
of WSN nodes is to outsource routine tasks, which are usually performed by CPUs (central
processing units), to autonomous CPU supplement modules with ultra-low-power reconfigurable
logic. This enables the CPU to stay in inactive low-power modes for extended periods of time
and thus reduces the total energy consumption.

1



2 Chapter 1. Introduction

While modern embedded microcontrollers have numerous peripherals to off-load the CPU, e.g.,
timers, serial interfaces, direct memory access (DMA), etc., these are manually developed and
only provide limited functionality and reconfigurability. This work introduces a complete and
verified methodology to develop powerful as well as flexible, yet ultra-low-power, reconfigurable
CPU supplement modules.

1.1 Problem Definition

A typical WSN node comprises of a CPU (central processing unit) with memory and peripherals
like a real time clock (RTC), general purpose input and output (GPIO) ports, analog to digital
converters (ADCs), radio frequency (RF) transceivers, and power supply (see Fig. 1.1) [RSZ04,
KJA+14]. The CPU is the main instance and controls all peripherals. It ensures the sequential
execution of all tasks and reacts on external as well as internal events.

Figure 1.1: A typical WSN node consists of a microcontroller or system on chip (SoC), power supply, sensors
and an antenna. The microcontroller usually contains a CPU, memory (Mem), RF interface, digital inputs
and outputs (GPIO), an analog-to-digital converter (ADC), a timing unit (RTC) and power management
[RSZ04, KJA+14].
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The specific problem addressed in this thesis is illustrated with an exemplary sensor interface of
a WSN node.

1.1.1 Example: Sensor Interface Task

One task of a WSN node is to do periodic measurements of a sensor and send a packet with the
new value via the wireless interface. To save power, the node should only send a packet, if the
value has changed compared to the previous value. Further, the application defines a change as
a difference of more than a certain adjustable threshold.

The operation of the sensor interface is split into the following steps:

1. Switch on the sensor power supply

2. Wait until the sensor value has settled
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3. Sample and convert the analog sensor voltage to a digital number

4. Switch off the sensor power

5. Compare the ADC value to the old value

6. If the values differ, send the new value via the RF interface

7. Wait until the start of the next period

This sensor interface task will be used as an example at several places throughout this thesis.

1.1.2 Power Reduction with Autonomous CPU Supplement Modules

For most embedded systems with a CPU it is set to an inactive low-power mode after all tasks
are performed. The CPU is only reactivated by external and periodically timed events. The
process of activation from the inactive low-power mode and vice versa itself consumes an amount
of energy. This is wasted, because no tasks are performed in this time. Further, the mentioned
simple tasks include waiting periods (e.g., for the response of a sensor or for the ADC to finish
the conversion), which also imply wasted energy [GHDG09].

Once activated, the CPU performs simple tasks (e.g., measurement of sensor values) and tests
(e.g., comparison with previous value) as well as more complex tasks (e.g., sending a network
packet). Afterwards, the CPU is set to a low-power mode again.

However, many of these simple tasks can be performed autonomously by dedicated logic circuits,
specifically added to a WSN system on chip (SoC) or application specific integrated circuit (ASIC)
for that purpose. These CPU supplement modules off-load the CPU and only activate it for more
complex tasks. Obviously the modules must consume considerably less energy than the CPU.
Note that this approach is not limited to a single CPU supplement module. For each task a
dedicated and optimized module can be included in the SoC. Figure 1.2 shows the exemplary
WSN SoC extended by two CPU supplement modules, one for the sensor interface and one for
the communication interface, e.g., handling media access control (MAC) and routing protocols.

Figure 1.2: WSN node with two CPU supplement modules, reproduced from [GHDG09, GHDG10, GHG10,
GGHG11] with permission.
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In the sense of hardware/software partitioning this approach means a shift to the hardware
portion. The partitioning of the sensor interface task is done between the finding of a changed
value (at the hardware side) and the assembly and transmission of the network packet (at the
software side), i.e., in step 6 (see Sec. 1.1.1) The CPU supplement module will notify the CPU
by an interrupt, if and only if the sensor value has changed by more than a certain threshold
compared to the value when the previous notification was sent before.

In [GHDG09] the potential for energy reduction by using autonomous CPU supplement modules
was examined. Figure 1.3 shows the energy consumption of one sensor measurement, i.e., one
iteration of the sensor interface task as described in the previous section, performed by five
different ultra-low-power MCUs (microcontroller units) and two Xilinx Virtex 4 FPGA (field
programmable gate array) implementations. The sensor interface task was implemented in the
C programming language for the MCUs and in VHDL (VHSIC hardware description language)
for the hard-coded FPGA implementation. For the reconfigurable FPGA implementation, the
FSM (finite state machine) of the hard-coded implementation was replaced by a reconfigurable
implementation with a RAM (random access memory) (cf. Sec. 2.6). A more detailed discussion
of these results is given in Sec. 2.1.1.

The hard-coded FPGA implementation (2.09 nJ) requires approximately 90.5 times less energy
than the lowest power microcontroller MSP430F5418 (189.2 nJ). This shows the large potential
for energy reduction possible using autonomous CPU supplement modules.

Figure 1.3: Energy consumption of one sensor measurement performed by ultra-low-power MCUs and FPGA
implementations [GHDG09].
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1.1.3 Reconfigurable CPU Supplement Modules

However, when replacing firmware by hardware, the flexibility after production of the chip must
be preserved. The implementation as firmware executed by the CPU provides maximum flexibility
of the WSN node, because the firmware can be easily replaced in the flash memory. The CPU
supplement modules must provide comparable flexibility too. However, since the application
domain is known at design time, the flexibility can be reduced, which enables even more power
reduction.



1.1 Problem Definition 5

Using reconfigurable CPU supplement modules allows to utilize the same WSN SoC in multiple
different application scenarios. The SoC can be produced in higher quantities and sold for a
wider market range, effectively distributing the non-recurring engineering (NRE) costs [Har01a].
Production defects or faults during life-time in certain reconfigurable cells can be bypassed and
thus increase yield and provide fault tolerance. Reconfigurability also allows to fix bugs without
requiring a redesign of the SoC [GCS+06].

Further, the external sensors used by the WSN node can be replaced by newer or different
products, e.g., with lower energy consumption, with higher resolution, or if the original product
is discontinued [GHDG09]. A reconfigurable communication interface, for example, allows to
follow protocol updates and implement newer, more advanced protocols [GCS+06].

To implement such reconfigurable modules, first a suitable reconfigurable target architecture must
be defined. Secondly, the methodology for the development of the reconfigurable modules must
be defined.

1.1.4 Reconfigurable Target Architecture

The reconfigurable target architecture has to be suitable for control logic (e.g., FSMs, timers) as
well as arithmetic functions (e.g., calculations, comparisons). Generally, commercial (re-)configu-
rable logic chips are available since 1970 starting with programmable logic arrays (PLAs) up to
modern complex programmable logic devices (CPLDs) and FPGAs [BR96, Tua01]. Besides that,
a large number of research projects introduced reconfigurable architectures optimized to a range
of criteria, especially flexibility, area, speed, and power consumption [GCS+06, Rab97, SVKS01].

The proposed reconfigurable CPU supplement modules must be included in the custom SoC
or ASIC for a tight coupling and to avoid delays and voltage matching problems, which would
degrade power and area efficiency. Several commercial suppliers offer embedded FPGA (eFPGA)
intellectual property (IP) cores [GZ97], which can be customized to provide exactly the required
functionality and flexibility. For a detailed review see Sec. 2.3.2.

One characteristic of (re-)configurable logic circuits is the logic granularity, which specifies the
size of the fundamental blocks and the amount of data handled by each block [CH02]. It ranges
from fine-grained circuits like FPGAs, where logic functions for each single bit are defined, up to
architectures with coarse-grained blocks like arithmetic and logical units (ALUs) or even proces-
sors (see Fig. 1.4). Coarse-grained logic is better suited for computational tasks. It requires less
configuration data and less routing switches. This leads to lower area requirements and lower
power consumption as well as faster loading of the configuration [HHHN00c].

Figure 1.4: Chips are either fixed function or reconfigurable, where the latter are sub-divided by the granularity
of the reconfigurable logic circuits.
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As stated above, the functionality of the proposed reconfigurable CPU supplement modules covers
fine grained control logic as well as coarse-grained arithmetic functions. For best energy efficiency,
the granularity of the underlying reconfigurable architecture should be matched to the granularity
of the planned functionality. Therefore a multi-granular architecture provides the best solution
[Rab97]. Additionally, since most control functions are performed as FSMs, an implementation
of a single reconfigurable FSM functional unit further improves energy efficiency.

For fine-grained reconfigurable logic, a large number of simple and identical functional units can
be deployed, e.g., look-up tables (LUTs) and D-type flip-flops (D-FFs) in FPGAs. In contrast,
coarse-grained reconfigurable logic either needs very complex and powerful functional units, or
a heterogeneous set of different functional units. The former alternative requires more power
and area, because only a single functionality of every functional unit can be used at a time and
therefore a large portion will be unused.

Desirable high flexibility defeats energy efficiency [WZG+01], therefore the heterogeneous set
of such coarse-grained functional unit should be tailored to the application domain of the CPU
supplement module. This means that instead of a unique and universal coarse-grained hetero-
geneous reconfigurable module template, the set of functional units for, e.g., a sensor interface
module, should be optimized to this application domain, and will most likely be different from
the optimized set for, e.g., a communication interface.

Therefore, for best energy efficiency, the proposed approach should use multi-granular, heteroge-
neous and application domain specific reconfigurable modules.

1.1.5 Design Methodology

At this point, the characteristics of the underlying architecture for the proposed reconfigurable
modules are determined. As outlined above, the second step is the definition of the methodology
for the development of such reconfigurable modules. For commercial reconfigurable chips and
embedded FPGAs, the hardware structures are already defined or are created on customer request
by the supplier. The developer only designs his actual application and the accompanying tools
derive the configuration data for the hardware structures to implement this application.

In contrast, in this thesis a dedicated design methodology to develop the underlying hardware
structures is required. The starting point of the design methodology is the demand for a recon-
figurable module, given by a product development or research interest, and the specification of
the required functionality. The result and the deliverable of the design methodology is an IP core
[GZ97] of the reconfigurable module, which can be integrated in an SoC (see Fig. 1.5). Addition-
ally, the result includes a mechanism to generate the configuration data, which implements the
actual application, for this specific reconfigurable module instance.

To locate the proposed design methodology and to analyze prior research on design and deploy-
ment of application domain specific as well as universal reconfigurable logic, the following two
design phases are defined (see Fig. 1.6):

Pre-Silicon Design Phase: Before production of a semiconductor, in the pre-silicon design
phase, the reconfigurable logic circuit itself is developed.

Post-Silicon Design Phase: After the production of the semiconductor, in the post-silicon de-
sign phase, an actual application is developed and implemented by appropriately configuring
the reconfigurable logic circuit.
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Figure 1.5: Starting with a demand for a reconfigurable module, the result of the proposed design methodology
is an IP core of the reconfigurable module and the configuration data to implement the actual applications.

Demand for Reconfigurable Module
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Specification of
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Figure 1.6: Design flow diagram for reconfigurable logic, reproduced with modifications from [GHG10,
GGHG11] with permission. In the pre-silicon design phase a reconfigurable circuit is developed and more
or less tailored to an application domain. After manufacturing, in the post-silicon design phase, the actual
application is developed. The reconfigurable logic is configured to implement this application.
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In the pre-silicon design phase the desired application scenario of the reconfigurable circuit has to
be analyzed. From this the requirements for logic blocks and connectivity are derived and used
to develop the deployed functional units and routing resources.

In commercial reconfigurable architectures like FPGAs the pre-silicon design phase is performed
by the chip vendor. The internal structures, gates, connections, and switches are designed to meet
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the requirements of as many applications as possible. On the other hand, the usage of FPGAs
covers the post-silicon design phase. The designer utilizes the chips to implement his application.

The distinction between pre- and post-silicon design phase is applicable for universal reconfig-
urable architectures as well as for application domain specific architectures. In both phases an ap-
propriate (explicit or implicit) design methodology and according tools are employed. Specifically
for application domain specific reconfigurable architectures, the pre-silicon design methodology
is often also oriented towards that application domain.

In contrast, the design methodology proposed in this thesis must support the development of
reconfigurable modules for a wide range of application domains, for example sensor interfaces,
communication interfaces, signal processing, serial protocol handling, etc. Therefore the design
methodology must be independent of the application domain of the designed reconfigurable circuit.

1.1.6 Field of Application

This work assumes the development of an SoC or ASIC with the inclusion of one or more re-
configurable CPU supplement modules. The modules are limited to digital logic and do not
include analog circuits. Techniques like dynamic reconfiguration or configuration scheduling are
not considered [SVKS01]. The application scenario of the CPU supplement modules is primarily
low-power design and does not cover, for example, high-performance reconfigurable computing
[CH02]. Further, there is only small interaction between the CPU supplement module and the
CPU, because the module is added to perform autonomous tasks. This also means that the
reconfigurable architecture is not intended as a tightly coupled co-processor or as reconfigurable
instruction set architecture (ISA) extension [TCW+05].

Low-power applications in WSN nodes are the origin and motivation of the proposed design
methodology and the sensor interface task as described in Sec. 1.1.1 is used throughout this
thesis as an example. However, the proposed design methodology for the design of reconfigurable
CPU supplement modules is neither limited to this example nor to WSN applications. It can be
employed to develop reconfigurable modules for a wide range of application scenarios, e.g., WSN
communication interfaces, signal processing, serial protocol handling, etc.

1.1.7 Requirements

From the aforementioned application scenario and use cases, the following requirements for the
design methodology are derived.

• The design methodology must be independent of the application domain of the reconfig-
urable CPU supplement module, i.e., the design methodology must not be specialized for a
certain application domain.

• The defining property of reconfigurable circuits is their flexibility to implement various ap-
plications. For this work, an appropriate way to specify this flexibility is required. Existing
fine-grained homogeneous circuits like FPGAs are specified in terms of available resources
(e.g., number of LUTs, pins, memory). In this thesis, the reconfigurable CPU supplement
modules should be optimized to a given application domain, therefore the design method-
ology must provide a way of specification in terms of possibilities and accomplishable func-
tionality.
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• One requirement for the proposed reconfigurable CPU supplement modules is to provide
flexibility beyond the required functionality and perform new functionality not anticipated
during development. Therefore, the design methodology must allow to include that addi-
tional flexibility, and further a way for its specification.

• For best energy efficiency, the design methodology must support a multi-granular reconfig-
urable architecture.

• In chip design automation, one main principle is the verification of the results to eliminate
expensive revisions of the developed chips. The proposed methodology must provide means
to perform verification and to ensure correct results, i.e., that the generated reconfigurable
CPU supplement module fully complies to and fulfills the specified functionality.

• To enable high productivity, the design methodology must be implemented as a fully au-
tomated design flow which only requires the designer’s manual work to enter information
which specifies aspects of the designed reconfigurable module or where the specific human
intelligence and experience are necessary.

• Further, the design flow must offer user-friendly interfaces. It should especially be easy to
learn and not require special skills.

• The design methodology must have short iteration times between manual interactions, i.e.,
the automated procedures must not lead to long lasting interruptions of the designer’s
working process.

• The methodology and the resulting reconfigurable modules must be independent of the
semiconductor process.

• The methodology must be compatible to commercial ASIC tools as well as custom in-house
design flows.

1.1.8 Scientific Basis

Several similar approaches as proposed in this thesis have been investigated. Some devices of the
commercial Gecko MCUs by Silicon Laboratories Inc. include a “Low-Energy Sensor Interface”
(LESENSE) peripheral [Lar11, Ene14], optimized for capacitive and inductive touch sensors.
The peripheral autonomously performs sensor excitation and measurement to off-load the CPU.
This module is hard-wired and only provides limited configurability. However, it shows that the
industry considers CPU supplement modules to handle external sensors an important approach.
The XiSystem SoC [LCB+06] includes two different CPU supplement modules, one with coarse-
grained logic for pipelined data processing and one fine-grained FPGA for control-dominated
applications. It does not allow to interact between data processing and bit-level functions. Both
CPU supplement modules were developed manually to provide universal functionality and the
user only handles the post-silicon design phase.

For the Nymble System [HLOK13], the user marks regions of algorithms in his C application code.
These are automatically extracted and converted to Verilog code, which implements a hardware
accelerator for the marked region. This approach is intended for high-performance data process-
ing. It generates a non-reconfigurable CPU supplement module and does not allow to specify
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cycle accurate timing. [Hen99] introduced a methodology for the optimization of the energy con-
sumption of a whole SoC with a CPU, caches and accelerators. Although this approach focuses
on energy consumption, it is also limited to data processing and non-reconfigurable accelerators.

An automated methodology for the creation of application domain specific reconfigurable logic
was published by [CH08]. From a set of applications, the required resources are determined.
Then a template for the reconfigurable architecture is optimized using an iterative process. Each
application is mapped and the quality of the mapping is evaluated and used for improvements of
the architecture. However, this approach is limited to coarse-grained data processing applications.
[KMM14] use a generic fine-grained FPGA fabric as template to map a set of applications. The
place and route algorithms seek to match instances of the applications and map these to the
same functional units. After an iterative optimization, all unused resources are removed and
the remaining reconfigurable resources are replaced by simplified logic to switch between the
applications. Therefore this approach does not provide flexibility for new applications.

The examples show that previous work concentrates on data processing or does not provide
enough flexibility. To the best of the authors knowledge, no design methodology which optimizes
reconfigurable modules to a given application domain, and which support control-dominated tasks
and data processing for ultra-low-power applications have been shown.

1.1.9 Specific Problem Definition

To reduce the energy consumption of WSN nodes, tasks performed by the CPU are reassigned to
autonomous CPU supplement modules. These modules have to be reconfigurable to be used in
different application scenarios. The specific problem addressed by this thesis is the appropriate
methodology for the development of such reconfigurable CPU supplement modules.

1.2 Hypotheses

Based on the existing research and specific problem definition for the proposed design methodol-
ogy, the following qualitative and quantitative hypotheses are postulated.

Hypothesis 1: Feasibility of Design Methodology

The proposed design methodology leads to a working reconfigurable CPU supplement module
which provides the full specified functionality plus additional flexibility to implement new func-
tionality. This hypothesis is evaluated by developing a reconfigurable module for a WSN node
sensor interface with the proposed design methodology using a set of target applications. The
resulting IP core is integrated in an SoC and manufactured. The hypothesis is provisionally ac-
cepted, if the reconfigurable CPU supplement module IP core in the SoC correctly performs the
functionality of the target applications, and if it correctly performs new and different applications.
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Hypothesis 2: Energy Reduction

The proposed design methodology leads to a reconfigurable CPU supplement module, which
energy consumption is lower than the energy consumption of a CPU, both performing the same
task and implemented in the same semiconductor technology. To evaluate this hypothesis, the
sensor interface task is once performed by the reconfigurable module, and once by the CPU, both
in the manufactured SoC. The hypothesis is provisionally accepted, if the energy consumption of
the reconfigurable module is lower than the energy consumption of the CPU.

Hypothesis 3: Area Reduction

The proposed design methodology leads to a reconfigurable CPU supplement module, which chip
area is smaller than the chip area of the parallel non-reconfigurable implementation using a tra-
ditional ASIC design flow. Further, the proposed design methodology leads to a reconfigurable
module, which chip area is smaller than the chip area of an (embedded) FPGA with the full
functionality. To evaluate the first sub-hypothesis, all target applications used to specify the
functionality of the reconfigurable modules are implemented concurrently, together with the re-
quired multiplexers, in the same process technology as the SoC. The hypothesis is provisionally
accepted, if the reconfigurable CPU supplement module requires less chip area than the imple-
mentation of all target applications in parallel. To evaluate the second sub-hypothesis, each
target application is individually implemented using an (embedded) FPGA. The hypothesis is
provisionally accepted, if the reconfigurable module requires less chip area than the chip area of
an (embedded) FPGA, which provides exactly the amount of resources as required by the target
application with the highest resource utilization.

Hypothesis 4: Configuration Data Reduction

The proposed design methodology leads to a reconfigurable CPU supplement module, which re-
quires less configuration data than an (embedded) FPGA with the same functionality. To evaluate
this hypothesis, each target application is individually implemented using an (embedded) FPGA.
The hypothesis is provisionally accepted, if the reconfigurable module requires less configuration
data than an (embedded) FPGA, which provides exactly the amount of resources as required by
the target application with the highest resource utilization.

1.3 Goals and Tasks

The task addressed in this thesis is the development of a design methodology for reconfigurable
CPU supplement modules. All existing approaches are targeted to computing and data processing
and do not provide means for control-dominated tasks. The main challenge of this work is to
extract and use applicable concepts from existing approaches and to introduce new concepts for
control logic, and finally to integrate these to a homogeneous methodology.

The scientific method for the development of the proposed design methodology and for the vali-
dation of the hypotheses is divided in the following tasks:

1. Scientific development of the proposed design methodology for reconfigurable modules, based
on prior research, and evaluation and comparison to alternative solutions.
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2. Implementation of the design methodology as an automated design flow.

3. Utilization of the design flow to develop a reconfigurable CPU supplement module, integra-
tion into an SoC, and production of the SoC.

4. Test, characterization, and measurement of the SoC.

5. Evaluation of the results and validation of the hypotheses.

1.4 Contributions

This thesis extends the state-of-the-art by the following core contributions:

• Design Methodology. The main contribution of this thesis is a design methodology to
develop reconfigurable CPU supplement modules which are optimized for a given application
domain (Ch. 3). To the best of the authors knowledge, the introduced design methodology
is the first which is universal and independent of the application domain, especially by the
concurrent support of both, control-dominated tasks and data processing.
The design methodology was used to implement a reconfigurable module for the sensor
interface task in a WSN SoC. This application domain includes control-dominated tasks as
well as data processing. The experimental results show that the design methodology leads
to a functioning reconfigurable module which correctly implements different variants of the
sensor interface task (Sec. 5.1). Additionally, enough flexibility is provided to implement
new functionality (Sec. 5.6.3). The reconfigurable module requires less power compared to
a CPU to perform the sensor interface task (Sec. 5.3). It requires less chip area (Sec. 5.4)
and less configuration data (Sec. 5.5) than an embedded FPGA.
The design methodology was introduced in section 3 of the book chapter [GW14]. In
[GHG10] and [GGHG11] the foundations and concepts for the required tools were published
(cf. “Early Approach” in Sec. 3.1.5). The full details and the evaluation are published with
this thesis.

• Transition-Based Reconfigurable FSM (TR-FSM). The second core contribution is
a novel architecture for reconfigurable FSMs (Sec. 3.7).
The TR-FSM was included in the reconfigurable module of the WSN SoC as well as in
an earlier manually developed reconfigurable module test chip (Sec. 5.2). The TR-FSM
architecture reduces the power consumption, chip area, configuration data, and propagation
delay time compared to other reconfigurable architectures for FSMs (Sec. 5.8), and allows
straight-forward mapping algorithms [GGHG11].
The TR-FSM architecture was published in the conference paper [GDHG10]. The straight-
forward algorithm to map FSMs to the TR-FSM architecture was published in [GGHG11].
The journal paper [GDHG11] extends [GDHG10] with more details and an evaluation of
the TR-FSM.

Besides these core contributions, this thesis provides the following supplemental contributions:
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• Design Flow. The design methodology was implemented as a fully automated design flow.
This implements the scientific concept as a practical integrated development environment
(Ch. 4) to enable the user-friendly utilization of the design methodology.
The design flow was used to implement the reconfigurable module of the WSN SoC. The
resulting test chip validates the feasibility of the design flow (Sec. 5.1). The design flow is
fully automated to provide high productivity (Sec. 5.6.2).
The design flow is published with this thesis.

• Low-Power Technique. One dedicated application scenario of reconfigurable modules
developed with the design methodology and the design flow is the use as a novel low-power
technique for embedded systems at the architectural level (cf. Sec. 1.1.2). Together with
existing low-power techniques, it provides further reduction of the power consumption. This
is beneficial in always-on applications like WSNs.
The WSN SoC utilizes this low-power technique with the included reconfigurable module.
This enables the reduction of the energy consumption per sensor measurement by a factor
of nearly 180 (Sec. 5.3).
This low-power technique was proposed in the conference paper [GHDG09] and validated
in the journal paper [GGHG11] and in this thesis.

During the development of the design methodology, scientific publications on individual aspects
were contributed:

• The approach to reduce the energy consumption with a reconfigurable CPU supplement
module was evaluated in the conference paper [GHDG09] (cf. Secs. 1.1.2 and 5.3.4).
[GHDG09] Johann Glaser, Jan Haase, Markus Damm, and Christoph Grimm. Inves-

tigating Power-Reduction for a Reconfigurable Sensor Interface. In Proceedings
of Austrochip 2009, Graz, Austria, 7. October 2009.

• In the conference paper [GDHG10] the TR-FSM as a reconfigurable architecture for FSMs
was introduced (cf. Sec. 3.7). The formal description of FSMs, the name, and the analysis
were contributed by Markus Damm, who also attended the conference.
[GDHG10] Johann Glaser, Markus Damm, Jan Haase, and Christoph Grimm. A

Dedicated Reconfigurable Architecture for Finite State Machines. In Reconfig-
urable Computing: Architectures, Tools and Applications, 6th International Sym-
posium, ARC 2010, volume LNCS 5992 of Lecture Notes on Computer Science,
pages 122–133, Bangkok, Thailand, March 2010. Springer Berlin Heidelberg.

• The initial architecture for reconfigurable CPU supplement modules was proposed in the
conference paper [GHDG10]. This also used the TR-FSM as a building block for control-
dominated tasks.
[GHDG10] Johann Glaser, Jan Haase, Markus Damm, and Chritoph Grimm. A

Novel Reconfigurable Architecture for Wireless Sensor Networks. In Tagungsband
zur Informationstagung Mikroelektronik 10, pages 284–288, Vienna, Austria, 7.–
8. April 2010. OVE.

• The foundations of the design methodology for reconfigurable modules and the concept for
the required tools were published in the conference paper [GHG10] (cf. “Early Approach”
in Sec. 3.1.5).
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[GHG10] Johann Glaser, Jan Haase, and Christoph Grimm. Designing a Reconfig-
urable Architecture for Ultra-Low Power Wireless Sensors. In Zabih Ghassemlooy
and Wai Pang Ng, editors, Proceedings of the Seventh IEEE, IET International
Symposium on Communication Systems, Networks and Digital Signal Process-
ing (CSNDSP), pages 343–347, Northumbria University, Newcastle upon Tyne,
United Kingdom, 21.–23. July 2010.

• With this early approach, a reconfigurable module was manually developed and produced
as a test chip. Additionally, the TR-FSM was extended, implemented as a VHDL module,
and integrated in the reconfigurable module (cf. Sec. 5.2). The journal paper [GDHG11]
extends [GDHG10] with more details on the TR-FSM and its characterization according to
chip area, delay, and power consumption.
[GDHG11] Johann Glaser, Markus Damm, Jan Haase, and Christoph Grimm. TR-

FSM: Transition-based Reconfigurable Finite State Machine. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 4(3):23:1–23:14, August
2011.

• More details on the design methodology, the tools, and on the manually developed recon-
figurable module were published in the journal paper [GGHG11], which is an extension of
[GHG10]. The FPGA design used in the evaluation platform to stimulate the test chip was
contributed by Klaus Gravogl.
[GGHG11] Johann Glaser, Klaus Gravogl, Jan Haase, and Christoph Grimm. A Re-

configurable Architecture for Ultra-Low Power Wireless Sensors. The Mediter-
ranean Journal of Electronics and Communications (MEDJEC), 7(3):255–266,
2011.

• In the conference paper [WGS+12] an algorithm for the “Merge” step was published. Clifford
Wolf developed and implemented the optimization algorithm and the tool InterSynth for the
generation of the interconnect. The author of this thesis motivated this tool and contributed
the introduction, reconfigurable hardware structures, related work for the interconnect, and
the design flow integration, and attended the conference.
[WGS+12] Clifford Wolf, Johann Glaser, Florian Schupfer, Jan Haase, and Christoph

Grimm. Example-Driven Interconnect Synthesis for Heterogeneous Coarse-Grain
Reconfigurable Logic. In Forum on Specification and Design Languages (FDL),
pages 194–201, Vienna, Austria, 18.–20. September 2012.

• Clifford Wolf also implemented the free and open-source Verilog synthesis tool Yosys, which
was published in the conference paper [WG13]. The contribution of the author of this thesis
comprises the introduction, the phrasing, and the demonstration at the conference.
[WG13] Clifford Wolf and Johann Glaser. Yosys – A Free Verilog Synthesis Suite.

In Austrochip Workshop on Microelectronics, pages 47–52, Linz, Austria, October
2013.

• With the book chapter [GW14] the conference paper [WGS+12] was extended with the
introduction of the automated design methodology. More details on InterSynth and Yosys
were contributed by Clifford Wolf.
[GW14] Johann Glaser and Clifford Wolf. Methodology and Example-Driven In-

terconnect Synthesis for Designing Heterogeneous Coarse-Grain Reconfigurable
Architectures. In Jan Haase, editor, Models, Methods, and Tools for Complex
Chip Design, volume 265 of Lecture Notes in Electrical Engineering, pages 201–
221. Springer International Publishing, 2014.
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Additional to the scientific publications, the author of this thesis supervised two master theses:

• While the energy consumption of the MCUs in [GHDG09] were determined analytically,
Georg Blemenschitz measured the power consumption of MCUs and the manually designed
reconfigurable module (cf. Sec. 5.3.4) [Ble15]. He used a more complex task and contributed
the firmware of the MCUs, the automation of the measurement, the analysis of the results
(cf. Sec. 5.3.2), and numerous extensions to the evaluation platform.
[Ble15] Georg Blemenschitz. Evaluierung der Reduktion der Leistungsaufnahme durch

eine rekonfigurierbare Architektur. Master’s thesis, Technische Universität Wien,
Institut für Computertechnik, 2015. (in preparation).

• Martin Schmölzer evaluated the semi-automated design methodology using only the tools
Yosys, TrfsmGen, and InterSynth, before the design flow was implemented [Sch14]. He addi-
tionally contributed an extension to the TR-FSM.
[Sch14] Martin Schmölzer. Design of a Flexible Data Path for Heterogeneous Coarse-

Grain Reconfigurable Logic Circuits. Diploma thesis, Vienna University of Tech-
nology, 2014.

Further, the author of this thesis supervised five student projects which developed the serial bus
masters (SPI by Georg Blemenschitz, I2C by Mario Faschang, 1-Wire by Peter Hanger, PWM,
SENT, and SPC by Sebastian Plunger) and the UART module (Armin Faltinger), which were
used in the manually developed reconfigurable module and the WSN SoC (cf. Sec. 5.2).

1.5 Challenges

To reach the goals as defined above, a number of challenging tasks have to be accomplished.

• To specify the functionality of a reconfigurable module, the challenge is to find a suitable
format of specification.

• The scientifically developed design methodology has to be implemented as an actual design
flow. This has to handle a large amount of information in numerous different kinds of
representation. The challenge is, that these representations must be suitable for human
developers as well as automated programs.

• To automate the generation of the reconfigurable module, the challenging task to find the
proper algorithms and the proper electronic design automation tools has to be accomplished.

• To provide a homogeneous design flow, the system integration task of combining a number
of different tools from different vendors, handling multiple different file formats, has to be
performed.

• The requirement for high productivity and a simple to learn design flow poses the chal-
lenging task to concurrently fulfill the contradicting claim for a powerful tool which allows
customization to all of the designer’s requirements.

• The work on the implementation of the design flow requires a broad range of knowledge and
skills, especially from the fields of computer science, computer engineering, and electrical
engineering.
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1.6 Organization of Thesis

The remainder of this thesis is structured as follows: In the next chapter 2 the state-of-the-art is
evaluated and the open topics are defined. Building on this basis, in chapter 3 the new approach
for the design methodology is developed. Following, in chapter 4 this approach is realized as a
complete design flow for reconfigurable modules. This design flow was used to develop an SoC to
demonstrate the methodology and to evaluate the aforementioned hypotheses and requirements
(chapter 5). Finally, in chapter 6 the work and the results are summarized, the scientific con-
tribution is stated, including a discussion of its implications, potential and limitations, and an
outlook for future work is given.



2

State of the Art

As outlined in chapter 1, the motivation for this work is to reduce the power consumption of
embedded systems. This is achieved by supplementing the CPU with dedicated and reconfigurable
hardware modules. These take over a subset of the tasks from the CPU, which in turn can stay
for longer periods in an inactive low-power mode. To locate this approach within the large field of
low-power techniques for embedded systems, in Sec. 2.1 an overview of state-of-the-art techniques
at all levels of design abstraction is given.

To keep the power consumption of these reconfigurable CPU supplement modules as low as
possible, they are optimized for a given application domain. The development of application
domain specific reconfigurable CPU supplement modules involves two distinct areas:

1. application specific dedicated hardware to assist the CPU, and
2. reconfigurable logic.

17
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A large amount of research and development has been conducted in both areas individually,
but also in combination. Relevant contributions will be reviewed in this chapter with a special
focus on CPU supplement modules, low-power approaches, coarse- and multi-granular logic and
applications in WSNs.

It is important to note that there are two levels of abstraction for being application (domain) spe-
cific or application (domain) independent: First, the hardware architecture of a (reconfigurable)
CPU supplement module can be independent or specific to an application (domain). Secondly,
the methodology to design that architecture can depend on the application (domain) or be uni-
versal and independent of the application (domain). Further, a reconfigurable CPU supplement
module can be specific for an application domain, while a hard-wired non-reconfigurable CPU
supplement module can only be specific to a single application, hence the parentheses in the
previous sentences.

To evaluate and compare the reviewed approaches, a classification scheme for common properties
is derived in Sec. 2.2 and will be used in the following sections.

As first aspect of the proposed approach, in Sec. 2.3 reconfigurable CPU supplement modules
are reviewed, which were manually developed for a broad range of applications. These provide
general insight on reconfigurable logic and CPU supplement modules.

In this thesis, the CPU supplement modules are tailored to a specific application domain for
even lower power consumption. Additionally, the design of these should have a high degree of
automation. The automated design of application specific but non-reconfigurable dedicated logic
is investigated in the area of hardware/software co-design, which will be reviewed in Sec. 2.4.

The application domain specific CPU supplement modules developed in the field of hardware/-
software co-design implement a fixed functionality. In Sec. 2.5, research on the fusion of the
two topics of application domain specific CPU supplement modules and reconfigurable logic are
reviewed in particular detail. This is followed by a classification of the reviewed approaches.

In Sec. 2.6 reconfigurable architectures for FSMs are discussed, which are an important element
in logic design. The chapter closes with conclusions on the reviewed works and their assessment
as a basis for this thesis (Sec. 2.7).

2.1 Low-Power Embedded Systems

In nearly all embedded systems, the reduction of the power consumption is of major concern.
The reasons for low-power design can be categorized in three groups:

1. The main goal of high-performance (embedded) systems like desktop computers, servers,
and communication equipment is performance. These systems employ high-performance
semiconductors as CPUs and large FPGAs in which high power density and therefore heat
dissipation occurs. The dissipated power has to be conducted from the gates to the case
and further to the heatsink to limit the die temperature. Additionally, the high supply
current must be conducted to every point on the chip with adequate stability and signal
integrity [RP96]. [FH05] coined the term “power wall” for the limit of power P and clock
period t: P · t3 = const. This means that twice the clock frequency leads to eight times the
power dissipation. Low-power techniques are utilized to address these problems.
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2. Users demand for high performance of (rechargeable) battery powered embedded systems like
smart phones, portable media players, and tablets [Mac04, RP96]. For example, the smart
phone Samsung Galaxy S5 contains a quad core processor with a clock frequency of up to
2.5GHz.1 The rationale of low-power techniques for such devices is to extend the battery
life.

3. Embedded systems supplied from disposable (non-rechargeable) batteries (primary cells)
and/or energy harvesting have to be extreme low power systems. These systems stay in
an inactive sleep or standby state most of the time. [Ozk12] further divides this group:
Firstly, devices with batteries which last for weeks to months. These devices only have little
processing tasks, for example remote controls, portable test equipment, wireless keyboards,
and blood-glucose meters. Secondly, systems which are “barely alive” and stay without
activity for very long periods. The battery lasts for months to years, for example remote
monitoring, utility metering, data loggers, and WSN nodes.

The scope of this thesis is the third case, i.e., systems which have batteries with limited capacity
but should last for months to years and therefore stay in an inactive mode for a large fraction of
time.

In the next section, sources of power consumption are discussed. For these, a large amount of
low-power techniques has been developed which will be summarized in Sec. 2.1.2.

2.1.1 Power Consumption of Embedded Systems

The main power dissipating components of embedded system are semiconductors. The power con-
sumption of CMOS (complementary metal-oxide-semiconductor) chips [RCN03, Tew10, BMM01]
is the sum

P = Pleakage + Pswitching + Pshort-circuit. (2.1)

Pleakage results from non-ideal properties of insulation material. With successive process shrink
this component is increasing. Additionally transistors in the Off-state show residual cur-
rents.

Pswitching = CV 2f
2 reflects the charging and discharging of gate and wire capacitance, with C

being the capacitance, V the supply voltage and f the switching frequency. More pre-
cisely, each net has an individual switching frequency and capacitance, so the equation is a
simplified depiction.

Pshort-circuit accounts for the short time during switching, when both, the top PMOS and bottom
NMOS transistors are conducting and thus shorting the supply rails. This term again is
proportional to the switching frequency as well as the slew rate of the signals, i.e., higher
slew-rate reduces the time and therefore energy of short-circuit conduction.

The leakage power is also referred to as static power, whereas the switching power and the
short-circuit power are conjointly referred to as dynamic power.

The main type of embedded systems related to this thesis are WSNs. One typical task of WSN
nodes is to periodically perform sensor measurements as described in Sec. 1.1.1. In [GHDG09]

1http://www.samsung.com/us/mobile/cell-phones/SM-S902LZKATFN#key-specs [2015-08-20]

http://www.samsung.com/us/mobile/cell-phones/SM-S902LZKATFN#key-specs
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the power consumption of a firmware implementation executed by a CPU was compared to the
power consumption of an implementation using dedicated reconfigurable hardware.

For the firmware implementation five ultra-low-power MCUs were investigated. The energy con-
sumption per sensor measurement cycle is reproduced in the first five bars of Fig. 2.1 and in
the first five columns of Tab. 2.1.2 The values were determined by implementing the sensor in-
terface task as a C function. This was compiled and the resulting assembler instructions were
evaluated to calculate the runtime (yellow) at an operating frequency of 4MHz. Interrupt over-
head (wake-up from low-power mode, interrupt latency, context save, context restore, and return
from interrupt) was calculated from datasheet specifications. The PIC16(L)F72x does not have
individual interrupt vectors, therefore additional overhead to determine the source of the inter-
rupt was considered. Waiting times for the duration of sensor settle (red, 10 µs) and the ADC
conversion (violet, all MSP430: 4.5 µs, PIC16LF72x: 10 µs, ATmega88PA: 25 µs) were assumed
constant. The runtimes were multiplied by the supply voltage of 3V and the current according to
the datasheets. To allow a comparison to the FPGA implementations, the current consumption
values only include the CPU and memories of the MCUs but exclude the peripherals, especially
the ADC. Therefore, all individual values in Fig. 2.1 and Tab. 2.1 comprise the energy consump-
tion to perform one sensor measurement exclusively of the CPU and memories. For example, the
waiting times for the sensor settle and ADC conversion do not include the energy consumed by
the sensor or the ADC.

For the implementation using dedicated reconfigurable hardware, a Xilinx Virtex 4 FX XC4V-
FX20-FF672 FPGA on the ML405 evaluation platform [Xil08] was used. The power supply
circuitry includes shunt resistors. The voltage drop was measured to determine the current con-
sumption of the 1.2V core supply voltage of the FPGA. For the evaluation of the energy per
measurement, the difference between the active and inactive design was used. As mentioned in
Sec. 1.1.2, the hard-coded FPGA implementation was developed in VHDL. For the reconfigurable
FPGA implementation the sensor interface task was realized with a reconfigurable FSM imple-
mented using a BlockRAM (cf. Sec. 2.6). Note that in both cases the integrated PowerPC CPU
was not used.

The detailed energy consumption values show the total energy split in the individual causes. The
largest contributions are the actual sensor interface function, waiting for the sensor to settle,
and waiting for the ADC conversion. This shows that a large part of the energy is consumed
for waiting. On the other hand, the the FPGA implementations directly implement the func-
tionality without interrupt overhead and do not cause additional energy consumption during the
waiting periods. These differences and the lower energy to perform the actual function enable
the reduction of the total energy by a factor of approximately 90.5 compared to the lowest power
MCU.

To reduce the total power consumption of semiconductors, primarily the dynamic power has to be
reduced [DM95, Mac04]. As shown above, the dynamic power depends on the supply voltage and
the frequency. [GHDG09] investigated the potential for energy reduction at decreased frequencies
(see Fig. 2.2, please note the irregular frequency values). The results show that a reduction of
the clock frequency below 1.0MHz does not have a marked impact. The reason is that the actual
sensor interface function (yellow) requires a proportionally longer execution time, which results in
a constant energy consumption. Above 1.0MHz, the energy per measurement increases because
the waiting periods have a constant time and the power consumption linearly depends on the
frequency, hence the energy increases linearly too.

2The sum values were already shown in Fig. 1.3.
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Figure 2.1: Energy consumption of one sensor measurement performed by different architectures, reproduced
with the original raw values from [GHDG09].

MSP430F1232
MSP430F2232

MSP430F5418
PIC16LF72x

ATmega88PA
FPGA Hard-coded

FPGA Reconf.
0

50

100

150

200

250

300

5.612.09

191.48

222.63

189.15

266.22

225.90

En
er

gy
[n

J]

ADC Conversion
Sensor Settle
Return
Context Restore
Function
Call
Determine Source
Context Save
Interrupt
Wakeup

Table 2.1: Energy consumption in nJ of one sensor measurement performed by different architectures, original
raw values from [GHDG09].

MSP430
F1232

MSP430
F2232

MSP430
F5418

PIC16
LF72x

ATmega
88PA

FPGA
Hard-c.

FPGA
Reconf.

Wakeup 21.78 8.03 6.83 20.40 2.70 – –
Interrupt 5.45 6.89 5.85 4.08 7.20 – –
Context Save 10.89 13.77 11.70 6.12 9.00 – –
Determine Source – – – 20.40 – – –
Call 4.54 5.74 4.88 2.04 2.70 – –
Function 80.77 102.13 86.78 122.40 65.70 2.09 5.61
Context Restore 10.89 13.77 11.70 7.14 9.00 – –
Return 4.54 5.74 4.88 2.04 3.60 – –
Sensor Settle 36.30 45.90 39.00 40.80 36.00 – –
ADC Conversion 16.34 20.67 17.55 40.80 90.00 – –
Sum 191.48 222.63 189.15 266.22 225.90 2.09 5.61
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Figure 2.2: Frequency dependence of the energy consumption of one sensor measurement performed with the
MSP430F1232 (please note the irregular frequency values), reproduced with the original raw values from
[GHDG09].
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2.1.2 Low-Power Techniques

In the previous section, the total energy consumption of a semiconductor was reduced by decreas-
ing the operating frequency. This technique is only beneficial to a certain degree. Besides that,
a large number of other power reduction techniques for semiconductors and for whole embed-
ded systems were proposed. The interested reader is directed to the reviews, surveys, editorial
books, and overview papers [Tew10, Mac04, GM02, BMM01, MPS98, RPL96, DM95, CSB92] to
find more information on low-power techniques. In this section, a coarse overview of low-power
techniques mentioned in these works is given. Additional references for specific topics are stated
below.

Low-power techniques are applied at all different levels of abstraction of embedded systems. The
above mentioned works use similar but slightly different categorizations for these techniques. For
this summary a unified categorization is derived from these works together with [Nie98, Mar03,
Hea03].

System Level. The system level defines a whole system or application consisting of multiple
interacting embedded systems and the environment, e.g., a WSN. The main task of a WSN
is to retrieve and communicate environmental information and (if actors are involved) perform
actions depending on that information. [Sar12] links energy and information and formulates ten
information-based principles for ultra-low-power design. One important principle in terms of
WSN is to balance the cost of computation and communication, because computation generally
reduces the amount of information to be transmitted. This is addressed by the topic of data
fusion (also called sensor fusion and information fusion) [LWj11].

Network Level. In WSNs, the RF communication is a major contribution to energy consump-
tion [Roe04, Mah04]. Therefore a large number of protocols optimized for low power consumption,
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but also for low latency, high throughput, high precision synchronization, etc., were developed.
At the MAC protocol layer the access to the shared medium (the RF channel) is organized. The
different protocols optimize the timing, synchronization and duration of listen and transmission
periods as well as the avoidance or handling of collisions to reduce the total energy consumption
of a single node or of the whole network [GL00, HXS+13].

For example, the CSMA-MPS (carrier sense multiple access with minimum preamble sampling)
protocol [MB04] stores information of the time window the communication partner will listen
for communication attempts (plus a correction factor for the drift of the crystals). Further,
it requires a radio transceiver with high bitrate and fast turnaround times between transmit
and receive operation. This is used to quickly alternate sending the data and listening for the
acknowledgment of the receiver. This avoids the need for a network wide synchronization or a
global beacon signal. While other protocols require a wake-up packet which is then followed by a
data packet, CSMA-MPS merges these tasks into one packet and thus further reduces the energy
consumption.

At the routing layer the communication across nodes with no direct connection is managed. This
also includes dynamic routes which, e.g., depend on the current battery level [EAA13]. Instead
of choosing the route which consumes the lowest total power (e.g., by passing the least number
of intermediate nodes), [CT00] found that it is beneficial to route the data along nodes with the
highest battery reserves, e.g., [MMR06].

Operating System Level. In larger embedded systems like smart phones and laptops, but also
in WSN nodes, an operating system is employed, such as Contiki [DGV04] or TinyOS [LMP+05].
The operating system is responsible to manage the resources shared among the tasks. The CPU
execution time is also a shared resource and is managed by the task scheduler. For power reduc-
tion, energy aware task schedulers consider the availability and power consumption of resources
to determine the start time of the tasks.

Dynamic power management switches between different power states of the system (e.g., active,
idle, standby) to activate the required resources. For example, ACPI (Advanced Configuration
and Power Interface) [Uni14] defines one active (S0) and five sleep states (S1–S5). Generally, dy-
namic power management utilizes facilities provided at other levels like adaptive voltage and fre-
quency scaling implemented at the technology level. Operating system level energy optimization
is more efficient when utilizing the knowledge of the individual tasks’ demand for performance.

Algorithm and Software Level. Energy optimization at the algorithm and software level
comprises techniques and knowledge applied during software design. This includes selecting
algorithms with lower power requirements, usually connected to reduced complexity. Several
algorithms can utilize parallel processing offered by the hardware. Additionally, the application
itself can perform power management using more complex information than is available to the
operating system

Compiler Level. Many techniques can be applied directly by the compiler. Since the execu-
tion and storage of software requires energy, optimizing the software for size also optimizes for
speed and power consumption. Energy-aware compilers utilize the knowledge of the underlying
CPU architecture (e.g., register set, pipelines, instruction set architecture (ISA), caches). Highly
optimizing compilers employ knowledge on the different power consumption of the individual
instructions and register allocation. Generally, utilizing the principle of locality (e.g., store data
in registers instead of memory) improves the runtime and the power consumption. Additionally
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CPU-independent code transformations intended to reduce the runtime (e.g., common subexpres-
sion, loop unrolling, see [BFS04]) improve the power consumption.

Architecture Level. Low-power techniques at the architecture level optimize the architecture of
the hardware for energy reduction. A whole WSN node usually consists of a small PCB (printed
circuit board) with a number of components, of which some might have different supply voltage
requirements. This wastes energy in voltage regulators and voltage level translators. To avoid
this voltage matching problem, all components should be integrated in a single SoC [MGH05].

One information-based principle of [Sar12] at the architecture level is the most energy-efficient
trade-off between analog and digital processing. Analog processing consumes more energy the
more precision is required. On the other hand, with less analog processing, faster and thus more
power consuming ADCs and digital circuits are required.

Another power reduction technique at the architecture level is to find an optimum trade-off in
hardware/software partitioning using hardware/software co-design (cf. Sec. 2.4). This means,
that software tasks are moved to hardware accelerators to offload the CPU. The reconfigurable
CPU supplement modules proposed in this thesis are an example for this approach.

Another approach of a low-power technique at the architecture level is to provide parallel or
pipelined processing for applications and algorithms which benefit from these. Several CPU
designs specially optimized for low power consumption were proposed. These employ application
specific or general low-power instruction set architectures and register sets. Ultra-low-power
MCUs provide an active state and a number of low-power states. For example, the Microchip
PIC24 microcontrollers with the nanoWatt XLP technology and the TI MSP430 microcontrollers
have one active and four to five low-power modes [Tew10].

Although larger FPGAs require low-power techniques to avoid problems with heat dissipation and
supply current limitations, several low-power FPGAs offer multiple power modes with full and re-
duced functionality. FPGAs with non-volatile configuration storage avoid the power consumption
for configuration at startup [Tew10, BAPZ09a, BAPZ09b]. Another example is the functional
partitioning of large state-machines with datapath (FSM+D [GR94]) into smaller FSMs and
datapath segments to reduce the power consumption.

Logic Level. Logic synthesis tools perform optimization and transformation of combinational
logic and map the logic to the gate library. The combinational logic optimization includes “don’t
care” optimization, path balancing to reduce glitches, and factorization.

For FSMs, power-aware encoding of the state vector was proposed (cf. Sec. 2.6). For sequential
circuits, flip-flop retiming can reduce the total (spurious) switching activity and thus the power
consumption. A very common and widely used low-power technique at logic level is clock gating,
i.e., disabling the clock signal for a subset of flip-flops. Automatic clock-gating can be performed
for vectored registers, but more power reduction can be achieved by manual clock gating of larger
functional units utilizing higher-level information. [RN00] proposed “Control Generated Clocks”
instead of gated clocks for an FSM+D setup. They use control signals from the FSM for the
datapath as clock signal, which simplifies timing analysis and reduces the power consumption by
up to 73%. It further reduces the gate count.

Circuit Level. Power optimization techniques at the circuit level summarize approaches in-
volving transistors, gates, logic family, signal paths, and routing. This includes the gate library,
e.g., by providing complex gates like AND-OR-invert which can be realized with a low transistor
count. The power is further optimized by utilizing gates with different output strength (transistor
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sizing). Weak drivers are chosen by the synthesis and the place and route tools for short nets
with a low fan-out while strong drivers are used to drive high fan-out nets. Besides reducing the
signal delay, this further reduces the signal transition times, which have a large impact on the
short-circuit power (see Sec. 2.1.1).

Most CMOS semiconductors are built using static logic, i.e., all signals are driven by output
drivers either high or low. Another technology called dynamic logic utilizes the inherent capaci-
tance of wires and gates to store signal values. In this technology, combinational gates also have
a clock input which periodically updates the output value. Due to leakage, the clock frequency
has a lower limit. Dynamic logic does not lead to glitches, because each gate only has one tran-
sition per clock cycle. Further, it does not have short-circuit currents during signal transitions
and has smaller capacitances to charge and discharge. On the other hand, even combinational
gates with constant values require switching activity, but in total, it has potential for lower power
consumption than static logic.

Another alternative to conventional CMOS logic is complementary pass-gate logic (CPL), which
implements logic cells with pass-transistors. This simplifies the logic cells and reduces the transis-
tor count. On the other hand, each pass-transistor causes a voltage drop, which reduces the drive
current and the speed. The voltage drop is a special concern at low supply voltage in low-power
designs. Depending on the actual application, pass-transistor logic can provide power reduction
compared to conventional CMOS circuits.

Technology Level. Power optimizations at technology level affect the properties of transistors
and the electrical circuits on the chip. This is performed in the process development at the
semiconductor manufacturing fab. The designer or layouter only selects the technology or employs
the optimized devices. As shown in Sec. 2.1.1 the dynamic power quadratically depends on the
supply voltage. Unfortunately, the propagation delay time of logic gates increases when the supply
voltage is reduced. Therefore various approaches were applied to use multiple supply voltages
(higher voltage for timing critical paths and lower voltage for relaxed paths to save energy), but
this requires level-shifters and separate power distribution networks.

Using a variable supply voltage also requires to inversely variate the clock frequency (dynamic
voltage and frequency scaling, DVFS) using a closed-loop control circuit. This allows the dynamic
adaption of the trade-off between circuit performance and energy efficiency to the demands of the
application. The static leakage current of metal-oxide-semiconductor (MOS) transistors depends
on their threshold voltage VT, i.e., a lower VT (and therefore higher difference to the supply
voltage) provides higher speed but also higher leakage. Many fabs offer distinct sets of logic
cells with higher and with lower VT for relaxed and for timing critical applications, respectively.
In simple applications, the whole circuit is designed with one of these sets. For demanding
applications, synthesis tools can optimize the circuit by choosing the cells with higher and lower
threshold voltage for slower or timing critical paths, respectively. Another technique at the
technology level is termed variable threshold voltage. A negative bias voltage is applied to the
substrate of inactive modules. This locally increases the threshold voltage and therefore reduces
the leakage current.

At the beginning of this section a classification of the reasons to reduce the power consumption
of embedded systems and integrated circuits was introduced. This was followed by an overview
of the sources of power consumption. Finally an overview of widely used low-power techniques,
categorized according to their design abstraction level, was given. This shall provide a framing and
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motivation for the approach proposed in this thesis, i.e., to supplement the CPU with autonomous
reconfigurable modules.

However, the goal of this thesis is the scientific development a methodology for the design of
such autonomous reconfigurable CPU supplement modules. Therefore, in the next section, the
properties of reconfigurable logic and CPU supplement modules are summarized and a scheme
for the classification is developed. This is used in the following sections for the review of similar
approaches and methodologies, which constitute the scientific basis for this thesis.

2.2 Properties and Classification of Reconfigurable Logic

When the CPU of embedded systems is supplemented with dedicated logic, two different para-
digms of functionality are involved. The CPU executes programs as a serialized stream of in-
structions. In contrast, the functionality of a logic circuit is fully parallel. To emphasize this
distinction, the following terms are used in this thesis. The flexibility of CPUs is denoted by
“programmable”, while the flexibility of logic is termed “configurable”. Further, the specifica-
tion of the functionality of CPUs is called a “program”, “software”, or “firmware”,3 while the
specification of the functionality of configurable logic is termed “configuration” or “configware”
[HM99].

In the past decades, a large amount of research on CPU supplement modules and reconfigurable
logic was conducted. The main goal of the work on supplementing the CPU with dedicated hard-
ware was to accelerate computational tasks. The interested reader is directed to the following
books and survey papers: For a historical retrospect see [Est02]. A special focus on low-power
signal processing can be found in [Rab97]. [Har01a, Har01b] review a large number of archi-
tectures for reconfigurable computing including programming and workflows and group them by
the interconnect topology. A detailed overview of fine-grained and coarse-grained architectures
as well as topics on the development and run-time reconfiguration are discussed in [CH02] and
[Com03].

