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Abstract

The thesis is a contribution to Mathematical Fuzzy Logic. This is a prominent research area

within the broader field of nonclassical logics, with significant mathematical interest and also

computer science and engineering applications, e.g. in expert systems, control theory and knowl-

edge representation. Mathematical Fuzzy Logic aims to deal formally with statements involving

vague predicates, such as “X is tall”,“X is young”, “X is small”, which in many cases seem to

be neither completely true nor completely false. Such statements pose a serious challenge for

classical logic, whose semantics admits only two truth values, 0 for false and 1 for true. Fuzzy

Logic addresses this issue by admitting various degrees of truth. Its intended or standard seman-

tics is based on the continuum of values in the real interval [0, 1], ranging from absolute falsity 0
to absolute truth 1.

Showing that a logic is standard complete, i.e. it is complete with respect to the standard

semantics, is a task of crucial importance in the field of Mathematical Fuzzy Logic. It is typically

achieved using purely algebraic methods. However, an alternative proof-theoretic approach has

been recently introduced based on the study of formal proofs in the considered logic. The

key idea is to show the admissibility of a particular rule, called density, for the logic under

consideration. The techniques used for proving the admissibility of the density rule are closely

related to those that have been developed for showing the admissibility of the cut rule, one of

the central topics of investigation in proof theory.

Thus far, both the algebraic and proof-theoretic approaches to standard completeness have

been tailored to specific logics. In our work we prove general results on standard completeness

that apply to a large class of logics in a uniform way. Our results subsume many known results

on standard completeness and also yield standard completeness for infinitely many new logics.

We begin from the basic systems for uninorm logic UL and monoidal t-norm logic MTL, the

logics of left-continuous uninorms and left-continuous t-norms, respectively. We then obtain

standard completeness for large classes of axiomatic extensions of these two logics via suitable

modifications of the proof-theoretic method. In particular, we obtain sufficient conditions which

guarantee standard completeness. These conditions, formulated on the proof systems for the

logics under consideration, can be verified in an automated fashion using the Prolog program

AxiomCalc1.

Furthermore, we introduce a new algebraic method for proving standard completeness by

translating the proof-theoretic method into an algebraic framework. The new method is not only

more accessible to the algebraic community, it also simplifies some technical combinatorial

1Available online at http://www.logic.at/tinc/webaxiomcalc.
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arguments and thus leads to standard completeness proofs also for the technically involved case

of non-commutative logics.

Our results contribute to the theoretical tools of algebraic proof-theory, a new field of re-

search, which aims to combine proof-theoretic and algebraic techniques in the investigation of

non-classical logics.



Kurzfassung

Die vorliegende Thesis leistet einen Beitrag zur mathematischen Fuzzylogik, einem prominenten

Forschungsgebiet innerhalb der nicht-klassischen Logik, welches Anwendungen in der Mathe-

matik, der Informatik und den Ingenieurwissenschaften findet. Beispielhaft hierfür seien die

Forschungsgebiete der Expertensysteme, der Kontrolltheorie und der Wissensrepräsentation ge-

nannt. Ziel der mathematischen Fuzzylogik ist es, vage Aussagen, wie “X ist gross”, “X ist

jung” oder “X ist klein”, formal zu behandeln, also Aussagen, die in vielen Fällen weder voll-

ständig wahr noch vollständig falsch genannt werden können. Derartige Aussagen sind in der

klassischen Logik schwerlich zu erfassen, da deren Semantik lediglich zwei Wertigkeiten be-

sitzt, nämlich wahr und falsch. Der Ansatz der Fuzzylogik besteht darin, mehr als diese beiden

Wahrheitswerte zuzulassen. Insbesondere werden als Wahrheitswerte in der Standardsemantik

für Fuzzylogik alle Zahlen des reellen Einheitsintervalls [0, 1] zugelassen, also ein Kontinuum

von Wahrheitswerten zwischen absoluter Falschheit 0 und absoluter Wahrheit 1.

Ein wesentlicher Aspekt der mathematischen Fuzzylogik sind Vollständigkeitsresultate be-

züglich der Standardsemantik. Diese Eigenschaft, im Folgenden Standardvollständigkeit (stan-

dard completeness) genannt, wird üblicherweise mit rein algebraischen Methoden hergeleitet.

Basierend auf einer Analyse der formalen Beweise der verschiedenen Fuzzylogiken wurde je-

doch inzwischen eine beweistheoretische Alternative zu diesen Methoden entwickelt. Bei dieser

wird im Wesentlichen gezeigt, dass die sogenannte Dichtheitsregel (density rule) in einem Be-

weiskalkül für die betrachtete Logik redundant ist. Die herbei verwendeten Techniken ähneln

stark denen in Gentzens Beweis seines Hauptsatzes, einem zentralen Resultat der Beweistheo-

rie.

Standardvollständigkeitsbeweise folgend beider Ansätze, des algebraischen sowie des be-

weisetheoretischen, waren bisher auf die jeweils gegebene Logik zugeschnitten. In der vorlie-

genden Arbeit werden hingegen allgemeine Standardvollständigkeitsaussagen für große Klassen

von Logiken bewiesen. Hierdurch lassen sich, neben bereits bekannten, unendlich viele neue Lo-

giken abdecken. Als Ausgangspunkt dienen uns die Systeme der Uninorm-Logik (uninorm lo-

gic, UL) und der Logik monoidealer T -Normen (monoidal t-norm logic, MTL), gegeben durch

linksseitig stetige Uninormen beziehungsweise linksseitig stetige T -Normen. Darauf aufbauend

erhalten wir durch entsprechende Anpassungen der beweistheoretischen Methoden Standard-

vollständigkeitsresultate für große Klassen axiomatischer Erweiterungen dieser beiden Logiken,

einschließlich hinreichender Bedingungen. Diese Bedingungen können, in der beweistheoreti-

schen Formulierung der jeweiligen Logik, mithilfe des Prolog Programms “AxiomCalc” 2 über-

2Online abrufbar unter http://www.logic.at/tinc/webaxiomcalc.
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prüft werden.

Weiterhin entwickeln wir eine neue algebraische Methode für Standardvollständigkeitsbe-

weise, indem wir die beweistheoretische Methode in algebraische Begriffe übertragen. Einer-

seits erleichtert dies den algebraischen Zugang zu unseren allgemeinen Resultaten, andererseits

werden hierbei auch einige technische kombinatorische Argumente vereinfacht. Letzteres führt

insbesondere auch zu Beweisen der Standardvollständigkeit für nicht-kommutative Logiken.

Mit dieser Arbeit wird ein Beitrag zum noch jungen Forschungsgebiet der algebraischen

Beweistheorie (algebraic proof-theory) geleistet, welches beweistheoretische und algebraische

Techniken zur Untersuchung nicht-klassischer Logiken vereint.
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CHAPTER 1
Introduction

1.1 Algebraic and proof-theoretic methods in nonclassical logics

Classical logic in its modern form was mainly conceived and developed for the formalization

of mathematics, at the beginning of the 20th century. It therefore cannot be expected to be a

particularly adequate and efficient instrument for reasoning about non mathematical notions,

e.g. those involving dynamic data structures, vague propositions, beliefs, time, etc.

The increasing demands, coming from computer scientists, linguists and philosophers, for a

rigorous study of aspects of reasoning which classical logic seems to neglect, has led in the last

decades to an explosion of research on nonclassical logics and to the definition of many new

logics. Just as classical logic, nonclassical logics present themselves typically in two facets:

their syntax, with the related notions of proofs and formal derivability, and semantics, which

gives rise to a corresponding notion of validity.

Proof-theoretic methods

Pure syntactical, i.e. proof-theoretical methods, play a fundamental role in the investigation of

logics. The origins of modern proof theory trace back to the work of David Hilbert, in the con-

text of a broader investigation of the foundations of mathematics. Hilbert introduced a formal-

ization of classical logic, using what is known today as Hilbert calculus. Hilbert-style calculi

usually consist of a set of axioms and few inference rules (e.g. modus ponens) for obtaining

new derivable formulas. While these calculi are flexible for presenting logics and showing their

connection with classes of algebras, they are not so helpful when it comes to searching for,

analyzing, and reasoning about proofs. Proofs in a Hilbert calculus are indeed heavily based

on guessing the right axiom or instance of the rule to be used and therefore they lack a clear,

discernible structure. These drawbacks are overcome by a different type of formalism, the se-

quent calculus, which was introduced by Gentzen [47] for classical and intuitionistic logic and

is now, in its numerous variants, among the most popular frameworks for proof-theoretic inves-

tigations. The advantage of Gentzen-style calculi over Hilbert-style ones lies in the important
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property of analyticity enjoyed by the former: in a good (i.e. analytic) sequent calculus, proofs

use only subformulas of the formula to be proved and therefore can be constructed in a more

mechanical way. Analyticity for a given sequent calculus is usually shown by proving the ad-

missibility (or in its algorithmic form, the elimination) of a particular rule, the cut rule. Once

a calculus is shown to be analytic, it can be used as a basis for automated deduction and for

investigating properties of the corresponding logic. Proofs of logical properties obtained via

proof-theoretic methods usually have a constructive nature: for instance a decidability result

proved using a Gentzen-style calculus would give a concrete decision procedure, and similarly

an interpolation result would provide a procedure to construct a concrete interpolating formula.

These proof-theoretic approaches suffer however from some limitations. First, it is not always

easy to introduce Gentzen-style analytic calculi for logics presented Hilbert-style. Results about

specific calculi are usually difficult to generalize to related logics, e.g. obtained by adding or

removing axioms. Moreover, negative and limitative results (e.g. non provability of a formula

or non-existence of an analytic calculus for a certain logic) are particularly hard to achieve by

proof-theoretic methods alone.

Algebraic methods

One of the simplest and most natural semantics for nonclassical logics are provided by suitable

algebraic structures. The study of the interplay between proof systems and classes of algebraic

structures is the main focus of the field of Abstract Algebraic Logic [15]. Results in this area pro-

vide, in very general settings, completeness theorems (algebraization) connecting nonclassical

logics presented axiomatically and corresponding general classes of algebras. This is only the

starting point towards an extensive use of algebraic methods for the investigation of nonclassical

logics: one can show decidability, via the finite embeddability property [16, 52], interpolation,

via amalgamation [67], and the disjunction property, via well-connectedness [54], to name a few

(see also [46]).

Algebraic proof theory

The algebraic and proof-theoretic approaches to logics have traditionally developed in parallel,

non-intersecting ways. In recent years, however, an increasing number of investigations pro-

ceeded towards an integration of the two approaches and of their methods, to overcome their

respective limitations. In particular, [24–27] inaugurated a new research area, dubbed algebraic

proof theory, which joins algebra and proof theory in a novel way, going beyond the mere com-

bination of results of the two fields, but rather integrating their techniques. Algebraic proof

theory is based on two fundamental ideas: (1) a proof-theoretic treatment of algebraic equations

over residuated lattices and (2) the algebraization of proof-theoretic methods. On the one hand,

(1) led to the investigation of the transformation of equations into equivalent quasiequations

(corresponding to rules in proof theory) and allowed for uniform proofs of preservation under

completions, for large classes of subvarieties of residuated lattices [26]. On the other hand, for

(2), a strong form of cut-admissibility was proved algebraically and in a uniform way for classes

of substructural logics [24,25,27] (see [14,74] for earlier algebraic proofs of cut-admissibility).

Beyond the achievement of these general results on completions and cut-admissibility, the in-

2



terplay of algebraic and proof-theoretic techniques also shed light on the expressive power of

some Gentzen-style calculi: what can (and more importantly, what cannot) be formalized in the

frameworks of of sequent calculi and in their generalization, hypersequent calculi [3].

1.2 Fuzzy Logic and standard completeness

In the present work, we show how the interaction of algebraic and proof-theoretic methods can

be profitable to address an important problem in the field of Fuzzy Logic. The field is a promi-

nent member of the broader area of nonclassical logics: it is the object of a growing research

literature, as witnessed e.g. by [35, 36] and has applications in many areas of computer science,

in field such as expert systems [80], knowledge representation and the semantic web [62, 77].

Fuzzy Logic is generally motivated by the intuition that the usual two truth values of classical

logic, 0 for false and 1 for true, do not suffice to model reasoning about vaguely defined pred-

icates, such as “tall”, “young”, “warm”, etc. In other words, its crucial underlying assumption

is that truth comes in degrees. The current research on Fuzzy Logic arises historically from the

following traditions:

• The philosophical and linguistic investigations concerning vagueness and the paradoxes

involved therein, such as the well known Sorites paradox, see e.g. [56].

• The tradition of many-valued logics, which were investigated among others by Post,

Kleene, Łukasiewicz, Gödel and Belnap. There, truth values different from 0 and 1 (e.g. a

third truth-value standing for “unknown”) were investigated out of various philosophical

or purely algebraic motivations.

• The theory of Fuzzy Sets, first developed by Zadeh [85], which attempted to model vague

concepts as functions v : V → [0, 1]. The intended meaning of the real value v(x) is the

degree of membership of the element x to V , ranging from 1 representing absolute, crisp

membership and 0, absolute non membership.

The theory of Fuzzy Sets, which was mainly oriented towards engineering applications, is

usually referred to under the name of “Fuzzy Logic”, or sometimes “Fuzzy Logic in broad

sense” [86], but despite its name, the objects of investigation are often unrelated to those typical

of mathematical logic, see e.g. [19]. In the present work, by Fuzzy Logic we mean instead the

“Mathematical Fuzzy Logic” or “Fuzzy Logic in narrow sense”. This emerged as a discipline

of its own by the end of the ’90s, in particular with Hájek’s book “Metamathematics of Fuzzy

Logic” [49], which represented one of the first systematizations of the field. One of the aims

of this book was the translation of part of the issues of “Fuzzy Logic in broad sense” in the

traditional framework of mathematical logic. In Hájek’s approach, the real interval [0, 1] was

assumed as the set of truth values and the so-called continuous t-norms and related residua were

proposed as the most adequate operations over [0, 1] to interpret the logical connectives conjunc-

tion and implication. To capture this intended semantics, an axiomatic system was introduced:

the Basic logic BL. This represented a turning point for the discipline: on the one hand, well-

known older many-valued logics in the literature, such as Gödel [48] or Łukasiewicz [61] logic,

3



could then be seen as axiomatic extensions of BL. On the other hand, it paved the way for the

introduction of many new logics, usually obtained as axiomatic systems which either extended

or restricted the axiomatic system for BL. Among them worth mentioning are the monoidal

t-norm logic MTL [42], uninorm logic UL [66] and pseudo monoidal t-norm logic psMTLr.

Fuzzy Logic inherited then the typical agenda of mathematical logic (showing completeness,

decidability, complexity results etc), and researchers started to develop and apply a full range of

proof-theoretical [63] and algebraic [52] methods for them.

Standard completeness

As for the vast majority of nonclassical logics, the axiomatic systems introduced in the area of

Mathematical Fuzzy Logic can be shown to be complete with respect to classes of corresponding

algebraic structures, using methods from Abstract Algebraic Logic. These results are however

in some respect unsatisfactory: general algebraic semantics may appear just as a reformulation

of the syntax in algebraic terms.

For instance, the completeness of Basic logic BL (or for that matters MTL, UL) with re-

spect to the corresponding class of BL-algebras (MTL, UL-algebras, respectively) can be easily

established. But, coherently with the initial motivations to model vague predicates and the roots

in the theory of fuzzy sets, it is the algebras over the real interval [0, 1] which represent the

intended semantics for these logics. For instance, for BL the intended or standard semantics

is the algebraic structure over [0, 1], where conjunction is interpreted as a continuous t-norm

and implication as its residuum. Standard completeness, i.e. the completeness of a logic with

respect to the algebras over the real interval [0, 1], is thus a fundamental issue for Mathematical

Fuzzy Logic. This can be reformulated, in purely algebraic term, as the problem of establishing

whether the algebras over [0, 1] in certain varieties (or quasivarieties) generate the whole variety

(resp. quasivariety).

Proofs of standard completeness were (and still are) usually tailored to specific logics, and

developed ad hoc using purely algebraic techniques, see e.g. [23, 31, 34, 41, 42, 49, 51, 58, 71].

While the early algebraic proofs of standard completeness for BL [31], and for the three main

continuous t-norm based logics, i.e. Łukasiewicz [22], Gödel [40] and Product [57] logics each

have their own peculiar structure, since Jenei and Montagna’s [58] algebraic proof of standard

completeness of MTL most proofs of standard completeness attacked the problem along the

following lines.

Given a logic L, described as a Hilbert-style system, the first step is usually to identify a

general class of algebraic structures (L-algebras), for which the logic is complete.

A further, and more interesting step, consists of verifying whether the completeness result

can be sharpened to the class of linearly ordered L-algebras, so called L-chains, that is algebras

where every two elements can be compared. Completeness of a logic L with respect to the

corresponding class of L-chains has been advocated as a defining feature of fuzzy logic [20]

and is now understood in very general terms, see e.g. [33, 52]. These investigations have led

to the identification of the class of so-called semilinear (or representable) algebraic varieties,

i.e. the varieties whose subdirectly irreducible members are chains, and for which therefore the

step from the general algebraic completeness result to the completeness with respect to chains

4



is guaranteed to hold. Once completeness with respect to chains is achieved, to show standard

completeness two more steps remain to be proved:

(i) Show that any countable L-chain can be embedded into a countable dense L-chain by

adding countably many new elements to the algebra and extending the operations appro-

priately. This establishes rational completeness: a formula is derivable in L iff it is valid

in all dense L-chains.

(ii) To move from rational to standard completeness, a countable dense L-chain has to be

embedded into a standard L-algebra (an L-algebra with lattice reduct [0, 1], see Defi-

nition 2.2.1) using a Dedekind-MacNeille style completion, that is a generalization of

Dedekind’s embedding of the rational numbers into the extended real field (i.e. R with

±∞).

While some general results exist for (ii) (see [26]), no systematic approach seems to exist for (i)

(rational completeness), which relies on finding the right embedding, if any.

A different approach to (i) was introduced in [66] and is based on proof-theoretic techniques.

The main idea is that the admissibility of a particular syntactic rule (called density) in a logic L
leads to a proof of rational completeness for L. Formalized Hilbert-style, the density rule has

the following form
(ϕ→ p) ∨ (p→ χ) ∨ ψ

(ϕ→ χ) ∨ ψ
(density)

where p is a propositional variable not occurring in ϕ, χ, or ψ. Ignoring ψ and reading → as the

ordering ≤, this can be read contrapositively as saying (very roughly) “if ϕ > χ, then ϕ > p and

p > χ for some p”. Hence the name “density” to correspond to the density of the usual order of

the rational numbers, and the intuitive connection with rational completeness.

The proof-theoretic approach was used to establish standard completeness for various log-

ics, where, in some cases, the algebraic techniques did not appear to work, e.g. for UL [66].

Following this method, to establish rational completeness for a logic L expressed Hilbert-style

we need to check that the density rule is eliminable (or admissible), i.e. that density does not

enlarge the set of provable formulas. Proving this is not easy in a Hilbert-style formulation of

a logic, but requires instead analytic calculi. Hypersequent calculi have proved to be suitable

calculi for this purpose.

1.3 Aims and outline of the thesis

Many papers in the literature are devoted to ad-hoc proofs of standard completeness, which use

either algebraic or proof-theoretic techniques.

The aim of our work is to address the problem of standard completeness in a more systematic

way. Using tools from algebraic proof theory, we aim at developing methods which apply to

large classes of logics in a uniform way. More precisely we introduce:

• General methods for density elimination for axiomatic extensions of UL∀ and MTL∀ (the

first-order version of UL and MTL). Our methods extend the proof-theoretic approach

introduced in [66] and refined in [28].

5



• A new algebraic method for standard completeness, which is inspired by the proof-theoretic

technique of density elimination. Using this method, we obtain general results on exten-

sions of the logic psMTLr, the noncommutative version of MTL.

The thesis is organized as follows. Chapter 2 and 3 are devoted to preliminaries and to a survey

of already known proofs and results on standard completeness.

In Chapter 2 we give the necessary algebraic preliminaries, introduce the notion of Dedekind–

MacNeille completion, and recall results on preservation of equations under this construction.

In Chapter 3 we recall basic preliminaries on propositional and first-order logics, and explore

the issues involved in the algebraic and proof-theoretic methods which have been developed to

address standard completeness. Furthermore, we recall the concept of the substructural hierar-

chy [25] and the systematic introduction of analytic calculi which is based on it.

In Chapters 4, 5 and 6 we present our original results. More precisely, in Chapter 4 we

address standard completeness for axiomatic extensions of the logic MTL∀, using the proof-

theoretic approach based on density elimination. We extend the method of density elimination

introduced in [28] to a large class of of logics, in a uniform and systematic way. The main result

is a sufficient condition for standard completeness which works for large classes of axiomatic

extensions of MTL∀. A check of this condition, which applies to hypersequent calculus rules,

is implemented in a program which is available online.

In Chapter 5 we address standard completeness for axiomatic extensions of the logic UL∀.

The proof of density elimination is complicated here by the absence of the weakening rules

in the corresponding hypersequent calculi (in algebraic terms, integrality of the corresponding

residuated lattice). The main result here is a sufficient condition for standard completeness of

classes of axiomatic extensions of UL∀.

Chapter 6 contains a new algebraic method to prove standard completeness. The method

is inspired by the proof-theoretic approach and uses residuated frames [45]. This chapter has

a slightly different structure with respect to the others and requires the introduction of some

additional definitions and concepts from the literature. Hence it starts with preliminaries on

residuated frames and noncommutative logics. Then it proceeds with the reformulation of the

results in Chapter 4 and part of Chapter 5 in this new algebraic framework and the extension of

the results in Chapter 4 to the noncommutative case.

In Chapter 7 we summarize the results of the thesis and discuss open problems and future

research directions.

1.4 Publications

This thesis is based on the following publications:

• P. Baldi, A. Ciabattoni and L. Spendier. Standard Completeness for Extensions of MTL:

an Automated Approach. Proceedings of Workshop on Logic, Language, Information

and Computation (WoLLIC 2012), L. Ong and R. de Queiroz (Eds.), LNCS 7456, pp.

154–167. Springer, Heidelberg (2012).

6



• P. Baldi. A note on standard completeness for some axiomatic extensions of uninorm

logic. Soft Computing. 18(8): 1463-1470 (2014).

• P. Baldi and A. Ciabattoni. Uniform proofs of standard completeness for extensions of

first-order MTL. Theoretical Computer Science. Accepted for publication.

• P. Baldi and K. Terui. Densification of FL chains via residuated frames. Algebra Univer-

salis. Accepted for publication.

• P. Baldi and A. Ciabattoni. Standard completeness for uninorm-based logics. Proceedings

of IEEE International Symposium on Multiple-Valued Logic (ISMVL 2015), pp. 78–83,

Waterloo (Canada).

and on some unpublished results [9].
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CHAPTER 2
Algebraic preliminaries

In this chapter we briefly recall basic notions on residuated lattices and completions.

2.1 Residuated lattices

Residuated lattices are fundamental algebraic structures which provide general semantics for the

logics we will investigate (see [46] for an extensive treatment). We start by recalling some basic

notions on lattice and order theory, see e.g. [18] for more details.

Definition 2.1.1. A lattice is an algebraic structure (A,∧,∨) with A a nonempty set, and ∧
and ∨ commutative, associative, idempotent operations, satisfying in addition the following

absorption laws:

• x = x ∨ (x ∧ y)

• x = x ∧ (x ∨ y)

The following is a well known fact, connecting the algebraic presentation of lattices with

partial order relations. Recall that a partial order is a transitive, asymmetric, reflexive binary

relation on a set. Let (A,≤) be a partially ordered set and X ⊆ A. We denote by supX, infX
the supremum and infimum element of the set X.

Lemma 2.1.2. Let A = (A,∧,∨) be a lattice and ≤ be the binary relation on A defined by

(∗) x ≤ y ⇔ x = x ∧ y.

The relation ≤ is a partial order such that, for any x, y ∈ A, there is a supremum element

sup{x, y} and an infimum inf{x, y} inA, with respect to ≤. Conversely, let (A,≤) be a partially

ordered set such that for any x, y ∈ A there are sup{x, y} and inf{x, y} in A. We obtain a

lattice, letting x ∨ y = sup{x, y} and x ∧ y = inf{x, y}.
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In what follows we will freely move between the algebraic and the order-theoretic presenta-

tion of lattices. In virtue of the equivalence (∗), we call equation not only an expression of the

form t = s, but also t ≤ s. The following are important properties of partial order relations. As

usual, by < we denote the strict order associated with a partial order ≤, i.e. we let x < y iff

x ≤ y and x 6= y.

Definition 2.1.3. Let A = (A,≤) be a partially ordered set. We say that

• A is a chain if the order ≤ is total, i.e. for any x, y ∈ A, either x ≤ y or y ≤ x.

• A contains a gap (g, h) if g < h (g, h ∈ A) and there is no element p ∈ A such that

g < p < h.

• A is dense if it does not contain any gap, i.e. if g < h (g, h ∈ A) implies g < p < h for

some p ∈ A.

• A is bounded if it has a least element ⊥ and a greatest element ⊤.

• A is complete if, for every X ⊆ A, supX ∈ A and infX ∈ A (where X might be an

infinite set as well).

In what follows, we say that an algebra A satisfies one of the properties above, if it has a

lattice reduct, whose corresponding order does.

We recall now basic notions of universal algebra mainly taken from [18].

Definition 2.1.4. A language L or type of algebras is a function ar : CL → N, where CL is

a countable set of function symbols, giving for each one its arity. The 0-ary functions are also

called constants. Let Var be a fixed countable set of symbols called variables. The set FmL is

the least set containing Var and closed under the functions in CL, i.e. for each n-ary function

symbol f ∈ CL and every x1, . . . , xn ∈ FmL, f(x1, . . . , xn) is in FmL. Elements of FmL will

be denoted in this chapter by s, t, u, v. We denote by FmL the formula algebra, or absolutely

free algebra (see e.g. [18, 52]) for the language L, whose support is the set FmL.1

We can now define the notion of evaluation and a consequence relation based on an algebra.

Definition 2.1.5. Let A be an algebra of type L. An evaluation into A is a homomorphism v
from the formula algebra FmL into A, determined uniquely by the images of variables. Let

E = {ti = si | i ∈ I} and t = s be equations in FmL. The equational consequence relation

|=A is defined as follows:

E |=A t = s iff for all evaluations v we have v(t) = v(s)
whenever v(ti) = v(si) for all i ∈ I .

1The formula algebra defined here is usually known as term algebra, see [18] and its element are called terms.

We preferred formula algebra, as in the next chapters, under the same notion of language, functions will stand for

connectives and elements of the algebra will stand for propositional formulas and be denoted by α, β, . . .
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The definition of |=A can be extended to an arbitrary class of algebras V, by setting E |=V

t = s iff E |=A t = s holds for every A ∈ V. A class of algebras V is an equational class if

there is a set of equations E such that A ∈ V if and only if |=A t = s for every equation t = s
in E. In what follows, we say that two equations t1 = s1 and t2 = s2 are equivalent in a class

of algebras V, if |=V t1 = s1 if and only if |=V t2 = s2.

Definition 2.1.6. A class of algebras is said to be a variety if it is closed under subalgebras,

homomorphic images and direct products.

A famous result by Birkhoff shows that varieties coincide with equational classes.

Theorem 2.1.7. (Birkhoff) [18] V is an equational class if and only if V is a variety.

Let V be a variety, defined by the equations E. By a subvariety V′ we mean a subclass of V
that is a variety as well. Clearly, in view of Theorem 2.1.7, V′ is an equational class defined by

a set E′ ⊇ E of equations.

Other important concepts that we need from universal algebra are that of subdirect product

and subdirectly irreducible algebras. In what follows, we denote by
∏
i∈I Ai the usual direct

product of a family 〈Ai | i ∈ I〉 of algebras.

Definition 2.1.8. An algebra A is a subdirect product of a family 〈Ai | i ∈ I〉 of algebras if the

following hold:

1. A is a subalgebra of
∏
i∈I Ai,

2. πi(A) = Ai for all i ∈ I , where πi denotes the projection to the i-th component.

Given an algebra A, a family 〈Ai | i ∈ I〉 of algebras and an embedding f :
A→

∏
i∈I Ai, we say the f is subdirect if f [A] is a subdirect product of 〈Ai | i ∈ I〉.

Definition 2.1.9. An algebra A is said to be subdirectly irreducible if it is nontrivial and for

every subdirect embedding f : A →
∏
i∈I Ai there is i ∈ I such that πi ◦ f : A→ Ai is an

isomorphism.

We are now ready to move to residuated lattices.

Definition 2.1.10. A residuated lattice is a structure A = (A,∧,∨, ·, \, /, e) where

• (A,∧,∨) is a lattice,

• (A, ·, e) is a monoid, i.e. · is an associative operation and e is a neutral element for ·,

• for each x, y, z ∈ A the residuation property holds, i.e.

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/.y

Definition 2.1.11. An FL-algebra is a pointed residuated lattice, i.e. a residuated lattice A =
(A,∧,∨, ·, \, /, e, f) with a distinguished element f ∈ A. An FL-algebra is
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(e) commutative if x · y = y · x for all x, y ∈ A,

(c) contractive if x ≤ x · x for every x ∈ A,

(i) integral if e is the greatest element,

(o) f-bounded if f is the least element,

(⊥) bounded if there is a least element, denoted by ⊥.

Remark 2.1.12. The element f allows us to define the two unary operations ∼a = a\f and

−a = f/a, which are called respectively left and right negation. Note that, if an FL-algebra

has a least element ⊥, then it also has a greatest element ⊥/⊥ = ⊥\⊥, which we denote by ⊤.

Recall that all the defining properties of FL-algebras, including residuation, can be ex-

pressed equationally [17], hence these structures form algebraic varieties. We use the subscripts

e, c, i, o,⊥ to indicate the properties (e), (c), (i), (o), (⊥) above2. If a variety satisfies both

(i) and (o), we use the subscript w. For instance, FLew denotes the variety of commutative,

f-bounded, integral FL-algebras. We will mostly consider the variety FLe as our basic algebraic

semantics. It is easy to show that for FLe-algebras we have \ = /. Hence we use the operation

symbol → to denote both of them. Negation in FLe-algebras can be thus simply defined as

¬x = x→ f . Moreover, we can simplify the residuation property as follows:

x · y ≤ z ⇐⇒ x ≤ y → z.

The variety FLw is by definition bounded (i.e. FLw coincides with FL⊥w) and the constants e
and f coincide with ⊤ and ⊥. Hence we can dispense with the latter constants. More precisely,

in correspondence with each variety, we will use the following languages:

• LFL denotes the language of FL-algebras, i.e. the language consisting of binary functions

{·,∧,∨, /, \} and constants {e, f}

• LFLe
denotes the language of FLe-algebras, i.e. with binary functions {·,∧,∨,→} and

constants {e, f}

• LFL⊥
denotes the language of FL⊥-algebras, i.e. with binary functions {·,∧,∨, /, \} and

constants {e, f,⊤,⊥}

• LFLw denotes the language of FLw-algebras, i.e. with binary functions {·,∧,∨, /, \} and

constants {e, f}.

The languages are combined in obvious ways, for instance the language LFLew
for FLew-

algebras contains the binary functions {·,∧,∨,→} and constants {e, f}. We assume in the

following that any variety of FLx-algebras is defined over the language LFLx , for any x ⊆

2(e), (c), (i), (o) correspond to structural rules in the sequent calculus: (e) correspond to the exchange rule,

(i) to the weakening left rule (wl), (o) to the weakening right rule (wr), and (c) to the contraction left rule, see

Table 3.2.
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{e, c, i, o,⊥}. In what follows we adopt the usual convention of writing xy for x · y. We also

write x\y/z for x\(y/z) and (x\y)/z, since the latter two are equal in every FL algebra. In

the absence of parentheses, we assume that · is performed first, followed by /, \, and finally the

lattice operations. If → is present in the language, it comes after the lattice operations.

A subvariety V of FL is said to be semilinear if |=V = |=VC
, where VC consists of all the

chains in V. This is equivalent to requiring that every subdirectly irreducible algebra in V is a

chain, see [52]. Let V be a a subvariety of FL. We denote by Vℓ the smallest semilinear variety

containing V.

Theorem 2.1.13. [52] Let V be a subvariety of FL.

• Vℓ is axiomatized over V by the equation λa((x ∨ y)\y) ∨ ρb((x ∨ y)\x) = e,

• If V is a subvariety of FLe, V
ℓ is axiomatized over V by ((x→ y)∧e)∨((y → x)∧e) = e.

• If V is a subvariety of FLei, V
ℓ is axiomatized over V by (x→ y) ∨ (y → x) = e.

λa and ρb are conjugate operators defined by:

λa(x) := (a\xa) ∧ e, ρb(x) := (bx/b) ∧ e.

The varieties of FLℓe⊥-algebras, FLℓw, FLℓew-algebras are also known in the literature as

UL-algebras, psMTLr-algebras, MTL-algebras, respectively, see e.g. [21]. These structures

provide an algebraic semantics for the logics UL, psMTLr, MTL, which we will introduce in

the next chapters.

2.2 Examples: standard FL-algebras

FL-algebras constitute a very broad abstraction of many different algebraic structures introduced

in the literature, ranging from the ideals of a ring [60] to Boolean algebras. Well-known varieties,

such as the MV-algebras [32], Heyting algebras and the above mentioned Boolean algebras [18,

46], though originally defined in different signatures, can be easily shown to be term-equivalent

to subvarieties of FL-algebras. We give now some concrete examples of FL-algebras, from the

class of the so-called standard FL-algebras. The “standard” here comes from Mathematical

Fuzzy Logic, as these algebras form the intended semantics for Fuzzy Logic, see Chapter 1

and [21, 49]. Proving completeness of logics expressed Hilbert-style with respect to standard

algebras will be the main focus of this thesis.

Definition 2.2.1. A standard FL-algebra is an FL-algebra whose lattice reduct is the real inter-

val [0, 1], with the usual order.

To illustrate some examples of standard FL-algebras, we start by recalling the notion of

(pseudo) t-norms and uninorms.

Definition 2.2.2. Let ([0, 1],≤) be the real interval [0, 1] equipped with the usual real order-

ing ≤.
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• A pseudo-uninorm is an associative, monotone operation ∗ : [0, 1]2 → [0, 1] compatible

with the order ≤, with neutral element e ∈ [0, 1].

• A uninorm [84] is a commutative pseudo-uninorm

• A (pseudo) t-norm [49] is a (pseudo) uninorm with neutral element e = 1.

Definition 2.2.3.

• Let ∗ be a t-norm or a uninorm. The residuum of ∗ is defined as

x→∗ y = sup{z | x ∗ z ≤ y}

for any x, y in [0, 1].

• Let ∗ be a pseudo t-norm or a pseudo-uninorm. We need to distinguish two residua of ∗ :

– The left residuum

x\∗y = sup{z | x ∗ z ≤ y}

– The right residuum

y/∗x = sup{z | z ∗ x ≤ y}

In the following examples, we say that a (pseudo) t-norm or uninorm ∗ : [0, 1]2 → [0, 1] is

continuous if both functions fx(y) = x ∗ y and fy(x) = x ∗ y are continuous with respect to the

standard topology over [0, 1], i.e. they commute with suprema

sup
x<z

x ∗ y = z ∗ y sup
y<z

x ∗ y = x ∗ z

and with infima

inf
x>z

x ∗ y = z ∗ y inf
y>z

x ∗ y = x ∗ z

A (pseudo) t-norm or uninorm is said to be left-continuous (resp. right continuous) if the func-

tions fx and fy only commute with suprema (resp. infima). All uninorms are either conjunctive

or disjunctive (see [84]), where by conjunctive we mean that 0 ∗ 1 = 0 and by disjunctive that

0 ∗ 1 = 1. It can be easily shown that continuous conjunctive uninorms are already continuous

t-norms, see e.g. [66]. In the following we recall the connection between (pseudo) uninorms,

t-norms and FL-algebras.

Lemma 2.2.4.

• [42] A t-norm ∗ and its residuum →∗ satisfy the residuation property in Definition 2.1.10

if and only if ∗ is left-continuous. Hence ([0, 1],max,min, ∗,→∗ , 0, 1) is an FLew-

algebra if and only if ∗ is left-continuous.

• [49] Let ∗ be a t-norm and →∗ its residuum. Then ∗ is continuous if and only if the

algebra ([0, 1],max,min, ∗,→∗ , 0, 1) is an FLew-algebra, which satisfies in addition

the divisibility equation

(div) 1 ≤ (x ∧ y) →∗ (x ∗ (x→∗ y))
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• [59] Let ∗ be a pseudo t-norm and \∗, /∗ its residua. Then ∗ is left-continuous if and only

if the algebra ([0, 1],max,min, ∗, \∗ , /∗, 0, 1) is an FLw-algebra.

• [66] Let ∗ be a uninorm and →∗ its residuum. The algebra ([0, 1],max,min, ∗,→∗ ,
e, f, 0, 1) is an FLe-algebra iff ∗ is a left-continuous conjunctive uninorm.

Note that FLℓew-algebras satisfying (div) are known in the literature as BL-algebras, as they

form the algebraic semantics of basic logic BL, see Example 3.1.4 and [49].

Example 2.2.5. The following are the most important examples of continuous t-norms:

• x ∗ y = min(x, y) (Gödel t-norm)

• x ∗ y = max(x+ y − 1, 0) (Łukasiewicz t-norm)

• x ∗ y = x · y (Product t-norm)

(all the operations to the right of the equality symbol denote the usual operations over the reals).

