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Abstract

Stars often form in dense cluster environments, in which encounters between
young stars are likely. If such an encounter happens while one of the stars has
an extended disk that is gravitationally unstable, fragments formed within
the disk can be ejected via multi-body gravitational interaction. This might
be a formation mechanism for free-floating brown dwarfs and giant planets.
The thesis examines the viability of this scenario with the hydrodynamics
code developed at the University of Vienna. It was found that the ejection of
fragments, both of fragments formed in the disk before the encounter and of
fragments formed in tidal tails during the encounter, is very likely in prograde
encounters, but unlikely in retrograde encounters. In addition, in one of the
simulations an FU Orionis-like outburst was observed when a fragment was
accelerated onto the disk central star.

Kurzfassung

Sternhaufen sind aktive Zentren der Sternentstehung, wobei Annäherun-
gen zwischen jungen Einzelsternen häufig stattfinden. Findet eine solche
Annäherung zwischen Partnern statt, bei denen einer über eine Akkretion-
sscheibe verfügt, die gravitationelle Instabilitäten aufweist, so können Frag-
mente, welche sich in der Scheibe gebildet haben, dieser entrissen werden.
Dies stellt einen möglichen Mechanismus zur Enstehung ungebundener brauner
Zwerge und Riesenplaneten dar. Die Diplomarbeit untersucht dieses Szenario
unter Verwendung eines an der Universität Wien entwickelten Computerpro-
gramms für hydrodynamische Simulationen. Es zeigte sich, dass in Begeg-
nungen mit prograden Orbits häufig Fragmente aus der Scheibe heraus-
geschleudert werden, oder in durch Gezeitenkräfte verursachten Spiralarmen
entstehen und dann das System verlassen. Bei retrograden Orbits ist das Her-
ausschleudern von Fragmenten unwahrscheinlich. Zusätzlich wurde in einer
Simulation ein FU Orionis-Ausbruch beobachtet, der von einem Fragment,
das auf den Stern im Zentrum der Scheibe geschleudert wurde, verursacht
wurde.
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work in his research group and adopting the role of the official advisor and
examiner at the defense, as well as to PD Dr. Herbert Balasin for co-advising
the thesis and thus making it possible to do my thesis project at the Institute
for Astrophysics at the University of Vienna. I would like to mention Philipp
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Chapter 1

Introduction

When a star forms through the collapse of a cloud core, infalling gas with
high angular momentum from the outer regions of the cloud core forms an
accretion disk around the protostar. If this disk becomes sufficiently mas-
sive and extended, gravitational instability leads to fragmentation, forming
objects typically in the mass range of giant planets and brown dwarfs (Boss,
2001; Stamatellos and Whitworth, 2009). The majority of these fragments,
however, migrates onto the star or are disrupted through tidal forces . Only
few fragments can survive in a stable orbit, forming giant planet and brown
dwarf companions (Vorobyov and Basu, 2010a; Zhu et al., 2012), or be ejected
from the disk via multi-body interactions involving other fragments and form
free-floating brown dwarfs (Basu and Vorobyov, 2012).

It might be important, though, to consider that stars do not form in
isolation but in associations or clusters. Especially in dense young clusters,
stars are likely to experience encounters with other stars. Thies et al. (2010)
estimated that, assuming that massive protostellar disks exist for around
1 Myr, for an average 0.5 M� star in an ONC-type cluster the probability
to experience an encounter with a periastron radius below 500 AU while
hosting a massive disk is ≈ 9%. Encounters can significantly influence the
evolution of protostellar disks, which has been confirmed by numerical studies
which combine cluster simulations with simulations of individual encounters
(e.g. Pfalzner et al., 2008; Pfalzner, 2008; Rosotti et al., 2014). Among the
expected effects are the truncation of disks and enhanced accretion rates.
In addition, various more detailed simulations of individual encounters have
been performed (e.g. Shen and Wadsley, 2006; Shen et al., 2010; Forgan and
Rice, 2009, 2010; Thies et al., 2010; Muñoz et al., 2015), investigating the
role of encounters in FU Orionis outbursts, brown dwarf formation, disk
instability, truncation of disks and binary capture. A summary of studies
focusing on brown dwarf formation is given in subsection 2.2.2.
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None of these studies, however, considered encounters which involved a
disk that was already gravitationally unstable before the encounter. Encoun-
ters involving fragmenting disks can be more complex, as the approaching
star does not only interact with the disk, but also with the fragments. This
might lead to the ejection of fragments formed in the disk before the en-
counter. In this thesis, this scenario is explored with numerical hydrody-
namics simulations.

The thesis is organized as follows: chapter 2 reviews the theoretical back-
ground of disk fragmentation and brown dwarf formation. The numerical
code used is described in chapter 3 and the results are presented and dis-
cussed in chapter 4. Chapter 5 then summarizes the findings.
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Chapter 2

Motivation

2.1 Disk fragmentation

2.1.1 Criteria for fragmentation

A well-established necessary criterion for gravitational instability in disks is
the Toomre criterion

Q =
csκ

πGΣ
< Qcrit, (2.1)

where cs is the speed of sound, κ the angular velocity, which for Keplerian
disks can be replaced by the angular velocity Ω, G the gravitational constant
and Σ the surface density. Qcrit is some value of order unity. The criterion was
first derived by Toomre (1964) in the context of galactic disks, but applies to
accretion disks as well. Its physical meaning can be understood qualitatively
by considering a small density perturbation in the disk with radius ∆R. For
small radii ∆R . c2s/GΣ0 = ∆Rl, pressure prevents the area from collapsing.
For large radii ∆R & GΣ0/Ω

2 = ∆Ru the area is stabilized by rotation.
Thus, a perturbation can only grow if its characteristic length scale is larger
than ∆Rl but smaller than ∆Ru. Now if ∆Ru < ∆Rl, there is no regime in
which an instability can grow and the disk is stable against rotation. Solving
the inequality then gives the Toomre criterion with Qcrit = 1.

The exact value ofQcrit can be obtained through a more thorough stability
analysis and depends on the physical situation considered, e.g. whether the
disk can be assumed to be infinitely small or has a finite thickness, and
whether one considers a fluid or a sheet of stars (cf. Binney and Tremaine,
1987).