[GCS+06] provides a comprehensive overview of past works and architectures covering topics
on heterogeneous and non-square reconfigurable hardware, power-aware tools, and verification.
In the book [HD08] a large number of works for reconfigurable computing using fine-grained
FPGAs are discussed. The first two chapters of the book [VS07] provide a survey of fine-grained
and coarse-grained computing. These are followed by a large number of detailed case studies.
The second chapter of [TSV07] provides a thorough overview of coarse-grained architectures and
discusses general issues and the design, computation, academic and commercial platforms, and
design automation software. [PTD13] reviews the research on reconfigurable computing. They
provide an overview of architectures and technologies, languages and compute models, tools,
run-time reconfiguration, and applications.

Note that many authors use the term “application domain” for a wide field, e.g., digital signal
processing for any kind of signals and algorithms. In this thesis, the term is used for much
smaller fields. For example, a reconfigurable CPU supplement module could be developed for
the application domain “sensor interface”. The specification also includes the sensor types and
the post-processing of the values. Therefore, here the term “wide application domain” is used to

3A program and software are executed using an operating system. Firmware is directly executed on a processor
or microcontroller, i.e., without an operating system.
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denote the former meaning and “narrow application domain” or just ”application domain” for
the latter meaning.

For the analysis and comparison of previous research, in the following sections the relevant prop-
erties and characteristics of the investigated approaches have to be defined. These properties
allow to categorize the reviewed approaches in a classification scheme. All works reviewed in the
next sections are summarized in Tab. 2.2 on p. 48 using this scheme. In the rest of this section,
this classification scheme is described. It integrates and extends the categorization schemes used
in the above cited works and of [SVKS01] and [Gre02].

• As defined in Sec. 1.1.5, the development and deployment of reconfigurable circuits com-
prises the pre-silicon design phase and the post-silicon design phase. The works reviewed
in the following sections can be categorized by the covered design phases.
Note that some of the reviewed approaches generate application domain specific but non-
reconfigurable logic circuits. To enable the categorization of these works, the definition of
pre- and post-silicon design phases is generalized, so that the design of non-reconfigurable
logic circuits is considered as pre-silicon design phase.

• The second property of the reviewed works is their flexibility in the post-silicon design
phase:
– hard-wired, non-reconfigurable circuits,
– multi-mode circuits, which only support a defined set of switchable modes,
– application domain specific reconfigurable logic which supports even new but similar

applications, and
– full flexibility, which is only limited by the available resources.

• As already mentioned in Sec. 1.1.4, the granularity of reconfigurable logic ranges from
fine-grained to coarse-grained and also includes the combination of both as multi-granular
circuits.

• The topology of the interconnect of reconfigurable logic is defined with three properties:

– It can either be regular or non-regular.
– Further, the topology can be flat or hierarchical. For hierarchical topologies, at each

level a sub-topology with different characteristics is possible.
– The third property describes the possible connections [WGS+12, Har01a], for example:

∗ connections from all outputs to all inputs using multiplexers (MUXes), but this
requires a large circuit overhead,

∗ connections from a subset of outputs to a subset of inputs using MUXes,
∗ alternating layers of functional units and interconnecting MUXes,
∗ 1D chain of functional units,
∗ 2D mesh interconnect like used in most commercial FPGAs,
∗ multistage interconnect networks (MINs),
∗ bus topology, as used in many microprocessors and microcontrollers,
∗ crossbar topology, and
∗ tree based interconnect topology.

• The reconfigurable logic can be optimized towards data processing or towards bit-level,
control-dominated and event-based wide application domain.
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• The main goal of the optimization can be performance, low power consumption, chip area,
or flexibility. Also special extensions to improve the synthesis, the mapping of logic, or
place and route algorithms are goals for optimization.

• Another property is the time and the frequency of configuration:
– Although not considered reconfigurable logic, hard-wired logic circuits are “configured

at design time” [SVKS01].
– The configuration can be stored in one-time-programmable memory (e.g., with fuses)

or in non-volatile memory (e.g., with EEPROM, electrically erasable PROM, cells
[BAPZ09a]).

– The term “configurable logic” is used for circuits, which are configured only once (e.g.,
upon start-up) or very infrequently.

– In contrast, the term “reconfigurable logic” is used for circuits, which are reconfigured
on a regular basis, e.g., to adapt a network protocol handler to changing protocols.

– With dynamic reconfiguration, the configuration is changed frequently during the op-
eration to reuse functional units.

• For reconfigurable as well as hard-wired CPU supplement modules, the coupling with the
CPU influences latency and bandwidth [TCW+05].
– External stand-alone processing units are placed in a separate chip.
– Attached processing units and peripherals like GPIOs or timers are directly connected

to the on-chip bus.
– A co-processor is directly connected to the CPU.
– Supplement modules can also be integrated into the CPU, e.g., to implement custom

ISA extensions.
– Finally, the CPU itself can be embedded in reconfigurable logic, which is in fact a

reversed scenario.

• Related to the coupling, the autonomy of a CPU supplement modules ranges from supple-
ment modules which are controlled by the CPU and only perform actions initiated by the
CPU to supplement modules which themselves control the CPU (e.g., issuing interrupts).

• The abstraction level of the design entry for (reconfigurable) logic can range from
– graphical architecture generator,
– domain-specific languages,
– programming languages (e.g., used in high-level synthesis),
– hardware description languages like VHDL and Verilog, to
– logic netlists.

Note that some of the above properties are pure categories, but others allow to order and sort
the “values”. With this set of properties the approaches investigated in the following sections will
be categorized.

In the next sections, previous research on application domain specific and on reconfigurable
CPU supplement modules is reviewed. This includes works dating back to the origins of these
fields which introduced major contributions also relevant for this thesis. Especially the research
reviewed in Sec. 2.5 partly shows a large overlap with this thesis. The relevant contributions but
also the open topics are discussed in detail.
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2.3 Application Domain Independent Reconfigurable CPU Supple-
ment Modules

As stated above, the approach proposed in this thesis merges two distinct areas of research:
1) application specific dedicated hardware to assist the CPU, and 2) reconfigurable logic. In this
section, approaches which cover both areas are reviewed, but contrary to this thesis these recon-
figurable logic modules were manually developed and only slightly tailored to a wide application
domain. Therefore these architectures are mostly universal. The wide application domain was
given and the work performed and the concepts employed in the pre-silicon design phase were
fixed and targeted towards that given wide application domain. In other words, the pre-silicon
methodology was not independent of the wide application domain. The pre-silicon design phase
was performed by the vendor. The user only performs the post-silicon design phase.

In Sec. 2.3.1, commercial reconfigurable CPU supplement modules are reviewed. In Sec. 2.3.2
commercial embedded FPGAs as CPU supplement modules are investigated. Finally, in Sec. 2.3.3
academic research on reconfigurable embedded FPGAs is discussed.

2.3.1 Commercial Reconfigurable CPU Supplement Modules

Commercial microcontrollers (MCUs) optimized for low-power operation are frequently employed
in applications like WSNs. All MCUs provide a comprehensive set of peripherals like timers,
serial protocol interfaces, ADCs, etc. which operate autonomously and in parallel to the CPU.
Therefore these peripherals themselves are CPU supplement modules and most peripherals have
some degree of configurability. However, the flexibility is limited and specific to that peripheral,
e.g., the direction of a counter, or the number of stop bits of an UART (universal asynchronous
receiver and transmitter).

In this section generic reconfigurable CPU supplement modules of current devices on the market
are reviewed. The selected devices are microcontrollers, but not (floating-point) co-processors,
application processors, or media processors because the focus of this work is on ultra-low-power
devices and control-dominated applications.

Microchip Configurable Logic Cell (CLC)

A subset of the low-power 8-bit PIC microcontrollers, e.g., the PIC16(L)F150x series, from Mi-
crochip Technology Inc. are equipped with up to four “Configurable Logic Cell” (CLC) modules
[Mic14].4 Each CLC module provides a simple reconfigurable logic function. The inputs and
outputs can be selected from pins and internal peripherals. A change in the output signal can
further generate an interrupt to notify the CPU. The logic function can be configured as one of
eight possible combinational (e.g., “(A and B) or (C and D)”) and sequential (e.g., D-FF with
set and reset) types.

The CLC modules offer only very basic functionality but can reduce the number of external
components as well as avoid CPU intervention.

4http://www.microchip.com/clc [2015-08-20]

http://www.microchip.com/clc
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Analog Devices Programmable Logic Array (PLA)

Analog Devices Inc. offers the ADuC70xx series of microcontrollers equipped with “Programmable
Logic Array” (PLA) peripherals [Ana06]. The MCUs are not low-power devices (slow wake-up
from sleep mode, high power consumption even during sleep mode), but the reconfigurable CPU
supplement module is of interest in this section.

The CPU supplement module offers 16 PLA elements, which have a two-input LUT and a D-FF,
which can be bypassed.5 This is a fine-grained architecture, very similar to FPGAs. It offers full
flexibility (for which it appears to be optimized). The inputs and outputs of the PLA elements
can be GPIOs of the MCU, a small set of other peripherals, registers accessible by the CPU,
interrupts, and other PLA elements. The PLA operates fully autonomous from the CPU, even
in sleep mode.

Using LUTs (like FPGAs) and many possible connections between the PLA elements enables
the implementation of a large number of logic functions, although the total number of only 16
elements is a limiting factor.

Energy Micro Low-Energy Sensor Interface (LESENSE)

Silicon Laboratories Inc., former Energy Micro AS, introduced a dedicated reconfigurable sensor
interface “Low-Energy Sensor Interface” (LESENSE) as a proprietary peripheral block [Lar11,
Ene14] in a subset of the low-power Gecko 32-bit microcontroller series. The LESENSE peripheral
is a dedicated low-energy sensor interface and is reviewed here because its application domain is
similar to the sensor interface task outlined in Sec. 1.1.1. It is especially tailored to capacitive
and inductive proximity sensing (including excitation), e.g., touch buttons, and general analog
sensors. A total of 16 external sensors can be monitored.

The LESENSE peripheral is fully autonomous and continues its operation in low-power modes
while the CPU is inactive. It can generate a wake-up event for the CPU, thus effectively off-
loading the CPU from sensing tasks. Its flexibility is very limited within its application domain
of a sensor interface for capacitive and inductive proximity sensors. The LESENSE peripheral
is optimized for low power consumption. It is a manually designed module, tailored for specific
sensing tasks, i.e., it implements a fixed application domain.

Cypress Programmable System-on-Chip (PSoC)

Cypress Semiconductor Corporation produces MCUs marketed as “Programmable System-on-
Chip” (PSoC). The chips only have a small number of hard-wired peripherals, while all other
required peripherals should be implemented using the programmable analog and digital blocks.
These are configured by the firmware through registers at startup or during runtime.

The older generation of PSoC 1 MCUs [Cyp12b, MSB02] will not be discussed here. The newer
generation of PSoC 3 to 5 MCUs [Cyp12a] use an 8-bit 8051 and a 32-bit ARM CPU. The “digital
system” and the “analog system” are different from the PSoC 1 MCUs. The chips contain the
hard-wired peripherals real time clock, watchdog timer, I2C master/slave, USB (universal serial
bus), timer/counter/PWM (pulse-width modulation), and CAN (controller area network). All

5The name “Programmable Logic Array” (PLA) is not related to reconfigurable sum-of-product type devices
[Kat94].
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other required peripherals should be implemented using the configurable logic. The “digital
system” holds an array of up to 24 “universal digital blocks” (UDBs) connected with a flexible
routing of custom topology. These allow the implementation of digital functions like timers,
UART, I2C (inter-integrated circuit), SPI (serial peripheral interface) and cyclic redundancy
check (CRC).

Cypress offers a large library of prepared configurations with their design tool. These include
UART, SPI, pseudo random sequence generators, timer and counter, PWM, etc. The tool also
allows to implement custom functions using Verilog [MF14]. It is also possible to design an
application by directly setting the appropriate register values.

The approach proposed in this thesis only includes digital logic, therefore the analog system
will not be further evaluated. The newer generation of PSoC devices offers generic, fine-grained
product-sum-term logic which allows the implementation of (limited) custom logic. Additionally
a coarse-grained datapath with dynamic reconfiguration allows the implementation of logic and
arithmetic operations but its flexibility is still limited to the application domain of the func-
tional units of the UDB datapath. Many functions require frequent interaction with the CPU.
Additionally, the digital blocks as well as the routing are very versatile, therefore cause a high
power consumption. In 2012 Cypress introduced6 the PSoC 5LP series, which is optimized for
low power consumption [Cyp15b], and in 2015 the low-power PSoC 4 BLE series with integrated
Bluetooth Low Energy radio [Cyp15a] were introduced.7 Both product series are appropriate for
WSN nodes.

Texas Instruments Control Law Accelerator (CLA)

The Texas Instruments Incorporated (TI) microcontrollers of the Piccolo F280xx and the Delfino
F283xx series for real-time control include the programmable “Control Law Accelerator” (CLA)
peripheral. This peripheral is a small and simplified CPU tailored for single precision floating
point processing. Its main purpose is the autonomous handling of control loops with low latency,
e.g., motor control, and factory automation.

The CLA has dedicated code and data memories and has access to shared peripherals, especially
the ADC and PWM modules, i.e., it is an attached processing unit. Communication with the
main CPU is handled through shared memories, messages and events. The CLA is programmed
using a special assembly language or using a reduced implementation of the C language [Tex15a].
The binary program code is copied from the main CPU to the CLA code memory and can be
changed at any time, analogous to reconfigurable logic. After this setup procedure, the CLA is
fully autonomous.

The CLA peripheral is clearly intended to off-load the CPU, but its main purpose is the handling
of high performance real-time control loops, so it can not be considered a low-power approach.

2.3.2 Commercial Embedded FPGAs

The five architectures reviewed in the previous section are generic but limited (Microchip CLC,
Analog Devices PLA), designed for a specific narrow application domain (Energy Micro LESEN-
SE), or powerful but tailored to a specific wide application domain (Cypress PSoC, TI CLA).

6http://www.cypress.com/?rID=73152 [2015-08-20]
7http://www.cypress.com/?rID=108151 [2015-08-20]

http://www.cypress.com/?rID=73152
http://www.cypress.com/?rID=108151
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In this section universal and powerful fine-grained embedded FPGAs (eFPGAs) are reviewed. In
chapter 3 of his PhD thesis [PSH04], the author divides eFPGAs in

• adding reconfigurable FPGA structures into an SoC, similar to an IP core [GZ97], and

• extending an FPGA chip by typical elements of an SoC, especially CPUs, termed Systems-
on-Programmable-Chips (SoPC).

eFPGA fabrics are coupled with the CPU and utilized as CPU supplement modules. It is also
possible to couple the eFPGA fabric with other components of the SoC, but here only CPU sup-
plement modules are investigated. In chapter 3 of [PSH04] a survey of a number of architectures
is given and assigned to these two categories. Notable products in the second category are Xilinx
Virtex II Pro FPGAs and Xilinx Virtex 4 FX FPGAs. These are powerful FPGAs which include
up to four hard-wired PowerPC CPUs.

In 2011, Xilinx introduced8 the Zynq-7000 All Programmable SoC, which uses the opposite ap-
proach, i.e., an SoC which includes a large eFPGA fabric. The SoC includes two ARM Cortex-A9
CPUs, external memory interfaces, USB 2.0, SD card interface, Gigabit Ethernet, UART, CAN,
I2C, SPI, and ADCs. The interface from the CPU to the eFPGA offers multiple up to 64-bit
AMBA AXI bus (ARM advanced microcontroller bus architecture, advanced extensible interface
bus) interfaces [Xil14d].

In 2014 the extended version Zynq UltraScale+ MPSoC was announced9 by Xilinx. The devices
include four 64-bit ARM Cortex-A53 CPUs plus two 32-bit ARM Cortex-R5 CPUs, a graphical
processing unit, external memory interfaces, USB 3.0 and 2.0, SD card interface, SATA, Display-
Port, Gigabit Ethernet, PCI-Express, UART, CAN, I2C, SPI, and ADC. The interface from the
CPU to the embedded FPGA offers multiple up to 128-bit AMBA AXI bus interfaces [Xil15e].

In 2012, Altera introduced10 the SoC FPGAs, which include two ARM Cortex-A9 and eFPGA
fabric. The selection of hard-wired IP cores and the interfaces between the CPU and the eFPGA
fabric in these devices is similar to the Xilinx Zynq-7000 [Alt15a]. In 2013, Altera announced11

the Stratix 10 SoC FPGA. The devices include four 64-bit ARM Cortex-A53 CPUs, but not much
more information is available at the time of writing [Alt15b].

The Xilinx and Altera SoC FPGAs have a high speed system bus interface between the CPU and
the reconfigurable fabric. This is beneficial for a wide range of applications. The CPUs can execute
an operating system like Linux and application software, while in the eFPGA fabric custom
peripherals like graphic controllers, special network interfaces, real-time control, digital signal
processing, encryption, etc., can be implemented [Xil15c]. Typical applications are automotive
driver assist systems, data center acceleration, software defined radio, motor control, robotics,
etc. [Xil15d].

The Xilinx and Altera SoC FPGAs are sold as chips with no possibility for customization of the
silicon devices themselves. However, the user utilizes the FPGA fabric to implement the desired
custom logic functionality. In contrast, when developing a custom SoC, eFPGA IP cores are
available.

8http://press.xilinx.com/2011-02-28-Xilinx-Introduces-Zynq-7000-Family-Industrys-First-Extensible-

Processing-Platform,1 [2015-08-20]
9http://press.xilinx.com/2014-02-24-Xilinx-Introduces-UltraScale-Multi-Processing-Architecture-for-

the-Industrys-First-All-Programmable-MPSoCs [2015-08-20]
10http://newsroom.altera.com/press-releases/nr-cyclonev-soc-shipping.htm [2015-08-20]
11http://newsroom.altera.com/press-releases/nr-altera-arm-a53.htm [2015-08-20]

http://press.xilinx.com/2011-02-28-Xilinx-Introduces-Zynq-7000-Family-Industrys-First-Extensible-Processing-Platform,1
http://press.xilinx.com/2011-02-28-Xilinx-Introduces-Zynq-7000-Family-Industrys-First-Extensible-Processing-Platform,1
http://press.xilinx.com/2014-02-24-Xilinx-Introduces-UltraScale-Multi-Processing-Architecture-for-the-Industrys-First-All-Programmable-MPSoCs
http://press.xilinx.com/2014-02-24-Xilinx-Introduces-UltraScale-Multi-Processing-Architecture-for-the-Industrys-First-All-Programmable-MPSoCs
http://newsroom.altera.com/press-releases/nr-cyclonev-soc-shipping.htm
http://newsroom.altera.com/press-releases/nr-altera-arm-a53.htm
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NanoXplore offers the NX-eFPGA embedded FPGA. It uses fine-grained reconfigurable logic with
4-input LUTs and stores the configuration in SRAM cells [Nan14]. The IP core is delivered as a
hard macro and generated by a proprietary layout generator. The eFPGA IP core can include
memory, digital signal processing functions, and user-specific functions.

ADICSYS offers the efpga embedded FPGAs [ADI13]. The product is delivered as a soft IP core
and synthesized by the customer using standard ASIC synthesis tools. The FPGA architecture
can be customized for its size, LUT style, and routing density.

Menta SAS offers the eFPGA Core IP which is delivered either as hard macro or as synthesizable
soft macro. The fabric uses LUTs with a customizable number of inputs and can include memory
blocks, arithmetic blocks, and custom blocks. The routing resources as well as the size and the
outline of the IP can be customized to the customers requirements [Men12, Men10a, Men10b].

There is no dedicated definition of the interface between a CPU (or any other SoC core) and
these three eFPGA IP cores. However, the fabrics can be configured for any number of input and
output signals, and therefore tailored to the required interface.

The fabric of the above SoC FPGA chips and the eFPGA IP cores contains fine-grained logic
blocks and coarse-grained functional units like multipliers and RAMs. The signals are routed
through a mesh interconnect. The eFPGAs provide full flexibility which is only limited by the
available resources. The application scenario is user defined and can include control-dominated as
well as data processing tasks. The fabrics are optimized for performance and for flexibility. The
configuration can be applied and changed frequently, and the Xilinx and Altera chips also support
partial reconfiguration. The applications realized in the eFPGAs can perform autonomous tasks,
can depend on the CPU or can control the CPU. The design entry for the reviewed eFPGAs are
hardware description languages (HDLs) like VHDL and Verilog.

2.3.3 Research on Embedded FPGAs

In the previous section, commercial eFPGAs were reviewed. In this section, research on the op-
timization of characteristics of the (embedded) FPGA fabric are investigated. As in the previous
section, the user only performs the post-silicon design phase. However, here the research considers
the FPGA fabric itself and therefore represents the pre-silicon design phase.

The Triptych FPGA Architecture

An early example of optimizations of the interconnect of FPGAs is [BEHB95]. They report
that the chip area of FPGAs with a mesh interconnect topology is strictly separated between
the functional units (FUs) and the routing resources. To allow more complex applications to be
routed, the routing resources are increased. On the other hand, the utilization of functional units
is decreasing. The Triptych FPGA architecture [BEHB95] introduces FUs, which can be utilized
either as logic function or as routing resources (termed “routing and logic blocks”, RLBs).

One important observation is, that for combinational logic the fan-in of logic cells often has a
triangular shape, i.e., signals from multiple other cells gather at a cell. Also the fan-out of a
cell often has a triangular shape, i.e., the output signal is distributed to multiple other cells. To
support this typical signal flow, the Triptych FPGA architecture adds diagonal routing resources
to connect each RLB with its north-east, north-west, south-east, and south-west neighbors.
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This work on fine-grained FPGA fabrics shows important improvements on routing utilization
and logic structures. Using FUs for routing can save up to three signals of the interconnect and
the integration of diagonal connections is now common in FPGAs. Further, the area utilization
and the signal propagation delay were reduced.

Optimization of the Interconnect Power Consumption

While the previous approach optimized the interconnect topology to reduce chip area and increase
the utilization of the logic blocks, [KR98] at the University of California, Berkeley optimized the
energy consumption with only a minimal impact on speed. The authors measured the capacitance
and energy consumption of the internal resources of the Xilinx XC4003A FPGA. 65% of the total
energy is dissipated by the interconnect, 21% by the clock distribution, 9% by the IOs, and only
5% by the logic functions.

To reduce the interconnect power consumption, the utilization of connections with different
lengths were determined. For a set of benchmark netlists, 50% of the interconnect wiring uses di-
rect connections between complex logic blocks (CLBs) and another 37% of the interconnect wiring
uses connections to the second next CLBs. Only 10% of the interconnect wiring uses longer wires.
This shows that optimizing short wires has a high impact on the total power consumption.

To reduce the interconnect capacitance and therefore power consumption, a hierarchical intercon-
nect was introduced. At the lowest level, local interconnect between the logic cells was improved
for high utilization and low capacitance, also adding diagonal elements as [BEHB95]. For longer
connections, wires at the higher levels of the interconnect hierarchy were added.

The authors methodically investigated the main contributions of power consumption and ad-
dressed these for the optimization by introducing a hierarchical interconnect.

A similar approach was used by [GZR99], also at the University of California, Berkeley, who also
introduced a hierarchical interconnect. The interconnect was organized in three levels. At level
0, direct connections between nearest neighbor CLBs were used. This reduced the energy-delay
product by a factor of 3 compared to traditional mesh interconnect. At level 1 a symmetric mesh
across the FPGA fabric was used. The problem of this topology is that the energy-delay product
increases by the third power of the distance. Therefore at level 2 a binary tree interconnect was
used. Shorter connections (less than 10 CLBs) are routed through the level 1 mesh network while
longer connections are routed via the level 2 binary tree. The tree topology clusters neighbors,
i.e., they can be connected through the lowest level of the tree, which should be routed using
the level 1 mesh network. Therefore an inverse clustering was applied, where CLBs with larger
distances are connected at the lowest level of the tree hierarchy.

An 4×8 array of this embedded FPGA architecture was used in the Maia chip [ZPG+00] to
implement bit-level functions. It was connected via a hierarchical mesh reconfigurable network
with the embedded CPU and other coarse-grained reconfigurable units.12 The 4×8 array of logic
blocks required 2.76mm2 of the chip manufactured in a 250 nm 6-metal CMOS technology.

The hierarchical interconnect topology and especially the inverse clustering for long connections
reduces the number of switch boxes required. Together with other improvements at the technology
level, a considerable reduction of the power consumption was achieved.

12More details of these coarse-grained reconfigurable units from the Berkeley Pleiades architecture will be dis-
cussed in Sec. 2.5.2 on p. 40.
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Synthesizable Embedded FPGA

The three exemplary embedded FPGA architectures reviewed in the previous sections are con-
structed as full custom design, i.e., the layout was constructed manually. [WKW+05, WAWS03]
from the University of British Columbia introduced a synthesizable embedded FPGA as an RTL
(register transfer level) design which is implemented using standard library cells.

In the reconfigurable architecture many combinational logic loops are present which causes prob-
lems for the synthesis tools. Therefore the authors propose a directional architecture which allows
signals only to flow from left to right. Additionally, the architecture only allows combinational
logic and does not include D-FFs. The configuration of the reconfigurable fabric is stored in a
shift register of D-FFs. Due to the high number of D-FFs the clock tree requires considerably
more chip area and power as for conventional hard-wired logic circuits. A test chip using the
reconfigurable architecture showed an area increase by a factor of 560 but only a doubling of the
delay compared to a hard-wired implementation of the logic functions. The area was 6.4 times
larger than that of a full custom layout FPGA.

To allow sequential logic in the synthesizable embedded FPGA, [YW04] suggested two architec-
tures but both require a large additional area overhead. To reduce the area of the synthesizable
embedded FPGA, [ALS05] suggested to add tactical standard cells for the configuration D-FFs,
LUTs, and MUXes. The size of the whole eFPGA core was reduced by an average of 58% and
the delay was reduced by 40%. This solution is only 2–2.8 times larger and 10% slower than a
full custom eFPGA.

Providing synthesizable FPGA fabrics allows an easy integration in a standard digital ASIC design
flow. However, this leads to a large overhead of the chip area compared to full-custom imple-
mentation. The concept to add tactical standard cells reduces the area and delay, but the design
is not independent of the semiconductor process. Further, limiting the fabric to combinational
logic and requiring a directed signal flow places strong constraints on the routability.

XiSystem SoC with PiCoGA and eFPGA

The XiSystem SoC [LCB+06] contains two reconfigurable CPU supplement modules. The Pipe-
lined Configurable Gate Array (PiCoGA) is a reconfigurable coarse-grained logic module to extend
the instruction set architecture of the XiRisc CPU [CTL+03]. Additionally, a fine-grained eFPGA
handles input and output (IO) protocols and pre- and post-processing of signals.

The PiCoGA is directly integrated in the CPU data path and is activated with a special instruc-
tion. Its reconfigurable fabric uses two-bit granularity. It is composed of an array of reconfigurable
logic cells with LUTs to implement the function. These are connected with a mesh interconnect.
Four different configuration contexts can be setup and switched within a single clock cycle. This
is performed with two further instructions. In the software, these instructions are placed before
and after computational intensive kernels. The kernels then can use the PiCoGA to perform
custom operations. The eFPGA is connected to the system bus and has FIFOs for fast data
exchange. It is a fine-grained single-bit array of LUTs using a mesh interconnect.

Both reconfigurable fabrics are flexible and only limited by the available resources. However, the
two-bit granularity of the PiCoGA fabric still requires a high overhead for logic elements and
signal routing. Using two separate CPU supplement modules to split data processing and control
allows to optimize each architecture for its wide application domain. The application domain
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of the XiSystem SoC is however clearly high-performance data processing and not intended for
low-power devices like WSN nodes.

2.3.4 Summary

In this section, universal, application domain independent reconfigurable CPU supplement mod-
ules were reviewed. Although this only covers one aspect of the approach proposed in this thesis,
useful conclusions can be drawn from the reviewed work.

The Energy Micro LESENSE peripheral shows that the autonomous control of a sensor interface
as used as example in Sec. 1.1.1 is considered important for low-power operation. The reconfig-
urable Microchip CLC and the Analog Devices PLA CPU supplement modules are fine-grained
approaches with a high degree of flexibility but with limited resources. On the other hand, the
Cypress PSoC MCUs delegate the implementation of most peripherals to the flexible and multi-
granular reconfigurable logic. Especially the new generation of PSoC MCUs is very flexible, but
not tailored to a narrow application domain, which causes an increased power consumption. The
Texas Instruments CLA is a simple CPU optimized for floating-point processing. The approach
proposed in this thesis aims to off-load the CPU, therefore the CLA is not a suitable solution.

Commercial SoC FPGAs with a CPU tightly coupled to a fine-grained FPGA fabric as well as
eFPGA IP cores are flexible and powerful. Due to the large required chip area this approach
is only useful for semiconductor processes with high integration density. These also have high
leakage currents, which further increases the power consumption. Therefore embedded FPGA
fabrics are not suitable for the approach proposed in this thesis.

The Triptych architecture and both works at the UC Berkeley show that the interconnect con-
tributes a considerable amount of area and power consumption. Therefore the topology and the
interconnect developed for this thesis must allow short wires with low capacitance.

Soft IP cores of eFPGAs are synthesizable and use standard cells. This is independent of the
ASIC design tools as well as the semiconductor process which is a requirement for this thesis (cf.
Sec. 1.1.7). However, synthesizable eFPGAs cause a large area overhead (6.4 times [WKW+05,
WAWS03]) and delay overhead (2 times). This emphasizes to use coarse-grained logic wherever
possible.

[WKW+05, WAWS03] pointed out problems with combinational loops in reconfigurable logic for
the static timing analysis (STA) performed by EDA (electronic design automation) tools. The
suggested solutions considerably limit the flexibility or require a high area overhead. They also
refer to a large area overhead for the clock tree required for the D-FFs to store the configuration
data. This includes clock buffers as well as routing and congestions. To reduce this problem,
the amount of configuration data must be kept low. The XiSystem SoC supports both, control-
dominated tasks and data processing, with the inclusion of separate fine-grained and coarse-
grained reconfigurable architectures, respectively.

The reconfigurable architectures reviewed in this section were manually developed and optimized.
This means, that the engineers and scientists determined and optimized the functional units and
the interconnect by hand. In this thesis an automated methodology for the development of re-
configurable CPU supplement modules is proposed. Therefore in the next section, approaches
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for the automatic generation of application specific but non-reconfigurable logic circuits are re-
viewed. This is followed by an in-depth review of automatic generation of application specific
and reconfigurable logic circuits in Sec. 2.5.

2.4 Application Specific Non-Reconfigurable CPU Supplement Mod-
ules

The approach proposed in this thesis shifts tasks from software to hardware. This topic was coined
as “Hardware/Software Co-Design” (HW/SW co-design) and “Hardware/Software Partitioning”
(HW/SW partitioning) and worked on starting from the early 1990ies [Wol03]. Although HW/SW
co-design creates non-reconfigurable logic, it is relevant for this thesis because application specific
dedicated logic is generated. Therefore key concepts from HW/SW co-design like partitioning and
high-level synthesis (discussed below) are also employed by the research on application domain
specific reconfigurable logic, which is reviewed in Sec. 2.5. Note that the term “reconfigurable”
is also present in HW/SW co-design, but relates to the use of a universal reconfigurable target
platform like FPGAs or coarse-grained reconfigurable logic.

The main goal of HW/SW co-design is to split an algorithm in such a way, that, for a given
metric (e.g., performance, power), the partitioned implementation is an improvement over the
pure software implementation. The optimization is accomplished by design-space exploration, i.e.,
iteratively shifting the boundary between hardware and software and characterizing the system.

A lot of research was conducted, especially to automate this process. Automatic analysis of
the application and design-space exploration are used to identify the computation intensive sub-
tasks and to model the resulting partitioned system. Co-simulation and automatic synthesis
of software and hardware was used to profile the application in terms of execution time and
performance [Wol03, Vah09].

An important concern is the communication between the processor and the dedicated logic.
Implementations range from loosely coupled architectures, where a shared memory is used, up to
tightly coupled systems with integration into the processor as application specific instruction-set
processor (ASIP) [Vah09] (compare the classification of the coupling in Sec. 2.2). The question
of suitable specification languages was discussed. Describing the whole system in a programming
language like C would bias toward a software implementation, while using a hardware description
language like VHDL or Verilog would bias towards a hardware implementation. Unified languages
like SystemC were developed and employed [Wol03].

The target architectures in hardware/software partitioning initially were ASICs. In the beginning,
the accelerator was placed as an additional chip to the microprocessor on a PCB. After that,
both were integrated in a single chip [Wol03]. Later, FPGAs were used as target architectures.
Devices with hard-wired CPUs in addition to the reconfigurable fabric were used [Wol03, Vah09]
(cf. Sec. 2.3.2).

2.4.1 High-Level Synthesis

When a computational intensive kernel of an algorithm is selected for implementation in hardware,
high-level synthesis (HLS) is used for the generation of the logic circuit [WC91, GR94]. The
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source code of the algorithm (e.g., in a high level language such as the C programming language)
is analyzed for its data and control flow. Then it is mapped onto a pipelined architecture with
ALUs, registers, multiplexers, etc. The optimization of the algorithm is performed by exploring
different implementations of parallel and serial processing to trade off area, frequency, and latency.
The user controls this process by specifying constraints on these parameters.

For a long time, HLS was mostly an academic topic. Examples are the Riverside Optimizing
Compiler for Configurable Computing (ROCCC) project [VPNH10]13 at the University of Cal-
ifornia, Riverside and the LegUp project [FCC+14, CCA+13]14 at the University of Toronto.
Lately, HLS is gaining widespread acceptance in industry, partly supported by tools of the ma-
jor FPGA vendors, such as Xilinx Vivado HLS [Xil14c] and Altera C-to-Hardware Acceleration
(C2H) Compiler [Alt09].

2.4.2 Research on HW/SW Co-Design

The research on HW/SW co-design reviewed in this section is summarized in Tab. 2.2 on p. 48.

The Nymble System [HLOK13] developed at the Technische Universität Darmstadt uses manual
partitioning to extract hardware accelerators. The developer marks regions of functions which
should be extracted. Then the C code is analyzed using an open-source compiler infrastructure.
The marked regions are automatically extracted as new functions with arguments for all input
and output data. The intermediate representation of these functions is converted to a combined
control and data flow graph (CDFG) from which Verilog RTL code is generated. The remaining
software part is patched to implement the hardware/software interfaces. Finally it is compiled to
machine code.

The data transfer between the software and the hardware part is implemented via memory-
mapped registers for low-latency applications and via shared memories for high-bandwidth ap-
plications. The authors evaluated the Nymble system using several benchmark applications and
executed it on a Xilinx Virtex 5 FX FPGA with an included PowerPC CPU. Unfortunately the
authors don’t report the overhead required for software-to-hardware and hardware-to-software
control transfers.

The driving force behind HW/SW partitioning was the optimization of performance. However,
it was also used with the main goal of power reduction. [Hen99] from the NEC C&C Research
Laboratories presented a methodology to optimize the power consumption of a whole system
of a CPU, caches and memories plus application specific cores. The application is divided into
clusters, and the cluster with the highest utilization rate is synthesized and evaluated for its
energy consumption. The remaining software part is analyzed using an instruction-set simulator
with energy estimation including models for caches and memories. In an iterative process, design
parameters are modified to optimize the total energy.

Energy reduction utilizing reconfigurable platforms with integrated CPUs was shown by [SV02]
at the University of California, Riverside. They manually translated software loops to VHDL
modules. The energy consumption of several benchmark applications executed on three commer-
cial FPGA architectures with an integrated CPU were evaluated. The results show an average
energy reduction of 25% to 71%.

13http://roccc.cs.ucr.edu/, https://github.com/nxt4hll/roccc-2.0 [2015-08-20]
14http://legup.eecg.utoronto.ca/ [2015-08-20]

http://roccc.cs.ucr.edu/
https://github.com/nxt4hll/roccc-2.0
http://legup.eecg.utoronto.ca/
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2.4.3 Summary

In this section the generation of application specific but non-reconfigurable CPU supplement
modules with HW/SW co-design and HLS was investigated. Such approaches also only cover
one aspect of the approach proposed in this thesis (cf. Sec. 2.3.4). Again, important facts can be
learned.

Although [SV02] used fine-grained FPGA with integrated CPUs, moving software loops to the
FPGA fabric reduced the total power consumption. Even better results were achieved by [Hen99]
using hard-wired accelerators. These examples show, that HW/SW partitioning is also a suitable
approach for energy reduction [VSPK04, BMM01]. According to the categorization in Sec. 2.1.2,
this is a low-power technique at the (hardware) architecture level.

In Sec. 2.3 the methodology applied to develop the reconfigurable architecture was itself specific
for the architecture. In contrast, the methodologies reviewed in this section are independent of the
application, which complies to the requirements defined in Sec. 1.1.7. However, the methodologies
use data flow graphs (DFGs) and similar intermediate representations of the processed algorithms.
This limits their use to the wide application domain of data processing, because control-dominated
applications and exact timing behavior can not be represented with DFGs.

HW/SW co-design and HLS are primarily applied to application scenarios for data processing.
The application scenarios for this thesis include only a small demand for data processing, for
example comparing the new sensor value with an old value or calculating the mean value of
multiple measurements. Therefore no automatic evaluation and optimization of algorithms is
required for this work.

The design entry for HW/SW co-design and HLS use high-level languages like C. In this thesis,
data processing and control-dominated applications must be supported. However, high-level
languages do not support the specification of cycle accurate timing. Therefore high-level languages
are not suitable to specify the functionality of the proposed reconfigurable CPU supplement
modules.

Unified languages like SystemC can specify cycle accurate timing as well as high-level representa-
tions of algorithms. However, SystemC is not suitable for the development of MCU firmware for
WSN nodes due to reduced productivity, flat learning curve, and lack of skills of the developers,
compared to languages like C.

In this thesis, the boundary between hardware and software is already given by the goal, that the
CPU supplement module should perform all simple tasks. The CPU should only be activated, if
more complex tasks are required. In other words, the CPU supplement module acts as a filter
and preprocessor. Only events which require a complex handling are forwarded to the CPU.

For the mentioned reasons, the methodology proposed in this thesis should not have a unified
description of the MCU firmware and the CPU supplement module. This also declines automatic
analysis and partitioning of firmware. However, it includes the parallel development of software
(application, drivers) and hardware (CPU supplement modules). Therefore co-simulation to verify
the hardware implementation as well as the software drivers is required.

The communication between the CPU and the supplement module only involves a small amount
of data and interrupts. The communication overhead in terms of latency should be minimized to
reduce CPU runtime. Therefore a loosely coupled architecture using memory-mapped registers
is adequate [HLOK13].
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2.5 Application Domain Specific Reconfigurable CPU Supplement
Modules

In the previous sections 2.3 and 2.4 only single aspects of the approach proposed in this thesis
were discussed. In this section, approaches and methodologies covering all aspects of this thesis
are reviewed. The works are summarized in Tab. 2.2 on p. 48.

2.5.1 The KressArray Family

The KressArray Family [Har01a, HKR94] was developed at the University of Kaiserslautern. The
initial development was termed “reconfigurable datapath architecture” (rDPA) and later renamed
to “KressArray” after the main author. The KressArray family is used for data processing, e.g.,
in multimedia applications. The architecture is optimized to map deeply pipelined algorithms,
e.g., FFT (fast Fourier transform), digital filters, etc.

The architecture is built as a reconfigurable 2D array of reconfigurable datapath units (rDPUs).
Each rDPU has two input and two output registers, a 32-bit ALU and a microprogrammable
control unit. The latter is programmed with a microassembler and controls the ALU for larger
operators (multiplication, division). The rDPUs are connected with a hierarchical interconnect
of mesh topology which uses short statically configured connections directly between rDPUs and
long connections with dynamic configuration.

The original rDPA was manually developed and optimized (i.e., manual pre-silicon methodol-
ogy) [HK95, HBH+96, HHHN98] as a universal architecture. [HHHN00a, HHHN00b, HHHN00c,
HHN00, Nag01] introduced a pre-silicon methodology and implemented the tool “KressArray
Xplorer” to develop an application domain specific rDPA. The automatically generated architec-
tures were termed “KressArray Family”. The methodology uses the full KressArray architecture
as a starting point and modifies the individual rDPUs and the routing resources. For the speci-
fication of the functionality of the reconfigurable architecture a set of applications is used.

Each application is translated to a KressArray specific netlist. From these netlists, the minimum
required resources are determined. Then the most complex application is mapped to that archi-
tecture. An automatic suggestion generator proposes modifications to the current architecture.
This allows an iterative improvement of the architecture. The final architecture is verified with
the other applications.

The design methodology is used to optimize a reconfigurable architecture to a narrow applica-
tion domain. During the optimization, only a single application is considered, but no solution
for the selection of this application is provided. If an inadequate application was selected, the
whole procedure must be repeated. Additionally, in the verification phase the mappings of the
other applications are not checked for adverse results like long routing paths. While the design
methodology is not specific to the actual narrow application domain, the overall reconfigurable
architecture is optimized for and limited to data processing and does not allow control-dominated
applications.

2.5.2 The Pleiades Project

The Pleiades architecture was developed at the University of California, Berkeley [AZW+02,
AR96, Rab97, RAI+97, ASI+98]. It is based on an architecture template which uses a CPU and
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a heterogeneous set of reconfigurable so called “satellite processors” connected with a reconfig-
urable communication network. The satellite processors implement functionalities like address
generator, memory, multiply-accumulate, add-compare-select, but also more complex functional-
ity like programmable datapaths [AR96]. The satellite processors and the interconnect together
constitute the reconfigurable CPU supplement module.

The Pleiades architecture is used as a platform for HW/SW co-design. In the pre-silicon design
phase, the application software is evaluated to identify compute intensive kernels (e.g., vector dot
product). The satellite processors and the interconnect are optimized to execute all computing
kernels of the application, one at a time. The algorithm of each kernel is manually converted to
a DFG and mapped to the satellite processors.

For the automated development of reconfigurable Pleiades architectures, a pre-silicon design
methodology was introduced [WZG+01, Wan01]. The first stage comprises the HW/SW partitio-
ning of an application program using energy as the optimization goal to extract the computation-
ally intensive kernels. With the resulting set of netlists of all kernels, the actual reconfigurable
architecture is constructed. For all kernels, the maximum number of each satellite processor
type is determined. Then the interconnect implemented as a hierarchical mesh is optimized. As
last step, program code for the configuration of the satellite processors and interconnect and to
transfer the data for each kernel is generated.

The described methodology was used to develop the Maia processor for CELP-based speech coders
(code-excited linear prediction) [ZPG+00]. The dominant kernels identified for these algorithms
are vector dot products, and FIR and IIR filters. The chip includes an ARM8 CPU together with
21 satellite processors (multiply-accumulate, ALUs, address generators, memories). A special
satellite processor is a low energy embedded FPGA [GZR99] (reviewed in Sec. 2.3.3 on p. 33)
to implement infrequent computational functions and bit-level functionality. The Maia processor
achieved six times less energy consumption over the lowest power comparable DSP. The energy
consumption using satellite processors is twenty times lower than an all-software implementation.

In contrast to the KressArray, the Pleiades architecture optimizes the energy consumption instead
of the performance. The architecture is an irregular and heterogeneous arrangement of satellite
processors instead of a regular mesh with similar FUs. Both, the KressArray and the Pleiades
architecture are used for data processing and therefore need to transfer large amounts of data
between the CPU and the accelerator.

The functionality of each satellite processor and therefore the granularity of the reconfigurable
Pleiades architecture is manually derived from the operators used in the software kernels. The
mapping of the kernels to netlists of satellite processors is also performed manually. This should
be automated in the methodology proposed in this thesis.

Similarly to the KressArray family, the functionality of the reconfigurable architecture is specified
with a set of netlists, in both cases derived from high-level language. The Pleiades architecture
is built using a bottom-up-creation approach. This approach requires to find a “common de-
nominator” of satellite processors required by the set of netlists and to optimize the interconnect
between them. This is an applicable basis for the methodology proposed in this thesis.

[Wan01] also implemented automatic code generation for the configuration of the architecture and
for the data and control transfer between the CPU and the satellite processors. In this thesis,
there is no HW/SW partitioning, so the user has to manually develop software drivers for the
reconfigurable module. The design methodology must automatically generate code which allows
the implementation of drivers without the knowledge of the actual reconfigurable architecture.
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2.5.3 Strategically Programmable System

The previously reviewed Pleiades project used manual mapping of the application to the reconfig-
urable architecture. The Strategically Programmable System (SPS), developed at the University
of California, Los Angeles [OMBKS01], implements an approach for automatic mapping and gen-
eration of a reconfigurable architecture. It uses a fine-grained island style FPGA fabric with mesh
routing topology and embeds coarse-grained hard-wired blocks called “Versatile Parameterizable
Blocks” (VPBs). Examples for VPBs are adders, multipliers, multiply-accumulate, etc. These
VPBs reduce the total power consumption, improve the performance, and reduce the size of the
configuration data and therefore the configuration time. Typical applications are digital signal
processing algorithms.

The goal of the methodology is that the VPBs implement as much operations of the applications
as possible. The remainder is implemented using the fine-grained FPGA fabric. This project is
similar to the pre-silicon design phase methodology suggested in this thesis, because the types
of the VPBs should be adapted to an application domain. In the post-silicon design phase, an
actual application should be mapped to the reconfigurable SPS.

In [KKOMB02] an algorithm is presented to automatically generate types of VPBs and to map
applications to these VPBs (misleadingly called “instructions”, “templates”, “macros”, “clusters”
and “patterns” interchangeably). An application written in C, C++, Fortran or SystemC is
compiled and converted to DFGs. These DFGs are processed to find frequent patterns. First,
a list of all edge types is generated. Edge types are defined as the node types at its head and
tail, e.g., a multiplier followed by an adder “∗ → +”. Then, all occurrences of the most frequent
edge types are replaced by new “super-nodes”. This clustering of edges is repeated until enough
“super-node” types were generated or until a sufficient portion of the DFG is represented by
“super-nodes”. Note that each “super-node” is specified by its internal DFG, which is the section
of the original DFG replaced by this “super-node”. An improved algorithm to optimize the DFG
coverage was investigated in [BMKS02]. The “super-nodes” are candidates for implementation
as VPBs. Note that the algorithm achieves two goals simultaneously: the application DFGs are
mapped to the VPBs and concurrently the required VPB types are automatically derived.

The general approach of SPS is to embed custom coarse-grained FUs (VPBs) in a fine-grained
FPGA fabric. The surrounding FPGA fabric is used for routing as well as to implement function-
ality which can not be mapped to the VPBs. However, the fine-grained implementation causes
high power consumption, therefore in this thesis, the whole applications should be mapped to
coarse-grained FUs with no residual logic.

The algorithms automatically extract coarse-grained FUs. Since the clustering of nodes is only
guided by their relative frequency and by the cost function, their boundaries and functionality
are random. In other words, the usability of the “super-nodes” is limited to the context, i.e., the
location in the DFGs. This also limits the reusability between different applications.

[KKOMB02] observed that simple VPBs with only two DFG nodes achieve sufficient quality of
results. However, the total DFG is then split in many simple VPBs which requires a large amount
of routing resources. This results in higher power consumption [KR98] (cf. Sec. 2.3.3) and area
overhead than using more complex coarse-grained FUs.

From these reasons follows, that the best power and area efficiency is provided when the whole
netlist is implemented by coarse-grained FUs. To allow reuse between applications the FUs should
be designed manually, but the applications should be mapped automatically to these FUs.
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2.5.4 The Totem Project

The Totem Project was developed at the University of Washington [Hau05, HCE+06]. It is also
dedicated to the wide application domain of data processing and creates a stand-alone architecture
not embedded in an FPGA fabric. Contrary to SPS, netlists with instances of arithmetic operators
instead of DFGs are used to specify the functionality of the reconfigurable architecture.

The Totem Project is based on the “Reconfigurable Pipelined Datapath” (RaPiD) architecture
[ECF96, CFBE98, CFF+99] which is a predefined coarse-grained reconfigurable linear 1D array of
16-bit functional units (e.g., ALUs, multipliers, and registers) and interconnect. The architecture
is designed for deeply pipelined datapaths of digital signal processing applications.

The RaPiD architecture is predefined and fixed, i.e., the user only works in the post-silicon de-
sign phase. The Totem Project adds the pre-silicon design phase to optimize the cells, their
arrangement and the routing of the architecture, depending on the narrow application domain.
For that purpose, three topics were investigated: automated generation of a reconfigurable archi-
tecture, automatic generation of a chip layout of that reconfigurable architecture, and tools to
map an actual application onto the reconfigurable architecture. The first two topics correspond
to the pre-silicon design phase as defined in Sec. 1.1.5 while the third topic corresponds to the
post-silicon design phase. Here only the architecture generation will be discussed in detail.

The automatic architecture generation uses a set of RaPiD netlists to specify the functionality of
the reconfigurable architecture, i.e., which applications have to be supported. These netlists are
generated from a high-level language and instantiate and connect RaPiD functional units. From
these netlists the reconfigurable circuit is derived.

Two different kinds of reconfigurable architectures are generated. The first kind of reconfigurable
architecture (termed “configurable ASIC”, cASIC) is limited to the netlists which were used as
specification [CH07]. The circuits are highly optimized to only implement MUXes to switch
between the specification netlists. Therefore the cASIC approach will not be discussed further.
The second kind of reconfigurable architecture is more flexible and termed “RaPiD-like”. The
methodology for both kinds (mostly) only differs in the generation of the interconnect [CH01,
Com03].

As first step of the placement phase the required number of functional units of each type is
determined. The user can specify constraints to include additional FUs to increase the flexibility
of the resulting reconfigurable architecture. Secondly, the order of the FUs is optimized using
simulated annealing. The placement of the FUs along the horizontal axis inter-depends with the
binding of the netlist instances to the physical instances. Therefore the physical placement as
well as the binding are moved during the simulated annealing [CH01, Com03].

While the functionality of the cASIC architectures is limited to the specification netlists, the
RaPiD-like architectures provides more flexibility, for example to fix bugs or implement new
applications. The RaPiD-like routing consists of horizontal wires below the FUs, which are
connected with vertical wires to the inputs and outputs of the FUs. These tracks are generated
iteratively: One track is added and all netlists are placed and routed. From this intermediate
result, the number of unroutable signals is determined and used as a cost function of the solution.
The optimization terminates, when all netlists can be routed. The user can specify additional
routing tracks to increase the post-silicon flexibility [CSPH02, Com03, CH08].

The second topic investigated by the Totem project is the automatic generation of VLSI (very-
large-scale integration) layout of the reconfigurable circuits. Three different approaches were
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employed: logic synthesis using standard cells, template reduction and circuit generation. For the
semi-custom standard cell approach, the designs were generated using Verilog HDL. Commercial
logic synthesis and chip layout tools were used to generate the chip [PH02, Phi04]. The other two
approaches create highly process dependent layouts and are therefore not further discussed here.

The RaPiD-style as well as the cASIC architectures are tailored to a narrow application domain
as specified by a set of netlists. However, these netlists are limited to the wide application
domain of coarse-grained signal processing with highly pipelined and regular algorithms. In the
Totem project, also fine-grained reconfigurable architectures for control-dominated logic were
investigated. The first approach were domain specific CPLDs (complex programmable logic
devices) [HH04, HH05, HH07]. Flexible architectures using a full crossbar interconnect as well
as tightly tailored architectures with reduced programming points and a sparse crossbar were
designed. Secondly, the Totem project also planned the development of application domain
specific 2D island-style FPGA architectures (“Totem2”) [Hau05, HCE+06, EHS05], but this area
was not further investigated [Hau15].

The Totem project developed both, coarse-grained and fine-grained application domain specific
reconfigurable architectures. For both types, a range from architectures tightly tailored to the
required functionality up to more flexible architectures and even specifying additional flexibility
are provided. The functionality is specified using a set of netlists instead of DFGs. The collection
of multiple nodes into bigger “super-nodes” as for the SPS is not required here because the netlists
are already generated from a high-level language using HLS, and therefore already instantiate
the final node types.

The algorithms presented for (pre-silicon) architecture generation automatically merge multiple
netlists into one reconfigurable architecture. The algorithms also allow to specify additional flexi-
bility by increasing the number of functional units and enhancing the interconnect. Interestingly,
using a generic interconnect topology (1D bus style for RaPiD and crossbar for CPLDs) itself
ensures a certain degree of flexibility over tailored multiplexers and demultiplexers. Although
the Totem project provides results for coarse-grained as well as fine-grained reconfigurable ar-
chitectures, these are separate. The approach proposed in this thesis has to combine both for
multi-granular reconfigurable circuits.

2.5.5 Application-Specific Inflexible FPGA and Multi-Mode ASIC

In the previous section, cASIC circuits could only implement the netlists which were used to
specify its functionality without any additional flexibility. This kind of reconfigurable circuits
is also termed “multi-mode systems”. One problem common to multi-mode systems and more
flexible application domain specific reconfigurable logic circuits is how to merge the netlists used
for specification.

[PMKM11] use a set of fine-grained logic netlists which are mapped to a simple and universal
FPGA architecture with CLBs, hard blocks like adders or multipliers, and IOs. To merge the
specification netlists, the placement algorithm tries to match instances between the netlists and
place them on the same physical instance.

In the routing phase, efficient wire sharing is used, so that the number of switches is mini-
mized. Then all unused FUs and routing resources are removed and a VHDL description of
the “Application-Specific Inflexible FPGA” (ASIF) is generated. Additionally, the bitstreams to
configure the ASIF for each specification netlist are generated. This top-down-removal approach
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leaves some degree of flexibility, but due to the irregular architecture, place and route algorithms
are complex and require long run-times.

Since the remaining flexibility is not efficiently utilizable, the authors moved that approach further
to pure multi-mode ASICs (mASICs) [KMM14]. The configuration data of the depopulated
FPGA architecture is hard-coded using mode (i.e., netlist) select input signals, constants and
multiplexers. Afterwards a commercial ASIC synthesis tool is employed to perform constant
propagation and logic optimization. This removes all configurable elements and implements
efficient logic functions.

For the verification of the results, logical equivalence checking is used to compare each specification
netlist with the mASIC. In the setup of the equivalence checking, the selection inputs are forced
to the appropriate bit pattern to select the according mode.

In principle, this approach only uses the fine-grained FPGA architecture as a platform to find
common resources of the specification netlists with the mentioned place and route algorithms.
The result is an optimized logic circuit which can switch between the specification netlists using
shared resources.

In this thesis, a joint methodology to merge netlists with coarse-grained as well as fine-grained
logic is required. The ASIF/mASIC methodology is also applicable for coarse-grained logic cir-
cuits, but can not tap the full potential to identify commonalities and wide vector signals. Fur-
thermore, the reduced FPGA fabric is very inflexible and not suitable for the approach of this
thesis.

