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Außerdem möchte ich mich bei meinen lieben Studienkollegen für die große Hilfe
während des Studiums, aber vor allem auch weil sie so gute Freunde geworden sind,
bedanken. Besonderer Dank geht an Alexander Haberl, Fabian Mußnig, Stefan Schi-
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haben sich diese Arbeit durchzulesen.
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Kurzfassung

Modellierung und Energieabschätzungen
für viskose kompressible Korteweg-Gleichungen

Viskose kompressible Korteweg-Gleichungen sind durch das System

∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) = −∇p(ρ) + 2div(µ(ρ)D(v)) +∇(λ(ρ)div v) + div K,

gegeben, wobei v die Geschwindigkeit, ρ die Dichte, p(ρ) der Druck und µ(ρ), λ(ρ)
die Zähigkeitskoeffizienten sind. Der Tensor D(v) entspricht dem symmetrischen
Anteil des Geschwindigkeitsgradienten und der Tensor K ist der Korteweg Tensor,

K = α|∇ρ|2I + β∇ρ⊗∇ρ− γ∆ρI − δ∇2ρ,

mit Konstanten α, β, γ, δ. Die Navier-Stokes Gleichungen sind Erhaltungsgleichun-
gen für die Masse, den Impuls und die Energie eines Systems. Wir zeigen, dass
sie auch im hydrodynamischen Limes aus kinetischen Systemen, wie dem Boltz-
mann BGK Model, folgen. Der Korteweg Tensor modelliert die Wirkung von Kap-
illarkräften. Er folgt aus der Van der Waal’schen Auffassung der Kapillarität und
wird von thermodynamischen konstitutiven Gleichungen abgeleitet.
Wir zeigen, dass es, wenn die Zähigkeitskoeffizienten die Relation

λ(ρ) = 2(ρµ′(ρ)− µ(ρ))

erfüllen, eine zur klassischen Energieabschätzung zusätzliche Entropieabschätzung
gibt, aus der a priori Beschränkungen für eine effektive Geschwindigkeit, die von
dem Gradienten der Dichte abhängt, folgen:

d

dt

∫
Ω
ρ|v +∇φ(ρ)|2 < C.

Diese zusätzliche Regularität der Dichte erlaubt es uns auch degenerierte Modelle
mit Vakuum-Anfangsbedingungen zu behandeln. So kann die Stabilität von einigen
Korteweg-Gleichungen, wie etwa Flach-Wasser Gleichungen und Quanten Navier-
Stokes Gleichungen, gezeigt werden. Aber die so genannte BD Entropie Abschätzung
kann auch auf Systeme ohne Kapillaritätsterm angewendet werden. Die Stabilität
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Kurzfassung

von barotropischen kompressiblen Navier-Stokes Gleichungen mit einem gegebenen
Druck p(ρ) = ργ , γ > 1, wird in zwei und drei Dimensionen gezeigt.
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Introduction

A diffusive capillary model of Korteweg type is given by the balance equations for a
fluid with velocity v, density ρ, Lamé coefficients µ(ρ) and λ(ρ), and pressure p(ρ),

∂tρ+ div(ρv) = 0, (0.1)

∂t(ρv) + div(ρv ⊗ v) = −∇p(ρ) + 2div(µ(ρ)D(v)) +∇(λ(ρ)div v) + div K, (0.2)

ρ(x, 0) = ρ0 ≥ 0, ρv(x, 0) = m0. (0.3)

where D(v) is the symmetric part of the density gradient and K is the Korteweg
tensor,

K = α|∇ρ|2I + β∇ρ⊗∇ρ− γ∆ρI − δ∇2ρ,

with some constants α, β, γ, δ. Applying Van der Waals’ model of capillarity, [32],
and considering all possible interactions in an infinitesimal volume, Korteweg pos-
tulated this capillary tensor in 1901, [23].

Korteweg systems can be used to describe oceanic and atmospheric flow, water waves
in rivers and avalanches, but they are also applied in quantum hydrodynamics in
order to describe flow in a superconductor. This wide range of applications made it
important to study the existence of solutions for these systems. We will discuss the
stability of weak solutions, which results from a priori bounds given by an additional
energy estimate, if the viscosity coefficients µ(ρ) and λ(ρ) fulfill the relation

λ(ρ) = 2(ρµ′(ρ)− µ(ρ)). (0.4)

In the first chapter, we will motivate the Navier-Stokes equations and formally de-
rive them from a kinetic model, the Boltzmann BGK model, [29]. Afterwards, we
will shortly discuss Van der Waals’ model of capillarity and derive a general form of
the Cauchy stress tensor from thermodynamic constitutive equations, in which the
Korteweg tensor is included. For that purpose, we will follow the derivation given
by Heida and Málek, [19].

The second chapter is dedicated to energy estimates and the stability of weak solu-
tions of viscous compressible Korteweg systems. In the first section we discuss the
derivation of a new entropy estimate, the BD entropy estimate, which was introduced
by Didier Bresch and Benôıt Desjardins in their paper Quelques modèles diffusifs de
type Korteweg, [8]. In order to derive this estimate, we assume to have smooth solu-
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Introduction

tions (ρ, v) of system (0.1)-(0.3), with smooth Lamé coefficients µ(ρ), λ(ρ) satisfying
(0.4). By multiplying the momentum balance equation (0.2) by v and integrating
over Ω we obtain the classical energy estimate for this system. Proceeding similarly
with a mass balance equation (0.1) for a regular enough function φ(ρ) gives an addi-
tional energy estimate on an auxiliary velocity v+∇φ(ρ), the BD entropy estimate.
In the following, we assume that the two physical energy identities, the classical and
the BD entropy estimate, are satisfied by a sequence of approximate weak solutions
(ρn, vn)n∈N of system (0.1)-(0.2) with initial conditions

ρn(x, 0) = ρn0 ≥ 0, ρnvn(x, 0) = mn
0 .

Note that we will introduce different notions of weak solutions depending on the
special cases of Korteweg systems which we will discuss. Then the two energy
estimates yield a priori bounds on (ρn, vn)n∈N, which enable us to prove the stability
of weak solutions (ρ, v) of system (0.1)-(0.3), i.e. we prove (ρn, vn)→ (ρ, v) strongly
in the space of distributions. Especially, the bound on the effective velocity resulting
from the BD entropy estimate,

d

dt

∫
Ω
ρ|v +∇φ(ρ)|2 <∞,

helps to control weak solutions close to vacuum and allows us to deal with vacuum
initial conditions. We will discuss the energy estimates and the a priori bounds on
the weak solutions arising thereof for a Korteweg system with viscosity coefficients
µ(ρ) = ρ, λ(ρ) = 0, Korteweg tensor κρ∇∆ρ, where κ is the capillary coefficient,
and a rather general pressure term, [10].
Afterwards, we will look at a special case of the former system, with a quadratic
pressure term ρ2/2, the shallow water equations. We use the a priori bounds on the
sequence of approximate weak solutions to prove the stability of weak solutions, [7].
Finally, we will consider a different Korteweg tensor than the one treated in the
former two cases, K = µ(ρ)∇2φ(ρ), where µ(ρ) and λ(ρ) also satisfy a different
relation than (0.4), namely,

λ(ρ) = ρµ′(ρ)− µ(ρ).

These systems cover the quantum Navier-Stokes equations. We rewrite the balance
equations entirely in terms of the new effective velocity v +∇φ(ρ) and derive a BD
entropy estimate for the rewritten system in which the capillary terms are elimi-
nated, [22].
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In chapter three, we use the energy estimates derived in chapter two and the a priori
bounds on the weak solutions arising thereof to show the stability of weak solutions
of the barotropic Navier-Stokes equations with a power pressure law p(ρ) = ργ , for
γ > 1 and without capillary terms, in dimension two and three, [27]. This shows
that the BD entropy estimate is also useful when treating models without Korteweg
terms.
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1. Modeling of Navier-Stokes
equations of Korteweg type

In this chapter, we recall the basic physical properties which lead to the Navier-
Stokes equations with capillary terms. We motivate the Navier-Stokes equations
by rewriting the balance equations for a fluid and formally derive them from a
Boltzmann-BGK model. Additionally, the capillary terms will be physically moti-
vated in terms of diffusive interfaces and mathematically deduced from balance laws
for the entropy and the entropy production.

1.1. Balance equations

In this section, we want to motivate the Navier-Stokes equations by formally rewrit-
ing the balance equations for the mass, momentum and energy of a fluid.

Let Ω ⊂ Rd be the domain occupied by a continuous body at time t = 0. A motion
of the body is a smooth map Φ,

Φ : Ω× [0, T ]→ Rd, T > 0,

Φ = Φ(X, t),

where Φt := Φ(·, t) is invertible for each fixed time t ∈ [0, T ] and

Φ(X, 0) = X.

The domain occupied by the body at time t is Ωt := {Φ(X, t)|X ∈ Ω}. The inverse
map of Φt(X) is Ψt(x) = Ψ(x, t):

Ψt(·, t) : Ωt → Ω.

We will further assume that Φ ∈ C2(Rd × [0, T ];Rd) is bijective. The coordinates
X ∈ Ω and x ∈ Ωt represent the Lagrangian and Eulerian coordinates, respectively.
The Lagrangian (material) description of a fluid is given when an observer is follow-
ing a fluid parcel as it moves through space and time. We can always determine the
flow properties of this parcel, like the velocity, in the Lagrangian description. The
Eulerian description focuses on specific locations in space through which the fluid
flows as time passes.
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1. Modeling of Navier-Stokes equations of Korteweg type

The velocity V in the Lagrangian description is given by:

V (X, t) = ∂tΦ(X, t).

In the Eulerian description, we have to use the inverse map Ψt to obtain the initial
location X of the particle that is situated at x ∈ Ωt . Then we calculate the velocity
at time t of this particle in the Lagrangian description. This gives the velocity in
Eulerian coordinates:

v(x, t) = ∂tΦ(X, t)|Ψt(x). (1.1)

Consider a scalar function f(x, t) defined in Eulerian coordinates. We denote by ḟ
the material time derivative of f , i.e. the time derivative at fixed X,

ḟ(x, t) =
d

dt
f(Φ(X, t), t) = ∂tf(x, t)|x=Φ(X,t) +

d∑
i=1

∂tΦ(X, t)|X=Ψt(x) · ∂xif(x, t)|x=Φ(X,t)

= ∂tf(x, t) +
d∑
i=1

vi(x, t) · ∂xif(x, t). (1.2)

Similarly, for a vector valued function f , the material time derivative is given by:

ḟ(x, t) = ∂tf(x, t) + (∇f(x, t))v(x, t). (1.3)

The traction, i.e. the force per unit area, is dependent upon the surface unit normal
vector n, t(x, t, n). With given density ρ(x, t) ∈ C1(Rd × R+;R) and force per unit
mass f(x, t), the total force F (x, t) acting on a subset Bt ⊂ Ωt is given by

F (x, t) =

∫
Bt

f(x, t)ρ(x, t) dx+

∫
∂Bt

t(x, t, n) ds.

The linear momentum, L(x, t), given by

L(x, t) =

∫
Bt

v(x, t)ρ(x, t) dx,

only changes if there is a force acting onto the set Bt, according to Newton’s first
law. Therefore, its total time derivative must be equal to the total force acting on
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1.1. Balance equations

Bt:

d

dt

∫
Bt

v(x, t)ρ(x, t) dx =

∫
Bt

f(x, t)ρ(x, t) dx+

∫
∂Bt

t(x, t, n) ds. (1.4)

In three dimensions, we can define the angular momentum as:

A(x, t) =
d

dt

∫
Bt

x× v(x, t)ρ(x, t) dx.

According to the same principle,

d

dt

∫
Bt

x× v(x, t)ρ(x, t) dx =

∫
Bt

x× f(x, t)ρ(x, t) dx+

∫
∂Bt

x× t(x, t) ds. (1.5)

The Cauchy-Euler stress principle states that upon any surface that divides the body,
the action of one part of the body on the other part is equivalent to the system of
distributed forces. It couples on the surface dividing the body and is represented
by the Cauchy-Euler stress vector, i.e. the traction t = t(x, t, n), which depends
continuously on the surface unit normal vector n. Cauchy’s Stress Theorem, [20],
states that there exists a Cartesian tensor T (x, t) of order two, called the Cauchy
stress tensor, such that t(x, t, n) can be expressed as

t = Tn. (1.6)

We will use this representation of the stress vector and the following theorems in
order to rewrite the balance equations.

Theorem 1.1 (Reynold’s Transport Theorem for scalar functions, [12]).
Let the motion Φ : Rd × R+ → Rd be bijective, Φ ∈ C2(Rd × R+;Rd) and ν be a
continuously differentiable scalar valued function ν(x, t) ∈ C1(Rd × R+;R), then

d

dt

∫
Bt

ν(x, t) dx =

∫
Bt

∂tν(x, t) + div(νv)(x, t) dx,

with the velocity v defined in (1.1).

Theorem 1.2 (Reynold’s Transport Theorem for vector valued functions, [12]).
Let the motion Φ : Rd × R+ → Rd be bijective, Φ ∈ C2(Rd × R+;Rd) and ν a
continuously differentiable vector valued function ν(x, t) ∈ C1(Rd × R+;Rd), then
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1. Modeling of Navier-Stokes equations of Korteweg type

d

dt

∫
Bt

ν(x, t) dx =

∫
Bt

∂tν(x, t) + div(ν ⊗ v)(x, t) dx,

with the velocity v defined in (1.1).

Applying Reynold’s Theorem (Theorem 1.2) to the vector valued function ρ(x, t)v(x, t)
and applying Cauchy’s Stress Theorem (equation (1.6)) to the traction vector t(x, t, n),
we can rewrite the balance equations (1.4) and (1.5) as:

∫
Bt

∂t(ρv)(x, t) + div(ρv ⊗ v)(x, t)− ρ(x, t)f(x, t) dx =

∫
∂Bt

T (x, t)n ds (1.7)∫
Bt

x× (∂t(ρv)(x, t) + div(ρv ⊗ v)(x, t)− ρ(x, t)f(x, t)) dx =

∫
∂Bt

x× T (x, t)n ds.

Using Gauss’ Theorem (Theorem A.22) and the Localization Theorem (Theorem
A.24) on the linear momentum balance equation (1.7) gives

∂t(ρv)(x, t) + div(ρv ⊗ v)(x, t) = ρ(x, t)f(x, t) + div T (x, t), (1.8)

where the divergence of a Matrix is defined row-wise. In three dimensions, it follows
from the angular momentum balance equation that T is symmetric, i.e. T T = T . In
order to see this, we use Gauss’ Theorem on T (x, t) and consider the ith component,
i ∈ {1, 2, 3}, of the angular momentum balance equation (1.5):

(
d

dt

∫
Bt

x× v(x, t)ρ(x, t) dx

)
i

=

(∫
Bt

x× f(x, t)ρ(x, t) dx+

∫
Bt

div(x× T (x, t)) dx

)
i

.

We use index notation and Einstein’s summing (Definition A.26) convention to
rewrite the ith component of the angular momentum balance equation as

d

dt

∫
Bt

εijkxjvk(x, t)ρ(x, t) dx =

∫
Bt

εijkxjfk(x, t)ρ(x, t) dx+

∫
Bt

∂x`(εijkxjTk`(x, t)) dx,

with i, j, k, ` ∈ {1, 2, 3} and the Epsilon tensor ε (Definition A.25). Partially differ-
entiating the last term gives
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1.1. Balance equations

∫
Bt

εijkxj

(
d

dt
(vk(x, t)ρ(x, t))− fk(x, t)ρ(x, t)− ∂x`Tk`(x, t))

)
dx

+

∫
Bt

εijkδj`Tk`(x, t)) dx = 0,

with the Kronecker Delta symbol,

δij =

{
1 if i = j,

0 if i 6= j.

The first integral is equal to zero, by the linear momentum balance equation, where
we didn’t apply Reynold’s Transport Theorem,

d

dt
v(x, t)ρ(x, t) = ρ(x, t)f(x, t) + div T (x, t).

Thus,

∫
Bt

εi`kTk`(x, t) dx = 0.

We use the Localization Theorem (Theorem A.24) to obtain

εi`kTk`(x, t) = 0.

If T is not identiqually equal to zero, this equality implies that two indices of the
Epsilon tensor must be equal, see Definition A.25. This proves that Tk` = T`k, i.e.
T is symmetric.
Therefore, we will assume that the Cauchy stress tensor T is symmetric in every
dimension.

The mass balance equation

d

dt

∫
Bt

ρ(x, t) dx = 0,

can be equally written as
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1. Modeling of Navier-Stokes equations of Korteweg type

∂tρ(x, t) + div(ρ(x, t)v(x, t)) = 0, (1.9)

through Reynold’s Transport Theorem (Theorem 1.1) applied to the scalar function
ρ(x, t) and the Localization Theorem (Theorem A.24).

The total energy E(x, t) of a system is the sum of the potential energy e(x, t) and
the kinetic energy 1

2 |v|
2, E = e+ 1

2 |v|
2. The energy balance equation is given by

d

dt

∫
Bt

ρ(x, t)E(x, t) dx =∫
Bt

ρ(x, t)f(x, t) · v(x, t) + ρ(x, t)r(x, t) dx+

∫
∂Bt

t(x, t, n) · v(x, t)− q(x, t) · n ds,

where q(x, t) is the heat flux through the boundary of Bt and r(x, t) is a specific
energy production, for example radiation. It can be rewritten as

∫
∂Bt

∂t(ρ(x, t)E(x, t)) + div(ρ(x, t)E(x, t) · v(x, t)) dx =∫
Bt

ρ(x, t)f(x, t) · v(x, t) + ρ(x, t)r(x, t) dx+

∫
∂Bt

T (x, t)n · v(x, t)− q(x, t) · n ds,

for E ∈ C1(Rd ×R+;Rd), again, by Cauchy’s (equation (1.6)) and Reynold’s Theo-
rem (Theorem 1.2). Together with

T (x, t)n · v(x, t) = T (x, t)v(x, t) · n,

Gauss’ (Theorem A.22) and the Localization Theorem (Theorem A.24), we obtain,

∂t(ρ(x, t)E(x, t)) + div(ρ(x, t)E(x, t) · v(x, t)) (1.10)

= div(T (x, t)v(x, t)− q(x, t)) + ρ(x, t)r(x, t) + ρ(x, t)f(x, t) · v(x, t).

Therefore, the balance equations, i.e. the Navier-Stokes equations, are given by:

∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) = div T + ρf, T T = T,

∂t(ρE) + div(ρE · v) = div(Tv − q) + ρr + ρf · v.
(1.11)

18



1.1. Balance equations

Remark 1.3. Using the mass balance equation (1.9) we can rewrite the momen-
tum and energy balance equations, (1.8) and (1.10), in terms of the material time
derivate:

∂t(ρv) + div(ρv ⊗ v) = ρ

=v̇︷ ︸︸ ︷
(∂tv + ρ(∇v)v) +

=0︷ ︸︸ ︷
v · (∂tρ+ div(ρv)) .

Inserting this equality into the balance equations (1.8) and (1.10) gives

ρv̇ = div T + ρf, (1.12)

and equivalently,

ρĖ = div (Tv − q) + ρr + ρf · v. (1.13)

In the last two sections of this chapter, we want to deduce a general form of the
Cauchy stress tensor T similar to the stress tensor proposed by Korteweg in 1901,
[23], namely,

T = −pI + 2µD(v) + λ div v I + α|∇ρ|2 I + β∇ρ⊗∇ρ− γ∆ρ I − δ∇2ρ, (1.14)

where D(v) is the symmetric part of the velocity gradient, D(v) = 1
2∇v + 1

2∇v
T ,

p is the pressure, µ and λ are the viscosity coefficients, α, β, γ, δ are some constants
and I is the identity matrix. The viscous part of the stress tensor,

TNS = −pI + 2µD(v) + λ div v I,

characterizes a Navier-Stokes model for compressible fluids without taking capillarity
into account. It can be motivated in the following way, [25]:
We assume that the Cauchy stress tensor is of the form

TNS = −pI + T ′,

where T ′ is the part of the momentum flux which is not due to direct transfer
with the mass of the moving fluid. Internal friction only takes place if the fluid
particles move with different velocities, thus the tensor must be a function of the
space derivatives of the velocity. Newton has observed that T ′ is proportional to the
first order derivatives of the velocity. Thus T ′ must be a linear function of terms of
the form ∂xjvi. Furthermore, there cannot be any terms independent of ∂xjvi, since
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1. Modeling of Navier-Stokes equations of Korteweg type

T ′ij must vanish for v = const. If we assume that the fluid is isotropic, the form of
the tensor T ′ must be

T ′ij = µ∂xjvi + ν∂xivj + λδij∂xkvk,

where we used index notation and Einstein’s summing convention (Definition A.26)
with the Kronecker delta δij and i, j, k ∈ {i, .., d}. By symmetry of T ′ it follows that
µ = ν. Thus, with D(v) = 1

2

(
∂xivj + ∂xjvi

)
,

T ′ = 2µD(v) + λ div v I,

and

TNS = −pI + 2µD(v) + λ div v I.

Example 1.4. For instance, if the fluid is incompressible, div v = 0, the Navier-
Stokes equations read:

∂tρ+∇ρ · v = 0

ρ (∂tv + div(v ⊗ v)) = −∇p+ µ∆v.

1.2. Formal derivation of the isothermal compressible
Navier-Stokes equations from a Boltzmann BGK
model

In this section the connection between kinetic gas theory and macroscopic fluid dy-
namics is discussed. In kinetic theory, a monoatomic gas is represented as a cloud
of point-like particles and is fully described by its number density f . The phase
space is the set of (x, v) ∈ Rd ×Rd, where x is the space variable and v the velocity
variable. The infinitesimal volume dx dv centered at (x, v) contains f(t, x, v) dx dv
particles at time t. The Boltzmann BGK model is a kinetic model which only takes
the global interactions between the particles, which are expected to lead to thermo-
dynamic equilibrium, into account. Despite the fact that binary interactions, which
are treated by the Boltzmann equation, are not considered, this model contains
most of the basic properties of hydrodynamics. The conservation of mass, momen-
tum and energy equations are fulfilled. Given the microscopic density f(x, v, t) the
BGK model is, [29]:
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1.2. Formal derivation of the Navier-Stokes equations from a BGK model

∂tf + v · ∇xf + a · ∇vf =
1

ν
(Mf − f), (1.15)

Mf (x, v, t) =
n(t, x)

(2πT (t, x))d/2
exp

(
−|v − u(t, x)|2

2T (t, x)

)
, (1.16)

n(x, t) =

∫
Rd
f(x, v, t) dv,

nu(x, t) =

∫
Rd
f(x, v, t)v dv,

(nu2 + dnT )(x, t) =

∫
Rd
f(x, v, t)|v|2 dv,

f(x, v, 0) = f0(x, v).

Here a is a bulk acceleration attributed to some body force, which is independent of
both x and v, Mf is a Maxwellian with the same moments as f , i.e. the density at
thermodynamic equilibrium, T is the temperature of the gas and ν is the relaxation
parameter.

Formal procedures to derive hydrodynamic limits of the Boltzmann BGK equation
consist in introducing a small parameter ε, the Knudsen number, which represents
the ratio of the mean free path of the particles to some characteristic length of the
flow. The Von Karman identity,

ε =
Ma

Re
,

with the Mach and Reynolds numbers Ma,Re, holds, [29].
Chapman and Enskog, [13], individually proclaimed an expansion of f in ε,

f = f (0) + εf (1) + ε2f (2) + ...,

which is assumed to uniformly converge.
We apply the first order expansion to f and will, at least formally, derive the isother-
mal Navier-Stokes equations.

