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Kurzfassung

Das Ziel dieses Diplomprojekts ist die Positionsbestimmung einzelner Atome
in einer Dipolfalle durch die Implementierung eines Echtzeit-Algorithmus.
Das Fluoreszenz-Signal der Atome, das von einer Electron Multiplying Charge-
Coupled Device (EMCCD) Kamera aufgenommen wird, wird dabei von
hoch-performanter Hardware bestehend aus einem Field-Programmable Gate
Array (FGPA) und einem Real-Time (RT) System verarbeitet. Der Algo-
rithmus ist für schnelle Datenverarbeitung optimiert, um eine Rückkop-
plung auf die Positionen der Atome zu ermöglichen, und besteht aus zwei
Teilen. In einem ersten Schritt wird eine schnelle aber nur ungenaue Po-
sitionsbestimmung mittels einer Methode, die sich der Abschätzung der
trigonometrischen Momente bedient, vorgenommen. Diese ungefähre An-
näherung wird in einem zweiten Schritt als Startwert für einen präziseren
Levenberg-Marquardt-Fit-Algorithmus verwendet. Erste Messungen zeigen
sowohl zufriedenstellende Performanz als auch ausreichende Genauigkeit.

iii



Abstract

The aim of the project described in this thesis is the positioning of single
atoms in a dipole trap by the implementation of a real-time algorithm. The
fluorescence signal of the atoms which is captured by an Electron Multi-
plying Charge-Coupled Device (EMCCD) camera, is processed by a combi-
nation of high performance hardware, including a field-programmable gate
array (FPGA) and a real-time (RT) system. The algorithm is optimized for
fast data processing to enable feedback on the positions of the atoms. The
implemented positioning algorithm consists of two parts. First, a rough and
fast position calculation is performed by a trigonometric moment estima-
tion method. These approximate positions are then used in a second step
as initial parameters for a more precise Levenberg-Marquardt fitting algo-
rithm. First measurements show that both performance and accuracy of the
positioning program are satisfying.

iv



Chapter 1

Introduction

The positioning program developed within the course of this thesis is de-
signed for a quantum optics experiment using single atoms [3][8][17]. Until
now, the positions of the atoms have been determined by post-processing
software. The aim of this project is to enable a real-time positioning in order
to use the data in a feedback loop. High performance hardware such as a
field programmable gate array (FPGA) and a real time (RT) controller are
used.

In the experiment which is based at the quantum technologies research
group at the University of Bonn, Rubidium atoms are cooled and trapped
in a magneto optical trap (MOT)[11] and overlapped with a dipole trap
to address single atoms inside the MOT [2]. The fluorescence caused by
the laser beams of the MOT is used for the positioning process. The signal
from the atoms is convoluted with the point spread function (PSF) of the
optics that transfers the light to an Electron Multiplying Charge-Coupled
Device (EMCCD) camera. The main mathematical task is to reconstruct
the original signal by a deconvolution procedure as described by Karski [4].

The signal from the camera is read out by the FPGA. The FPGA allows
fast computation but performance is restricted due to its limited resources.
Therefore only basic steps of the positioning algorithm are executed on the
FPGA. First, the data is separated in regions of interest (ROIs) which con-
tain atom fluorescence and background regions. For the ROIs, the number
of atoms are calculated.

This information is then transferred to the RT system which performs
the actual deconvolution for each ROI. The unknown source distribution is
modelled as a constant background with delta peaks representing the atom
fluorescence. This signal is convoluted with a 1D version of the PSF, the so
called line spread function (LSF). An analytical model of the LSF is obtained
by an iterative self-consistency loop [4].

Due to the form of the source distribution, a spike-convolution model
fitting as described by Li et al. [6] is used. The method of trigonometric

1



1. Introduction 2

moment estimation gives a fast but rough approximation of the positions.
The accuracy of the position of the atoms is then subsequently enhanced by
an iterative maximum likelihood estimation method using the Levenberg-
Marquardt fitting algorithm [10].

First measurements show satisfying results concerning both performance
and accuracy.

This work has been conducted in strong collaboration with National
Instruments (NI) in Munich and the quantum technologies research group
of the University of Bonn. It is part of a dissertation project which was
realised within the network Circuit and Cavity Quantum Electro-Dynamics
(CCQED) which is funded by the European Union through a Marie Curie
Action within the Seventh Framework Program Initial Training Network.



Chapter 2

Experimental setup

The positioning program acts on atoms within a magneto-optical trap (MOT)
overlapped with a strongly focused standing wave dipole trap. In this exper-
iment single rubidium atoms are used.

2.1 Magneto optical trap
The MOT represents the first stage in cooling and trapping of atoms. This
technique was first implemented in 1987 [11] and is today the basis for most
experiments with single trapped atoms.

The basic principle is the implementation of a velocity-dependent cooling
force and position-dependent restoring force to provide spatial confinement
of the atoms.

The cooling force can be realised by three mutually orthogonal pairs of
counterpropagating laser beams which are slightly red-detuned to the tran-
sition frequency of the trapped atoms. When an atom moves in the direction
of a laser source, the frequency of the beam is Doppler-shifted to the atomic
resonance. This leads to the absorption and subsequent spontaneous emis-
sion of photons. Because this process is anisotropic, the net force resulting
from the momentum transfer slows down the atoms and thus cools it. With
this techniques temperatures down to the Doppler limit 𝑇𝐷 = ~Γ

2𝑘𝑏
can be

achieved [18]. Here Γ denotes the line width of the optical transition, 𝑘𝑏 the
Boltzmann constant.

The spatial confinement is implemented by a quadrupole magnetic field
which is generated by a pair of anti-Helmholtz coils and circular polarized
laser beams. At the centre of the trap, the magnetic field is zero while it
increases linearly in all directions. If an atom moves out of the center, it can
only absorb a photon from the counter-propagating beams as the transition
gets in resonance due to the Zeeman effect (Fig. 2.1), leading to a confining
force.

3



2. Experimental setup 4

(a) (b)

Figure 2.1: (a) One-dimensional scheme of the origin of the spatial force
in a MOT. The magnetic field increases linearly with the z direction, lifting
the degeneracy of the sublevels of the excited state 𝐽 ′ = 1. If displaced far
enough, the 𝑚𝐽 = 0 → 𝑚𝐽′ = 1 transition comes into resonance. Due to se-
lection rules, only 𝜎+ photons are absorbed, resulting into a confining force.
(b) Three-dimensional scheme of a MOT, where three pairs of counterprop-
agating laser beams perform cooling and trapping.
Source: [4]

In the experiment described in this thesis, three laser beams which in-
tercept each other perpendicularly are used. The polarization of the original
beam 𝜎+ is shifted for one beam to 𝜎− by passing a 𝜆/4 plate two times.
The light is red-detuned by 10 MHz from the 𝐹 = 2 → 𝐹 ′ = 3 transition of
87Rb at a wavelength of 780 nm. The beams have a power of 20 µW and a
waist of 350 µm. An atom can be off-resonantly excited to the 𝐹 ′ = 2 state
from which it can decay to the 𝐹 = 2 or 𝐹 = 1 state, obeying the selection
rules. A repumper laser is used to excite the atom from the 𝐹 = 1 to the
𝐹 ′ = 2 state until it decays to the desired 𝐹 = 2 ground state.

2.2 Dipole trap
In the MOT used in the experiment the atoms are confined in a volume of
several cubic micrometers. In order to work with individual atoms, the MOT
is overlapped with a standing wave from a dipole trap. This one-dimensional
optical lattice consists of conservative trapping potentials [2].

In the classical Lorentz model, an electron is elastically bound to the
atom by the harmonic potential of the core. In an external monochromatic
electric field 𝐸(𝑟, 𝑡) = (𝐸0(𝑟)𝑒𝑥𝑝(−𝑖𝜔𝑡) + 𝑐.𝑐.)/2, the induced dipole mo-
ment of the atom 𝑑(𝑟, 𝑡) obeys the equation of motion

𝑑(𝑟, 𝑡) + Γ𝜔𝑑(𝑟, 𝑡) + 𝜔2
0𝑑(𝑟, 𝑡) = 𝑒2

𝑚𝑒
𝐸(𝑟, 𝑡), (2.1)
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where 𝜔0 is the resonance frequency of the oscillator and Γ𝜔 the energy
damping rate due to dipole radiation

Γ𝜔 = 𝑒2𝜔2

6𝜋𝜖0𝑚𝑒𝑐3 . (2.2)

Here 𝑚𝑒 is the rest mass and 𝑒 is the electric charge of the electron, and 𝜖0
is the vacuum permittivity. The stationary solution of Eq. 2.1 leads to the
complex-valued atomic polarizability

𝛼(𝜔) = 𝑒2

𝑚𝑒

1
𝜔2

0 − 𝜔2 − 𝑖𝜔Γ𝜔
, (2.3)

which connects the dipole moment with the electric field:

𝑑(𝑟, 𝑡) = 𝛼(𝜔)𝐸(𝑟, 𝑡). (2.4)

The dipole potential is derived from the time-averaged interaction energy
between the induced dipole and its driving field

𝑈𝑑𝑖𝑝(𝑟) = −1
2⟨𝑑(𝑟, 𝑡)𝐸(𝑟, 𝑡)⟩ = − 1

2𝜖0𝑐
𝑅𝑒{𝛼(𝜔)}𝐼(𝑟), (2.5)

with the field intensity 𝐼(𝑟) = 𝑐𝜖0|𝐸0(𝑟)|2/2. With the rotating wave ap-
proximation for far detuned light fields, terms rotating at high frequencies
with a time evolution determined by Δ = 𝜔 ±𝜔0 are neglected. These terms
average to zero over the evolution of the system due to Δ > Γ. Eq. 2.5 reads
then

𝑈𝑑𝑖𝑝(𝑟) = 3𝜋𝑐2

2𝜔3
0

Γ
Δ𝐼(𝑟). (2.6)

From Eq. 2.6, the basic properties of dipole trapping can be inferred. The
dipole potential scales linearly with the intensity of the light field and with
the reciprocal of detuning Δ. The direction of the dipole force 𝐹 𝑑𝑖𝑝(𝑟) =
−∇𝑈𝑑𝑖𝑝(𝑟) exerted on the atom depends on the sign of the detuning. Blue
detuning (Δ > 0) leads to a repulsive, red detuning (Δ < 0) to an attractive
force.