Another necessary condition for disk fragmentation is that the cooling
time τc is smaller than a few times the local dynamical time scale Ω−1 (Gam-

8



mie, 2001; Rice et al., 2003),

τc . 3Ω−1. (2.2)

If the Toomre criterion is fulfilled but the cooling time is too large, regions
with enhanced density cannot cool fast enough to collapse and form frag-
ments. Instead, the disk settles into a quasi-stable state in which heating
through dissipation of turbulence driven by the instability is balanced by
cooling.

2.1.2 Implications of disk fragmentation

Disk fragmentation typically happens in the early evolution of a disk, when
the protostar is still embedded in an envelope of gas from its parent cloud
core. As material from the envelope keeps falling onto the disk, the sur-
face density grows until the disk becomes gravitationally unstable and frag-
ments. Only sufficiently massive and extended disks reach this unstable
phase. Whether a disk will go through a phase of fragmentation therefore
depends on the initial conditions of the cloud core, specifically on its initial
mass and the ratio of rotational to potential energy β.

Fragments migrating inward and falling onto the star can cause sharp
peaks in the accretion rate and thus lead to a luminosity burst of the same
order of magnitude as FU Orionis-type bursts. (Vorobyov and Basu, 2005,
2006)

In addition, disk fragmentation has been invoked to explain the formation
of giant planets, brown dwarfs and low-mass stars on wide (tens to hundreds
of AU) orbits (e.g. Boss, 2001; Stamatellos and Whitworth, 2009; Kratter
et al., 2010a,b; Vorobyov and Basu, 2010a; Vorobyov, 2013). The recent dis-
covery of extrasolar giant planets on wide orbits through direct imaging has
led to an increased interest in giant planet formation through gravitational
instabiliy, as the standard theory for the formation of giant planets, core-
accretion, fails to explain their formation: At such wide separations from the
star, the dust density is too low for cores to grow within the disk life-time.
However, analytical arguments (Kratter et al., 2010b) and numerical simula-
tions (Stamatellos and Whitworth, 2009) show that the majority of objects
formed through disk fragmentation have masses in the brown dwarf and low-
mass star regimes. If these planets formed through disk fragmentation, they
are the low-mass tail of the distribution of objects formed in the disk.

One problem of this formation scenario is the unlikely survival of frag-
ments: Though disk fragmentation forms objects in all disks that are massive
and extended enough, the majority of these objects is either driven onto the

9



star due to torques from spiral arms and other fragments or torn apart by
tidal forces (Vorobyov and Basu, 2010a; Zhu et al., 2012). It seems that only
fragments forming at the very end of the phase of disk fragmentation and are
massive enough to open a gap in the disk have a chance to survive in a stable
orbit. Vorobyov (2013) showed that this typically happens only in the most
massive and extended disks, which are still unstable in the early T Tauri
phase, after infall from the envelope has ceased. In some cases, fragments
can also be ejected from disks through gravitational multi-body interactions
and form free-floating brown dwarfs (Basu and Vorobyov, 2012).

2.2 Brown dwarf formation

2.2.1 Definition and general properties

Brown dwarfs are substellar objects below the hydrogen burning limit (≈
0.075 M�). The definition favored by the IAU and used by most authors sets
the deuterium burning limit at ≈ 0.012 M� as the lower mass limit for an
object to be classified as brown dwarf. However, deuterium burning only
has a small impact on the evolution of substellar objects. This, and recent
discoveries of objects below the deuterium burning limit whose properties and
formation seem to be better explained by counting them to the low-mass end
of the brown dwarf population than by considering them giant planets, have
led some authors to question this definition (Luhman, 2012; Chabrier et al.,
2014). Instead, they suggest a distinction based on the dominant formation
mechanism. The majority of giant planets are expected to form via core-
accretion, while the question of the formation mechanism for brown dwarfs
is not settled yet (see Section 2.2.2). Within this thesis, I will stick to the
traditional definition for simplicity and distinguish between brown dwarfs
and planetary-mass objects based on their masses. However, for the purpose
of this thesis it is not crucial which definition is used.

Brown dwarfs are found in orbits around stars or other brown dwarfs
as well as free-floating. Their spatial distribution and velocity dispersion in
young clusters do not differ significantly from the ones of stars (Chabrier
et al., 2014). A large fraction of young brown dwarfs have been observed to
host accretion disks (Luhman, 2012, and references therein).

2.2.2 Formation scenarios

In a simplistic picture of star formation, a molecular cloud collapses to form
a star if its self-gravity overcomes hydrostatic pressure. The minimum mass
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required for collapse assuming a spherical cloud and a given constant density
and pressure is called the Jeans mass. Though in reality several other factors
such as turbulence, non-uniform density and fragmentation of collapsing cores
play a role, one would expect the mass of stars to be not much smaller
than the Jeans mass. However, the Jeans masses for typical conditions in
molecular clouds are much larger than the masses of brown dwarfs, raising
the question how these objects could form.

The following scenarios have been proposed to explain the formation of
brown dwarfs (see Chabrier et al., 2014; Luhman, 2012):

• Photoionization: In this scenario, the mass accretion onto protostars is
halted by the photoionizing radiation of nearby massive OB stars, heav-
ily truncating the initial mass reservoir in collapsing cores (Whitworth
and Zinnecker, 2004).

• Accretion-ejection: Stellar embryos are ejected from their accretion
reservoir through dynamical interactions in dense clusters (Reipurth
and Clarke, 2001; Bate, 2012).

• Gravoturbulent fragmentation: Large-scale turbulence in molecular
clouds induces turbulence at smaller scales and produces overdensities
that collapse. In clouds dominated by turbulence, the mass spectrum
depends on the Mach number. The Jeans mass then is no longer a good
estimate for the characteristic mass of collapsing cloud cores. Theories
of gravoturbulence are successful in explaining the shape of the core
mass function (CMF) and can predict cores down to the brown dwarf
regime. If these cores evolve into stars without significantly fragmenting
and changing the mass function, the CMF is directly related to the
initial mass function (IMF). In this case the theory can explain the
formation of brown dwarfs, which then are just the low-mass tail of the
normal star formation process.

• Disk fragmentation (see Section 2.1): Though most fragments in gravi-
tationally unstable disks migrate onto the star or are disrupted through
tidal forces, simulations show that under certain conditions fragments
can survive and form quasi-stable orbits around their star (Vorobyov,
2013; Zhu et al., 2012). Fragments can also be ejected from disks via
multi-body interaction to form free-floating brown dwarfs (Basu and
Vorobyov, 2012).