In the following we will consider a Boltzmann BGK type equation with a bulk
acceleration attributed to some body force, which is produced by a potential Φ, e.g.
the electric field produced by an electric potential,

∂tf + v · ∇xf +∇xΦ · ∇vf =
1

ν
(Mf − f). (1.17)
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1. Modeling of Navier-Stokes equations of Korteweg type

We will now assume that ν is of order ε. Thus, the first order in the Chapman-Enskog
expansion is given by

f = Mf + νf (1), (1.18)

since f (0) is given by the density at equilibrium, f (0) = Mf , [13]. We define the
function

g := f (1) =
1

ν
(f −Mf ).

Note that the derivation of the hydrodynamic Navier-Stokes equations from the
kinetic BGK model only makes sense if ν is of order smaller than one. In cases
where the Knudsen Number is bigger or equal to one, the gas cannot be described
as a fluid. For the sake of simplicity, we set the temperature T to one. Thus, the
Maxwellian Mf is given by:

Mf (x, v, t) =
n(t, x)

(2π)d/2
exp

(
−|v − u(t, x)|2

2

)
.

We integrate the Boltzmann BGK equation (1.17) over Rd and obtain:

0 =

∫
Rd
∂tf + v · ∇xf dv

= ∂tn+ div(nu). (1.19)

Multiplying the BGK equation by v and integrating gives:

0 =

∫
Rd
v∂tf + v ⊗ v · ∇xf + v ⊗∇vf · ∇xΦ dv

= ∂t(nu) + div

∫
Rd
v ⊗ vf dv − n∇xΦ. (1.20)

We apply the Chapman-Enskog expansion (1.18) to v ⊗ vf ,

∫
Rd
v ⊗ vf dv =

∫
Rd
v ⊗ vMf dv + ν

∫
Rd
v ⊗ vg dv = nI + nu⊗ u+ ν

∫
Rd
v ⊗ vg dv,

and insert this equality into the right-hand side of equation (1.20),
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1.2. Formal derivation of the Navier-Stokes equations from a BGK model

∂t(nu) + div(nu⊗ u) +∇xn− n∇xΦ + ν div

∫
Rd
v ⊗ vg dv = 0. (1.21)

By explicitly calculating g,

g = −1

ν
(Mf − f) = −∂tf − v · ∇xf −∇xΦ · ∇vf

= −∂tMf − v · ∇xMf −∇xΦ · ∇vMf +O(ν),

we see that its second moment is given by:

∫
Rd
v ⊗ v g dv (1.22)

= −∂t
∫
Rd
v ⊗ v Mf dv − div

∫
Rd
v ⊗ v ⊗ vMf dv −∇xΦ ·

∫
Rd
∇vMf (v ⊗ v) dv.

Furthermore,

−∂t
∫
Rd
v ⊗ v Mf dv = −∂tnI − ∂t(nu⊗ u)

(1.19)
= div(nu)I − ∂t(nu)⊗ u− u⊗ ∂t(nu) + div(nu)u⊗ u,

(1.21)
= div(nu)I + (div(nu⊗ u) +∇xn− n∇xΦ)⊗ u

+ u⊗ (div(nu⊗ u) +∇xn− n∇xΦ) + div(nu)u⊗ u+O(ν),

−div

∫
Rd
v ⊗ v ⊗ vMf dv

= −div(nu⊗ u⊗ u)− div(nu)I −∇xn⊗ u− u⊗∇xn− 2nD(v).

The third integral in (1.22) gives:

−∇xΦ ·
∫
Rd
∇vMf (v ⊗ v) dv = ∇xΦ ·

∫
Rd
Mf∇v(v ⊗ v) dv

= n(∇xΦ⊗ u+ u⊗∇xΦ).

By summing up these three integrals, we obtain
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1. Modeling of Navier-Stokes equations of Korteweg type

∫
Rd
v ⊗ vg dv = −2nD(u).

And, finally, by inserting this relation into equation (1.21),

∂t(nu)+div(nu⊗ u) +∇xn− n∇xΦ− 2νdiv(nD(u)) = 0.

Together with equation (1.19) we have obtained a compressible Navier-Stokes sys-
tem with pressure p(n) = n and viscosity µ(n) = νn.

1.3. Motivation and derivation of the Korteweg tensor

In this section, we will derive a general form of the Korteweg tensor from thermo-
dynamic constitutive equations. Firstly, we will motivate the dependency of the
energy and entropy on the gradient of the density. Furthermore, we will use some
thermodynamic constitutive equations to obtain a general form of the Cauchy tensor
in which the Korteweg tensor is included. Finally, we will discuss some special forms
of the Kortweg tensor, which will be important in the next chapters.

1.3.1. Van der Waals’ concept of capillarity

Van der Waals, [32], developed a model of capillarity in which the internal energy
e and the entropy η of the fluid do not only depend on the local variables, such as
the temperature T or the density ρ, but also on non-local variables, the gradients of
ρ. He found that the interface between two phases, e.g. liquid and vapor, must be
smooth, that there exists a small transition zone between the two phases with very
steep density gradient. This leads to additional terms in the momentum balance
equation (1.8). It is worth noting that these additional quantities are applied to the
whole three-dimensional domain rather than to the two-dimensional surface only.
In order to take the diffusive interface into account, Van der Waals postulated the
thermodynamical description of a liquid-vapor interface via the free energy

F = F0 +
λ

2
|∇ρ|2, (1.23)

where F0 is the volumetric free energy. Jamet, [21], showed that this special form
of the energy leads to an additional term in the momentum balance equation (1.8),

div(λ∇ρ⊗∇ρ),
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1.3. Motivation and derivation of the Korteweg tensor

which is usually called the Korteweg tensor in literature.

Korteweg derived a more complete model by considering all possible interactions
between the molecules in two neighboured infinitesimal volume elements based on
the diffusive interface model of Van der Waals and postulated the capillarity stress
tensor K:

K = α|∇ρ|2I + β∇ρ⊗∇ρ− γ∆ρI − δ∇2ρ, (1.24)

with constants α, β, γ, δ.

1.3.2. Derivation of the Korteweg tensor from thermodynamic
constitutive equations

We discuss the derivation of a general form of the Cauchy stress tensor from ther-
modynamic constitutive equations, in which the Korteweg tensor is included. Heida
and Málek, [19], showed that this can be done by maximization of the entropy
which, as motivated above, is assumed to be a function of local variables such as
the internal energy e and the density ρ, but also of the nonlocal density gradient ∇ρ.

We assume that there exists a specific entropy η(e, ρ,∇ρ), which is differentiable
in all variables and increasing with respect to e. Then we can apply the implicit
function theorem, which implies e = e(η, ρ,∇ρ), [24].

We would like to obtain an equation for the entropy production ξ of the form

ξ(Jα, Aα) =
∑
α

JαAα, (1.25)

where Jα and Aα represent thermodynamic fluxes (such as force per unit area or
heat flux) and affinities (i.e. the velocity or the temperature gradient), respectively.
We assume the constitutive equation

ξ(Jα, Aα) ≥ 0,

then the second law of thermodynamics is automatically fulfilled by the function ξ.
As motivated for a compressible Navier-Stokes-Fourier fluid by Heida and Málek,
the following particular form of the entropy production is advantageous:

ξ(Jα) =
∑
α

1

γα
|Jα|2. (1.26)
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1. Modeling of Navier-Stokes equations of Korteweg type

We will note this in the derivation, too. Maximization of this equation, provided
that (1.25) holds, gives

Jα = γαAα, (1.27)

by a maximization method with Lagrange multipliers, [31].

In order to obtain an equation for the entropy production, we start with the material
time derivative of the internal energy (see equation (1.2) and (1.3)):

ρė = ρ ∂ηe η̇ + ρ ∂ρe ρ̇+ ρ ∂∇ρe ∇̇ρ. (1.28)

Using the mass balance equation (1.9), we calculate

∇̇ρ = ∂t∇ρ+∇2ρ · v
= ∂t∇ρ+∇(∇ρ · v)−∇v · ∇ρ
= ∇(∂tρ+∇ρ · v)−∇v · ∇ρ
(1.9)
= −∇(ρdiv v)−∇v · ∇ρ

= −∇ρdiv v − ρ∇div v −∇v · ∇ρ.

(1.29)

The thermodynamic temperature θ is defined as

θ =
∂e

∂η
.

We insert the balance equations, written in terms of the material time derivative,
(1.12) and (1.13), and equation (1.29) into the formula for the internal energy (1.28).
Then we obtain an equation for the material time derivative of the entropy η,

ρθη̇ = ρė− ρ ∂ρe ρ̇− ρ ∂∇ρe ∇̇ρ

= ρĖ − ρv · v̇ − ρ ∂ρe ρ̇− ρ ∂∇ρe ∇̇ρ
= div(Tv − q) + ρr + ρfv − ρv · v̇ + ρ2 ∂ρe div v

− ρ ∂∇ρe · (−[∇v]∇ρ− div v ∇ρ− ρ∇div v)

(1.12)
= T : ∇v − div q + ρr + ρ2 ∂ρe div v + ρ (∂∇ρe⊗∇ρ) · ∇v

+ (ρ ∂∇ρe · ∇ρ) div v + ρ2 ∂∇ρe∇div v, (1.30)
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1.3. Motivation and derivation of the Korteweg tensor

which can be rewritten through partial derivation as:

ρθη̇ = (T + ρ ∂∇ρe⊗∇ρ) : ∇v − div
(
q − ρ2 ∂∇ρe div v

)
+ ρr

+
(
ρ2 ∂ρe+ ρ ∂∇ρe · ∇ρ− div

(
ρ2 ∂∇ρe

))
div v.

(1.31)

We want to reformulate this equation in form of a balance equation for the entropy

ρη̇ + div

(
h

θ

)
=
ξ

θ
, (1.32)

where h/θ is the entropy flux. We emphasize that we do not a priori assume that
the heat and entropy flux, q and h, have to coincide. In order to obtain an equation
of the form (1.32), we define the derivatoric parts of the tensors T and D denoted
as T d and Dd, respectively, by

m :=
1

3
tr T, T d := T −mI,

Dd := D − 1

3
div v I,

(1.33)

where tr T is the trace of a matrix T, tr T =
d∑
i=1

Tii. We set

p = ρ2∂ρe,

P = p+
4

3
ρ ∂∇ρe · ∇ρ− div

(
ρ2∂∇ρe

)
,

P = P + ρ2∇θ · ∂∇ρe,
h = q − ρ2(div v) ∂∇ρe,

T dis = T d + ρ

(
∂∇ρe⊗∇ρ−

1

3
(∂∇ρe · ∇ρ) I

)
, (1.34)

and after inserting these definitions into (1.31), we obtain,

ρθη̇ = T dis : (∇v)d + (P +m)div v − div h+ ρr, (1.35)

Division by θ and partial derivation of (div h)/θ finally gives:
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1. Modeling of Navier-Stokes equations of Korteweg type

ρη̇ + div

(
h

θ

)
=

1

θ

(
T dis : (∇v)d + (P +m)div v −

(
h

θ

)
· ∇θ + ρr

)
=

1

θ

(
T dis : (∇v)d + (P +m+ ρ2∇θ · ∂∇ρe)div v −

(q
θ

)
· ∇θ + ρr

)
=

1

θ

(
T dis : (∇v)d + (P +m)div v −

(q
θ

)
· ∇θ + ρr

)
. (1.36)

For the sake of simplicity, we set r = 0 in the following. The tensor T dis is traceless,
if it is symmetric (which will be assumed in the following), the entropy balance
equation reads as:

ρη̇ + div

(
h

θ

)
=

1

θ

(
T dis : Dd + (P +m)div v −

(q
θ

)
· ∇θ + ρr

)
,

since ∇v : S = D(V ) : S, for every symmetric tensor S. Therefore, ξ is given by:

ξ = T dis : Dd + (P +m)div v − q · ∇θ
θ
. (1.37)

In the following, we consider a compressible Navier-Stokes-Fourier fluids, which are
Newtonian-like fluids which follow Fourier’s law,

q = −kB∇θ,

where kB is the Boltzmann constant. Doing a similar calculation for a compressible
Navier-Stokes-Fourier fluid while assuming that e = e(η, ρ) classically does not de-
pend on ∇ρ, we obtain the same equation as (1.30) without the last three terms,
which has the exact same structure as equation (1.35). Thus, we obtain the same
equation as (1.37), with p instead of P , T d instead of T dis and h = q:

ξ̃ = T d ·Dd + (p+m)div v − q · ∇θ
θ
. (1.38)

The constitutive equations for the compressible Navier-Stokes-Fourier fluids are
given by:
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1.3. Motivation and derivation of the Korteweg tensor

T = −pI + 2µDd +
2µ+ 3λ

3
div v I,

q = −k∇θ,
r = 0.

Therefore, T d and m are given by

T d = 2µDd,

m+ pI =
2µ+ 3λ

3
div v,

q = −k∇θ.

Inserting m and T d into equation (1.38) gives a relation for ξ̃ which either depends
entirely on thermodynamic affinities (Dd, div v,∇θ),

ξ̃ = 2µ|Dd|2 +
2µ+ 3λ

3
(div v)2 + κ|∇θ|2,

where κ := kB/θ, or on thermodynamic fluxes,

ξ̃ =
1

2µ
|T d|2 +

3

2µ+ 3λ
(m+ p)2 +

1

κ
|q|2. (1.39)

Note that the former two equations only makes sense if all coefficients are positive.
The latter form of the energy production is advantageous since it gives a better
insight into the physical circumstances under which a material does not dissipate
any energy, i.e. produces any entropy. It is not dissipating any energy when there
are neither volume chances nor isochoric dissipative processes such as shear nor any
heat flux generation.

Since the equation for the entropy production of the non-classic entropy η(e, ρ,∇ρ),
(1.37) has exactly the same structure as the one for the classical entropy (1.38),
we assume to have an equation with the same structure as equation (1.39) for a
Newtonian-like Navier-Stokes-Fourier fluid with non-classical entropy, too,

ξ =
1

2µ
|T dis|2 +

3

2µ+ 3λ
(m+ P )2 +

1

κ̃
|q|2, (1.40)

where µ, 2µ+ 3λ and κ̃ are positive. By maximizing equation (1.40) while assuming
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1. Modeling of Navier-Stokes equations of Korteweg type

that (1.37) is true, we obtain the following identities,

T dis = 2µDd,

m =
2µ+ 3λ

3
div v − P ,

q = −k∇θ,

(1.41)

in accordance with equation (1.27). Here k is given by k := κ/θ.

Finally, he general form of the Cauchy-stress tensor T is given by

T
(1.33)

= T d +mI
(1.34)

= T dis − ρ
(
∂∇ρe⊗∇ρ−

1

3
(∂∇ρe · ∇ρ) I

)
+mI

(1.41)
= 2µDd − ρ

(
∂∇ρe⊗∇ρ−

1

3
(∂∇ρe · ∇ρ) I

)
+

2µ+ 3λ

3
div v I − pI

− 4

3
ρ∂∇ρe · ∇ρI + div

(
ρ2∂∇ρe

)
I − ρ2∇θ · ∂∇ρeI (1.42)

(1.33)
= 2µD + λdiv v I − ρ∂∇ρe⊗∇ρ+ ρdiv (ρ∂∇ρe) I − pI − ρ2 (∂∇ρe · ∇θ) I.

We have derived a general form of the Cauchy stress tensor from thermodynamic
constitutive equations. This formula expresses the constitutive equations character-
izing a class of Navier-Stokes-Fourier-Korteweg fluids.

1.3.2.1. Examples of the Korteweg stress tensor associated with
capillary effects in the isothermal case

The specific form of the stress tensor depends on the specific given
internal energy e. In the following we will consider isothermal processes,
i.e. q = ∇θ = 0. We will assume that the internal energy is a sum of the pure
volumetric energy e0 = e0(η, ρ) and the capillary energy ec = ec(ρ,∇ρ), in the sense
of equation (1.23). Then the pressure is also a sum of the classical thermodynamic
pressure p0 and a capillary pressure pc, which can be interpreted to be due to
inhomogeneous density fields

e = e0(η, ρ) + ec(ρ,∇ρ),

p = p0 + pc,

where

p0 := ρ2∂ρe0, pc := ρ2∂ρec.
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The non-viscous part of the stress tensor T in (1.42), denoted T c, is given by

T c = −ρ∂∇ρec ⊗∇ρ+ ρdiv (ρ∂∇ρec) I − p0I − ρ2∂ρecI

= K − p0I, (1.43)

where K is called the capillary stress tensor. We consider a specific class of capillary
energies given by

ec =
1

2 + α
A(ρ)|∇Ψ(ρ)|2+α =

1

2 + α
A(ρ)|Ψ′(ρ)|2+α|∇ρ|2+α, (1.44)

for scalar functions Ψ(ρ) and A(ρ). Some elements of this energy class give rise to
Korteweg tensors which have already been discussed in literature, others have not
been examined yet.

Example 1.5. For α = 0,Ψ(ρ) = ρ and A(ρ) = σρ−1, with the surface tension
coefficient σ, we obtain from equation (1.43):

K = −σ∇ρ⊗∇ρ+ σρ∆ρI +
σ

2
|∇ρ|2I. (1.45)

The first term is the classical capillary tensor, which is often called the Korteweg
tensor in literature. This model represents the model derived by Korteweg, (1.24),
with α = σ/2, β = −σ, γ = ρσ and δ = 0.

Using the general identity

div(∇Ψ⊗∇Ψ) = ∆Ψ∇Ψ +
1

2
∇|∇Ψ|2I, (1.46)

for a smooth function Ψ, the divergence of the capillary tensor is given by:

div K = σρ∇∆ρ. (1.47)

This capillary tensor is treated in Section 2.2 and Section 2.3, where we discuss
shallow water equations.

31



1. Modeling of Navier-Stokes equations of Korteweg type

Example 1.6. For α = 0 and A(ρ) = σρ−1, equation (1.43) gives

K = −σ∇Ψ(ρ)⊗∇Ψ(ρ) + σρ div (Ψ′(ρ)∇Ψ(ρ))I − 1

2
σρ2∂ρ(ρ

−1|Ψ′(ρ)|2)|∇ρ|2I

= −σ∇Ψ(ρ)⊗∇Ψ(ρ) + σρ(Ψ′(ρ)∆Ψ(ρ))I +
1

2
σ|∇Ψ(ρ)|2I. (1.48)

The divergence of this capillary tensor is given by

div K = σρ∇(Ψ′(ρ)∆Ψ(ρ)). (1.49)

The mathematical properties of capillary tensors of this type will be discussed in
Section 2.1.

32



2. Introduction of the BD entropy and
stability results for weak solutions of
Korteweg type equations

In this chapter, we will discuss the mathematical properties of viscous fluid equa-
tions with capillary terms of Korteweg type. The structure of this chapter is given
as follows: Firstly, an additional energy estimate, the BD entropy, is introduced for
diffusive capillary models of Korteweg type. Then, a priori bounds on the solutions
of some Korteweg systems, like the viscous shallow water, or Saint-Venant, equa-
tions and the quantum Navier-Stokes equations, which arise from the BD entropy
estimate, are discussed. Finally, we will prove the stability of weak solutions of the
barotropic compressible Navier-Stokes equations using the a priori bounds on the
solutions.

2.1. Derivation of the classical energy estimate and the
BD entropy estimate for smooth solutions of
diffusive capillary models of Korteweg type

In this section, we will recall the derivation of the BD entropy by Bresch and Des-
jardins in [8]. They discovered the entropy estimate in [6], for two-dimensional
Saint-Venant equations, and used it to prove the existence of global weak solutions
of these shallow water systems in [7]. Later, they derived a general form of the BD
entropy in [8].

In the context of chapter one, ρ is the density, v is the velocity, f is the body force
and µ, λ are the Lamé coefficients. We will treat stress tensors T , which are depen-
dent on the surface tension coefficient σ and on a scalar function Ψ(ρ).

We assume isothermal flow and consider a bounded domain with periodic boundary
conditions, i.e. Ω = T d for the space dimension d, and set the body force f = 0. A
diffusive capillary model of Korteweg type is given by

∂tρ+ div(ρv) = 0 (2.1)

∂t(ρv) + div(ρv ⊗ v) = div T, (2.2)

where the Cauchy tensor T is given by the sum of the viscous and capillary tensors:
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2. Introduction of the BD entropy and stability results for weak solutions

T = 2µD(v) + λ div v I − pI − σ∇Ψ(ρ)⊗∇Ψ(ρ) + σρ(Ψ′(ρ)∆Ψ(ρ))I +
1

2
σ|∇Ψ(ρ)|2I.

In the non-conservative form the momentum equation reads

∂t(ρv) + div(ρv ⊗ v) = 2div(µD(v)) +∇(λ div v)−∇p+ σρ∇(Ψ′(ρ)∆Ψ(ρ)),

see Example 1.6.

We will prove, under certain compatibility assumptions between the diffusion and
the capillarity, an extra regularity of a velocity which is related to the gradient of
the density. This regularity allows us to control the degeneration of solutions in
areas close to vacuum.
We will assume the following definitions of the Lamé coefficients µ(ρ), λ(ρ),

µ(ρ) = µ1Ψ(ρ), λ(ρ) = 2µ1(ρΨ′(ρ)−Ψ(ρ)), (2.3)

with a constant µ1 and a scalar valued function

Ψ(ρ) ≥ 0.

We define φ(ρ) and Π(ρ) such that

ρφ′(ρ) = Ψ′(ρ), ρΠ′(ρ)−Π(ρ) = p(ρ), (2.4)

i.e, for a given constant density ρ ≥ 0,

φ(ρ) =

∫ ρ

ρ
Ψ′(s)s−1ds and Π(ρ) = ρ

∫ ρ

ρ
p(s)s−2ds. (2.5)

Remark 2.1. Note that the relation between µ(ρ) and λ(ρ) is of the general form
λ(ρ) = 2(ρµ′(ρ)− µ(ρ)). This relation is, so far, only a mathematical hypothesis.

Remark 2.2. In particular, we have ρΠ′′(ρ) = p′(ρ). Thus, the internal energy is a
convex function of the density in regions with nondecreasing pressure.
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Definition 2.3. The matrix inner product is given by

A : B =
∑
i

∑
j

AijBij ,

for two matrices A and B.

Theorem 2.4.
Under suitable smoothness assumptions on µ(ρ) and λ(ρ), the following two energy
equalities hold for smooth solutions of system (2.1)-(2.2):

(1) Classical energy identity

1

2

d

dt

∫
Ω
ρ|v|2 dx+ 2µ1

∫
Ω

Ψ(ρ)|D(v)|2 dx+ 2µ1

∫
Ω

(Ψ′(ρ)ρ−Ψ(ρ))|div v|2 dx

+
σ

2

d

dt

∫
Ω
|∇Ψ(ρ)|2 dx+

d

dt

∫
Ω

Π(ρ) dx = 0 (2.6)

(2) BD entropy identity

1

2

d

dt

∫
Ω
ρ|v + 2µ1∇φ|2 dx+ 2µ1

∫
Ω

Ψ(ρ)|D(v)|2 dx+ 2σµ1

∫
Ω

Ψ′(ρ)|∆Ψ(ρ)|2 dx

+2µ1

∫
Ω
p′(ρ)|∇ρ|2φ′(ρ) dx+

σ

2

d

dt

∫
Ω
|∇Ψ(ρ)|2 dx+

d

dt

∫
Ω

Π(ρ) dx

= 2µ1

∫
Ω

Ψ(ρ)∇v : ∇vT dx (2.7)

Proof.