In order to realize a one-dimensional lattice, two counterpropagating,
linearly polarized Gaussian laser beams are used. For cylindrical coordinates
(𝑟 = (𝜌, 𝑧, 𝜑)), the standing wave intensity distribution can be approximated
by

𝐼(𝑟) ≈ 𝐼𝑚𝑎𝑥
𝑤2

0
𝑤2(𝑧)𝑒

− 2𝜌2

𝑤2(𝑧) 𝑐𝑜𝑠2(𝑘𝑧), (2.7)

with the peak intensity 𝐼𝑚𝑎𝑥 = 4𝑃/𝜋𝜔2
0 (where P is the power of a single

beam of the counterpropagating light), the beam radius 𝜔(𝑧) = 𝜔0
√︀

1 + 𝑧2/𝑧2
0

(where 𝜔0 is the waist radius and 𝑧0 the Rayleigh length) and wavenumber
𝑘 = 2𝜋

𝜔 .



2. Experimental setup 6

Together with Eq. 2.6, the dipole potential of a one-dimensional optical
lattice reads

𝑈𝑑𝑖𝑝(𝑟) = −𝑈0
𝑤2

0
𝑤2(𝑧)𝑒

− 2𝜌2

𝑤2(𝑧) 𝑐𝑜𝑠2(𝑘𝑧), (2.8)

with 𝑈0 denoting the maximum trap depth. The periodicity of the lattice is
half the laser wavelength. The dipole potential has a Gaussian profile pro-
viding a confinement determined by the waist radius 𝑤0.

A Titanium Sapphire laser at 860 nm is used to generate the dipole trap
in the experiment. The light is red-detuned from the Rubidium 𝐷2 line by 80
nm. The beam is split into two arms and passed through tapered amplifiers
to increase the power. The counterpropagating arms are then focused on one
spot with a waist size of 5 µm by using high numerical aperture lenses. To
control the frequencies of the two laser beams, Acousto Optic Modulators
(AOMs) are used.

2.3 Optical Setup and Hardware
The position of the atoms is acquired by the fluorescence signal of the atoms
inside the MOT. The direct and antipodal light which is retro-reflected is
collected by a high numerical aperture lens and guided through the optical
setup to the camera. From there, the camera signal is sent via a splitter box
to the positioning hardware as indicated in Fig. 2.2.

2.3.1 Camera

The camera used in the experiment is an iXon3897 manufactured by Andor
Technology1. The image sensor has 512 x 512 active pixels with the size of
16 x 16 µm each resulting in a 8.2 x 8.2 mm image area. In order to gain
the necessary sensitivity, an Electron Multiplying Charged Coupled Device
(EMCCD) is used. This chip is similar to an conventional CCD with the
extension of multiplication or gain registers to the readout register shown in
Fig. 2.3 (b). During read out the charges are transferred vertically line by
line to the readout register and then horizontally to the multiplication reg-
ister. Within these registers, the charges are amplified by impact ionization,
resulting in a higher signal.

The Andor iXon3897 EMCCD camera offers readout rates of 1, 3, 5 and
10 MHz. In the experiment 10 MHz are used. With this rate, each pixel is
digitalized to 14 bits.

The output signal of the camera is composed of three main parts. First,
the information of the data bus which consists of 16 bits, whereby only 14
bits are used in this project, determines the value of each pixel. Second, the

1http://www.andor.com
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Figure 2.2: Schematic view of the experimental setup. The fluorescence
light of the atoms in the dipole trap is guided through the optical setup to
the camera. The camera signal is sent via the splitter box to the FPGA and
the RT controller. The parameters for the processing of the camera data are
set by the PC.
Parts taken from [4][16][15][1]

pixel clock whose rising edge indicates at which point in time valid data is
available on the data bus. Third, the frame signal which is set to high at

(a) (b)

Figure 2.3: (a) The Andor iXon3897 EMCCD camera. (b) Structure of the
EMCCD chip. Figures are taken from [16]
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(a) (b)

(c) (d)

Figure 2.4: Oscilloscope images of the data being sent from the camera.
Channel 1 shows the pixel clock, channel 2 the frame signal and channel 3
one bit stream from the data bus. (a) A full sequence of sending an image.
The so-called overscanned pixels are sent even before the frame signal is
set to logic high, which represents invalid data. (b) Beginning of a sequence.
First the frame signal is set to high, then the pixel clock starts. (c) The rising
edge of the pixel clock indicates valid data on the data bus. (d) Between two
CCD lines a small pause occurs. The new line starts again with overscanned
pixels. Figures are taken from [15]

the start of an image and to low at the end. Figure 2.4 shows oscilloscope
images taken from the camera output.

2.3.2 FPGA Module and Real-time Controller

The camera signal is sent via the iXon Cable Splitter Box to a PXI-based
control system manufactured by National Instruments (NI)2. This control
system consists of a NI PXIe-7966R FPGA together with a NI 6581 digital
adapter module to provide high speed digital input/output channels and a

2http://www.ni.com/pxi/
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PXIe-8135 real-time (RT) controller, all assembled within a NI PXIe-1062Q
chassis. The RT controller communicates with the FPGA via the PXI bus
and with the PC holding the user interface via ethernet.

The NI PXIe-7966R FPGA module holds a Xilinx Virtex-5 FPGA chip.
For programming the FPGA, the LabVIEW FPGA add-on module for the
software development tool LabVIEW is used. The user-defined LabVIEW
source code is then auto-generated to the hardware description language
(HDL) which is a common programming language used to compile FPGA
designs.

2.3.3 Field-Programmable Gate Array

The FPGA card is a central part of the project as it provides the necessary
performance for the real-time positioning process. The basic principles of the
FPGA technology is briefly explained in the following. Detailed resources
on the specifications of the Virtex-5 can be found on the homepage of the
manufacturer3, the FPGA basics are described by Sauer [12], for example.

Field-Programmable Gate Arrays (FPGAs) are reconfigurable semicon-
ductor devices. Configurable Logic Blocks (CLBs) are used to define the
FPGA’s circuit behavior. Although different manufacturers use different
designs, in principle they consist of two basic components, lookup tables
(LUTs) and flip-flops. The logic of the FPGA program is implemented as
truth tables within the LUTs.

Data can be stored within LUT logic or the so-called Block RAM (BRAM).The
Virtex-5 FPGA chip offers individual BRAM slices of 36 kbits which can also
be used as a independent 18 kbits memory.

The FPGA’s routing matrix connects individual resources such as CLBs
and BRAMs. After compiling the user-defined HDL code, a bitfile is gener-
ated and downloaded which contains the corresponding parameters for the
switches of the routing matrix and for the user-definable resources.

In addition to these FPGA basic parts, higher level functionality has been
included in FPGA chips in recent years. For example, multiplying is very
resource intensive in combinatorial logic. Therefore, many FPGAs possess
prebuilt multiplier circuitry. Also, high speed I/O logic and even embedded
processors are combined within one chip.

3http://www.xilinx.com



Chapter 3

Algorithm

In the following, the algorithm which is used for the atom positioning as
described by Karski [4] is explained. In the first section, the mathematical
details of the two steps of the positioning process, namely the trigonometric
moment estimation and the Levenberg-Marquardt algorithm, is discussed.
In the second section, the implementation of the algorithm is explained.

3.1 Mathematical background
In this section, the mathematical background of the various steps of the
positioning algorithm are explained in detail. First, the positioning process is
characterized as a deconvolution problem. Then the determination of the line
spread function is explained. Finally the mathematics of the trigonometric
moment estimation and the Levenberg-Marquardt algorithm are shown.

3.1.1 The deconvolution problem

The positioning process is a deconvolution problem. The fluorescence signal
of the illuminated atoms is directed by the optical setup to the EMCCD
sensor of the camera. In mathematical terms, the signal of the atoms is
convoluted with the Point Spread Function (PSF). The 2D imaged intensity
distributions reads

𝐼2𝐷(𝑥, 𝑦) = (𝑃2𝐷 * 𝑂2𝐷)(𝑥, 𝑦) + 𝜖2𝐷(𝑥, 𝑦)

=
∫︁ ∞

−∞

∫︁ ∞

−∞
𝑃2𝐷(𝑥 − 𝑢, 𝑦 − 𝑣)𝑂2𝐷(𝑢, 𝑣)d𝑢d𝑣 + 𝜖2𝐷(𝑥, 𝑦),

(3.1)

where 𝑂2𝐷(𝑥, 𝑦) denotes the intensity distribution as originally emitted by
the atoms, 𝑃2𝐷(𝑥, 𝑦) the area normalized PSF and 𝜖2𝐷(𝑥, 𝑦) additive mea-
surement errors. 𝑃2𝐷(𝑥, 𝑦) contains the whole information about the optical
setup. The typical form of a PSF for a point source and a aberrations free

10



3. Algorithm 11

optical system with a circular entrance pupil is the well-known Airy pat-
tern, which is a central disc surrounded by concentric rings of successively
decreasing intensity.

With the camera used in the experiment, 512 x 512 equally spaced sam-
pling points can be taken from the imaged intensity distributions,

𝐼2𝐷[𝑥𝑖, 𝑦𝑗 ] = (𝑃2𝐷 * 𝑂2𝐷)[𝑥𝑖, 𝑦𝑗 ] + 𝜖2𝐷[𝑥𝑖, 𝑦𝑗 ]. (3.2)
The indices 𝑖 and 𝑗 denote the horizontal and vertical position of the pixel,
and squared brackets are used to indicate discrete functions in contrast to
continuous ones.

Only little information is obtained from the original signal 𝑂2𝐷(𝑥, 𝑦)
reading out the camera data. Furthermore, noise is added during the digital-
ization process. Therefore, deconvolution is inherently ill-conditioned leading
to a non-unique solution for a given measurement.

The problem of reconstructing an original signal from a discrete number
of sample points appears in various areas of signal and image processing. Dif-
ferent approaches can be found in literature, depending on used idealization
assumptions and available information [14].

For the positioning algorithm, the PSF is known in beforehand. It is
extracted from multiple measurements by an iterative process as described
in section 3.1.2. Furthermore, the original signal is modelled by a sum of
intensity spikes of a homogeneous background. This preconditions lead to
the method of parametric deconvolution which is explained in section 3.1.4.

