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KURZFASSUNG

Heutzutage sind Informations- und Kommunikationstechnik (IKT) Netzwerke
ein fester Bestandteil unseres täglichen Lebens. Daher sind Intrusion Detection
Systeme (IDS) ein essentieller Baustein in einer funktionierenden Sicherheits-
infrastruktur von heutigen Computernetzwerken. IDSs zielen darauf ab zeit-
nah Cyber-Attacken und unautorisierte Systemzugriffe zu erkennen. Während
es dafür auf dem Markt viele Produkte gibt, die auf verschiedenen Ansätzen
basieren, ist die Identifikation der effizientesten Lösung für eine spezifische In-
frastruktur und die optimale Konfiguration dieser, immer noch ein ungelöstes
Problem. Auf Grund des Fehlens von passenden Testumgebungen werden neue
Ansätze zur Erstellung von Testdaten benötigt. Das Ziel dieser Arbeit ist es
ein Modell zu definieren, das auf Log-Zeilen Clustering und Simulation von
Markov Ketten basiert, um realistische synthetische Log Daten zu erstellen.
Das präsentierte Modell benötigt nur ein kleines Set realer Netzwerkdaten als
Input und erstellt ausgehend von dessen Eigenschaften eine vom Anwender
vorgegene lange Folge von hochrealistischen synthetischen Log Daten. Um die
Anwendbarkeit des in dieser Arbeit entwickelten Konzeptes zu zeigen, schlie-
ßen wir die Arbeit mit einem illustrativen Beispiel zur Evaluierung und Test
eines existierenden IDS unter Verwendung von generierten synthetischen Log
Daten.
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ABSTRACT

Today Information and Communications Technology (ICT) networks are a
dominating component of our daily life. Hence Intrusion Detection Systems
(IDSs) are an essential part of a working security-infrastructure of today’s
computer-networks. IDSs aim to timly detect cyber attacks and unauthorized
system access. While there are many products on the market, based on differ-
ent approaches, the identification of the most efficient solution for a specific
infrastructure, and the optimal configuration is still an unsolved problem. Due
to the lack of suitable test environments novel approaches for the generation of
test data are required. The goal of this thesis is to define a model, based on log
line clustering and Markov chain simulation, for generating realistic synthetic
log data. The presented model requires only a small set of real network data
as input and based on its characteristics generates a customer specified long
sequence of highly realistic synthetic log data. To prove the applicability of
the concept developed in this work, we conclude this thesis with an illustra-
tive example of evaluation and test of an existing IDS by usage of generated
synthetic log data.
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ich mich für die schöne und spannende Zeit bedanken.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Today Information and Communication Technology (ICT) networks are the
economic’s vital backbone. While their complexity continuously evolves, cyber
attacks become more sophisticated. Current attacks aim at stealing intellec-
tual properties and sabotaging systems. These multistage tailored Advanced
Persistent Threats (APT) usually result in financial loss and tarnished repu-
tation. Already in 2011, the global cost caused by cybercrimes was estimated
to 1 trillion dollars every year and it is increasing [1].

Recent cyber security reports [2, 3, 4] demonstrate that 77% of companies
world-wide already have been affected by APTs, including cyber security firms,
and the remaining 23% are unaware that they could be. On average it takes
more than 1 year until an APT is discovered. Due to the fact that existing
security mechanisms are hardly sufficient to counter APTs, novel approaches
for Intrusion Detection Systems (IDS), which guarantee timely detection of
invaders, are required. Numerous IDS solutions exist on the market, but no
mechanisms which allow to rate, compare and evaluate them. Reasons for
this are on the one hand the lack of data for testing, on the other hand the
fact that security companies are not keen to share their secrets with potential
competitors. In this thesis we propose a novel approach based on log line
clustering and Markov chain simulation, for generating synthetic log data, to
be applied in the test and evaluation of IDSs.

1.2 Problem Statement and Research Question

Because of the lack of data for testing IDSs it is not possible to sufficiently
evaluate IDSs outside running production systems. Testing IDSs in running
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CHAPTER 1. INTRODUCTION

production networks, exposes the networks and leads to privacy issues. More-
over testing an IDS, by simulating an attack in the network is not feasible
without affecting the regular functions of the network. Novel approaches for
testing environments are therefore required.

In this thesis we describe a model for the generation of synthetic log data
to be employed as test data for log-based IDSs. Furthermore an example of
application is given by using the generated synthetic test data for evaluat-
ing AECID - Automated Event Correlation for Incident Detection - an IDS,
designed and developed by the Austrian Institute of Technologies (AIT) [5].

The thesis addresses the following questions:

i Is it possible to define a meaningful model for generating realistic syn-
thetic log data, based on the analysis of a small set of real log data?

ii Does the generated synthetic log file represent the same properties as
the original file?

iii Can the generated synthetic log data be used for the evaluation of IDSs
outside a running production environment?

iv Is it possible to obtain a synthetic log file simulating an ongoing cyber
attack?

1.3 Methodology

In this thesis we apply methods of the probability theory and use statistical
techniques to verify the results. The model we propose for generating synthetic
log data is based on log line clustering and Markov chain simulation. Clus-
tering allows us to determine network specific properties. Applying a Markov
chain simulation enables the generation of sequences of log lines based on the
extracted properties. Furthermore we establish novel statistical metrics to
verify our model and to demonstrate the similarity between the generated log
data and the real log data.

To confirm that the introduced model can be used to test and evaluate IDSs
we describe an illustrative example of application. We apply AECID on the
generated log data. First we show that AECID obtains similar results when it
is executed with a real and a generated log file. Furthermore we discuss how
the optimal configuration of AECID can be found by executing the algorithm
on generated log data sets. Finally we describe the results obtained from the
execution of AECID with a synthetic input log file including manually injected
anomalies.
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1.4. THESIS OUTLINE

1.4 Thesis Outline

The remainder of the thesis is structured as follows: Chapter 2 gives an
overview of the related work and the state-of-the-art. Chapter 3 summa-
rizes the applied mathematical methods. Sections 3.1 and 3.2 deal with the
computer simulation of Markov Chains and section 3.3 summarizes additional
results from the probability theory. In Chapter 4 the model for generating log
data is described. Sections 4.1-4.5 discuss the theoretical model, while section
4.6 evaluates the quality of the proposed model. Finally chapter 5 describes
an illustrative example of an application for our approach. We discuss here
how the generated log data can be used to test and evaluate IDSs. Chapter 6
concludes the thesis and gives an outlook about future work.
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CHAPTER 2
RELATED WORK AND STATE-OF-THE-ART

Since the topic of this master thesis is not only related to the mathematical
science, but also to Information and Communication Technology (ICT) Secu-
rity, which is part of the computer science, the following chapter is split into
two sections. The first one givitales a short introduction about ICT Security,
in particular to the parts which are required for understanding this thesis.
The second section summarizes the mathematical background.

2.1 Computer Scientifical Background

2.1.1 ICT Security

The research area of ICT Security deals with inventing security mechanisms to
guarantee and optimize the proper function of information and communication
technologies in computer networks. In the past few years ICT networks more
and more become economics’s vital backbone. Therefore, it is indispensable
to put special emphasis on their safety and security. ICT Security is currently
a very important topic, which also comes up more and more often in the
daily news. The research area of ICT Security can be divided into several sub
domains, like [6]:

• Cyber Security & Cyber Situational Awareness[7][8]: Information
sharing about vulnerabilities in Connection Oriented Transport Services
(COTS) and cyber security incidents, for raising cyber situational aware-
ness and increasing resilience.

• Cloud Security[9]: Protection of data, which is not stored locally,
but in a ‘cloud’ - distant server - and also protection, while executing
programs, which are not installed on a local computer or server, but in
a cloud.
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• Industrial Control System (ICS) Security and Smart Grid Se-
curity[10]: Deals with the security of ICSs and smart grids. The term
smart grid includes the communicative networking and controlling of
electricity producer, storage, consumer and network equipment in en-
ergy transmission and distribution of electricity supply.

In these domains the following methods are used:

• Risk Assessment[11]: Application of risk assessment in the area of
information technology.

• Next Generation Cryptography Tools[12]: Invention of novel con-
cepts and approaches for information systems, which prevent from unau-
thorized reading and modifying private data.

• Intrusion Detection Systems (IDSs)[13] and Anomaly Detec-
tion[14]: Anomaly detection is a common procedure, for detecting ir-
regularities. It is especially applied in IDSs.

The main topic of this master thesis is inventing highly realistic synthetic log
data, for testing, evaluating and improving IDSs.

2.1.2 Logging

A lot of IDSs are operating on log data[15, 16]. Log data contains automati-
cally generated protocols about all processes in a computer system. Therefore,
one log line consists of a time stamp, which specifies the date (time) when a
process takes/took place, and an event, which describes the process. The pro-
tocols stored in log files enable subsequently analysis of the actions in a system.
This for example allows detecting erratic behavior. Basically, it is protocoled,
who has done (or does) what, at which time on a system. For example, in
log files of data bases every correctly completed transaction is stored. In case
of a system crash, this allows restoring the previous state, before the system
crashed.

Usually, by default log files are stored as simple text files. In opposite
to a database format this has the advantage, that also in case the system
crashes, it is easy to access the log data. Using a database format would
raise the problem, that the log data is only reachable, if the data base, in
which it is stored, is available. These days the log data management in large
ICT networks is also easy. Solutions for log data management and security
information event management are for example:

• Graylog[17],

• HP ArcSight Logger[18],

• AlienVault OSSIM[19].
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A standard for transmitting log reports is syslog[20]. There exists a huge
number of software components, based on different development environments,
which can be used for writing and evaluating log data. Some examples are:

• Log4j 2[21] for Java[22],

• Enterprise Library[23] and .NET Logging Framework[24] for
.NET Framework[25],

• Log4Delphi [26] for Delphi[27].

These software components are also called logger.

2.1.3 Intrusion Detection Systems

A decade ago the aim of cyber-criminal attacks against ICT networks was re-
ceiving recognition from like-minded people. In opposite to today’s attacks the
consequences have been very little, like downtimes and recovering and cleaning
up compromised systems. Today’s attacks target on stealing intellectual infor-
mation and sabotaging systems.[28] These sophisticated and tailored attacks
are called Advanced Persistent Threats (APT) and usually result in financial
loss and tarnished reputation. Already in 2011, the global cost caused by cy-
bercrimes was estimated to 1 trillion dollars every year and it is increasing.[1]
Actual reports [2, 3, 4] point out another big problem - on average it takes
more than 1 year until an APT is discovered. Furthermore, they show that
77% of companies already have been affected by APTs, also including cyber
security firms and the remaining 23% are unaware that they could be.

The aim of IDSs is to detect invaders in ICT networks rapidly, so it is pos-
sible to react quickly and reduce the resulting damage. James Anderson has
been in 1980 one of the first researchers, who pointed out the need of IDSs.
[29] According to Anderson’s work, software developers and administrators
believe, that their systems are running in ‘friendly’ - save - environments.
Accordingly, control mechanisms aim on preventing erratic behavior, because
illegal access on such ‘friendly’ environments according to this paradigm only
happens accidentally. Due to this fact it is easy for potential attackers, to
undergo these control mechanisms and invade a computer network or sys-
tem. This justifies using IDSs in addition to common security mechanisms.
Even today, decades after Anderson published his work and the use of ICT
networks strongly changed, the principle of IDSs is still valid. Moreover, it
can be assumed, that the security of ICT networks has become worse, since
their complexity and the networking of systems increased. This fact is also
shown by the increasing severity of the consequences of todays cyber-criminal
attacks.[30]

IDSs can roughly be classified as follows[31]:

• host-based IDS (HIDS),

7
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• network-based IDS (NIDS),

• hybrid IDS.

Thereby, HIDSs are the oldest type. These kind of IDSs have to be installed
on every monitored system, so called hosts. On the other hand NIDSs allow
monitoring a whole network. Therefore, they also observe the network traffic
between different systems. One advantage of HIDSs is, that they enable com-
prehensive monitoring of a single system and if the system got infiltrated, very
specific statements about the attack can be made. But HIDSs get paralyzed
if the monitored system is put out of action. In contrast, since NIDSs allow
monitoring a whole network, if one system is put out of action, the monitoring
of the rest of the network is not influenced by this issue. But in opposite to
HIDSs, NIDSs do not allow comprehensive monitoring. One reason for this
is that the bandwidth of the NIDSs could be overloaded. To make use of the
advantages of both HIDSs and NIDSs and lower their disadvantages, usually
hybrid approaches are applied. Therefore the data of both HIDSs and NIDSs
is gathered in a central and closed management system.

2.1.4 Testing and Evaluation of ICT Security Mechanisms

One opportunity to test and configure security mechanisms like IDSs, is to
include them into a running productive system. But this raises two major dis-
advantages: On the one hand, during this period the productive system cannot
be secured properly and on the other hand private informations are exposed,
which ends up in violations of privacy. Furthermore, a running productive
system must be attacked for evaluating if the tested IDSs can detect an attack
at all. Due to this fact, that cannot be done reasonably. On the other hand,
tests under conditions similar to those in a laboratory environment are usu-
ally not realistic enough, because of the missing complexity produced by the
network base load. Therefore, highly realistic test environments are required,
which allow to evaluate security mechanisms outside from running productive
systems. Some examples for such test environments are:

• Virtual Security Testbed (ViSe)[32]: ViSe is a virtual environment,
which allows going back to a former snapshot, if a system got infected
by malware or was put out of action.

• Lincoln Adaptable Real-Time Information Assurance Testbed
(LARIAT)[33]: LARIAT was the first attempt, to invent a comprehen-
sive test environment for IDSs.

• Lincoln Laboratory Simulator (LLSIM)[34]: LLSIM is a completely
virtual further development of LARIAT, implemented in Java[22]. LL-
SIM offers a customizable test environment, in which hundreds of com-
ponents of standard hardware can be simulated.

8
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• Testbed for Evaluating Intrusion Detection Systemns (TIDeS)[35]:
TIDeS is a test environment , which tries to quantify the evaluation pro-
cess, to choose a suitable IDS for a specific network environment.

• Cyber Defense Technology Experimental Testbed (DETER)[36]:
Among cyber-security scientists DETER is one of the leading test envi-
ronments. It was invented with the collaboration of the National Science
Foundation, the Department of Homeland Security, US, UC Berkely and
McAffee Research.