2.5.6 Custom Architecture Design Tool

A joint methodology for coarse-grained and fine-grained reconfigurable logic termed “Custom
Architecture Design Tool” (CustArD) was shown by [BS14]. They propose to build a reconfig-
urable circuit as a hierarchy of function blocks. For example, at the lowest level a CLB with a
4-input LUT, a D-FF and a bypass-MUX is defined. At the next level, this CLB is combined
with routing channels and connection boxes. This structure is repeated in a 12×12 grid at the
next level. Then two such grids are combined with a memory, a DSP slice, and further routing
channels. The whole reconfigurable circuit is composed of a 2×2 grid of that structure and finally
supplemented with IO cells.

To specify such architectures a visual architecture design tool was implemented. The hierarchical
structure poses special requirements for the tools. To efficiently realize coarse-grained cells and
routing, the synthesis tool has to preserve vector signals. The place and route tool has to cope with
the hierarchical routing structures. To optimize the architecture to a given application domain,
an analysis tool is required, which implements several netlists onto the specified architecture
and provides statistical evaluation data. Compared to the previously reviewed approaches, this
methodology is neither a bottom-up-creation approach from netlists, nor a top-down-removal
approach. It is comparable to the KressArray family [Har01a] where a preliminary architecture
is setup, analyzed by mapping applications, and then iteratively improved. This work is still
at an early stage of development. The authors report findings on several approaches for open
problems. Future work will put more emphasis on coarse-grained reconfigurable architectures,
e.g., including a configurable ALU similar to the mentioned DSP slices [Bos15].

The CustArD architecture combines fine-grained and coarse-grained reconfigurable logic. The
requirements for the synthesis tool to preserve vector signals is relevant for the approach proposed
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in this thesis too. However, the CustArD methodology results in very flexible architectures which
are only slightly tailored to the application domain. Therefore the area and delay overhead will
be higher than applicable for the approach proposed in this thesis.

2.5.7 Summary

In this section application domain specific reconfigurable CPU supplement modules were reviewed.
The design methodologies include the pre-silicon design phase to optimize the architecture to a
narrow application domain and the post-silicon design phase to map applications to the generated
architecture.

The KressArray is a 2D array of coarse-grained DPUs (ALU and control unit). The pre-silicon
methodology maps the most complex example netlist to a preliminary architecture. This is ana-
lyzed and improved in an iterative process. The resulting architecture is verified to map all other
netlists. The Pleiades architecture consists of a CPU with a heterogeneous set of coarse-grained
satellite processors. The methodology identifies compute intensive kernels of an application pro-
gram to optimize this architecture. These kernels are manually mapped to tailored satellites.
Finally the interconnect is optimized.

The Strategically Programmable System is based on a 2D island-style mesh FPGA fabric. The
fabric includes coarse-grained hard-wired blocks (VPBs). The methodology includes algorithms
to automatically combine nodes of DFGs which occur frequently in a pattern. These are im-
plement as VPBs. The Totem architecture is based on the 1D pipelined RaPiD architecture.
The individual FUs, their order and the interconnect are optimized by mapping RaPiD netlists
and using simulated annealing. For control-dominated applications fine-grained auto-generated
optimized CPLDs were developed.

The ASIF/mASIC approach for fine-grained logic uses efficient place and route algorithms to an
FPGA fabric. The CustArD project proposes a combined reconfigurable architecture for fine- and
coarse-grained logic as a hierarchical circuit with fine-grained CLBs and coarse-grained blocks.

Although none of the reviewed approaches fulfills all given requirements in Sec. 1.1.7, useful details
can be learned from the reviewed works. Especially the employed pre-silicon methodologies to
develop the reconfigurable architectures provide a valuable basis for this thesis. In the previous
subsections, notable conclusions from each reviewed approach individually were discussed. Here
inferences from the combination of the approaches are drawn and the most important conclusions
are repeated.

• Most work in this area was done for high performance data processing.

• All reviewed works use a set of similar applications to specify the functionality. This ful-
fills the requirement to specify the flexibility in terms of accomplishable functionality (cf.
Sec. 1.1.7).

• The reviewed methodologies use three steps to generate a reconfigurable architecture:
1. HW/SW partitioning to generate a set of applications,
2. convert the set of applications to DFGs or netlists, and
3. merge the DFGs or netlists to a reconfigurable architecture.
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• The pre-silicon design methodology must be independent of the narrow application domain.
All reviewed approaches comply to this requirement, but most are limited to the wide
application domain of data processing due to the use of DFGs.

• A part of the approaches for coarse-grained data processing applications compile descrip-
tions in high-level language to generate DFGs. Some approaches further synthesize the
DFGs to netlists of FUs. Fine-grained approaches directly use netlists as representation of
the applications.

• In the optimization of the KressArray family, only the most complex example application
is used. All other approaches use the full set of example applications concurrently which
provides improved optimization results and avoids adverse solutions for unused example
applications.

• All architectures use a set of reconfigurable functional units and a reconfigurable intercon-
nect. In most approaches, the reconfigurable FUs are heterogeneous, i.e., each FU instance
implements a different functionality.

• The SPS architecture uses a fine-grained FPGA fabric for the routing and to implement
new functionality. This causes a large overhead in area and power. The same problem
exists for the CustArD approach.

• The SPS methodology automatically combines DFG nodes to “super-nodes”. In this thesis
the “super-nodes” should be defined manually to better support the reuse across netlists.

• The Totem project increases the flexibility of the reconfigurable circuit by including more
FUs and more routing resources than required to implement only the specification netlists.
It also reveals that the use of a generic interconnect topology instead of MUXes or depop-
ulated FPGAs/CPLDs itself maintains a degree of flexibility.

• The Totem project developed three methods for automatic layout generation. Two of these
strongly depend on the semiconductor technology. Only the method using logic synthesis
to a standard cell library is independent of the semiconductor process. However this causes
an area, delay and power penalty.

All reviewed works from Sec. 2.3, Sec. 2.4, and this section and their properties as defined in
Sec. 2.2 are summarized in Tab. 2.2.

2.6 Reconfigurable FSM Architectures

The narrow application domains realized with the proposed methodology contain control-domi-
nated and data processing elements. To combine these domains, [GR94] suggested the generic
structure of an FSM which controls a datapath (FSM+D). In this thesis, this approach is ex-
tended to also use the FSMs for stand-alone control-dominated tasks. Additionally, multiple
communicating FSMs can be utilized to implement hierarchical functionality. For the proposed
reconfigurable CPU supplement modules, reconfigurable architectures for FSMs are investigated.

An FSM implemented in digital logic is defined by its nI input signals I , nO output signals O,
nS states S = {S1,S2, . . . ,SnS}, and the transitions. The output signals depend on the input
signals and the current state. The input signals and the current state determine the next state.
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At the clock edge the next state is activated as current state. Several different digital encodings
for the state value are employed, e.g., one-hot (requires nS,1h = nS signals), binary (requires
nS,b = dlog2 nSe signals), and Gray coded (also requires nS,g = dlog2 nSe signals).
A generic FSM as a synchronous sequential system is shown in Fig. 2.3 [Kae08, RCN03, Kat94].
The “Logic Function” block only contains combinational logic and implements two logic functions:
the output function O = F(I ,S) and the next state function Snext = G(I ,S). The “State
Register” introduces sequential behavior.

Figure 2.3: Generic FSM structure
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Three types of FSMs were defined [Kae08]:

Mealy Type: The output vector is a combinational function of the current state and the inputs.

Moore Type: The output vector is a combinational function of the only the current state.

Medvedev Type: The output vector is exactly the current state vector.

To implement an FSM as a hard-wired digital circuit, the logical synthesis uses logic optimization
algorithms to map the combinational logic functions to a logic circuit. Another solution is the
implementation with a ROM (read-only memory) [Kat94]. The FSM input signals and the state
vector are used as address inputs of the ROM. The data output signals of the ROM are used as
FSM output signals and next state vector. This requires nI + nS,b address signals and nS,b + nO
data bits, hence a total capacity of (nS,b + nO) · 2nI+nS,b bits. This shows that the ROM size
grows exponentially with the number of input signals and state signals.

Replacing the ROM with a RAM is an approach for a reconfigurable FSM. However, due to
the exponential growth, this is an inefficient solution. Additionally, for typical FSMs the state
transitions only depend on a subset of the input signals. Logical optimization algorithms for
hard-wired FSMs can utilize the information on unobserved signals (“don’t care”), but in a ROM
and RAM implementation this causes large overhead.

A more efficient reconfigurable implementation of FSMs uses PLAs [RCN03, Kat94]. Each prod-
uct term has to combine ni + nS,b (or even less) signals and a total of nS,b + nO sum terms is
required. Besides PLAs, also FPGAs can efficiently implement the next state and the output
logical functions [RCN03]. The same logic optimization algorithms as used for hard-wired FSMs
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reduce the total amount of logic resources required, which is then mapped to the reconfigurable
LUTs and routing resources. For example, [WAWS03] uses an 8×8 embedded FPGA fabric with
3-input LUTs (reviewed in Sec. 2.3.2) to implement the next-state logic of an FSM. Due to the
high number of D-FFs for the configuration data of the reconfigurable eFPGA, 45% of the area
had to be reserved for the buffers of the clock tree and power supply, compared to 25% for
non-reconfigurable logic.

[Buk08, Buk09] reports that FSM implementations using FPGAs are suboptimal. He proposes
several methods for architectural decomposition of the FSM logic. These include the conversion
of single-level implementations of boolean functions to multi-level implementations and the uti-
lization of the block RAMs available in FPGAs. His final results show only little improvement
for actual FPGA implementations of FSMs.

A dedicated architecture for reconfigurable FSMs was presented by [LAKL05]. It uses sequential
blocks and logic blocks to implement the next state function and the output function, respectively.
These are connected with routing resources. Each logic block contains three levels of PLA blocks
and internal interconnect. Each sequential block has an adder and subtracter (to calculate the
new state vector) and D-FFs. The authors report a reduction of the area by 43% and of the power
consumption by 82% compared to the commercial Virtex-E FPGA. In [LAE06] this architecture
was optimized to efficiently support a higher number of states. This approach implements the
FSM next state function and the output function using generic logic functions. Together with
the reconfigurable interconnect between the sequential and logic blocks this requires large chip
area.

An area optimized approach using dynamic reconfiguration of the next-state logic function was
presented by [MV07]. Only the functionality for transitions from the current state is implemented
in the reconfigurable logic. In other words, the current configuration represents the current state.
The authors compared the number of LUTs required to implement the dynamically reconfigured
next state logic function for each state with the number of LUTs required to implement the whole
FSM next state function and report a reduction of 90%. However, the constant reconfiguration
causes high switching activity. Therefore this approach is not suitable for low-power applications.

A power optimized reconfigurable FSM architecture dedicated to WSN nodes was presented by
[RV13]. Their general approach is the same as in this thesis: A dedicated CPU supplement mod-
ule off-loads the CPU, which in turn stays in an in-active low-power mode for longer periods.
Compared to the generic FSM model presented above, the “Configurable FSM” (CFSM) adds
extensions. For each state, a default next state is defined to reduce the number of total tran-
sitions. The CFSM also contains an integrated timer to simplify the implementation of delays
and timeouts. Internally four look-up tables map the current state to its default next state, to
the non-default transitions, to the output signals and to the counter start value. The authors
report an energy reduction of 46% for the whole WSN node SoC when using the CFSM CPU
supplement module to performing event related tasks instead of a pure firmware implementation.
The extensions for default next states and timers improve the chip area and the usability. Using
lookup tables, which grow exponentially with the number of state signals, considerably increases
the total chip area. Further, the presented CFSM implements a Moore type FSM, i.e., the output
signals only depend on the current state and don’t consider the input signal values. Viewed as a
reconfigurable CPU supplement module, this approach lacks further data processing capability,
e.g., for sensor value post-processing, and a full pre-silicon design methodology.
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In this section, approaches for reconfigurable FSM architectures were reviewed. Implementations
using a RAM cause a large area overhead. PLA and FPGA implementations reduce the area but
introduce new overhead due to the fine-grained architecture, the storage of the configuration data,
and the large interconnect. The approaches presented by [LAKL05] and [RV13] also require large
chip area due to the reconfigurable interconnect and the employed lookup-tables, respectively.
The dynamic reconfiguration utilized by [MV07] shows a considerable reduction of chip area, but
creates high power consumption due to the switching activity caused by the reconfiguration.

2.7 Conclusion

The reviewed works show, that the inclusion of reconfigurable application domain specific CPU
supplement modules is a viable approach for energy reduction. The development of a generic
methodology for the design of application domain specific reconfigurable logic is a challenging
task. The methodology must be independent of the narrow application domain, therefore no
assumptions on the actual scenario or the implementation can be made.

In the previous sections a number of approaches for a generic methodology were reviewed. Most
approaches are limited to data processing applications and do not cover control-dominated ap-
plications. However, the principles employed by the authors provide a foundation for this work.
The basic architecture is defined as a collection of reconfigurable functional units connected with
an optimized reconfigurable interconnect. The specification of the functionality of a reconfig-
urable module is defined by a set of applications. These applications are translated to netlists of
functional units. All netlists are used together to optimize the reconfigurable module, which is
built using a bottom-up-creation approach. Including additional functional units and additional
routing resources is used to increase the flexibility.

Besides these principles, solutions for open problems have to be found. The methodology and
the designed reconfigurable modules have to explicitly support both, control-dominated and data
processing applications. Therefore the architecture must provide multi-granular logic. The user
designs the reconfigurable functional units manually, but an automated procedure is required to
identify the functional units in the specification applications during the translation to netlists. As
a special functional unit, an architecture for reconfigurable FSMs with low power consumption
and small chip area has to be developed.

In the remainder of this thesis, a generic methodology for the design of application domain specific
reconfigurable CPU supplement modules which fulfills the defined requirements will be developed
by combining the basic principles from the related work and contributing solutions for the open
problems.
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In this thesis an approach for the reduction of the power consumption of ultra-low-power embed-
ded systems by the inclusion of dedicated reconfigurable CPU supplement modules is proposed
(cf. Sec. 1.1.3 and Fig. 3.1). These modules off-load the CPU from simple and recurring tasks and
therefore act as a filter for events. Only events which require complex processing are forwarded
to the CPU (cf. Sec. 1.1.2).

Figure 3.1: WSN node with reconfigurable CPU supplement modules, repeated from Fig. 1.2.
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The reconfigurable CPU supplement modules are tailored to a specific application domain and
implemented with a heterogeneous and multi-granular reconfigurable architecture (cf. Sec. 1.1.4).
The design of such domain-specific reconfigurable logic modules requires a special methodology
which is developed in this chapter.

In Ch. 2 the scientific basis was established. The found approaches and concepts are evaluated,
integrated, and extended to form a complete design methodology. First in Sec. 3.1 the general
principles for the design methodology are arranged. Further details on the generation of a recon-
figurable module are discussed in detail in Secs. 3.2, 3.3, and 3.4. Finally, in Sec. 3.5 approaches
for the verification of the reconfigurable module at each point of its development are developed.

53
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As stated in Sec. 1.1.5 and depicted in Fig. 1.6 on p. 7 the development and usage of reconfigurable
logic is split in the pre-silicon and the post-silicon design phase. Sections 3.1–3.5 are related to
the pre-silicon design phase. The post-silicon design phase is discussed in Sec. 3.6.

One important design element in this work are FSMs. A reconfigurable architecture for FSMs
is introduced in Sec. 3.7. Finally, the scientific contributions of this thesis are summarized in
Sec. 3.8.

3.1 Principle

In this section general principles of the design methodology for reconfigurable modules are es-
tablished. As stated in Sec. 1.1.5, a demand for a reconfigurable CPU supplement module is the
starting point of the design methodology (cf. Fig. 1.5). Therefore the principles for the precise
specification of the reconfigurable module are discussed in Sec. 3.1.1. The resulting module is
delivered as a soft IP core [GZ97]. The exact deliverables are defined in Sec. 3.1.2.

To separate the functionality of the reconfigurable module from adjustable values and the pro-
cessed data, the concept of parameterization is introduced in Sec. 3.1.3. In Sec. 3.1.4 the principles
of the reconfigurable architecture are refined before the actual generation of the reconfigurable
module from the given specification is discussed in Sec. 3.1.5.

To enable the implementation of new applications which were not anticipated during the devel-
opment of the reconfigurable module, means to increase the flexibility are discussed in Sec. 3.1.6.
Finally, in Sec. 3.1.7 the main principles are summarized.

Note that the motivation for this work is the development of reconfigurable CPU supplement
modules. However, the design methodology is more general, therefore the term “reconfigurable
module” is used starting from here. If an explicit relation to a CPU is given, “reconfigurable
CPU supplement module” is used further on.

As defined in Sec. 2.4.3, the design methodology must be independent of the actual application
domain. This implies, that the following discussion as well as the design methodology itself can
not base on any assumptions regarding the application domain. However, the discussed principles
will be illustrated by examples below, but without an influence on the generality of the statements.

3.1.1 Specification

In this section, a suitable format to specify the reconfigurable module is discussed. Generally,
there are the following methods to specify a reconfigurable architecture:

a) Specify the available resources provided by the reconfigurable architecture.

b) Use a set of applications, i.e., logic designs, which have to be supported by the reconfigurable
architecture [GW14].

c) Describe the functionality of the reconfigurable architecture in abstract terms [GW14].
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Ad a) Commercial FPGAs are specified in terms of available resources. For example the Xilinx
Zynq XC7Z020-CLG484 device (reviewed in Sec. 2.3.2) contains 85k programmable logic cells
with 53,200 6-input LUTs, twice as many D-FFs, and provides 200 IOs [Xil14d]. In its datasheet
also the routing resources are specified.

The embedded FPGA of the Maia chip [ZPG+00] (cf. Sec. 2.5.2) provides 4×8 logic blocks
with 3-input LUTs and a three level hierarchical interconnect [GZR99] (cf. Sec. 2.3.3). This
format is also used to specify coarse-grained architectures, e.g., the original 2D rDPA (later
renamed to KressArray) with rDPUs [HK95, HBH+96, HHHN98] (cf. Sec. 2.5.1), the 1D RaPiD
architecture with a defined set of FUs [ECF96] (cf. Sec. 2.5.4), and the CustArD architecture
using a hierarchical specification [BS14] (cf. Sec. 2.5.6).

Ad b) As found in Sec. 2.5.7, most application domain specific reconfigurable architectures were
specified using a set of applications which span the total range of functionality. For example, the
KressArray family of optimized coarse-grained reconfigurable architectures uses a set of applica-
tions [HHHN00a, HHHN00b, HHHN00c, HHN00, Nag01] (cf. Sec. 2.5.1). The Pleiades project
uses the netlists of the computation intensive kernels of a single application program to specify
the satellite processors and the interconnect [WZG+01, Wan01] (cf. Sec. 2.5.2). Contrary to the
RaPiD project, the Totem project optimized the 1D architecture, also specified by a set of netlists
[CH08] (cf. Sec. 2.5.4).

Ad c) Describing the functionality in abstract terms closely resembles the nature of (application
domain specific) reconfigurable architectures which provide wide and intangible but limited pos-
sibilities. However, this format poses challenges, once how to formulate the specification, and
secondly how to verify the compliance to the specification. The specification could include, for
example, the number of examined conditions, the number of observable signals per condition, the
type of comparisons between numbers, and the type of operations to perform. It further has to
declare the relations between these statements

Only b), i.e., using a set of applications to specify the reconfigurable architecture fulfills the
requirement of a specification in terms of possibilities and accomplishable functionality (cf.
Sec. 1.1.7) and provides the possibility to verify the compliance of the architecture. Therefore,
in the methodology discussed in this thesis, this option is used.

The actual range of accomplishable functionality of a reconfigurable module is termed “appli-
cation class” in the remainder of this work. This term is analogous to the narrow application
domain used in Sec. 2.2. Each application of the set to specify the functionality of the recon-
figurable logic module is termed “example application”. The term “new application” is used for
applications introduced in the post-silicon design phase. The superset of example applications
and new applications is simply termed “applications” or “(example) applications” for a special
emphasis on both phases.

Next the exact format for (example) applications is derived. When using automatic HW/SW
partitioning, the whole application must be implemented in one common language. The design
is analyzed and split in hardware and in software partitions. On the other hand, as concluded
in Sec. 2.4.3, for the methodology discussed in this thesis the HW/SW partitioning is performed
manually by the developer. This implies, that different languages for the software (i.e., MCU
firmware) and the hardware partitions (i.e., example and new applications) can be employed.
The MCU firmware will most probably be programmed using the high-level language C.

The exact format how to specify the (example) applications of the reconfigurable module has to
fulfill several requirements (extended from [GW14]):
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• It must support the development of control-dominated as well as data processing tasks.

• It must allow to specify cycle accurate timing to control and to react on other cores (e.g.,
peripherals) of the SoC.

→ Therefore, in Sec. 2.5.7 the use of DFGs was declined in favor of netlists.

• The format must be easy to learn or at best, not require additional skills of hardware
designers.

• It must allow high productivity and should not be error-prone during the development of
(example) applications.

• Therefore, the netlists should not be specified directly but in a format which is easy to
translate to a netlist.

→ These requirements are best fulfilled by hardware description languages (HDLs).

• Further, the format must allow verification, starting from the initial (example) applications
and at every step of the development of the reconfigurable module.

• It must allow early HW/SW co-simulation of the (example) applications together with the
firmware and therefore allow early tests of the whole SoC.

• The format must allow the use of commercial as well as free and open-source tools for the
design analysis and the design verification.

→ Therefore an existing type of HDL like VHDL and Verilog is used.

To summarize the above discussion, the methodology discussed in this thesis uses a set of example
applications developed in VHDL or Verilog to specify the reconfigurable modules (see Fig. 3.2).

With the example applications, the functionality and therefore the resources of the reconfigurable
module are specified. Additionally the input and output ports must be specified. A typical
reconfigurable CPU supplement module might have connections to chip internal destinations
(e.g., CPU interrupt request, control and data signals to an ADC or an SPI master) as well as
to chip pins (e.g., to control external peripherals).

As all example application HDL designs also specify input and output ports, the common de-
nominator of these could be used as the specification of the ports of the reconfigurable module.
This would result in a set of universal input and output ports with no dedicated meaning of any
port. However, the connections to chip internal peripherals have fixed destinations and therefore
meanings and can not be shared between the example applications as universal ports. There-
fore the input and output ports of the reconfigurable module are specified separately to reflect
the actual requirements of the surrounding SoC. Additional meta information for each example
application is used to specify the mapping of its ports to the ports of the reconfigurable module.

3.1.2 Deliverables

In the previous section the starting point of the design methodology was specified. In this section,
the deliverables are discussed.
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Figure 3.2: The total functionality of the reconfigurable module is denoted by the application class. It is
specified using a set of example applications. Due to the flexibility of the reconfigurable module, new
applications can be implemented in the post-silicon design phase.

Demand for Reconf. Module

IP Core of Reconf. Module

Design Methodology

Application Class

Specification of Functionality

Ex.
App 1

Ex.
App 2

Ex.
App n

PostSi
App 1

PostSi
App n

Generation of
Reconf. Module

The final reconfigurable module is provided as an IP core. This is integrated with all other
modules in the SoC (cf. red CPU supplement modules in Fig. 3.1). Then the work is continued
with the realization of the SoC using a standard ASIC flow (synthesis, place and route, etc.) To
allow a seamless integration in standard ASIC design flows, the IP core must be independent of
the semiconductor process. It must be compatible to commercial and free and open-source ASIC
tools as well as to custom in-house design flows (cf. Sec. 1.1.7).
Therefore a soft IP core must be generated which is used for synthesis to a standard cell library
(cf. soft eFPGAs in Sec. 2.3.4 [WKW+05, WAWS03] and the standard cell layout generation in
Sec. 2.5.4 [PH02, Phi04]).
The soft IP core comprises of the following deliverables:

• The reconfigurable module as synthesizable RTL code in Verilog and VHDL.

• All meta-data required for integration of the IP core in the SoC and the ASIC design flow,
e.g., synthesis-related scripts, constraints, etc.

• Templates and information to develop firmware drivers for the reconfigurable CPU supple-
ment module.

• Information on the structure and inventory of the reconfigurable module used in the post-
silicon design phase to generate the configuration data for new applications.

More details for the concrete realization are discussed in Sec. 4.8.
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3.1.3 Configuration and Parameterization

For the configuration of the reconfigurable module, the principle of separation of functionality
from data is applied. The functionality of the reconfigurable module is setup by configuration,
e.g., using a bitstream which is shifted into a configuration chain. On the other hand, to setup
data for processing by the reconfigurable module, the concept of parameterization is introduced
[GHDG10]. Parameters are used to set constant values or to irregularly adjust values, e.g., by
writing to memory-mapped registers. Parameterization is independent from configuration, is not
integrated in the possibly large configuration data, and has a separate interface from the CPU.
This allows the firmware to directly access each parameter and easily carry out changes without
interruption of the operation or a full reconfiguration of the circuit.

The parameterization concept is further generalized to bidirectional data transfer, i.e., to return
values from the reconfigurable module to the CPU. This means that parameters are either set
by the CPU and used by the reconfigurable module, or the reconfigurable module sets parameter
outputs and the CPU queries the values.

For example, the functionality of the sensor interface task (cf. Sec. 1.1.1) is split from the values
of the period and delay times and from the actual threshold value used to compare the old and
the new sensor value. To transfer the new sensor value to the CPU, a parameter output is used.
Another example is a reconfigurable module which implements digital filters. The designer uses
configuration to setup the topology of the arithmetic operations and connections for the data
processing, while the filter coefficients are specified using parameterization. A third example is a
reconfigurable module which handles network protocols. It would use configuration to implement
the actual network protocol handling and parameterization to set the local address.

In the final SoC the firmware is responsible for the initialization and operation of the reconfig-
urable CPU supplement module. In a setup sequence, first the configuration data and then the
parameterization data are applied. Finally, during the regular operation of the SoC, parameteri-
zation is used to adjust and query values of the configured application. In (example) application
HDL designs, the parameters are specified as input and output ports.

3.1.4 Reconfigurable Architecture

The reconfigurable architecture has to support control-dominated as well as data processing tasks.
Some of the platforms reviewed in Ch. 2 provide facilities for both domains by the inclusion of
separate fine-grained and coarse-grained reconfigurable architectures. For example:

• The XiSystem SoC uses the PiCoGA and the eFPGA architectures (Sec. 2.3.3, [LCB+06]).

• The Maia processor of the Pleiades project uses coarse-grained satellites and a dedicated
eFPGA (Sec. 2.5.2, [ZPG+00, GZR99]).

• The Totem project developed coarse-grained RaPiD style and fine-grained CPLD architec-
tures (Sec. 2.5.4, [CH08, HH07]).

However, these two domains have interdependencies. For example the zero flag from a coarse-
grained counter is used as an input of a fine-grained FSM, or the FSM controls a coarse-grained
multiplexer of the datapath. Therefore in this work a unified multi-granular reconfigurable ar-
chitecture is required (cf. Sec. 1.1.4 and 1.1.7).
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As summarized in Sec. 2.5.7 the basic internal structure of the reviewed reconfigurable architec-
tures use reconfigurable functional units and a reconfigurable interconnect. The same structure
is used in FPGAs which have CLBs and a mesh interconnect [GCS+06]. This setup is used as
basis for the reconfigurable architecture in this thesis. The internal structure is defined as a pool
of FUs connected via a reconfigurable interconnect (see Fig. 3.3) [GHDG10, WGS+12].

In the remainder of this thesis, FUs of the reconfigurable module will be denoted “cells” while for
general reconfigurable architectures the term “FU” will be used further on. Cells are instances of a
“cell type”. For example, the reconfigurable module can have two instances (cells) of an adder (cell
type), among others. The applications which are implemented using the reconfigurable modules
also instantiate the cell types, these logical instances are mapped to the physical instances of the
reconfigurable module.

In general, the property of granularity applies to FUs as well as to signals of a reconfigurable archi-
tecture. Fine-grained FUs implement bit-level functionality (e.g., CLBs in FPGAs) while coarse-
grained FUs implement complex functionality (e.g., DSP slice, FSM, CPU, etc.) Fine-grained
signals conduct single bit values while coarse-grained signals conduct whole vectors of multiple
bits. Fine-grained interconnects route single bit values and use individual switches for each bit,
while coarse-grained interconnects route and switch vectors as a whole with an unchanging order
of the individual bits. For example, FPGAs contain fine-grained CLBs and coarse-grained FUs
(DSP, BlockRAM, etc.) but only provide a fine-grained mesh interconnect. On the other hand
the KressArray, Pleiades, and RaPiD/Totem architectures only have coarse-grained FUs and a
coarse-grained interconnect (cf. Tab. 2.2). To achieve a unified multi-granular reconfigurable
architecture, in this work multi-granular cells as well as a multi-granular interconnect are used.

Figure 3.3: Schematic block diagram of a reconfigurable module: a pool of cells is connected via the inter-
connect.
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Multi-Granular Cells

For a unified multi-granular reconfigurable architecture, fine-grained and coarse-grained cells are
included. However, for best area and energy efficiency the designer should put an emphasis on
coarse-grained cells (cf. Sec. 2.3.4).

As concluded in Sec. 2.5.3, the cells are designed manually by the developer using an HDL,
analogous to the development of example applications. Each cell can implement

• a single function (e.g., an adder),
• can change its function with control signals, or
• its function can be reconfigurable.

The latter two cases represent multi-function cells which can change the functionality after pro-
duction. For example, an add-subtract-compare cell can be used as an adder in one example
application, as a subtracter in another example application, and as a comparator in a third ex-
ample application. It can also be included to provide functionality for future applications in the
post-silicon design phase.

Additional to multi-function cells, for each cell also different hardware implementations can be
defined. Such cells are termed “sizable cells”. The implementations can differ numerically, e.g., to
set the number of inputs of a MUX, to set the size of a memory, or to set the size of a reconfigurable
FSM. The implementations can also differ in categories, for example, a counter cell can offer three
different implementations, one which counts in upwards direction, one in downwards direction,
and one which can switch the direction using an additional control input.

Multi-Granular Interconnect

The interconnect must be able to route fine-grained as well as coarse-grained signals. For the
interconnect signals, the designer specifies a set of “connection types”, which define compatible
signals depending on their width and on their semantics [WGS+12]. The concept of connection
types is depicted in Fig. 3.3 using thin and wide arrows. For example, a project could use the
connection types “control” (1 bit wide) for control signals, “data” (8 bits wide) for data to and
from byte-oriented peripherals, and “value” (16 bits wide) for arithmetic values.

Each port of each cell has to be implemented as one connection type, but a cell can use different
connection types for each port. For example, an AND gate can have two “control” inputs and one
“control” output, while a combined add-subtract-compare cell could have two “value” inputs, one
“value” output, a “control” input to select between addition and subtraction and four “control”
outputs to specify the zero, carry, overflow, and sign flags of the result (cf. cell AddSubCmp in Fig. 3.8
on p. 71). For the internal design of the cells, the designer is not limited to the connection types.

Input and output ports of the whole reconfigurable module as well as parameter inputs and
outputs are directly connected to the interconnect and routed through the interconnect to the
cells. This enables to connect the input of a cell with a “global” input port, a parameter input,
or an output of another cell. Analogously, the output of a cell can be connected to a “global”
output port, a parameter output, or an input of another cell. From this definition follows, that all
ports and all parameters have to comply to the defined connection types. Since the reconfigurable
module implements an (example) application, the ports of the (example) applications also have
to utilize the defined connection types.
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The total interconnect of a reconfigurable module is split in dedicated and separate interconnects
for each connection type [WGS+12]. To pass signals from one connection type to another, an
explicit cell must be included. For example, an external temperature sensor provides a 16-bit
value. The value is transmitted with a byte-oriented SPI peripheral. Therefore two signals with
connection type “data” have to be converted to a single signal with connection type “value”.

The combination of multi-granular cells and multi-granular interconnect is the basis of the real-
ization of a unified multi-granular reconfigurable architecture.

In this section, the basic structure of the reconfigurable architecture was defined. This provides
the frame for the generation of a reconfigurable module which is discussed in the next section.

3.1.5 Generation of the Reconfigurable Module

From the defined application class and the set of example applications a soft IP core with the
reconfigurable architecture as defined in the previous section is generated. This corresponds to
the yellow rectangle “Generation of Reconf. Module” of Fig. 3.2.

Early Approach

In the beginning of the development of the design methodology, a manual approach was used
[GHG10, GGHG11]. First the architecture is split to control logic, memory, and arithmetic,
analogous to the examples for the connection types used in Sec. 3.1.4. Then the inventory of the
reconfigurable module is derived from the defined application class. The required features and
functions are anticipated and according cell types are implemented.

To increase the flexibility in the post-silicon design phase, the semantics of the signals are gener-
alized to general-purpose signals and additional cells are included. Then the connections between
the cells are constructed according to the expected requirements. This also includes input and
output ports of the reconfigurable module as well as interfaces between the connection types.
Finally the infrastructure for configuration and parameterization is inserted.

In this early approach the reconfigurable module is designed manually. This does not fulfill
the requirements for fast turn-around times and a high degree of automation (cf. Sec. 1.1.7).
Therefore this approach was enhanced to an automated approach.

Automated Approach

As found in Sec. 2.5.7, previous research uses three steps for the design of reconfigurable modules:

1. HW/SW partitioning of a whole program to extract the functionality which is implemented
in reconfigurable logic as a set of example applications.

2. Convert the example applications to DFGs/netlists.

3. Merge the DFGs or netlists to a reconfigurable architecture.
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From this procedure, the methodology for the automated generation of the reconfigurable module
is derived (see Fig. 3.4) [GW14]. In this thesis, the first step of HW/SW partitioning is performed
manually by the developer. He directly implements the set of example applications using a HDL
(cf. Sec. 3.1.1).

• Analogous to step 2, in the “Application Analysis” step the example application HDL de-
signs are synthesized to netlists which only instantiate and connect cell types. Concurrently
the cell types themselves are derived.

• Analogous to step 3, in the “Merge” step, the netlists are merged to a single reconfig-
urable circuit which is implemented as a pool of cells and a reconfigurable interconnect (cf.
Sec. 3.1.4).

• Finally, in the ”Completion” step, the reconfigurable module is further extended with in-
frastructure for configuration and parameterization and finalized as an IP core as defined
in Sec. 3.1.2 for the integration in the SoC.

Figure 3.4: Graphical representation of the design methodology (explanation in the text), reproduced from
[GW14] with permission.
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The “Application Analysis” step has to solve two problems simultaneously:

1. finding the set of cell types which is optimum for the set of example applications, and
2. mapping the example applications to these cell types.

The SPS project (cf. Sec. 2.5.3) [OMBKS01, KKOMB02, BMKS02] proposed an automatic meth-
odology to solve these two problems. However, this approach is based on the frequency of the
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combination of node types and therefore leads to cell types with random boundaries and func-
tionality. This limits the reusability of the generated cell types for new applications. Therefore
in the design methodology discussed in this thesis, the cell types are developed manually.

The “Application Analysis” step is performed as an iterative process which combines automated
and manual actions and will be discussed in further detail in Sec. 3.2. The result of this step is
a netlist for each example application and a set of cell types, which constitute the “cell library”
(cf. Fig. 3.4).

For the “Merge” step the commonalities of the netlists are examined. From the number of logical
instances of each cell type used by each netlist, the minimum number of physical instances for
each cell type is determined. Additionally for sizable cell types, the actual implementations are
defined. Afterwards, the reconfigurable interconnect is built to allow the mapping of all example
application netlists to the reconfigurable module (cf. Fig. 3.3). These topics and further details
on the “Merge” step are discussed in depth in Sec. 3.3.

The “Merge” step obviously requires all netlists simultaneously to determine the number of cell
instances and to optimize the interconnect. The “Application Analysis” step also requires all
example applications simultaneously, because the definition and optimization of the cell types
should enable maximum reuse across all example applications.

The “Completion” step is discussed in Sec. 3.4.

3.1.6 Increase Flexibility

After production, the hardware circuits can not be modified (with reasonable costs) so the user
has to get by with the available structures to implement the desired application. This means that
the pre-silicon design sets restrictions to the post-silicon design-space by the limited set of cells,
routing resources, and configuration and parameterization options.

Therefore the resulting reconfigurable module must provide additional flexibility to implement
new applications which are different (but similar) to the example applications (cf. Sec. 1.1.7).
This is achieved by utilizing the approach of the Totem project (see Sec. 2.5.4 [CH01, CH08]) to
include additional cells and additional routing resources. This approach is termed “oversizing”
in the remainder of this thesis.

Together with the principles defined in the previous sections, the following means to increase the
flexibility of a reconfigurable module are applicable:

• include cell types not used by any example application,

• include multi-function cells, which can also provide functionality not used by any example
application,

• use a larger implementation of sizable cells,

• increase the number of instances of certain cell types, and

• increase the routing resources.

Note that all means are specified by the user. Further, the use of a generic interconnect topology
itself provides a certain degree of flexibility (see Sec. 3.3).
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3.1.7 Summary

In this section, the main principles for the design methodology were determined. The reconfig-
urable module is specified using a set of example applications, each is implemented as an HDL
design. The basic structure of the reconfigurable module is a pool of cells connected with a
reconfigurable interconnect.

From the example applications an optimized set of cell types is derived in a semi-automated
process and each example application is synthesized to a netlist which only instantiates these cell
types. The minimum number of instances of each cell type is determined and an interconnect is
optimized. To increase the flexibility of the reconfigurable module in the post-silicon design phase,
multi-function cells, additional instances, and additional routing resources are included. The
module is equipped with infrastructure for the configuration and parameterization and delivered
as an IP core.

These main principles set a frame for the detailed development of the design methodology. In
the next section, details on the “Application Analysis” step for the synthesis of the example
applications and the optimization of the cell library are discussed.

3.2 Application Analysis

In this section, details of the “Application Analysis” step of the generation of a reconfigurable
module are discussed (cf. Sec. 3.1.5 and Fig. 3.4). The input for this step is a set of example
applications described in an HDL. The result of this step are two products: a netlist for each
example application and the cell library. The netlists only instantiate cells from the cell library.

In Sec. 3.2.1 the approach to conjointly find the optimum set of cell types and to map the example
applications to these cell types is introduced. This is followed by details on the individual steps
and the employed concepts and algorithms.

3.2.1 Application and Cell Library Optimization

The application and cell library optimization itself is an iterative process displayed in Fig. 3.5
[GW14].

1. “Synthesis”: First, all example applications are synthesized to netlists using generic cells.1

2. “FSM Extraction”: Then the FSMs are extracted from the netlists and replaced by instances
of generic FSM cells.2

3. “Cell Extraction”: In the next step, the netlists of the example applications are processed
to automatically extract all occurrences of the cells of the cell library and to replace them
with an instance of that cells.

1A synthesis tool uses an internal tool-specific set of generic technology cells to represent the synthesized circuit.
These implement basic functionality, e.g., multiplexers, D-FFs, and logic gates. Here the term “generic cell” is
used to distinguish from the (coarse-grained) cells of the cell library.

2The generic FSM cell is also a tool-specific cell and will be mapped to a reconfigurable FSM cell in the “Merge”
step. The rationale for the intermediate generic FSM cell is discussed in Sec. 3.2.5.
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Figure 3.5: Flow diagram of the application and cell library optimization (explanation in the text).
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4. “Inspection”: Afterwards the developer inspects the resulting netlists (ideally as schematics)
and the example application HDL code.

5. “Improvement”:

(a) If the netlists have groups of generic cells or the HDL designs implement functionality
which is common to many example applications, the developer manually creates new
cells for the cell library which implement that functionality.

(b) The developer can modify cells to obtain better results of the “Cell Extraction” step
or to achieve better reuse between the example applications.

(c) He also can modify example applications for these goals.

This procedure is repeated until all example applications can be implemented using only generic
FSM cells and cells of the cell library.

At the beginning of the discussed design methodology, the cell library might not contain any
cells. In that case, the “Cell Extraction” step is skipped and the “Improvement” step is used to
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implement one or more initial cells. Of course, if a previous project was already conducted using
the discussed design methodology, the existing cells can be reused in a new project.

In the “Synthesis” step, the HDL designs of the example applications are synthesized to netlists
with generic cells. To enable the mapping to multi-granular cells and signals, the synthesis tool
must preserve vector signals (cf. CustArD [BS14] Sec. 2.5.6) and provide fine-grained as well as
coarse-grained generic cells.

In digital design, many applications utilize FSMs combined with a datapath (FSM+D [GR94],
cf. Sec. 2.6). Control flow, conditions, sequencing, timing, and operating modes are implemented
with FSMs, while any kind of data handing is implemented using other constructs. The reconfig-
urable implementation of control-dominated tasks requires a high number of small, fine-grained,
and general logic cells like LUTs and causes a large routing overhead. Therefore in the discussed
design methodology dedicated reconfigurable FSM cells are utilized. This strongly reduces the
number of fine-grained cells and fine-grained routing. The FSMs of the (example) applications
are extracted in the “FSM Extraction” step for the implementation using reconfigurable FSMs,
which is discussed in detail in Sec. 3.2.2.

Each cell of the cell library implements functionality which covers a detail of one or more example
applications, e.g., an adder, a register, or more complex functionality like calculating the absolute
value of the difference of two input values |a − b|. Cells can also implement wider functionality
as discussed in Sec. 3.1.4

The cells of the cell library are synthesized before their use in the “Cell Extraction” step. The
resulting netlists also use generic cells. The goal of the “Cell Extraction” step is to identify
subcircuits in the netlists of the example applications which match the (smaller) netlists of the
cell library. The actual identification of subcircuits is discussed in Sec. 3.2.3.

While the “Synthesis”, the “FSM Extraction”, and the “Cell Extraction” steps are performed
automatically, the “Inspection” and the “Improvement” steps require the specific human intelli-
gence, intuition, and experience. The goal is to identify and develop cells, which best match the
example applications, which provide reuse between the example applications, and which prepare
for future applications.

The application and cell library optimization is explained with an example: An example applica-
tion which implements the sensor interface task (cf. Sec. 1.1.1) determines whether the new value
differs from the old value, but only if the difference exceeds a given threshold:

|tnew − told| > threshold

Figure 3.6 shows the according detail of an exemplary netlist of that example application. The
netlist contains a subtracter for d = tnew−told, a comparator of that difference whether it is smaller
than 0, a subtracter d = 0 − d to negate that value, a MUX |d| = d or d, and a comparator
|d| > threshold.

By inspecting the HDL sources and the netlists and keeping the whole application class in mind,
the designer can identify the arithmetic operation |tnew − told| as a frequent task (marked with a
dashed line in Fig. 3.6) and decide to implement this as a dedicated AbsDiff cell (see Fig. 3.7).

As mentioned above, cells can also provide wider functionality to match multiple example appli-
cations. For example, an example application calculates the mean value of a sequence of mea-
surements. This requires an adder cell to calculate the sum a + b of consecutive measurements.
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Figure 3.6: Detail of the netlist of an implementation of the sensor interface task (described in Sec. 3.2.1)
which determines whether the new sensor value tnew differs for more than a given threshold from the previous
value told. The netlist instantiates exemplary generic cells (yellow). The region marked with the dashed
rectangle is a subcircuit which calculates the absolute difference of two values. The enable signal of the
register and the result of the greater-than comparison “>” are connected to an FSM.
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Figure 3.7: Subcircuit of Fig. 3.6 replaced by the cell AbsDiff.
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This adder cell can be extended to switch between sum and difference a − b, which only causes
low hardware overhead. A further extension to provide the zero, carry, overflow, and sign flags
of the result enables to use the cell as a comparator.3 This add-subtract-compare cell can also
be used by the previous example application to compare |d| with the threshold |d| > threshold.

In summary, the “Inspection” and the “Improvement” steps include

• identifying groups of generic cells and implementing a coarse-grained cell,

• merging similar cells (e.g., adder, subtracter, and comparator) and generalizing to multi-
function cells,

• extending cells with features to increase the flexibility of the reconfigurable module in the
post-silicon design phase, and

• modifying the example applications to better utilize the available cells while preserving its
behavior.

After the “Improvement” step, the refinement cycle is repeated using the automated “Synthesis”,
“FSM Extraction”, and “Cell Extraction” steps before the resulting netlists are inspected again.

3A comparison between a and b is performed by subtracting the two values a − b and examining the flags of the
result. For example, a = b if the zero flag is ’1’, and a >= b if the sign flag is ’0’.
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When all example applications can be implemented using only generic FSM cells and cells of
the cell library, the application and cell library optimization is finished. The result is the set of
netlists of all example applications and the cell library (cf. Sec. 3.1.5 and Fig. 3.4).
In the next two sections, details on the “FSM Extraction” and “Cell Extraction” steps are dis-
cussed.

3.2.2 FSM Extraction

From each example application, the FSMs described in the HDL source code have to be extracted.
As an HDL module usually includes more logic together with the FSM, the actual FSM has first
to be identified. Then its input and output signals, the state encodings, and the transitions have
to be extracted. Finally the FSM logic is replaced by a generic FSM cell which shows the exact
same behavior.
For the description of FSMs in HDL, [Gio95] distinguishes between explicit FSMs and implicit
FSMs:

• For explicit FSMs, an explicit state register is described and the FSM outputs as well as
the FSM transitions depend on that state, e.g., using a VHDL case statement.

• On the other hand, using VHDL wait statements inside a process requires the synthesis
tool to implement an implicit FSM.

To extract both types of FSMs, [Gio95] processes the control flow graphs (CFGs) and the DFGs of
the logic module. The extracted FSM is represented as state transition graph. This also supports
the specification of datapath operations.
A different approach is applied by [SP05] to extract implicit FSMs for cycle accurate IO timing
programmed in SystemC. The source code (or its abstract syntax tree, AST) is directly processed
to identify the states as delimited by wait() statements. The FSM inputs and the transitions
are derived from conditional statements (if, while), and the outputs are recognized from the
actions performed in the source code. Although this work is specific to SystemC, the algorithm
is applicable to any HDL.
Both approaches of [Gio95] and [SP05] extract an FSM from a logic module, but can not identify
an FSM in a possibly larger logic circuit. [WG13, Wol15b] identify FSMs by detecting state
signals in synthesized logic circuits. These are recognized as output of a register. The input of
the register must result from a MUX tree only switching between constant values (i.e., the state
encodings) and the current state signal. Further, the state signal is not allowed to connect to a
module output port. After identification, the FSM is extracted by processing the MUX tree with
the state encodings. The FSM inputs are derived from the MUX select signals, and the FSM
outputs are derived from all cells which evaluate the current state signal. The FSM transitions
are derived from evaluating the logic circuit for all states and input signals. The extracted FSM
is replaced by a generic FSM cell.
The method for FSM identification and extraction directly investigates the logic circuit. This
highly depends on the properties and results of the preceding synthesis (especially the MUX
tree). However, the FSM extraction is integrated in the synthesis tool, therefore the dependence
is justified.
Only the approach by [WG13, Wol15b] provides identification of FSMs inside of larger designs.
Therefore it is selected for the “FSM Extraction” step.
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3.2.3 Cell Extraction

In Sec. 3.2.1 the “Cell Extraction” step was introduced. In the netlist of each example application
(“haystack”), all occurrences of the cells from the cell library (“needles”) have to be found. To
achieve a fast turnaround time in the refinement process, the “Cell Extraction” step must be
automated (cf. Sec. 1.1.7). The task of the “Cell Extraction” step is known as the subcircuit
extraction problem [ZWH03]. To identify given subcircuits within logical circuits, two approaches
are applicable:

• For logical equivalence checking, the circuits are represented as logical functions. The equiva-
lence of logical functions is shown analogous to mathematical proofs [Swa97]. This approach
can be employed to identify subcircuits within the “haystack” circuit which are logically
equivalent to the given “needle” subcircuits.

• The netlists of logical circuits can be represented as graphs. Extracting subcircuits is
equivalent to finding sub-graphs in the “haystack” graph, which are isomorphic to the given
“needle” graphs (sub-graph isomorphism) [OEGS93].

The implementation of a given functionality can lead to different circuits. For example, a ripple-
carry adder and a carry-lookahead adder both perform the same functionality, but use different
logic circuits. This problem also exists for coarse-grained logic, e.g., the sum a + b + c can be
implemented with two-input adders as (a + b) + c and as a + (b + c). Also the above example
of the AbsDiff cell can be implemented differently: first both differences d ′ = tnew − told and
d ′′ = told− tnew are calculated and finally the MUX selects the positive value |d| = d ′ or d ′′. In all
three examples, the circuits and therefore the netlist graphs are different, but the functionality
and therefore the logic functions are identical. Therefore, the logical equivalence approach can
identify the subcircuits but the sub-graph isomorphism approach can not.

On the other hand, the logical equivalence approach has to map the circuits to fine-grained
single-bit logic before identifying logically equivalent “needle” subcircuits in the “haystack” cir-
cuit. This problem is similar to technology mapping of a logical circuit to standard cells during
ASIC synthesis [Cha07]. The algorithms used in technology mapping represent the logic functions
as graphs (binary decision diagrams, BDDs or and-inverter graphs, AIGs) and therefore imple-
ment logical equivalence detection as a sub-graph isomorphism problem. However, the “needle”
subcircuits are small and fine-grained with only a few input signals and a single output signal.
In contrast, the circuits discussed in this section result in large coarse-grained logic circuits with
a high number of graph nodes and edges. Additionally, the algorithms for technology mapping
only handle combinational logic and use separate approaches to map registers to D-FFs.

Following from these considerations that the logical equivalence approach is not suitable for the
given subcircuit extraction problem, the sub-graph isomorphism approach is chosen. To mitigate
the problems to find differing netlists of identical functionality, countermeasures have to be found.

As previously discussed the “Synthesis” step creates netlists with generic cells of all example
applications. For the “Cell Extraction” step, all cells of the cell library are synthesized to netlists
with generic cells too. These generic cells can be coarse-grained and use vector signals, e.g.,
adders, comparators, and shift registers. All netlists represent graphs with the generic cells as
graph nodes and the signals as graph edges.

To detect all occurrences of the “needle” sub-graphs in the “haystack” graph, the algorithm
proposed by [Ull76] is used. This algorithm creates adjacency matrices for each graph. These
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specify for each node, whether an edge exists to a given other node or not. The adjacency matrices
are then processed to find the occurrences of the sub-graphs. In the discussed subcircuit extraction
problem the cell types and the signal types have to be considered additionally to the graph
topology. This requires extensions to the algorithm [OMHG11, WG13, Wol15b]. These algorithms
introduce extended adjacency matrices which encode the cell and signal types. [WG13, Wol15b]
also allow to specify compatible node and signal types as well as rules to compare the ports of
the cells.

After the sub-graph isomorphism extraction, all occurrences are replaced by instances of the
respective cell (see Fig. 3.7 on p. 67).

3.2.4 Topological Variants and Reduced Variants

To mitigate the problem of differing netlists and therefore graph representations for different
implementations of the same functionality, the concept of “topological variants” is introduced.
The implementation of each cell in the cell library is used twofold: Firstly, in the sub-graph
isomorphism detection to identify its occurrences in the example application netlists, and secondly,
to replace the occurrences with a single cell instance. The second usage also implies that the
implementation is instantiated in the final reconfigurable module and included in the soft IP
core. This implementation is termed the main variant of a cell.

The division of the “Cell Extraction” step in two sub-steps is utilized for the concept of topological
variants: For each cell an unlimited number of additional logic designs can be prepared. These
use a different implementation as the main variant but have to be functionally equivalent. The
topological variants are only used for the subcircuit extraction to allow the identification of differ-
ent implementations. The occurrences are however replaced by an instance of the main variant.
Creating topological variants of cells is an element of the tasks performed in the “Improvement”
step defined in Sec. 3.2.1.

As also mentioned in Sec. 3.2.1, cells can provide wider functionality as required in any example
application, e.g., an add-subtract-compare cell. For the automatic detection of such cells in
the example application, the concept of “reduced variants” is introduced. As a first step after
implementing the main variant, reduced variants of the cell are developed, e.g., an adder, a
subtracter, a less-than comparator “<”, a greater-than comparator “>”, etc. These are used by
the sub-graph isomorphism algorithm to detect all occurrences in the example applications. Note
that the reduced variants implement a different and stripped-down functionality than the main
variant, hence the name. Therefore as a second step, wrapper modules for the main variant are
implemented. These instantiate the main variant together with the necessary logic to implement
the specialized, i.e., reduced functionality. The occurrences of the reduced variants are replaced
by the wrapper modules.

The above example is demonstrated in Fig. 3.8: The greater-than comparator “>” is replaced
by the AddSubCmp add-subtract-compare cell and wrapper logic (cf. Fig. 3.7). Note that this is a
special case where the “needle” netlist consists only of the single generic greater-than comparator
cell. The AddSubCmp cell is set in subtract mode by applying 1 to the Add/Sub mode selection
input. The result value D is unused, but the flags are logically combined to determine whether
|d| > threshold.

Other examples are the use of a four-input MUX cell as a two-input MUX or the instantiation of
a counter cell without using its “Reset” control input.
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Note that the second step of the reduced variant concept is the opposite of subcircuit extraction:
While with subcircuit extraction a collection of cells is replaced by a single cell, here a single cell
(the extracted reduced variant) is replaced by the circuit of the wrapper module. The additional
logic can be captured by a following subcircuit extraction. In the special case depicted in Fig. 3.8,
the single-bit logic can also be realized by the FSM: The condition for the state transition observes
both, the carry and zero flag, instead of the single output of the former comparator.

Figure 3.8: The greater-than comparator “>” of the circuit in Fig. 3.7 on p. 67 is replaced by the cell AddSubCmp
add-subtract-compare cell with wrapper logic using the reduced variant concept. The outputs “D”, “Sign”,
and “Ovfl.” are unused.
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3.2.5 Handling of Configurable Cells

As defined in Sec. 3.1.4, the cells in the cell library can provide a single function or provide
multiple functions selected either using control signals or using configuration data. For example,
the AddSubCmp cell in Fig. 3.8 can switch between addition and subtraction using the Add/Sub
input. In certain applications it might be required to switch the functionality during operation.
Therefore this input should be implemented as a control input, e.g., driven from an FSM or a
constant value.

For an example of a reconfigurable cell, a sensor is considered which provides the value as sub-
section of a larger signal vector (e.g., a 10-bit value located in bits 12 downto 3 of a 16-bit signal,
while the other bits are used as flags). This subsection has to be selected from the signal vector
before further arithmetic operations. However, the implementation of a dedicated cell would be
specific to this one example application. Therefore a cell with a reconfigurable shift-right and a
reconfigurable mask is suggested.

The subcircuit extraction requires knowledge on the different specialized functionalities of recon-
figurable cells together with the appropriate configuration data. To handle reconfigurable cells by
the “Cell Extraction” step, the reduced variants approach is utilized. In the “Improvement” step
the developer first implements the main variants of the reconfigurable cells. These are instanti-
ated in the final reconfigurable module, identical to fixed function cells. These also have input
and output ports which have to comply to the defined connection types. Additionally, dedicated
input ports to supply the configuration data are included.