A further simplification for the algorithm is applied as only the axial
positions of the atoms in the dipole trap are of interest for the experiment.
Therefore, Eq. 3.2 can be reduced to a 1D version by binning the acquired
intensity distribution vertically 𝐼[𝑥𝑖] =

∑︀
𝑗 𝐼2𝐷[𝑥𝑖, 𝑦𝑗 ], resulting in the con-

volution equation
𝐼[𝑥𝑖] = (𝐿 * 𝑆)[𝑥𝑖] + 𝜖[𝑥𝑖]. (3.3)

𝐿(𝑥) = (𝛿 * 𝑃2𝐷)(𝑥) is the area normalized Line Spread Function (LSF),
which is the 1D equivalent to the 2D PSF. 𝑆 is the simplified model of the
unknown source distribution

𝑆(𝑥) = 𝑎0 +
𝑁∑︁

𝑗=1
𝑎𝑗𝛿(𝑥 − 𝜉𝑗), (3.4)

where 𝑎0 denotes the constant background signal, 𝛿(𝑥) the Dirac delta func-
tion representing the intensity spikes, 𝑎𝑗 the fluorescence contributions, and
𝜉𝑗 the positions of N atoms.

3.1.2 Determining the line spread function

The knowledge of the LSF is central for the whole deconvolution process.
Therefore a method is applied to reconstruct the LSF with sub-pixel accu-
racy by using the intensity distributions of up to hundreds of single isolated
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atoms. The determination of the LSF is done once before the position mea-
surements and does not have to be repeated until the experimental setup
changes.

Let 𝐼𝑘[𝑥𝑘,𝑖] be 𝐾 binned intensity distributions with 𝑘 = 1, ..., 𝐾 of
images of one isolated atom each. They all contain one ROI of the same
width 𝑀Δ of 𝑀 pixels defined by the interval 𝐽𝑘 = {𝑥𝑘,1, ..., 𝑥𝑘,𝑀 } and Δ
being the pixel distance.

First, an area normalized model of the LSF 𝐿(𝑥) roughly approximates
the shape of the intensity distribution of a single atom with using a Gaus-
sian function, for example. The position of the isolated atom 𝜉𝑘 is then
determined by fitting 𝐿(𝑥) to each of the 𝐼𝑘[𝑥𝑘,𝑖] by minimizing

min
{𝑎𝑘,𝜉𝑘,𝑏𝑘}

𝑀∑︁
𝑖=1

{𝑎𝑘𝐿(𝑥𝑘,𝑖 − 𝜉𝑘) + 𝑏𝑘 − 𝐼𝑘[𝑥𝑘,𝑖]}2. (3.5)

Here, 𝑎𝑘 denotes the fluorescence contribution of the atom and 𝑏𝑘 the
background. The position 𝜉𝑘 can be anywhere in the interval 𝐽𝑐

𝑘 = [𝑥𝑘,1, 𝑥𝑘,𝑀 ].
An approximation of the continuously sampled representation 𝐼𝑘(𝑥) can be
written as

𝐼𝑘(𝑥) =
𝑀∑︁

𝑖=1
𝐼𝑘[𝑥𝑘,𝑖]𝑅Δ(𝑥 − 𝑥𝑘,𝑖) (3.6)

with the rectangular function

𝑅Δ(𝑥) =
{︃

1 𝑓𝑜𝑟 − Δ/2 < 𝑥 ≤ Δ/2
0 𝑒𝑙𝑠𝑒.

(3.7)

.
By superimposing 𝐼𝑘(𝑥), the mean single atom distribution in the interval

𝐽𝑐 = [−𝑑, 𝑑] with 𝑑 = 𝑚𝑖𝑛𝑘{𝜉𝑘 − 𝑥𝑘,1, 𝑥𝑘,𝑀 − 𝜉𝑘} is obtained and leads to

𝐼𝑥 = 1
𝐾

𝐾∑︁
𝑘=1

𝐼𝑘(𝑥 − 𝜉𝑘) (3.8)

𝐼(𝑥) can be sampled on a 𝑠 𝜖N>1 denser grid 𝐽 = {𝑥̃1, ..., 𝑥̃𝑠𝑀 } by cal-
culating 𝐼[𝑥̃𝑗 ] = 𝐼(𝑥̃𝑗). If the number of considered intensity distributions
𝐾 is bigger than the refining factor 𝑠, this procedure leads to an intensity
distribution with sub-pixel accuracy and noise is reduced by a factor of

√
𝐾.

This intensity distribution can then be used as a new initial model function,
restarting the procedure again. After some iterations of this self-consistency
loop, a precise analytical model of the LSF is obtained.

Applying this method shows that the signals of the single atoms take
the form of a central Gaussian peak overlapped with another peak of dif-
ferent amplitude and deviation values. In addition, a smaller Gaussian peak
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with some offset representing the first concentric ring of the Airy pattern is
observed. This leads to a LSF defined as

𝐿(𝑥) =

⎧⎪⎨⎪⎩
1

𝐶𝐿0
[𝐶𝐿1𝑒

−𝑥2

2𝐶2
𝐿2 + 𝑒

−𝑥2

2𝐶2
𝐿3 + 𝐶𝐿4𝑒

−(𝑥2−𝐶𝐿6)2

2𝐶2
𝐿5 ] 𝑥 < 0

1
𝐶𝑅0

[𝐶𝑅1𝑒
−𝑥2

2𝐶2
𝑅2 + 𝑒

−𝑥2

2𝐶2
𝑅3 + 𝐶𝑅4𝑒

−(𝑥2−𝐶𝑅6)2

2𝐶2
𝑅5 ] 𝑥 > 0

(3.9)

where the parameters 𝐶𝐿0 and 𝐶𝑅0 normalize the LSF over the full integral
and the other C-parameters depend on the experimental setup.

The measured intensity distribution can be written as

𝐼[𝑥𝑖] = 𝑎0 +
𝑁∑︁

𝑗=1
𝑎𝑗𝐿(𝑥𝑖 − 𝜉𝑗) + 𝜖[𝑥𝑖]. (3.10)

When 𝐿(𝑥) is known, the positioning problem breaks down to a parameter
estimation of 𝑎𝑗 and 𝜉𝑗 .

3.1.3 Number of atoms

For the parameter estimation, the number of atoms 𝑁 within the trap is
needed to be determined. Before 𝑁 is calculated, it is more efficient to
divide the 1D data 𝐼[𝑥𝑖] into ROIs which contain atoms and redundant
regions which only contain background noise first. The positioning process
is then executed for each single ROI. A ROI is defined by exceeding a certain
intensity threshold over a fixed range. These ROIs are then extended by a
fixed width wing on both sites in order to incorporate the whole fluorescence
contributions of marginal atoms. If any ROIs overlap after that procedure,
they are merged as indicated in Fig. 3.1 (c).

The calculation of the number of atoms 𝑁𝑘 in the ROI 𝑘 is straight-
forward as it can be assumed that each atom has more or less the same
fluorescence contribution. Therefore only the integrated fluorescence contri-
bution 𝐼𝑡𝑜𝑡

𝑘 of a ROI subtracted by the background 𝑎0 needs to be divided
by the single atom fluorescence contribution 𝐼𝑎

𝑁𝑘 = 𝐼𝑡𝑜𝑡
𝑘 /𝐼𝑎, 𝑤𝑖𝑡ℎ 𝐼𝑡𝑜𝑡

𝑘 =
𝑀𝑘∑︁
𝑖=1

(𝐼𝑘[𝑥𝑘,𝑖] − 𝑎0), (3.11)

where 𝑀𝑘 denotes the number of pixels and 𝐼𝑘[𝑥𝑘,𝑖] the measured intensity
values of the ROI. The background 𝑎0 is calculated as the mean value of
the fluorescence contributions of redundant regions without atoms. Detailed
calculations as done by Karski [4] show that as long as the signal-to-noise
ratio and the spatial inhomogeneity of atom illumination and detector sen-
sitivity is sufficiently accurate, the reliability of the counting procedure is
extremely high.
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Figure 3.1: Process of image segmentation and atom counting. The 2D data
in (a) is binned to 1D data in (b) and divided into regions of interest in (c)
with overlapping ROIs being merged. (d) The step-function of the integrated
fluorescence contribution. Figures are taken from [4]

3.1.4 Trigonometric moment estimation

With the background 𝑎0 and the number of atoms 𝑁 known, all necessary
parameters for the first step of the positioning algorithm are available. The
aim is to get an initial approximation for the parameters in Eq. 3.10. This
guess is then used as starting values for the iterative Levenberg-Marquardt
algorithm, where the positions are refined. The deconvolution method itself
is a slightly modified version of the spike-convolution model fitting described
by Li [6]. Although this method is originally designed for the problem of
base-calling in DNA sequencing, the signal structure itself is the same as
in the positioning task, namely Dirac deltas convolved with a known PSF
and some additive noise. It can be shown that the parameter estimation in
Eq. 3.10 is the Fourier dual of the so-called hidden frequencies problem. In
signal processing, this problem denotes the search for 𝜔𝑗 in

𝑠 =
𝑝∑︁

𝑗=1
𝐴𝑗 cos(𝑡𝜔𝑗 + 𝜃𝑗) + 𝜖, (3.12)
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with positive amplitude value 𝐴𝑗 and 𝜖 as white noise. In literature one
solution strategy suggests the use of Toeplitz matrices constructed from au-
tocovariance functions [9]. A similar idea is used for the positioning problem
by estimating the peak locations when connecting deconvolution and the
spectral structure of Toeplitz matrices constructed from the Fourier coeffi-
cients of the measured intensity distributions.

At first, a binned intensity distribution 𝐼[𝑥𝑙] of a single ROI defined by
the interval 𝐽 = {𝑥1, ..., 𝑥𝑀 } with 𝑁 atoms and a distance Δ between neigh-
bouring pixels is assumed. The LSF is expected to be twice continuously
differentiable and to have a finite support in [−𝛽, 𝛽], with 𝛽 = 𝑀Δ/2 being
the half width of the ROI. Under this conditions, the Fourier coefficients of
the LSF

𝑣𝑗 = 1
2𝜋

∫︁ 𝛽

−𝛽
𝐿(𝑥)𝑒𝑖𝑗𝜋𝑥/𝛽d𝑥 (3.13)

do not vanish. In the next step the Fourier coefficients of the binned intensity
distribution

𝑓𝑗 = 1
𝑀

𝑀∑︁
𝑙=1

𝐼[𝑥𝑙]𝑒𝑖𝑗𝜏(𝑥𝑙) (3.14)

with the transformation 𝜏 : [𝑥𝑙, 𝑥𝑀 ] → [−𝜋, 𝜋], 𝑥 ↦→ 𝜏(𝑥) = −𝜋+𝜋(𝑥−𝑥1)/𝛽
are computed.