The presented test environments all follow network centralized approaches.
Therefore, they provide a good base for testing pure network traffic analysis
mechanisms and for studying the behavior of a worm in a specific network. But
most IDSs operate on a higher log-level-layer. Therefore, functionalities are
needed, which also simulate human users’ behavior. This is a major component
in simulating the total liability of system. At the moment, mechanisms are
missing which allow automatic evaluation of the most efficient configuration of
IDSs. This makes an optimal usage of IDSs in specific network environments
difficult.
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CHAPTER 3
MATHEMATICAL FOUNDATIONS

The following chapter outlines the mathematical foundations, especially about
Markov chains, which are required for the rest of the thesis. First, we summa-
rize some important definitions and properties of Markov chains. Afterwards
we deal with computer simulation of them. Since the Markov theory is a huge
subject with a lot of application areas there exists a big mount of literature
on it. The succeeding chapter is mainly based on [37, 38, 39, 40, 41].

3.1 Definitions and Properties of Markov Chains

A Markov chain, named after Andrey Markov1, is a specific stochastic process-

Definition 3.1. Given a probability space (Ω,A,P), a nonempty index set T
and a measurable space (S,S). A collection

{Xt; t ∈ T}

of S-valued random variables is named stochastic process with parameter area
T and state space S.

For defining a Markov chain we also need the definition of conditional
probability (cf. [42]).

Definition 3.2. Given a probability space (Ω,A,P) and A ∈ A. We define
the conditional probability of a given A for any B ∈ A

P (B|A) =


P (A∩B)
P (A) , if P (A) > 0,

0, else.
(3.1)

1Andrey Markov (1856-1922)
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Now we can define a Markov chain as follows:

Definition 3.3. A stochastic process {Xt; t ∈ N} with countable state space
S is called Markov chain, if it fulfills the Markov property, also known as the
memoryless property: For all n ∈ N , all si0 , si1 , . . . , sin−1 ∈ S and for all
si, sj ∈ S with

P
(
X0 = si0 , X1 = si1 , . . . , Xn−1 = sin−1 , Xn = si

)
> 0

follows

P
(
Xn+1 = sj |X0 = si0 , X1 = si1 , . . . , Xn−1 = sin−1 , Xn = si

)
=P (Xn+1 = sj |Xn = si) .

(3.2)

Markov chains, which are used for simulations are often characterized by
the following property:

Definition 3.4. A Markov chain with countable state space S is named homo-
geneous, if the conditional distribution P (Xn+1 = sj |Xn = si) is independent
of n.

In the following we only consider Markov chains with a finite state space
S with dimension k ∈ N, where the state space S is given by the finite set
{si}i∈I with I = {1, . . . , k}. In the remaining chapter we only write S if no
other sate space is considered.

Next we define stochastic matrices (cf. [42]):

Definition 3.5. A Matrix P ∈ Rk×k is named transition matrix or stochastic
matrix, if it satisfies

0 ≤ pij ≤ 1 for all i, j ∈ {1, . . . k} (3.3)

and
k∑
j=1

pij = 1 for all i ∈ {1, . . . k}. (3.4)

Property 3.3 is needed, because probabilities are always nonnegative, and
property 3.4 ensures that they sum to one. Hence, all pij satisfy 0 ≤ pij ≤ 1
and each row of P represents a probability distribution.

The next results we receive from definitions 3.4 and 3.5. Homogeneous
Markov chains satisfy for all si, sj ∈ S and all n ∈ N

P (Xn+1 = sj |Xn = si) = P (X1 = sj |X0 = si) =: pij .

In this context we call pij the transition probability and P ∈ Rk×k (cf. equation
((3.5)), where k specifies the dimension of the state space, the transition matrix
of the Markov chain.

12
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P =

 p11 · · · p1k+1
... . . . ...

pk+11 · · · pk+1k+1

 (3.5)

Accordingly

p
(m)
ij := P (Xn+m = sj |Xn = si) (3.6)

defines the m-step-transition probability from state si to state sj . That (3.6)
is independent of n follows for the case m = 1 from Definition 3.4. The case
m ≥ 2 can be shown by induction and using the Chapman2-Kolmogorov3

equation (cf. [43]) in the form as shown in (3.7).

p
(n+m)
ij =

∑
sl∈S

p
(n)
il p

(m)
lj . (3.7)

The Chapman-Komogorov equation basically demonstrates that the probabil-
ity that a Markov chain moves from state si to state sj in n+m steps is equal
to the probability that it moves from state si to any state sl ∈ S in n steps
and then it moves from state sl in m steps to state sj [41]. If p(0)

ij = δij , where
δij denotes the Kronecker4 delta, the equation also holds in the case n = 0
and m = 0.

In the following we only deal with homogeneous Markov chains.
To simplify we won’t mention this fact anymore.

Next we deal with the state a Markov chain starts with. Therefore we first
define the initial distribution.

Definition 3.6. Given a Markov chain {Xt; t ∈ N} with countable state space
S = {s1, . . . , sk}. The row vector given by

µ(0) = (µ(0)
1 , µ

(0)
2 , . . . µ

(0)
k )

= (P (X0 = s1), P (X0 = s2), . . . , P (X0 = sk))

is named initial distribution of the Markov chain.

Note, since µ(0) represents a probability distribution, it has to satisfy con-
ditions (3.8) and (3.9).

µ
(0)
i ≥ 0 for all i = 1, . . . , k (3.8)

2Sydney Chapman (1888-1970)
3Andrey Kolmogorov (1903-1987)
4Leopold Kronecker (1823-1891)
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k∑
i=1

µ
(0)
i = 1. (3.9)

According to Definition 3.6 µ(1), µ(2), . . . indicate the distribution of the
considered Markov chain at the times n = 1, 2, . . . (cf. (3.10)).

µ(n) = (µ(n)
1 , µ

(n)
2 , . . . µ

(n)
k )

= (P (Xn = s1), P (Xn = s2), . . . , P (Xn = sk))
(3.10)

The next result shows, that once one knows the initial distribution µ(0)

and the transition matrix P of a Markov chain, it is possible to calculate the
distributions µ(n) at any time n = 1, 2, . . . .

Theorem 3.7. Given a Markov chain {Xt; t ∈ N}, with state space S, an
initial distribution µ(0) and a transition matrix P . For any n ∈ N we have

µ(n) = µ(0)Pn, (3.11)

where Pn denotes the nth power of the transition matrix P .

To prove Theorem 3.7 we need the law of total probability (cf. [42]).

Theorem 3.8 (Law of Total Probability). Given a probability space (Ω,A,P)
and a sequence of pairwise disjoint sets (Bi)i∈N, with Bi ∈ Ω , which satisfies
P (
⊎
i∈I Bi) = 1. Then for any A ∈ A

P (A) =
∑
i∈I

P (A|Bi)P (Bi). (3.12)

Proof. Because of the σ-additivity of P

P (A) = P

(⊎
i∈I

(A ∩Bi)
)

=
∑
i∈I

P (A ∩Bi)
(3.1)=

∑
i∈I

P (A|Bi)P (Bi).

[42]

Now we can proof Theorem 3.7.

Proof of Theorem 3.7. To prove the theorem we use mathematical induction.
First we deal with the case n = 1. With Theorem 3.8 we get for all j = 1, . . . , k:

µ
(1)
j = P (X1 = sj)

=
k∑
i=1

P (X0 = si)P (X1 = sj |X0 = si)

=
k∑
i=1

µ
(0)
i pij

= (µ(0)P )j ,

14



3.1. DEFINITIONS AND PROPERTIES OF MARKOV CHAINS

where (µ(0)P )j denotes the j-th element of the row vector µ(0)P . Thus, µ(1) =
µ(0)P .

Now we use induction to prove the general case of (3.11). Fix any m ∈ N
and suppose that (3.11) holds for n = m. Then we get for n = m+ 1

µ
(m+1)
j = P (Xm+1 = sj)

=
k∑
i=1

P (Xm = si)P (Xm+1 = sj |Xm = si)

=
k∑
i=1

µ
(m)
i pij

= (µ(m)P )j ,

so that µ(m+1) = µ(m)P . But by the induction hypothesis we get µ(m) =
µ(0)Pm, which leads to

µ(m+1) = µ(m)P = µ(0)PmP = µ(0)Pm+1.

cf. [37]

The remaining of the subsection deals with some major properties Markov
chains can fulfill.

Definition 3.9. Given a Markov chain {Xt; t ∈ N} with state space S and
transition matrix P . A state si communicates with state sj , writing si → sj ,
if for at least one m ∈ N and one n ∈ N, with n > m holds:

P (Xm+n = sj |Xn = si) > 0.

In other words, state si communicates with state sj , if the n-step-transition
probability, cf. (3.6), from state si to state sj is strict positive for any n ∈ N.

Sate si and sj intercommunicate, writing si ↔ sj , if si → sj and si → sj .

Definition 3.9 leads directly to the definition of irreducibly.

Definition 3.10. A Markov chain {Xt; t ∈ N} with state space S and tran-
sition matrix P is said to be irreducible, if for all states si, sj ∈ S, si ↔ sj

holds, i.e. if for all states si and sj there is a n ∈ N with p
(n)
ij > 0. Otherwise

the Markov Chain is reducible.

If a Markov chain {Xt; t ∈ N} with state space S and transition matrix P
is irreducible can be tested by calculating matrix A (cf. equation (3.13)) [44].

A = I + P + P 2 + . . .+ P k (3.13)

The Markov chain is irreducible if for all elements of A it is valid aij = 0, for
all i.j ∈ {1, . . . , k}. This is valid, because according to definition 3.10 si ↔ sj

15
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Figure 3.1: Graph of an irreducible Markov chain {Xt; t ∈ N} with state space S = {A,B,C,D} and
transition matrix P (cf. (3.14)).

is equal to there exists a n ∈ N, with p(n)
ij > 0. If such an n exists, there exists

also a n ∈ N, with 0 ≤ n ≤ k that fulfills p(n)
ij > 0.

For a better understanding, example 3.11 shows an irreducible Markov
chain and Example 3.12 shows a reducible Markov chain.
Example 3.11 (Irreducible Markov chain). Consider a Markov chain {Xt; t ∈
N} with state space S = {A,B,C,D} and transition matrix

P =


0.2 0.2 0.3 0.3
0.4 0 0 0.6
0.6 0 0 0.4
0 0.9 0 0.1

 . (3.14)

The graph of the considered Markov chain in Figure 3.1 shows, that the
Markov chain with transition matrix P is irreducible, since from each state
si ∈ D, every state sj ∈ S, also si itself, is reachable.

Example 3.12 (Reducible Markov chain). Consider a Markov chain {Xt; t ∈
N} with state space S = {A,B,C,D} and transition matrix

P =


0.2 0.8 0 0
0.5 0.5 0 0
0 0 0.3 0.7
0 0 0.6 0.4

 . (3.15)

The graph of the considered Markov chain in Figure 3.2 shows, that the
Markov chain with transition matrix P is reducible. If the chain starts in
state A or B, the states C and D are unreachable. Vice versa, if the chain
starts in state C or D, the states A and B are unreachable.

Furthermore, if the Markov chain starts in state A or B, the chain behaves
like a Markov chain with state space S = {A,B} and transition matrix

P =
(

0.2 0.8
0.5 0.5

)
.
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0.4

Figure 3.2: Graph of a reducible Markov chain {Xt; t ∈ N} with state space S = {A,B,C,D} and
transition matrix P (cf. (3.15)).

If it starts in state C or D, the chain behaves like a Markov chain with
state space S = {C,D} and transition matrix

P =
(

0.3 0.7
0.6 0.4

)
.

This fact shows, that analyzing a reducible Markov chain can be reduced
to the analysis of one or more irreducible Markov chains with state spaces,
which are subsets of the state space of the original reducible Markov chain.

3.2 Computer Simulation of Markov Chains

In the following subsection we describe a method, how to perform computer
simulation of a given Markov chain {Xt; t ∈ N}, with sate space S, given
initial distribution µ(0) and transition matrix P . The remaining section is
mainly based on [37].

To perform the computer simulation of a Markov chain we primarily need:

• a sequence {Ut; t ∈ N} of independent and identical distributed random
numbers, uniformly distributed in the unit interval [0, 1],

• an initiation function ψ and

• an update function φ.

In the remaining section we show that then the initial value of the Markov
chain can be calculated with X0 = ψ(U0) and the values for n ∈ N\{0} with
Xn = φ(Xn−1, Un).

First, we indicate how to generate the starting value X0 of a considered
Markov chain {Xt; t ∈ N}. Therefore, we start with the construction of an
initial function ψ.

Definition 3.13. The initiation function is a function ψ : [0, 1] → S, which
we use to generate the starting value X0. We assume ψ fulfills:

(i) ψ is piecewise constant, i.e. [0, 1] can be split into a finite number of
subintervals, so that ψ is constant on each interval.

17
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(ii) For each s ∈ S the total length of the intervals, on which ψ(x) = s is
equal to µ(0)(s). This corresponds to∫ 1

0
1{s} (ψ (x)) dx = µ(0) (s) for all s ∈ S. (3.16)

Note, 1{s}(x) defines the so-called indicator function:

1{s}(x) =
{

1, if x = s,

0, else.

Given such an initiation function ψ, we can use the first random number
U0 to generate the starting value X0 by setting X0 = ψ(U0). Thus, we get the
correct distribution of X0, because for any s ∈ S (3.17) is valid.

P (x0 = s) = P (ψ(U0) = s) =
∫ 1

0
1{s}(ψ(x))dx (3.16)= µ(0)(s). (3.17)

Definition 3.14. We call an initiation function ψ valid for the Markov chain
{Xt; t ∈ N}, if equation (3.16) holds for all s ∈ S.

Now we can construct a valid initiation function. Therefore, let S be
the state space and µ(0) the initial distribution of a Markov chain, which is
considered for simulation. We define:

ψ(x) =



s1 for x ∈
[
0, µ(0)(s1)

)
s2 for x ∈

[
µ(0)(s1), µ(0)(s1) + µ(0)(s2)

)
...
si for x ∈

[∑i−1
j=1 µ

(0)(sj),
∑i
j=1 µ

(0)(sj)
)

...
sk for x ∈

[∑k−1
j=1 µ

(0)(sj), 1
]
.