Secondly, the developer creates reduced variants which implement the specialized functionalities
of the reconfigurable cells. These are used by the subcircuit extraction. And thirdly, the developer
implements wrapper modules which instantiate the reconfigurable cells and supply the required
configuration data to the dedicated input ports. The configuration data has to be transferred to
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the “Merge” and “Completion” steps for inclusion in the final configuration stores. The wrapper
modules are used to replace the extracted subcircuits of the reduced variants in the application
netlists. However, this approach poses the disadvantage that for each specialized functionality a
dedicated set of a reduced variant and a wrapper module have to be implemented. Therefore the
developer can limit his effort to the cases used by the example applications.

Referring to the previous example of a shift-and-mask cell, the reduced variant directly imple-
ments the selection of the subsection of the vector, e.g., as VHDL assignment Y_o <= "000000"

& A_i(12 downto 3);. The wrapper module instantiates the shift-and-mask cell and supplies the
configuration data for the right-shift (in this case 3) and the mask (in this case x"03FF").

Reconfigurable cells which are also sizable (cf. Sec. 3.1.4) require a special handling, because
the actual implementation of these cells results from the requirements of all example application
concurrently. It is therefore determined during the cell instantiation of the following “Merge” step
(cf. Sec. 3.3.1). The generation of the configuration data depends on the actual implementation
of the cell and therefore can only be generated after the actual implementation is determined.

To handle reconfigurable and sizable cells, an intermediate cell type which is independent of the
actual implementation is used. Instead of the configuration data, an internal format describes
its configurable functionality. After the actual implementation of the cell is determined, the
configuration data is derived from this internal format.

A special case of reconfigurable and sizable cells are the reconfigurable FSMs. Special algorithms
are required for the identification and extraction of the FSM logic from the (example) applica-
tions. Therefore instead of the reduced variants approach the separate “FSM Extraction” step
is introduced before the “Cell Extraction” step (cf. Sec. 3.2.2). A generic FSM cell is used as
intermediate cell type to represent the extracted FSM.

3.3 Merge to Reconfigurable Architecture

In the previous section the synthesis of the example applications to a set of netlists and a cell
library was discussed. In this section the procedure to merge the separate netlists to one recon-
figurable module is described (cf. “Merge” step in Sec. 3.1.5 and Fig. 3.4 on p. 62). The result of
the procedure is the reconfigurable module with input and output ports, instances of the (recon-
figurable) cells of the cell library, and a reconfigurable interconnect, as defined in Sec. 3.1.4 (cf.
Fig. 3.3 on p. 59).

In Sec. 3.3.1, the preparation to instantiate the cells is discussed. In Sec. 3.3.2 the requirements for
the interconnect topology are evaluated and a suitable topology is selected. Finally, in Sec. 3.3.3
the actual interconnect optimization is discussed.

3.3.1 Cell Instantiation

The procedure to generate the reconfigurable module consists of the following steps (extending
[WGS+12, GW14]):

1. determine the required implementation of sizable cell types
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2. determine the minimum number of instances of each cell type

3. include additional instances for yet unknown applications (oversizing)

4. generate and optimize the interconnect

Before the interconnect can be generated and optimized (step 4), the number of instances of each
cell type has to be determined. For fixed cell types the number of instances results from the
maximum number of instances used by each netlist (step 2). For sizable cell types the actual
implementations have to be determined (step 1) beforehand. If only a single instance is used in
any netlist, the biggest implementation is selected. Multiple cell instances offer the optimization
potential to map each netlist instance to a fitting cell of the interconnect. In the discussed
methodology this task is performed manually by the developer. For sizable cell types which are
also reconfigurable, the deferred generation of the configuration data (cf. Sec. 3.2.5) is performed
here.

To increase the flexibility of the reconfigurable module in the post-silicon design phase, in the
“Merge” step three means are taken (cf. Sec. 3.1.6):

• increase the size of sizable cells (step 1)
• increase the number of instances of cell types (step 3)
• increase the routing resources (step 4, discussed below)

As defined in Sec. 3.1.4, for each connection type a separate interconnect is generated. Cell
types which implement ports for a mixture of connection types are connected to each of the used
interconnects. The following discussion is applicable to all parallel interconnects.

After the cell instantiation (steps 1–3) is completed, in the next section the interconnect topology
is defined, before in Sec. 3.3.3 the optimization of the interconnect (step 4) is discussed.

3.3.2 Interconnect Topology

As found in Sec. 2.5.4, the use of a generic topology alone leads to increased flexibility in the
post-silicon design phase. The interconnect topology used in the reconfigurable module discussed
in this thesis has to fulfill a set of requirements (extending [WGS+12]):

1. allow connections between all cells
2. low power consumption
3. low propagation delay
4. low chip area
5. little configuration data
6. allow optimization
7. prohibit over-optimization
8. allow oversizing
9. usable for synthesis (cf. Sec. 1.1.7)

From the topologies reviewed in Ch. 2 and in [WGS+12], the tree topology is selected for its
given optimization potential and its universality. The cells are instantiated as leaf nodes of the
tree (cf. Fig. 3.9). The inner nodes of the tree are implemented as reconfigurable switches. The
connections between the cells and the switches represent the edges.
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Figure 3.9: Exemplary tree interconnect for nine cells, arranged in three levels (reprinted with modifications
from [WGS+12, GW14] with permission).
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The tree topology can connect any cell with any other (requirement 1). The tree topology
provides hierarchical clustering of nodes. According to [KR98] and [GZR99] this reduces the
power consumption (requirement 2) and delay (requirement 3). The number of switches is small
which reduces the amount of configuration data (requirement 5). The chip area (requirement
4) is reduced firstly due to the low number of switches, and secondly due to the reduced clock
tree for the configuration D-FFs (cf. Sec. 2.3.3 [WKW+05, WAWS03]). The clustering allows the
optimization of the interconnect by utilizing the locality of connections (requirement 6) but still
allows connections to any cell (requirement 1).

The tree topology also allows the optimization of the number of up and down connections between
the tree levels (requirement 6). In the discussed methodology whole cells are connected as leaf
nodes instead of the individual cell ports. This limits the potential for optimization and leaves
flexibility for the post-silicon design phase (requirement 7). The tree topology allows oversizing
by including additional up and down connections between the switches (requirement 8). The
switches of the tree topology can be implemented using unidirectional MUXes, therefore the
topology is suitable for ASIC synthesis (requirement 9).

As stated above, for each connection type a separate interconnect is implemented. For each of
these interconnects, each cell is member of a single cluster. To improve the connectivity within
the interconnect, the generation of multiple trees for each connection type is enabled. This can
be envisioned as stacked trees in the z-axis of the drawing layer of Fig. 3.9. However, each cell
is placed at a different leaf position in every tree resulting in a different clustering. Therefore
each cell can be member of multiple clusters which improves the routability of signals [WGS+12].
Note that each interconnect for each connection type can consist of multiple trees.

3.3.3 Interconnect Optimization

With the tree topology selected, the actual optimization of the interconnect is discussed in this
section. The input to this procedure consists of:

• the cell library which defines the cell types,
• the set of netlists, which instantiate and connect the cell types from the cell library,
• the actual implementations of sizable cells, and
• the number of instances of each cell type in the reconfigurable module (cf. steps 1–3 in

Sec. 3.3.1).
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For better distinction, in this section the instances of cell types in the netlists (logical instances)
are termed nodes while the instances of cell types in the reconfigurable module (physical instances)
are termed cells.

Note that for linear or mesh topologies the cells are at given spatial positions in a 1D or 2D
arrangement. This results in spatial proximity relations between the cells. On top of the cells,
the interconnects for each connection type are placed. This means that the position of a cell is
the same within each interconnect. Therefore all interconnects have to be jointly optimized. In
contrast, an interconnect with tree topology only produces logical proximity individually in each
tree and therefore allows independent optimization.

In relation to the reviewed approaches in Sec. 2.5, in this thesis a bottom-up-creation approach
is realized. In contrast to the KressArray methodology (cf. Sec. 2.5.1), all netlists should be used
concurrently for the optimization to achieve best results.

For the optimization, two problems have to be solved concurrently:

1. mapping physical cells to leaf positions of the tree (cell-to-leaf mapping), and
2. mapping netlist nodes to physical cells (node-to-cell mapping).

To achieve short turnaround times (cf. Sec. 1.1.7) the optimization process must be automated.

The design methodology developed by the Pleiades project (cf. Sec. 2.5.2) uses manual clustering
and placement of the cells (“satellites”). A local interconnect is created within each cluster.
For the connections between the clusters a hierarchical mesh interconnect is generated. For the
optimization, the solutions for different topologies are compared. The nets are routed with graph-
based algorithms and simulated annealing using energy and delay as a cost metric [Wan01]. For
the mesh topology bidirectional wires are assumed which is not applicable for synthesized designs.
The cost function considers hardware implementation details (energy, delay), thus the approach
is not independent of the semiconductor process (cf. Sec. 1.1.7).

The Totem project (cf. Sec. 2.5.4) proposed a methodology to generate RaPiD-like 1D linear array
architectures. To optimize the placement of the cells, simulated annealing moves the cell-to-leaf
mapping and the node-to-cell mapping. In the following routing phase, bidirectional routing
tracks are generated. An iterative approach is used to determine the number of tracks and the
mapping of signals to the tracks [CH08]. This methodology poses the disadvantage that the
placement phase can not consider the routing cost.

Both approaches use simulated annealing which assumes a spatial area at which the cells are
moved within their vicinity. This does not apply to the hierarchical nature of the tree topology
because of its non-uniform distances (e.g., compare the distance between cells 3 and 4 and between
4 and 5 in Fig. 3.9).

The optimization approach proposed by [WGS+12] was specifically developed for tree topologies.
It uses the Kerninghan-Lin algorithm to optimize the node-to-cell mappings and the cell-to-leaf
mapping: First the node-to-cell mappings of all netlists are concurrently optimized so that nodes
with similar connections in all netlists are mapped to the same cell. Then the total routing length,
i.e., the sum of the number of switches each signal has to pass, is minimized by optimizing the
cell-to-leaf mapping and the node-to-cell mapping.

Considering the disadvantages of the algorithms used by the Pleiades and the Totem project
and that [WGS+12] was specifically developed for the task discussed in this section, the latter is
selected for the interconnect optimization.
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The result of the “Merge” step is an HDL module which instantiates cells and creates MUXes as
the reconfigurable interconnect (see Fig. 3.3). Additionally the configuration data for the recon-
figurable cells as well as for the reconfigurable interconnect is created for all example applications.
To map new applications to the reconfigurable module in the post-silicon design phase and to
create the appropriate configuration data, meta-information about the interconnect is stored.

3.4 Completion of the Reconfigurable Module

In the “Completion” step the module from the “Merge” step is extended with infrastructure for
the configuration and parameterization (see Fig. 3.10). The interconnect and all reconfigurable
cells (e.g., a reconfigurable FSM) are supplied with configuration data. For parameterization
(e.g., the threshold value used in Fig. 3.6), read and write circuits are included.

To access the configuration data and the parameters, interfaces for the CPU are added to the
reconfigurable module. Finally a soft IP core including further data is created (see Sec. 3.1.2).
However, this procedure is strongly related to the actual implementation of the discussed design
methodology and therefore is presented in Sec. 4.8.

Figure 3.10: The basic reconfigurable module of Fig. 3.3 is extended with infrastructure for configuration and
parameterization.
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3.5 Verification

The requirements for the discussed design methodology include verified results (cf. Sec. 1.1.7).
This means that the reconfigurable module must be verified to correctly implement each example
application. Further, each example application has to be verified itself to correctly implement
the given functionality. To avoid long revision cycles, additionally the result of each step of the
design methodology must be verified (see Fig. 3.11). For clarity all verification related discussion
is collected in this section. The methods employed for verification include simulation, formal
verification (model checking), and logical equivalence checking.

The first designs to be verified are the manually developed example applications. As defined in
Sec. 3.1.1 each example application is implemented as RTL design using a HDL like VHDL or

Figure 3.11: Verification in the design methodology using simulation and logical equivalence checking (exten-
sion of Fig. 3.4).
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Verilog. This allows to use industry standard as well as free and open-source verification tools.
For each example application, the developer creates a testbench. This is used in simulation to
check the behavior of the example application. Additionally the developer can use methods like
formal verification to verify the design.

To enable the early development of firmware for each example application, HW/SW co-simulation
is used (cf. Sec. 2.4.3). Wrapper modules which have the same module interfaces as the final
reconfigurable module are generated. The wrapper modules instantiate the RTL implementation
of the example applications and connect its ports to the module ports appropriately. Additionally
infrastructure for parameterization and the interface to the CPU are included. Note that for the
early HW/SW co-simulation no configuration data is required. However, parameters are directly
accessible and handled by the firmware drivers.

These wrapper modules are used together with a CPU model which executes the firmware driver
and application code. Alternatively the wrapper modules are integrated in the full SoC design
instead of the reconfigurable module. Then the whole SoC including an RTL design of the CPU
is simulated. Before that, the compiled firmware is loaded to the simulated code memory.

For the design of cells for the cell library during the “Application Analysis” step (cf. Sec. 3.2.1),
a testbench for each cell is developed for the verification using simulation. Analogous to the
development of the example applications, the developer can also use formal verification. Ad-
ditionally the topological variants are compared to the main variant and the reduced variants
are compared to their according wrapper modules using logical equivalence checking to ensure
identical functionality.

After the “Application Analysis” step (cf. Sec. 3.2), for each example application an implementa-
tion using only cells of the cell library exists. These implementations have the same interfaces as
the RTL implementations. Therefore the original testbench is used to verify the behavior using
simulation. Besides simulation, logical equivalence checking is utilized to verify that the generated
implementations are logically equivalent to the RTL implementations [GW14] (and cf. Sec. 2.5.5).
Before the verification, the configuration data of all instantiated reconfigurable cells is applied.

In the “Merge” step (cf. Sec. 3.3), the reconfigurable module without the infrastructure for config-
uration and parameterization is finished. For each example application, a wrapper module with
the interfaces of their original RTL implementations and an instance of the reconfigurable module
is generated. For the simulation and for the logical equivalence checking first the configuration
data for the reconfigurable cells as well as for the interconnect is applied. For simulation the
original testbench is used.

After the “Completion” step (cf. Sec. 3.4), the reconfigurable module contains the infrastruc-
ture for configuration and parameterization. Therefore, compared to the previous case, slightly
different wrapper modules are required. These modules are verified analogous to the previous
case.

After the IP core is integrated in the SoC design a modified testbench is required for simulation.
The reason is that in general the whole chip can not be wrapped to only the interfaces of each
example application. Additionally, ports of the reconfigurable module which correspond to ports
of the example applications have to be accessed across the module hierarchy. Similar to the
above discussion of the HW/SW co-simulation, the firmware code is applied to the simulated
code memory. The only difference is that here the firmware has to supply the configuration data
to the reconfigurable module. The simulation of this setup is identical to the silicon chip. It can
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also be used for post-synthesis and post-place-and-route simulations, even with included delay
annotation generated from parasitics extraction.

For the whole SoC design no logical equivalence checking with the example applications is possible
because the SoC includes a number of other modules. However, logical equivalence checking
between the full RTL design of the SoC and the netlists resulting from synthesis and place and
route is possible.

3.6 Post-Silicon Design Phase

In the previous sections the pre-silicon design phase of the design methodology was discussed.
This section covers the details on the post-silicon design phase for the implementation of new
applications. This is analogous to common FPGA design, however, since the reconfigurable
module is tailored to a specific application class, the pre-silicon design phase limits the design-
space of the post-silicon design phase. That means that new applications have to be within the
application class of the reconfigurable module.

In the pre-silicon design phase, the generation of the configuration data is already included.
The configuration data for reconfigurable cells is generated during the “Cell Extraction” step in
the “Application Analysis” step (cf. Sec. 3.2.5 and Fig. 3.5) and for sizable cells during the cell
instantiation of the “Merge” step (cf. Sec. 3.3.1). The configuration data for the interconnect for
each example application is generated from the routed designs in the final optimization iteration
(cf. Sec. 3.3.3).

In the post-silicon design phase new applications are implemented. In the discussed methodology,
the design procedure of the post-silicon design phase is a special case of the pre-silicon design
phase (see Fig. 3.12 and cf. Fig. 3.4 on p. 62). First the new application is developed, identically
to the pre-silicon design phase.

In the “Application Analysis” step (cf. Sec. 3.2 and Fig. 3.5), the application is synthesized and
the FSMs are extracted. In the “Cell Extraction” step, the cells contained in the existing and
immutable cell library are extracted from the new application and the configuration data for
reconfigurable cells is generated. In the “Improvement” step, the application can be modified,
e.g., if the “Cell Extraction” did not identify certain constructs. It is also possible to create new
topological variants and reduced variants of existing cells. However, no new cell types can be
created. The goal of the “Application Analysis” is the complete extraction of the application
with no residual logic. If the application can not be extracted, the reconfigurable module does
not provide the necessary resources and therefore can not implement the application.

The resulting netlist using only cells of the cell library is then mapped to the reconfigurable
architecture (cf. Fig. 3.12). This step is a subset of the “Merge” step of the pre-silicon design
phase (cf. Sec. 3.3). For all sizable and reconfigurable cells the configuration data is generated
(cf. Sec. 3.3.1). Then the meta-information on the interconnect, which was stored in the pre-
silicon design phase, is used to map the nodes of the netlist to the leafs of the interconnect tree
(node-to-cell mapping [WGS+12], cf. Sec. 3.3.3) and to route the signals via the interconnect.
Finally the configuration data for the interconnect is generated. If the reconfigurable architecture
does not provide the required amount of cells or routing resources, the application can not be
implemented.
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Figure 3.12: The post-silicon design methodology is a special case of the pre-silicon design methodology (cf.
Fig. 3.4) (explanation in the text).
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3.7 Transition-Based Reconfigurable FSM

During the “Application Analysis” and “Merge” steps the FSMs of the example applications are
mapped to reconfigurable FSM cells. In Fig. 3.13 an exemplary state diagram of an FSM is
given. The approaches for reconfigurable FSM architectures reviewed in Sec. 2.6 focus on the
implementation of the output function and the next state function. These logic functions compute
the values for the output and the next state signals from the current state and the input signals. To
implement such combinational logic functions a universal fine-grained reconfigurable architecture
is required which causes high power consumption, large area overhead, and large configuration
data. To remedy these shortcomings the Transition-Based Reconfigurable FSM (TR-FSM) was
developed [GDHG10, GDHG11]. This architecture directly focuses on the state transitions which
allows a compact and efficient implementation.

Figure 3.13: Exemplary state diagram of an FSM with four states, four input signals, and five output signals.
The conditions for the input pattern to activate a transition are printed above the transitions. The output
signal patterns are printed below the transitions.
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Figure 3.14: The TR-FSM architecture is built as a collection of transition rows (description is given in the
text, figure reproduced with modifications from [GDHG10, GHDG10, GHG10, GDHG11, GGHG11] with
permission).
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The TR-FSM implements a Mealy type FSM, i.e., the output signals depend on the current state
and the input signals. In each state, the input signals are evaluated and the according state
transition is activated to select the next state and the output value.

The TR-FSM is built as a collection of transition rows (TRs) (see Fig. 3.14). Each TR implements
one transition of the FSM, i.e., one input pattern as condition, one next state, and one output
pattern. The state selection gates (SSGs) enable only those TRs, which implement transitions
leaving from the current state. In each TR, a subset of the nI input signals is selected by the
input switching matrix (ISM). The maximum number nTm of observable signals is a characteristic
of each TR and is termed “width”. A TR-FSM instance consists of a different number of TRs
with different widths. The subset of inputs is evaluated by the input pattern gate (IPG). If it
matches a given pattern, this transition is active. The IPG can match only a single pattern or a
set of different patterns. Only a single TR can be active at a time, because in FSMs only a single
transition is performed. The next state registers (NSRs) and the output pattern registers (OPRs)
of the TRs hold the next state and output signal. The values of the active TR are selected as next
state and output, respectively. At the clock edge, the next state is stored by the state register
and becomes the current state.

The configurable elements of a TR-FSM comprise the SSG, ISM, IPG, NSR, and OPR. In the
pre-silicon design phase, the actual implementation of the sizable TR-FSM cell is specified by
the number of input signals, the number of output signals, the width of the state vector, and the
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number of TRs of each width. Typically, TRs with a width of zero to four are implemented. Zero
width TRs are used for sequences of consecutive states.

Since all TRs provide the same functionality (except for the number of observed input signals),
the TR-FSM architecture allows to trade off the total number of states of an FSM against the
number of transitions per state. The TR-FSM architecture efficiently handles transitions with
unobserved input signals. Further, the mapping of an abstract FSM description to the TR-FSM
configuration is a straight forward process [GGHG11].

Finally, several improvements over the original TR-FSM architecture are suggested. The signal
path from the input ports to the output ports is purely combinational. While the architecture
shows low propagation delay, especially the implementation of a TR-FSM using an FPGA as hard-
ware platform, e.g., for testing purposes, can lead to unacceptably long critical paths. Therefore
an optional output register was added by Martin Schmölzer in his diploma thesis [Sch14, p. 13].
The IPG is implemented as a LUT and therefore grows exponentially with the number of ob-
served signals. Most transitions are triggered by a single or a small number of input patterns.
Therefore for wide TRs this can be improved by using PLA elements with only a few product
terms instead of LUTs. Another improvement for the reduction of the switching power disables
the input signals of the ISM for all TRs which don’t match the current state. To reduce the total
number of transitions within an FSM, [RV13] uses a default next state for each state which is
selected if no other transition is active.

The TR-FSM is used for the discussed methodology to implement the reconfigurable FSMs.

3.8 Scientific Contribution

In this chapter a design methodology for multi-granular, heterogeneous, application domain spe-
cific reconfigurable logic modules was developed. It covers the complete design process starting
from the specification up to the final reconfigurable architecture including the mapping of actual
applications and the generation of configuration data. In the scientific development, existing ap-
proaches and concepts were integrated and the following extensions beyond the state-of-the-art
were contributed:

• The design methodology is the first approach which is independent of the application do-
main, does not make assumptions on the implemented domain, and is not limited to any
domain. It introduces the development of heterogeneous reconfigurable modules which con-
currently perform control-dominated and data processing tasks. The design methodology
uses a set of example applications to accurately specify the reconfigurable module. The use
of an HDL guarantees the universality to realize any application domain and includes the
specification and implementation of cycle accurate timing.

• A novel unified multi-granular reconfigurable architecture with multi-granular functional
units and multi-granular routing is introduced. It is the first reconfigurable architecture
using the concept of parameterization, which is isolated from the configuration, to separate
the functionality from the data. The design methodology delivers the reconfigurable module
as a soft IP core which is independent of the semiconductor process and is compatible to
commercial as well as free and open-source tools and to custom in-house design flows.
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• An approach for the iterative optimization of the functional units with automatic identifi-
cation and extraction from the example applications is introduced. The novel concept of
topological variants of functional units is used to improve the automatic extraction. For
the support of multi-function cells and reconfigurable cells, the concept of reduced variants
is introduced.

• The design methodology is the first to provide full verification of the example applications,
all intermediate steps, and the final resulting reconfigurable module. It introduces verifi-
cation at the early stage of specification, including HW/SW co-simulation for driver and
application development. With the generation of wrapper modules at all intermediate steps
and for the resulting reconfigurable module, simulation can reuse the original testbench and
logical equivalence checking can proof the correctness of the results.

• For the implementation of cycle accurate control tasks and sequences, a novel architecture
for reconfigurable FSMs is introduced. The so called TR-FSM directly implements the FSM
state transitions instead of the transition function and the output function. It provides
a reduction of the configuration data, area, power consumption, and propagation delay
compared to existing architectures.





4

Realization

In Ch. 3 the scientific development of the proposed design methodology was discussed. This
methodology has been implemented as a design flow, which is discussed in the current chapter.
The design flow was used to develop an SoC with a reconfigurable module to demonstrate the
feasibility of the design methodology and the practicability of the design flow (see Sec. 5.1).
Several examples provided in this chapter use excerpts from this design.

To fulfill the requirement of an automated design flow, a set of tools were developed and external
tools are utilized. All tools are integrated to provide seamless data management and to deliver
reproducible results. The tools, the data management, and the limitations of the design flow are
described in Sec. 4.1.

The designed reconfigurable module is customized to the requirements of the complete SoC.
Therefore the module which will instantiate the reconfigurable module, i.e., its parent module, is
prepared in a first step (Sec. 4.2). From the parent module, the interfaces of the reconfigurable
module are derived. The developer has to set up characteristics of these interfaces, which are
defined in Sec. 4.3. Afterwards the example applications are developed and verified (Sec. 4.4).
Although the development of the cells of the cell library is integrated in the “Application Analysis”
step of the design methodology, it is described separately in Sec. 4.5 for clarity. This is followed
by the discussion of the “Application Analysis” step in Sec. 4.6.

After all example applications are successfully extracted and the cell library is finished, the netlists
are merged (Sec. 4.7). This is followed by the “Completion” step to build the infrastructure for
configuration and parameterization (Sec. 4.8) and to finalize the reconfigurable module as IP core.
The implementation of new applications in the post-silicon design phase is discussed in Sec. 4.9.
Finally, in Sec. 4.10 a summary of the design flow is given.

85
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4.1 Basis of the Design Flow

Analogous to the design methodology, the design flow starts with the demand for a reconfigurable
module with a certain functionality. For the development and generation of the reconfigurable
module, the design flow uses a heterogeneous set of tools to automate the procedure. These tools
process and generate data in different formats. Additionally the user has to enter information
(e.g., specifying the interfaces of the reconfigurable module) and to develop HDL designs (e.g.,
the example applications and the cells). All information and all HDL designs are stored in files
organized in a systematic directory hierarchy which is discussed in Sec. 4.1.3.

Before the directory structure is discussed, the employed tools are introduced. The individual
tools and the filesystem locations of the data files are controlled and managed by the frontend
FlowCmd. The main processing and handling of the data, including the automatic generation and
transformation of data files, is performed by the backend FlowProc. Both tools are discussed in
Sec. 4.1.1.

Besides these main tools, the design flow uses the three tools Yosys for synthesis and extraction,
TrfsmGen to manage TR-FSMs, and InterSynth to merge the example applications. These tools
are discussed in Sec. 4.1.2.

Due to limited manpower, the design flow does not implement all features as defined by the design
methodology. The limitations of the design flow are summarized in Sec. 4.1.4.

4.1.1 Flow Tools

The central command interface for the design flow is realized as the command line tool FlowCmd
(see Fig. 4.1). It manages the paths and filenames according to the directory structure. FlowCmd
is implemented as a Bash1 script with approximately 2,300 lines of code. The user executes
FlowCmd from a shell and supplies a command and optional parameters as arguments, e.g.,

$ flow extract -interactive

to perform the “Cell Extraction” step for an example application. The resulting schematic is
displayed graphically and the user can further examine the synthesized design. For the creation
of, for example, a new project, or an example application, an according template subdirectory
tree is copied. This contains exemplary files which are edited and customized by the user. The
majority of the FlowCmd commands execute other tools discussed in this section.

The main tool to manage and generate a reconfigurable module is FlowProc (see Fig. 4.1). It
handles all information of the reconfigurable module (e.g., the configuration interface), of the
example applications (e.g., their parameters), and of the cells (e.g., their interfaces). Therefore
it implements a complete internal representation of these entities and their relationships. Addi-
tionally, FlowProc extensively checks all information for its validity and consistency and prints
detailed information of any issues. It reads the output generated by the other tools (e.g., netlists
of the example applications), writes the input for the other tools (e.g., InterSynth command files),
and converts between file formats. FlowProc generates configuration data, templates for the ex-
ample application HDL designs and testbenches, firmware drivers, and especially the HDL design
of the reconfigurable module including the configuration and parameterization interfaces.

1http://www.gnu.org/software/bash/ [2015-08-20]

http://www.gnu.org/software/bash/
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For the set up of the information and for the execution and automation of the tasks, a flexible
and powerful method of specification is required. It must provide reproducible results and allow
full customization. Commercial EDA tools face the same requirements. Many EDA tools are
controlled using a Tcl scripting interface.2 The specification of information and the execution of
commands in a script ensures reproducible results, allows powerful processes, and the user can
add comments with notes to explain and justify design decisions.

FlowProc is implemented as an object-oriented Pascal program3 with approximately 25,000 lines of
code. It uses an object-oriented wrapper for the Tcl libraries4 and for the GNU Readline library.5
To implement the functionality described above, it includes parsers for various file formats and a
library to represent and generate netlists and HDL designs.

Figure 4.1: Overview of the tools employed for the design flow.
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4.1.2 Embedded Tools

Besides FlowCmd and FlowProc three further tools are closely integrated in the design flow (see
Fig. 4.1). As derived in Sec. 3.1.1, the example applications are developed in a HDL like VHDL
or Verilog. Therefore a logic synthesis tool to translate the example applications to logic netlists
is required. It must preserve multi-bit vector signals and utilize coarse-grained generic cells (cf.
footnote 1 on p. 64).

These requirements are fulfilled by the Yosys Open SYnthesis Suite [Wol15b, WG13, Wol15a].6
Yosys is free and open-source software. The control and data flow is organized using “frontends”
to read designs from files, a large set of “passes” which process the design in memory, and
“backends” to write the design to files. Yosys only supports Verilog and does not support VHDL.7
Yosys internally represents the netlist with tool-specific generic cells, e.g., $and for an AND gate,
$mul for a multiplier, and $reduce_or for a wide-input single-output OR gate. Most cells have
parameters to configure the width of the input and output signals. Several passes are available

2The Tcl (tool command language) scripting language actually originates from tools for integrated circuit design
(http://www.tcl.tk/about/history.html [2015-08-20]), although, most vendors use an in-house customized version
instead of the official open-source libraries (http://www.tcl.tk/ [2015-08-20]).

3http://www.freepascal.org/ [2015-08-20]
4https://github.com/hansiglaser/pas-tcl [2015-08-20]
5http://www.gnu.org/software/readline/, https://github.com/hansiglaser/pas-readline [2015-08-20]; However,

FlowPas is controlled with Tcl script in the design flow, therefore the interactive interface is unused.
6http://www.clifford.at/yosys/ [2015-08-20]
7In the meantime Yosys can use an external tool and a commercial library for VHDL support but these were

not available during the development of the design flow.

http://www.tcl.tk/about/history.html
http://www.tcl.tk/
http://www.freepascal.org/
https://github.com/hansiglaser/pas-tcl
http://www.gnu.org/software/readline/
https://github.com/hansiglaser/pas-readline
http://www.clifford.at/yosys/
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for technology mapping of the design to a gate-level netlist. These utilize the external Berkeley
ABC logic optimization tool [Ber15].

Yosys also supports FSM extraction (cf. Sec. 3.2.2) with the fsm* passes and ”Cell Extraction”
(Sec. 3.2.3) with the extract pass. An extracted FSM is represented using the generic FSM
cell $fsm of the internal cell library. This is used at several places in the discussed design flow.
With the flexible passes Yosys is modular and extensible. Custom passes can be implemented and
included as plug-ins.

Several backends are available to save the current design in different file formats including Verilog
netlist, SPICE, and EDIF. Yosys also provides the custom “ILang” file format (usually saved to
files with the extension .il), which is designed to represent the design in full detail. FlowProc
and TrfsmGen include a parser for the ILang file format to process example applications and cells.

To replace generic FSM cells with TR-FSM instances and to generate the appropriate config-
uration data, the tool TrfsmGen was developed. It is an object-oriented Pascal program with
approximately 9,300 lines of code, additionally using parts of the FlowProc code. TrfsmGen reads
a synthesized design in ILang format. For each $fsm cell a wrapper submodule with the same
ports is created. Inside of the wrapper module a TR-FSM module (cf. Sec. 3.7) is instantiated.
The $fsm cells also include the FSM specification as parameters (states and transitions). These
FSM specifications are mapped to the configuration data of the TR-FSMs and written in a num-
ber of file formats, e.g., as VHDL vector, or as C array. This procedure is also executed as a Tcl
script.

The tool InterSynth was specifically designed to perform the interconnect generation and opti-
mization (cf. Sec. 3.3.3) [WGS+12, GW14].8 InterSynth reads scripts in a custom language which
specify connection types, cell types, netlists of example applications, and oversizing rules. After-
wards the interconnect is generated and optimized. This also includes the mapping of all example
applications. Finally a Verilog module with instances of the cells and with MUXes is generated.
Additionally the configuration data of all example applications as well as meta-information on
the generated interconnect for the post-silicon design phase are stored.

These three tools are integrated in the design flow.9 During the development of a reconfigurable
module, additional tools are used by the designer which are directly executed and not managed
by FlowCmd. Besides obvious programs like a text editor and command line tools, other tools
for simulation (e.g., Mentor ModelSim/Questa Sim), logical equivalence checking (e.g., Cadence
Encounter Conformal Equivalence Checking, LEC), and prototyping (FPGA tools) are used.

4.1.3 Directory Structure

The development of the reconfigurable module involves a large number of files of different kind.
Therefore a directory structure to systematically arrange these files was set up. The resulting
IP core is integrated in a superordinate SoC, therefore the development of the complete SoC
is supported in the directory structure. The main structure of a project is depicted in the left

8http://www.clifford.at/intersynth/ [2015-08-20]
9InterSynth was developed by Clifford Wolf as a student project, defined and supervised by the author of this

thesis. Further discussions about the design methodology and possible solutions for a suitable format to specify the
example applications used by InterSynth motivated Clifford Wolf to develop Yosys as a general-purpose, feature-
rich, extensible, and verified synthesis tool. Since then it has gained wide-spread use in numerous open-source and
commercial projects.

http://www.clifford.at/intersynth/
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tree in Fig. 4.2. In the units/ directory, the design units of the chip are placed in individual
subdirectories. Each unit is a basic building block of the chip, e.g., the chip core, the CPU, a
timer, and serial protocol interfaces. The units are HDL modules with optional submodules and
are themselves instantiated hierarchically.

Figure 4.2: Directory structure used by the design flow (explanation in the text).

<Project>/
units/

<Unit>/
...

reconfmodule/
...

apps/
<App>/

...
...

celllib/
<Cell>/

...
...
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sta-route/
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power/
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<App>/
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...
verilog/
tb/
sim-*/
ec-*/
firmware/

reconfmodule/
chll/

...
verilog/
vhdl/
tb/
sim-*/
ec-*/

<Cell>/
chll/

...
verilog/
tb/
sim-*/
ec-*/

chll/
log/
out/
scripts/

setup.tcl
...

verilog/

All example applications and new applications for the reconfigurable module are placed in the
apps/ directory. The cells of the cell library are placed in the celllib/ directory. The developer
can use any number of additional subdirectories, e.g., for VHDL packages, memory macros for
the chip, the synthesis, etc. These optional directories are printed gray in Fig. 4.2.

The reconfigurable module generated using the discussed design flow is itself a unit and is placed
in the directory units/reconfmodule/. The reconfigurable module unit, all applications, and all
cells have a similar internal directory structure (cf. the blue, yellow, and green boxes in Fig. 4.2).
In the chll/ subdirectory all files related to the actual design flow are located. The HDL designs
are placed in the subdirectories vhdl/ and verilog/ while the testbenches are placed in tb/.

For each simulation setup, a dedicated subdirectory sim-*/ is created. For example, the main RTL
simulation is performed in sim-rtl/, while the early HW/SW co-simulation of an example appli-
cation is performed in sim-chip-rtl/, and the simulation of an extracted example application is
performed in sim-yosys-extract/. Similarly, for equivalence checking the ec-*/ subdirectories are
used, e.g., to compare an extracted example application (with the $fsm cell replaced by a prelim-
inary TR-FSM instance) to the original RTL design, the subdirectory ec-yosys-extract-trfsm/

is used. For applications an additional firmware/ subdirectory is used to develop the firmware
driver.
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All chll/ directories have the same structure. The scripts/ subdirectory contains all Tcl scripts
which are edited by the user and executed by FlowProc, Yosys, and TrfsmGen. The data files and
HDL designs generated by these tools as well as InterSynth are stored in the out/ subdirectory.
The screen output and reports of all runs started using FlowCmd is stored in log/. The recon-
figurable module is completely auto-generated with no manually created designs. Therefore all
subdirectories except chll/ are unused. All other units are not related to the reconfigurable mod-
ule and therefore do not have a chll/ subdirectory and do not have to comply to the presented
structure.

4.1.4 Limitations

The discussed design flow has limitations compared to the design methodology as defined in Ch. 3.

• Only a single reconfigurable module can be generated within a project. Extending the
design flow to support multiple different reconfigurable modules requires the introduction
of an additional level of indirection in FlowCmd.

• Due to the use of Yosys as synthesis tool, Verilog is the only supported HDL for a subset
of the designs developed during the discussed design flow. However, this is not a principal
restriction but only due to tool support. Further, all testbenches can be implemented in
VHDL, and FlowProc and TrfsmGen can write generated designs in both, VHDL and Verilog.

• During the development of example applications, scripts to set up simulation and equiv-
alence checking are generated with FlowProc (cf. Secs. 4.4.3 and 4.4.5). Currently the
only supported tools are Mentor ModelSim/Questa Sim and Cadence Encounter Conformal
Equivalence Checking (LEC).

• The only supported type of sizable cell is the reconfigurable TR-FSM.

• Currently only shift registers are supported for the storage of the configuration data.

• Additionally, for the bus interface from the CPU to the reconfigurable module only the
OpenMSP430 is supported [Gir13] (cf. Sec. 4.8.2).

• The resulting IP core is not as elaborate as a commercial IP core. However, the reconfig-
urable module is a custom IP core and not a product intended for high reusability.

• The design flow and all tools are fully compatible to version control systems like Subversion
(SVN)10 and Git11. However the FlowCmd commit-pre-si command (cf. Sec. 4.8.3) currently
only supports Subversion.

4.2 Preparation of the Parent Module

In this section the start of the design flow is discussed which prepares the definition of the
reconfigurable module. In terms of a reconfigurable CPU supplement module, it is customized

10https://subversion.apache.org/ [2015-08-20]
11https://git-scm.com/ [2015-08-20]

https://subversion.apache.org/
https://git-scm.com/
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to an SoC. Therefore the SoC is first planned, including its usage scenario, its application, and
its requirements. The next step is the manual HW/SW partitioning: the designer defines which
tasks are performed by the firmware executed by the CPU and which tasks are performed by
hardware.

Note that the hardware partition is only partly covered by the reconfigurable module. Some
tasks are assigned to specialized modules like serial protocol peripherals (e.g., SPI, I2C), ADC,
and RF network physical layer. From the hardware tasks assigned to the reconfigurable module,
its application class is defined (cf. Fig. 3.2 on p. 57). Note that the application class is a verbal
description of the reconfigurable module used by the designer in the further design process.

The reconfigurable module will be instantiated in a higher-level module which is called its “parent
module”. The reconfigurable module is directly customized to this parent module, i.e., its ports
are connected to other modules and to ports of its parent module. Therefore, in contrast to
commercial IP cores, where the integrator adapts the surrounding module to the IP core, here
the reconfigurable module IP core is customized to its surrounding.

To begin the design flow, a new project is created and a template directory structure is copied
to the project directory by FlowCmd. Afterwards the designer plans and manually develops
the parent module with all ports and the instances of all submodules. This also includes the
preparation of the interfaces between the CPU and the reconfigurable module, e.g., a bus interface,
a small number of “internal” GPIO signals for direct signaling, and interrupt request signals. For
example, the parent module can be the whole chip core module and contain a CPU, memories,
timers, GPIO, and serial protocol peripherals (see Fig. 4.3). Some of the modules are exclusively
used by the CPU, and some are provided for the reconfigurable module. The reconfigurable
module itself is still missing (dotted yellow rectangle).

Figure 4.3: Exemplary SoC with the chip core (blue) surrounded by the pad frame (cyan pad and corner cells).
The SoC contains a CPU and several other modules like RAM, Flash, Timer, and GPIO (green). The dashed
yellow rectangle denotes the demand for the reconfigurable module.

CPU
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During the development of the parent module, the developer is in no way limited by the design
flow, including naming conventions, data types, modules, in-house design guidelines, etc. The
only current limitation is the use of Verilog for the parent module because it is synthesized using
Yosys (see Sec. 4.3.1). All other modules, including the instantiated modules, are not limited to
Verilog, because in the parent module only their interfaces are relevant.

To enable the later instantiation of the reconfigurable module, a file, which will be auto-generated
during the development of the reconfigurable module, is included in the parent module (see
Lst. 4.1). However, this is optionally disabled using the macro ReconfModuleNone.12 The result of
the described preparation is the verbal definition of the application class and the implementation
of the parent module which still misses the reconfigurable module.

Listing 4.1: Verilog fragment used in the parent module to include a generated file with the instantiation of
the reconfigurable module.

// ...
‘ifndef ReconfModuleNone

‘include "reconflogic-instance.inc.v"
‘endif
// ...

4.3 Definition of the Reconfigurable Module

The specification of the reconfigurable module comprises its functionality (defined by example
applications) and its interfaces (customized to the parent module). In this section, the definition
of the interfaces is discussed. The development of example applications is discussed in the next
section.

After the parent module is developed as discussed in the previous section, the directory tree for
the reconfigurable module is created with the FlowCmd new-reconf-module command.

The interfaces of the reconfigurable module are automatically derived from the parent module.
Then the user has to specify properties of the individual signals. This is discussed in Sec. 4.3.1.
Besides the reconfigurable logic, the reconfigurable module also includes infrastructure for config-
uration and parameterization, which is discussed in Sec. 4.3.2. Finally in Sec. 4.3.3 the automatic
generation of the source code for the instantiation of the reconfigurable module and other files is
discussed.

4.3.1 Setup of the Reconfigurable Signals

In this section the definition of the interfaces, i.e., the ports, of the reconfigurable module is
discussed. To avoid the error-prone and tedious task to manually set up the list of all inputs and
outputs, these ports are automatically derived from the parent module. In the parent module,
the reconfigurable module is missing (cf. Fig. 4.3) which results in unused signals. To find these

12Note that the logic is inverted: The macro disables the inclusion of the instantiation, because commercial EDA
tools later used in the design flow, which should include the file, might not support the definition of macros, while
Yosys properly supports this feature.
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signals, the parent module is synthesized using Yosys with the macro ReconfModuleNone defined,
i.e., the ‘include statement is disabled. Then the stubnets.so plugin is utilized to identify all
signals without a driver or without a sink.

Afterwards the netlist of the parent module (used to identify the types of the signals) and the
list of the unused signals are read by FlowProc.13 Note that the automatically detected list of
unused signals is not complete. Some inputs and outputs of modules can be intentionally unused.
Further, some signals can have both, a driver and a sink, but should be branched and used as input
of the reconfigurable module, e.g., the global clock and reset signals. Therefore individual signals
are removed from or added to the list. This procedure is programmed with a set of Tcl scripts
which are customized by the developer. The finally adjusted signals are termed “reconfigurable
signals”.

As next step the connection types are defined (cf. Sec. 3.1.4) and assigned to the reconfigurable
signals. However, not all reconfigurable signals should be routed via the interconnect. For
example, to adhere to a clean synchronous logic design, the clock and reset signals are directly
connected to the cells. Further, some reconfigurable signals should be directly set by configuration,
e.g., the clock polarity of an SPI SCK signal, or directly set by parameterization, e.g., a clock
divider to set the frequency of the SPI SCK signal.

To accommodate this requirement, “usage types” as generalization and hierarchically higher level
as connection types are introduced. In the design flow, five usage types are defined:

• dynamic: The reconfigurable signal is routed via the interconnect, i.e., it is connected as
an input or output to the interconnect (cf. Fig. 3.3 on p. 59). These are the “normal”
reconfigurable signals which were assumed in the development of the design methodology.
Only reconfigurable signals with this usage type are assigned a connection type. The other
four usage types are an extension to the design methodology introduced for the design flow.

• direct: The reconfigurable signal is directly connected to the cells, e.g., clock and reset
signals.

• config: Outputs of the reconfigurable module are directly driven by a separate configuration
store to supply the values.

• param: Inputs and outputs of the reconfigurable module are directly connected to the pa-
rameterization infrastructure and can be read or written as parameters by the CPU.

• const: Outputs of the reconfigurable module are directly driven by a constant value. This
usage type is expected to be used scarcely and is only provided for completeness.

Signals with a usage type config, param, and const are not connected to the interconnect or any
cells but are input and output ports of the reconfigurable module. In the final automatic gen-
eration of the reconfigurable module the appropriate infrastructure to connect all reconfigurable
signals depending on their usage type is generated.

13The unused signals could also be detected by FlowProc but the stubnets.so plugin was previously developed
for this task by Clifford Wolf.
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4.3.2 Setup of the Reconfigurable Module

In the “Merge” step of the design methodology (cf. Sec. 3.3), the reconfigurable module is gen-
erated with instances of the cells and a reconfigurable interconnect. In the design flow discussed
in this chapter, InterSynth is used for this task, which produces a Verilog HDL module. More
details are discussed in Sec. 4.7.2.

In the “Completion” step (cf. Sec. 3.4) the reconfigurable module is extended with the infras-
tructure for configuration and parameterization (cf. Fig. 3.10 on p. 76). However, instead of the
automatic modification of the HDL source code generated by InterSynth, a wrapper module is
generated. This contains an instance of the unmodified module generated by InterSynth (subse-
quently termed “interconnect module”) as well as all other logic required for configuration and
parameterization and for the reconfigurable signals with a usage type config, param, and const.
The term “reconfigurable module” is subsequently used for this wrapper module.

Additionally to the reconfigurable signals, the reconfigurable module requires an interface to its
infrastructure for configuration and parameterization. Typically this is implemented as memory-
mapped peripheral and accessed via a bus from the CPU. With the specification of that interface,
the entity, i.e., the input and output ports, of the reconfigurable module is completely defined.
However, at this early stage the number of configuration stores and their size as well as the
number of parameterization registers is still undefined. More details are discussed in Sec. 4.8.

The Tcl scripts with the setup of the reconfigurable signals and of the reconfigurable module are
executed by FlowProc at the beginning of the scripts used in most of the following steps to prepare
the respective tasks. For example, for the early HW/SW co-simulation of example applications,
a wrapper module is generated, which has the exact same ports as the final reconfigurable mod-
ule. The definition of the reconfigurable signals and the reconfigurable module are required by
FlowProc to generate this wrapper module.

4.3.3 Generation of HDL Modules

During the preparation of the parent module, the instantiation of the final reconfigurable module
is deferred using the Verilog ‘include statement to include a generated file with the instantiation
as described in Sec. 4.2. The next step of the design flow is the generation of that include-file
reconflogic-instance.inc.v.

To assist the developer, additional files and HDL modules can be generated by FlowProc. If the
parent module is the chip core module (blue in Fig. 4.3 on p. 91), the higher-level module (gray
in Fig. 4.3) which instantiates the pad cells (cyan in Fig. 4.3) can be generated. For this task
the library with the pad cells provided by the chip manufacturer in the Liberty format [Lib15] is
loaded by FlowProc. For each port of the parent module, the developer specifies the appropriate
pad cell.

Note that all ports of modules inside the chip including the core module have to be defined as
either input or output, because no bidirectional or undriven signals are allowed. To implement
pins of the chip with special behavior like open-drain or bidirectional ports, e.g., used as GPIOs
or for I2C, separate input, output, and enable signals are internally used. For the instantiation
of such pad cells, these separate signals are explicitly stated (see Lst. 4.2).

Another scenario during the development is to test the reconfigurable module with real hardware,
e.g., an SPI sensor, instead of simulation models of these chips. This test is best carried out using
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Listing 4.2: Definition of a bidirectional pin “P1_b” and an open-drain pin “I2CSDA_b” for the chip top-
level module. Note that “P1_b” is actually an 8 bit wide port, therefore eight individual pad cells are
automatically instantiated. Further, the pad library does not contain I2C pads, therefore a bidirectional
output pad is instantiated with its output value set to ’0’ and its enable input controlled with the inverted
I2CSDA_o output signal.

# ...

chip_add_pin -pad_cell "BBC16P" -out "P1_DOut_o" -enable "P1_En_o" -in "P1_DIn_i" -portname "P1_b"

# ...

chip_add_pin -pad_cell "BBC16P" -out ’0’ -enable_n "I2CSDA_o" -in "I2CSDA_i" -portname "I2CSDA_b"

# ...

an FPGA to implement the reconfigurable module and its parent module and to connect it to the
other chips (cf. “Verification with Prototype Testing” in Sec. 5.1.3). For this scenario, another
top-level module can be generated. Input and output ports are directly connected and ports
with special behavior are implemented using assignments with tri-state values ’Z’. The FPGA
implementation tools translate these constructs to the appropriate control signals for the FPGA
pad cells.

The generated HDL modules are prepared here at the beginning of the design process of the
reconfigurable module for the use at end of the design process when the reconfigurable module is
finished. However, these modules are also required at an early stage for the development of the
example applications, which is discussed in the next section.

4.4 Development of Example Applications

The functionality of the reconfigurable module is specified using a set of example applications. In
this section, the development of these example applications is discussed. Example applications are
developed as common HDL logic designs. All signals, including parameters, are implemented as
ports of the logic module. The first step is the creation and set up using the defined reconfigurable
signals and connection types (Sec. 4.4.1). Then the developer manually develops and verifies the
example application (Sec. 4.4.2).

Before the design flow is continued, the developer checks the example application for its suitability
for the further tasks (Sec. 4.4.3). Additionally a firmware driver is implemented (Sec. 4.4.4) and
HW/SW co-simulation is used for its verification (Sec. 4.4.5). The result of this process is the
HDL design of the example application, which is functionally verified and suitable for the further
design flow, and a firmware driver.

4.4.1 Setup of Example Application

As first step of the design of an example application, the FlowCmd new-app command is used to
create a new example application. This creates a subdirectory with the appropriate structure
and template files (represented by the yellow box in Fig. 4.4). Afterwards the developer manually
customizes the setup script ./chll/scripts/setup.tcl ( 1O in Fig. 4.4).

Lst. 4.3 shows an exemplary setup script for the example application “ADT7310”. This script is
executed by FlowProc at the beginning of each task which processes this example application to
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set up its properties. Before that script the scripts which define the reconfigurable signals and the
reconfigurable module are executed. The FlowProc Tcl command create_application registers
a new application. The input and output ports are declared using app_add_port. These must
be chosen from the list of reconfigurable signals. However, using the -map parameter, the port
can use a different name (e.g., the reconfigurable signal SPI_DataOut coming from an SPI master
peripheral in the parent module is used as an input port named SPI_Data_i). Additionally, the
-index parameter is used to select single bits of vector signals like ReconfModuleIn_s, which is
an 8 bit wide GPIO output of the CPU dedicated for direct signaling with the reconfigurable
module.

The command app_add_param is used to add parameters. Note that here the direction and con-
nection type are explicitly specified. For the reconfigurable signals this information is already set
up. Reconfigurable signals which should carry a constant value while the example application
is active are defined using the app_set_port_value command. The actual implementation in the
reconfigurable module depends on the usage type of that signal.

After the developer has finished the setup script, the FlowCmd app-templates command uses
FlowProc to create templates HDL modules for the example application and its testbench ( 2O
in Fig. 4.4). The example application HDL file contains the module and port definitions and
assignments of the constant values as set with app_set_port_value for signals with a usage type
dynamic. The testbench HDL file contains an instantiation of the example application module,
proper handling of constant reconfigurable signals, clock signal generation, and a template stim-
ulus process. Note that the testbench can be implemented in VHDL because it is not synthesized
with Yosys.

Further, template files for the firmware driver are created, which are discussed in Sec. 4.4.4. To
prepare HW/SW co-simulation (cf. Sec. 4.4.5), a wrapper module is generated, to instantiate the
example application HDL module as the reconfigurable module.

4.4.2 Development and Verification

After the example application is set up and the template files are generated, the developer manu-
ally designs the HDL module. This development is identical to common logic design. The design
flow does not put any restrictions on the developer, e.g., on naming conventions or signal types.
He can adhere to in-house design guidelines and utilize familiar methods. The ports of the exam-
ple application are fixed, but the internal logic design can be fully customized. It is also possible
to use submodules for the implementation of the example application.

The development of the example application also includes verification of the HDL module (cf.
Sec. 3.5). The main approach for functional verification is simulation. The testbench instantiates
the HDL module and supplies stimulus input signals and examines the output signals (depicted
in the left-most “Sim.” box in Fig. 4.4, which corresponds to the top “Sim.” box in Fig. 3.11 on
p. 77). The design flow does not include any dedicated facilities for simulation except from the
generated testbench template. The developer can utilize any suitable simulation tool. Besides
simulation, the developer can also utilize methods of formal verification.

To summarize, the development and verification of the example applications allows full freedom
to comply with any in-house design guidelines and with the developer’s experience.
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Figure 4.4: Development of example applications (explanation in the text).
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Listing 4.3: Exemplary setup.tcl file of an example application (explanation in the text).

# define application
create_application "ADT7310"
# system signals
app_add_port "Reset_n_i"
app_add_port "Clk_i"
# interface to CPU
app_add_port "Enable_i" -map "ReconfModuleIn_s" -index 0
app_add_port "CpuIntr_o" -map "ReconfModuleIRQs_s" -index 0
# interface to sensor
app_add_port "ADT7310CS_n_o" -map "Outputs_o" -index 0
# parameters
app_add_param -in -conntype "Word" -default 0 "SPICounterPreset_i"
# ...
# result value
app_add_param -out -conntype "Word" "SensorValue_o"
# interface to SPI master
app_set_port_value "SPI_LSBFE" ’0’
# ...
app_set_port_value "SPI_SPPR_SPR" {"00000000"}
app_add_port "SPI_Data_i" -map "SPI_DataOut"
app_add_port "SPI_Write_o" -map "SPI_Write"
# ...
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4.4.3 Check Example Application

After the example application is developed and functionally verified, its suitability for the further
design flow is checked. Therefore the example application is synthesized with Yosys ( 3O in Fig. 4.4).
Before that, the developer optionally customizes the template synthesis script, especially to read
in all individual files of submodules. The resulting netlist is loaded by FlowProc to check the
ports against the definition in the setup script.

Afterwards the FSMs in the example application logic design are extracted (cf. Sec. 3.2.2 and
4O in Fig. 4.4) which results in netlists with instances of the generic FSM cell $fsm. Finally,
TrfsmGen is used to replace the generic FSM cells with TR-FSMs ( 5O in Fig. 4.4). Additionally
the configuration data to implement the according functionality is generated. Note that these
TR-FSM instances are preliminary and only for testing purposes. During the cell instantiation of
the “Merge” step (cf. Sec. 4.7.1) the final TR-FSM instances suitable for all example applications
are instantiated.

Each of the three different netlists has the same ports and the same behavior as the original
HDL module. Therefore the original testbench can be used for simulation (see Fig. 4.4). The
pure logic netlist and the netlist with the generic FSM cells are self-contained, while the netlist
with the TR-FSMs requires additional configuration data to fully specify its functionality. Before
the start of the simulation, this configuration data has to be applied to the TR-FSM instances.
Instead of simulating the download of the configuration data using the configuration ports, this
is performed using simulation setup scripts generated with TrfsmGen. These directly set the
values of all configuration stores before the start of the simulation. Currently only the genera-
tion of ModelSim/Questa Sim scripts with force -freeze <object_name> <value> commands is
supported.