(1)
Firstly, we multiply the mass balance equation (2.1) by |v|2/2 and integrate over Ω:

∫
Ω

|v|2

2
∂tρ+

|v|2

2
div(ρv) dx = 0.

Then we multiply equation (2.1) by −σΨ′(ρ)∆Ψ(ρ) and integrate over Ω, again:

∫
Ω
−σΨ′(ρ)∆Ψ(ρ)∂tρ− σΨ′(ρ)∆Ψ(ρ)div(ρv) dx = 0.

We integrate by parts in the first term
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2. Introduction of the BD entropy and stability results for weak solutions

∫
Ω
−σΨ′(ρ)∆Ψ(ρ)∂tρ dx =

∫
Ω
−σ∂tΨ(ρ)∆Ψ(ρ) dx =

∫
Ω
σ∇Ψ · ∂t∇Ψ dx

=

∫
Ω

σ

2

d

dt
|∇Ψ|2 dx,

and multiply the momentum balance equation (2.2) by v to obtain

∫
Ω
v∂t(ρv) + vdiv(ρv ⊗ v) dx

=

∫
Ω

2vdiv(µD(v)) + v∇(λ div v)− v∇p+ vσρ∇(Ψ′(ρ)∆Ψ(ρ)) dx.

We use the following equalities, which are established by integrating by parts and
using the definitions of µ(ρ), λ(ρ) and Π(ρ), to sum up the former three equations,

−
∫

Ω
v∇(λdiv v) dx =

∫
Ω
λ|div v|2 dx

(2.3)
=

∫
Ω

(ρΨ′(ρ)−Ψ(ρ))|div v|2 dx,

−
∫

Ω
2vdiv(µ(ρ)D(v)) dx = 2

∫
Ω
µ(ρ)∇v : D(v) dx

(2.3)
= 2µ1

∫
Ω

Ψ(ρ)|D(v)|2 dx,

because ∇v : D(v) = |D(v)|2, since D(v) is symmetric and ∇v : S = D(v) : S for
every symmetric tensor S,

∫
Ω
vdiv(ρv ⊗ v) dx =

∫
Ω

div(ρv)|v|2 + ρv(∇v · v) dx

=

∫
Ω

div(ρv)|v|2 − div(ρv)
|v|2

2
dx, (2.8)∫

Ω
v∂t(ρv) dx =

∫
Ω
ρ
d

dt

|v|2

2
+ ∂tρ|v|2 dx,∫

Ω
−σΨ′(ρ)∆Ψ(ρ)div(ρv) dx =

∫
Ω
σρv · ∇(Ψ′(ρ)∆Ψ(ρ)) dx,

−
∫

Ω
v∇p dx = −

∫
Ω
p′∇ρ · v dx

(2.4)
= −

∫
Ω
ρΠ′′∇ρ · v dx

= −
∫

Ω
ρ∇Π′ · v dx =

∫
Ω

Π′div(ρ · v) dx

(2.1)
= −

∫
Ω

Π′∂tρ dx = − d

dt

∫
Ω

Π(ρ) dx, (2.9)
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2.1. Derivation of the energy estimates for diffusive capillary models of Korteweg type

and observe that all other terms in the sum cancel and we obtain the classical energy
estimate (2.6).

(2)
The mass balance equation for the function φ(ρ) yields:

∂tφ(ρ) + v · ∇φ(ρ) + φ′ρdiv v

= φ′∂tρ+ v · φ′∇ρ+ φ′ρdiv v

= φ′∂tρ+ v · φ′∇ρ− φ′∇ρ · v + φ′div(ρv)

= φ′ (∂tρ+ div(ρv)) = 0.

We differentiate this equation with respect to the spatial variables,

∂t∇φ(ρ) +∇∇φ(ρ) · v +∇v · ∇φ(ρ) +∇(φ′ρdiv v) = 0,

multiply it by ρ∇φ(ρ) and integrate over Ω. Using the mass balance equation, again,
we obtain:

0 =

∫
Ω
ρ∇φ · ∂t∇φ+ ρ∇φ · ∇∇φ · v + ρ∇φ · ∇v · ∇φ+ ρ∇φ · ∇(φ′ρdiv v) dx

=
1

2

d

dt

∫
Ω
ρ|∇φ|2 dx−

∫
Ω

1

2
|∇φ|2∂tρ dx+

∫
Ω

1

2
∇ (∇φ · ∇φ) · vρ dx

+

∫
Ω
ρ∇φ · ∇v · ∇φ dx+

∫
Ω
∇Ψ · ∇(φ′ρdiv v) dx

=
1

2

d

dt

∫
Ω
ρ|∇φ|2 dx−

(∫
Ω

1

2
|∇φ|2∂tρ dx+

∫
Ω

1

2
|∇φ|2div(ρv) dx

)
︸ ︷︷ ︸

= 0

+

∫
Ω
ρ∇φ · ∇v · ∇φ dx+

∫
Ω
∇Ψ · ∇(φ′ρdiv v) dx

=
1

2

d

dt

∫
Ω
ρ|∇φ|2 dx+

∫
Ω
ρ∇φ · ∇v · ∇φ dx+

∫
Ω
∇Ψ · ∇(φ′ρdiv v) dx.

We integrate by parts in the second term on the right-hand side and use the relation
(2.4), this gives:

∫
Ω
ρ∇φ(ρ) · ∇v · ∇φ(ρ) dx =

∫
Ω

∇Ψ · ∇v · ∇Ψ

ρ
dx

=

∫
Ω

Ψ∇Ψ · ∇v · ∇ρ
ρ2

dx−
∫

Ω

Ψ∇div v · ∇Ψ

ρ
dx−

∫
Ω

Ψ∇v : ∇∇Ψ

ρ
dx.
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2. Introduction of the BD entropy and stability results for weak solutions

Thus, we have:

1

2

d

dt

∫
Ω
ρ|∇φ|2 dx+

∫
Ω

Ψ∇Ψ · ∇v · ∇ρ
ρ2

dx−
∫

Ω

Ψ∇div v · ∇Ψ

ρ
dx

−
∫

Ω

Ψ∇v · ∇∇Ψ

ρ
dx+

∫
Ω
∇Ψ(ρ) · ∇(φ′ρdiv v) dx = 0. (2.10)

By multiplying the momentum balance equation by ∇Ψ(ρ)/ρ, we obtain

∇Ψ(ρ)

ρ
∂t(ρv) +

∇Ψ(ρ)

ρ
div(ρv ⊗ v)

− ∇Ψ(ρ)

ρ
2div(µD(v))− ∇Ψ(ρ)

ρ
∇(λ div v) +

∇Ψ(ρ)

ρ
∇p

− ∇Ψ(ρ)

ρ
σρ∇(Ψ′(ρ)∆Ψ(ρ)) = 0, (2.11)

and integration by parts, together with the equations (2.3) and (2.8), gives:

∫
Ω

(∂tv + v · ∇v)∇Ψ +
∇Ψ(ρ)

ρ
v ·

= 0︷ ︸︸ ︷
(∂tρ+ div(ρv)) dx

+

∫
Ω

2µ1Ψ(ρ)D(v) :

(
∇∇Ψ

ρ
− ∇Ψ⊗∇ρ

ρ2

)
dx

−
∫

Ω
2µ1
∇Ψ(ρ)

ρ
∇((Ψ′(ρ)ρ−Ψ(ρ))div v) dx+

∫
Ω
p′(ρ)Ψ′(ρ)

|∇ρ|2

ρ
dx

+

∫
Ω
σΨ′(ρ)|∆Ψ(ρ)|2 dx = 0. (2.12)

When adding equation (2.12) to the 2µ1 multiple of equation (2.10), we observe
that,

∫
Ω

2µ1Ψ(ρ)D(v) :

(
∇∇Ψ

ρ
− ∇Ψ⊗∇ρ

ρ2

)
dx+ 2µ1

∫
Ω

Ψ∇Ψ · ∇v · ∇ρ
ρ2

dx

− 2µ1

∫
Ω

Ψ∇v : ∇∇Ψ

ρ
dx = 0,

since both, ∇∇Ψ and ∇Ψ ⊗ ∇ρ = Ψ′∇ρ ⊗ ∇ρ, are symmetric. We recall that
D(v) : S = ∇v : S for every symmetric tensor S. Thus, the sum is given by:
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2.1. Derivation of the energy estimates for diffusive capillary models of Korteweg type

∫
Ω

(∂tv + v · ∇v)∇Ψ dx− 2µ1

∫
Ω

Ψ∇div v · ∇Ψ

ρ
dx

+
µ1

2

d

dt

∫
Ω

2ρ|∇φ|2 dx−
∫

Ω
2µ1
∇Ψ(ρ)

ρ
∇((Ψ′(ρ)ρ−Ψ(ρ))div v) dx (2.13)

+ 2µ1

∫
Ω
∇(Ψ′(ρ)div v) · ∇Ψ dx+

∫
Ω
p′(ρ)Ψ′(ρ)

|∇ρ|2

ρ
dx+

∫
Ω
σΨ′(ρ)|∆Ψ(ρ)|2 dx = 0.

We consider all terms containing div v and observe that:

∫
Ω

2µ1
∇Ψ(ρ)

ρ
·
(
−Ψ∇div v −∇(Ψ′(ρ)ρdiv v) +∇(Ψ(ρ)div v) + ρ∇(Ψ′(ρ)div v)

)
dx

=

∫
Ω

2µ1
∇Ψ(ρ)

ρ
· (−Ψ∇div v −∇(Ψ′(ρ)div v)ρ−∇Ψ(ρ)div v +∇Ψ(ρ)div v

+ Ψ(ρ)∇div v + ρ∇(Ψ′(ρ)div v)) = 0.

Now we expand the first term in equation (2.13):

∫
Ω

(∂tv + v · ∇v)∇Ψ dx =
d

dt

∫
Ω
v · ∇Ψ dx−

∫
Ω
v · ∂t∇Ψ dx+

∫
Ω
v · ∇v · ∇Ψ dx.

By integrating by parts in the last two terms of the former equation and using the
mass balance equation we obtain:

−
∫

Ω
v · ∂t∇Ψ dx = −

∫
Ω

Ψ′v · ∂t∇ρ dx =

∫
Ω

Ψ′v · ∇div(ρv) dx

= −
∫

Ω
Ψ′(div v) div(ρv) dx

and ∫
Ω
v · ∇v · ∇Ψ dx = −

∫
Ω

Ψ v · ∇div v dx−
∫

Ω
Ψ∇v : ∇vT dx.

By integrating by parts in the term

−
∫

Ω
Ψv · ∇div v dx =

∫
Ω
∇Ψ · vdiv v dx+

∫
Ω

Ψ|div v|2 dx,

and adding it to
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2. Introduction of the BD entropy and stability results for weak solutions

−
∫

Ω
Ψ′(div v) div(ρv) dx = −

∫
Ω

Ψ′ρ|div v|2 dx−
∫

Ω
Ψ′v · ∇ρ div v dx,

we finally obtain

∫
Ω

(∂tv + v · ∇v)∇Ψ dx

=
d

dt

∫
Ω
v · ∇Ψ dx−

∫
Ω

(ρΨ′(ρ)−Ψ(ρ))|div v|2 dx−
∫

Ω
Ψ∇v : ∇vT dx.

After inserting this equation into equation (2.13), it reads:

d

dt

∫
Ω
v · ∇Ψ dx−

∫
Ω

(ρΨ′(ρ)−Ψ(ρ))|div v|2 dx−
∫

Ω
Ψ∇v : ∇vT dx (2.14)

+
µ1

2

d

dt

∫
Ω

2ρ|∇φ|2 dx+

∫
Ω
p′(ρ)Ψ′(ρ)

|∇ρ|2

ρ
dx+

∫
Ω
σΨ′(ρ)|∆Ψ(ρ)|2 dx = 0.

If we now multiply equation (2.14) by 2µ1 and add it to the classical energy estimate
(2.6) we obtain the additional energy estimate (2.7), since

2µ1
d

dt

∫
Ω
v·∇Ψ dx+ µ1

d

dt

∫
Ω

2µ1ρ|∇φ|2 dx+
1

2

d

dt

∫
Ω
ρ|v|2 dx

=
1

2

d

dt

∫
Ω
ρ|v + 2µ1∇φ|2 dx.

Remark 2.5. For viscosity terms of the form µ∇v rather than 2µD(v) we obtain
the same result with

∫
Ω µ|∇v|

2 dx instead of
∫

Ω 2µ|D(v)|2 dx, as can be easily seen
in the proof.

Remark 2.6. The classical free energy of the system is:

Ecl =

∫
Ω

1

2
ρ|v|2 + Π(ρ) +

σ

2
|∇Ψ(ρ)|2 dx.

Thus, the classical energy estimate (2.6) has the form
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2.2. Energy estimates and a priori bounds on weak solutions of Korteweg systems

dEcl
dt

+

∫
Ω

2µ1Ψ(ρ)|D(v)|2 dx+ 2µ1

∫
Ω

(Ψ′(ρ)ρ−Ψ(ρ))|div v|2 dx = 0,

dEcl
dt

+

∫
Ω

2µ|D(v)|2 dx+ λ|div v|2 dx = 0.

Remark 2.7. We can rewrite the diffusion term containing ∇v as

∫
Ω

2µ|D(v)|2 dx− 2

∫
Ω
µ∇v : ∇vT dx =

∫
Ω

2µ|A(v)|2 dx,

where A(v) = 1
2∇v −

1
2∇v

T is the antisymmetric part of the velocity gradient.

In the following sections we will emphasize the importance of the new entropy iden-
tity for Korteweg systems. Assuming that the classical physical energy estimate
must not only hold for smooth solutions, but also for weak solutions of Korteweg
systems, gives a priori regularity estimates on the weak solutions. These are often
not enough to prove the stability of weak solutions for models which include vac-
uum. But assuming that also the BD entropy equality must be satisfied by the weak
solutions gives extra regularity on the density gradient. Therefore, we can prove
stability results for weak solutions of some Korteweg systems with vacuum initial
conditions.

2.2. Energy estimates and a priori bounds on weak so-
lutions of Korteweg systems

In this section, we will discuss the classical and the BD entropy estimate for some Ko-
rteweg systems with viscosity coefficients µ(ρ) = ρ, λ(ρ) = 0 and a general barotropic
pressure term p(ρ) which includes the case of a power pressure law but also unsta-
ble spinodal regions in which p(ρ) may decrease. We will use these physical energy
estimates to derive a priori bounds on weak solutions of these Korteweg systems.

We consider a domain Ω = T d, for d equal to 2 or 3 with periodic boundary con-
ditions. We assume to have a barotropic pressure law p = p(ρ) and let κ be the
capillary coefficient. We will consider the following viscous compressible Korteweg
system:

∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +∇p = 2div(µD(v)) +∇(λdiv v)) + κρ∇∆ρ+ ρf,
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2. Introduction of the BD entropy and stability results for weak solutions

with initial conditions

ρ(0, x) = ρ0 ≥ 0, ρv(0, x) = ρ0v0 =: m0. (2.15)

In particular, this problem includes vacuum initial conditions, ρ0 = 0. For the sake
of simplicity, we will set f = 0 and drop the factor 2, i.e. we consider the viscosity
coefficients µ(ρ) = 1

2νρ, with ν ≥ 0 and λ(ρ) = 0. Then, the mass and momentum
balance equations of the Korteweg system are given by:

∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v)−∇p− νdiv(ρD(v)) = κρ∇∆ρ.
(2.16)

We assume that p is in C1([0,∞)) and satisfies

p(ρ) ≥ 0, p′(ρ) ≥ 0, (2.17)

and

Σ(ρ) ≤ AρnΠ(ρ) for large enough ρ, (2.18)

where A is a positive constant and, n <∞ when d = 2, n < 4 when d = 3, with

Σ(ρ) =

ρ∫
ρ

sp′(s)ds.

Remark 2.8. In particular, the pressure given in a shallow water system, ρ2/2,
fulfills the conditions above with n = 1 and A ≥ 1, see Section 2.3.

We want to formally derive the form of the energy identities for this special Korteweg
system. We have Ψ(ρ) = ρ, then obviously, the requirement (2.4), ρφ′(ρ) = Ψ′(ρ),
is fulfilled by φ(ρ) = log ρ. The viscosity coefficients also fulfill the requirement for
the BD entropy estimate (2.3), since µ = 1/2 νρ and λ = 0. We have

µ(ρ) =
1

2
νΨ(ρ),

and, thus, the BD entropy estimate (2.7) for system (2.16) is given by
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2.2. Energy estimates and a priori bounds on weak solutions of Korteweg systems

d

dt

∫
Ω

(
1

2
ρ|v + ν∇ log ρ|2 dx+ Π(ρ) +

κ

2
|∇ρ|2

)
dx+ 4ν

∫
Ω
p′(ρ)|∇√ρ|2 dx (2.19)

+ νκ

∫
Ω
|∇2ρ|2 dx+

∫
Ω
νρ|A(v)|2 dx = 0,

with A(v) = 1
2(∇v −∇vT ) and since

ν

∫
Ω
∇p(ρ) · ∇ log ρ dx = 4ν

∫
Ω
p′(ρ)|∇√ρ|2 dx.

The classical energy estimate is given by

d

dt

∫
Ω

(
1

2
ρ|v|2 + Π(ρ) +

κ

2
|∇ρ|2

)
dx+

∫
Ω
νρ|D(v)|2 dx = 0. (2.20)

We define ”weak solutions” for system (2.16) which are not contained in the usual
notion of weak solution, since we will use test functions which depend upon the
solutions. The regularity of ρ (which will be shown to be in L2(0, T ;H2(Ω))) allows
us to consider test functions ρφ. These are supported on the set of non-vanishing ρ.

Definition 2.9 (”Weak solutions”). We say (ρ, v) is a ”weak solution” of system
(2.16) on (0, T )× Ω if and only if

∫
Ω

(
κ
|∇ρ0|2

2
+ Π(ρ0) + ρ0

|v0|2

2

)
dx < +∞, (2.21)

2ν2

∫
Ω
|∇√ρ0|

2 dx =
1

2

∫
Ω
ρ0|ν∇ log ρ0|2 dx < +∞, (2.22)

and the following three assumptions are satisfied:

ρ ∈ L2(0, T ;H2(Ω)),

∇ρ,∇√ρ ∈ L∞(0, T ; (L2(Ω))d),
√
ρv ∈ L∞(0, T ; (L2(Ω))d),
√
ρD(v) ∈ L2(0, T ; (L2(Ω))d×d),

(2.23)

with ρ ≥ 0 a.e. and

43



2. Introduction of the BD entropy and stability results for weak solutions

∂tρ+ div(ρv) = 0 in D′((0, T )× Ω),

ρ(0, x) = ρ0 in D′(Ω),
(2.24)

and for all φ ∈ D([0, T ]× Ω), such that φ(T, ·) = 0, it holds:

∫
Ω
ρ0v0 · ρ0φ(0, ·) dx+

∫ T

0

∫
Ω
ρ2v · ∂tφ+ ρv ⊗ ρv : D(φ) dx dt

−
∫ T

0

∫
Ω
ρ2(v · φ) div v − νρD(v) : ρD(φ)− νρD(v) : φ⊗∇ρ+ Σ(ρ) divφ dx dt

−
∫ T

0

∫
Ω
κρ2∆ρ divφ− 2κρ(φ · ∇ρ)∆ρ dx dt = 0.

We want to motivate a stability result for these ”weak solutions” of the Korteweg
system (2.16).

Theorem 2.10 ([10]). Let d be equal to 2 or 3 and let (ρn, vn)n∈N be sequence
of ”weak solutions” of system (2.16) satisfying the entropy inequalities (2.19) and
(2.20) with initial conditions

ρn(0, x) = ρn0 ≥ 0, ρ0v0(0, x) = ρn0v
n
0 =: mn

0 , (2.25)

where ρn0 , v
n
0 are such that

ρn0 ≥ 0, ρn0 → ρ0 in L1(Ω), ρn0v
n
0 → ρ0v0 in L1(Ω). (2.26)

Then (ρn, vn)n∈N converges strongly to a weak solution of system (2.16) with initial
conditions (2.15 satisfying (2.19) and (2.20)).

Bresch, Desjardins and Lin, [10], introduced the different notion of weak solutions,
in order to prove the stability of the Korteweg systems. The proof of compactness
failed in regions where the limit density ρ vanishes. They were only able to show
the weak compactness of

√
ρnvn, which does not imply the compactness of

√
ρnvn⊗√

ρnvn. This problem is overcome in the next Section, by considering a system with
additional drag terms r0v, for which the energy estimates give extra regularity on
the velocity v, so the term

√
ρnvn is well defined on the vacuum set and converges

strongly. As shown in the last chapter of this thesis, assuming additional relations on
the viscosity coefficients also helps to show the strong compactness of

√
ρnvn. The

multiplication by ρn provides the strong convergence of the viscosity term ρnvn ⊗
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2.2. Energy estimates and a priori bounds on weak solutions of Korteweg systems

ρnvn : D(φ), since Bresch, Desjardins and Lin have proven that the momentum ρnvn
converges strongly in L2(0, T ;L2(Ω)).

Remark 2.11. Lions, [26], claimed that the strong convergence of the initial data
(ρn0 , ρ

n
0v

n
0 ) to (ρ0, v0) in L1(Ω) is essential to construct a sequence (ρn, vn)n∈N with

the desired properties. The construction of such a sequence is still an open problem
in many cases, [5].

Idea of the proof of Theorem 2.10 The proof of the stability relies upon the a
prori bounds on the sequence of ”weak solutions” (ρn, vn)n∈N which follow from the
classical (2.20) and the BD entropy identity (2.19).

We have assumed that the sequence of ”weak solutions” (ρn, vn)n∈N satisfies the
energy identities and that the initial classical energy of the system is bounded,
(2.21), therefore, integrating the classical energy equation with respect to the time
yields

∫
Ω

(
1

2
ρn|vn|2 + Π(ρn)+

κ

2
|∇ρn|2

)
dx+

∫ T

0

∫
Ω
νρn|D(vn)|2 dx dt

=

∫
Ω

(
1

2
ρ0|v0|2 + Π(ρ0) +

κ

2
|∇ρ0|2

)
dx ≤ C, (2.27)

for some constant C > 0. Thus, we have the following bounds on (ρn, vn)n∈N:

||∇ρn||L∞(0,T ;(L2(Ω))d) ≤ C,

||√ρnvn||L∞(0,T ;(L2(Ω))d) ≤ C,

||√ρnD(vn)||L2(0,T ;(L2(Ω))d×d) ≤ C.

Proceeding similarly with the BD entropy estimate gives additional bounds on the
”weak solutions”, since we also assumed that the initial BD entropy is bounded, by
(2.21), (2.22) and because

2ρ0v0∇ log ρ0 = 2v0∇ρ0 = v0
√
ρ0∇
√
ρ0 ∈ L1(Ω),

by Hölder’s inequality (Theorem A.31):

d

dt

∫
Ω

(
1

2
ρn|vn + ν∇ log ρn|2 dx+ Π(ρn) +

κ

2
|∇ρn|2

)
dx+ 4ν

∫
Ω
p′(ρn)|∇√ρn|2 dx

+ νκ

∫
Ω
|∇2ρn|2 dx+

∫
Ω
νρn|A(vn)|2 dx ≤ C. (2.28)

45



2. Introduction of the BD entropy and stability results for weak solutions

Therefore,

||ρn||L2(0,T ;H2(Ω)) ≤ C,

||∇√ρn||L∞(0,T ;(L2(Ω))d) ≤ C,

||√ρn∇vn||L2(0,T ;(L2(Ω))d×d) ≤ C,

The first bound follows from the inequality (2.28) since Π(ρn) ∈ L∞(0, T ;L1(Ω)),
thus, by assumption (2.18), ρn ∈ L∞(0, T ;L2(Ω)), and also∇ρn,∇2ρn ∈ L2(0, T ;L2(Ω))
by (2.28). The second one is resulting from the inequality (2.28) by

2∇√ρn = ρn∇ log ρn.

