Provability Interpretations of a Many-Sorted Polymodal Logic

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Computational Intelligence
eingereicht von
Gerald Berger
Matrikelnummer 0958520

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: A.o.Univ.Prof. Dr. Hans Tompits
Prof. Lev D. Beklemishev (Steklov Mathematical Institute, Moskau)

Erklärung zur Verfassung der Arbeit

Gerald Berger
Ottakringer Straße 48/20-21, 1170 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit-einschließlich Tabellen, Karten und Abbildungen-, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Acknowledgments

First and foremost I would like to express my sincerest gratitude to my supervisors. I thank Hans Tompits for agreeing to supervise me on this thesis. His comments and suggestions greatly improved the presentation and the content of this work. Apart from that, the support I received from him during my studies goes far beyond the scope of this thesis and I thank him for that. When one is interested in provability logics it is inevitable to hit upon the work of S.N. Artemov and his former students, among them Lev D. Beklemishev. It was him who formulated the problems this thesis is concerned with. Moreover, his work on provability logics and his comments on my work were valuable sources of progress. I thank him for agreeing to supervise me on this topic despite the fact that we, unfortunately, have never met in person. I am glad that I could exchange thoughts with one of the leading researchers in provability logics.

Apart from the people who provided professional support for my thesis, I want to thank those who were important for the success of my studies. I thank my family for supporting my studies in all imaginable aspects. Furthermore, many thanks go to my friends who accompanied me during my studies. Concerning this thesis, I especially want to mention Benjamin Kiesl who showed great interest in the progress of my work and with whom I attended many lectures on logics and mathematics.

Abstract

Provability logics constitute a well-studied branch of nonclassical logics and find interpretations in systems formalizing elementary number theory. The polymodal provability logic GLP, due to G.K. Japaridze, received considerable interest in the literature. GLP is arithmetically complete for an arithmetical interpretation which is closely related to the partial uniform reflection principles in formal arithmetic. Furthermore, the closed fragment of GLP allows to develop an ordinal notation system up to ε_{0}. Based on these observations, L.D. Beklemishev provided an alternative proof of G. Gentzen's consistency proof for Peano Arithmetic (PA) by transfinite induction up to ε_{0}. This ordinal analysis is carried out in the framework of graded provability algebras, which enable one to capture proof-theoretic information of the theory under consideration. The graded provability algebra of a theory can-from a logical point of view-be considered as a many-sorted variant of GLP.

In this thesis, we investigate this many-sorted variant of GLP which assigns sorts $\alpha \leq \omega$ to propositional variables. Thereby, propositional variables of sort $n<\omega$ are arithmetically interpreted as Π_{n+1}-sentences. In response to a question posed by Beklemishev, we show in the first part of this thesis that the resulting many-sorted modal logic is arithmetically complete with respect to a class of arithmetical interpretations which satisfies the aforementioned restriction.

Since these proof-theoretic applications can already be carried out in a positive fragment of GLP, we follow in the second part of this thesis recent trends concerning the investigation of such positive fragments of GLP. In the style of a work due to Beklemishev, we define a many-sorted positive reflection calculus where we, from the point of view of arithmetic, interpret the modal diamonds as different forms of reflection in formal arithmetic. Thereby, the restriction to the positive fragment allows for a richer arithmetical interpretation of propositional variables: these are not interpreted as single arithmetical sentences but as primitive recursive numerations of possibly infinite arithmetical theories. There, variables of sort $n<\omega$ are interpreted as Π_{n+1}-axiomatized extensions of PA, while variables of sort ω are interpreted as arbitrary extensions thereof. This interpretation enables us to introduce an additional modal operator $\langle\omega\rangle$ which is interpreted as the full uniform reflection schema in arithmetic that knows no finite, yet a recursive axiomatization. We prove that our reflection calculus is arithmetically complete with respect to this interpretation.

Kurzfassung

Beweisbarkeitslogiken stellen einen wohlstudierten Zweig nichtklassischer Logiken dar und finden Interpretationen in Systemen, welche die elementare Zahlentheorie formalisieren. Die polymodale Beweisbarkeitslogik GLP von G.K. Japaridze erfuhr reges Interesse in der Literatur. GLP ist vollständig bezüglich einer arithmetischen Interpretation, welche eng mit den partiellen uniformen Reflexionsprinzipien der formalen Arithmetik zusammenhängt. Weiters erlaubt das geschlossene Fragment von GLP die Entwicklung eines Systems zur Notation von Ordinalzahlen bis ε_{0}. Basierend auf diesen Beobachtungen lieferte L.D. Beklemishev einen zum Gentzen'schen alternativen Beweis zur Konsistenz der Peano Arithmetik (PA) per transfiniter Induktion bis ε_{0}. Diese beweistheoretische Analyse wird im Rahmen von sortierten Beweisbarkeitsalgebren durchgeführt, welche einem erlauben beweistheoretische Informationen der betrachteten Theorie zu erfassen. Die sortierte Beweisbarkeitsalgebra einer Theorie kann—von einem logischen Standpunkt betrachtet-als mehrsortige Variante von GLP aufgefasst werden.

In dieser Arbeit untersuchen wir diese mehrsortige Variante von GLP, welche aussagenlogischen Variablen Sorten $\alpha \leq \omega$ zuweist. Dabei wird jede aussagenlogische Variable der Sorte $n<\omega$ nur durch Π_{n+1}-Sätze interpretiert. In Beantwortung einer von Beklemishev gestellten Frage zeigen wir im ersten Teil dieser Arbeit, dass diese mehrsortige Logik arithmetisch vollständig bezüglich einer geeigneten arithmetischen Interpretation ist, welche der zuvor Einschränkung bezüglich der Sorten genügt.

Da die beweistheoretischen Anwendungen von GLP bereits in dem positiven Fragment derselben erfolgen können, folgen wir im zweiten Teil dieser Arbeit jüngsten Untersuchungen positiver Fragmente von GLP. In Anlehnung an eine Arbeit von Beklemishev definieren wir einen mehrsortigen positiven Reflexionskalkül, wobei wir die modalen Diamanten als verschiedene Formen der Reflexion in der formalen Arithmetik auffassen. Dabei erlaubt uns die Beschränkung auf das positive Fragment eine reichhaltigere Interpretation der aussagenlogischen Variablen: Diese werden nicht als arithmetische Sätze, sondern als primitiv rekursive Aufzählungen von möglicherweise unendlichen arithmetischen Theorien interpretiert. Hierbei werden Variablen der Sorte $n<\omega$ durch Π_{n+1}-axiomatisierbare Erweiterungen von PA instanziert, während jene der Sorte ω durch beliebige Erweiterungen derselben interpretiert werden. Diese Interpretation gestattet die Einführung eines modalen Operators $\langle\omega\rangle$, welcher als das Schema der vollen uniformen Reflexion der Arithmetik interpretiert wird, für welches es keine endliche, jedoch eine rekursive Axiomatisierung gibt. Wir zeigen, dass unser Reflexionskalkül arithmetisch vollständig bezüglich dieser Interpretation ist.

Contents

1 Introduction 1
1.1 Structure of the Thesis 3
2 Preliminaries 5
2.1 Basics 5
2.2 Formal Arithmetic 8
2.3 Arithmetization of Metamathematics 13
2.4 Limitative Results 14
2.5 Reflection Principles 19
2.6 Provability Logics 24
3 The Logics GLP* and J* 31
3.1 Motivation 31
3.2 Basics 33
3.3 Arithmetical Interpretation 36
3.4 Kripke Semantics 38
3.5 Arithmetical Completeness of GLP* 46
4 Many-Sorted Reflection Calculi 57
4.1 Motivation and Basics 57
4.2 Arithmetical Interpretation 60
4.3 Kripke Semantics 63
4.4 Positive Fragments of GLP* and J* 68
4.5 Arithmetical Completeness of RC* 73
Bibliography 85

CHAPTER

Introduction

In the course of proving his celebrated incompleteness theorems, Gödel, in his seminal paper of 1931 [19], demonstrated how a sufficiently strong theory can encode properties talking about itself - most importantly, he showed how such a theory can talk about its own theorems in terms of formal provability. Later on in 1933 [20], Gödel chose the language of propositional modal logic to provide an adequate semantics for intuitionistic logic - according to Brouwer, intuitionistic truth means provability. Gödel briefly mentions that provability in formal systems may be viewed as a modal operator.

It was then Löb [30] who discovered a principle of provability which, together with some elegant principles already known, constitutes the axiomatic basis of the well-known provability logic GL. In particular, Löb's principle allows one to establish (a formalized version of) the second incompleteness theorem by purely modal reasoning. A landmark result by Solovay [39] reveals that this logic is adequate for provability in Peano Arithmetic (PA) with the interpretation of the modality \square as the standard Gödelian provability predicate.

Provability logics have since then been vividly studied and ties have been established between mathematical logic and the more isolated field of nonclassical logics. Most importantly for us, provability logics have found a manifold of interpretations in arithmetical theories. In this context, provability logics are mostly modal logics which axiomatize properties of certain provability predicates of arithmetical theories.

One of the logics which received considerable interest in the literature is the polymodal provability logic GLP due to Japaridze [25]. GLP is formulated over a modal language with modalities $[n]$ for every natural number n. Japaridze showed that GLP is arithmetically complete for sound extensions of Peano Arithmetic when $[n]$ is interpreted as being "provable under n nested applications of the ω-rule" (see Section 3.3). Later, Ignatiev [24] simplified the work of Japaridze and showed that GLP is complete for an even broader class of arithmetical interpretations. Most importantly, for a sound extension T of PA, it turns out that GLP is arithmetically complete for T for the interpretation of $[n]$ as (formalized) provability in the theory $T+\operatorname{Th}_{\Pi_{n}}(\mathbb{N})$, where $T h_{\Pi_{n}}(\mathbb{N})$ denotes
the set of all true Π_{n}-sentences. The arithmetical interpretation of the dual operator $\langle n\rangle:=\neg[n] \neg$ is called n-consistency and is equivalent to the uniform reflection principle for Π_{n+1}-formulas over T (see Section 2.5). Ignatiev further showed that GLP exhibits Craig interpolation, has a fixed-point property, and that there is a universal model for the closed fragment of GLP (i.e., the set of theorems with no variables) based on the ordinal ε_{0}.

Beklemishev [2] brought the study of GLP into mainstream proof theory concerning ordinal analysis. The background can be roughly sketched as follows (cf. also Rathjen [32] some background on ordinal analysis). Ever since the work of Gentzen [17, 18], it has been a principal aim of proof theory to assign ordinals to theories which should somehow measure the "proof-theoretic strength" of the theory under consideration. Gentzen showed that Peano Arithmetic is consistent by transfinite induction up to ε_{0} and furthermore that transfinite induction up to every ordinal less than ε_{0} is provable in PA. Hence, it seems natural to define the proof-theoretic ordinal of a theory T as the least ordinal such that the theory plus transfinite induction up to this ordinal proves the consistency of T. Similarly, we could define the proof-theoretic ordinal to be the supremum of the order types which T is able to prove to be well-founded (recall that ε_{0} is the supremum of $\left.\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\right)$. The problem with these definitions is that the notions crucially depend on the representation of the ordinal notation system within T. To wit, a well-known example due to Kreisel shows that one can define a primitive recursive well-ordering of order type ω such that a comparatively weak theory can prove the consistency of a strong theory by transfinite induction on this ordering [27]. The tentative conclusion we can draw from the possibility of such pathological orderings is that in order to gain "natural" representations of ordinals, the notion of proof-theoretic ordinal should disregard many syntactical details of the theory under consideration.

Beklemishev [2] proposes an approach to the ordinal analysis of PA which addresses these issues. A proof-theoretic analysis of PA based on the notion of graded provability algebras is suggested which allows one to capture enough syntactic information in order to canonically recover an ordinal notation system up to ε_{0}. This permits one to obtain Gentzen's results in a rather abstract fashion. Furthermore, based on these notions, Beklemishev [4] provided a combinatorial statement undecided by PA.

The notion of graded provability algebra proposed by Beklemishev bears the structure of a Lindenbaum algebra of an arithmetical theory T enriched by additional operators $\langle n\rangle_{T}$ for every natural number n, denoting n-consistency. Given such a structure \mathcal{M}_{T}, one can associate a stratification $P_{0} \subset P_{1} \subset \cdots \subseteq \mathcal{M}_{T}$ with it, where the sets P_{n} correspond to Π_{n+1}-sentences. An algebra with such a stratification can be regarded as a many-sorted algebra, where the operator $\langle n\rangle_{T}$ maps elements from \mathcal{M}_{T} to P_{n}. It is the modal logic of such many-sorted algebras we are going to investigate in this thesis.

More precisely, we consider the modal logic which contains variables of sort n for every $n<\omega$. The arithmetical interpretation of a variable of sort n ranges over $\Pi_{n+1^{-}}$ sentences. In addition to the postulates of GLP, our logic will contain the axiom of Σ_{n+1}-completeness, that is,

$$
\neg p \rightarrow[n] \neg p
$$

where p is a variable of sort n. The notion of sort can be naturally extended to capture all polymodal formulas (i.e., terms in the language of many-sorted algebras). Substitution in the logic under consideration is then restricted to respect the sorts.

Since the proof-theoretic applications of GLP mentioned before can already take place in a positive fragment of the same, positive fragments of provability logics have received interest recently. Dashkov [13] showed that the positive fragment of GLP can be axiomatized by a positive calculus which is decidable in polynomial time. Furthermore, he mentions that an arithmetical interpretation of the positive fragment of GLP can be richer than the standard one: propositional variables can be interpreted as possibly infinite arithmetical theories rather than single sentences. The arithmetical interpretation of modal formulas is then not restricted to adhere to finitely axiomatizable concepts only. In particular, the arithmetical interpretation of positive formulas can result in theories of unbounded arithmetical complexity. Hence, this interpretation allows to introduce a modality $\langle\omega\rangle$ which is interpreted as the full uniform reflection principle in arithmetic. Beklemishev [7] showed that a suitable reflection calculus capturing these notions is arithmetically sound and complete with respect to the aforementioned arithmetical interpretation, where propositional variables are formally interpreted as primitive recursive numerations of theories extending PA. We follow these lines and investigate the positive fragment of our many-sorted variant by defining a suitable many-sorted version of Beklemishev's reflection calculus and show that it is arithmetically complete with respect to an arithmetical interpretation which treats variables of sort $n<\omega$ as Π_{n+1}-axiomatized extensions of PA. As in the work of Beklemishev, our calculus will also contain a modality $\langle\omega\rangle$ which, from an arithmetical point of view, corresponds to the full uniform reflection principle in arithmetic.

1.1 STRUCTURE OF THE THESIS

After this introductory chapter, we continue in Chapter 2 with an exposition of some background knowledge. We collect some basic facts on formal arithmetic in Section 2.2 and continue to review the famous limitative results of reasonably strong arithmetical theories in Sections 2.3 and 2.4. Section 2.5 contains a brief treatment of the reflection principles in arithmetic. In Section 2.6, we introduce the basic notions of provability logics and recite Solovay's famous theorems.

Chapter 3 is devoted to the study of our many-sorted variant of GLP, denoted by GLP*. It is well-known that GLP is not sound and complete for any class of Kripke frames [24]. Therefore, Ignatiev [24] identified a logic weaker than GLP which is already sound and complete for a decent class of Kripke frames and allows one to prove properties about GLP by reducing GLP to that logic. Beklemishev [5] isolates an even more convenient subsystem of GLP, denoted by J, which he uses to simplify the arithmetical completeness theorem for GLP [6]. We will analogously define a logic J^{*} which is weaker than GLP* and prove in Section 3.4 that J^{*} is complete with respect to a nice class of Kripke models. In Section 3.5, we show that GLP* is arithmetically complete with respect to the broad class of arithmetical interpretations identified by Ignatiev which in addition respect our
conditions on the sorts of variables. Afterwards, we will discuss some corollaries and extensions of this theorem.

In Chapter 4, we introduce many-sorted variants of the reflection calculi studied by Beklemishev [7] and Dashkov [13]. Here, the arithmetical interpretation of propositional variables of sort n is given by primitive recursive enumerations of Π_{n+1}-axiomatized extensions of PA, while the variables of sort ω can be assigned arbitrary extensions of PA. Additionally, we introduce a modality $\langle\omega\rangle$ which, as in the work of Beklemishev [7], receives the full uniform reflection principle as its arithmetical semantics. For $n<\omega$, the modal operator $\langle n\rangle$ is interpreted as the uniform reflection schemata restricted to Π_{n+1} formulas, that is, n-consistency. The arithmetical interpretation of our many-sorted positive calculus is subject of Section 4.2. Kripke semantics is subsequently treated in Section 4.3. Following Dashkov [13], we show in Section 4.4 that our reflection calculus axiomatizes the positive fragment of GLP ${ }_{\omega+1}^{*}$ which is the logic GLP* enriched by a modality $\langle\omega\rangle$ and suitable axioms. In the style of Beklemishev [7], we continue in Section 4.5 to prove that this resulting system is arithmetically complete with respect to the aforementioned interpretation.

Preliminaries

We assume familiarity with the basics of classical first-order logic as well as the treatment of metamathematics as a branch of number theory. In the sequel, we will briefly define the basic logical concepts in order to fix notation and terminology. We will then introduce the arithmetical theories of our interest in Section 2.2 and summarize some well-known properties about them. For more details on the contents of the first two sections, we refer the reader to standard textbooks on mathematical logic, e.g., Shoenfield [35], Boolos et al. [12], as well as to text books on formal arithmetic like Hájek and Pudlák [21]. Some famous limitative results concerning the metamathematics of arithmetic are repeated in Sections 2.3 and 2.4. We continue with a brief exposition of the so called reflection principles in arithmetic in Section 2.5, which we will encounter later in Chapter 4. At the end of this chapter, in Section 2.6, we briefly discuss existing provability logics which are relevant for us.

2.1 BASICS

A first-order language \mathcal{L} consists of logical, nonlogical, and auxiliary symbols. The nonlogical symbols are specified by pairwise disjoint sets of predicate (relation), function, and constant symbols, where each predicate and function symbol has an associated positive arity. Throughout the text, we assume that every first-order language \mathcal{L} implicitly contains a binary predicate symbol $=$ called equality (which we write in infix notation for convenience). The logical symbols of \mathcal{L} consist of equality, $\forall, \rightarrow, \neg$, as well as a countably infinite supply of (individual) variables. Furthermore, the symbols (,), and, are called auxiliary symbols. We assume that every language has the same logical and auxiliary symbols. Hence, a first-order language is determined by the choice of its nonlogical symbols. When exhibiting syntactic objects, we agree to let x, y, z, \ldots (possibly with subscripts) be metavariables for individual variables. We say that a language \mathcal{L}^{\prime} extends a language \mathcal{L} (symbolically $\mathcal{L} \subseteq \mathcal{L}^{\prime}$) if the nonlogical symbols of \mathcal{L} are contained in \mathcal{L}^{\prime}. If $\mathcal{L} \subseteq \mathcal{L}^{\prime}$ then \mathcal{L}^{\prime} is an extension of \mathcal{L}.

Given a language \mathcal{L}, the set of \mathcal{L}-terms is defined inductively in the usual manner: (i) individual variables and constant symbols are \mathcal{L}-terms, (ii) if f is a function symbol of arity n and t_{1}, \ldots, t_{n} are \mathcal{L}-terms then $f\left(t_{1}, \ldots, t_{n}\right)$ is an \mathcal{L}-term. If t_{1}, \ldots, t_{n} are \mathcal{L}-terms and R is a predicate symbol of arity n then $R\left(t_{1}, \ldots, t_{n}\right)$ is an atomic \mathcal{L}-formula. The set of \mathcal{L}-formulas (formulas over \mathcal{L}) is defined inductively:
(i) Every atomic \mathcal{L}-formula is an \mathcal{L}-formula.
(ii) If φ and ψ are \mathcal{L}-formulas then $\neg \varphi$ and $(\varphi \rightarrow \psi)$ are \mathcal{L}-formulas.
(iii) If x is an individual variable and φ an \mathcal{L}-formula then $\forall x \varphi$ is an \mathcal{L}-formula.

We introduce the usual abbreviations for logical connectives different from \rightarrow and \neg. We set $\varphi \vee \psi:=\neg \varphi \rightarrow \psi, \varphi \wedge \psi:=\neg(\neg \varphi \vee \neg \psi), \varphi \leftrightarrow \psi:=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$, and $\exists x \varphi:=\neg \forall x \neg \varphi$. As we did here in these definitions, we omit parentheses whenever possible and assign $\neg, \forall x$ the highest and $\rightarrow, \leftrightarrow$ the least binding priority. Furthermore, we sometimes also introduce additional parentheses for the sake of readability (possibly parentheses of a different style). We usually omit " \mathcal{L} " in the terms " \mathcal{L}-term" and " \mathcal{L} formula" whenever \mathcal{L} is clear from context. Adhering to standard mathematical notation, we write $t_{1} \neq t_{2}$ instead of $\neg t_{1}=t_{2}$.

The notion of an expression (i.e., a term or formula) occurring in another expression is defined the usual way. In particular, the notions of free and bound occurrence of a variable in an \mathcal{L}-formula are defined as usual. A variable x in a formula is called free if x has a free occurrence in φ. An expression is called closed if no variable has a free occurrence in it. A closed \mathcal{L}-formula φ is also called \mathcal{L}-sentence. If a formula φ is of the form $\mathrm{Q} x_{1} \mathrm{Q} x_{2} \cdots \mathrm{Q} x_{n} \psi(\mathrm{Q} \in\{\forall, \exists\})$, we abbreviate the sequence $\mathrm{Q} x_{1} \mathrm{Q} x_{2} \cdots \mathrm{Q} x_{n}$ of quantifiers in φ by $\mathrm{Q} x_{1}, x_{2}, \ldots, x_{n}$. When we denote a formula φ by $\varphi\left(x_{1}, \ldots, x_{n}\right)$, we indicate that all free variables are among x_{1}, \ldots, x_{n}. We may also abbreviate a list x_{1}, \ldots, x_{n} of variables by \vec{x}. The notion of substitution of a term t for all free occurrences of a variable x in a formula φ is defined as usual. We indicate substitution by $\varphi\left(x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right)$ and omit the x_{1}, \ldots, x_{n} whenever they are clear from context.

Turning to semantics, an \mathcal{L}-structure is a pair $\mathfrak{A}=\left\langle M,{ }^{\mathfrak{A}}\right\rangle$, where M is a non-empty set (called universe of \mathfrak{A}) and $\cdot^{\mathfrak{A}}$ is a function which assigns
(i) to every n-ary ($n \geq 0$) predicate symbol R from \mathcal{L} a relation $R^{\mathfrak{A}} \subseteq M^{n}$;
(ii) to every n-ary $(n \geq 0)$ function symbol f from \mathcal{L} a total function $f^{\mathfrak{A}}: M^{n} \rightarrow M$;
(iii) to every constant symbol c from \mathcal{L} an element $c^{\mathfrak{A}} \in M$.

An \mathfrak{A}-valuation is a function v which assigns every variable an element from M. For two \mathfrak{A}-valuations v and v^{\prime} and all variables x, we define

$$
v^{\prime} \sim_{x} v \Longleftrightarrow{ }_{d f} v^{\prime}(y)=v(y) \text { for all variables } y \neq x
$$

We define the value $\llbracket t \rrbracket_{\mathfrak{A}, v} \in M$ with respect to \mathfrak{A} and v for all \mathcal{L}-terms t, as well as the truth value $\llbracket \varphi \rrbracket_{\mathfrak{A}, v} \in\{0,1\}$ with respect to \mathfrak{A} and v for all \mathcal{L}-formulas recursively:
(i) $\llbracket x \rrbracket_{\mathfrak{A}, v}=v(x)$, for every variable x;
(ii) $\llbracket c \rrbracket_{\mathfrak{A}, v}=c^{\mathfrak{A}}$, for every constant symbol c from \mathcal{L};
(iii) $\llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mathfrak{A}, v}=f^{\mathfrak{A}}\left(\llbracket t_{1} \rrbracket_{\mathfrak{A}, v}, \ldots, \llbracket t_{n} \rrbracket_{\mathfrak{A}, v}\right)$, for every n-ary function symbol f from \mathcal{L};
(iv) $\llbracket R\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\mathfrak{A}, v}=R^{\mathfrak{A}}\left(\llbracket t_{1} \rrbracket_{\mathfrak{A}, v}, \ldots, \llbracket t_{n} \rrbracket_{\mathfrak{A}, v}\right)$, for every n-ary predicate symbol R from \mathcal{L};
(v) $\llbracket \neg \varphi \rrbracket_{\mathfrak{A}, v}=1-\llbracket \varphi \rrbracket_{\mathfrak{A}, v} ; \quad \llbracket \varphi \rightarrow \psi \rrbracket_{\mathfrak{A}, v}=1$, if $\llbracket \varphi \rrbracket_{\mathfrak{A}, v} \leq \llbracket \psi \rrbracket_{\mathfrak{A}, v}$ and 0 otherwise;
(vi) $\llbracket \forall x \varphi \rrbracket_{\mathfrak{A}, v}=\inf \left\{\llbracket \varphi \rrbracket_{\mathfrak{A}, v^{\prime}} \mid v^{\prime} \sim_{x} v\right\}$.

For a formula φ, we write $\mathfrak{A}, v \models \varphi$ whenever $\llbracket \varphi \rrbracket_{\mathfrak{A}, v}=1$. \mathfrak{A} is a model of φ, if $\mathfrak{A}, v \models \varphi$ for all \mathfrak{A}-valuations v. We abbreviate this fact by $\mathfrak{A} \models \varphi$. Likewise, \mathfrak{A} is a model of a set of formulas T, if $\mathfrak{A} \models \varphi$ for every $\varphi \in T$. The theory of \mathfrak{A} is the set $\operatorname{Th}(\mathfrak{A}):=\{\varphi|\mathfrak{A}|=$ φ, φ is an \mathcal{L}-sentence $\}$.

An \mathcal{L}-theory (simply theory if \mathcal{L} is clear from context) is just a set of \mathcal{L}-sentences. For an \mathcal{L}-theory T, \mathcal{L} is called the language of T. For a formula φ, we write $T \models \varphi$ and say that T (logically) entails φ, if every model of T is also a model of φ. The notion of \mathcal{L}-proof in T is defined as usual. For a theory T, we write $T \vdash \varphi$ if φ is provable in T. In this case, we say that φ is a theorem of T. For a set of \mathcal{L}-formulas Γ, we write $T \vdash \Gamma$ if $T \vdash \gamma$ for all $\gamma \in \Gamma$. For the notion of theoremhood, we assume a set of logical axioms present which together with the standard logical rules of inference suffices that our notion of theoremhood is strongly sound and complete with respect to our notion of entailment, i.e., for every $\varphi, T \vdash \varphi$ iff $T \models \varphi$. Sentences from T are called (nonlogical) axioms of T. It is clear that in order to specify a theory we only need to specify the nonlogical symbols of its language plus its nonlogical axioms, i.e., the logical machinery necessary to derive all and only the sentences which are entailed by the theory are assumed to be implicitly given by the notion of proof.

Two theories are (deductively) equivalent if they have the same language and prove the same theorems. Given two theories T, S in the same language, we write $T+S$ to denote the theory $T \cup S$. For a sentence φ in the language of T, we also write $T+\varphi$ instead of $T+\{\varphi\}$. A theory T is axiomatizable if there is a decidable set of sentences whose theorems coincide with the theorems of T. A theory S is an extension of T if the language of S extends the language of T and every theorem of T is also a theorem of S. S is a finite extension of T if there are sentences $\varphi_{1}, \ldots, \varphi_{n}$ such that $T+\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ and S are deductively equivalent.

During our discussion, we often implicitly make use of the following concepts, which formally capture common mathematical practice (cf. Shoenfield [35], Kunen [29]).

Definition 2.1.1. Let $\mathcal{L} \subseteq \mathcal{L}^{\prime}$ and Γ a set of sentences over \mathcal{L}. If $P \in \mathcal{L}^{\prime} \backslash \mathcal{L}$ is an n-ary predicate symbol, we mean by a definition of P over \mathcal{L} and Γ a sentence

$$
\forall \vec{x}(P(\vec{x}) \leftrightarrow \varphi(\vec{x}))
$$

where $\varphi(\vec{x})$ is a formula over \mathcal{L}. Similarly, for an n-ary function symbol $f \in \mathcal{L}^{\prime} \backslash \mathcal{L}$, we say that $\forall \vec{x} \varphi(\vec{x}, f(\vec{x}))$ is a definition of f over \mathcal{L} and Γ if $\varphi(\vec{x}, y)$ is a formula over \mathcal{L} and additionally $\Gamma \vdash \forall \vec{x} \exists!y \varphi(\vec{x}, y)$.

A set of sentences $\Gamma^{\prime} \supseteq \Gamma$ over \mathcal{L}^{\prime} is an extension by definitions of Γ if every sentence from $\Gamma^{\prime} \backslash \Gamma$ is a definition of some symbol in $\mathcal{L}^{\prime} \backslash \mathcal{L}$ over \mathcal{L} and Γ.

Theorem 2.1.2. Let $\Gamma^{\prime} \supseteq \Gamma$ be an extension by definitions of Γ, where Γ is a set of sentences over \mathcal{L} and Γ^{\prime} is a set of sentences over \mathcal{L}^{\prime}, respectively.
(i) If φ is a sentence over \mathcal{L} then $\Gamma \vdash \varphi$ iff $\Gamma^{\prime} \vdash \varphi$.
(ii) If $\varphi(\vec{x})$ is a formula over \mathcal{L}^{\prime} then there is a $\psi(\vec{x})$ over \mathcal{L} with exactly the same free variables as $\varphi(\vec{x})$ such that $\Gamma^{\prime} \vdash \forall \vec{x}(\varphi(\vec{x}) \leftrightarrow \psi(\vec{x}))$.

2.2 Formal Arithmetic

The language of arithmetic, \mathcal{L}_{0}, is the first-order language with (besides equality) the binary predicate symbol \leq, the binary function symbols,$+ \cdot$, the unary function symbol s (successor), and the constant symbol 0 . Henceforth, unless stated otherwise, all formulas we consider will be formulas from a language extending \mathcal{L}_{0}. For terms t_{1}, t_{2} in the language of arithmetic, we introduce the abbreviations $t_{1}<t_{2}:=t_{1} \leq t_{2} \wedge t_{1} \neq t_{2}$, $t_{1}>t_{2}:=\neg t_{1} \leq t_{2}$, and $t_{1} \geq t_{2}:=\neg t_{1}<t_{2}$. Furthermore, we recursively define

$$
\overline{0}:=0 \quad \text { and } \quad \overline{n+1}:=s(\bar{n}) .
$$

For $n \in \omega,{ }^{1}$ the term \bar{n} is called numeral and is a natural representation of n in the language of arithmetic.

The standard model of arithmetic \mathbb{N} has as its universe $\omega=\{0,1,2, \ldots\}$ and assigns the previously mentioned nonlogical symbols their usual meaning. In particular, the denotation of s is the successor function $\lambda x . x+1$. We call the theory of the structure \mathbb{N} (i.e., the set of all sentences true in the standard model of arithmetic) true arithmetic. In the following, by a true sentence we mean a sentence true in the standard model of arithmetic.

Let t be a term which has no occurrence of x and φ a formula. We introduce the abbreviations

$$
\begin{aligned}
& \forall x \leq t \varphi:=\forall x(x \leq t \rightarrow \varphi), \\
& \exists x \leq t \varphi:=\exists x(x \leq t \wedge \varphi),
\end{aligned}
$$

and similarly for the symbols $<,>$, and \geq. Occurrences of quantifiers of form $\forall x \leq t$ and $\exists x \leq t$ are called bounded. A formula is called bounded if every occurrence of a quantifier in it is bounded. Obviously, a quantifier occurrence of the form $\forall x<t$ ($\exists x<t$, respectively) can be rewritten into a logically equivalent bounded occurrence of the

[^0]respective form. Hence, we also call such occurrences bounded. Notice that the notion of bounded formula heavily depends on the choice of our language. In our discussion, this language will always be clear from context.

Arithmetical Theories

An arithmetical theory (henceforth simply theory) is just a theory whose formulas are in a language extending \mathcal{L}_{0}. Most importantly, we will confine ourselves to Peano Arithmetic (defined below), though many results of the present text extends to much weaker theories.

Let T be a theory. We say that a formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$ having exactly k variables free defines a relation $R \subseteq \omega^{k}$ in T, if

$$
\begin{aligned}
& \left(n_{1}, \ldots, n_{k}\right) \in R \Longleftrightarrow T \vdash \varphi\left(\bar{n}_{1}, \ldots, \bar{n}_{k}\right), \\
& \left(n_{1}, \ldots, n_{k}\right) \notin R \Longleftrightarrow T \vdash \neg \varphi\left(\bar{n}_{1}, \ldots, \bar{n}_{k}\right),
\end{aligned}
$$

for all $\left(n_{1}, \ldots, n_{k}\right) \in \omega^{k}$. R is definable in T, if there exists such a formula defining R. Similarly, a function $f: \omega^{k} \rightarrow \omega$ is definable in T, if its graph $f \subseteq \omega^{k+1}$ is. We say that a function $f: \omega^{k} \rightarrow \omega$ is represented by $\varphi\left(x_{1}, \ldots, x_{k+1}\right)$ in T, if whenever $f\left(n_{1}, \ldots, n_{k}\right)=m$ then

$$
T \vdash \forall y\left(\varphi\left(\bar{n}_{1}, \ldots, \bar{n}_{k}, y\right) \leftrightarrow y=\bar{m}\right) .
$$

Such an f is representable in T if there is such a $\varphi\left(x_{1}, \ldots, x_{k+1}\right)$ having exactly $k+1$ variables free. A relation (function, respectively) is arithmetically definable if it is definable in true arithmetic.
Remark. Note that in the case of true arithmetic, the notions of definability and representability of a function coincide.

Definition 2.2.1. We define the classes of Σ_{n} and Π_{n}-formulas for all $n \in \omega$ inductively:
(i) The classes of Σ_{0} and Π_{0}-formulas are the class of all bounded \mathcal{L}_{0}-formulas (i.e., bounded formulas in the language of arithmetic). This class is commonly called the class of Δ_{0}-formulas.
(ii) The class of Σ_{n+1}-formulas are all formulas of the form $\exists x \varphi(x, \vec{y})$, where $\varphi(x, \vec{y})$ is a Π_{n}-formula.
(iii) Similarly, the class of Π_{n+1}-formulas are all formulas of the form $\forall x \varphi(x, \vec{y})$, where $\varphi(x, \vec{y})$ is a Σ_{n}-formula.

We say that a relation $R \subseteq \omega^{n}$ is in $\Sigma_{n}\left(\Pi_{n}\right.$, respectively), if it is arithmetically definable by a Σ_{n}-formula (Π_{n}-formula, respectively). A relation is in Δ_{n} iff it is both in Σ_{n} and Π_{n}. If a relation is in $\Sigma_{n}\left(\Pi_{n}, \Delta_{n}\right.$, respectively), we also say that it is a Σ_{n}-relation $\left(\Pi_{n}\right.$, Δ_{n}-relation, respectively). The same terminology is used for functions. A Σ_{n}-sentence (Π_{n}-, Δ_{n}-sentence, respectively) is just a Σ_{n}-formula ($\Pi_{n^{-}}, \Delta_{n}$-formula, respectively) with no free occurrences of variables.

The classes of formulas defined above form the arithmetical hierarchy. A formula belonging to one of the classes Γ is said to be of arithmetical complexity Γ.

A formula is in prenex form, if it is of the form

$$
\mathrm{Q}_{1} x_{1} \mathrm{Q}_{2} x_{2} \cdots \mathrm{Q}_{n} x_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}, \vec{y}\right), \quad \mathrm{Q}_{i} \in\{\forall, \exists\}(i=1,2, \ldots, n)
$$

where $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}, \vec{y}\right)$ has no quantifier occurrence. It is well-known that for every formula, there exists a formula in prenex form logically equivalent to it. Since every formula is equivalent to one in prenex form, it immediately follows that every formula is logically equivalent to some Σ_{n}-formula and some Π_{k}-formula for some $n, k \geq 0$ (possibly quantifying over dummy variables).

Proposition 2.2.2. For all $n \geq 0$,
(i) Σ_{n} and Π_{n}-relations are closed under unions and intersections;
(ii) the complement of a Σ_{n}-relation $\left(\Pi_{n}\right.$-relation) is a Π_{n}-relation (Σ_{n}-relation); Δ_{n}-relations are thus closed under complements;
(iii) if $n>0, \Sigma_{n}$-relations are closed under existential projections and Π_{n}-relations are closed under universal projections, respectively.

A theory T is sound if all its theorems are true in \mathbb{N}. Similarly, for a class of sentences Γ, we say that T is Γ-sound if all sentences from Γ are true whenever they are theorems of T.

The theory Q (called minimal arithmetic) is axiomatized by the following axioms (the free variables are supposed to be bound by universal quantifiers):

$$
\begin{aligned}
s(x) & \neq 0 \\
s(x)=s(y) & \rightarrow x=y \\
x \neq 0 & \rightarrow \exists y x=s(y) \\
x+0 & =x \\
x+s(y) & =s(x+y), \\
x \cdot 0 & =0 \\
x \cdot s(y) & =(x \cdot y)+x \\
x \leq y & \leftrightarrow \exists z z+x=y
\end{aligned}
$$

Peano Arithmetic (PA) is the theory obtained from Q by adding induction axioms

$$
\begin{equation*}
\varphi(0, \vec{y}) \wedge \forall x(\varphi(x, \vec{y}) \rightarrow \varphi(s(x), \vec{y})) \rightarrow \forall x \varphi(x, \vec{y}) \tag{Ind}
\end{equation*}
$$

for all formulas $\varphi(x, \vec{y})$.
Peano Arithmetic allows one to establish major theorems of number theory. In particular, PA allows to develop syntactical and metamathematical notions of itself.

Example 2.2.3. Let us prove for purposes of illustration that $\mathrm{PA} \vdash \forall x, y(x+y=y+x)$. To this end, we first prove some auxiliary results. Let $\varphi(x):=0+x=x+0$. We prove PA $\vdash \forall x \varphi(x)$. An instance of the induction axiom is then

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(s(x))) \rightarrow \forall x \varphi(x)
$$

Hence, it suffices to prove $\varphi(0)$ and $\forall x(\varphi(x) \rightarrow \varphi(s(x)))$. The statement $0+0=0+0$ is valid by pure logic, hence provable in PA. We reason in PA and suppose $0+x=x+0$. We infer

$$
0+s(x)=s(0+x)=s(x+0)=s(x)=s(x)+0
$$

which proves the first claim. We now show $\mathrm{PA} \vdash \forall x, y s(x)+y=x+s(y)$ by induction on y in PA (i.e., taking $s(x)+y=x+s(y)$ as the induction formula). We reason in PA as follows. If $y=0$, then $s(x)+0=0+s(x)=s(0+x)=s(x+0)=x+s(0)$. Suppose now $s(x)+y=x+s(y)$. We have

$$
s(x)+s(y)=s(s(x)+y)=s(x+s(y))=x+s(s(y))
$$

which proves the second auxiliary claim. Now $\forall x, y x+y=y+x$ is proved by induction on x, taking $x+y=y+x$ as induction formula. The case $x=0$ has already been established, so suppose $x+y=y+x$; we prove $s(x)+y=y+s(x)$. Observe

$$
s(x)+y=x+s(y)=s(x+y)=s(y+x)=y+s(x)
$$

so we are finished.
Definition 2.2.4. Let T be a theory and $\varphi(\vec{x})$ be a formula having exactly the variables among \vec{x} free. We say that $\varphi(\vec{x})$ is Σ_{n} in T if there is a Σ_{n}-formula $\psi(\vec{x})$ with the same free variables as $\varphi(\vec{x})$ such that $T \vdash \forall \vec{x}(\varphi(\vec{x}) \leftrightarrow \psi(\vec{x}))$ (and similarly for the the classes $\left.\Pi_{n}\right)$. We say that $\varphi(\vec{x})$ is Δ_{n} in T if it is both Σ_{n} and Π_{n} in T.

When T is clear from context, we often omit the phrase "in T " and identify the corresponding classes of formulas modulo provable equivalence in T. In this context when we talk about Σ_{n}-formulas (Π_{n}-formula, respectively), we mean the class of formulas whose every formula is provably equivalent to a Σ_{n}-formula (Π_{n}-formula, respectively). By a Δ_{n}-formula we then mean a formula which is Δ_{n} in T. We have the following well-known closure properties [21, 11].

Proposition 2.2.5. Let T be an extension of PA.
(i) For $n \geq 0$, the class of formulas which are $\Sigma_{n}\left(\Pi_{n}\right.$, respectively) in T is closed under conjunction, disjunction, bounded universal, and bounded existential projection.
(ii) For $n \geq 1$, the class of formulas which are Σ_{n} in T is closed under existential projection and the class of formulas which are Π_{n} in T is closed under universal projection, respectively.

We now recall some basic facts about the concepts we have introduced so far [12, 21].
Theorem 2.2.6. $A \Sigma_{1}$-sentence φ is true iff $\mathrm{Q} \vdash \varphi$.
Note that it follows from the first incompleteness theorems (Theorems 2.4.4 and 2.4.5) that no consistent axiomatizable extension of Q proves all true Π_{1}-sentences (see Boolos et al. [12] as well as Hájek and Pudlák [21]).

Theorem 2.2.7. A function is recursive iff it is in Δ_{1}. Furthermore, a set is recursively enumerable iff it is in Σ_{1}.