Observations place some constraints on these scenarios. As the brown
dwarf mass function appears to be independent of the presence of O and B
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stars, photoionization can be ruled out as a dominant formation mechanism.
The observation of isolated protostellar objects with masses in the brown
dwarf regime, with some of them having an accretion reservoir too small
to grow above the hydrogen-burning limit, suggests that brown dwarfs can
form without dynamical ejections from high-density regions or the presence of
protostellar disks. This favors the gravoturbulent scenario, though Basu and
Vorobyov (2012) argue that the ejection of clumps that have not yet collapsed
instead of finished brown dwarfs could explain these isolated proto-brown
dwarfs as well. However, as mentioned above, the gravoturbulent scenario
can explain brown dwarf formation only if the distribution of stellar masses
is mainly determined through the CMF. This requires that other processes
such as dynamical interactions, competitive accretion or radiative feedback
from other stars only play a minor role in determining the IMF. Whether
this is the case is subject to on-going debate (Offner et al., 2014).

It is quite possible that brown dwarfs can form through several of the
proposed mechanisms, with each of them contributing to the total number
of brown dwarfs. The reviews of Chabrier et al. (2014) and Luhman (2012)
both conclude that though observations suggest that at least some brown
dwarfs are just the low-mass tail of star formation formed though gravo-
turbulent fragmentation, it is premature to rule out that other formation
mechanisms such as disk fragmentation or accretion-ejection contribute to
the total number of brown dwarfs as well.

2.2.3 Formation through stellar encounters

A problem of the disk fragmentation scenario is that massive, extended disks
that fragment appear to be rare. However, most disk mass measurements are
restricted to the optically visible, late T Tauri stage. In the early embedded
stage, massive disks may be a rule rather than an exception. As Figure 1
in Vorobyov (2013) shows, out of the disks which experience fragmentation,
only the more massive and extended ones can eject fragments, as this requires
the presence of at least two relatively massive fragments at the same time.
An even smaller fraction is expected to form brown dwarfs or giant planets
on stable orbits. However, it has been suggested that stellar encounters could
trigger fragmentation (e.g. Thies et al., 2010). Similarly, encounters could
enhance fragmentation in already unstable disks. They could also lead to
the ejection of fragments formed in the disk before the encounter.

Shen et al. (2006; 2010) simulated encounters of large, extended proto-
stellar disks. They found that encounters were likely to produce fragments
spanning mass ranges from planetary-mass objects to low-mass stars. A large
fraction of the fragments were unbound at the end of the simulations. How-
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ever, disks as large and massive as in their simulations (Md = 0.6 M�, r ≈
1000 AU) are rare (even in the embedded phase) and it seems unlikely that
two such massive disks collide. A more likely scenario is an encounter involv-
ing two smaller disks, or an encounter of a massive disk with a star that has
a small disk or no disk at all. Forgan and Rice (2009) studied the effect of
a close encounter with a low-mass star on a marginally stable disk. In their
simulations compressive and shock heating stabilized the disk against frag-
mentation. Their study focused on encounters with periastron radii ≤ 50 AU.
Such close encounters, however, are unlikely. In contrast, Thies et al. (2010)
found that encounters were able to trigger fragmentation in marginally sta-
ble disks and thus form objects between 0.01 M� and 0.16 M�. They were
using larger disks (Md ≈ 0.5 M�, r . 500 AU) and more distant (400-500
AU) encounters.

None of the above mentioned studies considered accretion disks that are
already unstable and host fragments. However, encounters in such disks
might be more complex. In addition to fragments formed through the en-
counter, already existing fragments could be ejected, increasing the efficieny
of brown dwarf formation. Existing fragments could also be driven onto one
of the stars, causing luminosity bursts.

In our simulations, we consider a gravitationally unstable disk with a mass
of 0.25 M� around a 0.63 M� star in the embedded phase of star formation,
during which the disk still experiences significant infall of material from the
envelope. The initial configuration of the disk and surrounding envelope was
obtained through the self-consistent simulation of a collapsing cloud core
(see Section 4.1). The disk is then approached by a more massive (1.2 M�)
intruding star without a disk. The choice of a more massive star increases
the strength of the interaction with the disk.

Though the main reason for neglecting the disk of the intruder is re-
strictions of our numerical model, the situation that one of the stars has no
disk or only a small disk is probably not unrealistic: Observations of young
clusters show a large spread in luminosity (Hillenbrand, 2009). As the age
of pre-main sequence stars is typically determined by placing stars on the
Hertzsprung-Russel diagram (HRD) and comparing their position to evolu-
tionary tracks derived from theoretical models, this luminosity spread has
often been interpreted as an age spread of up to 10 Myr. It is likely that
a large part of the luminosity spread can be explained by uncertainties in
deriving the position on the HRD and systematic errors of the evolutionary
models (Hillenbrand, 2009). However, Da Rio et al. (2010) found in a careful
analysis including these uncertainties that they still needed an age spread
of 2.8-4 Myr to explain the data from young association LH 95 in the Large
Magellanic Cloud. In contrast, Slesnick et al. (2008) found that data from the
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Upper Scorpius association was consistent with all stars forming at the same
time after correcting for uncertainties, even though a naive interpretation of
the HRD would yield an age spread > 10 Myr. Nevertheless, they could not
rule out an age spread below 6 Myr. The average life time of protostellar
disks is estimated to be 2-3 Myr. Thus, it is quite possible that one of the
stars involved in the encounter has a massive disk, while the disk of the other
star has already been cleared.
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Chapter 3

Code

3.1 Hydrodynamics code

In this section, the main features of the hydrodynamics code used for the
simulations are summarized. A more detailed description of the code can be
found in Vorobyov and Basu (2006, 2010b, 2015). The code was developed to
be able to self-consistently model the collapse of a cloud core over a few Myr
from the pre-stellar phase through the embedded phase of star formation
to the T Tauri phase. In the embedded phase of star formation, star and
disk are formed and gas continues to fall onto the disk from the surrounding
envelope. Thus, the computation domain is chosen large enough to include
the infalling envelope: the outer boundary is set to 0.07 parsec. The inner
boundary is a sink cell at a radius of 8 AU. The sink cell is introduced to
avoid too small time steps and is dynamically inactive but does contribute
to the gravitational potential of the disk. We assume that 90 % of the gas
flowing into the sink cell is eventually accreted to the central star, while the
other 10 % are lost in protostellar jets.