The third results from the L2(0, T ;L2(Ω)) bounds on both, the symmetric and the
antisymmetric part of

√
ρn∇vn.

The additional bounds on ∇ρn allow for compactness arguments and, thus, allow to
prove the convergence of the sequence of ”weak solutions” in the desired space, [10].
We will not discuss the proof in more detail, but we will discuss a special case of
these Korteweg systems with a power pressure law and prove the stability of weak
solutions thereof in the next Section. �

2.3. Energy estimates and the stability of weak solutions
to the shallow water equations

Shallow water equations model free surface flow where the vertical scale is much
smaller than the horizontal one. Gravity as well as the Coriolis force and drag terms
coming from friction are taken into account. These models allow to describe water
waves in a river or the ocean, atmospheric flow or avalanches.
The two-dimensional shallow water equations can be formally derived from the
depth-averaged incompressible Navier-Stokes equations, as shown in [5]. Depending
on the chosen bottom boundary conditions, i.e. friction or no-slip boundary condi-
tions, there are mainly two different types of shallow water systems. In this work,
we will focus on the system derived with friction boundary conditions.

Let Ω be a two-dimensional space domain, a friction shallow water system is given
by
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2.3. Energy estimates and the stability of weak solutions to the shallow water equations

∂th+ div(hv) = 0, (2.29)

∂t(hv) + div(hv ⊗ v) =− h ∇h
Fr2

− 1

We
h∇∆h− hfv

⊥

Ro

+
2

Re
div(hD(v)) +

2

Re
∇(hdiv v) +D, (2.30)

h(x, 0) = h0, (hv)(x, 0) = m0 in Ω, (2.31)

where h denotes the height of the free surface, it represents the density in the two-
dimensional case. The velocity v is the vertical average of the horizontal velocity
component of the fluid. The function f depends on the latitude y and v⊥ is given
by v⊥ = (−vy, vx) when v = (vx, vy). The term fv⊥ describes the Coriolis force. We
denote by D some drag terms which are a result of the friction boundary condition
at the bottom. The functions h0 and q0 are assumed to satisfy

h0 ≥ 0 a.e. on Ω
|m0|2

h0
= 0 a.e. on {x ∈ Ω | h0(x) = 0}. (2.32)

The dimensionless numbers Fr,We,Ro and Re denote the

� Froude number: a measure for the ratio of the flow inertia to a gravity field,
defined as Fr = U√

gL
, where U is the characteristic flow velocity, L the char-

acteristic length and g is gravity. It is a coefficient of the non-dimensional
Navier-Stokes equation alongside with the Reynolds number,

� Weber number: a measure of the importance of the fluid’s inertia to its surface
tension. It is useful in the description of multiphase flow, thin film flow or

bubbles, We = ρU2L
σ , where ρ is the density, σ is the surface tension and U

and L are defined as for the Froude number,

� Rossby number: the ratio of flow inertia to Coriolis force. It is used to describe
the Coriolis acceleration arising from planetary rotation and, therefore, models
geophysical phenomena in the oceans or the atmosphere. Ro = U

fL , where
f = 2Ω sinφ is the Coriolis frequency with Ω the angular frequency of the
rotation and φ the angular latitude,

� Reynolds number: the ratio of momentum forces to viscous forces, Re = ρUL
µ ,

with the density ρ and the viscosity coefficient µ. Flow patterns with similar
Reynolds number behave similarly, low Reynolds number indicates laminar
flow, high Reynolds number turbulent flow,

respectively, [5].
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2. Introduction of the BD entropy and stability results for weak solutions

Remark 2.12. This system of shallow water equations is energetically consistent,
i.e. the total kinetic energy of the system is conserved. Also the conservation of
the kinetic momentum is fulfilled. It leads to the constraint that the stress tensor
has to be symmetric. Viscous terms of the form hν∇v do not conserve the kinetic
momentum, [9].

Remark 2.13. The Euler equations of isentropic gas dynamics with a pressure
law p(ρ) = ρ2/2Fr2 coincide with the inviscid shallow water system (2.29) - (2.31)
without taking surface and drag terms into account. In two dimensions, the vorticity
is a scalar given by:

ω = ∂xvy − ∂yvx.

We will derive an evolution equation for the vorticity which gives a powerful con-
straint in large-scale motions in the atmosphere.
We take the curl of the momentum equation of the Euler equations divided by h
and use the mass balance equation to obtain:

curl

(
1

h

(
∂t(hv) + div(hv ⊗ v) + h

∇h
Fr2

+ h
f(y)v⊥

Ro

))
=

= curl

(
∂tv + v · ∇v +

f(y)v⊥

Ro

)
=

= ∂tω + v · ∇ω + ω div v +
f(y)

Ro
div v +

vy∂yf(y)

Ro
= 0. (2.33)

In order to eliminate the term containing div v, we multiply the mass balance equa-
tion by ω + f(y)/Ro and subtract it from equation (2.33) multiplied by h,

h∂tω + hv · ∇ω + hω div v + h
f(y)

Ro
div v + h

vy∂yf(y)

Ro

−
(
ω +

f(y)

Ro

)
∂th−

(
ω +

f(y)

Ro

)
div(hv)

= h

(
∂t

(
ω +

f(y)

Ro

)
+ v · ∇

(
ω +

f(y)

Ro

))
−
(
ω +

f(y)

Ro

)
(∂th+ v · ∇h) = 0,

(2.34)

since

h

((
∂t
f(y)

Ro

)
+ v · ∇

(
f(y)

Ro

))
= h

vy∂yf(y)

Ro
.
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2.3. Energy estimates and the stability of weak solutions to the shallow water equations

Therefore, we obtain the following equation for the relative vorticity ωR := ω +
f(y)/Ro:

∂t

(ωR
h

)
+ v · ∇

(ωR
h

)
= 0. (2.35)

This means that the material time derivative of the potential vorticity ωP := ωR/h
is zero, i.e. the potential vorticity is conserved along the particle trajectories of the
flow. In particular, if we multiply (2.35) by ωR and use the conservation of mass
equation, we get the following conservation equality:

d

dt

∫
Ω
h
∣∣∣ωR
h

∣∣∣2 dx = 0.

If h decreases in time, ω + f/Ro must decrease also. In particular, if ω + f/Ro is
constant initially, then also h must remain constant, too.

Remark 2.14. For the sake of completeness, we will give here the description of
the no-slip shallow-water system.
Let Ω be a periodic box in the two-dimensional space. We consider a thin-film liquid
down an inclined plane with slope angle θ. Then the no-slip system is given by:

∂th + div(hv) = 0,

∂t(hv) + div

(
6

5
hv ⊗ v

)
+∇

(
cos θ h2

Re
− (2 sin θ)2

75
h5

)
− ε2 1

We
h∇∆h

=
1

εRe

(
2 sin θh− 3v

h

)
,

h(x, 0) = h0, (hv)(x, 0) = m0 in Ω,

where ε is the aspect ratio of the domain. The functions m0 and h0 should fulfill
the conditions (2.32).

In their paper [6], Bresch and Desjardins introduced the BD entropy for the first
time, for a shallow-water system where λ(h) = 0 and µ(h = h, in a two-dimensional
bounded domain Ω with periodic boundary conditions, i.e. Ω = T 2,

∂th+ div(hv) =0, (2.36)

∂t(hv) + div(hv ⊗ v) =− h ∇h
Fr2

+ κ h∇∆h− hv
⊥

Ro
+ 2νdiv(hD(v))

+ hf̃ − r0v − r1h|v|v, (2.37)

h(x, 0) = h0, (hv)(x, 0) = q0 in Ω, (2.38)

49



2. Introduction of the BD entropy and stability results for weak solutions

with drag terms −r0v, r0 > 0 in the laminar case and −r1h|v|v, r1 ≥ 0 in the
turbulent case. In comparison to system (2.29)-(2.30), we have κ = 1/We, ν = 1/Re
and f = 1. The pressure term h2/2Fr2 is a quadratic function of h.
They have shown that the following classical energy inequality can be associated
with system (2.36) - (2.37):

∫
Ω

(
h2

2Fr2
+ h
|v|2

2
+ κ
|∇h|2

2

)
dx+

∫ T

0

∫
Ω

2νh|D(v)|2 dx dt

+

∫ T

0

∫
Ω
r0|v|2 dx dt+

∫ T

0

∫
Ω
r1h|v|3 dx dt

≤
∫

Ω

(
h2

0

2Fr2
+ h0

|v0|2

2
+ κ
|∇h0|2

2

)
dx+

∫ T

0

∫
Ω
hf̃ · v dx dt. (2.39)

It is a special case of the classical energy estimate (2.6). The drag terms multiplied
by v give the additional terms, and v⊥ · v vanishes.

Remark 2.15. The conditions of Theorem 2.4 are satisfied by system (2.36) - (2.37),
where Ψ(h) = h and µ1 = 1.

Remark 2.16. Note that the shallow-water system (2.29) - (2.31) does not fulfill
the conditions of Theorem 2.4, since µ(h) = h but λ(h) 6= 0. Thus, the general
friction shallow-water equations are not solved yet, except for the one-dimensional
case, [5].

Bresch and Desjardins have proven the following special case of the BD entropy
identity for system (2.36) - (2.37):

d

dt

∫
Ω

(
1

2
h|v + 2ν∇ log h|2 +

h2

2Fr2
+
κ

2
|∇h|2

)
dx−

∫ T

0

∫
Ω

2ν∇hf̃ dx dt (2.40)

+ 2ν

∫
Ω

|∇h|2

Fr2
dx+ 2ν

v⊥∇h
Ro

dx+ 2νκ

∫
Ω
|∇2h|2 dx+ 2νr1

∫
Ω
|v|v · ∇h dx

+ 2νr1

∫
Ω
h|v|3 dx− 2νr0

∫
Ω
|v|2 dx− 2νr0

d

dt

∫
Ω

log h dx+

∫
Ω

2νρ|A(v)|2 dx = 0.

The derivation is exactly the same as the one given in the proof of Theorem 2.4. We
have φ(ρ) = log h and after the multiplication by 2ν∇h/h, the additional terms,

∫
Ω
h
v⊥

Ro
+ r0v + r1h|v|v − hf̃ dx,
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2.3. Energy estimates and the stability of weak solutions to the shallow water equations

become

∫
Ω

2ν
v⊥∇h
Ro

dx+ 2νr1

∫
Ω
|v|v · ∇h dx− 2νr0

∫
Ω
v · ∇h

h
dx−

∫
Ω

2ν∇hf̃ dx.

Using the mass balance equation, we see that the second last term can be rewritten
as

r0

∫
Ω
v · ∇h

h
dx = −r0

∫
Ω
h∇
(

1

h

)
· v dx = r0

∫
Ω

1

h
div(hv) dx = −r0

∫
Ω

1

h
∂th dx

= −r0
d

dt

∫
Ω

log h dx.

Using the energy estimates (2.39) and (2.40), we are able to prove the stability of
weak solutions of shallow water equations with vanishing capillary terms (in the
presence of drag terms) in two dimensions, [7].

Definition 2.17 (Weak solutions). We say (h, v) is a weak solution of system (2.36)
- (2.37) on (0, T ) if (2.38) holds in D′(Ω), the energy inequality (2.39) and the
equality (2.40) are satisfied a.e. for nonnegative t, system (2.36) - (2.37) holds in
D′((0, T )× Ω) and if the following regularity properties are satisfied:

∇
√
h ∈ L∞(0, T ; (L2(Ω))2),

√
hv ∈ L∞(0, T ; (L2(Ω))2),

√
h∇v ∈ L2(0, T ; (L2(Ω))4), ∇h ∈ L2(0, T ; (L2(Ω))2),
√
r0v ∈ L2(0, T ; (L2(Ω))2), r

1/3
1 h1/3v ∈ L3(0, T ; (L3(Ω))2),

√
κ∇2h ∈ L2(0, T ; (L2(Ω))4).

(2.41)

Without loss of generality, we will assume that f̃ = 0 since everything holds also
true for a regular enough f̃ . We take the initial data as

h0 ∈ L2(Ω), h0|v0|2 =
|m0|2

h0
∈ L1(Ω),

√
κ∇h0 ∈ (L2(Ω))2,

∇
√
h0 ∈ (L2(Ω))2, −r0 log− h0 ∈ L1(Ω),

(2.42)

where m0 = 0 on h−1({0}) and log− g = log min(g, 1).
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2. Introduction of the BD entropy and stability results for weak solutions

Theorem 2.18. Let (hn, vn)n∈N be a sequence of weak solutions of system (2.36) -
(2.37) with initial data

hn(x, 0) = hn0 , (hnvn)(x, 0) = mn
0 ,

where hn0 , v
n
0 are such that

hn0 → h0 in L1(Ω), hn0v
n
0 → h0v0 in L1(Ω), (2.43)

and satisfying (2.32) and (2.42) and let h0,m0 also satisfy (2.32) and (2.42) and
assume that either r1 > 0 or κ > 0. Then (hn, vn)n∈N converges strongly to a
weak solution of system (2.36) - (2.37) with initial conditions (2.38). In par-
ticular, hn converges strongly in L2(0, T ;L2(Ω)) and ρnvn converges strongly in
L4/3(0, T ; (L4/3(Ω))2).

Proof. The classical energy estimate (2.39), together with the bounds on the initial
data, yields the following uniform bounds on (hn, vn)n∈N:

∣∣∣∣∣∣√hnvn∣∣∣∣∣∣
L∞(0,T ;(L2(Ω))2)

≤ C,
∣∣∣∣∣∣√hnD(vn)

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))4)

≤ C,

√
κ ||∇hn||L∞(0,T ;(L2(Ω))2) ≤ C,

∣∣∣∣∣∣∣∣ hnFr
∣∣∣∣∣∣∣∣
L∞(0,T ;L2(Ω))

≤ C,

√
r0 ||vn||L2(0,T ;(L2(Ω))2) ≤ C, r

1/3
1

∣∣∣∣∣∣h1/3
n vn

∣∣∣∣∣∣
L3(0,T ;(L3(Ω))2)

≤ C,

(2.44)

for some constant C > 0. The bounds on the initial data (2.42) yield

∫
Ω

(
1

2
h0|v0 + 2ν∇ log h0|2 +

h2
0

2Fr2
+
κ

2
|∇h0|2 dx

)
≤ C,

since,
√
h0v0 ∈ L2(Ω), h0 ∈ L2(Ω) and ∇h0 ∈ L2(Ω). But also

h0|∇ log h0|2 = 4|∇
√
h0|2 ∈ L1(Ω), (2.45)

and

2h0v0 · ∇ log h0 = 2v0 · ∇h0 = v0

√
h0∇

√
h0 ∈ L1(Ω),

by Hölder’s inequality (Theorem A.31), since
√
h0v0 and ∇

√
h0 ∈ L2(Ω).

52



2.3. Energy estimates and the stability of weak solutions to the shallow water equations

Since also h0 ∈ L2(Ω),

−r0

∫
Ω

log+ h0 dx ≤ C,

where log+ g = log max(g, 1). Additionally,

−r0 log− h0 ∈ L1(Ω),

by assumption on the initial data (2.42). Therefore, also

−r0

∫
Ω

log h0 dx ≤ C.

So the BD entropy estimate (2.40) integrated with respect to t yields the additional
a priori bounds (using equality (2.45)):

∣∣∣∣∣∣∇√hn∣∣∣∣∣∣
L∞(0,T ;(L2(Ω))2)

≤ C,
∣∣∣∣∣∣∣∣∇hnFr

∣∣∣∣∣∣∣∣
L2(0,T ;(L2(Ω))2)

≤ C,

√
κ
∣∣∣∣∇2hn

∣∣∣∣
L2(0,T ;(L2(Ω))4)

≤ C,
∣∣∣∣∣∣√hn∇vn∣∣∣∣∣∣

L2(0,T ;(L2(Ω))4)

(2.46)

The momentum hnvn is bounded in L∞(0, T ; (L1(Ω))2) by Hölder’s inequality (The-
orem A.31), since both,

√
hnvn and hn, are bounded in L∞(0, T ; (L2(Ω))2). There-

fore, by the mass balance equation (2.36), ∂thn is bounded in L∞(0, T ;W−1,1(Ω))
(the definition of Sobolev spaces with negative exponents is given in Definition A.10).
Since W 1,1(Ω) ↪→ L2(Ω)(see Definition A.8) by Sobolev’s embedding theorem (Theo-
rem A.9), it follows that W−1,1(Ω) ↪→ H−2(Ω) (again by Definition A.10), therefore,
∂thn is bounded in L∞(0, T ;H−2(Ω)). Combined with the uniform L2(0, T ;H1(Ω))
bound on hn, Aubin’s Lemma (Lemma A.12) gives the strong convergence, up to a
subsequence, of hn to h in L2(0, T ;L2(Ω)), since H1 ↪→↪→ L2 ↪→ H−2, see Definition
A.10. In the capillary case, when κ 6= 0, we even have hn ∈ L∞(0, T ;H1(Ω)) and,
thus, compactness in C([0, T ];L2(Ω)).

Since vn ∈ L2(0, T ; (L2(Ω))2) is bounded it converges weakly to some
v ∈ L2(0, T ; (L2(Ω))2), up to a subsequence, by Theorem A.15.

In the next step, Bresch and Desjardins, [7], used Fourier projection to cut off high
frequency parts of

√
hnvn. They later proposed a simpler proof in [5] using an ad-

ditional estimate on hn|vn|2 ln(1 + |vn|2), which allows for vanishing drag terms, see
Remark 2.20. We will give a slightly different proof using the same idea with the
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2. Introduction of the BD entropy and stability results for weak solutions

Fourier projector, which was proposed by N. Zamponi:

For any k ∈ N, the kth Fourier projector Pk is defined on L2(Ω) as follows: if∑
`∈Z2

c` exp (i` · x) denotes the Fourier decomposition of f ∈ L2(Ω), then Pkf is given

by the low frequency part
∑
|`|≤k

c` exp (i` · x). The following classical estimate holds,

||f − Pkf ||L2(Ω) ≤
Cp

k2(1−1/p)
||∇f ||Lp(Ω), ∀ p ∈ (1, 2), [7]. (2.47)

We introduce β ∈ C∞(R) such that 0 ≤ β ≤ 1,

β(s) =

{
0 for s ≤ 1,

1 for s ≥ 2.

Furthermore, we denote βα(·) := β(·/α), for some positive number α. We have the
following estimate for any α,

∣∣∣∣∣∣√hnvn − Pk(√hnvn)
∣∣∣∣∣∣L2(0,T ;(L2(Ω))2)

≤
∣∣∣∣∣∣√hnvn −√hnβα(hn)vn

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))2)

+
∣∣∣∣∣∣√hnβα(hn)vn − Pk(

√
hnβα(hn)vn)

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))2)

+
∣∣∣∣∣∣Pk(√hnvn)− Pk(

√
hnβα(hn)vn)

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))2)

≤ C
√
α||vn||L2(0,T ;(L2(Ω))2)

+
Cp

k1/3

∣∣∣∣∣∣∇(
√
hnβα(hn)vn)

∣∣∣∣∣∣
L2(0,T ;(L6/5(Ω))4)

,

(2.48)

by (2.47) and since

|
√
hnvn −

√
hnβα(hn)vn| ≤ C

√
α vn, (2.49)

|Pk(
√
hnvn)− Pk(

√
hnβα(hn)vn)| ≤ C

√
α vn, (2.50)
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2.3. Energy estimates and the stability of weak solutions to the shallow water equations

by the definition of βα. In the case when r1 > 0, we have

||∇(
√
hnβα(hn)vn)||L2(0,T ;(L6/5(Ω))4)

= ||
√
hnβα(hn)∇vn +∇

√
hnβα(hn)vn + 2∇

√
hnβ

′
α(hn)hnvn||L2(0,T ;(L6/5(Ω))4)

≤ ||
√
hnβα(hn)∇vn||L2(0,T ;(L6/5(Ω))4)

+
∣∣∣∣∣∣(2β′α(hn)h2/3

n + βαh
−1/3
n ) · h1/3

n vn∇
√
hn

∣∣∣∣∣∣
L2(0,T ;(L6/5(Ω))1)

≤ C||βα(hn)
√
hn∇vn||L2(0,T ;(L2(Ω))4) +

∣∣∣∣∣∣h1/3
n vn∇

√
hn

∣∣∣∣∣∣
L2(0,T ;(L6/5(Ω))1)

·
∣∣∣∣∣∣2β′α(hn)h2/3

n + βα(hn)h−1/3
n

∣∣∣∣∣∣
L∞((0,T )×Ω)

,

since, by the definition of βα(hn) and by (2.46), βα
√
hn∇vn ∈ L2(0, T ; (L2(Ω))4)

and 2β′α(hn)h
2/3
n + βαh

−1/3
n ∈ L∞((0, T )× Ω), furthermore,

≤ C
∣∣∣∣∣∣βα(hn)

√
hn∇vn

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))4)

+
∣∣∣∣∣∣h1/3

n vn

∣∣∣∣∣∣
L3(0,T ;(L3(Ω))2)

·
∣∣∣∣∣∣∇√hn∣∣∣∣∣∣

L6(0,T ;(L2(Ω))2)
·
∣∣∣∣∣∣2β′α(hn)h2/3

n + βα(hn)h−1/3
n

∣∣∣∣∣∣
L∞((0,T )×Ω)

,

by the generalized Hölder inequality (Remark A.33), thus, since∇
√
hn ∈ L∞(0, T ; (L2(Ω))2)

by (2.46),

≤ C
∣∣∣∣∣∣βα(hn)

√
hn∇vn

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))4)

+ C
∣∣∣∣∣∣h1/3

n vn

∣∣∣∣∣∣
L3(0,T ;(L3(Ω))2)

·
∣∣∣∣∣∣∇√hn∣∣∣∣∣∣

L∞(0,T ;(L2(Ω))2)
·
∣∣∣∣∣∣2β′α(hn)h2/3

n + βα(hn)h−1/3
n

∣∣∣∣∣∣
L∞((0,T )×Ω)

.