Besides simulation, the design flow provides facilities for logical equivalence checking to compare
the generated netlists with the original HDL design (see Fig. 4.4). The generic FSM cell $fsm is a
custom Yosys extension and therefore this netlist can not be used in logical equivalence checking.
Similarly to simulation, when TR-FSMs are included, the configuration data has to be applied.
For that purpose TrfsmGen is used to generate setup scripts for Cadence LEC with add instance

constraint <0|1> <instance_pathname> -revised commands.

One additional issue in logical equivalence checking are the state encodings and the state registers
of FSMs. These are likely different between the original HDL design and the TR-FSMs. To
inform the logical equivalence checking tool about the different state encoding, a state encoding
translation file is generated by TrfsmGen and processed by Cadence LEC with the read fsm

encoding <filename> -golden command.14

4.4.4 Firmware Development

The developed reconfigurable module is used as CPU supplement module. To initialize the
reconfigurable module and to control the example application implemented with it, a firmware
driver is required. The firmware driver is specific for each example application and is therefore
developed manually. It defines functions and interrupt service routines (ISRs) to interact with the

14Besides Cadence LEC also Synopsys Formality was evaluated for logical equivalence checking. Unfortunately
the reencoding of FSMs in Formality is not flexible enough for TR-FSMs. This is the main reason why only Cadence
LEC is supported for logical equivalence checking.
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running example application, e.g., via “internal” GPIOs for direct signaling, via parameters, and
via interrupts. The main firmware program utilizes this driver and implements the functionality
of the complete SoC.
Before the actual operation of the example application, the reconfigurable module is initialized,
i.e., the configuration data is applied and the parameters are set. The initialization code for each
example application is generated during the “Completion” step of the reconfigurable module (cf.
Sec. 4.8.3) and invoked by the according driver. It includes the configuration data generated with
InterSynth, FlowProc, and TrfsmGen for all configuration stores. The generated code itself relies on
further drivers specific to the configuration and parameterization interfaces of the reconfigurable
module.
The initialization code as well as the manually developed firmware driver access the individual
configuration stores, the parameterization registers, and reference elements of vector signals (cf.
Enable_i and CpuIntr_o in Lst. 4.3). Therefore an additional include-file with constants for
indexes is generated.
The firmware is used in the manufactured SoC, but also for testing the SoC design in an FPGA,
for power analysis of the SoC design to generate representative switching activity, etc.

4.4.5 HW/SW Co-Simulation

To verify the firmware driver and its interaction with the example application, the discussed
design flow provides mechanisms for HW/SW co-simulation. For the implemented approach,
the complete chip or chip core module, including an HDL design of the CPU and including the
reconfigurable module, is simulated. The complete chip design or the core module is instantiated
in a testbench. This is only slightly modified compared to the original testbench used to verify
the example application. Before the simulation is started, the firmware is loaded into the program
memory. This corresponds to the programming of the flash memory of the manufactured chip.
The same method as discussed in Sec. 4.4.3 to apply the configuration data for TR-FSMs is used.
However, this setup for HW/SW co-simulation requires the final reconfigurable module, which is
completed late in the design process. To allow early development of the firmware, the design flow
additionally provides early HW/SW co-simulation, i.e., during the development of the example
application and therefore before the reconfigurable module is generated.
For this scenario, the example application is instantiated in the parent module instead of the
reconfigurable module. For this purpose, a wrapper module is generated directly after the setup
of the example application (cf. Sec. 4.4.1). It has the same ports as the final reconfigurable
module and internally instantiates the example application HDL design together with preliminary
infrastructure for parameterization (see Fig. 4.5). The example application HDL design itself does
not require configuration and the reconfigurable signals with usage type config are implemented
as constant assignments in the wrapper module with the values defined in the setup. Therefore
no configuration infrastructure is included.
This setup also requires a slightly different initialization procedure executed by the firmware
driver. It does not include configuration data and uses preliminary indexes for the parameteriza-
tion registers. Its source code is also generated after the setup of the example application. The
manually developed driver functions are not changed for the early HW/SW co-simulation.
Note that this setup for the early HW/SW co-simulation can also be used to test the complete
design in an FPGA as outlined in Sec. 4.3.3.



100 Chapter 4. Realization

Figure 4.5: For the early HW/SW Co-Simulation of an example application, its RTL design (<App>) is wrapped
in a module with the same interface as the reconfigurable module (Wrap<App>) and instantiated in the parent
module, e.g., the chip core. The complete chip or its core are instantiated in the simulation testbench. Before
the simulation is started, the firmware (violet sheets represent the sources which are compiled to a binary
file represented by the red cylinder) is loaded in the program memory (PMem).
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4.5 Development of Cells

After all example applications have been developed, the “Application Analysis” step of the design
methodology is performed (cf. Sec. 3.2 and Fig. 3.5 on p. 65). One main task is the development
of cells. For clarity, the related features and tasks of the design flow are discussed in this section,
separately from the “Application Analysis” step.

In the design flow the development of cells is implemented similarly to the development of example
applications. The setup, development, and verification of a cell is discussed in Sec. 4.5.1. For each
cell additional topological variants and reduced variants can be implemented (Sec. 4.5.2). Finally,
all cells are assembled in the cell library (Sec. 4.5.3). Cells developed in a previous project using
the discussed design flow can be reused and added to the cell library of a new project.

4.5.1 Setup and Development of Cells

For the development of a new cell, the directory hierarchy and template files are created with the
FlowCmd new-cell command. Analogous to the development of example applications, afterwards
the developer customizes the setup.tcl script. Lst. 4.4 shows an exemplary setup script of the
cell “Byte2WordSel”, which was used as an example for a reconfigurable cell in Sec. 3.2.5 to merge
two 8-bit values into a 16-bit value and select a subsection of that.
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The command create_cell creates a new in-memory representation of a cell in FlowProc. With
the command cell_add_port input and output ports and configuration ports are declared. In
the final reconfigurable modules, the ports Reset_n_i and Clk_i will be directly connected to
reconfigurable signals with usage type direct without going through the interconnect.15 The
ports H_i, L_i, and Y_o will be routed through the reconfigurable interconnect and are therefore
assigned a connection type. The ports Shift_i and Mask_i will be supplied with configuration
data, four bits each.

Listing 4.4: Exemplary setup.tcl file of the cell “Byte2WordSel” which is used as an example for a reconfig-
urable cell in Sec. 3.2.5.

# define cell
create_cell "Byte2WordSel"
# add ports
cell_add_port "Reset_n_i" -map "Reset_n_i"
cell_add_port "Clk_i" -map "Clk_i"
cell_add_port "H_i" -in -conntype "Byte"
cell_add_port "L_i" -in -conntype "Byte"
cell_add_port "Shift_i" -config -width 4
cell_add_port "Mask_i" -config -width 4
cell_add_port "Y_o" -out -conntype "Word"

After the customization, the FlowCmd cell-templates command executes the setup.tcl script,
among others, with FlowProc to generate template files for the HDL module and the testbench.
Then the developer manually designs the cell, including verification and checking for suitability
for the further design flow. However, in contrast to example applications (cf. Fig. 4.4 on p. 97),
FSM extraction and TR-FSM insertion are not applicable for cells.

In this section, the setup and the development of the main variant of the cell was discussed. In
the next section, the development of topological variants and reduced variants is explained.

4.5.2 Topological Variants and Reduced Variants

In Sec. 3.2.4 the concept of topological variants and reduced variants was introduced. It is based
on the division between identification of a subcircuit and the replacement of that subcircuit by
the actual implementation (see Fig. 4.6).

For the implementation of topological variants, the developer creates additional HDL modules
with the same ports as the main variant but with a different logic design. During cell extraction,
this module is only used for identification and is replaced by the main variant (TV1, ..., TVn in
Fig. 4.6) as its implementation. The easiest and most practical way is to simply copy the Verilog
file of the main variant and change its logic contents.

For the implementation of reduced variants, the developer has to create two HDL modules:

• The first module is only used for identification. It can have custom ports and implements
the functionality of the reduced variant (RV1, ..., RVn in Fig. 4.6).

15Actually these two ports are included in this example only for demonstration purposes because the described
module is better implemented purely combinational.
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Figure 4.6: For each cell one main variant and an arbitrary number of topological variants and reduced
variants are implemented. For the identification of the cells in the (example) applications, all variants are
used. These are replaced by the main variant for the implementation. The reduced variants are replaced by
wrapper modules which internally instantiate the main variant. (MV: main variant, TV: topological variant,
RV: reduced variant).

Identification

Implementation

MV TV1 TVn RV1 RVn

MV MV MV MV MV

Wrapper 1 Wrapper n

• The second module is used to replace the identified subcircuit. It is a wrapper module with
the same ports as the reduced variant which instantiates the main variant together with
the possibly additionally required logic.

The same approach is used for reconfigurable cells.

Afterwards, the Verilog files of all variants are added to the synthesize.tcl script. This script
instructs Yosys to synthesize the main variant, all topological variants, and all reduced variants
including their wrapper modules. Additionally, simple wrapper modules for all topological vari-
ants are generated which are used for their replacement by the main variant. Finally, the Yosys
built-in SAT solver16 is used to check the logical equivalence of each topological variant with the
main variant and of each reduced variant with its according wrapper module.

4.5.3 Building the Cell Library

After a new cell is created, it is added to the cell library and provided for the cell extraction. The
developer adds the cell to the global list of cells17 and uses the FlowCmd check-celllib command
to generate two files:

• In the first file the netlists of all variants of all cells are collected, each in a separate module,
which are used for the subcircuit extraction.

• In the second file the netlists of all wrapper modules are collected, which are used to replace
the identified subcircuits with the main variant and possibly required additional logic.

16http://www.clifford.at/yosys/cmd_sat.html [2015-08-20]
17realized as a Tcl list located in the script ./units/reconfmodule/chll/scripts/setup-celllib-arr.tcl

http://www.clifford.at/yosys/cmd_sat.html
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During the “Application Analysis” step, additional topological variants and reduced variants can
be added as required. The design flow does not stipulate the developer to complete a cell and all
its variants at a time.

One special cell in the cell library is the TR-FSM (cf. Sec. 3.7). Contrary to the other cells, it is
not automatically detected in the “Cell Extraction” step, but introduced in a two-step procedure
via “FSM Extraction” and without subcircuit extraction. Therefore the TR-FSM does not have
to comply to the directory structure and setup of the other cells. It is included as finished and
verified HDL module in the cell library which allows to adjust the number of its inputs and
outputs, width of the state signal, and the number of transition rows of varying width. TrfsmGen
is used to generate customized wrapper modules for the TR-FSM design and to generate its
configuration data.

4.6 Application Analysis

In Sec. 3.2 and Fig. 3.5 on p. 65 the “Application Analysis” step of the design methodology
was developed. It is an iterative and repetitive process, split into the steps “Synthesis”, “FSM
Extraction”, “Cell Extraction”, “Inspection”, and “Improvement”. While the first three steps are
performed automatically, the last two steps require the specific human intelligence, intuition, and
experience. The input of the “Application Analysis” is a set of example applications and possibly
a set of cells reused from a previous project. The results are a netlist for each example application
and the cell library. The resulting netlists only instantiate cells from the cell library and generic
FSM cells.

The following discussion only considers the procedure and the iterations for a single example
application. However, the sequence is performed multiple times within the outer iteration cycles
for all example applications. Additionally the individual steps can be interleaved between all
example applications.

The “Synthesis’ and the “FSM Extraction” steps are implemented in the same way as already
used for the verification, whether the example application is suitable for the further design flow
(cf. Sec. 4.4.3 and Fig. 4.4 on p. 97). These steps are identical to the steps 3O and 4O, and result
in a netlist with $fsm cells.

This is followed by the “Cell Extraction” step which is implemented using the Yosys extract pass
(cf. Sec. 3.2.3). First the netlist of the example application is loaded. Then the extract pass uses
the first file defined in Sec. 4.5.3 with the collection of netlists of all variants of all cells of the cell
library to identify the subcircuits and replace each occurrence with an instance of its according
module.

Afterwards, the techmap pass is used to replace these instances by the modules defined in the
second file with the wrapper modules. If the extract pass identified the main variant, this module
is retained. Instances of the topological variants are directly replaced by the main variant using the
automatically generated wrapper modules. Instances of reduced variants and reconfigurable cells
are replaced by the manually designed wrapper modules. This might introduce some additional
logic. Therefore in a further step the logic can be merged into the FSMs or replaced by a cell
using a second execution of the extract pass.
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This extraction procedure is fully automated. Afterwards, the resulting netlist is visualized for the
“Inspection” step (cf. Fig. 5.1 on p. 124). The developer inspects the schematic of the (partially)
extracted netlist to

• identify groups of generic cells which are candidates for implementation using a new cell, to

• identify problems during extraction, e.g., subtle differences in the implementation of a cell
and the example application, and finally to

• verify that the netlist is completely implemented using only cells of the cell library and no
remaining generic cells except $fsm are present.

The developer can also inspect the original netlist at the beginning of the “Application Analysis”
step to identify initial cells.

In the “Improvement” step the developer creates new cells, adds topological variants or reduced
variants to existing cells, or slightly modifies the example application to achieve better extraction
results.

As mentioned above, the developer can manually verify that the extraction is complete. How-
ever, this is better checked automatically. Therefore the design flow implements the FlowCmd
check-extract command which executes FlowProc. The setup scripts of the example application
and of all cells are executed to set up the internal representation of these elements. Then the
netlist of the extracted example application is loaded and checked. Only the defined cells and
$fsm generic FSM cells and only connections of signals and ports with consistent usage types and
connection types are allowed.

When the example application is completely extracted, the result has to be verified (cf. Sec. 3.5).
The netlist has the same input and output ports as the original HDL design, therefore, the
original testbench is used for simulation. This is shown with the second “Sim.” box from top in
Fig. 3.11 on p. 77. For logical equivalence checking, which corresponds to the top-most green
“Equiv. Check.” arrow, first the $fsm generic FSM cells are replaced by preliminary TR-FSM
implementations and the required configuration data is generated. The configuration for other
reconfigurable cells, e.g., the Byte2WordSel used as an example above, is included in the extracted
netlist as constant value assignment.

Each example application is appended to the list of example applications in a Tcl script similar
to the list of cells. The design flow also allows to use the “Application Analysis” step even before
the full set of example applications is designed. The developer can add new example applications
at any time.

Finally, when all example applications are extracted, these are processed concurrently and statis-
tics on the resource usage is reported (see Lst. 5.1 on p. 122). This also includes the requirements
for the common TR-FSMs (number of inputs, outputs, states, and transitions). That information
is used in the Cell Instantiation step of the following “Merge” step, which is discussed in the next
section.
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4.7 Merge to Reconfigurable Architecture

When all example applications are developed and successfully extracted, in the “Merge” step
the reconfigurable module is generated (cf. Sec. 3.3 and Fig. 3.4 on p. 62). More precisely, the
interconnect module as defined in Sec. 4.3.2 is generated. The input of this step are the extracted
netlists of the example applications. The result is an RTL HDL design of the interconnect module,
configuration data for all example applications, and an internal description of the interconnect.

To generate the interconnect module, first the sizable cells and the oversizing rules are defined
(Sec. 4.7.1). This is followed by the automated optimization of the interconnect (Sec. 4.7.2).
Finally, the result is verified to correctly implement each example application (Sec. 4.7.3).

4.7.1 Cell Instantiation

Before the interconnect optimization, the implementations of sizable cells and the oversizing
rules are defined (cf. Sec. 3.3.1). Currently the design flow only supports TR-FSMs and does not
support other types of sizable cells. The input of the cell instantiation are the extracted netlists
of all example applications which contain $fsm generic FSM cells. The result are the netlists with
the $fsm cells replaced by TR-FSM wrapper modules and the configuration data.

The developer inspects the resource utilization reports generated at the end of the “Application
Analysis” step and specifies the number and parameters of the TR-FSM physical instances. Then
the FlowCmd insert-trfsms command is used to execute TrfsmGen to create the TR-FSM wrapper
modules according to the specified parameters. The $fsm generic FSM cells in the netlists of
all example applications are automatically mapped to and replaced by the adequate physical
instances with the appropriate size and the configuration data is generated. This is analogous
to the preliminary TR-FSM insertion performed for a single example application as discussed in
Sec. 4.4.3. Afterwards the resulting netlists are verified using simulation and logical equivalence
checking.

The second task of the cell instantiation step is to specify the oversizing rules to increase the flexi-
bility of the final reconfigurable module. These are stored in the file ./units/reconfmodule/chll/-
scripts/presilicon.txt which is processed by InterSynth. Lst. 4.5 illustrates the oversizing rules.
The commands specify rules which are applied by InterSynth during the interconnect optimiza-
tion, e.g., the minimum number of physical instances of cell types (min), the number of instances
added to the automatically determined number of minimum instances (abs), and the relative
number by which the minimum number is multiplied (rel). Besides rules for instances of cells
(cellup), also rules to increase the interconnect resources are used (switchup).

4.7.2 Interconnect Optimization

For the interconnect optimization (cf. Sec. 3.3.3) InterSynth is used. All script files for InterSynth
are automatically generated with FlowProc, except presilicon.txt, which specifies the oversizing
rules as shown in the previous section. These scripts define the connection types, the ports of the
interconnect module, the cell types, and the netlists of the example applications. Special con-
structs are introduced to handle cells with internal configuration stores, cells with configuration
inputs, constant values in the netlist, and parameters.
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Listing 4.5: Exemplary oversizing rules specified for InterSynth. For each connection type (Bit, Byte, and
Word) the interconnect switches should use one more up and down connection than required. For each of
the two different TR-FSM sizes at least one instance is included. Finally, for the cell types CONST_Byte,
WordMuxDual, etc., the minimum number of instances is specified.

### Oversizing rules ######################################################################
# headroom switchup <conntype> [abs <num>] [rel <num>] [min <num>] [depth <num>] [up|down]
# headroom cellup <celltype> [abs <num>] [rel <num>] [min <num>]

# add one up and one down connection for each switch
headroom switchup Bit abs 1
headroom switchup Byte abs 1
headroom switchup Word abs 1

# one instance of each TR-FSM size
headroom cellup TRFSM0 min 1
headroom cellup TRFSM1 min 1

# more instances of useful cells
headroom cellup CONST_Byte min 6
headroom cellup WordMuxDual min 2
headroom cellup WordRegister min 3
headroom cellup CONST_Word min 1
headroom cellup CellParamOut_Word min 2

InterSynth processes the scripts, optimizes the interconnect, and generates a Verilog file of the
interconnect module which instantiates the cells and implements the interconnect. The module
has the specified ports for the reconfigurable signals with usage types dynamic and direct plus
an additional input bitdata, which is a wide vector to supply the configuration data. Further, it
instantiates the HDL designs of the cells, i.e., the main variant. Therefore, in all further steps
including the final chip synthesis, the HDL designs of the cells are used. The example applications
and all netlists generated with Yosys are only intermediate products of the design flow.

A section of the result of InterSynth is illustrated in Lst. 4.6. It shows an instance named cell_62

of the cell type Counter with the signals connected to its ports. In the second half, the MUX for
the signal cell_62_4, which is connected to the input PresetVal_i of the counter, is shown. The
design implements two parallel trees for the connection type Word, therefore the outputs of two
MUXes are combined with a logical OR. The bitstream ensures that the unused MUX contributes
an all-zeros vector. Each MUX selects between the output signals from other cells and from a
switch at a higher tree level.

Besides the Verilog HDL design, InterSynth also generates files which specify the structure and
the cell-to-leaf-mapping of the interconnect tree for the mapping of new applications in the post-
silicon design phase (cf. Sec. 4.9). Additionally, for each example application the configuration
data, a listing of the node-to-cell-mapping, images of the interconnect with the routed signals (cf.
Fig. 5.2 on p. 126), and an image of the netlist are generated.



4.7 Merge to Reconfigurable Architecture 107

Listing 4.6: Typical Verilog output generated by InterSynth showing an instantiated cell and a MUX (expla-
nation in the text).

// ...
// Counter[1]
wire [15:0] cell_62_5; // D_o
wire cell_62_3; // Direction_i
wire cell_62_2; // Enable_i
wire cell_62_6; // Overflow_o
wire [15:0] cell_62_4; // PresetVal_i
wire cell_62_1; // Preset_i
wire cell_62_0; // ResetSig_i
wire cell_62_7; // Zero_o
Counter cell_62 (

.D_o(cell_62_5),

.Direction_i(cell_62_3),

.Enable_i(cell_62_2),

.Overflow_o(cell_62_6),

.PresetVal_i(cell_62_4),

.Preset_i(cell_62_1),

.ResetSig_i(cell_62_0),

.Zero_o(cell_62_7),

.Clk_i(Clk_i),

.Reset_n_i(Reset_n_i)
);
// ...
assign cell_62_4 =

(bitdata[1054:1052] == 3’b101 ? sw_2_0_3_down0 :
bitdata[1054:1052] == 3’b100 ? cell_63_6 :
bitdata[1054:1052] == 3’b010 ? cell_63_7 :
bitdata[1054:1052] == 3’b110 ? cell_93_0 :
bitdata[1054:1052] == 3’b001 ? cell_94_0 :
bitdata[1054:1052] == 3’b0 ? 16’b0 : 16’bx) |
(bitdata[1203:1201] == 3’b001 ? sw_2_1_8_down0 :
bitdata[1203:1201] == 3’b100 ? cell_61_5 :
bitdata[1203:1201] == 3’b010 ? cell_64_6 :
bitdata[1203:1201] == 3’b110 ? cell_64_7 :
bitdata[1203:1201] == 3’b0 ? 16’b0 : 16’bx);

// ...

4.7.3 Verification

The verification of the results generated by InterSynth is performed in three steps: sanity checks,
simulation, and logical equivalence checking. First, all results generated by InterSynth (except
the Verilog module) are loaded with FlowProc and verified. This includes the connection types,
the cell types, and the ports. Additionally, wrapper modules and setup scripts for the following
two steps are generated. Finally, Yosys is used to synthesize the Verilog design to an actual ASIC
standard cell library and to estimate the chip area.

The second step of the verification is the simulation of each example application implemented with
the interconnect module (cf. Sec. 3.5 and the third “Sim.” box in Fig. 3.11 on p. 77). Therefore
in the previous step for each example application a wrapper module is generated, that has the
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same ports as the original example application. It instantiates the interconnect module, assigns
a constant value with the configuration data to its bitdata input, and connects its ports to the
wrapper module ports or assigns constant all-zero values to unused inputs. This wrapper is then
instantiated in the original testbench of the example application.

Note that two kinds of wrapper modules for the example applications are used in the design flow:

• The first kind of wrapper modules is used for HW/SW co-simulation. It instantiates the
original example application HDL design to create a preliminary reconfigurable module.

• The second kind of wrapper modules is reversed: The interconnect module (as in this
section) and the reconfigurable module (see Sec. 4.8.4) are wrapped to create a surrogate
module of the original example application HDL design.

The original testbench can access signals across the module hierarchy from inside the example
application design using Verilog and VHDL external names. In the interconnect module, these
signals have different drivers and sinks. To use the same testbench for both simulation setups, the
external name statements are placed in a separate module named “extnames”. This is instantiated
in the testbench and provides the internal signals as its ports. This allows to reuse the original
testbench while only different implementations of the “extnames” module are instantiated. The
“extnames” module used for the example application HDL design is created manually. The im-
plementation used to simulate the interconnect module is generated with a Tcl script executed
by FlowProc using the information on the node-to-cell-mapping to access the renamed signals.

For simulation, the testbench, all cells of the cell library including the TR-FSM and its wrapper
modules, the interconnect module, the wrapper module, and the module to access internal signals
are compiled. The configuration data of the interconnect module is hard-wired as a constant value
in the wrapper module. This includes the configuration of the interconnect and of all cells with
configuration inputs. The configuration of cells with internal configuration stores, especially the
TR-FSMs, are applied before the start of the simulation using startup scripts as described in
Sec. 4.4.3.

The third step of the verification is the comparison of the interconnect module with each example
application using logical equivalence checking. This is illustrated with the green arrow from the
example applications to the output of the “Merge” box in Fig. 3.11 on p. 77. The original example
application HDL module is used as golden design. The revised design consists of the wrapper
module, the interconnect module, and the cells of the cell library. The procedure is analogous
to that used in Sec. 4.4.3 including the setup of the configuration data for cells with internal
configuration stores and the FSM encoding.

4.8 Completion of the Reconfigurable Module

With the verified interconnect module, the reconfigurable module is completed (cf. Sec. 3.4) and
is provided as IP core. First, in Sec. 4.8.1 the exact deliverables for the IP core are defined.
As reasoned in Sec. 4.3.2, the reconfigurable module is a wrapper for the interconnect module.
Details on the infrastructure in the reconfigurable module to support the interconnect module
and the final module hierarchy are discussed in Sec. 4.8.2. In Sec. 4.8.3 the actual generation of
the reconfigurable module as HDL design and the specific problems and solutions are described.
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After the reconfigurable module is generated, it is verified to implement each example application
(Sec. 4.8.4). Finally, the completed and verified reconfigurable module is integrated in an SoC.
The associated steps and tools are briefly summarized in Sec. 4.8.5.

4.8.1 Deliverables

The result of the design flow is an IP core of the reconfigurable module for the integration in
an SoC. In this section the exact deliverables are defined (cf. Sec. 3.1.2). These comprise the
following parts:

a) HDL design of the reconfigurable module

b) meta-information for the integration in the SoC

c) run-time data of each example application

d) meta-information to develop new applications in the post-silicon design phase

ad a) The HDL design of the reconfigurable module consists of the module itself, the modules
used for the configuration and parameterization infrastructure (defined in the next section), the
interconnect module, and the HDL designs of the cells of the cell library including the TR-FSM
and its wrapper modules.

ad b) The meta-information for the integration in the SoC consists of instructions for the synthesis
and the layout (place and route). For the synthesis, a list of all files of the HDL design and
information to define the constraints are required.

• High fan-out nets are treated as ideal networks during synthesis and are implemented with
dedicated buffer trees during place and route.

• Manually gated clocks also have to be treated in a similar way. Both cases are especially
relevant for the configuration infrastructure.

• One major problem during synthesis and the accompanied static timing analysis (STA)
arises from combinational logic loops through the reconfigurable interconnect. This was
also reported by [WKW+05, WAWS03] (cf. Sec. 2.3.3). [WKW+05] used a directional
architecture which only allows connections in one direction to solve this problem. However,
this is not practical for this thesis. In Sec. 2.3.4 and in [WGS+12, GW14] the use of timing
constraints to break these loops is suggested. This requires information on the interconnect
structure, on the instantiated cells, and on their ports.

• When all combinational logic loops are disabled for the STA, separate timing constraints for
combinational cells and for the paths through the reconfigurable interconnect are required.

• During synthesis, all cells which directly connect an output to an input port (e.g., to convert
between connection types or cells for constant values) are ungrouped to avoid the automatic
insertion of redundant buffers and to allow improved logic optimization.

The deliverables have to include information to appropriately handle these cases.

ad c) The run-time data of each example application comprises the configuration data and the
firmware. During compilation, the configuration data is embedded in the firmware binaries (cf.



110 Chapter 4. Realization

Sec. 4.4.4). At run-time, the driver applies the configuration data to the reconfigurable module
and subsequently activates its functionality.

ad d) The meta-information to develop new applications in the post-silicon design phase includes:

• the definition of the reconfigurable signals and the reconfigurable module (cf. Sec. 4.3),

• the cell library with all topological variants and reduced variants,

• the specification of all sizable cells which were used for the cell instantiation (cf. Sec. 4.7.1),

• information on the structure and the cell-to-leaf-mapping of the interconnect tree to map
new applications to the existing interconnect module (cf. Sec. 4.7.2), and

• constants and functions for the configuration and parameterization in the firmware.

The deliverables include a large set of different kinds of information which is dispersed across the
directory structure. Therefore the design flow does not implement the creation of a stand-alone
package of the IP core. Instead, the complete directory structure is delivered as IP core.

4.8.2 Reconfigurable Module Contents

The reconfigurable module is set up at the beginning of the design process (cf. Sec. 4.3.2). How-
ever, the details on the infrastructure for configuration and parameterization and the interface to
the CPU were left open. These details are developed in this section.

The infrastructure for configuration comprises the configuration stores and the logic to apply the
configuration data. The configuration stores can be implemented as EEPROM/Flash memory,
as SRAM, or as shift register using D-FFs. The configuration data can be applied from firmware
using memory-mapped registers via a CPU peripheral bus interface to the reconfigurable module
(e.g., OpenMSP430 External Peripheral Interface, [Gir13, p. 15], ARM AMBA AXI used in
the Xilinx Zynq-7000 FPGA [CEES14, p. 353ff]), or with an external interface (e.g., in-system
programming with a special hardware tool via JTAG). The current implementation of the design
flow only supports shift registers as configuration stores and the OpenMSP430 CPU peripheral
bus as its interface. However, the implementation allows a simple extension to other options. In
the remainder of this section, only the supported option is discussed.

The infrastructure for parameterization is always accessed from the CPU to set and query values
during run-time with memory-mapped register via a peripheral bus.

In the setup of the reconfigurable module the interface from the CPU to the infrastructure for
configuration and parameterization is defined. For the discussed design flow the assumption is
made, that both, the configuration and the parameterization, are accessed via the same type of
interface (i.e., CPU peripheral bus). Therefore both use the same signals of the bus interface and
only differ in the address of the according memory-mapped registers. To reduce the complexity,
dedicated modules for the configuration interface and for the parameterization interface are in-
troduced in the reconfigurable module. These separate the interface from the storage and convert
the CPU interface to a simpler internal interface.

The final module hierarchy is shown in Fig. 4.7. The reconfigurable module (yellow) is embed-
ded in its parent module (blue). Its main contents is the interconnect module (red) with the
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cells and the interconnect (gray). All cells are connected to the interconnect. Cells 2–4 also use
reconfigurable signals from the parent module with the usage type direct (thin arrows). Cell 3
additionally has an internal configuration store and is therefore connected to the configuration
interface (green). Cell 4 is also reconfigurable but uses the configuration data included in the
common configuration of the interconnect module. This is provided by the “Bitdata” configu-
ration store. The “Signals” configuration store provides the values of the reconfigurable signals
with the usage type config.

The reconfigurable signals with the usage type const are directly driven with constant assignments
from the reconfigurable module (cyan). The interconnect is also connected to reconfigurable sig-
nals with the usage type dynamic (gray arrows from and to the parent module) and to parameters
(orange arrows). For parameters written by the CPU and used by the reconfigurable module,
parameter registers are instantiated (orange). For parameters provided by the reconfigurable
module and read by the CPU, a read MUX is used. Reconfigurable signals with the usage type
param are handled analogously. The parameters are accessed from the CPU via the parameter-
ization interface. Together with the configuration interface, it is connected to the CPU via a
peripheral bus interface (violet arrow).

Figure 4.7: Module hierarchy of the reconfigurable module (explanation in the text).
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4.8.3 Generation

In the previous section the contents of the reconfigurable module was derived. In this section its
automated generation is discussed. Based on the setup and on the results of the previous steps,
a complete internal representation of the reconfigurable module is prepared in FlowProc. The
“Bitdata” configuration store to provide the configuration data for the interconnect module is
instantiated. The size of the configuration data is determined from the output of InterSynth.

The “Signals” configuration store is instantiated, which holds the values for the reconfigurable
signals with the usage type config. For each reconfigurable signal a section of the configuration
data is allocated. The total size results from the sum of all reconfigurable signals. For the cells
with internal configuration stores, the according sizes are set up during the cell instantiation.

Parameter registers are instantiated for the according inputs of the interconnect module and
for the reconfigurable signals with the usage type param, which are driven by the reconfigurable
module. The parameter read MUX is instantiated for the according outputs of the interconnect
module and for the reconfigurable signals with the usage type param, which are inputs of the
reconfigurable module.

At this point the list of configuration stores and of parameters is complete, therefore indexes for
the individual access from the CPU are allocated. Finally the interface to the CPU is constructed.

With the complete internal representation of the reconfigurable module, an HDL module is gen-
erated. FlowProc supports the generation of Verilog and VHDL designs of the reconfigurable
module. Besides the generation of the above structures, additional details have to be imple-
mented. Reconfigurable signals with a differing width have to be converted to the according
connection type, either by padding with zeros (e.g., a 10-bit ADC value input to a 16-bit vector
of connection type Word) or by subranges (e.g., an output with connection type Byte with eight
bits to a four bit wide read count signal for an I2C master). All signals have to be connected
between the modules and with the ports of the generated reconfigurable module.

The configuration infrastructure using shift-registers results in a large clock tree to supply the
clock signal to each D-FF. For a low-power design (cf. Sec. 2.1.2), an individual manual clock
gating cell is instantiated for each configuration store. Therefore, during normal operation, the
according sections of the clock tree are disabled. During configuration, only the section of the
clock tree of the current configuration store is enabled.

Besides the reconfigurable module, additional files are generated individually for each example
application. For the verification of the reconfigurable module, wrapper modules and setup scripts
are generated (see next section).

As mentioned in Secs. 4.4.4 and 4.4.5, a preliminary driver is used for the firmware development
and for the early HW/SW co-simulation. Here the final firmware driver is generated with the
above mentioned final indexes for configuration stores and parameters. This also includes the
complete configuration data: the configuration data for the reconfigurable signals with usage
type config, for the cells with internal configuration stores, and for the interconnect module.
The developer has to recompile the firmware, e.g., by using different settings for the Makefile.
It is not necessary to modify the manually developed parts of the firmware driver because the
details on the configuration and parameterization are encapsulated in the auto-generated driver.

In the post-silicon design phase the tools rely on the ample set of information which was set up
and generated in the pre-silicon design phase. If any piece is lost after the SoC is produced, the
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development of new applications is impossible. Therefore all original files and all generated files
have to be safely stored. The FlowCmd commit-pre-si command checks that all information is up-
to-date and commits the final reconfigurable module to a version control system. Currently only
Subversion (SVN) is supported. Additionally a file is generated which specifies that the project
directory is switched to the post-silicon design phase. This disables most FlowCmd commands to
prevent accidental modifications of the generated reconfigurable module or any files it is based
on.

4.8.4 Verification

The verification of the generated reconfigurable module is performed individually for each ex-
ample application and comprises three approaches: simulation, logical equivalence checking, and
HW/SW co-simulation.

The simulation of the reconfigurable module corresponds to the fourth “Sim.” box at the “IP Core”
in Fig. 3.11 on p. 77. It is similar to the verification of the interconnect module in Sec. 4.7.3
with minor difference. A wrapper module is generated with the same inputs and outputs as
the original example application. It instantiates the reconfigurable module and connects the
signals with usage type dynamic and direct. However, parameters of the example applications,
which are also ports of its HDL module, are realized as parameter registers and a parameter
read MUX, which are embedded inside of the reconfigurable module. To access these internal
signals, VHDL-2008 external names [AL07] are used in the wrapper module.18 Additionally
special VHDL configurations are required to disconnect the drivers of the parameter registers
inside the reconfigurable module from these signals, which are driven externally in this setup.

The simulation setup scripts include the configuration data for the interconnect module and for
the reconfigurable signals with usage type config additional to the configuration data of cells
with an internal configuration store. These measures ensure that the original testbench of the
example application is applicable.

The verification of the reconfigurable module using logical equivalence checking to compare it with
the example application HDL design is also similar to the procedure discussed in Sec. 4.7.3 with
minor difference. This corresponds to the green arrow from the example applications to the “IP
Core” box in Fig. 3.11 on p. 77. The employed tool Cadence Encounter Conformal Equivalence
Checking (LEC) does not support the features of the VHDL-2008 standard. Instead, setup scripts
are generated which expose internal signals of the reconfigurable module as primary inputs and
outputs and which define the appropriate mapping points between the golden and the revised
netlists. With the complete configuration data applied, this setup allows to verify the logical
equivalence of the configured reconfigurable module with the original example application HDL
design.

The third approach for verification is HW/SW co-simulation. This is similar to the procedure
developed in Sec. 4.4.5. Instead of the wrapper module (cf. Fig. 4.5 on p. 100) the final reconfig-
urable module is instantiated in its parent module. Additionally, the final firmware including all
configuration data is used.

18Note that in the discussion of the verification of the interconnect module (cf. Sec. 4.7.3), external names were
used in the testbench to access internal signals. Here external names are additionally used in the wrapper module
of the unit under test.
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4.8.5 SoC Integration and Implementation

The generated and verified IP core of the reconfigurable module is integrated in the SoC (cf.
Fig. 3.11 on p. 77). The SoC is implemented using synthesis, place and route, and sign-off
verification before the production data is delivered (tape-out) and the SoC is produced. At the
initial operation of the produced SoC, the developed firmware is directly applicable. However,
contrary to HW/SW co-simulation, it has to be transferred to the program memory (e.g., flash
memory) with in-system programming.

The methods of verification during the implementation of the SoC include post-synthesis (i.e.,
gate-level) and post-place-and-route simulation. The netlists instantiate the semiconductor pro-
cess specific standard cells. Additionally the estimated delays of the cells and the routing can be
considered using standard delay format (SDF) files. In all setups the same testbench and the same
firmware as used for the HW/SW co-simulation are applicable. During the simulation, the signal
values and the switching activity can be recorded in value change dump (VCD) and switching
activity interchange format (SAIF) files, respectively. This can be used for power analysis.

The above mentioned estimated delays in SDF files are generated using static timing analysis
(STA). This loads the netlist of the SoC and parasitics information generated during place and
route. To estimate the power consumption of the SoC or of the reconfigurable module itself,
power analysis is used. For example, this feature is included in Synopsys Design Compiler and
accessed with the report_power command. It utilizes the switching activity for all signals of the
SoC as determined with simulation. More details on power analysis are discussed in Sec. 5.3.3.

4.9 Post-Silicon Design Phase

After the reconfigurable module is generated and verified, the project directory is switched to the
post-silicon design phase (cf. Sec. 4.8.3). This prevents changes on the reconfigurable module but
allows the development of new applications (cf. Sec. 3.6 and Fig. 3.12 on p. 80). The development
process is similar to the procedures used in the pre-silicon design phase. Therefore several of the
FlowCmd commands support the -post-si argument.

First the new application is developed, including verification, firmware development, and early
HW/SW co-simulation. In the discussed design flow this is implemented identically as in the
pre-silicon design phase. After the new application is developed, the “Application Analysis” step
follows. This is also identical to the pre-silicon design phase except that no new cells can be
created. However, modifications of the new application as well as new topological variants and
new reduced variants are allowed, because these do not imply changes of the silicon circuit. If the
new application can not be fully extracted, it can not be implemented with the reconfigurable
module.

For new applications, the “Merge” step is replaced by mapping the extracted netlist to the existing
reconfigurable module. This step first uses TrfsmGen to map the generic FSM cells to TR-FSMs.
If the TR-FSMs integrated in the reconfigurable module do not provide the necessary resources for
the generic FSM cells, the example application can not be implemented. Afterwards InterSynth is
used for the node-to-cell-mapping and routing. It relies on the information on the structure and
the cell-to-leaf-mapping of the interconnect tree stored in the pre-silicon design phase. At this
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point, the resources provided by the reconfigurable module can also preclude the implementation
of the new application.

The next step is the verification of the new application implemented by the interconnect module
alone and by the reconfigurable module. For both cases the according wrapper modules and
setup scripts are generated. The verification is performed identical to the procedure described in
Secs. 4.7.3 and 4.8.4.

Finally the firmware with the included configuration data is deployed to the SoC and executes
the new application.

4.10 Summary

In this chapter a design flow based on the design methodology for the development of reconfig-
urable modules introduced in Ch. 3 was presented. It starts with the demand for a reconfigurable
module and with the development of its parent module. The parent module is evaluated to ex-
tract the ports of the reconfigurable module. Then a set of example applications is developed as
the specification of its functionality. These example applications are analyzed and an optimized
cell library is developed. The example applications implemented using only the cell library are
afterwards merged to form the interconnect module. This is further encapsulated to include the
infrastructure for configuration and parameterization to form the reconfigurable module. After
the chip production, the design flow supports the development of new applications and their
implementation using the reconfigurable module.

The design flow provides a high degree of automation. It combines a set of tools and ensures
seamless integration. The designer is relieved from error-prone and monotonic tasks by the auto-
matic generation of template files, wrapper modules, and setup scripts. The design flow ensures
reproducible and validated results by the use of simulation and logical equivalence checking at
crucial points throughout the design process. It is independent of the realized application class
and does not introduce any limitations, apart from those listed in Sec. 4.1.4. However, these are
mostly missing features due to time constraints and can be easily implemented.

In the next chapter the feasibility of the design methodology and the practicability of the design
flow are demonstrated by designing an SoC including a reconfigurable module. This is evaluated
for its power consumption, chip area, and the size of the configuration data.
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Evaluation and Results

In this chapter, the developed design methodology, the design flow, and the results obtained from
their utilization are evaluated quantitatively and qualitatively. First, the four hypotheses defined
in Sec. 1.2 are evaluated.

In Sec. 5.1 the feasibility of the design methodology (hypothesis 1) is evaluated. Therefore a
reconfigurable module and an SoC were developed and manufactured. Hypothesis 2 compares
the power consumption of a reconfigurable module to a CPU. At an early stage of the design
methodology a different reconfigurable module was manually developed for this comparison. That
module is presented in Sec. 5.2. In Sec. 5.3 the evaluation of the power consumption of the SoC
and the evaluation of hypothesis 2 are presented.

Hypothesis 3 compares the chip area of the reconfigurable module with the parallel implemen-
tation of the example applications and with eFPGA implementations. The chip area and the
hypothesis are evaluated in Sec. 5.4. In Sec. 5.5 the size of the configuration data of the recon-
figurable module is compared to eFPGA implementations to evaluate hypothesis 4.

After the evaluation of the four hypotheses, the design methodology is further evaluated for qual-
itative measures including correctness of results, productivity, and flexibility (see Sec. 5.6). This
is followed by Sec. 5.7 with an examination of the design methodology regarding the requirements
defined in Sec. 1.1.7. Additionally, in Sec. 5.8 the TR-FSM architecture is evaluated. Finally the
results are thoroughly discussed in Sec. 5.9.

117
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5.1 Feasibility of the Design Methodology

In this section, hypothesis 1 “Feasibility of Design Methodology” as defined in Sec. 1.2 is evaluated.
Therefore, the design methodology and its realization as a design flow are utilized to design a
reconfigurable module which is integrated in an SoC. This procedure is used to test whether the
design methodology is applicable and produces valid results which are suitable as an IP core.

As concrete application, a low-power WSN SoC with a reconfigurable module for an autonomous
sensor interface is chosen. This demand for a reconfigurable module is the starting point of
the design methodology (cf. Sec. 5.1.1). As first step, the SoC is specified and implemented
in Sec. 5.1.2. Then the development of the reconfigurable module is discussed in Sec. 5.1.3.
Its integration, the further development of the complete SoC, the manufacturing of a test chip,
and the characteristics of the SoC are presented in Sec. 5.1.4. The reconfigurable module itself is
briefly characterized in Sec. 5.1.5. Further details are discussed in Secs. 5.3–5.6 and in appendix A.
Finally, the actual evaluation of hypothesis 1 is discussed in Sec. 5.1.6.

5.1.1 Demand for a Reconfigurable Module

The WSN SoC should be similar to an MCU with an added reconfigurable module. With manual
HW/SW partitioning, the tasks of the WSN SoC are split between its CPU and its reconfigurable
module. The communication via the wireless network using suitable MAC and routing layer
protocols is assigned to the firmware. This also includes the transmission of the measured sensor
values to a central station.

The application of the reconfigurable module is the autonomous handling of external sensors and
to perform the sensor interface task as described in Sec. 1.1.1. To support analog and digital
sensors, an ADC and bus masters for the SPI and I2C protocols are required. However, these
modules are not part of the reconfigurable module but instantiated in its parent module and
controlled by the reconfigurable module. Additionally, digital input and output signals to control
the external sensors are required. Further, the post-processing of the retrieved measurement
values is included in the application class. This includes the detection of a change and the
calculation of the mean value of consecutive measurements.

Besides the interfaces towards the external sensor, the reconfigurable module requires interfaces to
and from the inner of the WSN SoC. Additional to the reset and clock signals and the configuration
and parameterization interface, an interrupt request signal to the CPU, digital signals for single-
bit communication (e.g., to enable and disable the configured application), and control and data
signals to the ADC and the serial bus masters are required.

As the application class sets requirements for the SoC (included modules, signals, pins), the SoC
sets requirements for the reconfigurable module (ports, interface to the CPU, etc.). Therefore in
the next section the according details of the SoC are discussed briefly. This is followed by a detailed
discussion of the application of the design methodology and design flow for the development of
the reconfigurable module.

5.1.2 Wireless Sensor Network SoC

The first step of the design flow is the specification and development of the parent module. For the
discussed WSN SoC, the parent module is the complete chip core (see Fig. 4.3 on p. 91). The WSN
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SoC should be similar to the Texas Instruments MSP430F1232 microcontroller [Tex04]. This chip
is an ultra-low-power MCU and is used in various WSN nodes, e.g., the TinyMote [MB04]. It was
also used in Sec. 2.1.1 and will be used in Sec. 5.3 for comparison. The MSP430F1232 includes
8 kB Flash, 256 bytes RAM, three 8-bit GPIO ports, a 10-bit ADC, a watchdog timer, a 16-bit
timer, and a universal synchronous/asynchronous receive transmit (USART) module.

For testing purposes and practical reasons, restrictions and simplifications are employed:

• The WSN SoC does not contain RF communication.
• Instead of an integrated ADC module, its control signals are implemented as pins of the

chip. This allows to externally emulate an ADC and to simulate exact values to test the
behavior of the (example) application in relation to defined changes of the measured value.

• Further, no watchdog timer is required.

TheWSN SoC uses the OpenMSP4301 free and open-source CPU design, which is fully compatible
to the commercial products [Gir13]. For debugging, the included debug interface is configured
to use the I2C protocol (instead of UART). For the production of a test chip, only static RAM
(SRAM) but no Flash memory was available. Therefore the program memory is implemented as
SRAM and set up via the debug interface before the operation of the WSN SoC.

The OpenMSP430 provides up to six 8-bit GPIO ports compatible with the commercial product
series. The MSP430F1232 implements three 8-bit GPIO ports. To save chip area, the WSN
SoC implements two 8-bit GPIO ports and uses its third GPIO port as internal signals for direct
single-bit communication with the reconfigurable module. Additionally, the special functions of
the GPIO pins (e.g., timer signals) are implemented identical to the commercial product, where
applicable.

The OpenMSP430 also provides a compatible “TimerA” module which is included in the WSN
SoC. To communicate with the WSN SoC, a UART is required. The OpenMSP430 project does
not provide a USART module compatible with the commercial MCUs. Therefore, a simplified
UART module, which is included in an example project,2 is used.

For the firmware implementation of the sensor interface task, a simple SPI master peripheral
termed “SimpleSPI” was implemented. This module is also suitable for a later extension to
communicate with an external RF module. The ADC interface and the serial bus masters used
by the reconfigurable module (see below) use direct signaling instead of a peripheral bus interface
and are therefore not suitable for the OpenMSP430 CPU.

The OpenMSP430 supports the same low-power modes as implemented by the commercial MSP-
430 MCUs. For their discussion, the clocking scheme of theWSN SoC is described. The main clock
signal, which enters the WSN SoC, is distributed to the OpenMSP430 CPU and the reconfigurable
module and its peripherals. The OpenMSP430 CPU internally creates three gated clocks:

• MClk is used internally by the CPU, its debug interface, and the RAMs.
• SMClk is used by the CPU peripherals: GPIO, TimerA, UART, SimpleSPI.
• AClk is unused.

All clocks are directly gated from the main clock signal without clock dividers. Further, no
independent clock domains are implemented. The GPIO module needs the SMClk signal to

1http://opencores.org/project,openmsp430 [2015-08-20]
2The simplified UART model is located at ./fpga/xilinx_avnet_lx9microbard/rtl/verilog/omsp_uart.v in the

OpenMSP430 source tree.

http://opencores.org/project,openmsp430
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synchronize incoming signals and the TimerA module needs the SMClk signal to synchronize
the external INClk and TAClk signals, i.e., these signals are not implemented as separate clock
domains.

Low-power mode 0 (LPM0) switches off the MClk signal and therefore deactivates the CPU
and the RAMs, while the peripherals are still active and can activate the CPU using interrupts.
Due to the simplified SoC design, LPM1 is equivalent to LPM0. LPM2 additionally switches off
SMClk and therefore deactivates the CPU peripherals GPIO, TimerA, UART, and SimpleSPI.
LPM3 and LPM4 are equivalent to LPM2 because the affected systems are not included in the
WSN SoC.

For the reconfigurable module, dedicated SPI and an I2C bus master peripherals are included in
the SoC design.3 Note that the SimpleSPI peripheral is connected to the OpenMSP430 CPU
via its External Peripheral Interface while the SPI bus master peripheral is connected to the
reconfigurable module via control and data signals. Additionally, pins for the external ADC and
direct digital input and output pins to control external sensors are included. As mentioned above,
the third 8-bit GPIO port of the OpenMSP430 is used for single-bit communication between the
CPU and the reconfigurable module. Further, five interrupt request signals and the OpenMSP430
peripheral bus for the configuration and parameterization interfaces of the reconfigurable module
are prepared.

The mentioned modules and signals are implemented in the chip core design together with the Ver-
ilog ‘include definition for the instantiation of the generated reconfigurable module (cf. Lst. 4.1
on p. 92). For the verification of the chip core design without the reconfigurable module, a
substitute module was created which drives all signals with a constant value. This was used to
simulate various test cases, e.g., a blinking LED, low-power modes, and RAM tests. Additionally,
the configuration and parameterization interfaces of the reconfigurable module and the accord-
ing firmware drivers were developed and verified as peripherals connected via the OpenMSP430
peripheral bus.

In this section, the development of the chip core module as the parent module was described. The
requirement of the design flow to develop the parent module before the reconfigurable module
emphasizes a clean top-down design strategy.

5.1.3 Design of the Reconfigurable Module

After the development of the parent module, the reconfigurable signals were set up (cf. Sec. 4.3.1).
For the reconfigurable module, the three connection types “Bit”, “Byte”, and “Word” were defined.
The design flow automatically recognizes unused signals and issues errors for missing or duplicate
usage type and connection type definitions. To select the signals in these definitions, regular
expressions enable a precise and economic specification.

The next step is the set up of the reconfigurable module (cf. Sec. 4.3.2). The interfaces for the
configuration and parameterization infrastructure are specified as memory-mapped peripherals
connected via the OpenMSP430 bus interface.

3These peripherals were developed by students supervised by the author of this thesis.
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Example Applications

To specify the functionality of the reconfigurable module, six example applications were manually
developed as Verilog RTL designs (cf. Sec. 4.4): “ADT7310”, “MAX6682”, “MAX6682Mean”, “ADT7410”,
“ExtADC”, and “SlowADT7410”. The names reflect the employed sensors: The Analog Devices
ADT7310 16-bit temperature sensor and the Maxim Integrated MAX6682 10-bit temperature
sensor provide an SPI interface. The Analog Devices ADT7410 16-bit temperature sensor provides
an I2C interface. The “ExtADC” example application uses an external ADC.

“MAX6682Mean” periodically performs four consecutive measurements, sums the result values and
then notifies the CPU. The division by four (e.g., implemented as a shift-right operation) to
acquire the mean value is delegated to the firmware.4 The other five example applications peri-
odically perform a single measurement and compare the value to the previous value. Only if the
difference is above a parameterized threshold, the new value is stored and the CPU is notified,
analogous to the sensor interface task described in Sec. 1.1.1.5

The ADT7310 and ADT7410 sensors require two separate requests to initiate the measurement
and, after a delay of at least 240ms, to query the value. The MAX6682 sensor continuously
performs measurements and the latest value is returned on each SPI transfer.

The delays in all example applications are implemented using counters. The delay values are set
up using parameterization. The “ADT7410” and the “SlowADT7410” example only differ in the width
of the counters. The former uses two 16-bit counters while the latter uses two 32-bit counters.

All example applications except “ExtADC” use two FSMs. One FSM controls the communication
via the employed serial bus master and stores the returned sensor values to “Byte” registers.
The second FSM controls the first FSM and implements the datapath for the sensor value post-
processing. The “ExtADC” example application is implemented using a single FSM.

For each example application, a separate subdirectory was created according to the directory
structure (cf. Sec. 4.1.3). Then the setup.tcl script was customized to define the ports, including
the parameters. Listing 4.3 on p. 97 shows a slightly simplified excerpt of the setup script for
the example application “ADT7310”. The design flow supports the development of the example
applications by the automatic generation of a Verilog HDL template and a testbench template.
These were used to develop and verify the example applications.

After functional verification, the Verilog HDL designs were synthesized and automatically checked
against the specification in setup.tcl. Then the FSMs were extracted and replaced by preliminary
TR-FSMs (cf. Fig. 4.4 on p. 97). The verification using simulation as well as logical equivalence
checking of these automatically generated designs did not reveal any discrepancies. The process
was assisted by the design flow, which automatically generated setup scripts, configuration data,
and mappings of FSM state registers. For all simulations, the same testbench as implemented for
the manual HDL design could be used unmodified.

4 Note that actually the division is not necessary because the measurements themselves are provided in an
arbitrary unit, which has to be transformed to an actual temperature reading. This calculation can include the
division at no extra cost.

5To simplify any example or new application and therefore to reduce the power consumption, the above use of
raw sensor values can be extended further. Instead of scaling the value to a real value, the threshold value can be
scaled to the arbitrary unit of the raw sensor values. Additionally, suppose an application performing a control
loop, e.g., to precisely control the temperature, all controller parameters can be scaled to the arbitrary unit of the
raw sensor values.
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For each example application a firmware driver was developed. The MSP430-GCC6 tool chain
was used for the OpenMSP430 CPU with the -mmcu=msp430f1232 option. For the early HW/SW
co-simulation two new testbenches were created which instantiate the chip core module and the
chip top module, respectively. The stimulus process and verification of the output signals were
copied from the original testbench and were only slightly adapted. With the early HW/SW co-
simulation each example application could be developed and integrated in its entirety. It was not
necessary to interrupt the development of an example application and continue when the final
reconfigurable module was generated.

Application Analysis

During the “Application Analysis” step (cf. Sec. 4.6), the cell library was developed (cf. Sec. 4.5)
and the example applications were extracted. The final resource utilization report in Lst. 5.1 lists
all cells as columns and the example applications as rows.