This leads to the calculation of the Fourier coefficients 𝑔𝑗 of our signal

𝑔0 = 𝑓0

𝑔𝑗 = 𝑓𝑗𝑣0
𝑣𝑗

𝑔−𝑗 = 𝑔*
𝑗

(3.15)

to construct the Toeplitz matrix

𝐺̂𝑁 = (𝑔𝑚−𝑗)𝑗,𝑚=0,...,𝑁 . (3.16)

The smallest eigenvalue of 𝐺̂ equals the background 𝑎0 of the modelled
source distribution of Eq. 3.4. The corresponding eigenvector 𝛼 = (𝛼0, ..., 𝛼𝑛)
determines the polynomial equation

𝑁∏︁
𝑗=1

(𝑧 − 𝑒𝑖𝜏𝑗 ) =
𝑁∑︁

𝑗=0
𝛼𝑗𝑍𝑗 = 0, (3.17)

of which the roots lie on the unit circle {𝑒𝑖𝜏𝑗 |𝑗 = 1, ..., 𝑁}. They lead to
the trigonometric moment estimates of the atomic positions 𝜉𝑗 = 𝜏−1(𝜏𝑗).
For that the inverse transformation 𝜏−1 : [−𝜋, 𝜋] → [𝑥1, 𝑥𝑀 ], 𝑥 ↦→ 𝜏−1(𝑡) =
𝑥1 + 𝛽(𝑡 + 𝜋)/𝜋 is used.
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The fluorescence contributions 𝑎𝑗 can subsequently be estimated by min-
imizing

min
{𝑎𝑗 |𝑗=1,...𝑁}

𝑀∑︁
𝑙=1

⎧⎨⎩𝐼[𝑥𝑙] − 𝑎0 −
𝑁∑︁

𝑗=1
𝑎𝑗𝐿(𝑥𝑙 − 𝜉𝑗)

⎫⎬⎭
2

. (3.18)

Karski [4] proposes a linear least squares method based on Givens decom-
position for this task.

3.1.5 Levenberg-Marquardt algorithm

The use of the trigonometric moment estimation method provides fast com-
putation as shown in Fig. 4.10. However, the position estimations are quite
inaccurate. In order to refine this position estimations, in the second step
of the positioning algorithm they are used as an initial guess for an iter-
ative non-linear maximum likelihood minimization algorithm applying the
Levenberg-Marquardt algorithm. In the following the underlying principles
of this algorithm will be discussed as presented in [10].

The approach of the Levenberg-Marquardt algorithm for nonlinear fit-
ting is to define a merit function 𝜒2 which depends on the set of M unknown
parameters 𝑎𝑘. The best-fit parameters are determined by minimizing 𝜒2.
In our case this minimization problem is written as

min
{𝑎0,𝑎𝑗 ,𝜉𝑗 |𝑗=1,...𝑁}

𝑀∑︁
𝑙=1

1
𝜎2

𝑙

⎧⎨⎩𝐼[𝑥𝑙] − 𝑎0 −
𝑁∑︁

𝑗=1
𝑎𝑗𝐿(𝑥𝑙 − 𝜉𝑗)

⎫⎬⎭
2

, (3.19)

where the noise for each pixel 𝜖[𝑥𝑙] can be considered optionally by weighting
the fitted data with 𝜎2

𝑙 = 𝑉 𝑎𝑟(𝜖[𝑥𝑙]).
In a first step, the merit function is approximated near the minimum by

a quadratic form
𝜒2(a) ≈ 𝛾 − d · a + 1

2a · D · a, (3.20)

where d is an 𝑀 dimensional vector and D is a 𝑀 × 𝑀 matrix, namely the
Hessian matrix.

If the approximation is sufficiently accurate, one can calculate the min-
imizing parameters 𝑎𝑚𝑖𝑛 directly from the current ones 𝑎𝑐𝑢𝑟 in a single step
with the inverse-Hessian method:

a𝑚𝑖𝑛 = a𝑐𝑢𝑟 + D−1 · [−∇𝜒2(a𝑐𝑢𝑟)]. (3.21)

For a weak local approximation, one can only make one step in the
direction of the gradient, expressed by the steepest descent method

a𝑛𝑒𝑥𝑡 = a𝑐𝑢𝑟 − 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × ∇𝜒2(a𝑐𝑢𝑟). (3.22)
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The 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 has to be chosen sufficiently small in order to avoid over-
stepping the minimum. Because the Hessian matrix D is known, either Eq.
3.21 is used as long as it improves the fit or Eq. 3.22 in case it worsens the fit.

Be
𝑦 = 𝑦(𝑥|a) (3.23)

the model to be fitted, the merit function can be written as

𝜒2(a) =
𝑁−1∑︁
𝑖=0

[︂
𝑦𝑖 − 𝑦(𝑥𝑖|a)

𝜎𝑖

]︂2
. (3.24)

The components of the gradient of 𝜒2 with respect to the parameters a
are therefore

𝜕𝜒2

𝜕𝑎𝑘
= −2

𝑁−1∑︁
𝑖=0

[𝑦𝑖 − 𝑦(𝑥𝑖|a)]
𝜎2

𝑖

𝜕(𝑥𝑖|a)
𝜕𝑎𝑘

𝑘 = 0, 1, ..., 𝑀 − 1. (3.25)

The second derivation yields

𝜕2𝜒2

𝜕𝑎𝑘𝜕𝑎𝑙
= 2

𝑁−1∑︁
𝑖=0

1
𝜎2

𝑖

[︂
𝜕𝑦(𝑥𝑖|a)

𝜕𝑎𝑘

𝜕𝑦(𝑥𝑖|a)
𝜕𝑎𝑙

− [𝑦𝑖 − 𝑦(𝑥𝑖|a)]𝜕
2𝑦(𝑥𝑖|a)
𝜕𝑎𝑙𝜕𝑎𝑘

]︂
. (3.26)

By convention, the factor 2 is removed when defining

𝛽𝑘 ≡ −1
2

𝜕𝜒2

𝜕𝑎𝑘
𝛼𝑘𝑙 ≡ 1

2
𝜕2𝜒2

𝜕𝑎𝑘𝜕𝑎𝑙
(3.27)

with 𝛼 being called the curvature matrix. Eq. 3.21 can be rewritten as a set
of linear equations

𝑀−1∑︁
𝑙=0

𝛼𝑘𝑙𝛿𝑎𝑙 = 𝛽𝑘 (3.28)

which is solved for 𝛿𝑎𝑙. Adding the current approximation a𝑐𝑢𝑟, this yields
the next approximation a𝑛𝑒𝑥𝑡. Similar, Eq. 3.22 translates to

𝛿𝑎𝑙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝛽𝑙 (3.29)

Marquardt found, based on an earlier suggestion of Levenberg [5], a
method to effectively switch between the inverse-Hessian method in Eq.
3.28 and the steepest descent method given by Eq. 3.29 [7]. The former is
used close to the minimum whereas the latter when being far away from the
minimum.

Marquardt’s first insight was that there is some information about a
reasonable scale of the constant in the steepest decent method given from
the Hessian matrix. As the quantity 𝜒2 is nondimensional and 𝛽𝑘 has the
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dimensions of 1/𝑎𝑘, the constant must have the dimensions of 𝑎2
𝑘 given by the

relation in Eq. 3.29. Only the reciprocal of the diagonal element of matrix
𝛼 have these dimensions which defines the scale of the constant. Another
fudge factor 𝛿 is introduced in case this scale is too big. With this, Eq. 3.29
can be replaced with

𝛿𝑎𝑙 = 1
𝜆 𝛼𝑙𝑙

𝛽𝑙 𝑜𝑟 𝜆 𝛼𝑙𝑙 𝛿𝛼𝑙 = 𝛽𝑙. (3.30)

Marquardt’s second idea was to combine Eq. 3.30 with Eq. 3.28 by defin-
ing a new matrix 𝛼′

𝛼′
𝑗𝑗 ≡ 𝛼𝑗𝑗(1 + 𝜆)

𝛼′
𝑗𝑘 ≡ 𝛼𝑗𝑘 (𝑗 ̸= 𝑘),

(3.31)

which leads to one single equation

𝑀−1∑︁
𝑙=0

𝛼′
𝑘𝑙𝛿𝑎𝑙 = 𝛽𝑘 (3.32)

For very large 𝜆, the matrix 𝛼′ is forced into being diagonally dominant,
so Eq. 3.32 gets identical with Eq. 3.30. For 𝜆 << 1 on the other hand, it
merges to Eq. 3.28.

With these definitions, the Levenberg-Marquardt algorithm can be im-
plemented as follows:

1. Compute 𝜒2(a).
2. Pick a modest value for 𝜆 (e.g. 0.001).
3. Solve Eq. 3.32 for 𝛿a.
4. Evaluate 𝜒2(a + 𝛿a).
5. If 𝜒2(a + 𝛿a) ≥ 𝜒2(a), increase 𝜆 by a substantial factor (e.g. 10) and

go back to step 3.
6. If 𝜒2(a + 𝛿a) < 𝜒2(a), decrease 𝜆 by a factor of 10, update the trial

solution a𝑛𝑒𝑥𝑡 = a𝑐𝑢𝑟 + 𝛿a, and go back to step 3.
The Levenberg-Marquardt algorithm is already implemented within the
Nonlinear Curve Fit Virtual Instrument (VI) of LabVIEW. There are two
parameters, the maximum number of iterations and a tolerance value. The
tolerance value specifies the relative change in the weighted distance be-
tween the measurement points and the current fit, given by (𝜒2(a + 𝛿a) −
𝜒2(a))/𝜒2(a). The Levenberg-Marquardt algorithm tends to oscillate near
the minimum in a flat valley of complicated topography. This behaviour
stems from a problem with regard to near-degeneracy of the minimum. A
small pivot leads to a large correction which according to step 5 is then
rejected. At the same time, the value of 𝜆 is increased. For large 𝜆, the ma-
trix 𝛼′ becomes positive-definite. Therefore it has no small pivots, avoiding
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failure by a zero pivot. This leads to the use of the steepest descent method
in very unsteep degenerate valleys, which causes the oscillation.

The stopping condition of the algorithm is defined by when the relative
change falls below a certain threshold. For example, a tolerance of 0.001 is
mentioned by Press et al. [10] which is close to the value of 0.01 that emerged
from measurements in Chap. 4.