In the capillary case κ > 0, we see that

||∇(
√
hnβα(hn)vn)||L2(0,T ;(L6/5(Ω))4)

= ||
√
hnβα(hn)∇vn +∇

√
hnβα(hn)vn + 2∇

√
hnβ

′
α(hn)hnvn||L2(0,T ;(L6/5(Ω))4)

≤ ||
√
hnβα(hn)∇vn||L2(0,T ;(L6/5(Ω))4)

+

∣∣∣∣∣∣∣∣(β′α(hn) +
βα
2hn

) · 2hnvn∇
√
hn

∣∣∣∣∣∣∣∣
L2(0,T ;(L6/5(Ω))1)
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≤ C
∣∣∣∣∣∣βα(hn)

√
hn∇vn

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))4)

+
∣∣∣∣∣∣2hnvn∇√hn∣∣∣∣∣∣

L∞(0,T ;(L6/5(Ω))1)

·
∣∣∣∣∣∣∣∣β′α(hn) +

βα
2hn

∣∣∣∣∣∣∣∣
L∞((0,T )×Ω)

,

again, since βα(hn)
√
hn∇vn ∈ L2(0, T ; (L2(Ω))4) by (2.46) and 2β′α(hn) + βα/2hn ∈

L∞((0, T )×Ω) by the definition of βα, additionally, with 2hnvn∇
√
hn =

√
hnvn∇hn

≤ C
∣∣∣∣∣∣βα(hn)

√
hn∇vn

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))4)

+ C
∣∣∣∣∣∣√hnvn∇hn∣∣∣∣∣∣

L∞(0,T ;(L6/5(Ω))1)
·
∣∣∣∣∣∣∣∣β′α(hn) +

βα
2hn

∣∣∣∣∣∣∣∣
L∞((0,T )×Ω)

,

≤ C
∣∣∣∣∣∣βα(hn)

√
hn∇vn

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))4)

+ C
∣∣∣∣∣∣√hnvn∣∣∣∣∣∣

L∞(0,T ;(L2(Ω))2)
· ||∇hn||L2(0,T ;(L3(Ω))2)

·
∣∣∣∣∣∣∣∣β′α(hn) +

βα
2hn

∣∣∣∣∣∣∣∣
L∞((0,T )×Ω)

,

again by the generalized Hölder inequality (Remark (A.33) and, finally, we use the
Gagliardo-Nirenberg inequality (Theorem A.28) on the norm of ∇hn (the precise
derivation was done in Remark A.29),

≤ C
∣∣∣∣∣∣βα(hn)

√
hn∇vn

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))4)

+ C
∣∣∣∣∣∣√hnvn∣∣∣∣∣∣

L∞(0,T ;(L2(Ω))2)

·
(
||∇hn||2/3L∞(0,T ;(L2(Ω))2)

·
∣∣∣∣∇2hn

∣∣∣∣1/3
L2(0,T ;(L2(Ω))4)

+ C ||∇hn||L∞(0,T ;(L2(Ω))2)

)
·
∣∣∣∣∣∣∣∣β′α(hn) +

βα(hn)

2hn

∣∣∣∣∣∣∣∣
L∞((0,T )×Ω)

.

Thus, the left hand side of equation (2.48) is uniformly bounded by C
√
α+Cα ·k−1/3,

by the a priori bounds (2.44) and (2.46) in both cases. Therefore, the high frequency
part of

√
hnvn is arbitrarily small in L2(0, T ; (L2(Ω))2) uniformly in n, for large

enough k.
Since

√
hnvn ∈ L∞(0, T ; (L2(Ω))2) is bounded, we have weak convergence, up to a

subsequence of
√
hnvn to some

√
hv in L2(0, T ;L2(Ω)) ⊃ L∞(0, T ;L2(Ω)), by The-
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2.3. Energy estimates and the stability of weak solutions to the shallow water equations

orem A.15. Let ε > 0, we want to prove the strong convergence in L2(0, T ;L2(Ω)):

||
√
hnvn −

√
hv||L2(0,T ;L2(Ω)) ≤

∣∣∣∣∣∣√hnvn − Pk(√hnvn)
∣∣∣∣∣∣
L2(0,T ;L2(Ω))

(2.51)

+
∣∣∣∣∣∣√hv − Pk(√hv)

∣∣∣∣∣∣
L2(0,T ;L2(Ω))

+
∣∣∣∣∣∣Pk(√hnvn)− Pk(

√
hv)
∣∣∣∣∣∣
L2(0,T ;L2(Ω))

.

Since the high frequency part of
√
hnvn is arbitrarily small uniformly in n for some

large enough k, there exists a k = k(ε) such that

∣∣∣∣∣∣√hnvn − Pk(√hnvn)
∣∣∣∣∣∣
L2(0,T ;L2(Ω))

<
ε

3
, n ≥ 1,

∣∣∣∣∣∣√hv − Pk(√hv)
∣∣∣∣∣∣
L2(0,T ;L2(Ω))

<
ε

3
.

We use the definition of Pk, to see that

∣∣∣∣Pk(√hnvn)− Pk(
√
hv)
∣∣∣∣2
L2(0,T ;L2(Ω))

=
∣∣∣∣Pk(√hnvn −√hv)

∣∣∣∣2
L2(0,T ;L2(Ω))

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣C
∑
|`|≤k

∫
Ω
e−i`·x(

√
hnvn −

√
hv) dx︸ ︷︷ ︸

−→ 0 (n→∞)

ei`·x

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

L2(0,T ;L2(Ω))

since
√
hnvn converges weakly in L2(0, T ;L2(Ω)). In other words, we can find an

index nε ≥ 1 such that

∣∣∣∣∣∣Pk(√hnvn)− Pk(
√
hv)
∣∣∣∣∣∣2
L2(0,T ;L2(Ω))

<
ε

3
∀ n > nε.

Therefore, inequality (2.51) yields

||
√
hnvn −

√
hv||L2(0,T ;L2(Ω)) < ε, n > nε,

i.e. the strong convergence of
√
hnvn to

√
hv in L2(0, T ;L2(Ω)).

This, combined with the strong convergence of the hn in L2(0, T ;L2(Ω)), the weak
convergence of vn in L2(0, T ;L2(Ω)) and the weak convergence, up to a subse-

quence, of h
1/3
n vn in L3(0, T ;L3(Ω)), enables us to pass to the limit in the terms

hnvn, hnvn ⊗ vn, h2
n, r0vn and r1hn|vn|vn by Theorem A.14.

Next we will show the convergence of hnD(vn) in D′((0, T )× Ω). We calculate
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2. Introduction of the BD entropy and stability results for weak solutions

hn∇vn = ∇(hnvn)− 2
√
hnvn∇

√
hn,

therefore,

∫ T

0

∫
Ω
hn∇vnφ dx dt = −

∫ T

0

∫
Ω
hnvn∇φ dx dt−

∫ T

0

∫
Ω

2
√
hnvn∇

√
hnφ dx dt.

Since
√
hn converges strongly in L4(0, T ;L4(Ω)) and

√
hnvn converges strongly in

L2(0, T ; (L2(Ω))2), hnvn converges strongly in L4/3(0, T ; (L4/3(Ω))2), by Hölder’s in-
equality (Theorem A.31). Therefore, the first term on the right-hand side converges
to

−
∫ T

0

∫
Ω
hv∇φ dx dt,

The sequence
√
hnvn converges strongly in L2(0, T ; (L2(Ω))2) and∇

√
hn is uniformly

bounded and, therefore, converges weakly in L2(0, T ; (L2(Ω))2), up to a subsequence.
Therefore, 2

√
hnvn∇

√
hn converges weakly to 2

√
hv∇
√
h in L2(0, T ;L2(Ω)), by The-

orem A.14. Thus, the second term is convergent, too. A similar argument holds for
h∇vT .

We rewrite the nonlinear term κhn∇∆hn:

κhn∇∆hn = κ∇
(

∆
h2
n

2
− |∇hn|

2

2

)
− κdiv(∇hn ⊗∇hn).

The strong convergence of ∇hn in L2(0, T ; (L2(Ω))2) suffices to pass to the limit in
the nonlinear terms. Since ∂thn ∈ L2(0, T ;H−2(Ω)), ∂t∇hn ∈ L2(0, T ; (H−3(Ω))2)
and also∇hn ∈ L2(0, T ; (H1(Ω))2) by (2.46). We can apply Aubin’s Lemma (Lemma
A.12) to H1 ↪→↪→ L2 ↪→ H−3 and obtain the desired strong convergence.

Since ∇hn and hn converge strongly in L2(0, T ; (L2(Ω))2), the pressure term hn∇hn
converges strongly in L1(0, T ;L1(Ω)) by Theorem A.14.

We have shown the strong convergence of (hn, vn)n∈N to (hn, vn), i.e. the stability
of weak solutions of system (2.36)-(2.37).
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2.3. Energy estimates and the stability of weak solutions to the shallow water equations

2.3.1. Construction of approximate sequences of weak solutions to
the shallow water equations

It is important to know how to construct such uniformly bounded sequences of so-
lutions with the desired qualities. We will recall the most important steps in the
construction of such a sequence which was shown by Bresch and Desjardins in [9].

We look at a slightly perturbed system which preserves the BD entropy. Three
smoothing terms are added to the right hand side of the momentum equation (2.37).
Two of them are associated with a small parameter ε > 0, they mollify the height
function and keep it away from zero (then we have existence of global weak solu-
tions for this mollified system). The third term is a parabolic term in vε, scaled by
a positive parameter η > 0. The modified system is globally well posed for fixed ε
and η. By taking η → 0, we have to make sure that the bounds on the approximate
solutions, which are required in order to prove the stability results, are fulfilled uni-
formly in ε. Then, using the stability results given in the proof, the global existence
of weak solutions is obtained by taking ε→ 0.

Let ε > 0 be fixed and η > 0. We consider the system

∂thεη + div(hεηvεη) = 0,

∂t(hεηvεη) + div(hεηvεη ⊗ vεη) +
∇h2

εη

2Fr2
+ r0vεη + r1|vεη|vεη − κhεη∇∆hεη

= div(2νhεηD(vεη)) + εhεη∇∆2s+1hεη − ε∇p(hεη)− η∆2vεη,

hεη(0, ·) = h0,ε,η, qεη(0, ·) = q0,ε,η,

for some large enough integer s and an additional nondecreasing pressure term p(h),
which we will choose such that h remains spatially regular enough. W.l.o.g. we set
ν = 1. The initial conditions satisfy

h0,ε,η, q0,ε,η ∈ C∞(Ω), h0,ε,η ≥ ε > 0 a.e. in Ω.

The classical energy estimate for this system is given by:

d

dt

∫
Ω

(
hεη
|vεη|2

2
+

h2
εη

2Fr2
+
ε

2

∣∣∇2s+1hεη
∣∣2 +

κ

2
|∇hεη|2 + εhεηΠ(hεη)

)
dx

+

∫
Ω

(2hεη|D(vεη)|2 + η|∆vεη|2 + r0|vεη|2 + r1hεη|vεη|3) dx = 0.

The system also preserves the BD structure (again φ = log hεη):
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2. Introduction of the BD entropy and stability results for weak solutions

d

dt

∫
Ω

(
hεη
|vεη + 2∇ log hεη|2

2
+

h2
εη

2Fr2
+
ε

2

∣∣∇2s+1hεη
∣∣2

+
κ

2
|∇hεη|2 + εhεηΠ(hεη)− 2r0 log hεη

)
dx+

∫
Ω

(
2hεη|A(vεη)|2 + η|∆vεη|2

+
2|∇hεη|2

Fr2
+ ε
∣∣∆2s+1hεη

∣∣2 + 2εp′(hεη)
∣∣∣∇√hεη∣∣∣2 + κ |∆hεη|2 + r0|vεη|2

+ r1hεη|vεη|3
)

dx = −2η

∫
Ω

∆vεη · ∇∆ log hεη dx− 2

∫
Ω
r1|vεη|vεη · ∇hεη dx.

These two energy estimates give regularity on hεη and vεη. As a matter of fact, the
additional pressure may be taken as ρ(h) = −h−3. Then the internal energy has the
form Π(h) = h−4/4. In that case we can take s ≥ 2 and the energy estimates yield
that the height is bounded and bounded away from zero all the time, [9].
Also, the following estimates hold:

∇
√
h ∈ L∞(0, T ; (L2(Ω))2),

√
hv ∈ L∞(0, T ; (L2(Ω))2),

√
h∇v ∈ L2(0, T ; (L2(Ω))4), ∇h ∈ L2(0, T ; (L2(Ω))2),
√
r0v ∈ L2(0, T ; (L2(Ω))2), r

1/3
1 h1/3v ∈ L3(0, T ; (L3(Ω))2),

√
κ∇2h ∈ L2(0, T ; (L2(Ω))4),

√
ηv ∈ L2(0, T ; (L2(Ω))3),

√
ε∆s+1h ∈ L2(0, T ;L2(Ω)),

√
ε∇2s+1h ∈ L∞(0, T ; (L2(Ω))3),

ε

h3
∈ L∞(0, T ;L1(Ω)),

√
ε∇h−3/2 ∈ L2(0, T ; (L2(Ω))3).

(2.52)

For given ε and η the mollified system has global in time unique solutions since
the height function is bounded away from zero all the time. The construction of
solutions of this system, which satisfy the energy estimates, is done by a Galerkin
method and by applying existence results for ordinary differential equations, see
[26]. Then we let η go to zero while keeping ε fixed. The positive lower bounds
on (hεη)η>0 hold uniformly in η. Furthermore, (vεη)η>0 converges strongly to some
limit velocity vε in L2((0, T )× Ω), [9].

Remark 2.19. The drag terms give additional information on (h, v). The laminar
friction term yields the a priori estimate ||v||L2(0,T ;(L2(Ω))2) ≤ C. It takes care of
possible concentrations on the vacuum set:

||v||L2(0,T ;(L2(Ω))2) =
∣∣∣∣∣∣m
h

∣∣∣∣∣∣
L2(0,T ;(L2(Ω))2)

≤ C.
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2.4. Energy estimates for Quantum Hydrodynamic models

The turbulent friction term is necessary to prove the stability if the capillary coeffi-
cient κ = 0.

Remark 2.20. With a newer estimate on the boundedness of h|v|2 ln(1 + |v|2) in
L∞(0, T ;L1(Ω)) given by A. Vasseur and A. Mellet in [27] (see Lemma 3.14), we can
prove the stability of weak solutions without drag terms. The proof follows exactly
the steps given in the proof of Theorem 2.18, but the strong convergence of

√
hnvn

is proven by Lemma 3.18.

Remark 2.21. Note that in dimensions greater than two, building a sequence of
approximate solution with the desired qualities without the presence of drag terms
is still an open problem. If one succeeds to construct such a sequence without drag
terms in dimension three, one will have proven the global existence of weak solution
of the friction shallow water equations without drag terms in dimension three, by
Remark 2.20.

2.4. Energy estimates for Quantum Hydrodynamic
models

Another Korteweg-type equation is given by the Quantum-Navier-Stokes model. We
will rewrite the balance equations entirely in terms of the new effective velocity vari-
able v +∇φ(ρ).

Let Ω be the whole space Rd. We consider the barotropic Euler equations

∂tρ+ div(ρv) = 0, (2.53)

∂t(ρv) + div(ρv ⊗ v) +∇p = ρf + 2div(µ(ρ)D(v)) +∇(λ(ρ)div v) + div K, (2.54)

ρ(., 0) = ρ0, u(., 0) = u0, in Ω, (2.55)

where we assume the Korteweg-type stress tensor K to be of the form
K = µ(ρ)∇2φ(ρ) = µ(ρ)φ′′(ρ)|∇ρ|2+µ(ρ)φ′(ρ)∇2ρ. This expression is obtained from
the general form of the Korteweg tensor (1.24) by setting α = µ(ρ)φ′′(ρ), β = γ = 0
and δ = µ(ρ)φ′(ρ).

As will be proven in the next theorem, rewriting the balance equations entirely in
terms of the new effective velocity variable w = v+∇φ(ρ) eliminates the third order
capillary terms.
We have to make different assumptions on the relation between µ and λ than those
we used in Section 2.1.
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2. Introduction of the BD entropy and stability results for weak solutions

Theorem 2.22 (Viscous Euler Formulation, [22]).
Let (ρ, v) be a smooth solution to the barotropic Euler equations (2.53)-(2.55) and
let

Ψ(ρ) = µ(ρ), i.e. ρφ′(ρ) = µ′(ρ), and λ(ρ) = ρµ′(ρ)− µ(ρ). (2.56)

Then (ρ, w) with w = v +∇φ(ρ) is a smooth solution to the viscous Euler system

∂tρ+ div(ρw) = ∆µ(ρ), (2.57)

∂t(ρw) + div(ρw ⊗ w) +∇p = ρf + ∆(µ(ρ)w) in Ω, t > 0, (2.58)

ρ(., 0) = ρ0, w(., 0) = u0 +∇φ(ρ0) in Ω. (2.59)

Moreover, if (ρ, w) is a smooth solution to system (2.57)-(2.59) then (ρ, v) with
v = w − ∇φ(ρ) solves (2.53)-(2.55). Furthermore, the following energy identity
holds:

d

dt

∫
Ω

(
1

2
ρ|w|2 + Π(ρ)

)
dx+

∫
Ω

(µ(ρ)|∇w|2 + φ′(ρ)p′(ρ)|∇ρ|2) dx =

∫
Ω
ρf · w dx.

(2.60)

Before we give the proof of Theorem 2.22, we mention the differences of the energy
identity above to the ones derived in the former sections.

Remark 2.23. The relation between µ and λ differs from the relation given in
Section 2.1,

µ(ρ) = µ1Ψ(ρ), λ = 2µ1(ρΨ′(ρ)−Ψ(ρ)). (2.61)

Also the treated capillary stress tensor is a different one.

Remark 2.24. In Theorem 2.22, Jüngel has shown that the BD entropy is a math-
ematical entropy for a class of capillary Navier-Stokes equations, which was not yet
covered in the works of Bresch and Desjardins, since the treated Korteweg tensor is
a different one.

Remark 2.25. The right hand side of the momentum equation written in terms of
v contains third order derivatives of the function Ψ(ρ), while the right hand side of
the momentum equation written in terms of w only contains second order derivatives
of the function µ(ρ) = Ψ(ρ).

Remark 2.26. With the relation between µ and λ and the capillary tensor given
in Section 2.1, we can rewrite the system (2.1) - (2.2) partially in terms of w.
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2.4. Energy estimates for Quantum Hydrodynamic models

We assume that µ1 = 1
2 in equation (2.61). Therefore, Ψ(ρ) = 2µ(ρ) and

ρφ(ρ)′ = 2µ′(ρ), furthermore λ = 2(ρµ′(ρ) − µ(ρ)). We can rewrite the equations
(2.1) and (2.2) with w := v +∇φ and Remark 2.7 as:

∂tρ+ div(ρv) = 0,

∂t(ρw) + div(ρv ⊗ w) +∇p(ρ) = ρf + 2div(µ(ρ)A(v)) + ρ∇(Ψ′(ρ)∆Ψ(ρ)).
(2.62)

Proof of the assertion made in Remark 2.26. We will first discuss ∂t(ρ∇φ):

∂t∇φ(ρ) = ∇(φ′(ρ)∂tρ) = −∇(φ′(ρ)div(ρv)),

thus,

∂t(ρ∇φ(ρ)) = −∇φ(ρ)div(ρv)− ρ∇(φ′(ρ)div(ρv))

= −∇(ρφ′(ρ)div(ρv)) = −∇(2µ′(ρ)div(ρv))

= −2∇(ρµ′(ρ)div v)−∇(2µ′(ρ)vdivρ)︸ ︷︷ ︸
=−∇(2vdivµ(ρ))

= −2∇(ρµ′(ρ)div v)−∇(div(2µ(ρ)v)) +∇(2µ(ρ)div v)

= −∇(div(2µ(ρ)v)) +∇(2(µ(ρ)− ρµ′(ρ))div v).

We used ρφ′(ρ) = 2µ′(ρ). Additionally,

div(ρv ⊗∇φ(ρ)) = div(ρv ⊗ φ′(ρ)∇ρ) = div(ρφ′(ρ)v ⊗∇ρ)

= div(2µ′(ρ)v ⊗∇ρ) = div(v ⊗ 2∇µ(ρ))

= ∇(div(2µ(ρ)v))− div(2µ(ρ)∇vT ).

Therefore, we obtain, with λ(ρ) = 2(ρµ′(ρ)− µ(ρ)),

∂t(ρw) + div(ρv ⊗ w)

= ∂t(ρv) + ∂t(ρ∇φ(ρ)) + div(ρv ⊗ v) + div(ρv ⊗∇φ(ρ)) =

= −∇p+ ρf + 2div(µ(ρ)D(v)) +∇(λ(ρ)div v) + ρ∇(Ψ′(ρ)∆Ψ(ρ))

+∇(div(2µ(ρ)v))− div(2µ(ρ)∇vT )−∇(div(2µ(ρ)v))−∇(λ(ρ)div v).

Together with
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2. Introduction of the BD entropy and stability results for weak solutions

2div(µ(ρ)D(v))−2div(µ(ρ)∇vT )

= div(µ(ρ)(∇v +∇vT − 2∇vT )) = 2div(µ(ρ)A(v)),

this proofs the assumption.

Remark 2.27. Note that the capillary tensor cannot be eliminated in this formu-
lation.

Proof of Theorem 2.22. Equation (2.57) follows directly from

∂tρ+ div(ρw) = ∂tρ+ div(ρ(v +∇φ(ρ))) = ∂tρ+ div(ρv) + div(ρ∇φ(ρ))

= div(ρφ′(ρ)∇ρ) = div(µ′(ρ)∇ρ) = ∆µ(ρ).

In order to prove the momentum equation we first give some helpful results:

Similar to the the proof of Remark 2.26, with the different relation µ′(ρ) = ρφ′(ρ),
we can show that

∂t(ρ∇φ(ρ)) = −∇(div(µ(ρ)v)) +∇((µ(ρ)− ρµ′(ρ))div v).

Additionally,

div(ρ∇φ(ρ)⊗∇φ(ρ)) = div(∇µ(ρ)⊗∇φ(ρ)) = ∆(µ(ρ)∇φ(ρ))− div(µ(ρ)∇2φ(ρ)),

div(ρ∇φ(ρ)⊗ v + ρv ⊗∇φ(ρ)) = ∆(µ(ρ)v)− 2div(µ(ρ)D(v)) +∇div(µ(ρ)v).

Thus, using the system of equations (2.53)-(2.54) alongside all equations above, we
can show that

∂t(ρw) + div (ρw ⊗ w)

= ∂t(ρv) + ∂t(ρ∇φ(ρ)) + div(ρv ⊗ v)

+ div(ρ∇φ(ρ)⊗∇φ(ρ)) + div(ρ∇φ(ρ)⊗ v + ρv ⊗∇φ(ρ))

= (−∇p+ ρf + 2div(µ(ρ)D(v)) +∇(λ(ρ)div v) + div(µ∇2φ(ρ)))−∇(div(µ(ρ)v))

+∇((µ(ρ)− ρµ′(ρ))div v) + ∆(µ(ρ)∇φ(ρ))− div(µ(ρ)∇2φ(ρ))

+ ∆(µ(ρ)v)− 2div(µ(ρ)D(v)) +∇(div(µ(ρ)v))

=∆(µ(ρ)w)−∇p+ ρf,

since λ(ρ) = (ρµ′(ρ)− µ(ρ)) by definition.
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2.4. Energy estimates for Quantum Hydrodynamic models

Finally, we want to proof the energy equality (2.60). Firstly, we differentiate the
energy with respect to the time t,

d

dt

∫
Ω

(ρ
2
|w|2 + Π(ρ)

)
dx =

∫
Ω
∂tρ

1

2
|w|2 + Π′(ρ)∂tρ+ ρ∂tw · w dx

=

∫
Ω
∂tρ

1

2
|w|2 + Π′(ρ)∂tρ+ ∂t(ρw)w − ∂tρ|w|2 dx

=

∫
Ω

(
∂tρ

(
−1

2
|w|2 + Π′(ρ)

)
+ ∂t(ρw) · w

)
dx.