Theorem 2.2.8. Every function in Δ_{1} is representable in Q.
Proof. Let f be a function (say, one-place) in Δ_{1} which is defined by the Σ_{1}-formula $\varphi(x, y)$. Let

$$
\psi(x, y):=\varphi(x, y) \wedge \forall z<y \neg \varphi(x, z) .
$$

We prove that $\psi(x, y)$ represents f in \mathbf{Q}. Assume $f(n)=m$. It is sufficient to prove that $\mathrm{Q} \vdash \psi(\bar{n}, \bar{m})$ and $\mathrm{Q} \vdash y \neq \bar{m} \rightarrow \neg \psi(\bar{n}, y)$. The first claim is easily seen as $\mathrm{Q} \vdash \varphi(\bar{n}, \bar{m})$ and also $\mathrm{Q} \vdash \forall z<\bar{m} \neg \varphi(\bar{n}, z)$ (since the corresponding sentences are true). It remains to show

$$
\mathrm{Q} \vdash y \neq \bar{m} \rightarrow \neg \psi(\bar{n}, y),
$$

that is,

$$
\mathrm{Q} \vdash y \neq \bar{m} \rightarrow \neg \varphi(\bar{n}, y) \vee \exists z<y \varphi(\bar{n}, z) .
$$

We reason in Q as follows. Suppose that $y \neq \bar{m}$. It is well-known that, provably in Q, either $y=\bar{m}, y>\bar{m}$, or $y<\bar{m}$. Therefore, either $y>\bar{m}$ or $y<\bar{m}$. Suppose first that $y<\bar{m}$. As we argued before, we have $\forall z<\bar{m} \neg \varphi(\bar{n}, z)$. Therefore also $\neg \varphi(\bar{n}, y)$. Suppose now $y>\bar{m}$. We have $\varphi(\bar{n}, \bar{m})$, therefore $\varphi(\bar{n}, z)$ for some $z<y$ as desired. This completes the proof.

Remark. When we reason inside an arithmetical theory, we often ease notation and use conventional mathematical notation instead if no confusion arises.
The following concepts will be useful (see Hájek and Pudlák [21]).
Definition 2.2.9. We say that a formula $\varphi(\vec{x}, y)$ defines a total function in T, if $T \vdash$ $\forall \vec{x} \exists!y \varphi(\vec{x}, y)$. Suppose that $\varphi(\vec{x}, y)$ is a formula which arithmetically defines a function $f: \omega^{k} \rightarrow \omega$. Then f is called provably total in T, if $\varphi(\vec{x}, y)$ defines a total function in T. Likewise, f is a T-provably total Σ_{n}-function, if $\varphi(\vec{x}, y)$ is Σ_{n} in T and provably total in T.

The following fact is well-known (cf. Hájek and Pudlák [21]):
Theorem 2.2.10. Every primitive recursive function is a PA-provably total Σ_{1}-function.

It follows that we can safely introduce a function symbol for every primitive recursive function into the language of arithmetic (cf. Definition 2.1.1 and Theorem 2.1.2). It will be convenient to do so in the following.

2.3 Arithmetization of Metamathematics

Arithmetical theories formalize certain portions of elementary number theory, i.e., sentences in the language of arithmetic are intended to express certain properties about numbers. In this section we are interested in the development of the syntax of PA within PA itself. ${ }^{2}$ It was a fundamental insight of Gödel [19] that this is possible and that the machinery provided by the arithmetization of metamathematics allows one to construct true statements which are undecidable in PA.

The way we interpret statements which are proved by PA is determined by truth in the standard model \mathbb{N}, i.e., this model defines the standard meaning of the statements proved by PA. Hence, given our standard model \mathbb{N}, all objects PA can talk about are numbers-it is the intended range of the quantified variables which determines the meaning of the sentences inferred in PA. It should thus be clear that developing the syntax of PA in PA will be different from the development of elementary number theory in PA (cf. Boolos [11]). This issue is addressed by the notion of Gödel numbering: objects of syntax are assigned natural numbers in such a way that certain statements of our informal metatheory can be expressed in the language of arithmetic. Furthermore, the goal of this assignment is that certain true statements concerning the syntax of PA become provable in PA itself. Hence, syntax is crafted into a branch of number theory.

We do not develop a particular Gödel numbering here and prove that this assignment of numbers to expressions has all the desirable properties a decent Gödel numbering has. We refer the reader interested in such an elaboration to (among many sources) Boolos [11] and Hájek and Pudlák [21]. We assume a standard global assignment \ulcorner.$\urcorner of expressions$ (terms, formulas, etc.) to natural numbers. Given any expression τ, we call $\ulcorner\tau\urcorner$ the code or Gödel number of τ. Note that $\ulcorner\tau\urcorner$, being a natural number, "lives" in our informal metatheory and has a natural representation in \mathcal{L}_{0} through the term $\overline{\ulcorner\tau\urcorner}$. However, when presenting formulas in the arithmetical language, we usually write $\ulcorner\tau\urcorner$ instead of $\overline{\ulcorner\tau\urcorner}$.

Such a coding is assumed to allow us to arithmetically define many elementary notions of our metatheory. Most importantly, our Gödel numbering is assumed to allow for a one-to-one encoding of finite sequences of natural numbers. Among them are the following $[3,11,21,16]$:

- Seq (x) : " x is the code of a sequence";
- Formula $(x):$ " x is the code of a formula";
- $\log \operatorname{Ax}(x):$ " x is the code of a logical axiom";

[^1]- $\mathrm{MP}(x, y, z):$ " z follows from an application of modus ponens from x and y ";
- Gen (x, y) : " y follows from an application of generalization from x ";
- $\mathrm{Ax}_{\mathrm{PA}}(x)$: " x is the code of a nonlogical axiom of PA".

Many basic properties of these notions are then also verifiable in (extensions of) PA [11, 21, 16]. Furthermore, the functions and predicates assumed for manipulating sequences can be defined to be primitive recursive and we introduce function and predicate symbols defining them. With this machinery at hand we can already define the most important notion of our metatheory - the notion of proof:

$$
\begin{aligned}
\operatorname{PrfPA}(y, x):= & \operatorname{Seq}(y) \wedge \operatorname{Ih}(y)>0 \wedge \operatorname{end}(y)=x \wedge \\
\forall i< & \operatorname{lh}(y)(\\
& \operatorname{LogAx}\left(y_{i}\right) \vee \\
& \operatorname{AxPA}\left(y_{i}\right) \vee \\
& \exists j, k<i \operatorname{MP}\left(y_{j}, y_{k}, y_{i}\right) \vee \\
& \left.\exists j<i \operatorname{Gen}\left(y_{j}, y_{i}\right)\right) .
\end{aligned}
$$

(Here, end is a definition of the primitive recursive function end which assigns to every finite sequence its last element. Furthermore, y_{i} denotes the i-th element of the sequence coded by y.) The predicate Prf $_{\text {PA }}$ arithmetically defines the set of (codes of) provable theorems of PA. Its definition formalizes the (informal) definition of Hilbert's notion of proof.

We are now able to formally express provability in PA:

$$
\operatorname{Prv}_{\mathrm{PA}}(x):=\exists y \operatorname{Prf}_{\mathrm{PA}}(y, x) .
$$

Prf $f_{\text {PA }}$ can be defined to be Δ_{1} in PA. In particular, in the wording of Gödel, Prf $\operatorname{PrA}_{\text {PA }}$ is entscheidungsdefinit, i.e.,

$$
\begin{aligned}
& \mathbb{N} \models \operatorname{Prf}_{\mathrm{PA}}(\bar{n}, \bar{m}) \Longrightarrow \mathrm{PA} \vdash \operatorname{Prf}_{\mathrm{PA}}(\bar{n}, \bar{m}), \\
& \left.\mathbb{N} \models \neg \operatorname{Prf}_{\mathrm{PA}}(\bar{n}, \bar{m}) \Longrightarrow \operatorname{PA} \vdash \neg \operatorname{Prf} \mathrm{PA}^{(n}, \bar{m}\right) .
\end{aligned}
$$

$\operatorname{Prv}_{\text {PA }}$ is then Σ_{1} in PA. Let us for convenience introduce some additional notation as also done in Beklemishev [3]. If T is an axiomatizable extension of PA, we introduce formulas $\operatorname{Prf}_{T}(y, x)$ and $\operatorname{Prv}_{T}(x)$ as above, where (for constructing these) we assume an appropriate bounded formula $\mathrm{Ax}_{T}(x)$ which arithmetically defines the axioms of T. We abbreviate $\operatorname{Prv}_{T}(x)$ by $\square_{T}(x)$ and often write $\square_{T} \varphi$ instead of $\square_{T}(\ulcorner\varphi\urcorner)$ if no confusion arises. The formula $\square_{T}(x)$ is called (standard) provability predicate for T and arithmetically defines the set of Gödel numbers of all provable theorems of T.

2.4 Limitative Results

Let $\operatorname{sub}_{\vec{x}}\left(a, b_{1}, \ldots, b_{n}\right)$ (where $\left.\vec{x}=x_{1}, \ldots, x_{n}\right)$ be the primitive recursive function whose value at a, b_{1}, \ldots, b_{n} is the Gödel number of the result of respectively substituting the
numerals $\bar{b}_{1}, \ldots, \bar{b}_{n}$ for the variables x_{1}, \ldots, x_{n} in the formula with Gödel number a (see also Boolos [11]). Let sub $\vec{x}_{\vec{x}}$ be a function symbol for a definition of that function. Following Beklemishev [3] and Smoryński [36, 38], for any formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$, we abbreviate by $\left\ulcorner\varphi\left(\dot{y}_{1}, \ldots, \dot{y}_{n}\right)\right\urcorner$ the term

$$
\operatorname{sub}_{\vec{x}}\left(\left\ulcorner\varphi\left(x_{1}, \ldots, x_{n}\right)\right\urcorner, y_{1}, \ldots, y_{n}\right) .
$$

Given a provability predicate $\square_{T}(x)$ of T, we also write $\square_{T} \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)$ instead of $\square_{T}\left(\left\ulcorner\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right)$. Furthermore, we often consider primitive recursive families of formulas φ_{n} which depend on a parameter $n \in \omega$. In this case, $\left\ulcorner\varphi_{x}\right\urcorner$ denotes a term for the primitive recursive function whose value at any given $n \in \omega$ is the Gödel number of φ_{n}. It will be convenient to introduce additional notational conventions for these cases. We assume that our first-order language contains variables α, β, \ldots of a second sort whose values range over the codes of formulas. Every formula which contains occurrences of such variables can be naturally translated into a formula in the original one-sorted first-order language of the corresponding theory. We also make use of variables α, β, \ldots when they are not necessary from a formal point of view, but increase readability.

The following statements are central for the derivation of limitative results [3, 11].
Lemma 2.4.1 (Generalized diagonal lemma). For any formula $\varphi\left(x, x_{1}, \ldots, x_{n}\right)$ there exists a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$, having exactly the variables of φ except x free, such that

$$
\mathrm{PA} \vdash \psi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \varphi\left(\left\ulcorner\psi\left(x_{1}, \ldots, x_{n}\right)\right\urcorner, x_{1}, \ldots, x_{n}\right) .
$$

Proof. Let k be the Gödel number of

$$
\varphi\left(\operatorname{sub}_{x}(x, x), x_{1}, \ldots, x_{n}\right)
$$

and $\psi\left(x_{1}, \ldots, x_{n}\right)$ the formula

$$
\varphi\left(\operatorname{sub}_{x}(\bar{k}, \bar{k}), x_{1}, \ldots, x_{n}\right)
$$

It suffices to show that

$$
\mathrm{PA} \vdash \operatorname{sub}_{x}(\bar{k}, \bar{k})=\left\ulcorner\psi\left(x_{1}, \ldots, x_{n}\right)\right\urcorner .
$$

The formula $\varphi\left(\operatorname{sub}_{x}(x, x), x_{1}, \ldots, x_{n}\right)$ has Gödel number k. Hence,

$$
\operatorname{sub}_{x}(k, k)=\left\ulcorner\varphi\left(\operatorname{sub}_{x}(\bar{k}, \bar{k}), x_{1}, \ldots, x_{n}\right)\right\urcorner=\left\ulcorner\psi\left(x_{1}, \ldots, x_{n}\right)\right\urcorner .
$$

Therefore, $\operatorname{sub}_{x}(\bar{k}, \bar{k})=\left\ulcorner\psi\left(x_{1}, \ldots, x_{n}\right)\right\urcorner$ is true and hence provable in PA.
Corollary 2.4.2 (Diagonal lemma). For any formula $\varphi(x)$ there exists a sentence ψ such that

$$
\mathrm{PA} \vdash \psi \leftrightarrow \varphi(\ulcorner\psi\urcorner) .
$$

Corollary 2.4.3. For any formula $\varphi\left(v, x_{1}, \ldots, x_{n}\right)$ there is a formula $\psi\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\mathrm{PA} \vdash \psi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \varphi\left(\left\ulcorner\psi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right)
$$

Proof. Apply Lemma 2.4 .1 on $\varphi\left(v / \operatorname{sub}_{\vec{x}}\left(x, x_{1}, \ldots, x_{n}\right)\right.$) (for $\left.\vec{x}=x_{1}, \ldots, x_{n}\right)$.
Let T be an extension of PA. We say that φ is a Gödel sentence for T if $T \vdash \varphi \leftrightarrow \neg \square_{T} \varphi$. By the previous results, it is clear that every such T has a Gödel sentence. Call $T \omega$ consistent if there is no formula $\varphi(x)$ such that $T \vdash \exists x \varphi(x)$ but $T \vdash \neg \varphi(\bar{n})$ for every $n \in \omega$. T is ω-inconsistent if it is not ω-consistent. A little thought shows that every ω-consistent theory is also consistent. The converse is not true as we will see now. Call a sentence φ undecidable in T if neither $T \vdash \varphi$ nor $T \vdash \neg \varphi$. We are now able to derive Gödel's first incompleteness theorem. Let us briefly reconsider Gödel's results [19] which are among the most celebrated ones in mathematical logic.

Theorem 2.4.4 (Gödel's first incompleteness theorem). Let T be an ω-consistent axiomatizable extension of PA. Then a Gödel sentence for T is undecidable in T.
Proof. Let φ_{G} be such that $T \vdash \varphi_{G} \leftrightarrow \neg \square_{T} \varphi_{G}$. Suppose $T \vdash \varphi_{G}$. Then $\operatorname{Prf}_{T}\left(\bar{n},\left\ulcorner\varphi_{G}\right\urcorner\right)$ is true for some $n \in \omega$ and so is $\square_{T} \varphi_{G}$, whence $T \vdash \square_{T} \varphi_{G}$ follows. But then $T \vdash \neg \varphi_{G}$ and T is inconsistent, a contradiction. Suppose now that $T \vdash \neg \varphi_{G}$. Then $T \vdash \square_{T} \varphi_{G}$. But $\neg \operatorname{Prf}_{T}\left(\bar{n},\left\ulcorner\varphi_{G}\right\urcorner\right)$ is true for every $n \in \omega$ and so provable in T. Hence, T is ω-inconsistent, a contradiction.

Let us also briefly recite the strengthened version obtained by Rosser in 1936 [33].
Theorem 2.4.5. Let T be a consistent axiomatizable extension of PA. Then there is a sentence which is undecidable in T.

Proof. Let φ_{R} be a sentence such that

$$
T \vdash \varphi_{R} \leftrightarrow \exists y\left(\operatorname{Prf}_{T}\left(y,\left\ulcorner\neg \varphi_{R}\right\urcorner\right) \wedge \forall z<y \neg \operatorname{Prf}_{T}\left(z,\left\ulcorner\varphi_{R}\right\urcorner\right)\right) .
$$

We show that φ_{R} is undecidable in T. Suppose that $T \vdash \varphi_{R}$. Then for some $m \in \omega$, $\operatorname{Prf}_{T}\left(\bar{m},\left\ulcorner\varphi_{R}\right\urcorner\right)$ is true and hence provable in T. Since $T \vdash \varphi_{R}$, we also have

$$
T \vdash \exists y\left(\operatorname{Prf}_{T}\left(y,\left\ulcorner\neg \varphi_{R}\right\urcorner\right) \wedge \forall z<y \neg \operatorname{Prf}_{T}\left(z,\left\ulcorner\varphi_{R}\right\urcorner\right)\right) .
$$

Consider such a y and reason in T. We either have $y>\bar{m}, y<\bar{m}$, or $y=\bar{m}$. Clearly, $y>\bar{m}$ is impossible, therefore $y \leq \bar{m}$. So

$$
T \vdash \exists y \leq \bar{m} \operatorname{Prf}_{T}\left(y,\left\ulcorner\neg \varphi_{R}\right\urcorner\right)
$$

Since $T \nvdash \neg \varphi_{R}$, the formula $\forall y \leq \bar{m} \neg \operatorname{Prf}_{T}\left(y,\left\ulcorner\neg \varphi_{R}\right\urcorner\right)$ is true and so provable in T. Therefore, we arrive at contradiction to the consistency of T. Suppose now that $T \vdash \neg \varphi_{R}$. Then, for some $m \in \omega$ the formula

$$
\operatorname{Prf}_{T}\left(\bar{m},\left\ulcorner\neg \varphi_{R}\right\urcorner\right) \wedge \forall z<\bar{m} \neg \operatorname{Prf}_{T}\left(z,\left\ulcorner\varphi_{R}\right\urcorner\right)
$$

is true and so provable in T. But then also $T \vdash \varphi_{R}$, a contradiction to the consistency of T.

Note that the assumption of ω-consistency is only needed for proving that T does not prove the negation of the Gödel sentence of interest. The theory $T+\neg \varphi$ for a φ such that $T \vdash \varphi \leftrightarrow \square_{T} \varphi$ is an example of a consistent but ω-inconsistent theory. Observe that in proving the previous theorem we used the fact that

$$
T \vdash \varphi \Longrightarrow T \vdash \square_{T} \varphi
$$

This constitutes one of the well-known Löb's conditions ${ }^{3}$ [11, 21, 38, 3].
Theorem 2.4.6 (Löb's conditions). Let T be an axiomatizable extension of PA. For all sentences φ, ψ,
(L1) if $T \vdash \varphi$ then $\mathrm{PA} \vdash \square_{T} \varphi$;
(L2) PA $\vdash \square_{T}(\varphi \rightarrow \psi) \rightarrow\left(\square_{T} \varphi \rightarrow \square_{T} \psi\right)$;
(L3) PA $\vdash \square_{T} \varphi \rightarrow \square_{T} \square_{T} \varphi$.
Furthermore, for any $\varphi(x), \psi(x)$,
(L4) if $T \vdash \varphi(x)$ then $\mathrm{PA} \vdash \square_{T} \varphi(\dot{x})$;

$$
\begin{equation*}
\operatorname{PA} \vdash \square_{T}(\varphi(\dot{x}) \rightarrow \psi(\dot{x})) \rightarrow\left(\square_{T} \varphi(\dot{x}) \rightarrow \square_{T} \psi(\dot{x})\right) ; \tag{L5}
\end{equation*}
$$

(L6) PA $\vdash \square_{T} \varphi(\dot{x}) \rightarrow \square_{T} \square_{T} \varphi(\dot{x})$.
Notice that by $T \vdash \forall x \varphi(x) \rightarrow \varphi(x)$ we have PA $\vdash \square_{T}(\forall x \varphi(x) \rightarrow \varphi(\dot{x}))$, whence PA \vdash $\square_{T} \forall x \varphi(x) \rightarrow \square_{T} \varphi(\dot{x})$ follows. Hence,

$$
\mathrm{PA} \vdash \square_{T} \forall x \varphi(x) \rightarrow \forall x \square_{T} \varphi(\dot{x})
$$

Items (L3) and (L6) are special instances of the more general principle called provable Σ_{1}-completeness [21, 3, 38]:

Proposition 2.4.7. Let T be an axiomatizable extension of PA.
(i) For every Σ_{1}-sentence φ, $\mathrm{PA} \vdash \varphi \rightarrow \square_{T} \varphi$.
(ii) For every Σ_{1}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ having exactly the variables x_{1}, \ldots, x_{n} free, $\mathrm{PA} \vdash \varphi\left(x_{1}, \ldots, x_{n}\right) \rightarrow \square_{T} \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)$.

Let T be an axiomatizable extension of PA with the formula $\mathrm{Ax}_{T}(\alpha)$ arithmetically defining the axioms of T. For any finite extension of T of the form $T+\varphi$, we assume that $\operatorname{Ax} x_{T+\varphi}(\alpha)$ is naturally given by

$$
A x_{T}(\alpha) \vee \alpha=\ulcorner\varphi\urcorner .
$$

[^2]We then have the following formalization of the deduction theorem (see Feferman [16]).
Proposition 2.4.8. Let T be an axiomatizable extension of PA and φ be a sentence. Then for all ψ,

$$
\mathrm{PA} \vdash \square_{T+\varphi} \psi \leftrightarrow \square_{T}(\varphi \rightarrow \psi)
$$

Similarly, for all $\psi\left(x_{1}, \ldots, x_{n}\right)$,

$$
\mathrm{PA} \vdash \square_{T+\varphi} \psi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right) \leftrightarrow \square_{T}\left(\varphi \rightarrow \psi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right) .
$$

Now let \perp abbreviate a statement in the language of arithmetic which is contradictory (e.g., $0 \neq 0$). We abbreviate by $\operatorname{Con}(T)$ (called consistency assertion for T) the sentence $\neg \square_{T} \perp$. Löb's conditions permit us to easily prove Gödel's second incompleteness theorem [19].

Theorem 2.4.9 (Gödel's second incompleteness theorem). Let T be an axiomatizable extension of PA. Then, $T \vdash \operatorname{Con}(T)$ iff T is inconsistent.

Proof. If T is inconsistent then certainly $T \vdash \operatorname{Con}(T)$. We show the other direction by proving that $T \vdash \operatorname{Con}(T) \rightarrow \varphi_{G}$, where φ_{G} is a Gödel sentence for T. So let φ_{G} be such that $T \vdash \varphi_{G} \leftrightarrow \neg \square_{T} \varphi_{G}$. Then $T \vdash \varphi_{G} \rightarrow\left(\square_{T} \varphi_{G} \rightarrow \perp\right)$ and so $T \vdash \square_{T} \varphi_{G} \rightarrow \square_{T}\left(\square_{T} \varphi_{G} \rightarrow \perp\right)$. We know that

$$
T \vdash \square_{T}\left(\square_{T} \varphi_{G} \rightarrow \perp\right) \rightarrow\left(\square_{T} \square_{T} \varphi_{G} \rightarrow \square_{T} \perp\right)
$$

and so $T \vdash \square_{T} \varphi_{G} \rightarrow\left(\square_{T} \square_{T} \varphi_{G} \rightarrow \square_{T} \perp\right)$. Since $T \vdash \square_{T} \varphi_{G} \rightarrow \square_{T} \square_{T} \varphi_{G}$, we obtain $T \vdash \square_{T} \varphi_{G} \rightarrow \square_{T} \perp$ and thus, using its contrapositive form, $T \vdash \operatorname{Con}(T) \rightarrow \varphi_{G}$ as desired.

The incompleteness theorems are proved considering fixed points of $\neg_{T}(\alpha)$. These fixed points which can be understood to express a sentences own unprovability turn out to be undecidable. In 1952, Henkin [22] asked the question whether fixed points of $\square_{T}(\alpha)$ are always provable. A well-known theorem of Löb [30] answers this question. The following theorem is a formalized version of Löb's theorem.

Theorem 2.4.10. Let T be an axiomatizable extension of PA. For any sentence φ,

$$
\mathrm{PA} \vdash \square_{T}\left(\square_{T} \varphi \rightarrow \varphi\right) \rightarrow \square_{T} \varphi
$$

Proof. We follow the proof of Smoryński [37]. Let ψ be such that

$$
\begin{equation*}
\mathrm{PA} \vdash \psi \leftrightarrow \square_{T}(\psi \rightarrow \varphi) \tag{2.1}
\end{equation*}
$$

which exists by the diagonal lemma (Corollary 2.4.2). It follows that

$$
\mathrm{PA} \vdash \square_{T} \psi \leftrightarrow \square_{T} \square_{T}(\psi \rightarrow \varphi),
$$

whence by PA $\vdash \square_{T}(\psi \rightarrow \varphi) \rightarrow \square_{T} \square_{T}(\psi \rightarrow \varphi)$ we obtain

$$
\mathrm{PA} \vdash \psi \rightarrow \square_{T} \psi .
$$

Therefore also PA $\vdash \psi \rightarrow \square_{T} \varphi$. The tautology $\varphi \rightarrow(\psi \rightarrow \varphi)$ allows us to infer

$$
\mathrm{PA} \vdash \square_{T} \varphi \rightarrow \square_{T}(\psi \rightarrow \varphi),
$$

whence it follows that

$$
\mathrm{PA} \vdash \square_{T} \varphi \rightarrow \psi
$$

Hence, $\mathrm{PA} \vdash \psi \leftrightarrow \square_{T} \varphi$. Note that substitution of provably equivalent sentences in the scope of \square_{T} is legitimate by (L1) and (L2) (a proof of this is similar to the proof of Proposition 3.2.4). Thus we obtain

$$
\mathrm{PA} \vdash \square_{T}\left(\square_{T} \varphi \rightarrow \varphi\right) \leftrightarrow \square_{T} \varphi,
$$

by performing a substitution of $\square_{T} \varphi$ for ψ in (2.1).
From that we easily obtain Löb's theorem:
Corollary 2.4.11 (Löb's theorem). Let T be an axiomatizable extension of PA. For any sentence $\varphi, T \vdash \square_{T} \varphi \rightarrow \varphi$ iff $T \vdash \varphi$.

Proof. The direction from right to left is immediate. For the other direction, suppose $T \vdash \square_{T} \varphi \rightarrow \varphi$. Then $T \vdash \square_{T}\left(\square_{T} \varphi \rightarrow \varphi\right)$. We invoke Theorem 2.4.10 and obtain $T \vdash \square_{T}\left(\square_{T} \varphi \rightarrow \varphi\right) \rightarrow \square_{T} \varphi$ and so $T \vdash \square_{T} \varphi$. Hence, $T \vdash \varphi$ as required.

Therefore, Löb's theorem settles Henkin's question. As a concluding remark of this section, note that (as often remarked by Kreisel) the second incompleteness theorem easily follows from Löb's theorem when we take \perp for φ (cf. Smoryński [37]). Conversely, we may prove Löb's theorem using the second incompleteness theorem as follows [36]. Suppose that $T \nvdash \varphi$. Then $T+\neg \varphi$ is consistent. By the second incompleteness theorem, we have that $T+\neg \varphi \nvdash \operatorname{Con}(T+\neg \varphi)$. Therefore, $T+\neg \varphi \nvdash \neg \square_{T}(\neg \varphi \rightarrow \perp)$ and so $T+\neg \varphi \nvdash \neg \square_{T} \varphi$, whence $T \nvdash \square_{T \varphi} \rightarrow \varphi$ follows.

2.5 Reflection Principles

Given a theory T, the reflection principles over T are certain schemata of formulas expressing the soundness of $T[3,28]$. We have to rely on schemata since, as a well-known result of Tarski [40] shows us, there is no truth definition for T inside T [36]. Therefore, no formula in the language of arithmetic exists which asserts that everything provably in T is true. We will encounter reflection principles in Chapter 4, where modalities of a positive polymodal calculus receive an arithmetical interpretation via reflection principles. In this section, we introduce reflection principles and summarize properties about them which are relevant for us. The material contained in this section is mainly taken from
the references Beklemishev [3], Kreisel and Lévy [28], and Smoryński [36], where the interested reader may also find many additional results on reflection principles.

Let T be an axiomatizable extension of PA. The two forms of reflection we are interested in are the following schemata:

- Local reflection schema for $T, \operatorname{Rfn}(T)$:

$$
\square_{T} \varphi \rightarrow \varphi
$$

for all sentences φ.

- Uniform reflection schema for $T, \operatorname{RFN}(T)$:

$$
\forall x_{1}, \ldots, x_{n}\left(\square_{T} \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right) \rightarrow \varphi\left(x_{1}, \ldots, x_{n}\right)\right),
$$

for all formulas $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
Note that Gödel's first incompleteness theorem (Theorem 2.4.4) tells us that if T is consistent, there is an instance of $\operatorname{Rfn}(T)$ which is not provable in T. For there is a sentence φ_{G} such that $T \vdash \varphi_{G} \leftrightarrow \neg \square_{T} \varphi_{G}$, so in particular $T \vdash \neg \square_{T} \varphi_{G} \rightarrow \varphi_{G}$, whence the provability of $\square_{T} \varphi_{G} \rightarrow \varphi_{G}$ would imply $T \vdash \varphi_{G}$, contradicting Gödel's first incompleteness theorem. Furthermore, Löb's theorem (Corollary 2.4.11) tells us that no nontrivial instance of $\operatorname{Rfn}(T)$ is provable provided T is consistent.

Clearly, PA $+\operatorname{RFN}(T) \vdash \operatorname{Rfn}(T)$ and $\mathrm{PA}+\operatorname{Rfn}(T) \vdash \operatorname{Con}(T)$. Therefore, $\operatorname{RFN}(T)$ is stronger than $\operatorname{Rfn}(T)$ and certainly, T does neither prove $\operatorname{RFN}(T)$ nor $\operatorname{Rfn}(T)$. Let Γ be a class of formulas. We denote by $\operatorname{Rfn}_{\Gamma}(T)\left(\operatorname{RFN}_{\Gamma}(T)\right.$, respectively) the local reflection principle for T (uniform reflection principle for T, respectively) instantiated over formulas from Γ. (The classes of formulas we are interested in are the Σ_{n} and Π_{n} classes; the corresponding reflection principle are called partial reflection principles.) Furthermore, we may restrict the uniform reflection schema for T to range over formulas with one free variable, since the general case is reducible to this one by a coding of finite sequences (cf. Kreisel and Lévy [28]).

Theorem 2.5.1. Let T be an axiomatizable extension of PA. Over PA, the following are deductively equivalent:
(i) $\operatorname{Con}(T)$;
(ii) $\operatorname{Rfn}_{\Pi_{1}}(T)$;
(iii) $\operatorname{RFN}_{\Pi_{1}}(T)$.

Proof. The directions from (ii) to (i) and (iii) to (ii) are clear from our previous discussion. Let $\varphi(x)$ be a Π_{1}-formula. We prove that $\mathrm{PA}+\operatorname{Con}(T) \vdash \forall x\left(\square_{T} \varphi(\dot{x}) \rightarrow \varphi(x)\right)$. Indeed, by provable Σ_{1}-completeness,

$$
\mathrm{PA} \vdash \neg \varphi(x) \rightarrow \square_{T} \neg \varphi(\dot{x}),
$$

but also

$$
\mathrm{PA}+\operatorname{Con}(T) \vdash \square_{T} \neg \varphi(\dot{x}) \rightarrow \neg \square_{T} \varphi(\dot{x}),
$$

whence propositional logic gives us $\mathrm{PA}+\operatorname{Con}(T) \vdash \square_{T} \varphi(\dot{x}) \rightarrow \varphi(x)$ as required.
Corollary 2.5.2. Let T be an axiomatizable extension of PA and suppose $T \vdash \varphi$, where φ is a Π_{1}-sentence. Then $\mathrm{PA}+\operatorname{Con}(T) \vdash \varphi$.
Proof. By $T \vdash \varphi$ we have PA $\vdash \square_{T} \varphi$, whence $\mathrm{PA}+\operatorname{Con}(T) \vdash \square_{T} \varphi \rightarrow \varphi$ gives us $\mathrm{PA}+\operatorname{Con}(T) \vdash \varphi$ as desired.

Corollary 2.5.2 has an interesting interpretation concerning the philosophy of mathematics and Hilbert's program. ${ }^{4}$ If we consider a part of Hilbert's program which asks for conservation: whenever a statement about real objects (i.e., the objects having an intuitive meaning, see Kleene [26]) is provable by means of ideal objects (those objects opposed to the real ones), then it should also be provable by referring to real objects only. However, by the previous corollary, we can make the following observation. Assume that T is a comparatively strong theory which contains portions of ideal mathematics, while suppose we declare PA to be a system formalizing real mathematics. If φ is a real universal statement and φ is provable in T, then the assumption of T being consistent establishes the provability of φ in real mathematics. Hence, in a certain sense, this reduces Hilbert's conservation program to the consistency program.

Theorem 2.5.3. Let T be an axiomatizable extension of PA. For $n \geq 1$, the schemata $\operatorname{RFN}_{\Sigma_{n}}(T)$ and $\operatorname{RFN}_{\Pi_{n+1}}(T)$ are deductively equivalent over PA.
Proof. Let $\forall y \varphi(y, x)$ be a Π_{n+1}-formula, where $\varphi(y, x)$ is a Σ_{n}-formula. Then,

$$
\mathrm{PA}+\operatorname{RFN}_{\Sigma_{n}}(T) \vdash \square_{T} \forall y \varphi(y, \dot{x}) \rightarrow \forall y \square_{T} \varphi(\dot{y}, \dot{x})
$$

But also

$$
\mathrm{PA}+\operatorname{RFN}_{\Sigma_{n}}(T) \vdash \forall y \square_{T} \varphi(\dot{y}, \dot{x}) \rightarrow \forall y \varphi(y, x)
$$

whence $\mathrm{PA}+\operatorname{RFN}_{\Sigma_{n}}(T) \vdash \square_{T} \forall y \varphi(y, \dot{x}) \rightarrow \forall y \varphi(y, x)$ follows.
Although we do not have a truth definition for all formulas in the language of arithmetic, we have the following result (cf. Hájek and Pudlák [21]).

Theorem 2.5.4. For each $n \geq 0$ there is a Π_{n}-formula $\operatorname{True}_{\Pi_{n}}(x)$ such that for every Π_{n}-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$,

$$
\mathrm{PA} \vdash \varphi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \operatorname{True}_{\Pi_{n}}\left(\left\ulcorner\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right) .
$$

An analogous statement holds for the classes Σ_{n}, for $n \geq 0$.

[^3]Due to these partial truth definitions, the partial uniform reflection principles are subject to finite axiomatization.

Lemma 2.5.5. Let T be an axiomatizable extension of PA. For each $n \geq 0$, the schema $\mathrm{RFN}_{\Pi_{n}}(T)$ is deductively equivalent over PA to the instance

$$
\begin{equation*}
\forall x\left(\square_{T} \operatorname{True}_{\Pi_{n}}(\dot{x}) \rightarrow \operatorname{True}_{\Pi_{n}}(x)\right) . \tag{2.2}
\end{equation*}
$$

An analogous statement holds for the classes Σ_{n}, for $n \geq 0$.
Proof. By the previous theorem we easily infer

$$
\operatorname{PA} \vdash \forall x_{1}, \ldots, x_{n} \square_{T}\left(\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right) \leftrightarrow \operatorname{True}_{\Pi_{n}}\left(\left\ulcorner\varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right)\right) .
$$

Let $\varphi(x)$ be a Π_{n}-formula. We have

$$
\mathrm{PA} \vdash \square_{T} \varphi(\dot{x}) \rightarrow \square_{T} \operatorname{True}_{\Pi_{n}}(\ulcorner\varphi(\dot{x})\urcorner),
$$

whence it follows by (2.2) that

$$
\mathrm{PA} \vdash \square_{T} \varphi(\dot{x}) \rightarrow \operatorname{True}_{\Pi_{n}}(\ulcorner\varphi(\dot{x})\urcorner) .
$$

Hence, by Theorem 2.5.4 we conclude PA $\vdash \square_{T} \varphi(\dot{x}) \rightarrow \varphi(x)$.
Corollary 2.5.6. For $n \geq 0$, the schemata $\operatorname{RFN}_{\Sigma_{n}}(T)$ and $\operatorname{RFN}_{\Pi_{n}}(T)$ are finitely axiomatizable over PA.

Let Γ be a class of formulas. We say that an extension S of T is of complexity Γ if there is a theory S^{\prime} which is deductively equivalent to S such that all sentences from $S^{\prime} \backslash T$ are from Γ.

Theorem 2.5.7. Let T be an axiomatizable extension of PA.
(i) $\operatorname{Rfn}_{\Pi_{n}}(T)$ is not contained in any consistent finite extension of T of complexity Σ_{n}.
(ii) $\operatorname{RFN}_{\Pi_{n}}(T)$ is not contained in any consistent extension of T of complexity Σ_{n}.

Dual statements respectively hold for $\operatorname{Rfn}_{\Sigma_{n}}(T)$ and $\operatorname{RFN}_{\Sigma_{n}}(T)$.
Proof. For (i), suppose that $T+\varphi \vdash \operatorname{Rfn}_{\Pi_{n}}(T)$ for some Σ_{n}-sentence φ. Then,

$$
T+\varphi \vdash \square_{T} \neg \varphi \rightarrow \neg \varphi,
$$

whence it follows that

$$
T \vdash \varphi \rightarrow\left(\square_{T} \neg \varphi \rightarrow \neg \varphi\right) .
$$

By pure logic, we have $T \vdash \neg \varphi \rightarrow\left(\square_{T} \neg \varphi \rightarrow \neg \varphi\right)$ and thus $T \vdash \square_{T} \neg \varphi \rightarrow \neg \varphi$, whence the formalized version of Löb's theorem (Theorem 2.4.10) gives us $T \vdash \neg \varphi$, i.e., $T+\varphi$ is inconsistent.

For (ii), suppose that U is an extension of T of complexity Σ_{n} and assume that $U \vdash \operatorname{RFN}_{\Pi_{n}}(T)$. Since $\operatorname{RFN}_{\Pi_{n}}(T)$ is finitely axiomatizable over T, we have $U_{0} \vdash \operatorname{RFN}_{\Pi_{n}}(T)$ for some finite $U_{0} \subseteq U$. But then also $U_{0} \vdash \operatorname{Rfn}_{\Pi_{n}}(T)$, whence by (i) it follows that U_{0} is inconsistent and so U is inconsistent too.

Remark. It can even be shown that $\operatorname{Rfn}_{\Pi_{n}}(T)$ is not contained in any consistent axiomatizable extension of T by Σ_{n}-sentences [3] (dually for $\operatorname{Rfn}_{\Sigma_{n}}(T)$).

Corollary 2.5.8. Let T be an axiomatizable extension of PA.
(i) $\operatorname{Rfn}(T)$ is not contained in any consistent finite extension of T.
(ii) $\operatorname{RFN}(T)$ is not contained in any consistent extension of T of bounded arithmetical complexity.

For more results on reflection principles, we refer the reader to Kreisel and Lévy [28], Smoryński [36], Beklemishev [3], as well as Artemov and Beklemishev [1].

Let us now turn to notions of consistency and provability which we will encounter several times in this thesis. For $n \geq 1$, let $\mathrm{Th}_{\Pi_{n}}(\mathbb{N})$ denote the set of all true Π_{n}-sentences. We say that a theory T is n-consistent if $T+\operatorname{Th}_{\Pi_{n}}(\mathbb{N})$ is consistent [3]. So T is n consistent if there is no true Π_{n}-sentence whose negation is provable in T. Formally, this is expressible by

$$
\operatorname{Con}_{n}(T):=\forall \alpha\left(\operatorname{True}_{\Pi_{n}}(\alpha) \rightarrow \neg \square_{T} \neg \operatorname{True}_{\Pi_{n}}(\dot{\alpha})\right)
$$

Note that $\operatorname{Con}_{n}(T)$ is a Π_{n+1}-sentence. Dually to n-consistency, we say that φ is n provable in T if $T+\neg \varphi$ is not n-consistent, that is, iff φ is provable in $T+\mathrm{Th}_{\Pi_{n}}(\mathbb{N})$. We use the abbreviation

$$
[n]_{T} \varphi:=\neg \operatorname{Con}_{n}(T+\neg \varphi)
$$

to formally express the notion of n-provability in T. Furthermore, we stipulate that $[0]_{T}$ and $\operatorname{Con}_{0}(T)$ correspond to \square_{T} and $\operatorname{Con}(T)$, respectively. The formula $[n]_{T}(x)$ which obeys the above definition is then a Σ_{n+1}-formula. Following the conventions of modal languages, we abbreviate $\operatorname{Con}_{n}(T+\varphi)$ by $\langle n\rangle_{T} \varphi$. If T is axiomatizable then clearly

$$
\mathrm{PA} \vdash\langle n\rangle_{T} \varphi \leftrightarrow \neg[n]_{T} \neg \varphi,
$$

for every sentence φ. Note that from

$$
\operatorname{PA} \vdash[n]_{T} \varphi \leftrightarrow \exists \alpha\left(\operatorname{True}_{\Pi_{n}}(\alpha) \wedge \square_{T+\neg \varphi} \neg \operatorname{True}_{\Pi_{n}}(\dot{\alpha})\right)
$$

we easily obtain that

$$
\operatorname{PA} \vdash[n]_{T} \varphi \leftrightarrow \exists \alpha\left(\operatorname{True}_{\Pi_{n}}(\alpha) \wedge \square_{T}\left(\operatorname{True}_{\Pi_{n}}(\dot{\alpha}) \rightarrow \varphi\right)\right),
$$

by an application of the formalized deduction theorem (Proposition 2.4.8).
We use the same notational conventions for $[n]_{T}$ as for \square_{T}. The following conditions are natural liftings of Löb's conditions (Theorem 2.4.6) to the more general case of n-provability (cf. Beklemishev [3]).

Theorem 2.5.9. Let T be an axiomatizable extension of PA. For all $n \geq 0$ and all sentences φ, ψ,
(i) if $T \vdash \varphi$ then $\mathrm{PA} \vdash[n]_{T} \varphi$;
(ii) $\operatorname{PA} \vdash[n]_{T}(\varphi \rightarrow \psi) \rightarrow\left([n]_{T} \varphi \rightarrow[n]_{T} \psi\right)$;
(iii) $\mathrm{PA} \vdash[n]_{T} \varphi \rightarrow[n]_{T}[n]_{T} \varphi$.

Similar statements hold for formulas with free variables.
Note that a consequence of these conditions is that a generalization of the formalized version of Löb's theorem is provable, i.e., for all $n \geq 0$,

$$
\mathrm{PA} \vdash[n]_{T}\left([n]_{T} \varphi \rightarrow \varphi\right) \rightarrow[n]_{T} \varphi
$$

The last of these conditions follows from the more general property of provable $\Sigma_{n+1^{-}}$ completeness.