3.2 Implementation
In this section the implementation of the positioning software, which has
been developed within the course of this thesis, is described.

3.2.1 Structure

The positioning program consists of three main parts, each executed on
different hardware as described in Chap. 2. Due to the amenities of NI
LabVIEW1, this does not mean that each part has been written in a different
programming language. Instead, all pieces of code are written in LabVIEW
2012 extended with the Real-Time2 and the FPGA3 add-on modules. Fig.
3.2 shows the basic structure of the software project.

The FPGA part mainly performs the read out of the camera data trans-
ferred via the splitter box. Some basic operations needed for the position
algorithm are already implemented at the FPGA such as binning the 2D
data into 1D data, the segmentation into ROIs and the calculation of the
number of atoms per ROI and the background.

The advanced mathematical methods are processed within the Real Time
part. This includes the trigonometric moment estimation and the Levenberg-
Marquardt algorithm. The logic to save the raw camera data and the position
information to disk is also implemented in this part.

The Host PC serves as a user interface to set the configuration param-
eters of the algorithm. Once configured, the real time system works as a
standalone system.

1http://www.ni.com/labview/
2http://www.ni.com/labview/realtime/
3http://www.ni.com/fpga/
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Figure 3.2: The program consists of three parts implemented on different
hardware. For the communication between FPGA part and Real Time part,
Direct Memory Access (DMA) channels and Front Panel elements of the
FPGA VI are used. Ethernet communication is used between Real Time
part and Host PC.

3.2.2 FPGA part

The advantage of the FPGA is the deterministic execution at low clock cy-
cles. The camera data arriving with 10 MHz (Fig. 2.4) are sampled by the
default timebase of the FPGA module of 40 MHz. According to the sam-
pling theorem ([13]), a sampling rate of at least twice the maximum signal
frequency is necessary to reconstruct the original signal which is fulfilled
when using the FPGA. When using the Single Cycled Timed Loop4 within
the LabVIEW FPGA module, all contained code is executed within one tick
of the FPGA’s timebase.

The source code of the FPGA design is shown in Fig. 3.3. It consists of
two loops, one containing the sampling and processing code, the other one
is responsible for the handshake mechanism to communicate with the RT
part.

In order to understand this communication, a short introduction to the
possible communication mechanisms between the FPGA and the RT module
is given5. In principle, there are two possibilities to transfer data between a
FPGA and a CPU.

4http://digital.ni.com/public.nsf/allkb/722A9451AE4E23A586257212007DC5FD
5http://zone.ni.com/reference/en-XX/help/371599F-01/lvfpgaconcepts/pfi_data_transfer/



3. Algorithm 21

Figure 3.3: The main structure of the FPGA part ([FPGA] Main.vi).

The first one is the programmatic front panel communication. With a low
throughput rate and a small call overhead, it is recommended to exchange
single values, such as configuration parameters and flags, which need to be
transferred immediately. It is very easily implemented as the RT part simply
calls the Front Panel elements of the FPGA Virtual Instrument window
when using the Read/Write Control functionality of the FPGA interface
palette of LabVIEW.

For larger amounts of data, Direct Memory Access (DMA) FIFOs are
the best choice. A DMA FIFO allocates memory on both the RT system and
the FPGA target. The big advantage of DMA transfers is the direct access of
the RT system’s memory without involving its processor. Transfer latencies
are introduced due to the overhead of the communication architecture and
therefore it is recommended for big amounts of data.

A handshake mechanism for the safe data communication between FPGA
and RT is used. When a picture has been processed on the FPGA and all
relevant data has been written to the respective DMA channels, a flag Data
Ready is set to true which tells the RT program to read out the DMA FI-
FOs and to start processing. The RT program controls another flag, Data
Fetched, which is set to true after emptying the FIFOs at the RT part to
tell the FPGA program to reset Data Ready and Data Fetched back to false,
getting the system ready for a new data transfer.

Four DMA FIFOs are necessary to transfer the relevant data from the
FPGA to the RT system:

• Data 2D DMA: the actual image data as obtained from the camera
is written pixel by pixel. With a size of 8000 elements, it can buffer
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image data up to a size of 512 x 15 pixels. The loop which reads the
FIFO at the RT side has a period of 500 µs. With respect to the 10
MHz camera clock, only 5000 pixels are sent to the RT in order to
avoid overflow.

• Data 1D DMA: the binned camera data is transferred. The size of this
FIFO is 512 elements according to the maximum image width.

• ROIs DMA: the result of the image segmentation is written. It contains
the pixel number of the start and end of all ROIs. A size of 256 elements
allows the transfer of up to 128 ROIs, which in practice is unlikely to
happen.

• Number Atoms DMA: the number of atoms for each ROI is transferred.
In addition to the DMA FIFOs Front Panel communication is imple-

mented in order to set the relevant algorithm parameters:
• image width: the horizontal width of the image in pixels which is sent

from the camera.
• Threshold: the fluorescence value above which the segmentation mech-

anism starts to classify the pixels as part of a ROI.
• Range: the minimum number of pixels above the threshold value which

determines a ROI.
• Wing: the number of pixels by which a ROI is extended to both sites

in order to include the complete fluorescence contribution of an atom
peak.

• SAFC : the Single Atom Fluorescence Contribution is the mean inte-
grated fluorescence of a single atom.

• SAFC Scaling and SAFC Offset: these parameters are used to com-
pensate spatial differences in the sensitivity of the EMCCD chip. The
SAFC is modified by the formula 𝑆𝐴𝐹𝐶 = 𝑆𝐴𝐹𝐶 + 𝑥2 * 𝑆𝑐𝑎𝑙𝑖𝑛𝑔,
where 𝑥 is the difference between the centre of the current ROI and
the centre of the total image width shifted by the offset value. This
allows to calculate a correct number of atoms even if the chip is more
sensitive in peripheral areas.

The [FPGA] Main.vi consists of two loops, the algorithm and the hand-
shaking loop as indicated in Fig. 3.3.

In idle mode, when there is no signal from the camera, the inner Flat
Sequence Structure of the algorithm loop will stop at its first frame. This
is determined by the [FPGA] Trigger Frame Signal.vi whose source code is
shown in Fig. 3.4. The loop will run as long as the value of the IO Mod-
ule\Frame Signal Node is set to 𝑙𝑜𝑤 equivalent to 𝑓𝑎𝑙𝑠𝑒. When the Frame
Signal switches to ℎ𝑖𝑔ℎ respectively 𝑡𝑟𝑢𝑒, the stopping condition is met and
the Flat Sequence Structure proceeds. This basic principle for positive edge
detection is also used in other parts of the FPGA program.
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Figure 3.4: Basic principle for positive edge detection in the FPGA pro-
gram. The loop will run as long as the Frame Signal FPGA I/O Node is
set to 𝑓𝑎𝑙𝑠𝑒. When set to true, the stopping condition is met. Also a Debug
Frame Signal is included for algorithm testing with simulated data.

As shown in Fig. 2.4, a rising Frame Signal indicates the begin of an
image. With this positive edge, the program continuous with the second
frame of the Flat Sequence Structure and stays there until the Frame Signal
drops again, which indicates the end of an image sequence.

In the [FPGA] Read Databus.vi, for each rising edge of the pixel clock
the 14 bits of the data bus are read from the I/O nodes. In the same step
the 2D pixel values are accumulated and stored into LUT logic, resulting
in the binned 1D data. In contrast to BRAM slices LUT can be read and
written within one tick which is necessary for the binning mechanism. To
save resources on the FPGA, mainly the fixed-point data type is used.

The falling edge of the frame signal determines the end of an image
sequence and stops the read out loop. In the next step, the 1D data from
the LUT is written to the Data 1D DMA FIFO and at this point in time
already available in the RT system to store the 1D data to disk.

After receiving all data from the camera, the actual data processing can
start. In the [FPGA] Find ROI.vi, the positions of the ROIs are identified
and the merging of overlapping ROIs takes place. The pixel number of start
and end of each ROI are written to the ROIs DMA FIFO.

The next step is determined by the source code within the [FPGA] Cal-
culate Baseline.vi. The fluorescence values of all pixels which are not within
a ROI are summed up, which denotes the mean value of the background.

This background value is then used in [FPGA] Number Atoms.vi to
calculate the number of atoms per ROI according to Eq. 3.11. For each
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ROI, an integer value is written to the Number Atoms DMA FIFO.
At the end of the sequence structure, the Data Ready flag is set to true

as explained above, signalling the RT part to start data processing.

3.2.3 RT part

In addition to the control parameters for the FPGA explained above, more
configuration parameters are needed for the data processing at the RT part:

• LSF parameters: these parameters define the form of the line spread
function as indicated in Eq. 3.9. If the second and the third Gaussian
peak are not used, the respective parameters can be set to zero.

• SAFC Threshold: the trigonometric moment estimation algorithm be-
comes very imprecise for atoms in close proximity. A good indicator
for the validity of estimated positions is the fluorescence contribution
𝑎𝑗 (Eq. 3.4). The SAFC Threshold defines a maximum for the abso-
lute difference between the SAFC and 𝑎𝑗 . If the difference exceeds this
maximum for a ROI with a pair of atoms, two positions near the cen-
tre of the ROI are used as initial values for the Levenberg-Marquardt
algorithm instead of the estimated positions [4].

• LM Configuration: the maximum iterations and the tolerance param-
eter for the stopping condition of the Nonlinear Curve Fit VI.

• Filepath and Filename: file path and name where the data should be
saved on the RT controller.

• # per File: the number of images written into one single file.
The source code of the RT part ([RT] Main.vi) is structured into three

loops as indicated in Fig. 3.5. One corresponds to a deterministic loop with a
period of 500 µs. The other two are also timed with 500 µs holding non-time
critical code.

In the deterministic loop, the communication and data transfer with the
FPGA takes place. The Data 2D DMA FIFO is read continuously. The pixel
values are written to the single process shared variable 2D Data which is
configured as a RT FIFO with a array size of 8000 elements. Single process
shared variable with RT FIFO enabled secure lossless data communication.