(3.18)

The next result verifies, that (3.18) satisfies the properties (i) and (ii) from
Definition 3.13.

Lemma 3.15. The function ψ, defined in (3.18), represents a valid initiation
function for the Markov chain {Xt; t ∈ N}.

Proof. We have to prove, that ψ satisfies the properties (i) and (ii) from Defi-
nition 3.13. Since, (3.18) defines a piecewise constant function, property (i) is
obvious. To prove, that ψ satisfies property (ii), we have to check that (3.16)
holds:∫ 1

0
1{si}(ψ(x)) =

i∑
j=1

µ(0)(sj)−
i−1∑
j=1

µ(0)(sj) = µ(0)(si) for i=1,. . . ,k.

Consequently ψ defines a valid initiation function.
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Finally, we can generate a starting value X0 using the initiation function
defined in (3.18) and the first random value U0. Next, we describe how to
generate Xn+1 from Xn for any n ∈ N. Then this procedure can be applied
iteratively to simulate the Markov chain {Xt; t ∈ N}. Therefore, we define an
update function.

Definition 3.16. The update function φ is a function φ : S × [0, 1] → S,
which we use to generate the value Xn+1 from Xn and Un+1 for any n ∈ N.
We assume φ fulfills:

(i) for fixed si ∈ S, the function φ(si, x) is piecewise constant (when φ is
considered as function of x) and

(ii) for each fixed si, sj ∈ S, the total length of the intervals, on which
φ(si, x) = sj is equal to the transition probability pij . This corresponds
to: ∫ 1

0
1{sj}(φ(si, x))dx = pij for all si, sj ∈ S. (3.19)

If φ (denote Xn+1 = φ(Xn, Un+1) satisfies (3.19), then:

P (Xn+1 = sj |Xn = si) = P (φ(si, Un+1) = sj |Xn = si)
= P (φ(si, Un+1) = sj)

=
∫ 1

0
1{sj}(φ(si, x))dx (3.19)= pij .

(3.20)

In (3.20) P (φ(si, Un+1) = sj |Xn = si) = P (φ(si, Un+1 = sj)) is valid,
because Un+1 is independent of (U1, . . . , Un), and thus also of Xn. Due to
the same argument the probability remains the same if we condition with
the values (X0, . . . , Xn−1). Hence, the described procedure, using an update
function as characterized in Definition 3.16, provides a correct simulation of
the Markov chain.

Definition 3.17. We call an update function φ valid for the Markov chain
{Xt; t ∈ N}, if equation (3.19) holds for all si, sj ∈ S.

Now, we can construct a valid update function similarly to a valid initiation
function. We define for each si ∈ S:

φ(si, x) =



s1 for x ∈ [0, pi1)
s2 for x ∈ [pi1, pi1 + pi2))
...
sj for x ∈

[∑j−1
l=1 pil,

∑j
l=1 pil

)
...
sk for x ∈

[∑k−1
l=1 pil, 1

]
.

(3.21)
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The next result verifies, that (3.21) satisfies the properties (i) and (ii) from
Definition 3.16.

Lemma 3.18. The function φ, defined in (3.21), represents a valid update
function for the Markov chain {Xt; t ∈ N}.

Proof. We have to prove, that φ satisfies the properties (i) and (ii) from Defi-
nition (3.16). Since, (3.21) defines a piecewise constant function, property (i)
is obvious. To prove, that φ satisfies propert (ii), we have to check that (3.19)
holds:∫ 1

0
1{sj}(φ(si, x))dx =

j∑
l=1

pil −
j−1∑
l=1

pil = pij , for all si, sj ∈ S.

Consequently φ defines a valid update function.

Finally, we have found a procedure, which allows simulation of a homoge-
neous Markov chain {Xt; t ∈ N}, with state space S, initial distribution µ(0)

and transition matrix P . Therefore, first a valid initiation function ψ and a
valid update function φ are constructed (for instance as in (3.18) and (3.21)).
Then, using a sequence {Ut; t ∈ N} of independent and identical distributed
random numbers, uniformly distributed in the unit interval [0, 1], we set:

X0 =ψ(U0)
X1 =φ(X0, U1)
X2 =φ(X1, U2)
X3 =φ(X2, U3)

...

We finish the section with a simple example:

Example 3.19 (Weather). In the following example we assume, that the
weather tomorrow only depends on today’s weather. Under this condition,
the weather forecast can be subscribed by a Markov chain. To simplify, we
assume that there are only two kinds of weather: sunshine and rain. Therefore
we consider a Markov chain with state space S = {s1 = sunshine, s2 = rain}
and transition matrix

P =
(

0.75 0.25
0.25 0.75

)
.

We assume, that the considered Markov chain starts on a rainy day. Hence,
we get an initiation distribution µ(0) = (0, 1). To simulate the Markov chain
with the previously proposed procedure, we have to construct an initiation
function and an update function. By (3.18) we get the initiation function

ψ(x) = s1 for all x,
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and by (3.21) we get the update function given by

φ(s1, x) =
{
s1 for x ∈ [0, 0.75)
s2 for x ∈ [0.75, 1]

and

φ(s2, x) =
{
s1 for x ∈ [0, 0.25)
s2 for x ∈ [0.25, 1].

3.3 Additional Results from the Probability Theory

The following section summarizes some results from the probability theory,
which will be used later. First we recall the binomial distribution and the
bernoulli5 distribution [45].

Definition 3.20 (binomial distribution). The discrete probability distribution
with the probability mass function

B(k|p, n) =
(
n

k

)
pk(1− p)n−k, with k = 0, 1, . . . n (3.22)

is named binomial distribution with the parameters n ∈ N - number of trials
- and p ∈ [0, 1] - success probability in each trial.

Definition 3.21 (bernoulli distribution). The bernoulli distribution is the
probability distribution of a random variable that takes the value 1 with the
success probability p ∈ [0, 1] and the value 0 with the failure probability q =
1− p.

Remark 3.22. The bernoulli distribution is the special case of the binomial
distribution with n = 1.

Next we define a bernoulli process [46].

Definition 3.23 (bernoulli process). A bernoulli process is a time discrete
stochastic process, which consists of a finite or infinite sequence of independent
bernoulli distributed (with parameter p ∈ [0, 1]) random variables.

Furthermore we need binomial tests [47].

Definition 3.24 (binomial test). A binomial test is a statistical hypothesis
test, where the test statistic X is binomially distributed. There are three
types of hypothesis which can be tested for the unknown probability p of a
characteristic: two-sided, right-sided, left-sided. See also table 3.1.

5Jacob Bernoulli (1654-1705)
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Test Type H0 H1

two-sided p = p0 p 6= p0
right-sided p = p0 or p ≤ p0 p > p0
left-sided p = p0 or p ≥ p0 p < p0

Table 3.1: Types of hypothesis

The test statistic X specifies how often the characteristic occurred in a
random sampling of size n ∈ N. Under the null hypothesis H0 : p = p0 the
test statistic is binomially distributed with B(p0, n) (cf. (3.23)).

P (X = i) = B(i|p0, n) =
(
n

i

)
pi0(1− p0)n−i (3.23)

In the following we only focus on left-sided binomial tests. We specify a
significance-level α ∈ [0, 1]. Then the critical value c ∈ N, with c < n, is the
smallest value, for which equation (3.24) is respected.

c∑
i=0

B(i|p0, n) ≥ α (3.24)

This means that if the tested characteristic occurs at least c times in the
sample of size n the null hypothesis H0 is accepted. Otherwise it is rejected.
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CHAPTER 4
MODEL FOR GENERATING SYNTHETIC LOG DATA

In the following chapter we define the theoretical model on which our novel
approach for generating synthetic log data is based. Furthermore an evaluation
of the model is done.

4.1 Theoretical Model

The following section describes the theoretical model behind our novel ap-
proach for generating highly realistic synthetic log data. Figure 4.1 illustrates
the concept of the proposed approach for building a log data model. Since the
characteristics of a log file depend on the properties of the system which is
logged, a part of real log data is required. Analysis of this log data is done to
identify characterizing properties. Based on the so generated data a model is
build, which then can be used for generating realistic synthetic log data. Fur-
thermore, iterative and interactive refinement of the analysis and the model
allows modifying the complexity of the generated log data. This means that
test data for quick to in-depth analysis and evaluation of different software
applications, especial IDSs, can be generated.

For putting the proposed concept into practice, our model combines log
line clustering, Markov chain simulation and other methods of probability
theory and statistic. Considering figure 4.1 the analysis part is covered by log
line clustering and the model part by Markov chain simulation. Therefore,
existing methods are extended, refined and further developed. The proposed
approach is based on the following four main functions:

(i) log line clustering,

(ii) assigning log lines to clusters,

(iii) arranging clusters,
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Synthetic Log 
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Figure 4.1: The concept of the proposed approach for building a log data model.

(iv) populating log lines.

During step (i) clusters are build by generating log line descriptions. Based
on these descriptions regular expressions are created. Afterwards in (ii) these
regular expressions are used for assigning the log lines to the clusters. In (iii)
a Markov chain approach is applied for arranging the log line clusters in the
generated synthetic log file. Finally in (iv) the log lines are populated with
content. Therefore, on the one hand time stamps are generated and on the
other hand we present three different approaches for generating log line content
for various applications. In the following subsections the proposed model is
described in more details.

4.2 Log Line Clustering

First we characterize the operating principle of the clustering algorithm we
use to divide the log lines of a considered log file into clusters. To perform log
line clustering we apply an algorithm which was invented by Risto Vaarandi
and first published in [48]. The algorithm has been especially developed for
detecting word clusters in log files [49]. Furthermore, there already exists
an C [50] implementation - Simple Logfile Clustering Tool (SLCT) [51] - of
the algorithm, which is open source and easy to adapt for our needs. The
remaining section is partly based on [48, 52].

4.2.1 Foundations and Comparison to other Algorithms

In past decades a lot of research about cluster analysis has been done and
various clustering algorithms have been invented [53, 54]. According to [55] a
cluster analysis can be defined as follows:

The aim of a cluster analysis is to divide a set of n ∈ N objects into m ∈ N
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classes/cluster C1, . . . , Cm, which is called a classification (cf. equation (4.1)).

C = {C1, . . . , Cm} (4.1)

Furthermore every cluster includes at least one element and at most all n ob-
jects.

The classification should guarantee that all objects within one cluster are
close/similar to each other. To determine which objects are close a distance
function d(x, y) is employed. Considering a set of points with k ∈ N attributes
in the data space Rk, to determine if two points x, y ∈ Rk are close, a distance
function d(x, y) can be employed. Many clustering algorithms use variants of
Lp norms (p = 1, 2, . . .) as distance function (cf. equation (4.2)).

dp(x, y) = p

√√√√ k∑
i=1
|xi − yi|p (4.2)

Traditional clustering methods work well for data with numerical attributes
in low-dimensional data spaces, with k below 10. Next we address two main
problems, which occur while clustering log lines.

Firstly, we consider the log line Connect to 192.168.1.1. This log line
can be represented by by the point (Connect, to, 192.168.1.1) in a three-dimensional
data space. But since the attributes of this data point are of categorical na-
ture the distance function from equation (4.2) cannot be used for determining
the similarity of the example log line to an other one [56]. Meanwhile various
distance function, also for categorical attributes, exist. Some like the Jaccard
coefficient are defined in [53, 57]. The Jaccard1 coefficient J(A,B) of two sets
A,B (cf. equation (4.3)) is defined as the ratio between the size of the inter-
section and the size of the union of both sets. The Jaccard coefficient ranges
between 0 and 1, whereby 1 means A = B and 0 means that A and B are
completely different.

J(A,B) = |A ∩B|
|A ∪B|

(4.3)

Secondly, the data space in which a log line is represented, can be high-
dimensional, since the number of words a log line consists of is not limited. Tra-
ditional clustering algorithms usually does not work well for high-dimensional
data with k > 15 [53, 58]. With increasing dimensions every pair of points
seems far away, which makes it impossible to detect any clusters. This problem
occurs, because traditional clustering methods do not detect clusters, which
are existing in subspaces of the original data space [58]. For example the
points (1, 45, 133, 177578, 2) and (534, 51, 129, 3, 2134) do not form a cluster

1Paul Jaccard (1868-1944)
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in the original data space, but in the subspace of the second and the third
dimension they are very close.

There exist various algorithms for clustering high-dimensional data with
categorical attributes. Examples are CLIQUE, MAFIA, PROCLUS [59] and
CACTUS [60], which all try to avoid the above mentioned problems, which
can occur using traditional clustering methods.

Both, the CLIQUE [58] and the MAFIA [61] are bottom-up algorithms.
This means they make use of the monotonicity of the clustering criterion
regarding to dimensionality to lower the search space. See also definition 4.1
[58].

Definition 4.1 (Monotonicity). If a collection of points S is a cluster in a
k-dimensional space, then S is also part of a cluster in any (k−1)-dimensional
projections of this space.

Therefore the algorithms work as follows: Starting with identifying clus-
ters in 1-dimensional subspaces and after identifying clusters C1, . . . , Cm in
(k − 1)-dimensional subspaces, from C1, . . . , Cm cluster candidates for the
k-dimensional space are formed. These algorithms follow density based ap-
proaches for clustering (an example for a density based clustering algorithm
is given in section 4.2.2), which means no distances between data points are
measured. Instead dense regions are identified in the data space. Based on
this dense regions clusters are formed. Therefore, these algorithms are very
effective in discovering clusters in subspaces. The disadvantage of these algo-
rithms is their low performance, since for producing a frequent m-itemset they
first have to produce 2m−2 subsets of this m-itemset. The MAFIA algorithm
is an extension of CLIQUE, which improves the scalability and the efficiency.

In opposite to CLIQUE and MAFIA, PROCLUS [62] implements a top-
down subspace clustering approach [59]. First an initial approximation of the
clusters in the full data space is built. Whereby all dimensions are equally
weighted. Then a weight is assigned to each dimension for each cluster. The
new weights are used for regenerating clusters in the next iteration. The PRO-
CLUS algorithm is based on the K-medoid method. This means K clusters in
subspaces of the original data space are built. Here the problem is that it is
impossible to predict precisely the number of clusters for log file data before
the cluster analysis.