Listing 5.1: Resource utilization of the example applications shown as the output of FlowProc. The hyphen-
ations of the column titles were introduced manually to fit the table to the page.

| Word- Byte- Add- ByteMux- ByteMux- Byte2- Byte2- WordMux-

App | $fsm Counter Counter32 AbsDiff Register Register SubCmp Quad Dual Word WordSel Dual

---------------------------------------------------------------------------------------------------------------

ADT7310 | 2 1 1 1 1 2 1 1 1

MAX6682 | 2 1 1 1 2 1 1

MAX6682Mean | 2 1 1 1 2 2 2 1 1

ADT7410 | 2 2 1 1 2 1 1 2 1

SlowADT7410 | 2 2 1 1 2 1 1 2 1

ExtADC | 1 1 1 1 1

---------------------------------------------------------------------------------------------------------------

Min | 1 1 1 1 1 2 1 1 2 1 1 1

Max | 2 2 2 1 2 2 2 1 2 1 1 1

The development of the individual cells of the cell library is supported by the design flow similarly
as the development of example applications. Verilog HDL and testbench templates are generated
according to the specification of the ports in setup.tcl. Additional to synthesis and verification of
the ports, the logical equivalence of topological variants and of reduced variants is automatically
verified. For example, the AddSubCmp cell demonstrated in Fig. 3.8 on p. 71 is instantiated in most
example applications via the reduced variant of a “>” comparator.

During the refinement cycles of the application and cell library optimization, several iterations
with manual improvements were performed. One repeatedly occurring problem came from the
use of immediate constant values in the Verilog designs. For example, the counters used to
implement delays are initialized with the value 0 at reset using the Verilog statement “Counter
<= 0;”. In contrast, in the Counter cell, the statement “Counter <= 16’d0;” is used. Yosys
correctly interprets the first statement according to the Verilog standard as a 32-bit integer of
which only the lower 16 bits are used. On the other hand, it interprets the second statement
as a 16-bit integer. Therefore these two values did not match in the extraction process. In
the “Improvement” step, the example application HDL design was modified to match the cell
design. A similar difficulty appeared during the development of another example application for
the decrement of the counter, using the different assignments “Counter <= Counter - 1;” and
“Counter <= Counter - 1’b1;”.

6http://www.ti.com/tool/msp430-gcc-opensource [2015-08-20]

http://www.ti.com/tool/msp430-gcc-opensource
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Another more complex case was solved for the example application “MAX6682Mean”. Here an
accumulator is implemented, which either loads a new value at the beginning of a measurement
series, adds the new value to the old value, or keeps the old value. This is implemented with
two dedicated signals “StoreValue” and “AddValue” generated by the FSM. Yosys creates a MUX
topology where one MUX selects between the old value coming from the register output and the
added value, and the second MUX decides between this result and the new value. The MUX
structure does not directly fit the “WordRegister” cell. Its “Enable” input is used as select signal
for an internal MUX which selects between the old value at the output and the new value at the
input.

Therefore, a reduced variant was implemented, which actually is an “extended variant”. It swaps
these two MUXes and generates the appropriate control signals. The introduced combinational
logic is integrated into the FSMs as discussed in Sec. 3.2.4 using the Yosys fsm_expand pass and
the separate MUX is extracted as a “WordMuxDual” cell.

During the refinement cycles, the schematic of the extracted design of the example application
can be visualized for the “Inspection” step. In Fig. 5.1 an exemplary schematic of an extracted
application is shown. Unfortunately the schematics of the example applications do not fit the page
or would require unreadable small fonts, therefore the post-silicon application “ExtADCSimple” is
shown. This is a simplified version of the example application “ExtADC” which does not per-
form post-processing but notifies the CPU after every measurement (cf. Sec. 5.6.3). To visualize
schematics, Yosys uses the Graphviz7 dot tool, which is a general graph visualization software.
Therefore the signals are drawn as curved lines instead of orthogonal lines. The program supports
interactive zoom and pan functions to display and inspect all regions of the schematic.

Additionally, after the extraction, the resource usage and the remaining cells, which were not
extracted, are listed. This can also be listed for the set of all example applications as previ-
ously shown in Lst. 5.1. The design flow can only be continued, if all example applications are
successfully extracted and represented with only cells of the cell library and generic $fsm cells.

Merge

To prepare the “Merge” step (cf. Sec. 4.7), two TR-FSM instances (cf. Sec. 3.7) were specified
with the implementation as shown in Tab. 5.1. The values were derived from the requirements
of the example applications and increased to improve the post-silicon flexibility. Afterwards, two
parallel trees for each connection type and oversizing rules were specified. An excerpt of these
rules was used as an example in Lst. 4.5 on p. 106.

Table 5.1: TR-FSM specification for the WSN SoC. The columns ni specify the number of transition rows
with a width of i, and

∑
ni is the total number of transition rows and therefore the maximum number of

transitions which can be implemented with the respective TR-FSM instance.

Inputs Outputs State Width n0 n1 n2 n3 n4
∑ni

TRFSM0 6 10 5 10 10 4 4 2 30
TRFSM1 10 15 6 10 20 6 6 4 46

With these specifications, the interconnect was generated and optimized with InterSynth. Listing
4.6 on p. 107 shows two sections of the Verilog HDL code of the resulting interconnect module.

7http://www.graphviz.org/ [2015-08-20]

http://www.graphviz.org/
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Additionally, InterSynth generates LATEX TikZ8 pictures of all interconnect trees. In Fig. 5.2
the two trees of the connection type “Byte”9 are shown together with the signals routed for the
“ADT7410” example application.

Further, for each example application, a wrapper module for the interconnect module with the ex-
act ports of the example application and setup scripts for simulation using the original testbench
and for logical equivalence checking were generated. The verification has to be performed individ-
ually for every example application. This should be automated in a future version of the design
flow. Verification showed correct results in all design iterations for all example applications.

Completion

In the Completion step (cf. Sec. 4.8) the final reconfigurable module and all further deliverables
for the IP core were generated. The reconfigurable module contains the interconnect module and
the infrastructure for configuration and parameterization (see Fig. 4.7 on p. 111). As mentioned in
Sec. 4.8.1, the combinational loops in the interconnect module have to be handled with constraints
for the static timing analysis (STA) during synthesis. Therefore a Tcl script was generated with
InterSynth which describes the interconnect. However, this approach did not provide the expected
results. Therefore a different approach was implemented (see Sec. 5.1.4).

Besides this, no other meta-information for the integration in the SoC was generated. Instead,
the information was manually collected and setup.

The firmware and the configuration data for each example application were generated. The
meta-information to develop new applications in the post-silicon design phase was stored using
the appropriate InterSynth commands in the “Merge” step above.

Additionally, wrapper modules for each example application and setup scripts were generated to
use the reconfigurable module instead of the original example applications for simulation and for
logical equivalence checking. To access internal signals of the reconfigurable module (especially
the parameters), special constructs are required (cf. Sec. 4.8.4). These allow to reuse the original
testbench for simulation and to directly compare the example application HDL design with the
completed reconfigurable module. Verification showed correct results for all example applications.

Besides the pure hardware-level verification, HW/SW co-simulation was used to verify the inter-
actions between the firmware and the example application implemented with the reconfigurable
module. In the completion step, the final driver with the complete set of configuration and pa-
rameterization data was generated. For the firmware development, two separate Makefile targets
were used to automatically compile and link the two slightly different binaries: one for the early
HW/SW co-simulation using the preliminary driver, and one for the final firmware using the
final driver. This was seamlessly used with the firmware and the testbench manually developed
together with the example application and showed correct results.

During the development of the reconfigurable module Mentor Graphics Questa Sim 10.0a was
used for simulation and Cadence Encounter Conformal Equivalence Checking (LEC) 08.10-s440
was used for logical equivalence checking.

8http://pgf.sourceforge.net/ [2015-08-20]
9The trees of the other connection types are much larger and therefore do not fit on a page.

http://pgf.sourceforge.net/
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Figure
5.2:

Both
interconnecttrees

forthe
connection

type
“Byte”

generated
with

InterSynth.
The

green
boxes

representthe
cells

and
the

blue
boxes

the
switches

ofthe
interconnect.

The
colored

lines
show

the
connections

routed
forthe

“ADT7410”
exam

ple
application.

Please
note

thatinputand
output

portsaswellasconstantvaluesare
handled

ascellsby
InterSynth

(e.g.,“CellInI2C_DataOut_i[0]”
and

“CONST_Byte[4]”).

CellInSPI_DataOut_i[0]PORT

CellInI2C_DataOut_i[0]PORT

CONST_Byte[4] Value_o

Byte2WordSel[0] H_i
L_i

Byte2Word[0] H_i
L_i

ByteRegister[0]
D_i

Q_o

ByteRegister[1]
D_i

Q_o

CONST_Byte[2] Value_o

CellOutI2C_DataIn_o[0]PORT

ByteMuxDual[1]
A_i
B_i

Y_o

ByteMuxDual[0]
A_i
B_i

Y_o

CellOutI2C_ReadCount_o[0]PORT

CONST_Byte[0] Value_o

CONST_Byte[1] Value_o

ByteMuxQuad[0]

A_i
B_i
C_i
D_i

Y_o

CONST_Byte[3] Value_o

CellOutSPI_DataIn_o[0]PORT

CONST_Byte[5] Value_o

CellOutI2C_DataIn_o[0]PORT

CellOutSPI_DataIn_o[0]PORT

CellOutI2C_ReadCount_o[0]PORT

CellInI2C_DataOut_i[0]PORT

CellInSPI_DataOut_i[0]PORT

ByteRegister[0]
D_i

Q_o

ByteRegister[1]
D_i

Q_o

ByteMuxQuad[0]

A_i
B_i
C_i
D_i

Y_o

CONST_Byte[4] Value_o

ByteMuxDual[1]
A_i
B_i

Y_o

Byte2Word[0] H_i
L_i

Byte2WordSel[0] H_i
L_i

CONST_Byte[0] Value_o

CONST_Byte[1] Value_o

CONST_Byte[2] Value_o

CONST_Byte[3] Value_o

ByteMuxDual[0]
A_i
B_i

Y_o

CONST_Byte[5] Value_o



5.1 Feasibility of the Design Methodology 127

Verification with Prototype Testing

Before the WSN SoC HDL design was entered in the ASIC design flow, it was verified using
real hardware. The main purpose was to test the example applications with actual external
sensors. For the simulation of the example applications, manually developed VHDL models of
the external sensors were used. While these models were carefully developed in accordance to
the datasheets, no independent verification was carried out. If these models were incorrect, the
simulation of the example applications controlling these models would lead to the false assumption
of correct example applications. To eliminate this potential fallacy, the WSN SoC HDL design
was implemented using an FPGA and connected to actual sensor chips (Fig. 5.3).

Figure 5.3: Verification of the WSN SoC HDL design with prototype testing (explanation in the text).

For these tests an additional wrapper module for the chip core module was generated during the
setup of the reconfigurable module to correctly implement bidirectional and open-drain pins (cf.
Sec. 4.3.3). This wrapper module was synthesized together with the complete WSN SoC HDL
design and the generated reconfigurable module and interconnect module using Xilinx Vivado
v2014.2. The program and data memories were modeled using Verilog arrays which were auto-
matically implemented as Block RAMs by the Vivado synthesis software. Note that the design in
the FPGA is identical to the produced WSN SoC except the pad cells and the memory macros.
The hardware tests were carried out using the ZedBoard10 (bottom right in Fig. 5.3) which con-
tains a Xilinx Zynq XC7Z7020-CLG484 FPGA (cf. Sec. 2.3.2). The CPUs in this chip were not
used for the tests. Note that this setup has two levels of configuration: Firstly the FPGA as
underlying hardware platform, and secondly, on top, the reconfigurable module. The FPGA con-

10http://zedboard.org/ [2015-08-20]

http://zedboard.org/
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figuration was not changed during the tests. Only the configuration of the reconfigurable module
was replaced for each example application.

To access the debug interface of the OpenMSP430 CPU and the UART from a PC, an adapter
was developed. It is based on the LPCXpresso Board for the NXP LPC11U14 microcontroller11

which is located on the bread board together with I2C pull-up resistors in Fig. 5.3. The debug
adapter firmware implements two USB communications device class (CDC) interfaces, one for
the UART and one for the I2C debug interface.

To test the example applications, first the appropriate sensor was connected to the ZedBoard.
These were soldered on sensor module PCBs (small square FR4 PCBs above the ZedBoard) and
inserted into Pmod adapter sockets (dark green PCBs).12 After enabling the power supply of
the ZedBoard, the FPGA configuration bitstream was applied using the on-board USB interface.
Then the adapter with the LPC11U14 MCU was used to access the debug interface of the syn-
thesized OpenMSP430 CPU to download the WSN SoC firmware into the program memory and
to start the execution.

The tests showed proper behavior of all example applications, except ExtADC, which was not tested
because no emulation model of the ADC was implemented. One problem with the MAX6682
sensor appeared, because it immediately stops any ongoing conversion if the value is queried via
SPI. This was resolved with a longer delay between the queries.

The FPGA test was conducted after the completion of the reconfigurable module. However, the
design methodology and the design flow also allow to perform prototype tests already during
the development of the example applications, similarly to the early HW/SW co-simulation. The
setup only differs from the above setup by the use of the example application HDL design together
with its wrapper module and the preliminary firmware driver.

5.1.4 Characterization of the WSN SoC

An industry standard ASIC design flow was used to implement the verified WSN SoC design as a
test chip. The first step was logic synthesis using Synopsys Design Compiler C-2009.06-SP5-2 to
generate a gate-level netlist. The chip top-level module with an instance of the chip core module
and the appropriate pad cells for all pins was generated using FlowProc during the generation of
the reconfigurable module (see Lst. 4.2 on p. 95).

As mentioned in Sec. 5.1.2, no flash memory was available, therefore the program memory as
well as the data memory were implemented with SRAM cells. The 8 kB program memory was
implemented with four 2k×8 area optimized memory cells, and the 256 bytes data memory was
implemented with two 128×8 speed optimized SRAM cells. Both cells were available from a
previous project. The 2 kB SRAM cells required customized interface logic for clock and data
synchronization.

The clock frequency was set to 10MHz, which is limited by the timing requirements of the size
optimized 2 kB SRAM cells and the according interface logic. To break the combinational loops of
the interconnect, all MUXes were grouped into a new sub-module named “Muxes” and all timing
arcs through that module were disabled. Additionally, maximum and minimum delay and input
and output delay constraints were applied to the signals.

11http://www.nxp.com/demoboard/OM13014.html [2015-08-20]
12The Pmod adapter sockets were created by Martin Schmölzer [Sch14].

http://www.nxp.com/demoboard/OM13014.html
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The OpenMSP430 includes manual clock gating cells to implement the low-power modes (cf.
Sec. 5.1.2). The configuration registers, which were implemented as shift registers, contain a
large number of D-FFs. Therefore in the configuration interface also clock gating cells were
instantiated manually. To improve the synthesis results, these high fan-out nets were set up as
ideal networks. Additionally, automatic insertion of clock gating was used to reduce the total
power consumption.

The reconfigurable module and the interconnect module generated with the design flow were fully
synthesizable without problems.

After the synthesis, the resulting gate-level netlist was compared for logical equivalence with the
original HDL design using Synopsys Formality C-2009.06-SP3.

The layout (place and route, P&R) was generated with Cadence Encounter v08.10-s273_1. The
WSN SoC floorplan is shown in the left image in Fig. 5.4. The free area in the bottom right corner
is reserved for a different project. To enable precise measurements of the power consumption of the
reconfigurable module, a separate power domain was introduced for it. The power was distributed
using rings around the core area, the memory cells, and around the reconfigurable module as well
as vertical stripes across the core area.

Then all standard cells were placed and the clock tree was synthesized. Additional buffer trees
were inserted for the reset signal and for the control signals to the configuration registers. Af-
terwards all signals were automatically routed, filler cells were inserted to fill the spaces between
logic gates, and the whole design was optimized and verified.

Figure 5.4: Floorplan (left) and final layout (right) of the WSN SoC. The layout contains fill structures on all
metal layers. The bottom right corner of the floorplan is reserved for a different project and inserted in the
layout. The pad cells are placed at the perimeter of the WSN SoC. Its core contains the digital logic. The
gray boxes in the floorplan are SRAM cells (two instances of 128×8 bits and four instances of 2k×8 bits).
The four 2 kB SRAMs are visible as yellow boxes in the layout because no fill structures on metal layer 4
are allowed while the two 128 byte SRAMs are covered with fill structures. The cyan polygon on the left
of the floorplan contains the digital logic of CPU and its peripherals. The red/gray polygon contains the
reconfigurable module. The cyan rectangle on the top right of the floorplan contains the peripherals of the
reconfigurable module.
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The final design was checked for logical equivalence to the original HDL design as well as to the
gate-level netlist from synthesis using Synopsys Formality. Synopsys PrimeTime C-2009.06-SP3
was used for static timing analysis (STA) to generate standard delay format (SDF) files with
signal delay information from parasitics information for the following post-P&R simulation with
accurate delays.

The simulation was carried out using Mentor Questa Sim 10.0a on an Intel Core i7-860 CPU with
2.80GHz, 64 bit architecture, 8GB memory, and a Debian GNU/Linux operating system. The
Questa Sim kernel only used a single core. The simulation performance in number of simulated
clock cycles per second wall-clock time strongly depends on the simulation setup. For the WSN
SoC RTL design without the reconfigurable module and its SPI and I2C peripherals this achieved
approximately 14.0 kCycles/s for the simulation of a blinking LED firmware program using a
delay loop.

The early HW/SW co-simulation of the “ADT7310” example application using its RTL code instead
of the reconfigurable module achieved 276.6 kCycles/s. The CPU was in the inactive LPM3 state.
Final HW/SW co-simulation using the generated RTL design of the reconfigurable module with
everything else being equal achieved 180.6 kCycles/s.

HW/SW co-simulation of the post-P&R netlist with accurate delays achieved approximately
3 kCycles/s for the pure firmware implementation of the sensor interface task with delays imple-
mented in LPM3, i.e., the WSN SoC is mostly inactive. This setup was also used to generate
the VCD and SAIF files for the power analysis (cf. Sec. 5.3.3). When this logging was active,
the simulation performance dropped to approximately 1 kCycles/s. The simulation of a 200ms
interval (cf. Sec. 5.3.2) at 10MHz operating frequency produced a 30.6GB VCD file, which was
compressed to 7.6GB. Shorter intervals and lower frequencies produced smaller VCD files.

For the implementation of the delays with permanently polling the timer overflow flag, the per-
formance further dropped to approximately 200 cycles/s. A 200ms interval at 1MHz produced
a 13.1GB VCD file (compressed 4.8GB). The simulation of the “ADT7310” example application
performed by the reconfigurable module achieved 0.9 kCycles/s, which is mostly a 32-bit counter
to implement the period delay (cf. Sec. 5.3.1). A 200ms interval at 10MHz produced a 34.0GB
VCD file (compressed 9.2GB). All VCD files were converted to SAIF files with approximately
30MB (compressed 0.8MB).

The layout and the netlist were imported to Cadence Virtuoso icfb 5.10.41.500.6.143. This sup-
plemented the design with the detailed layout of the standard cells and with reduced layouts of
the memory cells.13 The WSN SoC design was manually amended with the layout of the second
project and with logos at the bottom corners. Additionally, manufacturing process specific fill
structures for empty areas in the metal layers were generated with Mentor Calibre v2011.2_27.20.
The same program was used for sign-off verification (ERC: electrical rule check, DRC: design rule
check, LVS: layout vs. schematic). The final layout (see right image in Fig. 5.4) was sent to
manufacturing (tape-out).

For the design flow, the WSN SoC design including the reconfigurable module, and all scripts to
automate the mentioned tools, the following amount of source code was developed (lines of code):

• Tools, Scripts: Pascal: 45.700, Tcl: 18.900, Bash: 13.200, C: 2.500, Makefile: 900, C++:
500

13The foundry provides reduced layouts of the SRAM cells which include all metal layers but no information on
the doping. Before production, the reduced layouts are replaced with the full layouts by the foundry.
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• Design: VHDL: 33.600 (5.700 third party), Verilog: 18.700 (12.200 third party)
• Generated: VHDL: 21.900, Verilog: 135.300 (97.000 lines is the interconnect module), Tcl:

800, C: 2.500

The WSN SoC was produced end of 2014 at ams AG14 (see Fig. 5.5). The above described ASIC
design flow used the HitKit 3.80 process design kit. The chip was manufactured in the C35B4C3
350 nm silicon CMOS process with 4 metal layers (Al). The process supports 3.3V core and pad
supply. The standard cell library implements cells with a regular threshold voltage and a row
height of 13 µm. It uses pad cells with a size of 340.4 µm × 100 µm.

The WSN SoC size is 3,910 µm × 3,610 µm = 14.1mm2. The chip core area inside the pad cells
is 3,200 µm × 2,900 µm = 9.28mm2. More details on the chip area are discussed in Sec. 5.4. The
chip was placed in a CLCC "J" package with 84 pins.

Figure 5.5: WSN SoC die in the package with bond wires (metal lid removed, left image) and die photo
(right).

5.1.5 Characterization of the Reconfigurable Module

The reconfigurable module instantiates cells from the cell library as given by the resource utiliza-
tion report in Lst. 5.1 on p. 122 plus additional cells as specified by the oversizing rules in Lst. 4.5
on p. 106, as well as two TR-FSM instances as shown in Tab. 5.1. It holds four configuration
registers with a total of 3,889 bits. More details on the configuration are discussed in Sec. 5.5.

The reconfigurable module further contains seven parameterization registers written by the CPU,
of which two are used for reconfigurable signals with the usage type “param” and the other five
are connected to the interconnect module. It also contains three parameters read by the CPU, of
which one is used for a reconfigurable signal. All parameters are implemented as 16-bit signals
and used with the connection type “Word”. The report on the characteristics of the interconnect
generated with InterSynth is shown in Lst. 5.2.

14http://asic.ams.com/ [2015-08-20]

http://asic.ams.com/
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Listing 5.2: Characterization of the interconnect generated with InterSynth. Note that the high number of
celltypes and cells results from the fact that each input and output port (including parameters) is internally
represented as an individual celltype by InterSynth.

Number of conntypes: 3
Number of trees: 6
Number of celltypes: 80
Number of cells: 98
Number of netlists: 6
Number of unroutable netlists: 0
Number of nodes per netlist: 26 .. 44
Number of nets per netlist: 29 .. 64
Number of up-links per switch: 0 .. 10
Number of down-links per switch: 0 .. 6
Number of up-ports per switch: 0 .. 25
Number of down-ports per switch: 0 .. 18
Interconnect config bits per cell port: 1208 / 220 = 5.49
Interconnect mux2 per cell port: 2670 / 220 = 12.14

The leakage current of the reconfigurable module was measured as 15.4 nA and the active current
without configuration is 59.4 µA/MHz. More details on the power consumption are discussed in
Sec. 5.3 and appendix A. The chip area of the reconfigurable module is 4.2mm2 (see red/gray
polygon in the floorplan in Fig. 5.4). For more details see Sec. 5.4.

The routing of the layout revealed considerable congestion, i.e., more area for the routing tracks
was required (see Fig. 5.6). Especially the region of the interconnect was strongly congested
(cf. Fig. 5.18 on p. 154). This is a special problem for the interconnect of connection types
with wide signals, because only a low number of large configuration D-FF cells is connected
to a high number of small combinational cells and routing tracks. This problem could not be
relaxed by the reduction of the area utilization because the placement algorithm still arranged the
combinational cells in close vicinity while leaving only the corners of the reconfigurable module
with unused area. During the optimization of the design, the tool successfully routed all signals,
but had to use longer wires.

Two possibilities to relax this problem are suggested. Firstly, partial placement blockages which
specify the placement density at specific regions can be utilized. However, this either requires a-
priori knowledge where the interconnect and its individual trees will be placed, or the interconnect
must be constrained to a specified region. The second possibility to relax the congestion problem
is to utilize a method similar to scan chain reordering for the configuration shift registers. This
would ignore the serial connections between all configuration D-FFs and therefore only use the
connections to the combinational logic of the interconnect to guide the placement. Unfortunately,
scan chain reordering is a very specific feature tailored to the scan logic ports of the according
scan D-FFs. More work is required to investigate this approach.

5.1.6 Evaluation of the Hypothesis

In this section, hypothesis 1 as defined in Sec. 1.2 is evaluated. Therefore the design methodology
introduced in this thesis and its implementation as a design flow were used to implement a
reconfigurable module. This was integrated in a WSN SoC and manufactured as a test chip.
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Figure 5.6: Congestion map of the WSN SoC routing: Each line fragment represents a routing “Gcell” for
horizontal or vertical tracks. The colors denote the filling degree: blue: only one track is unused, green: all
tracks are used, yellow: one more track is required than available, red: two more tracks, magenta: three
more tracks, black: four or more tracks.

The manufactured WSN SoC was successfully put into operation. It was tested with the firmware
of the example applications, which also include the configuration data, and correctly executed the
defined tasks. Additionally, new applications, which are discussed in Sec. 5.6.3 and more detailed
in appendix A, were developed. These also correctly executed the defined tasks.

This test shows that the design methodology leads to a working reconfigurable CPU supplement
module which provides the full specified functionality plus additional flexibility to implement new
functionality. Therefore hypothesis 1 is provisionally accepted.

5.2 Manually Developed Reconfigurable Module

At an early stage of the development of the discussed design methodology, a reconfigurable module
was manually developed and manufactured as a test chip (cf. “Early Approach” in Sec. 3.1.5)
to examine the potential for the reduction of the power consumption compared to an MCU
[GDHG11, GGHG11]. This reconfigurable module is used in the evaluation of hypothesis 2 in the
next section and therefore briefly introduced here. Contrary to the previously discussed WSN
SoC, the early test chip only contains the reconfigurable module and its peripherals but without
a CPU. It was implemented for the same application class as the WSN SoC.
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The structure of the manually developed reconfigurable module is shown in Fig. 5.7. It is built
of three reconfigurable sections to separate control, data storage, and arithmetic, each with a
manually developed internal interconnect and with connections among them. The “Control”
section includes four TR-FSM instances. In the “Byte” section 16 8-bit registers with a flexible and
reconfigurable address decoder from control signals are implemented. The “Word” section uses
similar cells as used in the WSN SoC (cf. Sec. 5.1.3). These are connected with a comprehensive
interconnect, including feedback paths and dedicated conversions from and to the “Byte” section.

Additionally, six bus master peripherals for serial protocols are included. Similarly to the WSN
SoC, an interface to an external ADC as well as digital IOs are provided. The configuration
registers are accessed via a JTAG interface. This implements boundary scan for the pins of the
test chip as well as special JTAG data registers which actually are the configuration registers.
The reconfigurable module holds eleven configuration registers for the TR-FSMs, the different
interconnects, and the configuration of the input and output pins. For the parameterization
interface an UART interface is included.15

The reconfigurable module was developed manually in VHDL. It was verified with simulation
using Mentor Questa Sim 6.5d. The reconfigurable module was implemented as a test chip
in the Infineon Inway 5.2.2m4 design environment and produced using the automotive grade
Infineon C11N 130 nm CMOS process with six copper and one aluminum metal layers. The JTAG
interface was implemented with Mentor Graphics BSDArchitect v8.2006_3.10. The synthesis was
performed with Synopsys Design Compiler Version X-2005.09-SP4 to standard cells with a row
height of 4 µm and high threshold voltage for reduced leakage power. The layout was generated
using Magma Design Automation Inc. Talus version 1.0.84-linux24_x86_64.

The resulting test chip was produced in 2010 and is shown in Fig. 5.8. Its total area is 1,646.44 µm
×1,486.44 µm = 2.45mm2. The core area inside of the pad frame is 1,120 µm×960 µm = 1.08mm2.
The chip has 52 pins and has a core supply voltage of 0.8–1.5V and two separate pad supplies
with 2.5–3.3V.

Besides the manual development of the reconfigurable module, the configuration data is also
generated mostly manually. A set of Pascal classes were developed which represent the design.
To develop a design, a small program is written which instantiates these classes and executes
the according methods. For the TR-FSMs, the states and the transitions with input and output
patterns are specified. The signal connections between the TR-FSMs, the “Byte” registers, and
between the individual “Word” arithmetic cells are set up with another set of methods.

Finally, a set of “synthesis” methods is executed which map the design to reconfigurable module
resources and generate configuration data. These designs can only be verified at the end of their
development with simulation by downloading the generated configuration data to the VHDL code
of the reconfigurable module with JTAG signals.

To operate the test chip, an evaluation platform was developed which will be discussed in
Sec. 5.3.2. The configuration data is downloaded into the test chip with JTAG and the pa-
rameters are set via UART. Then the operation of the design is activated. More details on the
manually developed reconfigurable module were published in [GDHG11, GGHG11].

15The serial bus master peripherals and the UART module were developed by students supervised by the author
of this thesis. The I2C and SPI peripherals were also used in the WSN SoC.
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Figure 5.7: Structure of the manually developed reconfigurable module (reproduced from [GDHG11, GGHG11]
with permission, explanation in the text).
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Figure 5.8: Layout (left), die photograph (top right), and chip package (bottom right) of the manually
developed reconfigurable module. The yellow horizontal line in the die photograph are two wide wires to
connect the supply pads on the right across the chip core. These are connected to vertical wires (magenta
in the layout) which further distribute the power supply to the standard cell rows. No other features except
the bond pads and logos are visible in the die photograph due to fill structures.
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5.3 Power Consumption

In this section the power consumption of the WSN SoC and hypothesis 2 are evaluated. As
first step, in Sec. 5.3.1 a representative task is selected which is performed by both, a firmware
implementation and the reconfigurable module. Additionally a model of the energy consumption,
a method for its measurement, and a calculation to extract the requested values are derived.

In Sec. 5.3.2 the hardware platform for the generation of the stimuli and the measurements as well
as its automated operation are discussed. To identify the individual contributions to the total
energy consumption, power analysis was performed for the WSN SoC. This method is presented
in Sec. 5.3.3.

Finally, in Sec. 5.3.4 hypothesis 2 is evaluated for the WSN SoC as well as for two additional
sources which evaluated the manually developed reconfigurable module. Additional information
and details on the power consumption of the WSN SoC and of the reconfigurable module are
presented in appendix A.

5.3.1 Definition of the Energy Consumption

To evaluate hypothesis 2, an identical task is once performed by the reconfigurable module, and
once by the CPU, both in the manufactured WSN SoC. That task has to be located within
the application class of the reconfigurable module. Therefore, the task is defined as periodic
measurements conducted with the Analog Devices ADT7310 16-bit temperature sensor with SPI
interface [Ana09]. This sensor was used in an example application to develop the reconfigurable
module (cf. Sec. 5.1.3). It is selected, because it is a moderately complex sensor which requires
separate SPI transmissions to initiate a measurement and to query the resulting value. This
ensures that the evaluation of the hypothesis is not corrupted by oversimplification. Additionally,
the sensor itself has a low power consumption and is therefore also a typical use case in the
application class.

Hypothesis 2 is provisionally accepted, if the energy consumption of the reconfigurable module is
lower than the energy consumption of the CPU. The energy consumption while performing the
above defined task is the sum of multiple contributions (see Fig. 5.9). First the sensor is started
to initiate a measurement in one-shot mode. Then a delay of tS = 240 ms is required until the
measurement value is available. Afterwards, this value is queried, compared to the old value,
and, if it differs from the old value, the CPU is notified with an interrupt request. These sensor
measurements are performed periodically with a cycle time tC .

From these individual contributors, only the actual activity to perform the measurement is rele-
vant, because the leakage power and the power consumption of the clock tree only depend on the
implementation, the synthesis and place and route settings, and the semiconductor process tech-
nology. Additionally, the delay periods tS and tP are identical for the CPU and the reconfigurable
module cases. The according energy consumption is however implementation dependent. For ex-
ample, an ultra-low-power RTC can be used, or the time can be utilized to perform other tasks.
Therefore, the energy consumption used to evaluate the hypothesis is defined as the contributions
of the sensor start, sensor query, comparison, and CPU interrupt operations.

The individual operations transition rapidly which results in steep changes of the current con-
sumption. However, due to parasitic inductances and capacitances in the power supply wiring
and the power supply circuitry, only a smoothed mean current can be measured. From this the
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Figure 5.9: Measurement cycle and power consumption of the ADT7310 example application (explanation in
the text).
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total energy consumption of one measurement cycle is calculated as EC = U · I · tC . Additionally,
in a separate testcase, the current consumption of the fully set up but deactivated CPU and
reconfigurable module are measured and denoted as I0. This only includes the leakage current
and the current consumption of the clock tree. With I0, the energy consumption of the actual
activity is given by

EA = U · (I − I0) · tC .

To further separate EA into the individual contributions, multiple linear regression is used. A
model for the total energy EA as the linear combination of the individual contributions as regres-
sion coefficients bi is set up with the basic formula

EA = b0 +
n∑

i=1
bixi + ε.

Then multiple testcases are measured with a variation of the parameters xi . The individual
contributions bi are finally determined using least squares.

The total energy EA is the sum of the energy used for the evaluation of the hypothesis and the
energy consumed for the two delays. The energy consumption for the evaluation of the hypothesis
is constant for a given implementation and represented by b0. The energy consumptions of the
delays are proportional to the number of the clock cycles nS = f · tS and nP = f · tP and entered
in the equation with b1 · nS and b2 · nP .

The mathematical evaluation showed that a term to include the cycle duration tC improves the
model fitting, although the leakage current and the current consumption of the clock tree I0
were already subtracted to calculate EA. The reason are variations of the leakage current due to
uncontrolled temperature changes during the measurements. The constant power is entered in
the equation with b3 · tC .
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In the WSN SoC the delays are implemented as counter registers which are preset to a start
value and decrement until zero is reached. The energy consumption depends on the switching
activity, which also depends on the current counter value. It is highest for the least significant
bit, which toggles at every clock cycle, and decreases towards the most significant bit. A longer
delay with a larger start value involves more switching activity at the higher bits. Therefore using
additional quadratic terms b4 ·n2

S and b5 ·n2
P greatly improves the fitting of the model. A further

improvement of the model fitting is achieved with the terms b4 · nS · nC and b5 · nS · nC instead
of the exactly quadratic terms.

The final model for the energy is given in Eqn. 5.1.

EA = b0 + b1 · nS + b2 · nP + b3 · tC + b4 · nS · nC + b5 · nP · nC (5.1)

• b0 denotes the energy consumption used for evaluation of the hypothesis.
• b1 and b2 are the energy consumption per clock cycle of the two delays.
• b3 is the changed leakage power in comparison to the I0 measurement.
• b4 and b5 are correction coefficients to improve the model fitting.

To use the linear regression to separate the individual contributions of the energy consumption,
testcases with linear independent variations of nS , nP , and tC are required. This is achieved with
the measurement procedure developed by Georg Blemenschitz [Ble15], which is described in more
detail in the next section. The interval tM between the sensor start and the sensor query is fixed
at 2ms for each testcase. The testcases differ in the operating frequency f and the cycle time
tC . This results in a concurrent variation of nS and nP . Note that tS is lower than the required
240ms. This is however no problem, because the ADT7310 sensor is emulated with an FPGA
to supply a precise series of measurement values. One additional testcase for each frequency f is
required with the CPU or the reconfigurable module disabled to determine I0.

The evaluation of the measurement results also showed that the energy consumption values vary
in a wide range depending on the testcase by a factor of approximately 300. Therefore the larger
energy consumption values have a disproportional influence to the smaller energy consumption
values in the model fitting. To mitigate this problem, weighted least squares are used to determine
the regression coefficients

b =
(
XT Wy

)−1 (
XT WX

)
with b being the vector of the searched regression coefficients bi , X the matrix of the xi values
(nS , nP , tC , nS · nC , and nP · nC ) for all testcases, y the vector of the measured energies EA for
all testcases, and W the weighting matrix [KNNL05]. W is a diagonal matrix with Wii = 1

y2
i
,

i.e., the weights are inversely proportional to the square of the energy EA.

To perform the measurements an evaluation platform and a measurement procedure were devel-
oped. These are discussed in the next section.

5.3.2 Measurement Setup

For the characterization of the manually developed reconfigurable module, an evaluation platform
was developed (see Figs. 5.10 and 5.11) [GGHG11]. This is also used to characterize the WSN
SoC. It provides a socket for a test chip carrier module and two sockets for MCU carrier modules.
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These are connected to a Microsemi/Actel SmartFusion Evaluation Kit16 [Act10b] via a crossbar
switch for arbitrary connections.

The SmartFusion FPGA [Act10a] includes a hard-wired ARM Cortex-M3 MCU with a tight
coupling to the FPGA fabric as well as analog and mixed signal functionality. The FPGA is used
to create and observe timing accurate signals to stimulate and test the test chip or MCU, e.g.,
to simulate an external ADC or sensors via SPI or I2C. The SmartFusion evaluation kit required
modifications to access more digital signals as available through its mixed signal header. It is
connected to the PC via USB to remotely control its operation.

For tests with real sensors the evaluation platform additionally provides connectors to extend
the serial busses to separate sensor carrier modules which can hold the sensor modules shown
in Fig. 5.3 on p. 127. It further provides adjustable power supplies for the module sockets with
current measurement. However, these are not accurate, therefore external power supplies and
current measurement were utilized. This was set up for two different supply voltages, each with a
four-wire connection for separate supply and voltage sensing (see the red and black wires from the
coaxial cables at the left side in Fig. 5.11). The evaluation platform also allows to simultaneously
operate an MCU together with the manually developed reconfigurable module as a co-processor
to simulate a complete WSN node.

The evaluation platform was improved and extended by Georg Blemenschitz in his diploma thesis
[Ble15]. Originally a simple multiplexer for UART signals between the PC, the SmartFusion
FPGA, and the test chip or the MCUs was implemented. This was replaced by a flexible any-to-
any multiplexer using a CPLD (top right in Fig. 5.11 with colored wires). Furthermore, the FPGA
design and its driver in the ARM Cortex-M3 firmware were greatly improved and extended with
a clock generator, general purpose IOs, a generic SPI sensor simulator, and facilities to trigger
and to synchronize the current measurements.

The major extension is the development of a complete measurement setup including external
power supplies and voltage and current measurement. These are controlled and automated with
comprehensive Matlab programs via GPIB, Ethernet, RS232, and USB. This is accompanied by
a set of Matlab programs to analyze the measured values.

Georg Blemenschitz also developed a universal measurement procedure to characterize a test
chip or an MCU [Ble15]. First a test series is set up with approximately 100 to 200 testcases,
depending on the evaluated chip and its frequency and supply voltage operating range. Then,
for each testcase, a preliminary supply voltage and operating frequency is set and the parameters
(e.g., f , tC ) are communicated to the chip via UART. After the chip starts operation, the target
voltage and frequency are set, including a control loop to accommodate the voltage drop of the
wires and connectors. Then the mean current consumption is measured and stored to a datafile.

The activity of the chip is defined as the periodic execution of the sensor measurement task with
a cycle time tC . The current measurement is performed with an integration window of 200ms
(NPLC = 10) and repeated 50 times to calculate a mean value. Therefore the cycle time tC is
limited to values which are an integer fraction of the integration window, ranging from 5ms to
200ms. The SmartFusion FPGA simulates the sensor and provides a defined set of values. From
the individual sensor queries, it can determine the start of a sensor measurement cycle. This is
used to generate a pulse to synchronize the current measurement.

16http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion/smartfusion-

evaluation-kit [2015-08-20]

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion/smartfusion-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion/smartfusion-evaluation-kit


140 Chapter 5. Evaluation and Results

Figure 5.10: Evaluation platform overview. The test chip and MCUs are connected via a crossbar switch
to the MCU and FPGA evaluation device. This is controlled via a PC (reproduced from [GGHG11] with
permission).
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Figure 5.11: Evaluation platform with the WSN SoC carrier module and cables for the external supply and
measurement.
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For the characterization of the WSN SoC, the measurement setup was further extended by the
author of this thesis. A WSN SoC carrier module PCB was developed to fit into the test chip
module socket (see bottom left in Fig. 5.11). Besides the WSN SoC, it includes an NXP LPC11U34
MCU to download the firmware, for debugging, and for stand-alone testing. The MCU firmware
is the same as used in the LPCXpresso board for the verification with prototype testing (cf.
Sec. 5.1.3). The WSN SoC is connected to the LPC11U34 MCU and the SmartFusion FPGA
without level-shifters. Therefore its supply voltage can not deviate from 3.3V, otherwise current
paths through the ESD diodes of input pins would confound the current measurements or destroy
the chip.

In contrast to the MCUs characterized in [Ble15], the WSN SoC does not provide flash memory.
Therefore its firmware must be downloaded after each power cycle. This feature was added to
the Matlab programs which perform the measurements. The firmware used for the measurements
is different from the firmware developed for the example applications. Two different versions
were derived from the firmware developed by Georg Blemenschitz for the MSP430F1232 [Ble15].
One version performs the sensor measurement task as firmware and therefore was only slightly
modified due to the different UART and SPI peripherals. The second version performs the
sensor measurement using the reconfigurable module. This was extended with the driver for the
reconfigurable module and the appropriate setup and interrupt service routines.

Furthermore, the measurement setup and the Matlab programs were changed to use a single
Keithley 2602A SourceMeter instead of separate power supplies and multimeters for voltage and
current measurement (see Fig. 5.12).17 The SourceMeter provides two independent channels,
each with concurrent supply and measurement. This enabled the concurrent measurement of
both power domains of the WSN SoC. Previously two supply voltages were provided but only
one current could be measured.

The measurement setup used a time consuming control loop to counterbalance the voltage drop
of the wires and connectors. The author of this thesis extended the measurement setup and the
Matlab program to utilize four-wire connections for supply and measurement. With this feature
the SourceMeter automatically performs the control loop. This improvement reduced the duration
to measure a single testcase from 20.3 s to 12.4 s, of which 10 s are the actual current measurement
(50 times 200ms). Considering that previously each power domain had to be measured separately,
a speedup by a factor of 3.3 was achieved.

A third improvement was added which allows to continue the measurement of a test series, which
was previously interrupted. For the analysis of the measurements, new routines were implemented
according to the model derived in the previous section.

5.3.3 Power Analysis

To identify the individual contributions of the total power consumption inside the WSN SoC,
power analysis is used. Note that power analysis is used to divide the total power into the
contributions of the hierarchical modules of the WSN SoC, while the energy model and multiple
linear regression are used to separate the contributions of the individual tasks of the measurement
cycle. Firstly, from the SoC layout, the parasitics are extracted and saved as standard parasitic

17This functionality was already developed by Georg Blemenschitz but he had to change the measurement setup
to separate devices when the SourceMeter was stolen from the lab. The measurements of the WSN SoC were
performed at a different site where a SourceMeter was available.
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Figure 5.12: Measurement setup used to characterize the WSN SoC. The evaluation platform on the bottom
left is connected to the SourceMeter on the right with coax cables. Due to the pre-built measurement leads
attached to the SourceMeter, sub-optimal extensions were required.

exchange format (SPEF) file with Cadence Encounter. Then the delays of the gates and the wires
are calculated using Synopsys PrimeTime and saved as SDF file.

This file is used for post-P&R simulation to determine the switching activity of each individual
net, which is written to switching activity interchange format (SAIF) files. The simulation is
identical to the discussed HW/SW co-simulation but uses the post-P&R netlist and the above
mentioned firmware for the measurements. A special testbench was developed which emulates
the set up of the testcase parameters via UART, the synchronization of the measurements, and
the processing of a test series. Additional Tcl scripts for Questa Sim were designed to start and
stop the logging of the switching activity, analogous to the triggered measurement.

The SAIF file is loaded with Synopsys Design Compiler together with the post-P&R netlist and
the SPEF file. Then the power analysis is performed with the report_power command for different
operating conditions. Unfortunately no power models of the RAMs were available, therefore the
according power consumption is not included. The resulting power reports separately state the
cell and net power consumption as well as the static leakage power of the complete WSN SoC.
These are finally parsed with Matlab programs, which were used to generate the following tables
and diagrams.

To identify the power consumption of the individual components, hierarchical power reports are
generated. These break down the total power to all individual hierarchical modules of the design.
This also allows to determine the power consumption of the reconfigurable module in the separate
power domain. Unfortunately the hierarchical power reports only specify three significant digits,
which can not be increased. This leads to errors in the further analysis of the power consumption
with the Matlab programs. To solve this problem, the power analysis was extended to generate
a non-hierarchical power analysis report of only the reconfigurable module, which provides up to
seven significant digits.
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The comparison of the power analysis reports for different testcases revealed a bug in Questa
Sim 10.0a when generating SAIF files. For signals with short glitches the values of T0 and T1,
which specify the total time the signal has the values ’0’ or ’1’, respectively, were reported wrong.
This leads to erroneous assumptions of Design Compiler when propagating the switching activity
through the netlist and therefore inaccurate power reports. The bug was still present in the then
newest version 10.4 of Questa Sim. To solve this problem, the actual signal values were logged to
value change dump (VCD) files during the simulation with Questa Sim. Afterwards these were
converted to SAIF files with the Synopsys vcd2saif program and further used for power analysis.
However, this heavily increased the file size and simulation run-time.18

5.3.4 Evaluation of the Hypothesis

In this section hypothesis 2 is evaluated. It states that the implementation of a task using a
reconfigurable module requires less energy than the implementation using a CPU. To evaluate
this hypothesis, three different approaches are used. First, the manually developed reconfigurable
module is compared to commercial MCUs. Secondly, the same comparison is performed using an
improved measurement setup and a more complex task. Finally, the CPU and the reconfigurable
module of the WSN SoC are compared.

The first two comparisons use different chips which are manufactured with different semiconductor
processes, which confounds the comparisons. One possible approach to mitigate this problem is
to scale the results to a common semiconductor process. Unfortunately the required information
on the employed process is only scarcely available for the MCUs.19 Therefore the raw results
are used for the comparisons. The influence of the different semiconductor processes is assumed
smaller than the ratios of the power consumption so that the relations are not reversed and the
main statements are preserved.

The third comparison using the WSN SoC is not confounded by different semiconductor processes
and therefore provides the most valid result. The other two comparisons provide weaker evidence
but are included here, because the underlying work and the evaluations are building blocks of
this thesis.

Manually Developed Reconfigurable Module

The approach to reduce the energy consumption of a WSN node by the inclusion of a reconfig-
urable CPU supplement module which off-loads the CPU was first investigated for five MCUs
and an FPGA in [GHDG09]. The results were already discussed in Sec. 1.1.2, more detailed in
Sec. 2.1.1, and are shown in Tab. 2.1 on p. 21 and Fig. 2.1. The implementation of the sensor
interface task assumed a simple analog sensor connected to an ADC. The implementation using
an FPGA reduced the energy consumption by a factor of 90.5 compared to the lowest power
MCU.

18The VCD files grew to a total size of more than 50GB for only a few testpoints.
19Inquiries were sent to the according vendors, but only Atmel answered the question, TI stated that the infor-

mation is proprietary and cannot be shared, and Microchip did not respond. For documentation purposes: The
ATmega88PA is manufactured in a 250 nm process. The letter “A” at the end denotes the “newer” process. Chips
without “A” are manufactured in an older 350 nm process. http://electronics.stackexchange.com/q/169587/71799

[2015-08-20]

http://electronics.stackexchange.com/q/169587/71799
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Figure 5.13: Energy consumption of one sensor measurement performed by ultra-low-power MCUs, an FPGA
and the manually developed reconfigurable module [GGHG11] (reproduced with permission). Please note
the logarithmic scale of the vertical axis.
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This evaluation used a commercial high-performance FPGA as reconfigurable architecture which
is fine-grained and optimized for speed. In this thesis the inclusion of a mixed-grained and
application domain specific reconfigurable module is proposed. Therefore at an early stage of the
development of the design methodology, a reconfigurable module was manually developed (cf.
Sec. 5.2).

Its energy consumption was measured and compared to the MCU and FPGA implementations in
[GGHG11]. The results are shown in Fig. 5.13, which adds one bar with the power consumption of
the manually developed reconfigurable module to Fig. 2.1. The reconfigurable module consumes
0.116 nJ per sensor measurement, which is a reduction by a factor of 18 compared to the FPGA
implementation (2.09 nJ), a reduction by a factor of 1,631 compared to the lowest power MCU
MSP430F5418 (189.2 nJ), and a factor of 1,889 compared to the mean of the MCUs (219.1 nJ).

These results demonstrate a reduction of the energy consumption for the employment of a recon-
figurable CPU supplement module.

Improved Measurement Setup

The energy consumption of the MCUs used in Fig. 5.13 was determined by manually investigating
the number of clock cycles required to execute the sensor interface task. Therefore, for each MCU
architecture the C source code was compiled to assembler code. Then for each instruction the
according number of clock cycles was added up. The duration of the execution was calculated
by the total number of clock cycles multiplied by the clock period plus constant delays of the
ADC and the sensor. The total duration was multiplied by the supply voltage and the typical
operating current specified in the datasheets. For more details see Sec. 2.1.1 and [GHDG09].

To obtain measurements, the author of this thesis supervised the diploma thesis [Ble15] of Georg
Blemenschitz. Additionally the more complex sensor ADT7310 was selected, which was also
used for the evaluation of the WSN SoC. The MCUs and the manually developed reconfigurable
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Figure 5.14: Energy consumption of one sensor measurement performed by ultra-low-power MCUs and the
manually developed reconfigurable module [Ble15]. The values were determined for the ADT7310 sensor
interface task using the measurement setup discussed in Sec. 5.3.2. The MCUs are supplied with 1.8 V, the
reconfigurable module with 0.8 V. The MSP430F5418A and the PIC16LF727 operate at 10MHz, the other
MCUs at 4MHz, and the reconfigurable module at 100 kHz. Please note the logarithmic scale of the vertical
axis.
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module executed the measurement procedure described in Sec. 5.3.1. The measurements were
performed with the evaluation platform and the measurement setup discussed in Sec. 5.3.2.

For the analysis a different approach than discussed in Sec. 5.3.1 was used: For each MCU and
for the manually developed reconfigurable module the optimum operating point (frequency and
supply voltage) with the lowest energy consumption per measurement was determined. The
resulting values are given in Fig. 5.14.20 The reconfigurable module shows a reduction by a factor
of 1,512 compared to the lowest power MCU MSP430F1232 and by a factor of 1,834 compared
to the mean 128.2 µA of the MCUs.

These results also demonstrate a reduction of the energy consumption for the employment of a
reconfigurable CPU supplement module.

WSN SoC Developed with the Design Methodology

In the previous two comparisons, the test chip was manufactured in a different process technology
than the MCUs and the reconfigurable module was developed manually. To enable a direct com-
parison with identical process technology and to evaluate the outcome of the design methodology
discussed in this thesis, the WSN SoC is evaluated. The energy consumption to perform a sensor
measurement is compared for an implementation using the CPU and an implementation using
the reconfigurable module. Please refer to appendix A for a detailed discussion and selection of
different variants of the sensor interface task for both implementations.

20In the previous comparison the results were determined for MCU families, e.g., the PIC16LF72x, while in this
comparison actual MCU chips were used, e.g., the PCI16LF727. This is the reason for the slightly different labels
shown at the horizontal axes of Figs. 5.13 and 5.14.
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Both implementations were evaluated at an operating frequency of 1MHz, 4MHz, and 10MHz
with eight different cycle times tC of 5ms, 10ms, 20ms, 33.33ms, 40ms, 50ms, 100ms, and
200ms. The reconfigurable module implementation was additionally evaluated at the lower op-
erating frequencies 32.765 kHz21, 100 kHz, and 500 kHz. Therefore a total of 24 testcases for
the CPU implementation and 48 testcases for the reconfigurable module implementation were
analyzed.

The test chip samples of the WSN SoC were measured using the evaluation platform and measure-
ment setup discussed in Sec. 5.3.2. Additionally, power analysis was used to determine the power
consumption of all testcases. The resulting current consumption values were evaluated with the
energy model discussed in Sec. 5.3.1, see Eqn. 5.1 on p. 138. Additionally the measurements
performed by [Ble15] were evaluated with this model.

The resulting regression coefficients are shown in Tab. 5.2. For the WSN SoC 24 test chip samples
and for the manually designed reconfigurable module 12 test chip samples were measured. The
regression coefficients were calculated for each sample individually. In Tab. 5.2 the mean and
standard deviation of each coefficient are shown.

In the column “Residuals” the difference between the measured and the predicted (i.e., calculated)
energy EA of a total sensor measurement cycle is given. These show a very good fitting with only
0.036% to 2.659% error.

The large difference between the values determined with measurement and with power analysis
for the CPU implementation are caused by the missing energy model for the memories. The
accuracy of the power analysis is also limited for the reconfigurable module. More details are
discussed in appendix A.

The energy consumption per sensor measurement is represented by b0. These values are shown
in Fig. 5.15 and will be discussed below. The factor b1 and b2 describe the energy per clock cycle
for the sensor delay and for the period delay, respectively. Both values are effectively zero for
the CPU implementation of the WSN SoC because, due to a design issue, the delays had to be
implemented externally. An interrupt was used to notify the CPU to exit LPM3. More details
on this workaround are discussed in Sec. A.1.3. The reconfigurable module requires 33.91 pJ and
32.06 pJ per clock cycle for the counters. The values are similar because the 16-bit counter itself
requires less energy than the 32-bit counter, but due to the higher fan-out of the counter value
into the interconnect, it causes more switching activity and this difference is over-compensated.
For the MCUs partially large negative values were calculated for an unknown reason.

The factor b3 describes the leakage and active power (not energy) which is different from the
inactive testcase. This is also reflected by the high standard deviation (±144.8% and ±31.18%)
of the factor. The values of 14.65 nW and 8.16 nW determined by power analysis are non-zero
for an unknown reason. For the manually developed reconfigurable module no inactive testcases
were measured, therefore b3 has the high value 1,963.5 nW. The large values for the five MCUs
of 342.8 nW–943.3 nW occur because the compensation of the voltage drop of the supply leads
and connectors was performed by a less precise algorithm than the measurements performed with
the WSN SoC using the SourceMeter. The factors b4 and b5 are quadratic terms and cover the
dependency on the number of active bits used by the counter start values.

The SPI and I2C master peripherals for the reconfigurable module in the WSN SoC are supplied
from the CPU power domain. However, the respective energy consumption is eliminated by the

21The typical crystal frequency of 32.768 kHz for RTCs was generated from a 100MHz with a frequency divider
of 3,052, which results in the small deviation.
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Figure 5.15: Energy consumption for the actual sensor measurement (values from Tab. 5.2). Please note the
logarithmic scale on the vertical axis.
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subtraction of I0 and therefore does not confound the results of the CPU implementation. On
the other hand, the power consumption of the “Simple SPI” CPU peripheral is included in b0
because it is only active during the sensor start and sensor query operations (cf. Fig. 5.9 on p. 137).
However, this peripheral consumes only 0.5327 µA when performing 200 meas./s at 1MHz (cf.
Tab. A.6 on p. 188), i.e., 2.664 nA per meas./s, compared to 160.7 nA per meas./s (cf. Tab A.5
in p. 186) and is therefore neglected.

The differences of the values shown in Tab. 5.2 and Fig. 5.15 to the values of [Ble15] shown in
Fig. 5.14 are mainly caused by the differing supply voltage. Here 3.0V is used because some
MCUs do not support the higher operating frequencies at lower supply voltages. That would
reduce the number of testcases and datapoints available for the linear regression used in the
analysis. In [Ble15] 1.8V are used at the optimum operating point. As discussed in Sec. 2.1.1
the power consumption is proportional to V 2 which results in a difference by a factor of 2.778
which approximately relates the two sets of values. The PIC16LF727 requires four clock cycles
for each instruction, while the other MCUs execute one instruction every clock cycle. Due to its
lower current consumption at a given frequency, the difference to the other MCUs is less than
a factor of four. The reason why this did not appear in the results of [Ble15] is unknown. The
large difference of the results for the manually developed reconfigurable module are caused by
the different method for the analysis used in [Ble15].