Proposition 2.5.10. Let T be an axiomatizable extension of PA. For every Σ_{n+1} sentence $\varphi, \mathrm{PA} \vdash \varphi \rightarrow[n]_{T} \varphi$. Furthermore, for every Σ_{n+1}-formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$ which has exactly the variables x_{1}, \ldots, x_{k} free, we have

$$
\mathrm{PA} \vdash \varphi\left(x_{1}, \ldots, x_{k}\right) \rightarrow[n]_{T} \varphi\left(\dot{x}_{1}, \ldots, \dot{x}_{k}\right) .
$$

Lemma 2.5.11. For $n \geq 0$, the schema $\operatorname{RFN}_{\Pi_{n+1}}(T)$ is equivalent to $\operatorname{Con}_{n}(T)$ over PA. Proof. The case of $n=0$ is just Theorem 2.5.1. For $n>0$ it is sufficient to show that $\operatorname{Con}_{n}(T)$ is equivalent to $\operatorname{RFN}_{\Sigma_{n}}(T)$ over PA by virtue of Theorem 2.5.3. We note that $\neg \operatorname{True}_{\Pi_{n}}(x)$ is a Σ_{n}-formula, so

$$
\operatorname{PA}+\operatorname{RFN}_{\Sigma_{n}}(T) \vdash \forall \alpha\left(\square_{T} \neg \operatorname{True}_{\Pi_{n}}(\dot{\alpha}) \rightarrow \neg \operatorname{True}_{\Pi_{n}}(\alpha)\right),
$$

i.e., $\mathrm{PA}+\operatorname{RFN}_{\Sigma_{n}}(T) \vdash \operatorname{Con}_{n}(T)$.

Conversely, let $\varphi(x)$ be a Σ_{n}-formula. We know that

$$
\begin{aligned}
\operatorname{PA} \vdash \varphi(x) & \leftrightarrow \operatorname{True}_{\Sigma_{n}}(\ulcorner\varphi(\dot{x})\urcorner) \\
& \leftrightarrow \neg \operatorname{True}_{\Pi_{n}}(\ulcorner\neg \varphi(\dot{x})\urcorner) .
\end{aligned}
$$

Furthermore, PA $+\operatorname{Con}_{n}(T) \vdash \square_{T} \neg \operatorname{True}_{\Pi_{n}}(\ulcorner\neg \varphi(\dot{x})\urcorner) \rightarrow \neg \operatorname{True}_{\Pi_{n}}(\ulcorner\neg \varphi(\dot{x})\urcorner)$, whence it follows that PA $+\operatorname{Con}_{n}(T) \vdash \square_{T \varphi} \varphi(\dot{x}) \rightarrow \varphi(x)$.

2.6 PROVABILITY LOGICS

According to Artemov and Beklemishev [1], the origins of provability logics may be traced back to a paper by Gödel [20], where he attempted to formalize the notion of provability for the intuitionistic propositional calculus in order to cope with the Brouwer's interpretation of intuitionistic truth as provability. Gödel's approach consists of an embedding
of intuitionistic propositional logic into the modal system S4. The logic S4 is formulated over a modal language which contains a countably infinite supply of propositional variables, the usual propositional connectives (including the constant \perp denoting falsity), and the modal operator \square. The intended meaning of $\square \varphi$ is then " φ is provable". The dual operator to \square is denoted by \diamond and is defined by $\diamond:=\neg \square \neg$. S4 is axiomatized by the following axiom schemes and rules of inference:
(i) all propositional tautologies;
(ii) $\square \varphi \rightarrow \varphi$;
(iii) $\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$;
(iv) $\square \varphi \rightarrow \square \square \varphi$;
(v) if φ then infer $\square \varphi$ (necessitation);
(vi) if $\varphi \rightarrow \psi$ and φ then infer ψ (modus ponens).

However, this system can be easily seen to be inadequate for the interpretation of $\square \varphi$ as formal provability in theories extending PA. For by $\square \perp \rightarrow \perp$ (which is equivalent to $\neg \square \perp$), we would obtain that the theory under consideration proves its own consistency, contradicting the incompleteness theorems. Therefore, a natural question which is to be answered is the question which asks to find the modal logic which characterizes provability in theories extending PA.

A first step towards a solution of this problem was found by Löb [30] who offered sufficient conditions to prove (a formalized version of) the second incompleteness theorem. In terms of modal logic, we may formulate principles in reminiscence to Löb's conditions as follows:
(i) all propositional tautologies;
(ii) modus ponens and necessitation;
(iii) $\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$;
(iv) $\square \varphi \rightarrow \square \square \varphi$.

Furthermore, the formalized version of Löb's theorem offers another propositional principle which can be shown to be independent of the above ones:
(v) $\square(\square \varphi \rightarrow \varphi) \rightarrow \square \varphi$.

With the corresponding principles formulated in the language of arithmetic, one can prove a formalized version of the second incompleteness theorem by substituting \perp for φ in (v). The logic consisting of the axioms and rules above is nowadays called GL (for Gödel and Löb). It is well-known that the axiom scheme $\square \varphi \rightarrow \square \square \varphi$ is derivable from the others [11]. A landmark result of Solovay [39] reveals that GL axiomatizes the notion of provability in sufficiently strong and sound theories. In this narrower sense, the study
of provability logics is concerned with the investigation of modal logics which axiomatize properties of provability predicates of an arithmetical theory T. We have a degree of freedom in this characterization in the sense that the question which theory is capable of proving these properties of T is left open. Most importantly, we might be concerned which modal properties T can prove about its own provability predicate(s).

Returning to the case of GL, let us state Solovay's celebrated results more precisely. Let T be an axiomatizable theory extending PA. An arithmetical realization is a function which assigns sentences to propositional variables. Let f be an arithmetical realization. A T-interpretation f_{T} under f is defined for all modal formulas inductively as follows:
(i) $f_{T}(\perp)=\perp$;
(ii) $f_{T}(p)=f(p)$, where p is a propositional variable;
(iii) $f_{T}(\varphi \rightarrow \psi)=f_{T}(\varphi) \rightarrow f_{T}(\psi)$ and $f_{T}(\neg \varphi)=\neg f_{T}(\varphi)$ i.e., $f_{T}(\cdot)$ commutes with the propositional connectives;
(iv) $f_{T}(\square \varphi)=\square_{T} f_{T}(\varphi)$.

We may state Solovay's first arithmetical completeness result as follows.
Theorem 2.6.1. Let T be an axiomatizable extension of PA which is Σ_{1}-sound. Then,

$$
\mathrm{GL} \vdash \varphi \Longleftrightarrow T \vdash f_{T}(\varphi) \text {, for all arithmetical realizations } f
$$

The logic GL enjoys many desirable properties like Craig interpolation, a fixed point property, the existence of a sequent calculus formulation where the cut rule is admissible, and a well-studied Kripke semantics admitting the finite model property [11, 1, 14].

Solovay also showed that the modal logic which axiomatizes the universally true principles concerning provability in PA is a decidable extension of GL. This extension, denoted by S, consists of all theorems of GL, the additional axiom scheme
(vi) $\square \varphi \rightarrow \varphi$,
while dropping the necessitation rule, i.e., the sole rules of inference are modus ponens and substitution. This is necessary, for otherwise we could derive $S \vdash \square \perp \rightarrow \perp$ and so $S \vdash \square(\square \perp \rightarrow \perp)$, whence $S \vdash \square \perp$ and $S \vdash \perp$. Solovay's second theorem may then be stated as follows.

Theorem 2.6.2. Let T be an axiomatizable extension of PA which is sound. Then,

$$
\mathrm{S} \vdash \varphi \Longleftrightarrow \mathbb{N} \models f_{T}(\varphi), \text { for all arithmetical realizations } f .
$$

Japaridze's GLP

Ever since the landmark results of Solovay, researchers have sought for investigating modal principles of other forms of provability. Boolos [10] investigated the logic of ω-provability in PA and showed that this logic coincides with GL for sound theories extending PA.

Recall that a theory T is called ω-consistent if there is no sentence $\exists x \varphi(x)$ such that $T \vdash \neg \varphi(\bar{n})$ for all $n \in \omega$, but $T \vdash \exists x \varphi(x)$. A sentence φ is ω-provable in T if $T+\neg \varphi$ is ω-inconsistent.

It is well-known that the notion of ω-provability in PA coincides with the notion of being provable in PA by one application of the ω-rule [11, 10], i.e., provability in the theory

$$
\mathrm{PA}^{\prime}:=\mathrm{PA}+\{\forall x \varphi(x) \mid \forall n \in \omega: \mathrm{PA} \vdash \varphi(\bar{n})\} .
$$

(See also Artemov and Beklemishev [1].) For suppose that φ is ω-provable in PA. Then, by the deduction theorem, there is a formula $\psi(x)$ such that PA $\vdash \neg \varphi \rightarrow \neg \psi(\bar{n})$ for all $n \in \omega$, but PA $\vdash \neg \varphi \rightarrow \exists x \psi(x)$. It follows that PA $\vdash(\varphi \vee \forall x \neg \psi(x)) \rightarrow \varphi$ and thus PA $\vdash \forall x(\neg \varphi \rightarrow \neg \psi(x)) \rightarrow \varphi$ and so φ is provable in PA by one application of the ω-rule. Conversely, suppose that φ is provable in PA. Then there are formulas $\psi_{1}(x), \ldots, \psi_{k}(x)$ such that

$$
\mathrm{PA}+\left\{\forall x \psi_{1}(x), \ldots, \forall x \psi_{k}(x)\right\} \vdash \varphi,
$$

and PA $\vdash \psi_{i}(\bar{n})$ for $i=1, \ldots, k$ and all $n \in \omega$. Therefore,

$$
\mathrm{PA} \vdash \forall x\left(\psi_{1}(x) \wedge \cdots \wedge \psi_{k}(x)\right) \rightarrow \varphi
$$

Now it is easy to see that PA $+\neg \varphi$ is ω-inconsistent.
Interest arises in the modal logic which contains operators for both formalized ω provability and standard provability in the Hilbertian sense. Let [0] and [1] be modal operators which are interpreted as provability and ω-provability in PA, respectively and let $[0]_{\omega}(\alpha)$ and $[1]_{\omega}(\alpha)$ be their according formalizations in the language of arithmetic (i.e., we set $[0]_{\omega}:=\square_{\mathrm{PA}}$). These notions of provability can be formalized such that both modalities [0] and [1] satisfy the postulates of GL. Moreover, one can show that

$$
\mathrm{PA} \vdash[0]_{\omega} \varphi \rightarrow[1]_{\omega} \varphi,
$$

for all arithmetical sentences φ. Furthermore,

$$
\text { PA } \vdash \neg[0]_{\omega} \varphi \rightarrow[1]_{\omega} \neg[0]_{\omega} \varphi
$$

can also be established for every arithmetical sentence φ. This bimodal logic of provability and ω-provability is thus axiomatized by the following axiom schemes and rules of inference:
(i) all propositional tautologies;
(ii) axioms of GL for [0] and [1];
(iii) $[0] \varphi \rightarrow[1] \varphi$;
(iv) $\langle 0\rangle \varphi \rightarrow[1]\langle 0\rangle \varphi$;
(v) modus ponens, [0]-, and [1]-necessitation. ${ }^{5}$
(Here, for $n=0,1,\langle n\rangle:=\neg[n] \neg$ is the dual of $[n]$.) The question whether this logic is arithmetically sound and complete in PA for the interpretation in arithmetic as discussed above was answered positively by Japaridze [25]. Japaridze showed even more: he introduced modalities $[n]$ for every natural number n and assigned to $[n]$ the arithmetical interpretation

$$
\text { "provable under } n \text { nested applications of the } \omega \text {-rule." }
$$

That is, the modalities [0], [1], [2], etc. receive the interpretation as (formalized) provability in PA, $\mathrm{PA}^{\prime}, \mathrm{PA}^{\prime \prime}$, and so on [1]. The resulting polymodal logic is called GLP and is axiomatized by the following axiom schemes and rules of inference:
(i) all propositional tautologies;
(ii) axioms of GL for $[n](n \geq 0)$;
(iii) $[m] \varphi \rightarrow[n] \varphi$, for $m<n$ (monotonicity);
(iv) $\langle m\rangle \varphi \rightarrow[n]\langle m\rangle \varphi$, for $m<n$;
(v) modus ponens and $[n]$-necessitation, for $n \geq 0$.

Formulas in the language of GLP are called polymodal formulas. Let $[n]_{\omega}$ be a formalization of provability in PA under n nested applications of the ω-rule (cf. also Section 3.3). For all polymodal formulas, define a PA-interpretation f_{PA} under an arithmetical realization f as usual, except that

$$
f_{\mathrm{PA}}([n] \varphi)=[n]_{\omega} f_{\mathrm{PA}}(\varphi)
$$

Japaridze's results then reads as follows:
Theorem 2.6.3. Let φ be a polymodal formula. Then,

$$
\mathrm{GLP} \vdash \varphi \Longleftrightarrow \mathrm{PA} \vdash f_{\mathrm{PA}}(\varphi), \text { for all arithmetical realizations } f .
$$

Ignatiev [24] extended the results of Japaridze and showed that GLP is arithmetically complete with respect to a very general class of arithmetical interpretations. We have already encountered one such admissible interpretation for GLP in Section 2.6. Let T be a sound theory. Again, define a T-interpretation f_{T} for all polymodal formulas under an arithmetical realization f as usual, except that we stipulate

$$
f_{T}([n] \varphi)=[n]_{T} f_{T}(\varphi)
$$

That is, the modalities $[n]$ are interpreted as n-provability in T. (The broader class will be examined during our treatment of the arithmetical completeness of our many-sorted

[^4]variant of GLP in Chapter 3.) It follows from Ignatiev's results that, for T being sound, GLP is also arithmetically sound and complete for T under this interpretation.

Ignatiev also obtained many other results. He showed that GLP enjoys nice properties like Craig interpolation, a fixed point property, and that the closed fragment of GLP (i.e., the class of formulas with no occurrences of propositional variables) has a universal model based on the ordinal ε_{0}. It is easy to show that GLP is not sound and complete for any class of Kripke frames. To cope with that, Ignatiev identified a weaker logic than GLP which is sound and complete with respect to a decent class of Kripke frames. It it then a corollary of the Ignatiev's arithmetical completeness theorem for GLP that GLP has a natural translation into that weaker logic. Beklemishev [5] also isolated a subsystem J of GLP which arises from GLP if we drop monotonicity and add the axiom schemes
(vii) $[m] \varphi \rightarrow[n][m] \varphi$, if $m \leq n$;
(viii) $[m] \varphi \rightarrow[m][n] \varphi$, if $m \leq n$.

In contrast to GLP, the logic J is sound and complete with respect to a nice class of Kripke frames and Beklemishev [6] provided a proof of the arithmetical completeness theorem for GLP which is based on the logic J and is closer to the arithmetical completeness proof for GL.

CHAPTER

The Logics GLP* and J*

In this section we introduce our logics GLP* and J^{*} which are many-sorted variants of Japaridze's GLP and Beklemishev's J. Section 3.2 contains basic definitions of GLP* and J^{*}. We continue in Section 3.3 with an exposition of the arithmetical interpretation of GLP*. Section 3.4 treats Kripke semantics for J^{*}. In particular, we show that J^{*} is sound and complete with respect to a nice class of Kripke models. In Section 3.5 we show that GLP* is arithmetically complete with respect to our arithmetical interpretation. The proof is an extension of the one provided by Beklemishev [6]. Afterwards, we discuss some extensions and corollaries of this theorem.

3.1 Motivation

As pointed out in the introduction, Beklemishev [2] proposed an approach to ordinal analysis based on the notion of graded provability algebra. Consider a theory T and let \mathcal{L}_{T} be the set of sentences factorized by provable equivalence in T, i.e., by the relation defined by

$$
\varphi \sim \psi \Longleftrightarrow{ }_{d f} T \vdash \varphi \leftrightarrow \psi
$$

Let $\{\varphi\}$ denote the equivalence class of φ under this equivalence relation. We can equip the set of all equivalence classes with the usual operations \wedge, \vee, \neg, and the ordering

$$
\{\varphi\} \leq\{\psi\} \Longleftrightarrow{ }_{d f} T \vdash \varphi \rightarrow \psi
$$

From an algebraic point of view, this makes the structure \mathcal{L}_{T} to a Boolean algebra (called the Lindenbaum algebra of T) whose minimal element \perp denotes the class of refutable sentences of T, while T denotes the class of provable sentences of T [1, 3]. A Boolean algebra \mathcal{B} is called atomless if

$$
\forall x, y(x<y \Rightarrow \exists z \in \mathcal{B}: x<z<y)
$$

It can be shown that if T is a consistent axiomatizable extension of a very weak fragment of PA, then \mathcal{L}_{T} is a countable atomless Boolean algebra [3]. Furthermore, it is known that all countable atomless Boolean algebras are pairwise isomorphic. Therefore, we can draw the conclusion that the structure \mathcal{L}_{T} is expressively too weak to gain any meaningful proof-theoretic information for T by investigating \mathcal{L}_{T}.

Let T be an axiomatizable extension of PA. For each $n \geq 0$, the formula $[n]_{T}$ defines an operator on the equivalence classes of \mathcal{L}_{T} :

$$
[n]_{T}:\{\varphi\} \longmapsto\left\{[n]_{T} \varphi\right\} .
$$

Note that $[n]_{T}$ is well-defined on the equivalence classes since $T \vdash \varphi \leftrightarrow \psi$ implies $T \vdash[n]_{T} \varphi \leftrightarrow[n]_{T} \psi$. Call the structure \mathcal{L}_{T} enriched by $[n]_{T}$ the n-provability algebra of T and denote it by \mathcal{M}_{T}^{n}. The structure $\mathcal{M}_{T}^{0}=\left\langle\mathcal{L}_{T}, \square_{T}\right\rangle$ was first considered by Magari [31] and is therefore called Magari algebra of T. Terms in the language of \mathcal{M}_{T}^{0} correspond to modal formulas and identities in T can be understood to be the provability logic of T. Note that an arbitrary algebraic identity $\psi(\vec{p})=\chi(\vec{p})$ reduces to $\psi(\vec{p}) \leftrightarrow \chi(\vec{p})=\top$. In algebraic terms, Solovay's first theorem reads as

$$
\mathrm{GL} \vdash \varphi(\vec{p}) \Longleftrightarrow \mathcal{M}_{T}^{0} \models \forall \vec{p}(\varphi(\vec{p})=\top)
$$

for any $\varphi(\vec{p})$ and any Σ_{1}-sound axiomatizable extension T of PA.
In order to study proof-theoretic properties of PA, Beklemishev [2] introduces the algebra $\mathcal{M}_{T}^{\infty}=\left\langle\mathcal{L}_{T},[0]_{T},[1]_{T}, \ldots\right\rangle$. Identities of \mathcal{M}_{T}^{∞} correspond to polymodal formulas. Japaridze's result (together with the generalization by Ignatiev) establishes that

$$
\operatorname{GLP} \vdash \varphi(\vec{p}) \Longleftrightarrow \mathcal{M}_{T}^{\infty} \vDash \forall \vec{p}(\varphi(\vec{p})=\top)
$$

for all $\varphi(\vec{p})$ and any sound axiomatizable extension T of PA.
\mathcal{M}_{T}^{∞} provides a rather abstract view on T and its extension. For example, consider the theory EA ${ }^{1}$ which contains a function symbol for exponentiation and, apart from that, differs from PA in the fact that the induction axiom is restricted to bounded formulas. By a theorem of Kreisel and Lévy [28], PA is embeddable into $\mathcal{M}_{\text {EA }}^{\infty}$ as a filter generated by $\left\{\langle n\rangle_{\text {EA }} \top \mid n<\omega\right\}$ [2].
\mathcal{M}_{T}^{∞} implicitly contains an additional structure, namely it can be divided into subsets $P_{0} \subset P_{1} \subset \cdots \subseteq \mathcal{M}_{T}^{\infty}$, which respectively correspond to Π_{1}, Π_{2}, \ldots sentences, i.e., sentences are classified according to their natural quantifier complexity. We know that $\bigcup_{i \geq 0} P_{i}=\mathcal{M}_{T}^{\infty}$. Beklemishev calls this family of subsets stratification of \mathcal{M}_{T}^{∞}. The algebra \mathcal{M}_{T}^{∞} together with its stratification gives rise to a many-sorted algebra (called graded provability algebra of T) which is formulated over a language with sorted variables p_{i}^{n}, where the index n indicates that the variable p_{i}^{n} ranges over elements from P_{n}, that is, Π_{n+1}-sentences [1]. It is the logic induced by this very many-sorted algebra we will study in the sequel by modal logical means of investigation. For more details on provability algebras, we refer the reader to Artemov and Beklemishev [1], Beklemishev [3, 2], and their many references.

[^5]
3.2 BASICS

From now on, we assume that every propositional variable p is assigned a sort α such that $0 \leq \alpha \leq \omega$. We use p, q, \ldots as metavariables which range over propositional variables. A signature is a set $\Lambda \subseteq \omega+1$.

Definition 3.2.1. Let Φ be a set of propositional variables and Λ a signature. We define $L^{*}(\Phi, \Lambda)$, the (many-sorted) formulas (over Φ and Λ) and their corresponding sorts, inductively as follows:
(i) \perp and \top are formulas of sort 0 .
(ii) If $p \in \Phi$ is a propositional variable of sort α, then p is a formula of sort α.
(iii) If φ and ψ are formulas of sorts α and β, then $(\varphi \vee \psi)$ and $(\varphi \wedge \psi)$ are formulas of sort $\max \{\alpha, \beta\}$.
(iv) If φ is a formula of sort α, then $\neg \varphi$ is a formula of sort $\alpha+1$.
(v) If φ is a formula (of any sort) and $\alpha \in \Lambda$, then $\langle\alpha\rangle \varphi$ is a formula of sort α.

We denote the sort of any formula φ by $|\varphi|$.
Furthermore, it will be notationally convenient for us to write p^{α} to designate that p is a variable of sort α. We call $\langle\alpha\rangle$, for $\alpha \in \Lambda$, modal operator or modality. Overloading this notion, we will sometimes also call α in $\langle\alpha\rangle$ modal operator or modality. We define $\mathbb{V}:=$ $\bigcup_{\alpha \leq \omega}\left\{\operatorname{Var}_{\alpha}\right\}$, where for $\alpha \leq \omega$ we set $\operatorname{Var}_{\alpha}:=\left\{p_{0}^{\alpha}, p_{1}^{\alpha}, \ldots\right\}$, i.e., \mathbb{V} contains a countably infinite supply of variables of each sort α such that $\alpha \neq \beta$ implies $\operatorname{Var}_{\alpha} \cap \operatorname{Var}_{\beta}=\varnothing$. Unless stated otherwise, we use p, q, \ldots as metavariables which range over elements from $\left\{p_{0}, p_{1}, \ldots\right\}$. Hence, in this notation, p^{α} denotes a variable of sort α. We denote by L_{Λ}^{*} the set $L^{*}(\mathbb{V}, \Lambda)$. We abbreviate L_{ω}^{*} by L^{*}.

As usual, we introduce abbreviations $\varphi \rightarrow \psi:=\neg \varphi \vee \psi, \varphi \leftrightarrow \psi:=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$, and $[\alpha] \varphi:=\neg\langle\alpha\rangle \neg \varphi$. We omit parentheses whenever possible and assign $\langle\alpha\rangle,[\alpha]$, and \neg the highest, while \rightarrow and \leftrightarrow the least binding priority.

Definition 3.2.2. A general substitution is a $\operatorname{map} \tau: \mathbb{V} \rightarrow L_{\Lambda}^{*}$. Given any substitution τ, we extend τ inductively to a function ${ }^{\tau}: L_{\Lambda}^{*} \rightarrow L_{\Lambda}^{*}$ in the following way:

$$
\begin{aligned}
\top^{\tau}=\top, & \perp^{\tau}=\perp \\
p^{\tau} & =\tau(p), \quad \text { for } p \in \mathbb{V}, \\
(\neg \varphi)^{\tau} & =\neg \varphi^{\tau}, \\
(\varphi \wedge \psi)^{\tau} & =\varphi^{\tau} \wedge \psi^{\tau} \\
(\varphi \vee \psi)^{\tau} & =\varphi^{\tau} \vee \psi^{\tau}, \\
(\langle\alpha\rangle \varphi)^{\tau} & =\langle\alpha\rangle \varphi^{\tau}, \quad \text { for } \alpha \in \Lambda .
\end{aligned}
$$

We call τ simply substitution if for every variable p^{α} we have that $\tau\left(p^{\alpha}\right)=\varphi$ implies $|\varphi| \leq \alpha$. We say that ψ is a (general) substitution instance of φ if there is a (general) substitution τ such that $\psi=\varphi^{\tau}$.

We denote by $\left(p_{1} / \chi_{1}, \ldots, p_{n} / \chi_{n}\right)$ the general substitution τ where $\tau\left(p_{i}\right)=\chi_{i}$ for $i=$ $1, \ldots, n$ and $\tau(q)=q$ for $q \neq p_{1}, \ldots, p_{n}$. We write $\varphi\left(p_{1} / \chi_{1}, \ldots, p_{n} / \chi_{n}\right)$ for φ^{τ} and often omit the propositional variables if they are clear from context. In this notation, we also often denote a formula φ which contains propositional variables among p_{1}, \ldots, p_{n} by $\varphi\left(p_{1}, \ldots, p_{n}\right)$.

An axiom scheme is a formula $\Phi\left(p_{1}, \ldots, p_{n}\right)$ which is a representative for all its substitution instances $\Phi\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. We usually write axiom schemes as formulas $\Phi\left(\varphi_{1}, \ldots, \varphi_{n}\right)$, where each $\varphi_{i}(i=1, \ldots, n)$ is intended to range over all formulas (or over a specific class of formulas).

We exhibit each logic \mathcal{L} as a list of axiom schemes and certain rules of inference. An \mathcal{L}-proof is then defined as usual, i.e., an \mathcal{L}-proof is a finite sequence $\varphi_{1}, \ldots, \varphi_{n}$ of formulas such that for every $\varphi_{i}(1 \leq i \leq n)$ we have that φ_{i} is either an axiom or φ_{i} results from an application of some rule of inference from some $\varphi_{j_{1}}, \ldots, \varphi_{j_{k}}$, where $j_{1}, \ldots, j_{k}<i$. We say that φ is provable in \mathcal{L}, \mathcal{L}-provable, or a theorem of \mathcal{L} (notation: $\mathcal{L} \vdash \varphi)$ if there is an \mathcal{L}-proof $\varphi_{1}, \ldots, \varphi_{n}$ such that $\varphi_{n}=\varphi$. We say that a logic \mathcal{L}^{\prime} extends \mathcal{L} if every theorem of \mathcal{L} is also a theorem of \mathcal{L}^{\prime}.

When we consider many-sorted modal logics over Λ in the sequel, we mean any set of formulas \mathcal{L}_{Λ} over a signature Λ which (i) at least contains all propositional tautologies, (ii) is closed under substitutions as defined above, (iii) is closed under modus ponens, (iv) is closed under the rule $\varphi \rightarrow \psi /\langle\alpha\rangle \varphi \rightarrow\langle\alpha\rangle \psi$ for each $\alpha \in \Lambda$, and (v) contains the axioms $\neg\langle\alpha\rangle \neg \top$ and $\langle\alpha\rangle(\varphi \vee \psi) \rightarrow(\langle\alpha\rangle \varphi \vee\langle\alpha\rangle \psi)$ for each $\alpha \in \Lambda$. When we denote logics, the subscript " Λ " in \mathcal{L}_{Λ} indicates that \mathcal{L}_{Λ} is a logic over Λ.

GLP* and J*

Definition 3.2.3. Let Λ be a signature. The logic $G L P_{\Lambda}^{*}$ is given by the following axiom schemes (the modalities range over Λ):
(i) all propositional tautologies;
(ii) $\langle\alpha\rangle(\varphi \vee \psi) \rightarrow(\langle\alpha\rangle \varphi \vee\langle\alpha\rangle \psi) ; \quad \neg\langle\alpha\rangle \neg \top$;
(iii) $\langle\alpha\rangle \varphi \rightarrow\langle\alpha\rangle(\varphi \wedge \neg\langle\alpha\rangle \varphi)(L o ̈ b ' s ~ a x i o m) ;$
(iv) $\langle\alpha\rangle \varphi \rightarrow\langle\beta\rangle \varphi$, for $\beta<\alpha$ (monotonicity);
(v) $\langle\alpha\rangle \varphi \rightarrow \varphi$, if $|\varphi| \leq \alpha\left(\Sigma_{\alpha+1}\right.$-completeness $)$.
$G L P_{\Lambda}^{*}$ is closed under the rules of inference (i) modus ponens and (ii) for each $\alpha \leq \omega$, if $\varphi \rightarrow \psi$ then infer $\langle\alpha\rangle \varphi \rightarrow\langle\alpha\rangle \psi$. We denote the logic GLP ${ }_{\omega}^{*}$ by GLP* .

Remark. Note that GLP is usually axiomatized using the connective [n] as a primitive. However, regarding the sorts of formulas using $\langle n\rangle$ instead seems to be more natural due to our intended arithmetical interpretation which focuses on Π_{n}-axiomatized concepts.

Furthermore, note that the results of this section concerning GLP* also make sense if we disregard variables of sort ω, i.e., if we consider the many-sorted polymodal logic which strictly captures the notion of graded provability algebra as described in the introductory
section of this chapter. However, introducing variables of sort ω is convenient with foresight of Chapter 4.

Note that $\mathrm{GLP}_{\Lambda}^{*}$ is indeed a logic as defined in the above sense. In particular, if $\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi$ for $\varphi \in L_{\Lambda}^{*}$, then there is a proof $\chi_{1}, \ldots, \chi_{n}$ in $\operatorname{GLP}_{\Lambda}^{*}$ such that $\chi_{n}=\varphi$. Clearly, for any substitution τ, we have that $\chi_{1}^{\tau}, \ldots, \chi_{n}^{\tau}$ is a proof of φ^{τ}, since substitutions (according to our definition) respect the sorts of variables. The following basic properties will be used without any explicit mention.

Proposition 3.2.4. Suppose $\mathcal{L}_{\Lambda} \vdash \varphi \leftrightarrow \psi$. Then, $\mathcal{L}_{\Lambda} \vdash \chi(p / \varphi) \leftrightarrow \chi(p / \psi)$ for any χ.
Proof. By induction on χ. If $\chi=p$ then clearly $\mathcal{L}_{\Lambda} \vdash \varphi \leftrightarrow \psi$ by assumption. If $\chi=q$ for some $q \neq p$, then $\mathcal{L}_{\Lambda} \vdash q \leftrightarrow q$ by propositional logic. The same holds for the case where $\chi=\mathrm{T}$ or $\chi=\perp$.

Assume $\chi=\chi_{1} \wedge \chi_{2}$ for some χ_{1}, χ_{2}. By inductive hypothesis we have $\mathcal{L}_{\Lambda} \vdash \chi_{i}(p / \varphi) \leftrightarrow$ $\chi_{i}(p / \psi)$ for $i=1,2$, whence $\mathcal{L}_{\Lambda} \vdash \chi(p / \varphi) \leftrightarrow \chi(p / \psi)$ follows by purely propositional reasoning and the definition of substitution. The other propositional connectives are treated similarly.

Suppose $\chi=\langle\alpha\rangle \xi$ for some ξ. By inductive hypothesis, we have $\mathcal{L}_{\Lambda} \vdash \xi(p / \varphi) \leftrightarrow$ $\xi(p / \psi)$, whence $\mathcal{L}_{\Lambda} \vdash\langle\alpha\rangle \xi(p / \varphi) \leftrightarrow\langle\alpha\rangle \xi(p / \psi)$ follows.

Lemma 3.2.5. Every logic \mathcal{L}_{Λ} is closed under $[\alpha]$-necessitation, for each $\alpha \in \Lambda$.
Proof. Suppose $\mathcal{L}_{\Lambda} \vdash \varphi$. Then $\mathcal{L}_{\Lambda} \vdash \neg \varphi \rightarrow \neg \top$, whence $\mathcal{L}_{\Lambda} \vdash\langle\alpha\rangle \neg \varphi \rightarrow\langle\alpha\rangle \neg \top$. Thus, $\mathcal{L}_{\Lambda} \vdash \neg\langle\alpha\rangle \neg \mathrm{T} \rightarrow \neg\langle\alpha\rangle \neg \varphi$ and so $\mathcal{L}_{\Lambda} \vdash[\alpha] \varphi$.

Lemma 3.2.6. Let $\varphi_{1}, \ldots, \varphi_{k}$ be formulas and \mathcal{L}_{Λ} a logic. For all $\alpha \in \Lambda$ we have

$$
\mathcal{L}_{\Lambda} \vdash[\alpha]\left(\varphi_{1} \wedge \cdots \wedge \varphi_{k}\right) \rightarrow\left([\alpha] \varphi_{1} \wedge \cdots \wedge[\alpha] \varphi_{k}\right) .
$$

Proof. For $i=1, \ldots, k$, we obtain by $\mathcal{L}_{\Lambda} \vdash \varphi_{1} \wedge \cdots \wedge \varphi_{k} \rightarrow \varphi_{i}$

$$
\mathcal{L}_{\Lambda} \vdash\langle\alpha\rangle \neg \varphi_{i} \rightarrow\langle\alpha\rangle \neg\left(\varphi_{1} \wedge \cdots \wedge \varphi_{k}\right),
$$

whence $\mathcal{L}_{\Lambda} \vdash[\alpha]\left(\varphi_{1} \wedge \cdots \wedge \varphi_{k}\right) \rightarrow\left([\alpha] \varphi_{1} \wedge \cdots \wedge[\alpha] \varphi_{k}\right)$ by propositional logic.
Lemma 3.2.7. Let $\varphi_{1}, \ldots, \varphi_{k}$ be formulas and \mathcal{L}_{Λ} a logic. For all $\alpha \in \Lambda$ we have

$$
\mathcal{L}_{\Lambda} \vdash\langle\alpha\rangle\left(\varphi_{1} \vee \cdots \vee \varphi_{k}\right) \rightarrow\left(\langle\alpha\rangle \varphi_{1} \vee \cdots \vee\langle\alpha\rangle \varphi_{k}\right)
$$

Proof. By repeated application of the axiom $\langle\alpha\rangle(\varphi \vee \psi) \rightarrow(\langle\alpha\rangle \varphi \vee\langle\alpha\rangle \psi)$ and propositional logic.

Note that $\operatorname{GLP}_{\Lambda}^{*} \vdash\langle\alpha\rangle\langle\alpha\rangle \varphi \rightarrow\langle\alpha\rangle \varphi$. Furthermore, if $\beta<\alpha$ then $\operatorname{GLP}^{*} \vdash\langle\alpha\rangle \neg[\beta] \varphi \rightarrow$ $\neg[\beta] \varphi$, whence

$$
\operatorname{GLP}_{\Lambda}^{*} \vdash[\beta] \varphi \rightarrow[\alpha][\beta] \varphi,
$$

by propositional logic. Similarly, $\operatorname{GLP}_{\Lambda}^{*} \vdash\langle\alpha\rangle \neg\langle\beta\rangle \varphi \rightarrow \neg\langle\beta\rangle \varphi$ and thus

$$
\operatorname{GLP}_{\Lambda}^{*} \vdash\langle\beta\rangle \varphi \rightarrow[\alpha]\langle\beta\rangle \varphi,
$$

again by propositional logic.
Definition 3.2.8. The logic J_{Λ}^{*} is obtained from GLP $_{\Lambda}^{*}$ by dropping the monotonicity axioms and adding the following additional scheme:
(vi) $\langle\beta\rangle\langle\alpha\rangle \varphi \rightarrow\langle\beta\rangle \varphi$, for $\beta<\alpha$.
J_{Λ}^{*} has the same rules of inference as $\operatorname{GLP}_{\Lambda}^{*}$. We denote by J^{*} the logic J_{ω}^{*}.
For $\beta<\alpha$, we note that

$$
\begin{aligned}
\operatorname{GLP}_{\Lambda}^{*} \vdash\langle\beta\rangle\langle\alpha\rangle \varphi & \rightarrow\langle\beta\rangle\langle\beta\rangle \varphi \quad \text { (by monotonicity) } \\
& \rightarrow\langle\beta\rangle \varphi .
\end{aligned}
$$

We thus have the following:
Lemma 3.2.9. The logic $\mathrm{GLP}_{\Lambda}^{*}$ extends J_{Λ}^{*}, i.e., $\mathrm{J}_{\Lambda}^{*} \vdash \varphi$ implies $\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi$.

3.3 Arithmetical Interpretation

The following notion was originally suggested by Ignatiev [24].
Definition 3.3.1. Let T be an extension of PA. A provability predicate of level n over T is a formula $\operatorname{Prv}(x)$ with one free variable which satisfies the following conditions, for all sentences φ, ψ,
(i) Prv is Σ_{n+1} in T;
(ii) if $T \vdash \varphi$ then $T \vdash \operatorname{Prv}(\ulcorner\varphi\urcorner)$;
(iii) $T \vdash \operatorname{Prv}(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow(\operatorname{Prv}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Prv}(\ulcorner\psi\urcorner))$;
(iv) if φ is a Σ_{n+1}-sentence, then $T \vdash \varphi \rightarrow \operatorname{Prv}(\ulcorner\varphi\urcorner)$.

We say that a provability predicate Prv is sound if, for all $\varphi, \mathbb{N} \models \operatorname{Prv}(\ulcorner\varphi\urcorner)$ implies that $\mathbb{N}=\varphi$.

A sequence π of formulas $\operatorname{Prv}_{0}, \operatorname{Prv}_{1}, \ldots$ is called a strong sequence of provability predicates over T if there is a sequence of natural numbers $r_{0}<r_{1}<r_{2}<\cdots$ such that for all $n \geq 0$,
(i) Prv_{n} is a provability predicate of level r_{n} over T;
(ii) $T \vdash \operatorname{Prv}_{n}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Prv}_{n+1}(\ulcorner\varphi\urcorner)$, for every sentence φ.

We denote by $\left|\pi_{n}\right|$ the level of Prv_{n}.

Given a strong sequence of provability predicates over T, we write $[n]_{\pi}$ for the n-th provability predicate of π and use the abbreviation $[n]_{\pi} \varphi$ for $[n]_{\pi}(\ulcorner\varphi\urcorner)$ if no confusion arises. As usual, $\langle n\rangle_{\pi}$ is defined to be the dual of $[n]_{\pi}$.

As Ignatiev [24] and Beklemishev [6], we want to mention two important examples of strong sequences of provability predicates over T, for T extending PA.

In Section 2.5 we introduced the notion of n-provability, i.e., formalized provability in the theory $T+\operatorname{Th}_{\Pi_{n}}(\mathbb{N})$. In fact, every predicate of the sequence $[0]_{T},[1]_{T}, \ldots$ satisfies the conditions of Definition 3.3.1 by virtue of our treatment of $[n]_{T}$ in Chapter 2. Note that, for each $n \geq 0,[n]_{T}$ is of level n. Furthermore, this sequence is easily seen to be a strong sequence of provability predicates over T, since every Π_{n}-sentence is provably equivalent to a Π_{n+1}-sentence by introducing dummy quantifiers.

The second strong sequence of provability predicates we want to mention is that which arises from the closure under the n-fold application of the ω-rule in PA $[24,6]$. Formally, define $[0]_{\omega}:=\square_{\mathrm{PA}}$ and

$$
[n+1]_{\omega}(\alpha):=\exists \beta\left(\forall x[n]_{\omega} \beta(\dot{x}) \wedge[n]_{\omega}(\forall x \beta(x) \rightarrow \alpha)\right), \quad \text { for } n \geq 0
$$

For $n \geq 0$, the predicate $[n]_{\omega}$ is a $\Sigma_{2 n+1}$-formula. It can be shown that the sequence $[0]_{\omega},[1]_{\omega}, \ldots$ defines a strong sequence of provability predicates over PA, where $[n]_{\omega}$ has level $2 n$ (cf. also Boolos [10] for more details on ω-provability).

Definition 3.3.2. Let π be a sequence of strong provability predicates over T. An (arithmetical) realization (over π) is a function f_{π} which maps formulas from L^{*} to sentences in the language of arithmetic such that the following conditions are satisfied:
(i) $f_{\pi}(\top)=\top ;{ }^{2} \quad f_{\pi}(\perp)=\perp$;
(ii) for every propositional variable $p^{\alpha}, f_{\pi}\left(p^{\alpha}\right)$ is a $\Pi_{\left|\pi_{n}\right|+1}$-sentence in case $n=\alpha<\omega$;
(iii) f_{π} commutes with the propositional connectives;
(iv) $f_{\pi}(\langle n\rangle \varphi)=\langle n\rangle_{\pi} f_{\pi}(\varphi)$, for $n<\omega$.

We say that $f_{\pi}(\varphi)$ is the translation of φ under f_{π}.
Clearly, a realization over π only depends on the assignment of sentences to propositional variables. Note that, for any φ and any realization f_{π}, we have

$$
T \vdash f_{\pi}([n] \varphi) \leftrightarrow[n]_{\pi} f_{\pi}(\varphi)
$$

Lemma 3.3.3. Let π be a strong sequence of provability predicates over T and let f_{π} be a realization. For all many-sorted formulas φ we have that $f_{\pi}(\varphi)$ is provably equivalent to an arithmetical $\Pi_{\left|\pi_{k}\right|+1}$-sentence, where $k=|\varphi|$.
Proof. By an easy induction on φ. The base case holds by definition. Furthermore, for $k \geq 0,[k]_{\pi}$ is a $\Sigma_{\left|\pi_{k}\right|+1}$-sentence. The induction step then follows by simple closure properties of Π_{n}-sentences (see Proposition 2.2.5).

