
Performance Testing in
Heterogeneous and Distributed

Engineering Environments
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Christian Macho
Matrikelnummer 0726108

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Mitwirkung: Dipl.-Ing. Dietmar Winkler

Wien, 21.1.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Performance Testing in
Heterogeneous and Distributed

Engineering Environments
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Christian Macho
Registration Number 0726108

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Assistance: Dipl.-Ing. Dietmar Winkler

Vienna, 21.1.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Christian Macho
Walter Klenner Straße 3, 3830 Waidhofen an der Thaya

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Abstract

Software Quality is an important aspect in modern Software Engineering and Software Engineer-
ing development processes. To ensure the quality of modern software systems, there exist many
types of tests and approaches, such as acceptance testing or performance testing. As Software
Engineering is a growing field and methods of Software Engineering are also transferred to other
disciplines, this transfer is also interesting for Software Quality methods. One of the disciplines
that Software Engineering methods are heading to, is the area of Automation Systems as these
systems get larger and more complex. There are approaches to solve the occurring challenges
such as the Automation Service Bus (ASB). Due to the raising complexity, a need of controlling
the quality also raises. At that point Software Testing approaches can be applied. Performance
Testing is a part of Software Testing and should therefore also be taken into account.

Performance Testing is a difficult task. There are many available tools and they all have
different features and aims. Therefore, there is a challenge to determine a representative list
of criteria that reflect the needs of the users concerning the usage of a tool. Subsequently, a
tool has to be found that fulfills the criteria best. In order to be able to execute performance
tests, a method outlining how to do performance tests in this environment has to be found and
summarized in a framework. Further, this framework has to be shown working.

For this purpose a tool study of available Performance Testing tools is performed with a list
of collected requirements of the users. As a result of this tools study, a most suitable tool is
found. Subsequently, a Performance Testing Framework is designed and implemented with the
most suitable tool. This framework is then applied on a web front-end of an industrial application
running in the Automation Service environment. It is checked if the framework is feasible for
applying it in the research environment.

The results of this thesis present a list of criteria, tailored to the research environment, to
find a tool that is able to allow a Performance Analysis - JMeter. Around and with JMeter a
framework is implemented and the case study shows that the framework with JMeter works well
for this use case. There is space for future study, such as extending the tests or distribute the
Performance Analysis.

iii

Kurzfassung

Software Qualität ist ein wichtiger Aspekt im modernen Software Engineering und in Software
Engineering Prozessen. Um die Qualität von modernen Software Systemen zu sichern, gibt es
viele Arten von Tests und Ansätzen, wie zum Beispiel Akzeptanz Tests oder Performance Tests.
Da Software Engineering ein wachsendes Gebiet ist und die Methoden des Software Enginee-
ring auch auf andere Disziplinen übertragen werden, ist es auch interessant, Software Quali-
tätssicherungsmethoden auf andere Disziplinen zu übertragen. Eine solcher Disziplinen, auf die
Software Engineering Methoden angewandt werden, sind Automations Systeme, die ebenfalls
immer größer und komplexer werden. Es gibt Ansätze die auftretenden Herausforderungen zu
lösen, wie zum Beispiel den Automation Service Bus (ASB). Aufgrund der steigenden Kom-
plexität, entsteht auch das Bedürfnis die Qualität zu kontrollieren. An diesem Punkt können
Software Testing Ansätze angewandt werden. Performance Testing ist Teil des Software Testing
und sollte deshalb auch in Betracht gezogen werden

Performance Testing ist eine schwierige Aufgabe. Es gibt viele verfügbare Tools, die alle
verschiedene Funktionen und Ziele haben. Deshalb ist es eine Herausforderung eine repräsen-
tative Liste an Kriterien zu ermitteln, die den Bedürfnissen der User an das Tool entspricht. Im
Anschluss muss ein Tool gefunden werden, dass die Kriterien am besten erfüllt. Um Performan-
ce Tests ausführen zu können, müssen Methoden gefunden werden, wie Performance Tests in
der Umgebung am besten ausgeführt werden können. Diese Methoden werden in ein Framework
zusammen gefasst. Weiters muss gezeigt werden, dass dieses Framework funktioniert.

Zu diesem Zweck wird eine Tool Studie, mit einer Liste an Anforderungen der User, durch-
geführt. Ein Ergebnis der Studie ist ein Tool, welches die Anforderungen am besten erfüllt.
Danach wird ein Performance Testing Framework entworfen und umgesetzt mit dem vielver-
sprechendsten Tool. Dieses Framework wird dann auf ein Web Front-End einer Industrie Appli-
kation angewandt, die in einem Automation Environment läuft. Weiters wird überprüft ob das
Framework im Rahmen der Forschungsumgebung realisierbar und anwendbar ist.

Die Ergebnisse dieser Arbeit präsentieren eine Liste an Kriterien, die auf die Forschungsum-
gebung zugeschnitten sind, um ein Tool zu finden, dass es eine Performance Analyse möglich
macht - JMeter. Um und mit JMeter wird ein Framework umgesetzt und eine Fallstudie zeigt dass
das Framework mit JMeter in diesem Use Case gut funktioniert. Es gibt noch Platz für weitere
Studien, wie zum Beispiel die Tests zu erweitern oder die Performance Analyse zu verteilen.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Motivating Example . 2
1.4 Aim of the Work . 3
1.5 Methodological Approach . 4
1.6 Structure of the Work . 5

2 Related Work 7
2.1 Heterogeneous and Distributed Engineering Projects 7
2.2 Performance Testing . 10
2.3 Performance Testing Frameworks and Tools 15
2.4 Summary . 21

3 Research Context and Issues 23
3.1 Use Case - Change Management Workflow 23
3.2 Research Question 1 - Tool Selection . 26
3.3 Research Question 2 - Test Framework Design and Implementation 27
3.4 Research Question 3 - Test Framework Evaluation 28

4 Solution Approach 29
4.1 Tool Selection . 29
4.2 Test Framework Design and Implementation 32
4.3 Test Framework Evaluation . 37

5 Tool Evaluation Results 39
5.1 Application Requirements . 39
5.2 Tool Evaluation . 47

6 Test Framework Design and Implementation 65
6.1 General Design . 65
6.2 Checkin Page Tests . 70
6.3 Checkin Process Tests . 70
6.4 Checkin Process Increasing Users Test . 72

vii

7 Test Framework Evaluation Results 75
7.1 Reaching the Checkin Page - Type 1 . 75
7.2 Full Checkin - Type 2 . 80
7.3 Maximum Load - Type 3 . 86

8 Discussion and Limitations 91
8.1 Discussion . 91
8.2 Limitations and Threats to Validity . 99

9 Conclusion and Future Work 101
9.1 Goal of the Thesis . 101
9.2 Methodology . 102
9.3 Tool Selection . 102
9.4 Test Framework Design and Implementation 103
9.5 Test Framework Evaluation . 103
9.6 Future Work . 103

Bibliography 105

A List of Performance Tools 113

List of Figures 117

List of Tables 119

viii

CHAPTER 1
Introduction

This chapter introduces into the area of research and presents a motivation for the thesis. It
further expresses the problem that is addressed and the expected results as aim of the thesis. The
chapter closes with an overview of the structure of the thesis.

1.1 Motivation

Ensuring the quality of nowadays applications is a very important part in modern Software
Engineering. More and more companies have introduced quality assurance methods to their
development processes. As quality assurance is a wide spread area, each of the parts may be
important to the project to help improving the quality. Software Performance Testing is a part
of the quality assuring methods. Hence, it is also important for projects. Further Software
Engineering processes and Software Engineering itself spreads more over to other application
areas and therefore gets involved in interdisciplinary projects.

One of these new environments in which Software Engineering raises, is the area of Au-
tomation Systems. In this area, production systems get more complex. As a consequence there
is a need for an easier handling of those systems. There already exists research for integrating
the technical parts of Automation Systems [2, 24, 49, 75] as well as for the general integration
of Software Engineering tools and systems called the “Automation Service Bus” (ASB) [19].
The raising complexity of Automation Systems also requests a process that is able to check the
quality of the product. At this point Software Testing comes into play. There are already some
approaches that deal with the methods of Software Testing and try to apply them to the area of
Automation Systems [45, 86–88]. In these publications there is no explicit work that deals with
Performance Testing in this field. Hence, this thesis focuses on the application of Performance
Testing methods from the typical Software Engineering/Software Testing field in the area of
Automation Systems.

The addressed audience by this work are engineers in the Automation Systems area and
people developing processes for this area. They have to test their systems and ensure the quality

1

of the product and hence have to steadily improve the used methods to secure the validity and
correctness of the results.

1.2 Problem Statement

As seen in section 1.1, there is ongoing research in terms of applying processes of modern Soft-
ware Engineering to the discipline of heterogeneous distributed systems, such as the Automa-
tion environment provides. As well for common Software Engineering processes the difficulty
is also present when applying Software Testing processes. There are some problems that arise
when adopting Software Testing processes to Automation environments [86–88]. Some of the
aspects of Software Testing have already been applied to the Automation environment. As in
most disciplines, performance plays a remarkable role also in Automation environments. The
applications have to provide a satisfying performance in means of response time, throughput or
scalability. At this point the engineers are confronted with the task of testing the requirements
for performance issues. The recent research has shown that Software Engineering processes can
be applied to Automation Systems area [86–88] especially for testing. In contrast to unit testing
there is no research that has dealt with the application of software performance testing processes
in the Automation Systems discipline. This thesis seizes this gap, evaluates tool candidates for
applying performance analysis and develops a solution approach for heterogeneous distributed
systems in an Automation environment in means of Performance Testing.

Connected to that we address three tasks. All three are directly correlated with the ASB.
Figure 1.1 shows the location of the problems concerning the (extracted) research environment.

Number 1 represents the selection of the tools. This includes the problem of how to select
a tool which further includes how to select values representing a good choice. We want to find
a tool that is most promising concerning the parameters chosen in this part. The outcome is
a tool (or a set of tools) that fulfills the requirements best. Subsequently there is a need of a
framework that uses this tool (or set of tools) to do performance analysis. This is represented by
number 2 in figure 1.1. We design a framework around the most promising tool from number
1 and implement the framework. Addressing number 3, we use the designed and implemented
framework of number 2 and perform a case study on an existing application in the research
environment. For that purpose, we use a prototype of a web application front end of an industry
partner. We perform a performance analysis and check whether the implemented framework is
feasible and applicable in our research environment.

1.3 Motivating Example

As seen in the previous paragraphs, there is research for and around the ASB. We now introduce
a motivating example for this thesis. In the area of the ASB many applications can be deployed
and can communicate with the ASB. Therefore, performance is an important aspect in this envi-
ronment. The experts who deal with those applications do not want do waste time with waiting
for the ASB or any connected tool. To ensure that the requirements stated are met, there has to
be a quality assuring instance that proves the required performance is met.

2

Figure 1.1: Illustration of the location of the research problems in the (extracted) environment

Especially web applications are very sensible in concerns of performance. Users expect to
immediately get a response and see the pages displayed. They loose interest and leave or even
worse they do not use the application any more. Therefore, applications have to be performance
tested before they can be released. On the side of the ASB, there also exists a web application for
managing tasks, such as user management or project management. As well as these, there also
exist further features such as the checkin feature which provides the functionality of checking
in signal data files to the ASB. This feature is time consuming and has to be tested in means of
performance and so has the rest of the application.

For all these performance testing needs a tool has to be found that suffices the needs of the
surrounding environment in which the application is run. With the chosen tool or set of tools
performance testing can be established in the ASB area.

1.4 Aim of the Work

The aim of this thesis is to establish performance testing with a fitting tool. This overall aim
splits up into three main parts.

3

1.4.1 Tool Selection

The first part aims to gain knowledge about the research environment in means of performance
testing issues. The requirements that are needed to be able to perform a tool evaluation are
determined and weighted in means of importance for the tool. The outcome of this part is an
evaluation sheet that can be applied to perform a tool evaluation for the heterogeneous automa-
tion environment.

Further, we list all available tools and prepare for the evaluation study. We perform the
evaluation based on the criteria selection of part one with the listed tools. The outcome of
this part is a ranking of tools and especially winning tool (or a set of tools) that fits best for
performance testing in the sense of performance testing.

1.4.2 Test Framework Design and Implementation

The second part is the design and implementation of a performance testing process with the
winning tool (or set of tools). The outcome of this part is a runnable prototype that can be
applied to the research environment.

1.4.3 Test Framework Evaluation

The third and last part is a case study in which we apply the our framework to an existing project
in the research area and show that the approach is feasible. The outcome here is a statement for
the framework’s functionality.

1.5 Methodological Approach

The methodological approach is split into two parts. The evaluation part uses an approach of
Robert M. Poston and Michael P. Sexton [74] for the process of evaluation as base. The approach
is adopted where necessary. Therefore, an evaluation sheet is created for a survey to identify the
needs of the target users. The features and properties of each tool are then evaluated. As a last
step, the evaluated tools are taken into account and in order to the users’ wishes a tool-value
is calculated with the weight gained out of the users survey. The evaluation then presents a
most suitable tool which further is used to implement the performance tests in the Automation
Systems environment.

In the second part of the thesis we use a design approach to describe the target framework
which is the implemented as a prototype. We present a design of the framework and describe
the needed tests in order to be able to perform a performance analysis. Then a prototype imple-
mentation is made based on this framework design.

Further, we use a case study to evaluate whether the framework implementation performs
well in our research environment and to see how the results of the tested application are.

4

1.6 Structure of the Work

The structure of the work is illustrated in figure 1.2 and mapped to the relating parts of the work.
Further, we describe each part as follows.

After this chapter the related work is presented in chapter 2. This includes the related work
concerning performance testing and the research environment. The related work chapter closes
with the description of the methodological approach.

Chapter 3 gives a detailed insight of the research environment the thesis is moving in and
describes an use case that is treated throughout the rest of the work. It further expresses the
research issues that are addressed and explains the contribution of this thesis.

This is followed by chapter 4 which basically contains the way this thesis is doing the re-
search. At first, a tool evaluation process is described how a suitable tool is found. Then, the
design of the implementation is discussed as last point of this chapter.

Next, chapter 5 presents the results of the tool evaluation study and shows the winning or
winning set of tools that is used for the remainder of the study. Chapter 6 presents the results
of the implemented framework. It explains the implementation and its properties. Chapter 7
gives and detailed view on the results of the case study which is made to show that the chosen
approach and framework is feasible for the research environment.

Chapter 8 expresses the limitations of the implemented work and encourages for discussion.
The thesis closes with chapter 9 in which the work is reconsidered and the research questions

is answered in order to the evaluated data.

Figure 1.2: Illustration of the structure of the work

5

CHAPTER 2
Related Work

In this chapter the related work for this theses is presented. We start with an introduction to
Heterogeneous and Distributed Engineering (Projects) in section 2.1 Then we continue with an
overview over performance testing in section 2.2. In section 2.3.1 the methodological approach
for the tool evaluation is presented. This chapter closes with a conclusion of the related work in
section 2.4

2.1 Heterogeneous and Distributed Engineering Projects

In modern Software Engineering distributed systems become more and more important. Thus,
the methods of distributed systems are extended and new methods are developed. In this chapter
we present a short introduction to the state of the art methods and approaches and link it with
today’s heterogeneous distributed engineering.

2.1.1 Types of Distributed Engineering

In this section we present the basic ideas of how to make a distributed environment in a software
project. Most of these approaches are based on Integration Patterns that are presented in [49] We
introduce the concepts of message-oriented middleware (MoM), Service Oriented Architecture
(SOA) and Bus-Systems to get an overview of the state of the art approaches. There are many
other approaches, such as CORBA [43], RMI [20] or Space Based Computing [37]. However,
we focus on the approaches relevant for the remainder of the thesis.

Message-oriented Middleware

This approach is based on an idea that every kind of communication is done via so called mes-
sages. Messages can have different types and payloads. This concept assumes that there is
a messaging server which receives the messages and distributes them to the targeted clients.
Figure 2.1 gives an overview of how messaging systems work.

7

Figure 2.1: Sketch of Message-oriented Middleware systems from [28]

Message-oriented Middleware provides communication models, such as publish/subscribe
or point-to-point communication [28, 64]. The biggest benefit of Message-oriented Middleware
concepts is the abstraction of the receiving and sending actions. You simply announce what you
want to send/receive and where to, and the rest is done by the MoM.

Service Oriented Architecture

Another approach for implementing a distributed environment is SOA [50, 66]. This approach
works as figure 2.2 shows.

Figure 2.2: Schematic overview of SOA from [50]

8

There are three parts that are involved in a SOA environment. A Service Provider publishes
its service via WSDL to the Service Registry and the Service requestor finds a service via the
Service Registry. The communication afterwards is processed directly between the requestor
and the provider. This brings the effect of a completely loosely coupled system which is a main
benefit of SOA based systems.

Enterprise Service Bus

The Enterprise Service Bus (ESB) approach is an approach that aims to integrate all systems of a
company to one single system that can manage several different tasks. It is able to integrate het-
erogeneous systems as well. Rademakers and Dirksen [76] give an introduction into ESB’s and
claim that an ESB takes many of the advantages of other integration technologies and combines
them. Figure 2.3 presents a schematic overview of the functionality of an ESB.

Figure 2.3: Schematic overview of an ESB from [76]

There can be several applications around the environment that are all connected to the ESB
regardless of the communication type. With this premise, they can communicate with each other
via the ESB acting as a heterogeneous interface.

Automation Service Bus

Another approach for implementing a heterogeneous environment is the Automation Service
Bus (ASB) [19]. It is based on the idea of an ESB as described in the preceding paragraphs.
The speciality of the ASB is its domain. The ASB is located in the discipline of heterogeneous
engineering processes - in Automation Systems Engineering to be precise. It incorporates the
systems that are involved in an Automation Systems environment. Chapter 3 gives a deeper
introduction to the concept of ASB and introduces into the use case that is targeted by this
thesis.

9

2.2 Performance Testing

This section introduces into Performance Testing. We see Performance Testing as a part of
Performance Engineering and we present this interconnection. We further present an overview
of the types of performance testing and introduce how to perform the techniques on projects.

First of all, we consider Software Performance Engineering and Software Performance Test-
ing and see how it is defined. Woodside et al. [90] define Performance Engineering as follows:

“Software Performance Engineering (SPE) represents the entire collection of Soft-
ware Engineering activities and related analyses used throughout the software de-
velopment cycle, which are directed to meeting performance requirements.”

Another definition is from Williams and Smith [85]:

“SPE is a comprehensive way of managing performance that includes principles for
creating responsive software, performance patterns and anti-patterns for performance-
oriented design, techniques for eliciting performance objectives, techniques for
gathering the data needed for evaluation, and guidelines for the types of evaluation
to be performed at each stage of the development process”

In this definitions we see that Software Performance Testing is included in SPE. We now
consider Software Performance Testing in a detailed manner. In SPE we can differ between two
basic approaches, measurement-based and model-based as Woodside et al. state in [90]. We
now introduce these two.

2.2.1 Measurement-based Performance Testing

As of it’s nature this type of performance testing can only be applied after the System Under
Test (SUT) is already available. One can only run the tests if the application is ready to perform
tests on it 1. The SUT is started, tests are performed and tools based on this approach measure
metrics during the execution. Afterwards, one can have a look on those metrics and can analyze
the behavior of the SUT.

There is already some research on this type of Software Performance Testing approach.
Arlitt et al. [4] performed a performance analysis on a Web-Based Shopping System. They
emphasize the importance of retaining customers based on a research of Reichheld and Sasser
[77] and state, the best way to keep business working is via quality. Beside business factors as
stated from Lee et al. in [77] and [58] they state that also technical factors are important to serve
a “pleasurable shopping experience” [77]. They imply that this can be reached by ensuring no
long delays to make a purchase, ease and promptness in finding goods or services, etc.). To that
end performance analysis is one important part of gaining and preserving quality of a system.
They observed a Web-Based Shopping System that basically looked like figure 2.4 describes.

For that, Arlitt et al. investigated the data obtained by an E-Commerce site. They character-
ized the workload and applied clustering techniques to get knowledge about the user’s behavior
and its impact on the system performance [4].

1In sense of being able to get metrics of the system

10

Figure 2.4: Multi Tier Tested System from [77]

Another study concerning Measurement-based Performance Testing is done by Avritzer et
al. [6]. It also deals with workload characterization. They identify workload characteristics and
apply their approach to a system that was enhanced to a large industrial system. They were
able to identify a bottleneck that would have had “significant consequences” if it were unde-
tected [6]. Avritzer et al. did even more research in the field of Performance Testing. Avritzer
and Larson [7] introduced a technique called “Deterministic Markov State Testing” that tests an
application and they further report the success of the new technique. Avritzer and Weyuker [9]
extended the approach with three algorithms for test case generation and stated that basically
every software system that can be modeled by a Markov chain can be tested. They present a
study in which they apply their approach on five systems and show the validity of the approach.
Furthermore, Avritzer and Weyuker [10] focused on the ability to compare two software sys-
tems. They present an approach which generates an application independent workload which
is needed for the performance evaluation. With this approach one can easily compare two soft-
ware systems and decide if the succeeding system is as performant as the original system. They
substantiate their work with providing insights to their experiences they gained during the in-
vestigation. Avritzer and Weyuker [11] concentrate on a telecommunications project to figure
out when to restore a system. In another research, Avritzer and Weyuker [12] combine the
measurement-based approach with a model-based approach and state that this brings out the
best of Performance Testing. Avritzer et al. [5] present algorithms for detecting cautious trends
of metrics, such as response time. They trigger software rejuvenation before the metric provokes

11

a noticeable loss of performance, so that the user does not recognize any performance issues.
Barber [16] describes an approach to create load models if there is incomplete data. Barber

[15] covers a broad range of Software Performance Testing topics, such as strategies, metrics or
tuning.