The three operations above are in a sense paradigmatic examples of continuous t-norms. Indeed,

it was proved in [72] that any continuous t-norm can be represented as an ordinal sum of Gödel,

Łukasiewicz and Product t-norms. For any of these three continuous t-norms, the value of the

residuum x→∗ y is 1 when x ≤ y. In case x > y, we have

• x→∗ y = y if ∗ is Gödel t-norm

• x→∗ y = min(1, 1 − x+ y) if ∗ is Łukasiewicz t-norm

• x→∗ y = y/x if ∗ is Product t-norm

(all the operations to the right of the equality symbol denote the usual operations over the reals,

and in particular / stands here for the usual division). We call the above implications Gödel,

Łukasiewicz, and Product implication, respectively. The corresponding negations are defined as

¬∗x = x→∗ 0. It can be easily checked that

• ¬∗x =

{
1 if x = 0

0 otherwise.
if →∗ is Gödel or Product implication

• ¬∗x = 1− x if →∗ is Łukasiewicz implication.

Gödel and Product negation are called strict or pseudocomplement [21], while Łukasiewicz

negation is said to be involutive, as it satisfies ¬∗¬∗x = x for any x ∈ [0, 1].

Example 2.2.6. An example of a left-continuous but not continuous t-norm is the following [42].

Let an order-reversing function n : [0, 1] → [0, 1] with n(n(x)) ≥ x for all x ∈ [0, 1] and

n(1) = 0 be called a weak negation. Given a weak negation n, the weak nilpotent minimum

t-norm ∗WNM(n) is defined as:

x ∗ y =

{
0 if x ≤ n(y)

min{x, y} otherwise.

Each ∗WNM(n) is left-continuous, but not (right)-continuous.
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Example 2.2.7. An example of a left-continuous pseudo t-norm is as follows [21], letting 0 <
a < b < 1 and, for any x, y ∈ [0, 1]

x ∗ y =

{
0 if x ≤ a and y ≤ b

min{x, y} otherwise.

Example 2.2.8. Prominent examples of left-continuous conjunctive uninorms that are not t-

norms are idempotent left-continuous conjunctive uninorms [6]. Consider for instance the fol-

lowing, where n is a weak negation (see Example 2.2.6) n : [0, 1] → [0, 1] such that n(e) = e

x ∗ y =

{
min{x, y} if y ≤ n(x)

max{x, y} otherwise.

2.3 The Dedekind-MacNeille completion

Completions are a deeply investigated topic in the field of lattices and ordered structures, see

e.g. [46,50]. The abstract notion of completion emerged as a generalization of the construction of

the real numbers from the rationals via Dedekind cuts. Intuitively, a completion can be thought

of as a uniform way of “filling” the gaps in an ordered structure. More formally, given an

algebra A with a lattice reduct, a completion of A consists of a complete (see Definition 2.1.3)

algebra A
+ together with an embedding v : A −→ A+. A completion (A+, v) is join-dense

if x =
∨
{a ∈ v[A] : a ≤A+ x}, and meet-dense if x =

∧
{a ∈ v[A] : x ≤A+ a} for every

x ∈ A+. A join-dense and meet-dense completion is called a Dedekind-MacNeille completion

(DM completions in the following). This is a generalization of Dedekind’s embedding of the

rational numbers into the extended real field (i.e. R with ±∞). It is known that the lattice reduct

of a DM completion is uniquely determined (up to isomorphism fixing A) by join and meet

density [13, 76]. For instance, the DM completion of the rational unit interval ([0, 1]Q,≤) is

just ([0, 1]R,≤). In what follows, we give an explicit definition of the DM completion of an

FL-algebra.

Definition 2.3.1 (Dedekind-MacNeille completion). [46, 66]

Let A = (A,∧,∨, ·, \, /, f, e) be an FL-algebra and X ⊆ A. The sets of upper and lower

bounds of X are defined as follows:

Xu = {y ∈ A | x ≤ y for all x ∈ X} X l = {y ∈ A | y ≤ x for all x ∈ X}

Let DM(A) = {X ⊆ A | (Xu)l = X}. For any, X,Y ∈ DM(A) we define

• X ∨DM Y = ((X ∪ Y )u)l

• X ∧DM Y = X ∩ Y

• X ·DM Y = ({x · y | x ∈ X, y ∈ Y }u)l

• Y \DMX = {z ∈ A | y · z ∈ X for all y ∈ Y }

• X/DMY = {z ∈ A | z · y ∈ X for all y ∈ Y }
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• eDM = {e}l fDM = {f}l

The structure A
+ = (DM(A),∧DM ,∨DM , /DM , \DM , ·DM , fDM , eDM ) is a complete FL-

algebra, the Dedekind-MacNeille completion of A.

The following is a well known fact about DM completions, see e.g. [46, 66].

Lemma 2.3.2. Let A be an FL-algebra and A
+ its DM completion. The map e : A→ DM(A),

associating to any x ∈ A the set {x}l in DM(A), is a regular embedding, i.e. an injective map,

preserving all operations and all existing (also infinite) meets and joins in A.

DM completions can be easily shown to preserve all the important ordering properties in

Definition 2.1.3 and 2.1.11.

Lemma 2.3.3. [52,66] Let A be an FLx-algebra, with x ⊆ {e, o, i, c}. Then its DM completion

A
+ is an FLx-algebra as well. Moreover if A is a dense algebra and/or a chain, A+ is a dense

algebra and/or a chain, respectively.

Note that we did not consider the properties of boundedness and completeness from Defini-

tion 2.1.3, as DM completions are by definition always complete, hence bounded.

The equations (e), (o), (i), (c) in Definition 2.1.11 are just a few examples of equations

that are preserved under DM completion. We recall in the following the more general results

proved in [26, 27], concerning the preservation of equations under DM completion. A key con-

cept in [26, 27] is the classification of equations in the so-called substructural hierarchy, whose

classes we define below. This classification was originally introduced in [25], from a proof-

theoretical perspective, as we will see in the next chapter.

Definition 2.3.4. For each n ≥ 0, we define the sets Pn,Nn of elements of the formula algebra

FmL in the language L = LFL as follows:

(0) P0 = N0 = is the set of variables.

(P1) e and all t ∈ Nn belong to Pn+1.

(P2) If t, u ∈ Pn+1, then t ∨ u, t · u ∈ Pn+1.

(N1) f and all t ∈ Pn belong to Nn+1.

(N2) If t, u ∈ Nn+1, then t ∧ u ∈ Nn+1.

(N3) If t ∈ Pn+1 and u ∈ Nn+1, then t\u, u/t ∈ Nn+1.

In other words, Pn and Nn (n ≥ 1) are generated by the following BNF grammar:

Pn ::= Nn−1 | e | Pn ∨ Pn | Pn · Pn,
Nn ::= Pn−1 | f | Nn ∧ Nn | Pn\Nn | Nn/Pn.

By residuation, any equation u = v can be written as e ≤ t. We say that u = v belongs to

Pn (Nn, resp.) if t does.
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Figure 2.1: Substructural hierarchy (Nn,Pn) [25]

The classes (Pn, Nn) constitute the substructural hierarchy. Figure 2.1 depicts the hierarchy,

with the arrows representing the inclusion relation between the classes. Among those classes,

relevant to subsequent arguments are N2 and P3. The former includes:

xy ≤ yx (e)

x ≤ xx (c)

x ≤ e (i)

f ≤ x (o)

xm ≤ xn (knotted axioms, m,n ≥ 0)

e ≤ ∼(x ∧ ∼x) (no-contradiction)

P3 includes:
e ≤ x ∨ ∼x (excluded middle)

e ≤ ∼x ∨ ∼∼x (weak excluded middle)

e ≤ ∼(x · y) ∨ ((x ∧ y)\(x · y)) (weak nilpotent minimum)

e ≤ ∼(x · y)n ∨ ((x ∧ y)n−1\(x · y)n) (wnmn)

e ≤ p0 ∨ (p0\p1) ∨ · · · ∨ ((p0 ∧ · · · ∧ pk−1)\pk) (bounded size k)

We give now a normal form for equations within the classes N2 and P3, and a definition of the

subclass P ′
3 of P3, which we need to consider in the absence of integrality.

Lemma 2.3.5. [27]

• Any equation in N2 is equivalent to a finite set of equations of the form t1 · · · tm ≤ u
where

– u = f or u = u1 ∨ · · · ∨ uk, where each ui is a product of variables.

– Each ti is of the form
∧

1≤j≤ni
lj\vj/rj where vj = f or a variable, lj and rj are

products of variables.

• Any equation in P3 is equivalent to e ≤ t where t =
∨

1≤i≤n

⊙
1≤j≤ni

sij , each sij is in

N2 and
⊙

stands for the product · of finitely many elements.

Definition 2.3.6. An equation e ≤ t is in the class P ′
3 if and only if t =

∨
1≤i≤n

⊙
1≤j≤ni

(sij)∧e
where each sij is in N2 and (sij)∧e is a compact notation for sij ∧ e.
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The algorithm : from equations to analytic clauses

The preservation of equations in N2 and P3 (or subclasses thereof, such as P ′
3) under DM

completion is shown in [26, 27], adapting an algorithm which was first introduced in [25] in a

proof-theoretic context. The algorithm works as follows

(a) Convert equations into equivalent structural clauses, see Definition 2.3.7.

(b) Transform structural clauses into equivalent “good” clauses, so-called analytic clauses,

see Definition 2.3.12.

(c) Show that analytic clauses are preserved under DM completion.

Below we present a proof of the steps of the algorithm, which is tailored to chains and hence is

simpler than that in [26]. We start from the definition of structural clauses and quasiequations.

Definition 2.3.7. By a clause, we mean a classical first-order formula of the form:

t1 ≤ u1 and · · · and tm ≤ um =⇒ tm+1 ≤ um+1 or · · · or tn ≤ un, (q)

where and, or, =⇒ stand for the classical connectives conjunction, disjunction and implication

respectively, 0 ≤ m < n, the ti, ui are in FmL for L = LFL, and all variables are assumed to

be universally quantified. Each ti ≤ ui (1 ≤ i ≤ m) is called a premise, while each tj ≤ uj
(m+ 1 ≤ j ≤ n) is a conclusion. (q) is a quasiequation if n = m+ 1. If the set of premises is

empty (m = 0), i.e. (q) is of the form

=⇒ t1 ≤ u1 or · · · or tn ≤ un, (q)

the clause is said to be positive. A clause (q) is structural if t1, . . . , tn are products of variables

(including the empty product e) and any of u1, . . . , un is either a variable or f .

Given a structural clause (q), we let L(q) be the set of variables occurring in tm+1, . . . , tn,

and R(q) the set of variables occurring in um+1, . . . , un. We say that an algebra A satisfies a

clause (q) iff, for any evaluation v into A (see Definition 2.1.5), if v(ti) ≤ v(ui) for all premises

ti ≤ ui, then there is at least one conclusion tj ≤ uj such that v(tj) ≤ v(uj). Clearly A satisfies

a positive clause iff for any evaluation v into A there is at least one conclusion tj ≤ uj such that

v(tj) ≤ v(uj).
We are now ready to recall the step (a) of the algorithm in [26], i.e. the transformation of

equations into equivalent structural clauses or quasiequations. Here, by saying that a clause (q)
is equivalent in a class of algebras V to an equation t ≤ s (or a clause (q)′), we mean that for

any algebra A in V , A satisfies (q) if and only if A satisfies t ≤ s (resp. (q)′).

(a) From equations to structural clauses

A crucial tool for the proof of step (a) is the following algebraic observation, which is also

known as Ackermann Lemma [25, 38]. Below, ~ε1 (resp., ~ε2) stands for a Boolean conjunction

(resp., disjunction) of equations.
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Lemma 2.3.8. [26, 27] The following are equivalent in FL, where x is a fresh variable, and

l, t, r, u ∈ FmL for L = LFL.

1. ~ε1 =⇒ ~ε2 or ltr ≤ u.

2. ~ε1 and u ≤ x =⇒ ~ε2 or ltr ≤ x.

3. ~ε1 and x ≤ t =⇒ ~ε2 or lxr ≤ u.

Theorem 2.3.9. [26]

1. Every equation in N2 is equivalent in FL to a set of structural quasiequations.

2. Every equation in P ′
3 is equivalent in the chains in FLe to a set of structural clauses.

3. Every equation in P3 is equivalent in the chains in FLi to a set of structural clauses.

Proof. 1. By Lemma 2.3.5, any equation in N2 is equivalent to a finite set of equations of

the form t1 · · · tn ≤ u, where u = f or u = u1 ∨ · · · ∨ um, and each ui is a product of

variables. Moreover, each ti is of the form
∧

1≤j≤ni
lj\vj/rj where vj = f or a variable,

and lj and rj are products of variables. By repeated applications of Lemma 2.3.8, the

equation becomes

(1) x1 ≤ t1 and . . . and xn ≤ tn =⇒ x1 . . . xn ≤ u

Recall that each ti is of the form
∧

1≤j≤ni
lij\vij/rij , Hence, the equations xi ≤ ti can

be read as

xi ≤
∧

1≤j≤ni

lij\vij/rij ,

Using residuation and basic properties of ∧, the quasiequation (1) then becomes

(2) AND
1 ≤ i ≤ m

1 ≤ j ≤ ni

lijxirij ≤ vij =⇒ x1 · · · xn ≤ u.

If u = f , the resulting quasiequation is already structural. Otherwise, u = u1 ∨ · · · ∨
um, where each ui is a product of variables. By applying again Lemma 2.3.8 to the

quasiequation (2), we get

(3) u ≤ z and x1 ≤ t1 and . . . and xn ≤ tn =⇒ x1 . . . xn ≤ z

where u ≤ z can be read as
∨

1≤i≤m ui ≤ z. Using basic properties of ∧,∨, the

quasiequation (3) finally becomes

AND
1 ≤ i ≤ m

ui ≤ z and AND
1 ≤ i ≤ m

1 ≤ j ≤ ni

lijxirij ≤ vij =⇒ x1 · · · xn ≤ z,

which is structural.
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2. Recall from Definition 2.3.6 that any equation in P ′
3 is of the form e ≤

∨⊙
(sij)∧e

with

sij ∈ N2. The following equivalences

|=A e ≤ (t)∧e ∨ (u)∧e ⇐⇒ |=A e ≤ t or |=A e ≤ u
|=A e ≤ (t)∧e · (u)∧e ⇐⇒ |=A e ≤ t and |=A e ≤ u

can be easily shown to hold for every chain A in FLe. Thus we obtain that every P ′
3

equation is equivalent to a conjunction of disjunctions of equations of the form e ≤ sij ,
namely to a finite set of clauses of the form

e ≤ s1 or e ≤ s2 or . . . or e ≤ sm,

where each e ≤ si is in N2. We can then proceed for each e ≤ si as in the proof of 1,

until we obtain a structural clause.

3. The proof works as that in 2., noticing that in presence of integrality we simply have

|=A e ≤ t ∨ u ⇐⇒ |=A e ≤ t or |=A e ≤ u
|=A e ≤ t · u ⇐⇒ |=A e ≤ t and |=A e ≤ u

(b) From structural to analytic clauses

In the case without integrality (see Definition 2.1.11), the step from structural to analytic clauses

only works for a subclass of structural clauses, the acyclic ones.

Definition 2.3.10. Given a structural clause (q), we build its dependency graph D(q) in the

following way:

• The vertices of D(q) are the variables occurring in the premises (we do not distinguish

occurrences).

• There is a directed edge x −→ y in D(q) if and only if there is a premise of the form t ≤ y
with x occurring in t.

(q) is acyclic if the graph D(q) is acyclic (i.e., it has no directed cycles or loops).

In what follows, we call acyclic an equation which is transformed into an equivalent acyclic

structural clause by Theorem 2.3.9.

Example 2.3.11. Consider the N2 equation x\x ≤ x/x. By applying the procedure in Theo-

rem 2.3.9 we obtain the equivalent (in FL) quasiequation

xy ≤ x =⇒ yx ≤ x. (we)

The quasiequation (we) is not acyclic, since we have a loop at the vertex x in D(we).

We recall now the notion of analytic clause.
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Definition 2.3.12. A structural clause (q)

t1 ≤ u1 and · · · and tm ≤ um =⇒ tm+1 ≤ um+1 or · · · or tn ≤ un, (q)

is said to be analytic if the following conditions are satisfied:

Separation L(q) and R(q) are disjoint.

Linearity Each variable in L(q) ∪R(q) occurs exactly once in the conclusions.

Inclusion Each of t1, . . . , tm is a product of variables in L(q), while each of u1, . . . , um is

either a variable in R(q) or f .

We are now ready to show the transformation of structural clauses into analytic ones. We

restrict the result to the case of chains over FL, thus obtaining a simpler form for the resulting

analytic clauses with respect to those in [26].

Theorem 2.3.13. [26]

• Every acyclic structural clause is equivalent in FL-chains to a set of analytic clauses.

• Every structural clause is equivalent in FLi-chains to a set of analytic clauses.

Proof. We sketch the procedure from [26]. Let (q) be a structural clause

t1 ≤ u1 and · · · and tm ≤ um =⇒ tm+1 ≤ um+1 or · · · or tn ≤ un. (q)

The transformation is performed in two steps.

1. Restructuring. For each i ∈ {m+1, . . . , n}, assume that ti is y1 · · · yp. Let x0, x1, . . . , xp
be distinct fresh variables. Depending on whether ui is f or a variable, we transform (q) into

either

S and x1 ≤ y1 and . . . and xp ≤ yp =⇒ S′ or x1 . . . xp ≤ f (q1)

or

S and x1 ≤ y1 and . . . and xp ≤ yp and ui ≤ x0 =⇒ S′ or x1 . . . xp ≤ x0 (q2)

where S denotes the set of premises of (q) and S′ denotes the conclusion of (q) without ti ≤ ui
(i.e. tm+1 ≤ um+1 or · · · or ti−1 ≤ ui−1 or ti+1 ≤ ui+1 or · · · or tn ≤ un). We apply

this procedure iteratively, for all i ∈ {m+ 1, . . . , n}.

2. Cutting. Let (q′) be the clause obtained after step 1 (restructuring). (q′) satisfies the

properties of separation and linearity of Definition 2.3.12. An analytic clause equivalent to (q′)
is obtained by suitably removing all the redundant variables from its premises, i.e. variables

other than L(q′) ∪R(q′). This is done as follows. Given a redundant variable z, we distinguish

the following cases:

• If z appears in the premises of (q′) only on right-hand sides (RHS), we simply remove

all such premises, say s1 ≤ z, . . . , sk ≤ z from (q′). It is easy to see that the resulting

clause is equivalent to (q′) in FL. Indeed, observe that all premises si ≤ z in (q′) hold,

by instantiating z with
∨
si, and this instantiation does not affect the other premises and

the conclusion. Hence (q′) implies the new clause. The other direction is trivial.
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• If z appears only on left-hand sides (LHS) of premises of (q′), we again remove all such

premises, say l1 · z · r1 ≤ v1, . . . , lk · z · rk ≤ vk from (q′). We argue similarly as in the

previous case, instantiating z with
∧

1≤i≤k li\vi/ri.

• Assume that z appears both on RHS and LHS of premises of (q′). Let Sr and Sl be the sets

of premises of (q′) which contain z on RHS and LHS, respectively. Namely, Sr consists

of the premises s1 ≤ z, . . . , sk ≤ z, with k ≥ 1 and Sl of the premises t(z, . . . , z) ≤ u,

where the occurrences of z in t are all indicated. Because of acyclicity, Sr and Sl are

disjoint. We replace Sr ∪ Sl with a new set Scut of premises, which consists of all the

equations of the form

t(si, . . . , si) ≤ u

for any t(z, . . . , z) ≤ u ∈ Sl and si ≤ z ∈ Sr. Let us call the resulting clause (q′′).
(q′′) clearly implies (q′), from the transitivity of ≤. To show the converse, let us take

an arbitrary FL-chain A and an evaluation v on A such that the premises of (q′′) hold

in A. Let us evaluate the variable z in (q′) as v(z) =
∨
{v(si) : si ≤ z ∈ Sr}. All

premises in Sr clearly hold in A. Moreover, A being an FL-chain, there is a maximum

in the finite set {v(si) : si ≤ z ∈ Sr}, say v(sm) with m ∈ {1, . . . , k}. Hence we have

v(z) =
∨
{v(si) : si ≤ z ∈ Sr} = v(sm) and consequently

v(t(z, . . . , z)) = v(t(sm, . . . , sm)) ≤ v(u)

for any t(z, . . . , z) ≤ u ∈ Sl. Hence we can apply (q′) to obtain the conclusion.

Note that the hypothesis that the equations are acyclic is used only in step 2. (Cutting), for

excluding the case where Sr and Sl are not disjoint. For FLi-algebras, an equation that belongs

to both Sr and Sl, i.e. of the form t(z, . . . , z) ≤ z can be safely removed, as it follows from

integrality.

Remark 2.3.14. The main difference between the proof above and that in [26], which is not re-

stricted to chains, is in the cutting step. In [26], whenever premises si ≤ z, with i ∈ {1, . . . , k}
and t(z, . . . , z) ≤ v are present, we need to replace them with all possible combinations

t(si1 , . . . , sim) where, for any i ∈ {1, . . . ,m} the i1, . . . , im are indices, not necessarily distinct,

in {1, . . . , k}.

Example 2.3.15. The equation xm ≤ xn is in the class N2. Using our version of the algorithm,

the equation is equivalent in FLe-chains to

xn1 ≤ z and . . . and xnm ≤ z =⇒ x1 · · · xm ≤ z. (knotnm)

In the general case of FLe-algebras the equation is instead equivalent to the following weaker

quasiequation (see [27]):

AND
i=1,...,m

{xi1 · · · xin ≤ z} =⇒ x1 · · · xm ≤ z (*)

where the i1, . . . , in are indices, not necessarily distinct, in {1, . . . , n}. It is the clear that (∗) is

weaker than (knotnm), as its premises contain those of (knotnm).
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Example 2.3.16. Consider the weak nilpotent minimum equation (see page 18):

e ≤ ∼(x · y) ∨ ((x ∧ y)\xy)

that belongs to P3. In FLi-chains the equation is equivalent to the analytic clause:

xy ≤ z and xv ≤ z and vy ≤ z and vv ≤ z =⇒ xy ≤ f or v ≤ z. (wnm)

(c) Preservation under DM completion

The importance of analytic clauses lies in the fact that it is easy to prove their preservation

under DM completion. Preservation of analytic clauses under DM completion is proved in [26],

although the equivalent theorem we give below is not explicitly stated there.

Theorem 2.3.17. [26] Let V be a subvariety of FL-algebras. If V is defined by equations

equivalent in FL to analytic clauses and A belongs to V, then its DM completion belongs to V
as well.

We can finally summarize the results in this section as follows.

Theorem 2.3.18.

• Let V be a subvariety of FLe defined by acyclic equations in N2 and P ′
3. The chains in V

are preserved under DM completion

• Let V be a subvariety of FLi-algebras defined by equations in N2 and P3. The chains in

V are preserved under DM completion.

Proof. Follows from Theorems 2.3.9, 2.3.13 and 2.3.17
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CHAPTER 3
Standard completeness

3.1 Preliminaries on logics

We revise state-of-the-art results concerning standard completeness and set the general frame-

work for the original results contained in the rest of the thesis.

Following standard practice, for propositional logics we use the same notion of language as

the one for algebras introduced in Definition 2.1.4. The only difference will be that here we call

the function symbols connectives, the constants truth constants, and the terms formulas. We fix

the language L to be LFLe⊥
, unless stated otherwise. We make use of the derived connectives:

ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ) ¬ϕ = ϕ→ f.

A (finitary) Hilbert system is a pair 〈Ax ,R〉 where Ax is a set of axiom schemas and R is

a set of rule schemas. Axiom schemas can be instantiated with any concrete formulas: with

a slight abuse of notation, the same symbols ϕ,χ, ψ, . . . will be used for both schemas and

concrete formulas instantiating them. Rule schemas are pairs 〈Γ, ϕ〉 where Γ can be instantiated

with a finite non-empty set of formulas and ϕ with a formula. We often use the notation

ϕ1 · · ·ϕn
ϕ

for a rule 〈Γ, ϕ〉 with Γ = {ϕ1, . . . , ϕn}. Note that axioms could be seen as nullary rules. Unless

stated otherwise, in what follows, by axioms and rules we will mean axiom and rule schemas.

Definition 3.1.1. Let Γ ∪ {ϕ} ⊆ FmL.

• A proof of ϕ from Γ in 〈Ax ,R〉 is a finite sequence of formulas 〈ϕ0, . . . , ϕn〉 such that

ϕn = ϕ and, for every i ≤ n, one of the following holds:

– ϕi ∈ Γ or is an instance of Ax

– There is a pair 〈∆, ϕi〉, with ∆ ⊆ {ϕ0, . . . , ϕi−1} that is an instance of a rule in R.
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• We define the provability relation generated by 〈Ax ,R〉 as the relation Γ ⊢〈Ax ,R〉 ϕ iff

there is a proof of ϕ from Γ in 〈Ax ,R〉.

Observe that the provability relation is finitary, i.e., if Γ ⊢〈Ax ,R〉 ϕ, then there is a finite Γ′ ⊆ Γ
such that Γ′ ⊢〈Ax ,R〉 ϕ. In what follows, by a logic we mean the provability relation generated

by some Hilbert system 〈Ax ,R〉.

The weakest logic UL that we consider in this chapter is generated by the following Hilbert

system [66], with axioms

(UL1) ϕ→ ϕ

(UL2) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))

(UL3) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ))

(UL4) (ϕ · ψ → χ) ↔ (ϕ→ (ψ → χ))

(UL5a, b) ϕ ∧ ψ → ϕ, ϕ ∧ ψ → ψ

(UL6) (ϕ→ ψ) ∧ (ϕ → χ) → (ϕ→ ψ ∧ χ)

(UL7a, b) ϕ→ (ϕ ∨ ψ), ψ → (ϕ ∨ ψ)

(UL8) (ϕ→ χ) ∧ (ψ → χ) → (ϕ ∨ ψ → χ)

(UL9) ϕ↔ (e→ ϕ)

(UL10a, b) ⊥ → ϕ, ϕ→ ⊤

(UL11) ((ϕ → ψ) ∧ e) ∨ ((ψ → ϕ) ∧ e)

and the derivation rules of modus ponens and ∧-adjunction:

(MP)

ϕ ϕ→ ψ

ψ

(∧ −Adj)

ϕ ψ

ϕ ∧ ψ

We denote by ⊢UL the provability relation generated by the Hilbert system above.

Remark 3.1.2. Axiom (UL3) accounts for the exchange property (e) (see Definition 2.1.11),

and the axiom (UL11) corresponds to the prelinearity equation (see Theorem 2.1.13), which

forces the corresponding algebraic semantics of UL to be the semilinear variety FLℓe⊥, hence,

guaranteeing the completeness with respect to chains.

An axiomatic extension L of UL is a provability relation ⊢L generated by extending the

Hilbert system for UL above with axioms and rule schemas. For any logic L and axiom schema

α, we denote by L+(α) the axiomatic extension of L obtained by adding the axiom schema α to

the Hilbert system for L. In what follows, unless stated otherwise, by L we mean any axiomatic

extension of UL.

Example 3.1.3. By adding to UL the axioms

(o) f → ϕ (i) ϕ→ e
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we get a Hilbert system for the Monoidal t-norm logic MTL [42,66]. These axioms correspond

to the equations (o) and (i) in Definition 2.1.11 and to the rules weakening right (wr) and

left (wl) in Gentzen-style calculi (see Table 3.2 in Section 3.3). It is immediate to see that in

MTL we have f ↔ ⊥ and e ↔ ⊤, hence, we can identify the constants ⊥ and ⊤ with f
and e respectively. Moreover, the rule (adj) becomes derivable, hence unnecessary. The axiom

(UL9) can be equivalently replaced with ϕ → (ψ → ϕ) and (UL11) can be simplified as

(ϕ → ψ) ∨ (ψ → ϕ) (see the corresponding equation in Theorem 2.1.13). Hence, a Hilbert

system for MTL has the following axioms:

(MTL1) ϕ→ ϕ

(MTL2) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))

(MTL3) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ))

(MTL4) (ϕ · ψ → χ) ↔ (ϕ→ (ψ → χ))

(MTL5a, b) ϕ ∧ ψ → ϕ, ϕ ∧ ψ → ψ

(MTL6) (ϕ→ ψ) ∧ (ϕ→ χ) → (ϕ → ψ ∧ χ)

(MTL7a, b) ϕ→ (ϕ ∨ ψ), ψ → (ϕ ∨ ψ)

(MTL8) (ϕ→ χ) ∧ (ψ → χ) → (ϕ ∨ ψ → χ)

(MTL9) ϕ→ (ψ → ϕ)

(MTL10a, b) f → ϕ, ϕ→ e

(MTL11) (ϕ→ ψ) ∨ (ψ → ϕ)

and the derivation rule of modus ponens :

(MP)

ϕ ϕ→ ψ

ψ

The algebraic semantics of this logic is the class of FLℓew-algebras, also known as MTL-

algebras, see Definition 2.1.11. Most of the important fuzzy logics in the literature are axiomatic

extensions of MTL, as we will see in the following.

Example 3.1.4. Hájek’s Basic Logic BL [49] is obtained adding to MTL the axiom

(div) (ϕ ∧ ψ) → (ϕ · (ϕ→ ψ)).

The algebraic semantics for this logic is given by the BL-algebras, considered in Lemma 2.2.4.

Recall that in the BL-algebras over [0, 1], the operation · is a continuous t-norm and → is

its residuum. Axiomatic systems corresponding to the three main continuous t-norms (Gödel,

Łukasiewicz, Product) and their residua can be obtained from BL by the addition of the following

axioms:

(c) ϕ→ ϕ · ϕ

(inv) ¬¬ϕ→ ϕ

(S) ¬(ϕ ∧ ¬ϕ) (Π) ¬¬χ→ ((ϕ · χ→ ψ · χ) → (ϕ→ ψ))
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In particular, we have:

• the logic BL + (c), known as Gödel logic (or Gödel–Dummett logic) corresponds to the

Gödel t-norm and its residuum;

• the logic BL+(inv), known as Łukasiewicz logic corresponds to the Łukasiewicz t-norm

and its residuum;

• the logic BL+(S)+ (Π), known as Product logic corresponds to the Product t-norm and

its residuum.

An alternative axiomatization of Gödel logic is given by MTL + (c), see e.g. [21]. Indeed, the

axiom (div) of BL is already derivable in the Hilbert system for MTL+ (c).

As shown in the following, the algebraic semantics for axiomatic extensions of UL are given

by subvarieties of FLℓe⊥ (or equivalently UL)-algebras.

Definition 3.1.5. Let L = UL+C , with C being any finite set of axiom schemas. An L-algebra

A = 〈A,∧,∨, ·,→, f, e,⊥,⊤〉 is an FLℓe⊥-algebra that satisfies the equations e ≤ ϕ for every

ϕ ∈ C . L-algebras that are chains, are called shortly L-chains.

As the class of L-algebras is semilinear, we obtain a general completeness theorem for

propositional axiomatic extension of UL with respect to the corresponding classes of L-chains.

Theorem 3.1.6. [33,52] Let L be any axiomatic extension of UL. Then for every set of formulas

T and every formula ϕ the following are equivalent:

• T ⊢L ϕ,

• {e ≤ ψ}ψ∈T |=A e ≤ ϕ for every L-chain A,

where |=A is as in Definition 2.1.5.

Remark 3.1.7. The completeness result above holds for any theory T , including infinite ones.

This is usually known as strong completeness in the literature, see e.g. [34,52]. Slightly depart-

ing from this convention, in what follows, by completeness we always mean the strong version,

which applies to any set T . We use finitely strong completeness for a completeness result which

holds only for finite T .

We now consider first-order logics. The language that we use is the same as for classical

first-order logic. In order to fix the notation and terminology we give an explicit definition:

Definition 3.1.8. A predicate language P is a triple 〈PredP ,FuncP ,ArP〉 where PredP is a

non-empty set of predicate symbols, FuncP is a set (disjoint with PredP ) of function symbols,

and ArP is the arity function assigning to each predicate or function symbol a natural number

called the arity of the symbol. The function symbols F with ArP(F ) = 0 are called object or

individual constants. The predicate symbols P for which ArP(P ) = 0 are called propositional

variables.
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P-terms and (atomic) P-formulas of a given predicate language are defined as in classical

logic. A P-theory is a set of P-formulas. The notions of free occurrence of a variable, substi-

tution, open formula, and closed formula (or, synonymously, sentence) are defined in the same

way as in classical logic.

For any propositional logic L extending UL, we define its first-order extension L∀ as follows:

Definition 3.1.9. Let P be a predicate language, and L be an axiomatic extension of UL. The

logic L∀ in the language P is generated by the following Hilbert system, consisting of the axiom

schemas1

(P ) The axioms of L

(∀1) (∀x)ϕ(x) → ϕ(t), where the P-term t is substitutable for x in ϕ

(∃1) ϕ(t) → (∃x)ϕ(x), where the P-term t is substitutable for x in ϕ

(∀2) (∀x)(χ → ϕ) → (χ → (∀x)ϕ), where x is not free in χ

(∃2) (∀x)(ϕ → χ) → ((∃x)ϕ → χ), where x is not free in χ

(∀3) (∀x)(χ ∨ ϕ) → χ ∨ (∀x)ϕ, where x is not free in χ.

and the same deduction rules of L plus the rule of generalization:

(Gen)

ϕ

(∀x)ϕ.

The notions of proof and provability are defined in the same way as for classical logic. The

fact that the formula ϕ is provable in L∀ from a theory T will be denoted by T ⊢L∀ ϕ. An

important syntactic property of our logics is the so-called local deduction theorem.

Lemma 3.1.10. Let L be an axiomatic extension of UL. For any P-theory T and sentence ϕ
T ∪ ϕ ⊢L∀ χ iff T ⊢L∀ ϕ

∗ → χ for some ϕ∗ = (ϕ1 ∧ e) · . . . · (ϕm ∧ e) where ϕi ∈ T , for

i = 1, . . . ,m are not necessarily distinct formulas.

We now introduce the semantics counterpart of our first-order logics. In what follows, we

fix P = 〈Pred ,Func,Ar〉 to be a predicate language and A to be an L-chain.

Definition 3.1.11. An A-structure M for the predicate language P has the form

M = 〈M, (PM)P∈Pred , (FM)F∈Func〉 where

• M is a non-empty domain;

• for each n-ary predicate symbol P ∈ Pred , PM is an n-ary fuzzy relation on M , i.e., a

function Mn → A (identified with an element of A if n = 0);

• for each n-ary function symbol, F ∈ Func FM is a function Mn → M (identified with

an element of M if n = 0).

1When we speak about axioms or deduction rules of propositional logic, we actually consider them with P-

formulas substituted for propositional formulas.

29



Let M be an A-structure for P. An M-evaluation of the object variables is a mapping v that

assigns an element from M to each object variable. Let v be an M-evaluation, x be a variable,

and a ∈ M . Then by v[x 7→a] we denote the M-evaluation such that v[x 7→a](x) = a and

v[x 7→a](y) = v(y) for each object variable y different from x. Let M be an A-structure for P
and v be an M-evaluation. We define the values of terms and the truth values of formulas in M

for an evaluation v recursively as follows:

‖x‖A
M,v = v(x),

‖F (t1, . . . , tn)‖
A

M,v = FM(‖t1‖
A

M,v , . . . , ‖tn‖
A

M,v) for F ∈ Func,

‖P (t1, . . . , tn)‖
A

M,v = PM(‖t1‖
A

M,v , . . . , ‖tn‖
A

M,v) for P ∈ Pred ,

‖c(ϕ1, . . . , ϕn)‖
A

M,v = cA(‖ϕ1‖
A

M,v , . . . , ‖ϕn‖
A

M,v) for c ∈ LFLe⊥
,

‖∀xϕ‖A
M,v = inf{‖ϕ‖A

M,v[x 7→a] | a ∈M},

‖∃xϕ‖A
M,v = sup{‖ϕ‖A

M,v[x 7→a] | a ∈M}.

Note that in the last two clauses, if the infimum or supremum does not exist, then the corre-

sponding value is taken to be undefined, and in all clauses, if one of the arguments is undefined,

then the result is undefined. We say that the A-structure M is safe if ‖ϕ‖A
M,v is defined for each

P-formula ϕ and each M-evaluation v.

In what follows, we write 〈A,M〉 |= ϕ if e ≤A ‖ϕ‖A
M,v for each M-evaluation v.

Definition 3.1.12. Let M be an A-structure for P and T be a P-theory. Then M is called an

A-model of T if it is safe and 〈A,M〉 |= ϕ for each ϕ ∈ T .

Observe that models are safe structures by definition. As obviously each safe A-structure

is an A-model of the empty theory, we shall use the term model for both models and safe

structures in the rest of the text. By a slight abuse of language we use the term model also for

the pair 〈A,M〉.

The following completeness theorem shows that the syntactic presentations introduced above

succeed in capturing the intended general chain semantics for first-order fuzzy logics.

Theorem 3.1.13. [33, 66] Let L be an axiomatic extension of UL, P be a predicate language,

T be a P-theory, and ϕ be a P-formula. Then the following are equivalent:

• T ⊢L∀ ϕ.

• 〈A,M〉 |= ϕ for each L-chain A and each model 〈A,M〉 of the theory T .