As mentioned above, the factor b0 represents the energy consumption of the actual sensor mea-
surement which is used to compare the different implementations. The energy consumption for a
sensor measurement performed by the WSN SoC and implemented as firmware is 532.1 nJ while
the implementation with the reconfigurable module consumes 2.976 nJ. This means a reduction
by a factor of 178.8. Therefore the design methodology leads to a reconfigurable module which
consumes less energy than an implementation with a CPU. Thus, hypothesis 2 is provisionally
accepted.
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5.4 Chip Area

In this section, the chip area of the reconfigurable module is evaluated and compared to the area
of all example applications in parallel to evaluate the first sub-hypothesis of hypothesis 3. The
second sub-hypothesis is evaluated by a comparison with the chip area of (embedded) FPGAs.
Therefore, the chip area of the basic cells of different FPGA architectures was determined (see
Sec. 5.4.1).

Before the comparison, the chip area of the WSN SoC is characterized in Sec. 5.4.2. This is
followed by a characterization of the reconfigurable module in Sec. 5.4.3. Finally, in Sec. 5.4.4
both sub-hypotheses are evaluated.

5.4.1 FPGA Area

To compare the area of the reconfigurable module to the size of an (embedded) FPGA, the size of
the basic cells of FPGAs has to be determined. The architectures reviewed in Ch. 2 and additional
architectures are investigated. The results are summarized in Tab. 5.3 on p. 150. Additionally
the area is scaled to the same process node 350 nm as used for the WSN SoC. Therefore the area
is multiplied by the square of the ratio of 350 nm and the feature size L of the FPGA

A350 nm = AL ·
(350 nm

L

)2
.

This does not take the number of metal layers into account which are an important factor in
FPGA architectures. Therefore the comparison between the reconfigurable module and the FPGA
architectures favors the latter. From the scaled value the equivalent area of the smallest entity of
the FPGA is calculated.

[GZR99] reported an FPGA with 8×8 CLBs with four 3-input LUTs and three D-FFs manufac-
tured in a 250 nm process with 6 metal layers on an area of 2mm×2mm. This results in an area
of 62,500 µm2 per CLB. The Pleiades Maia process contains a 4×8 array of logic blocks with the
same architecture as [GZR99] with a total area of 2.76mm2 in a 250 nm process with 6 metal
layers [ZPG+00]. The area of a logic block is 86,250 µm2.

[AS06] developed an eFPGA with tiles with a size of 2,070 µm2 to 4,450 µm2 in a 90 nm CMOS
process. Unfortunately the number of LUTs per tile is not documented. An automatic FPGA
generator was presented by [KER05]. They designed an 8×8 array of CLBs with three 4-input
LUTs each. The array required a total area of 1,041 µm×1,225 µm = 1.275mm2 in a 180 nm
CMOS process with 6 metal layers. The area of a single CLB is therefore 19,925 µm2. [Kuo04]
reported the area of a CLB of the Xilinx Virtex-E FPGA with 35,462 µm2. However, it is not
clear whether this number was determined for the real device or an estimate by replicating the
circuit. Each CLB contains four 4-input LUTs and D-FFs.

[WAWS03] developed an 8×8 array of 3-input LUTs but without D-FFs in a 180 nm process to
implement the next-state logic of reconfigurable FSMs, which required 684,600 µm2. Therefore
each LUT has a size of 10,697 µm2.

In contrast to academic FPGAs, the size of commercial FPGAs is kept as a trade secret. Therefore
the area was estimated with indications gathered from different sources. For the Lattice/Silicon-
Blue iCE65 architecture, the size of a logic cell with a 4-input LUT and a D-FF was estimated as
1,750 µm2 in [GDHG11] from die photographs and coordinate specifications of the bonding pads.
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The Xilinx 7 Series FPGAs (Artix-7, Kintex-7, Virtex-7) use identical CLB designs manufactured
with a 28 nm high-κ metal gate CMOS process [Xil14a, Xil15b]. Each CLB holds eight 6-input
LUTs which each can be used as two 5-input LUTs with shared inputs, i.e., a total of 16 5-input
LUTs. Additionally, each CLB holds 16 D-FFs. Therefore the CLB size is divided by 16 to
calculate the size of the smallest entity.

The Artix-7 XC7A200T die size is 11.10×12.05mm [Xil14b, p. 220] which is divided in 2 clock
regions in the horizontal direction and five clock regions in the vertical direction according to
the Vivado v2014.2 placement editor. Each clock region has 50 rows with 42 CLBs plus other
cells like RAMs and DSP cells. Only 55.3% of the total width of a clock region is used by CLBs
and their associated switch boxes. This was estimated from the Vivado placement editor with
the assumption that the visualization is to scale. This results in an estimated size of a CLB as
73.1 µm×48.2 µm = 3,522 µm2.

The Xilinx Kintex-7 XC7K70T die size is 5.99mm×9.68mm and the XC7K160T die size is
8.54mm×12.05mm [Xil14b, p. 230f]. The Kintex-7 XC7K70T is built of four clock regions in
vertical direction and two asymmetric clock regions in horizontal direction. Each clock region
has 50 rows of CLBs with 31 CLBs across the total width of the chip. With the visualization
of the FPGA floorplan of Vivado, the width occupied with CLBs together with the associated
switchboxes was estimated as 41.4% across the total width of the chip. This results in an esti-
mated CLB size of 80.1 µm×48.4 µm = 3,876 µm2. The Kintex-7 XC7K160T is built of 2×5 clock
regions with 28×50 CLBs each. The CLBs occupy 54% of the width. This results in an estimated
CLB size of 82.3 µm×48.2 µm = 3,967 µm2.

Table 5.3: Size of FPGA basic cells at the FPGA chip, scaled to a 350 nm process, and divided to give the
smallest entity.

Architecture Cell Size Process Cell Size at 350 nm
[GZR99] 62,500 µm2/CLB 250 nm 30,625 µm2/3-LUT 40,833 µm2/3-LUT+D-FF
[ZPG+00] 86,250 µm2/CLB 250 nm 42,263 µm2/3-LUT 56,350 µm2/3-LUT+D-FF
[AS06] min. 2,070 µm2/Tile 90 nm 31,306 µm2/Tile
[AS06] max. 4,450 µm2/Tile 90 nm 67,299 µm2/Tile
[KER05] 19,925 µm2/CLB 180 nm 75,335 µm2/CLB 25,112 µm2/4-LUT
[WAWS03] 10,697 µm2/3-LUT 180 nm 40,443 µm2/3-LUT
Virtex-E 35,462 µm2/CLB 180 nm 33,519 µm2/4-LUT+D-FF
iCE65 1,750 µm2/D-FF 65 nm 50,740 µm2/4-LUT+D-FF
XC7A200T 3,522 µm2/CLB 28 nm 550,303 µm2/CLB 34,394 µm2/5-LUT+D-FF
XC7K70T 3,876 µm2/CLB 28 nm 605,658 µm2/CLB 37,854 µm2/5-LUT+D-FF
XC7K160T 3,967 µm2/CLB 28 nm 619,846 µm2/CLB 38,740 µm2/5-LUT+D-FF

The three estimates for the Xilinx 7 Series vary from 3,522 µm2–3,967 µm2 but should be identical.
Therefore the mean value 3,788 µm2 is used in the following comparisons. The individual cell sizes
of all reviewed architectures vary considerably due to the logic contents and the process technology
(see Tab. 5.3). The sizes of the smallest entity (LUT+D-FF) scaled to the common process node
350 nm only show a small variation.
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5.4.2 Characterization of the WSN SoC

As already briefly mentioned in Sec. 5.1.4, the WSN SoC has a size of 3,910 µm×3,610 µm =
14.1mm2. The core area inside the pad frame is 3,200 µm×2,900 µm = 9.28mm2. The actual
core logic area is slightly smaller (8.98mm2) due to the surrounding power ring.

The individual modules of the core are highlighted in Fig. 5.16, and the respective area and colors
are listed in Tab. 5.4. The top bar diagram in Fig. 5.17 shows the proportions. The largest units
are the reconfigurable module with 4.20mm2 and the 8 kB program memory with 2.17mm2.

The OpenMSP430 CPU itself requires 0.49mm2. The “GPIO”, “Timer”, “UART”, and “SPI”
modules are OpenMSP430 peripherals. “SPI Master” and “I2C Master” are exclusively used by
the reconfigurable module and therefore placed in the top right corner of the chip core.

The clock tree root also contains the reset tree root. Note that all modules also contain buffers of
the clock and the reset trees, therefore at the top level only the according tree roots are included.

To improve the routability of the logic design, the P&R tool keeps spaces between the standard
cells. These are filled with filler cells. Additionally, below the vertical power stripes no logic cells
are placed because the power wires block the logic routing wires. These stripes are also filled
with filler cells and are visible as thin vertical lines in Fig. 5.16. The non-reconfigurable part of
the WSN SoC contains a total of 0.49mm2 filler cells which corresponds to 12.51%.

In Tab. 5.4 the row “Core Logic” is the sum of the rows listed above, which is only 57.48% of the
total chip area due to the size of the pad frame. “Total Core” specifies the core area inside the
pad frame of 32×29 pads with 100 µm width each. The row “Pads” consists of 60 digital IO pads,
five GND and five VDD pads (three for the CPU power domain and two for the reconfigurable
module power domain, each), 36 pad filler cells and 3 corner cells (see the full layout in Fig. 5.4
on p. 129). The row “Chip” specifies the whole chip area and includes the process dependent
scribe border and the free area used by the project located at the bottom right, which is not
included in any of the above numbers.

5.4.3 Characterization of the Reconfigurable Module

The total area of the reconfigurable module is 4.20mm2. Its individual modules are highlighted
in Fig. 5.18 and the respective area values and colors are listed in Tab. 5.5 and shown in the
bottom bar diagram in Fig. 5.17.

The largest contributors are the interconnect with 0.69mm2 (16.52%) and its configuration reg-
isters with 0.47mm2 (11.24%). This also includes the configuration for the reconfigurable signals
with the usage type config. Further, the two TR-FSM instances with 0.39mm2 (9.27%) and
0.88mm2 (20.92%). The TR-FSM area values include the configuration registers. See Tab. 5.1
on p. 123 for the specification of the TR-FSM instances. All cells only require a small fraction of
the area with a total of 158,704.03 µm2 (3.78%).

The row “Param” specifies the parameter registers written by the CPU and used by the recon-
figurable module. The read multiplexer for the parameters in the opposite direction is contained
in the “Reconf. Mod. Local”. The interface for configuration and parameterization, which are
connected to the OpenMSP430 External Peripheral Interface, also only require a small area of
1.23%. The row “Reconf. Mod. Local” further contains the clock and reset tree root. The recon-
figurable module also contains 1.39mm2 of filler cells, which equals 33.10%. In other words, the
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Figure 5.16: WSN SoC core area with the individual units of the non-reconfigurable section highlighted. The
colors and the area are listed in Tab. 5.4.

Table 5.4: Division of the WSN SoC core area as shown in Fig. 5.16 plus the pad frame (cf. Fig. 5.4 on p. 129).

Module Color Area % Core % Chip
OpenMSP430 red 0.493mm2 6.08% 3.50%
Program Memory gray 2.167mm2 26.71% 15.35%
Data Memory gray 0.317mm2 3.90% 2.24%
GPIO violet 0.084mm2 1.03% 0.59%
Timer magenta 0.103mm2 1.27% 0.73%
UART orange 0.060mm2 0.74% 0.42%
SPI brown 0.039mm2 0.48% 0.27%
SPI Master green 0.061mm2 0.75% 0.43%
I2C Master blue 0.065mm2 0.80% 0.46%
Clock Tree Root 0.057mm2 0.70% 0.40%
Filler cyan 0.490mm2 6.03% 3.47%
Reconf. Mod. red/gray 4.200mm2 51.76% 29.75%
Core Logic 8.114mm2 100.00% 57.48%
Total Core 9.280mm2 65.75%
Pads 3.956mm2 28.03%
Chip 14.115mm2 100.00%
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Table 5.5: Division of the area of the reconfigurable module as shown in Fig. 5.18.

Module Color Area %
Interconnect black 693,608 µm2 16.52%
TRFSM0 green 389,135 µm2 9.27%
TRFSM1 blue 878,457 µm2 20.92%
WordMuxDual0 cyan 2,075 µm2 0.05%
WordMuxDual1 cyan 2,093 µm2 0.05%
Byte2WordSel cyan 8,973 µm2 0.21%
ByteMuxDual0 cyan 1,056 µm2 0.03%
ByteMuxDual1 cyan 1,056 µm2 0.03%
ByteMuxQuad cyan 2,257 µm2 0.05%
AddSubCmp0 cyan 7,790 µm2 0.19%
AddSubCmp1 cyan 7,207 µm2 0.17%
ByteRegister0 cyan 3,003 µm2 0.07%
ByteRegister1 cyan 2,948 µm2 0.07%
WordRegister0 cyan 5,806 µm2 0.14%
WordRegister1 cyan 5,806 µm2 0.14%
WordRegister2 cyan 5,624 µm2 0.13%
AbsDiff cyan 12,594 µm2 0.30%
Counter320 cyan 29,994 µm2 0.71%
Counter321 cyan 29,648 µm2 0.71%
Counter0 cyan 15,379 µm2 0.37%
Counter1 cyan 15,397 µm2 0.37%
Config magenta 472,188 µm2 11.24%
Param violet 34,507 µm2 0.82%
Config&Param Intf. orange 51,615 µm2 1.23%
Reconf. Mod. Local 131,338 µm2 3.13%
Filler gray 1,390,262 µm2 33.10%
Total 4,199,813 µm2 100.00%

area utilization is as low as 66.9%. However, these filler cells are poorly distributed which causes
the congestion problems discussed in Sec. 5.1.5.

5.4.4 Evaluation of the Hypothesis

Hypothesis 3 states two sub-hypotheses which compare the area of the reconfigurable module,
firstly to a non-reconfigurable but switchable implementation, and secondly to an implementation
using an embedded FPGA. To evaluate the first sub-hypothesis, a new function was added to
FlowProc which generates an HDL module with instances of the HDL modules of all example
applications and MUXes for the ports. This module was synthesized together with the HDL code
of the example applications for the same semiconductor process and standard cell library as the
WSN SoC.

The synthesis was performed using boundary optimization, i.e., the logic was optimized across
the module boundaries. Instead of the generation of a layout, the additional area required for
clock buffers, reset buffers, and net congestions was estimated by assuming 70% area utilization.
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Figure 5.17: Division of the WSN SoC area and of the reconfigurable module area into the individual modules.
The colors correspond to Figs. 5.16 and 5.18 and Tabs. 5.4 and 5.5.
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Figure 5.18: WSN SoC core area with the individual units of the reconfigurable module highlighted. The colors
and the area are listed in Tab. 5.5.
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The area reported after synthesis was scaled accordingly. The resulting area for each example
application, the MUXes, and the total area are given in the fourth column of Tab. 5.6.

The second column shows the area of the reconfigurable module. The third column shows the
area of each application synthesized individually. The differences to the area for each example
application in the switchable implementation is caused by the use of stronger and therefore larger
output drivers of the cells and by the boundary optimization.

The area of the switchable implementation is 0.68mm2. The reconfigurable module (4.20mm2)
requires 6.14 times of that area (see Fig. 5.19).

Figure 5.19: Area comparison of the reconfigurable module with the parallel implementation of all example
applications, all applications, and an implementation using two FPGA architectures (values from Tab. 5.6).
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However, the module is reconfigurable and can implement new applications in the post-silicon
design phase. The same procedure as described above was performed using also the new appli-
cations. The results are stated in the fifth column of Tab. 5.6. The switchable implementation
which provides all applications requires a total area of 1.95mm2. The reconfigurable module
requires 2.15 times of that area (see Fig. 5.19).

Both factors mean, that the design methodology leads to a reconfigurable module which chip
area is larger than the parallel implementation of all (example) applications. Therefore the first
sub-hypothesis is rejected.

The second sub-hypothesis compares the reconfigurable module to an implementation using an
(e)FPGA. Unfortunately no embedded FPGA architecture could be used for the comparison
because no synthesis and implementation tools were available. Instead, stand alone FPGA archi-
tectures are used.

To evaluate this hypothesis, each application was individually synthesized and implemented using
Xilinx Vivado v2014.2 with default settings for the Artix XC7A200TFBG484-3 and the two Kin-
tex XC7K70TFBG484-3 and XC7K160TFBG484-3 FPGAs. These produced identical resource
utilization results for all three devices, which are therefore summarized as “Xilinx 7 Series” in
Tab. 5.6. The table lists the number of LUT+D-FF combinations. For some of these combina-
tions only the D-FF or only the LUT is used. The area for an eFPGA which provides exactly
the required resources is calculated by multiplying the resource utilization with the mean of the
estimated area of the three architectures in Tab. 5.3.
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Additionally, each example application was synthesized and implemented using Lattice iCEcube2
2014-12 with default settings for the iCE40LP-4k-CM225 and iCE65L04-CB196 FPGAs.22 For
both architectures identical results were obtained. This was expected because the datasheets
show identical internal circuits [Sil10, Lat12b]. Therefore both architectures are summarized as
“iCE40/iCE65” in Tab. 5.6. The area of an eFPGA with exactly the required resources was
calculated with the estimate for the iCE65 device in Tab. 5.3. As the internal logic of the iCE65
and iCE40 architectures seems to be identical, it is assumed that the iCE40 architecture was
developed solely as a process shrink from 65 nm to 40 nm. Therefore, scaling the area to the
350 nm process leads to identical values.

For each FPGA architecture, the application with the highest resource utilization and therefore
area requirement was selected. The Xilinx 7 Series requires 18.13mm2 and the iCE40/iCE65
architecture requires 16.85mm2 to implement the largest application. This is 4.32 and 4.01 times
more area than the reconfigurable module, respectively (see Fig. 5.19).

These factors show, that the design methodology leads to a reconfigurable module which chip
area is smaller than an (e)FPGA which can implement its full functionality. Therefore the second
sub-hypothesis is provisionally accepted.

Note that perfect packing of LUTs and D-FFs into the higher order logic cells (i.e., CLBs and
PLBs) are assumed, as well as perfect place and route results to the available resources with-
out requiring additional logic cells for routing. A real (e)FPGA implementation should provide
additional logic cells and therefore require a larger area to accommodate these requirements.

5.5 Configuration Data

To evaluate hypothesis 4 (see Sec. 1.2), the number of configuration bits used in the reconfigurable
module is compared to the number of configuration bits required in different FPGA architectures.
Therefore each example and new application is synthesized to these FPGA architectures and the
resource utilization is multiplied by the number of configuration bits per logic entity. Here again
only commercial FPGA chips are considered, because no dedicated eFPGA architecture and
synthesis and implementation tools were available. In Sec. 5.5.1 the number of configuration bits
per logic entity of FPGA architectures is acquired. The hypothesis is evaluated in Sec. 5.5.2.

5.5.1 FPGA Architectures

The format of the configuration data and the meaning of the individual bits is kept as a trade
secret for commercial FPGAs. This prevents to acquire the exact number of configuration bits
for the individual logic entities. Therefore here the numbers are estimated. The results of this
section are summarized in Tab. 5.7.

The configuration data of Xilinx 7 Series FPGAs (and most other architectures) also contains
commands for the configuration infrastructure of the FPGA [Xil15a, p. 76], which are estimated as
1% overhead. To estimate the number of configuration bits per CLB and its associated switch box
and routing infrastructure, the configuration data dedicated for all other resources is subtracted
from the total size of the configuration data with the following coarsely estimated amounts:

22The iCE65 FPGA architecture is not directly accessible with the iCEcube2 GUI, but the synthesis was auto-
mated using Bash scripts which supplied the appropriate options and library file names to the tools.
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• Block RAM: memory size plus 1,000 bits
• DSP slice: 1,000 bits
• Clock Management Tile (CMT): 1,000 bits
• PCIe block: 1,000 bits
• Gigabit Transceiver (6.6Gb/s, GTP): 1,000 bits
• Gigabit Transceiver (12.5Gb/s, GTX): 1,000 bits
• User Configurable Analog Interface (XADC): 1,000 bits
• PS (Processing System): 100,000 bits (including AXI bus interface to the FPGA fabric)
• OCM (On-Chip Memory): memory size (no overhead because it is hard-wired in the pro-

cessing system)
• IO: 100 bits

The Xilinx Artix-7 XC7A200T FPGA contains 33,650 logic slices (=16,825 CLBs), 740 DSP
slices, 365 36 kBit Block RAMs, 10 CMTs, 1 PCIe block, 16 GTPs, 1 XADC, and 500 IOs [Xil15b,
p. 2]. Its total configuration data including overhead has a size of 77,845,216 bits [Xil15a, p. 14].
Therefore the configuration data for the 16,825 CLBs is estimated as 62,428,403 bits and 3,710
bits per CLB.

The Xilinx Kintex-7 XC7K70T FPGA contains 10,250 logic slices (=5,125 CLBs), 240 DSP slices,
135 36 kBit Block RAMs, 6 CMTs, 1 PCIe, 8 GTXs, 1 XADC, and 300 IOs [Xil15b, p. 3]. Its
total configuration data including overhead has a size of 24,090,592 bits [Xil15a, p. 14]. Therefore
the configuration data for the 5,125 CLBs is estimated as 18,452,046 bits and 3,600 bits per CLB.

The Xilinx Kintex-7 XC7K160T FPGA contains 25,350 logic slices (=12,675 CLBs), 600 DSP
slices, 325 36 kBit Block RAMs, 8 CMTs, 1 PCIe, 8 GTXs, 1 XADC, 400 IOs [Xil15b, p. 3]. Its
total configuration data including overhead has a size of 53,540,576 bits [Xil15a, p. 14]. Therefore
the configuration data for the 12,675 CLBs is estimated as 40,041,370 bits and 3,159 bits per
CLB.

The Xilinx Zynq-7 XC7Z020 SoC FPGA contains 53,200 6-input LUTs and 106,400 D-FFs (=6,650
CLBs), 220 DSP slices, 140 36 kBit Block RAMs, 1 PS with 256 kB OCM, and 200 IOs [Xil14d].
The configuration file generated with Vivado v2014.2 has a size of 4,045,649 bytes = 32,365,192
bits. Therefore the configuration data for the 6,650 CLBs is estimated as 24,303,428 bits and 3,655
bits per CLB. The estimated values for the four Xilinx 7 Series devices vary from 3,159–3,710
bits. Therefore in the following comparison, the mean value 3,531 is used.

The configuration of the Xilinx Virtex 4 FPGA architecture is organized in frames with a constant
length of 1,312 bits. The XC4VFX20 FPGA is configured with 5,488 configuration frames, i.e.,
with 7,200,256 bits configuration data [Xil09, p. 87f]. The configuration file generated with Xilinx
ISE 13.4 has a size of 905,418 Bytes = 7,243,344 bits. Hence, it contains an overhead of 0.595%.
The value of 1% assumed above for the Xilinx 7 Series is reasonable similar.

The XC4VFX20 FPGA contains 8,544 logic slices, 32 XtremeDSP slices, 68 18 kBit block RAMs,
1 PowerPC processor block, 2 Ethernet MACs, 8 RocketIO Blocks, and 320 IOs. Each CLB
is built of four slices, which each contain two 4-input LUTs and D-FFs [Xil07]. To estimate
the configuration data per CLB, again 1,000 bits per block and 100 bits per IO for the routing
connections are estimated. For the PowerPC processor block and its bus interface to the FPGA
fabric, 50,000 bits are estimated. This results in a total of 5,754,880 bits for the CLBs, and 2,694
bits per CLB. The resource utilization report generated with Xilinx ISE does not allow to use
the number of LUT+D-FF combinations, therefore a slice, which contains two of these, is used
as smallest entity.
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Project IceStorm23 aims to document the bitstream format of Lattice/SiliconBlue iCE40 FPGAs
[Lat12a]. Each logic tile, which is equivalent to a programmable logic block (PLB) and contains
eight 4-input LUT and D-FF pairs, is configured with 864 bits.24 Due to the similarity of the
iCE40 and iCE65 architectures, it is assumed that this value is also valid for iCE65.

Table 5.7: Size of the configuration for different FPGA architectures.

Architecture Configuration Size
XC7A200T 3,710 Bits /CLB = 232 Bits / 5-LUT+D-FF
XC7K70T 3,600 Bits /CLB = 225 Bits / 5-LUT+D-FF
XC7K160T 3,159 Bits /CLB = 197 Bits / 5-LUT+D-FF
XC7Z020 3,655 Bits /CLB = 228 Bits / 5-LUT+D-FF
XC4VFX20 2,694 Bits /CLB = 674 Bits / Slice
iCE40 864 Bits /PLB = 107 Bits / 4-LUT+D-FF

5.5.2 Evaluation of the Hypothesis

The configuration data of the reconfigurable module integrated in the WSN SoC is grouped in
four configuration registers associated with individual modules:

Reconfigurable Signals 9 bits
Interconnect Module 1,282 bits
TRFSM0 820 bits
TRFSM1 1,778 bits
Total 3,889 bits

The FPGA resource usage values acquired for the evaluation of hypothesis 3 in Sec. 5.4.4 are also
used to evaluate hypothesis 4. Additionally the applications were synthesized and implemented
for the Xilinx Virtex 4 XC4VFX20 FPGA using Xilinx ISE 13.4 to determine the resource usage.
Default settings were used, except that the module hierarchy was flattened to improve optimiza-
tion results. The total size of the configuration data was calculated with the estimated size of
configuration data per FPGA cell of Tab. 5.7. The results are depicted in Tab. 5.8 and Fig. 5.20.
For the Xilinx 7 Series architecture 54,071 bits of configuration data are estimated to implement
any of the example and new applications. This is 13.90 times more than the reconfigurable
module. The Xilinx Virtex 4 architecture requires 90,930 bits, which is 23.38 times more. The
Lattice iCE40 and iCE65 architectures require 35,441 bits, which is 9.11 times more. Note that
here again perfect packing of the netlist to the FPGA cells is assumed.
The design methodology leads to a reconfigurable module which requires less configuration data
than the evaluated FPGA architectures. Therefore hypothesis 4 is provisionally accepted.

5.6 Qualitative Measures

Additional to the evaluation of the four hypotheses, in this section the design methodology is
evaluated regarding qualitative properties. In Sec. 5.6.1 the means to ensure correct results are

23http://www.clifford.at/icestorm/ [2015-08-20]
24This value is exact and no estimate.

http://www.clifford.at/icestorm/
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Table 5.8: Configuration data size comparison.

Application Reconf. Mod. Xilinx 7 Series Virtex 4 iCE40/iCE65
Bits LUT+D-FFs Bits Slices Bits LUT+D-FFs Bits

ADT7310 211 46,567 115 77,459 276 29,463
MAX6682 145 32,001 101 68,029 205 21,884
MAX6682Mean 231 50,981 95 63,988 283 30,210
ADT7410 206 45,464 98 66,009 247 26,367
SlowADT7410 232 51,202 133 89,583 331 35,334
ExtADC 113 24,939 62 41,761 165 17,614
ADT7310P32S16 200 44,139 119 80,153 295 31,491
ADT7310P16S16 174 38,401 100 67,356 242 25,834
ADT7310P32S32 217 47,891 135 90,930 332 35,441
ADT7310P32LS16 245 54,071 116 78,133 290 30,958
ADT7310P32S16L 166 36,636 111 74,765 296 31,598
ADT7310P32LS16L 197 43,477 108 72,744 291 31,064
ADT7310P16LS16L 160 35,311 93 62,641 244 26,047
ADT7310P16LS32L 187 41,270 100 67,356 281 29,997
ADT7310P32LS32L 227 50,098 116 78,133 329 35,121
ExtADCSimple 69 15,228 34 22,901 66 7,046
blinki 76 16,773 38 25,595 79 8,433
ExtIntr 0 0 0 0 0 0
TMP421 146 32,222 60 40,413 180 19,215
Ex.Apps.: Max 232 51,202 133 89,583 331 35,334
All Apps.: Max 3,889 245 54,071 135 90,930 332 35,441
Factor 1.00 13.90 23.38 9.11

Figure 5.20: Configuration data size comparison (values from Tab. 5.8).
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discussed. The implications on productivity and design time as well as the learning curve for
the design methodology are reviewed in Sec. 5.6.2. Finally, in Sec. 5.6.3 the flexibility of the
generated reconfigurable module is investigated.

5.6.1 Correctness of Results

Correctness of the results is crucial in the development of semiconductors. This was expressed
as the requirement for the compliance of the reconfigurable module with its specification (cf.
Sec. 1.1.7). To ensure the correctness of the results, verification was taken into account from the
beginning of the development of the design methodology (cf. Sec. 3.5).

After the Completion step, the generated reconfigurable module is verified against each example
application using simulation and logical equivalence checking (cf. Sec. 4.8.4). Additionally the
reconfigurable module and the surrounding SoC are prototype tested using an FPGA.

Besides the verification of the final reconfigurable module, verification is also integrated at every
step of the development (cf. Fig. 3.11 on p. 77). This ensures that errors appear early in the
design process and can be corrected in short iterations. Note that automatically generated results
also have to be verified due to possible bugs or missing features in the employed tools and
because user supplied options can inadvertently produce undesired results. The firmware and
driver development are supported with HW/SW co-simulation. Early HW/SW co-simulation
directly instantiates the example application HDL code, while final HW/SW co-simulation uses
the generated reconfigurable module (cf. Sec. 4.4.5).

The use of a HDL for all logic designs (example applications, cells) also enables the utilization of
wide-spread and proven commercial and open-source tools for verification during the development.
The use of Tcl scripts to specify information and to perform the course of the design flow ensures
reproducible and documented results.

During the development of the reconfigurable module for the WSN SoC, each example application
was verified with a self-checking testbench using VHDL assert statements. Each firmware driver
was tested using early HW/SW co-simulation. Additionally, the synthesized design, after FSM
extraction, after TR-FSM insertion, and after extraction were verified using the original testbench
as well as logical equivalence checking. Finally, the generated reconfigurable module was verified
without errors against each example application using simulation, logical equivalence checking,
and HW/SW co-simulation.

This shows that the discussed design methodology and its implementation as a design flow lead
to a reconfigurable module that matches the example applications, and therefore lead to correct
results.

5.6.2 Productivity

To successfully compete in the ever evolving world, the time to market of a new product is crucial.
The productivity of the designer who utilizes the design methodology and its implementation as a
design flow is a special concern. Therefore the productivity is investigated in terms of the actual
design time in relation to the minimum possible design time. This is limited by the essentially
manual tasks, which can not be automated.
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In the discussed design methodology, there exist two categories of essentially manual tasks. The
first category encompasses all points where information in the most general sense is specified.
These are especially the development of the parent module, the specification of the reconfigurable
signals, the development of the example applications and of the cells, and the specification of
the oversizing rules. The second category comprises tasks which require the specific human
intelligence and experience. These include most of the tasks also assigned to the first category
and the “Inspection” and “Improvement” steps of the “Application Analysis”.

The design flow currently lacks the automation of one task: The designer has to manually create
the testbench for the HW/SW co-simulation of each example application, despite the necessary
information to automatically create a template with an instantiation of the parent module is
available in FlowProc. However, the design methodology discussed in this thesis does not require
this task to be manual. Therefore it will be automated in a future version of the design flow.

All other not essentially manual tasks of the design methodology are fully automated.

To further reduce the design time and the workload of the developer, the essentially manual tasks
are assisted by the design flow.

• During the application of the design flow, a large number of Tcl scripts are used. These are
prepared as templates which only require a small amount of customization.

• For the definition of the reconfigurable signals the unused signals of the parent module are
automatically determined.

• For the development of applications and cells, templates for the HDL design and for its
testbench are generated. The designer can focus on the actual implementation.

• For the parent module, e.g., the chip core, a wrapper module can be generated which
instantiates the pad cells.

• The design flow also includes numerous tests and checks for the work of the designer and
issues warnings or errors if problems are detected.

The essentially manual tasks mainly comprise tasks exclusively required for the development of
the reconfigurable module, e.g., the development of the example applications and of the cells.
However, some tasks are part of the development of the complete SoC. Therefore this work is
shared. These are the development of the parent module and of the firmware for the example
applications.

The total design time is the sum of the individual tasks plus the required design iterations.
The main iterative task of the design methodology is the “Application Analysis” (cf. Fig. 3.5 on
p. 65), which can greatly increase the total design time. The number of iterations only depends
on the experience of the designer and the complexity of the developed reconfigurable module.
The duration of each iteration is optimized by providing full automation of the “Synthesis”,
“FSM Extraction”, and “Cell Extraction” steps. The designer can devote his full attention to the
“Inspection” and “Improvement” steps with his experience.

A special type of iterations is caused by mistakes and problems of the design. These iterations
are kept as short as possible by the extensive facilities for verification (cf. the previous section),
including (example) applications, early HW/SW co-simulation of the firmware, cells, the inter-
connect module, and the reconfigurable module.
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Besides the reduction of manual work, an important factor in the application of the discussed
design methodology is the learning curve, i.e., whether it provides a user-friendly interface and
is easy to learn. This is supported by the use of common and wide-spread languages, especially
Verilog for HDL designs,25 and Tcl for scripts. These also enable the use of wide-spread tools,
e.g., for verification, and interoperability with in-house design flows or custom tools. Tcl scripts
additionally provide a user-friendly interface to specify information, to automate tasks, and to
use comments to explain procedures and to justify decisions.

The tools Yosys and InterSynth provide extensive documentation. The tools FlowCmd, FlowProc,
and TrfsmGen are documented with elaborate comments in the scripts and the source code,
command line help, and with this thesis.

This analysis indicates that the design methodology provides an environment which enables high
productivity.

5.6.3 Flexibility

The design methodology discussed in this thesis should lead to reconfigurable modules, which
provide additional flexibility in the post-silicon design phase to implement new applications which
were not anticipated before the production. To investigate the flexibility of the WSN SoC, new
applications were implemented and verified.

A simplified version of the “ExtADC” example application without post-processing of the sensor
measurements was designed (see Fig. 5.1 on p. 124 for its schematic). Since this is only a re-
duction in the required resources, a completely different application which blinks an LED with a
parameterizable frequency was developed. To overcome the limitation of missing single-bit D-FF
and inverter cells, it was implemented using a small FSM.

Additionally a new application within the application class of the reconfigurable module was
developed for the Texas Instruments TMP421 I2C temperature sensor. It is manufactured by a
different vendor as the sensor chips used by the example applications and it differs from these chips
because it provides two sensors, an internal and an external one. The application periodically
queries and stores both sensor values and subsequently notifies the CPU. Logical equivalence
checking was used to verify the correctness of the results.

As mentioned in Sec. 5.3.4 and discussed more detailed in Sec. A.1.3, a design bug of the WSN
SoC makes the use of the timer to wake-up from LPM3 impossible, because its clock signal is
turned off in that low-power mode. The external clock inputs INClk and TAClk for the timer are
synchronized with that clock signal, therefore these also can not be used. Additionally, all GPIO
inputs are synchronized with the that clock signal. Hence, the OpenMSP430 CPU also can not
be activated with an external interrupt.

In contrast, the interrupt signals from the reconfigurable module do not require synchronization
and therefore can be used to activate the CPU from LPM3. This bug was not discovered before
production, because no firmware implementation of the sensor interface task was developed at that
time and all tests with LPM3 were conducted using the reconfigurable module. The problem was

25This is only limited due to the missing support of VHDL by Yosys. All HDL designs which are not synthesized
with Yosys, e.g., testbenches, the generated reconfigurable module, and the surrounding SoC, can also be developed
using VHDL.
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solved by the implementation of a new application for the reconfigurable module which directly
connects an external input of the reconfigurable module to the internal interrupt signal.

Besides this bug in the WSN SoC core design, two design issues in the ADT7310 example applica-
tion were discovered during the measurements. For a detailed discussion of the findings please see
Sec. A.2. The ADT7310 example application uses counters which are not suitable for the period
delay tP and sensor delay tS required in the measurement procedure. Additionally, when the
counters were stopped, they were controlled to permanently preset the start value, which caused
unnecessary energy consumption. These bugs were not found because in the pre-silicon design
phase these internal signals were not inspected, and no power analysis was conducted. These
problems were solved by the implementation of new applications with the proper counter size (32
bits vs. 16 bits) and control signals generated by the FSMs. The stopped counters reduced the
current consumption from 76.39 µA (“P32 S16”) to 70.14 µA (“P32L S16L”), i.e., by 8.18% (see
Tab. A.9 and Fig. A.6 on p. 195) for 200 meas./s at 1MHz operating frequency.

This shows that the design methodology leads to a reconfigurable module with flexibility in the
post-silicon design phase. It allows to implement new applications within the defined application
class, to resolve design issues, and to some extent even applications with unrelated functionality.

However, the flexibility is limited. The 16-bit and the 32-bit counter cells connect the counter
value to the output “D_o” (cf. Lst. 4.6 on p. 107) and therefore to the interconnect. This causes
high switching activity and energy consumption in the interconnect, even if the signal is not routed
to another cell. This problem was not found in the pre-silicon design phase for the same reasons
the permanent presetting was missed, and because no low-power-audit for undesired switching
activity was performed. Due to the fixed design of the cells, a redesign of the reconfigurable
module is required to solve this problem.

5.7 Requirements

In Sec. 1.1.7 a set of requirements for the design methodology was defined. In this section the
design methodology is checked to comply to these requirements.

• The design methodology must be independent of the wide and narrow application domain.
This is best shown by the implementation of two or more reconfigurable modules for diverse
application domains. Unfortunately limited resources do not allow this approach. There-
fore an analysis of the design methodology and the design flow was performed to identify
assumptions or limitations for the application domain. This did not reveal any restrictions,
hence the requirement is fulfilled.

• The specification in terms of possibilities and accomplishable functionality is realized using
example applications (cf. Sec. 3.1.1).

• The inclusion of additional flexibility is enabled with increasing the size of sizable cells,
increasing the number of instances of cell types, and increasing the routing resources (cf.
Sec. 3.3.1).

• The unified multi-granular reconfigurable architecture is implemented using different con-
nection types. Additionally, cells can offer ports with a mixture of connection types.
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• The design methodology provides extensive facilities for verification, including means to
prove the compliance of the generated reconfigurable module to its specification. This was
discussed in detail in Sec. 5.6.1.

• The design methodology enables high productivity by the implementation of a fully auto-
mated design flow. Only essentially manual tasks have to be performed by the designer.
This was discussed in detail in Sec. 5.6.2.

• The design flow provides a user-friendly interface by using a Unix style command line
interface and Tcl as scripting language. This ensures fast turn-around times, documented
and reproducible results, and easy customization. It is easy to learn and only requires skills
readily available among HDL designers. This was discussed in detail in Sec. 5.6.2.

• The design flow provides short iteration times by the automation of all tasks not essentially
manual and by early verification of all manual and automated results. This was discussed
in detail in Sec. 5.6.2.

• The design methodology and the generated reconfigurable module are independent of the
semiconductor process. No assumptions on the production are included and the reconfig-
urable module is delivered as a soft IP core with fully synchronous plain HDL RTL designs.
Apart from the special handling of combinational loops in the interconnect, the synthesis
is straight forward. No special standard cells are required.

• The design flow is compatible to commercial ASIC tools as demonstrated with the im-
plementation and production of the WSN SoC. This process included the tools Mentor
Graphics Questa Sim, Cadence LEC, Synopsys Design Compiler, Synopsys Formality, Syn-
opsys PrimeTime, Cadence Encounter, Cadence Virtuoso, and Mentor Graphics Calibre.
Finally, a chip was produced using a commercial semiconductor process.
The directory structure used by the design flow is stand-alone and enables the development
of a complete SoC. Therefore it is in conflict with in-house ASIC design flows. However,
the HDL designs of the cells and the generated HDL design of the interconnect module and
the reconfigurable module can be easily copied or imported into an in-house design flow.
Additionally, FlowCmd and all Tcl scripts can be adapted to and integrated in an in-house
design flow.

5.8 TR-FSM

In this section the reconfigurable TR-FSM architecture (cf. Sec. 3.7) is evaluated. The results
published in [GDHG10], which are based on the LGSynth93 FSM benchmark suite [McE93], and
the results published in [GDHG11], which are based on the manually developed reconfigurable
module (cf. Sec. 5.2), are summarized. Additionally new results based on the WSN SoC are
introduced.

In Sec. 5.8.1 the power consumption is investigated. In Sec. 5.8.2 the chip area is compared
to implementations using FPGAs, SRAMs, and non-reconfigurable synthesized FSMs. The size
of the configuration data is compared to FPGA implementations in Sec. 5.8.3. In Sec. 5.8.4
the propagation delay time is compared to FPGA implementations and to non-reconfigurable
synthesized FSMs. Finally, in Sec. 5.8.5 the results are summarized.
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5.8.1 Power Consumption

For the evaluation of the power consumption of the TR-FSM architecture, the three different sili-
con implementations in the manually developed reconfigurable module (cf. Sec. 5.2) were supplied
with an alternating pattern of all-zeros and all-ones [GDHG11]. The three instances consumed
2.53 µA/MHz/V, 7.92 µA/MHz/V, and 15.3 µA/MHz/V, respectively. This was compared to the
active power consumption of the lowest-power MCU investigated in [GHDG09] (ATmega88PA)
with 100 µA/MHz/V. The results show that the TR-FSM silicon implementations requires 6.6–
39.5 times less power compared to the MCU, depending on their size. Note that the TR-FSM
directly implements a given function while an MCU requires a larger number of clock cycles and
thus causes a much larger difference in the total energy consumption.

5.8.2 Chip Area

In this section the chip area of the TR-FSM architecture is compared to reconfigurable FSM
implementations using FPGAs and SRAMs, and to non-reconfigurable directly synthesized FSMs.

Comparison to FPGA

The chip area of the three different silicon implementations of the TR-FSM in the manually de-
veloped reconfigurable module (cf. Sec. 5.2) were compared to the area of an equivalent FPGA
implementation [GDHG11]. From the LGSynth93 suite [McE93] those FSMs were selected which
could be implemented by the TR-FSMs in accordance to the number of inputs, outputs, states,
and transitions. For each TR-FSM the FSM which required the most FPGA resources as deter-
mined by [Buk08] was selected and used to estimate the chip area of an FPGA with the exact
amount of resources and implemented in the same semiconductor process. The chip area of the
three FPGA implementations was estimated as 98,000 µm2, 371,000 µm2, and 574,000 µm2, re-
spectively, for a 130 nm CMOS process. The three TR-FSM implementations required a chip area
of 29,900 µm2, 94,700 µm2, and 187,800 µm2, respectively. The results show that the total area of
each TR-FSM implementation is only 25.5–32.7% compared to an FPGA implementation of the
FSMs.

Comparison to SRAM

To compare the area requirement of the TR-FSM architecture with an alternative implementation
using SRAMs, the according sizes are calculated. TRFSM0 of the WSN SoC provides six inputs, a
state vector with five bits, and ten outputs (cf. Tab. 5.1 on p. 123). An equivalent SRAM therefore
requires eleven address inputs and a word width of 15 bits, i.e., a total of 15 · 211 = 30, 720 bits.
The TRFSM1 instance provides ten inputs, a state vector with six bits, and 15 outputs. The size
of an equivalent SRAM is therefore (15 + 6) · 210+6 = 21 · 216 = 1, 376, 256 bits. However, the
number of transitions which can be implemented with the TR-FSM instances is limited by the
number of the included transition rows (30 and 46, respectively). The SRAM implementations
can implement all possible transitions, i.e., 2nI+nS .

To determine the chip area of these SRAMs, a memory generator to create the actual cells is
required. Unfortunately this was not available, therefore the size is estimated by scaling the size
of the memory cells used as program and data memory. The program memory is a size optimized
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Table 5.9: Area comparison of the two TR-FSM instances with an alternative implementation using SRAMs.

2k×8: 0.536mm2 8k×8: 3.571mm2 128×8: 0.157mm2

Area 32.71 µm2/bit 54.49 µm2/bit 153.75 µm2/bit
TRFSM0 0.39mm2 1.00mm2 ×2.58 1.67mm2 ×4.30 4.72mm2 ×12.14
TRFSM1 0.88mm2 45.02mm2 ×51.25 74.99mm2 ×85.37 211.60mm2 ×240.88

2 kB SRAM with a size of 0.536mm2. The data memory is a speed optimized 128 byte SRAM
with a size of 0.157mm2. Additionally, an SRAM cell of a different project realized with the same
semiconductor process is used. It is a speed optimized 8 kB SRAM with a size of 3.571mm2.

From these sizes the area per bit is calculated and multiplied by the required number of bits to
replace the TR-FSMs. The result is shown in Tab. 5.9 and compared to the TR-FSM instances.
For the most area efficient SRAM architecture, the required size would be 2.58 times and 51.25
times to replace the two TR-FSM instances. This shows that the TR-FSM is an area-efficient
solution for the implementation of reconfigurable FSMs. Note that the TR-FSM area values do
not contain filler cells and other overhead, therefore the factors are slightly lower for an actual
chip implementation.

Comparison to Non-Reconfigurable Synthesized FSMs

For a comparison of the reconfigurable TR-FSM architecture to non-reconfigurable synthesized
FSMs, a number of random FSMs were generated.26 Two different sets of random FSMs were
generated with the parameters chosen to match and fully utilize the two TR-FSM instances
included in the WSN SoC (cf. Tab. 5.1 on p. 123). These FSMs were mapped to the TR-FSM
instances using TrfsmGen. This eliminated a large part of the generated FSMs which could not be
implemented with the TR-FSM instances, e.g., if too many wide TRs were required. At the end
a total of 115 FSMs to compare to the TRFSM0 instance, and 121 (different) FSMs to compare
to the TRFSM1 instance (see Tab. 5.10) were arranged.

A new function was added to TrfsmGen which exports an FSM as an ILang file for Yosys using its
$fsm generic FSM cell (cf. Sec. 4.1.2). Each of the 115 and 121 random FSMs were exported as
ILang files and then implemented as Verilog RTL FSM designs with the Yosys fsm_map command.
Finally each Verilog RTL FSM design was synthesized to the same semiconductor process as the
WSN SoC using Synopsys Design Compiler.

The mean and standard deviation of the chip area of the random FSMs are shown in the fourth
column of Tab. 5.10.27 The results show a large area penalty of the TR-FSM instances compared
to non-reconfigurable synthesized FSMs by a factor of 31.12 and 43.21. However, the TR-FSM is
reconfigurable and can implement a large number of different FSMs. Therefore in the sixth column
of Tab. 5.10 the sums of the area of all random FSMs are shown. Although these exemplary
random FSMs only cover a fraction of the total functionality of the TR-FSM instances, they
would require 3.58 and 2.80 more area than the TR-FSM instances.

26http://ddd.fit.cvut.cz/prj/Circ_Gen/index.php?page=kiss [2015-09-20]
27The area values are not scaled to a given area utilization as in Sec. 5.4.4, because the TR-FSM area values are

also given without overhead.

http://ddd.fit.cvut.cz/prj/Circ_Gen/index.php?page=kiss
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Table 5.10: Area comparison of the two TR-FSM instances in the WSN SoC with non-reconfigurable synthe-
sized FSMs.

Non-Reconfigurable FSMs
Area Num. Area Factor ∑ Area Factor

TRFSM0 0.39mm2 115 12,115±600 µm2 ÷31.12 1.39mm2 ×3.58
TRFSM1 0.88mm2 121 20,328±818 µm2 ÷43.21 2.46mm2 ×2.80

5.8.3 Configuration Data

To evaluate the size of the configuration data, 19 FSMs of the LGSynth93 suite were selected
and assigned to three groups depending on the similarity of their number of inputs, outputs,
states, and transitions [GDHG10]. Note that these three groups are different from the TR-
FSM implementations used previously for the comparison of the power consumption and chip
area. For each group the smallest possible TR-FSM and the size of its configuration data were
determined. In addition, for each of the 19 FSMs the required FPGA resources as determined
by [Buk08] were used to find the biggest FSM in each group. This was used to calculate the
size of the FPGA configuration data. The largest FSM in each group required 145,152, 102,816,
and 61,344 bits configuration data, respectively, for the FPGA implementation. The three TR-
FSM implementations required 17,058, 13,150, and 4,507 bits. The results show that the TR-FSM
requires only 7.3–12.7% configuration data compared to an FSM implementation using an FPGA,
i.e., 7.82–13.61 times less.

5.8.4 Propagation Delay

In this section the propagation delay time of the TR-FSM architecture is compared to reconfig-
urable FSM implementations using FPGAs and to non-reconfigurable directly synthesized FSMs.

Comparison to FPGA

To compare the signal propagation delay, static timing analysis was used for the three TR-FSM
silicon implementations of the manually developed reconfigurable module [GDHG11]. These
introduce a delay of 6.83 ns, 8.28 ns, and 9.87 ns, respectively. The values were compared to the
propagation delay of a 4-input LUT (as typically employed in FPGAs) manufactured in the same
semiconductor process using standard cells. A 4-input LUT introduces a delay of 2.94 ns–3.27 ns,
depending on the surrounding circuit. The results show that the total TR-FSM propagation
delay is 2.2–3.2 times the delay of a single 4-input LUT. While FPGAs use an optimized full-
custom design which is faster than the LUTs implemented using standard cells, the flexible routing
resources introduce considerable delay. The logical depth of a typical FSM input to output path
implemented in an FPGA uses two to three LUTs. Therefore the propagation delay time of a
TR-FSM is comparable or even faster than an FPGA implementation.

Comparison to Non-Reconfigurable Synthesized FSMs

The propagation delay time of the TR-FSM instances of the WSN SoC as well as of the random
non-reconfigurable synthesized FSMs as described in Sec. 5.8.2 are summarized in Tab. 5.11. The
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Table 5.11: Comparison of the propagation delay time of the two TR-FSM instances in the WSN SoC with
non-reconfigurable synthesized FSMs.

Non-Reconfigurable FSMs
Delay Num. Delay Factor

TRFSM0 10.59 ns 115 5.28±0.81 ns ÷2.00
TRFSM1 14.15 ns 121 6.75±0.67 ns ÷2.10

results show that the TR-FSM instances cause a longer signal delay than the directly synthesized
FSMs by a factor of 2.00 and 2.10.

5.8.5 Summary

In this section the reconfigurable TR-FSM architecture was evaluated. The power consumption
with maximum input switching activity is 6.6–39.5 times lower than an ultra-low-power MCU.
The chip area is only 25.5–32.7% compared to an FPGA implementation. In comparison to an
SRAM, the area is 2.58 and 51.25 times smaller for the two instances of the WSN SoC. However,
directly synthesized non-reconfigurable FSMs require 31.12 and 43.21 times less area than the
TR-FSM.

The configuration data of the TR-FSM architecture is 7.82–13.61 times smaller than the configura-
tion data of an FPGA with exactly the required resources. The signal delay of both architectures
is approximately the same. In comparison to directly synthesized non-reconfigurable FSMs, the
TR-FSM causes 2.00 and 2.10 times more delay.

5.9 Discussion

The introduced design methodology enabled the development of an exemplary WSN SoC with a
reconfigurable module for the application class of a sensor interface. Its functionality was verified
during the development using simulation and logical equivalence checking, using an FPGA, and
with a test chip. All verification procedures and tests with the manufactured WSN SoC showed
proper operation, which proves the feasibility of the design methodology.

In Sec. 5.3.4 three different comparisons between an implementation of the sensor interface task
using a microcontroller and using a reconfigurable module showed considerable energy reduction.
The most reliable comparison using the WSN SoC, which is not confounded by a difference of
the semiconductor process and supply voltage, shows a reduction of the energy consumption per
sensor measurement by a factor of nearly 180. This factor describes only the sensor measurement
itself. The factor of energy reduction is lower for the complete operation of the WSN node,
because of other activities.

The comparison of the chip area of the reconfigurable module to the parallel implementation of
all example applications leads to an increase by a factor of 6.1 (see Sec. 5.4.4). Additionally, the
reconfigurable module provides flexibility to implement new applications. In comparison to the
parallel implementation of all applications developed to date, the reconfigurable module requires
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2.2 times more chip area. However, even more new applications can be developed than this set
of applications, which would further reduce the factor.
A comparison of the reconfigurable module to (embedded) FPGAs shows that the latter require
4.0 to 4.3 times more chip area. These values assume perfect packing and P&R results, hence
a real eFPGA should provide additional resources and therefore require more area. Further,
the FPGA architectures used in the comparison are implemented as full custom designs. A soft
core eFPGA using standard cells, which is independent of the semiconductor process, would
require more area than a full custom eFPGA. [WAWS03] reported a factor of 6.4 (cf. Sec. 2.3.3).
Additionally, eFPGAs increase the power consumption and cause licensing cost.
The size of the configuration data of the reconfigurable module was compared to commercial
FPGA architectures in Sec. 5.5.2. These require 9.1 to 23.4 times more configuration data. Since
the configuration data has to be stored twice (in non-volatile memory and in the configuration
stores) and it has to be loaded at startup, the reduced configuration data results in reduced chip
area, reduced flash memory, and reduced loading time.
Verification is integrated in the design methodology from the start of the development with
module-testing of each example application, using simulation and logical equivalence checking for
the generated intermediate netlists and the reconfigurable module, up to the final post-P&R chip
netlist (cf. Sec. 5.6.1). Only two similar testbenches for each example application are required
throughout the design process. This shows that the design methodology provides a reliable
development process.
The productivity of the designer is supported by the automated design flow (cf. Sec. 5.6.2). The
designer is relieved from error-prone and tiring tasks. Manual work is only required where the
specific human intelligence and experience of the designer are required. Throughout the design
flow, known and wide-spread languages (Verilog, VHDL, Tcl) reduce the learning effort and enable
the use of in-house flows and proven tools.
The design methodology leads to a reconfigurable module which provides enough flexibility to
implement new applications (cf. Sec. 5.6.3). These can implement new functionality within the
application class. Additionally, design issues of the pre-silicon design phase can be resolved in
the post-silicon design phase without the need for the production of a new chip. The creative
use of the available resources even extends the range of the application class which was shown
with the LED blinking application. However, the flexibility is limited as was revealed by the high
switching activity caused by the counter cells used to implement delays.
For the development of the design methodology discussed in this thesis, several design decisions
were made. In Sec. 3.1.1 the use of example applications as format for the specification was
selected. If a specification in terms of the available resources or in abstract terms was selected,
the development of example applications could be removed. This would considerably reduce the
design time. On the other hand, the reconfigurable module could not be verified to provide the
necessary resources or to comply to the specification.
Additionally, DFGs were declined and existing HDLs were selected to represent the example
applications. If DFGs were selected, only data processing applications without the ability to
control peripherals were possible. If a custom HDL was used for the example applications, the
designers would need to learn this new language and additional tools for the processing and
verification were required.
In Sec. 3.1.5 the automatic identification of cells was declined in favor of manual development of
cells. If the cells were automatically identified as implemented by the SPS project [OMBKS01]
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(cf. Sec. 2.5.3), the “Application Analysis” could be fully automated. However, the individual
functionalities of each cell would be arbitrary sections of the example applications. This would
cause severe difficulty for the implementation of new applications and therefore degrade the
flexibility of the reconfigurable module.