[^6]Since provability predicate $[n]_{\pi}$ from π is a Σ_{k}-sentence for some $k>0$, we can associate (in analogy to the standard Gödelian provability predicate) a predicate $\operatorname{Prf}_{n}(\alpha, y)$ which expresses the statement " y codes a proof of α " and

$$
T \vdash \operatorname{Prv}_{n}(\alpha) \leftrightarrow \exists y \operatorname{Prf}_{n}(\alpha, y) .
$$

We say that Prf_{n} is the proof relation of Prv_{n} and stress that Prf_{n} is chosen in such a way, such that every number y codes a proof of at most one formula and that every provable formula has arbitrarily long proofs. Intuitively, since a proof is coded as a finite sequence in the Hilbertian sense, given any proof of φ, any proof containing redundant axioms will also witness the provability of φ. These properties can be achieved in such a way as to hold provably in T, i.e.,

$$
\begin{aligned}
& T \vdash \operatorname{Prf}_{n}(\alpha, y) \wedge \operatorname{Prf}_{n}(\beta, y) \rightarrow \alpha=\beta, \\
& T \vdash \operatorname{Prf}_{n}(\alpha, y) \rightarrow \exists z>y \operatorname{Prf}_{n}(\alpha, z) .
\end{aligned}
$$

We can already conclude that GLP* is arithmetically sound.
Proposition 3.3.4. If $\mathrm{GLP}^{*} \vdash \varphi$, then $T \vdash f_{\pi}(\varphi)$ for all realizations f_{π}.
Proof. By induction the length of a derivation of φ. For the base case, the propositional tautologies and axioms (ii) of Definition 3.2.3 are clear. Note that $T \vdash f_{\pi}(\langle n\rangle \varphi) \rightarrow f_{\pi}(\varphi)$ follows by $\Sigma_{\left|\pi_{n}\right|+1}$-completeness and Lemma 3.3.3: since $f_{\pi}(\varphi)$ is provably equivalent to a $\Pi_{\left|\pi_{n}\right|+1}$-sentence, we know that $\neg f_{\pi}(\varphi)$ is provably equivalent to a $\Sigma_{\left|\pi_{n}\right|+1}$-sentence, whence

$$
\begin{aligned}
& T \vdash \neg f_{\pi}(\varphi) \rightarrow[n]_{\pi} \neg f_{\pi}(\varphi), \quad\left(\text { by } \Sigma_{\left|\pi_{n}\right|+1}\right. \text {-completeness) } \\
& T \vdash \neg[n]_{\pi} \neg f_{\pi}(\varphi) \rightarrow f_{\pi}(\varphi) .
\end{aligned}
$$

The soundness of Löb's axioms can be proved similarly to the formalized version of Löb's theorem (Theorem 2.4.10) and propositional logic. (Note that in our case Löb's axiom is formulated with $\langle n\rangle$ rather than $[n]$.) For the induction step, the soundness of the rules of inference is clear by the definition of strong provability predicates.

3.4 Kripke Semantics

In this section, we are going to develop Kripke semantics for J^{*}. We show that J^{*} is complete for a decent class of Kripke models which will be exploited in the proof of the arithmetical completeness theorem for GLP* in Section 3.5. In our elaboration, we closely follow the work of Beklemishev [5] and the standard methods known from the area of modal logics. For background information concerning Kripke semantics of modal logics in general, we refer the reader to Blackburn et al. [9].

Definition 3.4.1. A (Kripke) frame \mathfrak{F} (over Λ) is a tuple $\mathfrak{F}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$, where W is a non-empty set of worlds and R_{α} is a binary relation on W for all $\alpha \in \Lambda$ (called the accessibility relations). We say that \mathfrak{F} is finite if W is finite and all but finitely many relations of $\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}$ are empty.

Definition 3.4.2. A (Kripke) model \mathfrak{K} (over Λ) is a tuple of the form $\mathfrak{K}=\langle\mathfrak{F}, \llbracket \cdot \rrbracket\rangle$, where $\mathfrak{F}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$ is a frame over Λ and $\llbracket \rrbracket \rrbracket: L_{\Lambda}^{*} \rightarrow \mathcal{P}(W)$ is a function called valuation which maps many-sorted formulas to subsets of W such that the following conditions are satisfied:
(i) $\llbracket \perp \rrbracket=\varnothing ; \quad \llbracket \top \rrbracket=W$;
(ii) $\llbracket \neg \varphi \rrbracket=W \backslash \llbracket \varphi \rrbracket$;
(iii) $\llbracket \varphi \wedge \psi \rrbracket=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket$;
(iv) $\llbracket \varphi \vee \psi \rrbracket=\llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket$;
(v) $\llbracket\langle\alpha\rangle \varphi \rrbracket=\left\{x \mid \exists y: x R_{\alpha} y \& y \in \llbracket \varphi \rrbracket\right\}$, for $\alpha \in \Lambda$.

We say that \mathfrak{K} is based on \mathfrak{F}.
Note that, by definition of $[\alpha] \varphi$, we have

$$
\llbracket[\alpha] \varphi \rrbracket=\left\{x \mid \forall y: x R_{\alpha} y \Rightarrow y \in \llbracket \varphi \rrbracket\right\} .
$$

Furthermore, note that $\llbracket \rrbracket \rrbracket$ only depends on the assignment of subsets of W to propositional variables. Given any model $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$, it will be convenient to define a relation $\Vdash_{\mathfrak{K}}$ between worlds of \mathfrak{K} and formulas by

$$
x \Vdash_{\mathfrak{K}} \varphi \Longleftrightarrow{ }_{d f} x \in \llbracket \varphi \rrbracket .
$$

We often omit the subscript of $\Vdash_{\mathfrak{K}}$ when \mathfrak{K} is clear from context. Furthermore, we often write $\mathfrak{K}, x \Vdash \varphi$ instead of $x \Vdash_{\mathfrak{K}} \varphi$ and say that x forces φ (in $\left.\mathfrak{K}\right)$. The relation $\Vdash_{\mathfrak{R}}$ is called forcing relation of \mathfrak{K}.

Definition 3.4.3. Let $\mathfrak{K}=\langle\mathfrak{F}, \llbracket \llbracket \rrbracket\rangle$ be a model and φ a formula. We say that φ is true at a world x of \mathfrak{K} if $x \in \llbracket \varphi \rrbracket$. The formula φ is (globally) true in \mathfrak{K} (notation: $\mathfrak{K} \models \varphi$) if it is true at every world of \mathfrak{K}. Similarly, φ is valid in \mathfrak{F} (notation: $\mathfrak{F} \models \varphi$) if it is true in every model based on \mathfrak{F}.
A relation $R \subseteq W \times W$ is said to be conversely well-founded if there is no infinite sequence x_{1}, x_{2}, \ldots such that $x_{1} R x_{2} R \cdots$, i.e., if every R-increasing chain is finite.
Lemma 3.4.4. Let W be finite and $R \subseteq W \times W$ transitive. Then, R is conversely well-founded iff it is irreflexive.

Proof. If $x R x$ for some $x \in W$, then the set $\{x\}$ has no R-greatest element, whence it follows that R is not conversely well-founded. On the other hand, suppose that R is not conversely well-founded. Then there is an infinite R-increasing chain $x_{1} R x_{2} R \cdots$. Since W is finite, there are $i, j \geq 1$ such that $i \geq j$ and $x_{i}=x_{j}$. By transitivity and induction we obtain $x_{j} R x_{i}$, so R is not irreflexive.

Definition 3.4.5. A frame $\mathfrak{F}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$ is called J_{Λ}^{*}-frame if the following conditions are satisfied:

Figure 3.1: Frame conditions of a J_{Λ}^{*}-frame, where $\alpha, \beta \in \Lambda$ such that $\beta<\alpha$. Dashed arrows represent relations which must exist provided the solid ones do.
(J1) R_{α} is transitive and conversely well-founded for $\alpha \in \Lambda$;
(J2) $\forall x, y, z\left(x R_{\beta} y \& y R_{\alpha} z \Rightarrow x R_{\beta} z\right)$ for $\beta<\alpha$;
(J3) $\forall x, y\left(x R_{\alpha} y \Rightarrow \forall z\left(x R_{\beta} z \Leftrightarrow y R_{\beta} z\right)\right)$ for $\beta<\alpha$.
A root of a J_{Λ}^{*}-frame $\mathfrak{F}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$ is a world $r \in W$ such that $\forall x \in W \exists \lambda \in$ $\Lambda: r R_{\lambda} x$ or $r=x$. A frame which has a root is called rooted.
For a visualization of the conditions (J2) and (J3) see Figure 3.1. Note that item (J3) is equivalent to the conjunction of

$$
\forall x, y, z\left(x R_{\alpha} y \& y R_{\beta} z \Rightarrow x R_{\beta} z\right) \text { and } \forall x, y, z\left(x R_{\alpha} y \& x R_{\beta} z \Rightarrow y R_{\beta} z\right), \text { for } \beta<\alpha
$$

\mathfrak{F} is called irreflexive (transitive, conversely well-founded) if its accessibility relations have the corresponding property.

Definition 3.4.6. A J_{Λ}^{*}-model is a Kripke model based on a J_{Λ}^{*}-frame. Given a J_{Λ}^{*}-model $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$, we call \mathfrak{K}
(i) persistent if for all $\alpha \in \Lambda$, all propositional variables p^{β} with $\beta \leq \alpha$, and all $x, y \in W$ we have

$$
x R_{\alpha} y \text { and } y \in \llbracket p^{\beta} \rrbracket \text { imply } x \in \llbracket p^{\beta} \rrbracket
$$

(ii) strongly persistent if \mathfrak{K} is persistent and for all $\alpha \in \Lambda$, all propositional variables p^{β} with $\beta<\alpha$, and all $x, y \in W$ we have

$$
x R_{\alpha} y \text { and } y \notin \llbracket p^{\beta} \rrbracket \text { imply } x \notin \llbracket p^{\beta} \rrbracket .
$$

We say that \mathfrak{K} is finite if its underlying frame is finite and $\llbracket p \rrbracket \neq \varnothing$ only for finitely many variables p. Furthermore, \mathfrak{K} is rooted if the frame it is based on is rooted. Likewise, \mathfrak{K} is irreflexive (transitive, conversely well-founded) if its underlying frame has the corresponding property.

In case $\Lambda=\omega$, we drop the subscript " Λ " in the terms J_{Λ}^{*}-frame and J_{Λ}^{*}-model. Let \mathcal{C} be a class of models. Recall that a logic \mathcal{L} is sound for \mathcal{C} if $\mathcal{L} \vdash \varphi$ implies $\mathfrak{K} \models \varphi$ for all $\mathfrak{K} \in \mathcal{C}$. \mathcal{L} is complete for \mathcal{C} if whenever $\mathfrak{K} \models \varphi$ for all $\mathfrak{K} \in \mathcal{C}$, then also $\mathcal{L} \vdash \varphi$. Soundness and completeness with respect to a class of frames is defined mutatis mutandis.

The remainder of this section will be devoted to the proof that J_{Λ}^{*} is sound and complete with respect to the class of finite and strongly persistent J_{Λ}^{*}-models.

Lemma 3.4.7. Let $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$ be a J_{Λ}^{*}-model. Then, \mathfrak{K} is strongly persistent iff for all formulas $\varphi \in L_{\Lambda}^{*}$ and all $\alpha \in \Lambda$ we have
(i) if $|\varphi| \leq \alpha$ then $x R_{\alpha} y$ and $y \in \llbracket \varphi \rrbracket$ imply $x \in \llbracket \varphi \rrbracket$;
(ii) if $|\varphi|<\alpha$ then $x R_{\alpha} y$ and $y \notin \llbracket \varphi \rrbracket$ imply $x \notin \llbracket \varphi \rrbracket$.

Proof. The direction from right to left is clear. For the other direction, we proceed by induction on the number of propositional connectives which are not in the scope of any $\langle\alpha\rangle$. Let \mathfrak{K} be strongly persistent. For the base case we distinguish two cases. Firstly, if $\varphi=p^{\beta}$ or $\varphi=\top$ or $\varphi=\perp$ is just the definition of \mathfrak{K} being strongly persistent-note that $\llbracket \top \rrbracket=W$ and $\llbracket \perp \rrbracket=\varnothing$. Secondly, suppose $\varphi=\langle\alpha\rangle \psi$ for some ψ. Then $|\varphi|=\alpha$. So let $\lambda \geq \alpha$ for some $\lambda \in \Lambda$ and assume $x R_{\lambda} y$ and $y \in \llbracket\langle\alpha\rangle \psi \rrbracket$. Then $z \in \llbracket \psi \rrbracket$ for some $z \in W$ such that $y R_{\alpha} z$. Since $\lambda \geq \alpha$ and \mathfrak{K} is J_{Λ}^{*}-model, we have $x R_{\alpha} z$, whence $x \in \llbracket\langle\alpha\rangle \psi \rrbracket$ follows. Suppose now $\lambda>\alpha$ and $x R_{\lambda} y$ such that $y \notin \llbracket\langle\alpha\rangle \psi \rrbracket$. Then for all $z \in W$ such that $y R_{\alpha} z$ we have $z \notin \llbracket \psi \rrbracket$. Now if $x \in \llbracket\langle\alpha\rangle \psi \rrbracket$ then $z \in \llbracket \psi \rrbracket$ for some z such that $x R_{\alpha} z$, whence we infer $y R_{\alpha} z$ (since \mathfrak{K} is a J_{Λ}^{*}-model) and arrive at contradiction.

Assume $\varphi=\varphi_{1} \wedge \varphi_{2}$ where $|\varphi| \leq \alpha$ and let $x R_{\alpha} y$ and $y \in \llbracket \varphi \rrbracket$, i.e., $y \in \llbracket \varphi_{1} \rrbracket$ and $y \in \llbracket \varphi_{2} \rrbracket$. By inductive hypothesis we know, as $\left|\varphi_{1}\right|,\left|\varphi_{2}\right| \leq \alpha$, that $x \in \llbracket \varphi_{1} \rrbracket$ and $x \in \llbracket \varphi_{2} \rrbracket$. Furthermore, if $|\varphi|<\alpha$ and $y \notin \llbracket \varphi \rrbracket$, then either $y \notin \llbracket \varphi_{1} \rrbracket$ or $y \notin \llbracket \varphi_{2} \rrbracket$. Since $\left|\varphi_{1}\right|,\left|\varphi_{2}\right|<\alpha$, we infer by inductive hypothesis that $x \notin \llbracket \varphi_{1} \rrbracket$ or $x \notin \llbracket \varphi_{2} \rrbracket$ as required. The case where $\varphi=\varphi_{1} \vee \varphi_{2}$ is treated similarly.

Finally, suppose $\varphi=\neg \psi$ for some ψ and suppose $|\varphi| \leq \alpha$. Let $x R_{\alpha} y$ and $y \in \llbracket \varphi \rrbracket$. Then $|\psi|<\alpha$ and $y \notin \llbracket \psi \rrbracket$, whence by inductive hypothesis we obtain $x \notin \llbracket \psi \rrbracket$, i.e., $x \in \llbracket \varphi \rrbracket$ as desired. If $|\varphi|<\alpha$ and $y \notin \llbracket \varphi \rrbracket$, then $|\psi|<\alpha$ and $y \in \llbracket \psi \rrbracket$. By inductive hypothesis we then obtain $x \in \llbracket \psi \rrbracket$ and so $x \notin \llbracket \varphi \rrbracket$ which finishes this case.

Lemma 3.4.8. For all $\alpha \in \Lambda$, the axiom scheme $\langle\alpha\rangle \varphi \rightarrow \varphi$ (where $\varphi \in L_{\Lambda}^{*}$ such that $|\varphi| \leq \alpha)$ is true in a J_{Λ}^{*}-model \mathfrak{K}, iff \mathfrak{K} is strongly persistent.
Proof. For the direction from left to right, suppose that $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$ is not strongly persistent. Suppose first that there are $x, y \in W$ such that $x R_{\alpha} y$ and $y \in \llbracket p^{\lambda} \rrbracket$, but $x \notin \llbracket p^{\lambda} \rrbracket$ for some $\lambda \leq \alpha$ and $\lambda, \alpha \in \Lambda$. Then clearly $\mathfrak{K}, x \nVdash\langle\alpha\rangle p^{\lambda} \rightarrow p^{\lambda}$. For the case
where $x R_{\alpha} y$ and $y \notin \llbracket p^{\lambda} \rrbracket$ but $x \in \llbracket p^{\lambda} \rrbracket$ for some $\lambda<\alpha(\lambda, \alpha \in \Lambda)$, we similarly have $\mathfrak{K}, x \nVdash\langle\alpha\rangle \neg p^{\lambda} \rightarrow \neg p^{\lambda}$.

For the other direction, suppose that there is a ψ with $|\psi| \leq \alpha(\alpha \in \Lambda)$ such that $\mathfrak{K}, x \nVdash\langle\alpha\rangle \psi \rightarrow \psi$. Then $\mathfrak{K}, x \Vdash\langle\alpha\rangle \psi$ and $\mathfrak{K}, x \nVdash \psi$, and so there is a $y \in W$ such that $x R_{\alpha} y$ and $\mathfrak{K}, y \Vdash \psi$. Hence, $x \notin \llbracket \psi \rrbracket$ but $y \in \llbracket \psi \rrbracket$ and $|\psi| \leq \alpha$, whence Lemma 3.4.7 yields that \mathfrak{K} is not strongly persistent.

Notice that our notion of substitution is substantial here. Indeed, consider the formula $\varphi:=\langle 0\rangle p^{0} \rightarrow p^{0}$. It is clear that φ is true in every strongly persistent J_{Λ}^{*}-model (for an appropriate Λ), but the formula $\varphi^{\prime}:=\langle 0\rangle p^{1} \rightarrow p^{1}$ is not. However, it is easy to see that φ^{\prime} is not a substitution instance of φ in the sense of Definition 3.2.2. Hence, our notion of substitution is geared in order to retain truth in the class of strongly persistent J_{Λ}^{*}-models.

Proposition 3.4.9. J_{Λ}^{*} is sound for the class of all strongly persistent J_{Λ}^{*}-models.
Proof. The proof is a routine induction on proof length. Most of the axioms were handled by the previous statements. The axiom $\langle\alpha\rangle(\varphi \vee \psi) \rightarrow\langle\alpha\rangle \varphi \vee\langle\alpha\rangle \psi$ and the propositional ones are obvious. The fact that instances of Löb's axiom are true in all such models follows from the well-known fact that these schemes are valid in all frames which are transitive and conversely well-founded. For the induction step, modus ponens and $\varphi \rightarrow \psi /\langle\alpha\rangle \varphi \rightarrow\langle\alpha\rangle \psi$ are easy to check. We leave the details to the reader.

Definition 3.4.10. Let Γ be a set of formulas from L_{Λ}^{*}. We say that Γ is \mathcal{L}_{Λ}-consistent if there are no $\varphi_{1}, \ldots, \varphi_{n} \in \Gamma$ such that $\mathcal{L}_{\Lambda} \vdash \varphi_{1} \wedge \cdots \wedge \varphi_{n} \rightarrow \perp$. Otherwise, Γ is called \mathcal{L}_{Λ}-inconsistent. Let Σ be a set of formulas. Then $\Gamma \subseteq \Sigma$ is a maximal \mathcal{L}_{Λ}-consistent subset of Σ, if every Γ^{\prime} such that $\Sigma \supseteq \Gamma^{\prime} \supset \Gamma$ is \mathcal{L}_{Λ}-inconsistent.

We define an operator \sim, called modified negation, for all formulas φ as follows:

$$
\sim \varphi= \begin{cases}\psi, & \text { if } \varphi=\neg \psi \text { for some } \psi, \\ \neg \varphi, & \text { otherwise. }\end{cases}
$$

For a set of formulas Δ from L_{Λ}^{*}, we set $\ell(\Delta):=\{\alpha \in \Lambda \mid\langle\alpha\rangle \varphi \in \Delta$ for some $\varphi\}$. We say that a set of formulas Δ is adequate if $T \in \Delta$, it is closed under subformulas, modified negations, and the operations

$$
\begin{aligned}
\langle\alpha\rangle \varphi,\langle\beta\rangle \psi \in \Delta & \Rightarrow\langle\beta\rangle \varphi \in \Delta, \\
p^{\lambda} \in \Delta, \alpha \in \ell(\Delta) & \Rightarrow\langle\alpha\rangle p^{\lambda} \in \Delta, \quad \text { for all variables } p^{\lambda} \text { and } \alpha \geq \lambda, \\
\neg p^{\lambda} \in \Delta, \alpha \in \ell(\Delta) & \Rightarrow\langle\alpha\rangle \neg p^{\lambda} \in \Delta, \quad \text { for all variables } p^{\lambda} \text { and } \alpha>\lambda .
\end{aligned}
$$

We can easily convince ourselves that any finite set Γ can be extended to a finite adequate Γ^{\prime} such that $\ell(\Gamma)=\ell\left(\Gamma^{\prime}\right)$. We denote the smallest such set by $C l(\Gamma)$ and note that $C l(\Gamma)$ is finite. Furthermore, it is easy to see that if Δ is adequate, then for every maximal consistent subset Γ of Δ we have (i) $\varphi \in \Gamma$ or $\sim \varphi \in \Gamma$ for every $\varphi \in \Delta$, (ii) $\varphi \rightarrow \psi, \varphi \in \Gamma$ implies $\psi \in \Gamma$, and (iii) $\varphi \vee \psi \in \Gamma$ iff $\varphi \in \Gamma$ or $\psi \in \Gamma$. The following fact is well-known.

Lemma 3.4.11. Let \mathcal{L}_{Λ} be a logic and Γ, Δ finite sets of formulas such that $\Gamma \subseteq C l(\Delta)$, where Γ is \mathcal{L}_{Λ}-consistent. Then, there is a maximal \mathcal{L}_{Λ}-consistent $\Gamma^{\prime} \subseteq C l(\Delta)$ such that $\Gamma \subseteq \Gamma^{\prime}$.

Proof. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ be an enumeration of $C l(\Delta)$. Define $\Sigma_{0}:=\Gamma$ and, for $k<n$, construct sets Σ_{k+1} in the following way:

$$
\Sigma_{k+1}:= \begin{cases}\Sigma_{k} \cup\left\{\varphi_{k+1}\right\}, & \text { if } \Sigma_{k} \cup\left\{\varphi_{k+1}\right\} \text { is } \mathcal{L}_{\Lambda} \text {-consistent } \\ \Sigma_{k} \cup\left\{\sim \varphi_{k+1}\right\}, & \text { otherwise }\end{cases}
$$

Let $\Sigma^{+}=\Sigma_{n}$. By induction on k, we easily see that Σ_{k} is \mathcal{L}_{Λ}-consistent for every $k \geq 0$.
 $\varphi \in C l(\Delta)$ we either have $\varphi \in \Sigma^{+}$or $\sim \varphi \in \Sigma^{+}$. It follows that $\Sigma^{+} \subseteq C l(\Delta)$ is a maximal \mathcal{L}_{Λ}-consistent set containing Γ.
Let us now fix a finite adequate set Δ and assume that all modalities range within $\ell(\Delta)$. Let $\Lambda:=\ell(\Delta)$ and define a Kripke frame $\mathfrak{F}_{\Delta}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$, where

$$
W:=\left\{x \mid x \text { is a maximal } J_{\Lambda}^{*} \text {-consistent subset of } \Delta\right\}
$$

for $\alpha \in \Lambda$ and $x, y \in W$, define $x R_{\alpha} y$ if the following conditions are satisfied:
(i) For any $\varphi \in y$, if $\langle\alpha\rangle \varphi \in \Delta$ then $\langle\alpha\rangle \varphi \in x$.
(ii) For any $\langle\alpha\rangle \varphi \in \Delta$, we have that $\langle\alpha\rangle \varphi \in y$ implies $\langle\alpha\rangle \varphi \in x$.
(iii) For any $\langle\beta\rangle \varphi \in \Delta$ such that $\beta<\alpha$, we have $\langle\beta\rangle \varphi \in x \Longleftrightarrow\langle\beta\rangle \varphi \in y$.
(iv) There exists a formula $\langle\alpha\rangle \varphi \in \Delta$ such that $\langle\alpha\rangle \varphi \in x \backslash y$.

Lemma 3.4.12. \mathfrak{F}_{Δ} is a finite J_{Λ}^{*}-frame.
Proof. We first check the conditions of a J_{Λ}^{*}-frame. Obviously, \mathfrak{F}_{Δ} is finite. Hence, to establish well-foundedness of each R_{α}, it suffices to check irreflexivity. But this is guaranteed by item (iii). We first prove simultaneously that R_{α} is transitive and condition (J2) is satisfied, so suppose $x R_{\beta} y$ and $y R_{\alpha} z$ for $\beta \leq \alpha$. We show $x R_{\beta} z$ by checking the four conditions above. Suppose $\varphi \in z$ such that $\langle\beta\rangle \varphi \in \Delta$. By $y R_{\alpha} z$ and items (i) and (ii) we know that $\langle\beta\rangle \varphi \in y$, whence $\langle\beta\rangle \varphi \in x$ follows by $x R_{\beta} y$. Hence, item (i) is established. Let $\langle\beta\rangle \varphi \in \Delta$ such that $\langle\beta\rangle \varphi \in z$. Again, items (i) and (ii) and $y R_{\alpha} z$ yield $\langle\beta\rangle \varphi \in y$, whence $\langle\beta\rangle \varphi \in x$ follows by $x R_{\beta} y$. So item (ii) is verified. Let $\lambda<\beta$ and consider any $\langle\lambda\rangle \varphi \in \Delta$. We know

$$
\langle\lambda\rangle \varphi \in x \Longleftrightarrow\langle\lambda\rangle \varphi \in y \Longleftrightarrow\langle\lambda\rangle \varphi \in z
$$

whence item (iii) follows. For item (iv), we know that there is an $\langle\alpha\rangle \psi \in y \backslash z$. But then $\langle\beta\rangle \psi \in x$ by item (i) and $x R_{\beta} y$. Hence, item (iv) is also verified, i.e., $x R_{\beta} z$ holds.

It remains to establish condition (J3). So first suppose $x R_{\alpha} y$ and $x R_{\beta} z$ for $\beta<\alpha$. We prove $y R_{\beta} z$. Indeed, if $\varphi \in z$ and $\langle\beta\rangle \varphi \in \Delta$, then $\langle\beta\rangle \varphi \in x$ by $x R_{\beta} z$, whence $\langle\beta\rangle \varphi \in y$ follows since $\beta<\alpha$ and $x R_{\alpha} y$. So item (i) holds. If $\langle\beta\rangle \varphi \in \Delta$ such that $\langle\beta\rangle \varphi \in z$,
then $\langle\beta\rangle \varphi \in x$ since $x R_{\beta} z$, whence $\langle\beta\rangle \varphi \in y$ follows since $\beta<\alpha$ and $x R_{\alpha} y$. This proves item (ii). Let $\lambda<\beta$ and $\langle\lambda\rangle \varphi \in \Delta$. We have

$$
\langle\lambda\rangle \varphi \in y \Longleftrightarrow\langle\lambda\rangle \varphi \in x \Longleftrightarrow\langle\lambda\rangle \varphi \in z
$$

Hence, item (iii) follows. For item (iv), we know that there is a $\langle\beta\rangle \psi \in \Delta$ such that $\langle\beta\rangle \psi \in x \backslash z$. Now, $\langle\beta\rangle \psi \in y$ by $x R_{\alpha} y$ and $\beta<\alpha$. Thus, $y R_{\beta} z$ follows.

Suppose now $x R_{\alpha} y$ and $y R_{\beta} z$. We show $x R_{\beta} z$. Let $\varphi \in z$ such that $\langle\beta\rangle \varphi \in \Delta$. By $y R_{\beta} z$, we know $\langle\beta\rangle \varphi \in y$, whence $\beta<\alpha$ and $x R_{\alpha} y$ give us $\langle\beta\rangle \varphi \in x$. Hence, item (i) is established. Consider any $\langle\beta\rangle \varphi \in \Delta$ such that $\langle\beta\rangle \varphi \in z$. Since $y R_{\beta} z$, we have $\langle\beta\rangle \varphi \in y$, whence $\alpha<\beta$ gives us again $\langle\beta\rangle \varphi \in x$, i.e., item (ii) holds. Now let $\lambda<\beta$ and consider a $\langle\lambda\rangle \varphi \in \Delta$ such that $\langle\lambda\rangle \varphi \in x$. We know

$$
\langle\lambda\rangle \varphi \in x \Longleftrightarrow\langle\lambda\rangle \varphi \in y \Longleftrightarrow\langle\lambda\rangle \varphi \in z
$$

which entails item (iii). For item (iv), we know that there is a $\langle\beta\rangle \psi \in y \backslash z$. But then $\langle\beta\rangle \psi \in x$ as $\alpha<\beta$ and $x R_{\alpha} y$. This proves $x R_{\beta} z$.

Lemma 3.4.13. Let $\langle\alpha\rangle \varphi \in \Delta$ and x be a maximal J_{Λ}^{*}-consistent subset from Δ. Then $\langle\alpha\rangle \varphi \in x$ iff there exists a maximal J_{Λ}^{*}-consistent subset $y \subseteq \Delta$ such that $x R_{\alpha} y$ and $\varphi \in y$.

Proof. For the direction from right to left, suppose $\langle n\rangle \varphi \notin x$. If $y \subseteq \Delta$ is a maximal J^{*}-consistent set such that $x R_{\alpha} y$, we clearly have $\varphi \notin y$ by definition of R_{α}.

For the other direction, assume $\langle\alpha\rangle \varphi \in x$. We will construct a maximal J_{Λ}^{*}-consistent $y \subseteq \Delta$ such that $\varphi \in y$ and $x R_{\alpha} y$. In the following, given any finite set Γ of formulas, we write $\Gamma^{\wedge}\left(\Gamma^{\vee}\right.$, respectively) for the conjunction (disjunction, respectively) of all formulas in Γ. Similarly, we write $\sim \Gamma$ for $\{\sim \gamma \mid \gamma \in \Gamma\}$ and $\langle\beta\rangle \Gamma$ for $\{\langle\beta\rangle \gamma \mid \gamma \in \Gamma\}$. Now let Σ be the union of the following sets of formulas (modalities range over Λ):

$$
\begin{array}{ll}
\Sigma_{1}=\{\neg\langle\lambda\rangle \psi, \sim \psi \mid \neg\langle\alpha\rangle \psi \in x, \lambda \geq \alpha\}, & \Sigma_{2}=\{\langle\beta\rangle \psi \mid\langle\beta\rangle \psi \in x, \beta<\alpha\}, \\
\Sigma_{3}=\{\neg\langle\beta\rangle \psi \mid \neg\langle\beta\rangle \psi \in x, \beta<\alpha\}, & \Sigma_{4}=\{\neg\langle\alpha\rangle \varphi, \varphi\} .
\end{array}
$$

We claim that Σ is J_{Λ}^{*}-consistent. For if not then

$$
\mathrm{J}_{\Lambda}^{*} \vdash\left(\Sigma_{1}^{\wedge} \wedge \Sigma_{2}^{\wedge} \wedge \Sigma_{3}^{\wedge}\right) \rightarrow(\varphi \rightarrow\langle\alpha\rangle \varphi)
$$

and so by propositional logic

$$
\begin{equation*}
\mathrm{J}_{\Lambda}^{*} \vdash(\varphi \wedge \neg\langle\alpha\rangle \varphi) \rightarrow\left(\sim \Sigma_{1}^{\vee} \vee \sim \Sigma_{2}^{\vee} \vee \sim \Sigma_{3}^{\vee}\right) \tag{3.1}
\end{equation*}
$$

and furthermore

$$
\langle\alpha\rangle(\varphi \wedge \neg\langle\alpha\rangle \varphi) \rightarrow\langle\alpha\rangle\left(\sim \Sigma_{1}^{\vee} \vee \sim \Sigma_{2}^{\vee} \vee \sim \Sigma_{3}^{\vee}\right)
$$

By Löb's axiom, we know that

$$
\mathrm{J}_{\Lambda}^{*} \vdash\langle\alpha\rangle \varphi \rightarrow\langle\alpha\rangle(\varphi \wedge \neg\langle\alpha\rangle \varphi) .
$$

For $i=1,2,3$, let $\Pi_{i}=\langle\alpha\rangle \sim \Sigma_{i}$. We have by propositional logic, (3.1), and Lemma 3.2.7

$$
\mathrm{J}_{\Lambda}^{*} \vdash\langle\alpha\rangle \varphi \rightarrow \Pi_{1}^{\vee} \vee \Pi_{2}^{\vee} \vee \Pi_{3}^{\vee}
$$

Now since x is maximal J_{Λ}^{*}-consistent and $\langle\alpha\rangle \varphi \in x$, we infer that $\chi \in x$ for some $\chi \in \Pi_{1} \cup \Pi_{2} \cup \Pi_{3}$. We distinguish three cases.

CASE 1: $\chi \in \Pi_{1}$, i.e., $\chi=\langle\alpha\rangle\langle\lambda\rangle \psi$ for some $\lambda \geq \alpha$ or $\chi=\langle\alpha\rangle \psi$. In both cases $\neg\langle\alpha\rangle \psi \in x$ by construction. We have by axiom (vi) and $\mathrm{J}_{\Lambda}^{*} \vdash\langle\alpha\rangle\langle\alpha\rangle \delta \rightarrow \delta$ for all δ, that

$$
\mathrm{J}_{\Lambda}^{*} \vdash\langle\alpha\rangle\langle\lambda\rangle \psi \rightarrow\langle\alpha\rangle \psi
$$

whence $\langle\alpha\rangle \psi \in x$ follows in both cases, contradicting $\neg\langle\alpha\rangle \psi \in x$.
CASE 2: $\chi \in \Pi_{2}$, i.e., $\chi=\langle\alpha\rangle \neg\langle\beta\rangle \psi$ for some ψ and $\beta<\alpha$ such that $\langle\beta\rangle \psi \in x$. Since $\beta<\alpha$, we know by axiom (v) that

$$
J_{\Lambda}^{*} \vdash\langle\alpha\rangle \neg\langle\beta\rangle \psi \rightarrow \neg\langle\beta\rangle \psi
$$

whence $\neg\langle\beta\rangle \psi \in x$, contradicting the consistency of x.
CASE 3: Finally, suppose $\chi \in \Pi_{3}$, i.e., $\sigma=\langle\alpha\rangle\langle\beta\rangle \psi$ for some $\beta<\alpha$ such that $\neg\langle\beta\rangle \psi \in x$. By an easy application of axiom (v) we know that

$$
\mathrm{J}_{\Lambda}^{*} \vdash\langle\alpha\rangle\langle\beta\rangle \psi \rightarrow\langle\beta\rangle \psi
$$

whence we immediately obtain $\langle\beta\rangle \psi \in x$, contradiction.
We see that Σ is J_{Λ}^{*}-consistent. Hence, by Lemma 3.4.11, there exists a maximal J_{Λ}^{*}-consistent $y \supseteq \Sigma$. Furthermore, $x R_{\alpha} y$ and $\varphi \in y$ by construction of Σ.

Now define a Kripke model $\mathfrak{K}_{\Delta}=\left\langle\mathfrak{F}_{\Delta}, \llbracket \cdot \rrbracket\right\rangle$, where

$$
\mathfrak{K}_{\Delta}, x \Vdash p^{\alpha} \Longleftrightarrow{ }_{d f} p^{\alpha} \in x
$$

for all variables $p^{\alpha} \in \Delta$ and $x \in W$.
Lemma 3.4.14. \mathfrak{K}_{Δ} is a strongly persistent, finite J_{Λ}^{*}-model.
Proof. Again, finiteness is immediate. Let $\alpha \in \ell(\Delta)$ and consider a propositional variable $p^{\lambda} \in \Delta$ such that $\lambda \leq \alpha$. Suppose $x R_{\alpha} y$ and $y \in \llbracket p^{\lambda} \rrbracket$. We show $x \in \llbracket p^{\lambda} \rrbracket$ by checking the conditions of Definition 3.4.6. Indeed, since $p^{\lambda} \in \Delta$ we have $\langle\alpha\rangle p^{\lambda} \in \Delta$. Furthermore, since x is maximal J_{Λ}^{*}-consistent and $x R_{\alpha} y$, it follows by Lemma 3.4.13 that $\langle\alpha\rangle p^{\lambda} \in x$, whence $p^{\lambda} \in x$ follows since $J_{\Lambda}^{*} \vdash\langle\alpha\rangle p^{\lambda} \rightarrow p^{\lambda}$ and x is maximal J_{Λ}^{*}-consistent. Hence, \mathfrak{K}_{Δ} is persistent.

Now let $\lambda<\alpha$ and suppose $x R_{\alpha} y$ but $y \notin \llbracket p^{\lambda} \rrbracket$. If $p^{\lambda} \notin \Delta$ then $x \notin \llbracket p^{\lambda} \rrbracket$ by definition, so suppose $p^{\lambda} \in \Delta$. From $\neg p^{\lambda} \in \Delta$, we obtain $\langle\alpha\rangle \neg p^{\lambda} \in \Delta$, whence $x R_{\alpha} y$ gives us $\langle\alpha\rangle \neg p^{\lambda} \in x$ by Lemma 3.4.13. Since $\mathrm{J}_{\Lambda}^{*} \vdash\langle\alpha\rangle \neg p^{\lambda} \rightarrow \neg p^{\lambda}$ and x is maximal J_{Λ}^{*}-consistent, we obtain $\neg p^{\lambda} \in x$, i.e., $x \notin \llbracket p^{\lambda} \rrbracket$ and thus strong persistence as desired.

Lemma 3.4.15. For all $\varphi \in \Delta$ we have $\mathfrak{K}_{\Delta}, x \Vdash \varphi$ iff $\varphi \in x$.

Proof. We proceed by induction on φ. The base cases hold by definition-note that $\top \in x$ and $\perp \notin x$ for all maximal J_{Λ}^{*}-consistent $x \in W$. Suppose $\varphi=\psi_{1} \wedge \psi_{2}$. Then $x \Vdash \varphi$ iff $x \Vdash \psi_{1}$ and $x \Vdash \psi_{2}$, which by inductive hypothesis is equivalent to $\psi_{1}, \psi_{2} \in x$ and, since x is maximal J_{Λ}^{*}-consistent, holds iff $\psi_{1} \wedge \psi_{2} \in x$. The other propositional connectives are treated similarly. Finally, suppose $\varphi=\langle\alpha\rangle \psi$ for some $\alpha \in \ell(\Delta)$ and some ψ. Then if $x \Vdash\langle\alpha\rangle \psi$, there is a $y \in W$ such that $y \Vdash \psi$, whence by inductive hypothesis we obtain $\psi \in y$ and Lemma 3.4.13 gives us $\langle\alpha\rangle \psi \in x$. Conversely, if $\langle\alpha\rangle \psi \in x$ by Lemma 3.4.13 there exists a $y \in W$ such that $x R_{\alpha} y$ and $\psi \in y$, whence by inductive hypothesis $y \Vdash \psi$ and so $x \Vdash\langle\alpha\rangle \psi$ follows.

We can now conclude completeness of J_{Λ}^{*} in a standard way.
Theorem 3.4.16. J_{Λ}^{*} is complete for the class of finite strongly persistent J_{Λ}^{*}-models.
Proof. Consider a formula $\varphi \in L_{\Lambda}^{*}$ and suppose $J_{\Lambda}^{*} \nvdash \varphi$. Then $\{\sim \varphi\}$ is J_{Λ}^{*}-consistent. Consider the finite adequate $\Delta:=C l(\{\varphi\})$ and let $\Sigma:=\ell(\Delta)$. Let \mathfrak{K}_{Δ} be the corresponding finite and strongly persistent J_{Σ}^{*}-model. Then, making use of Lemma 3.4.11, there is a maximal J_{Σ}^{*}-consistent $x \subseteq \Delta$ such that $\sim \varphi \in x$, whence Lemma 3.4.15 gives us $\mathfrak{K}_{\Delta}, x \nVdash \varphi$. Notice that $\Sigma \subseteq \Lambda$. Expand \mathfrak{K}_{Δ} to a J_{Λ}^{*}-model \mathfrak{K} by setting $R_{\alpha}=\varnothing$ for all $\alpha \in \Lambda \backslash \Sigma$. Then it is immediate that \mathfrak{K} is a finite and strongly persistent J_{Λ}^{*}-model such that $\mathfrak{K}, x \nVdash \varphi$.

Corollary 3.4.17. J_{Λ}^{*} is decidable for every $\Lambda \subseteq \omega+1$.
Furthermore, we can already conclude that J^{*} is conservative over its fragments.
Corollary 3.4.18. Let $\Lambda \subseteq \omega$. For all $\varphi \in L_{\Lambda}^{*}$,

$$
\mathrm{J}^{*} \vdash \varphi \Longleftrightarrow \mathrm{~J}_{\Lambda}^{*} \vdash \varphi
$$

Proof. The direction from right to left is clear. For the other direction, suppose $J_{\Lambda}^{*} \nvdash \varphi$. Then $\{\sim \varphi\}$ is J_{Λ}^{*}-consistent and a similar argument as in the proof of Theorem 3.4.16 yields a J^{*}-model \mathfrak{K} and a world x such that $\mathfrak{K}, x \nVdash \varphi$.

3.5 ARithmetical Completeness of GLP*

This section is devoted to a proof of the arithmetical completeness theorem for GLP*. We closely follow the construction provided by Beklemishev [6] which is close to the original construction of Solovay for GL. We have no Kripke semantics for GLP* at hand. Therefore, we aim at reducing GLP* to J^{*}, which is reminiscent of Solovay's reduction of S to $G L$ for the proof of the arithmetical completeness theorem for $S[1,11,39]$. To this end, for any many-sorted formula from L^{*}, we define formulas $M(\varphi)$ and $M^{+}(\varphi)$ as follows [6]. Let $\left\langle m_{1}\right\rangle \varphi_{1},\left\langle m_{2}\right\rangle \varphi_{2}, \ldots,\left\langle m_{s}\right\rangle \varphi_{s}$ be an enumeration of all subformulas of φ of the form $\langle k\rangle \psi$ and let $n:=\max _{i \leq s} m_{i}$. Define

$$
M(\varphi):=\bigwedge_{\substack{1 \leq i \leq s \\ m_{i}<j \leq n}}\left(\langle j\rangle \varphi_{i} \rightarrow\left\langle m_{i}\right\rangle \varphi_{i}\right),
$$

and, furthermore,

$$
M^{+}(\varphi):=M(\varphi) \wedge \bigwedge_{i \leq n}[i] M(\varphi)
$$

By the monotonicity axioms, it is clear that $\mathrm{GLP}^{*} \vdash M^{+}(\varphi)$.
Before turning our attention to the arithmetical completeness proof, let us first restrict the class of models we have to consider for an unprovable formula in J^{*} (see also Beklemishev [6]).