2.2.2 Model-based Performance Testing

The second approach is called Model-based Performance testing. In this approach one applies
methods to model the future system and to predict future performance. That implies that one
can identify possible bottlenecks in advance and can prevent the engineers to make bottleneck-
causing design failures.

Balsamo et al. [14] present a survey in which they investigated research in the area of Model-
based Performance Testing. The work of Lazowska et al. [57] and Smith [79] revealed a need
for earlier performance processing. In the survey Balsamo et al. name some “preliminary ap-
proaches”, such as Hoeben [48], King and Pooley [56], Pooley [70] and Pooley and King [71].
They further categorize the methods for Model-based Performance Testing and name the fol-
lowing categories (categorization from [14]:

• Queuing Network-Based Methodologies (pioneered by Smith [80, 81]) [26, 27, 42, 44, 54,
62, 67, 68, 91]

• Process-Algebra-Based Approaches [13, 18, 40, 46, 47]

• Petri-Net-Based Approaches [17, 56]

• Methodologies Based on Simulation Methods [3, 29]

• A Methodology Based on Stochastic Processes [59]

Balsamo et al. then make a comparison and classification of the collected methodologies.
The outcome of the classification can be seen in figure 5 of [14].

2.2.3 Performance Testing Process

There are many ways to perform performance analysis on software projects. As the process
itself is a very important factor in performance analysis, there is already some research about
that. Denaro et al. [31] identified a process that they claim to be good for early performance
testing in software projects. They developed on this because they say that “the most critical
performance faults are often injected very early, because of wrong architectural choices” [31].
It consists of four main steps that are:

1. Use Case Selection (Performance related)

2. Mapping of Use Cases to technology and deployment

3. Stub generation

12

4. Test Execution (consists of deployment, workload generation, data initialization and re-
porting metrics)

Denaro et al. performed a pilot analysis of their proposed process and it worked well. They
identified an empirical analysis as future work to save the validity of their approach.

Another proposed approach for executing performance analysis is from Meier et al. [60].
Figure 2.5 gives an overview of their proposed approach. They identified the following activities
that are needed in a Software Performance Testing process.

1. Identify Test Environment (including hardware, software and network)

2. Identify Performance Acceptance Criteria (goals and constraints)

3. Plan and Design Tests (key scenarios and test data)

4. Configure Test Environment

5. Implement Test Design

6. Execute the Tests

7. Analyze Results, Report and Retest

That are the Core Performance Testing Activities that Meier et al. identified and proposed in
[60]. This approach is used throughout the complete guide [60] and is extended in the further
work if necessary (for example for Iterative Performance Testing, Agile Performance Testing or
CMMI 2 Performance Testing conformity).

Figure 2.5: Performance Testing Process from [60]

Further, Barber [15] developed another process for Software Performance Testing which
can be seen in figure 2.6. This approach already includes refining of tests and tuning of the
system after an analysis of the results of the execution. They see the strategy more as aspects
of Software Performance Engineering than as step by step tasks. So the mentioned aspects are
(numbers relate to the numbers in the figure):

2Capability Maturity Model Integration [82]

13

1. Evaluate System (requirements, expectations)

2. Develop Test Assets (documents and plans)

3. Execute Baseline/Benchmark Tests

4. Analyze Results (expectations met, bottlenecks caused)

5. Execute Scheduled Tests

6. Identify Exploratory Tests

7. Tune System

8. Complete Engagement (documentation, historical reference)

As we can see the basic concepts and workflows are fairly the same in all three seen ap-
proaches. They differ in a few special cases and situations but basically they propose the same
strategy. Nevertheless, none of these approaches has been applied to perform Performance Tests
and Analysis on a Heterogeneous Distributed System like chapter 3 describes.

Figure 2.6: Performance Testing Process from [15]

2.2.4 Types of Performance Testing

In this section we introduce the basic and most important types of performance testing and their
relating purpose. We give an overview when to use which type and what the properties and
identities of each type are.

14

Load Testing

Load Testing is the task of exposing a system to a heavy load. The load can be controlled by
either increase the number of users for example or by removing resources. Figure 2.7 represents
a typical load created by a load test.

Figure 2.7: Schematic functionality of a Load Test

Load testing is also a big topic in research. Avritzer et al. deals with performance testing in
his research. In [8, 9] they focus on generating test suites for load testing. Weyuker has further
dealt with performance testing of component-based software [84]. Jiang et al. tried to automati-
cally identify load tests problems. Menascé [61] also focused on load testing web applications.
Draheim et al. [32] performed a load test on a web application by stochastic processes. Ghaith
et al. [39] focused on anomaly detection of performance regression testing. Netto et al. [63]
investigated the load generation in virtualized environments.

Stress Testing

Stress testing is a special kind of load testing. In Stress testing one tries to push the system on
its limit and even over that limit. The system can get knocked out and therefore this approach is
also known as negative testing. The target is to bring the system to fail and see how it recovers
if the stress load is over and a normal load is applied. Figure 2.8 shows a typical stress test load.

On stress testing, there is not that much research explicitly because basically it is just a
special case of load testing. Garousi [38] investigated stress testing of distributed real-time
software.

2.3 Performance Testing Frameworks and Tools

This section introduces into the evaluation of frameworks and shows the base of the approach of
tool evaluation of this thesis.

15

Figure 2.8: Schematic functionality of a Stress Test

2.3.1 Evaluation Process

It is important for choosing a tool to have a good strategy how to check the tools. If there is a
procedure that is not comprehensible or can not be reproduced or smells like that the outcome
of the tool evaluation will not be satisfying for the involved stake holders. So there is a need for
a systematic evaluation process that is appropriate for a tool evaluation. Robert M. Poston and
Michael P. Sexton took up that problem and developed an approach for evaluating and selecting
testing tools in order to find the optimal tool for the aimed purpose [74]. They say that there
is already a system like that, which is based on interconnections between tools and states that
those interconnections are important during evaluation. This work ended up in IEEE Standard
1175 [1]. Robert M. Poston and Michael P. Sexton say that these approaches are successful
because they minimize subjectivity and the work still accounts for tool-dependent factors for
example. They also created forms because they say that a system can only be as good as the
forms it provides.

In this section the approach of Robert M. Poston and Michael P. Sexton is described and
explained.

2.3.2 General Process of Evaluation

The general process of evaluation consists of mainly 4 steps. They are namely [74]:

1. Identify and quantify user needs

2. Establishing tool-selection criteria

3. Finding available tools

4. Selecting tools and estimating return on investment

Figure 2.9 gives an overview of the main steps and the connections between each step to another
step. The following paragraphs now explain each of the steps in detail and provide and overview
over each step of the evaluation process.

16

Figure 2.9: General Process of Evaluation of Poston and Sexton [74]

2.3.3 Identify and quantify user needs

First of all, you should verify with your managers if the need that they express is an actual
need. This need analysis is important because it can prevent purchasing mistakes ([74] Page 3)
The first step the authors describe is to collect statistic data from Quality Ensurance department
(productivity and quality statistics). See [74] for a form for organizing the data collected by the
needs analysis.

The second step is to determine the current testing effort in means of what is currently done
in testing. First, see how much effort has been done in the most recent projects (measured in
staff months) and use these values and a prediction for upcoming projects to estimate the amount
required to ensure testing in a short term (of course assuming that the team will not use any new
tools). Next step is to consider test quality and ask how many errors or issues the customer has
revealed in the last release period. We will need this data to compare it later. Also get known
about planned activities that could influence future testing activities and their results (e.g. reduce
errors). Regarding the work of Robert M. Poston and Michael P. Sexton such activities could
be for example: manual inspections or staff reorganizations. Same as before, this estimated test
quality should show the future test quality if no other testing tools than up to now are introduced.
The authors also mention also more sophisticated methods to predict future quality than simply
performing an extrapolation. The mention two major publications for that: Function Points by
Capers Jones [53] and test-quality measurement by Programming Environments [72] but for the
sake of evaluating testing tools they say that those methods are too much effort for that purpose.
They also make a statement if it makes sense to do a full tool evaluation at all. They therefore

17

consider a figure from the Business Week’s special issue on quality [23].
They derive that if the predicted effort of the testing process is low or the failure-density

values are lower than the company given threshold the evaluator should better go back and
challenge the need of the full evaluation in the manager’s need.

2.3.4 Establishing tool-selection criteria

Next part is to find criteria for the tool selection itself. Robert M. Poston and Michael P. Sexton
therefore suggest a form. They group the criteria in four groups: general, environ-dependent,
tool-dependent functional, tool-dependent unfunctional. The groups can be seen top down as
every framework that could not pass the upper group, will not be evaluated any more. Further,
the criteria are weighted to figure importance. We now take a closer look to the groups.

General Criteria

This criterion is the first filter for the framework selection and is basically compiled of two parts,
the productivity gain and the quality gain as Robert M. Poston and Michael P. Sexton suggest.
We fill in the expected values for each of the gains and add a weighting factor.

Environment-Dependent Data

This section contains the restrictions for the environment specific data. We select the maximum
allowed costs for each of the items. If the company does not have any cost restrictions or you
do not know this at all, we still can go on with the evaluation by fulfilling all other categories.
This group contains costs for testing tools, organizational changes, platform changes and tool-
interconnection changes.

Testing Tools The testing tools criterion represents the maximum amount of money the com-
pany will spend on testing tools or the company plans to spend (future budget). We only consider
tools that can be afforded.

Organizational changes In this category the authors pick up items that can be found in the
environment of the tool - in the organization of the company. They say that studies before 1984
state that normally implementation of the tools fail if the responsible persons do not consider
organizational changes for the evaluation. [22, 30] In IEEE 1175bei these items are defined as
Policies, Techniques, Work-product standards and Measurements.

Platform changes This section deals with any change of the underlying platform on which
the tool should run on. It is possible to state that the tool has to run on the current platform
and therefore one would fill zero into the criteria value field. Otherwise one adds the value the
company accepts to pay for the new platform needed by each tool.

Tool-interconnection changes Tool-interconnection changes deals with the integration and
communication of the tool with other tools.

18

Tool-Dependent functional criteria

This category deals with the tools themselves and their functional features. Robert M. Poston
and Michael P. Sexton say that employees may meet for a brainstorming and hand the list over
to the evaluators but this list may be incomplete or contain duplicated requirements and may not
be standardized concerning definitions of vendors or industry. [74]

The evaluation clients can fill a form and hand it over to evaluators to give an overview of
the features they expect the winning tool to have. The features that are voted the most is filled
into the form of tool-selection. If there is a need for more than the given four features one can of
course extend the list but the authors say that it is easier for the evaluation to keep this list short.

Tool-Dependent nonfunctional criteria

In this category the non functional criteria are listed. Performance is one of the non-functioncal
criteria that might be interesting for the future tool. We further have to consider how to measure
those criteria. Performance for instance can be measured in maximum response time that should
be valid for all key features. One should define a reference use case or something similar to be
able to perform an objective benchmark for measuring the performance.

As the authors say, more tricky factors are human factors. They further say that some of
the human factors required by the evaluation clients are “red flags”. [74] “User friendly” is one
of those. Robert M. Poston and Michael P. Sexton also say that one should not concentrate on
the very detail but concentrate on quantifiable factors (For example, time to lern/use a tool).
Another nonfunctional criterion is reliability. One may measure the reliability in the tolerance
of breakdowns in a given time slot.

In addition, to all mentioned factors one can also call some other factors in and extend the
form. Such factors may be robustness or maintainability Robert M. Poston and Michael P. Sexton
say. A report of the Software Engineering Institute 3 gives a detailed view on tool-dependent
characteristics. [36]

Weighting

The next step is to add weights to the features. As the authors of [74] say there are two simple
rules concerning weight assignment:

1. Every criterion must have a weight

2. No two criteria may have the same weight

The criteria are ordered with the most important feature having the highest weight and the
least important feature having the lowest weight. The authors emphasize that this is “an easy
but significant activity because it brings tool users to agreement on which requirements are most
important. And it makes every potential tool user part of the evaluation” [74].

3http://www.sei.cmu.edu/

19

2.3.5 Finding available tools

At this point everything is well prepared to go into the search of available tools. The authors
suggest that you make use of some publications that might help with creating a list of tools. They
list for example the IEEE 1175 standard [1] as a base or a publication of Robert R. Poston [73], a
reference guide of Jerry Durant [33] and a report of Dorothy Graham [41]. The authors suggest
to use this lists to find a set of tools that might be interesting for the evaluation and the company.
Further approaches are now presented.

Robert M. Poston and Michael P. Sexton suggest to use forms to express the organization in
which the future tool should run. Another usage for the forms in the figures mentioned above is
to create surveys out of them to get a knowledge for the evaluation (To see the form, see [74]).

As next step they suggest to contact the vendors, to get details for the products in the list.
They say one should ask for a brochure, price list, filled tool forms, references. They argue that
the kind of reply you may get will be a sign for the support the vendor is able or willing to give.

Further, one can use other evaluations as a base for a decision. Robert M. Poston and Michael
P. Sexton say that one should be careful when using other evaluations because they might be
biased for some reason. [74]

2.3.6 Selecting tools and estimating return on investment

After one has received the possible answers from the vendors one can start with rating the tools.
The ratings should be percentage values and should represent the fulfilling value of the tool and
feature. For instance, if tool A fulfills a requirement in 4/5 cases you should rate it with 0,8.
The maximum that can be achieved is 1 and the minimum is 0 if the tool does net fulfill the
requirement at all.

If one can not rate the feature exactly, a nestimation should be used instead. This estimation
should represent the value of satisfaction with this feature with the tool. The values should then
be multiplied with the weight and summed up to get a final score for the tool.

As last step, the authors suggest a meeting with managers and testers that are involved. The
results should be discussed and everyone should feel free to contribute his or her opinion. They
also state that if the people are involved in this process the implementation is more likely to
succeed. [74]

2.3.7 Re-Evaluation

Once an evaluation has been finished, the winning tool will be implemented. There will most
likely be a pilot project in which the new tool will be used the first time. In this project the tool’s
champions (those who voted for the tool at the final meeting) should participate. After the pilot
project the project should be revisited and evaluated and so should the tool. The management
will then get a feedback if the tool implementation performed as expected. [74]

2.3.8 Tool Studies

There are also other tool studies that are based on this approach. Illes et al. [51] define a list of
criteria that can help when evaluating tools. Further, Kaur and Kumari [55] deal with a study of

20

two test tools to compare both and find the better tool. Ekaputra et al. [34] create an analysis
framework for ontology querying tools and provide a decision helper with it. Pohjoisvirta [69]
made a tool study for choosing a tool that supports test management.

2.4 Summary

There is much research on the integration of heterogeneous systems, such as for MoM [28,64] or
SOA [50, 66] or Busses [76]. The ASB takes up the work of integrating heterogeneous systems
in the Automation Systems discipline [19].

Further, there is already much research on the topic of Software Performance Engineering
and Software Performance Testing. Many approaches deal with algorithmic parts [7, 9] and
especially Avritzer et al. mostly deal with E-Commerce applications [5, 12]. Some work is
also about telecommunication environments [7, 9–11]. The main items of the research gap we
encountered are:

• There is no study about performance testing framework tool evaluation for our research
environment for a tool selection

• No framework for performing performance analysis in the research environment has been
designed or implemented

• There is no case study for applying a performance analysis framework in the research
environment

We concentrate on the gaps of the recent research as described above. We provide a tool
evaluation for performance tools with the approach of Robert M. Poston and Michael P. Sexton
[74] and design a workflow and a candidate solution for Performance Testing in our research
environment described in chapter 3. We further implement our designed approach and show that
it is applicable to the environment.

21

CHAPTER 3
Research Context and Issues

This chapter introduces the motivating use case and expresses the research gap. Then the re-
search questions handled by this thesis are explained and motivated.

3.1 Use Case - Change Management Workflow

In many systems many different disciplines are involved hat contribute to the holistic system in
their own specialized area. These experts have favorite tools or tool sets and are familiar with
them as they have already worked with them before and so they do not want to change the tools
easily. These tools are mostly not compatible to tools of other disciplines and other experts’
areas. That implies that the experts have no standardized way to communicate via the tools with
each of the other disciplines. These heterogeneous environments are a big problem in terms of
integrating different disciplines’ tools and to provide a single fine waved working system.

The ASB as shortly introduced in section 2.1.1 seizes this problem and provides an approach
to integrate heterogeneous tools in one single environment. Figure 3.1 presents the basic concept
of the ASB as introduced from Biffl et al. [19]. We can see the different disciplines integrated
via the ASB are Project Management, Systems Engineering, Software Engineering, Team Com-
munication and an ASB Support. All these disciplines communicate via the ASB.

The ASB provides technical integration of tools via connectors as well as semantic integra-
tion via the Engineering Knowledge Base (EKB) and Engineering Database (EDB). The techni-
cal integration is accomplished by implementing connectors for each tool. They are now able to
communicate technically with the ASB. Anyway this is only a part of the solution to integrate
those hetereogeneous tools. The second important part is the semantic support for the tools so
that the tools - respectively the engineers - of different disciplines are able to communicate with
each other. Therefore, data is stored together with the models in the EKB/EDB and they do the
mapping and semantic transformation.

The resulting advantage is that each of the tools, independent of the discipline it is originated,
can communicate to all other disciplines. The experts can now focus on their own tools and can
be sure other experts are able to interact with their work seamlessly.

23

Figure 3.1: Basic Concept of the functionality of the ASB from [19]

Based on the ASB approach, one of the tools that interact with the ASB is a web application
that provides some basic functionality to the users. It offers the possibility for project manage-
ment, checkin/checkout of signals, user management and many other features. With the checkin
feature for example the user is able to upload signal files and to check in those files into the ASB
environment. This process is a time consuming operation and does not work in proper time with
larger files. We present the web front end later on.

The motivating use case of this thesis is the change management workflow which is a com-
plex and critical process in the Change Management Process. Figure 3.2 illustrates the change
management workflow and the steps of it. The first step of the workflow is to start the checkin
depicted with E1. E2 decides if there are changes in the signals at all. If the decision states that
the signals are similar than the workflow proceeds with no change (E3). If changes are recog-
nized the accept changes decision is executed. If the changes are not accepted no change (E4)
is executed otherwise the signal gets either updated (E5), is recognized as a new signal (E6) or
is deleted (E7). After this, a notification is sent. The workflow can then proceed with the next
signal if any, as stated in E9. E10 represents the end of the workflow.

As stated in the preceding paragraphs, performance is an important aspect in the web appli-
cation as well on the ASB itself. There are performance requirements for both parts and there
is a lack of proving that these requirements are met. The target of this thesis is to seize this gap
and to find a possibility to verify the performance of the web application.

24

Figure 3.2: Change Management Workflow from [89]

We now outline the research questions (RQ) addressed by this thesis and explain the goals of
this thesis. The research is driven by the use case described above. Therefore, the research ques-
tions are tailored to this research environment. The high level aim of this thesis is to investigate
performance testing in a new research area - the area of heterogeneous distributed systems such
as Automation Systems. The thesis’ aim is to find a way to perform performance analysis in
this environment in a sufficient manner and to find a solution for the existing gap. In the holistic
picture of the thesis we identified three main research questions:

• How can we find a tool that enables us to perform performance testing?

• How should a process look like that guides performance testing in the environment?

• Is the proposed approach feasible and applicable?

These are the main research questions of this thesis. We now present and explain each
question in detail.

25

3.2 Research Question 1 - Tool Selection

In chapter 2 we describe recent research. We can see that there are several approaches to per-
form performance analysis in existing work. They all deal with performance testing in different
contexts and have different aims. There are further studies that deal with tool evaluation. The
approach by Robert M. Poston and Michael P. Sexton [74] for instance presents an generic ap-
proach for evaluating tools. They present a strategic way to gain information of tools and select
one of them. Based on this approach, many studies accomplish a tool selection. There are, for
instance, studies that deal with test framework evaluation or simply choosing the better tool out
of two. We count the following studies to this:

• Illes et al. [51], defining a list of criteria for a tool evaluation of software testing tools

• Kaur and Kumari [55] comparing two test tools to find the more suitable one

• Ekaputra et al. [34] creating an analysis framework for ontology querying tools

• Pohjoisvirta [69] finding a tool that supports best for test management

These examples of recent tool studies also show the context and the research environment
they are performed in. This thesis is located in the context described above and in chapter 2, the
environment of heterogeneous, distributed engineering environments. We describe this context
in chapter 2. We can find recent studies in this research environment about applying methods of
Software Engineering to this environment. There are several approaches that already deal with
different processes and methods of Software Engineering and the application in the new envi-
ronment such as Hametner et al. [45] who adopted test driven development process to industrial
automation engineering. Further, Winkler et al. have several studies in this area such as [87]
(deals also with adopting a test first development to improve automation systems engineering
processes) or [88] (dealing with efficient unit testing). Winkler et al. [86] (creating a framework
for automated testing of automation systems) is especially interesting for this thesis as it deals
with the creation of a testing framework in the research environment. We could see that there
is many research for performance testing as well as for dealing with Software Engineering pro-
cesses and methods in the new research environment. The main goal of this thesis is to perform
an performance analysis in the research environment. None of the studies we could find, deals
with this topic. To be able to perform this analysis, we need a tool that supports that. A search
on the market for available tools that offer performance analysis results in a very long list of
tools which have various features and several targets. To make a good decision which tool to
choose, we have to select a tool in an appropriate way. We ensure the appropriateness by using
approved methods such as Robert M. Poston and Michael P. Sexton [74]. This leads us to the
fact that we have to be sure about the criteria a potential tool has to fulfill in order to be suitable
for us. This need reflects our first research issue:

RI 1.1: What are the requirements for performance testing in the research environment?
The goal of this RI is a list of requirements that reflect the user needs to be able to select a must

26

suitable tool and this is the contribution of this RI.