3.2 The density rule and rational completeness

We recall from [63, 70] that the addition of the density rule to a first-order logic L∀ extending

UL∀ makes the logic complete with respect to the class of countable dense L-chains. Introduced
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by Takeuti and Titani in [79] for axiomatizing Gödel logic, the density rule formalized Hilbert-

style has the following form

(ϕ→ p) ∨ (p→ χ) ∨ ψ

(ϕ→ χ) ∨ ψ
(density)

where p is a propositional variable not occurring in ϕ, χ, or ψ.

Definition 3.2.1. Let L be a an axiomatic extension of UL, P be a predicate language, T
be a P-theory, and ϕ be a P-formula. L∀ is said to be rational complete if the following are

equivalent:

• T ⊢L∀ ϕ.

• 〈A,M〉 |= ϕ for each L-algebra A with lattice reduct Q ∩ [0, 1] and each model 〈A,M〉
of the theory T .

It is a well known fact that a bounded dense countable chain is order isomorphic to Q ∩ [0, 1].
Hence, we can reformulate the second item as

• 〈A,M〉 |= ϕ for each dense countable L-chain A and each model 〈A,M〉 of the theory T .

Let L be an axiomatic extension of UL and L∀ be the corresponding first-order logic, gener-

ated by a Hilbert system 〈Ax ,R〉, like the one in Definition 3.1.9. In the following, we extend

the notion of L∀-proof in such a way as to include applications of (density).

Definition 3.2.2. • Let Γ′ ∪ {ϕ} ⊆ FmL. An L∀D-proof of ϕ from Γ′ is a finite sequence

of formulas 〈ϕ0, . . . , ϕn〉 with ϕn = ϕ such that, for every i ≤ n, one of the following

holds:

– ϕi ∈ Γ′ or ϕi is an instance of an axiom in Ax .

– There is a pair 〈∆, ϕi〉 with ∆ ⊆ {ϕ0, . . . , ϕi−1} that is an instance of a rule in R.

– ϕi = (α → β)∨ γ and there is ϕ ∈ {ϕ0, . . . , ϕi−1} such that ϕ = (α→ p)∨ (p →
β) ∨ γ where p is a propositional variable not occurring in Γ′, α, β, or γ (ϕi is

obtained from a previous member of the sequence by (density)).

The notion of L∀D-proof naturally defines a consequence relation ⊢L∀D as follows:

• Γ ⊢L∀D ϕ iff there is an L∀D-proof of ϕ from a finite subset Γ′ of Γ.

The following theorem shows that L∀D succeeds in capturing the intended semantics of

dense L-chains for first-order fuzzy logics.

Theorem 3.2.3. [70] Let L be any axiomatic extension of UL, P be a predicate language, T
be a P-theory, and ϕ be a P-formula. L∀D is rational complete.
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Proving that a logic L∀ is rational complete can thus be reduced to showing that L∀ and L∀D

define the same consequence relation. This means that any L∀D-proof (i.e. a proof containing

applications of the density rule) can be converted into a proof in L∀ (a proof without density).

Arguing on the properties of proofs from Hilbert-style calculi is extremely difficult because

proofs have no discernible structure. The solution is to consider proofs for the logic in question

in an analytic calculus, i.e. a calculus where a proof of a given formula uses only subformulas

of that formula.

3.3 Hypersequent calculi and the substructural hierarchy

We show how to define analytic calculi for axiomatic extensions of UL∀, which are well suited

for proving the admissibility of the density rule. The results we recall here were first shown

in [25] for axiomatic extensions of the (bounded) Full Lambek Calculus with exchange FLe⊥
2.

The calculi we define are based on hypersequents, a natural extension of Gentzen sequents. We

assume that the reader has basic knowledge of sequent calculi for classical and substructural

logics, see e.g. [46, 78] for an overview.

Definition 3.3.1. [3] A hypersequent is a non-empty finite multiset S1 | . . . |Sn where each

Si, i = 1 . . . n is a sequent, called a component of the hypersequent. A (single-conclusioned)

sequent is in turn an object of the form Γ ⇒ Π, where Γ is a multiset 3 of formulas and Π is

either empty or a single formula.

The symbol “ | ” is intended to denote a disjunction at the meta-level. A meta(hyper)sequent

is a (hyper)sequent formed by metavariables for multisets and formulas, instead of concrete mul-

tisets and formulas. A concrete hypersequent is then obtained by instantiating the corresponding

metavariables with concrete multisets and formulas. In what follows, we will distinguish be-

tween meta(hyper)sequent and (hyper)sequent only when required from the context. In other

cases, we will simply speak of (hyper)sequents.

Notation 3.3.2. (Meta)hypersequents will be denoted by G,H and (meta)sequents by S,C .

Within a (meta)sequent S := Γ1, . . . ,Γn ⇒ Π we will denote by L(S) the multiset 〈Γ1, . . . ,Γn〉
of (metavariables for) multisets of formulas occurring in its left hand side, and by R(S) (the

metavariable in) its right hand side Π. We will use Γ,∆,Σ,Θ and Λ for (metavariables for)

multisets, and Π,Ψ for (metavariable for) stoups, i.e. either a formula or the empty set. The

notation Γk will stand for Γ, . . . ,Γ, i.e. k comma-separated occurrence of (the metavariable for)

a multiset Γ. By αk we will denote both the multiplicative conjunction α · · ·α of k occurrences

of the (metavariable for the ) formula α, and k comma-separated occurrences α, . . . , α. The

meaning will be clear from the context.

Definition 3.3.3. A hypersequent rule is as an ordered pair ({G1, . . . , Gn},H) consisting of a

finite set of metahypersequents G1, . . . , Gn (the premises) and a metahypersequent H for the

2The same calculus is denoted by FLe in [25], but it includes the constants ⊥,⊤. Hence, we prefer here to use

FLe⊥
3The use of multisets avoids to consider the exchange rule explicitly.
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conclusion, written as
G1 . . . Gn

H

A rule application is obtained by instantiating the rule with concrete hypersequents. A structural

rule is a rule not containing metavariables for formulas. We distinguish internal and external

structural rules: internal rules operate only on one component of the conclusion, while external

structural rules operate on multiple components of the conclusion4 . The components of the

premises and the conclusion on which a rule operates are said to be active components of the

rule.

Following standard practice, we use the same notation for hypersequent rules and concrete

rule applications.

As in sequent calculus, a hypersequent calculus consists of initial axioms, cut, and logical

and structural rules. Axioms, cut, and logical and internal structural rules are the same as in

sequent calculi; the only difference being the presence of a context G representing a (possibly

empty) hypersequent. External structural rules, by permitting the interaction between compo-

nents, increase the expressive power of the hypersequent calculus with respect to the sequent

calculus.

Definition 3.3.4. A derivation d of a hypersequent G fromG1, . . . , Gn is a tree, whose nodes are

hypersequents, edges correspond to rule applications, G is the root, and leaves are G1, . . . , Gn,

or axioms of the calculus. The length |d| of a derivation d is the maximal number of inference

rules occurring on any branch, + 1.

Henceforth, by

G1, . . . , Gn ⊢HL G

we denote the fact that there is a derivation of G from G1, . . . , Gn in a hypersequent calculus

HL.

A hypersequent calculus HUL∀ for UL∀ is shown in Table 3.1. Note that the eigenvariable

condition for the rules (∀r) and (∃l) refer to the whole hypersequent: in other words, the rules

can be applied only when the variable a does not appear in the whole conclusion, including the

hypersequent context G. Otherwise, using (com) we could easily derive ∃xα(x) ⇒ ∀xα(x) for

any formula α.

Remark 3.3.5. By removing the external structural rule (com) from Table 3.1 we get a (hy-

persequent version of a) calculus for FLe⊥∀ (bounded first-order Full Lambek calculus with

exchange). The rule (com) allows us indeed to derive the axioms (UL11) and (∀3), see e.g. [25,

63] and Theorem 3.3.8.

The calculus HUL∀ admits cut elimination, i.e. any derivation in HUL∀ containing applica-

tions of the rule (cut) can be transformed into a derivation which does not contain any applica-

tion of (cut) (a cut-free derivation). In a cut-free derivation, all the rule applications except for

4Internal and external structural rules are sometimes referred to in the literature as sequent and hypersequent

structural rules, respectively.
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the quantifiers rule enjoy the subformula property, i.e. the formulas occurring in the premises

are subformulas of the formulas in the conclusion. This is an essential property, which will be

needed for our proof of density elimination.

Notation 3.3.6. We denote by (r) multiple applications of a rule (r). Let S be a (meta)sequent.

S[Λ⇒Π/Γ⇒Ψ]

denotes the (meta)sequent obtained by replacing one occurrence of Γ in L(S) with Λ and

R(S) with Π, provided that R(S) = Ψ. If there is no occurrence of Γ in L(S), we let

L(S[Λ⇒Π/Γ⇒Ψ]) = L(S). Similarly, if R(S) 6= Ψ, we let R(S[Λ⇒Π/Γ⇒Ψ]) = R(S). We

denote by

S[Λ⇒Π/Γ⇒Ψ]

the sequent obtained by replacing each occurrence of Γ in L(S) with an occurrence of Λ
and R(S) with Π, provided that R(S) = Ψ. If there is no occurrence of Γ in L(S), we let

L(S[Λ⇒Π/Γ⇒Ψ]) = L(S). Similarly if R(S) 6= Ψ, we let R(S[Λ⇒Π/Γ⇒Ψ]) = R(S).

Example 3.3.7. Let S be the sequent Θ,Γ,Γ ⇒ Ψ. We have:

S[Λ⇒Π/Γ⇒Ψ] = Θ,Λ,Γ ⇒ Π S[Λ⇒Π/Γ⇒Ψ] = Θ,Λ,Λ ⇒ Π.

For calculi with exchange, the formula-interpretation I of a hypersequent H = Γ1 ⇒
Π1 | . . . |Γn ⇒ Πn (see, e.g., [4, 25, 37, 70]), is as follows:

• I(Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn) = (I(Γ1 ⇒ Π1) ∧ e) ∨ · · · ∨ (I(Γn ⇒ Πn) ∧ e)

where the interpretation of a sequent Γ ⇒ Π is

• I(Γ ⇒ Π) = ⊙Γ → β if Π is a formula β,

• I(Γ ⇒) = ⊙Γ → f otherwise.

⊙Γ stands for the multiplicative conjunction · of all the formulas in Γ and is e when Γ is empty.

Theorem 3.3.8. The hypersequent calculus HUL∀ admits cut elimination, and ⊢HUL∀ H if and

only if ⊢UL∀ I(H), for any hypersequent H .

Proof. Cut elimination is proved e.g. in [28, 70]. For proving that ⊢HUL∀ H if and only if

⊢UL∀ I(H), we deal only with some cases, referring the reader to [70] for the others. For the

left to right direction, we proceed by induction on the length of the derivation of H in HUL∀.

Among the quantifier rules, the only non-trivial case is (∀r). This case is handled by using axiom

(∀3), see Definition 3.1.9. Indeed, assume that I(G) ∨ I(Γ ⇒ α(a)) is derivable in UL∀. By

the generalization rule (Gen), ∀x(I(G) ∨ I(Γ ⇒ α(x))) is also derivable in UL∀. Recall that,

for the eigenvariable condition, a must not occur in I(G). Then we may assume that x does not

occur there either. Hence, using axiom (∀3) we obtain that I(G)∨∀xI(Γ ⇒ α(x)) is derivable.

The result follows using the fact that ∀xI(Γ ⇒ α(x)) → I(Γ ⇒ ∀xα(x)) is derivable in UL∀
(from axiom (∀2)). The case of (∃l) can be proved in a similar way, using in a suitable way
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G |Γ ⇒ α G |α,∆ ⇒ Π

G |Γ,∆ ⇒ Π
(cut)

G |α ⇒ α
(id)

G | f ⇒
(fl)

G |Γ ⇒ α G |∆ ⇒ β

G |Γ,∆ ⇒ α · β
(· r)

G |α, β,Γ ⇒ Π

G |α · β,Γ ⇒ Π
(· l)

G |Γ ⇒ Π

G | e,Γ ⇒ Π
(el)

G |Γ ⇒ α G |β,∆ ⇒ Π

G |Γ, α → β,∆ ⇒ Π
(→ l)

G |α,Γ ⇒ β

G |Γ ⇒ α → β
(→ r)

G |Γ ⇒

G |Γ ⇒ f
(fr)

G |Γ ⇒ α G |Γ ⇒ β

G |Γ ⇒ α ∧ β
(∧r)

G |αi,Γ ⇒ Π

G |α1 ∧ α2,Γ ⇒ Π
(∧l)i={1,2}

G | ⇒ e
(er)

G |α,Γ ⇒ Π G | β,Γ ⇒ Π

G |α ∨ β,Γ ⇒ Π
(∨l)

G |Γ ⇒ αi

G |Γ ⇒ α1 ∨ α2

(∨r)i={1,2}
Γ,⊥ ⇒ Π

(⊥l)

G |Γ, α(t) ⇒ Π

G |Γ,∀xα(x) ⇒ Π
(∀l)

G |Γ ⇒ α(a)

G |Γ ⇒ ∀xα(x)
(∀r) (a eigenvariable)

Γ ⇒ ⊤
(⊤r)

G |Γ ⇒ α(t)

G |Γ ⇒ ∃xα(x)
(∃r)

G |Γ, α(a) ⇒ Π

G |Γ,∃xα(x) ⇒ Π
(∃l) (a eigenvariable)

G |Γ ⇒ Π |Γ ⇒ Π

G |Γ ⇒ Π
(ec)

G

G |Γ ⇒ Π
(ew)

G |Γ ⇒

G |Γ ⇒ Π
(wr)

G |Γ2,Σ1 ⇒ Π1 G |Γ1,Σ2 ⇒ Π2

G |Γ1,Σ1 ⇒ Π1 |Γ2,Σ2 ⇒ Π2
(com)

Table 3.1: Hypersequent calculus HUL∀ for UL∀

(Gen) and axioms (∀3), (∃2).
For the right to left direction, it is enough to show that all axioms and rules in UL∀ are derivable

in HUL∀. This is immediate for (∀1), (∀2), (∃1), (∃2) and (Gen). Modus ponens is simulated

by (cut) and (∧-Adj) by (∧r). We show how to derive the prelinearity axiom (UL11) and (∀3)
in HUL∀ using (com). (UL11) can be derived as follows:

ϕ⇒ ϕ ψ ⇒ ψ
(com)

ϕ⇒ ψ |ψ ⇒ ϕ
(→ r)

⇒ ϕ→ ψ |ψ ⇒ ϕ
(→ r)

⇒ ϕ→ ψ | ⇒ ψ → ϕ ⇒ e
(∧r)

⇒ ϕ→ ψ | ⇒ (ψ → ϕ) ∧ e ⇒ e
(∧r)

⇒ (ϕ→ ψ) ∧ e | ⇒ (ψ → ϕ) ∧ e
(∨r)

⇒ ((ϕ→ ψ) ∧ e) ∨ ((ψ → ϕ) ∧ e) | ⇒ (ϕ→ ψ) ∧ e
(∨r)

⇒ ((ϕ→ ψ) ∧ e) ∨ ((ψ → ϕ) ∧ e) | ⇒ ((ϕ→ ψ) ∧ e) ∨ ((ψ → ϕ) ∧ e)
(ec)

⇒ ((ϕ→ ψ) ∧ e) ∨ ((ψ → ϕ) ∧ e)

A derivation of (∀3) proceeds as as follows:
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ϕ(a) ⇒ ϕ(a)

ϕ(a) ⇒ ϕ(a) ψ ⇒ ψ
(com)

ψ ⇒ ϕ(a) |ϕ(a) ⇒ ψ
(∨l)

ϕ(a) ∨ ψ ⇒ ϕ(a) |ϕ(a) ⇒ ψ ψ ⇒ ψ
(∨l)

ϕ(a) ∨ ψ ⇒ ϕ(a) |ϕ(a) ∨ ψ ⇒ ψ
(∀l)

∀x(ϕ(x) ∨ ψ) ⇒ ϕ(a) | ∀x(ϕ(x) ∨ ψ) ⇒ ψ
(∀r)

∀x(ϕ(x) ∨ ψ) ⇒ ∀xϕ(x) | ∀x(ϕ(x) ∨ ψ) ⇒ ψ
(∨r)

∀x(ϕ(x) ∨ ψ) ⇒ ∀xϕ(x) ∨ ψ | ∀x(ϕ(x) ∨ ψ) ⇒ ∀xϕ(x) ∨ ψ
(ec)

∀x(ϕ(x) ∨ ψ) ⇒ ∀xϕ(x) ∨ ψ
(→ r)

⇒ ∀x(ϕ(x) ∨ ψ) → (∀xϕ(x) ∨ ψ)

We can now consider the issue of finding analytic calculi for axiomatic extension of UL∀.

A systematic way to extract (hyper)sequent rules from some classes of axioms extending the

full (bounded) Lambek calculus with exchange FLe⊥ was introduced in [25]. We recall this

result below, adapting it to first-order logics extending UL∀. The substructural hierarchy, which

we have already recalled in Chapter 2 for proving preservation under DM completion, plays a

key role also here. We apply the classification to axioms instead of equations and adapt it to

the commutative case, i.e. considering the language LFLe
. The main idea behind the classes

(Nn,Pn), from a proof-theoretic point of view, is that an axiom belongs to a class N (resp.

P) if its most external connective has negative (resp. positive) polarity (see [2]), i.e. its right

(resp. left) introduction rule is invertible. Here by invertible rules we mean that, whenever the

conclusion of the rule is derivable, the premises are derivable as well. In particular, the right rules

for the connectives → and ∧ of UL∀ are invertible, hence, these connectives are negative, while

∨ and · have left invertible rules, hence they are positive. The general grammar for determining

the classes Nn and Pn, has the following structure:

P0 ::= N0 ::= the set of atomic formulas. For n ≥ 1 we have

Pn ::= Nn−1 | Pn · Pn | Pn ∨ Pn | e
Nn ::= Pn−1 | Pn → Nn | Nn ∧ Nn | f

The relation between the classes is the same as in Figure 2.1 in page 18.

In Theorems 2.3.9, 2.3.13, and 2.3.17 of Chapter 2 we have seen that the acyclic equations

in the classes N2 and P ′
3 over FLe-chains can be transformed into equivalent analytic clauses,

which are preserved under DM completions. As a proof-theoretical reformulation of this, [25]

presents an algorithm which transforms axioms from these classes into equivalent analytic rules,

preserving cut elimination. In other words, cut elimination for analytic rules mirrors preservation

under DM completion for analytic clauses (see [27] for details of the interplay between the

algebraic and proof-theoretic results). The notion of analytic internal and external structural

rules matches that of analytic quasiequations and clauses, see Definition 2.3.12.
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Definition 3.3.9. A structural rule:

G |S1 . . . G |Sn
G |C1 | . . . |Cq

(r)

is analytic if (r) satisfies the following conditions:

• Strong subformula property : Each metavariable occurring in L(Si) (respectively in

R(Si)) with i = {1, . . . , n} occurs also in L(Cj) (respectively in R(Cj)), for some j
in {1, . . . , q}.

• Linear conclusion : Each metavariable occurs at most once in G |C1 | . . . |Cq.

• Coupling: Let R(Cj) = Π with Π being non empty, j ∈ {1, . . . , q}. There is a metavari-

able Σ in L(Cj) such that Π belongs to R(Si), for a given i in {1, . . . , n}, if and only if

Σ belongs to L(Si) as well.

In the following, we say that an axiom is acyclic if the corresponding equation is, see Defi-

nition 2.3.10. We can give now a proof-theoretic analogue of Theorems 2.3.9 and 2.3.13.

Theorem 3.3.10. The algorithm in [25] transforms

• any acyclic N2 axiom α into an analytic internal structural rule (r) such that ⊢HUL∀+(r) S
if and only if ⊢UL∀+α I(S), for any sequent S;

• any acyclic P ′
3 axiom α into an analytic external structural rule (r) such that ⊢HUL∀+(r) S

if and only if ⊢UL∀+α I(S), for any sequent S.

Proof. The theorem is shown in [25] for axiomatic extensions of the propositional logic FLe⊥.

In virtue of Theorem 3.3.8, we can lift this result to axiomatic extensions of UL∀. The proof

is analogous to that of Theorems 2.3.9 and 2.3.13 (we will sketch the algorithm in its proof-

theoretic form in Lemma 5.1.3).

The equivalence between hypersequent calculi and Hilbert-style systems given in Theorem

3.3.10 can be lifted to hypersequents, due to the presence of (com) in UL∀. We show the

following.

Lemma 3.3.11. Let (r) be an analytic rule and α an axiom in the language of UL∀. The

following are equivalent:

1. ⊢HUL∀+(r) S if and only if ⊢UL∀+α I(S), for any sequent S.

2. ⊢HUL∀+(r) H if and only if ⊢UL∀+α I(H), for any hypersequent H

Proof. That 2. implies 1. is obvious. Let us assume 1. and ⊢HUL∀+(r) H . From this, using

(cut) and easy derivations in HUL∀, we can prove that ⊢HUL∀+(r)⇒ I(H). By 1. we then

obtain ⊢UL∀+α I(H).
Let us now assume 1. and ⊢UL∀+(α) I(H). By 1. we get ⊢HUL∀+(r)⇒ I(H). Let us

assume, for simplicity, that H = Γ1 ⇒ ψ1 |Γ2 ⇒ ψ2, the generalization being easy. Thus, we
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have ⊢HUL∀+(r)⇒ ϕ1 ∨ ϕ2, where the formula ϕ1 stands for (⊙Γ1 → ψ1) ∧ e, the formula ϕ2

stands for (⊙Γ2 → ψ2) ∧ e, and clearly I(H) = ϕ1 ∨ ϕ2. By the following derivation:

⇒ ϕ1 ∨ ϕ2

ϕ2 ⇒ ϕ2

ϕ1 ⇒ ϕ1 ϕ2 ⇒ ϕ2
(com)

ϕ1 ⇒ ϕ2 |ϕ2 ⇒ ϕ1
(∨l)

ϕ1 ∨ ϕ2 ⇒ ϕ2 |ϕ2 ⇒ ϕ1 ϕ1 ⇒ ϕ1

ϕ1 ∨ ϕ2 ⇒ ϕ2 |ϕ1 ∨ ϕ2 ⇒ ϕ1 ⇒ ϕ1 ∨ ϕ2
(cut)

⇒ ϕ2 |ϕ1 ∨ ϕ2 ⇒ ϕ1
(cut)

⇒ ϕ2 | ⇒ ϕ1

we obtain ⊢HUL∀+(r)⇒ (⊙Γ1 → ψ1) ∧ e | ⇒ (⊙Γ2 → ψ2) ∧ e, under the assumption

⊢HUL∀+(r)⇒ (⊙Γ1 → ψ1) ∧ e ∨ (⊙Γ2 → ψ2) ∧ e. Finally, we obtain ⊢HUL∀+(r) H as

follows:

·
·
·

Γ2, (⊙Γ2 → ψ2) ∧ e⇒ ψ2

⇒ (⊙Γ1 → ψ1) ∧ e | ⇒ (⊙Γ2 → ψ2) ∧ e

·
·
·

Γ1, (⊙Γ1 → ψ1) ∧ e⇒ ψ1

(cut)
Γ1 ⇒ ψ1 | ⇒ (⊙Γ2 → ψ2) ∧ e

(cut)
Γ1 ⇒ ψ1 |Γ2 ⇒ ψ2

where the sequents Γ1, (⊙Γ1 → ψ1) ∧ e ⇒ ψ1 and Γ2, (⊙Γ2 → ψ2) ∧ e ⇒ ψ2 can be easily

derived in HUL∀.

Theorem 3.3.12. The algorithm in [25] transforms

• any acyclic N2 axiom α into an analytic internal structural rule (r) such that ⊢HUL∀+(r)

H if and only if ⊢UL∀+α I(H), for any hypersequent H;

• any acyclic P ′
3 axiom α into an analytic external structural rule (r) such that ⊢HUL∀+(r) S

if and only if ⊢UL∀+α I(H), for any hypersequent H .

Proof. Follows from Theorem 3.3.10 and Lemma 3.3.11.

The result in Theorem 3.3.12 can be extended and simplified if we consider the logic MTL∀
as the basic system. Recall that this logic is obtained by adding to UL∀ the axioms f → ϕ and

ϕ→ e. The rules corresponding to these axioms are the well known weakening rules:

G |Γ ⇒ Π

G |Γ, α ⇒ Π
(wl)

G |Γ ⇒

G |Γ ⇒ Π
(wr)

which can be obtained just applying Theorem 3.3.12. Letting HMTL∀ = HUL∀+(wl)+(wr),
we would, thus, have that ⊢HMTL∀ H if and only if ⊢MTL∀ I(H), for any hypersequent H ,

as a consequence of Theorem 3.3.12. Taking a hypersequent calculus with weakening, such as

HMTL∀ as a starting point, we obtain the following result, which translates the Theorems 2.3.9

and 2.3.13 for FLi-algebras into the proof-theoretical context and restricts them to the commu-

tative case.

38



Axiom Rule

f → α

G1 |Γ1 ⇒

G1Γ1 ⇒ Π
(wr)

α→ e

G1 |Σ ⇒ Π

G1 |Γ1,Σ ⇒ Π
(wl)

α→ α2

G1 |Γ1,Γ1,Σ ⇒ Π

G1 |Γ1,Σ ⇒ Π
(c)

α2 → α

G1 |Γ1,Σ ⇒ Π G1 |Γ2,Σ ⇒ Π

G1 |Γ1,Γ2,Σ ⇒ Π
(mgl)

αk → αn
G1 |Γ

n
1 ,Σ ⇒ Π . . . G1 |Γ

n
k ,Σ ⇒ Π

G1 |Γ1, . . . ,Γk,Σ ⇒ Π
(knotnk)

f · αk → αn
{G1 |Γ

n
i ,Σ ⇒ Π}i=1,...,k G1 |Γk+1 ⇒

G1 |Γ1, . . . ,Γk,Γk+1,Σ ⇒ Π
(fknotnk)

Table 3.2: Some N2 axioms and the corresponding internal structural rules

Theorem 3.3.13. The algorithm in [25] transforms

• any N2 axiom α into an analytic internal structural rule (r) such that ⊢HMTL∀+(r) H if

and only if ⊢MTL∀+α I(H) for any hypersequent H;

• any P3 axiom α into an analytic external structural rule (r) such that ⊢HMTL∀+(r) H if

and only if ⊢MTL∀+α I(H) for any hypersequent H .

Proof. Follows from the results in [25], Theorem 3.3.12 and Lemma 3.3.11.

The program AxiomCalc [11], which is available online at http://www.logic.at/

people/lara/axiomcalc.html, implements the algorithm, automating the transforma-

tion of axioms into rules for axiomatic extensions of FLew. Tables 3.2 and 3.3 show some

examples of axioms within N2 and P3 and the corresponding analytic rules obtained using Ax-

iomCalc.

The analytic rules produced by the algorithm in [25] have the important property of preserv-

ing cut elimination when added to HUL∀. We give a sketch of the proof below, starting with the

following technical lemma.

Lemma 3.3.14. [8]

1. Let d(a) be a derivation G1(a), . . . , Gn(a) ⊢HL∀ G(a) and t be a term whose variables

are all free and do not occur in d(a). Then d(t) is a derivation of G1(t), . . . , Gn(t) ⊢HL∀

G(t), where d(t) and G(t) denote the results of substituting the term t for all free occur-

rences of a in the derivation d(a) and hypersequent G(a) respectively.
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Axiom Rule

α ∨ ¬α

G |Γ,Σ ⇒ Π

G |Γ ⇒ |Σ ⇒ Π
(em)

(α → β) ∨ (β → α)

G |Γ2,Σ1 ⇒ Π1 G |Γ1,Σ2 ⇒ Π2

G |Γ1,Σ1 ⇒ Π1 |Γ2,Σ2 ⇒ Π2
(com)

α ∨ ¬αn [23]

G |Γ1,Σ1 ⇒ Π1 . . . G |Γn,Σ1 ⇒ Π1

G |Γ1, . . . ,Γn ⇒ |Σ1 ⇒ Π1
(emn)

¬α ∨ ¬¬α

G |Γ1,Γ2 ⇒

G |Γ1 ⇒ |Γ2 ⇒
(lq)

α0 ∨ (α0 → α1) ∨ · · · ∨ (α ∧ · · · ∧ αn−1 → αn)

{G | Σj ,Σi ⇒ Πi}0≤i≤n−1;i+1≤j≤n}

G |Σ1 ⇒ Π1 | . . . |Σn−1 ⇒ Πn−1 |Γn ⇒
(bcn)

¬(α · β) ∨ (α ∧ β → α · β) [42]

G |Γ2,Γ1,Σ1 ⇒ Π1

G |Γ1,Γ1,Σ1 ⇒ Π1

G |Γ1,Γ3,Σ1 ⇒ Π1

G |Γ2,Γ3,Σ1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,Σ1 ⇒ Π1
(wnm)

¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n) [11]

{G |Γn
i ,Γ

n
i+(2p−1),Σ ⇒ Π}1≤p≤n,n≤i≤(3n−2p)

{G |Γn
i ,Γ

n
j ,Σ ⇒ Π}1≤i≤(n−1),1≤j≤(3n−1)

G |Γn, · · · ,Γ3n−1 ⇒ |Γ1, · · · ,Γn−1,Σ ⇒ Π
(wnmn)

¬(αn) ∨ (αn−1 → αn) [1]

{Γn
i ,Σ ⇒ Π}2n−1

Γ1, . . . ,Γn ⇒ |Γn+1, . . . ,Γ2n−1,Σ ⇒ Π
(wnm1n)

∨
i<k

(¬αi → ¬αi+1) [73]

{G |Γ2i,Γ2i+1 ⇒ }1≤i≤(k−2)

G |Γ1,Γ2 ⇒ | . . . |Γ2k−3,Γ2k−2 ⇒
(invk)

(αn−1 → α · β) ∨ (β → α · β) [53]

{G |Γi,Γ1,Σ1 ⇒ Π1}2≤i≤n

{G |Γi,Γ1,Σ2 ⇒ Π2}2≤i≤n

G |Γ2, . . . ,Γn,Σ2 ⇒ Π2 |Γ1,Σ1 ⇒ Π1
(Ωn)

Table 3.3: Some P2 and P3 axioms and the corresponding external structural rules

2. Any derivation d of a hypersequent H can be transformed into a derivation ofH[α⇒α/p⇒p],
for any formula α and propositional variable p.

In the following, by the complexity of a formula ϕ, we mean the number of occurrences of

its connectives and quantifiers.

Theorem 3.3.15. Any hypersequent calculus extending HUL∀ with analytic structural rules

admits cut elimination.

Proof. The proof is a reformulation of that in [30].

We consider two generalized cut rules (mcut1) and (mcut2), which allow us to deal with
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applications of (ec) and any form of internal contraction:

G |Γ ⇒ α G |Σ1, α
i1 ⇒ Π1 | . . . |Σn, α

in ⇒ Πn
(mcut1)

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in ⇒ Πn

and
G |Γ1 ⇒ α | . . . |Γn ⇒ α G |Σ, α ⇒ Π

(mcut2)
G |Γ1,Σ ⇒ Π | . . . |Γn,Σ ⇒ Π

Let d be a derivation containing applications of (mcut1) and (mcut2). Let us denote by

ρ(d) the cut-rank of d, i.e. the maximal complexity of the cut-formulas in the applications of

(mcut1) and (mcut2) in d, plus 1. Let d− and d+ be the subderivations of d ending in the

topmost cut (either (mcut1) or (mcut2)) with cut-formula of complexity ρ(d). We denote by

h(d) the sum |d−| + |d+| of the lengths of d− and d+. Finally, we let n(d) be the number of

cuts ((mcut1) or (mcut2)) with cut-formula of complexity ρ(d). We reason by induction on the

triple (ρ(d), n(d), h(d)) with the lexicographic order. Let us consider the topmost application

of either (mcut1) or (mcut2) that has complexity ρ(d). First, assume that this is an application

of (mcut1). We show how to shift or reduce this application of (mcut1), in such a way as to

reduce (ρ(d), n(d), h(d)). Let the application of (mcut1) be of the form

·
·
·
d−

G |Γ ⇒ α

·
·
· d+

G |Σ1, α
i1 ⇒ Π1 | . . . |Σn, α

in ⇒ Πn
(mcut1)

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in ⇒ Πn

Let us assume that d− ends in a logical rule introducing α. We distinguish cases, according to

the last rule (r) applied in d+. If d+ ends in an axiom, we can just remove the application of

(mcut1). The case for the rules (el), (fr), (ew) and (ec) are easy and follow by reducing h(d).
If (r) is an application of an analytic rule, we can reduce h(d) by shifting upwards (mcut1) over

d+ and then applying (r). The latter is a correct rule application, due to linearity and the strong

subformula property of analytic rules. If (r) is a logical rule not introducing α, we can perform

a similar shift of the (mcut1) application over the premises of (r), taking care of eigenvariables

by using Lemma 3.3.14, if needed. If (r) is any logical rule introducing α, we apply (mcut1)
between the premises of (r) and of the last applied rule in d−, which by assumption is a logical

rule introducing α. We examine the cases for quantifiers in more details, as they are not present

in [30], which only deals with propositional logics. Assume that (r) is (∀l) and that the cut-

formula α is of the form ∀xβ(x), i.e. the derivations d− and d+ end as follows (a being an

eigenvariable):

·
·
·
d′−

G |Γ ⇒ β(a)
(∀r)

G |Γ ⇒ ∀xβ(x)

·
·
· d

′
+

G |Σ1,∀xβ(x)
i1 ⇒ Π1 | . . . |Σn,∀xβ(x)

in−1, β(t) ⇒ Πn
(∀l)

G |Σ1,∀xβ(x)
i1 ⇒ Π1 | . . . |Σn,∀xβ(x)

in ⇒ Πn
(mcut1)

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in ⇒ Πn

We shift upwards the application of (mcut1), applying it between the end-hypersequent of d−
and the end-hypersequent of d′+. Thus, we obtain a derivation d1 of
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G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in−1, β(t) ⇒ Πn.

We then apply Lemma 3.3.14(1) to d′−, to obtain a derivation d2 of G |Γ ⇒ β(t). The

required derivation is finally obtained by

·
·
·
d2

G |Γ ⇒ β(t)

·
·
· d1

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in−1, β(t) ⇒ Πn
(mcut1)

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in ⇒ Πn

where the cut-formula of (mcut1) has complexity less than ρ(d). Similarly, for the rule (∃l),
assume that we have:

·
·
·
d′−

G |Γ ⇒ β(t)
(∃r)

G |Γ ⇒ ∃xβ(x)

·
·
· d

′
+

G |Σ1,∃xβ(x)
i1 ⇒ Π1 | . . . |Σn,∃xβ(x)

in−1, β(a) ⇒ Πn
(∃l)

G |Σ1,∃xβ(x)
i1 ⇒ Π1 | . . . |Σn,∃xβ(x)

in ⇒ Πn
(cut)

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in ⇒ Πn

where a is an eigenvariable. We shift upwards the application of (mcut1), applying it between

the end-hypersequent of d− and the end-hypersequent of d′+. Thus, we obtain a derivation d1 of

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in−1, β(a) ⇒ Πn.

We then apply Lemma 3.3.14(1) to d1, to obtain a derivation d2 of

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in−1, β(t) ⇒ Πn.

The required derivation is finally obtained by

·
·
·
d′−

G |Γ ⇒ β(t)

·
·
· d2

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in−1, β(t) ⇒ Πn
(mcut1)

G |Σ1,Γ
i1 ⇒ Π1 | . . . |Σn,Γ

in ⇒ Πn

where the (mcut1) has complexity less than ρ(d). In case d− ends with a rule different from a

logical rule, we shift first the application of (mcut1) upwards on d−, using Lemma 3.3.14 (1) to

rename variables, when needed, and then reason in the same way as above. Let us consider now

the case where the topmost application of complexity ρ(d) is an application of (mcut2) of the

form
·
·
·
d−

G |Σ, α⇒ Π

·
·
·
d+

G |Γ1 ⇒ α | . . . |Γn ⇒ α
(mcut2)

G |Γ1,Σ ⇒ Π | . . . |Γn,Σ ⇒ Π

We need to show how to shift or reduce this application of (mcut2), in such a way as to reduce

(ρ(d), n(d), h(d)). First, we assume that d− ends with a logical rule and proceed in a similar

42



way as for the case of (mcut1). Note that, in case the last applied rule in d+ is an analytic

rule, we can shift the application of (mcut2) upwards, due to linearity, strong subformula and

coupling properties of analytic rules. In case d− ends with a rule different from a logical rule,

we shift first the application of (mcut2) upwards on d−, using Lemma 3.3.14 (1) to rename

variables, when needed, and then proceed as above.

Henceforth, by an N2 (respectively P3,P ′
3)-extension of L we mean any axiomatic extension

of a logic L with axioms within N2 (respectively, P3,P
′
3). By acyclic-N2 (respectively P3,P

′
3)-

extension, we mean an N2 (respectively P3,P ′
3)-extension where axioms are acyclic. We can

thus summarize the main result of this section with the next Theorem, which is a proof-theoretic

counterpart of Theorem 2.3.18.

Theorem 3.3.16. [25] Let L be any acyclic P ′
3-extension of UL or a P3-extension of MTL. We

can construct a hypersequent calculus HL∀ extending UL∀ (MTL∀ respectively) such that

• HL∀ admits cut elimination,

• ⊢HL∀ H if and only if ⊢L∀ I(H), for any hypersequent H .

Proof. Follows from Theorems 3.3.12, 3.3.13 and 3.3.15.