The code solves the hydrodynamics equations in the thin-disk approxi-
mation. In thin disks (Z/r � 1, where Z is the vertical scaleheight of the
disk and r the radius) the gas is supported by hydrostatic pressure in the z-
direction and rotates with a roughly Keplerian speed around the central star
(see e.g. Longair, 2011, chap. 14). Thus, it is reasonable to assume that the
velocity of the gas is independent of the z-component. Integrating the hydro-
dynamics equations for mass, momentum and energy over the z-component
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then gives

∂Σ

∂t
= −∇p · (Σvp), (3.1)

∂

∂t
(Σvp) + [∇ · (Σvp ⊗ vp)]p = −∇pP

−Σ∇p(Φ∗ + Φdisk + Φintr + Φind) + (∇ ·Π)p,

(3.2)

∂e

∂t
+∇p · (evp) = − P(∇p · vp)− Λ + Γ + (∇v)pp′ : Πpp′ ,

(3.3)

where subscripts p and p′ denote the planar components (r, φ) in polar
coordinates. Σ is the mass surface density, vp = vrr̂ + vφφ̂ is the velocity

in the disk plane and P =
∫ Z
−Z Pdz is the vertically integrated gas pressure,

which is calculated using the equation of state for an ideal gas P = (γ− 1)e,
with e being the internal energy per surface area. The ratio of specific heats
γ is assumed to be

γ =


5/3 if T < 100 K

7/5 if 100 K < T < 2000 K

1.1 if T > 2000 K.

(3.4)

The terms contributing to the total potential are the gravitational potential
of disk central star Φ∗, the self-gravity of the disk Φdisk, the potential of the
intruder Φintr and the indirect potential Φind. The self-gravity of the disk is
calculated via a Fast Fourier Transformation solving the Poisson Integral

Φdisk = −G
∫ rout

rsc

r′dr′
∫ 2π

0

dφ′
Σ(r′, φ′)√

r′2 + r2 − 2rr′ cos(φ′ − φ)
. (3.5)

The potential of the intruder is given by equation 3.17. As the center of the
coordinate system is moving with the central star, non-inertial accelerations
have to be taken into account. The acceleration of the central star, and thus
of the coordinate system, is given by

g∗ = G

∫
dm(r′)

r′3
r′ +G

Mintr

r3intr
rintr, (3.6)

where dm(r′) is a mass element in the disk with position vector r′, Mintr is
the mass of the intruder and rintr is the position vector of the intruder. The
term that has to be added to the total gravitational acceleration thus is −g∗.
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This term can be expressed as the derivative of a potential, the so-called
indirect potential Φind = r · g∗. As the derivative in equation 3.2 is taken
with respect to r and the potential depends only on r′ and rintr, the right
behavior is reproduced.

The viscous stress tensor is represented by Π. The expressions for the
divergence of the stress tensor (∇ ·Π)p, the symmetrized velocity gradient
tensor (∇v)pp′ and the viscous heating term (∇v)pp′ : Πpp′ in polar coordi-
nates can be found in Vorobyov and Basu (2010b).

Viscosity is treated using the α-prescription (Shakura and Sunyaev, 1973)

ν = αcsZ, (3.7)

where cs is the speed of sound. In this work, α is set to 0.01, which is within
the range expected from simulations of the magneto-rotational instability.

Heat transport is considered only in the form of radiation, other possi-
ble mechanisms such as convection are neglected. Radiation escapes at the
surface of the disk at a rate per unit area 2σT 4

eff , where σ is the Stefan-
Boltzmann constant. Using the diffusion approximation, in the optically
thick limit the effective temperature is linked to the midplane temperature
Tmp via T 4

eff = 8/(3τ)T 4
mp with the optical depth τ (Johnson and Gammie,

2003). In the optically thin limit, the cooling function is 2σT 4
mpτ . Thus, the

expression for the cooling function that links both regimes is

Λ = FcσT 4
mp

τ

1 + τ 2
, (3.8)

where Fc = 2 + 20 tan−1(τ)/(3π) is a function that ensures a smooth transi-
tion between the optically thick and the optically thin regime. The heating
function is given by

Γ = FcσT 4
irr

τ

1 + τ 2
, (3.9)

with the irradiation temperature Tirr defined as

T 4
irr = T 4

bg +
Firr(r)

σ
. (3.10)

The uniform background temperature Tbg is set to 10 K. The flux from
the central star absorbed by the disk at a radius r with the incidence angle
of the radiation arriving at the disk surface γirr is

Firr(r) =
L∗

4πr2
cos γirr. (3.11)

The luminosity L∗ is the sum of the photospheric luminosity Lph and the
accretion luminosity Laccr = (1 − ε)GM∗Ṁ/(2R∗), where ε is the fraction
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of the accretion energy absorbed by the star. This fraction is taken to be
ε = 0 as long as Ṁ < 10−5 M� yr−1 and ε = 0.2 if the accretion rates rises
above 10−5 M� yr−1 (see Baraffe et al., 2012). The stellar radius R∗ and
Lph are calculated by the stellar evolution code described in Baraffe and
Chabrier (2010). Remarks on the coupling between the hydrodynamics code
and the stellar evolution code can be found in Vorobyov and Basu (2015).
The luminosity of the intruder is currently not taken into account.

Equations (3.1)-(3.3) are solved on a polar 512 x 512 grid with logarith-
mic cell spacing in the radial direction. At the inner boundary, free outflow
boundary conditions are imposed, which allow matter to flow out from the
computation domain, but prevent inflow. For the outer boundary free out-
flow conditions, as used in previous simulations, are problematic. As the
coordinate system moves with the central star, which is accelerated towards
the intruder, but the mass close to the boundary remains largely unaffected
by this acceleration, large amounts of mass leave the simulation domain in
the direction opposite to the acceleration. Meanwhile, in the direction of
the acceleration no material can enter the simulation domain, which leads
to the creation of artificial low-density regions causing the code to crash.
Therefore, free boundary conditions that allow for both inflow and outflow
are used at the outer boundary. Details of the numerical solution procedure
can be found in Vorobyov and Basu (2010b).