The CACTUS [60] algorithm is based on summarization. The CACTUS
algorithm passes over the data set only twice and therefore is very fast. In the
first step a data summary is built and in the second step, based on the data
summary cluster candidates are generated. Finally the set of actual clusters
is determined. But the algorithm tends to be chaining, which means that long
strings of points are assigned to the same cluster [63].

Most of the existing high-dimensional clustering algorithms for data with
categorical attributes are not applicable for clustering log file data. The main
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reason is that most of these algorithms, including those mentioned above, do
not take into account the basic characteristics of log files.

According to [48] log data has two characterizing properties. First, most
of the occurring words in a log file are rather infrequent. Many of them even
appear only once. Only a small part of the set of words, which occur in a log
file can be considered as frequent. This means they appear at least once per
every 1000 or 10000 lines. A similar phenomenon has been shown for World
Wide Web data in [64]. Second, there are strong correlations between words,
which are considered as frequent. Log lines often follow patterns, which consist
of fixed and variable parts, e.g.,

connection from %a port %b,

where connection, from and port are the fixed parts. This words also would
be frequents words in a log file. The placeholder %a replaces an IP-adress and
%b replaces a port number. This variable parts would be infrequent words in
a log file and the replaced words would only occur once or just a few times.
This also shows that the position of a word in a log line matters. Therefore,
connection would have a different meaning, if it does not occur at the first
position of a log line.

While most of the other clustering algorithms for high-dimensional data are
suitable for generic data SLCT also takes the above mentioned properties into
account. Furthermore, SLCT implements a density based clustering approach,
which tries to detect clusters in subspaces of the original data space. Similar
to CACTUS, SLCT performs three steps. During a first parse over the data
set, a data summary is built. Afterwards, while passing over the data set again
cluster candidates are built. Finally, the clusters are selected from the list of
candidates.

4.2.2 Defining the Log Line Clustering Algorithm

According to Vaarandi, every data point P in the data space D corresponds
to one log line in a log file. The dimension n ∈ N of the data space D is
defined as the maximum number of words per line in the log file. Therefore,
we define words of a log line the substrings of the line, separated by white
spaces. Every data point P has categorical attributes i1, . . . , in. Categorical
attributes are equal to the words of the log line corresponding to the data
point P . The values v1, . . . , vn of i1, . . . , in are strings. The j-th word of a log
line is the value of the j-th attribute, where ij = vj . To simplify the attribute
labels i1, . . . , in are equal to the position of the word they correspond to, i.e.
i1 = 1, i2 = 2, . . . , in = n. As a result one data point P ∈ D is a vector of
strings of the form as shown in equation (4.4).

P = (x1 = v1, . . . , xn = vn) (4.4)
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We define the line length (l ∈ N) of a log line as the number of words in the
line. Due to the fact that not all log lines have the same line length, all entries
ik with l < k ≤ n are set to null, i.e. they are empty.

Furthermore, let J ⊆ {1, 2, . . . n} be a subset of indices, a region S is
defined as a subset of D (S ⊆ D), where all data points P ∈ S have the same
values vj for all j ∈ J , c.f. equation (4.5).

S = {P ∈ D|xj = vj ,∀j ∈ J} (4.5)

This implies that SfixedAttributes = {(ij , vj)|j ∈ J} is defined as the set of
fixed attributes of the region S. If the cardinality of SfixedAttributes is 1,
|SfixedAttributes| = 1 (i.e. S has just one fixed attribute), S is called 1-region.
Furthermore, a dense region is defined as a region, which contains at least N
data points, i.e. |S| ≥ N , whereby N ∈ N is the support threshold value, which
is specified by the user.

The clustering algorithm can be structured into three steps:

1. data summarization,

2. cluster candidates building,

3. select clusters from the list of candidates.

During the first step the algorithm examines the whole log file line by line
and identifies all dense 1-regions. This step corresponds to mining frequent
words from the log file. Note, that the algorithm also takes into account the
position of a word in the line. For example the 1-regions with the sets of
fixed attributes {(1, ‘example’)} and {(3, ‘example’)} not necessarily contain
the same data points (log lines) and the word ‘example’ may have different
meanings on different positions. Since frequent words correspond to dense
1-region, a word has to occur at least N times at the same position to be
considered frequent, whereby N is the support threshold value specified by
the user.

After the data summarization step, the algorithm scans the log file a second
time, to build cluster candidates. During this step all cluster candidates are
stored in a table and a support value, which specifies how often a candidate has
been generated, is associated. The algorithm processes the log file line by line
and if a log line can be assigned to one or more dense 1-regions, i.e. one or more
frequent words have been found in the line, the algorithm generates a cluster
candidate. If the candidate is not yet stored in the table, it is added with the
support value 1. Otherwise the candidate’s support value is increased by 1. A
cluster candidate is generated as follows: Again, J ⊆ {1, 2, . . . n} is a subset
of indices with cardinality |J | = m and m ∈ {1, 2, . . . , n}. If the processed log
line can be assigned to m dense 1-regions with the m fixed attributes (ij , vj),
j ∈ J , the generated cluster candidate is a region S with the set of fixed
attributes SfixedAttributes = {(ij , vj)|j ∈ J}. For example, if the processed log
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line is Connection from 192.168.1.1 and during the summarization step the
algorithm found one dense 1-region with the fixed attribute (1, ‘Connection’)
and an other one with the fixed attribute (2, ‘from’), the generated cluster
candidate is the region S, with the set of fixed attributes SfixedAttributes =
{(1, ‘Connection’), (2, ‘from’)}. Note, that at most one cluster candidate per
line can be generated. Therefore, the support value does not specifies the
number of lines, matching a cluster, it more or less specifies from how many
lines a cluster candidate would be generated. The following example shows
which kind of cluster candidates are not generated: (Example 1) If ‘one’,
‘two’ and ‘three’ are frequent words in a log file and they only occur in the
combinations ‘one two’ and ‘one three’, then only these two combinations
are considered as cluster candidate, ‘one’, ‘two’ and ‘three’ are not a cluster
candidate.

During the last step the algorithm selects the clusters Ci from the table
of candidates. Therefore, it goes through the table of cluster candidates and
all dense regions are selected as clusters. Remember, dense regions are re-
gions with a support value equal or greater than the support threshold value
N . In other words, if at least N log lines are assigned to a region, it is
considered as a cluster. Because of the definition of a region each cluster
matches a specific line pattern. Hence, the cluster with the set of fixed at-
tributes {(1, ‘Connection’), (2, ‘from’), (4, ‘to’)} corresponds to the line pattern
Connection from * to, if the dimension of the data space D is n = 4. There
the * symbol represents a wild card, i.e. it serves as a placeholder for words
which are not part of the set of fixed attributes of the cluster described by the
line pattern.

As the described procedure shows, the proposed algorithm searches for
dense regions S in subspaces of the data space D. The output of the clustering
algorithm are clusters and their descriptions. Note, that at this stage no log
lines are assigned to the clusters. We address this part of the model in section
4.3.

To perform the proposed log line clustering, we adapted SLCT [51], an
already existing C [50] implementation of the introduced clustering algorithm.
Therefore, first the wild card symbol has to be specified for every considered
log file; it may be the case that the default used symbol * also represents a
single word of length 1. For example the log line

database mysql-normal #011#01173640 Query#011SELECT *

could suggest the cluster with the cluster description

database mysql-normal * Query#011SELECT *.

In this case it is not clear that the second * represents a word instead of a
wild card. Therefore, a unique character or sequence of characters, which is
not occurring in the whole log file has to be specified for representing the wild
cards.
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The main input parameter of SLCT is the user-specified support threshold
value N ∈ N, which specifies, from how many log lines a cluster candidate
has to be generated, so that it becomes a cluster in the end. The support
threshold value N can be given as an absolute number or in percentage (i.e.
a proportion of the number of log lines in the considered log file).

Given that just the log line content is to be clustered, the time stamps
should not influence the clustering. It is possible to assume that a user-
specified number of bytes in the beginning of each log line are to be ignored
during clustering.

The output of the clustering algorithm consists of a list of cluster descrip-
tions and it is possible with SLCT to store all lines which are not match-
ing to any cluster in a text file. SLCT was originally invented for detecting
outliers in log files [48, 52, 65]. It is reasonable to parse with SLCT again
through the outlier file with the same support threshold value N and by do-
ing this new cluster candidates can be generated and occasionally also new
clusters, which can be added to the list of clusters. Remembering Example
1 also ‘one’ may then become a cluster. This procedure is repeated until the
length of the outlier file is smaller than the support threshold value or no new
clusters can be generated. Algorithm 1 illustrates the procedure. The func-
tion runSLCT(file,value) runs SLCT on a specified file with a given support
threshold value, storeOutliers(file, clusterDescriptions) stores all log lines
of a log file which are not matching any of the cluster descriptions generated
by SLCT in a text file and the function lengthIncreased(list) checks if the
list of cluster description increased in the last iteration.

Data: logF ile, supportThresholdV alue
Result: clusterDescriptions

1 clusterDescriptions← runSLCT(logF ile, supportThresholdV alue)
2 outlier = storeOutliers(logF ile, clusterDescriptions)
3 while length(Outlier)>= supportThresholdV alue &&

lengthIncreased(clusterDescriptions) do
4 clusterDescriptions← runSLCT(outlier, supportThresholdV alue)
5 outlier = storeOutliers(outlier, clusterDescriptions)
6 end

Algorithm 1: Creation of the cluster descriptions.

In order to use SLCT in our model we configured the algorithm so that it
also allows overlapping clusters. This means that after creating the table of
cluster candidates, the algorithm scans the log file one more time and recal-
culates the support value. The support value of each candidate matched by a
processed log line is therefore raised by one, so that more cluster candidates
are considered as clusters, which results in a more detailed clustering.

30



4.3. ASSIGNING LOG LINES TO CLUSTERS

4.3 Assigning Log Lines to Clusters

After generating clusters the log lines have to be assigned to the clusters. We
first create regular expressions based on the cluster descriptions. By means of
the regular expression the model can decide if a log line matches a cluster or
not.

Only using regular expressions for assigning log lines to clusters would
raise the issue that one log line could match more than one cluster, i.e. the
clustering would be fuzzy. The following example points out this issue. We
consider the log line

Connection from 192.168.1.1 port 123

and the two clusters:

1. Connect from 192.168.1.1 port * ,

2. Connect from * port * .

In this case the considered log line matches to the regular expression of both
cluster descriptions. However, in our model we allow that a log line belongs
only to one cluster. The reasons for this are discussed later in section 4.4.

To achieve that every log line belongs only to one cluster, the definition of
a metric is needed for deciding to which cluster a log line should be assigned,
if the line matches to more than one cluster. A log line should be assigned
to the most accurate cluster. If the output of our clustering algorithm could
be arranged in a graph theoretical tree [66] with the same properties of a
dendrogram [67], obtained with hierarchical clustering, this could be achieved
easily. A dendrogram corresponds to a graph theoretical in-tree, in which each
node has a pointer to its parent node. This means that only one path connects
every leaf node with the root node, i.e. there are no circles. The most accurate
cluster for a log line would be the leaf node (matching the considered log line)
with the largest distance to the root node. If more than one cluster fulfills
this conditions, the leaf node with the second largest distance to the root node
has to be considered, and so on, until only one cluster fulfills the conditions.
Since the output of our clustering algorithm cannot be arranged in this way,
we adapt the discussed concept as follows.

We calculate the vector of cluster values cv (cf. equation(4.6)) for every
cluster Ci, with i ∈ {1, . . . , n}, where n ∈ N is the number of generated
clusters. The cluster value cvi is defined as the number of fixed attributes a
cluster consists of.

cv = (cv1, . . . , cvn) (4.6)

For example the cv of the cluster Connect from * port * is 3, because
it consists of the fixed attributes {(1, ‘Connection’), (2, ‘from’), (4, ‘to’)}. All
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clusters a log line matches, are stored in a list, by using the regular expressions
which are generated from the cluster descriptions. The log lines are then
assigned to the cluster with the highest cluster value cvi in the list. If there
is more than one cluster with the highest cluster value, the cluster with the
second highest cluster value is considered. This solution corresponds to the
concept discussed before, where every log line is assigned to its most accurate
cluster. The hierarchy in our model bases on the cluster values cv.

Every line which does not match any cluster is considered as an outlier. It is
also possible to configure SLCT in a way that log lines can belong to more than
one cluster, i.e. overlapping clusters are allowed. Choosing this option results
in a larger number of clusters, because while deciding which cluster candidates
become clusters, the support value for every cluster candidate matched by a
log line is increased. Thus, the sum of all support values differs to the log
file’s length. Furthermore, the proposed metric we use to assign the log lines
to the clusters enables creating distinct clusters. If a log line matches more
than one cluster, the clusters have a common root and usually one of the
clusters characterizes this root node. The other clusters then can be sorted
in a hierarchy as children, i.e. leaf nodes of the root node. It is also possible
that one leaf node has more than one parent node. This is also no problem
since we use the proposed metric. Considering the cluster descriptions a * *,
with cluster value ”cv1 = 1”, a * c, ”cv2 = 2”, a b *, ”cv3 = 2” and a b
c, ”cv4 = 3”, the first one would be the root node with children a * c and
a b *. Since the cluster value cv4 of a b c is larger than the others, a b c
characterizes a more specific cluster and is considered as son of a * c and a b
*. Since this hierarchy exists, it is also no problem in the proposed model if a
cluster includes a lower number of lines than the support threshold value. All
lines, which are assigned to more specific clusters also match to their parent
clusters. Hence, it might happen, that in the end there are also clusters, where
no line is assigned to.

Algorithm 2 illustrates the procedure we use for assigning log lines to their
most accurate cluster.

Algorithm 3 characterizes, how the most accurate cluster is chosen. The
function getClusterByValue(cluster, clusterV alue) returns the cluster, cor-
responding to the previously chosen cluster value.