In what follows we will always denote by HL∀ the first-order hypersequent calculus corre-

sponding to the logic L∀ via Theorem 3.3.16.

Remark 3.3.17. A calculus for first-order Gödel logic (see Example 3.1.4) is obtained by adding

the rule (c) (see Table 3.2) to HMTL∀. Analytic calculi for Basic, Product and Łukasiewicz

logics cannot be obtained by adding structural rules to HFLe. Indeed the defining axiom of

Basic Logic (div) (see Example 3.1.4) belongs to the class N3, which cannot be treated by the

algorithm in [25]. The same applies to the axiom (Π) of Product Logic. Hypersequent calculi

have been introduced in the literature for Product [68] and Łukasiewicz [69] logics. However,

these calculi use logical rules different from that of FLe and require a different interpretation of

hypersequents than the one used here, see [70] for more details.

3.4 From density elimination to standard completeness

We have seen how to introduce a hypersequent calculus HL∀ admitting cut elimination for many

axiomatic extensions L∀ of UL∀. We can easily extend them to cover L∀D, i.e. L∀ with the

density rule, see Definition 3.2.2. Indeed, the density rule in hypersequent calculi is just an

external structural rule of the form

G | p ⇒ Π |Λ ⇒ p

G |Λ ⇒ Π
(D)

where p is a propositional variable not occurring in (any instance of) Λ,Π or G (p is an eigen-

variable).
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The density rule is not always admissible: its addition might enable us indeed to derive new

theorems, even resulting in inconsistency.

Example 3.4.1. Consider the calculus HMTL∀+ (em2), cf. Table 3.3. Adding the density rule

would allow us to derive an inconsistency as follows:

p⇒ p p⇒ p
(em2)

p, p⇒ | ⇒ p

q ⇒ q q ⇒ q
(em2)

q, q ⇒ | ⇒ q
(com)

p, q ⇒ | p, q ⇒ | ⇒ p | ⇒ q
(ec)

p, q ⇒ | ⇒ p | ⇒ q
(D)

q ⇒ | ⇒ q
(D)

⇒

This coheres with the fact that the logic MTL + (emn) is not standard complete, see [53]. A

similar situation arises for HMTL∀ + (bc2) (cf. Table 3.3), where the empty sequent can be

derived as follows:

q ⇒ q

p⇒ p q ⇒ q
(com)

q ⇒ p | p ⇒ q p⇒ p
(bc2)

⇒ p | p⇒ q | p⇒ q | q ⇒
(ec)

⇒ p | p ⇒ q | q ⇒
(D)

⇒ p | p⇒
(D)

⇒

For some hypersequent calculi we are able instead to show the admissibility of (D), proving

in fact its elimination: we find concrete procedures to rewrite any derivation containing an ap-

plication of (D) into a derivation not containing this rule. Note the similarity between (D) and

the cut rule:
G |Γ ⇒ α G |α,∆ ⇒ Π

G |Γ,∆ ⇒ Π
(cut)

Hence, in developing techniques for density elimination, we can benefit from insights coming

from cut elimination procedures, one of the most developed topics in proof theory.

The first proofs of density elimination in the literature [5, 66] were calculi-specific. They

were developed by analogy with Gentzen-style cut elimination proofs, making use of heavy

combinatorial arguments to shift the density rule upwards. For instance, in order to show density

elimination for HUL in [66], the following generalized density rule was considered

G | {Γi, p
λi ⇒ Πi}i=1,...,m | {Σk, p

µk+1 ⇒ p}k=1,...,o | {∆j ⇒ p}j=1,...,m

G | {Γi,∆
λi
j ⇒ Πi}

j=1,...,m
i=1,...,n | {Σk,∆

µk
j ⇒ e}j=1,...,m

k=1,...,o

(D)

where p is an eigenvariable, n,m ≥ 1, and λi ≥ 1 for some i, 1 ≤ i ≤ n. This rule plays

the same role as Gentzen’s mix rule for the proof of cut elimination of the sequent calculi LK
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and LJ, see e.g. [78]. Showing that the generalized density rule can be “pushed” above other

rules of the calculus requires checking many cases, especially for external structural rules such

as (com). A different method to eliminate applications of the density rule from derivations was

introduced in [28] and called density elimination by substitution. In this approach, similar to

normalization for natural deduction systems, applications of the density rule are removed by

making suitable substitutions for the newly introduced propositional variables. In Chapters 4

and 5 we will explain the method of density elimination by substitution in detail and extend it to

classes of axiomatic extensions of MTL∀ and UL∀, respectively.

Let HL∀ be a first-order hypersequent calculus. We denote by HL∀D the extension of the

calculus with the rule (D). The addition of (D) matches the density rule in Hilbert systems

i.e. ⊢HL∀D H if and only if ⊢L∀D I(H), for any hypersequent H . We do not prove this fact

here, but we directly show, adapting from [63, 70] that the elimination of the density rule in a

hypersequent calculus implies the admissibility of the density rule in the corresponding Hilbert

system. First, we prove a simple technical lemma, which will be needed in the following.

Theorem 3.4.2. Let L be any acyclic P ′
3-extension of UL or P3-extension of MTL. If the

calculus HL∀D admits density elimination, then ⊢L∀D = ⊢L∀.

Proof. We need to show that any L∀D-proof can be converted in an L∀-proof. We reason by

induction on the length of an L∀D-proof. Note that L∀D-proofs differ from L∀-proofs only for

applications of (density) (item 3 in Definition 3.2.2 ), hence it suffices to consider only these

cases. Assume that T ⊢L∀D (ϕ→ p)∨(p→ ψ)∨χ, for some set of formulas T ∪{ϕ,ψ}, where

p is a propositional variable. By induction hypothesis we have T ⊢L∀ (ϕ → p) ∨ (p → ψ) ∨ χ.

By Lemma 3.1.10, for some ϕ∗ = (ϕ1 ∧ e) · . . . · (ϕm ∧ e) where ϕi ∈ T for i = 1, . . . ,m, we

have

⊢L∀ ϕ
∗ → ((ϕ → p) ∨ (p→ ψ) ∨ χ)

and, using some derivabilities in UL∀

⊢L∀ ((ϕ∗ · ϕ) → p) ∨ (p→ (ϕ∗ → ψ)) ∨ (ϕ∗ → χ).

But then, by Theorem 3.3.16, we obtain that the hypersequent

ϕ∗, ϕ⇒ p | p⇒ ϕ∗ → ψ | ϕ∗ ⇒ χ

is cut-free derivable in HL∀. We apply then (D) to the latter hypersequent and, by density

elimination, we obtain that

ϕ∗, ϕ ⇒ ϕ∗ → ψ | ϕ∗ ⇒ χ

is derivable in HL∀. Consider now the following derivation in HL∀:
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·
·
·

ϕ∗, ϕ ⇒ ϕ∗ → ψ | ϕ∗ ⇒ χ

ϕ∗ ⇒ ϕ∗ ψ ⇒ ψ
(→ l)

ϕ∗, ϕ∗ → ψ ⇒ ψ
(cut)

ϕ∗, ϕ, ϕ∗ ⇒ ψ | ϕ∗ ⇒ χ
(el)

ϕ∗, ϕ, ϕ∗ ⇒ ψ | ϕ∗, e, . . . , e⇒ χ
(∧l)

ϕ∗, ϕ, ϕ∗ ⇒ ψ | ϕ∗, ϕ1 ∧ e, . . . , ϕm ∧ e⇒ χ
(·l)

ϕ∗, ϕ, ϕ∗ ⇒ ψ | ϕ∗, ϕ∗ ⇒ χ
(→ r)

ϕ∗, ϕ∗ ⇒ ϕ→ ψ | ϕ∗, ϕ∗ ⇒ χ
(∨r)

ϕ∗, ϕ∗ ⇒ (ϕ→ ψ) ∨ χ |ϕ∗, ϕ∗ ⇒ (ϕ→ ψ) ∨ χ
(ec)

ϕ∗, ϕ∗ ⇒ (ϕ→ ψ) ∨ χ

By Theorem 3.3.16 we have

⊢L∀ (ϕ∗ · ϕ∗) → ((ϕ → ψ) ∨ χ).

Finally, by the other direction of Lemma 3.1.10, we get

T ⊢L∀ (ϕ→ ψ) ∨ χ.

Remark 3.4.3. The density rule considered here is slightly different from the one originally

introduced in [66], which has the form

G |Λ ⇒ p | p,Σ ⇒ Π

G |Λ,Σ ⇒ Π

As shown in the proof above, our weaker version actually suffices to obtain the desired equiva-

lence between the elimination of the rule in the hypersequent framework and the admissibility of

the Hilbert-style density rule. This simpler version of the density rule simplifies the forthcoming

proofs, but it comes at the price of using an application of (cut) (see the derivation above), that

in our calculi can anyway be eliminated. Modifying the proof above in a suitable way, we could

also show that even a weaker form of density, where Λ is restricted to be a single formula rather

than a multiset, suffices. This latter rule however would not cause any relevant simplifications

of the proofs, hence, we do not consider it in what follows.

Combining the results obtained so far, we see how density elimination entails rational com-

pleteness.

Corollary 3.4.4. Let L be any acyclic P ′
3-extension of UL or P3-extension of MTL. If the

calculus HL∀D admits density elimination, the logic L∀ is rational complete

Proof. Follows from Theorems 3.3.16,3.4.2 and 3.2.3.
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Let us take stock of what we have achieved so far. We have shown that axiomatic extensions

of UL∀ are rational complete, provided that we have corresponding hypersequent calculi admit-

ting density elimination. Our last step is now to show standard completeness, which is defined

as follows (recall Definition 2.2.1 of standard FL-algebras).

Definition 3.4.5. Let L be a an axiomatic extension of UL, P be a predicate language, T be

a P-theory, and ϕ be a P-formula. L∀ is said to be standard complete if the following are

equivalent:

• T ⊢L∀ ϕ.

• 〈A,M〉 |= ϕ for each standard L-algebra A and each model 〈A,M〉 of the theory T .

As mentioned in Chapter 1, the traditional way to prove standard completeness uses the

following lemma (see e.g. [34, 52]).

Lemma 3.4.6. (Embedding Lemma) Let L be any axiomatic extension of UL. If countable L-

chains are regularly embeddable into complete dense L-chains, then L∀ is standard complete.

Usually Lemma 3.4.6 is proved in two steps, see e.g. [41, 58] and Chapter 1.

(i) Prove rational completeness, showing that countable L-chains are regularly embeddable

into dense countable L-chains.

(ii) Prove that dense countable L-chains are regularly embeddable into complete L-chains.

Step (i) is the algebraic counterpart of density elimination, while for step (ii) a general result has

been presented in Theorem 2.3.18.

We can then summarize what we have revised on standard completeness in this chapter as

follows.

Theorem 3.4.7 (Standard Completeness). Let L be any acyclic P ′
3-extension of UL or P3-

extension of MTL.

• If the corresponding hypersequent calculus HL∀D admits density elimination, then L∀ is

standard complete.

• If countable L-chains are regularly embeddable into dense countable L-chains, then L∀
is standard complete.

Proof. For the first item, L∀ is rational complete by Corollary 3.4.4. Standard completeness is

obtained by Lemma 3.4.6 and Theorem 2.3.18. The second item follows from Lemma 3.4.6 and

Theorem 2.3.18.

We are then left with two possible ways for obtaining the conclusion of Theorem 3.4.7,

i.e. standard completeness: the proof-theoretic method already discussed, which relies on den-

sity elimination, and an algebraic one, consisting in the construction of an embedding from

L-chains into dense L-chains. Such embeddings were found for Gödel logic in [49] and for
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the logics nilpotent minimum NM and weak nilpotent minimum WNM in [42]. The results

were later generalized to MTL in [58] and refined and extended to MTL∀ in [71]. We briefly

sketch the construction of the dense embedding for MTL, following the survey paper [34]. Let

A = (A,∧,∨, ·,→, f, e) be a countable MTL-chain. The embedding into a dense countable

MTL-chain is constructed as follows:

• For every a ∈ A, define

succ(a) =

{
the successor of a in (A,≤) if it exists,

a otherwise.

• Let B be the union of the sets {(a, 1) | a ∈ A} (an isomorphic copy of A) and {(a, q) |
∃a′ ∈ A such that a 6= a′ and succ(a′) = a, q ∈ Q ∩ (0, 1)}.

• Consider the lexicographical order � on B.

• Define the following monoidal operation on B:

〈a, q〉 ◦ 〈b, r〉 =

{
min�{〈a, q〉, 〈b, r〉} if a · b = min{a, b}
〈a · b, 1〉 otherwise.

It suffices then to check the following statements:

• The ordered monoid (A, ·, e,≤) is embeddable into (B, ◦, (e, 1),�) by mapping every

a ∈ A to (a, 1).

• B = (B, ◦, (e, 1),�) is a densely ordered countable monoid with maximum and mini-

mum, so it is isomorphic to a monoid B
′ = ([0, 1] ∩ Q, ◦′, 1,�′). Obviously, (A, ·, e,≤)

is also embeddable into B
′. Let h be such an embedding. Moreover, restricted to h[A],

the residuum of ◦′ exists, call it ⇒, and h(a) ⇒ h(b) = h(a→ b).

The algebraic approach sketched above is hard to extend to other logics. In particular, it

is not clear how to extend it to UL and to its axiomatic extensions that are not extensions of

MTL, see [52]. In Chapter 6 we will show how the general proof-theoretic methods described

in Chapters 4 and 5 can be translated back into the algebraic setting, thus obtaining a general

method for constructing our required embeddings into dense chains.
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CHAPTER 4
Axiomatic extensions of MTL∀

We provide general sufficient conditions for standard completeness for a large class of P3-

extensions of MTL∀. This leads to a uniform proof of standard completeness, which applies

to all P3-extensions of MTL∀ already known to be standard complete and also to infinitely

many new ones. This chapter is based on [8, 11] and on the unpublished work [9].

4.1 Density elimination and semianchored rules

Recall that for any P3-extension L∀ of MTL∀ we have a hypersequent calculus HL∀ admit-

ting cut elimination (see Theorem 3.3.16 in Chapter 3). Moreover, by Theorem 3.4.7, showing

density elimination for the extension HL∀D of HL∀ with (D) suffices to obtain standard com-

pleteness for L∀. Density elimination will be proved here for any extension of HMTL∀D with

a class of external structural rules – called semianchored – which correspond to a subclass of

axioms in the class P3 of the substructural hierarchy.

Definition 4.1.1. Let H be a hypersequent. We call pp-component any component of H of the

form Θ, p⇒ p where Θ is any multiset of formulas.

Note that, for axiomatic extensions of MTL∀, any hypersequent containing pp-components

is derivable from the axiom p⇒ p using (external and internal) weakenings.

Definition 4.1.2. Let (r) be any analytic structural rule:

G |S1 . . . G |Sm
G |C1 | . . . |Cq

(r)

Let L(C) = L(C1) ∪ · · · ∪ L(Cq) and R(C) = R(C1) ∪ · · · ∪ R(Cq) (cf. Notation 3.3.2) and

let (Γ,Π) be a pair in the cartesian product L(C) × R(C), with Π 6= ∅. We say that (Γ,Π) is

an anchored pair for (r) if (Γ,Π) ∈ L(Cs) × R(Cs), for some conclusion component Cs. We

call (Γ,Π) a unanchored pair otherwise.
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Note that, by linearity (see Definition 3.3.9), if (Γ1,Π), . . . , (Γn,Π) are anchored pairs for

a rule (r), then all the Γ1, . . . ,Γn belong to the same component of the conclusion. Let B be a

set of (un)anchored pairs B = {(Γ1,Π), . . . , (Γn,Π)} for an analytic rule (r). In what follows,

we say that B is contained in a premise G |Si of (r), if all the metavariables Γ1, . . . ,Γn belong

to L(Si) and R(Si) = Π.

Note that, by coupling (see Definition 3.3.9), any premise of an analytic structural rule with

nonempty right hand side is of the form G |Θ,Σi ⇒ Πi where Θ is a multiset of metavariables

and Σi is the metavariable witnessing the coupling property for Πi.

Definition 4.1.3. Let (r) be an analytic structural rule as in the previous definition. We say

that (r) is anchored iff for each premise G |Si, either R(Si) = ∅ or Si contains only anchored

pairs. (r) is semianchored iff for any set of unanchored pairs {(Γ1,Π), . . . , (Γn,Π)} which is

contained in a premise G |Si = G |Θ,Γi11 , . . . ,Γ
in
n ,Σi ⇒ Πi, there is a premise G |Sj such

that one of the following holds:

1. Sj = Θ,∆i1
1 , . . . ,∆

in
n ,Σi ⇒ Πi and (∆1,Πi), . . . , (∆n,Πi) are anchored pairs (with

∆1, . . . ,∆n not necessarily distinct metavariables).

2. Sj = Θ,Γi11 , . . . ,Γ
in
n ,Σj ⇒ Πj and (Γ1,Πj), . . . , (Γn,Πj) are anchored pairs.

3. Sj = Θ,∆i1
1 , . . . ,∆

in
n ,Σj ⇒ Πj and (Γ1,Πj), . . . , (Γn,Πj), (∆1,Πi), . . . , (∆n,Πi) are

anchored pairs (with ∆1, . . . ,∆n not necessarily distinct metavariables).

It is clear that any anchored rule is semianchored. Indeed, by definition, anchored rules do

not contain any set of unanchored pairs, hence they vacuously verify the properties in Defini-

tion 4.1.3.

Example 4.1.4. All analytic internal structural rules are anchored, by the strong subformula

property, see Definition 3.3.9. Consider now the external structural rules in Table 3.3:

• (lq) and (invk) are anchored, as all their premises have empty right hand side.

• The rules (wnm) (see Example 4.1.6 below), (wnmn), (Ωn) (see Example 4.1.7 below)

and (com) (see Example 4.1.8 below) are semianchored.

• (em), (emn) (see Example 4.1.5 below) and (bcn) are not semianchored.

Example 4.1.5. For any n > 0, the rule

G |Γ1,Σ1 ⇒ Π1 . . . G |Γn,Σ1 ⇒ Π1

G |Γ1, . . . ,Γn ⇒ |Σ1 ⇒ Π1
(emn)

is not semianchored. Indeed, any premise of the form G |Γi,Σ1 ⇒ Π1 for i ∈ {1, . . . , n}
contains the set of unanchored pairs {(Γi,Π1)}, for which none of the conditions (1) − (3) in

Definition 4.1.3 is satisfied.

50



Example 4.1.6. We show that the rule (wnm)

G |Γ1,Γ1,Σ1 ⇒ Π1 G |Γ2,Γ1,Σ1 ⇒ Π1 G |Γ1,Γ3,Σ1 ⇒ Π1 G |Γ2,Γ3,Σ1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,Σ1 ⇒ Π1

is semianchored. Indeed:

• The premise G |Γ1,Γ1,Σ1 ⇒ Π1 does not contain any set of unanchored pairs.

• The premises G |Γ2,Γ1,Σ1 ⇒ Π1 and G |Γ3,Γ1,Σ1 ⇒ Π1 contain the sets of unan-

chored pairs {(Γ2,Π1)} and {(Γ3,Π1)}, respectively. For both, the premiseG |Γ1,Γ1,Σ1

⇒ Π1 satisfies Condition 1 in Definition 4.1.3.

• The premise G |Γ2,Γ3,Σ1 ⇒ Π1 contains the set of unanchored pairs B1 = {(Γ2,Π1),
(Γ3,Π1)},B2 = {(Γ2,Π1)} andB3 = {(Γ3,Π1)}. ForB1, the premiseG |Γ1,Γ1,Σ1 ⇒
Π1 satisfies Condition 1 in Definition 4.1.3, while for B2 and B3, the same condition is

satisfied by G |Γ3,Γ1,Σ1 ⇒ Π1 and G |Γ2,Γ1,Σ1 ⇒ Π1, respectively.

Example 4.1.7. The rule (Ω3) (see Table 3.3):

G |Γ3,Γ1,Σ2 ⇒ Π2

G |Γ2,Γ1,Σ2 ⇒ Π2

G |Γ3,Γ1,Σ1 ⇒ Π1

G |Γ2,Γ1,Σ1 ⇒ Π1

G |Γ3,Γ2,Σ2 ⇒ Π2 |Γ1,Σ1 ⇒ Π1
(Ω3)

is semianchored. Indeed, the premise G |Γ3,Γ1,Σ2 ⇒ Π2 contains the set of unanchored pairs

{(Γ1,Π2)}. Condition 2 in Definition 4.1.3 is satisfied by the premise G |Γ3,Γ1,Σ1 ⇒ Π1.

The premise G |Γ3,Γ1,Σ1 ⇒ Π1 contains the set of unanchored pairs {(Γ3,Π1)}. Condition

2 of Definition 4.1.3 is satisfied by G |Γ3,Γ1,Σ2 ⇒ Π2. The check is similar for the remaining

premises.

The check that any (Ωn) is semianchored is similar.

Example 4.1.8. The rule

G |Γ2,Σ1 ⇒ Π1 G |Γ1,Σ2 ⇒ Π2

G |Γ1,Σ1 ⇒ Π1 |Γ2,Σ2 ⇒ Π2
(com)

is semianchored. Indeed, the premise G |Γ2,Σ1 ⇒ Π1 contains the set of unanchored pairs

{(Γ2,Π1)}. The premise G |Γ1,Σ2 ⇒ Π2 satisfies Condition 3 of Definition 4.1.3, as both

(Γ1,Π1) and (Γ2,Π2) are anchored pairs. The case of G |Γ1,Σ2 ⇒ Π2 is symmetric.

We describe below, first in an informal way, our proof of density elimination. This uses and

refines the method of density elimination by substitution introduced in [28].

Let d be a cut-free derivation ending in a topmost application of the density rule

··· d
G |Λ ⇒ p | p⇒ Π

(D)

G |Λ ⇒ Π
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The application of (D) is removed by substituting the occurrences of p in d in an “asymmet-

ric” way, according to whether p occurs in the left or in the right hand side of a sequent. More

precisely, each component S of every hypersequent in d is replaced with S[Λ⇒Π/p⇒p] (cf. No-

tation 3.3.6). Following this substitution, the application of (D) above can be replaced with an

application of (ec).

A problem

The labeled tree that results by applying the “asymmetric” substitution to d (we denote it by

d∗) is in general not a correct derivation anymore. This is due to the possible presence in d
of hypersequents containing pp-components, such as G |Θ, pk ⇒ p. Such hypersequents are

transformed in d∗ into hypersequents of the form G |Θ,Λk ⇒ Π, which are no longer deriv-

able. To solve the problem and obtain a correct density-free derivation, we need to restructure

all subderivations of d∗ containing the old pp-components. Looking at the original (cut-free)

derivation d bottom-up it is clear that pp-components can originate only from applications of

external structural rules that “mix” the content of various components in the conclusion. We

discuss below some cases, starting with the case of (com), addressed and solved in [28].

The communication rule [28]:

Density elimination was proved in [28] for calculi containing only (com) as external structural

rule “mixing” the content of components. The only problematic case to handle there was when

one of the premises of (com) in d led to a pp-component as, e.g., in the following case:

···
G |Γ1,Γ2 ⇒ Ψ

···
Σ, p⇒ p

(com)
G |Γ1,Σ ⇒ p |Γ2, p⇒ Ψ

The restructuring of d∗ was handled in [28] by removing this application of (com) and replacing

it with a (sub)derivation starting from the premise G |Γ1,Γ2 ⇒ Ψ and containing suitable

applications of (cut) (see Lemma 4.1.10 below) and (wl).

Semianchored rules

In this chapter we prove density elimination for HMTL∀D extended with any semianchored

rule. Though mixing components, semianchored rules allow for a suitable restructuring of d∗.

Indeed these rules have the property that, whenever the active component S of a premise is a

pp-component, we can always find another premise to be used to derive its substituted version

S[Λ⇒Π/p⇒p]. Note that the case of semianchored rules subsumes the case above, since (com)
itself is a semianchored rule, see Example 4.1.8. We illustrate the idea behind semianchored

rules and the way we restructure the derivation d∗ in Theorem 4.1.11 first with an example.

Example 4.1.9. Consider the rule (wnm) of Table 3.3

G |Γ1,Γ1,∆1 ⇒ Π1 G |Γ2,Γ1,∆1 ⇒ Π1 G |Γ2,Γ3,∆1 ⇒ Π1 G |Γ1,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,∆1 ⇒ Π1

52



Assume that the derivation d of page 51 contains the following application of (wnm):

··· d1
Γ1,Γ1 ⇒ p

p⇒ p
(wl)

p,Γ1 ⇒ p

p⇒ p
(wl)

p, p⇒ p

p⇒ p
(wl)

p,Γ1 ⇒ p
(wnm)

p, p⇒ |Γ1 ⇒ p

The substitution [Λ⇒Π/p⇒p] applied to all the hypersequents above yields the following incorrect

subderivation in d∗ (d∗1 is obtained by applying the asymmetric substitution [Λ⇒Π/p⇒p] to all

the sequents in d1):

··· d
∗
1

Γ1,Γ1 ⇒ Π

··· ??
Λ ⇒ Π

(wl)
Λ,Γ1 ⇒ Π

··· ??
Λ ⇒ Π

(wl)
Λ,Λ ⇒ Π

··· ??
Λ ⇒ Π

(wl)
Λ,Γ1 ⇒ Π

(wnm)
Λ,Λ ⇒ |Γ1 ⇒ Π

Now the idea is to use the derivation d∗1 of Γ1,Γ1 ⇒ Π (the substituted version of the non pp-
component Γ1,Γ1 ⇒ p) to derive the substituted version of the other premises, i.e. (p,Γ1 ⇒
p) [Λ⇒Π/p⇒p] and (p, p ⇒ p) [Λ⇒Π/p⇒p]. More precisely, the incorrect (sub)derivation in d∗

above is replaced with:

··· d
∗
1

Γ1,Γ1 ⇒ Π

··· d
∗
1

Γ1,Γ1 ⇒ Π
·····
(∗)

Λ,Γ1 ⇒ Π

··· d
∗
1

Γ1,Γ1 ⇒ Π
·····
(∗∗)

Λ,Λ ⇒ Π

··· d
∗
1

Γ1,Γ1 ⇒ Π
·····
(∗)

Λ,Γ1 ⇒ Π
(wnm)

Λ,Λ ⇒ |Γ1 ⇒ Π

where (∗) and (∗∗) are obtained by suitable cuts (i.e. applications of Lemma 4.1.10 below).

The technical lemma below, which enables us to suitably “move” multisets of formulas

between components of the same hypersequents, is the key for our proof of density elimination.

Lemma 4.1.10. Let HL∀ be a hypersequent calculus extending HUL∀ with analytic rules. Let

d be a cut-free, density-free derivation of G |Λ ⇒ p | p⇒ Π (p 6∈ G,Π,Λ). Then the rule

G |Θ,∆ ⇒ Ψ
(splitd)

G |Θ,Λ ⇒ Ψ |∆ ⇒ Π

is derivable in HL∀.

Proof. Applying Lemma 3.3.14(2) to d, we have a derivation d′ ofG |Λ ⇒ ⊙∆ | ⊙∆ ⇒ Π. The

conclusion of the rule (splitd) is obtained as follows (the sequent ∆ ⇒ ⊙∆ is easily derivable):

·
·
· d

′

G |Λ ⇒ ⊙∆ | ⊙∆ ⇒ Π

G |Θ,∆ ⇒ Ψ
(·l)

G |Θ,⊙∆ ⇒ Ψ
(cut)

G |Θ,Λ ⇒ Ψ | ⊙∆ ⇒ Π ∆ ⇒ ⊙∆
(cut)

G |Θ,Λ ⇒ Ψ |∆ ⇒ Π
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We are now ready to present the main theorem of this chapter. In what follows, a (D)-free

derivation is a derivation not containing the rule (D).

Theorem 4.1.11. Let HL∀ be any hypersequent calculus extending MTL∀ with any set of semi-

anchored rules. HL∀D admits density elimination.

Proof. It is enough to consider topmost applications of (D). Assume that this is

··· d
G |Λ ⇒ p | p⇒ Π

(D)
G |Λ ⇒ Π

By Theorem 3.3.16, we can assume that d is cut-free. We show that we can obtain a (D)-free

derivation of G |Λ ⇒ Π. Let H be S1 | . . . |Sn. We define H∗ as S∗
1 | ... |S

∗
n where for each

i = 1, ..., n
S∗
i = Si[

Λ⇒Π/p⇒p]

We prove the following:

Claim: For each hypersequent H in d that does not contain a pp-component, one can find a

(D)-free derivation of G |H∗.

The result on density elimination follows by this claim. Indeed let H be G |Λ ⇒ p | p ⇒ Π. We

get that G |H∗ = G | (G |Λ ⇒ p | p ⇒ Π)∗ = G |G |Λ ⇒ Π |Λ ⇒ Π is derivable (note that

G∗ = G by the eigenvariable condition on p). The desired (D)-free proof of G |Λ ⇒ Π follows

by (ec).
The proof of the claim proceeds by induction on the length of the cut-free subderivation

dH of H in HL∀. If (r) is an axiom, the claim easily follows by applying (ew). For the

inductive step, we distinguish cases according to the last rule (r) applied in dH . If (r) is

(ec),(ew),(wl),(wr), the claim holds by the induction hypothesis followed by a suitable ap-

plication of the corresponding rule.

Logical rules. Let (r) be any logical rule, for instance of the form

G1 |S1 G1 |S2
G1 |S

(r)

Recall that, by assumption, the conclusion of (r) does not contain pp-components. Hence, by the

form of our logical rules (see Table 3.1), none of the premises of (r) can contain pp-components

as well. We then apply the induction hypothesis to the premises of (r), obtaining a derivation

of G |G∗
1 |S

∗
1 , and G |G∗

1 |S
∗
2 . Note that, since p is a propositional variable, it cannot be the

principal formula of the original rule application. Hence

G |G∗
1 |S

∗
1 G |G∗

1 |S
∗
2

G |G∗
1 |S

∗ (r)
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is a correct rule application. This gives the desired hypersequent. In case (r) is a quantifier rule,

we use Lemma 3.3.14 to rename variables, if needed.

Semianchored rules. Assume now that the last applied rule (r) is a semianchored rule of

the form
G1 |S1 . . . G1 |Sm

G1 |C1 | . . . |Cq
(r)

and that its conclusion does not contain any pp-component. We show how to find a (D)-free

derivation of

G |G∗
1 |C

∗
1 | . . . |C

∗
q .

Take a premise G1 |Si of (r). All the possible cases that can arise are listed in Figure 4.1.

(a) Si is not a pp-component.

(b) Si is a pp-component and does not contain unanchored tuples.

(c) Si is a pp-component and contains unanchored tuples.

Figure 4.1: Cases for the premises of a semianchored rule

For case (a), we can just apply the induction hypothesis to get a derivation of G |G∗
1 |S

∗
i . (b)

cannot occur, as otherwise we would have a pp-component in the conclusion, contradicting our

assumption. Therefore, the only nontrivial case to handle is (c). Assume, to fix the ideas, that Si
is obtained as the instantiation of the metasequent Θ,Γi11 , . . . ,Γ

in
n ,Σi ⇒ Πi, where Γ1, . . . ,Γn

are the metavariables whose instantiation contain some ps, and Πi is instantiated with p. Clearly

every (Γ1,Πi), . . . , (Γn,Πi) has to be an unanchored pair, as otherwise the conclusion would

contain a pp-component. Following Definition 4.1.3 of semianchored rules, we consider three

cases.

1. There is a premise G1 |Sj , where Sj instantiates a metasequent of the form

Θ,∆i1
1 , . . . ,∆

in
n ,Σi ⇒ Πi

and any (∆1,Πi), . . . , (∆n,Πi) is anchored. From this and the coupling property, it fol-

lows that L(Sj) does not contain any p, hence Sj is not a pp-component. By the induction

hypothesis we have a derivation of G |G∗
1 |S

∗
j , i.e. G |G∗

1 |Θ,∆
i1
1 , . . . ,∆

in
n ,Σi ⇒ Π. By

multiple applications of the rule (splitd) (see Lemma 4.1.10) we get a derivation of

G |G∗
1 |Θ,Λ

i1
1 ,∆

i2
2 , . . . ,∆

in
n ,Σi ⇒ Π |∆1 ⇒ Π | . . . |∆1 ⇒ Π

and by applying (ec) we get

G |G∗
1 |Θ,Λ

i1
1 ,∆

i2
2 , . . . ,∆

in
n ,Σi ⇒ Π |∆1 ⇒ Π.

Proceeding similarly for every ∆1, . . . ,∆n, we eventually obtain a derivation of

(∗) G |G∗
1 |Θ,Λ

i1+···+in ,Σi ⇒ Π |∆1 ⇒ Π | . . . |∆n ⇒ Π.
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Note that all the (∆1,Πi), . . . , (∆n,Πi) are anchored pairs. By Definition 4.1.2 there is

a component of the conclusion, say Cs, such that ∆1, . . . ,∆n ∈ L(Cs) and Πi ∈ R(Cs).
Hence, by applying (wl) to all the sequents in (∗) of the form ∆i ⇒ Π, we obtain

G |G∗
1 |Θ,Λ

i1+···+in ,Σi ⇒ Π |C∗
s | . . . |C

∗
s .

Applying (ec), we get

(∗∗) G |G∗
1 |Θ,Λ

i1+···+in ,Σi ⇒ Π |C∗
s .

Note that Si contains at least i1 + · · · + in times p, as we assumed that the instantiations

of all the metavariables Γ1, . . . ,Γn contained at least one p. Hence S∗
i should contain

at least i1 + · · ·+ in times Λ, and it can be derived by applying (wl) to the component

Θ,Λi1+···+in ,Σi ⇒ Π of (∗∗). We have thus obtained a derivation of G |G∗
1 |S

∗
i |C

∗
s .

2. There is a premise G |Sj , where Sj instantiates a metasequent of the form

Θ,Γi11 , . . . ,Γ
in
n ,Σj ⇒ Πj

and (Γ1,Πj), . . . , (Γn,Πj) are anchored pairs. Clearly Sj is not a pp-component, hence

by the induction hypothesis we have a derivation of G |G∗
1 |S

∗
j . Note that S∗

j is a sequent

of the form

Θ, (Γ∗
1)
i1 , . . . , (Γ∗

n)
in ,Σ∗

j ⇒ Πj

where Γ∗
i ,Σ

∗
j denote the multiset Γi,Σj where any occurrence of p has been replaced with

Λ.

We apply the rule (splitd) to G |G∗
1 |S

∗
j , obtaining

(∗) G |G∗
1 |Λ,Σ

∗
j ⇒ Πj |Θ, (Γ

∗
1)
i1 , . . . , (Γ∗

n)
in ⇒ Π.

We obtain then S∗
i , by applying (wl) on the component Θ, (Γ∗

1)
i1 , . . . , (Γ∗

n)
in ⇒ Π of (∗).

Moreover, recall that all the (Γ1,Πj), . . . , (Γn,Πj) are anchored and all the Γ1, . . . ,Γn
contain at least one p. Hence we can obtain a component C∗

s of the conclusion of (r), by

applying (wl) on the component Λ,Σ∗
j ⇒ Πj of (∗). Thus, we have obtained a derivation

of

G |G∗
1 |S

∗
i |C

∗
s

3. There is a premise G |Sj , where Sj instantiates a metasequent of the form

Θ,∆i1
1 , . . . ,∆

in
n ,Σj ⇒ Πj

and all the pairs (Γ1,Πj), . . . , (Γn,Πj), (∆1,Πi), . . . , (∆n,Πi) are anchored. Recall

that the instantiation of all the Γ1, . . . ,Γn and Πi contain a p. Hence, as (Γ1,Πj), . . . ,
(Γn,Πj), (∆1,Πi), . . . , (∆n,Πi) are anchored, we can assume that neither the instanti-

ation of Πj nor of any of the ∆1, . . . ,∆n can contain a p (otherwise we would have a
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pp-component in the conclusion). Thus, by induction hypothesis we have a derivation of

G |G∗
1 |S

∗
j , i.e.

G |G∗
1 |Θ,∆

i1
1 , . . . ,∆

in
n ,Σ

∗
j ⇒ Πj

where Σ∗
j denotes the multiset Σj where any occurrence of p has been replaced with Λ, if

any. We apply Lemma 4.1.10 (i1 + · · · + in) times to the latter hypersequent, obtaining

G |G∗
1 |Θ,Λ

i1+···+in ,Σ∗
j ⇒ Πj |∆1 ⇒ Π | . . . |∆n ⇒ Π

Applying once again Lemma 4.1.10 we get

G |G∗
1 |Λ,Σ

∗
j ⇒ Πj |Θ,Λ

i1+···+in ⇒ Π |∆1 ⇒ Π | . . . |∆n ⇒ Π

Now, by applying (wl) on the component Θ,Λi1+···+in ⇒ Π we get S∗
i . Moreover, as

(Γ1,Πj), . . . , (Γn,Πj) are anchored and all the instantiations of Γ1, . . . ,Γn contain a p,

applying (wl) to Λ,Σ∗
j ⇒ Πj we get a conclusion component, say C∗

s . Similarly, being

(∆1,Πi), . . . , (∆n,Πi) anchored and Πi instantiated with p, we get another conclusion

component, say C∗
t , by applying (wl) on the components ∆1 ⇒ Π, . . . ,∆n ⇒ Π. Thus,

we have a derivation of the hypersequent G |G∗
1 |S

∗
i |C

∗
s |C

∗
t | . . . |C

∗
t . By (ec), we ob-

tain G |G∗
1 |S

∗
i |C

∗
s |C

∗
t .