3.2 Intruder

For the scope of this thesis, the motion of the intruder is restricted to the
disk plane. Coplanar encounters are expected to have the highest impact on
the disk and our numerical code is best suited for this type of encounters.
The equations of motion for a particle moving in a gravitational potential Φ
in polar coordinates, written as first order differential equations, are given
by

ṙ = vr, (3.12)

ϕ̇ =
vϕ
r
, (3.13)

v̇r =
v2ϕ
r

+ ar, (3.14)

v̇ϕ = −vϕvr
r

+ aϕ, (3.15)

with the acceleration calculated as

a = −∇(Φ∗ + Φind) +
1

Mintr

∑
j,k

Fj,k, (3.16)
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where Fj,k is the force the intruder experiences from a single grid cell, given in
equation (3.18), and the summation is performed over all grid cells. To calcu-
late the trajectory of the intruder, equations (3.12)-(3.15) are solved using a
Dormand-Prince method (a fifth-order Runge-Kutta method) with adaptive
stepsize control (see Press et al., 2007, chap. 17.2). Several tests performed
to demonstrate that the code is producing correct results are described in
Appendix A.

3.2.1 Intruder-Disk interaction

To calculate the influence of the intruder on the gas in the disk, the gravita-
tional potential of the intruder is added to the total potential on each grid
point in the hydrodynamics code. The potential at a grid cell with indices j
and k is given by

Φintr(Rj,k) =

{
−GMintr/Rj,k for Rj,k > rs

Φsmooth for Rj,k < rs,
(3.17)

where rs is the smoothing radius and Φsmooth is given by equation (3.19). The
symbol Rj,k = rj,k − rintr is used for the vector pointing from the intruder
towards the center of the grid cell and the distance between the intruder and
the distance between the grid cell and the intruder is denoted by Rj,k = |Rj,k|.

3.2.2 Disk-Intruder interaction

The force that the disk exerts onto the intruder is calculated by summing
the contributions from each cell, treating the cells as point masses with mass
Mj,k. The contribution from an individual cell is given by

Fj,k =


GMintrMj,k

R3
j,k

Rj,k for Rj,k > rs

F
(smooth)
j,k for Rj,k < rs,

(3.18)

with F
(smooth)
j,k defined in equation (3.20). As the summation is computa-

tionally expensive, the forces are updated only once per hydrodynamical
timestep.

3.2.3 Gravitational softening

The gravitational forces between the gas and the intruder can become ex-
tremely strong if the intruder approaches one of the cell centers, where all
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mass is concentrated according to our convention. To avoid this unphysical
behavior, the potential has to be modified for small distances. We use the
same potential as in Klahr and Kley (2006), where the potential for distances
smaller than a smoothing radius rs is set to

Φsmooth(Rj,k) = −GMintr

(
R3
j,k

r4s
− 2

R2
j,k

r3s
+

2

rs

)
. (3.19)

At rs the smoothed potential and its first and second derivatives agree with
the unaltered potential −GMintr/Rj,k and its derivatives. The advantage of
this choice is that it only modifies the potential for distances smaller than

rs, unlike the common approach Φ(Rj,k) = −GM/
√
R2
j,k + r2s .

The modified force that a single grid cell with a distance from the intruder
smaller than rs exerts on the intruder is then given by

F
(smooth)
j,k = GMintrMj,k

(
4

r3s
− 3Rj,k

r4s

)
Rj,k. (3.20)

The choice of the smoothing radius rs is not trivial. If it is too small, the
gravitational interaction of the gas and the intruder will be overestimated,
a too large rs will underestimate the forces. As the smoothing is introduced
to compensate discretization effects, it seems plausible that the smoothing
radius has to be related to the cell size:

rs = qs ·min(∆r, r∆φ), (3.21)

where ∆r and ∆φ are the local cell spacings in the radial and azimuthal
direction. Testing different smoothing radii shows that qs = 1 results in
unexpectedly strong interactions with the disk, altering the trajectory of the
intruder more than expected, while there is relatively little difference between
qs = 2 and qs = 3. We therefore choose qs = 3 throughout the simulations.
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Chapter 4

Simulations

4.1 Initial conditions and early disk evolution

To obtain a suitable initial condition, a simulation of the collapse of a cloud
core was run, similar to the simulations in Vorobyov and Basu (2015). The
total mass of the model is 1.08M� and the ratio of rotational to gravitational
energy β is 6.2 ·10−3. The initial surface density and angular velocity profiles
are the same as in Vorobyov and Basu (2010b). After a pre-stellar collapse
phase and the formation of a central star a centrifugal disk is formed. The
envelope then falls onto the disk at a higher rate than the accretion of the
disk onto the star, increasing the disk mass until the disk becomes gravita-
tionally unstable. In the subsequent evolution, fragments form in the disk
and migrate to the central star, causing luminosity bursts (Vorobyov and
Basu, 2010b). We choose the configuration of the disk at a time during this
disk unstable phase, at t = 0.42Myr, as initial setup for all simulations in-
cluding the intruder. At this time, the central star has a mass of 0.63 M�
and the disk mass is 0.25 M�. The surface density inside 1000 AU at this
time is plotted in Figure 4.1. The disk extends to around 600 AU from the
central star and is gravitationally unstable. There is one fragment present
in the disk to the left of the central star. At the top, at around 500 AU
distance from the central star, an overdensity can be seen. Soon afterwards
it collapses and forms a fragment.

The intruder, with a mass of 1.2 M�, is then added to the simulation
at a distance of 3,000 AU, far enough to avoid any effects from the sudden
appearance of the intruder on the disk.
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Figure 4.1: Surface density of the accretion disk at the time at which the
intruder is added to the simulation. Only the region inside 1000 AU from
the central star is shown.
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4.2 Overview of the simulations

In total, I ran 16 simulations with different initial velocities and positions
of the intruder. Half of the models have orbits corotating with the disk
(prograde) and the other half are counterrotating (retrograde). Table 4.1
provides a summary of the initial conditions and results. The table shows
both the periastron one would expect treating the disk and star as a point
object and the actual periastron in the simulation. In most cases, the perias-
tron in the simulation is lower than the expected value, due to gravitational
torques from the disk and fragments in the disk and the capture of material
by the intruder, forming a small disk. However, in a few cases, the intruder
is accelerated by gravitational torques from fragments.