The answering of research issue 1.1 brings a list of requirements that the tool has to fulfill.
Once we have received that list, we are now aware of what our tool should be able to do and
what features it should have. With the already achieved list of available tools we are now able
to select a tool. The selection itself is split up into two parts. The full list of tools is reduced to
a short list by checking mandatory features. The short list is then evaluated in detail to get the
most suitable tool. This process reduces the long list by using the criteria of the previous deter-
mined list and performing the tool evaluation. The execution of the evaluation maps each of the
tools and each of the criteria to a value that reflects the compliance of the tool to the criterion.
This leads to the next research issue:

RI 1.2: How do the available tools fulfill the requested requirements? An executed evalua-
tion and a table that shows the fulfillment of the tools regarding the requirements is expected as
contribution.

By answering this research issue, we get a table of values with the ratings of the tool relating
to each criterion. As we want to perform a performance analysis, we are not done so far, but we
need an overall appraisal of each tool which brings us to the last research issue of the first part
of the thesis:

RI 1.3: Which of the available tools or set of tools is the best for the environment? One of
the tools comes out of the evaluation with the most point. This is the most suitable tool and is
expected to be the contribution of this RI.

3.3 Research Question 2 - Test Framework Design and
Implementation

In the previous section we deal with the evaluation of a performance testing tool in order to be
able to do performance analysis on this field. To that extent we achieved a most suitable tool and
with this tool basically have the technical abilities to do performance analysis. In chapter 2 we
show processes that concentrate on the execution of performance analysis and the relating ac-
cessary parts. We present for instance the approach of Denaro et al. [31] which deals with early
performance testing in projects. Another proposed approach of implementing performance anal-
ysis is from Meier et al. [60]. It also deals with the process of performance anaylsis and extends
the basic approach step by step. Barber et al. [15] present an approach that already contains
test refinement in their work. These approaches are general and do not specialize on a certain
type of projects or environments. A more specific approach is by Winkler et al. [86] For our
purpose of executing performance analysis in the research environment, we also need a process
or framework that leads and controls the overall procedure and offers an appropriate way to do
so. This results in another research issue:

27

RI 2.1: How does a framework for performing performance tests look like with the most
promising tool and in the research environment? The goal of this research issue is to design a
framework that is able to support and guide performance analysis in the research environment.

After the design of the framework is finished, there exists a method for performance analysis
in the specific environment of the research area. Based on that approach, we claim that it is pos-
sible to implement the framework and execute a reasonable performance analysis on a system
unter test of the research environment. As stated here, the framework has to be implemented
in order to be able to be executed. To that end, we also need to define test cases that have to
implemented and tested. All that leads us to the next research issue:

RI 2.2 How can the designed framework be implemented in the research environment? The
outcome of this research issue is the implementation of the designed framework. As a contribu-
tion this framework implementation is performed with the most suitable tool.

3.4 Research Question 3 - Test Framework Evaluation

We have presented so far a tool selection process that selects a most suitable tool out of a long
list of available tools by applying criteria and evaluating the score of each tool. Further, we
created a framework based on recent approaches that is able to lead and control performance
analysis in our research environment. We can apply those approaches to perform the analysis on
our system under test and we get results in terms of performance testing. The only thing which
is still open, is to show that the presented approaches are feasible and work for our environment
as intended. For that reason the last research issue comes up:

RI 3.1 Is the implemented approach feasible and does it work properly in the research envi-
ronment? The contribution of this research issue is on the one hand a feasibility study to show
the framework is working properly and on the other hand a set of results and improvement sug-
gestions for the system under test.

28

CHAPTER 4
Solution Approach

This chapter presents our solution approach concerning the research questions stated in chapter
3. In each section we propose a solution approach relating to the three presented main research
questions. The sections themselves introduce approaches for the fine grained research issues of
each question. We start with the approach for the tool evaluation, continue with the design of
the test framework and its approach for implementation. This chapter closes with the proposed
method for the case study which shows the feasibility of the described framework.

4.1 Tool Selection

This section describes the evaluation method for the tools that are currently available for perfor-
mance testing that is based on the approach of Robert M. Poston and Michael P. Sexton [74].
In their work they describe that at first there is a need to find out which tools basically concern
the study. We have to find out which tools are available on the market and which ones do not
fit at one view and so create a list of tools of concern. The other tools can be ignored because
they will not be suitable at all and will just unnecessarily expand the evaluation because they
will be discarded in the evaluation anyway. Robert M. Poston and Michael P. Sexton further-
more describe that the criteria taken for the evaluation should come from the future users or the
environment in which the tool should be used. The output hereby is a list of requirements that
clearly state the requirements by the users and an additional weight to emphasize the importance
of each requirement. We now reconsider the phases of the approach of Robert M. Poston and
Michael P. Sexton [74].

4.1.1 Phases of the Evaluation Process

We base our evaluation process on the earlier mentioned work of Robert M. Poston and Michael
P. Sexton [74]. In this work they describe four main steps for a good tool evaluation study.
Figure 4.1 shows the steps.

29

Figure 4.1: Main Steps of the Approach of Poston and Sexton [74]

The first phase is - as stated in the above paragraphs and highlighted with number 1 in figure
4.1 - the phase to find user needs. The second phase serves to create criteria out of the collected
user needs and requirements stated as number 2. The output is a full featured list of needs
that the winner tool has to support. This list consists of mandatory requirements and optional
requirements. The third phase - marked with number 3 - is to find all available tools and list
them up for evaluation. After the evaluation, we choose the tool with the best rating - number 4
in figure 4.1. This step consists of a pre-selection of tools based on the mandatory requirements
to get a short list. This short list is then processed in order to find the most fitting tool. We now
explain how we rate the tools.

4.1.2 Weight Strategy and Rating

For the purpose of emphasizing one criterion’s importance, we have to create a possibility in our
rating process. Therefore, we introduce weights which have to be assigned to each of the crite-
ria. The weighting system is related to the Rank-order weighting method of [83]. To increase
the relative importance of the more important weights, we increase the difference between two
consecutive weights by 1. Therefore, we define four weight types as table 4.1 shows.

Weight Name Weight Value
Critical 7
High 4
Medium 2
Low 1

Table 4.1: Overview of all possible weights in our approach

Further, we have so called “must have” requirements. The “must have” requirements have
to be fulfilled by a tool in order to be further evaluated. If a tool does not fulfill a single “must
have” criterion it can be immediately discarded. The other four weight categories we define as
follows:

• Critical: We define the highest possible weight with the terminus of critical. We assign
the critical weight the value of 7 to show that this criterion is part of the most important
category.

• High: Second important weight is high with the mapped value of 4. As the name sug-
gests, this represents a high category.

30

• Medium: This weight category shows a medium importance is therefore assigned with
a value of 2.

• Low: Low weight states that there is not very much importance on that criterion but there
is at least importance. We map this to a value of 1.

After we have now introduced the weights for the rating process, we can continue with the
process itself. The rating process calculates a final value for each tool depending on the grades
given from the evaluators for each criterion and tool. Figure 4.2 shows an example for the rating
process.

Figure 4.2: Rating Calculation Example according to [74]

At first the weightings are filled in into the “Weighting Factor” column according to the
collected weights of the future users. MH stands for the must have features. The others are filled
with the mapped values to each weight. After the evaluation of a tool is finished the rate column
can be filled. It represents a value between 0% meaning the tool does not fulfill this criterion at
all and 100% saying this criterion is completely fulfilled. The score of each single criterion can
now be calculated with the formula score = weight ∗ rate. The scores are then added to a total
score as seen in figure 4.2. This represents the total score of the tool according to the chosen
criteria and weights. The higher the score is, the better is the tool. The total score for tool 1 in
the example would be 9, 35. We further see in this example how tools are handled that do not
fulfill at least one of the MH criteria. The do not get graded at all and immediately fall out of
the evaluation which ends up with a score of 0. We now introduce the criteria categories and the
criteria itself which are taken into account for this study.

In advance, the criteria which are not rated as must haves are rated in one of the two following
ways. The first one is just to assign a value between 0 and 1 (comma values are valid with a
maximum of 2 decimal places) regarding to the fulfillment level of the criterion. The second
way is to rate according to Fay et al. [35]:

• 1.0 if a criterion is fully fulfilled (or a question can be answered with “yes”)

• 0.5 if a criterion is partly fulfilled (or a question can be partly answered with “yes”)

• 0.0 if a criterion is not fulfilled (or a question has to be answered with “no”)

31

The values generated from these two approaches are further used for the calculation men-
tioned above to calculate the score of a tools’ criterion fulfillment. The tool (or set of tools)
which the highest total score is the most promising tool and thus is used for the further thesis.

4.2 Test Framework Design and Implementation

The last section showed the process of approaching a most promising tool for the research envi-
ronment, how the criteria are gathered and how they are applied. In this section, we show how
the most promising tool is designed to be applied on the described use case in chapter 3 and de-
velop a test framework for this purpose. We further present the tests that are used to implement
a prototyping performance analysis for the check in use case.

4.2.1 Test Framework

According to Winkler et al. [86] we describe a test framework for our purpose. This framework
helps to perform the performance analysis on our research environment and provides the basic
workflow from the need of testing to the test results. Figure 4.3 shows the graphical overview of
the test framework.

Figure 4.3: Test Framework Design according to [86]

The components of the framework are now explained. The Test Suite defines and describes
the test cases according to the customer requirements (number 1). Then, the test cases are passed
to the Test Host (number 2) where the test framework is located. The tests are then executed on
the System Under Test (SUT) which consists of the web front-end and the underlying service
bus (number 3). The data that is generated during the tests is collected and saved by the result
data collector and further, handed over to the test analysis and reporting component. Based on

32

this, the Test Report (number 4) is created. We now continue with the use case of this thesis
relating to the test framework.

4.2.2 Use Case

The use case we use for the performance analysis is the change management use case respective
the checkin process of the web application front end. This use case is described in chapter
3. This use case deals with the change management mainly for signals that are treated by the
application. The checkin workflow consists of three main steps:

1. (File) Upload and Transformer Configuration

2. Merge Signals

3. Review

4. Update Signals in the System

These three main steps also shown in figure 4.4:

Figure 4.4: Visualisation of the three main steps of the Checkin Workflow

In the first step a signal file must be uploaded in order to be allowed to proceed. Figure 4.5
shows the first step. Further, the user has to choose the type of the signal file to upload (number
1). The possible options are currently the types of plc, elp or cul1. According to the file size the
upload can take a while. Once the upload is finished, a so called path has to be chosen in a drop
down box. The default value is plc. The next action is to proceed to the next step by clicking the
“Next >” button.

The second step of the checkin process is the merge signals view (number 2). Figure 4.6
shows the first step. In this view the user can see an overview of the uploaded file and check
if the file data has been read correctly. Further, in this view the user is able to set strategies for
signal merging such as adding new or keeping old signals or replace signals. Again the user can
proceed by clicking the “Next >” button.

In step three the checkin process displays the uploaded contents and the results of the parsing
(number 3). Figure 4.7 shows the first step. The selected transformer as well as the selected path
are displayed and statistics about the signals that were uploaded in the file. The user can review
the values and check if everything went ok during the checkin process. Step four is processed
after finishing the wizard (number 4).

1These are types of signals that can come from the heterogeneous environment in this use case.

33

Figure 4.5: Screenshot of the first step of the Checkin Workflow

Figure 4.6: Screenshot of the second step of the Checkin Workflow

34

Figure 4.7: Screenshot of the third step of the Checkin Workflow

35

For the testing purposes, we can see some potential pitfalls for performance. In the first step
the user has to upload a file. This may impair the overall performance of the application since
the files may be large on the one hand and on the other hand the server might be overloaded with
a large number of parallel file uploads. Also the parsing of the file to gather structured data may
be time consuming and is therefore a possible pitfall for the application.

4.2.3 Planned Tests

We have now described the use case and its steps. We showed the main steps of the process of
checking in signal files and provided ideas for possible pitfalls for the performance tests. For the
tests we aim to approach a full load test step by step. We make use of the described approaches
of section 2.2. We test the change management use case as described in chapter 3. This use case
has been identified with the industy partneres as most critical process and is representative for
the industry settings. Therefore, we aim five steps for testing. They are:

1. Type 1 - Perform the Checkin Process only until Step 1 is displayed (figure 4.5)

a) Request Page before critical steps with one user for 30 minutes

b) Request Page before critical steps with 10 users for 30 minutes

c) Request Page before critical steps with 25 users for 30 minutes

2. Type 2 - Perform the Checkin Process completely as stated in figure 4.4 until the wizard
is finished (figure 4.7)

a) Perform Checkin Process with one user for 30 minutes

b) Perform Checkin Process with 10 users for 30 minutes

c) Perform Checkin Process with 25 users for 30 minutes the service breaks

3. Type 3 - Perform the Checkin Process completely as stated in figure 4.4 until the wizard
is finished (figure 4.7)

a) Perform Checkin Process with a steadily increasing amount of users until the service
breaks

These tests are especially crucial for performance testing as they can be performed often in
a row and also in parallel which can cause the performance to decrease. We use the recording
feature of the most promising tool (if available) to record the test cases via the browser. There-
fore, we set up a proxy server within the tool and record all requests that are performed during
each tests. That offers the possibility to get all requests that are made indirectly, such as AJAX
requests, as well.

To achieve a good collection of data to interpret the results, we measure the following metrics
depicted in table 4.2 in each test:

The testing procedure will consist of seven tasks. These tasks are shown in figure 4.8.

36

Metric Measurement Requirements
Response Time Full load time of page < 5000ms
User Count Number of active threads 1/10/30, depending on testcase
CPU Usage % of CPU-Load < 80%
Memory Usage % of Memory-Usage < Max Memory
Max Memory Memory provided by JVM < 1,5GB

Table 4.2: Measured Metrics

Figure 4.8: Test Procedure

First, the SUT2 has to be reset so that as a second step it can be started again. The test is
then loaded and subsequently started. After the test has finished, we save the metrics the tool
collected and shutdown the SUT.

The framework of this thesis designs those tests with the most promising tool and implement
them with it. In the next part we present the results of the framework performance.

4.3 Test Framework Evaluation

The last part of this thesis is a case study performed on the web application prototype of the
CDL-Laboratory. This application is used as the SUT and the evaluation refers to this application
and to be precise on the use case described in chapter 3. We start with the implemented tests
which are described in section 4.2 and execute all proposed tests in the research environment on
the SUT. The gathered data is then collected and evaluated. We compare the data and provide
aggregated values as well as expressive charts.

2System under Test

37

Figure 4.9: Case Study Workflow

Figure 4.9 illustrates the workflow that we used in the case study. The SUT and the test
framework is used, the tests are executed on the SUT and generate data which is transformed
into charts and data tables.

38

CHAPTER 5
Tool Evaluation Results

This chapter reports the results that we determined in the first part of this thesis - in the tool
evaluation. It gives further answers to the research question 1 and its containing research issues.
It lists the results of the evaluation and argues about them, according to the announced solution
approach of chapter 4. The outcome of this chapter is the answer to the research question 1 and
the execution results of the evaluation procedure which presents a most promising tool (or set of
tools) for the further study.

5.1 Application Requirements

The first phase of the evaluation study is to find the user needs. This section answers the re-
search issue 1.1 stated in section 3.2. The evaluation criteria are the result of a discussion of the
respective experts of the CDL Lab. The discussion led to several user needs. We collected the
user needs and selected the most appreciable criteria according to the experts. Therefore, in our
environment we identified the following requirements.

5.1.1 Criteria Categories and Criteria

For clarity reasons, we introduce categories to which we classify each of the concrete criteria.
Each of the categories holds a set of criteria that may further be split up into sub-criteria (such as
in “Measureable Metrics”). Each criterion is tagged with a weight for the calculation and further
on with a rating which together leads to a score. In the following we describe the categories and
the contained criteria. The criteria categories are:

• General: This category contains general criteria which are important to the tool evalua-
tion.

• Performance (Testing) Issues: This category holds all criteria that are related to the
performance testing itself.

39

• Interoperability: All criteria that are listed in this category are important in concerns of
interoperability with other tools.

• Usability: The last category contains usability aspects which are important in terms of
using the tool.

Before we go into detail with each category and the relating criteria we present the must
have criteria for the first selection step.

5.1.2 Must Have Criteria

In this paragraph Blocker Criteria are explained. That means if a tool does not fulfill all these
requirements, it is immediately sorted out and is not be taken into account for further analysis.
We now present the must have criteria.

Evaluation Availability

This criterion checks whether there is a version of the tool available for downloading and for our
evaluation and testing purpose. If there is a version available for download, the tool is ok for this
criterion and if there is no version available the tool fails.

Platform Availability

We expect the tool to run on different platforms. The important part expressed throughout this
criterion, represents that we expect the tool to run at least under Windows 1 or current available
Linux Distributions 2. If the tool does not support either Windows or Linux the tool fails this
criterion.

No exclusive cloud usage

We test the tools and their description if there is the possibility to run the tools from a private
computer. We do not allow services that are only accessible through a cloud as we want to run
the tools locally as well. If a tool is only available through a cloud and can only be used in this
cloud the tool is rejected and fails this criterion.

Maintenance and development activity

At this criterion we check if a tool is still maintained and has an active development or bug
fixing. This is important to us as we need a tool that is working without any critical errors and
if a critical error raises up we need it to be fixed. Further, also open source tools that are not
actively maintained or do not ensure bugs to be fixed are rejected because we do not want to
invest any amount of work to fix eventually raising bugs on our own. We measure that with the
download rate and release cycles. If a tool can not show an active maintenance and bug fixing it
is rejected and fails this criterion.

1Windows 7
2Ubuntu 14.04.1 LTS

40

Environment Compatibility

We need to test if a tool is compatible with the current research environment. We therefore check
if the tool is runnable under the configuration that is state of the art in the research environment.
This requires to check if the tool is runnable with Java Development Kit 7 (JDK7) and can use
modern browsers for web testing (Firefox 33) 3. If a tool does not comply these requirements it
is rejected and fails this criterion.

Data Export Possibility

As we want to use the data gained by the tool (either in the tool itself or with external tools)
there is a need for exporting the data. This criterion checks whether a tool is able to export the
data for further usage in any way. If a tool provides a way to export the data for further usage it
passes this criterion and if it does not it fails and is rejected.

Time to productivity

This criterion states that a tool has to be able to be installed and to be used for simple use cases
in less than 30 minutes. It is not allowed to require further complex installations such as big
database systems or other required servers or other systems. If a tool is able to run a simple use
case described in the next paragraph it passes this criterion otherwise it fails and is rejected.

The simple use case is as follows:

1. Install the tool

2. Create a sample performance test

3. Send a request to an available web application (for instance www.google.com)

As we have an experienced target group, which is capable of the basics of performance testing
and tool usage, we do not expect any threats to validity concerning the different users’ skills.

Web Application Testing Ability

As our study aims to test also web applications a tool has to be able to test web applications and
offer a simple way to do that. If the tool only offers the possibility to send packets over the net
(what basically can test web applications) it is not considered to be able to test web applications
in a simple way. The tool has to provide a way to easily define the test case. The usage of third
party products or plugins that can help is allowed. If a tool does not offer any of these possibili-
ties it fails this criterion and is rejected.

These criteria represent the must have criteria which have to be fulfilled if a tool should be
further taken into account and should participate in further evaluation. Next, the further eval-
uation criteria categories are presented and the containing criteria are described. These criteria
represent no must have criteria but are weighted as described in section 4.1.2. The concrete
weighting and value categorization of the criteria can be seen in figure 5.2.