By summarizing, when the last rule (r) in dH is semianchored, for each premise G1 |Si:

• If Si is not a pp-component, then G |G∗
1 |S

∗
i is (D)-free derivable by the induction hy-

pothesis.

• If Si is a pp-component, then either G |G∗
1 |S

∗
i |C

∗
s or G |G∗

1 |S
∗
i |C

∗
s |C

∗
t is (D)-free

derivable, for some conclusion components Cs, Ct.

Applying (ew) to every hypersequent obtained above, we get a derivation ofG1 |S
∗
i |C

∗
1 | . . . |C

∗
q ,

for each premise G1 |Si. Let Gc be the hypersequent C∗
1 | . . . |C

∗
q . We obtain our required

derivation of G |G∗
1 |Gc as follows:

G |G∗
1 |S

∗
1 |Gc . . . G |G∗

1 |S
∗
m |Gc

(r)
G |G∗

1 |Gc |Gc
(ec)

G |G∗
1 |Gc

The application of the semi-anchored rule above is correct, being just the original rule applica-

tion in d, where the substitution [Λ⇒Π/p⇒p] has been applied to every component in the premises

and in the conclusion. This completes the proof of the main claim.

For simplicity, by a semianchored P3-extension of MTL∀, we mean an extension of MTL∀
with axioms which are transformed into semianchored rules by the algorithm in [25].

Theorem 4.1.12. Any semianchored P3-extension of MTL∀ is standard complete

Proof. Follows from Theorem 3.4.7(i) and 4.1.11.
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Figure 4.2: Screenshot of AxiomCalc

4.2 The program AxiomCalc

The results that we have obtained in the previous section are based on purely syntactic consider-

ations. We have shown standard completeness for axiomatic extensions of MTL∀, provided that

the additional axioms are in the class P3 and the corresponding hypersequent rules are semi-

anchored. We also have automated the (otherwise tedious) check whether an analytic rule is

semianchored within the program AxiomCalc.

AxiomCalc was originally developed to automate the conversion of axioms into correspond-

ing analytic rules (see page 39), in the context of the larger project TINC (Tools for the Investi-

gation of Non-Classical logics, see [29]). By our additional feature, AxiomCalc can also check

whether the generated analytic rules are semianchored. The program offers to the user an online

interface, see the screenshot in Figure 4.2. It receives as input an axiom for a logic extending

MTL∀ and provides as output a paper written in LATEXthat contains the generated analytic rules

and the result of checking the semianchored rules condition. The program performs also an ad-

ditional check: it verifies whether the generated analytic rules are convergent1 . In what follows

we present the definition of convergent rules given in [8]. This definition is equivalent to the one

first presented in [11], but has a simpler form.

Definition 4.2.1. Let (r) be any analytic structural rule:

G |S1 . . . G |Sn
G |C1 | . . . |Cq

(r)

and V be the set of different metavariables appearing in L(S1) ∪ · · · ∪ L(Sn).

• A premise G |Si of (r) is said to be a pivot-premise if there is a component Cj of the

conclusion such that R(Si) = R(Cj) and the (set of) metavariables in L(Si) are all

contained in L(Cj).

• The rule (r) is said to be convergent if for each premise G |Si of (r), either R(Si) = ∅ or

there is a map σ : V → V such that:

(i) G |Si[{
σ(Γ)⇒/Γ⇒}Γ∈V ] is a premise of (r) which is a pivot.

(ii) For any W ⊂ V , the hypersequent G |Si[{
σ(Γ)⇒/Γ⇒}Γ∈W ] is a premise of (r).

1Convergent rules were introduced in [11] before semianchored rules
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Note that both conditions (i) and (ii) are trivially satisfied if G |Si is a pivot premise itself,

by letting σ be the identity function. In the following we show that convergent rules are a proper

subclass of semianchored rules, roughly corresponding to the Condition 1 in Definition 4.1.3

Lemma 4.2.2. Every convergent rule is semianchored.

Proof. Let (r) be a convergent rule and {(Γ1,Πi), . . . , (Γn,Πi)} be any set of unanchored pairs

contained in a premise of (r). For simplicity, assume Si = Θ,Γ1, . . .Γn,Σi ⇒ Πi. We show

that Condition 1 in Definition 4.1.3 is satisfied. As (r) is convergent, we have a map σ : V → V
such that:

(i) G |Si[{
σ(Γ)⇒/Γ⇒}Γ∈V ] = G |σ(Θ), σ(Γ1), · · · , σ(Γn), σ(Σi) ⇒ Πi is a pivot premise.

(ii) G |Θ, σ(Γ1), . . . , σ(Γn),Σi ⇒ Πi is a premise of (r).

By (i) and the definition of pivot premise, all the metavariables σ(Γ1), · · · , σ(Γn) and Πi belong

to a component of the conclusion. Hence (σ(Γ1),Πi), . . . , (σ(Γn),Πi) are all anchored pairs

and the premise in (ii) satisfies Condition 1 of Definition 4.1.3.

The converse of Lemma 4.2.2 does not hold, as we see in what follows.

Example 4.2.3. The rules (Ωn) and (com) (see Table 3.3) are semianchored but not convergent,

as they do not contain any pivot premise.
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CHAPTER 5
Axiomatic extensions of UL∀

We provide general sufficient conditions for standard completeness for a large class of acyclic

N2-extensions of UL∀. This leads to a uniform proof of standard completeness, which applies

to all N2-extensions of UL∀ already known to be standard complete and also to infinitely many

new ones. This chapter is based on [7, 10].

5.1 Density elimination and nonlinear rules

Recall that any acyclic N2-extension L∀ of UL∀ has an analytic calculus HL∀. Moreover, by

Theorem 3.4.7, showing density elimination for the extension HL∀D of HL∀ with (D) suffices

to obtain standard completeness for L∀. Density elimination will be proven for any extension

of HUL∀D with a class of internal structural rules – called nonlinear – which correspond to a

subclass of axioms in N2 (nonlinear axioms). Recall that the calculus HUL∀ does not contain

the following rules, which were crucial for the results in Chapter 4:

G |Γ ⇒ Π

G |Γ, α ⇒ Π
(wl)

G |Γ ⇒

G |Γ ⇒ Π
(wr)

Their absence makes the proofs here more difficult. Indeed, standard completeness has been

shown so far only for few axiomatic extensions of UL∀, see e.g. [43, 66, 81], most of which fall

within the class N2. We start by giving the normal form of the axioms in the class N2, adapting

Lemma 2.3.5 in the commutative case.

Lemma 5.1.1. Any formula in N2 is equivalent over FLe to a formula α =
∧

1≤i≤n δi, where

every δi is of the form α1 · · ·αm → β and

• β = f or β1 ∨ · · · ∨ βk and each βl is a multiplicative conjunction of propositional

variables or e.

• αi =
∧

1≤j≤p γ
j
i → βji where βji = f or propositional variable, and γji is a multiplicative

conjunction or disjunction of propositional variables (or e ).
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We can give now the definition of acyclic axioms and rules.

Definition 5.1.2.

• Let α be any acyclic N2 axiom, which has the normal form in Lemma 5.1.1. α is said to

be nonlinear if no propositional variable appears only once in any βl, γ
j
i .

• Let (r) be any internal analytic rule

G |S1 . . . G |Sm
(r)

G |Σ,Γ1, . . . ,Γn ⇒ Ψ

(r) is said to be nonlinear if, for each premise G |Si such that R(Si) 6= ∅, none of the

multisets Γ1, . . . ,Γn appears only once in L(Si).

In the lemma below, we show that nonlinear axioms correspond to nonlinear rules.

Lemma 5.1.3. Let α be any acyclic nonlinear N2 axiom. The algorithm in [25] transforms α
into a nonlinear analytic rule (r) such that ⊢HUL∀+(r) H iff ⊢UL∀+α I(H), for any hypersequent

H .

Proof. By Lemma 3.3.12, we only need to show that (r) is nonlinear. We provide a sketch

of the algorithm below, which is analogous to that in Theorem 2.3.9 and 2.3.13. First, as in

Theorem 2.3.9 we transform the axiom into structural rules. We apply backwards the invertible

propositional logical rules of HUL∀ (i.e. (el), (fr), (·l), (∧, r), (∨l) and (→ r)) as much as pos-

sible and we then use Ackermann’s lemma (see [26] or Lemma 2.3.8), which proof-theoretically

asserts (using (id) and (cut)) the interderivability of the rule

S1 · · · Sm
ψ1, . . . , ψn ⇒ ξ

(r′)

and of each of the rules

~S Λ1 ⇒ ψ1 · · · Λn ⇒ ψn
Λ1, . . . ,Λn ⇒ ξ

(r1)
~S ξ,Σ ⇒ Π

ψ1, . . . , ψn,Σ ⇒ Π
(r2)

where ~S = S1 · · · Sm and Λ1, . . . ,Λn,Σ are fresh metavariables for multisets of formulas and

Π is either a formula or the empty set. Let α =
∧

1≤i≤n δi be any nonlinear axiom. We start

with ⇒ α and, applying backwards (∧r), we get n sequents ⇒ δi that, as shown below, all give

rise to structural rules satisfying nonlinearity. Let δi be α1 · · ·αm → β as in Definition 5.1.2.

By applying backwards (→ r) and (·l) we get α1, . . . , αm ⇒ β. Assume that β 6= f (as

otherwise we can simply remove f by (fr)), Ackermann’s lemma and subsequent applications

of the invertible rules give

{βj ,Σ ⇒ Π}j=1,...,k {Γi, γ
j
i ⇒ βji }j=1,...,p

Γ1 · · ·Γm,Σ ⇒ Π
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By applying backwards the invertible rules for e and f , together with (·l), to all βj , and (∨l) and

(·l) to all γji , we remove all connectives and constants from the premises. Now we conclude the

transformation procedure as in the proof of Theorem 2.3.13. If there are propositional variables

that appear in the premises only on the same side, then the premises containing these variables

are simply removed. We apply (cut) to the remaining premises. Since the propositional variables

on the left hand side of the premises appear all with multiplicities (being α a nonlinear axiom),

the resulting rule satisfies nonlinearity.

Note that the rules obtained by the algorithm sketched in Lemma 5.1.3 are sequent rules. In

the following we will consider their hypersequent version, which is simply obtained by adding

a hypersequent context G to the premises and the conclusion.

Example 5.1.4. The rules

G1 |Γ
n
1 ,Σ ⇒ Π . . . G1 |Γ

n
k ,Σ ⇒ Π

G1 |Γ1, . . . ,Γk,Σ ⇒ Π
(knotnk)

for n > 1 (and corresponding axioms) are nonlinear. (c) and (fknotnk), for n > 1, in Table 3.2

are nonlinear as well. This is not the case of

G1 |Γ1,Σ ⇒ Π G1 |Γ2,Σ ⇒ Π

G1 |Γ1,Γ2,Σ ⇒ Π
(mgl)

and of any rule (knot1k).

We now prove density elimination for any hypersequent calculus extending HUL∀D with

nonlinear rules and possibly (mgl). Recall that in Chapter 4 we applied the method of density

elimination by substitution for extensions of MTL∀, i.e. for calculi containing weakening. The

absence of weakening here makes things more complicated. Assume indeed that we have a

derivation d ending in an application of (D)

·
·
·
d

G |Λ ⇒ p | p ⇒ Π
(D)

G |Λ ⇒ Π

By Lemma 5.1.3 we can safely assume d to be cut-free. As in Chapter 4, we may think of remov-

ing the application of (D) simply by substituting all occurrences of p in d in an “asymmetric”

way, i.e. applying the substitution S[Λ⇒Π/p⇒p] (see Notation 3.3.6) to every sequent S in d.

The above application of (D) would then be replaced with (ec).

The communication rule [28]:

A problematic case may arise however in the following application of (com):

··· d1
G |Γ1,Γ2 ⇒ Ψ

··· d2
G |Σ, p ⇒ p

(com)
G |Γ1,Σ ⇒ p |Γ2, p⇒ Ψ
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For calculi with weakening, we can just discard the premise G |Σ, p ⇒ p and then restruc-

ture the derivation above as follows:

·
·
· d1

G |Γ1,Γ2 ⇒ Ψ
(splitd)

G |Γ1 ⇒ Π |Γ2,Λ ⇒ Ψ
(wl)

G |Γ1,Σ ⇒ Π |Γ2,Λ ⇒ Ψ

where (splitd) is an application of Lemma 4.1.10. However, this is no longer possible for

calculi without weakening, as we do not have any way to recover the multiset Σ, if we discard

the hypersequent G |Σ, p ⇒ p. The solution of [28] is to replace each component below left by

the component below right:

Σ, pk ⇒ p  Σ,Λk−1 ⇒ e

i.e., using Notation 3.3.6, we replace Σ, pk ⇒ p with (Σ, pk ⇒ p[⇒e/p⇒p])[
Λ⇒/p⇒]. Note that

the axiom p ⇒ p is thus replaced by the axiom ⇒ e. We then perform the usual asymmetric

substitution S[Λ⇒Π/p⇒p] to each component S of the derivation that is not a pp-component. We

add suitable cuts and applications of the Lemma 4.1.10 to handle the problematic applications

of (com). For example, the application of (com) in page 63 would be replaced by the following

(by d∗2 we mean the derivation d2 where the substitution sketched above has been applied to

every sequent)

··· d1
G |Γ1,Γ2 ⇒ Ψ

(el)
G |Γ1,Γ2, e⇒ Ψ

··· d
∗
2

G |Σ ⇒ e
(cut)

G |Γ1,Γ2,Σ ⇒ Ψ
(splitd)

G |Γ1,Σ ⇒ Π |Γ2,Λ ⇒ Ψ

This method was introduced in [28] and applied to extensions of HUL∀ with balanced rules,

i.e. internal structural rules for which the number of occurrences of metavariables in the premises

and in the conclusion is the same. Note that important rules, such as contraction (c) and mingle

(mgl)
G |Σ1,Γ1,Γ1 ⇒ Π1

G |Σ1,Γ1 ⇒ Π1
(c)

G |Σ1,Γ1 ⇒ Π1 G |Σ1,Γ2 ⇒ Π1

G |Σ1,Γ1,Γ2 ⇒ Π1
(mgl)

are not balanced, hence the method of density elimination by substitution cannot be directly

applied.

A new idea

To illustrate the idea for handling rules more complicated than the balanced rules in [28], we

consider the case of contraction (c). Assume that the derivation d (below left) contains an
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application of (c). After the substitution, we get the derivation below right, where the “incorrect”

application of (c) is marked with (?).

p⇒ p
·
·
·

Σ, p, p⇒ p
(c)

Σ, p⇒ p
·
·
·

G |Λ ⇒ p | p⇒ Π
(D)

G |Λ ⇒ Π

⇒ e
·
·
·

Σ,Λ ⇒ e
(?)

Σ ⇒ e
·
·
·

G |Λ ⇒ Π |Λ ⇒ Π
(ec)

G |Λ ⇒ Π

To solve the problem, we look back at the whole original derivation d, with the additional knowl-

edge that Σ,Λ ⇒ e is derivable (this is always the case if we start the proof transformation from

the uppermost application of (c) in d). The idea is to apply a new substitution to d, in such a

way that an axiom p ⇒ p is still replaced with something derivable. This time, instead of ⇒ e,
we let the sequent Σ,Λ ⇒ e do the job. More precisely, we apply the following substitution to

the whole derivation d: we replace each component below left by the component below right:

Θ, pk ⇒ p  Θ,Λk−1,Σ,Λ ⇒ e.

In the other sequents we replace any p occurring on the left with Λ and any p occurring on the

right with Π. As we will show below in Lemma 5.1.6, this new substitution eventually leads to a

derivation d1 of G |Λ ⇒ Π |Σ,Λ,Λ ⇒ Π. The (?) above is then replaced by the subderivation

Σ,Λ ⇒ e
·
·
· d1

G |Λ ⇒ Π |Σ,Λ,Λ ⇒ Π
(c)

G |Λ ⇒ Π |Σ,Λ ⇒ Π ⇒ e
(com)

G |Λ ⇒ Π |Λ ⇒ Π |Σ ⇒ e

Note that the additional components G |Λ ⇒ Π can be removed by applications of (ec) at

the end of our restructured derivation. A similar procedure can be applied in a uniform way to

any nonlinear rule, and hence to almost all N2-extensions of UL∀ considered in the literature

(see [7, 66, 70]). A simple variant of the method used for the nonlinear rules applies also to the

rule (mgl), which is not nonlinear. Consider, for instance, the following:

p⇒ p
·
·
·

Σ, p⇒ p
(mgl)

Σ, p, p⇒ p
·
·
·

G |Λ ⇒ p | p⇒ Π
(D)

G |Λ ⇒ Π

⇒ e
·
·
·

Σ ⇒ e
(?)

Σ,Λ ⇒ e
·
·
·

G |Λ ⇒ Π |Λ ⇒ Π
(ec)

G |Λ ⇒ Π
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where, for space reasons, in the application of (mgl) the single premise actually stands for two

identical premises. We perform a new substitution in d: this time we replace each component

below left with the component below right:

Θ, pk ⇒ p  Θ,Σ ⇒ Π.

In the other sequents we replace any p occurring on the left with Λ and any p occurring on

the right with Π. As we will see in Lemma 5.1.7, this new substitution eventually leads to a

derivation d1 of G |Λ ⇒ Π |Σ,Λ ⇒ Π, which can be used to replace the (?) above. The idea

that we have sketched for nonlinear rules and (mgl) is formalized in the following. Henceforth,

whenever we say that a premise or the conclusion of a rule contains (resp. do not contain)

pp-components, we refer only to their active components.

Theorem 5.1.5. Let HL∀ be any hypersequent calculus extending HUL∀ with any nonlinear

rule and possibly (mgl). The calculus HL∀D admits density elimination.

Proof. Let d be a cut-free derivation in HL∀D ending in a uppermost application of (D) as

follows:
·
·
·

G |Λ ⇒ p | p⇒ Π
(D)

G |Λ ⇒ Π

We show that we can obtain a (D)-free derivation of G |Λ ⇒ Π. Let H be a hypersequent

H = S1 | . . . |Sn. We apply a different substitution to any component Si, depending on whether

Si is a pp-component or not. More precisely, we define H∗ as S∗
1 | . . . |S

∗
n, where for each

i = 1, . . . , n

• S∗
i = (Si[

⇒e/p⇒p])[
Λ⇒/p⇒], if Si is a pp-component.

• S∗
i = Si[

Λ⇒Π/p⇒p] otherwise.

We prove the following:

Claim : For each hypersequent H in d we can find a (D)-free derivation of G |Λ ⇒ Π |H∗.

Density elimination follows by applying the claim to the hypersequent G |Λ ⇒ p | p ⇒ Π. We

have indeed G |Λ ⇒ Π | (G |Λ ⇒ p | p ⇒ Π)∗ = G |Λ ⇒ Π |G |Λ ⇒ Π |Λ ⇒ Π (observe

that G∗ = G by the eigenvariable condition on p). The desired hypersequent is obtained by (ec).
We now prove the claim by induction on the length of the derivation of H in d. If H is the

axiom p ⇒ p, we derive G |Λ ⇒ Π |H∗ = G |Λ ⇒ Π | ⇒ e by applying (ew) to the axiom

⇒ e. Other axioms, (ec) and (ew) are easy to handle.

Logical rules. Logical rules (but (→ l)) are easy to handle (see [28]), as we can have a

pp-component in the conclusion if and only if all the premises contain pp-components. For

(→ l) we can have instead an application with a pp-component in the conclusion and no pp-

components in the premises, e.g. as the following:

G1 |Γ1, p⇒ ϕ G1 |Γ2, χ⇒ p

G1 |Γ1,Γ2, p, ϕ→ χ⇒ p
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By induction hypothesis, we have derivations of G |Λ ⇒ Π |G∗
1 |Γ1,Λ ⇒ ϕ and G |Λ ⇒

Π |G∗
1 |Γ2, χ⇒ Π. The desired derivation is obtained as follows:

G |Λ ⇒ Π |G∗
1 |Γ1,Λ ⇒ ϕ G |Λ ⇒ Π |G∗

1 |Γ2, χ⇒ Π

G |Λ ⇒ Π |G∗
1 |Γ1,Γ2,Λ, ϕ → χ⇒ Π ⇒ e

G |Λ ⇒ Π |G∗
1 |Γ1,Γ2, ϕ→ χ⇒ e |Λ ⇒ Π

(ec)
G |Λ ⇒ Π |G∗

1 |Γ1,Γ2, ϕ→ χ⇒ e

The communication rule. We recall the case of (com) (taken from [28]). The different

possibilities that we need to check are displayed in Figure 5.1.

1. The number of pp-components in the premises and in the conclusion is the same.

2. The premises contain more pp-components than the conclusion. We distinguish the

subcases:

(a) There is one pp-component in the premises and no pp-component in the conclu-

sion.

(b) There are two pp-components in the premises and one pp-component in the con-

clusion.

3. The premises contain less pp-components than the conclusion. We distinguish the

subcases:

(a) There is no pp-component in the premises and one pp-component in the conclu-

sion.

(b) There is one pp-component in the premises and two pp-components in the con-

clusion.

Figure 5.1: Cases of (com)

Case (1) is handled by simply applying the induction hypothesis and then (com). We recall cases

(2a) and (3a) from [28]. The cases (2b) and (3b) are similar to (2a) and (3a), respectively.

(2a) Assume that we have an application of (com) of the form

G1 |Γ1,Γ2, p⇒ p G1 |Σ1,Σ2 ⇒ ∆1

G1 |Γ1,Σ1, p ⇒ ∆1 |Γ2,Σ2 ⇒ p
(com)

Our aim is to get a (D)-free derivation of G|Λ ⇒ Π |G∗
1 |Γ1,Σ1,Λ ⇒ ∆1 |Γ2,Σ2 ⇒ Π.

By induction hypothesis we have derivations of G|Λ ⇒ Π |G∗
1 |Σ1,Σ2 ⇒ ∆1 and G|Λ ⇒
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Π |G∗
1 |Γ1,Γ2 ⇒ e. We proceed as follows:

G|Λ ⇒ Π |G∗
1 |Σ1,Σ2 ⇒ ∆1

(el)
G|Λ ⇒ Π |G∗

1 | e,Σ1,Σ2 ⇒ ∆1 G|Λ ⇒ Π |G∗
1 |Γ1,Γ2 ⇒ e

(cut)
G|Λ ⇒ Π |G∗

1 |Γ1,Γ2,Σ1,Σ2 ⇒ ∆1
(splitd)

G|Λ ⇒ Π |G∗
1 |Γ1,Σ1,Λ ⇒ ∆1 |Γ2,Σ2 ⇒ Π

(3a) Assume that we have an application of (com) of the form

G1 |Γ1,Γ2, p ⇒ ∆1 G1 |Σ1,Σ2 ⇒ p

G1 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2, p⇒ p
(com)

Our aim is to get a (D)-free derivation of G|Λ ⇒ Π |G∗
1 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2 ⇒ e. By

induction hypothesis we have derivations of G|Λ ⇒ Π |G∗
1 |Γ1,Γ2,Λ ⇒ ∆1 and G|Λ ⇒

Π |G∗
1 |Σ1,Σ2 ⇒ Π. We obtain the desired hypersequent as follows:

G|Λ ⇒ Π |G∗
1 |Γ1,Γ2,Λ ⇒ ∆1 G|Λ ⇒ Π |G∗

1 |Σ1,Σ2 ⇒ Π
(com)

G|Λ ⇒ Π |G∗
1 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Λ ⇒ Π ⇒ e

(com)
G|Λ ⇒ Π |G∗

1 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2 ⇒ e |Λ ⇒ Π
(ec)

G|Λ ⇒ Π |G∗
1 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2 ⇒ e

Nonlinear rules. Assume now that the last rule (r) applied in d to derive H is a nonlinear

rule. In case the conclusion does not contain a pp-component, by the strong subformula property

and coupling (see Definition 3.3.9), none of the premises contains a pp-component as well. The

claim then simply follows by the induction hypothesis and an application of (r). Let us now

consider the case where the conclusion contains a pp-component, i.e. the application of (r) has

the form
G1 |S1 . . . G1 |Sm

(r)
G1 |Σ,Γ1, . . . ,Γn, p

k ⇒ p

where Σ is the instantiation of the metavariable which witnesses the coupling property for (r)
(see Definition 3.3.9). We distinguish the following cases:

1. None of the premises contains a pp-component.

2. Some premises contain a pp-component and Σ is instantiated with at least one p.

3. Some premises contain a pp-component and Σ is not instantiated with any p.

Figure 5.2: Cases for a nonlinear rule (r)

68



In case (1), we simply apply the induction hypothesis and consider the following derivation:

G|Λ ⇒ Π |G∗
1 |S

∗
1 . . . G|Λ ⇒ Π |G∗

1 |S
∗
m

(r)
G|Λ ⇒ Π |G∗

1 |Σ,Γ1, . . . ,Γn,Λ
k ⇒ Π ⇒ e

(com)
G|Λ ⇒ Π |G∗

1 |Σ,Γ1, . . . ,Γn,Λ
k−1 ⇒ e |Λ ⇒ Π

(ec)
G|Λ ⇒ Π |G∗

1 |Σ,Γ1, . . . ,Γn,Λ
k−1 ⇒ e

In case (2), by the strong subformula property and coupling, all the premises G1 |Si of (r) are

either of the form G1 |Θi, p
ni ⇒ p, for ni ≥ 1 or G1 |Θi, p

ni ⇒, for ni ≥ 0. Consequently

any S∗
i will be either of the form Θi,Λ

ni−1 ⇒ e or Θi,Λ
ni−1 ⇒. The claim just follows by

applying the rule (r) to all the G|Λ ⇒ Π |G∗
1 |S

∗
i that we obtain by the induction hypothesis.

In case (3) we can assume that the Si are as follows:

• Σ,Θi, p
ni ⇒ p, say the Si’s for i ∈ {1, . . . , q} with q ≤ m, ni ≥ 2.

• Σ,Θi ⇒ p, say the Si’s for i ∈ {q + 1, . . . , r} with r ≤ m.

• Θi, p
ni ⇒, say for the Si ’s, for i ∈ {r + 1, . . . ,m}, ni ≥ 0.

Note that, by nonlinearity (see Definition 5.1.3), whenever Si is a pp-component, the number

ni of ps appearing on the left hand side is greater or equal then 2. By the induction hypothesis,

we have derivations of G|Λ ⇒ Π |G∗
1 |S

∗
1 , . . . , G|Λ ⇒ Π |G∗

1 |S
∗
m, which cannot be used as

premises of (r). Note that, for any premise of the form

G1 |Σ,Θi, p
ni ⇒ p

we have by induction hypothesis a derivation of

G|Λ ⇒ Π |G∗
1 |Σ,Θi,Λ

ni−1 ⇒ e.

We apply Lemma 5.1.6 below to the latter, to obtain a derivation of

G|Λ ⇒ Π |G∗
1 |Σ,Θi,Λ

ni ⇒ Π.

Hence, we have:

• for any premise G1 |Σ,Θi, p
ni ⇒ p, a derivation of G|Λ ⇒ Π |G∗

1 |Σ,Θi,Λ
ni ⇒ Π;

• for any premise G1 |Σ,Θi ⇒ p, a derivation of G|Λ ⇒ Π |G∗
1 |Σ,Θi ⇒ Π;

• for any premise G1 |Θi, p
ni ⇒, a derivation of G|Λ ⇒ Π |G∗

1 |Θi,Λ
ni ⇒.

We then apply the rule (r) as follows:

{G|Λ ⇒ Π |G∗
1 |Σ,Θi,Λ

ni ⇒ Π}i=1,...,q {G|Λ ⇒ Π |G∗
1 |S

∗
i }i=q+1,...,m

G|Λ ⇒ Π |G∗
1 |Σ,Γ1, . . . ,Γn,Λ

k ⇒ Π
(r)

⇒ e

G|Λ ⇒ Π |G∗
1 |Σ,Γ1, . . . ,Γn,Λ

k−1 ⇒ e |Λ ⇒ Π
(com)

G|Λ ⇒ Π |G∗
1 |Σ,Γ1, . . . ,Γn,Λ

k−1 ⇒ e
(ec)
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The above application of (r) is correct, being nothing more (apart from the hypersequent con-

text) than the original rule application in which every premise Si is replaced by Si[
Λ⇒Π/p⇒p].

The mingle rule. Assume now that the last rule applied in d to derive H is (mgl). If

the conclusion of (mgl) does not contain a pp-component, by the strong subformula property

and coupling (see Definition 3.3.9) none of the premises contains a pp-component. In case the

conclusion of (mgl) contains a pp-component, two subcases can occur: both premises of (mgl)
contain a pp-component or only one does. The latter case can be reduced to the former. Indeed,

assume that we have:
G1 |Σ,Γ1 ⇒ p G1 |Σ,Γ2, p⇒ p

(mgl)
G1 |Σ,Γ1,Γ2, p⇒ p

We can replace this application by the following derivation:

G1 |Σ,Γ1 ⇒ p G1 |Σ,Γ1 ⇒ p
(mgl)

G1 |Σ,Γ1,Γ1 ⇒ p

G1 |Σ,Γ2, p⇒ p G1 |Σ,Γ2, p⇒ p
(mgl)

G1 |Σ,Γ2,Γ2, p, p ⇒ p
(com)

G1 |Σ,Γ1,Γ2, p⇒ p |Σ,Γ1,Γ2, p ⇒ p
(ec)

G1 |Σ,Γ1,Γ2, p⇒ p

where, in the only application of (mgl) with a pp-component in the conclusion, both premises

contain pp-components. We can now assume that both premises of an application of (mgl)
contain a pp-component, e.g. as in

G1 |Σ,Γ1, p⇒ p G1 |Σ,Γ2, p⇒ p
(mgl)

G1 |Σ,Γ1,Γ2, p, p ⇒ p

The induction hypothesis provides us with the derivations G|Λ ⇒ Π |G∗
1 |Σ,Γ1 ⇒ e and

G|Λ ⇒ Π |G∗
1 |Σ,Γ2 ⇒ e. Consider the following derivation d1:

G|Λ ⇒ Π |G∗
1 |Σ,Γ1 ⇒ e G|Λ ⇒ Π |G∗

1 |Σ,Γ1 ⇒ e
(mgl)

G|Λ ⇒ Π |G∗
1 |Σ

2,Γ2
1 ⇒ e

(splitd)
G|Λ ⇒ Π |G∗

1 |Σ,Γ1,Λ ⇒ e |Σ,Γ1 ⇒ Π
(∗)

G|Λ ⇒ Π |G∗
1 |Σ,Γ1,Λ ⇒ e |Σ,Γ1,Λ ⇒ Π G|Λ ⇒ Π |G∗

1 |Σ,Γ2 ⇒ e
(mgl)

G|Λ ⇒ Π |G∗
1 |Σ,Γ1,Γ2,Λ ⇒ e |Σ,Γ1,Λ ⇒ Π

where (∗) stands for an application of Lemma 5.1.7 below. Similarly, we obtain the following

derivation d2:

G|Λ ⇒ Π |G∗
1 |Σ,Γ2 ⇒ e G|Λ ⇒ Π |G∗

1 |Σ,Γ2 ⇒ e
(mgl)

G|Λ ⇒ Π |G∗
1 |Σ

2,Γ2
2 ⇒ e

(splitd)
G|Λ ⇒ Π |G∗

1 |Σ,Γ2,Λ ⇒ e |Σ,Γ2 ⇒ Π
(∗)

G|Λ ⇒ Π |G∗
1 |Σ,Γ2,Λ ⇒ e |Σ,Γ2,Λ ⇒ Π G|Λ ⇒ Π |G∗

1 |Σ,Γ1 ⇒ e
(mgl)

G|Λ ⇒ Π |G∗
1 |Σ,Γ1,Γ2,Λ ⇒ e |Σ,Γ2,Λ ⇒ Π
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Hence we have:

·
·
·
d1

G|Λ ⇒ Π |G∗
1 |Σ,Γ1,Γ2,Λ ⇒ e |Σ,Γ1,Λ ⇒ Π

·
·
·
d2

G|Λ ⇒ Π |G∗
1 |Σ,Γ1,Γ2,Λ ⇒ e |Σ,Γ2,Λ ⇒ Π

(mgl)
G|Λ ⇒ Π |G∗

1 |Σ,Γ1,Γ2,Λ ⇒ e |Σ,Γ1,Γ2,Λ
2 ⇒ Π

The desired hypersequent is finally obtained as follows:

G|Λ ⇒ Π |G∗
1 |Σ,Γ1,Γ2,Λ ⇒ e |Σ,Γ1,Γ2,Λ

2 ⇒ Π ⇒ e
(com)

G|Λ ⇒ Π |G∗
1 |Σ,Γ1,Γ2,Λ ⇒ e |Σ,Γ1,Γ2,Λ ⇒ e |Λ ⇒ Π

(ec)
G|Λ ⇒ Π |G∗

1 |Σ,Γ1,Γ2,Λ ⇒ e

We now prove the two technical lemmas that we have used in the proof of Theorem 5.1.5.

Lemma 5.1.6 (Nonlinear rules). Let HL∀ and d be as in Theorem 5.1.5 and assume to have a

derivation of a hypersequent G1 |Σ,Λ
k−1 ⇒ e, where k ≥ 2, and no p appears. We can find a

(D)-free derivation of the hypersequent H1 = G|Λ ⇒ Π |G1 |Σ,Λ
k ⇒ Π.

Proof. Let H be a hypersequent H = S1 | . . . |Sn. We define H∗∗ as S∗∗
1 | . . . |S∗∗

n , where for

each i = 1, . . . , n

• S∗∗
i = (Si[

Σ,Λk−1⇒e/p⇒p])[
Λ⇒/p⇒] if Si is a pp-component.

• S∗∗
i = Si[

Λ⇒Π/p⇒p] otherwise.

The statement of the lemma is a consequence of the following:

Claim: For each hypersequent H in d we can find a (D)-free derivation of H1 |H
∗∗

Indeed, applying the claim to the end-hypersequent of d we obtain a (D)-free derivation of

(G |Λ ⇒ p | p ⇒ Π)∗∗ = H1 |G
∗∗ |Λ ⇒ Π |Λ ⇒ Π. Note that G∗∗ = G by the eigenvariable

condition on (D) and Λ ⇒ Π and G are components of H1. Hence, we obtain the desired

derivation of H1 by applying (ec).

We now prove the claim by induction on the length of the derivation of H in d. Let H be

the axiom p ⇒ p. Recall that the hypersequent G1 |Σ,Λ
k−1 ⇒ e is derivable by assumption.

Hence, applying (ew) to the latter, we obtain H1 | (p ⇒ p)∗∗ = G|Λ ⇒ Π |G1 |Σ,Λ
k ⇒

Π |Σ,Λk−1 ⇒ e. Other axioms, (ec) and (ew) are easy to handle.

Logical rules. Logical rules (but (→ l)) are easy to handle, as the conclusion contains a

pp-component if and only if all the premises do. For (→ l) we can have instead an application

where the conclusion contains a pp-component and none of the premises does, e.g. as in the

following:

G2 |Γ1, p⇒ ϕ G2 |Γ2, χ ⇒ p
(→ l)

G2 |Γ1,Γ2, p, ϕ→ χ⇒ p
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By induction hypothesis we have derivations of H1 |G
∗∗
2 |Γ1,Λ ⇒ ϕ and H1 |G

∗∗
2 |Γ2, χ⇒ Π.

The desired derivation is obtained as follows:

H1 |G
∗∗
2 |Γ1,Λ ⇒ ϕ H1 |G

∗∗
2 |Γ2, χ ⇒ Π

(→ l)
H1 |G

∗∗
2 |Γ1,Γ2,Λ, ϕ→ χ ⇒ Π G1 |Σ,Λ

k−1 ⇒ e
(com)

H1 |G1 |G
∗∗
2 |Γ1,Γ2, ϕ→ χ,Σ,Λk−1 ⇒ e |Λ ⇒ Π

(ec)
H1 |G

∗∗
2 |Γ1,Γ2, ϕ→ χ,Σ,Λk−1 ⇒ e

where G1 |Σ,Λ
k−1 ⇒ e is derivable by assumption and the application of (ec) is justified by

the fact that Λ ⇒ Π and G1 are components of H1.