When the number of elements in the Data 1D DMA FIFO equals the
specified image width, the elements are read from the DMA FIFO and writ-
ten to the shared variable 1D Data. At the same time, the time stamp for the
measurement is generated. This time stamp is written to two shared vari-
ables, Timestamp Data and Timestamp Positions. The former determines
the time stamp for the 2D data file. The latter is for the positions data file
and only written if its current value is equal to the text string ready. This
handshaking is needed to deal with the case when the positioning process
takes longer than the exposure time of the images. In this case, new im-
age data arrives although the positioning algorithm is still occupied with
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Figure 3.5: The basic structure of the RT part of the program consists of
three loops. The deterministic loop reads out all data from the DMA FIFOs
and starts the algorithm which is located in the second loop. If the algorithm
is still busy with the previous image, the data is dumped and an overflow
indicator is set. In the third loop the data is written to disc. The 2D data is
always written, the positions only if no overflow has happened.

the old one. To handle this possible error source, another shared variable
named Algorithm Task has been added. It acts as a flag for the status of
the positioning VI. When positioning starts, its text string value is set to
busy, when positioning finishes, it is set to ready. When the FPGA changes
the Data Ready flag to true but the Algorithm Task variable is set to the
text string value busy, the data from ROIs DMA FIFO and Number Atoms
DMA FIFO is dumped and the Overflow indicator is set to true. The 1D
data is saved to disk but no positioning takes place for this image.

If Algorithm Task is not set to busy and the FPGA indicates that new
data is available, Algorithm Task is changed to the text string value go and
the ROI and number of atoms information is written to shared variables
ROIs and Number Atoms.

With Algorithm Task set to go, the [RT] Positions.vi, which is located
in non-deterministic loops, starts the positioning process. For the software
architecture of [RT] Positions.vi, the state machine6 design pattern with
three states is used:

1. State 1 : depending on the value of Algorithm Task the positioning
process is either started or stopped.

2. State 2 : the actual positioning takes place. The logic iterates through
the ROIs and calculates the atom positions within [RT] Positions
ROI.vi, accumulating them in a shift register7.

3. State 3 : the position results together with the total number of atoms,
the time stamp, the processing time and the 1D data are merged
into an array and written to the RT FIFO Positions. There they are
buffered and then written to a file. The shared variables Timestamp

6http://www.ni.com/white-paper/7595/en/
7http://www.ni.com/getting-started/labview-basics/shift-registers
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Positions and Algorithm Task are set to ready, preparing the system
for a new set of image data.

The positioning process for a ROI is a straightforward implementation
of the algorithm as described by Karski [4]. It is divided into three SubVIs.
In the first one, [RT] Trigonometric Moments.vi, the Fourier coefficients 𝑣𝑗

and 𝑓𝑗 of the LSF and the measured intensity distribution are calculated.
The second one, [RT] Trigonometric Positions.vi, estimates the positions.
In the third one, [RT] LM Positions.vi, the fluorescence contributions 𝑎𝑗 are
calculated, and the Nonlinear Curve Fit VI 8 is fed with all initial parame-
ters.

8http://zone.ni.com/reference/en-XX/help/371361H-01/gmath/nonlinear_curve_fit/



Chapter 4

Performance

The overall aim of the project is to read out the camera data and to calculate
the atom positions in realtime. A typical exposure time for the experiments
is 10 ms which specifies the time frame for the realtime positioning. In the
following, the performance of the implemented algorithm is presented.

First, the execution time of the positioning procedure and parts of it with
varying parameters e.g. number of atoms, number of pixels and noise inten-
sity will be examined. These benchmark results show the basic capabilities
of the positioning program.

The second main part of this chapter provides the accuracy of the al-
gorithm, i.e. the deviation of the estimated positions from the actual ones.
The real physical positions of the atoms are not known, therefore camera
data is simulated and fed into the algorithm for this purpose.

4.1 FPGA Performance
The camera is read out via the iXon Cable Splitter Box and the NI PXIe-
7966R FPGA module with the NI 6581 Digital Adapter module. As ex-
plained above, this step also includes transferring the 2D data to the RT
controller and binning it into 1D data. All these steps are performed within
a Single-Cycle Timed Loop. A benchmark of this part with a varying quan-
tity of pixels has been conducted (Fig. 4.1). The read out time starts with
2747 ticks at 4 pixels which is the minimum picture size the camera software
which is provided by Andor allows to configure. At a FPGA clock rate of
40 MHz, this corresponds to about 67 µs. If a whole picture with 512x512
pixels is read out, it takes 1143317 ticks equivalent to 28583 µs. The typi-
cal image size taken during the experiments normally does not exceed 4000
pixels. A simple linear interpolation leads to a maximum read out time of
459 µs. With respect to the 10 ms threshold, this part of the algorithm
does not seem to limit the realtime constraints. Anyhow, as the speed of
the read out phase is determined by the 10 MHz camera clock, there are no

27
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Figure 4.1: Ticks and execution time of the camera read out part of the
algorithm ranging from 4 pixels (minimum camera can send) to 262144 pixels
(full 512 x 512 resolution image) at 10 MHz camera clock rate.

further improvements of the read out part of the FPGA design achievable.
The remaining part of the algorithm performed on the FPGA contains the
fragmentation of the 1D data into region of interests (ROIs), the calculation
of the background and the determination of the number of atoms per ROI.

In order to obtain comparable and repeatable timing benchmarks of this
part of the code, it is not suitable nor possible to work with real physical
image data from the camera as this changes from measurement to measure-
ment. Also the exact positions of the physical atoms are not known, which
are especially necessary to analyse the accuracy of the algorithm. Therefore
the algorithm is fed with simulated data which is calculated on the RT con-
troller and passed on to the FPGA by a DMA channel. For the simulation
of the camera data, the form of the measured intensity distribution in Eq.
3.10 combined with the line spread function (LSF) in Eq. 3.9 is used. The
parameters of the LSF are chosen in such a way that a prototypical form is
achieved (Fig. 4.2 (a)).

The parameter 𝑎0 which denotes the background is assumed to be con-
stant over all pixels. Also the fluorescence contributions 𝑎𝑗 are equal for
each atom. The noise 𝜖[𝑥𝑖] is modelled by a Gaussian-distributed, pseudo-
random pattern provided by the LabVIEW Gaussian White Noise PtByPt
VI, where the standard deviation can be defined as a parameter. The value
of this parameter is denoted in the following as the noise level. An example
for simulated camera data is shown in Fig. 4.2 (b). This method of simulat-
ing camera data is used for all benchmark and measurement results provided
in this chapter.
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Figure 4.2: (a) Prototypical line spread function with a central Gaussian
peak and another smaller Gaussian peak with some offset representing an
asymmetric airy disc. (b) Simulated 1D data with 512 pixels containing 10
equidistant atoms. Background is set to 600, the fluorescence contributions
to 3000, and the standard deviation of the Gaussian noise to 50 counts.

A benchmark of the FPGA program without the read out part with a
simulated data of well separated, equidistant atoms is shown in Fig. 4.3 (a).
The processing time reaches from 40 µs for one single atom up to 65 µs for 29
atoms. In Fig. 4.3 (b) the atoms are so close that the ROIs are finally merged
into one single ROI. This leads to a slightly better performance. While one
atom still needs about 40 µs, 29 atoms are processed within about 45 µs.
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Figure 4.3: Benchmark of the processing part of the FPGA code. The
graphs show a linear relationship between the processing time and the num-
ber of atoms. (a) Well separated atoms resulting in one ROI for each atom.
(b) Close atoms which are finally merged into one single ROI result in a
slightly better performance.

Altogether, the FPGA part of the algorithm takes about half a millisec-
ond to execute and does only slightly depend on the number of atoms. As
long as the image size does not exceed some several thousand pixels, this
part represents only a small contribution to the overall duration of the image
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processing.

4.2 DMA Data Transfer
There are four types of data which are transferred from the FPGA to the
RT system for further processing. First, the 2D pixel data which is read
from the camera, represented as a stream of 16 bit unsigned integers1. This
DMA FIFO is read continuously from the RT system. Because the 2D data
is not used for further image processing but only saved to disk, the speed of
this transfer has no influence on the overall algorithm performance and is
therefore not benchmarked. The RT system also continuously reads the 1D
data, which is written to the respective DMA FIFO right after the readout
from the camera has finished. Before the RT algorithm can start, the seg-
mentation into ROIs and the calculation of the number of atoms has to be
performed on the FPGA. This gives enough time (Fig. 4.3) to transfer the
1D data without delaying the rest of the procedure and is therefore also not
benchmarked. When the FPGA part of the algorithm has finished, a data
ready flag is set to tell the RT system to start data processing. At this point,
two other DMA FIFOs are read, which contain the ROIs and the number of
atoms data. A benchmark of the whole process which includes the readout
of these FIFOs, transferring the data to local shared variables and the hand-
shake mechanism is shown in Fig. 4.4. No significant relationship between
the number of ROIs and the processing time can be observed, which means
the overhead is high compared to the actual data transfer. On average, the
RT algorithm will start approximately 115 µs after the FPGA has indicated
that all data is available.

1At 1 MHz readout rate, the camera is in principal able to digitalize 16 bit. Although
only 14 bit are used for the current experiment, future applications may use this feature.
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Figure 4.4: Duration of reading out the ROI and the number of atoms DMA
FIFOs, transferring the data to local shared variables and the respective
handshake mechanism. No significant dependence on the number of ROIs
can be observed. (average over 1000 measurements for each data-point.)

4.3 Accuracy
The aim of the algorithm is to achieve sufficient accuracy within the shortest
possible execution time. Accuracy in this respect refers to the deviation of
the estimated positions from the real positions of the atoms.

For the trigonometric moments estimation part, there are no parameters
which can be set in order to influence neither execution time nor accuracy.
The only possibility for further increasing the performance lies in analysing
and streamlining the code itself.

For the Levenberg-Marquardt part, some configuration of the algorithm
during runtime is possible. As explained in Chap. 3, a stopping condition has
to be defined for the iterative fitting process. The Nonlinear Curve Fit VI of-
fers two parameters for this purpose. The maximum iterations value defines
the maximum number of loops of the Levenberg-Marquardt algorithm. The
tolerance parameter specifies the minimum relative change in the weighted
distance between the input data points and the current fit. The execution
time increases with the value of the maximum iteration parameter and de-
creases with the value of the tolerance parameter.

In Figure 4.5, the absolute deviation of positions for a setup of two
atoms within a ROI of 15 pixels for four different noise levels against the
tolerance parameter is shown (black). In addition, also the residue is shown
(red). This value is provided by the Nonlinear Curve Fit VI and represents
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the weighted mean square error between the best fit and the camera data.
Although strongly correlated for measurements with moderate noise, for
high noise the position deviation starts to fluctuate while the residue stays
quite smooth.