Lemma 3.5.1. For any $\varphi \in L^{*}$, if $\mathrm{J}^{*} \nvdash \varphi$ then there is a finite and strongly persistent J^{*}-model \mathfrak{K} with root r such that $\mathfrak{K}, r \nVdash \varphi$.
Proof. Assume that $\mathrm{J}^{*} \nvdash \varphi$ and let $\mathfrak{K}_{0}=\left\langle W_{0},\left\{R_{n}\right\}_{n<\omega}, \llbracket \cdot \rrbracket\right\rangle$ be a finite and strongly persistent Kripke model such that $\mathfrak{K}_{0}, x_{0} \nVdash \varphi$. Define $\mathfrak{K}=\left\langle W,\left\{R_{n}\right\}_{n<\omega}, \llbracket \cdot \rrbracket\right\rangle$, where we set $y \in W$ iff $y=x_{0}$ or there is a sequence of elements $x_{1}, x_{2}, \ldots, x_{k+1}$ such that for some $n_{0}, n_{1}, \ldots, n_{k}$ we have

$$
x_{0} R_{n_{0}} x_{1} R_{n_{1}} x_{2} R_{n_{2}} \cdots R_{n_{k}} x_{k+1}=y
$$

Furthermore, let the valuation of \mathfrak{K} agree with that of \mathfrak{K}_{0} (on the corresponding nodes). We can easily convince ourselves that \mathfrak{K} is a finite and strongly persistent J^{*}-model. Furthermore, we can easily prove by induction on ψ that

$$
\forall x \in W: \mathfrak{K}, x \Vdash \psi \Longleftrightarrow \mathfrak{K}_{0}, x \Vdash \psi
$$

Finally, we stipulate that x_{0} is a root of \mathfrak{K}. Indeed, consider any $y \in W \backslash\left\{x_{0}\right\}$ and suppose

$$
x_{0} R_{n_{0}} x_{1} R_{n_{1}} x_{2} R_{n_{2}} \cdots R_{n_{k}} x_{k+1}=y
$$

By induction on k, by the property

$$
u R_{n} v R_{m} w \Longrightarrow u R_{\min \{n, m\}} w,
$$

it follows that $x_{0} R_{s} y$, where $s=\min \left\{n_{0}, n_{1}, \ldots, n_{k}\right\}$.
Theorem 3.5.2. Let T be a sound axiomatizable extension of PA and π a strong sequence of provability predicates over T of which every provability predicate is sound. Then, for all many-sorted formulas φ, the following statements are equivalent:
(i) $\mathrm{GLP}^{*} \vdash \varphi$;
(ii) $\mathrm{J}^{*} \vdash M^{+}(\varphi) \rightarrow \varphi$;
(iii) $T \vdash f_{\pi}(\varphi)$, for all realizations f_{π}.

Proof. The direction from (ii) to (i) is immediate since GLP* extends ${ }^{*}$ * and GLP* \vdash $M^{+}(\varphi)$. Furthermore, the direction from (i) to (iii) is the arithmetical soundness of GLP* (Proposition 3.3.4). We show that (iii) implies (ii) by assuming the contrapositive, i.e.,
assume that $\mathrm{J}^{*} \nvdash M^{+}(\varphi) \rightarrow \varphi$. Then there is a finite and strongly persistent J^{*}-model $\mathfrak{K}=\left\langle W,\left\{R_{n}^{\prime}\right\}_{n<\omega}, \llbracket \cdot \rrbracket\right\rangle$ with root r such that $\mathfrak{K}, r \Vdash M^{+}(\varphi)$ and $\mathfrak{K}, r \nVdash \varphi$. Without loss of generality, assume that $W=\{1,2, \ldots, N\}$ for some $N \geq 1$ and $r=1$. We define a new model $\mathfrak{K}_{0}=\left\langle W_{0},\left\{R_{n}\right\}_{n<\omega}, \llbracket \cdot \rrbracket \rrbracket\right.$, where
(i) $W_{0}=\{0\} \cup W$;
(ii) $R_{0}=\{(0, x) \mid x \in W\} \cup R_{0}^{\prime}$;
(iii) $R_{k}=R_{k}^{\prime}$, for $k>0$;
(iv) $\mathfrak{K}_{0}, 0 \Vdash p \Longleftrightarrow{ }_{d f} \mathfrak{K}, 1 \Vdash p$, for all variables p.

Notice that \mathfrak{K}_{0} is still a finite and strongly persistent J^{*}-model such that $\mathfrak{K}_{0}, r \nVdash M^{+}(\varphi) \rightarrow$ φ. Define the following auxiliary notions:

$$
\begin{aligned}
& R_{k}(x):=\left\{y \mid x R_{k} y\right\}, \\
& R_{k}^{*}(x):=\left\{y \mid y \in R_{i}(x), \text { for some } i \geq k\right\}, \\
& R_{k}^{\circ}(x):=R_{k}^{*}(x) \cup \bigcup\left\{R_{k}^{*}(z) \mid x \in R_{k+1}^{*}(z)\right\} .
\end{aligned}
$$

We are now going to construct an arithmetical realization f_{π} such that $T \nvdash f_{\pi}(\varphi)$. Let m be the least number such that $R_{m} \neq \varnothing$ and $R_{k}=\varnothing$ for all $k>m$. We define Solovay functions $h_{n}: \omega \rightarrow W_{0}$ for all $n \leq m$ and use their properties to construct such an f_{π} which witnesses $T \nvdash f_{\pi}(\varphi)$. In the following, let $\operatorname{Prf}_{0}, \operatorname{Prf}_{1}, \ldots, \operatorname{Prf}_{n}, \ldots$ be the sequence of proof relations of the respective provability predicates $[0]_{\pi},[1]_{\pi}, \ldots,[n]_{\pi}, \ldots$ over T.

Definition 3.5.3. For all $n \leq m$, define a function $h_{n}: \omega \rightarrow W_{0}$ as follows:

$$
\begin{aligned}
h_{0}(0) & =0 \text { and } h_{n}(0)=\ell_{n-1}, \text { for } n>0 ; \\
h_{n}(x+1) & = \begin{cases}y, & \text { if } h_{n}(x) R_{n} z \text { and } \operatorname{Prf}_{n}\left(\left\ulcorner\neg S_{z}\right\urcorner, x\right), \\
h_{n}(x), & \text { otherwise. }\end{cases}
\end{aligned}
$$

Let $\ell_{k}=x$ be a formalization of the statement that the function h_{k} (defined by H_{k}) has as its limit at x, i.e.,

$$
\ell_{k}=x \Longleftrightarrow{ }_{d f} \exists N_{0} \forall n \geq N_{0} H_{k}(n, x) .
$$

For $x \in W_{0}, S_{x}$ denotes the sentence $\ell_{m}=\bar{x}$.
We now show that the concepts defined in the previous definition are well-defined in formal arithmetic. First of all, we need to construct formulas $H_{k}(x, y)$ for $k=0,1, \ldots, m$ which define the corresponding functions h_{k} and provably satisfy the clauses of their definitions. Notice that $\left\ulcorner S_{z}\right\urcorner$ is a primitive recursive function of $\left\ulcorner H_{m}\right\urcorner$ and z. Let notlim (y, x) be a term for the function which, given the Gödel number of a formula $F(a, b)$ and an x, returns the Gödel number of the sentence which asserts that the function defined by $F(a, b)$ has no limit at \bar{x}. Hence, if $F(a, b)$ defines a function and has Gödel number n, then the
value of notlim (\bar{n}, \bar{k}) will be the Gödel number of $\neg \exists N_{0} \forall n \geq N_{0} F(n, \bar{k})$, asserting that the function defined by $F(a, b)$ has no limit at \bar{k} (cf. Boolos [11]). Now let $A_{0}(w, x, y)$ be the arithmetical formula which naturally formalizes the following statement:

There is a finite sequence s of length $a+1$ such that $s_{0}=0$ and $s_{x}=y$ and the following conditions hold for all $a<x$:
(i) Whenever $s_{a}=i$ for an $i \leq N$ and $\operatorname{Prf}_{0}(\operatorname{notlim}(w, j), a)$ for some j such that $i R_{0} j$, we have that $s_{a+1}=j$.
(ii) Whenever $\neg \operatorname{Prf}_{0}(\operatorname{notlim}(w, \bar{j}), a)$ for all j such that $i R_{0} j$, we have that $s_{a+1}=s_{a}$.

For $k>0$, let $A_{k}(w, l, x, y)$ be an arithmetical formula which expresses the following statement:

There is a finite sequence s of length $a+1$ such that $s_{0}=l$ and $s_{a}=y$ and the following conditions hold for all $a<x$:
(i) Whenever $s_{a}=i$ for an $i \leq N$ and $\operatorname{Prf}_{k}(\operatorname{notlim}(w, \bar{j}), a)$ for some j such that $i R_{k} j$, we have that $s_{a+1}=j$.
(ii) Whenever $\neg \operatorname{Prf}_{k}(\operatorname{notlim}(w, \bar{j}), a)$ for all j such that $i R_{k} j$, we have that $s_{a+1}=s_{a}$.
By our assumptions on the predicates $\operatorname{Prf}_{n}(\alpha, y)$ (identical proof sequences cannot code proofs of different formulas), we can prove that $\exists!y A_{0}(w, x, y)$ by induction on x. The statement $\ell_{0}=\bar{z}$ is expressible via $A_{0}(w, x, y)$ and ℓ_{0} can then be shown to be unique. Suppose now that we have shown that ℓ_{0} exists (which we will do below). Then we can use the formula $A_{0}(w, x, y)$ to express the statement $A_{1}\left(w, \ell_{0}, x, y\right)$. Similarly, we successively continue to obtain $A_{k+1}\left(w, \ell_{k}, x, y\right)$. In the end, we will obtain a formula $A_{m}^{\prime}(w, x, y)$ from which we can infer by diagonalization that there is a formula $H_{m}(x, y)$ such that

$$
T \vdash H_{m}(x, y) \leftrightarrow A_{m}^{\prime}\left(\left\ulcorner H_{m}(x, y)\right\urcorner, x, y\right) .
$$

Performing converse substitutions then yields definitions of the formulas H_{k} for all $k<m$.
For a set $A \subseteq W_{0}$, we denote by $\ell_{k} \in A$ the sentence $\bigvee_{x \in A} \ell_{k}=\bar{x}$. Furthermore, given such an $A \subseteq W_{0}$, we use quantifiers to naturally abbreviate statements of the form

$$
\bigwedge_{a \in A} \psi(\bar{a}), \bigvee_{a \in A} \psi \psi(\bar{a})
$$

by $\forall a \in A: \psi(\bar{a})$ and $\exists a \in A: \psi(\bar{a})$ (or stylistic variations thereof), respectively.
Lemma 3.5.4. For all $k \geq 0$,
(i) $T \vdash \forall x \exists!w \in W_{0}: H_{k}(x, \bar{w})$;
(ii) $T \vdash \exists!w \in W_{0}: \ell_{k}=\bar{w}$;
(iii) $T \vdash \forall i, j \forall z \in W_{0}\left(i<j \wedge h_{k}(i)=\bar{z} \rightarrow h_{k}(j) \in R_{k}(z) \cup\{z\}\right)$;
(iv) $T \vdash \forall z \in W_{0}\left(\exists x h_{k}(x)=\bar{z} \rightarrow \ell_{m} \in R_{k}^{*}(z) \cup\{z\}\right)$.

Proof. Item (i) follows from our previous discussion. For (ii), note that uniqueness easily follows from (i). For existence, we prove that

$$
T \vdash H_{k}(a, \bar{b}) \rightarrow \ell_{k}=\bar{b} \vee \ell_{k} \in R_{k}(b),
$$

by induction on the converse of R_{k}. So suppose that for each $c \in R_{k}(b)$, we have

$$
T \vdash H_{k}(a, \bar{c}) \rightarrow \ell_{k}=\bar{c} \vee \ell_{k} \in R_{k}(c) .
$$

By definition of H_{k}, we know that

$$
T \vdash H_{k}(a, \bar{b}) \rightarrow \forall x \geq a\left(H_{k}(x, \bar{b}) \vee \exists w \in R_{k}(b): H_{k}(x, \bar{w})\right) .
$$

By inductive hypothesis, we obtain

$$
T \vdash H_{k}(a, \bar{b}) \rightarrow \forall x \geq a\left(H_{k}(x, \bar{b}) \vee \exists w \in R_{k}(b): \ell_{k}=\bar{w} \vee \ell_{k} \in R_{k}(w)\right) .
$$

Hence,

$$
T \vdash H_{k}(a, \bar{b}) \rightarrow \ell_{k}=\bar{b} \vee \exists w \in R_{k}(b): \ell_{k}=\bar{w} \vee \ell_{k} \in R_{k}(w) .
$$

Since R_{k} is transitive, we obtain

$$
T \vdash H_{k}(a, \bar{b}) \rightarrow \ell_{k}=\bar{b} \vee \ell_{k} \in R_{k}(b),
$$

as required. We know that $T \vdash H_{0}(0,0)$ and so (ii) follows for $k=0$. Hence, ℓ_{0} exists. By induction, we infer that $T \vdash H_{k}\left(0, \ell_{k-1}\right)$ for all $k>0$ and so (ii) is proved. Items (iii) and (iv) are immediate consequences of the definitions of the formulas H_{k}.

Lemma 3.5.5. The following conditions hold for the sentences S_{x} :
(i) $T \vdash \bigvee_{x \in W_{0}} S_{x}$ and $T \vdash \neg\left(S_{x} \wedge S_{y}\right)$ for all $x \neq y$;
(ii) $T \vdash S_{x} \rightarrow\langle k\rangle_{\pi} S_{y}$, for all y such that $x R_{k} y$;
(iii) $T \vdash S_{x} \rightarrow[k]_{\pi}\left(\ell_{m} \in R_{k}^{\circ}(x)\right)$, for all $x \neq 0$;
(iv) $\mathbb{N} \models S_{0}$.

Proof. Item (i) is just a special case of item (ii) of Lemma 3.5.4. Item (ii) is proved by formalizing the following argument in T. Assume S_{x}. Then we either have $\ell_{k}=x$ or $\ell_{k} \in R_{k+1}^{*}(x)$. By the properties of a J^{*}-model, in both cases it holds that $R_{k}\left(\ell_{k}\right)=R_{k}(x)$. Let n_{0} be such that $\forall n \geq n_{0}: h_{k}(n)=\ell_{k}$. Now consider a y such that $x R_{k} y$. Suppose $[k]_{\pi} \neg S_{y}$. Then there is an $n_{1} \geq n_{0}$ such that $\operatorname{Prf}_{k}\left(\left\ulcorner\neg S_{y}\right\urcorner, n_{1}\right)$, whence $h_{k}\left(n_{1}\right)=y$ follows by definition of h_{k}, a contradiction.

For (iii), we formalize the following argument in T. Assume S_{x}, where $x \neq 0$ and let $z \in W_{0}$ be such that $\ell_{k}=\bar{z}$. By definition, we have $x \in R_{k+1}^{*}(z)$ or $x=z$. Hence, $R_{k}^{*}(z) \subseteq R_{k}^{\circ}(x)$ and, since this property is definable by a Δ_{0}-formula, $[k]\left(R_{k}^{*}(z) \subseteq R_{k}^{\circ}(x)\right)$. So,

$$
[k]_{\pi}\left(\ell_{m} \in R_{k}^{*}(z)\right) \rightarrow[k]_{\pi}\left(\ell_{m} \in R_{k}^{\circ}(x)\right) .
$$

We know that $\exists n h_{k}(n)=z$ and, being a $\Sigma_{\left|\pi_{k}\right|+1}$-formula, we have

$$
[k]_{\pi}\left(\exists n h_{k}(n)=\bar{z}\right)
$$

But for any $w \in W_{0}$, we have

$$
T \vdash \exists n h_{k}(n)=\bar{w} \rightarrow \ell_{m} \in R_{k}^{*}(w) \cup\{w\} .
$$

Therefore,

$$
T \vdash[k]_{\pi}\left(\exists n h_{k}(n)=\bar{w}\right) \rightarrow[k]_{\pi}\left(\ell_{m} \in R_{k}^{*}(w) \cup\{w\}\right) .
$$

Reasoning in T, we obtain that $[k]_{\pi}\left(\ell_{m} \in R_{k}^{*}(z) \cup\{z\}\right)$. It remains to notice that $\bar{z} \neq 0$ since, by assumption, $x \neq 0$. But then $\exists n h_{k}(n)=\bar{z}$ implies that $[k]_{\pi} \neg S_{z}$ which means that $[k]_{\pi}\left(\ell_{m} \neq \bar{z}\right)$. It follows that $[k]_{\pi}\left(\ell_{m} \in R_{k}^{*}(z)\right)$ and therefore $[k]_{\pi}\left(\ell_{m} \in R_{k}^{\circ}(x)\right)$ as required.

To establish (iv), we prove by induction on k that $\mathbb{N} \models \ell_{k}=0$ for all $k \leq m$. For $k=0$, if $\mathbb{N} \models \ell_{0}=\bar{z}$ for some $z \neq 0$, then $[0]_{\pi} \neg S_{z}$ which by the soundness of $[k]_{\pi}$ yields $\ell_{0} \neq \bar{z}$ in the standard model, a contradiction. The induction step is then based on a similar argument, taking into account that $h_{k+1}(0)=\ell_{k}=0$ holds in the standard model.

Lemma 3.5.6. For all $k<m$, provably in T,
(i) either $\ell_{k}=\ell_{k+1}$ or $\ell_{k} R_{k+1} \ell_{k+1}$;
(ii) if $k<n \leq m$ then either $\ell_{k}=\ell_{n}$ or $\ell_{k} R_{j} \ell_{n}$ for some $j \in(k, n]$.

Proof. Item (i) is clear from our previous considerations. Item (ii) is proved by an external induction on n from (i).

Now we define a realization f_{π} as follows:

$$
f_{\pi}: p \longmapsto \bigvee_{x \Vdash p} S_{x} .
$$

In the following, we assume that we are given a natural arithmetization of the forcing relation for the model \mathfrak{K}_{0} by bounded formulas.

Lemma 3.5.7. For any variable p of sort $k \leq m$, provably in T,

$$
f_{\pi}(p) \Longleftrightarrow \forall w \in W_{0} \backslash \llbracket p \rrbracket: \forall x \neg H_{k}(x, \bar{w}) .
$$

Proof. For the direction from left to right, we reason in T as follows. Suppose $f_{\pi}(p)$ and, towards a contradiction, suppose that $\exists x h_{k}(x)=\bar{w}$ for some $w \in W_{0}$ such that $w \nVdash p$. By item (iv) of Lemma 3.5.4, we know that, provably in T,

$$
\exists x h_{k}(x)=\bar{u} \Longrightarrow S_{u} \vee \bigvee_{z \in R_{k}^{*}(u)} S_{z}
$$

for any $z \in W_{0}$. In particular, we infer that

$$
S_{w} \vee \bigvee_{u \in R_{k}^{*}(w)} S_{u}
$$

Since \mathfrak{K}_{0} is strongly persistent and $w \nVdash p$, we know that $u \nVdash p$ for all $u \in R_{k}^{*}(w)$. This contradicts $f_{\pi}(p)$ by item (i) of Lemma 3.5.5.

For the other direction, we reason in T as follows. Suppose the right-hand side of the equivalence. We certainly know that $\neg S_{u}$ for all $u \in W_{0}$ such that $u \nVdash p$. Now if $\ell_{k}=\ell_{m}$, then, by item (i) of Lemma 3.5.5, S_{x} for some $x \in W_{0}$ such that $x \Vdash p$ and we are thus finished. So suppose that $\ell_{k} \neq \ell_{m}$. We know that $\ell_{k} \in \llbracket p \rrbracket$, since $\forall x h_{k}(x) \neq \bar{w}$ for all $w \in \llbracket \neg p \rrbracket$. Assume now that $\ell_{m} \in \llbracket \neg p \rrbracket$. By Lemma 3.5.6, there must be a $j \in(k, m]$ such that $\ell_{k} R_{j} \ell_{m}$. By strong persistence, for any $x, y \in W_{0}$ such that $x R_{j} y$, it holds that

$$
y \nVdash p \Longrightarrow x \nVdash p .
$$

Thus, $\ell_{m} \in \llbracket \neg p \rrbracket$ is impossible and therefore $\ell_{m} \in \llbracket p \rrbracket$ by item (i) of Lemma 3.5.5.
Lemma 3.5.8. For every variable p^{k}, where $k<\omega, f_{\pi}\left(p^{k}\right)$ is $\Pi_{\left|\pi_{k}\right|+1}$ in T.
Proof. Notice that $H_{k}(x, y)$ is $\Delta_{\left|\pi_{k}\right|+1}$ in T, since Prf_{k} is $\Pi_{\left|\pi_{k}\right|}$ in T and, moreover, $T \vdash \forall x \exists y!H_{k}(x, y)$. Now if $k>m$ then the sentence $f_{\pi}\left(p^{k}\right)$ is a disjunction of sentences which are $\Sigma_{\left|\pi_{k}\right|+2}$ in T. Since $T \vdash \exists!w \in W_{0}: \ell_{m}=\bar{w}$ (item (i) of Lemma 3.5.5), we know that, provably in T,

$$
f_{\pi}\left(p^{k}\right) \Longleftrightarrow \bigvee_{x \Vdash p} S_{x} \Longleftrightarrow \bigwedge_{x \nVdash p} \neg S_{x},
$$

i.e., $f_{\pi}\left(p^{k}\right)$ is $\Pi_{\left|\pi_{k}\right|+2}$ in T as required, since it is provably equivalent to a conjunction of sentences which are $\Pi_{\left|\pi_{k}\right|+2}$ in T.

If $k \leq m$, then by Lemma 3.5.7 we know that, provably in T,

$$
f_{\pi}(p) \Longleftrightarrow \forall w \in W_{0} \backslash \llbracket p \rrbracket: \forall x \neg H_{k}(x, \bar{w})
$$

which is visibly $\Pi_{\left|\pi_{k}\right|+1}$ in T.
Therefore, f_{π} defines an arithmetical realization in the sense of Definition 3.3.2.
Lemma 3.5.9. For each subformula χ of φ and each $x \neq 0$,
(i) if $\mathfrak{K}_{0}, x \Vdash \chi$ then $T \vdash S_{x} \rightarrow f_{\pi}(\chi)$;
(ii) if $\mathfrak{K}_{0}, x \nVdash \chi$ then $T \vdash S_{x} \rightarrow \neg f_{\pi}(\chi)$.

Proof. We prove both statements simultaneously by induction on χ. If χ is a propositional variable, \top, or \perp, the claims follow by the definition of f_{π} and item (i) of Lemma 3.5.5.

Suppose that $\chi=\tau_{1} \wedge \tau_{2}$, then $\mathfrak{K}_{0}, x \Vdash \tau_{1} \wedge \tau_{2}$ implies that $\mathfrak{K}_{0}, x \Vdash \tau_{i}$ for $i=1,2$, whence by inductive hypothesis we infer $T \vdash S_{x} \rightarrow f_{\pi}\left(\tau_{1}\right)$ and $T \vdash S_{x} \rightarrow f_{\pi}\left(\tau_{2}\right)$ and thus $T \vdash S_{x} \rightarrow f_{\pi}\left(\tau_{1} \wedge \tau_{2}\right)$ follows. If $\mathfrak{K}_{0}, x \nVdash \tau_{1} \wedge \tau_{2}$, then either $\mathfrak{K}_{0}, x \nVdash \tau_{1}$ or $\mathfrak{K}_{0}, x \nVdash \tau_{2}$. By inductive hypothesis, we either have $T \vdash S_{x} \rightarrow \neg f_{\pi}\left(\tau_{1}\right)$ or $T \vdash S_{x} \rightarrow \neg f_{\pi}\left(\tau_{2}\right)$. Therefore, $T \vdash S_{x} \rightarrow \neg f_{\pi}\left(\tau_{1}\right) \vee \neg f_{\pi}\left(\tau_{2}\right)$ and so $T \vdash S_{x} \rightarrow \neg f_{\pi}\left(\tau_{1} \wedge \tau_{2}\right)$. The other propositional connectives are treated similarly.

Suppose $\chi=\langle k\rangle \tau$ and assume $\mathfrak{K}_{0}, x \Vdash\langle k\rangle \tau$. Then there is a $y \in W_{0} \backslash\{0\}$ such that $x R_{k} y$ and $\mathfrak{K}_{0}, y \Vdash \tau$. By inductive hypothesis, we have $T \vdash S_{y} \rightarrow f_{\pi}(\tau)$, whence

$$
T \vdash\langle k\rangle_{\pi} S_{y} \rightarrow\langle k\rangle_{\pi} f_{\pi}(\tau) .
$$

By item (ii) of Lemma 3.5.5, we obtain that $T \vdash S_{x} \rightarrow\langle k\rangle_{\pi} S_{y}$ and so $T \vdash S_{x} \rightarrow\langle k\rangle_{\pi} f_{\pi}(\tau)$ as desired.

Suppose now that $\mathfrak{K}_{0}, x \nVdash\langle k\rangle \tau$. We prove that $\mathfrak{K}_{0}, y \nVdash \tau$ for all $y \in R_{k}^{\circ}(x)$. If $y \in R_{k}^{\circ}(x)$, then for some z we have $x \in R_{k+1}^{*}(z) \cup\{z\}$ and $y \in R_{k}^{*}(z)$. Clearly, for all $w \in R_{k}(x)$, we have $\mathfrak{K}_{0}, w \nVdash \tau$. Notice that $R_{k}(x)=R_{k}(z)$ and, therefore, $\mathfrak{K}_{0}, z \nVdash\langle k\rangle \tau$. Furthermore, $\mathfrak{K}_{0}, z \Vdash\langle j\rangle \tau \rightarrow\langle k\rangle \tau$ for all j such that $k<j \leq m$. Hence, $\mathfrak{K}_{0}, z \nVdash\langle j\rangle \tau$ for every such j. It follows that $\mathfrak{K}_{0}, y \nVdash \tau$ as desired. By inductive hypothesis, we know that $T \vdash S_{y} \rightarrow \neg f_{\pi}(\tau)$ for all $y \in R_{k}^{\circ}(x)$ and thus,

$$
T \vdash \ell_{m} \in R_{k}^{\circ}(x) \rightarrow \neg f_{\pi}(\tau)
$$

whence,

$$
T \vdash[k]_{\pi}\left(\ell_{m} \in R_{k}^{\circ}(x)\right) \rightarrow[k]_{\pi} \neg f_{\pi}(\tau),
$$

which, using item (iii) of Lemma 3.5.5, implies

$$
T \vdash S_{x} \rightarrow[k]_{\pi} \neg f_{\pi}(\tau) .
$$

That is, $T \vdash S_{x} \rightarrow \neg\langle k\rangle_{\pi} f_{\pi}(\tau)$.
In particular, $T \vdash S_{r} \rightarrow \neg f_{\pi}(\varphi)$. Furthermore, $T \vdash S_{0} \rightarrow \neg[0]_{\pi} \neg S_{r}$. Now if $T \vdash f_{\pi}(\varphi)$ then $T \vdash \neg S_{r}$, whence $T \vdash[0]_{\pi} \neg S_{r}$ and so $T \vdash \neg S_{0}$, whence by the soundness of T, we get $\mathbb{N} \not \models S_{0}$ which contradicts item (iv) of Lemma 3.5.5. Therefore, $T \nvdash f_{\pi}(\varphi)$.

As in the work of Beklemishev [6], one can obtain an arithmetical completeness theorem for a many-sorted truth provability logic. More precisely, let GLPS* denote the logic which consists of the set of theorems of GLP* extended by the schema $\varphi \rightarrow\langle n\rangle \varphi(n \geq 0)$ and with modus ponens as its sole rule of inference. Let $\left\langle n_{1}\right\rangle \varphi_{1}, \ldots,\left\langle n_{s}\right\rangle \varphi_{s}$ be an enumeration of all subformulas from φ of the form $\langle k\rangle \psi$. Let

$$
H(\varphi):=\bigwedge_{i=1}^{s}\left(\varphi_{i} \rightarrow\left\langle n_{i}\right\rangle \varphi_{i}\right)
$$

Theorem 3.5.10. Let T be a sound axiomatizable extension of PA and π a strong sequence of provability predicates over T of which every provability predicate is sound. Then, for all many-sorted formulas φ, the following statements are equivalent:
(i) GLPS* $^{*} \vdash \varphi$;
(ii) $\mathrm{GLP}^{*} \vdash H(\varphi) \rightarrow \varphi$;
(iii) $\mathbb{N} \models f_{\pi}(\varphi)$, for all realizations f_{π}.

Proof. The direction from (ii) to (i) is clear since GLPS* $\vdash H(\varphi)$. The direction from (i) to (iii) is easy to see since T is sound. We prove that (iii) implies (ii) again by assuming the contrapositive, i.e., suppose GLP ${ }^{*} \nvdash H(\varphi) \rightarrow \varphi$. Then $J^{*} \nvdash M^{+}(H(\varphi) \rightarrow \varphi) \rightarrow(H(\varphi) \rightarrow$ φ) and so there is a J^{*}-model $\mathfrak{K}=\left\langle W,\left\{R_{n}\right\}_{n<\omega}, \llbracket \cdot \rrbracket\right\rangle$ which is strongly persistent and $\mathfrak{K}, r \Vdash M^{+}(\varphi) \wedge H(\varphi)$ but $\mathfrak{K}, r \nVdash \varphi$ for a root r. As before, identify $W=\{1,2, \ldots, N\}$ for some $N \geq 1$ and let $r=1$. Construct a model \mathfrak{K}_{0} which is defined as in the proof of Theorem 3.5.2.

All the lemmas in the proof of Theorem 3.5.2 hold without change except that we need to supplement Lemma 3.5.9 by the following statement. The proof is as that of Beklemishev [6].

Lemma 3.5.11. For each subformula χ of φ we have
(i) if $\mathfrak{K}_{0}, 0 \Vdash \chi$ then $T \vdash S_{x} \rightarrow f_{\pi}(\chi)$;
(ii) if $\mathfrak{K}_{0}, 0 \nVdash \chi$ then $T \vdash S_{x} \rightarrow \neg f_{\pi}(\chi)$;

Proof. By induction on χ. We prove both statements simultaneously. The only difference to the proof of Lemma 3.5.9 is the proof of item (ii) in the case where $\chi=\langle k\rangle \tau$.

Suppose $\mathfrak{K}_{0}, 0 \nVdash\langle k\rangle \tau$. We know that $\mathfrak{K}_{0}, 0 \nVdash \varphi$ since $\mathfrak{K}_{0}, 0 \Vdash H(\varphi)$. Furthermore, since $\mathfrak{K}_{0}, 0 \Vdash M(\varphi)$, it holds that $\mathfrak{K}_{0}, 0 \nVdash\langle j\rangle \tau$ for all $j \geq k$. Therefore, $\mathfrak{K}_{0}, x \nVdash \tau$ for all $x \in R_{k}^{*}(0) \cup\{0\}$. By induction hypothesis and Lemma 3.5.9, we have

$$
T \vdash \ell_{m} \in R_{k}^{*}(0) \cup\{0\} \rightarrow \neg f_{\pi}(\tau)
$$

whence it follows that

$$
T \vdash[k]_{\pi}\left(\ell_{m} \in R_{k}^{*}(0) \cup\{0\}\right) \rightarrow[k]_{\pi} \neg f_{\pi}(\tau)
$$

Furthermore,

$$
\begin{aligned}
T \vdash S_{0} & \rightarrow \exists n h_{k}(n)=0 \\
& \rightarrow[k]_{\pi}\left(\exists n h_{k}(n)=0\right) .
\end{aligned}
$$

Thus, $T \vdash S_{0} \rightarrow[k]_{\pi}\left(\ell_{m} \in R_{k}(0) \cup\{0\}\right)$ by Lemma 3.5.4 and so $T \vdash S_{0} \rightarrow[k]_{\pi} \neg f_{\pi}(\tau)$, i.e., $T \vdash S_{0} \rightarrow \neg\langle k\rangle_{\pi} f_{\pi}(\tau)$ as required.

Now $\mathfrak{K}_{0}, 0 \nVdash \varphi$ yields $T \vdash S_{0} \rightarrow \neg f_{\pi}(\varphi)$ which by $\mathbb{N} \models S_{0}$ and soundness gives us $\mathbb{N} \not \vDash f_{\pi}(\varphi)$ as desired.

Corollary 3.5.12. GLPS* is decidable.
Notice that Theorem 3.5.2 yields a reduction from GLP* to J*. However, the formula $M^{+}(\varphi)$ is, in a sense, inconvenient since its size does not depend on the size of φ and, additionally, $M^{+}(\varphi)$ is not necessarily in the language of φ. We borrow a result from Beklemishev et al. [8] to improve upon that. Let $\left\langle m_{1}\right\rangle \varphi_{1},\left\langle m_{2}\right\rangle \varphi_{2}, \ldots,\left\langle m_{s}\right\rangle \varphi_{s}$ be an enumeration of all subformuals of φ of the form $\langle k\rangle \psi$ such that $i<j$ implies $m_{i} \leq m_{j}$. Define

$$
N(\varphi):=\bigwedge_{\substack{1 \leq i \leq s \\ i<j \leq s}}\left(\left\langle m_{j}\right\rangle \varphi_{j} \rightarrow\left\langle m_{i}\right\rangle \varphi_{i}\right)
$$

Furthermore, let

$$
N^{+}(\varphi):=N(\varphi) \wedge \bigwedge_{1 \leq i \leq s}\left[m_{i}\right] \varphi
$$

Lemma 3.5.13. Let $\varphi \in L_{\Lambda}^{*}$, where $\Lambda \subseteq \omega$. Then,

$$
\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi \Longleftrightarrow \mathrm{~J}_{\Lambda}^{*} \vdash N^{+}(\varphi) \rightarrow \varphi
$$

Proof. The direction from right to left is immediate, since $N^{+}(\varphi)$ is in L_{Λ}^{*} and GLP ${ }_{\Lambda}^{*} \vdash$ $N^{+}(\varphi)$. For the other direction, suppose that $J_{\Lambda}^{*} \nvdash N^{+}(\varphi) \rightarrow \varphi$. Then there is a finite and strongly persistent J_{Λ}^{*}-model $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$ with root r such that $\mathfrak{K}, r \Vdash N^{+}(\varphi)$ and $\mathfrak{K}, r \nVdash \varphi$. Expand \mathfrak{K} to a J^{*}-model, call it \mathfrak{K}^{\prime}, by setting $R_{\alpha}=\varnothing$ for all $\alpha \in \omega \backslash \Lambda$. Notice that \mathfrak{K}^{\prime} forces the same formulas from L_{Λ}^{*} at every of its point as \mathfrak{K}. In particular, $\mathfrak{K}^{\prime}, r \nVdash \varphi$. We show that $\mathfrak{K}^{\prime}, r \Vdash M^{+}(\varphi)$. Let $i \in\{1, \ldots, s\}$ and consider any j such that $m_{i}<j \leq n$. Now $\mathfrak{K}^{\prime}, r \Vdash\langle j\rangle \varphi_{i}$ only if $j=m_{k}$ for some $k=1, \ldots, s$. In this case, $\mathfrak{K}^{\prime}, r \Vdash\left\langle m_{i}\right\rangle \varphi$ since $\mathfrak{K}^{\prime}, r \Vdash N^{+}(\varphi)$. Otherwise, if $j \neq m_{k}$ for all $k=1, \ldots, s$, then trivially $\mathfrak{K}^{\prime}, r \Vdash\langle j\rangle \varphi_{i} \rightarrow\left\langle m_{i}\right\rangle \varphi_{i}$, since $\mathfrak{K}^{\prime}, r \nVdash\langle j\rangle \varphi_{i}$ due to the fact that $R_{j}=\varnothing$. Let $n:=\max _{i \leq s} m_{i}$ and consider any $i \leq n$. Similarly as before, $\mathfrak{K}^{\prime}, r \Vdash[i] M(\varphi)$ if $i=m_{k}$ for some $k=1, \ldots, s$. If not then trivially $\mathfrak{K}^{\prime}, r \Vdash[i] M(\varphi)$. Hence, $\mathfrak{K}^{\prime}, r \Vdash M^{+}(\varphi)$ and so $J^{*} \nvdash M^{+}(\varphi) \rightarrow \varphi$, whence GLP* $\nvdash \varphi$ and thus $\mathrm{GLP}_{\Lambda}^{*} \nvdash \varphi$ follows.

Let φ be a formula from L^{*} and let p_{1}, \ldots, p_{k} exhaust all variables from φ and let $\alpha_{1}, \ldots, \alpha_{k}$ be their respective sorts. Furthermore, let $\Theta \subseteq \omega$ be a set of modalities. Define

$$
R_{\Theta}(\varphi):=\bigwedge_{i=1}^{k} \bigwedge\left(\left\{\langle j\rangle p_{i} \rightarrow p_{i} \mid j \in \Theta, j \geq \alpha_{i}\right\} \cup\left\{\langle j\rangle \neg p_{i} \rightarrow \neg p_{i} \mid j \in \Theta, j>\alpha_{i}\right\}\right)
$$

and

$$
R_{\Theta}^{+}(\varphi):=R_{\Theta}(\varphi) \wedge \bigwedge_{j \in \Theta}[j] R_{\Theta}(\varphi)
$$

Lemma 3.5.14. Let $\varphi \in L_{\omega}^{*}$ and let Θ be the set of all modalities occurring in φ. Then,

$$
\mathrm{GLP}^{*} \vdash \varphi \Longleftrightarrow \mathrm{GLP} \vdash R_{\Theta}^{+}(\varphi) \rightarrow \varphi
$$

Proof. The direction from right to left is immediate since $\mathrm{GLP}^{*} \vdash R_{\Theta}^{+}(\varphi)$ and GLP^{*} extends GLP. For the other direction, suppose $\operatorname{GLP} \nvdash R_{\Theta}^{+}(\varphi) \rightarrow \varphi$. It follows from results of Beklemishev [6] together with a result by Beklemishev et al. [8] that this implies

$$
\begin{equation*}
\mathrm{J} \nvdash N^{+}\left(R_{\Theta}^{+}(\varphi) \rightarrow \varphi\right) \rightarrow\left(R_{\Theta}^{+}(\varphi) \rightarrow \varphi\right) . \tag{3.2}
\end{equation*}
$$

Beklemishev [5] showed that J is complete with respect to the class of all J^{*}-models (there called J-models). So let $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha<\omega}, \llbracket \cdot \rrbracket\right\rangle$ be a J^{*}-model with root r such that

$$
\mathfrak{K}, r \nVdash N^{+}\left(R_{\Theta}^{+}(\varphi) \rightarrow \varphi\right) \rightarrow\left(R_{\Theta}^{+}(\varphi) \rightarrow \varphi\right) .
$$

Therefore, $\mathfrak{K}, r \Vdash N^{+}\left(R_{\Theta}^{+}(\varphi) \rightarrow \varphi\right)$ and $\mathfrak{K}, r \Vdash R_{\Theta}^{+}(\varphi)$. Now it follows that $\mathfrak{K}, r \Vdash N^{+}(\varphi)$. Since $\mathfrak{K}, r \Vdash R_{\Theta}^{+}(\varphi)$ and \mathfrak{K} is rooted, it is easy to see that \mathfrak{K} is strongly persistent by the construction of $R_{\Theta}^{+}(\varphi)$. (Notice that \mathfrak{K} can be chosen such that $R_{\alpha}=\varnothing$ for all $\alpha \notin \Theta$, since the formula depicted in (3.2) is in the language of φ.) Therefore, $J^{*} \nvdash N^{+}(\varphi) \rightarrow \varphi$ and so GLP* $\vdash \varphi$ follows.

We say that a logic \mathcal{L} has the Craig interpolation property if, whenever $\mathcal{L} \vdash \varphi \rightarrow \psi$, then there is an η containing only variables which are present in φ and ψ such that both $\mathcal{L} \vdash \varphi \rightarrow \eta$ and $\mathcal{L} \vdash \eta \rightarrow \psi$.

Corollary 3.5.15. GLP* has the Craig interpolation property.
Proof. Suppose GLP* $\vdash \varphi \rightarrow \psi$. Let Θ be the set of all modalities from $\varphi \rightarrow \psi$. By Lemma 3.5.14, we have

$$
\operatorname{GLP} \vdash R_{\Theta}^{+}(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \psi) .
$$

Note that $R_{\Theta}^{+}(\varphi \rightarrow \psi)$ is equivalent in GLP to $R_{\Theta}^{+}(\varphi) \wedge R_{\Theta}^{+}(\psi)$. Hence,

$$
\mathrm{GLP} \vdash R_{\Theta}^{+}(\varphi) \wedge R_{\Theta}^{+}(\psi) \rightarrow(\varphi \rightarrow \psi),
$$

whence by propositional logic

$$
\operatorname{GLP} \vdash R_{\Theta}^{+}(\varphi) \wedge \varphi \rightarrow\left(R_{\Theta}^{+}(\psi) \rightarrow \psi\right) .
$$

Ignatiev [24] showed that GLP has the Craig interpolation property. Hence, there is an η containing only variables which occur in $R_{\Theta}^{+}(\varphi) \wedge \varphi$ and $R_{\Theta}^{+}(\psi) \rightarrow \psi$ such that

$$
\mathrm{GLP} \vdash R_{\Theta}^{+}(\varphi) \wedge \varphi \rightarrow \eta \quad \text { and } \quad \mathrm{GLP} \vdash \eta \rightarrow\left(R_{\Theta}^{+}(\psi) \rightarrow \psi\right) .
$$

But GLP* $\vdash R_{\Theta}^{+}(\varphi)$ and GLP* $^{*} \vdash R_{\Theta}^{+}(\psi)$. Therefore, GLP* $^{*} \vdash \varphi \rightarrow \eta$ and GLP* $\vdash \eta \rightarrow \psi$. Note that η only contains variables which occur in φ and ψ, since $R_{\Theta}^{+}(\tau)$ contains exactly the variables from τ, for any formula τ.