Then we integrate by parts and use the mass balance equation equation (2.57) and
the definition of Π, ρΠ′′(ρ) = p′(ρ), to obtain the following identities,

∫
Ω

div(ρw)
1

2
|w|2 dx =

∫
Ω

div(ρw ⊗ w) · w dx,

similar to equation (2.8). Additionally,

−
∫

Ω
div(ρw)Π′ dx =

∫
Ω
ρw · ∇Π′ dx =

∫
Ω
ρw · ∇ρΠ′′ dx =

∫
Ω
w · ∇p(ρ) dx,

−
∫

Ω
∆µ

1

2
|w|2 dx =

∫
Ω
∇µ · ∇

(
1

2
|w|2

)
dx =

∫
Ω
∇µ∇w · w dx

=

∫
Ω
∇(µw) · ∇w − µ |∇w|2 dx = −

∫
Ω

∆(µw)w dx−
∫

Ω
µ |∇w|2 dx,∫

Ω
∆µΠ′ dx = −

∫
Ω
∇µ · ∇Π′ dx = −

∫
Ω
µ′Π′′|∇ρ|2 dx.

Using these identities and the balance of mass and momentum equations, (2.57) and
(2.58), the energy estimate reads

d

dt

∫
Ω

(ρ
2
|w|2 + Π(ρ)

)
dx =

∫
Ω

(
∂tρ

(
−1

2
|w|2 + Π′(ρ)

)
+ ∂t(ρw) · w

)
dx

=

∫
Ω

(
div(ρw)

1

2
|w|2 − div(ρw)Π′(ρ)−∆µ

1

2
|w|2 + ∆µΠ′(ρ) + ∂t(ρw) · w

)
dx

=

∫
Ω

(
div(ρw ⊗ w) · w +∇p · w −∆(µw)w − µ|∇w|2 − µ′Π′′|∇ρ|2 + ∂t(ρw) · w

)
dx

=

∫
Ω

(
−µ(ρ)|∇w|2 − µ′Π′′(ρ)|∇ρ|2 + ρf · w

)
dx.
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2. Introduction of the BD entropy and stability results for weak solutions

By the definitions of µ(ρ) and Π(ρ) we get µ′Π′′ = ρφ′Π′′ = φ′p′, which proves the
claim.

2.4.1. The Quantum Navier-Stokes model

A quantum fluid model is given by

∂tρ+ div(ρv) = 0

∂t(ρv) + div(ρv ⊗ v) +∇p− 2ε2ρ∇
(

∆
√
ρ

√
ρ

)
= ρf + 2νdiv(ρD(v)).

(2.63)

The viscosity is given by µ(ρ) = νρ and ε > 0 is the scaled Planck constant, [18]. This
system can be obtained from system (2.53)-(2.54) by choosing φ(ρ) = (ε2/ν) log ρ.
For ν = 0, it is called quantum hydrodynamic model which is employed in semicon-
ductor simulations.

Jüngel used the formulation of the Euler equations entirely in terms of w and the
arising energy identity to prove the global existence of weak solutions for the one
dimensional quantum Navier-Stokes model with ε = ν:

Theorem 2.28 ([22]). Let d=1 and ρ0 ∈W 1,∞(R), v0 ∈ L∞(R) such that ρ0 ≥ δ > 0
in R. Assume that µ(ρ) = ρ for ρ ≥ 0, µ′(ρ) = ρφ′(ρ), λ(ρ) = ρµ′(ρ) − µ(ρ), ε = ν,
and f = 0. Then there exists a smooth bounded solution (ρ, v) to (2.53)-(2.55) sat-
isfying ρ(x, t) ≥ c(δ, t) > 0 for (x, t) ∈ R× [0,∞).
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3. Stability of weak solutions
to the barotropic compressible
Navier-Stokes equations

A. Mellet and A. Vasseur showed, in their paper On the barotropic compressible
Navier-Stokes equations, [27], that the entropy discovered by D. Bresch and B. Des-
jardins is not only useful to prove the stability of solutions of Navier-Stokes equations
with Korteweg terms, but it can also be used to prove the stability of weak solutions
of a system that does not contain any capillary terms. We will discuss these stability
results in this chapter.

We assume that Ω = Rd or Ω = T d, for d = 2 or d = 3, is a domain with periodic
boundary conditions. We consider the Cauchy problem for the following system of
isentropic compressible Navier-Stokes equations with positive initial conditions:

∂tρ+ div(ρv) = 0 (3.1)

∂t(ρv) + div(ρv ⊗ v) +∇ργ − div(2µ(ρ)D(v))−∇(λ(ρ)div v) = 0 (3.2)

ρ(0, x) = ρ0 ≥ 0, ρv(0, x) = m0. (3.3)

The density ρ(x, t) and the velocity v(x, t) are both functions of the spatial variables
x and the time t. Throughout this chapter we will use the notation ρ := ρ(x, t) and
v := v(x, t). The pressure is given by p(ρ) = ργ for any γ > 1 and D(v) is the
symmetric part of the velocity gradient D(v) = 1/2(∇v + ∇vT ). The viscosity
coefficients µ(ρ), λ(ρ) ∈ C2(0,∞) are once again assumed to fulfill

λ(ρ) = 2ρµ′(ρ)− 2µ(ρ). (3.4)

Furthermore, we have to make additional assumptions on µ(ρ) and λ(ρ). We assume
that there exists a positive constant ν ∈ (0, 1) such that

µ′(ρ) ≥ ν, µ(0) ≥ 0, (3.5)

|λ′(ρ)| ≤ 1

ν
µ′(ρ), (3.6)

νµ(ρ) ≤ 2µ(ρ) + dλ(ρ) ≤ 1

ν
µ(ρ). (3.7)

If d = 3 and γ ≥ 3 we need the additional requirement,
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

lim inf
ρ→∞

µ(ρ)

ργ/3+ε
> 0, (3.8)

for some ε > 0.

Remark 3.1. In particular, µ(ρ) = ρ and λ(ρ) = 0 satisfy the requirements (3.4) -
(3.7). In the two-dimensional case, for γ = 2, we recover the Saint-Venant equations.
Therefore, we can apply the stability results given in this section to the shallow water
system (2.36)-(2.37), see Remark 2.20.

Remark 3.2. The estimates in (3.7) yield |λ(ρ)| ≤ Cνµ(ρ), Cν > 0, ∀ρ > 0.
Together with (3.4) condition (3.7) implies

d− 1 + ν

dρ
≤ µ′(ρ)

µ(ρ)
≤ d− 1 + 1/ν

dρ
, ∀ρ > 0, (3.9)

thus, for some C > 0,

{
Cρ(d−1)/d+ν/d ≤ µ(ρ) ≤ Cρ(d−1)/d+1/(dν), ρ ≥ 1,

Cρ(d−1)/d+1/(dν) ≤ µ(ρ) ≤ Cρ(d−1)/d+ν/d, ρ ≤ 1.
(3.10)

In particular, µ(0) = 0.

We treat systems with zero capillarity, i.e. the Korteweg tensor K = 0. The viscosity
coefficients µ(ρ), λ(ρ) ∈ C2(0,∞) are regular enough to derive the energy estimates
(2.6) and (2.7) for smooth solutions of system (3.1)-(3.2) and they are also assumed
to satisfy the relation for the BD entropy (3.4), with µ1 = 1/2 in (2.3). Thus the
energy estimates associated with system (3.1)-(3.2), are given by:

1

2

d

dt

∫
Ω
ρv2 dx+ 2

∫
Ω
µ(ρ)D(v)2 dx+

∫
Ω
λ(ρ)(div v)2 dx+

d

dt

∫
Ω

1

γ − 1
ργ dx ≤ 0,

(3.11)

1

2

d

dt

∫
Ω
ρ|v +∇φ|2 dx+

∫
Ω
∇φ(ρ) · ∇ργ dx

+
d

dt

∫
Ω

1

γ − 1
ργ dx+

∫
Ω

2µ(ρ)|A(v)|2 dx = 0, (3.12)

with A(v) = 1
2(∇v −∇vT ) and since

Π(ρ) =
1

γ − 1
ργ .
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If µ(ρ) and λ(ρ) satisfy 2µ(ρ) + dλ(ρ) ≥ 0, and the initial energy is bounded, i.e.,

1

2

∫
Ω
ρ0v

2
0 + 2

1

γ − 1
ργ0 dx < +∞,

1

2

∫
Ω
ρ0|∇φ(ρ0)|2 dx < +∞,

integrating the estimate (3.11) with respect to the time yields the following a priori
bounds on smooth solutions (ρ, v) of system (3.1)-(3.2):

||√ρv||L∞(0,T ;(L2(Ω))d) ≤ C, (3.13)

||ρ||L∞(0,T ;Lγ(Ω)) ≤ C, (3.14)

||
√
µ(ρ)D(v)||L2(0,T ;(L2(Ω))d×d) ≤ C. (3.15)

The BD entropy estimate (3.12) gives the additional bounds,

||√ρ∇φ(ρ)||L∞(0,T ;(L2(Ω))d) ≤ C,
||∇φ · ∇ργ ||L1(0,T ;L1(Ω)) ≤ C.

Additionally, since µ(ρ) is assumed to be increasing with respect to ρ and, therefore,
also φ′ = 2µ′(ρ)/ρ ≥ 0,

1

2
||√ρ∇φ(ρ)||L∞(0,T ;(L2(Ω))d) =

1

2
||√ρφ′∇ρ||L∞(0,T ;(L2(Ω))d)

=
1

2

∣∣∣∣∣∣∣∣ 1
√
ρ
ρφ′∇ρ

∣∣∣∣∣∣∣∣
L∞(0,T ;(L2(Ω))d)

= 2||µ′(ρ)∇√ρ||L∞(0,T ;(L2(Ω))d) ≤ C,

and also

||∇φ · ∇ργ ||L1(0,T ;L1(Ω)) = ||φ′∇ρ · ∇ργ ||L1(0,T ;L1(Ω)) = ||γφ′ργ−1(∇ρ)2||L1(0,T ;L1(Ω))

= ||γµ′ργ−2(∇ρ)2||L1(0,T ;L1(Ω)) = C||
√
µ′(ρ)ργ−2∇ρ||L2(0,T ;(L2(Ω))d) ≤ C.

So, in particular, we have

||µ′(ρ)∇√ρ||L∞(0,T ;(L2(Ω))d) ≤ C, (3.16)

||
√
µ′(ρ)ργ−2∇ρ||L2(0,T ;(L2(Ω))d) ≤ C. (3.17)
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

Furthermore,

||
√
µ(ρ)∇v||L2(0,T ;(L2(Ω))d×d) ≤ C, (3.18)

since we have this estimate on both, the symmetric and the antisymmetric part of
∇v by (3.11) and (3.12).

Finally, if we integrate the mass balance equation (3.1) over Ω and use Reynold’s
Transport Theorem (Theorem 1.2) for smooth solutions of system (3.1)-(3.2),

0 =

∫
Ω
∂tρ+ div(ρv) dx =

d

dt

∫
Ω
ρ dx,

we obtain the natural L1 estimate,

||ρ||L∞(0,T ;L1(Ω)) ≤ C, (3.19)

if we assume that the density is bounded initially, ρ0 ∈ L∞(0, T ;L1(Ω)). This L1 es-
timate is already covered by the classical energy estimate, since (3.14) automatically
yields (3.19).

Remark 3.3. Under assumption (3.5) the two estimates (3.16) and (3.17) give
additional control on ρ and ργ . This will be enough to prove the stability of weak
solutions.

Remark 3.4. The conditions allow for viscosity coefficients to vanish on the vacuum
set. In fact, we gain some regularity on the density on the vacuum set while we lose
some regularity on the velocity.

One of the key tools of the proof will be the following Lemma.

Lemma 3.5. Assume that (3.7) holds, then smooth solutions of system (3.1)-(3.3)
satisfy the following inequality for any δ ∈ (0, 2):

d

dt

∫
Ω
ρ

1 + |v|2

2
ln(1 + |v|2) dx+

ν

2

∫
Ω
µ(ρ)(1 + ln(1 + |v|2))|D(v)|2 dx

≤ C

∫
Ω

(
ρ2γ−δ/2

µ(ρ)

)2/(2−δ)

dx

(2−δ)/2(∫
Ω
ρ(2 + ln(1 + |v|2))2/δ dx

)δ/2
+ C

∫
Ω
µ(ρ)|∇v|2 dx. (3.20)
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Proof. We mulitply the momentum equation (3.1) by (1 + ln(1 + |v|2)) · v,

∂t(ρv)(1 + ln(1 + |v|2)) · v + div(ρv ⊗ v)(1 + ln(1 + |v|2)) · v
+∇ργ(1 + ln(1 + |v|2)) · v − div(2µ(ρ)D(v))(1 + ln(1 + |v|2)) · v (3.21)

−∇(λ(ρ)div v)(1 + ln(1 + |v|2)) · v = 0.

Then, we expand the terms ∂tρv, div(ρv ⊗ v) and use the mass balance equation
together with the identities

∂tv · (1 + ln(1 + |v|2))v = ∂t

(
1 + |v|2

2
ln(1 + |v|2)

)
,

∇v · (1 + ln(1 + |v|2))v = ∇
(

1 + |v|2

2
ln(1 + |v|2)

)
.

This gives

(∂t(ρv) + div(ρv ⊗ v)) · (1 + ln(1 + |v|2)) · v =

ρ∂tv · (1 + ln(1 + |v|2))v − div(ρv) · v · (1 + ln(1 + |v|2))v

+div(ρv) · v · (1 + ln(1 + |v|2))v + ρv · ∇v · (1 + ln(1 + |v|2))v

= ρ∂t

(
1 + |v|2

2
ln(1 + |v|2)

)
+ ρv · ∇

(
1 + |v|2

2
ln(1 + |v|2)

)
.

We insert this equality into equation (3.21) and integrate over Ω. By integrating by
parts in the diffusion terms,

−
∫

Ω
div(2µ(ρ)D(v)) · (1 + ln(1 + |v|2) · v dx =∫

Ω
2µ(ρ)(1 + ln(1 + |v|2)D(v) : ∇v dx+

∫
Ω

2µ(ρ)
2

1 + |v|2
(∇v v) · (D(v) v) dx,

−
∫

Ω
∇(λ(ρ)div v)(1 + ln(1 + |v|2)) · v dx =∫

Ω
λ(ρ)(1 + ln(1 + |v|2)(div v)2 dx+

∫
Ω
λ(ρ)div v

2

1 + |v|2
(∇v v) · v dx,

we obtain, with D(v) : ∇v = |D(v)|2, since D(v) is symmetric,
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

∫
Ω
ρ∂t

(
1 + |v|2

2
ln(1 + |v|2)

)
dx+

∫
Ω
ρv · ∇

(
1 + |v|2

2
ln(1 + |v|2)

)
dx

+

∫
Ω

2µ(ρ)(1 + ln(1 + |v|2)|D(v)|2 dx+

∫
Ω

2µ(ρ)
2

1 + |v|2
(∇v v) · (D(v) v) dx

+

∫
Ω
λ(ρ)(1 + ln(1 + |v|2)(div v)2 dx+

∫
Ω
λ(ρ)div v

2

1 + |v|2
(∇v v) · v dx

+

∫
Ω

(1 + ln(1 + |v|2)v · ∇ργ dx = 0,

We use the general identities,

(div v)2 =
∑
i

∑
j

∂ivi∂jvj ≤
∑
i

∑
j

1

2
(∂iv

2
i + ∂jv

2
j ) ≤ d|D(v)|2,

condition (3.7) and Remark 3.2 to obtain:

∫
Ω
ρ∂t

(
1 + |v|2

2
ln(1 + |v|2)

)
dx+

∫
Ω
ρv · ∇

(
1 + |v|2

2
ln(1 + |v|2)

)
dx (3.22)

+ν

∫
Ω
µ(ρ)(1 + ln(1 + |v|2))|D(v)|2 dx

≤ −
∫

Ω
(1 + ln(1 + |v|2))v · ∇ργ dx+ C

∫
Ω
µ(ρ)|∇v|2 dx.

By multiplying the mass balance equation by 1+|v|2
2 ln(1 + |v|2) and integrating by

parts, we obtain

∫
Ω

1 + |v|2

2
ln(1 + |v|2)∂tρ dx−

∫
Ω
ρv · ∇

(
1 + |v|2

2
ln(1 + |v|2)

)
dx = 0.

Adding this equality to inequality (3.22) gives

d

dt

∫
Ω
ρ

1 + |v|2

2
ln(1 + |v|2) dx+ ν

∫
Ω
µ(ρ)(1 + ln(1 + |v|2))|D(v)|2 dx

≤ −
∫

Ω
(1 + ln(1 + |v|2))v · ∇ργ dx+ C

∫
Ω
µ(ρ)|∇v|2 dx. (3.23)

We need to bound the right hand side of inequality (3.23). Therefore, we integrate
by parts in the first term on the right hand side and use
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Hölder’s inequality (Theorem A.31) in the second step,

∣∣∣∣∫
Ω

(1 + ln(1 + |v|2))v · ∇ργ dx

∣∣∣∣ (3.24)

≤
∣∣∣∣∫

Ω

2

1 + |v|2
(∇v v) · v ργ dx

∣∣∣∣+

∣∣∣∣∫
Ω

(1 + ln(1 + |v|2))(div v)ργ dx

∣∣∣∣
≤
∣∣∣∣∫

Ω
2 ∇v ργ dx

∣∣∣∣+

∣∣∣∣∫
Ω

(1 + ln(1 + |v|2))(div v)ργ dx

∣∣∣∣
≤ 2

(∫
Ω
µ(ρ)|∇v|2 dx

)1/2(∫
Ω

ρ2γ

µ(ρ)
dx

)1/2

+

∣∣∣∣∫
Ω

(1 + ln(1 + |v|2))(div v)ργ dx

∣∣∣∣.
The last term on the right-hand side of this equation can be equally bounded by
Hölder’s inequality in the first step and by using the general inequality

2
√
f · g ≤ f + g, ∀ f, g ∈ [0,∞), (3.25)

together with (3.7) and Remark 3.2 in the second step:

∣∣∣∣∫
Ω

(1 + ln(1 + |v|2))(div v)ργ dx

∣∣∣∣
≤
(∫

Ω
(1 + ln(1 + |v|2))µ(ρ)(div v)2 dx

)1/2(∫
Ω

(1 + ln(1 + |v|2))
ρ2γ

µ(ρ)
dx

)1/2

≤ ν

2

∫
Ω

(1 + ln(1 + |v|2))µ(ρ)|D(v)|2 dx+ Cν

∫
Ω

(1 + ln(1 + |v|2))
ρ2γ

µ(ρ)
dx.

(3.26)

Inserting the inequality (3.26) into inequality (3.24) while using the general inequal-
ity (3.25) for the nonnegative terms,

2

(∫
Ω
µ(ρ)|∇v|2 dx

)1/2(∫
Ω

ρ2γ

µ(ρ)
dx

)1/2

,

we obtain

∣∣∣∣∫
Ω

(1+ ln(1 + |v|2))v · ∇ργ dx

∣∣∣∣ ≤ C ∫
Ω
µ(ρ)|∇v|2 dx

+
ν

2

∫
Ω

(1 + ln(1 + |v|2))µ(ρ)|D(v)|2 dx+ Cν

∫
Ω

(2 + ln(1 + |v|2))
ρ2γ

µ(ρ)
dx.
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

By Hölder’s inequality (Theorem A.31), the last term satisfies

∫
Ω

(2 + ln(1 + |v|2))
ρ2γ

µ(ρ)
dx

≤


∫
Ω

(
ρ2γ−δ/2

µ(ρ)

)2/(2−δ)

dx


(2−δ)/2(∫

Ω
ρ(2 + ln(1 + |v|2))2/δ dx

)δ/2
,

for any δ ∈ (0, 2), which proves the Lemma.

Definition 3.6 (Weak solutions). We say that (ρ, v) is a weak solution of system
(3.1)-(3.3) on [0, T ]× Ω if

ρ ∈ L∞(0, T ;L1(Ω) ∩ Lγ(Ω)),
√
ρ ∈ L∞(0, T ;H1(Ω)),
√
ρv ∈ L∞(0, T ; (L2(Ω))d),

µ(ρ)D(v) ∈ L2(0, T ; (W−1,1
loc (Ω))d×d),

λ(ρ)div v ∈ L2(0, T ;W−1,1
loc (Ω)),

with ρ ≥ 0 and (ρ,
√
ρv) are solving

∂tρ+ div(
√
ρ
√
ρv) = 0

ρ(0, x) = ρ0(x)
in D′((0, T )× Ω),

and the equality

∫
Ω
m0 · φ(0, ·) dx+

∫ T

0

∫
Ω

√
ρ(
√
ρv)∂tφ+

√
ρv ⊗√ρv : ∇φ dx dt

+

∫ T

0

∫
Ω
ργdivφ dx dt− 〈2µ(ρ)D(v),∇φ〉 − 〈λ(ρ)div v,divφ〉 = 0,

holds for all smooth test functions with compact support φ ∈ D((0, T ) × Ω), such
that φ(T, ·) = 0.

Remark 3.7. The diffusion terms make sense when we write them in index notation,
while we use Einstein’s summing convention (Definition A.26), as
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〈2µ(ρ)D(v),∇φ〉

= −
∫ T

0

∫
Ω

µ(ρ)
√
ρ

(
√
ρvj)∂iiφj dx dt−

∫ T

0

∫
Ω

(
√
ρvj)2µ

′(ρ)∂i
√
ρ∂iφj dx dt

−
∫ T

0

∫
Ω

µ(ρ)
√
ρ

(
√
ρvi)∂jiφj dx dt−

∫ T

0

∫
Ω

(
√
ρvi)2µ

′(ρ)∂j
√
ρ∂iφj dx dt,

and

〈λ(ρ)div v,divφ〉

= −
∫ T

0

∫
Ω

λ(ρ)
√
ρ

(
√
ρvi)∂ijφj dx dt−

∫ T

0

∫
Ω

(
√
ρvj)2λ

′(ρ)∂i
√
ρ∂jφi dx dt.

Theorem 3.8. Assume that γ > 1 and µ(ρ), λ(ρ) ∈ C2(0,∞) satisfy the conditions
(3.4) - (3.7), and (3.8) if γ ≥ 0 and d = 3.
Let (ρn, vn)n∈N be a sequence of weak solutions of system (3.1)-(3.2) satisfying the
entropy inequalities (3.11) and (3.12) together with the inequality (3.20), with initial
data

ρn(x, 0) = ρn0 (x) and ρnvn(x, 0) = ρn0 (x)vn0 (x) =: mn
0 (x), (3.27)

where ρn0 , v
n
0 are such that

ρn0 ≥ 0, ρn0 → ρ0 in L1(Ω), ρn0v
n
0 → ρ0v0 in L1(Ω), (3.28)

and satisfy

∫
Ω
ρn0
|vn0 |2

2
+

1

γ − 1
ρnγ0 dx < C,

∫
Ω

(ρn0 )−1|∇µ(ρn0 )|2 dx < C, (3.29)

and

∫
Ω
ρn0

1 + |vn0 |2

2
ln(1 + |vn0 |2) dx < C, (3.30)
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

for a constant C > 0 independent of n. Then, up to a subsequence, (ρn,
√
ρnvn)n∈N

converges strongly to a weak solution of system (3.1)-(3.3), which satisfies (3.11),
(3.12) and (3.20).

In particular, ρn converges strongly in C0(0, T ;L
3/2
loc (Ω)),

√
ρnvn converges strongly

in L2(0, T ;L2
loc(Ω)) and the momentum ρnvn converges strongly in L1(0, T ;L1

loc(Ω))
for any T > 0.