A significant drop of the deviation between a tolerance 1 down to 0.01
is observed. Although expected for low noise, even for higher noise level of
500 CCD counts and more this drop can still be observed, especially when
looking at the residue. For smaller tolerances, deviation does not decrease
any further, which is consistent with the findings in Chap. 3. Using other
atom configurations, e.g. with more or differently distributed atoms provides
the same result. Therefore, a tolerance of 0.01 seems to be a good choice for
all measurements.
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Figure 4.5: Deviation of positions (black) and residue (red) over tolerance
for a noise level of 0 (a), 100 (b), 500 (c) and 1000 (d) CCD counts. (average
over 1000 measurements, 2 atoms within 15 pixels, maximum iterations 2000)

In Figure 4.6, the same configuration as above is shown for a varying
number of maximum iterations. Because tolerance has been set to zero for
these measurements, the maximum iterations parameter provides the only
stopping condition. Therefore, this parameter determines the actually per-
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formed iterations. Again for low noise measurements, no more improvement
of the deviation above a certain threshold is achieved with increasing it-
erations. For the current configuration with two atoms within 15 pixels, a
deviation minimum lies at 5 iterations. A surprising behaviour is observed
for higher noise (500 CCD counts in (c) and 1000 CCD counts in (d)). Al-
though the overall residue (red) decreases with the number of iterations, the
position deviation even seems to increase a little, at least starts to fluctuate.
This effect is analysed in more detail further below.
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Figure 4.6: Deviation of positions (black) and residue (red) against itera-
tions for a noise level of 0 (a), 100 (b), 500 (c) and 1000 (d) CCD counts.
(average over 1000 measurements, 2 atoms within 15 pixels, zero tolerance)

In contrast to the tolerance parameter, for the maximum iterations value
there does not seem to exist a single optimal choice for all atom configu-
rations. In Figure 4.7, example measurements for 1, 3, 4 and 5 atoms are
shown. Especially for one atom, more iterations are necessary to reach a
deviation minimum. For further improvement of the algorithm, these be-
haviour could be investigated in more detail. Maybe a mechanism which
sets the maximum iterations value according to the number of atoms (and
maybe also the number of pixels) within a ROI may be reasonable. At the
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moment, ten iterations seem to be a good compromise for most atom con-
figurations.
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Figure 4.7: Deviation of positions (black) and residue (red) over iterations
for a noise level of 100 CCD counts and 1 (a), 3 (b), 4 (c) and 5 (d) atom(s).
The decrease of the position deviation depends on the specific atom config-
uration. (average over 1000 measurements, zero tolerance)

As mentioned above, for a high noise level more iterations lead to a
higher position deviation. In the following, this behaviour is analysed in
more detail.

In Fig. 4.8, the deviation of the estimated positions from the real po-
sitions over tolerance and maximum iterations is shown for various noise
levels. In the first column, the absolute value of the deviation is shown.
In the second column, the difference between the trigonometric moments
estimation deviation and the Levenberg-Marquardt algorithm is shown. In
the third column, the same difference is displayed, this time with only two
colours. Blue areas show where Levenberg-Marquardt delivered more accu-
rate positioning then the trigonometric moment estimation, red ones indicate
a deterioration of the position estimates. In the first row where zero noise
is applied to the simulated camera signal, the result is as expected. The
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Levenberg-Marquardt VI delivers more accurate positions over the whole
configuration space. Especially for areas with maximum iterations greater
than 4 and tolerance smaller than 1, the difference becomes significant. With
a moderate noise level of 100 CCD counts applied (compared to an atom
amplitude of 3000 CCD counts) as shown in (b), the behaviour remains the
same. In row (c), with a noise level of 333 CCD counts, a different result can
be observed. Although still small improvements for areas with high toler-
ance and only a few iterations are achieved, above certain critical thresholds
the effect becomes inverted. For a noise level of 1000 CCD counts in row
(e), all Levenberg-Marquardt configurations show worse accuracy than the
trigonometric moments estimation results.
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Figure 4.8: First column: Absolute mean deviation from real atom posi-
tions over maximum iterations and tolerance for a noise level of 0 (a), 100
(b), 333 (c), 666 (d) and 1000 (e) CCD counts. Second column: Mean dif-
ference between the deviation of the trigonometric moments estimation and
the Levenberg-Marquardt algorithm positions. Third column: The same dif-
ference, displayed in two colours. Blue areas indicate improvement of posi-
tioning by Levenberg-Marquardt, red ones deterioration. (average over 1000
measurements, 2 atoms within 15 pixels)
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This raises the question what causes this behaviour and if any improve-
ment could be applied to the algorithm to solve this issue. One possible
explanation is that due to the high noise level, the initial positioning from
the trigonometric moments estimation introduces already a significant devi-
ation. Given by the nature of the Levenberg-Marquardt algorithm, this could
lead to slow converging or even divergent behaviour, resulting in amplifying
rather than improving the position error. In order to check this assumption,
a test bench is implemented which allows to feed the Nonlinear Curve Fit
VI directly with initial position parameters instead of using the trigonomet-
ric moments estimation. These position parameters are then subsequently
shifted from zero derivation to an error of 2 pixels as shown in Fig. 4.9.

In the first two graphs with a noise level of zero (a) and 100 (b) CCD
counts, the final deviation of the Levenberg-Marquardt results decreases
with the number of iterations, independent from the initial deviation. For
higher noise levels as e.g. 500 (c) or 1000 (d) CCD counts, the opposite effect
is observed.

This proves that the behaviour of divergent position errors does not
originate from the initial position guess but solely from the noise from the
camera signal. It seems that for highly distorted signals it is better to ab-
stain from the use of the second step of the algorithm and directly use the
trigonometric moment estimation results. In general it is doubtful if mea-
surements with such poor signal-to-noise ratios can even be used for any
reasonable analysis.
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Figure 4.9: Final position deviation of the Levenberg-Marquardt algorithm
over maximum iterations and initial deviation for a noise level of 0 (a), 100
(b), 200 (c), 1000 (d) CCD counts. Only for moderate noise levels an im-
provement of the positioning is achieved. (average over 1000 measurements,
1 atom within 10 pixels, zero tolerance

4.4 RT Performance
In the following section, various measurements concerning the execution time
of the positioning algorithm are presented. In particular, the influence of
the two configuration parameters of the Nonlinear Curve Fit VI, namely the
maximum iterations and the tolerance value, is analysed. Also the influence
of the noise level is examined.

Fig. 4.10 (a) shows the execution time for an increasing number of atoms
within one single ROI. For the black graph, each atom is placed in the middle
of a space of 10 pixels. This means e.g. for three atoms, that the ROI has a
width of 30 pixels with atoms at position 5, 15 and 25. For the red graph,
each atom has a space of 4 pixels. The noise level in this measurement is set
to zero to clearly point out the relationship between the execution time and
the number of atoms respectively the width of the ROI.

For the 10 pixel spaced atoms, the limit of 10 ms is already approached
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with three atoms (9376 µs), while four atoms even exceed it by the double
(20421 µs). For the 4 pixel spaced atoms, 4 atoms still lay within the limit
(8428 µs).

Fig. 4.10 (b) shows the same measurement for the trigonometric moments
estimation positioning only. Although more imprecise as explained in section
4.3, the performance advantage is enormous. Even the positioning process
for 15 atoms is with a duration of approximately 5 ms still within the 10
ms limit. Also, there does not seem to be a big dependency on the specific
atom distribution, at least for equally spaced peaks.

These measurements show that for the Levenberg-Marquardt algorithm,
the execution time strongly depends on the specific atom distribution. How-
ever, it seems that in any case precise positioning for more than 3 atoms
within one ROI below 10 ms is difficult to achieve. Even if the trigonomet-
ric moment estimation may still be optimised, the Nonlinear Curve Fit VI
hardly offers any possibilities to gain shorter execution times.

In practise, the atoms are predominantly not concentrated in one single
ROI but distributed over a wider range. If there are multiple ROIs within
one image, the execution times simply accumulate. The additional logic for
the iteration through multiple ROIs is very straightforward and does not
cause much overhead time. According to Fig. 4.10, the processing of a single
atom in a ROI takes about 1180 µs for 10 pixels width respectively 985
µs for 4 pixels width. Adding half a millisecond from the FPGA part, this
means that for single atoms located in their own ROI 8 or 9 atoms can be
positioned within 10 ms. If there is one ROI with a pair of close atoms and
all others are well separated, still 6 or 7 atoms can be positioned in time.
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Figure 4.10: (a) Execution time of the RT positioning algorithm for one
single ROI. The atoms are separated by 10 (black) and 4 (red) pixels each,
which means the width of the ROI is growing with the number of atoms.
(b) Same measurement for the trigonometric moments estimation part only.
(average over 100 measurements for each data-point, 10 max. iterations, 0.01
tolerance, zero noise)

As stated above, the execution time does not only depend on the number
of atoms but also on the noise level. Fig. 4.11 shows the processing time of
one (a,b), two (c,d) and three (e,f) atom(s) within one ROI of 10, 15 and
20 pixels over the noise level. The amplitude of the atom peaks is set to
3000, the background to 600 CCD counts. As explained above, the noise
is modelled by Gaussian-distributed, pseudo-random pattern provided by
a LabVIEW VI. The level of noise denotes the standard deviation of the
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Gaussian distribution. Noise is generated and added for each pixel, according
to the model in Eq. 3.4 of the measured intensity distribution. Each data
point in the graphs represents the mean value of 1000 measurements, each
single one performed with a unique noise pattern.

For the first column (a,c,e), the maximum iterations parameter is set to
20000 and the tolerance parameter is set to 10−8. The higher the noise level
the higher the mean execution time of computing the positions. There is a
the strong increase of the standard deviation. For one atom, already at a
noise level of about 500 CCD counts the standard deviation equals the mean
value, for two and three atoms even earlier. This decreases the number of
atoms which can be reliably positioned within 10 ms even further down to
one or two atoms, depending on the noise level.

As shown in section 4.3, 20000 maximum iterations are an extremely
high number, whereas 10−8 tolerance is very small for the demands of the
positioning algorithm. A tolerance of 0.01 and 10 maximum iterations are
for most cases reasonable settings to achieve quite a significant improvement
of the position accuracy.