4.4 Arranging Clusters in the Generated Log File

The following step in the proposed model is arranging the clusters in the
generated log file. We apply a Markov chain approach (cf. section 3.1), which
is based on the generation of a series of random events. In the remaining
section, we describe how to arrange the clusters in the generated log file by
simulating a homogeneous Markov chain {Xt; t ∈ N}, with state space S,
transition matrix P and initial distribution µ(0) by applying the approach
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Data: logF ile, clusterDescriptions
Result: clusters

1 for 1 ≤ i ≤ length(clusterDescriptions) do
2 clusterV aluei = calculateClusterValue(clusterDescriptioni)
3 end
4 for 1 ≤ i ≤ length(logF ile) do
5 for 1 ≤ j ≤ length(clusterDescriptions) do
6 if matches(logF ilei,clusterDescriptionsj) then
7 matchingClusters← clustersj
8 end
9 end

10 mostAccurateCluster =
findMostAccurateCluster(matchingClusters)

11 mostAccurateCluster ← logF ilei
12 end

Algorithm 2: Assigning log lines to their most accurate cluster.

presented in section 3.2.
First, we calculate the transition matrix P . In section 4.3 we already

mentioned that we need distinct clusters. We achieve this by choosing the most
accurate cluster. Hence, it is possible to estimate the probability at which one
cluster follows another one. The number of transitions tij from cluster Ci to
cluster Cj with i, j ∈ {1, . . . , n+ 1} is stored in a matrix T ∈ N(n+1)×(n+1) (cf.
equation (4.7)), which was defined in definition 3.5.

T =

 t11 · · · t1n+1
... . . . ...

tn+11 · · · tn+1n+1

 (4.7)

The last index here is n + 1 (instead of n, the number of clusters), because
the outliers are considered as an extra cluster. Calculating the matrix T can
be done, while choosing the most accurate clusters.

The transition probabilities pij from cluster Ci to cluster Cj can be calcu-
lated, as shown in equation (4.8).

pij = tij∑n+1
k=1 tik

, for all i, j ∈ {1, . . . , n+ 1} (4.8)

The transition probabilities are then stored in a transition matrix P ∈ R(n+1)×(n+1)

(cf. equation 4.9).

P =

 p11 · · · p1n+1
... . . . ...

pn+11 · · · pn+1n+1

 (4.9)
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Data: matchingClusters, clusterV aluesOfMatchingClusters
Result: mostAccurateCluster

1 sortedV alues=sort(clusterV aluesOfMatchingClusters)
2 index=length(sortedV alues)
3 while occurence(sortedV aluesindex)! = 1 do
4 index-=1
5 if index < 0 then
6 considered line is an outlier
7 return
8 end
9 end

10 mostAccurateCluster =
getClusterByValue(matchingClusters,sortedV aluesindex)

Algorithm 3: Deciding which of the clusters a log line matches is the most
accurate cluster.

In the next step we estimate the initial distribution µ(0) ∈ Rn+1, which
was defined in definition 3.6. The elements of the initial distribution µ(0) are
the ratios between the row sums and the total sum of elements of T as pointed
out in equation (4.10).

µ
(0)
i =

∑n+1
l=1 til∑n+1

k=1
∑n+1
l=1 tkl

for all i ∈ {1, . . . , n+ 1} (4.10)

Finally the clusters in the generated log file can be arranged by simulating
the Markov chain {Xt; t ∈ N}, with the state space S = {C1, . . . , Cn+1},
transition matrix P and initial distribution µ(0). For simulating the Markov
chain to arrange the clusters in the generated log file, we apply the approach
proposed in section 3.2. Remember, to perform the simulation of the Markov
chain we primarily need:

• a sequence {Ut; t ∈ N} of independent and identical distributed random
numbers, uniformly distributed in the unit interval [0, 1],

• an initiation functuion ψ and

• an update funtion φ.

The initiation function ψ : [0, 1] → S was defined in definition 3.13. We
use it to generate the starting value X0. The update function φ : S×[0, 1]→ S
was defined in 3.16. We use it to generate the value Xn+1 from Xn and Un+1
for any n ∈ N>0.

Eventually we get a procedure which allows simulation of the homoge-
neous Markov chain {Xt; t ∈ N}, with state space S = {C1, . . . , Cn+1}, initial
distribution µ(0) and transition matrix P . Using a sequence {Ut; t ∈ N} of
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independent and identical distributed random numbers, uniformly distributed
in the unit interval [0, 1], we obtain equation (4.11). The number of values to
be generated can be specified by the user.

X0 =ψ(U0)
Xi =φ(Xi−1, Ui) i ∈ N \ {0}

(4.11)

Assuming that the input log file models a irreducible Markov chain, the
generated Markov chain has also to be irreducible (cf. definition 3.10). Re-
member, that this means that starting from any state si ∈ S, each state sj ∈ S
has to be reachable in any number of steps. If this does not happen our model
does not reach every cluster Ci, or it deadlocks in a small set of clusters. It
can be decided if the Markov chain is irreducible by checking equation (3.13).

Note, that at this stage we have only ordered the clusters previously gen-
erated. Each value Xi of the simulated Markov chain represents a placeholder
for a log line, which matches the cluster that the value Xi corresponds to.
After this time stamps and log line content have to be generated.

4.5 Populating Log Lines

The following section deals with generating time stamps and log line content
for the generated log file. In the proposed model we assume, that the time
stamps are independent from the log line content, but they are depending on
the cluster the log line belongs to. In other words, the interval between two
consecutive log lines depends on the cluster the log lines belong to.

We define the size of the considered log file M ∈ N, the number of lines
it contains. Hence, there are M time stamps tsj , with j ∈ {0, . . . ,M − 1},
in the log file and M − 1 transitions between log lines. This also means that
there can be M − 1 time differences tdj , with j ∈ {1, . . . ,M − 1}, calculated,
cf. equation (4.12).

tdj = tsj − tsj−1 j ∈ {1, . . . ,M − 1} (4.12)

For every cluster Ci a sequence of time differences TDi, with i ∈ {1, . . . , n+
1} specifying the cluster, is stored. If the log line j belongs to cluster Ci, the
time difference tdj is added to TDi ∈ Nr, where r ∈ N is the size of the cluster
Ci, i.e. the number of lines assigned to cluster Ci.

We then build an empirical distribution function (EDF) [45] based on the
elements of TDi. An EDF is defined as follows:

Definition 4.2. Let X1, . . . , Xn be elements of a sample. A function F : R→
[0, 1] defined as in equation (4.13) is named a empirical distribution function.

x 7→ 1
n

n∑
i=1

1(−∞,x])(Xi) (4.13)
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The distribution of elements of TDi can be described by an EDF.
Next we define the quantile function Q [45], also called inverse cumulative

distribution function, of the EDF F .

Definition 4.3. Let F be an EDF, then Q in equation (4.14) defines the
quantile function of F .

Q(p) = F−1(p) := inf{x ∈ R|p ≤ F (x)}, 0 < p ≤ 1 (4.14)

Now we can use a random number U and the quantile function Q, for
generating the time stamps. The function tdrand(U, TDi) : [0, 1] × Nr 7→ N,
defined in equation (4.15), where F is the EDF based on the elements of TDi,
generates a random time difference, based on the distribution of the values of
TDi.

tdrand(U, TDi) := inf{x ∈ N|U ≤ F (x)} (4.15)

The time stamp for every generated log line can be calculated as shown in
equation (4.16), where TDi is the vector of time differences of the cluster Ci,
the generated log line belongs to and L ∈ N defines the size of the generated
log file. Note, that the first time stamp ts1 has to be specified by the user.

tsj = tsj−1 + tdrand(U, TDi), j = 2, . . . , L (4.16)

The remaining of this section describes our approach for generating log line
content. We provide three options which allow generating log line content of
different complexity. This is relevant for example for applications, where the
log line length matters. Our approach for generating log line content bases
on the cluster descriptions. The three options mainly differ in the way the
wild card symbol * in the cluster descriptions is replaced. In the following the
cluster with the description

Connect from * port *

serves as example.
The first option is the most straightforward and simple one. The log line

content simply consists of the cluster description, without wild card symbols.
For example if a line belonging to the example cluster is generated it looks as
follows:

MMM dd hh:mm:ss Connect from port,

where MMM dd hh:mm:ss represents the time stamp. This option can be chosen
to generate a log file which only reproduces the line sequence of the considered
real log file.

Next we introduce an option which allows to generate log line content
of higher complexity. The wild card symbols in the cluster descriptions are
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replaced with words which also occur in the real log file at the same position.
This can be achieved by using a similar approach as the one proposed for
generating the time distances tdrand, previously in this section. For every wild
card symbol * all occurring words at its position are stored in a list. Note,
that words are stored also, if they already occurred, so that also their relative
frequency is correct. Afterwards, while generating the log line content, every
wild card symbol is replaced by choosing one word out of the related list. This
works exactly the same way as the generation of time differences td, which is
shown in equation (4.15). If we consider the example cluster and the log lines

Connect from 192.168.1.1 port 123 and
Connect from 192.168.1.7 port 456.

Both log lines match to the example cluster. Here the first wild card can be
replaced by 192.168.1.1 or 192.168.1.7 and the second one by 123 and 456.
Thus, there are four different options of log lines which can be generated if
a log line belonging to the example cluster is produced. This procedure has
the advantage that the distribution of the log line length in the generated log
file resembles the one of the real log file. Furthermore IP addresses are only
replaced by IP addresses, and since the generated log file can be any times
longer than the real log file, some randomness is kept.

The third proposed option can be used for more specific purposes. The
wild card symbols are replaced by sequences of a character which is not part
of any cluster description. To choose the length of the sequences we use again
the same approach as for generating the time difference td. For every wild
card the length of the words it replaces are stored in a list. Since reoccurring
values are also stored, using a function as in equation (4.15) generates word
length values with the correct distribution. Considering the example in the
previous paragraph, < is a unique symbol. The first wild card replaces a
word with eleven characters, and the second one a word with three characters.
Therefore, the log line

MMM dd hh:mm:ss Connect from <<<<<<<<<<< port <<<

would be generated.
This option for generating log line content is useful, to evaluate an algo-

rithm which depends on frequent words and the log line length. An example
are automatic pattern generation algorithm which try to find frequent pat-
terns. Here the patterns should cover the words defining the cluster descrip-
tions. For easier analysis the rare content is replaced by a sequence of a unique
character, of the length corresponding to the length of the replaced content.

For each of the proposed options in case the cluster representing the outliers
occurs one of the lines stored in the outliers file is drawn.
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Data Origin Advantage Disadvantage
synthetic easy to (re-)produce, has

desired properties, no un-
known properties

no realistic ‘noise’ mostly
simplified situations

real realistic test basis bad scalability (user in-
put, varying scenarios),
privacy issues, attack on
own system needed

semi-synthetic more realistic than syn-
thetic data, easier to pro-
duce than real data

simplified and biased if an
insufficient synthetic user
model applied

Table 4.1: This table summarizes the three common types of test data: synthetic, real and semi-
synthetic. Also their advantages and disadvantages are pointed out. [68]

4.6 Evaluation

The following section deals with the evaluation of the proposed approach, for
generating realistic synthetic log data. For evaluating and testing the intro-
duced approach for generating synthetic log data we implemented the previous
defined model as a Java [22] application. To perform the log line clustering as
presented in section 4.2, we adopted SLCT [48], which as already mentioned
provides a C [50] implementation of the applied clustering algorithm. The
other parts of the model have been implemented from scratch.

The section is organized as follows: First we describe the input data we
use for the evaluation. Afterwards the effects caused by changing the support
threshold value N are analyzed and criteria for choosing the right support
threshold value are discussed. Finally we evaluate the Markov chain simulation
and the wild card replacement.

4.6.1 Generating Semi-Synthetic Log Data for Testing the Pro-
posed Model

It is impossible to adjust real log data in a way which allows comparing the
results obtained by using input data of different complexity. Therefore we
decided to generate semi-synthetic log files (cf. table 4.1) for testing the pro-
posed model. Table 4.1 outlines the differences between synthetic, real and
semi-synthetic test data and their advantages and disadvantages.

For generating semi-synthetic log data, we applied the approach presented
in [68]. This method allows generating log files, of any size and different
complexity. Virtual users perform specified actions on a web platform, running
the MANTIS Bug Tracker System [69]. In the log files a web server, a database
and a firewall are logged. Furthermore, it is possible to specify the number of
users operating on the system. Because of the fact that one can choose which
actions are done in which order by which probability, the complexity of the
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Virtual 
User
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My View 
Menu

LogOut

End 
Selenium

50%

50%

Task 
Selection

Road 
Map

time > stoptime 

time <= stoptime

Summary

Figure 4.2: This figure shows configuration I, which we use for generating semi-synthetic log data.
The complexity in this configuration is kept relatively simple. As long as the (passed) time is smaller
than the recorded time (specifies how long the user actions are logged) a simulated user is accessing
the same two webpages again and again. In this configuration only the time when the user does this
is variable. After the recorded time expires, the user logs out and then exits with a probability of
50% and exits directly with a probability of 50%.

generated log data can be adjusted easily. Also it is possible to configure the
time intervals between two consecutive user actions.

For evaluating the proposed approach we generated 4 different log files ap-
plying the approach in [69]. In order to simulate different levels of complexity
we implemented two configurations - configuration I (low complexity, cf. fig-
ure 4.2) and configuration II (high complexity, cf. figure 4.3). Furthermore
we changed the number of virtual users operating on the system. For testing
simpler cases only one virtual user is operating and for more complex ones four
users are simulated. The properties of the considered log files are summarized
in table 4.2. For generating the log files the user activity was logged for 10
hours. Table 4.2 shows that the data set length, i.e. number of log lines, is
mostly effected by the number of simulated users. In both cases (running one
virtual user and running four virtual users) changing from configuration I to
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Data Set Simulated
Users

Recorded Time
(h)

Data Set
Length (lines)

Used Configu-
ration

U1C1 1 10 484.239 Configuration I
U4C1 4 10 1.887.824 Configuration I
U1C2 1 10 413.106 Configuration

II
U4C2 4 10 1.600.217 Configuration

II
Table 4.2: Properties of the considered semi-synthetic log files.

configuration II generated around 15% less log lines. This happens because in
configuration II there are more options for the virtual users to choose his next
action, because in configuration I in configuration II there are more actions
which raise a longer waiting time until a virtual user starts its next action.

4.6.2 Analysis of the Effects Caused by Changing the Support
Threshold Value N

The support threshold value N , which specifies how many lines at least have
to be assigned to a cluster candidate to become a cluster, is the main input
parameter of the proposed model. In the following section we analyze how
changing the support threshold value N effects the output of the clustering
algorithm described in section 4.2. The clustering algorithm should achieve
the following two objectives:

(i) the cluster description of the cluster a log line is assigned to should cover
a large percentage of the log line content,

(ii) there should be a low number of outliers.