3We only take Firefox into account. It is considered a representative browser for all current and modern browsers

41

5.1.3 General

This category contains the general requirements for a tool. We consider requirements that are
not related to usability or performance testing issues but requirements that concern licensing or
availability. First criterion of this category is costs. We consider the costs of a tool and check if
is open source or has a licensing model or cost model. Depending on the costs we rate the tool
having open source tools or free tools with the maximum points. The more the tool costs, the
less points it gets. This criterion is weighted as critical. Next criterion checks if there is an User
Interface (UI) available or packaged with the tool or if an UI is at least available for download
for the tool. If there is one available the tool gets all points otherwise it does not get points at
all for this criterion. This is weighted as high. The level of actuality criterion rates the activity
of an eventual existing community around the tool and also checks to what extend the project
members or community members participate to the project and upcoming questions. Further, the
regularity of releases is taken into account here. The more activity can be observed the higher
the rating at this criterion is. This is weighted as high. An integration into development tools
such as Eclipse is been rated with the next criterion. If the tool provides an integration it is rated
with full points on this criterion, otherwise with zero points. This is weighted as medium. The
last criterion of this category is the platform support for Mac platforms. If the tool supports
Mac is rated with full points here, otherwise with zero points. This is rated as low.

5.1.4 Usability

With respect to and on base of previous research, such as the characteristics of software qual-
ity [21], non-functional requirements [25,65], ISO 9126-1 [52] and a taxonomy of current issues
in requirements engineering [78] we consider usability as one category of our criteria and choose
non functional criteria as metrics for the evaluation. Usability is an important aspect in terms of
future usage of the most promising tool. We want the tool to be helpful when performance testing
is needed and we therefore need the tool to be useful. In terms of our evaluation we define seven
criteria which we consider to be most relevant for our evaluation. We now describe these criteria.

The first criterion is the Simplicity of test creation which expresses the complexity to cre-
ate more sophisticated test cases than mentioned in “Time to productivity”. This metric reflects
the comfort the expert experiences during test creation and learning the tool and implementing
test cases. Further, it represents a value that measures if it is easy to create a test case or not.
This criterion is rated low if it is complicated relating to the users opinion and it is rated high
if the creation is easy. UI Stability states if the tool is running without crashing or reporting
errors that are not related to a misuse of the tool. We consider a tool as stable if there are no
crashes or error reports during the use of the tool and give full points in that case. If there are 1
to 3 crashes we give half of the points and if there are more than 3 crashes a tool gets no point
on this criterion. The response time of a tool to user input or other user related actions is also
part of the evaluation and we call this criterion UI Performance. We measure waiting times in
terms of reaction of the users input. If there is a quick response a tool gets full points otherwise
there is a deduction of points. We further ask the users if the UI Intuitivity and to what extend
the users feel comfortable when using the tool. We only consider tools with an UI here. Tools

42

that do not offer an UI (e.g. those that only offer a command line interface) get no points on this
criterion. As a last criterion for this category we introduce the metric of UI Consistency. We
check whether the tool uses a consistent naming strategy in the whole tool or often changes the
names. Further, we check the UI itself for consistent layouting. All the User Interface Metrics
are rated by experts of the lab.

5.1.5 Interoperability

As we want the tool to work in an existing development environment we need to express criteria
which indicate a tools’ interoperability with its environment. Interoperability is an important
aspect of tools as there hardly tools that are able to solve all problems by themselves. Therefore,
the tools have to inter-operate with other tools or applications. We therefore state some export
possibilities. These are listed as follows as rated in an easy way such that if a tool supports an
export format or type of export the tool gets full points and zero points otherwise. The export
possibilities we check are:

• Images: We check whether the tool supports export of results as images.

• Data: We check whether the tools is able to export the measured data itself.

• Formats: We expect the tool to be able to export XML and/or CSV and/or Unformatted
Text data as these are considered as standard formats.

• Reports: We check if the tool offers a direct possibility to export full reports about the
results.

5.1.6 Performance (Testing) Issues

This category represents all issues that are related with the features of the tool itself. We consider
all features that are of great interest for our environment. The resulting criteria are listed as
follows: Supported Systems and Protocols checks whether a tool is able to support HTTP,
HTTPS, JMS, SMTP and FTP as protocol for the performance analysis. Each of the protocols
is rated by its own and also has individual weighting. Handling AJAX requests is another
criteria we define for the tool. As many web applications use the AJAX mechanism we need
the tool to support AJAX as well. The rating is full points if the tools supports AJAX or no
points otherwise. For the purpose of controlling the amount of load that is applied, we define
the Configurable User Count criterion. A tool should be able to offer a possibility to configure
the amount of users that are generating load. If the tool supports this it gets full points, if there
is a possibility that offers a workaround to achieve the user count configuration it gets half the
points and otherwise no points. Load Types indicates if the load of the users that is generated
is fully configurable. Further, we expect a Support for JUnit Tests. In the environment there
exist acceptance tests that may be useful for performance testing too. As we want to use those
in combination with the tool, the tool has to support JUnit tests. Further, for creating tests, we
check whether the tool offers a possibility to Record Test Cases. This possibility offers a good
way to easily create tests cases. If a tool offers a recording possibility it gets full points and no

43

points otherwise. For observing the running test we further state a criterion that checks the tool
for Live Monitoring. We expect the tool to offer a way to immediately see the performance after
starting the test and live tracking the current performance. If a tool offers live monitoring it gets
full points and no points otherwise. Another criterion is the feature of Distributed Performance
Testing. We want to ensure that we can also test big applications with the tool and distributed
testing is a possibility to achieve that. If the tool offers distributed performance testing in gets
full points and no points otherwise. Measureable Metrics lists metrics that a tool should be able
to provide. Each metric is rated a weighted by its own and indicates if the metrics is provided.

5.1.7 Summary

We have now presented all criteria categories and the containing criteria in detail. This answers
research issue (RI) 1.1 described in section 3.2 which asks for the requirements of an evaluation
study for performance analysis in the research environment. Figure 5.1 sums up the criteria and
gives an overview of them4. A detailled illustration of the criteria and the weights is shown in
5.2. It maps the criteria to a criteria category and a respective weight.

With the gained user needs and identified criteria, we now proceed with the analysis of the
full list of tools (The full list of tools can be seen in Appendix A) by evaluating the must have
criteria first and then applying the detailed evaluation.

4Criteria marked with an * are split into sub-metrics and can be separated by other sub-weightings and sub-
ratings.

44

Figure 5.1: Overview of the criteria of the evaluation

45

Figure 5.2: Criteria Categorization and Weightings

46

5.2 Tool Evaluation

To find a list that is very complete and contains all available tools, we search for available tools
on multiple search engines. We can retrieve many tools directly by reading the results of the
search engines. Some tools are a little more hidden and are thus found over summary sites that
summarize a category of tools. We merge all results and create the full list of available tools out
of all subsequent findings of all resources (A full list of the tools and the resources can be seen
in Appendix A. The evaluation of the must have criteria mentioned in the section above leads to
the short list of tools. With this short list we continue with the further study. The detailed results
of the evaluation of the must have criteria can be viewed in table 5.1.

ID To
ol

na
m

e

V
er

si
on

E
va

lu
at

io
n

A
va

ila
bi

lit
y

Pl
at

fo
rm

A
va

ila
bi

lty
(W

in
do

w
s/

L
in

ux
)

N
o

ex
cl

us
iv

e
cl

ou
d

us
ag

e

M
ai

nt
en

an
ce

an
d

de
v

ac
tiv

ity

E
nv

ir
on

m
en

tC
om

pa
tib

ili
ty

D
at

a
E

xp
or

tP
os

si
bi

lit
y

Ti
m

e
to

Pr
od

uc
tiv

ity

W
eb

A
pp

lic
at

io
n

Te
st

in
g

A
bi

lit
y

D
et

ai
lle

d
In

ve
st

ig
at

io
n

1 Allmon 0.2.0-PA yes yes yes no yes yes no no N
2 Oracle ATS 5 12.4.0.2.0 yes yes yes yes yes yes no yes N
3 Appvance - no N/A no N/A N/A yes N/A yes N
4 BFS6 - no N/A no N/A N/A no N/A yes N
5 benerator 0.9.7 yes yes yes yes yes no yes no N
6 BlazeMeter - no N/A no N/A N/A N/A N/A yes N
7 Blitz - no N/A no N/A N/A yes N/A yes N
8 CitraTest - no N/A N/A N/A N/A N/A N/A yes N
9 CLIF 2.2.1 yes yes yes yes yes yes yes yes yes
10 CloudTest - no N/A no N/A N/A N/A N/A yes N
11 contiperf 2.3.4 yes yes yes yes yes yes yes yes yes
12 Curl-loader 0.56 no yes yes yes no no no yes N
13 D-ITG 2.8.1 yes yes yes yes yes no no no N
14 DOTS7 - no no yes yes yes no no no N
15 DBMonster 1.0.3 yes yes yes yes yes no no no N
16 Deluge - no N/A N/A N/A N/A N/A N/A N/A N

5Application Testing Suite
6Benchmark Factory Suite
7Database Open Test Suite

47

ID To
ol

na
m

e

V
er

si
on

E
va

lu
at

io
n

A
va

ila
bi

lit
y

Pl
at

fo
rm

A
va

ila
bi

lty
(W

in
do

w
s/

L
in

ux
)

N
o

ex
cl

us
iv

e
cl

ou
d

us
ag

e

M
ai

nt
en

an
ce

an
d

de
v

ac
tiv

ity

E
nv

ir
on

m
en

tC
om

pa
tib

ili
ty

D
at

a
E

xp
or

tP
os

si
bi

lit
y

Ti
m

e
to

Pr
od

uc
tiv

ity

W
eb

A
pp

lic
at

io
n

Te
st

in
g

A
bi

lit
y

D
et

ai
lle

d
In

ve
st

ig
at

io
n

17 Dieseltest 1.0.21 yes yes yes no yes N/A N/A yes N
18 EclipseProfiler - no N/A N/A N/A N/A N/A N/A N/A N
19 EJP 2.2beta1 yes yes yes no yes N/A yes no N
20 Faban - no N/A N/A N/A N/A N/A N/A N/A N
21 Funkload 1.17.08 yes yes yes yes no yes N/A yes N
22 FWPTT 0.7 yes yes yes no yes yes yes yes N
23 Gatling 2.0.3 yes yes yes yes no yes yes yes N
24 Grinder 3.11 yes yes yes yes yes yes yes yes yes
25 Grinderstone 2.5.5 yes yes yes no yes yes yes yes N
26 HammerDB 2.16 yes yes yes yes yes yes yes no N
27 Hammerhead 2 2.1.4 yes yes yes no no N/A N/A yes N
28 HP Load Runner 12.02 yes yes yes yes no yes yes yes N
29 http_load 14aug2014 yes yes yes N/A no yes yes yes N
30 httperf 0.9.0 yes yes yes no yes no yes yes N
31 Eclipse Hyades 4.7.2 yes yes yes no yes N/A yes yes N
32 IPerf 3.0.9 yes yes yes yes yes yes yes N/A N
33 IxoraRMS 1.1 yes yes yes no yes yes yes yes N
34 j-hawk 11.5 yes yes yes yes yes N/A yes no N
35 jchav - no N/A N/A N/A N/A N/A N/A N/A N
36 JCrawler 1.5beta yes yes yes no yes yes yes yes N
37 JMeter 2.12 yes yes yes yes yes yes yes yes yes
38 Jprobe 8.0 no yes yes no yes N/A yes no N
39 jProf - no N/A yes N/A N/A N/A N/A no N
40 Jstress 0.50 yes yes yes no yes N/A N/A yes N
41 JUnit Perf 1.9 yes yes yes no yes yes yes yes N
42 JUnit Scenario - no N/A N/A N/A N/A N/A N/A N/A N
43 Load Impact - no N/A no N/A N/A N/A N/A N/A N
44 Load Storm - no N/A no N/A N/A N/A N/A N/A N

8b-20140310

48

ID To
ol

na
m

e

V
er

si
on

E
va

lu
at

io
n

A
va

ila
bi

lit
y

Pl
at

fo
rm

A
va

ila
bi

lty
(W

in
do

w
s/

L
in

ux
)

N
o

ex
cl

us
iv

e
cl

ou
d

us
ag

e

M
ai

nt
en

an
ce

an
d

de
v

ac
tiv

ity

E
nv

ir
on

m
en

tC
om

pa
tib

ili
ty

D
at

a
E

xp
or

tP
os

si
bi

lit
y

Ti
m

e
to

Pr
od

uc
tiv

ity

W
eb

A
pp

lic
at

io
n

Te
st

in
g

A
bi

lit
y

D
et

ai
lle

d
In

ve
st

ig
at

io
n

45 loader.io - no N/A no N/A N/A N/A N/A N/A N
46 LoadSim 0.9.8 yes yes yes no yes N/A N/A yes N
47 Loadster - no N/A no N/A N/A N/A N/A N/A N
48 LoadComplete 2.8 yes yes yes yes yes yes yes yes yes
49 Lobo - no N/A N/A N/A N/A N/A N/A N/A N
50 LoginVSI - yes yes N/A N/A N/A N/A N/A no N
51 Messadmin 5.4 yes yes yes no yes N/A N/A no N
52 MStone 4.9.4 yes yes yes no yes N/A N/A no N
53 Multi-Mechanize 1.2.0 yes yes yes no no N/A N/A yes N
54 NeoLoad 5.0.2 yes yes yes yes yes yes yes yes yes
55 NGrinder 3.3 yes yes yes yes yes yes yes yes N
56 NTime - yes yes yes no no N/A N/A yes N
57 OpenSTA 1.4.4 yes yes yes no yes N/A N/A yes N
58 OpenWebLoad 0.1.2 yes yes yes no N/A N/A N/A yes N
59 OptimizeIt - no N/A N/A N/A N/A N/A N/A N/A N
60 Ostinato 0.6 yes yes yes yes yes N/A N/A no N
61 P-unit 0.15 yes yes yes no yes yes N/A yes N
62 P6Spy 1.3 yes yes yes no yes N/A N/A no N
63 PandoraFMS 5.1 no yes yes yes yes N/A N/A no N
64 PerfectLoad - no N/A N/A N/A N/A N/A N/A N/A N
65 PerformaSure TKU9 no N/A N/A N/A N/A N/A N/A no N
66 postal - no N/A N/A N/A N/A N/A N/A no N
67 Pylot 1.26 yes yes yes no no N/A N/A yes N
68 QACenter - no N/A N/A N/A N/A N/A N/A N/A N
69 QEngine - no N/A N/A no N/A N/A N/A N/A N
70 Rational10 - yes yes yes yes yes yes no yes N
71 Raw Load Tester v1.0 yes yes yes no no no yes yes N

92010-Jun-1
10Performance Tester

49

ID To
ol

na
m

e

V
er

si
on

E
va

lu
at

io
n

A
va

ila
bi

lit
y

Pl
at

fo
rm

A
va

ila
bi

lty
(W

in
do

w
s/

L
in

ux
)

N
o

ex
cl

us
iv

e
cl

ou
d

us
ag

e

M
ai

nt
en

an
ce

an
d

de
v

ac
tiv

ity

E
nv

ir
on

m
en

tC
om

pa
tib

ili
ty

D
at

a
E

xp
or

tP
os

si
bi

lit
y

Ti
m

e
to

Pr
od

uc
tiv

ity

W
eb

A
pp

lic
at

io
n

Te
st

in
g

A
bi

lit
y

D
et

ai
lle

d
In

ve
st

ig
at

io
n

72 Seagull 1.8.2 yes yes yes no yes yes N/A no N
73 Siege 3.0.8 yes yes yes yes no N/A N/A yes N
74 SilkPerformer 15.5 yes yes yes yes yes yes yes yes yes
75 SimpleProfiler - no N/A yes no N/A N/A N/A no N
76 Sipp 3.4 yes N/A yes yes N/A N/A N/A no N
77 SLAMD - no N/A N/A N/A N/A N/A N/A N/A N
78 Soap-Stone 0.952 yes yes yes no yes yes yes no N
79 SOATest 9.8 yes N/A yes N/A N/A N/A N/A no N
80 stress_driver 1.0 yes N/A yes no no N/A N/A yes N
81 Test Load - no N/A N/A N/A N/A N/A N/A yes N
82 TestComplete - yes yes yes yes yes yes yes no N
83 Testing Anywhere 9.2 yes yes yes yes yes yes yes yes yes
84 TestMaker 6.1 yes yes yes N/A yes N/A N/A N/A N
85 TestStudio Ultimate11 yes yes yes yes yes yes yes yes yes
86 tivoli12 - no N/A no N/A N/A N/A N/A N/A N
87 TPTEST 5_0_2 yes yes yes no yes N/A N/A no N
88 Tsung 1.5.1 yes N/A yes yes no N/A N/A yes N
89 Valgrind 3.10.1 yes no yes yes no N/A N/A no N
90 Visual Studio 201313 yes yes yes yes no yes yes yes N
91 WAPT Pro 3.5 yes yes yes yes yes yes yes yes yes
92 Web Polygraph 4.3.2 yes N/A yes N/A N/A N/A N/A no N
93 WebLOAD 10.2 yes yes yes yes yes yes no yes N
94 App Perfect - yes yes yes N/A yes N/A N/A yes N
95 Apache Flood - yes yes yes N/A yes N/A N/A no N

Table 5.1: Must-Have Evaluation

112014_4_1211
12monitoring/composite
13update4

50

According to the full list, we get the following tools that remain after the must have evalua-
tion:

ID Tool Name Tool Vendor Version
9 CLIF OW2 2.2.1

11 contiperf databene 2.3.4
24 Grinder Paco Gomez, Philip Aston 3.11
37 JMeter Apache Software Foundation 2.12
48 LoadComplete smartbear 2.8
54 NeoLoad Neotys 5.0.2
74 SilkPerformer Borland 15.5
83 Testing Anywhere Automation Anywhere 9.2
85 TestStudio Telerik Ultimate 2014_4_1211
91 WAPT SoftLogica Pro 3.5

Table 5.2: List of remaining tools after the must have criteria selection

These tools pass the test that the must have criteria must be fulfilled. For detailed information
about the evaluation results, please see table 5.1. We could restrict the detailed evaluation from
originally 95 tools to 10 tools with this evaluation. That is 10,53%.

In the following we take a look into each tool and present the results of the detailed tool
evaluation. We present the tools in detail and describe the advantages as well as the drawbacks
of each of the tools. We also give a short idea how the user interface looks like. For a detailed
evaluation data see section 5.2.11.

5.2.1 CLIF

The CLIF Framework14 from the OW2 Consortium is an open load testing platform. The GUI is
based either on Eclipse or Swing. Figure 5.3 shows the Eclipse UI which we used for our needs.

Further, there is a Command Line Interface and a plugin for the common CI-Server Hudson/-
Jenkins. It provides so called “Injectors” which are related to a technology that should be tested.
Out of the box, CLIF provides protocols, such as HTTP/HTTPS or FTP and offers injectors for
that. Further, it provides so called “Probes” for measuring metrics.

The CLIF Framework performed well with some features missing. For example, we could
not find a SMTP Injector and also there is no possibility to run JUnit Tests within the tool.
Distributed Performance Testing on many clients was also not detected. Also the rating of the
user interface category was not rated with full points by the experts due to a little complexity in
the test creation and intuitivity.

Compared to the most fitting tool, CLIF evaluated good with several minor issues that led to
deduction of points.

14CLIF: http://clif.ow2.org/

51

Figure 5.3: CLIF Overview

General Performance Testing Issues Interoperability Usability
CLIF 100,00% 83,54% 52,08% 79,21%

Table 5.3: Final Result of the Evaluation - CLIF

5.2.2 contiperf

Contiperf15 follows a slightly different approach than most of the other evaluated tools. It is
only an extension for the common Unit Testing Framework JUnit that extends the functionality
of JUnit with performance testing features. Some of the features are:

1. Repeating tests with exact invocation and thread count

2. Defining of SLA similar restrictions

3. Providing warm-up and ramp-up periods

4. Parallel test execution

5. Integration with Maven

There are many more features that can be seen on the tool homepage. Due to the completely
different approach contiperf did not perform well on our set of criteria.

To see how tests are implemented using contiperf, we present a simple tests that is imple-
mented with this tool. Listing 5.1 shows the code:

import org . j u n i t . ∗ ;
import org . d a t a b e n e . c o n t i p e r f . ∗ ;

15contiperf: http://databene.org/contiperf

52

General Performance Testing Issues Interoperability Usability
Contiperf 77,78% 29,11% 45,83% 36,84%

Table 5.4: Final Result of the Evaluation - contiperf

p u b l i c c l a s s SmokeTest {
@Rule
p u b l i c C o n t i P e r f R u l e i = new C o n t i P e r f R u l e () ;

@Test
@PerfTes t (i n v o c a t i o n s = 1000 , t h r e a d s = 20)
@Required (max = 1200 , a v e r a g e = 250)
p u b l i c vo id t e s t 1 () throws E x c e p t i o n {

Thread . s l e e p (2 0 0) ;
}

}

Listing 5.1: Contiperf example taken from http://databene.org/contiperf

5.2.3 Grinder

Grinder16 is a load testing framework that is basically able to test all components of software
that offer a Java API. This includes of course HTTP components such as web applications or
other components such as CORBA servers. Grinder offers a scripting possibility to express tests
within languages such as Java, Jython or Clojure. An example of a test can be seen in listing 5.2
The architecture of Grinder splits up two important parts of the framework: Controlling the tests
and executing the tests. Figure 5.4 provides a introduction of the GUI.

Therefore, it offers a console and an agent process that implement those two parts. It is
designated to be able to run the agents on different machines to achieve a higher load and perform
distributed performance testing.