Corollary 3.5.16. Deciding whether GLP* $\vdash \varphi$ is PSPACE-complete.
Proof. Shapirovsky [34] showed that deciding whether GLP $\vdash \varphi$ is complete for PSPace. Thus, the claim follows by Lemma 3.5.14 and the fact that the size of $R_{\Theta}^{+}(\varphi)$ (where Θ is the set of modalities from φ) is polynomially bounded by the size of φ.

CHAPTER

Many-Sorted Reflection Calculi

In this chapter we continue to study positive calculi which allow for a richer arithmetical interpretation than the full language of GLP*. After defining our basic formalism in Section 4.1 we continue to define our arithmetical interpretation in Section 4.2. Section 4.3 treats Kripke semantics and Section 4.4 establishes the relationship between our manysorted calculi and the positive fragment ${ }^{1}$ of GLP*. The arithmetical completeness of our positive calculus is proved in Section 4.5.

4.1 Motivation and Basics

Positive fragments of modal logics were first studied by Dunn [15]. ${ }^{2}$ Dashkov [13] brought the study of positive modal logics into the realm of provability logics which is motivated by the fact that an ordinal analysis proposed by Beklemishev [2] makes only use of the positive fragment of GLP. In particular, Dashkov showed that the positive fragment of GLP can be axiomatized by a purely positive calculus and that the question of theoremhood in this calculus can be decided in polynomial time. As pointed out by Dashkov, the restriction of GLP to the positive fragment allows one to interpret propositional variables as theories instead of single sentences. Furthermore, these theories need neither be finitely axiomatizable nor of bounded arithmetical complexity. This permits the introduction of new modal operators which axiomatize stronger properties than n-consistency for every $n<\omega$. More precisely, in the positive setting it is well-defined to define an operator $\langle\omega\rangle$ on which maps any theory T to the full uniform reflection scheme for T.

Recently, Beklemishev [7] investigated such positive calculi (which he calls reflection calculi) with an additional modality $\langle\omega\rangle$. He showed that the calculi he introduced are decidable in polynomial time and that they are arithmetically complete with respect

[^7]to the interpretation of $\langle\omega\rangle$ as the full uniform reflection schema in arithmetic. Propositional variables are there interpreted as primitive recursive enumerations of theories extending PA. We will continue this line of research and define a family of positive manysorted reflection calculi in the sequel. In our elaboration, we mainly follow the papers of Beklemishev [7] and Dashkov [13].

Definition 4.1.1. Let $\Lambda \subseteq \omega+1$ be a signature. (Positive) formulas (over Λ) and their associated sorts are defined inductively as follows:
(i) \top is a positive formula of sort 0 .
(ii) Every propositional variable p^{α} is a positive formula of sort α.
(iii) If A and B are positive formulas of sorts α and β then $(A \wedge B)$ is a positive formula of sort $\max \{\alpha, \beta\}$.
(iv) If A is a positive formula (of any sort) and $\alpha \in \Lambda$, then $\langle\alpha\rangle A$ is a positive formula of sort α.

For any positive formula A, we denote its sort by $|A|$. When considering positive formulas, we write αA instead of $\langle\alpha\rangle A$.

Definition 4.1.2. Let Λ be a signature. A sequent (over Λ) is an expression of the form $A \Rightarrow B$, where A and B are positive formulas over Λ.

Given any $\Lambda \subseteq \omega+1$, we denote by L_{Λ}^{+}the set of all positive formulas over Λ. Furthermore, we denote by L^{+}the set of all positive formulas over $\omega+1$. The notion of (general) substitution is defined as in the case of unrestricted modal languages (cf. Definition 3.2.2). The notation we agreed upon directly carries over into the positive setting. Note in particular that substitution is defined as to respect the corresponding sorts. For a substitution τ and a sequent $\gamma=A \Rightarrow B$, we define $\gamma^{\tau}:=A^{\tau} \Rightarrow B^{\tau}$.

The following axiom schemes and rules of inference are called propositional axioms and propositional rules, respectively.
(i) $A \Rightarrow A ; \quad A \Rightarrow \mathrm{~T}$;
(ii) $A \wedge B \Rightarrow A ; \quad A \wedge B \Rightarrow B$;
(iii) if $A \Rightarrow B$ and $A \Rightarrow C$ then infer $A \Rightarrow B \wedge C$;
(iv) if $A \Rightarrow B$ and $B \Rightarrow C$ then infer $A \Rightarrow C$.

In this chapter, a (positive) logic over Λ will be a set of sequents over Λ which is closed under substitutions, is closed under all propositional rules, and under the rule
(v) if $A \Rightarrow B$ then infer $\alpha A \Rightarrow \alpha B$, for any $\alpha \in \Lambda$.

We again use the standard notation that the subscript " Λ " in \mathcal{L}_{Λ} indicates that \mathcal{L}_{Λ} is a positive logic over Λ.

Definition 4.1.3. The logic $R C_{\Lambda}^{*}$ is given by the postulates (i) to (v) as well as the following axiom schemes and rules of inference (modalities range over Λ):
(vi) $\alpha A \Rightarrow A$, where $|A| \leq \alpha$ (α-persistence);
(vii) $\alpha A \Rightarrow \beta A$, for $\beta<\alpha$ (monotonicity);
(viii) $\alpha A \wedge B \Rightarrow \alpha(A \wedge B)$, where $|B|<\alpha$.

The logic $R J_{\Lambda}^{*}$ is obtained from $R C_{\Lambda}^{*}$ by dropping monotonicity but adding the axiom scheme
(ix) $\beta \alpha A \Rightarrow \beta A$, for $\beta \leq \alpha$.

We set $\mathrm{RC}^{*}:=\mathrm{RC}_{\omega+1}^{*}$ and $\mathrm{RJ}^{*}:=\mathrm{RJ}_{\omega+1}^{*}$.
Let \mathcal{L}_{Λ} be any logic. As usual, given a sequent γ, a proof of γ in \mathcal{L}_{Λ} is a finite sequence of sequents $\gamma_{1}, \ldots, \gamma_{n}$ such that $\gamma_{n}=\gamma$ and for $i=1, \ldots, n, \gamma_{i}$ is either an axiom or follows from previous elements of the sequence by an application of a rule. In this case, γ is called provable $\left(\right.$ in $\left.\mathcal{L}_{\Lambda}\right)$, which we denote by $\mathcal{L}_{\Lambda} \vdash \gamma$. When exhibiting proofs in a logic \mathcal{L}_{Λ}, we often write $\mathcal{L}_{\Lambda} \vdash A_{1} \Rightarrow A_{2} \Rightarrow \cdots \Rightarrow A_{n}$ to express that the sequence $A_{1} \Rightarrow A_{2}, A_{2} \Rightarrow A_{3}, \ldots, A_{n-1} \Rightarrow A_{n}$ is (part of) a proof in \mathcal{L}_{Λ}. In this notation, we usually refer to some previously derived results which will then be clear from context. Given any logic \mathcal{L}_{Λ} and a set of formulas $\Gamma \subseteq L_{\Lambda}^{+}$, we write $\mathcal{L}_{\Lambda} \vdash \Gamma \Rightarrow B$ if there exist $A_{1}, \ldots, A_{n} \in \Gamma$ such that $\mathcal{L}_{\Lambda} \vdash A_{1} \wedge \cdots \wedge A_{n} \Rightarrow B .{ }^{3}$ For logics as defined above, we have a statement related to Proposition 3.2.4.

Proposition 4.1.4. Suppose $\mathcal{L}_{\Lambda} \vdash A \Rightarrow B$ and $|A|,|B| \leq \alpha$. Then, $\mathcal{L}_{\Lambda} \vdash C\left(p^{\alpha} / A\right) \Rightarrow$ $C\left(p^{\alpha} / B\right)$ for any $C \in L_{\Lambda}^{+}$.

Proof. As in the case of Proposition 3.2.4, by induction on C.
Note that if $\beta<\alpha$, then $\mathrm{RJ}_{\Lambda}^{*} \vdash \alpha A \wedge \beta B \Rightarrow \alpha(A \wedge \beta B)$, for any formula B. Furthermore, note that $\mathrm{RC}_{\Lambda}^{*} \vdash \alpha \beta A \Rightarrow \beta A$, for $\alpha \leq \beta$. Furthermore, if $\alpha \geq \beta$ then $\mathrm{RC}_{\Lambda}^{*} \vdash \alpha A \Rightarrow \beta A$ by monotonicity (and $A \Rightarrow A$), whence $\mathrm{RC}_{\Lambda}^{*} \vdash \beta \alpha A \Rightarrow \beta \beta A \Rightarrow \beta A$. We thus immediately obtain:

Lemma 4.1.5. $\mathrm{RC}_{\Lambda}^{*}$ extends $\mathrm{RJ}_{\Lambda}^{*}$.
Example 4.1.6. Let A and B be a formulas such that $|B|<\alpha$. We know that $\mathrm{RC}^{*} \vdash$ $\alpha A \wedge B \Rightarrow \alpha(A \wedge B)$. But also $\mathrm{RC}^{*} \vdash \alpha B \Rightarrow B$. Hence, $\mathrm{RC}^{*} \vdash \alpha A \wedge \alpha B \Rightarrow \alpha(A \wedge B)$. Now if $|A|<\alpha$ and B is an arbitrary formula then

$$
\mathrm{RC}^{*} \vdash \alpha B \wedge \alpha A \Rightarrow \alpha A \wedge \alpha B \Rightarrow \alpha(A \wedge B)
$$

Hence, whenever $|A|<\alpha$ or $|B|<\alpha$ then $\mathrm{RC}^{*} \vdash \alpha A \wedge \alpha B \Rightarrow \alpha(A \wedge B)$.

[^8]
4.2 ARITHMETICAL INTERPRETATION

As in Beklemishev [7], propositional variables will be realized via primitive recursive numerations of theories extending PA. Recall that $\mathrm{Ax}_{\mathrm{PA}}(\alpha)$ denotes a bounded formula which arithmetically defines (the set of Gödel numbers of) the axioms of PA. Furthermore, recall that we assume that we let PA contain function symbols and predicate symbols for all primitive recursive functions and predicates, respectively.

Definition 4.2.1. A (primitive recursive) numeration is a bounded formula which arithmetically defines the Gödel numbers of the axioms of an extension of PA. We say that σ numerates S. A numeration σ numerates a Π_{n+1}-axiomatized extension of PA if

$$
\operatorname{PA} \vdash \forall \alpha\left(\sigma(\alpha) \rightarrow \operatorname{AxPA}(\alpha) \vee \alpha \in \Pi_{n+1}\right)
$$

where the expression " $\alpha \in \Pi_{n+1}$ " denotes a natural bounded formula (possibly with an additional parameter n) which expresses that α is the Gödel number of a Π_{n+1}-sentence (see Hájek and Pudlák [21]).

The notion of a numeration strongly coincides with the concepts from Chapter 2 where for a theory T, we considered a formula $\mathrm{Ax}_{T}(\alpha)$ which arithmetically defines the axioms of T. The formalized notion of theoremhood in T was then naturally formulated by a predicate $\square_{T}(\alpha)$. Analogously, for a numeration σ we denote by $\square_{\sigma}(\alpha)$ the standard formula (the provability predicate of σ) which arithmetically defines the theorems of the theory numerated by σ. For numerations σ and τ, we write $\sigma \Rightarrow_{\mathrm{PA}} \tau$ if

$$
\mathrm{PA} \vdash \forall \alpha\left(\square_{\tau}(\alpha) \rightarrow \square_{\sigma}(\alpha)\right)
$$

and $\sigma \Rightarrow \tau$ if

$$
\mathbb{N} \models \forall \alpha\left(\square_{\tau}(\alpha) \rightarrow \square_{\sigma}(\alpha)\right),
$$

i.e., if the theory numerated by τ proves every theorem of the theory numerated by σ. We assume that every numeration provably in PA numerates an extension of PA, i.e., $\tau \Rightarrow$ PA $A x_{\text {PA }}$ for any τ, i.e., that every theory numerated by some numeration provably extends PA. As usual, we write $\square_{\sigma} \varphi$ instead of $\square_{\sigma}(\ulcorner\varphi\urcorner)$ if no confusion arises.

We denote by $\operatorname{Con}(\sigma)$ the sentence $\neg \square_{\sigma} \perp$. Furthermore, as we did in Section 2.5, we denote by $\operatorname{Con}_{n}(\sigma)$ the formula which expresses that the theory numerated by σ is n-consistent. (Recall that n-consistency is equivalent over PA to the uniform reflection principle for Π_{n+1}-formulas; see Section 2.5.) We stress that $\operatorname{Con}_{0}(\sigma)$ is provably equivalent in PA to $\operatorname{Con}(\sigma)$. Furthermore, $\operatorname{Con}_{n}(\sigma)$ can be formalized to be a formula depending on n. Hence, we often regard $\left\ulcorner\operatorname{Con}_{n}(\sigma)\right\urcorner$ as a definable term which depends on n. We use these facts without adhering to any special notation.

Given any arithmetical sentence φ, we denote by φ the numeration

$$
\operatorname{Ax}_{\mathrm{PA}}(\alpha) \vee \alpha=\ulcorner\varphi\urcorner,
$$

which numerates the theory $\mathrm{PA}+\varphi$. In this setting, for any numeration σ, Con ${ }_{n}(\sigma)$ numerates the theory $\mathrm{PA}+\operatorname{Con}_{n}(\sigma)$. Let σ numerate S. The scheme

$$
\operatorname{Con}_{\omega}(\sigma): \quad\left\{\operatorname{Con}_{n}(\sigma) \mid n \in \omega\right\}
$$

is equivalent over PA to the uniform reflection principle for S. Overloading notation, we denote by ${\underline{\mathrm{Con}_{\omega}}}_{\omega}(\sigma)$ a numeration which numerates the theory $\mathrm{PA}+\operatorname{Con}_{\omega}(\sigma)$.

Suppose that σ numerates a finite extension of PA of the form $\mathrm{PA}+\psi$ for a sentence ψ. Suppose $\underline{\psi} \Rightarrow_{\mathrm{PA}} \underline{\varphi}$. Then, since PA is sound, we obtain $\underline{\psi} \Rightarrow \underline{\varphi}$ and so PA $+\psi \vdash \varphi$. Conversely, $\overline{\text { if }} \mathrm{PA}+\bar{\psi} \vdash \varphi$ then $\mathrm{PA} \vdash \square \mathrm{PA}(\psi \rightarrow \varphi)$, whence by the formalized deduction theorem PA $\vdash \square_{\psi} \varphi$. Therefore, by an argument formalizable in PA, we also have $\underline{\psi} \Rightarrow_{\text {PA }} \underline{\varphi}$ and so $\underline{\psi} \Rightarrow \underline{\varphi}$. \bar{H} ence,

$$
\mathrm{PA}+\psi \vdash \varphi \Longleftrightarrow \underline{\psi} \Rightarrow \mathrm{PA} \underline{\varphi} \Longleftrightarrow \underline{\psi} \Rightarrow \underline{\varphi}
$$

In particular, if σ numerates a finite extension of PA of the form $\mathrm{PA}+\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ then in order to establish $\sigma \Rightarrow_{\text {PA }} \underline{\psi}$, it is sufficient to establish $\mathrm{PA}+\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \vdash \psi$.

Definition 4.2.2. An arithmetical realization is a function .* from positive formulas to numerations such that the following conditions are satisfied:
(i) $\mathrm{T}^{*}=\mathrm{A} \mathrm{xPA}$;
(ii) for every propositional variable p of sort α, p^{*} is a numeration which numerates (1) a $\Pi_{\alpha+1}$-axiomatized extension of PA in case $\alpha<\omega$ and (2) an arbitrary extension of PA in case $\alpha=\omega$;
(iii) $(A \wedge B)^{*}=A^{*} \vee B^{*}$;
(iv) $(\alpha A)^{*}=\underline{\operatorname{Con}}_{\alpha}\left(A^{*}\right)$, for $\alpha \leq \omega$.

We say that A^{*} is the translation of A under .*.
Lemma 4.2.3. Let .* be an arithmetical realization and A a formula such that $|A|<\omega$. Then A^{*} numerates a $\Pi_{|A|+1}$-axiomatized extension of PA.
Proof. By an easy induction on A. The cases for propositional variables and \top are clear. For the induction step, notice that for $n<\omega, \operatorname{Con}_{n}(\sigma)$ provably belongs to Π_{n+1} for any numeration σ. Furthermore, provably in PA, if φ belongs to Π_{m}, then also to Π_{n} for $n>m$. Using these facts, the claim easily follows.

Recall that $\operatorname{True}_{\Pi_{n+1}}(x)$ denotes a truth-definition for Π_{n+1}-formulas. In particular, PA \vdash $\varphi \leftrightarrow \operatorname{True}_{\Pi_{n+1}}(\ulcorner\varphi\urcorner)$ for all Π_{n+1}-sentences φ. This fact can be formalized uniformly in n [7], i.e.,

$$
\begin{equation*}
\mathrm{PA} \vdash \forall n \forall \alpha \in \Pi_{n+1} \square \mathrm{PA}\left(\alpha \leftrightarrow \operatorname{True}_{\Pi_{n+1}}(\dot{\alpha})\right) \tag{4.1}
\end{equation*}
$$

Lemma 4.2.4. For $n \in \omega, \operatorname{Con}_{n}(\sigma)$ is provably equivalent in PA to

$$
\forall \alpha \in \Pi_{n+1}\left(\square_{\sigma}(\alpha) \rightarrow \operatorname{True}_{\Pi_{n+1}}(\alpha)\right)
$$

Proof. Let σ numerate S. We show that the formula presented above is equivalent to $\operatorname{RFN}_{\Pi_{n+1}}(S)$ over PA. Let $\varphi(x)$ be a Π_{n+1}-formula. Then,

$$
\begin{aligned}
\mathrm{PA}+\forall \alpha \in \Pi_{n+1}\left(\square_{\sigma}(\alpha) \rightarrow \operatorname{True}_{\Pi_{n+1}}(\alpha)\right) \vdash \square_{\sigma} \varphi(\dot{x}) & \rightarrow \operatorname{True}_{\Pi_{n+1}}(\ulcorner\varphi(\dot{x})\urcorner) \\
& \rightarrow \varphi(x) .
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
\mathrm{PA}+\operatorname{RFN}_{\Pi_{n+1}}(S) \vdash \alpha \in \Pi_{n+1} \wedge \square_{\sigma}(\alpha) & \rightarrow \square_{\sigma} \operatorname{True}_{\Pi_{n+1}}(\dot{\alpha}) \\
& \rightarrow \operatorname{True}_{\Pi_{n+1}}(\alpha),
\end{aligned}
$$

since $\operatorname{True}_{\Pi_{n+1}}(x)$ is a Π_{n+1}-formula. This proves the claim.
The following lemma generalizes Corollary 2.5.2.
Lemma 4.2.5. Let σ numerate S and φ be a Π_{n+1}-sentence. If $S \vdash \varphi$ then $\mathrm{PA}+$ $\mathrm{Con}_{n}(\sigma) \vdash \varphi$. Moreover, this statement is formalizable in PA uniformly in n, i.e.,

$$
\mathrm{PA} \vdash \forall n \forall \alpha \in \Pi_{n+1}\left(\square_{\sigma}(\alpha) \rightarrow \square_{{\underline{\operatorname{Con}_{n}}}_{n}(\sigma)}(\alpha)\right)
$$

Proof. The informal version is an easy consequence of Lemma 2.5.11. Indeed, PA + $\operatorname{Con}_{n}(\sigma) \vdash \square_{\sigma} \varphi \rightarrow \varphi$, whence by $\mathrm{PA} \vdash \square_{\sigma} \varphi$ we obtain $\mathrm{PA}+\operatorname{Con}_{n}(\sigma) \vdash \varphi$ as desired.

For the formalized version, reason in PA as follows. Let $\alpha \in \Pi_{n+1}$ and suppose $\square_{\sigma}(\alpha)$. We know $\square_{\mathrm{PA}}\left(\dot{\alpha} \in \Pi_{n+1} \wedge \square_{\sigma}(\dot{\alpha})\right)$. By the previous lemma, we know that

$$
\square_{{\underline{\operatorname{Con}_{n}}}_{n}(\sigma)} \forall \beta \in \Pi_{n+1}\left(\square_{\sigma}(\beta) \rightarrow \operatorname{True}_{\Pi_{n+1}}(\beta)\right) .
$$

In particular,

$$
\square_{{\underline{\mathrm{Con}_{n}}}^{(\sigma)}}\left(\dot{\alpha} \in \Pi_{n+1} \wedge \square_{\sigma}(\dot{\alpha}) \rightarrow \operatorname{True}_{\Pi_{n+1}}(\dot{\alpha})\right),
$$

whence $\square_{\underline{\text { con }}_{n}(\sigma)} \operatorname{True}_{\Pi_{n+1}}(\dot{\alpha})$ and thus $\square_{\underline{\text { con }}_{n}(\sigma)}(\alpha)$ follows by (4.1).
Corollary 4.2.6. Let σ be a numeration and $n<\omega$. Then $\underline{\operatorname{Con}}_{n}(\sigma) \Rightarrow_{\mathrm{PA}} \sigma$, whenever σ numerates a Π_{n+1}-axiomatized extension of PA.

Proof. We reason in PA as follows. Suppose $\square_{\sigma}(\varphi)$ and reason by induction on proof length of φ. The only interesting case is the case when $\varphi \in \Pi_{n+1}$. By the previous lemma, we obtain $\square_{\mathrm{Con}_{n}(\sigma)}(\varphi)$. Hence, $\underline{\mathrm{Con}}_{n}(\sigma) \Rightarrow_{\mathrm{PA}} \sigma$ as required.

Proof. Note that

$$
\begin{aligned}
\mathrm{PA} \vdash \square_{\sigma}(\alpha) & \rightarrow \exists n\left(\alpha \in \Pi_{n+1} \wedge \square_{\sigma}(\alpha)\right) \\
& \rightarrow \exists n \square_{{\underline{\operatorname{Con}_{n}}(\sigma)}(\alpha)} \\
& \rightarrow \square_{{\underline{\operatorname{con}_{\omega}}}_{\omega}(\sigma)}(\alpha) .
\end{aligned}
$$

Further notice that we used formalizations of the facts that every sentence is PA-provably equivalent to a Π_{n+1}-sentence for some n and that $\left\ulcorner\operatorname{Con}_{n}(\sigma)\right\urcorner$ can be constructed primitive recursively from the parameter n.

Lemma 4.2.8. Let φ be a Π_{m+1}-sentence and σ a numeration. For $m<n<\omega$ it holds that

$$
\mathrm{PA} \vdash \operatorname{Con}_{n}(\sigma) \wedge \varphi \rightarrow \operatorname{Con}_{n}(\sigma \vee \underline{\varphi}) .
$$

Proof. We reason in PA as follows. Suppose $\square_{\sigma \vee \varphi}(\psi)$ for $\psi \in \Pi_{n+1}$. Then $\square_{\sigma}(\varphi \rightarrow \psi)$ by the formalized deduction theorem. We know that $\varphi \rightarrow \psi$ is a Π_{n+1}-sentence since $m<n$. Thus, if $\operatorname{Con}_{n}(\sigma)$ then also $\operatorname{True}_{\Pi_{n+1}}(\varphi \rightarrow \psi)$ and so $\operatorname{True}_{\Pi_{n+1}}(\varphi) \rightarrow \operatorname{True}_{\Pi_{n+1}}(\psi)$. But also $\varphi \in \Pi_{n+1}$ and so $\operatorname{True}_{\Pi_{n+1}}(\varphi)$, whence $\operatorname{True}_{\Pi_{n+1}}(\psi)$ follows as required.
Corollary 4.2.9. Let τ numerate a Π_{m+1}-axiomatized extension of PA. Then for any numeration σ,

$$
\underline{\operatorname{Con}}_{\omega}(\sigma) \vee \tau \Rightarrow \mathrm{PA} \underline{\operatorname{Con}}_{\omega}(\sigma \vee \tau) .
$$

Proof. We show an informal version of this statement by an argument formalizable in PA. That is, we must show that for each n,

$$
\mathrm{PA}+\underline{\mathrm{Con}}_{\omega}(\sigma)+\tau \vdash \underline{\operatorname{Con}}_{n}(\sigma \vee \tau) .
$$

We may assume $n>m$ and use the previous lemma. A formalization of the corresponding argument yields the proof.

Proposition 4.2.10. RC^{*} is arithmetically sound, i.e., if $\mathrm{RC}^{*} \vdash A \Rightarrow B$ then $A^{*} \Rightarrow \mathrm{PA} B^{*}$ for every arithmetical realization .*.
Proof. By induction on the length of a derivation of $A \Rightarrow B$. Most of the axioms have been handled by the previous lemmas and corollaries. The soundness of the propositional axioms and rules is also obvious. For monotonicity, it is clear that $\underline{\operatorname{Con}}_{\alpha}(\sigma) \Rightarrow{ }_{\mathrm{PA}} \underline{\mathrm{Con}}_{\beta}(\sigma)$ for $\alpha>\beta$, since the strength of $\operatorname{Con}_{\alpha}(\sigma)$ increases with α. Suppose $A^{*} \Rightarrow \mathrm{PA} B^{*}$ and let $n<\omega$. We can easily see that PA $+\operatorname{Con}_{n}\left(A^{*}\right) \vdash \operatorname{Con}_{n}\left(B^{*}\right)$, since

$$
\begin{aligned}
\mathrm{PA}+\operatorname{Con}_{n}\left(A^{*}\right) \vdash \alpha \in \Pi_{n+1} \wedge \square_{B^{*}}(\alpha) & \rightarrow \square_{A^{*}}(\alpha) \\
& \rightarrow \operatorname{True}_{\Pi_{n+1}}(\alpha) .
\end{aligned}
$$

Hence, $\underline{\operatorname{Con}}_{n}\left(A^{*}\right) \Rightarrow \mathrm{PA}$ Con $_{n}\left(B^{*}\right)$ follows. Formalizing this fact also establishes that if $A^{*} \Rightarrow_{\mathrm{PA}} B^{*}$ then $\underline{\operatorname{Con}}_{\omega}\left(A^{*}\right) \Rightarrow \mathrm{PA} \operatorname{Con}_{\omega}\left(B^{*}\right)$.

4.3 KRipke Semantics

Since $L_{\Lambda}^{+} \subseteq L_{\Lambda}^{*}$ (i.e., the set of positive formulas is contained in the set of many-sorted formulas) for any signature Λ, the notion of Kripke model over Λ directly carries over into the positive setting.

Definition 4.3.1. Let Λ be a signature and $\mathfrak{K}=\langle\mathfrak{F}, \llbracket \cdot \rrbracket\rangle$ a Kripke model, where $\mathfrak{F}=$ $\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$, and $x \in W$ a world. A sequent $A \Rightarrow B$ over Λ is true at x (notation: $\mathfrak{K}, x \Vdash A \Rightarrow B$) if $\mathfrak{K}, x \Vdash A$ implies $\mathfrak{K}, x \Vdash B . A \Rightarrow B$ is (globally) true in \mathfrak{K} (notation: $\mathfrak{K} \models A \Rightarrow B$) if $\mathfrak{K}, x \Vdash A \Rightarrow B$ for all $x \in W$. Similarly, $A \Rightarrow B$ is valid in \mathfrak{F} (notation: $\mathfrak{F} \models A \Rightarrow B$) if it is globally true in every model based on \mathfrak{F}.

Definition 4.3.2. We say that a Kripke frame $\mathfrak{F}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$ is an $\mathrm{RJ}_{\Lambda}^{*}$-frame if it satisfies the following conditions for all $\alpha, \beta \in \Lambda$:
(i) $\forall x, y, z\left(x R_{\alpha} y \& y R_{\beta} z \Rightarrow x R_{\gamma} z\right)$, for $\gamma=\min \{\alpha, \beta\}$;
(ii) $\forall x, y, z\left(x R_{\alpha} y \& x R_{\beta} z \Rightarrow y R_{\beta} z\right)$, for $\alpha>\beta$.

An $R J_{\Lambda}^{*}$-model is a Kripke model based an an $R J_{\Lambda}^{*}$-frame.
Definition 4.3.3. $\operatorname{An} \mathrm{RC}_{\Lambda}^{*}$-frame is an $\mathrm{RJ}_{\Lambda}^{*}$-frame $\mathfrak{F}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$ which is monotone, i.e, where $R_{\alpha} \subseteq R_{\beta}$ for all $\alpha, \beta \in \Lambda$ such that $\alpha>\beta$. An $\mathrm{RC}_{\Lambda}^{*}$-model is a Kripke model based on an $\mathrm{RC}_{\Lambda}^{*}$-frame.

In case $\Lambda=\omega+1$, we drop the subscript " Λ " in the terms $\mathrm{RJ}_{\Lambda}^{*}$-frame and $\mathrm{RJ}_{\Lambda}^{*}$-model (similarly for RC^{*}). Recall that a Kripke model $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$ is
(i) persistent if for all $\alpha \in \Lambda$, all propositional variables p^{β} with $\beta \leq \alpha$, and all $x, y \in W$ we have

$$
x R_{\alpha} y \text { and } y \in \llbracket p^{\beta} \rrbracket \text { imply } x \in \llbracket p^{\beta} \rrbracket ;
$$

(ii) strongly persistent if \mathfrak{K} is persistent and for all $\alpha \in \Lambda$, all propositional variables p^{β} with $\beta<\alpha$, and all $x, y \in W$ we have

$$
x R_{\alpha} y \text { and } y \notin \llbracket p^{\beta} \rrbracket \text { imply } x \notin \llbracket p^{\beta} \rrbracket .
$$

Lemma 4.3.4. Let $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$ be an $R J_{\Lambda}^{*}$-model. Then, \mathfrak{K} is strongly persistent iff for all formulas $A \in L_{\Lambda}^{+}$and all $\alpha \in \Lambda$ we have
(i) if $|A| \leq \alpha$ then $x R_{\alpha} y$ and $y \in \llbracket A \rrbracket$ imply $x \in \llbracket A \rrbracket$;
(ii) if $|A|<\alpha$ then $x R_{\alpha} y$ and $y \notin \llbracket A \rrbracket$ imply $x \notin \llbracket A \rrbracket$.

Proof. The direction from right to left is immediate. The other direction is proved mutatis mutandis as Lemma 3.4.7.

Lemma 4.3.5. Let $\Lambda \subseteq \omega+1$ and $\alpha \in \Lambda$. The axiom schemes
(i) $\alpha A \Rightarrow A$, where $|A| \leq \alpha$, and
(ii) $\alpha A \wedge B \Rightarrow \alpha(A \wedge B)$, where $|B|<\alpha$,
are true in every strongly persistent $\mathrm{RJ}_{\Lambda}^{*}$-model.
Proof. Item (i) is clear by virtue of Lemma 4.3.4. For (ii), let $|B|<\alpha$ and consider an $\mathrm{RJ}_{\Lambda}^{*}$-model $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$. Let $x \in W$ and suppose $x \Vdash \alpha A \wedge B$. Then there is a $y \in W$ such that $x R_{\alpha} y$ and $y \Vdash A$. Now if $y \nVdash B$, then $x \nVdash B$ by Lemma 4.3.4. Hence, $y \Vdash \alpha(A \wedge B)$.

Proposition 4.3.6. Let $\Lambda \subseteq \omega+1$.
(i) $\mathrm{RJ}_{\Lambda}^{*}$ is sound for the class of all strongly persistent $\mathrm{RJ}_{\Lambda}^{*}$-models;
(ii) $\mathrm{RC}_{\Lambda}^{*}$ is sound for the class of all strongly persistent $\mathrm{RC}_{\Lambda}^{*}$-models.

Proof. In both cases by induction on the length of a derivation of a sequent. Most of the axioms are clear from our previous discussion. In particular, the previous lemmas handle the cases of the axioms where we express conditions on the sorts of formulas. We leave the details to the reader.

Example 4.3.7. Let p and q be variables of sort α. We easily see that $\mathrm{RC}^{*} \nvdash \alpha p \wedge \alpha q \Rightarrow$ $\alpha(p \wedge q)$. Indeed, consider the model $\mathfrak{K}=\left\langle\{a, b, c\},\left\{R_{\alpha}\right\}_{\alpha \leq \omega}, \llbracket \cdot \rrbracket\right\rangle$, where
(i) $R_{\alpha}=\{(a, b),(a, c)\}$ and $R_{\gamma}=\varnothing$, for all $\gamma>\alpha$;
(ii) $R_{\beta}=R_{\alpha} \cup(\{b, c\} \times\{b, c\})$, for $\beta<\alpha$;
(iii) $\llbracket p \rrbracket=\{a, b\}, \llbracket q \rrbracket=\{a, c\} ;$

We see that \mathfrak{K} is a strongly persistent RC^{*}-model which falsifies $\alpha p \wedge \alpha q \Rightarrow \alpha(p \wedge$ q). By Proposition 4.3.6, we know that $\mathrm{RC}^{*} \nvdash \alpha p \wedge \alpha q \Rightarrow \alpha(p \wedge q)$. Combining this with Example 4.1.6, we obtain

$$
\mathrm{RC}^{*} \vdash \alpha p \wedge \alpha q \Rightarrow \alpha(p \wedge q) \Longleftrightarrow|p|<\alpha \text { or }|q|<\alpha
$$

In particular, $\mathrm{RC}^{*} \vdash \omega p \wedge \omega q \Rightarrow \omega(p \wedge q)$ iff $|p|<\omega$ or $|q|<\omega$.
We continue now to prove that our calculi are complete with respect to certain classes of Kripke models. For a set of formulas Δ, we set $\ell(\Delta):=\{\alpha \mid \alpha A \in \Delta$ for some $A\}$. We say that a set of formulas Δ is adequate if the following conditions are satisfied:
(i) $T \in \Delta$;
(ii) Δ is closed under subformulas;
(iii) if $\beta A \in \Delta$ and $\beta<\alpha$ for some $\alpha \in \ell(\Delta)$, then $\alpha A \in \Delta$;
(iv) for any variable p^{β}, if $p^{\beta} \in \Delta$ and $\alpha \geq \beta$ for some $\alpha \in \ell(\Delta)$ then $\alpha p^{\beta} \in \Delta$.

It is clear that every finite set Γ can be extended to a finite adequate Γ^{\prime} such that $\ell(\Gamma)=\ell\left(\Gamma^{\prime}\right)$.

Definition 4.3.8. Let Δ be an adequate set and $\Lambda:=\ell(\Delta)$. An \mathcal{L}_{Λ}-theory in Δ is a set $\Gamma \subseteq \Delta$ such that if $\mathcal{L}_{\Lambda} \vdash \Gamma \Rightarrow B$ and $B \in \Delta$, then $B \in \Gamma$.

Now fix a finite adequate Δ and let $\Lambda:=\ell(\Delta)$. Consider an arbitrary logic \mathcal{L}_{Λ}. We define a Kripke frame $\mathfrak{F}_{\Delta}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$, where

$$
W:=\left\{x \mid x \text { is an } \mathcal{L}_{\Lambda^{-}} \text {-theory in } \Delta\right\}
$$

and for $\alpha \in \ell(\Delta)$, we define $x R_{\alpha} y$ iff
(i) if $A \in y$ and $\alpha A \in \Delta$ then $\alpha A \in x$;
(ii) if $\beta A \in y$ and $\alpha A \in \Delta$ then $\min \{\alpha, \beta\} A \in x$;
(iii) if $\beta<\alpha$ and $\beta A \in x$ then $\beta A \in y$;
(iv) for all variables p^{β}, if $\beta<\alpha$ and $p^{\beta} \notin y$, then $p^{\beta} \notin x$;

Lemma 4.3.9. If \mathcal{L}_{Λ} extends $\mathrm{RJ}_{\Lambda}^{*}$ then \mathfrak{F}_{Δ} is an $\mathrm{RJ}_{\Lambda}^{*}$-frame.
Proof. Suppose $x R_{\alpha} y$ and $y R_{\beta} z$. We prove $x R_{\gamma} z$ for $\gamma=\min \{\alpha, \beta\}$. Indeed, if $A \in z$ and $\gamma A \in \Delta$, then $\gamma A \in y$, whence $\gamma A \in x$ since $x R_{\alpha} y$, i.e., item (i) is proved. Suppose $\delta A \in z$ and $\gamma A \in \Delta$. By adequacy, we know $\delta A \in \Delta$, whence $\min \{\beta, \delta\} A \in y$ follows since $y R_{\beta} z$. By $x R_{\alpha} y$ we know $\min \{\alpha, \min \{\beta, \delta\}\} A \in x$ and thus $\min \{\gamma, \delta\} A \in x$, since $\min \{\gamma, \delta\}=\min \{\alpha, \min \{\beta, \delta\}\}$. Hence, item (ii) is proved. Let $\delta<\gamma$ and $\delta A \in x$. Then $\delta A \in y$ as $\delta<\alpha$ and $x R_{\alpha} y$ and thus $\delta A \in z$ since $y R_{\beta} z$ and $\delta<\beta$. Thus, item (iii) is proved. For item (iv), if $\delta<\gamma$ and $p^{\delta} \notin z$ then $p^{\delta} \notin y$ as $y R_{\beta} z$ and $\delta<\beta$, whence $p^{\delta} \notin x$ by $x R_{\alpha} y$ and $\delta<\alpha$.

Suppose $x R_{\alpha} y$ and $x R_{\beta} z$ for $\beta<\alpha$. We show $y R_{\beta} z$. If $A \in z$ and $\beta A \in \Delta$, then $\beta A \in x$ since $x R_{\beta} z$, whence $\beta A \in y$ as $\beta<\alpha$ and $x R_{\alpha} y$, i.e., item (i) follows. Let $\gamma A \in z$ and $\beta A \in \Delta$. We show $\min \{\gamma, \beta\} A \in y$. Since $x R_{\beta} z$, we know $\min \{\gamma, \beta\} A \in x$. Now $\min \{\gamma, \beta\}<\alpha$, whence from $x R_{\alpha} y$ we obtain $\min \{\gamma, \beta\} A \in y$ which establishes item (ii). Suppose now $\gamma<\beta$ and $\gamma A \in y$. By $x R_{\alpha} y$ we get $\gamma A \in x$, since $\alpha A \in \Delta$ and $\gamma=$ $\min \{\alpha, \gamma\}$. Since $x R_{\beta} z$ and $\gamma<\beta$ we infer $\gamma A \in z$ as required. Thus, item (iii) is proved. For item (iv), suppose $\gamma<\beta$ and let $p^{\gamma} \notin z$. Since $x R_{\beta} z$ by assumption, we know $p^{\gamma} \notin x$.

Now if $p^{\gamma} \in y$ then, by adequacy, we obtain $\alpha p^{\gamma} \in \Delta$, whence $x R_{\alpha} y$ gives us $\alpha p^{\gamma} \in x$. But since $\mathcal{L}_{\Lambda} \vdash x \Rightarrow \alpha p^{\gamma} \Rightarrow p^{\gamma}$, we infer $p^{\gamma} \in x$, a contradiction. Therefore $p^{\gamma} \notin y$ and item (iv) is established.

Now define a model $\mathfrak{K}_{\Delta}=\left\langle\mathfrak{F}_{\Delta}, \llbracket \cdot \rrbracket\right\rangle$, where

$$
\mathfrak{K}_{\Delta}, x \Vdash p^{\alpha} \Longleftrightarrow{ }_{d f} p^{\alpha} \in x,
$$

for all variables p^{α} and all $x \in W$.
Lemma 4.3.10. Let \mathcal{L}_{Λ} extend $\mathrm{RJ}_{\Lambda}^{*}$. For all $A \in \Delta$ we have \mathfrak{K}_{Δ}, $x \Vdash A$ iff $A \in x$.
Proof. By induction on A. If A is a propositional variable or \top, the claim is immediate. Suppose $A=B \wedge C$. Then $x \Vdash B \wedge C$ iff $x \Vdash B$ and $x \Vdash C$ which holds by inductive hypothesis iff $B \in x$ and $C \in x$.

Suppose $A=\alpha B$ for some B and suppose $x \Vdash A$. Then $y \Vdash B$ for some $y \in W$ such that $x R_{\alpha} y$. By inductive hypothesis, we know $B \in y$, whence $\alpha B \in x$ follows by definition of R_{α} as $\alpha B \in \Delta$. Conversely, suppose $A \in x$. We show $\mathfrak{K}_{\Delta}, x \Vdash A$. Let

$$
\begin{aligned}
& \Sigma_{1}:=\{\beta C \mid \beta C \in x, \beta<\alpha\} \\
& \Sigma_{2}:=\left\{p^{\beta} \mid p^{\beta} \in x, \beta<\alpha\right\}
\end{aligned}
$$

and let $y:=\left\{C \in \Delta \mid \mathcal{L}_{\Lambda} \vdash \Sigma_{1}, \Sigma_{2}, B \Rightarrow C\right\}$. By inductive hypothesis, we know $y \Vdash B$ as $B \in y$. We prove $x R_{\alpha} y$. Let $D \in y$ and $\alpha D \in \Delta$. Then $\mathcal{L}_{\Lambda} \vdash \Gamma_{1}, \Gamma_{2}, B \Rightarrow D$ for some
finite $\Gamma_{1} \subseteq \Sigma_{1}, \Gamma_{2} \subseteq \Sigma_{2}$. We know

$$
\begin{aligned}
\mathcal{L}_{\Lambda} \vdash x & \Rightarrow \alpha B \wedge \bigwedge \Gamma_{1} \wedge \bigwedge \Gamma_{2} \\
& \Rightarrow \alpha\left(B \wedge \bigwedge \Gamma_{1} \wedge \bigwedge \Gamma_{2}\right) \quad\left(\text { since }\left|\bigwedge \Gamma_{2}\right|<\alpha\right) \\
& \Rightarrow \alpha D
\end{aligned}
$$

Thus, $\alpha D \in x$ as required. Let $\beta D \in y$ and $\alpha D \in \Delta$. Again, $\mathcal{L}_{\Lambda} \vdash \Gamma_{1}, \Gamma_{2}, B \Rightarrow \gamma D$ for some finite $\Gamma_{1} \subseteq \Sigma_{1}, \Gamma_{2} \subseteq \Sigma_{2}$. Now

$$
\begin{aligned}
\mathcal{L}_{\Lambda} \vdash x & \Rightarrow \alpha B \wedge \bigwedge \Gamma_{1} \wedge \bigwedge \Gamma_{2} \\
& \Rightarrow \alpha\left(B \wedge \bigwedge \Gamma_{1} \wedge \bigwedge \Gamma_{2}\right) \quad\left(\text { since }\left|\bigwedge \Gamma_{2}\right|<\alpha\right) \\
& \Rightarrow \alpha \beta D \\
& \Rightarrow \min \{\alpha, \beta\} D
\end{aligned}
$$

By adequacy, we have $\alpha D \in \Delta$ which together with $\beta \in \ell(\Delta)$ implies $\min \{\alpha, \beta\} D \in \Delta$, whence $\min \{\alpha, \beta\} D \in x$ follows. Let $\beta<\alpha$ and $\beta D \in x$. Then, by definition of Δ, we have $\beta D \in \Delta$ and hence $\beta D \in y$. Clearly, if $p^{\beta} \notin y$ for $\beta<\alpha$, then $p^{\beta} \notin x$.