Remark 3.9. For the sake of simplicity we will dismiss the superscripts (L2(Ω))d×d

and (L2(Ω))d in the following and will just write L2(Ω) and proceed similarly with
all other spaces.

Remark 3.10. To prove the stability of weak solutions we have to pass to the
limit in the term ρnvn ⊗ vn which requires the strong convergence of

√
ρnvn. Thus,

we have to show the compactness of
√
ρnvn in L2((0, T ) × Ω). This is achieved

by having a better estimate on ρnv
2
n than the L∞(0, T ;L1(Ω)) bound, namely a

L∞(0, T ;L logL(Ω)) bound, which will be a result of Lemma 3.5.

Remark 3.11. It is an important open problem to construct a sequence of approx-
imate weak solutions (ρn, vn)n∈N that fulfills all the requirements made in Theorem
3.8 for the barotropic Navier-Stokes equations in 3 dimensions, [5]. Anyone who
succeeds in constructing such a sequence will have proven the global existence of
weak solutions.

Proof of Theorem 3.8. If the initial data (ρn0 , v
n
0 ) satisfies the assumptions (3.28) -

(3.30) we have, in particular,

ρn0 ∈ L1 ∩ Lγ , ρn0 ≥ 0 a.e.,

ρn0 |vn0 |2 ∈ L1(Ω),√
ρn0∇φ(ρn0 ) = 2∇µ(ρn0 )/

√
ρn0 ∈ L

2(Ω),∫
Ω
ρn0
|vn0 |2

2
ln(1 + |vn0 |2) dx < C.

Since we assumed that the sequence of weak solutions (ρn, vn)n∈N satisfies the energy
inequalities (3.11) and (3.12), we conclude in the exact same fashion as before that

||√ρnvn||L∞(0,T ;L2(Ω)) ≤ C, (3.31)

||ρn||L∞(0,T ;L1∩Lγ(Ω)) ≤ C, (3.32)

||
√
µ(ρn)∇vn||L2(0,T ;(L2(Ω))d×d) ≤ C, (3.33)

||µ′(ρn)∇√ρn||L∞(0,T ;L2(Ω)) ≤ C, (3.34)

||
√
µ′(ρn)ργ−2

n ∇ρn||L2(0,T ;L2(Ω)) ≤ C. (3.35)
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With hypothesis (3.5) and since

√
µ′(ρn)ργ−2

n ∇ρn =
√
µ′(ρn)ρ(γ−2)/2∇ρn

=
√
µ′(ρn)∇ργ/2n ,

we obtain from the estimates (3.33) - (3.35),

||√ρn∇vn||L2(0,T ;L2(Ω)) ≤ C, (3.36)

||∇√ρn||L∞(0,T ;L2(Ω)) ≤ C, (3.37)

||∇ργ/2n ||L2(0,T ;L2(Ω)) ≤ C, (3.38)

We will recall here the proof given in [27], which was nicely presented in single steps.

Step 1. Convergence of
√
ρn

Lemma 3.12. The following estimates hold true:

√
ρn ∈ L∞(0, T ;H1(Ω)), (3.39)

∂t
√
ρn ∈ L2(0, T ;H−1(Ω)). (3.40)

Thus,
√
ρn converges, up to a subsequence, almost everywhere and

strongly in L2(0, T ;L2
loc(Ω)):

√
ρn →

√
ρ a.e. and strongly in L2

loc((0, T )× Ω). (3.41)

Additionally, ρn converges to ρ in C0(0, T ;L
3/2
loc (Ω)).

Proof. Estimate (3.32), together with estimate (3.37), yields
√
ρn ∈ L∞(0, T ;H1(Ω)).

In oder to proof the second estimate, we compute

∂t
√
ρn =

1

2

1
√
ρn

∂tρn = −1

2

1
√
ρn

div(vnρn) = −1

2

√
ρn div vn −

1

2

1
√
ρn
vn · ∇ρn =

= −1

2

√
ρn div vn − vn · ∇

√
ρn =

1

2

√
ρn div vn − div(

√
ρnvn), (3.42)

using the mass balance equation (3.1). Since
√
ρnvn ∈ L∞(0, T ;L2(Ω)) by (3.31),

div(
√
ρnvn) ∈ L∞(0, T ;H−1(Ω)) ⊂ L2(0, T ;H−1(Ω)), by the definition of negative

Sobolev spaces (Definition A.10). Also
√
ρn∇vn ∈ L2(0, T ;L2(Ω)) ↪→ L2(0, T ;H−1(Ω))

by (3.36) and by Definition A.10. Thus, it follows from equation (3.42) that
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

∂t
√
ρn ∈ L2(0, T ;H−1(Ω)).

Since
√
ρn ∈ L∞(0, T ;H1(Ω)) by (3.39), it is certainly bounded in L2(0, T ;H1(Ω)).

We have the embeddings H1(Ω) ↪→↪→ L2(Ω) ↪→ H−1(Ω), see Definition A.8, by
Sobolev’s embedding Theorem (Theorem A.9) and by the definition of H−1(Ω).
Note that, in the case Ω = Rd, we have these embeddings for every compact K ⊂ Ω.
Therefore, we can apply Aubin’s Lemma (Lemma A.12) and obtain the strong con-
vergence of

√
ρnk in L2

loc((0, T )×Ω). By Theorem A.21, we have almost everywhere
convergence of a subsequence.

Sobolev embedding (Theorem A.9) and (3.39) imply that
√
ρn is bounded in

L∞(0, T ;Lq(Ω)) ∀q ∈ [2,+∞) if d = 2 and ∀ q ∈ [2, 6] if d = 3. So, in either case
√
ρn

is bounded in L∞(0, T ;L6(Ω)) and ρn is bounded in L∞(0, T ;L3(Ω)). Therefore,

ρnvn =
√
ρn
√
ρnvn ∈ L∞(0, T ;L3/2(Ω)), (3.43)

and similarly,

∇ρn = 2
√
ρn∇
√
ρn ∈ L∞(0, T ;L3/2(Ω)), (3.44)

by Hölder’s inequality (Theorem A.31), since both,
√
ρnvn and ∇√ρn, are bounded

in L∞(0, T ;L2(Ω)) by (3.31) and (3.37). So ρn ∈ L∞(0, T ;H3/2(Ω)). The mass
balance equation (3.1) gives ∂tρn ∈ L∞(0, T ;W−1,3/2(Ω)), by estimate (3.43). We
have the embeddings H3/2(Ω) ↪→↪→ L3/2(Ω) ↪→W−1,3/2(Ω) by Sobolev’s embedding
theorem (again, this is true for every compact K ⊂ Ω = Rd). Thus, Aubin’s Lemma

yields the compactness, up to a subsequence, of ρn in C([0, T ];L
3/2
loc ).

Step 2. Convergence of the pressure ργn

Lemma 3.13. The pressure ργn is bounded in

{
L5/3((0, T )× Ω) if d = 3,

Lr((0, T )× Ω), ∀ r ∈ [1, 2) if d = 2.

In particular ργn converges strongly to ργ in L1
loc((0, T )× Ω).

Proof. The estimates (3.32) and (3.38) yield ρ
γ/2
n ∈ L2(0, T ;H1(Ω)). Thus, exactly

as in the proof of Lemma 3.12, we have that ρ
γ/2
n ∈ L2(0, T ;Lq(Ω)) for all q ∈ [2,∞)

when d = 2. Then, again with (3.32), ργn ∈ L1(0, T ;Lp(Ω)) ∩ L∞(0, T ;L1(Ω))
∀ p ∈ [1,∞). Thus, ργn is bounded in Lr((0, T )×Ω) for all r ∈ [1, 2), by Lyapunov’s
inequality (Corollary A.32).
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If d = 3 we obtain ρ
γ/2
n ∈ L2(0, T ;L6(Ω)), or equivalently,

ργn ∈ L1(0, T ;L3(Ω))∩L∞(0, T ;L1(Ω)). We can use Lyapunov’s inequality to obtain:

||ργn||L5/3(0,T ;L5/3(Ω)) ≤ ||ρ
γ
n||

2/5
L∞(0,T ;L1(Ω))

||ργn||
3/5
L1(0,T ;L3(Ω))

. (3.45)

Hence, ργn is bounded in L5/3((0, T )×Ω). We make use of de la Vallée-Poussin’s The-
orem (Theorem A.18) with G(t) := t5/3 and obtain that ργn is uniformly integrable.
Afterwards we apply Vitali’s Theorem (Theorem A.19) on a bounded subspace of Ω
and obtain the strong convergence of ργn in L1

loc((0, T )× Ω), since we already know
that ργn converges almost everywhere to ργ , by Lemma 3.12.

Step 3. Bounds for
√
ρnvn

Lemma 3.14. If d = 2 and γ > 1 or if d = 3 and either γ < 3 or γ ≥ 3 and (3.8)
holds, then ρn|vn|2 ln(1 + |vn|2) is bounded in L∞(0, T ;L1(Ω)).

Remark 3.15. Using the bounds of ρn|vn|2 in L∞(0, T ;L logL(Ω)) we will only
have to prove the convergence almost everywhere to obtain strong convergence of√
ρnvn in L2

loc((0, T )× Ω).

Proof of Lemma 3.14. By Lemma 3.5, we have, for any δ ∈ (0, 2):

d

dt

∫
Ω
ρn

1 + |vn|2

2
ln(1 + |vn|2) dx+

ν

2

∫
Ω
µ(ρn)(1 + ln(1 + |vn|2))|D(vn)|2 dx

≤ C

∫
Ω

(
ρ

2γ−δ/2
n

µ(ρn)

)2/(2−δ)

dx

(2−δ)/2(∫
Ω
ρn(2 + ln(1 + |vn|2))2/δ dx

)δ/2
+ C

∫
Ω
µ(ρn)|∇vn|2 dx.

Using estimate (3.33), µ(ρn) ≥ 0, ρn ∈ L∞(0, T ;L1(Ω)) and ρnv
2
n ∈ L∞(0, T ;L1(Ω))

this inequality gives:

d

dt

∫
Ω
ρn

1 + |vn|2

2
ln(1 + |vn|2) dx ≤ C

∫
Ω

(
ρ

2γ−δ/2
n

µ(ρn)

)2/(2−δ)

dx

(2−δ)/2

+ C.

(3.46)

It follows from (3.5) that µ(ρ) ≥ νρ, thus,
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

d

dt

∫
Ω
ρn

1 + |vn|2

2
ln(1 + |vn|2) dx ≤ C

(∫
Ω

(
ρ2γ−1−δ/2
n

)2/(2−δ)
dx

)(2−δ)/2
+ C.

(3.47)

By Lemma 3.13, ργn is bounded in L1((0, T ) × Ω) for every γ > 1, in dimension

d = 2, so, in particular, ρ
2γ−1−δ/2
n is bounded in L1((0, T )× Ω) in dimension d = 2.

Furthermore, Lemma 3.13 gives the boundedness of ρ
5/3γ
n in L1((0, T ) × Ω) when

d = 3. Thus, if we require that

2γ − 1 <
5

3
γ ⇐⇒ γ < 3,

then ρ
2γ−1−δ/2
n is bounded in L1((0, T )×Ω) also in dimension d = 3. Therefore, we

had to make the requirement γ < 3 in the statement of the Lemma. In either case,
the right hand side of inequality (3.47) is bounded for small δ, thus,

d

dt

∫
Ω
ρn

1 + |vn|2

2
ln(1 + |vn|2) dx ≤ C,

in dimension 2 and 3. Which, together with assumption (3.30), gives the bounded-
ness in L∞(0, T ;L1(Ω)).
When d = 3 and γ ≥ 3, we need hypothesis (3.8) to show that the right-hand side
of (3.46) is bounded. For large ρn, in the limes ρn →∞, we have,

d

dt

∫
Ω
ρn

1 + |vn|2

2
ln(1 + |vn|2) dx ≤ C

∫
Ω

(
ρ

2γ−δ/2
n

µ(ρn)

)2/(2−δ)

dx

(2−δ)/2

+ C

≤ C

∫
Ω

(
ρ

2γ−δ/2
n

ρ
γ/3+ε
n

)2/(2−δ)

dx

(2−δ)/2

+ C

= C

(∫
Ω

(
ρ2γ−γ/3−ε−δ/2
n

)2/(2−δ)
dx

)(2−δ)/2
+ C

≤ C
(∫

Ω

(
ρ5/3γ
n

)2/(2−δ)
dx

)(2−δ)/2
+ C <∞,

with ε > 0 and δ small, by Lemma 3.13.
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Step 4. Convergence of the momentum ρnvn

Firstly, we will prove the following Lemma, which will be important in the proof of
the compactness of the momentum ρnvn.

Lemma 3.16. The functions µ(ρn)/
√
ρn and λ(ρn)/

√
ρn are bounded

in L∞(0, T ;L6(Ω)).

Proof. We only prove the result for µ(ρn)/
√
ρn, since, with inequality (3.6) and

Remark 3.2,

|λ(ρn)| ≤ Cµ(ρn), and |λ′(ρn)| ≤ Cµ′(ρn)

the proof is similar for λ(ρn)/
√
ρn.

In view of inequality (3.10),

µ(ρn)
√
ρn
≤ Cρνn ≤ C, if ρn ≤ 1,

in either dimension. Thus, it is sufficient to control µ(ρn)/
√
ρn for large ρn.

We split the problem into two steps, in the first step, we will treat the problem in
dimension two, in the second, we will consider it in dimension three.

Step 1. Dimension d = 2

Again, the boundedness of
√
ρn in L∞(0, T ;H1(Ω)) implies that ρn is bounded in

L∞(0, T ;Lp(Ω)) for all p ∈ [1,+∞). With (3.10), we have

µ(ρn)
√
ρn
≤

Cρ
1
2ν
n if ρ ≥ 1,

Cρ
ν
2
n if ρ ≤ 1.

Therefore, also µ(ρn)/
√
ρn is bounded in L∞(0, T ;Lp(Ω)) for all p ∈ [1,+∞).

Step 2. Dimension d = 3

We need to show that µ(ρn)/
√
ρn ∈ L∞(0, T ;H1(Ω)). Then Sobolev embedding

(Theorem A.9) implies that µ(ρn)/
√
ρn is bounded in L∞(0, T ;L6(Ω)). Firstly,
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

∇
(
µ(ρn)
√
ρn

)
= 2µ′(ρn)∇√ρn −

µ(ρn)

2ρ
3/2
n

∇ρn. (3.48)

The conditions (3.4) and (3.7) yield

2µ′(ρ)ρ = 2µ(ρ) + λ(ρ) ≥ 2µ(ρ) + 3λ(ρ)

3
≥ ν

3
µ(ρ),

thus,

∣∣∣∣∇(µ(ρ)
√
ρ

)∣∣∣∣ ≤ C ∣∣µ′(ρ)∇√ρ
∣∣+

∣∣∣∣ µ(ρ)

2ρ3/2
∇ρ
∣∣∣∣

≤ C
∣∣µ′(ρ)∇√ρ

∣∣+ Cν

∣∣∣∣2µ′(ρ)ρ

2ρ3/2
∇ρ
∣∣∣∣

≤ C
∣∣µ′(ρ)∇√ρ

∣∣+ Cν
∣∣2µ′(ρ)∇√ρ| ≤ Cν |µ′(ρ)∇√ρ

∣∣ .
Therefore, estimate (3.34) yields:

∣∣∣∣∣∣∣∣∇(µ(ρn)
√
ρn

)∣∣∣∣∣∣∣∣
L∞(0,T ;L2(Ω))

≤ C. (3.49)

Again, (3.10) gives

µ(ρ)
√
ρ
≤

{
Cρ

1
6

+ 1
3ν if ρ ≥ 1,

Cρ
1
6

+ ν
3 if ρ ≤ 1.

(3.50)

So there exists a constant s ≤ 1, such that ρ
s
6

+ s
3ν ≤ ρ1/2 ∈ L∞(0, T ;L2(Ω)), thus

(
µ(ρn)
√
ρn

)s
∈ L∞(0, T ;L2(Ω)). (3.51)

Moreover,

∣∣∣∣∇(µ(ρn)
√
ρn

)s
1µ(ρn)/

√
ρn≥1

∣∣∣∣ =

∣∣∣∣∣
(
µ(ρn)
√
ρn

)s−1

∇
(
µ(ρn)
√
ρn

)
1µ(ρn)/

√
ρn≥1

∣∣∣∣∣ ≤
∣∣∣∣∇(µ(ρn)

√
ρn

)∣∣∣∣ ,
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since s − 1 ≤ 0. By inequality (3.5), µ(ρ) ≥ νρ, we see that µ(ρ) ≥ √ρ if and only

if
√
ρ = 1

ν ≥ 1, therefore, the set {ρn|µ(ρn)√
ρn
≥ 1} coincides with the set {ρn|ρn ≥ 1}.

Thus, (µ(ρn)/
√
ρn)s1ρn≥1 is bounded in L∞(0, T ;H1(Ω)) by (3.49) and (3.51).

Sobolev embedding implies that

(
µ(ρn)
√
ρn

)s1
1ρn≥1 ∈ L∞(0, T ;L2(Ω)),

for all s1 ∈ (s, 3s). As long as 3s ≤ 1 we can apply the same argument to 3s and
will eventually obtain

(
µ(ρn)
√
ρn

)
1ρn≥1 ∈ L∞(0, T ;L2(Ω)).

Together with (3.49),

(
µ(ρn)
√
ρn

)
1ρn≥1 ∈ L∞(0, T ;H1(Ω)),

and Sobolev embedding gives (µ(ρn)/
√
ρn)1ρn≥1 ∈ L∞(0, T ;L6(Ω)).

Remark 3.17. In particular, if µ(ρn) = νρn, Lemma 3.16 follows directly from
Lemma 3.12, since we have µ(ρn)/

√
ρn = ν

√
ρn.

We are now able to prove the compactness of the momentum.

Lemma 3.18. Up to a subsequence, the momentum mn = ρnvn converges strongly
to m(x, t) in L2(0, T ;Lploc(Ω)) for all p ∈ [1, 3/2). In particular, up to a subsequence,
mn converges almost everywhere to m.

Remark 3.19. We can already define v(x, t) = m(x, t)/ρ(x, t) outside the vacuum
set, but we do not yet know if m(x, t) is zero on the vacuum set.

Proof of Lemma 3.18. As shown in Lemma 3.12,
√
ρn is bounded in L∞(0, T ;L6(Ω))

in both dimensions. Thus, by Hölder’s Inequality (Theorem A.31),

ρnvn =
√
ρn
√
ρnvn ∈ L∞(0, T ;Lq(Ω)) for all q ∈ [1, 3/2], (3.52)

since
√
ρnvn is bounded in L∞(0, T ;L2(Ω)) by estimate (3.31). We rewrite the ith

component of the gradient of ρnvn in index notation:
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

∂i(ρnunj ) = ρn∂ivnj + vnj∂iρn =
√
ρn
√
ρn∂ivnj + vnj · 2

√
ρn∂i
√
ρn

Using the estimates (3.36), (3.37) and (3.31), the second term is bounded in
L∞(0, T ;L1(Ω)), and the first term is bounded in L2(0, T ;Lq(Ω)) ∀q ∈ [1, 3/2], again
by Hölder’s Inequality. Thus, we have

∇(ρnvn) is bounded in L2(0, T ;L1(Ω)).

In particular, with estimate (3.52),

ρnvn is bounded in L2(0, T ;W 1,1(Ω)).

In order to use Aubin’s Lemma (Lemma A.12), we have to show that

∂t(ρnvn) is bounded in L∞(0, T ;W−2,4/3(Ω)).

Then we obtain compactness of the sequence ρnvn in L2(0, T ;Lploc(Ω)) for all
p ∈ [1, 3/2), since W 1,1(Ω) ↪→↪→ Lq(Ω), ∀ q ∈ [1, 3/2), by Sobolev’s embedding
Theorem (Theorem A.9). If Ω is the whole space, the compact embedding holds
true for every compact subset K ⊂ Ω. But also Lq̃(Ω) ↪→ W−2,4/3(Ω) ∀ q̃ ∈ [1,∞),
since W q̃+2(Ω) ↪→W 0,4/3(Ω) by Sobolev’s embedding theorem, see the definition of
Sobolev spaces with negative exponents as spaces of distributional derivatives (Def-
inition A.10).

We will use the momentum equation (3.2). With (3.31) and (3.32) we obtain:

div(
√
ρnvn ⊗

√
ρnvn) ∈ L∞(0, T ;W−1,1(Ω)), (3.53)

∇ργn ∈ L∞(0, T ;W−1,1(Ω)). (3.54)

We have to show that the diffusion terms div(2µ(ρn)D(vn)) and ∇(λ(ρn)divvn) are
bounded in L∞(0, T ;W−2,4/3(Ω)). Therefore, we rewrite the term
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µ(ρn)∇vn = ∇(µ(ρn)vn)− vn∇µ(ρn)

= ∇
(
µ(ρn)
√
ρn

√
ρnvn

)
−√ρnvn

∇µ(ρn)
√
ρn

= ∇
(
µ(ρn)
√
ρn

√
ρnvn

)
− 2
√
ρnvnµ

′(ρn)∇√ρn,

and proceed similarly with the terms involving λ(ρn) and ∇vTn . The second term
is bounded in L∞(0, T ;L1(Ω)) due to Lemma 3.14 and estimate (3.34), by Hölder’s
inequality (Theorem A.31). The first term is bounded in L∞(0, T ;W−1,3/2(Ω)) due
to estimate (3.31), Lemma 3.14 and Hölder’s inequality.
Thus, both terms contributing to µ(ρn)∇vn are bounded in L∞(0, T ;W−1,4/3(Ω)),
since L1(Ω) ↪→W−1,4/3(Ω) (because W 1,1(Ω) ↪→W 0,4/3(Ω) by Sobolev’s embedding
theorem) and also W−1,3/2(Ω) ↪→W−1,4/3(Ω) (since W 0,3/2(Ω) ↪→W 0,4/3(Ω)). Sim-
ilarly, we conclude that µ(ρn)D(vn) and λ(ρn)divvn are bounded in
L∞(0, T ;W−1,4/3(Ω)). Since W−1,1(Ω) ↪→ W−2,4/3(Ω) (Sobolev’s embedding theo-
rem yields W 1,1(Ω) ↪→ W 0,4/3(Ω)), also the terms (3.53) and (3.54) are bounded in
L∞(0, T ;W−2,4/3(Ω)). Therefore, the momentum equation (3.2) gives
∂t(ρnvn) ∈ L∞(0, T ;W−2,4/3(Ω)). Application of Aubin’s Lemma to

W 1,1
loc (Ω) ↪→↪→ Lploc(Ω ↪→ W

−2,4/3
loc (Ω) gives the strong convergence of ρnvn = mn

to m in L2(0, T ;Lploc(Ω)) ∀p ∈ [1, 3/2). In particular, by Theorem A.21, we have a
subsequence which converges a.e. to m.

Step 5. Convergence of
√
ρnvn

Lemma 3.20. The sequence
√
ρnvn converges strongly in L2

loc((0, T )×Ω) to m/
√
ρ,

which is defined to be zero when m = 0.
In particular, we have m(x, t) = 0 a.e. on {ρ(x, t) = 0} and there exists a v(x, t)
such that m(x, t) = ρ(x, t)v(x, t) and

ρnvn → ρv strongly in L2(0, T ;Lploc(Ω)), ∀p ∈ [1, 3/2),
√
ρnvn →

√
ρv strongly in L2

loc((0, T )× Ω).

Remark 3.21. Note that v is not uniquely defined on the vacuum set.