A s i m p l e example u s i n g t h e HTTP p l u g i n t h a t shows t h e
r e t r i e v a l o f a s i n g l e page v i a HTTP .

from n e t . g r i n d e r . s c r i p t import T e s t
from n e t . g r i n d e r . s c r i p t . G r i n d e r import g r i n d e r
from n e t . g r i n d e r . p l u g i n . h t t p import HTTPRequest

t e s t 1 = T e s t (1 , " Reques t r e s o u r c e ")
r e q u e s t 1 = HTTPRequest ()
t e s t 1 . r e c o r d (r e q u e s t 1)

16Grinder: http://grinder.sourceforge.net/

53

Figure 5.4: Grinder Overview

c l a s s Tes tRunne r :
def _ _ c a l l _ _ (s e l f) :

r e s u l t = r e q u e s t 1 . GET(" h t t p : / / l o c a l h o s t : 7 0 0 1 / ")

Listing 5.2: Grinder test example taken from http://grinder.sourceforge.net/g3/scripts.html

Grinder does not offer a definition of load types but that can be handled with the agents
themselves. It further does not provide all requested metrics out of the box and the export
formats are restricted. In terms of usability there a minor problems that one has to be familiar
with, such as configuring applications via configuration files and the GUI itself is a little bit
confusing concerning the data that is distributed to run the tests and the test execution.

General Performance Testing Issues Interoperability Usability
Grinder 88,89% 86,08% 37,50% 55,26%

Table 5.5: Final Result of the Evaluation - Grinder

5.2.4 LoadComplete

LoadComplete17 is a load testing framework that aims to keep the users focus on the perfor-
mance testing tasks rather than on programming tasks. The vendor, smartbear, claims that with
LoadComplete it does not require programming knowledge to use LoadComplete. Figure 5.5
shows the GUI of LoadComplete.

17LoadComplete: http://smartbear.com/products/qa-tools/load-testing/

54

Figure 5.5: LoadComplete Overview

While using LoadComplete we could not detect JMS, SMTP or FTP support out of the box.
Further, the way how to define the user load type is not optimal and the experts found some flaws
in the user interface intuitivity. Due to this, the simplicity of test creation suffered.

General Performance Testing Issues Interoperability Usability
LoadComplete 50,00% 75,95% 62,50% 76,32%

Table 5.6: Final Result of the Evaluation - LoadComplete

5.2.5 NeoLoad

NeoLoad18 is a load framework specialized for web and mobile applications provided by NEO-
TYS. Main features of the tool are scriptfree implementation of tests, recording of tests or the
mobile testing possibility. NeoLoad is delivered with a GUI out of the box that allows to com-
pose test cases by using the predefined elements.

The user load is free configurable through a graph and also predefined load types are avail-
able. Similar to some other tools there is a lack of JMS, SMTP and FTP support in NeoLoad
most probably because it is specialized to web applications. Also the experts rated the user
interface as a little unintuitive due to many tabs and sub tabs.

General Performance Testing Issues Interoperability Usability
NeoLoad 33,33% 78,48% 91,67% 76,32%

Table 5.7: Final Result of the Evaluation - NeoLoad

18NeoLoad: http://www.neotys.de/product/overview-neoload.html

55

Figure 5.6: NeoLoad Overview

5.2.6 SilkPerformer

SilkPerformer19 is a commercial tool developed by Borland. It supports many protocols and
web technologies such as, HTTP/HTTPS, AJAX, Flash/Flex or Silverlight. Borland itself claims
SilkPerformer to be “the world leader in performance testing”. It has a very extensive reporting
feature and a list of predefined user load types. There is a possibility of arranging load agents.
That leads to the possibility of distributed performance testing.

Figure 5.7: SilkPerformer Overview

It also seems as there are less but bigger releases for the tool. Further, the experts state that
19SilkPerformer: http://www.borland.com/products/silkperformer/

56

the user interface appears a little bit complicated and compared to other tools it is more difficult
to create simple tests.

General Performance Testing Issues Interoperability Usability
SilkPerformer 44,44% 98,73% 83,33% 76,32%

Table 5.8: Final Result of the Evaluation - SilkPerformer

5.2.7 Testing Anywhere

Testing Anywhere20 is a load testing framework that provides a visual load test editor. The
editor supports the recording of the tests and provides a possibility to parametrize tests to repeat
tests with different parameters. The editor further offers an interface to edit recorded tests and
organizes the load tests.

Figure 5.8: Testing Anywhere Overview

During the test of the tool we encountered a crash of the tool for no reason so there is a
drawback at this criterion. Further, the tool did not perform well in terms of export formats but
it offers a possibility to generate reports. The tool further does not provide an IDE integration.

General Performance Testing Issues Interoperability Usability
Testing Anywhere 44,44% 79,75% 52,08% 89,47%

Table 5.9: Final Result of the Evaluation - Testing Anywhere

20Testing Anywhere: http://www.automationanywhere.com/Testing/

57

5.2.8 TestStudio

During the evaluation of Test Studio21 we encountered several crashes while trying to record a
test. Therefore, we could not create a performance test and verify the rest of the tool. Further,
the usability was rated low of this tool because of the complicated way to start tests. Hence, we
could not do a deeper study. Figure 5.9 presents the user interface of the tool.

Figure 5.9: Test Studio Overview

5.2.9 WAPT

WAPT22 is a performance testing framework by SoftLogica. It provides an assistant for creating
tests which enables the user to quickly get to tests. It offers a possibility to distribute the load on
different agents. The user load can be set with predefined values ans load types and is displayed
in a graph for better understanding.

WAPT offers various reporting mechanisms that can also be exported as HTML reports or
CSV reports. The results are further presented as graphs within the tool user interface. WAPT
was not able to test JMS, FTP or SMTP applications and did not support JUnit tests.

General Performance Testing Issues Interoperability Usability
WAPT 33,33% 79,75% 83,33% 100,00%

Table 5.10: Final Result of the Evaluation - WAPT

21TestStudio: http://www.telerik.com/teststudio
22http://www.loadtestingtool.com/index.shtml

58

Figure 5.10: WAPT Overview

5.2.10 JMeter

JMeter23 is an open source performance and load test framework developed by the Apache
Software Foundation24. It was originally designed to test web application but has evolved to
a multi purpose performance testing tool. It supports many formats and protocols, such as
HTTP/HTTPS, SMTP, JMS, FTP or LDAP. Due to the fact that JMeter is completely written
in Java, it is 100% portable to all operating systems that support Java and for those that provide
a Java Runtime Environment. JMeter is shipped with a GUI out of the box. Figure 5.11 shows
the basic user interface.

JMeter is highly extensible because of the plugin mechanisms. One can implement an own
sampler or listener or other plugins and extend the tool with it. The documentation on the tool
homepage is detailed and supports the users with the necessary information to get started and
even for further more complicated scenarios. JMeter has no explicit automatic report generation
out of the box but offers plugins for composing data and graphs and for exporting the composi-
tion in various formats as well as graphics.

General Performance Testing Issues Interoperability Usability
JMeter 88,89% 98,73% 83,33% 100,00%

Table 5.11: Final Result of the Evaluation - JMeter

23JMeter: http://jmeter.apache.org/
24http://www.apache.org/

59

Figure 5.11: JMeter Overview

5.2.11 Evaluation Summary and Most Fitting Tool

In this we present the complete detailed evaluation results. The full data is listed in tables 5.12,
5.13 and 5.14

As we can see in the detailed evaluation data, the sum of the points lead to a ranking of
the evaluated tool ordering from the most fitting tool to the least fitting tool for our research
environment and requirements. We split up the visualization in the four main categories and the
results are presented in table 5.12. This table presents the scores of each of the tools in each of
the four categories. 100,00% means that the respective category is completely fulfilled by the
respective tool.

ID Tool Name General Performance Testing Issues Interoperability Usability
9 CLIF 100,00% 83,54% 52,08% 79,21%
37 JMeter 88,89% 98,73% 83,33% 100,00%
11 Contiperf 77,78% 29,11% 45,83% 36,84%
24 Grinder 88,89% 86,08% 37,50% 55,26%
91 WAPT 33,33% 79,75% 83,33% 100,00%
54 NeoLoad 33,33% 78,48% 91,67% 76,32%
74 SilkPerformer 44,44% 98,73% 83,33% 76,32%
48 LoadComplete 50,00% 75,95% 62,50% 76,32%
83 Testing Anywhere 44,44% 79,75% 52,08% 89,47%
85 TestStudio - - - -

Table 5.12: Final Result of the Evaluation - Scores by Category

This leads to a final result presented in table 5.13. It sums up the results of the main cat-
egories and shows the overall evaluation results. The column “Achieved Points” reflects the

60

Figure 5.12: Part 1 of the Detailed Evaluation Results

61

Figure 5.13: Part 2 of the Detailed Evaluation Results

62

Figure 5.14: Part 3 of the Detailed Evaluation Results

63

points each tool got during the evaluation phase. The column “Achieved Score” reflects the
score related to the maximum possible score.

ID Tool Name Achieved Points (rounded) Achieved Score (rounded)
37 JMeter 133 95%
74 SilkPerformer 121 86%
9 CLIF 112 80%
91 WAPT 108 77%
54 NeoLoad 105 75%
24 Grinder 104 74%
83 Testing Anywhere 101 72%
48 LoadComplete 99 70%
11 Contiperf 55 39%
85 TestStudio - -

Table 5.13: Final Result of the Evaluation - Ranking of the Tools

Concerning the research questions stated in section 3.2, tables 5.12 and 5.13 also present
answers to RI 1.2 and RI 1.3. Regarding RI 1.2 we can see the amount of fulfillment of the
requirements of each tool in table 5.12 and see to what extent each tool fulfills the respective
categories. Regarding RI 1.3 we can see in table 5.13 the overall score of the tools and we can
further conclude that for our research environment and the subsequent requirements JMeter is
the best choice.

64

CHAPTER 6
Test Framework Design and

Implementation

In this chapter we present the results of the test design and the relating implementation. We use
the most promising tool - JMeter - which resulted from the evaluation study of chapter 5. We
further use the solution approach described in section 4.2 and the proposed tests. We go through
each test and present the design and the implementation.

6.1 General Design

Before the actual tests can be designed and implemented, some potential pitfalls and respective
solutions have to be discussed. These problems contain topics that are related to the web appli-
cation or technical implications out of that or implications of the usage of JMeter. We discuss
the following topics:

• User Load Controlling In order to be able to control the load that is applied to the system,
we have to take care of the user count that is used.

• Recording of Test Cases We want to record the testcases to be as precise as possible
concerning requests.

• Session Handling Session Handling can be a tricky part of any web application testing as
we need to be logged in during the test.

• Handling of Files and Paths The use case contains a file upload mechanism which we
test and thus, we have to take care about the handling of them.

• Listeners for Data Gain We need to collect and save the metrics that are relevant for the
systems and listeners are therefore a need.

65

• Assertions As an important part, we have to check if the test is successful and for this
purpose we use assertions.

All the mentioned topics a crucial in terms of being successful with the tests and retrieving
data that can be interpreted. We now explain the ideas behind the topics and explain how we
designed the tests to support the above mentioned topics and their implementation.

6.1.1 User Load Controlling

An important topic is to control the load of users that is sending request to the targeted server.
In our approach we have two types of tests. The first type provides a constant load of users over
the complete test duration. The second type is a controlled user load that increases in a defined
period of time. This type increases the load of users until a maximum user count is reached.
JMeter and its plugins allow to configure both of the types and offers elements to add to the test
plan, such as the “Ultimate Thread Group” as presented in figure 6.1.

Figure 6.1: JMeter Ultimate Thread Group for Controlling the User Load

This element provides a possibility to configure a nearly arbitrary user load. In the config-
uration area of the element, the load can be defined and the tool presents the configured load in
the form of a graph as presented in figure 6.2.

With this element we are able to configure all needed user loads and JMeter uses them for
our tests to generate load for the target system.

6.1.2 Recording of Test Cases

To achieve a detailed and a true to original image of the tests and the requests that are sent during
the test process, we use the recording feature of JMeter. It provides a so called “Test Script
Recorder” that acts as a proxy server between the browser and the web application and records
all requests for us. Subsequently the requests are listed and translated into JMeter elements to
be able to replay the test. Figure 6.3 shows the recorded elements of a sample test.

For a better user readability, we rename the recorded HTTP(S) requests with the name of
the pages that the request tries to load. Further, we check the requests if there are any obvious
misrecordings.

66

Figure 6.2: JMeter Ultimate Thread Group Configuration

Figure 6.3: Elements recorded by the JMeter Proxy

67

6.1.3 Session Handling

As sessions are a very important feature in modern web applications, we need to take care of
the session that might be important for further pages after a login. JMeter offers strategies for
supporting this such as URL-rewriting or cookie management. As the target application uses
cookies, we need to use the cookie management strategy for preserving the session. Figure 6.4
presents the element for that.

Figure 6.4: Cookie Managment in JMeter

We also need to ensure that each user of the target load gets its own session and therefore,
we have to make sure that the session is cleared after each iteration of the test case. As seen in
figure 6.4, the HTTP Cookie Manager offers a possibility to clear the cookie after each iteration.

6.1.4 Handling of Files and Paths

Another important feature is the proper handling of files as the use case needs a file upload of the
signal data. Basically JMeter is able to detect POST requests and also multipart/form-data usage
or page parameters. Figure 6.5 shows the parameters and file upload recognized by JMeter.

Figure 6.5: Handling of Files in JMeter

JMeter only records the relative file name, so consequently the path has to be adapted in
order to have JMeter finding the correct file and being able to upload the file correctly.

68

6.1.5 Listeners for Data Gain

To make statements about a system’s performance and stability, we have to record metrics during
the test execution. As stated in section 4.2.3 we record the most important metrics to observe
the system’s performance. The elements of JMeter that record data are called listeners. Most
of them - especially of the plugins - are also able to create graphs out of the box with the
measured data as seen in figure 6.6. For our tests we mainly use the components “Summary
Report”, “Response Times over Time”, “View Results Tree”, “JMXMon Samples Collector”
and “Assertion Results”. The “Summary Report” and “Composite Graph” elements are used to
sum up the data and to prepare reporting issues.

Figure 6.6: Listeners for Data recording in JMeter

Further, there are listeners for errors. As we have assertions for ensuring the application to
run correctly even under heavy load, we also use these listeners to detect requests that basically
return a page but not the expected one. These listeners are also able to write the results directly
to a log file to post process the errors.

6.1.6 Assertions

While the test run, we want to ensure that a returned page is the page we expect, especially
in some cases. We need to assert some data that we expect to be on the page and to exclude
common error pages. For internal errors we add a global assertion such that if the error ever
occurs during the test run, the assertion listener recognize that and raise an error.

For each request, such as the Checkin Page request or the Checkin Finish Request, we add
assertion for the response page. We expect the respective page to be returned after the request.

69

Figure 6.7: Response Assertions in JMeter

Therefore, we add response assertions for those pages and check the page for expected data.
Figure 6.7 shows the assertions in the test case.

6.2 Checkin Page Tests

Our first type of tests is reaching the Checkin Page itself. We check if the page is able to handle
a certain load. For that purpose The following steps are performed:

1. Call the Home Page

2. Login with the user data

3. Call Checkin Page

We test this procedure with different loads for 30 minutes each. The first run is with one
user, the second run with 10 users and the last run is with 25 users. So from this type of tests we
gain three tests to execute.

Figure 6.8 shows the complete test of the first three tests. Test 1 to 3 only differ in the
amount of users that is configured to generate load. As we can see in this figure, we added
HTTP Request Default Settings for setting the host and the port default values and a Cookie
Manager for handling the session. Further, we added the above described listeners for collecting
the data of the tests. Finally, the Recording Controller holds the HTTP requests that are needed
to access the Checkin Page.

6.3 Checkin Process Tests

The second test type is the full Checkin Workflow. We check if the application can handle
multiple Checkins in a row. The following steps are performed:

1. Call the Home Page

70

Figure 6.8: Complete Test Type 1

2. Login with the user data

3. Call Checkin Page

4. Upload Signal File

5. Proceed the wizard until finished

6. Logout

We test this procedure with different loads for 30 minutes each. The first run is with one
user, the second run with 10 users and the last run is with 25 users. So from this type of tests we
gain three tests to execute.

Figure 6.9 shows the additional steps that are necessary to perform the steps of a complete
Checkin Workflow. The additional steps contain the upload of the signal file and finishing the
wizard. Equally to the previous test type, we add listeners to gather the data for the interpretation
and the assertions to ensure the pages are returned correctly. In this test, especially the steps
of the file upload and the finishing step of the wizard are time consuming and need a special
observation.

71

Figure 6.9: Additional steps for Test Type 2

6.4 Checkin Process Increasing Users Test

The last test type also implements the complete Checkin Workflow but differs from the other
tests in terms of the user load and the test duration. We use the first 30 minutes of the test
to steadily increase the amount of users that are requesting pages until the user counts reaches
600. The last 10 minutes of the test hold the load of 600 users. Figure 6.10 shows the expected
parallel users count.

Figure 6.10: Planned User Load for Test Type 3

We want to check at what point of user load the server gets unable to serve the requests in a
proper time and see if the systems breaks on any load. Also, we want to see if the system may

72

recover after the first occurrence of the breaking load.

In this chapter, we presented the results of the approach presented in section 4.2.3 to achieve
a framework that is able to perform a performance analysis in the given research environment.
As stated in section 3.3 the research issue 2.1 asks how a framework for performance tests can
look like with the most promising tool - JMeter in our case. To answer this question we presented
the design of the framework in this chapter as well as the implementation with JMeter which is
asked in research issue 2.2.

73

CHAPTER 7
Test Framework Evaluation Results

In this chapter, we present the results of the case study that has been performed on the real
world project of the web application front end. We present the results of the performance tests
and compare them. We further state findings and argue for them. We present the results we
encountered test type wise. The used computer has the configuration as stated in table 7.1

Component Configuration
Processor AMD FX-8350 8x4.00GHz
Memory 16GB DDR3
Operating System Windows 7 64 bit

Table 7.1: PC Configuration

7.1 Reaching the Checkin Page - Type 1

This section presents the results of the first three tests of our planned tests of type 1. These
results relate to the checkin page tests which try to login onto the web application and request
the checkin page. We executed this test type with the load of 1, 10 and 25 users.

Figure 7.1 points out the trend of the response times of the 1 user test. We see the first period
of time the application responds fast. After this period the response times especially for the
Checkin Page increase heavily. A look into the logfiles revealed that this was most probably due
to the start of garbage collection of the JVM. Obviously after the garbage collection the system
recovers with lower response times but remains on a higher level than in the first period.

Further, the aggregated values of the test are calculated. Table 7.2 shows the values of the
first test run with one user. As we can see, the average response time is good and even the
maximum values are ok except of the Checkin page. As one would also expect, the error rate is
0% in this case.

75

1 User MAX MIN AVG MEDIAN ERRORRATE
Checkin Page 7133 ms 551 ms 1034 ms 923 ms 0%

Home Page 922 ms 55 ms 83 ms 73 ms 0%
Login Page 870 ms 37 ms 54 ms 49 ms 0%

Login Page Redirect 866 ms 36 ms 53 ms 48 ms 0%
Login Request 1386 ms 80 ms 175 ms 105 ms 0%

Table 7.2: Results of Test Type 1 with 1 user

Figure 7.1: Response Times over Time - 1 user

As we also want to observe the server process’ impact on the CPU load and the memory
consumption, we measure the data of CPU load and heap usage. Table 7.3 shows the measured
aggregated values of the CPU and heap usage. We can see that the average CPU load is in a
good range and the maximum load is ok.

Figure 7.2 shows the full recordings of the memory consumption and CPU load. We can
see that the the memory consumption increases over the time and even the maximum heap
usage increases. We can further see a remarkable peak at about 15 minutes. At this point the
garbage collection mechanism is invoked. Therefore, the CPU load increases and the memory
consumption decreases. Equally to the response times, the used heap level then keeps on a stable
level but a little higher than in the first period.

Concerning the heap usage of the next two tests with 10 parallel users and 25 parallel users,
the behavior of the CPU load and memory consumption is very similar. In both the same garbage
collection “outlier” can be seen and the increase and decrease of the maximum heap space is
also there. Figures 7.5 and 7.6 present the actual trend during the whole test. Further, tables

76

Memory/CPU 1 cpuLoad maxHeap usedHeap
MAX 61% 1.017 MB 994 MB
MIN 0% 910 MB 154 MB
AVG 24% 968 MB 744 MB

MEDIAN 24% 974 MB 763 MB

Table 7.3: Results of Test Type 1 with 1 user

Figure 7.2: CPU and Memory Usage - 1 us

7.6 and 7.7 list the aggregated values of the user-enhanced type 1 tests. We can see a slightly
higher maximum CPU usage and a doubled average CPU usage which is as expected due to
the massive increased user load. Concerning the maximum heap space and the used heap space
there is hardly any remarkable difference in all of the three tests of this type.