Lemma 4.3.11. If \mathcal{L}_{Λ} extends $R J_{\Lambda}^{*}$ then \mathfrak{K}_{Δ} is strongly persistent.
Proof. Let $y \Vdash p^{\beta}$ and consider some $x \in W$ such that $x R_{\alpha} y$ for $\beta \leq \alpha$. We know $p^{\beta} \in y$, whence by adequacy $\alpha p^{\beta} \in \Delta$ and so $\alpha p^{\beta} \in x$. This yields $\mathcal{L}_{\Lambda} \vdash x \Rightarrow \alpha p^{\beta} \Rightarrow p^{\beta}$ by α-persistence, whence $p^{\beta} \in x$ and therefore $x \Vdash p^{\beta}$.

Now let $y \nVdash p^{\beta}$ and consider some $x \in W$ such that $x R_{\alpha} y$ for $\beta<\alpha$. We have $p^{\beta} \notin y$, whence by definition of R_{α} we get $p^{\beta} \notin x$ and thus $x \nVdash p^{\beta}$.

Lemma 4.3.12. If \mathcal{L}_{Λ} extends $\mathrm{RC}_{\Lambda}^{*}$ then \mathfrak{F}_{Δ} is monotone, i.e., \mathfrak{F}_{Δ} is an $\mathrm{RC}_{\Lambda}^{*}$-frame.
Proof. Suppose $x R_{\alpha} y$ and let $\beta \in \Lambda$ be such that $\beta<\alpha$. We show that $x R_{\beta} y$. Let $A \in y$ and $\beta A \in \Delta$. By adequacy, we know that $\alpha A \in \Delta$ and $x R_{\alpha} y$ implies $\alpha A \in x$. Now $\beta=\min \{\alpha, \beta\}$ and so $x R_{\alpha} y$ implies in turn $\beta A \in x$ as required. This proves item (i). Let $\gamma A \in y$ and $\beta A \in \Delta$. We show $\min \{\beta, \gamma\} A \in x$. Indeed, by adequacy we know that $\alpha A \in \Delta$, whence $\min \{\gamma, \alpha\} A \in x$. In case $\beta<\gamma$, by the monotonicity axioms, we obtain $\mathcal{L}_{\Lambda} \vdash \min \{\gamma, \alpha\} A \Rightarrow \beta A$ and so $\beta A \in x$ as required. Thus, item (ii) is shown. For item (iii), Let $\gamma<\beta$ and $\gamma A \in x$. Then $\gamma<\alpha$, whence $\gamma A \in y$ follows by $x R_{\alpha} y$ as required. Finally, let $p^{\gamma} \notin y$ where $\gamma<\beta$. Obviously, $p^{\gamma} \notin x$ by $x R_{\alpha} y$. Hence, item (iv) holds.

Theorem 4.3.13. $\mathrm{RJ}_{\Lambda}^{*}$ is complete with respect to the class of all finite and strongly persistent $\mathrm{RJ}_{\Lambda}^{*}$-models.
Proof. Suppose $\mathrm{RJ}_{\Lambda}^{*} \nvdash A \Rightarrow B$. Consider an adequate Δ containing A and B and let $x:=\left\{C \mid \mathrm{RJ}_{\Lambda}^{*} \vdash A \Rightarrow C, C \in \Delta\right\}$ and $\Sigma:=\ell(\Delta)$. Consider the corresponding RJ_{Σ}^{*}-model \mathfrak{K}_{Δ} as before. By Lemma 4.3.10, we know $\mathfrak{K}_{\Delta}, x \Vdash A$, but $\mathfrak{K}_{\Delta}, x \nVdash B$. Now \mathfrak{K}_{Δ} is a finite RJ_{Σ}^{*}-model and $\Sigma \subseteq \Lambda$. We can expand \mathfrak{K}_{Δ} to a finite, strongly persistent $\mathrm{RJ}_{\Lambda}^{*}$-model (call it \mathfrak{K}) by setting $R_{\alpha}:=\varnothing$ for all $\alpha \in \Lambda \backslash \Sigma$. Then obviously $\mathfrak{K}, x \nVdash A \Rightarrow B$.

Theorem 4.3.14. RC^{*} is complete with respect to the class of all strongly persistent RC*-models.

Proof. Suppose $\mathrm{RC}^{*} \nvdash A \Rightarrow B$. Consider an adequate Δ containing A and B and let $x:=\left\{C \mid \mathrm{RC}^{*} \vdash A \Rightarrow C, C \in \Delta\right\}$. Let $\Sigma:=\ell(\Delta)$ and \mathfrak{K}_{Δ} be the corresponding RC_{Σ}^{*}-model. By Lemma 4.3.10, we have $\mathfrak{K}_{\Delta}, x \nVdash A \Rightarrow B$. We can expand \mathfrak{K}_{Δ} to a (possibly infinite) RC^{*}-model \mathfrak{K} for which we then have $\mathfrak{K}, x \nVdash A \Rightarrow B$.

Note that we cannot prove completeness of RC^{*} with respect to the class of finite and strongly persistent $R C^{*}$-models as we did for $R J^{*}$, since we cannot simply declare infinitely many relations to be empty due to monotonicity. However, for a finite Λ, the finite model property immediately follows by an argument analogous to that of the proof of Theorem 4.3.13.

Theorem 4.3.15. Let $\Lambda \subseteq \omega+1$ be finite. Then, $\mathrm{RC}_{\Lambda}^{*}$ is complete with respect to the class of all finite and strongly persistent $\mathrm{RC}_{\Lambda}^{*}$-models.

4.4 Positive FRAGMENTS OF GLP* AND J*

Let Λ be a signature. Recall that L_{Λ}^{*} denotes the set of all many-sorted formulas over \mathbb{V} and Λ. By a positive formula (over Λ) we mean any formula from L_{Λ}^{*} which is built using only propositional variables, \top, \wedge, and $\langle\alpha\rangle(\alpha \in \Lambda)$. It is clear that the set of positive formulas from L_{Λ}^{*} equals L_{Λ}^{+}as defined before.

In Chapter 3 we showed that J_{Λ}^{*} is sound and complete for the class of all finite, irreflexive, and strongly persistent J_{Λ}^{*}-models. We have not treated irreflexive models of our positive calculi so far due to the absence of Löb's axioms in the positive setting. This will be done now in order to establish a correspondence between the positive fragments of J_{Λ}^{*} and $G L P_{\Lambda}^{*}$ to the corresponding reflection calculi $R J_{\Lambda}^{*}$ and $\mathrm{RC}_{\Lambda}^{*}$, respectively.

Let Δ be an adequate set and consider a positive logic \mathcal{L}_{Λ}, where $\Lambda=\ell(\Delta)$. As before, we canonically define a frame $\mathfrak{F}_{\Delta}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}\right\rangle$, where W and the $R_{\alpha}(\alpha \in \Lambda)$ are defined as before, except that we additionally stipulate in the definition of $x R_{\alpha} y$ that
(v) there is an $\alpha A \in x$ such that $\alpha A \notin y$.

The proofs of Lemmas 4.3.9 and 4.3.10 only need to be extended to this new condition.
Lemma 4.4.1. If \mathcal{L}_{Λ} extends $\mathrm{RJ}_{\Lambda}^{*}$ then \mathfrak{F}_{Δ} is an $\mathrm{RJ}_{\Lambda}^{*}$-frame.
Proof. Suppose $x R_{\alpha} y$ and $y R_{\beta} z$. We prove that $x R_{\gamma} z$ for $\gamma=\min \{\alpha, \beta\}$ by showing item (v). Suppose first that $\gamma=\alpha$. There is a $\gamma A \in x$ such that $\gamma A \notin y$. Now if $\gamma A \in z$, then by $y R_{\beta} z$ we obtain $\gamma A \in y$ which is not the case. Therefore, $\gamma A \notin z$ as required. Suppose now $\gamma=\beta$. There is a $\gamma A \in y$ such that $\gamma A \notin z$. By $x R_{\alpha} y$ we obtain $\gamma A \in x$ as desired, i.e., item (v) is established.

Suppose $x R_{\alpha} y$ and $x R_{\beta} z$ for $\beta<\alpha$. We prove $y R_{\beta} z$. There is a $\beta A \in x$ such that $\beta A \notin z$. Since $\beta<\alpha$ and $x R_{\alpha} y$, we obtain $\beta A \in y$ as required. This gives us item (v).

We define a model $\mathfrak{K}_{\Delta}=\left\langle\mathfrak{F}_{\Delta}, \llbracket \llbracket \rrbracket\right\rangle$ as before by setting

$$
\mathfrak{K}_{\Delta}, x \Vdash p^{\alpha} \Longleftrightarrow{ }_{d f} p^{\alpha} \in x,
$$

for all variables $p^{\alpha} \in \Delta$ and all $x \in W$.
Lemma 4.4.2. There is no $\alpha \leq \omega$ and no positive formula A such that $\mathrm{RJ}^{*} \vdash A \Rightarrow \alpha A$.
Proof. Suppose there were such an A and an $\alpha \leq \omega$. Let .* be an arithmetical realization mapping all variables to the standard numeration AxpA. We then obtain PA $\vdash A^{*} \Rightarrow$ $\mathrm{Con}_{\alpha}\left(A^{*}\right)$. Since A is a positive formula and PA is sound, A^{*} numerates a sound theory. But this means that A^{*} proves its own consistency, in contradiction to Gödel's second incompleteness theorem (cf. the formulation of Gödel's theorems by Feferman [16]).

Lemma 4.4.3. Let \mathcal{L}_{Λ} extend R_{Λ}^{*}. For all $A \in \Delta$ we have $\mathfrak{K}_{\Delta}, x \Vdash A$ iff $A \in x$.
Proof. The proof is by induction on A. The cases can be proved as in the proof of Lemma 4.3.10. We only need to consider the case where $A=\alpha B$ for some $B \in \Delta$. Suppose $x \Vdash A$. then $y \Vdash B$ for some $y \in W$ such that $x R_{\alpha} y$. By inductive hypothesis, we know $B \in y$, whence $\alpha B \in x$ follows by definition of R_{α} as $\alpha B \in \Delta$. For the other direction, suppose $A \in x$. We prove $\mathfrak{K}_{\Delta}, x \Vdash A$. As before, let

$$
\begin{aligned}
& \Sigma_{1}:=\{\beta C \mid \beta C \in x, \beta<\alpha\}, \\
& \Sigma_{2}:=\left\{p^{\beta} \mid p^{\beta} \in x, \beta<\alpha\right\},
\end{aligned}
$$

and let $y:=\left\{C \in \Delta \mid \mathcal{L}_{\Lambda} \vdash \Sigma_{1}, \Sigma_{2}, B \Rightarrow C\right\}$. By inductive hypothesis, we know $y \Vdash B$ as $B \in y$. We prove $x R_{\alpha} y$. This works exactly as in the proof of Lemma 4.3.10, except that we additionally need to take item (v) into account. We show that $\alpha B \notin y$. Indeed, if $\alpha B \in y$ then $\mathcal{L}_{\Lambda} \vdash \Gamma_{1}, \Gamma_{2}, B \Rightarrow \alpha B$ for some finite $\Gamma_{1} \subseteq \Sigma_{2}, \Gamma_{2} \subseteq \Sigma_{2}$, whence

$$
\begin{aligned}
\mathcal{L}_{\Lambda} \vdash y & \Rightarrow B \wedge \bigwedge \Gamma_{1} \wedge \bigwedge \Gamma_{2} \\
& \Rightarrow \alpha B \wedge \bigwedge \Gamma_{1} \wedge \bigwedge \Gamma_{2} \\
& \Rightarrow \alpha\left(B \wedge \bigwedge \Gamma_{1} \wedge \bigwedge \Gamma_{2}\right) \quad\left(\text { since }\left|\bigwedge \Gamma_{2}\right|<\alpha\right)
\end{aligned}
$$

which contradicts Lemma 4.4.2.
Theorem 4.4.4. $\mathrm{RJ}_{\Lambda}^{*}$ is complete with respect to the class of all irreflexive, finite, and strongly persistent $\mathrm{RJ}_{\Lambda}^{*}$-models.
Proof. Suppose $\mathrm{RJ}_{\Lambda}^{*} \nvdash A \Rightarrow B$. Consider an adequate Δ containing A and B and let $x:=\left\{C \mid \mathrm{RJ}_{\Lambda}^{*} \vdash A \Rightarrow C, C \in \Delta\right\}$. Let $\Sigma:=\ell(\Delta)$. Consider the corresponding RJ_{Σ}^{*}-model \mathfrak{K}_{Δ} with the appropriate properties as before. By Lemma 4.4.3, we know $\mathfrak{K}_{\Delta}, x \Vdash A$, but $\mathfrak{K}_{\Delta}, x \nVdash B$. Now \mathfrak{K}_{Δ} is a finite RJ_{Σ}^{*}-model and $\Sigma \subseteq \Lambda$. We can expand \mathfrak{K}_{Δ} to an irreflexive, finite, and strongly persistent $\mathrm{RJ}_{\Lambda}^{*}$-model (call it \mathfrak{K}) by setting $R_{\alpha}:=\varnothing$ for all $\alpha \in \Lambda \backslash \Sigma$. Then obviously $\mathfrak{K}, x \nVdash A \Rightarrow B$.

Notice that irreflexivity is incompatible with our notion of $\mathrm{RC}_{\Lambda}^{*}$-model. Indeed, if $x R_{\alpha} y$ for some $\alpha>0$, then $x R_{0} y$, whence $y R_{0} y$ follows. However, irreflexive models are vital for Solovay constructions. We say that a model \mathfrak{K} is Δ-monotone if for any $\beta A \in \Delta$ and any $\alpha \in \ell(\Delta)$ such that $\beta<\alpha$ it holds that, for all worlds x of \mathfrak{K},

$$
\mathfrak{K}, x \Vdash \alpha A \Longrightarrow \mathfrak{K}, x \Vdash \beta A
$$

Lemma 4.4.5. If \mathcal{L}_{Λ} extends $\mathrm{RC}_{\Lambda}^{*}$, then \mathfrak{K}_{Δ} is Δ-monotone.
Proof. Let $\beta A \in \Delta$ and let $\alpha \in \ell(\Delta)$ be such that $\beta<\alpha$. Suppose that $\mathfrak{K}_{\Delta}, x \Vdash \alpha A$. Then $\alpha A \in x$ and $\beta A \in \Delta$ by the adequacy of Δ. Thus, $\mathcal{L}_{\Lambda} \vdash x \Rightarrow \alpha A \Rightarrow \beta A$ and since $\beta A \in \Delta$, we infer $\beta A \in x$ and so $\mathfrak{K}_{\Delta}, x \Vdash \beta A$ as desired.

Theorem 4.4.6. Let Δ be an adequate set, and $\Lambda=\ell(\Delta)$. Then there is a model $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}, \llbracket \cdot \rrbracket\right\rangle$ such that
(i) \mathfrak{K} is an RJ^{*}-model and $R_{\alpha}=\varnothing$, for every $\alpha \notin \Lambda$;
(ii) \mathfrak{K} is finite, strongly persistent, irreflexive, and Δ-monotone;
(iii) for any $\mathrm{RC}_{\Lambda}^{*}$-theory Γ in Δ, there exists a node $x \in W$ such that for any $A \in \Delta$,

$$
A \in \Gamma \Longleftrightarrow \mathfrak{K}, x \Vdash A
$$

We now investigate the relationships between $R C_{\Lambda}^{*}\left(R J_{\Lambda}^{*}\right.$, respectively) and $G L P_{\Lambda}^{*}\left(J_{\Lambda}^{*}\right.$, respectively) as done by Dashkov [13] in the single-sorted setting. $G L P_{\Lambda}^{*}$ differs from J_{Λ}^{*} with respect to the monotonicity axioms. This is also the only difference between $R J_{\Lambda}^{*}$ and $\mathrm{RC}_{\Lambda}^{*}$. Hence, we immediately obtain:

Lemma 4.4.7. Let $\varphi, \psi \in L_{\Lambda}^{+}$, where $\Lambda \subseteq \omega+1$. If $\mathrm{RC}_{\Lambda}^{*} \vdash \varphi \Rightarrow \psi$ then $\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi \rightarrow \psi$.
Proposition 4.4.8. Let $\varphi, \psi \in L_{\Lambda}^{+}$. Then, $\mathrm{RJ}_{\Lambda}^{*} \vdash \varphi \Rightarrow \psi$ iff $\mathrm{J}_{\Lambda}^{*} \vdash \varphi \rightarrow \psi$.
Proof. The direction from left to right is shown by induction on the length of the proof of $\varphi \Rightarrow \psi$. Most of the axioms are clear. For axiom (vi), notice that if $|\psi|<\alpha$, then $J_{\Lambda}^{*} \vdash\langle\alpha\rangle \neg \psi \rightarrow \neg \psi$, whence $\mathrm{J}_{\Lambda}^{*} \vdash \psi \rightarrow[\alpha] \psi$ and so

$$
\begin{aligned}
\mathrm{J}_{\Lambda}^{*} \vdash\langle\alpha\rangle \varphi \wedge \psi & \rightarrow[\alpha] \psi \\
& \rightarrow\langle\alpha\rangle(\varphi \wedge \psi)
\end{aligned}
$$

The translations of the rules of inference are immediate.
For the other direction, suppose $\mathrm{RJ}_{\Lambda}^{*} \nvdash \varphi \Rightarrow \psi$. By Theorem 4.4.4, there is an irreflexive, finite, and strongly persistent $\mathrm{RJ}_{\Lambda}^{*}$-model \mathfrak{K} such that $\mathfrak{K}, x \nVdash \varphi \Rightarrow \psi$ for some world x of \mathfrak{K}. Obviously, since \mathfrak{K} is also a J_{Λ}^{*}-model, we obtain $J_{\Lambda}^{*} \nvdash \varphi \rightarrow \psi$.

Lemma 4.4.9. Let $\varphi \in L_{\Lambda}^{*}$, where $\Lambda \subseteq \omega$. Then, $\mathrm{GLP}^{*} \vdash \varphi$ iff $\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi$.
Proof. The direction from right to left is clear. We prove the other direction. Suppose GLP ${ }^{*} \vdash \varphi$. Then $J^{*} \vdash N^{+}(\varphi) \rightarrow \varphi$ by Lemma 3.5.13 and, as $N^{+}(\varphi)$ is in L_{Λ}^{*}, we know
by Corollary 3.4.18 that $J_{\Lambda}^{*} \vdash N^{+}(\varphi) \rightarrow \varphi$, whence $\operatorname{GLP}_{\Lambda}^{*} \vdash N^{+}(\varphi) \rightarrow \varphi$ follows since $G L P_{\Lambda}^{*}$ extends J_{Λ}^{*}. But $G L P_{\Lambda}^{*} \vdash N^{+}(\varphi)$, so the claim follows by an application of modus ponens.

Lemma 4.4.10. Let $\Lambda \subseteq \omega$ and $\varphi, \psi \in L_{\Lambda}^{+}$. Then $\operatorname{GLP}_{\Lambda}^{*} \vdash \varphi \rightarrow \psi$ implies $\mathrm{RC}_{\Lambda}^{*} \vdash \varphi \Rightarrow \psi$.
Proof. Suppose $\mathrm{RC}_{\Lambda}^{*} \nvdash \varphi \Rightarrow \psi$. Let a finite adequate Δ containing φ and ψ be given. Let $\Sigma:=\ell(\Delta)$ and consider the corresponding model $\mathfrak{K}_{\Delta}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \in \Sigma}\right.$, $\left.\llbracket \cdot \rrbracket\right\rangle$ with the properties of Theorem 4.4.6 such that $\mathfrak{K}_{\Delta}, x \nVdash \varphi \Rightarrow \psi$ for some $x \in W$. Now let $\eta:=\varphi \rightarrow \psi$. Since \mathfrak{K}_{Δ} is Δ-monotone and $N^{+}(\eta)$ is in L_{Λ}^{*}, we know that $\mathfrak{K}_{\Delta}, x \Vdash N^{+}(\eta)$. Hence, $\mathfrak{K}_{\Delta}, x \nVdash N^{+}(\eta) \rightarrow \eta$ and so $J_{\Lambda}^{*} \nvdash N^{+}(\eta) \rightarrow \eta$, whence $\mathrm{GLP}_{\Lambda}^{*} \nvdash \varphi \rightarrow \psi$ follows.

In the following, we borrow some ideas from Beklemishev et al. [8]. Any signature Λ can be ordered according to the standard ordering of the ordinals $\alpha \in \omega+1$. Hence, $\mathrm{RC}_{\Lambda}^{*}$ is in some sense a notational variant of the $\operatorname{logic} \mathrm{RC}_{\lambda}^{*}$, where λ denotes the order type of Λ. For any signature Λ, we denote by Λ_{α} the α-th element of Λ according to that ordering. Let $f: \Lambda \rightarrow \lambda$ be the (unique) order isomorphism from Λ into λ. Given any $U \subseteq \Lambda$, we denote by λ_{U} the order $f(U)$.

In the sequel, It will be convenient to assume that the set \mathbb{V} properly contains a set $\overline{\mathbb{V}}$ such that for each sort $\alpha \leq \omega, \overline{\mathbb{V}}$ contains a countable infinite supply of variables of sort α. Hence, there is a bijection between $\mathbb{V} \backslash \overline{\mathbb{V}}$ and $\overline{\mathbb{V}}$ such that exactly the variables of sort α from $\mathbb{V} \backslash \overline{\mathbb{V}}$ are mapped to variables of sort α from $\overline{\mathbb{V}}$. Now if $p^{\alpha} \in \mathbb{V} \backslash \overline{\mathbb{V}}$, we denote the corresponding variable of $\overline{\mathbb{V}}$ by $\overline{p^{\alpha}}$. Conversely, if $q^{\alpha} \in \overline{\mathbb{V}}$ such that $\overline{p^{\alpha}}=q^{\alpha}$ for $p^{\alpha} \in \mathbb{V} \backslash \overline{\mathbb{V}}$, we set $\overline{q^{\alpha}}=p^{\alpha}$. Now, for any signature Λ of order type λ, we define a bijection $\pi_{\Lambda}: \mathbb{V} \rightarrow \overline{\mathbb{V}}$ as follows:

$$
\pi_{\Lambda}: p^{\alpha} \longmapsto \begin{cases}\overline{p^{\kappa}}, \text { where } \kappa=\Lambda_{\alpha}, & \text { if } \alpha<\lambda \\ \overline{p^{\alpha}}, & \text { otherwise }\end{cases}
$$

Definition 4.4.11. Let Λ be a signature of order type λ. We define $\xi_{\Lambda}(\varphi)$ for all $\varphi \in L_{\lambda}^{*}$ recursively as follows:
(i) $\xi_{\Lambda}(\perp)=\perp ; \quad \xi_{\Lambda}(T)=T$;
(ii) $\xi_{\Lambda}\left(p^{\alpha}\right)=\pi_{\Lambda}\left(p^{\alpha}\right)$ for all propositional variables p^{α};
(iii) $\xi_{\Lambda}(\cdot)$ commutes with the propositional connectives;
(iv) $\xi_{\Lambda}(\langle\alpha\rangle \varphi)=\left\langle\Lambda_{\alpha}\right\rangle \xi_{\Lambda}(\varphi)$.

Furthermore, we define $\xi_{\Lambda}^{-1}(\cdot)$ to be the inverse operation of $\xi_{\Lambda}(\cdot)$ such that (i) for all $\varphi \in L_{\lambda}^{*}$ we have $\varphi=\xi_{\Lambda}^{-1}\left(\xi_{\Lambda}(\varphi)\right)$ and (ii) for all $\psi \in L_{\Lambda}^{*}$ we have $\psi=\xi_{\Lambda}\left(\xi_{\Lambda}^{-1}(\psi)\right)$.
Note that if $U \subseteq \Lambda$ then for $\varphi \in L_{\lambda}^{*}$ and $\psi \in L_{\Lambda}^{*}$,

$$
\begin{aligned}
\varphi \in L_{\lambda_{U}}^{*} & \Longrightarrow \xi_{\Lambda}^{-1}(\varphi) \in L_{U}^{*} \\
\xi_{\Lambda}(\psi) \in L_{U}^{*} & \Longrightarrow \psi \in L_{\lambda_{U}}^{*}
\end{aligned}
$$

Lemma 4.4.12. Let λ be the order type of Λ and $U \subseteq \Lambda$. Let $\varphi \in L_{\lambda_{U}}^{*}$ be a formula and $\alpha \in \lambda_{U}$. Then, $|\varphi| \leq \alpha$ iff $\left|\xi_{\Lambda}(\varphi)\right| \leq \Lambda_{\alpha}$.

Proof. We first prove the direction from left to right. We proceed by induction on the number of propositional connectives of φ which are not in the scope of any $\langle\gamma\rangle$. For the base case, if $\varphi=p^{\beta}$ for some $\beta \leq \alpha$, we have that $\beta<\lambda$, whence $\pi_{\Lambda}\left(p^{\beta}\right)=\overline{p^{\kappa}}$ follows for $\kappa=\Lambda_{\beta}$. Therefore, $\left|\xi_{\Lambda}\left(p^{\kappa}\right)\right|=\Lambda_{\beta} \leq \Lambda_{\alpha}$ since $\beta \leq \alpha$. Suppose $\varphi=\langle\beta\rangle \psi$ for some $\beta \leq \alpha$. Then $|\langle\beta\rangle \psi|=\beta$ and $\left|\xi_{\Lambda}(\langle\beta\rangle \psi)\right|=\left|\left\langle\Lambda_{\beta}\right\rangle \xi_{\Lambda}(\psi)\right|=\Lambda_{\beta} \leq \Lambda_{\alpha}$. The induction step for the propositional connectives is immediate as $\xi_{\Lambda}(\cdot)$ commutes with those connectives.

The direction from right to left is proved by induction on the number of propositional connectives of $\psi:=\xi_{\Lambda}(\varphi)$ which are not in the scope of any $\langle\gamma\rangle$. We know $\varphi=\xi_{\Lambda}^{-1}(\psi)$. Suppose $\psi=\overline{p^{\beta}}$ for some $\beta \leq \Lambda_{\alpha}$. Suppose first that $\beta \in \Lambda$. Then $\pi_{\Lambda}^{-1}\left(\overline{p^{\beta}}\right)=p^{\gamma}$ for some $\gamma<\lambda$ such that $\beta=\Lambda_{\gamma}$. Therefore, $\Lambda_{\gamma} \leq \Lambda_{\alpha}$, whence $\gamma \leq \alpha$ follows. Suppose now that $\beta \notin \Lambda$. Then, $\pi_{\Lambda}^{-1}\left(\overline{p^{\beta}}\right)=p^{\beta}$ and thus $\left|p^{\beta}\right| \leq \Lambda_{\alpha}$ by assumption. Suppose $\psi=\langle\beta\rangle \chi$ for some χ and $\beta \leq \Lambda_{\alpha}$. Certainly $\psi \in L_{U}^{*}$ and therefore $\beta \in U$. It follows that $\beta=\Lambda_{\gamma}$, for some $\gamma<\lambda$. We have $\varphi=\xi_{\Lambda}^{-1}(\psi)=\langle\gamma\rangle \xi_{\Lambda}^{-1}(\chi)$ and so $|\varphi| \leq \alpha$ as $\gamma \leq \alpha$. The induction step is again immediate.

Lemma 4.4.13. Let λ be the order type of Λ and $U \subseteq \Lambda$.
(i) $\operatorname{GLP}_{\lambda_{U}}^{*} \vdash \varphi$ iff $\operatorname{GLP}_{U}^{*} \vdash \xi_{\Lambda}(\varphi)$, for all $\varphi \in L_{\lambda_{U}}^{*}$;
(ii) $\operatorname{GLP}_{U}^{*} \vdash \varphi$ iff $\operatorname{GLP}_{\lambda_{U}}^{*} \vdash \xi_{\Lambda}^{-1}(\varphi)$, for all $\varphi \in L_{U}^{*}$.

Proof. For item (i), we prove the direction from left to right by induction on proof length. The case when φ is a propositional axiom is clear, as $\xi_{\Lambda}(\cdot)$ commutes with the propositional connectives. Most of the other axioms are also clear. Consider the case where φ is of form $\langle\alpha\rangle \psi \rightarrow \psi$ and $|\psi| \leq \alpha$, where $\alpha \in \lambda_{U}$. By Lemma 4.4.12 we know $\left|\xi_{\Lambda}(\psi)\right| \leq$ Λ_{α}, i.e., $\left\langle\Lambda_{\alpha}\right\rangle \xi_{\Lambda}(\psi) \rightarrow \xi_{\Lambda}(\psi)$ is also an axiom. Since $\Lambda_{\alpha} \in U, \operatorname{GLP}_{U}^{*} \vdash\left\langle\Lambda_{\alpha}\right\rangle \xi_{\Lambda}(\psi) \rightarrow \xi_{\Lambda}(\psi)$ follows. For the induction step, consider the case where $\operatorname{GLP}_{\lambda_{U}}^{*} \vdash[\alpha] \psi$ for $\alpha \in \lambda_{U}$ and $[\alpha] \psi$ results from an application of $[\alpha]$-necessitation from ψ. By inductive hypothesis, we have $\operatorname{GLP}_{U}^{*} \vdash \xi_{\Lambda}(\psi)$ and, since $\Lambda_{\alpha} \in U$, we obtain $\operatorname{GLP}_{U}^{*} \vdash\left[\Lambda_{\alpha}\right] \xi_{\Lambda}(\psi)$. The case of modus ponens is immediate. The other direction and item (ii) are proved in an analogous way.

We have a similar result for $\mathrm{RC}_{\Lambda}^{*}$:
Lemma 4.4.14. Let λ be the order type of Λ and $U \subseteq \Lambda$.
(i) $\mathrm{RC}_{\lambda_{U}}^{*} \vdash A \Rightarrow B$ iff $\mathrm{RC}_{U}^{*} \vdash \xi_{\Lambda}(A) \Rightarrow \xi_{\Lambda}(B)$;
(ii) $\mathrm{RC}_{U}^{*} \vdash A \Rightarrow B$ iff $\mathrm{RC}_{\lambda_{U}}^{*} \vdash \xi_{\Lambda}^{-1}(A) \Rightarrow \xi_{\Lambda}^{-1}(B)$.

Theorem 4.4.15. Let $\varphi \in L_{\Lambda}^{*}$, where $\Lambda \subseteq \omega+1$. Then, GLP $_{\omega+1}^{*} \vdash \varphi$ iff $\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi$.
Proof. The direction from right to left is again obvious. For the other direction, suppose
$\operatorname{GLP}_{\omega+1}^{*} \vdash \varphi$. Then there is a proof $\chi=\chi_{1}, \ldots, \chi_{k}$ in $\mathrm{GLP}_{\omega+1}^{*}$ such that $\chi_{k}=\varphi$. Let

$$
\begin{aligned}
S & :=\left\{\alpha \mid\langle\alpha\rangle \text { occurs in } \chi_{i}, \text { for some } i=1, \ldots, k\right\}, \\
U & :=\{\alpha \mid\langle\alpha\rangle \text { occurs in } \varphi\} .
\end{aligned}
$$

Obviously, $U \subseteq S$ and $U \subseteq \Lambda$. We know that U and S are finite and $\operatorname{GLP}_{S}^{*} \vdash \chi_{i}$ for $i=1, \ldots, k$. Let $n \in \omega$ be the order type of S. By Lemma 4.4.13 (taking $U=S$), we know that

$$
\operatorname{GLP}_{S}^{*} \vdash \chi_{i} \Longleftrightarrow \operatorname{GLP}_{n}^{*} \vdash \xi_{S}^{-1}\left(\chi_{i}\right),
$$

for $i=1, \ldots, k$. Let $\psi:=\xi_{S}^{-1}(\varphi)$. From $\operatorname{GLP}_{n}^{*} \vdash \psi$ we immediately infer GLP $^{*} \vdash \psi$. Now consider the set of modalities $F:=n_{U}$. We have that $\psi \in L_{F}^{*}$ and so by Lemma 4.4.9, $\mathrm{GLP}_{F}^{*} \vdash \psi$ as $F \subseteq \omega$. By Lemma 4.4.13, we obtain $\mathrm{GLP}_{U}^{*} \vdash \varphi$ and thus $\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi$ follows since $U \subseteq \Lambda$.

Corollary 4.4.16. Let $A, B \in L_{\Lambda}^{+}$, where $\Lambda \subseteq \omega+1$. Then, $\mathrm{RC}^{*} \vdash A \Rightarrow B$ iff $\mathrm{RC}_{\Lambda}^{*} \vdash$ $A \Rightarrow B$.
Proof. The direction from right to left is immediate. So suppose $\mathrm{RC}^{*} \vdash A \Rightarrow B$. Let $\Sigma:=\ell(\{A, B\})$ and $n \in \omega$ be the order type of Σ. Obviously, $\Sigma \subseteq \Lambda$ and since GLP* \vdash $A \rightarrow B$, we infer $\operatorname{GLP}_{\Sigma}^{*} \vdash A \rightarrow B$ by Theorem 4.4.15. By Lemma 4.4.13, we obtain $\mathrm{GLP}_{n}^{*} \vdash \xi_{\Sigma}^{-1}(A) \rightarrow \xi_{\Sigma}^{-1}(B)$, whence $\mathrm{RC}_{n}^{*} \vdash \xi_{\Sigma}^{-1}(A) \Rightarrow \xi_{\Sigma}^{-1}(B)$ follows by Lemma 4.4.10. Therefore, $\mathrm{RC}_{\Sigma}^{*} \vdash A \Rightarrow B$ and thus $\mathrm{RC}_{\Lambda}^{*} \vdash A \Rightarrow B$ as desired.

Thus, although we cannot prove that RC^{*} is complete with respect to the class of finite, strongly persistent, and irreflexive RC^{*}-models, we can always find an appropriate model of a finite fragment of $R C^{*}$. Furthermore, we can already conclude that $R C_{\Lambda}^{*}$ axiomatizes the positive fragment of $\mathrm{GLP}_{\Lambda}^{*}$.

Corollary 4.4.17. Let $\varphi, \psi \in L_{\Lambda}^{+}$, where $\Lambda \subseteq \omega+1$. Then, $\mathrm{GLP}_{\Lambda}^{*} \vdash \varphi \rightarrow \psi$ iff $\mathrm{RC}_{\Lambda}^{*} \vdash$ $\varphi \Rightarrow \psi$.
Proof. The direction from right to left is just Lemma 4.4.7. Suppose GLP $_{\Lambda}^{*} \vdash \varphi \rightarrow \psi$ and let $\Sigma:=\ell(\{\varphi, \psi\})$ and let $n \in \omega$ be the order type of Σ. It is clear that $\Sigma \subseteq \Lambda$. We have $\operatorname{GLP}_{\Sigma}^{*} \vdash \varphi \rightarrow \psi$ by Theorem 4.4.15 and so $\operatorname{GLP}_{n}^{*} \vdash \xi_{\Sigma}^{-1}(\varphi) \rightarrow \xi_{\Sigma}^{-1}(\psi)$. Therefore, $\mathrm{RC}_{n}^{*} \vdash$ $\xi_{\Sigma}^{-1}(\varphi) \Rightarrow \xi_{\Sigma}^{-1}(\psi)$ by Lemma 4.4.10, whence $\mathrm{RC}_{\Sigma}^{*} \vdash \varphi \Rightarrow \psi$ follows. Thus, $\mathrm{RC}_{\Lambda}^{*} \vdash \varphi \Rightarrow \psi$ as required.

In particular, $\mathrm{GLP}_{\omega+1}^{*} \vdash \varphi \rightarrow \psi$ iff $\mathrm{RC}^{*} \vdash \varphi \Rightarrow \psi$ for positive φ, ψ.

4.5 Arithmetical Completeness of RC*

In this section, we prove that RC^{*} is arithmetically complete with respect to the interpretation we defined in Section 4.2. Many of the results necessary for its proof were first obtained by Beklemishev [7] for a single-sorted variant of RC*.

Theorem 4.5.1. For every sequent $A \Rightarrow B$ over $\omega+1$, the following statements are equivalent:
(i) $\mathrm{RC}^{*} \vdash A \Rightarrow B$;
(ii) $A^{*} \Rightarrow \mathrm{PA} B^{*}$ for every arithmetical realization \cdot^{*};
(iii) $A^{*} \Rightarrow B^{*}$ for every arithmetical realization .*.

Proof. For the direction from (iii) to (i) we proceed indirectly. Suppose $\mathrm{RC}^{*} \nvdash A \Rightarrow B$. Let Δ be a finite adequate set containing A and B and let $\Lambda:=\ell(\Delta)$. Similarly as in the proof of Lemma 3.5.1, one can show that there is an RJ^{*}-model $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \leq \omega}, \llbracket \cdot \rrbracket\right\rangle$ with root r which satisfies the conditions of Theorem 4.4.6 such that $\mathfrak{K}, r \Vdash A$ and $\mathfrak{K}, r \nVdash B$. Without loss of generality, suppose $W=\{1,2, \ldots, N\}$ for some $N \in \omega$ and $r=1$. Extend \mathfrak{K} to an RJ^{*}-model $\mathfrak{K}^{\prime}=\left\langle W^{\prime},\left\{R_{\alpha}^{\prime}\right\}_{\alpha \leq \omega}, \llbracket \cdot \rrbracket^{\prime}\right\rangle$, where
(i) $W^{\prime}:=W \cup\{0\}$;
(ii) $R_{0}^{\prime}:=R_{0} \cup\{(0, x) \mid x \in W\}$;
(iii) $R_{\alpha}^{\prime}:=R_{\alpha}$, for $\alpha \neq 0$;
(iv) $\mathfrak{K}^{\prime}, 0 \Vdash p \Longleftrightarrow{ }_{d f} \mathfrak{K}, 1 \Vdash p$, for all variables $p \in \Delta$;
(v) $\mathfrak{K}^{\prime}, x \Vdash p \Longleftrightarrow{ }_{d f} \mathfrak{K}, x \Vdash p$, for all $x \in W$ and all variables $p \in \Delta$.

Note that \mathfrak{K}^{\prime} is finite, strongly persistent, and irreflexive. Moreover, it is clear that $\mathfrak{K}^{\prime}, 1 \nVdash$ $A \Rightarrow B$. For notational convenience, we denote \mathfrak{K}^{\prime} from now on by $\mathfrak{K}=\left\langle W,\left\{R_{\alpha}\right\}_{\alpha \leq \omega}, \llbracket \cdot \rrbracket\right\rangle$.

Recall that $[n]_{\mathrm{PA}}(\alpha)$ denotes a formula which formalizes that α is provable in PA from all true Π_{n+1}-sentences. For $n \geq 0$, let $\operatorname{Prf}_{n}(\alpha, y)$ be the proof relation of $[n]_{\mathrm{PA}}(\alpha)$. As in the proof of Theorem 3.5.2, we assume that information concerning the model \mathfrak{K} is naturally encoded in arithmetic.

Definition 4.5.2. Let M be the maximal modality $m<\omega$ from Λ, provided there is such an m, and 0 otherwise. For all $n<\omega$, define a Solovay function $h_{n}: \omega \rightarrow W$ as follows:

$$
\begin{aligned}
h_{n}(0) & =0, \text { and } \\
h_{n}(x+1) & = \begin{cases}y, & \text { if } \exists i<n: h_{i}(x) \neq h_{i}(x+1)=y ; \text { otherwise } \\
z, & \text { if } \exists k \geq \max \{M, n\} \operatorname{Prf}_{n}\left(\left\ulcorner\ell_{k} \neq \bar{z}\right\urcorner, x\right) \\
\text { and either } h_{n}(x) R_{n} z \text { or } h_{n}(x) R_{\omega} z ; \\
h_{n}(x), & \text { otherwise. }\end{cases}
\end{aligned}
$$

Here we retain our convention that $\ell_{k}=x$ denotes that the limit of the function h_{k} equals x (see Definition 3.5.3).

Beklemishev [7] shows that there are formulas $H_{0}, H_{1}, \ldots, H_{n}$ such that, for $k=1, \ldots, n$,
(i) H_{k} defines the graph of h_{k} in PA and $\mathrm{PA} \vdash \forall x \exists$! $y H_{k}(x, y)$. Thus, h_{k} is provably total in PA.
(ii) H_{k} is Δ_{k+1} in PA.
(iii) The function $\varphi: k \longmapsto\left\ulcorner H_{k}\right\urcorner$ is primitive recursive.
(iv) Each H_{k} provably satisfies the definition of h_{k} in Definition 4.5.2.