To evaluate the clustering algorithm, we ran SLCT with support threshold
values N from 5% (0.05) to 0.1% (0.001), decreasing N by 0.1% (0.001) in
every iteration. We did this for all of the four test log datasets summarized in
table 4.2. We then analyzed the Mean Coverage Rate (MCR), the Number of
Outliers (NoO) and the Number of Clusters (NoC).

The Mean Coverage Rate (MCR)

For calculating the MCR, we define n as the length, i.e. number of lines, of
the considered log file, li as the length of the i-th log line of the considered log
file, and cvi as the cluster value (cf. equation (4.6)) of the cluster the i-th log
line has been assigned to. Then the MCR of a log file can be calculated as
shown in equation (4.17), where li

cvi
, with i ∈ {1, . . . , n} specifies the coverage
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Figure 4.4: This figure shows the progress of the MCR for the log files described in table 4.2. Some
of the values are summarized in table 4.3.

N ( 1
100) U1C1 U4C1 U1C2 U4C2

0.05 0.4721 0.4808 0.4705 0.4747
0.03 0.5583 0.5639 0.5184 0.5225
0.028 0.6662 0.6661 0.5365 0.5424
0.013 0.7409 0.7206 0.6242 0.6295
0.008 0.7736 0.7493 0.7664 0.7560
0.001 0.9486 0.9320 0.8953 0.8978

Table 4.3: This table summarizes some MCR values. See also figure 4.4.

rate for every log line.

MCR = 1
n

n∑
i=1

li
cvi

(4.17)

The progress of the MCR is shown in figure 4.4 and some of the interesting
values are summarized in table 4.3. Figure 4.4 demonstrates that the MCR
mainly depends on the configuration used to build the log files. It is inde-
pendent from the number of users been simulated and also from the length
of the generated log files. The MCR mainly depends on the used configu-
ration because every virtual user acts with the same probability. Therefore
the distribution of the occurring log lines is independent from the number of
simulated virtual users. Similar results can be expected for the progress of the
number of clusters. According to the MCR the clustering algorithm performs
a bit better with (the less complex) configuration I. The largest gap between
the files which use configuration I and the files which use configuration II can
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Figure 4.5: This figure shows the progress of the NoO for the log files described in table 4.2. Some
of the values are summarized in table 4.4.

N U1C1 U4C1 U1C2 U4C2
0.05 6860 102327 10312 37141
0.03 6860 25466 10312 37141
0.023 6860 25466 40 40
0.013 40 40 40 40
0.001 1134 20 0 0

Table 4.4: This table summarizes some NoO values. See also figure 4.5.

be recognized for support threshold values N ∈ [0.008, 0.028].

The Number of Outliers (NoO)

The trend of the NoO is shown in figure 4.5 and some relevant values are sum-
marized in table 4.4. Since the NoO is represented in total numbers, figure
4.5 suggests that the NoO progress depends on either the configuration and
the number of simulated virtual users, which refers to the log file length. Also
the graphs of the NoO progress are more constant, than the ones of the MCR
progress. The NoO of the files in which four virtual users have been logged is
significantly higher than the NoO of the files in which only one virtual user
has been simulated. But the graphs regarding the same configuration show
a similar trend. This can better be seen in figure 4.6, where NoO

n , i.e. the
percentage of outliers, is plotted. The NoO for the log files, where configu-
ration II has been used are nearly 0 for support threshold values N ≤ 0.03.
For the log files where configuration I has been used the NoO is nearly 0 for
N ≤ 0.013.
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Figure 4.6: This figure shows the progress of the NoO in 1
100 for the log files described in table 4.2.

N U1C1 U4C1 U1C2 U4C2
0.05 15 15 12 12
0.028 36 38 23 25
0.013 48 51 51 58
0.008 64 67 122 119
0.003 179 178 183 184
0.001 193 213 245 239

Table 4.5: This table summarizes some NoC values. See also figure 4.7.

The Number of Clusters (NoC)

The progress of the NoC is shown in figure 4.7 and some relevant values are
summarized in table 4.5. As previously mentioned the NoC mainly depends
on the used configuration. Therefore the graphs in figure 4.7 belonging to the
log files which have been generated using the same configuration are nearly
congruent. One would expect a bigger NoC for the log files with the more
complex configuration II, since they contain more different log lines. But for
support threshold value N ∈ [0.011, 0.05] no big differences in the NoC can be
recognized. Also NoC does not increases very fast. For N < 0.011 the NoC
of all log files increases faster. Also the NoC in configuration II gets bigger
than the NoC in configuration I. For support threshold value N > 0.023
the NoC in configuration I is even higher than the NoC of log files using
configuration II. This phenomenon can be explained as follows: In section 4.3
we mentioned that the clusters generated with SLCT can be arranged in a
kind of graph theoretical tree. When decreasing the support threshold value
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Figure 4.7: This figure shows the progress of the NoC for the log files described in table 4.2. Some
of the values are summarized in table 4.5.

Log File N ≤
U1C1 0.018
U4C1 0.020
U1C2 0.009
U4C2 0.008

Table 4.6: Support threshold value N with MCR ≥ 0.7 per log file.

N more specific clusters are generated which often have the same roots like
clusters already existing in the previous iterations. When N becomes smaller
SLCT starts earlier building more specific clusters for simpler log files, such
as the ones obtained with configuration I.

How to Choose a Suitable Support Threshold Value N

The MCR and the NoO can be used to predict a support threshold value N
that fulfills the two objectives mentioned at the beginning of the section:

(i) the cluster descriptions should a large percentage of the log lines

(ii) there should be a low number of outliers.

To address objective (i) a criteria could be a specific threshold value for
the MCR, such as MCR ≥ 0.7. Table 4.6 shows, for which N this assumption
is fulfilled.

To address objective (ii) the NoO should be considered. Since the NoO
depends on the log file length, it should be looked at the fraction of the NoO
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Log File N ≤
U1C1 0.014
U4C1 0.013
U1C2 0.024
U4C2 0.023

Table 4.7: Support threshold value N with NoO
n
≤ 0.01 per log file.

Log File N ≤ (in 1
100) N ≤ (in lines) MCR ≥ NoO

n ≤ Cluster
U1C1 0.014 6779 0.7363 0.000083 47
U4C1 0.013 24541 0.7206 0.000021 51
U1C2 0.009 3717 0.7037 0.000048 101
U4C2 0.008 12801 0.7560 0.000012 119

Table 4.8: Options for N according to the assumptions MCR ≥ 0.7 and NoO
n
≤ 0.01 per log file.

and log file length which corresponds to the percentage of outliers (cf. figure
4.6). Again a threshold value for the rate of outliers NoO

n can be chosen. For
example NoO

n ≤ 0.01 can be assumed, which means less than 1% outliers.
Table 4.7 shows for which N the in-equation holds.

To fulfill both requirements (MCR ≥ 0.7 and NoO
n ≤ 0.01) we have to

consider for each log file the minimum support threshold values N between
table 4.6 and table 4.7. The results are shown in table 4.8.

The presented procedure for evaluating an accurate support threshold
value N can be applied for any threshold values for the criteria regarding
the MCR and NoO

n .

4.6.3 Evaluating the Markov Chain Approach

In this section we evaluate the output of the Markov chain simulation we
applied for generating synthetic log files. On the one hand we want to show
that the transitions between consecutive clusters reflects the sequence of the
log lines in the original log file, and on the other hand we want to show
that we generate meaningful log line content. Therefore, we first just look at
the transitions without considering the log line content. Afterwards we also
evaluate how replacing the wild cards influences the log file model.

Evaluating the Transitions

Since we use a Markov chain simulation for generating a synthetic log file, the
transition probabilities of the original log file and the generated log file are
by construction the same if the number of generated lines tends to infinity.
First we look at the transitions without considering the log line content. We
generated for each test log file (cf. table 4.2) a synthetic log file, using the
support threshold value given in table 4.8. For analyzing the transitions in
the generated log file only the cluster of each generated log line is stored.
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Figure 4.8: The figure shows the progress of the DRCF . The red line marks the threshold value
DRCF = 0.01. Furthermore the lengths of the original log files are marked.

First we consider the cluster relative frequencies CRF . The CRF of a
cluster Ci after m ∈ N lines is calculated as shown in equation (4.18), where
1{Ci} is the indicator function, which is 1, if the j-th generated line lj is an
element of cluster Ci and 0 if not.

CRF (Ci,m) = 1
m

m∑
j=1

1{Ci}(lj), for all i ∈ {1, . . . , NoC} (4.18)

In figure 4.8 we consider the progress of the difference of the relative cluster
frequencies DRCF between the original and the generated log file. TheDRCF
of a log file after generating m log lines is calculated as shown in equation
(4.19), where relFreq returns the relative frequency of a cluster in the original
log file (cf. equation (4.20), where n ∈ N specifies the length of the original
log file).

DRCF (m) = 1
NoC

NoC∑
i=1

∣∣∣relFreq(Coriginali )− CRF (Cgeneratedi ,m)
∣∣∣ (4.19)

relFreq(Ci) = CRF (Ci, n), for all i ∈ {1, . . . , NoC} (4.20)

Figure 4.8 shows the progress of the DRCF for the four considered log files
while generating two million log lines. The graph points out, that the DRFC
mainly depends on the number of clusters (cf. table 4.8), this is explained,
since the more different clusters are built the more log lines have to be gen-
erated until a specific distribution is reached. The largest gap between the
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different log files can be recognized during generating the first 400.000 lines.
Furthermore the figure demonstrates, that with an increasing number of gen-
erated log lines the DRCF converges to zero. This could be expected since
the transition probabilities of the generated log file converge towards the tran-
sition probabilities of the original log file, when the number of generated log
lines tends to infinity. Furthermore the figure shows that the DRCF of each
log file is already smaller than 0.01, i.e. 1%, when the number of generated
log lines reaches the length of the original log file.

Since the outliers are considered as a cluster during the generation step
(cf. section 4.4), the relative frequency of the outliers in the generated log file
must be similar to the relative frequency of the outliers in the real log file.

In figure 4.9 we illustrate the difference between the transitions of the
original and the generated log file in case of configuration U1C1; both files
have the same length (484.239 lines). We calculate T diif (cf. equation (4.21))
the difference of the transition matrices T original and T generated (cf. equation
(4.7)). We normalize the difference over the log file length so that the cluster
size does not effect the value, i.e. we consider the difference between the
relative frequency of the transitions.

tdiffij =

∣∣∣toriginalij − tgeneratedij

∣∣∣
n

, for all i, j ∈ {1, . . . , NoC} (4.21)

In figure 4.9 the darker the field of a transition is, the lower is the difference
between the transitions in the original and in the generated log file. Since
the transition matrices are sparse (2072 of 2304 transitions are zero) most of
the fields are black. The maximum difference is maxi,j tdiffij = 0.00062, i.e.
the maximum failure is 0.062%. This result matches with the analysis of the
DRCF .

Evaluating the Wild Card Replacement

In the following section we evaluate the wild card replacement. The wild cards
are replaced by using the probability distribution which describes the relative
frequency of the words which occur in the real log file at the position of the
wild card. As a result the relative frequency of the words replacing the wild
cards is the same as in the real log file.

To ensure that we do not create any log lines completely different from
the lines of the real log file, we run the clustering algorithm again on the
generated log files, with the same support threshold value N we used before
for generating them (cf. table 4.8). Also the generated log files have the same
length as the real ones. Afterwards we compare the clusters we obtain from the
real and the generated log files. The results of this analysis are summarized
in table 4.9. If the generated log files do not have the same length as the
real ones, the support threshold value must be modified. Otherwise, if the
generated log file is longer than the real log file, a larger number of clusters,
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Figure 4.9: The figure shows the differences of the relative frequencies of the transitions between the
original and the generated log file with the configuration U1C1.

Log File C. real C. gen Equal-C. Sub-C. Sup-C. match
U1C1 47 48 26 19 0 48
U4C1 51 56 36 17 0 56
U1C2 101 103 65 38 0 103
U4C2 119 137 78 59 0 137

Table 4.9: Again the generated log files have the same length of the real log files. The table compares
the number of clusters in the real log file and in the generated one. Furthermore it is summarized
the number of clusters occurring in both log files. Furthermore it is shown how many of the different
clusters from the generated log file are sub- or supclusters of the clusters of the real log file. The
column named match indicates how many of the clusters from the generated log file describe lines
of the real log file.

which are more specific than the ones of the real log file can be expected. To
avoid this for example if the generated log file is twice as long as the real log
file, the support threshold value chosen for the analysis must be twice as big
as the one used for generating the log file. If the generated log file is shorter
than the real one, it is the other way around.

Column 2 and column 3 of table 4.9 compare the number of clusters found
in the real and in the generated log file. For all configurations more cluster
have been found in the generated log file. The 4th column shows how many
clusters are found in both the real and the generated log file. Between 54%
and 64% of the clusters are equal. Column 5 shows how many of the different
clusters found in the generated log files are subclusters of the real log file.
A cluster is considered as a subcluster if it is more specific than another
cluster. None of the clusters found in generated log files, which are different
and no subcluster, are a supcluster. A supcluster is a more generic cluster.
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Since we allowed SLCT generating overlapping clusters also generic clusters are
found. Therefore it was predictable that there would be no new generic clusters
generated. The last column points out that every cluster of the generated log
file describes lines of the real log file. Table 4.9 shows that for configuration
I there exist generated clusters which are different to the clusters of the real
log file and they are neither subclusters nor supclusters. But since all clusters
describe lines of the real log lines, we can be sure that we have not generated a
group of log lines significantly different from the real log file, and big enough to
form a new cluster. Furthermore a manual analysis of the cluster description
shows, that similar clusters can be found in the set of clusters of the real log
file. Moreover, the rate of outliers occurring in the generated log files is the
same as in the real log files.
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CHAPTER 5
ILLUSTRATIVE APPLICATION

In this chapter we show an example of application in which we use our gener-
ated log data for testing and evaluating the intrusion detection system (IDS)
AECID (Automated Event Correlation for Incident Detection) [5]. First we
describe the AECID algorithm and its functionalities. Afterwards we demon-
strate that log data generated with our novel approach is suitable for testing
and evaluating AECID. Finally we assess AECIDS detection’s capability AE-
CID, also while simulating an attack.