10 Users MAX MIN AVG MEDIAN ERRORRATE
Checkin Page 350558 ms 1377 ms 10682 ms 5172 ms 0%

Home Page 70813 ms 71 ms 1073 ms 415 ms 0%
Login Page 42870 ms 43 ms 646 ms 179 ms 0%

Login Page Redirect 43663 ms 40 ms 627 ms 186 ms 0%
Login Request 180344 ms 274 ms 4071 ms 1570 ms 0%

Table 7.4: Results of Test Type 1 with 10 users

Further, the response times of the tests with 10 and 25 users can be seen in figures 7.3 and
7.4. We can see that the first dramatic raise of response times especially at the Checkin Page and
the Login Request might also be a result of a lack of memory. The peak of about 600 seconds
of response time may also be the reason for the non zero error rate in the last test. Some request
probably simple time out if there is such a long waiting for the response.

77

Figure 7.3: Response Times over Time - 10 users

25 Users MAX MIN AVG MEDIAN ERRORRATE
Checkin Page 588409 ms 4112 ms 28003 ms 9613 ms 1%

Home Page 30152 ms 71 ms 1072 ms 369 ms 0%
Login Page 27847 ms 30 ms 573 ms 181 ms 0%

Login Page Redirect 89570 ms 29 ms 709 ms 176 ms 0%
Login Request 502602 ms 442 ms 11850 ms 2550 ms 0,16%

Table 7.5: Results of Test Type 1 with 25 users

Memory/CPU 10 cpuLoad maxHeap usedHeap
MAX 73% 1.014 MB 962 MB
MIN 19% 911 MB 147 MB
AVG 45% 953 MB 813 MB

MEDIAN 43% 960 MB 860 MB

Table 7.6: Results of Test Type 1 with 10 users

Memory/CPU 25 cpuLoad maxHeap usedHeap
MAX 74% 1.015 MB 988 MB
MIN 0% 911 MB 98 MB
AVG 44% 943 MB 799 MB

MEDIAN 42% 953 MB 846 MB

Table 7.7: Results of Test Type 1 with 25 users

78

Figure 7.4: Response Times over Time - 25 users

Figure 7.5: CPU and Memory Usage - 10 users

79

Figure 7.6: CPU and Memory Usage - 25 users

As a conclusion, we can definitely state that with an increasing number of users the server
gets under stress and latest with 25 users there already occur errors in the responses. The two
main critical pages in this type of test, the Checkin Page and the Login Request, massively
increase the response time if load is added. Regarding our three tests we can illustrate the raise
seen in table 7.8 also in figure 7.7.

Average Response Time 1 User 10 Users 25 Users
Checkin Page 1034 ms 10682 ms 28003 ms
Login Request 174 ms 4070 ms 11850 ms

Table 7.8: Average Response Time per User Load

7.2 Full Checkin - Type 2

This section presents the results of our planned tests of type 1. These results relate to the checkin
page tests which try to login onto the web application and request the checkin page and further
perform a file upload and a complete checkin process. We executed this test type with the load
of 1, 10 and 25 users.

As seen in figure 7.8 the response times are essentially higher than in the previous tests
especially for the new steps such as “Checkin Finish” and “Checkin Load Panel”. We can see
a fast increase of the “Checkin Finish” response time at the beginning and at some point the
response time drops to a much lower level and moves on with a slight pitch. The “Checkin Load
Panel” increases the response time from the same point on. We can see that all this action is
settled higher than in the previous tests.

We can also see this effect in the aggregated values table 7.9. The average value of the top
pages is higher than 30 seconds and the maximum response bursts the level of 60 seconds. The

80

Figure 7.7: Average Response Time per User Load

overall performance is lower due to the higher amount of work that has to be done during the
checkin process.

1 User MAX MIN AVG MEDIAN ERRORRATE
Checkin Deleted 135 ms 113 ms 123 ms 123 ms 0%

Checkin Inserted 136 ms 113 ms 122 ms 123 ms 0%
Checkin Kept Signals 135 ms 111 ms 121 ms 121 ms 0%

Checkin Path 129 ms 102 ms 121 ms 121 ms 0%
Checkin Replaced Signals 133 ms 109 ms 121 ms 124 ms 0%

Checkin Signal Number 152 ms 105 ms 122 ms 122 ms 0%
Checkin Transformer 136 ms 105 ms 125 ms 125 ms 0%

Checkin Upload 4759 ms 2134 ms 2689 ms 2535 ms 0%
Checkin Upload Redirect 507 ms 381 ms 472 ms 477 ms 0%

Checkin Finish 167800 ms 5155 ms 40629 ms 14955 ms 0%
Checkin Load Panel 76690 ms 1227 ms 35549 ms 31844 ms 0%

Checkin Next Step 594 ms 467 ms 528 ms 527 ms 0%
Checkin Page 1189 ms 621 ms 734 ms 698 ms 0%

Home Page 174 ms 63 ms 76 ms 71 ms 0%
Login Page 62 ms 43 ms 50 ms 50 ms 0%

Login Page Redirect 76 ms 41 ms 50 ms 47 ms 0%
Login Request 461 ms 120 ms 165 ms 153 ms 0%

Logout 90 ms 70 ms 81 ms 81 ms 0%

Table 7.9: Results of Test Type 2 with 1 user

Surprisingly, the memory usage - as seen in figure 7.9 - keeps steadily and noticeable below
the maximum heap value. Also the CPU usage is very constant and keeps on its level below

81

Figure 7.8: Response Times over Time - 1 user

20%. The values of table 7.10 also show the surprisingly low memory usage and CPU usage.

Memory/CPU 1 cpuLoad maxHeap usedHeap
MAX 38% 911 MB 629 MB
MIN 0% 911 MB 110 MB
AVG 13% 911 MB 339 MB

MEDIAN 13% 911 MB 336 MB

Table 7.10: Results of Test Type 2 with 1 user

Concerning the tests with 10 and 25 parallel users we expect an even higher impact on the
systems performance. We can see in figure 7.10 and 7.11 that the response times increase a lot.
It seems that there is a pattern of response times. The value increases to a certain value and than
drops to a lower level. The “Checkin Finish Page” only comes with a few very high outliers.
The aggregated values which can be seen in tables 7.11 and 7.12 show the same indication. In
both test cases the “Checkin Finish Page” and the “Checkin Load Panel” have very high average
response time.

Further, the memory consumption and CPU usage is inconspicuous as seen in figures 7.12
and 7.13. The memory usage increases to a level near the maximum but then drops and again
starts to increase. The CPU usage is around 15% and steadily keeps on this level in both use
cases. Tables 7.13 and 7.14 substantiate the indications seen in the figures.

To sum up the second type of we can conclude that while performing a complete checkin
process the system reaches unusable regions of response times. Further, a very important finding

82

Figure 7.9: CPU and Memory Usage - 1 user

10 Users MAX MIN AVG MEDIAN E-RATE
Checkin Deleted 48870 ms 4 ms 2453 ms 7 ms 0%

Checkin Inserted 39828 ms 4 ms 1330 ms 6 ms 0%
Checkin Kept Signals 30545 ms 5 ms 1586 ms 6 ms 0%

Checkin Path 49298 ms 4 ms 2607 ms 7 ms 0%
Checkin Replaced Signals 38394 ms 4 ms 2177 ms 6 ms 0%

Checkin Signal Number 99353 ms 4 ms 3045 ms 7 ms 0%
Checkin Transformer 51169 ms 199 ms 5791 ms 1232 ms 0%

Checkin Upload 50511 ms 562 ms 4592 ms 2274 ms 0%
Checkin Upload Redirect 102636 ms 507 ms 12530 ms 4325 ms 59%

Checkin Finish 1774215 ms 1144 ms 143311 ms 10516 ms 92%
Checkin Load Panel 97796 ms 886 ms 18353 ms 9491 ms 0%

Checkin Next Step 222022 ms 1090 ms 33756 ms 14839 ms 0%
Checkin Page 206640 ms 2410 ms 39072 ms 9448 ms 0%

Home Page 17245 ms 117 ms 4106 ms 371 ms 0%
Login Page 10084 ms 48 ms 1957 ms 213 ms 0%

Login Page Redirect 16510 ms 48 ms 2243 ms 198 ms 0%
Login Request 177380 ms 973 ms 30797 ms 3075 ms 0%

Logout 55301 ms 3 ms 12313 ms 1678 ms 2%

Table 7.11: Results of Test Type 2 with 10 users

83

Figure 7.10: Response Times over Time - 10 users

25 Users MAX MIN AVG MEDIAN E-RATE
Checkin Deleted 87911 ms 4 ms 4050 ms 6 ms 0%

Checkin Inserted 87606 ms 4 ms 2102 ms 6 ms 0%
Checkin Kept Signals 95289 ms 4 ms 5482 ms 6 ms 0%

Checkin Path 95900 ms 4 ms 2680 ms 6 ms 0%
Checkin Replaced Signals 97585 ms 4 ms 5578 ms 6 ms 0%

Checkin Signal Number 96639 ms 4 ms 3925 ms 6 ms 0%
Checkin Transformer 87842 ms 482 ms 8529 ms 1544 ms 0%

Checkin Upload 64731 ms 770 ms 10509 ms 2861 ms 0%
Checkin Upload Redirect 182907 ms 1727 ms 42701 ms 32271 ms 72%

Checkin Finish 1439471 ms 2272 ms 124613 ms 8826 ms 99%
Checkin Load Panel 198615 ms 3064 ms 64216 ms 55614 ms 0%

Checkin Next Step 205875 ms 2990 ms 61130 ms 46487 ms 0%
Checkin Page 310994 ms 4668 ms 56477 ms 26531 ms 0%

Home Page 65912 ms 148 ms 1240 ms 298 ms 0%
Login Page 93375 ms 50 ms 2106 ms 173 ms 0%

Login Page Redirect 74942 ms 78 ms 1231 ms 165 ms 0%
Login Request 103818 ms 532 ms 14586 ms 2844 ms 0%

Logout 66684 ms 2 ms 4635 ms 1403 ms 5%

Table 7.12: Results of Test Type 2 with 25 users

84

Figure 7.11: Response Times over Time - 25 users

Memory/CPU 10 cpuLoad maxHeap usedHeap
MAX 86% 1.020 MB 958 MB
MIN 0% 911 MB 96 MB
AVG 15% 992 MB 584 MB

MEDIAN 13% 999 MB 585 MB

Table 7.13: Results of Test Type 2 with 10 users

Figure 7.12: CPU and Memory Usage - 10 users

85

Memory/CPU 25 cpuLoad maxHeap usedHeap
MAX 53% 1.010 MB 979 MB
MIN 0% 911 MB 228 MB
AVG 14% 984 MB 592 MB

MEDIAN 13% 990 MB 592 MB

Table 7.14: Results of Test Type 2 with 25 users

Figure 7.13: CPU and Memory Usage - 25 users

is that the error rate increases and makes it nearly impossible to reliably perform a checkin as
more than 90% of the checkins fail. Figure 7.14 and table 7.15 illustrate the case:

Average Response Time 1 User 10 Users 25 Users
Login Request 165 ms 30797 ms 14586 ms
Checkin File Upload Request 2688 ms 4591 ms 10508 ms
Checkin Page 733 ms 39072 ms 56477 ms
Checkin Finish 40628 ms 143310 ms 124612 ms
Checkin Load Panel 35549 ms 18353 ms 64215 ms
Logout 81 ms 12313 ms 4635 ms

Table 7.15: Average Response Time per User Load

7.3 Maximum Load - Type 3

Our last test type is the increasing load test. Related to the previous results, we expect this test
to result in a very low performance as the user count is steadily increasing. This expectation is
approved by the tables 7.16 and 7.17 and the figures 7.15 and 7.16. The memory consumption
stays at a high level of memory usage but is stable after a phase of increasing. The response

86

Figure 7.14: Average Response Time per User Load

times vary in a wide range but are all high after some users are added. At first the application
answers fast but after the user count increases the response times get higher. At the end of this
test, the response time is very inconstant.

Increasing Users MAX MIN AVG MEDIAN
Checkin Deleted 358001 ms 5 ms 37200 ms 1966 ms
Checkin Inserted 322929 ms 4 ms 36424 ms 3461 ms
Checkin Kept Signals 326593 ms 5 ms 43430 ms 3333 ms
Checkin Path Value 328988 ms 4 ms 35880 ms 1391 ms
Checkin Replaced Signals 321456 ms 4 ms 39577 ms 2408 ms
Checkin Signal Number 334259 ms 5 ms 44948 ms 13763 ms
Checkin Transformer 355813 ms 7 ms 117821 ms 109047 ms
Checkin Upload 591504 ms 591 ms 126646 ms 76909 ms
Checkin Upload Redirect 1254005 ms 219 ms 253730 ms 177460 ms
Checkin Finish 2637983 ms 412 ms 369478 ms 225998 ms
Checkin Load Panel 534459 ms 372 ms 149263 ms 100143 ms
Checkin Next Step 404009125 ms 714 ms 2137189 ms 368858 ms
Checkin Page 1387670 ms 644 ms 402603 ms 289855 ms
Home Page 551616 ms 82 ms 143705 ms 36391 ms
Login Page 358431 ms 34 ms 98387 ms 29999 ms
Login Page Redirect 248470 ms 31 ms 68371 ms 27631 ms
Login Request 453726 ms 210 ms 98852 ms 72725 ms
Logout 604979 ms 241 ms 153856 ms 121185 ms

Table 7.16: Results of Test Type 3 with increasing users

The research issue defined in section 3.4 asks if the presented approach is feasible and if it
works properly in the research environment. We have shown that the our framework with the
most promising tool is able to test a web application of the research environment for performance

87

Figure 7.15: Response Times over Time - Increasing users

issues. We have shown that the framework can be applied and returns feasible results as in this
case study.

Memory/CPU 1 cpuLoad maxHeap usedHeap
MAX 74% 1.013 MB 984 MB
MIN 0% 911 MB 92 MB
AVG 25% 954 MB 734 MB

MEDIAN 23% 953 MB 767 MB

Table 7.17: Results of Test Type 3 with increasing users

88

Figure 7.16: CPU and Memory Usage - Increasing users

89

CHAPTER 8
Discussion and Limitations

In this chapter we critically examine and discuss the study and show up possible limitations.

8.1 Discussion

This section discusses the results that are achieved in chapters 5, 6 and 7, discusses the connec-
tion to the related work of chapter 2 and shows the feasibility of the study and the fulfillment
regarding the research questions.

In the related work we presented various approaches of performance testing and an approach
to evaluate tools. We use this scientific context for our study. In the tool selection part of this
work, we use the approach of Robert M. Poston and Michael P. Sexton . On the one hand we
determine a list of criteria which represents the user needs of the research environment. Further,
we use the second part of the evaluation study after Robert M. Poston and Michael P. Sexton
to evaluate a best fitting tool based on the criteria list. With this result, we can proceed with
designing a test framework for the research environment. We use a prototyping approach to
design this framework. The last part uses a case study approach to apply the framework and to
see its feasibility. We now discuss each part of the thesis in detail.

In this thesis, the overall target is to perform performance analysis in a specialized area. The
area this research is located in, is the area of heterogeneous distributed systems in an automation
systems environment. We describe this area in chapter 3. For this thesis we concentrate on the
change management workflow that is used in the research prototype and reflects one of the most
crucial and complex features of the system under test. This workflow is depicted in figure 3.2.
To be able to perform a performance analysis on this prototype and in this research area we can
derive three main research questions that arise out of this.

• Tool Selection This research question deals with the selection of a tool with we want to
perform the analysis and splits up in three research issues we identified. We present them
in detail in the sections below.

91

• Test Framework Design and Implementation In this research question, the main target
is to create a test framework based on the given environment. We identified two parts at
this point. We go into the details in the sections below.

• Test Framework Evaluation As a consequence of creating a framework for performance
analysis, we need to ensure that the proposed framework is feasible in terms of our ap-
plication and to verify its usability. A more detailed view on this research question is
provided below.

These three main research questions are identified due to the main goal of performing perfor-
mance analysis in the research environment. Their location in the research environment around
the ASB is shown in figure 8.1

Figure 8.1: Illustration of the location of the research problems in the (extracted) environment

We can see that RQ1 - Tool Selection - is located outside and is used for evaluating a most
suitable tool (refers to number 1 in figure 8.1. One of the tools will be selected by an approach
after Robert M. Poston and Michael P. Sexton [74] and is the tool of choice for this work.
We describe our approach in detail in the sections below. RQ2 - Test Framework Design and
Implementation - uses the chosen tool and creates an approach for a framework that is able to
guide and control the performance analysis process in our environment. The so created test
framework also contains high level test cases to specify important aspects to test and cares about
general issues of performance testing in web applications too. RQ3 - Test Framework Evaluation

92

- uses the implemented approach of performance testing that is a contribution of RQ2 and aims
to check the framework for feasibility and applicability. Therefore, the framework is applied on
the research prototype of the web front-end and checked as it is stated in figure 8.1. We now
revisit each research question in detail and present the connected research issues.

8.1.1 Research Question 1 - Tool Selection

We now take a deeper look in to research question 1, the tool selection. In the previous sections
we already describe the main sketch of this question. As the overall target of this work is to
perform performance analysis, there is a need for a tool that is able to support all requirements
that are needed in our research environment. Hence, we need a list of requirements that reflect
those needs and we have to choose a tool according to this needs. To implement this evaluation
in a strategic and scientific way, we adapt the approach of Robert M. Poston and Michael P.
Sexton [74] which is a guideline for tool evaluation studies. The overall approach looks like
illustrated in figure 8.2:

Figure 8.2: Main Steps of the Approach of Poston and Sexton [74]

In research question 1 we asked for a tool that is able to perform performance analysis in our
research environment. According to the research issues mentioned in chapter 3, we can answer
the research issues as follows:

• RI 1.1: What are the requirements for performance testing in the research environment?
We found a list of criteria that reflect the requirements for performance testing in the
research environment. Those requirements are grouped in four main categories and can
be seen in figure 5.1 and figure 5.2 for a detailed view.

First we identify the user needs and collect the requirements that are necessary. In this
study, this step is done by an environment analysis within the lab. This is labeled with
number 1. The next step is to extract criteria for the tool selection out of the user needs
which reflects number 2 in figure 8.2. Further, all available tools have to be found (number
3) and the most fitting tool is selected (number 4) after rating the tools. We use this
approach and define weights for the criteria as seen in table 4.1. These weights refer to
the criteria that are found in chapter 5. The criteria are listed in figure 5.1 and figure 5.2
and are the answer of research issue 1.1. Based on these results, we found a list of criteria
that represents the requirements of the users and thus can be used to find a tool in our
context.

• RI 1.2: How do the available tools fulfill the requested requirements? Based on this list
of criteria we were able to rate the tools to get an overall impression of the tool in terms
of our criteria. The detailed results can be seen figures in 5.12, 5.13 and 5.14.

93

With this approach and the full list of available tools, which can be seen in Appendix A,
we can now evaluate the tools by rating the tools according to the criteria. The first part is
to create a short list of tools by evaluating the mandatory criteria. The resulting short list
we received is illustrated in table 8.1.

As we can see in table 8.1 we end up with a list of 10 tools at the shortlist (the full list
contains 95 tools). According to the proposed approach, these tools are evaluated with
the optional criteria. The full evaluation results can be seen in figures 5.12, 5.13 and 5.14
which is also the answer of research issue 1.2. Due to the usage of the proposed approach
by Robert M. Poston and Michael P. Sexton [74], this evaluation is efficient and effective.
A summary of the results is listed in table 8.1. Based on this result, we can evaluate tools
with the criteria with the tools and achieve a rating for each tool.

• RI 1.3: Which of the available tools or set of tools is the best for the environment? The
full list of scored tools with which was presented in RI1.2 leads to JMeter as the most
suitable tool for our purposes. Table 8.1 shows the overall scores and the selection of
JMeter.

ID Tool Name Achieved Points (rounded) Achieved Score (rounded)
37 JMeter 133 95%
74 SilkPerformer 121 86%
9 CLIF 112 80%
91 WAPT 108 77%
54 NeoLoad 105 75%
24 Grinder 104 74%
83 Testing Anywhere 101 72%
48 LoadComplete 99 70%
11 Contiperf 55 39%
85 TestStudio - -

Table 8.1: Final Result of the Evaluation - Ranking of the Tools

In this table the tools and the relating achieved points and achieved score are presented.
As we can see JMeter is the most suitable tool for our purposes. It received 133 points
and a total score of 95%. This answers research issue 1.3. Therefore, we use JMeter for
our implementation of the framework.

8.1.2 Research Question 2 - Test Framework Design and Implementation

Based on the results of the previous study - the Tool Selection - we can proceed with thinking
about a procedure that is able to control and guide the performance analysis process in the
research environment. There are already frameworks that deal with testing in this context such
es from Winkler et al. [86] but not in the context of performance testing. Hence, we have to
adapt the framework for our purposes of the environment. We split up this research question in
two separate parts and research issues.

94

• RI 2.1: How does a framework for performing performance tests look like with the most
promising tool and in the research environment? The first one deals with the design of the
framework and relates to research issue 2.1 presented in chapter 3. We therefore design
a framework based on the approach of Winkler et al. [86]. Our approach is illustrated in
figure 8.3.