The communication rule. Assume now that the last applied rule in a derivation of H is

(com). We follow the case distinction in Figure 5.1 as for the proof of Theorem 5.1.5. For case

(1) we just apply the induction hypothesis and then the rule (com). Let us consider now the

case (2a) and assume that the pp-component in the premises contains only one p in its left-hand

side (the case with more ps being easy to generalize, but confusing). We assume to have an

application of (com) the form

G2 |Γ1,Γ2, p ⇒ p G2 |Σ1,Σ2 ⇒ ∆1

G2 |Γ1,Σ1, p⇒ ∆1 |Γ2,Σ2 ⇒ p
(com)

Our aim is to get a (D)-free derivation of H1 |G
∗∗
2 |Γ1,Σ1,Λ ⇒ ∆1 |Γ2,Σ2 ⇒ Π. By induc-

tion hypothesis we have derivations ofH1 |G
∗∗
2 |Σ1,Σ2 ⇒ ∆1 andH1 |G

∗∗
2 |Γ1,Γ2,Σ,Λ

k−1 ⇒
e. The desired hypersequent is obtained as follows (the application of (ec) is justified as

Σ,Λk ⇒ Π is a component of H1):

H1 |G
∗∗
2 |Γ1,Γ2,Σ,Λ

k−1 ⇒ e

H1 |G
∗∗
2 |Σ1,Σ2 ⇒ ∆1

(el)
H1 |G

∗∗
2 |Σ1,Σ2, e⇒ ∆1

(cut)
H1 |G

∗∗
2 |Γ1,Γ2,Σ1,Σ2,Σ,Λ

k−1 ⇒ ∆1
(splitd)

H1 |G
∗∗
2 |Γ1,Σ1,Σ,Λ

k ⇒ ∆1 |Γ2,Σ2 ⇒ Π
(splitd)

H1 |G
∗∗
2 |Γ1,Σ1,Λ ⇒ ∆1 |Σ,Λ

k ⇒ Π |Γ2,Σ2 ⇒ Π
(ec)

H1 |G
∗∗
2 |Γ1,Σ1,Λ ⇒ ∆1 |Γ2,Σ2 ⇒ Π

We consider now the similar case (2b), i.e. an application of (com) of the form

G2 |Γ1,Γ2, p⇒ p G2 |Σ1,Σ2, p⇒ p

G2 |Γ1,Σ1, p, p⇒ p |Γ2,Σ2 ⇒ p
(com)

Our aim is to obtain a derivation of

H1 |G
∗∗
2 |Γ1,Σ1,Λ,Σ,Λ

k−1 ⇒ e |Γ2,Σ2 ⇒ Π.

By induction hypothesis we have derivations of the hypersequents H1 |G
∗∗
2 |Σ1,Σ2,Σ,Λ

k−1 ⇒
e and H1 |G

∗∗
2 |Γ1,Γ2,Σ,Λ

k−1 ⇒ e. The desired hypersequent is obtained as follows (the

application of (ec) is justified as Σ,Λk ⇒ Π is a component of H1):
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H1 |G
∗∗
2 |Γ1,Γ2,Σ,Λ

k−1 ⇒ e

H1 |G
∗∗
2 |Σ1,Σ2,Σ,Λ

k−1 ⇒ e
(el)

H1 |G
∗∗
2 |Σ1,Σ2, e,Σ,Λ

k−1 ⇒ e
(cut)

H1 |G
∗∗
2 |Γ1,Γ2,Σ1,Σ2,Σ,Λ

k−1,Σ,Λk−1 ⇒ e
(splitd)

H1 |G
∗∗
2 |Γ1,Σ1,Σ,Λ

k,Σ,Λk−1 ⇒ e |Γ2,Σ2 ⇒ Π
(splitd)

H1 |G
∗∗
2 |Γ1,Σ1,Λ,Σ,Λ

k−1 ⇒ e |Σ,Λk ⇒ Π |Γ2,Σ2 ⇒ Π
(ec)

H1 |G
∗∗
2 |Γ1,Σ1,Λ,Σ,Λ

k−1 ⇒ e |Γ2,Σ2 ⇒ Π

Let us now consider the case (3a). We assume that the pp-component in the conclusion contains

only one p on its left hand side (the case with more ps being easy to generalize, but confusing).

We assume to have an application of (com) of the form

G2 |Γ1,Γ2, p⇒ ∆1 G2 |Σ1,Σ2 ⇒ p

G2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2, p ⇒ p
(com)

Our aim is to get a (D)-free derivation ofH1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ,Λ

k−1 ⇒ e. By in-

duction hypothesis we have derivations ofH1 |G
∗∗
2 |Γ1,Γ2,Λ ⇒ ∆1 and ofH1 |G

∗∗
2 |Σ1,Σ2 ⇒

Π. We obtain the desired hypersequent as follows (the application of (ec) is justified as Λ ⇒ Π
is a component of H1):

H1 |G
∗∗
2 |Γ1,Γ2,Λ ⇒ ∆1 H1 |G

∗∗
2 |Σ1,Σ2 ⇒ Π

(com)
H1 |G

∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Λ ⇒ Π H1 |Σ,Λ

k−1 ⇒ e
(com)

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ,Λ

k−1 ⇒ e |Λ ⇒ Π
(ec)

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ,Λ

k−1 ⇒ e

Let us now consider the case (3b), i.e. an application of (com) of the form

G2 |Γ1,Γ2, p, p ⇒ p G2 |Σ1,Σ2 ⇒ p

G2 |Γ1,Σ1, p⇒ p |Γ2,Σ2, p⇒ p
(com)

Our aim is to get a (D)-free derivation of H1 |G
∗∗
2 |Γ1,Σ1,Σ,Λ

k−1 ⇒ e |Γ2,Σ2,Σ,Λ
k−1 ⇒

e. By induction hypothesis we have derivations of H1 |G
∗∗
2 |Γ1,Γ2,Λ,Σ,Λ

k−1 ⇒ e and

H1 |G
∗∗
2 |Σ1,Σ2 ⇒ Π. We obtain the desired hypersequent as follows (the application of (ec)

is justified as Λ ⇒ Π is a component of H1)

H1 |G
∗∗
2 |Γ1,Γ2,Λ,Σ,Λ

k−1 ⇒ e H1 |G
∗∗
2 |Σ1,Σ2 ⇒ Π

(com)
H1 |G

∗∗
2 |Γ1,Σ1,Σ,Λ

k−1 ⇒ e |Γ2,Σ2,Λ ⇒ Π H1 |Σ,Λ
k−1 ⇒ e

(com)
H1 |G

∗∗
2 |Γ1,Σ1,Σ,Λ

k−1 ⇒ e |Γ2,Σ2,Σ,Λ
k−1 ⇒ e |Λ ⇒ Π

(ec)
H1 |G

∗∗
2 |Γ1,Σ1,Σ,Λ

k−1 ⇒ e |Γ2,Σ2,Σ,Λ
k−1 ⇒ e

Nonlinear rules and mingle. Assume now that the last rule (r) applied in a derivation of H
is a nonlinear rule or (mgl). If the conclusion does not contain a pp-component, by the strong
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subformula property (see Definition 3.3.9), we have that none of the premises contains a pp-

component as well. Hence we can just apply the induction hypothesis and then the rule. Assume

that the conclusion contains a pp-component, i.e. we have an application of the form

G2 |P1 . . . G2 |Pm
(r)

G2 |Σ1,Θ1, . . . ,Θn, p
s ⇒ p

where Σ1 is the multiset witnessing the coupling property. By the strong subformula property

(see Definition 3.3.9), each Pj can only have one of the following forms:

• Σ1,Ξj , p
nj ⇒ p, say the Pj ’s for j ∈ {1, . . . , l} with l ≤ m, nj ≥ 1.

• Σ1,Ξj ⇒ p, say the Pj’s for j ∈ {l + 1, . . . , r} with r ≤ m.

• Ξj, p
nj ⇒, say for the Pj ’s, for j ∈ {r + 1, . . . ,m}, nj ≥ 0.

The induction hypothesis gives us derivations of H1 |G
∗∗
2 |P ∗∗

1 , . . . ,H1 |G
∗∗
2 |P ∗∗

m . In particu-

lar, for the first case, i.e. the G2 |Pj ’s with j ∈ {1, . . . , l}, we have derivations of

H1 |G
∗∗
2 |Σ1,Ξj,Λ

mj−1,Σ,Λk−1 ⇒ e.

For the second case, the induction hypothesis applied to the premises of the form G2 |Σ1,Ξj ⇒
p leads to derivations of

H1 |G
∗∗
2 |Σ1,Ξj ⇒ Π

From the latter, recalling that H1 |Σ,Λ
k−1 ⇒ e is derivable and that k ≥ 2 by assumption, we

get:

H1 |G
∗∗
2 |Σ1,Ξj ⇒ Π H1 |Σ,Λ

k−1 ⇒ e
(com)

H1 |G
∗∗
2 |Σ1,Ξj ,Σ,Λ

k−2 ⇒ e |Λ ⇒ Π
(ec)

H1 |G
∗∗
2 |Σ1,Ξj ,Σ,Λ

k−2 ⇒ e

Summing up, we have:

• for any premise G2 |Σ1,Ξj , p
mj ⇒ p, a derivation of H1 |G

∗∗
2 |Σ1,Ξj ,Λ

mj ,Σ,Λk−2 ⇒
e;

• for any premise G2 |Σ1,Ξj ⇒ p, a derivation of H1 |G
∗∗
2 |Σ1,Ξj,Σ,Λ

k−2 ⇒ e;

• for any premise G2 |Pj with R(Sj) = ∅, a derivation of H1 |G
∗∗
2 |P ∗∗

j .

We can then apply the rule (r) as follows:

{H1 |G
∗∗
2 |Σ1,Ξj,Σ,Λ

k−2 ⇒ e}j=l+1,...,r {H1 |G
∗∗
2 |P ∗∗

j }j=r+1,...,m

{H1 |G
∗∗
2 |Σ1,Ξj ,Λ

mj ,Σ,Λk−2 ⇒ e}j=1,...,l

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Λ

s,Σ,Λk−2 ⇒ e
(r)
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Note that, apart from the hypersequent context, the rule application above is the original rule

application, where Σ1 is replaced by Σ1,Σ,Λ
k−2, each p on the left is replaced by Λ and each p

on the right by e. Note that what we derived above can also be written as

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Λ

s−1,Σ,Λk−1 ⇒ e,

which is the desired hypersequent.

Lemma 5.1.7 (Mingle). Let HL∀ and d be as in Theorem 5.1.5. Assume that HL∀ includes the

rule (mgl) and that we have a derivation of a hypersequent G1 |Σ ⇒ Π where no p appears.

We can find a (D)-free derivation of the hypersequent H1 = G|Λ ⇒ Π |G1 |Σ,Λ ⇒ Π.

Proof. Let H be H = S1 | . . . |Sn. We define H∗∗ as S∗∗
1 | . . . |S∗∗

n , where for each i =
1, . . . , n

• S∗∗
i = (Si[

Σ⇒Π/p⇒p])[
⇒/p⇒], if Si is a pp-component.

• S∗∗
i = Si[

Λ⇒Π/p⇒p] otherwise.

The statement of the lemma is a consequence of the following:

Claim: For each hypersequent H in d we can find a (D)-free derivation of H1 |H
∗∗.

Indeed, applying the claim to the end-hypersequent of d, we obtain a (D)-free derivation of

(G |Λ ⇒ p | p ⇒ Π)∗∗ = H1 |G
∗∗ |Λ ⇒ Π |Λ ⇒ Π. Note that G∗∗ = G by the eigenvariable

condition on (D) and Λ ⇒ Π and G are components of H1. Hence the desired derivation of

H1 is obtained by applying (ec). We now prove the claim by induction on the length of the

derivation of H in d. If H = p ⇒ p then H1 |H
∗∗ = H1 |Σ ⇒ Π is derivable by applying

(ew) to the hypersequent G1 |Σ ⇒ Π, which is derivable by assumption. Other axioms, (ec)
and (ew) are easy to handle.

Logical rules. Logical rules (but (→ l)) are easy to handle, as the conclusion contains a

pp-component if and only if all the premises do. For (→ l) where the conclusion contains a

pp-component and none of the premises does, e.g. as in the following:

G2 |Γ1, p ⇒ ϕ G2 |Γ2, χ ⇒ p

G2 |Γ1,Γ2, p, ϕ → χ⇒ p

By induction hypothesis we have derivations of H1 |G
∗∗
2 |Γ1,Λ ⇒ ϕ and H1 |G

∗∗
2 |Γ2, χ ⇒ Π.

The desired derivation is obtained as follows:

H1 |G
∗∗
2 |Γ1,Λ ⇒ ϕ H1 |G

∗∗
2 |Γ2, χ ⇒ Π

(→ l)
H1 |G

∗∗
2 |Γ1,Γ2,Λ, ϕ → χ⇒ Π G1 |Σ ⇒ Π

(com)
H1 |G1 |G

∗∗
2 |Γ1,Γ2, ϕ → χ,Σ ⇒ Π |Λ ⇒ Π

(ec)
H1 |G

∗∗
2 |Γ1,Γ2, ϕ→ χ,Σ ⇒ Π

where the application of (ec) is justified by the fact that Λ ⇒ Π and G1 are components of H1.
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The communication rule. Assume now that the last applied rule in a derivation of H is

(com). We follow the same case distinction as in Figure 5.1. For case (1) we just apply the

induction hypothesis and then (com). Let us consider now the case (2a) and assume that we

have an application of (com) as:

G2 |Γ1,Γ2, p
k ⇒ p G2 |Σ1,Σ2 ⇒ ∆1

G2 |Γ1,Σ1, p
k ⇒ ∆1 |Γ2,Σ2 ⇒ p

(com)

By induction hypothesis we have derivations ofH1 |G
∗∗
2 |Σ1,Σ2 ⇒ ∆1 andH1 |G

∗∗
2 |Γ1,Γ2,Σ

⇒ Π. We restructure the derivation as follows (the last application of (ec) is justified by the fact

that Σ,Λ ⇒ Π is in H1):

H1 |G
∗∗
2 |Γ1,Γ2,Σ ⇒ Π

(mgl)
H1 |G

∗∗
2 |Γ1,Γ2,Γ2,Σ ⇒ Π

H1 |G
∗∗
2 |Σ1,Σ2 ⇒ ∆1

(mgl)
H1 |G

∗∗
2 |Σ1,Σ2,Σ2 ⇒ ∆1

(com)
H1 |G

∗∗
2 |Γ1,Γ2,Σ1,Σ2,Σ ⇒ ∆1 |Γ2,Σ2 ⇒ Π

(splitd)
H1 |G

∗∗
2 |Γ1,Σ1,Σ,Λ ⇒ ∆1 |Γ2,Σ2 ⇒ Π |Γ2,Σ2 ⇒ Π

(ec)
H1 |G

∗∗
2 |Γ1,Σ1,Σ,Λ ⇒ ∆1 |Γ2,Σ2 ⇒ Π

(mgl)
H1 |G

∗∗
2 |Γ1,Σ1,Σ,Λ

k ⇒ ∆1 |Γ2,Σ2 ⇒ Π
(splitd)

H1 |G
∗∗
2 |Γ1,Σ1,Λ

k ⇒ ∆1 |Σ,Λ ⇒ Π |Γ2,Σ2 ⇒ Π
(ec)

H1 |G
∗∗
2 |Γ1,Σ1,Λ

k ⇒ ∆1 |Γ2,Σ2 ⇒ Π

For space reasons, in all the above applications of (mgl) the single premise actually stands for

two equal premises. We consider now the case (2b), i.e. we assume to have an application of

(com) as:

G2 |Γ1,Γ2, p
k ⇒ p G2 |Σ1,Σ2, p

l ⇒ p

G2 |Γ1,Σ1, p
k+l ⇒ p |Γ2,Σ2 ⇒ p

(com)

Our aim is to obtain a derivation of

H1 |G
∗∗
2 |Γ1,Σ1,Σ ⇒ Π |Γ2,Σ2 ⇒ Π

By induction hypothesis we have derivations of the hypersequents H1 |G
∗∗
2 |Σ1,Σ2,Σ ⇒ Π

and H1 |G
∗∗
2 |Γ1,Γ2,Σ ⇒ Π. We restructure the derivation as follows (the last application of

(ec) is justified by the fact that Λ,Σ ⇒ Π is in H1):

H1 |G
∗∗
2 |Γ1,Γ2,Σ ⇒ Π H1 |G

∗∗
2 |Σ1,Σ2,Σ ⇒ Π

(mgl)
H1 |G

∗∗
2 |Γ1,Γ2,Σ1,Σ2,Σ ⇒ Π

(splitd)
H1 |G

∗∗
2 |Γ1,Σ1,Λ,Σ ⇒ Π |Γ2,Σ2 ⇒ Π H1 |Σ ⇒ Π

(com)
H1 |G

∗∗
2 |Γ1,Σ1,Σ ⇒ Π |Γ2,Σ2 ⇒ Π |Λ,Σ ⇒ Π

(ec)
H1 |G

∗∗
2 |Γ1,Σ1,Σ ⇒ Π |Γ2,Σ2 ⇒ Π
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We consider now the case (3a), i.e. an application of (com) of the form

G2 |Γ1,Γ2, p
k ⇒ ∆1 G2 |Σ1,Σ2 ⇒ p

(com)
G2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2, p

k ⇒ p

By induction hypothesis we have derivations ofH1 |G
∗∗
2 |Γ1,Γ2,Λ

k ⇒ ∆1 andH1 |G
∗∗
2 |Σ1,Σ2

⇒ Π. Applying (com), we obtain:

H1 |G
∗∗
2 |Γ1,Γ2,Λ

k ⇒ ∆1 H1 |G
∗∗
2 |Σ1,Σ2 ⇒ Π

(com)
H1 |G

∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Λ

k ⇒ Π

Then, recalling that H1 |Σ ⇒ Π is derivable, the desired hypersequent is obtained as follows

(the (ec)s are justified as Λ ⇒ Π and Σ,Λ ⇒ Π are in H1):

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Λ

k ⇒ Π H1 |Σ ⇒ Π
(com)

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ,Λ

k−1 ⇒ Π |Λ ⇒ Π
(ec)

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ,Λ

k−1 ⇒ Π H1 |Σ ⇒ Π
(com)

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ,Λ

k−2 ⇒ Π |Σ,Λ ⇒ Π
(ec)

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ,Λ

k−2 ⇒ Π
·
·
·

H1 |G
∗∗
2 |Γ1,Σ1 ⇒ ∆1 |Γ2,Σ2,Σ ⇒ Π

Let us now consider the case (3b), i.e. an application of (com) of the form

G2 |Γ1,Γ2, p
k+l ⇒ p G2 |Σ1,Σ2 ⇒ p

G2 |Γ1,Σ1, p
k ⇒ p |Γ2,Σ2, p

l ⇒ p
(com)

Our aim is to get a (D)-free derivation of H1 |G
∗∗
2 |Γ1,Σ1,Σ ⇒ Π |Γ2,Σ2,Σ ⇒ Π. By

induction hypothesis we have derivations of H1 |G
∗∗
2 |Γ1,Γ2,Σ ⇒ Π and H1 |G

∗∗
2 |Σ1,Σ2 ⇒

Π. We obtain the desired hypersequent as follows:

H1 |G
∗∗
2 |Γ1,Γ2,Σ ⇒ Π H1 |G

∗∗
2 |Γ1,Γ2,Σ ⇒ Π

(mgl)
H1 |G

∗∗
2 |Γ1,Γ2,Σ,Σ ⇒ Π H1 |G

∗∗
2 |Σ1,Σ2 ⇒ Π

(com)
H1 |G

∗∗
2 |Γ1,Σ1,Σ ⇒ Π |Γ2,Σ2,Σ ⇒ Π

The mingle rule. Assume now the last rule applied to derive H is (mgl). If the conclusion

does not contain a pp-component, then the premises do not contain pp-components as well.

Hence we just apply the induction hypothesis and the rule. The only problematic case can

arise when both premises contain pp-components and the conclusion contains a pp-component

as well (recall from the proof of Theorem 5.1.5 that the case where the conclusion and only

one premise contain pp-components can be reduced to the one with pp-components in both

premises). Consider e.g. the following:
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G2 |Σ1,Γ1, p⇒ p G2 |Σ1,Γ2, p ⇒ p
(mgl)

G2 |Σ1,Γ1,Γ2, p, p ⇒ p

By induction hypothesis we have derivations of the hypersequents H1 |G
∗∗
2 |Σ1,Γ1,Σ ⇒ Π and

H1 |G
∗∗
2 |Σ1,Γ2,Σ ⇒ Π. We simply replace the original application with:

H1 |G
∗∗
2 |Σ1,Γ1,Σ ⇒ Π H1 |G

∗∗
2 |Σ1,Γ2,Σ ⇒ Π

(mgl)
H1 |G

∗∗
2 |Σ1,Γ1,Γ2,Σ ⇒ Π

Nonlinear rules. Assume now that the last rule applied to derive H is a non linear rule (r).
In case the conclusion is not a pp component, none of the premises is a pp-component as well,

by the strong subformula property (see Definition 3.3.9). Hence we can just apply the induction

hypothesis and then (r). In case the conclusion contains a pp-component, i.e. as in

G2 |P1 . . . G2 |Pm
(r)

G2 |Σ1,Θ1, . . . ,Θn, p
s ⇒ p

we distinguish two cases:

1. None of the premises contains a pp-component.

2. Some premises contain a pp-component.

Figure 5.3: Cases for a nonlinear rule (r)

In case (1) we can simply apply the induction hypothesis and restructure the derivation as fol-

lows (the applications of (ec) are justified by the fact that Σ,Λ ⇒ Π and Λ ⇒ Π belongs to H1)

:

H1 |G
∗∗
2 |P ∗∗

1 . . . H1 |G
∗∗
2 |P ∗∗

m
(r)

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Λ

s ⇒ Π G1 |Σ ⇒ Π
(com)

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Σ,Λ

s−1 ⇒ Π |Λ ⇒ Π
(ec)

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Σ,Λ

s−1 ⇒ Π G1 |Σ ⇒ Π
(com)

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Σ,Λ

s−2 ⇒ Π |Σ,Λ ⇒ Π
(ec)

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Σ,Λ

s−2 ⇒ Π
·
·
·

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Σ ⇒ Π

Consider now the case (2). By the strong subformula property (Definition 3.3.9), each Pj
can only have one of the following forms:

• Σ1,Ξj , p
nj ⇒ p, say the Pj ’s for j ∈ {1, . . . , l}, with l ≤ m, nj ≥ 1.
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• Σ1,Ξj ⇒ p, say the Pj ’s for j ∈ {l + 1, . . . , r}, with r ≤ m.

• Ξj, p
nj ⇒, say the Pj ’s for j ∈ {r + 1, . . . ,m}, with nj ≥ 0.

The induction hypothesis gives us derivations of H1 |G
∗∗
2 |P ∗∗

1 , . . . ,H1 |G
∗∗
2 |P ∗∗

m . In particu-

lar, for G2 |Pj , for j ∈ {1, . . . , l}, we have derivations of H1 |G
∗∗
2 |Σ1,Ξj ,Σ ⇒ Π. For the

premises of (r) of the form G2 |Σ1,Ξj ⇒ p, we have derivations of H1 |G
∗∗
2 |Σ1,Ξj ⇒ Π.

From the latter, recalling that H1 |Σ ⇒ Π is derivable, we get:

H1 |G
∗∗
2 |Σ1,Ξj ⇒ Π H1 |Σ ⇒ Π

(mgl)
H1 |G

∗∗
2 |Σ1,Ξj,Σ ⇒ Π

Consider now the premises of the formG2 |Ξj , p
nj ⇒. By induction hypothesis, we have deriva-

tions of H1 |G
∗∗
2 |Ξj,Λ

n
j ⇒. Consider the following, recalling that H1 |Σ ⇒ Π is derivable

and that Σ,Λ ⇒ Π is in H1 (this justifies the (ec) below):

H1 |G
∗∗
2 |Ξj,Λ

n
j ⇒ H1 |Σ ⇒ Π

(com)
H1 |G

∗∗
2 |Ξj,Λ

nj−1 ⇒ |Σ,Λ ⇒ Π H1 |Σ ⇒ Π
(com)

H1 |G
∗∗
2 |Ξj ,Λ

nj−2 ⇒ |Σ,Λ ⇒ Π |Σ,Λ ⇒ Π
·
·
·

H1 |G
∗∗
2 |Ξj ⇒ |Σ,Λ ⇒ Π | . . . |Σ,Λ ⇒ Π

(ec)
H1 |G

∗∗
2 |Ξj ⇒

Summing up, we have:

• For any premise G2 |Σ1,Ξj, p
mj ⇒ p, a derivation of H1 |G

∗∗
2 |Σ1,Ξj ,Σ ⇒ Π.

• For any premise G2 |Σ1,Ξj ⇒ p, a derivation of H1 |G
∗∗
2 |Σ1,Ξj,Σ ⇒ Π.

• For any premise G2 |Ξj , p
n
j ⇒, a derivation of H1 |G

∗∗
2 |Ξj ⇒ .

We can then apply the rule (r) as follows:

{H1 |G
∗∗
2 |Σ1,Ξj ,Σ ⇒ Π}j=l+1,...,r {H1 |G

∗∗
2 |Ξj ⇒}j=r+1,...,m

{H1 |G
∗∗
2 |Σ1,Ξj ,Σ ⇒ Π}j=1,...,l

H1 |G
∗∗
2 |Σ1,Θ1, . . . ,Θn,Σ ⇒ Π

(r)

which is a correct application of (r). Indeed, apart from the hypersequent context, it is the

original rule application, where Σ1 has been replaced by Σ1,Σ, each p on the left is removed

and each p on the right is replaced by Π.

Thus, we have the following.

Theorem 5.1.8. Let L∀ be an extension of UL∀ with any nonlinear axiom and/or mingle. The

logic L∀ is standard complete.

Proof. Follows from Theorems 3.4.7(i) and 5.1.5.
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5.2 A particular case: knotted axioms

A class of axioms in N2, which is strictly contained in the class of nonlinear axioms, allows for

an easier proof of density elimination, based on a simple variant of the original idea of the proof

in [28]. These are the knotted axioms (see Table 3.2 and [55]), i.e. αk → αn, with k, n > 1,

whose corresponding internal structural rules have the form

G1 |Γ
n
1 ,Σ ⇒ Π . . . G1 |Γ

n
k ,Σ ⇒ Π

G1 |Γ1, . . . ,Γk,Σ ⇒ Π
(knotnk)

We show below density elimination for extensions of HUL∀ with any rule (knotnk), for n, k > 1.

This excludes all the rules (knotk1) and (knot1n). However, it can be easily shown in HUL∀ (due

to the presence of (com)) that any rule (knotk1) is equivalent to (knot21), and any rule (knot1n)
is equivalent to (knot12). Hence, the knotted rules that we are not able to handle by the method

presented below are actually only (knot21) and (knot12), i.e. (c) and (mgl), respectively. In

the following we show how to adapt the method in [28] for all the remaining (knotnk). Recall

the derivation d and the substitution sketched on page 63: we replaced each sequent of the form

Σ, pk ⇒ pwith (Σ, pk ⇒ p[⇒e/p⇒p])[
Λ⇒/p⇒] and any other sequent S with S[Λ⇒Π/p⇒p]. The

key observation for the proof to go through is that the knotted rules allow us to use a restricted

form of contraction and weakening on the left, when the right hand side of a sequent is equal to

e. This is expressed by the following lemma.

Lemma 5.2.1. Let n, k > 1. The following rules are derivable in the calculus HUL∀+(knotnk):

G |Σ,Γ1 ⇒ e

G |Σ,Γ1,Γ1 ⇒ e
(we)

G |Σ,Γ1,Γ1 ⇒ e

G |Σ,Γ1 ⇒ e
(ce)

Proof. Note that in HUL∀, for any m > 1, the rule

G |Σ ⇒ e

G |Σm ⇒ e
(∗m)

is derivable. We reason by induction on m. First, we show that (∗2) is derivable as follows:

G |Σ ⇒ e

G |Σ ⇒ e
(el)

G |Σ, e ⇒ e
(cut)

G |Σ,Σ ⇒ e

Assuming that (∗m−1) is derivable, we derive (∗m) as follows:

G |Σ ⇒ e

G |Σ ⇒ e
(∗m−1)

G |Σm−1 ⇒ e
(el)

G |Σm−1, e⇒ e
(cut)

G |Σm ⇒ e

80



Similarly, we can prove that for any m > 1 the rule

G |Σm ⇒ e

G |Σ ⇒ e
(∗m)

is derivable. The base case (∗2) can be derived as follows:

G |Σ,Σ ⇒ e

⇒ e
(ew)

G | ⇒ e
(com)

G |Σ ⇒ e |Σ ⇒ e
(ec)

G |Σ ⇒ e

Assuming that (∗m−1) is derivable, we get:

G |Σm ⇒ e

⇒ e
(ew)

G | ⇒ e
(com)

G |Σm−1 ⇒ e |Σ ⇒ e
(∗m−1)

G |Σ ⇒ e |Σ ⇒ e
(ec)

G |Σ ⇒ e

Using (∗2) and (∗2), we can easily show that the two rules (ce) and (we) are interderivable.

Indeed, if we have (we), we can derive (ce) as follows:

G |Σ,Γ1,Γ1 ⇒ e
(we)

G |Σ,Σ,Γ1,Γ1 ⇒ e
(∗2)

G |Σ,Γ1 ⇒ e

And analogously:

G |Σ,Γ1 ⇒ e
(∗2)

G |Σ,Σ,Γ1,Γ1 ⇒ e
(ce)

G |Σ,Γ1,Γ1 ⇒ e

In what follows it is therefore enough to prove that either (ce) or (we) is derivable. In

particular, we show that (ce) is derivable in case the knotted rule (knotnk) has n > k, and that

(we) is derivable otherwise.

1. Assume n > k. Suppose that we are given a derivation of G |Σ,Γ1,Γ1 ⇒ e. Consider

the following application of (knotnk):

G |Σ,Γ1,Γ1 ⇒ e
(∗n) . . .

G |Σn,Γn1 ,Γ
n
1 ⇒ e

G |Σ,Γ1,Γ1 ⇒ e
(∗n)

G |Σn,Γn1 ,Γ
n
1 ⇒ e

(knotnk)
G |Σn,Γk1 ,Γ

k
1 ⇒ e
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If 2k > n we apply (knotnk) with k identical premises G1 |Σ
n,Γ2k−n

1 ,Γn1 ⇒ e, to obtain

G1 |Σ
n,Γ2k−n+k

1 ⇒ e. We apply the rule (knotnk) once more using this sequent as the premises.

We repeat in this way until we get G1 |Σ
n,Γl1 ⇒ e, for some l ≤ n. The proof that (ce) is

derivable is then completed as follows:

·
·
·

G |Σn,Γl1 ⇒ e G |Σ,Γ1,Γ1 ⇒ e
(com)

G |Σn,Γl+1
1 ⇒ e |Σ,Γ1 ⇒ e

G |Σ,Γ1,Γ1 ⇒ e
(ew)

G |Σ,Γ1,Γ1 ⇒ e |Σ,Γ1 ⇒ e
(com)

G |Σn,Γl+2
1 ⇒ e |Σ,Γ1 ⇒ e |Σ,Γ1 ⇒ e

·
·
·

G |Σn,Γn1 ⇒ e |Σ,Γ1 ⇒ e | . . . |Σ,Γ1 ⇒ e
(∗n)

G |Σ,Γ1 ⇒ e | . . . |Σ,Γ1 ⇒ e
(ec)

G |Σ,Γ1 ⇒ e

2. Consider now the case where n < k. Suppose that we are given a derivation of

G |Σ,Γ1 ⇒ e. We prove that (we) is derivable in our calculus. First, consider the follow-

ing application of (knotnk):

G |Σ,Γ1 ⇒ e
(∗n) . . .

G |Σn,Γn1 ⇒ e

G |Σ,Γ1 ⇒ e
(∗n)

G |Σn,Γn1 ⇒ e
(knotnk)

G |Σn,Γk1 ⇒ e

We iterate similar application of (knotnk), increasing the occurrences of Γ1 by (k − n), until we

get G |Σn,Γl1 ⇒ e, for some l ≥ 2n. The proof that (we) is derivable is then completed as

follows:

·
·
·

G |Σn,Γl1 ⇒ e G |Σ,Γ1 ⇒ e
(com)

G |Σn,Γl−1
1 ⇒ e |Σ,Γ1,Γ1 ⇒ e

G |Σ,Γ1 ⇒ e
(ew)

G |Σ,Γ1 ⇒ e |Σ,Γ1,Γ1 ⇒ e
(com)

G |Σn,Γl−2
1 ⇒ e |Σ,Γ1,Γ1 ⇒ e |Σ,Γ1,Γ1 ⇒ e

·
·
·

G |Σn,Γn1 ,Γ
n
1 ⇒ e |Σ,Γ1,Γ1 ⇒ e | . . . |Σ,Γ1,Γ1 ⇒ e

(∗n)
G |Σ,Γ1,Γ1 ⇒ e | . . . |Σ,Γ1,Γ1 ⇒ e

(ec)
G |Σ,Γ1,Γ1 ⇒ e

We are now ready to prove density elimination. The proof follows closely that in [28].

Theorem 5.2.2. Let HL∀ be a hypersequent calculus extending HUL∀ with any set of rules of

the form (knotnk), with n, k > 1. The calculus HL∀D admits density elimination.
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Proof. It proceeds by induction on the length of the derivations. Consider a derivation d ending

in a topmost application of the density rule

·
·
·

G |Λ ⇒ p | p⇒ Π
(D)

G |Λ ⇒ Π

As usual, we can safely assume d to be cut-free. Let H be a hypersequent S1 | . . . |Sn. We

let H∗ = S∗
1 | . . . |S

∗
n where, for each component Si, the sequent S∗

i is defined as follows:

• S∗
i = (Si[

⇒e/p⇒p])[
Λ⇒/p⇒], if Si is a pp-component.

• S∗
i = Si[

Λ⇒Π/p⇒p] otherwise.

As for Theorem 5.1.5, it is enough to prove the following:

Claim: For each hypersequent H in d one can find a (D)-free derivation of G |Λ ⇒ Π |H∗

For proving the claim, we reason by induction on the length of the derivation of a hyperse-

quent H in d. We only show the case when the last applied rule is (knotnk), the other cases

being already contained in the proof of Theorem 5.1.5 (and originally considered in [25]). We

distinguish three cases, according to the presence of pp-components in the premises:

1. None of the premises contains a pp-component.

2. All the premises contain a pp-component.

3. Only some of the premises contain pp-components.

Figure 5.4: Cases for knotted rules

For case (1), also the conclusion does not contain any pp-component: the claim hence holds,

by using the induction hypothesis and applying the knotted rule again. For case (2), assume that

we have an application of (knotnk) as the following:

G1 |Σ,Γ
n
1 , p

n1 ⇒ p . . . G1 |Σ,Γ
n
k , p

nk ⇒ p

G1 |Σ,Γ1, . . . ,Γk, p
l ⇒ p

(knotnk)

By the induction hypothesis we have density-free derivations ofG|Λ ⇒ Π |G∗
1 |Σ,Γ

n
1 ,Λ

n1−1 ⇒
e, . . . , G|Λ ⇒ Π |G∗

1 |Σ,Γ
n
k , Λ

nk−1 ⇒ e. Consider the following derivation:

G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
1 ,Λ

n1−1 ⇒ e

G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
2 ,Λ

n2−1 ⇒ e
(el)

G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
2 , e,Λ

n2−1 ⇒ e
(cut)

G|Λ ⇒ Π |G∗
1 |Σ

2,Γn1 ,Γ
n
2 ,Λ

n1−1,Λn2−1 ⇒ e
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Starting from the end-hypersequent above, we can iterate similar applications of (cut) with each

of the G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
3 ,Λ

n3−1 ⇒ e, . . . , G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
k ,Λ

nk−1 ⇒ e until we get:

G|Λ ⇒ Π |G∗
1 |Σ

k,Γn1 ,Γ
n
2 , . . . ,Γ

n
k ,Λ

n1+···+nk−k ⇒ e.

The desired hypersequent G|Λ ⇒ Π |G∗
1 |Σ,Γ1, . . . ,Γk,Λ

l−1 ⇒ e is then obtained by applica-

tions of (ce) and (we) to the hypersequent above.

We consider now the case (3), where only some premises (say m, with m < k) contain

active pp-components. Assume, without loss of generality, that the application of (knotnk) has

the following form:

G1 |Σ,Γ
n
1 , p

n1 ⇒ p . . . G1 |Σ,Γ
n
m, p

nm ⇒ p
G1 |Σ,Γ

n
m+1 ⇒ p . . . G1 |Σ,Γ

n
k ⇒ p

G1 |Σ,Γ1, . . . ,Γk, p
l ⇒ p

(knotnk)

By induction hypothesis we have (D)-free derivations of G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
1 ,Λ

n1−1 ⇒
e, . . . , G|Λ ⇒ Π |G∗

1 |Σ,Γ
n
m,Λ

nm−1 ⇒ e and G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
m+1 ⇒ Π, . . . , G|Λ ⇒

Π |G∗
1 |Σ,Γ

n
k ⇒ Π. As in the previous case, we do repeated cuts, but only on the m premises

containing pp-components, thus obtaining:

G|Λ ⇒ Π |G∗
1 |Σ

m,Γn1 , . . . ,Γ
n
m,Λ

n1+···+nm−m ⇒ e.

We repeatedly apply (ce) or (we) to the previous hypersequent, to get:

G|Λ ⇒ Π |G∗
1 |Σ

m,Γn1 , . . . ,Γ
n
m,Λ

(l−1)+(k−m) ⇒ e.

We “remove” then the extra-occurrences of Λ from this hypersequent, using applications of

(com) as the following :

G|Λ ⇒ Π |G∗
1 |Σ

m,Γn1 , . . . ,Γ
n
m,Λ

(l−1)+(k−m) ⇒ e G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
m+1 ⇒ Π

(com)
G|Λ ⇒ Π |G∗

1 |Σ
m+1,Γn1 , . . . ,Γ

n
m+1,Λ

(l−1)+(k−m−1) ⇒ e |Λ ⇒ Π
(ec)

G|Λ ⇒ Π |G∗
1 |Σ

m+1,Γn1 , . . . ,Γ
n
m+1,Λ

(l−1)+(k−m−1) ⇒ e

Similarly, by an application of (com) to the conclusion of the derivation above and the premise

G|Λ ⇒ Π |G∗
1 |Σ,Γ

n
m+2 ⇒ Π, we get

G|Λ ⇒ Π |G∗
1 |Σ

m+2,Γn1 , . . . ,Γ
n
m+2,Λ

(l−1)+(k−m−2) ⇒ e.