In the second column (b,d,f), the measurements are performed with these
settings, leading to a totally different result. Whereas the standard deviation
at the beginning still increases with the noise intensity, it finally levels off at
a value considerably smaller than the corresponding mean execution time.
The mean execution time itself even decreases with the noise level, also
becoming nearly constant for high noise. Even for three atoms, the vast
majority of the positioning processes will be performed far below 10 ms.
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Figure 4.11: Execution time (black) and its standard deviation (red) for 1
(a,b), 2 (c,d) and 3 (e,f) atom(s) with a ROI width of 10,15 and 20 pixels
over the noise level. In the first column, the tolerance of the Nonlinear Curve
Fit VI is set to 10−8 and the maximum iterations to 20000. For the second
column, tolerance is 0.01 and maximum iterations are 10. (average over 1000
measurements for each data-point)

In the following section, the influence of the tolerance respectively max-
imum iterations parameter on the execution time for various noise levels is
discussed.

In Figure 4.12, the mean execution times for the positioning of two atoms
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within 15 pixels at a noise level of 0 (a), 333 (b), 666 (c) and 1000 (d) CCD
counts in relation to the tolerance parameter are shown. For noise levels
greater than zero, it can be observed that below a certain tolerance value,
execution time begins to fluctuate. Above that threshold, execution time
shows an exponential behaviour up to the tolerance of 1 and stays constant
after that. The algorithm shows a different behaviour without noise, where
constant values for certain tolerance ranges are observed (Fig. 4.12 (a)). In
general, the higher the noise, the longer the algorithm needs to achieve a
certain tolerance in case the maximum iterations is not the constraining
parameter.
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Figure 4.12: Execution time for a noise level of 0 (a), 333 (b), 666 (c)
and 1000 (d) CCD counts over the tolerance parameter. (average over 1000
measurements, 2 atoms within 15 pixels)

For a given number of maximum iterations and tolerance set to zero,
the execution time does not significantly depend on the noise level. In Fig.
4.13, the execution time for the same setup as above is investigated, now
over the maximum iterations parameter. In Fig. 4.13 (a), for zero noise a
perfect fit is achieved after 20 iterations. This leads to the determination of
the tolerance criterion of the Nonlinear Curve Fit VI and therefore constant
execution times. For any other level of noise greater than zero (Fig. 4.13
(b)), a perfect fit can not be achieved. Because the tolerance parameter is
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set to zero, the maximum number of determined iterations is performed.
For few iterations up to about 20, the mean execution time seems to grow
linearly with the iteration number. Above, the curves begin to level off. The
execution times for various noise levels do not seem to distinguish themselves
significantly.
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Figure 4.13: Execution time for a noise level of 0 (a), 333 (b,black), 666
(b,red) and 1000 (b,green) plotted against the maximum iteration parameter
of the Levenberg-Marquardt VI. For zero noise, a perfect fit is achieved after
20 iterations. (average over 1000 measurements, 2 atoms within 15 pixels,
tolerance 0)

In Fig. 4.14, a 3D plot of the mean execution time against the toler-
ance and the maximum iteration parameter of the Nonlinear Curve Fit VI
is shown. As discussed, the execution time increases with the number of
iterations influenced by both parameters and shows a fluctuating behaviour
when exceeding certain thresholds.
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Figure 4.14: Execution time against maximum iterations and tolerance of
the Levenberg-Marquardt VI. (average over 200 measurements for each data-
point, noise level 300, 2 atoms within 15 pixels)

4.5 Resolution power
In the following, the ability of the algorithm to distinguish between two
neighbouring atom peaks is discussed. Once more the prototypical LSF as
shown in Fig. 4.2 (a) is used.

In Fig. 4.15, the position deviation and residue for two atoms with a
distance between each other from zero up to ten pixels is shown. For zero
noise in Fig. 4.15 (a), there is a clear threshold of about 2.6 pixels when po-
sitioning becomes accurate. Below that, very high deviation indicates basic
resolution problems. The behaviour of the residue curve can be interpreted
in such a way that at zero distance the two atoms can be fitted smoothly as
one peak. The greater the distance between the atoms, the higher the residue
for a single peak gets. At the maximum deviation the algorithm occasion-
ally switches to two peak fitting, therefore starting to reduce the residue.
With zero noise, the algorithm finally switches to sole two peak fitting at a
distinct distance, leading to the sharp drop. For a noise level of 100 CCD
counts (b), the drop gets more smooth. For even higher noise levels ((c) and
(d)), positioning deviation still decreases with growing distance.

In order to overcome this basic positioning problem for at least two
neighbouring atoms, a special mechanism is implemented as proposed by
Karski [4]. Instead of using the positions from the trigonometric moment
estimation, which become extremely imprecise for close atoms and are the
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Figure 4.15: Deviation of positions (black) and residue (red) over distance
between two neighbouring atoms with a noise level of 0 (a), 100 (b), 500
(c) and 1000 (d) CCD counts. When the LSF of the single atoms begin to
overlap, the deviation increases sharply. (average over 1000 measurements,
ROI of 20 pixels)

cause of the huge deviation, two positions close to the centre of the ROI are
chosen instead. As shown in Fig. 4.16, the effect is enormous. For a moderate
noise level of 100 CCD counts, the deviation stays below 0.6 for all distances,
compared to a maximum of 9 without the mechanism. Also for higher noise
levels, improvements are observed.
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Figure 4.16: Deviation of positions (black) and residue (red) over distance
between two atoms with a noise level of 0 (a), 100 (b), 500 (c) and 1000 (d)
CCD counts. By the use of the refined positioning mechanism, the deviation
stays moderate even for small distances. (average over 1000 measurements,
ROI of 20 pixels)



Chapter 5

Measurement results

In this chapter the first actual measurements performed with the new exper-
imental setup as described in Chap. 2 is presented. Because during the time
this thesis has been written the experiment was under construction, only
a small data set is available for analysis. Nonetheless a first impression of
the performance of the program under real conditions is gained. In the first
section, the characteristics of the camera signal is discussed. In the second
section, the two important factors of speed and accuracy are examined.

5.1 Signal Characteristics
Fig. 5.1 shows some example measurements taken with an exposure time of
100 ms.

A significant spatial deviation of the fluorescence contributions is ob-
served which indicates either inhomogeneous illumination or a problem with
the optics or inhomogeneous sensitivity of the EMCCD chip. The question
arises whether this deviation could cause a problem for the algorithm, espe-
cially for the calculation of the number of atoms per ROI. In Fig. 5.1 (d),
the mean SAFC is 8849 CCD counts with a standard deviation of 1897. The
number of atoms per ROI is the accumulated fluorescence contribution di-
vided by the mean SAFC, the result rounded to the next integer. This means
that for a single atom peak the SAFC must be smaller than 4425 or bigger
than 13274 to deliver a wrong result. Regarding the standard deviation of
the SAFC, this seems very unlikely for the present example. However, if the
deviation gets to high, the correction mechanism with the SAFC Scaling
parameter as explained in Chap. 3 can be applied.

The background value in Fig. 5.1 (d) calculated as the mean value of
all pixels which are not included within in a ROI is 874 CCD counts with
a standard deviation of 66. Compared to the noise levels applied to the
simulated data in Chap. 4, this standard deviation indicates rather moderate
noise. Therefore, problems with the signal-to-noise ratio at least for this
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experimental configuration is not expected.
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Figure 5.1: Real experiment data with various number of atoms. (a) One
single atom, (b) two very close atoms, (c) four well separated atoms, (d) five
atoms with two of them within a single ROI.

5.2 Performance
In Fig. 5.2, the RT processing time for various numbers of atoms and the
corresponding standard deviation is shown. Each data point is the mean
value of 10 measurements, except for 4 atoms where only 2 data sets were
available. The form of the curve and the difference in the standard deviation
stem from the varying distribution of the atoms. For images with more than
one atom, there is always the possibility of multiple atoms in a single ROI.
Because the processing of such cases takes longer than the single atom ROIs,
a mixture of both types leads to a huge standard deviation. For the data set
shown in Fig. 5.2, only one out of ten measurements for the two atoms data
point has double atoms ROI. For the three atoms data point, six out of ten
cases have double atoms ROIs, which leads to the huge error bar. While the
two measurements of the four atoms data point consist of single atom ROIs
only, for the five atoms data point always one double atoms ROI is included.
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Figure 5.2: Actual execution times for various numbers of atoms. The data
points contain a mixture of well separated and close atoms. (average over 10
measurements, for four atoms only two measurements)

5.3 Accuracy
Although it is not possible to compare the positioning results to the ’real’
positions of the atoms, at least one can look at the differences between the
previously used post-processing and the new realtime program. The mean
difference between 38 atom positions in various configurations from single
atom ROIs to close neighbouring atoms is 0.0470 pixels with a standard
deviation of 0.0259 pixels.

Considering the reproducibility, former measurements have shown that
the positions of the atoms in the dipole trap should be quite stable [4]. Only
a minor drift due to thermal expansion and some fluctuations are to be
expected.

Observing the distance between two atoms over 11 consecutive measure-
ments with a exposure time of 100 ms gives a relative position fluctuation
of 0.1075 pixels with a standard deviation of 0.0796 pixels.



Chapter 6

Conclusion

The aim of the project was to implement a positioning algorithm for single
atoms in a dipole trap. The focus was to achieve a performance to enable
realtime tracking of the atoms so that the position information can be used
in a feedback loop. A typical exposure time for an image taken for the po-
sitioning is 10 ms which sets the time scale for the execution time. The
algorithm was implemented on two different hardware levels.

In a first step, a FPGA handles the read out of the data from the camera
and some basic low-level processing. The execution time of this part mainly
depends on the image size respectively the number of pixels which are used.
As the read out rate of 10 MHz is predetermined by the camera, hardly any
performance improvement is possible. For a typical image of 4000 pixels, the
read out takes about 450 µs, while the processing is finished after about 50
µs.

The positioning algorithm itself takes place on a RT controller. The ex-
ecution time of this part mainly depends on the number of atoms and the
spatial atom distribution. The determination of the position of a single atom
ROI takes about 1 ms. While the execution times for multiple single atom
ROIs in one image can simply be accumulated, it increases significantly with
multiple atoms in one ROI. Depending on the specific configuration, no more
than 3 atoms in one ROI can be determined within 10 ms.

Although only little real measurement data was available, the accuracy
compared to the already existing post-processing program seems sufficient.
The deviation between the two positioning programs is in the order of some
hundredth of a pixel.
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