Note that, in particular, $\left\ulcorner\ell_{n}=\bar{x}\right\urcorner$ can be constructed primitive recursively from n and x.
Lemma 4.5.3. For each $n, m \in \omega$, provably in PA,
(i) $\exists!x \in W: \ell_{n}=\bar{x}$;
(ii) $\ell_{n} R_{n+1} \ell_{n+1}$ or $\ell_{n} R_{\omega} \ell_{n+1}$ or $\ell_{n}=\ell_{n+1}$;
(iii) If $m<n$ then $\ell_{n}=\ell_{m}$ or $\ell_{m} R_{\alpha} \ell_{n}$, for some $\alpha \in(m, n] \cup\{\omega\}$.

Proof. For (i), firstly notice that for all $n \in \omega, h_{n}$ (provably) only moves along $R_{n} \cup R_{\omega}$. Secondly, $R_{n} \cup R_{\omega}$ is finite, transitive, and irreflexive for all $n \in \omega$. Uniqueness is clear, as PA proves $\forall x \exists!y H_{n}(x, y)$. For existence, we proceed by (external) induction on n. Let $S:=R_{0} \cup R_{\omega}$ and $b \in W$. For the base case, we prove

$$
\mathrm{PA} \vdash H_{0}(a, \bar{b}) \rightarrow \ell_{0}=\bar{b} \vee \exists z \in S(b): \ell_{0}=\bar{z}
$$

by induction on the converse of S. So suppose that for each $c \in S(b)$ we have

$$
\mathrm{PA} \vdash H_{0}(a, \bar{c}) \rightarrow \ell_{0}=\bar{c} \vee \exists z \in S(c): \ell_{0}=\bar{z}
$$

By definition of h_{0}, we know that

$$
\mathrm{PA} \vdash H_{0}(a, \bar{b}) \rightarrow \forall x \geq a\left(H_{0}(x, \bar{b}) \vee \exists z \in S(b): H_{0}(x, \bar{z})\right)
$$

whence by inductive hypothesis we obtain

$$
\mathrm{PA} \vdash H_{0}(a, \bar{b}) \rightarrow \forall x \geq a\left(H_{0}(x, \bar{b}) \vee \exists z \in S(b): \ell_{0}=\bar{z} \vee \exists w \in S(z): \ell_{0}=\bar{w}\right)
$$

This is equivalent to

$$
\mathrm{PA} \vdash H_{0}(a, \bar{b}) \rightarrow \ell_{0}=\bar{b} \vee \exists z \in S(b): \ell_{0}=\bar{z} \vee \exists w \in S(z): \ell_{0}=\bar{w}
$$

which by the transitivity of S is equivalent to

$$
\mathrm{PA} \vdash H_{0}(a, \bar{b}) \rightarrow \ell_{0}=\bar{b} \vee \exists z \in S(b): \ell_{0}=\bar{z}
$$

This proves the base case, since $\mathrm{PA} \vdash H_{0}(0,0)$. For the induction step, suppose that ℓ_{n-1} exists $(n>0)$. Then, from ℓ_{n-1} onward, h_{n} provably can only move along the relation $R_{n} \cup R_{\omega}$. A similar argument to that of the base case then shows that the limit of h_{n} exists. For (ii), notice that, provably, $\exists x h_{n+1}(x)=\ell_{n}$, i.e., h_{n+1} has to visit ℓ_{n} on its way to ℓ_{n+1}. Using this and the previously mentioned facts, we can prove (ii) by induction on n. Item (iii) is then obtained from (ii) by induction on n.

For all $n<\omega$, we define a formula $L_{n}(a, b)$ in our arithmetical language as follows:

$$
L_{n}(a, b):= \begin{cases}h_{n}(a)=b, & \text { if } n=0 \\ h_{n}(a)=b \wedge \forall z \geq a\left(h_{n-1}(z)=h_{n-1}(a)\right), & \text { otherwise }\end{cases}
$$

Lemma 4.5.4. For every $n \in \omega$, PA proves that

$$
L_{n}(a, b) \Longrightarrow \forall i<n \forall x \geq a: h_{i}(x)=h_{i}(x+1)
$$

Proof. For $n=0$, the statement is clear. For $n>0$, reason in PA as follows. Suppose $L_{n}(a, b)$ and assume to the contrary that there is an $i<n$ and an $x \geq a$ such that $h_{i}(x) \neq h_{i}(x+1)$. Since $L_{n}(a, b)$, we clearly have $i<n-1$. By definition of h_{n-1}, we infer $h_{n-1}(x+1)=h_{i}(x+1)$, whence $h_{n-1}(x) \neq h_{i}(x)$ follows. Let x_{0} be the smallest $x \geq a$ such that $h_{n-1}(x) \neq h_{i}(x)$. We know $x_{0}>0$ and by $L_{n}(a, b)$ that $h_{i}\left(x_{0}-1\right) \neq h_{i}\left(x_{0}\right)$. But then $h_{n-1}\left(x_{0}\right)=h_{i}\left(x_{0}\right)$ by the definition of h_{n-1}, contradiction.

Let $n<\omega$ and suppose (in PA) that $\exists x L_{n}(x, \bar{b})$ for some $b \in W$. It follows that for $k \geq n$, $\ell_{k} \in R_{n}^{*}(b) \cup\{b\}$, since no function h_{m} for $m<n$ makes a move beyond x. Hence, from b on, the function h_{k} must move along R_{n}^{*}.

For any positive formula A and any $n \geq 0$, we abbreviate by $\ell_{n} \Vdash A$ the statement $\bigvee\left\{\ell_{n}=\bar{x} \mid x \Vdash A\right\}$, while $\ell_{n} \nVdash A$ abbreviates $\bigwedge\left\{\ell_{n} \neq \bar{x} \mid x \Vdash A\right\}$. Note that Lemma 4.5.3 implies that for all positive formulas A, provably in PA either $\ell_{n} \Vdash A$ or $\ell_{n} \nVdash A$. Furthermore, these statements provably obey the usual forcing conditions which are already fulfilled in \mathfrak{K} :

Lemma 4.5.5. Provably in PA,
(i) $\ell_{n} \Vdash \top$;
(ii) $\ell_{n} \Vdash A \wedge B$ iff $\ell_{n} \Vdash A$ and $\ell_{n} \Vdash B$.

Furthermore,

(iii) if $|A| \leq \alpha$ then PA proves that $\ell_{m} R_{\alpha} \ell_{n}$ and $\ell_{n} \Vdash A$ imply $\ell_{m} \Vdash A$;
(iv) if $|A|<\alpha$ then PA proves that $\ell_{m} R_{\alpha} \ell_{n}$ and $\ell_{n} \nVdash A$ imply $\ell_{m} \nVdash A$.

Proof. Most of the items are clear. We only prove item (iv). Note that $\ell_{n} \nVdash A$ is, by virtue of Lemma 4.5.3, provably equivalent in PA to

$$
\bigvee\left\{\ell_{n}=\bar{x} \mid x \nVdash A\right\} .
$$

Now if $\ell_{m} R_{\alpha} \ell_{n}$ and $|A|<\alpha$, then by strong persistence of \mathfrak{K} we see that this immediately implies $\ell_{m} \nVdash A$.

Lemma 4.5.6. Let $n \geq m$ and A be a formula such that $|A| \leq m$ or $m \geq M$. Then,

$$
\mathrm{PA} \vdash\left(\ell_{n} \Vdash A\right) \rightarrow\left(\ell_{m} \Vdash A\right) .
$$

Proof. Assume $n>m \geq M$. Since $R_{n}=\varnothing$, we must have $\ell_{m} R_{\omega} \ell_{n}$ by Lemma 4.5.3, whence the claim follows at once from Lemma 4.5.5. If $|A| \leq m$ and $n>m$, we have by Lemma 4.5.3 either $\ell_{m}=\ell_{n}$ or $\ell_{m} R_{\alpha} \ell_{n}$ for some $\alpha \in(m, n] \cup\{\omega\}$. The first case is clear, so suppose $\ell_{m} R_{\alpha} \ell_{n}$. The claim follows immediately from Lemma 4.5.5 since $|A| \leq m<\alpha$.

We now again use the property of strong persistence in order to ensure that we are able to construct an arithmetical counter interpretation of the desired arithmetical complexity.

Lemma 4.5.7. For all $n<\omega$ and all variables $p \in \Delta$ of sort $k \leq n$, provably in PA ,

$$
\ell_{n} \Vdash p \Longleftrightarrow \forall w \in W \backslash \llbracket p \rrbracket: \forall x \neg L_{k}(x, \bar{w})
$$

Proof. We reason in PA as follows. For the direction from left to right, suppose $\ell_{n} \Vdash p$ and suppose to the contrary that there is a $w \in W$ and an x such that $w \nVdash p$ and $L_{k}(x, \bar{w})$. By strong persistence, we know that $v \nVdash p$ for all $v \in R_{k}^{*}(w)$. Since $k \leq n$, we know that $\ell_{n} \in R_{k}^{*}(w) \cup\{w\}$, whence $\ell_{n} \in W \backslash \llbracket p \rrbracket$ follows. This contradicts the uniqueness of ℓ_{n} (cf. Lemma 4.5.3).

For the other direction, suppose $\forall w \in W \backslash \llbracket p \rrbracket: \forall x \neg L_{k}(x, \bar{w})$ and suppose further that $\ell_{n} \neq \bar{x}$ for all $x \in \llbracket p \rrbracket$. It follows that $\ell_{n} \in W \backslash \llbracket p \rrbracket$. Let $w \in W \backslash \llbracket p \rrbracket$; we prove $\ell_{k} \neq \bar{w}$. Consider an arbitrary x. If $k=0$ then since $\neg L_{k}(x, \bar{w})$, we infer $h_{k}(x) \neq \bar{w}$ and we are done. Otherwise, we have $h_{k}(x) \neq \bar{w}$ or $\exists z \geq x: h_{k-1}(z) \neq h_{k-1}(x)$. In the former case we are finished, so suppose $h_{k}(x)=\bar{w}$. Since there is a z such that $h_{k-1}(z) \neq h_{k-1}(x)=\bar{w}$, we obtain by definition of h_{k} that $h_{k}(y) \neq h_{k}(y+1)$ for some $y \geq x$, whence $\ell_{k} \neq \bar{w}$ follows. Hence, $\ell_{k} \Vdash p$ and certainly $\ell_{k} \neq \ell_{n}$. It follows that $n>k$ and by Lemma 4.5.3 that $\ell_{k} R_{\alpha} \ell_{n}$ for some $\alpha \in(k, n] \cup\{\omega\}$. But this is in contradiction to the property of \mathfrak{K} being strongly persistent, as $\ell_{k} \in \llbracket p \rrbracket$ and $\ell_{n} \in W \backslash \llbracket p \rrbracket$.

If $\left\{\varphi_{i} \mid i \in I\right\}$ is a primitive recursive set of formulas, we denote by $\left[\varphi_{i} \mid i \in I\right]$ a numeration which numerates the theory $\mathrm{PA}+\left\{\varphi_{i} \mid i \in I\right\}$. We stipulate that, for a formula φ, the numeration $[\varphi]$ is the same as $\underline{\varphi}$. Furthermore, we write $\operatorname{Con}_{n}\left[\varphi_{i} \mid i \in I\right]$ instead of $\operatorname{Con}_{n}\left(\left[\varphi_{i} \mid i \in I\right]\right)$.

For any variable $p \in \Delta$ we set

$$
p^{*}:=\left[\ell_{n} \Vdash p \mid n \geq M\right] .
$$

Lemma 4.5.8. For every variable $p \in \Delta$ of sort $k<\omega, p^{*}$ numerates a Π_{k+1}-axiomatized extension of PA.

Proof. Let p be a variable of sort $k<\omega$. Let $n \geq M$ and consider the sentence $\ell_{n} \Vdash p$. If $k \leq n$ then by Lemma 4.5.7, provably in PA,

$$
\ell_{n} \Vdash p \Longleftrightarrow \forall w \in W \backslash \llbracket p \rrbracket: \forall x \neg L_{k}(x, \bar{w})
$$

Notice that $L_{k}(a, b)$ is Σ_{k+1} in PA and so $\ell_{n} \Vdash p$ is provably equivalent to a Π_{k+1}-sentence. If $k>n$ then notice that for any $x \in W$, by definition provably in PA,

$$
\ell_{n}=\bar{x} \Longleftrightarrow \exists N_{0} \forall z>N_{0} H_{n}(z, \bar{x})
$$

H_{n} is Δ_{n+1} in PA. It follows that $\ell_{n}=\bar{x}$ is Σ_{n+2} in PA and thus $\ell_{n} \neq \bar{x}$ is Π_{n+2} in PA. Since PA $\vdash \exists!x \in W: \ell_{n}=\bar{x}$ (cf. Lemma 4.5.3), provably in PA,

$$
\ell_{n} \Vdash p \Longleftrightarrow \bigwedge\left\{\ell_{n} \neq \bar{x} \mid x \in W \backslash \llbracket p \rrbracket\right\}
$$

This proves the claim since $k=|p| \geq n+1$.
Therefore, \cdot^{*} defines an arithmetical realization in the sense of Definition 4.2.2.
Lemma 4.5.9. For all $n \in \omega, \ell_{n}=0$ is true in the standard model of arithmetic.
Proof. By Lemma 4.5.3, for every $n>M$ we either have $\ell_{n} R_{\omega} \ell_{n+1}$ or $\ell_{n+1}=\ell_{n}$. Since \mathfrak{K} is finite and R_{ω} is transitive and irreflexive, there is a $z \in W$ and a k such that $\ell_{m}=\bar{z}$ is true for all $m \geq k$. Suppose $z \neq 0$ and consider the minimal m such that $\mathbb{N} \models \ell_{m}=\bar{z}$. The function h_{m} has to arrive at z via the second clause of the definition of h_{m}. So there is an $n \geq \max \{M, m\}$ such that $[m]_{\mathrm{PA}}\left(\ell_{n} \neq \bar{z}\right)$ is true. Since PA is sound this means that $\ell_{n} \neq \bar{z}$ is true which contradicts our assumption. So there is a k such that $\ell_{m}=0$ for all $m \geq k$. If $\ell_{n} \neq 0$ for some $n<k$ then by Lemma 4.5 .3 we know that $\ell_{n} R_{\alpha} \ell_{k}$ for some $\alpha \in(n, k] \cup\{\omega\}$. But this is impossible since the node 0 has no incoming arcs.

The following two main lemmas are from Beklemishev [7].
Lemma 4.5.10. For any formula $A \in \Delta$,

$$
\left[\ell_{n} \Vdash A \mid n \geq M\right] \Rightarrow{ }_{\mathrm{PA}} A^{*}
$$

Proof. By induction on A. The base cases where $A=\top$ or $A=p$ for some $p \in \Delta$ are trivial. Suppose $A=B \wedge C$. By inductive hypothesis we know

$$
\begin{aligned}
& {\left[\ell_{n} \Vdash B \mid n \geq M\right] \Rightarrow{ }_{\mathrm{PA}} B^{*}} \\
& {\left[\ell_{n} \Vdash C \mid n \geq M\right] \Rightarrow{ }_{\mathrm{PA}} C^{*}}
\end{aligned}
$$

whence

$$
\begin{aligned}
& {\left[\ell_{n} \Vdash A \mid n \geq M\right] \Rightarrow{ }_{\mathrm{PA}} B^{*},} \\
& {\left[\ell_{n} \Vdash A \mid n \geq M\right] \Rightarrow \mathrm{PA} C^{*}}
\end{aligned}
$$

and thus $\mathrm{PA} \vdash\left[\ell_{n} \Vdash A \mid n \geq M\right] \Rightarrow A^{*}$ follows.
Suppose $A=m B$ for some $m<\omega$. Then $A^{*}=\operatorname{Con}_{m}\left(B^{*}\right)$ and so A^{*} numerates a finite extension of PA. Therefore it is sufficient to establish

$$
\mathrm{PA}+\ell_{M} \Vdash A \vdash \underline{\operatorname{Con}}_{m}\left(B^{*}\right)
$$

We know by the inductive hypothesis that

$$
\left[\ell_{n} \Vdash B \mid n \geq M\right] \Rightarrow{ }_{\mathrm{PA}} B^{*}
$$

and so

$$
\mathrm{PA}+\operatorname{Con}_{m}\left[\ell_{n} \Vdash B \mid n \geq M\right] \vdash \operatorname{Con}_{m}\left(B^{*}\right) .
$$

By a formalized version of the compactness theorem, the formula $\operatorname{Con}_{m}\left[\ell_{n} \Vdash B \mid n \geq M\right]$ is equivalent to

$$
\forall n \geq M \operatorname{Con}_{m}\left[\bigwedge_{k=M}^{n} \ell_{k} \Vdash B\right],
$$

which is by Lemma 4.5.6 equivalent to

$$
\forall n \geq M \operatorname{Con}_{m}\left[\ell_{n} \Vdash B\right] .
$$

To infer this sentence from $\ell_{M} \Vdash m B$, we reason in PA as follows. Suppose $\ell_{M} \Vdash m B$. Then there is a $w \in W$ such that $\ell_{M} R_{m} w$ and $w \Vdash B$. We know that $m \leq M$ and by Lemma 4.5.3, we either have $\ell_{m} R_{\alpha} \ell_{M}$ for some $\alpha \in(m, M] \cup\{\omega\}$ or $\ell_{m}=\ell_{M}$. Since \mathfrak{K} is an RJ^{*}-model, we certainly have $\ell_{m} R_{m} w$. Suppose to the contrary that $\neg \operatorname{Con}_{m}\left[\ell_{n} \Vdash B\right]$ for some $n \geq M$. Then $[m]_{\mathrm{PA}}\left(\ell_{n} \nVdash B\right)$ and also $[m]_{\mathrm{PA}}\left(\ell_{n} \neq \bar{w}\right)$. Consider an N_{0} such that $\forall x \geq N_{0}: h_{m}(x)=\ell_{m}$. There exists a $y>x_{0}$ such that $\operatorname{Prf}_{m}\left(\left\ulcorner\ell_{n} \neq \bar{w}\right\urcorner, y\right)$, since there are arbitrarily long proofs. But then $h_{m}(y+1)$ is different from ℓ_{m} due to irreflexivity of \mathfrak{K}, a contradiction. This proves this case.

Suppose now that $A=\omega B$. We know that

$$
\left[\operatorname{Con}_{n}\left(B^{*}\right) \mid n \geq M\right] \Rightarrow \mathrm{PA}(\omega B)^{*}
$$

since the strength of $\operatorname{Con}_{n}\left(B^{*}\right)$ increases with n. Furthermore,

$$
\left.\left.\begin{array}{rl}
{\left[\forall k \geq \bar{n} \operatorname{Con}_{n}\left[\ell_{k} \Vdash B\right] \mid n \geq M\right]} & \Rightarrow \mathrm{PA}\left[\forall k \geq M \operatorname{Con}_{n}\left[\ell_{k} \Vdash B\right] \mid n \geq M\right] \\
& \Rightarrow \mathrm{PA}
\end{array} \operatorname{Con}_{n}\left(B^{*}\right) \right\rvert\, n \geq M\right],
$$

by the inductive hypothesis and Lemma 4.5.6. We prove

$$
\left[\ell_{n} \Vdash \omega B \mid n \geq M\right] \Rightarrow \mathrm{PA}\left[\forall k \geq \bar{n} \operatorname{Con}_{n}\left[\ell_{k} \Vdash B\right] \mid n \geq M\right],
$$

by proving by an argument formalizable in PA that, for all $n \geq M$,

$$
\mathrm{PA}+\ell_{n} \Vdash \omega B \vdash \forall k \geq \bar{n} \operatorname{Con}_{n}\left[\ell_{k} \Vdash B\right] .
$$

Let $n \geq M$ and suppose $\ell_{n} \Vdash \omega B$. Then $z \Vdash B$ for some $z \in W$ such that $\ell_{n} R_{\omega} z$ and z being different from ℓ_{n}. Now if $\exists k \geq \bar{n}[n]_{\mathrm{PA}}\left(\ell_{k} \nVdash B\right)$ then since $n \geq M$, we obtain that $\exists k \geq \max \{n, M\}[n]_{\mathrm{PA}}\left(\ell_{k} \neq z\right)$. But then h_{n} has to obtain a value different from ℓ_{n} by the second clause of the definition of h_{n}, a contradiction.

Lemma 4.5.11. For any formula $A \in \Delta$,

$$
\underline{\ell_{0} \neq 0} \vee A^{*} \Rightarrow \mathrm{PA}\left[\ell_{n} \Vdash A \mid n \geq M\right] .
$$

Proof. By induction on A. The cases $A=\mathrm{T}$ and $A=p$ for a variables p are immediate. The case of conjunction can be easily derived too. Suppose that $A=m B$ for $m<\omega$. Notice that $\ell_{0} \neq 0$ is a Σ_{1}-sentence. Hence,

$$
\begin{aligned}
\mathrm{PA}+\ell_{0} \neq 0 \wedge \operatorname{Con}_{m}\left(B^{*}\right) & \vdash \square_{\mathrm{PA}}\left(\ell_{0} \neq 0\right) \wedge \operatorname{Con}_{m}\left(B^{*}\right) \\
& \vdash \operatorname{Con}_{m}\left(\underline{\ell_{0} \neq 0} \vee B^{*}\right) \\
& \vdash \operatorname{Con}_{m}\left[\ell_{k} \Vdash B \mid k \geq M\right] \\
& \vdash \forall k \geq M \operatorname{Con}_{m}\left[\ell_{k} \Vdash B\right] .
\end{aligned}
$$

We prove that for all $n \geq M$,

$$
\mathrm{PA} \vdash \ell_{0} \neq 0 \wedge \ell_{n} \nVdash m B \rightarrow \exists k \geq M[m]_{\mathrm{PA}}\left(\ell_{k} \nVdash B\right) .
$$

We reason in PA as follows. Suppose $\ell_{0} \neq 0$ and $\ell_{n} \nVdash m B$. We know by Lemma 4.5.3 that $\ell_{m} R_{k} \ell_{n}$ for some $k>m, \ell_{m}=\ell_{n}$, or $\ell_{m} R_{\omega} \ell_{n}$. In each case, since \mathfrak{K} is an $\mathrm{RJ}_{\Lambda}^{*}$-model, it holds that $\ell_{m} \nVdash m B$. Let $b:=\ell_{m}$. We know that $\exists x L_{m}(x, b)$, whence $\ell_{k} \in R_{m}^{*}(b) \cup\{b\}$ follows for all $k \geq m$. Furthermore, $\exists x L_{m}(x, b)$ is easily seen to be a Σ_{m+1}-formula. Hence, $[m]_{\text {PA }} \exists x L_{m}(x, \dot{b})$ and so

$$
\begin{equation*}
\forall k \geq m[m]_{\mathrm{PA}}\left(\ell_{k} \in R_{m}(\dot{b}) \cup\{\dot{b}\}\right) . \tag{4.2}
\end{equation*}
$$

We now claim that $\forall z \in R_{m}(b): z \nVdash B$. For suppose otherwise, i.e., $z \Vdash B$ for some z such that $b R_{\alpha} z$ and $\alpha \geq m$. Then $b \Vdash \alpha B$, whence by Δ-monotonicity we have $b \Vdash m B$, contradicting $\ell_{m} \nVdash m B$. The formula $\forall z \in R_{m}(b): z \nVdash B$ is bounded, hence

$$
\begin{equation*}
[m]_{\mathrm{PA}}\left(\forall z \in R_{m}(\dot{b}): z \nVdash B\right) . \tag{4.3}
\end{equation*}
$$

We now prove that $\exists k \geq M[m]_{\mathrm{PA}}\left(\ell_{k} \neq \dot{b}\right)$ which finishes this case by (4.2) and (4.3). Consider the minimal $i \leq m$ such that $\ell_{i}=\ell_{m}=b$. By $\ell_{0} \neq 0$, we also have that $\ell_{m}=b \neq 0$. It follows that h_{i} can move to b only by virtue of the second clause of the definition of h_{i}. Therefore,

$$
\exists k \geq \max \{M, i\}[i]_{\mathrm{PA}}\left(\ell_{k} \neq \dot{b}\right) .
$$

By $i \leq m \leq M$, it follows that

$$
\exists k \geq M[m]_{\mathrm{PA}}\left(\ell_{k} \neq \dot{b}\right),
$$

as required.
Suppose $A=\omega B$. It holds that

$$
(\omega B)^{*}=\left[\operatorname{Con}_{n}\left(B^{*}\right) \mid n \in \omega\right] .
$$

By inductive hypothesis, we have

$$
\underline{\ell_{0} \neq 0} \vee B^{*} \Rightarrow_{\mathrm{PA}}\left[\ell_{k} \Vdash B \mid k \geq M\right],
$$

whence
follows for every $n \in \omega$. Therefore, for every $n \in \omega$,

$$
\mathrm{PA}+\ell_{0} \neq 0+\operatorname{Con}_{n}\left(B^{*}\right) \vdash \forall k \geq M \operatorname{Con}_{n}\left[\ell_{k} \Vdash B\right] .
$$

Being formalizable uniformly in n, we obtain

$$
\underline{\ell_{0} \neq 0} \vee(\omega B)^{*} \Rightarrow \mathrm{PA}\left[\forall k \geq M \operatorname{Con}_{n}\left[\ell_{k} \Vdash B\right] \mid n \geq M\right] .
$$

It remains to prove that

$$
\underline{\ell_{0} \neq 0} \vee\left[\forall k \geq M \operatorname{Con}_{n}\left[\ell_{k} \Vdash B\right] \mid n \geq M\right] \Rightarrow \mathrm{PA}\left[\ell_{n} \Vdash \omega B \mid n>M\right],
$$

since $\left[\ell_{n} \Vdash \omega B \mid n>M\right] \Rightarrow \mathrm{PA}\left[\ell_{n} \Vdash \omega B \mid n \geq M\right]$. We show by an argument uniformly formalizable in n in PA that, for each $n>M$,

$$
\mathrm{PA}+\ell_{0} \neq 0 \wedge \ell_{n} \nVdash \omega B \vdash \exists k \geq M[n]_{\mathrm{PA}}\left(\ell_{k} \nVdash B\right) .
$$

We reason in PA as follows. Suppose that $n>M$ and $\ell_{n} \nVdash \omega D$. Let $b:=\ell_{n}$ and consider the minimal $m \leq n$ such that $\ell_{m}=\ell_{n}=b$. We know by $\ell_{0} \neq 0$ that $\ell_{n}=b \neq 0$. We first prove that

$$
\begin{equation*}
\forall k \geq \max \{m, M\}[n]_{\mathrm{PA}}\left(\ell_{k} \in R_{\omega}(\dot{b}) \cup\{\dot{b}\}\right) . \tag{4.4}
\end{equation*}
$$

We distinguish two cases. If $m>M$ then we infer $\exists x L_{m}(x, b)$ and $[m]_{\text {PA }} \exists x L_{m}(x, b)$. As before, for $k \geq m>M$, it holds that $\ell_{k} \in R_{\omega}(b) \cup\{b\}$, whence $[m]_{\mathrm{PA}}\left(R_{\omega}(\dot{b}) \cup\{\dot{b}\}\right)$ and so $\forall k \geq m[n]_{\mathrm{PA}}\left(\ell_{k} \in R_{\omega}(\dot{b}) \cup\{\dot{b}\}\right)$ as desired.

Suppose now $m \leq M<n$. By the definition of h_{n}, it is easy to convince oneself that $\ell_{M}=b$. Thus $[n]_{\mathrm{PA}}\left(\ell_{M}=\dot{b}\right)$ since $M<n$. Furthermore, for $k>M, \ell_{M}=b$ also entails that $\ell_{k} \in R_{\omega}(b) \cup\{b\}$, since $R_{k}^{*}(b)=R_{\omega}(b)$ and so h_{k} has to move on R_{ω} from b onward. Therefore, $\forall k \geq M[n]_{\mathrm{PA}}\left(\ell_{k} \in R_{\omega}(\dot{b}) \cup\{\dot{b}\}\right)$ as before.

Notice that $\forall z \in R_{\omega}(b): z \nVdash B$. As in the case before, from $\ell_{k} \in R_{\omega}(b)$, we thus easily infer that $\ell_{k} \nVdash B$. Hence by (4.4) we have

$$
\begin{equation*}
\forall k \geq \max \{m, M\}[n]_{\mathrm{PA}}\left(\ell_{k} \nVdash B \vee \ell_{k}=\dot{b}\right) . \tag{4.5}
\end{equation*}
$$

By $\ell_{n}=\ell_{m}=b \neq 0$ and the definition of h_{m}, we know that $\exists k \geq \max \{m, M\}[m]_{\mathrm{PA}}\left(\ell_{k} \neq\right.$ \dot{b}). Combining this with (4.5), we obtain $\exists k \geq \max \{m, M\}[n]_{\mathrm{PA}}\left(\ell_{k} \nVdash B\right)$ and so $\exists k \geq$ $M[n]_{\mathrm{PA}}\left(\ell_{k} \nVdash B\right)$ as required.

Now at the root $r=1$ we have $\mathfrak{K}, r \Vdash A$ and $\mathfrak{K}, r \nVdash B$. Let σ be the numeration $\left[\ell_{n}=\overline{1} \mid n \geq M\right]$ and let S be the theory numerated by σ. By Lemma 4.5.10, we know that

$$
\begin{aligned}
\sigma & \Rightarrow \mathrm{PA}\left[\ell_{n} \Vdash A \mid n \geq M\right] \\
& \Rightarrow \mathrm{PA} A^{*} .
\end{aligned}
$$

By Lemma 4.5.11 we also have

$$
\begin{aligned}
\underline{\ell_{0} \neq 0} \vee B^{*} & \Rightarrow \mathrm{PA}\left[\ell_{n} \Vdash B \mid n \geq M\right] \\
& \Rightarrow \mathrm{PA}\left[\ell_{n} \neq \overline{1} \mid n \geq M\right]
\end{aligned}
$$

Now if $A^{*} \Rightarrow B^{*}$ then $S \vdash \ell_{M} \neq \overline{1}$ and so S is inconsistent. Since PA $\vdash \ell_{n}=\overline{1} \rightarrow \ell_{m}=\overline{1}$ for all $m \leq n$, we know that there is a PA-proof of $\ell_{n} \neq \overline{1}$ for some $n \geq M$. (For otherwise, $\mathrm{PA} \vdash S$ and so PA would be inconsistent too.) Therefore, the function h_{0} has to take on a value different from 0 which is impossible since $\ell_{0}=0$ is true in the standard model.

Example 4.5.12. Recall from Example 4.3 .7 that $\mathrm{RC}^{*} \vdash \omega p \wedge \omega q \Rightarrow \omega(p \wedge q)$ iff $|p|<\omega$ or $|q|<\omega$. By Theorem 4.5 .1 we infer that there are theories S, T extending PA such that

$$
\mathrm{PA}+\operatorname{RFN}(S)+\operatorname{RFN}(T) \nvdash \operatorname{RFN}(S+T)
$$

As also remarked by Beklemishev [7], note that both S and T must be both of unbounded arithmetical complexity, for suppose without loss of generality that S is a $\Pi_{n+1^{-}}$ axiomatized extension of PA. By Example 4.3 .7 we know that $\mathrm{RC}^{*} \vdash \omega p \wedge \omega q \Rightarrow \omega(p \wedge q)$, whenever $|p|<\omega$. In particular, if $|p|=n$, we infer by Proposition 4.2.10 that

$$
\mathrm{PA}+\operatorname{RFN}(S)+\operatorname{RFN}(T) \vdash \operatorname{RFN}(S+T)
$$

Therefore, as remarked by Beklemishev [7], the use of infinite theories is necessary in the proof of Theorem 4.5.1.
For a strengthening of the insights due to the previous examples, we augment the proof of Theorem 4.5.1 by the following lemma which strengthens Lemma 4.5.6.

Lemma 4.5.13. Let $n \geq m$ and A be a formula such that $|A| \leq m$. Then,

$$
\mathrm{PA} \vdash\left(\ell_{m} \Vdash A\right) \rightarrow\left(\ell_{n} \Vdash A\right) .
$$

Proof. Assume $n>m \geq|A|$ and, reasoning in PA, suppose $\ell_{n} \nVdash A$. By Lemma 4.5.3 we know that $\ell_{m}=\ell_{n}$ or $\ell_{m} R_{\alpha} \ell_{n}$ for some $\alpha \in(m, n] \cup\{\omega\}$. The case of $\ell_{m}=\ell_{n}$ is clear, so suppose $\ell_{m} R_{\alpha} \ell_{n}$. By Lemma 4.5.5 we then also have $\ell_{m} \nVdash A$ as $|A| \leq m<\alpha$.

Although we know that the use of infinite theories is necessary by the previous example, we readily see that the following corollary can be read of the proof of Theorem 4.5.1.

Corollary 4.5.14. Let A and B be formulas such that $\mathrm{RC}^{*} \nvdash A \Rightarrow B$. Then there exists an arithmetical realization .* such that
(i) for any variable p occurring in A or B, p^{*} numerates a finite extension of PA in case $|p|<\omega$;
(ii) $A^{*} \Rightarrow B^{*}$ does not hold.

Proof. Consider the arithmetical interpretation ** constructed in the proof of Theorem 4.5.1. Let p be a variable of sort n occurring in A or B. By definition,

$$
p^{*}=\left[\ell_{n} \Vdash p \mid n \geq M\right] .
$$

We claim that p^{*} is provably equivalent in PA to $\ell_{k} \Vdash p$, where $k=\max \{M, n\}$. The fact that $\ell_{k} \Vdash p$ is implied by p^{*} in PA is immediate by the definition of p^{*}. We thus show that p^{*} follows from $\ell_{k} \Vdash p$ in PA. Suppose first that $n<M$. Let $m>M$ and, reasoning in PA, suppose $\ell_{M} \Vdash p$. We know that either $\ell_{m} \Vdash p$ or $\ell_{m} \nVdash p$. Now if $\ell_{m} \nVdash p$ then Lemma 4.5.13 yields $\ell_{M} \nVdash p$ which is impossible. Suppose now that $n \geq M$. For all j such that $M \leq j \leq n$ we know that PA proves that $\ell_{n} \Vdash p$ implies $\ell_{j} \Vdash p$ by Lemma 4.5.6. So suppose $m>n$ and assume $\ell_{n} \Vdash p$. Then either $\ell_{m} \Vdash p$ or $\ell_{m} \nVdash p$, where we see that the latter is impossible by Lemma 4.5.13 and considering the fact that $|p|=n<m$.

Hence, we can let

$$
p^{*}:=\underline{\ell_{k} \Vdash p} .
$$

Notice that, as in the proof of Lemma 4.5.8, we can directly find a Π_{n+1}-sentence which is equivalent in PA to the sentence $\ell_{k} \Vdash p$.

Bibliography

[1] Sergei N. Artemov and Lev D. Beklemishev. Provability Logic. In Handbook of Philosophical Logic, 2nd ed., pages 229-403. Kluwer, 2004.
[2] Lev D. Beklemishev. Provability algebras and proof-theoretic ordinals, I. Annals of Pure and Applied Logic, 128(1-3):103-123, 2004.
[3] Lev D. Beklemishev. Reflection Principles and Provability Algebras in Formal Arithmetic. Logic Group preprint series. Department of Philosophy, Utrecht Univ., 2005.
[4] Lev D. Beklemishev. The Worm Principle. In Z. Chatzidakis, P. Koepke, and W. Pohlers, editors, Lecture Notes in Logic 27. Logic Colloquium '02, pages 75-95. AK Peters, 2006. Preprint: Logic Group Preprint Series 219, Utrecht Univ., March 2003.
[5] Lev D. Beklemishev. Kripke semantics for provability logic GLP. Annals of Pure and Applied Logic, 161(6):756-774, 2010.
[6] Lev D. Beklemishev. A simplified proof of arithmetical completeness theorem for provability logic GLP. Proceedings of the Steklov Institute of Mathematics, 274(1): 25-33, 2011.
[7] Lev D. Beklemishev. Positive provability logic for uniform reflection principles. Annals of Pure and Applied Logic, 165(1):82-105, 2014.
[8] Lev D. Beklemishev, David Fernández-Duque, and Joost J. Joosten. On provability logics with linearly ordered modalities. Studia Logica, 102(3):541-566, 2014.
[9] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2002.
[10] George S. Boolos. Omega-consistency and the diamond. Studia Logica, 39(2-3): 237-243, 1980.
[11] George S. Boolos. The Logic of Provability. Cambridge University Press, 1993.
[12] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic. Cambridge University Press, fifth edition, 2007.
[13] Evgeny V. Dashkov. On the positive fragment of the polymodal provability logic GLP. Mathematical Notes, 91(3):318-333, 2012. Original Russsian text in: Matematicheskie Zametki, 91:(3):331-336, 2012.
[14] Dick de Jongh and Giorgi K. Japaridze. The Logic of Provability. In Samuel R. Buss, editor, Handbook of Proof Theory, volume 137 of Studies in Logic and the Foundations of Mathematics, pages 475-546. Elsevier, Amsterdam, 1998.
[15] J. Michael Dunn. Positive Modal Logic. Studia Logica, 55(2):301-317, 1995.
[16] Solomon Feferman. Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae, 49(1):35-92, 1960.
[17] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112(1):493-565, 1936.
[18] Gerhard Gentzen. Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. 1938.
[19] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173-198, 1931.
[20] Kurt Gödel. Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse Math. Kolloq., 4:39-40, 1933.
[21] Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Perspectives in Mathematical Logic. Springer-Verlag Berlin Heidelberg, 1998.
[22] Leon Henkin. A problem concerning provability. The Journal of Symbolic Logic, 17 (2):160, 1952.
[23] David Hilbert and Paul Bernays. Grundlagen der Mathematik II. Springer-Verlag, second edition, 1970.
[24] Konstantin N. Ignatiev. On Strong Provability Predicates and the Associated Modal Logics. The Journal of Symbolic Logic, 58(1):249-290, 031993.
[25] Giorgi K. Japaridze. The polymodal logic of provability. In Intensional Logics and Logical Structure of Theories: Material from the fourth Soviet-Finnish Symposium on Logic, Telavi, May 20-24, 1985, Metsniereba, Tbilisi, pages 16-48, 1988. In Russian.
[26] Stephen C. Kleene. Introduction to Metamathematics. North-Holland Publishing Company, 1952. Co-publisher: ISHI Press Int., 2009.
[27] Georg Kreisel. Wie die Beweistheorie zu ihren Ordinalzahlen kam und kommt. Jahresbericht der DMV, 78(4):177-223, 1977.
[28] Georg Kreisel and Azriel Lévy. Reflection principles and their use for establishing the complexity of axiomatic systems. Zeitschrift f. math. Logik und Grundlagen d. Math., 14:97-142, 1968.
[29] Kenneth Kunen. Set Theory, volume 34 of Studies in logic. College Publications, 2011.
[30] Martin H. Löb. Solution of a problem of Leon Henkin. The Journal of Symbolic Logic, 20:115-118, 1955.
[31] Roberto Magari. The diagonalizable algebras (the algebraization of the theories which express Theor.:II). Bollettino della Unione Matematica Italiana, 12(4):117125, 1975.
[32] Michael Rathjen. The realm of ordinal analysis. In S. Cooper and J. Truss, editors, Sets and Proofs, pages 219-279. Cambridge University Press, 1999.
[33] John B. Rosser. Extensions of Some Theorems of Gödel and Church. The Journal of Symbolic Logic, 1(3):87-91, 1936.
[34] Ilya Shapirovsky. PSPACE-decidability of Japaridze's polymodal logic. In Advances in Modal Logic, volume 7, pages 289-304, 2008.
[35] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley Series in Logic. AddisonWesley, 1967.
[36] Craig Smoryński. The Incompleteness Theorems. In Jon Barwise, editor, Handbook of Mathematical Logic, volume 90 of Studies in logic and the foundations of mathematics, pages 821-865. North-Holland Pub. Co., 1977.
[37] Craig Smoryński. Modal Logic and Self-Reference. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, pages 441-495. Reidel, Dordrecht, 1984.
[38] Craig Smoryński. Self-Reference and Modal Logic. Springer-Verlag, 1985.
[39] Robert M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics, 25(3-4):287-304, 1976.
[40] Alfred Tarski. Der Wahrheitsbegriff in den Formalisierten Sprachen. Studia Philosophica, 1:261-405, 1936.
[41] Richard Zach. Hilbert's program. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Winter 2014 edition, 2014.

[^0]: ${ }^{1}$ We consider ω to be the set of natural numbers and we often regard each natural number $n \in \omega$ to be a set consisting of all and only its predecessors.

[^1]: ${ }^{2}$ One does not need the entire strength of PA to develop certain metamathematical notions. However, we will restrict our discussion to PA. Interested readers may consult Hájek and Pudlák [21] for an extensive treatment of the development of metamathematics in first-order arithmetic.

[^2]: ${ }^{3}$ Sufficient properties of \square_{T} to derive the second incompleteness theorem were first offered by Hilbert and Bernays (see Hilbert and Bernays [23]). However, the present formulation is due to Löb [30] and is more convenient for many purposes (cf. also Smoryński [38] for a discussion).

[^3]: ${ }^{4}$ Private communications with Matthias Baaz. See also Zach [41] for an excellent overview on Hilbert's program.

[^4]: ${ }^{5}$ By $[n]$-necessitation we just mean the rule $\varphi /[n] \varphi$.

[^5]: ${ }^{1}$ For Elementary Arithmetic, see Beklemishev [3].

[^6]: ${ }^{2}$ As usual, we use \top to denote a valid statement in the language of arithmetic, e.g., $\top:=\neg \perp$.

[^7]: ${ }^{1}$ If \mathcal{L} is a modal logic, then its positive fragment is defined to be its theorems of the form $\varphi \rightarrow \psi$, where φ and ψ are positive formulas in the sense of Definition 4.1.1.
 ${ }^{2}$ Dunn actually identifies positive fragments of modal logics to also contain the connectives \square and \vee besides those in Definition 4.1.1.

[^8]: ${ }^{3}$ The empty conjunction is defined to be T.