We can iterate applications of (com) of this kind for all the (k−m) premises of (knotnk) which

do not contain pp-components, until we finally get:

·
·
·

G|Λ ⇒ Π |G∗
1 |Σ

k,Γn1 , . . . ,Γ
n
k ,Λ

l−1 ⇒ e
(ce)

G|Λ ⇒ Π |G∗
1 |Σ,Γ1, . . . ,Γk,Λ

l−1 ⇒ e

This concludes the proof of the main claim, thus establishing density elimination for our calcu-

lus.
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CHAPTER 6
A new algebraic approach

The proofs of standard completeness that we have presented in Chapter 4 and Chapter 5 were

based on the purely syntactic method of density elimination. In some sense we bypassed there

the original algebraic problem: showing that a chain from a subvariety V of FL-algebras can

be embedded into a dense chain belonging to the same subvariety V, see Theorem 3.4.7. The

construction of this embedding will be referred to as densification in what follows. Recall that

proofs of density elimination show the completeness of a logic L with respect to dense L-chains.

Hence, using e.g. Theorem 3.4.6 in [33] we obtain indirectly that any countable L-chain is em-

beddable into a dense one. However, showing this offers no information neither on the structure

of this dense algebra nor on the embedding. Moreover, in the previous chapters we have used

specific methods of proof theory, i.e. induction on the length of derivations and complicated

substitutions, etc., which are perhaps not the everyday tools of the “working algebraist”.

In this chapter we try to overcome these drawbacks, by presenting a proof of densification

which, though inspired by density elimination, can be understood in purely algebraic terms. The

crucial idea is to divide the proof of densification in two parts. First, we show that for some

subvarieties of FL-algebras we can find an embedding v from any non-dense chain containing a

“gap” (two elements g < h such that there is no p satisfying g < p < h) into another chain of

the same subvariety which “fills the gap” (there is an element p satisfying v(g) < p < v(h)). We

call such varieties densifiable. We then apply a general result stating that, whenever a subvariety

of FL is densifiable, one can embedd any chain in the subvariety into a dense one of the same

subvariety.

This method contrasts with the usual approach in the literature, where one directly looks for

the embedding of an FL-chain into a dense one, usually by adding countably many new elements

(a copy of the rationals Q) to fill the gap (see the sketch of proof on page 48).

Most of this chapter is devoted to prove densifiability, by reformulating in this new setting

the proof-theoretic techniques developed in Chapter 4 and (part of) Chapter 5. Towards this

aim, we use residuated frames [45], which are objects that can be used to construct (complete)

FL-algebras with various properties. Residuated frames have been already used to connect proof

theory with algebras, and played a crucial role in the development of “algebraic proof theory”,
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see Chapter 1. More precisely, one can naturally define a residuated frame W from the full Lam-

bek calculus FL, so that validity in the dual algebra W+ directly implies cut-free derivability

in FL [27].

Note that the results in this chapter are restricted to propositional logic, for which Theo-

rem 3.4.7 still applies, dropping the requirement that the embedding should be regular. However,

the use of an algebraic framework avoids some syntactic bureaucracy, permitting us to extend,

in an easier way, the results from Chapter 4 to the noncommutative case.

Plan of the chapter

In Section 6.1 we introduce the notion of densifiability and recall some preliminaries on non-

commutative logics. In Section 6.2 we recall some basic notions of residuated frames, mainly

from [27,45]. In Section 6.3 we present a uniform proof of densification for FLi-algebras, more

precisely for FLℓx with {i} ⊆ x ⊆ {e, c, i, o}. As a corollary follows the (known) result that the

logics MTL, psMTLr and Gödel logic G are standard complete. We prefer to give first a proof

of these simpler cases, to show more clearly the connection with the proof-theoretic method for

HMTL∀ presented in Chapter 4. In Section 6.4, we provide a similar proof only for the vari-

ety FLℓx with {e} ⊆ x ⊆ {e, i, o}, this time in connection with the proof theoretic method for

HUL∀ in Chapter 5. Here, as a corollary, we obtain that the logic UL is standard complete. In

Section 6.5 we then translate in our new algebraic setting the general results on semi-anchored

rules of Chapter 4 and in Section 6.6 the results on knotted axioms from Chapter 5.

6.1 Densifiability and noncommutative logics

We begin with general considerations on densification and densifiability.

Definition 6.1.1. Let A be a chain of cardinality κ > 1 which is not dense. By Definition 2.1.3

it contains a gap (g, h). We say that a chain B fills a gap (g, h) of A if there is an embedding

v : A −→ B and an element p ∈ B such that v(g) < p < v(h), see Figure 6.1.

A nontrivial variety V is said to be densifiable if every gap of a chain in V can be filled by

another chain in V.

Note that, although by filling a gap one may introduce some undesirable elements that have

nothing to do with the gap, densifiability is a sufficient condition for densification.

Lemma 6.1.2. Let L be a countable language as in Definition 2.1.4 and V a densifiable variety

over L. Then every countable chain A in V is embeddable into a dense countable chain.

Proof. Let V ar be a countable set of variables and FmL be defined as in Definition 2.1.4.

Let (t0, u0), (t1, u1), . . . be a countable sequence of elements of FmL × FmL such that each

(t, u) ∈ FmL × FmL occurs infinitely many times in it.

For each n ∈ N, we define a chain Bn in V as well as a partial valuation fn : V ar ⇀ Bn.

Let B0 := A and f0 be any surjective partial function onto A such that V ar\dom(f0) is infinite.

For n ≥ 0, if one of fn(tn), fn(un) is undefined or fn(tn) 6< fn(un), then let Bn+1 := Bn

and fn+1 := fn.
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A

g

h

B

v(g)

v(h)
p

Figure 6.1: The chain B ‘fills” the gap (g, h) of A

Otherwise, let x be a variable taken from V ar\dom(fn). If there is p ∈ Bn such that

fn(tn) < p < fn(un), then let Bn+1 := Bn. If not, let Bn+1 be a chain in V that fills the gap

(fn(tn), fn(un)) by p ∈ Bn+1. We assume Bn ⊆ Bn+1 and define fn+1 : V ar ⇀ Bn+1 by

extending fn with fn+1(x) := p.

Let B :=
⋃

Bn, f :=
⋃
fn and C be the subalgebra of B generated by f [V ar] (so that

C = f [FmL]). Clearly C is a countable chain in V that has A as subalgebra since A ⊆ f [V ar].
Moreover C is dense, since for every pair (g, h) ∈ C2 with g < h, there is n ∈ N such that

g = fn(tn) and h = fn(un) so that we have g < fn+1(x) < h.

Remark 6.1.3. For our purposes it was enough to restrict the lemma above to countable chains.

This is however not necessary. Using the axiom of choice the lemma can be easily extended to

chains of arbitrary cardinality (see [12]).

The results described in this chapter apply to the noncommutative variant of MTL, known

as psMTLr, see [21]. In contrast to the logics introduced in Chapter 3, psMTLr is not an

axiomatic extension of UL, hence we recall an Hilbert system for it from [21], in a slightly

different notation.

(psMTLr1a, b) (ϕ\ψ)\((χ\ϕ)\(χ\ψ)), ((ψ/χ)/(ϕ/χ))/(ψ/ϕ)

(psMTLr2a, b) ϕ · ψ\ϕ, ϕ · ψ\ψ

(psMTLr3) ϕ ∨ ψ\ψ ∨ ϕ

(psMTLr4a) ϕ ∧ ψ\ϕ

(psMTLr4b) ϕ ∧ ψ\ψ ∧ ϕ

(psMTLr4c, d) ϕ · (ϕ\ψ)\ϕ ∧ ψ, ϕ ∧ ψ/(ψ/ϕ) · ϕ

(psMTLr5a, b) (ϕ\(ψ\χ)\−\(ψ · ϕ\χ)), ((χ/ψ)/ϕ)/−/(χ/ϕ · ψ)

(psMTLr6a) ((ϕ\ψ)\χ)\(((ψ\ϕ)\χ)\χ)

(psMTLr6b) (χ/(χ/(ϕ/ψ)))/(χ/(ψ/ϕ))

(psMTLr7a, b) f\ϕ, ϕ\e

(psMTLr8a, b) (ϕ\ψ) ∨ (χ · (ψ\ϕ)/χ), (ψ/ϕ) ∨ (χ\(ϕ/ψ) · χ)
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with the definitions:

ϕ/−/ψ ≡ (ϕ/ψ) ∧ (ψ/ϕ)

ϕ\−\ψ ≡ (ϕ\ψ) ∧ (ψ\ϕ)

and the derivation rules:

(MP)

ϕ ϕ\ψ

ψ

(Impa.b)

ϕ\ψ

ψ/ϕ

ψ/ϕ

ϕ\ψ

Note that in the logic psMTLr the connective · is noncommutative and we have two im-

plications \ and /. The algebraic semantics of psMTLr is given by the class of FLℓw-algebras

(see Definition 2.1.13), also known as psMTLr-algebras (representable pseudo MTL-algebras),

see [21,52]. The logic is already known to be standard complete, see e.g. [39,59]. In a standard

psMTLr-algebra, the connectives · and \ and / are interpreted by any left-continuous pseudo

t-norms and their residua, respectively, see Definition 2.2.1 and Example 2.2.7.

Let L be any axiomatic extension of psMTLr with an additional set of axiom schemas C

(in the same language). In what follows we extend Definition 3.1.5, calling L-algebra any FLℓw-

algebra satisfying the equations e ≤ ϕ, for every ϕ ∈ C . In analogy with Theorem 3.1.6, we

have a general completeness theorem for any propositional axiomatic extension L of psMTLr

with respect to the corresponding classes of L-chains,.

Theorem 6.1.4. [33, 52] Let L be any axiomatic extension of psMTLr. For every set of

formulas T and every formula ϕ the following are equivalent:

• T ⊢L ϕ,

• {e ≤ ψ}ψ∈T |=A e ≤ ϕ for every L-chain A

Where |=A is as in Definition 2.1.5.

Finally, we present a modified version of Theorem 3.4.7, which will be used in what follows.

Theorem 6.1.5 (Standard Completeness). Let L be any acyclic P ′
3-extension of UL or a P3-

extension of psMTLr. If countable L-chains are embeddable into dense countable L-chains,

then the logic L is standard complete.

Proof. Lemma 3.4.6 can be applied to axiomatic extensions of psMTLr, see e.g. [21, 52]. The

statement then follows by Theorem 2.3.18.

Before introducing our general method for densifiability, we show an example of a simple

proof of the densifiability of FLℓi .

Theorem 6.1.6. FLℓi is a densifiable variety.
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Proof. Let A be an FLi-chain with a gap (g, h). We insert a new element p between g and h:

Ap := A ∪ {p}, g < p < h.

(see Figure 6.1). The meet and join operations are naturally extended to Ap. To extend multipli-

cation · and divisions \, /, note that for every a ∈ A, either ah = h or ah ≤ g holds. For every

a ∈ A, we define:

p · p := p (h2 = h) p\p := e
:= h2 (h2 ≤ g) p\a := h\a

a · p := p (ah = h) a\p := p (ah = h)
= ah (ah ≤ g) = a\g (ah ≤ g)

The remaining cases p · a, p/p, a/p and p/a are defined analogously. This gives rise to a new

algebra A
p in FLℓi that fills the gap (g, h) of A.

Remark 6.1.7. While it is possible to check manually that the algebra A
p defined above is in

FLℓi , the idea is rather to derive A
p by a general construction (Section 6.3). Our approach will

explain the rationale behind A
p, and provide a general recipe for proving further densifiability

results.

6.2 Residuated frames and Dedekind-MacNeille completions

Just as Kripke frames are useful devices to build various Heyting and modal algebras, residuated

frames are useful devices to build various FL algebras. In this section, we introduce residuated

frames and recall some relevant facts from [27, 45].

Definition 6.2.1. A frame W (for FL-algebras) is a tuple (W,W ′, N, ◦, ε, ǫ) where (W, ◦, ε) is

a monoid, N ⊆W ×W ′ and ǫ ∈W ′. It is residuated if there are functions  :W ×W ′ −→W ′

and � : W ′ ×W −→W ′ such that

x ◦ y N z ⇐⇒ y N xz ⇐⇒ x N z�y.

We often omit ◦ and write xy for x ◦ y.

Given a frame W = (W,W ′, N, ◦, ε, ǫ), there is a canonical way to make it residuated: let

W̃ ′ := W ×W ′ ×W and define Ñ ⊆W × W̃ ′ by

x Ñ (v1, z, v2) ⇐⇒ v1xv2 N z.

Then W̃ := (W, W̃ ′, Ñ , ◦, ε, (ε, ǫ, ε)) is a residuated frame, since

x ◦ y Ñ (v1, z, v2) ⇐⇒ v1xyv2 N z

⇐⇒ y Ñ (v1x, z, v2)

⇐⇒ x Ñ (v1, z, yv2).

As said at the beginning, the primary purpose of residuated frames is to build residuated

lattices. Let us now describe the construction.
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Let W = (W,W ′, N, ◦, ε, ǫ) be a residuated frame. Given X,Y ⊆W and Z ⊆W ′, let:

X ◦ Y := {x ◦ y : x ∈ X, y ∈ Y },
X✄ := {z ∈W ′ : X N z},
Z✁ := {x ∈W : x N Z},

where X N z holds iff x N z for every x ∈ X, and x N Z iff x N z for every z ∈ Z .

The pair (✄,✁) forms a Galois connection, i.e. :

X ⊆ Z✁ ⇐⇒ X✄ ⊇ Z,

so that γ(X) := X✄✁ defines a closure operator on P(W ) (the powerset of W ):

1. X ⊆ γ(X),

2. X ⊆ Y =⇒ γ(X) ⊆ γ(Y ),

3. γ(γ(X)) = γ(X).

Furthermore, γ is a nucleus, namely it satisfies

4. γ(X) ◦ γ(Y ) ⊆ γ(X ◦ Y ).

It is for this property that a frame is required to be residuated.

Let P(W ) be the powerset of W and γ[P(W )] ⊆ P(W ) be its image under γ. Then a set X
belongs to γ[P(W )] iff it is Galois-closed, namely X = γ(X), iff X = Z✁ for some Z ⊆ W ′.

For X,Y ∈ P(W ), let

X ◦γ Y := γ(X ◦ Y ),
X ∪γ Y := γ(X ∪ Y ),
X\Y := {y : X ◦ {y} ⊆ Y },
Y/X := {y : {y} ◦X ⊆ Y }.

Proposition 6.2.2. [45] Let W = (W,W ′, N, ◦, ε, ǫ) be a residuated frame. The dual algebra

defined by

W
+ := (γ[P(W )],∩,∪γ , ◦γ , \, /, γ({ε}), {ǫ}

✁)

is a complete FL-algebra.

As an example, let A = (A,∧,∨, ·, \, /, e, f) be an FL-algebra. Then we may define a

frame by WA := (A,A,N, ·, e, f), where N is the lattice ordering ≤ of A. WA is residuated

precisely because A is residuated:

a · b N c ⇐⇒ b N a\c ⇐⇒ a N c/b.

Hence by the previous proposition, W+
A

is a complete FL-algebra. We want W+
A

to be commu-

tative (resp. contractive, integral, f-bounded, totally ordered) whenever A is. To this purpose, it

is useful to recall the notion of structural clauses and quasiequations in Definition 2.3.7. These

can be easily expressed as rules for residuated frames. Indeed, let

t1 ≤ u1 and · · · and tm ≤ um =⇒ tm+1 ≤ um+1 or · · · or tn ≤ un. (q)
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be a structural clause and W = (W,W ′, N, ◦, ε, ǫ) a residuated frame. We can naturally trans-

late each ti into a term over (◦, ε), and each ui into either a variable or ǫ. The resulting terms

are still denoted by ti, ui. Corresponding to the clause (q), we have:

t1 N u1 and · · · and tm N um =⇒ tm+1 N um+1 or · · · or tn N un. (qN )

To stress the connection with sequent and hypersequent rules, in what follows we write a

structural clause (or quasiequation) such as (qN ) above also in its compact form :

t1 N u1 and · · · and tm N um
tm+1 N um+1 or · · · or tn N un

(qN )

Example 6.2.3. The clause (wnm) in Example 2.3.16 corresponds to the following rule for

residuated frames:

xy N z and xv N z and vy N z and vv N z

xy N ǫ or v N z
(wnmN )

Let us come back now to our example, the residuated frame WA := (A,A,N, ·, e, f). The

following clauses ensure that W+
A

is commutative (resp. contractive, integral, f-bounded, totally

ordered) whenever A is.

xy N z

yx N z
(eN )

xx N z
x N z

(cN )
ε N z
x N z

(iN )

x N ǫ
x N z

(oN )
x N z and y N w

x N w or y N z
(comN )

It is clear that WA satisfies (eN ) (resp. (cN ), (iN ), (oN ), (comN )), whenever A is com-

mutative (resp. contractive, integral, f-bounded, totally ordered). These properties are in turn

propagated to the dual algebra W
+
A

. This holds for any residuated frame, as the next lemma

shows, in analogy with Theorem 2.3.3.

Lemma 6.2.4. Let W be a residuated frame. If W satisfies (eN ) (resp. (cN ), (iN ), (oN ),
(comN )), then W

+ is commutative (resp. contractive, integral, f-bounded, linearly ordered).

Proof. We only prove that (comN ) implies that W+ is totally ordered, as for the other rules

the proof is straightforward. Suppose that there are X,Y ∈ γ[P(W )] for which X 6⊆ Y and

Y 6⊆ X. The former means that there are x ∈ X and w ∈ Y ✄ such that x N w does not hold

(since Y = Y ✄✁). Similarly, the latter means that there are y ∈ Y and z ∈ X✄ such that y N z
does not hold. On the other hand, we have x N z and y N w by definition of X✄, Y ✄. Hence

the rule (comN ) implies that at least one of x N w and y N z should hold, a contradiction.

Finally, we would like to have an embedding of A into W
+
A

. The notion of Gentzen frame

and Gentzen rules serve to this purpose.

Definition 6.2.5. Let A be an FL-algebra, W = (W,W ′, N, ◦, ε, ǫ) a residuated frame and

i : A −→ W and i′ : A −→ W ′ injections by means of which we identify A with a subset

of W and of W ′. (W ,A) is said to be a Gentzen frame if it satisfies all the Gentzen rules in

Figure 6.1, for every x ∈W , z ∈W ′ and a, b ∈ A.
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x N a and a N z
x N z

(cut)
a N a

(id)

x N a and b N z
a\b N xz

(\L)
x N ab

x N a\b
(\R)

x N a and b N z
b/a N z�x

(/L)
x N b�a

x N b/a
(/R)

a ◦ b N z
a · b N z

(·L)
x N a and y N b

x ◦ y N a · b
(·R)

a N z
a ∧ b N z

(∧Lℓ) b N z
a ∧ b N z

(∧Lr)
x N a and x N b

x N a ∧ b
(∧R)

a N z and b N z
a ∨ b N z

(∨L)
x N a

x N a ∨ b
(∨Rℓ) x N b

x N a ∨ b
(∨Rr)

ε N z
e N z

(eL)
ε N e

(eR)
f N ǫ

(fL)
x N ǫ
x N f

(fR)

Table 6.1: Gentzen rules

Note that the Gentzen rules in Table 6.1 basically correspond to the logical rules, (cut), and

(id) in Table 3.1.

Lemma 6.2.6. [45]

1. If (W ,A) is a Gentzen frame, then for every a ∈ A, v(a) := γ({a}) defines a homomor-

phism v : A −→ W
+.

2. If a N b implies a ≤A b for every a, b ∈ A, then v is an embedding.

Remark 6.2.7. Actually Lemma 6.2.6 holds in a more general setting. For instance, A can be

an arbitrary, even partial, algebra in the language of FL, and i and i′ need not be injections as

far as the Gentzen rules are satisfied.

Since (WA,A) trivially satisfies the Gentzen rules, we see that (W+
A
, v) is a completion of

A. Moreover, it is join-dense and meet-dense since

X =
⋃
γ{γ({a}) : a ∈ X} =

⋃
γ{v(a) : v(a) ⊆ X}

=
⋂
{{a}✁ : X N a} =

⋂
{v(a) : X ⊆ v(a)}

(*)

holds for every Galois-closed set X. The last equality holds because v(a) = {a}✄✁ = {a}✁

and X N a iff X ⊆ {a}✁.

We have thus found an indirect proof of Lemma 2.3.3.
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Corollary 6.2.8. (W+
A
, v) is a DM completion of A. Hence for every x ⊆ {e, c, i, o}, every

chain A ∈ FLℓx has a DM completion in FLℓx.

In Theorem 2.3.9 and 2.3.13 we have seen that many equations in the classes N2 and P3

can be converted into equivalent analytic clauses which are preserved under DM completion

(Theorem 2.3.17). Recall that any structural clause (q) can also be seen as a clause (qN ) over

residuated frames. Hence, we can reasonably expect that, whenever a residuated frame satisfies

an analytic clause, the dual algebra would satisfy the corresponding equation. To make things

more precise, we adapt Theorem 2.3.17 as follows.

Theorem 6.2.9. [24, 26, 27] Let (q) be an analytic clause. If a residuated frame W =
(W,W ′, N, ◦, ε, ǫ) satisfies (qN ), then the dual algebra W

+ = (γ[P(W )],∩,∪γ , ◦γ , \, /,
γ({ε}), {ǫ}✁) satisfies (q).

Proof. Assume that a residuated frame W satisfies the analytic clause

t1 N u1 and · · · and tm N um =⇒ tm+1 N um+1 or · · · or tn N un. (qN )

By the properties of analytic clauses, we can assume that any premise ti N ui has the form

xi1 ◦ · · · ◦ xiki N ui where the xi1 , . . . , xiki are variables, not necessarily distinct, in L(q) and

ui ∈ R(q), or ui = ǫ. Any conclusion ti N ui has the form xi1 ◦ · · · ◦ xiki N ui, where all the

xij , for i = m + 1, . . . , n and j = 1, . . . , ki are distinct variables in L(q), and ui ∈ R(q), or

ui = ǫ.

To show that the dual algebra W
+ satisfies the analytic clause (q), we take an arbitrary

evaluation that makes the premises of (q) true in W
+. Hence, for any premise ti N ui with

i ∈ {1, . . . ,m}, we have Ti = Xi1 ◦γ · · · ◦γ Xiki ⊆ Ui, for some closed sets Xi1, . . . ,Xiki , Ui
in W

+ (where Ui equals {ǫ}✁, in case the corresponding ui is ǫ). This can be easily shown to

be equivalent to

(!) Xi1 ◦ · · · ◦Xiki ⊆ Ui

for any i = 1, . . . ,m. Let us assume now, for contradiction, that W+ does not satisfy any of the

conclusions of (q) i.e. that for any i = m+ 1, . . . , n, we have Ti = Xi1 ◦γ · · · ◦γ Xiki 6⊆ Ui, for

the closed sets Xi1, . . . ,Xiki , Ui. As for the premises, this is equivalent to say

(∗) Xi1 ◦ · · · ◦Xiki 6⊆ Ui

for any i = m + 1, . . . , n. Recall that all the Xij , for i = m + 1, . . . , n and j = 1, . . . , ki are

distinct. Hence, by (∗), for any distinct Xij , we can take an element x•ij ∈ Xij , such that the

following holds:

(∗∗) x•i1 ◦ · · · ◦ x
•
iki

∈ Xi1 ◦ · · · ◦Xiki x•i1 ◦ · · · ◦ x
•
iki

6∈ Ui

for any i ∈ {m+1, . . . , n}, j ∈ {1, . . . , ki}. By the inclusion property of analytic clauses all the

x•ij can be used as an evaluation of the variables appearing on t1, . . . tm in the premises of (qN ).
By (!) we will have that x•i1 ◦ · · · ◦ x

•
iki

∈ Xi1 ◦ · · · ◦Xiki = Ti ⊆ Ui, for any i ∈ {1, . . . ,m}.

As each Ui is Galois-closed, we have x•i1 ◦ · · · ◦ x•iki ∈ U✄✁

i , which is equivalent to say that
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x•i1 ◦ · · · ◦ x•ikiNu
•
i for a certain u•i ∈ U✄

i ⊆ W ′. We have then x•i1 ◦ · · · ◦ x•ikiNu
•
i for any

i ∈ {1, . . . ,m}. Thus, we apply the clause (qN ), obtaining at least one of the conclusions, say

without loss of generality, tsNus with s ∈ {m+ 1, . . . , k}. The conclusion tsNus is evaluated

in W as x•s1 ◦ · · · ◦ x
•
sks
Nu•s , with u•s ∈ U✄

s ⊆ W ′. This entails x•s1 ◦ ... ◦ x
•
sks

∈ U✄✁

s = Us,
which contradicts (∗∗).

Example 6.2.10. Suppose that W satisfies (wnmN ), see Example 6.2.3. Then W
+ satisfies

(wnm), namely

XY ⊆ Z and XV ⊆ Z and V Y ⊆ Z and V V ⊆ Z =⇒ XY ⊆ ǫ✁ or V ⊆ Z

holds for every Galois-closed sets X,Y, V, Z .

6.3 Densification of FLi-chains

Residuated frames are useful not only for completions, but also for densification. In this section,

we use them to prove the densifiability of FLℓx with {i} ⊆ x ⊆ {e, c, i, o}. Our proof gives a

rationale behind the concrete definition of Ap in Section 6.1, and moreover serves as a warm-up

before the more involved case of (nonintegral) FLe-chains in the next section.

Let us fix an FLi-chain A, a gap (g, h) in it and a new element p. Our purpose is to define a

residuated frame whose dual algebra is an FLi-chain filling the gap (g, h) by p, as summarized

in Figure 6.2.

A is an FLi-chain with a gap W̃
p+

A
is an FLi-chain filling the gap

W̃
p
A satisfies (comN ),(iN )

Lemma 6.3.2 Lemma 6.2.4 6.3.4

Figure 6.2: The structure of our proof.

We define a frame W
p
A = (W,W ′, N, ◦, ε, ǫ) such that

• (W, ◦, ε) is the free monoid generated by A ∪ {p}.

• W ′ := A ∪ {p}, ǫ := f ∈ A.

Thus each element x ∈ W is a finite sequence of elements from A ∪ {p}. We denote by A∗ the

subset of W that consists of finite sequences of elements from A (without any occurrence of p).

Also, given x ∈ W we denote by x the product (in A) of all elements of x where p is replaced

by h. For instance, if x = papb ∈W with a, b ∈ A, then x = hahb ∈ A.

Let us now define the relation N between the two sets of the frame. With the intuition that

g < p < h should hold and N should be an extension of ≤A, it is natural to require that a N p
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iff a ≤ g, and p N a iff h ≤ a for every a ∈ A. We also require that p N p. The definition

below embodies these requirements. For every x ∈W and a ∈ A:

x N a ⇐⇒ x ≤A a
x N p ⇐⇒ x ≤A g (if x ∈ A∗)
x N p always holds (otherwise)

Compare this definition with the proof of Theorem 4.1.11 in Chapter 4: the substitution of p
when appearing on the left with h and when appearing on the right with g perfectly mirrors

the substitution S[Λ⇒Π/p⇒p] there. Similarly, the stipulation that x N p always holds if p
is in x and its role in the following proof of densification, perfectly matches the role of pp-

components in Theorem 4.1.11. As explained in Section 6.2, the frame W
p
A

induces a residuated

frame W̃
p
A

. To have a closer look at the residuated frame W̃
p
A

, it is convenient to partition the

set W̃ ′ = W ×W ′ ×W into three, in accordance with the case distinctions in the definition of

N :

W̃ ′
1 := {(u, a, v) ∈ W̃ ′ : a ∈ A},

W̃ ′
2 := {(u, p, v) ∈ W̃ ′ : u, v ∈ A∗},

W̃ ′
3 := {(u, p, v) ∈ W̃ ′ : u 6∈ A∗ or v 6∈ A∗}.

Just as we associated an element x ∈ A to each x ∈ W , we associate an element z ∈ A to each

z ∈ W̃ ′ as follows:

z := u\a/v (z = (u, a, v) ∈ W̃ ′
1)

:= u\g/v (z = (u, p, v) ∈ W̃ ′
2)

:= e (z = (u, p, v) ∈ W̃ ′
3)

We finally define A◦ := W̃ ′
1 ∪ W̃

′
3. A pair (x, z) ∈W × W̃ ′ is said to be stable if either x ∈ A∗

or z ∈ A◦. We also say that a statement x Ñ z is stable if (x, z) is. The following lemma

explains why we have defined the sets A∗, A◦ and the concept of stability.

Lemma 6.3.1.

1. If (x, z) is stable, then x Ñ z iff x ≤A z. If not, x Ñ z always holds.

2. If x 6∈ A∗, then x ≤A h.

3. If z 6∈ A◦, then g ≤A z.

Proof. (1) When z = (u, a, v) ∈ W̃ ′
1, we have x Ñ z iff uxv N a iff uxv ≤ a iff x ≤ z. When

z = (u, p, v) ∈ W̃ ′
3, both uxv N p and x ≤ e = z hold. When z ∈ W̃ ′

2 and x ∈ A∗, x Ñ z iff

uxv N p iff uxv ≤ g iff x ≤ z. When z ∈ W̃ ′
2 and x 6∈ A∗, x Ñ z always holds.

(2) x 6∈ A∗ means that the sequence x contains an occurrence of p, that is interpreted by h.

Hence the claim holds by integrality. (3) is proved in a similar way.

Lemma 6.3.2. Let A be an FLi-chain with a gap (g, h). The residuated frame W̃
p
A

satisfies the

rules (comN ),(iN ).
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Proof. Being A an integral chain, W̃
p
A

clearly satisfies

uv N z
uxv N z

(iN )

Hence the dual algebra W̃
p+
A

is integral by Lemma 6.2.4. We verify:

x Ñ z and y Ñ w

x Ñ w or y Ñ z
(comN )

In case at least one of the conclusions is not stable, (comN ) holds by Lemma 6.3.1(1). Note

that this is always the case when both premises x Ñ z and y Ñ w are not stable. Hence we only

need to consider the cases when both conclusions are stable and either both or only one of the

premises is stable.

(i) If both premises x Ñ z and y Ñ w are stable, (comN ) boils down to

x ≤ z and y ≤ w =⇒ x ≤ w or y ≤ z,

that holds by the communication property in A.

(ii) Assume only one premise is stable. For instance, let y Ñ w be stable and x Ñ z not

stable. We have x 6∈ A∗, z 6∈ A◦. Moreover, as both conclusions x Ñ w and y Ñ z are assumed

to be stable, we have w ∈ A◦, y ∈ A∗. We have either y ≤ g or h ≤ y since (g, h) is a

gap. If y ≤ g, then y ≤ g ≤ z by Lemma 6.3.1(3), so the right conclusion holds. If h ≤ y,

Lemma 6.3.1(2) and the right premise imply x ≤ h ≤ y ≤ w, so the left conclusion holds. The

case where y Ñ w is not stable and x Ñ z is stable is symmetrical.

Lemma 6.3.3. Let A be an FLi-chain with a gap (g, h). (W̃p
A
,A), with the injections i, i′ from

A to W and W ′ given by i(a) := a ∈ W and i′(a) := (ε, a, ε) ∈ W̃ ′, is a Gentzen frame.

Moreover a Ñ b implies a ≤A b for every a, b ∈ A. Hence v(a) := γ({a}) is an embedding of

A into W̃
p+
A

.

Proof. Observe that all Gentzen rules (Figure 6.1, where N is replaced by Ñ ) have stable

premises. If the conclusion is also stable, then it is obtained from the premises by Lemma 6.3.1(1).

Otherwise (as it may happen for the rule (cut)), the conclusion holds automatically.

Lemma 6.3.4. Let v be the embedding of A into W̃
p+
A

in Lemma 6.3.3. The following hold:

1. For every z ∈ A ∪ {p}, v(z) = {z}✄✁ = {z}✁.

2. v(g) ( {p}✄✁ ( v(h).

Proof. (1) Suppose that z = a ∈ A. We have a ∈ {a}✁ by (id). Hence {a}✄✁ ⊆ {a}✁. To

show the other inclusion, let x ∈ {a}✁ and z ∈ {a}✄. Then x Ñ a and a Ñ z, so x Ñ z by

(cut). This shows that {a}✁ ⊆ {a}✄✁.

For z = p, the above reasoning suggests that it is enough to show :

p Ñ p
(Id)

x Ñ p and p Ñ z

x Ñ z
(cut)
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(Here we identify p on the right hand side with (ε, p, ε) ∈ W̃ ′). (id) is obvious. For (cut),
if the conclusion is unstable, it holds automatically. Otherwise, we distinguish three cases. If

x ∈ A∗ and z 6∈ A◦, Lemma 6.3.1(3) and the left premise (which is stable) imply x ≤ g ≤ z. If

x 6∈ A∗ and z ∈ A◦, Lemma 6.3.1(2) and the right premise (which is stable) imply x ≤ h ≤ z.

If x ∈ A∗ and z ∈ A◦, we have x ≤ g < h ≤ z.

(2) We have g Ñ p and p Ñ h, so g ∈ {p}✁ and p ∈ {h}✁, that imply v(g) = γ({g}) ⊆
γ({p}) ⊆ v(h) = γ({h}) by (1). On the other hand, we have neither p Ñ g nor h Ñ p (that

would mean h ≤ g). Hence the two inclusions are strict.

We have proved that the chain W̃
p+
A

fills the gap (g, h) of A. Hence we conclude:

Theorem 6.3.5. FLℓx with {i} ⊆ x ⊆ {e, c, i, o} is densifiable.

Proof. Let A be an in FLℓx with {i} ⊆ x ⊆ {e, c, i, o} and (g, h) a gap in A. By Lemma 6.3.2

W̃
p
A

satisfies (com), (i). Moreover it is easy to see that W̃
p
A

satisfies (eN ), (cN ), (oN ) when-

ever A satisfies (e), (c), (o). Hence by Lemma 6.2.4, W̃
p+
A

is in FLℓx whenever A is. Lemma 6.3.4

shows that W̃
p+
A fills the gap (g, h) of A and Lemma 6.3.3 shows the existence of an embedding

from A to W̃
p+
A

.

Corollary 6.3.6. The logics MTL, psMTLr and Gödel logic G are standard complete.

Proof. Recall that the algebraic semantics for the three logics are FLℓew,FL
ℓ
w,FL

ℓ
ecw, respec-

tively. Hence the claim follows from Lemma 6.1.2 and Theorems 6.3.5 and 6.1.5

Structure of W̃
p+
A

We have obtained a chain W̃
p+
A

filling a gap of A, but we have not yet examined what kind of

chain it is. By looking into its structure, it turns out that it is just a DM completion of the chain

A
p presented in Section 6.1. We will show that the restriction of W̃

p+
A

to v[A]∪{γ({p})} forms

a subalgebra by giving a concrete description. To simplify the notation, we write

x̂ := v(x) = {x}✄✁ = {x}✁

for every x ∈ A ∪ {p} (see Lemma 6.3.4 (1)), and x̂ · ŷ := x̂ ◦γ ŷ. The lattice structure of

v[A] ∪ {p̂} is already clear (see Lemma 6.3.4 (2)). Moreover, since v(a) = â is an embedding,

we have â ⋆ b̂ = â ⋆ b for every a, b ∈ A and ⋆ ∈ {·, \, /}. Hence it is sufficient to determine the

operations ·, \, / applied to â and p̂.

Proposition 6.3.7. For every a ∈ A, we have:

p̂ · p̂ = p̂ (h2 = h) p̂\p̂ = ê

= ĥ2 (h2 ≤ g) p̂\â = ĥ\a
â · p̂ = p̂ (ah = h) â\p̂ = p̂ (ah = h)

= âh (ah ≤ g) = â\g (ah ≤ g)

Similar equalities hold for p̂ · â, p̂/p̂, â/p̂ and p̂/â. Hence the restriction of W̃
p+
A

to v[A] ∪ {p̂}

forms a subalgebra that is isomorphic to A
p, and W̃

p+
A

is its DM completion.
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Proof. Note that x̂ · ŷ = γ(γ({x}) ◦ γ({y})) = {xy}✄✁. Hence to see the equivalence between

x̂ · ŷ and û, it is sufficient to check {xy}✄ = {u}✄, which holds exactly when xy Ñ z iff u Ñ z
for every z ∈ W̃ ′.

If z ∈ A◦, stability implies:

• pp Ñ z iff h2 ≤ z iff h ≤ z iff p Ñ z (when h2 = h).

• pp Ñ z iff h2 ≤ z iff h2 Ñ z (when h2 ≤ g).

• ap Ñ z iff ah ≤ z iff h ≤ z iff p Ñ z (when ah = h).

• ap Ñ z iff ah ≤ z iff ah Ñ z (when ah ≤ g).

If z 6∈ A◦, both sides of the above four hold by Lemma 6.3.1(1) and (3).

To prove the equalities for \, note that ŵ = {w}✁ and x̂\ẑ = {x}✄✁\{z}✁ = {x}\{z}✁

for every w, x, z ∈ A ∪ {p}. Hence to see x̂\ẑ = ŵ, it is sufficient to check that xy Ñ z iff

y Ñ w for every y ∈W .

We have p̂\p̂ = ê and p̂\â = ĥ\a since:

• both py Ñ p and y Ñ e hold,

• py Ñ a iff hy ≤ a iff y ≤ h\a iff y Ñ h\a.