Figure 8.3: Test Framework Implementation

We define a Test Suite in figure 8.3 that consists of the customer requirements and JMeter
Test Case Implementations derived from the customer requirements. We describe these
test cases below in detail. The next component is the Test Host. It contains the Test
Framework as well as the JMeter Listeners (which collects the data gained by the tests)
and the JMeter Graphs and Visualisations. The last component is the Test Report. This
framework is introduced to control and guide the performance analysis in this thesis and
further answers research issue 2.1.

Further, we define test cases which have to be run on the target. We define three types of
tests that have again three tests defined. They are:

1. Type 1 - Perform the Checkin Process only until Step 1 is displayed (figure 4.5)

a) Request Page before critical steps with one user for 30 minutes
b) Request Page before critical steps with 10 users for 30 minutes
c) Request Page before critical steps with 25 users for 30 minutes

2. Type 2 - Perform the Checkin Process completely as stated in figure 4.4 until the
wizard is finished (figure 4.7)

a) Perform Checkin Process with one user for 30 minutes
b) Perform Checkin Process with 10 users for 30 minutes
c) Perform Checkin Process with 25 users for 30 minutes the service breaks

95

3. Type 3 - Perform the Checkin Process completely as stated in figure 4.4 until the
wizard is finished (figure 4.7)

a) Perform Checkin Process with a steadily increasing amount of users until the
service breaks

Based on these tests, we achieve a full framework that is able to test our purposes and
return results of the investigated system under test.

• RI 2.2: How can the designed framework be implemented in the research environment?
We implemented this approach as seen in chapter 6. The resulting framework was imple-
mented with the most suitable tool - JMeter. To that end, we defined general issues that
might impair the framework implementation. These are mainly due to fact that the web
front-end is a web application and has to be treated carefully. The general issues we dis-
cuss in chapter 6 are User Load Controlling, Recording of Test Cases, Session Handling,
Handling of Files and Paths, Listeners for Data Gain and Assertions. We indicate poten-
tial problems and present solutions for the problems. Further, the proposed test cases are
implemented with JMeter as figure 8.4 shows.

Figure 8.4: Complete Test Type 1 - Implemented with the test framework and the JMeter tool

Figure 8.4 shows an implemented test case of the test type 1, implemented with JMeter.
We can see user load generator, requests of pages, assertions as well as data collectors
such as graphs and data collectors. This answers research question 2.2.

96

8.1.3 Research Question 3 - Test Framework Evaluation

We have chosen a most suitable tool, designed and implemented a framework for performance
testing in our research environment so far. As we want to ensure the quality of the research,
we need to show that the framework is feasible and applicable. To that extend we can achieve
two main contributions on this research question. First, we perform a feasibility study to show
the framework is working in our environment and second, we perform a pilot evaluation to get
an impression of the system under test (the web front-end and the underlying bus system) in
terms of performance analysis. Hence, we can give a basic feedback to the developers which
components might need a performance improvement. This is packed in research issue 3.1.

• RI 3.1: Is the implemented approach feasible and does it work properly in the research
environment? We evaluated the framework on the web front-end and received various
data which is presented in chapter 7 in detail. The main findings are presented here. The
evaluation of the type 1 tests led to the following aggregated results:

Average Response Time 1 User 10 Users 25 Users
Checkin Page 1034 ms 10682 ms 28003 ms
Login Request 174 ms 4070 ms 11850 ms

Table 8.2: Average Response Time per User Load

Table 8.2 presents the aggregated results of the type 1 tests with a different amount of
users. As this table reveals, the higher the amount of users generating load is, the longer
the requests take to be finished. Further, we can see that the difference between two tests
(for instance between 1 and 10 users or between 10 and 25 users) increase as well so that
there might be an exponential increase of the response time depending on the user amount.

Figure 8.5: Average Response Time per User Load

Figure 8.5 emphasizes this finding in a graphical way. We can see that at both requests
the response time increases. The type 2 tests show a similar behavior. Table 8.3 reflects

97

the response times of the various requests. We can see a remarkable increase of average
response time already at a repeated checkin with a 1 user load. This suggests that there
might be a performance issue at the Checkin Load Panel or the Checkin Finish step. The
increasing response time on increasing user load is basically given but not for all steps.

Average Response Time 1 User 10 Users 25 Users
Login Request 165 ms 30797 ms 14586 ms
Checkin File Upload Request 2688 ms 4591 ms 10508 ms
Checkin Page 733 ms 39072 ms 56477 ms
Checkin Finish 40628 ms 143310 ms 124612 ms
Checkin Load Panel 35549 ms 18353 ms 64215 ms
Logout 81 ms 12313 ms 4635 ms

Table 8.3: Average Response Time per User Load

The fact that there is no strictly monotonically increasing average response time in all of
the requests is better illustrated in figure 8.6. We can see that at Checkin Finished or Login
Request there is a unpredictable behavior. This may be due to the fact that the application
was already on the limit with 10 users.

Figure 8.6: Average Response Time per User Load

For the type 3 tests, we encountered an early unpredictable behavior. We presented the
results of the feasibility study and the performance analysis of the system under test. The
values which our proposed framework collected and reported are applicable in terms of
the experienced performance of the application. This is the answer of research issue 3.1.
Based on these results we can conclude that the tool is feasible for our purpose and can be
applied for performance testing in our environment.

98

We have now discussed the results based on the research questions and linked some possi-
ble limitations. We now explain the limitations and threats to validity of the study in detail
in the next section.

8.2 Limitations and Threats to Validity

Based on the results and the proposed approach some limitations yield. In this section we iden-
tify and describe them. Furthermore, we discuss the threats to validity of this thesis.

8.2.1 Threats to Internal Validity

Internal validity deals with the content of the study itself and describes internal factors that might
threat the study’s validity. In this study we identified the following internal threats.

• Criteria Selection Due to the fact that the criteria selection is done by experts and users
of the research environment, the selection is subjective and might not reflect the objective
criteria for the selection. The selection may be driven by personal preference. Further-
more, the chosen criteria might not reflect the optimal criteria set. We address this threat
as the selection is spread over many experts.

• Completeness of Requirements As we have considered a list of requirements to achieve
the evaluation, it may be the case that some aspects have not been covered and may there-
fore missing in the criteria selection. We discussed the requirements with experienced
industry experts of software and requirements engineering and therefore this threat is min-
imized.

• Weightings and Ratings Another task that is executed by a human is the mapping of cri-
teria with weights. This may also be biased by personal preference. The same explanation
is valid for the ratings that are done during the evaluation. Especially in case of Usability
category. We counteract this thread by having experts for this evaluation.

• Completeness of Tool List As it is impossible to cover all available tools that exist to
include them into the study, there might be a tool that has not been included in our study
and therefore has not been evaluated. There may also be tools developed for personal
usage that are not included in this list. This threat is minimized by a comprehensive
search and a investigation of the most common tool sites.

• Appearance of new Tools The list of tools was created at the beginning of the study. As
the study was executed over a period of time it is possible that new tools or new versions
of listed tools have been released but have not been taken into account in this study. We
minimize this threat by the method of evaluation. A new tool can easily be added to the
evaluation and be included in it.

• Inappropriate Framework Design It could turn out that the framework design is not
appropriate for the usage in this study or at all because it is tailored to the needs of the

99

current research stated in chapter 3. The framework design is an important part of this
thesis and therefore this is a threat. We encounter this threat by using a well established
framework [86] and adapt it for our purpose.

• Representativeness of Test Set Our test set is tailored for the use case that is described in
chapter 3. Hence, the results of this particular area of the application under test may not
be representative for the rest of the application. The other areas may present a better or a
worse performance than the presented area.

8.2.2 Threats to External Validity

External validity deals with the ability to generalize the findings of the study. In this section
we present the threats to external validity. The thesis is developed in the context of the CDL-
Laboratory and especially tailored for that. Due to this fact, the generalization of the chosen
criteria and the evaluation as well as the implementation and the case study might not be working
in other environments. In contrast to that, the evaluation process is a well established process
[74] and has already been applied in different previous studies such as [34].

100

CHAPTER 9
Conclusion and Future Work

This chapter summarizes the work of this thesis, gives a conclusion and points out possible
future work. We go again into the methodology and present a summary of the achieved results.

9.1 Goal of the Thesis

Software quality assurance is a crucial part of modern software development and as a part of it
performance testing and analysis is as well. Even newer areas of Software Engineering have to
implement a software quality assurance strategy. This is also valid for the area of heterogeneous
distributed engineering environments. Software Engineering methods are applied on this field
and so are software quality methods. In this thesis, we concentrate on performance testing in the
field of heterogeneous environments.

In order to be able to peform performance testing, the first goal of this thesis is to choose
a tool that supports our purpose. This is accomplished by having a scientific evaluation with
a well recognized and approved approach by Robert M. Poston and Michael P. Sexton [74]For
that, a long list of possible tools is created with the help of a research for available tools. Based
on this long list, a short list is received by applying the mandatory criteria. Therefore, a list of
criteria is determined and weights are mapped to the found criteria. Further, the criteria are used
for evaluation to elect a most promising tool for the further study.

After the most promising tool is found the next goal of this thesis is to design a testing
framework for our research environment that is able to test an application in our research area in
terms of performance. The presented framework is then implemented with the most promising
tool from the tool study above. The outcome of this goal is a performance test framework that is
able to test the web application prototype of the research environment.

The last goal is to show that the designed and implemented framework is feasible for our
purposes. We therefore perform a case study on the web application front end and apply the
testing framework. We then examine the results of the tests in terms of sanity and feasibility and
get an impression of the performance of the target application.

101

9.2 Methodology

We use different approaches for our three main thesis parts. The first part that deals with the
tool evaluation is related to an approach of Robert M. Poston and Michael P. Sexton [74]. We
adopt this approach if necessary. According to this approach we find criteria for the evaluation
that reflect the user needs. These criteria are weighted to express the importance of each of the
criteria items. Based on the criteria, we evaluate a short list of tools, which was created before
by evaluating the must have criteria, according to the criteria list. The scores of each tool are
then compared and the tool with the highest score is the most fitting tool for our purposes. The
second part of the thesis creates a design for a testing framework for performance issues. The
presented design is then implemented with the most promising tool from the tool evaluation. The
last part uses a case study approach to determine the feasibility and sanity of our framework.

9.3 Tool Selection

We executed the evaluation for the criteria which ended up in a list of criteria with weights that
can be seen in 5.2. The evaluation of the tools is described in chapter 5 in detail. We started with
a list of 95 tools. After the must have evaluation, which can be seen in table 5.1, 10 tools are
remaining. With this short list of tools we performed the detailed tool evaluation. The results of
this evaluation can be seen in section 5.2.11. The evaluation resulted in JMeter being the most
suitable tool of this study. The detailed results are listed in table 9.1

ID Tool Name Achieved Points (rounded) Achieved Score (rounded)
37 JMeter 133 95%
74 SilkPerformer 121 86%
9 CLIF 112 80%
91 WAPT 108 77%
54 NeoLoad 105 75%
24 Grinder 104 74%
83 Testing Anywhere 101 72%
48 LoadComplete 99 70%
11 Contiperf 55 39%
85 TestStudio - -

Table 9.1: Final Result of the Evaluation - Ranking of the Tools

102

9.4 Test Framework Design and Implementation

The design of the framework discusses major aspects of using the tool in the research domain and
with the application under test. Section 6.1 deals with user load controlling, session handling or
assertions in terms of JMeter and the application under test. The following sections the describe
each of the three test types in detail. The implementation details as well as possible pitfalls are
presented.

9.5 Test Framework Evaluation

In the test framework evaluation, we determine if the proposed framework is feasibly for our
research environment. Therefore the framework is applied on the web application and perfor-
mance analysis is performed on it. As proposed in the framework design we have three types of
tests. For all three tests we run the single tests and evaluate the data gathered hereby. We can
see a high increase of the response times if the user count is increased. Figure 9.1 and 9.2 show
the average response times of the pages. The detailed results can be seen in chapter 7.

Figure 9.1: Average Response Time per User Load

9.6 Future Work

During the thesis we recognized some points that could lead to future work. While searching for
tools we encountered many service hosts that offer performance tests in a cloud. As this could
be a cheaper and more scalable solution for commercial tools it might be interesting for further
research to examine the offers and to test cloud performance tools. In our thesis the tests were
executed on one machine to simulate the user load. For further study it might be interesting
to distribute the load generating clients on many different machines to achieve a more realistic
load and a more distributed test. For our purposes of comparing the results and verifying the
frameworks sanity it is no problem that the web application was run on a local server as we do

103

Figure 9.2: Average Response Time per User Load

not care about absolute values. For a detailed statement of the performance of the application,
the tests must be repeated on a productive-similar environment. Furthermore, the test context
should be extended. In other words there have to be more tests of other areas of the application
to give a better statement about the application’s performance. Another future task is to observe
the market for new tools and new versions of already evaluated tools and repeat the evaluation
if new interesting tools arise.

104

Bibliography

[1] Ieee trial-use standard reference model for computing system tool interconnections. IEEE
Std 1175, pages 1–, 1992.

[2] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web services. Springer,
2004.

[3] LB Arief and Neil A. Speirs. A uml tool for an automatic generation of simulation pro-
grams. In Proceedings of the 2nd international workshop on Software and performance,
pages 71–76. ACM, 2000.

[4] Martin Arlitt, Diwakar Krishnamurthy, and Jerry Rolia. Characterizing the scalability of a
large web-based shopping system. ACM Transactions on Internet Technology, 1(1):44–69,
2001.

[5] Alberto Avritzer, Andre Bondi, Michael Grottke, Kishor S. Trivedi, and Elaine J. Weyuker.
Performance assurance via software rejuvenation: monitoring, statistics and algorithms. In
Proceedings of the International Conference on Dependable Systems and Networks, pages
435–444. IEEE, 2006.

[6] Alberto Avritzer, Joe Kondek, Danielle Liu, and Elaine J. Weyuker. Software performance
testing based on workload characterization. In Proceedings of the 3rd international work-
shop on Software and performance, pages 17–24. ACM, 2002.

[7] Alberto Avritzer and Brian Larson. Load testing software using deterministic state testing.
In ACM SIGSOFT Software Engineering Notes, volume 18, pages 82–88. ACM, 1993.

[8] Alberto Avritzer and Elaine J. Weyuker. Generating test suites for software load testing. In
Proceedings of the 1994 ACM SIGSOFT international symposium on Software testing and
analysis, pages 44–57. ACM, 1994.

[9] Alberto Avritzer and Elaine J. Weyuker. The automatic generation of load test suites and
the assessment of the resulting software. IEEE Transactions on Software Engineering,
21(9):705–716, 1995.

[10] Alberto Avritzer and Elaine J. Weyuker. Deriving workloads for performance testing. Soft-
ware: Practice and Experience, 26(6):613–633, 1996.

105

[11] Alberto Avritzer and Elaine J. Weyuker. Monitoring smoothly degrading systems for in-
creased dependability. Empirical Software Engineering, 2(1):59–77, 1997.

[12] Alberto Avritzer and Elaine J. Weyuker. The role of modeling in the performance testing
of e-commerce applications. IEEE Transactions on Software Engineering, 30(12):1072–
1083, Dec 2004.

[13] Simonetta Balsamo, Marco Bernardo, and Marta Simeoni. Combining stochastic process
algebras and queueing networks for software architecture analysis. In Proceedings of the
3rd international workshop on Software and performance, pages 190–202. ACM, 2002.

[14] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
based performance prediction in software development: A survey. IEEE Transactions on
Software Engineering, 30(5):295–310, 2004.

[15] Scott Barber. Beyond performance testing, parts 1–14. IBM developer works, rational
technical library, 2004.

[16] Scott Barber. Creating effective load models for performance testing with incomplete em-
pirical data. In Proceedings of the 26th Annual International Telecommunications Energy
Conference, pages 51–59. IEEE, 2004.

[17] Simona Bernardi, Susanna Donatelli, and José Merseguer. From uml sequence diagrams
and statecharts to analysable petri net models. In Proceedings of the 3rd international
workshop on Software and performance, pages 35–45. ACM, 2002.

[18] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. Æmpa: a process algebraic
description language for the performance analysis of software architectures. In Workshop
on Software and Performance, pages 1–11, 2000.

[19] Stefan Biffl, Alexander Schatten, and Alois Zoitl. Integration of heterogeneous engineer-
ing environments for the automation systems lifecycle. In Proceedings of the 7th IEEE
International Conference on Industrial Informatics, pages 576–581. IEEE, 2009.

[20] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39–59, 1984.

[21] Barry W. Boehm, John R. Brown, and Hans Kaspar. Characteristics of software quality.
1978.

[22] Barbara M. Bouldin. Agents of change: Managing the introduction of automated tools.
Pearson Education, 1988.

[23] special bonus issue Business Week. The qualitative imperative, 1991.

[24] David Chappell. Enterprise Service Bus. O’Reilly, 2004.

[25] Lawrence Chung, B Nixon, Eric Yu, and John Mylopoulos. Non-functional requirements.
Software Engineering, 2000.

106

[26] Vittorio Cortellessa, Andrea D’Ambrogio, and Giuseppe Iazeolla. Automatic derivation of
software performance models from case documents. Performance Evaluation, 45(2):81–
105, 2001.

[27] Vittorio Cortellessa and Raffaela Mirandola. Deriving a queueing network based perfor-
mance model from uml diagrams. In Proceedings of the 2nd international workshop on
Software and performance, pages 58–70. ACM, 2000.

[28] Edward Curry. Message-oriented middleware. Middleware for communications, pages
1–28, 2004.

[29] Miguel de Miguel, Thomas Lambolais, Mehdi Hannouz, Stéphane Betgé-Brezetz, and So-
phie Piekarec. Uml extensions for the specification and evaluation of latency constraints in
architectural models. In Proceedings of the 2nd international workshop on Software and
performance, pages 83–88. ACM, 2000.

[30] G Deffenbaugh. Casing the joint. Unix Review, 9(12):24–30, 1991.

[31] Giovanni Denaro, Andrea Polini, and Wolfgang Emmerich. Early performance testing of
distributed software applications. In ACM SIGSOFT Software Engineering Notes, vol-
ume 29, pages 94–103. ACM, 2004.

[32] Dirk Draheim, John Grundy, John Hosking, Christof Lutteroth, and Gerald Weber. Realis-
tic load testing of web applications. In Proceedings of the 10th European Conference on
Software Maintenance and Reengineering, pages 11–pp. IEEE, 2006.

[33] J.E. Durant, SPRC. Software Practices Research Center, and SQE. Software Quality Engi-
neering. Testing Tools Reference Guide: A Catalog of Software Test & Evaluation Support
Tools; Version 12. Software Quality Engineering, 1991.

[34] Fajar J. Ekaputra, Estefanía Serral, Dietmar Winkler, and Stefan Biffl. An analysis frame-
work for ontology querying tools. In Proceedings of the 9th International Conference on
Semantic Systems, I-SEMANTICS ’13, pages 1–8, New York, NY, USA, 2013. ACM.

[35] Alexander Fay, Stefan Biffl, Dietmar Winkler, Rainer Drath, and Mike Barth. A method
to evaluate the openness of automation tools for increased interoperability. In 39th Annual
Conference of the Industrial Electronics Society, pages 6844–6849. IEEE, Nov 2013.

[36] Robert Firth, Vicky Mosley, Richard Pethla, Lauren Roberts, and William Wood. A guide
to the classification and assessment of software engineering tools. Technical report, DTIC
Document, 1987.

[37] Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces principles, patterns, and
practice. Addison-Wesley Professional, 1999.

[38] Vahid Garousi. Fault-driven stress testing of distributed real-time software based on uml
models. Software Testing, Verification and Reliability, 21(2):101–124, 2011.

107

[39] Shadi Ghaith, Miao Wang, Philip Perry, and John Murphy. Profile-based, load-independent
anomaly detection and analysis in performance regression testing of software systems. In
17th European Conference on Software Maintenance and Reengineering, pages 379–383.
IEEE, 2013.

[40] Stephen Gilmore and Jane Hillston. The pepa workbench: a tool to support a process
algebra-based approach to performance modelling. In Computer Performance Evaluation
Modelling Techniques and Tools, pages 353–368. Springer, 1994.

[41] DR Graham. Computer-aided software testing: The cast report. In Unicom Seminars Ltd.,
Middlesex, UK, 1991.

[42] Vincenzo Grassi and Raffaela Mirandola. Primamob-uml: a methodology for performance
analysis of mobile software architectures. In Proceedings of the 3rd international workshop
on Software and performance, pages 262–274. ACM, 2002.

[43] Object Management Group. Corba services: Common object service specification. Tech-
nical report, Object Management Group, 1998.

[44] Gordon P. Gu and Dorina C. Petriu. Xslt transformation from uml models to lqn perfor-
mance models. In Proceedings of the 3rd international workshop on Software and perfor-
mance, pages 227–234. ACM, 2002.

[45] Reinhard Hametner, Dietmar Winkler, Thomas Östreicher, Stefan Biffl, and Alois Zoitl.
The adaptation of test-driven software processes to industrial automation engineering. In
8th IEEE International Conference on Industrial Informatics, pages 921–927. IEEE, 2010.

[46] Holger Hermanns, Ulrich Herzog, Ulrich Klehmet, Vassilis Mertsiotakis, and Markus
Siegle. Compositional performance modelling with the tipptool. Performance Evaluation,
39(1):5–35, 2000.