Proof. Since mn/
√
ρn :=

√
ρnvn is bounded in L∞(0, T ;L2(Ω)) uniformly in n by

estimate (3.31), Fatou’s Lemma (Lemma A.23) yields

∫
Ω

lim inf
n→∞

m2
n

ρn
dx <∞.
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

Thus, m(x, t) = 0 a.e. on {ρ(x, t) = 0}. This allows us to define the limit velocity
v(x, t) by v(x, t) = m(x, t)/ρ(x, t) when ρ(x, t) 6= 0 and by v(x, t) = 0 when ρ(x, t) =
0. In particular, we have

m(x, t) = v(x, t)ρ(x, t),

and ∫
Ω

m2

ρ
dx =

∫
Ω
ρ|v|2 dx <∞.

By Fatou’s lemma and Lemma 3.14,

∫
Ω
ρ|v|2 ln(1 + |v|2) dx ≤

∫
Ω

lim inf
n→∞

ρn|vn|2 ln(1 + |vn|2) dx

≤ lim inf
n→∞

∫
Ω
ρn|vn|2 ln(1 + |vn|2) dx,

also ρ|v|2 ln(1 + |v|2) is in L∞(0, T ;L1(Ω)).
Lemma 3.18 gives the strong convergence of ρnvn to m(x, t) in L2(0, T ;Lploc(Ω)) for
all p ∈ [1, 3/2). It remains to prove the strong convergence of

√
ρnvn to

√
ρv in

L2
loc((0, T )× Ω).

Since mn and ρn converge almost everywhere, by Lemma 3.18 and Lemma 3.12,√
ρnvn converges almost everywhere to

√
ρv in {ρ(x, t) 6= 0}. In particular,√

ρnvn1|vn|≤M converges almost everywhere in {ρ(x, t) 6= 0} to
√
ρv1|v|≤M , for some

constant M > 0. In {ρ(x, t) = 0}, we have
√
ρnvn1|vn|≤M ≤ M

√
ρn → 0 almost

everywhere.

We have

∫ T

0

∫
Ω
|√ρnvn−

√
ρv|2 dx dt ≤

∫ T

0

∫
Ω
|√ρnvn1|vn|≤M −

√
ρv1|v|≤M |2 dx dt

(3.55)

+ 2

∫ T

0

∫
Ω
|√ρnvn1|vn|≥M |

2 dx dt+ 2

∫ T

0

∫
Ω
|√ρv1|v|≥M |2 dx dt.

Since |√ρnvn1|vn|≤M | ≤
√
ρnM , where

√
ρn ∈ L∞(0, T ;L2(Ω)) is integrable for

every n, we can apply the Dominated Convergence Theorem (Theorem A.20) and
the convergence almost everywhere of

√
ρnvn1|vn|≤M gives:
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∫ T

0

∫
Ω
|√ρnvn1|vn|≤M −

√
ρv1|v|≤M |2 dx dt→ 0.

Furthermore, we have

∫ T

0

∫
Ω
|√ρnvn1|vn|≥M |

2 dx dt ≤ 1

ln(1 +M2)

∫ T

0

∫
Ω
ρnv

2
n ln(1 + |vn|2) dx dt,

and

∫ T

0

∫
Ω
|√ρv1|v|≥M |2 dx dt ≤ 1

ln(1 +M2)

∫ T

0

∫
Ω
ρv2 ln(1 + |v|2) dx dt,

which applied to the inequality (3.55) yields:

lim sup
n→∞

∫ T

0

∫
Ω
|√ρnvn−

√
ρv|2 dx dt ≤ C

ln(1 +M2)
, M > 0.

The strong convergence in L2
loc((0, T )× Ω) follows by taking M →∞.

Step 6. Convergence of the diffusion terms

Lemma 3.22. We have

µ(ρn)∇vn → µ(ρ)∇v in D′((0, T )× Ω),

µ(ρn)∇vTn → µ(ρ)∇vT in D′((0, T )× Ω),

λ(ρn)div vn → λ(ρ)div v in D′((0, T )× Ω).

Proof. Let ψ ∈ D((0, T )× Ω) be a test function, then

∫ T

0

∫
Ω
µ(ρn)∇vnψ dx dt = −

∫ T

0

∫
Ω
µ(ρn)vn∇ψ dx dt−

∫ T

0

∫
Ω
∇µ(ρn)vnψ dx dt

= −
∫ T

0

∫
Ω

µ(ρn)
√
ρn

√
ρnvn∇ψ dx dt−

∫ T

0

∫
Ω
∇ρn

µ′(ρn)
√
ρn

√
ρnvnψ dx dt

As shown in Lemma 3.16, µ(ρn)√
ρn

is bounded in L∞(0, T ;L6(Ω)). Since, by estimate

(3.50), there exists a constant s ≤ 1 such that
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3. Stability of weak solutions to the barotropic compressible Navier-Stokes equations

(
µ(ρn)
√
ρn

)s
≤ C√ρn,

µ(ρn)√
ρn

is a continuous function of
√
ρn and, therefore, converges almost everywhere

to µ(ρ)√
ρ , which is defined to be zero on the vacuum set. We can apply de la Vallée-

Poussin’s Theorem (Theorem A.18), with G(t) := t3, then the family {|µ(ρn)√
ρn
|2}n∈N

is uniformly integrable. Thus, Vitali’s Theorem (Theorem A.19) gives the strong
convergence in L2

loc((0, T ) × Ω). Also
√
ρnvn converges strongly in L2

loc((0, T ) × Ω)
by Lemma 3.20. Since the scalar product of two strongly convergent sequences
converges strongly to the product of the limits, the first term converges to

∫ T

0

∫
Ω

µ(ρn)
√
ρn

√
ρnvn∇ψ dxdt.

In order to prove the convergence of the second term, we define

∇F (ρn) :=
µ′(ρn)
√
ρn
∇ρn,

with F ′ := µ′(ρn)/
√
ρn = 1

2

√
ρnφ

′(ρn), as defined in the equations (2.3) and (2.4).
Then,

∫
Ω
|∇F (ρn)|2 dx =

∫
Ω

1

4
ρn|∇φ(ρn)|2 dx ≤ C,

by estimate (3.16). Inequality (3.10) yields

µ′(ρn) ≤ Cρ−1/2+ν/3
n ,

when ρn ≤ 1 in either dimension. Thus, F (ρn) ≤ Cρ
ν/3
n . And for large ρn ≥ 1, we

see, exactly as in the proof of Lemma 3.16, that

(F (ρn))s ≤ ρ1/2
n ,

for some s ≤ 1 and that F (ρn) ∈ L∞(0, T ;L6(Ω)). Also, F (ρn) is a continuous
function and, thus, F (ρn) converges almost everywhere to F (ρ). We can apply de la
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Vallée-Poussin’s Theorem with G(t) := t3 and Vitali’s Theorem to F (ρn) to obtain
the strong converge of F (ρn) to F (ρ) in L2

loc((0, T )× Ω).

Since, in particular, ∇F (ρn) = 2µ′(ρn)∇√ρn ∈ L2((0, T ) × Ω) by (3.34), it follows
that:

∇F (ρn) ⇀ ∇F (ρ) weakly in L2
loc((0, T )× Ω).

Since the product of a strongly,
√
ρnvn converges strongly in L2

loc((0, T ) × Ω) by
Lemma 3.20, and a weakly convergent sequence converges weakly to the product of
the limits, see Theorem A.14,

∫ T

0

∫
Ω
∇ρn

µ′(ρn)
√
ρn

√
ρnvnψ dx dt

is convergent, too. This yields the convergence of µ(ρn)∇vn to µ(ρ)∇v in
D′((0, T )× Ω).

A similar argument holds for µ(ρn)∇vT and λ(ρn)divvn, since |λ(ρn)| ≤ Cµ(ρn) and
|λ′(ρn)| ≤ Cµ′(ρn), by Remark .

We have proven the stability of weak solutions for the barotropic compressible
Navier-Stokes equations with a pressure law p(ρ) = ργ , γ > 1, in dimension 2 and
3, since we have shown the desired convergence of the sequence of weak solutions
(ρn,
√
ρnvn)n∈N to (ρ,

√
ρv).
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A. Appendix

For the convenience of the reader, we recall some definitions and theorems which
are used in this thesis.

Definition A.1. The topological dual space of a Banach space X is defined by
X ′ := {f : X → R | f is linear and continuous}. We write the duality product
〈f, u〉X′ instead of f(u).
The weak topology on X is the initial topology with respect to X ′.

Definition A.2. We denote by D(Ω) := C∞0 (Ω) the space of all functions with
compact support in Ω that have continuous derivatives of all orders and call functions
φ ∈ D(Ω) test functions.

Definition A.3. Suppose f ∈ L1
loc(Ω), and α = (α1, ..., αd) is a multi-index. We

say g ∈ L1
loc(Ω) is the αth- weak derivative of f , Dαf = g, provided that

∫
Ω
fDαφ dx = (−1)|α|

∫
Ω
gφ dx,

for all test functions φ ∈ D(Ω).

Definition A.4. The space of distributions is defined as the dual space of D(Ω),
which we will denote by D′(Ω). A regular distribution T (·) is a distribution which
is generated by a locally integrable function f ∈ L1

loc(Ω). It has a representation

Tf (φ) =

∫
Ω
f(x)φ(x) dx.

We denote the distributions by the duality product,

〈T, φ〉 := T (φ).

The strong convergence in D′(Ω) is defined as follows: A sequence (Tn)n∈N(·) of
distributions converges to a T ∈ D′(Ω), if for every test function φ ∈ D:

lim
n→∞

〈Tn, φ〉 = 〈T, φ〉.
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Definition A.5. Let 1 ≤ p ≤ ∞ and k be a nonnegative integer. The Sobolev space
W k,p(Ω) consists of all locally integrable functions f : Ω → R such that for each
multi-index α = (α1, ..., αd), with |α| ≤ k, Dαf exists in the weak (or distributional)
sense and belongs to Lp(Ω).
We usually write Hk(Ω) for W k,2(Ω) and H0(Ω) = L2(Ω).
We define the norm on W k,p(Ω) as follows:

||f ||Wk,p(Ω) :=


( ∑
|α|≤k

∫
Ω |D

αf |p dx

)1/p

if 1 ≤ p <∞,∑
|α|≤k

ess supΩ |Dαf | if p =∞.

The space W k,p(Ω) is a Banach space for every k ∈ N0, 1 ≤ p ≤ ∞ and a Hilbert
space for k ∈ N0, p = 2, [14]. The scalar product is then given by

(u, v)Hk =
∑
|α|≤k

(Dαu,Dαv)L2 .

Remark A.6. Actually, the Sobolev spaces contain equivalence classes of functions
which coincide outside of Lebesgue sets of measure zero.

Definition A.7. We define the Sobolev space W k,p
0 (Ω) as the closure of C∞0 (Ω)

with respect to the norm || · ||Wk,p(Ω).

Definition A.8. Let X,Y be Banach spaces, X ⊂ Y . We say X is compactly
embedded in Y , provided that

� the embedding is continuous, i.e. ||x||Y ≤ C||x||X ∀x ∈ X, and,

� each bounded sequence in X is precompact in Y .

The notations X ↪→ Y and X ↪→↪→ Y stand for continuous and compact embedding,
respectively.

Theorem A.9 (Sobolev embedding theorem, [2]). Let Ω ⊂ Rd be a bounded domain
with ∂Ω ∈ C1 (it suffices to have a Lipschitz boundary) or the whole space Rd and
1 ≤ p, q <∞, k,m ∈ N0 with m > k.
The embedding Wm,p(Ω) ↪→W k,q(Ω) is continuous if

m− d

p
≥ k − d

q
.

The embedding is compact in the case when Ω is not the whole space if the inequality
is strict.
Both propositions hold also true for Wm,p

0 (Ω) for any bounded domain Ω.

92



We want to extend the natural property, that for a function in W k,p(Ω), k ≥ 1, its
distributional derivative is in W k−1,p(Ω). Therefore, we define:

Definition A.10. For a function f ∈W k,p(Ω), k ∈ Z, we define the spaceW k−1,p(Ω)
as the space consisting of all distributional derivatives of f of order one.

If we regard the space W k,p(Ω), k ∈ N0 as a closed subspace of the Cartesian product

of Lp(Ω) spaces, i.e. let N =
∑

0≤|α|≤k 1 and let LpN (Ω) :=
N∏
j=1

Lp(Ω), with the norm

of v = (v1, ..., vN ) ∈ LpN (Ω) given by

||v||LpN (Ω) :=


(

N∑
j=1
||vj ||pLp

)1/p

if 1 ≤ p <∞,

max
1≤j≤N

||vj ||L∞ if p =∞,

then W k,p(Ω) is a closed subspace of LpN , [1]. We can generally define the space
W k−m,p(Ω) for k,m ∈ N0, by:

W k−m,p(Ω) := {T ∈ D′(Ω) |

T (φ) =
∑

0≤|α|≤m

(−1)|α|
∫

Ω
vαD

αφ dx, ∀ φ ∈ D(Ω), v ∈ LpN},

In particular, the space W−k,p(Ω) is isometrically isomorphic to the dual space of

W k,q
0 (Ω), k ∈ N0, 1 ≤ q < ∞, where q is the conjugate index of p, 1

p + 1
q = 1, [1].

The space W−k,p(Ω) is a Banach space and the embedding W k,p(Ω) ↪→W k−m,p(Ω)
is continuous.

For parabolic differential equations we need to define Sobolev spaces in space and
time.

Definition A.11. Let B be a Banach space and T > 0.

� The space Ck([0, T ];B) is the set of all functions u : [0, T ]→ B, whose first k
derivatives exist and are continuous. The norm is given by:

||u||Ck([0,T ];B) =

k∑
i=0

max
0≤t≤T

||Diu(t)||B.
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� The space Lp(0, T ;B(Ω)) is the set of all (equivalence classes of) measurable
functions u : (0, T )→ B such that:

||u||Lp(0,T ;B(Ω)) :=


(∫ T

0 ||u(t)||pB dt
)1/p

<∞, if 1 ≤ p <∞,
ess sup0<t<T ||u(t)||B <∞, if p =∞.

These spaces are Banach spaces. If H is a Hilbert space, then L2(0, T ;H(Ω)) is also
a Hilbert space with respect to the scalar product

(u, v)L2(0,T ;H(Ω)) =

∫ T

0
(u(t), v(t))H dt,

for u, v ∈ L2(0, T ;H(Ω)).

Lemma A.12 (Aubin’s Lemma, [4], [30]). Let X,B, Y be Banach spaces with X ⊆
B ⊆ Y . Let U be a set of functions such that U is bounded in Lp(0, T ;X(Ω)) and
∂tU = {∂tu | u ∈ U} is bounded in Lr(0, T ;Y (Ω)), for 1 ≤ p, r ≤ +∞, and

X ↪→↪→ B, B ↪→ Y.

If p < +∞, then the embedding of U in Lp(0, T ;B(Ω)) is compact. If p = +∞ and
r > 1, the embedding of U in C([0, T ];B) is compact.

Definition A.13. Strong convergence of a sequence in a Banach space X, denoted
un → u, is defined as the convergence in the topology on X. In particular, if the
topology on X is the norm topology, we have

un → u if ||un − u||X → 0, n→∞.

The weak convergence of a sequence in X is the convergence in the weak topology
on X. We write

un ⇀ u for n→∞.

Equivalently, we can say (un)n∈N ⊂ X converges weakly to u ∈ X, if for all f ∈ X ′,

〈f, un〉X′ → 〈f, u〉X′ for n→∞.

If H is a Hilbert space, the duality product is the scalar product on H.
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Theorem A.14 ([28]). The product of two strongly convergent sequences converges
strongly to the product of the limits. The product of a weakly and a strongly conver-
gent sequence converges weakly to the product of the limits.

Theorem A.15 ([33]). Every bounded sequence in a Hilbert space contains a weakly
convergent subsequence.

Definition A.16. A sequence of functions fn converges almost everywhere to a
function f in a measurable space X if fn(x) → f(x) for all x ∈ Y , where Y is a
measurable subspace of X such that λ(X \Y ) = 0, where λ is the Lebesgue measure.

Definition A.17. A collection of random variables {Xα}α∈A is called uniformly
integrable if

lim
M→∞

sup
α∈A

E[|Xα|1|Xα|>M ] = 0,

where E(X) is the mean value of X in A,

E(X) =

∫
A

X dλ.

Theorem A.18 (De la Vallée-Poussin theorem, [15]). A family of random variables
{Xα}α∈A is uniformly integrable if and only if there exists some increasing non-
negative function G(t), such that

lim
t→∞

G(t)

t
=∞,

and E[G(|Xα|)] ≤ C, for some constant C and for all α ∈ A.

Theorem A.19 (Vitali’s theorem, [16]). Let (X,F , µ) be a positive measure space
and {fn}n∈N ∈ Lp(X). If

µ(X) <∞,
{|fn|p}n∈N is uniformly integrable,

fn(x)→ f(x) a.e. as n→∞, and

|f(x)| <∞ a.e.,

then f ∈ Lp(X) and fn converges strongly to f in Lp(X).
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Theorem A.20 (Dominated convergence theorem, [17]). Let p ∈ [1,∞) and fn be
a sequence of functions in Lp(Ω). If fn → f a.e. in Ω for some measurable function
f and there exists a nonnegative function g ∈ Lp(Ω) such that |fn(x)| ≤ g(x) a.e.
in Ω, then f ∈ Lp(Ω) and fn → f in Lp(Ω).

The partial converse is also true:

Theorem A.21 ([11]). Let fn be a sequence of functions in Lp(Ω) and f ∈ Lp(Ω)
such that fn → f in Lp(Ω). Then there exists a subsequence fnk such that fnk → f
a.e. in Ω and |fnk(x)| ≤ g(x) ∀ k ∈ N a.e. in Ω with g ∈ Lp(Ω).

Theorem A.22 (Gauß’ Theorem or Divergence Theorem, [3]). Let Ω ⊂ Rd be an
open, bounded set with ∂Ω ∈ C1 and outer normal vector n, which is defined on ∂Ω.
Let f ∈ C1(Ω;Rd) be a vector valued function. Then

∫
Ω

div f dx =

∫
∂Ω
f · n ds.

Lemma A.23 (Fatou’s Lemma [17]). For every sequence of nonnegative, measurable
functions fn : Ω→ R it holds:

∫
Ω

lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫
Ω
fn(x) dx.

Theorem A.24 (Localization theorem). Let f : Ω→ R be a vector valued function,
which is continuous on the open set Ω ⊂ Rd and let B be an arbitrary subset of Ω,
then

∫
B

f(x) dx = 0, ∀ B ⊂ Ω,

implies that f(x) = 0, ∀ x ∈ Ω.

Definition A.25. The Levi-Civita symbol, or Epsilon tensor, represents a collection
of numbers. It has indices 1, ..., d, for the space dimension d. It is defined by its
antisymmetric properties:

� ε12...d = 1,

� εij...u...v... = − εij...v...u....

The second property yields that the Epsilon tensor is zero if two indices are equal,

εij...v...v... = 0.
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Using the antisymmetric property of the tensor, we can easily rewrite the ith com-
ponent of the outer product of two vectors v, u ∈ R3 in terms of ε,

(v × u)i =
3∑
j=1

3∑
k=1

εijkvjuk.

Definition A.26 (Einstein’s summing convention). In any expression in which an
index appears twice in a term, the expression is assumed to be summed over all
possible values of this index.

Example A.27. The ith component of the outer product can be written as

(v × u)i = εijkvjuk,

by Einstein’s summing convention.

Theorem A.28 (Gagliardo-Nirenberg inequality). Let u belong to Lq(Rd) and its
derivatives of order m, Dmu, belong to Lr, 1 ≤ q, r ≤ ∞. The following inequality
holds for the derivatives Dju, 0 ≤ j < m,

∣∣∣∣Dju
∣∣∣∣
Lp
≤ C ||Dmu||αLr ||u||

1−α
Lq ,

where

1

p
=
j

d
+ α

(
1

r
− m

d

)
+ (1− α)

1

q
,

for all α in the interval

j

m
≤ α ≤ 1.

For a bounded domain Ω ⊂ Rd with smooth boundary (i.e. ∂Ω ∈ C1) the result is
true if we add the term C ||u||Lq̃(Ω) , q̃ > 0 to the right-hand side of the inequality.
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Remark A.29. This remark is used to prove the inequality claimed in the proof of
Theorem 2.18, namely

||∇hn||L2(0,T ;(L3(Ω))2)

≤ ||∇hn||2/3L∞(0,T ;(L2(Ω))2)
·
∣∣∣∣∇2hn

∣∣∣∣1/3
L2(0,T ;(L2(Ω))4)

+ C ||∇hn||L∞(0,T ;(L2(Ω))2) .

We will apply the Gagliardo-Nirenberg inequality (Theorem A.28) to u(x) = ∇hn.
We have ∇hn ∈ L∞(0, T ; (L2(Ω))2) and ∇2hn ∈ L2(0, T ; (L2(Ω))4), therefore, the
dimension d = 2, q = 2, r = 2 and m = 1. We want to bound ∇hn, thus, we set
j = 0. Then 0 = j < m = 1. The constant α must be in the interval,

0 ≤ α ≤ 1,

we will take α = 1/3. Therefore,

1

p
= 0 +

1

3

(
1

2
− 1

2

)
+

2

3
· 1

2
,

yields p = 3. The Gagliardo-Nirenberg inequality reads as

||∇hn||(L3(Ω))2 ≤ ||∇hn||
2/3
(L2(Ω))2

·
∣∣∣∣∇2hn

∣∣∣∣1/3
(L2(Ω))4

+ C ||∇hn||(L2(Ω))2 .

The last term is necessary since we have a bounded domain Ω ⊂ Rd (which is as-
sumed to have a smooth boundary), where we chose q̃ = 2.

If we now use the inequality derived above for the hyperbolic Sobolev space L2(0, T ; (L3(Ω))2),
we obtain:

||∇hn||L2(0,T ;(L3(Ω))2)

≤ ||∇hn||2/3L∞(0,T ;(L2(Ω))2)
·
∣∣∣∣∇2hn

∣∣∣∣1/3
L2(0,T ;(L2(Ω))4)

+ C ||∇hn||L∞(0,T ;(L2(Ω))2) .

Definition A.30. The indicator function of a subset B of a set X is defined as

1B(x) :=

{
1 if x ∈ B,
0 if x /∈ B.
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Theorem A.31 (Hölder’s Inequality, [14]). Assume 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1.
Let u ∈ Lp(Ω), v ∈ Lq(Ω), then

||uv||L1(Ω) ≤ ||u||Lp(Ω)||v||Lq(Ω).

Corollary A.32 (Lyapunov’s Inequality, [14]). Assume 1 ≤ s ≤ r ≤ t ≤ ∞ and

1

r
=
θ

s
+

1− θ
t

.

Suppose u ∈ Ls(Ω) ∩ Lt(Ω). Then u ∈ Lr(Ω) and

||u||Lr(Ω) ≤ ||u||θLs(Ω)||u||
1−θ
Lt(Ω).

Remark A.33. Hölder’s inequality can be generalized for p, q, r with

1

p
=

1

q
+

1

r
.

Then it holds for u ∈ Lq, v ∈ Lr that

||uv||Lp(Ω) = |||uv|p||1/p
L1(Ω)

≤ |||u|p||1/p
Lq/p(Ω)

|||v|p||1/p
Lr/p(Ω)

= ||u||Lq(Ω)||v||Lr(Ω).
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