5.1 Automated Event Correlation for Incident De-
tection - AECID

Many IDSs are based on blacklist approaches. This means they only con-
sider actions and behavior as malicious, if it matches to known attack pat-
terns or signatures of malware traces. In opposite AECID is a self-learning
IDS which implements a white-list approach. This means that the algorithm
learns the normal system behavior and can afterwards recognize anomalous
behavior. AECID processes log files, and is independent from knowledge about
the semantics and the syntax of the log lines. While processing log data AE-
CID builds a system model M , comprising the following main building blocks
[70, 71]:

• Search-Patterns(P ): Patterns are random substrings of the processed
lines which categorize the information stored in a log line.

• Event Classes (C): Event classes classify log lines by using the known
patterns P . Note: One log line can be classified by more than one class.

• Hypothesis (H): Hypothesis describe possible implications of log lines
based on the event classes classifying them.
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Log Event Extraction

Fingerprint Generation

Classification

Rule Evaluation

Pattern Generation

Event Class Generation

Hypothesis Generation Hypothesis Evaluation

Figure 5.1: This figure describes the concept that AECID implements.

• Rules (R): A rule is a hypothesis which has been proven as stable. This
means the hypothesis has held in a significant time of evaluations. Rules
are used for detecting anomalies in the log data.

The system model M (cf. equation (5.1)) is therefore defined by the set
of known patterns P, the set of known event classes C1, the set of known
hypothesis H and the set of known rules R2.

M = (P,C,H,R) (5.1)

Figure 5.1 shows the concept of the AECID algorithm. In the following
we describe the single parts and tasks performed by AECID as described in
[70, 71].

5.1.1 Log-Event Extraction

The first step of the algorithm is extracting log-events from the input file (log
file). In the described approach a single log line is called a log atom La. One
La is defined by the sequence of symbols s it consists of, as shown in equation
(5.2), where n ∈ N defines the log line length. Note: here is only considered
the log line content without the time stamp.

La = s1s2 . . . sn (5.2)

A log event Le (cf. equation (5.3)) is defined as the tuple of a La and
the time stamp t, which specifies when the log line which triggered La was

1In the following C corresponds to the set of event classes, not to the set of complex
numbers

2In the following R corresponds to the set of rules, not to the set of real numbers
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p1 p2 p3 p4 p5 p6 p7

Patterns P ∈ P′ Query# Conn datab 1SELE 192.16 orma apa
Fingerprint ~F 1 0 1 1 0 1 0

Table 5.1: This table shows the fingerprint ~F of the log line ‘database mysql-normal #011#01173640
Query#011SELECT *’ if the set of patterns P′ is considered.

processed.

Le = (La, t) (5.3)

From this point on the log events Le are processed one after each another,
sorted by their time stamp t.

5.1.2 Fingerprint Generation

During the next step a fingerprint for each log atom is generated by using the
set of search patterns P. A search pattern P is defined as a substring of a log
atom, with a length of 1 to l symbols s, where l defines the length (number
of symbols) of the log atom from which the pattern has been obtained (cf.
equation (5.4)).

P = s1+i . . . sm+i, where 0 ≤ i and m+ i ≤ l (5.4)

The procedure to generate a pattern P will be explained later.
The fingerprint ~F is a vectorization of the log atom La. ~F consists of

|P| elements (cf. equation (5.5)), where every pi corresponds to an already
existing pattern (p1 7→ P1, . . . , p|(P)| 7→ P|P|). The element pi is 1 if the pattern
P1 is a substring of La and 0 otherwise.

~F = (p1, . . . , p|P|), with pi ∈ {0, 1} (5.5)

After the fingerprint generation the algorithm only uses ~F for the following
steps of the procedure. An example for a fingerprint is given in table 5.1.

5.1.3 Log Atom Classification

After generating a fingerprint ~F the log atom La gets classified. Note that
the classification is time stamp independent La is classified and not Le. For
the classification the set of already known event classes C is used. The event
classes matching a La are stored in CLa (cf. equation (5.6)).

CLa = {C ∈ C|La ∈ C} (5.6)

The log atoms which do not belong to any class are discarded and not consid-
ered for further analysis.
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p1 p2 p3 p4 p5 p6 p7

Patterns P ∈ P′ Query# Conn datab 1SELE 192.16 orma apa
Fingerprint ~F 1 0 1 1 0 1 0

~Cm 1 0 0 1 0 1 0
~Cv 1 0 0 1 0 1 0

Table 5.2: This table shows a class that classifies the log line ‘database mysql-normal #011#01173640
Query#011SELECT *’ if the set of patterns P′ is considered.

Next we define an event class C ∈ C. One event class C consists of two
binary vectors, a mask vector ~Cm and a value vector ~Cv, whereby both have
the same dimension (cf. equation (5.7)).

C = (~Cm, ~Cv) (5.7)

The mask ~Cm defines which patterns P ∈ P are relevant for the class C (cf.
equation (5.8)).

~Cm = (p1, . . . , p|P|), where pi =
{

1, if Pi ∈ P is relevant
0, if Pi ∈ P is irrelevant

(5.8)

The value ~Cv specifies if pattern Pi is enforced or prohibited in the fingerprint
~F of the log atom La (cf. equation (5.9)). Note that the value vector ~Cv only
determines which patterns are relevant for the class.

~Cv = (p1, . . . , p|P|), where

pi =
{

1, if Pi ∈ P is enforced
0, if Pi ∈ P is prohibited or irrelevant

(5.9)

A fingerprint ~F is classified by a class C if the condition in equation (5.10)
holds.

~Cv = ~F ∧ ~Cm (5.10)

Table 5.2 shows an example of a class which classifies a specific fingerprint
and table 5.3 an example of a class which does not. How an event class is
generated will be discussed later in this section.

For every class C ∈ CLa , an event EC (cf. equation (5.11)) is triggered.
An event EC provides the information that a log atom La was classified by C
at time t.

EC = (t, C) (5.11)

From that point on the AECID considers the events EC .
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p1 p2 p3 p4 p5 p6 p7

Patterns P ∈ P′ Query# Conn datab 1SELE 192.16 orma apa
Fingerprint ~F 1 0 1 1 0 1 0

~Cm 1 0 1 1 0 1 0
~Cv 0 0 0 1 0 1 0

Table 5.3: This table shows a class that does not classify the log line ‘database mysql-normal
#011#01173640 Query#011SELECT *’ if the set of patterns P′ is considered.

Occurence Evaluation Result
ECcond ∧ ¬ECimpl ECimpl did not occur and the time window tw

has passed. The hypothesis evaluates to false.
ECcond ∧ ECimpl Both events occurred before tw passed. The

hypothesis evaluates to true.
¬ECcond ECcond did not occur. No evaluation result is

returned.
Table 5.4: This table summarizes the possible results of an evaluation of a hypothesis.

5.1.4 Hypothesis Evaluation

A hypothesis H ∈ H consists of a conditional class Ccond, an implied class
Cimpl and a time window tw, which can be either greater or smaller than zero.
(cf. equation(5.12)).

(Ccond, Cimpl, tw) (5.12)

A hypothesis evaluates if the correlation ECcond → ECimpl holds in tw. For a
continuous evaluation process, for every hypothesis H ∈ H, the relevant events
are stored in a queue QH . The cases which the evaluation of a hypothesis H
based on QH can lead to are summarized in table 5.4.

The results of a hypothesis evaluation e are stored as shown in equation
(5.13), where res specifies the result of the evaluation (true or false), H the
evaluated hypothesis and pos the position of the evaluation in the stream
of evaluations SH of the hypothesis H. There is one stream SH for every
hypothesis H ∈ H

e = (res,H, pos) (5.13)

The newest evaluation always gets the value pos = 0 and the pos of older
evaluations is increased by 1.

We define a slot Slk, with k ∈ N, which works as a filter and returns the
last k evaluations, when applied on SH (cf. equation (5.14)).

Slk(SH) = {e|e ∈ SH ∧ pos < k} (5.14)

The result value of a evaluation res(e) is 1 if the result is true and 0
if the result is false. Therefore the result values form a binary stream and
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the continuous evaluation process of a hypothesis can be interpreted as a
bernoulli process (cf. definition 3.23). Hence a binomial test (cf. definition
3.24) is applied for testing the stability of a hypothesis. The binomial test
in equation (5.15) tests the stream of evaluations SH against a predefined
stochastic distribution p0. Therefore {eHt } is the set of evaluations of the
hypothesis H that evaluated to true. In other words, a hypothesis is considered
stable if the probability that it evaluates to true is greater or equal to p0.

isStable(H) =
|{eH

t ∈Slk}|∑
i=0

B(i|p0, k) ≥ α (5.15)

If a hypothesis is considered stable it becomes a rule R ∈ R (cf. equation
(5.16)), which is then used for detecting anomalies.

R = {H|isStable(H) ≥ α}
R ⊆ H

(5.16)

The generation of hypothesis/rules will be discussed later in the following

5.1.5 Anomaly Detection

For the anomaly detection the rules R ∈ R are evaluated. The procedure of
the rule evaluation is similar to the evaluation of hypothesis. But in the case
of a rule evaluation p0 is not a predefined stochastic distribution anymore. It
is calculated as shown in equation (5.17) (where tstab is the time when the
hypothesis evaluates stable), which calculates the ratio between the number
of true evaluations and the number of all considered evaluations, when the slot
Slk is applied to SR.

p0 =
|{eHtstab

∈ Slk(SH)}|
k

(5.17)

AECID detects anomalies by evaluating the rules on three slots Slk1 , Slk2 , Slk3

of different size k1, k2, k3 ∈ N with k1 < k2 < k3
3. Furthermore a significance-

level αA specifies a threshold under which an anomaly is triggered. The eval-
uation of a rule is shown in equation (5.18).

isAnomalous(R) =
3∨
j=1

|{eR
t ∈Slkj}|∑
i=0

B(i|p0, kj) ≤ 1− αA

 (5.18)

If the evaluation is false for one of the slots an anomaly A (cf. equation
(5.19)) is triggered, where p = 1 −

∑|{eR
t ∈Slkj}|

i=0 B(i|p0, kj) is the probability
that A is an anomaly, R is the rule that triggered it and t specifies the time
at which the anomaly was detected.

A = (p,R, t) (5.19)

3The biggest slot Slk3 is also used for evaluating hypothesis.
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5.1.6 Search Pattern Generation

The search patterns P ∈ P build the base for the vectorization performed by
generating a fingerprint ~F for every processed log atom La. Therefore a set of
patterns P which properly covers every log atom La is sufficient. New patterns
are generated from currently processed log atoms. To achieve a good coverage
more patterns should be generated from uncovered and weakly covered log
atoms. Therefore a token bucket algorithm as presented in algorithm 4 is
applied. The most important input parameter is the pattern cost τP . The
pattern cost τP consists of a predefined pattern base cost τ ′P and a pattern
balancing cost τ ′′P , which is calculated as shown in equation (5.20), where the
matchingCount specifies how many of the already existing patterns P ∈ P
match the currently processed log atom La.

τ ′′P = 2matchingCount (5.20)

The algorithm increases the bucketSum by 1 for every processed log atom
La. Every time the bucketSum is greater than the pattern cost τP , a new
pattern P is generated from La. If the pattern candidate already exists in P,
it is discarded and the bucketSum is not reduced by τP .

The pattern balancing cost τ ′′P guarantees that more patterns are gener-
ated from uncovered and weakly covered log atoms. On the one hand this is
important, since the less often occurring log atoms are more interesting. On
the other hand it is also important to generate new patterns from well covered
log atoms. Since the event classes C ∈ C are based on the patterns P ∈ P,
this prevents from generating too generic event classes.

Data: La, τ ′P , τ ′′P
Result: P

1 bucketSum++
2 matchingCount ← sum matching search patterns(La)
3 τP ← τ ′P + τ ′′P
4 if bucketSum ≥ τP then
5 candidate = get random substring()
6 if @P ∈ P ≡ substring then
7 P ← substring
8 bucketSum = bucketSum - τP
9 end

10 end
Algorithm 4: Creation of a new search pattern P [71]

5.1.7 Event Class Generation

To generate event classes C a token bucket algorithm (as shown in algorithm
5) is applied. Again it is important to balance the event class generation
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procedure because every log event Le, which cannot be classified by any class
C ∈ C, carries no information for the anomaly detection process. Therefore
the class cost τC consists of a predefined class base cost τ ′C and a predefined
τ ′′C , which is multiplied with the matchingCount, which specifies how many of
the already existing event classes C ∈ C are matching the currently processed
log event Le.

The classification is performed on the fingerprint ~F of a log event Le, which
is a binary vector. To guarantee event classes with an accurate entropy, the
following three parameters influence the class generation procedure:

(i) Enforced search patterns (µe): This parameter defines a minimum num-
ber of patterns to be enforced in a new event class.

(ii) Percentage of matching search patterns that will be enforced (φe): This
number specifies the percentage of the patterns P ∈ P matching Le,
which will be enforced in a new event class, i.e. specifies the number of
patterns which are required.

(iii) Percentage of not matching search patterns that will be prohibited (φp):
Similar to φe this number specifies the percentage of the patterns P ∈ P
not matching Le, which will be prohibited in a new event class.

The algorithm prevents generating a new class if the number of patterns
matching Le (matchingBits) is lower than µe. Furthermore it forces at least
µe patterns to be enforced if the number enforced bits is smaller than µe.

If an event class candidate already exists in the set of event classes C this
candidate is rejected and the bucketSum is not reduced by τC .

5.1.8 Hypothesis and Rule Generation

The generation of hypothesis H is based on the event classes characterizing
the currently processed log atom CLa (cf. equation (5.6)). Again the same
token bucket algorithm as for the pattern and class generation is applied.
The hypothesis cost τH consists of a predefined hypothesis base cost τ ′H and a
predefined hypothesis balance cost τ ′′H . Also the algorithm prevents generating
already in the set of hypothesis H existing hypothesis. The chosen correlated
event classes and the time window tw are random.