[47] Jane Hillston. PEPA: Performance enhanced process algebra. University of Edinburgh,
Department of Computer Science, 1993.

[48] Fried Hoeben. Using uml models for performance calculation. In Proceedings of the 2nd
international workshop on Software and performance, pages 77–82. ACM, 2000.

[49] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004.

[50] Michael N. Huhns and Munindar P. Singh. Service-oriented computing: Key concepts and
principles. Internet Computing, IEEE, 9(1):75–81, 2005.

[51] Timea Illes, A Herrmann, B Paech, and J Rückert. Criteria for software testing tool evalua-
tion. a task oriented view. In Proceedings of the 3rd World Congress for Software Quality,
volume 2, pages 213–222, 2005.

108

[52] ISO Iso. Iec 9126-1: Software engineering-product quality-part 1: Quality model. Geneva,
Switzerland: International Organization for Standardization, 2001.

[53] Capers Jones. Applied software measurement, 1991.

[54] Pekka Kahkipuro. Uml-based performance modeling framework for component-based dis-
tributed systems. In Performance Engineering, State of the Art and Current Trends, pages
167–184. Springer-Verlag, 2001.

[55] Manjit Kaur and Raj Kumari. Comparative study of automated testing tools: Testcomplete
and quicktest pro. International Journal of Computer Applications, 24(1):1–7, 2011.

[56] Peter King and Rob Pooley. Derivation of petri net performance models from uml spec-
ifications of communications software. In Computer Performance Evaluation. Modelling
Techniques and Tools, pages 262–276. Springer, 2000.

[57] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. Quan-
titative system performance: computer system analysis using queueing network models.
Prentice-Hall, Inc., 1984.

[58] Juhnyoung Lee, Mark Podlaseck, Edith Schonberg, and Robert Hoch. Visualization and
analysis of clickstream data of online stores for understanding web merchandising. In
Applications of Data Mining to Electronic Commerce, pages 59–84. Springer, 2001.

[59] Christoph Lindemann, Axel Thümmler, Alexander Klemm, Marco Lohmann, and Oliver P.
Waldhorst. Performance analysis of time-enhanced uml diagrams based on stochastic pro-
cesses. In Proceedings of the 3rd international workshop on Software and performance,
pages 25–34. ACM, 2002.

[60] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis Rea. Performance
Testing Guidance for Web Applications: Patterns & Practices. Microsoft Press, Redmond,
WA, USA, 2007.

[61] Daniel Menascé. Load testing of web sites. Internet Computing, IEEE, 6(4):70–74, 2002.

[62] Daniel A. Menascé and Hassan Gomaa. A method for design and performance modeling
of client/server systems. Software Engineering, IEEE Transactions on, 26(11):1066–1085,
2000.

[63] Marco Aurélio Stelmar Netto, Suzane Menon, Hugo V. Vieira, Leandro T. Costa, Flavio M.
de Oliveira, Rodrigo Saad, and Avelino Zorzo. Evaluating load generation in virtualized
environments for software performance testing. In IEEE International Symposium on Par-
allel and Distributed Processing Workshops and Phd Forum, pages 993–1000. IEEE, 2011.

[64] Benjamin Oberste-Berghaus. Message oriented middleware.

[65] Barbara Paech and Daniel Kerkow. Non-functional requirements engineering-quality is
essential. In 10th International Workshop on Requirments Engineering Foundation for
Software Quality, 2004.

109

[66] Mike P. Papazoglou. Service-oriented computing: Concepts, characteristics and directions.
In Proceedings of the 4th International Conference on Web Information Systems Engineer-
ing, pages 3–12. IEEE, 2003.

[67] Dorin C. Petriu and Murray Woodside. Software performance models from system scenar-
ios in use case maps. In Computer Performance Evaluation: Modelling Techniques and
Tools, pages 141–158. Springer, 2002.

[68] Dorina C. Petriu and Hui Shen. Applying the uml performance profile: Graph grammar-
based derivation of lqn models from uml specifications. In Computer Performance Evalu-
ation: Modelling Techniques and Tools, pages 159–177. Springer, 2002.

[69] Lassi Pohjoisvirta. Choosing a tool for improved software test management. Master’s
thesis, Tampere University of Technology, 2013.

[70] Rob Pooley. Using uml to derive stochastic process algebra models. 1999.

[71] Rob Pooley and Peter King. The unified modelling language and performance engineering.
In Software, IEE Proceedings-, volume 146, pages 2–10. IET, 1999.

[72] Robert Poston. The power of simple software testing metrics. Software Testing Times,
3(1993), 1990.

[73] Robert Poston. A complete toolkit for the software tester. Am. Program, 4(4):34, 1991.

[74] Robert Poston and Michael P. Sexton. Evaluating and selecting testing tools. Software,
IEEE, 9(3):33–42, 1992.

[75] Tijs Rademakers and Jos Dirksen. Open-Source ESBs in Action. Manning Publications,
2008.

[76] Tijs Rademakers and Jos Dirksen. Open-source ESBs in action. Manning, 2008.

[77] Frederick F. Reichheld and W. Earl Sasser Jr. Zero defections: quality comes to services.
Harvard business review, 68(5):105–111, 1989.

[78] Gruia-Catalin Roman. A taxonomy of current issues in requirements engineering. Com-
puter, 18(4):14–23, 1985.

[79] Connie U. Smith. Performance engineering of software systems. Addison-Wesley, 1:990,
1990.

[80] Connie U. Smith. Software Performance Engineering. Encyclopedia of Software Engineer-
ing. Wiley, 2002.

[81] Connie U. Smith and Lloyd G. Williams. Performance engineering evaluation of object-
oriented systems with spe· ed tm. In Computer Performance Evaluation Modelling Tech-
niques and Tools, pages 135–154. Springer, 1997.

110

[82] CMMI Product Team. Cmmi for development, version 1.2. 2006.

[83] Jiang-Jiang Wang, You-Yin Jing, Chun-Fa Zhang, and Jun-Hong Zhao. Review on multi-
criteria decision analysis aid in sustainable energy decision-making. Renewable and Sus-
tainable Energy Reviews, 13(9):2263 – 2278, 2009.

[84] Elaine J. Weyuker. Testing component-based software: A cautionary tale. IEEE software,
15(5):54–59, 1998.

[85] Lloyd G. Williams and Connie U. Smith. Performance solutions: a practical guide to
creating responsive, scalable software. Addison-Wesley, Reading, MA, 2001.

[86] D. Winkler, R. Hametner, T. Östreicher, and S. Biffl. A framework for automated testing
of automation systems. In Emerging Technologies and Factory Automation (ETFA), 2010
IEEE Conference on, pages 1–4, Sept 2010.

[87] Dietmar Winkler, Stefan Biffl, and Thomas Östreicher. Test-driven automation–adopting
test-first development to improve automation systems engineering processes. In 16th Eu-
roSPI Conference, 2009.

[88] Dietmar Winkler, Reinhard Hametner, and Stefan Biffl. Automation component aspects
for efficient unit testing. In Proceedings of the conference of Emerging Technologies &
Factory Automation, pages 1–8. IEEE, 2009.

[89] Dietmar Winkler, Thomas Moser, Richard Mordinyi, Wikan Danar Sunindyo, and Stefan
Biffl. Engineering object change management process observation in distributed automa-
tion systems projects. Proceedings of 18th European System Software Process Improve-
ment and Innovation (EuroSPI 2011), 2011.

[90] Murray Woodside, Greg Franks, and Dorina C. Petriu. The future of software performance
engineering. In Future of Software Engineering, pages 171–187. IEEE, 2007.

[91] Murray Woodside, Curtis Hrischuk, Bran Selic, and Stefan Bayarov. Automated perfor-
mance modeling of software generated by a design environment. Performance Evaluation,
45(2):107–123, 2001.

111

APPENDIX A
List of Performance Tools

This Appendix shows the full list of tools and the location where furhter information can be
found.

ID Name Further Information
1 Allmon https://code.google.com/p/allmon/
2 Application

Testing Suite
http://www.oracle.com/technetwork/oem/app-test/etest-101273.html

3 Appvance http://http://appvance.com/
4 Benchmark

Factory
Suite

http://www.questsoftware.de/

5 benerator http://databene.org/databene-benerator
6 BlazeMeter http://blazemeter.com/
7 Blitz https://www.blitz.io/
8 CitraTest http://www.intelsol.de/
9 CLIF http://clif.ow2.org/
10 CloudTest http://www.soasta.com/products/cloudtest-performance/
11 contiperf http://databene.org/contiperf
12 Curl-loader http://curl-loader.sourceforge.net/
13 D-ITG http://traffic.comics.unina.it/software/ITG/
14 Database

Open Test
Suite

http://ltp.sourceforge.net/

15 DBMonster http://sourceforge.net/projects/dbmonster/
16 Deluge http://deluge.sourceforge.net/
17 Dieseltest http://sourceforge.net/projects/dieseltest/
18 EclipseProfiler http://sourceforge.net/projects/eclipsecolorer/

113

ID Name Further Information
19 EJP http://ejp.sourceforge.net/
20 Faban http://faban.sunsource.net/
21 Funkload http://funkload.nuxeo.org/
22 FWPTT http://fwptt.sourceforge.net/
23 Gatling http://gatling.io/
24 Grinder http://grinder.sourceforge.net/
25 Grinderstone https://code.google.com/p/grinderstone/
26 HammerDB

(Ham-
merora)

http://hammerora.sourceforge.net/

27 Hammerhead
2

http://hammerhead.sourceforge.net/

28 HP Load
Runner

http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing

29 http_load http://www.acme.com/software/http_load/
30 httperf http://www.hpl.hp.com/research/linux/httperf/
31 Hyades

(Eclipse
TPTP)

http://www.eclipse.org/tptp/

32 IPerf http://iperf.sourceforge.net/
33 IxoraRMS http://www.ixorarms.com/
34 j-hawk http://j-hawk.sourceforge.net/
35 jchav http://jchav.blogspot.co.at/
36 JCrawler http://jcrawler.sourceforge.net/
37 JMeter http://jmeter.apache.org/
38 Jprobe http://www.infoq.com/news/2008/07/jprobe-8
39 jProf http://perfinsp.sourceforge.net/jprof.html
40 Jstress http://sourceforge.net/projects/jstress/
41 JUnit Perf http://www.clarkware.com/software/JUnitPerf.html
42 JUnit Sce-

nario
http://junitscenario.sourceforge.net/

43 Load Impact http://loadimpact.com/
44 Load Storm http://loadstorm.com/
45 loader.io http://loader.io/
46 LoadSim http://jobmanager.sourceforge.net/openware_pub/
47 Loadster http://www.loadsterperformance.com/
48 Load Com-

plete
http://smartbear.com/products/qa-tools/load-testing/

49 Lobo http://www.oncast.com.br/dev/lobo/index_en.htm
50 LoginVSI http://www.loginvsi.com/
51 Messadmin http://messadmin.sourceforge.net/

114

ID Name Further Information
52 MStone http://mstone.sourceforge.net/
53 Multi-

Mechanize
http://multimechanize.com/

54 NeoLoad http://www.neotys.com/product/overview-neoload.html
55 NGrinder http://www.nhnopensource.org/ngrinder/
56 NTime http://www.codeproject.com/dotnet/ntime.asp
57 OpenSTA http://opensta.org/
58 OpenWebLoad http://openwebload.sourceforge.net/
59 OptimizeIt http://www.borland.com/optimizeit/
60 Ostinato https://code.google.com/p/ostinato/
61 P-unit http://p-unit.sourceforge.net/
62 P6Spy http://sourceforge.net/projects/p6spy/
63 PandoraFMS http://pandora.sourceforge.net/
64 PerfectLoad Domain no longer reachable
65 PerformaSure http://discovery.bmc.com/confluence/display/Configipedia/

Quest+PerformaSure
66 postal http://doc.coker.com.au/projects/postal/
67 Pylot http://www.pylot.org/
68 QACenter http://www.projectsatwork.com/content/tools/160402.cfm
69 QEngine http://www.manageengine.com/products/qengine/
70 Rational

Performance
Tester

http://www.ibm.com/developerworks/downloads/r/rpt/

71 Raw Load
Tester

http://www.room4me.com/techtools/RawLoadTester/index.html

72 Seagull http://gull.sourceforge.net/
73 Siege http://www.joedog.org/
74 SilkPerformer http://www.borland.com/products/silkperformer/
75 SimpleProfiler https://code.google.com/a/eclipselabs.org/p/simpleprofiler/
76 Sipp http://sipp.sourceforge.net/
77 SLAMD http://www.slamd.com/
78 Soap-Stone http://soap-stone.sourceforge.net/
79 SOATest http://www.parasoft.com/api-testing
80 stress_driver http://sourceforge.net/projects/stress-driver/
81 Test Load http://www.histaintl.com/productos/OriginalSoft/partner-

microsite/testload.php
82 TestComplete http://smartbear.com/products/qa-tools/automated-testing-tools/
83 Testing Any-

where
http://www.automationanywhere.com/Testing/

84 TestMaker http://www.pushtotest.com/testmaker-open-source-testing
85 TestStudio http://www.telerik.com/teststudio

115

ID Name Further Information
86 tivoli mon-

itoring
and tivoli
composite

http://www-03.ibm.com/software/products/de/tivoli-monitoring-
composite-app-mgmt/

87 TPTEST http://tptest.sourceforge.net/about.php
88 Tsung http://tsung.erlang-projects.org/
89 Valgrind http://valgrind.org/
90 Visual

Studio
http://www.visualstudio.com/

91 WAPT http://www.loadtestingtool.com/
92 Web Poly-

graph
http://www.web-polygraph.org/

93 WebLOAD http://radview.com/ or http://www.webload.org/
94 App Perfect http://www.appperfect.com/products/load-test.html
95 Apache

Flood
http://httpd.apache.org/test/flood/

Table A.1: Available Tools

The sources that this list is based on, are the search at multiple search engines and summarizing
pages, such as: http://en.wikipedia.org/wiki/Load_testing

http://www.opensourcetesting.org/performance.php
http://www.softwaretestinghelp.com/performance-testing-tools-load-testing-tools/

https://www.testtoolreview.de/de/testing-tools/tool-liste?filterreset=true&categories%5BLoad-
/Performance-Test%5D=10

116

List of Figures

1.1 Illustration of the location of the research problems in the (extracted) environment . 3
1.2 Illustration of the structure of the work . 5

2.1 Sketch of Message-oriented Middleware systems from [28] 8
2.2 Schematic overview of SOA from [50] . 8
2.3 Schematic overview of an ESB from [76] . 9
2.4 Multi Tier Tested System from [77] . 11
2.5 Performance Testing Process from [60] . 13
2.6 Performance Testing Process from [15] . 14
2.7 Schematic functionality of a Load Test . 15
2.8 Schematic functionality of a Stress Test . 16
2.9 General Process of Evaluation of Poston and Sexton [74] 17

3.1 Basic Concept of the functionality of the ASB from [19] 24
3.2 Change Management Workflow from [89] . 25

4.1 Main Steps of the Approach of Poston and Sexton [74] 30
4.2 Rating Calculation Example according to [74] . 31
4.3 Test Framework Design according to [86] . 32
4.4 Visualisation of the three main steps of the Checkin Workflow 33
4.5 Screenshot of the first step of the Checkin Workflow 34
4.6 Screenshot of the second step of the Checkin Workflow 34
4.7 Screenshot of the third step of the Checkin Workflow 35
4.8 Test Procedure . 37
4.9 Case Study Workflow . 38

5.1 Overview of the criteria of the evaluation . 45
5.2 Criteria Categorization and Weightings . 46
5.3 CLIF Overview . 52
5.4 Grinder Overview . 54
5.5 LoadComplete Overview . 55
5.6 NeoLoad Overview . 56
5.7 SilkPerformer Overview . 56
5.8 Testing Anywhere Overview . 57

117

5.9 Test Studio Overview . 58
5.10 WAPT Overview . 59
5.11 JMeter Overview . 60
5.12 Part 1 of the Detailed Evaluation Results . 61
5.13 Part 2 of the Detailed Evaluation Results . 62
5.14 Part 3 of the Detailed Evaluation Results . 63

6.1 JMeter Ultimate Thread Group for Controlling the User Load 66
6.2 JMeter Ultimate Thread Group Configuration . 67
6.3 Elements recorded by the JMeter Proxy . 67
6.4 Cookie Managment in JMeter . 68
6.5 Handling of Files in JMeter . 68
6.6 Listeners for Data recording in JMeter . 69
6.7 Response Assertions in JMeter . 70
6.8 Complete Test Type 1 . 71
6.9 Additional steps for Test Type 2 . 72
6.10 Planned User Load for Test Type 3 . 72

7.1 Response Times over Time - 1 user . 76
7.2 CPU and Memory Usage - 1 us . 77
7.3 Response Times over Time - 10 users . 78
7.4 Response Times over Time - 25 users . 79
7.5 CPU and Memory Usage - 10 users . 79
7.6 CPU and Memory Usage - 25 users . 80
7.7 Average Response Time per User Load . 81
7.8 Response Times over Time - 1 user . 82
7.9 CPU and Memory Usage - 1 user . 83
7.10 Response Times over Time - 10 users . 84
7.11 Response Times over Time - 25 users . 85
7.12 CPU and Memory Usage - 10 users . 85
7.13 CPU and Memory Usage - 25 users . 86
7.14 Average Response Time per User Load . 87
7.15 Response Times over Time - Increasing users . 88
7.16 CPU and Memory Usage - Increasing users . 89

8.1 Illustration of the location of the research problems in the (extracted) environment . 92
8.2 Main Steps of the Approach of Poston and Sexton [74] 93
8.3 Test Framework Implementation . 95
8.4 Complete Test Type 1 - Implemented with the test framework and the JMeter tool . 96
8.5 Average Response Time per User Load . 97
8.6 Average Response Time per User Load . 98

9.1 Average Response Time per User Load . 103
9.2 Average Response Time per User Load . 104

118

List of Tables

4.1 Overview of all possible weights in our approach 30
4.2 Measured Metrics . 37

5.1 Must-Have Evaluation . 50
5.2 List of remaining tools after the must have criteria selection 51
5.3 Final Result of the Evaluation - CLIF . 52
5.4 Final Result of the Evaluation - contiperf . 53
5.5 Final Result of the Evaluation - Grinder . 54
5.6 Final Result of the Evaluation - LoadComplete 55
5.7 Final Result of the Evaluation - NeoLoad . 55
5.8 Final Result of the Evaluation - SilkPerformer . 57
5.9 Final Result of the Evaluation - Testing Anywhere 57
5.10 Final Result of the Evaluation - WAPT . 58
5.11 Final Result of the Evaluation - JMeter . 59
5.12 Final Result of the Evaluation - Scores by Category 60
5.13 Final Result of the Evaluation - Ranking of the Tools 64

7.1 PC Configuration . 75
7.2 Results of Test Type 1 with 1 user . 76
7.3 Results of Test Type 1 with 1 user . 77
7.4 Results of Test Type 1 with 10 users . 77
7.5 Results of Test Type 1 with 25 users . 78
7.6 Results of Test Type 1 with 10 users . 78
7.7 Results of Test Type 1 with 25 users . 78
7.8 Average Response Time per User Load . 80
7.9 Results of Test Type 2 with 1 user . 81
7.10 Results of Test Type 2 with 1 user . 82
7.11 Results of Test Type 2 with 10 users . 83
7.12 Results of Test Type 2 with 25 users . 84
7.13 Results of Test Type 2 with 10 users . 85
7.14 Results of Test Type 2 with 25 users . 86
7.15 Average Response Time per User Load . 86
7.16 Results of Test Type 3 with increasing users . 87

119

7.17 Results of Test Type 3 with increasing users . 88

8.1 Final Result of the Evaluation - Ranking of the Tools 94
8.2 Average Response Time per User Load . 97
8.3 Average Response Time per User Load . 98

9.1 Final Result of the Evaluation - Ranking of the Tools 102

A.1 Available Tools . 116

120

	Introduction
	Motivation
	Problem Statement
	Motivating Example
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Related Work
	Heterogeneous and Distributed Engineering Projects
	Performance Testing
	Performance Testing Frameworks and Tools
	Summary

	Research Context and Issues
	Use Case - Change Management Workflow
	Research Question 1 - Tool Selection
	Research Question 2 - Test Framework Design and Implementation
	Research Question 3 - Test Framework Evaluation

	Solution Approach
	Tool Selection
	Test Framework Design and Implementation
	Test Framework Evaluation

	Tool Evaluation Results
	Application Requirements
	Tool Evaluation

	Test Framework Design and Implementation
	General Design
	Checkin Page Tests
	Checkin Process Tests
	Checkin Process Increasing Users Test

	Test Framework Evaluation Results
	Reaching the Checkin Page - Type 1
	Full Checkin - Type 2
	Maximum Load - Type 3

	Discussion and Limitations
	Discussion
	Limitations and Threats to Validity

	Conclusion and Future Work
	Goal of the Thesis
	Methodology
	Tool Selection
	Test Framework Design and Implementation
	Test Framework Evaluation
	Future Work

	Bibliography
	List of Performance Tools
	List of Figures
	List of Tables