In Sec. 3.2.1 the decision to utilize specific FSM cells was discussed and in Sec. 3.7 the TR-FSM
as a dedicated architecture for reconfigurable FSMs was introduced. If control-dominated tasks
were implemented using fine grained logic cells, a large number of small cells would be required.
This would have simplified the implementation of the blinking LED application, but on the other
hand would have caused a large increase in the number of ports and configuration data and there-
fore chip area of the interconnect. The evaluation of the TR-FSM architecture in Sec. 5.8 shows
considerable advantages in terms of power consumption, chip area, and the size of the configu-
ration data, compared to reconfigurable FSM implementations with FPGAs and SRAMs. The
propagation delay is comparable to an FPGA implementation. However, the chip area of a di-
rectly synthesized non-reconfigurable FSM is considerably smaller. The propagation delay differs
only by a factor of approximately 2. These advantages directly result from the implementation
of a dedicated architecture for FSMs, which avoids the large overhead that pertains to general
purpose logic and memory architectures. However, the chip area, delay, and power consumption
of a TR-FSM is inferior to an FSM directly synthesized to a non-reconfigurable gate netlist with
standard cells.

A comparison of the design methodology with commercial embedded FPGA architectures (cf.
Sec. 2.3.2) shows that these require less work in the pre-silicon design phase. The required
resources can be estimated from previous projects or from a single “example” application. The
vendor tools also support wide-spread languages and verification. The eFPGA is delivered as IP
core with extensive documentation and support for the integration in the SoC. However, eFPGAs
cause a higher power consumption, chip area, and require considerably more configuration data.
Using a hard IP core is not independent of the semiconductor process, while a soft IP core further
increases the chip area. Additionally, license fees increase the cost of the product.

The KressArray Family [Har01a, HKR94] (cf. Sec. 2.5.1) analyzes the results of experimental
mappings and automatically generates suggestions for the improvement of the reconfigurable
architecture. The design methodology discussed in this thesis does not provide suggestions but
only relies on the experience of the developer. However, for the optimization of the KressArray
Family architecture only a single example application is used. Example applications are developed
with a custom high-level language. The architecture only supports data processing and offers no
mixed granularity cells or control-dominated tasks.

The Berkeley Pleiades Project [AZW+02, AR96, Rab97, RAI+97, ASI+98] (cf. Sec. 2.5.2) also
provides suggestions to iteratively improve the architecture. These are derived by power estima-
tion of the implementation. The design methodology discussed in this thesis does not analyze an
intermediate solution and does not offer a metric for the optimization, e.g., power consumption
or chip area. The Berkeley Pleiades Project uses all example applications in parallel, but also
uses a custom high-level language and only supports data processing tasks.

The Totem RaPiD Project [Hau05, HCE+06] (cf. Sec. 2.5.4) requires RaPiD netlists which in-
stantiate the cells implemented in the reconfigurable architecture, i.e., there is no cell library
optimization. These RaPiD netlists are used to optimize a 1D cell arrangement and interconnect.
This architecture is also limited to data processing.
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Comparing the design methodology to the manual development of a reconfigurable module (cf.
Sec. 5.2) shows a significant improvement in the productivity. The extensive facilities for veri-
fication ensure a reliable methodology. The automatic selection of the cells for the interconnect
module and the automatic generation of the routing resources ensure sufficient flexibility without
expendable overhead.

The design methodology discussed in this thesis leads to functional reconfigurable modules which
comply to the specification. It is universally applicable for any application domain and not limited
to low-power or WSN applications. The mixed granularity reconfigurable architecture supports
data processing as well as control-dominated tasks. The resulting reconfigurable modules provide
a reduction of the power consumption compared to a firmware implementation, but require larger
chip area than the parallel implementation of all example applications. In comparison to eFPGAs,
the chip area and the size of the configuration data is reduced. The design methodology provides
extensive facilities for verification. The use of wide-spread languages and the automation of all
tasks which do not require the specific human experience lead to high productivity. The resulting
reconfigurable modules provide enough flexibility to implement new applications.
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Conclusion and Future Work

In this thesis a novel design methodology for reconfigurable CPU supplement modules was in-
troduced. The work is summarized in Sec. 6.1. In Sec. 6.2 the implications and possibilities
of the new design methodology are discussed. The challenges which occurred during the course
of this work are briefly discussed in Sec. 6.3. The present work includes limitations and open
issues, which are discussed in Sec. 6.4 with proposed solutions. Finally, in Sec. 6.5 future work
to continue the findings of this thesis as well as further research stimulated and enabled by this
work are given.

173
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6.1 Summary

In the field of wireless sensor networks (WSNs), low power consumption of a node is a crucial
design goal. In this thesis, the inclusion of CPU supplement modules as a technique for power
reduction is proposed. The modules autonomously handle tasks like sensor measurements or the
network protocol while the CPU stays in an inactive low-power mode for extended periods. These
CPU supplement modules must be reconfigurable to adapt to different environments. To further
reduce the power consumption, these reconfigurable modules must be tailored to the domain of
its application scenario and use mixed-grained reconfigurable logic.

Therefore, a design methodology for application domain specific mixed-grained reconfigurable
CPU supplement modules is required, which is the goal of this thesis. In Sec. 1.2 four hypotheses
were postulated:

• The design methodology must be feasible for the development of reconfigurable module.

• It must lead to reconfigurable modules, which reduce the energy consumption compared to
a CPU-only implementation.

• It must lead to reconfigurable modules which require less chip area than the parallel im-
plementation of all example applications and less area than fine-grained embedded FPGA
implementations.

• It must lead to reconfigurable modules which require less configuration data than embedded
FPGAs.

The design methodology was developed using a scientific method. It is based on prior research
and includes original contributions. The implementation as a design flow was used to develop an
exemplary reconfigurable module, which was investigated to evaluate the hypotheses.

Previous research on application domain specific reconfigurable logic (cf. Ch. 2) focused on data
processing tasks and did not include control-dominated tasks. No reconfigurable architecture for
mixed granularity and no design methodology for the combined tasks, which is independent of the
application domain and provides verification of the results, were available. Further, no suitable
reconfigurable architecture for FSMs to implement cycle accurate control-dominated tasks was
available.

To remedy these shortcomings, a novel design methodology was developed in this thesis (cf. Ch. 3).
The functionality of reconfigurable modules is specified with a set of example applications as logic
designs developed in an HDL like VHDL or Verilog. The reconfigurable module is delivered as
an IP core for the integration in an SoC. The reconfigurable architecture is defined as a pool
of cells which are connected via an interconnect. It supports mixed-grained logic by separate
interconnects for different connection types and allows cells with ports of different connection
types. The concept of parameterization was introduced to separate the operating data from the
configuration.

The development of a reconfigurable module is performed in two steps: “Application Analysis”
and “Merge”. The “Application Analysis” is an iterative process with automated and manual
tasks to develop and optimize the cell library. First the example applications are synthesized
to netlists and the FSMs and the cells are extracted. In the following manual “Inspection” and
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“Improvement” steps, the designer identifies residual logic, designs new cells, and improves the
example applications and the existing cells. Then the next iteration is started. To support the
extraction of cells from the example applications, the concepts of topological variants and reduced
variants of cells were introduced.

When all example applications can be implemented by only cells of the cell library, these netlists
are merged to the reconfigurable architecture. This determines the minimum number of instances
of cells required, maps all example applications to these cells, and optimizes an interconnect
with tree topology. To increase the flexibility of the reconfigurable module, additional cells and
increased routing resources in the interconnect can be included (“oversizing”).

The design methodology includes the verification of the initial example applications and of the
generated results at every intermediate step. For simulation, only a single testbench for all
steps is required. Additionally, logic equivalence checking is used. The design methodology also
provides HW/SW co-simulation to test the interactions between the reconfigurable module and
the firmware driver. The extensive features for verification ensure that the generated recon-
figurable module is correct. While the generation of the reconfigurable module is denoted the
pre-silicon design phase, the post-silicon design phase is analogous to the use of FPGAs. The
design methodology supports the implementation of new applications, which were not anticipated
in the pre-silicon design phase.

Additional to the design methodology, a reconfigurable architecture for FSMs termed TR-FSM
was introduced. It focuses on the transitions instead of the next state and output functions, and
provides a reduction of the chip area, configuration data, power consumption, and delay.

The design methodology was implemented as a design flow (cf. Ch. 4). This provides a user-
friendly environment for the development of reconfigurable modules. It integrates custom, open-
source, and commercial tools and is fully automated using Tcl scripts, which ensure documented
and reproducible results.

To evaluate the design methodology and its implementation as a design flow, an exemplary
WSN SoC with a reconfigurable module was developed, manufactured, and the hypotheses were
evaluated.

• The results show, that the design methodology is feasible for the development of reconfig-
urable modules.

• The energy consumption of the reconfigurable module to perform a sensor measurement is
nearly 180 times lower than an implementation using solely the CPU.

• Its chip area is 2.2 times larger than the parallel implementation of the example applications
and the new applications, but it requires 4.0–4.3 times less area than embedded FPGAs.

• The size of the configuration data is 9.1–22.4 times smaller than for embedded FPGAs.

The TR-FSM requires 2.6–51.3 times less chip area than an implementation using SRAM cells.
The design methodology facilitates high productivity of the developer by the automation of all
non-essentially manual tasks.
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6.2 Impact

The discussed design methodology enables the extension of WSN nodes with reconfigurable CPU
supplement modules to reduce the power consumption. The results achieved with the design
methodology are verified, i.e., the integration of reconfigurable modules is a secure design deci-
sion which does not cause additional risks. This is emphasized by the successful development,
production, and evaluation of the WSN SoC discussed in Sec. 5.1.

The design methodology is universal and independent of the application domain. Besides a
sensor interface, other tasks can be implemented which are neither related to WSNs nor to low
power consumption, e.g., network protocol handlers, CPU accelerators, digital filters, control
loops, computer vision preprocessors, etc. The development of a reconfigurable module and its
integration into a chip design is straightforward and uncomplex. Therefore it is also suitable
for small designs, wherever post-silicon flexibility is required, for example to avoid the use of an
embedded or external FPGA, or within an FPGA if no partial reconfiguration is available or
desired.

The use of free and open-source tools and common EDA tools does not require the purchase
of additional tools or license fees. Although the motivation for this work was the development
of CPU supplement modules, the reconfigurable modules can also be employed to supplement
other logic designs or as dedicated semiconductor product. Additionally, the TR-FSM is itself an
independent design unit which can be integrated if an efficient reconfigurable FSM implementation
is required.

6.3 Challenges

For the development of the design methodology and its implementation as a design flow, a wide
spectrum of different tasks had to be preformed:

• digital logic design using VHDL and Verilog
• verification using simulation and logical equivalence checking
• implementation of logic designs targeting FPGAs
• ASIC design flow and the according tools for synthesis, place and route, sign-off verification,

and tapeout
• programming using different languages (Pascal, C, C++, Tcl, Bash, Makefiles)
• integration of a scripting language in programs
• automatic generation of VHDL, Verilog, and Tcl
• development of MCU firmware, including communication via USB and the according host

software drivers
• PCB design and manufacturing for analog and digital circuits
• remote-control of measurement instruments via GPIB, Ethernet, RS232, and USB
• analysis of the results using Matlab
• automatic generation of LATEX code for TikZ, pgfplots, and PgfplotsTable
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6.4 Open Issues

The work provided with this thesis has certain limitations. However, these only have a small
impact on the usability and did not interfere with the development of the WSN SoC:

• The design flow does not implement all features of the design methodology (see Sec. 4.1.4).
These limitations are due to time constraints and are not principle problems.

• The design methodology, the design flow, and the evaluation do not consider the propa-
gation delay time of the reconfigurable module. This is most likely inferior to the parallel
implementation of all example applications, but possibly better than for embedded FPGAs
due to their extensive routing resources with a high number of switch boxes.

• The feasibility of the design methodology and the design flow were demonstrated with the
development of a reconfigurable module for a sensor interface (cf. Sec. 5.1). The findings
were generalized from this single application domain. Additionally, in Sec. 5.7 the require-
ment for independence of the application domain was discussed with an analysis of the
design methodology and the design flow. To increase the robustness of these statements,
reconfigurable modules for more and different application domains should be implemented.

• In Sec. 5.1.5 considerable routing congestions of the chip layout, especially for the inter-
connect, were reported. To relax the congestions, two solutions were suggested: placement
density constraints and configuration chain reordering. An additional improvement could
be achieved by the use of D-FFs without reset. This would considerably reduce the number
of buffers and wires of the reset tree. However, it must be ensured that at power-on the ran-
dom configuration values do not produce undesired results, e.g., by activating combinational
loops or a ring oscillator. All three improvements require further investigation.

6.5 Future Work

The discussed design methodology and the design flow were completed and validated. In this
section future research on extensions and improvements are proposed:

• In the “Application Analysis” step, the optimization of the example applications and the
cell library are performed by the developer. The goal is to map the digital logic of all ex-
ample applications to cells of the cell library. Future research should investigate means for
additional guidance for the optimization using the metrics power consumption, chip area,
and delay. This should analyze the current results, estimate its power consumption, chip
area, and delay, and provide suggestions for improvements. After the “Application Analy-
sis”, in the “Merge” step, the interconnect is optimized. Further research should investigate
the potential of these metrics for improvements of the generation of the interconnect as well
as for the mapping of applications.

• In the design methodology, the determination of the oversizing rules for the number of
instances and the routing resources of the interconnect module are based on the developers
experience. Further research should investigate methods to characterize the flexibility of
the resulting circuit using a quantitative approach, e.g., [Com03, CH04]. This should guide
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the developer to find a suitable trade-off between limitations in the post-silicon design phase
and surplus resources causing increased chip area.

• Another important area for future research is the reduction of the chip area of the intercon-
nect and of the TR-FSMs. This could be achieved by the design of tactical standard cells
as implemented by [ALS05]. For example, this could include the use of transmission gates
to implement the MUXes of the interconnect and of the TR-FSM input switching matrices
(ISMs). However, custom standard cells interfere with the requirement for independence
of the semiconductor process and require high effort to characterize. Therefore, research
should also take the trade-off between chip area and independence of the semiconductor
process into account.

• In Sec. 3.7 further improvements of the TR-FSM were suggested: sum-of-product elements
for input pattern gates (IPGs) with many inputs, several possibilities for a reduction of its
power consumption, and default next states as implemented by [RV13]. They also directly
include counters in the FSM to implement delays.

The design methodology enables and stimulates further research in different areas:

• Following the starting point of this work to reduce the power consumption of WSN nodes,
the inclusion of reconfigurable modules enables the design and optimization of new network
protocols. It can be based on frequent operations which were previously precluded due to
too high power consumption of the CPU.

• In contrast to firmware programs, reconfigurable modules enable fast responses and constant
latency to react on incoming information. With this feature, research on rapid and ultra-
low-power real-time control loops can be conducted.

• In the research area of software defined radio (SDR), the power consumption of the extensive
digital signal processing is a major concern. The implementation of digital filters and higher-
level protocol handling using reconfigurable modules can considerably reduce the power
consumption. Concurrently this approach conserves the flexibility to changes the filter
topology and its coefficients as well as the entire communication protocol. This approach
fills the gap between SDR and hard-wired radios and facilitates the implementation of
power-efficient and flexible multi-protocol transceivers. For example, this enables research
on WSNs, which can adapt to new communication standards with only a firmware upgrade.

• For the development of WSNs, simulation is used to optimize the node hardware, the
firmware, and the network protocols. For example, in this research area the PAWiS frame-
work [WGM07, GWMM08], SystemC-based frameworks [HDG+09], or PAWiS based frame-
works [MHMS13, Mös15] are used. To include simulation models of reconfigurable modules,
the functionality, timing, power consumption, as well as the interaction with the CPU have
to be considered. Additionally, a trade-off between detailed models for accurate results and
abstract models for higher simulation performance has to be investigated.
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Conclusion

In this thesis, a novel design methodology for application domain specific mixed-grained re-
configurable modules was introduced. It is the first methodology to universally support both,
control-dominated tasks and data processing, and to include verification of the final and all in-
termediate results. Additionally, the TR-FSM as a reconfigurable architecture for FSMs was
introduced. This work enables the save development and employment of reconfigurable modules.
For example, as a CPU supplement module for the reduction of power consumption of WSN
nodes, or generally to provide reconfigurable functionality in a semiconductor product. The de-
sign methodology facilitates research in new areas which were previously precluded because of
power consumption, chip area, or cost.





A

WSN SoC Power Consumption

In Sec. 5.3 the power consumption of the WSN SoC and the reconfigurable module were investi-
gated. In this appendix, more details are given. The power consumption of the MCU part of the
WSN SoC is investigated in Sec. A.1. This is followed by the analysis of the power consumption
of the reconfigurable module in Sec. A.2.
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A.1 Characterization of the WSN SoC

In this section the power consumption of the WSN SoC is characterized. As mentioned in
Sec. 5.1.4, two power domains were implemented. The CPU power domain includes the CPU, the
RAMs, the peripherals for the CPU and the reconfigurable module, the clock tree root, and the
pads. The reset tree root is also contained in the CPU power domain but only contributes to the
static leakage current. The reconfigurable module itself is placed in a separate power domain.

A total of 24 chip samples were measured with 101 testcases for the firmware implementation of
the sensor interface task and with 163 testcases for the implementation using the reconfigurable
module. For each testcase, the mean and standard deviation of the current consumption over the
24 chip samples was calculated. The current consumption of the CPU power domain shows a
variation of 9.50% for the testcase to measure the leakage current and below 0.733% for all active
testcases. The variation of the reconfigurable module current consumption is below 0.315% for
all testcases. Note that these standard deviation values describe the raw current measurements
while the standard deviation values given in Sec. 5.3.4 and in Tab. 5.2 on p. 147 describe the
variation of the calculated regression coefficients and residuals.

Due to the small variation, the values reported in Secs. A.1 and A.2 were only measured with
one chip sample labeled “01”. The values used for the evaluation of the hypothesis in Sec. 5.3.4
were determined for all 24 samples and the mean and standard deviation are reported. Note that
for the following characterization and for the evaluation of the hypothesis only a subset of the
testcases mentioned above were used.

Sec. A.1.1 presents the leakage current of the SoC and the reconfigurable module. The active
current of the MCU part of the SoC is discussed in Sec. A.1.2 for an infinite loop and for the
inactive low-power modes. Finally, the active current for the ADT7310 sensor interface task is
presented in Sec. A.1.3.

A.1.1 Leakage

Table A.1 shows the leakage current of the WSN SoC, separately for both power domains. The
measurement was performed at room temperature of approximately 25°C with a supply voltage of
3.3V. The power analysis was performed for the three operating conditions “BEST-MIL”, “TYPICAL”,
and “WORST-MIL” as defined by the standard cell library. The power analysis results in the following
sections are reported for the typical operating condition, if not otherwise noted. No clock signal
was supplied, all inputs of the WSN SoC were either tied to 0V or 3.3V, and all outputs were
unloaded. However, the large value of 1,204.3 nA measured for the CPU power domain points to
an unobserved path through the WSN SoC pins.

Table A.1: Leakage current of the WSN SoC for both power domains.

Measured Power Analysis
Best Typ. Worst

Power Domain 3.30V, 25°C 3.63V, -50°C 3.30V, 25°C 3.00V, 150°C
CPU 1,204.30 nA 13.88 nA 15.26 nA 16.79 nA
Reconf. Mod. 15.42 nA 6.70 nA 7.37 nA 8.11 nA
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A.1.2 Active Current

The active current is determined for three operating modes of the CPU

• performing an infinite loop,
• inactive in low-power mode 1 (LPM1, CPU and RAMs deactivated), and
• inactive in low-power mode 3 (LPM3, CPU, RAMs, CPU peripherals deactivated).

For more details on the low-power modes and the active units see Sec. 5.1.2. Additionally the
active current of the reconfigurable module without configuration is measured. The power con-
sumption for each operating mode was measured at 1MHz, 4MHz, and 10MHz. The current
was modeled with the equation I = I0 + If · f and separated using linear regression. The results
are summarized in Tab. A.2. Note that I0 deviates from the leakage current previously reported
because of uncontrolled temperature variation between the measurements and the statistical ap-
proach.

Table A.2: Active current of the WSN SoC for both power domains.

Measured
Infinite Loop: I = 630.5 nA + 744.5 µA/MHz ·f
LPM1: I = 3852.3 nA + 184.4 µA/MHz ·f
LPM3: I = 3530.3 nA + 107.8 µA/MHz ·f
Reconf. Mod.: I = -238.0 nA + 59.4 µA/MHz ·f

Power Analysis: Best Case
Infinite Loop: I = 13.9 nA + 456.6 µA/MHz ·f
LPM1: I = 13.9 nA + 193.6 µA/MHz ·f
LPM3: I = 13.9 nA + 121.1 µA/MHz ·f
Reconf. Mod.: I = 6.7 nA + 56.4 µA/MHz ·f

Power Analysis: Typical
Infinite Loop: I = 15.3 nA + 477.7 µA/MHz ·f
LPM1: I = 15.3 nA + 208.1 µA/MHz ·f
LPM3: I = 15.3 nA + 131.8 µA/MHz ·f
Reconf. Mod.: I = 7.4 nA + 58.6 µA/MHz ·f

Power Analysis: Worst Case
Infinite Loop: I = 16.8 nA + 531.9 µA/MHz ·f
LPM1: I = 16.8 nA + 231.7 µA/MHz ·f
LPM3: I = 16.8 nA + 150.1 µA/MHz ·f
Reconf. Mod.: I = 8.1 nA + 61.8 µA/MHz ·f

Power analysis was performed only for an operating frequency of 1MHz because the reported
active current linearly scales with the frequency and the leakage current is independent of the
frequency. In Tab. A.2 the reported active current as well as the separately reported leakage
current are shown. Note that no power models of the RAMs were available, therefore the difference
between measurement and power analysis represents the RAMs. However, for LPM1 and LPM3,
the measured current is lower than the result of the power analysis, hence the difference can not
be used. A detailed investigation of the power analysis reports revealed, that the error results
from too high power estimates of the clock tree. On the other hand, the power analysis result at
typical operating conditions of the active current of the reconfigurable module of 58.6 µA/MHz
only differs by 1.3% from the measured value of 59.4 µA/MHz.
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In Tab. A.3 the current consumption of the WSN SoC is compared to commercial MCUs. The
current consumption is 1.9 to 6.8 times higher for an infinite loop and 43 to 278 times higher in
LPM3. This difference is caused on one hand because only one clock domain and only coarse
manual clock gating are implemented. On the other hand, the WSN SoC is manufactured in a
standard CMOS process without special low-power features and it is operated at a slightly higher
voltage.

Table A.3: Current consumption of the WSN SoC compared to commercial MCUs at 1MHz using typical values
specified in the datasheets. The power modes of the MCUs were selected equivalent to the WSN SoC. The
active current of the MSP430FR6972 FRAM MCU depends on the cache hit rate. For the PIC16LF727 no
dedicated numbers for low-power states are provided in the datasheet. The active and LPM0 current of the
ATmega88PA are specified at 2.0 V and the LPM3 and LPM4 values are specified at 3.0 V in the datasheet.

MCU Inf. Loop LPM0 LPM3 Leakage/LPM4 VDD Reference
WSN SoC 745 µA 188 µA 111.3 µA 1.20 µA 3.3V Sec. A.1
MSP430F1232 300 µA 55 µA 1.6–2.3 µA 0.10–0.80 µA 3.0V [Tex04]
MSP430F2232 390 µA 90 µA 0.9–2.6 µA 0.10–1.50 µA 3.0V [Tex10a]
MSP430F5418A 290 µA 69 µA 1.7–2.6 µA 0.10 µA 3.0V [Tex10b]
MSP430FR6972 110-370 µA 80 µA 0.4 µA 0.02 µA 3.0V [Tex15b]
PIC16LF727 150 µA 3.0V [Mic09]
ATmega88PA 200 µA 30 µA 0.9 µA 0.10 µA 2.0V [Atm10]

In Tab. A.4 and Fig. A.1 the power analysis results for the individual contributions to the total
current consumption are shown. The columns “meas.” show the measured values and “P.A.” show
the power analysis results at typical operating condition. Both power domains were measured
separately and are shown in the rows “Total CPU (meas.)” and “Reconf. Mod.”. The leakage
currents were measured in separate testcases (see above) and are shown for reference, but not
included in the grand total at the bottom row. On the other hand, the values determined with
power analysis only specify the active current, therefore the leakage current is included in the
grand total of the respective columns. The row “Memories” only reflects the interface logic circuit
but not the actual memory cells. The reconfigurable module is not configured, therefore its power
consumption is solely caused by its clock tree.
The power analysis results show that the main contribution is caused by the clock tree. In both
low-power modes, the clock of the OpenMSP430 CPU is turned off. The small remaining power
consumption is caused by the clock gates for MClk and SMClk. The differing power consumption
of the peripherals and the reconfigurable module between infinite loop and LPM1 is caused by the
activity of the address and data bus, which is connected to the memories and the other modules.
The “SPI Master” and the “I2C Master” are peripherals only used by the reconfigurable module
and are therefore not affected by the bus activity.

A.1.3 Sensor Interface Task: ADT7310

Additional to the inactive case and the infinite loop, the WSN SoC is characterized while executing
the ADT7310 sensor interface task in firmware. In the following analysis an MCU without a
reconfigurable module is assumed. Therefore only the CPU power domain is considered. The
delay periods tS and tP are implemented with three different operating modes: polling, LPM1,
and LPM3. These three modes are similar to the previous section, but differ in the fact that
apart from the delay periods the CPU is executing productive firmware code.
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Table A.4: Active current consumption in µA of the WSN SoC in the three operating states of the CPU at
1MHz clock frequency (explanation in the text).

Infinite Loop LPM1 LPM3
meas. P.A. meas. P.A. meas. P.A.

Total CPU (meas.) 746 – 187.1 – 110 –
OpenMSP430 – 162.7 – 0.4149 – 0.2836
Memories – 30.39 – 0 – 0
GPIO – 10.78 – 9 – 0
Timer – 4.858 – 3.727 – 0
UART – 2.151 – 1.664 – 0
SPI – 5.227 – 4.963 – 0
SPI Master – 2.93 – 2.93 – 2.93
I2C Master – 8.288 – 8.288 – 8.288
Clock Tree – 250.4 – 177 – 120.5
Leakage CPU 1.204 0.01526 1.204 0.01526 1.17 0.01526
Reconf. Mod. 60.22 61.14 59.34 58.58 59.33 58.58
Leakage R. M. 0.01542 0.007372 0.01542 0.007372 0.01632 0.007372
Total 806.2 538.9 246.4 266.6 169.3 190.6

Figure A.1: Active current consumption of the WSN SoC in the three operating states of the CPU at 1MHz
clock frequency (values from Tab. A.4).
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The polling and LPM1 implementation of the delay periods use the integrated timer module.
The implementation of the delay periods using LPM3 revealed a design issue of the WSN SoC
which was not considered during the development. The clock signal of the timer module and the
GPIO module is turned off in LPM3 (cf. Sec. 5.1.2). Therefore neither the timer nor an external
interrupt via the GPIO pins can be used to wake-up the CPU from LPM3. However, the interrupt
request signals from the reconfigurable module to the CPU are not synchronized and can be used
to exit from LPM3. To solve this problem, a new post-silicon application was implemented
which connects an input of the reconfigurable module to the interrupt request signal. The input
was driven by an external pulse generated with the SmartFusion FPGA. The pulse generator
was implemented by Georg Blemenschitz, because the ATmega88PA also requires an external
interrupt to wake-up from its low-power mode [Ble15]. For more details on this workaround see
Sec. 5.6.3.

For the three different implementations of the delay periods, one common firmware source code
with C #ifdefs to realize the small differences was developed and compiled to separate binaries
with Makefile settings. These required 1,404, 1,388, and 1,878 bytes program memory and 6,
4, and 4 bytes of data memory, respectively. The firmware using the LPM3 includes 508 bytes
of configuration data and the driver for the reconfigurable module and excludes initialization
routines for the timer.

The power consumption is measured as well as determined with power analysis at an operating
frequency of 1MHz with a variation of the number of sensor measurements per second from 5 to
200, i.e., tC varied from 200ms to 5ms, respectively. The current consumption depending on the
number of measurements per second is shown in Tab. A.5. The second column shows the current
consumption when performing no measurements. In the third and fourth column the current
consumption at the least and the most activity are shown for comparison. Measurements and
power analysis were performed for intermediate values as well. For reference, in the fifth column
the current consumption of an infinite loop is shown. This is considerably higher than the sensor
interface task implemented with polling, because the tight infinite loop causes higher switching
activity than the polling loop.

Table A.5: Current consumption of the WSN SoC at 1MHz performing the ADT7310 sensor interface task
with three different implementations of the delay periods.

Mode 0 meas./s 5 meas./s 200 meas./s Inf. Loop Current
Measurement
Polling: 679.5 µA 667.9 µA 673.9 µA 746.0 µA I = 667.7 µA + 29.9 nA·meas./s
LPM1: 187.1 µA 187.8 µA 216.4 µA 746.0 µA I = 187.1 µA + 146.5 nA·meas./s
LPM3: 110.0 µA 110.7 µA 142.1 µA 745.5 µA I = 110.0 µA + 160.7 nA·meas./s
Power Analysis: Typical
Polling: 434.2 µA 426.4 µA 430.1 µA 477.7 µA I = 426.3 µA + 19.3 nA·meas./s
LPM1: 208.1 µA 210.9 µA 223.4 µA 477.7 µA I = 210.6 µA + 64.3 nA·meas./s
LPM3: 131.8 µA 133.9 µA 149.8 µA 477.7 µA I = 133.5 µA + 81.9 nA·meas./s

The values of the equation in the last column are calculated with linear regression as I = I0+Im ·fm
with fm as the number of sensor measurements per second. The base current I0 decreases with the
implementation of the delay periods from 667.7 µA to 110.0 µA, but the current proportion per
additional measurement Im increases from 29.9 nA per meas./s to 160.7 nA per meas./s due to the
overhead of the ISR and the statistical approach. The current consumption of an infinite loop for
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the implementation using LPM3 (745.5 µA) slightly differs from the other two implementations
(746.0 µA) due to measurement inaccuracies and uncontrolled temperature changes.

The current consumption of the implementation using polling is higher without performing mea-
surements (679.5 µA) than the current consumption at 200 measurements per second (673.9 µA).
The reason are different memory locations of the two polling loops which cause different switch-
ing activity of the address bus and therefore power consumption. The loop for tP is located at
a favorable address, while in the testpoint with 0 meas./s the firmware is executing the loop for
tS , which is located at 0xE2DE = 1110 0010 1101 1110 to 0xE2E5 = 1110 0010 1110 0101. Since
the memory is addressed word-wise, the five address signals A5 down to A1 require switching
activity.

If the loop is shifted (e.g., using NOP instructions) to 0xE2E2 = 1110 0010 1110 0010 to 0xE2E9 =
1110 0010 1110 1001, the switching activity is limited to the three address signals A3 down to A1.
The influence of the code address results in the difference of 11.8 µA between the base current
I0 calculated with the linear regression and the measured current, which is 1.77%. However,
the implementation using polling is not relevant for the evaluation of the hypothesis and only
evaluated here for the characterization of the WSN SoC. For both implementations using low-
power modes, the measured current consumption without sensor measurements is identical to the
base current calculated with the linear regression (187.1 µA and 110.0 µA) although this data was
not included in the regression.

The increased current consumption of the implementation using polling is also observed for the
power analysis results (434.2 µA vs. 426.3 µA), but the difference is only 7.9 µA. This points
to the fact, that the program memory cell is also affected by the memory location. For both
implementations using low-power modes, the current consumption without sensor measurements
and the result of the linear regression differ (208.1 µA vs. 210.6 µA and 131.8 µA vs. 133.5 µA).
No explanation could be found for this result. Note that here the power analysis results are also
higher than the measurement results, but show a lower slope.

Table A.6 and Fig. A.2 show the individual contributions of the total power consumption at
1MHz and 200 meas./s (tC = 5ms). The power analysis result for the implementation using
polling does not include the RAM power consumption and is therefore 36.15% lower than the
measurement. The power analysis results for both other implementations are slightly higher
than the measurements, despite the power consumption of the RAMs is not included. However,
they show that the clock tree is the major component of the power consumption which accounts
for 37.1% for the implementation using polling (referred to the measured current) and 82.1%
and 86.4% for the implementations using LPM1 and LPM3, respectively (referred to the power
analysis total current).

In contrast to Tab. A.4, the current consumption of the CPU peripherals is non-zero, because
of the address and data bus activity during the code execution. Additionally, the “SPI” module
is used for communication with the ADT7310 sensor. In the implementations using polling and
LPM1, the “Timer” module is utilized to implement the delay periods and therefore has a higher
power consumption than for LPM3, where an external interrupt is used to exit the low-power
mode (see above).

The two peripherals of the reconfigurable module “SPI Master” and “I2C Master” consume
2.93 µA and 8.288 µA, respectively, independent of the operation of the CPU. Both are included
in the CPU power domain and directly supplied with the main clock without gating. The values
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Table A.6: Active current consumption in µA of the CPU performing the ADT7310 sensor interface task at
1MHz clock frequency and 200 meas./s with three different implementations of the delay periods. The
reconfigurable module is not included. For more explanation see Tab. A.4.

Polling LPM1 LPM3
meas. P.A. meas. P.A. meas. P.A.

Total CPU (meas.) 673.6 – 216.4 – 142.1 –
OpenMSP430 – 118.2 – 6.939 – 6.546
Memories – 22.97 – 1.061 – 1.021
GPIO – 12.55 – 9.212 – 0.6712
Timer – 7.094 – 4.579 – 0.3133
UART – 2.696 – 1.713 – 0.1321
SPI – 5.809 – 5.256 – 0.5327
SPI Master – 2.93 – 2.93 – 2.93
I2C Master – 8.288 – 8.288 – 8.288
Clock Tree – 249.6 – 183.4 – 129.4
Leakage CPU 1.246 0.0153 1.204 0.0153 1.17 0.0153
Total 673.6 430.1 216.4 223.4 142.1 149.8
Difference – −36.15% – 3.257% – 5.456%

Figure A.2: Active current consumption of the CPU performing the ADT7310 sensor interface task at 1MHz
clock frequency and 200 meas./s with three different implementations of the delay periods (values from
Tab. A.6).
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are included here to enable the comparison of measurement and power analysis results. However,
these are not included in the final comparison of the energy consumption in Sec. 5.3.4.

To summarize, the CPU implementation of the ADT7310 sensor interface task consumes 142.1 µA
executing 200 meas./s at 1MHz with delay periods implemented using LPM3. In the next section,
the current consumption of the reconfigurable module is investigated.

A.2 Characterization of the Reconfigurable Module

In this section the power consumption of the reconfigurable module is characterized. Two design
issues were revealed in the utilized example application which were fixed with new applications.
These are discussed in Sec. A.2.1. In Sec. A.2.2 the total supply current is investigated. The
individual contributions to that current are discussed in Sec. A.2.3.

A.2.1 Example and New Applications

For the characterization of the reconfigurable module it is configured with the “ADT7310” example
application. This uses a 16-bit counter for the period delay tP and a 32-bit counter for the sensor
delay tS . During the development, the sensor delay tS was simulated as 240ms at 1MHz which
requires a 32-bit counter. The period delay tP was simulated very short and therefore a 16-bit
counter was implemented.

For the measurement setup (cf. Sec. 5.3.2) the sensor delay is fixed to 2ms and the period delay is
varied with the cycle time tC from 5ms to 200ms. The long period delays can not be reached with
the 16-bit counter, especially at higher frequencies. Therefore three new post-silicon applications
were developed to evaluate all combinations of 16-bit and 32-bit counters. The applications use
the suffix “Pxx Syy” to specify the width of the period and the sensor delay counters, e.g., “P16
S32” for the original example application with a 16-bit period delay counter and a 32-bit sensor
delay counter.1

The measurements revealed another bug in the example application which was also copied to the
three new applications. In the time periods when a counter was unused (cf. Fig. 5.9 on p. 137),
the FSM which controls the counter did not stop the counter but permanently activated the
Preset_i input (cf. Lst. 4.6 on p. 107). This caused increased current consumption. For further
investigation, three additional new applications were developed (derived from “P32 S16”) which
properly stopped one or both of the counters while not used.

The naming scheme was extended to append “L” to the stopped counter, e.g., “P32L S16” for
the application which properly stops the period delay counter and uses the unmodified control of
the sensor delay counter. Additionally, for all combinations of counter widths, new applications
with properly stopped counters were developed. This results in a total of ten slightly different
implementations of the ADT7310 sensor interface task: “P16 S32” (original), “P32 S16”, “P16
S16”, “P32 S32”, “P32L S16”, “P32 S16L”, “P32L S16L”, “P16L S16L”, “P16L S32L”, and “P32L
S32L”.

1Please note the reversed order: For a sensor measurement and in the energy model equation, the sensor delay
is first, but in the suffix the period delay is stated first.
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Additionally power analysis was used to investigate the current consumption of the counters in
these cases. In Fig. A.3 the current consumption of the “P32 S16” variant which permanently
presets the unused counters is shown for 5–200 meas./s. In Fig. A.4 “P32L S16L” with properly
stopped counters is shown (note the changed vertical scale). The current consumption of the
16-bit “Counter 1”, which implements the sensor delay of 2ms within each measurement cycle,
requires 4.78 µA for 5 meas./s to 5.65 µA for 200 meas./s with permanent preset, but in the “P32L
S16L” improved implementation 2.82 µA for 200 meas./s and approaches zero with 0.11 µA for 5
meas./s.

The period delay counter implemented with the 32-bit “Counter32 1” requires 9.91 µA for 5
meas./s to 9.16 µA for 200 meas./s in the “P32 S16” case and is reduced to 5.65 µA for 5 meas./s
to 4.78 µA for 200 meas./s for “P32L S16L”. The current decreases because it is used a smaller
fraction of the time. More details on these post-silicon applications are discussed in Sec. 5.6.3.

The firmware for the evaluation of the reconfigurable module was derived from the firmware
used in the previous section. The program logic which implements the sensor interface task was
removed and the driver for the reconfigurable module was integrated. After the activation of the
reconfigurable module, the firmware enters LPM3. The CPU is only activated with an interrupt,
if the measured value differs from the previous value for more than a certain threshold. In the
ISR, the new value is queried via the parameterization interface.

#ifdefs and Makefile settings were used to compile ten slightly different version for the varying
counter implementations. These required 2,214 to 2,250 bytes of program memory and 4 bytes
of data memory. The program memory includes 508 bytes of configuration data. This is slightly
more than the 3,889 bits (487 bytes) would require due to the use of full bytes to store the data for
each of the four configuration registers and meta-data like the length. The code size varies slightly
because the 32-bit counters use two parameters with a connection type “Word” and therefore a
different number of parameters has to be set for the initialization.

A.2.2 Total Supply Current

Measurements and power analysis for the ten different implementations of the ADT7310 sensor
interface task were conducted. The total supply current of the reconfigurable module for an
operating frequency of 1MHz is shown in Tab. A.7.

The current consumption of the disabled reconfigurable module with permanently presetting
counters in the second column of the first four rows show as expected that the 32-bit counters
require more current than the 16-bit counter. The difference between “P16 S32” and “P32 S16” is
caused by a differing fan-out into the interconnect of the mapped counter cells. In the next three
rows the improvement with stopped counters is gradually introduced which considerably reduces
the current consumption. In the last four rows the counters are properly stopped. This results
in a reduction by 9.1 µA for two 16-bit counters, 13.0 µA and 12.9 µA for mixed width counters,
and 16.8 µA for two 32-bit counters. The measured values 60.05 µA–61.76 µA vary slightly and
differ a small amount from the power analysis result 58.59 µA which is (nearly) identical to the
current consumption of the unconfigured reconfigurable module (see Tab. A.4).

The next two columns show that the active reconfigurable module requires more current than
when disabled. In the last column, a linear equation for the current consumption is given. The
base current I0 is higher than for the disabled reconfigurable module because this reflects the
running period delay counter and the presetting sensor delay counter in the according rows.
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Figure A.3: Composition of the current consumption of the reconfigurable module at 1MHz with the “P32 S16”
variant of the ADT7310 application for different frequencies of sensor measurements. Only the components
which vary are shown.
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Figure A.4: Composition of the current consumption of the reconfigurable module at 1MHz with the
“P32L S16L” variant of the ADT7310 application for different frequencies of sensor measurements. Only
the components which vary are shown. Note the different vertical scale compared to Fig. A.3.
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Table A.7: Current consumption of the reconfigurable module at 1MHz for the ADT7310 application with
different implementations of the delay periods. The “P16 Syy” implementations can only reach a maximum
period delay of 50ms which limits the minimum activity to 20 meas./s instead of 5 meas./s.

Mode Disabled 5/20 meas./s 200 meas./s Current
Measurement
P16 S32 72.96 µA 76.60 µA 76.09 µA I = 76.66 µA − 2.829 nA·meas./s
P32 S16 73.27 µA 74.82 µA 76.39 µA I = 74.78 µA + 8.108 nA·meas./s
P16 S16 70.58 µA 74.56 µA 74.09 µA I = 74.61 µA − 2.579 nA·meas./s
P32 S32 78.57 µA 78.57 µA 78.79 µA I = 78.57 µA + 1.134 nA·meas./s
P32L S16 65.14 µA 74.75 µA 73.17 µA I = 74.80 µA − 8.101 nA·meas./s
P32 S16L 68.40 µA 70.00 µA 73.38 µA I = 69.91 µA + 17.377 nA·meas./s
P32L S16L 60.27 µA 69.92 µA 70.14 µA I = 69.92 µA + 1.128 nA·meas./s
P16L S16L 61.45 µA 70.28 µA 69.51 µA I = 70.37 µA − 4.272 nA·meas./s
P16L S32L 60.05 µA 68.11 µA 69.04 µA I = 68.01 µA + 5.195 nA·meas./s
P32L S32L 61.76 µA 69.89 µA 70.18 µA I = 69.89 µA + 1.463 nA·meas./s
Power Analysis: Typical
P16 S32 71.00 µA 75.22 µA 74.71 µA I = 75.28 µA − 2.806 nA·meas./s
P32 S16 71.10 µA 73.45 µA 75.02 µA I = 73.42 µA + 8.050 nA·meas./s
P16 S16 67.40 µA 73.26 µA 72.84 µA I = 73.32 µA − 2.365 nA·meas./s
P32 S32 74.70 µA 77.02 µA 77.26 µA I = 77.02 µA + 1.229 nA·meas./s
P32L S16 63.31 µA 73.38 µA 72.02 µA I = 73.43 µA − 6.945 nA·meas./s
P32 S16L 66.37 µA 68.78 µA 72.17 µA I = 68.71 µA + 17.399 nA·meas./s
P32L S16L 58.59 µA 68.70 µA 69.18 µA I = 68.71 µA + 2.404 nA·meas./s
P16L S16L 58.59 µA 69.18 µA 68.61 µA I = 69.26 µA − 3.170 nA·meas./s
P16L S32L 58.59 µA 67.08 µA 68.12 µA I = 66.98 µA + 5.776 nA·meas./s
P32L S32L 58.59 µA 68.70 µA 69.19 µA I = 68.71 µA + 2.454 nA·meas./s

In some cases the slope Im is negative, i.e., more measurements per second reduce the current
consumption. The reason is that each counter has an output which provides its current value
to the interconnect. The 16-bit counters have a larger fan-out to the interconnect and therefore
cause higher switching activity. Complex interaction between the number of toggling bits, the
start value, and the fan-out of the counter result in these unexpected values.

A.2.3 Supply Current Contributions

To identify the individual contributions of the total power consumption, power analysis was per-
formed for an operating frequency of 1MHz and 200 meas./s. In Tab. A.8 and Fig. A.5 the current
consumption of the first four cases with permanently presetting counters of different width are
split into the contributions of the interconnect, the cells, the infrastructure for parameterization
(“Param”) and configuration (“Config”), the clock tree and the SPI master. Note that the SPI
master is shown for reference but not included in the sum because it is supplied from the CPU
power domain.

In Tab. A.9 and Fig. A.6 the current consumption with gradually stopped counters is shown.
“P32 S16” is repeated for reference. These show that the total reduction is mainly achieved by
“Counter32 1” and “Counter 1”. The current consumption of the interconnect as well as the clock
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tree is slightly reduced, while the two TR-FSM instances show a minimal increase due to the
improved FSMs.

In Tab. A.10 and Fig. A.7 the current consumption with different counter widths for properly
stopped counters is shown. “P32L S16L” is repeated for reference. The two logical counter
instances are mapped to the four physical counter instances as shown in Tab. A.11. The period
delay counter requires 6.148 µA when implemented as 32-bit counter and 4.373 µA or 4.0 µA as
16-bit counter. The sensor delay counter requires 4.167 µA as 32-bit counter and 2.591 µA or
2.821 µA as 16-bit counter.

The results for all implementations show that for the reconfigurable module also the clock tree
causes the major current consumption with 72.1% (“P32 S32”) to 81.8% (“P16L S32L”). Although
during the synthesis, clock gating was automatically inserted, this only affects the sections of the
clock tree which are closest to the inactive registers. The hierarchically higher levels of the clock
tree are still active. This should be investigated in more detail for future implementations.

The counters and the interconnect cause almost the entire residual current consumption. The
current consumption of the interconnect is mainly caused by the counter output ports. The
TR-FSMs only require a small portion of the current consumption.

Note that the power analysis was performed for a single sensor measurement cycle. This used
the same measurement value as already stored as old value. Therefore no switching activity is
observed in the datapath. On the other hand, the measurement was performed for 50 cycles with
a set of different sensor measurement values. This causes (at least partially) the small differences
between measurement and power analysis.

For the evaluation of the hypothesis, one implementation with the CPU and one implementation
with the reconfigurable module have to be selected. For the CPU, the implementation using
LPM3 is selected because it requires the lowest current. For the reconfigurable module, “P32L
S16L” is selected, because it supports all cycle time values from 5ms to 200ms and uses the
improved counter control.
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Table A.8: Current consumption in µA of the reconfigurable module with an operating frequency of 1MHz
and performing 200 meas./s with different counter widths. The measured leakage current was determined
in a separate testcase and is shown here for reference but not added to the total current consumption.
The power analysis totals in this and the following two tables as well as the according bar diagrams in
Figs. A.5–A.7 differ slightly from the values given in Tab. A.7 for 200 meas./s due to insufficient resolution
of the hierarchical power analysis report used to calculate this table (cf. Sec. 5.3.3). The last row specifies
the difference of the current consumption determined with measurement and with power analysis.

P16 S32 P32 S16 P16 S16 P32 S32
meas. P.A. meas. P.A. meas. P.A. meas. P.A.

Measurement 76.09 – 76.39 – 74.09 – 78.79 –
Interconnect – 1.379 – 1.497 – 2.867 – 0.2964
TRFSM0 – 0.5302 – 0.5301 – 0.5301 – 0.5301
TRFSM1 – 0.7009 – 0.7009 – 0.7009 – 0.7009
WordMuxDual0 – 0 – 0 – 0 – 0
WordMuxDual1 – 0 – 0 – 0 – 0
Byte2WordSel – 0 – 0 – 0 – 0
ByteMuxDual0 – 0 – 0 – 0 – 0
ByteMuxDual1 – 0 – 0 – 0 – 0
ByteMuxQuad – 0.002442 – 0.002442 – 0.002442 – 0.002442
AddSubCmp0 – 0 – 0 – 0 – 0
AddSubCmp1 – 0 – 0 – 0 – 0
ByteRegister0 – 0.03583 – 0.03583 – 0.03583 – 0.03583
ByteRegister1 – 0.03613 – 0.03613 – 0.03613 – 0.03613
WordRegister0 – 0.03455 – 0.03455 – 0.03455 – 0.03455
WordRegister1 – 0.03455 – 0.03455 – 0.03455 – 0.03455
WordRegister2 – 0.03455 – 0.03455 – 0.03455 – 0.03455
AbsDiff – 0 – 0 – 0 – 0
Counter320 – 9.224 – 0.03455 – 0.03455 – 9.224
Counter321 – 0.03455 – 9.158 – 0.03455 – 9.158
Counter0 – 5.527 – 0.03485 – 5.039 – 0.03485
Counter1 – 0.03455 – 5.648 – 6.148 – 0.03455
Param – 0.4806 – 0.4806 – 0.4806 – 0.4806
Config – 0.8848 – 0.8848 – 0.8848 – 0.8848
Clock Tree – 55.69 – 55.97 – 55.98 – 55.87
SPI Master – 2.994 – 2.994 – 2.994 – 2.994
Leakage 0.01632 0.007364 0.01632 0.007364 0.01632 0.007364 0.01632 0.007364
Total 76.09 74.67 76.39 75.13 74.09 72.89 78.79 77.4
Difference – −1.861% – −1.656% – −1.628% – −1.762%
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Table A.9: Continuation of Tab. A.8 with gradually using stopped counters, “P32 S16’ repeated for reference.

P32 S16 P32L S16 P32 S16L P32L S16L
meas. P.A. meas. P.A. meas. P.A. meas. P.A.

Measurement 76.39 – 73.17 – 73.38 – 70.14 –
Interconnect – 1.497 – 1.494 – 1.482 – 1.482
TRFSM0 – 0.5301 – 0.5346 – 0.5301 – 0.5346
TRFSM1 – 0.7009 – 0.7052 – 0.7 – 0.7012
WordMuxDual0 – 0 – 0 – 0 – 0
WordMuxDual1 – 0 – 0 – 0 – 0
Byte2WordSel – 0 – 0 – 0 – 0
ByteMuxDual0 – 0 – 0 – 0 – 0
ByteMuxDual1 – 0 – 0 – 0 – 0
ByteMuxQuad – 0.002442 – 0.002442 – 0.002442 – 0.002442
AddSubCmp0 – 0 – 0 – 0 – 0
AddSubCmp1 – 0 – 0 – 0 – 0
ByteRegister0 – 0.03583 – 0.03583 – 0.03583 – 0.03583
ByteRegister1 – 0.03613 – 0.03613 – 0.03613 – 0.03613
WordRegister0 – 0.03455 – 0.03455 – 0.03455 – 0.03455
WordRegister1 – 0.03455 – 0.03455 – 0.03455 – 0.03455
WordRegister2 – 0.03455 – 0.03455 – 0.03455 – 0.03455
AbsDiff – 0 – 0 – 0 – 0
Counter320 – 0.03455 – 0.03455 – 0.03455 – 0.03455
Counter321 – 9.158 – 6.148 – 9.158 – 6.148
Counter0 – 0.03485 – 0.03485 – 0.03485 – 0.03485
Counter1 – 5.648 – 5.648 – 2.821 – 2.821
Param – 0.4806 – 0.4806 – 0.4806 – 0.4806
Config – 0.8848 – 0.8848 – 0.8848 – 0.8848
Clock Tree – 55.97 – 55.89 – 55.88 – 55.82
SPI Master – 2.994 – 2.994 – 2.994 – 2.994
Leakage 0.01632 0.007364 0.01632 0.007364 0.01632 0.007364 0.01632 0.007364
Total 76.39 75.13 73.17 72.04 73.38 72.19 70.14 69.13
Difference – −1.656% – −1.55% – −1.625% – −1.44%
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Table A.10: Continuation of Tab. A.9 using stopped counters, “P32L S16L” repeated for reference.

P32L S16L P16L S16L P16L S32L P32L S32L
meas. P.A. meas. P.A. meas. P.A. meas. P.A.

Measurement 70.14 – 69.51 – 69.04 – 70.18 –
Interconnect – 1.482 – 2.858 – 1.376 – 0.2897
TRFSM0 – 0.5346 – 0.5346 – 0.5346 – 0.5346
TRFSM1 – 0.7012 – 0.7012 – 0.7012 – 0.7012
WordMuxDual0 – 0 – 0 – 0 – 0
WordMuxDual1 – 0 – 0 – 0 – 0
Byte2WordSel – 0 – 0 – 0 – 0
ByteMuxDual0 – 0 – 0 – 0 – 0
ByteMuxDual1 – 0 – 0 – 0 – 0
ByteMuxQuad – 0.002442 – 0.002442 – 0.002442 – 0.002442
AddSubCmp0 – 0 – 0 – 0 – 0
AddSubCmp1 – 0 – 0 – 0 – 0
ByteRegister0 – 0.03583 – 0.03583 – 0.03583 – 0.03583
ByteRegister1 – 0.03613 – 0.03613 – 0.03613 – 0.03613
WordRegister0 – 0.03455 – 0.03455 – 0.03455 – 0.03455
WordRegister1 – 0.03455 – 0.03455 – 0.03455 – 0.03455
WordRegister2 – 0.03455 – 0.03455 – 0.03455 – 0.03455
AbsDiff – 0 – 0 – 0 – 0
Counter320 – 0.03455 – 0.03455 – 4.167 – 4.167
Counter321 – 6.148 – 0.03455 – 0.03455 – 6.148
Counter0 – 0.03485 – 2.591 – 4 – 0.03485
Counter1 – 2.821 – 4.373 – 0.03455 – 0.03455
Param – 0.4806 – 0.4806 – 0.4806 – 0.4806
Config – 0.8848 – 0.8848 – 0.8848 – 0.8848
Clock Tree – 55.82 – 55.78 – 55.85 – 55.67
SPI Master – 2.994 – 2.994 – 2.994 – 2.994
Leakage 0.01632 0.007364 0.01632 0.007364 0.01632 0.007364 0.01632 0.007364
Total 70.14 69.13 69.51 68.46 69.04 68.25 70.18 69.13
Difference – −1.44% – −1.513% – −1.151% – −1.492%
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Figure A.5: Current consumption of the reconfigurable module with an operating frequency of 1MHz and
performing 200 meas./s with different counter widths (values from Tab. A.8).
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Figure A.6: Current consumption of the reconfigurable module with an operating frequency of 1MHz and
performing 200 meas./s with gradually using stopped counters, “P32 S16’ repeated for reference (values
from Tab. A.9).
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Figure A.7: Current consumption of the reconfigurable module with an operating frequency of 1MHz and
performing 200 meas./s using stopped counters, “P32L S16L” repeated for reference (values from Tab. A.10).
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Table A.11: Mapping of the logical counter instances to the physical counter instances.

Period Delay Sensor Delay
P32L S16L Counter32 1 Counter 1
P16L S16L Counter 1 Counter 0
P16L S32L Counter 0 Counter32 0
P32L S32L Counter32 1 Counter32 0
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DFG data flow graph
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HLS high-level synthesis
HW hardware
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NRE non-recurring engineering (cost)
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SAIF switching activity interchange format
SATA serial ATA
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SDF standard delay format
SDR software defined radio
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SPI Serial Peripheral Interface bus
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SRAM static RAM
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STA static timing analysis
SW software
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VHDL VHSIC hardware description language
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VPB SPS project “Versatile Parameterizable Block”
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