Table 4.2 shows the properties of the ejected fragments. Fragment masses
and velocities were inferred using the fragment tracking algorithm described
in Vorobyov (2013). Unless noted, the velocities and masses were determined
at a distance of 3000 AU from the central star. To demonstrate that the
fragments are really ejected, the ratio of kinetic to potential energy was
calculated for each fragment in the center of mass frame (CM), the reference
frame of the central star (S) (neglecting the intruder) and the reference frame
of the intruder (I) (neglecting the central star). The lowest ratio for each
fragment is given in the second column from the right.

4.3 Results

4.3.1 Ejection of existing fragments

In the majority of the prograde models, the fragment forming at the be-
ginning of the simulation, before the intruder has approached the disk, is
ejected from the disk due to three-body interaction. Figure 4.2 illustrates
this process with a series of simulation snapshots from Model P1. Each panel
shows the surface density in g/cm2 on a logarithmic scale in a 4000 AU x
4000 AU box centered around the central star. In this figure, as well as in
all other figures showing simulation snapshots, the position of the intruder is
indicated by the intersection of the dotted lines. The position of the ejected
fragment is highlighted by an arrow.

With only slight variations between different models, the mass of the
ejected fragment is 20-25 Jupiter masses. An exception is Model P7 with
10 MJup, as the intruder passes the fragment relatively close, such that the
fragment loses part of its mass. There is an additional amount of gas with 40-
45 MJup (23 MJup in Model P7) located inside the Hill radius of the fragment.
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Figure 4.2: A series of simulation snapshots showing the ejection of a frag-
ment from the disk through three-body interaction with the intruder and the
central star in Model P1. The intersection of the dotted green lines marks
the position of the intruder. The position of the fragment that is ejected
is indicated with an arrow. The last panel shows the disk long after the
encounter.
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This mass is likely to be accreted by the fragment. Regardless of what
fraction of the mass inside the Hill radius is accreted onto the fragment,
its final mass is clearly in the brown dwarf regime. Thus, the fragment
resembles a proto-brown dwarf. A fraction of the material in the Hill radius
might become bound to the fragment and form a small accretion disk, as
observed around some young brown dwarfs.

In most of the models in which the intruder has a retrograde trajectory, no
ejections are observed. A spectacular exception is Model R1. In this model,
the intruder passes the fragment very closely and catapults the fragment
out of the system. The ejection process is illustrated in Figure 4.3, showing
the surface density at six consecutive instances. In panel (a), the intruder
approaches the fragment The closest approach, with a distance of ≈ 60 AU,
happens in panel (b). As can be seen in panels (c) and (d), the fragment
gets highly distorted due to tidal forces and loses part of its mass. Once the
intruder is well away, it returns to a roughly spherical shape (panels (e)-(f)).

At a radius of 3,000 AU from the central star, the fragment has a velocity
of 2.1 km/s relative to the central star and 3.3 km/s relative to the intruder,
significantly higher than the velocity of the other ejected fragments.

As the other simulations with the same initial position but different initial
velocities show, this ejection event is rather a single lucky case than a robust
general phenomenon.

4.3.2 Ejection of fragments formed in tidal arms

In several models (P4, P5, P6, P7, P8) fragments form in tidal arms formed
during the encounter and are subsequently ejected. In Model P6 two clumps
form in the same spiral arm close to each other and are ejected in the same
direction. The formation of these two fragments can be seen in Figure 4.4,
in which the surface density in a 4000 x 4000 AU box centered around the
target star is plotted at four consecutive instances. The tidal arm in which the
fragments form is indicated by an arrow. Due to the decreasing resolution
of the grid they merge at a distance of ≈ 3000AU from the central star.
However, a determination of the fragment masses, positions and velocities
at ≈ 3000AU shows that they are not bound to each other. In Model R8 a
fragment is formed in a tidal arm as well, however, its energy is not sufficient
to leave the system.

With masses ranging from 5 to 13 MJup and gas masses located inside the
Hill radius between 13 and 24 MJup, the fragments formed in tidal arms are
less massive than the fragments ejected from the disk. This is because they
form at a larger distance from the star, where the temperatures are lower,
corresponding to a lower Jeans mass. It is likely that the fragments will
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Figure 4.3: A series of simulation snapshots showing the ejection of the
fragment through a close encounter between the fragment and the intruder in
Model R1. Again, the position of the intruder is indicated by the intersection
of the dotted green lines. The arrow highlights the position of the fragment.
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Figure 4.4: A series of simulation snapshots showing the formation of two
fragments in a tidal arm in Model P6. Again, the position of the intruder is
indicated by the intersection of the dotted green lines. The arrow highlights
the tidal arm in which the fragments form.
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accrete a fraction of the mass inside the Hill radius, though it is not clear
how much exactly. Therefore, the fragments will form either low-mass brown
dwarfs or free-floating planetary-mass objects.

All of the ejections of fragments formed in tidal arms happen in pro-
grade encounters. This is because prograde encounters form more extended
tidal structured, a behavior that has been observed in previous studies of
encounters as well (e.g. Shen et al., 2010; Forgan and Rice, 2009).

4.3.3 Acceleration of a fragment onto the star -
a cause for a FU Orionis outburst

In Model R5 the intruder passes the star just slightly inside the fragment.
The close encounter with the intruder tears the fragment apart and acceler-
ates it towards the central star. A series of snapshots of this event is shown
in Figure 4.5. In panels (a) and (b) the fragment approaches the intruder. At
its closest approach, tidal forces tear the fragment apart (panels (b) and (c)).
The remains of the fragment are then accelerated towards the disk central
star (panels (d) and (e)). When they hit the central star 7,800 years into the
simulation, as seen in panel (f), a sharp increase in the accretion rate can
be observed. Within less than 10 years1, the accretion rate increases from
5 · 10−7M�yr

−1 to 3 · 10−4M�yr
−1. This rise would be observed as an FU

Orionis (FUor) type outburst, for which accretion rates in the same order of
magnitude are estimated (Hartmann and Kenyon, 1996; Audard et al., 2014).
The accretion rate is plotted in Figure 4.6. In the left panel the evolution
of the accretion rate throughout the whole simulation is displayed, while the
right panel shows a close-up of the burst. After the sharp rise, the accretion
rate declines until 200 years later a second spike, peaking at 6 · 10−4M�yr

−1,
can be seen. A close examination of a sequence of simulation snapshots
shows that the first peak is caused by remains of the fragment directly hit-
ting the central star, while the second peak is caused by material initially
passing the star, but then being quickly decelerated as it encounters the disk
material head-on and subsequently falling onto the central star. After an-
other 200 years, the accretion rate rapidly drops to its previous level. At
t ≈ 8500 yrs more material, still from the disrupted fragment, falls onto the
star and causes another, much smaller (10−5M�yr

−1), spike in the accretion
rate.