The existing hypothesis H ∈ H are periodically tested on their stability.
If isStable(H) (cf. equation (5.15)) evaluates to true for a hypothesis H ∈ H,
the hypothesis is considered as a rule R and moved to the set of rules R ⊆ H.

The stability test is performed on the largest slot Slk3 used by AECID
for detecting anomalies. Indeed an accurate number of evaluations e of a
hypothesis are needed to decide about its stability.
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Data: ~F , µe, φp, φe, τ ′C , τ ′′C
Result: ~Cv, ~Cm

1 bucketSum++
2 matchingCount ← numberOfClassifyingEventClasses(~F )
3 τC ← τ ′C + (matchingCount ∗ τ ′′C)
4 if bucketSum ≥ τC then
5 matching bits ← {pi | pi ∈ ~F ∧ pi = 1}
6 number enforced bits← φe ∗ |matching bits|
7 not matching bits ← {pi | pi ∈ ~F ∧ pi = 0}
8 number prohibited bits← φp ∗ |not matching bits|
9 if |matching bits| < µe then

10 abort
11 end
12 if number enforced bits < µe then
13 number enforced bits← µe
14 end
15 enforceNRandomPatterns(number enforced bits, ~Cm, ~Cv, ~F )
16 prohibitNRandomPatterns(number prohibited bits, ~Cm, ~Cv, ~F )
17 if @C ∈ C ≡ ( ~Cm, ~Cv) then
18 C ← ( ~Cm, ~Cv)
19 bucketSum = bucketSum - τC
20 end
21 end

Algorithm 5: Creation of a new class C [71].

5.2 Evaluation of the AECID System

In the following section we adapt real and generated log files with the config-
uration U4C2 (cf. section 4.6.1) for evaluating the AECID system.

5.2.1 Is the Generated Log Data Suitable to Evaluate AECID?

In the following section we verify that the log data we generated with our
novel approach is suitable to test and evaluate AECID. AECID can run on the
generated log data since it is independent from the syntax and the semantics
of its input log data. Moreover we intend to show that the generated log data
can be used to evaluate and test AECID in a specific user environment, which
is given by the real log data. We first ran AECID on the real log file with
the configuration U4C2 (cf. table 4.2) and then on the log file we generated
based on the real log file with the support threshold value N as given in table
4.8 (N = 12801). Since AECID depends on the log file length, both log files
consist of 1.600.217 log lines (cf. table 4.2).
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Parameter Value
Pattern base cost τ ′P 1

Event class base cost τ ′C 1
Hypothesis base cost τ ′H 30

Event class balancing cost τ ′′E 30
Hypothesis balancing cost τ ′′H 300

Minimum pattern length 3
Maximum pattern length 12

Minimum enforced patterns µe 3
Percentage of enforced patterns φe 40%

Percentage of prohibited patterns φp 50%
Stochastic distribution p0 0, 95

Stability significance level α 0, 1
Anomaly significance level αA 0, 9999

Slot size k1 10
Slot size k2 100
Slot size k3 1000

Table 5.5: This table summarizes the AECID basic configuration given in [71]. The parameters are
described in section 5.1.

To evaluate if the generated log data is suitable for testing AECID under
conditions of the network environment given by the real log data, we use
for AECID the basic configuration given in [71]. Table 5.5 summarizes the
parameters and their values in this configuration.

For deciding if the log file generated with our novel approach is suitable
to test and evaluate AECID, we focus on two statistics relevant for assessing
AECID’s performance:

(i) Average Line Coverage ALC

(ii) False Positive Rate FPR.

The ALC is calculated as shown in equation (5.21); it is the ratio between
the Average Number of Enforced Patterns ANEP in the event classes C and
the percentage of enforced patterns φe in every class C ∈ C.

ALC = ANEP

φe
(5.21)

The ALC specifies how many patterns P ∈ P match the log atoms La on
average, that obtained a new class. Therefore it is an indicator for the number
of patterns covering every log line on average. Moreover it provides more
knowledge about the set of patterns P and the set of classes C than the total
number of generated patterns and classes.

The FPR is usually calculated as shown in equation (5.22) [71]. The FPR
is the ratio between the number of anomalous rule evaluations if no anomaly
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real ALC gen ALC real FPR gen FPR
Mean 17, 5831 18, 5233 0, 0526 0, 0546

Median 17, 7767 18, 3686 0, 0403 0, 0407
Minimum 15, 1145 16, 7241 0, 0025 0, 0088
Maximum 19, 9802 21, 6642 0, 1329 0, 1922

Table 5.6: This table shows the results for the ALC and the FPR, when running AECID with the
basic configuration (cf. table 5.5) on the real and the generated log file based on the configuration
u4c2.

occurred, i.e. false positives FP , and all rule evaluations. The number of
rule evaluations is the sum of the FP and the true negatives TN , i.e. all not
anomalous rule evaluations if no anomaly occurred.

FPR = FP

FP + TN
(5.22)

Since we consider both the real and the generated log file as anomaly free, the
FPR is simply the ratio between all anomalous rule evaluations and all rule
evaluations. Therefore it can be called anomalous evaluation rate.

Table 5.6 shows the results of the analysis of the ALC and the FPR, when
running AECID with the basic configuration as shown in table 5.5 on the real
and the generated log file. Since AECID depends on random numbers, we
executed it 100 times with the same configuration and then calculated the
mean, the median, the minimum and the maximum of the results.

First we focus on the ALC. The ALC is on average for the real log
file 17, 5 patterns and on the generated one it is around 18, 5 patterns. The
median of both files is even closer than the mean. Both the minimum and the
maximum ALC in the generated log file are slightly larger than the ALC values
obtained with the real one. In both cases the range between the minimum
and the maximum value of the ALC is around 4.9. On average the difference
between the ALC of the real and the ALC of the generated log file is less than
1 pattern. The table also shows that according to the ALC the algorithm
performs better with the generated log file. This can be explained by the fact
that the generated log file is based on more deterministic conditions.

Since the FPR is a ratio it is given in percentage. The average FPR
obtained with the generated log file is just 0, 2% higher than the FPR obtained
with the real log file. The gap between the median values is only 0, 04%. The
minimum and the maximum value of both files show that the range of the
FPR is quite large. The results shows that the dependency of AECID on the
random numbers is relatively strong. But since AECID implements a self-
learning approach and the tested log files only map 10 hours this dependency
would be lowered by training the algorithm with longer log files.

According to the ALC and the FPR values AECID obtains very similar
results for both the real and the generated log file. This proves that it is
possible to effectively test and evaluate AECID’s performance in a network
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Parameter Value
Pattern base cost τ ′P 1

Event class base cost τ ′C 1, 30
Hypothesis base cost τ ′H 1, 30

Event class balancing cost τ ′′E 30, 300
Hypothesis balancing cost τ ′′H 300

Minimum pattern length 3
Maximum pattern length 12

Minimum enforced patterns µe 3
Percentage of enforced patterns φe 40%, 50%, 60%

Percentage of prohibited patterns φp 30%, 40%, 50%
Stochastic distribution p0 0, 95

Stability significance level α 0, 1
Anomaly significance level αA 0, 9999

Slot size k1 10
Slot size k2 100
Slot size k3 1000

Table 5.7: This table summarizes the different AECID configurations we used for finding the optimal
one.

environment with the characteristics of the real log file, by using log data
generated with our approach.

5.2.2 Finding the Optimal Configuration

The following section discusses the best AECID configuration for a given
network environment characterized by the log file generated with our novel
approach, based on the configuration U4C2. Therefore we properly change
significant input parameters summarized in table 5.5. The seed value for gen-
erating the random numbers is fixed, this means that the random numbers
generated in every run are the same. This allows generating comparable re-
sults, which are independent from the seed. Hence it is possible to find the
optimal configuration just based on the input parameters.

The values we used for finding the best configuration are shown in table
5.7. The choice is influenced by the values used in the evaluation section of
[71]. Since we ran AECID on an anomaly free data set, we want to find the
configuration with the lowest FPR. After running AECID with all possible
combinations of configuration given by table 5.7, the configuration shown in
table 5.8 turned out to be the optimal configuration according to the FPR.
In the following we refer to this configuration as the optimal configuration .

The FPR we obtained using the optimal configuration was 0, 46%. In
comparison the mean of the FPR over all configurations was 3, 49% and the
maximum was 21, 02%. Also the ALC obtained with the optimal configura-
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Parameter Value
Pattern base cost τ ′P 1

Event class base cost τ ′C 30
Hypothesis base cost τ ′H 1

Event class balancing cost τ ′′E 300
Hypothesis balancing cost τ ′′H 300

Minimum pattern length 3
Maximum pattern length 12

Minimum enforced patterns µe 3
Percentage of enforced patterns φe 60%

Percentage of prohibited patterns φp 40%
Stochastic distribution p0 0, 95

Stability significance level α 0, 1
Anomaly significance level αA 0, 9999

Slot size k1 10
Slot size k2 100
Slot size k3 1000

Table 5.8: This table describes the optimal configuration of AECID for a low FPR, if it is applied
on the generated log file based on the configuration u4c2.

tion was with 20, 0752 patterns higher than the mean over all configurations
19, 7442 patterns. In the optimal configuration the event class base cost τ ′C ,
the event balancing cost τ ′′C and the percentage of enforced patterns φe is
higher than in the basic configuration. On the opposite the hypothesis base
cost τ ′H is lower and the percentage of prohibited patterns φp is equal.

In figure 5.2 the trend of number of search patterns, event classes and stable
rules against the number of lines when applying the optimal configuration is
plotted. The graphs show that the number of patterns and rules become
stable. The number of event classes increases during the whole execution, but
the more lines are processed by AECID the slower is the growth of the number
of event classes. With longer log files we expect the number of event classes to
become stable as well. The trends shown in figure 5.2 become stable because
the token bucket algorithm balances the generation process.

5.2.3 Evaluating the Attack Detection Capability of AECID

In the following section we evaluate AECID while an anomaly is simulated in
the network, which generates the logs. To simulate an attacker that tries to
access the data base without being detected, we manually disabled the logging
function of the data base server. We launched the attack twice, once for thirty
seconds and once for two minutes, to show that AECID can detect attacks of
short and long duration. Between the two attacks we had a break of one hour.
The training phase, i.e. the time before the anomaly was injected, was around
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Figure 5.2: This figure shows the trend of number of search patterns, number of event classes and
number of stable rules against the number of processed log lines.

8 hours and 30 minutes.
For this evaluation we used the generated log file with the configuration

U4C2 and ran AECID with the optimal configuration shown in table 5.8. In
the following we focus on the results of one rule to illustrate the output is
provided by AECID. Figure 5.3 shows the anomaly probability graph of the
rule we are looking at. All the three slots Slki

detected the two anomalies we
injected. The plots also show that the larger the slot size is the longer the
rule evaluates to false. This means that the rule also triggers false positives.
However, the graphs show that these false positives are caused by the injected
anomalies.

In table 5.9 the FPR and the TPR of the rule are summarized. A true
positive TP is an anomalous rule evaluation during the anomaly is injected.
The TPR (cf. equation (5.23)) is the ratio between the true positives and the
sum of the TP and the false negatives FN , which are the not anomalous rule
evaluations during the anomaly is injected [71].

TPR = TP

TP + FN
(5.23)

Table 5.9 shows the results already indicated by figure 5.3. For all slots
the TPR is 100%. Conversely, the FPR gets lager, the larger the slot size is.
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(i) Short term slot (10 rule evaluations)
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(ii) Middle term slot (100 rule evaluations)
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(iii) Long term slot (1000 rule evaluations)

Figure 5.3: This figure shows the anomaly probability graph of one rule AECID uses for detecting
anomalies. Figure (i) shows the results for the slot Slk1 , (ii) for slot Slk2 and (iii) for slot Slk3 . The
red blocks characterize injected anomalies and red dots characterize detected anomalies. The orange
line symbolizes the anomalous threshold αA

Slot FPR TPR

Slk1 0, 0093 1
Slk2 0, 1009 1
Slk3 0, 7257 1

Table 5.9: This table summarizes the TPR and the FPR in the respective slot.
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CHAPTER 6
CONCLUSION

This chapter concludes this thesis. Section 6.1 summarizes the performed work
and presents the key findings of the research activity. Finally section 6.2 gives
an outlook on future work.

6.1 Summary and Key Findings

In this thesis we presented a novel approach for generating synthetic network
log data. The approach takes as input a small set6 of log data obtained from
a real network environment. On the input data first a log line clustering
algorithm is applied and then a Markov chain simulation is performed. This
model allows the generation of log files of any size based on the properties of
a specific network environment. To verify the effectiveness of the so generated
log data we introduced novel metrics such as the mean coverage rate MCR
and the difference of the relative cluster frequencies DRCF (cf. sections 4.6.2
and 4.6.3). To prove the similarity between the real and the generated log file
we execute the clustering algorithm on the generated log data and compared
the clusters obtained with the real and those obtained with the generated log
data.

Since the aim of the thesis was to design a model for generating synthetic
log data for the evaluation of intrusion detection systems (IDS), we used AE-
CID as an illustrative example of an application for the generated log data.
First we proved that the generated log data is suitable for testing and evalu-
ating AECID. Therefore we executed AECID with the real and the generated
log data and compared the average line coverage ALC and the false positive
rate FPR (cf. section 5.2.1) obtained by AECID.

We discussed then the optimal configuration of AECID. Using this configu-
ration we executed AECID on a log file including a manually injected anomaly,
and we showed how well AECID could detect the anomalous behavior. This
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verifies that our approach can not only be used for testing and evaluating
IDSs, it can also be applied for determining IDSs’ optimal configuration.

6.2 Future Work

The proposed model is composed by several modules, which can be flexibly
be improved or replaced. For example SLCT, the log line clustering algorithm
we used, can be exchanged with other clustering methods. Furthermore the
Markov chain simulation can be tuned. Different transition matrices for dif-
ferent time periods could be utilized since the network behavior changes over
the day (nobody is working during the night and also update and backup pro-
cesses are mostly done during the night). Moreover the occurrence of a log
line can depend not only on the single previous log line, but the privious n
lines can be considered.

The introduced approach can be part of a IDS testbed, aiming at helping
to compare IDSs in specific network environments. As already mentioned
also the optimal configuration for log-based IDSs can be identified. Moreover
the proposed model can be utilized to generate test data for several other
applications, processing log data.
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