For the equality for â\p̂, we distinguish two cases. If y ∈ A∗, stability implies:

• ay Ñ p iff ay ≤ g iff y ≤ g iff y Ñ p (when ah = h). For the second equivalence, note

that y ≤ g obviously implies ay ≤ g. Conversely, suppose that y ≤ g does not hold. Then

h ≤ y, so h = ah ≤ ay. Hence ay ≤ g does not hold.

• ay Ñ p iff ay ≤ g iff y ≤ a\g iff y Ñ a\g (when ah ≤ g).

If y 6∈ A∗, both sides of the above two hold. In particular, y Ñ a\g holds since ay ≤ ah ≤ g by

Lemma 6.3.1(2), so y ≤ a\g.

Finally W̃
p+
A is a DM completion of Ap, since v[A] ∪ {p̂} = {x̂ : x ∈ W} = {{z}✁ : z ∈

W ′}, and any Galois-closed set X is both a join of elements from the second set and a meet of

elements from the third set (see (*) in page 92).

6.4 Densification of FLe-chains

We now turn to another class of algebras: FLe-chains. Recall that bounded algebras of this class

form the algebraic semantics for UL, see Definition 3.1.5 and Theorem 3.1.6. In this section,

we translate the proof-theoretic argument in Chapter 5 into an algebraic one, based on residuated

frames. This gives rise to an algebraic proof of standard completeness for uninorm logic.

Let A be an FLe-chain with a gap (g, h) and p a new element. We again build a residuated

frame whose dual algebra fills the gap (g, h). Although we could define W as before, we can ex-

ploit commutativity to simplify the construction. We define a frame W
p
A

:= (W,W ′, N, ◦, ε, ǫ)
as follows:

98



• W := A× N. Each element (a,m) ∈ W is denoted by apm as if it were a polynomial in

the variable p. We identify A with the subset {ap0 : a ∈ A} of W .

• apm ◦ bpn := (ab)pm+n, ε := e = ep0.

• W ′ := A ∪ {p}, ǫ := f ∈ A.

• There are three types of elements inW×W ′: (apn, b), (a, p) and (apn+1, p) with a, b ∈ A
and n ∈ N. N is defined accordingly:

apn N b ⇐⇒ ahn ≤A b,
a N p ⇐⇒ a ≤A g,

apn+1 N p ⇐⇒ ahn ≤A e.

Note that this is compatible with the previous definition. In particular, apn+1 N p always

holds if A is integral. As for the integral case, there is a strong connection between this defi-

nition and the substitution used in the proof of density elimination for extensions of HUL∀ in

Theorem 5.1.5. Indeed, the definition of N in the first and the second case exactly matches

the substitution S[Λ⇒Π/p⇒p] while the third case matches the substitution for pp-components

S[⇒e/p⇒p])[
Λ⇒/p⇒]. As before, from the frame W

p
A we obtain a residuated frame W̃

p
A :=

(W, W̃ ′, Ñ , ◦, ε, (ε, ǫ)). Because of commutativity, the definitions of W̃ ′ and Ñ are slightly

simplified:

W̃ ′ := W ×W ′, x Ñ (y, z) iff x ◦ y N z.

As in the integral case the set W̃ ′ can be partitioned into three:

W̃ ′
1 := {(apn, b) : a, b ∈ A,n ≥ 0},

W̃ ′
2 := {(a, p) : a ∈ A},

W̃ ′
3 := {(apn+1, p) : a ∈ A,n ≥ 0}.

Elements of W, W̃ ′ are again interpreted by elements of A. For x = apn ∈ W , let x :=
ahn ∈ A. For z ∈ W̃ ′, we define:

z := ahn → b (z = (apn, b) ∈ W̃ ′
1),

:= a→ g (z = (a, p) ∈ W̃ ′
2),

:= ahn → e (z = (apn+1, p) ∈ W̃ ′
3).

As before, A◦ := W̃ ′
1 ∪ W̃ ′

3. A pair (x, z) ∈ W × W̃ ′ is stable if either x ∈ A or z ∈ A◦.

Similarly to Lemma 6.3.1(1), we have:

Lemma 6.4.1. If (x, z) is stable, then x Ñ z iff x ≤A z.

Proof. When x ∈ A and z = (a, p) ∈ W̃ ′
2, we have x Ñ z iff xa N p iff xa ≤A g iff

x ≤ a→ g iff x ≤A z.

When x = x′pm and z = (apn, b) ∈ W̃ ′
1, we have x Ñ z iff x′apm+n N b iff x′ahm+n ≤A

b iff x′hm ≤A ahn → b iff x ≤A z.

When x = x′pm and z = (apn+1, p) ∈ W̃ ′
3, we have x Ñ z iff x′apm+n+1 N p iff

x′ahm+n ≤A e iff x′hm ≤A ahn → e iff x ≤A z.
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Lemma 6.4.2. W̃
p
A

satisfies the rule (comN ).

Proof. We verify:

x Ñ z and y Ñ w

x Ñ w or y Ñ z
(comN )

(i) If x, y ∈ A or w, z ∈ A◦, all the pairs {x, y} × {z, w} are stable. By Lemma 6.4.1, the rule

boils down to

x ≤ z and y ≤ w =⇒ x ≤ w or y ≤ z,

that holds by the communication property in A.

(ii) Suppose that w 6∈ A◦ and z 6∈ A◦. Then w = (a, p) and z = (b, p) so that (comN ) becomes:

xb N p and ya N p

xa N p or yb N p
⇐⇒

b Ñ (x, p) and a Ñ (y, p)

a Ñ (x, p) or b Ñ (y, p)

Since a, b ∈ A, it reduces to the case (i).

(iii) Suppose that w ∈ A◦ and z 6∈ A◦. We write w = (w1, w2) and z = (a, p). There are three

subcases.

First, suppose that x, y 6∈ A. Then we may write x = x′p and y = y′p so that (comN )
becomes:

x′ Ñ (pa, p) and y′ Ñ (pw1, w2)

x′ Ñ (pw1, w2) or y′ Ñ (pa, p)

Since (pa, p), (pw1, w2) ∈ A◦, it reduces to the case (i).

Second, suppose that x ∈ A and y 6∈ A, so that we may write y = y′p. Note that x Ñ z iff

xa N p iff xa ≤ g. Also, y Ñ z iff y′pa N p iff y′a ≤ e. Thus what we have to check is

xa ≤ g and y ≤ w =⇒ x ≤ w or y′a ≤ e.

By the communication property, the premises imply either x ≤ w or ya ≤ g. If x ≤ w, we are

done. Otherwise, we have y′ha = ya ≤ g, so y′a ≤ h→ g < e (since g < h). So we are done.

Finally, suppose that x 6∈ A and y ∈ A, so that we may write x = x′p. Note that x Ñ z iff

x′pa N p iff x′a ≤ e. Also, y Ñ z iff ya N p iff ya ≤ g. Thus what we have to check is

x′a ≤ e and y ≤ w =⇒ x ≤ w or ya ≤ g.

If ya ≤ g, we are done. Otherwise h ≤ ya. Hence together with the premises we obtain

x = x′h ≤ x′ya ≤ y ≤ w.

Lemma 6.4.3. Let A be an FLe-chain with a gap (g, h). (W̃p
A
,A), with the injections i, i′

from A to W and W ′ given by i(a) := a ∈ W and i′(a) := (ε, a, ε) ∈ W̃ ′, is a Gentzen frame.

Moreover a Ñ b implies a ≤A b for every a, b ∈ A. Hence v(a) := γ({a}) is an embedding of

A into W̃
p+
A

.
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Proof. As in the proof of Lemma 6.3.3, note that all Gentzen rules except (cut) have stable

premises and conclusion. Hence we only have to check the (cut) rule

x Ñ a and a Ñ z

x Ñ z
(cut)

where (x, z) is unstable. We may write x = x′p and z = (b, p). By noting that x Ñ z iff

x′pb N p iff x′b ≤ e, it amounts to

x′h ≤ a and ab ≤ g =⇒ x′b ≤ e.

Now the premises imply x′hb ≤ g, so x′b ≤ h→ g < e.

Lemma 6.4.4. Let v be the embedding of A into W̃
p+
A

in Lemma 6.4.3. The following hold.

1. For every z ∈W ′, v(z) = {z}✄✁ = {z}✁.

2. v(g) ( {p}✄✁ ( v(h).

Proof. In view of the proof of Lemma 6.3.4, it is enough to show

x Ñ p and p Ñ z

x Ñ z
(cut)

pNp
(id)

(id) is clear. For (cut), If x ∈ A and z ∈ A◦, then all of (x, z), (x, p) and (p, z) are stable.

Hence the premises imply x ≤ g < h ≤ z.

If x 6∈ A and z ∈ A◦, we may write x = x′p. The premises amount to x′ ≤ e and h ≤ z, so

we obtain x = x′h ≤ z.

If x 6∈ A and z 6∈ A◦, we may write x = x′p and z = (a, p). The premises amount to x′ ≤ e
and a ≤ e, so we obtain x′a ≤ e.

Finally if x ∈ A and z 6∈ A◦, we may write z = (a, p). The premises amount to x ≤ g and

a ≤ e, so we obtain xa ≤ g.

In any case we obtain the conclusion x Ñ z.

We have proved that the chain W̃
p+
A

fills the gap (g, h) of A. We have the following.

Theorem 6.4.5. Every variety FLℓx with {e} ⊆ x ⊆ {e, i, o,⊥} is densifiable.

Proof. Let A be an in FLℓx with {e} ⊆ x ⊆ {e, i, o,⊥} and (g, h) a gap in A. By Lemma 6.4.2

W̃
p
A

satisfies (com). It is easy to see that W̃
p
A

satisfies (eN ) and (iN ), (oN ) whenever A does.

Note that W̃
p+
A

is a complete algebra, hence it always satisfies (⊥). By Lemma 6.2.4, W̃
p+
A

is

thus in FLℓx. Lemma 6.4.4 shows that W̃
p+
A

fills the gap (g, h) of A and Lemma 6.4.3 shows

the existence of an embedding from A to W̃
p+
A

.

Hence we have provided a purely algebraic proof of the following

Corollary 6.4.6. The logic UL is standard complete
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Proof. Follows from Lemma 6.1.2 and Theorem 6.1.5 and 6.4.5.

Remark 6.4.7. [44] contains a proof of densification for FLe-chains, which makes use of a

simplified version of the residuated frame presented here. The crucial observation there is that,

with our definition of the relation N , the nucleus γN identifies the elements p ◦ p and p ◦ h,

i.e. γN ({p ◦p}) = γN ({p ◦h}). Hence, instead of letting W be the full free monoid A∪{p}∗, it

suffices to consider (A∪Ap, ◦) whereAp = {ap | a ∈ A} and the operation ◦ is defined in such

a way as to extend the operation · in A and satisfy p ◦p = ph. Similarly, the set W̃ ′ is restricted

in [44] only to A ∪A× {p}. Under these restrictions, the resulting dual algebra is the same as

the one in Lemma 6.4.3, but showing that it is a chain becomes easier. This semplification of the

residuated frame in [44] hides however the original connection with the proof-theoretic method

of density elimination, which was our main concern here. Note that in [44], also an alternative

proof of densification for FLe-chains is provided, based on linear polynomials. This proof,

though inspired by the structure of the dual algebra of residuated frames, can be understood in

principle without any reference to residuated frames.

6.5 Densification of subvarieties of FLℓi

We now focus on subvarieties of FLℓi defined by P3 equations. By Theorem 2.3.18 such varieties

are always closed under DM completions (applied to chains). However, not all such varieties

admit densification. A typical example is the variety BA of Boolean algebras, whose only

nontrivial chain is the two element chain. Note that BA is defined by the excluded middle

equation x ∨ ¬x = e ∈ P2, which is equivalent to

xy ≤ z =⇒ x ≤ f or y ≤ z. (em)

Inspired by the proof-theoretical approach in Chapter 4, we will reformulate the definition of

semi-anchored rules in our setting, so to obtain some criteria for densifiability. Before we pro-

ceed further, let us make it precise what it means that the specific residuated frame W̃
p
A defined

in Section 6.3 satisfies (qN ). Recall that an analytic clause (q) is of the form

t1 ≤ z1 and · · · and tm ≤ zm =⇒ tm+1 ≤ zm+1 or · · · or tn ≤ zn.

For the purpose of this section, it is convenient to write (q) as P =⇒ C , where

P := {t1 ≤ z1, . . . , tm ≤ zm},
C := {tm+1 ≤ zm+1, . . . , tn ≤ zn}.

Recall that each equation in P and C consists of variables L(q) and R(q). To each x ∈ L(q)
we associate an element x• ∈ W = (A ∪ {p})∗, so that each term t is interpreted by t• ∈
W . Likewise, to each z ∈ R(q) we associate a triple z• ∈ W̃ ′ = W × W ′ × W , where

W ′ = A ∪ {p}. The interpretations of constants e, f are already fixed: e• := ε ∈ W and

f• := (ε, ǫ, ε) = (ε, f, ε) ∈ W̃ ′. It is now clear when W̃
p
A satisfies (qN ). It is true just in case

the following holds for each such interpretation •:

{t• Ñ z• : t ≤ z ∈ P} =⇒ {t• Ñ z• : t ≤ z ∈ C}. (*)
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Let us now come back to criteria for densifiability. In the following we adapt Definition 4.1.2

to our context.

Definition 6.5.1. Let (q) : P =⇒ C be an analytic clause and (x, z) ∈ L(q) × R(q). We say

that (x, z) is an anchored pair for (q) if there is a conclusion of (q) of the form t ≤ z such that

x is in t. We call (x, z) ∈ L(q)×R(q) unanchored pair if z 6= f and (x, z) is not anchored. We

say that a set of (un)anchored pairs {(x1, z), . . . , (xn, z)} is contained in a premise t ≤ z if all

the variables x1, . . . , xn appear in t.

Definition 6.5.2. A clause (q) is said to be anchored if, for each premise t ≤ z, either z = f or

t ≤ z contains only anchored pairs.

Clearly the clause (em) is not anchored, as (x, z) is an unanchored pair, while any analytic

quasiequation is anchored, due to the inclusion condition, see Definition 2.3.12.

Lemma 6.5.3. Let A be an FLi-chain with a gap (g, h) and (q) an anchored analytic clause. If

A satisfies (q), then the residuated frame W̃
p
A

in Section 6.3 satisfies (qN ). In particular, if A

satisfies an analytic quasiequation (q), W̃p
A

satisfies (qN ).

Proof. Assume that A satisfies an anchored clause (q). Our goal is to verify (∗) above. If

there is a conclusion t ≤ z ∈ C such that (t•, z•) is not stable, then we have t• Ñ z• by

Lemma 6.3.1(1), so (∗) holds.

Otherwise, (t•, z•) is stable for every t ≤ z ∈ C , so that, by Lemma 6.3.1(1), t• Ñ z• iff

t
•
≤ z•.

We claim that the same holds for each premise t ≤ z ∈ P . Suppose for a contradiction that

t• 6∈ A∗ and z• 6∈ A◦. The former means that t contains a variable x such that x• 6∈ A∗, i.e.,

the sequence x• contains p. Since x is anchored, there must be a conclusion u ≤ z ∈ C (with x
occurring in u), so that (u•, z•) is not stable. But that has been already ruled out.

As a consequence, (∗) amounts to

{t
•
≤A z• : t ≤ z ∈ P} =⇒ {t

•
≤A z• : t ≤ z ∈ C},

that holds since A satisfies (q).

The previous lemma does not apply to many clauses. For instance, it does not apply to

(wnm):

xy ≤ z and xv ≤ z and vy ≤ z and vv ≤ z =⇒ xy ≤ 0 or v ≤ z, (wnm)

since (x, z) and (y, z) are unanchored. To deal with this and more involved clauses, we need

to extend the definition of anchoredness. In the sequel, we write t = t(x1, . . . , xn) to indicate

variables x1, . . . , xn occurring in the term t. t(y1, . . . , yn) then denotes the result of substituting

yi for xi. In analogy with Definition 4.1.3, we can now give the definition of semi-anchored

clauses.

Definition 6.5.4. Let (q) : P =⇒ C be an analytic clause. We say that (q) is semi-anchored

iff for every set of unanchored pairs {(x1, z), . . . , (xj , z)} which is contained in some premise

t(x1, . . . , xj) ≤ z of (q), one of the following holds:
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1. There is a premise t(y1, . . . , yj) ≤ z and (y1, z), . . . , (yj , z) are anchored pairs (with

y1, . . . , yj not necessarily distinct variables).

2. There is a premise t(x1, . . . , xj) ≤ w and (x1, w), . . . , (xj , w) are anchored pairs.

3. There is a premise t(y1, . . . , yj) ≤ w and (x1, w), . . . , (xj , w), (y1, z), . . . , (yj , z) are

anchored pairs (with y1, . . . , yj not necessarily distinct variables).

Example 6.5.5. The analytic clauses

xy ≤ z and xv ≤ z and vy ≤ z and vv ≤ z =⇒ xy ≤ 0 or v ≤ z, (wnm)

and

yx ≤ z1 and wx ≤ z1 and yx ≤ z2 and wx ≤ z2 =⇒ wy ≤ z2 or x ≤ z1 (Ω3)

and

x ≤ z and y ≤ w =⇒ x ≤ w or y ≤ z (com)

are semi-anchored (see Examples 4.1.6, 4.1.7, 4.1.8).

Lemma 6.5.6. Let A be an FLi-chain with a gap (g, h) and (q) : P =⇒ C a semi-anchored

analytic clause. If A satisfies (q), then W̃
p
A

satisfies (qN ).

Proof. Our purpose is again to show that

{t• Ñ z• : t ≤ z ∈ P} =⇒ {t• Ñ z• : t ≤ z ∈ C} (*)

holds in W̃
p
A for every interpretation •. As in the previous proof, we may assume that (t•, z•)

is stable for every conclusion t ≤ z in C . But this time we cannot assume that this holds for all

premises.

So let ti ≤ zi be a premise that violate stability, namely z•i 6∈ A◦ and t•i 6∈ A∗. We can write

our premise as ti(x1, . . . , xj) ≤ zi where x1, . . . , xj are all the variables appearing in ti, such

that x•1, . . . , x
•
j 6∈ A∗.

By Lemma 6.3.1 (2) and (3), we have:

g ≤ z•i x•j ≤ h (1 ≤ j ≤ n). (!)

Note that, if any of the pairs (x1, zi), · · · , (xj , zi) would be anchored, a conclusion compo-

nent, t ≤ zi would contain it, and hence (t•, z•i ) would not be stable. But we have already ruled

out this possibility, so we can assume that (x1, zi), . . . , (xj , zi) are all unanchored pairs. By the

definition of semi-anchored clause three cases can occur.
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1. There is a premise ts ≤ zi with ts = ti(y1, . . . , yj) and (y1, zi), . . . , (yj , zi) anchored

pairs. We can safely assume that (t•s, z
•
i ) is stable, as otherwise we would have a non

stable conclusion. Hence, by Lemma 6.3.1(1) we have t
•
s ≤ z•i . Since (g, h) is a gap, we

have that either y•k ≤ g or h ≤ y•k for each 1 ≤ k ≤ j. We distinguish two cases.

(a) There is some y•k such that y•k ≤ g. As (yk, zi) is anchored, this means that there is

a conclusion t ≤ zi in C such that t contains yk. We have hence t
•
≤ y•k ≤ g ≤ z•i by

integrality and (!). So we have obtained a true conclusion t• Ñ z•i .

(b) For every y•k we have h ≤ y•k. Using this fact and (!) we obtain

t
•
i = ti(x1, . . . , xj)

•
≤ ti(h, . . . , h)

•
≤ ti(y1, . . . , yj)

•
= t

•
s ≤ z•i . In other words, we

have that for the nonstable premise t•i Ñ z•i , the inequation ti
•
≤ z•i holds in A.

2. There is a premise ti ≤ w with (x1, w), . . . , (xj , w) anchored pairs. We can safely assume

that (t•i , w
•) is stable, hence by Lemma 6.3.1 (1) we have t

•
i ≤ w•. As (g, h) is a gap, we

have that either h ≤ w• or w• ≤ g.

(a) In case h ≤ w•, recall that (x1, w), . . . , (xj , w) are anchored, hence we have a con-

clusion of the kind t ≤ w such that t contains x1, . . . , xj . From this follows that t• 6∈ A∗.

Hence by Lemma 6.3.1 (2) we have t
•
≤ h ≤ w• which means that we have a true

conclusion t• Ñ w•.

(b) In case w• ≤ g, by (!) we have t
•
i ≤ w• ≤ g ≤ z•i . In other words, we have that for

the nonstable premise ti Ñ zi, the inequation ti
•
≤ z•i holds in A.

3. There is a premise ts ≤ w where ts = ti(y1, . . . , yj) and all the pairs (x1, w), . . . , (xj , w),
(y1, zi), . . . , (yj , zi) are anchored tuples. We can safely assume that (t•s, w

•) is stable,

hence by Lemma 6.3.1 (1) we have t
•
s ≤ w•. As (g, h) is a gap, we have that either

h ≤ w• or w• ≤ g. If h ≤ w•, we can proceed as in case (2a). Assume now that w• ≤ g.

By t
•
s ≤ w• and (!) we get that t

•
s ≤ zi

•. From here we can proceed exactly as in case 1.

Summing up, for any nonstable premise ti Ñ zi, we have shown that either a conclusion is

true (cases (1a) and (2a)), in which case we are done, or that (cases (1b) and (2b)) t
•
i ≤ z•i holds

in A. Recall that the latter inequality is also true for all the stable premises by Lemma 6.3.1 (1).

Hence in the worst case our claim follows, just applying

{t
•
≤A z• : t ≤ z ∈ P} =⇒ {t

•
≤A z• : t ≤ z ∈ C},

which holds since A satisfies (q).

To state our main theorem, let us call an equation semi-anchored if it is equivalent to a set

of semi-anchored analytic clauses in the FLi-chains.

Theorem 6.5.7. Let V be a nontrivial subvariety of FLℓi defined over FLℓi by semi-anchored

equations. Then V is densifiable.
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Proof. By Theorems 2.3.9 and 2.3.13 we have a set Q of semi-anchored analytic clauses equiv-

alent to the defining equations of V. Let A ∈ V be a chain with a gap (g, h). A satisfies all the

clauses in Q, hence, by Lemma 6.5.6, the residuated frame W̃
p
A

defined there satisfies (qN ) for

all (q) ∈ Q. By Lemma 6.3.3 A is embeddable in the dual algebra W̃
p+
A and by Lemma 6.3.4

W̃
p+
A

fills the gap (g, h) of A. Finally, by Theorem 6.2.9 W̃
p+
A

satisfies Q, hence it belongs to

V.

We thus obtained the following

Theorem 6.5.8. Let L be any axiomatic extension of psMTLr with semi-anchored axioms. L is

standard complete

Proof. Follows by Lemma 6.1.2 and Theorems 6.5.7 and 6.1.5.

6.6 Densification of subvarieties of FLℓe

Now we turn our attention to subvarieties of FLℓe-algebras. The situation here is considerably

more complicated than for FLℓi , and for instance it is not clear how to translate the general result

on nonlinear axioms in Chapter 4. We thus limit ourselves to the subvarieties of FLℓe defined

by knotted axioms xm ≤ xn, with distinct m,n > 1, reformulating the proof-theoretic result

in Section 5.2 in algebraic terms. To begin with, we translate the Lemma 5.2.1 in the algebraic

context.

Lemma 6.6.1. Let A be an FLe-chain satisfying xm ≤ xn for some distinct m,n > 0. Then A

satisfies the following quasiequations.

xxy ≤ e =⇒ xy ≤ e, (ce)

xy ≤ e =⇒ xxy ≤ e. (we)

Proof. Note that (ce) and (we) are mutually derivable in FLe-chains. Therefore we will only

show that (ce) holds in case m < n. For n < m, we can prove in a symmetric way that

(we) holds. Given a, b ∈ A, assume that aab ≤ e holds in A. It implies (1) a2nbn ≤ e.
We have either e ≤ a or a ≤ e. In the former case, we immediately obtain ab ≤ aab ≤ e.
In the latter case, we have (2) an ≤ al for every l ≤ n. Now choose k, l ∈ N such that

2n = k(n − m) + l and m ≤ l < n. Note that, given that m ≤ l, we have by the knotted

axiom al = a(l−m)am ≤ a(l−m)an = alan−m. Hence we get (3) al ≤ alak(n−m) = a2n. By

combining (1) - (3), we obtain anbn ≤ albn ≤ a2nbn ≤ e. Since A is a chain, it can be easily

shown that ab ≤ e follows from the latter.

Recall that any knotted equation xm ≤ xn is an acyclic N2 equation, and hence it is equiva-

lent in FLe-chains to the simple analytic quasiequation ( see Example 2.3.15):

xn1 ≤ z and . . . and xnm ≤ z =⇒ x1 · · · xm ≤ z. (knotnm)
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Lemma 6.6.2. Let A be an FLe-chain with a gap (g, h), satisfying (knotnm) for some m,n > 1.

The residuated frame W̃
p
A

defined in Section 6.4 satisfies (knotnm
N ).

Proof. We need to show that W̃
p
A

satisfies

xn1 Ñ z and . . . and xnm Ñ z =⇒ x1 · · · xm Ñ z, (knotnm
N )

for every x1, . . . , xm ∈W = A× N and z ∈ W̃ ′ =W ×W ′ =W × (A ∪ {p}).
The conclusion is stable if and only if all the premises are. If this is the case, the claim easily

follows from Lemma 6.4.1 and from the fact that A satisfies (knotnm).

So assume that some of the premises violate stability, for instance, without loss of generality,

xn1 Ñ z, . . . , xnk Ñ z with 1 ≤ k ≤ m. This means that there are a1, . . . , am, b ∈ A and natural

numbers e1, . . . , ek ≥ 1 such that

z = (b, p), xi = aip
ei (1 ≤ i ≤ k), xj = aj (k + 1 ≤ j ≤ m).

Then (knotnm
N ) amounts to:

an1 bh
ne1−1 ≤ e, . . . , ankbh

nek−1 ≤ e,
ank+1b ≤ g, . . . , anmb ≤ g

}
=⇒ a1 · · · ambh

e1+···+ek−1 ≤ e.

By combining all the premises on the first line and by applying Lemma 6.6.1 (noting that n > 1),

we obtain

an1 · · · a
n
kb
khl ≤ e (*)

for any l ≥ 1. By combining all those on the second line, we obtain

ank+1 · · · a
n
mb

m−k ≤ gm−k ≤ hm−k. (**)

If e1 + · · · + ek − 1 ≥ 1, the two inequalities (*) and (**) with l := m − k + 1 imply

an1 · · · a
n
mb

mh ≤ e, which leads to the conclusion by Lemma 6.6.1.

Otherwise k = 1 and e1 = 1. Since m > 1, we have m − k ≥ 1. Hence (*) and (**) with

l := m− k implies an1 · · · a
n
mb

m ≤ e, which leads to the conclusion.

Finally, we obtain the main theorem of this section.

Theorem 6.6.3. Let V be a subvariety of FLℓe defined by xm ≤ xn with m,n > 1. Then V is

densifiable.

Proof. Let A ∈ V be a chain with a gap (g, h). By Lemma 6.6.2, W̃
p
A satisfies (knotnm

N ).

Hence W̃
p+
A

satisfies (knotnm
N ) by Theorem 6.2.9, i.e. W̃

p+
A

∈ V. The rest of the proof

follows that of Theorem 6.4.5.

Corollary 6.6.4. Let L be any axiomatic extension of UL with knotted axioms xm ≤ xn with

distinct m,n > 1. L is standard complete

Proof. Follows by Lemma 6.1.2 and Theorems 6.6.3 and 6.1.5.
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Note that Corollary 6.6.4 does not apply to xm ≤ x1 and x1 ≤ xn with m,n > 1, which

are respectively equivalent to x2 ≤ x and x ≤ x2 in FLℓ. These cases have been covered in

the purely proof-theoretical result for nonlinear axioms in Chapter 5. Translating that result into

our algebraic framework is viable, but it would require the construction of a residuated frame

different from the one given in Section 6.4.
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CHAPTER 7
Conclusions and open problems

We have presented general sufficient conditions for standard completeness for both integral and

non-integral logics, via proof theoretic methods. Moreover, we have introduced a new algebraic

approach to address standard completeness, inspired by the proof-theoretic techniques. Using

the proof-theoretic approach, we have obtained the following results:

• Any semianchored P3-extension of MTL∀ is standard complete (Theorem 4.1.12).

• Any extension of UL∀ with nonlinear axioms and/or mingle is standard complete (Theo-

rem 5.1.8).

Using the new algebraic method, we have reformulated the proof-theoretical results above, and

in addition we obtained the following:

• Any semianchored P3-extension of psMTLr is standard complete (Theorem 6.5.8).

Theorems 4.1.12, 5.1.8 and 6.5.8 show in a uniform way standard completeness for logics which

have thus far been treated individually. Our results also extend to infinitely many logics not

known before to be standard complete. In Table 7.1 we summarize all standard completeness

results already known in the literature, for extensions of UL∀, MTL∀ and psMTLr with axioms

within the class P3 of the substructural hierarchy. This table also includes some logics, not

previously known in the literature and for which our methods apply. We refer the reader to

Tables 3.2 and 3.3 for the axioms (and corresponding rules) mentioned in Table 7.1.

Further research directions and open problems

Our results naturally raise many further research questions, some of which are discussed in this

section.
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Known results Selected new results

Theorem 4.1.12

• MTL∀ [58, 71]

• SMTL∀ = MTL∀+ (lq) [42]

• MTL∀+ (cn) [23] 1

• WNM∀ = MTL∀+(wnm) [42]

• GHP∀ = MTL∀+ (wnm1) [1]

• WNM∀+ (invk) [73] 1

• ΩnMTL∀ = MTL∀ + (Ωn)
[53]1

• G∀ [49]

• MTL∀+ (wnmn)

• MTL∀+ (wnm1n)

• . . . use AxiomCalc (see Section

4.2) to find more.

Theorem 5.1.8 • UL∀ [66]

• UML∀ = UL∀ + (c) + (mgl)
[66]1

• UL∀+ (αn−1 ↔ αn) for n > 1
[81]1

• UL∀+ (c)

• UL∀+ (mgl)

• UL∀+ (knotnk ) for k, n > 1

• UL∀+ (fknotnk ) for n > 1.

• . . .

Theorem 6.5.8 • psMTLr [59] • psMTLr + (lq)

• psMTLr + (cn)

• psMTLr + (wnmn)

• psMTLr + (wnm1n)

• psMTLr + (Ωn)

• psMTLr + (invk)

• . . .

Table 7.1: An overview: examples of standard complete logics.

Involutive logics

Our results do not apply to logics with an involutive negation, i.e. logics where the axiom

(inv) ¬¬ϕ→ ϕ

is valid. The axiom (inv) is in the class N3 in the substructural hierarchy and there is no equiva-

lent external or internal structural rule for it. Calculi for logics including the axiom (inv) usually

employ multiple conclusioned hypersequents, i.e. hypersequents whose components can contain

a multiset of formulas on the right hand side, see e.g. [30,66]. Standard completeness was proved

for few involutive logics only, using ad hoc proofs. For the involutive monoidal t-norm logic

IMTL, i.e. MTL + (inv), standard completeness has been proved proof-theoretically in [66]

1The result was actually proven in the literature only for the propositional case.
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and algebraically in [41]. Algebraic proofs of standard completeness have also been given for

IMTL with the n-contraction axioms [23]. The situation is more complicated in the case without

weakening. For the involutive uninorm logic IUL, i.e. UL+(inv), standard completeness is still

an open problem. However, the problem was settled positively, proof-theoretically for IUML,

i.e. IUL with the addition of mingle and contraction [66], and algebraically for IUL with the

addition of both n-contraction and n-mingle [83]. For IUL, neither algebraic nor proof-theoretic

methods have been successful so far. Note that a hypersequent calculus HIUL for IUL is just

the multiple conclusion version of the hypersequent calculus HUL. Hence, standard comple-

teness for IUL (or, in case it is not standard complete, of some minimal extension of it) could

be shown by proving density elimination in the corresponding hypersequent calculus. However,

there is no immediate way to show this, by adapting the substitution method used in Chapter 5.

Indeed a derivation ending in an application of density could contain hypersequents of the form

H |Θ1, p, p ⇒ Π1 |Θ2 ⇒ p, p,Π2, with multiple occurrences of p both on the left and on the

right hand side of the components (p being, as usual, the propositional eigenvariable appearing

in the premises of the application of density). Consider, for instance, the following:

p⇒ p p⇒ p
(com)

p, p⇒ | ⇒ p, p

It is unclear which substitution procedure is needed to deal with a derivation containing a rule

application like the one above. No simple variant of the trick used in Chapter 5, based on

substituting p ⇒ p with ⇒ e, seems possible. This problem calls for new approaches for prov-

ing density elimination, which go perhaps beyond the idea of performing a global substitution

method. Tracking all the occurrences of axioms of the form p⇒ p in a derivation, and a careful

preliminary analysis of the structure of proofs seems to be needed. Insights facilitating this effort

might also come from the algebraic method based on residuated frames, which, though closely

related to the proof-theoretic method, has the advantage of avoiding some of the technical details

appearing in the proofs of density elimination.

Noncommutative logics

Another open problem concerns the noncommutative variant of UL, i.e. the logic psULr (see [21]).

It was shown in [82] that this logic is not complete with respect to dense chains. It is still not

clear which axioms should be added to psULr to obtain the smallest logic complete with respect

to dense chains, and how this reflects in the proofs of density elimination.

Logics axiomatized by N3 axioms

An important open question is related to the substructural hierarchy: it is not yet known how

to deal proof-theoretically with the axioms in the class N3. For these axioms, no equivalent

structural internal or external rules admitting cut-elimination can be defined along the lines of

[25]. On the algebraic side indeed, the corresponding equations are in general not preserved

under completions. The class is nevertheless very important for mathematical fuzzy logic, as it

contains the defining axioms of logics such as BL, Łukasiewicz and Product logic. These logics

have been proved to be standard complete at the propositional level, though only in the finite
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strong form (see the Remark 3.1.7), but density elimination has not been yet addressed for any

of the calculi developed for them, see [68–70].

Necessary conditions for P3-extensions of MTL∀

In Chapter 4 we have identified a broad class of hypersequent rules that preserve density elim-

ination when added to the calculus HMTL∀. Note however that our condition is sufficient but

not necessary for density elimination. In particular, since the condition depends only on the

syntactic shape of single rules, it cannot take into account the possible effects of the interac-

tion of different rules in the density elimination procedure. Consider for instance the axiom

(αn−1 → β) ∨ (β → α · β). It is proved in [53] that the logic obtained by adding to MTL
this axiom and the n-contraction axiom αn−1 → αn is standard complete. However, the rule

corresponding to (αn−1 → β) ∨ (β → α · β) i.e.

Γ1,Σ2 ⇒ Π2 {Γ1,Γi,Σ1 ⇒ Π1}2≤i≤n
Γ1,Σ1 ⇒ Π1 |Γ2, . . . ,Γn,Σ2 ⇒ Π2

(∗)

is not semi-anchored. In Example 4.1.7 we considered instead the rules (Ωn), which are semi-

anchored and equivalent to the conjunction of (αn−1 → β) ∨ (β → α · β) and αn−1 → αn.

Hence, even though HMTL∀+ (Ωn) and HMTL∀+ (∗) + (cn) are calculi for the same logic,

our density elimination method works only for the former.

N2 and P ′
3-extensions of UL∀

In Chapter 5 we have shown standard completeness for extensions of UL∀ with nonlinear axioms

and (mgl). This covers all the proofs of standard completeness known in the literature for N2-

extensions of UL∀, see [66,70,81]. Nonlinear axioms are however a proper subset of acyclic N2

axioms; in particular our proof does not extend to every analytic internal rule (i.e. any acyclic

N2-extension of UL∀). We conjecture that density elimination holds for the extension of HUL∀
with any internal structural rule, and hence that every acyclic N2-extension of UL∀ is standard

complete.

A further step would be to investigate standard completeness for P ′
3-extensions of UL∀.

This means proving density elimination for HUL∀ extended with external structural rules. Note

that the results on semi-anchored rules for extensions of HMTL∀ in Chapter 4 make heavy use

of the weakening rules and hence there is no clear way to transfer them to HUL∀.

Density and the admissibility of rules

The density rule is a striking example of a rule whose admissibility (elimination) enables us to

establish an important logical property, i.e. rational completeness. Showing the admissibility of

rules for proving other important algebraic and logical results (see e.g. [64,65]) would be an in-

teresting direction for future research. In the framework of sequent and hypersequent calculi, the

investigation of the admissibility of rules can benefit from the examination of the methods and

syntactic criteria established so far for cut and density elimination. An interesting research di-

rection would be to understand, in more general terms, the relation between the syntactic form of
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a given rule (r) (not necessarily cut or density) and the criteria to be imposed on (hyper)sequent

calculi, to obtain the admissibility of (r).

Residuated frames

Residuated frames have been a fundamental tool for the development of algebraic proof-theory.

In [24, 27] these structures were used for obtaining algebraic proofs of cut-admissibility. In

our work, we employed residuated frames to translate proofs of density elimination in an alge-

braic setting. A future research direction might be to extend the use of residuated frames (or

variants thereof) to find algebraic counterparts for other proof-theoretic arguments, e.g. for the

admissibility of other rules.

Keeping the Density rule

In our work, we used the density rule mainly as an instrument towards proving completeness.

A natural question is whether keeping this rule might bring any added value. For instance, a

restricted use of the rule might help in proof search, see e.g. [70] or, just as for the cut rule, bring

to a significant reduction of proof lengths.
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