1Note that the accretion rate is tracked only in 5-year steps. Because of this, and
because the inner disk inside 8 AU is not included in the simulation domain, it is not
possible to infer any meaningful statements on the behavior of the accretion rate on smaller
timescales.
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Figure 4.5: A series of simulation snapshots showing the acceleration of the
fragment onto the central star in Model R5, causing an outburst. Note that
the timespan between the snapshots is doubled in the bottom two rows.
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Figure 4.6: Accretion rate in Model R5. The accretion rate in the simulation
is set equal to the gas flow into the central sink cell. The right panel shows
the accretion rate during the outburst at t = 7, 800 years in detail.
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During the close encounter with the fragment, the intruder loses a signif-
icant amount of angular momentum and is thus caught by the central star.
Until the end of the simulation, it completes two orbits. In this time, almost
all of the disk material is either accreted by the intruder, which gains a sub-
stantial disk with a radius of approximately 100 AU, or by the central star.
The accretion rate of the central star remains variable with several phases of
enhanced accretion, though the peak accretion rates in these phases do not
exceed a few times 10−5M�yr

−1 except for around t = 15, 500 years, when
a tidal tail connects between the two stars and the accretion rate peaks at
1.5 · 10−4M�yr

−1. However, this peak does not have characteristics similar
to FUor outbursts. The accretion rate around this time is highly oscillating
between 10−5M�yr

−1 and 10−4M�yr
−1 but increases only by a factor three

within one oscillation. The rise and decay times are approximately equal. In
contrast, FUors typically have much shorter rise times than decay times and
the increase in the accretion rate spans several orders of magnitudes.

There is a large drop in the accretion rate, as seen in Figure 4.6, after the
original disk has been cleared around 19,000 years into the simulation.

One should note that the current version of the code may not be well-
suited for following the long-term evolution of a binary system for several
reasons: While the intruder can gain a circumstellar disk, it cannot accrete
any matter from that disk. Thus, not only the matter that would in fact
be removed from the disk due to accretion remains in the disk, it is also
not possible to gain any information on the accretion rate of the intruder.
As mentioned in Chapter 3, the luminosity of the intruder is not taken into
account either, even though the intruder may be the more luminous star.

These caveats, however, will most likely not change the general picture
observed, and are very unlikely to alter the major result from this model, the
FUor outburst.

4.3.4 Fragments captured by intruder

In two models (R4 and P6) the fragment is captured and destroyed by the
intruder. Most of its mass is accreted onto the intruder’s disk. The linear
momentum of the intruder and the captured material partly cancels. There-
fore the intruder is significantly slowed down. In the retrograde model (R4)
the transferred momentum is much larger, as the fragment and the intruder
move in opposite directions at first. As a consequence, the intruder is caught
and stays in a highly eccentric orbit.

It is quite likely that the accretion of the fragment by the intruder causes
a luminosity burst. Unfortunately, with the current code it is not possible
to infer the accretion rate or luminosity of the intruder to confirm this and
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quantify the change in accretion rate. We plan to include an accretion scheme
for the intruder in future simulations.

4.3.5 State of the disk after the encounter

In all of the models the disks around the target star lose mass during the
encounter and are truncated, both due to the ejection of fragments and the
capture of disk material by the intruder. In general, disk masses and radii
after the encounter are higher in the retrograde models. This is mostly
because more fragments are ejected in the prograde models. Another factor
is that the intruder gains a somewhat larger disk in prograde encounters
because of its lower velocity relative to the disk. In most of the models,
especially the ones with fragment ejection, fragmentation ceases after the
encounter, as the disk is not massive enough any more. However, in Models
R2 and R3, in which no fragment is ejected, there is still a significant amount
of fragmentation happening after the encounter.
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Table 4.1: Overview of the simulations

Model vr,0
(km/s)

vφ,0
(km/s)

φ0

(deg)
expected
periastrona

(AU)

actual
periastron
(AU)

Fragment
ejected?

P1 -1.8 0.5 90 473 412 yes
P2 -2.1 0.7 90 704 659 yes
P3 -1.9 0.6 90 606 556 yes
P4 -1.7 0.45 90 410 338 yes (2)
P5 -1.6 0.4 90 343 282 yes
P6 -1.8 0.5 180 473 391 yes (2)
P7 -1.8 0.5 270 473 467 yes (2)
P8 -1.8 0.5 0 473 495 yes

R1 -1.8 -0.5 90 473 466 yes
R2 -2.1 -0.7 90 704 700 no
R3 -1.9 -0.6 90 606 601 no
R4 -1.7 -0.45 90 410 397 no
R5 -1.6 -0.4 90 343 330 no
R6 -1.8 -0.5 180 473 486 no
R7 -1.8 -0.5 270 473 423 no
R8 -1.8 -0.5 0 473 384 no

a Calculated analytically treating the disk-star system as a point mass.
The columns show, from left to right, the model identifier (the names
of prograde models start with P, the ones of retrograde models with R),
radial and azimuthal components of the initial velocity of the intruder vr,0
and vφ,0, the initial azimuthal position of the intruder φ0, expected and
actual periastron radius and whether fragments have been ejected during
the simulation.
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Table 4.2: Properties of ejected fragments

Model Mfrag

(MJup)
MHill

(MJup)
vs
(km/s)

vi
(km/s)

Ekin/|Epot| fragment
origin

P1 24 45 1.67 2.20 3.32 (CM) D
P2 21 40 1.18 2.80 2.93 (S) D
P3 23 41 1.37 2.56 4.54 (S) D
P4 25 44 1.46 1.65 1.75 (CM) D

9 13 1.20 2.08 3.03 (S) T
P5 13 23 1.39 1.27 1.38 (CM) T
P6 a 9 21∗ 1.39 2.47 2.94 (S) T

5 14∗ 1.22 2.26 2.06 (S) T
P7 10 23 1.88 2.15 2.92 (CM) D

10 24 1.46 2.21 3,25 (CM) T
P8 b 5 13 1.11 2.64 2.22 (S) T
R1 10 25 2.13 3.33 7.32 (CM) D

∗ Hill radii of the fragments overlap.
a Velocities determined at r ≈ 2, 000AU.
b Velocities determined at r ≈ 2, 500AU.

The columns show, from left to right, the fragment mass Mfrag, the mass
located inside the fragment’s Hill radius MHill, the velocity of the frag-
ment relative to the disk central star vs and the intruder vi, the ratio of
kinetic to potential energy in the reference frame in which this ratio is the
lowest with the reference frame indicated in brackets (CM=center of mass
system, S=central star), and the fragment origin, where D indicates that
the fragment formed inside the disk before the encounter and T marks
fragments formed in tidal arms during the encounter.
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Chapter 5

Conclusion

The effect of stellar encounters on the dynamics of massive protostellar disks
prone to gravitational fragmentation was examined using grid-based two-
dimensional hydrodynamics simulations. In particular, we consider a star of
0.63 M� surrounded by a 0.25 M� disk which is initially unstable and frag-
menting. It was found that in prograde encounters the ejection of fragments
from the disk is very likely. In all simulations involving prograde encoun-
ters, at least one fragment was ejected. Half of the ejected fragments formed
within the disk before the encounter, while the other half formed in tidal tails
during the encounter. Ejected fragments formed in the disk have masses in
the brown dwarf regime and are likely to form free-floating brown dwarfs.
The fragments formed in tidal tails in contrast have lower masses (5 - 13
MJup). Depending on whether they still accrete from the mass reservoir lo-
cated inside their Hill radii, they might remain in the planetary mass regime.

All ejected fragments have a significant amount of mass (13-45 MJup)
located within their Hill radius. A part of this mass might be accreted by
the fragments and form proto-brown dwarf disks, which have been observed
around young brown dwarfs.

Ejections in retrograde encounters are very unlikely. Only one of the eight
performed simulations showed such an ejection. In that case, the intruder
passes the fragment very closely. In another retrograde simulation, the close
passage of the intruder accelerates a fragment onto the disk central star,
causing an increase in accretion rate resembling FU Orionis (FUor) type
outbursts both in magnitude and shape. Though spectacular, this process
is rare and therefore not suited to serve as a general mechanism to explain
FUor outbursts.

After the encounter, the disks are truncated in all of the simulations, as
reported in other studies of encounters. In general, this effect is higher for
prograde models. In the majority of the simulations, fragmentation ceases
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after the encounter, as the disk has lost too much mass.
Due to the two-dimensionality of our code, the study is restricted to

coplanar encounters. However, these encounters are expected to have the
highest effect on the disk evolution. Another restriction is that due to the
logarithmic cell spacing in the radial direction resolution decreases as the
fragments move away from the central star. A few fragments disperse once
they reach a distance of > 3000 AU from the central star, as the cell size
becomes larger than the size of the fragments. It is likely that these fragments
would survive if the grid solution were higher. Simulations with increased
resolution are planned for the future.
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Appendix A

Testing

A.1 Integration routine

The two-body problem is used to test whether the code is working and accu-
rately reproducing the behavior of a particle in a central potential: A particle
with negligible mass is launched at 10 AU distance from a solar-mass star.
The initial velocity of the particle is parallel to êϕ and its magnitude is varied
ranging from 0.5 to 1.7 times the circular orbital velocity vc. The resulting
trajectories are plotted in Figure A.1. As expected, an initial velocity v0 < vc
corresponds to an elliptical orbit with the starting point being the apoapsis,
while for vc < v0 < vesc the starting point becomes the periapsis. An initial
velocity that is exactly the escape velocity vesc =

√
2vc results in a parabolic

trajectory and initial velocities higher than the escape velocity in hyperbolic
orbits.

The solution of the integration routine is then compared to the solu-
tion obtained through Kepler’s equation. As a transcendental equation, Ke-
pler’s equation has to be solved numerically. This is done using the Newton-
Raphson method. I chose the termination condition for the Newton-Raphson
method such that the estimated error in ϕ is at most of order 10−12 which is
several orders of magnitude below the error from the numerical integration
routine. In addition, as the solution of Kepler’s equation only depends on the
initial conditions and not on any iterative steps in between, there is no cu-
mulative error that is introduced. Therefore, the solution obtained this way
is clearly reliable enough for determining the error of the integration routine.
Figure A.2 shows the error of the integration routine for various elliptical or-
bits over 1000 orbits. The error increases for orbits with higher eccentricity,
but even for the highest eccentricity considered (v0 = 0.5vc, e = 0.75) the
error after 1000 orbits is only 0.2 %.
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Figure A.1: Trajectories of the particle with different initial velocities.
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Figure A.2: Error of the angular position ∆ϕ from the integration routine
compared to the numerical solution of Kepler’s equation.
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It is important to note that coupling the routine to the hydrodynamics
code can increase the error drastically, as the force acting on the intruder
is then only calculated once per hydrodynamical timestep. However, for the
hyperbolic trajectories considered in this work, the error is estimated to stay
below 1 %.

A.2 Acceleration of intruder due to the disk

To demonstrate that the routine for calculating the acceleration of the in-
truder due to the disk is producing accurate results, I tested the routine on
a 1/r surface density disk, for which the disk potential and the gravitational
acceleration have a simple analytic form (Binney and Tremaine, 1987, p.
76f). As the routine does not take into account any mass inside the sink
cell, the acceleration of a point mass with the mass located inside the sink
cell is subtracted from the analytical solution for comparison with the nu-
merical solution. In the full simulations, the material inside the sink cell is
treated as a point mass and added to the mass of the star. Figure A.3 shows
that the numerical solution agrees well with the analytical solution through-
out most of the computational domain, with significant deviations only close
to the boundaries. In fact, the relative error stays below 1 % for radii be-
tween 30 AU and ≈ 3000 AU. The reason for the strong deviations close to
the boundary is that the analytical solution is for an infinite disk, while for
the numerical solution the disk is cut off at the inner and outer boundary.
However, in none of our simulations the intruder comes close enough to the
boundaries for these effects to be. However, in our simulations the intruder
never approaches the boundaries close enough for these effects to become
relevant.

40



Figure A.3: Comparison of the radial gravitational acceleration towards the
center of a 1/r surface density disk, calculated analytically and with the
routine used in our code.
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